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The augmentation category map induced
by exact Lagrangian cobordisms

YU PAN

To a Legendrian knot, one can associate an A1 category, the augmentation category.
An exact Lagrangian cobordism between two Legendrian knots gives a functor of
the augmentation categories of the two knots. We study this functor and establish a
long exact sequence relating the corresponding cohomology of morphisms of the two
ends. As applications, we prove that the functor between augmentation categories is
injective on the level of equivalence classes of objects and find new obstructions to
the existence of exact Lagrangian cobordisms in terms of linearized contact homology
and ruling polynomials.

53D42, 57R17; 53D12, 57M50

1 Introduction

Let ƒ˙ be Legendrian submanifolds in the standard contact manifold .R3 , �D ker˛/,
where ˛ D dz � y dx . An exact Lagrangian cobordism † from ƒ� to ƒC is a
2–dimensional surface in the symplectization of R3 that has cylindrical ends over ƒC
and ƒ� with certain properties. See Figure 1 for a schematic picture and Definition 2.1
for a detailed description.

Lagrangian cobordism is a natural relation between Legendrian submanifolds and is
crucial in the definition of the functorial property of the Legendrian contact homology
differential graded algebra (DGA). For a Legendrian knot ƒ in .R3; � D ker˛/, the
Legendrian contact homology DGA is a powerful invariant of ƒ that was introduced
by Eliashberg [21] and Chekanov [7] in the spirit of symplectic field theory; see
Eliashberg, Givental and Hofer [22]. The underlying algebra A.ƒIF ŒH1.ƒ/�/ is a
unital graded algebra freely generated by Reeb chords of ƒ and a basis of H1.ƒ/
over a field F , where H1.ƒ/ is the singular homology of ƒ with Z coefficients. The
differential @ is defined by a count of rigid holomorphic disks in R�R3 with boundary
on the Lagrangian submanifold R�ƒ. The DGA .A.ƒIF ŒH1.ƒ/�/; @/ is invariant
up to stable tame isomorphism under Legendrian isotopy of ƒ. Ekholm, Honda and
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Figure 1: A Lagrangian cobordism † from ƒ� to ƒC lies in the symplec-
tization of R3 , which is .Rt �R3; d.et˛// . The vertical direction is the t
direction and each horizontal plane is R3 . Two Legendrian submanifolds
ƒC and ƒ� sit inside different copies of R3 with t coordinates N and �N ,
respectively.

Kálmán [19] showed that an exact Lagrangian cobordism † from ƒ� to ƒC gives a
DGA map

�†W .A.ƒCIF ŒH1.†/�/; @/! .A.ƒ�IF ŒH1.†/�/; @/;

which is defined by a count of rigid holomorphic disks in R�R3 as well, but with
boundary on †. Here F can be any field if the cobordism † is spin. If the condition
is not satisfied, the field F is assumed to be Z2 .

Remark When † is spin, the boundary Legendrian knots ƒC and ƒ� get induced
spin structure from the spin structure of †. This condition makes the moduli spaces of
the holomorphic disks used in the DGA differentials and the DGA map equipped with a
coherent orientation (following Ekholm, Etnyre and Sullivan [18]). In particular, when
the dimension of a moduli space is 0, one can associate each rigid holomorphic disk
in the moduli space with a sign. Therefore, we can count the disks with sign and get
coefficients in any field F . Otherwise, it is only reasonable to count the disks mod 2,
which means ignoring the orientation. For the rest of the paper, we focus on the
case where † is spin. If one is working on a nonspin cobordism, one can omit our
description of orientation and get the corresponding statements for F D Z2 .

A fundamental question about Lagrangian cobordisms is: given two Legendrian knots
ƒC and ƒ� , does there exist an exact Lagrangian cobordism † between them? In
order to answer this question, we need to investigate the properties of Lagrangian
cobordisms and obtain a relationship between Legendrian knots ƒC and ƒ� . If the
two given Legendrian knots do not satisfy the desired relationship, there does not exist
a cobordism between them. In this way, we can find obstructions to the existence of
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exact Lagrangian cobordisms. Chantraine [4] first gave a relationship between the
Thurston–Bennequin numbers of two Legendrian knots:

(1) tb.ƒC/� tb.ƒ�/D��.†/:

This question was explored further in many works, including Bourgeois, Sabloff and
Traynor [3], Sabloff and Traynor [34], Baldwin and Sivek [1], Cornwell, Ng and Sivek
[11] and Chantraine, Dimitroglou Rizell, Ghiggini and Golovko [6] using generating
families, normal rulings and Floer theory.

We approach the question through studying the relationship between the augmentation
category of the Legendrian knots that are connected by an exact Lagrangian cobordism.
Analogous to the derived Fukaya category of exact Lagrangian compact submanifolds
introduced in Nadler and Zaslow [29], the augmentation category is an A1 category of
Legendrian knots in .R3; ker˛/. Bourgeois and Chantraine first introduced a nonunital
A1 category in [2] and then Ng, Rutherford, Sivek, Shende and Zaslow introduced a
unital version in [33]. We will focus on the latter one.

For a fixed DGA .A.ƒ/; @/ of a Legendrian knot ƒ, the augmentation category
AugC.ƒ/ consists of objects, morphisms and A1 operations. The objects in the
category are augmentations � of the Legendrian contact homology DGA, ie DGA
maps �W .A.ƒ/; @/! .F ; 0/. For any two objects �1 and �2 , the morphism space
HomC.�1; �2/ is a vector space over the field F generated by Reeb chords from ƒ

to ƒ0 , where ƒ0 is a positive Morse perturbation of ƒ. The A1 operations are
composition maps fmn j n � 1g that satisfy certain relations. These relations allow
us to take cohomology of the HomC.�1; �2/ space with respect to m1 , denoted by
H�HomC.�1; �2/. From [33], we know that up to A1 equivalence, the augmentation
category AugC.ƒ/ is an invariant of Legendrian knots under Legendrian isotopy.

We will show that an exact Lagrangian cobordism † from a Legendrian knot ƒ� to
a Legendrian knot ƒC gives a DGA map �† from the DGA A.ƒCIF ŒH1.ƒC/�/
to the DGA A.ƒ�IF ŒH1.ƒ�/�/. By [33], this DGA map induces an A1–category
map f W AugC.ƒ�/! AugC.ƒC/. As a result, the augmentation category AugC
acts functorially under Lagrangian cobordisms as well. For each augmentation ��
of A.ƒ�/, the cobordism † induces an augmentation �C of A.ƒC/ by composing
with the DGA map �† , ie

�C D �� ı�†:

The augmentation category map f sends an object �� of AugC.ƒ�/ to the ob-
ject �C of AugC.ƒC/. For any two objects �1� and �2� in AugC.ƒ�/, the category
map f sends the morphism HomC.�1�; �

2
�/ to the morphism HomC.�1C; �

2
C
/, where

�1
C

and �2
C

are the augmentations induced by †.
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We investigate properties of this A1–category map through the Floer theory of a pair
of exact Lagrangian cobordisms (see Chantraine, Dimitroglou Rizell, Ghiggini and
Golovko [6]), which is an analog of the construction of Ekholm [15] for a pair of
Lagrangian fillings in the spirit of symplectic field theory (see Eliashberg, Givental and
Hofer [22]). Let † be an exact Lagrangian cobordism from ƒ� to ƒC . Perturb †
using a positive Morse function F and get a new exact Lagrangian cobordism †0 . In [6],
Chantraine, Dimitroglou Rizell, Ghiggini and Golovko constructed a chain complex for
this pair of exact Lagrangian cobordisms †[†0 , called the Cthulhu chain complex.
The generators of this chain complex are the union of double points of †[†0 and Reeb
chords on the cylindrical ends from † to †0 . Indeed, the second part agrees with the
union of HomC spaces in the augmentation category of the Legendrian submanifolds
on two ends. The differential of this chain complex is defined by a count of rigid
holomorphic disks with boundary on †[†0 as well. From [6], the Cthulhu chain
complex is acyclic, which implies the following long exact sequence:

Theorem 1.1 (see Corollary 5.2) Let † be an exact Lagrangian cobordism with
Maslov number 0 from ƒ� to ƒC . If �i� , for i D 1, 2, is an augmentation of A.ƒ�/
and �i

C
is the augmentation of A.ƒC/ induced by †, then we have the following long

exact sequence:

� � � !Hk.†;ƒ�/!Hk HomC.�1C; �
2
C/!Hk HomC.�1�; �

2
�/

!HkC1.†;ƒ�/! � � � :

If �1�D �
2
�D �� , we can identify Hk HomC.�; �/ with the linearized contact homology

LCH�1�k.ƒ/ by Ng, Rutherford, Shende, Sivek and Zaslow [33, Section 5.2]. The long
exact sequence above can be rewritten as

� � � !Hk.†;ƒ�/! LCH�C
1�k

.ƒC/! LCH��
1�k

.ƒ�/!HkC1.†;ƒ�/! � � � :

Computing the Euler characteristics of the exact triangle, we have

tb.ƒC/� tb.ƒ�/D��.†/;

where �.†/ is the Euler characteristic of the surface †. This result was previously
shown by Chantraine in [4].

Combine Theorem 1.1 with the augmentation category map induced by exact Lagrangian
cobordisms and we have the following theorem.

Theorem 1.2 (see Theorem 5.4) Let † be an exact Lagrangian cobordism with
Maslov number 0 from a Legendrian knot ƒ� to a Legendrian knot ƒC . Assume
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neither ƒC nor ƒ� are empty. For i D 1, 2, if �i� is an augmentation of A.ƒ�/ and
�i
C

is the augmentation of A.ƒC/ induced by †, the map

i0W H 0 HomC.�1C; �
2
C/!H 0 HomC.�1�; �

2
�/

in the long exact sequence in Theorem 1.1 is an isomorphism. Moreover, we have that

H�HomC.�1C; �
2
C/ŠH

�HomC.�1�; �
2
�/˚F��.†/Œ1�;

where F��.†/Œ1� denotes the vector space F��.†/ in degree 1 and �.†/ is the Euler
characteristic of the surface †.

This relation was shown for positive braid closures in Menke [28]. Theorem 1.2 shows
that this is true for general Legendrian knots.

When �1� D �
2
� , we restate Theorem 1.2 in terms of linearized contact homology as

follows:

Corollary 1.3 (see Corollary 5.5) Let † be an exact Lagrangian cobordism with
Maslov number 0 from a Legendrian knot ƒ� to a Legendrian knot ƒC . Assume
neither ƒC nor ƒ� is empty. If �� is an augmentation of A.ƒ�/ and �C is the
augmentation of A.ƒC/ induced by †, then

LCH�C� .ƒC/Š LCH��� .ƒ�/˚F��.†/Œ0�;

where F��.†/Œ0� denotes the vector space F��.†/ in degree 0.

Therefore, if there exists an exact Lagrangian cobordism † from ƒ� to ƒC , the
Poincaré polynomials of the linearized contact homology of ƒC and ƒ� agree in all
degrees except 0. In degree 0 their coefficients differ by ��.†/. This is a stronger
obstruction to the existence of the exact Lagrangian cobordism than the Thurston–
Bennequin number relation (1).

For instance, Figure 2 shows two Legendrian knots ƒ1 and ƒ2 of smooth knot types
41 and 61 , respectively. There is a topological cobordism between 41 and 61 with
genus 1. The Thurston–Bennequin numbers of ƒ1 and ƒ2 are �3 and �5, respectively,
and thus satisfy the Thurston–Bennequin number relation (1). Therefore, there possibly
exists an exact Lagrangian cobordism from ƒ2 to ƒ1 with genus 1. However, the
Poincaré polynomials of the linearized contact homology for ƒ1 and ƒ2 are t�1C 2t
and 2t�1C 3t , respectively. Thus, we have the following proposition.

Proposition 1.4 (see Proposition 5.6) There does not exist an exact Lagrangian
cobordism with Maslov number 0 from ƒ2 to ƒ1 , where ƒ1 and ƒ2 are as shown
in Figure 2.
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Figure 2: Legendrian knot ƒ1 of knot type 41 (left) and Legendrian knot ƒ2
of knot type 61 (right)

Various long exact sequences similar to that in Theorem 1.1 have been explored. Sabloff
and Traynor [34] gave a long exact sequence using generating families. Chantraine,
Dimitroglou Rizell, Ghiggini and Golovko gave three long exact sequences in [6] in
the same spirit as this paper but use different Morse functions to perturb the cobordism.
The way we construct the pair of cobordisms allows us to have more control over the
behavior of the Morse function. This turns out to be a key point toward proving the
following surprising theorem.

Theorem 1.5 (see Theorems 5.14 and 5.15) Let † be an exact Lagrangian cobordism
with Maslov number 0 from a Legendrian knot ƒ� to a Legendrian knot ƒC . Then
the A1–category map f W AugC.ƒ�/!AugC.ƒC/ induced by the exact Lagrangian
cobordism † is injective on the level of equivalence classes of objects. In addition,
the corresponding cohomology category map zf W H�AugC.ƒ�/!H�AugC.ƒC/ is
faithful. In particular, when �.†/D 0, the functor zf is fully faithful.

By Ng, Rutherford, Shende, Sivek and Zaslow [33], for a Legendrian knot with a
single basepoint, two augmentations are equivalent if and only if they are isomorphic as
DGA maps. This theorem tells us that the number of augmentations of ƒ� is smaller
than or equal to the number of augmentations of ƒC up to equivalence. However, in
general, it is hard to count the number of augmentations of ƒ up to equivalence. Ng,
Rutherford, Shende and Sivek [32] introduced a new way to count the augmentations,
called the homotopy cardinality, which is related to the ruling polynomial. Recall that
the ruling polynomial is defined by Rƒ.z/D

P
R z
��.R/ , where the sum is over all

normal rulings R of ƒ (see Chekanov [8] for the detailed definition). This invariant is
much easier to compute than the augmentation equivalence class. Using Theorem 1.5,
we have the following corollary.

Corollary 1.6 (see Corollary 5.17) Suppose there exists a spin exact Lagrangian
cobordism with Maslov number 0 from a Legendrian knot ƒ� to a Legendrian knot ƒC .
Then the ruling polynomials Rƒ� and RƒC satisfy

Rƒ�.q
1=2
� q�1=2/� q��.†/=2RƒC.q

1=2
� q�1=2/

for any q that is a power of a prime number.
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This corollary gives a new obstruction to the existence of exact Lagrangian cobordisms.
In particular, we have a new and simpler proof to the fact given by Chantraine [5]
that there does not exist an exact Lagrangian cobordism from the Legendrian m.946/
knot shown in Figure 18 to the Legendrian unknot. This fact is crucial to prove that
Lagrangian concordance is not a symmetric relation.

Another important step toward proving the injectivity and faithfulness in Theorem 1.5
is to understand the differential map of the Cthulhu chain complex better. Analogous
to a result for Legendrian submanifolds in Ekholm, Etnyre and Sabloff [16], we give a
bijective correspondence between rigid holomorphic disks with boundary on a 2–copy
of † and rigid holomorphic disks with boundary on † together with Morse flow lines.
With this in hand, we can decompose the Cthulhu chain complex in various ways and
recover the three long exact sequences in Chantraine, Dimitroglou Rizell, Ghiggini and
Golovko [6].

Outline In Section 2, we review the Chekanov–Eliashberg DGA of a Legendrian
submanifold and the DGA map induced by a Lagrangian cobordism. In Section 3, we
introduce the augmentation category for a Legendrian submanifold and describe the
A1–category map induced by an exact Lagrangian cobordism. In Section 4, we review
the Floer theory of Lagrangian cobordisms. Finally, using the techniques in Section 4,
we prove the main result Theorem 1.1 in Section 5 and discuss its applications.

Acknowledgements The author would like to thank Lenhard Ng for introducing the
problem and many enlightening discussions. The author also thanks Baptiste Chantraine,
John Etnyre and Michael Abel for helpful conversations, the referee for pointing out
Theorem 5.12, Corollary 5.13 and Theorem 5.15, and Caitlin Leverson for comments
on an earlier draft. This work was partially supported by NSF grants DMS-0846346
and DMS-1406371.

2 Legendrian contact homology DGA and exact Lagrangian
cobordisms

2.1 The Legendrian contact homology DGA

In this section, we review the Legendrian contact homology DGA from the geometric
perspective of [19] and the combinatorial perspective of [33, Section 2.2.1]. We refer
readers to [7; 23; 30] for a more detailed introduction.

Let ƒ be a Legendrian submanifold in the standard contact space .R3; � D ker˛/,
where ˛D dz�y dx . For simplicity when defining the degree, we assume throughout
the paper that ƒ has rotation number 0.
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Let .A.ƒIF ŒH1.ƒ/�/; @/ denote the Legendrian contact homology DGA of ƒ, which
is also called the Chekanov–Eliashberg DGA. The underlying algebra A.ƒIF ŒH1.ƒ/�/
is a noncommutative unital graded algebra over a field F generated by

fc1; : : : ; cm; t1; t
�1
1 ; : : : ; tM ; t

�1
M g

with relations ti t�1i D 1 for i D 1; : : : ;M . Here c1; : : : ; cm are Reeb chords of ƒ
and ft1; : : : ; tM g is a basis of the singular homology H1.ƒ/. The grading of a Reeb
chord c is defined as

jcj D CZ.c/� 1;

where c is a capping path for c and CZ is the Conley–Zehnder index introduced
in [17]. See [13, Section 4.1] for the way to choose a capping path c for a Reeb
chord of a Legendrian link. The grading of a Reeb chord depends on the choice of
capping paths, but the difference between two Reeb chords’ gradings is independent
of the choice of capping paths. Furthermore, set the grading of ti to be zero for
i D 1; : : : ;M , and then extend the definition of degree to A.ƒIF ŒH1.ƒ/�/ through
the relation jabj D jajC jbj.

To define the differential @, we need a cylindrical almost complex structure J on
.R�R3; d.et˛//, ie

� J is compatible with the symplectic form d.et˛/;
� J is invariant under the action of Rt ;
� J.@t /D @z and J.�/D � .

For a generic choice of cylindrical almost complex structure J , the differential @ is
defined by counting rigid J–holomorphic disks in .Rt �R3; d.et˛// with boundary
on R �ƒ. See Figure 3 for an example. For Reeb chords a; b1; : : : ; bm of ƒ, let
M.aI b1; : : : ; bm/ denote the moduli space of J–holomorphic disks

uW .DmC1; @DmC1/! .R�R3;R�ƒ/

such that

� DmC1 is a 2–dimensional unit disk with mC 1 boundary points p; q1; : : : ; qm
removed and the points p; q1; : : : ; qm are labeled in a counterclockwise order;

� u is asymptotic to Œ0;1/� a at p ;
� u is asymptotic to .�1; 0�� bi at qi .

Let �M.aI b1; : : : ; bm/ denote the quotient of M.aI b1; : : : ; bm/ by vertical translation
of Rt . When dim �M.aI b1; : : : ; bm/ D 0, the disk u 2M.aI b1; : : : ; bm/ is called
rigid. The gradings of corresponding Reeb chords satisfy

jaj � jb1j � � � � � jbmj D 1:
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ƒ

R�ƒ

ƒ
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b1
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Figure 3: An example of a J–holomorphic disk with boundary on R�ƒ .
The arrows on the Reeb chords indicate the orientations of the Reeb chords,
while the arrows on the disk boundary indicate the orientation inherited from
the unit disk boundary with counterclockwise orientation through u .

For the image of the boundary segment from qi to qiC1 under u, one can close it up
on R�ƒ in a particular way as described in [19, Section 3.2] and take the homology
class of this curve in H1.ƒ/, denoted by �i . Here we use q0 D qmC1 D p . Moreover,
if ƒ is spin, all the relevant moduli spaces of J–holomorphic disks admit a coherent
orientation. Hence, one can associate a sign s.u/ to each rigid J–holomorphic disk u.
In this way, associate the rigid J–holomorphic disk u with a monomial

w.u/D s.u/�0b1�1 � � � bm�m:

We call the homology classes �i , for i D 1; : : : ; m, the coefficients of w.u/. The
differential on Reeb chords is defined by counting rigid J–holomorphic disks:

@aD
X

dim �M.aIb1;:::;bm/D0

X
u2M.aIb1;:::;bm/

w.u/:

Let @ti D @t�1i D 0 for i D 1; : : : ;M and extend the differential to A.ƒIF ŒH1.ƒ/�/
through the Leibniz rule

@.xy/D .@x/yC .�1/jxjx.@y/:

An implicit condition for J–holomorphic disks is the positive energy constraint. For a
Reeb chord c , define the action of c by

a.c/D

Z
c

˛;
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which is the length of the Reeb chord c . The energy E.u/ of a J–holomorphic disk
u 2M.aI b1; : : : ; bm/ satisfies

E.u/D a.a/� a.b1/� � � � � a.bm/:

Therefore, to make each J–holomorphic disk have positive energy, we must have

a.b1/C � � �C a.bm/ < a.a/:

There is an equivalent definition from the combinatorial perspective. Project ƒ onto the
xy–plane to get the Lagrangian projection �xy.ƒ/ of ƒ. After possibly perturbing ƒ,
we can assume that there is a one-to-one correspondence between the double points
of �xy.ƒ/ and the Reeb chords of ƒ. Suppose ƒ is an M–component Legendrian
link. Decorate the diagram with an orientation and a set of minimum basepoints
f�1; : : : ;�M g, ie

� there is exactly one point in f�1; : : : ;�M g on each component of ƒ, and

� the set f�1; : : : ;�M g does not include any end points of Reeb chords of ƒ.

The graded algebra A.ƒ;�1; : : : ;�M / is a noncommutative unital graded algebra over
a field F generated by

fc1; : : : ; cm; t1; t
�1
1 ; : : : ; tM ; t

�1
M g with relations fti t

�1
i D 1 j i D 1; : : : ;M g;

where c1; : : : ; cm are double points of �xy.ƒ/ and t1; : : : ; tM correspond to the
basepoints �1; : : : ;�M . The grading is defined the same as above. For the unit
disk DmC1 as defined above, consider �.aI b1; : : : ; bm/, the space of orientation-
preserving smooth immersions up to parametrization

uW .DmC1; @DmC1/! .R2; �xy.ƒ//

with the following properties:

� u can be extended to the unit disk DmC1 continuously.

� u.p/ D a and the neighborhood of a in the image of u is a single positive
quadrant (see Figure 4).

� u.qi /D bi and the neighborhood of bi in the image of u is a single negative
quadrant for 1� i �m (see Figure 4).

CC

�

�

Figure 4: At each crossing, the quadrants labeled with a C sign are called
positive quadrants while the other two are called negative quadrants.

Algebraic & Geometric Topology, Volume 17 (2017)



The augmentation category map induced by exact Lagrangian cobordisms 1823

If, when traversing @DmC1 counterclockwise from a , one encounters Reeb chords and
basepoints in a sequence s1; : : : ; sl , then we associate u with a monomial w.u/ D
s.u/w.s1/ � � �w.sl/, where:
� s.u/ is the sign associated to the disk u induced from the moduli space coherent

orientation.
� If si is a Reeb chord bj , then w.si /D bj .
� If si is a basepoint �j for some j D 1; : : : ;M , then w.si /D tj if the orientation

of the boundary agrees with the orientation of the link and w.si /D t�1j otherwise.

Define the differential on generators as follows:

@aD
X

jaj�
P
jbi jD1

X
u2�.aIb1;:::;bm/

w.u/ and @tj D@t
�1
j D0 for j D1; : : : ;M:

This can be extended to the whole DGA through the Leibniz rule.

For all the definitions of DGAs .A; @/ above, the differential @ has degree �1 and
satisfies @2D 0 [7; 23]. Up to stable tame isomorphism, the Legendrian contact homol-
ogy DGA is an invariant of ƒ under Legendrian isotopy. In this sense of equivalence,
the combinatorial definition does not depend on the choice of basepoints [31].

However, the homology of the DGA is hard to compute in general. Let us introduce
augmentations of a DGA and use that to deduce linearized contact homology, which is
much easier to compute. Let .A; @/ be a DGA over a field F of a Legendrian link ƒ
with basepoints. A graded augmentation of A is a DGA map

�W .A; @/! .F ; 0/;

where .F ; 0/ is a chain complex that is F in degree 0 and is 0 in other degrees. In
other words, a graded augmentation is an algebra map �W A! F such that �.1/D 1,
� ı @D 0 and �.a/D 0 if jaj ¤ 0.

Given a graded augmentation � , define A� WD A˝ F=.ti D �.ti //. Notice that the
differential @ descends to A� since @.ti / D 0. Elements in A� are summands of
words of Reeb chords. Let C be a free F–module generated by Reeb chords. We can
decompose A� in terms of word length as A� D

L
n�0 C

˝n . Let A�
C

be the part
of A� containing the words with length at least 1, ie A�

C
D
L
n�1 C

˝n . Consider a
new differential @�W A�!A� given by

@� WD �� ı @ ı�
�1
� ;

where ��W A� ! A� is an automorphism defined by ��.a/ D a C �.a/. Observe
that @� preserves A�

C
and does not decrease the minimal length of a word. Thus, it

descends to a differential on A�
C
=.A�
C
/2 Š C . The homology of .C; @�/ is called the
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linearized contact homology of ƒ with respect to � , denoted by LCH��.ƒ/. The chain
complex .C; @�/ is called the linearized contact homology chain complex.

2.2 Exact Lagrangian cobordisms

We now review the DGA map induced by an exact Lagrangian cobordism [19] with
coefficients in general fields (following the orientation convention of [18]). In other
words, an exact Lagrangian cobordism † from ƒ� to ƒC gives a DGA map

�†W A.ƒCIF ŒH1.†/�/!A.ƒ�IF ŒH1.†/�/:

As required in Section 3, we restrict to the case where ƒC and ƒ� are Legendrian
knots with a single basepoint, denoted by �C and �� , respectively. We modify the
DGA map such that the coefficients only depend on the basepoints but not depend on
the cobordism, ie we get a DGA map

�†W A.ƒC;�C/!A.ƒ�;��/:

Definition 2.1 Suppose ƒ˙ are Legendrian submanifolds in .R3; ker˛/, where
˛Ddz�y dx . An exact Lagrangian cobordism † from ƒ� to ƒC is a 2–dimensional
surface in .R�R3; ! D d.et˛// (see Figure 1) such that for some big number N > 0,

� †\ ..N;1/�R3/D .N;1/�ƒC ,
� †\ ..�1;�N/�R3/D .�1;�N/�ƒ� , and
� †\ .Œ�N;N ��R3/ is compact.

Moreover, there exists a smooth function gW †!R such that

et˛ jT†D dg

and g is constant when t ��N and t �N . The function g is called a primitive of †.

For a spin exact Lagrangian cobordism † from ƒ� to ƒC , the Legendrian submani-
folds ƒ˙ inherit induced spin structures. Hence ƒ˙ have F ŒH1.ƒ˙/�–coefficients
DGAs .A.ƒ˙IF ŒH1.ƒ˙/�/; @/, respectively, as described in Section 2.1. Ekholm,
Honda and Kálmán in [19] showed that an exact Lagrangian cobordism † induces
a DGA map from A.ƒC/ to A.ƒ�/ with F ŒH1.†/� coefficients. In order to see
that, first, we need to view the DGAs of ƒ˙ as DGAs with F ŒH1.†/� coefficients.
Notice that the inclusion H1.ƒ˙/ ,! H1.†/ induces a canonical inclusion map
F ŒH1.ƒ˙/� ,! F ŒH1.†/� of the group ring coefficients, which makes it natural to
consider the DGAs of ƒ˙ with F ŒH1.†/� coefficients. Specifically, the new DGA
A.ƒ˙IF ŒH1.†/�/ is generated by Reeb chords of ƒ˙ and elements in H1.†/ over F .
The differential is defined by the original differential in A.ƒ˙IF ŒH1.ƒ˙/�/ composed
with the inclusion map H1.ƒ˙/ ,!H1.†/.
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Second, construct a DGA map with F ŒH1.†/� coefficients. Consider an almost complex
structure J that is compatible with the symplectic form ! and is cylindrical on both
ends. In other words, J matches the cylindrical almost complex structures on both
cylindrical ends. Fix a generic choice of such an almost complex structure J . For Reeb
chords a of ƒC and b1; : : : ; bm of ƒ� , define M.aI b1; : : : ; bm/ to be the moduli
space of the J–holomorphic disks

uW .DmC1; @DmC1/! .R�R3; †/

such that

� DmC1 is a 2–dimensional unit disk with mC 1 boundary points p; q1; : : : ; qm
removed and the points p; q1; : : : ; qm are arranged in a counterclockwise order;

� u is asymptotic to ŒN;1/� a at p ;

� u is asymptotic to .�1;�N�� bi at qi .

When dimM.aI b1; : : : ; bm/D 0, the disk u 2M.aI b1; : : : ; bm/ is called rigid. The
gradings of corresponding Reeb chords satisfy

jaj � jb1j � � � � � jbmj D 0:

For the image of the boundary segment from qi to qiC1 , one can close up in a similar
way as the one in the definition of the DGA differential and take the homology class
in H1.†/, denoted by �i . If † is spin, all the relevant moduli spaces of J–holomorphic
disks admit a coherent orientation. In particular, each rigid J–holomorphic disk obtains
a sign, denoted by s.u/. Associate a monomial w.u/ to the J–holomorphic disk u as

w.u/D s.u/�0b1�1 � � � bm�m:

The homology classes �i , for i D 1; : : : ; m, are called the coefficients of w.u/. The
DGA map is defined by counting rigid J–holomorphic disks with boundary on †:

�.a/D
X

dimM.aIb1;:::;bm/D0

X
u2M.aIb1;:::;bm/

w.u/:

We can extend the morphism to A.ƒCIF ŒH1.†/�/ by setting �.t/D t for any gener-
ator t in H1.†/ and applying the Leibniz rule.

In order to modify the coefficients of the DGA map � , let us consider H1.†/ more
precisely. To simplify the description, we restrict † to Œ�N;N ��R3 and denote it by †
as well. According to Poincaré duality, H 1.†/ŠH1.†;ƒC[ƒ�/. In particular, for
any loop ˛ in † with ends on ƒC[ƒ� which is an element in H1.†;ƒC[ƒ�/ there
is an element �˛ in H 1.†/ such that for any oriented loop  on †, the intersection
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number of ˛ and  is �˛./. Thus, in order to know the homology class of a curve 
in H1.†/, we only need to count the intersection number of each generator curve
of H1.†;ƒC[ƒ�/ with  .

ƒC

ƒ�

†

�C

��

˛

Figure 5: Curve ˛ on a cobordism

Consider a connected exact Lagrangian cobordism † from a Legendrian knot ƒ�
to a Legendrian knot ƒC (see Remark 5.3 for the reason that we assume that † is
connected). Choose basepoints �C and �� for ƒC and ƒ� , respectively. There
exists a curve ˛ on † from �C to �� with exactly one intersection with ƒC and ƒ� ,
respectively. An example is shown in Figure 5. Let V � denote the subgroup of H 1.†/

that is generated by the Poincaré dual of curve ˛ . The dual space V in H1.†/ is
isomorphic to Z.

Now we can modify the DGA map � described above to be a map from A.ƒCIF ŒV �/
to A.ƒ�IF ŒV �/. First, restrict the generators of A.ƒ˙/ to Reeb chords of ƒ˙ and a
basis of V . Second, project the coefficients �i of the monomial w.u/ from H1.†/

to V . Therefore, the DGA map works in F ŒV � coefficients. Indeed, the definitions
of A.ƒ˙IF ŒV �/ match the definition of A.ƒ˙;�˙/, respectively. Hence a connected
exact Lagrangian cobordism † induces a DGA map with F ŒV � coefficients from the
DGA of ƒC with a single basepoint to the DGA of ƒ� with a single basepoint:

�W .A.ƒC;�C/; @/! .A.ƒ�;��/; @/:

This DGA map does depend on the choice of the curve ˛ connecting the two basepoints.

3 The augmentation category

3.1 A1 categories

In this section, we give a lightning review of A1 algebras and A1 categories, follow-
ing [33]. See [26; 25] for a more detailed introduction.
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Definition 3.1 [26, Section 3.1] An A1 algebra over a field F is a Z–graded vector
space A endowed with degree-.2�n/ maps mnW A˝n! A such thatX

rCsCtDn

.�1/rCstmrC1Ct .1
˝r
˝ms˝ 1

˝t /D 0:

The most important things we need among these complicated relations are:
� m1 is a differential on A (ie m21 D 0).
� m2 is associative after passing to the homology with respect to m1 .

An A1 algebra can be achieved nicely through the following construction. Let T .C /DL
n�1 C

˝n be a graded vector space over F equipped with a codifferential b , ie
� b has degree 1,
� b2 D 0,
� b D

L
bn , where bn is a map C˝n! C , and

� b satisfies the co-Leibniz rule

�b D .1˝ bC b˝ 1/�;

where �.a1˝ � � �˝ an/D
Pn
iD1.a1˝ � � �˝ ai /˝ .aiC1˝ � � �˝ an/.

Let C_ WD C Œ�1� and let sW C ! C_ be the canonical degree-1 identification map
a 7! a . Define maps mnW .C_/˝n! C_ such that the following diagram commutes
for all n:

C˝n
bn

//

s˝n

��

C

s

��

.C_/˝n
mn
// C_

Then C_ is an A1 algebra with the mn as A1 operations [36; 37]. One can check
that the degree of mn is 2�n.

Example 3.2 If a Legendrian contact homology DGA .A.ƒ/; @/ has an augmenta-
tion � , the conjugated differential @� is a differential of A�

C
D
L
n�1 C

˝n D T .C /,
where C is the vector space over a field F generated by Reeb chords of ƒ. We
define ı� to be the adjoint of @� on T .C �/D

L
n�1.C

�/˝n , where C � is the dual
of C . More specifically,

ı�.b�m˝ � � �˝ b
�
1 /D

X
a

Coeffb1b2���bm.@
�.a//:

It is not hard to check that ı� is a codifferential of T .C �/. Hence one can use the
construction above to construct an A1 algebra .C �/_ .
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Definition 3.3 [10] An A1 category over a field F is a category where, for any two
objects �1 and �2 , the morphism is a graded vector space Hom.�1; �2/. Moreover, for
any objects �1; �2; : : : ; �nC1 , there exists a degree-.2�n/ map

mnW Hom.�n; �nC1/˝ � � �˝Hom.�1; �2/! Hom.�1; �nC1/
satisfying X

rCsCtDn

.�1/rCstmrC1Ct .1
˝r
˝ms˝ 1

˝t /D 0:

As noted before, the first A1 operation m1 is a differential for Hom.�1; �2/ with
degree 1. Denote its cohomology by H�Hom.�1; �2/. Moreover, we have that m2
descends to an associative map on the cohomology level:

m2W H
�Hom.�2; �3/˝H�Hom.�1; �2/!H�Hom.�1; �3/

for any objects �1 , �2 , �3 .

An A1 morphism between two A1 categories f W A! B maps the object � of A
to f .�/ of B and for any objects �1; �2; : : : ; �nC1 of A, there exists a map

fnW Hom.�n; �nC1/˝ � � �˝Hom.�1; �2/! Hom.f .�1/; f .�nC1//

satisfying the A1 relations [26]. In particular, the first map f1 , called the category
map on the level of morphisms, maps the morphism Hom.�1; �2/ of A to the morphism
Hom.f .�1/; f .�2// of B . From the A1 relations, we know that:

� The functor f1 , the category map on the level of morphisms, commutes with m1
and thus f1 descends to a map on cohomology

f �W H�Hom.�1; �2/!H�Hom.f .�1/; f .�2//:

� For any a 2 Hom.�2; �3/ and b 2 Hom.�1; �2/, we have

f �.m2.Œa�; Œb�//Dm2.f
�Œa�; f �Œb�/;

ie, the composition map m2 commutes with f � when passing to the cohomology
level.

An A1 morphism between two A1 categories f W A! B induces a functor on the
cohomology categories, zf W H�A!H�B . It behaves the same as f on the object
level. On the level of morphisms zf D f � . The functor zf is faithful if f � is injective
and is fully faithful if f � is an isomorphism for any morphism in H�A.

3.2 The augmentation category

In this section, we briefly review the augmentation category AugC.ƒ/, following [33].
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Let ƒ be an oriented Legendrian knot in .R3; ker˛/ endowed with a single basepoint �.
Denote its Legendrian contact homology DGA by .A; @/. Given a field F , the objects
of the augmentation category AugC.ƒ/ are augmentations of .A; @/ to F ,

�W A! F :

In order to describe the morphism HomC.�1; �2/ for any two objects �1 and �2 , we
need to study the DGA of a 2–copy of ƒ, denoted by ƒ.2/ .

By the Weinstein tubular neighborhood theorem, we can identify a neighborhood of ƒ
with a neighborhood of the zero section in the 1–jet space J 1.ƒ/DT �.ƒ/�R through
a contactomorphism. The contact form in J 1.ƒ/ is ˛ D dz �p dq , where q is the
coordinate on ƒ and p is the coordinate in the cotangent direction. For any C 1 small
function f W ƒ! R, the 1–jet j 1f D f.q; f 0.q/; f .q// j q 2 ƒg is a Legendrian
knot in J 1.ƒ/ and thus is a Legendrian knot in R3 . Now choose a particular Morse
function f W ƒ! .0; ı/ such that

� ı is smaller than the minimum length of Reeb chords of ƒ,
� the Morse function f has exactly 1 local maximum point at x and 1 local

minimum point at y , and
� around the basepoint �, the three points �, x , y show up in order when traveling

along the link (see Figure 6).

�
x

y

Figure 6: A neighborhood of the basepoint � on ƒ . The arrow indicates the
orientation of ƒ .

Decorate j 1f with a basepoint in the same location and with the same orientation
as ƒ. Now ƒ[j 1f is a 2–copy of ƒ, denoted by ƒ.2/ . Label ƒ.2/ from top (higher
z coordinate) to bottom (lower z coordinate) by ƒ1 and ƒ2 . An example of the
2–copy of the trefoil with a single basepoint is shown in Figure 7.

The Legendrian contact homology DGA .A.ƒ.2//; @.2// of ƒ.2/ can be recovered
from the data carried by the DGA .A.ƒ/; @/ of ƒ. Recall that A.ƒ/ is generated by
the set R of Reeb chords fa1; : : : ; amg and the set T D ft; t�1g that corresponds to
the basepoint as stated in Section 2.1. Similarly, divide the set of generators of A.ƒ.2//
into two parts R.2/ and T .2/ . It is obvious that ƒ.2/ has two basepoints, and thus we
write T .2/ as f.t1/˙1; .t2/˙1g. As for the set of Reeb chords R.2/ , we divide it into
four parts: R.2/ D

S
i;jD1;2Rij , where Rij is the set of Reeb chords to ƒi from ƒj .

Algebraic & Geometric Topology, Volume 17 (2017)



1830 Yu Pan

ƒ1

ƒ2

Figure 7: The Lagrangian projection of a 2–copy of the trefoil with a single basepoint

Observe that Reeb chords of ƒ.2/ come from two sources:

� Each critical point x or y of the Morse function f gives one Reeb chord in R12 ,
denoted by x12 and y12 , respectively. We call these Reeb chords Morse Reeb chords.

� Each Reeb chord al of ƒ gives four Reeb chords of ƒ.2/ , denoted by aij
l
2Rij ,

where i; j D 1; 2 and l D 1; : : : ; m. We call these Reeb chords non-Morse Reeb chords.

It is obvious that ai i and t i , for i D 1, 2, inherit the grading from a and t in A.ƒ/,
respectively. We can choose a family of capping paths such that jaij j D jaj for
any Reeb chord a of ƒ. Under this choice of capping paths  , one can show that
CZ.x12/D Indf .x/ for any Morse Reeb chord x12 through a computation similar to
that in [16]. Hence we have jx12j D 0 and jy12j D �1.

In order to describe the differential @.2/ , we encode the generators in matrices. Let Al ,
for 1� l �m, and X , Y , � be 2� 2 matrices given by

Al D

 
a11
l

a12
l

a21
l

a22
l

!
; X D

�
1 x12

0 1

�
; Y D

�
0 y12

0 0

�
; �D

�
t1 0

0 t2

�
:

The differential @.2/ is defined on generators as follows by applying it entry-by-entry
to these matrices:

@.2/Al Dˆ.@al/CYAl � .�1/
jal jAlY;

@.2/X D��1Y�X �XY;

@.2/Y D Y 2;

@.2/�D 0;

where ˆW A!Mat.2;A.ƒ.2/// is a ring homomorphism given by ˆ.al/D Al and
ˆ.t/D�X .

Given two augmentations �1 and �2 of .A; @/, we get an augmentation � of .ƒ.2/; @.2//
by sending ai i

l
7! �i .al/ and t i i 7! �i .t/ and sending everything else to 0. Therefore
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@
.2/
� D �� ı @

.2/ ı ��1� is a differential of A.2/ D A.ƒ.2//=.t i i D �.t i i //. Both the
morphism HomC.�1; �2/ and the first A1 operation m1 are defined from .A.2/; @.2/� /

through the construction stated in Section 3.1. For i; j D 1; 2, let C ij denote the free
graded F algebra generated by Rij , which is a subalgebra of A.2/ . Notice that C 12

and C 21 are closed under @.2/� since � vanishes on the components in C 11 and C 22 of
the image of @.2/� . Hence C 12 and C 21 are subcomplexes of .A.2/; @.2/� /. Define the
morphism HomC.�1; �2/ between objects �1 and �2 to be .C 12/_ . To simplify the
notation, we write .a12

l
/_ as a_

l
, .x12/_ as x_ and .y12/_ as y_ . Therefore, their

gradings satisfy ja_
l
j D jal jC 1, jx_j D 1 and jy_j D 0. The first A1 operation m1

is defined by the adjoint of @.2/� , ie for any Reeb chord c 2R,

m1.c
_/D

X
a2R

Coeffc.@.2/� a/ a_:

As noted before, m1 is a differential for HomC.�1; �2/. The corresponding cohomology
is denoted by H�HomC.�1; �2/. Similarly, define Hom�.�2; �1/ to be .C 21/_ . Take
the cohomology of Hom�.�2; �1/ with respect to m1 , denoted by H�Hom�.�2; �1/.

Remark One may find the notational convention of Hom�.�2; �1/ unnatural. How-
ever, the notations are consistent in the sense that both HomC.�; �0/ and Hom�.�; �0/
are generated by Reeb chords from the component with the augmentation �0 to the
component with the augmentation � .

The HomC.�1; �2/ space and the Hom�.�1; �2/ space are closely related. Recall that
the generators of HomC.�1; �2/ naturally correspond to the Reeb chords in R12 , which
consist of non-Morse Reeb chords and Morse Reeb chords. Note that the lengths of
Morse Reeb chords are smaller than the lengths of non-Morse Reeb chords. Due to the
positive energy constraint, there does not exist any holomorphic disk that has a positive
puncture at a Morse Reeb chord and a negative puncture at a non-Morse Reeb chord.
Therefore, the graded vector subspace of HomC.�1; �2/ generated by non-Morse Reeb
chords is closed under m1 , and thus is a subcomplex. Indeed, this subcomplex agrees
with .Hom�.�1; �2/;m1/. From [27], for a Legendrian knot ƒ with a single basepoint,
any two augmentations �1 and �2 agree on the generator t that corresponds to the
basepoint. As a result, by [33, Proposition 5.2], the quotient chain complex that is
generated by fx_; y_g is the Morse cochain complex induced by the Morse function f .
Therefore we have the following long exact sequence:

(2) � � � !H i�1.ƒ/!H i Hom�.�1; �2/!H i HomC.�1; �2/!H i .ƒ/! � � � :

Furthermore, given that both HomC.�1; �2/ and Hom�.�1; �2/ are vector spaces over
the field F , combining the universal coefficient theorem with the Sabloff duality in
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[33, Section 5.1.2], we have

(3) Hk Hom�.�1; �2/ŠH�k.Hom�.�1; �2/�/ŠH 2�k HomC.�2; �1/:

For a chain complex C , the chain complex C � is obtained by dualizing the underlying
vector space and differential of C and then negating the gradings.

For the other A1 operators mn , one needs to consider an n–copy of ƒ, denoted
by ƒ.n/ . Construct a DGA .An; @.n/� / of ƒ.n/ that is analogous to .A2; @.2/� /. De-
fine mn to be the adjoint of @n� as in Example 3.2. See [33] for more details.

By [33], the augmentation category described above does not depend on the choice of
the Morse function f . Moreover, up to A1 category equivalence, the augmentation
category is invariant of Legendrian knot under Legendrian isotopy.

A key property of AugC.ƒ/ is that AugC.ƒ/ is a strictly unital A1 category, with
the units given by

e� D�y
_
2 HomC.�; �/;

ie

� m1.e�/D 0;
� for any �1 , �2 and any c 2HomC.�1; �2/, we have m2.c; e�1/Dm2.e�2 ; c/D c ;
� any higher composition involving e� is 0.

As a result, the corresponding cohomology category H�AugC.ƒ/ is a unital category,
which makes it natural to talk about the equivalence relation of objects in AugC.ƒ/.

Definition 3.4 Two objects �1 and �2 are equivalent in AugC.ƒ/ if they are isomor-
phic in the cohomology category H�AugC.ƒ/, ie if there exist Œ˛�2H 0 HomC.�1; �2/
and Œˇ� 2H 0 HomC.�2; �1/ such that m2.Œ˛�; Œˇ�/ D Œe�2 � 2H

0 HomC.�2; �2/ and
m2.Œˇ�; Œ˛�/D Œe�1 � 2H

0 HomC.�1; �1/:

�1
ˇ

22e�1 66
�2

˛
rr e�2hh

By [33], for a Legendrian knot with a single basepoint, two augmentations are equivalent
if and only if they are isomorphic as DGA maps.

Suppose † is a connected exact Lagrangian cobordism from a Legendrian knot ƒ�
to a Legendrian knot ƒC . It induces a DGA map � from the DGA .A.ƒC/; @/
with a single basepoint to a DGA .A.ƒ�/; @/ with a single basepoint. By [33,
Proposition 3.29], this DGA map � induces a unital A1 category morphism f

from AugC.ƒ�/ to AugC.ƒC/. The category map sends an augmentation �� of ƒ�

Algebraic & Geometric Topology, Volume 17 (2017)



The augmentation category map induced by exact Lagrangian cobordisms 1833

to �C D �� ı � , which is an augmentation of ƒC . The family of maps ffng is
constructed through a family of DGA morphisms of n–copies:

f .n/W .A.n/.ƒC/; @.n// 7! .A.n/.ƒ�/; @.n//;

� 7!�;

Y 7! Y;

X 7!��1 �ˆ� ıf .t/;

ˆC.a/ 7!ˆ� ıf .a/ for a 2A.ƒC/:

Let �� be the augmentation of .A.n/.ƒC/; @.n// that sends ai i
l
7! �i�.al/, t

i i 7! �i�.t/

and sends everything else to 0. Define the map fn�1 to be the adjoint of f .n/�� , where

f .n/��
D ��� ıf

.n/
ı��1�� :

In particular, f1 can be written as

(4)

f1W HomC.�1�; �
2
�/! HomC.�1C; �

2
C/;

y_� 7! y_C;

c_ 7!
P

a2A.ƒC/
Coeffc.f .2/��

.a//a_ for c 2A.ƒ�/;

x_� 7! x_CC
P

a2A.ƒC/
Coefft .f .2/��

.a//a_:

When computing Coeffb.f
.2/
�� .a//, where b is either a Reeb chord c 2A.ƒ�/ or t 2T ,

one considers all the terms of f .a/ including b . If a term of f .a/ including b can
be written as pbq , where p and q are words of pure Reeb chords of ƒ� , this term
contributes Coeffpbq.f .a//�

1
�.p/�

2
�.q/ to Coeffb.f

.2/
�� .a//. Therefore we have

Coeffb.f
.2/
��
.a//D

X
p q

Coeffpbq.f .a//�
1
�.p/�

2
�.q/:

Remark According to [33, Proposition 3.29], the condition for a DGA map to induce
a unital A1 category morphism is that the DGA map is compatible with the weak link
gradings in the sense of [33, Definition 3.19]. In our case, where both ƒC and ƒ� are
single component Legendrian knots with a single basepoint, this condition is trivially
satisfied.

4 Floer theory for Lagrangian cobordisms

In this section, we give a brief introduction to the Floer theory of a pair of exact
Lagrangian cobordisms, following [6]. Let †i , for i D 1, 2, be exact Lagrangian
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cobordisms from ƒi� to ƒi
C

in .R�R3; d.et˛//, where ˛D dz�y dx . A schematic
picture is shown in Figure 8. The union of the cobordisms †1[†2 is cylindrical over
ƒ1
C
[ƒ2
C

(resp. ƒ1�[ƒ
2
� ) on the positive end (resp. negative end). Viewing †1[†2 as

a Lagrangian cobordism from the Legendrian link ƒ1�[ƒ
2
� to the Legendrian ƒ1

C
[ƒ2
C

,
we obtain a chain complex generated by Reeb chords of ƒ1�[ƒ

2
� and ƒ1

C
[ƒ2

C
. On

the other hand, if we lift the exact Lagrangian cobordism †1 [†2 to a Legendrian
manifold in R�R3 �R, we have its Legendrian contact homology DGA, which is
generated by double points of †1[†2 . One can construct the Cthulhu chain complex
Cth.†1; †2/ as a mix of the two chain complexes above. It is generated by some Reeb
chords on the cylindrical ends and intersection points of †1 and †2 . Moreover, this
chain complex has trivial cohomology, ie H� Cth.†1; †2/D 0.

ƒ2�

ƒ2C

†2

ƒ1�

ƒ1C

†1

t

N

�N

Figure 8: Pair of Lagrangian cobordisms in .R�R3; d.et˛//

For simplicity in defining gradings, we assume that †i , for i D 1, 2, has trivial Maslov
number throughout this paper.

4.1 The graded vector space

Assume that both †1 and †2 are cylindrical outside Œ�N;N ��R3 , where N is a
positive number. The underlying vector space is a direct sum of three parts:

Cth.†1; †2/D C.ƒ1C; ƒ
2
C/˚CF.†1; †2/˚C.ƒ1�; ƒ

2
�/:

The top level C.ƒ1
C
; ƒ2
C
/ (resp. bottom level C.ƒ1�; ƒ

2
�/) is an F–module generated

by Reeb chords to ƒ1
C

(resp. ƒ1� ) from ƒ2
C

(resp. ƒ2� ) that are lying on the slice
of t DN (resp. t D�N ). The middle level CF.†1; †2/ is an F–module generated
by intersection points of †1 and †2 , which are all contained in .�N;N/�R3 .

Algebraic & Geometric Topology, Volume 17 (2017)



The augmentation category map induced by exact Lagrangian cobordisms 1835

Grading To define the degree, first fix a capping path c for each generator c . For a
Reeb chord a in C.ƒ1

C
; ƒ2
C
/ or C.ƒ1�; ƒ

2
�/, define the degree jaj by

jaj D CZ.a/� 1;

which matches the definition of degree when viewing a as a generator in the Legen-
drian contact homology DGA of ƒ1

C
[ƒ2

C
or ƒ1� [ƒ

2
� . For an intersection point

x 2 CF.†1; †2/, define the degree jxj by

jxj D CZ.x/;

following [35]. One can also see [6, Section 4.2] for details. Note that for a Reeb
chord in C.ƒ1

C
; ƒ2
C
/, its degree in Cth.†1; †2/ will not necessarily coincide with its

degree in C.ƒ1
C
; ƒ2
C
/. It is shifted as we will see later.

Action For i D 1, 2, suppose gi is a primitive of the exact Lagrangian cobordism †i ,
and hence gi is constant when t <�N or t >N . Note that primitive functions are well
defined up to a overall shift by a constant. Thus we may assume that the primitives gi
are both zero on †i [ ..�1;�N/�R3/ for i D 1, 2. The action of generators is
defined under this choice of primitives.

For Reeb chords aC 2 C.ƒ1
C
; ƒ2
C
/ and a� 2 C.ƒ1�; ƒ

2
�/, define the action a by

a.aC/D g2.a
C/�g1.a

C/C

Z
aC
eN˛

and

a.a�/D g2.a
�/�g1.a

�/C

Z
a�
e�N˛ D

Z
a�
e�N˛:

The last part is due to the special choice of primitives. For double points x of †1[†2 ,
the action a.x/ is defined by a.x/D g2.x/�g1.x/.

4.2 The differential

Remark 4.1 Throughout this paper, we restrict ourselves to the case where all inter-
section generators have positive actions since that is the case for the special pair of
cobordisms constructed in Section 5.1. In general, the differential could include one
more map from CF.†1; †2/ to C.ƒ1�; ƒ

2
�/, which is called the Nessie map. However,

by [6, Proposition 9.1], the positive energy condition of the holomorphic disks counted
by the Nessie map requires the corresponding intersections in CF.†1; †2/ to have
negative actions. Therefore, in our special case, we can exclude the Nessie map and
get the differential as an upper triangle as below.
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With the assumption in Remark 4.1, we define the differential under the decomposition

Cth.†1; †2/D C.ƒ1C; ƒ
2
C/˚CF.†1; †2/˚C.ƒ1�; ƒ

2
�/

by a degree-1 map of the form

d D

0@dCC dC0 dC�
0 d00 d0�
0 0 d��

1A :
To describe the differential explicitly, we need to study the holomorphic disks with
boundary on †1[†2 . Fix a generic domain-dependent almost complex structure J
that is compatible with the symplectic form on R�R3 and the cylindrical ends in
the sense of [6, Section 3.1.5]. Suppose that the induced cylindrical almost complex
structure on the positive end .†1[†2/\.ŒN;1/�R3/ is JC and on the negative end
.†1[†2/\..�1;�N��R3/ is J� . The differential d˙˙ of C.ƒ1

˙
; ƒ2
˙
/ counts rigid

J˙–holomorphic disks with boundary on R� .ƒ1
˙
[ƒ2

˙
/, respectively, as described

in Section 2.1. The corresponding moduli space is denoted by MJ˙
.a˙Ip˙; b˙; q˙/,

where a˙ and b˙ are Reeb chords to ƒ1
˙

from ƒ2
˙

while p˙ and q˙ are words of
pure Reeb chords of ƒ1

˙
and ƒ2

˙
, respectively. We also write �MJ˙

.a˙Ip˙; b˙; q˙/

to denote the moduli space MJ˙
.a˙Ip˙; b˙; q˙/ modulo the action of R in the

t direction.

For the remaining maps in the differential, we need to describe J–holomorphic
disks with boundary on †1 [ †2 , where J is the chosen domain-dependent al-
most complex structure. The punctures of these J–holomorphic disks can be either
Reeb chords or intersection points. For generators c0; c1; : : : ; cm in Cth.†1; †2/, let
MJ .c0I c1; : : : ; cm/ denote the moduli space of the J–holomorphic disks

uW .DmC1; @DmC1/! .R�R3; †1[†2/

with the following properties:

� DmC1 is a 2–dimensional unit disk with mC1 boundary points q0; q1; : : : ; qm
removed and the points q0; q1; : : : ; qm are arranged in a counterclockwise order.

� If c0 is a Reeb chord, the image of u is asymptotic to ŒN;1/� c0 near q0 .
If c0 is an intersection point, then limz!q0 u.z/D c0 and u maps the incoming
segment (resp. outgoing segment) of the boundary to †2 (resp. †1 ).

� For i > 0, if ci is a Reeb chord, the image of u is asymptotic to .�1;�N��ci
near qi . If ci is an intersection point, then limz!qi u.z/D ci and u maps the
incoming segment (resp. outgoing segment) of the boundary to †1 (resp. †2 ).
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The four types of moduli spaces used in the differential d of the Cthulhu chain complex
are shown in Figure 9. For any one of these four moduli spaces M, we say a disk
u 2M is rigid if dimMD 0. All the moduli spaces of holomorphic disks introduced
above admit a coherent orientation since both †1 and †2 are spin. Therefore, one
can associate each rigid holomorphic disk u 2M with a sign and thus can count the
number of rigid holomorphic disks in M with sign.

Let each a˙i be a Reeb chord to ƒ1
˙

from ƒ2
˙

and each xi a double point of †1[†2 .
The bold letters p˙ , q˙ are words of pure Reeb chords of ƒ1

˙
and ƒ2

˙
, respectively.

Here we assume, for i D 1, 2, that �i� is an augmentation of A.ƒi�/ and �i
C

is the
augmentation of A.ƒi

C
/ induced by †i . The differential is defined as follows:

dCC.a
C
i /D

X
dim �MJC

.a
C

j
IpC;a

C

i
;qC/D0

j �MJC.a
C
j Ip

C; aCi ; q
C/j�1C.p

C/�2C.q
C/aCj ;

d��.a
�
i /D

X
dim �MJ� .a

�
j
Ip�;a�

i
;q�/D0

j �MJ�.a
�
j Ip

�; a�i ; q
�/j�1�.p

�/�2�.q
�/a�j ;

d00.xi /D
X

dimMJ .xj Ip�;xi ;q�/D0

jMJ .xj Ip
�; xi ; q

�/j�1�.p
�/�2�.q

�/xj ;

d0�.a
�
i /D

X
dimMJ .xj Ip�;a

�
i
;q�/D0

jMJ .xj Ip
�; a�i ; q

�/j�1�.p
�/�2�.q

�/xj ;

dC0.xi /D
X

dimMJ .a
C

j
Ip�;xi ;q�/D0

jMJ .a
C
j Ip

�; xi ; q
�/j�1�.p

�/�2�.q
�/aCj ;

dC�.a
�
i /D

X
dimMJ .a

C

j
Ip�;a�

i
;q�/D0

jMJ .a
C
j Ip

�; a�i ; q
�/j�1�.p

�/�2�.q
�/aCj ;

where jMj denotes the number of rigid holomorphic disks in the moduli space M
counted with sign. Note that the definition of differential depends on the choice of
augmentations ��1 and ��2 , whose existence are essential to the Floer theory.

A holomorphic disk counted by the differential must satisfy the rigidity condition and
the positive energy condition. We will describe these conditions in detail.

The rigidity condition Let us interpret the condition dimMJ .c1Ip; c2; q/ D 0 in
terms of jci j for i D 1, 2, where ci can be either a Reeb chord or an intersection point
while p and q are words of pure Reeb chords in degree 0. Instead of deriving a formula
for the dimension of a moduli space, we use the idea of the wrapped Floer homology
to find the relation between jc1j and jc2j. Recall that both †1 and †2 are cylindrical
outside Œ�N;N ��R3 . Consider a nondecreasing function �.t/W R�0! R�0 such
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aC

a�p�1 q�1 q�2

u 2M.aCIp�; a�; q�/

†1 †1

†1 †1

†2 †2

†2 †2

aC

x

p�1 q�1 q�2

u 2M.aCIp�; x; q�/

x1

x2

p�1 q�1 q�2

u 2M.x1Ip
�; x2; q

�/

x

a�p�1 q�1 q�2

u 2M.xIp�; a�; q�/

Figure 9: A sketch of the J–holomorphic disks in the differential d . Here a˙

are Reeb chords to ƒ1
˙

from ƒ2
˙

, respectively, and x , x1 , x2 are double points
of †1 [†2 . In these examples, p� is a word of one pure Reeb chord p�1
of ƒ1� while q� is a word q�1 q

�
2 of two pure Reeb chords of ƒ2� . The arrows

denote the orientation inherited from the boundary of the unit disk.

that � 0.t/D 0 when t �N and � 0.t/D 1 when t �N 0 , where N 0 is a number bigger
than N . Note that XH D��.jt j/@z is a Hamiltonian vector field with its time-s flow
denoted by ˆsH . Flow †1 through XH and get a new cobordism ˆsH .†

1/, which is
another exact Lagrangian cobordism according to Section 5.1. Observe that ˆsH .†

1/

wraps †1 on both ends in the negative Reed chord direction. Hence for a large enough
number s , each Reeb chord c to ƒ1

C
(resp. ƒ1� ) from ƒ2

C
(resp. ƒ2� ) corresponds to

a transversally double point Lc of ˆsH .†
1/[†2 in N < t <N 0 (resp. �N 0< t <�N ).

Moreover, if c is a Reeb chord in C.ƒ1
C
; ƒ2
C
/, we have

j Lcj D CZ. Lc/D CZ.c/C 1D jcjC 2:

If c is Reeb chord in C.ƒ1�; ƒ
2
�/,

j Lcj D CZ. Lc/D CZ.c/D jcjC 1:

Each double point x of †1 [ †2 naturally corresponds to a double point Lx of
ˆsH .†

1/[†2 in �N < t < N with gradings satisfying j Lxj D jxj.
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Remark The difference in grading correspondence between the Reeb chords in
C.ƒ1

C
; ƒ2
C
/ and the Reeb chords in C.ƒ1�; ƒ

2
�/ can be understood better in a special

case where †1 is a pushoff of †2 through a positive Morse function F W †2!R>0 . In
other words, in a Weinstein neighborhood of †2 , the cobordism †1 is the graph of dF
for some positive Morse function F W †2!R>0 . In this case, the cobordism ˆs

h
.†1/

is a pushoff of †2 through another Morse function zF as well. By the canonical Floer
theory [24], we can choose a family of capping paths so that CZ.x/D Ind zF .x/ for
any intersection point x of ˆs

h
.†1/ and †2 . Similarly, for any Morse Reeb chord c

in ƒ1
C
[ƒ2

C
, we can further require that IndfC.c/ D CZ.c/, where fC D F jƒ2

C
.

Notice that Ind zF . Lc/D IndfC.c/C 1. Therefore

j Lcj D CZ. Lc/D Ind zF . Lc/D IndfC.c/C 1D CZ.c/C 1D jcjC 2:

For a Morse Reeb chord c in ƒ1� [ ƒ
2
� , the indices satisfy Ind zF . Lc/ D Indf�.c/,

where f� D F jƒ2� . Hence j Lcj D CZ. Lc/D Ind zF . Lc/D Indf�.c/D CZ.c/D jcjC 1.
A schematic figure is shown in Figure 10.

†1

ˆs
h
.†1/

†1

ˆs
h
.†1/

†2

†2 †2

†2

aCa� aCa�
LaCLa�

t t

Figure 10: Comparison between †1 and ˆs
h
.†1/ in terms of front projection

(top) and Lagrangian projection (bottom). The indices satisfy j LaCjD jaCjC2
and j La�j D ja�jC 1:

So far, we have shown that generators of Cth.†1; †2/ can be identified with in-
tersection points of ˆsH .†

1/ and †2 , which are generators of Cth.ˆsH .†
1/; †2/.

Moreover, by [6, Proposition 8.2], the Cthulhu chain complexes Cth.†1; †2/ and
Cth.ˆsH .†

1/; †2/ are identified on the level of complexes as well. Note that the
generators of Cth.ˆsH .†

1/; †2/ do not contain any Reeb chords and hence we have
Cth.ˆsH .†

1/; †2/ D
�
CF.ˆsH .†

1/; †2/; d00
�
. Lift ˆsH .†

1/[†2 to a Legendrian
submanifold L in R�R3 �R. Note that

�
CF.ˆsH .†

1/; †2/; d00
�

is the dual of the
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linearized contact homology chain complex of L as introduced in Section 2.1. Hence
if dimM.c1Ip; c2; q/ D 0, there are rigid holomorphic disks that have a positive
puncture at Lc1 and a negative puncture at Lc2 , which implies j Lc1j�j Lc2j D 1. We can get
the corresponding grading relation between c1 and c2 . In particular, let a˙ be Reeb
chords in C.ƒ1

˙
; ƒ2
˙
/ and x1 , x2 be intersection points of †1 and †2 while p and q

are words of pure Reeb chords in degree 0 of ƒ1� and ƒ2� , respectively. We have:

� If dimMJ .x1Ip; x2; q/D 0, then jc1j � jc2j D 1.

� If dimMJ .x1Ip; a
�; q/D 0, then jc1j � ja�j D 2.

� If dimMJ .a
CIp; x1; q/D 0, then jaCj � jx1j D �1.

� If dimMJ .a
CIp; a�; q/D 0, then jaCj � ja�j D 0.

As a result, the Cthulhu chain complex can be written as

Cthk.†1; †2/D C k�2.ƒ1C; ƒ
2
C/˚CFk.†1; †2/˚C k�1.ƒ1�; ƒ

2
�/:

Under this decomposition, the differential

d D

0@dCC dC0 dC�
0 d00 d0�
0 0 d��

1A
has degree 1 as we expected.

The positive energy condition We interpret the positive energy condition of a holo-
morphic disk u 2M.c0I c1; : : : ; cm/ in terms of the action of ci , where i D 0; : : : ; m.
Following [14], we define the energy E.u/ of a holomorphic disk

uW .D2; @D2/! .R�R3; †1[†2/

by E.u/DE!.u/CE˛.u/, where the !–energy is given by

E!.u/

D

Z
u�1.Œ�N;N��R3/

u�.!/C

Z
u�1..�1;�N/�R3/

u�.e�Nd˛/C

Z
u�1..N;1/�R3/

u�.eNd˛/:

Write uD .t; v/, where t W D2!R and vW D2!R3 . Define the ˛–energy E˛.u/ by

sup
��

�Z
u�1..�1;�N/�R3/

��.t/ dt^.v
�˛/

�
Csup
�C

�Z
u�1..N;1/�R3/

�C.t/ dt^.v
�˛/

�
;

where �C and �� range over all compactly supported smooth functions such thatZ �N
�1

��.t/ dt D e
�N and

Z 1
N

�C.t/ dt D e
N ;
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respectively. By Stokes’ theorem, for any holomorphic disk u 2M.c0I c1; : : : ; cm/,
we have

E!.u/D a.c0/�

mX
lD1

a.cl/:

A holomorphic disk has positive !–energy, that is, E!.u/ > 0, which implies that
a.c0/ >

Pm
lD1 a.cl/.

Under the assumption in Remark 4.1, the differential d of the Cthulhu chain complex
is of the form of an upper triangle. By [6, Section 6], we have d2 D 0 and thus
d is a differential map. Moreover, from [6, Section 8], the induced cohomology
H� Cth.†1; †2/ is an invariant under compactly supported Hamiltonian isotopies.
Push †1 along the negative z direction until †1 is far below †2 and then there is no
Reeb chord to †1 from †2 nor intersection point between †1 and †2 . It is obvious
that the cohomology is trivial, ie H� Cth.†1; †2/D 0.

5 Main result

In Section 5.1, we perturb an exact Lagrangian cobordism using a Morse function and
obtain a pair of Lagrangian cobordisms. In Section 5.2, we apply the Floer theory to this
pair of cobordisms and get the long exact sequence in Theorem 1.1. In Section 5.3, we
describe the rigid holomorphic disks counted by dC� , which is a part of the differential
map of the Cthulhu chain complex, in terms of holomorphic disks with boundary on †
and Morse flow lines. This is useful when identifying f1 , ie the category map on the
level of morphisms, with dC� . In Section 5.4, we extend the method in Section 5.3 to
describe the differential d of the Cthulhu chain complex and recover the long exact
sequences in [6]. Finally, we use the identification in Section 5.3 between f1 and dC�
to prove Theorem 1.5 in Section 5.5.

5.1 Construction of the pair of cobordisms

First let us describe the neighborhood of a Lagrangian cobordism. Let † be an exact
Lagrangian cobordism from ƒ� to ƒC in .R � R3; d.et˛//, where ƒ� and ƒC
are Legendrian links. By the Weinstein Lagrangian neighborhood theorem, there is a
symplectomorphism

 W nbhd.†/� .R�R3; d.et˛//! .T �†; d�/;

where � is the negative Liouville form � D �
P
pi dqi of T �† with coordinates

..q1; q2/; .p1; p2//. Specifically, on the .˙1�/boundary R�ƒ˙ , the symplecto-
morphism  is given by a composition  1 ı  0 of two symplectomorphisms. As
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mentioned before, there is a contactomorphism from a tubular neighborhood of ƒ˙
in R3 to a neighborhood of the zero section of J 1.ƒ˙/. Composing with the identity
map on Rt , we get the symplectomorphism  0 from the neighborhood of R�ƒ˙
in R�R3 to R�J 1.ƒ˙/. The second part  1 is given by

 1W nbhd.†/� ..R�J 1.ƒ˙//; d.et˛//! .T �.R>0 �ƒ˙/; d�/;

.t; .q; p; z// 7! ..et ; q/; .z; etp//:

For a Morse function F W †!R�0 such that the determinant of the Hessian matrix
is small enough, the graph of dF is a Lagrangian submanifold in T �†. Pull it back
to R�R3 and denote  �1.graph.dF // by †0 .

Now we show that †0 is an exact Lagrangian submanifold as well. Notice that V.q;p/ WD
dF jq is a Hamiltonian vector field in T �† since �V d� D�d zF , where zF DF ı� and
� is the natural projection � W T �.†/!†. In order to extend  �1� .V / to a Hamiltonian
vector field in R�R3 , we choose a smooth cutoff function  W T �.†/!R such that
.q;p/D 1 in a tubular neighborhood of the zero section containing the graph of dF
and .q;p/ D 0 outside a slightly bigger tubular neighborhood of the zero section.
Pull the Hamiltonian vector field of  � zF back through  and extend to a Hamiltonian
vector field XH in R�R3 . For a suitable neighborhood of † in R�R3 , we have

�XHd.e
t˛/jnbhd.†/ D  

�.�V d�/D  
�.�d zF /D d.� zF ı /jnbhd.†/:

Hence its Hamiltonian H is the same as � zF ı around †. Denote the time-s flow
of XH by �sH and thus †0 D �1H .†/. We can compute the 1–form on †0 :

(5) �1H
�
et˛ D et˛C

Z 1

0

d

ds
�sH
�
.et˛/ ds

D et˛C

Z 1

0

�sH
�
.�XHd.e

t˛/C d.�XH e
t˛// ds

D et˛C

Z 1

0

�sH
�
.dH C d.et˛.XH /// ds

D et˛C d

�Z 1

0

.H C et˛.XH // ı�
s
H ds

�
:

Thus †0 is exact. Moreover, if † has a primitive g , then †0 has a primitive

gC

Z 1

0

.H C et˛.XH // ı�
s
H ds:

We are going to construct a particular Morse function for † such that the image of the
Morse function has cylindrical ends as well and thus is an exact Lagrangian cobordism.
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Suppose † is cylindrical outside Œ�N C ı;N � ı��R3 , where 0 < ı < 1. Choose
Morse functions g˙W ƒ˙!

�
0; 1
2

�
and GW †\ .Œ�N;N ��R3/! .0; 1/ such that

Gj†\ft2Œ�N;�NCı�[ŒN�ı;N �g D e
t :

Define a smooth nondecreasing function �W R>0! Œ0; 1� such that �.s/D 0 for s � 1
and �.s/D 1 for s � eı .

For 0 < � < e�2 , define a Morse function F �W †!R>0 to be

F �.t; q/ WD

8̂̂̂̂
<̂̂
ˆ̂̂̂:

�2Ng�.q/s if t < �N;�
�.eN s/.�N � �2Ng�.q//C �

2Ng�.q/
�
s if �N � t � �N C ı;

�NG if �N C ı < t < N � ı;�
�N C �.e�NCıs/�NgC.q/

�
s if N � ı � t �N;�

�N C �NgC.q/
�
s if t > N;

where s D et . One can check that F � has the following properties:

� The Morse function F � is increasing with respect to t when t � �N C ı

or t�N�ı . This implies that the critical points of F � and the critical points of G
are in one-to-one correspondence and are all contained in †\ .Œ�N;N ��R3/.

� The Morse function F � is bounded by 2�N eN on †\ .Œ�N;N ��R3/.
� Write F �jfN g�ƒC as f �

C
eN and F �jf�N g�ƒ� as f �� e

�N , respectively. The
graph of dF � on .�1;�N/�ƒ� is the same as .�1;�N/� graph.df �� /
and the graph of dF � on .N;1/�ƒC is the same as .N;1/� graph.df �

C
/.

Push .†;ƒC; ƒ�/ off through F � and obtain a copy of .†;ƒC; ƒ�/, labeled
by .†1; ƒ1

C
; ƒ1�/. Label the original .†;ƒC; ƒ�/ by .†2; ƒ2

C
; ƒ2�/. Thus †1

is a pushoff of †2 through F � and ƒ1
C

(resp. ƒ1� ) is a pushoff of ƒ2
C

(resp. ƒ2� )
through f �

C
(resp. f �� ).

5.2 The long exact sequence

Now we apply the Floer theory to the pair of cobordisms †1 [†2 constructed in
Section 5.1 and get a long exact sequence. Combining the long exact sequence with
the augmentation category map induced by the exact Lagrangian cobordism, we obtain
an obstruction to the existence of the exact Lagrangian cobordisms.

Recall that the grading for generators in the Cthulhu chain complex depends on the
choice of capping paths. According to the canonical Floer theory [24], we can choose
a family of capping paths such that the Conley–Zehnder index of any double point x
of †1[†2 satisfies CZ.�x/D IndF �.x/ . Now we apply the Floer theory to the pair
of Lagrangian cobordisms †1[†2 and have the following theorem.
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Theorem 5.1 Let †i , for i D 1, 2, be the cobordisms from ƒi� to ƒi
C

as constructed
in Section 5.1. Suppose �i� is an augmentation of A.ƒi�/ and �i

C
is the augmentation

of A.ƒi
C
/ induced by †i . Fix a suitable domain-dependent almost complex structure

on R�R3 that is compatible with the symplectic form and cylindrical ends. For �
small enough, the Cthulhu chain complex is

Cthk.†1; †2/D C k�2.ƒ1C; ƒ
2
C/˚CFk.†1; †2/˚C k�1.ƒ1�; ƒ

2
�/:

Under this decomposition, the differential is

d D

0@dCC dC0 dC�
0 d00 d0�
0 0 d��

1A :
Moreover:

(1) The map d00 is the Morse codifferential induced by F � , ie the chain complex
.CFk.†1; †2/; d00/ is the Morse cochain complex .C kMorseF

�; dF �/ induced
by F � .

(2) The chain complex .C k�2.ƒ1
C
; ƒ2
C
/; dCC/ is equal to .Homk�1C .�1

C
; �2
C
/;m1/

while the chain complex .C k�1.ƒ1�; ƒ
2
�/; d��/ equals .HomkC.�

1
�; �

2
�/;m1/.

Proof First, we need to show that each intersection point x 2 CFk.†1; †2/ has a
positive action, which is the condition for the differential to have the form above
by Remark 4.1.

Let gi be a primitive of †i for i D 1, 2. According to the computation (5), we have

g1 D g2C

Z 1

0

.H C et˛.XH // ı�
s
H ds;

where H D� zF � ı . It is not hard to check that g1 D g2 on †\ ..�1;�N/�R3/.
Therefore we can assume g1 D g2 D 0 on †\ ..�1;�N/�R3/ and use g1 and g2
as primitives to define actions. The action of each intersection point x is given by

a.x/D g2.x/�g1.x/D

Z 1

0

.H C et˛.XH // ı�
s
H ds:

Notice that the vector field XH vanishes at the intersection point x . Hence

a.x/D�

Z 1

0

H ı�sH ds D�H D F
�
ı .x/ > 0:

Next, we are going to show that for � small enough, the rigid holomorphic disks
that contribute to d00 do not include any pure Reeb chords as negative punctures.
Let x and y be two double points of †1 [ †2 . For any rigid holomorphic disk
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u 2M.xIp; y; q/, where p and q are words of pure Reeb chords of ƒ1�[ƒ
2
� , we

have the energy estimate

E!.u/� a.x/� a.y/� a.p/� a.q/:

Since u has positive energy, we have

a.p/C a.q/� F �. .x//�F �. .y//� F �. .x//:

Therefore, for � small enough that the maximum of the Morse function F � is smaller
than the minimum action of pure Reeb chords of ƒ1� and ƒ2� , the moduli space that
contributes to d00 is of the form M.xIy/. By [16, Lemma 6.11], the boundary of
a rigid holomorphic disk with two punctures at intersection points converges to a
rigid Morse flow line, which implies d00 D dF � . Furthermore, the gradings satisfy
jxj D CZ.x/D IndF �.x/ . Therefore .CFk.†1; †2/; d00/D .C kMorseF

�; dF �/.

Recall that there is a natural identity map with degree 1 from C k�1.ƒ1
˙
; ƒ2
˙
/ to

HomkC.�
1
˙
; �2
˙
/, respectively. Moreover, the definitions of d˙˙ and m1 match as well.

Hence we have .C k�1.ƒ1�; ƒ
2
�/; d��/ D .HomkC.�

1
�; �

2
�/;m1/. On the other hand,

we have .C k�2.ƒ1
C
; ƒ2
C
/; dCC/D .Homk�1C .�1

C
; �2
C
/;m1/.

For the remainder of the paper, we fix a small enough � and write F � , f �
C

, f ��
as F , fC , f� , respectively. According to the Floer theory in Section 4, we have
Hk.Cth.†1; †2/; d/D 0, where

Cthk.†1; †2/D Homk�1C .�1C; �
2
C/˚C

k
MorseF ˚HomkC.�

1
�; �

2
�/

and

d D

0@m1 dC0 dC�0 dF d0�
0 0 m1

1A :
Consider the chain map ‰ D dC�C d0� :

‰W .HomkC.�
1
�;�

2
�/;m1/!.HomkC.�

1
C;�

2
C/˚C

kC1
MorseF; d

0/; where d 0D
�
m1 dC0
0 dF

�
:

Notice that the mapping cone of ‰ has trivial homology. Therefore,

Hk.HomC.�1�; �
2
�//ŠH

k Cone.dC0/:

Hence we have the following long exact sequence:

� � � !Hk.CMorseF; dF /!Hk HomC.�1C; �
2
C/!Hk HomC.�1�; �

2
�/

!HkC1.CMorseF; dF /! � � � :
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Moreover, notice that in the construction in Section 5.1, the gradient flows of F flow
in from the bottom and out of the top. Hence we have

Hk.CMorseF; dF /DH
k.†;ƒ�/:

Corollary 5.2 Let † be an exact Lagrangian cobordism with Maslov number 0
from ƒ� to ƒC . For i D 1, 2, if �i� is an augmentation of A.ƒ�/ and �i

C
is the aug-

mentation of A.ƒC/ induced by †, then we have the following long exact sequence:

(6) � � � !Hk.†;ƒ�/!Hk HomC.�1C; �
2
C/!Hk HomC.�1�; �

2
�/

!HkC1.†;ƒ�/! � � � :

Remark When the Maslov number of † is d which is not 0 the method above works
as well. The only difference is that the grading of generators in the Cthulhu chain com-
plex is defined mod d . Thus, the long exact sequence (6) holds with gradings mod d .

If �1� D �
2
� D �� , by [33, Section 5.2], we have the identification

Hk HomC.�; �/Š LCH�1�k.ƒ/;

where LCH�k.ƒ/ is the linearized contact homology of ƒ. The long exact sequence (6)
can be rewritten in terms of linearized contact homology:

� � � !Hk.†;ƒ�/! LCH�C
1�k

.ƒC/! LCH��
1�k

.ƒ�/!HkC1.†;ƒ�/! � � � :

Furthermore, if ƒ� is empty, then † is an exact Lagrangian filling of ƒC and �C is an
augmentation of A.ƒC/ induced by the Lagrangian filling. The long exact sequence (6)
gives

Hk.†/ŠHk HomC.�C; �C/Š LCH�C
1�k

.ƒC/;

which is the Seidel isomorphism (following [33]). This theorem was conjectured by
Seidel [35] and was proved by Dimitroglou Rizell [13].

If ƒC , instead, is empty and A.ƒ�/ has an augmentation �� , the long exact se-
quence (6) tells us that

Hk HomC.��; ��/ŠHkC1.†;ƒ�/D

8<:
F if k D 1;
F1��.†/ if k D 0;
0 otherwise.

However, by Sabloff duality (3),

dimH 0 HomC.��; ��/D dimH 2 Hom�.��; ��/D dimH 2 HomC.��; ��/D 0:

This is a contradiction since the unit e�� D�y
_ is always in H 0 HomC.��; ��/ and

is not 0. Thus if ƒC is empty, then ƒ� does not admit any augmentation. This result
was previously known [6; 12].
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Remark 5.3 For the rest of the paper, we will focus on the case where ƒC and ƒ� are
single component knots. Given the fact that there does not exist a compact Lagrangian
manifold in R�R3 and ƒ� does not admit a cap (since ƒ� has an augmentation),
we know that any cobordism † from ƒ� to ƒC must be connected.

Combining the long exact sequence (6) with the augmentation category map induced
by the exact Lagrangian cobordism †, we have the following theorem.

Theorem 5.4 Let † be an exact Lagrangian cobordism with Maslov number 0 from
a Legendrian knot ƒ� to a Legendrian knot ƒC . For i D 1, 2, assume �i� is an
augmentation of A.ƒ�/ with a single basepoint and �i

C
is the augmentation of A.ƒC/

induced by †. Then the map

i0W H 0 HomC.�1C; �
2
C/!H 0 HomC.�1�; �

2
�/

in the long exact sequence (6) is an isomorphism. Moreover, we have that

(7) H�HomC.�1C; �
2
C/ŠH

�HomC.�1�; �
2
�/˚F��.†/Œ1�;

where F��.†/Œ1� denotes the vector space F��.†/ in degree 1 and �.†/ is the Euler
characteristic of the surface †.

Proof By Remark 5.3, we have

Hk.†;ƒ�/D

�
F��.†/ if k D 1;
0 otherwise.

The long exact sequence (6) shows that for k > 1 or k < 0, the map

ik W Hk HomC.�1C; �
2
C/!Hk HomC.�1�; �

2
�/

in the long exact sequence induces an isomorphism

Hk HomC.�1C; �
2
C/ŠH

k HomC.�1�; �
2
�/:

When k D 0 or 1, we have

0!H 0 HomC.�1C; �
2
C/

i0
�!H 0 HomC.�1�; �

2
�/! F��.†/

!H 1 HomC.�1C; �
2
C/!H 1 HomC.�1�; �

2
�/! 0:

To finish the proof, we need to show

dim.H 0 HomC.�1C; �
2
C//� dim.H 0 HomC.�1�; �

2
�//:
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Once this inequality holds, the fact that i0W H 0 HomC.�1C; �
2
C
/!H 0 HomC.�1�; �

2
�/

is injective implies that it is an isomorphism. Note that the long exact sequence (6) is
over the field F . It follows that

H 1 HomC.�1C; �
2
C/ŠH

1 HomC.�1�; �
2
�/˚F��.†/:

To prove the inequality, we exchange the positions of �1 and �2 in the long exact
sequence (6) and get

� � � !Hk.†;ƒ�/!Hk HomC.�2C; �
1
C/

!Hk HomC.�2�; �
1
�/!HkC1.†;ƒ�/! � � � ;

which implies
H 2 HomC.�2C; �

1
C/ŠH

2 HomC.�2�; �
1
�/:

By Sabloff duality (3), we have

dim.H 0 Hom�.�1˙; �
2
˙//D dim.H 2 HomC.�2˙; �

1
˙//:

Thus dim.H 0 Hom�.�1C; �
2
C
//D dim.H 0 Hom�.�1�; �

2
�//.

Since ƒC and ƒ� are both Legendrian knots with a single basepoint, we have the
long exact sequence (2) for ƒC and ƒ� :

0!H 0 Hom�.�1˙; �
2
˙/!H 0 HomC.�1˙; �

2
˙/

!H 0.ƒ˙/
ı˙
�!H 1 Hom�.�1˙; �

2
˙/! � � � :

From this long exact sequence, we have

dim.H 0 HomC.�1˙; �
2
˙//D dim.H 0 Hom�.�1˙; �

2
˙//C dim.ker ı˙/:

Thus, to prove dim.H 0 HomC.�1C; �
2
C
//� dim.H 0 HomC.�1�; �

2
�//, we only need to

show dim.ker ıC/� dim.ker ı�/.

Recall that the cobordism † from ƒ� and ƒC induces an A1–category map

f W AugC.ƒ�/!AugC.ƒC/

in the way described in Section 3.2. In particular, we get the functor f1 of augmentation
categories on the level of morphisms:

f1W HomC.�1�; �
2
�/! HomC.�1C; �

2
C/:

This map descends to the cohomology level as

f �W H�HomC.�1�; �
2
�/!H�HomC.�1C; �

2
C/:

Notice that f1 sends Hom�.�1�; �
2
�/ to Hom�.�1C; �

2
C
/. Hence f1 induces a map

between the cohomology of the quotient chain complexes, denoted by f � as well.

Algebraic & Geometric Topology, Volume 17 (2017)



The augmentation category map induced by exact Lagrangian cobordisms 1849

The following diagram commutes:

0 // H 0Hom�.�1C;�
2
C/

// H 0HomC.�1C;�
2
C/

// H 0.ƒC/
ıC
// H 1Hom�.�1C;�

2
C/

// � � �

0 // H 0Hom�.�1�;�
2
�/

//

f �

OO

H 0HomC.�1�;�
2
�/

//

f �

OO

H 0.ƒ�/
ı�
//

f �

OO

H 1Hom�.�1�;�
2
�/

//

f �

OO

� � �

Thus f �.ker ı�/� ker ıC . Furthermore, notice that f1 sends the generator .y�/_ 2
C 0Morse.ƒ�/ to the corresponding .yC/_ 2 C 0Morse.ƒC/, and C�1Morse.ƒC/D 0. Hence
f � is injective on H 0.ƒ�/, which implies

dim.ker ıC/� dim.ker ı�/:

If �1� D �
2
� D �� and �� comes from a Lagrangian filling L� , then �C also comes

from the filling LC , which is a concatenation of † and L� . By Seidel’s isomorphism
(following [33]), we have HomkC.�˙; �˙/ŠH

k.L˙/, which implies that

Hk HomC.�C; �C/ŠHk HomC.��; ��/ for k ¤ 1

and when k D 1,

H 1 HomC.�C; �C/ŠH 1 HomC.��; ��/˚F��.†/:

Theorem 5.4 is a generalization of Seidel’s isomorphism. Equation (7) holds even if ��
does not come from a Lagrangian filling or �1� and �2� are not the same.

If the two augmentations are the same, we can identify the cohomology of HomC
space with the linearized contact homology by [33]:

HomkC.�; �/Š LCH�1�k.ƒ/:

Now we restate Theorem 5.4 in terms of linearized contact homology.

Corollary 5.5 Let † be an exact Lagrangian cobordism with Maslov number 0 from
a Legendrian knot ƒ� to a Legendrian knot ƒC . Assume �� is an augmentation
of A.ƒ�/ and �C is the augmentation of A.ƒC/ induced by †. Then

LCH�C� .ƒC/Š LCH��� .ƒ�/˚F��.†/Œ0�;

where F��.†/Œ0� denotes the vector space F��.†/ in degree 0.

Therefore, if there exists an exact Lagrangian cobordism † from ƒ� to ƒC , the
Poincaré polynomial of the linearized contact homology of ƒC agrees with that of ƒ�
in all degrees except 0. In degree 0 their coefficients differ by ��.†/. This gives a
strong and computable obstruction to the existence of exact Lagrangian cobordisms.
One can check the Poincaré polynomials of the linearized contact homology for any
two Legendrian knots with small crossings through the atlas in [9]. If they do not
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61 41

Figure 11: The topological cobordism between 61 and 41 can be achieved
by two saddle moves along the red (straight) lines followed by an isotopy.

satisfy the relation given in Corollary 5.5, there does not exist an exact Lagrangian
cobordism between them.

For example, let ƒ1 and ƒ2 be the Legendrian knots with maximum Thurston–
Bennequin number of smooth knot types 41 and 61 , respectively (as shown in Figure 2).
There is a topological cobordism between 41 and 61 with genus 1 as shown in Figure 11.
Moreover, the Thurston–Bennequin numbers of ƒ1 and ƒ2 are �3 and �5, respec-
tively, which satisfy the Thurston–Bennequin number relation (1). Thus there possibly
exists an exact Lagrangian cobordism from ƒ2 to ƒ1 with genus 1. However, we
have the following proposition:

Proposition 5.6 There does not exist an exact Lagrangian cobordism from ƒ2 to ƒ1
with Maslov number 0.

Proof The Poincaré polynomials of the linearized contact homology for ƒ1 and ƒ2
are t�1C 2t and 2t�1C 3t , respectively. As a result of Corollary 5.5, there does not
exist an exact Lagrangian cobordism from ƒ2 to ƒ1 with Maslov number 0.

5.3 Geometric description of the differential map

Let † be an exact Lagrangian cobordism from a Legendrian knot ƒ� to a Legen-
drian knot ƒC . For i D 1, 2, assume �i� is an augmentation of A.ƒ�/ and �i

C
is

the augmentation induced by †. So far we have two maps from HomC.�1�; �
2
�/ to

HomC.�1C; �
2
C
/. One is the geometric map dC� in the differential of the Cthulhu chain

complex Cth.†1; †2/ defined by counting rigid holomorphic disks with boundary
on †1 [†2 . The other map is the augmentation category map induced by † on
the level of morphisms f1 , defined algebraically in Section 3.2. In this section, we
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will show that, with a choice of Morse function F on the cobordism †, the maps
dC� and f1 are the same. To do that, we describe the two maps separately and then
compare their images on each generator of HomC.�1�; �

2
�/.

In order to describe dC� , we want to interpret rigid holomorphic disks with boundary
on †1 [†2 in terms of rigid holomorphic disks with boundary on † together with
negative gradient flows of a Morse function. This is analogous to a result in [16], which
gives a correspondence between rigid holomorphic disks with boundary on a 2–copy of
a Legendrian submanifold L and rigid holomorphic disks with boundary on L together
with negative gradient flows of a Morse function. Now let us describe the result in [16]
in detail.

Let L be a Legendrian submanifold in the contact manifold .P �R; ker.dz � �//,
where .P; d�/ is an exact symplectic 2n–dimensional manifold. Instead of considering
holomorphic disks in the symplectization of P �R with boundary on R�L, according
to [13], we can consider holomorphic disks in P with boundary on �.L/, where �
is the projection P �R! P . See [16, Section 2.2.3] for the detailed definition of
holomorphic disks with boundary on �.L/. As the points on �.L/ and points on L
are in natural correspondence except that the double points of �.L/ correspond to
the Reeb chords of L, we refer to the holomorphic disks as J–holomorphic disks
with boundary on L as in [16], where J is a generic almost complex structure on P .
Choose a Morse–Smale pair .f; g/, where f is a Morse function L! R and g is
a Riemannian metric on L, such that .f; g; J / is adjusted to L in the sense of [16,
Section 6.3]. Push L off through the Morse function f and get a 2–copy of L, denoted
by 2L. In order to describe rigid holomorphic disks with boundary on 2L, we need
to introduce the generalized disks determined by .f; g; J /. A generalized disk is a
pair .u; /, where

� u 2M is a J–holomorphic disk with boundary on L;

�  is a negative gradient flow of f with one end on the boundary of u and the
other end at a critical point p of the Morse function f ;

� the boundary of u and  intersect transversely.

The point p is called a negative Morse puncture if the flow line  flows toward p , and
is called a positive Morse puncture if  flows away from p . The formal dimension
dim.u; / is defined by

dim.u; /D
�

dimMC 1C Indf .p/�n if p is a positive Morse puncture,
dimMC 1� Indf .p/ if p is a negative Morse puncture.

The generalized disk .u; / is called rigid if dim.u; /D 0.
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The rigid holomorphic disks with boundary on a 2–copy of L can be described as
below in terms of whether their punctures are Morse Reeb chords or non-Morse Reeb
chords (as defined in Section 3.2).

2L L

u

2L L



u

Figure 12: The correspondences in Lemma 5.7. The arrows indicate the
orientations of holomorphic disks and the negative gradient flow line.

Lemma 5.7 [16, Theorem 3.6] Let .f; g; J / be a triple as described above that is
adjusted to the Legendrian submanifold L. Push L off through the Morse function f
and get a 2–copy 2L. There are the following bijective correspondences:

� Rigid holomorphic disks with boundary on 2L that have one positive puncture
and one negative puncture at non-Morse mixed Reeb chords and the other
punctures at pure Reeb chords are in one-to-one correspondence with rigid
holomorphic disks with boundary on L as shown in Figure 12 (top).

� Rigid holomorphic disks with boundary on 2L that have exactly one puncture
at a Morse Reeb chord are in one-to-one correspondence with rigid generalized
disks .u; / determined by .f; g; J / as shown in Figure 12 (bottom).

� Rigid holomorphic disks with boundary on 2L that have two punctures at Morse
Reeb chords are in one-to-one correspondence with rigid negative gradient flows
of the Morse function f .
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In order to get an analogous description for a 2–copy of †, we need a result in [19] to
relate rigid holomorphic disks with boundary on a cobordism † to rigid holomorphic
disks with boundary on some Legendrian submanifold L† .

Let us first construct the Legendrian submanifold L† . Suppose † is an exact La-
grangian submanifold in .R�R3; d.et˛// from ƒ� to ƒC . Assume it is cylindrical
outside Œ�N C ı;N � ı��R3 , where ı is a small positive number. Under the sym-
plectomorphism

 W .R�R3; d.et˛//! .T �.R>0 �R/; d�/; .t; x; y; z/ 7! ..et ; x/; .z; ety//;

the cobordism † can be viewed as a cobordism in .T �.R>0 �R/; d�/, where � is
the negative Liouville form of the cotangent bundle. Let a� D e�N and aC D eN .
There is a small � > 0 such that † is cylindrical outside T �.Œa�C �; aC� ���R/.
Chopping off the ends of †, we get a cobordism in T �.Œa�; aC� � R/ with the
canonical symplectic form. Lift it to a Legendrian submanifold † in the 1–jet space
J 1.Œa�; aC��R/D T �.Œa�; aC��R/�R. The Legendrian † can be parametrized
near the positive boundary J 1..aC� �; aC��R/ as

.s; xC.q/; zC.q/; syC.q/; szC.q/CBC/D j
1.szC.q/CBC/

for some constant BC , where s D et and .t; q/ 2†\
�
.log.aC� �/; log aC��R3

�
D

.log.aC � �/; log aC� � ƒC . Here szC.q/C BC may not be a function of .s; x/.
However, consider f.xC.q/; zC.q// j q 2ƒCg, which is the front projection of ƒ to
the xz–plane. The cusps divide the front diagram of ƒC into pieces. Note that on
each piece zC.p/ is a perfect function of xC.p/ and at each cusp, the two functions
from different pieces match at the cusp. Therefore, we can write the parametrization
as j 1.szC.q/CBC/. Similarly, near the negative boundary J 1.Œa�; a�C �/�R/,
the Legendrian † can be parametrized as

.s; x�.q/; z�.q/; sy�.q/; sz�.q/CB�/D j
1.sz�.q/CB�/;

where .s; q/ 2 Œa�; a�C �/�ƒ� and B� is a constant.

However, notice that † does not have any Reeb chords. Therefore, we consider the
Morse Legendrian †Mo , which is a Legendrian submanifold in J 1.Œa�; aC��R/ that
agrees with † on J 1..a�C �; aC� �/�R/. But near the .˙/–boundary, the Morse
Legendrian can be parametrized as j 1

�
.A˙� .s� a˙/

2/z˙.q/
�
, ie

(8)
�
s; x˙.q/; �2.s�a˙/z˙.q/; .A˙�.s�a˙/

2/y˙.q/; .A˙�.s�a˙/
2/z˙.q/

�
;

where A˙ are positive constants. The key property of the Morse Legendrian is that the
Reeb chords of †Mo on the .˙/–boundary are in bijective correspondence with the
Reeb chords of ƒ˙ , respectively.
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There are isotopies from sz˙.q/CB˙ to .A˙�.s�a˙/2/z˙.q/, respectively, which
each induce a diffeomorphism from † to the Morse Legendrian †Mo . Extend †Mo to
a Legendrian submanifold L† in J 1.R>0 �R/ by adding

j 1
�
.AC� .s� aC/

2/zC.q/
�

with .s; q/ 2 .aC;1/�ƒC to the positive boundary and adding

j 1
�
.A�C .s� a�/

2/z�.q/
�

with .s; q/ 2 .0; a�/�ƒ� to the negative boundary. In other words, when s < a�C �
or s > aC� � , we can parametrize L† as (8). Note that

L†\J
1
�
.a�C �; aC� �/�R

�
D†Mo:

Moreover, according to [20], there is a natural bijective correspondence between rigid
holomorphic disks with boundary on L† and rigid holomorphic disks with boundary
on †Mo . Combining this with a result in [19], we know that rigid holomorphic disks
with boundary on an exact Lagrangian cobordism † are in one-to-one correspondence
with rigid holomorphic disks with boundary on L† that have positive (resp. negative)
punctures at Reeb chords lying in the slice s D aC (resp. s D a� ). The proof of this
result can be applied directly to the case of immersed exact Lagrangian submanifolds
with cylindrical ends, where we only consider the rigid holomorphic disks with punc-
tures on Reeb chords but no double points. Hence we have the following result for
a 2–copy of †, denoted by †[†0 .

Lemma 5.8 Let † and †0 be exact Lagrangian cobordisms from ƒ� to ƒC and
from ƒ0� to ƒ0

C
, respectively. The Morse Legendrian L†[†0 constructed above is a

union of L† and L†0 . Moreover, rigid holomorphic disks with boundary on †[†0 that
have positive (resp. negative) punctures at Reeb chords of ƒC[ƒ0C (resp. ƒ�[ƒ0� ) are
in one-to-one correspondence with rigid holomorphic disks with boundary on L†[L†0
that have positive (resp. negative) punctures at the Reeb chords lying in the slice sD aC
(resp. s D a� ).

Note that the rigid holomorphic disks with boundary on †[†0 considered in Lemma 5.8
are not all the rigid holomorphic disks since we did not talk about holomorphic disks
with punctures at double points. The disks we considered are the ones counted by dC� .

In order to apply Lemma 5.7 to L†[†0 and get the analogous correspondences for
exact Lagrangian cobordisms, we need to view L†0 as the 1–jet of a function

zF W L†!R

in the neighborhood of L† and show that zF is Morse. To describe the function
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easily, pull it back to a function †!R, denoted by zF as well. Note that zF D F on
†\T �.Œa�C �; aC� ���R/.

Now let us focus on the part s 2 .aC � �;1/. Denote L† \ J 1..aC � �;1/�R/
by @C.L†/ and denote †\T �..aC� �;1/�R/ by @C.†/. One can check that the
Reeb chords from @C.L†/ to @C.L†0/ are in bijective correspondence with the Reeb
chords from ƒC to ƒ0

C
by a property of the Morse Legendrian. As a result, the only

critical points of zF on @C.†/ are .s; q/, where s D aC and f 0
C
.q/D 0.

Let �1 and �2 be the natural projections as follows:

J 1.R>0 �Rx/

�1

||

�2

!!

J 1.R>0/ J 1.Rx/

First project @C.L†/ and @C.L†0/ to J 1.Rx/. We have

�2.@C.L†//D
�
xC.q/; .AC� .s� aC/

2/yC.q/; .AC� .s� aC/
2/zC.q/

�
and

�2.@C.L†0//D
�
x0C.q/; .AC� .s� aC/

2/y0C.q/; .AC� .s� aC/
2/z0C.q/

�
:

Thus for fixed s 2 .aC � �;1/, we have zF .s; q/D .AC � .s � aC/2/fC.q/, where
fC D F jfaCg�ƒC . Second, project @C.L†/ and @C.L†0/ to J 1.R>0/. We have

�1.@C.L†//D
�
s; �2.s� aC/zC.q/; .AC� .s� aC/

2/zC.q/
�
;

and
�1.@C.L†0//D

�
s; �2.s� aC/z

0
C.q/; .AC� .s� aC/

2/z0C.q/
�
:

For a fixed q 2ƒC , the only nondegenerate singularity of zF .s; q/ is aC . In particular,
it is a local maximum since z0

C
.q/ > zC.q/, which comes from the fact that fC > 0

by the construction in Section 5.1. Therefore, we have

Ind zF .aC; q/D IndfC.q/C 1:

Similarly, on the negative side, denote F jfa�g�ƒ� as f� . The critical points of zF
on † \ T �..�1; a� C �/ �R/ agree with the critical points of f� that lie in the
slice s D a� . Moreover, the indices satisfy Ind zF .a�; q/D Indf�.q/. Hence zF is a
Morse function.

Choose a Riemannian metric g on † and a generic almost complex structure J
on R�R3 that is adjusted to cylindrical ends such that . zF ; g; J / is adjusted to L† .
Now we can apply Lemma 5.7 to the 2–copy L†[L†0 .
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Define a generalized disk to be a pair .u; / consisting of a J–holomorphic disk u
with boundary on † as defined in Section 2.2 and a negative gradient flow line  of zF
with one end on the boundary of u and one end at a critical point p of zF such that the
boundary of u intersects transversely with the negative gradient flow  . The point p
is called a negative Morse puncture if the flow line  flows toward p , and is called a
positive Morse puncture if  flows away from p . The formal dimension dim.u; / is
defined by

(9) dim.u; /D
�

dimMC 1C Indf .p/� 2 if p is a positive Morse puncture,
dimMC 1� Indf .p/ if p is a negative Morse puncture.

The generalized disk .u; / is called rigid if dim.u; /D 0. We have the following
result, which is analogous to Lemma 5.7.

Theorem 5.9 Let † be an exact Lagrangian cobordism in .R�R3; d.et˛// from ƒ�
to ƒC that is cylindrical outside Œ�NCı;N �ı��R3 . Let F W †!R>0 be a positive
Morse function. Push † off through F and get a new cobordism †0 .

Denote F jfN g�ƒC by fC and F jf�N g�ƒ� by f� . Define a new Morse function
zF W †!R satisfying the following properties:

� The Morse function zF satisfies zF D F on †\ .Œ�N C ı;N � ı��R3/.
� On † \ ..N � ı;1/ � R3/, all the critical points of the Morse function zF

lie in †\ .fN g �R3/ D fN g �ƒC and agree with the critical points of fC .
Moreover, at each critical point c , we have Ind zF c D IndfC cC 1.

� On †\ ..�1;�N C ı/�R3/, all the critical points of the Morse function zF
lie in †\ .f�N g �R3/D f�N g �ƒ� and agree with the critical points of f� .
Moreover, at each critical point c , we have Ind zF c D Indf� c .

The Riemannian metric g and almost complex structure J are chosen as above. Then
we can describe the rigid holomorphic disks with boundary on † [ †0 that have
punctures on Reeb chords of ƒC [ƒ0C and ƒ� [ƒ0� in terms of whether the Reeb
chords are Morse or non-Morse as defined in Section 3.2:

(1) Rigid holomorphic disks with boundary on † [†0 that have two punctures
at non-Morse mixed Reeb chords are in one-to-one correspondence with rigid
holomorphic disks with boundary on †. See Figure 13 (top).

(2) Rigid holomorphic disks with boundary on †[†0 that have exactly one puncture
at a Morse Reeb chord are in one-to-one correspondence with rigid generalized
disks .u; / determined by . zF ; g; J /. See Figure 13 (bottom).

(3) Rigid holomorphic disks with boundary on †[†0 with two punctures at Morse
Reeb chords are in one-to-one correspondence with rigid negative gradient flows
of the Morse function zF from a critical point on ƒC to a critical point on ƒ� .
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u

Figure 13: The correspondences in Theorem 5.9. The arrows denote the
orientations of holomorphic disks and the negative gradient flow line.

Proof According to Lemma 5.8, rigid holomorphic disks with boundary on †[†0

that have two punctures at mixed Reeb chords correspond to rigid holomorphic disks
with boundary on L† [L†0 that have positive (resp. negative) boundary at mixed
Reeb chords lying in the slice sD aC (resp. sD a� ). By Lemma 5.7, these disks with
boundary on L†[L†0 are in one-to-one correspondence with holomorphic disks with
boundary on L† that have positive (resp. negative) boundary at the Reeb chords lying
in the slice s D aC (resp. s D a� ) together with Morse flow lines of zF . If it is a rigid
Morse flow line of zF on L† , it flows from a critical point on ƒC to a critical point
on ƒ� . Pull it back to a flow line † and get the correspondence .3/. If it is a rigid
holomorphic disk with boundary on L† that has positive (resp. negative) boundary
at the Reeb chords lying in the slice s D aC (resp. s D a� ), by [19], it corresponds
to a rigid holomorphic disk with boundary on †, which is the correspondence .1/.
Otherwise, it is a rigid generalized disk .u; / determined by . zF ; g; J /. From the
construction of zF , one can note that all the critical points of zF on †\ .fN g �R3/
are of index 1 or 2 while all the critical points of zF on † \ .f�N g �R3/ are of
index 0 or 1. By the dimension formula (9), the generalized disk .u; / is rigid if and
only if u is a rigid holomorphic disk. Each rigid holomorphic disk u with boundary
on L† that has positive (resp. negative) boundary at the Reeb chords lying in the
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slice s D aC (resp. s D a� ) in turn corresponds to a rigid holomorphic disk with
boundary on †. Pulling  back to †, we get a rigid generalized disk on † determined
by . zF ; g; J /. Hence we get the correspondence .2/.

Recall f1 is defined algebraically as follows. The exact Lagrangian cobordism † from
a Legendrian knot ƒ� to a Legendrian knot ƒC induces a DGA map � between the
DGAs with a single basepoint by counting rigid holomorphic disks with boundary on †:

�W .A.ƒC/; @/! .A.ƒ�/; @/;

as described in Section 2.2. This DGA map � induces an A1–category map

f W AugC.ƒ�/!AugC.ƒC/

in the way described in Section 3.2. Restricting the category map on the level of
morphisms, we have

f1W HomC.�1�; �
2
�/! HomC.�1C; �

2
C/:

See calculation (4) for the explicit formula.

Theorem 5.10 With a choice of Morse function F W †!R, we have dC� D f1 .

Proof We show dC�D f1 by checking their images on generators of HomC.�1�; �
2
�/.

Recall that HomC.�1�; �
2
�/ is generated by the elements in Hom�.�1�; �

2
�/ that corre-

spond to non-Morse Reeb chords and the elements in T D fx_�; y
_
�g that correspond

to Morse Reeb chords, respectively.

First consider the element b_ in Hom�.�1�; �
2
�/. Notice that Morse Reeb chords are

much shorter than non-Morse Reeb chords. The energy restriction ensures that dC�.b_/
does not include any element in T . Therefore dC� sends b_ to a_ 2 Hom�.�1C; �

2
C
/

by counting rigid holomorphic disks u 2M.a12Ip11; b12; q22/ with boundary on
†1[†2 , where p11 and q22 are words of pure Reeb chords of ƒ1� and ƒ2� , respec-
tively. According to the correspondence .1/ in Theorem 5.9, these disks correspond
to rigid holomorphic disks u 2 M.aIp; b; q/ with boundary on † (as shown in
Figure 14), which are the disks counted by f1 . Notice that both dC� and f1 send b_

to jM.aIp; b; q/j�1�.p/�
2
�.q/a

_ , where jM.aIp; b; q/j is the number of rigid disks
in M counted with sign. Hence the definition of dC� matches the definition of f1
on Hom�.�1�; �

2
�/.

In order to simplify the map dC� , we can choose a Morse function F such that the
negative gradient flow of F flows from �C directly to �� without going through any
critical points. We can further require that the negative gradient flow of F behave the
same in a collar neighborhood of the flow line from �C to �� as shown in Figure 15.
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a12 a

p11 pb12 bq22 q

†1 †2 †

Figure 14: The disk on the left is counted by dC� while the disk on the right
is counted by � .

As x˙ and y˙ sit right beside �˙ , the negative gradient flow lines of zF flow from
xC and yC directly to x� and y� , respectively.

For the element c_ 2 T , the map dC� counts the rigid holomorphic disks in †1[†2
that have a negative puncture at the Morse Reeb chord c . For the rigid disk that has a
positive puncture at a Morse Reeb chord as well, according to the correspondence .3/
in Theorem 5.9, it corresponds to a rigid Morse flow line of zF . The indices of zF
on y� , x� , yC and xC are 0, 1, 1 and 2, respectively. Therefore dC�.x_�/ has x_

C

as a term and dC�.y_�/ has y_
C

as a term. If the rigid disk has a positive puncture at a
non-Morse mixed Reeb chord a12 , we denote it by u2M.a12Ip11; c12; q22/. By the
correspondence .2/ in Theorem 5.9, it corresponds to a rigid generalized disk .u; /,
where u 2M.aIp; q/ is a holomorphic disk with boundary on † and  is a Morse
flow of zF that flows toward c (see Figure 16). Due to the dimension formula (9) of
generalized disks, no rigid disk has a negative puncture at y� since Ind zF y� D 0 but
dimM� 0. Hence dC�.y_�/D y

_
C

, which matches the definition of f1 on y�
k

.

ƒC

ƒ�

†

�C xCyC

��

˛

x�y�

Figure 15: An example of Morse flows of F
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a12 a

p11 c12 q22 p c q

†1 † †



Figure 16: The disk on the left is counted by dC� while the disk on the right
is counted by � .

For the element x_� , we know that f1.x_C/ counts the element a_ if t shows up in
the image of the DGA map �.a/. In other words, there exists a rigid holomorphic
disk u 2M.aIp; q/ with boundary on †, where p and q are words of pure Reeb
chords of ƒ� , such that u has a nontrivial intersection number with ˛ , where ˛ is
the curve from the basepoint �C to �� . Each rigid holomorphic disk u contributes
to f1.x_C/ a term of a_ with coefficient s.u; ˛/�1�.p/�

2
�.q/a

_ , where s.u; ˛/ is the
intersection number of the boundary of u and ˛ . We can make the Morse function F
satisfy the property that the negative gradient flow line  of F from xC to x� is
parallel to ˛ and of the same orientation. For each intersection point pi of the boundary
of u and  , denote the part of  from pi to c by i . By the correspondence .3/ in
Theorem 5.9, the rigid generalized disk .u; i / corresponds to a rigid holomorphic
disk in M.a12Ip11; c12; q22/ with boundary on †1 [ †2 , and hence contributes
to dC�.x_�/ with a term s.u; i /�

1
�.p

11/�2�.q
22/a_ , where s.u; i / is the sign of the

intersection. Summing over all the intersections of the boundary of u and  , the rigid
holomorphic disk u contributes s.u; /�1�.p/�

2
�.q/a

_ to dC�.x_�/, where s.u; / is
the intersection number of the boundary of u and  . Therefore, we have dC� D f1
on x_� .

5.4 Aside

In this section, we describe the differential map of the Cthulhu chain complex in terms
of holomorphic disks with boundary on † and Morse flow lines. This allows us to
recover the long exact sequences in [6]. The theorem in this section is stated without
rigorous proof. But it will not be used elsewhere in the paper.

In Section 5.3, we only need to describe the rigid disks with boundary on †1 [†2

that have punctures at Reeb chords. Hence we only have correspondences for those
types of disks. However, the method should work for all the rigid holomorphic disks
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with boundary on †1[†2 including the disks counted by dC0 and d0� . We state the
following theorem without proof.

Theorem 5.11 Let † be an exact Lagrangian cobordism from ƒ� to ƒC and †1[†2

be a 2–copy of † as constructed in Section 5.1. For i D 1, 2, assume �i� is an
augmentation of A.ƒ�/ and �i

C
is the augmentation of A.ƒC/ induced by †. For �

small enough, the Cthulhu chain complex can be decomposed into five parts:

Cthk.†1;†2/DHomk�1� .�1C; �
2
C/˚C

k�1
MorsefC˚C

k
MorseF˚Homk�.�

1
�; �

2
�/˚C

k
Morsef�:

Under this decomposition, the differential can be written as

d D

0BBBBB@
m1 dCfC dCF dC� dCf�
0 dfC dfCF 0 dfCf�
0 0 dF 0 dFf�
0 0 0 m1 d�f�
0 0 0 0 df�

1CCCCCA :
Moreover:

(1) The holomorphic disks counted by dCF and dCf� are in one-to-one correspon-
dence with rigid generalized disks on † determined by . zF ; g; J /.

(2) The holomorphic disks counted by dC� are in one-to-one correspondence with
rigid holomorphic disks with boundary on †.

(3) The holomorphic disks counted by dfCF , dfCf� and dFf� are in one-to-one
correspondence with the rigid Morse flow lines of zF .

This theorem is similar to the conjectural analytic Lemma 4.11 in [15], which describes
the correspondence in the case of exact Lagrangian fillings.

We next discuss how to recover the three long exact sequences in [6] from this chain
complex.

(1) Decompose the Cthulhu chain complex as

Homk�1� .�1C; �
2
C/˚ .C

k�1
MorsefC˚C

k
MorseF /˚HomkC.�

1
�; �

2
�/:

Notice that the chain complex�
C k�1MorsefC˚C

k
MorseF;

�
dfC dfCF
0 dF

��
can be identified with the Morse cochain complex .C kMorse

xF ; d xF / induced by a Morse
function xF , where xF agrees with zF near ƒC and agrees with F elsewhere. Hence

H�.C kMorse
xF ; d xF /DH

k.†;ƒC[ƒ�/:
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Therefore, we have the following long exact sequence:

� � � !Hk.†;ƒC[ƒ�/!Hk Hom�.�1C; �
2
C/!Hk HomC.�1�; �

2
�/

!HkC1.†;ƒC[ƒ�/! � � � ;

which is Theorem 1.5 of [6].

(2) To obtain another long exact sequence, view the Cthulhu chain complex as a
direct sum of Homk�1� .�1

C
; �2
C
/, C k�1MorsefC˚C

k
MorseF ˚Homk�.�

1
�; �

2
�/ and the Morse

cochain complex C kMorsef� . We have

� � � !Hk�1.ƒ�/!Hk.†;ƒC[ƒ�/˚H
k Hom�.�1�; �

2
�/!Hk Hom�.�1C; �

2
C/

!Hk.ƒ�/! � � � ;

which is Theorem 1.6 in [6].

(3) Rewrite the Cthulhu chain complex as

Cthk.†1;†2/D Homk�1� .�1C; �
2
C/˚Homk�.�

1
�; �

2
�/˚C

k�1
MorsefC˚C

k
MorseF˚C

k
Morsef�

D Homk�1� .�1C; �
2
C/˚Homk�.�

1
�; �

2
�/˚C

k
Morse

zF

with the differential

d D

0@m1 � �

0 m1 �

0 0 d zF

1A :
We have the long exact sequence

� � � !Hk Hom�.�1�; �
2
�/!Hk Hom�.�1C; �

2
C/

!HkC1.†;ƒC/!HkC1 Hom�.�1�; �
2
�/! � � � ;

which is Theorem 1.4 in [6].

One may get other long exact sequences from the Cthulhu chain complex above. One
example is

� � � !Hk Hom�.�1�; �
2
�/!Hk HomC.�1C; �

2
C/

!Hk.†/!HkC1 Hom�.�1�; �
2
�/! � � � ;

which is obtained by decomposing the Cthulhu chain complex as a direct sum of
Homk�1C .�1

C
; �2
C
/, Homk�.�

1
�; �

2
�/ and C kMorseF ˚C

k
Morsef� .
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5.5 Injectivity

Theorem 5.10 implies that dC� is a chain map and hence it gives the Cthulhu chain
complex a stronger algebraic structure. In this section, we use this algebraic informa-
tion to deduce that the augmentation category map induced by the exact Lagrangian
cobordism † is injective on the level of equivalence classes of objects. And its induced
map on the cohomology category H�AugC is faithful.

Notice that dC� D f1 implies that dC� is a chain map and thus induces maps
dk
C�
W Hk HomC.�1�; �

2
�/ ! Hk HomC.�1C; �

2
C
/ for k 2 Z. Then we have the fol-

lowing theorem deduced from the double cone structure of the Cthulhu chain complex.
We would like to thank the referee for pointing out this theorem.

Theorem 5.12 Let † be an exact Lagrangian cobordism from a Legendrian knot ƒ�
to a Legendrian knot ƒC with Maslov number 0. For i D 1, 2, assume �i� is an
augmentation of A.ƒ�/ and �i

C
is the augmentation of A.ƒC/ induced by †. With

the same choice of Morse function as in Theorem 5.10, we have the following statement.

For fixed k 2 Z, the map

ik W Hk HomC.�1C; �
2
C/!Hk HomC.�1�; �

2
�/

in the long exact sequence (6) is injective (resp. surjective) if and only if the map

dkC�W H
k HomC.�1�; �

2
�/!Hk HomC.�1C; �

2
C/

is surjective (resp. injective).

Proof We will first prove that ik is surjective if and only if dk
C�

is injective for
fixed k .

Consider the Cthulhu chain complex as a mapping cone of ˆW HomC.�1�; �
2
�/ !

Cone.dC0/, where ˆ D dC�C d0� . The trivial cohomology of the Cthulhu chain
complex implies that ˆ induces isomorphisms

ˆk W Hk HomC.�1�; �
2
�/!Hk Cone.dC0/ for k 2 Z:

The following diagram commutes:

� � � // Hk HomC.�1C; �
2
C
/

ik
// Hk Cone.dC0/

jk
// HkC1.CMorseF / // � � �

HkHomC.�1�; �
2
�/

ˆk Š

OO

dk0�

66
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Comparing this to the long exact sequence (6), we know that ik D .ˆk/�1 ı ik .
Notice that dC� is a chain map and thus dC0 ı d0� D 0. It is not hard to show that
ˆk D dk

C�
C dk0� . Thus

Hk Cone.dC0/Š dkC�.H
k HomC.�1�; �

2
�//˚ d

k
0�.H

k HomC.�1�; �
2
�//:

Since we are working over the field F , we have the following relation on dimensions:

dim.Hk HomC.�1�; �
2
�//

D dim.Hk Cone.dC0//

D dim.dkC�.H
k HomC.�1�; �

2
�///C dim.dk0�.H

k HomC.�1�; �
2
�///:

Therefore dim.dk
C�
.Hk HomC.�1�; �

2
�///� dim.Hk HomC.�1�; �

2
�// and the equality

holds if and only if dk0� D 0, which is equivalent to the condition that ik is surjective.
Hence dk

C�
is injective if and only if ik is surjective.

The proof of the statement that ik is injective if and only if dk
C�

is surjective is
basically the same if we consider the Cthulhu chain complex as a mapping cone of
‰W Cone.d0�/! HomC.�1C; �

2
C
/, where ‰ D dC0C dC� .

Thanks to Theorem 5.10, we know that dC� agrees with f1 . Theorem 5.4 shows that
i0 is both injective and surjective. Therefore we have the following corollary.

Corollary 5.13 Let f � denote the induced map of f1 on cohomology. Then f �

restricted on degree-0 cohomology,

f �W H 0 HomC.�1�; �
2
�/!H 0 HomC.�1C; �

2
C/;

is an isomorphism.

Theorem 5.14 Let † be an exact Lagrangian cobordism with Maslov number 0
from a Legendrian knot ƒ� to a Legendrian knot ƒC . The A1–category map
f W AugC.ƒ�/!AugC.ƒC/ induced by the exact Lagrangian cobordism † is injec-
tive on the level of equivalence classes of objects.

In other words, for i D 1, 2, assume �i� is an augmentation of A.ƒ�/ with a single
basepoint and �i

C
is the augmentation of A.ƒC/ with a single basepoint induced

by †. If �1
C

and �2
C

are equivalent in AugC.ƒC/, then �1� and �2� are equivalent
in AugC.ƒ�/.

Proof Since �1
C

and �2
C

are equivalent in AugC.ƒC/, there exist

Œ˛C� 2H
0 HomC.�1C; �

2
C/ and ŒˇC� 2H

0 HomC.�2C; �
1
C/
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such that
Œm2.˛C; ˇC/�D Œe�2

C
� 2H 0 HomC.�2C; �

2
C/

and
Œm2.ˇC; ˛C/�D Œe�1

C
� 2H 0 HomC.�1C; �

1
C/:

Corollary 5.13 shows that f �W H 0 HomC.�1�; �
2
�/!H 0 HomC.�1C; �

2
C
/ is an isomor-

phism. Hence there exists Œ˛�� 2H 0 HomC.�1�; �
2
�/ such that

f �.Œ˛��/D Œ˛C� 2H
0 HomC.�1C; �

2
C/:

Similarly, there exists Œˇ�� 2H 0 HomC.�2�; �
1
�/ such that

f �.Œˇ��/D ŒˇC� 2H
0 HomC.�2C; �

1
C/:

Moreover, we have

f �Œm2.˛�; ˇ�/�Dm2.f
�.Œ˛��/; f

�.Œˇ��//

Dm2.Œ˛C�; ŒˇC�/

D Œe�2
C
� 2H 0 HomC.�2C; �

2
C/:

Notice that f sends y_� 2Hom0C.�
2
�; �

2
�/ to y_

C
2Hom0C.�

2
C
; �2
C
/ and hence we have

f �Œe�2� �D Œe�2C
�. By Corollary 5.13, the map

f �W H 0 HomC.�2�; �
2
�/!H 0 HomC.�2C; �

2
C/

is an isomorphism. Hence Œm2.˛�; ˇ�/� D Œe�2� � 2 H
0 HomC.�2�; �

2
�/. Similarly,

Œm2.ˇ�; ˛�/� D Œe�1� � 2 H
0 HomC.�1�; �

1
�/. Therefore �1� and �2� are equivalent

in AugC.ƒ�/.

In addition, the exact Lagrangian cobordism † described above also induces a category
functor on the cohomology category

zf W H�AugC.ƒ�/!H�AugC.ƒC/;

as described in Section 3.1.

We have the following statement.

Theorem 5.15 Let † be an exact Lagrangian cobordism from a Legendrian knot ƒ�
to a Legendrian knot ƒC with Maslov number 0. The corresponding cohomology cate-
gory map zf W H�AugC.ƒ�/!H�AugC.ƒC/ induced by † is faithful. Moreover,
if �.†/D 0, this functor is fully faithful.
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Proof Notice that the category map zf restricted on the level of morphisms is

f �W H�HomC.�1�; �
2
�/!H�HomC.�1C; �

2
C/:

The long exact sequence (6) tells us that the ik are surjective for all k 2 Z. By
Theorem 5.12, we know that f � is injective. Thus zf is faithful.

In particular, if �.†/ D 0, Theorem 5.4 implies that the ik are isomorphisms for
all k 2Z. Therefore, by Theorem 5.12, the map f � is an isomorphism, which implies
that zf is fully faithful.

As a result of Theorem 5.14, there is an induced map from the equivalence classes of
augmentations of ƒ� to the equivalence classes of augmentations of AugC.ƒC/. Thus
the number of equivalence classes of augmentations of A.ƒ�/ is less than or equal to the
number of equivalence classes of augmentations of A.ƒC/. However, the equivalence
classes of augmentations is difficult to count in general. Ng, Rutherford, Shende
and Sivek [32] introduced another way to count objects: the homotopy cardinality
of ��0AugC.ƒIFq/

� , where Fq is a finite field. This can be computed using ruling
polynomials.

The homotopy cardinality is defined by

��0AugC.ƒIFq/
�

D

X
Œ��2AugC.ƒIFq/=�

1

jAut.�/j
�
jH�1 HomC.�; �/j � jH�3 HomC.�; �/j � � �
jH�2 HomC.�; �/j � jH�4 HomC.�; �/j � � �

;

where Œ�� is the equivalence class of � in the augmentation category AugC.ƒ/ and
jAut.�/j is the number of invertible elements in H 0 HomC.�; �/.

Corollary 5.16 Let † be a spin exact Lagrangian cobordism from a Legendrian
knot ƒ� to a Legendrian knot ƒC with Maslov number 0. Then for any finite field Fq ,
we have

��0AugC.ƒ�IFq/
�
� ��0AugC.ƒCIFq/

�:

Proof Assume Œ��� is an equivalence class in AugC.ƒ�IFq/ and Œ�C� is the induced
equivalence class in AugC.ƒCIFq/. Theorem 5.4 implies

Hk HomC.��; ��/ŠHk HomC.�C; �C/ for k < 1:

In particular, we have H 0 HomC.��; ��/ŠH 0 HomC.�C; �C/, which implies that
jAut.��/j D jAut.�C/j.
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Notice that AugC.ƒCIFq/ may have more equivalence classes than AugC.ƒ�IFq/.
Therefore, we have

��0AugC.ƒ�IFq/
�
� ��0AugC.ƒCIFq/

�:

From [32, Corollary 2], this cardinality can be related to the ruling polynomial in the
following way:

��0AugC.ƒIFq/
�
D qtb.ƒ/=2Rƒ.q

1=2
� q�1=2/:

Recall that a normal ruling R is a decomposition of the front projection of ƒ into
embedded disks connected by switches that satisfy certain requirements (see details
in [8]). The ruling polynomial is defined by

Rƒ.z/D
X
R

z#.switches/�#.disks/:

Corollary 5.17 Suppose there is a spin exact Lagrangian cobordism from a Legendrian
knot ƒ� to a Legendrian knot ƒC with Maslov number 0. Then the ruling polynomials
Rƒ� and RƒC satisfy

Rƒ�.q
1=2
� q�1=2/� q��.†/=2RƒC.q

1=2
� q�1=2/

for any q that is a power of a prime number.

"

Figure 17: The relation between rulings of Legendrian submanifolds that are
related by a pinch move (left) or a minimum cobordism (right)

When † is decomposable, ie consists of pinch moves and minimum cobordisms [19],
there is a map from the rulings of ƒ� to rulings of ƒC . For each pinch move or
minimal cobordism, any normal ruling of the bottom knot gives a normal ruling of
the top knot, as shown in Figure 17. Moreover, different rulings of the bottom knot
give different rulings of the top knot. Therefore the ruling polynomials of ƒC and ƒ�
satisfy the relation in Corollary 5.17. This corollary shows that the result is true even if
the cobordism is not decomposable.
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One can check the atlas in [9] for the ruling polynomials of small crossing Legendrian
knots. This corollary gives a new and easily computable obstruction to the existence of
exact Lagrangian cobordisms. We can use Corollary 5.17 to give a new proof of the
follow theorem which is a result in [5] and was reproved in [11].

Theorem 5.18 [5] Lagrangian concordance is not a symmetric relation.

Proof Consider the Legendrian knot ƒ of smooth knot type m.946/ with maximum
Thurston–Bennequin number and the Legendrian unknot ƒ0 as shown in Figure 18.
There is an exact Lagrangian concordance from the ƒ0 to ƒ by doing a pinch move
at the red (straight) line in Figure 18 and Legendrian isotopy. However, there does not
exist an exact Lagrangian concordance from ƒ to ƒ0 since the ruling polynomial of
ƒ is 2 while the ruling polynomial of ƒ0 is 1.

Figure 18: Front projections of the Legendrian knot ƒ of knot type m.946/ (left)
and the Legendrian unknot ƒ0 (right)
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