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The mapping cone formula in Heegaard Floer homology
and Dehn surgery on knots in .S

FYODOR GAINULLIN

We write down an explicit formula for the + version of the Heegaard Floer homology
(as an absolutely graded vector space over an arbitrary field) of the results of Dehn
surgery on a knot K in S* in terms of homological data derived from CFK*(K).
This allows us to prove some results about Dehn surgery on knots in 3. In particular,
we show that for a fixed manifold there are only finitely many alternating knots that
can produce it by surgery. This is an improvement on a recent result by Lackenby
and Purcell. We also derive a lower bound on the genus of knots depending on the
manifold they give by surgery. Some new restrictions on Seifert fibred surgery are
also presented.

57M217, 57M25

1 Introduction

Dehn surgery is a fundamental technique in 3-manifold topology. Indeed, we can
construct any 3—manifold! beginning with any other 3-manifold and performing Dehn
surgery enough times. However, it is a highly nontrivial and widely open problem to
understand what manifolds can be obtained by doing Dehn surgery once (even starting
from the “simplest” 3—manifold, namely S*) and what knots yield a fixed manifold by

surgery.

Heegaard Floer theory is a relatively recent collection of powerful tools in low-
dimensional topology. It has many aspects and provides invariants in many different
contexts. In this paper, we are only concerned with the 3—manifold and knot invariants
(defined in Ozsvath and Szabd [18; 17] and Rasmussen [24]). The collections of
3—manifold invariants and knot invariants are connected via the surgery formula that
expresses the Heegaard Floer homology of a 3-manifold obtained by surgery on a
given knot in terms of the Heegaard Floer homology data of the knot (see Ozsvath
and Szabé [23]). This makes Heegaard Floer homology an especially suitable tool for
investigating questions about Dehn surgery.

UIn this paper, whenever we say “3-manifold” we mean “closed connected orientable 3—manifold”.
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1918 Fyodor Gainullin

A natural question about Dehn surgery is whether there are manifolds that can be
obtained by surgery on infinitely many distinct knots in S3. The answer is “yes”; see
Osoinach [13] or Teragaito [27]. There is still hope, however, that perhaps this does
not happen for some nice classes of knots.

One interesting and well-studied class of knots is that of alternating knots. At first sight,
their diagrammatic definition seems to have little to do with the geometric-topological
properties of these knots. However, this is not so; see, for example, Lackenby and
Purcell [7]. In particular, they prove the following:

Theorem 1 [7, Theorem 1.3] For any closed 3—manifold M with sufficiently large
Gromov norm, there are at most finitely many prime alternating knots K and fractions
p/q such that M is obtained by p/q surgery along K .

In fact, the statement about fractions p/g can be deduced, for example, from Ni and
Wu [11, Theorem 1.2]. We will also show in this paper that given any manifold Y
there is a universal bound on ¢ for such fractions, which also implies that they are
finite in number. Using techniques that are very different from those used in [7] we are
able to establish the following improvement of this theorem.

Theorem 2 Let Y be a 3—manifold. There are at most finitely many alternating knots
K C S? suchthat Y = S;/q(K).

Heegaard Floer homology is also very useful in bounding genera of various surfaces.
In particular, knot Floer homology determines the genus of a knot; see Ozsvath and
Szabé [16]. Combining this with information about surgery often allows one to put
restrictions on genera of knots admitting certain surgeries. For example, if surgery on
a knot K produces an L—space Y (a generalisation of lens spaces; see below for the
definition), then 2g(K) —1 < |H{(Y)|, where by g(K) we mean the genus of K (see
eg [23, Corollary 1.4]).

We derive a bound which is in some respects “opposite” to the bound for L—spaces. It
is a lower bound which can be nontrivial only for non- L—spaces. For the statement
of the theorem below and the rest of the paper note that we work over an arbitrary
field IF. Heegaard Floer homology is then an F[U]-module and we denote the action
of U simply by multiplication. For a rational homology sphere Y, HF.q(Y) denotes
its reduced Floer homology.

Theorem 3 For any knot K C S* and any p/q € Q we have

UK +1galK)/21 4R, (S3, (K)) = 0.

p/q

Algebraic € Geometric Topology, Volume 17 (2017)



The mapping cone formula in Heegaard Floer homology and surgery on knots in S 1919

We remark that if K is an L—space knot, then U [g4(K)/2] -HFred(S; /q(K)) = 0.
Moreover, for any N > 0 and p > 0 there is a 3-manifold ¥ which can be obtained
by a surgery on a knot in S3 such that UY -HF,q(Y) # 0 and |H;(Y)| = p.

Here g4(K) is the slice genus of K. We obviously have [%g4(K)—| < [%g(Kﬂ, SO
the theorem does give a lower bound for g(K).

A different lower bound for the knot genus producing non- L—spaces has been found by
Jabuka [3, Theorem 1.3], but unlike our bound, it also depends on the denominator of
the slope. Note also that there exists a manifold for which the genus of knots producing
it is not bounded above [27].

More recently, Jabuka [4, Corollary 1.5] has produced a new lower bound on the genus
that does not involve the denominator of the slope. He also obtained the ranks of HF
for the result of surgery on a knot in S3. His genus bound appears to be quite different
from ours.

Using the genus bound of Theorem 3 and some other considerations we are able to
prove results about Seifert fibred surgery on knots in S3. Wu (improving on the
results of Ozsvath and Szabd6 [20]) has proven the following (the definitions of Seifert
orientation and torsion coefficients will be provided later):

Theorem 4 [29, Theorems 1.2 and 1.3] Let K C S3 be a knot. Suppose there is a
rational number p/q > 0 such that Y = S; Iq (K) is Seifert fibred.

If Y is a positively oriented Seifert fibred space, then all the torsion coefficients
t;(K) are nonnegative and HFK (K, g(K)) is supported in even degrees. In particular,
deg Ag = g(K).

If Y is a negatively oriented Seifert fibred space and 0 < p/q < 3, then for all i > 0
the torsion coefficients t;(K) are nonpositive. If Y is a negatively oriented Seifert
fibred space, g(K) > 1 and 2g(K)—1> p/q, then Pfﬁ((K, g(K)) is supported in
odd degrees. In particular, deg Ag = g(K).

We are able to prove the following.

Theorem 5 Let K C S* be a knot. Suppose there is a rational number p/q > 0 such
that Y = S; / q(K ) is a negatively oriented Seifert fibred space. Then

o USX) .HF,(Y)=0;

e if 0 < p/q <3, then all the torsion coefficients t;(K) are nonpositive (includ-
ing to(K)) and deg Ag = g(K);

Algebraic € Geometric Topology, Volume 17 (2017)



1920 Fyodor Gainullin

e more generally, if i > L%([p/q] - [p/cﬂ)J, then t; is nonpositive;
« if g(K) > [5(Tp/q1~/Tp/q1)|. then deg Ak = g(K):
o if UHMI/2IHE ((Y) # 0 then deg Ag = g(K).

In all statements where deg Ag = g(K) we have that H/ﬁ((K, g(K)) is supported in
odd degrees.

After the proof of Theorem 3 in Section 5, we describe negatively oriented Seifert fibred
spaces Y for which the power of U needed to annihilate HF.q(Y) gets arbitrarily
large compared to the order of the first homology group.

Theorem 5 combined with the result of Wu has the following straightforward corollary.

Corollary 6 Suppose ¥ = S; /a (K) is a Seitert fibred rational homology sphere. If
| Hy(Y)| < 3, then all the torsion coefficients of K have the same sign and deg Ag =

g(K).

To prove Theorems 2 and 3 we need to study the mapping cone formula, which connects
the Heegaard Floer data of the knot with the Heegaard Floer homology of the manifolds
obtained by surgery on it. Given a knot K in S* there is a doubly filtered complex
C = CFK®(K) associated to it. The doubly filtered homotopy type of this complex is
a knot invariant, from which all the flavours of knot Floer homology are derived.

In fact, the mapping cone formula states that given C and a certain chain homotopy
equivalence which identifies C {i >0} with C{; >0} we can determine HF " (S; /q (K))
completely for any rational p/q.

In Section 3 we explicitly describe HF' (S ; /a (K)) as an absolutely graded vector
space in terms of homological data from CFK*°(K), with no reference to the chain
homotopy equivalence mentioned above. For a large part this has already been done
(see Ni and Zhang [12], Ni and Wu [11] and Ozsvéth and Szab6 [23]), but the results
are scattered across multiple papers, sometimes not in explicit form, and we consider
it useful to have them collected in one place. While all the results of this section
concerning positive surgeries have been shown before, as far as we are aware, the
results for negative and zero surgeries (contained in Sections 3.2 and 3.3, respectively)
are new.

This allows us to derive some other applications as well, a few of which we mention
here.

Theorem 7 Suppose K is a nontrivial knotand ¥ = S j /a (K). Then
lg| < |Hy(Y)| + dim HFeq(Y').

Algebraic € Geometric Topology, Volume 17 (2017)



The mapping cone formula in Heegaard Floer homology and surgery on knots in S 1921

The existence of such a bound for the denominator seems to be known to some experts
in Heegaard Floer homology (it could be deduced from [23, Proposition 9.6]) but we
have not seen it explicitly stated. We will use this fact in the proof of Theorem 2.

A bound on the number of slopes that produce a given manifold has also been obtained
by Lackenby [6, Theorem 2.9] in quite a general but somewhat different setting (in
particular, due to homological conditions, it does not deal with surgeries in S3).

Theorem 8 Let K be an L—space knotand p/q <1 arational number. Then S;/q (K)
and p/q determine the Alexander polynomial of K .

We remark that the Alexander polynomial determines the knot Floer homology of an
L—space knot; see Ozsvith and Szabd [21]. Conversely, the Alexander polynomial of
an L—space knot determines the HF " of all surgeries on it. In particular, if for two
L—space knots K and K’ we have that HF+(S; 1g(K) = HF (S; 14(K") for some
p/q <1, then we also have HF+(S;,/q,(K)) ~ HF" (S;,/q,(K’)) for all other p’/q’.
This theorem also implies that if two torus knots Ty, T,/ ¢ with r,s,r’,s" > 0 have
the same surgery with the same slope < 1, then they are the same. Presumably, this
can also be obtained by more elementary methods. Note, however, that there do exist
positive integral slopes for which there are two distinct torus knots with the same
surgeries at these slopes; see Ni and Zhang [12, Example 1.1].

Teragaito [27] constructs a small Seifert fibred space Y and a sequence of knots
K, C S3 such that K,,(—4) =Y .2 Moreover, the genus of the knots K, is unbounded.
Incidentally, this shows that we cannot hope for an upper bound on knot genus for
knots giving some arbitrary manifold by surgery. In Section 7 we show that ¥ can only
be obtained by (—4)-surgery and we find the Alexander polynomial of the knots K.
It is, in fact, possible to find the Heegaard Floer homology of all manifolds obtained
by surgery on each K.

The organisation of this paper is as follows. In Section 2 we review some definitions,
notation and the mapping cone formula. In Section 3 we derive the expression for the
Heegaard Floer homology of surgeries on a knot. In Section 4 we prove Theorem 2,
in Section 5 we prove Theorem 3 and in Section 6 we prove Theorem 5. Finally, in
Section 7 we present some other applications of the mapping cone formula to questions
in Dehn surgery.

Acknowledgements I would like to thank Tye Lidman, Jake Rasmussen, Andras
Juhasz, Marc Lackenby and Duncan McCoy for their very valuable suggestions and
comments on the earlier drafts of this paper (Tye Lidman, in particular, suggested that

2In fact, Teragaito constructs —Y , his knots are the mirror images of K and the slope he uses is 4. It
is more convenient for us to work with this orientation.
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1922 Fyodor Gainullin

Theorem 2 could be proven using techniques of this paper). I am also very grateful to
Marco Marengon, Tom Hockenhull and V S Pyasetkii for many important comments on
the structure and presentation of this paper. This paper greatly benefited from a visit to
the University of Texas at Austin, and many interesting and enlightening conversations
that I had there. For this opportunity, I am very thankful to the Doris Chen Award, and
the help of my supervisor Dorothy Buck. I am particularly grateful to Dorothy for her
continued encouragement and support over the course of my PhD studies. Finally, I
would like to thank the referee for helpful comments on the drafts of this paper.

2 The mapping cone formula

In this section, we set up notation and review the rational surgery formula of Ozsvith
and Szabd [23]. We largely follow the exposition and notation of Ni and Wu in [11].

Given aknot K in S* we can associate to it a doubly filtered complex C = CFK*®(K).
We denote generators of this complex by [x, i, j], where this generator has filtration
(i,j) € Z x Z. By [24, Lemma 4.5] the complex C is homotopy equivalent (as a
filtered complex) to a complex for which all filtration-preserving differentials are trivial.
In other words, at each filtration level we replace the group, viewed as a chain complex
with the filtration preserving differential, by its homology. From now on we work with
this reduced complex.

The complex C is invariant under the shift by the vector (—1, —1). There is an action
of a formal variable U on C which is simply the translation by the vector (—1,—1).
In other words, the group at the filtration level (i, j) is the same as the one at the
filtration level (i —1, j — 1) and U is the identity map from the first one to the second.
Of course, U is a chain map. In C the map U is invertible (but note that it will not be
in various subcomplexes and quotients), so C is an F[U, U ~!]-module.

This means that as an F[U, U~ !}l-module C is generated by the elements with the
first filtration level i = 0. In the reduced complex the group at filtration level (0, j) is
denoted H/F\K(K , j) and is known as the knot Floer homology of K (at Alexander
grading j).

The complex C is absolutely Z—graded. In fact, the complex C is the complex used
to compute the (co—flavour of the) Heegaard Floer homology of S3, and the knot
provides an additional filtration for it. By grading the Heegaard Floer homology of S3
we obtain the grading on C. The map U decreases this grading by 2.

Using the filtration on C we can define the following quotients of it:
Af(K)y=Cli=0orj=k}, keZ,
Bt =C{i >0} =~ CF(S?).

Algebraic € Geometric Topology, Volume 17 (2017)



The mapping cone formula in Heegaard Floer homology and surgery on knots in S 1923

We also define two chain maps vy, /ig: AZ(K) — BT. The first one is just the
projection (ie it sends to zero all generators with 7 < 0 and acts as the identity map for
everything else). The second one is the composition of three maps: firstly we project to
C{j >k}, then we multiply by U (this shifts everything by the vector (—k, —k)) and
finally we apply a chain homotopy equivalence that identifies C{j > 0} with C{i > 0}.
Such a chain homotopy equivalence exists because the two complexes both represent
CF'(S3) and by general theory [17] there is a chain homotopy equivalence between
them, induced by the moves between the Heegaard diagrams. We usually do not know
the explicit form of this chain homotopy equivalence.

Genus detection, alluded to before, has the following form:

Theorem 9 (Ozsvith and Szabé [16, Theorem 1.2]) Let K C S be a knot.

Then g(K) = max{j € Z | HFK(K, j) # 0}.

From this (together with symmetries of C) we can see that the maps vy (resp. /) are
isomorphisms if kK > g (resp. k < —g).

We define chain complexes

lp/q(K) @(n AL(z+pn)/qJ(K))’ B = @(’7 B™).

nez nez

The first entry in the brackets here is simply a label used to distinguish different copies
of the same group. There is a chain map Dl p/a from .Al p/a (K) to BT defined by
taking sums of all maps vy, /i with appropriate domains and requiring that the map vy,
goes to the group with the same label n and /1 increases the label by 1. Explicitly,

1p/q({(k ai)tkez) = {(k,bx)}kez , where
. +
bl = VG4 pioy1q) @) F Rt piie—1))1q) (@=1)-

Each of A+(K ) and BT inherits a relative Z—grading from the one on C. Let Xl p/a
denote the mapping cone of D il We fix a relative Z-grading on the whole of it
by requiring that the maps v, /; (and so DﬁL v/a ) decrease it by 1. The following is
proven in [23].

Theorem 10 (Ozsvath and Szabé [23, Theorem 1.1]) There is a relatively graded
isomorphism of F[U ]-modules

H*(le/q)’v HFET (S /q(K) i).

Algebraic € Geometric Topology, Volume 17 (2017)



1924 Fyodor Gainullin

(-2,47(K) (-1,4T (k) (—1.4F(K) 0.45&K) (0,45 (K) (1LA4F&K) .47 (K) @ 4f(K) @ 4]&K)
ooy TNl [I 1 - \\\”:‘ vy J 1o \\”\” vo "o o \\h\' vy Q or N
| | | 3

\}\\;\ ~ \L \\A Jv . \L

(=2,B%) (-1,B%) (=1,B%) 0, B*) (0,BF) (1,B%) (1,B%) (2,B%) (2,B%)

Figure 1: Schematic representation of the portion of the complex whose map-
ping cone gives the Heegaard Floer homology of the surgery on a knot. This
case illustrates %—surgery; the blue (solid) and green (dashed) subcomplexes
represent two different Spin®—structures on the resulting space.

The index i in HF ' (S; 1,(K). 1) stands for the Spin“~structure. The numbering of
Spin‘—structures we refer to is defined in [23], but we do not need precise details of
how to obtain this numbering for our purposes.

We can also determine the absolute grading on the mapping cone. The group B* is
independent of the knot. Now if we insist that the absolute grading on the mapping
cone for the unknot should coincide with the grading of HF' of the surgery on it
(ie d(L(p.q),i)), this fixes the grading on BT . We then use this grading to fix the
grading on X;’rp 4 for arbitrary knots; this grading then is the correct grading, ie it
coincides with the one HF" should have.

The mental picture we have of the mapping cone theorem is illustrated in Figure 1. We
have two rows of groups. The bottom row is just the row of identical groups BT . The
upper row consists of the various “hook” groups A;{F (K). Specifically, if the surgery
slope is p/q, in the upper row we repeat each group ¢ times. We then have vertical
arrows pointing down for the maps vy, and the arrows for the maps /4y, are slanted.
More precisely, they go p groups to the right (if p is negative, this means —p to the
left). This creates | p| subcomplexes, connected by a zig-zag set of arrows. Each such
zig-zag subcomplex corresponds to a Spin“—structure on the manifold that is the result
of the surgery. To obtain the Heegaard Floer homology of this manifold we need to
take the mapping cone of this chain map.

For our purposes, it suffices to pass to the homology of the mapping cone under
consideration. Let

AF(K) = Ho(AF(K)),  B* = Hy(B"),

A;,rp/q(K) - H*(A;,rp/q(K))’ BY = H.(B")
and let v, hy, D;LP /q denote the maps induced by vy, i, D;rp e respectively, in

homology.

When we talk about A;rp /q(K ) as an absolutely graded group, we mean the grading
that it inherits from the absolute grading of the mapping cone that we described above.

Algebraic € Geometric Topology, Volume 17 (2017)



The mapping cone formula in Heegaard Floer homology and surgery on knots in S 1925

Since BT =CF*(S?), wehave Bt =T, where 7" =F[U~!|=F[U,U~"|/UF[U],
d signifies the grading of 1 and multiplication by U decreases the grading by 2. We
sometimes call this module the fower. When we are not interested in the absolute
grading we omit the subscript.

Recall that the short exact sequence

s gt iy x+ J
0—— B » X, = AL (K) —— 0

induces the exact triangle

D
i.p/a R +
lp/q(K) > B

0 T~

Ho (X ") = HF+(S3/q(K) i)

All maps in these sequences are U—equivariant. This triangle is the main tool in the
calculations of the next section. In particular, if the surgery slope is positive, then the

3 Calculations

In this section we want to use the mapping cone formula to calculate the Heegaard
Floer homology for the results of surgery on a knot in S3. Given a rational homology
sphere Y and a Spin°—structure s, we have HF T (Y, s) = Td+ @ HFq(Y, s), where
d = d(Y,s) is called the correction term and HF,¢q(Y, ) is a finite-dimensional F[U]-
module annihilated by a big enough power of U, called the reduced Floer homology
of Y in Spin®—structure 5. The sum of these groups over all Spin®—structures is called
the reduced Floer homology of Y and is denoted by HF4(Y).

We state a weaker version of [22, Theorem 2.3].

Theorem 11 (Ozsvath and Szab6) There is an integer N such that for all m > N
and all i € Z./mZ there is an isomorphism of relatively graded F[U]-modules

A (K) 2 HF (K. 1),

where k =i (mod m) and |k| < %m

Algebraic € Geometric Topology, Volume 17 (2017)



1926 Fyodor Gainullin

In particular, each A:(K) is an HF™ of a rational homology sphere in a certain
Spin‘—structure, hence by the previous paragraph we can decompose it as A,j (K) =
AZ(K ) @ A;fd(K ), where A,r{ed(K ) is a finite-dimensional vector space in the kernel
of some power of U and A,{(K) ~T7T.

We will need to talk about the Euler characteristic of the groups A,rfd(K), so we need
to fix an absolute 7 /27Z—grading for them. We do so by requiring that for the purposes
of this grading each group AkT (K) lies entirely in grading 0 and then using the relative
7,/ 27Z~grading (induced by the parity of the relative Z—grading) on A]':(K ).

A rational homology sphere Y is called an L—space if HFq(Y, s) = 0 for all Spin°-
structures s. A knot K C S? is called an L—space knot if some positive surgery on
it is an L—space. In fact, it is known that a p/q surgery on an L—space knot is an
L—space if and only if p/q >2g(K)—1 (here g(K) is, as usual, the genus of K). In
particular, all large surgeries on L—space knots are L—spaces, hence for any L—space
knot K we have A,rfd(K) =0 for all k.

In the same way we can decompose the complexes of the exact triangle (1):

T _ T red _ red
AL 1K) = D0 Al iy (KD AT (K) = D01 ATy g1 (KD

nez nez

+ _pT red :
We can also decompose the map Dl.’p g™ Dl.’p /g ® Dl.,p e where the first map is the
restriction of Dl.+p /q 10 AiTp /q(K ) and the second one is the restriction to A™¢ (K.
Note that D"

. i,p/q
i pjg = Di,p/q for L—space knots.

Now the restrictions of vy and hj to AZ(K) are multiplications by some powers
of U, which we denote by V. and Hy, respectively. (This is because at large gradings
these maps are isomorphisms.) The following are some useful properties of V. and
Hj, (see [11]):

o Vi >Viy forany k € Z;

e Hyp <Hpy forany k € Z;

o Vpy=Hy forany k € Z;

o Vi — 400 as k— —o0;

e Hp — +o0as k —> +o0;

o Vi =0fork=>g(K);

e Hp =0fork <—g(K).
In other words, the V. form a nonincreasing unbounded sequence of nonnegative

numbers which become zero at g(K), and Hy = V_j.

We now separate into three different cases. Firstly, we cover the case of positive surgery
slope. Secondly, we treat negative surgeries. The third case is the zero surgery.
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3.1 Positive surgeries

The next lemma is used to establish that DI.TP /q is surjective when p/q > 0. We state
it in a slightly more general form because in this form it also applies to other manifolds.

Lemmal2 Let X =Y =@;c,(,TH), X' = @#O(i,TJF) and let the maps
i (T — T, B (i, T = (i +1,T1)
be multiplications by U% and U | respectively. Suppose further that

e there is a number N such that a; =0 fori > N and b; =0 fori < —N, and

e ;i — 400 asi — —oo and bj — +00 asi — +00.

Define D to be the sum of the maps «; and f;. Then the restriction of D to X’ is
surjective.

The setting here is very similar to the one described by Figure 1, only we choose one
of the zig-zag complexes and all the groups in both the top and the bottom row are the
towers; see Figure 2.

Proof This is essentially what Ni and Wu prove in [11, Lemma 2.8]. We will show
that, for any n >0 and i <0, (i, U™") is in the image of the restriction of D to X’.
The conclusion will then follow by symmetry and linearity.

We clearly have (i,U ") = B;_1(i — 1,U""bi-1). Define & = {(i,&)}iez € X’
recursively by

0 ifs>i,
£, = U b ifs=i—1,
(_I)S_H_l Uds+17bs. £s4+1 otherwise.

In a way, after we set that & = 0 for s > i, this is the only possible definition (up
to the kernel of D). This is because the arrow “slanted to the right” has to be used
to cancel the rightmost element in the lower row, hence we know what element in its
codomain we have to choose so that it indeed cancels. This tells us what the image of
the “vertical” arrow is and hence what the next “slanted” arrow has to cancel, etc.

Since we have ag4 1 — by — +00 as s —> —o0, £ only has a finite number of nonzero
coordinates and hence is a well-defined element of X’. It is also easy to see that
DE)=GU™). m
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=2,7hH -17T% 0,7 1, 7% 2, 7%

-1.7%) 0,74 a7 Q7%
Figure 2: Maps and groups of Lemmas 12 and 13

Let 747(N) be a submodule of 7:1+ generated by {U " }o<,<n—1. As before, we omit
the subscript in the absence of the absolute grading.
The setting of the next lemma is less general; indeed, we use more information about
the numbers Vj and Hj .
Lemma 13 To the assumptions of Lemma 12 add the following:

e (a;) is a nonincreasing sequence;

e (b;) is a nondecreasing sequence;

o q; <b; fori >0;

e q;>b; fori <0.

Put absolute gradings on X and Y by the rule that the maps «; and f8; decrease it by 1,
the multiplication by U decreases it by 2 and 1 € (0,7) C Y has grading d — 1,
where d is some rational number.

Then if ag > b_; we have

ker D =~ 7?_200 <) @ Tq-(b—n) ® @ Tyt (an).

] n>1 n=1
Otherwise
ker D= T, & @D ta; (b-n) & P 74 (an).
n>2 n>0

The isomorphisms are as absolutely graded F[U]-modules. The numbers d,jt are
defined by
d¥ = d —2max{ag,b_;},
dyiy =dy +2(a—n—b_@u+1)),

d:—l-l = d,j_ +2(bn —an+1)-

Proof The two cases are completely analogous, so we will assume ag > b_; . First,
following [11, proof of Proposition 1.6] we define p” ’7:1 200 ker D as follows. If
we write pT (1) = {(s, &) }sez, We set £ = 1 and determine the other components by
_(-UbsrmasE o if s >0,
5 = {—U“sﬂ-bs.s;erl if s < 0.
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In effect, we want to simply send the tower to the tower in the O-component of the
upper group. But it is not in the kernel of D, so we need to correct for that. In fact,
we also want the map to be an [F[U]-module homomorphism, which is the reason for
considering the cases ag > b_; and ag < b_; separately.

Notice that we always multiply by a nonnegative power of U : if s > 0, then by_; >
as—1 > ag;if s =—1, this is the assumption ag > b_; ;if s <—1, then ag4 | > bgy1 > bs.
Thus the map is indeed an [F[U]-module homomorphism.

As before, £ = 0 if |s| is very big, so the map is well-defined. The map p? is
one-to-one because its O-component is (ie £y = 7). It is also graded correctly (ie the
map p! sends homogeneous elements of absolute grading d to homogeneous elements
of grading d) because (0, U~%) € X issentto (0,1) € Y by «g, which has grading
d —1. Thus (0,1) € X has grading d —2ay, since to descend from (0, U7%%) € X to
(0,1) € X we need to multiply by U%° and multiplication by U has grading —2.

We have identified the tower in the kernel. Now we need to deal with the rest of it.
Below we prove that the rest of the kernel consist of the kernels of the maps «; + B;
for each 7, except the one at which the tower is situated (ie i = 0). It is easy to see
that the kernel of «; 4+ §; is isomorphic to t(min(a;, b;)).

If v = {(s,vs)}sez € ker D, by subtracting elements in the image of p! we may
assume that v € X, ie vo = 0. Without loss of generality, there exists s < 0 such that
vs # 0. To finish the proof we need to show that U?s - vg = 0 (recall that in this range
bs < ay). Suppose this is not so and 0 # Ubs. V. Since v is in the kernel, it has to be
cancelled by something. It follows that we must have B;(vs) 4+ 541 (Vs41) = 0. Thus
0 # Ubs .y, = —U%+1vg, 1 implies that 0 # UbS+1vs+1, as dg41 > by if s <—1.
By proceeding in this way it follows that vy # 0, ie v & X, a contradiction. O

The two lemmas above can be readily translated into results about surgery. The d—
invariant formula (2) from the corollary below is [11, Proposition 1.6].

+

Corollary 14 If p/q > 0 the map DI.TP /q is surjective. It follows that so is D, /g’

+(q3 N +
and we conclude that HF (Sp/q (K),i) =~ ker Dl.,p/q.
If [i/q] = =[G —p)/q]. then

T ~ T+
ker D], =T & @D vty (Hi-np)/a) ® Dty Viitnp)/a)-

n>1 n>1
Otherwise
T ~ Tt
ker D/, . = TF ® D way (Hii-np)/a) ® D 1 Vi+npysa))-
nz2 n=0
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Here

2 d= d(Sj/q(K), i)=d(L(p,q),1) —2max{V|i/q|» H|(i-p)/q|}>

and
n—1

dy =d 42 (Vii—kp)/a) — HiG—t+1)p)/a))-
k=0
n—1

d,f =d+2 Z(HL(iJrkp)/qJ = Vl+&+1)p)/q1)-
k=0

Proof This is a straightforward application of Theorem 10 and Lemmas 12 and 13 after
renumbering of the groups and maps; objects numbered with | (i +np)/q| correspond
to the ones numbered with 7 in Lemmas 12 and 13.

To fix the grading, note that the grading of B* does not depend on the knot, but only on
the surgery slope. Thus to grade it we can take the unknot U . For the unknot we have
Vi=0fori>0and V; =i fori <0. Hence 0=V |;/4) = H|(i—p)/q) =0, and by the
same argument as we used for an arbitrary knot, the grading of 1 in (0, 4 E; /4l (U)) is
the d—invariant of the surgery, which we know to be d(L(p, g),7) in this case. Since
Vlii/q) = 0, we find that the grading of 1 in (0, B™1)is d(L(p.q),i)— 1. This allows
us to fix the d—invariants for all other knots.

We can fix d,jt by the fact that the maps vy and hj reduce it by 1 and the multiplication
by U reduces it by 2. O

As we noted before, for L—space knots, D;rp e = Dl.Tp la Let K be a knot and
Ax(T)=ao+); a;(T" + T7%) be its symmetrised Alexander polynomial, with
normalisation convention Ag (1) = 1. Define its torsion coefficients t;(K) for i >0
by

1(K)=Y_ jait;.

jiz1

Clearly, if we know all the torsion coefficients, we know the Alexander polynomial. For
L—space knots, Vj =1 for k > 0 (this follows, for example, from [23, Theorem 1.2]),
so Corollary 14 determines the Heegaard Floer homology of positive surgeries on an
L—space knot in terms of its Alexander polynomial.

The next proposition expresses the Heegaard Floer homology of positive surgeries
for arbitrary knots in terms of data from CFK®°. This proposition is essentially [12,
Proposition 3.5].
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Proposition 15 As absolutely graded vector spaces,

~ker DI @A™ (K).

+
ker D; i,p/q i,p/q

i,p/q

Moreover, ker DT, is actually a submodule of ker D" , .
i,p/q i,p/q

Proof This is a straightforward exercise in linear algebra.

Given vector spaces U, V, W and linear maps py: U — W and py: V — W such
that py is surjective, ker(py @ py) = kerpy @ V.

There exists a map py;: W — V such that py o pf; = idy . In the graded situation we
can make p7; send homogeneous elements to homogeneous elements. Then we can

define T': ker py @ V — ker(py @ py) by T(x ® y) = (x —py; 0 py(¥)) @ y. Since
in our case py @ py is graded, T is an isomorphism of graded vector spaces. a

Let
AY(K) = @ ARU(K).
keZ
This is a finite-dimensional vector space, as each A;fd(K) is and A;fd(K) = 0 for
|k| > g(K). We define §(K) = dim A*(K). Note that §(K) = 0 if and only if K is
an L-space knot. The following proposition generalises [11, Proposition 5.3]:

Proposition 16 [12, Corollary 3.6] Let K C S* be aknotand p/q > 0. Then

g—1 p—1
(3) dimHFa(S,,, (K) = q8(K)+qVo+2q Y Vi— Y max(Viisq)» Hii-p)/q))-
i=1 i=0

Proof Since
p—1
dim HFreq(S;/4 (K)) = ) dim HFrea(S,  (K). ).
i=0

combining Proposition 15 and Corollary 14 we see that

dim HFred(S;/q (K)) 1
o
: d
= dim A (K + Y Viggi+ D Hi—ifg)— Y max(Viig), HiG—p)/q)
i€Z i>0 i>1 i=0
g—1 —1 p—1
=q ) dim A K)+q ) Vi+q Y Hi— ) max(Vig) HiG-p)/a))
keZ i=0 i=—(g—1) i=0
g—1 p—1
=q8(K)+qVo+2q > Vi— > _ max(Vy/q). H(—p)/q))- O
i=1 i=0
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Now we are ready to prove Theorem 7.

Theorem 7 Suppose K is a nontrivial knotand ¥ = S ; /q (K). Then

lg| = |Hy(Y)| + dim HFeq(Y').

Proof This is an easy consequence of Ni and Zhang’s formula of Proposition 16 (by
taking the mirror image we may assume p/q > 0). We have

p—1
dim HFred(S;/q(K)) + Z max(VWqJ , Hl_(i—p)/qj)
i=0 g—1
=q8(K)+qVo+2q > _ Vi = q(8(K) + Vo).
i=1
Recall that §(K) = dim A®(K), so it is nonnegative and §(K) = 0 if and only if K
is an L—space knot, in which case V; = 0 if and only if &k > g(K), so for nontrivial
L—space knots Vg #£ 0. If Vo =0 then all V'’s (and H’s) are zero and as §(K) # 0
by the previous sentence, we clearly get ¢ < dim HFred(S; /q(K )).

So suppose Vg # 0. Then
p—1
dim HFred(S;/q (K)) + pVy = dim HFred(S;/q(K)) + Z max(VL,-/qJ, HL(i—p)/qJ)
i=0
> q(6(K)+ Vo).
Finally, we have
dim HFea(S}) , (K)) + pVo

<
7= 5(K) + Vo
_ dimHFeq (S, (K)) o
- §(K) + Vo §(K)+ Vg
< dimHFeq(S, , (K)) + p. o

3.2 Negative surgeries

In the case when p/g < 0 the map D;rp /a is no longer surjective. However, we can

show that the cokernel consists of exactly the tower part and the kernel is the reduced
Floer homology HFq(S ; /a (K),i). We start with a general lemma, which is similar
to Lemmas 12 and 13. The main difference is in that the §; maps go to the groups
labelled with a smaller index.
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Lemma 17 Let X =Y = @;c; (i, T") and let the maps
o (. TH) > @ T, B (T~ (—1.7T7)
be multiplications by U% and U bi, respectively. Suppose further that a; and b; have
the following properties:
e There is a number N such that a; =0 fori > N and b; =0 fori <—N ;
e ;i — +ooasi — —oo and b; — +o00 asi — +00;
e q;>b; fori <0 and a; < b; fori > 0.

Then no element of (—1,7%) C Y isin the image of D and (—1,7 ") C Y generates
the cokernel of D. The kernel of D has the form

ker D =~ @ t(min(a;, b;)).

ieZ

Proof As all of the maps «;, f; are surjective, it is easy to see that the cokernel
of D is generated by the (equivalence classes of) elements in any one of (i,77) C Y.
Suppose 1 = {(s.7s)}sez = D(§) with 1y =0 for s # —1. Let § = {(s.&5) }sez-

Without loss of generality (by symmetry) we may assume that o—_q(§_1) # 0. Since
a—y > b_y it follows that B_;(E—1) #0. Since n—, =0=B_1(E_1) +a—2(E-1), we
have o_5(§_5) # 0, and hence £_, # 0. Continuing in the same way we conclude
that £ is not supported on a finite set and hence no such £ can exist.

Similarly to the proof of Lemma 13, we want to show that the kernel of D separates
into the kernels of maps «; + ;. This will finish the proof.

Now let £ = {(s, &) }sez € ker D. As before, without loss of generality we assume

there is n < 0 such that 8,(&,) # 0. Then a,—1(§4—1) # 0, so Bu—1(En—1) # 0.
Proceeding inductively we again reach a contradiction to £ being finitely supported. O

The previous lemma describes the action of Dl.Tp /a when p/q < 0. We make this
explicit in the next lemma.
Lemma 18 Let p <0, g > 0. Then
r gt
cokerDi’p/q ~ 7;1 ,
where d = d(L(p,q),i), and

T ~
ker D], = @D ta; (Hii-np)/a) @ 7yt Vii+np)/a))-

n=1 n=0
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Here
dy =d +1-2Hiq),
n—1
- _ g+
dy =dy +2)  (Vii—kp)/a) — HiG—t+1D)p)/a))-
k=0
n—1
+ _ g+
df =df +2  (Hi+kp)/a) = ViG+Ge+Dp)/a))-
k=0

Proof This is a straightforward application of Lemma 17. Objects that are labelled
with | (i +np)/q]| in the mapping cone correspond to the ones labelled with —n in
Lemma 17. In particular, take ay = V|(i—np)/q] and by = H|(i—np)/q)- The grading
comes from the fact that this works in the same way for the unknot (the towers in the cok-
ernel coincide for all knots). Just as in Corollary 14, we get the values of d,jt by the fact
that the maps vy, hj have grading —1 and the multiplication by U has grading —2. O

Just as Corollary 14 is sufficient for positive surgeries on L—space knots, so is Lemma 18
for negative surgeries on L—space knots. We observe that in this case the Alexander
polynomial also determines the Heegaard Floer homology of the surgeries. Lemma 18
also implies that negative p/q surgeries on L—space knots have the same d—invariants
as the lens spaces L(p, ¢q), so do not depend on the particular L—space knot. The next
proposition extends our analysis to arbitrary knots.

Proposition 19 Let p <0, ¢ > 0. As absolutely graded F[U |-modules, we have

coker D

~o +
i,plq = Td )

As absolutely graded vector spaces, we have

~ker DT @D A,

HFea(S, , (K),i) = ker D} i

i,p/q

where A4

ip/a (K) = AD15(N; p/g), §=d(L(p,q).i)+1,and N; ,,, is characterised
by

d=d(S},(K),i)=d(L(p,q),i)+2Ni p/q.

In fact, N; p/q = maX{VL,-/qJ, I-_IL(i_,_p)/qJ}, where V., Hy, are for the mirror image
of K the same as Vj,, Hj are for K.

T

. Since
i,p/q

Proof Recall that no element in (—1, B ) is in the image of the map D

A?e; /q (K) lies in the kernel of the multiplication by a big enough power of U, so does
its image under D;“p e Hence Dl.+p /a only “chops off” a finite piece of the tower.
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More precisely, let N be the largest integer such that U~V+1! e (—1, B*) appears as

a term of some element 7 in the image of Dl.+p e

We claim that then U~V 1 s also in the image for all kK > 1. This is easily seen by
an inductive argument: 1 is in the image, as 1 = UN~1p; U~! is, because 1 is and
UN=2y is. Proceeding in the same way, we establish the claim.

Thus the cokernel of D;’rp /a
in its image. Thus the map i from the exact triangle (1) injects ({U Nk Ye>0)F
into HF+(S5/q(K),i). Since U=N*! ¢ (-1, BY) is in the image of Di-j-p/q’ it is
in the kernel of i, and we have U -i.(U -N ) = 0. Hence the image of i, is exactly
the tower 7:1+ with d = d(S;/q(K),i). By Lemma 18, 1 € (—1, B™) has grading

d(L(p,q),i), so d(S;/q(K),i) =d(L(p,q),i)+2N.

By the first isomorphism theorem and exactness of (1), we have

is generated by U™ —k for k > 0, none of which are

ker DT

g =im jx ZHFY(S) (K), i)/ ker ju = HF (S} (K), i)/ imis.

Since im i, is the tower, we have

ker DF

A HE* (S}, (K), i)/ imix = HFea(S, , (K), 0).

The rest is just linear algebra again. We can split Af’g /q(K) into the part that goes

isomorphically to the base of the tower, which is not in the image of D IT »/a (ie

(=1,BT)Nim Dl.‘"p /q) and the part that goes into the image of Dl.Tp e We then
proceed as in the proof of Proposition 15.

The fact that N; ,/, = max{ VLi /q]» H L(i—p)/q|s follows from taking the mirror image
of K and comparing with the formula already obtained for the correction terms from
Corollary 14. We have

= —d(S2,,,n(K)), 1) + d(L(=p.9). 1)
= max{Vi/q. Hi(i+p)/q)}

where m(K) is the mirror image of K. |
We can also express the total rank of HF¢q (.S ; /a (K),i) as follows.

Proposition 20 We have

g—1 p—1
dim HFyea(S,, (K)) = ¢8(K) +qVo +24 Y Vi— Y Nip/q.
i=1 i=0
Proof The proof is virtually the same as for Proposition 16. |
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3.3 Zero surgeries

We now treat the case of zero surgeries. For the case of L—space knots the formula for
the Heegaard Floer homology of the zero surgery was derived in [14, Theorem 7.2].
The main tool we use is due to Ozsvath and Szabé:

Theorem 21 [19, Theorem 9.19] There is a U —equivariant exact triangle

Ft
HFT(S3) —— @ HF(S}(K).))

j=i (mod m)

HF " (S5, (K). 1)
Moreover, the map F;lr.i is equal to the one induced by the surgery cobordism.

Given i, we can make m in (4) so big that
D HFY(S3(K). /) = HF" (S5 (K). ).
j=i (mod m)
From now on we assume that m is at least that large.
The group A(;r (K)y=4 OT (K)® Aged(K) is relatively Z—graded. If we fix an absolute

Q-grading for any element of A (J)r (K), the relative grading will fix the absolute grading
for all the elements. In particular, it will absolutely grade A(r)ed(K ).

In the statement of the next proposition (but not necessarily in the proof), we use
the grading of ABEd(K ) induced by grading the tower AOT (K) in such a way that the
grading of 1 is % —2V.

Proposition 22 Let k # 0. Then, as 7 /27—graded vector spaces, we have

5) HF(Sg(K), k) = t(Vik) ® ALY (K).
As absolutely Q—graded vector spaces, we have
+(q3 ~ T+ +
(6) HF™ (S4(K),0) = T_1/2+2I70 S 7]/2_21/() @ A.

Here A® 14 /2(170) ~ A{)ed(K ) as absolutely graded vector spaces, where the absolute
grading of Af)ed(K ) is as described above.

Proof The first part is immediate from [14, proof of Theorem 7.2]. Note that
HF (83 (K). k) = T & AFY(K) (recall that we are assuming that m is large). In the
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proof of [14, Theorem 7.2] Ozsvath and Szab6 show that the restriction of F n—:i to the
tower part is surjective and its kernel is F[U ']/ U "I So we are done by the same
elementary linear algebra as in the proof of Proposition 15.

For the second part, note that we can assign absolute gradings, as we are dealing with a
torsion Spin“—structure. As shown in [19, Theorem 10.4], HF*®® (S (K),0) is a direct
sum of two copies of Z[U, U~!] that lie in different relatwe 7, /27Z—gradings. This is
equivalent to saying that the difference of the absolute gradings between the elements
from the different summands is always odd. As in the case of rational homology
spheres, the exact sequence

.- — HF (Y, s) - HF*®°(Y, s) - HF " (Y, s) —

establishes that
HF " (S5 (K),0) = Ta, @ T, ® A,

where A = HFq (S, 03 (K),0) is a finitely generated IF[U |-module in the kernel of some
large enough power of U .

In fact, combining [14, Proposition 4.12] with the d-invariant formula of Ni and Wu
stated in Corollary 14, we obtain d; = —% +2Vy and d, = % —2Vy.

The last step in the proof is determining .A. The maps F. ;J(; and F, (;?0 from the exact
triangle (4) have gradings —% and %(m —3), respectively, by [14, Lemma 7.11]. The
map F ;;0 is not graded but is a sum of graded maps, and the set of grading shifts of
these maps is {%(1 —mQ2k — 1)2)}keZ'

Since HF T (S3) ~ 76+ and the grading of the map F i 1 ’7'1/2 W is not in the
image of F ,+, hence the map F, is an isomorphism between Tl 12—2V and the tower
part of HF+(S 3(K),0), Wthh is equal to 72m 1)/4—2V, by Proposition 15. Hence
the restriction of the map F,; + o to the tower part of HF* (S3 (K),0) is zero. As in the
proof of Proposition 19, the restrlctlon of F, + o O HF,q(S;, (K), 0) maps a subgroup
of the form t(N') isomorphically to the base of the tower HF ' (S?) =~ 7_+ By the
grading considerations again we see that N = V.

Recall from Proposition 15 that HF (S} (K),0) = 7’(;_1)/4_21,0 <) A(rf’d(K) (the
grading here is such that the relative grading is as it should be). Le