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Operad bimodules and composition products
on André–Quillen filtrations of algebras

NICHOLAS J KUHN

LUÍS ALEXANDRE PEREIRA

If O is a reduced operad in a symmetric monoidal category of spectra (S –modules),
an O–algebra I can be viewed as analogous to the augmentation ideal of an aug-
mented algebra. From the literature on topological André–Quillen homology, one can
see that such an I admits a canonical (and homotopically meaningful) decreasing
O–algebra filtration I �

 � I1 I2 I3 � � � satisfying various nice properties
analogous to powers of an ideal in a ring.

We more fully develop such constructions in a manner allowing for more flexibility
and revealing new structure. With R a commutative S –algebra, an O–bimodule M

defines an endofunctor of the category of O–algebras in R–modules by sending
such an O–algebra I to M ıO I . We explore the use of the bar construction as a
derived version of this. Letting M run through a decreasing O–bimodule filtration
of O itself then yields the augmentation ideal filtration as above. The composition
structure of the operad then induces pairings among these bimodules, which in turn
induce natural transformations .I i/j ! I ij , fitting nicely with previously studied
structure.

As a formal consequence, an O–algebra map I ! J d induces compatible maps
In! J dn for all n . This is an essential tool in the first author’s study of Hurewicz
maps for infinite loop spaces, and its utility is illustrated here with a lifting theorem.

55P43; 18D50

1 Introduction

Let S–mod be the category of symmetric spectra (see Hovey, Shipley and Smith [7]),
one of the standard symmetric monoidal models for the category of spectra. Let S

denote the sphere spectrum, and let O be a reduced operad in S–mod. If R is a
commutative S –algebra, we let AlgO.R/ denote the category of O–algebras in R–
modules.

The starting point of this paper is the observation that if M is a reduced O–bimodule and
I 2AlgO.R/ then M ıOI is again in AlgO.R/, and that many interesting constructions
on O–algebras are derived versions of functors of I of this form.
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Our first goal, presented in Section 2, is to develop the basic properties of a suitable
derived version of M ıO I , the bar construction B.M;O; I/, noting particularly how
structure on the category of O–bimodules is reflected in the category of endofunctors
of O–algebras.

In Section 2.1 and Section 2.2, we begin by introducing the setting in which we wish
to work. This includes the model structure on AlgO.R/ developed by Harper [3],
which piggybacks off of the “positive” model structure on S –mod first exploited by
Shipley [15].

Theorem 2.11 lays out the basic properties of B.M;O; I/ needed for homotopical
analysis. For example, a levelwise homotopy fibration sequence in the bimodule
variable M induces a homotopy fibration sequence in AlgO.R/.

In Section 2.5 and Section 2.6, we describe B.M;O; I/ in the case where M is
concentrated in one level, in terms of the topological André–Quillen spectrum TQ.I/D
B.O.1/;O; I/. This allows us to easily identify, in Section 2.7, the Goodwillie tower of
FM .I/DB.M;O; I/, viewed as an endofunctor of AlgO.R/. In particular, one learns
that @�IdDO , @�FM DM , and one gets the expected chain rule: @�.FM ıFN /'

M ıO N . See Pereira [13] for more about Goodwillie calculus in this setting.

Remark 1.1 TQ.I/ can be informally viewed as I=I2 : its study goes back to Basterra
[1]. The results in Section 2, and their proofs, clearly have much in common with
Harper and Hess [5, Section 4], and our definition of TQ.I/ agrees with that in Harper
[4]. However those authors use only one special family of bimodules in the M variable,
whereas for applications in this paper, and in ongoing work, greater generality is
essential. In particular, we try to make clear that, on the one hand, our constructions
connect nicely to TQ.I/ and, on the other, they are well suited to iteration using the
monoidal properties of ı.

Another new aspect of our work, also crucial to applications (see, for example, Kuhn [9]),
is that throughout we also have change-of-rings statements allowing for passage from
AlgO.R/ to AlgO.R

0/, given a map R!R0 of commutative S –algebras.

An O–algebra I can be viewed as similar to the augmentation ideal in an augmented
ring. In Section 3, we apply our bar construction to a natural decreasing O–bimodule
filtration of O itself, defining, for I 2 AlgO.R/, a homotopically meaningful natural
augmentation ideal filtration

I
�
 � I1

 I2
 I3

 � � � :
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The results of the Section 2 show that In=InC1 is determined by O.n/ and TQ.I/.
Our model makes it easy to analyze connectivity properties: if R and O are connective
and I is .c�1/–connected, then In will be .nc�1/–connected.

The construction of such a filtration, or more precisely, the associated tower under I ,

I1=I2
 I=I3

 I=I4
 � � � ;

goes back to Minasian [12] and Kuhn [8] when O D Com. Harper and Hess [5]
construct this tower in exactly the same way we do. However, we now add new
structure by taking advantage of the observation that a pairing of bimodules

L ıO M !N

will induce a natural transformation of functors of I 2 AlgO.R/,

FL.FM .I//! FN .I/:

The multiplication O ıO ! O induces pairings among our O–bimodule filtration
of O , and these in turn induce natural pairings

.In/m! Imn

satisfying expected properties. As a formal consequence, an O–algebra map I ! J d

induces compatible maps In! J dn for all n.

This seems to be fundamental structure which has not previously appeared in the
literature. The following result is a consequence illustrating its utility.

Theorem 1.2 Let f W I ! J be a map in the homotopy category hoAlgO.R/. If f
factors as f D fs ı � � � ıf1 such that TQ.fi/ is null for all i , then there is a lifting in
hoAlgO.R/:

J 2s

��

I
f
//

Qf
>>

J

We restate this, with slightly different notation, as Theorem 3.11.

Further applications in this spirit can be seen in the work of the first author on Hurewicz
maps of infinite loop spaces [9], the project whose needs motivated this paper.

The deeper proofs from Section 2 are deferred to Section 4, which itself is supported
by the Appendix. Much of the technical work consists of generalizing results and
arguments from Pereira [14] from S –mod to R–mod for a general R.
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2 General results about derived composition products

2.1 Our categories of modules and algebras

In this paper, the category of S –modules will mean the category of symmetric spectra
as defined in [7]: X 2 S–mod consists of a sequence X0;X1;X2; : : : of simplicial
sets equipped with extra structure.

With the smash product as product and sphere spectrum S as unit, S–mod is a closed
symmetric monoidal category. There is a notion of weak equivalence, and various
model structures on S–mod compatible with these, such that the resulting quotient
category models the standard stable homotopy category.

Recall that a symmetric sequence in S–mod then consists of a sequence

X.0/;X.1/;X.2/; : : : ;

where X.n/ is a symmetric spectrum equipped with an action of the nth symmetric
group †n . The category of such symmetric sequences in S–mod, Sym.S/, admits a
composition product ı defined by

(1) .X ıY /.s/D
_
r

X.r/^†r

� _
�W s!r

Y .s1.�//^ � � � ^Y .sr .�//

�
;

where s D f1; : : : ; sg and sk.�/ is the cardinality of ��1.k/. With this product,
.Sym.S/; ı;S.1// is monoidal, where S.1/D .�;S;�;�; : : :/.

An operad O is then a monoid in this category, and one makes sense of left O–modules,
right O–modules, and O–bimodules in the usual way. Furthermore, if X is a right
O–module, and Y is a left O–module, the symmetric sequence X ıO Y can be defined
as the coequalizer in Sym.S/ of the two evident maps

X ıO ıY !
! X ıY:

Extra structure on X or Y can then induce evident extra structure on X ıO Y .

For the purposes of this paper, it is natural to require that our operads O and bi-
modules M be reduced: O.0/ D � D M.0/. By contrast, an O–algebra is a left
O–module I concentrated in level 0: I.n/D � for all n> 0.

If R is a commutative S –algebra, these definitions and constructions extend to the
category of R–modules. Furthermore, one can mix and match. For example, if X is
a symmetric sequence in S–mod and Y is a symmetric sequence in R–mod, X ıY

will be the symmetric sequence in R–mod with

.X ıY /.s/D
_
r

X.r/^†r

� _
�W s!r

Y .s1.�//^R � � � ^R Y .sr .�//

�
:
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We denote by Sym.R/ the category of symmetric sequences in R–mod, AlgO.R/ the
category of O–algebras in R–mod and Modl

O.R/ the category of left O–modules in
Sym.R/.

Remark 2.1 If O is an operad in S–mod, then the symmetric sequence R ^ O ,
defined as .R ^ O/.n/ D R ^ O.n/ is naturally an operad when viewed either in
Sym.R/ or Sym.S/. It is easily checked that the category Modl

O.R/ is isomorphic
to Modl

R^O.S/, and that both of these are isomorphic to Modl
R^O , the category of

left R^O–modules in Sym.R/. A similar remark holds for the three corresponding
categories of algebras.

2.2 Model structures

We specify model structures on the various categories just described.

We accept as given the S –model structure on symmetric spectra (called S –modules in
this paper) as defined in [7, Definition 5.3.6] and [15, Theorem 2.4]. This is monoidal
with respect to the smash product [7, Corollary 5.3.8].

We then give Sym.S/ its associated injective model structure: weak equivalences
and cofibrations are those morphisms which are levelwise weak equivalences and
cofibrations in S–mod. That this structure exists was checked in [14, Theorem 3.8 and
Section 5.3].1

As in [11, Section 15], [15], [5] and [14, Section 5.3], we need positive variants of these
model structures. Weak equivalences will be as before, but there are fewer cofibrations:
for X ! Y in S–mod to be a positive cofibration, we now insist that X0! Y0 also be
an isomorphism, and for M !N in Sym.S/ to be a positive cofibration, we now insist
that M.0/0!N.0/0 also be an isomorphism.2 It is worth noting that if M 2 Sym.S/

is reduced, then it is positive cofibrant exactly when each M.n/ is cofibrant, when
viewed in S–mod.

Given a commutative S –algebra R, the positive R–model structure on R–modules
is then defined to be the projective structure induced from that on S–mod with its
positive structure: weak equivalences and fibrations in R–mod are the maps which
are weak equivalences and positive fibrations in S–mod. Similarly, we define the
positive structure on Sym.R/, the category of symmetric sequences in R–mod, to be
the projective structure induced from that on Sym.S/ with its positive structure: weak
equivalences and fibrations in Sym.R/ are the maps which are weak equivalences and
positive fibrations in Sym.S/.

1This structure is different from the associated projective structure used in [3; 4; 5].
2On Sym.S/ , this agrees with [14] but is different from [5], where it is required that M.n/0!N.n/0

be an isomorphism for all n .
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Thanks to Remark 2.1, the following theorem is an immediate consequence of [14,
Theorem 1.4]; see also [3]. Special cases go back to [15].

Theorem 2.2 AlgO.R/ has a projective model structure induced from the positive
structure on R–mod: f W I! J is a weak equivalence if it is one in R–mod .and thus
in S–mod /, and a fibration if it is a positive fibration in R–mod .and thus in S–mod /.
Similarly, Modl

O.R/ has a projective model structure induced from the positive structure
on Sym.R/: f W M ! N is a weak equivalence if it is one in Sym.R/ .and thus in
Sym.S//, and a fibration if it is a positive fibration in Sym.R/ .and thus in Sym.S//.

The next lemma says that the model structure on AlgO.R/ is really the same as the
model structure on Modl

O.R/, restricted to the subcategory of modules concentrated
in degree 0.

Lemma 2.3 An algebra map I ! J is a cofibration in AlgO.R/ if and only if it
is a cofibration in Modl

O.R/, when I and J are regarded as objects in Sym.R/

concentrated in level 0.

Proof The inclusion AlgO.R/ ,!Modl
O.R/ has right adjoint given by M 7!M.0/.

This is a Quillen pair, as it is easily checked that this right adjoint preserves weak
equivalences and fibrations.

2.3 Cofibrancy assumption on O and first consequences

Unless stated otherwise, we make the following standing cofibrancy assumption about
our operad O .

Assumption 2.4 The map S.1/ ! O is assumed to be a positive cofibration in
Sym.S/.

As O.0/ D � has been assumed earlier, equivalently this means that, in S–mod,
S !O.1/ is a cofibration, and O.n/ is cofibrant for all n.

Notation 2.5 Let AlgO.R/
c be the full subcategory of AlgO.R/ consisting of O–

algebras in R–mod which are cofibrant when just viewed as R–modules.

A key advantage of our particular model structure on AlgO.R/ is that the following
property holds.

Proposition 2.6 The forgetful functor AlgO.R/!R–mod preserves cofibrations be-
tween cofibrant objects. In particular, if I is cofibrant in AlgO.R/, then I 2 AlgO.R/

c .

When R D S , this is [14, Theorem 1.5]. We defer the proof of the general case to
Section 4.
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It follows that a functorial cofibrant replacement functor on AlgO.R/ takes values in
AlgO.R/

c . More elementary but also useful is that AlgO.R/c is well behaved under
change of rings.

Lemma 2.7 Let R!R0 be a map of commutative S –algebras. Then

R0 ^R W AlgO.R/! AlgO.R
0/

restricts to a functor
R0 ^R W AlgO.R/

c
! AlgO.R

0/c

which preserves weak equivalences.

Proof This is immediate since R0 ^R is left adjoint to a forgetful functor that is
easily seen to be right Quillen.

2.4 General properties of the bar construction

We will make much use of the bar construction. Given an O–bimodule M and
I 2 AlgO.R/, B.M;O; I/ 2 AlgO.R/ is defined as the geometric realization of the
simplicial object B�.M;O; I/ in R–mod defined by

Bn.M;O; I/DM ı

n‚ …„ ƒ
O ı � � � ıO ıI:

Similarly if M and N are O–bimodules, then B.M;O;N / is again an O–bimodule.

The theme of the next set of results is that this construction is well behaved when
the O–bimodules are positive cofibrant in Sym.S/, and I 2 AlgO.R/ is cofibrant in
R–mod. (We recall that a reduced M 2 Sym.S/ is positively cofibrant exactly when
it is levelwise cofibrant.)

Proposition 2.8 Let M;N be levelwise cofibrant O–bimodules. Then B.M;O;N /

is again levelwise cofibrant. Similarly, if M is levelwise cofibrant and I is in AlgO.R/
c ,

then B.M;O; I/ 2 AlgO.R/c .

The first statement is immediately implied by [14, Theorem 1.6] which says that
B�.M;O;N / is Reedy cofibrant in the category of simplicial objects in Sym.S/. We
defer the proof of the second statement for general R to Section 4.

We also record the following, which shows that the bar construction can be usefully
used as a derived circle product. This will also be proved in Section 4.

Proposition 2.9 Let M be a levelwise cofibrant right O–module. If I is cofibrant
in AlgO.R/, the natural map B.M;O; I/!M ıO I is a weak equivalence. Similarly,
if N is cofibrant in Modl

O.S/, then B.M;O;N /!M ıO N is a weak equivalence.

Algebraic & Geometric Topology, Volume 17 (2017)
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To emphasize the functors defined by levelwise cofibrant bimodules, we change notation.

Definition 2.10 If M is a levelwise cofibrant O–bimodule, define

FR
M W AlgO.R/

c
! AlgO.R/

c

by the formula FR
M
.I/D B.M;O; I/.

Theorem 2.11 The FR
M

construction satisfies the following properties:

(a) The functor sending .M; I/ to FR
M
.I/ takes weak equivalences in either the M

or I variable to weak equivalences in AlgO.R/.

(b) A levelwise homotopy fibration3 sequence of levelwise cofibrant O–bimodules

L!M !N

induces a homotopy fibration sequence in AlgO.R/

FR
L .I/! FR

M .I/! FR
N .I/:

(c) There is a natural isomorphism of functors

FR
M ıFR

N ' FR
B.M;O;N /:

(d) Let R!R0 be a map of commutative S –algebras. There is a natural isomor-
phism in AlgO.R

0/

FR0

M .R0 ^R I/'R0 ^R FR
M .I/:

Parts (a) and (b) will be proved in Section 4. By contrast, parts (c) and (d) are
straightforward. Part (c) follows from the natural isomorphism

B.M;O;B.N;O; I//' B.B.M;O;N /;O; I/;

while part (d) follows from the natural isomorphism

R0 ^R B.M;O; I/' B.M;O;R0 ^R I/:

Remark 2.12 As there is a natural map B.M;O;N /!M ıO N , it follows that a
bimodule pairing

�W M ıO N !L

3Equivalently, we could say cofibration, as levelwise homotopy fibration sequences agree with levelwise
homotopy cofibration sequences.
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induces a natural transformation

�W FR
M ıFR

N ! FR
L

defined as the composite

FR
M ıFR

N ' FR
B.M;O;N /! FR

MıON ! FR
L :

See Section 3 for examples of this.

2.5 Topological André–Quillen homology

In the next two subsections, we consider our constructions when M is concentrated
in just one level, ie there exists an n such that M.m/D � for all m¤ n. We show
that then FR

M
.I/ is determined by M.n/ together with the topological André–Quillen

homology of I .

We first need to define this last term in our context. The S –module O.1/ will be an
associative S –algebra, and can be viewed as an operad concentrated in level 1. From
this point of view, the evident maps O.1/!O and O!O.1/ are both maps of operads,
and the second of these gives O.1/ the structure of an O–bimodule concentrated in
level 1.

Let RO.1/–mod be the category of R ^O.1/–modules. It is illuminating to note
that this category is also AlgO.1/.R/, when one views O.1/ as an operad. The map
O!O.1/ induces a functor

zW RO.1/–mod! AlgO.R/

with left adjoint
QDO.1/ ıO W AlgO.R/!RO.1/–mod

making the pair of functors into a Quillen pair.

Definition 2.13 Define TQW AlgO.R/c ! RO.1/–mod by the formula TQ.I/ D
B.O.1/;O; I/.

The next proposition is a special case of Proposition 2.9.

Proposition 2.14 If I is cofibrant in AlgO.R/, the natural map TQ.I/!Q.I/ is an
equivalence.

Algebraic & Geometric Topology, Volume 17 (2017)
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As TQ is thus equivalent to the left derived functor of the left Quillen functor Q, one has
the next two consequences. To state the first, we let ŒI;J �Alg denote morphisms between
I and J in the homotopy category of AlgO.R/, and we similarly let ŒM;N �Mod denote
morphisms between M and N in the homotopy category of RO.1/–mod.

Corollary 2.15 There is an adjunction in the associated homotopy categories

ŒTQ.I/;N �Mod ' ŒI; z.N /�Alg:

Corollary 2.16 If I ! J !K is a homotopy cofibration sequence in AlgO.R/, then

TQ.I/! TQ.J /! TQ.K/

is a homotopy cofibration sequence in RO.1/–mod.

The next result is a particular instance of Theorem 2.11(d).

Proposition 2.17 Let R ! R0 be a map of commutative S –algebras. There is a
natural isomorphism

TQ.R0 ^R I/'R0 ^R TQ.I/:

The first TQ here is with respect to the S –algebra R0 .

2.6 O–bimodules with one term

As before, we can view O.1/ as either a commutative S –algebra or an operad concen-
trated in level 1.

Suppose M 2 Sym.S/ is a right O.1/–module with the operad interpretation, ie one
has M ıO.1/!M making appropriate diagrams commute. Unraveling the definitions,
one sees that this structure map amounts to †n –equivariant maps

M.n/^O.1/^n
!M.n/

exhibiting M.n/ as an O.1/^n –module. Equivalently, each M.n/ will be a right
†n oO.1/–module, where †n oO.1/ is the associative algebra with underlying S –
module

W
�2†n

O.1/^n , and evident “twisted” multiplication.

From this, it is easy to see that if J 2 AlgO.1/.R/DRO.1/–mod, then

M ıO.1/ J D
_
n

M.n/^†noO.1/ J^R n:

Algebraic & Geometric Topology, Volume 17 (2017)
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Now suppose, given M.n/, an .O.1/; †n oO.1//–bimodule. Abusing notation, we
will also write M.n/ for the symmetric sequence concentrated at level n:

M.n/D .�; : : : ;�;M.n/;�; : : :/:

From this point of view, M.n/ is precisely an O.1/–bimodule, where O.1/ is viewed
as an operad. Furthermore, an O–bimodule structure on M.n/ will necessarily be an
O.1/–bimodule structure pulled back via the map of operads O!O.1/.

Theorem 2.18 Suppose M.n/ is also a cofibrant S –module. Then, for I 2AlgO.R/
c ,

there is a natural isomorphism

FR
M.n/.I/D z.M.n/^†noO.1/ TQ.I/^R n/;

and a natural equivalence

z.B.M.n/;O.1/;TQ.I///
�
�! FR

M.n/.I/:

Proof We suppress some applications of z , the pullback along O! O.1/. Firstly,
one has natural isomorphisms

M.n/^†noO.1/ TQ.I/^R n
DM.n/^†noO.1/B.O.1/;O; I/^R n

DM.n/ ıO.1/B.O.1/;O; I/
D B.M.n/;O; I/

D FR
M.n/.I/:

Secondly, the equivalence B.M.n/;O.1/;O.1// ��!M.n/ induces the equivalence

B.M.n/;O.1/;TQ.I//D B.M.n/;O.1/;B.O.1/;O; I//

D B.B.M.n/;O.1/;O.1//;O; I/
�
�! B.M.n/;O; I/

D FR
M.n/.I/:

Corollary 2.19 Let f W I ! J be a morphism in AlgO.R/
c . With M.n/ as in the

theorem, if TQ.f / is a weak equivalence, so is FR
M.n/

.f /.

2.7 The Goodwillie tower of F R
M

The second author has studied Goodwillie calculus on the category AlgO.R/ [13]. Here
we sketch how our results above lead to an understanding of the Goodwillie tower of
the functor FR

M
.
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Given a levelwise cofibrant O–bimodule M , let M�n denote the O–bimodule with

M�n.k/D

�
M.k/ if k � n;

� if k > n:

Definition 2.20 Let PnFR
M
D FR

M�n W AlgO.R/
c! AlgO.R/

c .

Theorem 2.21 The Goodwillie tower of the functor FR
M

identifies with

P1FR
M  P2FR

M  P3FR
M  � � � ;

and its nth derivative @nFR
M

identifies with M.n/.

Sketch of proof The sequence of O–bimodules

M.n/!M�n
!M�.n�1/

satisfies the hypothesis of Theorem 2.11(b). Thus the homotopy fiber of the map

PnFR
M .I/! Pn�1FR

M .I/

identifies as FR
M.n/

.I/, which Theorem 2.18 tells us is

z.M.n/^†noO.1/ TQ.I/^R n/:

This is a homogeneous n–excisive functor; note that Corollary 2.16 first tells us that
TQ is a homogeneous linear functor. See [13, Theorem 3.2] for more detail.

It follows that PnFR
M

is n–excisive. With a bit more care, one can now check that
the natural transformation FR

M
! PnFR

M
identifies with the map from FR

M
to its

n–excisive quotient: the proof of [13, Theorem 4.3] generalizes immediately to our
setting.

Under connectivity hypotheses, one gets very concrete convergence estimates. Say that
X 2 Sym.S/ is connective if each X.n/ 2 S–mod is connective, ie �1–connected.

Proposition 2.22 If R, M , and O are connective, and I is .c�1/–connected, then
the map FR

M
.I/! PnFR

M
.I/ is .nC1/c–connected.

Proof We need to show that the homotopy fiber is ..nC1/c�1/–connected. By
Theorem 2.11(b), this homotopy fiber identifies with B.M>n;O; I/, where

M>n.k/D

�
M.k/ if k > n;

� if k � n:

Algebraic & Geometric Topology, Volume 17 (2017)
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This fiber then is the homotopy colimit (in R–modules) of a diagram of R–modules
of the form

M.r/^O.s1/^ � � � ^O.sk/^ I^R t ;

with t � r > n. In particular, it is a homotopy colimit of a diagram of ..nC1/c�1/–
connected R–modules, and so is itself ..nC1/c�1/–connected.

These results also show the following, when combined with Corollary 2.19.

Theorem 2.23 Let f W I ! J be a morphism in AlgO.R/
c . If TQ.f / is a weak

equivalence, so is PnFR
M
.f / for any n and any levelwise cofibrant O–bimodule M .

Furthermore, if R, M and O are connective, and I and J are 0–connected, then
FR

M
.f / is itself a weak equivalence.

Special cases of this theorem appear in [8] and [5].

3 Application to the augmentation ideal filtration

In our constructions, when the O–bimodule is O itself, the resulting functor, sending
an O–algebra I to FR

O .I/DB.O;O; I/, is naturally weakly equivalent to the identity.
In this section we study structure on the augmentation ideal filtration of I arising from
using the levelwise bimodule filtration of O in conjunction with the operad structure
O ıO!O .

3.1 Construction and basic properties of the filtration

Definitions 3.1 Let 1� i <m�1.

(a) Let Om
i denote the O–bimodule with Om

i .k/D

�
O.k/ if i � k <m;

� otherwise.

(b) For I 2 AlgO.R/
c , let I i

m D FR
Om

i

.I/D B.Om
i ;O; I/.

Note that there is a natural weak equivalence I1
1! I . We sometimes write I i for I i

1 ,
and readers are encouraged to view I i

m as I i=Im ; see Theorem 3.4(b) below.

For j � i and n�m, it is not hard to see that the evident map

Om
i !On

j

is a map of O–bimodules, and thus induces natural maps

I i
m! Ij

n

for all I 2 AlgO.R/
c .
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Special cases of these are illustrated in the next examples.

Example 3.2 I 2 AlgO.R/
c has a natural augmentation ideal filtration

I
�
 � I1

 I2
 I3

 � � � :

Example 3.3 I1
n D Pn�1FR

O .I/ in the notation of the last section, so the tower

I1
2  I1

3  I1
4  � � �

identifies with the Goodwillie tower of the identity functor on AlgO.R/. This tower,
defined as we do here, is the subject of study in [5].

These examples are related: the filtration of the first example appears as the homotopy
fibers of the maps from I to the tower in the second example. More precisely, there
are homotopy fiber sequences

In
! I1

! I1
n :

This is a special case of property (b) in the next theorem.

Theorem 3.4 The functors sending I to I i
n satisfy the following properties:

(a) They preserve weak equivalences in the variable I 2 AlgO.R/
c .

(b) For 1 � i < m < l � 1, the sequence Im
l
! I i

l
! I i

m is a homotopy fiber
sequence. In particular, Im! I i! I i

m is a homotopy fiber sequence.

(c) There are natural isomorphisms I1
2
D z.TQ.I//, and more generally, Ik

kC1
D

z.O.k/^†k oO.1/ TQ.I/^R k/.

(d) Let R!R0 be a map of commutative S –algebras. There is a natural isomor-
phism R0 ^R I i

n ' .R
0 ^R I/in .

All of these properties follow immediately from the more general results of Section 2.
For example, part (b) follows from Theorem 2.11(b) applied to the sequence of O–
bimodules

Ol
m!Ol

i !Om
i :

Our connectivity estimates of Section 2.7 give the following.

Proposition 3.5 Suppose R and O are connective. If I is .c�1/–connected, then In

is .nc�1/–connected.
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3.2 Composition properties of the filtration

Now we look at composition structure. As will be shown in the proof of the next
proposition, it is not hard to see that the operad composition

�W O ıO!O

induces maps of O–bimodules

�W O1i ıO O1j !O1ij ;

and these pairings, in turn, define natural maps

�W .Ij /i! I ij

for all I 2 AlgO.R/
c .

With a little more care, one can check the following.

Proposition 3.6 Given i < m, j < n, and ij < N � min.ij C .n � j /;mj /, the
operad structure map

�W O ıO!O

induces maps of O–bimodules

�W Om
i ıO On

j !ON
ij

making the following diagram commute:

O ıO O

�o

��

O1i ıO O1j? _oo // //

�
��

Om
i ıO On

j

�
��

O O1ij? _oo // // ON
ij

These thus induce natural maps �W .Ij
n /

i
m! I

ij
N

making the following diagram com-
mute:

I .Ij /ioo //

�
��

.I
j
n /

i
m

�
��

I I ijoo // I
ij
N

Proof We begin by observing that .O1i ıO
1
j /.s/ equals a wedge of S –modules of

the form
O.r/^O.s1/^ � � � ^O.sr /

such that s D s1C � � �C sr , r � i , and sk � j for all k .
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These conditions force s� ij , and thus the dotted arrow exists in the following diagram:

O ıO
�

// O

O1i ıO
1
j

?�

OO

�
// O1ij
?�

OO

Similarly, if ij < N � min.ij C .n� j /;mj /, then the dotted arrow exists in this
diagram:

O1i ıO
1
j

����

�
// O1ij

����

Om
i ıO

n
j

�
// ON

ij

To see this, note that a wedge summand as above maps to � under the quotient
O1i ıO

1
j � Om

i ıO
n
j (the left map of the diagram) exactly when either r � m or

sk � n for at least one k . In the first case, it follows that s �mj . In the second case,
it follows that s � .r � 1/j C n � .i � 1/j C nD ij C .n� j /. We conclude that if
N �min.ij C .n� j /;mj /, then s �N , so this summand also maps to � under the
composite O1i ıO

1
j

�
�!O1ij � ON

ij . Thus the dotted arrow in the diagram exists.

Thus, the bimodule map Om
i ıOn

j !Omin.ijC.n�j/;mj/
ij induces an O–bimodule map

Om
i ıO On

j !Omin.ijC.n�j/;mj/
ij . This follows formally from the fact that each of the

maps O - O1i � Om
i are maps of O–bimodules, combined with the evident fact

that the operad pairing O ıO!O induces a map O ıO O!O .

Addendum 3.7 The construction shows a bit more compatibility than listed above:
given i � i 0 , m�m0 , j � j 0 , n� n0 , N �N 0 , with i <m, i 0 <m0 , j < n, j 0 <m0 ,
ij <N �min.ij C .n� j /;mj /, and i 0j 0 <N 0 �min.i 0j 0C .n0� j 0/;m0j 0/, there
is a commutative diagram of O–bimodules

Om0

i0 ıO On0

j 0
// //

�
��

Om
i ıO On

j

�
��

ON 0

i0j 0
// // ON

ij

and thus a commutative diagram

.I
j 0

n0 /
i0

m0
//

�
��

.I
j
n /

i
m

�
��

I
i0j 0

N 0
// I

ij
N
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Example 3.8 For simplicity, let Di.M /DO.i/^†i oO.1/M
^R i, for M2RO.1/–mod,

and let T D TQ. With this notation, Theorem 2.18 tells us that there is an isomorphism
I i

iC1
' zDiT .I/. Then there is a commutative diagram

.I
j
jC1

/i
iC1

�
// I

ij
ijC1

zDiT .zDj T .I// // zDiDj T .I/ // zDij T .I/

where the lower left map is induced by the counit T zM !M (which one can check
is a projection onto a wedge summand), and the lower right map is induced by the
operad structure map O.i/^O.j /^i ! O.ij /. Diagrams like this suggest that our
composition structure should be useful in doing calculations in spectral sequences
associated to the augmentation ideal filtration. There are hints of how this might go in
[10, Theorem 1.6].

3.3 Application to lifting filtrations

Theorem 3.9 Let I;J 2 AlgO.R/
c , and let f W I ! J d be a morphism in AlgO.R/.

Then f induces O–algebra maps fnW I
n! J dn for all n, and the assignment sending

f to fn is both functorial and preserves weak equivalences. Furthermore, the maps fn

are compatible as n varies: for m< n, the following diagram commutes:

In

��

fn
// J dn

��

Im fm
// J dm

Proof Let fn be the composite In f n

�! .J d /n
�
�! J dn .

Definition 3.10 Say that a map f 2 ŒI;J �Alg has AQ–filtration4 at least s if f factors
in ho.AlgO.R// as the composition of s maps

I D I.0/
f .1/
���! I.1/

f .2/
���! I.2/! � � � ! I.s� 1/

f .s/
���! I.s/D J

such that TQ.f .i// is null for each i .

4The reader can decide if AQ stands for André–Quillen or Adams–Quillen.
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Theorem 3.11 Let f 2 ŒI;J �Alg have AQ–filtration at least s . Then there exists
Qf 2 ŒI;J 2s

�Alg such that

J 2s

��

I
f
//

Qf
>>

J

commutes in ho.AlgO.R//.

Proof We work in ho.AlgO.R//.

Let f D f .s/ ı � � � ıf .1/ as in Definition 3.10.

For each i between 1 and s , there is an exact sequence of pointed sets

ŒI.i � 1/; I.i/2�Alg! ŒI.i � 1/; I.i/�Alg! ŒI.i � 1/; I.i/12�Alg;

and there are identifications

ŒI.i � 1/; I.i/12�Alg ' ŒI.i � 1/; z.TQ.I.i///�Alg ' ŒTQ.I.i � 1//;TQ.I.i//�Mod:

It follows that since TQ.f .i// is null, f .i/ lifts to Qf .i/W I.i � 1/! I.i/2 . Then
Theorem 3.9 gives maps

Qf .i/2i�1 W I.i � 1/2
i�1

! I.i/2
i

:

Now let Qf be the composite of these s maps: Qf D Qf .s/2s�1 ı � � � ı Qf .1/.

The theorem, combined with Proposition 3.5, has the following corollary.

Corollary 3.12 Suppose that R and O are connective and J 2 AlgO.R/ is .c�1/–
connected. If f W I ! J has AQ–filtration s , then f�W ��.I/! ��.J / will be zero
for �< 2sc .

For more results in this spirit, see [9].

4 Deferred proofs

In this section we prove Propositions 2.6, 2.8, and 2.9 and Theorem 2.11. When RDS ,
so that our algebras just have the underlying structure of an S –module, these results
can be deduced from the second author’s work, specifically [14, Theorem 1.1]. The
case of a general R requires a suitable generalization of that result, which we state as
Theorem 4.4.
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4.1 The homotopical behavior of the composition product

Fixing a commutative S –algebra R, it is useful to generalize the context slightly.

Notation 4.1 Let P be an operad in R–mod, ie a monoid object for the monoidal
structure ıR in Sym.R/ defined just as in (1) but with ^ replaced by ^R . We then
denote by Modr

P , Modl
P , and AlgP the associated categories of left modules, right

modules, and algebras over P in Sym.R/. We endow Modl
P , and AlgP with the model

structure as in Theorem 2.2.5

Remark 4.2 As noted in Remark 2.1, there are identifications

AlgR^O ' AlgO.R/' AlgR^O.S/

and
Modl

R^O 'Modl
O.R/'Modl

R^O.S/:

By contrast, one only has a proper inclusion of categories

Modr
R^O �Modr

R^O.S/;

where Modr
R^O is the category of right R^O–modules in Sym.R/, and Modr

R^O.S/

is the category of right R^O–modules in Sym.S/.

To see the reason for this, assume for simplicity that O.1/ D S . Then if N 2

Modr
R^O.S/, N.n/ will be a right †n oR–module. But unwinding definitions reveals

that, for any N 2Modr
R^O , this †n oR–module structure on M.n/ must be one pulled

back along the canonical ring map †n oR!†n �R.

To state our main technical theorem, we need the following construction.

Definition 4.3 Suppose given a map f1W M !N in Modr
P and a map f2W A! B

in Modl
P . Let .M ıP B/_MıPA .N ıP A/ be the pushout of the diagram

M ıP A

MıPf2

��

f1ıPA
// N ıP A

M ıP B

in Sym.R/, and then define the pushout circle product of f1 and f2 , to be the natural
map

f1�ıPf2W .M ıP B/_MıPA .N ıP A/!N ıP B:

5Note that we do not need to equip Modr
P with a model structure.
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Theorem 4.4 Suppose f2W A!B is a cofibration between cofibrant objects in Modl
P .

If a f1W M !N in Modr
P is an underlying positive cofibration in Sym.R/, then so is

f1�ıPf2W .M ıP B/_MıPA .N ıP A/!N ıP B:

Furthermore, this map will be a weak equivalence if either f1 or f2 is a weak equiva-
lence.

When RD S , this theorem nearly coincides with [14, Theorem 1.1], and we defer the
proof in the general case to the Appendix. For the purpose of proving results stated in
Section 2, we will just need the following corollary.

Corollary 4.5 Let O be an operad in S–mod. Suppose f2W I ! J is a cofibration
between cofibrant objects in AlgO.R/. If a map f1W M ! N in Modr

O.S/ is an
underlying positive cofibration in Sym.S/, then

f1�ıOf2W .M ıO J /_MıOI .N ıO I/!N ıO J

will be a positive cofibration in R–mod.

Furthermore, this map will be a weak equivalence if either f1 or f2 is a weak equiva-
lence.

Proof Since the functor R ^ W Sym.S/ ! Sym.R/ sends positive cofibrations
and trivial cofibrations in Sym.S/ respectively to positive cofibrations and trivial
cofibrations in Sym.R/, the result follows immediately from Theorem 4.4 applied to
PDR^O , R^f1 and f2 . Note that the positive model structure on Sym.R/ restricts
on level 0 to the positive model structure on R–mod.

4.2 Proofs of results from Section 2

Proof of Proposition 2.6 If f1 is the map �!O , and f2W I!J is map in AlgO.R/,
then f1�ıOf2 is just the map f2W I ! J , now viewed as a map in R–mod.

If I is cofibrant in AlgO.R/, then applying Corollary 4.5 to the map f2W �! I , shows
that I will be cofibrant in R–mod.

Similarly, if f2W I ! J is a cofibration between cofibrant objects in AlgO.R/, we
learn that f2W I ! J is a cofibration in R–mod.

Proof of Proposition 2.8 For the first statement, we note that B.M;O;N / is the real-
ization of the simplicial object B�.M;O;N /, and thus will be cofibrant in Sym.S/ if
B�.M;O;N / is Reedy cofibrant in Sym.S/�

op
. That this is true, under our hypotheses

on M and N , is precisely the conclusion of [14, Theorem 1.6].
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Proving the second statement is similar: one sees that B�.M;O; I/ is Reedy cofibrant
in R–mod�

op
by noting that the proof of [14, Theorem 1.6] (and in particular that

of the auxiliary [14, Lemma 5.47]) goes through if one simply replaces the very last
application of [14, Theorem 1.1] by an application of Corollary 4.5.

Proof of Proposition 2.9 First note that by Corollary 4.5 the functor

M ıO W AlgO.R/!R–mod

sends trivial cofibrations between cofibrant algebras to weak equivalences, and hence,
by Ken Brown’s lemma [6, Corollary 7.7.2], also preserves all weak equivalences
between cofibrant algebras.

Hence, rewriting the map
B.M;O; I/!M ıO I

as
M ıO .B.O;O; I/! I/

one sees that it suffices to show that B.O;O; I/ is cofibrant in AlgO.R/.

B.O;O; I/ is the realization of the simplicial algebra B�.O;O; I/, viewed as a sim-
plicial object in R–mod. By [5, Proposition 6.11], this agrees with the realization of
B�.O;O; I/, viewed as a simplicial object in AlgO.R/. Thus it suffices to show that
B�.O;O; I/ is Reedy cofibrant in AlgO.R/

�op
.

Checking this involves showing that the latching maps for B�.O;O; I/ are cofibrations
in AlgO.R/. These depend only on B�.O;O; I/ together with its degeneracies, ie face
maps can be ignored. From this perspective

B�.O;O; I/'O ıB�.S.1/;O; I/;

where S.1/ is our notation for the unit symmetric sequence .�;S;�;�; : : :/ under ı.

Hence, letting `On and `n respectively denote the nth latching map construction on
N –graded objects with degeneracies in AlgO.R/ and R–mod, one has

`On .B�.O;O; I//'O ı `n.B�.S.1/;O; I//:

Since O ı W R–mod! AlgO.R/ is a left Quillen functor, `On .B�.O;O; I// will be
a cofibration in AlgO.R/ if `n.B�.S.1/;O; I// is a cofibration in R–mod. But the
latter map is a cofibration, since it is a special case of the latching maps shown to be
cofibrations in the proof of Proposition 2.8.
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Proof of Theorem 2.11(a) and (b) In this proof we focus on the identification
AlgO.R/' AlgR^O.S/ so as to be able to directly apply [14, Theorem 1.1].

For part (a), note first that

FR
M .I/DM ıO B.O;O; I/:

That FR
M
.I/ preserves weak equivalences in the I variable then follows from the proof

of Proposition 2.9, where it was shown both that B.O;O; I/ is a cofibrant algebra and
that M ıO preserves weak equivalences between cofibrant algebras.

To see that weak equivalences are also preserved in the M variable, one uses a similar
argument: using the identifications of Remark 4.2 to change perspective to S–mod, one
applies [14, Theorem 1.1] to any trivial cofibration f1W M !N in Modr

R^O.S/ and
the map f2 D�!B.O;O; I/. One concludes that the functor sending M to FR

M
.I/

sends trivial cofibrations to weak equivalences. One now again uses Ken Brown’s
lemma.

The intuition behind part (b) comes from the observation that (1), the formula for the
composition product X ıY of symmetric sequences, is linear in the variable X . Our
official proof goes as follows. Note that homotopy fibration sequences in AlgO.R/ are
detected by considering them as sequences in S–mod. Again using the identifications
of Remark 4.2 to change perspectives, one immediately reduces to [14, Theorem 1.8]
applied to the operad R^O in S –modules.

Appendix: Proof of Theorem 4.4

We now turn to the task of proving Theorem 4.4. If one just tries to redo all the work
in [14] with a general commutative S –algebra R replacing occurrences of S , one
finds that most of results generalize, with the key exception being the characterization
of S cofibrations in [14, Proposition 3.9], which fails for general R (and, in particular,
cofibrations in Sym.R/ can not be detected by first forgetting the †n –actions at each
level). Here we take a somewhat blended approach: we use a string of arguments from
[14] to ultimately reduce ourselves to a situation covered by [14, Theorem 1.1].

We begin by noting the following elementary lemma, a consequence of the fact that
the positive model structure on Sym.R/ is the projective structure induced from the
positive model structure on Sym.S/.

Lemma A.1 A set of generating cofibrations for Sym.R/ can be obtained by applying
R^ to a set of generating cofibrations for Sym.S/.
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Let us remind ourselves of our goal. Given f1W M ! N in Modr
P and f2W A! B

in Modl
P , we are considering the pushout corner map, in Sym.R/, of the following

commutative square:

(2)

M ıP A
MıPf2

//

f1ıPA
��

M ıP B

f1ıPB
��

N ıP A
N ıPf2

// N ıP B

By this we mean the map from the pushout of the upper left corner of the square to the
lower right term.

We wish to show that if f2 is a cofibration between cofibrant objects6 in Modl
P , then

if f1 is a positive cofibration in Sym.R/, so is the pushout corner map. Furthermore,
in this situation, if either f1 or f2 is a weak equivalence, so is the pushout corner map.

We will address this last statement at the end of the Appendix, and focus on the first
statement. For this, we try to follow the proof of [14, Theorem 1.1], which is the
case when RD S . The majority of the arguments in that proof are agnostic as to the
category or model structure used — in particular, the filtrations of [14, Proposition 5.20]
cover R–mod — with the exception of the two instances where [14, Theorems 1.2, 1.3]
are used.

As in [14], we first assume that f2 is a map between algebras, rather than more general
left P–modules. In this case, arguing as in [14, Section 5.4], one reduces to the case
where f2W A! B is the pushout of a generating cofibration. Using Lemma A.1, this
means that f2 is the lower horizontal map of a pushout in AlgP of the form

P ıR .R^X /

��

// P ıR .R^Y /

��

A
f2

// B

with X ! Y a generating positive cofibration in S–mod.

The key is now to use the infinite filtration of the horizontal maps in (2) given by [14,
Proposition 5.20]. (This key filtration is a generalization of similar filtrations appearing
in [5, Proposition 5.10] and [2, proofs of Theorems 1.4 and 12.5].) Arguing as in [14,
Section 5.4], one is reduced to studying the pushout corner maps of the following

6This is a bit redundant: if A is cofibrant, and f2 is a cofibration, then B is necessarily cofibrant.
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squares, for which we will shortly explain our notation:

(3)

MA.r/^R�†r
.R^Qr

r�1
/ //

��

MA.r/^R�†r
.R^Y ^r /

��

NA.r/^R�†r
.R^Qr

r�1
/ // NA.r/^R�†r

.R^Y ^r /

Firstly, if we view X ! Y as a functor f0! 1g! S–mod, we can smash this functor
with itself r times, obtaining a cubical diagram f0! 1g�r ! S–mod. We let Qr

r�1

denote the colimit of this cube with the terminal object 1r removed; this comes with
an evident map Qr

r�1
! Y ^r.

Secondly, as in [14, Definition 5.15], MA denotes the M ıP
�
P
`

A
�
, where the

coproduct is taken in Modl
P .

We wish to show that the pushout corner map of (3) is a positive cofibration in R–mod.
Since X ! Y is a positive cofibration in S–mod, [14, Theorem 1.2] tells us that
Qr

r�1
! Y ^r is appropriately cofibrant in the category of S –modules with a †r

action.

If the map MA!NA were a generating positive cofibration in Sym.R/, one would be
able to pull a R^ .�/ factor out of the pushout corner map (by Lemma A.1), reducing
to the S case, which in turn follows by applying [14, Theorems 1.2, 1.3] as in the
proof of [14, Theorem 1.1].

Hence, by standard arguments, it suffices to show that MA!NA is a positive cofibra-
tion in Sym.R/. This would follow from the special case of our theorem when f2 has
the form i W P! P

`
A, which would say that the pushout corner map of the middle

square of the diagram

(4)

M

f1

��

M ıP P
MıP i

//

f1ıPP
��

M ıP
�
P
`

A
�

f1ıP.P
`

A/

��

MA

��

N N ıP P
N ıP i

// N ıP
�
P
`

A
�

NA

is a positive cofibration in Sym.R/.

Now we use our assumption that A is cofibrant in AlgP , and basically proceed as
before. The map i can be assumed to be an infinite composition of maps of the form
P
`

Aˇ
P
`

iˇ
����! P

`
AˇC1 , where iˇ is the lower horizontal map of a pushout in AlgP

Algebraic & Geometric Topology, Volume 17 (2017)



Composition products 1129

of the form
P ıR .R^Xˇ/

��

// P ıR .R^Yˇ/

��

Aˇ // AˇC1

with Xˇ! Yˇ a generating positive cofibration in S–mod.

It suffices to show by induction on ˇ that NAˇ

`
MAˇ

MAˇC1
!NAˇC1

is a positive
cofibration. Note that the induction hypothesis then implies MAˇ

!NAˇ
is a positive

cofibration.

After a filtration argument as before, one is left needing to show that the pushout corner
map in

M.P
`

Aˇ/.r/ L̂ R�†r
.R^Qr

r�1
/ //

��

M.P
`

Aˇ/.r/ L̂ R�†r
.R^Y L̂ r

ˇ
/

��

N.P
`

Aˇ/.r/ L̂ R�†r
.R^Qr

r�1
/ // N.P

`
Aˇ/.r/ L̂ R�†r

.R^Y L̂ r
ˇ
/

is a positive cofibration in Sym.R/, where L̂ denotes the smash product in Sym.R/.

Using the obvious analogue of Lemma A.1 for R bisymmetric sequences and [14,
Propositions 5.43, 5.44] (the analogues of [14, Theorems 1.2, 1.3] for Sym.S/) just
as in the argument following (3), one further reduces to just needing to show that
MP

`
Aˇ
!NP

`
Aˇ

is a positive cofibration in biSym.R/, the category of bisymmetric
sequences of R–modules. (The notion of cofibration is defined by analogy with
Sym.R/.) But since [14, Proposition 5.19] identifies the .r; s/ level of this map with
MAˇ

.r C s/!NAˇ
.r C s/, the result follows by our induction hypothesis.

To deal with the case of f2 a general map of left modules one repeats the argument in
the last paragraph of the proof of [14, Theorem 1.1].

Finally, the case where either f1 or f2 are additionally weak equivalences follows by
using the identifications of Remark 4.2 to reduce the question to the S–mod level and
then applying the monomorphism part of [14, Theorem 1.1].

References
[1] M Basterra, André–Quillen cohomology of commutative S –algebras, J. Pure Appl.

Algebra 144 (1999) 111–143 MR

Algebraic & Geometric Topology, Volume 17 (2017)

http://dx.doi.org/10.1016/S0022-4049(98)00051-6
http://msp.org/idx/mr/1732625


1130 Nicholas J Kuhn and Luís Alexandre Pereira

[2] A D Elmendorf, M A Mandell, Rings, modules, and algebras in infinite loop space
theory, Adv. Math. 205 (2006) 163–228 MR

[3] J E Harper, Homotopy theory of modules over operads in symmetric spectra, Algebr.
Geom. Topol. 9 (2009) 1637–1680 MR

[4] J E Harper, Bar constructions and Quillen homology of modules over operads, Algebr.
Geom. Topol. 10 (2010) 87–136 MR

[5] J E Harper, K Hess, Homotopy completion and topological Quillen homology of
structured ring spectra, Geom. Topol. 17 (2013) 1325–1416 MR

[6] P S Hirschhorn, Model categories and their localizations, Mathematical Surveys and
Monographs 99, Amer. Math. Soc., Providence, RI (2003) MR

[7] M Hovey, B Shipley, J Smith, Symmetric spectra, J. Amer. Math. Soc. 13 (2000)
149–208 MR

[8] N J Kuhn, Localization of André–Quillen–Goodwillie towers, and the periodic homol-
ogy of infinite loopspaces, Adv. Math. 201 (2006) 318–378 MR

[9] N J Kuhn, Adams filtration and generalized Hurewicz maps for infinite loopspaces,
preprint (2014) arXiv

[10] N Kuhn, J McCarty, The mod 2 homology of infinite loopspaces, Algebr. Geom.
Topol. 13 (2013) 687–745 MR

[11] M A Mandell, J P May, S Schwede, B Shipley, Model categories of diagram spectra,
Proc. London Math. Soc. 82 (2001) 441–512 MR

[12] V Minasian, André–Quillen spectral sequence for THH, Topology Appl. 129 (2003)
273–280 MR

[13] L A Pereira, Goodwillie calculus in the category of operads over a spectral operad,
preprint (2015) Available at http://www.faculty.virginia.edu/luisalex/
Papers/GoodwillieCalculusAlgO.pdf

[14] L A Pereira, Cofibrancy of operadic constructions in positive symmetric spectra, Ho-
mology Homotopy Appl. 18 (2016) 133–168 MR

[15] B Shipley, A convenient model category for commutative ring spectra, from “Homotopy
theory: relations with algebraic geometry, group cohomology, and algebraic K–theory”
(P Goerss, S Priddy, editors), Contemp. Math. 346, Amer. Math. Soc., Providence, RI
(2004) 473–483 MR

Department of Mathematics, University of Virginia
Charlottesville, VA 22904, United States

njk4x@virginia.edu, lp2h@virginia.edu

http://pi.math.virginia.edu/Faculty/Kuhn/

Received: 21 February 2016 Revised: 20 June 2016

Geometry & Topology Publications, an imprint of mathematical sciences publishers msp

http://dx.doi.org/10.1016/j.aim.2005.07.007
http://dx.doi.org/10.1016/j.aim.2005.07.007
http://msp.org/idx/mr/2254311
http://dx.doi.org/10.2140/agt.2009.9.1637
http://msp.org/idx/mr/2539191
http://dx.doi.org/10.2140/agt.2010.10.87
http://msp.org/idx/mr/2580430
http://dx.doi.org/10.2140/gt.2013.17.1325
http://dx.doi.org/10.2140/gt.2013.17.1325
http://msp.org/idx/mr/3073927
https://web.math.rochester.edu/people/faculty/doug/otherpapers/hirschhornloc.pdf
http://msp.org/idx/mr/1944041
http://dx.doi.org/10.1090/S0894-0347-99-00320-3
http://msp.org/idx/mr/1695653
http://dx.doi.org/10.1016/j.aim.2005.02.005
http://dx.doi.org/10.1016/j.aim.2005.02.005
http://msp.org/idx/mr/2211532
http://msp.org/idx/arx/1403.7501
http://dx.doi.org/10.2140/agt.2013.13.687
http://msp.org/idx/mr/3044591
http://dx.doi.org/10.1112/S0024611501012692
http://msp.org/idx/mr/1806878
http://dx.doi.org/10.1016/S0166-8641(02)00184-0
http://msp.org/idx/mr/1962984
http://www.faculty.virginia.edu/luisalex/Papers/GoodwillieCalculusAlgO.pdf
http://www.faculty.virginia.edu/luisalex/Papers/GoodwillieCalculusAlgO.pdf
http://dx.doi.org/10.4310/HHA.2016.v18.n2.a7
http://msp.org/idx/mr/3547239
http://dx.doi.org/10.1090/conm/346/06300
http://msp.org/idx/mr/2066511
mailto:njk4x@virginia.edu
mailto:lp2h@virginia.edu
http://pi.math.virginia.edu/Faculty/Kuhn/
http://msp.org
http://msp.org

	1. Introduction
	2. General results about derived composition products
	2.1. Our categories of modules and algebras
	2.2. Model structures
	2.3. Cofibrancy assumption on O and first consequences
	2.4. General properties of the bar construction
	2.5. Topological André–Quillen homology
	2.6. O–bimodules with one term
	2.7. The Goodwillie tower of FRM

	3. Application to the augmentation ideal filtration
	3.1. Construction and basic properties of the filtration
	3.2. Composition properties of the filtration
	3.3. Application to lifting filtrations

	4. Deferred proofs
	4.1. The homotopical behavior of the composition product
	4.2. Proofs of results from Section 2

	Appendix: Proof of Theorem 4.4
	References

