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Pattern-equivariant homology

JAMES J WALTON

Pattern-equivariant (PE) cohomology is a well-established tool with which to interpret
the Čech cohomology groups of a tiling space in a highly geometric way. We consider
homology groups of PE infinite chains and establish Poincaré duality between the
PE cohomology and PE homology. The Penrose kite and dart tilings are taken as our
central running example; we show how through this formalism one may give highly
approachable geometric descriptions of the generators of the Čech cohomology of
their tiling space. These invariants are also considered in the context of rotational
symmetry. Poincaré duality fails over integer coefficients for the “ePE homology
groups” based upon chains which are PE with respect to orientation-preserving
Euclidean motions between patches. As a result we construct a new invariant, which
is of relevance to the cohomology of rotational tiling spaces. We present an efficient
method of computation of the PE and ePE (co)homology groups for hierarchical
tilings.

52C23; 37B50, 52C22, 55N05

Introduction

In the past few decades a rich class of highly ordered patterns has emerged whose central
examples, despite lacking global translational symmetries, exhibit intricate internal
structure, imbuing these patterns with properties akin to those enjoyed by periodically
repeating patterns. The field of aperiodic order aims to study such patterns, and to
establish connections between their properties, and their constructions, to other fields of
mathematics and the natural sciences. To name a few, aperiodic order has interactions
with areas of mathematics such as mathematical logic — see Lafitte and Weiss [30] —
as established by Berger’s proof [7] of the undecidability of the domino problem;
Diophantine approximation (see Arnoux, Berthé, Ei and Ito [2], Berthé and Siegel [8],
Haynes, Kelly and Weiss [21] or Haynes, Koivusalo and Walton [22]); the structure
of attractors by Clark and Hunton [12]; and symbolic dynamics (see Schmidt [40]).
Outside of pure mathematics, aperiodic order’s most notable impetus comes from solid
state physics, in the wake of the discovery of quasicrystals; Shechtman, Blech, Gratias
and Cahn [41].

A full understanding of a periodic tiling, modulo locally defined reversible redecorations,
amounts to an understanding of its symmetry group. In the aperiodic setting, the
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complexity and incredible diversity of examples demands a multifaceted approach.
Techniques from the theory of groupoids (see Bellissard, Julien and Savinien [6]),
semigroups (see Kellendonk and Lawson [26]), C �–algebras (see Anderson and
Putnam [1]), dynamical systems (see Clark and Sadun [13] and Kellendonk [25]),
ergodic theory (see Radin [35]) and shape theory (see Clark and Hunton [12]) find
natural rôles in the field, and of course these tools have tightly knit connections to each
other; see Kellendonk and Putnam [27]. One approach to studying a given aperiodic
tiling T is to associate to it a moduli space �, sometimes called the tiling space, of
locally indistinguishable tilings imbued with a natural topology; see Sadun’s book [38]
for an accessible introduction to the theory. A central goal is then to formulate methods
of computing topological invariants of �, and to describe what these invariants actually
tell us about the original tiling T. An important perspective, particularly for the latter
half of this objective, is provided by Kellendonk and Putnam’s theory of pattern-
equivariant (PE) cohomology; see Kellendonk [24] and Kellendonk and Putnam [28].
PE cohomology allows for an intuitive description of the Čech cohomology LH �.�/
of tiling spaces. Over R coefficients the PE cochain groups may be defined using PE
differential forms [24], and over general abelian coefficients, when the tiling has a
cellular structure, with PE cellular cochains; see Sadun [37]. Rather than just providing
a reflection of topological invariants of tiling spaces, on the contrary, these PE invariants
are of principal relevance to aperiodic structures and their connections with other fields
in their own right; see, for example, Kelly and Sadun’s use of them [29] in a topological
proof of theorems of Kesten and Oren regarding the discrepancy of irrational rotations.
It is perhaps more appropriate to view the isomorphism between LH �.�/ and the PE
cohomology as an elegant interpretation of the PE cohomology, rather than vice versa,
of theoretical and computational importance.

In this paper we introduce the pattern-equivariant homology groups of a tiling. These
homology groups are based on infinite, or noncompactly supported cellular chains,
sometimes known as “Borel–Moore chains”. We say that such a chain is pattern-
equivariant if there exists some r > 0 for which the coefficient of a cell only depends
on the translation class of that cell and its surrounding patch of tiles to radius r . We
show in Theorem 2.2, via a classical “cell, dual-cell” argument, that for a tiling of finite
local complexity (see Section 1.1) we have PE Poincaré duality:

Theorem 2.2 For a polytopal tiling T of Rd of finite local complexity, we have PE
Poincaré duality H �.T1/ŠHd��.T

1/ between the PE cohomology and PE homology
of T.

The upshot of this is that one may give quite beautiful, and informative, geometric
depictions of the elements of the Čech cohomology groups LH �.�/ of tiling spaces. For
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Figure 1: The PE 1–cycle �0 , with green Ammann bars of the supertiling.

example, the cohomology of the translational hull �1
T of a Penrose kite and dart tiling

in degree one is LH 1.�1
T/ŠH 1.T1/ŠH1.T

1/Š Z5 . The generators of this group
have down-to-Earth interpretations in terms of important geometric features of the
Penrose tilings. For example, one such generator, depicted in Figure 1, is closely linked
to Ammann bars of the Penrose tilings (of which, see the discussion of Grünbaum and
Shephard [20, Section 10.6]). Another simple geometric feature of the Penrose tilings
is that the dart tiles arrange as loops, leading to the cycle depicted in Figure 2. As
described in Example 2.3 these two chains, and close analogues of them, give a nearly
complete description of H1.T

1/.

In Section 3 we consider these PE invariants in the context of rotational symmetry.
Whilst for a tiling of finite local complexity the action of rotation on the PE homology
and cohomology agree via Poincaré duality (Proposition 3.11), the actions at the
(co)chain level behave differently. We consider ePE chains and cochains, which are
required to have the same coefficients at any two cells whenever those cells agree
on patches of sufficiently large radius up to orientation-preserving Euclidean mo-
tion (rather than just translations as in the case of the PE homology groups). We
show in Theorem 3.3 that over divisible coefficients G we still have Poincaré duality
H �.T0IG/ŠHd��.T

0IG/ between the ePE cohomology and ePE homology, but over
Z coefficients this typically fails. For example, for the Penrose kite and dart tilings
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the degree zero ePE homology group has a copy of an order five cyclic subgroup not
present in the corresponding ePE cohomology group in degree two. A degree zero ePE
torsion element is depicted in Figure 3.

So whilst the PE homology gives a curious alternative way of visualising PE invariants,
the ePE homology provides a new invariant to the ePE cohomology, or the Čech
cohomology of the associated space �0

T (defined by Barge, Diamond, Hunton and
Sadun [5], or see Section 3.1). We show in [42] how this new invariant may naturally
be incorporated into a spectral sequence converging to the Čech cohomology of the
“Euclidean hull” �rot

T (see Section 3.1) of a two-dimensional tiling. The only potentially
nontrivial map of this spectral sequence has a very simple description in terms of
the local combinatorics of the tiling. This procedure dovetails conveniently with the
methods that we shall introduce in Section 4 to efficiently compute the Čech cohomology
of Euclidean hulls of hierarchical tilings, leading to some new computations on the
cohomologies of these spaces.

We show how the ePE homology, ePE cohomology and rotationally invariant part of
the PE cohomology are related for a two-dimensional tiling in Theorem 3.13 and give
the corresponding calculations for the Penrose kite and dart tilings. In general, over
rational coefficients all three are canonically isomorphic, but over integral coefficients
the canonical map from the ePE cohomology to the rotationally invariant part of the
PE cohomology is rarely an isomorphism. It turns out that this map naturally factorises
through the ePE homology.

The techniques that we present are not limited to tilings of Euclidean space. In
Section 3.5 we introduce the notion of a system of internal symmetries, which neatly
encodes the necessary data required to define PE cohomology and various other re-
lated constructions. This allows us, for example, to apply the same techniques to
non-Euclidean tilings, such as the combinatorial pentagonal tilings of Bowers and
Stephenson [11].

In Section 4 we change tack by considering the problem of how to actually compute the
PE homology for certain examples. The PE homology formalism naturally leads to a
simple and efficient method of computation for invariants of a hierarchical tiling which
is closely related to that of Barge, Diamond, Hunton and Sadun [5]. The descriptions of
the PE and ePE homology groups that appear in this paper for the Penrose kite and dart
tilings are made possible through this method of calculation. The method is directly
applicable to a broad range of tilings, including “mixed substitution tilings” (see Gähler
and Maloney [18]) but also non-Euclidean examples, such as the pentagonal tilings of
Bowers and Stephenson mentioned above. The “approximant homology groups” of
the computation and the “connecting maps” between them have a direct description in
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terms of the combinatorics of the star patches, making it highly amenable to computer
implementation. Gonçalves [19] used the duals of these approximant chain complexes
for a computation of the K–theory of the C �–algebra of the stable equivalence relation
of a substitution tiling. Our method of computation of the PE homology groups seems
to confirm the observation there of a certain duality between these K–groups and the
K–theory of the tiling space.

Organisation of paper

In Section 1 we shall recall how one may associate to a Euclidean tiling T its trans-
lational hull �1

T . When T has FLC, we also describe the presentation of �1
T as an

inverse limit of approximants. In Section 2 we recall the PE cohomology of an FLC
tiling T, and how it may be identified with the Čech cohomology LH �.�1

T/ of the tiling
space. We then introduce the PE homology of an FLC tiling and establish PE Poincaré
duality between the PE cohomology and PE homology.

In Section 3 we consider PE homology in the context of rotational symmetry. The
ePE (co)homology groups are defined in Section 3.2, where we show, in Theorem 3.3,
that the ePE cohomology and ePE homology are Poincaré dual when taken over
suitably divisible coefficients. In Section 3.3 we show how Poincaré duality for the
ePE homology of a two-dimensional tiling is restored for Z coefficients by a simple
modification of the ePE homology. The action of rotation on the PE cohomology of an
FLC tiling, and its interaction with the ePE homology, is considered in Section 3.4. In
Section 3.5 we demonstrate how the techniques of Section 3 may be naturally extended
to a more general framework.

In Section 4 we develop a method of computation of the PE homology for polytopal
substitution tilings, close in spirit to the BDHS approach [5]. In Section 4.4 we explain
how the method is modified to compute the ePE homology, and how it may be applied to
more general settings, such as mixed substitution systems or to non-Euclidean examples.

Acknowledgements I thank John Hunton, Alex Clark, Lorenzo Sadun and Dan Rust
for numerous helpful discussions. I particularly thank the enormous efforts of the
anonymous referee, whose suggestions have greatly improved the final version of this
article. This research was supported by EPSRC.

1 Tilings and tiling spaces

1.1 Cellular, polytopal and dual tilings

Recall that a CW complex is called regular if the attaching maps of its cells may be
taken to be homeomorphisms. A cellular tiling of Rd shall be defined to be a pair
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TD .T ; l/ of a regular CW decomposition T of Rd along with a labelling l of T , by
which we mean a map from the cells of T to some set of “labels” L. We shall take cell
to mean a closed cell. If the cells are convex polytopes then we call T a polytopal tiling.
For brevity, we will often refer to a cellular tiling as simply a tiling, and a d –cell of a
tiling as a tile. A patch of T is a finite subcomplex P of T together with the labelling
restricted to P . For a bounded set U � Rd , we let TŒU � be the patch supported on
the set of tiles t for which t \U ¤∅.

Homeomorphisms of Rd act on tilings and patches in the obvious way. Two patches
are called translation equivalent if one is a translate of the other. The diameter of a
patch is defined to be the diameter of the support of its tiles. A tiling or, more generally,
a collection of tilings, is said to have (translational) finite local complexity (FLC) if, for
any r > 0, there are only finitely many patches of diameter at most r up to translation
equivalence. It is not difficult to see that a cellular tiling has FLC if and only if there
are only finitely many translation classes of cells and the labelling function takes on
only finitely many distinct values.

One may wish to consider other forms of decoration of Rd , such as Delone sets, or
tilings with overlapping or fractal tiles, and many of the concepts that we describe
here have obvious analogues for them. However, when such a pattern has FLC it is
always essentially equivalent to a polytopal tiling. In more detail, we say that T0 is
locally derivable from T if there exists some r > 0 for which .S1T

0/ŒB0�D .S2T
0/ŒB0�

whenever .S1T/ŒBr �D .S2T/ŒBr �, where the Si are translations x 7! xC ti and Br

is the closed ball of radius r centred at the origin. The tilings T and T0 are said to be
mutually locally derivable (MLD) if each is locally derivable from the other. Loosely,
this means that T and T0 only differ in a very cosmetic sense, via locally defined
redecoration rules. This concept was introduced in [4], along with the finer relation of
S-MLD equivalence, which takes into account general Euclidean isometries rather than
just translations by replacing the translations Si in the definition of a local derivation
above with Euclidean motions. FLC patterns (or even eFLC ones; see Section 3.1) are
always S-MLD to polytopal tilings via a Voronoi construction.

In the following sections we shall usually take our tilings to be polytopal. Since the
properties of tilings of interest to us are preserved under S-MLD equivalence, this is not a
harsh restriction. The major motivation for this choice is that some useful constructions
may be defined for a polytopal complex, namely the barycentric subdivision and dual
complex. In fact, it is sufficient for these constructions to use regular CW complexes
as our starting point, but the most efficient way of dealing with this more general case
is to pass to a combinatorial setting, which we do not cover in full detail here although
shall outline in Section 3.5.
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For a polytopal tiling T D .T ; l/ we may construct the barycentric subdivision T�
of its underlying CW decomposition geometrically, as follows. For each cell c 2 T ,
define b.c/, its barycentre, to be the centre of mass of c in its supporting hyperplane.
We write c1 � c2 for closed cells c1 , c2 of T to mean that c1 � c2 , and c1 � c2 if this
inclusion is strict. The k –skeleton T k

�
for kD 0; : : : ; d is defined by taking as k –cells

those simplices which are the convex hulls of the vertices fb.c0/; b.c1/; : : : ; b.ck/g for
a chain of cells c0 � c1 � � � � � ck of T of length kC 1. Such a cell may be labelled
by the sequence of labels .l.c0/; l.c1/; : : : ; l.ck//; we define the tiling T�D .T�; l�/,
where l� is the labelling of the cells of T� defined in this way. Assuming (without
loss of generality, up to S-MLD equivalence) that cells of different dimension have
different labels, it is easily verified that T and T� are S-MLD.

We may reconstruct T from its barycentric subdivision T� by identifying an open
k –cell c of T with the conglomeration of open simplicial cells corresponding to chains
c0 � � � � � cj � c terminating in c . Flipping this process on its head, we obtain the dual
complex �T . That is, we define an open k –cell of �T as the union of open simplicial cells
corresponding to chains c � c0 � � � � � cj emanating from a .d�k/–cell c . Similarly
to T� , we may easily label �T so as to define a dual tiling of T which is S-MLD
to T� , and hence also S-MLD to the original tiling T. The dual tiling �T typically
won’t have convex polytopal cells, but it is cellular, owing to the piecewise linearity
of the polytopal decomposition T . The k –cells of T are naturally in bijection with
the .d�k/–cells of �T, and we have that a� b for cells of T if and only if ya� yb for
the corresponding dual cells of �T. A similar process would have worked for T only
regular cellular. However, the decomposition of Rd defined by �T need not be cellular
even for nonpiecewise linear simplicial complexes T . Even so, the resulting dual
decomposition �T still retains the analogous homological properties to a CW complex
needed to define cellular homology (see [31, Section 8.64]) and so the constructions
and arguments to follow can, with little extra effort, be extended to this case.

1.2 Tiling spaces

To a tiling T one may associate a moduli space �1
T which, as a set, consists of tilings

“locally indistinguishable” from T. Let S be a set of tilings of Rd . We wish to endow
S with a geometry which expresses the intuitive idea that two tilings are close if, up to
a small perturbation, the two agree to a large radius about the origin.

An approach which neatly applies to a large class of tilings, and captures this idea most
directly, proceeds as follows. Let H.Rd / be the space of homeomorphisms of Rd ;
these shall serve as our perturbations. Equipped with the compact–open topology, we
may consider a neighbourhood V �H.Rd / of the identity as “small” if its elements
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only perturb points within a large distance from the origin of Rd a small amount. In
this case, for f 2 V it is intuitive to think of f T as a small perturbation of T. In fact,
T should still be “close” to any other tiling T0 so long as TŒK� and .f T0/ŒK� agree for
some K �Rd containing a large neighbourhood of the origin. For a neighbourhood
V �H.Rd / of idRd and bounded K �Rd , we define

U.K;V / WD f.T1;T2/ 2 S �S j T1ŒK�D .f T2/ŒK�g:

It is not difficult to verify that the resulting collection of sets U.K;V / is a base for
a uniformity on S . If the reader is unfamiliar with uniformities, the only important
point here is that we have a uniform notion of tilings being “close”: T1 is considered
close to T2 , as judged by K and V , whenever .T1;T2/ 2 U.K;V /. With K a large
neighbourhood of the origin and V a set of homeomorphisms moving points only a
very small amount in the vicinity of K , we recover our intuitive notion of T1 and T2

being close, when they agree to a large radius up to a small perturbation. The above
construction easily generalises to other decorations of Rd , such as Delone sets, and
also tilings with infinite label sets which are equipped with a metric (see [34]).

For a tiling T we define the translational hull or tiling space as

�1
T WD fTCx j x 2Rdg;

where the completion is taken with respect to the uniformity defined above. In the case
that T has FLC, two patches agree up to a small perturbation when they agree up to a
small translation. So in this case the sets

U.K; �/ WD f.T1;T2/ j T1ŒK�D .T2Cx/ŒK� for kxk � �g

serve as a base for our uniformity, where the K �Rd are bounded and � > 0. Loosely,
two tilings are “close” if and only if their central patches agree to a large radius
(parametrised by K ) up to a small translation (parametrised by � ). It is not difficult to
show that the tiling space �1

T is a compact space whose points may be identified with
those tilings whose patches are translates of patches of T. So one may take as basic
open neighbourhoods of a tiling T1 in �1

T the cylinder sets

C.R; �;T1/ WD fT2 2�
1
T j T1ŒBR �D .T2Cx/ŒBR � for kxk � �g

of tilings of the hull, which, up to a translation of at most � , agree with T1 to radius R.

1.3 Inverse limit presentations

Another simplification granted to us by finite local complexity is that the tiling space
�1

T may be presented as an inverse limit of CW complexes �1
i , following Gähler’s
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(unpublished) construction; see [38] for details, and also the alternative approach of
Barge, Diamond, Hunton and Sadun [5]. Inductively define the i –corona of a tile as
follows: the 0–corona of a tile t is the patch whose single tile is t ; for i 2 N , the
i –corona is the patch of tiles which have nonempty intersection with the .i�1/–corona.
That is, one constructs the i –corona of t by taking t and then iteratively appending
neighbouring tiles i times. For x , y 2Rd , write x �i y to mean that there are two
tiles tx and ty of T containing x and y , respectively, for which the i –corona of tx
is equal to the i –corona of ty , up to a translation taking x to y . This is typically
not an equivalence relation, so we define the approximant �1

i to be the quotient of
Rd by the transitive closure of the relation �i . More intuitively, we form �1

i by
taking a copy of the central tile from each translation class of i –corona, glueing them
along their boundaries according to how they can meet in the tiling. We define the
i –corona of a lower-dimensional cell to be the intersection of i –coronas of the tiles
which it is contained in. An alternative way of defining approximants, which avoids
taking a transitive closure (although identifies more points of Rd at each level), is to
identify cells of the tiling which share the same i –coronas, up to a translation. Each
approximant naturally inherits a cellular decomposition from that of the tiling.

For i � j , cells of T identified in �1
j are also identified in �1

i , so we have “forgetful”
cellular quotient maps �i;j W �

1
j ! �1

i . The inverse limit of this projective system

lim
 ��
.�1

i ; �i;j / WD
n
.xi/i2N0

2

1Q
iD0

�1
i

ˇ̌
�i;j .xj /D xi

o
is homeomorphic to the tiling space �1

T . The central idea here is that a point of �1
i

describes how to tile a neighbourhood of the origin, where the sizes of these neigh-
bourhoods increase with i . An element of the inverse limit space then corresponds
to a consistent sequence of choices of larger and larger patches about the origin, so it
defines a tiling. Any two tilings which are “close” correspond to points of the inverse
limit which are “close” on an approximant �1

i for large i , and vice versa.

2 Translational pattern-equivariance

2.1 Identifying Čech with PE cohomology

Locally, the tiling space of an FLC tiling has a product structure of cylinder sets U �C ,
where U is an open subset of Rd , corresponding to small translations, and C is a
totally disconnected space, corresponding to different ways of completing a finite patch
to a full tiling. Globally, �1

T is a torus bundle with totally disconnected fibre [39].
Many classical invariants — homotopy groups and singular (co)homology groups, for
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example — are ill-suited to studying �1
T when T is nonperiodic, in which case this

space is not locally connected. A commonly employed topological invariant with which
to study tiling spaces is Čech cohomology LH �.�/. We shall not cover its definition
here (see [10, Chapter 2.10]), although we recall two important features of it:

(1) Čech cohomology is naturally isomorphic to singular cohomology on the category
of spaces homotopy equivalent to CW complexes and continuous maps.

(2) For a projective system .�i ; �i;j / of compact, Hausdorff spaces �i , we have an
isomorphism LH �.lim

 ��
.�i ; �i;j //Š lim

��!
. LH �.�i/; �

�
i;j /.

Pattern-equivariant cohomology is a tool designed to give intuitive descriptions of the
Čech cohomology of tiling spaces. It was first defined by Kellendonk and Putnam [28]
(see also [24]), where they showed that it is isomorphic to the Čech cohomology of
the tiling space taken over R coefficients. It is constructed by restricting the de Rham
cochain complex of Rd of smooth forms to a subcochain complex of forms which,
loosely, are determined pointwise by the local decoration of the underlying tiling to
some bounded radius.

A second approach, introduced by Sadun [37], is to use cellular cochains, and has
the advantage of generalising to arbitrary abelian coefficients. Let T D .T ; l/ be a
cellular tiling (recall that T is the underlying cell complex of T). Denote by C �.T /
the cellular cochain complex of T ,

C �.T / WD 0! C 0.T / ı
0

�!C 1.T / ı
1

�!� � �
ıd�1

��!C d .T /! 0;

where each C k.T / is the group of cellular k –cochains and ık is the degree k cellular
coboundary map. A cellular k –cochain  is a function which assigns to each orienta-
tion !c of k –cell c an integer, satisfying  .!Cc /D� .!

�
c / for opposite orientations

!Cc and !�c of a cell c . Of course, choosing an orientation for each k –cell induces
an isomorphism C k.T / Š

Q
k–cells Z. Choose orientations for the k –cells so that

!cCx D !cCx whenever c and cCx are cells of T , where !cCx is the orientation
on c C x induced from !c by translation. Write  .c/ WD  .!c/, where !c is the
chosen orientation of c . A cochain  is called pattern-equivariant (PE) if there exists
some i 2N0 for which  .c1/D .c2/ whenever c1 and c2 have identical i –coronas,
up to a translation taking c1 to c2 .

It is easy to check that the coboundary of a PE cochain is PE. Define C �.T1/ to be the
subcochain complex of C �.T / consisting of PE cochains. Its cohomology H �.T1/ is
called the pattern-equivariant cohomology of T.

A cellular cochain  2 C k.T / is PE if and only if it is a pullback cochain from some
approximant, that is, if  D ��i . z /, where z 2 C k.�1

i / is a cellular cochain on an
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approximant and �i is the (cellular) quotient map �i W Rd ! �1
i defining �1

i . This
fact, in combination with the description of the tiling space �1

T as an inverse limit of
Gähler complexes and the two features of Čech cohomology given above, leads to the
proof of the following:

Theorem 2.1 [37] The PE cohomology H �.T1/ of an FLC tiling T is isomorphic
to the Čech cohomology LH �.�1

T/ of its tiling space.

2.2 PE homology and Poincaré duality

We shall now define the PE homology groups of a cellular tiling T. The construction
runs almost identically to the construction of the cellular PE cohomology groups above,
but where we took cellular coboundary maps before we shall take instead cellular
boundary maps. In more detail, let C BM

�
.T / denote the cellular Borel–Moore chain

complex,

C BM
�
.T / WD 0 C BM

0 .T / @1
 �C BM

1 .T / @2
 �� � �

@d
 �C BM

d .T / 0:

The chain groups C BM
k
.T / are canonically isomorphic to the cochain groups C k.T /.

That is, up to a choice of orientations for the k –cells, a cellular Borel–Moore chain
� 2 C BM

k
.T / is given by a choice of integer for each k –cell. But we think of its

elements as possibly infinite, or noncompactly supported cellular chains. The boundary
maps @k are the linear extension to these chain groups of the cellular boundary maps
of the standard cellular chain complex of T .

Pattern-equivariance of a chain � 2 C BM
k
.T / is defined identically to that of a cochain.

That is, � is PE if there exists some i 2 N0 for which, for any two k –cells c1 , c2

of T with identical i –coronas in T up to a translation, c1 and c2 have the same
coefficient in � . It is easy to see that if � is PE then @.�/ is also PE. Restricting to
PE cellular Borel–Moore chains, we obtain a subchain complex C�.T

1/ of C BM
�
.T /

whose homology H�.T
1/ we shall call the pattern-equivariant homology of T. So the

elements of the PE homology are represented by, typically, noncompactly supported
cellular cycles (chains with trivial boundary), where two PE cycles �1 and �2 are
homologous if �1 D �2C @.�/ for some PE chain � .

These homology groups certainly have a highly geometric definition, but what do they
measure? Through a Poincaré duality argument, we may in fact identify them with the
(reindexed) PE cohomology groups and thus, in light of Theorem 2.1, with the Čech
cohomology groups of the tiling space:

Theorem 2.2 For a polytopal tiling T of Rd of finite local complexity, we have PE
Poincaré duality H �.T1/ŠHd��.T

1/.
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Proof Classical Poincaré duality provides an isomorphism of complexes

�\�W C �.T / Š�!C BM
d��.

�T /;
via the cap product with a cellular Borel–Moore fundamental class � , a d –cycle for
which each oriented d –cell has coefficient either C1 or �1, pairing orientations of
k –cells with orientations of their dual .d�k/–cells. Here, T is the underlying cell
complex of T and �T is its dual complex. By definition, a (co)chain is PE whenever it
assigns coefficients to cells in a way which only depends locally on the tiling to some
bounded neighbourhood of that cell. The fundamental class � is also PE. Since the
cap product (and here, its inverse) is defined in a local manner, and T and �T are MLD,
a k –cochain  of T is PE if and only if its dual .d � k )-chain  \� of �T is PE. So
�\� restricts to an isomorphism between PE complexes,

�\�W C �.T1/ Š�!Cd��.�T1/:

The barycentric tiling T� refines both T and �T, and is MLD to both. As one may
expect, taking such a refinement does not effect PE (co)homology. This shall be shown,
in a more general setting, in Lemma 3.2. Precisely, we have quasi-isomorphisms
�W C�.T

1/! C�.T
1
�
/ and O�W C�.�T1/! C�.T

1
�
/; recall that a quasi-isomorphism is a

(co)chain map which induces an isomorphism on (co)homology. In summation we
have the diagram of quasi-isomorphisms

C �.T1/ �\���!Cd��.�T1/ O��!Cd��.T
1
�/

�
 �Cd��.T

1/;

from which PE Poincaré duality H �.T1/ŠHd��.T
1/ follows.

We note, in passing, that PE homology is named according to its geometric construction:
via PE chains. However, we shall not attempt to make it functorial with respect to any
sort of class of structure preserving maps between tilings. In fact, we do not expect
for there to be a natural way of achieving this: with respect to particular kinds of
continuous maps between tiling spaces, pattern-equivariance is a property which pulls
back rather than pushes forward.

Example 2.3 Let T be a Penrose kite and dart tiling. The Čech cohomology of the
translational hull of the Penrose tilings was first calculated in [1] (although see also
the earlier closely related K–theoretic calculations of Kellendonk in the groupoid
setting [23]). In Section 4 we provide a different way of computing these groups which,
as a direct by-product, provides us with explicit descriptions of the generators in terms
of PE chains. Consistently with previous calculations, we find that
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H2�k.T
1/ŠH k.T1/Š LH k.�1

T/Š

8<:
Z for k D 0;

Z5 for k D 1;

Z8 for k D 2:

Let Pc be a pair of a patch P from T along with a choice of oriented k –cell c from P ,
taken up to translation equivalence. We have an associated PE indicator k –chain
1.Pc/ 2 Ck.T

1/ for which each k –cell of T has coefficient one when it is contained
in an ambient patch for which the pair agrees with Pc up to translation, and all other
cells have coefficient zero. The degree zero PE homology group H0.T

1/ for a Penrose
kite and dart tiling may be freely generated by indicator 0–chains 1.Pv/ 2 C0.T

1/,
where each Pv is one of the vertex-stars of T, paired with its central vertex. The full
list of possible translation classes of such patches, up to rotation by some 2�k

10
, are

given (and named, according to Conway’s notation) in Figure 4. As an example of a
choice of elements freely generating H0.T

1/, we may choose two “queen” vertices,
one oriented as in Figure 4 and the other a 2�

10
rotate of it, and six “king” vertices, each

a 2�k
10

rotate of that of Figure 4 with k D 0; : : : ; 5.

We shall go into more detail on generators for H0.T
1/ in Example 3.15. In degree one,

there are two particularly beautiful cycles that we wish to discuss here. There is a PE
1–cycle �0 given by running along the bottoms of the dart tilings, with 1–cells oriented
to point to, say, the right when the darts are oriented to point upwards. The resulting
cycle is illustrated in red in Figure 2, where we have removed cell orientations and
the 1–skeleton of the tiling to decrease clutter. The extra embellishments of the figure
shall be discussed in Section 4; there is a green 1–cycle for the analogous chain of the
supertiling of T, along with a blue PE 2–chain whose boundary relates the two. As
one can see, �0 forms a disjoint union of clockwise and anticlockwise running loops.
Interestingly, deducing which of these two options is the case at some cell of a loop
requires consideration of arbitrarily large patches; in fact, for specific kite and dart
tilings there exists a single infinite fractal-like path along dart tiles. But �0 is not a
generator, there exists another PE 1–cycle � for which Œ�0�D 2Œ�� in H1.T

1/. The
loops of Figure 2 come in two types: ones where the darts along the loops are 2�k

10

rotates of an upwards pointing dart tile with k odd, and ones where the darts are even
rotates. The 1–cycle � is given by restricting �0 to those loops in one of these two
parities; both choices are homologous and equal to 1

2
Œ�0� in H1.T

1/.

A second generator �0 for H1.T
1/ is depicted in Figure 1. The cycle arranges as a

union of infinite paths along the 1–skeleton which closely approximate the Ammann
bars [20, Section 10.6] of the supertiling of T, illustrated in the figure in green. There
are ten further chains �k defined by 2�k

10
rotates of �0 (see Section 3.4). We calculate

that H1.T
1/ is freely generated by the homology classes of � , �0 , �1 , �2 and �3 ;

every other PE 1–cycle is equal, up to a PE 2–boundary, to a linear combination of
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Figure 2: The PE 1–cycle �0 of a Penrose kite and dart tiling (red), with the
analogous chain of the supertiling (green) and a PE 2–chain (blue) whose
boundary relates the two.

these cycles. It turns out that �4 '��0C �1� �2C �3 in homology. This formula is
unsurprising following the observation that one may associate each �k with a direction
given by a tenth root of unity, and we have the identity

P4
kD0.�1/k exp

�
2�i�k

10

�
D 0.

3 PE homology and rotations

In the previous section we showed that topological invariants of tiling spaces may be
described in a highly geometric way, using infinite cellular chains on the tiling. However,
PE homology is essentially just offering a different perspective on the generators of
the PE cohomology here. As we shall see in Section 4, PE homology does provide
a valuable alternative insight into the calculation of these invariants for hierarchical
tilings. In this section, we shall show that PE homology provides a new invariant to
the PE cohomology when one considers these invariants in the context of rotational
symmetries.

3.1 Rotational tiling spaces

Let SE.d/ŠRd Ì SO.d/ denote the transformation group of orientation-preserving
isometries of Rd; elements of SE.d/ shall be called rigid motions. There are two
topological spaces naturally associated to a tiling T of Rd which incorporate the action
of SE.d/ on T. The first, defined analogously to the translational hull �1

T , is the
Euclidean hull

�rot
T WD ff T j f 2 SE.d/g:
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It follows directly from the definitions that the special Euclidean group SE.d/ acts
uniformly on the Euclidean orbit of T, and so this action extends to the entire Euclidean
hull. In particular, the subgroup SO.d/� SE.d/ of rotations at the origin acts on �rot

T .
The second space, the one which we shall concentrate on in this section, is the quotient

�0
T WD�

rot
T =SO.d/:

We shall say that T has Euclidean finite local complexity (eFLC, for short) if, for
every r > 0, there exist only finitely many patches of diameter at most r up to rigid
motion. Interesting examples of tilings which have eFLC, but not translational FLC,
are the Conway–Radin pinwheel tilings of R2 , whose tiles are all rigid motions of a
.1; 2;

p
5/ triangle, or its reflection, but are found in the tiling pointing in infinitely

many directions. Much of what can be said for FLC tilings and their translational hulls
has an analogue for eFLC tilings and their Euclidean hulls. In particular, for an eFLC
tiling T, its Euclidean hull �rot

T is a compact space whose points may be identified
with those tilings whose patches are rigid motions of the patches of T. The space �0

T

is then the quotient of �rot
T given by identifying tilings which differ by a rotation at the

origin. One may define inverse limit presentations of these spaces in a similar way to
the construction of the Gähler complexes, which is tantamount to being able to define
pattern-equivariant cohomology.

To explain this further, we now focus on the space �0
T . For i 2 N0 we define CW

complexes �0
i analogously to the complexes of the translational setting, replacing

translations with rigid motions. For example, we may define the complexes �0
i by

identifying cells c1 , c2 of T via rigid motions which take c1 to c2 , and the i –corona
of c1 to the i –corona of c2 . The CW complexes �0

i , along with the “forgetful maps”
between them, define a projective system whose inverse limit is homeomorphic to �0

T .

It may be the case that cells of T have nontrivial isotropy, that is, there may be cells c

whose i –coronas are preserved by rigid motions mapping c to itself nontrivially, which
will cause points of c to be identified in the quotient spaces �0

i . Given a cell c 2 T ,
the rigid motions mapping c to itself and preserving its i –corona is a group, which
we call the isotropy, and denote by Iso.c; i/. Write �Iso.c; i/, the cell isotropy, for the
group of transformations of Iso.c; i/ restricted to c .

The cell isotropy groups of the barycentric subdivision T� are always trivial. Indeed,
a barycentric cell is determined by its vertices, which are determined by a chain of
incidences c0 � � � � � ck in T , and a rigid motion taking a barycentric cell to itself
is determined by the map restricted to these vertices. A nontrivial map on such a
vertex set would have to correspond to a rigid motion taking b.ci/ to some b.cj /

with i ¤ j , which cannot be the case since ci ¤ cj have distinct dimensions, and thus,
by assumption, distinct labels.
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3.2 Euclidean pattern-equivariance

A cellular cochain  2 C k.T / shall be called Euclidean pattern-equivariant (ePE) if
there exists some i 2N0 for which  .!c/D .f�.!c// whenever f is a rigid motion
taking the i –corona of a k –cell c to the i –corona of some other k –cell; here, !c is
an orientation on c and f�.!c/ is the push-forward of this orientation to the cell f .c/.
In the case that the cells of T have trivial cell isotropy, one may consistently orient the
cells of T, and this definition then just says that there exists some i for which  is
constant on cells which have identical i –coronas up to rigid motion. The coboundary
of an ePE cochain is ePE, so we have a cochain complex C �.T0/ defined by restricting
C �.T / to ePE cochains. Taking the cohomology of this cochain complex, we define
the ePE cohomology H �.T0/.

One may follow the proof from [37] of Theorem 2.1 almost word-for-word, replacing
the Gähler complexes �1

i by the complexes �0
i , to obtain the following:

Theorem 3.1 Let T be an eFLC tiling whose cell isotropy groups �Iso.c; i/ are trivial
for some i 2 N0 . Then the ePE cohomology H �.T0/ is isomorphic to the Čech
cohomology LH �.�0

T/.

We define Euclidean pattern-equivariance for cellular Borel–Moore chains identically
as for cochains. Restricting C BM

�
.T / to ePE chains we thus define the ePE chain

complex C�.T
0/ and its homology, the ePE homology H�.T

0/.

The proof of PE Poincaré duality in Theorem 2.2 essentially relied on two simple
observations:

(1) The classical Poincaré duality isomorphism � \ � , given by taking the cap
product with a Borel–Moore fundamental class, restricts to a cochain isomor-
phism �\�W C �.T1/! Cd��.�T1/ between the PE cohomology of T and the
PE homology of its dual tiling.

(2) The refinement of a tiling to its barycentric subdivision does not effect PE
homology.

Step (1) will still hold for the ePE complexes: we have a Poincaré duality isomorphism
�\�W C �.T0/! Cd��.�T0/ between ePE cochains of a tiling and ePE chains of its
dual tiling. However, step (2) will not generally hold when restricting to ePE (co)chains
if our tiling has nontrivial cell isotropy. One would like to refuse taking the ePE
(co)homology of a tiling which has cells of nontrivial isotropy by replacing it with the
barycentric subdivision. Unfortunately, our hand is forced, since, in the presence of
nontrivial patch isotropy, one of T or �T will have nontrivial cell isotropy.
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The next lemma determines to what extent one may expect refinement to preserve
ePE homology and cohomology. Thus far, our invariants have been taken over Z
coefficients. For a unital ring G we may consider the cochain complex C �.T IG/
of cellular cochains which assign to oriented cells elements of G , and similarly for
C BM
�
.T IG/. We may restrict these complexes to PE and ePE (co)chains, and denote

the corresponding (co)homology by H �.T1IG/, etc. We say that G has division by n

if n �1G has a multiplicative inverse in G , where 1G is the multiplicative identity in G

and
n �g WD gCgC � � �Cg„ ƒ‚ …

n times

:

Lemma 3.2 Let T be a polytopal tiling with eFLC and G be a unital ring. If for some
K 2N0 the coefficient ring G has division by # �Iso.c;K/ for every cell c of T, then
there exist quasi-isomorphisms

�W C�.T
0
IG/! C�.T

0
�IG/;

�W C �.T0
�IG/! C �.T0

IG/:

The analogous statement holds for the refinement of the dual tiling �T to T� .

Proof We shall prove the existence of the homology quasi-isomorphism, the proof
for cohomology is similar. An elementary chain is a chain which assigns coefficient 1

to some oriented cell and 0 to all other cells. We have a chain map

�W C BM
�
.T IG/! C BM

�
.T�IG/;

which is defined by sending an elementary chain to the corresponding barycentric chain
with coefficient 1 on barycentric k –cells contained in c , suitably oriented with respect
to c , and 0 on all other cells. It is easy to see that � restricts to ePE chains and we
claim that it is a quasi-isomorphism.

To show that � is surjective on homology, let � 2 Ck.T
0
�
/ be an ePE cycle of the

barycentric subdivision; � is in the image of � if and only if it is supported on the
k –skeleton of T. If k D d , then � is already supported on the d –skeleton, so suppose
that k < d .

Whilst � need not be in the image of � at the chain level, there exists some � for which
� C @.�/ is. To construct � , we firstly find an ePE chain �.d/ for which � C @.�.d//
is supported on the .d�1/–skeleton. Having the same i –corona up to rigid motion
is an equivalence relation on the cells of T for every i 2N0 . By Euclidean pattern-
equivariance of � , there exists some i for which, if two d –cells c1 , c2 of T have
identical i –coronas up to a rigid motion f , then f sends � restricted at c1 to its
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restriction at c2 . We may choose i � K ; note that, since �Iso.c; i/ is a subgroup of�Iso.c;K/, we have that # �Iso.c; i/ divides # �Iso.c;K/, so the coefficient group G has
division by # �Iso.c; i/ for every cell c of T.

For each equivalence class of d –cell, choose a representative c and a barycentric
.kC1/–chain �c supported on c for which � C @.�c/ is supported outside of the
interior of c ; by the homological properties of cells of a CW decomposition, we
may find such a chain. Define the .kC1/–chain � 0c by copying �c to every cell
equivalent to c , via every rigid motion which preserves the i –corona of c . We define
�.d/ WD

P
� 0c=.# �Iso.c; i//, where the sum is taken over every equivalence class of

d –cell.

The chain �.d/ is ePE by construction, and we claim that � C @.�.d// is supported
on the .d�1/–skeleton. Indeed, let c be a chosen representative of d –cell; we have
that @.�c/D��c , where �c is the restriction of � to the interior barycentric cells of c .
By our assumption on � being ePE, for any f 2 �Iso.c; i/ we have that f�.@.�c//D

f�.��c/D��c . Hence, the restriction of @.�.d// to the interior of c is given byX
f 2 �Iso.c;i/

f�.@.�c//=.# �Iso.c; i//D
X

f 2 �Iso.c;i/

��c=.# �Iso.c; i//D��c :

By construction of �.d/, the same is true at every other d –cell equivalent to c , and
by our assumption on � being ePE it follows that � C @.�.d// is supported on the
.d�1/–skeleton.

We may continue this procedure down the skeleta. That is, we may construct in an
analogous way ePE chains �.d/, �.d�1/; : : : ; �.kC1/ for which �C@

�Pd
mDn �.m/

�
is supported on the n–skeleton of T. It follows that � C @

�Pd
mDkC1 �.m/

�
is in the

image of �, so �� is surjective on homology.

Showing injectivity of �� is analogous (indeed, the above is really just a relative
homology argument applied to the filtration of the skeleta). Suppose that �.�/D @.�/
for � 2 Ck.T

0/ and � 2 CkC1.T
0
�
/. Then � is ePE and has boundary in the k –

skeleton of T. We may construct ePE .kC2/–chains �.d/; �.d � 1/; : : : ; �.k C 2/,
analogously to above, for which � C @

�Pd
mDkC2 �.m/

�
is contained in the .kC1/–

skeleton. So there is an ePE chain � 0 with �.� 0/D � C @
�Pd

mDkC2 �.m/
�
. It follows

from @.�.� 0//D @.�/D �.�/ that � D @.� 0/ represents zero in homology, as desired.

By the above lemma, the ePE (co)homology of a tiling is stable under barycentric
subdivision after one application, by the fact that the cell isotropy groups �Iso.c; i/ are
trivial in the barycentric subdivision. Invariance under barycentric refinement allows us
to deduce ePE Poincaré duality, so long as our coefficient group is suitably divisible:
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Theorem 3.3 Let T be an eFLC polytopal tiling. Suppose that, for some K 2N , the
coefficient ring G has division by the orders of isotropy groups # Iso.c;K/ for every
cell c of T. Then we have ePE Poincaré duality H �.T0IG/ŠHd��.T

0IG/.

Proof The proof is essentially identical to the proof of translational PE Poincaré
duality of Theorem 2.2. All that needs to be checked is that we have invariance under
refinement to the barycentric subdivision for the tiling and dual tiling, that is, that we
have quasi-isomorphisms �W C�.T0IG/!C�.T

0
�
IG/ and O�W C�.�T0IG/!C�.T

0
�
IG/.

The cell isotropy groups �Iso.c;K/ of the tiling are quotient groups of the isotropy
groups of K–coronas Iso.c;K/ by the subgroups of those transformations leaving c

fixed, and similarly for the dual tiling. Furthermore, any rigid motion preserving the
.KC1/–corona of a dual cell yc , sending yc to itself, also preserves the K–corona of
the cell c in the original tiling. It follows that the cell isotropy groups (at level K for T
and KC 1 for the dual tiling) have orders which divide those of the groups Iso.c;K/.
A unital ring which has division by n also has division by any divisor of n, and so by
Lemma 3.2 we have the required refinement quasi-isomorphisms � and O�.

Example 3.4 Let T be the periodic cellular tiling of R2 of unit squares whose vertices
lie on the integer lattice, with the standard cellular decomposition. The cells of T

have nontrivial isotropy: �Iso.f; i/ Š Z=4 for a face f and �Iso.e; i/ Š Z=2 for an
edge e . So the ePE (co)homology groups are not necessarily invariant under barycentric
subdivision unless taken over coefficients G with division by 4. Since there is only one
0–cell and one 2–cell up to rigid motion, the ePE complexes over Q coefficients read

0!Q! 0!Q! 0:

There is no generator in degree one, since an indicator (co)chain at an edge e is not
invariant under the rigid motion at e reversing its orientation. So the ePE invariants
are H k.T0IQ/ŠH2�k.T

0IQ/ŠQ for k D 0, 2 and are trivial otherwise.

To calculate over Z coefficients, we pass to the barycentric subdivision T� so that the
cells have trivial isotropy. In this case we have that H k.T0

�
/Š Z for k D 0; 2 and

are trivial otherwise. This agrees with the observation that �0
T is homeomorphic to the

2–sphere, which by Theorem 3.1 has isomorphic cohomology. For the ePE homology
we have that Hk.T

0
�
/Š Z˚ .Z=2/˚ .Z=4/, 0, Z for k D 0, 1, 2, respectively.

For this example ePE Poincaré duality H k.T0
�
/ŠHd�k.T

0
�
/ fails over Z coefficients.

Theorem 3.3 does not apply since, whilst the cells of T� have trivial isotropy, the
isotropy groups Iso.v; i/ of rigid motions preserving patches are nontrivial. The ePE ho-
mology in degree zero for a periodic tiling of equilateral triangles is Z˚.Z=2/˚.Z=3/.
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Figure 3: Torsion element t with 5t C @1.�1.E1/C1.E2/�1.E4/� 2 � 1.E7//D 0

However, its associated moduli space �0
T is still the 2–sphere, so we see that the ePE

homology is not a topological invariant of �0
T but of a finer structure.

Example 3.5 Let T be a Penrose kite and dart tiling. Its ePE cohomology is

H k.T0/Š LH k.�0
T/Š

8<:
Z for k D 0;

Z for k D 1;

Z2 for k D 2:

In degrees k D 1, 2 we have ePE Poincaré duality Hk.T
0/ Š H 2�k.T0/. But in

degree zero, as we shall calculate in Section 4, we have that H0.T
0/Š Z2˚ .Z=5/.

A 0–chain t representing a 5–torsion homology class is depicted in Figure 3, along
with an ePE 1–chain whose boundary is �5t . Specifically, the torsion element t D

1.sun/C 1.star/� 1.queen/ is a linear combination of indicator 0–chains of certain
rigid equivalence classes of star patches of 0–cells (the seven equivalence classes of
such star patches are given in Figure 4). This torsion element turns out to be relevant
to calculation of the Čech cohomology LH �.�rot

T / of the Euclidean hull [42].

Generators for the free part of H0.T
0/ may be taken as 1.sun/ and 1.star/. A generator

of H1.T
0/ŠZ is illustrated in red in Figure 2. It is the cycle running along the bottoms

of the dart tiles, named �0 in the discussion of Example 2.3.
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3.3 Restoring Poincaré duality

The above examples show that ePE Poincaré duality can fail in the presence of nontrivial
rotational symmetry. We consider the discrepancy between the ePE homology and
ePE cohomology to be a feature of interest, which is relevant to the cohomology of
Euclidean hulls [42]. However, to relate the ePE homology back to more familiar
invariants, we shall describe here how one may modify the definition of ePE homology
so as to restore duality with the ePE cohomology.

We restrict to the case that T is a tiling of R2 . The higher-dimensional situation is
much more complicated; see the comments at the end of this subsection. We assume
that T has eFLC and that it has been suitably subdivided so that any points of local
rotational symmetry are contained in the vertex set of T; this may be achieved for any
eFLC polytopal tiling by a single barycentric subdivision.

Definition 3.6 Define the subchain complex

C |
�
.T0/ WD 0 C

|
0
.T0/

@1
 �C

|
1
.T0/

@2
 �C

|
2
.T0/ 0

of the ePE complex C�.T
0/ of T as follows. We let C

|
k
.T0/ WD Ck.T

0/ for k D 1, 2.
In degree zero we let C

|
0
.T0/ consist of those ePE chains � for which there exists

some i 2N such that, whenever the i –corona of a vertex v has rotational symmetry
of order n, then the coefficient of v in � is divisible by n. Denote the homology of
this chain complex by H |

�
.T0/.

To see that C |
�
.T0/ is well-defined, firstly note that the boundary of an ePE chain

is ePE, so it suffices to check that, given an ePE 1–chain � , there exists some i for
which @.�/ assigns values multiples of n to vertices whose i –coronas have n–fold
symmetry. Since � is ePE, there exists some j for which � assigns the same (oriented)
coefficients to any two edges whose j –coronas are equivalent up to a rigid motion.
Suppose that the .jC1/–corona of a vertex v has n–fold rotational symmetry; these
symmetries induce rigid equivalences between j –coronas of the edges incident with v .
Since no edge is fixed by any nontrivial rotation, the rotations partition these edges into
orbits of n elements, each having equivalent j –coronas. It follows that the coefficient
of v in @.�/ is some multiple of n, as desired.

With only minor modifications to the proof of Theorem 3.3 we obtain the following:

Theorem 3.7 Let T be a polytopal tiling of R2 with eFLC and with points of local
rotational symmetry contained in the vertex set of T. Then we have Poincaré duality

H �.T0/ŠH
|
2��
.T0/:
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Proof From the classical Poincaré duality pairing, we have an isomorphism of com-
plexes C �.T0/ Š Cd��.�T0/ between the ePE cohomology and the ePE homology
of the dual tiling. The issue with ePE Poincaré duality is that we do not necessarily
have an isomorphism H�.�T0/ŠH�.T

0/. In particular, we may not have a refinement
quasi-isomorphism O�W C�.�T0/!C�.T

0
�
/; the conditions of Lemma 3.2 are not satisfied

since vertices with local rotational symmetry in T lead to dual tiles of �T with nontrivial
cell isotropy.

Following the proof of Lemma 3.2, we see that O� can be made a quasi-isomorphism by
replacing its range with C |

�
.T0
�
/. Let

O�|W C�.�T0/! C |
�
.T0
�/

be the canonical inclusion of chain complexes. The map O� may fail to be a quasi-
isomorphism in degree zero. It may not be the case that an ePE 0–chain � of T�
is homologous to a chain supported on the 0–skeleton of �T, since we are forced to
“remove” 0–chains of C0.T

0
�
/ from barycentres of rotationally invariant dual cells

in multiples of the local symmetry at the corresponding vertices of T. This issue is
alleviated by passing to C |

�
.T0
�
/, since now the barycentres of such dual cells may

only be assigned coefficients which are multiples of the orders of symmetries of the
corresponding i –corona in the dual tiling for some sufficiently large i . The rest of the
proof follows similarly to the proof of Theorem 3.3; we end up with the diagram of
quasi-isomorphisms

C �.T0/ �\���!Cd��.�T0/ O�
|

�!C
|
d��

.T0
�/

�|
 �C

|
d��

.T0/:

This modification to the ePE homology is perhaps not too surprising when we think of
the approximant spaces to �0 as branched orbifolds rather than just quotient spaces.
Points of rotational symmetry in the tiling correspond to cone points on these orbifolds,
and the modification above is essentially to count such points with fractional multiplicity.

The above theorem shows that we may express the ePE cohomology of a two-dimension-
al tiling, and hence the Čech cohomology of the associated space �0

T , in terms of the
ePE homology of T but with certain restricted coefficients in degree zero. One may
ask on the relationship between the ePE homology before and after the modification to
restore Poincaré duality in degree zero. The only nontrivial chain group of the relative
chain complex of the pair C�.T

0/� C |
�
.T0/ is a torsion group in degree zero. It is not

difficult to show that it is isomorphic to
Q

Ti
Z=niZ, where the product is taken over

all rotation classes of tilings Ti of �0
T with ni –fold rotational symmetry at the origin,

at least in the case that there are only finitely many such tilings (and a similar statement
holds still with infinitely many such tilings). It follows that the ePE homology and the
Čech cohomology of �0

T are isomorphic in cohomological degrees one and two, and
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in degree zero we have that H0.T
0/ is an extension of LH 2.�0

T/ by a torsion group
determined by the rotational symmetries of tilings in the hull of T.

In higher dimensions the situation is far more complicated, and we delay exposition
of it to future work. The precise relationship between the ePE homology and ePE
cohomology is then best expressed via a more complicated gadget, a spectral sequence
analogous to the one of Zeeman [43].

Example 3.8 Consider again the periodic tiling T of unit squares. Its barycentric
subdivision T� has trivial cell isotropy, but has rotational symmetry at the vertices
of T� (ie at the barycentres of the cells of T). In particular, the vertices have rotational
symmetry of orders 4, 2 and 4 at the vertices of T� corresponding, respectively, to
the vertices, edges and faces of T. So we replace the degree zero ePE chain group

C0.T
0
�/Š Zhvi˚Zhei˚Zhf i:

by its modified version

C
|
0
.T0
�/Š 4Zhvi˚ 2Zhei˚ 4Zhf i:

One easily computes the resulting homology group in degree zero to be H
|
0
.T0
�
/ŠZ,

restoring Poincaré duality:

H
|
0
.T0
�/ŠH 2.T0

�/Š
LH 2.�0

T�
/ŠH 2.S2/Š Z:

Example 3.9 We saw in Example 3.5 that ePE Poincaré duality Hk.T
0/ŠH 2�k.T0/

fails for the Penrose kite and dart tilings in homological degree k D 0; we have extra
5–torsion in the ePE homology, a generator is depicted in Figure 3. Our method of
calculation for the ePE homology of substitution tilings in Section 4 may be modified
to compute instead H

|
0
.T0/. We calculate that, indeed, Poincaré duality is restored:

H
|
0
.T0/ŠH 2.T0/Š LH 2.�0

T/Š Z2:

The modified degree zero ePE homology group is freely generated by, for example, the
indicator 0–chains of the “queen” and “king” vertex types (see Figure 4).

3.4 Rotation actions on translational PE cohomology

In the case that our tiling T is FLC (and not just eFLC) there is an alternative way of
integrating the action of rotations with the PE invariants of T. Firstly, we assume that
some rotation group acts nicely on T:

Definition 3.10 We say that a finite subgroup ‚ � SO.d/ acts on T by rotations
if, for every patch P of T and g 2 ‚, we have that gP is also a patch of T, up to
translation. If, additionally, we have that patches P and Q agree up to a rigid motion
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only when P and gQ agree up to translation for some g 2‚, then we say that T has
rotation group ‚.

A PE k –cochain  2 C k.T1/ may be identified with a sum of indicator cochains of
i –coronas of k –cells of T for some sufficiently large i . So if ‚ acts on T by rotations,
then ‚ naturally acts on C �.T1/. On an indicator cochain 1.Pc/, the group ‚ acts by
g �1.Pc/ WD 1.g�1 �Pc/. Replacing cellular cochains with cellular Borel–Moore chains,
the same is true of the PE homology. The action of ‚ commutes with the (co)boundary
maps, and so we have an action of ‚ on the PE (co)homology. Furthermore, ‚
naturally acts as a group of homeomorphisms on the tiling space �1

T ; the points of �1
T

may be identified with tilings, and ‚ acts by rotation at the origin. So ‚ acts on the
Čech cohomology LH �.�1

T/. These actions are compatible:

Proposition 3.11 Suppose that T is FLC and that ‚ acts on T by rotations. Then the
isomorphisms LH �.�1

T/ Š H �.T1/ Š Hd��.T
1/ of Theorems 2.1 and 2.2 commute

with the group actions of ‚.

Proof The action of rotation on �1
T is canonically induced at the level of the approxi-

mants �1
i . The isomorphism between the Čech cohomology of an inverse limit space

and the direct limit of the cohomologies of its approximants is natural with respect to
maps like this, so the isomorphisms

LH �.�1
T/Š

LH �.lim
 ��
.�1

i ; �i;j //Š lim
��!
.H �.�1

i /; �
�
i;j /ŠH �.T1/

each commute with the action of rotation. The Poincaré duality isomorphism H �.T1/Š

Hd��.T
1/ of Theorem 2.2 was induced by the classical pairing of a cochain with its

dual chain, along with the induced maps (and their inverses) associated to barycentric
refinement. Each of these maps, at the chain level, are easily seen to commute with the
action of rotation.

Suppose that T has rotation group ‚. One may ask to what extent the Čech cohomology
LH �.�0

T/ naturally corresponds to the subgroup of LH �.�1
T/ of elements of which are

invariant under the action of ‚. More concretely, we have the quotient map

qW �1
T!�0

T D�
1
T=‚

given by identifying tilings which agree up to a rotation at the origin. Since q D q ıg

for all g 2‚, the induced map

q�W LH �.�0
T/!

LH �.�1
T/

has image contained in the rotationally invariant part of LH �.�1
T/, denoted by

LH �‚.�
1
T/ WD fŒ � 2

LH �.�1
T/ j Œ �D g � Œ � for all g 2‚g:
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Let q�
‚

be the corestriction of q� to the range LH �
‚
.�1

T/. It is not difficult to show that
q�
‚

is an isomorphism when taking cohomology over divisible coefficients:

Proposition 3.12 Let T be FLC with rotation group ‚. If G is a unital ring with
division by #‚ then q�

‚
W LH �.�0

TIG/!
LH �
‚
.�1

TIG/ is an isomorphism.

Proof We suppose that the cell isotropy groups of T are trivial (without loss of
generality, since otherwise we may simply pass to the barycentric subdivision). By the
natural identification of the Čech cohomology with the PE cohomology, the map q�

corresponds to the induced map of the inclusion of cochain complexes

�W C �.T0/ ,! C �.T1/I

note that C �.T0/ is the subcochain complex of C �.T1/ of cochains which are invariant
under the action of ‚. There is a self-cochain map

r W C �.T1/! C �.T1/

defined by r. / WD
P

g2‚ g � . Clearly g �r. /D r. / for any  2C �.T1/, so r in
fact defines a map into the ePE cochain complex. We have that rı�D �ır is the times #‚
map upon restriction to the rotationally invariant part of the PE cohomology. By our
assumption on the divisibility of the coefficient group G , this map is an isomorphism
when taking cohomology over G coefficients, and so q�

‚
, is an isomorphism.

When working over nondivisible coefficients, q�
‚

is typically not an isomorphism. For
a two-dimensional tiling, we may factor q�

‚
through the ePE homology of T:

Theorem 3.13 Suppose that T is two-dimensional, FLC, has points of local rotational
symmetry contained in the vertex set of T and has rotation group ‚. Then we have the
following commutative triangle, with i injective:

LH �.�0
T/

H2��.T
0/

LH �
‚
.�1

T/

i

q�
‚

f

Proof The inclusions of chain complexes C |
�
.T0/ � C�.T

0/ � C�.T
1/ induce a

triangle much like the one above. The first inclusion induces an inclusion on homology,
since the corresponding relative homology group is concentrated in degree zero. The rest
of the proof follows from establishing that, up to isomorphism, the map q� corresponds
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to the induced map of the inclusion C |
�
.T0/�C�.T

1/. This is a straightforward check,
applying the ideas of the proof of Proposition 3.11.

One might hope for the homomorphism f in the theorem above to always be surjective.
In that case, we may interpret the theorem as follows: the ePE homology extends the
ePE cohomology by adding “missing” elements corresponding to PE cochains whose
cohomology classes are ‚–invariant, but are not actually represented by ‚–invariant
(ePE) cochains. Whilst f usually does have a larger image than q�

‚
, the example of

the Penrose tiling below shows that, in fact, f need not be surjective in general.

Example 3.14 Let T� be the barycentric subdivision of the periodic square tiling. In
degree two we have that LH 2.�1

T/Š Z which, in terms of PE cohomology, is freely
generated by an indicator cochain for the square tiles, by a choice of some 2–simplex
of the barycentric subdivision of the unit square. Its cohomology class (but not the
cochain itself) is invariant under rotation, so H 2

‚
.�1

T/DH 2.�1
T/.

The ePE cohomology is freely generated by the 2–cochain which indicates each 2–
simplex of a chosen handedness, the map q�

‚
W Z! Z is the times 4 map in degree

two. So there are classes of the PE cohomology which are invariant under rotation, but
are not represented by rotationally invariant cochains. These “missing” elements are
represented in the ePE homology, though. We have that H0.T�/ŠZ˚.Z=2/˚.Z=4/
has free part generated by the 0–chain indicating the centres of squares. In degree
zero q�

‚
factorises as q�

‚
D f ı i where i is the �4 map onto the free component of

H
|
0
.T0/, and the map f is given by the projection f .x; Œy�2; Œz�4/D x .

Example 3.15 Let T be a Penrose kite and dart tiling. The cohomology LH 2.�1
T/,

along with the action of rotation by Z=10 on it, was first analysed in [32]. By
Proposition 3.11, we may essentially mimic such calculations using instead PE homol-
ogy. We compute (according to the method to be outlined in the next section), consis-
tently with previous calculations, that over rational coefficients the action of rotation on
LH 2.�1

TIQ/ŠH0.TIQ/ŠQ8 splits into the following irreducible subrepresentations.
We have two one-dimensional irreducibles corresponding to the trivial representation.
There are two one-dimensional irreducibles corresponding to the representation sending
the generator Œ1�10 2 Z=10 to the map x 7! �x . And we have a four-dimensional
irreducible, the “vector representation” QŒr �=.r4� r3C r2� rC1/, which sends Œ1�10

to the map .w;x;y; z/ 7! .�z; wC z;x� z;yC z/.

However, over integral coefficients the representation does not decompose into irre-
ducibles. We find elements �1; : : : ; �4 of H0.T

1/ Š Z8 upon which rotation acts
trivially on �1 and �2 , and sends �3 7! ��3 and �4 7! ��4 . One may extend either
of the pairs .�1; �2/ and .�3; �4/ to integer bases for Z8 , but the integer span of
.�1; �2; �3; �4/ only extends to an index 4 subgroup of H0.T

1/.
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In degree one, over integral coefficients, the action of rotation on LH 1.�1
T/ŠH1.T

1/Š

Z5 decomposes to irreducibles. In terms of PE chains, it splits as the direct sum of
the one-dimensional trivial representation generated by the cycle � (see Example 2.3)
and the four-dimensional vector representation generated by �0 (see Example 2.3 and
Figure 1) and its first three rotates.

We may now explain how the ePE (co)homology and the invariant part of the PE
cohomology are tied together. Recall from Examples 3.5 and 3.9 that

LH 1.�0
T/ŠH

|
1
.T0/ŠH1.T

0/Š Zh�0i;

LH 2.�0
T/ŠH

|
0
.T0/Š Zh1.queen/i˚Zh1.king/i;

H0.T
0/Š Zh1.sun/i˚Zh1.star/i˚ .Z=5/h1.sun/C1.star/�1.queen/i:

The rotationally invariant parts of the cohomology are

LH 1
‚.�

1
T/Š Z; LH 2

‚.�
1
T/Š Z2:

Repeating this calculation using PE homology, we find that, indeed, the rotationally
invariant part of H0.T

1/ is isomorphic to Z2 , and of H1.T
1/ is isomorphic to Z.

Furthermore, we may calculate explicit generators for these subgroups in PE homology.
We find that the rotationally invariant part in degree zero is generated by PE 0–chains
�1 and �2 for which 5�1 ' 1.queen/ and 5�2 ' 1.king/. The rotationally invariant
part of the PE homology in degree one is freely generated by the chain � , discussed
in Example 2.3, given by restricting the 1–chain of Figure 2 to loops of a chosen
rotational parity.

With respect to the basis elements discussed above, we may summarise with the
following commutative diagrams in cohomological degrees one and two:

LH 1.�0
T/Š Z

H1.T
0/Š Z

LH 1
‚
.�1

T/Š Z

i1 D id

q1
‚
D�2

f 1 D�2

LH 2.�0
T/Š Z2

H0.T
0/Š Z2˚ .Z=5/

LH 2
‚
.�1

T/Š Z2

i2

q2
‚
.x;y/D .5x; 5y/

f 2
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The maps i2 and f 2 are given by i2.x;y/ D .x C 2y;x � 3y; Œ4x C 3y�5/ and
f 2.x;y; Œz�5/D .3xC 2y;x�y/. In degree one, the ePE (co)homology only corre-
sponds to an index 2 subgroup of the rotationally invariant part of the PE cohomology.
In top cohomological degree, we have that the ePE cohomology H 2.T0/ (which
corresponds to LH 2.�0

T/ or H
|
0
.T0/) maps to an index 25 subgroup of the rotationally

invariant part LH 2
‚
.�1

T/ of the PE cohomology. More, but not all, is added by consid-
ering instead the ePE homology: H

|
0
.T0/Š H 2.T0/ is an index 5 subgroup of the

ePE homology H0.T
0/, and the image of H0.T

0/ under f is an index 5 subgroup
of LH 2

‚
.�1

T/.

3.5 Generalising the PE framework

Many of the constructions and results of this section did not rely on having a polytopal
tiling of Euclidean space, so much as simply having a cell complex (the underlying
complex of the tiling) along with a notion of when cells of that complex are equivalent
to a certain radius (that is, when those cells have identical i –coronas, up to an agreed
type of transformation). There are interesting examples of combinatorial tilings, such
as the pentagonal tilings of Bowers and Stephenson [11], which are most naturally
viewed as tilings of spaces which are non-Euclidean. We outline below a unified setting
which allows one to deal with tilings such as this, as well as more general structures;
see Example 3.18.

Recall that a CW complex is called regular if the attaching maps of its cells may be
taken to be homeomorphisms. Regular CW complexes are a sensible starting point
for us here, since they allow for the construction of barycentric subdivisions and
dual complexes (which, in analogy to simplicial complexes, is owing to them being
essentially determined combinatorially by their face posets; see [9]). Let T be a regular
CW complex, it will play the rôle of the underlying cell complex of our tiling of interest.

To define the analogue of pattern-equivariance of a (co)chain, we need a notion of two
(oriented) cells being equivalent in the tiling to a certain magnitude. This “magnitude”
could be parametrised by, say, R>0 if we want to express agreement between local
patches to a certain radius, or perhaps by N for a combinatorial notion of patch size,
such as agreement between i –coronas. Ultimately, there is no gain in preferring one,
or indeed either of these choices. Recall that a partially ordered set .ƒ;�/ is called
directed if for any two elements �1 , �2 2ƒ there is a third satisfying �� �1 , �2 . We
shall let some such directed set parametrise magnitude of agreement between cells of
our tiling.

It is not quite enough to know which cells of our tiling are equivalent to a certain
magnitude, one also needs to know how they are equivalent. For a cell c of T , its
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(closed) star StT .c/ is defined to be the subcomplex of T whose support is the set of
cells containing c . The way in which a cell c1 may be considered as “equivalent” to a
cell c2 to some magnitude � will be recorded by a finite set of cellular homeomorphisms
ˆW StT .c1/! StT .c2/. The star of a cell defines a neighbourhood of that cell, so we
may consider such morphisms as defining germs of maps by which two cells are
equivalent.

With these interpretations of the ingredients, we may give the following definition,
which provides a structure upon which one may define PE (co)homology and various
other related constructions. The axioms will be further motivated below.

Definition 3.16 A system of internal symmetries (or SIS, for short) T consists of the
following data:
� A finite-dimensional and locally finite regular CW complex T .
� A directed set .ƒ;�/ called the magnitude poset.
� For each � 2ƒ and each pair of cells a, b 2 T , a set T�

a;b
of cellular homeo-

morphisms ˆW StT .a/! StT .b/ sending a to b . We denote the collection of
all such morphisms by T� .

This data is required to satisfy the following:
(G1) For all � 2ƒ and a 2 T we have that idSt.a/ 2 T

�
a;a .

(G2) For all � 2ƒ and ˆ 2 T�
a;b

we have that ˆ�1 2 T�
b;a

.

(G3) For all � 2ƒ, ˆ1 2 T
�
a;b

and ˆ2 2 T
�
b;c

, we have that ˆ2 ıˆ1 2 T
�
a;c .

(Inc) For all �1 � �2 we have that T�1 � T�2 .

(Res) For all � 2ƒ there exists some �res � � satisfying the following. Given any
b 2 T and face a� b , every morphism of T�res

a;� restricts to a morphism of T�
b;�

.

( �Res) Dually, for all � 2ƒ there exists some ��res � � satisfying the following. Given
any a 2 T and coface b � a, every morphism of T��res

b;�
is a restriction of some

morphism of T�a;� .

As explained above, morphisms ˆ 2 T�
a;b

should be interpreted as recording that cell
a is equivalent to cell b to magnitude � via ˆ. The groupoid axioms (G1)–(G3)
state that such morphisms should include the identity morphisms, be invertible and
that compatible morphisms are composable. The inclusion axiom (Inc) simply states
that if two cells are equivalent to magnitude �2 , via morphism ˆ, then they are still
equivalent via ˆ to any smaller magnitude �1 � �2 . In short, for �1 � �2 we have an
inclusion of groupoids T�2 ,!T�1 . The final two axioms (Res) and ( �Res) of restriction
and corestriction establish a coherence between the cellular structure of T and the
restrictions between the various morphisms of T.
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The results of this section may be generalised to systems of internal symmetries with
only minor modifications to the definitions and proofs, although these proofs are most
efficiently given in a combinatorial setting. We may derive direct analogues of the
following for SISs:

(1) PE or ePE (co)homology.

(2) The tiling space inverse limit presentation �T D lim
 ���2ƒ

.��; ��;�/ where the
approximants �� are CW complexes given by identifying cells of T which are
equivalent to magnitude �.

(3) Theorem 3.1, that the Čech cohomology of �T agrees with the PE cohomology
of T when the cells of T (for sufficiently large magnitudes) have trivial isotropy.

(4) Lemma 3.2, that we have invariance of the PE (co)homology of T over G

coefficients under barycentric refinement whenever G (for sufficiently large
magnitudes) has divisibility by the order of isotropy of cells in T.

(5) Theorem 3.3, ePE Poincaré duality H �.TIG/ŠHd��.TIG/. For this to hold,
we need firstly that the ambient space of T is a G–oriented d –manifold (or
even just homology G –manifold) with pattern-equivariant fundamental class � .
We also require the analogous condition on the divisibility of the coefficient
ring; that is, there exists some � 2ƒ for which G has division by the order of
isotropy groups T�a;a at every cell a of T.

Example 3.17 The initial insight in Penrose’s discovery of his famous tilings was
that “a regular pentagon can be subdivided into six smaller ones, leaving only five
slim triangular gaps” [33]. Bowers and Stephenson [11] took a similar subdivision but
chose, instead of methodically filling in the slim triangular gaps, to simply remove
them by identifying edges of the pentagons. Of course, this cannot be achieved in
Euclidean space with regular pentagons; the result is a combinatorial substitution. One
may produce, in an analogous way to in the Euclidean setting of [1; 16], limiting
combinatorial tilings. Declaring that each 2–cell of such a combinatorial tiling should
metrically correspond to a regular pentagon, the resulting tilings are of spaces which
are homeomorphic, but not isometric to Euclidean 2–space.

There is no notion of translation on the ambient spaces of these tilings, but there is of
orientation. Let T be a Bowers–Stephenson pentagonal tiling, which we consider here
simply as a regular cell complex with a choice of identification of each 2–cell with
the regular pentagon. We may define a corresponding SIS T0 as follows. Given cells
a, b 2 T and i 2N , consider the collection of maps taking the i –corona of a to the
i –corona of b , preserving orientation and distances on each pentagonal tile (such a
map is, of course, determined combinatorially by how it acts on cells). We let .T0/i

a;b

be the set of such maps restricted to the stars of a and b .
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We may construct from this data an inverse limit of approximants and associated
inverse limit space �0

T , analogously to the Euclidean setting. The points of �0
T may be

identified with pointed Bowers–Stephenson pentagonal tilings, two being “close” if they
agree via an orientation-preserving isometry on large patches about their origins, up to a
small perturbation of their origins. We have analogues of the ePE (co)homology groups,
and of Theorems 3.3 and 3.7. We may not identify the (integer) ePE cohomology with
the Čech cohomology of �0

T , since the cells have nontrivial isotropy, but we may after
replacing the tiling with its barycentric subdivision. These cohomology groups are
Poincaré dual to a modification of the ePE homology of T0

�
, defined in an analogous

fashion to the modified chain complexes C |
�
.T0
�
/ of Definition 3.6.

Our method of computation of the ePE homology groups in Section 4 easily generalises
to examples such as this, we find that

LH 1.�0
T/ŠH

|
1
.T0
�/ŠH1.T

0
�/Š 0;

LH 2.�0
T/ŠH

|
0
.T0
�/Š Z˚Z

�
1
6

�
;

H0.T
0
�/Š Z˚Z

�
1
6

�
:

Example 3.18 In this example we shall see how more general objects are also naturally
captured in this framework. The magnitude poset will be N , but endowed with the
partial ordering of m� n if m divides n; note that .N; j / is a directed set. Let T be
the standard cellular decomposition of Rd associated to the tiling of unit cubes with
vertices at the lattice points Zd . If cells a, b 2 T are equal up to a translation in nZd ,
then we let .T1/n

a;b
consist of the single map given by the restriction of this translation

between the stars of a and b . Otherwise, we set .T1/n
a;b
D∅.

It is easy to check that T1 thus defined satisfies the conditions of an SIS. A (co)chain
of T is PE with respect to T1 if and only if it is invariant under translation by
some full rank sublattice of Zd . We have trivial isotropy (everything is generated by
translations), and the analogous theorems and constructions of the previous sections
apply. For example, in dimension d D 1 we may calculate that

LH 0.�1
T/ŠH 0.T1/ŠH1.T

1/Š Z;

LH 1.�1
T/ŠH 1.T1/ŠH0.T

1/ŠQ:

The first isomorphisms are given by the analogue of Theorem 2.1 and the second
by the analogue of PE Poincaré duality of Theorem 2.2. The tiling space �1

T is
homeomorphic — in a fashion entirely analogous to the Gähler construction — to the
inverse limit

�1
T D lim

 ��
.S1; �m;n/;
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where, for mjn, the map �m;n is the standard degree n=m covering map of S1 . The
degree one PE homology group H1.T

1/ is generated by a Borel–Moore fundamental
class for R1 and the homology class p=q 2H0.T

1/ŠQ is represented by, for example,
the Borel–Moore 0–chain which assigns value p to each of the vertices of qZ. Note
that the sequence ni WD i ! is linearly ordered and cofinal in .N; j /, so the tiling space
could instead be expressed as

�1
T D lim

 ��
.S1 �2
 �S1 �3

 �S1 �4
 �S1 �5

 �� � � /:

We may restrict the construction of T1 above to the linearly ordered subset of mag-
nitudes f2n j n 2N0g. In this case, a (co)chain is PE if and only if it invariant under
translation by 2nZd for some n 2N0 . For d D 1, the corresponding tiling space is
the dyadic solenoid

�1
T D lim

 ��
.S1 �2
 �S1 �2

 �S1 �2
 �S1 �2

 �� � � /:

Whilst these examples are not given by tilings of finite local complexity, they are close
in spirit. Indeed, one may think of the dyadic example above as a hierarchical tiling. The
tiles (unit cubes) may be grouped into supertiles (cubes of side-length 2), which may
be grouped into level n supertiles (cubes of side-length 2n ). However, the groupings
of tiles cannot be determined using local geometric information in the underlying
tiling; one says that the substitution corresponding to this example is nonrecognisable.
The resulting system of internal symmetries is what one would get if the tiling were
capable of deducing such an imposed hierarchy from local geometric information. For
an alternative derivation of the dyadic solenoid as the tiling space of an infinite local
complexity tiling, see [34].

4 PE homology of hierarchical tilings

4.1 Substitution tilings and their hulls

The two main approaches to producing interesting examples of aperiodic tilings, such as
the Penrose tilings, are through the cut-and-project method (see [15]) and through tiling
substitutions (see [1]). A substitution rule consists of a finite collection of prototiles
of Rd, a rule for subdividing them and an expanding dilation which, when applied
to the subdivided prototiles, defines patches of translates of the original prototiles.
By iterating the substitution and inflating, one produces successively larger patches.
A tiling is said to be admitted by the substitution rule if every finite patch of it is
a subpatch of a translate of some iteratively substituted prototile. In analogy with
symbolic dynamics, one may think of the substitution rule as generating the allowed
language for a family of tilings.
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Under certain conditions on the substitution rule, tilings admitted by it exist and, in addi-
tion, for each such tiling T0 there is a supertiling T1 , based on inflated versions of the
prototiles, which subdivides to T0 and is itself a (dilation of an) admitted tiling. So T0

has a hierarchical structure: there is an infinite list of substitution tilings T0 , T1 , T2; : : :

of progressively larger tiles for which the tiles of Tn may be grouped to form the tiles
of TnC1 , with the substitution decomposing TnC1 to Tn . For fuller details on the
definition of substitution rules and their tilings, we refer the reader to [1; 16; 38].

To compute the Čech cohomology of a substitution tiling space �1 , one typically
constructs a finite CW complex � along with a self-map f of � for which

�1
Š lim
 ��
.�

f
 ��

f
 ��

f
 �� � � /:

The CW complex � may be defined in terms of the short-range combinatorics of the
patches of the substitution tilings, and the map f by the action of substitution. This
makes the Čech cohomology of a substitution tiling space computable.

Anderson and Putnam showed that when the substitution rule has a property known as
forcing the border, one may take � as, what is now known as, the AP complex [1], which
is precisely the level zero Gähler complex �1

0
(see Section 1.3). If the substitution

fails to force the border, one may work with the collared AP complex �1
1

instead.
Whilst conceptually simple, passing to the collared complex can be computationally
demanding; even for relatively simple substitution rules, the number of collared tiles
can be unwieldy. A powerful alternative approach was developed by Barge, Diamond,
Hunton and Sadun [5], which typically results in much smaller cochain complexes
than for the collared AP complex. One constructs a CW complex K� by, instead of
collaring tiles, collaring points of the ambient space of the tiling. A point of K� is
a description of how to tile an �–neighbourhood of the origin. The self map on the
complex defined by the substitution is not cellular, but for small � is homotopic to
a cellular map in a canonical way, which is sufficient for cohomology computations.
Another advantage of the BDHS approach is that the resulting inverse system possesses
natural stratifications, which are useful in breaking down the calculations to something
more tractable.

4.2 Overview of PE homology approach to calculation

We shall present below a method of calculation of the PE homology of a substitution
tiling. There are various motivations for introducing it. Firstly, as we shall see, the
“approximant complexes” and “connecting map” of the method are constructed from
the combinatorial information of the substitution in a very direct way, which makes
the approach highly amenable to computer implementation. An early implementation
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has been coded by the author, in collaboration with James Cranch, in the programming
language Haskell, and at present is applicable to any polytopal substitution tiling of
arbitrary dimension (although, aside from cubical substitutions, efficiently commu-
nicating the combinatorial information of a tiling substitution to the program is still
problematic, an issue shared with any machine computation of the cohomology of
substitution tilings). The approximant chain complexes of the method are much smaller
than for the collared AP method; the combinatorial information required from the
patches is the same as that for the BDHS approach.

Another reason for introducing this method is that it may be used to find the ePE
homology of a substitution tiling (see Example 4.9), which, as we have seen, yields
different information to the cohomology calculations. Furthermore, the method provides
explicit generators in terms of pattern-equivariant chains. The result for the ePE
homology of the Penrose tiling, along with precise descriptions of the generators of the
ePE homology, is essential in [42].

In the translational setting, our approach can be seen to produce isomorphic direct limit
diagrams to the approximant cohomologies of the BDHS method [5], at least after
collaring points of the tiling for the BDHS approximants in a way compatible with
the combinatorics of the tiling (although the method that we shall describe provides
a more combinatorial way of determining this diagram). The argument proceeds via
a stratification of the BDHS approximants (although one which is not preserved by
the connecting maps) or by applying a certain homotopy to the projective system of
BDHS approximants. However, the full details of this seem to be technical, at least in
general dimensions, and we avoid providing them here. In any case, the approximant
complexes and connecting maps between the approximant homologies that we shall
define are most naturally described in the PE homology framework. The approximant
complexes used here are precisely the duals of those used by Gonçalves [19] in his
computation of the K–theory of the C �–algebra associated to the stable relation of
a one or two-dimensional substitution tiling. This K–theory appears to be dual in a
certain sense to the K–theory of the hull (that is, of the unstable relation). The fact
that our technique — which involves the duals of the approximant complexes of [19] —
calculates the (regraded) Čech cohomology of the hull of a substitution tiling seems
to confirm this duality. A complete confirmation of the relationship would, however,
require consideration of the connecting maps of each method of calculation.

4.3 The method of computation

4.3.1 The approximant complex We shall assume throughout that T D T0 is a
cellular FLC tiling admitted by a primitive, recognisable, polytopal substitution rule !
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with inflation constant � > 1. We refer the reader to [1] for the notion of a primitive
polytopal substitution. We note that many of these assumptions may be relaxed sub-
stantially; instead of letting that detain us here, we shall discuss various generalisations
in Section 4.4.

Being a recognisable substitution means that for any tiling T0 admitted by ! there
exists a unique FLC tiling T1 , based on prototiles which are �–inflations of the original
prototiles, for which

� the rescaled tiling ��1.T1/ is also admitted by ! ;

� !.T1/D T0 ;

� T1 is locally derivable from T0 .

The first item simply states that the supertiling T1 is itself an inflate of an admitted
tiling. The second says that the substitution rule decomposes the supertiles of T1 to
the tiles of T0 . Thinking upside-down, one may group the tiles of T0 so as to form the
supertiling T1 . The third item states that this grouping may be performed using only
local information. Since !.T1/DT0 implies that T0 is locally derivable from T1 , the
two are MLD. This process may be repeated, yielding a hierarchy of tilings fTngn2N0

.
Each Tn carries a polytopal decomposition Tn , with Ti refining Tj for i � j .

Given a k –cell c of T0 , we name the pair of c along with the set of tiles properly
containing c the star of c . Henceforth, the translation class of such a star (where
translations preserve labels, if the cells are labelled) will be simply called a star, or
a k –star if we wish to specify the dimension of the central cell c . The first step of
the calculation is to enumerate the set of stars. This may be efficiently performed
algorithmically as follows:

(1) Begin with the set of d –stars, consisting of the prototiles of T. Put these stars
into sets Snew

0
and S acc

0
.

(2) Suppose that Snew
n ¤ ∅ and S acc

n have been constructed. Substitute each star
of Snew

n and find all stars whose centres are contained in the substituted central
(open) cell of the original star. All such stars which are not already elements of
S acc

n define the set Snew
nC1

, and are added to S acc
n to define S acc

nC1
.

(3) If Snew
n and S acc

n have been constructed but Snew
n D ∅, then the process is

terminated and the full list of stars is S WD S acc
n .

The stars, and the incidences between them, define our approximant chain complex:

Definition 4.1 We define the approximant chain complex

C .0/
�
.T1/ WD 0 C

.0/
0
.T1/

@1
 �C

.0/
1
.T1/

@2
 �� � �

@d
 �C

.0/

d
.T1/ 0
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Figure 4: The seven rigid equivalence classes of 0–stars, named, in Conway’s
notation, “sun”, “star”, “ace”, “deuce”, “jack”, “queen” and “king”, in this
order, followed by the seven 1–stars E1–E7

as follows. The degree k chain group C
.0/

k
.T1/ is freely generated by the k –stars;

C
.0/

k
.T1/ŠZn, where n is the number k –stars. The star of a .k�1/–cell c0 determines

the star of any k –cell c containing c0 . Orienting the central cell of each star, the
boundary maps @k are induced from the standard cellular boundary maps by

@k.s/D
X

.k�1/–stars s0

Œs0; s� � s0

and extending linearly. Here, Œs0; s� is the incidence number between the .k�1/–star s0

and k –star s . It is defined, for fixed s0 and s , to be the sum of incidence numbers Œc0; c�
where c0 is the central .k�1/–cell of s0 and c is a k –cell of s0 whose star is s . The
homology of the approximant chain complexes is the approximant homology H .0/

�
.T1/.

Note that since we are considering translation classes of stars, it may be that there are
multiple occurrences of a k –star s in a .k�1/–star s0 . An instructive perspective on
the definition of the approximant chain complex is to identify a generator star s with the
PE indicator chain 1.s/ 2 Ck.T

1/, the k –chain given by the (infinite) sum of k –cells
in TDT0 which are the centres of s in the tiling. With this identification, the boundary
maps of the approximant complex correspond to the standard cellular boundary maps
of C�.T

1/ defined in the ambient tiling. That is, C .0/
�
.T1/ is the subchain complex of

the PE complex C�.T
1/ consisting of those chains which, at any given cell c , depend

only on the local patch of tiles of T properly containing c .

Example 4.2 In the one-dimensional case, we may identify our tiling with a bi-infinite
sequence s 2 AZ over a finite alphabet A, and the substitution rule with a map
!W A!A� from the alphabet A to the set of nonempty words in A. A 0–star then
corresponds to a two-letter word from A2 which appears in s ; let us denote the set of
such admissible two-letter words by A2

! . A 1–star is simply a tile type, an element
of A. So the approximant complex is given by

0 Zm @1
 �Zn

 0;
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where mD #A2
! and nD #A. The boundary map @1 is defined on a2A as the formal

sum of admissible two-letter words whose first letter is a minus those whose second
letter is a.

Example 4.3 One may easily verify that, up to rigid motion, there are seven distinct
ways for a patch of Penrose kite and dart tiles to meet at a vertex, and seven ways
for them to meet at an edge. These stars are given in Figure 4. Any rotate of such a
patch by some 2�k

10
appears in a Penrose kite and dart tiling, so there are 54 0–stars

(the “sun” and “star” vertices are preserved by rotation by 2�
5

), there are 70 1–stars
and there are 20 2–stars, corresponding to the rotates of the kite and dart tiles. So the
approximant chain complex is of the form

C .0/
�
.T1/D 0 Z54 @1

 �Z70 @2
 �Z20

 0:

The boundary maps have a simple description in terms of the standard cellular boundary
maps. For example, the boundary of the indicator chain of the E1 edge is given by

@1.1.r
0 E1//D 1.r1 sun/C 1.r5 jack/�1.r0 ace/� 1.r5 queen/I

the head of an E1 edge is always a “sun” or “jack” vertex, and the tail is always an “ace”
or “queen”. The notation rk above indicates that the named patch has been rotated
by 2�k

10
relative to its depiction in Figure 4. We compute the approximant homology

groups as

H
.0/

k
.T1/Š

8<:
Z8 for k D 0;

Z5 for k D 1;

Z for k D 2:

Representative cycles for the generators of these approximant homology groups are as
in Example 2.3.

4.3.2 The connecting map In the case of the Penrose kite and dart substitution,
the inclusion of the approximant chain complex into the full PE chain complex is
a quasi-isomorphism. This is not true in general. We shall now describe how one
constructs a homomorphism

f W H .0/
�
.T1/!H .0/

�
.T1/

from the approximant homology to itself, called the connecting map, for which the PE
homology H�.T

1/ is isomorphic to the direct limit lim
��!
.H .0/
�
.T1/; f /.

To construct f , we now need to consider the passage from the tiling T0 to its super-
tiling T1 . By the explanation following Definition 4.1, we may identify C .0/

�
.T1/

with the subchain complex of PE chains which are determined at a cell c by the
patch of tiles properly containing c . To define f , we firstly define an auxiliary chain
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complex C .1/
�
.T1/, still a subcomplex of C�.T

1/, which consists of those PE chains of
TD T0 which are determined at any given cell of T0 by only which supertiles of T1

properly contain c . An alternative take on this is that one has a new set of generators
which, in degree k , are given by k –cells of the substituted central cells of the original
stars. The boundary maps of C .1/

�
.T1/ are induced from the standard cellular boundary

maps, analogously to C .0/
�
.T1/. That is, for a translation class of oriented k –cell s

from T0 , labelled by the patch information of supertiles which contain it, we define
@k.s/ by identifying s with the PE indicator chain 1.s/ 2 Ck.T

1/, and then define
@k.s/ to be the element of C

.1/

k�1
.T1/ corresponding to @.1.s// 2 Ck�1.T

1/.

There are two very natural maps from C .0/
�
.T1/ to C .1/

�
.T1/ which we shall use to

construct f . Let s be some k –star, which we identify with the PE indicator chain
1.s/ 2Ck.T

1/. Since 1.s/ is determined at any cell by the patch of supertiles properly
containing that cell, 1.s/ is also an element of C

.1/

k
.T1/. We define the chain map �

as this inclusion of chain complexes.

The combinatorics, and hence stars, of T0 and T1 are identical. Since we may identify
the stars of each, we may associate any chain � 2C

.0/

k
.T1/ with a chain � 0 2C BM

k
.T1/

which assigns coefficients to k –cells of T1 based on their neighbourhood stars in T1

identically to how � does in T0 . The chain map q is given by identifying � 0 with its
representation on the finer subcomplex T0 , induced by identifying the elementary chain
of a k –cell c of T1 with the sum of k –cells of T0 contained in c , suitably oriented
with respect to c . It is easily seen that q.�/ 2 C

.1/

k
.T1/. The chain map q is in some

sense simply a refinement. So as one may expect, q is a quasi-isomorphism; that is,
the induced map on homology

q�W H
.0/
�
.T1/!H .1/

�
.T1/

is an isomorphism; see Lemma 4.14.

Definition 4.4 We define the connecting map as

f WD .q�/
�1
ı ��W H

.0/
�
.T1/!H .0/

�
.T1/;

where the chain maps � and q are defined as above.

Theorem 4.5 There is a canonical isomorphism lim
��!
.H .0/
�
.T1/; f /ŠH�.T

1/.

By canonical here, we mean that the isomorphism is induced by a natural association
of cycles of the direct limit with PE cycles of C�.T

1/; a chain at the nth level of the
direct limit corresponds to a PE chain which only depends cellwise on its immediate
surroundings in the level n supertiling Tn . We delay the details of the proof to the
final subsection.
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We remark that the connecting map f is not canonically induced by a chain map
from C .0/

�
.T1/ to itself; it is defined at the level of homology rather than of chains.

Nonetheless, we may provide a geometrically intuitive picture of the action of f on the
approximant cycles. Suppose that � 2C .0/

k
.T1/ is a cycle, which we may identify with

a PE k –cycle of T0 that only depends at any k –cell c on the patch of tiles containing c .
Considered as a chain living inside the supertiling T1 (but still a chain of the finer
complex T0 ), � may no longer be supported on the k –skeleton of T1 , but it is still
determined cellwise by the local patches in T1 . Due to the homological properties of the
cells, we may find a chain � 2C .1/

kC1.T
1/ for which � 0 WD�C@.�/ is supported on the k –

skeleton of T1 . The combinatorics of T1 are identical to that of T0 , so we may identify
� 0 with a cycle of C

.0/

k
.T1/. The homology class of this cycle is precisely f .Œ��/, and

does not depend on the representative of Œ� � or � 2 C .1/
kC1

.T1/ that we chose. So, to
define f .Œ��/, we may “push” � to the k –skeleton of T1 in a way which is locally deter-
mined in T1 , and identify the result with the analogous homology class from H

.0/

k
.T1/.

Example 4.6 Recall from Example 4.2 that in the one-dimensional case we may
identify the generators of the degree zero approximant group with the admissible two-
letter words of A2

! , and in degree one with the letters of A. In degree one, as is always
the case in top degree, we have that H1.T

1/Š Z is generated by a fundamental class.
To compute the connecting map in degree zero, let ab be an admissible two-letter
word, which represents an indicator chain of C

.0/
0
.T1/ (which, abusing notation, we

shall also name ab here). Considered as a chain of the supertiling, ab lifts to the
element �.ab/ which marks each xy vertex of the supertiling for which the last letter
of !.x/ is a and the first letter of !.y/ is b , as well as vertices of the original tiling
interior to the supertiles, corresponding, for a supertile with label x , to occurrences of
ab in !.x/. There exists a 1–chain � of the original CW decomposition of the tiling
which only depends on ambient supertiles and for which abC @.�/ is supported on
the 0–skeleton of the supertiling. For example, we may choose � so as to shift all ab

vertices of T0 contained in the interiors of supertiles to the right endpoints of these
supertiles. So f .Œab�/ is represented by the chain

� WD
X

xy2A2
!

.!ab
left.xy// �xy;

where !ab
left.xy/ is the number of occurrences of the word ab in the substituted word

!.x/ �!.y/ with first letter of that occurrence of ab lying to the left of the � place-
holder. In the notation of the definition of the connecting map f , we have that
q.�/D �.ab/C@.�/, so f .Œab�/ WD q�1

� .��.Œab�//D Œ� �. Since those cycles associated
to indicator cochains of admissible two-letter words generate H

.0/
0
.T1/, the above rule

determines the connecting map f .
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Example 4.7 The approximant homology groups for the Penrose kite and dart tilings
are free abelian of ranks 8, 5 and 1 in degrees 0, 1 and 2, respectively. The connecting
map turns out to be an isomorphism in each degree. There is a subtlety with the Penrose
kite and dart substitution [33], in that the substituted tiles have larger support than the
inflated prototiles. In particular, the cell complex T0 of the tiling does not refine the
complex T1 of the supertiling. This is only a minor inconvenience; one may work over
a finer complex, corresponding to a Robinson triangle tiling, which refines both. The
general procedure described above remains essentially the same, and we shall subdue
this point in our discussion.

To demonstrate a typical application of the connecting map, we shall consider how it
acts on the cycle �0 2 C .0/

1
.T1/ of Example 2.3, illustrated in red in Figure 2, which

trails the bottoms of the dart tiles. We firstly consider �0 as a 1–cycle of the complex T0

which only depends at any given 1–cell by those supertiles of T1 properly containing it;
formally we consider the chain �.�0/ 2 C

.1/
1
.T1/. Let � 2 C .1/

2
.T1/ be the indicator

2–chain of the dart tiles of T0 ; it is the blue chain of Figure 2 (of course, we in fact have
that � is a member of the subcomplex C

.0/
2
.T1/, that is, � only depends on ambient

tiles, rather than supertiles in this case). Then �0C @.�/ is the 1–cycle, illustrated in
green in Figure 2, which runs along the 1–cells at the bottoms of the superdart tiles, but
with the opposite corresponding orientation to �0 . That is to say, �.�0/C@.�/D q.��0/,
so f .Œ�0�/ WD q�1

� .��.Œ�
0�//D�Œ�0�. More informally, we “push” the 1–cycle �0 to the

1–skeleton of the supertiling by adding to it the boundary of � , which is defined at any
2–cell by only which supertiles contain it, and identify the result with the corresponding
homology class of H .0/

1
.T1/.

4.4 Generalisations

There are several ways in which the method discussed above may be generalised, and
conditions of the substitution rule which may easily be relaxed. For example, the
primitivity condition of the substitution and the compatibility of the substitution with
the cellular decomposition may be weakened. More significantly, the method may be
modified to apply to mixed substitution systems, to compute the ePE homology groups
and applies naturally to non-Euclidean hierarchical tilings. Instead of providing the
full details of each generalisation, which is not our main focus here, we shall mostly
give brief outlines of the changes that need to be made in each case; the adaptations
needed to the proofs of the analogues of Theorem 4.5 are relatively straightforward in
each case.

4.4.1 Mixed substitutions A mixed or multi-substitution system [18] is a family
of substitutions acting upon the same prototile set. Loosely, whereas the language
for admissible tilings of a substitution rule ! is given by iteratively applying ! to
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the prototiles, in a mixed system one builds the language by applying the family of
substitutions to the prototiles in some chosen sequence.

Passing to the setting of mixed substitutions adds far more generality. For example, the
Sturmian words associated to some irrational number ˛ may be defined using a mixed
substitution system, which will be purely substitutive if and only if ˛ is a quadratic
irrational. In contrast to the purely substitutive case, the family of one-dimensional
mixed substitution tilings exhibit an uncountable number of distinct isomorphism
classes of degree one Čech cohomology groups [36]. In a mixed substitution tiling the
tiles group together to the supertiles, those into higher order supertiles, and so on, just
as in the purely substitutive case, but now the rules connecting the various levels of the
hierarchy are not constant. A general framework which captures this idea is laid out
in [17].

Passing to mixed substitution systems adds some complications, since the local combi-
natorics of the tilings Tn and the passage between them vary in n. However, the method
as described easily generalises to such examples. Now one needs to compute the list of
stars for each Tn to find the approximant homology groups, and the connecting maps
may vary at each level.

Example 4.8 (Arnoux–Rauzy sequences) The Arnoux–Rauzy words were originally
introduced in [3] as a generalisation of Sturmian words. Let k 2N�2 . The Arnoux–
Rauzy substitutions are defined over the alphabet AkDf1; 2; : : : ; kg and the k different
substitutions �i are given by �i.j / D j i for i ¤ j and �i.i/ D i . Fix an infinite
sequence .ni/i D .n0; n1; : : : / 2AN0

k
for which each element of Ak occurs infinitely

often. Then there exist bi-infinite Arnoux–Rauzy words for which every finite subword is
contained in some translate of a “supertile” �n0

ı�n1
ı� � �ı�nl

.i/. We may consider such
a word as defining a tiling of labelled unit intervals of R1. The system is recognisable,
so for such a tiling T0 , one may uniquely group the tiles to a tiling T1 of tiles of
labelled intervals for which the substitution �n0

decomposes T1 to T0 . The process
may be repeated, leading to an infinite hierarchy of tilings Tn for which the substitution
�ni

subdivides TiC1 to Ti ; the supertiles of these tilings become arbitrarily large as
one passes up the hierarchy.

The two-letter words of Ti are the elements of A2
k

with at least one occurrence of
ni 2 Ak . So the degree zero approximant homology at level i , based upon stars of
supertiles of Ti , is isomorphic to Zk , freely generated by the indicator 0–chains of
vertices of the form ni � j , where j 2Ak is arbitrary. A simple calculation shows that,
with this choice of basis, the connecting map between level i and level i C 1 is the
unimodular matrix Mi given by the identity matrix but with a column of 1’s down the
nth

i column, which, incidentally, is the incidence matrix of the substitution �ni
.
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So the degree one Čech cohomology of the tiling space of the Arnoux–Rauzy words
associated to any given sequence .ni/i 2AN0

k
is

LH 1.�1
T/ŠH 1.T1/ŠH0.T

1/Š lim
��!
.Zk M0
��!Zk M1

��!Zk M2
��!� � � /Š Zk :

It is interesting to note that the matrices above are related to continued fraction algo-
rithms. For the k D 2 case, the Arnoux–Rauzy words are precisely the Sturmian words.
To an irrational ˛ , the sequence .ni/i is chosen according to the continued fraction
algorithm for ˛ (see [14, Section 3.2]) and the sequence of matrices Mi of the above
direct limit determine the partial quotients of ˛ . Whilst the isomorphism classes of
the first Čech cohomology groups do not distinguish these tiling spaces, their order
structure [32] is a rich invariant. Although we shall not give full details here, features
such as the order structure of the cohomology groups are preserved by the method
calculation described above, via Poincaré duality.

4.4.2 Euclidean pattern-equivariance The method is easily adjusted to compute
the ePE homology groups, based on chains which are determined cellwise by their
i –coronas, for sufficiently large i , up to rigid motion rather than just up to translation.
The method proceeds as before, but where one took translation classes of stars one
simply now takes stars up to rigid equivalence.

Nontrivial isotropy may cause issues in this setting. If any of the stars have self-
symmetries which act nontrivially on the central cells, then one may only compute over
suitably divisible coefficients.

Computations of this sort are of particular interest since they provide different results
to the ePE cohomology calculations. However, it is possible to modify the method
to compute the ePE cohomology (and thus the Čech cohomology of the space �0

T )
using this method for two-dimensional tilings. The ideas follow naturally from the
discussions of Section 3.3. One computes H |

�
.T0/ by using a similar method but

restricting to indicator chains on 0–stars which assign coefficients which are divisible
by n to 0–stars with n–fold rotational symmetry.

Example 4.9 Instead of providing more detail on the general method, we now demon-
strate it on the Penrose kite and dart tilings, which should provide sufficient detail to
the general method. To begin calculation, we must firstly enumerate the list of stars up
to rigid motion, as we have already done in Figure 4. Since there are seven 0–stars,
seven 1–stars and two 2–stars (the kites and darts) up to rigid motion, the approximant
chain complex for the ePE homology is given by

C .0/
�
.T0/D 0 Z7 @1

 �Z7 @2
 �Z2

 0:

Algebraic & Geometric Topology, Volume 17 (2017)



Pattern-equivariant homology 1365

Again, the boundary maps are induced from the standard cellular boundary maps after
identifying the generators of these chain groups with indicator chains of the tiling. For
example,

@1.1.E1//D 1.sun/C1.jack/�1.ace/�1.queen/:

We calculate the approximant homology groups as

H
.0/

k
.T0/Š

8<:
Z2˚ .Z=5/ for k D 0;

Z for k D 1;

Z for k D 2:

The connecting map is defined essentially identically to the translational case, and we
find that it is an isomorphism in each degree. So the approximant homology groups
above are isomorphic to the ePE homology groups of the Penrose kite and dart tilings,
and the generators of the approximant homology groups may be taken as generators of
the ePE homology.

The most interesting feature here is the 5–torsion in degree zero, which is not found in
the degree two ePE cohomology, breaking Poincaré duality over integral coefficients.
It is generated by the element t D 1.sun/C1.star/�1.queen/, illustrated in Figure 3,
where one can see that 5t is nullhomologous via the boundary of

�1.E1/C 1.E2/� 1.E4/� 2 �1.E7/:

To calculate the ePE cohomology, or equivalently (according to Theorem 3.1) the Čech
cohomology LH �.�0

T/, we may compute the Poincaré dual groups H
|
2��
.T0/ (see

Section 3.3). The method is similar to before, but now one replaces the approximant
complex with the subcomplex

0 5Z˚ 5Z˚Z5 @1
 �Z7 @2

 �Z2
 0;

where the degree zero chain group is the subgroup of C
.0/
0
.T0/ which restricts the

coefficients on the sun and star vertices to multiples of 5, since these vertices have
5–fold rotational symmetry and the other vertices have trivial rotational symmetry. We
calculate the modified approximant homology groups in degree zero as Z2 and the
connecting maps as isomorphisms, in agreement with the chain of isomorphisms

LH 2.�0
T/ŠH 2.T0/ŠH

|
0
.T0/Š lim

��!
.Z2; f /Š Z2:

4.4.3 Non-Euclidean tilings The final generalisation which we shall discuss is to
non-Euclidean tilings. Again, we shall use the pentagonal tilings of Bowers and
Stephenson as our running example. There is no natural action of translation for
these tilings but, as discussed in Example 3.17, there is a natural analogue of the ePE
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(co)homology groups. The method above, with essentially no modifications, may be
used to compute them:

Example 4.10 One begins by listing the rigid equivalence classes of stars from the
tiling. For a Bowers–Stephenson pentagonal tiling, there are two 0–stars, corresponding
to those vertices meeting three tiles and those meeting four, there is one 1–star and one
2–star. However, the 1–star has rotational symmetry which reverses the orientation
of its central 1–cell. Since we have nontrivial cell isotropy, we may only compute over
suitably divisible coefficients. Over Q coefficients, the approximant complex is given by

C .0/
�
.T0/D 0 Q2 @1

 � 0
@2
 �Q 0:

It follows that the approximant homology over Q coefficients is H
.0/

k
.T0IQ/ Š

Q2 , 0, Q for k D 0, 1, 2, respectively. The connecting map has the analogous
definition to the Euclidean case, and we find it to be an isomorphism in each degree.

To compute homology over integral coefficients, we pass to the barycentric subdivision.
Now we have four 0–stars: two of them corresponding to the two 0–stars of the original
tiling, one corresponding to the barycentre of each edge and one corresponding to
the barycentre of each pentagon. There are three 1–stars and two 2–stars. So the
approximant chain complexes over Z coefficients are

C .0/
�
.T0
�/D 0 Z4 @1

 �Z3 @2
 �Z2

 0:

One computes H
.0/
0
.T0
�
/ŠZ2, H

.0/
1
.T0
�
/Š 0 and H

.0/
2
.T�/ŠZ. So H1.T

0
�
/Š 0,

and of course H2.T
0
�
/Š Z is generated by a fundamental class. One may calculate

the connecting map in degree zero as having eigenvectors which span Z2 and have
eigenvalues 1 and 6, so H0.T

0
�
/Š Z˚Z

�
1
6

�
.

To compute the analogue of the ePE cohomology of T� (and hence the Čech coho-
mology of the associated tiling space �0

T ), one may calculate the modified groups
H |
�
.T0
�
/ and implement Poincaré duality. At the approximant stage, this amounts to

using instead the chain complexes

0 2Z˚ 3Z˚ 4Z˚ 5Z
@1
 �Z3 @2

 �Z2
 0;

since the 0–stars of T� possess isotropy of orders 2, 3, 4 and 5. After computing
the connecting maps and corresponding direct limits, we find that

LH 0.�0
T/ŠH 0.T0

�/ŠH
|
2
.T0
�/Š Z;

LH 1.�0
T/ŠH 1.T0

�/ŠH
|
1
.T0
�/Š 0;

LH 2.�0
T/ŠH 2.T0

�/ŠH
|
0
.T0
�/Š Z˚Z

�
1
6

�
:
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It should be remarked that the above calculation may be performed quite painlessly by
hand, the combinatorial information required being surprisingly manageable, in spite
of the substitution rule not forcing the border.

4.5 Proof of Theorem 4.5

Definition 4.11 For a cellular Borel–Moore k –chain �2C BM
k
.T0/, write �2C

.n/

k
.T1/

to mean that � is determined at any k –cell c of T0 by the immediate surroundings
of c in the level n supertiling Tn . More precisely, whenever there is a translation
mapping k –cell a to b in T0 , and also the patch of tiles of Tn containing a to the
corresponding patch at b , the k –cells a and b have the same coefficient in � . We say
that � is hierarchical if � 2 C

.n/

k
.T1/ for some n 2N0 and write C

.1/

k
.T1/ for the

collection of all hierarchical k –chains.

It is not hard to see that for � 2 C
.n/

k
.T1/ we also have that @.�/ 2 C

.n/

k�1
.T1/, so

we have chain complexes C .n/
�
.T1/ for every n 2N0[f1g. Furthermore, since the

level n supertiling Tn is determined locally by the level nC 1 supertiling TnC1 via
the substitution rule, for all m� n we have an inclusion of chain complexes

�m;nW C
.m/
�

.T1/ ,! C .n/
�
.T1/:

Importantly, every hierarchical chain is PE. Indeed, if a chain � is determined locally
at a cell c depending only on where c sits in the patch of supertiles containing c ,
then � is also determined there by the i –corona of c in T0 , where i is chosen large
enough so as to deduce the level n supertile decomposition at c (such an i exists by
recognisability). We denote the inclusion of chain complexes by

�1W C
.1/
�

.T1/ ,! C�.T
1/:

Unfortunately, it is not true that a PE chain must be hierarchical. Indeed, the i –corona
of a cell c of T0 need not be determined by the supertile containing c when c is
interior, but close to the boundary of a supertile. On the other hand, if a k –cycle �
is PE, intuitively � only depends on very local combinatorics of the tiles of Tn , relative
to the sizes of the tiles of Tn , for n sufficiently large. One would expect that such a
k –cycle could be perturbed, in a pattern-equivariant way, to a hierarchical k –cycle.
More precisely, one would expect for there to exist a PE .kC1/–chain � for which
� C @.�/ is supported on the k –skeleton and is still PE to a small radius relative to
the sizes of the tiles, which would force � C @.�/ to be hierarchical. To this end, we
introduce the following technical lemma:

Lemma 4.12 Let P be a d –dimensional polytope, with polytopal decomposition
@P of its boundary and ı > 0; there exist a function hW R>0 ! R>0 satisfying the
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following: Let � > 1 and the inflated polytope �P have a cellular decomposition P�
whose cells have diameter bounded by ı . For any relative k –cycle � of P� modulo
the boundary @P� , with k < d , there exists �� 2 CkC1.P�/ for which � C @.�� / is
supported on @P� ; we may choose such chains �� such that, if �1 and �2 agree at
distance greater than r from a subset of cells of �.@P/, then ��1

and ��2
agree at

distance greater than h.r/ from those cells.

Proof Let � 2 Ck.P�/ be a chain with @.�/ supported on @P� . By the homological
properties of cells, there exists some �� for which �C@.�� / is supported on @P� . For
any other choice of � 0 which agrees with � further than distance r from @P� , we have
that � 0C @.�� / is supported on an .rCı/–neighbourhood of @P� . So we may restrict
attention to those relative cycles � supported on an .rCı/–neighbourhood of @P� .

So now suppose that � is supported on an rCı neighbourhood of @P� , and let c 2 @P
be a .d�1/–cell of the boundary of P . There exists a chain � of P� , supported on
a .C rCı/–neighbourhood of �c , for which � C @.�/ is supported on @P� union a
.C rCı/–neighbourhood of the remaining d �1 cells of �.@P/; here, C only depends
on the polytope P . Indeed, for sufficiently large �, this statement would hold for
P� replaced with a cellular decomposition of the disc of radius �, the chain � being
induced by a radial deformation retraction of an .rCı/–neighbourhood of the boundary
of the disc to its boundary. The result for the polytope P may be lifted from the case
of a disc by the fact that polytopes are bi-Lipschitz equivalent to the standard unit disc.
We may repeat this construction for the remaining d�1 cells. As a result, we construct
a chain �� for which � C @.�� / is supported on @P� . For any relative cycle � 0 which
agrees with � distance further than r1 away from the .d�2/–skeleton of �@P , we
have that � 0C @.�� / is supported on some r2 –neighbourhood of the .d�2/–skeleton,
where r1 and r2 depend only on r and not �. We may now repeat this argument for
those relative chains which are supported on neighbourhoods (of radius depending only
on r ) of the k –skeleton of �.@P/ for successively smaller k , from which the result
follows.

Lemma 4.13 The inclusion �1W C .1/
�

.T1/ ,! C�.T
1/ is a quasi-isomorphism.

Proof For a cellular Borel–Moore k –chain � of T0 , let us write that � is PEn.r/

to mean that the values of � at two k –cells a and b of T0 are equal whenever there
are points x 2 a and y 2 b (as open cells) for which the patches TnŒBr C x� and
TnŒBr C y� are equal up to a translation taking a to b . So a hierarchical chain is
nothing other than a chain which is PEn.0/ for some n 2N0 .

Let � 2 Ck.T
1/, so � is PEn.r/ for all n 2N0 for some r . By the fact that the cells

are polytopal, for sufficiently large n we have that the patch of tiles of Tn within
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radius r of any cell c of T0 is determined by the star in Tn of a cell of Tn within
C r of c . So the value of � at any cell c of T0 contained in a supertile t of Tn is
determined by the star of a subcell of t in Tn within radius C r of c .

We may now appeal to the previous lemma. By FLC, there are only a finite number
of translation classes of polytopal cells in T0 , and they all have diameter bounded
by some ı > 0. We may find a function hW R>0! R>0 satisfying the result of the
above lemma for each polytopal cell. Since � only depends at subcells of supertiles on
stars of cells within C r of those cells, we may construct a chain � for which �C@.�/
is supported on the .d�1/–skeleton of Tn and which only depends on stars of cells
within h.r/ in Tn . So we may find a chain � for which � C @.�/ is supported on the
.d�1/–skeleton of Tn and which is PEn.r

0/, where r 0 only depends on r and not
on n.

For sufficiently large n, we may repeat this process down the skeleta. As a result, we
construct a chain � for which � C @.�/ is supported on the k –skeleton of Tn (recall
that k is the degree of � ) and is PEn.r

0/ with r 0 depending only on r . We claim that
for sufficiently large n such a cycle must be hierarchical. Indeed, since � is a cycle, it
is determined across any k –cell of Tn by its value on any k –cell of T0 contained in
that cell. For sufficiently large n, for each k –cell c of Tn there is an interior k –cell
of T0 for which the tiles of Tn within radius r 0 about that cell are precisely those of
the star of c in Tn . Since � C @.�/ is PEn.r

0/, it follows that � is determined at any
k –cell of Tn by the star of that cell. Hence, � C @.�/ 2 C

.1/

k
.T1/, so we have shown

that �� is surjective. Showing injectivity is analogous, applying the same procedure to
boundaries in place of cycles.

The lemma above allows us to work with the chain complex C .1/
�

.T1/ in computing
the homology of C�.T

1/. The advantage to this is that C .1/
�

.T1/ possesses a natural
filtration by the subchain complexes C .n/

�
.T1/. The following lemma shows that the

approximant homology groups H .n/
�
.T1/ of these subcomplexes are all isomorphic,

and in a way such that the induced inclusions .�n;nC1/� between them are the same:

Lemma 4.14 For n 2N0 we have canonical quasi-isomorphisms

qnW C
.0/
�
.T1/ ,! C .n/

�
.T1/

for which .q1/
�1
� ı .�0;1/� D .qnC1/

�1
� ı .�n;nC1/� ı .qn/� .

Proof Let m � n. Up to rescaling, the set of stars of Tm and Tn are identical. A
generating element of C

.m/

k
.T1/ is an indicator chain 1.c/ of a translation class of

k –cell c of T0 , labelled by where it lies in the patch of tiles of Tm containing it. We
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may define chain maps qm;nW C
.m/
�

.T1/! C .n/
�
.T1/ by sending such an element to

the sum of indicator chains 1.c0/ of translation classes of k –cells c0 , suitably oriented,
which are contained in the regions occupied by the analogous (inflated) locations of c

in the tiling Tn .

Let us write qn for q0;n . A k –cycle � 2 C
.n/

k
.T1/ is in the image of qn if and only if

it is supported on the k –skeleton of Tn . We may now mimic the proof of Lemma 3.2,
replacing � with qn , to show that each qn is a quasi-isomorphism. The following
identities are easily verified: qj ;k ı qi;j D qi;k and �j ;jC1 ı qj D q1;jC1 ı �0;1 for
i�j �k . It follows that .qnC1/

�1
� ı.�n;nC1/�ı.qn/�D .qnC1/

�1
� ı.q1;nC1/�ı.�0;1/�D

.qnC1/
�1
� ı ..q0;nC1/� ı .q0;1/

�1
� / ı .�0;1/� D .q1/

�1
� ı .�0;1/� .

The chain maps �0;1 and q1 are denoted by � and q , respectively, in the definition of
the connecting map f WD .q�/�1 ı �� . We may now prove Theorem 4.5, that H�.T

1/

is canonically isomorphic to the direct limit lim
��!
.H .0/
�
.T1/; f /. By Lemma 4.14, we

have the following diagram:

H .0/
�
.T1/ H .0/

�
.T1/ H .0/

�
.T1/ H .0/

�
.T1/ � � �

H .0/
�
.T1/ H .1/

�
.T1/ H .2/

�
.T1/ H .3/

�
.T1/ � � �

f f f f

.�0;1/� .�1;2/� .�2;3/� .�3;4/�

.q0/� D idŠ .q1/�Š .q2/�Š .q3/�Š

This isomorphism of directed systems induces an isomorphism

lim
��!
.H .0/
�
.T1/; f /Š lim

��!
.H .n/
�
.T1/; .�m;n/�/:

Since, by definition, C .1/
�

.T1/D
S1

nD0 C .n/
�
.T1/, we may identify C .1/

�
.T1/ with

the direct limit lim
��!
.C .n/
�
.T1/; �m;n/. So by Lemma 4.13 we have the string of quasi-

isomorphisms

lim
��!
.C .n/
�
.T1/; �m;n/

Š
�!C .1/

�
.T1/

�1
,�!C�.T

1/:

Applying homology and combining with the isomorphism of direct limits established
above, we have that lim

��!
.H .0/
�
.T1/; f /ŠH�.T

1/.
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