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On bordered theories for Khovanov homology

ANDREW MANION

We describe how to formulate Khovanov’s functor-valued invariant of tangles in the
language of bordered Heegaard Floer homology. We then give an alternate construc-
tion of Lawrence Roberts’ type D and type A structures in Khovanov homology,
and his algebra BT, in terms of Khovanov’s theory of modules over the ring H".
We reprove invariance and pairing properties of Roberts’ bordered modules in this
language. Along the way, we obtain an explicit generators-and-relations description
of H" which may be of independent interest.

5TM217

1 Introduction

We consider two tangle theories for Khovanov homology which are inspired by the
bordered Heegaard Floer homology of Lipshitz, Ozsvéath and Thurston [5]. The first
theory is a reformulation of Khovanov’s functor-valued invariant [4] in the bordered
language. The second theory was introduced by Lawrence Roberts in [11; 12].

These bordered Khovanov theories share the same basic structure. Each assigns a
differential bigraded algebra B to a collection of 2n points on the line {0} x R in the
plane R x R. To a tangle diagram 77 in R>o x R with 2n endpoints on {0} x R,
these theories assign a (left) type D structure 13T1 over B. The definitions of type D
structures, and other elements of the algebra of bordered Floer homology, will be given
in Section 2.

To a tangle diagram 7, in R<g x R with 2z endpoints on {0} x R, bordered theories
assign a (right) type A structure (ie an .4, —module) A\Tz over B. There is a natural
pairing operation between type D and type A structures over B called the box tensor
product, denoted X (or Kz when B is unclear). If 7,7 denotes the link diagram
obtained by concatenating 7> and 77 horizontally, bordered theories compute the
Khovanov complex CKh(7>77) using the following pairing formula:

CKh(T,Ty) = Ar, K Dr,.

In Section 3, we will obtain a bordered theory with the above structure by taking B to
be Khovanov’s arc algebra H” from [4], viewed as a differential bigraded algebra with
the differential and one of the two gradings identically equal to zero. The type D and
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type A structures 5T1 and /TTZ will be referred to as 13(T1) and A(T») in this setting.
Both come from Khovanov’s tangle invariants [7;]%", which are chain complexes of
projective graded H" modules up to homotopy equivalence.

1.0.1 Theorem (Theorem 3.2.1) After multiplying the intrinsic gradings on A(T>)Rgmn
D(Ty) by —1,
CKh(TzT]) = A(Tz) Xgn D(Tl)

Roberts [11; 12] has a different construction of a bordered theory for Khovanov
homology, including a differential bigraded algebra 51, as well as type D and type A
structures for tangles. The goal of Section 5 and Section 6 is to construct Roberts’
theory using Khovanov’s theory. The basic idea is to refine Khovanov’s proofs of the
existence and invariance of his tangle invariants by splitting the equations involved into
subequations, each of which holds individually.

The construction of Roberts’ theory from Khovanov’s is not straightforward or trivial;
the combinatorics is quite involved. Moreover, at various points we take our inspiration
directly from [11; 12] rather than from abstract algebraic definitions. In particular, see
Remark 5.3.5 below. While it would be interesting to search for the most general or
natural possible explanation for the connection between these two theories, we do not
pursue this goal here.

We take the first step toward relating Roberts’ and Khovanov’s theories in Section 4. In
Section 4.1, we discuss quadratic and linear-quadratic algebras following Polishchuk
and Positselski [10]. In Section 4.2, we show that H" may be viewed as a linear-
quadratic algebra.

1.0.2 Theorem (Theorem 4.2.1) With the set of generators specified at the beginning
of Section 4.2, H" is a linear-quadratic algebra.

This theorem allows us to write H" as the quotient of the tensor algebra on the specified
generators by an ideal generated by certain explicitly given relations, which are listed
in items (1)—(4) of the proof of Theorem 4.2.1. See Corollary 4.2.7 for a more precise
statement.

A combinatorial lemma about noncrossing partitions, Lemma 4.2.4, is needed to prove
Theorem 1.0.2. While Theorem 1.0.2 is not necessary for the remainder of the paper,
Lemma 4.2.4 is important for Section 5. Proofs of Lemma 4.2.4 were found by Domotor
Pélvolgyi [9] and independently by Aaron Potechin in a private email communication.
This lemma, and Theorem 1.0.2, may be of interest to readers independently of the
other constructions in this paper.
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In Section 4.3, we consider a notion of Polishchuk and Positselski [10] of quadratic
duality for linear-quadratic algebras. In Section 4.5, we discuss a bordered-algebra
version of this duality using type DD bimodules. Generalized Koszul duality between
two algebras B and B’ in bordered Floer homology is defined (see Lipshitz, Ozsvath
and Thurston [6]) by the existence of a quasi-invertible rank-one type DD bimodule
over B and B’. The algebras used in Lipshitz, Ozsvith and Thurston’s construction have
interesting Koszul self-duality properties. However, it seems that no such properties
hold for H". Viewing H" as a linear-quadratic algebra, we will see in Section 4.4
that its quadratic dual is infinite-dimensional, whereas H" is always finitely generated
over Z.

One could ask whether the duality between H” and this infinite-dimensional algebra
is a (generalized) Koszul duality; one could also explore related theories in which
everything stays finite-dimensional. We will take the second option here.

In Section 5, we will outline an alternate construction, based on H", of Roberts’
algebra BT',,. We define an algebra B = Br(H"), and we show in Proposition 5.1.7 that
the algebra B is linear-quadratic. The proof is very similar to the proof of Theorem 4.2.1
asserting that H" is linear-quadratic, and it also uses Lemma 4.2.4 in an essential
way. We deduce that B is isomorphic to the subalgebra Bg[’,, of BI',, generated by
right-pointing generators e .

The quadratic dual B' of B is closely related to the subalgebra B ', of BT, generated
by left-pointing generators e . In more detail, a mirroring operation m is defined on
certain algebras in Definition 5.2.6. We will see in Proposition 5.2.8 that By I, is
a quotient of the mirror m(B') of B' by certain additional relations, listed in that
proposition. As Remark 5.2.3 points out, B is finitely generated for idempotent
reasons.

In Section 5.3, we define a product algebra m (53 " ® B of m(B') and B. We may
describe Roberts’ full algebra BT, as a quotient of m(B') © B.

1.0.3 Theorem (Corollary 5.3.4) BT, is isomorphic to the quotient of m(B') © B
by the extra relations on m(B") listed in Proposition 5.2.8.

The duality properties of BT, and m(B') ® B seem more promising than those of H".
In Proposition 5.3.6 we define a rank-one type DD bimodule over m(B') © B and its
mirror version m(m (B !) ©® B). Conjecture 5.3.9 predicts that this DD bimodule is
quasi-invertible and thus yields a Koszul duality. By taking quotients of the type DD
algebra outputs, we can obtain a related rank-one DD bimodule over BI';, and its mirror
version m(BT,). Thus, we could also ask if Conjecture 5.3.9 is true with m(B') © B
replaced by BT',,. A proof of either conjecture would establish that, with regard to
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Koszul duality, Roberts’ bordered theory (or the version over m (B !) ©® B) has closer
formal parallels with bordered Floer homology than Khovanov’s H” theory does.

In Section 6, we show how to obtain type A and type D structures over m(B') © B
from chain complexes of graded projective H”-modules satisfying certain algebraic
conditions.

1.0.4 Theorem The following constructions are well-defined:

e Let M be a chain complex of projective graded right H" —modules satisfying
the algebraic condition Cpoqule 0f Definition 6.1.1. To M we may associate a
type A structure A(M) over m(B') © B.

e Let N be achain complex of projective graded left H" —-modules satisfying the
condition Cyoque Of Definition 6.3.3. To N we may associate a type D structure
D(N) over m(B') © B.

Theorem 1.0.4 is a summary of Definition 6.2.4, Proposition 6.2.5 and Definition 6.3.7
(as well as the definitions and propositions preceding them).

The chain complexes [T;]X" associated to tangles by Khovanov satisfy Cpodule, SO
Theorem 1.0.4 gives us type A and type D structures A([75]¥") and 5([T 1) over
m(B') ® B. By Proposition 6.2.6, the extra relations of Theorem 1.0.3 act as zero
on the type A structure A([75]%"), so we get a type A structure over the quotient
algebra BI',,. We may also take quotients of the algebra outputs of the type D structure
IA)([TI]Kh) to get a type D structure over BI',.

1.0.5 Theorem (Proposition 6.2.7 and Proposition 6.3.10) The type A structure
A([T>]¥") over BT, and the type D structure D([T;]X") over BT, are isomorphic to
the type A and D structures Roberts associates to T, and T4 in [11; 12].

We show that the pairing of the bordered modules over m(B') © B agrees with the
tensor product of the original chain complexes over H”.

1.0.6 Theorem (Proposition 6.4.1) Given M and N as in Theorem 1.0.4, we have
AM)Rpyos D(N) = M Qgn N,

after multiplying the intrinsic gradings on M @ gn N by —1.

By Proposition 6.4.3, the pairing X is the same over m(B') © B and its quotient BI',.

Thus, we get an alternate proof that the pairing of Roberts’ type D and type A structures
computes Khovanov homology.
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Finally, in Section 6.5 and Section 6.6 we show that the homotopy types of A([T»]<")
and D([T1]%M), as type A and type D structures over m(B') © B, are invariants of the
tangles underlying the diagrams 7 and 75.

1.0.7 Theorem (Corollary 6.5.21 and Corollary 6.6.9) Performing a Reidemeister
move on T, or Ty yields a homotopy equivalence between the corresponding type A
structures A([T>]X") or type D structures D([T;]¥") over m(B') © B.

With the help of Proposition 6.5.22, we also obtain an alternate proof that Roberts’
type A and type D structures over BT, are homotopy-invariant under Reidemeister
moves.
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2 Some bordered algebra

The standard reference for the algebra of bordered Floer homology is Lipshitz, Ozsvath
and Thurston [7]. We will use only a subset of the full algebraic machinery; however,
we will work with coefficients in Z rather than Z /27 For this sign lift, we will follow
the conventions of Roberts in [11; 12].

2.1 Differential graded algebras and modules

2.1.1 Convention Unless otherwise specified, all algebras and modules discussed in
this paper will be assumed to be finitely generated over Z.

The following is the notion of differential graded algebra which will be most useful for
us; we will not need to use more general A, —algebras. In this paper, the coefficient

ring R is always a direct product of finitely many copies of Z.

2.1.2 Definition A differential bigraded algebra, or dg algebra, is a bigraded unital
associative algebra 3 over a coefficient ring R, equipped with an R-bilinear differential
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w1 which is homogeneous of degree (0, 4-1) with respect to the bigrading. The two
gradings on a dg algebra will be called the intrinsic and homological gradings (in that
order). Thus, the differential should preserve the intrinsic grading and increase the
homological grading by 1.

The differential must satisfy the following Leibniz rule:

p1(xy) = (=)%Y (g (x))y + x (1 (),

where deg; denotes the homological degree, for elements x and y of B which are
homogeneous with respect to the homological grading. The coefficient ring R is
required to coincide with the summand By o of B in bigrading (0, 0).

2.1.3 Definition Suppose R = Z*% . The elements ¢; = (1,0,...,0),...,ex =
(0,...,0,1) will be called the minimal, or elementary, idempotents of 3. The coeffi-
cient ring R will also be referred to as the idempotent ring of 5. For each elementary
idempotent e;, there is a left R—module Re; >~ Z.

2.1.4 Remark The usual convention in bordered Floer homology is to have the
differential decrease the homological grading by 1; we have chosen to reverse this
convention since the differentials in Khovanov homology increase homological grading
by 1.

2.1.5 Remark Bordered Floer homology requires more general gradings by a (possi-
bly nonabelian) group G and a distinguished element A in the center of G'. We use
here only the special case where G is the abelian group Z2 and A is (0, 1).

When dealing with bigraded algebras or modules, we will use the following degree
shift convention: if X = @i, j Xi,j 1s any type of bigraded object, then X [m, n] is
the same type of bigraded object, and the summand of X{[m,n] in bigrading (i, j)
IS Xi_m,J_n .

Since we are working over Z, the following notation will also be useful, following
Roberts [11; 12]. If X is any type of bigraded object, then |id|: X — X is defined
by multiplication by (—1)%er, where deg; denotes the homological degree. Simi-
larly, |id|/: X — X is defined by multiplication by (—1)7 9% and |id|/®k is the
k —fold tensor product of |id|/ . In this notation, if i, denotes the multiplication on a
dg algebra B, then the Leibniz rule for the differential @ on B can be written as

P10y = pao (@ ® [id]) + pa o (id® py).

2.1.6 Definition A left differential bigraded module, or left dg module, over a dg
algebra B, is a bigraded left B—module M equipped with a differential d of bidegree
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(0, 4+1), such that the Leibniz rule
dom=mo(u Qid]) +mo (id®d)

is satisfied, where m: B& g M — M is the action of B on M and p is the differential
on B.

2.1.7 Definition A right differential bigraded module, or right dg module, over a
dg algebra B, is a bigraded right 5—module M equipped with a differential d of
bidegree (0, +1), such that the Leibniz rule

dom=mo(d®|id])+mo(id® ;)

is satisfied, where m: M ® g B — M is the action of B on M and u; is the differential
on B.

If M is aright dg module and M’ is a left dg module over B, then we can take the
tensor product of M and M’ over B to produce a chain complex of graded abelian
groups, or equivalently a differential bigraded Z-—module.

2.1.8 Definition Let M be a right dg module and M’ be a left dg module over B.
The differential on the tensor product M ®p M’ is defined to be

dM®BM’ =dpy ® |idpg | +idasr ® dpgr.
2.2 Type D structures

2.2.1 Definition Let B be a differential bigraded algebra over R as in Definition 2.1.2.
Let p; and p, denote the differential and multiplication on B, respectively.

A type D structure over B is, firstly, a bigraded left R—module D which is isomorphic
to a finite direct sum of R-modules Re;,[jo.k«], Where the e;, are elementary
idempotents of B (all in bigrading (0, 0)) and [ jq, k¢] is a grading shift. The module D
should be equipped with a bigrading-preserving R-linear map

8: D— (B®g D)[0,—1],

such that
(1 ®[id])od+ (U, ®id)o (iId® ) 0§ = 0.

2.2.2 Remark The condition that D = @D, Reiylja- ko] would be unnecessary if R
were a direct product of copies of Z /27, rather than Z. But over Z, we want to
exclude cases like B=R=7, D=7 /27, § =0 from being valid type D structures.
The reason for this restriction is that we want Proposition 2.2.3 below, which is true
over Z /27, to hold over Z as well.
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2.2.3 Proposition If (13, 8) is a type D structure over BB, then B @ g Disa projective
left dg B—module when equipped with the differential

d:=pu; ® [id| + (u2 ®id) o (id ® 6),

where (41 and [, denote the differential and multiplication on B, respectively.

Proof First, since D (as an R-module) is a direct sum of R—modules Rei, [ kal.
B®g D is a direct sum of B—modules Be;,[jua, ko). These are each projective because
they are summands of grading shifts of B: if R = Z**, we have B = @f;l Be; as
left B—modules. Thus, B ® g Disa projective B—module.

Before showing that d2 = 0, we check that d satisfies the Leibniz rule. The action of
the algebra B on B ® g D is given by the following map:

m:=p, ®id: B&R(BOrD)=BRrB)Qr D > B g D.

We want to show that dom=mo(uQ|id|)+mo(id®d), as maps from B®R(B®Rﬁ)
to (B ®pg D). We can write out the left side:
dom = (u ®|id| + (2 ®id) o (id ® §)) o (12 ®id)
= (110 p2) ® [id] + (12 ®id) 0 (id ® §) o (12 ®1id)
= (p20 (11 @ [id])) ® [id| + (12 0 (id ® p1)) ® [id|
+ (112 ®id) o (id ® §) o (12 ®id)
= (n2 ®id) o (1 ® [id| ® [id]) + (12 ®id) o (id ® 1 ® [id])
+ (12 ®id) o (iId ® §) o (12 ®id).
Meanwhile, the right side is this:
mo(p; ®|id|)+mo(id®d)
= (2 ®id) o (1 ® |id| ® |id|) + (12 ®id) o (i[d® d)
= (n2 ®id) o (u1 ®|id| ® [id]) + (12 ®1id) 0 (Id ® (11 ® [id| + (2 ®1d) 0 (1d ® J)))
= (n2 ®id) o (p1 ® [id| ® [id]) + (12 ®id) 0 (id ® 1 ® [id])
+ (n2 ®id) o (iId ® (12 ®id) 0 (id ®))).

The first two terms on the left side cancel with those on the right side, and we only
need show that

(12 ®id) o ([d ®8) o (12 ®id) = (k2 ®id) o (id ® (12 ®id) 0 (id ® §))).
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This identity follows since

(12 ®id) o (iId ® (12 ®id) 0 (iId ® 8))) = (2 ®id) 0 (I ® pr ®id) 0 (id ® id ® §)
= (1t ®id) o (U2 ®id ®id) o (id ® id ® §)
= (2 ®id) 0 (Id ® §) o (s ® id).

Now suppose a@ ® x is a generator of B ® g D; we want to show d*(a®x)=0. We
may write ¢ ® x as m(a, 1 ® x) and apply the Leibniz rule

d(a®x) = (=1)**m(u (@), 1 ® x) + m(a, §(x)),
SO
d*(a®x) = (=) *d(m(u1(a),1®x))+d(m(a.8(x)))
= (=D)*m (11 (a),8(x)) + (=1 (11 (@), 8(x) +m(a,d ($(x))).

The first two terms cancel each other, so it suffices to show that d(§(x)) = 0. Writing
out d, this equation amounts to

(101 ® lid]) 08 + (2 ® id) 0 (id @ §) 0§ = 0.

This is exactly the type D structure relation. |

The following propositions will be useful in the description of Khovanov’s functor-
valued invariant as a bordered theory.

2.2.4 Proposition Let B be a dg algebra over R. Suppose that B is concentrated in
homological degree 0 (it may have nontrivial intrinsic gradings). Then a dg module
over B is the same as a chain complex of singly graded B-modules with B—linear
grading-preserving differential maps.

Proof Since B is concentrated in homological degree 0, the differential on B must
be zero. Let M be a dg module over B, with summand M ; in bigrading (j,k).
Then, for each homological grading k, the summand € ; Mk of M is preserved
when multiplying by B; it is a singly graded 5—module. Define a chain complex with
chain module Cy = @ ;i M . The differential Cy — Cy41 is the differential on M ;
it is B-linear by the Leibniz rule, since B has no differential.

In the other direction, taking direct sums over chain modules yields a map from chain
complexes to dg modules. These operations are inverse to each other. |

The next proposition involves isomorphisms of type D structures; see Definition 6.6.1
for the basic definitions.
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2.2.5 Proposition Let B be a dg algebra over R. Suppose that B is concentrated in
homological degree 0, and that all intrinsic gradings of B are nonnegative. Then a
type D structure over B is the same, up to isomorphism, as a chain complex of singly
graded projective left B—modules with B—linear grading-preserving differential maps.

Proof Given a type D structure D over B, Proposition 2.2.3 shows that B ® g D is
a dg module over B, or equivalently a chain complex of graded left B—modules by
Proposition 2.2.4. In fact, each term of the chain complex is projective, since it is a
direct sum of modules Be;,[ju, kq].

Conversely, suppose -+ — Cy — C41 — -+ is a chain complex of graded projective
left B—modules. Since each Cj, is assumed to be finitely generated, it may be written as
a direct sum of indecomposable graded projective left R—modules Cj .. By Khovanov
[4, Lemma 1 of Section 2.5], which assumes that the intrinsic gradings of B are
nonnegative, we see that each Cy , is isomorphic to Be;j,, ,[jk ] for some uniquely
determined elementary idempotent e;, , and grading shift j o . Define Dasa bigraded
R-module to be the direct sum, over all k and «, of Re;, ,[jk.qa- k]

We may identify @Dy Cr with B®g D, since D Crx = Dr.o Beii ok ,as k] and
D= Do Reiy o lk,a: k. Let d denote the differential on the dg module Py Ci .
Then the type D operatlon $: D> B® R D is obtained by restricting d to Dz
1 ®r DCB® R D. It has the correct grading properties because d does.

Since d satisfies the Leibniz rule, we may write d = 1 ® |id| + (12 ® id) o (id ® §).
Thus, the type D relations for § are equivalent to d o § = 0, which holds because § is
a restriction of d.

Finally, we show the two constructions given above are inverses up to isomorphism.
Suppose we start with a chain complex - -+ — C; — Cy 41 — -+, decompose each Cy,
as @, Ck o and take the corresponding type D structure D. Then B® R D is clearly
isomorphic to the dg module associated to --- — Cx — Cg4q1 — ---. On the other
hand, suppose we start with a type D structure D and then obtain a type D structure by
decomposing B ® g D into indecomposable projectives. The resulting type D structure
has the same number of generators as D, with the same idempotents and bigradings.
However, the type D operation may be different: in decomposing B ® g D, we may
have incorporated a change of basis.

From Deﬁmtlon 6.6. 1 we see that if D and D’ are two type D structures such that
BQ®gr D and B® R D’ are isomorphic as dg modules, then D and D’ are isomorphic
as type D structures. The required isomorphisms of type D structures may be obtained
by restricting the isomorphisms of dg modules. Thus, any type D structure obtained by
decomposing B Qg D as above is isomorphic to D. |
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2.3 Type A structures and pairing

2.3.1 Definition Let B be a dg algebra over R as in Definition 2.1.2. Let 1 and u,
denote the differential and multiplication on B, respectively.

A type A structure A over B, synonymous with As,—module over B, is a bigraded
right R—-module A, finitely generated over R as usual by Convention 2.1.1, together
with R-linear bigrading-preserving maps m;: A ® g B2U=D — 4[0,i —2],i € Z>1,
satisfying

Z (—1)7 D, 0 (mj ® lid|/®G—D)y

i+j=n+1 n—1

+ (=D my 0 (1d®F @ py ® [id| T THD)

k=1
n—2

+ ) DFmyy 0 (d®F @ py ®id® K2 = 0
k=1

for every n > 1. The type A structure A is called strictly unital if m,(—, 1) =id 4 and
my = 0 for n > 2 when any of the algebra inputs to m, is 1.

2.3.2 Example If M is a (right) dg B—module, then M is a strictly unital type A
structure over B with m; = 0 for i # 1,2. If M is an ordinary bigraded module
over B, with no differential, then M is a strictly unital type A structure with m; =0
for i #2.

2.3.3 Remark We will only need to work with type A structures which come from
dg modules as in Example 2.3.2. Thus, all our type A structures will be strictly unital,
so we will omit mention of this condition in what follows. However, although our
type A structures will have no nontrivial higher action terms, we will eventually need to
work with As,—morphisms between these type A structures. We will need to consider
morphisms which do have nontrivial higher .4, —terms; see Section 6.5.

Given a type D structure (ﬁ, 8) and a type A structure (A, {m; | i > 1}) over B, with
either D or A operationally bounded in an appropriate sense, the natural way to pair
them is known as the box tensor product. It yields a differential bigraded abelian
group AR D. We will not worry about boundedness in this paper since all type D
and type A structures under consideration are bounded. See Lipshitz, Ozsvéth and
Thurston [7] for more details and algebraic properties of X over Z /27 . The material
below follows Roberts [11]; we include proofs for completeness.

To define X, the following notation will be useful.
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2.3.4 Definition Let (13, 8) be a type D structure over . The map §*: D—B¥QrD
is
k—1

k._ 1 .. 1 .. 1
0" i =(d®---®id®d)o---0(id®§) o4,

where § is applied k times. In particular, § = §!.

2.3.5 Definition [11, Definition 79] AKX 13, as a bigraded abelian group, is the
tensor product A @ g D. The differential on A X D is

(o,]
0% =) "(m, ®id") o (id® 8" ).
n=1

Since we are implicitly assuming boundedness, only finitely many terms of the sum
are nonzero.

2.3.6 Proposition [11, Theorem 80] The operator Blz, as defined in Definition 2.3.5,
satisfies

(02 = 0.
Proof In this proof, when referring to identity operators, we will use subscripts to
explicitly indicate which identity operators we mean.
First, note that as maps from 2®R B '®gr D to 2®R B~'®g 5, we have
(idz @6 ") o (m; @ lidzl) = (=1)/FV(m; ®idyi_1g5l7) 0 (d 35— @ ).

This identity is immediate over Z /27, and we need only verify that the signs are right.
On the right side of the equality, we .have lidi ®D |/ which is computed from the
homological degree of an output of §/~1. Since § increases homological degree by 1,
81 increases homological degree by i — 1. Thus, compared with the left side, the
right side has an extra factor of (—=1)7=D) = (—1)/C+D)

Thus,

@2=>" Y (m®lidz|)old ;&5 )o(m;®lids| )o(id ;057"
n>1i+j=n+1
=Y > D melids| )0 (m) ®lidgi-1 | @lid5]7)
nz1i+j=n+1 O(id;i@idlgj—l ®81_1)0(1d2®51_1)

:Z Z (—1)j(i+1)((mi0(mj'®|id3i—1|j))®|idﬁ|"+1)o(id2®8”_l)
n>1i+j=n+1

Algebraic € Geometric Topology, Volume 17 (2017)



On bordered theories for Khovanov homology 1569

n—1
= Z (((_1)}1 Z mpy o(id2®id8k_l ®/¢L1 ® |idBn—k—l |)

n>1 k=1
n=2 k . . . . +1
—kgl (=1)*mp—10(id ;®idgr—1 ® s ®1d3nk2)) ®lidp " )
o(id ;®8" "),

where the type A relations for A were used in the final equality. It remains to show
that the derivative terms

n—1

Z(((—l)n Z myo(id ; ®@idgi—1 ® (1 ® |[idgn—k—1 |)) ® lid |n+1) o (idg®8”‘1)

n>1 k=1

are equal to the multiplication terms

n—2
Z (( Z (—1)kmn_1 o(id ;®idgr—1 @ U2 ®id8nk2)) & |idl3 |n+1) o(id2®5”—1).

n=1 k=1
For afixed n > 1 and 1 <k <n—1, we claim that the derivative term is equal to
(=D ' (m, ® [id 51" 0 (id ;& ((idgn—2 ® ) 0+ -

o(idgk—1 @ 1 ®lid5]) o (idgr—1 ®8) 0+ -0 (idg ® ) 0 §)).
Over 7 /27, this equality follows from expanding out §”~!. To see that the formula
holds over Z, note that when & = n — 1, the sign in front of the above expression
is (—1)", in agreement with the original expression for the derivative term. Each time &

is decreased by 1, the sign should flip because |id ;| occurs after one fewer instance
of § in the second expression, compared to the original.

Now,
(idgmr @ 1 @ fid ) o (idgims ® 8) = idgems @ (11 & lid 1) )
= —idgk—1 @ (L2 ® idﬁ) o(idg ® §)06)

by the type D relations for D. Thus, the sum of the derivative terms is

n—1
Y Dk ma®lidgl" o (id ; ® ((idgn—2 ®8) o+

n>1k=1
o (idgk ®6) o (idgk—1 @ (2 ® idﬁ) o (idgk ® §) o (idgk—1 ® §)0---0 5))
n—1
=2 > D ma®lidpl") o (id gg 1 ® 2 ®idy, 41 p) 0 (id 7@ 8).
n=1k=1
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Since the n = 1 multiplication term is zero, and |id 5|”+1 = lidj |"=1, the sum of the
multiplication terms is

n—2

DD DR ®[idp ") 0 (id g it ® p2 ®idgyi—2gp) 0 (id ;@67
n>2k=1
n—1

=Y Y (D ma ®id5|") 0 (d gg it ® 2 ®id 1 g ) 0 (id 3 ® ™).
n>1k=1

The sums of the derivative and multiplication terms agree, proving that (%)% = 0. O

2.3.7 Proposition [5, Example 2.2.7] Let B be a dg algebra over R as in Definition
2.1.2. Let D be a type D structure over B, and let Abea right dg module over B. Then
AR D and A ®3 (B ®pg D) are isomorphic as ditferential bigraded abelian groups.

For completeness, and since we are working over Z, we will give a proof of this
proposition.

Proof of Proposition 2.3.7 As bigraded abelian groups,
A®p(BOr D)~ (A®sB)@r D= A®g D.

Thus, 4 ®5 (B®gr 13) and A X D have the same underlying group; we must verify
that the differentials agree.

The differential on A ®5 (B Qg 5) may be written as
d;® (lids| ®lid|) +id 3 ® (11 ® lid 5| + (n2 ®id ) o (idp ® §))
=d ;3 ® (lids| ® lidz]) +id 3 ® (n1 ® lid5])
+ (id 7 ® (12 ®idp)) o (id 3 ® (ids ® §)).
Regrouping the parentheses, we get
(d 7 ®lidg]) ® [id 5|+ (id 3 ® 1) ® [id 5| + ((id 3 ® p12) ®id ) o ((id 3 ® idp) ® 6).

Identifying A with A ® B, the differential on A becomes d 2@ idp|+id 3 ® p1.
Similarly, the algebra multiplication m: A® B — A becomes

id; ®pr: (A®sB) @B — (A®5B).

Thus, we can identify the above formula for the differential on A® s(BRgr 5) ~ AR g D
with
d;®lidg|+ (m®idp) o (id ; ®J).

This is also the differential on A X 5 O
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3 Khovanov’s functor-valued invariant as a bordered theory

We will assume some familiarity with Khovanov’s paper [4]. Here we briefly introduce
some useful conventions and notation.

Khovanov’s arc algebra H” has one Z—grading. We will view H" as a differential
bigraded algebra, concentrated in homological degree 0 and with no differential. The
usual Z—grading on H" becomes the intrinsic component of the bigrading. The intrinsic
gradings of H" are nonnegative. Thus, both Proposition 2.2.4 and Proposition 2.2.5
apply to H" as a dg algebra.

The component of H"” in degree 0 (or, with our conventions, in bidegree (0, 0)) will be
denoted Z,, and referred to as the idempotent ring of H". It is isomorphic to Z*(Cn) |
where C, is the n™ Catalan number. The elementary idempotents of H" are the
idempotents 1, described by [4, Section 2.4]. The index a runs over elements of the
set B" of crossingless matchings of 2n points; since this set will be important later,
we recall its definition here.

3.0.1 Definition Let P be asetof 2n distinct points py, ..., pa, ontheline {0} xR C
R x R, ordered from top to bottom. A crossingless matching a of P is a partition
of P into n pairs of points, such that there exists an embedding of n arcs [0, 1]H7
disjointly into R>o x R with each arc connecting a pair of points matched in a. The
set of crossingless matchings of 27 points will be denoted B” (different choices of P
yield canonical bijections between the relevant sets B”).

3.0.2 Remark The set B” is also in bijection with the set NC, of noncrossing
partitions of n points. A noncrossing partition a of a set Q of n points ¢qy,...,g, on
{0} xR (ordered from top to bottom again) is defined to be any partition of Q into k&
disjoint subsets, such that there exists an embedding of k acyclic graphs disjointly into
R>o xR, with each graph bounding one of the k subsets of {g1, ..., g} comprising a.

To go from a crossingless matching a of 2n points pq,..., p2, to a noncrossing
partition @’ of n points ¢, ..., g,, checkerboard color the half-plane R>( with respect
to some embedding of arcs representing a, such that the unbounded region of the half-
plane is colored white. Without loss of generality, we may put the point ¢; on the
line {0} x R between the points py;—; and p,;. In the noncrossing partition a’, two
points ¢; and g; are placed in the same subset if they can be connected in R>o x R
by a path through the black region of the checkerboard coloring. The skeleton of the
black region provides the planar graphs which verify that ¢’ is a noncrossing partition.

On the other hand, given a noncrossing partition ¢’ of n points, one can pick an
embedding of graphs representing a’, and fatten each graph to obtain a planar surface.
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Figure 1: Bijection between crossingless matchings on 2n points and non-
crossing partitions on n points

q1

q2

q

The boundary of this surface is a crossingless matching of 2n points. These two
constructions are inverse to each other; see Figure 1 for an illustration.

Let T be an oriented tangle diagram in the half-plane, with 2z endpoints, and assume
we have chosen an ordering of the crossings of 7'. Khovanov’s construction assigns
a bounded chain complex of finitely generated projective graded H"-modules, with
H"-linear differential maps, to 7. We will call this complex [T]¥"; we will often
view [T]X" as a dg H"-module using Proposition 2.2.4. If T lies in R x R,
then [T]%" is a left dg module; if T lies in R<g x R, then [T']X" is a right dg module.

If T} is an oriented tangle diagram in R>g x R, Proposition 2.2.5 gives us an isomor-
phism class of type D structures D(7T7) over H", such that

[T,]%" ~ H" @7, D(T).

As we will see in Section 3.1, Khovanov’s construction of [7;]¥! naturally gives us an
explicit type D structure D(77) with this property.

If T, is an oriented tangle diagram in R<g x R, we will simply take the type A
structure A(75) of T, to be the right dg module [75]X". Suppose T5 and T; have
consistent orientations; put them together to obtain an oriented link diagram L. Order
the crossings of L so that those of Ty come before those of T, and let CKh(L) be
the Khovanov complex of L. Khovanov shows in [4] that

CKh(L) = [To]*" @ gn [T1]5",

after multiplying the intrinsic gradings on [T2]*" ® gr» [T}]%" by —1. By Proposition
2.3.7, we have
CKh(L) = A(T) ® D(Ty),
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as in bordered Floer homology, after applying the same intrinsic-grading reversal
to /T(T ») X D(Ty). We will summarize this discussion more formally below in
Theorem 3.2.1.

3.0.3 Remark The reversal of the gradings here comes from Khovanov’s choice [4,
pages 672-673] to make H" positively rather than negatively graded. It is only a
convention; one could define the basic generators of H” to live in degrees —1 and —2,
rather than 1 and 2, and then no grading reversal would be necessary.

3.0.4 Remark Up to isomorphism, the bigraded chain complex CKh(L) does not
depend on the ordering of the crossings. Indeed, suppose we reverse the ordering of
two adjacent crossings 7 and i + 1. Then an isomorphism

F: (CKh(L), first ordering) — (CKh(L), second ordering)

can be defined, on the summand of CKh(L) corresponding to a vertex p of the cube
of resolutions, to be F := (=1)/® .id, where f(p) := 1 if p resolves crossings i
and i + 1 both as 1, rather than 0, and f(p) := 0 otherwise.

The same argument applies unchanged to the tangle complexes [7']%": the isomorphism
type of [T]X" does not depend on the ordering of the crossings.

3.0.5 Remark Khovanov avoids having to choose an ordering of the crossings by
using the skew-commutative cubes formalism. We will not do this here, but we will
usually suppress mention of the choice of ordering of the crossings.

3.1 Type D structures

In this section we give a concrete definition of 13(T 1). First, we recall some properties
of H" and Khovanov’s dg modules [7]¥". This section has some overlap with the
author’s PhD thesis [8, Sections 4.2—4.3].

The algebra H" has an additive basis 8, over Z, consisting of elements which we
will denote ((W(a)b), o). Here, a and b are elements of B”, the set of crossingless
matchings of 2n points, and the operation W mirrors the matching from the right
half-plane to the left half-plane. The horizontal concatenation W(a)b is a collection
of disjoint circles in R?. The remaining datum o consists of a choice of sign, +
or —, on each of these circles. For a € B", the idempotent 1, is (W(a)a, all plus).
Multiplication in H” is defined using minimal cobordisms and a two-dimensional
topological quantum field theory; we refer the reader to Khovanov [4] for a precise
definition.
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Figure 2: Top line: crossingless matchings @ and b, with b obtained by surg-
ering a bridge y in a. Second line: the idempotent element (W («a)a, all plus)
and the multiplicative generators /1, = (W(a)b,all plus) and hy =
(W(a)a, minus on W(a)e). Third line: left and right idempotents of /,, .

Below we use the notion of a bridge of a crossingless matching; see Roberts [12,
Definition 8]. The dotted arc y in the first line of Figure 2 is a bridge of the crossingless
matching a.

Certain of the basis elements ((W(a)b), o) form a natural set of multiplicative gen-
erators for H". These generators come in two forms: the first are elements 7, =
(W(a)b, all plus), where a € B", the element b € B" is obtained from a by surgering
one pair of arcs along a bridge y, and all circles of W(a)b are labeled 4. The
other generators are elements /1, = (W(a)a, minus on W(«)w), where a € B" and
all circles of W(a)a are labeled + except one circle, W(w)o for some arc « of a,
which is labeled —. Each generator /1, and /1, has a unique left idempotent and right
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X

Figure 3: Zero- and one-resolutions of a crossing

idempotent in Z,,. We will denote the set of multiplicative generators {/1y,, i} as Bmul;
it is a subset of B. Some examples are shown in Figure 2.

3.1.1 Proposition The elements h, and hy of Pmuic generate H" multiplicatively.

Proof We have not defined the multiplication on H" here, so we will only sketch
the proof. It suffices to show that any element of the form (W (a)b), all plus) may
be written as a product of /1, generators; the rest of the elements of  may then be
obtained using these elements and /4y generators.

The element (W(a)b), all plus) may be identified with a disjoint union of disks em-
bedded in D? x I with boundary restricting to @ on D? x {0}, b on D? x {1}, and 2n
straight lines on (0D?) x I (in other words, a cobordism from a to b). Here we identify
crossingless matchings in the right half-plane with crossingless matchings in D?; see
Figure 5 below.

We may assume (after an isotopy if necessary) that the I —coordinate of D? x I gives
a Morse function on the disjoint union of disks which has only index-1 critical points,
each of which occurs at a distinct value of the I —coordinate. In such a configuration, the
disjoint union of disks can be viewed as a composition of elementary saddle cobordisms
beginning at @ and ending at 5. Each saddle cobordism corresponds to a generator /1, .
Furthermore, the composition of the saddle cobordisms in this sense agrees with
the result of multiplying the elements /,, in H" using minimal cobordisms; see [8,
Figure 4.3] for an illustration of this fact. Thus, we may write (W(a)b), all plus ) as
a product of generators /1, . d
Let T be an oriented tangle diagram in R>( x R. To specify a generator x; of [T]XP,
we first specify a resolution p; of all crossings of T'; we can view p; as a function
from the set of crossings to the two-element set {0, 1} (see Figure 3). If 7),, denotes
the diagram 7" with the crossings resolved according to p;, then T, consists of a
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Figure 4: Some generators x; and h-x,- of [T]kh
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crossingless matching of 2n points together with some circles contained in R x R.
Following Roberts [12], these circles will be called free circles. The remaining data
needed to specify x; are a choice of 4+ or — on each free circle.

Identify x; with the diagram obtained by gluing the mirror of the crossingless-matching
part of T}, to the left side of T}, and labeling all resulting circles with +. Then [T]KP
has a Z-basis consisting of elements / - x; , where the right idempotent of /2 agrees
with the crossingless-matching part of 7}, . (By multiplying /# with x; in Khovanov’s
usual minimal-cobordism sense, one obtains the basis for [T ]Kh described in [4].) See
Figure 4 for an illustration of the generators x; and basis elements / - x; .

The remainder of this section may also be found in the author’s thesis [8, Section 4.3.1],
with minor modifications.
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3.1.2 Definition [8, Definition 4.3.1] Let 77 be an oriented tangle diagram in
R>oxR, with n4 positive crossings and n_ negative crossings, andlet 0 <r <ny +n_.
Define ﬁ(T 1) to be generated as an (intrinsically) graded abelian group, in homological
degree r —n_, by the generators 1-x; of ([T1]%"),_,_, where ([T1]%"),_,_ is the
chain space of [T7]" in degree r —n_. These generators have the same crossingless
matching on the left and right sides of {0} x R, and all circles touching the boundary
line have a + sign. With this definition, 5(T1) is an Z,,—submodule of [T ]¥!.

3.1.3 Proposition [8, Proposition 4.3.2] As H"-modules,
[T = H" ®z, D(TY),
with 5(T1) as defined in Definition 3.1.2.
Proof This follows from Definition 3.1.2. O

Let ( ;=1 BTy (the inclusion of 5(T 1) into [T7]¥") and let d be the differential
on [T;]¥". Let 1 denote the multiplication on H”.

3.1.4 Definition [8, Definition 4.3.3] The type D differential § on ﬁ(Tl) is defined
by restricting the differential d to the Z,,—submodule D(T}) of [T}]¥":

~ d A
§:= D(Ty) — [T 5 [T1]*" = H" @7, D(T).
It is an 7, —linear map because ¢ and d are.

Lemma 3.1.5 and Proposition 3.1.6 below follow from the proof of Proposition 2.2.5,
but we give short justifications to keep this section self-contained.

3.1.5 Lemma [8, Lemma 4.3.4] Under the identification [T}]¥" ~ H" ®7, D(T})
from Proposition 3.1.3, we have

d= (1 ®id)o (id®$),

where j1,: H" @ H" — H" is the algebra multiplication.

Proof Let /- ((x) denote a generator of [T;]%". Then, by the Leibniz property
for [T1]%", we have d(h-1(x)) = h-di(x), since H" has no differential. But since
di(x) = §(x), we can conclude that

dh-1(x)) = (U, ®id) o (Id® &) (/- t(x)). |
3.1.6 Proposition [8, Proposition 4.3.5] (ﬁ(T 1), 8) satisfies the type D relations:
(1 ®id]) 06 + (12 ®id) o (Id® ) 06 = 0.
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Proof There is no differential on H", so the pt; term is zero. For the other term, if x
is a generator of D(Ty), then

(p2 ®id) o (id®8) 08)(x) = (d) o (d 0 1)(x) =0,
since d? = 0 on [T7]X". O
In Definition 3.1.2 and Definition 3.1.4, we constructed 5(T 1) as an Z,—submodule
of [T]XM following the proof of Proposition 2.2.5. Thus, the isomorphism class

of ﬁ(Tl) agrees with the isomorphism class of type D structures obtained from [T']X"
by using Proposition 2.2.5.

3.2 Type A structures and pairing

Let 7, be an oriented tangle diagram in R<y x R. Since dg modules are special cases
of type A structures, Proposition 2.2.4 tells us that the right dg module [75]%"
example of a type A structure over H". We define A(T%) to be [T5]KD.

is a valid

3.2.1 Theorem (Theorem 1.0.1) Let T| and T, be oriented tangle diagrams in
R>o xR and R<g x R, respectively, with orderings chosen of the crossings of T;
and T, . Assume that T1 and T, have consistent orientations, so that their horizontal
concatenation is an oriented link diagram L in R?. Order the crossings of L such that
those of Ty come before those of T, . Then

CKh(L) = A(T») ® D(T),
after multiplying the intrinsic gradings on A K ﬁ(Tl) by —1.
Proof Since, up to a gradmg reversal, CKh(L) = [T>]*" @ g« [T1]%", which is the

same as A(T 2) ®pn (H" ®1, D(T 1)), this proposition follows from Proposition 2.3.7,
Remark 3.0.3, Lemma 3.1.5 and Khovanov’s results from [4]. O

4 Quadratic and linear-quadratic algebras and duality

4.1 Quadratic and linear-quadratic algebras

We now consider a method of describing algebras using explicit generators and relations.
It will be important for the following sections where we relate the bordered Khovanov
theory discussed above with Roberts’ constructions in [11; 12]. The definitions and
basic properties of quadratic and linear-quadratic algebras here all follow Polishchuk
and Positselski [10], with some minor modifications.
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Let B be a unital associative algebra over a ring R, where R = Ze| X --- X Zey, as
above. We will not assume B is graded; however, we will assume B comes equipped
with an augmentation, ie an algebra homomorphism € from B to the coefficient ring R.
The algebras of interest to us have a grading of some form, and R is the degree-zero
summand. Such an algebra has a natural augmentation given by projection onto this
summand.

Suppose by, ..., by, is a set of multiplicative generators of B, each in the kernel 5+
of €. We may assume that for each b;, there is a unique idempotent e; such that
ejb; = b; and e]’.b,- = 0 for j' # j. Indeed, if e¢jb; = 0 for all j, then b; = 0
so b; is irrelevant as a generator, and if ej,b; were nonzero for multiple indices «a,
we could remove b; from the list of generators and add each of the nonzero ele-
ments e;,b; to the list. So we may assume e;jb; # 0 for exactly one j, and then
bi=1bj=0_ e i/)b; = ejb;. The idempotent e; will be called the left idempotent
of b; and denoted ey (b;).

Similarly, we may further assume that for each b;, there exists a unique right idempo-
tent eg(b;) such that bjeg(b;) = b; and bje; =0 for ej # er(b;).

Let V' be the free Z-module spanned by {b, ..., b, }. The assumptions above equip V'
with left and right module structures over R. The statement that the b; generate B
multiplicatively means that B is isomorphic to 7'(V))/J, where

TV)=@T"V)=RoVe(VerV)®(VRrVerV)®:
n=0

and J is the kernel of the natural map 7'(V') — B sending a string of generators to
their product in B. As above, we may assume that each generator of the ideal J has
unique left and right idempotents.

4.1.1 Definition The augmented algebra B, with its choice of generators, is a qua-
dratic algebra if the ideal of relations J C T'(V') is generated multiplicatively by its
intersection with T2(V) = V ®g V. In other words,

J=TWV)-I-T(V),
where I :=J N(V ®g V). Note that J always contains 7(V)-1-T(V),so B is a
quadratic algebra if J CT(V)-1-T(V).

4.1.2 Remark If B is a quadratic algebra, then 5 obtains a grading by word-length
in the generators {by,...,bm}.
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4.1.3 Remark Let B be a quadratic algebra. At various points it will be helpful to
work with the generators and relations of B more explicitly. Following Polishchuk
and Positselski [10, Chapter 4.1], choose an ordering of the multiplicative generators
{b1....,bm}; we may assume that b; < b; when i < j. Use this order to put a
lexicographic ordering on monomials in these generators: the leftmost factor in a
product is defined to be the most significant part.

Let Q denote the set of quadratic monomials in the b;. Then Q can be naturally
partitioned into two subsets Q1 and Q,: Q1 consists of the monomials which cannot
be written in B as sums of lesser monomials with respect to the lexicographic order,
and Q; consists of the monomials which can. If b;b; € O, then

bibj= Y cijurybiby
@,j)<G.J)
and the coefficients ¢; ;. j» are uniquely determined if we require that ¢; .7 ;v =0
for bi/bj in Q,. By [10, Lemma 1.1 of Chapter 4.1], a set of generators for the
quadratic relation ideal / = J N T2(V) of B is obtained by taking

Lji=bibj— Y cijijbiby
(@,/)<G.))

for all (i, j) such that b;b; is in Q>.

4.1.4 Definition [10, Chapter 5.1] The augmented algebra B, with its choice of
generators, is a linear-quadratic algebra if the ideal of relations J C T'(V) is generated
multiplicatively by its intersection with T1(V) @ T2(V). In other words, writing
Jry:=JN V& (VgrV)), B is linear-quadratic if

J=TWV) - J,-T(V),

or equivalently
JCTWV)-J,-T(V).

We will furthermore assume that J NV = 0 so that there are no linear redundancies
among the chosen generators. (As always, we assume that V C B4.)

4.1.5 Remark If B is a linear-quadratic algebra, we get a word-length filtration on B
rather than a grading. An element of B has filtration level at most k if it is a sum of
products of word-length at most k in the generators b; .

The following definitions and propositions will be used in Section 4.3 to define quadratic
duality for linear-quadratic algebras. They can all be found in [10, Chapter 5.1].
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4.1.6 Definition Let B be a linear-quadratic algebra, so that B = T(V)/J with
J CT(V)-Jo-T(V). The quadratic algebra B is defined as

BO=TW)/(T(V)-1-T(V)),
where I C T?(V) is defined as the image of J, C (V @ T'?(V)) under the projection
(V& T?*(V)) = T*(V) onto the second summand.

Every generator r of I is the image of some generator v @ r of J,, where v € V.
Furthermore, if v @ r and v’ @ r were both in J, with v # v/, then (v—1v") 0 would
be a nonzero element of J, NV, contradicting the assumption that J, NV = 0. Thus,
the following definition makes sense.

4.1.7 Definition The function ¢: I — V is defined by sending a generator r € I to
the unique element ¢(r) of V such that ¢(r) ®r isin J,.

4.1.8 Proposition The map ¢ respects the left and right R—actions on I and V.

Proof Suppose e is the left idempotent of » (which exists without loss of generality).
Then e(p(r) ® r) is in J,, and e(p(r) @& r) = ep(r) ® er = ep(r) & r, so by
the uniqueness above, ¢(r) = e@(r). If ¢’ is any idempotent not equal to e, then
e'(p(r)®r) is still in J;, but now this expression equals ¢’¢(r)®0. Since J,NV =0,
we must have e¢’¢(r) = 0 for ¢’ # e. Thus, ¢ respects the left R—action on I and V.
The right action is analogous. O

Let (p12 denote p ®idy: IQRrV — V®gV and let (p23 denote idy ®¢: Vgl —
VerV.

4.1.9 Proposition [10, Chapter 5.1, Proposition 1.1] The map
12— (VRrDNU V)= (VRRV)
has image contained in I, and
po(p'?—p¥)=0.
Proof The definition of ¢ implies that the image of the map

el —>Vae(VerV)

is contained in J,, where ¢ denotes the inclusion map of [ into V ® g V. Thus, the
map

(pB)QRidpy: IQRV > (VA (VRRV)QrV=VRrV)®B(VRIRVRrV)

Algebraic € Geometric Topology, Volume 17 (2017)



1582 Andrew Manion

has image contained in J. On the other hand, (¢ @ () ® idy is equal to the map
PP @ (®idy): IQRV - (VRrV)®(VRrV QR V).

Thus, ¢'?@® (1®idy,) has image contained in J . By the same reasoning, ¢?* @ (idy ®1)
has image contained in J as well.

If x is an element of (V @z I)N(I ®g V) C V®3, then we can apply ¢'? & (1 ®idy)
and ¢?3 @ (idy ® 1) to x, producing two elements ¢!%(x) ® x and ¢?3(x) ® x of J.
Subtracting, the x terms cancel and ¢!?(x) — ¢23(x) is also in J.

Since ¢'?(x) — ¢23(x) is an element of both J and V ®g V, it is also an element
of J,=JNV &V ®RV)). The corresponding element of / under the projection
from J, to I is the same element ¢!2(x) — 23 (x).

Hence we can conclude that ¢!? — 9?23 has image contained in 7, so it makes sense to
postcompose this map with ¢. Furthermore, the image of ¢'2 — 2?3 is contained not

justin 7 butin J, and so p(p'? —¢??) = 0. O

4.2 Khovanov’s arc algebra as a linear-quadratic algebra

In this section we present a combinatorial result, Lemma 4.2.4, whose proof was found
by Pélvolgyi [9] and independently by Potechin in an email correspondence. Besides
being important for the constructions in Section 5 and Section 6, it will yield an explicit
generators-and-relations description of H" in Corollary 4.2.7. This description is not
necessary, strictly speaking, for Section 5 and Section 6, but it may be of interest
independently.

Let V' be the free Z-module spanned by the generators /1, and /g of B as defined
in Section 3.1. The idempotent ring R = Z, of H”" has both left and right actions
on V. We may write H" as T(V)/J for some ideal J of T (V).

4.2.1 Theorem (Theorem 1.0.2) With the generators {hy, hy} and the augmentation
coming from its grading, H" is a linear-quadratic algebra.

This theorem will be proved using Lemma 4.2.4. We begin with some background.

Recall from Remark 3.0.2 that the elementary idempotents of H" are in bijection with
the set NC,; of noncrossing partitions of # points. In fact, NC; has a natural partial
ordering: suppose p and g are elements of NC,,. Then p <gq if p is a refinement of ¢.
In other words, p < g if each of the subsets comprising p is contained in one of the
subsets comprising g (recall that p and g are collections of subsets of a set of n points).

As a poset, NC,, is a lattice: any two noncrossing partitions have a unique least upper
bound and a unique greatest lower bound, although we will not make use of this
property.
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p=q ¢(p) > ¢(q)
Figure 5: The order-reversing automorphism ¢ of NC,, (when read from left
to right), or its inverse ¢’ (when read from right to left)

#(q)

The dual of a partially ordered set is defined by reversing the order relations. It is a
standard fact that the poset NC,, is self-dual.

4.2.2 Proposition NC, is order-isomorphic to the poset obtained by reversing all the
order relations on NC,,.

Proof We want to define a bijection ¢: NC,, — NC,, such that p < ¢ if and only if
¢(p) > ¢(q). Let p be a noncrossing partition. Pick an embedding of acyclic graphs
in the half-plane representing p; as in Remark 3.0.2, thicken these graphs to get planar
surfaces embedded in the half-plane. Color the interiors of these surfaces black; then
the half-plane is divided into black and white regions. Identify the half-plane with the
disk and rotate the disk counterclockwise through an angle of 7r/n. Swap the colors
of the regions and identify the disk back with the half plane. The skeleton of the new
black region represents the noncrossing partition ¢ (p). This procedure is illustrated in
Figure 5.

One may verify that ¢, defined in this way, reverses the order relations. Finally, ¢ has
an inverse whose definition is the same as for ¢, except that the rotation is clockwise. O

Associated to the partial order on NC, is a Hasse diagram G, which is a directed
graph whose vertices are the elements of NC, and which has an edge from p to ¢
precisely when p < ¢ and there exists no vertex ¢’ with p <¢’ <gq.

We will view G, as an undirected graph, ignoring the orientations on edges. For any
two vertices p,q of G, connected by an edge, there is a generator /,, of H" with
left idempotent p and right idempotent ¢, and all the /,, generators of H" are of this
form. Note that the existence of such /,, does not depend on the ordering of p and ¢q.
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If hy, = (W(p)q, all plus), where y is a bridge on the crossingless matching p, then
there is also a dual bridge yT on ¢; see Roberts [12, Definition 10]. Doing surgery
on ¢ along the bridge ¥ gives p, and the generator h,+ = (W(q)p, all plus) has left
idempotent ¢ and right idempotent p.

Monomials in the generators /,, either correspond to paths in Gy, or are zero for
idempotent reasons. We will be especially concerned with paths of minimum length.

4.2.3 Definition Let p and g be vertices of G,. The graph G, 4, has one vertex for
each minimal-length path, or geodesic, « from p to ¢ in G,. If « and B are two
vertices of G 4, they are connected by an edge when o and B differ in exactly one
vertex of G, (viewing paths in G, as sequences of vertices of Gy).

The proof of the following lemma was found by Domotor Palvolgyi and posted as an
answer to a question on MathOverflow [9]; independently, another proof was found by
Aaron Potechin and shared with the author privately in an email correspondence.

4.2.4 Lemma (Potechin [9]) Let G, denote the Hasse diagram of NC,,, viewed as
an undirected graph. Let p, q be vertices of Gy and define Gy 4 as in Definition 4.2.3.
Then Gp 4 is a connected graph.

Proof First, note that as partitions of a set of n points, either ¢ contains a singleton
part or the dual ¢(g) of ¢ contains a singleton part. Indeed, out of the »n points,
consider a minimal pair of points which are matched in ¢. (We consider a pair to be
minimal if there is no pair of points, also matched in ¢, nested inside the first pair.) If
there are any points nested inside the minimal pair, then these points must be singletons
by minimality, so ¢ contains a singleton. On the other hand, if there are no points
nested inside, then one can see from Figure 5 that ¢p(¢) contains a singleton.

In the latter case, we can use Proposition 4.2.2 to reduce to the former case: if G (p),4(q)
is connected, then so is G 4. Thus, we may assume without loss of generality that ¢
contains a singleton part, say {m} where m is one of the n points on the line.

We will induct on both n and the distance between p and ¢; if this distance is 2 or
less, or if n < 2, there is nothing to prove.

Consider two minimal-length paths « and B from p to ¢ in Gy,. Since p is a partition
of the n points on the line, the point m must be contained in one of the partitioning
subsets which comprise p, say S. If S contains only m, then for each vertex along
either « or B, the point m must be in a singleton set; otherwise o or f would not
have minimal length (the length could be reduced by removing the steps that connect
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and disconnect m from the other points on the line). Hence we may ignore m and
view « and 8 as paths in G,—;. By induction, @ may be modified one vertex at a
time to produce 8, and we may reintroduce the singleton point 7 without issue.

On the other hand, suppose S contains additional points as well as m. Then we may
modify both o and f8, one vertex at a time, to get paths &’ and B’ from p to ¢ such
that the first step of both o’ and B’ separates m from the other points in S'. To do this,
find the first step along o or § after which m is an isolated point and commute this
step to the beginning of o or B by changing the path one vertex at a time.

Now let p’ denote the partition p with the point m isolated from S. Both &’ and g’
start by moving from p to p’ and then along a minimal-length path (say «” or ")
from p’ to ¢. Since the distance from p’ to ¢ is one less than the distance from p
to ¢, we may conclude by induction that «” may be modified one vertex at a time to
obtain B”. Thus, the same is true for &’ and B’ and hence for & and § as well. O

4.2.5 Remark If p is the minimal element of NC,, with respect to the partial ordering,
and ¢ is the maximal element, then elements of G 4, are maximal chains in NC, and
Lemma 4.2.4 is a well-known result; see Bessis [2, Proposition 1.6.1], as well as Adin
and Roichman [1] for more properties of G 4 in this case. Lemma 4.2.4 can be viewed
as a generalization of this result to a setting in which p and ¢ may not necessarily be
comparable in the partial ordering.

Proof of Theorem 4.2.1 We want to show that J C T(V)-J, - T (V). We start by
exhibiting elements in the intersection J, = J N (V @ (V ®g V)); we will let J,
denote the ideal generated by these elements. Recall that the notion of a bridge for a
crossingless matching was defined in Roberts [12, Definition 8], and the dual bridge al
for a bridge y was defined in [12, Definition 10].

(1) Whenever y and n are two bridges which can be drawn without intersection on
the same crossingless matching, the element /sy, A, — hyh, is in J,, for the
natural choices of 1’ and y’.

(2) Whenever y is a bridge and « is an arc such that s, and /i, have the same
left idempotent, and neither of the endpoints of y lies on the arc «, the element
hyhg —hghy is in J, for the natural choice of . If one of the endpoints of
the bridge y lies on the arc «, then there are two natural choices for «’; for
each of these choices, hyhq —hohy, is an element of Js.

(3) Whenever oy and o, are distinct arcs in the same crossingless matching, so
that /i, and /o have the same left idempotent, the element /g, hy, — ho,ha, 1S
in J,. Furthermore, for every arc o, the element 42 isin J,.

Algebraic € Geometric Topology, Volume 17 (2017)



1586 Andrew Manion

(4) Finally, if y is any bridge, such that /4, has left idempotent e; and right
idempotent eg, the element 7y h, 1 —hyy —hg, is in J >, where oy and «, are
the arcs containing the endpoints of y.

To show that J C T(V) - J, - T(V), it suffices to show that J C T(V)-J,-T(V),
since J, C J,. Actually, J, = J, (see Remark 4.2.6 below), but we will not need
this fact in the current proof.

Let r be an arbitrary element of J. We may assume without loss of generality that r
has a unique left idempotent ey, and right idempotent e . Since J is an ideal of the
tensor algebra 7'(V), r may be written as a linear combination of monomials in the
generators /1, and A . Let

r= Zni(hi,l wehig),
i

where n; € Z and each h; ; is one of the generators /s, or hg.

Consider one of the monomial summands m; = h; 1 - -- h; j; of r. After adding elements
of T(V)-J,-T(V) to this monomial, we may assume that all the hy generators
among the /; ; come before (ie with lower j than) the /1, generators. The necessary
relation elements come from item (2) above. Let m; denote the monomial obtained by
modifying m; in this way.

Write m; as my,; - Mq,;, where my, ; is a product of %, generators and mg,; is a
product of /4 generators. Each m,, ; has left idempotent e, and right idempotent eg.
We may view ey and eg as vertices of Gy, the undirected Hasse diagram of NC,;,
and to the monomial m,,; we may associate a path p(m, ;) in G, from ey, to eg.

We claim that we may further modify m by adding elements of T'(V) - Jy-T(V)
until p(my ;) is a minimal-length path between ey, and eg. Indeed, suppose p(m, ;)
is a path of nonminimal length. Write m, ; = hy, - -+ hy, . Then there exists a minimal
index 2 < j <k such that sy, ---hy,_, corresponds to a path of minimal length in Gy,
but /iy, -+ hy,; does not.

Let eg(hy,) denote the right idempotent of /,,;. By assumption, the distance be-
tween ey, and eg(hy,_,) in G, is j — 1, but the distance between ey, and eg(/hy,;)
is j — 2 rather than j. Indeed, this distance must be less than j. It cannot be less
than j — 2, or the distance between ey and eg(/y,;_,) would be less than j — 1. The
distance between ey, and eg(hy,;) also cannot be j — 1, because each edge in G,
connects two noncrossing partitions whose number of parts differs by one modulo two.
Hence this distance must be j — 2.
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Thus, there exists some monomial hy{ e hng_z corresponding to a path in G, from ey,
to egr(hy;). Appending hij to this monomial, we get "'hV}'—z -hyj*, which
corresponds to a path of length j —1 in G, between ey, and eg(hy,_,). By assumption,
the distance between ey, and eg(hy,_,) is j —1,s0 hy{ ---hyj/_z -hij corresponds to
a minimal-length path in G;,.

We now have two minimal-length paths in G, between e and eg(hy,;_,), namely
o = plhy,---hy,_,) and B = p(hy; ---hy]{_z -hy]T). By Lemma 4.2.4, we may
modify o one vertex at a time to obtain 8. Such modifications correspond, on the level
of monomials, to adding relation terms obtained from item (1) above.

Thus, we may modify m,,;, which equals &y, -+ hy;—1 - hy, -+ Iy, , by adding terms
in T(V)-Jo-T(V) to obtain /1y, ---hy]{_z -hy]T +hy, -+ hy, . Inside this monomial is
hy]T - hy, , which may be replaced with a sum of /1, terms using the relation terms in
item (4) above. As before, these /1, terms may be commuted to the right side of m;
using item (2).

After this modification, we have strictly reduced the length of 1, ; in the factorization
of m; as my; - my;. If the new my ; still does not represent a minimal-length
path p(m, ;) in G,, we can repeat the same procedure and eventually it will terminate.

At this point, we have shown that we can modify our original r =), n;(m;) by adding
terms in T(V)-J, - T(V), until each m; is a monomial factorizable as Myi My
with my ; a monomial in the generators /1, and m,; a monomial in the generators /,,
representing a minimal-length path in G, . The starting and ending points of all these
paths are the same, namely the left and right idempotents of r. Thus, by Lemma 4.2.4
and the relations from item (1), we may do further modifications until all of the m,,
are the same monomial m, and we have

r=my Y ni(mg;) modulo T(V)-J5-T(V).
i

Let 7" denote the right side of the above equality; " is an element of 7' (V') and we
want to show that #’ = 0 modulo T(V)-J,-T(V).

The monomial m,, represents an element of H” of the form (W(a)b, all plus), where
a:=ey, is the left idempotent of r and b := e is the right idempotent. The signs are all
plus because m1,, corresponds to a path of minimal length. Indeed, by Proposition 3.1.1,
(W(a)b, all plus) can be written as a product of /,, generators. If m, represented a
sum of basis elements (W(a)b,o) in H" with o not all plus, then the length of m,,
would be at least two plus the length of the product expansion of (W(a)b, all plus).
This claim follows because the length of a monomial 7, in the generators /,, is
equal to the grading of the corresponding element of H” (assuming this element is
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nonzero). But then the product expansion of (W(a)b, all plus) would correspond to
a shorter-length path from « to b than p(m, ), a contradiction. Finally, if m, were
zero in H", then we could write m, = n"ayn:fly, where 711, is nonzero in H" but
becomes zero when multiplied on the right by the leftmost factor of rfzy . For this to
be true, 771,, must represent a sum of basis elements (W(a)15 o) with o not all plus,
where b is the right idempotent of 77, . By the above argument, we can obtain a shorter
path than p(m, ) from a to b. Appending p(my) we get a shorter path from a to b
than p(m, ), a contradiction.

Now we use the fact that r € J, or in other words that » = 0 as an element of H". The
same holds for 7, since T(V)-J,-T(V) is a subset of J. The summand 4(H") is
a free abelian group with a basis element for every assignment of signs o to the circles
of W(a)b. Saying that " = 0 in H" means that the coefficient of 7’ on each of these
basis elements is zero. In other words, for each assignment of signs o to the circles of
W(a)b, the sum of the terms n;m,my,; of r’ corresponding to o is zero in H".

We will show that for a fixed o, the terms n;m,mqy; such that m,my; equals
(W(a)b,0) in H" actually sum to zero modulo the relation terms from items (2)
and (3) above. There may also be some terms 71y, my,; Which are already zero in H"
and thus which represent no basis element (W (a)b, o) of H". We will deal with these
terms at the end.

Suppose myhy = myhy = (W(a)b,o) in H", where m,, corresponds to a minimal-
length path; here o and «’ are arcs in b which lie on the same circle in W(a)b, and o
assigns — to this circle while assigning + to all other circles of W(a)b. Then we may
use relations from item (2) to write both my hy and myhy as hgm, , where @ is any
arc in the left idempotent a of m,, which, in W(a)b, lies in the same circle as « and o’.
This generalization of the item (2) relations is true by induction on the length of y.

Now, for a more general sum of terms 11, mg ; all representing (W(a)b,o) in H", we
can use the above modifications to replace each of the monomials m, ; with the same
monomial my. We do this by picking, for example, mq = mg,;, , and then for i # iy,
we move each factor of mg ; to the left and back to the right so that it becomes identical
to the factor appearing in mg ;, . After doing this for all i, we use relations from
item (3) to replace each my,; with mg.

For a fixed o, let Ny be the sum of the n; such that m,mg ; represents (W(a)b, o)
in H". By the above paragraph, the sum of the terms n;m,mq,; of r’ with myMe,j
representing (W(a)b, o) in H" is equivalent to Ngm,mq modulo T'(V) - Jo-T(V).
We see that Nom,mq =0 in H". But since m,m is the basis element of ,(H"),
corresponding to o, we can conclude that N, = 0. Thus, the sum of the terms
nimymq; of r’ under consideration is equal to zero modulo 7'(V)- Jo-T(V).
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Finally, some of the terms m,, my ; may not represent any (W(a)b, o) in H"; this hap-
pens if and only if 7, mg ; is zeroin H". In this case, by the above logic, we can use re-
lations from items (2) and (3) to rearrange my,mq,; until it has hé somewhere, for some
generator /. Thus, these terms mymgy ; arein T'(V)- J»-T(V) by item (3) above.

Starting with r € J above, we have successively modified r using linear-quadratic
relations until we obtained zero. Hence

JCTWV)-J,-T(V)CT(V)-Jp-T(V)

and so H" is a linear-quadratic algebra. a

4.2.6 Remark In fact, one can show by analyzing the grading possibilities case-by-
case that the linear-quadratic relations listed above in (1)—(4) are a full set of generators
for J. In other words, J, = J,.

We get a description of H” in terms of generators and relations.

4.2.7 Corollary Let V' denote the free Z —module spanned by the degree-1 generators
hy and the degree-2 generators hq of H™, with left and right actions of R =1, = 7.6n
on V given by multiplication in H". Then

H'>~TWV)/(T(V)-Jy-T(V)),

where the tensor products in T(V) are over R, and J, = J, is generated by the
explicit relations given above in items (1)—(4) of the proof of Theorem 4.2.1.

4.2.8 Remark All of the generators of J, listed in items (1)-(4) of the proof of
Theorem 4.2.1 are homogeneous with respect to the intrinsic grading on H”. Thus,
Corollary 4.2.7 also gives us a description of H" as a graded algebra. This grading
differs from the word-length filtration which H" acquires as a linear-quadratic algebra
by Remark 4.1.5, even on the basic multiplicative generators: /4, has intrinsic degree 2
and word-length 1, while /,, has intrinsic degree and word-length both equal to 1.

4.2.9 Remark Braden [3] gives a generators-and-relations description of a ring 4 ,
which has H™ as an idempotent truncation; see also Stroppel [13]. It would be
interesting to compare Braden’s generators and relations with the /,, and A generators
and relations discussed here; we have not tried to do this in any detail.

4.3 Quadratic duality

Next we discuss quadratic duality for quadratic and linear-quadratic algebras. The dual
of a quadratic algebra B is another quadratic algebra B'. The dual of a linear-quadratic
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algebra B is a quadratic algebra B' with a differential. Even if B is finitely generated
over Z, following Convention 2.1.1, the algebra B : might be infinitely generated
over Z. Accordingly, Convention 2.1.1 will not be taken to hold for dual algebras B! in
general. However, B’ will still be generated multiplicatively by a finite set of elements.

We review the relevant definitions from Polishchuk and Positselski [10, Chapters 1
and 5]. We start with the case of quadratic algebras and then discuss the modifica-
tion needed for linear-quadratic algebras. Let B, R, b;, V and J be defined as in
Section 4.1.

Let V* denote Homg(V, Z). Since V is a free Z—-module, V* is free of the same
rank as V. If b; is a generator of V', let b* denote the corresponding generator of V*.
We define left and right actions of R on V* by declaring that b} has the same left
and right idempotents as b; .

4.3.1 Definition Let B be a quadratic algebra and write B="T(V")/J asin Section4.1,
with I := J N T2(V). The quadratic dual B of B is defined to be

B :=T(WVH/(T(WV*)-I1-T(V*),

where I is the submodule of T2(V*) = V* @g V* annihilating I via the natural
actionof V*@pV*on VgrV.

4.3.2 Remark Let O, O, and b; be as defined as in Remark 4.1.3 above. We have
arelation /; j in I for every monomial b;b; in Q,. If b;bj is in Q rather than Q,,
consider instead the dual monomial b} b]’." in B'. We can define a relation in 7+ by
! !
L =bibl+ X iy ibiby,
@,jN>0.J)
is defined to

' . . .. . . |
where Cijuirjr 18 only nonzero if b;sbj: isin Q,, in which case Ci jiirjr

be the coefficient ¢;/ j.; ; of the (i” =i, j” = j) term in the relation

Il",j/ = bi/bj/— E Ci’,j/;l'”,j”bl.”bj”-
@”,j"<G",j")

The ideal I+ is spanned by the relations Il.! i like Remark 4.1.3, this follows from
[10, Lemma 1.1 of Section 4.1].

We now extend quadratic duality to linear-quadratic algebras.

4.3.3 Definition [10, Chapter 5.4] Let B be a linear-quadratic algebra; recall that
Definition 4.1.6 associates a quadratic algebra B© to B. The quadratic dual B'
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of B is defined, as an algebra, to be the usual quadratic dual of B ) Since B' is a
quadratic algebra, it has a grading by word-length. We will interpret this grading as the
homological grading for a differential z; on B'.

We will first define p1q on the basis elements of V* and extend to B' with the Leibniz
rule. We will use the map ¢: I — V from Definition 4.1.7. Dualizing ¢, we get
@*: V* — I*, where I* := Homg([,Z).

We claim that [* is isomorphic to the degree-2 summand of B'. To see this, write
the degree-2 summand of B' as T2(V*)/I+ = Homz(V ® V,Z)/I1. There is a
natural map E from Homgz(V ®V,Z) to I'* given by precomposing with the inclusion
from I into V ® V. The map E is surjective because any functional from I to Z
may be extended to a functional from ¥V ® V to Z. Indeed, using the conventions of
Remark 4.1.3, the Z-basis {/; j | b;bj € Q»} for I may be extended to a Z-basis
{1i,j | bibj € Q23U Q for VR V.

The kernel of E, by definition, consists of those functionals on V' ® V' which anni-
hilate /. Thus, the kernel is the same as 1 1. We can conclude that E induces an
isomorphism from the degree-2 summand of B Yo I*.

Now, for a degree-1 element of B !, ie an element v* € V* dual to a basis element v
of V, define p1(v*) to be ¢*(v*). This is an element of I* and thus a degree-2
element of B'.

We may extend j; to a map from B' to B', homogeneous of degree +1, using the
Leibniz rule

p1(xp) = (=1D)%EX 1y (x)y + xp1 ().

Note that this Leibniz rule differs from the one used in Polishchuk and Positselski [10],
to stay consistent with our earlier sign conventions.

4.3.4 Remark Suppose B is a linear-quadratic algebra with an intrinsic grading,
whose augmentation map is induced from the grading. Suppose further that all the mul-
tiplicative generators b; of B and the explicit generators /; ; of I from Remark 4.1.3
are homogeneous with respect to the intrinsic grading, and the map ¢: I — V preserves
intrinsic degree. For example, H" satisfies these properties: the generators /1, have
intrinsic degree 1 and the generators /1, have intrinsic degree 2. Each term of each
relation in items (1) and (4) of the proof of Theorem 4.2.1 has intrinsic degree 2. Those
initem (2) have degree 3 and those in item (3) have degree 4. The map ¢ is only nonzero
on relations from item (4), and sends elements of degree 2 to elements of degree 2.

With these assumptions, V* has a natural intrinsic grading, namely the negative of
the grading on V (so that the pairing of V* with V is grading-preserving). The
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generators of /- are homogeneous with respect to this grading; this can be seen from
Remark 4.3.2. Thus, B' acquires an intrinsic grading. Since ¢: I — V preserves
intrinsic grading, so does ¢*: V* — I'*, and hence the differential 1 on B! preserves
intrinsic grading. The intrinsic grading on B' is different from the homological grading,
which 17 increases by one. In summary, B' may be viewed as a differential bigraded
algebra with a (0, 4+1) differential.

4.4 The dual of Khovanov’s arc algebra

Theorem 4.2.1, Definition 4.3.3 and Remark 4.3.4 together give us a differential bigraded
algebra (H™)', which we will call the dual of H".

4.4.1 Example When n =1, H" = H! is the algebra Z[x]/x? over the idempotent
ring Z; = Z. The generator x has intrinsic degree 2. Thus, the dual (H!)' is Z[x*],
where x* has bidegree (—2, 1). The differential on (H')" is zero and (H')' is not
finitely generated over Z.

In general, (H")' is never finitely generated over Z, since arbitrary powers of any
generator /% will be nonzero in (H")'.

4.5 Type DD bimodules

We may relate the duality discussed in Section 4.3 with the type DD bimodules en-
countered in bordered Heegaard Floer homology; see Lipshitz, Ozsvath and Thurston
[6], especially Section 8. First, we give a definition of these bimodules over Z; as in
Section 2, we do not cover the most general possible case.

Let B and B’ be differential bigraded algebras over an idempotent ring R = I1;(Ze;).
The case B’ = B' will be important, so we will not assume that B’ is finitely generated
over Z.

Over Z /27, the following is equivalent to Definition 2.2.55 of Lipshitz, Ozsvéth and
Thurston [7].

4.5.1 Deﬁnltlon A type DD bimodule over B and B’ is, first of all, a bigraded free
Z-module DD with left and right actions of R, such that DD admits a Z—-basis
consisting of grading-homogeneous elements with unique left and right idempotents
among the ¢;. Furthermore, DD must be equipped with an R-bilinear map

§: DD - B®g DD ®g (B))*
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of degree (0, +1), such that the type DD structure relations
(1 ®id| ®lid]) 0§+ (Id® |id| @ 1) 06 + (U2 ®id® pz) 000 (Id® 5 ®id) 0§ =0

are satisfied, where p; and p, denote the differential and multiplication on B or B’
as appropriate, and

0:B®B® DD ® (B)* ® (B)® - B®B® DD ® (B')® ® (B)®?
is a sign flip which multiplies b; ® b, ® x ® (b3)°P ® (b)°P by (—1)(egn b2)(degy, by)
4.5.2 Remark The odd-seeming sign conventions reflect the fact that, while we
write DD with B on the left and (B’)°? on the right to make the notation more

manageable, we really want to think of both B and B’ being on the left of DD when
fixing sign conventions.

Of particular interest here are type DD bimodules with DD = R asan R-bimodule. We
will refer to these as rank-one DD bimodules, following the notation of [6, Section 8].
For a rank-one DD bimodule, we have

B®g DD @r (B)” = B &g (B)*,
so we may rewrite the type DD structure relations as
(1 ®id)) o+ (id® i) o8+ (L2 ® pz) oo o (id®F®id) o =0,
where o is now a map from B ® B ® (B')°? ® (B’)°P to itself.

When B is a linear-quadratic algebra with an intrinsic grading as in Remark 4.3.4, we
can construct an associated rank-one DD bimodule over B and B'. Setting DD = R,
we define §: R — B Qg (B')° by

8e) ==Y bi ® (b})™.

where e is one of the elementary idempotents and the sum runs over those multiplicative
generators b; of R which have left idempotent e. (These idempotent conditions will
be implicit in what follows.) Note that § has degree (0, +1); it preserves the intrinsic
grading, since the grading on B' was defined to be the negative of that on 5, and it
increases the homological grading by 1, since b; has homological degree 0 while 5
has homological degree 1.

4.5.3 Proposition The map &, as defined above, satisfies the type DD structure
relations.
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Proof First, let e € R be one of the elementary idempotents. Applying the term
(U2 ®Up)o00(id®S®id)od to e, we get
(2 ® p2) 000 ([d®S®id)0b(e) = ) bib; ® ()P (B])™,
i’j
where the sum runs over all pairs of multiplicative generators b;, b; of B with com-

patible idempotents, such that the left idempotent of b; is e. Note that o = id here,
because the generators b; all have homological degree zero.

In the notation of Remark 4.1.3, we may split the above sum as

(4-1) Y bibj @ (B)PB)P+ Y bib; ® (b)) ()P
bibjeQ, bibjeQ>

If b;b; isin Qy, then in B, we may write b;‘bj’." as

— > e jribib}.
bisbjreQr
(W",j)>(,7)

Thus,
@2 > by @GHPEHP =~ bib;® Y. cir (BP0,

bibj €Q1 b,'bj EQl (.bi/bS/G(Qz)
i",j)>(.j

On the other hand, if b;b; is in Q5, then we may write b;b; as

bibj = ( > Ci,j;i’,j'bi’bj’) —<P(bibj -y Ci,j;i',j’bi’bj’)-
bi/bj/EQl bi’bj’te
(@",jN<G.J) (7<)
The expression (p(b,-bj - Zbi/bj/te,(i/,j’)<(i,j) ci,j;i/,j/b,vbj/), or ¢(I;,j), denotes
some linear combination of the multiplicative generators by of 5. Define integers C; ; .k
by

(4-3) ¢(bibj - ) Ci,j;i/,j/bi/bj/) =Y Cijubr.
bi/bj/EQl k
(W".J)<G.J)

‘We have
Z bibj ® (b7) (/")
bibj€Q>
= > D i jrbirbp @GP (B = Y (ZCi,j;kbk)®(b;)0p(b;k)0p-
bibj€Q> b,-/bj/EQl bibjeQ> k

(@",j)<G.J)
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On the right side of this equation, the first term cancels with the first term
D bib ® ()P (B
bi bj GQI
of expression (4-1), by (4-2). Thus, we see that
(M2 ®p2) 000 (d®E®id)ose) =~ Y (Z Ci,,-;kbk) ® (b)) (b})™.
b,' b]' €Q» k

Now we consider the terms (uq ® |id|) 0 8(e) and (id ® 1) o 8(e). The first of these
is zero, because B has no differential. The second may be written as

(d®p1)od(e) =) br @ (p*(bf))*™.
k

To compute ¢*(b;) as an element of /*, ie a homomorphism from I to Z, use (4-3)
above: this homomorphism sends the generator

Lij=bibj— ) cijijbiby
bi/bjreQ
@,j)<(])

of I to the coefficient C; j.x € Z.

We want to view ¢*(b;) as an element of B ' of homological degree 2. To do this,
following Definition 4.3.3, we pick any extension of ¢*(b;) to a functional from
V Qg V to Z, or in other words an element of V* ® g V*, and then consider this
element modulo the ideal /1. Since {1i,j | bibj € 023U Qy isa Z-basis for VgV,
we may extend ¢* (b)) to V ®g V by defining it to be zero on any b;/bjs in Q.

This extended ¢*(b;) sends b;bj € Q3 to C; jx, since it sends I;,;j to Cj j; and
sends every b;y'bjs € Q; to zero. Thus,

0*(bp)= > GCijukbb;.
b,'bj GQZ

We conclude that

(ld Q Ml) o S(e) = Z bk (29 Z Ci’j;k(b}k)op(b?)op’
k bibjeQ>

canceling the remaining term of (i, ® py) oo o (id® § ® id) o 6(e). This computation
verifies that the type DD structure relations for ¢ are satisfied. |
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We can also reverse the roles of B and B': define §: R — B' Qg (B)° by
§'(e) =" b ® (b)),
i
where again the sum is over all multiplicative generators b; with left idempotent e.

4.5.4 Proposition The map §' satisfies the type DD structure relations.

Proof The proof is similar enough to the proof of Proposition 4.5.3 that we will omit
it to save space. O

4.5.5 Definition The rank-one type DD bimodules constructed in Proposition 4.5.3
and Proposition 4.5.4 will be denoted K (B and B'KB” respectively.

4.5.6 Remark In [6, Section 8], Lipshitz, Ozsvath and Thurston define a notion
of Koszul duality in the language of DD bimodules: two algebras B and B’ are
Koszul dual if there exists a rank-one DD bimodule over B and B’ which is quasi-
invertible (and such that the algebra outputs of the DD operation § lie in the kernel
of the augmentation maps on B and B’; this technical condition is satisfied for all the
bimodules we consider). We will not define the notion of quasi-invertibility precisely
here; see [6], although they use Z /27 coefficients.

By Proposition 4.5.3, we get a type DD bimodule over H” and (H™)'; Proposition
4.5.4 gives us a type DD bimodule over (H")' and H". It would be interesting to
know whether these bimodules are quasi-invertible; if they were, then (H )" could be
regarded as the Koszul dual of H" in this generalized sense.

However, bordered Floer homology has even stronger duality properties: Theorem 13
of [6] asserts that the bordered surface algebra A(Z, i) is Koszul dual to both A(Z, —i)
and A(Z, 1), where Z is a pointed matched circle and Z, is another pointed matched
circle constructed from Z. This situation contrasts with that of A", where the quadratic
dual algebra is infinitely generated and thus much larger than H” itself. Below, we
will see that Roberts’ construction is able to avoid this issue.

5 Khovanov’s algebra and Roberts’ algebra

In this section we begin to discuss Roberts’ bordered theory for Khovanov homology
from [11; 12]. Roberts’ bordered theory uses a differential bigraded algebra which
is denoted BT, . This algebra is generated by some right-pointing generators ¢ and
left-pointing generators ‘¢, modulo some explicitly given relations. The differential
on BT, is zero on all the right-pointing generators e .
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We start by defining an algebra Bg(H") using the structure of H”", with its additive
basis B = {(W(a)b,0)} and set of multiplicative generators Byuic = {/1y,he}. In
Proposition 5.1.9, we show that Bg(H™") is isomorphic to the subalgebra BgI',, of BT,
generated by the right-pointing elements.

The subalgebra BgI, is a linear-quadratic algebra. Its quadratic dual, as defined in
Section 4.3, is closely related to the subalgebra By I';, of BI';, generated by the left-
pointing elements. More precisely, in Definition 5.2.6 we define a mirroring operation
on algebras over Zg, and in Proposition 5.2.8, we show that B I'; is a quotient
of m(Bgr(H™)"), the mirroring of the quadratic dual of Bgr(H") = BrTy, by a few
explicitly given extra relations.

Finally, in Section 5.3, we take a suitably defined product of m(Bg(H™))' and Bg(H,),
obtaining an algebra whose quotient by the same extra relations as above is BI,.

5.1 Right side of Roberts’ algebra

As in Section 3.1, let 8 denote the Z-basis {(W(a)b,o)} of H". As at the beginning
of Section 3, let Z,, denote the idempotent ring of H”. The space Homgz, (H", H")
of left Z,—module maps from H” to itself is a free Z-module. A Z-basis for
Homz, (H", H") has generators e(h, h,) for each pair iy € B, h, € B such that /1
and /i, have the same left idempotent. Here, e(/1, k) is the homomorphism that
sends /11 to /i, and sends all other basis elements in 8 to zero.

Note that Homz, (H", H") has the structure of a ring, with multiplication given by
composition. We will define a grading on Homz, (H", H") which differs from the
usual one by a factor of —%.

5.1.1 Definition Let e(/y,h,) be a generator of Homgz, (H", H"). The degree of
e(hy, hy) is defined to be %(deghl —deghy).

5.1.2 Remark This choice of grading has the advantage that it agrees with Roberts’
choice, but it can also be justified on its own grounds. The factor of —1 comes
from the fact that Khovanov, in [4], replaces the usual g—grading by its negative, to
make H" positively rather than negatively graded. We will see below (in the proof
of Proposition 6.4.1 in particular) why the factor of % is reasonable. Note that while
this grading is now a %Z—grading rather than a Z—grading, it will always function as
an intrinsic grading rather than a homological grading. Thus, it will have no effect on
signs and we are free to use a %Z—grading if desired.

The elements e(h, h) € Homg, (H", H"), for h € 8, generate a subring which is
isomorphic to a direct product of copies of Z. We will denote this subring by Zg; note
that Zg is isomorphic to the idempotent ring of BI',, and hence of BrI', as well.

Algebraic € Geometric Topology, Volume 17 (2017)



1598 Andrew Manion

5.1.3 Definition Let Bgr(H") denote the smallest subring of Homz, (H", H") con-
taining Zg and containing every e(/1, ) such that /1, occurs as a nonzero term in
the B—expansion of %y - &, for some £ in the set of multiplicative generators Bpu. We
may view Bg(H") as an algebra over Zg.

The algebra Bg(H") inherits an intrinsic grading from the grading on Homz, (H", H")
defined in Definition 5.1.1. The degree-0 summand of Br(H") is its idempotent
ring Zg. The multiplicative generators e(/1, h5) such that /5 occurs as a nonzero
term in the basis expansion of /; - &, for some y, have degree —1, since %, has
intrinsic degree 1. Those such that /1, occurs as a nonzero term in the expansion of

some /1 - hy have degree —1, since /iy has degree 2.

A natural set of multiplicative generators for Bg (/") as an algebra over Zg is given in
its definition, namely the elements e(/y, &,) such that /1, occurs as a nonzero term in
the B—expansion of /i1 - i, for some /4 in the set of multiplicative generators Buuyc. If
h = h,, the corresponding element of Bg(H") will be denoted by,.5, p, . If h=hg, the
corresponding element of Bg(H") will be denoted b¢.p, 1, , Whereif hy = (W(a)b, o),
then C is the circle in W(a)b containing «. Note that for a fixed /1, all arcs o’ which
lie on the same circle C as o in W(a)b yield the same generator bc.p, p, of BR(H").

5.1.4 Remark We use notation with subscripts, such as by,.5, p, OF bcip, hys tO
refer to elements of Br(H"). We also use b, without any subscripts, to refer to a
crossingless matching. Below, if y is a bridge on b, we will let h(y) denote the
crossingless matching obtained by surgery on b along y .

There are no linear relations among the generators b,,.5, p, and bc.p, »,. The genera-
tors are homogeneous with intrinsic degree —% or —1, so they are in the kernel of the
augmentation map on Br(H™) (which is the projection onto the degree-0 summand).
The left idempotent of each generator of the form b,,., n, and bc.p, 4, is e(hy, hy);
the right idempotent is e(/,, h;). For compactness of notation, we will identify each
elementary idempotent e(/, 1) € Zg with the corresponding element & € B. Thus, we
say that the left idempotent of b,,.,, n, and bc.p, p, is i1 and the right idempotent

is hz.

We will show that Bg(H"), with the set of generators b,.;, p, and bc.p, 4y, is a
linear-quadratic algebra. The proof will closely follow that of Theorem 4.2.1.

Let V' be the free Z-module spanned by the generators of Bg(H"); as discussed above,
the idempotent ring Zg has left and right actions on V. We may write Br(H") =
T(V)/J for some ideal J of T(V). Let J, :=J N(T'(V)® T?(V)). We identify
a set of generators for J.
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5.1.5 Proposition The ideal J, of linear-quadratic relations of Bgr(H") is generated
by the following relations:

(1) Suppose y and n are two bridges which can be drawn without intersection on the
same crossingless matching b ; let ' denote the bridge on b(y) corresponding
to n, where b(y) is the crossingless matching resulting from surgery on y .
Define y’ similarly. For any choice of (a,0), let hy = (W(a)b,0) € . If the
generators by,.p, p, and by.p, p, existin Br(H") for some hj, h3 in B, we get
a relation
by:hy by by'sha ks — Dnshy oDy’ by € T2,
where h is any element of B such that by:hyhy and by’ :h, py existin Br(H™).
(2) Suppose y is a bridge on a crossingless matching b. For any choice of (a,0),
let hy = (W(a)b,o) € B. Let C be any circle in W(a)b. Let C’ be any circle
in W(a)(b(y)) which corresponds to C under surgery on y ; if the endpoints
of y do not both lie on C, then C’ is unique, and otherwise there are two

choices for C'. If the generators by, 5, and bcr.p, p, exist in Br(H") for
some h,, h3 in B, we get a relation

by:hy,habCihy ks — DCihy iy Dy iy by € 2,

where h, is any element of B such that bc.j, ji, and by.h,,h; €Xist; note that
hy is uniquely determined by C and h .

(3) For any choice of (a,b,0), let hy = (W(a)b,o) € B. Let C; and C, be two
circles in W(a)b . If the generators bc, ., .n, and bc, p, p, existin Bgr(H") for
some hy, h3 in B, we get a relation

bc, ;hl,hzbcz;hz,h3 —bCyshy;habey ok € J2,

where 52 is any element of B such that bc,:p,;h, and bc, i, h, €xist. As above,
hy is uniquely determined by C, and h; .

(4) Finally, suppose y is any bridge on a crossingless matching b. Recall from
Section 4.2 or Roberts [12, Definition 10] that y has a dual bridge )/T. For
any choice of (a,0), let hy = (W(a)b,o0) € B. If the generators by, h,
and by t.p, p, existin Br(H") for some hy, h3 in B, then hs differs from h
by switching the sign of one circle of W(a)b from plus to minus. Let C denote
this circle. We get a relation

byihyhybyTiha by —bCshy by € T2
Proof Since Br(H") is an intrinsically graded algebra, if we have a relation in J;,

then each of its grading-homogeneous parts must also be in J,. Thus, we may analyze
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J> one degree at a time. Since the generators of Bg(H") have intrinsic degree —%
or —1, and we are trying to identify the linear-quadratic relations among them, we
may assume these relations have intrinsic degree —1, —% or —2. The case of intrinsic
degree —% is excluded since any such relation would be a linear dependency among
the generators of Br(H").

The relations of intrinsic degree —1 may be sums of quadratic monomials in the
degree —% generators by.;, p, of BR(H") and linear monomials in the degree —1
generators bc.p, p,. Analyzing the possible cases, we get the relations of items (1)

and (4) above.

The relations of intrinsic degree —% are sums of quadratic monomials, each involving
one degree —% generator b,,.;, p, and one degree —1 generator bc.p, 4,. These

relations are generated by the relations of item (2) above.
Finally, the relations of degree —2 are sums of quadratic monomials in the degree —2

generators bc.p, p,. They are generated by the relations of item (3) above. O

5.1.6 Remark As in Section 4.2, Proposition 5.1.5 is not actually needed to prove
Proposition 5.1.7. We could instead introduce J,, generated by the relations in
Proposition 5.1.5, and show that J C T(V)-J,-T(V).

5.1.7 Proposition With J and J, defined as above, we have
J=TWV)-J-T(V).

Thus, Br(H") is a linear-quadratic algebra.

Proof We want to show that J C T'(V)-J,-T(V). As in Theorem 4.2.1 above, it

suffices to show that for a general element r of J, one may successively add to r

elements of the ideal generated by the relation elements listed in items (1)—(4) of
Proposition 5.1.5, until one obtains zero.

Let r be an arbitrary element of J. We may assume without loss of generality
that r has a unique left idempotent and right idempotent. Since J is an ideal of the
tensor algebra 7'(V), r may be written as a linear combination of monomials in the
generators by.p, p, and bc.p, p, - Let

r=Y nibi1-big).
i

where n; € Z and each b; ; is one of the generators by,.5, p, OF bC:py hy -

Consider one of the monomial summands m; = b; 1 --- b; ;, of r. After adding elements
of T(V)-J,-T(V) to this monomial, we may assume that all the b,,.5, 5, generators
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among the b; ; come before (ie with lower j than) the bc.,, p, generators. The
necessary relations come from item (2) of Proposition 5.1.5. Let m/ denote the
monomial obtained by modifying m1; in this way.

rite m’; as m,, ; -mc ;, where m,, ; is a product o b h, generators and mc; is a
Write m] v, i»wh v, product of by,.p, 1, & t d mc,
product of b¢ .y, n, generators. Let /1 € B be the left idempotent of 11, ; and let 4 € B
be the right idempotent of m,, ;. Note that /4 does not depend on 7, since / is the left
idempotent of our original relation term 7.

Viewing /1 and h; as elements of H”, let e € Z, denote the right idempotent of /.
Let ¢’ € 7, denote the right idempotent of /7, which does not depend on i since the
monomial mc; is a product of bc generators. As in Theorem 4.2.1, e and e’ are
vertices of Gy, the undirected Hasse diagram of NC,,. To the monomial m,,;, we can
associate a path p(m,,;) from e to ¢’ in Gy.

We claim that we may further modify »2; such that p(m, ;) is a minimal-length path
between e and ¢’ as vertices of G,. Indeed, suppose m,,; corresponds to a path of
nonminimal length between e and e’. Write my,; = by :n; hy * - Dyyihy by, - Then
there exists a minimal index 2 < j <k such that by, s, h, -+ by, _,;h;_,,h; corresponds
to a path ¢ of minimal length in Gy, but by, :n, 4y *+ - by;:h; 8., does not.

Let eg(hj) € I, denote the right idempotent of /2. Then eg(%;) is a vertex of G, and
the distance in G, between e and eg(h;) is j — 1. However, the distance between e
and eg(hj41) is j — 2 rather than j; the argument is the same as in the proof of
Theorem 4.2.1. Thus, there exists a path 1} in Gy, of length j —2, from e to eg(hj41).
Appending eg(/;) to the end of the path 1}, we get a path ¥ in Gy, of length j —1,
between e and eg(h;). By assumption, ¥ is a minimal-length path.

We now have two minimal-length paths ¢ and v between e and eg(/;). The path ¢
corresponds to the monomial by, 4, .k, -+ by; _y:h;_;,h; - The path ¢ corresponds to a
monomial by{:hu% ‘.- b)’}_2§h}_z’h}_1'bl’;?h}_l ,hj» and we have €R(h}_1) =epr(hjy1).
By Lemma 4.2.4, we may modify ¢ one vertex at a time to obtain . Such modifications

can be mirrored on the level of monomials by adding relation terms obtained from
item (1) of Proposition 5.1.5. Thus, we may modify m,, ;, which equals

byishihy 'byj—l;hj—l,hj 'byj shjshjvr ™" 'b)’k;hk,hk+1’
by adding terms in 7 (V) - J, - T (V') to obtain

byjshymty byl iy Dy S kg Dy gy Dy by -
Inside this monomial is by]T;h;._l,hj “by;:h; h; 4 » Which may be replaced with a
bC;h}_l,h ;4 term using the relation terms in item (4) of Proposition 5.1.5. As before,
this bc term may be commuted to the right side of m;.

Algebraic € Geometric Topology, Volume 17 (2017)



1602 Andrew Manion

After this modification, we have strictly reduced the length of m,,; in the factorization
of m} as my,;-mc,;. If the new m,,; still does not represent a minimal-length path
in G, we can repeat the same procedure and eventually it will terminate.

At this point, we have shown that we can modify our original » =) _; n;(m;) by adding
terms in 7°(V) - J, - T(V), until each m; is a monomial factorizable as m,, ; -mc,;
with m,,; representing a minimal-length path in G, . The starting and ending vertices
of all these paths are the same. Thus, by Lemma 4.2.4 and the relations from item (1)
of Proposition 5.1.5, we may do further modifications until all of the m,, ; are the same
monomial m, and we have

r=m,y Zni(mc,i) modulo T (V) - J, - T (V).
i
Since r was assumed to have unique left and right idempotents in Zg, the set of
circles C involved in each term m ¢ ; of the above expression must be the same. Thus,
using relations from item (3) of Proposition 5.1.5, we may rewrite each mc; as the
same monomial m¢ . Then

r=N-mymc modulo T(V)-Jy-T(V),
where N =) n;.

Finally, we use the fact that r € J, or in other words that r = 0 as an element
of Br(H"). This condition implies that N -m,m¢ must also be in J, since it differs
from r by an element of T(V)-J, - T(V) which is contained in J .

Note that Br(H") is a subring of Homz, (H", H"); the element m,mc may be
identified with the left R—linear map from H" to H" which sends e to ¢’ and sends
all other elements of B to zero, where ¢ and ¢’ here are the left and right idempotents
of mymc. If N -mymc is zero in Br(H"), then it is zero in Homz,(H", H"),
implying that N must be zero.

In other words, starting with r € J above, we have shown that » = 0 modulo
T(V)-J,-T(V). Hence J C T(V)-J,-T(V), so Br(H") is a linear-quadratic
algebra. a

Now we can see that Bgr(H") is isomorphic to Bgl,. First, we define the latter
algebra more precisely.

5.1.8 Definition Let B[, be Roberts’ algebra from [11; 12]. Let Bgr[', be the

subalgebra of BI', spanned over Zg by those generators ¢ with right pointing arrows
(BT, also has some generators e with left pointing arrows). The subalgebra BT,
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has no differential. It inherits a bigrading from BT, (see [12, Definition 19]); the
homological grading is identically zero on BrIl';,.

5.1.9 Proposition Bgr(H") = BgrI'y as bigraded algebras over Tg.

Proof An examination of the subset of Roberts’ algebra relations in [12] which involve
only right-pointing generators shows that they correspond with the relations listed in
Proposition 5.1.5 under the (bigrading-preserving) identification of the generators b
of Br(H") with the generators ¢ of BRT,. Thus, this proposition follows from
Proposition 5.1.7. |

5.2 Left side of Roberts’ algebra

5.2.1 Definition Let BT, be the subalgebra of BI', spanned over Zg by those
generators e with left pointing arrows. The bigrading and differential on BT, give us
a bigrading and differential on By I';.

We will see that BrI';, may be identified, after a mirroring operation defined in
Definition 5.2.6, with a quotient of the quadratic dual (Bg(H™"))' of Bgr(H™) by a few
explicitly given extra relations.

First, we analyze the dual algebra (Bg(H"))". As an algebra, it is the quadratic dual
of (Br(H™))©® . We may write Bg(H™) as T(V)/J, where if
Jy=JN(T'(V)eT*(V))
then we have
J=TWWV)-J,-T(V).

Let I denote the image of J, under the projection map 7' (V)@ T*(V) — T?(V)
onto the second summand. Then

(Br(H")® = T(V)/I,
(Br(H™) = T(V*)/I.

The ideal J; is generated explicitly by the relations listed in Proposition 5.1.5. We
may discard the linear parts of these relations, and keep the quadratic parts, to get a set
of generators for /. These generators have a simple form: if r is a generating relation
in I, then r is either a single quadratic monomial or a difference of two quadratic
monomials.

Define a graph G whose vertices are all quadratic monomials appearing with nonzero
coefficient in some relation r € /. Two monomials v and ¥ are connected by an edge
inGifv—visin [.
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5.2.2 Proposition The graph G is a disjoint union of isolated points, line segments
(two points connected by an edge and disconnected from the rest of G ), triangles (three
points, all connected, and disconnected from the rest of G ), and tetrahedra (four points,
all connected, and disconnected from the rest of GG ).

Proof Define a graph G’ with the same vertices as G ; two monomials v and 7 are
connected by an edge in G’ if v—7 is the quadratic part of one of the explicit relations
(1)—(4) listed in Proposition 5.1.5. We will determine the structure of G’ by looking at
the quadratic parts of the relations (1)—(4); G may be obtained from G’ by replacing
each connected component of G’ with a complete graph on the same number of vertices.

First, the isolated points in G’ are quadratic monomials of the form

byihy hyby T ha by
these are the quadratic parts of relations from item (4) of Proposition 5.1.5.

Next we look at relations from item (1) of Proposition 5.1.5, which have no linear parts
and are already quadratic (the same applies to items (2) and (3); only the relations from
item (4) have linear parts). Some of the line segments in G’ come from relation terms

by:hy hyby'shy by — Dyshy iy Dy s s »

where y and 5 are two bridges which can be drawn on the same crossingless matching
without intersection, such that n € By (L, y) in the notation of [12, Proposition 11].
Roberts’ L corresponds to our W(a)b.

Other line segments in G’ come from the same relations when 1 € B,(L,y), in every
case except when y splits a plus-labeled circle and 1’ joins the two newly formed
circles into a new minus-labeled circle. For notations like B,(L, y) and By (L,y),
see Roberts [12, Proposition 11].

Line segments in G’ also come from relations by.4, h,0Cihy by — OCihy iy by iin by Of
item (2) of Proposition 5.1.5 when the circle C is disjoint from the support of y and
from relations bc,:h,,hy0Cyihy.hys — OCoihy i OCy ko, Of item (3) of Proposition 5.1.5,
where C; and C, are two distinct circles labeled + in /.

The remaining relations from item (2) of Proposition 5.1.5 give configurations of three
vertices in G’ connected by two edges. We get triangles in G which connect triples

{by;hl,hzbc;hz,hs ) bCl;hlﬁzby;flz,hs ) bCz;hlJ:lzbJ/;Zz,hs}’
{0C;hy haDysha by Dyshy i DCy i s s by;hl,zzbcz;/iz,h3}
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when the circle C is not disjoint from the support of y. The rest of the triangles in G
connect triples

Oy 13k haDssha by s Dysshy iy Dxsha b s Dysshy ,Ezb*;zz,hs}
when y; € Bg(L, yj) for 1 <i, j <3, using relations from item (1) of Proposition 5.1.5.

We have accounted for the quadratic parts of all relations from items (2)—(4) of
Proposition 5.1.5, as well as most of the relations from item (1). The remaining
relations from item (1) give rise to squares of four vertices in G’ and thus to tetrahedra
in G'. These four-vertex components exist whenever we have two bridges y and 7,
with n € B,(L,y), such that y splits a plus-labeled circle and 1’ joins the newly
formed circles into a minus-labeled circle. In such cases, we have four quadratic
monomials which are all equal modulo the relation terms in / (and thus are connected
in G). These can be written as by:n, s, by/sha by > Dyihy iaDy/sha by » Dushy oDy’ sho ks
and bp;p, ﬁzby';;z,M . d

Order the set of generators by, 1, and bc.p, p, of BR(H") such that the by,.4, p,
come before the bc.p, 4, in the ordering. Using G, the generators of / may be
summarized as follows: for every connected component of G, there exists a minimal
vertex v. For all other vertices v in the same component of v, there exists a relation v—v
in I, and if v is a singleton, then v is also a relation in 7. These relations are a set of
generators for I as in Remark 4.1.3.

We may use the reasoning of Remark 4.3.2 to identify a set of generators for I+ . For
any quadratic monomial in the generators » which does not appear as a vertex of G,
the corresponding monomial in the generators »* is an element of 7*. Isolated points
of G do not give generators of 7*. For every line segment in G between vertices v
and U, let v* and (0)* denote the corresponding monomials in the generators b*.
Then v* 4 (0)* is an element of 7*. For every triangle in G with a minimal vertex v
and two nonminimal vertices ¥ and v, let v*, (¥)* and (0)* denote the corresponding
monomials in the generators b*. Then

v +(0)F + (0)*

is an element of 7. Finally, for every tetrahedron in G with a minimal vertex v
and three nonminimal vertices ¥, v and v, let v*, (§)*, (0)* and (0)* denote the
corresponding monomials in the generators b*. Then

v+ @)+ (B + (D)

is an element of /1. The above-listed elements generate /-,
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We may also compute the action of the map ¢ on the generators of I, using the
relations from item (4) of Proposition 5.1.5. For every generator of I of the form

by;hl,hzbyT;thls _bC;hl,h_% , we have
@(by:hy habytihyhy) = —bCihy hs-

The map ¢ sends all other generators of [ to zero. Thus, dualizing ¢, we have

* /7 % * *
4 (bC;hlJls) = Z bVi§hl,h2,ib)’,T§h2,i,h3’
i
where the sum runs over all bridges 3; on the right crossingless matching of /2; which
have an endpoint on C, as well as all compatible / ;.

Finally, (Bgr(H™))' is bigraded; the generators b;ﬁ;h \.h, have degree (% 1) since
by:.h,,n, has degree (—%,0), and the generators b¢.; 5, have degree (1,1) since
bc:h, ,h, has degree (—1,0). Here, the first index denotes the intrinsic degree, and the
second index denotes the homological degree (this is the reverse of Roberts’ convention).
The generators of Br(H") are all placed in homological degree 0.

5.2.3 Remark While the quadratic dual of an algebra which is finitely generated
over Z (like BgrI',) may in general be infinitely generated over Z, the algebra
(Br(H™))! is finitely generated over Z. In fact, the relations on the algebra are
irrelevant for this property: T(V*) is already finitely generated over Z, since the
structure of the idempotents only allows monomials of a certain length in the generators
of V* to be nonzero. The same is true for T(V).

We can now relate (Bg(H™))! with Bz T,,. To do this, we need to define a mirroring
operation for modules and bimodules over the idempotent ring Zg of (Br(H m))!
and Bp1,.

5.2.4 Definition Let X be any module or bimodule over the idempotent ring Zg.
The mirror of X', denoted m(X), is the module or bimodule whose actions of Zg
are the actions on X', precomposed with the map from Zg to Zg which mirrors each
elementary idempotent across the line {0} x R. Note that m(m(X)) = X .

5.2.5 Example Suppose X is a left module over Zg. Let x € X and let m(x) denote
the corresponding element of m(X). Let & = (W(a)b, o) € Zg; then

h-m(x) :=m(mh)-x),

where m(h) is (W(b)a, m(c)) and m(o) is the same labeling of circles as ¢, mirrored
across {0} x R. See Figure 6 for an illustration.
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m(x) = m @-x

Figure 6: The mirror of a left module over Zg

We will have definitions related to Definition 5.2.4 for Zg—modules and bimodules
with more structure. Here, we are concerned with algebras.

5.2.6 Definition Let B be a differential bigraded algebra over the idempotent ring Zg.
The mirror of B, denoted m(B), is the same differential bigraded ring as 5. As an
algebra, the left and right actions of Zg are mirrored as in Definition 5.2.4. The map
from B to m(B) sending b € B to m(b) € m(B) is an isomorphism of rings (but not of
algebras); its inverse is the analogously defined map from m(B) to m(m(B)) = B. To
avoid confusion with other uses of the letter m, we will refer to both of these mirroring
maps as mirr: we have

mirr: B —m(B) and mirr: m(B) > m(m(B)) = B.

5.2.7 Remark The mirroring operation for algebras commutes with quadratic duality:
if B is a linear-quadratic algebra over Zg, then

m(B') = (m(B))".

Thus, we can write either of these algebras as m(B)". Mirroring also commutes with
taking the opposite algebra: we have m(B°P) = (m(5))°P, so we can write either of
these algebras as m(B)°P.

5.2.8 Proposition BT, is isomorphic to the quotient of m(Bgr(H™))" by the follow-
ing extra relations. Let the graph G be defined as above; for each tetrahedron in G, the
only relation in m(Br(H™"))' involving the vertices of the tetrahedron is that the sum
of all its vertices is zero. The algebra By I', imposes extra relations among the vertices
of each tetrahedron. Recall that tetrahedra in G arise when we have two bridges y
and n, with n € B,(L,y), such that y splits a plus-labeled circle and 1’ joins the
newly formed circles into a minus-labeled circle. The vertices of the corresponding
tetrahedron are, following the discussion above:

o @i =m0y mn)) MO m ) mhs)
o 0= by mii) O i) ming)
o i =mGnmn)mii) Oy miin) mhs)
o d =g, mi) " B5 ) mhs))-
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Whereas the algebra m(Bg(H™))" imposes only the relation a +b + ¢ +d = 0, the
algebra By I';, imposes the relations

e a+c¢=0,
e a+d=0,
e b+c=0,

e b+ d =0 (this relation also follows from the previous three).

From these relations, a + b + ¢ + d = 0 may be deduced, as well as relations for the
two remaining edges of the tetrahedron:

e a—b=0,
e ¢c—d=0.

Proof Consider the map from m(Bg(H"))' to BT, sending m(b3.m(hy).mhy)) ©
(e—y;hhhz and sending m(bé;m(hl),m(hz)) to ?C;hhhz‘ By examining the subset of
Roberts’ relations from [12] involving only left-pointing generators, and comparing
with the relations for m(Bg(H™))' above, we see that this is a well-defined surjective
bigrading-preserving map whose kernel is generated by the extra relations listed in the
statement of this proposition. These extra anticommutation relations can be found in
Roberts’ algebra as a subset of the relations (21), case (2) [12, page 98].

After mirroring, the formula above for ¢* agrees with Roberts’ definition [12, Proposi-
tion 25], of the differential on BT, (or equivalently on Br I, since the differential
of any right-pointing generator ¢ of BI, is zero). Since both the differential on
m(Bgr(H"™))" and the differential on Bz T, are defined by the same formula on the
degree-1 generators and extended formally to the full algebras by the Leibniz rule, we
can conclude that the differential on B T, agrees with the differential on m(Bg(H"))'
after quotienting the latter algebra by the extra relations. O

5.3 The full algebra

In the following, B will denote Bgr(H") = BrI', unless otherwise specified.

The goal of this section is to construct a product algebra m(B)' © B and identify BT,
with a quotient of m(B)' ® B. We also want to construct a rank-one DD bimodule for
m(B)" © B using rank-one DD bimodules for m(8)" and B.

By Proposition 4.5.3 and Proposition 4.5.4, we have rank-one type DD bimodules
which we may refer to as 5K B and B'KB” . Like in Definition 5.2.6 above, we can
extend the mirroring operation of Definition 5.2.4 to these bimodules.
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5.3.1 Definition Let B and B, be differential bigraded algebras over the idempotent
ring Zg and let (K, ) be a type DD bimodule over By and B,. The mirrored DD
bimodule (m(K),d') is defined as follows: as an (Zg,Zg)-bimodule, m(K) is the
mirror of K as defined in Definition 5.2.4. As in Definition 5.2.6, denote the natural
map from K to m(K) or m(K) to K by mirr. The DD operation on m(K) is

mirr mirr @ mirr @ mirr

=m(K)— K —> Bi®K® (B)? ————— m(B) @m(K) @m(B,)P.

Applying Definition 5.3.1 to the bimodules 2K B and B'K B* "we get rank-one DD
bimodules which we will denote "B K™BEI" anq mB) gmB)T

We will focus on the DD bimodules 2K B)” and m®)' gmB)™ [ ¢ 81 and &, denote
the corresponding maps d;: Zg — B ®z,4 (BY°P and §,: g — m(B)* ®z, m(B)°P.

The set of multiplicative generators of m(B)" ® B will be the union of the gener-
ator sets of B and m(B)'; there will be inclusion maps from B and m(B)' into
m(B)" © B. Similarly, there will be inclusion maps from m(B) and B' = m(m(B))*
into m(m(B)' © B), and thus maps from m(B)° and (B")°? into m(m(B)' © B)°P.
The algebra m(B)* ® B will be defined such that, when §; and §, are postcomposed
with these inclusion maps, their sum

81 +82: Ig — (m(B)' © B) &1, (m(m(B)' © B))P
satisfies the type DD structure relations.

Let Vp (respectively Vi, (5)!) denote the free Z—module spanned by the multiplicative
generators of B (respectively m(B)"). Then V3 and Vin(s)' have left and right actions
of Zg, and we may write B = T'(V3)/Jp and m(B)' as T (Vi) / Im)' -

Define Vi, as a bigraded free Z—module, to be Vi @ Vi s)!. The actions of Zg on
the summands of Vi give Vi an Zg—bimodule structure.

We will define m(B)! OB tobe T (Viun)/ Jtun, for some ideal Jgyy of 7' (Vi) . We will
define Jgy; with an explicit set of linear-quadratic generators, which will agree with
Roberts’ relations involving both left-pointing and right-pointing elements of BI';.

We can start by analyzing 7' YVia) @ T?(Viunt), which is equal to

(VB® Vinwn)) ® (VBB Vii)!) @ (Ve® Vinws)'))
=Ve® Vi) ® (VR V) ® (Ve® Vinm)) ® (Vi)' @ Vi) ® (Vi) ® Vins)!)-

Thus, T (Vian) ® T? (Vi) is the direct sum of
T'Ve) @ T*(Ve). T'(Vas)) @ T (Vin(s))).
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and two more summands
VR Vinn)', Vmm) ® Vs.
The ideal Jy,; will be generated multiplicatively by
TsN (T (V) @ T* (Vo). Jm@y N (T Vinsy) ® T (Vin(s)))-
and some extra relations
Jextra C (VB ® Vin)!) ® (Vins)! ® Va).
5.3.2 Definition Jexira C (VB ® Vinis)!) ® (Vins)! ® Vi) is defined additively by the
following relations:

(1) For two bridge generators by.p, 5, and m(b;/;m(hz)’m(h3)), the “commutation
relation”

by:hy MOy mhis)) — M Brm(hy).m (i) by sha s

isin Jexua for any s € B such that m(by.pn,).mi,)) @0d by’;hy,n5 exist. The bridges
y" and n are uniquely determined. We will call such relations commutation relations
even though they do not exactly express that two elements commute.

(2) Any generator bc.p, p, of B =Br(H") for n > 1 can be written as a product of
bridge generators by, b, t. Thus, by the commutation relations above, bc.p, p, must
also commute with bridge generators m.(by.(n,).m(hy)): the relation

be:hy Oz m(hs) = M gy (i) D C s s
must be in Jexq, for any };2 € B such that m(b;‘;;m(hl),m(;lz)) and bc;hy ks eXist.

(3) For a bridge generator b,,.5, 5, and a decoration generator m(bé;m(hz)’m(h3)) in
which the circle C is disjoint from the circles involved in surgery on y, we also impose
commutation relations:

byihy M B om(hyym(hiz)) = M OE i,y m(ig)) Py iz

must be in Jexya, for the unique /1, € B such that M(BEm(hy).miy)) A0 byiiy hy
exist.

(4) For two disjoint circles C and C’, we again have commutation relations:

beihy MO m(hay.mhz)) — MO m(hy)m(ia) DCin s
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must be in Jexya, for the unique /1, € B such that MBEm(nyy.miy)) a0 BCiiy hs
exist.

(5) Finally, let y be a bridge and let C be one of the circles involved in surgery on y .
When y joins C’ and C” to form C,

by iy s D m(ngyam(hs) O ity m i) Pyiia ks =D )y (i) Pyiha b

is in Jexera for the unique ﬂz € B and fzz € B such that the relevant generators exist,
and when y splits C to form C’ and C”,

b)’;hljlzm(bé‘/;m(l;z),m(h_g))+b)’;h1J:lzm(bz'”;m(liz),m(h_g))_m(bé‘;m(}u),m(hz))by;hz,hs

is in Jexyra for the unique h » € B and h 2 € B such that the relevant generators exist.

5.3.3 Definition The ideal Jy, is defined by
Jrat 3= T (Vi) - (Js V(T (V) T2 (V)
& (Im@) N (T Vi) ® T*Vins)))) @ Jextra) - T Viun)-
The differential bigraded algebra m(B)' © B is defined by
m(B)' © B :=TVan)/ Jsun.

with a differential induced from the differential on m(B)!. The differential of any
generator of B is declared to be zero.

5.3.4 Corollary BT, as a differential bigraded algebra, is the quotient of the algebra
m(B)' © B by the same additional relations as specified in Proposition 5.2.8. These
relations involve only quadratic monomials with two generators of m(B)".

Proof The relations in Jey, are modeled on Roberts’ relations for BT, in [12]
involving quadratic monomials with one left-pointing and one right-pointing generator;
see [12, Section 2.3]. O

5.3.5 Remark The relations in Definition 5.3.2 were chosen to match Roberts’ qua-
dratic relations involving a left-pointing and a right-pointing generator. A more general
formulation of the product operation ©® would be desirable. The best we can do now
is to say that the relations in Jexya have an additional motivation beyond lining up with
Roberts’ relations: with these relations, §; + 8, defines a valid rank-one DD bimodule
over the product algebra, as we see below in Proposition 5.3.6.
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From the definition of the product algebra m (B )' © B, there are natural inclusion maps
of B and m(B)" into the product. Also, by Definition 5.2.6, we have a mirror algebra
m(m(B)" © B); both m(B) and B' = m(m(B)") have natural inclusion maps into
m(m(B)' © B).

We may view the type DD map
81: Tp — B ®z, (BY™® = B&z, m(m(B))

as a map from Zg to (m(B)! © B) ®z, (m(m(B)' © B))°P, using the inclusion maps
from B into m(B)' ©® B and from m(m(B)")°P into (m(m(B)' © B))°P. Similarly, we
may view

82: Ig — m(B)' & (m(B))*

as a map from Zg to (m(B)! © B) ®z, (m(m(B)' © B))°P using the inclusion maps
from m(B)! into m(B)! ® B and from m(B)°? into (m(m(B)' © B))°P.

5.3.6 Proposition The map §; + 8: Ig — (m(B)' © B) ®z, (m(m(B)' © B))*
satisfies the type DD structure relations.

Proof Many of the type DD structure terms cancel since 6; and 8, individually satisfy
the type DD relations. In particular, all terms of type (41 ® |id|) o6 and (id® ) o4
are accounted for and we are left with terms of type (¢, ® ) oo o(id® 3§ ®id)oé.

The remaining terms of type ((uy @ 2) oo o (id® § ®id) o are those in which one
of the applications of § uses §; and the other uses 6,. These are

-1 =bi-m(b;) ®@m(bj)T - (b)) = —b; -m(b]) @ m(m(b;) - bj),
referred to as terms of type (5-1), as well as
(5-2) m(by)-bi ® (b;)P -m(b;)® = m(b})-bi @ m(bj -m(b]")),

referred to as terms of type (5-2), where b; and bj’." run over all generators of B and B',
respectively, with compatible idempotents. Note that the negative signs in the terms of
type (5-1) come from the sign-flip operator o .

The commutation relations among the relations defining 72(B)' ©® B ensure that all the
above terms cancel, except for potentially two sets of terms.

The first set S of terms includes those terms —b; ~m(b]7") ® m(m(b}) - bj)® of
type (5-1) in which both b; and b; are among the generators b, , and such that the
product b; -m(b ]’.“) corresponds to splitting a circle C on the right into two circles C;
and C, and then joining C; to C, again on the left to produce a new circle C;. It
also includes those terms m(b;‘) -bi @ m(bj -m(b}))°P of type (5-2) with b; and b;
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among the generators b, such that m(bj’.“) -b; corresponds to splitting a circle C on
the left into two circles C; and C, and then joining C; and C, again on the right to
produce a new circle Cj.

The second set S, consists of those terms of type (5-1) or (5-2) in which b; is one of
the generators b, and b; is one of the generators bc, where C is one of the circles
involved in surgery on y.

For all terms except those in S; and S,, commutation relations may be applied to
the type (5-1) term —b; -m(bj’.") ® m(m(b}) - bj)°P uniquely to cancel with a unique
corresponding type (5-2) term m(b;‘/) -bir @ m(bjr -m(b}))°P.

First, we show that the terms in S sum to zero. If the type (5-1) term —b; -m(bj’.k) ®
m(m(b})-b;)° is in Sy, then there are two terms m(b}“,)-b,-/ ®m(bjr-m(b}))°P and
m(bj’.",,) -bir @ m(bj»-m(b},))°P of type (5-2) in S; which have the same left and right
idempotents as —b; -m(bj’.") ®@ m(m(b}) - b;)°P. By the commutation relations, both
these terms are equal to b; -m(bj’.“) @m(m(b})-bj)P.

Furthermore, there is one other type (5-1) term —b;» -m(b;.‘,,,) ® m(m(b};,) - bjn)°P
of S; which is equal to both —m(b]’.",) -bir @ m(bj: - m(b},))°? and —m(b]’f‘,,) -bir @
m(bj»-m(b},))° by the commutation relations. Hence it is equal to —b; -m(b]’-") ®
m(m(b}) - bj)°? as well. These four terms are the only terms in S; with the same
idempotents as —b; ~m(bj’.") ® m(m(b})-bj)°P, and their sum is zero. Thus, the terms
in §7 sum to zero.

Now we show that the terms in S, sum to zero. If b; is a b, generator and b; is
a bc generator with C involved in surgery on y, then suppose first that y joins
two circles C; and C, to produce C. By item (5) of Definition 5.3.2, we have
bi -m(by) = m(b}*) bl + m(bj//*) - b, where b]’. and b}/ are the generators b,
and bc,, and b} and b} are the appropriate b, generators.

Thus, if —b; -m(bj’.") ® m(m(b}) - b;)P is the corresponding term of type (5-1), we
have

—b; -m(b]’-k) @ m(m(b})-b;j)°®P

= —m(b") b} @ m(m(bF) b)) —m(b}*) - b} @ m(m(BF) - by)?

= —m(b}*) b ® m(b} -m(b[*))°P —m(b]/-/*) b ® m(b;-/ -m(b]*))°P,
where in the last step we use commutation relations from item (2) of Definition 5.3.2.
The two resulting terms cancel the two relevant terms of type (5-2). The case when y

splits a circle, rather than joining two circles, is analogous, so the terms in S, sum to
Zero.
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Hence all the relation terms cancel and (§; + ;) satisfies the type DD structure
relations. |

A general property of type D structures and type DD bimodules over an algebra B is
they give induced type D or DD structures over any quotient of 5.

5.3.7 Proposition Let B be a differential bigraded algebra; let J be a bigrading-
homogeneous ideal of B which is preserved by the differential on B. Let w: B — B / J
denote the quotient projection map. Let (D 8) be a type D structure over 3; then D
descends to a type D structure over B/ J , with structure operation

~ & ~ - ~
b B9b 8 B/J)® D.

Similarly, if B’ and J' are another algebra and ideal satisfying the same conditions
as B and J, and (DD, ) is a type DD bimodule over B and B’, then DD descends
to a type DD bimodule over B/J and B’/J’, with structure operation

—~ § —~ ®id®(7”)°P —~
b 5 Be Db & (B 22", B/ 1)@ DD ® (B'/J)™.

Proof This is a simple consequence of the type D and type DD structure relations. It
is also a special case of induction of scalars for type D structures as defined by Lipshitz,
Ozsvath and Thurston [7, Section 2.4.2]. O

We know that BT, is a quotient of m(8)' © B, and it follows that m(BT,)° is a
quotient of m(m(B)' © B)°P.

5.3.8 Corollary The map Zg — BT, ®z1, m(BT,)°P obtained by postcomposing
81 + 8, with the tensor product of the quotient projections from m(B)' ©® B and
m(m(B)' ® B)° onto BT, and m(BT,) satisfies the type DD structure relations.

Thus, we have rank-one type DD bimodules

m(B)" @BKm(m(B)’ @ B)er and BTngm@BTa)®

5.3.9 Conjecture Either or both of the DD bimodules ®)' @ Bgmm(®B)' OB)* anq
B gmBLa)* gre quasi-invertible. Hence, either or both of the algebras m(B)' ©
B and BT, are Koszul dual to their mirrors, m(m(B)" ® B) and m(BT}), in the
generalized sense of Lipshitz, Ozsvéth and Thurston [6].
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A proof of the above conjecture would provide a nice parallel between Roberts’ theory
and bordered Floer homology. In bordered Floer homology, the rank-one DD bimodule
corresponding to the identity Heegaard diagram of a pointed matched circle has a quasi-
inverse, namely the type AA bimodule associated to this diagram. See [6] for more
on the Koszul duality structure of bordered Floer homology, including an additional
duality relating the algebras of a pointed matched circle Z and a dual pointed matched
circle Z.

6 Khovanov’s modules and Roberts’ modules

In this section, we relate Roberts’ type D and type A structures from [11; 12] to the
type D and type A structures over H” from Section 3, or equivalently to Khovanov’s
dg modules [T]¥" which contain the same information. In Section 6.2, we show that
given a chain complex of projective graded right H"-modules satisfying an algebraic
condition Cpogyule defined below in Definition 6.1.1, we may construct a differential
bigraded right module over m(B)' ® B. Applied to Khovanov’s tangle complex [T']¥",
which satisfies Cpodule, this module over m (B )! ® B descends to a module over BI;;
in other words, the relations of Proposition 5.2.8 act as zero on the m (1) © B-module.
The resulting BI';,—module agrees with Roberts’ type A structure.

In Section 6.3, given a chain complex of projective graded left H”-modules satisfying
the algebraic condition Cpogule for left modules defined in Definition 6.3.3, we construct
a type D structure over m(53)' © B. We do this by, first, reflecting the chain complex
of left H"—modules to get a complex of right modules (this operation will be defined
in Definition 6.3.1). Then we take the associated type A structure over m(B)' © B,
tensor with (B OBgm(m®)' OB he DD bimodule from the end of Section 5.3, to
get a type D structure over m(m(8)' ® B), and finally mirror this type D structure
to get a type D structure over m(B)! O B. We may quotient the algebra outputs of
this type D structure by the relations from Proposition 5.2.8 to get a type D structure
over BI'y,, which agrees with the one constructed by Roberts when one starts with the
complex [T]¥P.

Given two chain complexes, one of projective graded left H”-modules and one of pro-
jective graded right H” —modules, their tensor product over H" is a chain complex with
an additional grading, or equivalently a differential bigraded Z-module. In Section 6.4,
we show that this tensor product agrees with the box tensor product of the type D and
type A structures over m (3 ) © B associated to the two complexes in Section 6.3 and
Section 6.2, assuming these complexes satisfy Cpodule- The type A structure is always
an ordinary right m ()" © B-module; if it descends to a BI',—module, then the box
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tensor products of the type A and type D structures over m(B)' © B and BT, agree.
Applying these constructions to Khovanov’s chain complexes [T]¥! of H”-modules,
we get an alternate proof that the pairing of Roberts’ type D and type A structures
recovers the original Khovanov complex.

In Section 6.5, we show that chain homotopy equivalences of complexes of H"—
modules, satisfying appropriate algebraic conditions, give A~ —homotopy equivalences
of the corresponding type A structures over m (53 )} © B. Reidemeister moves on tangle
diagrams yield chain homotopy equivalences of complexes of H”-modules, as shown
by Khovanov in [4]. These Reidemeister-move homotopy equivalences satisfy the
right conditions, and the 4., —homotopy equivalences associated to them descend to
Aoso—homotopy equivalences of type A structures over BI,. This reasoning yields an
alternate proof that Roberts’ type A structures are tangle invariants up to .4, —homotopy
equivalence.

In Section 6.6, we do the same for the type D structures over m(B)' ® B. All homotopy
equivalences of type D structures over m(B)' ® B descend to homotopy equivalences
of type D structures over the quotient BI7,. Thus, we obtain an alternate proof that
Roberts’ type D structures are tangle invariants up to homotopy equivalence.

6.1 Preliminaries

Let M be a differential bigraded projective right H”-module, or equivalently a chain
complex of projective graded H"-modules by Proposition 2.2.4 or a right type D
structure over H" by the appropriate analogue of Proposition 2.2.5. Recall that in
accordance with Convention 2.1.1, such an M is assumed to be finitely generated
over Z. Let {x; |i € S} be bigrading-homogeneous elements of M , where S is some
finite index set, such that
M =~ @ x; H"
1

as right H"-modules and each summand x; H" is isomorphic to e H" for some
elementary idempotent e of H” via an isomorphism sending x; to e. The idempotent e
associated to x; will be denoted e(x;).

We will use notation from Section 3.1: B will denote the usual Z-basis of H"
and Byuie Will denote the subset of B consisting of the multiplicative generators /4,
and hy of H". We will further subdivide By into By, consisting of /,, generators,
and By, consisting of /i, generators. Recall that for & € 8, er(h) € Z, is the left
idempotent of 4 and eg(h) is the right idempotent of /.
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The module M has a Z-basis given by
{xi-hy|i €S hyeper(h)=e(xi)}

We define integer coefficients ¢; j and ¢; j,; for i, j € S and 4’ € B by expanding
out the differential of each x;:

~ /
dx)y= > cjxi+ > CijshXj - .
JjeS jeS, h'eB, degh’#0
deg xj =deg x; +(0,1) deg xj +deg i’ =deg x; +(0,1)

6.1.1 Definition M , together with the set of generators {x;}, satisfies the algebraic
condition Croqute if ¢ j.p» = 0 unless 7’ € Brui-

This condition is satisfied for Khovanov’s tangle complexes [7]%"; the natural choice
of {x;} was described in Definition 3.1.2. By slight abuse of notation, we will speak
of M satisfying Cpodute , but the choice of {x;} was necessary to define the coefficients
Ci,j and Ei,j;h’ .
For any M satisfying Cpodule, We can write d(x;) as
d(x;) = Z ci,jXxXj+ Z 5i,j;h’xj'h/
jes jeS.nep,
deg xj =deg x; +(0,1) deg xj=degx; +(—1,1)
+ Z E,-,j;h/x]- K.
jeS.h By
deg xj=deg x; +(—2,1)

This is an expansion of d(x;) in the Z—basis of M .

Thus, if x; -y is a basis element of M, we have

d(xi-h)= Y cijxj-hi+ > Ci,jurXj Iy
JjeS JES,h'EBy
deg xj =deg x; +(0,1) deg xj =deg x; +(—1,1)
+ Z C~i,j;h’xj'h/hl-
JES,h efy

deg xj=deg x; +(—2,1)

However, this is not necessarily a basis expansion of d(x; - /), because the elements
h’'hy € H" are not necessarily elements of the basis . Instead, we may define integer
coefficients ¢ by
h,hl = Z Eh’hl;hth
h2€B
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and thus
d(x;-hy) = Z ¢i,jXj-hi+ Z Ci,jih' Civhyshp X 12
jes JjeS,h' eB, hrepB
deg xj =deg x; +(0,1) deg xj=deg x; +(—1,1)

+ D Gl ha.
jeS,h/e,BO[shzeﬂ
deg xj =deg x; +(—2,1)

This is a basis expansion of d(x; - /1) in the Z-basis of M .

6.1.2 Proposition Suppose M satisfies Cpoduie. The equation d*> =0 on M gives
rise to the following five sets of equations involving the coefficients ¢; j, C; j
and Eh’hl;hz ;

(1) Forall x; and x; with deg x; = deg x; + (0, 2), we have
Zci,jcj,k =0.
j
(2) Forall x;-hy and xj - h3 with deg x;, = deg x; + (—1,2), we have
D @i jsh Chngshs ok i€ ki Comyshy) = 0.
j.hep,

(3) Forall x;-hy and xj - hy with deg x; = deg x; + (=2, 2), we have

> @it Chrmashs &k + € deir Crhss)
Jh'€Ba ~ .

+ D G Chhysha ek Chhashy = 0.

jh'€By,
hNE,By,hzeﬂ

(4) Forall x;-hy and xj, - h3 with deg x; = deg x; + (—3,2), we have
D Gy kst o £ Y i Oy sha Gkt Ch oy = 0.
j:h/eﬂya j:h/eﬂaa
h'€Bu,hreB h'eBy hr€p
(5) Forall x;-hy and xj - hy with deg x; = deg x; + (—4,2), we have
D G Chshad ks Chhahy = 0.

j sh/eﬂtx bl
h’eBu,hr€p

Proof This follows from writing out d2(x; - /) as a sum of basis elements xj - /13,
using the above basis expansion for d(x;-/1), and then grouping the xg - /3 according
to the intrinsic degree of xj, relative to x;. O
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6.1.3 Example Suppose M = [T]X", where T is an oriented tangle diagram in
R<o x R with an ordering of its crossings. We will analyze the generators x; and
coefficients ¢; j.;» and ¢; ;. To specify a generator x; of [T €0 we first specify
a resolution p; of all crossings of T; we can view p; as a function from the set
of crossings to the two-element set {0, 1}. If 7, denotes the diagram 7" with the
crossings resolved according to p;, then T}, consists of a left crossingless matching of
2n points together with some free circles contained in R.¢ x R. The remaining data
needed to specify x; are a choice of + (plus) or — (minus) on each free circle; the
crossingless-matching part of 7). is closed up symmetrically and all resulting circles
are labeled plus. Then [7]¥" has a Z-basis consisting of elements x; -, where the left
crossingless matching of /1 agrees with the matching obtained from 7, by discarding
the free circles.

Let S denote the set of x; specified above. The basis expansion defining ¢; ; and ¢; j.p/

18
dey= Y. g+ Y Gjux

jeS jeS,hep,
deg xj =deg x; +(0,1) deg xj =deg x; +(—1,1)
~ ’
+ Z ci,j;h/x]'-h .
jeS i eBa

deg x; =deg x; +(—2,1)

The coefficients ¢; ; and ¢; j.;» can only be nonzero when the resolution p; of x;
differs from the resolution p; of x; only at one crossing, to which p; assigns 0 and p;
assigns 1. Let #1(i, j) denote the number of 1-resolutions of crossings in x; among
those crossings that, in the ordering on crossings, occur earlier than the crossing being
changed when going from x; to x;.

Changing the crossing to get from x; to x; has several possible effects:

(1) The crossing change could join two free circles or split a free circle. In this case,
¢i,j is (=1)*1G7) and all & .5 are zero.

(2) The crossing change could join a free circle in x;, labeled 4, with an arc of x;.
Alternatively, it could split a new free circle, labeled — in x;, off an arc of x;.
In both these cases, ¢; j is (=1)*1@7) and all Ci,j:h’ are Zero.

(3) The crossing change could join a free circle in x;, labeled —, with an arc «
of x;. Alternatively, it could split a new free circle, labeled + in x;, off an
arc a of x;. In both these cases, ¢;,; is zero and ¢; ;.5 is only nonzero for one
value of /. If a denotes the crossingless matching of x; (or of x; ), then when
h' = (W(a)a, minus on o), we have & j. = (=1)*1@0) . all other Ci j. are
Zero.
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(4) Finally, the crossing change could surger two arcs of x;, changing the crossin-
gless matching. Again, ¢; j = 0 and ¢; ;.5 is nonzero for a unique /’. Let g;
and a; denote the crossingless matchings of x; and x; respectively. Then if
h' = (W(aj)a;,all plus), we have ¢; j.p = (=1)#1@:0) - al] other Cj,j:} are zero.

Note that [T]Kh satisfies Cpodule With the elements x; = x; - 1 as generators.

6.2 Type A structures

As in Section 5.3, let B denote Br(H") = BgI',,. Recall that By Ty, is the quotient
of m(B)' by the extra relations listed in Proposition 5.2.8.

Let M be a differential bigraded projective right H” module as at the beginning of
Section 6.1; assume that M satisfies the algebraic condition Cpogue of Definition 6.1.1
for a set of generators {x; | i € S}. We first define a type A structure A(M )m(B)!
over m(B)'. Then we formally extend A(M) to a type A structure A(M )m(B) OB
over m(B)' © B.

6.2.1 Definition As a Z-module, /T(M ) is defined to be M . A Z-basis for M is
given by {x;-hy|i € S,hy € B,er(hy) =e(x;)}, where {x; |i € S} is the designated
set of generators of M . For A (M), we label the same basis elements as

{Xm |1 €S, hy € Brep(hy) =e(xi)}.

The idempotent ring of m(B)" is Tg; let hy € B be an elementary idempotent of m(B)".
Multiplying X..p, by ha gives Xy, .5, if hy = h; and zero otherwise.

Suppose that the generator x; has bigrading (j, k) as an element of M , and /4 has
grading ;' (or bigrading (;’,0)) as an element of H". Then, as an element of A(M),
the bigrading of X .5, is defined to be

deg/'[(M)(Xx,wh) = (_] - %j/ak)'

The algebra m(B)" acts on A(M) on the right; we will use 715 to denote this action
(not to be confused with m here, which means mirror). Let m(b.pn,y.m(h,)) denote
either m (b, ). m(ny)) ©F MO, )m(hy))- We define

mZ(Xxi-h1’m(b:;m(hl),m(hz))) ::Z Z Ci,jsh' Chyshy Xxj -
j h/eﬂmull

I m(bLmn,).mns) = My mny).mny)) > then C:h’hl .h, is only nonzero for one value
of /', namely 4’ = (W(a')a, all plus), where hy = (W(a)b,0) and hy = (W(d')b,0’).
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For this value of 7/, C:h’h1;h2 is 1. Thus,

(6-1) Mo (X iy s MBS iy i) = D Gyt X o
J

I m(bLmn,ymhy)) = MOE mh,).m(ny)) > then Cwhy:h, Will be nonzero for any 4,
which equals (W(a)a, minus on «), where h; = (W(a)b, o) and « is any arc of a
which is part of the circle C in W(a)a. For i’ equal to one of the /), C:h’hl;hz is 1,
and for all other /', C:’h’hlghz is zero. Thus,

62 Xy MO iy my) = D D Gty Xoyhae
Jj leftarcs o of C

Note that m, is bigrading-preserving; this follows from the degree conditions on x;
and x; in the basis expansion of d(x; -/) given in Section 6.1 above.

We then extend m15 to an action of m(B)' on A(M) by imposing the associativity
relation
myo (id® ) :=myo(my ®id),

where 11, is the algebra multiplication on m(B)'. Below we will verify that this algebra
action is well-defined. Finally, A(M) has a differential m; given by

ml(XX,'~h1) = Zci,jXXj~h1‘
J

6.2.2 Proposition The action of m(B)' on A(M) is well-defined and associative.
Thus, A(M) is a right module over m(B)".

Proof The action is associative by definition, once we show that it is well-defined.
We may write B' as T(V#)/1+; thus,
m(B)' = T(m(V§))/m(IT+).

where the mirrors of the Zg—bimodules Vl;‘ and Z1 are defined as in Definition 5.2.4.
Now, Definition 6.2.1, extended by associativity, gives us a map

AM) ®z, T(m(V)) — A(M).

We want to show that if 72(r*) is a generator of m(I~+), then multiplying any X xih
by m(r*) gives zero.

The generators m (r*) of m(I1) are quadratic in the m(bj,f;m(h ).m(hy)) and they have
intrinsic degree either 1, % or 2. For those m(r*) of intrinsic degree 2, the equations
in item (5) of Proposition 6.1.2 above imply that m(r*) acts as zero on any Xy .5, .
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For those m(r*) of intrinsic degree %, the equations in item (4) of Proposition 6.1.2
similarly imply that m(r*) acts as zero on A(M).

The generators m(r*) of m(I+) which have intrinsic degree 1 are sums of either one,
two, three or four terms m(by)m (b;,) with all coefficients +1. For a fixed m(r*),
let m(hy) € Ig denote its left idempotent and let m(/13) € Zg denote its right idempotent.
The element /13 of § has degree 2 more than /1, as elements of H” with its intrinsic
grading, and &3 differs from /4, by two surgeries on its left crossingless matching.
In particular, the left crossingless matchings of /#; and /5 are different; this follows
from inspection of the generators m(r*) of intrinsic degree 1 which actually appear
in m(I1). Monomials of the form m(b;)m(b;T) do not appear as terms of these
generators.

For any generators of A (M) of the form Xy, ., and Xy, .5, , where /1y and /3 are as
above, with deg x; = deg x; + (—2,2) as elements of M , the equations from item (3)
of Proposition 6.1.2 become

> G enhyshaGi ki Chhashy = 0
Jj.heEBy,
h”eﬂy,hzeﬂ

the terms involving 4’ € B, vanish for these choices of /1 and /3. These equations
imply that all generators m(r*) of m(I+) of intrinsic degree 1 act as zero on A(M).
Thus, the algebra action m, of m(B)" on A(M) is well-defined. |

6.2.3 Proposition The differential m, on A(M) satisfies m% =0, and the Leibniz
rule

myomy =myo(m @ lid|) +myo (id® ;)
is satisfied, where ; is the differential on m(B)'. Thus, A(M) is a differential
bigraded right module over m(B)" and hence a type A structure over m(B)".
Proof First, m% = 0 by the equations in item (1) of Proposition 6.1.2.

We want to show that the Leibniz rule is satisfied for 4(M ). Since the action of m(B)'
on A(M) is associative, and 1 satisfies its own Leibniz rule, it suffices to show that

my o my(Xxphy MOy mng)) = =2 0 (11 KXxion) @ My ) gmihz))
and

mj Omz(Xx,--hl’m(bz;m(hl),m(hs)))
= —myo(my(Xx;.n,) ®m(bé;m(h1),m(h3))) +my Xy, @ 11 (m(bz;m(hl),m(hg)))'
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Note that in the relation involving m(b;), the pq term vanishes.

The first of these two equations follows from item (2) of Proposition 6.1.2. For the
second equation, note that for a fixed /11 € B, the only /3 such that m(b& ., ).mns))
is a generator of m(B)" are those h3 € B which differ only from 4; by changing the
sign of one circle C from plus to minus. We have

OB i m) == D MBS )M B )
hrep

where the sum is implicitly over those /5 € B such that the generators n1(b3.,, (4, ).m(hy))
and m(b3+ . (hy) m(hz)) EXISL.

For such /1y and h3, consider generators Xy,.,, and Xy, ., such that degx; =
deg x; + (=2, 2); these are the only X, .,, which may appear in the basis expansion
of the left or right side of the second equation above. Applying the equations in item (3)
of Proposition 6.1.2 to X,.;, and Xy, .5, , we see that the second equation above holds.
Thus, the Leibniz rule on A(M ) s)! is satisfied. O

Now we formally add actions of B to Z(M ), to make it a type A structure over
m(B)' © B rather than just over m(B)".

6.2.4 Definition The type A operation m, on AM )m(B)!QB is defined as in
Definition 6.2.1 on the generators of m(B)'. On the generators of B, it is defined by

m2(Xx,~-h1vby;h1,h2) = Xxi-hz and m2(Xxi-h11bC;h1,h2) = Xx,--hz-

Note that these actions are bigrading-preserving. To define the action of an arbitrary
element of m(B)' © B on A(M), we impose associativity of the action. Below we
check that this definition respects the relations on m(B)' © B.

6.2.5 Proposition The action m, of m(B)' ® B on A(M) is well-defined; with this
action and the differential my: A(M) — A(M) from Definition 6.2.1, A(M) is a
differential bigraded module (hence type A structure) over m(B)' © B.

Proof First we need to check that
my: A(M) ®z, (m(B)' © B) - A(M)
is well-defined. Recall that the relation ideal Jg, of m(B)! ® B was defined to be

Jran :=T (Vi) - ((J5 N (T (Vi) @ T?(V)))
EB(Jm(B)! N (Tl(Vm(B)!) ) Tz(Vm(B)!))) 7 Jextra) : T(Vfull)~
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By Proposition 6.2.2, the generators of Jyu5)! N (T (Vini)) @ T?(Vin(s)!)) act as
zero on A (M). It is immediate from the definition of the action of 5 on A (M) that
the generators of Jz N (T!(Vg) ® T?(V)) act as zero on A(M).

Thus, to show that m, is well-defined, it remains to show that the generators of Jexira
act as zero on A(M). These generators are listed in items (1)—(5) of Definition 5.3.2.

¢ Consider a relation

by:h MOy mhis)) — M Brem(hy).m (i) Dy sha s

from item (1) of Definition 5.3.2. Write &; = (W(a1)by,01) and let Xy, 5, be a
generator of A(M). Multiplying X,..,, by by.p, n,, We get Xy, Where hy =
(W(ay1)ba,02). Multiplying Xy,.n, by m(byr.(ny) m(ny))» With hz = (W(az)by, 03),

by (6-1) we get
Z Ci jsh Xxj-hs»
J

where 1’ € B is (W(ay)ay, all plus).

On the other hand, if we first multiply Xy,.5; by m(by.pmn,),m(iy))» BY (6-1) we get
> G Xy
J

where /1’ is also (W(ay)aq, all plus).

If we multiply this result by by,; oy W get
Z Ei,j;h’Xxj'h3-
J

Thus, generators of Jexea from item (1) of Definition 5.3.2 act as zero on A (M).
e For relations

ey M By m(hs)) = MOy m(in) O C il s

from item (2) of De~ﬁniti0n 5.3.2, the argument is essentially the same. If &y =
(W(ay)by,01) and hy = (W(az)by,0}), then h' is again (W(az)a;, all plus ). We
still use (6-1).

¢ Consider a relation

byihy iy B Com(hy)m(hiz)) = M OC )y m(ig)) Dy iz
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from item (3) of Definition 5.3.2. Let X,.,, be a generator of /T(M ) and write
hy = (W(ay)b1,01). Multiplying X5, by by.p, p,, we get Xy .5, where hy =
(W(ay)ba,07). Multiplying X .., by m(bz';m(hz),m(hg)’ with i3 = (W(ay)b;, 03),

by (6-2) we get
Z Z Ei,j;hg,Xxj-hsv
J leftarcs @ of C
where /), is (W(aj)a;, minus on «).
On the other hand, if we first multiply X;.5, by m(bam(hl),m(,;z)), by (6-2) we get
Z Z Ci jshty Xxjha
Jj leftarcs o of C
where /), is again (W(a)a;, minus on «).
If we multiply this result by by; fiauhy e WE et

Z Z 5i,j;h&Xxj'h3‘

J leftarcs a of C

Thus, generators of Jexe, from item (3) of Definition 5.3.2 act as zero on A (M).
e For relations
bCi M BE ming) mins) = M BC (i), m(in) O Cio s
from item (4) of Definition 5.3.2, the argument is the same as for relations from item (3).
e Finally, consider a relation
by s (BC iy m(hs) =M O sm(hy) mny) Py ity by =B (i) m(iz) Py s

from item (5) of Definition 5.3.2, in the case where y joins two circles C’ and C” to
produce C. Write iy = (W(a1)by,01) and let Xy, ., be a generator of fT(M). Mul-
tiplying Xy..n, by by.p, 1, We get X, Where hy = (W(ay)b,,0,). Multiplying
Xxi-hy OY MBE (ny) m(ny))» With hz = (W(a1)ba, 03), by (6-2) we get

Z Z Ci,johiy Xxj 3
Jj leftarcs o of C
where £, is (W(aj)a;, minus on «).
On the other hand, if we first multiply Xy,.5, by m (D¢ mn,).miy))» WE get

DD G Xghas

Jj left arcs o of C/
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where /), is again (W(aj)a,, minus on «). Multiplying by by, 5, We get
Yo D G X
J  left arcs @ of C’
Finally, if we multiply Xy, ., by m(b&rmn,).m(iy))» W gt
Z Z 5i,j;h,’xXx,~~Zz'
Jj leftarcs o of C”
Multiplying this result by by, 15, We get
> G X
Jj left arcs a of C”

Now, since y was assumed to join the circles C’ and C” to produce C via a bridge
on the right side of {0} x R, the set of left arcs o of C is the disjoint union of the sets
of left arcs of C’ and C”. Thus, the relation

by iy s OE cm(hyy m(hs) —M O mhyy m(Gin) Py iz hs =B (hyy m(in) Pyiha
acts as zero on A(M). For relations of the form
byihy s MO m(inyyam(hy)) T Oyshy s M OE iy m(ns)

= MODEm(hy)mh) Pyihahs s

where y splits C into C’ and C”, the argument is analogous. Thus, generators of Jexira
from item (5) of Definition 5.3.2 act as zero on A(M).

At this point, we have shown that the action m, of m(8)' © B on A(M) is well-
defined. It is associative by definition. To show that the Leibniz rule is satisfied, it
suffices by associativity to check it on the generators of B and of m(B)', and we have
already done this for the generators of m(58) in Proposition 6.2.2.

Let Xy,.n, be a generator of A(M) and let by.n,.n, be a generator of B. Then
nmi OmZ(Xxi-hl’by;hl,hg) ml(Xxl hz) _ch,j jihoo

while

mz(m1®|1d|)(Xx,h17byh1 hz)_mZ(ch] x]hlv yh1h2) chj x]h29
J
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and the m; o (id® 1) term is zero because @y = 0 on B. The argument is unchanged
for generators bc.p, p,. Thus, the Leibniz rule

mypomy =myo(my ®[id|) +myo(id® puy)

holds and A (M) is a differential bigraded right module over m(B)' © B. |

Now we will consider the case M = [T']X", where T is a tangle diagram in R<o x R.
Recall from Section 6.1 that [T]Kh satisfies Ciodule, SO We get a type A structure
2([T ]Kh)m(g)!@lg. This type A structure descends to a type A structure over the
quotient algebra BI';;.

6.2.6 Proposition The extra relations from Proposition 5.2.8 act as zero on the
m(B)" ©® B-module A\([T]Kh) defined above in Definition 6.2.4. Thus, A\([T]Kh)
descends to a differential bigraded right module over the quotient algebra BI',, of
m(B)' © B by these relations.

Proof Since the relations from Proposition 5.2.8 involve only quadratic monomials in
the generators m(by.,..(n,).m(hy)) ©f m(B)', with no generators from B appearing, it
suffices to show that these relations act as zero on the m(8)'~module A4 ([TT¥") defined
in Definition 6.2.1.

Consider a tetrahedron in the graph G of Proposition 5.2.8, with vertices a, b, ¢ and d
as labeled in that proposition. We will show that the relation term a + ¢ acts as zero
on A([T]¥"); the proofs for the remaining extra relation terms are exactly analogous.

We may write out

a=mbymm,)mt)M O amhz).m(ins))

¢ =mGymny)mii)M O3 miis)mhs))-

as in Proposition 5.2.8. Suppose we have two generators of A([TT<") of the form
Xxoo-h; and Xy, .p,. Here, T may have more than two crossings, but for two desig-
nated crossings, xoo has the zero-resolution at both and x1; has the one-resolution
at both (and x¢o and x1; agree at all other crossings). We assume that changing x¢
to x1¢o has the effect of surgery on y, while changing xgo to xo; has the effect of
surgery on 7).

To show that a + ¢ acts as zero on 2([T]Kh), it suffices to show my(Xx .0, . @ +¢)

has zero coefficient on Xy, .5,. We can compute the coefficient of m3(Xy.4,.a)
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and my(Xyyo-h,>C) on Xy .5, using associativity and (6-1). We have, ignoring terms
which do not contribute to a coefficient on Xy, .z,

~ *
M2 (Xxoghy» @) = €00,10;0M2(Xx 55 Mgy () m(hs))
= C00,10;h'C10,11:h” Xx,,-h3

for two uniquely determined elements /' and 4" of f,. Similarly, the coefficient
of my(Xx9-hy-€) ON Xy, .55 18 Co0,01;477Co1,11;47 » for two further uniquely defined
elements 4" and h"" of B, .

By item (4) of Example 6.1.3, we have the following coefficients:

o Coo10 = (—1)H1(00:10),

o Croarp = (=1)FU0ID]

< _ #1(00,01
o Coo01:pm = (—1)F1000D,

o Cor iy = (=1 OLID,

Recall that #; (i, j) denotes the number of 1-resolutions of crossings in x; among
those crossings which occur earlier than the changed crossing (going from x; to x;)
in the ordering on crossings of 7" (which is implicitly assumed, as usual, to be part of
the choice of T').

Since
(_1)#1(00,10)(_1)#1(10,11) + (_1)#1(00,01)(_1)#1(01,11) — 0’

we can conclude that the coefficient of n13(Xy,y.h,.a@ +¢) on Xy, .55 is zero, for all
possible pairs Xx,,.n, and Xx,,.x;. Thus, the extra relation terms of Proposition 5.2.8
act as zero on A([T]XM). m|

6.2.7 Proposition Roberts’ type A structure from [11] agrees with A([T1X), the
module over BTy, constructed in Proposition 6.2.6.

Proof First, A([T]") has the same Z-basis, with the same bigradings and action
of the idempotent ring Zg, as Roberts’ type A structure. We can use the data of
Example 6.1.3 to check that the differentials 71; agree and that the algebra actions m,
agree under the identification of BI', with a quotient of m(B)' © B.

For the differentials, we have m(Xy;.5) =) (= &N x x;-h» Where the sum is over
those x; related to x; by crossing changes from items (1) or (2) of Example 6.1.3. This
formula also gives Roberts’ differential m; = daps as specified in [11, Section 3.3].
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It suffices to check that the algebra actions m, agree when multiplying by the generators
of B and m(B)'. First, for a generator Xy, .n, of A([TT%") and a generator by by
of B, we have

m2(XXi'h1 J by;hl,hz) = Xy, by
agreeing with Roberts’ definition of the action of ?y; hy,h, N item 5 of his definition

of my [11, Section 4]. Similarly, our action of b¢., 5, is the same as Roberts’ action
of E)C; hy,h,» defined in item 2 of his definition of ;.

For a generator m(by.,.n,).m(hy)) of m(B)', we have

12 (X s MOY ) mh) = D iy Xy o
J
where if i1 = (W(ay1)by,01) and hy = (W(ay)b1,0,), then i’ = (W(ay)ay, all plus),
and the coefficient ¢; j.; equals zero or (=1)*1GJ) according to Example 6.1.3(4).
Thus,

Mo Xy« Oy i) = D (DD Xy,

J

where the sum is over the subset of j making ¢; j.;» nonzero. This algebra action
agrees with the action of (e_y; hy,h, as defined in item 4 of Roberts” definition of m2;.

Finally, for a generator m(bz_m(hl) m(hz)) of m(B), we have

m2(Xx,-'h1»m(bz‘;m(hl),m(hz)))ZZ Z Ci,jshy Xx; ha

Jj leftarcs a of C

where if 1y = (W(a)b,01) and h, = (W(a)b, o), then hj, = (W(a)a, minus on &),
and the coefficient ¢; ;.5 equals zero or (—1)#1(i’j ) according to item (3) above. Thus,

My (X, MOE iy (i) = (D ED X
J
where the sum is over the subset of j making some ¢; ;.;; nonzero (note that, given
such j, the element /[, is uniquely determined). This algebra action agrees with the
action of <e_c; h,,h, as defined in item 3 of Roberts’ definition of m;. O

6.3 Type D structures

Given a chain complex M of projective graded right H” —modules satisfying Ciodule »
in Definition 6.2.4 we defined a type A structure A (M) over m(B)' ® B. For a tangle
diagram T, A ([T1¥") descends to a type A structure over BI', by Proposition 6.2.6,
which agrees with Roberts’ type A structure by Proposition 6.2.7.
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Now suppose N is a chain complex of graded projective left H” -modules. We want
to define condition Cpogule for left modules, and for NV satisfying this condition, we
want to define a type D structure D(N) over m(B)' © B.

To do this, we will first define an operation called reflection which, when applied to NV,
yields a complex of right modules.

6.3.1 Definition Let N be a chain complex of projective graded left H”—modules.
Viewing N as a differential bigraded projective left H”—module, write

N = @H" - vilji. kil
i

with H" acting by left multiplication. Then we may define a differential bigraded
projective right H"—module r(N), called the reflection of N, as

r(N) = rilji. kil H",
i
where the r(y;) are formal reflections of the y;, with the same idempotents as the y;,
and H" acts by right multiplication. Let refl denote the map from N to »(N) such
that

refl(h-y;) =r(yi)-m(h),

where m(h) is defined as in Example 5.2.5. The inverse of refl: N — r(N) is
refl: ¥(N) — r(r(N)) = N (using a simple generalization of the above definition
which reflects right modules to left modules rather than left modules to right modules).
If m; denotes the differential on N, then the differential on r (V) is refl o mq orefl.

6.3.2 Remark Although the geometric content of both Definition 6.3.1 and (variants
of) Definition 5.2.4 is just the reflection across the line {0} x R, the algebraic conse-
quences of this reflection are different in Definition 6.3.1. Whereas in Definition 5.2.4,
left modules remain left modules and right modules remain right modules under
mirroring, in Definition 6.3.1 left modules are sent to right modules and vice-versa.

6.3.3 Definition A chain complex N of projective graded left H"-modules satisfies
the condition Cpyoqute for a generating set {y; } if and only if 7 (V) satisfies the condition
Chodule as defined in Definition 6.1.1 for the generating set {r(y;)}.

If N satisfies Chodule, then we can take the box tensor product of A(r(N)) and
the type DD bimodule mB) OBgmm(B) OB)* get a (left) type D structure over
m(m(B)' © B). Below we define this tensor product precisely. It is a slight modification
of Definition 2.3.5; we will not give the definition in the fullest possible generality. See
[7, Definition 2.3.9] for a more general definition using Z /27 coefficients.
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6.3.4 Definition Let 5 be a differential bigraded algebra over an idempotent ring Z.
Let A be a differential bigraded right module over . Assume A is free as a Z—-module,
with a Z-basis consisting of elements which are grading-homogeneous and have a
unique right idempotent.

Let B’ be another differential bigraded algebra over Z and let DD be a rank-one
type DD bimodule over B and B’ with DD operation §pp: Z — B ®7 (B’)°P. The
type D structure A X DD over B’, as a Z-module, is

The idempotent ring Z has a right action on A, which we will view instead as a
left action (since Z is commutative, we may view right actions as left actions and
vice- Versa) Since DD is a rank-one DD blmodule the left and right actions of 7
on DD are the same. There is a bigrading on AR DD inherited from that on 4 (recall
that DD is contained in bigrading (0, 0)).

The type D operation §%: AKX DD — B’ ®7 (AR DD) is defined by
§¥:=1®@my +&o(ma®id) o (id®Spp): A— B &1 A,

where 1, and m, are the type A operations on A4, and & A @7 (B))® — B Q7 A4 is
defined by

E(X ® (b)) := (—1)een X)(eg 8 pr @ x
More precisely, the second summand is the composition

~ id®§ ®id  ~
1148000 20, Bor (B 2% Ao, (B)P 25 B @ A,

The map 6% has bidegree (0, +1).
6.3.5 Proposition (AKX DD, §%) is a well-defined type D structure over B’

Proof First, since 4 was assumed to have a Z-basis {X;}, with each X, gradmg—
homogeneous and having unique idempotents, the same is true for AR DD ~ 4.

To verify the type D structure relations, we must show that

(11 @ 1id]) 0 8% + (1 ®id) o (id ® %) 0 6¥ = 0
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Substituting in the definition of % and simplifying some terms, we want to show that
(6-3) (n1®lid])o§o(my®id)o(id®épp)

+ (12 ®id) o ([d® &) o (i[d®my ®id) o (Id®id®Spp) o (1 @ my)

+ (U2 ®id) o (d® 1 ®@my) o £ o (my ®id)o (id®Spp)

+ (k2 ®id) o (i[d® (£ o (m2 ®id) o (id ® Spp)))

o(Eo(my®id)o (id®8pp)) = 0.
We claim that we may rewrite the final term on the left side of (6-3) as
(6-4) §0(my®id)o (Id® ur ® uz) o (Id®0o) o (id®id®dpp ®id) o (id® Spp),
where
0:BRBX®(B)PR(B)P—>BRBR(B)P(B)P

was defined in Definition 4.5.1.

To verify that term (6-4) is equal to the final term of (6-3), let X be a generator of A.
Write 6pp (1) =), bi ® (b;)°P. We have

(12 ®id) o (id® (§ o (m2 ®id) 0 (id® Spp))) o (§ 0 (M2 ®id) o (iId® $pp))(X)

_ Z(_l)(degh b})(deg), (X b;))+(degy, b})(degh(Xbibj))(b;b}) ® (Xbibj).

ij
On the other hand, we have
Eo(my®id) o (Id® s ® r) 0 (Id® o) o (iId®id® Spp ®id) o (Id® 5pp)(X)
_ Z(_l)degh bj degy, (b;)+deg, (X b;b;) degy, (b;b}) (bl/bjl) ® (Xb;b)).
i’j

A direct computation, using the additivity of deg; under algebra multiplication, verifies
that the signs in these expressions are equal.

Now, we may write term (6-4) as
Eo(my®id)o (id® (U2 ® 2) 00 0 (id®Spp ®id) oSpp)).
Using the type DD bimodule relations for §, we may replace
(h2®@p2)000(id®6pp ®id)odpp

with
—(n1 ®id])odpp — (Id® 1) 0 épp.
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Then term (6-4) is equal to
—£o(my®id)o (id® (11 ®1id[) 08pp)) —& 0 (M2 ®id) 0 (Id ® ((id ® j11) ©8pp))
=—£o(m,®id)o(id®u; ®lid|)o(id®pp)—Eo(mr®id)o(id®id® 1 )o(id®Spp).

The term
—£o0(m®id)o(Id®iId® 1) o (id®3dpp)

above cancels the first term
(11 ®[id]) o & o (my ®id) o (id®Spp)

of the terms in (6-3), whose sum we are trying to show is zero. The remaining terms
of (6-3) are, after some simplification,

e —to(my®id)o(ild®u; ®|id))o(i[d®dpp),
. go(m2®id)o(id®51)l))om1,
o (id®my)oko(m,®id)o(id®Spp).

The final of these may be written as
§o(my ®lid]) o (m2 ®id) o (ild®8pp) =& o ((myomy) ®|id|) o (id®Spp).

We may use the Leibniz rule on A to replace m; o my with mj o (m; ® |id|) +
my o (id ® w1). Thus, the final of the three remaining terms is equal to

Eo(my®id)o(m; ®lid|®|id|)o(id®Spp)+Eo(my®id)o(id®u ®[id|)o(idRdpp).

The second of these summands cancels with the first of the other three remaining terms
listed above, so it remains to show that

§o(my®id)o(id®dpp)omy +§o(my®id)o(m; @ id|® [id]) o (id®Spp) =0.
This follows from the equation

(m; ® [id| ®|id|) o (id®8pp) = —(id®dpp) om;.
Indeed, since all generators of DD =T have bigrading (0, 0), the element §(1) has

homological degree 1. a

Applying this construction to A = A(r(N)) with DD = m(B)!QBKm(m(B)!QB)OP,
which is a type DD bimodule over m(B)' © B and m(m(B)' © B), we get a type D
structure A(r(N)) X m(®B) O Bgm(m®B) OB gyer m(m(B)" © B). We can then ap-
ply another mirroring operation, analogous to Definition 5.3.1 and in the spirit of
Definition 5.2.4, to get a type D structure 5(N ) over m(B)' © B.
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6.3.6 Definition Let B be a differential bigraded algebra over the idempotent ring Zg
and let (D ) be a type D structure over 5. The mirrored type D structure (m (D) 8’)
is defined as follows: as an Zg-—module, m(D) is the mlrror of D as defined 1n
Definition 5.2.4. As usual, denote the natural map from D to m(D) or m(D) to D
by mirr. The type D operation on m(D) is the following:

mirr @ mirr

~ mirr ~ § ~ ~
§ =m(D)5 D -5 B® D ——"" m(B) @ m(D).

6.3.7 Definition Let N be a chain complex of graded projective left H” —-modules
satisfying the algebraic condition Cpogule Of Definition 6.3.3. The type D structure
D(N) over m(B)' ® B is defined to be

D(N) :=m(A(r(N)) K m(B)' O B grm(m(B)' O™

6.3.8 Definition If N is a chain complex N of graded left projective H"-modules
satisfying Ciyodule » the type D structure ﬁ(N ) over BT, associated to N is induced
from the type D structure 5(N ) over m(B)" © B defined in Definition 6.3.7, using
Proposition 5.3.7.

For convenience, we describe the type D operation § on 13(N ) explicitly from the
differential dy on N. Let {1 -y; | e(yi) = er(h1)} be the Z-basis for N corre-
sponding to the designated generators {y;} of N . By the condition Cpodule, We may
expand dp (y;) in this basis as

dN(yz)—ZC,,yﬂr > &y

J h eBmult
Then we have
dn(hy-y) =) ¢ ihi-yi+ Y. & lhiinha ).
] ] n eﬂmult:hzeﬂ

We let
{Yh1-y,- | e(yi) = eR(hl)}

denote the Z—basis of 5(N ) corresponding to the Z-basis {/; - y;} of N.

6.3.9 Proposition Defining the coefficients c; ,j and 5{ jiw as above, and c:*h Wshy S
in Section 6.1, the type D structure operation § on D(N) has a basis expansion given

by
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_ / ~/ =
8(Yn-y;) = Zci,j Yoy + Z Ci,j;h/chlh’;hzb*;h1,h2 ® Yhy.y,
J 7o €Bmu,h2€B

d i
+ Yo CDEEmMOL iy ) © Yoy

h€B such that
m(bim(h),m(hy)) exists

where by;p, h, means by.p, p, or bc;n, h, as appropriate.

Proof The operation § is defined as the mirror of the type D structure operation §%
on A(r(N))®mMEB) OBgmmB) OB)* \which in turn is defined as
§B:=1®m;+&o(mp,®id)o(iId®8pp).

Here, m is the differential on fT(r(N )) and dpp is the type DD operation on
m(B) O Bgm(m(B) OB)” \Write an arbitrary generator of A(r(N)) as Xon(y)m(hy) s
and we have

M1 (XonGyymt) = D € i Xom(yyymhn)-
j

M2 (Xon(yrymn)y MGEp 1) = D & nChab i Xm(yy)mio)-
j7h/eﬂmull
12 (Xm(y)m(h1)s Dxsm(hy)mh2) = Xm(yi)-m(hs)-
Here, bs;m(h,),m(hy) Stands for either by .m(h,),m(hs) 0r~bC;m(h1),nL(h2) as appropriate,

and similarly for m(b::;hl,hz)- Also note that we have ¢ p7:hy = Cn(ym(hy);m(hy) -

Thus,

X §
8% (XonGym(n) = D _Ch i Xm(yyym(hy)
7

+ D wChwiiam By ) © Xon(ym(ha)
J W E€Bmu,h2€B
+ Z (_l)deghyim(m(b:;m(hl),m(hz)))®Xm(J/i)'m(h2)'

h7 € such that
mbksm(hy),m(hz)) exists

Taking the mirror of this formula, we get
S(th%') = Zcz{,j th'yj + Z 51{,j;h’c~h1h’;h2(b*;h17h2)®Yhz'yj
J jyh/eﬁmullshZGﬂ

+ > (=D (B ) () © Yooy O
ho€B such that
m(b%:m(hy),m(hy)) exists
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When N is Khovanov’s complex [T]¥" for a tangle diagram 7 in R>q x R, the
induced type D structure D([T]X") over BT, is the same as Roberts’ type D structure
from [12].

6.3.10 Proposition 13([T &), as defined in Definition 6.3.8, agrees with the type D
structure over BI',, which Roberts associates to T .

Proof Roberts’ type D structure is defined as a bigraded Z—module in Definition 32
of [12]. As such, it agrees with 5([T]Kh), and the action of the idempotent ring Zg
is the same on both; Roberts defines the action of the idempotent ring at the end of
Section 3.2 of [12].

Lastly, the type D operation 6 on 13([T]Kh) has an explicit form given in Proposition
6.3.9 above. The coefficients ¢; ; and ¢f ;. are either (—1)*1@D) or zero, just like
the coefficients ¢; ; and Cj,j.n described in Example 6.1.3. Recall that the coefficient
Ch,h';h, 18 €ither one or zero; this was also pointed out in Definition 6.2.1. By compari-
son, § agrees with Roberts’ type D operation defined at the beginning of [12, Section 5].

O

6.4 Pairing

Let M be a complex of graded projective right H”—modules and let N be a complex
of graded projective left H" —modules, satisfying the algebraic conditions Cpodute Of
Definition 6.1.1 and Definition 6.3.3. The natural way to pair M and N and get a
chain complex over Z is to take the tensor product M @ g» N . However, we could
also use Definition 6.2.4 to construct a type A structure A(M) and use Definition 6.3.7
to construct a type D structure 13(N ), both over m(B)' ® B, and then take their box
tensor product. This produces the same chain complex as M ® g» N, after a reversal
of the intrinsic grading.

6.4.1 Proposition As differential bigraded Z -modules, A(M) XmB) OB B(N )
is isomorphic to the module obtained from M Q@gn N by multiplying all intrinsic
gradingson M @gn N by —1.

Proof Let {x;-hy|e(xij)=er(hy)} and {h;-y;|e(y;) =egr(hy)} be the Z-bases
for M and N, respectively, corresponding to the sets of designated generators {x;}
of M and {y;} of N. Then a Z-basis for M ® gn N is {x;-h;-y;} (we will suppress
the idempotent conditions).

Write the differentials on M and N as djps and dpy . As an element of M Qgn N,
the differential of x; - hy - y;j is

0®(xi-hy - yj) = (=)%Y (dpg (i) - hy - y) + (xi - hy -dn ().
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If we expand out dps as in Section 6.1 and dy as in the discussion preceding
Proposition 6.3.9, we may write this as

(6-5) (—1)%ceni (Zczk(xk hiy)+ Y 5ik;h’gh’hl;hz(xk‘hZ'J’j))
k.n e/gmult hZGﬂ

+Z GheyD D & iy (Xiha ).
l h Eﬁmu]tahzeﬂ

Now, as a blgraded Z—-module, A(M)IZlm(B) OB D(N) is defined as A(M)®Iﬁ D(N).
A Z-basis for A(M) (respectlvely D(N ))is givenby { Xy, .5, } (respectively {Y},.y, }).
A generator Xx;.n, of A(M ) has the same idempotent in Zg as a generator Yj,.,.
of D(N) if and only if hy = h,.

Thus, A(M) ®14 B(N) has a Z-basis consisting of all elements Xy, ® Yp,.y;,
which is in bijection with the basis {x; -4 - y;} for M ® g» N . The bigradings agree
on these two Z—-modules after negating the intrinsic gradings on M ® g» N : note that
for the intrinsic grading on A(M) ®14 D(N) the grading of /1y in Xy,.p; ® Yy, .y, is
counted twice with coefficient —5, while for the intrinsic grading on M @ gn N, the
grading of & in x; -hy - yj is counted once with coefficient 1. This explains the factor
of  in Definition 5.1.1.

It remains to show that the differential 3® on M ® g» N agrees with the differential 9%
on A(M) MmB) OB 13(N ). We will use m; and m, to denote the differential and
algebra action on A(M) and § to denote the type D operation on ﬁ(N ). Applying 9™
to a generator Xy, .5, ® Yp,.),, we get

Yn, .y .
(_l)degh( @ }])(ml(Xx,--hl)) ® th-yj + (mz ® ld) o (Xx,-~h1 ® S(th-yj ))
Because H" is concentrated in homological degree zero,
degy,(Yp,.y;) = degy(h1 - y;) = degy(y;)).

Thus, the first term of 8'Z(Xxi.h1 ® Y.y, is

(—1)%een s Zci,kXXk'hl ® Y.y, -
k

which agrees with the first term of expression (6-5) for 9% (x; - /1y - ¥j) under the
bijection between basis elements.
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By Proposition 6.3.9, the other term of 3% (X x;-h; ® Ypy.y;) can be expanded out as

] / ~/ =
(m2®1d)°(Xx,-~h1 ®(ch,th1-yl D Guw b b ®Yhsy,
1 l,h/GBmullthGﬂ

d .
+ Z (=D eghyjm(b::;m(hl),m(hz))(X)Y}'Z'yj))’

1,h>€p such that
) exists

*
b hy)omngy)

where bx;h,,h, denotes either by;h,,hy O bCihy by and m(DE.p(h,),m(h,)) denotes ei-
ther m(by:m(hy).m(hz)) OF M(BE phy).m(hy))- This expansion gives us three remaining
terms of ('iz'()(xi.;,1 ® Yh,.y;). The first of these is

/
ch,lXxi'hl ® Ynyys
I

which agrees with the third term of expression (6-5) under the bijection between basis
elements. The second is

~/ =
Z cj,l;h/chlh’;thxi'hz ® Yhz'J/l’
l:h/eﬂmultshZEﬁ
which agrees with the fourth term of expression (6-5). Finally, the remaining term of
& .
ad (Xxi'hl &® th-y,') 1S

d . ~ ~
(D% N G Cuny s Xy © Yoy,
kyh/e,BmullahZGB

which agrees with the second term of expression (6-5). Thus, after reversing the
intrinsic gradings on M ®gn» N, we conclude that M ®g» N is isomorphic to
A(M) @mB)'©s D(N) as differential bigraded Z-modules. |

6.4.2 Remark The negation of the intrinsic gradings on M ® g» N is done for the
same reason as in Remark 3.0.3.

6.4.3 Proposition Let B be a differential bigraded algebra and let J be a bigrading-
homogeneous ideal of B which is preserved by the differential on B. Let D bea type D
structure over B and let A be a differential bigraded right B—module which descends
to a module over B/J . By Proposition 5.3.7, D automatically descends to a type D
structure over B/J , and we have

ARy D

lle

ARg s D.

Proof This follows immediately from Definition 2.3.5. |
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6.4.4 Corollary Let T and T, be oriented tangle diagrams in R>o xR and R<o xR
respectively, with orderings chosen of the crossings of Ty and T,. Assume that T
and T, have consistent orientations, so that their horizontal concatenation is an oriented
link diagram L in R?. Order the crossings of L such that those of T} come before
those of T, . Then

CKh(L) = A([T2]*") Ry os DT = A([T2]%") Rgr, D(T:]1).

Proof This is a corollary of Proposition 6.4.1, Proposition 6.4.3 and Khovanov’s
results from [4]. O

Identifying A([T>]¥") with Roberts’ type A structure over BT, by Proposition 6.2.7,
and identifying D([T]X") with Roberts’ type D structure over BT, by Proposition
6.3.10, we obtain an alternate proof of Roberts [11, Proposition 36].

6.5 Equivalences of type 4 structures

We start by defining .As,—morphisms. The following definition is general enough for
our purposes, although it is not the most general definition possible. A more general
definition is given in Roberts [11, Definition 26]; our sign conventions are the same as
Roberts’.

6.5.1 Definition Let 5 be a differential bigraded algebra with idempotent ring Z.
Let A and A’ be differential bigraded right modules over B with differentiAals my, m|
and algebra actions m5, m’, respectively. An Aoo—morphism F from A to A" is a
collection

Fp: A®7 B®"D 5 410,n—1]
of bigrading-preserving Z—linear maps satisfying the compatibility condition

mll o Fy+ (_l)nmlz o (Fy—1 ®1id|")
= Fyy 0 (my ®id®=D) + (—1)" 1 F, 0 (m) @ [id|®"~D)

n—1
+ (=DM Y Fyo(id® @y ® fid® D)
k=1
n—2
+ Y (=D)FFyy 0 (id®F @y ® [id|®F )
k=1

for all n > 1. Recall that [id|” and |id|®” mean different things; see Section 2.1.
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6.5.2 Remark Lipshitz, Ozsvath and Thurston also require all .4,,—morphisms
to satisfy a unitality condition: all algebra inputs must be in the kernel B of the
augmentation of B for the corresponding .Ao,—morphism term to be nonzero. See [7,
Remark 2.2.21]. We will not discuss this condition further because it is satisfied for all
Aoso—morphisms and homotopies that we consider.

6.5.3 Example For an As—morphism F with only F and F, nonzero, the condition
of Definition 6.5.1 is nontrivial only for n =1, 2 and 3. The n = 1 condition is
my o Fy = Fiomy,
the n = 2 condition is
my o Fy+mYyo(Fy®id) = Fjomy— Fyo(m; ®|id]) — F20(ild® uy),
and the n = 3 condition is

—}’}f[/2 o (F2 ® |1d|) = F2 ] (Wl2 ®ld) — F2 o (1d® Mz)

Let (M, dpr) and (M, dpg/) be two chain complexes of graded projective right H”—
modules satisfying the algebraic condition Cyodule Of Definition 6.1.1 for generating
sets {x;} and {x]} respectively. Let /: M — M’ be a bigrading-preserving H"-linear
map such that dpgs [ = fdpr; as shorthand, we will say “let f be a chain map from M
to M'”. We first show that certain chain maps f induce Ao, —morphisms of type A
structures A(M) — A(M’) over m(B)! © B.

Let {x;-hq|e(x;) =er(h1)} be the Z-basis for M corresponding to the generating
set {x;} and let {x] -/} be the analogous Z-basis for M’ (we will suppress the
idempotent conditions). We may expand f(x;) in the basis for M’:

Fe) =" fiixi+ > i)l
J

J.h€B,degh’#0

6.5.4 Definition The chain map f ~satisﬁes the algebraic condition Cyorphism for
the generating sets {x;} and {xj’.} if f; j.p is only nonzero when i’ € Buy.

For a chain map f satisfying Cporphism, We may write

PO =3 iy + 3 Fogaen) 0.
J

j:h/e,Bmull
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Thus, a basis expansion for f(x;-hy) is
SGirh) =Y fiixi-hi+ > fiiwewhhaX)ha
j j,h/eﬂmullahZGﬂ
Since M and M’ satisfy Cpodule, We also have

dy(Xi-h) =Y cij(-h)+ D Gy, (X)),
j J yh/eﬂmultsh2eﬂ

Ay () = Gk + Y &g (X ).
j jyh/eﬂmullshZGﬂ

6.5.5 Proposition Suppose the chain map [ satisfies Cporphism - Th~e equation

dyy [ = fdp gives us the following equations in the coefficients fi j, fi j.w» Cij
~ / ~/ .
Ci,jsh'» Cij and Ciin’

(1) For all generators x; of M and xj, of M,
D feiChe =D cii Sk
J J

(2) For all generators x; -hy of M and xj,-hs of M’

~ pot N ~/ pot
Z ﬁ,j;h/ch’hl;h3(’j,k+ Z fi,jcj,k;h’ch’hlzh
jsh/eﬂy jah/GBV

= D i FidonChnhs + ) i Chrshs fi k-
j,h/eﬁy j’hleﬂl/
(3) For all generators x; -hy of M and x} - h3 of M’,

~ z , N z
S i wnihs S D SoiCgenhhshs
j:h/eﬂa j:hleﬂa

~ ~ ., .
T Z fi’j;h/ch/hl§hzcj,k;h//ch’/h2;h3
j.hEBy,
h'epy ha€p

= > cijSiknunhrs D g Cunhs [k
J.WeEPy J.hePy
+ D G Civhisha S desh Chhoshs
Jj.heBy,
h//eﬂy,hzeﬂ
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(4) For all generators x; -hy of M and xj.-hs of M’,

~ < ~/ ot o = ~/ <
D JriwwnihaG g Chngshs + D Ji g shaC e Ch iy

By, Jjh'€By,

h'e€By,href h’epB, hreB

= D Gl Sk oy ¥ Y i Chhysha Sk Chhashs -
Jh'EBy, Jjh €Ba,

h"€Bqy hreB h"eBy hrepB

(5) For all generators x; -hy of M and xj,-h3 of M’,

~ = ~ = - = ~ =
o i€ oy = Y G Chvhyshy S kih s
jah/eﬂa’ j:h/eﬂaa
h'eBy,hr€B h'eBy,hr€B

Proof The proof is very similar to that of Proposition 6.1.2 and will be omitted.
Note that explicitly writing the degree conditions in the sums is unnecessary, since
the relevant products of coefficients are always zero unless the degree conditions are
satisfied. In Proposition 6.1.2, we chose to write out the degree conditions for clarity. O

6.5.6 Definition Suppose (M, dps) and (M, dpy) satisfy Cpogque and f: M — M’
is a chain map satisfying Cporphism. Define the first component A(f); of an Axo—
morphism A(f): A(M)— A(M’) of type A structures over m(B)! © B by

AN Ko) =D Sij Xty
J

The map A(f): AM)— A(M) respects the right actions of the idempotent ring Zg,
and it is bigrading-preserving because f is.

If A(f); were the only nonzero component of A( /), then A( /) would be an ordinary
chain map between differential bigraded m(B)' © B-modules. However, A(f), will
also be nonzero in general; thus, we must deal with genuine higher A, —terms when
working with these morphisms. The component

A(f)2: AM) @z, m(B)' © B~ A(M")0. 1]
of A(f) is defined on the generators X ., of A(M) and M(b%mny).m(hs)) Of
m(B)! © B by

A2 Kot Oy ) = D SojitCurmashs X oo
jvh/eﬂmull

where m(b.mn,).m(hs)) denoteAs (b3 m(hy)mhy)) O MBE m(n,).m(hy)) aS aPPro-
priate. Any action of the form A(f)2(Xyx,.,»Dx;h;,h,) is defined to be zero.
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Suppose that the algebra input m(b3;m(hy),m(hy)) €quals m(by..n,y.m(ny))- Let h1 =
(W(a)b, o) and hy = (W(a')b,a’); then Cprp,op, is only nonzero for one value of /',
namely /' = (W(a')a, all plus). For this value of /", ¢p/p,:p, is 1. Thus,

(6_6) A\(f)Z(XX,'-}n s m(b;,m(hl),m(hz))) = Z ];i,j;h/XX]{ hy-
J

Now suppose the algebra input is equal to m (D¢, (n,),m(hy))- As before, write /1y
as hy = (W(a)b,o). In this case, ¢jp, .5, Will be nonzero for any &), which equals
(W(a)a, minus on o), where « is any arc of ¢ which is part of the circle C in W(a)a.
For /' equal to one of the /), we have C:’h’hl;hz =1, and for all other /’, ‘z’h’hl;hz is
zero. Thus,

O A2 Kby MO mym)) =D D i X

Jj leftarcs & of C
Writing m(B)! O B as T (Vzan)/ Jan as in Section 5.3, the above formulas define a map
A(f)2: AM) ®z, Viar — AM)[0, 1],
We can extend to a map
A2 AM) @z, T (Vi) = AM)[0, 1]

which is defined as the sum, over all n > 2, of the maps

n—1
Z m’y o (m’y ®id)o---o (m) ®id®(k_2))

k=1 ~
o (A(f)2 ® |id|®(k—1)) o(my ® id®k) 0---0(my® id®("_2))

from A(M) ® (Vi)®®V to A(M’). In Proposition 6.5.8, we show that A(f),
descends to a map

A(f)2: AM) @7, m(B) © B— AM');
in Proposition 6.5.9 we verify that A(f); and A(f), together satisfy the conditions
to form an Ax,—morphism A(f).

6.5.7 Example The n = 2 summand of A(f),: A(M) Rz T (Viun) — A(M) is
simply E(f)zA, the map from A(M) ®14 I/ful/l\ to A(M’) defined above. The n = 3
sumAmand of A(f)2: AMM)®z4 T (Viun) — A(M'), or in other words the definition
of A(f), when the algebra input is a quadratic monomial in the generators of Vi, is

A(f)20(my®id) +m}y o (A(f)2® id)),
where in this expression A( /) again denotes the map from AM )®z4 Vil to AM' ).

Algebraic € Geometric Topology, Volume 17 (2017)



1644 Andrew Manion

6.5.8 Proposition Write m(B)! OB as T (Vi) / Jran and let v be any element of Jyy; .
The map
A(f)2(=.1): AM) — AM')

is identically zero. Thus, we get a well-defined map
A(f)2: AM) ®z, m(B)' © B— A(M)

which is linear with respect to the right actions of the idempotent ring g on A(M) ®1y
m(B)' © B and A(M'), and which preserves the intrinsic grading and decreases the
homological grading by one.

Proof First, /T( /)2 decreases the homological grading by 1 (and thus preserves
homological grading when accounting for shifts), since m(b.pn,).m(n,)) carries
homological grading 1 and f: M — M’ preserves homological grading. Also, A(f),
preserves the intrinsic grading. To see this, note that as elements of M and M’,
xj-hy and x} - hy must have the same intrinsic grading whenever xj/. - hy appears with
nonzero coefficient in the basis expansion of f(x; /), because f preserves intrinsic
grading. As elements of H", the intrinsic degree of /i, is either one or two greater
than that of /. Since in A(M) and A(M’), the intrinsic degrees of hy and h, are
multiplied by —3 L whereas the intrinsic degrees of x; and x/ ; are multlphed by —1,
the element X,/ X, hz of A(M ) should have intrinsic degree which is 5 or 1 greater
than the 1ntr1nsrc degree of Xy;.n, € A(M ). This extra > or 1 is compensated exactly
by the intrinsic degree of m(b*,m(hl),m(hz)) which is 5 for m(by;m(hl),m(hz)) and 1

for m(bé‘;m(hl),m(hz))’

To show that 4 (f)2(—,r) is zero for any r € Jg, note first that Definition 6.5.6 implies
that if we have elements r and r” of T'(Vgu) such that my(—,r) =0, m,(—,r') =0,
A(f)a(=.r)=0and A(f)2(—, ") =0, then A(f)2(—,r-r")=0 as Well

Thus, we only need to show that A(f)a(=, r) is zero for the multiplicative generators r
of Jru. These were defined to be the generators of

IsN T ' Ve)®T*(VB),  Jm@) N (T Vi) ® T*Vins))) and  Jexira-

For generators in JgN (T 1 (Vig)®T2(Vp)), there is nothing to show, since A( f)2(—, b)
is zero for any b € V3.

For the generators in Jy5)! N (T (Vins)!) ® T*(Vins)')), the proof closely follows
the proof of Proposition 6.2.2. Write Jy)! N (T (Vini)) ® T? (Vims)')) as m(I+)
as in that proof.

The generators m (r*) of m(I~+) have intrinsic degree either 1, 5 or 2, as in Section 5.2.
For those m(r*) of intrinsic degree 2, the equations in item (5) of Proposition 6.5.5
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above imply that /T(f)z(Xxi.hl,m(r*)) = 0 for any X,.;,. For those m(r*) of
i{ltrinsic degree % the equations in item (4) of Proposition 6.5.5 similarly imply that
A(f)2(—, m(r*)) is zero.

The generators m(r*) of m(I 1) which have intrinsic degree 1 are sums of either one,
two, three or four terms m(b;‘)m(b;,) with all coefficients +1. For a fixed m(r™),
let 711 € Ig denote its left idempotent and let /13 € Zg denote its right idempotent. The
element 43 of § has degree 2 more than /;, as elements of H" with its intrinsic
grading, and /3 differs from /; by two surgeries on its left crossingless matching. As
in Proposition 6.2.2, the left crossingless matchings of /4, and /3 are different.

For any generators of A(M) and A(M’) of the form x; - and X - h3, where
and /3 are as above, the equations from item (3) of Proposition 6.5.5 become

~ = ~ = -~ = = =
S i lwhiho e oy = Y iy Chhysha S desh Ch sy
j:h/eﬂya jah/eﬂl’a
h"eBy hrepB h"ep,y hrep

The terms involving 4’ € B, vanish for these choices of /11 and /3. These equations
imply that for all generators m (r*) of m(I+) of intrinsic degree 1, A(f)a(—, m(r*))
is zero.

Finally, the generators of Jea are listed in items (1)—(5) of Definition 5.3.2. If r is
one of these generators, the proof that the map A (f)2(—,r) is zero is similar to the
proof of Proposition 6.2.5.

In more detail, consider a relation

r = Dyshy o By ) — M Oam ) m (i) By
from item (1) of Definition 5.3.2. Write &; = (W(a1)by,01) and let Xy, ,, be a
generator of A(M). By Example 6.5.7, we have
6-8)  A(S)2(Xpny> 1) = A2 (m2 (KXo by ) MOy i) i)
- mZ(A\(f)2(Xx,'-h1 ’ m(b:;m(hl),m(ﬁz)))v by’;ﬁz,h3)

Write /1, as (W(ay1)b,,0,) and hz as (W(as)by,03). Let i’ = (W(ay)ay, all plus),
an element of B, . For the first term in (6-8) above, we first multiply Xx;.n, by by.n, i,
to get Xy, .n,. Applying A(f)2(—, m(b;/;m(hz),m(hg,))) to the element Xy,.z, , by (6-6)
we get

Z f;,j;h/XXj ~h3 .
J
For the second term on the right side of (6-8), we first compute

121\(]())2(Xx,-~h1 ’ m(b;;,m(hl),m(ﬁz)))
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This expression equals

Z ﬁ’j;h/XXj '}le
J

by (6-6) again, where /’ is still equal to (W (az)ay, all plus). If we multiply this result
by by’;ﬁz,h3’ we get

Z ﬁ,j;h’XXj'h:;'
J

Thus, if a generator r of Jexa comes from item (1) of Definition 5.3.2, then the map
A(f)a(=,r): A(M)— A(M’) is zero.

For generators of Jexya from items (2)—(5) of Definition 5.3.2, the proof is analogous
to that of Proposition 6.2.5 in the same way as above. We will leave the remaining
cases to the reader. O

6.5.9 Proposition A(f) satisfies the Ao —morphism compatibility conditions.

Proof Since A(f), is zero for n > 2, it suffices to show that the n = 1, n = 2 and
n = 3 conditions listed in Example 6.5.3 hold. For the n = 1 condition, we want to
show that

my (A1 (Xy,) = A 1011 (X))
for each generator X ., of A(M). The left side is

J Jjk
while the right side is
A (Z Ci,ij,-.hl) => ¢ij Jj kX ny-
J ik
These are equal by item (1) of Proposition 6.5.5.
We may write the n = 3 condition of Example 6.5.3 as
69 A()20Gd® p2) = A(f)20 (M2 ®id) +m) 0 (A(f)2 ® lid)).

In this form, it is clear from the definition of A( f)> in Definition 6.5.6 that this
condition holds, generalizing Example 6.5.7.

For the n = 2 condition, we want to show that
(6-10) 'm0 A(f)2 +myo (A(f) ®id)
= A(f)1omy—A(f)20(m ®Iid]) = A(f)2 0 (d® 1)
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as maps from A(M) ®1z4 m(B)' © B to A(M').

We will first reduce to the case of proving the above equation when applied to elements
of the form Xyx;.n; ® bashyh, O Xyiny @ M(DE,m(hy),m(hy))» Where bu:p, h, and
m(b%.(ny).m(ny)) are the multiplicative generators of m(B)' © B.

Claim If b; and b, are two elements of m(B)' ® B such that the n = 2 condition is
satisfied both when the algebra input is by and when it is b, , then the n = 2 condition
is also satisfied when the algebra input is b1 b, .

Proof of claim We want to show that
(6-11) my 0o A(f)20(d® py) +mho(A(f); ®id)o (id ® p2)
= A(f)1omy0(id®pa) — A(f)2 0 (m ®|id]) o (id ® )
—A(f)20(d® 1) 0 (id ® 12)

when the algebra input to these maps is b; ® b, assuming the usual #» = 2 condition
(6-10) holds when the algebra input is b; or b, . In the proof of this claim, the algebra
input to all maps will be assumed to be by ® b, .

The left side of (6-11) can be rewritten as
6-12)  myomyo(A(f)2 ® i) +m) o A(f)20(my ®id)
+mlyo (my®id) o (A(f); ®id ® id)
using the n = 3 consistency condition (6-9) for /T( /) and the associativity of the
action of m(B)' © B on /T(M ’). Call these terms LHS;, LHS, and LHS3. Now we

may use the assumption that the #n = 2 consistency condition (6-10) holds when the
algebra input is by to write the third term LHS3 of expression (6-12) as

m'y o (A(/)1 ®id) o (mz ®id) —m} o (my ® lid]) o (A(/)2 ® lid])

—m}yo (A(f)2 ®id) o (m; ®|id| ®id)
—my o (A(f)2 ®id) o (id ® 11 ®id).

Call these four terms LHS3,, LHS3;, LHS;,. and LHS;,.

On the other hand, the right side of (6-11) can be rewritten as

(6-13) A(f)1 0omyo(my ®id) —mh o (A(f), ®id) o (m; @ |id| ® id)
— A(f)20(my ®id) o (m; ® [id| ® [id])
—A(f)20(d® p2) 0 (id ® 1y ® id])
—A(f)20(d® p2) o ([d®id ® py)
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using the n = 3 consistency equation (6-9) for A( f), the associativity of the action of
m(B)' ©® B on A(M) and the Leibniz rule for the derivative j; on m(8)' ® B. Call
these five terms RHS;, RHS,, RHS3, RHS4 and RHS;5. Using the n = 3 consistency
equation again, we can rewrite the term RHS, as

—my o (A(f)2 ®id) o (id® p; ®id) — A(f)3 0 (my ®id) o (id ® 11 ® [id|).
Call these two terms RHS4, and RHS,,. Similarly, we can rewrite the term RHS;5 as
—mly o (A(f)2 ®[id]) o (id®id® p1) — A(f)2 0 (my ®id) o (iId @id ® ).

Call these terms RHS5, and RHSs; . Using the assumption that the n = 2 consistency
condition (6-10) holds when the algebra input is b,, we can write the term RHS; as

mly o (A(f)1 ®id) o (my ®id) +m’; 0 A(f), 0 (m; ® id)
+ A(f)z 0 (my ® id]) 0 (m3 @ id)
+ A(f)20(my®id)o (id®@id® uy).
Call these four terms RHS,, RHS;,, RHS;, and RHS,,.
After rewriting the left and right sides of (6-11) in this way, we want to show that
LHS; +LHS; + LHS3, + LHS35 + LHS3. + LHS;4
= RHS;, + RHS,; + RHS . + RHS;; + RHS;
+ RHS;3 + RHS4, + RHS45 + RHS;5, + RHS5;.
Several terms cancel:
e LHS, =RHS;,,
e LHS3, =RHS,,
e LHS;3. =RHS,,
e LHS;3; = RHS,,,
e RHS;; +RHS5; =0,
e RHS;. 4+ RHS;3; +RHS4; = 0.

The final equality follows from the Leibniz rule for the differential 72, on A(M ).
Canceling corresponding terms between the sides, it remains to prove

LHS{ 4+ LHS3; = RHSs,.
The Leibniz rule for the differential 7 on A(M') lets us rewrite LHS; 4+ LHS;;, as

mly o (id® 1) o (A(f)2 ® |id]).
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This term equals the remaining right-side term RHSs,, because p; increases homo-
logical grading by one. |

Thus, we have reduced to showing that the n = 2 consistency condition (6-10) holds
for A(f) when the algebra input is either by.n, 4y, BCihy by s M(DYm(hy),m(hs)) OF
M(BE m(hy)mns)) - If the input buspy hy is by:hy,hy OF bC:ihy by > the A(f)2 terms in
the n = 2 equation are zero and we must show that

mly o (A(f)1 ®id) = A(f)1 om,

for these algebra inputs. If X;.5, is a generator of A (M), then
myo(A(f)1®1id) (X, - bashy ) =m;(Z i Xy b*;hl,hz) =D Jii Xy
J J

while

Izl\(f)l omZ(Xxi-hl’b*;hl,hz) = A\(f)l(Xxl"hz) = Zﬁ,ij}'hz’
J

and these are equal.

Now let the algebra input be a generator (b, n,).m(hy)) - The left side of the n =2
condition with this algebra input and module input X, .5, is

~ = ’ ~/ =
Z fi,j;h’ch’hl;hzcj,kXx;{'hz + Z ﬁajcj,k;h/ch/hl;hZXx;{‘hZ’
Jj.k.h'eBy Jjk.h'eBy
and the right side is
D G rish [k Xy D Cij ik Chng s Xy
j7k5h/eﬁ)/ j’kah/eﬂy
These are equal by item (2) of Proposition 6.5.5.

Finally, let the algebra input be a generator m(bé;m(h .m(hs))- The left side of the
n = 2 condition with this algebra input and module input X, ., is

~ =~ / ~/ ot
Z fi,j;h/ch’hl;h3cj,kXx,’('h3 + Z fi’jcj,k;h’ch/hl5h3Xx;c'h3'
ok h'€Bq ok, h €Bq

To compare with the right side of the n = 2 condition, note that, as in the proof of
Proposition 6.2.3, we have

PO gy mn) = = D MOy )OS sy )
hzeﬂ
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where the sum is implicitly over those /15 such that generators m1(b)., (). m(h,)) @nd
MBS+ m(hy).m(nz)) €Xist. Thus,

A\(f)Z ° (ld b /’Ll)(Xx,'-hl ’ m(bz';m(hl),m(h3)))

== 2 A2 Xy MBS ) B3 Vi) mh))
h>
= > 0 (A2 @) Xy MBS ) By i h) m(h))
hzeﬂ
= 2 A2 0m2 @id) Xy MBS (1) i) B3 Vi) mh)
hzeﬂ
by the n = 3 consistency condition (6-9); note that deg;, m(by+.,(ny).m(hy) = -
Expanding the above expression out, the top line is

~ z ~ z
Yo SuiwCrhiina€ pChrhoshs X by
J ANy,
h”Gﬂy,hzeﬁ

and the bottom line is
— D Gy S deh Chhosh Xl oy

jakah/eﬂya
h”eﬂy,hzeﬂ

Thus, the right side of the 7 =2 condition (6-10) with algebra input m(b¢ . (n,).m(h3))
and module input Xy .5, is

Y G Cunhs Jih X by D g Sy ks Civi s Xl s
j’kah/eﬂa ]',k,h/eﬂoz

~ z o z

— D fidwwnhaC e gy X oy
J ki eBy.
hNEﬂy,hzeﬂ

D e Sk Ch s Xoc) by
j:kyh/eﬂ]/y
h"ep, hrep
This is equal to the left side of the » = 2 condition with these inputs,
r = ’ ~/ =
Z Jijsh €z €5 e Xx hy + Z J1.5 € kst Chhyshs X by
j:kah/eﬂtx jaksh/eﬂot

by item (3) of Proposition 6.5.5. O

We now define the composition of two As,—morphisms as in [11, Definition 27].
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6.5.10 Definition Define the composition of two As—morphisms F': A— A" and
G: A’ — A" to be the Aso—morphism G o F with

(GoF)yi= Y. (=D)DUING; o (F; @ lidUTDSED),
i+j=n+1

For the purposes of this section, we will only need to compose morphisms A (f)
and A(g) such that either f* or g satisfies a more restrictive condition than Cporphism -

6.5.11 Definition A chainmap f: M — M’ of complexes of graded projective right
H"-modules satisfies the algebraic condition émorphism for the generating sets {x;}
of M and {x}} of M’ if it satisfies Ciorphism Of Definition 6.5.4 and furthermore
]7,-,]-;;,/ =0 for all ' € Buur.

6.5.12 Proposition Let f: M — M’ and g: M’ — M" be chain maps between
complexes of graded projective right H" modules, such that M, M’ and M" satisfy
the algebraic condition Cpodule Of Definition 6.1.1, while f and g satisfy the condition
Chorphism and either f or g satisfies the condition C‘morphism. Then g o f satisfies
Cmorphism and

A(go )= A(g)o A(S).

Proof By the conditions on f and g, the chain map g o f satisfies the condition
Crnorphism» SO /T(g o f) is a well-defined Ao —morphism. We have

(g0 ik = _ fii& k-
;

If g satisfies émorphism, then for /' € B we have

(&0 )ijw = Z Jijih &j ks
J

while if f satisfies Crorphism» then

(€0 Nijw =Y fii&jki-
j

Let Xy,.,, be a generator of A(M). We have

A(go N Kuyn) =D Jij&j ik Xy
ik
and this sum also equals (A(g) o /T(f))l (Xx;-hy)-
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Let by.n,,n, be a generator of B C m(B)" © B. By the definition of the operation

f=A),
A(g 0 1)2(Xayhys Bachy i) = 0= (A(f) 0 A(2))2(Xs -y sy hy)-

Finally, let m(b%.u(h,),m(h,)) be a generator of m(B)' ¢ m(B)' © B. Suppose g
satisfies Crorphism- Then
Izl\(gof)2(Xx,-~h1’m(b::;m(hl),m(hz))) = Z ﬁ,j;h/gh’hl;hzgj,kXx,’(“hzv
jykah/eﬂmull

while

(A(g) 0 A2 X -hy - MBFpmhyy m(hn))
= (A(g)1 0 A()2) Xx-hy - MBFmh ) ()

= Y Jiiw w28k X n,-
Jok B € B

The case when f* satisfies émorphism is analogous. Thus, A(go [) = (A(g)o A(f))a.
We have

A(go fIn=(A(g) o A(f))n =0
forall n > 2, so /T(gof):/f(g)oj(f). 0

Now we will consider homotopies. The following definition is a special case of [11,
Definition 28].

6.5.13 Definition Let B be a differential bigraded algebra with idempotent ring 7.
Let A and A’ be differential bigraded right modules over B. Let F = {F,} and
G = {G,} be Aso—morphisms from A to A’. An Ass—homotopy H between F
and G is a collection

Hy: A®7B20=D - 4'[0, 4]

of bigrading-preserving Z—linear maps satisfying the relation
Fy—Gp =m0 Hy+ (=1)"" "m0 (Hy_1 ® [id|"™")
+ (=) Hy o (my ® [id|®C7Y) + Hyoy 0 (my @d®"7)
n—1

+ (_1)n+1 Z Hn O(id®k QU ® |id|®(n_k_1))
k=1

n—2
+ > (=D  Hyoy 0 (id®F @ py ®1d®H72))
k=1

forallm>1.
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6.5.14 Example Suppose H is an As—homotopy between F and G with H, =0
for n > 1. Then the n =1 As—homotopy condition for ' becomes

Fi— Gy =m'1 oH; + Hiomy,
and the n = 2 homotopy condition becomes
F,— Gy, = —m’2 o(H; ® |id|) + Hy om;.
For n > 2, the homotopy condition is F,, — G, = 0.
We will get homotopies H = A () from certain homotopies 1 between chain maps f

and g from a chain complex M of graded projective right H” modules to another such
complex M’; that is, H" -linear maps y: M — M’ of bidegree (0, —1) satisfying

f—g=duV +ydy.

We will require that M and M satisfy Cinodule for some generating sets {x;} and {x},
and that /" and g satisfy Cyomphism for these generating sets. We will only need to
consider homotopies ¥ which satisfy the analogue of the more restrictive condition
Chnorphism on chain maps.

6.5.15 Definition A homotopy i as above satisfies the condition éhomompy if, for all
generators x; of M,

V) =) vijx;
J

is a basis expansion of 1 (x;) in the basis {x} -hy} for M', for some integer coeffi-
cients V; ;.

If i satisfies the condition éhomotopy (implying, in particular, that M and M’ satisfy
the condition Cpogule and f* and g satisfy the condition Cyorphism ) then the homotopy
relation f — g = dpp ¥ + Y dps becomes the two sets of equations

(6-14) Jik = 8ij = Z Vi, i€ g + Z ¢i,jVjk
J J

for all generators x; of M and x; of M’, and

(6-15) i = Zidesw = D _Viri€ g + D iy Vi e
J J

for all generators x; € M , x;c € M’ and ' € Buur.
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6.5.16 Definition Suppose M and M’ are chain complexes of graded projective
right H" —modules, satisfying the condition Cyoqule, and f and g are chain maps from
M to M’ satisfying the condition Crnorphism - Let ¥ be an H" -linear chain homotopy
between f and g satisfying the condition éhomotopy defined above.

Define an .As—homotopy /T(w) between A( f) and A(g) by

AW Kony) =) Vij Xrn, and AW)n =0
J
forn > 1.
6.5.17 Proposition A(y) is a valid As,—homotopy between A(f) and A(g).

Proof First, A(y); respects the right action of the idempotent ring Tg on A(M)
and A(M'), and A(y); preserves intrinsic grading and decreases homological grading
by one because Y has the same properties.

By Example 6.5.14, the n = 1 condition is
A(f)1 =A@ =m0 AW)1 + AWy om;.

If Xy,.n, is a generator of A(M), then

(A1 = A1) Xy, = Z(f;-,k — i) X/ -,

= Z(W: i€ k)Xxk -hy + Z(cl ]W] k)Xx’

ik J.k
by (6-14), while
, ~
m1oA(‘ﬂ)1Xx,~h1 Zwlj ]kXx’ hys

A(W)loml xihy = chj‘/f] kXx
j.k

Thus, the n» = 1 condition is satisfied.

By Example 6.5.14, the n = 2 condition is

(6-16) A(f)2 = A(g)y = —my o (A(Y)1 ® [id]) + A(); o ms.

As in Proposition 6.5.9, we first reduce to the case where the algebra input is one of

the generators by, h, OF MDY m(ny).m(hy)) Of m(B)' © B.
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Claim If by and b, are two elements of m(B)' ® B such that the n = 2 homotopy
condition (6-16) is satisfied both when the algebra input is by and when it is b, , then
the n = 2 homotopy condition is also satisfied when the algebra input is b1 b, .

Proof of claim When the algebra input is b; ® b,, we want to show that the maps

A(f)20(id® 112) — A(g)2 0 (id ® 2)
and

—m}y o (A(Y); ® [id]) 0 (id ® p2) + A(¥) 1 0 my 0 (id ® )

take the same value. In the proof of this claim, the algebra input to all maps will be
assumed to be b; ® bs.

By Example 6.5.7 and the associativity of the algebra actions m, and m,, we want to
show the following equation (6-17), when the algebra input is by ® b, :

(6-17)  mho (A(f)2 ® lid]) + A(f)2 0 (m, ®id)
—mly o (A(g)2 ®id]) — A(g)2 0 (m, ®id)
= —my 0 (my ®id) o (A(Y)1 ® [id| ® id|) + A(Y)1 om0 (m; ® id).

Call the terms on the left side of (6-17) LHS;, LHS,, LHS3; and LHS4; call the
terms on the right side RHS; and RHS,. Using the n = 2 homotopy condition for the
algebra input by, the term RHS; can be written as

mly o (A(f)2 ® id]) —m) o (A(g)2 ® [id]) —m} o (A(Y); ® |id]) o (m2 @ id).

Call these terms RHS;,, RHS;; and RHS.. Using the n = 2 homotopy condition
for the algebra input b,, the term RHS; can be written as

A(f)20(my ®id) — A(g)2 0 (my ®id) +m} o (A(Y)1 ® [id]) 0 (m3 ®id).
Call these terms RHS,,, RHS,; and RHS;.. Then
e LHS; =RHSy,,
e LHS, = RHS,,,
e LHS3; =RHS;,,
e LHS4 =RHS,,
e RHS;.+RHS;, =0,

proving the claim. |
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It remains to show that the » = 2 homotopy condition (6-16) is satisfied when the
algebra input is one of the multiplicative generators of m(B)' © B. When the input is
bs:h, .h, - the left side of the n = 2 condition is zero, so we want to show that the right
side is also zero. If X, ., is a generator of Izl\(M ), then the right side of the n = 2
condition with algebra input by.5, , is

- Z Vi j Xxs -y + Z Vi, j Xxtoha
j j

which is zero as desired.

Finally, suppose the algebra input is m(b:;m(h D.m(hy)) and let Xy, ., be a generator
of A(M). The left side of the n = 2 condition applied to these inputs is

D i = &ikh)ewny sy Xl o »
k.hep
which equals

D Vi wm i Xy + D g Vi kCnny sy Xl oy
j.k.hep J.k,heB
by (6-15). This expression is also equal to the right side of the n = 2 condition
applied to these inputs, since m (b (h,),m(h,)) has homological degree 1. Thus, the
Aoc—homotopy relations are satisfied for A(v/). |

6.5.18 Corollary Let M and M’ be chain complexes of graded projective right
H"—modules satisfying the algebraic condition Cpoqule. Suppose there exist chain
maps f: M — M’ and g: M' — M satisfying the condition Cporphism, With either
f or g satisfying the more restrictive condition émorphism, and chain homotopies
lietween go f and idps and Y’ between f o g and idps, both satisfying the condition
Chomotopy .

Then A(M) and A(M") are Aso—homotopy equivalent type A structures over m(B)' © B.

Proof By Proposition 6.5.12,
A(g)o A(f)=A(go f) and A(f)oA(g)=A(fog).

By Proposition 6.5.17, A(y) provides an Ax—homotopy between A(g)o A(f) and
id = A(idps), and A(y') provides an A —homotopy between A(f)o A(g) and

AM) — 2%
id = A(idps). O

A(M)

The case of interest to us is when M =[T][*! and M’ =[T']¥" for two oriented tangle
diagrams 7 and 7’ in R<o ® R which are related by a Reidemeister move. In [4],
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Khovanov shows that [T']¥" is chain homotopy equivalent to [7/]%!. In the following
two propositions, we verify that the maps involved in these homotopy equivalences
satisfy the relevant algebraic conditions.

6.5.19 Proposition Let (M,dyr) be a chain complex of graded projective right
H" -modules. Assume the following conditions hold:

(1) M satisfies the algebraic condition Cyoqule With respect to a set of genera-
tors {x;}.
2) M =~ M,® M, asright H" —modules; furthermore, M is the submodule of M

spanned over H™ by some subset of the x;, while M, is the submodule spanned
by the rest of the x; .

(3) M, is a subcomplex of M . Write dps in matrix form with respect to the direct
sum decomposition as

Note that dz%/l = 0 is equivalent to the equations d12 =0,dj20dy+drod; 5 =0
and d22 =0.

(4) There exists an H" -linear map ': M, — M, of bidegree (0, —1) with idps, =
d,y’ + ¥'d>, and such that we may write, with integer coefficients ¥/

i,j’
Y =D i)
J

Among the equations implied by d]%/l =0is d12 = 0; thus (M1, d,) is a chain complex
of graded projective right modules over H" . Since (M, dyr) satisties Crodule for the
generators {x;}, (M1, d,) satisfies Cpodule for the appropriate subset of {x;}. Define
f:(M,dpy)— (My,dy), g: (My,d1)— (M, dyr) and y: M — M by the following
matrix formulas:

[=idum, 0], g:= |:—W/d1,2]’ V= |:0 —W/i|'

Then f and g are chain maps, f og =idpy, and go f —idy = dyy + Ydps .
Furthermore, f satisfies the condition Cyorphism, g satisfies the condition Cyorphism
and  satisfies the condition Chomotopy -

Proof Both f and g are bigrading-preserving and H"-linear; i preserves the

intrinsic grading and decreases the homological grading by one, because the same holds
for ¥’. The map f is a chain map because it is the projection map onto a quotient
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complex. To show that g is a chain map, we want to show that g(dy(x;)) = dar(g(x;))
for all x; in M. We have

g(di(xi)) = di(x;) = ¥'dy 5 0 dy (x;)
and
(6-18) dp(g(xi)) = dpr (xi) —dpr (Y'dy 2 (1))
= dpr(xi) + ¥/ (dy 0 dy 2)(xi) — dy 2 (xi)
=di(x;) —¥/(d1,2 0d1)(x;).
In the second line of (6-18), we use that

dy,2(x;) = idpg, (d1 2(xi))
= da(Y'd1 2(xi)) + V' (dr 0 dy 2)(xi)
= dy (Y'd1 2(x0)) + V' (dr 0 dy 2)(xi)

and in the third line of (6-18) we use the equation dy od; 5 + dj 2 0d; = 0 from
item (3) above. Thus, g is a chain map as well, and by definition, f o g =idpy,. To
verify that i is a homotopy between g o f and idps, we can write out the terms of
the relevant equation as matrices:

[ idp, O o 0 [ o 0
gof= [—de 0} Ay = |:0 —dzlﬂ/] - Vdu = |:—1ﬁ/d1,2 —W’dz} '
Thus, the equation g o f —idys = dasy + Y dps holds.

By definition, f satisfies the condition C‘morphism. By item (4) above and the condition
Cinodule for M, g satisfies Cyorphism- By item (4), ¥ satisfies Chomotopy - O

6.5.20 Proposition Let M be a chain complex of graded projective right H" —
modules. Assume the following conditions hold:

(1) M satisfies the algebraic condition Cyoque With respect to a set of genera-
tors {x;}.

2) M =~ M, ® M, as right H" —-modules, and M is the submodule of M spanned
over H" by some subset of the x;, say My ={x;-h|i €S}. The submodule M,
has a Z —basis {zj -hy | i € S}, where

Zi :xi-i-ZIi,ij-i- Z ‘Ei!j;h/x]'-h/
jGS jeS’hle,Bmull

for some integer coefficients t;,j and T; j.p’.
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(3) M, is a subcomplex of M . Write dpys in matrix form with respect to the direct

sum decomposition:
d, O]
dy = .
M |:d1,2 dy

(4) There exists an H" —linear map ': M, — M, of bidegree (0, —1) with idps, =
dr ' + Y'd, such that we may write

V() =) vz
J

for some integer coefficients ] Iz

(5) Write
dpr (xi) =Zc,~,,-x,-+ Z Cirjswrxj - h'.
j jah/eﬂmull
For all indices i € S, j € S, k & S and elements h' of By, we have
5l’j’h/w_],,k - 0.

(6) Forall indicesi € S, j € S, k € S and elements h’,h’" of B, we have
5i,j;h’fj,k =0 and Ei,j;h’%j,k;h” =0.

(7) For 5111 indicesi €S, j €S, k € S and elements h" of By, Wi/,j 7j k =0 and
wil,jfj,k;h’ =0.

As in Proposition 6.5.19, we have dl2 =0, so (M1, dy) is a chain complex. We may
write dy = dpr—d, 2. The right side of this equation has domain restricted to My C M,
and it takes values in M .

Define f: (M,dpy) — (My,d1), g: (My,d) — (M,dpr) and v: M — M by the
following matrix formulas:

- T — ldMl = 0 0
[=idum, 0], g:= |:—w/d1,2]’ V= |:0 —W/i|'

Then f and g are chain maps, f og =1idpy, and go f —idyr = dyy + Ydpr .
Furthermore, (M, dy) satisfies the condition Cpoque for the generators {x; |i € S},
J satisfies Ciorphism» & satisfies émorphism and  satisfies éhomotopy. These last three
conditions use the generators {x; |i € S} U{x; | j € S} for M and {x; |i € S}
for M.

Proof The proof that /" and g are chain maps, and that v is a homotopy between f

and g, is the same as in Proposition 6.5.19. Note that here, all the matrices are chosen
with respect to the basis {x; -hy |i € S} U{zj-hy | j & S} of M, since this basis
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is compatible with the direct sum decomposition M = M| & M, . For the algebraic
conditions, we need to use the basis {x;-h; |i € S}U{xj-h;|j &S} instead, which is
not compatible with the direct sum decomposition. Thus, we want to express dy, f, g
and v in this basis and show they satisfy Cpodules Cmorphism » émorphism and éhomompy,
respectively.

For i € §, we may write

dy() = cipxk+ Y CigewXi W+ cijz

keS kGS,h/G,Bmu][ ]¢S
~ /
— D TRk — Y Gk h
JjES.keS JES k€S I € B
+ Z 5,"]';;,/2]' W
j¢S9h/€Bmull

The final two terms which would appear in this expression are zero by item (6) of the
above assumptions. The third and sixth terms of this expression make up d; 2(x;):

dia(xi) =) cijzi+ ) Gz
]¢S j¢S,h’€l3mult

The rest of the terms make up 4 (x;):

di(x) =Y ciuxe+ Y. Cigwxk-h'

kES kesyh/eﬁmull
= /
- Z Cij Ty keXe Z Ci,j T hesh Xk - I
JES.keS j€S,keS ' €Bmu

From this formula we can see that (M1, d;) satisfies the condition Cpogue for the
generators {x; | i € S}.

For x; with i € §, we have f(x;) = x;. For z; with j & S, we have f(zj) =0. We
may write this equation as

f(Xj + Z ‘L’j’ka + Z %j,k;h’xk h,) = 0,
keS keS;h/e,Bmu]I
or equivalently
SN == "taxe— Y. Fawxi-h
keS keS,h'€Bmut

By this formula, we see that f* satisfies condition Cporphism -
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For the map g, we can write
¥ oda(xi) = W(Z%Z;‘ + D g 'h') = > Vi
jgs J &S, €Bmun J ¢S k¢S
by (5) above. Using (7), we can write this sum as
> b
AR
Thus,
glx)=xi— Y iV Xk
VEANSA)

and g satisfies condition Cporphism -

Finally, if x; € S, then ¥ (x;) = 0 by definition. For x; ¢ S, we have

v (xj) = lﬁ(zj = GaXk— Y Tk 'h')

keS keS,hep
=VE) == D Viatk == ) VK
k&S k¢S
The last equality follows from (7). Thus, i satisfies the condition éhomotopy. O

6.5.21 Corollary If T and T’ are oriented tangle diagrams in R<q ® R which are
related by a Reidemeister move, then A([T]%") and A([T']%") are Aoo—homotopy
equivalent as type A structures over m(B)' © B.

Proof When T and T’ are related by an R1 move, Khovanov’s homotopy equiva-
lence between [T]¥" and [T7]X! from [4, Section 4.4] is of the type constructed in
Proposition 6.5.19. This is most easily seen by looking at the top diagram of Figure 7.
The map v’ sends a generator x; of the far-right rectangle to the corresponding
generator x; in the top rectangle, which topologically is x; isotoped with a plus-
labeled free circle added, times (—1)*! (.7) | One can check that the four conditions of
Proposition 6.5.19 are satisfied.

When T and T’ are related by an R2 move, Khovanov’s homotopy equivalence from
[4, Section 4.5] is a composition of a homotopy equivalence from Proposition 6.5.19
followed by one from Proposition 6.5.20. The relevant diagrams are the middle diagram
of Figure 7 and the top diagram of Figure 8. The first homotopy equivalence is very
similar to the R1 move, with ¥’ defined analogously. For the second homotopy
equivalence, v’ isotopes a generator and deletes a minus-labeled free circle; it still
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Figure 8: Second step of R2 and R3 moves

carries a coefficient of (—1)#1(i’j ). The coefficients 7;,j and 7; j.;y may be packaged
into a map 7 as shown in the diagram. This map is defined as " postcomposed with
the differential map from the left rectangle to the bottom rectangle.

For generators x; in the left rectangle, z; is x;. For generators X; in the top rectangle,
z; is x; + t(x;); then M, is the subcomplex of [T]¥" generated by the z;. One can
see from the diagram in Figure 8 that the conditions of Proposition 6.5.20 are satisfied.
In particular, note that ¥'(z;) = ¥'(x;) because v’ is zero on generators from the
bottom rectangle, so condition (4) is satisfied. We have d; > = 0, so conditions (5)
and (6) hold automatically. Condition (7) holds because the arrows labeled ¥’ and
are not composable in the diagram.
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Finally, when T and 7" are related by an R3 move, Khovanov’s homotopy equivalence
from [4, Section 4.6] comes from doing a homotopy equivalence from Proposition 6.5.19
and then a homotopy equivalence from Proposition 6.5.20, to both [T]*" and [T/]¥P.
After these homotopy equivalences, the complexes are isomorphic. Thus, the full homo-
topy equivalence from [T']%" to [T/]%" is a composition of four homotopy equivalences
from Proposition 6.5.19 and Proposition 6.5.20.

The relevant diagrams are the bottom diagram of Figure 7 and the bottom diagram of
Figure 8. The maps v and 7 are defined as in the R2 move. Again, one can check that
the conditions of Proposition 6.5.19 are satisfied using Figure 7 and that the conditions
of Proposition 6.5.20 are satisfied using Figure 8. This time, in the second step, d > is
not zero. However, for one of the two arrows of Figure 8 contributing to d 3, all ¢; ;.5
are zero. The other arrow is not composable with the arrows labeled ¥’ and 7. This
suffices to show that conditions (5) and (6) of Proposition 6.5.20 hold. O

6.5.22 Proposition If T and T’ are oriented tangle diagrams in R<g ® R which
are related by a Reidemeister move, then the As,—homotopy equivalence between
AT and A(T’']¥") of Corollary 6.5.21 descends to a Ao —homotopy equivalence
of type A structures over the quotient algebra BT, of m(B)' © B.

Proof For homotopy equivalences { f: M — M, g: M{— M,y: M — M} coming
from Proposition 6.5.19, when doing an R1 move, the first stepAof an R2 move, or the
first or fourth step of an R3 move, we only need to show that A(g), descends from a
map
A(My) ®z, m(B)' © B— A(M)
to a map
A(M,) ®z, BTy — A(M);

since f satisfies émorphism and ¥ satisfies éhomotopy, we have /T( f)2 = 0 and
A2 =0.

As in Proposition 5.2.8, let a, b, ¢ and d be vertices of a tetrahedron in the graph G. We
want to show that A(g),(—,a+¢) =0, A(g)2(— a+d)=0and A(g)2(—, b+c)=0.
We will show only that A(g),(—,a + ¢) = 0; by symmetry, the proof is the same for
the other two extra relations.

Write
a=mbgmm,)mh)M Oy amhy).mns))-

¢ = mbymny)mii) Oy miy) m(hs))-
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Let X, .n, be a generator of A (My); we have i € S, in the notation of Proposition
6.5.19. Then

(6-19)  A()2(Xy,.p,.0)
= (A(g)2 0 (my ®1d)) (X, 1, » M(bymn ) m(hy)) © MOy mhy) mhs)
+ (my 0 (A(g)2 ® [1[d]) (Xi-hy - MBSy ) © MB ) m(ns))

using the n = 3 consistency condition for the .4, —morphism A( g)2; see Example 6.5.3.
The first term on the right side of (6-19) can be expanded out as

~ ~ /
(6-20) - > & Jihs, G desh!!, Vie 1 Xoxohs
i,j€S,k,IES

where /), and /7, are determined by y and 7', while the second term on the right side
of (6-19) can be expanded out as

~ /]~
(6-21) E Ci. ity Vi e Che i), Xxyohs -
i€S,j.k,l¢S

Similarly, we may write A(g)s(X. x;-hp - C) as the sum of the expressions

~ ~ ’
(6-22) = D Gk, Viea Xxrhy
i,j€S kLS
and
~ /) o~
(6-23) > Cijihiy ¥ ki, Xxyohs -
i€S,j,k,l¢S

We want to show that the expressions (6-20) and (6-23) sum to zero; the argument that
expressions (6-21) and (6-22) sum to zero is very similar.

Indeed, generators of all complexes (M, dps) and (M1, dy) under consideration come
from generators of the Khovanov complex [T]%" of a tangle 7', and by Remark 3.0.4
we may choose any ordering we like for the crossings of 7. We will order the crossings
of T such that the one, two or three crossings local to the Reidemeister move being
performed come first in the ordering.

Now, to each quadruple (i € S,j € S,k ¢ S,/ ¢ S) giving rise to a nonzero term
of expression (6-20), we may associate a pair of indices (j' & S, k" &€ S), such that
Ci jrsh)yCir k' sh, Yy 7 0. In fact, with the above ordering convention, we will have
b% s
/

~ ~ / _ ~ ~
Ci, sk Ciodesh!!, Vieq = Cijrsmiy Vo g Chr Lk -
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To construct (j' & S, k’ €.S) such that the above equation holds, first note that the only
component of g relevant for A(g), is =y’ o d1,>. Recall that the terms ¢, and thus
also the terms ', are computed as in Example 6.1.3. A term like Ci,jsh, Ej’k;h/n/' Vil
corresponds to doing one step of d; by changing some crossing away from the local
area (and thus higher in the ordering) from 0 to 1, then doing one step of d; > by
changing one of the local crossings from 0 to 1, and then finally doing one step
of ¥’ by changing a different local crossing from 1 to 0. The indices (j’, k") and the
corresponding term 5,~,,~/;h;7 W}/,k/g‘k/,];h;, come from doing the d; , and —y’ steps
before changing the nonlocal crossing from 0 to 1. But, when changing the local
crossings, the signs are the same for both terms because the local crossings occur at
the beginning of the ordering. When changing the nonlocal crossing, the signs are also
the same for both terms because doing d; > and —y on the local crossings does not
increase or decrease the number of crossings with a 1-resolution (d > increases this
number by 1 and then —v/’ decreases it by 1).

The correspondence between quadruples (i € S,j € S,k € S,/ € S) such that
Ci,j:h, Cj ksl Wk, is nonzero and quadruples (i € S, j' ¢ S, k" ¢ S,1 ¢ S) such that
Ei,j’;h’,] lﬂ}gkfz’k’,l;h;, is nonzero is bijective. Thus, expressions (6-20) and (6-23) sum
to zero. Analogously, expressions (6-21) and (6-22) sum to zero.

We conclude that A(g),(—, a+c¢)=0. By symmetry, we also have A(g)2(—, a+d)=0
and A\(g)z(—, b+c¢)=0,so A\(g) descends to an 4., —morphism of type A structures
over BI,.

For homotopy equivalences { f: M — My,g: My — M,y: M — M} coming from
Proposition 6.5.20, the argument is similar enough that we will simply outline the
differences with the above proof. Homotopy equivalences from Proposition 6.5.20
arise when doing the second step of an R2 move or the second or third step of an R3
move. For these equivalences, we only need to show that A (f), descends from a map

AM) ®z, m(B)' © B— A(M,)
to a map
A(M) ®z1, BT, — A(M))

since we automatically have A(g), = 0 by condition émorphism on g and A(Y), =0
by condition Chomotopy ON Y.

The only terms of f in the basis expansion {x;-h; |i € S}U{xj-hy|j &S} of M
which are relevant for 4 (/)2 are the terms with coefficients —7; x.j ; see the proof
of Proposition 6.5.20. These t terms play a role analogous to the —" o d; » terms
in the proof above for homotopy equivalences from Proposition 6.5.19. Indeed, a
term corresponds to doing one step of ', by changing a local crossing from a 1 to
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a 0, and then doing one step of djs, by changing a local crossing from a 0 to a 1.
Thus, an argument analogous to the one above shows that A(f)a(=,a+¢)=0, and
by symmetry that /I(f)z(—,a +d) =0 and E(f)z(—,b +¢) = 0. Hence /T(f)
descends to an Ax,—morphism of type A structures over BIY,. O

Proposition 6.5.22 gives us an alternate proof of Roberts [11, Corollary 33].

6.6 Equivalences of type D structures

We first define morphisms and homotopies of type D structures with sign conventions
following Roberts [12, Definition 37].

6.6.1 Deﬁnltlon Let B be a differential bigraded algebra with idempotent ring 7.
Let (D ) and (D’ ') be type D structures over B. A morphism of type D structures
F:D—> D isa bigrading-preserving Z-linear map F: D—>B®; D satisfying
the type D morphism relation

(1 ®id))o F = (1, ®id) o (id® F) 0§ — (ur ®id) o (id® ') o F.
The composition of two morphisms of type D structures F: D— D’ and G: D' — D" is
GoF:=(u®id)o(id®G)® F,

a bigrading-preserving Z-linear map from D to B ® D” which also satisfies the
type D morphism relation.

6.6.2 Definition Let F: D — D', G: D — D’ be morphisms of type D structures
over B. A homotopy of morphisms of type D structures between F and G is a
bigrading-preserving Z-linear map H: D — (B ®7 D’)[0, 1] satisfying

F-G=(u®id)o(id® H)od+ (1, ®id) o (id®8") o H + (11 ® [id|) o H.
If a homotopy exists between F and G, then F is said to be homotopic to G.

Two type D structures D and D’ are homotopy equivalent if there exist type D structure
morphisms F: D — D’ and G: D' — D, such that G o F' is homotopic to id 5 and
F o G is homotopic to id b

6.6.3 Remark Suppose D and D’ are homotopy equivalent type D structures over 3
and J is a bigrading-homogeneous ideal of 5 which is closed under the differential
on 5. By Proposition 5.3.7, D and D’ induce type D structures over B/J . The induced
type D structures are homotopy equivalent. Indeed, one may simply postcompose the
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algebra outputs of ', G and H with the projection map from B onto B/J, and all
the relevant conditions are still satisfied.

Now let N be a chain complex of graded projective left H”—modules. In Section 6.3,
the type D structure 13(N ) over m(B)" © B was defined by applying the mirroring op-
eration of Definition 6.3.6 to A(r(N)) K m(®B)'OBgmm®B)'OB)®  One can check that
the mirroring operation of Definition 6.3.6 respects homotopy equivalences of type D
structures. Thus, to show that 13([T ]¥h) is a tangle invariant up to homotopy equiva-
lence, it would suffice to prove the following general result: if A and A’ are type A
structures over a differential bigraded algebra B which are free as Z—modules, DD
is a type DD bimodule over B and another differential bigraded algebra B’, and A
and A’ are Ao —homotopy equivalent, then AX DD and A’ K DD are homotopy
equivalent as type D structures over B’. Over Z /27, this is a standard property of the
box tensor product; see [7, Lemma 2.3.13]. Here, we are working over Z, but we will
only need a simpler version of this result.

6.6.4 Definition Let B and B’ be differential bigraded algebras over an idempotent
ring Z. Let A and A’ be differential bigraded right modules over B and let (ljb ,6DD)
be a rank-one type DD bimodule over B and B’. Assume that A and A’ are free as
Z—modules, with Z-bases consisting of elements which are bigrading-homogeneous
and have a unlque rlght 1dempotent Let § and &’ denote the type D structure operations
on AR DD and A'® DD respectively.

Let F: A — A’ be an Aoo—morphism with F,, = 0 for n > 2. Define a morphism of
type D structures F Xidpp from AR DD to A'® DD, or in other words a map

FRidpp: (AR DD) — B’ ®7 (A’ K DD),
by the formula
FRidpp :=1® Fi +£0(F,®|id)) o (id®dpp).
where we are identifying A X DD with A and A’ & DD with A’. Recall that
£ AR (B)P > B Q74
was defined in Definition 6.3.4 and
£ A ®7(B)? > B @1 A

is defined analogously The map F IZI idpp is bigrading-preserving and respects the
actions of Z on AKX DD and A’ ® DD.

6.6.5 Proposition The map F Xidpp defined in Definition 6.6.4 is a morphism of
type D structures from AR DD to A' R DD .
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Proof We want to show that
(6-24)  (u1®lid|)o(FXidpp)
= (U2 ®id)o (id® (FRidpp))os—(u2 ®id) o (id®8") o (FNidpp).

The left side of (6-24) is
(1 ®[id)oéo(F2®1id[)o(id®dpp) = —§ o (F2 ®lid|) 0 (Id®id® pt1) o (id®Spp).
Using the DD bimodule relations for §pp, we may further rewrite this term as
£o(F,®id)o(id®puy ®id)o (id®68pp)

+Eo0(Fr,®id)o(ild® U, ®ur)o(id®0)o(ld®id®dpp ®id) o (Id® Spp).

Using the n = 2 and n = 3 A consistency conditions for F' from Example 6.5.3,
the sum of these two terms is

£o(Fy ®id)o (my ®id)o (id®S8pp)
—§£0(Fy,®id)o(id® |id| ®id) o id ® §pp) o m4
—£o(m) ®id)o (F,®id) o (id®3pp)
—&o(my®id)o(id®Spp) o Fi
+& o(F,®|id]) o (my ®id ® id)
0(ld®i1d®id® uy)ooo(id®id®dpp ®id) o (iId®Jdpp)
+ (Jid| ® id) 0 & o (m ®id) o (F> ® |id| ® id)
0(1d®id®id® uy)ooo(id®id®Jpp ®id) o (iId®Spp).
We will refer to these six terms as LHS;, LHS,, LHS;, LHS,, LHSs and LHSg.
The right side of (6-24) is
1® (Fromy)+&o(F,®]|id]) o (id®Spp) om;
4+ (d® Fi)oéo(m,®id)o (id®dpp)
+(u2 ®id) 0 (id®£) o (Id® F> ® |id[) o ([d®id® $pp)
ofo(my®id)o(id®Spp)
—1® (m} o Fy)
—£o(my®id)o(id®é8pp) o Fi
—(id®m’1)o§o(F2®|id|)o(id®8DD)
— (12 ®id) 0 ([d®&) o (id®m ®id) o ([d®id ® Spp)
ofo(F,®lid))o(id®épp).
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We will refer to these eight terms as RHS; through RHSg. We have the following:

e RHS; + RHS5 =0 by the n = 1 consistency conditions for F'.
e LHS; = RHS3; because F; is bigrading-preserving.
e LHS, = RHS, since

(id®lid|) o pp = —(lid| ®id) o épp.
i LHS3 = RHS7 .
i LHS4 = RHS6.

It remains to show that LHSs = RHS,4 and that LHSg = RHSg. These claims follow
from direct computation: let Spp (1) =), b; ® (b;)°P. The term LHSs, when applied
to a generator X of A, gives

Z (_1)(degh b})(degy, b;) (_l)degh b;+deg;, b; (_1)(degh X +degy, b; +degj, bj —1)(degy, b; +deg;, b})
b -bib; ® Fy(Xb;, bj)
— Z(_ 1)(degh X)(degy, b] +degy, b))+ (deg), b; ) (degy, b})bl{bj{ ® F>(Xbi,b)).
i’j
To see that the second sum is equal to the first, use the fact that degy, b; 4+ deg), b, = 1
and degy, bj +deg;, b; = 1. In particular,

(_1)(degh bi)(deg, b)) _ 1 and (_1)(degh bj)(deg, bj) _ |

Applying the term RHS,4 to X gives

Z(_l)(degh X +degy, b;)(degy, b)) (_l)degh b} (— 1)(degh X +degy, b +deg, bj —1)(deg), b})

ij -bib; ® F(Xbi, bj)
_ Z(_l)(degh X)(degy, b} +degy, b})+(degy, b;)(degy, b})bl{bj{ ® Fy(Xb;. bj).

L,j

Thus, LHSs = RHS4.

Similarly, applying the term LHS¢ to X gives

Z(_l)(degh bj)(degy, b)) (_l)degh b; (— 1)(degh X +degy, b +degy, bj —1)(degy, b; +deg, bj’.)

i (= )een Bitdeen b iyt @ By (X by, b))

_ Z (1) (deen X)(degy b +deg), b))+ (degy, b})(degy, b})bl{bj{ ® Fy(Xb;., b)).

ij
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Applying the term RHSg to X gives
_Z(_l)degh b; (_1)(degh X +degy, b;—1)(degy, b)) (_1)(degh X +degy, bi +degy, bj—1)(degy, b})
i -bjb} ® Fy(Xb;. b))
_ Z (=~ 1)(degh X)(degy, b; +degy, b7)+(degy, b)) (deg), b]’)bl/bj/ ® F2(Xb;.bj).
L,j

Thus, LHS¢ = RHSg, so F Xidpp is a valid morphism of type D structures from
AR DD to AR DD . O

6.6.6 Proposition If F and G are Ao—morphisms from A to A’ as described in
Definition 6.6.4, with F,,, G, = 0 for n > 2 and either F', =0 or G, = 0, then

(Go F)Ridpp = (GXidpp) o (FXidpp).
Proof First, suppose G, = 0. Then (Go F); =G0 F; and (Go F), =G0 F,.
We have
(GoF)Ridpp =1®(GoF)1+&0((Go F); ®|id|) o (id®dpp)
=1®(G1oF))+£&0(G;®id) o (F,® [id]) o (id®dpp).
On the other hand,
(GXidpp)o (FXidpp)
= (p2®id) o (id® (G Midpp)) o (F Ridpp)
= (U2 ®id)o(([d®1®G1)o(1® F1 +&o(F2,®[id]) o (id®8pp))
=1®(G1oF1)+(id® G)oéo(F,®[id]) o (id®dpp).
This expression equals (G o F')Kidpp because G is bigrading-preserving.
Now suppose instead that F, = 0. Then (G o F)q is still G o Fy, and (G o F), =
G, o (F; ®id). We have
(GoF)Ridpp =1®(GoF);+&£0((Go F),®|id]) o (id®pp)
=1 (GioF1)+£0(G,®id]|)o(F; ®1d®id)o (id®épp).
On the other hand,
(GXidpp)o (FXidpp)
= (12 ®id) o (id® (G Ridpp)) o (F Ridpp)
=(n2®id) o (i[d®(1® Gy +§0 (G2 ®id]) o (id®dpp))) o (1 ® F1)
=1®(G1oF1)+£0(G2®|id]) o (id®Spp) o F1,
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which equals (G o F)Xidpp because
(F1®id®id)o(id®dépp) =(1d®3dpp) o Fy. |

6.6.7 Proposition As in Proposition 6.6.6, let F and G be A, —morphisms from A
to A" with F,,, G, =0 for n > 2 (here we do not require that either F» =0 or G, =0).
Let H be an As,—homotopy between F and G with H, = 0 for n > 1. Define
HXidpp :=1® Hy;
then HXidpp is a homotopy of type D morphisms between FXidpp and G Ridpp.
Proof Let § and §’ denote the type D operations on AR DD and A'R DD respectively.
We want to show that
FRidpp —GXidpp = (id®H1)05+5/0H1;
the other term in the type D homotopy relations of Definition 6.6.2 is zero for this
special type of H. Expanding out the left side, we want to show that
IQF—1®G; +£0((F,—G2)®|id)) o (id®8pp) = (id® Hy) o8 + 68 o Hy.

By Example 6.5.14, the As,—homotopy relations for H give us the following two

equations:
F1 —Gl =m’1 OH1 —|—H1 omq,

Fz —G2 = —m’2 O(Hl ® |1d|) + Hl omj.
Thus, the left side of the type D homotopy relation is

1 ®(m/1 oHy) +1®(Hyomy)
+Eo((—myo(H ® [id]) + Hy omy) ® [id]) o (id ® Spp)
=1®(m\oHy) +1Q®(Hiom;)—§o(my®id)o(H; ®|id| ®|id]) o (id® Spp)
+£® (H, ®[id]) o (m> ®id) o (id®8pp)
=1®(mjoHy) +1® (Hiom;)+Eo0(mh®id)o(H ®id®id)o(id®Spp)
+({d® Hy)oEo(my®id) o (id®épp)
=1®(m\oHy) +1Q(Hyom;)+Eo(m)y®id)o(id®Spp)o H,
4+ (d® Hy)o&o(my®id)o (id®Spp).
On the other hand, using the definition of § and §’ in Definition 6.3.4, the right side of
the type D homotopy relation can be expanded out as
1 ® (Hl oml) + (1d®H1)O§O(Wl2 ®1d)0(1d®81)l))
+1®(m/1oHl)—l—%'o(m/z®id)o(id®5DD)oH1
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which is identical to the previous expression after rearranging terms. Thus, H Xidpp
is a valid type D homotopy between F' Xidpp and G Ridpp. |

6.6.8 Corollary Let B and B’ be differential bigraded algebras over an idempotent
ring Z. Let A and A’ be differential bigraded right modules over B and let (D/b, 3pD)
be a rank-one type DD bimodule over B and B’. Assume that A and A’ are free as
Z—modules, with Z —bases consisting of elements which are grading-homogeneous and
have a unique right idempotent.

Suppose there exist Aso—morphisms F': A— A and G: A’ — A with F, = 0 and
G, =0 for n > 2, and such that either F> = 0 or G, = 0. Furthermore, suppose that
G o F is Aso—homotopic to id 1 via an Asc—homotopy H with H,, =0 forn > 1, and
FoG is Aso—homotopic to id 3, via another Ao —homotopy H " with H), =0 forn>1.

Then the type D structures AR DD and A'®R DD over B’ , defined in Definition 6.3.4,
are homotopy equivalent.

Proof This follows from Proposition 6.6.5, Proposition 6.6.6 and Proposition 6.6.7,
together with the fact that the box tensor product with idpp on morphisms sends
identity morphisms to identity morphisms. a

6.6.9 Corollary If T and T’ are oriented tangle diagrams in R>o ® R which are
related by a Reidemeister move, then ﬁ([T €0y and ﬁ([T '1%M) are homotopy equivalent
as type D structures over m(B)' © B. Thus, they are also homotopy equivalent as
type D structures over the quotient algebra BT, .

Proof The first claim follows from Corollary 6.6.8 and the proof of Corollary 6.5.18,
in which the As,—morphisms F = A(f) and G = A(g) and the Aso—homotopy
H=A (¥) used to realize the A, —homotopy equivalences satisfy the conditions of
Corollary 6.6.8. The second claim follows from Remark 6.6.3 above. O

Corollary 6.6.9 gives us an alternate proof of Roberts [12, Theorem 46].
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