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A homology-valued invariant for trivalent fatgraph spines

YUSUKE KUNO

We introduce an invariant for trivalent fatgraph spines of a once-bordered surface,
which takes values in the first homology of the surface. This invariant is a secondary
object coming from two 1–cocycles on the dual fatgraph complex, one introduced by
Morita and Penner in 2008, and the other by Penner, Turaev and the author in 2013.
We present an explicit formula for this invariant and investigate its properties. We
also show that the mod 2 reduction of the invariant is the difference of two naturally
defined spin structures on the surface.

20F34, 32G15, 57N05

1 Introduction

Let †g;1 be a once-bordered C1–surface of genus g > 0, and let Mg;1 be the
mapping class group of †g;1 relative to the boundary. It is known that the Teichmüller
space T .†g;1/ of †g;1 has an Mg;1–equivariant ideal simplicial decomposition; see
Penner [21]. Taking its dual, one obtains a contractible CW complex yG.†g;1/ on
which Mg;1 acts freely and properly discontinuously. This CW complex is called the
dual fatgraph complex of †g;1 , since its cells are indexed by fatgraph spines of †g;1 ,
which are graphs embedded in the surface satisfying some conditions. Each 0–cell of
yG.†g;1/ corresponds to a trivalent fatgraph spine, and by contracting nonloop edges
we obtain higher-dimensional cells. In particular, each oriented 1–cell of yG.†g;1/

corresponds to a flip (or a Whitehead move) between trivalent fatgraph spines of †g;1 .

This combinatorial structure of the Teichmüller space has a number of applications to
the cohomology of the mapping class group and the moduli space of Riemann surfaces.
See eg Harer [4; 5], Harer and Zagier [6], Penner [20] and Kontsevich [12].

Recently, mainly motivated by the theory of the Johnson homomorphisms (see John-
son [7; 9] and Morita [16]), several authors considered 1–cocycles on yG.†g;1/ with
coefficients in various Mg;1–modules. In 2008, Morita and Penner [18] first gave
such a 1–cocycle j 2 Z1.yG.†g;1/Iƒ

3H /, where ƒ3H is the third exterior power
of the first homology group H D H1.†g;1IZ/. (In fact, they worked with a once-
punctured surface, but their construction works for †g;1 as well.) Being a 1–cocycle on
yG.†g;1/, the cocycle j associates an element of ƒ3H to each flip. Fixing a trivalent
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fatgraph spine of †g;1 , one obtains from j a twisted 1–cocycle on Mg;1 . Morita and
Penner proved that its cohomology class in H 1.Mg;1Iƒ

3H / is six times the extended
first Johnson homomorphism zk discovered by Morita [17]. Similar constructions
are also considered by Bene, Kawazumi and Penner [1] for the second and higher
Johnson homomorphisms, by Massuyeau [14] for Morita’s refinement [16] of the higher
Johnson homomorphisms, and by Kuno, Penner and Turaev [13] for the Earle class
k 2H 1.Mg;1IH /.

We emphasize that these cocycles on yG.†g;1/ are all explicit and simple. In this
way, the Johnson homomorphisms and related objects extend canonically to the
Ptolemy groupoid, the combinatorial fundamental path groupoid of yG.†g;1/; see
Bene, Kawazumi and Penner [1].

It is interesting that there are many ways of constructing cocycle representatives for
the cohomology classes such as zk and k , and that each construction reflects its own
viewpoint for studying the mapping class group. It can happen that two cocycles
constructed differently give the same cohomology class. In such a case, it is quite
natural to compare these cocycles and to expect a secondary object in the background.

We will compare the Morita–Penner cocycle j and the cocycle m 2Z1.yG.†g;1/IH /

which is related to k and considered in Kuno, Penner and Turaev [13]. Contracting the
coefficients by using the intersection pairing on H , one has a natural homomorphism

C W Z1.yG.†g;1/Iƒ
3H /!Z1.yG.†g;1/IH /:

Let j 0 D C ı j . It turns out that there is an Mg;1–equivariant 0–cochain � 2

C 0.yG.†g;1/IH / such that 2j 0�mD ı� (Proposition 3.1). The 0–cochain � assigns
an element �G 2H to each trivalent fatgraph spine G �†g;1 .

We will study the secondary object �G as an H–valued invariant for trivalent fatgraph
spines G �†g;1 . First of all, Theorem 3.4 gives an explicit formula for �G . Based on
this formula, we show in Theorem 5.2 that �G is nontrivial. At the present moment,
we do not have a full understanding of the topological meaning of the invariant �G . In
Theorem 6.7, we give a partial result in this direction by relating the mod 2 reduction
of �G to two naturally defined spin structures on †g;1 . It would be interesting to seek
for or to find an obstruction to an extension of �G to fatgraph spines which are not
necessarily trivalent. In view of the fact that trivalent fatgraph spines correspond to
maximal-dimensional simplices of the ideal simplicial decomposition of T .†g;1/, this
is related to finding a Mg;1–equivariant function on T .†g;1/ which takes values in
H ˝Z RDH1.†g;1IR/.

This paper is organized as follows. In Section 2, we first review the dual fatgraph
complex and in particular describe its 2–skeleton. Then we recall the 1–cocycles j

Algebraic & Geometric Topology, Volume 17 (2017)



A homology-valued invariant for trivalent fatgraph spines 1787

from [18] and m from [13]. Also, we correct an error in [13] about the evaluation of m.
In Section 3, we show the existence and uniqueness of � , and then present an explicit
formula for �G (Theorem 3.4). In Section 4, we show a certain gluing formula for
�G , and then the behavior of �G under a special kind of flip. The latter result makes
it possible to define �G for a trivalent fatgraph spine G of a punctured surface. In
Section 5, we discuss the nontriviality of �G based on its explicit formula. In Section 6,
we construct two spin structures on †g;1 from each trivalent fatgraph spine G �†g;1 .
Then we prove that their difference coincides with the mod 2 reduction of �G . Along
the way we give a combinatorial description of spin structures on †g;1 (Theorem 6.2),
which seems to be new. In the appendix, we consider another spin structure coming
from a naturally defined nonsingular vector field on †g;1 .

Acknowledgements The author would like to thank Robert Penner for helpful remarks
on a description of spin structures on †g;1 in Section 6, Gwénaël Massuyeau for
communicating to him the construction of the vector field XG in the appendix, and
Vladimir Turaev and Nariya Kawazumi for valuable comments to a draft of this paper.
This work is supported by JSPS KAKENHI (no. 26800044).

2 Fatgraph complex and cocycles

We fix some notation about graphs. By a graph we mean a finite CW complex of
dimension one. For a graph G , we denote by V .G/ the set of vertices of G , by
E.G/ the set of edges of G , and by Eori.G/ the set of oriented edges of G . For
v 2 V .G/, we denote by Eori

v .G/ the set of oriented edges pointing toward v . The
number of elements of Eori

v .G/ is called the valency of v . For e 2Eori.G/, we denote
by xe 2Eori.G/ the edge e with reversed orientation. A fatgraph is a graph G endowed
with a cyclic ordering to Eori

v .G/ about each v 2 V .G/.

Let †g;1 be a compact connected oriented C1–surface of genus g > 0 with one
boundary component. We fix two distinct points p and q on the boundary @†g;1 .

Definition 2.1 An embedding �W G ,! †g;1 of a fatgraph G into †g;1 is called a
fatgraph spine of †g;1 if the following conditions are satisfied:

(1) The map � is a homotopy equivalence.

(2) For any v 2 V .G/, the cyclic ordering given to Eori
v .G/ is compatible with the

orientation of †g;1 .

(3) We have �.G/\ @†g;1 D fpg and ��1.p/ is a unique univalent vertex of G .
The other vertices have valencies greater than 2.
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The unique edge connected to ��1.p/ is called the tail of G . We consider fatgraph
spines up to isotopies relative to @†g;1 . If there is no danger of confusion, we identify G

with �.G/, and write G instead of �W G ,! †g;1 . We denote by V int.G/ the set of
nonunivalent vertices of G . We say that G is trivalent if the valency of any nonunivalent
vertex of G is 3.

Fatgraph spines appear naturally in the combinatorial description of the Teichmüller
space of a punctured or bordered surface. This was first shown for punctured surfaces
by Harer and Mumford [5] and Thurston from the holomorphic point of view based
on a work by Strebel [24], and by Penner [19] and Bowditch and Epstein [2] from the
point of view of hyperbolic geometry.

In this paper, we work mainly with the once-bordered surface †g;1 . For definiteness, let
us define the Teichmüller space T .†g;1/ as the space of Riemannian metric on †g;1 of
constant Gaussian curvature �1 with geodesic boundary, modulo pullback of the metric
by self-diffeomorphisms of †g;1 fixing q which are isotopic to the identity relative
to q . Let Mg;1 be the mapping class group of †g;1 relative to @†g;1 . Namely, Mg;1

is the group of self-diffeomorphisms of †g;1 fixing the boundary @†g;1 pointwise,
modulo isotopies fixing @†g;1 pointwise. Note that Mg;1 is identified with the group
of connected components of the group of self-diffeomorphisms of †g;1 fixing q . Then
pullback of the metric induces an action of Mg;1 on T .†g;1/. This action is known
to be free and properly discontinuous.

Theorem 2.2 (Penner [21]) There is an Mg;1–equivariant ideal simplicial decompo-
sition of T .†g;1/ with the following properties:

� Each simplex corresponds to a fatgraph spine of †g;1 .

� The face relation between simplices corresponds to the contraction of a nonloop
edge of a fatgraph spine.

Let yG.†g;1/ be the dual of this ideal simplicial decomposition. This is an honest CW
complex of dimension 4g� 2. We call yG.†g;1/ the dual fatgraph complex of †g;1 .
Note that there is a natural cellular action of the mapping class group Mg;1 on yG.†g;1/.
In fact, there is an Mg;1–equivariant deformation retract of T .†g;1/ onto yG.†g;1/;
see [22].

The 2–skeleton of yG.†g;1/ is described as follows:

� Each 0–cell corresponds to a trivalent fatgraph spine of †g;1 .

� Each 1–cell corresponds to a fatgraph spine G , where G has a unique 4–valent
vertex and the other nonunivalent vertices have valency 3.
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÷

We

a

bc

d

e

a

bc

d

e0

Figure 1: The flip along e applied to G (left) produces G0 (right)

� Each oriented 1–cell corresponds to a flip (or a Whitehead move) between
trivalent fatgraph spines. Here, if e is a nontail edge of a trivalent fatgraph spine,
collapsing e and expanding the resulting 4–valent vertex to the unique distinct
direction, one produces another trivalent fatgraph spine. We call this move a
flip along e , and denote it by We . See Figure 1. If G0 is obtained from G

by a flip W DWe , we write it as G W
�!G0 . There is a natural bijection from

E.G/ to E.G0/ which restricts to an obvious identification of E.G/ n feg with
E.G0/nfe0g. For this reason, we often use the same letter for edges of G and G0

corresponding to each other via this bijection.

� Each 2–cell corresponds to a fatgraph spine G , where either G has a unique
5–valent vertex and the other nonunivalent vertices have valency 3, or G has
two 4–valent vertices and the other nonunivalent vertices have valency 3.

Let G and G0 be trivalent fatgraph spines. Since yG.†g;1/ is connected, there is a finite
sequence of flips

G DG0

W1
��!G1

W2
��!G2

W3
��! � � �

Wm
��!Gm DG0

from G to G0 . This sequence is not uniquely determined, but any two such sequences
are related to each other by the following three types of relations among flips:

(1) Involutivity relation We0 ıWe D 1 in the notation of Figure 1.

(2) Commutativity relation We1
ıWe2

DWe2
ıWe1

if e1 and e2 share no vertices.

(3) Pentagon relation Wf4
ıWg3

ıWf2
ıWg1

ıWf D 1 in the notation of Figure 2.

Here, we read composition of flips from right to left. The relations (2) and (3) come
from the boundaries of 2–cells of yG.†g;1/.

There is a construction of twisted 1–cocycles on the mapping class group using the
fatgraph complex appeared first in [18]. Let M be a (left) Mg;1–module. By definition,
a cellular 1–cochain c on yG.†g;1/ with values in M is an assignment of an element
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Figure 2: Pentagon relation

of M to each flip W satisfying c.We0/D�c.We/ for any pair of flips We and We0

as in Figure 1. Such a c is a 1–cocycle if it satisfies both the commutative equation

c.We1
/C c.We2

/D c.We2
/C c.We1

/;

where e1 and e2 are any edges on a trivalent fatgraph spine sharing no vertices, and
the pentagon equation

c.Wf4
/C c.Wg3

/C c.Wf2
/C c.Wg1

/C c.Wf /D 0

for any 5–tuple of flips as in Figure 2.

Now we assume that c is a 1–cocycle and is Mg;1–equivariant in the sense that
' � c.W /D c.'W / for any flip W and ' 2Mg;1 . Fix a trivalent fatgraph spine G .
For ' 2Mg;1 , taking a sequence of flips

G DG0

W1
��!G1

W2
��!G2

W3
��! � � �

Wm
��!Gm D '.G/

from G to '.G/, we set

cG.'/ WD

mX
iD1

c.Wi/ 2M:

Since c is a 1–cocycle, this value does not depend on the choice of the sequence. The
map cG WMg;1!M is a twisted 1–cocycle. In fact, for '; 2Mg;1 , take a sequence
of flips from G to '.G/, and one from G to  .G/. Then the first sequence followed
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by application of ' to the second is a sequence of flips from G to ' .G/. Since c is
Mg;1–equivariant, we obtain the cocycle condition

cG.' /D cG.'/C' � cG. /:

It is easy to see that the cohomology class ŒcG � 2H 1.Mg;1IM / does not depend on
the choice of G .

Here we record an elementary fact which will be used later.

Lemma 2.3 Let M be an Mg;1–module and suppose that c is an Mg;1–equivariant
cellular 1–cocycle on yG.†g;1/ with values in M . Then for any trivalent fatgraph
spine G and any '; 2Mg;1 , we have

cG. /C c .G/.'/D cG.'/C' � cG. /:

Proof Consider a sequence of flips from G to  .G/ and one from  .G/ to ' .G/.
The composition of these sequences is a sequence from G to ' .G/, and thus we
obtain cG.' / D cG. /C c .G/.'/. On the other hand, by the cocycle condition
for cG , we have cG.' /D cG.'/C' � cG. /.

We denote by H DH1.†g;1IZ/ the first integral homology group of †g;1 . Before
giving examples of Mg;1–equivariant cellular 1–cochains on yG.†g;1/, we recall
from [18] homology markings for edges of fatgraph spines. Let G be a (not necessarily
trivalent) fatgraph spine of †g;1 . For e 2Eori.G/, there is an oriented simple loop ye
on †g;1 satisfying the following two conditions:

� The loop ye intersects G once transversely at the middle point of e .

� The ordered pair of the velocity vectors of ye and e at their intersection is
compatible with the orientation of †g;1 .

Since the surface obtained from †g;1 by cutting along G is a disk, the homotopy class
of such an ye is unique. We define �.e/ 2H to be the homology class of ye and call it
the homology marking of e . The map �W Eori.G/!H has the following properties:

(1) For any e 2Eori.G/, we have �.xe/D��.e/.

(2) The set f�.e/ge2Eori.G/ generates H .

(3) For any v 2 V .G/, we have X
e2Eori

v .G/

�.e/D 0:
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For example, in the notation of the left part of Figure 1, where we orient edges a; b; c; d

as indicated, we have �.a/C�.b/C�.c/C�.d/D 0.

In what follows, we consider Mg;1–modules such as H and its third exterior power ƒ3H .
There is a twisted cohomology class zk 2H 1

�
Mg;1I

1
2
ƒ3H

�
called the extended first

Johnson homomorphism [17]. Here, 1
2
ƒ3H D

˚
1
2
u 2ƒ3.H˝Z Q/ j u 2ƒ3H

	
, where

we take the canonical embedding H !H ˝Z Q, x 7! x˝ 1. This cohomology class
has a fundamental importance in the study of the cohomology of the mapping class
group; see [11].

Theorem 2.4 (Morita and Penner [18]) Keep the notation in Figure 1. For the flip We ,
set

j .We/D �.a/^�.b/^�.c/ 2ƒ
3H:

Then j is an Mg;1–equivariant 1–cocycle on yG.†g;1/, and ŒjG �D 6zk .

Using the intersection pairing . � / on the homology, we define an Sp.H /–equivariant
map

C W ƒ3H !H; x ^y ^ z 7! .x �y/zC .y � z/xC .z �x/y

called the contraction. Morita [15] showed that if g� 2, the twisted cohomology group
H 1.Mg;1IH / is infinite cyclic. As is remarked in [17], the element k WD C.2zk/ is a
generator of this cohomology group. Since Earle [3] first gave a cocycle representative
for k , we call k the Earle class; see [10]. The restriction of k to the Torelli subgroup
of Mg;1 is called the Chillingworth homomorphism; see [7, Section 5].

Theorem 2.5 (Kuno, Penner and Turaev [13]) Keep the notation in Figure 1. For the
flip We , set

m.We/D �.a/C�.c/ 2H:

Then m is an Mg;1–equivariant 1–cocycle on yG.†g;1/, and ŒmG �D 6k .

Here we correct an error in [13]. Let 'BP D ' be the torus BP map in [13, Figure 3],
which was first considered in [18]. In [13, Lemma 1], it was asserted that m.'BP/D 4a,
but this is not true. More precisely, in the proof of the lemma, we computed the con-
tribution of the second Dehn twist (5 flips) as �4a, but this should be corrected to 4a.

Lemma 2.6 (correction of [13, Lemma 1]) Let 'BP be the torus BP map as above.
Then m.'BP/D 12�.a/.

In [13, Theorem 6], it is asserted that ŒmG �D�2k , but this should be corrected as in
Theorem 2.5 above.
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3 A secondary invariant

We consider the cocycle j 0DC ıj . For the flip We in the notation of Figure 1, we have

j 0.We/D .a � b/�.c/C .b � c/�.a/C .c � a/�.b/ 2H:

Here and throughout the paper, we write eg .a�b/ instead of .�.a/��.b// for simplicity.
By Theorems 2.4 and 2.5, for any trivalent fatgraph spine G , we have

2Œj 0G �D ŒmG �D 6k:

Therefore, there exists an element �G 2 H such that 2j 0
G
�mG D ı�G . Here the

symbol ı in the right-hand side means the coboundary map in the standard cochain
complex of Mg;1 with coefficients in H . Explicitly, we have .ı�G/.'/D' ��G��G for
any ' 2Mg;1 . Such a �G is unique since only 0 is Mg;1–invariant in H . We regard
the collection � D f�GgG as a cellular 0–cochain of yG.†g;1/ with coefficients in H .

Proposition 3.1 (1) The 0–cochain � is Mg;1–equivariant in the sense that � .G/D
 � �G for any  2Mg;1 and any trivalent fatgraph spine G .

(2) We have 2j 0 �m D ı� . Namely, for any flip G W
�!G0 , we have �G0 � �G D

2j 0.W /�m.W /.

Moreover, these two properties characterize � .

Proof (1) For simplicity we write s D 2j 0 �m. Take ' 2Mg;1 . Using sG.'/D

ı�G.'/D ' � �G � �G , etc, we compute from Lemma 2.3 that

s .G/.'/D sG.'/C' � sG. /� sG. /

D ' � �G � �G C' � . � �G � �G/� . � �G � �G/

D ' � . � �G/� � �G

D ı. � �G/.'/:

This proves s .G/ D ı. � �G/. By the uniqueness of � .G/ , it follows that � .G/ D
 � �G .

(2) This follows from sG.'/C ' � s.W /D s.W /C sG0.'/ analogously, and so we
omit the details.

Finally, suppose that �0 is an Mg;1–equivariant 0–cochain satisfying 2j 0�mD ı�0 .
Then ���0 is an Mg;1–equivariant 0–cocycle. This shows that � WD �.G/��0.G/2H

is independent of G and ' � �D � for any ' 2Mg;1 . Therefore � must be zero and
�0 D � .
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Figure 3: A vertex of type 1 (left) and a vertex of type 2 (right)

Let G be a trivalent fatgraph spine of †g;1 . We present an explicit formula for �G .
To begin with, we introduce a total ordering for Eori.G/. Note that if we cut †g;1

along G , we obtain an oriented closed disk DG .

Definition 3.2 (1) For e; e0 2 Eori.G/, we say e � e0 if the edge e occurs first
when we go clockwise along the boundary of DG from p .

(2) Let e 2Eori.G/. We say that e has the preferred orientation (or e is preferably
oriented) if e � xe .

Note that any unoriented edge of G has a unique preferred orientation.

Let v 2 V int.G/. We name the three elements of Eori
v .G/ as e1; e2 and e3 so that

(1) e1 � e2 and e1 � e3 , and

(2) the edge e2 is next to e1 in the cyclic ordering given to Eori
v .G/.

There are two possibilities for the ordering of ei and its inverse xei , namely,

e1 � xe2 � e2 � xe3 � e3 � xe1 and e1 � xe2 � e3 � xe1 � e2 � xe3:

The vertex v is said to be of type 1 if the former case happens, and is said to be of
type 2 otherwise. Figure 3 is an illustration of the situation.

We can count the number of vertices of type 1 and the number of type 2.

Proposition 3.3 For any trivalent fatgraph spine G of †g;1 , the number of trivalent
vertices of type 1 is 2g� 1, and that of type 2 is 2g .
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Figure 4: The case where a� c � b � d

Proof For i D 1; 2, let Vi be the number of trivalent vertices of type i . Since the
number of trivalent vertices of G is 4g� 1, we have V1CV2 D 4g� 1. We observe
that if a trivalent vertex v is of type i (i D 1; 2), the number of preferably oriented
edges toward v is i . Thus V1C 2V2 is equal to the number of edges of G , ie 6g� 1.
Hence we obtain V1 D 2g� 1 and V2 D 2g .

We set �
ev D e2 and fv D e3 if v is of type 1;
ev D e1 and fv D e3 if v is of type 2:

Theorem 3.4 We have
�G D

X
v

.�.ev/��.fv//;

where the sum is taken over all trivalent vertices of G .

Proof We set �0
G
D
P
v.�.ev/� �.fv// and consider the collection �0 D f�0

G
gG .

Clearly, �0 is Mg;1–equivariant. By Proposition 3.1, it is sufficient to prove that
2j 0�mD ı�0 .

Take the notation as in Figure 1. For example, assume that a � c � b � d . For
simplicity, we write e instead of �.e/ for e 2Eori.G/. Then we can see from the left
part of Figure 4 that .a � b/D .c � a/D 0 and .b � c/D 1, and so j 0.We/D a. Thus
2j 0.We/�m.We/D 2a� .aC c/D a� c . On the other hand, we can compute from
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I: a � b � c � d II: a � b � d � c

III: a � c � b � d IV: a � c � d � b

V: a � d � b � c VI: a � d � c � b

Figure 5: Situations near e

the right part of Figure 4 that

�0
G0 � �

0
G D .ev0

1
�fv0

1
/C .ev0

2
�fv0

2
/� .ev1

�fv1
/� .ev2

�fv2
/

D .aC d � c/C .bC c � d/� .b� .cC d//� .c � .aC b//

D 2aC bC d D 2aC bC .�a� b� c/D a� c:

We can compute similarly for other cases as well, and we obtain 2j 0.We/�m.We/D

�0
G0 � �

0
G

. (There are essentially six cases to consider; in each case in Figure 5, we may
assume that G corresponds to the left picture.) Hence 2j 0�mD ı�0 , as required.

Example 3.5 Let G be the fatgraph as shown in Figure 6. We name edges as in the
figure and give them the preferred orientation. For 1 � i � g and 1 � j � 3, let
v

j
i 2 V int.G/ be the start point of e

j
i . For 1 � i � g � 1, let v4

i 2 V int.G/ be the
endpoint of e4

i .

Since v1
i is of type 1, its contribution is �.xe1

i /��.xe
4
i /D �.e

4
i /��.e

1
i /. Since v2

i is
of type 2, its contribution is �.e1

i /��.e
3
i /. Since v3

i is of type 2, its contribution is
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� � � e1
1

e2
1

e3
1

e4
1

e5
1

e0
g e0

2
e0

g�1 � � � e0
1

e1
g�1

e2
g�1

e3
g�1

e4
g�1

e5
g�1

e4
g

e3
g

e2
g

e1
g

Figure 6: The fatgraph in Example 3.5

�.e2
i /��.e

5
i /. Here we understand that e5

gD e4
g . Since v4

i is of type 1, its contribution
is �.xe5

i /��.xe
0
iC1

/D �.e0
iC1

/��.e5
i /.

Moreover, we have �.e0
i /D0, �.e1

i /C�.e
3
i /D�.e

2
i /, and �.e4

i /D�.e
5
i /D��.e

1
i /.

Using these relations, we obtain

�G D �.e
1
g/C

g�1X
iD1

2�.e1
i /:

4 Elementary properties

In this section, we record two elementary properties of �G .

We first show a certain gluing formula. Let g and g0 be positive integers, and suppose
that we have two trivalent fatgraph spines �W G ,! †g;1 and �0W G0 ,! †g0;1 . Fix
e 2Eori.G/. Plugging the tail of G0 in the right side of e , one produces a new fatgraph
spine of †gCg0;1 . A precise construction is as follows. Let ve be the middle point
of e .

(1) Take a small closed disk De in †g;1 such that Int.De/\G D∅, the boundary
@De intersects G once at ve , and the center of De is on the right side of e with
respect to the orientation of e .

(2) Glue †g;1 n Int.De/ with †g0;1 along the boundaries @De and @†g0;1 so that
the univalent vertex of G0 is identified with ve .

(3) Let G00 be the union of the images of G and G0 in the result of gluing.

The glued surface is diffeomorphic to †gCg0;1 . We consider G00 as a trivalent fatgraph
spine of †gCg0;1 by dividing e into two edges sharing the newly created trivalent
vertex ve . These two edges receive their orientation from e . We name them as
e1; e2 2Eori.G00/ so that ve is the endpoint of e1 . The edges e1 and e2 have the same
homology marking as e .

A schematic figure of this construction is Figure 7. We call G00 the gluing of G and G0

at e . Note that the inclusions †g;1nInt.De/ ,!†gCg0;1 and †g0;1 ,!†gCg0;1 induce

Algebraic & Geometric Topology, Volume 17 (2017)



1798 Yusuke Kuno

G0

e

e2

e1

ve

G G00

Figure 7: Gluing

a direct sum decomposition

(4-1) H1.†gCg0;1IZ/ŠH1.†g;1IZ/˚H1.†g0;1IZ/:

Proposition 4.1 (gluing formula) Let G00 be the gluing of G and G0 at e , as above.
Then �G00 D �G C�.e/C �G0 .

Proof We have a natural identification V int.G00/ŠV int.G/tfvegtV int.G0/. Observe
that this identification respects the type of vertices. With the direct sum decomposition
(4-1) in mind, we see that V int.G/ and V int.G0/ contribute to �G00 as �G and �G0 ,
respectively.

We compute the contribution from ve . Let t 0 2Eori
ve
.G00/ be an edge coming from the

tail of G0 . The homology marking of t 0 is trivial. Then the contribution from ve is
�.t 0/��.xe2/D �.e/ if e has the preferred orientation, and is �.e1/��.t

0/D �.e/

otherwise. This completes the proof.

We next show a formula describing how �G changes under a special kind of flip. For a
trivalent fatgraph spine G �†g;1 , we use the following notation:

� We denote by t the tail of G , and give it the preferred orientation.

� e1 2Eori.G/ is the oriented edge next to t in the total ordering given to Eori.G/.

� v1 and v2 are the start and end points of e1 , respectively.

� b; c 2Eori
v2
.G/ are the edges such that e1 , b and c are in this order in the cyclic

ordering given to Eori
v2
.G/.

The situation is illustrated in Figure 8. We call the flip along (the unoriented edge
underlying) e1 the tail slide to G .

Proposition 4.2 (tail slide formula) Let G0 be the result of the tail slide to G . Then
�G0 D �G C�.c/.
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e1

c

bb

t

v1

v2 v0

1

v0

2

c

Figure 8: The tail slide applied to G (left) gives G0 (right)

Proof We work with Figure 8. Suppose b � c in Eori.G/. For simplicity, we write e

instead of �.e/ for e 2Eori.G/. Then we compute

�G0 � �G D .ev0
1
�fv0

1
/C .ev0

2
�fv0

2
/� .ev1

�fv1
/� .ev2

�fv2
/

D .b� .�b//C .c � .�b� c//� .bC c � .�b� c//� .b� c/

D c:

The case where c � b can be computed similarly.

As an application of Proposition 4.2, we can extend the definition of our invariant to
trivalent fatgraph spines of a once-punctured surface. Let †1

g be a surface obtained
from †g;1 by gluing a once-punctured disk along the boundaries. We regard †g;1 as
a subset of †1

g . By definition, a fatgraph spine of †1
g is an embedding �W G ,!†1

g of
a fatgraph G into †1

g satisfying the first two conditions in Definition 2.1 (with †g;1

replaced by †1
g ), and the condition that all vertices have valency greater than 2.

Let G be a trivalent fatgraph spine of †1
g . By a suitable isotopy, we arrange that

G �†g;1 . Let e 2Eori.G/. Take a simple arc ` on †g;1 starting from p , reaching ve

from the right, and disjoint from Gnfveg. We say that such an arc ` is admissible for e .
Regarding ve as a newly created trivalent vertex, we can consider the union zG.e; `/D
G [ ` as a trivalent fatgraph spine of †g;1 . The arc ` becomes the tail of zG.e; `/.

Corollary 4.3 Keep the notation as above. Then the element � zG.e;`/��.e/ does not
depend on the choice of e and `. In particular, for a trivalent fatgraph spine G �†1

g ,
we can define �G 2H DH1.†g;1IZ/ŠH1.†

1
gIZ/ as

�G WD � zG.e;`/��.e/:

Proof Let `0 be another admissible arc for e . Then `0 is isotopic to the concatenation
of some power of a simple based loop parallel to @†g;1 and `. This implies that
zG.e; `0/ is obtained from zG.e; `/ by application of some power of the Dehn twist
along @†g;1 . Since the Dehn twist along @†g;1 acts on H trivially, we have � zG.e;`/D
� zG.e;`0/

. Hence � zG.e;`/��.e/ does not depend on the choice of `.

Now, we can give a cyclic ordering to the set Eori.G/ in a way similar to that in the
case where G�†g;1 as in Definition 3.2. Suppose that e; e0 2Eori.G/ are consecutive
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in this cyclic ordering. Fix an admissible arc ` for e . Let v0 be the vertex of G shared
by e and e0 , and let c 2Eori

v0
.G/ be an edge other than e and xe0 . We denote by e0 an

unoriented edge of zG.e; `/ with endpoints ve and v0 .

Let zG0 be the result of flip along e0 . Then zG0 can be identified with zG.e0; `0/, where
`0 corresponds to the tail of zG0 . By Proposition 4.2, we have � zG.e0;`0/

D � zG.e;`/C�.c/.
Since �.c/C �.e/ D �.e0/, we obtain � zG.e0;`0/

� �.e0/ D � zG.e;`/ � �.e/. Hence
� zG.e;`/��.e/ does not depend on the choice of e either.

5 Nontriviality and primitivity

Let us consider the mod 2 reduction of �G :

�2
G WD �G ˝ .1 mod 2/ 2H ˝Z2 ŠH1.†g;1IZ2/:

Hereafter, � stands for an equality in H ˝ Z2 . Since �.xe/ D ��.e/ � �.e/ 2

H ˝Z2 for any e 2Eori.G/, the homology marking � induces a well-defined map
�2W E.G/!H ˝Z2 . We call �2 the mod 2 homology marking.

Proposition 5.1 Let G be a trivalent fatgraph spine of †g;1 . Then we have

�2
G D

X
e2E.G/

�2.e/:

Proof Let v 2 V int.G/. We work with Figure 3 and count preferably oriented edges
toward v . By abuse of notation, we use the same letter for an oriented edge and its
underlying unoriented edge. If v is of type 1, only e1 has the preferred orientation.
Since �.e1/C�.e2/C�.e3/D 0, we have

�.ev/��.fv/D �.e2/��.e3/� �.e1/:

If v is of type 2, e1 and e3 have the preferred orientation and e2 does not. Then we
have

�.ev/��.fv/D �.e1/��.e3/� �.e1/C�.e3/:

Therefore, we have

�2
G D

X
v2V int.G/

�
sum of the mod 2 homology markings
of preferably oriented edges toward v

�
D

X
e2E.G/

�2.e/:

The last equality holds since any preferably oriented edge of G points to some trivalent
vertex of G .

Theorem 5.2 Let G be a trivalent fatgraph spine of †g;1 . Then the mod 2 reduction
�2

G
is nontrivial. In particular, we have �G ¤ 0.
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To prove this theorem, we need the following lemma.

Lemma 5.3 Let G be a trivalent fatgraph spine of †g;1 . Then G contains an edge
cycle of odd length.

Proof We introduce some terminology: a pair of consecutive oriented edges of G is
called a corner of G . There are 3 #V int.G/D 3.4g� 1/ corners. We number them as
c1; : : : ; c3.4g�1/ , so that c1 contains the preferably oriented tail of G , and for each i ,
ci and ciC1 share an oriented edge in common. There are no WD 6g�1 odd-numbered
corners, and ne WD 6g� 2 even-numbered corners.

Since no and ne are not divisible by 3, there exist distinct indices i and j with
1 � i < j � 3.4g � 1/ such that the corners ci and cj are around the same vertex
and i � j � 1 mod 2. We can write ci and cj as ci D .ei ; e

0
i/ and cj D .ej ; e

0
j / with

ei � e0i and ej � e0j . Consider the edge cycle following consecutive oriented edges
of G from e0i to ej . Since i and j have different parity, the length of this edge cycle
must be odd.

Proof of Theorem 5.2 By Lemma 5.3, G contains an edge cycle  of odd length.
By Proposition 5.1, the mod 2 intersection pairing of �2

G
and  is computed as

.�2
G �  /D

� X
e2E.G/

�2.e/ � 

�
D .length of  /D 1:

Therefore, �2
G
¤ 0.

Remark 5.4 As far as we observed, �G seems to be a primitive element of H for any
trivalent fatgraph spine G �†g;1 . Here, an element x 2H is called primitive if there
do not exist m 2Z and y 2H such that jmj � 2 and x Dmy . This primitivity of �G
holds for g � 2. In fact, there is only one combinatorial isomorphism class of trivalent
fatgraph spines for gD 1, and there are 105 classes for gD 2. By a direct computation,
we can show the primitivity of �G for these cases. The case g � 3 remains open.

In the case of trivalent fatgraph spines of a once-punctured surface †1
g , it can happen

that �G D 0. Two examples for g D 2 are given in Figure 9.

Let G be a trivalent fatgraph spine of †1
g . A corner of G is a pair of consecutive oriented

edges of G in the cyclic ordering given to Eori.G/ (see the proof of Corollary 4.3).
Now we give labels ˛ or ˇ to each corner of G so that any pair of consecutive corners
of G have distinct labels. Since the number of corners of G is even, this labeling is
always possible and is determined once we choose the label of a fixed corner.
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Figure 9: Trivalent fatgraph spines with �G D 0

Figure 10: A balanced trivalent fatgraph spine with �G ¤ 0

We say that G is balanced if for any vertex of G , the three corners around the vertex
have the same label. For example, trivalent fatgraph spines in Figure 9 and Figure 10
are balanced.

Theorem 5.5 Let G be a trivalent fatgraph spine of †1
g . Then the mod 2 reduction

�2
G
D �G ˝ .1 mod 2/ is trivial if and only if G is balanced.

Proof Pick a corner c of G and write it as c D .e; e0/, where e0 is next to e in the
cyclic ordering given to Eori.G/. We give the label ˛ to c and extend this labeling to
all other corners as above. Take an admissible arc ` for e and set zG D zG.e; `/. The
oriented edge e is split at the middle point ve into two oriented edges. We name them
as e1; e2 2Eori. zG/ so that ve is the endpoint of e1 . We extend the labeling of corners
of G to that of corners of zG by giving ˛ to .e1; x̀/ and .xe2; xe1/, and ˇ to .`; e2/.

In view of Corollary 4.3, the condition �2
G
D 0 is equivalent to �2

zG
D �2.e2/. Further-

more, since the mod 2 homology markings f�2.f /g
f 2E. zG/

generate the mod 2 ho-
mology H1.†g;1IZ2/, this condition is equivalent to the condition that .�2

zG
��2.f //D

.�2.e2/ ��
2.f // for any f 2E. zG/.

Assume that G is balanced. For any vertex of zG other than ve , the three corners
about it are labeled by the same symbol. Let f 2E. zG/. Let  .f / be the edge cycle
following consecutive oriented edges of zG from f to xf , where we give the preferred
orientation to f . The mod 2 homology class �2.f / is represented by  .f /. By
the property of the labeling, the length of this edge cycle is odd if f � xe2 �

xf (this
also implies f ¤ e2 ), and is even otherwise. Note that the condition f � xe2 �

xf is
equivalent to .�2.e2/ ��

2.f //D 1. Hence .�2
zG
��2.f //D .the length of  .f //D 1

if and only if .�2.e2/ ��
2.f //D 1. Therefore, �2

G
D 0.
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On the other hand, assume that �2
G
D 0. Then for f 2 E. zG/, the length of  .f / is

odd if and only if f � xe2 �
xf . Now we remove the tail from zG and go back to G .

Then  .f / is reduced to an edge cycle of G . Its length is 1 less than the length of
 .f / if f � xe2 �

xf , and is the same as the length of  .f / otherwise. This implies
that the reduced edge cycle of G has even length. Since f can be arbitrary, this shows
that G is balanced.

6 Mod 2 reduction and spin structures

In this section, we give a topological interpretation of the mod 2 reduction �2
G

. We
start with the following description of the mod 2 homology of †g;1 .

Lemma 6.1 Let G be a fatgraph spine of †g;1 . For v 2 V int.G/, let fevi gi be the set
of unoriented edges of G having v as an endpoint. If there is an edge loop based at v ,
we count it twice. Then the mod 2 homology marking induces an isomorphism

H1.†g;1IZ2/Š
M

e2E.G/

Z2e
. X
v2V int.G/

Z2

�X
i

evi

�
:

Proof Recall from Section 2 that we associate an oriented simple loop ye to each
(oriented) edge e . In the proof of this lemma we forget the orientation of e and ye .
We can arrange that the simple loops fyege2E.G/ share only one point q 2 @†g;1 , and
that if t is the tail of G then yt D @†g;1 with basepoint q . Then we obtain a cell
decomposition of †g;1 whose 1–cells coincide with fyege2E.G/ . Now the right-hand
side of the assertion can be identified with the first mod 2 cellular homology group of
this cell decomposition.

Recall that a spin structure on †g;1 is an element w 2 H 1.UT†g;1IZ2/, where
UT†g;1 is the unit tangent bundle of †g;1 (with respect to some Riemannian metric),
such that the restriction of w to a fiber of the projection UT†g;1!†g;1 is nontrivial.
As Johnson [8] showed, the set of spin structures on †g;1 is naturally identified with
the set of quadratic forms on H1.†g;1IZ2/. Here, a map qW H1.†g;1IZ2/! Z2 is
called a quadratic form on H1.†g;1IZ2/ if it satisfies

q.xCy/D q.x/C q.y/C .x �y/

for any x;y 2 H1.†g;1IZ2/. The set of spin structures on †g;1 is a torsor un-
der the action of H 1.†g;1IZ2/. In other words, the difference between two qua-
dratic forms on H1.†g;1IZ2/ can be written as a uniquely determined element of
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Hom.H1.†g;1IZ2/;Z2/ Š H 1.†g;1IZ2/. Note that, using the mod 2 intersection
pairing, we have a natural isomorphism

(6-1) H1.†g;1IZ2/Š Hom.H1.†g;1IZ2/;Z2/; x 7! Œy 7! .x �y/�:

In what follows, G is a trivalent fatgraph spine of †g;1 . The following result gives an
identification of certain Z2–valued functions on E.G/ with the set of quadratic forms
on H1.†g;1IZ2/, thus with the set of spin structures on †g;1 via Johnson’s result
stated above.

Theorem 6.2 Let G be a trivalent fatgraph spine of †g;1 . Let Q.G/ be the set of
maps qW E.G/!Z2 such that, for any v 2V int.G/, the sum of values of q at the three
edges having v as an endpoint is 0 if v is of type 1, and is 1 if v is of type 2. Then
there is a natural bijection from Q.G/ to the set of quadratic forms on H1.†g;1IZ2/.

Proof Given a map qW E.G/!Z2 , we extend q to a map from the free Z2–module
generated by E.G/ by

(6-2) q

� X
e2E.G/

mee

�
WD

X
e2E.G/

meq.e/C
X
e�e0

meme0.�2.e/ ��2.e0//;

for me 2 Z2 , e 2E.G/. Here . � / is the mod 2 intersection pairing and we give the
preferred orientation to each element of E.G/. By a direct computation, we can check
that, for any x;y 2

L
e2E.G/Z2e ,

(6-3) q.xCy/D q.x/C q.y/C .x �y/:

Here .x �y/ is the mod 2 intersection pairing of the homology class determined by x

and y through the isomorphism in Lemma 6.1.

We claim that if q 2Q.G/, then for any v 2 V int.G/,

q.ev1 C ev2 C ev3/D 0:

By (6-2), this condition is equivalent to the equality

(6-4)
3X

iD1

q.evi /C .�
2.ev1/ ��

2.ev2//C .�
2.ev1/ ��

2.ev3//C .�
2.ev2/ ��

2.ev3//D 0:

If v is of type 1, then .�2.evi / ��
2.evj //D 0 for any 1� i; j � 3. If v is of type 2, then

.�2.evi / ��
2.evj //D 1 for any 1� i; j � 3 with i ¤ j . See Figure 3. Therefore, the

condition (6-4) is exactly equivalent to the condition for q being an element of Q.G/.
This proves the claim.
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By the claim, Lemma 6.1 and (6-3), it follows that the map q induces a quadratic
form on H1.†g;1IZ2/. The above construction gives a map from Q.G/ to the set of
quadratic forms on H1.†g;1IZ2/, and the inverse of this map is given by composing
any quadratic form on H1.†g;1IZ2/ with the mod 2 homology marking �2W E.G/!

H1.†g;1IZ2/.

We record how the set Q.G/ changes under a flip.

Proposition 6.3 Let W D We be a flip from G to G0 . Then the bijection in
Theorem 6.2 induces a bijection from Q.G/ to Q.G0/, which maps a given q 2Q.G/

to the element q0 2Q.G0/ defined as follows:

� For any edge f in E.G0/ n fe0g ŠE.G/ n feg, we have q0.f /D q.f /.

� We adopt the notation in Figure 5, and assume that in each case G and G0

correspond to the left and right pictures, respectively. Then the value q0.e0/ is
given by the following formula:

IW q0.e0/D q.b/C q.c/D q.a/C q.d/;

IIW q0.e0/D q.b/C q.c/D q.a/C q.d/C 1;

IIIW q0.e0/D q.b/C q.c/C 1D q.a/C q.d/;

IVW q0.e0/D q.b/C q.c/C 1D q.a/C q.d/;

VW q0.e0/D q.b/C q.c/D q.a/C q.d/C 1;

VIW q0.e0/D q.b/C q.c/C 1D q.a/C q.d/C 1:

By a suitable replacement of labels of edges, one can similarly obtain a formula for q0

in terms of q for the case where G and G0 correspond to the right and left pictures,
respectively, in each case in Figure 5.

Proof To prove the first condition, note that the mod 2 homology marking of f as
an edge of E.G/ is the same as that of f as an edge of E.G0/. The second condition
follows from the first condition and the defining relation for elements of Q.G0/.
For example, in case VI, two endpoints of e0 are of type 2, and hence we have
q0.b/C q0.c/C q0.e0/D q0.a/C q0.d/C q0.e0/D 1.

Remark 6.4 The description of spin structures on †g;1 given in Theorem 6.2 and
how it changes under a flip as in Proposition 6.3 was pointed out by Robert Penner.
Recently, Penner and Zeitlin [23] gave another natural description of spin structures on
a punctured surface in terms of orientations on a trivalent fatgraph spine of the surface,
and they also showed how it changes under a flip. In other words, Penner and Zeitlin
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gave a lift of the action of the mapping class group on the set of quadratic forms to the
action of the Ptolemy groupoid, and the present construction gives another lift. It should
be remarked that while their description works for any surfaces with multiple punctures,
our description here is for a once (punctured/bordered) surface. It is an interesting
question whether our description generalizes to any (punctured/bordered) surface.

In what follows, we denote by EC.G/ the set of preferably oriented edges of G (see
Definition 3.2), and let E�.G/ WDEori.G/ nEC.G/.

Let e 2E.G/. We give e the preferred orientation and use the same letter e for the
resulting element in EC.G/. We define elements qG.e/; xqG.e/ 2 Z2 by

qG.e/ WD #ff 2EC.G/ j e � f � xeg mod 2;

xqG.e/ WD #ff 2E�.G/ j e � f � xeg mod 2:

Here # means the number of elements of a set.

Proposition 6.5 The maps qG and xqG are elements of Q.G/.

Proof We consider the case of qG only.

We work with Figure 3. Suppose that v is of type 1. Then e1 , xe2 and xe3 have the
preferred orientation, and we have a disjoint union decomposition

ff 2EC.G/ j e1 � f � xe1g

D fxe2; xe3g t ff 2EC.G/ j xe2 � f � e2g t ff 2EC.G/ j xe3 � f � e3g:

This implies that qG.e1/D qG.e2/C qG.e3/.

Suppose that v is of type 2. Then e1 , xe2 , and e3 have the preferred orientation, and
we have a disjoint union decomposition

ff 2EC.G/ j xe2 � f � e2g

D
�
ff 2EC.G/ j e1 � f � xe1g n fxe2g

�
t ff 2EC.G/ j e3 � f � xe3g:

This implies that qG.e2/D qG.e1/C qG.e3/C 1. Therefore, qG 2Q.G/.

By Theorem 6.2, qG and xqG induce quadratic forms on H1.†g;1IZ2/. For simplicity,
we use the same letter qG and xqG for these quadratic forms. This construction of
quadratic forms is Mg;1–equivariant in the following sense.

Proposition 6.6 Let G be a trivalent fatgraph spine of †g;1 , and let ' 2Mg;1 . Then
we have q'.G/ ı '� D qG and xq'.G/ ı '� D xqG , where '� is the automorphism of
H1.†g;1IZ2/ induced by ' .
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Proof We consider the case of qG only. Consider a homomorphism

ˆW
M

e2E.G/

Z2e!
M

e02E.'.G//

Z2e0; ˆ.e/D '.e/:

Since ' gives a combinatorial isomorphism from G to '.G/, we have q'.G/ıˆD qG .
Now ˆ induces the map '� on the level of homology, and we conclude q'.G/ı'�DqG .

Finally, we compute the difference between qG and xqG .

Theorem 6.7 Under the isomorphism (6-1), we have

qG � xqG D �
2
G :

Moreover, we have qG ¤ xqG .

Proof For e 2E.G/, we have

qG.e/� xqG.e/D qG.e/CxqG.e/

D #ff 2Eori.G/ j e � f � xeg mod 2

D

� X
f 2E.G/

�2.f / ��2.e/

�
D .�2

G ��
2.e//;

where the last equality follows from Proposition 5.1. Since f�2.e/ge2E.G/ gener-
ates H1.†g;1IZ2/, we obtain qG � xqG D �

2
G

. The second statement follows from
Theorem 5.2.

Appendix: A nonsingular vector field associated to
a once-bordered trivalent fatgraph spine

Let G be a trivalent fatgraph spine of †g;1 . In this appendix, we define a nonsin-
gular vector field XG on †g;1 , and then consider the induced quadratic form on
H1.†g;1IZ2/. In particular, we discuss a relationship among this quadratic form,
qG and xqG .

The following construction of XG was communicated to the author by Gwénaël Mas-
suyeau.

Let Vect.†g;1/ be the homotopy set of nonsingular vector fields on †g;1 . In other
words, Vect.†g;1/ is the homotopy set of sections of the projection � W UT†g;1!†g;1 .
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Figure 11: XG on Nv . Left: a vertex of type 1. Right: a vertex of type 2.

For X 2 Vect.†g;1/, the winding number

windX W �1.UT†g;1/! Z

is defined as follows. Let z W S1! UT†g;1 be a (based) loop. For any t 2 S1 , there
exists a unique element ˆt Dˆ.X ; z ; t/2S1DU.1/ such that X .� ı z .t//ˆt D z .t/.
Then windX .z / is defined to be the mapping degree of the map S1! S1; t 7!ˆt .
The map windX is a group homomorphism, and its mod 2 reduction

wX 2 Hom.�1.UT†g;1/;Z2/ŠH 1.UT†g;1IZ2/

is a spin structure on †g;1 .

Now we give the preferred orientation to any unoriented edge of G . Let v 2 V int.G/.
According to the type of v , we realize a small neighborhood Nv of v in the xy–plane
as in Figure 11, and then restrict the horizontal vector field @=@x to Nv . We extend the
vector field on

F
v Nv thus obtained to a globally defined nonsingular vector field XG ,

so that outside
F
v Nv , each trajectory of XG is perpendicular to G .

Let qXG
be the quadratic form on H1.†g;1IZ2/ corresponding to wX . Following

Johnson [8], one can compute it as follows. Let  be an oriented simple closed curve
and consider its lift z D .; P / to a loop in UT†g;1 (here P is the velocity vector
of  normalized to have unit length). Then

(A-1) qXG
.Œ �/D windXG

.z /C 1 mod 2:

We apply this formula to  D ye , where e 2Eori.G/. Assume that e has the preferred
orientation. Let L.e/ be the set of corners .f; f 0/ of G (see the proof of Lemma 5.3)
such that
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(1) e � f � f 0 � xe , and
(2) exactly one of f and f 0 have the preferred orientation.

Here, e � f means e � f or e D f . For example, if v is a vertex of type 1 as in
the left part of Figure 11, only .xe2; e3/ is an element of L.e/ among the three corners
around v . Set �.e/D #L.e/.

Lemma A.1 We have windXG
.zye/D .1��.e//=2.

Proof Take a small regular neighborhood N.G/ of G ; we may arrange that ye stays
inside N.G/ throughout. Every time when ye goes through a common vertex of a
member of L.e/, the velocity vector of ye rotates by an angle �� with respect to XG .
Also, when ye goes through the middle point of e , the velocity vector of ye rotates by
an angle � with respect to XG . This proves the lemma.

In particular, using the fact that �.e/ is odd (since e has the preferred orientation and
xe does not), we have from (A-1) that

qXG
.e/D qXG

.Œye�/D 1
2
.1��.e//C 1 mod 2D 1

2
.1C�.e// mod 2:

Proposition A.2 Let G be a trivalent fatgraph spine of †g;1 . Then the quadratic
forms qXG

, qG and xqG are distinct from each other.

Proof By Theorem 6.7, it is sufficient to prove qXG
¤ qG and qXG

¤ xqG .

Let e1 2 Eori.G/ be the “last” preferably oriented edge. Namely, e1 is the unique
element such that e1 has the preferred orientation and if e1 � f then f does not have
the preferred orientation. We have �.e1/D 1 and qXG

.e1/D .1C 1/=2D 1. On the
other hand, since there are no preferably oriented edges f with e1 � f � xe1 , we have
qG.e1/D 0. Hence qXG

¤ qG .

Let e2 2Eori.G/ be the unique element such that e2 has the preferred orientation and
if f � xe2 then f has the preferred orientation. We have �.e2/D 1 and qXG

.e2/D 1.
On the other hand, since any edge f 2Eori.G/ with e2 � f � xe2 has the preferred
orientation, xqG.e2/D 0. Hence qXG

¤ xqG .
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