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Constructing geometrically equivalent hyperbolic orbifolds
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We construct families of nonisometric hyperbolic orbifolds that contain the same
isometry classes of nonflat totally geodesic subspaces. The main tool is a variant of the
well-known Sunada method for constructing length-isospectral Riemannian manifolds
that handles totally geodesic submanifolds of multiple codimensions simultaneously.

51M10, 58J53; 11F06

1 Introduction

Classical spectra like the eigenvalue spectrum of the Laplace–Beltrami operator or the
primitive geodesic length spectrum have played an important role in dynamics, geometry,
and representation theory. We continue the investigation of higher-dimensional spectra
that encode the geometry of the nonflat totally geodesic submanifolds of a fixed
complete, finite-volume, Riemannian manifold M . We will refer to the set of such
submanifolds, counted with multiplicity, as the geometric spectrum.

To construct our examples, we restrict ourselves to closed arithmetic locally symmetric
orbifolds, where recent work shows that the geometric spectrum, when nonempty,
carries much information. In McReynolds and Reid [3] it was shown that if M1;M2

are arithmetic hyperbolic 3–manifolds with the same geometric spectrum, provided the
geometric spectrum is nonempty, then M1 and M2 are commensurable. For higher
dimensions, Meyer [4, Theorem C] proved that if M1 and M2 are standard arithmetic
hyperbolic m–manifolds (see Section 2) with the same geometric spectrum, then M1

and M2 are commensurable. It is well-known that the geometric spectrum of a standard
arithmetic hyperbolic m–manifold is nonempty with representatives in every possible
proper codimension.

For any finite-volume, hyperbolic 3–manifold M , there exist infinitely many pairs
of nonisometric finite covers .Mj ;Nj / of M such that Mj and Nj have the same
totally geodesic surfaces [3]. This has two parts. First, there are infinitely many pairs
of finite covers .M 0

j ;N
0

j / with the same geometric spectrum. It is a feature of this
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construction that Vol.M 0
j /D Vol.N 0j /, though we know no general reason why that

must hold. Secondly, there exist infinitely many pairs fMj ;Nj g with the same set
of totally geodesic surfaces (ie without multiplicity) such that Vol.Mj /=Vol.Nj / is
unbounded.

The main result of this article is the generalization of these covering constructions to
higher-dimensional hyperbolic manifolds. We use a variant of the well-known Sunada
method for producing length-isospectral Riemannian manifolds [11] that allows one
to handle totally geodesic submanifolds of varying codimensions. The case of totally
geodesic subsurfaces of a hyperbolic 3–manifold is handled by [3], and the challenge
we overcome is to address all codimensions simultaneously.

Define the totally geodesic spectrum of a locally symmetric Riemannian orbifold M

to be the set

(1) T G.M /D

8<:
isometry classes of orientable nonflat finite-
volume totally geodesic subspaces X �M

with multiplicity mX

9=;D f.Xj ;mXj
/g:

We say that M1 and M2 are geometrically isospectral if T G.M1/D T G.M2/. The
totally geodesic set of a locally symmetric, Riemannian orbifold is

(2) TG.M /D

�
isometry classes of orientable nonflat finite-
volume totally geodesic subspaces X �M

�
D f.Xj /g:

We say that M1;M2 are geometrically equivalent if TG.M1/D TG.M2/.

Theorem 1.1 For every commensurability class C of closed arithmetic hyperbolic
m–orbifolds with m� 3, we have the following:

(a) For each M 2 C , there exist nonisometric finite covers M 0 and N 0 of M such
that T G.M 0/D T G.N 0/.

(b) For each M 2 C , there exist infinitely many pairs of nonisometric, finite covers
.Mj ;Nj / of M such that
(i) TG.Mj /D TG.Nj / for all j ;

(ii) the ratio Vol.Mj /=Vol.Nj / is unbounded.

The orientability condition in (2) is a matter of taste, as a small modification of
our methods allows for nonorientable geodesic subspaces. Our methods can produce
examples modeled on other symmetric spaces of noncompact type, but the technicalities
would obscure the basic ideas behind our construction, which is general enough to
highlight the basic procedure (see Theorem 5.3 for a generalization of Theorem 1.1).
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2 Notation and overview

In this section, we outline the construction of the covers required to prove our main
results. Before providing this outline, we briefly set some notation and terminology
that will be used throughout the article.

2.1 Preliminaries

A finite-volume hyperbolic m–manifold M is arithmetic if its fundamental group �
has a commensurator Comm.�/D fg 2 IsomC.Hm/ j �;g�g�1 are commensurableg
that is dense in IsomC.Hm/ (see [5, (16.3.3)]). The subclass that exhibits the richest
collections of totally geodesic submanifolds is the subclass of so-called standard
arithmetic manifolds, which we now describe.

Throughout this paper, k denotes a number field, Ok its ring of integers, and q a
nondegenerate quadratic form over k . For a prime ideal p of Ok , let kp denote the
localization of k at p and Op is its ring of integers. Call .k; q/ an admissible hyperbolic
pair when k is totally real and q is positive definite at all but one real place of k , at
which it has signature .m; 1/. Set GDSO.q/, fix a k –rational embedding �W G!GLd ,
and define G.Ok/D �

�1.�.G.k//\GLd .Ok//. Since the k –isomorphism class of G
is independent of the similarity class of q , we can assume that the matrix representative
�.q/ for q lies in GLd .Ok/.

An admissible hyperbolic pair gives rise to a commensurability class of m–dimensional
hyperbolic orbifolds as follows. Restriction of scalars followed by the appropriate
projection induces a map � W G.k/! PSO0.m; 1/ with finite kernel, and we call the
image �qD�.G.Ok// a principle arithmetic lattice in PSO0.m; 1/. As PSO0.m; 1/D

IsomC.Hm/, the lattice �q is also the orbifold fundamental group of the orientable
hyperbolic orbifold M�q

D �qnHm .

We call hyperbolic manifolds commensurable with M�q
standard arithmetic manifolds,

and emphasize that every even-dimensional arithmetic hyperbolic manifold is standard.
However, when m is odd, there are infinitely many commensurability classes of non-
standard arithmetic lattices. See [4] for more details on parametrizing commensurability
classes of arithmetic hyperbolic orbifolds.

For any lattice � in PSO0.m; 1/, let z� be the lift of � to SO0.m; 1/. When m is
even, the groups PSO0.m; 1/, SO0.m; 1/ are isomorphic and so z� Š � . When m is
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odd, SO0.m; 1/ is a two-fold covering of PSO0.m; 1/, and hence we have a central
exact sequence

1 �! �2 �!
z� �! � �! 1;

where �2 , the group of 2nd roots of unity, is the center of SO0.m; 1/. If this exact
sequence does not split, there is an index-two subgroup of � for which the associated
sequence does split. In other words, possibly passing to an index-two subgroup when
m is odd, we can assume that � embeds as a lattice in SO0.m; 1/.

Associated with any totally geodesic embedding f W Hn ,!Hm is an injection

f�W PS0.O.n; 1/�O.m� n// ,! PSO0.m; 1/;

and we will denote the image by Hf . Given a torsion-free lattice � in PO0.m; 1/,
proper, totally geodesic, finite-volume submanifolds of M� D �nH

m are then associ-
ated with embeddings f as above such that �\Hf is a lattice in Hf . Notice that, while
M� is an orientable manifold, a geodesic submanifold can be nonorientable. Moreover,
the submanifold is oriented if and only if .� \Hf /� f�

�
P0.SO.n; 1/�SO.m�n//

�
.

We now relate � \Hf to the fundamental group of the geodesic submanifold. Let
Nƒ D ƒnH

n be an oriented totally geodesic submanifold of M� of dimension n.
Then we have an injective homomorphism ƒ! � . Choosing a lifting of Nƒ!M�

to an embedding f W Hn ,!Hm of universal coverings, we see that ƒ is a subgroup of
� \Hf . Assuming that � lifts to SO0.m; 1/, we obtain an injective homomorphism
f?W ƒ! SO.n; 1/�SO.m�n/. The real Zariski closure of f?.ƒ/ is then of the form
SO0.n; 1/�Hƒ for some closed subgroup Hƒ of SO.m� n/.

As is well-known, an orientable finite-volume totally geodesic subspace Nƒ of M� is
also arithmetic [4, Section 3]. Associated with Nƒ is an .nC1/–dimensional quadratic
subform r of q with orthogonal complement t (ie q is k –isometric to r˚ t ) such that
the k –groups Hr D SO.r/, Ht D SO.t/ and HDHr �Ht satisfy

Hr .R/D SO.n; 1/; Ht .R/D SO.m� n/ and zƒD f?.ƒ/�H.k/:

The semisimple k –group H is naturally a k –subgroup of G. We call ƒ a totally
geodesic subgroup of either � or the lift z� of � to G.Ok/; recall from above that ƒ
is isomorphic to a subgroup of both � and z� .

2.2 Strategy of proof for geometric equivalence

We will find a finite group G , a surjective homomorphism �W �!G , and two subgroups
C1;C2 �G such that

(3) �.ƒ/\C1 D �.ƒ/\C2
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for all totally geodesic ƒ � � . It then follows from covering space theory that the
finite covers M1;M2 associated with �1 D �

�1.C1/, �2 D �
�1.C2/ contain exactly

the same totally geodesic submanifolds (see [3, Lemma 4.1]). Thus, it suffices to
find a map �W G.Ok/! G such that gcd.ŒG.OK / W ker� \G.Ok/�; jCi j/ D 1 and
such that (3) holds. Let S0 denote the set of nondyadic primes of Ok not lying over
a prime dividing the index ŒG.OK / W ker� \G.Ok/�. The candidates for G and �
are the natural reduction maps �pW G.Ok/ ! G.Ok=p/, where p is a prime ideal
of Ok . Set Fpr DOk=p, where jOk=pj D pr . For a totally geodesic subgroup ƒ, set
HpD �p.zƒ/, which sits inside of �p.G.Ok//. For our examples, C1 will be the trivial
subgroup and C` will be a cyclic group of prime order ` such that ` does not divide
the order of Hp for any totally geodesic subgroup. In that case, (3) will be satisfied
and the manifolds M1 and M` associated with the pullbacks of C1 and C` will be
geometrically equivalent. Furthermore, notice that, since our covering has odd degree,
nonorientable manifolds only lift to nonorientable manifolds, so TG.M1/, which only
contains oriented submanifolds, indeed equals TG.M`/.

Finding the desired prime ` requires two main steps:

(a) Compute j�p.G.Ok//j. This step uses structure theory of algebraic groups, basic
Galois cohomology, and strong approximation. We obtain the diagram

(4)

zG.Ok/ //

�p
����

G.Ok/

�p

��

1 // F.Fpr / // zG.Fpr / // G.Fpr / // H 1.Fpr ;F/ // 1

where zG is the simply connected cover of G and F is a finite Fpr –group.

(b) Determine all possible divisors of jHpj. This step uses Bruhat–Tits-theoretic
computations associated with the diagram

(5)

zƒ
� � //

�p

��

H.kp/\G.Op/

����

Hp
� � // H.Fpr /

where H is a certain algebraic Fpr –group associated with H. We know the right
vertical map is surjective, and hence we can realize Hp as a subgroup of H.Fpr /.
Recall that kp denotes the localization of k at p and Op is its ring of integers.

Using the calculations for the orders of the groups �p.G.Ok// and the subgroups Hp ,
we find the prime ` using Zsigmondy’s theorem [15].
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2.3 Strategy of proof for geometric isospectrality

Following [3], to produce geometrically isospectral manifolds we require two good
primes p1; p2 where we can use the same prime ` for both p1 and p2 in the above
construction. The key observation in using the two primes p1; p2 is that, since M1 is
a cyclic cover of degree ` to which every geodesic submanifold of M` has exactly `
distinct lifts, the geometric spectrum of the orbifolds satisfies

(6) T G.M1/D f.X;mX ;1/g D f.X; `mX ;`/g;

where T G.M`/D f.X;mX ;`/g. The validity of (6) follows from the argument used
in [3, page 178] to establish this for totally geodesic subsurfaces of a hyperbolic 3–
manifold. That there exists a prime ` that satisfies the necessary properties for both p1

and p2 is a straightforward application of the Chebotarev density theorem. In particular,
there is a positive-density set of primes p for which our methods apply.

3 Step (a) Computing j�p.G.Ok//j

For each p 2 S0 , let qp denote the reduction of q to Ok=qD Fpr . We will say q has a
good reduction at p if qp is nondegenerate; note that the subset S1 � S0 where q has
good reduction is cofinite. For p 2 S1 , set Gp D SO.mC 1Ipr / to be the Fpr –points
of SO.qp/. Over a finite field, orthogonal groups are always quasisplit, and hence
come in one of three types (see [7, Table 1] for the orders of these groups):

� Bn;n , the only form of Bn , arises when dim q D 2nC 1. It has order

(7) jSO.2nC 1Ipr /j D prn2
nY

jD1

.p2rj
� 1/:

� Dn;n , the split form of Dn , arises when dim q D 2n and disc q is a square
in Fpr . It has order

(8) jSOC.2nIpr /j D prn.n�1/.prn
� 1/

n�1Y
jD1

.p2rj
� 1/:

� Dn;n�1 , the nonsplit quasisplit form of Dn , arises when dim q D 2n and disc q

is not square in Fpr . It has order

(9) jSO�.2nIpr /j D prn.n�1/.prn
C 1/

n�1Y
jD1

.p2rj
� 1/:
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We have the exact sequence of algebraic k –groups (see [8, Section 2.3])

1 �! �2 �! Spin.q/ �! SO.q/ �! 1;

where �2 is the cyclic group of order two. This sequence yields the exact sequence for
Fpr –points

1 �! �2 �! Spin.q/.Fpr / �! SO.q/.Fpr / �! F�pr =.F�pr /
2
�! 1:

Strong approximation (see Lemma 1.1 and Theorem 2.3 in [10]) gives us that

�pW Spin.q/.Ok/! Spin.q/.Fpr /

is surjective, and we obtain the following commutative diagram:

Spin.q/.Ok/ //

�p
����

SO.q/.Ok/

�p

��

1 // �2
// Spin.q/.Fpr / // SO.q/.Fpr / // F�pr =.F�pr /

2 // 1

Using this commutative diagram and noting that jF�pr =.F�pr /
2j D 2, we obtain:

Proposition 3.1 The index ŒGp W �p.G.Ok//� is either one or two.

This result and the above list of group orders completes our calculation of j�p.G.Ok//j.

4 Step (b) Computing jHpj for a totally geodesic zƒ

Our goal of this section is the computations of jHpj for a generic totally geodesic
zƒ�G.Ok/. We use the notation established in Section 2. Let p2S1 and GpDG.Op/

denote the parahoric of G.kp/ with pro–p unipotent radical GCp . It follows that
Hp D H.kp/ \ Gp is a parahoric of H.kp/ containing zƒ, and HCp D GCp \ Hp is
the pro–p unipotent radical of Hp . Set H to be the Fpr –group whose Fpr –points
are Hp=HCp . We have the following commutative diagram where we know the right
two vertical arrows are surjections by [12, 3.4.4]:

zƒ
� � //

�p

��

Hp
� � //

������

Gp

����

Hp
� � // H.Fpr /

� � // SO.mC 1;pr /

Hence Hp is a subgroup of H.Fpr /, which is in turn a subgroup of SO.mC 1;pr /.
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4.1 A simplification

The group H.Fpr / fits into the exact sequence

(10) 1 �!Ru.H/.Fpr / �!H.Fpr / �!Hred.Fpr / �! 1;

where Hred is a reductive group whose Dynkin diagram can be read off of local Dynkin
diagrams. From (10) we obtain

jH.Fpr /j D jRu.H/.Fpr /j � jHred.Fpr /j:(11)

Therefore, computing jH.Fpr /j reduces to computing the size of unipotent Fpr –groups
and the size of Hred.Fpr /. We compute the former with the following proposition.

Proposition 4.1 If U is a unipotent group over a finite field Fpr , then jU.Fpr /j D ps

for some s 2 Z�0 .

Proof Since Fpr is perfect, U splits [1, Corollary 15.5(ii)]. Therefore U admits a
composition series

UD U0 � U1 � U2 � � � � � Us D f1g

of connected Fpr –groups such that Ui=UiC1 is Fpr –isomorphic to Ga . Since each
UiC1 is connected, H 1.Fpr ;UiC1/ is trivial by Lang’s theorem [8, Theorem 6.1], and
hence

1 �! UiC1.Fpr / �! Ui.Fpr / �!Ga.Fpr / �! 1

is exact. We proceed by induction on the length of the composition series. If the series
has length 0, then U Š Ga , and hence jU.Fpr /j D pr . If the statement is true for
series of length j , then the above exact sequence implies it follows for series of length
j C 1, and the result follows.

4.2 Computing jHred.Fpr /j

We are now left computing the orders of Hred.Fpr /. To do so, we use the classification
of local indices [12]. A p–adic group H is called residually split if rankkp

.H/ D
rankkun

p
.H/, where kun

p is the maximal unramified extension of kp . The classification
of local Dynkin diagrams of simple kp–groups falls into two classes: residually split
and not residually split. As we explain later, we can restrict ourselves to computing
these orders for totally geodesic groups of maximal dimension for both Hred

r .Fpr / and
Hred

t .Fpr /.
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Proposition 4.2 Continuing the notation of the earlier sections, suppose H0DSO.q0/

for some quadratic subform q0 � q of odd dimension 2n�1� 4 and let p� S1 . Then
jHred

0
.Fpr /j divides pX Y , where X 2 Z�0 and Y is one of the following:

(T1)
Qn�1

jD1.p
2rj � 1/

(T2) .p2r � 1/2
Qn�3

jD1.p
2rj � 1/

(T3) .pr.k�1/˙ 1/
�Qk�2

jD1.p
2rj � 1/

��Qn�k
jD1.p

2rj � 1/
�

for 3� k � n� 3

(T4) .p2r � 1/.pr.n�2/˙ 1/
Qn�3

jD1.p
2rj � 1/

(T5) .pr.n�1/˙ 1/
Qn�2

jD1.p
2rj � 1/

(T6)
Qn�2

jD1.p
2rj � 1/

(T7) .p2r � 1/
Qn�3

jD1.p
2rj � 1/

(T8)
�Qk�1

jD1.p
2rj � 1/

��Qn�k�1
jD1 .p2rj � 1/

�
for 3� k � n� 3

Proof Since every parahoric lies in a maximal one it suffices to compute the orders of
all possible reductions of maximal parahorics. We analyze all possible local indices
of H and remove one vertex to obtain the Dynkin diagram of Hred [12]. We then use
the orders of Section 3, [7], and Proposition 4.1 to compute the size of each possible
quotient. For each case below, we give the local diagram, where we have distinguished
the nodes associated with similar reductions. We follow the diagram with a table listing
the Killing–Cartan type and order of the reduction group associated with each class of
node.

Case 1 H is residually split of type Bn�1 :

Bn�1 i

T1 T2 T3 T4 T5

v0

v1

v2 v3 vn�3 vn�2 vn�1

The Killing–Cartan types and orders of the reduction groups are given by:

type of Hred order of Hred

T1 Bn�1 pr.n�1/2
Qn�1

jD1.p
2rj � 1/

T2 A1 �A1 �Bn�3 .pr .p2r � 1//2
�
pr.n�3/2

Qn�3
jD1.p

2rj � 1/
�

T3 Dk �Bn�k�1

�
prk.k�1/.prk ˙ 1/

Qk�1
jD1.p

2rj � 1/
�

(3� k � n� 3) �
�
pr.n�k�1/2

Qn�k�1
jD1 .p2rj � 1/

�
T4 Dn�2 �A1

�
pr.n�2/.n�3/.pr.n�2/˙ 1/

Qn�3
jD1.p

2rj � 1/
�
.pr .p2r � 1//

T5 Dn�1 pr.n�1/.n�2/.pr.n�1/˙ 1/
Qn�2

jD1.p
2rj � 1/
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Case 2 H is not residually split of type Bn�1 :

.2/Bn�1 ih

T6 T7 T8 T7 T6

v1 v2 v3 vn�3 vn�2 vn�1

The Killing–Cartan types and orders of the reduction groups are given by:

type of Hred order of Hred

T6 Bn�2 pr.n�2/2
Qn�2

jD1.p
2rj � 1/

T7 A1 �Bn�3 .pr .p2r � 1//
�
pr.n�3/2

Qn�3
jD1.p

2rj � 1/
�

T8 Bk�1 �Bn�k�1

�
pr.k�1/2

Qk�1
jD1.p

2rj � 1/
�

(3� k � n� 3) �
�
pr.n�k�1/2

Qn�k�1
jD1 .p2rj � 1/

�
This concludes the proof.

Proposition 4.3 Continuing the notation of the earlier sections, suppose H0DSO.q0/

for some quadratic subform q0 � q of even dimension 2n � 4 and let p� S1 . Then
jHred

0
.Fpr /j divides pX Y , where X 2 Z�0 and Y is one of the following:

(S1) .prn˙ 1/
Qn�1

jD1.p
2rj � 1/

(S2) .p2r � 1/2.pr.n�2/˙ 1/
Qn�3

jD1.p
2rj � 1/

(S3) .prk˙1/.pr.n�k/˙1/
�Qk�1

jD1.p
2rj�1/

��Qn�k�1
jD1 .p2rj�1/

�
for 3�k�n�3

(S4)
Qn�1

jD1.p
2rj � 1/

(S5) .p2r � 1/
Qn�2

jD1.p
2rj � 1/

(S6)
�Qk�1

jD1.p
2rj � 1/

��Qn�k
jD1.p

2rj � 1/
�

for 3� k � n� 2

or any of (T1)–(T8) listed in the previous proposition.

Proof The idea and presentation of this proof is the same as for Proposition 4.2.

Case 1 H is residually split of type Dn and in fact H splits over kp :

1D
.1/
n;n

S1 S2 S3 S2 S1

v0

v1

v2 v3 vn�3 vn�2

vn�1

vn
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The Killing–Cartan types and orders of the reduction groups are given by:

type of Hred order of Hred

S1 Dn prn.n�1/.prn˙ 1/
Qn�1

jD1.p
2rj � 1/

S2 A1 �A1 �Dn�2 .pr .p2r � 1//2
�
pr.n�2/.n�3/.pr.n�2/˙ 1/

Qn�3
jD1.p

2rj � 1/
�

S3 Dk �Dn�k

�
prk.k�1/.prk ˙ 1/

Qk�1
jD1.p

2rj � 1/
�

(3� k � n� 3) �
�
pr.n�k/.n�k�1/.pr.n�k/˙ 1/

Qn�k�1
jD1 .p2rj � 1/

�
Case 2 H is residually split of type Dn and H is nonsplit quasisplit over both kp

and kun
p :

2D
.1/
n;n�1

ih

S4 S5 S6 S5 S4

v1 v2 v3 vn�2 vn�1 vn

The Killing–Cartan types and orders of the reduction groups are given by:

type of Hred order of Hred

S4 Bn�1 pr.n�1/2
Qn�1

jD1.p
2rj � 1/

S5 A1 �Bn�2 .pr .p2r � 1//
�
pr.n�2/2

Qn�2
jD1.p

2rj � 1/
�

S6 Bk�1 �Bn�k

�
pr.k�1/2

Qk�1
jD1.p

2rj � 1/
��

pr.n�k/2
Qn�k

jD1.p
2rj � 1/

�
(3� k � n� 2)

Case 3 H is not residually split of type Dn and H is nonsplit quasisplit over kp but
splits over kun

p :

2D
.1/
n;n�1

i

T1 T2 T3 T4 T5

v0

v1

v2 v3 vn�3 vn�2 vn�1

Case 4 H is not residually split of type Dn and H is not quasisplit over kp , but splits
over kun

p :

1D
.1/
n;n�2

ih

T6 T7 T8 T7 T6

v1 v2 v3 vn�3 vn�2 vn�1

These last two diagrams are precisely the same as the diagrams analyzed in the previous
proof, and hence the corresponding Killing–Cartan types and orders are the same.
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5 Proof of Theorem 1.1

Recall that Gp D G.Ok=p/ D SO.mC 1;pr /, and in the previous two sections, we
analyzed the orders of its subgroups �p.G.Ok// and Hp . To prove Theorem 1.1, we
need the following result of Zsigmondy:

Theorem 5.1 [15] Let p be an odd prime and d be an integer greater than one.
There exists a prime divisor of pd C 1 that does not divide pj C 1 for all 0< j < d

and does not divide pj � 1 for all 0< j < 2d .

Lemma 5.2 Let .k; q/ be an admissible hyperbolic pair and S1 the set of nondyadic
primes in Ok where q has good reduction. Then for each p 2 S1 , there exists a
subgroup Cp <Gp such that Cp\Hp D f1g for any Hp .

Proof When dim.q/D2nC1, we know that pnrC1 divides jGpj for any prime p2S1

by (7). For the groups Hp , we know that jHpj divides p˛
Q

j .p
j � 1/

Q
j 0.pj 0

C 1/,
where j � 2r.n�1/ and j 0 � r.n�1/. Consequently, pnrC1 is not a divisor of jHpj

for any totally geodesic subgroup. By Theorem 5.1, there exists a prime divisor `p
of pnr C 1 that does not divide pj C 1 for 0 < j < nr or p2jr � 1 for 0 < j < n.
It follows that `p divides jGpj but not jHpj for any totally geodesic subgroup. By
Cauchy’s theorem, there exists g 2 Gp of order `p and it follows for Cp D hgi that
Cp\Hp D f1g for any totally geodesic subgroup.

When dim.q/D 2n and p 2 S1 , we must modify the argument above. If det.q/ is not
a square modulo p, then we can proceed as above since pnr C 1 divides jGpj. When
det.q/ is a square modulo p, we have Gp D SOC.2nIpr /. In this case, there exists
g 2 SOC.2nIpr / such that g has n=2 eigenvalues �pr and n=2 eigenvalues ��1

pr ,
where �pr 2 F�pr is a generator for the group of units; we can take a generator for the
diagonal subgroup of .SOC.2;pr //n . Taking ` to be an odd prime divisor of pr � 1,
which exists by Theorem 5.1, and setting aD .pr � 1/=`, we assert that Cp D hg

ai

is the desired subgroup. To see this, note that if  2 PSO0.2n� 2; 1/, then  has
an eigenvalue of ˙1 since 2n� 2 is even. As every totally geodesic m0–suborbifold
with m0 � 2 in a standard arithmetic orbifold is contained in a codimension-one totally
geodesic suborbifold (see [4]), it follows that �p. / has ˙1 as an eigenvalue. As no
nontrivial element of Cp has this property, Cp\Hp D f1g.

Proof of Theorem 1.1 for standard arithmetic orbifolds As Theorem 1.1 for mD 3

was proven in [3], we will assume m� 4 and so dim.q/� 5. We first prove (b). By
definition, �D�1.M / is commensurable with G.Ok/ associated with some admissible
hyperbolic pair .k; q/. Strong approximation implies that �p.�/ D �p.G.Ok// for
all but finitely many p, hence by Proposition 3.1 there is an infinite subset S2 of S1
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such that ŒGp W �p.�/� D 1 or 2 for each p 2 S2 . By Lemma 5.2, there exists a
subgroup Cp < Gp such that Cp \Hp D f1g. Since Cp is cyclic and of odd prime
order, it follows that Cp < �p.�/. The subgroups Cp; f1g satisfy (3) and so the
covers M1;MCp

corresponding to the finite-index subgroups ker �p , ��1
p .Cp/ are

geometrically equivalent.

To produce geometrically equivalent covers with unbounded volume ratio, for each
odd prime `, we set S` to be the subset of primes p 2 S2 such that Cp has order `.
We first assume that S` is infinite for some `. In that case, for each j 2N and for any
p1; : : : ; pj 2 S` , the image of �1.M / under reduction modulo

Q
i pi has index 2sj inQ

i Gpi
for some sj 2N . By our choice of `, the subgroup Cj ;` D

Q
i Cpi

of
Q

i Gpi

has trivial intersection with the image of any totally geodesic subgroup, and visibly this
property holds for any subgroup of Cj ;` . Setting Mj and Nj to be the finite covers
of M corresponding to the finite-index subgroups ��1

p1:::pj
.1/ and ��1

p1:::pj
.Cj ;`/ of � ,

respectively, we obtain a pair of geometric equivalent finite covers of M with volume
ratio Vol.Mj /=Vol.Nj /D `

j .

We now assume that jS`j is finite for all odd primes `. Since S2 is infinite and each
prime p 2 S2 is in S` for some odd prime `, there must be infinitely many odd primes
` with S` ¤∅. Fixing an infinite sequence f j̀ g of distinct odd primes with S

j̀
¤∅,

for any j and any pj 2 S
j̀

, we again have ŒGpj
W �pj

.�/�D 1 or 2. By our choice of
pj , we have a subgroup Cpj

<Gpj
that intersects the image of every totally geodesic

subgroup trivially. Setting the manifolds Mj and Nj to be the finite covers of M

corresponding to the finite-index subgroups ��1
pj
.1/ and ��1

pj
.Cpj

/ of � , respectively,
we obtain geometrically equivalent finite covers with volume ratio j̀ .

We now prove (a). As M is compact and dim.q/ � 5, we see that k ¤ Q by
Godement’s compactness criterion (see [5, Corollary 5.3.2]) and Meyer’s theorem
(see [5, Proposition 6.4.1]). Since k ¤Q, by the Chebotarev density theorem there
is a prime p with two overlying primes p1; p2 2 S2 such that Ok=p1 Š Ok=p2 .
For a pair of such primes p1; p2 we have Gp1

Š Gp2
, and can apply Lemma 5.2

to both. We obtain finite-index subgroups ��1
p1p2

.Cp1
� f1g/ and ��1

p1p2
.f1g � Cp2

/

of � . The associated finite covers M`;1 and M1;` of M have the same geometric
spectra. To see that T G.M1;`/D T G.M`;1/, we first note that the finite cover M`;`

associated with the finite-index subgroup ��1
p1p2

.Cp1
�Cp2

/ in �1.M / is geometrically
equivalent to both M`;1 and M1;` and so TG.M`;1/ D TG.M1;`/. To see that the
multiplicities are equal simply note that both manifolds are cyclic covers of M`;` of
degree ` and thus separately satisfy (6) with M`;` . That the manifolds are nonisometric
follows from an argument similar to one used in [3, page 179]. Briefly, each element
 2 �1.M1;`/ is trivial under reduction modulo p1 while there are infinitely many
elements in �1.M`;1/ with image that generates Cp1

. Consequently, these elements in

Algebraic & Geometric Topology, Volume 17 (2017)



844 David McReynolds, Jeffrey S Meyer and Matthew Stover

�1.M`;1/ with order ` image under modulo p1 cannot be conjugate to any element
in �1.M1;`/ in Isom.Hm/. However, if M1;` and M`;1 are isometric, by Mostow
rigidity, �1.M1;`/ and �1.M`;1/ are conjugate in Isom.Hm/, and so M1;` and M`;1

are nonisometric.

The proof for a nonstandard arithmetic hyperbolic orbifold M D �nHm is similar.
As in the standard arithmetic setting, there is an associated number field k and an
algebraic k –group G for which � is commensurable with the group G.Ok/. There is
an infinite set of primes S 0

0
of Ok such that for each p 2 S 0

0
, the local group G.kp/ is

isomorphic to SO.Vp; qp/, where .Vp; qp/ is a quadratic space over kp . Restricting to
primes in S 0

0
, the proof then follows as in the standard arithmetic case. For (a), we

note that when M is a closed arithmetic hyperbolic m–orbifold with m� 4, the field
of definition of M is not Q (see [5, Section 6.4]).

This method can be implemented for any finite-volume, complete, hyperbolic m–
orbifold when m� 4.

Theorem 5.3 If M is a complete, orientable, finite-volume hyperbolic m–orbifold
with m� 4, then the following holds:

(a) If the field of definition of M is not Q, then there exist finite, nonisometric
covers M 0 and N 0 that are geometrically isospectral.

(b) There exists a sequence .Mj ;Nj / of pairs of nonisometric finite covers of M

such that Mj and Nj are geometrically equivalent and Vol.Mj /=Vol.Nj / is
unbounded as a function of j .

Proof Given M with � D �1.M /, there exists an injective homomorphism �W �!

PSO0.m; 1/ such that the field generated by the matrix coefficients is a number field k

(see [13] or [2, Section 4.1]); this field is the so-called field of definition. If R is
the Ok –submodule of k generated by the entries of �.�/, there is a cofinite subset
of the set of prime ideals P of Ok such that R=P Š Ok=p D Fpr for each p 2 P ,
where P D Rp. Since �.�/ < PSO0.m; 1/ is Zariski dense, we can apply Nori–
Weisfeiler strong approximation [6; 14]. When mC 1 is odd (resp. even), there exists
an infinite set of nondyadic primes S2 � P such that the image of �p.�/ contains the
commutator subgroup �.mC 1Ipr / (resp. �˙.mC 1Ipr /) of SO.mC 1Ipr / (resp.
SO˙.mC 1Ipr /) for each P 2 S2 (see [2, Theorem 5.3]). The argument now follows
as in the previous case of standard arithmetic hyperbolic m–orbifolds.

Remark Our use of Zsigmondy’s theorem was inspired by [2], where Long and
Reid proved that any lattice � < SO.n; 1/ contains hyperbolic elements with infinite-
order holonomy. In [3], the use of Zsigmondy’s theorem was replaced by a direct
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argument. Prasad and Rapinchuk [9] have general results on the existence of semisimple
elements whose Zariski closure is dense in a maximal torus. It is possible to replace
our elementary counting argument with an argument based on [9], though one must
still determine the possible images of subgroups associated with totally geodesic
submanifolds as in Section 4.
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