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On bordered theories for Khovanov homology

ANDREW MANION

We describe how to formulate Khovanov’s functor-valued invariant of tangles in the
language of bordered Heegaard Floer homology. We then give an alternate construc-
tion of Lawrence Roberts’ type D and type A structures in Khovanov homology,
and his algebra B�n , in terms of Khovanov’s theory of modules over the ring H n .
We reprove invariance and pairing properties of Roberts’ bordered modules in this
language. Along the way, we obtain an explicit generators-and-relations description
of H n which may be of independent interest.
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1 Introduction

We consider two tangle theories for Khovanov homology which are inspired by the
bordered Heegaard Floer homology of Lipshitz, Ozsváth and Thurston [5]. The first
theory is a reformulation of Khovanov’s functor-valued invariant [4] in the bordered
language. The second theory was introduced by Lawrence Roberts in [11; 12].

These bordered Khovanov theories share the same basic structure. Each assigns a
differential bigraded algebra B to a collection of 2n points on the line f0g �R in the
plane R �R. To a tangle diagram T1 in R�0 �R with 2n endpoints on f0g �R,
these theories assign a (left) type D structure yDT1

over B . The definitions of type D
structures, and other elements of the algebra of bordered Floer homology, will be given
in Section 2.

To a tangle diagram T2 in R�0 �R with 2n endpoints on f0g �R, bordered theories
assign a (right) type A structure (ie an A1–module) yAT2

over B . There is a natural
pairing operation between type D and type A structures over B called the box tensor
product, denoted � (or �B when B is unclear). If T2T1 denotes the link diagram
obtained by concatenating T2 and T1 horizontally, bordered theories compute the
Khovanov complex CKh.T2T1/ using the following pairing formula:

CKh.T2T1/Š yAT2
�B yDT1

:

In Section 3, we will obtain a bordered theory with the above structure by taking B to
be Khovanov’s arc algebra H n from [4], viewed as a differential bigraded algebra with
the differential and one of the two gradings identically equal to zero. The type D and
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type A structures yDT1
and yAT2

will be referred to as yD.T1/ and yA.T2/ in this setting.
Both come from Khovanov’s tangle invariants ŒTi �

Kh , which are chain complexes of
projective graded H n modules up to homotopy equivalence.

1.0.1 Theorem (Theorem 3.2.1) After multiplying the intrinsic gradings on yA.T2/�Hn

yD.T1/ by �1,
CKh.T2T1/Š yA.T2/�H n yD.T1/:

Roberts [11; 12] has a different construction of a bordered theory for Khovanov
homology, including a differential bigraded algebra B�n as well as type D and type A
structures for tangles. The goal of Section 5 and Section 6 is to construct Roberts’
theory using Khovanov’s theory. The basic idea is to refine Khovanov’s proofs of the
existence and invariance of his tangle invariants by splitting the equations involved into
subequations, each of which holds individually.

The construction of Roberts’ theory from Khovanov’s is not straightforward or trivial;
the combinatorics is quite involved. Moreover, at various points we take our inspiration
directly from [11; 12] rather than from abstract algebraic definitions. In particular, see
Remark 5.3.5 below. While it would be interesting to search for the most general or
natural possible explanation for the connection between these two theories, we do not
pursue this goal here.

We take the first step toward relating Roberts’ and Khovanov’s theories in Section 4. In
Section 4.1, we discuss quadratic and linear-quadratic algebras following Polishchuk
and Positselski [10]. In Section 4.2, we show that H n may be viewed as a linear-
quadratic algebra.

1.0.2 Theorem (Theorem 4.2.1) With the set of generators specified at the beginning
of Section 4.2, H n is a linear-quadratic algebra.

This theorem allows us to write H n as the quotient of the tensor algebra on the specified
generators by an ideal generated by certain explicitly given relations, which are listed
in items (1)–(4) of the proof of Theorem 4.2.1. See Corollary 4.2.7 for a more precise
statement.

A combinatorial lemma about noncrossing partitions, Lemma 4.2.4, is needed to prove
Theorem 1.0.2. While Theorem 1.0.2 is not necessary for the remainder of the paper,
Lemma 4.2.4 is important for Section 5. Proofs of Lemma 4.2.4 were found by Dömötör
Pálvölgyi [9] and independently by Aaron Potechin in a private email communication.
This lemma, and Theorem 1.0.2, may be of interest to readers independently of the
other constructions in this paper.
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In Section 4.3, we consider a notion of Polishchuk and Positselski [10] of quadratic
duality for linear-quadratic algebras. In Section 4.5, we discuss a bordered-algebra
version of this duality using type DD bimodules. Generalized Koszul duality between
two algebras B and B 0 in bordered Floer homology is defined (see Lipshitz, Ozsváth
and Thurston [6]) by the existence of a quasi-invertible rank-one type DD bimodule
over B and B 0 . The algebras used in Lipshitz, Ozsváth and Thurston’s construction have
interesting Koszul self-duality properties. However, it seems that no such properties
hold for H n . Viewing H n as a linear-quadratic algebra, we will see in Section 4.4
that its quadratic dual is infinite-dimensional, whereas H n is always finitely generated
over Z.

One could ask whether the duality between H n and this infinite-dimensional algebra
is a (generalized) Koszul duality; one could also explore related theories in which
everything stays finite-dimensional. We will take the second option here.

In Section 5, we will outline an alternate construction, based on H n , of Roberts’
algebra B�n . We define an algebra BDBR.H

n/, and we show in Proposition 5.1.7 that
the algebra B is linear-quadratic. The proof is very similar to the proof of Theorem 4.2.1
asserting that H n is linear-quadratic, and it also uses Lemma 4.2.4 in an essential
way. We deduce that B is isomorphic to the subalgebra BR�n of B�n generated by
right-pointing generators �!e .

The quadratic dual B ! of B is closely related to the subalgebra BL�n of B�n generated
by left-pointing generators  �e . In more detail, a mirroring operation m is defined on
certain algebras in Definition 5.2.6. We will see in Proposition 5.2.8 that BL�n is
a quotient of the mirror m.B !/ of B ! by certain additional relations, listed in that
proposition. As Remark 5.2.3 points out, B ! is finitely generated for idempotent
reasons.

In Section 5.3, we define a product algebra m.B !/ ˇ B of m.B !/ and B . We may
describe Roberts’ full algebra B�n as a quotient of m.B !/ˇ B .

1.0.3 Theorem (Corollary 5.3.4) B�n is isomorphic to the quotient of m.B !/ˇ B
by the extra relations on m.B !/ listed in Proposition 5.2.8.

The duality properties of B�n and m.B !/ˇ B seem more promising than those of H n .
In Proposition 5.3.6 we define a rank-one type DD bimodule over m.B !/ˇ B and its
mirror version m.m.B !/ ˇ B/. Conjecture 5.3.9 predicts that this DD bimodule is
quasi-invertible and thus yields a Koszul duality. By taking quotients of the type DD
algebra outputs, we can obtain a related rank-one DD bimodule over B�n and its mirror
version m.B�n/. Thus, we could also ask if Conjecture 5.3.9 is true with m.B !/ˇ B
replaced by B�n . A proof of either conjecture would establish that, with regard to
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Koszul duality, Roberts’ bordered theory (or the version over m.B !/ˇ B ) has closer
formal parallels with bordered Floer homology than Khovanov’s H n theory does.

In Section 6, we show how to obtain type A and type D structures over m.B !/ ˇ B
from chain complexes of graded projective H n –modules satisfying certain algebraic
conditions.

1.0.4 Theorem The following constructions are well-defined:

� Let M be a chain complex of projective graded right H n –modules satisfying
the algebraic condition Cmodule of Definition 6.1.1. To M we may associate a
type A structure yA.M / over m.B !/ˇ B .

� Let N be a chain complex of projective graded left H n –modules satisfying the
condition Cmodule of Definition 6.3.3. To N we may associate a type D structure
yD.N / over m.B !/ˇ B .

Theorem 1.0.4 is a summary of Definition 6.2.4, Proposition 6.2.5 and Definition 6.3.7
(as well as the definitions and propositions preceding them).

The chain complexes ŒTi �
Kh associated to tangles by Khovanov satisfy Cmodule , so

Theorem 1.0.4 gives us type A and type D structures yA.ŒT2�
Kh/ and yD.ŒT1�

Kh/ over
m.B !/ ˇ B . By Proposition 6.2.6, the extra relations of Theorem 1.0.3 act as zero
on the type A structure yA.ŒT2�

Kh/, so we get a type A structure over the quotient
algebra B�n . We may also take quotients of the algebra outputs of the type D structure
yD.ŒT1�

Kh/ to get a type D structure over B�n .

1.0.5 Theorem (Proposition 6.2.7 and Proposition 6.3.10) The type A structure
yA.ŒT2�

Kh/ over B�n , and the type D structure yD.ŒT1�
Kh/ over B�n , are isomorphic to

the type A and D structures Roberts associates to T2 and T1 in [11; 12].

We show that the pairing of the bordered modules over m.B !/ ˇ B agrees with the
tensor product of the original chain complexes over H n .

1.0.6 Theorem (Proposition 6.4.1) Given M and N as in Theorem 1.0.4, we have

yA.M /�m.B!/ˇB yD.N /ŠM ˝H n N;

after multiplying the intrinsic gradings on M ˝H n N by �1.

By Proposition 6.4.3, the pairing � is the same over m.B !/ˇ B and its quotient B�n .
Thus, we get an alternate proof that the pairing of Roberts’ type D and type A structures
computes Khovanov homology.
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Finally, in Section 6.5 and Section 6.6 we show that the homotopy types of yA.ŒT2�
Kh/

and yD.ŒT1�
Kh/, as type A and type D structures over m.B !/ˇ B , are invariants of the

tangles underlying the diagrams T1 and T2 .

1.0.7 Theorem (Corollary 6.5.21 and Corollary 6.6.9) Performing a Reidemeister
move on T2 or T1 yields a homotopy equivalence between the corresponding type A
structures yA.ŒT2�

Kh/ or type D structures yD.ŒT1�
Kh/ over m.B !/ˇ B .

With the help of Proposition 6.5.22, we also obtain an alternate proof that Roberts’
type A and type D structures over B�n are homotopy-invariant under Reidemeister
moves.
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2 Some bordered algebra

The standard reference for the algebra of bordered Floer homology is Lipshitz, Ozsváth
and Thurston [7]. We will use only a subset of the full algebraic machinery; however,
we will work with coefficients in Z rather than Z=2Z. For this sign lift, we will follow
the conventions of Roberts in [11; 12].

2.1 Differential graded algebras and modules

2.1.1 Convention Unless otherwise specified, all algebras and modules discussed in
this paper will be assumed to be finitely generated over Z.

The following is the notion of differential graded algebra which will be most useful for
us; we will not need to use more general A1–algebras. In this paper, the coefficient
ring R is always a direct product of finitely many copies of Z.

2.1.2 Definition A differential bigraded algebra, or dg algebra, is a bigraded unital
associative algebra B over a coefficient ring R, equipped with an R–bilinear differential
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�1 which is homogeneous of degree .0;C1/ with respect to the bigrading. The two
gradings on a dg algebra will be called the intrinsic and homological gradings (in that
order). Thus, the differential should preserve the intrinsic grading and increase the
homological grading by 1.

The differential must satisfy the following Leibniz rule:

�1.xy/D .�1/degh y.�1.x//yCx.�1.y//;

where degh denotes the homological degree, for elements x and y of B which are
homogeneous with respect to the homological grading. The coefficient ring R is
required to coincide with the summand B0;0 of B in bigrading .0; 0/.

2.1.3 Definition Suppose R D Z�k . The elements e1 D .1; 0; : : : ; 0/; : : : ; ek D

.0; : : : ; 0; 1/ will be called the minimal, or elementary, idempotents of B . The coeffi-
cient ring R will also be referred to as the idempotent ring of B . For each elementary
idempotent ei , there is a left R–module Rei ' Z.

2.1.4 Remark The usual convention in bordered Floer homology is to have the
differential decrease the homological grading by 1; we have chosen to reverse this
convention since the differentials in Khovanov homology increase homological grading
by 1.

2.1.5 Remark Bordered Floer homology requires more general gradings by a (possi-
bly nonabelian) group G and a distinguished element � in the center of G . We use
here only the special case where G is the abelian group Z2 and � is .0; 1/.

When dealing with bigraded algebras or modules, we will use the following degree
shift convention: if X D

L
i;j Xi;j is any type of bigraded object, then X Œm; n� is

the same type of bigraded object, and the summand of X Œm; n� in bigrading .i; j /
is Xi�m;j�n .

Since we are working over Z, the following notation will also be useful, following
Roberts [11; 12]. If X is any type of bigraded object, then jidjW X ! X is defined
by multiplication by .�1/degh , where degh denotes the homological degree. Simi-
larly, jidjj W X ! X is defined by multiplication by .�1/j degh , and jidjj˝k is the
k –fold tensor product of jidjj . In this notation, if �2 denotes the multiplication on a
dg algebra B , then the Leibniz rule for the differential �1 on B can be written as

�1 ı�2 D �2 ı .�1˝jidj/C�2 ı .id˝�1/:

2.1.6 Definition A left differential bigraded module, or left dg module, over a dg
algebra B , is a bigraded left B–module M equipped with a differential d of bidegree
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.0;C1/, such that the Leibniz rule

d ımDm ı .�1˝jidj/Cm ı .id˝ d/

is satisfied, where mW B˝R M!M is the action of B on M and �1 is the differential
on B .

2.1.7 Definition A right differential bigraded module, or right dg module, over a
dg algebra B , is a bigraded right B–module M equipped with a differential d of
bidegree .0;C1/, such that the Leibniz rule

d ımDm ı .d ˝jidj/Cm ı .id˝�1/

is satisfied, where mW M˝RB!M is the action of B on M and �1 is the differential
on B .

If M is a right dg module and M 0 is a left dg module over B , then we can take the
tensor product of M and M 0 over B to produce a chain complex of graded abelian
groups, or equivalently a differential bigraded Z–module.

2.1.8 Definition Let M be a right dg module and M 0 be a left dg module over B .
The differential on the tensor product M ˝B M 0 is defined to be

dM˝BM 0 WD dM ˝jidM 0 jC idM ˝ dM 0 :

2.2 Type D structures

2.2.1 Definition Let B be a differential bigraded algebra over R as in Definition 2.1.2.
Let �1 and �2 denote the differential and multiplication on B , respectively.

A type D structure over B is, firstly, a bigraded left R–module yD which is isomorphic
to a finite direct sum of R–modules Rei˛ Œj˛; k˛ �, where the ei˛ are elementary
idempotents of B (all in bigrading .0; 0/) and Œj˛; k˛ � is a grading shift. The module yD
should be equipped with a bigrading-preserving R–linear map

ıW yD! .B ˝R
yD/Œ0;�1�;

such that
.�1˝jidj/ ı ıC .�2˝ id/ ı .id˝ ı/ ı ı D 0:

2.2.2 Remark The condition that yD D
L
˛ Rei˛ Œj˛; k˛ � would be unnecessary if R

were a direct product of copies of Z=2Z, rather than Z. But over Z, we want to
exclude cases like B DRDZ, yD DZ=2Z, ı D 0 from being valid type D structures.
The reason for this restriction is that we want Proposition 2.2.3 below, which is true
over Z=2Z, to hold over Z as well.
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2.2.3 Proposition If . yD; ı/ is a type D structure over B , then B˝R
yD is a projective

left dg B–module when equipped with the differential

d WD �1˝jidjC .�2˝ id/ ı .id˝ ı/;

where �1 and �2 denote the differential and multiplication on B , respectively.

Proof First, since yD (as an R–module) is a direct sum of R–modules Rei˛ Œj˛; k˛ �,
B˝R

yD is a direct sum of B–modules Bei˛ Œj˛; k˛ �. These are each projective because
they are summands of grading shifts of B : if RD Z�k , we have B D

Lk
iD1 Bei as

left B–modules. Thus, B ˝R
yD is a projective B–module.

Before showing that d2 D 0, we check that d satisfies the Leibniz rule. The action of
the algebra B on B ˝R

yD is given by the following map:

m WD �2˝ idW B ˝R .B ˝R
yD/D .B ˝R B/˝R

yD! B ˝R
yD:

We want to show that dımDmı.�1˝jidj/Cmı.id˝d/, as maps from B˝R.B˝R
yD/

to .B ˝R
yD/. We can write out the left side:

d ımD .�1˝jidjC .�2˝ id/ ı .id˝ ı// ı .�2˝ id/

D .�1 ı�2/˝jidjC .�2˝ id/ ı .id˝ ı/ ı .�2˝ id/

D .�2 ı .�1˝jidj//˝jidjC .�2 ı .id˝�1//˝jidj

C .�2˝ id/ ı .id˝ ı/ ı .�2˝ id/

D .�2˝ id/ ı .�1˝jidj˝ jidj/C .�2˝ id/ ı .id˝�1˝jidj/

C .�2˝ id/ ı .id˝ ı/ ı .�2˝ id/:

Meanwhile, the right side is this:

mı.�1˝jidj/Cmı.id˝d/

D .�2˝ id/ı.�1˝jidj˝jidj/C.�2˝ id/ı.id˝d/

D .�2˝ id/ı.�1˝jidj˝jidj/C.�2˝ id/ı.id˝.�1˝jidjC.�2˝ id/ı.id˝ı///

D .�2˝ id/ı.�1˝jidj˝jidj/C.�2˝ id/ı.id˝�1˝jidj/

C.�2˝ id/ı.id˝..�2˝ id/ı.id˝ı///:

The first two terms on the left side cancel with those on the right side, and we only
need show that

.�2˝ id/ ı .id˝ ı/ ı .�2˝ id/D .�2˝ id/ ı
�
id˝ ..�2˝ id/ ı .id˝ ı//

�
:
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This identity follows since

.�2˝ id/ ı
�
id˝ ..�2˝ id/ ı .id˝ ı//

�
D .�2˝ id/ ı .id˝�2˝ id/ ı .id˝ id˝ ı/

D .�2˝ id/ ı .�2˝ id˝ id/ ı .id˝ id˝ ı/

D .�2˝ id/ ı .id˝ ı/ ı .�2˝ id/:

Now suppose a˝x is a generator of B˝R
yD ; we want to show d2.a˝x/D 0. We

may write a˝x as m.a; 1˝x/ and apply the Leibniz rule

d.a˝x/D .�1/degh xm.�1.a/; 1˝x/Cm.a; ı.x//;

so

d2.a˝x/D .�1/deghxd.m.�1.a/;1˝x//Cd.m.a;ı.x///

D .�1/deghxm.�1.a/;ı.x//C.�1/deghxC1m.�1.a/;ı.x//Cm.a;d.ı.x///:

The first two terms cancel each other, so it suffices to show that d.ı.x//D 0. Writing
out d , this equation amounts to

.�1˝jidj/ ı ıC .�2˝ id/ ı .id˝ ı/ ı ı D 0:

This is exactly the type D structure relation.

The following propositions will be useful in the description of Khovanov’s functor-
valued invariant as a bordered theory.

2.2.4 Proposition Let B be a dg algebra over R. Suppose that B is concentrated in
homological degree 0 (it may have nontrivial intrinsic gradings). Then a dg module
over B is the same as a chain complex of singly graded B–modules with B–linear
grading-preserving differential maps.

Proof Since B is concentrated in homological degree 0, the differential on B must
be zero. Let M be a dg module over B , with summand Mj ;k in bigrading .j ; k/.
Then, for each homological grading k , the summand

L
j Mj ;k of M is preserved

when multiplying by B ; it is a singly graded B–module. Define a chain complex with
chain module Ck D

L
j Mj ;k . The differential Ck ! CkC1 is the differential on M ;

it is B–linear by the Leibniz rule, since B has no differential.

In the other direction, taking direct sums over chain modules yields a map from chain
complexes to dg modules. These operations are inverse to each other.

The next proposition involves isomorphisms of type D structures; see Definition 6.6.1
for the basic definitions.
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2.2.5 Proposition Let B be a dg algebra over R. Suppose that B is concentrated in
homological degree 0, and that all intrinsic gradings of B are nonnegative. Then a
type D structure over B is the same, up to isomorphism, as a chain complex of singly
graded projective left B–modules with B–linear grading-preserving differential maps.

Proof Given a type D structure yD over B , Proposition 2.2.3 shows that B˝R
yD is

a dg module over B , or equivalently a chain complex of graded left B–modules by
Proposition 2.2.4. In fact, each term of the chain complex is projective, since it is a
direct sum of modules Bei˛ Œj˛; k˛ �.

Conversely, suppose � � � ! Ck! CkC1! � � � is a chain complex of graded projective
left B–modules. Since each Ck is assumed to be finitely generated, it may be written as
a direct sum of indecomposable graded projective left R–modules Ck;˛ . By Khovanov
[4, Lemma 1 of Section 2.5], which assumes that the intrinsic gradings of B are
nonnegative, we see that each Ck;˛ is isomorphic to Beik;˛

Œjk;˛ � for some uniquely
determined elementary idempotent eik;˛

and grading shift jk;˛ . Define yD as a bigraded
R–module to be the direct sum, over all k and ˛ , of Reik;˛

Œjk;˛; k�.

We may identify
L

k Ck with B ˝R
yD , since

L
k Ck D

L
k;˛ Beik;˛

Œjk;˛; k� and
yD D

L
k;˛ Reik;˛

Œjk;˛; k�. Let d denote the differential on the dg module
L

k Ck .
Then the type D operation ıW yD ! B ˝R

yD is obtained by restricting d to yDŠ
1˝R

yD � B ˝R
yD . It has the correct grading properties because d does.

Since d satisfies the Leibniz rule, we may write d D �1˝jidjC .�2˝ id/ ı .id˝ ı/.
Thus, the type D relations for ı are equivalent to d ı ı D 0, which holds because ı is
a restriction of d .

Finally, we show the two constructions given above are inverses up to isomorphism.
Suppose we start with a chain complex � � � !Ck!CkC1! � � � , decompose each Ck

as
L
˛ Ck;˛ and take the corresponding type D structure yD . Then B ˝R

yD is clearly
isomorphic to the dg module associated to � � � ! Ck ! CkC1! � � � . On the other
hand, suppose we start with a type D structure yD and then obtain a type D structure by
decomposing B˝R

yD into indecomposable projectives. The resulting type D structure
has the same number of generators as yD , with the same idempotents and bigradings.
However, the type D operation may be different: in decomposing B ˝R

yD , we may
have incorporated a change of basis.

From Definition 6.6.1, we see that if yD and yD0 are two type D structures such that
B ˝R

yD and B ˝R
yD0 are isomorphic as dg modules, then yD and yD0 are isomorphic

as type D structures. The required isomorphisms of type D structures may be obtained
by restricting the isomorphisms of dg modules. Thus, any type D structure obtained by
decomposing B˝R

yD as above is isomorphic to yD .
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2.3 Type A structures and pairing

2.3.1 Definition Let B be a dg algebra over R as in Definition 2.1.2. Let �1 and �2

denote the differential and multiplication on B , respectively.

A type A structure yA over B , synonymous with A1–module over B , is a bigraded
right R–module yA, finitely generated over R as usual by Convention 2.1.1, together
with R–linear bigrading-preserving maps mi W yA˝R B˝.i�1/! yAŒ0; i � 2�, i 2 Z�1 ,
satisfyingX
iCjDnC1

.�1/j.iC1/mi ı .mj ˝jidjj˝.i�1//

C .�1/nC1
n�1X
kD1

mn ı .id˝k
˝�1˝jidj˝.n�k�1//

C

n�2X
kD1

.�1/kmn�1 ı .id˝k
˝�2˝ id˝.n�k�2//D 0

for every n� 1. The type A structure yA is called strictly unital if m2.�; 1/D id yA and
mn D 0 for n> 2 when any of the algebra inputs to mn is 1.

2.3.2 Example If M is a (right) dg B–module, then M is a strictly unital type A
structure over B with mi D 0 for i ¤ 1; 2. If M is an ordinary bigraded module
over B , with no differential, then M is a strictly unital type A structure with mi D 0

for i ¤ 2.

2.3.3 Remark We will only need to work with type A structures which come from
dg modules as in Example 2.3.2. Thus, all our type A structures will be strictly unital,
so we will omit mention of this condition in what follows. However, although our
type A structures will have no nontrivial higher action terms, we will eventually need to
work with A1–morphisms between these type A structures. We will need to consider
morphisms which do have nontrivial higher A1–terms; see Section 6.5.

Given a type D structure . yD; ı/ and a type A structure . yA; fmi j i � 1g/ over B , with
either yD or yA operationally bounded in an appropriate sense, the natural way to pair
them is known as the box tensor product. It yields a differential bigraded abelian
group yA � yD . We will not worry about boundedness in this paper since all type D
and type A structures under consideration are bounded. See Lipshitz, Ozsváth and
Thurston [7] for more details and algebraic properties of � over Z=2Z. The material
below follows Roberts [11]; we include proofs for completeness.

To define �, the following notation will be useful.
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2.3.4 Definition Let . yD; ı/ be a type D structure over B . The map ık W yD!Bk˝R
yD

is

ık
WD .

k�1‚ …„ ƒ
id˝ � � �˝ id˝ ı/ ı � � � ı .id˝ ı/ ı ı;

where ı is applied k times. In particular, ı D ı1 .

2.3.5 Definition [11, Definition 79] yA � yD , as a bigraded abelian group, is the
tensor product yA˝R

yD . The differential on yA � yD is

@�
WD

1X
nD1

.mn˝jidjn/ ı .id˝ ın�1/:

Since we are implicitly assuming boundedness, only finitely many terms of the sum
are nonzero.

2.3.6 Proposition [11, Theorem 80] The operator @� , as defined in Definition 2.3.5,
satisfies

.@�/2 D 0:

Proof In this proof, when referring to identity operators, we will use subscripts to
explicitly indicate which identity operators we mean.

First, note that as maps from yA˝R Bj�1˝R
yD to yA˝R B i�1˝R

yD , we have

.id yA˝ ı
i�1/ı .mj ˝jid yD j

j /D .�1/j.iC1/.mj ˝jidBi�1˝ yD
j
j /ı .id yA˝Bj�1˝ ı

i�1/:

This identity is immediate over Z=2Z, and we need only verify that the signs are right.
On the right side of the equality, we have jidBi�1˝ yD

jj which is computed from the
homological degree of an output of ıi�1 . Since ı increases homological degree by 1,
ıi�1 increases homological degree by i � 1. Thus, compared with the left side, the
right side has an extra factor of .�1/j.i�1/ D .�1/j.iC1/ .

Thus,

.@�/2 D
X
n�1

X
iCjDnC1

.mi˝jid yD j
i/ı.id yA˝ı

i�1/ı.mj˝jid yD j
j /ı.id yA˝ı

j�1/

D

X
n�1

X
iCjDnC1

.�1/j.iC1/.mi˝jid yD j
i/ı.mj˝jidBi�1 j

j
˝jid yD j

j /

ı.id yA˝idBj�1˝ıi�1/ı.id yA˝ı
j�1/

D

X
n�1

X
iCjDnC1

.�1/j.iC1/..mi ı.mj˝jidBi�1 j
j //˝jid yD j

nC1/ı.id yA˝ı
n�1/
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D

X
n�1

��
.�1/n

n�1P
kD1

mnı.id yA˝idBk�1˝�1˝jidBn�k�1 j/

�

n�2P
kD1

.�1/kmn�1ı.id yA˝idBk�1˝�2˝idBn�k�2/

�
˝jid yD j

nC1

�
ı.id yA˝ı

n�1/;

where the type A relations for yA were used in the final equality. It remains to show
that the derivative termsX
n�1

��
.�1/n

n�1X
kD1

mnı.id yA˝ idBk�1˝�1˝jidBn�k�1 j/

�
˝jid yD j

nC1

�
ı.id yA˝ı

n�1/

are equal to the multiplication terms

X
n�1

�� n�2X
kD1

.�1/kmn�1ı.id yA˝idBk�1˝�2˝idBn�k�2/

�
˝jid yD j

nC1

�
ı.id yA˝ı

n�1/:

For a fixed n� 1 and 1� k � n� 1, we claim that the derivative term is equal to

.�1/kC1.mn˝jid yD j
n/ı

�
id yA˝

�
.idBn�2˝ı/ı � � �

ı.idBk�1˝�1˝jid yD j/ı.idBk�1˝ı/ı � � �ı.idB˝ı/ıı
��
:

Over Z=2Z, this equality follows from expanding out ın�1 . To see that the formula
holds over Z, note that when k D n� 1, the sign in front of the above expression
is .�1/n , in agreement with the original expression for the derivative term. Each time k

is decreased by 1, the sign should flip because jid yD j occurs after one fewer instance
of ı in the second expression, compared to the original.

Now,

.idBk�1 ˝�1˝jid yD j/ ı .idBk�1 ˝ ı/D idBk�1 ˝ ..�1˝jid yD j/ ı ı/

D�idBk�1 ˝ ..�2˝ id yD/ ı .idB˝ ı/ ı ı/

by the type D relations for yD . Thus, the sum of the derivative terms is

X
n�1

n�1X
kD1

.�1/k.mn˝jid yD j
n/ ı

�
id yA˝

�
.idBn�2 ˝ ı/ ı � � �

ı .idBk ˝ ı/ ı .idBk�1 ˝�2˝ id yD/ ı .idBk ˝ ı/ ı .idBk�1 ˝ ı/ ı � � � ı ı
��

D

X
n�1

n�1X
kD1

.�1/k.mn˝jid yD j
n/ ı .id yA˝Bk�1 ˝�2˝ idBn�k�1˝ yD

/ ı .id yA˝ ı
n/:
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Since the nD 1 multiplication term is zero, and jid yD j
nC1 D jid yD j

n�1 , the sum of the
multiplication terms is

X
n�2

n�2X
kD1

.�1/k.mn�1˝jid yD j
n�1/ ı .id yA˝Bk�1 ˝�2˝ idBn�k�2˝ yD

/ ı .id yA˝ ı
n�1/

D

X
n�1

n�1X
kD1

.�1/k.mn˝jid yD j
n/ ı .id yA˝Bk�1 ˝�2˝ idBn�k�1˝ yD

/ ı .id yA˝ ı
n/:

The sums of the derivative and multiplication terms agree, proving that .@�/2 D 0.

2.3.7 Proposition [5, Example 2.2.7] Let B be a dg algebra over R as in Definition
2.1.2. Let yD be a type D structure over B , and let yA be a right dg module over B . Then
yA � yD and yA˝B .B ˝R

yD/ are isomorphic as differential bigraded abelian groups.

For completeness, and since we are working over Z, we will give a proof of this
proposition.

Proof of Proposition 2.3.7 As bigraded abelian groups,

yA˝B .B ˝R
yD/Š . yA˝B B/˝R

yD Š yA˝R
yD:

Thus, yA˝B .B˝R
yD/ and yA � yD have the same underlying group; we must verify

that the differentials agree.

The differential on yA˝B .B ˝R
yD/ may be written as

d yA˝ .jidBj˝ jid yD j/C id yA˝ .�1˝jid yD jC .�2˝ id yD/ ı .idB˝ ı//

D d yA˝ .jidBj˝ jid yD j/C id yA˝ .�1˝jid yD j/

C .id yA˝ .�2˝ id yD// ı .id yA˝ .idB˝ ı//:

Regrouping the parentheses, we get

.d yA˝jidBj/˝jid yD jC .id yA˝�1/˝jid yD jC ..id yA˝�2/˝ id yD/ ı ..id yA˝ idB/˝ ı/:

Identifying yA with yA˝B B , the differential on yA becomes d yA˝ jidBj C id yA˝�1 .
Similarly, the algebra multiplication mW yA˝B! yA becomes

id yA˝�2W . yA˝B B/˝B! . yA˝B B/:

Thus, we can identify the above formula for the differential on yA˝B.B˝R
yD/Š yA˝R

yD

with
d yA˝jid yD jC .m˝ id yD/ ı .id yA˝ ı/:

This is also the differential on yA � yD .
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3 Khovanov’s functor-valued invariant as a bordered theory

We will assume some familiarity with Khovanov’s paper [4]. Here we briefly introduce
some useful conventions and notation.

Khovanov’s arc algebra H n has one Z–grading. We will view H n as a differential
bigraded algebra, concentrated in homological degree 0 and with no differential. The
usual Z–grading on H n becomes the intrinsic component of the bigrading. The intrinsic
gradings of H n are nonnegative. Thus, both Proposition 2.2.4 and Proposition 2.2.5
apply to H n as a dg algebra.

The component of H n in degree 0 (or, with our conventions, in bidegree .0; 0/) will be
denoted In and referred to as the idempotent ring of H n . It is isomorphic to Z�.Cn/ ,
where Cn is the nth Catalan number. The elementary idempotents of H n are the
idempotents 1a described by [4, Section 2.4]. The index a runs over elements of the
set Bn of crossingless matchings of 2n points; since this set will be important later,
we recall its definition here.

3.0.1 Definition Let P be a set of 2n distinct points p1; : : : ;p2n on the line f0g�R�
R�R, ordered from top to bottom. A crossingless matching a of P is a partition
of P into n pairs of points, such that there exists an embedding of n arcs Œ0; 1�

F
n

disjointly into R�0 �R with each arc connecting a pair of points matched in a. The
set of crossingless matchings of 2n points will be denoted Bn (different choices of P

yield canonical bijections between the relevant sets Bn ).

3.0.2 Remark The set Bn is also in bijection with the set NCn of noncrossing
partitions of n points. A noncrossing partition a of a set Q of n points q1; : : : ; qn on
f0g �R (ordered from top to bottom again) is defined to be any partition of Q into k

disjoint subsets, such that there exists an embedding of k acyclic graphs disjointly into
R�0�R, with each graph bounding one of the k subsets of fq1; : : : ; qng comprising a.

To go from a crossingless matching a of 2n points p1; : : : ;p2n to a noncrossing
partition a0 of n points q1; : : : ; qn , checkerboard color the half-plane R�0 with respect
to some embedding of arcs representing a, such that the unbounded region of the half-
plane is colored white. Without loss of generality, we may put the point qi on the
line f0g �R between the points p2i�1 and p2i . In the noncrossing partition a0 , two
points qi and qj are placed in the same subset if they can be connected in R�0 �R
by a path through the black region of the checkerboard coloring. The skeleton of the
black region provides the planar graphs which verify that a0 is a noncrossing partition.

On the other hand, given a noncrossing partition a0 of n points, one can pick an
embedding of graphs representing a0 , and fatten each graph to obtain a planar surface.
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q3
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Figure 1: Bijection between crossingless matchings on 2n points and non-
crossing partitions on n points

The boundary of this surface is a crossingless matching of 2n points. These two
constructions are inverse to each other; see Figure 1 for an illustration.

Let T be an oriented tangle diagram in the half-plane, with 2n endpoints, and assume
we have chosen an ordering of the crossings of T . Khovanov’s construction assigns
a bounded chain complex of finitely generated projective graded H n –modules, with
H n –linear differential maps, to T . We will call this complex ŒT �Kh ; we will often
view ŒT �Kh as a dg H n –module using Proposition 2.2.4. If T lies in R�0 � R,
then ŒT �Kh is a left dg module; if T lies in R�0 �R, then ŒT �Kh is a right dg module.

If T1 is an oriented tangle diagram in R�0 �R, Proposition 2.2.5 gives us an isomor-
phism class of type D structures yD.T1/ over H n , such that

ŒT1�
Kh
ŠH n

˝In
yD.T1/:

As we will see in Section 3.1, Khovanov’s construction of ŒT1�
Kh naturally gives us an

explicit type D structure yD.T1/ with this property.

If T2 is an oriented tangle diagram in R�0 � R, we will simply take the type A
structure yA.T2/ of T2 to be the right dg module ŒT2�

Kh . Suppose T2 and T1 have
consistent orientations; put them together to obtain an oriented link diagram L. Order
the crossings of L so that those of T1 come before those of T2 and let CKh.L/ be
the Khovanov complex of L. Khovanov shows in [4] that

CKh.L/Š ŒT2�
Kh
˝H n ŒT1�

Kh;

after multiplying the intrinsic gradings on ŒT2�
Kh˝H n ŒT1�

Kh by �1. By Proposition
2.3.7, we have

CKh.L/Š yA.T2/� yD.T1/;
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as in bordered Floer homology, after applying the same intrinsic-grading reversal
to yA.T2/ � yD.T1/. We will summarize this discussion more formally below in
Theorem 3.2.1.

3.0.3 Remark The reversal of the gradings here comes from Khovanov’s choice [4,
pages 672–673] to make H n positively rather than negatively graded. It is only a
convention; one could define the basic generators of H n to live in degrees �1 and �2,
rather than 1 and 2, and then no grading reversal would be necessary.

3.0.4 Remark Up to isomorphism, the bigraded chain complex CKh.L/ does not
depend on the ordering of the crossings. Indeed, suppose we reverse the ordering of
two adjacent crossings i and i C 1. Then an isomorphism

F W .CKh.L/; first ordering/! .CKh.L/; second ordering/

can be defined, on the summand of CKh.L/ corresponding to a vertex � of the cube
of resolutions, to be F WD .�1/f .�/ � id, where f .�/ WD 1 if � resolves crossings i

and i C 1 both as 1, rather than 0, and f .�/ WD 0 otherwise.

The same argument applies unchanged to the tangle complexes ŒT �Kh : the isomorphism
type of ŒT �Kh does not depend on the ordering of the crossings.

3.0.5 Remark Khovanov avoids having to choose an ordering of the crossings by
using the skew-commutative cubes formalism. We will not do this here, but we will
usually suppress mention of the choice of ordering of the crossings.

3.1 Type D structures

In this section we give a concrete definition of yD.T1/. First, we recall some properties
of H n and Khovanov’s dg modules ŒT �Kh . This section has some overlap with the
author’s PhD thesis [8, Sections 4.2–4.3].

The algebra H n has an additive basis ˇ , over Z, consisting of elements which we
will denote ..W .a/b/; �/. Here, a and b are elements of Bn , the set of crossingless
matchings of 2n points, and the operation W mirrors the matching from the right
half-plane to the left half-plane. The horizontal concatenation W .a/b is a collection
of disjoint circles in R2 . The remaining datum � consists of a choice of sign, C
or �, on each of these circles. For a 2 Bn , the idempotent 1a is .W .a/a; all plus/.
Multiplication in H n is defined using minimal cobordisms and a two-dimensional
topological quantum field theory; we refer the reader to Khovanov [4] for a precise
definition.
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Figure 2: Top line: crossingless matchings a and b , with b obtained by surg-
ering a bridge 
 in a . Second line: the idempotent element .W .a/a; all plus/
and the multiplicative generators h
 D .W .a/b; all plus/ and h˛ D

.W .a/a; minus on W .˛/˛/ . Third line: left and right idempotents of h
 .

Below we use the notion of a bridge of a crossingless matching; see Roberts [12,
Definition 8]. The dotted arc 
 in the first line of Figure 2 is a bridge of the crossingless
matching a.

Certain of the basis elements ..W .a/b/; �/ form a natural set of multiplicative gen-
erators for H n . These generators come in two forms: the first are elements h
 D

.W .a/b; all plus/, where a 2Bn , the element b 2Bn is obtained from a by surgering
one pair of arcs along a bridge 
 , and all circles of W .a/b are labeled C. The
other generators are elements h˛ D .W .a/a; minus on W .˛/˛/, where a 2 Bn and
all circles of W .a/a are labeled C except one circle, W .˛/˛ for some arc ˛ of a,
which is labeled �. Each generator h
 and h˛ has a unique left idempotent and right
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0 1

Figure 3: Zero- and one-resolutions of a crossing

idempotent in In . We will denote the set of multiplicative generators fh
 ; h˛g as ˇmult ;
it is a subset of ˇ . Some examples are shown in Figure 2.

3.1.1 Proposition The elements h
 and h˛ of ˇmult generate H n multiplicatively.

Proof We have not defined the multiplication on H n here, so we will only sketch
the proof. It suffices to show that any element of the form .W .a/b/; all plus/ may
be written as a product of h
 generators; the rest of the elements of ˇ may then be
obtained using these elements and h˛ generators.

The element .W .a/b/; all plus/ may be identified with a disjoint union of disks em-
bedded in D2�I with boundary restricting to a on D2�f0g, b on D2�f1g, and 2n

straight lines on .@D2/�I (in other words, a cobordism from a to b ). Here we identify
crossingless matchings in the right half-plane with crossingless matchings in D2 ; see
Figure 5 below.

We may assume (after an isotopy if necessary) that the I –coordinate of D2 � I gives
a Morse function on the disjoint union of disks which has only index-1 critical points,
each of which occurs at a distinct value of the I –coordinate. In such a configuration, the
disjoint union of disks can be viewed as a composition of elementary saddle cobordisms
beginning at a and ending at b . Each saddle cobordism corresponds to a generator h
 .
Furthermore, the composition of the saddle cobordisms in this sense agrees with
the result of multiplying the elements h
 in H n using minimal cobordisms; see [8,
Figure 4.3] for an illustration of this fact. Thus, we may write .W .a/b/; all plus / as
a product of generators h
 .

Let T be an oriented tangle diagram in R�0 �R. To specify a generator xi of ŒT �Kh ,
we first specify a resolution �i of all crossings of T ; we can view �i as a function
from the set of crossings to the two-element set f0; 1g (see Figure 3). If T�i

denotes
the diagram T with the crossings resolved according to �i , then T�i

consists of a
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T

xi D D $

C
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h � xi D h �xi

C C

C

C

xj D D $

� �

C

C �

h � xj D h �xj

C C

C �

C

�

Figure 4: Some generators xi and h �xi of ŒT �Kh

crossingless matching of 2n points together with some circles contained in R>0 �R.
Following Roberts [12], these circles will be called free circles. The remaining data
needed to specify xi are a choice of C or � on each free circle.

Identify xi with the diagram obtained by gluing the mirror of the crossingless-matching
part of T�i

to the left side of T�i
and labeling all resulting circles with C. Then ŒT �Kh

has a Z–basis consisting of elements h �xi , where the right idempotent of h agrees
with the crossingless-matching part of T�i

. (By multiplying h with xi in Khovanov’s
usual minimal-cobordism sense, one obtains the basis for ŒT �Kh described in [4].) See
Figure 4 for an illustration of the generators xi and basis elements h �xi .

The remainder of this section may also be found in the author’s thesis [8, Section 4.3.1],
with minor modifications.
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3.1.2 Definition [8, Definition 4.3.1] Let T1 be an oriented tangle diagram in
R�0�R, with nC positive crossings and n� negative crossings, and let 0� r �nCCn� .
Define yD.T1/ to be generated as an (intrinsically) graded abelian group, in homological
degree r � n� , by the generators 1 � xi of .ŒT1�

Kh/r�n� , where .ŒT1�
Kh/r�n� is the

chain space of ŒT1�
Kh in degree r � n� . These generators have the same crossingless

matching on the left and right sides of f0g �R, and all circles touching the boundary
line have a C sign. With this definition, yD.T1/ is an In –submodule of ŒT1�

Kh .

3.1.3 Proposition [8, Proposition 4.3.2] As H n –modules,

ŒT1�
Kh
ŠH n

˝In
yD.T1/;

with yD.T1/ as defined in Definition 3.1.2.

Proof This follows from Definition 3.1.2.

Let � WD � yD.T1/
(the inclusion of yD.T1/ into ŒT1�

Kh ) and let d be the differential
on ŒT1�

Kh . Let � denote the multiplication on H n .

3.1.4 Definition [8, Definition 4.3.3] The type D differential ı on yD.T1/ is defined
by restricting the differential d to the In –submodule yD.T1/ of ŒT1�

Kh :

ı WD yD.T1/
�
�! ŒT1�

Kh d
�! ŒT1�

Kh
ŠH n

˝In
yD.T1/:

It is an In –linear map because � and d are.

Lemma 3.1.5 and Proposition 3.1.6 below follow from the proof of Proposition 2.2.5,
but we give short justifications to keep this section self-contained.

3.1.5 Lemma [8, Lemma 4.3.4] Under the identification ŒT1�
Kh ŠH n˝In

yD.T1/

from Proposition 3.1.3, we have

d D .�2˝ id/ ı .id˝ ı/;

where �2W H
n˝H n!H n is the algebra multiplication.

Proof Let h � �.x/ denote a generator of ŒT1�
Kh . Then, by the Leibniz property

for ŒT1�
Kh , we have d.h � �.x//D h � d �.x/, since H n has no differential. But since

d �.x/D ı.x/, we can conclude that

d.h � �.x//D .�2˝ id/ ı .id˝ ı/.h � �.x//:

3.1.6 Proposition [8, Proposition 4.3.5] . yD.T1/; ı/ satisfies the type D relations:

.�1˝jidj/ ı ıC .�2˝ id/ ı .id˝ ı/ ı ı D 0:
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Proof There is no differential on H n , so the �1 term is zero. For the other term, if x

is a generator of yD.T1/, then

..�2˝ id/ ı .id˝ ı/ ı ı/.x/D .d/ ı .d ı �/.x/D 0;

since d2 D 0 on ŒT1�
Kh .

In Definition 3.1.2 and Definition 3.1.4, we constructed yD.T1/ as an In –submodule
of ŒT �Kh following the proof of Proposition 2.2.5. Thus, the isomorphism class
of yD.T1/ agrees with the isomorphism class of type D structures obtained from ŒT �Kh

by using Proposition 2.2.5.

3.2 Type A structures and pairing

Let T2 be an oriented tangle diagram in R�0 �R. Since dg modules are special cases
of type A structures, Proposition 2.2.4 tells us that the right dg module ŒT2�

Kh is a valid
example of a type A structure over H n . We define yA.T2/ to be ŒT2�

Kh .

3.2.1 Theorem (Theorem 1.0.1) Let T1 and T2 be oriented tangle diagrams in
R�0 �R and R�0 �R, respectively, with orderings chosen of the crossings of T1

and T2 . Assume that T1 and T2 have consistent orientations, so that their horizontal
concatenation is an oriented link diagram L in R2 . Order the crossings of L such that
those of T1 come before those of T2 . Then

CKh.L/Š yA.T2/� yD.T1/;

after multiplying the intrinsic gradings on yA.T2/� yD.T1/ by �1.

Proof Since, up to a grading reversal, CKh.L/ Š ŒT2�
Kh˝H n ŒT1�

Kh , which is the
same as yA.T2/˝H n .H n˝In

yD.T1//, this proposition follows from Proposition 2.3.7,
Remark 3.0.3, Lemma 3.1.5 and Khovanov’s results from [4].

4 Quadratic and linear-quadratic algebras and duality

4.1 Quadratic and linear-quadratic algebras

We now consider a method of describing algebras using explicit generators and relations.
It will be important for the following sections where we relate the bordered Khovanov
theory discussed above with Roberts’ constructions in [11; 12]. The definitions and
basic properties of quadratic and linear-quadratic algebras here all follow Polishchuk
and Positselski [10], with some minor modifications.
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Let B be a unital associative algebra over a ring R, where RŠ Ze1 � � � � �Zek as
above. We will not assume B is graded; however, we will assume B comes equipped
with an augmentation, ie an algebra homomorphism � from B to the coefficient ring R.
The algebras of interest to us have a grading of some form, and R is the degree-zero
summand. Such an algebra has a natural augmentation given by projection onto this
summand.

Suppose b1; : : : ; bm is a set of multiplicative generators of B , each in the kernel BC
of � . We may assume that for each bi , there is a unique idempotent ej such that
ej bi D bi and e0j bi D 0 for j 0 ¤ j . Indeed, if ej bi D 0 for all j , then bi D 0

so bi is irrelevant as a generator, and if eja
bi were nonzero for multiple indices a,

we could remove bi from the list of generators and add each of the nonzero ele-
ments eja

bi to the list. So we may assume ej bi ¤ 0 for exactly one j , and then
bi D 1bi D .

P
j 0 ej 0/bi D ej bi . The idempotent ej will be called the left idempotent

of bi and denoted eL.bi/.

Similarly, we may further assume that for each bi , there exists a unique right idempo-
tent eR.bi/ such that bieR.bi/D bi and biej D 0 for ej ¤ eR.bi/.

Let V be the free Z–module spanned by fb1; : : : ; bmg. The assumptions above equip V

with left and right module structures over R. The statement that the bi generate B
multiplicatively means that B is isomorphic to T .V /=J , where

T .V /D
M
n�0

T n.V /DR˚V ˚ .V ˝R V /˚ .V ˝R V ˝R V /˚ � � �

and J is the kernel of the natural map T .V /! B sending a string of generators to
their product in B . As above, we may assume that each generator of the ideal J has
unique left and right idempotents.

4.1.1 Definition The augmented algebra B , with its choice of generators, is a qua-
dratic algebra if the ideal of relations J � T .V / is generated multiplicatively by its
intersection with T 2.V /D V ˝R V . In other words,

J D T .V / � I �T .V /;

where I WD J \ .V ˝R V /. Note that J always contains T .V / � I �T .V /, so B is a
quadratic algebra if J � T .V / � I �T .V /.

4.1.2 Remark If B is a quadratic algebra, then B obtains a grading by word-length
in the generators fb1; : : : ; bmg.
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4.1.3 Remark Let B be a quadratic algebra. At various points it will be helpful to
work with the generators and relations of B more explicitly. Following Polishchuk
and Positselski [10, Chapter 4.1], choose an ordering of the multiplicative generators
fb1; : : : ; bmg; we may assume that bi < bj when i < j . Use this order to put a
lexicographic ordering on monomials in these generators: the leftmost factor in a
product is defined to be the most significant part.

Let Q denote the set of quadratic monomials in the bi . Then Q can be naturally
partitioned into two subsets Q1 and Q2 : Q1 consists of the monomials which cannot
be written in B as sums of lesser monomials with respect to the lexicographic order,
and Q2 consists of the monomials which can. If bibj 2Q2 , then

bibj D

X
.i0;j 0/<.i;j/

ci;j Ii0;j 0bi0bj 0

and the coefficients ci;j Ii0;j 0 are uniquely determined if we require that ci;j Ii0;j 0 D 0

for bi0bj 0 in Q2 . By [10, Lemma 1.1 of Chapter 4.1], a set of generators for the
quadratic relation ideal I D J \T 2.V / of B is obtained by taking

Ii;j WD bibj �

X
.i0;j 0/<.i;j/

ci;j Ii0;j 0bi0bj 0

for all .i; j / such that bibj is in Q2 .

4.1.4 Definition [10, Chapter 5.1] The augmented algebra B , with its choice of
generators, is a linear-quadratic algebra if the ideal of relations J �T .V / is generated
multiplicatively by its intersection with T 1.V /˚ T 2.V /. In other words, writing
J2 WD J \ .V ˚ .V ˝R V //, B is linear-quadratic if

J D T .V / �J2 �T .V /;

or equivalently
J � T .V / �J2 �T .V /:

We will furthermore assume that J \V D 0 so that there are no linear redundancies
among the chosen generators. (As always, we assume that V � BC .)

4.1.5 Remark If B is a linear-quadratic algebra, we get a word-length filtration on B
rather than a grading. An element of B has filtration level at most k if it is a sum of
products of word-length at most k in the generators bi .

The following definitions and propositions will be used in Section 4.3 to define quadratic
duality for linear-quadratic algebras. They can all be found in [10, Chapter 5.1].
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4.1.6 Definition Let B be a linear-quadratic algebra, so that B Š T .V /=J with
J � T .V / �J2 �T .V /. The quadratic algebra B.0/ is defined as

B.0/ WD T .V /=.T .V / � I �T .V //;

where I � T 2.V / is defined as the image of J2 � .V ˚T 2.V // under the projection
.V ˚T 2.V //! T 2.V / onto the second summand.

Every generator r of I is the image of some generator v˚ r of J2 , where v 2 V .
Furthermore, if v˚ r and v0˚ r were both in J2 with v¤ v0 , then .v�v0/˚0 would
be a nonzero element of J2\V , contradicting the assumption that J2\V D 0. Thus,
the following definition makes sense.

4.1.7 Definition The function 'W I ! V is defined by sending a generator r 2 I to
the unique element '.r/ of V such that '.r/˚ r is in J2 .

4.1.8 Proposition The map ' respects the left and right R–actions on I and V .

Proof Suppose e is the left idempotent of r (which exists without loss of generality).
Then e.'.r/ ˚ r/ is in J2 , and e.'.r/ ˚ r/ D e'.r/ ˚ er D e'.r/ ˚ r , so by
the uniqueness above, '.r/ D e'.r/. If e0 is any idempotent not equal to e , then
e0.'.r/˚r/ is still in J2 , but now this expression equals e0'.r/˚0. Since J2\V D 0,
we must have e0'.r/D 0 for e0 ¤ e . Thus, ' respects the left R–action on I and V .
The right action is analogous.

Let '12 denote '˝ idV W I˝R V ! V ˝R V and let '23 denote idV ˝'W V ˝R I!

V ˝R V .

4.1.9 Proposition [10, Chapter 5.1, Proposition 1.1] The map

'12
�'23

W .V ˝R I/\ .I ˝R V /! .V ˝R V /

has image contained in I , and

' ı .'12
�'23/D 0:

Proof The definition of ' implies that the image of the map

'˚ �W I ! .V ˚ .V ˝R V //

is contained in J2 , where � denotes the inclusion map of I into V ˝R V . Thus, the
map

.'˚ �/˝ idV W I ˝R V ! .V ˚ .V ˝R V //˝R V D .V ˝R V /˚ .V ˝R V ˝R V /
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has image contained in J . On the other hand, .'˚ �/˝ idV is equal to the map

'12
˚ .�˝ idV /W I ˝R V ! .V ˝R V /˚ .V ˝R V ˝R V /:

Thus, '12˚.�˝idV / has image contained in J . By the same reasoning, '23˚.idV˝�/

has image contained in J as well.

If x is an element of .V ˝R I/\.I˝R V /�V ˝3 , then we can apply '12˚.�˝ idV /

and '23˚ .idV ˝ �/ to x , producing two elements '12.x/˚x and '23.x/˚x of J .
Subtracting, the x terms cancel and '12.x/�'23.x/ is also in J .

Since '12.x/� '23.x/ is an element of both J and V ˝R V , it is also an element
of J2 D J \ .V ˚ .V ˝R V //. The corresponding element of I under the projection
from J2 to I is the same element '12.x/�'23.x/.

Hence we can conclude that '12�'23 has image contained in I , so it makes sense to
postcompose this map with ' . Furthermore, the image of '12�'23 is contained not
just in I but in J2 and so '.'12�'23/D 0.

4.2 Khovanov’s arc algebra as a linear-quadratic algebra

In this section we present a combinatorial result, Lemma 4.2.4, whose proof was found
by Pálvölgyi [9] and independently by Potechin in an email correspondence. Besides
being important for the constructions in Section 5 and Section 6, it will yield an explicit
generators-and-relations description of H n in Corollary 4.2.7. This description is not
necessary, strictly speaking, for Section 5 and Section 6, but it may be of interest
independently.

Let V be the free Z–module spanned by the generators h
 and h˛ of ˇmult as defined
in Section 3.1. The idempotent ring R D In of H n has both left and right actions
on V . We may write H n as T .V /=J for some ideal J of T .V /.

4.2.1 Theorem (Theorem 1.0.2) With the generators fh
 ; h˛g and the augmentation
coming from its grading, H n is a linear-quadratic algebra.

This theorem will be proved using Lemma 4.2.4. We begin with some background.

Recall from Remark 3.0.2 that the elementary idempotents of H n are in bijection with
the set NCn of noncrossing partitions of n points. In fact, NCn has a natural partial
ordering: suppose p and q are elements of NCn . Then p� q if p is a refinement of q .
In other words, p � q if each of the subsets comprising p is contained in one of the
subsets comprising q (recall that p and q are collections of subsets of a set of n points).

As a poset, NCn is a lattice: any two noncrossing partitions have a unique least upper
bound and a unique greatest lower bound, although we will not make use of this
property.
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p

q

p < q

�.p/

�.p/ > �.q/

�.q/

Figure 5: The order-reversing automorphism � of NCn (when read from left
to right), or its inverse �0 (when read from right to left)

The dual of a partially ordered set is defined by reversing the order relations. It is a
standard fact that the poset NCn is self-dual.

4.2.2 Proposition NCn is order-isomorphic to the poset obtained by reversing all the
order relations on NCn .

Proof We want to define a bijection �W NCn! NCn such that p < q if and only if
�.p/ > �.q/. Let p be a noncrossing partition. Pick an embedding of acyclic graphs
in the half-plane representing p ; as in Remark 3.0.2, thicken these graphs to get planar
surfaces embedded in the half-plane. Color the interiors of these surfaces black; then
the half-plane is divided into black and white regions. Identify the half-plane with the
disk and rotate the disk counterclockwise through an angle of �=n. Swap the colors
of the regions and identify the disk back with the half plane. The skeleton of the new
black region represents the noncrossing partition �.p/. This procedure is illustrated in
Figure 5.

One may verify that � , defined in this way, reverses the order relations. Finally, � has
an inverse whose definition is the same as for � , except that the rotation is clockwise.

Associated to the partial order on NCn is a Hasse diagram Gn , which is a directed
graph whose vertices are the elements of NCn and which has an edge from p to q

precisely when p < q and there exists no vertex q0 with p < q0 < q .

We will view Gn as an undirected graph, ignoring the orientations on edges. For any
two vertices p; q of Gn connected by an edge, there is a generator h
 of H n with
left idempotent p and right idempotent q , and all the h
 generators of H n are of this
form. Note that the existence of such h
 does not depend on the ordering of p and q .
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If h
 D .W .p/q; all plus/, where 
 is a bridge on the crossingless matching p , then
there is also a dual bridge 
 | on q ; see Roberts [12, Definition 10]. Doing surgery
on q along the bridge 
 | gives p , and the generator h
| D .W .q/p; all plus/ has left
idempotent q and right idempotent p .

Monomials in the generators h
 either correspond to paths in Gn , or are zero for
idempotent reasons. We will be especially concerned with paths of minimum length.

4.2.3 Definition Let p and q be vertices of Gn . The graph Gp;q has one vertex for
each minimal-length path, or geodesic, ˛ from p to q in Gn . If ˛ and ˇ are two
vertices of Gp;q , they are connected by an edge when ˛ and ˇ differ in exactly one
vertex of Gn (viewing paths in Gn as sequences of vertices of Gn ).

The proof of the following lemma was found by Dömötör Pálvölgyi and posted as an
answer to a question on MathOverflow [9]; independently, another proof was found by
Aaron Potechin and shared with the author privately in an email correspondence.

4.2.4 Lemma (Potechin [9]) Let Gn denote the Hasse diagram of NCn , viewed as
an undirected graph. Let p; q be vertices of Gn and define Gp;q as in Definition 4.2.3.
Then Gp;q is a connected graph.

Proof First, note that as partitions of a set of n points, either q contains a singleton
part or the dual �.q/ of q contains a singleton part. Indeed, out of the n points,
consider a minimal pair of points which are matched in q . (We consider a pair to be
minimal if there is no pair of points, also matched in q , nested inside the first pair.) If
there are any points nested inside the minimal pair, then these points must be singletons
by minimality, so q contains a singleton. On the other hand, if there are no points
nested inside, then one can see from Figure 5 that �.q/ contains a singleton.

In the latter case, we can use Proposition 4.2.2 to reduce to the former case: if G�.p/;�.q/
is connected, then so is Gp;q . Thus, we may assume without loss of generality that q

contains a singleton part, say fmg where m is one of the n points on the line.

We will induct on both n and the distance between p and q ; if this distance is 2 or
less, or if n� 2, there is nothing to prove.

Consider two minimal-length paths ˛ and ˇ from p to q in Gn . Since p is a partition
of the n points on the line, the point m must be contained in one of the partitioning
subsets which comprise p , say S . If S contains only m, then for each vertex along
either ˛ or ˇ , the point m must be in a singleton set; otherwise ˛ or ˇ would not
have minimal length (the length could be reduced by removing the steps that connect
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and disconnect m from the other points on the line). Hence we may ignore m and
view ˛ and ˇ as paths in Gn�1 . By induction, ˛ may be modified one vertex at a
time to produce ˇ , and we may reintroduce the singleton point m without issue.

On the other hand, suppose S contains additional points as well as m. Then we may
modify both ˛ and ˇ , one vertex at a time, to get paths ˛0 and ˇ0 from p to q such
that the first step of both ˛0 and ˇ0 separates m from the other points in S . To do this,
find the first step along ˛ or ˇ after which m is an isolated point and commute this
step to the beginning of ˛ or ˇ by changing the path one vertex at a time.

Now let p0 denote the partition p with the point m isolated from S . Both ˛0 and ˇ0

start by moving from p to p0 and then along a minimal-length path (say ˛00 or ˇ00 )
from p0 to q . Since the distance from p0 to q is one less than the distance from p

to q , we may conclude by induction that ˛00 may be modified one vertex at a time to
obtain ˇ00 . Thus, the same is true for ˛0 and ˇ0 and hence for ˛ and ˇ as well.

4.2.5 Remark If p is the minimal element of NCn with respect to the partial ordering,
and q is the maximal element, then elements of Gp;q are maximal chains in NCn and
Lemma 4.2.4 is a well-known result; see Bessis [2, Proposition 1.6.1], as well as Adin
and Roichman [1] for more properties of Gp;q in this case. Lemma 4.2.4 can be viewed
as a generalization of this result to a setting in which p and q may not necessarily be
comparable in the partial ordering.

Proof of Theorem 4.2.1 We want to show that J � T .V / � J2 �T .V /. We start by
exhibiting elements in the intersection J2 D J \ .V ˚ .V ˝R V //; we will let J 2

denote the ideal generated by these elements. Recall that the notion of a bridge for a
crossingless matching was defined in Roberts [12, Definition 8], and the dual bridge 
 |

for a bridge 
 was defined in [12, Definition 10].

(1) Whenever 
 and � are two bridges which can be drawn without intersection on
the same crossingless matching, the element h
h�0 � h�h
 0 is in J 2 , for the
natural choices of �0 and 
 0 .

(2) Whenever 
 is a bridge and ˛ is an arc such that h
 and h˛ have the same
left idempotent, and neither of the endpoints of 
 lies on the arc ˛ , the element
h
h˛0 � h˛h
 is in J 2 for the natural choice of ˛0 . If one of the endpoints of
the bridge 
 lies on the arc ˛ , then there are two natural choices for ˛0 ; for
each of these choices, h
h˛0 � h˛h
 is an element of J 2 .

(3) Whenever ˛1 and ˛2 are distinct arcs in the same crossingless matching, so
that h˛ and h˛0 have the same left idempotent, the element h˛1

h˛2
�h˛2

h˛1
is

in J 2 . Furthermore, for every arc ˛ , the element h2
˛ is in J 2 .
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(4) Finally, if 
 is any bridge, such that h
 has left idempotent eL and right
idempotent eR , the element h
h
| � h˛1

� h˛2
is in J 2 , where ˛1 and ˛2 are

the arcs containing the endpoints of 
 .

To show that J � T .V / � J2 � T .V /, it suffices to show that J � T .V / � J 2 � T .V /,
since J 2 � J2 . Actually, J 2 D J2 (see Remark 4.2.6 below), but we will not need
this fact in the current proof.

Let r be an arbitrary element of J . We may assume without loss of generality that r

has a unique left idempotent eL and right idempotent eR . Since J is an ideal of the
tensor algebra T .V /, r may be written as a linear combination of monomials in the
generators h
 and h˛ . Let

r D
X

i

ni.hi;1 � � � hi;li
/;

where ni 2 Z and each hi;j is one of the generators h
 or h˛ .

Consider one of the monomial summands miDhi;1 � � � hi;li
of r . After adding elements

of T .V / � J 2 � T .V / to this monomial, we may assume that all the h
 generators
among the hi;j come before (ie with lower j than) the h˛ generators. The necessary
relation elements come from item (2) above. Let m0i denote the monomial obtained by
modifying mi in this way.

Write m0i as m
;i �m˛;i , where m
;i is a product of h
 generators and m˛;i is a
product of h˛ generators. Each m
;i has left idempotent eL and right idempotent eR .
We may view eL and eR as vertices of Gn , the undirected Hasse diagram of NCn ,
and to the monomial m
;i we may associate a path p.m
;i/ in Gn from eL to eR .

We claim that we may further modify m0i by adding elements of T .V / � J 2 � T .V /

until p.m
;i/ is a minimal-length path between eL and eR . Indeed, suppose p.m
;i/

is a path of nonminimal length. Write m
;i D h
1
� � � h
k

. Then there exists a minimal
index 2� j � k such that h
1

� � � h
j�1
corresponds to a path of minimal length in Gn

but h
1
� � � h
j does not.

Let eR.h
j / denote the right idempotent of h
j . By assumption, the distance be-
tween eL and eR.h
j�1

/ in Gn is j � 1, but the distance between eL and eR.h
j /

is j � 2 rather than j . Indeed, this distance must be less than j . It cannot be less
than j � 2, or the distance between eL and eR.h
j�1

/ would be less than j � 1. The
distance between eL and eR.h
j / also cannot be j � 1, because each edge in Gn

connects two noncrossing partitions whose number of parts differs by one modulo two.
Hence this distance must be j � 2.

Algebraic & Geometric Topology, Volume 17 (2017)



On bordered theories for Khovanov homology 1587

Thus, there exists some monomial h
 0
1
� � � h
 0

j�2
corresponding to a path in Gn from eL

to eR.h
j /. Appending h
|
j

to this monomial, we get h
 0
1
� � � h
 0j�2 � h


|
j

, which
corresponds to a path of length j�1 in Gn between eL and eR.h
j�1

/. By assumption,
the distance between eL and eR.h
j�1

/ is j � 1, so h
 0
1
� � � h
 0

j�2
�h
|

j
corresponds to

a minimal-length path in Gn .

We now have two minimal-length paths in Gn between eL and eR.h
j�1
/, namely

˛ D p.h
1
� � � h
j�1

/ and ˇ D p.h
 0
1
� � � h
 0

j�2
� h
|

j
/. By Lemma 4.2.4, we may

modify ˛ one vertex at a time to obtain ˇ . Such modifications correspond, on the level
of monomials, to adding relation terms obtained from item (1) above.

Thus, we may modify m
;i , which equals h
1
� � � h
j�1 �h
j � � � h
k

, by adding terms
in T .V / �J 2 �T .V / to obtain h
 0

1
� � � h
 0

j�2
� h
|

j
� h
j � � � h
k

. Inside this monomial is
h
|
j
� h
j , which may be replaced with a sum of h˛ terms using the relation terms in

item (4) above. As before, these h˛ terms may be commuted to the right side of m0i
using item (2).

After this modification, we have strictly reduced the length of m
;i in the factorization
of m0i as m
;i � m˛;i . If the new m
;i still does not represent a minimal-length
path p.m
;i/ in Gn , we can repeat the same procedure and eventually it will terminate.

At this point, we have shown that we can modify our original r D
P

i ni.mi/ by adding
terms in T .V / � J 2 � T .V /, until each mi is a monomial factorizable as m
;i �m˛;i

with m˛;i a monomial in the generators h˛ and m
;i a monomial in the generators h

representing a minimal-length path in Gn . The starting and ending points of all these
paths are the same, namely the left and right idempotents of r . Thus, by Lemma 4.2.4
and the relations from item (1), we may do further modifications until all of the m
i

are the same monomial m
 and we have

r Dm


X
i

ni.m˛;i/ modulo T .V / �J 2 �T .V /:

Let r 0 denote the right side of the above equality; r 0 is an element of T .V / and we
want to show that r 0 D 0 modulo T .V / �J 2 �T .V /.

The monomial m
 represents an element of H n of the form .W .a/b; all plus/, where
a WD eL is the left idempotent of r and b WD eR is the right idempotent. The signs are all
plus because m
 corresponds to a path of minimal length. Indeed, by Proposition 3.1.1,
.W .a/b; all plus/ can be written as a product of h
 generators. If m
 represented a
sum of basis elements .W .a/b; �/ in H n with � not all plus, then the length of m


would be at least two plus the length of the product expansion of .W .a/b; all plus/.
This claim follows because the length of a monomial m
 in the generators h
 is
equal to the grading of the corresponding element of H n (assuming this element is
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nonzero). But then the product expansion of .W .a/b; all plus/ would correspond to
a shorter-length path from a to b than p.m
 /, a contradiction. Finally, if m
 were
zero in H n , then we could write m
 D Qm


QQm
 , where Qm
 is nonzero in H n but
becomes zero when multiplied on the right by the leftmost factor of QQm
 . For this to
be true, Qm
 must represent a sum of basis elements .W .a/ Qb; �/ with � not all plus,
where Qb is the right idempotent of Qm
 . By the above argument, we can obtain a shorter
path than p. Qm
 / from a to Qb . Appending p. QQm
 /, we get a shorter path from a to b

than p.m
 /, a contradiction.

Now we use the fact that r 2 J , or in other words that r D 0 as an element of H n . The
same holds for r 0 , since T .V / �J 2 �T .V / is a subset of J . The summand a.H

n/b is
a free abelian group with a basis element for every assignment of signs � to the circles
of W .a/b . Saying that r 0 D 0 in H n means that the coefficient of r 0 on each of these
basis elements is zero. In other words, for each assignment of signs � to the circles of
W .a/b , the sum of the terms nim
m˛;i of r 0 corresponding to � is zero in H n .

We will show that for a fixed � , the terms nim
m˛;i such that m
m˛;i equals
.W .a/b; �/ in H n actually sum to zero modulo the relation terms from items (2)
and (3) above. There may also be some terms m
m˛;i which are already zero in H n

and thus which represent no basis element .W .a/b; �/ of H n . We will deal with these
terms at the end.

Suppose m
h˛ Dm
h˛0 D .W .a/b; �/ in H n , where m
 corresponds to a minimal-
length path; here ˛ and ˛0 are arcs in b which lie on the same circle in W .a/b , and �
assigns � to this circle while assigning C to all other circles of W .a/b . Then we may
use relations from item (2) to write both m
h˛ and m
h˛0 as h Q̨m
 , where Q̨ is any
arc in the left idempotent a of m
 which, in W .a/b , lies in the same circle as ˛ and ˛0 .
This generalization of the item (2) relations is true by induction on the length of 
 .

Now, for a more general sum of terms m
m˛;i all representing .W .a/b; �/ in H n , we
can use the above modifications to replace each of the monomials m˛;i with the same
monomial m˛ . We do this by picking, for example, m˛ Dm˛;i1

, and then for i ¤ i1 ,
we move each factor of m˛;i to the left and back to the right so that it becomes identical
to the factor appearing in m˛;i1

. After doing this for all i , we use relations from
item (3) to replace each m˛;i with m˛ .

For a fixed � , let N� be the sum of the ni such that m
m˛;i represents .W .a/b; �/

in H n . By the above paragraph, the sum of the terms nim
m˛;i of r 0 with m
m˛;i

representing .W .a/b; �/ in H n is equivalent to N�m
m˛ modulo T .V / �J 2 �T .V /.
We see that N�m
m˛ D 0 in H n . But since m
m˛ is the basis element of a.H

n/b
corresponding to � , we can conclude that N� D 0. Thus, the sum of the terms
nim
m˛;i of r 0 under consideration is equal to zero modulo T .V / �J 2 �T .V /.
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Finally, some of the terms m
m˛;i may not represent any .W .a/b; �/ in H n ; this hap-
pens if and only if m
m˛;i is zero in H n . In this case, by the above logic, we can use re-
lations from items (2) and (3) to rearrange m
m˛;i until it has h2

˛ somewhere, for some
generator h˛ . Thus, these terms m
m˛;i are in T .V / �J 2 �T .V / by item (3) above.

Starting with r 2 J above, we have successively modified r using linear-quadratic
relations until we obtained zero. Hence

J � T .V / �J 2 �T .V /� T .V / �J2 �T .V /

and so H n is a linear-quadratic algebra.

4.2.6 Remark In fact, one can show by analyzing the grading possibilities case-by-
case that the linear-quadratic relations listed above in (1)–(4) are a full set of generators
for J2 . In other words, J 2 D J2 .

We get a description of H n in terms of generators and relations.

4.2.7 Corollary Let V denote the free Z–module spanned by the degree-1 generators
h
 and the degree-2 generators h˛ of H n , with left and right actions of RD InŠZCn

on V given by multiplication in H n . Then

H n
Š T .V /=.T .V / �J2 �T .V //;

where the tensor products in T .V / are over R, and J2 D J 2 is generated by the
explicit relations given above in items (1)–(4) of the proof of Theorem 4.2.1.

4.2.8 Remark All of the generators of J2 listed in items (1)–(4) of the proof of
Theorem 4.2.1 are homogeneous with respect to the intrinsic grading on H n . Thus,
Corollary 4.2.7 also gives us a description of H n as a graded algebra. This grading
differs from the word-length filtration which H n acquires as a linear-quadratic algebra
by Remark 4.1.5, even on the basic multiplicative generators: h˛ has intrinsic degree 2

and word-length 1, while h
 has intrinsic degree and word-length both equal to 1.

4.2.9 Remark Braden [3] gives a generators-and-relations description of a ring An;n

which has H n as an idempotent truncation; see also Stroppel [13]. It would be
interesting to compare Braden’s generators and relations with the h
 and h˛ generators
and relations discussed here; we have not tried to do this in any detail.

4.3 Quadratic duality

Next we discuss quadratic duality for quadratic and linear-quadratic algebras. The dual
of a quadratic algebra B is another quadratic algebra B ! . The dual of a linear-quadratic
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algebra B is a quadratic algebra B ! with a differential. Even if B is finitely generated
over Z, following Convention 2.1.1, the algebra B ! might be infinitely generated
over Z. Accordingly, Convention 2.1.1 will not be taken to hold for dual algebras B ! in
general. However, B ! will still be generated multiplicatively by a finite set of elements.

We review the relevant definitions from Polishchuk and Positselski [10, Chapters 1
and 5]. We start with the case of quadratic algebras and then discuss the modifica-
tion needed for linear-quadratic algebras. Let B , R, bi , V and J be defined as in
Section 4.1.

Let V � denote HomZ.V;Z/. Since V is a free Z–module, V � is free of the same
rank as V . If bi is a generator of V , let b�i denote the corresponding generator of V � .
We define left and right actions of R on V � by declaring that b�i has the same left
and right idempotents as bi .

4.3.1 Definition Let B be a quadratic algebra and write BDT .V /=J as in Section 4.1,
with I WD J \T 2.V /. The quadratic dual B ! of B is defined to be

B !
WD T .V �/=.T .V �/ � I? �T .V �//;

where I? is the submodule of T 2.V �/D V �˝R V � annihilating I via the natural
action of V �˝R V � on V ˝R V .

4.3.2 Remark Let Q1 , Q2 and bi be as defined as in Remark 4.1.3 above. We have
a relation Ii;j in I for every monomial bibj in Q2 . If bibj is in Q1 rather than Q2 ,
consider instead the dual monomial b�i b�j in B ! . We can define a relation in I? by

I !
i;j WD b�i b�j C

X
.i0;j 0/>.i;j/

c!
i;j Ii0;j 0b

�
i0b
�
j 0 ;

where c!
i;j Ii0;j 0 is only nonzero if bi0bj 0 is in Q2 , in which case c!

i;j Ii0;j 0 is defined to
be the coefficient ci0;j 0Ii;j of the .i 00 D i; j 00 D j / term in the relation

Ii0;j 0 D bi0bj 0 �

X
.i00;j 00/<.i0;j 0/

ci0;j 0Ii00;j 00bi00bj 00 :

The ideal I? is spanned by the relations I !
i;j ; like Remark 4.1.3, this follows from

[10, Lemma 1.1 of Section 4.1].

We now extend quadratic duality to linear-quadratic algebras.

4.3.3 Definition [10, Chapter 5.4] Let B be a linear-quadratic algebra; recall that
Definition 4.1.6 associates a quadratic algebra B.0/ to B . The quadratic dual B !
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of B is defined, as an algebra, to be the usual quadratic dual of B.0/ . Since B ! is a
quadratic algebra, it has a grading by word-length. We will interpret this grading as the
homological grading for a differential �1 on B ! .

We will first define �1 on the basis elements of V � and extend to B ! with the Leibniz
rule. We will use the map 'W I ! V from Definition 4.1.7. Dualizing ' , we get
'�W V �! I� , where I� WD HomZ.I;Z/.

We claim that I� is isomorphic to the degree-2 summand of B ! . To see this, write
the degree-2 summand of B ! as T 2.V �/=I? D HomZ.V ˝ V;Z/=I? . There is a
natural map „ from HomZ.V ˝V;Z/ to I� given by precomposing with the inclusion
from I into V ˝ V . The map „ is surjective because any functional from I to Z
may be extended to a functional from V ˝V to Z. Indeed, using the conventions of
Remark 4.1.3, the Z–basis fIi;j j bibj 2Q2g for I may be extended to a Z–basis
fIi;j j bibj 2Q2g[Q1 for V ˝V .

The kernel of „, by definition, consists of those functionals on V ˝V which anni-
hilate I . Thus, the kernel is the same as I? . We can conclude that „ induces an
isomorphism from the degree-2 summand of B ! to I� .

Now, for a degree-1 element of B ! , ie an element v� 2 V � dual to a basis element v
of V , define �1.v

�/ to be '�.v�/. This is an element of I� and thus a degree-2
element of B ! .

We may extend �1 to a map from B ! to B ! , homogeneous of degree C1, using the
Leibniz rule

�1.xy/D .�1/deg x�1.x/yCx�1.y/:

Note that this Leibniz rule differs from the one used in Polishchuk and Positselski [10],
to stay consistent with our earlier sign conventions.

4.3.4 Remark Suppose B is a linear-quadratic algebra with an intrinsic grading,
whose augmentation map is induced from the grading. Suppose further that all the mul-
tiplicative generators bi of B and the explicit generators Ii;j of I from Remark 4.1.3
are homogeneous with respect to the intrinsic grading, and the map 'W I!V preserves
intrinsic degree. For example, H n satisfies these properties: the generators h
 have
intrinsic degree 1 and the generators h˛ have intrinsic degree 2. Each term of each
relation in items (1) and (4) of the proof of Theorem 4.2.1 has intrinsic degree 2. Those
in item (2) have degree 3 and those in item (3) have degree 4. The map ' is only nonzero
on relations from item (4), and sends elements of degree 2 to elements of degree 2.

With these assumptions, V � has a natural intrinsic grading, namely the negative of
the grading on V (so that the pairing of V � with V is grading-preserving). The
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generators of I? are homogeneous with respect to this grading; this can be seen from
Remark 4.3.2. Thus, B ! acquires an intrinsic grading. Since 'W I ! V preserves
intrinsic grading, so does '�W V �! I� , and hence the differential �1 on B ! preserves
intrinsic grading. The intrinsic grading on B ! is different from the homological grading,
which �1 increases by one. In summary, B ! may be viewed as a differential bigraded
algebra with a .0;C1/ differential.

4.4 The dual of Khovanov’s arc algebra

Theorem 4.2.1, Definition 4.3.3 and Remark 4.3.4 together give us a differential bigraded
algebra .H n/! , which we will call the dual of H n .

4.4.1 Example When nD 1, H n DH 1 is the algebra ZŒx�=x2 over the idempotent
ring I1 D Z. The generator x has intrinsic degree 2. Thus, the dual .H 1/! is ZŒx��,
where x� has bidegree .�2; 1/. The differential on .H 1/! is zero and .H 1/! is not
finitely generated over Z.

In general, .H n/! is never finitely generated over Z, since arbitrary powers of any
generator h�˛ will be nonzero in .H n/! .

4.5 Type DD bimodules

We may relate the duality discussed in Section 4.3 with the type DD bimodules en-
countered in bordered Heegaard Floer homology; see Lipshitz, Ozsváth and Thurston
[6], especially Section 8. First, we give a definition of these bimodules over Z; as in
Section 2, we do not cover the most general possible case.

Let B and B 0 be differential bigraded algebras over an idempotent ring RD…i.Zei/.
The case B 0D B ! will be important, so we will not assume that B 0 is finitely generated
over Z.

Over Z=2Z, the following is equivalent to Definition 2.2.55 of Lipshitz, Ozsváth and
Thurston [7].

4.5.1 Definition A type DD bimodule over B and B 0 is, first of all, a bigraded free
Z–module cDD with left and right actions of R, such that cDD admits a Z–basis
consisting of grading-homogeneous elements with unique left and right idempotents
among the ei . Furthermore, cDD must be equipped with an R–bilinear map

ıW cDD ! B ˝R
cDD ˝R .B 0/op
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of degree .0;C1/, such that the type DD structure relations

.�1˝jidj˝ jidj/ı ıC .id˝jidj˝�1/ı ıC .�2˝ id˝�2/ı� ı .id˝ ı˝ id/ı ıD 0

are satisfied, where �1 and �2 denote the differential and multiplication on B or B 0

as appropriate, and

� W B ˝B ˝ cDD ˝ .B 0/op
˝ .B 0/op

! B ˝B ˝ cDD ˝ .B 0/op
˝ .B 0/op

is a sign flip which multiplies b1˝ b2˝x˝ .b0
3
/op˝ .b0

4
/op by .�1/.degh b2/.degh b0

4
/ .

4.5.2 Remark The odd-seeming sign conventions reflect the fact that, while we
write cDD with B on the left and .B 0/op on the right to make the notation more
manageable, we really want to think of both B and B 0 being on the left of cDD when
fixing sign conventions.

Of particular interest here are type DD bimodules with cDDDR as an R–bimodule. We
will refer to these as rank-one DD bimodules, following the notation of [6, Section 8].
For a rank-one DD bimodule, we have

B ˝R
cDD ˝R .B 0/op

Š B ˝R .B 0/op;

so we may rewrite the type DD structure relations as

.�1˝jidj/ ı ıC .id˝�1/ ı ıC .�2˝�2/ ı � ı .id˝ ı˝ id/ ı ı D 0;

where � is now a map from B ˝B ˝ .B 0/op˝ .B 0/op to itself.

When B is a linear-quadratic algebra with an intrinsic grading as in Remark 4.3.4, we
can construct an associated rank-one DD bimodule over B and B ! . Setting cDD DR,
we define ıW R! B ˝R .B !/op by

ı.e/ WD
X

i

bi ˝ .b
�
i /

op;

where e is one of the elementary idempotents and the sum runs over those multiplicative
generators bi of R which have left idempotent e . (These idempotent conditions will
be implicit in what follows.) Note that ı has degree .0;C1/; it preserves the intrinsic
grading, since the grading on B ! was defined to be the negative of that on B , and it
increases the homological grading by 1, since bi has homological degree 0 while b�i
has homological degree 1.

4.5.3 Proposition The map ı , as defined above, satisfies the type DD structure
relations.
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Proof First, let e 2 R be one of the elementary idempotents. Applying the term
.�2˝�2/ ı � ı .id˝ ı˝ id/ ı ı to e , we get

.�2˝�2/ ı � ı .id˝ ı˝ id/ ı ı.e/D
X
i;j

bibj ˝ .b
�
j /

op.b�i /
op;

where the sum runs over all pairs of multiplicative generators bi ; bj of B with com-
patible idempotents, such that the left idempotent of bi is e . Note that � D id here,
because the generators bj all have homological degree zero.

In the notation of Remark 4.1.3, we may split the above sum as

(4-1)
X

bi bj2Q1

bibj ˝ .b
�
j /

op.b�i /
op
C

X
bi bj2Q2

bibj ˝ .b
�
j /

op.b�i /
op:

If bibj is in Q1 , then in B ! , we may write b�i b�j as

�

X
bi0bj 02Q2

.i0;j 0/>.i;j/

ci0;j 0Ii;j b�i0b
�
j 0 :

Thus,

(4-2)
X

bi bj2Q1

bibj ˝ .b
�
j /

op.b�i /
op
D�

X
bi bj2Q1

bibj ˝

X
bi0bj 02Q2

.i0;j 0/>.i;j/

ci0;j 0Ii;j .b
�
j 0/

op.b�i0/
op:

On the other hand, if bibj is in Q2 , then we may write bibj as

bibj D

� X
bi0bj 02Q1

.i0;j 0/<.i;j/

ci;j Ii0;j 0bi0bj 0

�
�'

�
bibj �

X
bi0bj 02Q1

.i0;j 0/<.i;j/

ci;j Ii0;j 0bi0bj 0

�
:

The expression '
�
bibj �

P
bi0bj 02Q1;.i

0;j 0/<.i;j/ ci;j Ii0;j 0bi0bj 0
�
, or '.Ii;j /, denotes

some linear combination of the multiplicative generators bk of B . Define integers Ci;j Ik

by

(4-3) '

�
bibj �

X
bi0bj 02Q1

.i0;j 0/<.i;j/

ci;j Ii0;j 0bi0bj 0

�
D

X
k

Ci;j Ikbk :

We haveX
bi bj2Q2

bibj˝.b
�
j /

op.b�i /
op

D

X
bi bj2Q2

X
bi0bj 02Q1

.i0;j 0/<.i;j/

ci;j Ii0;j 0bi0bj 0˝.b
�
j /

op.b�i /
op
�

X
bi bj2Q2

�X
k

Ci;j Ikbk

�
˝.b�j /

op.b�i /
op:
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On the right side of this equation, the first term cancels with the first termX
bi bj2Q1

bibj ˝ .b
�
j /

op.b�i /
op

of expression (4-1), by (4-2). Thus, we see that

.�2˝�2/ ı � ı .id˝ ı˝ id/ ı ı.e/D�
X

bi bj2Q2

�X
k

Ci;j Ikbk

�
˝ .b�j /

op.b�i /
op:

Now we consider the terms .�1˝jidj/ ı ı.e/ and .id˝�1/ ı ı.e/. The first of these
is zero, because B has no differential. The second may be written as

.id˝�1/ ı ı.e/D
X

k

bk ˝ .'
�.b�k //

op:

To compute '�.b�
k
/ as an element of I� , ie a homomorphism from I to Z, use (4-3)

above: this homomorphism sends the generator

Ii;j D bibj �

X
bi0bj 02Q1

.i0;j 0/<.i;j/

ci;j Ii0;j 0bi0bj 0

of I to the coefficient Ci;j Ik 2 Z.

We want to view '�.b�
k
/ as an element of B ! of homological degree 2. To do this,

following Definition 4.3.3, we pick any extension of '�.b�
k
/ to a functional from

V ˝R V to Z, or in other words an element of V �˝R V � , and then consider this
element modulo the ideal I? . Since fIi;j j bibj 2Q2g[Q1 is a Z–basis for V ˝R V ,
we may extend '�.b�

k
/ to V ˝R V by defining it to be zero on any bi0bj 0 in Q1 .

This extended '�.b�
k
/ sends bibj 2 Q2 to Ci;j Ik , since it sends Ii;j to Ci;j Ik and

sends every bi0bj 0 2Q1 to zero. Thus,

'�.b�k /D
X

bi bj2Q2

Ci;j Ikb�i b�j :

We conclude that

.id˝�1/ ı ı.e/D
X

k

bk ˝

X
bi bj2Q2

Ci;j Ik.b
�
j /

op.b�i /
op;

canceling the remaining term of .�2˝�2/ı� ı .id˝ ı˝ id/ı ı.e/. This computation
verifies that the type DD structure relations for ı are satisfied.
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We can also reverse the roles of B and B ! : define ı0W R! B !˝R .B/op by

ı0.e/ WD
X

i

b�i ˝ .bi/
op;

where again the sum is over all multiplicative generators bi with left idempotent e .

4.5.4 Proposition The map ı0 satisfies the type DD structure relations.

Proof The proof is similar enough to the proof of Proposition 4.5.3 that we will omit
it to save space.

4.5.5 Definition The rank-one type DD bimodules constructed in Proposition 4.5.3
and Proposition 4.5.4 will be denoted BK.B!/op

and B!

KBop
respectively.

4.5.6 Remark In [6, Section 8], Lipshitz, Ozsváth and Thurston define a notion
of Koszul duality in the language of DD bimodules: two algebras B and B 0 are
Koszul dual if there exists a rank-one DD bimodule over B and B 0 which is quasi-
invertible (and such that the algebra outputs of the DD operation ı lie in the kernel
of the augmentation maps on B and B 0 ; this technical condition is satisfied for all the
bimodules we consider). We will not define the notion of quasi-invertibility precisely
here; see [6], although they use Z=2Z coefficients.

By Proposition 4.5.3, we get a type DD bimodule over H n and .H n/! ; Proposition
4.5.4 gives us a type DD bimodule over .H n/! and H n . It would be interesting to
know whether these bimodules are quasi-invertible; if they were, then .H n/! could be
regarded as the Koszul dual of H n in this generalized sense.

However, bordered Floer homology has even stronger duality properties: Theorem 13
of [6] asserts that the bordered surface algebra A.Z; i/ is Koszul dual to both A.Z;�i/

and A.Z�; i/, where Z is a pointed matched circle and Z� is another pointed matched
circle constructed from Z . This situation contrasts with that of H n , where the quadratic
dual algebra is infinitely generated and thus much larger than H n itself. Below, we
will see that Roberts’ construction is able to avoid this issue.

5 Khovanov’s algebra and Roberts’ algebra

In this section we begin to discuss Roberts’ bordered theory for Khovanov homology
from [11; 12]. Roberts’ bordered theory uses a differential bigraded algebra which
is denoted B�n . This algebra is generated by some right-pointing generators �!e and
left-pointing generators  �e , modulo some explicitly given relations. The differential
on B�n is zero on all the right-pointing generators �!e .

Algebraic & Geometric Topology, Volume 17 (2017)



On bordered theories for Khovanov homology 1597

We start by defining an algebra BR.H
n/ using the structure of H n , with its additive

basis ˇ D f.W .a/b; �/g and set of multiplicative generators ˇmult D fh
 ; h˛g. In
Proposition 5.1.9, we show that BR.H

n/ is isomorphic to the subalgebra BR�n of B�n

generated by the right-pointing elements.

The subalgebra BR�n is a linear-quadratic algebra. Its quadratic dual, as defined in
Section 4.3, is closely related to the subalgebra BL�n of B�n generated by the left-
pointing elements. More precisely, in Definition 5.2.6 we define a mirroring operation
on algebras over Iˇ , and in Proposition 5.2.8, we show that BL�n is a quotient
of m.BR.H

n/!/, the mirroring of the quadratic dual of BR.H
n/Š BR�n , by a few

explicitly given extra relations.

Finally, in Section 5.3, we take a suitably defined product of m.BR.H
n//! and BR.Hn/,

obtaining an algebra whose quotient by the same extra relations as above is B�n .

5.1 Right side of Roberts’ algebra

As in Section 3.1, let ˇ denote the Z–basis f.W .a/b; �/g of H n . As at the beginning
of Section 3, let In denote the idempotent ring of H n . The space HomIn

.H n;H n/

of left In –module maps from H n to itself is a free Z–module. A Z–basis for
HomIn

.H n;H n/ has generators e.h1; h2/ for each pair h1 2 ˇ; h2 2 ˇ such that h1

and h2 have the same left idempotent. Here, e.h1; h2/ is the homomorphism that
sends h1 to h2 and sends all other basis elements in ˇ to zero.

Note that HomIn
.H n;H n/ has the structure of a ring, with multiplication given by

composition. We will define a grading on HomIn
.H n;H n/ which differs from the

usual one by a factor of �1
2

.

5.1.1 Definition Let e.h1; h2/ be a generator of HomIn
.H n;H n/. The degree of

e.h1; h2/ is defined to be 1
2
.deg h1� deg h2/.

5.1.2 Remark This choice of grading has the advantage that it agrees with Roberts’
choice, but it can also be justified on its own grounds. The factor of �1 comes
from the fact that Khovanov, in [4], replaces the usual q–grading by its negative, to
make H n positively rather than negatively graded. We will see below (in the proof
of Proposition 6.4.1 in particular) why the factor of 1

2
is reasonable. Note that while

this grading is now a 1
2
Z–grading rather than a Z–grading, it will always function as

an intrinsic grading rather than a homological grading. Thus, it will have no effect on
signs and we are free to use a 1

2
Z–grading if desired.

The elements e.h; h/ 2 HomIn
.H n;H n/, for h 2 ˇ , generate a subring which is

isomorphic to a direct product of copies of Z. We will denote this subring by Iˇ ; note
that Iˇ is isomorphic to the idempotent ring of B�n , and hence of BR�n as well.
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5.1.3 Definition Let BR.H
n/ denote the smallest subring of HomIn

.H n;H n/ con-
taining Iˇ and containing every e.h1; h2/ such that h2 occurs as a nonzero term in
the ˇ–expansion of h1 �h, for some h in the set of multiplicative generators ˇmult . We
may view BR.H

n/ as an algebra over Iˇ .

The algebra BR.H
n/ inherits an intrinsic grading from the grading on HomIn

.H n;H n/

defined in Definition 5.1.1. The degree-0 summand of BR.H
n/ is its idempotent

ring Iˇ . The multiplicative generators e.h1; h2/ such that h2 occurs as a nonzero
term in the basis expansion of h1 � h
 , for some 
 , have degree �1

2
, since h
 has

intrinsic degree 1. Those such that h2 occurs as a nonzero term in the expansion of
some h1 � h˛ have degree �1, since h˛ has degree 2.

A natural set of multiplicative generators for BR.H
n/ as an algebra over Iˇ is given in

its definition, namely the elements e.h1; h2/ such that h2 occurs as a nonzero term in
the ˇ–expansion of h1 �h, for some h in the set of multiplicative generators ˇmult . If
hDh
 , the corresponding element of BR.H

n/ will be denoted b
 Ih1;h2
. If hDh˛ , the

corresponding element of BR.H
n/ will be denoted bC Ih1;h2

, where if h1D .W .a/b; �/,
then C is the circle in W .a/b containing ˛ . Note that for a fixed h1 , all arcs ˛0 which
lie on the same circle C as ˛ in W .a/b yield the same generator bC Ih1;h2

of BR.H
n/.

5.1.4 Remark We use notation with subscripts, such as b
 Ih1;h2
or bC Ih1;h2

, to
refer to elements of BR.H

n/. We also use b , without any subscripts, to refer to a
crossingless matching. Below, if 
 is a bridge on b , we will let b.
 / denote the
crossingless matching obtained by surgery on b along 
 .

There are no linear relations among the generators b
 Ih1;h2
and bC Ih1;h2

. The genera-
tors are homogeneous with intrinsic degree �1

2
or �1, so they are in the kernel of the

augmentation map on BR.H
n/ (which is the projection onto the degree-0 summand).

The left idempotent of each generator of the form b
 Ih1;h2
and bC Ih1;h2

is e.h1; h1/;
the right idempotent is e.h2; h2/. For compactness of notation, we will identify each
elementary idempotent e.h; h/ 2 Iˇ with the corresponding element h 2 ˇ . Thus, we
say that the left idempotent of b
 Ih1;h2

and bC Ih1;h2
is h1 and the right idempotent

is h2 .

We will show that BR.H
n/, with the set of generators b
 Ih1;h2

and bC Ih1;h2
, is a

linear-quadratic algebra. The proof will closely follow that of Theorem 4.2.1.

Let V be the free Z–module spanned by the generators of BR.H
n/; as discussed above,

the idempotent ring Iˇ has left and right actions on V . We may write BR.H
n/ D

T .V /=J for some ideal J of T .V /. Let J2 WD J \ .T 1.V /˚T 2.V //. We identify
a set of generators for J2 .
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5.1.5 Proposition The ideal J2 of linear-quadratic relations of BR.H
n/ is generated

by the following relations:

(1) Suppose 
 and � are two bridges which can be drawn without intersection on the
same crossingless matching b ; let �0 denote the bridge on b.
 / corresponding
to �, where b.
 / is the crossingless matching resulting from surgery on 
 .
Define 
 0 similarly. For any choice of .a; �/, let h1 D .W .a/b; �/ 2 ˇ . If the
generators b
 Ih1;h2

and b�0Ih2;h3
exist in BR.H

n/ for some h2; h3 in ˇ , we get
a relation

b
 Ih1;h2
b�0Ih2;h3

� b�Ih1; Qh2
b
 0I Qh2;h3

2 J2;

where Qh2 is any element of ˇ such that b�Ih1; Qh2
and b
 0I Qh2;h3

exist in BR.H
n/.

(2) Suppose 
 is a bridge on a crossingless matching b . For any choice of .a; �/,
let h1 D .W .a/b; �/ 2 ˇ . Let C be any circle in W .a/b . Let C 0 be any circle
in W .a/.b.
 // which corresponds to C under surgery on 
 ; if the endpoints
of 
 do not both lie on C , then C 0 is unique, and otherwise there are two
choices for C 0 . If the generators b
 Ih1;h2

and bC 0Ih2;h3
exist in BR.H

n/ for
some h2; h3 in ˇ , we get a relation

b
 Ih1;h2
bC 0Ih2;h3

� bC Ih1; Qh2
b
 I Qh2;h3

2 J2;

where Qh2 is any element of ˇ such that bC Ih1; Qh2
and b
 I Qh2;h3

exist; note that
Qh2 is uniquely determined by C and h1 .

(3) For any choice of .a; b; �/, let h1 D .W .a/b; �/ 2 ˇ . Let C1 and C2 be two
circles in W .a/b . If the generators bC1Ih1;h2

and bC2;h2;h3
exist in BR.H

n/ for
some h2; h3 in ˇ , we get a relation

bC1Ih1;h2
bC2Ih2;h3

� bC2Ih1I
Qh2

bC1I
Qh2;h3

2 J2;

where Qh2 is any element of ˇ such that bC2Ih1I
Qh2

and bC1I
Qh2;h3

exist. As above,
Qh2 is uniquely determined by C2 and h1 .

(4) Finally, suppose 
 is any bridge on a crossingless matching b . Recall from
Section 4.2 or Roberts [12, Definition 10] that 
 has a dual bridge 
 | . For
any choice of .a; �/, let h1 D .W .a/b; �/ 2 ˇ . If the generators b
 Ih1;h2

and b
|Ih2;h3
exist in BR.H

n/ for some h2; h3 in ˇ , then h3 differs from h1

by switching the sign of one circle of W .a/b from plus to minus. Let C denote
this circle. We get a relation

b
 Ih1;h2
b
|Ih2;h3

� bC Ih1;h3
2 J2:

Proof Since BR.H
n/ is an intrinsically graded algebra, if we have a relation in J2 ,

then each of its grading-homogeneous parts must also be in J2 . Thus, we may analyze
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J2 one degree at a time. Since the generators of BR.H
n/ have intrinsic degree �1

2

or �1, and we are trying to identify the linear-quadratic relations among them, we
may assume these relations have intrinsic degree �1, �3

2
or �2. The case of intrinsic

degree �1
2

is excluded since any such relation would be a linear dependency among
the generators of BR.H

n/.

The relations of intrinsic degree �1 may be sums of quadratic monomials in the
degree �1

2
generators b
 Ih1;h2

of BR.H
n/ and linear monomials in the degree �1

generators bC Ih1;h2
. Analyzing the possible cases, we get the relations of items (1)

and (4) above.

The relations of intrinsic degree �3
2

are sums of quadratic monomials, each involving
one degree �1

2
generator b
 Ih1;h2

and one degree �1 generator bC Ih1;h2
. These

relations are generated by the relations of item (2) above.

Finally, the relations of degree �2 are sums of quadratic monomials in the degree �2

generators bC Ih1;h2
. They are generated by the relations of item (3) above.

5.1.6 Remark As in Section 4.2, Proposition 5.1.5 is not actually needed to prove
Proposition 5.1.7. We could instead introduce J 2 , generated by the relations in
Proposition 5.1.5, and show that J � T .V / �J 2 �T .V /.

5.1.7 Proposition With J and J2 defined as above, we have

J D T .V / �J2 �T .V /:

Thus, BR.H
n/ is a linear-quadratic algebra.

Proof We want to show that J � T .V / � J2 �T .V /. As in Theorem 4.2.1 above, it
suffices to show that for a general element r of J , one may successively add to r

elements of the ideal generated by the relation elements listed in items (1)–(4) of
Proposition 5.1.5, until one obtains zero.

Let r be an arbitrary element of J . We may assume without loss of generality
that r has a unique left idempotent and right idempotent. Since J is an ideal of the
tensor algebra T .V /, r may be written as a linear combination of monomials in the
generators b
 Ih1;h2

and bC Ih1;h2
. Let

r D
X

i

ni.bi;1 � � � bi;li
/;

where ni 2 Z and each bi;j is one of the generators b
 Ih1;h2
or bC Ih1;h2

.

Consider one of the monomial summands miDbi;1 � � � bi;li
of r . After adding elements

of T .V / �J2 �T .V / to this monomial, we may assume that all the b
 Ih1;h2
generators
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among the bi;j come before (ie with lower j than) the bC Ih1;h2
generators. The

necessary relations come from item (2) of Proposition 5.1.5. Let m0i denote the
monomial obtained by modifying mi in this way.

Write m0i as m
;i �mC;i , where m
;i is a product of b
 Ih1;h2
generators and mC;i is a

product of bC Ih1;h2
generators. Let h2ˇ be the left idempotent of m
;i and let h0i 2ˇ

be the right idempotent of m
;i . Note that h does not depend on i , since h is the left
idempotent of our original relation term r .

Viewing h and h0i as elements of H n , let e 2 In denote the right idempotent of h.
Let e0 2 In denote the right idempotent of h0i , which does not depend on i since the
monomial mC;i is a product of bC generators. As in Theorem 4.2.1, e and e0 are
vertices of Gn , the undirected Hasse diagram of NCn . To the monomial m
;i , we can
associate a path p.m
;i/ from e to e0 in Gn .

We claim that we may further modify m0i such that p.m
;i/ is a minimal-length path
between e and e0 as vertices of Gn . Indeed, suppose m
;i corresponds to a path of
nonminimal length between e and e0 . Write m
;i D b
1Ih1;h2

� � � b
k Ihk ;hkC1
. Then

there exists a minimal index 2� j �k such that b
1Ih1;h2
� � � b
j�1Ihj�1;hj corresponds

to a path � of minimal length in Gn but b
1Ih1;h2
� � � b
j Ihj ;hjC1

does not.

Let eR.hj /2 In denote the right idempotent of hj . Then eR.hj / is a vertex of Gn and
the distance in Gn between e and eR.hj / is j � 1. However, the distance between e

and eR.hjC1/ is j � 2 rather than j ; the argument is the same as in the proof of
Theorem 4.2.1. Thus, there exists a path Q in Gn , of length j �2, from e to eR.hjC1/.
Appending eR.hj / to the end of the path Q , we get a path  in Gn , of length j � 1,
between e and eR.hj /. By assumption,  is a minimal-length path.

We now have two minimal-length paths � and  between e and eR.hj /. The path �
corresponds to the monomial b
1Ih1;h2

� � � b
j�1Ihj�1;hj . The path  corresponds to a
monomial b
 0

1
Ih1;h

0
2
� � � b
 0

j�2
Ih0
j�2

;h0
j�1
�b
|

j
Ih0
j�1

;hj , and we have eR.h
0
j�1

/D eR.hjC1/.

By Lemma 4.2.4, we may modify � one vertex at a time to obtain  . Such modifications
can be mirrored on the level of monomials by adding relation terms obtained from
item (1) of Proposition 5.1.5. Thus, we may modify m
;i , which equals

b
1Ih1;h2
� � � b
j�1Ihj�1;hj � b
j Ihj ;hjC1

� � � b
k Ihk ;hkC1
;

by adding terms in T .V / �J2 �T .V / to obtain

b
 0
1
Ih1;h

0
2
� � � b
 0

j�2
Ih0
j�2

;h0
j�1
� b
|

j
Ih0
j�1

;hj � b
j Ihj ;hjC1
� � � b
k Ihk ;hkC1

:

Inside this monomial is b
|
j
Ih0
j�1

;hj � b
j Ihj ;hjC1
, which may be replaced with a

bC Ih0
j�1

;hjC1
term using the relation terms in item (4) of Proposition 5.1.5. As before,

this bC term may be commuted to the right side of m0i .
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After this modification, we have strictly reduced the length of m
;i in the factorization
of m0i as m
;i �mC;i . If the new m
;i still does not represent a minimal-length path
in Gn , we can repeat the same procedure and eventually it will terminate.

At this point, we have shown that we can modify our original r D
P

i ni.mi/ by adding
terms in T .V / � J2 � T .V /, until each mi is a monomial factorizable as m
;i �mC;i

with m
;i representing a minimal-length path in Gn . The starting and ending vertices
of all these paths are the same. Thus, by Lemma 4.2.4 and the relations from item (1)
of Proposition 5.1.5, we may do further modifications until all of the m
;i are the same
monomial m
 and we have

r Dm


X
i

ni.mC;i/ modulo T .V / �J2 �T .V /:

Since r was assumed to have unique left and right idempotents in Iˇ , the set of
circles C involved in each term mC;i of the above expression must be the same. Thus,
using relations from item (3) of Proposition 5.1.5, we may rewrite each mC;i as the
same monomial mC . Then

r DN �m
mC modulo T .V / �J2 �T .V /;

where N D
P

ni .

Finally, we use the fact that r 2 J , or in other words that r D 0 as an element
of BR.H

n/. This condition implies that N �m
mC must also be in J , since it differs
from r by an element of T .V / �J2 �T .V / which is contained in J .

Note that BR.H
n/ is a subring of HomIn

.H n;H n/; the element m
mC may be
identified with the left R–linear map from H n to H n which sends e to e0 and sends
all other elements of ˇ to zero, where e and e0 here are the left and right idempotents
of m
mC . If N �m
mC is zero in BR.H

n/, then it is zero in HomIn
.H n;H n/,

implying that N must be zero.

In other words, starting with r 2 J above, we have shown that r D 0 modulo
T .V / �J2 �T .V /. Hence J � T .V / � J2 � T .V /, so BR.H

n/ is a linear-quadratic
algebra.

Now we can see that BR.H
n/ is isomorphic to BR�n . First, we define the latter

algebra more precisely.

5.1.8 Definition Let B�n be Roberts’ algebra from [11; 12]. Let BR�n be the
subalgebra of B�n spanned over Iˇ by those generators �!e with right pointing arrows
(B�n also has some generators  �e with left pointing arrows). The subalgebra BR�n
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has no differential. It inherits a bigrading from B�n (see [12, Definition 19]); the
homological grading is identically zero on BR�n .

5.1.9 Proposition BR.H
n/Š BR�n as bigraded algebras over Iˇ .

Proof An examination of the subset of Roberts’ algebra relations in [12] which involve
only right-pointing generators shows that they correspond with the relations listed in
Proposition 5.1.5 under the (bigrading-preserving) identification of the generators b

of BR.H
n/ with the generators �!e of BR�n . Thus, this proposition follows from

Proposition 5.1.7.

5.2 Left side of Roberts’ algebra

5.2.1 Definition Let BL�n be the subalgebra of B�n spanned over Iˇ by those
generators  �e with left pointing arrows. The bigrading and differential on B�n give us
a bigrading and differential on BL�n .

We will see that BL�n may be identified, after a mirroring operation defined in
Definition 5.2.6, with a quotient of the quadratic dual .BR.H

n//! of BR.H
n/ by a few

explicitly given extra relations.

First, we analyze the dual algebra .BR.H
n//! . As an algebra, it is the quadratic dual

of .BR.H
n//.0/ . We may write BR.H

n/ as T .V /=J , where if

J2 WD J \ .T 1.V /˚T 2.V //

then we have
J D T .V / �J2 �T .V /:

Let I denote the image of J2 under the projection map T 1.V /˚T 2.V /! T 2.V /

onto the second summand. Then

.BR.H
n//.0/ Š T .V /=I;

.BR.H
n//! Š T .V �/=I?:

The ideal J2 is generated explicitly by the relations listed in Proposition 5.1.5. We
may discard the linear parts of these relations, and keep the quadratic parts, to get a set
of generators for I . These generators have a simple form: if r is a generating relation
in I , then r is either a single quadratic monomial or a difference of two quadratic
monomials.

Define a graph G whose vertices are all quadratic monomials appearing with nonzero
coefficient in some relation r 2 I . Two monomials v and Qv are connected by an edge
in G if v� Qv is in I .
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5.2.2 Proposition The graph G is a disjoint union of isolated points, line segments
(two points connected by an edge and disconnected from the rest of G ), triangles (three
points, all connected, and disconnected from the rest of G ), and tetrahedra (four points,
all connected, and disconnected from the rest of G ).

Proof Define a graph G0 with the same vertices as G ; two monomials v and Qv are
connected by an edge in G0 if v� Qv is the quadratic part of one of the explicit relations
(1)–(4) listed in Proposition 5.1.5. We will determine the structure of G0 by looking at
the quadratic parts of the relations (1)–(4); G may be obtained from G0 by replacing
each connected component of G0 with a complete graph on the same number of vertices.

First, the isolated points in G0 are quadratic monomials of the form

b
 Ih1;h2
b
|;h2;h3

I

these are the quadratic parts of relations from item (4) of Proposition 5.1.5.

Next we look at relations from item (1) of Proposition 5.1.5, which have no linear parts
and are already quadratic (the same applies to items (2) and (3); only the relations from
item (4) have linear parts). Some of the line segments in G0 come from relation terms

b
 Ih1;h2
b�0Ih2;h3

� b�Ih1; Qh2
b
 0I Qh2;h3

;

where 
 and � are two bridges which can be drawn on the same crossingless matching
without intersection, such that � 2 Bd .L; 
 / in the notation of [12, Proposition 11].
Roberts’ L corresponds to our W .a/b .

Other line segments in G0 come from the same relations when � 2 Bo.L; 
 /, in every
case except when 
 splits a plus-labeled circle and �0 joins the two newly formed
circles into a new minus-labeled circle. For notations like Bo.L; 
 / and Bd .L; 
 /,
see Roberts [12, Proposition 11].

Line segments in G0 also come from relations b
 Ih1;h2
bC Ih2;h3

� bC Ih1; Qh2
b
 I Qh2;h3

of
item (2) of Proposition 5.1.5 when the circle C is disjoint from the support of 
 and
from relations bC1Ih1;h2

bC2Ih2;h3
�bC2Ih1I

Qh2
bC1I

Qh2;h3
of item (3) of Proposition 5.1.5,

where C1 and C2 are two distinct circles labeled C in h1 .

The remaining relations from item (2) of Proposition 5.1.5 give configurations of three
vertices in G0 connected by two edges. We get triangles in G which connect triples

fb
 Ih1;h2
bC Ih2;h3

; bC1Ih1; Qh2
b
 I Qh2;h3

; bC2Ih1;
QQh2

b
 I QQh2;h3
g;

fbC Ih1;h2
b
 Ih2;h3

; b
 Ih1; Qh2
bC1I

Qh2;h3
; b
 Ih1;

QQh2
bC2I

QQh2;h3
g

Algebraic & Geometric Topology, Volume 17 (2017)



On bordered theories for Khovanov homology 1605

when the circle C is not disjoint from the support of 
 . The rest of the triangles in G

connect triples

fb
1Ih1;h2
b�Ih2;h3

; b
2Ih1; Qh2
b�I Qh2;h3

; b
3Ih1;
QQh2

b�I QQh2;h3
g

when 
i 2Bs.L; 
j / for 1� i; j � 3, using relations from item (1) of Proposition 5.1.5.

We have accounted for the quadratic parts of all relations from items (2)–(4) of
Proposition 5.1.5, as well as most of the relations from item (1). The remaining
relations from item (1) give rise to squares of four vertices in G0 and thus to tetrahedra
in G . These four-vertex components exist whenever we have two bridges 
 and �,
with � 2 Bo.L; 
 /, such that 
 splits a plus-labeled circle and �0 joins the newly
formed circles into a minus-labeled circle. In such cases, we have four quadratic
monomials which are all equal modulo the relation terms in I (and thus are connected
in G ). These can be written as b
 Ih1;h2

b�0Ih2;h3
, b
 Ih1; Qh2

b�0I Qh2;h3
, b�Ih1;

QQh2
b
 0I QQh2;h3

and b�Ih1;
QQQh2

b
 0I
QQQh2;h3

.

Order the set of generators b
 Ih1;h2
and bC Ih1;h2

of BR.H
n/ such that the b
 Ih1;h2

come before the bC Ih1;h2
in the ordering. Using G , the generators of I may be

summarized as follows: for every connected component of G , there exists a minimal
vertex v . For all other vertices Qv in the same component of v , there exists a relation Qv�v
in I , and if v is a singleton, then v is also a relation in I . These relations are a set of
generators for I as in Remark 4.1.3.

We may use the reasoning of Remark 4.3.2 to identify a set of generators for I? . For
any quadratic monomial in the generators b which does not appear as a vertex of G ,
the corresponding monomial in the generators b� is an element of I� . Isolated points
of G do not give generators of I� . For every line segment in G between vertices v
and Qv , let v� and . Qv/� denote the corresponding monomials in the generators b� .
Then v�C . Qv/� is an element of I� . For every triangle in G with a minimal vertex v
and two nonminimal vertices Qv and QQv , let v� , . Qv/� and . QQv/� denote the corresponding
monomials in the generators b� . Then

v�C . Qv/�C . QQv/�

is an element of I? . Finally, for every tetrahedron in G with a minimal vertex v
and three nonminimal vertices Qv , QQv and QQQv, let v� , . Qv/� , . QQv/� and . QQQv/� denote the
corresponding monomials in the generators b� . Then

v�C . Qv/�C . QQv/�C . QQQv/�

is an element of I? . The above-listed elements generate I? .
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We may also compute the action of the map ' on the generators of I , using the
relations from item (4) of Proposition 5.1.5. For every generator of I of the form
b
 Ih1;h2

b
|Ih2;h3
� bC Ih1;h3

, we have

'.b
 Ih1;h2
b
|Ih2;h3

/D�bC Ih1;h3
:

The map ' sends all other generators of I to zero. Thus, dualizing ' , we have

'�.b�C Ih1;h3
/D�

X
i

b�
i Ih1;h2;i
b�
|

i
Ih2;i ;h3

;

where the sum runs over all bridges 
i on the right crossingless matching of h1 which
have an endpoint on C , as well as all compatible h2;i .

Finally, .BR.H
n//! is bigraded; the generators b�
 Ih1;h2

have degree
�

1
2
; 1
�

since
b
 Ih1;h2

has degree
�
�

1
2
; 0
�
, and the generators b�C Ih1;h2

have degree .1; 1/ since
bC Ih1;h2

has degree .�1; 0/. Here, the first index denotes the intrinsic degree, and the
second index denotes the homological degree (this is the reverse of Roberts’ convention).
The generators of BR.H

n/ are all placed in homological degree 0.

5.2.3 Remark While the quadratic dual of an algebra which is finitely generated
over Z (like BR�n ) may in general be infinitely generated over Z, the algebra
.BR.H

n//! is finitely generated over Z. In fact, the relations on the algebra are
irrelevant for this property: T .V �/ is already finitely generated over Z, since the
structure of the idempotents only allows monomials of a certain length in the generators
of V � to be nonzero. The same is true for T .V /.

We can now relate .BR.H
n//! with BL�n . To do this, we need to define a mirroring

operation for modules and bimodules over the idempotent ring Iˇ of .BR.H
n//!

and BL�n .

5.2.4 Definition Let X be any module or bimodule over the idempotent ring Iˇ .
The mirror of X , denoted m.X /, is the module or bimodule whose actions of Iˇ
are the actions on X , precomposed with the map from Iˇ to Iˇ which mirrors each
elementary idempotent across the line f0g �R. Note that m.m.X //DX .

5.2.5 Example Suppose X is a left module over Iˇ . Let x 2X and let m.x/ denote
the corresponding element of m.X /. Let hD .W .a/b; �/ 2 Iˇ ; then

h �m.x/ WDm.m.h/ �x/;

where m.h/ is .W .b/a;m.�// and m.�/ is the same labeling of circles as � , mirrored
across f0g �R. See Figure 6 for an illustration.
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� m.x/ D m � x

Figure 6: The mirror of a left module over Iˇ

We will have definitions related to Definition 5.2.4 for Iˇ–modules and bimodules
with more structure. Here, we are concerned with algebras.

5.2.6 Definition Let B be a differential bigraded algebra over the idempotent ring Iˇ .
The mirror of B , denoted m.B/, is the same differential bigraded ring as B . As an
algebra, the left and right actions of Iˇ are mirrored as in Definition 5.2.4. The map
from B to m.B/ sending b 2B to m.b/2m.B/ is an isomorphism of rings (but not of
algebras); its inverse is the analogously defined map from m.B/ to m.m.B//D B . To
avoid confusion with other uses of the letter m, we will refer to both of these mirroring
maps as mirr: we have

mirrW B!m.B/ and mirrW m.B/!m.m.B//D B :

5.2.7 Remark The mirroring operation for algebras commutes with quadratic duality:
if B is a linear-quadratic algebra over Iˇ , then

m.B !/D .m.B//!:

Thus, we can write either of these algebras as m.B/! . Mirroring also commutes with
taking the opposite algebra: we have m.Bop/D .m.B//op , so we can write either of
these algebras as m.B/op .

5.2.8 Proposition BL�n is isomorphic to the quotient of m.BR.H
n//! by the follow-

ing extra relations. Let the graph G be defined as above; for each tetrahedron in G , the
only relation in m.BR.H

n//! involving the vertices of the tetrahedron is that the sum
of all its vertices is zero. The algebra BL�n imposes extra relations among the vertices
of each tetrahedron. Recall that tetrahedra in G arise when we have two bridges 

and �, with � 2 Bo.L; 
 /, such that 
 splits a plus-labeled circle and �0 joins the
newly formed circles into a minus-labeled circle. The vertices of the corresponding
tetrahedron are, following the discussion above:
� a WDm.b�
 Im.h1/;m.h2/

/m.b��0Im.h2/;m.h3/
/,

� b WDm.b�
 Im.h1/;m. Qh2/
/m.b��0Im. Qh2/;m.h3/

/,
� c WDm.b��Im.h1/;m.

QQh2/
/m.b�
 0Im. QQh2/;m.h3/

/,
� d WDm.b��Im.h1/;m.

QQQh2//
m.b�
 0Im.

QQQh2/;m.h3/
/.
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Whereas the algebra m.BR.H
n//! imposes only the relation aC bC cC d D 0, the

algebra BL�n imposes the relations

� aC c D 0,

� aC d D 0,

� bC c D 0,

� bC d D 0 (this relation also follows from the previous three).

From these relations, aC bC cC d D 0 may be deduced, as well as relations for the
two remaining edges of the tetrahedron:

� a� b D 0,

� c � d D 0.

Proof Consider the map from m.BR.H
n//! to BL�n sending m.b�
 Im.h1/;m.h2/

/ to
 �
e 
 Ih1;h2

and sending m.b�C Im.h1/;m.h2/
/ to  �e C Ih1;h2

. By examining the subset of
Roberts’ relations from [12] involving only left-pointing generators, and comparing
with the relations for m.BR.H

n//! above, we see that this is a well-defined surjective
bigrading-preserving map whose kernel is generated by the extra relations listed in the
statement of this proposition. These extra anticommutation relations can be found in
Roberts’ algebra as a subset of the relations (21), case (2) [12, page 98].

After mirroring, the formula above for '� agrees with Roberts’ definition [12, Proposi-
tion 25], of the differential on B�n (or equivalently on BL�n , since the differential
of any right-pointing generator �!e of B�n is zero). Since both the differential on
m.BR.H

n//! and the differential on BL�n are defined by the same formula on the
degree-1 generators and extended formally to the full algebras by the Leibniz rule, we
can conclude that the differential on BL�n agrees with the differential on m.BR.H

n//!

after quotienting the latter algebra by the extra relations.

5.3 The full algebra

In the following, B will denote BR.H
n/Š BR�n unless otherwise specified.

The goal of this section is to construct a product algebra m.B/! ˇ B and identify B�n

with a quotient of m.B/! ˇ B . We also want to construct a rank-one DD bimodule for
m.B/! ˇ B using rank-one DD bimodules for m.B/! and B .

By Proposition 4.5.3 and Proposition 4.5.4, we have rank-one type DD bimodules
which we may refer to as BK.B!/op

and B!

KBop
. Like in Definition 5.2.6 above, we can

extend the mirroring operation of Definition 5.2.4 to these bimodules.
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5.3.1 Definition Let B1 and B2 be differential bigraded algebras over the idempotent
ring Iˇ and let .K; ı/ be a type DD bimodule over B1 and B2 . The mirrored DD
bimodule .m.K/; ı0/ is defined as follows: as an .Iˇ; Iˇ/–bimodule, m.K/ is the
mirror of K as defined in Definition 5.2.4. As in Definition 5.2.6, denote the natural
map from K to m.K/ or m.K/ to K by mirr. The DD operation on m.K/ is

ı0 WDm.K/
mirr
�!K

ı
�! B1˝K˝ .B2/

op mirr˝mirr˝mirr
�����������!m.B1/˝m.K/˝m.B2/

op:

Applying Definition 5.3.1 to the bimodules BK.B!/op
and B!

KBop
, we get rank-one DD

bimodules which we will denote m.B/Km.B!/op
and m.B/!Km.B/op

.

We will focus on the DD bimodules BK.B!/op
and m.B/!Km.B/op

. Let ı1 and ı2 denote
the corresponding maps ı1W Iˇ! B ˝Iˇ .B !/op and ı2W Iˇ!m.B/!˝Iˇ m.B/op .

The set of multiplicative generators of m.B/! ˇ B will be the union of the gener-
ator sets of B and m.B/! ; there will be inclusion maps from B and m.B/! into
m.B/! ˇ B . Similarly, there will be inclusion maps from m.B/ and B ! Dm.m.B//!

into m.m.B/! ˇ B/, and thus maps from m.B/op and .B !/op into m.m.B/! ˇ B/op .
The algebra m.B/! ˇ B will be defined such that, when ı1 and ı2 are postcomposed
with these inclusion maps, their sum

ı1C ı2W Iˇ! .m.B/! ˇ B/˝Iˇ .m.m.B/
!
ˇ B//op

satisfies the type DD structure relations.

Let VB (respectively Vm.B/!/ denote the free Z–module spanned by the multiplicative
generators of B (respectively m.B/! ). Then VB and Vm.B/! have left and right actions
of Iˇ , and we may write B D T .VB/=JB and m.B/! as T .Vm.B/!/=Jm.B/! .

Define Vfull , as a bigraded free Z–module, to be VB˚Vm.B/! . The actions of Iˇ on
the summands of Vfull give Vfull an Iˇ–bimodule structure.

We will define m.B/!ˇB to be T .Vfull/=Jfull , for some ideal Jfull of T .Vfull/. We will
define Jfull with an explicit set of linear-quadratic generators, which will agree with
Roberts’ relations involving both left-pointing and right-pointing elements of B�n .

We can start by analyzing T 1.Vfull/˚T 2.Vfull/, which is equal to

.VB˚Vm.B/!/˚..VB˚Vm.B/!/˝.VB˚Vm.B/!//

D VB˚Vm.B/!˚.VB˝VB/˚.VB˝Vm.B/!/˚.Vm.B/!˝VB/˚.Vm.B/!˝Vm.B/!/:

Thus, T 1.Vfull/˚T 2.Vfull/ is the direct sum of

T 1.VB/˚T 2.VB/; T 1.Vm.B/!/˚T 2.Vm.B/!/;
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and two more summands

VB˝Vm.B/! ; Vm.B/! ˝VB:

The ideal Jfull will be generated multiplicatively by

JB \ .T
1.VB/˚T 2.VB//; Jm.B/! \ .T

1.Vm.B/!/˚T 2.Vm.B/!//;

and some extra relations

Jextra � .VB˝Vm.B/!/˚ .Vm.B/! ˝VB/:

5.3.2 Definition Jextra � .VB˝Vm.B/!/˚ .Vm.B/!˝VB/ is defined additively by the
following relations:

(1) For two bridge generators b
 Ih1;h2
and m.b��0Im.h2/;m.h3/

/, the “commutation
relation”

b
 Ih1;h2
m.b��0Im.h2/;m.h3/

/�m.b��Im.h1/;m. Qh2/
/b
 0I Qh2;h3

is in Jextra for any Qh2 2ˇ such that m.b��Im.h1/;m. Qh2/
/ and b
 0I Qh2;h3

exist. The bridges

 0 and � are uniquely determined. We will call such relations commutation relations
even though they do not exactly express that two elements commute.

(2) Any generator bC Ih1;h2
of B D BR.H

n/ for n> 1 can be written as a product of
bridge generators b
b
| . Thus, by the commutation relations above, bC Ih1;h2

must
also commute with bridge generators m.b��Im.h2/;m.h3/

/: the relation

bC Ih1;h2
m.b��Im.h2/;m.h3/

/�m.b��Im.h1/;m. Qh2/
/bC I Qh2;h3

must be in Jextra for any Qh2 2 ˇ such that m.b��Im.h1/;m. Qh2/
/ and bC I Qh2;h3

exist.

(3) For a bridge generator b
 Ih1;h2
and a decoration generator m.b�C Im.h2/;m.h3/

/ in
which the circle C is disjoint from the circles involved in surgery on 
 , we also impose
commutation relations:

b
 Ih1;h2
m.b�C Im.h2/;m.h3/

/�m.b�C Im.h1/;m. Qh2/
/b
 I Qh2;h3

must be in Jextra , for the unique Qh2 2 ˇ such that m.b�C Im.h1/;m. Qh2/
/ and b
 I Qh2;h3

exist.

(4) For two disjoint circles C and C 0 , we again have commutation relations:

bC Ih1;h2
m.b�C 0Im.h2/;m.h3/

/�m.b�C 0Im.h1/;m. Qh2/
/bC I Qh2;h3
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must be in Jextra , for the unique Qh2 2 ˇ such that m.b�C 0Im.h1/;m. Qh2/
/ and bC I Qh2;h3

exist.

(5) Finally, let 
 be a bridge and let C be one of the circles involved in surgery on 
 .
When 
 joins C 0 and C 00 to form C ,

b
 Ih1;h2
m.b�C Im.h2/;m.h3/

/�m.b�C 0Im.h1/;m. Qh2/
/b
 I Qh2;h3

�m.b�C 00Im.h1/;m.
QQh2/
/b
 I QQh2;h3

is in Jextra for the unique Qh2 2 ˇ and QQh2 2 ˇ such that the relevant generators exist,
and when 
 splits C to form C 0 and C 00 ,

b
 Ih1; Qh2
m.b�C 0Im. Qh2/;m.h3/

/Cb
 Ih1;
QQh2

m.b�C 00Im. QQh2/;m.h3/
/�m.b�C Im.h1/;m.h2/

/b
 Ih2;h3

is in Jextra for the unique Qh2 2 ˇ and QQh2 2 ˇ such that the relevant generators exist.

5.3.3 Definition The ideal Jfull is defined by

Jfull WD T .Vfull/ �
�
.JB \ .T

1.VB/˚T 2.VB///

˚
�
Jm.B/! \ .T

1.Vm.B/!/˚T 2.Vm.B/!//
�
˚Jextra

�
�T .Vfull/:

The differential bigraded algebra m.B/! ˇ B is defined by

m.B/! ˇ B WD T .Vfull/=Jfull;

with a differential induced from the differential on m.B/! . The differential of any
generator of B is declared to be zero.

5.3.4 Corollary B�n , as a differential bigraded algebra, is the quotient of the algebra
m.B/! ˇ B by the same additional relations as specified in Proposition 5.2.8. These
relations involve only quadratic monomials with two generators of m.B/! .

Proof The relations in Jextra are modeled on Roberts’ relations for B�n in [12]
involving quadratic monomials with one left-pointing and one right-pointing generator;
see [12, Section 2.3].

5.3.5 Remark The relations in Definition 5.3.2 were chosen to match Roberts’ qua-
dratic relations involving a left-pointing and a right-pointing generator. A more general
formulation of the product operation ˇ would be desirable. The best we can do now
is to say that the relations in Jextra have an additional motivation beyond lining up with
Roberts’ relations: with these relations, ı1C ı2 defines a valid rank-one DD bimodule
over the product algebra, as we see below in Proposition 5.3.6.
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From the definition of the product algebra m.B/!ˇ B , there are natural inclusion maps
of B and m.B/! into the product. Also, by Definition 5.2.6, we have a mirror algebra
m.m.B/! ˇ B/; both m.B/ and B ! D m.m.B/!/ have natural inclusion maps into
m.m.B/! ˇ B/.

We may view the type DD map

ı1W Iˇ! B ˝Iˇ .B
!/op
D B˝Iˇ m.m.B/!/op

as a map from Iˇ to .m.B/! ˇ B/˝Iˇ .m.m.B/! ˇ B//op , using the inclusion maps
from B into m.B/! ˇ B and from m.m.B/!/op into .m.m.B/! ˇ B//op . Similarly, we
may view

ı2W Iˇ!m.B/!˝ .m.B//op

as a map from Iˇ to .m.B/! ˇ B/˝Iˇ .m.m.B/! ˇ B//op using the inclusion maps
from m.B/! into m.B/! ˇ B and from m.B/op into .m.m.B/! ˇ B//op .

5.3.6 Proposition The map ı1 C ı2W Iˇ ! .m.B/! ˇ B/˝Iˇ .m.m.B/! ˇ B//op

satisfies the type DD structure relations.

Proof Many of the type DD structure terms cancel since ı1 and ı2 individually satisfy
the type DD relations. In particular, all terms of type .�1˝jidj/ ı ı and .id˝�1/ ı ı

are accounted for and we are left with terms of type .�2˝�2/ ı � ı .id˝ ı˝ id/ ı ı .

The remaining terms of type .�2˝�2/ ı � ı .id˝ ı˝ id/ ı ı are those in which one
of the applications of ı uses ı1 and the other uses ı2 . These are

(5-1) �bi �m.b
�
j /˝m.bj /

op
� .b�i /

op
D�bi �m.b

�
j /˝m.m.b�i / � bj /

op;

referred to as terms of type (5-1), as well as

(5-2) m.b�j / � bi ˝ .b
�
i /

op
�m.bj /

op
Dm.b�j / � bi ˝m.bj �m.b

�
i //

op;

referred to as terms of type (5-2), where bi and b�j run over all generators of B and B ! ,
respectively, with compatible idempotents. Note that the negative signs in the terms of
type (5-1) come from the sign-flip operator � .

The commutation relations among the relations defining m.B/! ˇ B ensure that all the
above terms cancel, except for potentially two sets of terms.

The first set S1 of terms includes those terms �bi � m.b
�
j / ˝ m.m.b�i / � bj /

op of
type (5-1) in which both bi and bj are among the generators b
 , and such that the
product bi �m.b

�
j / corresponds to splitting a circle C on the right into two circles C1

and C2 and then joining C1 to C2 again on the left to produce a new circle C3 . It
also includes those terms m.b�j / � bi ˝m.bj �m.b

�
i //

op of type (5-2) with bi and bj
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among the generators b
 such that m.b�j / � bi corresponds to splitting a circle C on
the left into two circles C1 and C2 and then joining C1 and C2 again on the right to
produce a new circle C3 .

The second set S2 consists of those terms of type (5-1) or (5-2) in which bi is one of
the generators b
 and bj is one of the generators bC , where C is one of the circles
involved in surgery on 
 .

For all terms except those in S1 and S2 , commutation relations may be applied to
the type (5-1) term �bi �m.b

�
j /˝m.m.b�i / � bj /

op uniquely to cancel with a unique
corresponding type (5-2) term m.b�j 0/ � bi0 ˝m.bj 0 �m.b

�
i0//

op .

First, we show that the terms in S1 sum to zero. If the type (5-1) term �bi �m.b
�
j /˝

m.m.b�i / � bj /
op is in S1 , then there are two terms m.b�j 0/ � bi0˝m.bj 0 �m.b

�
i0//

op and
m.b�j 00/ �bi00˝m.bj 00 �m.b

�
i00//

op of type (5-2) in S1 which have the same left and right
idempotents as �bi �m.b

�
j /˝m.m.b�i / � bj /

op . By the commutation relations, both
these terms are equal to bi �m.b

�
j /˝m.m.b�i / � bj /

op .

Furthermore, there is one other type (5-1) term �bi000 �m.b
�
j 000/˝m.m.b�i000/ � bj 000/

op

of S1 which is equal to both �m.b�j 0/ � bi0 ˝m.bj 0 �m.b
�
i0//

op and �m.b�j 00/ � bi00 ˝

m.bj 00 �m.b
�
i00//

op by the commutation relations. Hence it is equal to �bi �m.b
�
j /˝

m.m.b�i / � bj /
op as well. These four terms are the only terms in S1 with the same

idempotents as �bi �m.b
�
j /˝m.m.b�i / � bj /

op , and their sum is zero. Thus, the terms
in S1 sum to zero.

Now we show that the terms in S2 sum to zero. If bi is a b
 generator and bj is
a bC generator with C involved in surgery on 
 , then suppose first that 
 joins
two circles C1 and C2 to produce C . By item (5) of Definition 5.3.2, we have
bi � m.b

�
j / D m.b0�j / � b

0
i C m.b00�j / � b00i , where b0j and b00j are the generators bC1

and bC2
, and b0i and b00i are the appropriate b
 generators.

Thus, if �bi �m.b
�
j /˝m.m.b�i / � bj /

op is the corresponding term of type (5-1), we
have

�bi �m.b
�
j /˝m.m.b�i / � bj /

op

D�m.b0�j / � b
0
i ˝m.m.b�i / � bj /

op
�m.b00�j / � b00i ˝m.m.b�i / � bj /

op

D�m.b0�j / � b
0
i ˝m.b0j �m.b

0�
i //

op
�m.b00�j / � b00i ˝m.b00j �m.b

00�
i //op;

where in the last step we use commutation relations from item (2) of Definition 5.3.2.
The two resulting terms cancel the two relevant terms of type (5-2). The case when 

splits a circle, rather than joining two circles, is analogous, so the terms in S2 sum to
zero.
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Hence all the relation terms cancel and .ı1 C ı2/ satisfies the type DD structure
relations.

A general property of type D structures and type DD bimodules over an algebra B is
they give induced type D or DD structures over any quotient of B .

5.3.7 Proposition Let B be a differential bigraded algebra; let J be a bigrading-
homogeneous ideal of B which is preserved by the differential on B . Let � W B! B=J
denote the quotient projection map. Let . yD; ı/ be a type D structure over B ; then yD
descends to a type D structure over B=J , with structure operation

yD
ı
�! B ˝ yD

�˝id
���! .B=J /˝ yD:

Similarly, if B 0 and J 0 are another algebra and ideal satisfying the same conditions
as B and J , and . cDD ; ı/ is a type DD bimodule over B and B 0 , then cDD descends
to a type DD bimodule over B=J and B 0=J 0 , with structure operation

cDD
ı
�! B ˝ cDD ˝ .B 0/op �˝id˝.� 0/op

���������! .B=J /˝ cDD ˝ .B 0=J 0/op:

Proof This is a simple consequence of the type D and type DD structure relations. It
is also a special case of induction of scalars for type D structures as defined by Lipshitz,
Ozsváth and Thurston [7, Section 2.4.2].

We know that B�n is a quotient of m.B/! ˇ B , and it follows that m.B�n/
op is a

quotient of m.m.B/! ˇ B/op .

5.3.8 Corollary The map Iˇ ! B�n ˝Iˇ m.B�n/
op obtained by postcomposing

ı1 C ı2 with the tensor product of the quotient projections from m.B/! ˇ B and
m.m.B/! ˇ B/op onto B�n and m.B�n/

op satisfies the type DD structure relations.

Thus, we have rank-one type DD bimodules

m.B/!ˇBKm.m.B/!ˇB/op
and B�nKm.B�n/

op
:

5.3.9 Conjecture Either or both of the DD bimodules m.B/!ˇBKm.m.B/!ˇB/op
and

B�nKm.B�n/
op

are quasi-invertible. Hence, either or both of the algebras m.B/! ˇ
B and B�n are Koszul dual to their mirrors, m.m.B/! ˇ B/ and m.B�n/, in the
generalized sense of Lipshitz, Ozsváth and Thurston [6].
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A proof of the above conjecture would provide a nice parallel between Roberts’ theory
and bordered Floer homology. In bordered Floer homology, the rank-one DD bimodule
corresponding to the identity Heegaard diagram of a pointed matched circle has a quasi-
inverse, namely the type AA bimodule associated to this diagram. See [6] for more
on the Koszul duality structure of bordered Floer homology, including an additional
duality relating the algebras of a pointed matched circle Z and a dual pointed matched
circle Z� .

6 Khovanov’s modules and Roberts’ modules

In this section, we relate Roberts’ type D and type A structures from [11; 12] to the
type D and type A structures over H n from Section 3, or equivalently to Khovanov’s
dg modules ŒT �Kh which contain the same information. In Section 6.2, we show that
given a chain complex of projective graded right H n –modules satisfying an algebraic
condition Cmodule defined below in Definition 6.1.1, we may construct a differential
bigraded right module over m.B/! ˇ B . Applied to Khovanov’s tangle complex ŒT �Kh ,
which satisfies Cmodule , this module over m.B/! ˇ B descends to a module over B�n ;
in other words, the relations of Proposition 5.2.8 act as zero on the m.B/!ˇB–module.
The resulting B�n –module agrees with Roberts’ type A structure.

In Section 6.3, given a chain complex of projective graded left H n –modules satisfying
the algebraic condition Cmodule for left modules defined in Definition 6.3.3, we construct
a type D structure over m.B/! ˇ B . We do this by, first, reflecting the chain complex
of left H n –modules to get a complex of right modules (this operation will be defined
in Definition 6.3.1). Then we take the associated type A structure over m.B/! ˇ B ,
tensor with m.B/!ˇBKm.m.B/!ˇB/op

, the DD bimodule from the end of Section 5.3, to
get a type D structure over m.m.B/! ˇ B/, and finally mirror this type D structure
to get a type D structure over m.B/! ˇ B . We may quotient the algebra outputs of
this type D structure by the relations from Proposition 5.2.8 to get a type D structure
over B�n , which agrees with the one constructed by Roberts when one starts with the
complex ŒT �Kh .

Given two chain complexes, one of projective graded left H n –modules and one of pro-
jective graded right H n –modules, their tensor product over H n is a chain complex with
an additional grading, or equivalently a differential bigraded Z–module. In Section 6.4,
we show that this tensor product agrees with the box tensor product of the type D and
type A structures over m.B/! ˇ B associated to the two complexes in Section 6.3 and
Section 6.2, assuming these complexes satisfy Cmodule . The type A structure is always
an ordinary right m.B/! ˇ B–module; if it descends to a B�n –module, then the box
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tensor products of the type A and type D structures over m.B/! ˇ B and B�n agree.
Applying these constructions to Khovanov’s chain complexes ŒT �Kh of H n –modules,
we get an alternate proof that the pairing of Roberts’ type D and type A structures
recovers the original Khovanov complex.

In Section 6.5, we show that chain homotopy equivalences of complexes of H n –
modules, satisfying appropriate algebraic conditions, give A1–homotopy equivalences
of the corresponding type A structures over m.B/!ˇ B . Reidemeister moves on tangle
diagrams yield chain homotopy equivalences of complexes of H n –modules, as shown
by Khovanov in [4]. These Reidemeister-move homotopy equivalences satisfy the
right conditions, and the A1–homotopy equivalences associated to them descend to
A1–homotopy equivalences of type A structures over B�n . This reasoning yields an
alternate proof that Roberts’ type A structures are tangle invariants up to A1–homotopy
equivalence.

In Section 6.6, we do the same for the type D structures over m.B/!ˇB . All homotopy
equivalences of type D structures over m.B/! ˇ B descend to homotopy equivalences
of type D structures over the quotient B�n . Thus, we obtain an alternate proof that
Roberts’ type D structures are tangle invariants up to homotopy equivalence.

6.1 Preliminaries

Let M be a differential bigraded projective right H n –module, or equivalently a chain
complex of projective graded H n –modules by Proposition 2.2.4 or a right type D
structure over H n by the appropriate analogue of Proposition 2.2.5. Recall that in
accordance with Convention 2.1.1, such an M is assumed to be finitely generated
over Z. Let fxi j i 2 Sg be bigrading-homogeneous elements of M , where S is some
finite index set, such that

M Š
M

i

xiH
n

as right H n –modules and each summand xiH
n is isomorphic to eH n for some

elementary idempotent e of H n via an isomorphism sending xi to e . The idempotent e

associated to xi will be denoted e.xi/.

We will use notation from Section 3.1: ˇ will denote the usual Z–basis of H n

and ˇmult will denote the subset of ˇ consisting of the multiplicative generators h

and h˛ of H n . We will further subdivide ˇmult into ˇ
 , consisting of h
 generators,
and ˇ˛ , consisting of h˛ generators. Recall that for h 2 ˇ , eL.h/ 2 In is the left
idempotent of h and eR.h/ is the right idempotent of h.
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The module M has a Z–basis given by

fxi � h1 j i 2 S; h1 2 ˇ; eL.h1/D e.xi/g:

We define integer coefficients ci;j and Qci;j Ih0 for i; j 2 S and h0 2 ˇ by expanding
out the differential of each xi :

d.xi/D
X
j2S

deg xjDdeg xiC.0;1/

ci;j xj C

X
j2S;h02ˇ; deg h0¤0

deg xjCdeg h0Ddeg xiC.0;1/

Qci;j Ih0xj � h
0:

6.1.1 Definition M , together with the set of generators fxig, satisfies the algebraic
condition Cmodule if Qci;j Ih0 D 0 unless h0 2 ˇmult .

This condition is satisfied for Khovanov’s tangle complexes ŒT �Kh ; the natural choice
of fxig was described in Definition 3.1.2. By slight abuse of notation, we will speak
of M satisfying Cmodule , but the choice of fxig was necessary to define the coefficients
ci;j and Qci;j Ih0 .

For any M satisfying Cmodule , we can write d.xi/ as

d.xi/D
X
j2S

deg xjDdeg xiC.0;1/

ci;j xj C

X
j2S;h02ˇ


deg xjDdeg xiC.�1;1/

Qci;j Ih0xj � h
0

C

X
j2S;h02ˇ˛

deg xjDdeg xiC.�2;1/

Qci;j Ih0xj � h
0:

This is an expansion of d.xi/ in the Z–basis of M .

Thus, if xi � h1 is a basis element of M , we have

d.xi � h1/D
X
j2S

deg xjDdeg xiC.0;1/

ci;j xj � h1C

X
j2S;h02ˇ


deg xjDdeg xiC.�1;1/

Qci;j Ih0xj � h
0h1

C

X
j2S;h02ˇ˛

deg xjDdeg xiC.�2;1/

Qci;j Ih0xj � h
0h1:

However, this is not necessarily a basis expansion of d.xi � h1/, because the elements
h0h1 2H n are not necessarily elements of the basis ˇ . Instead, we may define integer
coefficients QQc by

h0h1 WD

X
h22ˇ

QQch0h1Ih2
h2
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and thus

d.xi � h1/D
X
j2S

deg xjDdeg xiC.0;1/

ci;j xj � h1C

X
j2S;h02ˇ
 ;h22ˇ

deg xjDdeg xiC.�1;1/

Qci;j Ih0
QQch0h1Ih2

xj � h2

C

X
j2S;h02ˇ˛;h22ˇ

deg xjDdeg xiC.�2;1/

Qci;j Ih0
QQch0h1Ih2

xj � h2:

This is a basis expansion of d.xi � h1/ in the Z–basis of M .

6.1.2 Proposition Suppose M satisfies Cmodule . The equation d2 D 0 on M gives
rise to the following five sets of equations involving the coefficients ci;j , Qci;j ;h0

and QQch0h1Ih2
:

(1) For all xi and xk with deg xk D deg xi C .0; 2/, we haveX
j

ci;j cj ;k D 0:

(2) For all xi � h1 and xk � h3 with deg xk D deg xi C .�1; 2/, we haveX
j ;h02ˇ


. Qci;j Ih0
QQch0h1Ih3

cj ;k C ci;j Qcj ;kIh0
QQch0h1Ih3

/D 0:

(3) For all xi � h1 and xk � h3 with deg xk D deg xi C .�2; 2/, we haveX
j ;h02ˇ˛

. Qci;j Ih0
QQch0h1Ih3

cj ;k C ci;j Qcj ;kIh0
QQch0h1Ih3

/

C

X
j ;h02ˇ
 ;

h002ˇ
 ;h22ˇ

Qci;j Ih0
QQch0h1Ih2

Qcj ;kIh00
QQch00h2Ih3

D 0:

(4) For all xi � h1 and xk � h3 with deg xk D deg xi C .�3; 2/, we haveX
j ;h02ˇ
 ;

h002ˇ˛;h22ˇ

Qci;j Ih0
QQch0h1Ih2

Qcj ;kIh00
QQch00h2Ih3

C

X
j ;h02ˇ˛;

h002ˇ
 ;h22ˇ

Qci;j Ih0
QQch0h1Ih2

Qcj ;kIh00
QQch00h2Ih3

D 0:

(5) For all xi � h1 and xk � h3 with deg xk D deg xi C .�4; 2/, we haveX
j ;h02ˇ˛;

h002ˇ˛;h22ˇ

Qci;j Ih0
QQch0h1Ih2

Qcj ;kIh00
QQch00h2Ih3

D 0:

Proof This follows from writing out d2.xi � h1/ as a sum of basis elements xk � h3 ,
using the above basis expansion for d.xi �h1/, and then grouping the xk �h3 according
to the intrinsic degree of xk relative to xi .
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6.1.3 Example Suppose M D ŒT �Kh , where T is an oriented tangle diagram in
R�0 �R with an ordering of its crossings. We will analyze the generators xi and
coefficients Qci;j Ih0 and ci;j . To specify a generator xi of ŒT �Kh , we first specify
a resolution �i of all crossings of T ; we can view �i as a function from the set
of crossings to the two-element set f0; 1g. If T�i

denotes the diagram T with the
crossings resolved according to �i , then T�i

consists of a left crossingless matching of
2n points together with some free circles contained in R<0 �R. The remaining data
needed to specify xi are a choice of C (plus) or � (minus) on each free circle; the
crossingless-matching part of T�i

is closed up symmetrically and all resulting circles
are labeled plus. Then ŒT �Kh has a Z–basis consisting of elements xi �h, where the left
crossingless matching of h agrees with the matching obtained from T�i

by discarding
the free circles.

Let S denote the set of xi specified above. The basis expansion defining ci;j and Qci;j Ih0

is
d.xi/D

X
j2S

deg xjDdeg xiC.0;1/

ci;j xj C

X
j2S;h02ˇ


deg xjDdeg xiC.�1;1/

Qci;j Ih0xj � h
0

C

X
j2S;h02ˇ˛

deg xjDdeg xiC.�2;1/

Qci;j Ih0xj � h
0:

The coefficients ci;j and Qci;j Ih0 can only be nonzero when the resolution �j of xj

differs from the resolution �i of xi only at one crossing, to which �i assigns 0 and �j

assigns 1. Let #1.i; j / denote the number of 1–resolutions of crossings in xi among
those crossings that, in the ordering on crossings, occur earlier than the crossing being
changed when going from xi to xj .

Changing the crossing to get from xi to xj has several possible effects:

(1) The crossing change could join two free circles or split a free circle. In this case,
ci;j is .�1/#1.i;j/ and all Qci;j Ih0 are zero.

(2) The crossing change could join a free circle in xi , labeled C, with an arc of xi .
Alternatively, it could split a new free circle, labeled � in xj , off an arc of xi .
In both these cases, ci;j is .�1/#1.i;j/ and all Qci;j Ih0 are zero.

(3) The crossing change could join a free circle in xi , labeled �, with an arc ˛
of xi . Alternatively, it could split a new free circle, labeled C in xj , off an
arc ˛ of xi . In both these cases, ci;j is zero and Qci;j Ih0 is only nonzero for one
value of h0 . If a denotes the crossingless matching of xi (or of xj ), then when
h0 D .W .a/a; minus on ˛/, we have Qci;j Ih0 D .�1/#1.i;j/ ; all other Qci;j Ih0 are
zero.
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(4) Finally, the crossing change could surger two arcs of xi , changing the crossin-
gless matching. Again, ci;j D 0 and Qci;j Ih0 is nonzero for a unique h0 . Let ai

and aj denote the crossingless matchings of xi and xj respectively. Then if
h0D .W .aj /ai ; all plus/, we have Qci;j Ih0 D .�1/#1.i;j/ ; all other Qci;j Ih0 are zero.

Note that ŒT �Kh satisfies Cmodule with the elements xi D xi � 1 as generators.

6.2 Type A structures

As in Section 5.3, let B denote BR.H
n/Š BR�n . Recall that BL�n is the quotient

of m.B/! by the extra relations listed in Proposition 5.2.8.

Let M be a differential bigraded projective right H n module as at the beginning of
Section 6.1; assume that M satisfies the algebraic condition Cmodule of Definition 6.1.1
for a set of generators fxi j i 2 Sg. We first define a type A structure yA.M /m.B/!

over m.B/! . Then we formally extend yA.M / to a type A structure yA.M /m.B/!ˇB
over m.B/! ˇ B .

6.2.1 Definition As a Z–module, yA.M / is defined to be M . A Z–basis for M is
given by fxi �h1 j i 2 S; h1 2 ˇ; eL.h1/D e.xi/g, where fxi j i 2 Sg is the designated
set of generators of M . For yA.M /, we label the same basis elements as

fXxi �h1
j i 2 S; h1 2 ˇ; eL.h1/D e.xi/g:

The idempotent ring of m.B/! is Iˇ ; let h2 2ˇ be an elementary idempotent of m.B/! .
Multiplying Xxi �h1

by h2 gives Xxi �h1
if h2 D h1 and zero otherwise.

Suppose that the generator xi has bigrading .j ; k/ as an element of M , and h has
grading j 0 (or bigrading .j 0; 0/) as an element of H n . Then, as an element of yA.M /,
the bigrading of Xxi �h1

is defined to be

deg yA.M /
.Xxi �h/ WD

�
�j � 1

2
j 0; k

�
:

The algebra m.B/! acts on yA.M / on the right; we will use m2 to denote this action
(not to be confused with m here, which means mirror). Let m.b��Im.h1/;m.h2/

/ denote
either m.b�
 Im.h1/;m.h2/

/ or m.b�C Im.h1/;m.h2/
/. We define

m2.Xxi �h1
;m.b�

�Im.h1/;m.h2/
// WD

X
j

X
h02ˇmult

Qci;j Ih0
QQch0h1Ih2

Xxj �h2
:

If m.b��Im.h1/;m.h2/
/Dm.b�
 Im.h1/;m.h2/

/, then QQch0h1Ih2
is only nonzero for one value

of h0 , namely h0D .W .a0/a; all plus/, where h1D .W .a/b; �/ and h2D .W .a0/b; � 0/.
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For this value of h0 , QQch0h1Ih2
is 1. Thus,

(6-1) m2.Xxi �h1
;m.b�
 Im.h1/;m.h2/

//D
X

j

Qci;j Ih0Xxj �h2
:

If m.b��Im.h1/;m.h2/
/Dm.b�C Im.h1/;m.h2/

/, then QQch0h1Ih2
will be nonzero for any h0˛

which equals .W .a/a; minus on ˛/, where h1 D .W .a/b; �/ and ˛ is any arc of a

which is part of the circle C in W .a/a. For h0 equal to one of the h0˛ , QQch0h1Ih2
is 1,

and for all other h0 , QQch0h1Ih2
is zero. Thus,

(6-2) m2.Xxi �h1
;m.b�C Im.h1/;m.h2/

//D
X

j

X
left arcs ˛ of C

Qci;j Ih0˛
Xxj �h2

:

Note that m2 is bigrading-preserving; this follows from the degree conditions on xi

and xj in the basis expansion of d.xi � h1/ given in Section 6.1 above.

We then extend m2 to an action of m.B/! on yA.M / by imposing the associativity
relation

m2 ı .id˝�2/ WDm2 ı .m2˝ id/;

where �2 is the algebra multiplication on m.B/! . Below we will verify that this algebra
action is well-defined. Finally, yA.M / has a differential m1 given by

m1.Xxi �h1
/D

X
j

ci;j Xxj �h1
:

6.2.2 Proposition The action of m.B/! on yA.M / is well-defined and associative.
Thus, yA.M / is a right module over m.B/! .

Proof The action is associative by definition, once we show that it is well-defined.
We may write B ! as T .V �B /=I

? ; thus,

m.B/! D T .m.V �B //=m.I?/;

where the mirrors of the Iˇ–bimodules V �B and I? are defined as in Definition 5.2.4.
Now, Definition 6.2.1, extended by associativity, gives us a map

yA.M /˝Iˇ T .m.V �B //! yA.M /:

We want to show that if m.r�/ is a generator of m.I?/, then multiplying any Xxi �h1

by m.r�/ gives zero.

The generators m.r�/ of m.I?/ are quadratic in the m.b��Im.h1/;m.h2/
/ and they have

intrinsic degree either 1, 3
2

or 2. For those m.r�/ of intrinsic degree 2, the equations
in item (5) of Proposition 6.1.2 above imply that m.r�/ acts as zero on any Xxi �h1

.
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For those m.r�/ of intrinsic degree 3
2

, the equations in item (4) of Proposition 6.1.2
similarly imply that m.r�/ acts as zero on yA.M /.

The generators m.r�/ of m.I?/ which have intrinsic degree 1 are sums of either one,
two, three or four terms m.b�
 /m.b

�

 0/ with all coefficients C1. For a fixed m.r�/,

let m.h1/2Iˇ denote its left idempotent and let m.h3/2Iˇ denote its right idempotent.
The element h3 of ˇ has degree 2 more than h1 , as elements of H n with its intrinsic
grading, and h3 differs from h1 by two surgeries on its left crossingless matching.
In particular, the left crossingless matchings of h1 and h3 are different; this follows
from inspection of the generators m.r�/ of intrinsic degree 1 which actually appear
in m.I?/. Monomials of the form m.b�
 /m.b

�


|/ do not appear as terms of these
generators.

For any generators of yA.M / of the form Xxi �h1
and Xxk �h3

, where h1 and h3 are as
above, with deg xk D deg xiC .�2; 2/ as elements of M , the equations from item (3)
of Proposition 6.1.2 becomeX

j ;h02ˇ
 ;
h002ˇ
 ;h22ˇ

Qci;j Ih0
QQch0h1Ih2

Qcj ;kIh00
QQch00h2Ih3

D 0I

the terms involving h0 2 ˇ˛ vanish for these choices of h1 and h3 . These equations
imply that all generators m.r�/ of m.I?/ of intrinsic degree 1 act as zero on yA.M /.
Thus, the algebra action m2 of m.B/! on yA.M / is well-defined.

6.2.3 Proposition The differential m1 on yA.M / satisfies m2
1
D 0, and the Leibniz

rule
m1 ım2 Dm2 ı .m1˝jidj/Cm2 ı .id˝�1/

is satisfied, where �1 is the differential on m.B/! . Thus, yA.M / is a differential
bigraded right module over m.B/! and hence a type A structure over m.B/! .

Proof First, m2
1
D 0 by the equations in item (1) of Proposition 6.1.2.

We want to show that the Leibniz rule is satisfied for yA.M /. Since the action of m.B/!

on yA.M / is associative, and �1 satisfies its own Leibniz rule, it suffices to show that

m1 ım2.Xxi �h1
;m.b�
 Im.h1/;m.h3/

//D�m2 ı .m1.Xxi �h1
/˝m.b�
 Im.h1/;m.h3/

//

and

m1 ım2.Xxi �h1
;m.b�C Im.h1/;m.h3/

//

D�m2 ı.m1.Xxi �h1
/˝m.b�C Im.h1/;m.h3/

//Cm2.Xxi �h1
˝�1.m.b

�
C Im.h1/;m.h3/

///:
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Note that in the relation involving m.b�
 /, the �1 term vanishes.

The first of these two equations follows from item (2) of Proposition 6.1.2. For the
second equation, note that for a fixed h1 2 ˇ , the only h3 such that m.b�C Im.h1/;m.h3/

/

is a generator of m.B/! are those h3 2 ˇ which differ only from h1 by changing the
sign of one circle C from plus to minus. We have

�1.m.b
�
C Im.h1/;m.h3/

//D�
X

h22ˇ

m.b�
 Im.h1/;m.h2/
/m.b�
|Im.h2/;m.h3/

/;

where the sum is implicitly over those h22ˇ such that the generators m.b�
 Im.h1/;m.h2/
/

and m.b�
|Im.h2/;m.h3/
/ exist.

For such h1 and h3 , consider generators Xxi �h1
and Xxk �h3

such that deg xk D

deg xi C .�2; 2/; these are the only Xxk �h3
which may appear in the basis expansion

of the left or right side of the second equation above. Applying the equations in item (3)
of Proposition 6.1.2 to Xxi �h and Xxk �h3

, we see that the second equation above holds.
Thus, the Leibniz rule on yA.M /m.B/! is satisfied.

Now we formally add actions of B to yA.M /, to make it a type A structure over
m.B/! ˇ B rather than just over m.B/! .

6.2.4 Definition The type A operation m2 on yA.M /m.B/
!ˇB is defined as in

Definition 6.2.1 on the generators of m.B/! . On the generators of B , it is defined by

m2.Xxi �h1
; b
 Ih1;h2

/ WDXxi �h2
and m2.Xxi �h1

; bC Ih1;h2
/ WDXxi �h2

:

Note that these actions are bigrading-preserving. To define the action of an arbitrary
element of m.B/! ˇ B on yA.M /, we impose associativity of the action. Below we
check that this definition respects the relations on m.B/! ˇ B .

6.2.5 Proposition The action m2 of m.B/! ˇ B on yA.M / is well-defined; with this
action and the differential m1W yA.M /! yA.M / from Definition 6.2.1, yA.M / is a
differential bigraded module (hence type A structure) over m.B/! ˇ B .

Proof First we need to check that

m2W yA.M /˝Iˇ .m.B/
!
ˇ B/! yA.M /

is well-defined. Recall that the relation ideal Jfull of m.B/! ˇ B was defined to be

Jfull WD T .Vfull/ �
��

JB \ .T
1.VB/˚T 2.VB//

�
˚
�
Jm.B/! \ .T

1.Vm.B/!/˚T 2.Vm.B/!//
�
˚Jextra

�
�T .Vfull/:
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By Proposition 6.2.2, the generators of Jm.B/! \ .T
1.Vm.B/!/˚ T 2.Vm.B/!// act as

zero on yA.M /. It is immediate from the definition of the action of B on yA.M / that
the generators of JB \ .T

1.VB/˚T 2.VB// act as zero on yA.M /.

Thus, to show that m2 is well-defined, it remains to show that the generators of Jextra

act as zero on yA.M /. These generators are listed in items (1)–(5) of Definition 5.3.2.

� Consider a relation

b
 Ih1;h2
m.b��0Im.h2/;m.h3/

/�m.b��Im.h1/;m. Qh2/
/b
 0I Qh2;h3

from item (1) of Definition 5.3.2. Write h1 D .W .a1/b1; �1/ and let Xxi �h1
be a

generator of yA.M /. Multiplying Xxi �h1
by b
 Ih1;h2

, we get Xxi �h2
where h2 D

.W .a1/b2; �2/. Multiplying Xxi �h2
by m.b��0Im.h2/;m.h3/

/, with h3D .W .a2/b2; �3/,
by (6-1) we get X

j

Qci;j Ih0Xxj �h3
;

where h0 2 ˇmult is .W .a2/a1; all plus/.

On the other hand, if we first multiply Xxi �h1
by m.b��Im.h1/;m. Qh2/

/, by (6-1) we getX
j

Qci;j Ih0Xxj � Qh2
;

where h0 is also .W .a2/a1; all plus/.

If we multiply this result by b

 0I Qh2;h3

, we getX
j

Qci;j Ih0Xxj �h3
:

Thus, generators of Jextra from item (1) of Definition 5.3.2 act as zero on yA.M /.

� For relations

bC Ih1;h2
m.b��Im.h2/;m.h3/

/�m.b��Im.h1/;m. Qh2/
/bC I Qh2;h3

from item (2) of Definition 5.3.2, the argument is essentially the same. If h1 D

.W .a1/b1; �1/ and Qh2 D .W .a2/b1; �
0
2
/, then h0 is again .W .a2/a1; all plus /. We

still use (6-1).

� Consider a relation

b
 Ih1;h2
m.b�C Im.h2/;m.h3/

/�m.b�C Im.h1/;m. Qh2/
/b
 I Qh2;h3
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from item (3) of Definition 5.3.2. Let Xxi �h1
be a generator of yA.M / and write

h1 D .W .a1/b1; �1/. Multiplying Xxi �h1
by b
 Ih1;h2

, we get Xxi �h2
where h2 D

.W .a1/b2; �2/. Multiplying Xxi �h2
by m.b�

C Im.h2/;m.h3/
/, with h3D .W .a1/b2; �3/,

by (6-2) we get X
j

X
left arcs ˛ of C

Qci;j Ih0˛
Xxj �h3

;

where h0˛ is .W .a1/a1; minus on ˛/.

On the other hand, if we first multiply Xxi �h1
by m.b�C Im.h1/;m. Qh2/

/, by (6-2) we getX
j

X
left arcs ˛ of C

Qci;j Ih0˛
Xxj � Qh2

;

where h0˛ is again .W .a1/a1; minus on ˛/.

If we multiply this result by b

 I Qh2;h3

, we getX
j

X
left arcs ˛ of C

Qci;j Ih0˛
Xxj �h3

:

Thus, generators of Jextra from item (3) of Definition 5.3.2 act as zero on yA.M /.

� For relations

bC Ih1;h2
m.b�C 0Im.h2/;m.h3/

/�m.b�C 0Im.h1/;m. Qh2/
/bC I Qh2;h3

from item (4) of Definition 5.3.2, the argument is the same as for relations from item (3).

� Finally, consider a relation

b
 Ih1;h2
m.b�C Im.h2/;m.h3/

/�m.b�C 0Im.h1/;m.h
0
2
//b
 Ih02;h3

�m.b�C 00Im.h1/;m.
QQh2/
/b
 I QQh2;h3

from item (5) of Definition 5.3.2, in the case where 
 joins two circles C 0 and C 00 to
produce C . Write h1 D .W .a1/b1; �1/ and let Xxi �h1

be a generator of yA.M /. Mul-
tiplying Xxi �h1

by b
 Ih1;h2
, we get Xxi �h2

where h2 D .W .a1/b2; �2/. Multiplying
Xxi �h2

by m.b�C Im.h2/;m.h3/
/, with h3 D .W .a1/b2; �3/, by (6-2) we getX
j

X
left arcs ˛ of C

Qci;j Ih0˛
Xxj �h3

;

where h0˛ is .W .a1/a1; minus on ˛/.

On the other hand, if we first multiply Xxi �h1
by m.b�C 0Im.h1/;m. Qh2/

/, we getX
j

X
left arcs ˛ of C 0

Qci;j Ih0˛
Xxj � Qh2

;
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where h0˛ is again .W .a1/a1; minus on ˛/. Multiplying by b
 0I Qh2;h3
, we getX

j

X
left arcs ˛ of C 0

Qci;j Ih0˛
Xxj �h3

:

Finally, if we multiply Xxi �h1
by m.b�C 00Im.h1/;m.

QQh2/
/, we getX

j

X
left arcs ˛ of C 00

Qci;j Ih0˛
Xxj �

QQh2
:

Multiplying this result by b
 I QQh2;h3
, we getX

j

X
left arcs ˛ of C 00

Qci;j Ih0˛
Xxj �h3

:

Now, since 
 was assumed to join the circles C 0 and C 00 to produce C via a bridge
on the right side of f0g�R, the set of left arcs ˛ of C is the disjoint union of the sets
of left arcs of C 0 and C 00 . Thus, the relation

b
 Ih1;h2
m.b�C Im.h2/;m.h3/

/�m.b�C 0Im.h1/;m. Qh2/
/b
 I Qh2;h3

�m.b�C 00Im.h1/;m.
QQh2/
/b
 I QQh2;h3

acts as zero on yA.M /. For relations of the form

b
 Ih1; Qh2
m.b�C 0Im. Qh2/;m.h3/

/C b
 Ih1;
QQh2

m.b�C 00Im. QQh2/;m.h3/
/

�m.b�C Im.h1/;m.h2/
/b
 Ih2;h3

;

where 
 splits C into C 0 and C 00 , the argument is analogous. Thus, generators of Jextra

from item (5) of Definition 5.3.2 act as zero on yA.M /.

At this point, we have shown that the action m2 of m.B/! ˇ B on yA.M / is well-
defined. It is associative by definition. To show that the Leibniz rule is satisfied, it
suffices by associativity to check it on the generators of B and of m.B/! , and we have
already done this for the generators of m.B/! in Proposition 6.2.2.

Let Xxi �h1
be a generator of yA.M / and let b
 Ih1;h2

be a generator of B . Then

m1 ım2.Xxi �h1
; b
 Ih1;h2

/Dm1.Xxi �h2
/D

X
j

ci;j Xxj �h2
;

while

m2.m1˝jidj/.Xxi �h1
; b
 Ih1;h2

/Dm2

�X
j

ci;j Xxj �h1
; b
 Ih1;h2

�
D

X
j

ci;j Xxj �h2
;
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and the m2 ı .id˝�1/ term is zero because �1D 0 on B . The argument is unchanged
for generators bC Ih1;h2

. Thus, the Leibniz rule

m1 ım2 Dm2 ı .m1˝jidj/Cm2 ı .id˝�1/

holds and yA.M / is a differential bigraded right module over m.B/! ˇ B .

Now we will consider the case M D ŒT �Kh , where T is a tangle diagram in R�0 �R.
Recall from Section 6.1 that ŒT �Kh satisfies Cmodule , so we get a type A structure
yA.ŒT �Kh/m.B/!ˇB . This type A structure descends to a type A structure over the
quotient algebra B�n .

6.2.6 Proposition The extra relations from Proposition 5.2.8 act as zero on the
m.B/! ˇ B–module yA.ŒT �Kh/ defined above in Definition 6.2.4. Thus, yA.ŒT �Kh/

descends to a differential bigraded right module over the quotient algebra B�n of
m.B/! ˇ B by these relations.

Proof Since the relations from Proposition 5.2.8 involve only quadratic monomials in
the generators m.b�
 Im.h1/;m.h2/

/ of m.B/! , with no generators from B appearing, it
suffices to show that these relations act as zero on the m.B/! –module yA.ŒT �Kh/ defined
in Definition 6.2.1.

Consider a tetrahedron in the graph G of Proposition 5.2.8, with vertices a; b; c and d

as labeled in that proposition. We will show that the relation term aC c acts as zero
on yA.ŒT �Kh/; the proofs for the remaining extra relation terms are exactly analogous.

We may write out

aDm.b�
 Im.h1/;m.h2/
/m.b��0Im.h2/;m.h3/

/;

c Dm.b��Im.h1/;m.
QQh2/
/m.b�
 0Im. QQh2/;m.h3/

/;

as in Proposition 5.2.8. Suppose we have two generators of yA.ŒT �Kh/ of the form
Xx00�h1

and Xx11�h3
. Here, T may have more than two crossings, but for two desig-

nated crossings, x00 has the zero-resolution at both and x11 has the one-resolution
at both (and x00 and x11 agree at all other crossings). We assume that changing x00

to x10 has the effect of surgery on 
 , while changing x00 to x01 has the effect of
surgery on �.

To show that aC c acts as zero on yA.ŒT �Kh/, it suffices to show m2.Xx00�h1
; aC c/

has zero coefficient on Xx11�h3
. We can compute the coefficient of m2.Xx00�h1

; a/
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and m2.Xx00�h1
; c/ on Xx11�h3

using associativity and (6-1). We have, ignoring terms
which do not contribute to a coefficient on Xx11�h3

,

m2.Xx00�h1
; a/D Qc00;10Ih0m2.Xx10�h2

;m.b��0Im.h2/;m.h3/
//

D Qc00;10Ih0 Qc10;11Ih00Xx11�h3

for two uniquely determined elements h0 and h00 of ˇ
 . Similarly, the coefficient
of m2.Xx00�h1

; c/ on Xx11�h3
is Qc00;01Ih000 Qc01;11Ih0000 , for two further uniquely defined

elements h000 and h0000 of ˇ
 .

By item (4) of Example 6.1.3, we have the following coefficients:

� Qc00;10Ih0 D .�1/#1.00;10/ ,

� Qc10;11Ih00 D .�1/#1.10;11/ ,

� Qc00;01Ih000 D .�1/#1.00;01/ ,

� Qc01;11Ih0000 D .�1/#1.01;11/ .

Recall that #1.i; j / denotes the number of 1–resolutions of crossings in xi among
those crossings which occur earlier than the changed crossing (going from xi to xj )
in the ordering on crossings of T (which is implicitly assumed, as usual, to be part of
the choice of T ).

Since
.�1/#1.00;10/.�1/#1.10;11/

C .�1/#1.00;01/.�1/#1.01;11/
D 0;

we can conclude that the coefficient of m2.Xx00�h1
; aC c/ on Xx11�h3

is zero, for all
possible pairs Xx00�h1

and Xx11�h3
. Thus, the extra relation terms of Proposition 5.2.8

act as zero on yA.ŒT �Kh/.

6.2.7 Proposition Roberts’ type A structure from [11] agrees with yA.ŒT �Kh/, the
module over B�n constructed in Proposition 6.2.6.

Proof First, yA.ŒT �Kh/ has the same Z–basis, with the same bigradings and action
of the idempotent ring Iˇ , as Roberts’ type A structure. We can use the data of
Example 6.1.3 to check that the differentials m1 agree and that the algebra actions m2

agree under the identification of B�n with a quotient of m.B/! ˇ B .

For the differentials, we have m1.Xxi �h/D
P

j .�1/#1.i;j/Xxj �h , where the sum is over
those xj related to xi by crossing changes from items (1) or (2) of Example 6.1.3. This
formula also gives Roberts’ differential m1 D dAPS as specified in [11, Section 3.3].
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It suffices to check that the algebra actions m2 agree when multiplying by the generators
of B and m.B/! . First, for a generator Xxi �h1

of yA.ŒT �Kh/ and a generator b
 Ih1;h2

of B , we have
m2.Xxi �h1

; b
 Ih1;h2
/DXxi �h2

;

agreeing with Roberts’ definition of the action of �!e 
 Ih1;h2
in item 5 of his definition

of m2 [11, Section 4]. Similarly, our action of bC Ih1;h2
is the same as Roberts’ action

of �!e C Ih1;h2
, defined in item 2 of his definition of m2 .

For a generator m.b�
 Im.h1/;m.h2/
/ of m.B/! , we have

m2.Xxi �h1
;m.b�
 Im.h1/;m.h2/

//D
X

j

Qci;j Ih0Xxj �h2
;

where if h1D .W .a1/b1; �1/ and h2D .W .a2/b1; �2/, then h0D .W .a2/a1; all plus/,
and the coefficient Qci;j Ih0 equals zero or .�1/#1.i;j/ according to Example 6.1.3(4).
Thus,

m2.Xxi �h1
;m.b�
 Im.h1/;m.h2/

//D
X

j

.�1/#1.i;j/Xxj �h2
;

where the sum is over the subset of j making Qci;j Ih0 nonzero. This algebra action
agrees with the action of  �e 
 Ih1;h2

as defined in item 4 of Roberts’ definition of m2 .

Finally, for a generator m.b�
C Im.h1/;m.h2/

/ of m.B/! , we have

m2.Xxi �h1
;m.b�C Im.h1/;m.h2/

//D
X

j

X
left arcs ˛ of C

Qci;j Ih0˛
Xxj �h2

;

where if h1 D .W .a/b; �1/ and h2 D .W .a/b; �2/, then h0˛ D .W .a/a; minus on ˛/,
and the coefficient Qci;j Ih0 equals zero or .�1/#1.i;j/ according to item (3) above. Thus,

m2.Xxi �h1
;m.b�C Im.h1/;m.h2/

//D
X

j

.�1/#1.i;j/Xxj �h2
;

where the sum is over the subset of j making some Qci;j Ih0˛
nonzero (note that, given

such j , the element h0˛ is uniquely determined). This algebra action agrees with the
action of  �e C Ih1;h2

as defined in item 3 of Roberts’ definition of m2 .

6.3 Type D structures

Given a chain complex M of projective graded right H n –modules satisfying Cmodule ,
in Definition 6.2.4 we defined a type A structure yA.M / over m.B/! ˇ B . For a tangle
diagram T , yA.ŒT �Kh/ descends to a type A structure over B�n by Proposition 6.2.6,
which agrees with Roberts’ type A structure by Proposition 6.2.7.
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Now suppose N is a chain complex of graded projective left H n –modules. We want
to define condition Cmodule for left modules, and for N satisfying this condition, we
want to define a type D structure yD.N / over m.B/! ˇ B .

To do this, we will first define an operation called reflection which, when applied to N ,
yields a complex of right modules.

6.3.1 Definition Let N be a chain complex of projective graded left H n –modules.
Viewing N as a differential bigraded projective left H n –module, write

N D
M

i

H n
�yi Œji ; ki �;

with H n acting by left multiplication. Then we may define a differential bigraded
projective right H n –module r.N /, called the reflection of N , as

r.N / WD
M

i

r.yi/Œji ; ki � �H
n;

where the r.yi/ are formal reflections of the yi , with the same idempotents as the yi ,
and H n acts by right multiplication. Let refl denote the map from N to r.N / such
that

refl.h �yi/D r.yi/ �m.h/;

where m.h/ is defined as in Example 5.2.5. The inverse of reflW N ! r.N / is
reflW r.N /! r.r.N // D N (using a simple generalization of the above definition
which reflects right modules to left modules rather than left modules to right modules).
If m1 denotes the differential on N , then the differential on r.N / is refl ım1 ı refl.

6.3.2 Remark Although the geometric content of both Definition 6.3.1 and (variants
of) Definition 5.2.4 is just the reflection across the line f0g �R, the algebraic conse-
quences of this reflection are different in Definition 6.3.1. Whereas in Definition 5.2.4,
left modules remain left modules and right modules remain right modules under
mirroring, in Definition 6.3.1 left modules are sent to right modules and vice-versa.

6.3.3 Definition A chain complex N of projective graded left H n –modules satisfies
the condition Cmodule for a generating set fyig if and only if r.N / satisfies the condition
Cmodule as defined in Definition 6.1.1 for the generating set fr.yi/g.

If N satisfies Cmodule , then we can take the box tensor product of yA.r.N // and
the type DD bimodule m.B/!ˇBKm.m.B/!ˇB/op

to get a (left) type D structure over
m.m.B/!ˇB/. Below we define this tensor product precisely. It is a slight modification
of Definition 2.3.5; we will not give the definition in the fullest possible generality. See
[7, Definition 2.3.9] for a more general definition using Z=2Z coefficients.
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6.3.4 Definition Let B be a differential bigraded algebra over an idempotent ring I .
Let yA be a differential bigraded right module over B . Assume yA is free as a Z–module,
with a Z–basis consisting of elements which are grading-homogeneous and have a
unique right idempotent.

Let B 0 be another differential bigraded algebra over I and let cDD be a rank-one
type DD bimodule over B and B 0 with DD operation ıDD W I ! B ˝I .B 0/op . The
type D structure yA � cDD over B 0 , as a Z–module, is

yA � cDD WD yA˝I cDD D yA˝I I D yA:

The idempotent ring I has a right action on yA, which we will view instead as a
left action (since I is commutative, we may view right actions as left actions and
vice-versa). Since cDD is a rank-one DD bimodule, the left and right actions of I
on cDD are the same. There is a bigrading on yA� cDD inherited from that on yA (recall
that cDD is contained in bigrading .0; 0/).

The type D operation ı�W yA � cDD ! B 0˝I . yA � cDD / is defined by

ı�
WD 1˝m1C � ı .m2˝ id/ ı .id˝ ıDD/W yA! B 0˝I yA;

where m1 and m2 are the type A operations on yA, and �W yA˝I .B 0/op! B 0˝I yA is
defined by

�.X ˝ .b0/op/ WD .�1/.degh X /.degh b0/b0˝X:

More precisely, the second summand is the composition

yA
id˝ıDD
�����! yA˝I B˝I .B 0/op m2˝id

����! yA˝I .B 0/op �
�! B 0˝I yA:

The map ı� has bidegree .0;C1/.

6.3.5 Proposition . yA � cDD ; ı�/ is a well-defined type D structure over B 0 .

Proof First, since yA was assumed to have a Z–basis fXig, with each Xi grading-
homogeneous and having unique idempotents, the same is true for yA � cDD Š yA.

To verify the type D structure relations, we must show that

.�1˝jidj/ ı ı�
C .�2˝ id/ ı .id˝ ı�/ ı ı�

D 0:
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Substituting in the definition of ı� and simplifying some terms, we want to show that

(6-3) .�1˝jidj/ ı � ı .m2˝ id/ ı .id˝ ıDD/

C .�2˝ id/ ı .id˝ �/ ı .id˝m2˝ id/ ı .id˝ id˝ ıDD/ ı .1˝m1/

C .�2˝ id/ ı .id˝ 1˝m1/ ı � ı .m2˝ id/ ı .id˝ ıDD/

C .�2˝ id/ ı
�
id˝ .� ı .m2˝ id/ ı .id˝ ıDD//

�
ı .� ı .m2˝ id/ ı .id˝ ıDD//D 0:

We claim that we may rewrite the final term on the left side of (6-3) as

(6-4) � ı .m2˝ id/ ı .id˝�2˝�2/ ı .id˝ �/ ı .id˝ id˝ ıDD ˝ id/ ı .id˝ ıDD/;

where
� W B ˝B ˝ .B 0/op

˝ .B 0/op
! B ˝B ˝ .B 0/op

˝ .B 0/op

was defined in Definition 4.5.1.

To verify that term (6-4) is equal to the final term of (6-3), let X be a generator of yA.
Write ıDD.1/D

P
i bi ˝ .b

0
i/

op . We have

.�2˝ id/ ı .id˝ .� ı .m2˝ id/ ı .id˝ ıDD/// ı .� ı .m2˝ id/ ı .id˝ ıDD//.X /

D

X
i;j

.�1/.degh b0
i
/.degh.X bi //C.degh b0

j
/.degh.X bi bj //.b0ib

0
j /˝ .Xbibj /:

On the other hand, we have

� ı .m2˝ id/ ı .id˝�2˝�2/ ı .id˝ �/ ı .id˝ id˝ ıDD ˝ id/ ı .id˝ ıDD/.X /

D

X
i;j

.�1/degh bj degh.b
0
i
/Cdegh.X bi bj / degh.b

0
i
b0
j
/.b0ib

0
j /˝ .Xbibj /:

A direct computation, using the additivity of degh under algebra multiplication, verifies
that the signs in these expressions are equal.

Now, we may write term (6-4) as

� ı .m2˝ id/ ı
�
id˝ ..�2˝�2/ ı � ı .id˝ ıDD ˝ id/ ı ıDD/

�
:

Using the type DD bimodule relations for ı , we may replace

.�2˝�2/ ı � ı .id˝ ıDD ˝ id/ ı ıDD

with
�.�1˝jidj/ ı ıDD � .id˝�1/ ı ıDD :
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Then term (6-4) is equal to

�� ı .m2˝ id/ ı
�
id˝ ..�1˝jidj/ ı ıDD/

�
� � ı .m2˝ id/ ı

�
id˝ ..id˝�1/ ı ıDD/

�
D��ı.m2˝id/ı.id˝�1˝jidj/ı.id˝ıDD/��ı.m2˝id/ı.id˝id˝�1/ı.id˝ıDD/:

The term
�� ı .m2˝ id/ ı .id˝ id˝�1/ ı .id˝ ıDD/

above cancels the first term

.�1˝jidj/ ı � ı .m2˝ id/ ı .id˝ ıDD/

of the terms in (6-3), whose sum we are trying to show is zero. The remaining terms
of (6-3) are, after some simplification,

� �� ı .m2˝ id/ ı .id˝�1˝jidj/ ı .id˝ ıDD/,

� � ı .m2˝ id/ ı .id˝ ıDD/ ım1 ,

� .id˝m1/ ı � ı .m2˝ id/ ı .id˝ ıDD/.

The final of these may be written as

� ı .m1˝jidj/ ı .m2˝ id/ ı .id˝ ıDD/D � ı ..m1 ım2/˝jidj/ ı .id˝ ıDD/:

We may use the Leibniz rule on yA to replace m1 ı m2 with m2 ı .m1 ˝ jidj/ C
m2 ı .id˝�1/. Thus, the final of the three remaining terms is equal to

�ı.m2˝id/ı.m1˝jidj˝jidj/ı.id˝ıDD/C�ı.m2˝id/ı.id˝�1˝jidj/ı.id˝ıDD/:

The second of these summands cancels with the first of the other three remaining terms
listed above, so it remains to show that

� ı .m2˝ id/ ı .id˝ ıDD/ ım1C � ı .m2˝ id/ ı .m1˝jidj˝ jidj/ ı .id˝ ıDD/D 0:

This follows from the equation

.m1˝jidj˝ jidj/ ı .id˝ ıDD/D�.id˝ ıDD/ ım1:

Indeed, since all generators of cDD Š I have bigrading .0; 0/, the element ı.1/ has
homological degree 1.

Applying this construction to yA D yA.r.N // with cDD D m.B/!ˇBKm.m.B/!ˇB/op
,

which is a type DD bimodule over m.B/! ˇ B and m.m.B/! ˇ B/, we get a type D
structure A.r.N //� m.B/!ˇBKm.m.B/!ˇB/op over m.m.B/! ˇ B/. We can then ap-
ply another mirroring operation, analogous to Definition 5.3.1 and in the spirit of
Definition 5.2.4, to get a type D structure yD.N / over m.B/! ˇ B .
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6.3.6 Definition Let B be a differential bigraded algebra over the idempotent ring Iˇ
and let . yD; ı/ be a type D structure over B . The mirrored type D structure .m. yD/; ı0/
is defined as follows: as an Iˇ–module, m. yD/ is the mirror of yD as defined in
Definition 5.2.4. As usual, denote the natural map from yD to m. yD/ or m. yD/ to yD
by mirr. The type D operation on m. yD/ is the following:

ı0 Dm. yD/
mirr
�! yD

ı
�! B ˝ yD

mirr˝mirr
������!m.B/˝m. yD/:

6.3.7 Definition Let N be a chain complex of graded projective left H n –modules
satisfying the algebraic condition Cmodule of Definition 6.3.3. The type D structure
yD.N / over m.B/! ˇ B is defined to be

yD.N / WDm
�
yA.r.N //� m.B/!ˇBKm.m.B/!ˇB/op�

:

6.3.8 Definition If N is a chain complex N of graded left projective H n –modules
satisfying Cmodule , the type D structure yD.N / over B�n associated to N is induced
from the type D structure yD.N / over m.B/! ˇ B defined in Definition 6.3.7, using
Proposition 5.3.7.

For convenience, we describe the type D operation ı on yD.N / explicitly from the
differential dN on N . Let fh1 � yi j e.yi/ D eR.h1/g be the Z–basis for N corre-
sponding to the designated generators fyig of N . By the condition Cmodule , we may
expand dN .yi/ in this basis as

dN .yi/D
X

j

c0i;j yj C

X
j ;h02ˇmult

Qc0i;j Ih0h
0
�yj :

Then we have

dN .h1 �yi/D
X

j

c0i;j h1 �yj C

X
j ;h02ˇmult;h22ˇ

Qc0i;j Ih0
QQch1h0Ih2

h2 �yj :

We let

fYh1�yi
j e.yi/D eR.h1/g

denote the Z–basis of yD.N / corresponding to the Z–basis fh1 �yig of N .

6.3.9 Proposition Defining the coefficients c0i;j and Qc0i;j Ih0 as above, and QQch1h0Ih2
as

in Section 6.1, the type D structure operation ı on yD.N / has a basis expansion given
by
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ı.Yh1�yi
/D

X
j

c0i;j Yh1�yj C

X
j ;h02ˇmult;h22ˇ

Qc0i;j Ih0
QQch1h0Ih2

b�Ih1;h2
˝Yh2�yj

C

X
h22ˇ such that

m.b��Im.h/;m.h2// exists

.�1/degh yi m.b�
�Im.h1/;m.h2/

/˝Yh2�yi
;

where b�Ih1;h2
means b
 Ih1;h2

or bC Ih1;h2
as appropriate.

Proof The operation ı is defined as the mirror of the type D structure operation ı�

on yA.r.N //� m.B/!ˇBKm.m.B/!ˇB/op
, which in turn is defined as

ı�
WD 1˝m1C � ı .m2˝ id/ ı .id˝ ıDD/:

Here, m1 is the differential on yA.r.N // and ıDD is the type DD operation on
m.B/!ˇBKm.m.B/!ˇB/op

. Write an arbitrary generator of yA.r.N // as Xm.yi /�m.h1/ ,
and we have

m1.Xm.yi /�m.h1//D
X

j

c0i;j Xm.yj /�m.h1/;

m2.Xm.yi /�m.h1/;m.b
�
�Ih1;h2

//D
X

j ;h02ˇmult

Qc0i;j Ih
QQch1h0Ih2

Xm.yj /�m.h2/;

m2.Xm.yi /�m.h1/; b�Im.h1/;m.h2//DXm.yi /�m.h2/:

Here, b�Im.h1/;m.h2/ stands for either b
 Im.h1/;m.h2/ or bC Im.h1/;m.h2/ as appropriate,
and similarly for m.b��Ih1;h2

/. Also note that we have QQch1h0Ih2
D QQcm.h0/m.h1/Im.h2/ .

Thus,

ı�.Xm.yi /�m.h1//D
X

j

c0i;j Xm.yj /�m.h1/

C

X
j ;h02ˇmult;h22ˇ

Qc0i;j Ih0
QQch1h0Ih2

m.b�Ih1;h2
/˝Xm.yj /�m.h2/

C

X
h22ˇ such that

m.b��Im.h1/;m.h2// exists

.�1/degh yi m.m.b��Im.h1/;m.h2/
//˝Xm.yi /�m.h2/:

Taking the mirror of this formula, we get

ı.Yh1�yi
/D

X
j

c0i;j Yh1�yjC

X
j ;h02ˇmult;h22ˇ

Qc0i;j Ih0
QQch1h0Ih2

.b�Ih1;h2
/˝Yh2�yj

C

X
h22ˇ such that

m.b��Im.h1/;m.h2// exists

.�1/deghyi m.b��Im.h1/;m.h2/
/˝Yh2�yi

:
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When N is Khovanov’s complex ŒT �Kh for a tangle diagram T in R�0 � R, the
induced type D structure yD.ŒT �Kh/ over B�n is the same as Roberts’ type D structure
from [12].

6.3.10 Proposition yD.ŒT �Kh/, as defined in Definition 6.3.8, agrees with the type D
structure over B�n which Roberts associates to T .

Proof Roberts’ type D structure is defined as a bigraded Z–module in Definition 32
of [12]. As such, it agrees with yD.ŒT �Kh/, and the action of the idempotent ring Iˇ
is the same on both; Roberts defines the action of the idempotent ring at the end of
Section 3.2 of [12].

Lastly, the type D operation ı on yD.ŒT �Kh/ has an explicit form given in Proposition
6.3.9 above. The coefficients c0i;j and Qc0i;j Ih0 are either .�1/#1.i;j/ or zero, just like
the coefficients ci;j and Qci;j Ih0 described in Example 6.1.3. Recall that the coefficient
QQch1h0Ih2

is either one or zero; this was also pointed out in Definition 6.2.1. By compari-
son, ı agrees with Roberts’ type D operation defined at the beginning of [12, Section 5].

6.4 Pairing

Let M be a complex of graded projective right H n –modules and let N be a complex
of graded projective left H n –modules, satisfying the algebraic conditions Cmodule of
Definition 6.1.1 and Definition 6.3.3. The natural way to pair M and N and get a
chain complex over Z is to take the tensor product M ˝H n N . However, we could
also use Definition 6.2.4 to construct a type A structure yA.M / and use Definition 6.3.7
to construct a type D structure yD.N /, both over m.B/! ˇ B , and then take their box
tensor product. This produces the same chain complex as M ˝H n N , after a reversal
of the intrinsic grading.

6.4.1 Proposition As differential bigraded Z–modules, yA.M / �m.B/!ˇB yD.N /

is isomorphic to the module obtained from M ˝H n N by multiplying all intrinsic
gradings on M ˝H n N by �1.

Proof Let fxi � h1 j e.xi/D eL.h1/g and fh1 �yi j e.yi/D eR.h1/g be the Z–bases
for M and N , respectively, corresponding to the sets of designated generators fxig

of M and fyig of N . Then a Z–basis for M ˝H n N is fxi �h1 �yj g (we will suppress
the idempotent conditions).

Write the differentials on M and N as dM and dN . As an element of M ˝H n N ,
the differential of xi � h1 �yj is

@˝.xi � h1 �yj /D .�1/degh yj .dM .xi/ � h1 �yj /C .xi � h1 � dN .yj //:
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If we expand out dM as in Section 6.1 and dN as in the discussion preceding
Proposition 6.3.9, we may write this as

(6-5) .�1/degh yj

�X
k

ci;k.xk �h1 �yj /C
X

k;h02ˇmult;h22ˇ

Qci;kIh0
QQch0h1Ih2

.xk �h2 �yj /

�
C

X
l

c0j ;l.xi �h1 �yl/C
X

l;h02ˇmult;h22ˇ

Qc0j ;lIh0
QQch1h0Ih2

.xi �h2 �yl/:

Now, as a bigraded Z–module, yA.M /�m.B/!ˇB yD.N / is defined as yA.M /˝Iˇ
yD.N /.

A Z–basis for yA.M / (respectively yD.N /) is given by fXxi �h1
g (respectively fYh1�yi

g).
A generator Xxi �h1

of yA.M / has the same idempotent in Iˇ as a generator Yh2�yi

of yD.N / if and only if h1 D h2 .

Thus, yA.M /˝Iˇ
yD.N / has a Z–basis consisting of all elements Xxi �h1

˝ Yh1�yj ,
which is in bijection with the basis fxi � h1 �yj g for M ˝H n N . The bigradings agree
on these two Z–modules after negating the intrinsic gradings on M ˝H n N : note that
for the intrinsic grading on yA.M /˝Iˇ

yD.N /, the grading of h1 in Xxi �h1
˝Yh1�yj is

counted twice with coefficient �1
2

, while for the intrinsic grading on M ˝H n N , the
grading of h in xi � h1 �yj is counted once with coefficient 1. This explains the factor
of 1

2
in Definition 5.1.1.

It remains to show that the differential @˝ on M˝H n N agrees with the differential @�

on yA.M /�m.B/!ˇB yD.N /. We will use m1 and m2 to denote the differential and
algebra action on yA.M / and ı to denote the type D operation on yD.N /. Applying @�

to a generator Xxi �h1
˝Yh1�yj , we get

.�1/
degh.Yh1�yj

/
.m1.Xxi �h1

//˝Yh1�yj C .m2˝ id/ ı .Xxi �h1
˝ ı.Yh1�yj //:

Because H n is concentrated in homological degree zero,

degh.Yh1�yj /D degh.h1 �yj /D degh.yj /:

Thus, the first term of @�.Xxi �h1
˝Yh1�yj / is

.�1/degh yj
X

k

ci;kXxk �h1
˝Yh1�yj ;

which agrees with the first term of expression (6-5) for @˝.xi � h1 � yj / under the
bijection between basis elements.
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By Proposition 6.3.9, the other term of @�.Xxi �h1
˝Yh1�yj / can be expanded out as

.m2˝id/ı
�

Xxi �h1
˝

�X
l

c0j ;lYh1�yl
C

X
l;h02ˇmult;h22ˇ

Qc0j ;lIh0
QQch1h0Ih2

b�Ih1;h2
˝Yh2�yl

C

X
l;h22ˇ such that

m.b�
�Im.h1/;m.h2/

/ exists

.�1/deghyjm.b�
�Im.h1/;m.h2/

/˝Yh2�yj

��
;

where b�Ih1;h2 denotes either b
 Ih1;h2 or bC Ih1;h2
and m.b��Im.h1/;m.h2// denotes ei-

ther m.b�
 Im.h1/;m.h2// or m.b�C Im.h1/;m.h2/
/. This expansion gives us three remaining

terms of @�.Xxi �h1
˝Yh1�yj /. The first of these isX

l

c0j ;lXxi �h1
˝Yh1�yl

;

which agrees with the third term of expression (6-5) under the bijection between basis
elements. The second is X

l;h02ˇmult;h22ˇ

Qc0j ;lIh0
QQch1h0Ih2

Xxi �h2
˝Yh2�yl

;

which agrees with the fourth term of expression (6-5). Finally, the remaining term of
@�.Xxi �h1

˝Yh1�yj / is

.�1/degh yj
X

k;h02ˇmult;h22ˇ

Qci;kIh0
QQch0h1Ih2

Xxk �h2
˝Yh2�yj ;

which agrees with the second term of expression (6-5). Thus, after reversing the
intrinsic gradings on M ˝H n N , we conclude that M ˝H n N is isomorphic to
yA.M /˝m.B/!ˇB yD.N / as differential bigraded Z–modules.

6.4.2 Remark The negation of the intrinsic gradings on M ˝H n N is done for the
same reason as in Remark 3.0.3.

6.4.3 Proposition Let B be a differential bigraded algebra and let J be a bigrading-
homogeneous ideal of B which is preserved by the differential on B . Let yD be a type D
structure over B and let yA be a differential bigraded right B–module which descends
to a module over B=J . By Proposition 5.3.7, yD automatically descends to a type D
structure over B=J , and we have

yA �B yD Š yA �B=J yD:

Proof This follows immediately from Definition 2.3.5.
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6.4.4 Corollary Let T1 and T2 be oriented tangle diagrams in R�0�R and R�0�R
respectively, with orderings chosen of the crossings of T1 and T2 . Assume that T1

and T2 have consistent orientations, so that their horizontal concatenation is an oriented
link diagram L in R2 . Order the crossings of L such that those of T1 come before
those of T2 . Then

CKh.L/Š yA.ŒT2�
Kh/�m.B/!ˇB yD.ŒT1�

Kh/Š yA.ŒT2�
Kh/�B�n

yD.ŒT1�
Kh/:

Proof This is a corollary of Proposition 6.4.1, Proposition 6.4.3 and Khovanov’s
results from [4].

Identifying yA.ŒT2�
Kh/ with Roberts’ type A structure over B�n by Proposition 6.2.7,

and identifying yD.ŒT1�
Kh/ with Roberts’ type D structure over B�n by Proposition

6.3.10, we obtain an alternate proof of Roberts [11, Proposition 36].

6.5 Equivalences of type A structures

We start by defining A1–morphisms. The following definition is general enough for
our purposes, although it is not the most general definition possible. A more general
definition is given in Roberts [11, Definition 26]; our sign conventions are the same as
Roberts’.

6.5.1 Definition Let B be a differential bigraded algebra with idempotent ring I .
Let yA and yA0 be differential bigraded right modules over B with differentials m1;m

0
1

and algebra actions m2 , m0
2

respectively. An A1–morphism F from yA to yA0 is a
collection

FnW yA˝I B˝.n�1/
! yA 0Œ0; n� 1�

of bigrading-preserving I–linear maps satisfying the compatibility condition

m01 ıFnC .�1/nm02 ı .Fn�1˝jidjn/

D Fn�1 ı .m2˝ id˝.n�2//C .�1/nC1Fn ı .m1˝jidj˝.n�1//

C .�1/nC1
n�1X
kD1

Fn ı .id˝k
˝�1˝jidj˝.n�k�1//

C

n�2X
kD1

.�1/kFn�1 ı .id˝k
˝�2˝jidj˝.n�k�2//

for all n� 1. Recall that jidjn and jidj˝n mean different things; see Section 2.1.
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6.5.2 Remark Lipshitz, Ozsváth and Thurston also require all A1–morphisms
to satisfy a unitality condition: all algebra inputs must be in the kernel BC of the
augmentation of B for the corresponding A1–morphism term to be nonzero. See [7,
Remark 2.2.21]. We will not discuss this condition further because it is satisfied for all
A1–morphisms and homotopies that we consider.

6.5.3 Example For an A1–morphism F with only F1 and F2 nonzero, the condition
of Definition 6.5.1 is nontrivial only for nD 1, 2 and 3. The nD 1 condition is

m01 ıF1 D F1 ım1;

the nD 2 condition is

m01 ıF2Cm02 ı .F1˝ id/D F1 ım2�F2 ı .m1˝jidj/�F2 ı .id˝�1/;

and the nD 3 condition is

�m02 ı .F2˝jidj/D F2 ı .m2˝ id/�F2 ı .id˝�2/:

Let .M; dM / and .M 0; dM 0/ be two chain complexes of graded projective right H n –
modules satisfying the algebraic condition Cmodule of Definition 6.1.1 for generating
sets fxig and fx0ig respectively. Let f W M!M 0 be a bigrading-preserving H n –linear
map such that dM 0f DfdM ; as shorthand, we will say “let f be a chain map from M

to M 0”. We first show that certain chain maps f induce A1–morphisms of type A
structures yA.M /! yA.M 0/ over m.B/! ˇ B .

Let fxi � h1 j e.xi/D eL.h1/g be the Z–basis for M corresponding to the generating
set fxig and let fx0i � h1g be the analogous Z–basis for M 0 (we will suppress the
idempotent conditions). We may expand f .xi/ in the basis for M 0 :

f .xi/D
X

j

fi;j x0j C
X

j ;h02ˇ;deg h0¤0

Qfi;j Ih0x
0
j � h
0:

6.5.4 Definition The chain map f satisfies the algebraic condition Cmorphism for
the generating sets fxig and fx0j g if Qfi;j Ih0 is only nonzero when h0 2 ˇmult .

For a chain map f satisfying Cmorphism , we may write

f .xi/D
X

j

fi;j x0j C
X

j ;h02ˇmult

Qfi;j Ih0x
0
j � h
0:
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Thus, a basis expansion for f .xi � h1/ is

f .xi � h1/D
X

j

fi;j x0j � h1C

X
j ;h02ˇmult;h22ˇ

Qfi;j Ih0
QQch0h1Ih2

x0j � h2:

Since M and M 0 satisfy Cmodule , we also have

dM .xi � h1/D
X

j

ci;j .xj � h1/C
X

j ;h02ˇmult;h22ˇ

Qci;j Ih0
QQch0h1Ih2

.xj � h2/;

dM 0.x
0
i � h1/D

X
j

c0i;j .x
0
j � h1/C

X
j ;h02ˇmult;h22ˇ

Qc0i;j Ih0
QQch0h1Ih2

.x0j � h2/:

6.5.5 Proposition Suppose the chain map f satisfies Cmorphism . The equation
dM 0f D fdM gives us the following equations in the coefficients fi;j , Qf i;j Ih0 , ci;j ,
Qci;j Ih0 , c0i;j and Qc0

i;j ;h0
:

.1/ For all generators xi of M and x0k of M 0 ,X
j

fi;j c0j ;k D
X

j

ci;jfj ;k :

.2/ For all generators xi � h1 of M and x0k � h3 of M 0 ,X
j ;h02ˇ


Qfi;j Ih0
QQch0h1Ih3

c0j ;k C
X

j ;h02ˇ


fi;j Qc
0
j ;kIh0

QQch0h1Ih3

D

X
j ;h02ˇ


ci;j
Qfj ;kIh0

QQch0h1Ih3
C

X
j ;h02ˇ


Qci;j Ih0
QQch0h1Ih3

fj ;k :

.3/ For all generators xi � h1 of M and x0k � h3 of M 0 ,X
j ;h02ˇ˛

Qfi;j Ih0
QQch0h1Ih3

c0j ;k C
X

j ;h02ˇ˛

fi;j Qc
0
j ;kIh0

QQch0h1Ih3

C

X
j ;h02ˇ
 ;

h002ˇ
 ;h22ˇ

Qfi;j Ih0
QQch0h1Ih2

Qc0j ;kIh00
QQch00h2Ih3

D

X
j ;h02ˇ˛

ci;j
Qfj ;kIh0

QQch0h1IhC3C

X
j ;h02ˇ˛

Qci;j Ih0
QQch0h1Ih3

fj ;k

C

X
j ;h02ˇ
 ;

h002ˇ
 ;h22ˇ

Qci;j Ih0
QQch0h1Ih2

Qfj ;kIh00
QQch00h2Ih3

:
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.4/ For all generators xi � h1 of M and x0k � h3 of M 0 ,X
j ;h02ˇ
 ;

h002ˇ˛;h22ˇ

Qfi;j Ih0
QQch0h1Ih2

Qc0j ;kIh00
QQch00h2Ih3

C

X
j ;h02ˇ˛;

h002ˇ
 ;h22ˇ

Qfi;j Ih0
QQch0h1Ih2

Qc0j ;kIh00
QQch00h2Ih3

D

X
j ;h02ˇ
 ;

h002ˇ˛;h22ˇ

Qci;j Ih0
QQch0h1Ih2

Qfj ;kIh00
QQch00h2Ih3

C

X
j ;h02ˇ˛;

h002ˇ
 ;h22ˇ

Qci;j Ih0
QQch0h1Ih2

Qfj ;kIh00
QQch00h2Ih3

:

.5/ For all generators xi � h1 of M and x0k � h3 of M 0 ,X
j ;h02ˇ˛;

h002ˇ˛;h22ˇ

Qfi;j Ih0
QQch0h1Ih2

Qc0j ;kIh00
QQch00h2Ih3

D

X
j ;h02ˇ˛;

h002ˇ˛;h22ˇ

Qci;j Ih0
QQch0h1Ih2

Qfj ;kIh00
QQch00h2Ih3

:

Proof The proof is very similar to that of Proposition 6.1.2 and will be omitted.
Note that explicitly writing the degree conditions in the sums is unnecessary, since
the relevant products of coefficients are always zero unless the degree conditions are
satisfied. In Proposition 6.1.2, we chose to write out the degree conditions for clarity.

6.5.6 Definition Suppose .M; dM / and .M 0; dM 0/ satisfy Cmodule and f W M!M 0

is a chain map satisfying Cmorphism . Define the first component yA.f /1 of an A1–
morphism yA.f /W yA.M /! yA.M 0/ of type A structures over m.B/! ˇ B by

yA.f /1.Xxi �h1
/ WD

X
j

fi;j Xx0
j
�h1
:

The map yA.f /1W yA.M /! yA.M 0/ respects the right actions of the idempotent ring Iˇ ,
and it is bigrading-preserving because f is.

If yA.f /1 were the only nonzero component of yA.f /, then yA.f / would be an ordinary
chain map between differential bigraded m.B/! ˇ B–modules. However, yA.f /2 will
also be nonzero in general; thus, we must deal with genuine higher A1–terms when
working with these morphisms. The component

yA.f /2W yA.M /˝Iˇ m.B/! ˇ B! yA.M 0/Œ0; 1�

of yA.f / is defined on the generators Xxi �h1
of yA.M / and m.b��Im.h1/;m.h2/

/ of
m.B/! ˇ B by

yA.f /2.Xxi �h1
;m.b��Im.h1/;m.h2/

// WD
X

j ;h02ˇmult

Qfi;j Ih0
QQch0h1Ih2

Xx0
j
�h2
;

where m.b��Im.h1/;m.h2/
/ denotes m.b�
 Im.h1/;m.h2/

/ or m.b�C Im.h1/;m.h2/
/ as appro-

priate. Any action of the form yA.f /2.Xxi �h1
; b�Ih1;h2

/ is defined to be zero.
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Suppose that the algebra input m.b��Im.h1/;m.h2// equals m.b�
 Im.h1/;m.h2/
/. Let h1D

.W .a/b; �/ and h2 D .W .a0/b; � 0/; then QQch0h1Ih2
is only nonzero for one value of h0 ,

namely h0 D .W .a0/a; all plus/. For this value of h0 , QQch0h1Ih2
is 1. Thus,

(6-6) yA.f /2.Xxi �h1
;m.b�
 Im.h1/;m.h2/

//D
X

j

Qfi;j Ih0Xx0
j
�h2
:

Now suppose the algebra input is equal to m.b�C Im.h1/;m.h2/
/. As before, write h1

as h1 D .W .a/b; �/. In this case, QQch0h1Ih2
will be nonzero for any h0˛ which equals

.W .a/a; minus on ˛/, where ˛ is any arc of a which is part of the circle C in W .a/a.
For h0 equal to one of the h0˛ , we have QQch0h1Ih2

D 1, and for all other h0 , QQch0h1Ih2
is

zero. Thus,

(6-7) yA.f /2.Xxi �h1
;m.b�C Im.h1/;m.h2/

//D
X

j

X
left arcs ˛ of C

Qfi;j Ih0˛
Xx0

j
�h2
:

Writing m.B/!ˇB as T .Vfull/=Jfull as in Section 5.3, the above formulas define a map

yA.f /2W yA.M /˝Iˇ Vfull! yA.M
0/Œ0; 1�:

We can extend to a map

yA.f /2W yA.M /˝Iˇ T .Vfull/! yA.M
0/Œ0; 1�

which is defined as the sum, over all n� 2, of the maps

n�1X
kD1

m02 ı .m
0
2˝ id/ ı � � � ı .m02˝ id˝.k�2//

ı . yA.f /2˝jidj˝.k�1// ı .m2˝ id˝k/ ı � � � ı .m2˝ id˝.n�2//

from yA.M /˝ .Vfull/
˝.n�1/ to yA.M 0/. In Proposition 6.5.8, we show that yA.f /2

descends to a map

yA.f /2W yA.M /˝Iˇ m.B/! ˇ B! yA.M 0/I

in Proposition 6.5.9 we verify that yA.f /1 and yA.f /2 together satisfy the conditions
to form an A1–morphism yA.f /.

6.5.7 Example The n D 2 summand of yA.f /2W yA.M /˝Iˇ T .Vfull/! yA.M 0/ is
simply yA.f /2 , the map from yA.M /˝Iˇ Vfull to yA.M 0/ defined above. The nD 3

summand of yA.f /2W yA.M /˝Iˇ T .Vfull/! yA.M
0/, or in other words the definition

of yA.f /2 when the algebra input is a quadratic monomial in the generators of Vfull , is

yA.f /2 ı .m2˝ id/Cm02 ı .
yA.f /2˝jidj/;

where in this expression yA.f /2 again denotes the map from yA.M /˝IˇVfull to yA.M 0/.
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6.5.8 Proposition Write m.B/!ˇB as T .Vfull/=Jfull and let r be any element of Jfull .
The map

yA.f /2.�; r/W yA.M /! yA.M 0/

is identically zero. Thus, we get a well-defined map

yA.f /2W yA.M /˝Iˇ m.B/! ˇ B! yA.M 0/

which is linear with respect to the right actions of the idempotent ring Iˇ on yA.M /˝Iˇ
m.B/! ˇ B and yA.M 0/, and which preserves the intrinsic grading and decreases the
homological grading by one.

Proof First, yA.f /2 decreases the homological grading by 1 (and thus preserves
homological grading when accounting for shifts), since m.b��Im.h1/;m.h2/

/ carries
homological grading 1 and f W M !M 0 preserves homological grading. Also, yA.f /2
preserves the intrinsic grading. To see this, note that as elements of M and M 0 ,
xi �h1 and x0j �h2 must have the same intrinsic grading whenever x0j �h2 appears with
nonzero coefficient in the basis expansion of f .xi � h1/, because f preserves intrinsic
grading. As elements of H n , the intrinsic degree of h2 is either one or two greater
than that of h1 . Since, in yA.M / and yA.M 0/, the intrinsic degrees of h1 and h2 are
multiplied by �1

2
whereas the intrinsic degrees of xi and x0j are multiplied by �1,

the element Xx0
j
�h2

of yA.M 0/ should have intrinsic degree which is 1
2

or 1 greater
than the intrinsic degree of Xxi �h1

2 yA.M /. This extra 1
2

or 1 is compensated exactly
by the intrinsic degree of m.b��Im.h1/;m.h2/

/, which is 1
2

for m.b�
 Im.h1/;m.h2/
/ and 1

for m.b�C Im.h1/;m.h2/
/.

To show that yA.f /2.�; r/ is zero for any r 2Jfull , note first that Definition 6.5.6 implies
that if we have elements r and r 0 of T .Vfull/ such that m2.�; r/D 0, m0

2
.�; r 0/D 0,

yA.f /2.�; r/D 0 and yA.f /2.�; r 0/D 0, then yA.f /2.�; r � r 0/D 0 as well.

Thus, we only need to show that yA.f /2.�; r/ is zero for the multiplicative generators r

of Jfull . These were defined to be the generators of

JB \ .T
1.VB/˚T 2.VB//; Jm.B/! \ .T

1.Vm.B/!/˚T 2.Vm.B/!// and Jextra:

For generators in JB\.T
1.VB/˚T 2.VB//, there is nothing to show, since yA.f /2.�; b/

is zero for any b 2 VB .

For the generators in Jm.B/! \ .T
1.Vm.B/!/˚T 2.Vm.B/!//, the proof closely follows

the proof of Proposition 6.2.2. Write Jm.B/! \ .T
1.Vm.B/!/˚T 2.Vm.B/!// as m.I?/

as in that proof.

The generators m.r�/ of m.I?/ have intrinsic degree either 1, 3
2

or 2, as in Section 5.2.
For those m.r�/ of intrinsic degree 2, the equations in item (5) of Proposition 6.5.5
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above imply that yA.f /2.Xxi �h1
;m.r�// D 0 for any Xxi �h1

. For those m.r�/ of
intrinsic degree 3

2
, the equations in item (4) of Proposition 6.5.5 similarly imply that

yA.f /2.�;m.r
�// is zero.

The generators m.r�/ of m.I?/ which have intrinsic degree 1 are sums of either one,
two, three or four terms m.b�
 /m.b

�

 0/ with all coefficients C1. For a fixed m.r�/,

let h1 2 Iˇ denote its left idempotent and let h3 2 Iˇ denote its right idempotent. The
element h3 of ˇ has degree 2 more than h1 , as elements of H n with its intrinsic
grading, and h3 differs from h1 by two surgeries on its left crossingless matching. As
in Proposition 6.2.2, the left crossingless matchings of h1 and h3 are different.

For any generators of yA.M / and yA.M 0/ of the form xi � h1 and x0
k
� h3 , where h1

and h3 are as above, the equations from item (3) of Proposition 6.5.5 becomeX
j ;h02ˇ
 ;

h002ˇ
 ;h22ˇ

Qfi;j Ih0
QQch0h1Ih2

Qc0j ;kIh00
QQch00h2Ih3

D

X
j ;h02ˇ
 ;

h002ˇ
 ;h22ˇ

Qci;j Ih0
QQch0h1Ih2

Qfj ;kIh00
QQch00h2Ih3

:

The terms involving h0 2 ˇ˛ vanish for these choices of h1 and h3 . These equations
imply that for all generators m.r�/ of m.I?/ of intrinsic degree 1, yA.f /2.�;m.r�//
is zero.

Finally, the generators of Jextra are listed in items (1)–(5) of Definition 5.3.2. If r is
one of these generators, the proof that the map yA.f /2.�; r/ is zero is similar to the
proof of Proposition 6.2.5.

In more detail, consider a relation

r D b
 Ih1;h2
m.b��0Im.h2/;m.h3/

/�m.b��Im.h1/;m. Qh2/
/b

 0I Qh2;h3

from item (1) of Definition 5.3.2. Write h1 D .W .a1/b1; �1/ and let Xxi �h1
be a

generator of yA.M /. By Example 6.5.7, we have

(6-8) yA.f /2.Xxi �h1
; r/D yA.f /2

�
m2.Xxi �h1

; b
 Ih1;h2
/;m.b��0Im.h2/;m.h3/

/
�

�m2

�
yA.f /2.Xxi �h1

;m.b��Im.h1/;m. Qh2/
//; b
 0I Qh2;h3

�
Write h2 as .W .a1/b2; �2/ and h3 as .W .a2/b2; �3/. Let h0 D .W .a2/a1; all plus/,
an element of ˇ
 . For the first term in (6-8) above, we first multiply Xxi �h1

by b
 Ih1;h2

to get Xxi �h2
. Applying yA.f /2.�;m.b��0Im.h2/;m.h3/

// to the element Xxi �h2
, by (6-6)

we get X
j

Qfi;j Ih0Xxj �h3
:

For the second term on the right side of (6-8), we first compute

yA.f /2.Xxi �h1
;m.b��Im.h1/;m. Qh2/

//:
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This expression equals X
j

Qfi;j Ih0Xxj � Qh2

by (6-6) again, where h0 is still equal to .W .a2/a1; all plus/. If we multiply this result
by b


 0I Qh2;h3
, we get X

j

Qfi;j Ih0Xxj �h3
:

Thus, if a generator r of Jextra comes from item (1) of Definition 5.3.2, then the map
yA.f /2.�; r/W yA.M /! yA.M 0/ is zero.

For generators of Jextra from items (2)–(5) of Definition 5.3.2, the proof is analogous
to that of Proposition 6.2.5 in the same way as above. We will leave the remaining
cases to the reader.

6.5.9 Proposition yA.f / satisfies the A1–morphism compatibility conditions.

Proof Since yA.f /n is zero for n> 2, it suffices to show that the nD 1, nD 2 and
nD 3 conditions listed in Example 6.5.3 hold. For the nD 1 condition, we want to
show that

m01.
yA.f /1.Xxi �h1

//D yA.f /1.m1.Xxi �h1
//

for each generator Xxi �h1
of yA.M /. The left side is

m01

�X
j

fi;j Xxj �h1

�
D

X
j ;k

fi;j c0j ;kXx0
k
�h1
;

while the right side is

yA.f /1

�X
j

ci;j Xxj �h1

�
D

X
j ;k

ci;jfj ;kXx0
k
�h1
:

These are equal by item (1) of Proposition 6.5.5.

We may write the nD 3 condition of Example 6.5.3 as

(6-9) yA.f /2 ı .id˝�2/D yA.f /2 ı .m2˝ id/Cm02 ı .
yA.f /2˝jidj/:

In this form, it is clear from the definition of yA.f /2 in Definition 6.5.6 that this
condition holds, generalizing Example 6.5.7.

For the nD 2 condition, we want to show that

(6-10) m01 ı
yA.f /2Cm02 ı .

yA.f /1˝ id/

D yA.f /1 ım2� yA.f /2 ı .m1˝jidj/� yA.f /2 ı .id˝�1/
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as maps from yA.M /˝Iˇ m.B/! ˇ B to yA.M 0/.

We will first reduce to the case of proving the above equation when applied to elements
of the form Xxi �h1

˝ b�Ih1;h2
or Xxi �h1

˝ m.b��Im.h1/;m.h2//, where b�Ih1;h2
and

m.b��Im.h1/;m.h2/
/ are the multiplicative generators of m.B/! ˇ B .

Claim If b1 and b2 are two elements of m.B/! ˇ B such that the nD 2 condition is
satisfied both when the algebra input is b1 and when it is b2 , then the nD 2 condition
is also satisfied when the algebra input is b1b2 .

Proof of claim We want to show that

(6-11) m01 ı
yA.f /2 ı .id˝�2/Cm02 ı .

yA.f /1˝ id/ ı .id˝�2/

D yA.f /1 ım2 ı .id˝�2/ � yA.f /2 ı .m1˝jidj/ ı .id˝�2/

� yA.f /2 ı .id˝�1/ ı .id˝�2/

when the algebra input to these maps is b1˝ b2 , assuming the usual nD 2 condition
(6-10) holds when the algebra input is b1 or b2 . In the proof of this claim, the algebra
input to all maps will be assumed to be b1˝ b2 .

The left side of (6-11) can be rewritten as

(6-12) m01 ım02 ı .
yA.f /2˝jidj/Cm01 ı

yA.f /2 ı .m2˝ id/

Cm02 ı .m
0
2˝ id/ ı . yA.f /1˝ id˝ id/

using the n D 3 consistency condition (6-9) for yA.f / and the associativity of the
action of m.B/! ˇ B on yA.M 0/. Call these terms LHS1 , LHS2 and LHS3 . Now we
may use the assumption that the nD 2 consistency condition (6-10) holds when the
algebra input is b1 to write the third term LHS3 of expression (6-12) as

m02 ı .
yA.f /1˝ id/ ı .m2˝ id/�m02 ı .m

0
1˝jidj/ ı . yA.f /2˝jidj/

�m02 ı .
yA.f /2˝ id/ ı .m1˝jidj˝ id/

�m02 ı .
yA.f /2˝ id/ ı .id˝�1˝ id/:

Call these four terms LHS3a , LHS3b , LHS3c and LHS3d .

On the other hand, the right side of (6-11) can be rewritten as

(6-13) yA.f /1 ım2 ı .m2˝ id/�m02 ı .
yA.f /2˝ id/ ı .m1˝jidj˝ id/

� yA.f /2 ı .m2˝ id/ ı .m1˝jidj˝ jidj/

� yA.f /2 ı .id˝�2/ ı .id˝�1˝jidj/

� yA.f /2 ı .id˝�2/ ı .id˝ id˝�1/
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using the nD 3 consistency equation (6-9) for yA.f /, the associativity of the action of
m.B/! ˇ B on yA.M / and the Leibniz rule for the derivative �1 on m.B/! ˇ B . Call
these five terms RHS1 , RHS2 , RHS3 , RHS4 and RHS5 . Using the nD 3 consistency
equation again, we can rewrite the term RHS4 as

�m02 ı .
yA.f /2˝ id/ ı .id˝�1˝ id/� yA.f /2 ı .m2˝ id/ ı .id˝�1˝jidj/:

Call these two terms RHS4a and RHS4b . Similarly, we can rewrite the term RHS5 as

�m02 ı .
yA.f /2˝jidj/ ı .id˝ id˝�1/� yA.f /2 ı .m2˝ id/ ı .id˝ id˝�1/:

Call these terms RHS5a and RHS5b . Using the assumption that the nD 2 consistency
condition (6-10) holds when the algebra input is b2 , we can write the term RHS1 as

m02 ı .
yA.f /1˝ id/ ı .m2˝ id/Cm01 ı

yA.f /2 ı .m2˝ id/

C yA.f /2 ı .m1˝jidj/ ı .m2˝ id/

C yA.f /2 ı .m2˝ id/ ı .id˝ id˝�1/:

Call these four terms RHS1a , RHS1b , RHS1c and RHS1d .

After rewriting the left and right sides of (6-11) in this way, we want to show that

LHS1CLHS2CLHS3aCLHS3bCLHS3c CLHS3d

D RHS1aCRHS1bCRHS1c CRHS1d CRHS2

CRHS3CRHS4aCRHS4bCRHS5aCRHS5b:

Several terms cancel:

� LHS2 D RHS1b ,

� LHS3a D RHS1a ,

� LHS3c D RHS2 ,

� LHS3d D RHS4a ,

� RHS1d CRHS5b D 0,

� RHS1c CRHS3CRHS4b D 0.

The final equality follows from the Leibniz rule for the differential m1 on yA.M /.
Canceling corresponding terms between the sides, it remains to prove

LHS1CLHS3b D RHS5a:

The Leibniz rule for the differential m0
1

on yA.M 0/ lets us rewrite LHS1CLHS3b as

m02 ı .id˝�1/ ı . yA.f /2˝jidj/:
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This term equals the remaining right-side term RHS5a , because �1 increases homo-
logical grading by one.

Thus, we have reduced to showing that the nD 2 consistency condition (6-10) holds
for yA.f / when the algebra input is either b
 Ih1;h2

, bC Ih1;h2
, m.b�
 Im.h1/;m.h2// or

m.b�C Im.h1/;m.h3/
/. If the input b�Ih1;h2

is b
 Ih1;h2
or bC Ih1;h2

, the yA.f /2 terms in
the nD 2 equation are zero and we must show that

m02 ı .
yA.f /1˝ id/D yA.f /1 ım2

for these algebra inputs. If Xxi �h1
is a generator of yA.M /, then

m02ı.
yA.f /1˝id/.Xxi �h1

; b�Ih1;h2
/Dm02

�X
j

fi;j Xx0
j
�h1
; b�Ih1;h2

�
D

X
j

fi;j Xx0
j
�h2
;

while

yA.f /1 ım2.Xxi �h1
; b�Ih1;h2

/D yA.f /1.Xxi �h2
/D

X
j

fi;j Xx0
j
�h2
;

and these are equal.

Now let the algebra input be a generator m.b�
 Im.h1/;m.h2/
/. The left side of the nD 2

condition with this algebra input and module input Xxi �h isX
j ;k;h02ˇ


Qfi;j Ih0
QQch0h1Ih2

c0j ;kXx0
k
�h2
C

X
j ;k;h02ˇ


fi;j Qc
0
j ;kIh0

QQch0h1Ih2
Xx0

k
�h2
;

and the right side isX
j ;k;h02ˇ


Qci;j Ih0
QQch0h1Ih2

fj ;kXx0
k
�h2
C

X
j ;k;h02ˇ


ci;j
Qfj ;kIh0

QQch0h1Ih2
Xx0

k
�h2
:

These are equal by item (2) of Proposition 6.5.5.

Finally, let the algebra input be a generator m.b�C Im.h1/;m.h3/
/. The left side of the

nD 2 condition with this algebra input and module input Xxi �h1
isX

j ;k;h02ˇ˛

Qfi;j Ih0
QQch0h1Ih3

c0j ;kXx0
k
�h3
C

X
j ;k;h02ˇ˛

fi;j Qc
0
j ;kIh0

QQch0h1Ih3
Xx0

k
�h3
:

To compare with the right side of the n D 2 condition, note that, as in the proof of
Proposition 6.2.3, we have

�1.m.b
�
C Im.h1/;m.h3/

//D�
X

h22ˇ

m.b�
 Im.h1/;m.h2/
/m.b�
|Im.h2/;m.h3/

/;
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where the sum is implicitly over those h2 such that generators m.b�
 Im.h1/;m.h2/
/ and

m.b�
|Im.h2/;m.h3/
/ exist. Thus,

yA.f /2 ı .id˝�1/.Xxi �h1
;m.b�C Im.h1/;m.h3/

//

D�

X
h2

yA.f /2.Xxi �h1
;m.b�
 Im.h1/;m.h2/

/m.b�
|Im.h2/;m.h3/
//

D

X
h22ˇ

m02 ı .
yA.f /2˝ id/.Xxi �h1

;m.b�
 Im.h1/;m.h2/
/m.b�
|Im.h2/;m.h3/

//

�

X
h22ˇ

yA.f /2 ı .m2˝ id/.Xxi �h1
;m.b�
 Im.h1/;m.h2/

/m.b�
|Im.h2/;m.h3/
//

by the n D 3 consistency condition (6-9); note that degh m.b�
|Im.h2/;m.h3/
/ D 1.

Expanding the above expression out, the top line isX
j ;k;h02ˇ
 ;

h002ˇ
 ;h22ˇ

Qfi;j Ih0
QQch0h1Ih2

Qc0j ;kIh00
QQch00h2Ih3

Xx0
k
�h3

and the bottom line is

�

X
j ;k;h02ˇ
 ;

h002ˇ
 ;h22ˇ

Qci;j Ih0
QQch0h1Ih2

Qfj ;kIh00
QQch00h2Ih3

Xx0
k
�h3
:

Thus, the right side of the nD 2 condition (6-10) with algebra input m.b�C Im.h1/;m.h3/
/

and module input Xxi �h1
isX

j ;k;h02ˇ˛

Qci;j Ih0
QQch0h1Ih3

fj ;kXx0
k
�h3
C

X
j ;k;h02ˇ˛

ci;j
Qfj ;kIh0

QQch0h1Ih3
Xx0

k
�h3

�

X
j ;k;h02ˇ
 ;

h002ˇ
 ;h22ˇ

Qfi;j Ih0
QQch0h1Ih2

Qc0j ;kIh00
QQch00h2Ih3

Xx0
k
�h3

C

X
j ;k;h02ˇ
 ;

h002ˇ
 ;h22ˇ

Qci;j Ih0
QQch0h1Ih2

Qfj ;kIh00
QQch00h2Ih3

Xx0
k
�h3
:

This is equal to the left side of the nD 2 condition with these inputs,X
j ;k;h02ˇ˛

Qfi;j Ih0
QQch0h1Ih3

c0j ;kXx0
k
�h3
C

X
j ;k;h02ˇ˛

fi;j Qc
0
j ;kIh0

QQch0h1Ih3
Xx0

k
�h3
;

by item (3) of Proposition 6.5.5.

We now define the composition of two A1–morphisms as in [11, Definition 27].
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6.5.10 Definition Define the composition of two A1–morphisms F W yA! yA0 and
GW yA0! yA00 to be the A1–morphism G ıF with

.G ıF /n WD
X

iCjDnC1

.�1/.iC1/.jC1/Gi ı .Fj ˝jidj.jC1/˝.i�1//:

For the purposes of this section, we will only need to compose morphisms yA.f /
and yA.g/ such that either f or g satisfies a more restrictive condition than Cmorphism .

6.5.11 Definition A chain map f W M !M 0 of complexes of graded projective right
H n –modules satisfies the algebraic condition zCmorphism for the generating sets fxig

of M and fx0j g of M 0 if it satisfies Cmorphism of Definition 6.5.4 and furthermore
Qfi;j Ih0 D 0 for all h0 2 ˇmult .

6.5.12 Proposition Let f W M !M 0 and gW M 0 !M 00 be chain maps between
complexes of graded projective right H n modules, such that M , M 0 and M 00 satisfy
the algebraic condition Cmodule of Definition 6.1.1, while f and g satisfy the condition
Cmorphism and either f or g satisfies the condition zCmorphism . Then g ı f satisfies
Cmorphism and

yA.g ıf /D yA.g/ ı yA.f /:

Proof By the conditions on f and g , the chain map g ı f satisfies the condition
Cmorphism , so yA.g ıf / is a well-defined A1–morphism. We have

.g ıf /i;k D
X

j

fi;j gj ;k :

If g satisfies zCmorphism , then for h0 2 ˇmult we have

B.g ıf /i;kIh0 D

X
j

Qfi;j Ih0gj ;k ;

while if f satisfies zCmorphism , then

B.g ıf /i;kIh0 D

X
j

fi;j Qgj ;kIh0 :

Let Xxi �h1
be a generator of yA.M /. We have

yA.g ıf /1.Xxi �h1
/D

X
j ;k

fi;j gj ;kXx00
k
�h1
;

and this sum also equals . yA.g/ ı yA.f //1.Xxi �h1
/.
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Let b�Ih1;h2
be a generator of B � m.B/! ˇ B . By the definition of the operation

f 7! yA.f /,

yA.g ıf /2.Xxi �h1
; b�Ih1;h2

/D 0D . yA.f / ı yA.g//2.Xxi �h1
; b�Ih1;h2

/:

Finally, let m.b��Im.h1/;m.h2// be a generator of m.B/! � m.B/! ˇ B . Suppose g

satisfies zCmorphism . Then

yA.g ıf /2.Xxi �h1
;m.b��Im.h1/;m.h2/

//D
X

j ;k;h02ˇmult

Qfi;j Ih0
QQch0h1Ih2

gj ;kXx00
k
�h2
;

while

. yA.g/ ı yA.f //2.Xxi �h1
;m.b��Im.h1/;m.h2/

//

D . yA.g/1 ı yA.f /2/.Xxi �h1
;m.b��Im.h1/;m.h2/

//

D

X
j ;k;h02ˇmult

Qfi;j Ih0
QQch0h1Ih2gj ;kXx00

k
�h2
:

The case when f satisfies zCmorphism is analogous. Thus, yA.gıf /2D . yA.g/ı yA.f //2 .
We have

yA.g ıf /n D . yA.g/ ı yA.f //n D 0

for all n> 2, so yA.g ıf /D yA.g/ ı yA.f /.

Now we will consider homotopies. The following definition is a special case of [11,
Definition 28].

6.5.13 Definition Let B be a differential bigraded algebra with idempotent ring I .
Let yA and yA0 be differential bigraded right modules over B . Let F D fFng and
G D fGng be A1–morphisms from yA to yA0 . An A1–homotopy H between F

and G is a collection
HnW yA˝I B˝.n�1/

! yA0Œ0; n�

of bigrading-preserving I–linear maps satisfying the relation

Fn�Gn Dm01 ıHnC .�1/n�1m02 ı .Hn�1˝jidjn�1/

C .�1/nC1Hn ı .m1˝jidj˝.n�1//CHn�1 ı .m2˝ id˝.n�2//

C .�1/nC1
n�1X
kD1

Hn ı .id˝k
˝�1˝jidj˝.n�k�1//

C

n�2X
kD1

.�1/kHn�1 ı .id˝k
˝�2˝ id˝.n�k�2//

for all n� 1.
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6.5.14 Example Suppose H is an A1–homotopy between F and G with Hn D 0

for n> 1. Then the nD 1 A1–homotopy condition for H becomes

F1�G1 Dm01 ıH1CH1 ım1;

and the nD 2 homotopy condition becomes

F2�G2 D�m02 ı .H1˝jidj/CH1 ım2:

For n> 2, the homotopy condition is Fn�Gn D 0.

We will get homotopies H D yA. / from certain homotopies  between chain maps f
and g from a chain complex M of graded projective right H n modules to another such
complex M 0 ; that is, H n –linear maps  W M !M 0 of bidegree .0;�1/ satisfying

f �g D dM 0 C dM :

We will require that M and M 0 satisfy Cmodule for some generating sets fxig and fx0j g,
and that f and g satisfy Cmorphism for these generating sets. We will only need to
consider homotopies  which satisfy the analogue of the more restrictive condition
zCmorphism on chain maps.

6.5.15 Definition A homotopy  as above satisfies the condition zChomotopy if, for all
generators xi of M ,

 .xi/D
X

j

 i;j x0j

is a basis expansion of  .xi/ in the basis fx0j � h1g for M 0 , for some integer coeffi-
cients  i;j .

If  satisfies the condition zChomotopy (implying, in particular, that M and M 0 satisfy
the condition Cmodule and f and g satisfy the condition Cmorphism ), then the homotopy
relation f �g D dM 0 C dM becomes the two sets of equations

(6-14) fi;k �gi;k D

X
j

 i;j c0j ;k C
X

j

ci;j j ;k

for all generators xi of M and x0
k

of M 0 , and

(6-15) Qfi;kIh0 � Qgi;kIh0 D

X
j

 i;j Qc
0
j ;kIh0 C

X
j

Qci;j Ih0 j ;k

for all generators xi 2M , x0
k
2M 0 and h0 2 ˇmult .
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6.5.16 Definition Suppose M and M 0 are chain complexes of graded projective
right H n –modules, satisfying the condition Cmodule , and f and g are chain maps from
M to M 0 satisfying the condition Cmorphism . Let  be an H n –linear chain homotopy
between f and g satisfying the condition zChomotopy defined above.

Define an A1–homotopy yA. / between yA.f / and yA.g/ by

yA. /1.Xxi �h1
/ WD

X
j

 i;j Xx0
j
�h1

and yA. /n D 0

for n> 1.

6.5.17 Proposition yA. / is a valid A1–homotopy between yA.f / and yA.g/.

Proof First, yA. /1 respects the right action of the idempotent ring Iˇ on yA.M /

and yA.M 0/, and yA. /1 preserves intrinsic grading and decreases homological grading
by one because  has the same properties.

By Example 6.5.14, the nD 1 condition is

yA.f /1� yA.g/1 Dm01 ı
yA. /1C yA. /1 ım1:

If Xxi �h1
is a generator of yA.M /, then

. yA.f /1� yA.g/1/.Xxi �h1
/D

X
k

.fi;k �gi;k/Xx0
k
�h1

D

X
j ;k

. i;j c0j ;k/Xx0
k
�h1
C

X
j ;k

.ci;j j ;k/Xx0
k
�h1

by (6-14), while

m01 ı
yA. /1Xxi �h1

D

X
j ;k

 i;j c0j ;kXx0
k
�h1
;

yA. /1 ım1Xxi �h1
D

X
j ;k

ci;j j ;kXx0
k
�h1
:

Thus, the nD 1 condition is satisfied.

By Example 6.5.14, the nD 2 condition is

(6-16) yA.f /2� yA.g/2 D�m02 ı .
yA. /1˝jidj/C yA. /1 ım2:

As in Proposition 6.5.9, we first reduce to the case where the algebra input is one of
the generators b�Ih1;h2

or m.b��Im.h1/;m.h2/
/ of m.B/! ˇ B .
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Claim If b1 and b2 are two elements of m.B/! ˇ B such that the nD 2 homotopy
condition (6-16) is satisfied both when the algebra input is b1 and when it is b2 , then
the nD 2 homotopy condition is also satisfied when the algebra input is b1b2 .

Proof of claim When the algebra input is b1˝ b2 , we want to show that the maps

yA.f /2 ı .id˝�2/� yA.g/2 ı .id˝�2/

and
�m02 ı .

yA. /1˝jidj/ ı .id˝�2/C yA. /1 ım2 ı .id˝�2/

take the same value. In the proof of this claim, the algebra input to all maps will be
assumed to be b1˝ b2 .

By Example 6.5.7 and the associativity of the algebra actions m2 and m0
2

, we want to
show the following equation (6-17), when the algebra input is b1˝ b2 :

(6-17) m02 ı .
yA.f /2˝jidj/C yA.f /2 ı .m2˝ id/

�m02 ı .
yA.g/2˝jidj/� yA.g/2 ı .m2˝ id/

D�m02 ı .m
0
2˝ id/ ı . yA. /1˝jidj˝ jidj/C yA. /1 ım2 ı .m2˝ id/:

Call the terms on the left side of (6-17) LHS1 , LHS2 , LHS3 and LHS4 ; call the
terms on the right side RHS1 and RHS2 . Using the nD 2 homotopy condition for the
algebra input b1 , the term RHS1 can be written as

m02 ı .
yA.f /2˝jidj/�m02 ı .

yA.g/2˝jidj/�m02 ı .
yA. /1˝jidj/ ı .m2˝ id/:

Call these terms RHS1a , RHS1b and RHS1c . Using the nD 2 homotopy condition
for the algebra input b2 , the term RHS2 can be written as

yA.f /2 ı .m2˝ id/� yA.g/2 ı .m2˝ id/Cm02 ı .
yA. /1˝jidj/ ı .m2˝ id/:

Call these terms RHS2a , RHS2b and RHS2c . Then

� LHS1 D RHS1a ,

� LHS2 D RHS2a ,

� LHS3 D RHS1b ,

� LHS4 D RHS2b ,

� RHS1c CRHS2c D 0,

proving the claim.
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It remains to show that the n D 2 homotopy condition (6-16) is satisfied when the
algebra input is one of the multiplicative generators of m.B/! ˇ B . When the input is
b�Ih1;h2

, the left side of the nD 2 condition is zero, so we want to show that the right
side is also zero. If Xxi �h1

is a generator of yA.M /, then the right side of the nD 2

condition with algebra input b�Ih1;h2
is

�

X
j

 i;j Xx0
j
�h2
C

X
j

 i;j Xx0
j
�h2
;

which is zero as desired.

Finally, suppose the algebra input is m.b��Im.h1/;m.h2/
/ and let Xxi �h1

be a generator
of yA.M /. The left side of the nD 2 condition applied to these inputs isX

k;h02ˇ

. Qfi;kIh0 � Qgi;kIh0/ QQch0h1Ih2
Xx0

k
�h2
;

which equalsX
j ;k;h02ˇ

 i;j Qc
0
j ;kIh0

QQch0h1Ih2
Xx0

k
�h2
C

X
j ;k;h02ˇ

Qci;j Ih0 j ;k
QQch0h1Ih2

Xx0
k
�h2

by (6-15). This expression is also equal to the right side of the n D 2 condition
applied to these inputs, since m.b�m.h1/;m.h2// has homological degree 1. Thus, the
A1–homotopy relations are satisfied for yA. /.

6.5.18 Corollary Let M and M 0 be chain complexes of graded projective right
H n –modules satisfying the algebraic condition Cmodule . Suppose there exist chain
maps f W M !M 0 and gW M 0!M satisfying the condition Cmorphism , with either
f or g satisfying the more restrictive condition zCmorphism , and chain homotopies  
between g ıf and idM and  0 between f ıg and idM 0 , both satisfying the condition
zChomotopy .

Then yA.M/ and yA.M 0/ are A1–homotopy equivalent type A structures over m.B/!ˇB.

Proof By Proposition 6.5.12,

yA.g/ ı yA.f /D yA.g ıf / and yA.f / ı yA.g/D yA.f ıg/:

By Proposition 6.5.17, yA. / provides an A1–homotopy between yA.g/ ı yA.f / and
id yA.M /

D yA.idM /, and yA. 0/ provides an A1–homotopy between yA.f /ı yA.g/ and
id yA.M 0/ D yA.idM 0/.

The case of interest to us is when M D ŒT �Kh and M 0D ŒT 0�Kh for two oriented tangle
diagrams T and T 0 in R�0˝R which are related by a Reidemeister move. In [4],
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Khovanov shows that ŒT �Kh is chain homotopy equivalent to ŒT 0�Kh . In the following
two propositions, we verify that the maps involved in these homotopy equivalences
satisfy the relevant algebraic conditions.

6.5.19 Proposition Let .M; dM / be a chain complex of graded projective right
H n –modules. Assume the following conditions hold:

(1) M satisfies the algebraic condition Cmodule with respect to a set of genera-
tors fxig.

(2) M ŠM1˚M2 as right H n –modules; furthermore, M1 is the submodule of M

spanned over H n by some subset of the xi , while M2 is the submodule spanned
by the rest of the xi .

(3) M2 is a subcomplex of M . Write dM in matrix form with respect to the direct
sum decomposition as

dM D

�
d1 0

d1;2 d2

�
:

Note that d2
M
D 0 is equivalent to the equations d2

1
D 0, d1;2ıd1Cd2ıd1;2D 0

and d2
2
D 0.

(4) There exists an H n –linear map  0W M2!M2 of bidegree .0;�1/ with idM2
D

d2 
0C 0d2 , and such that we may write, with integer coefficients  0i;j ,

 0.xi/D
X

j

 0i;j xj :

Among the equations implied by d2
M
D 0 is d2

1
D 0; thus .M1; d1/ is a chain complex

of graded projective right modules over H n . Since .M; dM / satisfies Cmodule for the
generators fxig, .M1; d1/ satisfies Cmodule for the appropriate subset of fxig. Define
f W .M; dM /! .M1; d1/, gW .M1; d1/! .M; dM / and  W M!M by the following
matrix formulas:

f WD
�
idM1

0
�
; g WD

�
idM1

� 0d1;2

�
;  WD

�
0 0

0 � 0

�
:

Then f and g are chain maps, f ı g D idM1
and g ı f � idM D dM C  dM .

Furthermore, f satisfies the condition zCmorphism , g satisfies the condition Cmorphism

and  satisfies the condition zChomotopy .

Proof Both f and g are bigrading-preserving and H n –linear;  preserves the
intrinsic grading and decreases the homological grading by one, because the same holds
for  0 . The map f is a chain map because it is the projection map onto a quotient
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complex. To show that g is a chain map, we want to show that g.d1.xi//DdM .g.xi//

for all xi in M1 . We have

g.d1.xi//D d1.xi/� 
0d1;2 ı d1.xi/

and

(6-18) dM .g.xi//D dM .xi/� dM . 0d1;2.xi//

D dM .xi/C 
0.d2 ı d1;2/.xi/� d1;2.xi/

D d1.xi/� 
0.d1;2 ı d1/.xi/:

In the second line of (6-18), we use that

d1;2.xi/D idM2
.d1;2.xi//

D d2. 
0d1;2.xi//C 

0.d2 ı d1;2/.xi/

D dM . 0d1;2.xi//C 
0.d2 ı d1;2/.xi/

and in the third line of (6-18) we use the equation d2 ı d1;2 C d1;2 ı d1 D 0 from
item (3) above. Thus, g is a chain map as well, and by definition, f ıg D idM2

. To
verify that  is a homotopy between g ı f and idM , we can write out the terms of
the relevant equation as matrices:

g ıf D

�
idM1

0

� 0d1;2 0

�
; dM D

�
0 0

0 �d2 
0

�
;  dM D

�
0 0

� 0d1;2 � 
0d2

�
:

Thus, the equation g ıf � idM D dM C dM holds.

By definition, f satisfies the condition zCmorphism . By item (4) above and the condition
Cmodule for M , g satisfies Cmorphism . By item (4),  satisfies zChomotopy .

6.5.20 Proposition Let M be a chain complex of graded projective right H n –
modules. Assume the following conditions hold:

(1) M satisfies the algebraic condition Cmodule with respect to a set of genera-
tors fxig.

(2) M ŠM1˚M2 as right H n –modules, and M1 is the submodule of M spanned
over H n by some subset of the xi , say M1Dfxi �h1 j i 2Sg. The submodule M2

has a Z–basis fzi � h1 j i 62 Sg, where

zi D xi C

X
j2S

�i;j xj C

X
j2S;h02ˇmult

Q�i;j Ih0xj � h
0

for some integer coefficients �i;j and Q�i;j Ih0 .
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(3) M2 is a subcomplex of M . Write dM in matrix form with respect to the direct
sum decomposition:

dM D

�
d1 0

d1;2 d2

�
:

(4) There exists an H n –linear map  0W M2!M2 of bidegree .0;�1/ with idM2
D

d2 
0C 0d2 such that we may write

 0.zi/D
X

j

 0i;j zj

for some integer coefficients  0i;j .

(5) Write
dM .xi/D

X
j

ci;j xj C

X
j ;h02ˇmult

Qci;j Ih0xj � h
0:

For all indices i 2 S , j 62 S , k 62 S and elements h0 of ˇmult , we have
Qci;j Ih0 

0
j ;k
D 0.

(6) For all indices i 2 S , j 62 S , k 2 S and elements h0; h00 of ˇmult , we have
Qci;j Ih0�j ;k D 0 and Qci;j Ih0 Q�j ;kIh00 D 0.

(7) For all indices i 62 S , j 62 S , k 2 S and elements h0 of ˇmult ,  0i;j�j ;k D 0 and
 0i;j Q�j ;kIh0 D 0.

As in Proposition 6.5.19, we have d2
1
D 0, so .M1; d1/ is a chain complex. We may

write d1DdM�d1;2 . The right side of this equation has domain restricted to M1�M ,
and it takes values in M1 .

Define f W .M; dM /! .M1; d1/, gW .M1; d1/! .M; dM / and  W M !M by the
following matrix formulas:

f WD
�
idM1

0
�
; g WD

�
idM1

� 0d1;2

�
;  WD

�
0 0

0 � 0

�
:

Then f and g are chain maps, f ı g D idM1
and g ı f � idM D dM C  dM .

Furthermore, .M1; d1/ satisfies the condition Cmodule for the generators fxi j i 2 Sg,
f satisfies Cmorphism , g satisfies zCmorphism and  satisfies zChomotopy . These last three
conditions use the generators fxi j i 2 Sg [ fxj j j 62 Sg for M and fxi j i 2 Sg

for M1 .

Proof The proof that f and g are chain maps, and that  is a homotopy between f
and g , is the same as in Proposition 6.5.19. Note that here, all the matrices are chosen
with respect to the basis fxi � h1 j i 2 Sg [ fzj � h1 j j 62 Sg of M , since this basis
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is compatible with the direct sum decomposition M ŠM1˚M2 . For the algebraic
conditions, we need to use the basis fxi �h1 j i 2Sg[fxj �h1 j j 62Sg instead, which is
not compatible with the direct sum decomposition. Thus, we want to express d1 , f , g

and  in this basis and show they satisfy Cmodule , Cmorphism , zCmorphism and zChomotopy ,
respectively.

For i 2 S , we may write

dM .xi/D
X
k2S

ci;kxk C

X
k2S;h02ˇmult

Qci;kIh0xk � h
0
C

X
j 62S

ci;j zj

�

X
j 62S;k2S

ci;j�j ;kxk �

X
j 62S;k2S;h02ˇmult

ci;j Q�j ;kIh0xk � h
0

C

X
j 62S;h02ˇmult

Qci;j Ih0zj � h
0:

The final two terms which would appear in this expression are zero by item (6) of the
above assumptions. The third and sixth terms of this expression make up d1;2.xi/:

d1;2.xi/D
X
j 62S

ci;j zj C

X
j 62S;h02ˇmult

Qci;j Ih0zj � h
0:

The rest of the terms make up d1.xi/:

d1.xi/D
X
k2S

ci;kxk C

X
k2S;h02ˇmult

Qci;kIh0xk � h
0

�

X
j 62S;k2S

ci;j�j ;kxk �

X
j 62S;k2S;h02ˇmult

ci;j Q�j ;kIh0xk � h
0:

From this formula we can see that .M1; d1/ satisfies the condition Cmodule for the
generators fxi j i 2 Sg.

For xi with i 2 S , we have f .xi/D xi . For zj with j 62 S , we have f .zj /D 0. We
may write this equation as

f

�
xj C

X
k2S

�j ;kxk C

X
k2S;h02ˇmult

Q�j ;kIh0xk � h
0

�
D 0;

or equivalently

f .xj /D�
X
k2S

�j ;kxk �

X
k2S;h02ˇmult

Q�j ;kIh0xk � h
0:

By this formula, we see that f satisfies condition Cmorphism .
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For the map g , we can write

 0 ı d1;2.xi/D  
0

�X
j 62S

ci;j zj C

X
j 62S;h02ˇmult

Qci;j Ih0zj � h
0

�
D

X
j 62S;k 62S

ci;j 
0
j ;kzk

by (5) above. Using (7), we can write this sum asX
j 62S;k 62S

ci;j 
0
j ;kxk :

Thus,
g.xi/D xi �

X
j 62S;k 62S

ci;j 
0
j ;kxk

and g satisfies condition zCmorphism .

Finally, if xi 2 S , then  .xi/D 0 by definition. For xj 62 S , we have

 .xj /D  

�
zj �

X
k2S

�j ;kxk �

X
k2S;h02ˇ

Q�j ;kIh0xk � h
0

�
D  .zj /D�

X
k 62S

 0j ;kzk D�

X
k 62S

 0j ;kxk :

The last equality follows from (7). Thus,  satisfies the condition zChomotopy .

6.5.21 Corollary If T and T 0 are oriented tangle diagrams in R�0˝R which are
related by a Reidemeister move, then A.ŒT �Kh/ and A.ŒT 0�Kh/ are A1–homotopy
equivalent as type A structures over m.B/! ˇ B .

Proof When T and T 0 are related by an R1 move, Khovanov’s homotopy equiva-
lence between ŒT �Kh and ŒT 0�Kh from [4, Section 4.4] is of the type constructed in
Proposition 6.5.19. This is most easily seen by looking at the top diagram of Figure 7.
The map  0 sends a generator xi of the far-right rectangle to the corresponding
generator xj in the top rectangle, which topologically is xi isotoped with a plus-
labeled free circle added, times .�1/#1.i;j/ . One can check that the four conditions of
Proposition 6.5.19 are satisfied.

When T and T 0 are related by an R2 move, Khovanov’s homotopy equivalence from
[4, Section 4.5] is a composition of a homotopy equivalence from Proposition 6.5.19
followed by one from Proposition 6.5.20. The relevant diagrams are the middle diagram
of Figure 7 and the top diagram of Figure 8. The first homotopy equivalence is very
similar to the R1 move, with  0 defined analogously. For the second homotopy
equivalence,  0 isotopes a generator and deletes a minus-labeled free circle; it still
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R1

M1

M2

C

�

 0

R2

M1

M2

C�

 0

R3

M1

M2

C�
 0

Figure 7: First step of R1, R2 and R3 moves

Algebraic & Geometric Topology, Volume 17 (2017)



On bordered theories for Khovanov homology 1663

R2

M1

�

 0
�

R3

M1

�
 0

�

Figure 8: Second step of R2 and R3 moves

carries a coefficient of .�1/#1.i;j/ . The coefficients �i;j and Q�i;j Ih0 may be packaged
into a map � as shown in the diagram. This map is defined as  0 postcomposed with
the differential map from the left rectangle to the bottom rectangle.

For generators xi in the left rectangle, zi is xi . For generators xi in the top rectangle,
zi is xi C �.xi/; then M2 is the subcomplex of ŒT �Kh generated by the zi . One can
see from the diagram in Figure 8 that the conditions of Proposition 6.5.20 are satisfied.
In particular, note that  0.zi/ D  

0.xi/ because  0 is zero on generators from the
bottom rectangle, so condition (4) is satisfied. We have d1;2 D 0, so conditions (5)
and (6) hold automatically. Condition (7) holds because the arrows labeled  0 and �
are not composable in the diagram.
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Finally, when T and T 0 are related by an R3 move, Khovanov’s homotopy equivalence
from [4, Section 4.6] comes from doing a homotopy equivalence from Proposition 6.5.19
and then a homotopy equivalence from Proposition 6.5.20, to both ŒT �Kh and ŒT 0�Kh .
After these homotopy equivalences, the complexes are isomorphic. Thus, the full homo-
topy equivalence from ŒT �Kh to ŒT 0�Kh is a composition of four homotopy equivalences
from Proposition 6.5.19 and Proposition 6.5.20.

The relevant diagrams are the bottom diagram of Figure 7 and the bottom diagram of
Figure 8. The maps  0 and � are defined as in the R2 move. Again, one can check that
the conditions of Proposition 6.5.19 are satisfied using Figure 7 and that the conditions
of Proposition 6.5.20 are satisfied using Figure 8. This time, in the second step, d1;2 is
not zero. However, for one of the two arrows of Figure 8 contributing to d1;2 , all Qci;j Ih0

are zero. The other arrow is not composable with the arrows labeled  0 and � . This
suffices to show that conditions (5) and (6) of Proposition 6.5.20 hold.

6.5.22 Proposition If T and T 0 are oriented tangle diagrams in R�0 ˝R which
are related by a Reidemeister move, then the A1–homotopy equivalence between
yA.ŒT �Kh/ and yA.ŒT 0�Kh/ of Corollary 6.5.21 descends to a A1–homotopy equivalence
of type A structures over the quotient algebra B�n of m.B/! ˇ B .

Proof For homotopy equivalences ff W M!M1;gW M1!M;  W M!M g coming
from Proposition 6.5.19, when doing an R1 move, the first step of an R2 move, or the
first or fourth step of an R3 move, we only need to show that yA.g/2 descends from a
map

yA.M1/˝Iˇ m.B/! ˇ B! yA.M /

to a map
yA.M1/˝Iˇ B�n! yA.M /I

since f satisfies zCmorphism and  satisfies zChomotopy , we have yA.f /2 D 0 and
yA. /2 D 0.

As in Proposition 5.2.8, let a, b , c and d be vertices of a tetrahedron in the graph G . We
want to show that yA.g/2.�; aCc/D 0, yA.g/2.�; aCd/D 0 and yA.g/2.�; bCc/D 0.
We will show only that yA.g/2.�; aC c/D 0; by symmetry, the proof is the same for
the other two extra relations.

Write
aDm.b�
 Im.h1/;m.h2/

/m.b��0Im.h2/;m.h3/
/;

c Dm.b��Im.h1/;m.
QQh2/
/m.b�
 0Im. QQh2/;m.h3/

/:
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Let Xxi �h1
be a generator of yA.M1/; we have i 2 S , in the notation of Proposition

6.5.19. Then

(6-19) yA.g/2.Xxi �h1
; a/

D . yA.g/2 ı .m2˝ id//.Xxi �h1
;m.b�
 Im.h1/;m.h2/

/˝m.b��0Im.h2/;m.h3/
//

C .m02 ı .
yA.g/2˝jidj//.Xxi �h1

;m.b�
 Im.h1/;m.h2/
/˝m.b��0Im.h2/;m.h3/

//

using the nD3 consistency condition for the A1–morphism yA.g/2 ; see Example 6.5.3.
The first term on the right side of (6-19) can be expanded out as

(6-20) �

X
i;j2S;k;l 62S

Qci;j Ih0

Qcj ;kIh00

�0
 0k;lXxl �h3

;

where h0
 and h00�0 are determined by 
 and �0 , while the second term on the right side
of (6-19) can be expanded out as

(6-21)
X

i2S;j ;k;l 62S

Qci;j Ih0

 0j ;k Qck;lIh00

�0
Xxl �h3

:

Similarly, we may write yA.g/2.Xxi �h1
; c/ as the sum of the expressions

(6-22) �

X
i;j2S;k;l 62S

Qci;j Ih0�
Qcj ;kIh00


 0
 0k;lXxl �h3

and

(6-23)
X

i2S;j ;k;l 62S

Qci;j Ih0�
 0j ;k Qck;lIh00


 0
Xxl �h3

:

We want to show that the expressions (6-20) and (6-23) sum to zero; the argument that
expressions (6-21) and (6-22) sum to zero is very similar.

Indeed, generators of all complexes .M; dM / and .M1; d1/ under consideration come
from generators of the Khovanov complex ŒT �Kh of a tangle T , and by Remark 3.0.4
we may choose any ordering we like for the crossings of T . We will order the crossings
of T such that the one, two or three crossings local to the Reidemeister move being
performed come first in the ordering.

Now, to each quadruple .i 2 S; j 2 S; k 62 S; l 62 S/ giving rise to a nonzero term
of expression (6-20), we may associate a pair of indices .j 0 62 S; k 0 62 S/, such that
Qci;j 0Ih0�

Qcj 0;k0Ih00

 0
 0

k0;l
¤ 0. In fact, with the above ordering convention, we will have

Qci;j Ih0

Qcj ;kIh00

�0
 0k;l D Qci;j 0Ih0�

 0j 0;k0 Qck0;lIh00

 0
:
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To construct .j 0 62S; k 0 62S/ such that the above equation holds, first note that the only
component of g relevant for yA.g/2 is � 0 ı d1;2 . Recall that the terms Qc , and thus
also the terms  0 , are computed as in Example 6.1.3. A term like Qci;j Ih0
 Qcj ;kIh00

�0
 0k;l

corresponds to doing one step of d1 by changing some crossing away from the local
area (and thus higher in the ordering) from 0 to 1, then doing one step of d1;2 by
changing one of the local crossings from 0 to 1, and then finally doing one step
of  0 by changing a different local crossing from 1 to 0. The indices .j 0; k 0/ and the
corresponding term Qci;j 0Ih0� 

0
j 0;k0 Qck0;lIh00


 0
come from doing the d1;2 and � 0 steps

before changing the nonlocal crossing from 0 to 1. But, when changing the local
crossings, the signs are the same for both terms because the local crossings occur at
the beginning of the ordering. When changing the nonlocal crossing, the signs are also
the same for both terms because doing d1;2 and � on the local crossings does not
increase or decrease the number of crossings with a 1–resolution (d1;2 increases this
number by 1 and then � 0 decreases it by 1).

The correspondence between quadruples .i 2 S; j 2 S; k 62 S; l 62 S/ such that
Qci;j Ih0
 Qcj ;kIh00�0 

0
k;l is nonzero and quadruples .i 2 S; j 0 62 S; k 0 62 S; l 62 S/ such that

Qci;j 0Ih0� 
0
j 0;k0 Qck0;lIh00


 0
is nonzero is bijective. Thus, expressions (6-20) and (6-23) sum

to zero. Analogously, expressions (6-21) and (6-22) sum to zero.

We conclude that yA.g/2.�; aCc/D0. By symmetry, we also have yA.g/2.�; aCd/D0

and yA.g/2.�; bCc/D 0, so yA.g/ descends to an A1–morphism of type A structures
over B�n .

For homotopy equivalences ff W M !M1;gW M1!M;  W M !M g coming from
Proposition 6.5.20, the argument is similar enough that we will simply outline the
differences with the above proof. Homotopy equivalences from Proposition 6.5.20
arise when doing the second step of an R2 move or the second or third step of an R3
move. For these equivalences, we only need to show that yA.f /2 descends from a map

yA.M /˝Iˇ m.B/! ˇ B! yA.M1/

to a map
yA.M /˝Iˇ B�n! yA.M1/

since we automatically have yA.g/2 D 0 by condition zCmorphism on g and yA. /2 D 0

by condition zChomotopy on  .

The only terms of f in the basis expansion fxi � h1 j i 2 Sg[ fxj � h1 j j 62 Sg of M

which are relevant for yA.f /2 are the terms with coefficients �Q�j ;kIh0 ; see the proof
of Proposition 6.5.20. These � terms play a role analogous to the � 0 ı d1;2 terms
in the proof above for homotopy equivalences from Proposition 6.5.19. Indeed, a �
term corresponds to doing one step of  0 , by changing a local crossing from a 1 to
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a 0, and then doing one step of dM , by changing a local crossing from a 0 to a 1.
Thus, an argument analogous to the one above shows that yA.f /2.�; aC c/D 0, and
by symmetry that yA.f /2.�; aC d/ D 0 and yA.f /2.�; b C c/ D 0. Hence yA.f /
descends to an A1–morphism of type A structures over B�n .

Proposition 6.5.22 gives us an alternate proof of Roberts [11, Corollary 33].

6.6 Equivalences of type D structures

We first define morphisms and homotopies of type D structures with sign conventions
following Roberts [12, Definition 37].

6.6.1 Definition Let B be a differential bigraded algebra with idempotent ring I .
Let . yD; ı/ and . yD0; ı0/ be type D structures over B . A morphism of type D structures
F W yD ! yD0 is a bigrading-preserving I–linear map F W yD ! B ˝I yD

0 satisfying
the type D morphism relation

.�1˝jidj/ ıF D .�2˝ id/ ı .id˝F / ı ı� .�2˝ id/ ı .id˝ ı0/ ıF:

The composition of two morphisms of type D structures F W yD! yD0 and GW yD0! yD00 is

G ıF WD .�2˝ id/ ı .id˝G/˝F;

a bigrading-preserving I–linear map from yD to B ˝I yD
00 which also satisfies the

type D morphism relation.

6.6.2 Definition Let F W yD! yD0 , GW yD! yD0 be morphisms of type D structures
over B . A homotopy of morphisms of type D structures between F and G is a
bigrading-preserving I–linear map H W yD! .B ˝I yD

0/Œ0; 1� satisfying

F �G D .�2˝ id/ ı .id˝H / ı ıC .�2˝ id/ ı .id˝ ı0/ ıH C .�1˝jidj/ ıH:

If a homotopy exists between F and G , then F is said to be homotopic to G .

Two type D structures yD and yD0 are homotopy equivalent if there exist type D structure
morphisms F W yD! yD0 and GW yD0! yD , such that G ıF is homotopic to id yD and
F ıG is homotopic to id yD0 .

6.6.3 Remark Suppose yD and yD0 are homotopy equivalent type D structures over B
and J is a bigrading-homogeneous ideal of B which is closed under the differential
on B . By Proposition 5.3.7, yD and yD0 induce type D structures over B=J . The induced
type D structures are homotopy equivalent. Indeed, one may simply postcompose the
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algebra outputs of F , G and H with the projection map from B onto B=J , and all
the relevant conditions are still satisfied.

Now let N be a chain complex of graded projective left H n –modules. In Section 6.3,
the type D structure yD.N / over m.B/! ˇ B was defined by applying the mirroring op-
eration of Definition 6.3.6 to yA.r.N //� m.B/!ˇBKm.m.B/!ˇB/op . One can check that
the mirroring operation of Definition 6.3.6 respects homotopy equivalences of type D
structures. Thus, to show that yD.ŒT �Kh/ is a tangle invariant up to homotopy equiva-
lence, it would suffice to prove the following general result: if yA and yA0 are type A
structures over a differential bigraded algebra B which are free as Z–modules, cDD

is a type DD bimodule over B and another differential bigraded algebra B 0 , and yA
and yA0 are A1–homotopy equivalent, then yA � cDD and yA0� cDD are homotopy
equivalent as type D structures over B 0 . Over Z=2Z, this is a standard property of the
box tensor product; see [7, Lemma 2.3.13]. Here, we are working over Z, but we will
only need a simpler version of this result.

6.6.4 Definition Let B and B 0 be differential bigraded algebras over an idempotent
ring I . Let yA and yA0 be differential bigraded right modules over B and let . cDD ; ıDD/

be a rank-one type DD bimodule over B and B 0 . Assume that yA and yA0 are free as
Z–modules, with Z–bases consisting of elements which are bigrading-homogeneous
and have a unique right idempotent. Let ı and ı0 denote the type D structure operations
on yA � cDD and yA0� cDD respectively.

Let F W yA! yA0 be an A1–morphism with Fn D 0 for n> 2. Define a morphism of
type D structures F � idDD from yA � cDD to yA0� cDD , or in other words a map

F � idDD W . yA � cDD /! B 0˝I . yA
0� cDD /;

by the formula

F � idDD WD 1˝F1C � ı .F2˝jidj/ ı .id˝ ıDD/;

where we are identifying yA � cDD with yA and yA0� cDD with yA0 . Recall that

�W yA˝I .B 0/op
! B 0˝I yA

was defined in Definition 6.3.4 and

�W yA0˝I .B 0/op
! B 0˝I yA

0

is defined analogously. The map F � idDD is bigrading-preserving and respects the
actions of I on yA � cDD and yA0� cDD .

6.6.5 Proposition The map F � idDD defined in Definition 6.6.4 is a morphism of
type D structures from yA � cDD to yA0� cDD .
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Proof We want to show that

(6-24) .�1˝jidj/ı.F � idDD/

D .�2˝ id/ı.id˝.F � idDD//ıı�.�2˝ id/ı.id˝ı0/ı.F � idDD/:

The left side of (6-24) is

.�1˝jidj/ı� ı.F2˝jidj/ı.id˝ıDD/D�� ı.F2˝jidj/ı.id˝ id˝�1/ı.id˝ıDD/:

Using the DD bimodule relations for ıDD , we may further rewrite this term as

� ı .F2˝ id/ ı .id˝�1˝ id/ ı .id˝ ıDD/

C � ı .F2˝jidj/ ı .id˝�2˝�2/ ı .id˝ �/ ı .id˝ id˝ ıDD ˝ id/ ı .id˝ ıDD/:

Using the nD 2 and nD 3 A1 consistency conditions for F from Example 6.5.3,
the sum of these two terms is

� ı .F1˝ id/ ı .m2˝ id/ ı .id˝ ıDD/

� � ı .F2˝ id/ ı .id˝jidj˝ id/ ı .id˝ ıDD/ ım1

� � ı .m01˝ id/ ı .F2˝ id/ ı .id˝ ıDD/

� � ı .m02˝ id/ ı .id˝ ıDD/ ıF1

C � ı .F2˝jidj/ ı .m2˝ id˝ id/

ı .id˝ id˝ id˝�2/ ı � ı .id˝ id˝ ıDD ˝ id/ ı .id˝ ıDD/

C .jidj˝ id/ ı � ı .m02˝ id/ ı .F2˝jidj˝ id/

ı .id˝ id˝ id˝�2/ ı � ı .id˝ id˝ ıDD ˝ id/ ı .id˝ ıDD/:

We will refer to these six terms as LHS1 , LHS2 , LHS3 , LHS4 , LHS5 and LHS6 .

The right side of (6-24) is

1˝ .F1 ım1/C � ı .F2˝jidj/ ı .id˝ ıDD/ ım1

C .id˝F1/ ı � ı .m2˝ id/ ı .id˝ ıDD/

C .�2˝ id/ ı .id˝ �/ ı .id˝F2˝jidj/ ı .id˝ id˝ ıDD/

ı � ı .m2˝ id/ ı .id˝ ıDD/

� 1˝ .m01 ıF1/

� � ı .m02˝ id/ ı .id˝ ıDD/ ıF1

� .id˝m01/ ı � ı .F2˝jidj/ ı .id˝ ıDD/

� .�2˝ id/ ı .id˝ �/ ı .id˝m02˝ id/ ı .id˝ id˝ ıDD/

ı � ı .F2˝jidj/ ı .id˝ ıDD/:
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We will refer to these eight terms as RHS1 through RHS8 . We have the following:

� RHS1CRHS5 D 0 by the nD 1 consistency conditions for F .

� LHS1 D RHS3 because F1 is bigrading-preserving.

� LHS2 D RHS2 since

.id˝jidj/ ı ıDD D�.jidj˝ id/ ı ıDD :

� LHS3 D RHS7 .

� LHS4 D RHS6 .

It remains to show that LHS5 D RHS4 and that LHS6 D RHS8 . These claims follow
from direct computation: let ıDD.1/D

P
i bi˝ .b

0
i/

op . The term LHS5 , when applied
to a generator X of yA, givesX
i;j

.�1/.degh b0
i
/.degh bj /.�1/degh b0

i
Cdegh b0

j .�1/.degh XCdegh biCdegh bj�1/.degh b0
i
Cdegh b0

j
/

� b0ib
0
j ˝F2.Xbi ; bj /

D

X
i;j

.�1/.degh X /.degh b0
i
Cdegh b0

j
/C.degh bi /.degh b0

j
/b0ib

0
j ˝F2.Xbi ; bj /:

To see that the second sum is equal to the first, use the fact that degh bi C degh b0i D 1

and degh bj C degh b0j D 1. In particular,

.�1/.degh bi /.degh b0
i
/
D 1 and .�1/.degh bj /.degh b0

j
/
D 1:

Applying the term RHS4 to X givesX
i;j

.�1/.degh XCdegh bi /.degh b0
i
/.�1/degh b0

j .�1/.degh XCdegh biCdegh bj�1/.degh b0
j
/

� b0ib
0
j ˝F2.Xbi ; bj /

D

X
i;j

.�1/.degh X /.degh b0
i
Cdegh b0

j
/C.degh bi /.degh b0

j
/b0ib

0
j ˝F2.Xbi ; bj /:

Thus, LHS5 D RHS4 .

Similarly, applying the term LHS6 to X givesX
i;j

.�1/.degh bj /.degh b0
i
/.�1/degh bj .�1/.degh XCdegh biCdegh bj�1/.degh b0

i
Cdegh b0

j
/

� .�1/degh b0
i
Cdegh b0

j b0ib
0
j ˝F2.Xbi ; bj /

D

X
i;j

�.�1/.degh X /.degh b0
i
Cdegh b0

j
/C.degh b0

i
/.degh b0

j
/b0ib

0
j ˝F2.Xbi ; bj /:
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Applying the term RHS8 to X gives

�

X
i;j

.�1/degh b0
i .�1/.degh XCdegh bi�1/.degh b0

i
/.�1/.degh XCdegh biCdegh bj�1/.degh b0

j
/

� b0ib
0
j ˝F2.Xbi ; bj /

D

X
i;j

�.�1/.degh X /.degh b0
i
Cdegh b0

j
/C.degh b0

i
/.degh b0

j
/b0ib

0
j ˝F2.Xbi ; bj /:

Thus, LHS6 D RHS8 , so F � idDD is a valid morphism of type D structures from
yA� cDD to yA0� cDD .

6.6.6 Proposition If F and G are A1–morphisms from yA to yA0 as described in
Definition 6.6.4, with Fn;Gn D 0 for n> 2 and either F2 D 0 or G2 D 0, then

.G ıF /� idDD D .G � idDD/ ı .F � idDD/:

Proof First, suppose G2 D 0. Then .G ıF /1 D G1 ıF1 and .G ıF /2 D G1 ıF2 .
We have

.G ıF /� idDD D 1˝ .G ıF /1C � ı ..G ıF /2˝jidj/ ı .id˝ ıDD/

D 1˝ .G1 ıF1/C � ı .G1˝ id/ ı .F2˝jidj/ ı .id˝ ıDD/:

On the other hand,

.G � idDD/ ı .F � idDD/

D .�2˝ id/ ı .id˝ .G � idDD// ı .F � idDD/

D .�2˝ id/ ı .id˝ 1˝G1/ ı .1˝F1C � ı .F2˝jidj/ ı .id˝ ıDD//

D 1˝ .G1 ıF1/C .id˝G1/ ı � ı .F2˝jidj/ ı .id˝ ıDD/:

This expression equals .G ıF /� idDD because G1 is bigrading-preserving.

Now suppose instead that F2 D 0. Then .G ıF /1 is still G1 ıF1 , and .G ıF /2 D

G2 ı .F1˝ id/. We have

.G ıF /� idDD D 1˝ .G ıF /1C � ı ..G ıF /2˝jidj/ ı .id˝ ıDD/

D 1˝ .G1 ıF1/C � ı .G2˝jidj/ ı .F1˝ id˝ id/ ı .id˝ ıDD/:

On the other hand,

.G � idDD/ ı .F � idDD/

D .�2˝ id/ ı .id˝ .G � idDD// ı .F � idDD/

D .�2˝ id/ ı .id˝ .1˝G1C � ı .G2˝jidj/ ı .id˝ ıDD/// ı .1˝F1/

D 1˝ .G1 ıF1/C � ı .G2˝jidj/ ı .id˝ ıDD/ ıF1;
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which equals .G ıF /� idDD because

.F1˝ id˝ id/ ı .id˝ ıDD/D .id˝ ıDD/ ıF1:

6.6.7 Proposition As in Proposition 6.6.6, let F and G be A1–morphisms from yA

to yA0 with Fn;GnD 0 for n> 2 (here we do not require that either F2D 0 or G2D 0).
Let H be an A1–homotopy between F and G with Hn D 0 for n> 1. Define

H � idDD WD 1˝H1I

then H � idDD is a homotopy of type D morphisms between F � idDD and G � idDD .

Proof Let ı and ı0 denote the type D operations on yA� cDD and yA0� cDD respectively.
We want to show that

F � idDD �G � idDD D .id˝H1/ ı ıC ı
0
ıH1I

the other term in the type D homotopy relations of Definition 6.6.2 is zero for this
special type of H . Expanding out the left side, we want to show that

1˝F1� 1˝G1C � ı ..F2�G2/˝jidj/ ı .id˝ ıDD/D .id˝H1/ ı ıC ı
0
ıH1:

By Example 6.5.14, the A1–homotopy relations for H give us the following two
equations:

F1�G1 Dm01 ıH1CH1 ım1;

F2�G2 D�m02 ı .H1˝jidj/CH1 ım2:

Thus, the left side of the type D homotopy relation is

1˝ .m01 ıH1/ C 1˝ .H1 ım1/

C � ı ..�m02 ı .H1˝jidj/CH1 ım2/˝jidj/ ı .id˝ ıDD/

D 1˝ .m01 ıH1/ C 1˝ .H1 ım1/� � ı .m
0
2˝ id/ ı .H1˝jidj˝ jidj/ ı .id˝ ıDD/

C �˝ .H1˝jidj/ ı .m2˝ id/ ı .id˝ ıDD/

D 1˝ .m01 ıH1/ C 1˝ .H1 ım1/C � ı .m
0
2˝ id/ ı .H1˝ id˝ id/ ı .id˝ ıDD/

C .id˝H1/ ı � ı .m2˝ id/ ı .id˝ ıDD/

D 1˝ .m01 ıH1/ C 1˝ .H1 ım1/C � ı .m
0
2˝ id/ ı .id˝ ıDD/ ıH1

C .id˝H1/ ı � ı .m2˝ id/ ı .id˝ ıDD/:

On the other hand, using the definition of ı and ı0 in Definition 6.3.4, the right side of
the type D homotopy relation can be expanded out as

1˝ .H1 ım1/C .id˝H1/ ı � ı .m2˝ id/ ı .id˝ ıDD/

C 1˝ .m01 ıH1/C � ı .m
0
2˝ id/ ı .id˝ ıDD/ ıH1
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which is identical to the previous expression after rearranging terms. Thus, H � idDD

is a valid type D homotopy between F � idDD and G � idDD .

6.6.8 Corollary Let B and B 0 be differential bigraded algebras over an idempotent
ring I . Let yA and yA0 be differential bigraded right modules over B and let . cDD ; ıDD/

be a rank-one type DD bimodule over B and B 0 . Assume that yA and yA0 are free as
Z–modules, with Z–bases consisting of elements which are grading-homogeneous and
have a unique right idempotent.

Suppose there exist A1–morphisms F W yA! yA0 and GW yA0! yA with Fn D 0 and
Gn D 0 for n> 2, and such that either F2 D 0 or G2 D 0. Furthermore, suppose that
G ıF is A1–homotopic to id yA via an A1–homotopy H with HnD 0 for n> 1, and
FıG is A1–homotopic to id yA0 via another A1–homotopy H 0 with H 0nD0 for n>1.

Then the type D structures yA� cDD and yA0� cDD over B 0 , defined in Definition 6.3.4,
are homotopy equivalent.

Proof This follows from Proposition 6.6.5, Proposition 6.6.6 and Proposition 6.6.7,
together with the fact that the box tensor product with idDD on morphisms sends
identity morphisms to identity morphisms.

6.6.9 Corollary If T and T 0 are oriented tangle diagrams in R�0˝R which are
related by a Reidemeister move, then yD.ŒT �Kh/ and yD.ŒT 0�Kh/ are homotopy equivalent
as type D structures over m.B/! ˇ B . Thus, they are also homotopy equivalent as
type D structures over the quotient algebra B�n .

Proof The first claim follows from Corollary 6.6.8 and the proof of Corollary 6.5.18,
in which the A1–morphisms F D yA.f / and G D yA.g/ and the A1–homotopy
H D yA. / used to realize the A1–homotopy equivalences satisfy the conditions of
Corollary 6.6.8. The second claim follows from Remark 6.6.3 above.

Corollary 6.6.9 gives us an alternate proof of Roberts [12, Theorem 46].
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