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The mapping cone formula in Heegaard Floer homology
and Dehn surgery on knots in S 3

FYODOR GAINULLIN

We write down an explicit formula for the C version of the Heegaard Floer homology
(as an absolutely graded vector space over an arbitrary field) of the results of Dehn
surgery on a knot K in S3 in terms of homological data derived from CFK1.K/ .
This allows us to prove some results about Dehn surgery on knots in S3 . In particular,
we show that for a fixed manifold there are only finitely many alternating knots that
can produce it by surgery. This is an improvement on a recent result by Lackenby
and Purcell. We also derive a lower bound on the genus of knots depending on the
manifold they give by surgery. Some new restrictions on Seifert fibred surgery are
also presented.

57M27, 57M25

1 Introduction

Dehn surgery is a fundamental technique in 3–manifold topology. Indeed, we can
construct any 3–manifold1 beginning with any other 3–manifold and performing Dehn
surgery enough times. However, it is a highly nontrivial and widely open problem to
understand what manifolds can be obtained by doing Dehn surgery once (even starting
from the “simplest” 3–manifold, namely S3 ) and what knots yield a fixed manifold by
surgery.

Heegaard Floer theory is a relatively recent collection of powerful tools in low-
dimensional topology. It has many aspects and provides invariants in many different
contexts. In this paper, we are only concerned with the 3–manifold and knot invariants
(defined in Ozsváth and Szabó [18; 17] and Rasmussen [24]). The collections of
3–manifold invariants and knot invariants are connected via the surgery formula that
expresses the Heegaard Floer homology of a 3–manifold obtained by surgery on a
given knot in terms of the Heegaard Floer homology data of the knot (see Ozsváth
and Szabó [23]). This makes Heegaard Floer homology an especially suitable tool for
investigating questions about Dehn surgery.

1In this paper, whenever we say “3–manifold” we mean “closed connected orientable 3–manifold”.
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1918 Fyodor Gainullin

A natural question about Dehn surgery is whether there are manifolds that can be
obtained by surgery on infinitely many distinct knots in S3 . The answer is “yes”; see
Osoinach [13] or Teragaito [27]. There is still hope, however, that perhaps this does
not happen for some nice classes of knots.

One interesting and well-studied class of knots is that of alternating knots. At first sight,
their diagrammatic definition seems to have little to do with the geometric-topological
properties of these knots. However, this is not so; see, for example, Lackenby and
Purcell [7]. In particular, they prove the following:

Theorem 1 [7, Theorem 1.3] For any closed 3–manifold M with sufficiently large
Gromov norm, there are at most finitely many prime alternating knots K and fractions
p=q such that M is obtained by p=q surgery along K .

In fact, the statement about fractions p=q can be deduced, for example, from Ni and
Wu [11, Theorem 1.2]. We will also show in this paper that given any manifold Y

there is a universal bound on q for such fractions, which also implies that they are
finite in number. Using techniques that are very different from those used in [7] we are
able to establish the following improvement of this theorem.

Theorem 2 Let Y be a 3–manifold. There are at most finitely many alternating knots
K � S3 such that Y D S3

p=q
.K/.

Heegaard Floer homology is also very useful in bounding genera of various surfaces.
In particular, knot Floer homology determines the genus of a knot; see Ozsváth and
Szabó [16]. Combining this with information about surgery often allows one to put
restrictions on genera of knots admitting certain surgeries. For example, if surgery on
a knot K produces an L–space Y (a generalisation of lens spaces; see below for the
definition), then 2g.K/�1� jH1.Y /j, where by g.K/ we mean the genus of K (see
eg [23, Corollary 1.4]).

We derive a bound which is in some respects “opposite” to the bound for L–spaces. It
is a lower bound which can be nontrivial only for non-L–spaces. For the statement
of the theorem below and the rest of the paper note that we work over an arbitrary
field F . Heegaard Floer homology is then an F ŒU �–module and we denote the action
of U simply by multiplication. For a rational homology sphere Y , HFred.Y / denotes
its reduced Floer homology.

Theorem 3 For any knot K � S3 and any p=q 2Q we have

U g.K /Cdg4.K /=2e �HFred.S
3
p=q.K//D 0:

Algebraic & Geometric Topology, Volume 17 (2017)



The mapping cone formula in Heegaard Floer homology and surgery on knots in S3 1919

We remark that if K is an L–space knot, then U dg4.K /=2e � HFred.S
3
p=q

.K// D 0.
Moreover, for any N > 0 and p > 0 there is a 3–manifold Y which can be obtained
by a surgery on a knot in S3 such that U N �HFred.Y /¤ 0 and jH1.Y /j D p .

Here g4.K/ is the slice genus of K . We obviously have
˙

1
2
g4.K/

�
�
˙

1
2
g.K/

�
, so

the theorem does give a lower bound for g.K/.

A different lower bound for the knot genus producing non-L–spaces has been found by
Jabuka [3, Theorem 1.3], but unlike our bound, it also depends on the denominator of
the slope. Note also that there exists a manifold for which the genus of knots producing
it is not bounded above [27].

More recently, Jabuka [4, Corollary 1.5] has produced a new lower bound on the genus
that does not involve the denominator of the slope. He also obtained the ranks of �HF
for the result of surgery on a knot in S3 . His genus bound appears to be quite different
from ours.

Using the genus bound of Theorem 3 and some other considerations we are able to
prove results about Seifert fibred surgery on knots in S3 . Wu (improving on the
results of Ozsváth and Szabó [20]) has proven the following (the definitions of Seifert
orientation and torsion coefficients will be provided later):

Theorem 4 [29, Theorems 1.2 and 1.3] Let K � S3 be a knot. Suppose there is a
rational number p=q > 0 such that Y D S3

p=q
.K/ is Seifert fibred.

If Y is a positively oriented Seifert fibred space, then all the torsion coefficients
ti.K/ are nonnegative and bHFK.K;g.K// is supported in even degrees. In particular,
deg�K D g.K/.

If Y is a negatively oriented Seifert fibred space and 0< p=q < 3, then for all i > 0

the torsion coefficients ti.K/ are nonpositive. If Y is a negatively oriented Seifert
fibred space, g.K/ > 1 and 2g.K/� 1> p=q , then bHFK.K;g.K// is supported in
odd degrees. In particular, deg�K D g.K/.

We are able to prove the following.

Theorem 5 Let K � S3 be a knot. Suppose there is a rational number p=q > 0 such
that Y D S3

p=q
.K/ is a negatively oriented Seifert fibred space. Then

� U g.K / �HFred.Y /D 0;

� if 0< p=q � 3, then all the torsion coefficients ti.K/ are nonpositive (includ-
ing t0.K/) and deg�K D g.K/;

Algebraic & Geometric Topology, Volume 17 (2017)



1920 Fyodor Gainullin

� more generally, if i �
�

1
2
.dp=qe�

p
dp=qe/

˘
, then ti is nonpositive;

� if g.K/ >
�

1
2
.dp=qe�

p
dp=qe/

˘
, then deg�K D g.K/;

� if U bjH1.Y /j=2c �HFred.Y /¤ 0 then deg�K D g.K/.

In all statements where deg�K D g.K/ we have that bHFK.K;g.K// is supported in
odd degrees.

After the proof of Theorem 3 in Section 5, we describe negatively oriented Seifert fibred
spaces Y for which the power of U needed to annihilate HFred.Y / gets arbitrarily
large compared to the order of the first homology group.

Theorem 5 combined with the result of Wu has the following straightforward corollary.

Corollary 6 Suppose Y D S3
p=q

.K/ is a Seifert fibred rational homology sphere. If
jH1.Y /j � 3, then all the torsion coefficients of K have the same sign and deg�K D

g.K/.

To prove Theorems 2 and 3 we need to study the mapping cone formula, which connects
the Heegaard Floer data of the knot with the Heegaard Floer homology of the manifolds
obtained by surgery on it. Given a knot K in S3 there is a doubly filtered complex
C D CFK1.K/ associated to it. The doubly filtered homotopy type of this complex is
a knot invariant, from which all the flavours of knot Floer homology are derived.

In fact, the mapping cone formula states that given C and a certain chain homotopy
equivalence which identifies C fi�0g with C fj �0g we can determine HFC.S3

p=q
.K//

completely for any rational p=q .

In Section 3 we explicitly describe HFC.S3
p=q

.K// as an absolutely graded vector
space in terms of homological data from CFK1.K/, with no reference to the chain
homotopy equivalence mentioned above. For a large part this has already been done
(see Ni and Zhang [12], Ni and Wu [11] and Ozsváth and Szabó [23]), but the results
are scattered across multiple papers, sometimes not in explicit form, and we consider
it useful to have them collected in one place. While all the results of this section
concerning positive surgeries have been shown before, as far as we are aware, the
results for negative and zero surgeries (contained in Sections 3.2 and 3.3, respectively)
are new.

This allows us to derive some other applications as well, a few of which we mention
here.

Theorem 7 Suppose K is a nontrivial knot and Y D S3
p=q

.K/. Then

jqj � jH1.Y /jC dim HFred.Y /:

Algebraic & Geometric Topology, Volume 17 (2017)



The mapping cone formula in Heegaard Floer homology and surgery on knots in S3 1921

The existence of such a bound for the denominator seems to be known to some experts
in Heegaard Floer homology (it could be deduced from [23, Proposition 9.6]) but we
have not seen it explicitly stated. We will use this fact in the proof of Theorem 2.

A bound on the number of slopes that produce a given manifold has also been obtained
by Lackenby [6, Theorem 2.9] in quite a general but somewhat different setting (in
particular, due to homological conditions, it does not deal with surgeries in S3 ).

Theorem 8 Let K be an L–space knot and p=q�1 a rational number. Then S3
p=q

.K/

and p=q determine the Alexander polynomial of K .

We remark that the Alexander polynomial determines the knot Floer homology of an
L–space knot; see Ozsváth and Szabó [21]. Conversely, the Alexander polynomial of
an L–space knot determines the HFC of all surgeries on it. In particular, if for two
L–space knots K and K0 we have that HFC.S3

p=q
.K//Š HFC.S3

p=q
.K0// for some

p=q � 1, then we also have HFC.S3
p0=q0

.K//Š HFC.S3
p0=q0

.K0// for all other p0=q0 .

This theorem also implies that if two torus knots Tr;s , Tr 0;s0 with r; s; r 0; s0 > 0 have
the same surgery with the same slope � 1, then they are the same. Presumably, this
can also be obtained by more elementary methods. Note, however, that there do exist
positive integral slopes for which there are two distinct torus knots with the same
surgeries at these slopes; see Ni and Zhang [12, Example 1.1].

Teragaito [27] constructs a small Seifert fibred space Y and a sequence of knots
Kn�S3 such that Kn.�4/D Y .2 Moreover, the genus of the knots Kn is unbounded.
Incidentally, this shows that we cannot hope for an upper bound on knot genus for
knots giving some arbitrary manifold by surgery. In Section 7 we show that Y can only
be obtained by .�4/–surgery and we find the Alexander polynomial of the knots Kn .
It is, in fact, possible to find the Heegaard Floer homology of all manifolds obtained
by surgery on each Kn .

The organisation of this paper is as follows. In Section 2 we review some definitions,
notation and the mapping cone formula. In Section 3 we derive the expression for the
Heegaard Floer homology of surgeries on a knot. In Section 4 we prove Theorem 2,
in Section 5 we prove Theorem 3 and in Section 6 we prove Theorem 5. Finally, in
Section 7 we present some other applications of the mapping cone formula to questions
in Dehn surgery.

Acknowledgements I would like to thank Tye Lidman, Jake Rasmussen, András
Juhász, Marc Lackenby and Duncan McCoy for their very valuable suggestions and
comments on the earlier drafts of this paper (Tye Lidman, in particular, suggested that

2In fact, Teragaito constructs �Y , his knots are the mirror images of Kn and the slope he uses is 4 . It
is more convenient for us to work with this orientation.
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Theorem 2 could be proven using techniques of this paper). I am also very grateful to
Marco Marengon, Tom Hockenhull and V S Pyasetkii for many important comments on
the structure and presentation of this paper. This paper greatly benefited from a visit to
the University of Texas at Austin, and many interesting and enlightening conversations
that I had there. For this opportunity, I am very thankful to the Doris Chen Award, and
the help of my supervisor Dorothy Buck. I am particularly grateful to Dorothy for her
continued encouragement and support over the course of my PhD studies. Finally, I
would like to thank the referee for helpful comments on the drafts of this paper.

2 The mapping cone formula

In this section, we set up notation and review the rational surgery formula of Ozsváth
and Szabó [23]. We largely follow the exposition and notation of Ni and Wu in [11].

Given a knot K in S3 we can associate to it a doubly filtered complex C DCFK1.K/.
We denote generators of this complex by Œx; i; j �, where this generator has filtration
.i; j / 2 Z �Z. By [24, Lemma 4.5] the complex C is homotopy equivalent (as a
filtered complex) to a complex for which all filtration-preserving differentials are trivial.
In other words, at each filtration level we replace the group, viewed as a chain complex
with the filtration preserving differential, by its homology. From now on we work with
this reduced complex.

The complex C is invariant under the shift by the vector .�1;�1/. There is an action
of a formal variable U on C which is simply the translation by the vector .�1;�1/.
In other words, the group at the filtration level .i; j / is the same as the one at the
filtration level .i �1; j �1/ and U is the identity map from the first one to the second.
Of course, U is a chain map. In C the map U is invertible (but note that it will not be
in various subcomplexes and quotients), so C is an F ŒU;U�1�–module.

This means that as an F ŒU;U�1�–module C is generated by the elements with the
first filtration level i D 0. In the reduced complex the group at filtration level .0; j / is
denoted bHFK.K; j / and is known as the knot Floer homology of K (at Alexander
grading j ).

The complex C is absolutely Z–graded. In fact, the complex C is the complex used
to compute the (1–flavour of the) Heegaard Floer homology of S3 , and the knot
provides an additional filtration for it. By grading the Heegaard Floer homology of S3

we obtain the grading on C . The map U decreases this grading by 2.

Using the filtration on C we can define the following quotients of it:

AC
k
.K/D C fi � 0 or j � kg; k 2 Z;

BC D C fi � 0g Š CFC.S3/:

Algebraic & Geometric Topology, Volume 17 (2017)



The mapping cone formula in Heegaard Floer homology and surgery on knots in S3 1923

We also define two chain maps vk ; hk W A
C

k
.K/ ! BC . The first one is just the

projection (ie it sends to zero all generators with i < 0 and acts as the identity map for
everything else). The second one is the composition of three maps: firstly we project to
C fj � kg, then we multiply by U k (this shifts everything by the vector .�k;�k/) and
finally we apply a chain homotopy equivalence that identifies C fj � 0g with C fi � 0g.
Such a chain homotopy equivalence exists because the two complexes both represent
CFC.S3/ and by general theory [17] there is a chain homotopy equivalence between
them, induced by the moves between the Heegaard diagrams. We usually do not know
the explicit form of this chain homotopy equivalence.

Genus detection, alluded to before, has the following form:

Theorem 9 (Ozsváth and Szabó [16, Theorem 1.2]) Let K � S3 be a knot.

Then g.K/Dmaxfj 2 Z j bHFK.K; j /¤ 0g.

From this (together with symmetries of C ) we can see that the maps vk (resp. hk ) are
isomorphisms if k � g (resp. k � �g ).

We define chain complexes

AC
i;p=q

.K/D
M
n2Z

.n;AC
b.iCpn/=qc

.K//; BC D
M
n2Z

.n;BC/:

The first entry in the brackets here is simply a label used to distinguish different copies
of the same group. There is a chain map DC

i;p=q
from AC

i;p=q
.K/ to BC defined by

taking sums of all maps vk ; hk with appropriate domains and requiring that the map vk

goes to the group with the same label n and hk increases the label by 1. Explicitly,
DC

i;p=q
.f.k; ak/gk2Z/D f.k; bk/gk2Z , where

bk D v
C

b.iCpk/=qc
.ak/C hC

b.iCp.k�1//=qc
.ak�1/:

Each of AC
k
.K/ and BC inherits a relative Z–grading from the one on C . Let XC

i;p=q

denote the mapping cone of DC
i;p=q

. We fix a relative Z–grading on the whole of it
by requiring that the maps vk ; hk (and so DC

i;p=q
) decrease it by 1. The following is

proven in [23].

Theorem 10 (Ozsváth and Szabó [23, Theorem 1.1]) There is a relatively graded
isomorphism of F ŒU �–modules

H�.X
C

i;p=q
/Š HFC.S3

p=q.K/; i/:

Algebraic & Geometric Topology, Volume 17 (2017)
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.�3; A
C

�2
.K // .�2; A

C

�2
.K // .�2; A

C

�1
.K // .�1; A

C

�1
.K // .�1; A

C

�1
.K // .0; A

C

0
.K // .0; A

C

0
.K // .1; A

C

0
.K // .1; A

C

1
.K // .2; A

C

1
.K // .2; A

C

1
.K //

.�3; BC/ .�2; BC/ .�2; BC/ .�1; BC/ .�1; BC/ .0; BC/ .0; BC/ .1; BC/ .1; BC/ .2; BC/ .2; BC/ .3; BC/ .3; BC/ .4; BC/

v�1
h�1 v�1

h�1 v�1
h�1 v0

h0 v0
h0 v0

h0 v1
h1 v1

h1 v1
h1

Figure 1: Schematic representation of the portion of the complex whose map-
ping cone gives the Heegaard Floer homology of the surgery on a knot. This
case illustrates 2

3
–surgery; the blue (solid) and green (dashed) subcomplexes

represent two different Spinc–structures on the resulting space.

The index i in HFC.S3
p=q

.K/; i/ stands for the Spinc–structure. The numbering of
Spinc–structures we refer to is defined in [23], but we do not need precise details of
how to obtain this numbering for our purposes.

We can also determine the absolute grading on the mapping cone. The group BC is
independent of the knot. Now if we insist that the absolute grading on the mapping
cone for the unknot should coincide with the grading of HFC of the surgery on it
(ie d.L.p; q/; i/), this fixes the grading on BC . We then use this grading to fix the
grading on XC

i;p=q
for arbitrary knots; this grading then is the correct grading, ie it

coincides with the one HFC should have.

The mental picture we have of the mapping cone theorem is illustrated in Figure 1. We
have two rows of groups. The bottom row is just the row of identical groups BC . The
upper row consists of the various “hook” groups AC

k
.K/. Specifically, if the surgery

slope is p=q , in the upper row we repeat each group q times. We then have vertical
arrows pointing down for the maps vk , and the arrows for the maps hk are slanted.
More precisely, they go p groups to the right (if p is negative, this means �p to the
left). This creates jpj subcomplexes, connected by a zig-zag set of arrows. Each such
zig-zag subcomplex corresponds to a Spinc–structure on the manifold that is the result
of the surgery. To obtain the Heegaard Floer homology of this manifold we need to
take the mapping cone of this chain map.

For our purposes, it suffices to pass to the homology of the mapping cone under
consideration. Let

AC
k
.K/DH�.A

C

k
.K//; BC DH�.B

C/;

AC
i;p=q

.K/DH�.ACi;p=q.K//; BC DH�.BC/

and let vk ;hk ;D
C

i;p=q
denote the maps induced by vk ; hk ;D

C

i;p=q
, respectively, in

homology.

When we talk about AC
i;p=q

.K/ as an absolutely graded group, we mean the grading
that it inherits from the absolute grading of the mapping cone that we described above.

Algebraic & Geometric Topology, Volume 17 (2017)



The mapping cone formula in Heegaard Floer homology and surgery on knots in S3 1925

Since BCŠCFC.S3/, we have BCŠT C
d

, where T C
d
ŠF ŒU�1�DF ŒU;U�1�=U F ŒU �,

d signifies the grading of 1 and multiplication by U decreases the grading by 2. We
sometimes call this module the tower. When we are not interested in the absolute
grading we omit the subscript.

Recall that the short exact sequence

0 BC XC
i;p=q

AC
i;p=q

.K/ 0
i j

induces the exact triangle

(1)

AC
i;p=q

.K/ BC

H�.X
C

i;p=q
/Š HFC.S3

p=q
.K/; i/

D
C

i;p=q

j�
i�

All maps in these sequences are U –equivariant. This triangle is the main tool in the
calculations of the next section. In particular, if the surgery slope is positive, then the
map DC

i;p=q
will be surjective, so the triangle above implies that HFC.S3

p=q
.K/; i/Š

ker DC
i;p=q

.

3 Calculations

In this section we want to use the mapping cone formula to calculate the Heegaard
Floer homology for the results of surgery on a knot in S3 . Given a rational homology
sphere Y and a Spinc–structure s, we have HFC.Y; s/ D T C

d
˚HFred.Y; s/, where

d D d.Y; s/ is called the correction term and HFred.Y; s/ is a finite-dimensional F ŒU �–
module annihilated by a big enough power of U , called the reduced Floer homology
of Y in Spinc–structure s. The sum of these groups over all Spinc–structures is called
the reduced Floer homology of Y and is denoted by HFred.Y /.

We state a weaker version of [22, Theorem 2.3].

Theorem 11 (Ozsváth and Szabó) There is an integer N such that for all m � N

and all i 2 Z=mZ there is an isomorphism of relatively graded F ŒU �–modules

AC
k
.K/Š HFC.Km; i/;

where k � i .mod m/ and jkj � 1
2
m.
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In particular, each AC
k
.K/ is an HFC of a rational homology sphere in a certain

Spinc–structure, hence by the previous paragraph we can decompose it as AC
k
.K/Š

AT
k
.K/˚Ared

k
.K/, where Ared

k
.K/ is a finite-dimensional vector space in the kernel

of some power of U and AT
k
.K/Š T C .

We will need to talk about the Euler characteristic of the groups Ared
k
.K/, so we need

to fix an absolute Z=2Z–grading for them. We do so by requiring that for the purposes
of this grading each group AT

k
.K/ lies entirely in grading 0 and then using the relative

Z=2Z–grading (induced by the parity of the relative Z–grading) on AC
k
.K/.

A rational homology sphere Y is called an L–space if HFred.Y; s/D 0 for all Spinc–
structures s. A knot K � S3 is called an L–space knot if some positive surgery on
it is an L–space. In fact, it is known that a p=q surgery on an L–space knot is an
L–space if and only if p=q � 2g.K/� 1 (here g.K/ is, as usual, the genus of K ). In
particular, all large surgeries on L–space knots are L–spaces, hence for any L–space
knot K we have Ared

k
.K/D 0 for all k .

In the same way we can decompose the complexes of the exact triangle (1):

AT
i;p=q.K/D

M
n2Z

.n;AT
b.iCpn/=qc.K//; Ared

i;p=q.K/D
M
n2Z

.n;Ared
b.iCpn/=qc.K//:

We can also decompose the map DC
i;p=q

DDT
i;p=q
˚Dred

i;p=q
, where the first map is the

restriction of DC
i;p=q

to AT
i;p=q

.K/ and the second one is the restriction to Ared
i;p=q

.K/.
Note that DC

i;p=q
DDT

i;p=q
for L–space knots.

Now the restrictions of vk and hk to AT
k
.K/ are multiplications by some powers

of U , which we denote by Vk and Hk , respectively. (This is because at large gradings
these maps are isomorphisms.) The following are some useful properties of Vk and
Hk (see [11]):
� Vk � VkC1 for any k 2 Z;
� Hk �HkC1 for any k 2 Z;
� Vk DH�k for any k 2 Z;
� Vk !C1 as k!�1;
� Hk !C1 as k!C1;
� Vk D 0 for k � g.K/;
� Hk D 0 for k � �g.K/.

In other words, the Vk form a nonincreasing unbounded sequence of nonnegative
numbers which become zero at g.K/, and Hk D V�k .

We now separate into three different cases. Firstly, we cover the case of positive surgery
slope. Secondly, we treat negative surgeries. The third case is the zero surgery.
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3.1 Positive surgeries

The next lemma is used to establish that DT
i;p=q

is surjective when p=q > 0. We state
it in a slightly more general form because in this form it also applies to other manifolds.

Lemma 12 Let X D Y D
L

i2Z.i; T C/, X 0 D
L

i¤0.i; T C/ and let the maps

˛i W .i; T C/! .i; T C/; ˇi W .i; T C/! .i C 1; T C/

be multiplications by U ai and U bi , respectively. Suppose further that

� there is a number N such that ai D 0 for i �N and bi D 0 for i � �N , and

� ai!C1 as i !�1 and bi!C1 as i !C1.

Define D to be the sum of the maps ˛i and ˇi . Then the restriction of D to X 0 is
surjective.

The setting here is very similar to the one described by Figure 1, only we choose one
of the zig-zag complexes and all the groups in both the top and the bottom row are the
towers; see Figure 2.

Proof This is essentially what Ni and Wu prove in [11, Lemma 2.8]. We will show
that, for any n� 0 and i � 0, .i;U�n/ is in the image of the restriction of D to X 0 .
The conclusion will then follow by symmetry and linearity.

We clearly have .i;U�n/ D ˇi�1.i � 1;U�n�bi�1/. Define � D f.i; �i/gi2Z 2 X 0

recursively by

�s D

8<:
0 if s � i ;

U�n�bi�1 if s D i � 1;

.�1/s�iC1U asC1�bs � �sC1 otherwise:

In a way, after we set that �s D 0 for s � i , this is the only possible definition (up
to the kernel of D ). This is because the arrow “slanted to the right” has to be used
to cancel the rightmost element in the lower row, hence we know what element in its
codomain we have to choose so that it indeed cancels. This tells us what the image of
the “vertical” arrow is and hence what the next “slanted” arrow has to cancel, etc.

Since we have asC1� bs!C1 as s!�1, � only has a finite number of nonzero
coordinates and hence is a well-defined element of X 0 . It is also easy to see that
D.�/D .i;U�n/.
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.�2;T C/ .�1;T C/ .0;T C/ .1;T C/ .2;T C/

.�2;T C/ .�1;T C/ .0;T C/ .1;T C/ .2;T C/ .3;T C/

�U b�2 �U a�1 �U b�1 �U a0 �U b0 �U a1 �U b1 �U a2

Figure 2: Maps and groups of Lemmas 12 and 13

Let �d .N / be a submodule of T C
d

generated by fU�ng0�n�N�1 . As before, we omit
the subscript in the absence of the absolute grading.

The setting of the next lemma is less general; indeed, we use more information about
the numbers Vk and Hk .

Lemma 13 To the assumptions of Lemma 12 add the following:

� .ai/ is a nonincreasing sequence;
� .bi/ is a nondecreasing sequence;
� ai � bi for i � 0;
� ai � bi for i < 0.

Put absolute gradings on X and Y by the rule that the maps ˛i and ˇi decrease it by 1,
the multiplication by U decreases it by 2 and 1 2 .0; T C/ � Y has grading d � 1,
where d is some rational number.

Then if a0 � b�1 we have

ker D Š T C
d�2a0

˚

M
n�1

�d�n .b�n/˚
M
n�1

�
d
C
n
.an/:

Otherwise
ker D Š T C

d�2b�1
˚

M
n�2

�d�n .b�n/˚
M
n�0

�
d
C
n
.an/:

The isomorphisms are as absolutely graded F ŒU �–modules. The numbers d˙n are
defined by

d˙0 D d � 2 maxfa0; b�1g;

d�nC1 D d�n C 2.a�n� b�.nC1//;

dC
nC1
D dCn C 2.bn� anC1/:

Proof The two cases are completely analogous, so we will assume a0 � b�1 . First,
following [11, proof of Proposition 1.6] we define �T W T C

d�2a0
! ker D as follows. If

we write �T .�/D f.s; �s/gs2Z , we set �0 D � and determine the other components by

�s D

�
�U bs�1�as�s�1 if s > 0;

�U asC1�bs�sC1 if s < 0:
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In effect, we want to simply send the tower to the tower in the 0-component of the
upper group. But it is not in the kernel of D , so we need to correct for that. In fact,
we also want the map to be an F ŒU �–module homomorphism, which is the reason for
considering the cases a0 � b�1 and a0 < b�1 separately.

Notice that we always multiply by a nonnegative power of U : if s > 0, then bs�1 �

as�1�as ; if sD�1, this is the assumption a0�b�1 ; if s<�1, then asC1�bsC1�bs .
Thus the map is indeed an F ŒU �–module homomorphism.

As before, �s D 0 if jsj is very big, so the map is well-defined. The map �T is
one-to-one because its 0-component is (ie �0 D �). It is also graded correctly (ie the
map �T sends homogeneous elements of absolute grading d to homogeneous elements
of grading d ) because .0;U�a0/ 2X is sent to .0; 1/ 2 Y by ˛0 , which has grading
d �1. Thus .0; 1/ 2X has grading d �2a0 , since to descend from .0;U�a0/ 2X to
.0; 1/ 2X we need to multiply by U a0 and multiplication by U has grading �2.

We have identified the tower in the kernel. Now we need to deal with the rest of it.
Below we prove that the rest of the kernel consist of the kernels of the maps ˛i Cˇi

for each i , except the one at which the tower is situated (ie i D 0). It is easy to see
that the kernel of ˛i Cˇi is isomorphic to �.min.ai ; bi//.

If � D f.s; �s/gs2Z 2 ker D , by subtracting elements in the image of �T we may
assume that � 2X 0 , ie �0 D 0. Without loss of generality, there exists s < 0 such that
�s ¤ 0. To finish the proof we need to show that U bs � �s D 0 (recall that in this range
bs � as ). Suppose this is not so and 0¤ U bs � �s . Since � is in the kernel, it has to be
cancelled by something. It follows that we must have ˇs.�s/C˛sC1.�sC1/D 0. Thus
0¤U bs ��s D�U asC1�sC1 implies that 0¤U bsC1�sC1 , as asC1 � bsC1 if s <�1.
By proceeding in this way it follows that �0 ¤ 0, ie � 62X 0 , a contradiction.

The two lemmas above can be readily translated into results about surgery. The d–
invariant formula (2) from the corollary below is [11, Proposition 1.6].

Corollary 14 If p=q > 0 the map DT
i;p=q

is surjective. It follows that so is DC
i;p=q

,
and we conclude that HFC.S3

p=q
.K/; i/Š ker DC

i;p=q
.

If bi=qc � �b.i �p/=qc, then

ker DT
i;p=q Š T C

d
˚

M
n�1

�d�n .Hb.i�np/=qc/˚
M
n�1

�
d
C
n
.Vb.iCnp/=qc/:

Otherwise

ker DT
i;p=q Š T C

d
˚

M
n�2

�d�n .Hb.i�np/=qc/˚
M
n�0

�
d
C
n
.Vb.iCnp/=qc/:
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Here

(2) d D d.S3
p=q.K/; i/D d.L.p; q/; i/� 2 maxfVbi=qc;Hb.i�p/=qcg;

and

d�n D d C 2

n�1X
kD0

.Vb.i�kp/=qc�Hb.i�.kC1/p/=qc/;

dCn D d C 2

n�1X
kD0

.Hb.iCkp/=qc�Vb.iC.kC1/p/=qc/:

Proof This is a straightforward application of Theorem 10 and Lemmas 12 and 13 after
renumbering of the groups and maps; objects numbered with b.i C np/=qc correspond
to the ones numbered with n in Lemmas 12 and 13.

To fix the grading, note that the grading of BC does not depend on the knot, but only on
the surgery slope. Thus to grade it we can take the unknot U . For the unknot we have
Vi D 0 for i � 0 and Vi D i for i < 0. Hence 0DVbi=qc �Hb.i�p/=qcD 0, and by the
same argument as we used for an arbitrary knot, the grading of 1 in .0;AC

bi=qc
.U // is

the d–invariant of the surgery, which we know to be d.L.p; q/; i/ in this case. Since
Vbi=qc D 0, we find that the grading of 1 in .0;BC/ is d.L.p; q/; i/� 1. This allows
us to fix the d–invariants for all other knots.

We can fix d˙n by the fact that the maps vk and hk reduce it by 1 and the multiplication
by U reduces it by 2.

As we noted before, for L–space knots, DC
i;p=q

D DT
i;p=q

. Let K be a knot and
�K .T / D a0 C

P
i ai.T

i C T �i/ be its symmetrised Alexander polynomial, with
normalisation convention �K .1/D 1. Define its torsion coefficients ti.K/ for i � 0

by
ti.K/D

X
j�1

jaiCj :

Clearly, if we know all the torsion coefficients, we know the Alexander polynomial. For
L–space knots, Vk D tk for k � 0 (this follows, for example, from [23, Theorem 1.2]),
so Corollary 14 determines the Heegaard Floer homology of positive surgeries on an
L–space knot in terms of its Alexander polynomial.

The next proposition expresses the Heegaard Floer homology of positive surgeries
for arbitrary knots in terms of data from CFK1 . This proposition is essentially [12,
Proposition 3.5].
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Proposition 15 As absolutely graded vector spaces,

ker DC
i;p=q

Š ker DT
i;p=q˚Ared

i;p=q.K/:

Moreover, ker DT
i;p=q

is actually a submodule of ker DC
i;p=q

.

Proof This is a straightforward exercise in linear algebra.

Given vector spaces U;V;W and linear maps �U W U !W and �V W V !W such
that �U is surjective, ker.�U ˚ �V /Š ker �U ˚V .

There exists a map ��
U
W W ! V such that �U ı�

�
U
D idW . In the graded situation we

can make ��
U

send homogeneous elements to homogeneous elements. Then we can
define T W ker �U ˚V ! ker.�U ˚�V / by T .x˚y/D .x���

U
ı�V .y//˚y . Since

in our case �U ˚ �V is graded, T is an isomorphism of graded vector spaces.

Let
As.K/D

M
k2Z

Ared
k .K/:

This is a finite-dimensional vector space, as each Ared
k
.K/ is and Ared

k
.K/ D 0 for

jkj � g.K/. We define ı.K/D dim As.K/. Note that ı.K/D 0 if and only if K is
an L–space knot. The following proposition generalises [11, Proposition 5.3]:

Proposition 16 [12, Corollary 3.6] Let K � S3 be a knot and p=q > 0. Then

(3) dim HFred.S
3
p=q.K//D qı.K/CqV0C2q

g�1X
iD1

Vi�

p�1X
iD0

max.Vbi=qc;Hb.i�p/=qc/:

Proof Since

dim HFred.S
3
p=q.K//D

p�1X
iD0

dim HFred.S
3
p=q.K/; i/;

combining Proposition 15 and Corollary 14 we see that

dim HFred.S
3
p=q.K//

D

X
i2Z

dim Ared
bi=qc.K/C

X
i�0

Vbi=qcC
X
i�1

Hb�i=qc�

p�1X
iD0

max.Vbi=qc;Hb.i�p/=qc/

D q
X
k2Z

dim Ared
k .K/C q

g�1X
iD0

Vi C q

�1X
iD�.g�1/

Hi �

p�1X
iD0

max.Vbi=qc;Hb.i�p/=qc/

D qı.K/C qV0C 2q

g�1X
iD1

Vi �

p�1X
iD0

max.Vbi=qc;Hb.i�p/=qc/:
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Now we are ready to prove Theorem 7.

Theorem 7 Suppose K is a nontrivial knot and Y D S3
p=q

.K/. Then

jqj � jH1.Y /jC dim HFred.Y /:

Proof This is an easy consequence of Ni and Zhang’s formula of Proposition 16 (by
taking the mirror image we may assume p=q > 0). We have

dim HFred.S
3
p=q.K//C

p�1X
iD0

max.Vbi=qc;Hb.i�p/=qc/

D qı.K/C qV0C 2q

g�1X
iD1

Vi � q.ı.K/CV0/:

Recall that ı.K/D dim As.K/, so it is nonnegative and ı.K/D 0 if and only if K

is an L–space knot, in which case Vk D 0 if and only if k � g.K/, so for nontrivial
L–space knots V0 ¤ 0. If V0 D 0 then all V ’s (and H ’s) are zero and as ı.K/¤ 0

by the previous sentence, we clearly get q � dim HFred.S
3
p=q

.K//.

So suppose V0 ¤ 0. Then

dim HFred.S
3
p=q.K//CpV0 � dim HFred.S

3
p=q.K//C

p�1X
iD0

max.Vbi=qc;Hb.i�p/=qc/

� q.ı.K/CV0/:

Finally, we have

q �
dim HFred.S

3
p=q

.K//CpV0

ı.K/CV0

D
dim HFred.S

3
p=q

.K//

ı.K/CV0

C
pV0

ı.K/CV0

� dim HFred.S
3
p=q.K//Cp:

3.2 Negative surgeries

In the case when p=q < 0 the map DC
i;p=q

is no longer surjective. However, we can
show that the cokernel consists of exactly the tower part and the kernel is the reduced
Floer homology HFred.S

3
p=q

.K/; i/. We start with a general lemma, which is similar
to Lemmas 12 and 13. The main difference is in that the ˇi maps go to the groups
labelled with a smaller index.
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Lemma 17 Let X D Y D
L

i2Z.i; T C/ and let the maps

˛i W .i; T C/! .i; T C/; ˇi W .i; T C/! .i � 1; T C/

be multiplications by U ai and U bi, respectively. Suppose further that ai and bi have
the following properties:

� There is a number N such that ai D 0 for i �N and bi D 0 for i � �N ;

� ai!C1 as i !�1 and bi!C1 as i !C1;

� ai � bi for i < 0 and ai � bi for i � 0.

Then no element of .�1; T C/� Y is in the image of D and .�1; T C/� Y generates
the cokernel of D . The kernel of D has the form

ker D Š
M
i2Z

�.min.ai ; bi//:

Proof As all of the maps ˛i , ˇi are surjective, it is easy to see that the cokernel
of D is generated by the (equivalence classes of) elements in any one of .i; T C/� Y .
Suppose �D f.s; �s/gs2Z DD.�/ with �s D 0 for s ¤�1. Let � D f.s; �s/gs2Z .

Without loss of generality (by symmetry) we may assume that ˛�1.��1/¤ 0. Since
a�1 � b�1 it follows that ˇ�1.��1/¤ 0. Since ��2D 0D ˇ�1.��1/C˛�2.��2/, we
have ˛�2.��2/ ¤ 0, and hence ��2 ¤ 0. Continuing in the same way we conclude
that � is not supported on a finite set and hence no such � can exist.

Similarly to the proof of Lemma 13, we want to show that the kernel of D separates
into the kernels of maps ˛i Cˇi . This will finish the proof.

Now let � D f.s; �s/gs2Z 2 ker D . As before, without loss of generality we assume
there is n < 0 such that ˇn.�n/ ¤ 0. Then ˛n�1.�n�1/ ¤ 0, so ˇn�1.�n�1/ ¤ 0.
Proceeding inductively we again reach a contradiction to � being finitely supported.

The previous lemma describes the action of DT
i;p=q

when p=q < 0. We make this
explicit in the next lemma.

Lemma 18 Let p < 0, q > 0. Then

coker DT
i;p=q Š T C

d
;

where d D d.L.p; q/; i/, and

ker DT
i;p=q Š

M
n�1

�d�n .Hb.i�np/=qc/
M
n�0

�
d
C
n
.Vb.iCnp/=qc/:
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Here
dC

0
D d C 1� 2Hbi=qc;

d�n D dC
0
C 2

n�1X
kD0

.Vb.i�kp/=qc�Hb.i�.kC1/p/=qc/;

dCn D dC
0
C 2

n�1X
kD0

.Hb.iCkp/=qc�Vb.iC.kC1/p/=qc/:

Proof This is a straightforward application of Lemma 17. Objects that are labelled
with b.i C np/=qc in the mapping cone correspond to the ones labelled with �n in
Lemma 17. In particular, take an D Vb.i�np/=qc and bn DHb.i�np/=qc . The grading
comes from the fact that this works in the same way for the unknot (the towers in the cok-
ernel coincide for all knots). Just as in Corollary 14, we get the values of d˙n by the fact
that the maps vk , hk have grading �1 and the multiplication by U has grading �2.

Just as Corollary 14 is sufficient for positive surgeries on L–space knots, so is Lemma 18
for negative surgeries on L–space knots. We observe that in this case the Alexander
polynomial also determines the Heegaard Floer homology of the surgeries. Lemma 18
also implies that negative p=q surgeries on L–space knots have the same d–invariants
as the lens spaces L.p; q/, so do not depend on the particular L–space knot. The next
proposition extends our analysis to arbitrary knots.

Proposition 19 Let p < 0, q > 0. As absolutely graded F ŒU �–modules, we have

coker DC
i;p=q

Š T C
d
:

As absolutely graded vector spaces, we have

HFred.S
3
p=q.K/; i/Š ker DC

i;p=q
Š ker DT

i;p=q˚A;

where Ared
i;p=q

.K/ŠA˚�ı.Ni;p=q/, ıDd.L.p; q/; i/C1, and Ni;p=q is characterised
by

d D d.S3
p=q.K/; i/D d.L.p; q/; i/C 2Ni;p=q:

In fact, Ni;p=q D maxf xVbi=qc; xHb.iCp/=qcg, where xVk , xHk are for the mirror image
of K the same as Vk , Hk are for K .

Proof Recall that no element in .�1;BC/ is in the image of the map DT
i;p=q

. Since
Ared

i;p=q
.K/ lies in the kernel of the multiplication by a big enough power of U , so does

its image under DC
i;p=q

. Hence DC
i;p=q

only “chops off” a finite piece of the tower.
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More precisely, let N be the largest integer such that U�NC1 2 .�1;BC/ appears as
a term of some element � in the image of DC

i;p=q
.

We claim that then U�NCk is also in the image for all k � 1. This is easily seen by
an inductive argument: 1 is in the image, as 1D U N�1�; U�1 is, because 1 is and
U N�2� is. Proceeding in the same way, we establish the claim.

Thus the cokernel of DC
i;p=q

is generated by U�N�k for k � 0, none of which are
in its image. Thus the map i� from the exact triangle (1) injects hfU�N�kgk�0iF

into HFC.S3
p=q

.K/; i/. Since U�NC1 2 .�1;BC/ is in the image of DC
i;p=q

, it is
in the kernel of i� and we have U � i�.U

�N /D 0. Hence the image of i� is exactly
the tower T C

d
with d D d.S3

p=q
.K/; i/. By Lemma 18, 1 2 .�1;BC/ has grading

d.L.p; q/; i/, so d.S3
p=q

.K/; i/D d.L.p; q/; i/C 2N .

By the first isomorphism theorem and exactness of (1), we have

ker DC
i;p=q

D im j� Š HFC.S3
p=q.K/; i/= ker j� D HFC.S3

p=q.K/; i/= im i�:

Since im i� is the tower, we have

ker DC
i;p=q

Š HFC.S3
p=q.K/; i/= im i� Š HFred.S

3
p=q.K/; i/:

The rest is just linear algebra again. We can split Ared
i;p=q

.K/ into the part that goes
isomorphically to the base of the tower, which is not in the image of DT

i;p=q
(ie

.�1;BC/ \ im DC
i;p=q

) and the part that goes into the image of DT
i;p=q

. We then
proceed as in the proof of Proposition 15.

The fact that Ni;p=q Dmaxf xVbi=qc; xHb.i�p/=qcg follows from taking the mirror image
of K and comparing with the formula already obtained for the correction terms from
Corollary 14. We have

2Ni;p=q D d.S3
p=q.K/; i/� d.L.p; q/; i/

D�d.S3
�p=q.m.K//; i/C d.L.�p; q/; i/

Dmaxf xVbi=qc; xHb.iCp/=qcg;

where m.K/ is the mirror image of K .

We can also express the total rank of HFred.S
3
p=q

.K/; i/ as follows.

Proposition 20 We have

dim HFred.S
3
p=q.K//D qı.K/C qV0C 2q

g�1X
iD1

Vi �

p�1X
iD0

Ni;p=q:

Proof The proof is virtually the same as for Proposition 16.
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3.3 Zero surgeries

We now treat the case of zero surgeries. For the case of L–space knots the formula for
the Heegaard Floer homology of the zero surgery was derived in [14, Theorem 7.2].
The main tool we use is due to Ozsváth and Szabó:

Theorem 21 [19, Theorem 9.19] There is a U –equivariant exact triangle

(4)

HFC.S3/
L

j�i .mod m/

HFC.S3
0
.K/; j /

HFC.S3
m.K/; i/

F
C

Ii

F
C

mIi

F
C

0Ii

Moreover, the map FCmIi is equal to the one induced by the surgery cobordism.

Given i , we can make m in (4) so big thatM
j�i .mod m/

HFC.S3
0 .K/; j /D HFC.S3

0 .K/; i/:

From now on we assume that m is at least that large.

The group AC
0
.K/ŠAT

0
.K/˚Ared

0
.K/ is relatively Z–graded. If we fix an absolute

Q–grading for any element of AC
0
.K/, the relative grading will fix the absolute grading

for all the elements. In particular, it will absolutely grade Ared
0
.K/.

In the statement of the next proposition (but not necessarily in the proof), we use
the grading of Ared

0
.K/ induced by grading the tower AT

0
.K/ in such a way that the

grading of 1 is 1
2
� 2V0 .

Proposition 22 Let k ¤ 0. Then, as Z=2Z–graded vector spaces, we have

(5) HFC.S3
0 .K/; k/Š �.Vjkj/˚Ared

k .K/:

As absolutely Q–graded vector spaces, we have

(6) HFC.S3
0 .K/; 0/Š T C

�1=2C2 xV0

˚ T C
1=2�2V0

˚A:

Here A˚ �1=2. xV0/ŠAred
0
.K/ as absolutely graded vector spaces, where the absolute

grading of Ared
0
.K/ is as described above.

Proof The first part is immediate from [14, proof of Theorem 7.2]. Note that
HFC.S3

m.K/; k/Š T ˚Ared
k
.K/ (recall that we are assuming that m is large). In the
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proof of [14, Theorem 7.2] Ozsváth and Szabó show that the restriction of FCmIi to the
tower part is surjective and its kernel is F ŒU�1�=U�Vjkj . So we are done by the same
elementary linear algebra as in the proof of Proposition 15.

For the second part, note that we can assign absolute gradings, as we are dealing with a
torsion Spinc–structure. As shown in [19, Theorem 10.4], HF1.S3

0
.K/; 0/ is a direct

sum of two copies of ZŒU;U�1� that lie in different relative Z=2Z–gradings. This is
equivalent to saying that the difference of the absolute gradings between the elements
from the different summands is always odd. As in the case of rational homology
spheres, the exact sequence

� � � ! HF�.Y; s/! HF1.Y; s/! HFC.Y; s/! � � �

establishes that
HFC.S3

0 .K/; 0/Š Td1
˚ Td2

˚A;

where ADHFred.S
3
0
.K/; 0/ is a finitely generated F ŒU �–module in the kernel of some

large enough power of U .

In fact, combining [14, Proposition 4.12] with the d–invariant formula of Ni and Wu
stated in Corollary 14, we obtain d1 D�

1
2
C 2 xV0 and d2 D

1
2
� 2V0 .

The last step in the proof is determining A. The maps FC
I0

and FC
0I0

from the exact
triangle (4) have gradings �1

2
and 1

4
.m� 3/, respectively, by [14, Lemma 7.11]. The

map FC
mI0

is not graded but is a sum of graded maps, and the set of grading shifts of
these maps is

˚
1
4
.1�m.2k � 1/2/

	
k2Z .

Since HFC.S3/Š T C
0

and the grading of the map FC
I0

is �1
2

, T C
1=2�2V0

is not in the
image of FC

I0
, hence the map FC

0I0
is an isomorphism between T C

1=2�2V0
and the tower

part of HFC.S3
m.K/; 0/, which is equal to T C

.m�1/=4�2V0
by Proposition 15. Hence

the restriction of the map FC
mI0

to the tower part of HFC.S3
m.K/; 0/ is zero. As in the

proof of Proposition 19, the restriction of FC
mI0

to HFred.S
3
m.K/; 0/ maps a subgroup

of the form �.N / isomorphically to the base of the tower HFC.S3/Š T C
0

. By the
grading considerations again we see that N D xV0 .

Recall from Proposition 15 that HFC.S3
m.K/; 0/ Š T C

.m�1/=4�2V0
˚ Ared

0
.K/ (the

grading here is such that the relative grading is as it should be). Let the maximal
grading of a nontrivial element in Ared

0
.K/ be 1

4
.m� 1/� 2V0CC .

Consider one homogeneous summand of FC
mI0

with grading 1
4
.1�m.2k � 1/2/. It

maps the element of Ared
0
.K/ of maximal grading to an element with grading

1
4
.m� 1/� 2V0CC C 1

4
.1�m.2k � 1/2/D 1

4

�
m.1� .2k � 1/2/� 8V0C 4C

�
:
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If k ¤ 0; 1 we have 1� .2k � 1/2 < 0 and so by making m sufficiently large we can
make sure that 1

4
.m.1� .2k � 1/2/� 8V0C 4C / < 0, and, as all nontrivial elements

in the image have grading � 0, this means that all components with k ¤ 0; 1 are zero.

Thus we can assume that the map FC
mI0

has grading 1
4
.1�m/. As discussed above the

map FC
mI0

maps a subgroup of Ared
0
.K/ of the form �. xV0/ isomorphically to such a

subgroup at the lower end of the tower HFC.S3/Š T C
0

. Therefore 1 in �. xV0/ must
have grading 1

4
.m� 1/.

The rest of Ared
0
.K/ will be in the kernel of FC

mI0
and thus in the image of A by FC

0I0
.

Now noting that the grading of the map FC
0I0

is 1
4
.m� 3/ finishes the proof.

Torsion coefficients of the Alexander polynomial of a knot describe the Euler charac-
teristics of the groups Ared

k
.K/, which we can see for example by combining Theo-

rems 10.14 and 10.17 of [19] (though a more direct proof is also possible). This has
also been shown in [12, Lemma 3.2].

Lemma 23 For k � 0 we have

(7) tk.K/D Vk C�.A
red
k .K//:

Recall that the absolute Z=2Z grading used to calculate the Euler characteristics here
is fixed by the requirement that the tower AT

k
.K/ lies entirely in grading 0.

4 Proof of Theorem 2

In this section we prove:

Theorem 2 Let Y be a 3–manifold. There are at most finitely many alternating knots
K � S3 such that Y D S3

p=q
.K/.

The strategy of our proof is as follows. We first want to restrict the possible Alexander
polynomials of knots that yield a given 3–manifold Y by surgery. We then want to
show that, out of this restricted set, only finitely many can be Alexander polynomials
of alternating knots. This will finish the proof, due to the next proposition, which was
proved by Moore and Starkston. We provide the proof for the reader’s convenience
(and since it is nice and short).

Proposition 24 [9, Proposition 5.1] There is only a finite number of alternating knots
with a given Alexander polynomial.
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Proof By the Bankwitz theorem [1, Theorem 5.5] the determinant det.K/ of an
alternating knot K is greater than or equal to the minimal crossing number of K . Thus
there are only finitely many alternating knots with a given determinant. The classical
result [26, page 213] (or definition) det.K/D j�K .�1/j finishes the proof.

For a knot K � S3 , let m.K/ be its mirror image. Clearly, K is alternating if and
only if m.K/ is. Since S3

p=q
.K/D�S3

�p=q
.m.K// we can assume that the surgery

slope is positive (if nonzero).

For Y a rational homology sphere and q > 0 a natural number, define

M.Y; q/D
1

2

� X
0�i�p�1

d.L.p; q/; i/�
X

s2Spinc.Y /

d.Y; s/

�
;

where p D jH1.Y /j.

Theorem 7 shows that for any rational homology sphere Y there is some number n.Y /

such that Y ¤ S3
p=q

.K/ for any K and jqj> n.Y /.

If Y is obtained by p=q > 0 surgery on K , then by (2) the numbers Vk for K satisfy

M.Y; q/D

p�1X
iD0

maxfVbi=qc;V�b.i�p/=qcg:

Combining this with Proposition 16 we get

dim HFred.S
3
p=q.K//CM.S3

p=q.K/; q/D q

�
ı.K/CV0C 2

X
i�1

Vi

�
:

This formula implies the inequality

dim HFred.S
3
p=q

.K//CM.S3
p=q

.K/; q/

q
�

X
k�0

.Vk C dim AC
k
.K//:

Now let

c.Y /D max
1�q�n.Y /

�
dim HFred.Y /CM.Y; q/

q

�
:

The inequality above implies that if a rational homology sphere Y is obtained by
surgery on a knot K with associated sequence fVkgk�0 , then

(8) c.Y /�
X
k�0

.Vk C dim AC
k
.K//:
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Lemma 25 Suppose Y is a rational homology sphere obtained by a p=q > 0 surgery
on a knot K � S3 . Then

(9)
X
i�0

jti.K/j � c.Y /:

Proof It follows from Lemma 23 that for each k � 0 we have

jtk.K/j D jVk C�.A
C

k
.K//j � Vk Cj�.A

C

k
.K//j � Vk C dim AC

k
.K/:

Combining with (8) yields the result.

Let SY be some set of knots in S3 that give a rational homology sphere Y by surgery
(not necessarily all such knots and not necessarily alternating). Denote by g.SY / and
�.SY / the sets of genera and of Alexander polynomials, respectively, of knots in SY .

Lemma 26 If g.SY / is finite, then so is �.SY /.

Proof We clearly have ti.K/ D 0 for all K 2 SY and all i � max.g.SY //. By
Lemma 25,

P
i�0 jti.K/j is bounded above, so we clearly have finitely many sequences

fti.K/g for K 2SY . Now observe that the torsion coefficients determine the Alexander
polynomial, so this results in at most finitely many possible Alexander polynomials.

A theorem of Murasugi is crucial for our proof:

Theorem 27 [10, Theorem 1.1] Let K � S3 be an alternating knot and

�K .T /D a0C

g.K /X
iD1

ai.T
i
CT �i/

be its Alexander polynomial. Then ai ¤ 0 for 0� i � g.K/.

The next lemma is the last step before we can prove Theorem 2.

Lemma 28 Let K�S3 be an alternating knot that gives a rational homology sphere Y

by surgery. Then
g.K/� 3c.Y /:

Proof Suppose g.K/ � 3c.Y /C 1. Note that ag D tg�1.K/ ¤ 0. We claim that
there are three consecutive indices i , i C 1 and i C 2 � g with ti.K/D tiC1.K/D

tiC2.K/D 0. It then follows that aiC1 D 0, which is a contradiction to Theorem 27.
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To prove the claim, suppose there is no such consecutive triple of zero torsion coeffi-
cients. ThenX
i�0

jti.K/jD
X
k�0

.jt3k.K/jCjt3kC1.K/jCjt3kC2.K/j/�
�

1
3
.g� 1/

˘
C1� c.Y /C1;

which contradicts Lemma 25.

We have thus established that g � 3c.Y /.

Proof of Theorem 2 Suppose Y is a rational homology sphere. Then by Lemma 28
there is a genus bound for alternating knots that give Y by surgery, so by Lemma 26
the set of Alexander polynomials of such alternating knots is finite.

If Y is obtained by 0–surgery on K , then Propositions 10.14 and 10.17 of [19] show
that the Alexander polynomial of K can be deduced directly from the Heegaard Floer
homology of Y .

Proposition 24 now finishes the proof.

5 The genus bound

We now turn to the proof of Theorem 3, which we restate here.

Theorem 3 For any knot K � S3 and any p=q 2Q we have

U g.K /Cdg4.K /=2e �HFred.S
3
p=q.K//D 0:

Lemma 29 Let K be a knot in S3 with genus g . Then for any k 2 Z we have

U g
�Ared

k .K/D 0:

Proof By the conjugation symmetry we may assume that k � 0. Let C DCFK1.K/,
�k DC fi < 0 and j � kg. This is a subquotient of C (ie a subcomplex of a quotient).
Note that U g ��k D 0, as this is the maximal possible “height” of this complex. We
illustrate the complexes �k ;A

C

k
.K/;BC in Figure 3.

We have an exact sequence

0!�k !AC
k
.K/! BC! 0

which leads to an exact U –equivariant triangle

(10)
H�.�k/ AC

k
.K/

BC

i�

vk
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Since vk is surjective, we in fact have a short exact sequence

0!H�.�k/!AC
k
.K/!BC! 0;

so H�.�k/Š ker vk and hence U g � ker vk D 0.

Recall that
AC

k
.K/DAT

k .K/˚Ared
k .K/;

and similarly we can decompose the map vkDvT
k
˚vred

k
into components. The map vT

k

is surjective. We claim that Ared
k
.K/Š ker vk= ker vT

k
. From this the conclusion of

the lemma follows immediately.

To prove the claim we construct an isomorphism from ker vk= ker vT
k

to Ared
k
.K/. Let

x 2 ker vk n ker vT
k

. Then send an equivalence class of x to Ared
k
.K/ by projection.

This map is well defined, because two different elements with the same projection are
in ker vT

k
. Clearly this is also a surjective F ŒU �–module homomorphism.

AC
k
.K/

�k

BC

Figure 3: Complexes �k , AC
k
.K/ and BC inside CFK1

The previous lemma clearly implies:

Corollary 30 The following relation holds:

U g
�Ared

i;p=q.K/D 0:

Proof of Theorem 3 Note that by [25, Theorem 2.3] we have V0 �
˙

1
2
g4.K/

�
.

If the slope is negative the reduced part is exactly equal to the kernel of DC
i;p=q

. So
suppose x 2 ker DC

i;p=q
. By Corollary 30, U g �x 2 ker DT

i;p=q
. But by Lemma 18 the
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kernel of DT
i;p=q

consist of the summands of the type �.N / with N �V0�
˙

1
2
g4.K/

�
,

so
U dg4.K /=2e � ker DT

i;p=q D 0:

Now suppose the slope is positive. If we assume that x 2 ker DC
i;p=q

then we still
have U g � x 2 ker DT

i;p=q
, and U dg4.K /=2e � ker DT

i;p=q
is contained in the tower part

by Corollary 14.

Similarly, the case of zero surgery follows immediately from Proposition 22. This
finishes the proof.

Since by Corollary 14 and Lemma 18 the reduced Floer homology of surgeries on
L–space knots consists only of a direct sum of F ŒU �–modules of the form �.Vk/, we
see that if K is an L–space knot, then U dg4.K /=2e �HFred.S

3
p=q

.K//D 0.

In order to construct examples for which this genus bound gets arbitrarily large, note
that every negative surgery on a knot contains a summand of the form �.V0/. So if V0

is large, the genus bound will also be large, independent of the absolute value of the neg-
ative slope we use. In particular, we can choose any order of the first homology we like.

For L–space knots, V0 D t0 can be read from the Alexander polynomial; in particular,
this is true for torus knots Tp;q with p; q > 0.

Suppose we have an L–space knot K with Alexander polynomial

�K .T /D a0C

gX
iD1

ai.T
i
CT �i/:

Then the coefficients alternate between 1 and �1, with the first nontrivial coefficient
being 1 [21, Theorem 1.2]. So we clearly have

t0 � #fai D 1; i > 0g � 1
4
.#fai ¤ 0g� 1/� 1

4
.�K .�1/� 1/:

Consider the torus knots Tp;2 for p positive odd. They have Alexander polynomials
of the form

.T 2p � 1/.T � 1/

.T p
� 1/.T 2

� 1/
D T p�1

�T p�2
C � � �C 1;

which evaluates to p at �1.

Moreover, these examples are actually negatively oriented (see next section) small
Seifert fibred spaces, which is interesting in light of the next section.

We note that a result similar to Theorem 3 can be obtained for a knot in any L-space
rational homology sphere, the bound being in terms of the width of the knot Floer
homology rather than the genus.
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6 Seifert fibred surgery

The aim of this section is to prove:

Theorem 5 Let K � S3 be a knot. Suppose there is a rational number p=q > 0 such
that Y D S3

p=q
.K/ is a negatively oriented Seifert fibred space. Then

� U g.K / �HFred.Y /D 0;
� if 0< p=q � 3, then all the torsion coefficients ti.K/ are nonpositive (includ-

ing t0.K/) and deg�K D g.K/;
� more generally, if i �

�
1
2
.dp=qe�

p
dp=qe/

˘
, then ti is nonpositive;

� if g.K/ >
�

1
2
.dp=qe�

p
dp=qe/

˘
, then deg�K D g.K/;

� if U bjH1.Y /j=2c �HFred.Y /¤ 0, then deg�K D g.K/.

In all statements where deg�K D g.K/ we have that bHFK.K;g.K// is supported in
odd degrees.

Proof First we need to define the Seifert orientation for Seifert fibred spaces. Following
[20] we say that Y has positive Seifert orientation if �Y bounds W .�/, where � is a
weighted tree which has either negative definite or negative semidefinite intersection
form. For the construction of the 4–manifold W .�/ from the weighted tree � , see [15].
We say that Y has negative Seifert orientation if �Y has positive Seifert orientation.

Using [15, Corollary 1.4] (together with the inversion of the absolute Z=2Z–grading
on the reduced homology upon reversing the orientation) we can see that if Y has a
negative Seifert orientation, then its reduced Floer homology is concentrated in the odd
Z=2Z–grading and that it bounds a negative definite 4–manifold with torsion-free first
homology group.

Lemma 31 Let K � S3 be a knot. Suppose there is a rational number p=q > 0

such that Y D S3
p=q

.K/ is a negatively oriented Seifert fibred space. Then Ared
k
.K/ is

supported in odd Z=2Z–grading for every k .

Proof of Lemma 31 As an absolutely Z=2Z–graded group, each Ared
k
.K/ is a sub-

group of HFred.S
3
p=q

.K// by Proposition 15. Since HFred.S
3
p=q

.K// is supported in
odd grading, so must be each Ared

k
.K/.

Denote by zg the minimal index i for which Vi D 0. As above, denote by ai the
coefficient of the Alexander polynomial of K corresponding to T i . If zg < g.K/, then
by Lemma 23 we have

(11) ag.K / D tg.K /�1 D �.A
red
g.K /�1/;
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so, in particular, ag.K / ¤ 0 if all Ared
k
.K/ are supported in the same Z=2Z–grading,

since in this case

Ared
g.K /�1 Š HFC.S3

0 .K/;g� 1/Š bHFK.K;g.K//¤ 0:

It follows that in this case deg.�K /D g.K/ and bHFK.K;g.K// is supported in odd
degrees.

Moreover, if zg D 0, then Vk D 0 for all k � 0, so that

tk D �.A
red
k .K//� 0:

We now need to establish conditions which ensure that zg D 0 or zg < g.K/.

McCoy [8, Lemma 2.3] slightly modified the proof of [2, Theorem 1.1] by Greene
to show that if S3

p=q
.K/ bounds a negative-definite 4–manifold with torsion-free first

homology, then
2zg � n�

p
n;

where nD dp=qe.

It follows that if p=q � 3 then zg D 0.

More generally, if i � b.n�
p

n/=2c, where n D dp=qe, then i � zg and hence
Vi D 0. It follows that ti D �.A

red
i .K//� 0. If g.K/ >

�
1
2
.dp=qe�

p
dp=qe/

˘
, then

g.K/ > zg as well.

For the improvement of the genus bound, note that all the summands of HFred.S
3
p=q

.K//

coming from the Vi (ie of the form �.Vi/) are situated in the even grading and therefore
must vanish. Now the proof of Theorem 3 shows that U g.K / �HFred.S

3
p=q

.K//D 0.

Now if
U bjH1.Y /j=2c �HFred.S

3
p=q.K//¤ 0;

then
�

1
2
jH1.Y /j

˘
� g.K/� 1, so 1

2
.jH1.Y /jC 1/� g.K/. On the other hand,

zg � 1
2
.dp=qe�

p
dp=qe/ < 1

2
.p=qC 1/� 1

2
.pC 1/D 1

2
.jH1.Y /jC 1/� g.K/:

It follows from (11) that deg.�K /D g.K/.

We end this section with the following question:

Question 32 Does there exist a knot K � S3 with deg.�K / ¤ g.K/ and with a
Seifert fibred surgery?
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7 Some other applications of the mapping cone formula

In this section, we demonstrate some other applications of the results obtained in
Section 3.

Theorem 8 Let K be an L–space knot and p=q�1 a rational number. Then S3
p=q

.K/

and p=q determine the Alexander polynomial of K .

Proof If the slope is zero this is immediate from Proposition 22. If the slope is
negative this also easily follows from Lemma 18; by looking at HFred.S

3
p=q

.K// we
can work out a sequence of numbers that represents all the torsion coefficients with
some repetitions (they are orders of cyclic F ŒU �–modules). But we know the number of
repetitions because we know the slope. From this we deduce all the torsion coefficients
(in the correct order, as they form a monotone sequence), and hence the Alexander
polynomial.

If the slope is in the interval .0; 1� the reasoning is the same; Corollary 14 allows us to
work out the torsion coefficients, since we know how many times each occurs. The
only torsion coefficient we might not be able to work out from the module structure of
HFred.S

3
p=q

.K// is t0 if the slope is 1. But in this case, it can be worked out from the
d–invariant formula of Ni and Wu from Corollary 14.

Sometimes we can work out a lot about the Heegaard Floer homology associated to a
knot from a surgery on it even if it is not an L-space knot.

Proposition 33 The small Seifert fibred space Y D S2..2; 1/; .6;�1/; .7;�2// can
only be obtained by .�4/–surgery. All knots producing it are non-L–space knots.

Proof We find the HFC of this space using the computer program HFNem2 by Çağrı
Karakurt [5]. There are four Spinc–structures fsig

3
iD0

, and HFC in them have the
form

HFC.Y; s0/Š T�3=4;

HFC.Y; s1/Š T0˚ �0.1/;

HFC.Y; s2/Š T1=4;

HFC.Y; s3/Š T0˚ �0.1/:

Using Theorem 7 we can restrict the possible slopes to
˚
˙4;˙4

3
;˙4

5

	
. Calculating the

correction terms of L.4; 1/DL.4;�3/DL.4; 5/ and L.4;�1/DL.4; 3/DL.4;�5/

we notice that only L.4;�1/ has correction terms such that the difference of each of
them with some correction term of Y is an integer. This means that the slope has to be
in
˚
�4; 4

3
;�4

5

	
.
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We also notice that the d–invariants of Y coincide exactly with the d–invariants of
the lens space L.4;�1/. By the d–invariant formula (2) we conclude that V0 D 0. A
similar argument using the d–invariant formula for negative surgeries in Proposition 19
establishes that xV0 D 0.

Now using the total dimension formulas of Propositions 16 and 20 we conclude

2D dim HFred.S
3
p=q.K//D qı.K/;

which is impossible for q D 3 or q D�5.

Comparing the labelling of Spinc–structures we see that the order in which we listed
HFC.Y; si/ above corresponds to i D 0; 1; 2 and 3.

If Y could be obtained by .�4/–surgery on an L–space knot, then the fact that V0D 0

would imply that its genus is zero, ie it is the unknot. However, Y is not a lens space.

It seems worth noticing that in fact there are infinitely many knots Kn that produce Y

from the proposition above; see [27]. In fact, K0 D 942 . The spaces resulting from
p=q–surgeries on these knots have rather similar Floer homologies; in particular, all
the correction terms are the same (and coincide with the correction terms of the lens
space L.p; q/) and the total rank of reduced Floer homology is 2q .

Moreover, we can work out the Heegaard Floer homology of all surgeries on these
knots and their Alexander polynomials. Teragaito [27, Remark 6.1] mentions that Kn

has genus 2nC 2. In [17, Corollary 4.5] it is shown that

bHFK.K;g.K//Š HFC.S3
0 .K/;g� 1/;

so it is nontrivial by Theorem 9, and thus by Proposition 22 and the fact that V0 D 0

for the present examples, we get that Ared
˙.g.K /�1/

have to be nontrivial. By description
of the Heegaard Floer homology of Y in the proof of Proposition 33 we conclude that
Ared

2nC1
.Kn/DAred

�.2nC1/
.Kn/D �.1/ and Ared

k
.Kn/D 0 for any k¤˙2nC1. Using

Proposition 19 we can also fix the gradings, and then using results from Section 3
deduce the Heegaard Floer homology of all surgeries on these knots.

Proposition 34 The Alexander polynomial of K0 is �1C2.T CT �1/�.T 2CT �2/.
For n¤ 0 the Alexander polynomial is given by

�Kn
.T /D 1� .T 2n

CT �2n/C 2.T 2nC1
CT �.2nC1//� .T 2nC2

CT �.2nC2//:

Proof From the discussion above, V0 D 0 and the only nontrivial Ared
k
.K/ are

Ared
2nC1

.Kn/ D Ared
�.2nC1/

.Kn/ D �.1/. Moreover, since the reduced parts of the
Heegaard Floer homology of .�4/–surgery are in absolute Z=2Z–grading 0, it means
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that Ared
˙.2nC1/

are in grading 1. (We can see from the description of the absolute
grading on the mapping cone and Lemma 18 that for negative surgeries the Z=2Z–
grading of AC

i;p=q
.K/ switches from what we have defined it to be in the mapping

cone.) Now Lemma 23 implies that t2nC1 D�1 and ti D 0 for all other i � 0.

By a straightforward argument involving Z=2Z–grading considerations and dimension
count it is not difficult to establish that in fact for n> 0 we have

bHFK.Kn; 2nC 2/Š bHFK.Kn; 2n/Š F and bHFK.Kn; 2nC 1/Š F2:

7.1 Property S

Heegaard Floer homology has been very successful in restricting cosmetic surgeries on
knots in S3 (see [11; 23; 28]). In this subsection, we define a class of knots that do
not admit purely cosmetic surgeries.

Definition 35 Let r1; r2 2 Q and let K � S3 be a knot. The surgeries on K with
slopes r1 and r2 are called cosmetic if S3

r1
.K/ is homeomorphic to S3

r2
.K/. They are

called purely cosmetic if S3
r1
.K/Š S3

r2
.K/, by which we mean that there exists an

orientation-preserving homeomorphism between them.

We now begin defining the property that will imply the nonexistence of purely cosmetic
surgeries.

Definition 36 We say that a rational homology sphere Y has property S if HFred.Y /

is all concentrated in the same absolute Z=2Z–grading.

Definition 37 We say that a knot K � S3 has property S if S3
p=q

.K/ has property S
for some p=q ¤ 0.

Proposition 38 A knot K has property S if and only if S3
p=q

.K/ has property S for
any p=q � 2g.K/� 1.

Proof Suppose S3
p=q

.K/ has property S. By taking the mirror of the knot, we may
assume p=q > 0.

Then by looking at Corollary 14 and Proposition 15 we see that for all k all ele-
ments of Ared

k
.K/ are in the same Z=2Z–grading. This is enough for all elements of

HFC.S3
p=q

.K// for p=q � 2g.K/� 1 to be concentrated in the same Z=2Z–grading.

Corollary 39 A nontrivial knot with property S admits no purely cosmetic surgeries.

Proof The proof is completely analogous to the proof of [11, Corollary 3.12]. In fact,
Ni and Wu show that if Y can be obtained by a purely cosmetic surgery, then the Euler
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characteristic of HFred.S
3
p=q

.K// has to be 0. They also show that V0 and xV0 have
to be zero for a knot that admits cosmetic surgeries. This implies that Vi DHi D 0

for i � 0, so we do not have any �.Vi/ groups in the reduced Floer homology. A knot
with property S has all the AC

k
.K/ groups concentrated in the same Z=2Z–grading,

and in the case at hand these are the groups that constitute the reduced Floer homology.
Therefore, in this case, the Euler characteristic of HFred.S

3
p=q

.K// is equal to (plus or
minus) its rank, so it is an L–space. However, if an L–space knot has V0 D 0, then it
is trivial.

Ni and Wu [11, Corollary 3.12] show that Seifert fibred spaces cannot be obtained by
purely cosmetic surgeries. We can extend this result as follows.

Corollary 40 There are no purely cosmetic surgeries on knots with nonzero Seifert
fibred surgeries.

Proof By [15] Seifert fibred rational homology spheres have property S.

We remark that there are knots which do not have this property, for example 944 . Indeed,
C1 and �1–surgeries on this knot have the same HFC , but are not homeomorphic [23,
Section 9].

References
[1] R H Crowell, Nonalternating links, Illinois J. Math. 3 (1959) 101–120 MR

[2] J E Greene, L-space surgeries, genus bounds, and the cabling conjecture, J. Differential
Geom. 100 (2015) 491–506 MR

[3] S Jabuka, Heegaard Floer genus bounds for Dehn surgeries on knots, J. Topol. 7 (2014)
523–542 MR

[4] S Jabuka, Heegaard Floer groups of Dehn surgeries, J. Lond. Math. Soc. 92 (2015)
499–519 MR

[5] Ç Karakurt, HFNem2 (2013) Magma code Available at https://tinyurl.com/
HFNem2

[6] M Lackenby, Dehn surgery on knots in 3–manifolds, J. Amer. Math. Soc. 10 (1997)
835–864 MR

[7] M Lackenby, J S Purcell, Cusp volumes of alternating knots, Geom. Topol. 20 (2016)
2053–2078 MR

[8] D McCoy, Non-integer surgery and branched double covers of alternating knots, J.
Lond. Math. Soc. 92 (2015) 311–337 MR

Algebraic & Geometric Topology, Volume 17 (2017)

http://projecteuclid.org/euclid.ijm/1255455002
http://msp.org/idx/mr/0099667
http://dx.doi.org/10.4310/jdg/1432842362
http://msp.org/idx/mr/3352796
http://dx.doi.org/10.1112/jtopol/jtt039
http://msp.org/idx/mr/3217629
http://dx.doi.org/10.1112/jlms/jdv038
http://msp.org/idx/mr/3431647
https://tinyurl.com/HFNem2
https://tinyurl.com/HFNem2
http://dx.doi.org/10.1090/S0894-0347-97-00241-5
http://msp.org/idx/mr/1443548
http://dx.doi.org/10.2140/gt.2016.20.2053
http://msp.org/idx/mr/3548463
http://dx.doi.org/10.1112/jlms/jdv030
http://msp.org/idx/mr/3404026


1950 Fyodor Gainullin

[9] A H Moore, L Starkston, Genus-two mutant knots with the same dimension in knot
Floer and Khovanov homologies, Algebr. Geom. Topol. 15 (2015) 43–63 MR

[10] K Murasugi, On the Alexander polynomial of the alternating knot, Osaka Math. J. 10
(1958) 181–189 MR

[11] Y Ni, Z Wu, Cosmetic surgeries on knots in S3 , J. Reine Angew. Math. 706 (2015)
1–17 MR

[12] Y Ni, X Zhang, Characterizing slopes for torus knots, Algebr. Geom. Topol. 14 (2014)
1249–1274 MR

[13] J K Osoinach, Jr, Manifolds obtained by surgery on an infinite number of knots in S3 ,
Topology 45 (2006) 725–733 MR

[14] P Ozsváth, Z Szabó, Absolutely graded Floer homologies and intersection forms for
four-manifolds with boundary, Adv. Math. 173 (2003) 179–261 MR

[15] P Ozsváth, Z Szabó, On the Floer homology of plumbed three-manifolds, Geom. Topol.
7 (2003) 185–224 MR

[16] P Ozsváth, Z Szabó, Holomorphic disks and genus bounds, Geom. Topol. 8 (2004)
311–334 MR

[17] P Ozsváth, Z Szabó, Holomorphic disks and knot invariants, Adv. Math. 186 (2004)
58–116 MR

[18] P Ozsváth, Z Szabó, Holomorphic disks and topological invariants for closed three-
manifolds, Ann. of Math. 159 (2004) 1027–1158 MR

[19] P Ozsváth, Z Szabó, Holomorphic disks and three-manifold invariants: properties and
applications, Ann. of Math. 159 (2004) 1159–1245 MR

[20] P Ozsváth, Z Szabó, On Heegaard Floer homology and Seifert fibered surgeries, from
“Proceedings of the Casson Fest” (C Gordon, Y Rieck, editors), Geom. Topol. Monogr. 7,
Geom. Topol. Publ., Coventry (2004) 181–203 MR

[21] P Ozsváth, Z Szabó, On knot Floer homology and lens space surgeries, Topology 44
(2005) 1281–1300 MR

[22] P S Ozsváth, Z Szabó, Knot Floer homology and integer surgeries, Algebr. Geom.
Topol. 8 (2008) 101–153 MR

[23] P S Ozsváth, Z Szabó, Knot Floer homology and rational surgeries, Algebr. Geom.
Topol. 11 (2011) 1–68 MR

[24] J A Rasmussen, Floer homology and knot complements, PhD thesis, Harvard (2003)
MR Available at http://search.proquest.com/docview/305332635

[25] J Rasmussen, Lens space surgeries and a conjecture of Goda and Teragaito, Geom.
Topol. 8 (2004) 1013–1031 MR

[26] D Rolfsen, Knots and links, corrected reprint, Math. Lect. Ser. 7, Publish or Perish,
Houston (1990) MR

Algebraic & Geometric Topology, Volume 17 (2017)

http://dx.doi.org/10.2140/agt.2015.15.43
http://dx.doi.org/10.2140/agt.2015.15.43
http://msp.org/idx/mr/3325731
http://projecteuclid.org/euclid.ojm/1200689546
http://msp.org/idx/mr/0099666
http://dx.doi.org/10.1515/crelle-2013-0067
http://msp.org/idx/mr/3393360
http://dx.doi.org/10.2140/agt.2014.14.1249
http://msp.org/idx/mr/3190593
http://dx.doi.org/10.1016/j.top.2006.02.001
http://msp.org/idx/mr/2236375
http://dx.doi.org/10.1016/S0001-8708(02)00030-0
http://dx.doi.org/10.1016/S0001-8708(02)00030-0
http://msp.org/idx/mr/1957829
http://dx.doi.org/10.2140/gt.2003.7.185
http://msp.org/idx/mr/1988284
http://dx.doi.org/10.2140/gt.2004.8.311
http://msp.org/idx/mr/2023281
http://dx.doi.org/10.1016/j.aim.2003.05.001
http://msp.org/idx/mr/2065507
http://dx.doi.org/10.4007/annals.2004.159.1027
http://dx.doi.org/10.4007/annals.2004.159.1027
http://msp.org/idx/mr/2113019
http://dx.doi.org/10.4007/annals.2004.159.1159
http://dx.doi.org/10.4007/annals.2004.159.1159
http://msp.org/idx/mr/2113020
http://dx.doi.org/10.2140/gtm.2004.7.181
http://msp.org/idx/mr/2172483
http://dx.doi.org/10.1016/j.top.2005.05.001
http://msp.org/idx/mr/2168576
http://dx.doi.org/10.2140/agt.2008.8.101
http://msp.org/idx/mr/2377279
http://dx.doi.org/10.2140/agt.2011.11.1
http://msp.org/idx/mr/2764036
http://msp.org/idx/mr/2704683
http://search.proquest.com/docview/305332635
http://dx.doi.org/10.2140/gt.2004.8.1013
http://msp.org/idx/mr/2087076
http://msp.org/idx/mr/1277811


The mapping cone formula in Heegaard Floer homology and surgery on knots in S3 1951

[27] M Teragaito, A Seifert fibered manifold with infinitely many knot-surgery descriptions,
Int. Math. Res. Not. 2007 (2007) art. id rnm 028, 16 pages MR

[28] J Wang, Cosmetic surgeries on genus one knots, Algebr. Geom. Topol. 6 (2006) 1491–
1517 MR

[29] Z Wu, On mapping cones of Seifert fibered surgeries, J. Topol. 5 (2012) 366–376 MR

Department of Mathematics, Imperial College London
South Kensington Campus, London, SW7 2AZ, United Kingdom

fyodor.gainullin@gmail.com

Received: 7 July 2015 Revised: 26 November 2016

Geometry & Topology Publications, an imprint of mathematical sciences publishers msp

http://dx.doi.org/10.1093/imrn/rnm028
http://msp.org/idx/mr/2347296
http://dx.doi.org/10.2140/agt.2006.6.1491
http://msp.org/idx/mr/2253457
http://dx.doi.org/10.1112/jtopol/jts008
http://msp.org/idx/mr/2928081
mailto:fyodor.gainullin@gmail.com
http://msp.org
http://msp.org




msp
Algebraic & Geometric Topology 17 (2017) 1953–2011

The C2–spectrum Tmf1.3/ and its invertible modules

MICHAEL A HILL

LENNART MEIER

We explore the C2 –equivariant spectra Tmf1.3/ and TMF1.3/ . In particular, we
compute their C2 –equivariant Picard groups and the C2 –equivariant Anderson dual
of Tmf1.3/ . This implies corresponding results for the fixed-point spectra TMF0.3/

and Tmf0.3/ . Furthermore, we prove a real Landweber exact functor theorem.

55N34, 55P42

1 Introduction

The spectrum TMF of topological modular forms comes in many variants. While TMF
itself arises from the moduli stack of elliptic curves Mell , there is also a spectrum Tmf
associated with the compactification Mell . Finally, tmf is defined as the connective
cover of Tmf. It has been the spectrum tmf and its cohomology that have been so far
most relevant to applications (see eg Behrens, Hill, Hopkins and Mahowald [9] and
Behrens and Pemmaraju [12] for applications to generalized Toda–Smith complexes
and Ando, Hopkins and Rezk [2], Mahowald and Hopkins [45] and Hill [26] for
applications to string bordism).

It is often simpler to work with topological modular forms with level structures. Among
the many possibilities, the most relevant for us will be TMF1.n/ and TMF0.n/ corre-
sponding to the moduli stacks M1.n/ and M0.n/. The former stack classifies elliptic
curves with a chosen point of exact order n and the latter elliptic curves with a chosen
subgroup of order n. Note that for n� 2, the spectrum TMF1.n/ is Landweber exact,
while TMF0.n/ is not in general, as will be explained in Section 4.1.

Besides providing simpler variants of TMF, there are several reasons to care about
TMF with level structures. First, we mention the Q.l/–spectra defined by Behrens
(see Behrens [7] and Behrens and Ormsby [10]), which are built from TMF with level
structures and provide approximations of the K.2/–local sphere. Second, as shown in
Behrens, Ormsby, Stapleton and Stojanoska [11], there is an injective map

�� TMF^TMF!
Y

i2Z;j�0

�� TMF0.3
j /��� TMF0.5

j /;
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important in the study of cooperations of TMF and tmf. As a last point, we mention
that Lurie defines in [40] a sheaf of E1–ring spectra on the n–torsion of the universal
elliptic curve over Mell whose global sections provide the value of Cn –equivariant
TMF at a point; if we invert n, this can be analyzed in terms of the TMF1.k/ for k j n.

In each of these cases, it would be interesting to have compactified and connective
variants. As a first step, Hill and Lawson overcame in [29] certain technical obstacles
to define E1–ring spectra Tmf1.n/ and Tmf0.n/ corresponding to the compactified
moduli stacks M1.n/ and M0.n/. One can then define tmf1.n/ and tmf0.n/ as the
connective covers of these spectra and they form good connective models for TMF1.n/

and TMF0.n/ if n is small. The aim of this article is to explore these spectra in the
case nD 3 with methods from real homotopy theory.

Real homotopy theory is the study of genuine equivariant C2 –spectra, also sometimes
known as real spectra. The theory has its origins in Atiyah’s article [4] on real K-theory
and came to new prominence through the work of Hu and Kriz [32] and the work of
Hill, Hopkins and Ravenel [28] on the Kervaire invariant one problem.

The spectra TMF1.3/ and Tmf1.3/ inherit C2 –actions from an algebrogeometrically
defined C2 –action on M1.3/. We will view them as cofree C2 –spectra (as explained
in Sections 2.2 and 4.1) so that

TMF1.3/
C2 ' TMF1.3/

hC2 ' TMF0.3/

and
Tmf1.3/

C2 ' Tmf1.3/
hC2 ' Tmf0.3/:

We define the C2 –spectrum tmf1.3/ as the C2 –equivariant connective cover of Tmf1.3/.

Mahowald and Rezk [46] have already computed the homotopy groups of TMF0.3/ and
a similar computation actually produces the RO.C2/–graded C2 –equivariant homotopy
groups of tmf1.3/ and hence TMF1.3/. Using this computation, we show that tmf1.3/

has a real orientation and is more precisely a form of BPRh2i. This implies in particular
that there exists a form of BPRh2i that is a strictly commutative C2 –spectrum, while
it was not known before that there is a form of BPRh2i with any kind of ring structure.

Moreover, we show that TMF1.3/ is real Landweber exact in the sense that there is an
isomorphism

MRF.X /˝MU2�
TMF1.3/2�! TMF1.3/FX;

natural in a C2 –spectrum X . Here MRF.X / denotes the RO.C2/–graded C2 –
equivariant homology groups of X with respect to the real bordism spectrum MR and
similarly for TMF1.3/FX .
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As M1.3/ is proper over Spec Z
�

1
3

�
, one expects a manifestation of Serre duality in

Tmf1.3/. A suitable duality to look for in the topological setting is Anderson duality, an
integral version of Brown–Comenetz duality. For example, Stojanoska computed in [60]
that Tmf

�
1
2

�
is Anderson self-dual in the sense that IZŒ 1

2
� Tmf

�
1
2

�
'†21 Tmf

�
1
2

�
. We

want to compute the C2 –equivariant Anderson dual IZŒ 1
3
� Tmf1.3/ of Tmf1.3/. While

it is an easy calculation that nonequivariantly IZŒ 1
3
� Tmf1.3/ ' †9 Tmf1.3/, this

equivalence does not hold C2 –equivariantly. Rather, we get the following:

Theorem There is a C2 –equivariant equivalence

IZŒ 1
3
� Tmf1.3/'†

5C2� Tmf1.3/;

where � denotes the regular representation of C2 . It follows that

IZŒ 1
3
� Tmf0.3/' .†

5C2� Tmf1.3//
hC2 :

Thus, the self-duality of Tmf0.3/ is not fully apparent in the integer-graded homotopy
groups

�� Tmf0.3/Š �
C2
� Tmf1.3/;

but only in the RO.C2/–graded homotopy groups �C2
F Tmf1.3/. Likewise, the resulting

universal coefficient sequence uses RO.C2/–graded homotopy groups. Indeed, for
C2 –spectra X the theorem implies a short exact sequence

0!Ext1
�
R

C2

.a�6/C.b�2/�
.X /;Z

�
1
3

��
!R

aCb�
C2

.X /!Hom
�
R

C2

.a�5/C.b�2/�
.X /;Z

�
1
3

��
!0

with RD Tmf1.3/ and Hom and Ext computed over Z
�

1
3

�
. We prove the theorem by

an application of the slice spectral sequence. There has been similar work by Ricka [56]
on Anderson duality of integral versions of Morava K-theory; our results have been
obtained independently.

Next we turn to the topic of Picard groups. Given an E1–ring spectrum R, its Picard
group Pic.R/ is defined as the group of invertible R–module spectra up to weak
equivalence. From the perspective of Bunke and Nikolaus [14], these are the global
twists of the associated cohomology theory and define a natural grading of R–homology
groups. The Picard group was first introduced into stable homotopy theory by Hopkins;
recent work of Mathew and Stojanoska [51] then significantly extended our toolbox for
its computation. They show that all invertible TMF–modules are suspensions of TMF
so that Pic.TMF/ Š Z=576. In contrast, they show that Pic.Tmf/ contains exotic
elements that are not suspensions of Tmf and compute Pic.Tmf/Š Z˚Z=24.
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We will use their methods to understand Pic.TMF0.3// and Pic.Tmf0.3//, but add a
dash of equivariant homotopy theory. The maps

Tmf0.3/! Tmf1.3/ and TMF0.3/! TMF1.3/

are faithful C2 –Galois extensions in the sense of Rognes; see Mathew and Meier [50,
Theorem 7.12]. As explained in Section 6.1, Galois descent then shows that

Pic.Tmf0.3//Š PicC2
.Tmf1.3// and Pic.TMF0.3//Š PicC2

.TMF1.3//;

where PicC2
.Tmf1.3// denotes the group of invertible C2–module spectra over Tmf1.3/

and similarly for PicC2
.TMF1.3//. First we prove:

Theorem Every invertible TMF0.3/–module is an (integral) suspension of TMF0.3/.
Thus,

PicC2
.TMF1.3//Š Pic.TMF0.3//Š Z=48:

The analogous theorem for Tmf0.3/ is not true, but we have the following equivariant
refinement:

Theorem Every invertible C2 –equivariant Tmf1.3/–module is an equivariant suspen-
sion †V Tmf1.3/, for an element V 2 RO.C2/. The corresponding homomorphism

RO.C2/! PicC2
.Tmf1.3//; V 7!†V Tmf1.3/

is thus surjective and has kernel generated by 8� 8� , for � the sign representation.
Therefore,

Pic.Tmf0.3//Š PicC2
.Tmf1.3//Š Z˚Z=8:

We remark that invertible modules over TMF with level structure occur in the study of
equivariant TMF, for example those defined by representation spheres. We hope that
our results on Picard groups may have relevance there.

We give a short overview of the structure of this article. Section 2 discusses preliminaries
from equivariant homotopy theory. In particular, it is about the passage from spectra with
G–action to genuine G–spectra and to their connective covers and how a commutative
multiplication under this passage is preserved; furthermore, we discuss the RO.G/–
graded homotopy fixed point spectral sequence and the slice spectral sequence. Section 3
is about real orientability and the real Landweber exact functor theorem; it concludes
with the definition and basic properties of forms of BPRhni and ER.n/. Section 4
introduces the main characters Tmf0.3/ and Tmf1.3/ and their variants, discusses their
relationship and computes the RO.C2/–graded homotopy groups of tmf1.3/; here we
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also present our applications to forms of BPRh2i and ER.2/. Section 5 computes the
slices of Tmf1.3/ and applies this to compute its equivariant Anderson dual. Section 6
is about computations of Picard groups, especially those of TMF0.3/ and Tmf0.3/.
As a step, we prove a generalization of a result of Baker and Richter [5] to give a
conceptual computation of Pic.TMF1.3//. Note that Sections 5 and 6 are independent
and also independent of Section 3.

Conventions For a scheme X with an action by a group scheme G , we denote
by X=G the stack quotient. Furthermore, for a (pre)sheaf F of spectra, ��F will
always denote the sheafified homotopy groups, ie the sheafification of U 7! ��.F.U //.
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2 G –spectra and equivariant homotopy

After giving some basics on (genuine) G–spectra, we will treat in detail how to go
from a spectrum with a G–action to a genuine G–spectrum, why this move preserves
commutative multiplications and why the same is true for the passage to connective
covers. After this, we will discuss the RO.G/–graded homotopy fixed point spectral
sequence and the slice filtration.

2.1 Conventions on equivariant spectra

We work in the category of genuine G–spectra for a finite group G , and our particular
model will be orthogonal G–spectra. These were introduced by Mandell and May [47],
though we draw heavily from [28] and also recommend [58] for a slightly different
point of view on the same subject matter. In particular, a G–spectrum will always
mean an orthogonal G–spectrum indexed on a complete G–universe, and morphisms
are equivariant maps.

For each H �G and for each G–spectrum X , we have stable homotopy groups

�H
n .X /D colimV ŒS

VCRn

;X.V /�H ;

where the colimit is taken over the finite dimensional representations of G (or more
simply, over the cofinal subsystem of sums of the regular representation), and for any
representation V , the space SV is the 1–point compactification. Recall finally that a
map is a weak equivalence if it induces an isomorphism on these equivariant stable
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homotopy groups for all H � G . These are the weak equivalences in the standard
model structures on SpG which give the genuine equivariant stable homotopy category;
this extends the ordinary equivariant Spanier–Whitehead category described by Adams.

Since we are considering the genuine model structure, the homotopy objects are
naturally Mackey-functor valued: for any two G–spectra X and Y , the assignment

T 7! ŒTC ^X;Y �G

extends to an additive functor from the Burnside category of finite G–sets to abelian
groups. In general, we will denote the obvious Mackey functor extension of classical
objects like homotopy groups with an underline. In particular, we can rephrase the
above condition on weak equivalences as simply that a map f W X ! Y is a weak
equivalence if it induces an isomorphism of homotopy Mackey functors ��X ! ��Y .

2.1.1 RO.G /–grading and distinguished representations Since we are working
genuine equivariantly, the representation spheres SV are elements of the Picard group
of the homotopy category Ho.SpG/. In particular, all of our Z–graded homotopy
groups extend to RO.G/–graded homotopy groups, and similarly for Mackey functors,
via the assignment

T 7! ŒTC ^SV
^X;Y �G :

We will use this combined structure extensively, and when X D S0 , we will simply
denote these groups by �V .Y /. Note that to be precise, we have to choose (once
and for all) for every element of RO.G/ an actual invertible G–spectrum and not just
a class in the Picard group and by abuse of notation we will denote it also by SV

for V 2 RO.G/. Every such choice results in �F being a lax symmetric monoidal
functor by [38, Appendix A].

We single out several representations.

Notation 2.1 (1) Let � denote the regular representation of G .

(2) Let N� denote the quotient of � by the trivial summand.

(3) Let � denote the nontrivial 1–dimensional real representation of C2 .

There are several distinguished homotopy classes of maps between representation
spheres we shall need. If V is a representation of G with no fixed points, then let

aV W S
0
! SV

denote the inclusion of the fixed points into the V sphere. This map is not null, and no
iterate of it is null. However, its restriction to any subgroup H such that V H ¤ f0g is
null-homotopic. This shows the following standard fact in equivariant stable homotopy
theory.
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Lemma 2.2 Given a G–spectrum X , the geometric fixed points of X can be computed
as the G–fixed points of

X Œa�1
N� �D hocolim.X a N�

�!† N�X
a N�
�!� � � /:

Proof The homotopy colimit

S1N� D hocolim.S0 a N�
�!S N�

a N�
�!� � � /

is a model for the space zEP , where P is the family of proper subgroups of G . The
geometric fixed points are computed by smashing X with zEP and taking fixed points,
from which the result follows.

2.1.2 G –equivariant homology theories

Definition 2.3 Let G be a finite group. An (ungraded) G–equivariant homology
theory is an exact functor h0W Ho.SpG/! Ab to the category of abelian groups (or
any other abelian category) that sends (possibly infinite) coproducts to direct sums.

To such an ungraded homology theory we can associate an RO.G/–graded version
as follows: For a given element V 2 RO.G/, we consider the chosen invertible
G–spectrum SV and define hV .X / as h0.S

�V ^X /. The resulting functor is also
called an RO.G/–graded homology theory. We will write hV for hV .S

0/.

For a G–spectrum E , we can define a G–equivariant homology theory by

X 7!E0.X /D �
G
0 .E ^X /;

and we clearly get a natural isomorphism EF.X /Š�
G
F .E ^X / of the RO.G/–graded

theories as well.

2.2 Passage from naive to genuine

The spectra which arise from algebraic geometry machines are almost never given to
us as orthogonal G–spectra for some group G . Instead, they will be commutative ring
spectra together with an action of G . There is a natural, homotopically meaningful way
to prolong this to a genuine G–spectrum in a way which respects the multiplicative
structure: passage to the cofree spectrum. It is easiest to explain this in two steps:
extending a naive G–spectrum to a genuine one and then controlling the multiplicative
structure.

2.2.1 Additive structure Denote by SpG
u the category of orthogonal spectra with

G–action. We consider an equivariant map X ! Y to be an equivalence if it is a stable
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equivalence of the underlying nonequivariant orthogonal spectra. Since the inclusion
of trivial representations of G into a complete universe induces an equivalence

I W SpG
u ! SpG

of categories [47, Theorem V.1.5], we may consider any spectrum with a G–action
as an orthogonal G–spectrum indexed on a complete universe. The functor I is not
homotopical, however.

In contrast, the functor

SpG
u ! SpG ; X 7! IF.EGC;X /

preserves weak equivalences and defines therefore a derived functor for I W SpG
u !SpG .

Here F.�;�/ is understood to be the derived function spectrum so that it includes a
fibrant replacement of X . We call G–spectra cofree if they are up to weak equivalence
in the image of IF.EGC;�/.

In particular, using the cofree functor IF.EGC;�/, we may view any spectrum with a
G–action as a genuine G–spectrum. We will use this to view TMF1.3/ and Tmf1.3/

as C2 –spectra.

2.2.2 Multiplicative concerns The homotopical behavior of the cofree functor on
commutative ring spectra is most easily understood via an operadic approach using
instead E1–ring spectra. Let O be an E1 operad (for example, the linear isometries
operad). As the model category of orthogonal spectra fulfills the monoid axiom by [48,
Theorem 12.1], [59, Theorem 4] implies that the category of O–algebras in orthogonal
spectra with G–action has a projective model structure. Thus, if R is an O–algebra
with G–action, there exists an O–algebra with G–action that is fibrant as a spectrum
and weakly equivalent to R.

The equivalence of categories I above is strong symmetric monoidal, so in particular,
it takes O–algebras to O–algebras in orthogonal G–spectra indexed on a complete
universe. Here, the group G acts trivially on the operad, so this is the prototypical
example of a naive N1 operad in the sense of [13]. Applying IF.EGC;�/ takes R

to IF.EGC;R/, which is an algebra over F.EGC;O/ if R is fibrant. However, this
operad is a G-E1 operad [13, Theorem 6.25]. In particular, since the category of
algebras over a G-E1 operad is Dwyer–Kan equivalent to the category of equivariant
commutative ring spectra by [13, Theorem A.6], we conclude the following.

Theorem 2.4 If R is a commutative ring spectrum with a G–action via commutative
ring maps, then IF.EGC;R/ is an equivariant commutative ring spectrum. More pre-
cisely, one can functorially associate to R an equivariant commutative ring spectrum R0

such that R0 and IF.EGC;R/ are equivalent as E1–algebras.
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In particular, this will immediately imply that TMF1.3/ and Tmf1.3/ can actually be
viewed as C2 –equivariant commutative ring spectra. Deducing a similar result for
the equivariant connective cover of Tmf1.3/ will require a simple result undoubtedly
known to the experts. The proof is also standard; we include it for completeness. Before
proceeding, recall the following result about the connectivity of symmetric powers.

Lemma 2.5 If X is a .k�1/–connected equivariant spectrum with k � 0, then for
all n� 1,

Symn.X /DX^n=†n

is also .k�1/–connected.

Proof This follows from the weak equivalence

EG†nC ^†n
X^n

! Symn.X /:

As in [28, (B.171) and (B.177)], we can reduce the statement of the lemma by this
equivalence to the following statement: the G–spectrum

V
G=H S l is .k�1/–connected

for all H �G and all l � k . This is clear, as
V

G=H S l Š S indG
H

l and indG
H contains

an l –dimensional trivial summand.

Remark 2.6 If X is .k�1/–connected for k > 1, then we do not always get a bump
in the connectivity of the symmetric powers as happens classically. For n sufficiently
large, the nth symmetric power is more highly connected than X , but for low values
of n, they are often equally connected. The reason for this is the norm: if ŒG WH �Dm,
then there is a canonical homotopy class of maps

N G
H i�H X ! Symm.X /

coming from any inclusion of G � †m=� into EG†m , where � is the graph of
the homomorphism G! †m defining G=H as a G–set; see [28; 13]. In particular,
if �G

H
is the representation IndG

H R and if N�G
H

is the quotient of �G
H

by the trivial
summand, then for any class x 2 �G

k
.X /, we have an element

ak

N�G
H

N G
H i�H .x/ 2 �

G
k .Symm.X //:

Checking on the case of spheres shows that these maps are generically nontrivial. This
is the only complicating factor in the proof of the following theorem, since it means that
the k th homotopy Mackey functor of the free commutative ring spectrum on something
.k�1/–connected is strictly larger than

�kS0
˚�k.X /:
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Theorem 2.7 If R is a G–equivariant commutative ring spectrum, then there is a
commutative ring spectrum structure on the .�1/–connected cover r of R such that
the canonical map r !R is a map of commutative ring spectra.

Proof We will inductively build a series of .�1/–connected commutative ring spectra
rk over R for �1�k such that the induced map on homotopy groups �j .r

k/!�k.R/

is an isomorphism for 0� j � k (this condition is vacuous when k D�1). Let r�1

denote the zero sphere, which maps to R via the unit.

Assume that we have built rk�1!R as above. We can assume that rk�1 is cofibrant
in the positive model structure on equivariant commutative rings as in [28, Proposition
B.130]. To build rk , we first choose a surjective mapM

i2Ik

AG=Hi
! �k.R/;

where AG=Hi
is the Mackey functor �k.G=HiC ^Sk/. Any such surjective map can

be realized topologically as a mapW
i2Ik

G=HiC ^Sk jk
�!R;

and this induces a map of commutative ring spectra

ek D P
�W

i2Ik
G=HiC ^Sk

�
!R;

where P denotes the free commutative ring spectrum functor. Smashing this with the
map rk�1!R gives a map

ek ^ rk�1 Jk
�!R:

This is the correct derived smash product by [28, Proposition 2.30]. The map S0! ek

induces an isomorphism in homotopy groups through dimension .k�1/ by Lemma 2.5,
and the Künneth spectral sequence of Lewis and Mandell [38] implies that the map Jk

induces an isomorphism in homotopy in dimensions between 0 and .k � 1/ and a
surjection in dimension k .

At this point, the argument is classical. Let Fk denote the fiber of ek ^ rk�1! R,
and let fk denote the .�1/–connected cover of Fk . Since the map ek ^ rk�1!R

was a map of commutative ring spectra, the composite

Symn.fk/! Symn.Fk/! ek ^ rk�1
!R
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is null for all n> 0. In particular, if we let rk denote the pushout in commutative ring
spectra

P .fk/ //

��

ek ^ rk�1

��

S0 // rk

then we have an extension of Jk over rk . Note that rk is actually equivalent to
the derived smash product S0 ^P.fk/.ek ^ rk�1/ because S0 is a cofibrant P .fk/–
module with respect to a monoidal model structure [28, Proposition B.137].

We have a cofiber sequence P .fk/!P .fk/!S0 . Because rk is a retract of ek ^ rk�1,
this induces short exact sequences

0! � i.P .fk/^P.fk/.ek ^ rk�1//! � i.ek ^ rk�1/! � i.r
k/! 0

for every i 2 Z. Since P .fk/Š
W

n�1Symn.fk/, Lemma 2.5 implies that P .fk/ is
.k�1/–connected. By the Künneth spectral sequence, P .fk/^P.fk/.ek ^ rk�1/ is
thus also .k�1/–connected. Therefore, � i.ek ^ rk�1/! � ir

k is an isomorphism
for i � k � 1 and hence so is � ir

k ! � iR.

For the analysis of �k , consider the diagram:

�k.P .fk//

��

// �k.fk/

��

�k.P .fk/^P.fk/.ek ^ rk�1//
��
// �k.ek ^ rk�1/

.Jk/�
// �k.R/

We know that �k.fk/ surjects onto the kernel of .Jk/� . As fk is a summand of P .fk/,
�� also must surject onto the kernel of .Jk/� . Thus, �krk Š coker.��/ maps injectively
into �kR and also surjectively because already .Jk/� is surjective. Now define r as
the colimit of the rk . Clearly, r is connective and the maps rk !R extend to a map
r !R that induces an isomorphism in �i for i � 0.

2.3 The RO.G /–graded homotopy fixed point spectral sequence

If V is a virtual representation of G , then by tracing through the adjunctions, we see
that

�G
V F.EGC;X /Š ŒS

V
^EGC;X �

G
Š �G

0 F.EGC;S
�V
^X /:

For a G–spectrum E denote by HF.E/ the homotopy fixed point spectral sequence
for E (as constructed eg in [18, Section 6]). Let V1; : : : ;Vn be representatives of the
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isomorphism classes of nontrivial irreducible real representations of G . We define the
RO.G/–graded homotopy fixed point spectral sequence for E as

HFRO.G/.E/D
M
ai2Z

HF.a1V1C � � �C anVn;E/;

where

HF.a1V1C � � �C anVn;E/D HF.S�a1V1 ^ � � � ^S�anVn ^E/:

We can use the twisting isomorphisms of the symmetric monoidal structure on G–
spectra to define isomorphisms

S�a1V1^ � � � ^S�anVn^S�b1V1^ � � � ^S�bnVn Š S�.a1Cb1/V1^ � � � ^S�.anCbn/Vn :

As in [18], a multiplication E ^E!E then defines multiplicative pairings

HF.a1V1C � � �C anVn;E/˝HF.b1V1C � � �C bnVn;E/

! HF..a1C b1/V1C � � �C .anC bn/Vn;E/:

As explained in [38, Appendix A], we can choose the isomorphisms above so that this
actually defines an associative and commutative multiplication on HFRO.G/.E/. We
summarize in the following proposition.

Proposition 2.8 If E is a G–spectrum with a multiplication up to homotopy, then
there is a multiplicative RO.G/–graded spectral sequence

E
s;V
2
DH s.GI�0.S

�V
^E// H) �G

V�sF.EGC;E/:

In particular, the Leibniz rule states that for elements x 2 E
s;V
r and y 2 E

t;W
r with

V D a0C a1V1C � � �C anVn , we have dr .xy/D dr .x/yC .�1/a0xdr .y/.

Note that while the RO.G/–graded homotopy fixed point spectral sequence decomposes
additively in infinitely many summands, we package them into one spectral sequence
for the sake of a more efficient multiplicative presentation. In our later computations,
our generating permanent cycles will sit in nonintegral degrees.

2.4 The C2–equivariant slice filtration

The C2 –equivariant slice filtration was introduced by Dugger in his study of Atiyah’s
real K–theory. This was generalized by Hopkins, Ravenel and Hill [28] to arbitrary
finite groups in the solution to the Kervaire invariant one problem. We will recall some
of the basic properties here. A more detailed treatment can be found in [28] or [27].
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Proposition 2.9 [28, Proposition 4.20 and Lemma 4.23] For any C2 –equivariant
spectrum E , the odd slices are determined by the formula

P2n�1
2n�1 .E/D†

n��1H�n��1E:

Corollary 2.10 If R is a C2 –spectrum such that �n��1R D 0, then all odd slices
of R vanish.

For the even slices, there is a similar formula involving homotopy Mackey functors of E .

Definition 2.11 If M is a C2 Mackey functor, let P0M denote the maximal quotient
of M in which the restriction map M .C2=C2/!M .C2=e/ is injective.

There are several equivalent formulations, one of which is to notice that we can
build a Mackey functor out of the kernel of the restriction by declaring that the value
at C2=C2 is the kernel of the restriction map and that the value at C2=feg is trivial.
The functor P0M is then the quotient of M by this sub-Mackey functor.

The second reformulation requires an endofunctor on Mackey functors.

Definition 2.12 If T is a finite C2 –set and M is a Mackey functor, then let M T be
the Mackey functor defined by

S 7!M .T �S/:

The restriction map defines a map of Mackey functors

M !M C2
;

and P0M is simply the image of this map.

Proposition 2.13 [27, Corollary 2.16] For any C2 –equivariant spectrum E , the even
slices are determined by the formula

P2n
2n .E/D†

n�HP0�n�.E/:

In particular, if �n�.E/ is constant, we have

P2n
2n .E/D†

n�H�2n.E/:

Knowledge of the slices is important because of the slice spectral sequence

E
s;t
2
D � t�sP t

t X H) � t�sX;

which we will always depict in Adams notation, where E
s;t
2

is in the spot .t � s; s/.

Algebraic & Geometric Topology, Volume 17 (2017)



1966 Michael A Hill and Lennart Meier

We need several Mackey functors. We will define them via a Lewis diagram, stacking
the value of the Mackey functor at C2=C2 over that of C2=feg and then drawing in
the restriction map, the transfer map, and the action of the nontrivial element of the
Weyl group.

Definition 2.14 Let G , Z� and Z� be the Mackey functors defined by the following:

M .C2=C2/W

res
��

Z=2

--

0

,,

Z

2

,,M .C2=e/W

tr

]]



VV
0

ii

YY
Z

mm

�

YY
Z

1

ll

1

YY

M W G Z� Z�

Lemma 2.15 If X is a C2 –spectrum such that

(1) �n��1X D 0 for all n, and

(2) �n�X D Z˝�2nX , where �2nX has no 2–torsion,

then we have

�k�C1X DG˝Z �2kC2X; �k�X D Z˝Z �2kX;

�k��1X D 0; �k��2X D Z�˝Z �2k�2X:

Proof To simplify notation, let Ak D �2kX , let Ak D Z˝Ak , let A�
k
D Z�˝Ak ,

and let Bk DG˝Ak . By assumption, we have P2k�1
2k�1

X ' � and

P2k
2k X ' Sk�

^H.Ak/:

Smashing the slice tower for X with S�k� gives the slice tower for †�k� ^X , and
this again has the property that the odd slices vanish and the even ones are of the above
form. It therefore suffices to prove this for k D 0. The homotopy Mackey functors
in question are all especially simple, as they are in the region where the can be no
differentials in the slice spectral sequence, as we will see.

By the connectivity of the regular representation spheres, the .2m/th slice does
not contribute to � iX for i D �2, �1, 0, 1 and m < �2 or m > 1. Similarly,
H�2.S

�2�IZ˝Ak/D 0 for any abelian group Ak (this is the essential part of the gap
theorem in [28]), so the .�4/th slice does not contribute to these homotopy Mackey
functors either. The cell structures for representation spheres then show that the slice
E2–term has the form depicted in Figure 1.
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2

0

�2

�3 �1 1

BkC2

BkC1

A�
k�1 Ak A�

kC1

Figure 1: The slice E2–term for S�k� ^X , which is Adams graded, with a
group in position .t � s; s/ recording � t�s.P

t
t S�k� ^X /

In particular, there is no room for differentials or extensions in the range considered,
and the result follows.

3 Real orientations and real Landweber exactness

In this section, we will first treat some basics about real orientations. Then we will
prove a real version of the Landweber exact functor theorem, both in classical and in
stack language. In the last subsection, we define what we mean by forms of BPRhni
and ER.n/ and apply the real Landweber exact functor theorem to the latter.

3.1 Basics

Given a C2 –spectrum ER, we denote by ERF.X / the value of the associated RO.C2/–
graded homology theory on a C2 –spectrum X and we set ERF DERF.pt/. This is
the value at C2=C2 of the associated Mackey functor valued homology.

Definition 3.1 A C2 –spectrum ER is even if �k��1ER D 0 for all k 2 Z. It is
called strongly even if additionally �k�ER is a constant Mackey functor for all k 2Z,
ie if the restriction

�C2
k�ER! �e

k�ERŠ �e
2kER

is an isomorphism.

For example, by Hu and Kriz [32, Theorem 4.11], the real bordism spectra MR and
BPR are strongly even (see also Appendix A of [22] for an alternative exposition).
These C2 –spectra were introduced by Landweber [36] and Araki [3] and modern
treatments can be found in [32, Section 2] and [58, Example 2.14].

Algebraic & Geometric Topology, Volume 17 (2017)



1968 Michael A Hill and Lennart Meier

Recall the following definition:

Definition 3.2 Let X be a C2 –spectrum. A real orientation for ER is a class

x 2ER�.CP1/D ŒCP1;S� ^ER�C2 ;

restricting to the class in ER�.CP1/Š ŒCP1;S� ^ER�C2 corresponding to

1 2 ŒS0;ER�C2 Š ŒS�;S� ^ER�C2

under the (chosen) isomorphism S� DCP1 . Here, we view CPn as a C2 –space via
complex conjugation.

By [32, Theorem 2.25], real orientations of commutative C2 –ring spectra are in one-to-
one correspondence with homotopy classes of maps MR!ER of C2 –ring spectra,
where ring spectra are understood to be up to homotopy. Another point of view uses the
notion of a real vector bundle, ie a complex vector bundle pW V !X on a C2 –space
together with an antilinear involution such that p is C2 –equivariant. If E is real
oriented, then every real vector bundle carries a canonical E–orientation.

Lemma 3.3 Every even C2 –spectrum ER is real orientable.

Proof We have cofiber sequences

S .nC1/��1
!CPn

!CPnC1:

The long exact sequence in cohomology then shows that the map

ER�.CPnC1/!ER�.CPn/

is surjective. The Milnor sequence gives the result.

It is part of our philosophy that the Mackey functor �k� behaves often much better
than the integral Mackey functor �2k . The following is a weak version of a Whitehead
theorem using �k� . We will formulate it in the language of equivariant homology
theories as this will be convenient for our use in the real Landweber exact functor
theorem.

Lemma 3.4 Let f W ER!FR be a natural transformation of C2 –equivariant homol-
ogy theories. Denote the underlying homology theories by E and F . Assume that f
induces isomorphisms

ERk�! FRk� and Ek ! Fk

for all k 2 Z. Assume furthermore that ERk��1! FRk��1 is mono for all k 2 Z
(this is the case, for example, if ERk��1 D 0). Then f is a natural isomorphism.
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Proof It is well known that it is enough to show that Ek ! Fk and ERk !ERk

are isomorphisms for all k 2 Z. As the former is true by assumption, it is in particular
enough to show that faCb� W ERaCb� ! FRaCb� is an isomorphism for all a; b 2Z.
This is true for aD b again by assumption.

Smashing the cofiber sequence

.C2/C! S0
! S�

with SaCb� gives the cofiber sequence

.C2/C ^SaCb�
! SaCb�

! SaC.bC1/� :

We have a map between the associated long exact sequences:

EaCbC1
//

Š

��

ERaC.bC1/�
//

faC.bC1/�

��

ERaCb�
//

faCb�

��

EaCb
//

Š

��

ER.a�1/C.bC1/�

f.a�1/C.bC1/�

��

FaCbC1
// FRaC.bC1/�

// FRaCb�
// FaCb

// FR.a�1/C.bC1/�

The weak five lemma implies the following statements:

(M1) If faC.bC1/� is mono, then faCb� is mono.

(M2) If f.aC1/Cb� is epi and faCb� is mono, then faC.bC1/� is mono.

(E1) If faCb� is epi, then faC.bC1/� is epi.

(E2) If f.a�1/C.bC1/� is mono and faC.bC1/� is epi, then faCb� is epi.

These imply the following four statements in turn:

(1) By hypothesis faCa� D fa� is epi for all a, and hence repeated application
of E1 shows that faCb� is epi for b � a.

(2) By hypothesis f.a�1/Ca� D fa��1 is mono for all a, and hence faCb� is mono
for b � aC 1 by repeated application of M1.

Note that the regions in which faCb� is epi and mono overlap in two diagonals,
allowing us to proceed.

(3) By repeated application of E2 we conclude that faCb� is epi for all a, b .

(4) By repeated application of M2 we conclude that faCb� is mono for all a, b .

Accordingly faCb� is both epi and mono for all a, b and the proof is complete.
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3.2 Real Landweber exactness

In this section, we want to prove a version of the Landweber exact functor theorem
using the real bordism spectrum MR.

The restriction maps MRk�!MU2k are isomorphisms by [32, Theorem 2.28]. This
defines a graded ring morphism MU2�!MRF along the morphism

2Z! RO.C2/; 2k 7! k�

of the monoids indexing the grading. In particular, MRF becomes a graded MU2�–
module in a suitable sense.

Definition 3.5 Let ER be a strongly even C2 –spectrum with underlying spectrum E .
Then ER is called real Landweber exact if for every real orientation MR!ER the
induced map

MRF.X /˝MU2�
E2�!ERF.X /

is an isomorphism for every C2 –spectrum X .

Here, the gradings can be parsed in the following way: For every k 2 Z, we have
a 2Z–graded MU2�–module MRkC��.X / in the way described above so that the
expression MRkC��.X /˝MU2�

E2� makes sense in the world of 2ZD �Z–graded
MU2�–modules. Now observe that RO.C2/ is a free abelian group generated by �
and 1; thus an RO.C2/–graded abelian group is an equivalent datum to a Z–graded
Z�–graded abelian group and this expresses what MRF.X /˝MU2�

E2� means.

Theorem 3.6 (real Landweber exact functor theorem) (a) Let E2� be a graded
Landweber exact MU2�–algebra, concentrated in even degrees. Then

X 7!MRF.X /˝MU2�
E2�

is a C2 –equivariant homology theory.

(b) Let ER be a strongly even C2 –spectrum whose underlying spectrum E is
Landweber exact. Then ER is real Landweber exact.

Let us shortly recall how Landweber exactness is treated nonequivariantly from the
stacky point of view. Good sources are, for example, [20], [30] or Lectures 11 and 15
of [41].

The stack associated to the graded Hopf algebroid .MU2�;MU2�MU / is MFG , the
moduli stack of formal groups. This implies that the category of quasicoherent sheaves
on MFG is equivalent to that of evenly graded .MU2�;MU2�MU /–comodules (see
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for example [54, Remark 34]). The graded comodule MU�C2 corresponds to a line
bundle ! on MFG . This allows us to define the graded global sections �2�.F/
of a quasicoherent sheaf F on MFG as �.F ˝ !˝�/. Likewise, the category of
quasicoherent sheaves on .Spec E2�/=Gm is equivalent to that of evenly graded
modules over E2� ; more precisely, a quasicoherent sheaf F on .Spec E2�/=Gm

corresponds to the graded module �2�.F/D �.F ˝!˝�E
/, where !E corresponds to

the graded module E2�C2 . We remind the reader here that .Spec E2�/=Gm denotes
(as always) the stack quotient.

An MU2�–algebra E2� is Landweber exact if and only if the composite

f W Spec E2�=Gm! Spec MU2�=Gm!MFG

is flat (if the Landweber exactness criterion is phrased classically using the vi , this is the
nonformal part of the proof). Given a spectrum X , define quasicoherent sheaves FX

i

for i D 0, 1 on MFG corresponding to the graded .MU2�;MU2�MU /–comodules
MU2�CiX . These are functors in X and define ungraded homology theories on spectra
with values in quasicoherent sheaves on MFG . Because f is flat and thus f � is exact,
the functors

X 7! f �FX
i

define homology theories with values in quasicoherent sheaves on .Spec E2�/=Gm .
We want to identify �2�.f

�FX
i / with MU2�Ci.X /˝MU2�

E2� . The following lemma
provides this identification and thus completes the proof of nonequivariant Landweber
exactness.

Lemma 3.7 Let F be a quasicoherent sheaf on MFG . Then

F.Spec MU2�/˝MU2�
E2� Š �2�..Spec E2�/=GmIf

�F/;

where we view F.Spec MU2�/ as an evenly graded MU2�–module. These isomor-
phisms are natural in F .

Proof We have a commutative diagram:

Spec MU2�=Gm

q

��

Spec E2�=Gm

g
66

f
//MFG

By definition, q�F corresponds to the evenly graded MU2�–module F.Spec MU2�/.
Therefore, we have that f �F Šg�q�F corresponds to the evenly graded E2�–module
F.Spec MU2�/˝MU2�

E2� , proving the lemma.
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Now we turn to the proof of Theorem 3.6. Part (a) of it can be proven analogously to
Landweber exactness in the motivic setting as in [55], though we follow their approach
only loosely. The crucial fact about MR is the following lemma, which was already
implicitly treated in [32] and can also be found in [28].

Lemma 3.8 The restriction

.MR��;MR��MR/! .MU2�;MU2�MU /

defines an isomorphism of Hopf algebroids.

Proof It is clear that restriction defines a morphism of Hopf algebroids. It is left to
show that MR��MR!MU2�MU is an isomorphism.

Let C be the class of all pointed C2 –spaces and Cst the class of all (genuine) C2 –
spectra X such that

MR��.X /!MU2�.X /

is an isomorphism and

MR���1.X /!MU2��1.X /

is a monomorphism, where homology is understood to be reduced in the unstable case.
Observe first that S0 2 C and X 2 C if and only if †1X 2 Cst . Furthermore, we have
the following closure properties:

� Both C and Cst are closed under weak equivalences and filtered homotopy
colimits.

� If X 2 Cst and Sk��1! X is a map, then its cofiber is also in Cst as follows
by the five lemma and from MR being strongly even.

� If X 2 C and V !X is a real vector bundle, then the Thom space X V is also
in C , as MR is real-oriented.

� If X 2 Cst , then †k�X 2 Cst for every k 2 Z as well.

We will demonstrate that these properties imply that MR 2 Cst .

Depending on the model of MR of choice it is either easy to see or a theorem [28,
(B.252)] that we can write MR as a directed homotopy colimit over †�n�MU.n/,
where MU.n/ is the suspension spectrum of the Thom space BU.n/

n

C with the
C2 –action by complex conjugation (which gives the universal bundle n the structure
of a real bundle). The Grassmannian BU.n/ is a directed homotopy colimit of finite
dimensional Grassmannians, which are built of cells of dimension k� D kC by the
theory of Schubert cells. Thus, MR is in Cst .
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Proof of Theorem 3.6 We begin by defining, given a C2 –spectrum X , quasicoherent
sheaves FX

i for i 2 Z on MFG corresponding to the graded .MU2�;MU2�MU /Š

.MR��;MR��MR/–comodules MR��CiX . As above, the FX
i are C2 –equivariant

homology theories with values in quasicoherent sheaves on MFG . Thus, the pullbacks
f �FX

i are homology theories with values in quasicoherent sheaves on Spec E2�=Gm .
By Lemma 3.7, the associated graded module is MR��Ci.X /˝MU2�

E2� , which
is thus a homology theory as well; this proves part (a) of real Landweber exactness.
Note that as MR��Ci.X /˝MU2�

E2� has suspension isomorphisms for arbitrary
(virtual) representations, it is isomorphic to the RO.C2/–graded theory associated to
its degree-0 part.

For the proof of (b), choose a real orientation MR!ER, which exists by Lemma 3.3.
By Lemma 3.4 it is now enough to show that the induced maps

MR��˝MU2�
E2�!ER��

and
MU2�˝MU2�

E2�!E2�

are isomorphisms (as the odd groups are zero anyhow). The latter is clear and the
former is true since both ���MR and ���ER are constant.

By the following proposition, the real Landweber exact functor theorem can actually
be used to produce C2 –spectra.

Theorem 3.9 Any (ungraded) G–equivariant homology theory can be represented by a
G–spectrum, ie for every G–equivariant homology theory h0 , there is a G–spectrum E

such that there are isomorphisms �G
0
.X ^E/ Š h0.X /, natural in a G–spectra X .

Note that this implies natural isomorphisms �G
F .X ^E/Š hF.X / as well.

Moreover, any transformation of G–equivariant homology theories can be represented
by a map of G–spectra.

Proof By [31, Corollary 9.4.4], the homotopy category of genuine G–spectra is a
Brown category, which means exactly the statement of our proposition.

In the rest of the section, we will give some reformulations of the stacky point of view
on Landweber exactness to show that two real Landweber exact spectra are equivalent
if and only if their underlying spectra are equivalent. The following easy lemma will
be useful.
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Lemma 3.10 Let f W X ! Y be an affine morphism of algebraic stacks (in the sense
of [54, Definition 6]) and F be a quasicoherent sheaf on X and G be a quasicoherent
sheaf on Y . Then the canonical homomorphism

f�F ˝OY G! f�.F ˝OX f
�G/

is an isomorphism.

Proof We can assume that Y is affine and hence also X . Then it is clear.

Recall the notation FX
i from the proof of (real) Landweber exactness above.

Proposition 3.11 (a) Let E be an even Landweber exact spectrum. The associated
graded formal group on E2� defines a map

f W .Spec E2�/=Gm! .Spec MU2�/=Gm!MFG :

Then given a spectrum X , we have

E�.X /Š �2�.MFG IFX
� ˝OMFG

f�O.Spec E2�/=Gm
/:

(b) Let ER be an even real Landweber exact spectrum. The associated graded
formal group on ER�� ŠE2� (for E the underlying spectrum) defines a map

f W .Spec E2�/=Gm!MFG

as above. Then given a C2 –spectrum X , we have

ERF.X /Š �2�.MFG IFX
� ˝OMFG

f�O.Spec E2�/=Gm
/;

where �2n.MFG IFX
i ˝ � � � / is in degree n�C i .

Proof We will prove only part (a); the proof of part (b) only needs change in notation.
As in the proof of Landweber exactness, the left-hand side decomposes into two pieces
of the form �2�.f

�FX
i /Š �2�.f�f

�FX
i /. Thus, we only have to show that

f�f
�FX

i Š FX
i ˝OMFG

f�O.Spec E2�/=Gm
;

which follows directly from Lemma 3.10 with F DO.Spec E2�/=Gm
and G D FX

i .

In particular, we see that the values of a (real) Landweber exact theory do not depend
on the MU2�–module structure of E2� , but only on the graded quasicoherent sheaf
f�O.Spec E2�/=Gm

on MFG defined by E2� . This sheaf has an alternative description:

Lemma 3.12 Let E be an even Landweber exact spectrum and f W Spec E2�=Gm!

MFG as above. Then we have an isomorphism f�O.Spec E2�/=Gm
Š FE

0
.
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Proof This was proven in the even-periodic context in the proof of [50, Proposition 2.4].
The general case is similar.

Proposition 3.13 Let ER and FR be two (strongly even) real Landweber exact
C2 –spectra, whose underlying spectra E and F are equivalent. Then ER and FR are
equivalent.

Proof Assume E ' F . Then E and F define isomorphic graded quasicoherent
sheaves FE

0
and FF

0
on MFG . Since ER and FR are real Landweber exact,

Proposition 3.11 and Lemma 3.12 imply the following chain of isomorphisms, natural
in a C2 –spectrum X :

ER0.X /Š �.MFG IFX
0 ˝OMFG

FE
0 /

Š �.MFG IFX
0 ˝OMFG

FF
0 /

Š FR0.X /:

Thus, the (ungraded) C2 –equivariant homology theories defined by ER and by FR
are isomorphic. By Theorem 3.9, a natural isomorphism of C2 –equivariant homology
theories induces an equivalence of the representing C2 –spectra.

3.3 Forms of BPRhni and ER.n/

Fix a prime p .

Definition 3.14 Let E be a complex oriented p–local commutative and associative
ring spectrum (up to homotopy). The p–typification of its formal group law defines a
ring morphism BP�!E� .

(a) We call E a form of BP hni if the map

Z.p/Œv1; : : : ; vn�� BP�!E�

is an isomorphism. This does not depend on the choice of vi .

(b) We call E a form of E.n/ if there is a choice of indecomposables v1; : : : ; vn2BP�
with jvi j D 2.pi � 1/ such that the image of vn under the homomorphism

Z.p/Œv1; : : : ; vn�� BP�!E�

is invertible and the induced morphism Z.p/Œv1; : : : ; vn; v
�1
n �!E� is an isomorphism.

Spectra as in (a) are also sometimes called generalized BP hni (see [37, Definition 4.1]).
There is a real analogue, where we specialize to p D 2:

Algebraic & Geometric Topology, Volume 17 (2017)



1976 Michael A Hill and Lennart Meier

Definition 3.15 Let ER be an even real oriented 2–local commutative and associative
C2 –ring spectrum (up to homotopy). This induces a formal group law on ER� [32,
Theorem 2.10]; its 2–typification defines a map BP2� Š BPR��!ER�� .

(a) We call ER a form of BPRhni if the map

Z.2/Œv̄1; : : : ; v̄n�� ���BPR! ���ER

is an isomorphism of constant Mackey functors. This does not depend on the choice
of v̄i .

(b) We call ER a form of ER.n/ if there is a choice of indecomposables v̄1; : : : ; v̄n 2

BPR�� with jv̄i j D .2
i � 1/� such that the image of v̄n under the homomorphism

Z.2/Œv̄1; : : : ; v̄n�� BPR��!ER��

is invertible and the induced morphism Z.2/Œv̄1; : : : ; v̄n; v̄
�1
n �! ���ER is an isomor-

phism of constant Mackey functors.

Note that a form ER.n/ is always real Landweber exact by Theorem 3.6 as it is
strongly even and its underlying spectrum is Landweber exact.

Proposition 3.16 If for two forms of ER.n/ their underlying spectra are equivalent,
then they are equivalent as C2 –spectra.

Proof As every form of ER.n/ is real Landweber exact, this follows directly from
Proposition 3.13.

4 TMF1.3/ and friends

In this section, we will first define the versions of TMF we are after and com-
pute �� Tmf1.3/. In Section 4.2, we will run the homotopy fixed point spectral
sequence for tmf1.3/

hC2 and apply this to see that tmf1.3/ is a form of BPRh2i. In
Section 4.3, we will discuss the relationship between the C2 –spectra tmf1.3/, Tmf1.3/

and TMF1.3/. In particular, we will show that TMF1.3/ ' tmf1.3/Œ�
�1� and how

this implies the real Landweber exactness of TMF1.3/.

4.1 Basics

Denote by Mell the moduli stack of elliptic curves and by Mell its compactification.
Mapping an elliptic curve to its formal group defines a flat map Mell!MFG to the
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moduli stack of formal groups. By [29] (extending earlier work by Goerss, Hopkins
and Miller), the induced presheaf of even-periodic Landweber exact homology theories
refines to a sheaf of E1–ring spectra Otop on the log-étale site of Mell .

Denote by M1.n/ the moduli stack of elliptic curves with one chosen point of exact
order n and by M1.n/ its compactification, whose definition we will now review. In
the compactification we have to allow not only (smooth) elliptic curves, but generalized
elliptic curves, which can have as fibers also Néron m–gons for m j n. These are
obtained by gluing m copies of P1 , where 0 in the i th P1 (for i 2Z=mZ) is attached
to1 in the .iC1/st . For precise definitions see Deligne and Rapoport [17, Section II.1].

Definition 4.1 [17, IV.4.11–4.15; 16] We define the stack M1.n/ to classify gen-
eralized elliptic curves pW E ! S over a base S with n invertible, together with an
injection of group schemes Z=nZ!Eı from the constant group scheme Z=nZ over S

into the smooth locus of E such that

(1) each geometric fiber Spec xk �S E of p is either smooth or a Néron m–gon for
some m j n, and

(2) the image of Z=nZ intersects each irreducible component in every geometric
fiber of E nontrivially.

We define
TMF1.n/DOtop.M1.n//;

Tmf1.n/DOtop.M1.n//;

tmf1.n/D ��0 Tmf1.n/:

We remark that the last definition should only be considered appropriate for n � 2

if tmf1.n/ is even and �2n tmf1.n/ is isomorphic to the ring of integral holomorphic
modular forms H 0.M1.n/I!

˝�/. The second assumption is always fulfilled, but in
general there can be a nontrivial �1 tmf1.n/, which is isomorphic to H 1.M1.n/I!/ (as
already remarked in [29, Remark 6.4]). Luckily, there are no such problems for tmf1.3/

as we will see at the end of this subsection.

The following lemma is well known:

Lemma 4.2 The spectrum TMF1.n/ is Landweber exact for n� 2.

Proof Throughout the proof, we will use the notations ! and FX
i (for i D 0, 1 and

X a spectrum) from Section 3.2.

First, we prove that for Spec A!Mell étale such that the pullback of ! to Spec A is
trivial, E DOtop.Spec A/ is Landweber exact: By the descent spectral sequence, E is
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even periodic. Thus, we can choose a complex orientation MU ! E . This defines
a formal group law on AD �0E . By construction (see Behrens [8]), the composite
morphism gW Spec A!Mell !MFG classifies the underlying formal group. As
g is flat, a version of the Landweber exact functor theorem (see Lemma 3.7 or [41,
Lecture 15]) implies that the source of

.X 7!MU�.X /˝MU� E�/! .X 7!E�.X //

is a homology theory and thus the depicted morphism is a natural isomorphism. This
proves that E is Landweber exact. Furthermore, it provides a natural isomorphism
between �2k�i.Otop ^X / and the pullback of FX

i ˝!
˝k to Mell for i D 0, 1.

For n� 4, the stack M1.n/ is represented by an affine scheme [34, Corollary 2.7.3 and
Scholie (4.7.0)]. For nD 2, 3 we have the slightly weaker statement that only M1

1
.n/

is of the form Spec A, where M1
1
.n/ classifies elliptic curves where we choose not

only a point of order n, but also a nowhere vanishing invariant differential; we recover
M1.n/ as Spec A=Gm . This can either be shown along the same lines as the previous
statement or deduced from concrete presentations (see eg [46, Proposition 3.2] and [7,
Section 1.3]). In particular, the global sections functor

�W QCoh.M1.n//! AbelianGroups

on quasicoherent sheaves is exact. Indeed, QCoh.Spec A=Gm/ is by Galois descent
equivalent to the category of graded A–modules (where the grading comes from the
Gm –action). The global sections functor corresponds to M� 7!M0 , which is clearly
exact.

In particular, we see that the descent spectral sequence

H s.M1.n/I h
�!˝t / H) �2t�s TMF1.n/

is concentrated in the 0–line, where hWM1.n/!MFG classifies the formal group.
Thus, M1.n/ ' .Spec�2� TMF1.n//=Gm . By the same argument we get a natural
isomorphism

TMF1.n/2k�i.X /ŠH 0.M1.n/I h
�.FX

i ˝!
˝k//

for spectra X . Now Lemma 3.7 implies that we have isomorphisms

MU�.X /˝MU� TMF1.n/Š TMF1.n/�.X /;

again natural in X .

Sending the point x of order n to Œk�x for k 2 .Z=n/� defines a .Z=n/�–action
on M1.n/. In particular, this induces .Z=3/�DC2 –actions on TMF1.3/ and Tmf1.3/.
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Thus we will view these spectra as cofree C2 –spectra as in Section 2.2. We define the
C2 –spectrum tmf1.3/ as the C2 –equivariant connective cover of Tmf1.3/ so that

tmf1.3/
C2 D ��0.Tmf1.3/

hC2/:

Note that this spectrum is not cofree as

��0.Tmf1.3/
hC2/' ��0.tmf1.3/

hC2/;

which follows formally from the C2 –homotopy fixed point spectral sequence, and
tmf1.3/

hC2 has negative homotopy groups as we will see in the next subsection.

Denote by M0.n/ the moduli stack of elliptic curves with a chosen subgroup of order n

and by M0.n/ its compactification, defined as follows:

Definition 4.3 We define M0.n/ for n squarefree1 to classify generalized elliptic
curves pW E! S over a base S with n invertible, together with a subgroup G � EıŒn�
such that

(1) each geometric fiber of p is either smooth or a Néron m–gon for some m j n,

(2) G is étale locally isomorphic to Z=nZ, and

(3) G intersects each irreducible component in every geometric fiber of E nontriv-
ially.

We define

TMF0.3/DOtop.M0.3// and Tmf0.3/DOtop.M0.3//:

The forgetful maps

M1.n/!M0.n/ and M1.n/!M0.n/

are .Z=n/�–Galois coverings for n squarefree, as checked in [50, Theorem 7.12]. In
particular, this implies that Tmf0.3/' Tmf1.3/

hC2 and TMF0.3/' Tmf1.3/
hC2 . If

we define tmf0.3/D ��0 Tmf0.3/, then it follows that tmf0.3/' tmf1.3/
C2 .

Next, we will study M1.3/ in more detail. The following lemma essentially says that
there can be only one reasonable compactification of our moduli stacks.

Lemma 4.4 Let f W Y !X be a map of Deligne–Mumford stacks (over some base
scheme S ) and assume that X is locally noetherian. Let xf1; xf2W Y 1;Y 2!X be finite
morphisms from normal Deligne–Mumford stacks (over S ) such that Y sits inside Y 1

and Y 2 as a dense open substack and xfi jY D f for i D 1, 2. Then Y 1' Y 2 as stacks
over X .

1For the subtleties for nonsquarefree n see [15].
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Proof The same argument as in [21, Corollary 12.2] shows that it is enough to show
that . xf1/�OY 1

Š . xf2/�OY 2
as both xf1 and xf2 are affine. In particular, it is enough

to show the existence of a natural isomorphism between Y 1 and Y 2 if X D Spec A

is affine. Then Y 1 D Spec B1 and Y 2 D Spec B2 are also affine. The inclusions
Y � Spec B1 and Y � Spec B2 induce bijections of the sets of connected components.
As all these schemes are normal and locally noetherian, all connected components are
irreducible [21, Remark 6.3.7]. Thus, we can assume that Y 1 and Y 2 are irreducible
and hence B1 and B2 are normal integral domains. Write C D �.OY /. As Y is open
in Y i , the map from Bi into its fraction field factors over C . In particular, Bi injects
into C and is integrally closed in it. As it is also finite and thus integral over A, it
consists exactly of those elements in C that are integral over A. In particular, we have
a canonical isomorphism B1 Š B2 of A–algebras.

Note that M1.n/!Mell
�

1
n

�
and M0.n/!Mell

�
1
n

�
(if n is squarefree) are finite

morphisms from normal (even regular) Deligne–Mumford stacks and M1.n/�M1.n/

and M0.n/�M0.n/ are open dense inclusions (see [17, IV.3.4] or [16, Theorem 4.1.1];
note that the complement of an effective Cartier divisor is open and dense). Thus, we
can apply the previous lemma to approach the following well-known result (see eg [37])
that has to the knowledge of the authors not appeared with full proof in print.

Proposition 4.5 We have equivalences

M1.3/' Spec
�
Z
�

1
3

�
Œa1; a3�Œ�

�1�
�
=Gm;

M1.3/'
�
Spec

�
Z
�

1
3

�
Œa1; a3�

�
n f0g

�
=Gm DW PZŒ 1

3
�.1; 3/;

where:

� The Gm –action on Spec
�
Z
�

1
3

�
Œa1; a3�

�
is induced by the grading with ja1j D 1

and ja3j D 3.

� �D a3
3
.a3

1
� 27a3/.

� f0g denotes the common vanishing locus of a1 and a3 .

� PZŒ 1
3
�.1; 3/ is often called the weighted (stacky) projective line with weights

1 and 3.

Proof The first equivalence follows from [46, Proposition 3.2].

Set A D Z
�

1
3

�
Œa1; a3�. The equality PZŒ 1

3
�.1; 3/ D .Spec A n f0g/=Gm is just the

definition of the weighted projective line. This is a proper and smooth Deligne–Mumford
stack over Spec Z

�
1
3

�
by [53, Proposition 2.1, Remark 2.2]. Note furthermore that

M1.3/� PZŒ 1
3
�.1; 3/ is a dense open substack.
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To apply Lemma 4.4, we need to construct a finite morphism

PZŒ 1
3
�.1; 3/!M

�
1
3

�
that extends the morphism

M1.3/!Mell
�

1
3

�
�Mell

�
1
3

�
:

The equation y2Ca1xyCa3yDx3 defines a cubic curve over Spec A=Gm . We want to
show that this equation actually defines a generalized elliptic curve E over PZŒ 1

3
�.1; 3/.

For this, we have to check that for no map f W Spec k! PZŒ 1
3
�.1; 3/ for k a field (of

characteristic ¤ 3), the pullback f �E has a cusp. Equivalently, we have to show
that for any values a1; a3 2 k for which c4 D a4

1
� 24a1a3 and �D a3

3
.a3

1
� 27a3/

vanish, a1 and a3 also vanish. First observe that if c4 D�D 0, then a1 D 0 implies
a3 D 0 and vice versa. If � D 0, either a3 D 0 or a3

1
D 27a3 . In the second case,

27a1a3 D a4
1
D 24a1a3 and thus a1 D 0 or a3 D 0.

Therefore, we obtain a map pW Spec A=Gm!Mcub
�

1
3

�
to the moduli stack of cubic

curves that restricts to a map PZŒ 1
3
�.1; 3/!Mell

�
1
3

�
, which in turn extends the map

M1.3/!Mell
�

1
3

�
�Mell

�
1
3

�
.

As computed in the beginning of Section 7 of [6], the map p is surjective and we
have Spec A=Gm�Mcub Spec A=Gm' .Spec AŒs; t �=.f;g//=Gm , where f and g are
polynomials in s and t such that AŒs; t �=.f;g/ is a finite flat A–module. As finiteness
can be checked after fpqc-base change, the map p is finite and hence so is its restriction
PZŒ 1

3
�.1; 3/!Mell

�
1
3

�
, which is the base change p�McubŒ

1
3
�Mell

�
1
3

�
. Thus, the result

follows by Lemma 4.4.

By checking the gradings, we see that p�! ŠO.1/ for pW PZŒ 1
3
�.1; 3/!Mell

�
1
3

�
the

restriction of the morphism constructed in the proof above. (Here, ! denotes the line
bundle �2Otop on Mell , which is also the pullback of the line bundle on MFG we
have denoted before by ! .) Thus, we have

H s.M1.3/I!
˝�/Š

8<:
Z
�

1
3

�
Œa1; a3� for s D 0;

Z
�

1
3

�
Œa1; a3�=.a

1
1
; a1

3
/ for s D 1;

0 for s � 2;

as shown, for example, in [53, Proposition 2.5]. Here, Z
�

1
3

�
Œa1; a3�=.a

1
1
; a1

3
/ denotes

the Z
�

1
3

�
Œa1; a3�–torsion module with Z

�
1
3

�
–basis given by the monomials 1=ai

1
a

j
3

,
where i; j �1. Thus, the descent spectral sequence for Tmf1.3/ collapses. In particular,
we see that �� tmf1.3/D Z

�
1
3

�
Œa1; a3�.
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4.2 RO.C2/–graded homotopy of tmf1.3/

Our goal in this subsection is to understand the C2 –equivariant RO.C2/–graded homo-
topy groups of tmf1.3/. We will compute this via an RO.C2/–graded homotopy fixed
point spectral sequence, as described for general G in Section 2.3. When G D C2

there are two important simplifications. The first allows us to identify the E2–term
more transparently:

Lemma 4.6 Let E be a C2 –spectrum. Then

��.E ^S��1/Š ��E˝ sgn

as C2 –modules.

Proof This follows from the fact that the action map t W S� ! S� has degree �1.

Corollary 4.7 If E is a C2 –spectrum, then the RO.C2/–graded homotopy fixed point
spectral sequence has the form

H s.C2I�t .E/˝ sgn˝r / H) �
C2

t�sC.��1/r
F.EC2C;E/:

The differential di goes from degree .r; s; t/ to .r; sCi; tCi�1/. The tridegree .r; s; t/
corresponds to the bidegree ..t � r/C r�; s/ in representation grading.

If E is even with �2n flat over Z and the group C2 acts on �2nE via .�1/n , then the
E2–term is isomorphic to

�2�E˝ZŒu˙1
2� ; a� �=2a�

with ju2� j D .2� 2�; 0/ and ja� j D .��; 1/. Here, �2nE is the group �2nE , but not
in degree 2n, but in degree nC n� .

Proof The first part is clear. For the second, note that the RO.C2/–graded C2 –
representation �FE is isomorphic to �2�E ˝

L
r2Z sgn˝r with sgn˝r in degree

r.1� �/. The first tensor factor is invariant under the C2 –action and can thus be pulled
out of the cohomology group. For the second one, we have H�.C2I

L
r2Z sgn˝r /Š

ZŒu˙1; a�=2a with u 2H 0.C2I sgn˝2/ and a 2H 1.C2I sgn/.

The second C2 simplification is a recasting of the RO.C2/–graded homotopy fixed
points spectral sequence in a way that allows us to read off permanent cycles. Recall
that there is a C2 –equivariant map

a� W S
0
! S�

which is essential but for which the restriction is null. The following is undoubtedly
well known to experts.
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Lemma 4.8 The RO.C2/–graded homotopy fixed points spectral sequence for a C2 –
spectrum X coincides with the a� –Bockstein spectral sequence for X .

Proof The map an
� fits in a cofiber sequence

S.n�/C! S0 an
��!Sn� ;

where S.n�/ is the unit sphere in the representation n� . Applying F.�;X /, we
deduce a cofiber sequence of spectra

†�n�X
an
��!X ! F.S.n�/C;X /:

The space S.n�/C is also the .n�1/–skeleton of the standard model for EC2C as the
infinite sign sphere, and the map on function spectra induced by the inclusion of the
.n�1/–skeleton into the n–skeleton coincides with the obvious map of cofibers:

†�.nC1/�X
a

nC1
�
//

a�

��

X //

1

��

F.S..nC 1/�/C;X /

��

†�n�X
an
�

// X // F.S.n�/C;X /:

Thus the filtration by powers of a� and the filtration by the skeleton of EC2C coincide.

Recall now from Section 4.1 that nonequivariantly

�� tmf1.3/Š Z
�

1
3

�
Œa1; a3� and �� TMF1.3/Š Z

�
1
3

�
Œa1; a3; �

�1�;

with ja1jD 2 and ja3jD 6. By Mahowald and Rezk [46, Proposition 3.4], the group C2

acts by �1 on a1 and a3 in �� TMF1.3/ and hence also in �� tmf1.3/, as �� tmf1.3/

sits inside �� TMF1.3/.

By Corollary 4.7, the RO.C2/–graded homotopy fixed point spectral sequence E2–term
for tmf1.3/

hC2 can be written as

(1) E
�;�
2
D Z

�
1
3

�
Œa� ;u

˙1
2� ; ā1; ā3�=.2a� /

with degrees

ja� j D .��; 1/D .1� �; 1/; ju2� j D .2� 2�; 0/D .4� 2�; 0/;

jā1j D .1C �; 0/D .�; 0/; jā3j D .3C 3�; 0/D .3�; 0/:

We start by identifying the permanent cycles corresponding to � and � in the Hurewicz
image in �� tmf1.3/

hC2 . By [29, Theorem 6.2], there is a C2 –equivariant map

Tmf1.3/! KU

Algebraic & Geometric Topology, Volume 17 (2017)



1984 Michael A Hill and Lennart Meier

of E1–ring spectra into K-theory, inducing a map between the homotopy fixed point
spectral sequences for Tmf1.3/

hC2 and KO'KUhC2 . In the latter, � is of filtration 1,
so it has to be of filtration � 1 in the former. As the homotopy fixed point spectral
sequences of Tmf1.3/

hC2 and tmf1.3/
hC2 agree in nonnegative degrees, � is also of

filtration 1 in the homotopy fixed point spectral sequence for tmf1.3/
hC2 and is thus

detected by a� ā1 .

To identify � , we observe the following lemma:

Lemma 4.9 The composite Tmf
�

1
3

� res
�!Tmf0.3/

tr
�!Tmf

�
1
3

�
is multiplication by 4.

Proof This is true on the level of E2 –terms of homotopy fixed point spectral sequences,
expressing Tmf0.3/ and Tmf

�
1
3

�
as homotopy fixed points of Tmf.3/ (as the index

in GL2.Z=3/ of the subgroup of matrices of the form
�

a
0

b
d

�
is 4). The Tmf

�
1
3

�
–linear

self-maps of Tmf
�

1
3

�
are in one-to-one correspondence to elements in �0 Tmf

�
1
3

�
.

These are all of filtration 0 in the descent spectral sequence by [35, Figure 26] and
thus detected by their action on

�0 Tmf
�

1
3

�
DH 0.GL2.Z=3/I�0 Tmf.3//:

(As the arguments in [35] are computationally involved, we also sketch another
way to arrive at this last result. If there were contributions of positive filtration
to �0 Tmf

�
1
3

�
in the descent spectral sequence, this group would contain torsion.

Because �0 Tmf
�

1
3

�
Š �0 tmf

�
1
3

�
, it suffices to show that �0 tmfŠ Z. It was known

by Hopkins and Miller and is shown in [49, Corollary 5.3] that the Adams–Novikov
spectral sequence for tmf has as E2–term the cohomology of the graded Weierstrass
Hopf algebroid

.AD ZŒa1; a2; a3; a4; a6�; � DAŒr; s; t �/:

Here, jr j D 4, jsj D 2, and jt j D 6. It follows formally from the gradings in the cobar
complex that H i.A; �/D 0 in degrees smaller than 2i and that H 0.A; �/Š Z. The
result follows.)

As 4� in �3 Tmf
�

1
3

�
is nonzero and of filtration 3, we know � D res.�/ 2 �3 Tmf0.3/

is of filtration � 3 and nonzero. For degree reasons, it has to be detected by the
image of a3

� ā3 . As the homotopy fixed point spectral sequences for tmf1.3/
hC2 and

Tmf1.3/
hC2 agree in this range, the same is true for tmf1.3/

hC2 .

Corollary 4.10 The classes ā1 and ā3 are permanent cycles in the RO.C2/–graded
homotopy fixed point spectral sequence for tmf1.3/.
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Proof Since the homotopy fixed point spectral sequence and a� –Bockstein spectral
sequences coincide, we learn that if an a� –multiple of a class is a permanent cycle, then
the class is a permanent cycle. This in particular applies to �D ā1a� and �D ā3a3

� .

Corollary 4.11 The class u2� is the only generator of the E2–term for the RO.C2/–
graded homotopy fixed point spectral sequences for tmf1.3/ (as listed in Equation (1))
that is not a permanent cycle.

Furthermore, the transfer of any element in the underlying homotopy is a permanent
cycle. In particular, we conclude immediately that the classes

v0.k/ WD 2uk
2�

for k 2 Z are all permanent cycles which generate copies of Z. These satisfy an
obvious multiplicative relation

v0.k/v0.j /D 2v0.j C k/:

Next, we will determine the differentials. Note first that for degree reasons all d2k

are 0 for k � 1. While the other differentials could be deduced from [46], we will
derive them independently.

Proposition 4.12 We have the differential

d3.u2� /D a3
� ā1:

Proof Because ā1; ā3 and a� are permanent cycles, d3.u2� /D 0 would imply that
E2 D E5 . On the other hand, we know that � is detected by a� ā1 . As �4 D 0, the
class .a� ā1/

4 must be hit by a differential, which necessarily must be a d3 . Therefore,
d3.u2� /¤ 0. For degree reasons we get that d3.u2� /D a3

� ā1 .

There is no room for a d5 –differential; indeed, a nontrivial d5 –differential would imply
a differential of the form d5.u

2
2�
/D a5

�y with y in the 0–line of degree 3C� , which
is impossible. Thus, E7 DE4 .

Proposition 4.13 We have the differential

d7.u
2
2� /D a7

� ā3:

Proof If dn.u
2
2�
/D an

�x , then x is in degree .7�n/C .n�4/� . As x can be written
as u2m

2�
times a polynomial in ā1 and ā3 , we see that 7� n must be divisible by 8.

As ā1; ā3 , a� and 2u2� are permanent cycles, d7.u
2
2�
/ D 0 would thus imply that
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E7 DE15 . On the other hand, we know that � is detected by a3
� ā3 . As �4 D 0, the

class .a3
� ā3/

4 must be hit by a differential, which necessarily must be a dn with n� 12.
Therefore, d7.u

2
2�
/¤ 0. For degree reasons we get that d3.u

2
2�
/D a7

� ā3 (as a7
� ā3

1
D 0

in E7 ).

The torsion produced by the first differential yields new d7 –cycles:

ā1.k/ WD ā1u2k
2� ;

for k 2 Z. These also participate in the expected multiplicative relations:

ā1.k/ā1.j /D ā1 � ā1.j C k/ and ā1.j /v0.k/D ā1 � v0.kC 2j /:

Remark 4.14 The classes v0.k/ and ā1.j / form families exactly like the families
v0.k/ and v1.j / described by Hu and Kriz is the computation of the homotopy of BPR.

There is no room for further differentials in E8 , which is the subalgebra of

Z
�

1
3

�
Œa� ;u2� ; ā1; ā3�=.2a� ; ā1a3

� ; ā3a7
� /

generated by a� , ā1 , ā3 , v0.1/, v0.2/, v0.3/, ā1.1/ and u˙4
2�

. Indeed, a nontrivial dk –
differential for k�8 would imply a nontrivial differential of the form dk.ā1.1//Dak

�x

or dk.u
4
2�
/Dak

�y for some x or y in the 0–line of degree 4C.k�3/� or 7C.k�8/� ,
respectively; but the only of our generators of the 0–line not killed by ak

� is u˙4
2�

,
whose powers cannot be in degree 4C .k�3/� or 7C .k�8/� . Therefore E8DE1 .

Theorem 4.15 We have

�C2
F F.EC2C; tmf1.3//Š Z

�
1
3

�
Œa� ;u

˙4
2� ; ā1; ā3; v0.k/; ā1.1/�=R;

where the ideal R of relations is generated by

a�v0.k/D 0; v0.kC 4/D v0.k/u
4
2� ; ā1.1/v0.k/D ā1v0.kC 2/;

a3
� .ā1; ā1.1//D 0; v0.k/v0.j /D 2v0.j C k/; ā1.1/

2
D ā1u4

2� ;

a7
� ā3 D 0:

Proof The presentation given was already shown to be a presentation of the E1–
term. We just have to check all the relations also to hold in �C2

F F.EC2C; tmf1.3//.
Observe first that no two torsion classes in different filtrations can converge to the same
bidegree. This implies the first three relations must hold. In the next three relations,
both sides are in the image of the transfer and thus these relations can be checked on
underlying homotopy groups. The last relation holds again since there is no element of
filtration � 1 in this bidegree.
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Remark 4.16 We have �C2
aCb�F.EC2C; tmf1.3//Š �

C2
aCb� tmf1.3/ for all a; b � 0

and �C2
aCb� tmf1.3/D 0 if a< 0 and aCb < 0; this follows from the cofiber sequence

SaC.b�1/�
! SaCb�

! SaCb
^.C2/C:

Is it possible, but more complicated, to describe also the other groups in �C2
F tmf1.3/.

Note that �C2
i F.EC2C; tmf1.3//Š�i tmf1.3/

hC2 can certainly be nontrivial for i < 0

(eg we have a8
�u�4

2�
2 ��8 tmf1.3/

hC2 ) and thus tmf1.3/ 6' F.EC2C; tmf1.3//.

Corollary 4.17 The spectrum tmf1.3/ is strongly even as a C2 –spectrum. In par-
ticular, it is real orientable and thus tmf1.3/.2/ is a form of BPRh2i. Furthermore,
tmf1.3/.2/Œā

�1
3
� is a form of ER.2/.

Proof It follows from Theorem 4.15 and the remark thereafter that tmf1.3/ is even as
a C2 –spectrum and also that the Mackey functor �k� tmf1.3/ is constant for all k 2Z.
We present the argument for evenness and leave the other part to the reader. Let
y D al

�x be a nonzero class in degree k� � 1 with x of filtration 0 and degree
.k � 1/C .kC l/� . Clearly l � 1. In E2 , we can write x as āi

1
ā

j
3
u2m

2�
. We see that

.k�1/�.kC l/D�.lC1/ is divisible by 8; in particular, l � 7. This implies i; j D 0

and leads to a contradiction.

In the following, we localize everywhere implicitly at 2. The map BP�! tmf1.3/�
induced by the 2–typification of the formal group law associated to the Weierstrass
equation y2C a1xyC a3y D x3 sends the Hazewinkel generators v1 and v2 exactly
to a1 and a3 . This implies together with tmf1.3/ being strongly even that tmf1.3/ is
a form of BPRh2i and that tmf1.3/Œā

�1
3
� is a form of ER.2/.

Corollary 4.18 There exists forms of BPRh2i and ER.2/ that are strictly commuta-
tive C2 –ring spectrum.

Proof By Theorem 2.7, the spectrum tmf1.3/ has the structure of a strictly commuta-
tive C2 –ring spectrum. By the last corollary, it is a form of BPRh2i.

As shown in the next section, the spectrum tmf1.3/Œā
�1
3
� is equivalent to Tmf1.3/Œā

�1
3
�

and thus cofree. Thus, we see by Theorem 2.4 that it has the structure of a strictly
commutative C2 –spectrum.

Remark 4.19 We do not know whether the forms of BPRh2i and ER.2/ exhibited
here are equivalent as C2 –spectra to other known forms, as for example defined via the
Hazewinkel generators. Note though that two forms of ER.n/ are equivalent if and
only if their underlying spectra are equivalent by Proposition 3.16. Note further that in
contrast to our result, the existence of any kind of (homotopy unital) multiplication
seems to be unknown for general forms of BPRhni, even for nD 2.
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4.3 The relationship between tmf1.3/, Tmf1.3/ and TMF1.3/

The following is proven in [50, Theorem 7.12].

Proposition 4.20 The map Tmf0.3/! Tmf1.3/ is a faithful C2 –Galois extension in
the sense of Rognes.

Lemma 4.21 Let xf be a nonconstant homogeneous polynomial in ā1 and ā3 . Then

tmf1.3/Œ xf
�1�! Tmf1.3/Œ xf

�1�

is an equivalence.

Proof For some k > 0, we have that a7
�
xf k D 0 in �C2

F F..EC2/C; tmf1.3// and
ja7
�
xf k jD rCs� with r; s� 0. Thus we also have a7

�
xf k D 0 in �C2

F tmf1.3/ and there-
fore ˆC2.tmf1.3/Œ xf

�1�/D 0 by Lemma 2.2. By [28, Corollary 10.6], tmf1.3/Œ xf
�1�

is then cofree. Thus, we have only to show that tmf1.3/Œ xf
�1�! Tmf1.3/Œ xf

�1� is an
equivalence of underlying spectra. As every element of negative degree in �e

� Tmf1.3/

is killed by a1 and a3 , the result follows.

Lemma 4.22 Let xf be a nonconstant homogeneous polynomial in ā1 and ā3 . Denote
by D.f / the nonvanishing locus of the underlying element f 2 H 0.M1.3/I!

�/.
Then there is an equivalence

Tmf1.3/Œ xf
�1�!Otop.D.f //

of C2 –spectra.

Proof Note that the pullback of D.f / along

Spec Z
�

1
3

�
Œa1; a3��f0g ! M1.3/' PZŒ 1

3
�.1; 3/

is Spec Z
�

1
3

�
Œa1; a3�Œf

�1�. By the same argument as in Lemma 4.2, the global sections
functor

�W QCoh.D.f //D QCoh
�
Spec

�
Z
�

1
3

�
Œa1; a3�Œf

�1�
�
=Gm

�
! AbelianGroups

is exact. Therefore, the descent spectral sequence for Otop.D.f // collapses and we
have ��Otop.D.f //Š Z

�
1
3

�
Œa1; a3�Œf

�1�.

Note furthermore that D.f / is C2 –invariant as f 2 is an invariant section. This induces
a C2 –map of ring spectra Tmf1.3/DOtop.M1.3//!Otop.D.f //. We want to show
that the image of xf is invertible in �C2

F Otop.D.f //. It is detected in the homotopy
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fixed point spectral sequence HFPSS.f / for Otop.D.f //hC2 by f uk
2�

for some k .
As f and u2� are invertible, there exists an element

xg 2 �
C2

�j xf j
Otop.D.f //

detected by f �1u�k
2�

. Clearly, the underlying class res. xf xg/2�0Otop.D.f // equals 1.
As HFPSS.f / receives a multiplicative map from the homotopy fixed point spectral
sequence HFPSS for tmf1.3/

hC2 , the identification of ��Otop.D.f // above implies
that HFPSS.f / Š HFPSSŒ xf �1�. In particular, we can deduce that Otop.D.f // is
strongly even as a (cofree) C2 –spectrum. This implies that xf xgD 1 2 �C2

0 Otop.D.f //

so that xf is invertible. Thus, we get an induced map

Tmf1.3/Œ xf
�1�!Otop.D.f //

of C2 –spectra.

By [50, Theorem 7.2] and the proof of [50, Theorem 7.12], the global sections functor

�W QCoh.M1.3/;Otop/! Tmf1.3/–mod

is an equivalence.2 Thus, we can apply [50, Lemma 3.20] to see that

Tmf1.3/Œ xf
�1�!Otop.D.f //

is an equivalence of underlying spectra. As both spectra are cofree, the result follows.

This applies in particular to xf D�. Thus,

tmf1.3/Œ�
�1�' Tmf1.3/Œ�

�1�' TMF1.3/

as C2 –spectra (with � D ā3
3
.ā3

1
� 27ā3//. In particular, TMF1.3/ is strongly even.

Thus, Theorem 3.6 implies:

Proposition 4.23 The C2 –spectrum TMF1.3/ is real Landweber exact in the sense
that there is a natural isomorphism

MRF.X /˝MU2�
TMF1.3/2�! TMF1.3/F.X /

for all C2 –spectra X .

Note that the equivalence tmf1.3/Œ�
�1�'C2

TMF1.3/ also directly implies together
with the computations from the previous sections that �� TMF0.3/ has torsion and
thus TMF0.3/ cannot be Landweber exact.

2We only really need that � commutes with homotopy colimits. As observed in the proof of [50,
Proposition 3.8], this is automatic when the stack has finite cohomological dimension as M1.3/ does.
This circumvents the use of most of the heavy machinery in [50].
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The following fiber square will be useful later.

Proposition 4.24 We have a fiber square:

Tmf1.3/ //

��

tmf1.3/Œā
�1
1
�

��

tmf1.3/Œā
�1
3
� // tmf1.3/Œ.ā1ā3/

�1�

Proof The square

M1.3/ D.a1/oo

D.a3/

OO

D.a1a3/

OO

oo

induces a fiber square

Otop.M1.3// //

��

Otop.D.a1//

��

Otop.D.a3// // Otop.D.a1a3//

(2)

as
M1.3/' PZŒ 1

3
�.1; 3/DD.a1/[D.a3/;

and Otop is a sheaf (see [50, Appendix A] for why the sheaf condition implies this).

By the last two lemmas, this is equivalent to

Tmf1.3/ //

��

tmf1.3/Œā
�1
1
�

��

tmf1.3/Œā
�1
3
� // tmf1.3/Œ.ā1ā3/

�1�

as a square of C2 –spectra.

5 Slices and Anderson duals

In this section, we will compute the slices of TMF1.3/ and Tmf1.3/ and apply this to
compute the Anderson dual of Tmf1.3/.
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5.1 Slices

We can apply the computations of the regular representation homotopy groups of tmf1.3/

and its localizations to determine their slices.

Since all of the odd slices vanish and the even slices are regular representation sus-
pensions of HZ

�
1
3

�
by Section 2.4 and Corollary 4.17, the homotopy groups “near

multiples of regular representations” are easy to compute since the slice spectral
sequence is especially simple here.

To ensure transparency with later notation and gradings, we introduce some notation.
Let R D Z

�
1
3

�
Œa1; a3�Œf

�1� with f homogeneous. If S � R2n is any subset of
homogeneous rational functions of degree 2n, then let S denote the same rational
functions, but with every instance of a1 and a3 replaced with ā1 and ā3 respectively.
This is a notational device to ensure that the reader keep track of the RO.C2/–grading of
barred elements, compared to the underlying Z–grading of unbarred ones. Lemma 2.15
now gives us a description of the homotopy groups of the localizations of tmf1.3/:

Corollary 5.1 Let M be one of

tmf1.3/; tmf1.3/Œā
�1
1 �; tmf1.3/Œā

�1
3 � or tmf1.3/Œ.ā1ā3/

�1�:

For all k , we have

�k�C1M DG˝�u
2kC2

M ; �k�M D Z
�

1
3

�
˝�u

2k
M ;

�k��1M D 0; �k��2M D Z
�

1
3

�
�
˝�u

2k�2
M :

Similarly, naturality of the slice spectral sequence implies that we understand the effect
of the localization maps on homotopy groups in dimensions k�� 2; : : : ; k�C 1.

Corollary 5.2 For k 2 Z and for j D�2, �1, 0, 1, the localization maps

�k�Cj tmf1.3/Œā
�1
i �! �k�Cj tmf1.3/Œ.ā1ā3/

�1�

are induced by the obvious inclusions of graded pieces of these graded rings.

Remark 5.3 We could also have read off these results from the homotopy fixed point
spectral sequence, but the slice spectral sequence approach is both more conceptual
and is easier for Mackey functor computations.

We want now to compute the slices of Tmf1.3/. To that end, we denote by M Œā1; ā3�

the monic monomials in Z
�

1
3

�
Œā1; ā3�.
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Proposition 5.4 The associated graded C2 –spectrum for the slice filtration of Tmf1.3/

is W
P2M Œā1;ā3�

�
S jP j ^HZ

�
1
3

��
_
W

P2M Œā1;ā3�

�
S�jP j�4��1

^HZ
�

1
3

��
:

Proof We use Propositions 2.9 and 2.13 to read the slices out of the RO.C2/–graded
homotopy groups. The long exact sequence in homotopy associated to the fiber square
in Proposition 4.24 and Corollary 5.1 identify the needed homotopy groups. For k < 0,
let Rk denote the degree-2k piece of

Z
�

1
3

�
Œa˙1

1 ; a˙1
3 �=

�
Z
�

1
3

�
Œa˙1

1 ; a3�CZ
�

1
3

�
Œa1; a

˙1
3 �
�
:

We then have isomorphisms

�k� Tmf1.3/DG˝RkC1 and �k��1 Tmf1.3/D Z˝Rk :

The functor P0 applied to the Mackey functor G yields zero, so we conclude by
Proposition 2.13 that there are no negative even slices, and by Proposition 2.9 that all
of the negative odd slices are of the desired form.

This allows us to compute the E2 –term of the slice spectral sequence

E
s;t
2
D �C2

t�sP t
t Tmf1.3/ H) �C2

t�s Tmf1.3/;

where P t
t denotes the t –slice of Tmf1.3/. For t D 2k � 0, we get

�C2

2k�sP2k
2k Tmf1.3/D

M
P2M Œā1;ā3�k�

�C2

2k�sSk�
^HZ

�
1
3

�
D

M
P2M Œā1;ā3�k�

H C2

2k�s

�
Sk�;Z

�
1
3

��
D

M
P2M Œā1;ā3�k�

H C2

k�s

�
Sk� ;Z

�
1
3

��
:

By [28, Example 3.16], we have

H C2

k�s

�
Sk� ;Z

�
1
3

��
D

8<:
Z
�

1
3

�
if 2k � s is divisible by 4 and s D 0;

Z=2 if 0< s � 2k � s and .2k � s/� s is divisible by 4;

0 otherwise.

Similarly, one can reduce the computation for t < 0 to Bredon cohomology and use
that

H k
C2

�
Sd� ;Z

�
1
3

��
D

8<:
Z
�

1
3

�
if d is even and k D d;

Z=2 if k is odd and 1< k � d;

0 otherwise.
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We depict the slice spectral sequence in Figure 2. Here, an unboxed number n denotes
n copies of Z=2, a box denotes a copy of Z

�
1
3

�
and a boxed n denotes n copies

of Z
�

1
3

�
. The vertical coordinate is s and the horizontal one is t � s . In positive

degrees, the differentials follow from those for MUR via the real orientation map, and
these were determined in [28] and in [32]. For the differentials in negative degrees,
we can use that this is a spectral sequence of algebras, so in particular, we have an
action of the slice spectral sequence for tmf1.3/ on that of Tmf1.3/. This reduces
the problem to understanding the differentials on the line L of slope one in Figure 2
passing through the “1” in .�8;�1/. This class is infinitely divisible by � D ā1a�
and � D ā3a3

� . The classes �3 and �3 are hit by a d3 and a d7 respectively in the
slice spectral sequence for tmf1.3/. As a class x on L is not hit by any differential for
degree reasons, ��3x has thus to support a d3 –differential and ��3x a d7 –differential
(if it does not support a d3 –differential). This forces the negative differentials.

5.2 Anderson duality

Let G be a finite group. For an injective abelian group J , the functor

(genuine) G–Spectra! graded abelian groups; X 7! HomZ.�
G
��X;J /

is representable by a G–spectrum IJ , as follows from Brown representability. If
A is an abelian group and A ! J 0 ! J 1 an injective resolution, we define the
G–spectrum IA to be the fiber of IJ 0 ! IJ 1 . Given a G–spectrum X , we define its
A–Anderson dual IAX by F.X; IA/. It satisfies for all k 2Z the following functorial
short exact sequence:

0! Ext1Z.�
G
�k�1X;A/! �G

k IAX ! HomZ.�
G
�kX;A/! 0:

For G D feg we get nonequivariant Anderson duality as explored in [1] and [60]. If
G is (possibly) nontrivial, denote by AG the stable Burnside category, by which we
mean the full subcategory of Ho.SpG/ on the cosets †1.G=H /C . Given again a
G–spectrum X , we see by precomposing with the functor

AG! SpG ; †1.G=H /C 7!†1.G=H /C ^X

that the short exact sequence above refines to a short exact sequence of Mackey functors

0! Ext1Z.��k�1X;A/! �kIAX ! HomZ.��kX;A/! 0:

By smashing X with representation spheres, we see that it even refines to an RO.G/–
graded sequence. Equivariant Anderson duality in the case G D C2 has been explored
in some detail in [56].
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Figure 2: The slice spectral sequence for Tmf1.3/
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One reason to be interested in Anderson (self) duality is the universal coefficient
sequence, relating homology and cohomology. Let E be a G–spectrum, X be another
G–spectrum and A be an abelian group. Then IA.X ^E/ 'G F.X; IAE/ implies
the short exact sequence

0! Ext1Z.EV�1X;A/! .IAE/V X ! HomZ.EV X;A/! 0

for a real G–representation V . In particular, Anderson self-duality implies useful
universal coefficient theorems; for example, IZ KO'†4 KO implies one of the main
theorems of [1].

Our goal in this section is to compute the Z
�

1
3

�
–Anderson dual of Tmf1.3/ as a

C2 –spectrum and then deduce a computation of the Z
�

1
3

�
–Anderson dual of Tmf0.3/.

Observe that HZ� ' S4�2� ^HZ as H 0.S4�2�IZ/ Š Z� , where Z� is as in
Definition 2.14. Thus, Proposition 5.4 implies that the associated graded C2 –spectrum
for the slice filtration of Tmf1.3/ isW

P2M Œā1;ā3�

�
S jP j ^HZ

�
1
3

��
_
W

P2M Œā1;ā3�

�
S�jP j�2��5

^HZ
�

1
3

�
�
�
:

This suggests the following theorem:

Theorem 5.5 There is a C2 –equivariant equivalence IZŒ 1
3
� Tmf1.3/'†

5C2� Tmf1.3/.

Note that this theorem implies the universal coefficient sequence claimed in the intro-
duction. To prove the theorem, we will start with two lemmas.

Lemma 5.6 We have nonequivariantly IZŒ 1
3
� Tmf1.3/'†

9 Tmf1.3/.

Proof By Proposition 4.5, the moduli stack M1.3/ is equivalent to the weighted
projective stack P.1; 3/DPZŒ 1

3
�.1; 3/ and the sheaf ! on M1.3/ corresponds to O.1/

on P.1; 3/. This weighted projective stack has Serre duality in the sense that there is a
class

D D
1

a1a3
2H 1.P.1; 3/IO.�4//

such that

H s.P.1; 3/IF/˝H 1�s.P.1; 3/IF�˝O.�4//!H 1.P.1; 3/IO.�4//Š Z
�

1
3

�
�D

is a perfect pairing for s D 0; 1 for an arbitrary coherent sheaf F .
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Let us write for brevity RD Tmf1.3/. As P.1; 3/ has cohomological dimension 1,
the element D is a permanent cycle in the descent spectral sequence for R and is
represented by a unique element in ��9RŠ Z

�
1
3

�
, which we will also denote by D .

Denote by ı the element in �9IZŒ 1
3
�R with �.ı/.D/D 1, where

�W �9IZŒ 1
3
�R

Š
�!Hom

�
��9R;Z

�
1
3

��
:

The element ı induces a R–linear map yıW †9R! IZŒ 1
3
�R.

We obtain a commutative diagram:

�k�9R˝��kR
yı�˝id

//

��

�kIZŒ 1
3
�R˝��kR

Š

�˝id
// Hom

�
��kR;Z

�
1
3

��
˝��kR

��

��9R
�.ı/

Š
// Z
�

1
3

�
The left vertical map is a perfect pairing because of Serre duality (as described above),
as is the right vertical map by definition. Thus, the map yı�W �k�9R! �kIZŒ 1

3
�R is

an isomorphism for all k . This shows that yı is an equivalence.

The following key lemma uses our information about the slices of Tmf1.3/:

Lemma 5.7 The transfer

��9 Tmf1.3/D �
e
�5�2� Tmf1.3/! �C2

�5�2� Tmf1.3/

is an isomorphism.

Proof The slice spectral sequence for †2� Tmf (as shown in Figure 3, where dots
stand for the Mackey functor G and a box with a cross stands for Z� ) gives an
isomorphism of Mackey functors

��5�2� Tmf1.3/Š ��5�2�S
�4��1

^HZ
�

1
3

�
ŠH 2

�
S2�
IZ
�

1
3

��
Š Z

�
1
3

�
�:

−9 −7 −5 −3 −1 1 3
−2

0

2

�δ� �

Figure 3: The E2–term of the slice spectral sequence for �k�2� Tmf1.3/
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Proof of Theorem 5.5 Consider the following commutative diagram:

�
C2

5C2�
IZŒ 1

3
� Tmf1.3/

res

��

// // Hom
�
�

C2

�5�2�
Tmf1.3/;Z

�
1
3

��
resDtr�Š

��

�9IZŒ 1
3
� Tmf1.3/

Š
// Hom

�
��9 Tmf1.3/;Z

�
1
3

��
By the last lemma, tr� is an isomorphism. This implies that we can refine the element
ı 2 �9IZŒ 1

3
� Tmf1.3/ corresponding to the equivalence †9 Tmf1.3/! IZŒ 1

3
� Tmf1.3/

from Lemma 5.6 to an element zı2�C2
5C2�IZŒ 1

3
� Tmf1.3/. This induces a C2 –equivariant

Tmf1.3/–linear map
†5C2� Tmf1.3/! IZŒ 1

3
� Tmf1.3/

that is an equivalence of underlying spectra. By Proposition 4.20 and [57, Proposition
6.3.3], we know that Tmf1.3/

tC2 ' ˆC2 Tmf1.3/ vanishes and thus Tmf1.3/ and
IZŒ 1

3
� Tmf1.3/ are cofree C2 –spectra by [28, Corollary 10.6]. Thus, the theorem

follows.

This allows us also to compute the Anderson dual of Tmf0.3/. As in [60], we will use
the following lemma:

Lemma 5.8 Let A be an abelian group and X be a spectrum with an action by a finite
group G . Assume that the norm map XhG!X hG is an equivalence. Then there is an
equivalence .IAX /hG ' IA.X

hG/.

Proof We have the following chain of equivalences:

.IAX /hG
' F.X; IA/

hG
' F.XhG ; IA/' F.X hG ; IA/' IA.X

hG/

As noted in the proof of Theorem 5.5, Tmf1.3/
tC2 vanishes. Thus, we get:

Corollary 5.9 There is an equivalence IZŒ 1
3
� Tmf0.3/' .†

5C2� Tmf1.3//
hC2 .

6 The Picard groups

In this section we will compute the Picard groups of TMF0.3/, Tmf0.3/ and related
spectra. We recommend Mathew and Stojanoska [51] for a good introduction to Picard
groups and our techniques are very similar to theirs.
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6.1 Generalities

In the following, we will often use the language of 1–categories. We choose the
same model as [33] and [39], namely quasicategories. For the theory of (symmetric)
monoidal 1–categories see either [44] or [23] for a shorter introduction.

If C is a monoidal category, we denote by Pic.C/ the group of isomorphism classes
of invertible spectra; note that this is a priori a proper class (or large set, depending
on set-theoretic conventions), but will always be a (small) set in our situation. If C
is a monoidal 1–category, we denote by Pic.C/ the maximal 1–subgroupoid (Kan
complex) of the full subcategory of invertible objects. Clearly, �0 Pic.C/ŠPic.Ho.C//.
If C is a symmetric monoidal 1–category, Pic.C/ inherits the structure of a group-like
E1–space; indeed, Pic.C/ is a symmetric monoidal 1–category and thus by [44,
Example 2.1.2.18, Remark 2.4.2.6, Corollary 5.1.1.5] a Comm D E1–algebra in
the 1–category of 1–groupoids, which agrees with that of spaces. Thus, there is a
connective spectrum pic.C/ with �1pic.C/'Pic.C/ by a result of Boardman and Vogt
and of May (see [44, Remark 5.2.6.26] for an 1–categorical treatment). Note that we
have �ipic.C/Š �i Pic.C/ in this situation.

Given an E2 –ring spectrum R, its 1–category R–mod of (left) R–modules has
the structure of a monoidal 1–category [44, Proposition 7.1.2.6]. We define the
Picard group Pic.R/ of R to be Pic.Ho.R–mod// and the Picard space Pic.R/ to
be Pic.R–mod/. If R is an E1–ring spectrum, then R–mod is even a symmetric
monoidal 1–category. We define then pic.R/ to be pic.R–mod/.

For us, a derived stack will be a pair X D .X;Otop/, where X is a Deligne–Mumford
stack and Otop is a sheaf of even-periodic E1–ring spectra with �0Otop isomorphic to
the structure sheaf OX of X . For example, X might be a moduli stack of elliptic curves.
For a derived stack X D .X;Otop/, we write Pic.X / etc for the Picard group, space
or spectrum of the symmetric monoidal 1–category of quasicoherent Otop–modules
QCoh.X / on X . For a short treatment of quasicoherent sheaves in this context see [50,
Section 2.3] and for a full-blown treatment see [42].

Definition 6.1 We call a derived stack X D .X;Otop/ 0–affine if the global sections
functor

�W QCoh.X /!Otop.X /–mod

is an equivalence of symmetric monoidal 1–categories.

Clearly, pic.X / ' pic.Otop.X // if X is 0–affine. It was shown in [50] that the
(compactified) moduli stack of elliptic curves with arbitrary level structure together
with its derived structure sheaf Otop is 0–affine.
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The following Mayer–Vietoris principle will be useful later.

Lemma 6.2 Let X D .X;OX / be a 0–affine derived stack and U;V �X be a covering
by open substacks. Then we have a long exact sequence

� � � ! GL1 �0OX .U \V / @!Pic.OX .X //

! Pic.OX .U //�Pic.OX .V //! Pic.OX .U \V //

of abelian groups.

Proof As shown in [51, Section 3.1], the presheaf Pic defined by

Pic.W !X /D Pic.Otop.W !X //

(where W ! X is étale) is actually a sheaf. Thus, we have a homotopy pullback
square:

Pic.X;OX / //

��

Pic.U;OX jU /

��

Pic.V;OX jV / // Pic.U \V;OX jU\V /

The identification of these Picard spaces with those of OX .X / etc follows from the
fact that X , U , V and U \ V are 0–affine (see [50, Proposition 3.27]). This fiber
square induces the long exact sequence in the lemma.

Remark 6.3 By the last proof the boundary map

GL1 �0OX .U \V /! Pic.OX .X //

is induced by the map

GL1 OX .U \V /'�Pic.OX .U \V //! Pic.OX .U //�
h
Pic.OX .U\V //Pic.OX .V //

of spaces. Thus, it can be described as follows: An element g 2GL1 �0OX .U \V / in-
duces an OX –linear self-equivalence f of OX jU\V . The triple .OX jU ;OX jV ; f / de-
fines an element of the homotopy fiber product Pic.OX.U //�

h
Pic.OX .U\V //

Pic.OX.V //.
As noted above, this gluing datum defines an invertible OX –module on X and this
invertible module represents @.g/.

Let now A! B be a faithful G–Galois extension in the sense of Rognes [57]. Then
by [51, Section 3.3], we have the following theorem:

Theorem 6.4 There is an equivalence pic.A/' ��0pic.B/
hG .
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There is also another equivariant interpretation of the Picard group of A if A!B is a
faithful G–Galois extension. View B ' F.EGC;B/ as a cofree G–spectrum. Denote
the category of equivariant B–modules by G-B–mod. As B is cofree and A! B is
a faithful Galois extension, ˆGB 'BtG is contractible. By [28, Corollary 10.6] every
(equivariant) B–module is thus cofree again. Therefore, a map in G-B–mod is a weak
equivalence if it is an underlying weak equivalence. It is then a consequence of Galois
descent of the form in [52, Lemma 6.1.4, Proposition 6.2.6] that there is a monoidal
equivalence Ho.A–mod/'Ho.G-B–mod/. Thus, Pic.R/ŠPic.Ho.G-B–mod//, the
group of equivariant invertible B–modules. We will denote the latter group by PicG.B/.

6.2 A generalized Baker–Richter theorem

Baker and Richter proved in [5] that the Picard group of an E1–ring spectrum R

is completely algebraic if R is even periodic and �0R is a regular complete local
ring. This applies, for example, to the Lubin–Tate spectra En . Mathew and Stojanoska
generalized this in [51] by dropping the condition that �0R is complete and local (and
also weakened the periodicity requirement). The main purpose of this subsection is to
show that the assumption of periodicity is superfluous.

Let R be an E2 –ring spectrum. Let L be an invertible ��R–module. Then L is
projective over ��R. Thus, there is an R–module L with ��LŠL and this module L

is well defined up to isomorphism in Ho.R–mod/. This defines a map Pic.��R/!
Pic.R/. By the degenerate Künneth spectral sequence, this is a homomorphism.

Let R� be a commutative graded ring. By an element x 2R� we will always mean a
homogeneous element and by an ideal I �R� we will always mean a homogeneous
ideal. We call R� local if it has a unique maximal ideal m. We call a graded local
ring regular if the maximal ideal is generated by a finite regular sequence. We call a
graded local ring complete if the map R�! limk R�=m

k is an isomorphism. We call
an arbitrary commutative graded ring regular if every localization of it at a prime ideal
is regular.

We have the following generalization of [5, Theorem 38].

Theorem 6.5 Let R be an E2 –ring spectrum. Assume that ��R is concentrated in
even degrees and regular. Then the morphism Pic.��R/! Pic.R/ is an isomorphism.

This is not really new as this generalization is just a combination of [5, Remark 39] and
[51, Theorem 2.4.6]. We will sketch a proof anyhow as we introduce one simplification,
avoiding the use of obstruction theory for A1–structures.

Let M be an invertible R–module with M ^R N 'R for some R–module N . It is
enough to show that ��M is a projective ��R–module. For this, it is enough to show
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that the completion .1��M /m is a projective b��Rm–module for every maximal ideal
m� ��R.

The theory from [43, Section 4.2] implies that there is actually an R–module yMm with
�� yMmŠ .1��M /m .3 We have yMm ^ yRm

yNm'
yRm by [43, Remark 4.2.6] and because

N is a finite R–module. Note here that yRm also inherits an E2 –structure.

Let x1; : : : ;xn be a regular sequence generating m. Consider the yRm–module

yRm=x D yRm=x1 ^ yRm
� � � ^ yRm

yRm=xn;

obtained by killing the regular sequence x1; : : : ;xn . Because yRm is even, every xi

acts trivially on yRm=xi and hence on yRm=x . Indeed, the composite

†jxi j yRm!†jxi j yRm=xi
�xi
�! yRm=xi

is zero and thus the second map factors over an yRm–linear map †2jxi jC1 yRm!
yRm=xi ,

which must be zero as well.

By [19, Theorem V.2.6]4 yRm=x has the structure of an yRm–ring spectrum in the sense
that there exists a map

yRm=x^ yRm

yRm=x! yRm=x

that is unital up to homotopy.5 For an arbitrary yRm–module X , set X=xDX ^ yRm

yRm=x.

Claim 6.6 The map

��.X1=x/˝�� yRm
��.X2=x/! ��.X1=x ^ yRm

X2=x/! ��..X1 ^ yRm
X2/=x/

factors over a map

��.X1=x/˝�� yRm=x
��.X2=x/! ��..X1 ^ yRm

X2/=x/;

which is an isomorphism for all yRm–modules X1 and X2 .

Proof It factors as every xi acts trivially on X1=x DX1 ^ yRm

yRm=x .

The map is clearly an isomorphism if X1 D
yRm . Both sides are homological in X1 —

since ��. yRm=x/ is a graded field — and compatible with arbitrary coproducts. Thus,
it is an isomorphism for all X1 2

yRm–mod.

3Lurie only considers ideals in �0R , but the theory also works for homogeneous ideals in ��R under
our assumptions.

4While the source states the result only for E1–ring spectra, the same proof works also for E2 –ring
spectra.

5For our argument, this naive result suffices, while Baker and Richter use that yRm=x has an A1–
structure.
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In particular ��. yMm=x/ is in the Picard group of ��. yRm=x/. Thus, ��. yMm=x/ is a
free ��. yRm=x/–module of rank 1.

As in [5], one can show that ��. yMm=.x
i1

1
; : : : ;x

in
n // is a cyclic �� yRm–module

for i1; : : : ; in�1, using the Nakayama lemma for graded rings. Using the completeness
of �� yRm , one can show as in [5] that �� yMm is a shift of �� yRm . In particular, �� yMm

is projective over �� yRm as we wanted to show.

6.3 The case of TMF1.3/ and Tmf1.3/

Lemma 6.7 We have isomorphisms

Pic TMF1.3/Š Z=6; Pic tmf1.3/Œa
�1
1 �Š Z=2;

Pic tmf1.3/Œa
�1
3 �Š Z=6; Pic tmf1.3/Œa

�1
1 ā�1

3 �Š Z=2:

In all the cases, all the invertible modules are equivalent to suspensions of the ground
ring spectrum.

Proof We will just prove the lemma for TMF1.3/, as the other cases are analogous.
By Theorem 6.5,

Pic TMF1.3/Š Pic.�� TMF1.3//:

An evenly graded �2� TMF1.3/–module is an equivalent datum to a quasicoherent
sheaf on M1.3/ ' Spec Z

�
1
3

�
Œa1; a3�Œ�

�1�=Gm . Furthermore, an arbitrary graded
�� TMF1.3/–module splits into an even and an odd part. Therefore, an invertible
�� TMF1.3/–module has to be either completely even or completely odd. We hence
have a short exact sequence

0! Pic.M1.3//! Pic.�� TMF1.3//! Z=2! 0;

where the first map corresponds to the inclusion of the even part and the map to Z=2
indicates whether the invertible module is even or odd.

Given a line bundle L on M1.3/, we can extend it to the weighted projective stacky line
M1.3/. Indeed, by [53, Lemma 3.2], we can extend L to a reflexive sheaf on M1.3/

and every reflexive sheaf of rank 1 is a line bundle by [25, Proposition 1.9]. Every
line bundle on a weighted projective stacky line is of the form O.k/ for some k 2 Z
as can be seen, for example, along the lines of [53, Proposition 3.4]. As noted after
Proposition 4.5, the line bundle O.k/ restricts to the (pullback of) the line bundle !˝k

on M1.3/. Thus, the map �W Z! Pic.M1.3// sending k to !˝k is surjective.

It follows from the identification of M1.3/ above that

H 0.M1.3/I!
˝�/Š Z

�
1
3

�
Œa1; a3; �

�1�
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with �D a3
3
.a3

1
� 27a3/. As a3 2H 0.M1.3/I!

˝3/ is thus invertible on M1.3/, it
defines a trivialization of !˝3 and thus �.3/D 0. The resulting morphism

x�W Z=3! Pic.M1.3//

is an isomorphism as there is no invertible section of H 0.M1.3/I!
˝i/ for i D 1 or 2.

As the subgroup of Pic TMF1.3/ spanned by the †k TMF1.3/ is isomorphic to Z=6,
the lemma follows.

Proposition 6.8 The extensions

TMF0.3/! TMF1.3/;

.tmf1.3/Œā
�1
1 �/hC2 ! tmf1.3/Œā

�1
1 �;

.tmf1.3/Œā
�1
3 �/hC2 ! tmf1.3/Œā

�1
3 �;

.tmf1.3/Œā
�1
1 ā�1

3 �/hC2 ! tmf1.3/Œā
�1
1 ā�1

3 �

are faithful C2 –Galois extensions in the sense of Rognes.

Proof We obtain these maps of E1–ring spectra by applying Otop to the C2 –Galois
covers of stacks

M1.3/!M0.3/;

D.a1/!D.a1/=C2;

D.a3/!D.a3/=C2;

D.a1a3/!D.a1a3/=C2;

as follows from the results in Section 4.3. Here, D denotes the nonvanishing locus.
By the main result of [50], the derived stack .Mell;Otop/ is 0–affine and by [50,
Proposition 3.29] the same is true for the targets of the above four Galois covers. Then
[50, Theorem 5.6] implies the result.

Theorem 6.9 We have isomorphisms

PicC2
TMF1.3/ Š Pic.TMF0.3// Š Z=48;

PicC2
tmf1.3/Œā

�1
1 � Š Pic..tmf1.3/Œā

�1
1 �/hC2/ Š Z=8;

PicC2
tmf1.3/Œā

�1
3 � Š Pic..tmf1.3/Œā

�1
3 �/hC2/ Š Z=48;

PicC2
tmf1.3/Œā

�1
1 ā�1

3 �Š Pic..tmf1.3/Œā
�1
1 ā�1

3 �/hC2/Š Z=8:

In all the cases, all the (equivariant) invertible modules are equivalent to (integer)
suspensions of the ground ring spectrum.
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Proof We will only prove this in the first case. The other cases are similar. The first
isomorphism follows directly from Proposition 6.8 and the discussion at the end of the
previous subsection.

In the following, we will denote by HFPSS the homotopy fixed point spectral sequence
for the C2 –action on TMF1.3/ and differentials in it will be denoted by dHF . We
will always use the Adams convention that the k th column consists of the groups
H s.C2I�t TMF1.3// with k D t � s .

We have TMF1.3/ 'C2
tmf1.3/Œ�

�1� with � D ā3
3
.ā3

1
� 27ā3/ by the results of

Section 4.3. As � is a permanent cycle, this allows us to deduce from the results of
Section 4.2 all differentials in the HFPSS. For example,  D ā4

3
=� is a permanent

cycle.

It is easy to see that the .�1/st column of the HFPSS for TMF1.3/ is in cohomological
degrees � 7 isomorphic to F2Œ � �b3˚F2Œ � �b7 with b3D a3

� ā1u�1
2�

of cohomological
degree 3 and b7 D a7

� ā3u�2
2�

of degree 7. Recall from Section 4.2 that ā1; ā3 and a�
are permanent cycles while dHF

3
.u2� /D a3

� ā1 and dHF
7
.u2

2�
/D a7

� ā3 . We thus have
the differentials

dHF
3 . kb3/D 

ka3
� ā1u�2

2�
dHF

3 .u2� /D 
kb2

3

and
dHF

7 . kb7/D 
ka7
� ā3u�4

2�
dHF

7 .u2
2� /D 

kb2
7

in the HFPSS.

As TMF0.3/! TMF1.3/ is a faithful C2 –Galois extension, Theorem 6.4 implies an
equivalence pic.TMF0.3//' ��0.pic.TMF1.3///

hC2 . This gives the Picard spectral
sequence

H s.C2I�t pic TMF1.3//

that converges to �t�spic TMF0.3/ for t � s � 0. Differentials in it will be denoted
by dPic .

The Picard group of TMF1.3/ is Z=6 by Lemma 6.7 and GL1 �0 TMF1.3/ is isomor-
phic to Z�Z=2, generated by 1

3
and �1. Thus,

�t pic TMF1.3/D

8<:
Z=6 for t D 0;

Z�Z=2 for t D 1;

�t�1 TMF1.3/ for t � 2:

We are interested in the 0th column of the Picard spectral sequence. We have

H 0.C2IZ=6/D Z=6 and H 1.C2IZ�Z=2/Š Z=2I
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for s � 2 the 0th column of the Picard spectral sequence agrees with the .�1/st column
of the HFPSS. For an element x in the .�1/st column of the HFPSS, denote the
corresponding element in the 0th column of the Picard spectral sequence by x .

If x 2 Es
�;s is in cohomological degree s , then, by [51, Theorem 6.1.1], we have

dPic
s .x/D dHF

s .x/Cx2 . For degree reasons, the first possible differential for  kb3 is
a dPic

3 and this equals . k C  2k/b2
3 . This is zero only if k D 0. Likewise for degree

reasons, the first possible differential for  kb7 is a dPic
7 and this equals . k C  2k/b2

7 .
This is again zero only if k D 0, so that b3 and b7 are the only permanent cycles in
the 0th column of the Picard spectral sequence in cohomological degrees 2� s � 7.

It is easy to check that each element in the .�1/st column of the HFPSS of coho-
mological degree � 8 either supports a d3 – or d7 –differential or is hit by a d3 – or
d7 –differential from an element of degree � 8. By [51, Comparison Tool 5.2.4], this
implies that all nontrivial elements in the 0th column of the Picard spectral sequence in
cohomological degrees � 8 support nontrivial differentials or are hit by differentials.

Thus, Pic.TMF0.3// has at most 6 � 2 � 2 � 2D 48 elements. We just need to show that
the image of the morphism

Z! Pic.TMF1.3//; k 7!†k TMF0.3/

has order 48. This follows easily from the fact that 48 is the smallest period of
�� TMF0.3/ as � is not a permanent cycle in the HFPSS.

Lemma 6.10 Let E be a strongly even C2 E2 –ring spectrum. Then every even
projective ��E module can be realized by a strongly even E–module in a unique way
up to homotopy, giving in particular a well-defined homomorphism

Piceven.�
e
�E/! PicC2.E/:

Proof Let P be an even projective �e
�E–module. We can write P as the image

of an idempotent endomorphism f of a free even ��E–module F . We can write
F D

L
I �

e
�†

2ni E . Define a free E–module F by F D
L
†ni�E . Because E is

strongly even, we have �e
�F Š F and we can lift f to an idempotent endomorphism

of F , whose mapping telescope we denote by P . This is the required realization of P .

If we have another strongly even E–module P 0 with ��P 0 Š P as �e
�E–modules,

we can lift the morphism F ! P to an E–module morphism F ! P 0 and further to
a morphism P ! P 0 that induces an isomorphism on �e

� . By Lemma 3.4, this is an
equivalence.

Thus, we get a well-defined map

Piceven.�
e
�E/! PicC2.E/:
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To show that it is an homomorphism, we have to show that for strongly even projective
E–modules P1 and P2 , the smash product P1 ^E P2 is still strongly even and has
underlying homotopy groups �e

�P1˝�e
�E �

e
�P2 . This is clear by a retraction argument

from the corresponding statement for free modules of the form
L

i2I †
ni�E .

Question 6.11 Let E be a C2 E2 –ring spectrum. Assume that E is strongly even
and that �u

�E is a regular graded ring and an integral domain. Is every invertible E–
module of the form SV ^L, where V 2 RO.C2/ and L is a strongly even E–module
with �e

�L 2 Pic.�e
�E/?

Using the lemma above, the question can be restated as asking for the surjectivity of
the homomorphism

RO.C2/˚Piceven.�
e
�E/! PicC2.E/:

A positive answer to this question would be a real generalization of the theorem by
Baker and Richter given here as Theorem 6.5.

We could provide a similar spectral sequence argument as above for the computation of
PicC2

.Tmf1.3//, but we prefer to use a Mayer–Vietoris style argument instead. This
will demonstrate how the computation of PicC2

.Tmf1.3// follows essentially formally
from the fact that the Picard groups PicC2

.tmf1.3/Œā
�1
1
�/ and PicC2

.tmf1.3/Œā
�1
3
�/ are

generated by the suspension of the ground ring spectrum.

Theorem 6.12 The morphism

RO.C2/! PicC2
.Tmf1.3//; V 7! SV

^Tmf1.3/

is surjective. Its kernel is generated by 8� 8� . Thus,

Pic.Tmf0.3//Š PicC2
.Tmf1.3//Š Z˚Z=8:

Proof By Lemmas 4.21, 4.22 and 6.2, we have an exact sequence:

GL1 �
C2

0
tmf1.3/Œā

�1
1 ��GL1 �

C2

0
tmfŒā�1

3 �
f
!GL1 �

C2

0
tmf1.3/Œā

�1
1 ā�1

3 �

ı
!PicC2

.Tmf1.3//! PicC2
.tmf1.3/Œā

�1
1 �/�PicC2

.tmf1.3/Œā
�1
3 �/

g
!PicC2

.tmf1.3/Œā
�1
1 ; ā�1

3 �/:

By Corollary 5.1, we have �C2
0 tmf1.3/Œā

�1
1

ā�1
3
�Š Z

�
1
3

�
Œ.ā3

1
ā�1

3
/˙1�. Thus,

GL1 �
C2
0 tmf1.3/Œā

�1
1 ā�1

3 �Š Z�Z�Z=2;

generated by 1
3

, ā3
1
ā�1

3
and �1, and coker.f /Š Z, generated by Œā3

1
ā�1

3
�.
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We claim that @.ā3
1
ā�1

3
/' S3� ^Tmf1.3/. Indeed, we have trivializations

ā3W S
3�
^ tmf1.3/Œā

�1
3 �! tmf1.3/Œā

�1
3 �

and
ā3

1W S
3�
^ tmf1.3/Œā

�1
1 �! tmf1.3/Œā

�1
1 �:

Therefore, we get S3� ^Tmf1.3/ by gluing tmf1.3/Œā
�1
3
� and tmf1.3/Œā

�1
1
� by the

map ā3
1
ā�1

3
on tmf1.3/Œā

�1
1

ā�1
3
�.

By Theorem 6.9, ker.g/ŠZ=48. Furthermore, †8�8� Tmf1.3/'C2
Tmf1.3/ as u4

2�

is a permanent cycle. Thus, we get a commutative diagram:

0 // Z

Š

��

3�
// RO.C2/=.8� 8�/

��

// RO.C2/=.8� 8�; 3�/Š Z=48

Š

��

// 0

0 // coker.f / // PicC2
.Tmf1.3// // ker.g/ // 0

Thus, the middle map is also an isomorphism.

Remark 6.13 The map Pic.Tmf/! Pic.Tmf0.3// is not surjective. The former has
been identified with Z˚Z=24 in [51, Theorem B, Construction 8.4.2], where the
summands are generated by †Tmf and by the global sections Otop.I/. Here, I is a
line bundle on the derived compactified moduli stack of elliptic curves .Mell;Otop/

obtained by gluing †24Otop on Mell and †24Otop on MellŒc
�1
4
� via the clutching

function j D c3
4
=�.

We claim that the module Otop.I/^Tmf Tmf0.3/ is 2–torsion in Pic.Tmf0.3//. Indeed,
for pWM0.3/!Mell , we have for an arbitrary locally free sheaf F on .Mell;Otop/

an equivalence

�.F/^Tmf Tmf0.3/' �
�
MellIF ^Otop p�Otop

M0.3/

�
' �

�
MellIp�

�
p�F ^Otop

M0.3/

Otop
M0.3/

��
' �.M0.3/Ip

�F/:
In the first equivalence, we use that .Mell;Otop/ is 0–affine and in the second we use
the projection formula (see [24, Exercise II.5.1d] for the algebraic statement, from
which the topological can be deduced). Thus, Otop.I/^Tmf Tmf0.3/ can be constructed
as Otop.p�I/, where p�I can be constructed by an analogous gluing construction
on M0.3/, gluing †24Otop on M0.3/ and †24Otop on M0.3/Œc

�1
4
� via the clutching

function j D c3
4
=� with c4 D a4

1
� 24a1a3 . There is an equivalence of gluing data

.Otop;Otop; id/! .†48Otop; †48Otop; j 2/
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given by �2W Otop!Otop on M0.3/ and c6
4
W Otop!†48Otop on M0.3/Œc

�1
4
�. Note

here that �2 D �2u12
2�

is a permanent cycle for TMF0.3/. Thus, 2 � ŒI� D 0 2

Pic.M0.3/;Otop/Š Pic.Tmf0.3//.

As not every torsion in Pic.Tmf0.3// is 2–torsion, Pic.Tmf/!Pic.Tmf0.3// is indeed
not surjective.
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An algebraic model for commutative HZ–algebras

BIRGIT RICHTER

BROOKE SHIPLEY

We show that the homotopy category of commutative algebra spectra over the
Eilenberg–Mac Lane spectrum of an arbitrary commutative ring R is equivalent
to the homotopy category of E1–monoids in unbounded chain complexes over R .
We do this by establishing a chain of Quillen equivalences between the corresponding
model categories. We also provide a Quillen equivalence to commutative monoids in
the category of functors from the category of finite sets and injections to unbounded
chain complexes.

55P43

1 Introduction

Let R be an arbitrary commutative ring. In Shipley [29] it was shown that the model
category of algebra spectra over the Eilenberg–Mac Lane spectrum, HR, is connected to
the model category of differential graded R–algebras via a chain of Quillen equivalences.
In this paper we extend this result to the case of commutative HR–algebra spectra.
As a guiding example we consider the function spectrum F.X;HR/ from a space X

to the Eilenberg–Mac Lane spectrum of a commutative ring R. As R is commutative,
F.X;HR/ is a commutative HR–algebra spectrum whose homotopy groups are the
cohomology groups of the space X with coefficients in R:

��nF.X;HR/ŠH n.X IR/:

The singular cochains on X with coefficients in R, denoted by S�.X IR/, give a
chain model of the cohomology of X by regrading. We set

C��.X IR/ WD S�.X IR/:

Note that for RD Fp the Steenrod operations on H�.X IR/ can be constructed from
the [i –products. These are chain homotopies that measure the failure of the cup-
product to produce a strictly graded commutative product of cochains. Thus, in general,
one cannot expect to find a model of the singular cochains of a space that is a differential
graded commutative R–algebra. Instead, one must work with E1–algebra structures.
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See also Cenkl [3, Theorem 2]. A notable exception are rational cochains of a space
with the Sullivan cochains as a strictly differential graded commutative model.

We establish a chain of Quillen equivalences between commutative HR–algebra spectra,
C.HR–mod/, and differential graded E1–R–algebras, E1ChR :

C.HR–mod/
Z
//
C.Sp†.smodR//

U
oo

ˆ�N

// C.Sp†.chR//
LN
oo

i
//
C.Sp†.ChR//

C0

oo

R"
��

E1ChR

F0
//
E1.Sp

†.ChR//
Ev0

oo

L"

OO

Here, our intermediary categories include symmetric spectra (Sp† ) over the cate-
gories of simplicial R–modules (smodR ), nonnegatively graded chain complexes
over R (chR ), and unbounded chain complexes over R (ChR ). The functors will be
introduced in the sections below.

The fact that there is such an equivalence should not be surprising, but to our knowledge,
no explicit chain of Quillen equivalences can be found in the literature.

In the context of infinite loop space theory, E1–ring spectra, and their units, the theory
of I–spaces is important; see Sagave and Schlichtkrull [22]. Here I is the category of
finite sets and injections and I–spaces are functors from I to simplicial sets. More
generally, functor categories from I to categories of modules feature as FI–modules in
the work of Church, Ellenberg and Farb [6] and others. We relate symmetric spectra in
unbounded chain complexes over R via a chain of Quillen equivalences to the category
of unbounded I–chain complexes and prove that commutative monoids in this category,
C.ChIR/, provide an alternative model for commutative HR–algebra spectra. In fact,
there is a chain of Quillen equivalences between C.HR–mod/ and E1.Ch

I
R/, the E1–

monoids in unbounded I–chain complexes over R, that passes via E1.Sp
†.ChR//

and E1ChR . The rigidification result of Pavlov and Scholbach [20, Theorem 3.4.4]
for symmetric spectra implies that the model category E1.Ch

I
R/ is Quillen equivalent

to the one of commutative monoids in ChIR , that is, C.ChIR/. Taking these results
together we obtain a chain of Quillen equivalences between commutative HR–algebra
spectra and commutative monoids in I–chain complexes over R. See Theorem 9.5.
We expect that our comparison result makes it possible to find explicit commutative
I–chain models for certain commutative HR–algebras and there is ongoing work
on this by Richter, Sagave and Schulz with applications to logarithmic structures on
commutative ring spectra in mind.

If RDQ is the field of rational numbers we can extend our chain of Quillen equiva-
lences and obtain a comparison (Corollary 8.4) between commutative HQ–algebra
spectra and differential graded commutative Q–algebras.

Algebraic & Geometric Topology, Volume 17 (2017)
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Mike Mandell showed in [16, Theorem 7.11] that for every commutative ring R the
homotopy categories of E1–HR–algebra spectra and of E1–monoids in the category
of unbounded R–chain complexes are equivalent. He also claims in loc. cit. that he
can improve this equivalence of homotopy categories to an actual chain of Quillen
equivalences. He suggests using the methods of Schwede and Shipley [27], but only
associative monoids are treated there.

Our approach is different from Mandell’s because we work in the setting of symmetric
spectra. The idea to integrate the symmetric groups into the monoidal structure to
construct a symmetric monoidal category of spectra is due to Jeff Smith. Our arguments
heavily rely on combinatorial and monoidal features of the category of symmetric
spectra in the categories of simplicial sets, simplicial R–modules, nonnegatively graded
chain complexes (chR ) and unbounded chain complexes (ChR ).

The structure of the paper is as follows: We recall some basic facts and some model
categorical features of symmetric spectra in Section 2. In Section 3 we recall results
from Pavlov and Scholbach [19; 20] that establish model structures on commutative ring
spectra in the cases that arise as intermediate steps in our chain of Quillen equivalences
and we also recall their rigidification result. We sketch how to use methods from
Chadwick and Mandell [4] for an alternative proof. The Quillen equivalence between
commutative HR–algebra spectra and commutative symmetric ring spectra in simplicial
R–modules can be found in Section 4 as Theorem 4.1. The Quillen equivalence between
the latter model category and commutative symmetric ring spectra in nonnegatively
graded chain complexes is based on the Dold–Kan correspondence and is stated as
Theorem 6.6 in Section 6. There is a natural inclusion functor i W ch! Ch and the
Quillen equivalence between commutative symmetric ring spectra in ch and in Ch (see
Corollary 7.3) is based on this functor. In Section 8 we establish a Quillen equivalence
between E1–monoids in symmetric spectra in unbounded chain complexes and E1–
monoids in unbounded chain complexes. The link with E1–monoids and commutative
monoids in the diagram category of chain complexes indexed by the category of finite
sets and injections is worked out in Section 9.

Acknowledgements This material is based upon work supported by the National
Science Foundation under Grant No. 0932078000 while the authors were in residence
at the Mathematical Sciences Research Institute in Berkeley, California, during the
spring 2014 program on algebraic topology. Shipley was also supported during this
project by the NSF under Grants No. 1104396 and 1406468. We are grateful to Dmitri
Pavlov and Jakob Scholbach for sharing draft versions of Pavlov and Scholbach [19; 20]
with us. We thank Benjamin Antieau and Steffen Sagave for helpful comments on an
earlier version of this paper.
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2 Background

In the following we will consider model category structures that are transferred by an
adjunction. Given an adjunction

C
L
// D

R
oo

where C is a model category and D is a bicomplete category, we call a model structure
on D right-induced if the weak equivalences and fibrations in D are determined by the
right adjoint functor R.

We use the general setting of symmetric spectra as in [11]. Let .C;˝; 1/ be a bicomplete
closed symmetric monoidal category and let K be an object of C . A symmetric sequence
in C is a family of objects X.n/ 2 C with n 2N0 such that the nth level X.n/ carries
an action of the symmetric group †n . Symmetric sequences form a category C† whose
morphisms are given by families of †n –equivariant morphisms f .n/, n > 0. For
every r > 0 there is a functor Gr W C! C† with

Gr .C /.n/D

�
†n �C for nD r;

¿ for n¤ r;

where ¿ denotes the initial object of C . Here †n�C D
F
†n

C carries the †n –action
that permutes the summands.

We consider the symmetric sequence Sym.K/ whose nth level is K˝n . Here we follow
the usual convention that K˝0 is the unit 1. The category C† inherits a symmetric
monoidal structure from C : for X , Y 2 C† we set

.X ˇY /.n/D
G

pCqDn

†n �†p�†q
X.p/˝Y .q/:

It is straightforward to show (see for instance [11, Section 7]) that Sym.K/ is a
commutative monoid in C† .

The category of symmetric spectra (in C with respect to K ), Sp†.C;K/, is the cate-
gory of right Sym.K/–modules in C† . Explicitly, a symmetric spectrum is a family
of †n –objects X.n/ 2 C together with †n –equivariant maps

X.n/˝K!X.nC 1/

for all n> 0 such that the composites

X.n/˝K˝p
!X.nC 1/˝K˝p�1

! � � � !X.nCp/

are †n�†p –equivariant for all n;p > 0. Morphisms in Sp†.C;K/ are morphisms of
symmetric sequences that are compatible with the right Sym.K/–module structure.

Algebraic & Geometric Topology, Volume 17 (2017)



An algebraic model for commutative HZ–algebras 2017

There is an evaluation functor Evn that maps an X 2 Sp†.C;K/ to X.n/ 2 C . This
functor has a left adjoint

FnW C! Sp†.C;K/

such that Fn.C /.m/ is the initial object for m< n and

Fn.C /.m/Š†m �†m�n
C ˝K˝m�n if m> n:

Note that Fn.C /ŠGn.C /ˇ Sym.K/.

Symmetric spectra form a symmetric monoidal category .Sp†.C;K/;^; Sym.K// such
that for X;Y 2 Sp†.C;K/,

X ^Y DX ˇSym.K / Y:

Here X ˇSym.K / Y denotes the coequalizer of the diagram

X ˇ Sym.K/ˇY //
//
X ˇY

where we use the right action of Sym.K/ on X and we use the right action of Sym.K/
on Y after applying the twist-map in the symmetric monoidal structure on C† .

A crucial map is

(1) �W F1K! F01I

it is given as the adjoint to the identity map K! Ev1F01DK .

We recall the basics about model category structures on symmetric spectra from [11]:
If C is a closed symmetric monoidal model category which is left proper and cellular
and if K is a cofibrant object of C , then there is a projective model structure on the
category Sp†.C;K/ [11, Theorem 8.2], Sp†.C;K/proj , such that the fibrations and
weak equivalences are levelwise fibrations and weak equivalences in C and such that
the cofibrations are determined by the left lifting property with respect to the class of
acyclic fibrations.

This model structure has a Bousfield localization with respect to the set of maps

f�QC
n W FnC1.QC ˝K/! Fn.QC / j n> 0g;

where Q.�/ is a cofibrant replacement and C runs through the domains and codomains
of the generating cofibrations of C . The map �QC

n is adjoint to the inclusion map into
the component of Fn.QC /.nC 1/ corresponding to the identity permutation. We call
the Bousfield localization of Sp†.C;K/proj at this set of maps the stable model structure
on Sp†.C;K/ and denote it by Sp†.C;K/s .

As we are interested in commutative monoids in symmetric spectra, we use positive
variants of the above mentioned model structures: Let Sp†.C;K/Cproj be the model

Algebraic & Geometric Topology, Volume 17 (2017)
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structure where fibrations are maps that are fibrations in each level n > 1 and weak
equivalences are levelwise weak equivalences for positive levels. The cofibrations are
again determined by their lifting property and they turn out to be isomorphisms in level
zero (compare [17, Section 14]). By adapting the localizing set and considering only
positive n, we get the positive stable model structure on Sp†.C;K/ and we denote it
by Sp†.C;K/s;C .

Remark 2.1 We consider several examples of categories C with different choices of
objects K 2 C . Despite the name, the stable model structure on Sp†.C;K/ does not
have to define a stable model category in the sense that the category is pointed with a
homotopy category that carries an invertible suspension functor. Proposition 9.1 for
instance makes this explicit in the case when K is the unit of the symmetric monoidal
structure on C .

3 Model structures on algebras over an operad over Sp†.C/

for C D ch, sAb, Ch

From now on we restrict to the case RDZ in order to ease notation. The proofs work
in general.

Establishing right-induced model structures for commutative monoids in model cat-
egories is hard. Sometimes it is not possible, for instance there is no right-induced
model structure on differential graded commutative rings, because the free functor
does not respect acyclicity. However, if the underlying model category is nice enough,
then such model structures can be established. In broader generality, one might ask
whether algebras over operads possess a right-induced model structure. In our setting
we will apply the results of Pavlov and Scholbach. They show in [19, Theorem 5.10]
and [20, Theorem 3.4.1] that for a tractable, pretty small, left proper, h–monoidal, flat
symmetric monoidal model category C the category of O–algebras in Sp†.C;K/s;C

has a right-induced model structure. Here O is an operad in C . See loc. cit. for an
explanation of the assumptions. These conditions are satisfied for the model categories
of simplicial abelian groups and both nonnegatively graded and unbounded chain
complexes. Hence, using their results, we obtain:

Theorem 3.1 The category of O–algebras in Sp†.C;K/s;C has a right-induced model
structure for C D sAb, ch, Ch, any K and any operad O in C .

We follow the convention that an E1–operad P in Ch (or ch, sAb) is a symmetric
unital operad whose augmentation induces a weak equivalence to the operad that
describes commutative monoids. For the sake of brevity we call algebras over an
E1–operad E1–monoids. Pavlov and Scholbach also prove a rigidification theorem
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[19, Theorem 7.5; 20, Theorem 3.4.4]. We apply this to the case of E1–monoids
and in this case it provides a Quillen equivalence between the model category of
E1–monoids in Sp†.C;K/s;C and commutative monoids in Sp†.C;K/s;C . Related
rectification results in the setting of spaces instead of chain complexes are due to [8]
and [22]. Berger and Moerdijk obtain general results about rectifications of homotopy
algebra structures in [2].

Other approaches to model structures for commutative monoids in symmetric spectra
and rigidification results can be found for instance in work by John Harper [9], David
White [31], and Steven Chadwick and Michael Mandell [4].

In the following we sketch an alternative proof of the existence of a positive stable
right-induced model structure for the category of symmetric spectra in the category of
unbounded chain complexes, Sp†.Ch;ZŒ1�/, where ZŒ1� denotes the chain complex
which is concentrated in chain degree one with chain group Z. This proof uses a
modification of the methods used by Chadwick and Mandell [4]. A similar proof works
for the categories of symmetric spectra in simplicial abelian groups, Sp†.sAb; zZ.S1//,
with K D zZ.S1/ the reduced free abelian simplicial group generated by the simplicial
1–sphere, and for symmetric spectra in the category of nonnegatively graded chain
complexes, Sp†.ch;ZŒ1�/.

A reader who is just interested in the application of these results is invited to resume
reading in Section 4.

Theorem 3.2 Let O be an operad in Ch. Then the category O.Sp†.Ch// of O–
algebras over Sp†.Ch/ is a model category with fibrations and weak equivalences
created in the positive stable model structure on Sp†.Ch/.

Theorem 3.3 Let �W O!O0 be a map of operads. The induced adjoint functors

O.Sp†.Ch//
L�
// O0.Sp†.Ch//

R�

oo

form a Quillen adjunction. This is a Quillen equivalence if �.n/W O.n/!O0.n/ is a
(nonequivariant) weak equivalence for each n.

In particular, if " is the augmentation from any E1–operad to the commutative operad,
then it induces a Quillen equivalence between the categories of E1–monoids and of
commutative monoids in Sp†.Ch/.

The proofs of both of these theorems use the following statement, which is a translation
of [17, Lemma 15.5] to Sp†.Ch/ with a slight generalization based on [4, Remark 8.3(i)].
As a model for E†n in the category Sp†.Ch/ we take F0 applied to the normalization
of the free simplicial abelian group generated by the nerve of the translation category
of the symmetric group †n .
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Proposition 3.4 Let X and Z be objects in Sp†.Ch/.

(1) Let K be a chain complex, assume X has a †i –action, and let n> 0. Then the
quotient map

qW E†iC ^†i
..FnK/^i

^X /! ..FnK/^i
^X /=†i

is a level homotopy equivalence.
(2) For any positive cofibrant object X and any †i –equivariant object Z ,

qW E†iC ^†i
.Z ^X^i/! .Z ^X^i/=†i

is a ��–isomorphism.

Proof First, the proof of [17, Lemma 15.5] easily translates to the setting of Sp†.Ch/

from Sp†.S/ considered there. The key point is that if q>ni , then E†i�†q!†q is
a .†i�†q�ni/–equivariant homotopy equivalence. As mentioned in [4, Remark 8.3(i)],
the proof of the first statement in [17, Lemma 15.5] still works when X has a †i –
action because the †i –action remains free on †q (or O.q/ in the explicit case there).
Similarly the second statement here follows by the same cellular filtration of X as in
[17, Lemma 15.5].

The proofs of both of the theorems above also require the following definition and
statement of properties.

Definition 3.5 A chain map i W A! B in Ch is an h–cofibration if each homomor-
phism inW An! Bn has a section (or splitting). These are the cofibrations in a model
structure on Ch; see [5, Example 3.4], [24, Proposition 4.6.2], or [18, Theorem 18.3.1].
We say a map i W X ! Y in Sp†.Ch/ is an h–cofibration if each level inW Xn! Yn is
an h–cofibration as a chain map.

Below we refer to †n –equivariant h–cofibrations. These are †n –equivariant maps for
which the underlying nonequivariant map is an h–cofibration. We use the following
properties of h–cofibrations below.

Proposition 3.6 (1) The generating cofibrations and acyclic cofibrations in Ch are
h–cofibrations.

(2) Sequential colimits and pushouts preserve h–cofibrations.
(3) If f and g are two h–cofibrations in Ch, then their pushout product f�g is

also an h–cofibration.
(4) If f is an h–cofibration in Ch, then Fif is an h–cofibration in Sp†.Ch/.
(5) For every †n –equivariant object Z , subgroup H of †n , †n –equivariant

h–cofibration f , and i > n, the map Z ^H Fi.f / is an h–cofibration.
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We write OI and OJ for the sets of maps in O.Sp†.Ch// obtained by applying
the free O–algebra functor to the generating cofibrations I and generating acyclic
cofibrations J from [29]. Since Sp†.Ch/ is a combinatorial model category and the
free functor O commutes with filtered direct limits, to prove Theorem 3.2 it is enough
to prove the following lemma by [26, Lemma 2.3].

Lemma 3.7 Every sequential composition of pushouts in O.Sp†.Ch// of maps in OJ

is a stable equivalence.

Proof of Lemma 3.7 This follows as in [4, 8.7–8.10]. Chadwick and Mandell consider
pushouts of algebras over an operad O for three different symmetric monoidal categories
of spectra simultaneously (including Sp†.S/); all of their arguments hold as well
for Sp†.Ch/ using the properties of h–cofibrations listed in Proposition 3.6 and the
generalization of [17, Lemma 15.5] given in Proposition 3.4(2).

Proof of Theorem 3.3 This follows as in [4, Theorem 8.2] again using Proposition 3.6
and Proposition 3.4 .

4 Commutative HZ–algebras and Sp†.sAb/

In this section we consider the Quillen equivalence between HZ–module spectra and
Sp†.sAb/ and show that it also induces an equivalence on the associated categories
of commutative monoids. Recall the functor Z from HZ–modules to Sp†.sAb/

from [29] which is given by Z.M /D zZ.M /^zZHZ HZ where zZ is the free abelian
group on the nonbasepoint simplices on each level. The right adjoint of Z is given
by recognizing that Sym.zZ.S1//, the unit in Sp†.sAb/, is isomorphic to zZ.S/ŠHZ.
The right adjoint is labeled U for underlying. In [29, Proposition 4.3], the pair .Z;U /
was shown to induce a Quillen equivalence on the standard model structures. Since
Z is strong symmetric monoidal, .Z;U / also induces an adjunction between the
commutative monoids. We use the right-induced model structure on commutative
monoids in Sp†.sAb/ and HZ–module spectra [20, Theorem 3.4.1].

Theorem 4.1 The functors Z and U induce a Quillen equivalence between commu-
tative HZ–algebra spectra and commutative symmetric ring spectra over sAb:

ZW C.HZ–mod/ //
C.Sp†.sAb// WUoo

Proof It follows from [29, Proof of Proposition 4.3] that U preserves and detects all
weak equivalences and fibrations since weak equivalences and fibrations are determined
on the underlying category of symmetric spectra in pointed simplicial sets, Sp†.S�/.
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To show that .Z;U / is a Quillen equivalence, by [17, Lemma A.2(iii)] it is enough to
show that for all cofibrant commutative HZ algebras A, the map A!UZA is a stable
equivalence. If A were in fact cofibrant as an HZ module spectrum, this would follow
from the Quillen equivalence on the module level [29]. In the standard model structure
on commutative algebra spectra though, cofibrant objects are not necessarily cofibrant
as modules. The positive flat model (or R–model) structures from [28, Theorem 3.2]
were developed for just this reason. In Lemma 4.2 we show that for positive flat
cofibrant commutative HZ algebras B , the map B! UZB is a stable equivalence.
It follows from Lemma 4.2 that A! UZA is a stable equivalence for all standard
(positive) cofibrant commutative HZ algebras A, since such A are also positive flat
cofibrant by [28, Proposition 3.5]. See also [19, Theorem 8.10] for an alternative
approach to this theorem.

As discussed in the proof above, we next consider the flat model (or R–model) structures
from [28, Theorem 3.2]; see also [25, III, Sections 2 and 3].

Lemma 4.2 For positive flat cofibrant commutative HZ algebras B , the map B!

UZB is a stable equivalence.

Proof The crucial property for positive flat cofibrant (HZ–cofibrant) commutative
monoids is that they are also (absolute) flat cofibrant as underlying modules. Thus, if
B is a positive flat cofibrant commutative HZ–algebra, then it is also an (absolute) flat
cofibrant HZ–module by [28, Corollary 4.3]. (In fact B is also a positive flat cofibrant
HZ–module by [28, Corollary 4.1], but we do not use that here.) Since the Quillen
equivalence in [29, Proposition 4.3] is with respect to the standard model structures [29,
Proposition 2.9], we next translate to that setting. Consider a cofibrant replacement
pW cB! B in the standard model structure on HZ–modules; the map p is a trivial
fibration and hence a level equivalence. Consider the commuting diagram:

cB

��

p
// B

��

UZcB // UZB

The left map is a stable equivalence by [29, Proposition 4.3]. In Lemma 4.3 below we
show that Z takes level equivalences between flat cofibrant objects to level equivalences.
By [28, Proposition 2.8], cB is flat cofibrant, so it follows that the bottom map is also
a stable equivalence. Thus, the right map is a stable equivalence as well.

Lemma 4.3 The functor Z takes level equivalences between flat cofibrant objects to
level equivalences.
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Proof Here we will consider Z as a composite of two functors and we will always work
over symmetric spectra in pointed simplicial sets, Sp†.S�/, by forgetting from sAb

to S� wherever necessary. The first component is zZ from HZ–modules to zZHZ–
modules, and the second component is the extension of scalars functor �� associated to
the ring homomorphism �W zZHZ!HZ induced by recognizing HZ as isomorphic
to zZS and using the monad structure on zZ.

First, note that zZ is applied to each level and preserves level equivalences as a functor
from simplicial sets to simplicial abelian groups. The functor zZ also preserves flat
cofibrations, and hence flat cofibrant objects. The generating flat cofibrations (HZ–
cofibrations) are of the form HZ˝M where M is the class of monomorphisms of
symmetric sequences. Since zZ is strong symmetric monoidal, these maps are taken
to maps of the form zZ.HZ/˝ zZ.M /. Since zZ preserves monomorphisms, these are
contained in the generating flat ( zZHZ–) cofibrations, which are of the form zZHZ˝M .

Next, note that restriction of scalars, �� , preserves level equivalences and level fibra-
tions since they are determined as maps on the underlying flat (S –) model structure;
see the paragraph above [28, Theorem 2.6] and [28, Proposition 2.2]. It follows by
adjunction that �� preserves the flat cofibrations and level equivalences between flat
cofibrant objects.

Remark 4.4 In the proof of Theorem 4.1 we use a reduction argument that allows
us to establish the desired Quillen equivalence by checking that the unit map of the
adjunction is a weak equivalence on flat cofibrant objects in the flat model structure on
commutative HZ–algebras. This approach avoids a discussion of a flat model structure
on commutative symmetric ring spectra in simplicial abelian groups.

5 Dold–Kan correspondence for commutative monoids

The classical Dold–Kan correspondence is an equivalence of categories between the
category of simplicial abelian groups, sAb, and the category of nonnegatively graded
chain complexes of abelian groups, ch. In this section we establish a Quillen equivalence
between categories of commutative monoids in symmetric sequences of simplicial
abelian groups, C.sAb†/, and nonnegatively graded chain complexes, C.ch†/, carry-
ing positive model structures. In the special case of pointed commutative monoids in
symmetric sequences of simplicial modules and nonnegatively graded chain complexes,
such a Quillen equivalence is established in [21, Theorem 6.5].

In the next section we extend this equivalence from symmetric sequences to symmetric
spectra. We first define the relevant model structures on the categories of symmetric
sequences in simplicial abelian groups, sAb† , and chain complexes, ch† .
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Definition 5.1 � Let f W A! B be a morphism in ch† . Then f is a positive
weak equivalence, if H�.f /.`/ is an isomorphism for positive levels ` > 0. It
is a positive fibration, if f .`/ is a fibration in the projective model structure on
nonnegatively graded chain complexes for all ` > 0.

� A morphism gW C !D in sAb† is a positive fibration if g.`/ is a fibration of
simplicial abelian groups in positive levels and it is a positive weak equivalence
if g.`/ is a weak equivalence for all ` > 0.

In both cases, the positive cofibrations are determined by their left lifting property
with respect to positive acyclic fibrations. Positive cofibrations are cofibrations that are
isomorphisms in level zero. One can check directly that the above definitions give model
category structures or use Hirschhorn’s criterion [10, Theorem 11.6.1] and restrict to the
diagram category whose objects are natural numbers greater than or equal to one and
then use the trivial model structure in level zero with cofibrations being isomorphisms
and weak equivalences and fibrations being arbitrary. The generating cofibrations are
maps of the form Gr .i/ for r positive and such that i is a generating cofibration in
chain complexes (simplicial modules). The generating acyclic cofibrations are maps of
the form Gr .j / for r positive and where j is a generating acyclic cofibration in chain
complexes (simplicial modules).

We also get the corresponding right-induced model structures on commutative monoids:

Definition 5.2 An f in C.ch†/.A;B/ is a positive weak equivalence (fibration)
if the map on underlying symmetric sequences, U.f / in ch†.U.A/;U.B//, is a
positive weak equivalence (fibration). Similarly, g in C.sAb†/.C;D/ is a positive
weak equivalence (fibration) if the map on underlying symmetric sequences, U.g/ 2

sAb†.U.C /;U.D// is a positive weak equivalence (fibration).

In [21, Corollary 5.8, Definition 6.2] these model structures were established for pointed
commutative monoids in symmetric sequences of simplicial modules and nonnegatively
graded chain complexes. An object A in C.ch†/ or C.sAb†/ is called pointed, if its
zeroth level is the unit of the monoidal structure of the base category. We recall the
key points of the argument in the proof below. This also makes it clear that the results
of [21] can be adapted to the setting of Definition 5.1.

Lemma 5.3 The structures defined in Definition 5.2 yield cofibrantly generated model
categories where the generating cofibrations are C.Gr .i// and the generating acyclic
cofibrations are C.Gr .j // with i , j as above and r positive.
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Proof Adjunction gives us that the maps with the right lifting property with respect to
all C.Gr .j //, r > 0, are precisely the positive fibrations and the ones with the RLP
with respect to all C.Gr .i//, r > 0, are the positive acyclic fibrations. Performing the
small object argument based on the C.Gr .j // for all positive r yields a factorization
of any map as a positive acyclic cofibration and a fibration whereas the small object
argument based on the C.Gr .i// for positive r gives the other factorization.

Let Z denote the constant simplicial abelian group with value Z. In the positive model
structures cofibrant objects are commutative monoids whose zeroth level is isomorphic
to Z in C.sAb†/ or to ZŒ0� in C.ch†/. In particular, such objects are pointed in the
sense of [21, Definition 5.1].

Let � denote the functor from nonnegatively graded chain complexes to simplicial
abelian groups that is the inverse of the normalization functor. We can extend �

to a functor from ch† to sAb† by applying � in every level. As the category of
symmetric sequences of abelian groups is an abelian category, the pair .N; �/ is still
an equivalence of categories.

In the following we extend the result [21, Theorem 6.5] in the pointed setting, to the
setting of positive model structures.

Theorem 5.4 Let C.sAb†/ and C.ch†/ carry the positive model structures. Then
the normalization functor N W C.sAb†/! C.ch†/ is the right adjoint in a Quillen
equivalence and its left adjoint is denoted LN .

Proof A left adjoint LN to N is constructed in [21, Lemma 6.4]. As positive fibrations
and weak equivalences are defined via the forgetful functors to sAb† and ch† , the
functor N is a right Quillen functor and N also detects weak equivalences. Every
object is fibrant, so we have to show that the unit of the adjunction

�W A!NLN .A/

is a weak equivalence for all cofibrant A 2 C.ch†/. But cofibrant objects are pointed
and for these it is shown in [21, Proof of Theorem 6.5] that the unit map is a weak
equivalence.

6 Extension to commutative ring spectra

We will show that the pair .LN ;N / gives rise to a Quillen equivalence .LN ; �
�N /

on the level of commutative symmetric ring spectra.

Algebraic & Geometric Topology, Volume 17 (2017)



2026 Birgit Richter and Brooke Shipley

Lemma 6.1 The Quillen pair .LN ;N / satisfies

LN .SymX�/Š Sym.�.X�//

for all nonnegatively graded chain complexes X� .

Proof We can identify Sym.C�/ with the free commutative monoid generated by
G1X� , C.G1X�/. Then, by definition of LN , we obtain

LN .C.G1X�//Š C.�.G1X�//Š C.G1�.X�//Š Sym.�.X�//:

Let C be a category and let A be an object of C . Then we denote by A# C the category
of objects under A.

Corollary 6.2 Let C.ch†/ and C.sAb†/ carry the positive model category structures
and consider the induced model structures on the categories under a specific object.
Then the model categories Sym.ZŒ0�/ # C.ch†/ and Sym.Z/ # C.sAb†/ are Quillen
equivalent.

Proof By Lemma 6.1 we know that

LN Sym.ZŒ0�/Š Sym.Z/:

A direct calculation shows that N.Sym.Z// is isomorphic to Sym.ZŒ0�/. Therefore the
Quillen equivalence .LN ;N / passes to a Quillen adjunction on the under categories. As
the classes of fibrations, weak equivalences and cofibrations in the under categories are
determined by the ones in the ambient category, this adjunction is a Quillen equivalence.

Note that there is an isomorphism of categories between the category of commutative
monoids in Sp†.sAb; zZ.S1// and the category Sym.zZ.S1//#C.sAb†/. A similar iso-
morphism of categories compares commutative monoids in Sp†.ch;ZŒ1�/ and objects
in Sym.ZŒ1�/ # C.ch†/. We can extend the Quillen equivalence from Corollary 6.2 to
these under categories. Recall from [29, page 358] that N is the symmetric sequence in
chain complexes with N.zZ.S`// in level `. We denote by 1 the unit of the symmetric
monoidal category ch† . This is the symmetric sequence with ZŒ0� in level zero and
zero in all positive levels.

Proposition 6.3 The functors .LN ; ˆ
�N / induce a Quillen equivalence on the model

categories Sym.ZŒ1�/ # C.ch†/ and Sym.zZ.S1// # C.sAb†/ where C.ch†/ and
C.sAb†/ carry the positive model structures. Here, ˆ� is a suitable change-of-rings
functor.
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Proof As �.ZŒ1�/ is isomorphic to zZ.S1/ we obtain with Lemma 6.1 that

LN .Sym.ZŒ1�//Š Sym.zZ.S1//:

Therefore, if A is an object in Sym.ZŒ1�/ # C.ch†/, then LN .A/ is an object of
Sym.zZ.S1// # C.sAb†/. We consider the functors

Sym.ZŒ1�/ # C.ch†/
LN

// Sym.zZ.S1// # C.sAb†/

Nuu

N # C.ch†/

ˆ�

hh

where ˆW Sym.ZŒ1�/!N is induced by the shuffle transformation (see [29, page 358])
and ˆ� is the associated change-of-rings map. Note that NLN SymZŒ1�ŠN . Both
functors N and ˆ� preserve and detect level and stable weak equivalences [29, Proof
of Proposition 4.4], therefore they preserve and detect positive weak equivalences and
hence it suffices to show that

A!ˆ�NLN A

is a weak equivalence in the model category Sym.ZŒ1�/ # C.ch†/ for all cofibrant
objects ˛W Sym.ZŒ1�/!A. There is a map of commutative monoids  W 1!Sym.ZŒ1�/
which is given by the identity in level zero and by the zero map in higher levels. Let  �

be the associated change-of-rings functor:

1

// Sym.ZŒ1�/

ˆ

��

˛
// A

�A

��

N
NLN˛

// NLN A

Note that �A ı ˛ ı  D NLN˛ ıˆ ı  . As A is cofibrant, we know that the map
˛.0/W ZŒ0�D Sym.ZŒ1�/.0/!A.0/ is an isomorphism. Therefore  �.A/ is positively
cofibrant as an object in C.ch†/. Hence the map

 �.A/!  �ˆ�NLN .A/

is a positive weak equivalence in C.ch†/, ie a level equivalence in all positive levels
(it is also a weak equivalence in level zero). As  � is the identity on objects and only
changes the module structure we get that

A!ˆ�NLN .A/

is a level equivalence in Sym.ZŒ1�/ # C.ch†/.
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Remark 6.4 With the positive model structure, C.ch†/ is not left proper. Consider
for instance the map CGr .0/D1!CGr .ZŒ0�/. This map is a cofibration for positive r

in the positive model structure. On the other hand, take the projection map from Z
to Z=2Z. This yields a map � in C.ch†/ from the initial object 1 to 1=21 (where
the latter object is concentrated in level zero with value Z=2ZŒ0�). As we work in the
positive model structure, this map is actually a weak equivalence. If we push out �
along the cofibration 1! CGr .ZŒ0�/ we get

gW CGr .ZŒ0�/! CGr .ZŒ0�/ˇ 1=21:

In level r this is the chain map

g.r/W Gr .ZŒ0�/.r/Š ZŒ†r �˝ZŒ0�Š ZŒ†r �Œ0�

! ZŒ†r �˝ZŒ0�˝Z=2ZŒ0�Š Z=2ZŒ†r �Œ0�:

Therefore we do not get an isomorphism for positive r and the pushout of the weak
equivalence � is not a weak equivalence.

We want to transfer our results to a comparison of commutative monoids in symmetric
spectra of simplicial abelian groups and nonnegatively graded chain complexes where
we consider the positive stable model structure.

Lemma 6.5 Cofibrant objects in C.Sp†.ch;ZŒ1�// in the positive stable model struc-
ture are cofibrant in C.ch†/.

Proof We can express the map 1! Sym.ZŒ1�/ as

1Š C.G1.0//! C.G1.ZŒ1�//D Sym.ZŒ1�/:

Therefore the unit of Sym.ZŒ1�/ is C.G1.i// with i W 0 ! ZŒ1� and hence it is a
cofibration and therefore the initial object Sym.ZŒ1�/ of C.Sp†.ch;ZŒ1�// is cofibrant
in C.ch†/.

As usual, let Sn denote the chain complex whose only nontrivial chain group is Z in
degree n and let Dn denote the chain complex with Dn

n DDn
n�1
DZ and Dn

i D 0 for
all i ¤ n, n� 1 whose only nontrivial boundary map is the identity. The cofibrant
generators of the positive stable model structure are the maps

(2) Sym.ZŒ1�/ˇGm.Sn�1/
Sym.ZŒ1�/ˇGm.in/

// Sym.ZŒ1�/ˇGm.Dn/;

where in is the cofibration of chain complexes inW Sn�1! Dn and m > 1. The ˇ–
product is the coproduct in the category C.ch†/ and thus the map Sym.ZŒ1�/ˇGm.in/

Algebraic & Geometric Topology, Volume 17 (2017)



An algebraic model for commutative HZ–algebras 2029

is the coproduct of the identity map on Sym.ZŒ1�/ and the map Gm.in/ and hence a
cofibration in C.ch†/.

Coproducts of generators as in (2) are cofibrations in C.ch†/ as well, because the
coproduct in C.Sp†.ch;ZŒ1�// is given by the ˇSym.ZŒ1�/–product.

Every cofibrant object is a retract of a cell-object and these are sequential colimits of
pushout diagrams of the form

X

f

��

// A.n/

��

Y // A.nC1/

where f is a coproduct of maps like in (2) and A.n/ is inductively constructed such
that A.0/ is Sym.ZŒ1�//. We can inductively assume that X , Y and A.n/ are cofibrant
in C.ch†/. The pushout in C.Sp†.ch;ZŒ1�// is the pushout in C.ch†/ and hence the
pushout A.nC1/ is cofibrant in C.ch†/ as well. Sequential colimits and retracts of
cofibrant objects are cofibrant.

Theorem 6.6 The Quillen pair .LN ; ˆ
�N / induces a Quillen equivalence between

C.Sp†.ch;ZŒ1�// and C.Sp†.sAb; zZ.S1/// with the model structures that are right-
induced from the positive stable model structures on the underlying categories of
symmetric spectra.

Proof We have to show that the unit of the adjunction

A!ˆ�NLN A

is a stable equivalence for all cofibrant A 2 C.Sp†.ch;ZŒ1�//. Lemma 6.5 ensures
that A is cofibrant as an object in C.ch†/. Both A and ˆ�NLN A receive a unit map
from Sym.ZŒ1�/. As in the proof of Proposition 6.3 we get that

 �A!NLN 
�A

is a level equivalence in C.ch†/ and therefore the map A! ˆ�NLN A is a level
equivalence in C.Sp†.ch;ZŒ1�// and hence a stable equivalence.

7 Comparison of spectra in bounded and unbounded
chain complexes

Recall that ch denotes the category of nonnegatively graded chain complexes and Ch is
the category of unbounded chain complexes of abelian groups. There is a canonical in-
clusion functor i W ch!Ch and a good truncation functor C0W Ch! ch which assigns to
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an unbounded chain complex X� the nonnegatively graded chain complex C0.X�/ with

C0.X�/m D

�
Xm for m> 0;

cycles.X0/ for mD 0:

We denote the induced functors on the corresponding categories of symmetric spectra
again by i and C0 . In this section we consider the Quillen equivalence

i W Sp†.ch/ // Sp†.Ch/ WC0oo

and show that it extends to a Quillen equivalence of categories of commutative monoids.
The original Quillen equivalence is established in [29, Proposition 4.9] for the usual
stable model structures. Here we consider instead the positive stable model structures
from [17, Section 14] and then consider the right-induced model structures on com-
mutative monoids where f is a weak equivalence or fibration if it is an underlying
positive weak equivalence or fibration. Note that the weak equivalences of the stable
model structure agree with the weak equivalences of the positive stable model structure
in Sp†.ch;ZŒ1�/ and Sp†.Ch;ZŒ1�/. For this reason the positive and stable model
structures are Quillen equivalent; see also [17, Proposition 14.6]. It follows that the
Quillen equivalence induced by i and C0 on the usual stable model structures also
induces a Quillen equivalence on the positive stable model structures.

Proposition 7.1 The adjoint functors i and C0 form a Quillen equivalence between
the positive stable model structures on Sp†.ch;ZŒ1�/ and Sp†.Ch;ZŒ1�/.

Corollary 7.2 Let f be a positive stably fibrant replacement functor in Sp†.Ch/ and
let �W X !C0 iX be the unit of the adjunction. The composite X !C0 iX !C0f iX

is a stable equivalence for all objects X in Sp†.ch;ZŒ1�/.

Proof It follows from the proof of Proposition 7.1 that the derived unit of the adjunction
is a weak equivalence whenever X is positive cofibrant. Since positive trivial fibrations
are positive levelwise weak equivalences and a positive cofibrant replacement cX !X

is a positive trivial fibration, we only need to show that C0f i preserves positive
levelwise equivalences. The inclusion i preserves positive levelwise equivalences
and f preserves stable equivalences. Any stable equivalence between positive stably
fibrant objects is a positive levelwise equivalence, so f i preserves positive levelwise
equivalences. Since C0 preserves positive levelwise equivalences between positive
stably fibrant objects, the corollary follows.

Corollary 7.3 The adjoint functors i and C0 induce a Quillen equivalence between
the commutative monoids in Sp†.ch;ZŒ1�/ and Sp†.Ch;ZŒ1�/.
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Proof Since the weak equivalences and fibrations are determined on the underlying
positive stable model structures, C0 still preserves fibrations and weak equivalences
between positive stably fibrant objects. By [12, Lemma 4.1.7] it is then enough to
check the derived composite C0 i is a stable equivalence for all cofibrant commutative
monoids. This is shown for all objects in Corollary 7.2. The fibrant replacement functor
for commutative monoids will be different, but the properties used in the proof of that
corollary still hold, so we conclude.

8 Quillen equivalence between E1–monoids
in Ch and Sp†.Ch/

We fix a cofibrant E1–operad O in Ch (in the model structure on operads as in [30,
Section 2, Remark 2]) and we consider the operad F0O in symmetric spectra in chain
complexes.

Let Ch carry the projective model structure and let E1Ch denote the category of O–
algebras in Ch with its right-induced model structure [30, Section 4, Theorem 4]. This
model structure exists because Ch is a cofibrantly generated monoidal model category,
it satisfies the monoid axiom [29, Corollary 3.4] and O is cofibrant. Alternatively, we
could work with Mandell’s model structure on E1–monoids in Ch using the operad
of the chains on the linear isometries operad [15]. See also [1] for general existence
results of model structures for categories of algebras over operads.

Similarly, Sp†.Ch;ZŒ1�/ with the stable model structure is a cofibrantly generated
monoidal model category satisfying the monoid axiom [29, Corollary 3.4], and as
the set of generating acyclic cofibrations for the positive stable model structure on
Sp†.Ch;ZŒ1�/ is a subset of the ones for the stable structure, the positive stable model
category also satisfies the monoid axiom. We consider two model structures for
E1 Sp†.Ch;ZŒ1�/, the E1–monoids in Sp†.Ch;ZŒ1�/:

� We denote by E1 Sp†.Ch;ZŒ1�/s;C the model structure in which the forget-
ful functor to the positive stable model category structure on Sp†.Ch;ZŒ1�/
determines the fibrations and weak equivalences.

� Let E1 Sp†.Ch;ZŒ1�/s denote the model category whose fibrations and weak
equivalences are determined by the forgetful functor to the stable model structure
on Sp†.Ch;ZŒ1�/.

Proposition 8.1 The model structure E1 Sp†.Ch;ZŒ1�/s;C is Quillen equivalent to
the model structure E1 Sp†.Ch;ZŒ1�/s .
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Proof We consider the adjunction

.E1 Sp†.Ch;ZŒ1�/s/
R
// .E1 Sp†.Ch;ZŒ1�/s;C/;

L
oo

where R and L are both the identity functor. If p is a fibration in the a positive
stable fibration in E1 Sp†.Ch;ZŒ1�/. Therefore R preserves fibrations. As the weak
equivalences in both model structures agree, R is a right Quillen functor and it preserves
and reflects weak equivalences. Hence the unit of the adjunction is a weak equivalence.

In the following we use Hovey’s comparison result [11, Theorem 9.1]: Tensoring with
ZŒ1� induces a Quillen autoequivalence on the category of unbounded chain complexes,
so we get that the pair .F0;Ev0/ induces a Quillen equivalence

Ch
F0
// Sp†.Ch;ZŒ1�/s:

Ev0

oo

We can then transfer this Quillen equivalence to the corresponding categories of E1–
monoids: Both F0 and Ev0 are strong symmetric monoidal functors. Fix a cofibrant
E1–operad O in Ch as above. As Ev0 ıF0 is the identity, Ev0 maps F0O–algebras
in E1 Sp†.Ch;ZŒ1�/ to O–algebras in unbounded chain complexes.

Theorem 8.2 The functors .F0;Ev0/ induce a Quillen equivalence

F0W E1Ch //
E1 Sp†.Ch;ZŒ1�/s WEv0:oo

Proof The proof follows Hovey’s proof of [11, Theorem 5.1]. It is easy to see that
Ev0 reflects weak equivalences between stably fibrant objects: If f W X ! Y is such a
map and f .0/ is a weak equivalence, then f .`/ is a weak equivalence for all `> 0,
because X and Y are fibrant and .�/˝ZŒ1� is a Quillen equivalence.

In our case .�/ ˝ ZŒ1� is an equivalence of categories with inverse the functor
Hom.ZŒ1�;�/, where Hom.�;�/ is the internal homomorphism bifunctor.

Therefore, for any X in E1Ch, we have that F0X is stably fibrant because

.F0X /n DX ˝ZŒn�Š Hom.ZŒ1�;X ˝ZŒnC 1�/

and as every object in Ch is fibrant, F0X is always fibrant in the projective model
structure on E1 Sp†.Ch;ZŒ1�/.

Let A be a cofibrant object in E1Ch. We have to show that

�W A! Ev0W .F0A/

is a weak equivalence, for W .�/ the fibrant replacement in E1 Sp†.Ch;ZŒ1�/. But
we saw that F0A is fibrant and A! Ev0F0A D A is the identity map, thus � is a
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weak equivalence. See also [19, Theorem 8.10] for an alternative approach to this
theorem.

Observe that all of the Quillen equivalences that we have established so far did not use
any particular properties of Z. We can therefore generalize our results as follows.

Corollary 8.3 Let R be a commutative ring with unit. There is a chain of Quillen
equivalences between the model category of commutative HR–algebra spectra and
E1–monoids in the category of unbounded R–chain complexes.

For RDQ we can strengthen the result:

Corollary 8.4 There is a chain of Quillen equivalences between the model category of
commutative HQ–algebra spectra and differential graded commutative Q–algebras.

Proof It is well known that the category of differential graded commutative algebras
and E1–monoids in Ch.Q/ possess a right-induced model category structure and that
there is a Quillen equivalence between them. For a proof of these facts see for instance
[14, Section 7.1.4].

Remark 8.5 Note that the proof of Theorem 8.2 applies in broader generality: If
O is an arbitrary operad in the category of chain complexes such that right-induced
model structures on O–algebras in Ch and on F0.O/–algebras in Sp†.Ch;ZŒ1�/s exist,
then the pair .F0;Ev0/ yields a Quillen equivalence between the model category of
O–algebras in Ch and the model category of F0.O/–algebras in Sp†.Ch;ZŒ1�/s .

9 Symmetric spectra and I–chain complexes

Let I denote the skeleton of the category of finite sets and injective maps with objects
the sets nDf1; : : : ; ng for n> 0 with the convention that 0D¿. The set of morphisms
I.p;n/ consists of all injective maps from p to n. In particular, this set is empty if n

is smaller than p . The category I is a symmetric monoidal category under disjoint
union of sets.

For any category C we consider the diagram category CI of functors from I to C . If
.C;˝; e/ is symmetric monoidal, then CI inherits a symmetric monoidal structure: For
A;B 2 CI we set

.A�B/.n/D colimptq!n A.p/˝B.q/:

For details about I–diagrams see [22]. The following fact is folklore; it was pointed
out to Shipley by Jeff Smith in 2006 at the Mittag-Leffler Institute.
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Proposition 9.1 Let C be any closed symmetric monoidal category with unit e . Then
the category Sp†.C; e/ is isomorphic to the diagram category CI .

Proof Let X 2 Sp†.C; e/. Then X.n/ 2 C†n and we have †n –equivariant maps
X.n/ŠX.n/˝ e!X.nC 1/, such that the composite

�n;pW X.n/ŠX.n/˝ e˝p
!X.nC 1/˝ e˝p�1

! � � � !X.nCp/

is †n �†p –equivariant for all n;p > 0.

We send X to �.X / 2 CI with �.X /.n/DX.n/. If i D ip;n�p 2 I.p;n/ is the stan-
dard inclusion, then we let �.i/W �.X /.p/! �.X /.n/ be �p;n�p . Every morphism
f 2 I.p;n/ can be written as � ı i where i is the standard inclusion and � 2†n . For
such � , the map �.�/ is given by the †n –action on X.n/D �.X /.n/.

If f D � 0 ı i is another factorization of f into the standard inclusion followed by
a permutation, then � and � 0 differ by a permutation � 2 †n which maps all j

with 16 j 6 p identically, ie � is of the form � D idp ˚ �
0 with � 0 2 †n�p . As

the structure maps �p;n�p are †p �†n�p –equivariant, the induced map �.f / D
�.� 0/ ı�.i/ agrees with �.�/ ı�.i/.

The inverse of � , denoted by  , sends A, an I–diagram in C , to the symmetric
spectrum  .A/ whose nth level is  .A/.n/DA.n/. The †n –action on  .A/.n/ is
given by the corresponding morphisms †n � I.n;n/ and the structure maps of the
spectrum are defined as

 .A/.n/˝ e˝p DA.n/˝ e˝p Š
//A.n/

A.in;p/
//A.nCp/D  .A/.nCp/:

The functors � and  are well-defined and inverse to each other.

Lemma 9.2 The functors � and  are strong symmetric monoidal.

Proof Consider two free objects FsC� and FtD� in Sp†.C; e/ for two chain com-
plexes C� and D� . We know in general [11, Section 7] that

(3) FsC� ^FtD� Š FsCt .C�˝D�/:

Note that as an object in CI we have for n 2 I

�.FsC�/.n/D Z†n˝Z†n�s
C�

for n> s and zero otherwise. This coincides with the value of the free I–diagram on n,

FI
s .C�/.n/D ZI.s;n/˝C�;

and in fact this yields an isomorphism of functors. Similarly,  .FI
s .C�//Š FsC� .
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As the symmetric monoidal product in CI is given by left Kan extension along the
exterior product using the monoidal structure of C we get

(4) FI
s .C�/�FI

t .D�/Š FI
sCt .C�˝D�/:

From (3) we obtain that

 .FI
s .C�//^ .F

I
t .D�//Š  .F

I
sCt .C�˝D�//Š  .F

I
s .C�/�FI

t .D�//

and (4) yields

�.FsC�/��.FtD�/Š �.FsCt .C�˝D�//Š �.FsC� ^FtD�/:

The used isomorphisms are associative and compatible with the symmetry isomorphisms.
Every object in Sp†.C; e/ and CI can be written as a colimit of free objects and as
C is closed, the general case follows from the free case.

Remark 9.3 In [20, Proposition 3.3.9] Pavlov and Scholbach describe explicitly (for
a well-behaved symmetric monoidal model category C ) how the unstable and stable
model structures on Sp†.C; e/ transfer to CI under the above mentioned isomorphism
of categories. If C is Ch, their assumptions are satisfied.

Note that the weak equivalences in ChI have an explicit description: they are the
maps that become weak equivalences after applying a corrected homotopy colimit
[7, Definition 5.1]. This is the homotopy colimit of the diagram where every node is
functorially replaced by a cofibrant object first. To see this, consider Dugger’s Bousfield
localizations of diagram categories in [7, Section 5]. As the cofibrations and the fibrant
objects in his model structure in [7, Theorem 5.2] agree with ours, an argument due to
Joyal [13, Proposition E.1.10] ensures that we have the same class of weak equivalences
as well.

Taking a cofibrant E1–operad O in Ch then ensures that O–algebras in Sp†.Ch;ZŒ0�/s

and in ChI carry a model category structure such that the forgetful functor determines
fibrations and weak equivalences

Since tensoring with the unit ZŒ0� is isomorphic to the identity, we can repeat all of the
arguments in the previous section with ZŒ1� replaced by ZŒ0�. Thus we also obtain that
the model category E1 Sp†.Ch;ZŒ0�/s is Quillen equivalent to the model category of
E1–monoids in Ch. Summarizing:

Theorem 9.4 There is a chain of Quillen equivalences

E1 Sp†.Ch;ZŒ1�/s
Ev0

// E1Ch
F0
oo

F0
//
E1 Sp†.Ch;ZŒ0�/s

Ev0

oo

and the rightmost model category is isomorphic to E1ChI .
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Last but not least we can connect commutative HR–algebras to commutative I–chain
complexes. The positive stable model structure on Sp†.Ch.R/;RŒ0�/ satisfies the
assumptions of [19, Theorem 5.10] and hence commutative monoids and E1–monoids
in Sp†.Ch.R/;RŒ0�/s;C carry model category structures and there is a Quillen equiva-
lence between them [20, Theorem 3.4.1, Theorem 3.4.4]. This yields that the model
categories of commutative I–chain complexes, C.Ch.R/I;C/, and E1 I–chain
complexes, E1.Ch.R/

I;C/ are Quillen equivalent, if we take the model structure that
is right-induced from the positive model structure on Ch.R/I;C .

Theorem 9.5 There is a chain of Quillen equivalences between the model categories
of commutative HR–algebra spectra, C.HR–mod/, and commutative monoids in the
category Ch.R/I where the latter carries the right-induced model structure from the
positive model structure on Ch.R/I , Ch.R/I;C .

We close with an important example of a commutative I–chain complex. Consider
a chain complex C� together with a 0–cycle, ie with a map �W ZŒ0� ! C� . The
assignment n 7! C˝n

� defines a functor sym from I to the category of unbounded
chain complexes (namely Sym.C�/). Schlichtkrull shows in [23] that sym is the
algebraic analogue of the symmetric product in the category of spaces.
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Eigenvalue varieties of Brunnian links

FRANÇOIS MALABRE

In this article, it is proved that the eigenvalue variety of the exterior of a nontrivial, non-
Hopf, Brunnian link in S3 contains a nontrivial component of maximal dimension.
Eigenvalue varieties were first introduced to generalize the A–polynomial of knots
in S3 to manifolds with nonconnected toric boundary. The result presented here
generalizes, for Brunnian links, the nontriviality of the A–polynomial of nontrivial
knots in S3 .

57M25; 57M27

The A–polynomial of a knot in S3 is a two-variable polynomial constructed from the
SL2C–character variety of the knot exterior. Let K be a knot in S3 and let �1K denote
the fundamental group of the exterior of K ; the peripheral subgroup Z2 is generated by
a meridian � and a longitude �, and the zero-set of the A–polynomial AK is the locus
of eigenvalues for a common eigenvector of �.�/ and �.�/ of representations � from
�1K to SL2C . It was first introduced by Cooper, Culler, Gillet, Long and Shalen [2],
where it is also proved that the A–polynomial of any knot contains the A–polynomial
of the unknot as a factor. The A–polynomial of a knot is said to be nontrivial if it
contains other factors, and it was also proved in the same article [2] that hyperbolic
knots and nontrivial torus knots always have a nontrivial A–polynomial. This was later
established in full generality for all nontrivial knots by Dunfield and Garoufalidis [4],
and independently by Boyer and Zhang [1]; both proofs use a theorem by Kronheimer
and Mrowka [5] on Dehn fillings on knots and representations in SU2 .

The notion of A–polynomial can be generalized to any 3–manifold M with connected
toric boundary by specifying a peripheral system (generators of �1@M ,!�1M ). Stim-
ulated by the work of Lash in [6], it was then extended to manifolds with nonconnected
boundary by Tillmann. In his Ph D thesis [11] and the subsequent article [12], Tillmann
presented the eigenvalue variety E.M / associated to a 3–manifold M with toric
boundary. If the boundary of M consists of n tori, the associated eigenvalue variety
E.M / is an algebraic subspace of C2n corresponding to the closure of peripheral
eigenvalues taken by representations (or equivalently, characters) of �1M in SL2C .
Under these assumptions, Tillmann proved in [12] that the dimension of any component
of E.M / is at most n.
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In the same way as any A–polynomial is divisible by the A–polynomial of the un-
knot, any eigenvalue variety E.M / contains components Ered.M / corresponding
to reducible characters. Components of Ered.M / have maximal dimension, and any
other component of E.M / with maximal dimension is called a nontrivially maximal
component of E.M /.

If M is hyperbolic, its character variety contains a family of distinguished components
Y1; : : : ;Yk called the geometric components, each one containing the character of a
discrete faithful representation. Using Thurston’s results [10], Tillmann proved that
each geometric component produces a nontrivially maximal component in E.M /,
generalizing the result of [2] on hyperbolic knots. However, the question of classifying
3–manifolds M for which E.M / contains a nontrivially maximal component, or even
determining whether nontrivial exteriors of links in S3 have this property, remains open.

In this article, we answer this matter for a family of links in S3 , the Brunnian links.
A link in S3 is called Brunnian if any of its proper sublinks is trivial, and we prove:

Theorem 1 The eigenvalue variety of any nontrivial non-Hopf Brunnian link contains
a nontrivially maximal component.

The defining property of Brunnian links makes them stable under 1=q–Dehn fillings,
which permits us to apply the Kronheimer–Mrowka theorem [5, Theorem 1] to produce
irreducible characters in a similar fashion as in [4] and [1]. Then, an induction on the
number of components of the links produces nontrivially maximal components of their
eigenvalue varieties.

This article is divided into two sections: First we recall the construction of the eigenvalue
variety E.L/ for a link L in S3 , its defining ideal A.L/ and some of its properties,
as presented in [12], to introduce notation for the following section. Then we study the
family of Brunnian links in S3 and prove the main result of this article.

Acknowledgements The content of this paper forms part of the author’s Ph D the-
sis [7]. He would like to express his gratitude to his advisors Michel Boileau and
Joan Porti for their constant support during the realization of his Ph D, and also to
thank Stephan Tillmann and Julien Marché for their valuable inputs on character and
eigenvalue varieties.

1 Eigenvalue varieties of links in S3

First we briefly review the notion of eigenvalue variety associated to a link in S3, first
introduced by Tillmann in [11, Section 3.2.4], and we reproduce the construction here
(with a slightly different vocabulary) in order to set the notation for the next section.
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1.1 Character varieties

Let � be a finitely generated group; the SL2C–representation variety of � is the
algebraic affine set hom.�;SL2C/ and is denoted by R.�/. The algebraic Lie group
SL2C acts on R.�/ by conjugation, and the algebraic quotient under this action is
the SL2C–character variety of � , denoted by X.�/. The ring CŒX.�/� of regular
functions on the character variety is equal to the subring CŒR.�/�SL2C of invariant
functions. Dually, the inclusion CŒX.�/� ,! CŒR.�/� induces a natural algebraic
epimorphism t W R.�/!X.�/, and any regular function on R.�/ factors through t if
and only if it is invariant under the conjugation action of SL2C . In particular, for any 
in � , the function � W R.�/!C mapping � 7! tr �. / defines a regular function I
on X.�/ called the trace function at  ; the trace functions finitely generate the ring
CŒX.�/�; see [3] for example. Representation and character varieties are contravariant
functors: any group morphism �!� 0 induces regular maps according to the following
commutative diagram:

R.� 0/ //

t

��

R.�/

t

��

X.� 0/ // X.�/

In the case where the group � is the fundamental group of a manifold M (resp. the
exterior of a link L in S3 ), the representation and character varieties will be denoted
by R.M / and X.M / (resp. R.L/ and X.L/).

1.2 Abelian characters

Any group � has an abelianization �ab and a canonical projection � ! �ab which
induces regular maps:

R.�ab/ //

t

��

R.�/

t

��

X.�ab/ // X.�/

The image of R.�ab/ in R.�/ is precisely the closed set Rab.�/ of abelian represen-
tations of � , and the image of X.�ab/ is a closed subset of X.�/ called the set of
abelian characters of � and denoted by X ab.�/.

Remark In SL2C , characters of reducible representations are characters of abelian
representations. If Rred.�/ is the closed set of reducible representations and X red.�/

is its image in X.�/, then X red.�/DX ab.�/.
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Let � denote the map from C� to SL2C mapping z 7!
�

z 0
0 z�1

�
; by composition, �

defines maps:
hom.�;C�/

��
//

d ((

Rab.�/

t
��

X ab.�/

The map d is two-to-one onto X ab.�/ and invariant under inversion in hom.�;C�/;
for any ' in hom.�;C�/ and  in � ,

I ı d.'/D '. /C'. /�1:

1.3 Eigenvalue varieties

Let L be a link in S3 , let jLj denote its number of components and let �1L be the
fundamental group of its exterior; the boundary of the exterior of L is a disjoint union
of jLj tori TK , one for each component K of the link L. Each inclusion �1TK ,!�1L

induces a regular map rK W X.L/ ! X.TK /. Since �1TK is abelian, X.TK / D

X ab.TK /, and denoting hom.�1TK ;C
�/ by E.TK /, we obtain the following diagram:Q

K�L E.TK /

d
��

X.L/
r
//
Q

K�L X.TK /

Following Tillmann [11; 12], the eigenvalue variety of L is defined as the Zariski
closure of the preimage by d of the image of r :

E.L/D d�1.r.X.L///:

Dually, there are ring-maps N
K�L CŒE.TK /�

CŒX.L/�
N

K�L CŒX.TK /�
r�
oo

d�
OO

and the defining ideal A.L/ of E.L/ is called the A–ideal of L and is the radical of
the image by d� of the kernel of r� :

A.L/D
p

d�.ker r�/:

Each torus TK is equipped with a standard peripheral system .�K ; �K / of meridian
and longitude of each component. This produces canonical coordinates .mK ; `K / in
C� �C� for E.TK /, and E.L/ is naturally a subset of .C�/2jLj ; dually, CŒE.TK /� is
isomorphic to CŒm˙1

K
; l˙1

K
�, and A.L/ is an ideal of CŒm˙; l˙�D

N
K�L CŒm˙1

K
; l˙1

K
�.
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Proposition 2 Let Eab.L/ denote the part of E.L/ corresponding to abelian char-
acters and Aab.L/ the corresponding defining ideal; Eab.L/ is a union of copies of
.C�/jLj , and Aab.L/ is given in CŒm˙; l˙� by

Aab.L/D

�
lK �

Y
K 0¤K

m
˙ lk.K ;K 0/
K 0

�
;

where lk.K;K0/ denotes the linking number of the components K and K0 .

Proof The meridians form a basis of the homology group of the link exterior, and
each longitude is given by the linking numbers

�K D

X
K 0¤K

lk.K;K0/�K 0 :

Therefore, any morphism from �1L to C� is determined by the images of the meridians,
and for any ' in hom.�1L;C�/ and each longitude �K ,

'.�K /D
Y

K¤K 0

'.�K 0/
lk.K ;K 0/:

By the invariance under inversion, any point .mK ; `K /K�L of Eab.L/ then satisfies

`K D
Y

K¤K 0

m
˙ lk.K ;K 0/
K

:

Conversely, for any � D .mK ; `K /K�L satisfying these equations, there exists ' in
hom.�1L;C�/ such that d.�/D r.��'/, so Aab.L/ is given by

Aab.L/D

�
lK �

Y
K 0¤K

m
˙ lk.K ;K 0/
K 0

�
:

Remark For links with one component (knots), the A–ideal is generated by the A–
polynomial of the knot, and Aab is the l� 1 factor corresponding to abelian characters.

By the defining equations of Aab.L/, we have that Eab.L/ always has dimension jLj.
As a matter of fact, by Tillmann [11, Proposition 3.10; 12, Proposition 13], any
component of E.L/ has dimension at most jLj, which leads to the following definition:

Definition 3 A component of E.L/ is called nontrivially maximal if it has dimen-
sion jLj and is not contained in Eab.L/.

Using Thurston’s results on hyperbolic manifolds, Tillmann showed the following:
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Theorem 4 [12, Proposition 13] If L is a hyperbolic link in S3 , then any geometric
component of the character variety produces a nontrivially maximal component in the
eigenvalue variety of L.

Besides these cases, it is not known whether the eigenvalue variety of all (nontrivial)
links admits a maximal nontrivial component. For knots, this is equivalent to the non-
triviality of the A–polynomial (besides the l� 1 factor) and was proven independently
by Dunfield and Garoufalidis in [4], and Boyer and Zhang in [1]. In the next section,
we answer this matter for Brunnian links in S3 .

2 Characters of Brunnian links

In this section, we prove Theorem 1. First we recall some basic facts on 1=q–Dehn
fillings on links in S3 ; then we present Brunnian links and, after having studied
their stability under these Dehn fillings, we use the Kronheimer–Mrowka theorem to
create families of characters of exteriors of Brunnian links. Finally, we prove that
these characters span a nontrivially maximal component in the eigenvalue varieties of
nontrivial, non-Hopf, Brunnian links.

2.1 Dehn fillings

Any 1=q–Dehn filling on the unknot in S3 produces S3 again; therefore, the 1=q–
Dehn filling over an unknotted component of a link in S3 produces the exterior of
another link in S3 .

Let LDKtL0 be a link with K an unknotted component of L, and let Lq denote the
link obtained by 1=q–surgery on K (so, in particular, L0 DL0 ). Any sublink L00 of
Lq is obtained by 1=0–Dehn filling along the other components. Because the meridians
are unchanged by 1=q–Dehn fillings, any proper sublink L00 of Lq is obtained by
1=q–Dehn filling along K in the sublink L00 tK of L.

Remark With this notation, if L00 tK is trivial in S3 , then so is L00 .

The meridians are unchanged by 1=q–Dehn fillings, but the longitudes are changed
according to the linking numbers. With the same notation as above, if .�; �/ is a
standard peripheral system for a component J of L, then the new longitude �q of J

in Lq is
�q D �C q lk.K;J /2�;

and the linking number lkq.J;J
0/ of any two components J and J 0 of Lq is given by

lkq.J;J
0/D lk.J;J 0/� q lk.K;J / lk.K;J 0/:
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A link is called homologically trivial if all the linking numbers between components
vanish. By the previous discussion, the link obtained by 1=q–Dehn fillings on an
unknotted component of a homologically trivial link is still homologically trivial and
has the same longitudes.

The proof of Theorem 1 uses Dehn fillings to produce closed 3–manifolds which
admit irreducible representations; this will be done by iterating 1=q–Dehn fillings
along the components of the link. However, even if all the components of a link L

in S3 are unknotted, a 1=q–Dehn filling along a component generally knots the other
components, thus making impossible to continue the process while remaining in S3 .
In other words, to achieve this goal, we need a family of links L satisfying

� if L 2 L has two or more components, each is individually unknotted;
� for any K tL0 in L, we have that Lq is also in L.

In the next section, we show that the family of Brunnian links in S3 satisfies these
conditions. Moreover, nontriviality can be preserved in the process, making it possible
to reason by induction on the number of components of the link.

2.2 Brunnian links

Definition 5 A link is called Brunnian if any of its proper sublinks is trivial.

Remark Any knot is considered Brunnian; for links with more components, we have:

� If a Brunnian link has two or more components, they are individually unknotted.
� Any Brunnian link with three or more components is homologically trivial.
� By Section 2.1, if L D K t L0 is Brunnian, Lq is also Brunnian for any

integer q .

Given LDK tL0 Brunnian, we can perform a 1=p–surgery on a component of Lq

to obtain another Brunnian link, and so on, until obtaining a knot in S3. However, any
1=q–Dehn filling on a component of the Hopf link or the unlink produces the unlink.
Therefore, given a Brunnian link LDK tL0 , we need to prevent Lq from being the
Hopf link or the unlink in order to obtain, in fine, a nontrivial knot in S3.

If L D K tK0 is a Brunnian link with two components, this is a special case of
Mathieu’s theorem from [9]. This more general result on knots in a solid torus (links
with one unknotted component) asserts that, besides the Hopf link, for any jqj> 2, any
1=q–Dehn filling on an unknotted component of a 2–component link in S3 produces a
nontrivial knot. For our concern, this implies that, for any jqj> 2, the 1=q–Dehn filling
on any component of a Brunnian, non-Hopf, nontrivial 2–link may never produce the
trivial knot.
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On the other hand, if L has three components or more, it is homologically trivial, and
the work of Mangum and Stanford [8, Theorem 2 and its proof] ensures that, for any
integer q and any homologically trivial Brunnian link LDK tL0 , if L is nontrivial,
then Lq is trivial if and only if q D 0. Otherwise, it is a nontrivial, homologically
trivial Brunnian link (in particular, it is never the Hopf link).

Therefore, we obtain the following result for the stability of nontrivial non-Hopf
Brunnian links under 1=q–Dehn fillings:

Proposition 6 Let LDKtL0 be a nontrivial, non-Hopf, Brunnian link in S3 . Then
for any jqj> 2, the link Lq is a Brunnian link in S3 , nontrivial and non-Hopf.

We will use the stability of nontrivial non-Hopf Brunnian links to apply the Kronheimer–
Mrowka theorem on some Dehn fillings of the link exteriors to produce nontrivially
maximal components in the eigenvalue varieties. On the other hand, for the Hopf link
and the trivial link, no such component exists:

Proposition 7 The eigenvalue varieties of the Hopf link and the trivial link do not
admit any nontrivially maximal component.

Proof The fundamental group of the exterior of the Hopf link is abelian, so all the
characters are abelian, and ED Eab .

On the other hand, for the trivial link, all the longitudes are nullhomotopic and are
therefore trivialized by any representation, so AD hlK � 1; K �Li DAab .

2.3 Kronheimer–Mrowka characters

By the Kronheimer–Mrowka theorem from [5], any nontrivial 1=q–Dehn filling along
a nontrivial knot in S3 produces a closed 3–manifold which admits an irreducible
representation in SU2 . By Proposition 6, if LDK tL0 is a nontrivial Brunnian link
in S3 , Lq is nontrivial for any jqj > 2. Performing another 1=p–Dehn filling on a
component of Lq (in the new standard peripheral system if the link is not homologically
trivial) will produce again a nontrivial Brunnian link; this process may be continued
until a nontrivial knot is produced, on which a final 1=k –Dehn filling may be performed
to obtain a closed 3–manifold which admits an irreducible representation in SU2 .

For any Brunnian link LDK1 t � � � tKn in S3 , and any q D .q1; : : : ; qk/ in Zk for
k 6 n, we denote by L.q/ the 3–manifold obtained by performing 1=qi –Dehn fillings
on the components of L, where each 1=qi –Dehn filling is performed in the standard
peripheral system given after the Dehn fillings 1=qj for j < i .
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Remark As already pointed out, the meridians never change, and since L is assumed
Brunnian, longitudes change only if L is a Brunnian link with two components LD

K1 tK2 with nonzero linking number ˛ ; in that case, denoting by .�i ; �i/iD1;2 the
respective standard peripheral systems, any 1=q1 –Dehn filling on K1 changes the
longitude �2 into �2C q1˛

2�2 . Therefore, a 1=q2 –Dehn filling on K2 is performed
along the slope

.1C q1q2˛
2/�2C q2�2 2H1.TK2

/:

Proposition 8 Let LDK1 t � � � tKn be a nontrivial Brunnian link in S3 different
from the Hopf link, and let q D .q1; : : : ; qn/ be a family of integers.

� If qi D 0 for some 1 6 i 6 n, then Lq D S3 .

� If jqi j> 2 for all 1 6 i 6 n, then there exists an irreducible representation

�qW �1Lq! SU2:

Proof First, if one of the qi is zero, the link L.q1;:::;qi / is trivial, so performing
1=qk –Dehn fillings for i < k 6 n produces the standard 3–sphere.

On the other hand, if all the jqi j are greater than 1, each L.q1;:::;qk/ for k 6 n is
nontrivial by Proposition 6, so L.q1;:::;qn�1/ is a nontrivial knot in S3. The Kronheimer–
Mrowka theorem concludes the proof.

By inclusion of SU2 in SL2C , we can consider �q as an irreducible representation
of R.Lq/ (with no nontrivial parabolic image). Moreover, composing with the group
homomorphism �1L ! �1Lq , we may also consider �q as an irreducible repre-
sentation of R.L/. The irreducible characters �q D t.�q/ obtained this way are
called Kronheimer–Mrowka characters, and we denote by XKM.L/ the Zariski closure
in X.L/ of all Kronheimer–Mrowka characters:

XKM.L/D f�q; q 2 .Z n f�1; 0; 1g/jLjg:

Remark The subset XKM.L/ of X.L/ may contain several algebraic components.

Remark For any nontrivial, non-Hopf, Brunnian link LDK tL0 , the group homo-
morphism iqW �1L! �1Lq induces an algebraic map

i�q W X.Lq/!X.L/;

and if jqj> 2, then i�q XKM.Lq/�XKM.L/.
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Any representation �q satisfies the 1=q
K

–Dehn filling relations for each component K

of L. On the other hand, no �q.�K / is trivial since, otherwise, it would satisfy the 1=0

relation on K ; it would then factor as a representation of S3 and therefore be trivial.
Since �q factors in SU2 , this is equivalent to tr �q.�K

�
q

K

K
/D 2 and tr �q.�K /¤ 2.

It follows that any Kronheimer–Mrowka character �q satisfies, for any K �L,

I�
K
�

q
K

K
.�q/D 2;(1)

I�K
.�q/¤ 2:(2)

Finally, following Section 1, we denote by EKM.L/ the part corresponding to XKM.L/

in E.L/. For any �q 2EKM.L/ corresponding to a Kronheimer–Mrowka character �q

in XKM.L/, and any component K of L, (1) and (2) imply that

mK l
q

K

K
.�q/D 1;(3)

mK .�q/¤ 1:(4)

Remark Together with the equations for Ared.L/, this implies that no such point �q
is in Ered.L/, so no component of EKM.L/ is contained in Ered.L/.

2.4 Maximal components

In this last section, we prove the following result which implies Theorem 1:

Theorem 9 For any nontrivial Brunnian link L different from the Hopf link, EKM.L/

contains a maximal component.

Proof This is proved by induction on the number of components of L.

For the base case, L is a knot K , and the proof is the same as the one for the nontriviality
of the A–polynomial of nontrivial knots from Dunfield and Garoufalidis in [4] or Boyer
and Zhang in [1].

For any jqj > 2, performing 1=q–surgery produces an irreducible character �q in
X.K/ and a point �q D .mq; `q/ in E.K/. They show that there are infinitely many
distinct `q obtained this way, so EKM.K/ contains a curve different from the line l�1.
We do not reproduce this proof here, but very similar ideas are used in the induction step.

For the induction step, let LDKtL0 be a nontrivial, non-Hopf, Brunnian link in S3 .
For any jqj > 2, Lq is nontrivial, non-Hopf and Brunnian, so we can assume, by
induction, that EKM.Lq/ contains a maximal component.
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We have the commutative diagram

XKM.Lq/ //

rq

��

XKM.L/

r

��Q
J¤K X.TJ /

Q
J�L X.TJ /oo

Q
J¤K E.TJ /

d

OO

Q
J�L E.TJ /oo

d

OO

so there exists Xq in XKM.L/ corresponding to Eq in EKM.L/ such that dimEq >
jLj � 1. If dimEq D jLj for some q , then there is nothing more to prove.

Let us assume now that all the components Eq have dimension jLj � 1. We will show
that EKM.L/ contains infinitely many different such subspaces Eq ; by algebraicity, this
means that EKM.L/ must contain a component of dimension jLj, which will conclude
the proof of Theorem 9.

The subspaces Eq will be separated using the following lemma:

Lemma 10 For any integers q; q0 ,

Eq � Eq0 D) l
q�q0

K
jEq
� 1:

Moreover, for any jqj> 2, the set fp 2 Z j lp
K
jEq
� 1g is an ideal dqZ with q 62 dqZ.

Proof For any � in Eq , we have mK l
q
K
.�/D 1 by (3), so if � also belongs to Eq0 ,

then mK l
q0

K
.�/D 1 and l

q�q0

K
.�/D 1. Therefore, if Eq � Eq0 , then l

q�q0

K
� 1 on Eq .

If q is in the ideal dqZ, the surgery relation implies that mK jEq
� 1, in contradiction

with (4).

If S D fq 2 Z n f�1; 0; 1g j dq D 0g is infinite, then by Lemma 10, Eq ¤ Eq0 for
q ¤ q0 in S , so .Eq/q2S is a family of infinitely many distinct subspaces.

Otherwise, there exists N in N such that, for any q > N , dq > 2. Let .qi/i2N be a
family of integers such that

� q0 > N ;

� for any j in N , we have qjC1 > qj and qjC1 2
Tj

iD1
dqj

Z.

Then .Eqi
/i2N contains infinitely many different subspaces, since

Eqi
¤ Eqj

for all i < j:
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Indeed, for any j in N , let us assume that Eqi
D Eqj

for some i < j . By Lemma 10,
this would imply that qj � qi 2 dqi

Z. But qj 2 dqi
Z by construction, so this would

imply qi 2 dqi
Z, a contradiction.

We have proved that EKM.L/ contains infinitely many different subsets of dimension
jLj�1; by algebraicity, it must contain a component of dimension jLj, which concludes
the proof of Theorem 9.
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A refinement of Betti numbers and homology
in the presence of a continuous function, I

DAN BURGHELEA

We propose a refinement of the Betti numbers and the homology with coefficients in
a field of a compact ANR X , in the presence of a continuous real-valued function
on X . The refinement of Betti numbers consists of finite configurations of points with
multiplicities in the complex plane whose total cardinalities are the Betti numbers,
and the refinement of homology consists of configurations of vector spaces indexed
by points in the complex plane, with the same support as the first, whose direct sum is
isomorphic to the homology. When the homology is equipped with a scalar product,
these vector spaces are canonically realized as mutually orthogonal subspaces of the
homology.

The assignments above are in analogy with the collections of eigenvalues and gener-
alized eigenspaces of a linear map in a finite-dimensional complex vector space. A
number of remarkable properties of the above configurations are discussed.

55N35; 46M20, 57R19

1 Introduction

The results of this paper and its subsequent part II, mostly obtained in collaboration with
Stefan Haller, provide a shorter version of some results in [3], still unpublished, extend
their generality based on the involvement of the topology of Hilbert cube manifolds
and refine them as configurations of complex numbers and of vector spaces.

Precisely, for a fixed field � and r � 0, one proposes a refinement of the Betti
numbers br .X / of a compact ANR X 1 and a refinement of the homology Hr .X /

with coefficients in the field � in the presence of a continuous function f W X !R.

The refinements consists of finite configurations of points with multiplicity located in
the plane R2 DC , denoted by ıfr , equivalently of monic polynomials with complex
coefficients P

f
r .z/, of degree the Betti numbers br .X /, and finite configurations of

�–vector spaces denoted by Oıfr with the same support and direct sum of all vector
spaces isomorphic to Hr .X /; see Theorem 4.1. The points of the configurations ıfr ,

1See the definition of an ANR in Section 2.2.
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equivalently the zeros of the polynomials P
f
r .z/, are complex numbers zD aC ib 2C

with both a; b critical values;2 see Theorem 4.1. The two configurations are related by
dim Oıfr D ı

f
r .

We show the following:

(1) The assignment f  P
f
r .z/ is continuous when f varies in the space of

continuous maps equipped with the compact open topology; see Theorem 4.2.

(2) For an open and dense subset of continuous maps (defined on X , an ANR
satisfying some mild properties) the points of the configurations ıfr or the zeros
of the polynomials P

f
r .z/ have multiplicity one; see Theorem 4.1.

(3) When X is a closed topological n–manifold, the Poincaré duality between the
Betti numbers ˇr and ˇn�r gets refined to a Poincaré duality between configu-
rations ıfr and ıfn�r , and the Poincaré duality between Hr .X / and Hn�r .X /

�

to a Poincaré duality between configurations Oıfr and . Oıfn�r /
� ; see Theorem 4.3.

(4) For each point of the configuration ıfr , equivalently zero z of the polynomial
P
f
r .z/, the assigned vector space Oıfr .z/ has dimension the multiplicity of z and

is a quotient of vector subspaces Oıfr .z/DFr .z/=F 0r .z/, F 0r .z/�Fr .z/�Hr .X /.
When � DR or C and Hr .X / is equipped with a Hilbert space structure Oıfr .z/
identifies canonically to a subspace Hr .z/ of Hr .X / such that Hr .z/?Hr .z

0 /

for z ¤ z0 and
L

z Hr .z/ D Hr .X /; see Theorem 4.1. This provides an
additional structure (direct sum decomposition of Hr .X /, which in view of
Theorem 4.1, for a generic f , has all components of dimension 1).

We refer to the system .Hr .X /;P
f
r .z/; Oı

f
r / as the r –homology spectral package

of .X; f /, in analogy with the spectral package of .V;T /, where V is a vector
space and T a linear endomorphism, which consists of the characteristic polynomial
PT .z/ with its roots zi , the eigenvalues of T and with their corresponding generalized
eigenspaces Vzi

.

In case X is the underlying space of a closed oriented Riemannian manifold .M n;g/

and � DR or C , the vector space Hr .M
n/, via the identification with the harmonic

r –forms, has a structure of a Hilbert space. The configuration Oıfr , for f generic,
provides a base in the space of harmonic forms.

All these results are collected in the main theorems below, Theorems 4.1–4.3, which
were partially established in [3], not yet in print, but under more restrictive hypotheses
like “X homeomorphic to a simplicial complex” or “f a tame map”. In this paper,
we removed these hypotheses using results on Hilbert cube manifolds reviewed in
Section 2.3, and complete them with additional results.

2See Section 2.2 below for the definition of regular and critical value.
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It is worth noting that the points of the configurations ıfr located above and on the
diagonal in the plane R2 determine and are determined by the closed r –bar codes
in the level persistence of f , while those below the diagonal are determined by and
determine the open .r�1/–bar codes in the level persistence as observed in [3]. The
algorithms proposed by Carlsson, de Silva and Morozov [4] and the author and Dey [2]
can be used for their calculation.

Similar refinements hold for angle-valued maps and will be discussed in part II. In this
case, the homology has to be replaced by either the Novikov homology of .X; �f / which
in our work is a finitely generated free module over the ring of Laurent polynomials
�Œt�1; t � or, in case � is R or C , by the L2 –homology of the infinite cyclic cover
defined by �f 2 H 1.X W Z/, determined by f . In this case, the L2 –homology is
regarded as a Hilbert module over the von Neumann algebra associated to the group Z,
Hr .z/ are Hilbert submodules and ıfr .x/ is the von Neumann dimension of Hr .z/.
Note that the L2 –Betti numbers are actually the Novikov–Betti numbers of .X; �f /
(which agree with the rank of the corresponding free module).

Acknowledgements The author thanks S Ferry for help in clarifying a number of
aspects about Hilbert cube manifolds and ANRs. The author is equally grateful to
the referee for many suggestions, requests for clarifications and sometimes alternative
arguments.

2 Preliminary definitions

2.1 Configurations

Let X be a topological space. A finite configuration of points in X is a map

ıW X ! Z�0

with finite support.

A finite configuration of vector spaces indexed by points in X is a map with finite
support

NıW X ! Vect

(ie Oı.x/D 0 for all but finitely many x 2 X ), where Vect denotes the collection of
�–vector spaces.

For N a positive integer, denote by CN .X / the set of configurations of points in X

with total cardinality N :

CN .X / WD
˚
ıW X ! Z�0 j

P
x2X

ı.x/DN
	
:
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2054 Dan Burghelea

For V a finite-dimensional �–vector space, denote by P.V / the set of subspaces of V

and by CV .X / the set

CV .X / WD
˚
NıW X!P.V /

ˇ̌
]fx2X j Nı.x/¤0g<1; Nı.x/\

P
y¤x

Nı.y/D0;
P

x2X

Nı.x/DV
	
:

Here ] denotes cardinality of the set in braces.

Consider the map
eW CV .X /! Cdim V .X /

defined by
e. Nı/.x/D dim Nı.x/;

and call the configuration e. Nı/ the dimension of Nı .

Both sets CN .X / and CV .X / can be equipped with natural topology (the collision
topology). One way to describe these topologies is to specify for each ı or Oı a system of
fundamental neighborhoods. If ı has as support the set of points fx1;x2; : : : ;xkg, a fun-
damental neighborhood U of ı is specified by a collection of k disjoint open neighbor-
hoods U1; : : : ;Uk of x1; : : : ;xk , and consists of

˚
ı0 2 CN .X / j

P
x2Ui

ı0.x/D ı.xi/
	

.
Similarly if Nı has as support the set of points fx1;x2; : : : ;xkg with Nı.xi/D Vi � V ,
a fundamental neighborhood U of Nı is specified by a collection of k disjoint open
neighborhoods U1;U2; : : : ;Uk of x1; : : : ;xk , and consists of˚

Nı0 2 CV .X / j x 2 Ui)
Nı0.x/� Vi ;

L
x2Ui

Nı0.x/D Vi

	
:

Clearly e is continuous.

When � is an infinite field, the topology of CV .X / has too many connected components
to be useful unless the geometry forces the possible values of the configurations to be
at most countable.

When � D R or C and V is a Hilbert space, it is natural to consider the subset of
CO

V
.X /� CV .X / consisting of configurations whose vector spaces Nı.x/ are mutually

orthogonal. In this case for Nı with support the set of points fx1;x2; : : : ;xkg and
Nı.xi/D Vi � V , one can consider a fundamental neighborhood U of Nı that is specified
by a collection of k disjoint open neighborhoods U1;U2; : : : ;Uk of x1; : : : ;xk and
open neighborhoods O1;O2; : : : ;Ok of Vi in Gdim Vi

.V /, and consists of˚
Nı0 2 CO

V .X / j
L

x2Ui

Oı0.x/ 2Oi

	
:

Here Gk.V / denotes the Grassmannian of k –dimensional subspaces of V .
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With respect to this topology e is continuous, surjective and proper, with fiber above ı ,
the subset of Gn1

.V /�Gn2
.V /� � � � �Gnk

.V / consisting of .V 0
1
;V 0

2
; : : : ;V 0

k
/;V 0i 2

Gni
.V / mutually orthogonal, where ni D dim Vi . This set is compact and is actually

an algebraic variety.

Remark (1) CN .X /DX N =†N is the so-called N –symmetric product, and if X

is a metric space with distance D then the collision topology is the topology
defined by the distance D on X N =†N induced from the distance on X N given
by D.x1;x2; : : : ;xN Iy1;y2; : : : ;yN / WD supiD1;:::;N fD.xi ;yi/g.

(2) If X D R2 D C then CN .X / identifies to the set of monic polynomials with
complex coefficients. To the configuration ı whose support consists of the
points z1; z2; : : : ; zk with ı.zi/ D ni , one associates the monic polynomial
Pf .z/D

Q
i.z� zi/

ni . Then CN .X / and CN are identified as metric spaces.

(3) The space CV .X / and thus CV .R
2/ can be equipped with a complete metric

which induces the collision topology but this will not be used here.

2.2 Tame maps

Recall that a metrizable space X is an ANR if any closed subset A of a metrizable
space B with A homeomorphic to X has a neighborhood U which retracts to A; see
[7, Chapter 3]. Recall also that any space homeomorphic to a locally finite simplicial
complex, a finite-dimensional topological manifold or an infinite-dimensional manifold
(ie a paracompact Hausdorff space locally homeomorphic to the Hilbert space l2 or
the Hilbert cube I1 ) is an ANR; see [7].

Convention All maps f W X !R in this paper are continuous proper maps defined
on an ANR X , hence if such maps exists, X is locally compact. From now on the
words “proper continuous” should always be assumed to precede the word “map” even
if not specified.

The following concepts are consistent with the familiar terminology in topology:

� A map f W X ! R is weakly tame if for any t 2 R, the level f �1.t/ is an
ANR. Therefore, for any bounded or unbounded closed interval I D Œa; b�, a; b 2

Rtf1;�1g, f �1.I/ is an ANR. Indeed if I D Œa; b�, in view of the hypothesis that
f �1.a/ and f �1.b/ are ANRs and of the definition of ANR, there exists an open set
U � X n f �1.a; b/ which retracts to f �1.a/t f �1.b/. Then U [ f �1Œa; b� is an
open set in X which retracts to f �1.I/. Since X is an ANR this suffices to conclude
that f �1.I/is an ANR; see [7]. A similar argument can be used for I D .�1; a�

or I D Œb;1/.
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� The number t 2 R is a regular value if there exists � > 0 such that for any
t 0 2 .t ��; tC�/, the open set f �1.t ��; tC�/ retracts by deformation to f �1.t 0/. A
number t which is not a regular value is a critical value. In view of the hypothesis on
f a map (ie X locally compact and f proper), the requirement on t in the definition
of weakly tame is satisfied for any regular value t . Informally, the critical values are
the values t for which the topology of the level (D homotopy type) changes. One
denotes by Cr.f / the collection of critical values of f .

� The map f is called tame if it is weakly tame and, in addition,

(a) the set of critical values Cr.f /�R is discrete, and

(b) �.f / WD inffjc � c0j W c; c0 2 Cr.f /; c ¤ c0g satisfies �.f / > 0.

If X is compact then (a) implies (b).

� An ANR which has the tame maps dense in the set of all maps with respect to the
fine C0 –topology is called a good ANR.

There exist compact ANRs (actually compact homological n–manifolds; see [6])
with no codimension-one subsets which are ANRs, hence compact ANRs which are
not good.

The reader should be aware of the following rather obvious facts.

Observation 2.1 (1) If f is a weakly tame map then f �1.Œa; b�/ is a compact
ANR and has the homotopy type of a finite simplicial complex (see [8]) and
therefore has finite-dimensional homology with respect to any field � .

(2) If X is a locally finite simplicial complex and f is a simplicial map, then f is
weakly tame with the set of critical values discrete. Critical values are among
the values of f on vertices. If in addition X is compact then f is tame.

(3) If X is homeomorphic to a finite simplicial complex then the set of tame maps
is dense in the set of all continuous maps with the C0 –topology (ie compact
open topology). The same remains true if X is a compact Hilbert cube manifold,
defined in the next section. In particular all these spaces are good ANRs.

For the needs of this paper, weaker than usual concepts of regular or critical values
and tameness, relative to homology with coefficients in the field � , suffice. They are
introduced in Section 3.
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2.3 Compact Hilbert cube manifolds

Recall the following:

� The Hilbert cube Q is the infinite product QDI1D
Q

i2Z�1
Ii with IiD Œ0; 1�.

The topology of Q is given by the distance d. Nu; Nv/ D
P

i jui � vi j=2
i with

NuD fui 2 I; i 2 Z�1g and Nv D fvi 2 I; i 2 Z�1g.

� The space Q is a compact ANR and so is any X �Q for any compact ANR X .

� A compact Hilbert cube manifold is a compact Hausdorff space locally homeo-
morphic to the Hilbert cube Q.

For f W X !R and F W X �Q!R, denote by NfQW X �Q!R and Fk W X �Q!R
the maps defined by

NfQ.x; Nu/D f .x/ and Fk.x; Nu/D F.x;u1;u2; : : : ;uk ; 0; 0; : : :/:

Observation 2.2 In view of the definition of NfQ and of the metric on Q, observe the
following:

(1) If f W X !R is a tame map, so is NfQ .

(2) If X is compact then the sequence of maps Fn is uniformly convergent to the
map F when n!1.

The following are basic results about compact Hilbert cube manifolds whose proof can
be found in [5].

Theorem 2.3 (1) (R Edwards) If X is a compact ANR then X �Q is a compact
Hilbert cube manifold.

(2) (T Chapman) Any compact Hilbert cube manifolds is homeomorphic to K�Q

for some finite simplicial complex K .

(3) (T Chapman) If !W X ! Y is a homotopy equivalence between two finite
simplicial complexes with Whitehead torsion �.!/D 0 then the there exists a
homeomorphism !0W X �Q! Y �Q such that !0 and !� idQ are homotopic.
As a consequence of Observation 2.4 below, two compact Hilbert cube manifolds
which are homotopy equivalent become homeomorphic after product with S1 .

Observation 2.4 (folklore) If ! is a homotopy equivalence between two finite
simplicial complexes then ! � idS1 has the Whitehead torsion �.! � idS1/D 0.

As a consequence of the above statements we have the following proposition.
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Proposition 2.5 Any compact Hilbert cube manifold M is a good ANR.

Proof A map f W M !R, M a compact Hilbert cube manifold, is called special if
there exists a finite simplicial complex K , a map gW K!R and a homeomorphism
� W M !K �Q such that Ng � � D f , and a special map is PL3 if in addition g is PL.
By Observation 2.2 any map f W M ! R is �=2–close to a special map. Since any
continuous real-valued map defined on a simplicial complex K is �=2–close to a PL
map then any special map on M is �=2–close to a special PL map. Consequently f is
�–close to a special PL map which is tame in view of Observations 2.1 and 2.2. This
implies that the set of tame maps is dense in the set of all continuous maps.

3 The configurations ıfr and Oı
f
r

In this paper we fix a field � , and for a space X denote by Hr .X / the homology of X

with coefficients in the field � . Let f W X !R be a map. As in the previous section,
f is proper continuous and X is a locally compact ANR. One defines

(1) the sublevel Xa WD f
�1.�1; a�/,

(2) the superlevel X b WD f �1.Œb;1//,

(3) Ifa .r/ WD img.Hr .Xa/!Hr .X //�Hr .X /,

(4) Ib
f
.r/ WD img.Hr .X

b/!Hr .X //�Hr .X /,

(5) Ffr .a; b/D Ifa .r/\ Ib
f
.r/�Hr .X /.

Clearly one has the following observation.

Observation 3.1 (1) For a0 � a and b � b0 , one has Ffr .a
0; b0/� Ffr .a; b/.

(2) For a0 � a and b � b0 , one has Ffr .a
0; b/\Ffr .a; b

0/D Ffr .a
0; b0/.

(3) supx2X jf .x/�g.x/j< � implies Fg.a� �; bC �/� Ffr .a; b/.

Note that we also have the following proposition.

Proposition 3.2 If f is a map as above then dim Ffr .a; b/ <1.

Proof If X is compact, there is nothing to prove since Hr .X / has finite dimension.
Suppose X is not compact. In view of Observation 3.1(1), it suffices to check the
statement for a > b . If f is weakly tame, in view of Observation 2.1 Xa , X b and

3PL stands for piecewise linear.
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Xa \X b are ANRs, with Xa \X b compact and X D Xa [X b , hence the Mayer–
Vietoris long exact sequence in homology is valid. Denote by ia.r/W Hr .Xa/!Hr .X /

and ib.r/W Hr .X
b/! Hr .X / the inclusion-induced linear maps and observe that

Fr .a; b/ WD Ia\Ib
� ia.r/.ker.ia.r/�ib.r///. In view of the Mayer–Vietoris sequence

in homology, ker.ia.r/ � ib.r// is isomorphic to a quotient of the vector space of
Hr .Xa\X b/, hence of finite dimension, and the result holds.

If f is not weakly tame, one argue as follows. It is known that any X a locally
compact ANR is proper homotopy dominated with respect to any open cover by some
locally finite simplicial complex K ; see [1].4 Choose such a cover, for example
f �1.n � 1; nC 1/n2Z and such a homotopy domination X

i
�! K

�
�! X for this

cover. Choose gW K! R a proper simplicial approximation of f � � (hence tame)
and a0 > a and b0 < b such that i.X

f
a /�K

g
a0 and i.X b

f
/�Kb0

g . Then Ffr .a; b/ is
isomorphic to a subspace of Fg

r .a
0; b0/. Since the dimension of Fg

r .a
0; b0/ is finite, so

is the dimension of Ffr .a; b/.

Definition 3.3 We say a real number t is a homologically regular value if there exists
�.t/ > 0 such that for any 0< � < �.t/ the inclusions Ift��.r/� Ift .r/� IftC�.r/ and
It��
f

.r/� It
f
.r/� ItC�

f
.r/ are equalities, and a homologically critical value if it is not

a homologically regular value.

Denote by CR.f / the set of all homologically critical values. If f is weakly tame
then CR.f /� Cr.f /.

Proposition 3.4 If f W X ! R is a map (hence X is ANR and f is proper) then
CR.f / is discrete.

Proof As pointed out above in the proof of Proposition 3.2, one can find a proper
simplicial map gW K!R and a proper homotopy domination ˛W K!X such that
jf � ˛ � gj < M . If so, for any a < b with a; b 2 R, one has dim.If

b
.r/=Ifa .r// �

dim.Ig
bCM

.r/=Ig
a�M

.r//� dim.Hr .g
�1.Œa�M; bCM �/;g�1.a�M //<1, which

implies that there are only finitely many changes in Ift .r/ for t with a� t � b , Similar
arguments show that there are only finitely many changes of It

f .r/ for t with a� t � b .
This suffices to have CR.f /\Œa; b� a finite set for any a< b , hence CR.f / discrete.

Definition 3.5 Define Q�.f / WD inf jc0 � c00j where c0; c00 2 CR.f / and c0 ¤ c00 , and
call f homologically tame (with respect to � ) if Q�.f / > 0.

Clearly tame maps are homologically tame with respect to any field � , and Q�.f />�.f /.

4As a replacement for an argument based on an incorrect reference, the above argument and reference
were proposed by the referee.
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y –axis

x–axis
.a0; b/ .a; b/

.a; b0/.a0; b0/

Figure 1: The box B WD .a0; a�� Œb; b0/�R2

Consider the sets of the form B D .a0; a�� Œb; b0/ with a0 < a; b < b0 and refer to B

as a box; see Figure 1.

To a box B we assign the quotient of subspaces

Ffr .B/ WD Ffr .a; b/=.F
f
r .a
0; b/CFfr .a; b

0//;

and define
Ffr .a; b/ WD dim Ffr .a; b/; Ffr .B/ WD dim Ffr .B/:

In view of Observation 3.1(2), one has

Ffr .B/ WD Ffr .a; b/CFf .a0; b0/�Ffr .a
0; b/�Ff .a; b0/:

It will also be convenient to define

.Ffr /
0.B/ WD Ffr .a

0; b/CFfr .a; b
0/� Ffr .a; b/;

in which case
Ffr .B/D Ffr .a; b/=.F

f
r /
0.B/:

We denote by �B
ab;r

the obvious projection

(1) �B
ab;r W F

f
r .a; b/! Ffr .B/:

To ease the writing, when no risk of ambiguity, one drops f from the notation.

If � DR or C and Hr .X / is equipped with an inner product (nondegenerate positive
definite hermitian scalar product), one denotes by Hr .B/ the orthogonal complement
of F 0r .B/D .Fr .a

0; b/CF.a; b0// inside Fr .a; b/, which is a finite-dimensional Hilbert
space, and one has

Hr .B/� Fr .a; b/�Hr .X /:

Proposition 3.6 Let a00 < a0 < a, b < b0 and B1 , B2 and B the boxes B1 D

.a00; a0�� Œb; b00/, B2 D .a
0; a�� Œb; b0/ and B D .a00; a�� Œb; b0/; see Figure 2 (left).
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B1 B2

B1

B2

Figure 2

(a) The inclusions B1 � B and B2 � B induce the linear maps

iB
B1;r
W Fr .B1/! Fr .B/;(2)

�
B2

B;r
W Fr .B /! Fr .B2/(3)

such that the following sequence is exact:

0! Fr .B1/
iB
B1;r

�! Fr .B/
�

B2
B;r

�! Fr .B2/! 0:

(b) If Hr .X / is equipped with a scalar product then

Hr .B1/?Hr .B2/ and Hr .B/DHr .B1/˚Hr .B2/:

Proposition 3.7 Let a0 < a, b < b0 < b00 and B1 , B2 and B the boxes B1 D

.a0; a�� Œb0; b00/, B2 D .a
0; a�� Œb; b0/ and B D .a0; a�� Œb; b00/; see Figure 2 (right).

(a) The inclusions B1 � B and B2 � B induce the linear maps

iB
B1;r
W Fr .B1/! Fr .B/;(4)

�
B2

B;r
W Fr .B /! Fr .B2/(5)

such that the following sequence is exact:

0! Fr .B1/
iB
B1;r

�! Fr .B/
�

B2
B;r

�! Fr .B2/! 0:

(b) If � DR or C and Hr .X / is equipped with a scalar product then

Hr .B1/?Hr .B2/ and Hr .B/DHr .B1/˚Hr .B2/:

Proof Item (a) in both Propositions 3.6 and 3.7 follows from Observation 3.1(1) and (2).
To conclude item (b) note that Hr .B2/ as a subspace of Fr .a

00; b/ in Proposition 3.6
and as a subspace of Fr .a; b

00/ in Proposition 3.7 is orthogonal to a subspace which
contains Hr .B1/.
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B0

B00

B00

B0

Figure 3

In view of Propositions 3.6 and 3.7, one has the following observation.

Observation 3.8 (1) If B0 and B00 are two boxes with B0 �B00 and B0 is located
in the upper left corner of B00 (see Figure 3 (left)) then the inclusion induces the
canonical injective linear maps iB00

B0;r
W Fr .B

0/! Fr .B
00/.

(2) If B0 and B00 are two boxes with B0 � B00 and B0 is located in the lower right
corner of B00 (see Figure 3 (right)) then the inclusion induces the canonical
surjective linear maps �B0

B00;r
W Fr .B

00/! Fr .B
0/.

(3) If B is a finite disjoint union of boxes B D
F

Bi then Fr .B/ is isomorphic toL
i Fr .Bi/; the isomorphism is not canonical.

(4) If in addition � D R or C and Hr .X / is a Hilbert space then Hr .B/ DL
i Hr .Bi/.

In view of this observation, define B.a; b W �/D .a� �; a�� Œb; bC �/ and

Oıfr .a; b/ WD lim
��!
�!0

Fr .B.a; bI �//:

The limit refers to the direct system Fr .B.a; bI �
0//! Fr .B.a; bI �

00// whose arrows
are the surjective linear maps induced by the inclusion of B.a; bI �0/ as the lower right
corner of B.a; bI �00/ for �0 < �00 .

Define also
ıfr .a; b/ WD lim

�!0
Fr .B.a; bI �//:

Clearly one has dim Oıfr .a; b/D ı
f
r .a; b/. Denote by supp ıfr the set

supp ıfr WD f.a; b/ 2R2
j ıfr .a; b/¤ 0g:

Observation 3.9 For any .a; b/, a; b 2R, the direct system stabilizes and Oıfr .a; b/D
Ff .B.a; bI �// for some � small enough. Moreover ıfr .a; b/¤ 0 implies that a; b 2

CR.f /. In particular supp ıfr is a discrete subset of R2 . If f is homologically tame
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then for any .a; b/ with a; b 2 CR.f /, we have Oıfr .a; b/D Ff .B.a; bI �// for any � ,
0< � < Q�.f /.

Recall that for a box B D .a0; a�� Œb; b0/, we have denoted the canonical projection on
Fr .B/D F.a; b/=F 0.B/ by �B

ab;r
W Fr .a; b/! Fr .B/, and for B0 D .a00; a�� Œb; b00/,

a00 � a0 < a, b00 � b0 > b , we have denoted by �B
B0;r
W Fr .B

0/! Fr .B/ the canonical
surjective linear map between quotient spaces induced by F 0.B0/� F 0.B/� F.a; b/.
Clearly

�B
ab;r D �

B
B0;r ��

B0

ab;r :

Consider the surjective linear map

�r .a; b/W F.a; b/! lim
��!
�!0

F.B.a; bI �//D Oıfr .a; b/;

�r .a; b/ WD lim
��!
�!0

�
B.a;bI�/

ab;r
:

Definition 3.10 A special splitting is a linear map

sr .a; b/W Oı
f
r .a; b/! Fr .a; b/

which satisfies �r .a; b/ � sr .a; b/D id. In particular, in view of Observation 3.1, for
any ˛ > a and ˇ < b , we have img.sr .a; b//� Fr .˛; ˇ/.

We denote by ir .a; b/ the composition of sr .a; b/ with the inclusion Fr .a; b/�Hr .X /.

The diagram

(6)
Hr .X / Fr .a; b/

�B
ab;r

��

�

oo

�r .a;b/

// Oı
Qf

r .a; b/

sr .a;b/
uu

ir .a;b/

xx

iB
r .a;b/yy

Fr .B1/
iB
B0;r

// Fr .B/
�

B2
B;r

// Fr .B2/

reviews for the reader the linear maps considered so far. In this diagram suppose
BD .˛0; ˛��Œˇ; ˇ0/ with a2 .˛0; ˛� and b2 Œˇ; ˇ0/ and BDB1tB2 as in Figure 2 (left).
In view of Observations 3.8 and 3.9, one has the following.

Observation 3.11 (1) If .a; b/ 2 B2 then �B2

B;r
� iB

r .a; b/ is injective.

(2) If .a; b/ 2 B1 then �B2

B;r
� iB

r .a; b/ is zero.

Algebraic & Geometric Topology, Volume 17 (2017)



2064 Dan Burghelea

Choose special splittings fsr .a; b/ j .a; b/ 2 supp.ı
Qf

r /g, and consider the sum

Ir D

X
.a;b/2supp.ı

Qf
r /

ir .a; b/ W
M

.a;b/2supp.ı
Qf

r /

Oıfr .a; b/!Hr .X /;

and for a finite or infinite box B the sum

IB
r D

X
.a;b/2supp.ı

Qf
r /\B

iB
r .a; b/ W

M
.a;b/2supp.ı

Qf
r /\B

Oıfr .a; b/! Fr .B/:

For † � supp.ıfr / denote by Ir .†/ the restriction of Ir to
L
.a;b/2†

Oı
f
r .a; b/ and

for †� supp.ıfr /\B denote by IB
r .†/ the restriction of IB

r to
L
.a;b/2†

Oı
f
r .a; b/.

Note the following.

Observation 3.12 For BDB1tB2 as in Figure 2 and †�supp ı
Qf

r with †D†1t†2 ,
†1 � B1 and †2 � B2 , the diagram

Fr .B1/ // Fr .B/ // Fr .B2/

L
.a;b/2†1

Oı
Qf

r .a; b/

I
B1
r .†1/

OO

//
L
.a;b/2†

Oı
Qf

r .a; b/

IB
r .†/

OO

//
L
.a;b/2†2

Oı
Qf

r .a; b/

I
B2
r .†2/

OO

is commutative. In particular if I
B1
r .†1/ and I

B2
r .†2/ are injective then so is IB

r .†/.

If � DR or C and Hr .X / is equipped with a Hilbert space structure, then the inverse
of the restriction of �r .a; b/ to the orthogonal complement of ker.�r .a; b// provides a
canonical special splitting sr .a; b/. For these canonical special splittings, one denotes
by OOıfr the assignment

OOıfr .a; b/DHr .a; b/ WD img sr .a; b/:

Then if X is compact in view of Observation 3.8(4) the assignment OOıfr is a configuration
CO

Hr .X /
.R2/. The configuration OOıfr .a; b/ has the configuration ıfr 2Cdim Hr .X / as its

dimension.

Let f be a map, and for any .a; b/2R2 choose a special splitting sr .a; b/W Oı
f
r .a; b/!

Hr .X /.

Observation 3.13 (1) For any †� supp.ıfr / (resp. †� supp.ıfr /\B ), the linear
maps Ir .†/ (resp. IB

r .†/) are injective.

(2) For any box B D .a0; a�� Œb; b0/ the set ıfr \B is finite.

(3) For any box B , the linear map IB
r is an isomorphism.
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(4) If X compact, m< inff and M > supf then Hr .X /DFr ..m;M �� Œm;M //

and Ir is an isomorphism. Therefore, for any special splittings, the collection of
subspaces img.ir .a; b// provide a configuration of subspaces of Hr .X / hence
and element in CHr .X /.R

2/.

Proof (1) If † � B then in view of Observations 3.11 and 3.12, the injectivity
of IB

r .†/ implies the ineffectiveness of IB0

r .†/ for any box B0 � B , as well as the
injectivity of Ir .†/. To check the injectivity of IB

r .†/, one proceeds as follows:

� If the cardinality of † is one, then the statement follows from Observation 3.11.
� If all elements .˛i ; ˇi/, iD1; : : : ; k , of † have the same first component ˛iDa,

the statement follows by induction on k . One writes the box B D B1 tB2

as in Figure 2 (left) such that B2 contains one element of †, say .˛1; ˇ1/,
and B1 contains the remaining k�1 elements. The injectivity follows from
Observation 3.12 in view of the injectivity of I

B2
r .†\B2/ and of I

B1
r .†\B1/,

assumed by the induction hypothesis.
� In general, one writes † as the disjoint union † D †1 t†2 t � � � t†k such

that each †i contains all points of † with the same first component ai , and
ak > ak�1 > � � � > a2 > a1 . One proceeds again by induction on k . One
decomposes the box B as in Figure 2 (right), B DB1 tB2 such that †1 �B2

and .†n†1/�B1 . The injectivity of IB
r .†/ follows then using Observation 3.12

from the injectivity of IB2
r .†1/ and the induction hypothesis which assumes

the injectivity of I
B1
r .†\B1/.

(2) In view of (1), any subset of supp.ıfr /\B with BD .a0; a��Œb; b0/ has cardinality
smaller than dim Fr .a; b/, which by Proposition 3.2 is finite. Hence † is finite.

(3) The injectivity of IB
r is ensured by (1). The surjectivity follows from the equality

of the dimension of the source and of the target implied by Observations 3.8 and 3.9.

(4) This follows from definitions and from (3).

In case X is not compact, for the needs of part II of this paper it is useful to extend
Observation 3.13(3) to the situation of an infinite box B.a; bI1/ WD .�1; a�� Œb;1/,
and evaluate the image of Ir , which might not be a finite-dimensional space. For this
purpose we introduce the following:

(1) If�1.r/D
T

a2R Ifa .r/ and I1
f
.r/D

T
b2R Ib

f
.r/,

(2) Ffr .�1; b/ WD If�1.r/\ Ib
f
.r/ and Ffr .a;1/ WD Ifa .r/\ I1

f
.r/,

(3) .Ff /0r .B.a; bI1// WD Ffr .�1; b/CFfr .a;1/,

(4) Ffr .B.a; bI1// WD Ffr .a; b/=.F
f /0r .B.a; bI1//.
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Observation 3.14 (1) In view of the finite-dimensionality of Fr .a; b/, one has the
following:

(i) For any a, there exists b.a/ such that

Fr .a; b.a//D Fr .a; b
0/D Fr .a;1/

provided that b0 � b.a/.

(ii) For any b , there exists a.b// such that

Fr .�1; b/D Fr .a
0; b/D Fr .a.b/; b/

provided that a0 � a.b/.

(2) In view of (1), for a0 < a.b/ and b0 > b.a/, the canonical projections

Fr .B.a; bI1//! Fr ..a
0; a�� Œb; b0//! Fr ..a.b/; a�� Œb; b.a///

are isomorphisms.

Observation 3.15 (addendum to Observation 3.13(3)) The mapsM
.a0;b0/2supp.ıf

r /\B.a;bI1/

iB.a;bI1/
r .a0; b0/W

M
.a0;b0/2supp ıf

r \B.a;bI1/

Oıfr .a
0; b0/!Fr .B.a; bI1//;

M
.a;b/2supp.ıf

r /

ir .a; b/W
M

.a;b/2supp.ıf
r /

Oıfr .a; b/!Hr .X /=.I
f
�1.r/C I1f .r//

are isomorphisms.

Proof The first isomorphism follows from Observations 3.13 and 3.14.

For the second, note that for k < k 0 (for simplicity in writing we drop f and r from
the notation)

.I�1\ I�k0
C Ik0 \ I1/\ I�k

\ Ik D I�1\ I�k
C Ik \ I1

and that
Hr .X /D lim

��!
k!1

Fr .k;�k/D lim
��!

k!1

I�k
D lim
��!

k!1

Ik :

Then in view of stabilization properties,

lim
��!

F.k;�k/

I�1\ I�k
C Ik \ I1

D
Hr .X /

I�1C I1
:

Let D.a; bI �/ WD .a� �; aC ��� Œb� �; bC �/. If x D .a; b/, one also writes D.xI �/

for D.a; bI �/.
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Proposition 3.16 (see [3, Proposition 5.6]) Let f W X ! R be a tame map and
� < �.f /=3. For any map gW X !R which satisfies kf �gk1 < � and a; b 2 Cr.f /
critical values, one has X

x2D.a;bI2�/

ıg
r .x/D ı

f
r .a; b/;(7)

supp ıg
r �

[
.a;b/2supp ıf

r

D.a; bI 2�/:(8)

If in addition Hr .X / is equipped with a Hilbert space structure (� D R or C ), the
above statement can be strengthened to

(9) x 2D.a; bI 2�/ ) Oıg
r .x/�

Oıfr .a; b/;
M

x2D.a;bI2�/

Oıg
r .x/D

Oıfr .a; b/:

Proposition 3.16 implies that in an �–neighborhood of a tame map f (with respect
to the k � k1 norm) any other map g has the support of ıg

r in a 2�–neighborhood of
the support of ıfr and in case X compact is of cardinality counted with multiplicities
equal to dim Hr .X /.

Proof of Proposition 3.16 See [3]. Consider a collection of real numbers

C WD f � � �< ci < ciC1 < ciC2 < � � � j i 2 Zg

which satisfies the following properties:

(1) Cr.f /� C ,

(2) ciC1� ci > �.f /,

(3) limi!1 ci D1,

(4) limi!�1 ci D�1.

Next, one establishes two intermediate results.

Lemma 3.17 For f as in Proposition 3.16 and ci ; cj 2 C , one has

(10) Oıfr .ci ; cj /D Ffr ..ci�1; ci �� Œcj ; cjC1//

D Ffr .ci ; cj /=F
f
r .ci�1; cj /CFfr .ci ; cjC1/;

and therefore

(11) ıfr .ci ; cj /D Ffr ..ci�1; ci �� Œcj ; cjC1//

D Ffr .ci�1; cjC1/CFfr .ci ; cj /�Ffr .ci�1; cj /�Ffr .ci ; cjC1/:
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Proof It is known (see [7], for example) that X a closed subset of Y and X;Y ANRs
implies that X is a neighborhood deformation retract [7]. Then in view of the tameness
of f , for any �0; �00 2 .0; �.f // one has

(12)
Ffr .ci ; cj /D Ffr .ci C �

0; cj /D Ffr .ciC1� �
00; cj / D Ffr .ciC1� �

00; cj�1C �
00/;

Ffr .ci ; cj /D Ffr .ci ; cj � �
0/ D Ffr .ci ; cj�1C �

00/D Ffr .ciC1� �
0; cj�1C �

00/:

Since � < �.f /, in view of the definition of Oıfr one has

(13) Oıfr .ci ; cj /D Ffr ..ci � �; ci �� Œcj ; cj C �//

D Ffr .ci ; cj /=F
f
r .ci � �; cj /CFfr .ci ; cj C �/:

Combining (13) with (12) one obtains the equality (10):

Oıfr .ci ; cj /D Ffr .ci ; cj /=F
f
r .ci�1; cj /CFfr .ci ; cjC1/:

Since Ff .ci�1; cj /\Ff .ci ; cjC1/D Ff .ci�1; cjC1/ one has

dim.Ffr .ci�1; cj /CFfr .ci ; cjC1//

D dim Ffr .ci�1; cj /C dim Ffr .ci ; cjC1� dim Ff .ci�1; cjC1/

and the equality (11) follows.

To simplify the notation, the index r in the following lemma will be dropped.

Lemma 3.18 Suppose f is tame. Let a D ci , b D cj , ci ; cj 2 C and � < �.f /=3.
If g is a continuous map with kf �gk1 < � , then

(14)

Fg
r .a� 2�; bC 2�/D Ffr .ci�1; cjC1/;

Fg
r .aC 2�; b� 2�/D Ffr .ci ; cj /;

Fg
r .aC 2�; bC 2�/D Ffr .ci ; cjC1/;

Fg
r .a� 2�; b� 2�/D Ffr .ci�1; cj /:

Proof Since kf �gk1 < � , in view of Observation 3.1(3) one has

(15)

Ffr .a� 3�; bC 3�/� Fg
r .a� 2�; bC 2�/ � Ffr .a� �; bC �/;

Ffr .aC �; b� �/� Fg
r .aC 2�; b� 2�/ � Ffr .aC 3�; b� 3�/;

Ffr .aC �; bC 3�/� Fg
r .aC 2�; bC 2�/� Ffr .aC 3�; bC �/;

Ffr .a� 3�; b� �/� Fg
r .a� 2�; b� 2�/ � Ffr .a� �; b� 3�/:
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Since 3� < �.f /, one has

(16)

Ff .a� 3�; bC 3�/D Ff .a� �; bC �/;

Ff .aC �; b� �/D Ff .aC 3�; b� 3�/;

Ff .aC �; bC 3�/D Ff .aC 3�; bC �/;

Ff .a� 3�; b� �/D Ff .a� �; b� 3�/;

which imply that in (15) the inclusion � is actually equality.

Note that in view of the equalities (12), for �0; �00 < �.f / one has

(17)

Ff .ci�1; cjC1/D Ff .a� �0; bC �00/;

Ff .ci ; cj /D Ff .aC �0; b� �00/;

Ff .ci ; cjC1/D Ff .aC �0; bC �00/;

Ff .ci�1; cj /D Ff .a� �0; b� �00/:

Then (15) and (17) imply (14) and hence the statement of Lemma 3.18.

Next observe that Lemma 3.18 gives (for aD ci , b D cj with ci ; cj 2 C ) the equality

Fg..a� 2�; aC 2��� Œb� 2�; bC 2�//D Ff ..ci�1; ci �� Œcj ; cjC1//:

This combined with Lemma 3.17 implies Fg..a�2�;aC2���Œb�2�;bC2�//D Oıf.a;b/,
which combined with Observation 3.13 implies the inclusion (7) and the equality (9),
not only for critical values but for any a; b 2 C .

To check inclusion (8) observe the following:

(a) kf � gk1 < � implies X
f
a � X

g
aC� � X

f
aC2�

and X b
f
� X b��

g � X b�2�
f

, and
when a; b 2 C ,

(18) Ff .a; b/� Fg.aC �; b� �/� Ff .aC 2�; b� 2�/:

(b) When � < �.f /=3, the inclusions (18) imply

Ff .a; b/D Fg.aC �; b� �/D Ff .aC 2�; b� 2�/

which in view of Observation 3.15 implies

(19)
X

x2.�1;a��.b;1/\supp ıf
r

ıfr .x/D
X

y2.�1;aC���.b��;1/\supp ıg
r

ıg
r .y/

D

X
x2.�1;aC2���.b�2�;1/\supp ıf

r

ıfr .x/:
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Since R2D
S

i2Z B.ci ; c�i I1/, (19) and (7) rule out the existence of an x 2 supp.ıg
r /

away from
S

x2supp.ıf
r /

D.xI 2�/, finishing the proof of Proposition 3.16.

Let K be a compact ANR and f W X !R be a map. Denote by

NfK IX �K!R

the composition f � �K with �K W X �K ! X the first factor projection. If f is
weakly tame then so is NfK and the set of critical values of f and of NfK are the same.
Moreover in view of the Künneth theorem about the homology of the cartesian product
of two spaces one can make the following observation.

Observation 3.19 (1) F
NfK

r .a; b/D
L

0�k�r Ff
k
.a; b/˝Hr�k.K/, and therefore

(2) Oı
NfK

r .a; b/D
L

0�k�r
Oı
f

k
.a; b/˝Hr�k.K/, and

(3) Oı
NfK

r .a; b/D Oı
f

k
.a; b/ when K is acyclic.

Note that the embedding I W C.X IR/! C.X �KIR/ defined by I.f /D NfK is an
isometry when both spaces are equipped with the distance k � k1 . Note also that when
K is acyclic one has ıfr D ıI.f /

r and Oıfr D OıI.f /
r provided that Hr .X / is identified

with Hr .X �K/.

4 The main results

Theorem 4.1 (topological results) Suppose X is compact and f W X !R a map.5

(1) ı
f
r .x/¤ 0 with x D .a; b/ implies that both a; b 2 CR.f /.

(2)
P

x2R2 ı
f
r .x/ D dim Hr .X / and

L
x2R2

Oı
f
r .x/ D Hr .X /. In particular, we

have ıfr 2 Cdim Hr .X /.R
2/.

(3) If Hr .X / is equipped with a Hilbert space structure then OOıf 2 CO
Hr .X /

.R2/.

(4) If X is homeomorphic to a finite simplicial complex or a compact Hilbert cube
manifold then for an open and dense set of maps f in the space of continuous
maps with compact open topology, ıfr .x/D 0 or 1.

Statements (1) and (3) formulated in terms of bar codes (see [2]) were verified first
in [3] under the hypothesis that f is a tame map.

5This means X is also ANR and f continuous.
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Theorem 4.2 (stability) Suppose X is a compact ANR.

(1) The assignment f  ı
f
r provides a continuous map from the space of real-

valued maps C.X IR/ equipped with the compact open topology to the space
of configurations Cbr

.R2/ D Cbr and br D dim Hr .X /, equipped with the
collision topology (also regarded as the space of monic polynomials of degree br).
Moreover, with respect to the canonical metric D on the space of configurations,
which induces the collision topology, one has

D.ıf ; ıg/ < 2D.f;g/:

Recall that D.f;g/ WD kf �gk1 D supx2X jf .x/�g.x/j.

(2) If � DR or C then the assignment f  OOıfr is continuous with respect to both
collision topologies. (The continuity with respect to the first implies that with
respect to the second.)

Theorem 4.2(1) was first established in [3] under the hypothesis X homeomorphic to a
finite simplicial complex.

Theorem 4.3 (Poincaré duality) (1) Suppose X is a closed smooth �–orientable
manifold 6 of dimension n, and f a continuous map. Then ıfr .a; b/Dı

f
n�r .b; a/.

(2) In addition any collection of isomorphisms Hr .X / ! Hr .X /
� induce the

isomorphisms of the configuration Oıfr and Oıfn�r � � with �.a; b/D .b; a/.

Item (1) of the above theorem was established in [3] for f a tame map.

4.1 Proof of Theorem 4.1

Items (1)–(3) are contained in Observation 3.13 and Observation 3.9.

We first prove item (4). In view of Theorem 4.2, whose proof does not involve
Theorem 4.1, it suffices to establish only the density in the space of all continuous
functions of tame maps f with ıfr taking values only 0 and 1.

We say that a tame map f W X !R satisfies Property G if the following holds.

Property G There exists a finite sequence of real numbers

aD a0 < a1 < � � �< an < anC1 D b

6The results probably remain true as stated for topological manifolds based essentially on the same
arguments, but being unable to find appropriate references we formulate them under the hypothesis of
smoothness.
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such that

(1) Ifa .r/D 0 and If
b
.r/DHr .X /,

(2) for any i � 1, dim.Ifai
=Ifai�1

/� 1.

The verification of Theorem 4.1(4) is based on the Observations 4.4 and 4.5.

Observation 4.4 For any tame map f which satisfies Property G, the configuration ıfr
takes only the values 0 and 1.

If f has Property G then it satisfies dim.Ifai
=Ifai�1

/� 1 for ai D ci ; i D 1; : : : ; n; since
for ˛ < ˇ with no critical value in the open interval .˛; ˇ/ and ˇ a regular value, the
inclusion X

f
˛ �X

f

ˇ
induces isomorphism in homology and for any a0 � a� b � b0 ,

dim.If
b
.r/=Ifa .r//� dim.If

b0
.r/=Ifa0.r//.

If so, then for any two consecutive critical values ci�1 < ci and any other critical
value cj , the inclusion Fr .ci�1; cj /�Fr .ci ; cj / has cokernel of dimension at most one,
which by (10) in Lemma 3.17 implies that ıfr takes only the values 0 and 1. Based on
this observation, if X is a compact smooth manifold (possibly with boundary), any
Morse function f W X !R which takes different values of different critical points has
Property G.

Indeed if f � � � < ci < ciC1 < � � � g is the collection of all critical values, X
f
ciC1

is
homotopy equivalent to a space obtained from X

f
ci

by adding a closed disk Dk along
@Dk D Sk�1 or @Dk

C DDk�1 , which insures that Property G is satisfied. Since the
set of such Morse functions is dense in the space of all continuous functions equipped
with the C0 –topology, item (4) is verified (once Theorem 4.2 is established).

If X is a compact Hilbert cube manifold, then is homeomorphic to M �Q with
M a compact smooth manifold (possible with boundary), and any continuous map
f W X ! R is arbitrarily closed to NfQ , with f W M ! R a Morse function. This
observation establishes item (4) for compact Hilbert cube manifolds.

If X is a finite simplicial complex, one needs the following observation.

Observation 4.5 If X is a finite simplicial complex and a < b , one can construct
a map hW X !R simplicial on the barycentric subdivision of X with the following
properties:

(1) a< h.x/ < b ;

(2) h takes different values on the barycenters of different simplices;

(3) the value of h on the barycenter of a simplex � is strictly larger than the values
of h on the barycenter of any of its faces.
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Proof The construction is straightforward. Such a map satisfies Property G, since
adding a simplex to a finite simplicial complex might change the dimension of the
homology with at most one unit, and for any ˛ , X h

˛ retracts by deformation to the
simplicial complex generated by the barycenters on which h takes value smaller or
equal to ˛ .

For f W X ! R a simplicial map, X a finite simplicial complex with critical values
f � � � < ci�1 < ci < � � � g, if for some i we have dim.Ifci

=Ifci�1
/ � 2, one chooses

� < �.f /=2 and a subdivision of X which makes f �1.ci ˙ �=2/ and f �1.ci//, and
thus f �1.Œci � �=2; ci C �=2�/ and f �1.Œci ; ci C ��/, subcomplexes. One takes the
barycentric subdivision of this subdivision and replaces f by g , the simplicial map
for the new triangulation. We define the map g to take the same value as f on
the barycenters of simplices not contained in f �1.ci/, and as h constructed using
Observation 4.5 for a D cI � �=2, b D ci C �=2 on the barycenters of simplices
contained in f �1.ci/. The map g gets as possible critical values, in addition to the
critical values of f the critical values of hD gjf �1.ci /

. We leave the reader to check
that g satisfies Property G in view of the fact that h does and � < �.f /. Clearly g

differs from f by less than � as it follows from construction.

Since simplicial maps (for some subdivision) are dense in the space of continuous maps
and any simplicial map is arbitrarily close to one that satisfies Property G, item (4)
follows.

4.2 Stability: proof of Theorem 4.2

The stability theorem is a consequence of Proposition 3.16. In order to explain this we
begin with a few observations:

(1) Consider the space of maps C.X;R/, X a compact ANR, equipped with the
compact open topology which is induced from the metric

D.f;g/ WD sup
x2X

jf .x/�g.x/j D kf �gk1:

This metric is complete.

(2) Observe that if f;g 2 C.X;R/, then for any t 2 Œ0; 1�,

ht WD tf .x/C .1� t/g.x/ 2 C.X IR/

is continuous, and for any 0D t0 < t1 < � � �< tN�1 < tN D 1 one has the equality

(20) D.f;g/D
X

0�i<N

D.htiC1
; hti

/:
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(3) If X is a simplicial complex let U �C.X;R/ denote the subset of PL maps. Then

(i) U is a dense subset in C.X;R/;

(ii) if f;g 2 U then ht 2 U , hence �.ht / > 0, hence for any t 2 Œ0; 1� there exists
ı.t/ > 0 such that t 0; t 00 2 .t � ı.t/; t C ı.t// implies D.ht 0 ; ht / < �.ht /=3.

These two statements are not hard to check. Recall the following:

� f is PL on X if with respect to some subdivision of X f is simplicial (ie the
restriction of f to each simplex is linear), and

� for any two PL maps f;g , there exists a common subdivision of X which makes
f and g simultaneously simplicial, hence ht is a simplicial map for any t .

Item (i) follows from the fact that continuous maps can be approximated with arbitrary
accuracy by PL maps and item (ii) follows from the continuity in t of the family ht

and from the compactness of X .

(4) Consider Cbr
.R2/DCbr , br D dim.Hr .X /, with the canonical metric D which

is complete. Since any map in U is tame, in view of Proposition 3.16, f;g 2 U with
D.f;g/ < �.f /=3 implies

(21) D.ıfr ; ı
g
r /� 2D.f;g/:

To prove Theorem 4.2, first check that inequality (21) extends to all f;g 2 U . To do
that we start with f;g 2 U and consider the homotopy ht , t 2 Œ0; 1� defined above.

Choose a sequence 0< t1 < t3 < � � �< t2N�1 < 1 such that for i D 1; : : : ; .2N � 1/,
the intervals .t2i�1� ı.t2i�1/; t2i�1C ı.t2i�1// cover Œ0; 1� and

.t2i�1; t2i�1C ı.t2i�1//\ .t2iC1� ı.t2iC1/; t2iC1/¤∅:

This is possible in view of the compactness of Œ0; 1�.

Take t0D0; t2N D1 and t2i 2 .t2i�1; t2i�1Cı.t2i�1//\.t2iC1�ı.t2iC1/. To simplify
the notation, abbreviate hti

to hi .

In view of item (3)(ii) and item (4) (inequality (21)), one has

jt2i�1� t2i j< ı.t2i�1/ implies D.ıh2i�1 ; ıh2i / < 2D.h2i�1; h2i/;

jt2i � t2iC1j< ı.t2iC1/ implies D.ıh2i ; ıh2iC1/ < 2D.h2i ; h2iC1/:

Then we have

D.ıf ; ıg/�
X

0�i<2N�1

D.ıhi ; ıhiC1/� 2
X

0�i<2N�1

D.hi ; hiC1/DD.f;g/:

Algebraic & Geometric Topology, Volume 17 (2017)



A refinement of Betti numbers and homology 2075

In view of the density of U and the completeness of the metrics on C.X IR/ and
Cbr
.R2/, inequality (21) extends to the entire C.X IR/ when X is a simplicial complex.

Indeed, the assignment U 3 f  ı
f
r 2 Cbr

.R2/ preserves the Cauchy sequences.

Next we verify (21) for X DK �Q, K a simplicial complex and Q the Hilbert cube.
For this purpose we write Q WD Ik �Q1�k and say that f W K �Q ! R is an
.1�k/–PL map if f D NgQ1�k (see Section 2.3 for the definition of NgQ1�k ) with
gW K � Ik ! R a PL map. Clearly an .1�k/–PL map is an .1�k 0/–PL map for
k 0 � k .

Denote by CPL.K�QIR/ the set of maps in C.K�QIR/ which are .1�k/–PL for
some k .

In view of Observation 2.2, CPL.K �QIR/ is dense in C.K �QIR/. To conclude
that (21) holds for K�Q, it suffices to check the inequality for f1D . Ng1/Q1�k ; f2D

. Ng2/Q1�k 2 CPL.K �QIR/. The inequality holds since, in view of Observation 3.19,
we have ıfi D ıgi .

Since by Theorem 2.3 any compact Hilbert cube manifold is homeomorphic to K �Q

for some finite simplicial complex K , inequality (21) holds for X any compact Hilbert
cube manifold. Since for any X a compact ANR, by Theorem 2.3, X �Q is a Hilbert
cube manifold, I W C.X IR/! C.X �QIR/ defined by I.f /D NfQ is an isometric
embedding and ıf D ı NfQ , (21) holds for any X a compact ANR.

Both parts of Theorem 4.2 follow from inequality (21) and Proposition 3.16(9).

4.3 Poincaré duality: proof of Theorem 4.3

Before we proceed to the proof of Theorem 4.3, the following elementary observation
on linear algebra, used also in part II, will be useful.

For the commutative diagram

E WD

C
2
//

1

��

A2

˛2

��

A1

˛1
// B

define
ker.E/ WD ker.C


�!A1 �B A2/;

coker.E/ WD coker.A1˚C A2
˛
�! B/

Algebraic & Geometric Topology, Volume 17 (2017)



2076 Dan Burghelea

with

A1�BA2 D f.a1;a2/ 2A1�A2 j ˛1.a1/D ˛2.a2/g;

A1˚C A2 DA1˚A2

ı
.̊a1;a2/ 2A1�A2 j a1 D ˇ1.c/;a2 D�ˇ2.c/ for some c 2 C

	
and with  .c/D .1.c/; 2.c// and ˛.a1; a2/D ˛1.a1/C˛2.a2/.

If one denotes by E� the dual diagram

E� WD

C � A�
2

 �2
oo

A�
1

 �
1

OO

B�
˛�1

oo

˛�
2

OO

then we have a canonical isomorphism

(22) ker.E/D .coker.E�//�:

Note the following.

Proposition 4.6 If in the diagram E either all arrows are injective and ˛ is injective
or all arrows are surjective and  is surjective, then

dim.coker E/D dim C C dim B � dim A1� dim A2:

The proof is a straightforward calculation of dimensions.

For the proof of extended Poincaré duality claimed by Theorem 4.3 it is useful to
provide an alternative definition of Fr .B/ for a box B .

For this purpose introduce the quotient space

Gr .a; b/DHr .X /=.Ia.r/C Ib
.r//:

Consider a box B D .a0; a�� Œb; b0/ and denote by G.B/ and F.B/ the diagrams

G.B/ WD

Gr .a
0; b0/ //

��

Gr .a; b
0/

��

Gr .a
0; b/ // Gr .a; b/

F.B/ WD

Fr .a
0; b0/ //

��

Fr .a; b
0/

��

Fr .a
0; b/ // Fr .a; b/

whose arrows are induced by the inclusions Ia0.r/� Ia.r/ and Ib0.r/� Ib.r/. Let

Gfr .B/ WD kerG.B/
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and recognize that
Ffr .B/D cokerF.B/:

Note that the hypotheses of Proposition 4.6 are verified, (1) for G.B/ and (2) for F.B/,
and Gr .B/ identifies to ker.G.B// and Fr .B/ to coker.F.B//.

Since Gr .a
0; b/�Gr .a;b/ Gr .a; b

0/DHr .X /=..Ia0.r/C Ib.r//\ .Ia.r/C Ib0.r///, the
vector space Gr .B/ is canonically isomorphic to

(23)
�
.Ia0.r/C Ib

.r//\ .Ia.r/C Ib0
.r//

�
=.Ia0.r/C Ib0

.r//:

Similarly, since Fr .a
0; b/˚Fr .a0;b0/ Fr .a; b

0//D .Ia0.r/\ Ib.r/C Ia.r/\ Ib0.r//, the
vector space Fr .B/ is canonically isomorphic to

Ia.r/\ Ib
.r/=.Ia0.r/\ Ib

.r/C Ia.r/\ Ib0
.r//:

The obvious inclusion Ia.r/\ Ib.r/� .Ia0.r/C Ib.r//\ .Ia.r/C Ib0.r// induces the
linear map

Fr .B/D Ia.r/\ Ib
.r/=.Ia0.r/\ Ib

.r/C Ia.r/\ Ib0
.r//

! .Ia0.r/C Ib
.r//\ .Ia.r/C Ib0

.r//=.Ia0.r/C Ib0
.r/D Gr .B/:

Proposition 4.7 For any map f W X ! R and any box B the canonical linear map
Fr .B/! Gr .B/ defined above is an isomorphism: Ffr .B/D Gfr .B/.

Proof Note that the injectivity is straightforward. Indeed, suppose

Ia.r/\ Ib
.r/ 3 x D x1Cx2

with x1 2 Ia0.r/ and x2 2 Ib0.r/. Then x1D x�x2 2 Ib.r/ and x2 2 .Ia.r/\Ib0.r//.

To check the surjectivity, start with xD x1Cy1D x2Cy2 such that x1 2 Ia0 ;y1 2 Ib ,
x2 2 Ia;y2 2 Ib0 . Then x�x1�y2 is equivalent to x in Gr .B/. But x�x1�y2 D

y1�y2 D x2�x1 hence it belongs to Ib and to Ia .

Let f W M n!R be a map, M n a �–orientable closed topological manifold and a; b

regular values such that the restriction of f to f �1.a��; aC�/ and f �1.b��; bC�/

for a small enough positive � are topological submersions. This makes f �1.a/ and
f �1.b/ codimension-one topological submanifolds of M .

Let iaW Ma!M , ibW M b!M , jaW M ! .M;Ma/, j bW M ! .M;M b/ denote
the obvious inclusions, ia.k/; i

b.k/; ja.k/; j
b.k/ denote the inclusion induced linear

maps for homology in degree k , and ra.k/; r
b.k/; sa.k/; s

b.k/ denote the inclusion
induced linear maps in cohomology (with coefficients in the field � ), as indicated in
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diagrams (24) and (25) below. Poincaré duality provides the commutative diagrams (24)
and (25) with all vertical arrows isomorphisms:

(24)

Hr .Ma/

��

ia.r/
// Hr .M /

��

ja.r/
// Hr .M;Ma/

��

H n�r .M;M a/

��

sa.n� r/
// H n�r .M /

��

ra.n� r//
// H n�r .M a/

��

.Hn�r .M;M a//�
.j a.n� r//�

// .Hn�r .M //�
.ia.n� r//�

// .Hn�r .M
a//�

(25)

Hr .M
b/

��

ib.r/
// Hr .M /

��

j b.r/
// Hr .M;M b/

��

H n�r .M;Mb/

��

sb.n� r/
// H n�r .M //

��

rb.n� r/
// H n�r .Mb/

��

.Hn�r .M;Mb//
�
.jb.n� r//�

// .Hn�r .M //�
.ib.n� r//�

// .Hn�r .Mb//
�

As a consequence of these two diagrams, observe that Poincaré duality provides a
canonical isomorphism

(26) Ffr .a; b/D .G
f
n�r .b; a//

�:

Indeed, observe the following:

� Fr .a; b/ D ker.ja.r/; j
b.r// by the exactness of the first rows in diagrams (24)

and (25). Precisely ker.ja.r/; j
b.r//D ker ja.r/\ j b.r/D Ia.r/\ Ib.r/.

� ker.ja.r/; j
b.r// � ker.ra.n � r/; rb.n � r// by the isomorphism of the upper

vertical arrows in these diagrams.

� ker.ra.n� r/; rb.n� r//� ker
�
.ia.n� r//�; .ib.n� r//�

�
by the isomorphism of

the lower vertical arrow in these diagrams.

The isomorphisms above are induced by Poincaré duality and cohomology in terms of
homology; their composition is still referred to as Poincaré duality.

� ker
�
.ia.n� r//�; .ib.n� r//�

�
D
�
coker

�
ia.n� r/C ib.n� r/

���
D .Gfn�r .b; a//

�

by standard finite-dimensional linear algebra duality.
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Putting together these equalities one obtains (26).

Suppose M is a closed �–orientable smooth manifold and f W M ! R a smooth
map which is locally polynomial (ie in the neighborhood of any point, in some local
coordinates, is a polynomial). Such a map is tame. For .a; b/ 2 R2 choose � small
enough so that the intervals .a� �; a/; .a; aC �/ as well as .a� �; a/; .a; aC �/ are
contained in the set of regular values (in the sense of differential calculus). Such a
choice is possible in view of the tameness of f .

To establish the result as stated for such a map we proceed as follows.

In view of the tameness of f ,

(27) Oıfr .a; b/D Ffr ..a� �; aC ��� Œb� �; bC �//:

By definition,

(28) Ffr ..a� �; aC ��� Œb� �; bC �//D cokerFr ..a� �; aC ��� Œb� �; bC �//:

By Proposition 4.7,

(29) cokerFr ..a��; aC��� Œb��; bC�//D ker
�
Gr ..a��; aC��� Œb��; bC�//

�
:

By equality (22),

(30) ker
�
Gr ..a� �; aC ��� Œb� �; bC �//

�
D
�
coker

�
Gr ..a� �; aC ��� Œb� �; bC �//

�
���
:

By equality (26),

(31)
�
coker

�
Gr ..a� �; aC ��� Œb� �; bC �//

�
���

D
�
coker

�
Fn�r ..b� �; bC ��� Œa� �; aC �//

���
:

In view of the equality Ffr .B/D cokerF.B/,

(32)
�
coker

�
Fn�r ..b� �; bC ��� Œa� �; aC �//

���
D
�
Fn�r ..b� �; bC ��� Œa� �; aC �//

��
:

In view of the tameness of f ,

(33)
�
Ffn�r ..b� �; bC ��� Œa� �; aC �//

��
D . Oıfn�r .b; a//

�:

Putting together equalities (27)–(33), one derives the result for f as above. In view of
Theorem 4.2 and the fact that locally polynomial maps are dense in the space of all
continuous maps when X is a smooth manifold, the result holds as stated.
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A comment The hypothesis of compact ANR can be replaced by ANR with total
homology of finite dimension and proper map by homologically proper map, which
means that for I a closed interval, the total homology of f �1.I/ has finite dimension.
All results remain unchanged with essentially the same proof. An interesting situation
when such a generalization is relevant is the case of the absolute value of the complex
polynomial function f when restricted to the complement of its zeros, which will be
treated in future work, but can be easily reduced to the case of a proper map considered
above.
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A categorification of the Alexander polynomial
in embedded contact homology

GILBERTO SPANO

Given a transverse knot K in a three-dimensional contact manifold .Y; ˛/ , Colin,
Ghiggini, Honda and Hutchings defined a hat version bECK.K;Y; ˛/ of embedded
contact homology for K and conjectured that it is isomorphic to the knot Floer
homology bHFK.K;Y / .

We define here a full version ECK.K;Y; ˛/ and generalize the definitions to the
case of links. We prove then that if Y D S3, then ECK and bECK categorify the
(multivariable) Alexander polynomial of knots and links, obtaining expressions
analogous to that for knot and link Floer homologies in the minus and, respectively,
hat versions.

57M27, 57R17, 57R58

Introduction

Given a 3–manifold Y , Ozsváth and Szabó [29] defined topological invariants of Y ,
indicated by HF1.Y /, HFC.Y /, HF�.Y / and cHF.Y /. These groups are the Heegaard
Floer homologies of Y in the respective versions.

Moreover, Ozsváth and Szabó [28] and Rasmussen [33] proved that any homologically
trivial knot K in Y induces a “knot filtration” on the Heegaard Floer chain complexes.
The first pages of the associated spectral sequences (in each version) are topological
invariants of K : these are bigraded homology groups HFK1.K;Y /, HFKC.K;Y /,
HFK�.K;Y / and bHFK.K;Y /, called Heegaard Floer knot homologies (in the respec-
tive versions).

These homologies are powerful invariants for the couple .K;Y /. For instance, in [28]
and [33], it was proved that bHFK.K;S3/ categorifies the Alexander polynomial �K

of K ; ie
�.bHFK.K;S3//

:
D�.K/;

where :
D means that the two sides are equal up to sign change and multiplication by a

monic monomial, and � denotes the graded Euler characteristic.

Published: 3 August 2017 DOI: 10.2140/agt.2017.17.2081
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This was the first categorification of the Alexander polynomial; a second one (in Seiberg–
Witten–Floer homology) was discovered later by Kronheimer and Mrowka [23].

Ozsváth and Szabó [31] developed a similar construction for any link L in S3 and got
invariants HFL�.L;S3/ and bHFL.L;S3/ for L, which they called Heegaard Floer
link homologies. Now these homologies come with an additional Zn degree, where n

is the number of connected components of L. Ozsváth and Szabó proved moreover
that HFL�.L;S3/ categorifies the multivariable Alexander polynomial of L, which is
a generalization of the classic Alexander polynomial. They found in particular that

(1) �.HFL�.L;S3//
:
D

�
�L.t1; : : : ; tn/ if n> 1;

�L.t/=.1� t/ if nD 1;

and

(2) �.bHFL.L;S3//
:
D

�
�L �

Qn
iD1.t

1=2
i � t

�1=2
i / if n> 1;

�L.t/ if nD 1:

In the series of papers [5; 6; 7; 8; 9], Colin, Ghiggini and Honda prove the equivalence
between Heegaard Floer homology and embedded contact homology for three-manifolds.
The last one is another Floer homology theory, first defined by Hutchings, which
associates to a contact manifold .Y; ˛/ two graded modules ECH.Y; ˛/ and bECH.Y; ˛/.

Theorem 0.1 (Colin, Ghiggini and Honda [5]–[9])

HFC.�Y /Š ECH.Y; ˛/;cHF.�Y /Š bECH.Y; ˛/;

where �Y is the manifold Y with the inverted orientation.

In light of Theorem 0.1, it is a natural problem to find an embedded contact counterpart
of Heegaard Floer knot homology. In analogy with the sutured Heegaard Floer theory
developed by Juhász [22], Colin, Ghiggini, Honda and Hutchings [10, Sections 6–7]
define a sutured version of embedded contact homology. This can be thought of as
a version of embedded contact homology for manifolds with boundary. In particular,
given a knot K in a contact three-manifold .Y; �/, using sutures they define a hat
version bECK.K;Y; ˛/ of embedded contact knot homology.

Roughly speaking, this is the hat version of ECH for the contact manifold with boundary
.Y n N .K/; ˛/, where N .K/ is a suitable thin tubular neighborhood of K in Y

and ˛ is a contact form satisfying specific compatibility conditions with K . In [10,
Conjecture 1.5], the following conjecture is stated:

Conjecture 0.2 bECK.K;Y; ˛/Š bHFK.�K;�Y /:
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In the present paper, we first define a full version of embedded contact knot homology
ECK.K;Y; ˛/ for knots K in any contact three-manifold .Y; �/ endowed with a
(suitable) contact form ˛ for � . Moreover, we generalize the definitions to the case
of links L with more than one component to obtain homologies ECK.L;Y; ˛/ and
bECK.L;Y; ˛/. We state then the following:

Conjecture 0.3 For any link L in Y , there exists a contact form ˛ for which

bECK.L;Y; ˛/Š bHFK.�L;�Y /;

ECK.L;Y; ˛/Š HFKC.�L;�Y /:

We remark that ECK.L;Y; ˛/ (as well as bECK.L;Y; ˛/) is defined as the first page of a
spectral sequence arising from a filtration induced by L on a suitable chain complex for
ECH.Y /. In light of the last conjecture, this fact is interesting because the analogous
filtration for HFK�.L;Y / is useful to study link surgery formulae in Heegaard Floer
(see for example Ozsváth and Szabó [32] and Manolescu and Ozsváth [25]), and one
can expect to find similar relations in ECH.

Next we compute the graded Euler characteristics of the ECK homologies for knots
and links in homology three-spheres, and we prove the following:

Theorem 0.4 Let L be an n–component link in a homology three-sphere Y . Then
there exists a contact form ˛ such that

�.ECK.L;Y; ˛// :D ALEX.Y nL/:

Here ALEX.Y nL/ is the Alexander quotient of the complement of L in Y . The
theorem is proved using Fried’s dynamic reformulation of ALEX [14]. Classical
relations between ALEX.S3 nL/ and �L imply the following result:

Theorem 0.5 Let L be any n–component link in S3. Then there exists a contact
form ˛ for which

�.ECK.L;S3; ˛//
:
D

�
�L.t1; : : : ; tn/ if n> 1;

�L.t/=.1� t/ if nD 1;

and
�.bECK.L;S3; ˛//

:
D

�
�L.t1; : : : ; tn/ �

Qn
iD1.1� ti/ if n> 1;

�L.t/ if nD 1:

This implies that the homology ECK is a categorification of the multivariable Alexander
polynomial. A straightforward consequence is:

Corollary 0.6 In S3, Conjectures 0.2 and 0.3 hold at the level of Euler characteristics.
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1 Review of embedded contact homology

1.1 Preliminaries

This subsection is devoted to recall some basic notions about contact geometry, holo-
morphic curves, Morse–Bott theory and open books.

1.1.1 Contact geometry A (cooriented) contact form on a three-dimensional oriented
manifold Y is a 1–form ˛ on Y such that ˛^d˛ is a positive volume form. A contact
structure is a smooth plane field � on Y such that there exists a contact form ˛ for
which � D ker˛ . The Reeb vector field of ˛ is the (unique) vector field R˛ determined
by the equations d˛.R˛; � / D 0 and ˛.R˛/ D 1. A simple Reeb orbit is a closed
oriented orbit of RDR˛ ; ie it is the image ı of an embedding S1 ,! Y such that RP

is positively tangent to ı for any P 2 ı . A Reeb orbit is an m–fold cover of a simple
Reeb orbit, with m � 1. The form ˛ determines an action A on the set of its Reeb
orbits defined by A. /D

R
 ˛ . By definition, A. / > 0 for any nonempty orbit  .

A basic result in contact geometry asserts that the flow of the Reeb vector field (abbre-
viated Reeb flow) � D �R preserves � , that is, .�t /�.�P /D ��t .P/ for any t 2R; see
[15, Chapter 1]. Given a Reeb orbit ı , there exists T 2RC such that .�T /�.�P /D �P
for any P 2 ı ; if T is the smallest possible, the isomorphism Lı WD .�T /�W �P ! �P
is called the (symplectic) linearized first return map of R in P.

The orbit ı is called nondegenerate if 1 is not an eigenvalue of Lı . There are two types
of nondegenerate Reeb orbits, elliptic and hyperbolic: ı is elliptic if the eigenvalues
of Lı are on the unit circle and is hyperbolic if they are real. In the last case, we can
make a further distinction: ı is called positive or negative hyperbolic if the eigenvalues
are both positive or negative, respectively.

Definition 1.1 The Lefschetz sign of a nondegenerate Reeb orbit ı is

�.ı/ WD sign.det.1�Lı// 2 fC1;�1g:
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Observation 1.2 It is easy to check that �.ı/DC1 if ı is elliptic or negative hyper-
bolic and �.ı/D�1 if ı is positive hyperbolic.

To any nondegenerate orbit ı and a trivialization � of �jı , we can associate also the
Conley–Zehnder (CZ) index �� .ı/ 2 Z of ı with respect to � ; see for example [20,
Section 3.2] or [12]. Even if �� .ı/ depends on � , its parity depends only on ı , and

.�1/�� .ı/ D��.ı/:

Definition 1.3 Given X � Y , we will indicate by P.X / the set of simple Reeb
orbits of ˛ contained in X . An orbit set (or multiorbit) in X is a formal finite product
 D

Q
i 

ki
i , where i 2P.X / and ki 2N is the multiplicity of i in  , with ki 2f0; 1g

whenever i is hyperbolic. The set of multiorbits in X will be denoted by O.X /.

Note that the empty set is a legitimate orbit set, and it will be indicated by ∅. An orbit
set  D

Q
i 

ki
i determines the homology class Œ �D

P
i ki Œi �2H1.Y / (unless stated

otherwise, all homology groups will be taken with integer coefficients). Moreover, the
action of  is defined by A. /D

P
i ki

R
i
˛ .

1.1.2 Holomorphic curves We recall here some definitions and properties about
holomorphic curves in dimension 4. We refer the reader to [26] and [27] for the general
theory and to [20] and [5; 7; 8; 9] for an approach which is more specialized to our
context.

Let X be an oriented even-dimensional manifold. An almost complex structure on X

is an isomorphism J W TX ! TX such that J.TP X / D TP X and J 2 D �id. If
.X1;J1/ and .X2;J2/ are two even-dimensional manifolds endowed with an almost
complex structure, a map uW .X1;J1/! .X2;J2/ is pseudoholomorphic if it satisfies
the Cauchy–Riemann equation

du ıJ1 D J2 ı du:

Definition 1.4 A pseudoholomorphic curve in a four-dimensional manifold .X;J / is a
pseudoholomorphic map uW .F; j /! .X;J /, where .F; j / is a (possibly disconnected)
Riemann surface.

In this paper, we will be particularly interested in pseudoholomorphic curves (that
sometimes we will simply call holomorphic curves) in “symplectizations” of contact
three-manifolds. Given .Y; ˛/, consider the four-manifold R � Y . Call s the R–
coordinate and let R D R˛ be the Reeb vector field of ˛ . The almost complex
structure J on R�Y is adapted to ˛ if
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(1) J is s–invariant;

(2) J.�/D � and J.@s/DR at any point of R�Y ;

(3) J j� is compatible with d˛ ; ie d˛. � ;J � / is a Riemannian metric on � .

For us, a holomorphic curve u in the symplectization of .Y; ˛/ is a holomorphic curve
uW . PF ; j /! .R�Y; J /, where

(i) J is adapted to ˛ ;

(ii) . PF ; j / is a Riemann surface obtained from a closed surface F by removing a
finite number of points (called punctures);

(iii) for any puncture x there exists a neighborhood U.x/� F such that U.x/n fxg

is mapped by u asymptotically to a cover of a cylinder R� ı over an orbit ı of
R in a way that limy!x �R.u.y//D˙1, where �R is the projection on the
R–factor of R�Y .

We say that x is a positive puncture of u if in the last condition above the limit is C1:
in this case the orbit ı is a positive end of u. If otherwise, the limit is �1, and we
say x is a negative puncture and ı is a negative end of u.

By condition (iii) above, u near a puncture x determines a cover of the Reeb orbit ı
corresponding to x : the number of sheets of this cover is the local x–multiplicity of ı
in u. The sum of the x–multiplicities over all the punctures x associated to ı is the
(total) multiplicity of ı in u.

If  and  0 are the orbit sets determined by the sets of all positive and, respectively,
negative ends of u counted with multiplicity, then we say that u is a holomorphic
curve from  to  0 .

Example 1.5 A cylinder over an orbit set  of Y is the holomorphic curve R�  �
R�Y .

Observation 1.6 Note that if there exists a holomorphic curve u from  to  0 , then
Œ �D Œ 0� 2H1.Y;Z/.

Theorem 1.7 [27, Lemma 2.4.1] Let uW .F; j / ! .R � Y;J / be a nonconstant
holomorphic curve in .X;J /. Then the critical points of �R ı u are isolated. In
particular, if �Y denotes the projection R�Y ! Y , then �Y ıu is transverse to R˛

away from a set of isolated points.

From now on, if u is a map with image in R � Y , we will set uR WD �R ı u and
uY WD �Y ıu.

Holomorphic curves also enjoy the following property, which will be essential for us;
see for example Gromov [17] and, for the noncompact case, Siefring [34].
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Theorem 1.8 (positivity of intersection) Let u and v be two distinct holomorphic
curves in a four-manifold .W;J /. Then #.Im.u/\ Im.v// <1. Moreover, if P is an
intersection point between Im.u/ and Im.v/, then its contribution mP to the algebraic
intersection number hIm.u/; Im.v/i is strictly positive, and mP D 1 if and only if u

and v are embeddings near P that intersect transversely in P.

When the almost complex structure does not play an important role or is understood, it
will be omitted from the notation.

1.1.3 Morse–Bott theory The Morse–Bott theory in contact geometry was first
developed by Bourgeois [3]. We present in this subsection some basic notions and
applications, mostly as presented in [5].

Definition 1.9 A Morse–Bott (MB) torus in a 3–dimensional contact manifold .Y; ˛/
is an embedded torus T in Y foliated by a family t ; t 2 S1, of Reeb orbits, all in the
same class in H1.T /, that are nondegenerate in the Morse–Bott sense. Here this means
the following: given any P 2 T and a positive basis .v1; v2/ of �P where v2 2 TP .T /

(so that v1 is transverse to TP .T /), then the differential of the first return map of the
Reeb flow on �P is of the form �

1 0

a 1

�
for some a¤ 0. T is a positive or negative MB torus if a> 0 or a< 0, respectively.

We say that ˛ is a Morse–Bott contact form if all the Reeb orbits of ˛ are either isolated
and nondegenerate or come in S1 –families foliating MB tori.

As explained in [3] and [5, Section 4], it is possible to modify the Reeb vector field in
a small neighborhood of a MB torus T preserving only two orbits, say e and h, of the
S1 –family of Reeb orbits associated to T .

Moreover, for any fixed L> 0, the perturbation can be done in such a way that e and h

are the only orbits in a neighborhood of T with action less then L.

If T is a positive (respectively, negative) MB torus and � is the trivialization of �
along the orbits given pointwise by the basis .v1; v2/ above, then one can make the
MB perturbation in a way that h is positive hyperbolic with �� .h/D 0 and e is elliptic
with �� .e/D 1 (respectively, �� .e/D�1).

The orbits e and h can be seen as the only two critical points of a Morse function
fT W S

1!R defined on the S1 –family of Reeb orbits foliating T and with maximum
corresponding to the orbit with higher CZ index. Often MB tori will be implicitly given
with such a function.
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Observation 1.10 It is important to remark that, before the perturbation, T is foliated
by Reeb orbits of ˛ and so these are nonisolated. Moreover, the form of the differential
of the first return map of the flow of � implies that these orbits are also degenerate.
After the perturbation, T contains only two isolated and nondegenerate orbits, but
other orbits are created in a neighborhood of T , and these orbits can be nonisolated
and degenerate. See Figure 1 for a picture of a MB perturbation.

Proposition 1.11 [3, Section 3] For any MB torus T and any L 2R, there exists a
MB perturbation of T such that, with the exception of e and h, all the periodic orbits
in a neighborhood of T have action greater then L.

A torus T foliated by Reeb orbits all in the same class of H1.T / (like, for example, a
Morse–Bott torus) can be used to obtain constraints about the behavior of a holomorphic
curve near T .

Following [5, Section 5], if  is any of the Reeb orbits in T , we can define the slope
of T as the equivalence class s.T / of Œ � 2H1.T;R/� f0g up to multiplication by
positive real numbers.

Let T � Œ��; �� be a neighborhood of T D T � f0g in Y with coordinates .#; t;y/
such that .@# ; @t / is a positive basis for T .T / and @y is directed as a positive normal
vector to T .

Suppose that uW .F; j /! .R�Y; J / is a holomorphic curve in the symplectization
of .Y; ˛/; by Theorem 1.7, there exist at most finitely many points in T � Œ��; �� where
uY .F / is not transverse to R˛ . Then, if Ty WD T � fyg and u.F / intersects R�Ty ,
we can associate a slope sTy

.u/ to uY .F /\ Ty for any y 2 Œ��; ��: this is defined
exactly like s.T /, where uY .F /\Ty is considered with the orientation induced by
@.uY .F /\ .T � Œ��;y�//.

Observation 1.12 If u has no ends in T � Œy;y0�, then

@.uY .F /\T � Œy;y0�/D uY .F /\Ty0 �uY .F /\Ty ;

and sTy
.u/D sT 0y

.u/.

The following lemma is a consequence of the positivity of intersection in dimension
four; see [5, Lemma 5.2.3].

Lemma 1.13 (blocking lemma) Let T be linearly foliated by Reeb trajectories with
slope s D s.T / and u a holomorphic curve as above.

(1) If u is homotopic, by a compactly supported homotopy, to a map whose image
is disjoint from R�T , then uY .F /\T D∅.
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(2) Let T � Œ��; �� be a neighborhood of T D T � f0g. Suppose that for some
y 2 Œ��; �� n f0g, u has no ends in T � .0;y� if y 2 .0; �� or in T � Œy; 0/ if
y 2 Œ��; 0/. If sTy

.u/D˙s.T /, then u has an end which is a Reeb orbit in T .

Let now x be a puncture of F whose associated end is an orbit  in T ; if there exists
a neighborhood U.x/ of x in F such that uY .U.x/ n fxg/\ T D ∅, then  is a
one-sided end of u in x . This is equivalent to requiring that uY .U.x// is contained
either in T � .��; 0/ or in T � .0; �/.

Lemma 1.14 (trapping lemma [5, Lemma 5.3.2]) If T is a positive (respectively,
negative) MB torus and  � T is a one-sided end of u associated to the puncture x ,
then x is positive (respectively, negative).

Definition 1.15 Let ˛ be a Morse–Bott contact form on the three-manifold Y , and J

a regular almost complex structure on R�Y . Suppose that any MB torus T in .Y; ˛/
comes with a fixed a Morse function fT . Let P.Y / be the set of simple Reeb orbits
in Y minus the set of the orbits which correspond to some regular point of some fT .

A Morse–Bott building in .Y; ˛/ is a disjoint union of objects u of one of the following
two types:

(1) u is the submanifold of a MB torus T corresponding to a gradient flow line of
fT : in this case, the positive (respectively, negative) end of u is the positive
(respectively, negative) end of the flow line.

(2) u is a union of curves zu [ u1 [ � � � [ un of the following kind: zu is a J –
holomorphic curve in R�Y with n ends fı1; : : : ; ıng corresponding to regular
values of some ffT1

; : : : ; fTn
g. Then, for each i , the curve zu is augmented by

a gradient flow trajectory ui of fTi
: ui goes from the maximum �Ci of fTi

to ıi if ıi is a positive end and goes from ıi to the minimum ��i of fTi
if ıi is

a negative end. The ends of u are obtained from the ends of zu by substituting
each ıi with the respective �Ci or ��i .

A Morse–Bott building is nice if the zu above has at most one connected component
which is not a cover of a trivial cylinder.

1.2 ECH for closed three-manifolds

We briefly review here Hutchings’ original definitions of ECH.Y; ˛/ and bECH.Y; ˛/
for a closed contact three-manifold .Y; ˛/.

Assume that ˛ is nondegenerate (ie that any Reeb orbit of ˛ is nondegenerate). For
a fixed � 2H1.Y /, define ECC.Y; ˛; �/ to be the free Z2 –module generated by the
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orbit sets of Y in the homology class � , and set

ECC.Y; ˛/D
M

�2H1.Y /

ECC.Y; ˛; �/:

This is the ECH chain group of .Y; ˛/. The ECH–differential @ECH (called simply @
when no risk of confusion occurs) is defined in [19] in terms of holomorphic curves in
the symplectization .R�Y; d˛;J / of .Y; ˛/ as follows.

Given ; ı 2 O.Y /, let M.; ı/ be the set of (possibly disconnected) holomorphic
curves uW . PF ; j /! .R� Y;J / from  to ı , where . PF ; j / is a punctured compact
Riemannian surface. It is clear that u determines a relative homology class ŒIm.u/� in
H2.R�Y I ; ı/ and that if such a curve exists, then Œ �D Œı� 2H1.Y /.

If � D ker.˛/ and a trivialization � of �j[ı is given, then to any surface C �R�Y

with @C D  � ı , it is possible to associate an ECH–index

I.C / WD c� .C /CQ� .C /C�
I
� .; ı/;

which depends only on the relative homology class of C . Here,

� c� .C / WD c1.�jC ; �/ is the first relative Chern class of C ;

� Q� .C / is the � –relative intersection paring of R�Y applied to C ;

� �I
� .; ı/ WD

P
i

Pki

jD1
�� .

j
i /�

P
i

Pki

jD1
�� .ı

j
i /, where �� is the Conley–

Zehnder index defined in Section 1.1.1.

We refer the reader to [20] for the details about these quantities. If u is a holomorphic
curve from  to ı , set I.u/D I.Im.u// (well-defined up to approximating Im.u/ with
a surface in the same homology class).

Define Mk.; ı/ WD fu 2M.; ı/ j I.u/D kg. The ECH–differential is then defined
on the generators of ECC.Y; ˛/ by

(3) @ECH. /D
X

ı2O.Y /

#.M1.; ı/=R/ � ı;

where we quotient M1.; ı/ by the R–action on the curves given by the translation in
the R–direction in R�Y . In [20, Section 5], Hutchings proves that M1.; ı/=R is a
compact 0–dimensional manifold, so @ECH. / is well-defined.

The (full) embedded contact homology of .Y; ˛/ is

ECH�.Y; ˛/ WDH�.ECC.Y; ˛/; @ECH/:

It turns out that these groups do not depend on either the choices J in the symplectization
or the contact form for � .
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If  D
Q

i 
ki
i is a generator of ECC.Y; ˛/, set

�. /D
Y

i
�.i/

ki ;

where �.i/ is the Lefschetz sign of the simple orbit i . Note that �. / is given by
the parity of the number of positive hyperbolic simple orbits in  .

If u is a holomorphic curve from  to ı , by simple computations it is possible to prove
the index parity formula (see for example Section 3.4 in [20])

(4) .�1/I.u/ D �. /�.ı/:

It follows then that the Lefschetz sign endows embedded contact homology with a
well-defined absolute Z=2–grading.

Fix now a generic point .0; z/ 2R�Y . Given two orbit sets  and ı , let

Uz W ECC�.Y; ˛/! ECC��2.Y; ˛/

be the map defined on the generators by

Uz. /D
X

ı2O.Y /

#
˚
u 2M2.; ı/ j .0; z/ 2 Im.u/

	
� ı:

Hutchings proves that Uz is a chain map that counts only a finite number of holomorphic
curves and that this count does not depend on the choice of z . So it makes sense to
define the map U WD Uz for any z as above. This is called the U–map.

The hat version of embedded contact homology of .Y; ˛/ is defined as the homology
bECH.Y; ˛/ of the mapping cone of the U–map. By this, we mean that bECH.Y; ˛/ is

defined to be the homology of the chain complex

ECC��1.Y; ˛/˚ECC�.Y; ˛/

with differential defined by the matrix�
�@��1 0

U @�

�
;

where the elements of the complex are thought as columns. Also, bECH.Y; ˛/ has the
relative and the absolute gradings above.

We end this section by stating the following result; see for example [20, Section 1.4].

Theorem 1.16 Let � be a contact structure on Y and ˛ a contact form with ker˛ D � .
Then the homology class Œ∅� 2 ECH.Y; ˛/ of the empty orbit set ∅ depends only on � ,
and it is called the ECH–contact invariant of � .
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1.3 ECH for manifolds with torus boundary

In order to define ECH for contact three-manifolds .N; ˛/ with nonempty boundary,
some compatibility between ˛ and @N should be assumed. In this paper, we are
particularly interested in three-manifolds whose boundary is a collection of disjoint tori.

In [5, Section 7], Colin, Ghiggini and Honda analyze this situation when @N is
connected. If T D @N is homeomorphic to a torus, then they prove that the ECH–
complex, and the differential can be defined almost as in the closed case, provided that
RDR˛ is tangent to T and that ˛ is nondegenerate in int.N /.

If the flow of RjT is irrational, they define ECH.N; ˛/D ECH.int.N /; ˛/, and if it
is rational, they consider the case of T Morse–Bott and do a MB perturbation of ˛
near T ; this gives two Reeb orbits h and e on T , and since ˛ is now a MB contact
form, the ECH–differential counts MB buildings.

1.3.1 Contact forms If Y is a closed 3–manifold and K � Y is an oriented null-
homologous knot, let N be a closed tubular neighborhood of K , and define N to be
the closure of Y nN . Fix a neighborhood Œ0; 2��T 2 of @N D f1g �T 2 in Y with
Œ0; 1��T 2 �N , and let V �N be the solid torus with core K and @V D f2g �T 2.
Obviously, N D .Œ1; 2��T 2/[V .

Identify now V nK with Œ2; 3/�T 2, and fix coordinates .y; #; t/2 Œ0; 3/�T 2ŠN nK
such that the natural projection Œ0; 3/� T 2� K sends .y; #; t/ to # , and for any
given y0 and t0 2 Œ0; 1�=h0� 1i, the push off f.y0; #; t0/ j # 2Kg of K has linking
number 0 with K in Y (ie it gives the Seifert framing of K ). Note in particular
that each strip ft D t0g can be seen as the intersection between N nK and some
Seifert surface for K and with the inherited orientation, so that .y; #; t0/ is a positive
coordinate system and any f.y0; #0; t/ j t 2 Œ0; 1�=h0� 1i is a positive meridian for K .

Definition 1.17 We say that the contact form ˛ on Y is adapted to K if there exists
a tubular neighborhood N of K as before such that

(1) ˛ is a Morse–Bott contact form which is nondegenerate in int.N /;

(2) the Reeb flow R˛ is positively transverse to each strip ft D t0g in N nK ;

(3) all the tori y0�T 2 for y0 2 Œ1; 3/ are linearly foliated by Reeb trajectories of ˛ ;

(4) T1 WD f1g �T 2 and T2 WD f2g �T 2 are respectively negative and positive MB
tori foliated by Reeb orbits which are meridians of K ;

(5) R˛ is transverse to the disks of the form f# D #0g\ int.V /;

(6) K is a Reeb orbit.
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T1

T2

K

hC

e

eC

h

Figure 1: Reeb dynamic before and after a MB perturbation of the tori T1

and T2 . Both pictures take place in a strip ft D t0g �N nK . Each flow line
represents an invariant subset of ft D t0g under the Reeb flow near K ; the
orientation gives the direction in which any point is mapped under the first
return map of the flow.

The families of Reeb orbits in T1 and T2 can be perturbed into two pairs of Reeb
orbits .e; h/ and .eC; hC/, where e and eC are elliptic with CZ index �1 and C1

respectively, and h and hC are positive hyperbolic, both with CZ index 0; see Figure 1.

Definition 1.18 A contact form ˛ is adapted to a Seifert surface S for K if the R˛

is positively transverse to int.S/.

The proof of the following lemma is given in Sections 9.2 and 10.3 of [5]; compare
also Section 7.2 of [10].

Lemma 1.19 [5] Given a null-homologous knot K and a contact structure � on Y ,
there exists a contact form ˛ for � and a genus minimizing Seifert surface S for K

such that
(1) ˛ is adapted to K ;
(2) ˛ is adapted to S .

It is important to remark that the proof of (1) is obtained by locally modifying a given
contact form near K using the Darboux–Weinstein neighborhood theorem; see for
example [15]. Moreover, the (perturbed) contact form compatible with K obtained
in [5] can be arranged to have all the orbits in N nK that have arbitrarily large linking
number with K , with the exception of the four relevant orbits e , h, eC and hC .

Example 1.20 Let .K;S; �/ be an open book decomposition of Y , where S is the
page, � the monodromy and K D @S the (not necessarily connected) binding of the
open book. Let ˛ be a contact form adapted to .K;S; �/ obtained via the Thurston–
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Winkelnkemper construction [36]. Then ˛ is compatible with S , and it can be easily
adapted also to K ; see for example [5, Section 9.3]. The strips ft D t0g �N nK can
be obtained as intersections of the pages of the open book with N nK , and the flow
depicted in Figure 1 is a dynamical representation of the restriction of � to a strip.

1.3.2 The relative ECH With the notation above, if ˛ is a contact form on Y which
is compatible with K , in [5], the authors define relative versions ECH.N; @N; ˛/ and
bECH.N; @N; ˛/ of embedded contact homology groups, and if ˛ is also compatible

with a Seifert surface S for K , they prove that

ECH.N; @N; ˛/Š ECH.Y; ˛/;(5)
bECH.N; @N; ˛/Š bECH.Y; ˛/:(6)

The notation suggests that these new homology groups are obtained by counting only
orbits in N and quotienting by orbits on @N . Let us see the definition of these
homologies in more detail.

In [5], the authors prove that it is possible to define the ECH–chain groups without
taking into account the orbits in int.V / and in T 2 � .1; 2/, so that the only interesting
orbits in N .K/ are the four orbits above (plus, obviously, the empty orbit set). Moreover,
the only curves counted by the (restriction of the) ECH–differential @ have projection
on Y as depicted in Figure 2. These curves give the relations

(7) @.e/D 0; @.h/D 0; @.hC/D eC∅; @.eC/D h:

Note that the two holomorphic curves from h to e , as well as the two from eC to hC ,
cancel each other since we work with coefficients in Z=2.

Observation 1.21 The compactification of the projection of the holomorphic curve
that limits to the empty orbit set is topologically a disk with boundary hC , which
should be seen as a cylinder closing on some point of K . This curve contribute to
the “∅ part” of the third equation of (7), which gives Œe�D Œ∅� in ECH–homology. In
the rest of this manuscript, the fact that this disk is the only ECH index-1 connected
holomorphic curve that crosses K will be essential.

Convention From now on, we will use the following notation. If .Y; ˛/ is understood,
given a submanifold X � Y and a set of Reeb orbits f1; : : : ; ng � P.Y nX /, we
will denote by ECC1;:::;n.X; ˛/ the free Z=2–module generated by orbit sets in
O.X t f1; : : : ; ng/.

Unless stated otherwise, the group ECC1;:::;n.X; ˛/ will come with the natural restric-
tion of the ECH–differential of ECC.Y; ˛/, still denoted by @ECH ; if this restriction is
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e

hC

∅

h

eC

T1

T2

K

Figure 2: Orbits and holomorphic curves near K . Here the marked points
denote the simple Reeb orbits, and the flow lines represent projections of the
holomorphic curves counted by @ECH . The two flow lines arriving from the
top on e and h are depicted only to remember that, by the trapping lemma,
holomorphic curves can only arrive at T1 .

still a differential, the associated homology is

ECH1;:::;n.X; ˛/ WDH�.ECC1;:::;n.X; ˛/; @ECH/:

This notation is not used in [5], where the authors introduced a specific notation for
each relevant ECH–group. In particular, with their notation,

ECC[.N; ˛/D ECCe.int.N /; ˛/;

ECC].N; ˛/D ECCh.int.N /; ˛/;

ECC\.N; ˛/D ECChC.N; ˛/:

As mentioned before, even if there are other Reeb orbits in N , it is possible to define
chain complexes for the ECH homology of .Y; ˛/ only taking into account the orbits
fe; h; eC; hCg.

The blocking and trapping lemmas and the relations above imply that the restriction of
the full ECH–differential of Y to the chain group ECHeC;hC.N; ˛/ is given by

(8) @.ea
Chb
C /D ea�1

C hb
Ch C ea

Chb�1
C .1C e/ C ea

Chb
C@;

where  2O.N / and where a term in the sum is meant to be zero if it contains some
elliptic orbit with negative total multiplicity or a hyperbolic orbit with total multiplicity
not in f0; 1g; see [5, Section 9.5]. We remark that the blocking lemma implies also
that @ 2O.N /.
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The further restriction of the differential to ECHhC.N; ˛/ is then given by

(9) @.hb
C /D hb�1

C .1C e/ C hb
C@:

Combining the computations of Sections 8 and 9 of [5] gives the following result.

Theorem 1.22 Suppose that ˛ is adapted to K and there exists a Seifert surface S

for K such that ˛ is adapted to S . Then

ECH.Y; ˛/Š ECHeC;hC.N; ˛/;(10)

bECH.Y; ˛/Š ECHhC.N; ˛/:(11)

Observation 1.23 It is important to remark that the empty orbit set is always taken
into account as a generator of the groups above. This implies that if orbit sets with hC
are considered, @ECH counts also the holomorphic plane that contributes to the third
of relations (7). Later we will give the definition of another differential, that we will
call @ECK , which is obtained from @ECH by simply deleting that disk.

Define now the relative embedded contact homology groups of .N; @N / by

ECH.N; @N; ˛/D ECHe.int.N /; ˛/=hŒe �� Œ �i;

bECH.N; @N; ˛/D ECH.N; ˛/=hŒe �� Œ �i:

Since hC does not belong to the complexes ECCe.int.N /; ˛/ and ECC.N; ˛/, the
blocking lemma implies that the ECH–differentials count only holomorphic curves
in N . This “lack” is balanced in the quotient by the equivalence relation

(12) Œe �� Œ �:

The reason behind this claim lies in the third of the relations (7). Indeed one can prove
the following lemma; see Lemma 9.7.1 in [5].

Lemma 1.24 ECHeC;hC.N; ˛/Š ECHeC.N; ˛/=hŒe �� Œ �i.

Similarly, the fourth relation of (7) indicates why we can avoid considering h in the
full ECH.Y; ˛/:

Lemma 1.25 [5, Lemma 9.9.1] ECHeC.N; ˛/Š ECHe.int.N /; ˛/.

Since @.e /D e@. /, the differential is compatible with the equivalence relation. So,
instead of taking the quotient by Œe �� Œ � of the homology, we could take the homology
of the quotient of the chain groups under the relation e �  , and we would obtain the
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same homology groups. We will use this fact later. Note moreover that Œek �D Œ∅� for
every k . Equations (5) and (6) follow then from last two lemmas and Theorem 1.22.

1.4 ECH for knots

Let K be a homologically trivial knot in .Y; ˛/. In this subsection, we recall the
definition of a hat version of contact homology for the triple .K;Y; ˛/. This was first
defined by Colin, Ghiggini, Honda and Hutchings in [10, Section 7] as a particular
case of sutured contact homology. On the other hand, following [5, Section 10], it is
possible to proceed without dealing directly with sutures; we follow this approach here.

Let S be a Seifert surface for K . By standard arguments in homology, it is easy to
compute that

(13) H1.Y nK/!H1.Y /�Z; Œa� 7!
�
i�Œa� ; ha;Si

�
;

is an isomorphism. Here i W Y n K ! Y is the inclusion and ha;Si denotes the
intersection number between a and S : this is a homological invariant of the pair .a;S/
and is well-defined up to a slight perturbation of S (to make it transverse to a). Note
that a preferred generator of Z is given by the homology class of a meridian for K ,
positively oriented with respect to the orientations of S and Y .

Example 1.26 If Y is a homology three-sphere, the number ha;Si depends only on a

and K . This is the linking number between a and K , usually denoted by lk.a;K/.

If  D
Q

i 
ki
i is a finite formal product of closed curves in Y nK , then h;Si DP

i kihi ;Si.

Example 1.27 If .K;S; �/ is an open book decomposition of Y , ˛ is an adapted
contact form (in the sense of Thurston and Winkelnkemper) and  2 O.Y nK/ is
the orbit set

Q
i 

ki
i , then each i is a periodic orbit of the diffeomorphism � with

degree di , and h;Si D
P

i kidi .

Proposition 1.28 (see Proposition 7.1 in [10]) Suppose that K is an orbit of R˛

and let S be any Seifert surface for K . If  and ı are two orbit sets in Y nK and
uW .F; j /! .R�Y;J / is a holomorphic curve from  to ı , then

h;Si � hı;Si:

If ˛ is a contact form adapted to K , a choice of (a homology class for) the Seifert sur-
face S for K defines then a knot filtration on the chain complex .ECChC.N; ˛/; @ECH/
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for bECH.Y; ˛/, where N is the complement of a neighborhood N .K/ of K in which
the only “interesting” orbits and holomorphic curves are those represented in Figure 2.

Let ECChC
d
.N; ˛/ be the free submodule of ECChC.N; ˛/ generated by orbit sets 

in O.N t fhCg/ such that h;Si D d . Define moreover

ECChC
�d
.N; ˛/ WD

M
j�d

ECChC
j .N; ˛/:

Definition 1.29 The knot filtration induced by K is the exhaustive filtration of the
module ECChC.N; ˛/ given by

� � � � ECChC
�d�1

.N; ˛/� ECChC
�d
.N; ˛/� ECChC

�dC1
.N; ˛/� � � � :

The filtration degree of a generator  of ECChC
d
.N; ˛/ is the integer d .

Corollary 1.30 The ECH–differential respects the knot filtration.

Proof The result follows by Proposition 1.28 applied to the MB buildings counted
by @ECH , which immediately implies that, for any d 2 Z,

@ECH.ECChC
�d
.N; ˛//� ECChC

�d
.N; ˛/:

If ˛ is also adapted to S , in [5, Section 10.3], the authors prove that the filtration
above induces a spectral sequence whose page 1 is isomorphic to ECHhC.N; ˛/Š
bECH.Y; ˛/ and whose page 0 is the chain complex

(14)
M

d

�
ECChC

d
.N; ˛/; @ECK

d

�
;

where ECChC
d .N; ˛/ Š ECChC

�d .N; ˛/=ECChC
�d�1.N; ˛/ and @ECK

d
is the map on

ECChC
d .N; ˛/ induced by @ECH on the quotient; ie it is the part of @ECHjECC

hC
d
.N;˛/

that strictly preserves the filtration degree.

Observation 1.31 The proof of Proposition 1.28 implies that the holomorphic curves
counted by @ECH that strictly decrease the degree are exactly the curves that intersect K .
So we can interpret @ECK as the restriction of @ECH (given by (8)) to the count of curves
that do not cross a thin neighborhood of K . This is indeed the proper ECH–differential
of the manifold Y n int.V .K// (and not the restriction of the ECH–differential of Y

to the orbit sets in Y n int.V .K//).

Note that, by definition of ECChC.N; ˛/, all the holomorphic curves contained in
R�N strictly preserve the filtration degree. In fact the only holomorphic curve that
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contributes to @ECHjECChC .N;˛/ and decreases the degree (by 1) is the plane from hC
to ∅. Then (9) gives

(15) @.hd
C /D hd�1

C e C hd
C@;

where  2O.N / and any term is meant to be zero if it contains some orbit with total
multiplicity that is negative or, if the orbit is hyperbolic, not in f0; 1g.

Definition 1.32 The hat version of embedded contact (knot) homology of the triple
.K;Y; ˛/ is

bECK�.K;Y; ˛/ WDH�.ECChC.N; ˛/; @ECK/:

Observation 1.33 In order to define bECK.K;Y; ˛/, we supposed that ˛ is compatible
with S . This hypothesis is not present in the original definition (via sutures) in [10,
Section 7.2]. Indeed, without this condition we can still apply all the arguments above
and define the knot filtration on ECChC.N; ˛/ exactly in the same way. Page 1 of the
spectral sequence is again the well-defined homology in the definition above, and page
1 is still isomorphic to ECHhC.N; ˛/. The only difference is that now we do not
know that ECHhC.N; ˛/Š bECH.Y; ˛/ since, in Theorem 1.22, the hypothesis that ˛
is adapted to S is assumed.

This homology comes naturally with a further relative degree inherited by the filtered
degree: if bECK�;d .K;Y; ˛/ WDH�.ECChC

d .N; ˛/; @ECK
d

/ then

bECK�.K;Y; ˛/D
M

d

bECK�;d .K;Y; ˛/:

Sometimes, in analogy with Heegaard Floer, we call this degree the Alexander degree.

Example 1.34 Suppose that .K;S; �/ is an open book decomposition of Y and
that ˛ is an adapted contact form. Since any nonempty Reeb orbit in Y nK has strictly
positive intersection number with S ,

bECK�;0.K;Y; ˛/Š hŒ∅�iZ=2:

This is the ECH–analogue of the fact that if K is fibered, then

bHFK�;�g.K;Y /Š hŒc�iZ=2;

where g is the genus of K and c is the associated contact element; see Ozsváth and
Szabó [30].

Observation 1.35 The Alexander degree can be considered as an absolute degree
only once a relative homology class in H2.Y;K/ for S has been fixed since the
function h � ;Si defined on H1.Y nK/ changes if ŒS � varies. On the other hand, if
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Œ �D Œı� 2H1.Y nK/ and F � Y is a surface such that @F D  � ı , computations
analogous to those in the proof of Proposition 1.28 imply that

h;Si � hı;Si D hF;Ki;

and the Alexander degree, considered as a relative degree, does not depend on the
choice of a homology class for S . Obviously, if H2.Y /D 0, the Alexander degree
can be lifted to an absolute degree.

In [10] the authors conjectured that their sutured embedded contact homology is iso-
morphic to sutured Heegaard Floer homology. For knot complements, their conjecture
becomes the following:

Conjecture 1.36 [10] For a homologically trivial knot K in Y ,

bECK.K;Y; ˛/Š bHFK.�K;�Y /;

where ˛ is a contact form on Y adapted to K .

2 Generalizations of 2ECK

Let K be a homologically trivial knot in a contact three-manifold .Y; ˛/. As recalled
in Section 1.4, if ˛ is adapted to K , a choice of a Seifert surface S for K induces a
filtration on the chain complex .ECChC.N; ˛/; @ECH/, where int.N / is homeomorphic
to Y nK . Moreover, if ˛ is also adapted to S , the homology of .ECChC.N; ˛/; @ECH/

is isomorphic to bECH.Y; ˛/, and the first page of the spectral sequence associated to
the filtration is the hat version of embedded contact knot homology bECK.K;Y; ˛/. In
this section, we generalize the knot filtration in two natural ways.

In Section 2.1, we extend to the chain complex .ECChC;eC.N; ˛/; @ECH/ the filtration
induced by K . This filtration is defined in a way analogous to the hat case. We define
the full version of embedded contact knot homology of .K;Y; ˛/ to be the first page
ECK.K;Y; ˛/ of the associated spectral sequence.

In Section 2.2, we generalize the knot filtration to n–component links L. The resulting
homologies, defined in a similar way to the case of knots, are the full and hat versions
of embedded contact knot homologies of .L;Y; ˛/, which will be still denoted by
ECK.L;Y; ˛/ and, respectively, bECK.L;Y; ˛/. Similarly to Heegaard Floer link
homology, these homologies come endowed with an Alexander (relative) Zn –degree.

2.1 The full ECK

Let K be a homologically trivial knot in a contact three-manifold .Y; ˛/ and suppose
that ˛ is adapted to K in the sense of Section 1.3. Recall in particular that there exist
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two concentric neighborhoods V .K/ � N .K/ of K whose boundaries are MB tori
T1 D @N .K/ and T2 D @V .K/ foliated by orbits of R˛ in the homology class of
meridians for K . These two families of orbits are modified into the two couples of
orbits fe; hg and, respectively, feC; hCg.

Consider the chain complex .ECCeC;hC.N; ˛/; @ECH/ where we recall that N D

Y n int.N .K//, ECCeC;hC.N; ˛/ D hO.N t fhC; eCg/iZ=2 and @ECH is the ECH–
differential (obtained by restricting the differential on ECC.Y; ˛/) given by (8).

A Seifert surface S for K induces an Alexander degree h � ;Si on the generators
of ECChC;eC.N; ˛/ exactly as in the case of ECChC.N; ˛/. Let ECChC;eC

d .N; ˛/

be the submodule of ECChC;eC.N; ˛/ generated by the  2 O.N /t fhC; eCg with
h;Si D d . If

ECChC;eC
�d

.N; ˛/ WD
M
j�d

ECChC;eC
j .N; ˛/;

we have the exhaustive filtration

� � � � ECChC;eC
�d�1

.N; ˛/� ECChC;eC
�d

.N; ˛/� ECChC;eC
�dC1

.N; ˛/� � � �

of ECChC;eC.N; ˛/. Proposition 1.28 again implies that @ECH preserves the filtration.
Let

@ECK
d W ECChC;eC

d
.N; ˛/! ECChC;eC

d
.N; ˛/

be the part of @ECH that strictly preserves the filtration degree d , that is, the differential
induced by @ECHjECC

hC;eC
�d

.N;˛/ on the quotient

ECChC;eC
�d

.N; ˛/=ECChC;eC
�d�1

.N; ˛/D ECChC;eC
d

.N; ˛/:

Set
@ECK

WD

M
d

@ECK
d W ECCeC;hC.N; ˛/! ECCeC;hC.N; ˛/:

Definition 2.1 We define the full embedded contact knot homology of .K;Y; ˛/ by

ECK.K;Y; ˛/ WDH�.ECCeC;hC.N; ˛/; @ECK/:

Note that, as in the hat case, the only holomorphic curves counted by @ECH that do not
strictly respect the filtration degree are the curves that contain the plane from hC to ∅;
see Observation 1.31. Recalling the expression of @ECH given in (8), it follows that
@ECK is given by

(16) @ECK.ea
Chb
C /D ea�1

C hb
Ch C ea

Chb�1
C e C ea

Chb
C@;

where  2 O.N / and any term is meant to be 0 if it contains an orbit with total
multiplicity that is negative or, if the orbit is hyperbolic, not in f0; 1g.
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Again the homology comes with an Alexander degree, which is well-defined once the
homology class for S is fixed, and induces the natural splitting

(17) ECK�.K;Y; ˛/Š
M
d2Z

ECK�;d .K;Y; ˛/;

where
ECK�;d .K;Y; ˛/ WDH�.ECChC;eC

d
.N; ˛/; @ECK

d /:

Lemma 2.2 If N .K/ is a neighborhood of K as above, then

ECK.K;Y; ˛/Š ECH.Y nN .K/; ˛/:

Proof Reasoning as in Lemma 1.24, it is easy to prove that

ECK.K;Y; ˛/ŠH�.ECCeC;hC.N; ˛/; @ECK/

ŠH�.ECCe;hC.int.N /; ˛/; @ECK/

ŠH�.ECC.int.N /; ˛/; @ECK/

Š ECH.int.N /; ˛/;

which follows from the fact that @ECK. /D @ECH. / for all  2O.N /.

Observation 2.3 Note that so far we only assumed that ˛ is compatible with K ,
while we did not assume the condition

(�) ˛ is compatible with a Seifert surface S for K .

As remarked in Observation 1.33, we cannot prove Theorem 1.22 without (�), and so
we do not know if the spectral sequence whose 0–page is the ECK–chain complex
limits to ECH.Y; ˛/. On the other hand, this spectral sequence is in any case well-
defined, and so is ECK.K;Y; ˛/. Even if, in light of Lemma 1.19, we could assume
(�) here without restrictions on K , we prefer to avoid it in the general definition of
ECK.K;Y; ˛/ in order to consider a wider class of contact forms.

In analogy with Conjecture 1.36 we state:

Conjecture 2.4 For any knot K in Y and any contact form ˛ on Y adapted to K ,

ECK.K;Y; ˛/Š HFKC.�K;�Y /:

2.2 The generalization to links

In this subsection, we extend the definitions of ECK and bECK to the case of homolog-
ically trivial links with more than one component. A (strongly) homologically trivial
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n–link in Y is a disjoint union of n knots, each of which is homologically trivial in Y .
Suppose that

LDK1 t � � � tKn

is a homologically trivial n–link in Y . We say that a contact form ˛ on Y is adapted
to L if it is adapted to Ki for each i .

Lemma 2.5 For any link L and contact structure � on Y there exists a contact form
compatible with � which is adapted to L.

Proof The proof of part (1) of Lemma 1.19 is local near the knot K and can then be
applied recursively to each Ki .

Fix LDK1 t � � � tKn homologically trivial and ˛ an adapted contact form. Since ˛
is adapted to each Ki , there exist pairwise disjoint tubular neighborhoods

V .Ki/�N .Ki/

of Ki where ˛ behaves exactly like in the neighborhoods V .K/�N .K/ in Section 1.3.
In particular, for each i , the tori Ti;1 WD @N .Ki/ and Ti;2 WD @V .Ki/ are MB and
foliated by families of orbits of R˛ in the homology class of a meridian of Ki . We
will consider these two families as perturbed into two pairs fei ; hig and feCi ; h

C
i g in

the usual way. Let

V .L/ WD
G

i

V .Ki/ and N .L/ WD
G

i

N .Ki/;

and set
N WD Y n int.N .L//:

Define moreover xe WD
F

i ei , and let xh, xeC and xhC be similarly defined.

Consider ECCxeC;xhC.N; ˛/ endowed with the restriction @ECH of the ECH differential
of .Y; ˛/, and let ECHxeC;xhC.N; ˛/ be the associated homology.

Lemma 2.6 ECHxeC;xhC.N; ˛/ is well-defined and the curves counted by @ECH inside
each N .Ki/ are given by analogous expressions to those in (7).

Proof The blocking and trapping lemmas can be applied locally near each component
of @N and the proofs of Lemmas 7.1.1 and 7.1.2 in [5] work immediately in this
context too. This imply that the homology of .ECC.N; ˛/; @ECH/ is well-defined.

Again the blocking and trapping lemmas, together with the local homological arguments
in Lemmas 9.5.1 and 9.5.3 in [5], imply that the only holomorphic curves counted
by @ECH inside each N .Ki/ are as required (see Figure 2), and so ECHxeC;xhC.N; ˛/
is well-defined.

An explicit formula for @ECH can be obtained by generalizing (8) in the obvious way.
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For each i 2 f1; : : : ; ng, fix a (homology class for a) Seifert surface Si for Ki . These
surfaces are not necessarily pairwise disjoint, and it is even possible that Si \Kj ¤∅
for some i ¤ j . Consider then the Alexander Zn –degree on ECHxeC;xhC.N; ˛/ given
by the function

(18) ECCxeC;
xhC.N; ˛/! Zn;  7! .h;S1i; : : : ; h;Sni/:

Define a partial ordering on Zn by

.a1; : : : ; an/� .b1; : : : ; bn/ () ai � bi for all i:

Proposition 1.28 applied to each Ki implies that if  and ı are two orbit sets in
O.N t fxeC; xhCg/, then for any k ,

Mk.; ı/=R¤ 0 D) .hı;S1i; : : : ; hı;Sni/� .h;S1i; : : : ; h;Sni/:

This implies that @ECH does not increase the Alexander degree, which induces a
Zn –filtration on .ECCxeC;xhC.N; ˛/; @ECH/. Like in the previous subsection, we are
interested in the part of @ECH that strictly respects the filtration degree. This can be
defined again in terms of quotients as follows.

Let d 2 Zn and let ECCxeC;xhCd .N; ˛/ be the submodule of ECCxeC;xhC.N; ˛/ freely
generated by orbit sets  2O.N t fxeC; xhCg/ such that

.h;S1i; : : : ; h;Sni/D d:

Define
ECCxeC;

xhC
�d

.N; ˛/ WD
M
j�d

ECCxeC;
xhC

d
.N; ˛/;

and let ECCxeC;xhC<d .N; ˛/ be similarly defined.

Define the full ECK–differential in degree d to be the map

@ECK
d W ECCxeC;

xhC
d

.N; ˛/! ECCxeC;
xhC

d
.N; ˛/

induced by @ECHjECC
xeC;
xhC

�d
.N;˛/ on the quotient

ECCxeC;
xhC

�d
.N; ˛/=ECCxeC;

xhC
<d

.N; ˛/Š ECCxeC;
xhC

d
.N; ˛/:

Define then the full ECK–differential by

@ECK
WD

M
d

@ECK
d W ECCxeC;

xhC.N; ˛/! ECCxeC;
xhC.N; ˛/:

Observation 2.7 Observing the form of @ECH , it is easy again to see that the only
holomorphic curves that are counted by @ECH and not by @ECK are the ones containing
a holomorphic plane from some hCi to ∅.
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Definition 2.8 The full embedded contact knot homology of .L;Y; ˛/ is

ECK.L;Y; ˛/ WDH�.ECCxeC;
xhC.N; ˛/; @ECK/:

The fact that ECK.L;Y; ˛/ is well-defined is a direct consequence of the good definition
of ECHxeC;xhC.N; ˛/ and the fact that @ECH respects the Alexander filtration. Note that
we have again a natural splitting

(19) ECK�.L;Y; ˛/D
M

d2Zn

ECK�;d .L;Y; ˛/;

where
ECK�;d .L;Y; ˛/DH�.ECCxeC;

xhC
d

.N; ˛/; @ECK
d /:

The proof of the following lemma is the same of that of the analogous Lemma 2.2 for
knots applied to each component of L.

Lemma 2.9 If N .L/ is a neighborhood of L as above, then

ECK.L;Y; ˛/Š ECH.Y nN .L/; ˛/:

Consider now the submodule ECCxhC.N; ˛/ of ECCxeC;xhC.N; ˛/ endowed with the
restriction of @ECH . Observe that its homology ECHxhC.N; ˛/ is well-defined. Filter-
ing .ECCxhC.N; ˛/; @ECH/ by the Alexander degree, for any d 2 Zn , we can define
ECCxhC

d
.N; ˛/ with differential

@ECK
d W ECC

xhC
d
.N; ˛/! ECC

xhC
d
.N; ˛/:

Definition 2.10 The hat version of embedded contact knot homology of .L;Y; ˛/ is

bECK.L;Y; ˛/ WDH�.ECC
xhC.N; ˛/; @ECK/:

Observation 2.7 and a splitting like the one in (19) hold also for bECK.L;Y; ˛/. More-
over, it is easy to see that if L has only one connected component, we get the same
theories of Sections 1.4 and 2.1.

Conjecture 2.11 If L is a link in Y and ˛ is any contact form on Y adapted to L, then

ECK.L;Y; ˛/Š HFKC.�L;�Y /;

bECK.L;Y; ˛/Š bHFK.L;Y /:

Convention In order to simplify the notation in the rest of the paper, we will indicate
the ECH chain groups for the knot embedded contact homology groups of links and
knots by

ECC.L;Y; ˛/ WD ECCxeC;
xhC.N; ˛/;

bECC.L;Y; ˛/ WD ECC
xhC.N; ˛/:
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These groups will implicitly come endowed with the differential @ECK .

We end this section by saying some words about a further generalization of ECK to
weakly homologically trivial links. We say that L � Y is a weakly homologically
trivial (or simply weakly trivial) n–component link if there exist surfaces with boundary
S1; : : : ;Sm�Y with m�n and such that @Si\@Sj D∅ if i ¤ j and

Fm
iD1 @SiDL.

Also, here we do not require that Si or even @Si is disjoint from Sj for j ¤ i .
Clearly, L is a strongly trivial link if and only if it is weakly trivial with mD n.

If L is a weakly trivial link with mŒ n, we cannot in general define a homology with
a filtered n–degree. In fact, there exists S 2 fS1; : : : ;Smg such that @S has more than
one connected component. Suppose for instance that @S DK1 tK2 . The arguments
behind Proposition 1.28 imply that if uW .F; j /! .R�Y;J / is a holomorphic curve
from  to ı , then

h;Si � hı;Si D hIm.u/; R� .K1 tK2/i � 0:

So in this case, we can still apply the arguments above and get well-defined ECH
invariants for L. However, this time they will come only with a filtered (relative)
Zm –degree on the generators  of an ECH complex of Y , which is given by the
m–tuple .h;S1i; : : : ; h;Smi/.

Example 2.12 Let .L;S; �/ be an open book decomposition of Y with possibly dis-
connected boundary. Using a (connected) page of .L;S; �/ to compute the Alexander
degree, the generators of the chain complex for ECKd .L;Y; ˛/ are d –periodic orbits
of the diffeomorphism � for any d 2 Z.

3 Euler characteristics

In this section, we compute the graded Euler characteristics of the embedded contact
homology groups for knots and links in homology three-spheres Y with respect to
suitable contact forms. The computations will be done in terms of the Lefschetz zeta
function of the flow of the Reeb vector field.

Before proceeding, we briefly recall what the graded Euler characteristic is. Given a
collection of chain complexes

.C; @/D
˚
.C�;.i1;:::;in/; @.i1;:::;in//

	
.i1;:::;in/2Zn ;

where � denotes a relative homological degree, its graded Euler characteristic is

�.C /D
X

i1;:::;in

�.C�;.i1;:::;in// t
i1

1
� � � t in

n 2 ZŒt˙1
1 ; : : : ; t˙1

n �;
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where �.C�;.i1;:::;in// is the standard Euler characteristic of C�;.i1;:::;in/ , and the tj are
formal variables. By definition, �.C / is a Laurent polynomial, and the properties of
the standard Euler characteristic imply

�.C /D �.H.C; @//:

In this case, the homology H.C; @/ is a categorification of �.C /.

The most important result of this section relates the Euler characteristic of ECK
homologies of a link in S3 with its multivariable Alexander polynomial.

Theorem 3.1 Let L be any n–link in S3. Then there exists a contact form ˛ adapted
to L such that

(20) �.ECK.L;S3; ˛//
:
D

�
�L.t1; : : : ; tn/ if n> 1;

�L.t/=.1� t/ if nD 1;
and

(21) �.bECK.L;S3; ˛//
:
D

�
�L �

Qn
iD1.1� ti/ if n> 1;

�L.t/ if nD 1:

This theorem implies that ECK categorifies the Alexander polynomial of knots and
links in S3 . This is the third known categorification of this kind, after the ones obtained
in Heegaard Floer homology by Ozsváth and Szabó [28; 31] and Rasmussen [33] and
in Seiberg–Witten–Floer homology by Kronheimer and Mrowka [24; 23].

An immediate consequence of Theorem 3.1 and Equations (1) and (2) is:

Corollary 3.2 For any link L in S3, there exists a contact form ˛ such that

�.ECK.L;S3; ˛//
:
D �.HFLC.�L;�S3//;

�.bECK.L;S3; ˛//
:
D �.bHFL.�L;�S3//:

This corollary implies that Conjecture 2.11 (which generalizes Conjectures 1.36 and 2.4)
holds for links in S3 at least at the level of Euler characteristic.

A key ingredient to prove Theorem 3.1 is the dynamical formulation of the Alexander
quotient given by Fried [14].

3.1 A dynamical formulation of the Alexander polynomial

Given any link L D K1 t � � � tKn in S3, we can associate to it its multivariable
Alexander polynomial

�L.t1; : : : ; tn/ 2 ZŒt˙1
1 ; : : : ; t˙1

n �=h˙t
a1

1
� � � tan

n i

Algebraic & Geometric Topology, Volume 17 (2017)



2108 Gilberto Spano

with ai 2 Z. The quotient means that the Alexander polynomial is well-defined only
up to multiplication by monomials of the form ˙t

a1

1
� � � t

an
n .

A slightly simplified version is the (classical) Alexander polynomial �L.t/ defined by
setting t1 D � � � D tn D t , ie

�L.t/ WD�L.t; : : : ; t/:

If L is a knot, the two notions obviously coincide.

There are many possible definitions of the Alexander polynomial �L . In this section,
we give a formulation of �L in terms of the dynamics of suitable vector fields in S3nL.

The fact that the Alexander polynomial is related to dynamical properties of its comple-
ment in S3 originates with the study of fibrations of S3. For example, A’Campo [1]
studied the twisted Lefschetz zeta function of the monodromy of an open book decompo-
sition .S; �/ of S3 associated to a Milnor fibration of a complex algebraic singularity.
More generally, if .K;S; �/ is any open book decomposition of S3, one can easily
prove that

�K .t/
:
D det.1� t�1

�/;

where 1 and �1
� are the identity map and, respectively, the application induced by � ,

on H1.S;Z/. The basic idea in this context is to express the right-hand side of the
above equation in terms of traces of iterations of �1

� , then to apply the Lefschetz fixed
point theorem to get expressions in terms of periodic points (ie periodic orbits) for the
flow of some vector field in S3 nK whose first return on a page is � .

Suppose now that L is not a fibered link, so its complement is not globally fibered over
S1, and let R be a vector field in S3 nL. If one wants to apply arguments as above, it
is necessary to decompose S3 nL in “fibered-like” pieces with respect to R, in which
it is possible to define at least a local first return map of the flow �R of R. Obviously,
some condition on R is required. For example, Franks [13] considers Smale vector
fields, ie vector fields with one-dimensional and hyperbolic chain recurrent set; see [35].

Here we are more interested in the approach used by Fried [14]. Consider a three-
dimensional manifold X . Any abelian cover zX �

�!X with deck-transformation group
isomorphic to a fixed abelian group G is uniquely determined by the choice of a class
�D �.�/ 2H 1.X;G/ŠHom.H1.X;Z/;G/. Here � is determined by the following
property: for any Œ �2H1.X /, if z W Œ0; 1�! zX is any lifting of the loop  W Œ0; 1�!X ,
then �.Œ �/ is determined by �.Œ �/.z .0//D z .1/.

Since the correspondence between abelian covers and cohomology classes is bijective,
with abuse of notation sometimes we will refer to an abelian cover directly by identifying
it with the corresponding � .
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Example 3.3 The universal abelian cover of X is the abelian cover with deck-
transformation group G DH1.X;Z/ and corresponding to �D id.

Example 3.4 Let LDK1t � � � tKn be an n–component link in a three-manifold Y

such that Ki is homologically trivial for any i , and fix a Seifert surface Si for Ki .
Let moreover �i be a positive meridian for Ki . If i W Y nL ,! Y is the inclusion, the
isomorphism

H1.Y nL/!H1.Y /˚ZŒ�1�˚ � � �˚ZŒ�n�; Œ � 7! .i�.Œ �/; h;S1i; : : : ; h;Sni/;

gives rise naturally to the abelian cover

�L 2 Hom.H1.Y nL;Z/; Zn/

of Y nL defined by
�L.Œ �/D .h;S1i; : : : ; h;Sni/:

Setting ti D Œ�i � 2H1.Y nL;Z/, we can regard �L.Œ �/ as a monomial in the ti :

�L.Œ �/D t
h;S1i

1
� � � t h;Sni

n :

In the rest of the paper, we will often use this notation. Note finally that if Y is a
homology three-sphere, �L coincides with the universal abelian cover of Y nL.

If R is a vector field on X satisfying some compatibility condition with � (and with @X
if this is nonempty), Fried relates the Reidemeister–Franz torsion of .X; @X / with the
twisted Lefschetz zeta function of the flow �R .

3.1.1 Twisted Lefschetz zeta function of flows Let R be a vector field on X and 
a closed isolated orbit of �R . Pick any point x 2  and let D be a small disk transverse
to  such that D\  D fxg. With this data it is possible to define the Lefschetz sign
of  exactly like we did in Section 1.1.1 for orbits of Reeb vector fields associated to a
contact structure � , but using now TxD instead of �x . Indeed, it is possible to prove
that the Lefschetz sign of  does not depend on the choice of x and D , and that it is
an invariant �. / 2 f�1; 1g of �R near  .

Definition 3.5 The local Lefschetz zeta function of �R near  is the formal power
series � .t/ 2 ZŒŒt �� defined by

� .t/ WD exp
�X

i�1

�. i/
t i

i

�
:

Let now zX �
�! X be an abelian cover with deck-transformation group G , and let

�D �.�/ 2H 1.X;G/. Suppose that all the periodic orbits of �R are isolated.
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Definition 3.6 We define the �–twisted Lefschetz zeta function of �R by

��.�R/ WD
Y


� .�.Œ �//;

where the product is taken over the set of simple periodic orbits of �R .

When � is understood, we will write directly �.�R/ and we will call it the twisted
Lefschetz zeta function of �R .

We remark that in [14], the author defines ��.�R/ in a slightly different way, and then
he proves in Theorem 2 that the two definitions coincide.

Convention Suppose that � 2 H 1.X;Zn/ is an abelian cover of X and chose a
generator .t1; : : : ; tn/ of Zn . Then, with a similar notation to that of Example 3.4, we
will often identify ��.�R/ with an element of ZŒŒt˙1

1
; : : : ; t˙1

n ��.

3.1.2 Torsion and flows Fried [14] relates the Reidemeister torsion of an abelian
cover � of a (not necessarily closed) three-manifold X with the twisted Lefschetz
zeta function of certain flows. In particular, in Section 5, he considers a kind of
torsion that he calls the Alexander quotient and denotes it by ALEX�.X /: the reason
for the “quotient” comes from the fact that Fried uses a definition of Reidemeister
torsion only up to the choice of a sign (this is the “refined Reidemeister torsion” of
Turaev [38]), while ALEX�.X / is defined up to an element in the abelian group of
deck transformations of � .

In fact, one can check that ALEX�.X / is exactly the Reidemeister–Franz torsion �
considered by Ozsváth and Szabó [31]. In particular, when X is the complement of an
n–component link L in S3 and � is the universal abelian cover of X , then

(22) ALEX.S3
nL/

:
D

�
�L.t1; : : : ; tn/ if n> 1;

�L.t/=.1� t/ if nD 1;

where we removed �D idH1.S3nL;Z/ from the notation; see [14, Section 8] and [38].

Since the notation “� ” is ambiguous, we follow Fried [14] and we refer to the
Reidemeister–Franz torsion as the Alexander quotient, indicated by ALEX�.X /.

In order to relate ALEX�.X / to the twisted Lefschetz zeta function of the flow �R

of a vector field R, Fried assumes some hypotheses on R. The first condition that R

must satisfy is circularity.

Definition 3.7 A vector field R on X is circular if there exists a C 1 map � W X!S1

such that d�.R/ > 0.
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If @X D∅, this is equivalent to say that R admits a global cross section. Intuitively, the
circularity condition on R allows us to define a kind of first return map of �R . Suppose
that R circular, and consider S1 ŠR=Z with R–coordinate t . The cohomology class

u� WD �
�.Œdt �/ 2H 1.X;Z/

is then well-defined.

Definition 3.8 Given an abelian cover zX �
�!X with deck-transformation group G ,

let �D �.�/ 2H 1.X;G/ be the corresponding cohomology class. A circular vector
field R on X is compatible with � if there exists a homomorphism vW G!R such
that v ı �D u� , where � and u� are as above.

Example 3.9 The universal abelian cover corresponds to � D idW H1.X;Z/ !
H1.X;Z/, and it is compatible with any circular vector field on X .

The following theorem is not the most general result in [14], but it will be enough for
our purposes.

Theorem 3.10 [14, Theorem 7] Let X be a three-manifold and � 2H 1.X;G/ an
abelian cover. Let R be a nonsingular, circular and nondegenerate vector field on X

compatible with � . Suppose moreover that, if @X ¤ ∅, then R is transverse to @X
and pointing out of X . Then

ALEX�.X /
:
D ��.�R/;

where the equivalence :
D is up to multiplication by ˙g for any g 2G .

An immediate consequence is the following:

Corollary 3.11 If L is an n–component link in S3, let N .L/ be a tubular neighbor-
hood of L, and let N DS3 nN .L/. Let R be a nonsingular circular vector field on N ,
transverse to @N and pointing out of N . Then

(23) �.�R/
:
D

�
�L.t1; : : : ; tn/ if n> 1;

�L.t/=.1� t/ if nD 1:

3.2 Results

In the next subsections, we prove Theorem 3.1, which will be obtained as a consequence
of the following more general result. Recall that an n–link L � Y determines the
abelian cover �L 2 H 1.Y nL;Zn/ of Y nL given in Example 3.4. When Y is a
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homology three-sphere, we have

�L � 1W H1.Y nL/!H1.Y nL/Š Zn:

In order to simplify the notations, we remove �L from the notation of the Alexander
quotient and of the twisted Lefschetz zeta function:

ALEX.Y nL/ WD ALEX1.Y nL/; �.�/ WD �1.�/:

Let .t1; : : : ; tn/ be a basis for H1.Y nL/, where Œ�i �D ti for �i a positively oriented
meridian of Ki .

Theorem 3.12 Let L be an n–link in a homology three-sphere Y . Then there exists a
contact form ˛ such that

�.ECK.L;Y; ˛// :D ALEX.Y nL/:

The proofs of Theorems 3.1 and 3.12 will be carried out in two main steps: in Section 3.3,
we will prove the theorems in the case of fibered links, while the general case will be
treated in Section 3.4.

3.3 Fibered links

In this subsection, we prove Theorems 3.1 and 3.12 for fibered links. Let .L;S; �/ be
an open book decomposition of a homology three-sphere Y , and let ˛ be an adapted
contact form on Y . In particular, with our definition, ˛ is also adapted to L.

In order to prove the theorems above, we want to express the Euler characteristic
�.ECK.L;Y; ˛// in terms of the twisted Lefschetz zeta function of the Reeb flow �R

of RDR˛ and then apply Theorem 3.10. The first thing that one should do is then to
check if �R and �L satisfy the hypotheses of that theorem. Unfortunately, this is not
the case. The needed properties are, in fact, that R is

(1) nonsingular and circular;

(2) compatible with �L ;

(3) nondegenerate;

(4) transverse to @V .L/ and pointing out of Y n VV .L/, where VV .L/D int.V .L//.

In our situation, only properties (1) and (2) are satisfied. Indeed, by the definition of
open book decomposition, there is a natural fibration � W Y n VV .L/! S1 ŠR=Z such
that the surfaces ��1.t/ are the pages of the open book. The fact that ˛ is adapted to
.L;S; �/ implies that R is always positively transverse to the pages. This evidently
implies that d�.R/ > 0, so R is circular. The fact that R is compatible with �L (that
coincides with the universal abelian cover of Y n VV .L/) comes from Example 3.9.
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On the other hand, properties (3) and (4) above are not satisfied. Indeed, after the MB
perturbation of T2 , the vector field R is tangent to @V .L/ on xeC and xhC . Moreover,
as observed in Section 1.1.3, the MB perturbations near the two tori T1 and T2 may
create degenerate orbits. We will then perturb R to get a new vector field R0 . This
vector field will be defined in Y n V 0.L/, where V 0.L/ � VV .L/ is an open tubular
neighborhood of L defined by V 0.L/ D V 0.K1/ t � � � t V 0.Kn/, where, using the
coordinates of Section 1.3.1, @.V 0.Ki//D fy D 2:5g.

Lemma 3.13 There exists a (noncontact) vector field R0 such that

(i) R0 coincides with R outside a neighborhood of N .L/;

(ii) R0 satisfies properties (1)–(4) above with V .L/ replaced by V 0.L/;

(iii) the only periodic orbits of R0 in N .V /nV 0.L/ are the four sets of nondegenerate
orbits xe; xh; xeC; xhC .

Observe that property (i) implies that the twisted Lefschetz zeta functions of the
restrictions of the flows �R and �R0 to Y nN .K/ coincide, while property (ii) allows
us to apply Theorem 3.10 to �R0 .

Proof A perturbation of R into an R0 satisfying the conditions (i)–(iii) can be obtained
in more than one way. An example is pictured in Figure 3; see also Figure 1. We briefly
explain how it is obtained. Since the modification of R is nontrivial only inside disjoint
neighborhoods of each Ki , we will describe it only for a fixed component K of L.
The characterization of the a perturbation will be presented in terms of perturbation
of the lines in a page S of .L;S; �/ that are invariant under the first return map �
of �R : we will refer to these curves as �–invariant lines on S . Note that these curves
are naturally oriented by the flow.

Outside a neighborhood of @V 0 , one can see this perturbation in terms of a perturbation
of � into another monodromy �0 , and R0 is the vector field @t in Y n V 0.L/ Š

S � Œ0; 1�=h.x; 1/� .�0.x/; 0/i, where t is the coordinate of Œ0; 1�.

Observe first that the only periodic orbit in the (singular) �–invariant line a1 contain-
ing h (in correspondence to the singularity) is exactly h. Similarly, the only periodic
orbit in the �–invariant singular flow line a2 containing hC is precisely hC . Denote
by Ai � Y the mapping torus of .ai ; �jai

/, i D 1; 2. We modify R separately inside
the regions of .Y nV 0.K// n .A1 tA2/ as follows.

In the region containing e (and with boundary A1 ), the set of �–invariant lines
(the elliptic lines in Figure 3 (left)) is perturbed in a set of �0–invariant spiral-like
lines (Figure 3 (right)), each of which is negatively asymptotic to a1 and positively
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hC

e

eC

h

a1

a2

T1

T2

@V 0

hC

e

eC

h

Figure 3: The dynamics of the vector fields R and R0 near N .V / nV 0.L/ .
Each oriented line represents an invariant subset of a page of .L;S; �/ under
the first return map � (left) and �0 (right); the invariant lines a1 and a2 are
stressed. The situation at the left is the same depicted in Figure 1.

asymptotic to e . It is easy to see that after the perturbation, the only periodic orbit in
the interior of this region is e . Moreover, we can arrange the perturbation such in a way
that the differential LR0

e of the first return map on S of �R0 along e coincides, up to a
positive factor smaller then 1, with LR

e , so that the Lefschetz sign �.e/ of e is still C1.

A similar perturbation is done in the region of .Y nV 0.K//n .A1tA2/ containing eC
in such a way that eC is the only periodic orbit of the perturbed vector field R0 , with
still �.eC/DC1.

The perturbation in the region between A1 and A2 is done by slightly pushing the
monodromy in the positive y –direction in such a way that the set of �–invariant lines
is perturbed into a set of �0–invariant lines, each of which is negatively asymptotic
to a1 and positively asymptotic to a2 (in particular, there can not exist periodic orbits
in this region).

A similar perturbation is done also inside the region between A2 and @V 0.K/, but in
this case each �0–invariant line is negatively asymptotic to a2 and intersects @V 0.K/
pointing out of the three-manifold.

Finally, we leave R0 DR in the rest of the manifold, where R was supposed having
only isolated and nondegenerate periodic orbits.
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Note that the two bases of eigenvectors of LR
h

and LR
hC

are contained in the tangent
spaces of the curves a1 and a2 , and since �R D �R0 on these curves, the Lefschetz
signs of the two orbits are preserved by the perturbation.

It is easy to convince ourselves that R0 satisfies the properties (i)–(iii) above.

Set � D �1 . Since the Lefschetz zeta function of a flow depends only on its periodic
orbits and their signs, we have the following:

Corollary 3.14 If R0 is obtained from R as above, then

�.�R0/D �.�R0 j.Y nN .K /tfxe;xh;xeC;xhCg//D �.�Rj.Y nN .K /// �
Y

2fxe;xh;xeC;xhCg

� .Œ �/;

where Œ � is the homology class of  in H1.Y nN .K//.

Now we want to compute more explicitly the twisted Lefschetz zeta function �.�R0/.
Let us begin with the local Lefschetz zeta function of the simple orbits; see Definition 3.5.

Lemma 3.15 Let  be an orbit of R or R0 . Then

(24) � .t/D

8<:
.1� t/�1 D 1C t C t2C � � � if  elliptic;
1� t if  positive hyperbolic;
1C t if  negative hyperbolic:

Proof This is just matter of replacing the Lefschetz signs given in Observation 1.2. For
example, if  is positive hyperbolic, then all the iterates are also positive hyperbolic,
�. i/D�1 for every i > 0, and

� .t/D exp
�X

i�1

�
t i

i

�
D exp.log.1� t//D 1� t:

Observation 3.16 Note that the equations above are exactly the generating functions
given by Hutchings in [20, Section 2].

Let �i be a positive meridian of Ki for i 2 f1; : : : ; ng, and set ti D Œ�i � 2H1.Y nK/;
fix moreover a Seifert surface Si for each Ki . Recall that, for a given X � Y , we
denote by P.X / the set of simple Reeb orbits contained in X .

Corollary 3.17 The twisted Lefschetz zeta function of �Rj.Y nN .L// is

�.�Rj.Y nN .L///D
Y

2P.Y nN .L//

� .Œ �/;
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where � .Œ �/ is determined as follows:

� .�L. //D

�
1�

nY
iD1

t
h;Si i

i

��1

D

1X
lD0

� nY
iD1

t
h;Si i

i

�l

. elliptic /;

� .�L. //D 1�

nY
iD1

t
h;Si i

i . positive hyperbolic);

� .�L. //D 1C

nY
iD1

t
h;Si i

i . negative hyperbolic/:

Proof of Theorem 3.12 for fibered links To finish the proof, it remains essentially
to prove that

(25) �.ECC.L;Y; ˛//D �.�Rj.Y nN .L/// �
Y

2fxe;xh;xeC;xhCg

� .Œ �/:

This is easy to verify recursively on the set of simple orbits. Suppose ı D
Q

j ı
kj
j

is an orbit set and let  be an orbit such that  ¤ ıj for any j . Then the set of all
multiorbits that we can build using ı and  can be expressed via the product formulae

(26)
ı � f∅; ;  2; : : : g if  is elliptic;
ı � f∅;  g if  is hyperbolic:

As remarked in Section 1.2, the index parity formula (4) implies that the Lefschetz
sign endows the ECH–chain complex with an absolute degree, and it coincides with
the parity of the ECH–index. Then the contribution to the graded Euler characteristic
of ı �  l , for any l (l 2N if  is elliptic and l 2 f0; 1g if  is hyperbolic), is

�.ı/

nY
iD1

t
hı;Si i

i �

�
�. /

nY
iD1

t
h;Si i

i

�l

:

Substituting the last formula in (26), the total contribution of the product formulae to
the Euler characteristic are

� �.ı/
Qn

iD1 t
hı;Si i

i �
P1

lD0

�Qn
iD1 t

h;Si i

i

�l if  is elliptic,

� �.ı/
Qn

iD1 t
hı;Si i

i �
�
1�

Qn
iD1 t

h;Si i

i

�
if  is positive hyperbolic,

� �.ı/
Qn

iD1 t
hı;Si i

i �
�
1C

Qn
iD1 t

h;Si i

i

�
if  is negative hyperbolic,

that is,

�.ı/

nY
iD1

t
hı;Si i

i � � .Œ �/:
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Starting from ı D∅, (25) follows by induction on the set of the simple Reeb orbits in
.Y nN .L//t fxe; xh; xeC; xhCg. The theorem follows then by applying Corollary 3.14
and Theorem 3.10 to the flow of R0 .

Proof of Theorem 3.1 for fibered links Theorem 3.12 and (22) imply (20) imme-
diately. To prove the result in the hat version, we reason again at the level of chain
complexes. Recall that if N WD Y n VN .L/, by the definition of the ECK–chain
complexes,

ECC.L;Y; ˛/D ECCxeC;
xhC.N; ˛/

D ECC
xhC.N; ˛/˝

nO
iD1

h∅; eCi ; .e
C
i /

2; : : : i

D bECC.L;Y; ˛/˝
nO

iD1

h∅; eCi ; .e
C
i /

2; : : : i;

where the second line comes from the product formula (26) and the fact that eCi is
elliptic for any i . Taking the graded Euler characteristics as above, we have

�.ECC.L;Y; ˛//D �.bECC.L;Y; ˛// �
nY

iD1

�
e
C

i

.ŒeCi �/

D �.bECC.L;Y; ˛// �
nY

iD1

1

1�ti
;

where the last equality comes from the fact that ŒeCi � D Œ�i � D ti 2 H1.Y nL/. If
Y D S3, then the last equation and (20) evidently imply (21).

Observation 3.18 (symplectic Floer homology) If .L;S; �/ is an open book decom-
position of Y , one can think of ECK.L;Y; ˛/ and bECK.L;Y; ˛/ as invariants of the
pair .S; �/ and the adapted ˛ . It is interesting to note that the Euler characteristic of
ECK1.L;Y; ˛/ with respect to the surface S (see Example 2.12) coincides with the
sum of the Lefschetz signs of the Reeb orbits of period 1 in the interior of S , ie the
Lefschetz number ƒ.�/ of � .

In fact, given Y (not necessarily an homology three-sphere) we can say even more
about this fact by relating ECK1.L;Y; ˛/ to the symplectic Floer homology SH.S; �/
of .S; �/, whose Euler characteristic is precisely ƒ.�/. Here we are considering the
version of SH.S; �/ for surfaces with boundary that is slightly rotated by � in the
positive direction, with respect to the orientation induced by S on @S ; see for example
Cotton-Clay [11].
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Combining the definition of ECK, the relation between the periodic Floer homology
PFH and ECH for a mapping torus (see Theorem 3.6.1 in [7]) and between PFH and
SH (see for example Hutchings and Sullivan [21]) one can easily prove that

(27) ECK1.L;Y; ˛/Š SH.S; �/;

where the degree of ECK.L;Y; ˛/ is computed with respect to the Alexander degree
induced by S . We remark that an analogous result for HFK is currently unknown.

3.4 The general case

The first approach that one could use to attempt to apply Theorem 3.10 to a general link
L� Y is to look for a contact form on Y that is compatible with L and whose Reeb
vector field is circular outside a neighborhood of L. Unfortunately we will not be able
to find such a contact form. The basic idea to solve the problem consists of two steps:

Step 1 Find a contact form ˛ on Y which is compatible with L and for which there
exists a finite decomposition Y nLD

F
i Xi for which RDR˛ is circular in each Xi .

Step 2 Apply repeatedly the Torres formula for links to get the result.

As we will see, the Torres formula is a classical result which explains how to compute
the Alexander polynomial of any sublink of a given link L starting from the Alexander
polynomial of L.

3.4.1 Preliminary The key ingredient for Step 1 of our strategy is the following result;
see Baker, Etnyre and Van Horn-Morris [2] and Guyard [18] for slightly different proofs.

Proposition 3.19 Let LDK1 t � � � tKn � Y be an n–component link and let � be
any fixed contact structure on Y . Then there exists an m–component link L0 � Y with
m� n and such that

(1) L0 DLtKnC1 t � � � tKm ;

(2) L0 is fibered and the associated open book supports � .

Proof The proof makes a deep use of the proof of the Giroux correspondence between
open book decompositions and contact structures; see Giroux [16] and Colin [4]. Given
a contact structure � on Y , Giroux explicitly constructs an open book decomposition
of Y that supports a contact form ˛ such that ker.˛/D � . Such decomposition is built
starting from a cellular decomposition D of Y that is compatible (in a specific sense)
with � : for us it is important that, up to taking a refinement, any cellular decomposition
of Y can be made compatible with � by an isotopy.
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L

Figure 4: Making L contained in @S in N .D0/: easy case (left) and general
(right). The dotted lines are 1–simplexes in D1, while the bold segments
from Q1 to Q2 represent the push-offs of L in N .D0/ .

Using the simplicial approximation theorem, it is possible to choose a triangulation D
of Y in such a way that, up to isotopy, L is contained in D1, where Di denotes the
i –skeleton of D . Up to taking a refinement, we can then suppose that D is adapted to � .

Let N .D1/ be a tubular neighborhood of D1. Suppose that N .D0/ � N .D1/ is a
tubular neighborhood of D0 such that N .D1/ nN .D0/ is homeomorphic to a tubular
neighborhood of D1 nN .D0/. The 0–page S of the associated open book built via
the proof of Giroux satisfies then the following properties:

(1) S �N .D1/, L0 WD @S � @N .D1/ and D1 � int.S/;

(2) S \ .N .D1/ nN .D0// is a disjoint union of strips which are diffeomorphic to
.D1nN .D0//� Œ�1; 1�, with D1nN .D0/ corresponding to .D1nN .D0//�f0g.

These properties imply that L � int.S/ and that it is possible to push L nN .D0/

inside S to make it contained in @S . Note that in each strip composing S nN .D0/,
we have only one possible choice for the direction in which to push L nN .D0/ to @S
in such a way that the orientation of L coincides with that of @S .

We would like to extend this isotopy also to L \N .D0/ to make the whole of L

contained in @S . Suppose that B is a connected component (homeomorphic to a ball)
of N .D0/. In particular, we suppose that B \S is connected. Then L\ @B consists
of two points Q1 and Q2 . The extension is done differently in the following two cases
(see Figure 4):

Easy case This is when Q1 and Q2 belong to the same connected component of
@S\B . The isotopy is then extended to B by pushing L\B to @S\B inside S\B ;
see Figure 4 (left).
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General case If Q1 and Q2 belong to (the boundary of) different connected compo-
nents a1 and a2 of @S \B , we proceed as follows: Let Pi be a point in the interior
of ai for i D 1; 2. Let  be a simple arc in S \B from P1 to P2 (there exists only
one choice for  up to isotopy). Let S 0 be obtained by positive Giroux stabilization
of S along  ; see Figure 4 (right). Now we can connect Q1 with a2 by an arc in @S 0

crossing the belt sphere of the 1–handle of the stabilization once; let Q0
2

be the end
point of this arc. Since a Giroux stabilization is compatible with the orientation of @S ,
the points Q0

2
and Q2 are in the same connected component of a n fP2g, so we can

connect them inside @S \B , and we are done.

Pushing L to @S (and changing L and S as before where necessary) gives a link xL
that is contained in @S . To see that xL is isotopic to L, we have to prove that, for any B

as before, the two kinds of push-offs we use do not change the isotopy class of L.

Clearly, the isotopy class of L is preserved in the easy case. For the general case, it suf-
fices to show that substituting the arc L\S\B from Q1 to Q2 with an arc crossing the
belt sphere of the handle once does not change the isotopy class of L. This is equivalent
to proving that if  is the path of the Giroux stabilization and x D  [c , where c is the
core curve of the handle, then x bounds a disk in Y nL. This can be proved for example
by using the particular kind of Heegaard diagrams used in [7]. Observe that if b is the
cocore of the handle, then x is isotopic in S to b[�0.b/, where �0 is the monodromy
on S 0 given by the Giroux stabilization. We finish by observing that b[�0.b/ is isotopic,
up to a small perturbation near @S , to an attaching curve of a Heegaard diagram of Y .

We now recall the Torres formula that we will use in the second step of our proof of
Theorem 3.12. Since we need to consider the Alexander quotient as a polynomial,
when we need to highlight its variables t1; : : : ; tk , we will indicate them as subscripts
and write ALEXt1;:::;tk

instead of ALEX.

Theorem 3.20 (Torres formula) Let LDK1t � � �tKn be an n–link in a homology
three-sphere Y , KnC1 a knot in Y nL and L0DLtKnC1 . Let Si be a Seifert surface
for Ki for i 2 f1; : : : ; nC 1g. Then

ALEXt1;:::;tn;1.Y nL0/
:
D ALEXt1;:::;tn

.Y nL/ �

�
1�

nY
iD1

t
hKnC1;Si i

i

�
;

where ALEXt1;:::;tn;1.Y nL0/ indicates the polynomial ALEXt1;:::;tnC1
.Y nL0/ evalu-

ated at tnC1 D 1.

We refer the reader to Torres [37, Theorem 3] for the original proof. See also Franks
[13, Theorem 6.4] for a proof making use of techniques of dynamics and Turaev [38,
Section 1.4] for a generalization of the formula to links in any three-manifold.
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Observation 3.21 One can see the condition tnC1D 1 from a purely topological point
of view. Imagine taking the manifold Y nL0 and then gluing back KnC1 . The effect
on H1.Y nL0/ is that the generator Œ�nC1� is killed, and now the homology class
of a loop  � Y nL0 is determined only by the numbers h;Sii for Si 2 f1; : : : ; ng

(ie by �L. /).

3.4.2 Proof of the result in the general case

Proof of Theorem 3.12 Let LDK1t� � �tKn be a given link in Y . Proposition 3.19
implies that there exists an open book decomposition .L0;S; �/ of Y with binding

L0 DLtKnC1 t � � � tKm

for some m � n. Let ˛ be a contact form on Y adapted to .L0;S; �/. Let RDR˛

be its Reeb vector field. As remarked in Section 3.3, and using the same notation, R is
circular in Y n VV 0.L0/, where we recall that V 0.L/ is an union of tubular neighborhoods
V 0.Ki/¨ V .Ki/, for i 2 f1; : : : ;mg, of L.

Since ˛ is also adapted to L0 , each VV .Ki/ is, by definition, foliated by concentric tori,
which in turn are linearly foliated by Reeb orbits that intersect positively a meridian disk
for Ki in V .Ki/. Now, we can choose ˛ in such a way that for each i 2fnC1; : : : ;mg,
the tori contained in V 0.Ki/ are foliated by orbits of R with fixed irrational slope. This
condition can be achieved by applying the Darboux–Weinstein theorem in V .Ki/ to
make ˛jV 0.Ki / like in Example 6.2.3 of [5]. It follows that for each i 2 fnC1; : : : ;mg,
the only closed orbit of R in V 0.Ki/ is Ki . Define U.L0/D

Fm
iD1 U.Ki/, where

U.Ki/D

�
V .Ki/ if i 2 f1; : : : ; ng;

V 0.Ki/ if i 2 fnC 1; : : : ;mg:

We have

�.ECC.L;Y; ˛//D ��L
.�RjY nV .L//

D ��L
.�RjY nU.L0// �

mY
iDnC1

Y
2P.V 0.Ki //

� .�L.Œ �//

D ��L
.�RjY nU.L0// �

mY
iDnC1

�Ki
.�L.ŒKi �//

D ��L0
.�RjY nU.L0//jt1;:::;tn;1;:::;1 �

mY
iDnC1

�Ki
.�L.ŒKi �//

:
D ALEXt1;:::;tn;1;:::;1.Y nL0/ �

mY
iDnC1

�Ki
.�L.ŒKi �//
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D ALEXt1;:::;tn;1;:::;1.Y nL0/ �

mY
iDnC1

�
1�

nY
jD1

t
hKi ;Sj i

j

��1

D ALEXt1;:::;tn
.Y nL/;

where

� line 2 follows from reasoning as in the proof of (25);

� line 3 holds since Ki , for i 2 fnC 1; : : : ;mg, is the only Reeb orbit of ˛ in
V 0.Ki/;

� line 4 comes from the idea in Observation 3.21: �L and �L0 coincide on the
generators ti of H1.Y nL/ for i 2 f1; : : : ; ng, and ti D Œ�i �D 1 2H1.Y nL/

for i 2 fnC 1; : : : ;mg;

� line 5 holds since, up to a slight perturbation of R near each @U.Ki/ to make it
nondegenerate and transverse to the boundary like in the proof in Section 3.3,
�L0 and RjY nU.L0/ satisfy the hypothesis of Theorem 3.10;

� line 6 is due to the fact that the Ki are elliptic;

� line 7 is obtained by applying repeatedly the Torres formula on the components
KnC1; : : : ;Km .

The proof of Theorem 3.1 works then exactly as in the fibered case.
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On mod p Ap –spaces

RUIZHI HUANG

JIE WU

We prove a necessary condition for the existence of an Ap –structure on mod p

spaces, and also derive a simple proof for the finiteness of the number of mod p

Ap –spaces of given rank. As a direct application, we compute a list of possible types
of rank 3 mod p homotopy associative H –spaces.

55P45, 55S25; 55N15, 55P15, 55S05

1 Introduction

A longstanding problem in algebraic topology is to classify finite H–spaces. However,
this problem is rather complicated, and has only been solved in few cases. There is
Zabrodsky’s localization and mixing theorem [27] yielding that a simply connected
finite complex is an H–space if and only if each of its p–localizations is an H–space.
One would also like to know for which primes p the localization at p fails to be an
H–space, so it is natural to consider the p–local version of H–spaces.

Let X be a CW-complex whose cohomology is an exterior algebra generated by r

elements of odd dimension; we call r the rank of X . For r D 1, J F Adams [1; 2]
has determined that S1 , S3 , S7 are the only H–spaces localized at 2 by solving the
famous Hopf invariant one problem, and all odd spheres are H–spaces localized at any
odd prime p . For r D 2, the case p D 2 (then the integral case) has been solved in
a series of papers: see Adams [3], Hubbuck [15], Zabrodsky [28; 29], Douglas and
Sigrist [7], Mimura, Nishida and Toda [19], as well as the case p>3 by N Hagelgans [9].
The remaining case p D 3 is challenging and has been an open question for decades;
recent progress on it can be found in Grbić, Harper, Mimura, Theriault and Wu [8].

The phenomenon that the H–structures are largely controlled by the prime p D 2

appears similarly when we consider higher homotopy associative structures. Namely,
if we consider Ap–spaces in the sense of J Stasheff [21; 22], the Ap–structure is
controlled by that of the localization at p , where a connected A2–space is just an
H–space. In general, for any An–space X , Stasheff suggests an n–projective space
Pn.X / over X , which is analogous to Milnor’s classifying space for topological groups.
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(See Definition 3.5 and the paragraph before that for the explicit definition of An–spaces
and related comments.)

Let n D p . It is well-known that there exists some nontrivial pth power in the
cohomology of p–stage projective space Pp.X / which exactly detects the Ap–structure.
Furthermore, Hemmi [12] has defined a modified projective space Rn.X / for a special
family of An–spaces, which is our main concern in this paper. Based on these ideas
and constructions we prove the following theorem, which generalizes the result of
Wilkerson [25] for local spheres:

Theorem 1.1 Fix an odd prime p � 3 and let X be a connected p–local Ap–space
with cohomology ring H�.X;Z=pZ/ Š

V
.x2m1�1; : : : ;x2mr�1/, where m1 � mj

for all j . Define
mD gcdfmi jmi � pm1g:

Then m j p�1.

For the converse of the theorem, we recall that Stasheff [23] has constructed a realization
for polynomial algebras Z=pZ Œx2m;x4m; : : : ;x2km� with m j p�1 using a theorem
of Quillen. Here, our proof of this theorem is based on a generalization of a method of
Adams and Atiyah [4]; (see also Section 2), using which we also derive a simple proof
of a finiteness theorem of Hubbuck and Mimura [16] (also see Theorem 3.7) which
claims that there are only finitely many possible homotopy types of spaces with fixed
rank r which are Ap–spaces.

For the special case when p D 3, a mod 3 A3–space is a usual 3–local homotopy
associative H–space. The only simply connected homotopy associative H–space at 3

of rank 1 is S3 . If we define the increasing sequence .m1; : : : ;mr / to be the type of X

in Theorem 1.1, then the complete list of types for rank 2 3–local simply connected
homotopy associative H–spaces are .2; 3/, .2; 4/, .2; 6/ and .6; 8/; see Wilkerson
[24, Theorem 5.1]. It is clear that

S3
�S5 3

' SU.3/

provides an example for .2; 3/, Sp.2/ for .2; 4/, and G2 for .2; 6/. Harper [10] gives
a decomposition

F4

3
'K �B5.3/;

where B5.3/ is the S11 bundle over S15 classified by ˛1 , and, further, Zabrodsky [30]
shows that B5.3/ is a loop space, which provides an example for .6; 8/. In this paper,
we consider the case of rank 3. With the help of the method of Adams and Atiyah, and
some results of Wilkerson (see [24] or Theorem 4.2), we prove the following theorem
by careful analysis of the effect of both Steenrod operations and Adams’  –operations.

Algebraic & Geometric Topology, Volume 17 (2017)
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Theorem 1.2 Let X be an indecomposable 3–local homotopy associative H–space
with cohomology ring H�.X;Z=3Z/Š

V
.x2r�1;x2n�1;x2m�1/, where deg.xk/Dk

and 1< r < n<m. Then the type of X .r; n;m/ can only be one of

.2; 4; 6/; .2; 6; 8/; .3; 5; 7/; .3; 6; 8/; .6; 8; 10/; .6; 8; 12/:

In this list, the only known example is Sp.3/, which is of type .2; 4; 6/. Here are a
few things we know about potential examples of rank 3 3–local A3–spaces of the
remaining five types. For .2; 6; 8/, we can form a space X as the total space of a
G2–principal fibration over S15 , which is classified by the generator of

�15.BG2/Š �14.G2/
3
Š �14.S

3/
3
Š Z=3Z:

Then the classifying map factors as S15
f
�!BS3!BG2 , and we get X

3
' .G2�Y /=S3 ,

where Y is the total space of the fibration classified by f and also an H–space by
Theorem 7.1 of Grbić, Harper, Mimura, Theriault and Wu [8]. However, we still do
not know whether X is an H–space or not. For the case .3; 5; 7/ we have Nishida’s
B3

2
.3/, which is a 3–component of SU.7/ (see Mimura, Nishida and Toda [20]).

Still, we do not know whether B3
2
.3/ is homotopy associative. If X is of type

.3; 6; 8/, then X has a generating complex of the form S5 _A by the knowledge of
the homotopy groups of spheres, where A is of type .6; 8/. For .6; 8; 10/, Harper
and Zabrodsky [11] have proved that if the exterior algebra of rank p generated by
fx2n�1;P

1x2n�1; : : : ;P
p�1x2n�1g can be realized by an H–space, then p j n, and

the converse is still open for n > p . For the last possible case of type .6; 8; 12/, we
have P1.x11/D x15 and P3.x11/D x23 .

The article is organized as follows. In Section 2 we will introduce a refined version
of Adams and Atiyah’s method from [4]. In Section 3 we use number theory to prove
Theorem 1.1 and the finiteness theorem of Hubbuck and Mimura. Section 4 is devoted
to the proof of Theorem 1.2.

2 A method of Adams and Atiyah

In [4], Adams and Atiyah develop a method to detect the pth power of cohomology
elements using Adams’  –operations. For our purpose, we need to modify it slightly.

Given a connected CW-complex X with no p–torsion in H�.X;Z/, suppose there
exists a subalgebra xH of H�.X IZ=pZ/ such that

xHŠ xA˚ xB

as rings, where xA contains xH0 , xB is an ideal and also xH and xB are closed under the

Algebraic & Geometric Topology, Volume 17 (2017)
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action of the mod p Steenrod algebra Ap . Then by the Atiyah–Hirzebruch–Whitehead
spectral sequence and [5, Theorem 6.5], we have the corresponding filtered subalgebra
H of K.X /˝Z.p/ such that

HŠA˚B;

as filtered rings, and also H and B are closed under  p–action. Write the Chern
character of an element x 2K.X /˝Z.p/ as

ch.x/D a0C

X
i
a2i C

X
j

b2j ;

with a0 2Q, a2i 2
xA>0˝Q and b2j 2

xB>0˝Q (the subscripts refer to the degree).
Then we have

ch. k.x//D a0C

X
i
kia2i C

X
j

kj b2j :

Hence  k is indeed a semisimple linear transformation if we use the Chern character to
identify K.X /˝Q with H even.X IQ/, and the eigenspace decomposition of zK.X /˝Q
is independent of the choice of  k . In particular, H˝Q and B˝Q are invariant
under  k for any k , as they are invariant under  p , and then H and B are also
invariant under each  k . Then, as in [4], we get a (partial) eigenspace decomposition

zHŠ
rM

iD1

Vi ˚W; B>0
˝QŠW;

where zHDH>0˝Q, deg.Vi/D 2mi (which means the degree of its elements) and Vi

is allowed to be the 0 vector space. For each  k , Vi is the eigenspace corresponding
to the eigenvalue kmi . We also notice that A>0˝QŠ

Lr
iD1 Vi but only as vector

spaces. Now define a linear transformation on zK.X /˝Q by

�i D

Y
1�j�r

j¤i

 kj � k
mj

j

k
mi

j � k
mj

j

;

and a number

di.m1; : : : ;mr /D gcd
� Y

1�j�r
j¤i

.k
mi

j � k
mj

j /
ˇ̌̌
kj 2NC for 1� j � r; j ¤ i

�
:

Notice that �i induces a linear transformation x�i on
Lr

iD1 Vi which is the natural
projection onto the i th component Vi . For any x 2 zH , we have

�i.x/ �
Y

1�j�r
j¤i

.k
mi

j � k
mj

j /D
Y

1�j�r
j¤i

. kj � k
mj

j /.x/ 2 zH:
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Accordingly,
�i.x/di.m1; : : : ;mr / 2 zH:

If we write x D
P

i x�i.x� v/C v for some v 2 B , then we also have

x�i.x� v/di.m1; : : : ;mr / 2 zH:

Now we make a crucial assumption that for each i

(2-1) pmi − di.m1; : : : ;mr /:

Since B is a f pg–module, we have

 p.x/D
X

i

 p.x�i.x� v//C 
p.v/

D

X
i

pmi
x�i.x� v/di.m1; : : : ;mr /

di.m1; : : : ;mr /
C p.v/

D pyC p.v/ 2 p zHCB;

ie xp� p.x/�0 mod .p;B/. Again, as in [4], xxp�0 mod . xB/ on the cohomology
level, where xx denotes the corresponding element of x in xH�H�.X;Z=pZ/.

Remark 2.1 Notice that when xH DH�.X;Z=pZ/ and xB D 0, the above result is
exactly [4, Corollary].

3 Proof of Theorem 1.1 and the finiteness theorem

3.1 Proof of Theorem 1.1

We prove the theorem by contradiction. The main task is to prove the condition (2-1)
holds. We have to do some number theory first.

Definition 3.1 Let n be a positive integer.

(1) Define e.n/D f if nD pf �x and p − x .

(2) Define � by

�.n/D

�
f C 1 if nD pf .p� 1/x and p − x;

0 if p�1 − n:

Algebraic & Geometric Topology, Volume 17 (2017)
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Suppose k is a primitive root modulo p2 . Then k is also a primitive root modulo pf

for all f 2NC . Then for any positive integer n, we have

(3-1) kn
� 1 mod pf

() n� 0 mod pf�1.p� 1/:

So �.n/ is the exact exponent of p in the prime factorization of kn� 1 if p�1 j n.

The following lemma is well known and basic in number theory:

Lemma 3.2 (Legendre 1808) We have

e.n!/D

1X
kD1

j
n

pk

k
D

n� sp.n/

p� 1
;

where sp.n/D ak C ak�1C � � �C a1C a0 is the sum of all the digits in the expansion
of n in base p .

From above, we easily get:

Corollary 3.3 (1) e.a!/C e.b!/� e..aC b/!/;

(2) e..ab/!/� aC e.a!/ if b � p .

Now we are ready to prove our main lemma, which is a generalization of [4, Lemma 3.5]:

Lemma 3.4 Let p be an odd prime, k be a primitive root modulo p2 , m, t 2NC be
such that m − p�1, and set

… WD
Y

j�t�tp
j¤i

.kmi
� kmj /:

Then we have

(3-2) e.…/ <mt:

Proof We set gcd.m;p � 1/ D h, m D ah, and p � 1 D bh. Then a > 1 since
m − p�1. Then we haveY

j�t�tp
j¤i

.kmi
� kmj /D

Y
t�j<i

kmj .km.i�j/
� 1/ �

Y
i<j�tp

kmi.1� km.j�i//:

By (3-1), we only need to consider values of j satisfying p�1 jm.i � j /, ie b j i�j .
Then we have

Algebraic & Geometric Topology, Volume 17 (2017)
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e.…/D
Y

t�j<i

e.km.i�j/
� 1/ �

Y
i<j�tp

e.1� km.j�i//

D

Y
1� i�j

b
�b i�t

b
c

e.kmb i�j
b � 1/ �

Y
1� j �i

b
�b

tp�i
b
c

e.kmb j �i
b � 1/

D

Y
1�j�b i�t

b
c

e.kmbj
� 1/ �

Y
1�l�b tp�i

b
c

e.kmbl
� 1/

D

X
1�j�b i�t

b
c

�.mbj /C
X

1�l�b tp�i
b
c

�.mbl/

D .e.m/C 1/
�j

i�t

b

k
C

j
tp�i

b

k�
C e

�j
i�t

b

k
!
�
C e

�j
tp�i

b

k
!
�

� .e.m/C 1/
tp�t

b
C e

��j
i�t

b

k
C

j
tp�i

b

k�
!
�

� .e.m/C 1/thC e..th/!/:

Now if hD 1, then

e.…/� .e.m/C 1/t C e.t !/

D .e.m/C 1/t C
t � sp.t/

p� 1

< t
�
e.m/C 1C

1

p�1

�
:

If h� 2, then

e.…/� .e.m/C 1/thC t C e.t !/

D .e.m/C 1/thC t C
t � sp.t/

p� 1

< t
�
.e.m/C 1/hC 1C

1

p�1

�
:

On the other hand, the inequality a � e.m/ � 1 � 1 always holds, for otherwise
e.a/C 1 D e.m/C 1 D a implies a D 1 (we use p � 3 here). Now combining all
above, it is easy to see e.…/ <mt in both cases.

Now we are going to prove Theorem 1.1. First we recall some background on
An–spaces, for which Stasheff’s original papers [21; 22] are the standard reference.
Stasheff’s An–spaces can be defined inductively with the help of Stasheff polytopes,
which are also called associahedra. Explicitly, an associahedron Kn is an .n�2/–
dimensional convex polytope whose vertices are in one to one correspondence with
the parenthesizings of the word x1x2 : : :xn and whose edges correspond to single
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application of the associativity rule. In particular, K2 is a point, K3 is a interval
and K4 is the convex hull of a pentagon. There are canonical maps between the Kn .
Indeed, the family KD fKng can be endowed with an operadic structure such that any
K–space is the so-called A1–space (K is called A1–operad). Then an An–space is
just an space with the action of K only up to the n–stage (the corresponding operad is
called the An–operad). Stasheff also gave another equivalent description of An–spaces,
which he used as definition:

Definition 3.5 [21, Definition 1] An An–structure on a space X consists of an
n–tuple of maps

X E1
� � //

p1

��

E2
� � //

p2

��

� � �
� � // En

pn

��

� B1
� � // B2

� � // � � �
� � // Bn

such that each pi is a quasifibration and there is a contracting homotopy hWCEn�1!En

such that h.CEi�1/�Ei .

Note that if An–structure is given by the operadic action, the above diagram can be
constructed such that Bi is the i th “projective space” Pn.X / over X (as in Milnor’s
construction). The reverse process was done by Stasheff. The projective space is crucial
for there are nontrivial nth powers in its cohomology ring.

Here, the key construction for our proof of Theorem 1.1 is the so-called modified pro-
jective space of Hemmi [13] which is an analogy of Stasheff’s n–projective space [21].
Since we will not use the explicit construction of this concept, we only recall some
properties stated in the following lemma.

Lemma 3.6 (see [13, Theorem 1.1]) Let n� 3 and let X be a finite An–space with
cohomology ring

H�.X;Z=pZ/Š
V
.x2m1�1; : : : ;x2mr�1/; deg.x2mi�1/D 2mi � 1:

Then there exists a modified projective space Rn.X / with a map "W †X ! Rn.X /

such that

xHŠ xA˚ xB D Z=pZ Œy2m1
; : : : ;y2mr

�=.height nC1/˚ xB

as rings, for some subalgebra xH of H�.Rn.X /;Z=pZ/ and "�.y2mi
/D ��.x2mi�1/,

where the ideal under quotient in the first factor is generated by monomials of length
greater than or equal to nC 1. Further, xH and xB are closed under the action of the
mod p Steenrod algebra Ap .
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Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1 We prove the theorem by contradiction, and assume m − p�1.
By Lemma 3.6, H�.Rp.X // contains a truncated polynomial algebra

Z=pZ Œy2m1
; : : : ;y2mr

�=.height pC1/ ,!H�.Rp.X //:

Let us define Y .X /D R
2pm1C1
p .X / to be the .2pm1C1/–skeleton of Rp.X /. We

then have a ring decomposition

i�.xH/Š i�. xA/˚ i�. xB/;

where i W Y .X / ,!Rp.X / is the canonical inclusion. Then y
p
2m1
6� 0 mod .i�. xB//.

We then set mi Dmsi , and apply Lemma 3.4 for t D s1 and mDm since m − p�1

by assumption. Then we get e.…/ < ms1 D m1 , which implies the condition (2-1)
holds for Y .X / since m1 is the lowest degree. Further, i�.xH/ and i�. xB/ are closed
under the action of Ap , hence by the argument in Section 2, xxp � 0 mod .i�. xB// for
any xx 2 i�.xH/, which contradicts the fact that y

p
2m1
6� 0 mod .i�. xB//. The proof of

Theorem 1.1 is completed.

3.2 The finiteness theorem for finite Ap –spaces

As another application, we prove the following theorem of Hubbuck and Mimura:

Theorem 3.7 [16] Let X be a connected finite mod p Ap–space of rank r . Then
there are only finitely many possible homotopy types for the space X .

Proof Suppose X has the type .m1;m2; : : : ;mr / with m1 � m2 � � � � � mr , and
form the space

Y .X /D
R

2pmrC1
p .X /

R
2mr�1
p .X /

;

which is the .2pmrC1/–skeleton of Rp.X / with the .2mr�1/–skeleton pinched to a
point. As in the proof of Theorem 1.1, we can get a ring decomposition

p��1i�.xH/Š p��1i�. xA/˚p��1i�. xB/

using the canonical inclusion and projection, such that p��1i�.xH/ and p��1i�. xB/

are closed under the action of Ap , and y
p
2mr

is the nontrivial module p��1i�. xB/.
We may also fix a number N.p; r/ only depending on p and r such that N.p; r/�

dim p��1i�.xH/, and notice that the largest difference of the degrees of any two ele-
ments in p��1i�.xH/ is bounded by 2.p�1/mr . Suppose the even part of p��1i�.xH/
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concentrates in dimension 2t1; 2t2; : : : . Then for sufficiently large mr we have

e

�Y
j¤i

.kti � ktj /

�
�

X
j¤i

.e.ti � tj /C 1/

�N.p; r/blogp.2.p� 1/mr /cCN.p; r/

<mr

for any i , ie the condition (2-1) holds, which contradicts the existence of the nontrivial
pth power in p��1i�.xH/. Accordingly the largest dimension of the generators is
bounded and there are only finitely many possible types for X . Also by [6, Corol-
lary 4.2], there are only finitely many homotopy types for each certain type. Then in
all there are finitely many homotopy types for fixed rank.

4 Rank 3 mod 3 homotopy associative H –spaces

For rank 3 mod 3 homotopy associative H–spaces, we will consider Stasheff’s 3–
projective space instead of Hemmi’s modified projective space used in the proof of
Theorem 1.1. The key lemma analogous to Lemma 3.6 for projective spaces is the
following well-known result.

Lemma 4.1 (see eg [17]) Let n� 3 and X be a finite An–space with cohomology
ring

H�.X;Z=pZ/Š
V
.x2m1�1; : : : ;x2mr�1/; deg.x2mi�1/D 2mi � 1;

such that each x2mi�1 is An–primitive, ie x2mi�1 lies in the image of a series of
natural morphisms

H�.Pn.X //!H�.Pn�1.X //! � � � !H�.P1.X /D†X /
Š
 H��1.X /:

Then we have ring isomorphism

H�.Pn.X /;Z=pZ/ŠA˚B D Z=pZ Œy2m1
; : : : ;y2mr

�=.height nC1/˚B

as Ap–modules and AC �B D 0, where deg.y2mi
/D 2mi .

Notice that the corresponding result in the context of K–theory can be easily deduced,
and for rank 3 mod 3 homotopy associative H–spaces, the primitivity assumption is
automatically satisfied. To prove Theorem 1.2, we will also use the following theorem
of Wilkerson.
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Theorem 4.2 [24, Theorems 6.1 and 6.2] Let X be a finite mod p Ap–space with
cohomology ring H�.X;Z=pZ/Š

V
.x2m1�1; : : : ;x2mr�1/, with m1 �m2 � � � � �

mr and mr > p . Then:

(1) There is an x2mk�1 with mr �mk D s.p� 1/ for some 1� s � e.mr /C 1.

(2) If p − mi for some i , there is an x2mj�1 such that mj D kj mi�pC1 for some
1� kj � p .

Combining Theorem 1.1 and Theorem 4.2, we are left to consider the following four
cases for the possible types of the mod 3 A3–space X in Theorem 1.2:

Case 1 3 jm, 3 j n and m� nD 2s with 1� s � e.m/C 1,

Case 2 3 jm, 3 − n and m� nD 2s with 1� s � e.m/C 1,

Case 3 3 − m and m� nD 2s with 1� s � e.m/C 1,

Case 4 m� r D 2t with 1 � t � e.m/C 1, and m� n ¤ 2s for any s such that
1� s � e.m/C 1.

For Case 1, we need the following lemma:

Lemma 4.3 Under the condition of Theorem 1.2 and Case 1, we have:

(1) If r D 2, m> n> 6 and e.m/� e.n/C 2, then

8e.n/C 23� n:

(2) If r D 2, m> n> 6 and e.m/D e.n/C 1, then

8 maxfe.3n�m/; e.3n� 2m/gC 15� n:

(3) If m� 3r , e.m/� e.n/C 2, then

7e.n/Cblog3.m� r/cC 24�m or 8blog3.m� r/cC 24� 3r:

(4) If m� 3r , e.m/D e.n/C 1, then

7 maxfe.3n�m/; e.3n� 2m/gC blog3.m� r/cC 17�m

or

8blog3.m� r/cC 24� 3r:
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Proof By the condition, we have a f kg–module K D Z.3/Œxr ;xn;xm�=.height 4/,
where the subscripts refer to the filtration degree. For (1) and (2) we have r D 2, and
we only need to consider K0 DK�fxi

r j i D 1; 2; 3g. We can set

S D
˚
2i C j nC km j .i; j ; k/¤ .i; 0; 0/; 0� jj j; jkj � 3; 0� ji j � 2

	
;

and define ˆ.i; j ; k/D j2i C j nC kmj. For .1/ we have e.ˆ.0; j ; k// � e.n/C 1

and e.ˆ.i; j ; k// D 0 if ji j D 1, or 2. And we notice that there are nine elements
of the form x�nx�m , five elements of the form x1

r x�nx�m , and two elements of the form
x2

r x�nx�m in K0 . Then

e

� Y
.Qi; Qj ; Qk/¤.0;j ;k/

.2jnCkm
� 22QiC QjnCQkm/

�
�

X
e
�
ˆ.�Qi ; j � Qj ; k � Qk/

�
C 15

� 8.e.n/C 1/C 15

D 8e.n/C 23:

Similarly, we have

e

� Y
.Qi; Qj ; Qk/¤.1;j ;k/

�
� 4e.n/C 19 and e

� Y
.Qi; Qj ; Qk/¤.2;j ;k/

�
� e.n/C 16:

Since condition (2-1) should fail for X , we must have 8e.n/C 23� n.

The remaining three claims can be proved similarly, and notice that for .3/ and .4/, we
work with K0DK�fxr ;xng if m� 2r and with K0DK�fxr ;xn;x

2
r g if m> 2r .

Now we are ready to deal with Case 1:

Proposition 4.4 Under the condition of Theorem 1.2 and Case 1, the only possible
types of X are

.2; 3; 9/; .2; 12; 18/; .2; 21; 27/; .2; 30; 36/; .2; 39; 45/;

.7; 12; 18/; .10; 12; 18/; .16; 30; 36/; .19; 30; 36/:

Proof By Theorem 1.1, we have gcd.r; n;m/� 2, so 3 − r . Hence by Theorem 4.2,
we have x D �r � 2 with � 2 f1; 2; 3g and x 2 fr; n;mg. Then r D 2 or nD 2r � 2

or mD 2r � 2.

We prove the proposition under the condition e.m/ > e.n/ first:
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(1) If r D 2, n > 6 and e.m/ � e.n/C 2, by Lemma 4.3 we have 8e.n/C 23 � n.
Then

3e.m/
�f DmD nC 2s

� 8e.n/C 23C 2.e.n/C 1/

D 10e.n/C 25

� 10e.m/C 5:

Since e.m/� 3, we have mD 27 and e.m/D 3. Then e.n/D e.s/D 1 and n is odd.
Now it is not hard to check that .2; 21; 27/ is the only possible type satisfying all the
conditions.

(2) If r D 2, n> 6 and e.m/D e.n/C 1, by Lemma 4.3,

8 maxfe.3n�m/; e.3n� 2m/gC 15� n:

If 8e.3n�m/C 15� n, then

8e.n� s/C 12� 8e.n� s/C 15� s � n� s

for

e.n� s/D e.2.n� s/D 3n�m/� e.m/� 2 and s � 3:

Then it is easy to show that n� sD 9; 18 or 27. In any case, s � e.m/C1� 4, which
implies sD3. And then m�nD6 and nD12; 21 or 30. But since e.m/De.n/C1D2,
only .2; 12; 18/ or .2; 30; 36/ is possible for our X .

If 8e.3n� 2m/C 15� n, then

8e.n� 4s/C 3� 8e.n� 4s/C 15� 4s � n� 4s

for

n� 4s D 3n� 2m and s � 3:

Then we get n�4sD 9; 18 or 27. Again since e.n�4s/� e.m/� 2 and s� e.m/C1,
we have s D 3. Then m � n D 6 and n D 21; 30 or 39 and only .2; 30; 36/ and
.2; 39; 45/ survive.

(3) If m� 3r , e.m/� e.n/C 2, by Lemma 4.3 we have

7e.n/Cblog3.m� r/cC 24�m or 8blog3.m� r/cC 24� 3r:
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We also notice that r ¤ 2, which by our earlier discussion implies n D 2r � 2 or
nD 2m� 2. If the first inequality and nD 2r � 2 hold, then

2r � 2D n<m� 7e.n/Cblog3.m� r/cC 24

� 7e.r � 1/Cblog3.2r/cC 24

� 8blog3 rcC 25;

which implies r � 21. Then m � 3r � 63 implies mD 27 or 54 for e.m/ � 3. So
e.m/D 3 and e.n/D 1. Since 3 j s and s � e.m/C1, we have s D 3 and m�nD 6.
Then we see mD 27 is impossible for n is even, while mD 54 leads to r D 25, which
contradicts our previous calculation. Similar arguments can be applied to the other
three cases, which will show there are no types left.

(4) If m� 3r , e.m/D e.n/C1, by Lemma 4.3 and similar calculations as in part (3),
we get .r; n;m/D .7; 12; 18/, .10; 12; 18/, .16; 30; 36/ or .19; 30; 36/.

(5) By Theorem 1.1, the only remaining case under condition e.m/ > e.n/ is n� 3r

but m > 3r . If r D 2, then n D 3 or 6, which gives .r; n;m/ D .2; 3; 9/. When
nD 2r �2, we have 1

3
mC2<m�nD 2s � 2e.m/C2, which is impossible. Further,

mD 2r � 2 can not hold by our assumption.

We have proved the proposition when e.m/ > e.n/. If e.n/ � e.m/, then e.s/ D

e.m� n/ � e.m/ � s � 1 � 0, which implies s D 1 and m� nD 2. However, since
3 jm and 3 j n, this is impossible.

For the remaining cases, we will also use a theorem of Hemmi:

Theorem 4.5 ([12, Theorem 1.2]; also see [13, Section 8]) Let X be a homotopy
H–space with H�.X IZ=3Z/ being finite. Then for any n 2 Z with n 6� 0 mod 3 and
n> 3, if

(4-1) QH 2.3a�2t/�1.X;Z=3Z/D 0 for t � n� 1;

then

(4-2) P3a

W QH 2.3a.n�2//�1.X;Z=3Z/!QH 2.3an/�1.X;Z=3Z/

is an epimorphism, where QH�.X;Z=3Z/ D H�.X;Z=3Z/=DH�.X;Z=3Z/ and
DH�.X;Z=3Z/ is the submodule consisting of decomposable elements.

Proposition 4.6 Under the conditions of Theorem 1.2 and Case 2, the only possible
types of X are

.2; 4; 6/; .3; 4; 6/; .3; 5; 9/; .6; 8; 12/:
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Proof Since 3 − n, by Theorem 4.2, we have x D �n� 2 with x and � as before.
Then either r D n� 2 or mD 2n� 2.

(1) r D n � 2. If m > 3r , then m � n > m �
�

1
3
mC 2

�
D

2
3
m � 2. So we have

2
3
m�2D 2s< 2e.m/C2, which implies mD 9. Then .r; n;m/D .2; 4; 9/ contradicts

the fact that m� n is even.

If 2n�2D 2rC2�m� 3r , then 1
2
m�1�m�nD 2s � 2e.m/C2, which implies

.r; n;m/D .2; 4; 6/ or .3; 5; 9/.

If m< 2n� 2 and nD 3kC 2 for some k , then in the Ap–module

xK D Z=3Z Œxr ;xn;xm�=.height 4/;

P1.xr /D cxn with c 6� 0 mod 3 by Theorem 4.5. By the Adem relation

(4-3) P1P3P3k�1
D �P1P3kC2

C 2P3kC2P1;

we have P3k�1.xr /¤ 0, which implies 9k�2D 3n�8 has to be the degree of some
monomial in K . Then by direct computation, we get nD 8 and r D 6, which implies
m< 14. Since 3 jm, we have mD 9 or 12. When mD 9, m� nD 1 is odd, which
is impossible. So we have .r; n;m/D .6; 8; 12/.

If m < 2n � 2 and n D 3k C 1, then r D 3k � 1 which by Theorem 4.2 implies
x D �r � 2 with x 2 fr; n;mg and � 2 f1; 2; 3g. Then we have r D 2 or nD 2r � 2,
both of which are impossible.

(2) m D 2n � 2. We have 1
2
m � 1 D m � n D 2s � 2e.m/C 2, which implies

.r; n;m/D .2; 4; 6/ or .3; 4; 6/.

Proposition 4.7 Under the conditions of Theorem 1.2 and Case 3, the only possible
types of X are

.2; 3; 5/; .2; 6; 8/; .3; 5; 7/; .3; 6; 8/; .4; 6; 8/; .5; 6; 8/; .6; 8; 10/;

.8; 12; 14/; .12; 18; 20/; .18; 24; 26/; .21; 27; 29/; .30; 36; 38/:

Proof Since 3 − m, we have m�nD 2. Then by Theorem 4.5, we have P1.xn/¤ 0.

(1) If mD 3kC 1, we have nD 3k � 1, which by Theorem 4.2 implies x D �n� 2

as before. Then r D n � 2, or m D 2n � 2, or m D 3n � 2; the latter two cases
are easy to check and are impossible. For r D n� 2, we apply Theorem 4.5 to get
P1.xr /¤ 0, and again by Adem relation (4-3), we get Pr�1.xr /¤ 0, which implies
.r; n;m/D .3; 5; 7/ or .6; 8; 10/.

(2) If m D 3k C 2, again by Adem relation (4-3) we have Pn�1.xn/ ¤ 0. By
comparing the degree and applying Theorem 4.2, we get a list of possible types:
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.2; 3; 5/, .2; 6; 8/, .3; 6; 8/, .4; 6; 8/, .5; 6; 8/, .8; 12; 14/ and also a special type

.r; r C 6; r C 8/ with 3 j r . For this remaining case, if r D 3l with l 6� 1 mod 3,
Theorem 4.5 implies P3.xr /¤ 0. By the Adem relation

(4-4) P9P3l�1
D �1P3lC8

C �2P3lC7P1
C �3P3lC6P2

CP3lC5P3;

we have P3l�1.xr /¤ 0, which gives .r; n;m/D .18; 24; 26/.

For l � 1 mod 3, we argue similarly as in Lemma 4.3 to get the condition m � 44.
Then the possible types are .12; 18; 20/, .21; 27; 29/ and .30; 36; 38/.

Proposition 4.8 Under the condition of Theorem 1.2 and Case 4, the only possible
types of X are

.2; 3; 4/; .2; 3; 6/:

Proof If m> 3r , then 2t Dm� r > 2r , ie r < t . Then we have

mD r C 2t < 3t � 3e.m/C 3;

which is impossible. So we have m� 3r .

If 3 − m, then m� r D 2 and .r; n;m/D .r; r C1; r C2/. Further, if 3 j r , then 3 − n,
which implies xD �n�2 as usual. However, it is easy to check the latter is impossible.
Then we get 3 − r , which implies x D �r � 2. In this case, the only possible type is
.r; n;m/D .2; 3; 4/.

Now suppose 3 jm. If 3 − r , we have r D 2, nD 2r �2, nD 3r �2 or mD 2r �2 by
Theorem 4.2. When r D 2, we get .r; n;m/D .2; 3; 6/, while .2; 5; 6/ is impossible
since �5� 2 2 f3; 8; 13g. When nD 2r � 2, we have r D 1

2
nC 1 < 1

2
mC 1. Then

1
2
m�1<m�r D 2t � 2e.m/C2, which implies mD 6 or 9. When n is even, nD 4

when mD 6, which implies r D 3. But 3 − r , so mD 6 is impossible. If mD 9, then
we have .r; n;m/D .4; 6; 9/ or .5; 8; 9/, both of which are impossible since 9�4¤ 2t

and �8� 2 2 f6; 14; 22g. The other two cases can be treated similarly and lead to no
possible types.

If 3 j r , then 3 − n, which implies r D n� 2 or m D 2n� 2. When r D n� 2, we
argue exactly as in the proof of the first case in Proposition 4.6 and get no possible
types in this case. When m D 2n � 2, we see r < n D 1

2
m C 1, which implies

1
2
m� 1<m� r D 2t � 2e.m/C 2. Again, no types survive.

We recall the following theorem of Wilkerson and Zabrodsky [26], which was also
reproved by McCleary [18], and later strengthened by Hemmi in [14] where the
assumption of the primitivity of the generators was removed:
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Theorem 4.9 Let X be a simply connected mod p H–space with cohomology ring
H�.X;Z=pZ/ D

V
.x2m1�1; : : : ;x2mr�1/, with m1 � m2 � � � � � mr . If mr �

m1 < 2.p� 1/, then X is p–quasiregular, ie X is p–equivalent to a product of odd
spheres and copies of Bn.p/, where Bn.p/ is the S2nC1–fibration over S2nC1C2.p�1/

characterized by p̨ .

Now we are ready to prove Theorem 1.2.

Proof of Theorem 1.2 We collect all the types obtained from Propositions 4.4, 4.6,
4.7 and 4.8, and prove the theorem case by case.

First, we notice that .2; 3; 4/, .2; 3; 5/, .3; 4; 6/ and .5; 6; 8/ are quasiregular by
Theorem 4.9.

If .r; n;m/D .4; 6; 8/, we already know P1.xn/D xm in xK D Z=3Z Œxr ;xn;xm�=

.height 4/. Then for degree reasons we have

P4.xr /DP1P3.xr /DP1.�xr xn/D �P1.xr /xnC�xr xm;

which contradicts that P4.xr /D x3
r . So .4; 6; 8/ cannot be the type of X .

If .r; n;m/D .3; 5; 9/, we still have P1.xr /D xn by Theorem 4.5. Then by Adem
relation (4-3), we have P2.xr /¤ 0, which is impossible since K7 D 0.

If .r; n;m/D .8; 12; 14/, we know P1.xn/D xm in xK . Then for degree reasons we
have

2P8.xr /DP1P1P6.xr /DP1P1.�xr xn/D �xrP1.xm/;

which implies P1.xm/D �x2
r with 3 − �. On the other hand, we have P11.xn/¤ 0

from the proof of Proposition 4.7, which implies that P1W xK30DZ=pZ.x2
r xm/! xK32

is not the zero map. But P1.x2
r xm/Dx2

r P1.xm/D 0 and then .r; n;m/D .8; 12; 14/

is impossible.

If .r; n;m/ D .10; 12; 18/, we have P1P9.xr / D P10.xr / D x3
r , which implies

P1.xr xm/D xrP1.xm/CP1.xr /xmD �x3
r with 3 − �. Then we have P1.xr /D 0

and P1.xm/D �x2
r . Then by the Adem relation

(4-5) P3P7
D�P10

CP9P1;

we have P3.x2
n/D �x3

r with 3 − �. However, P3.x2
n/D 2xnP3.xn/ is not equal

to �x3
r , so .10; 12; 18/ cannot be the type of X .

If .r; n;m/ D .12; 18; 20/, we have P1.xn/ D xm . Again, by Adem relation (4-3),
we have P17.xn/¤ 0 and P3W xK52DZ=pZ.xr x2

m/!
xK58DZ=pZ.xnx2

m/ is not
the zero map, which implies P3.xr /D xn . However, the Adem relation

(4-6) P3P9
DP12

CP11P1
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implies P3.xr xn/D˙x3
r , which contradicts the equality

P3.xr xn/D xrP3.xn/CP3.xr /xn D xrP3.xn/Cx2
n :

So .r; n;m/D .12; 18; 20/ is impossible.

For .r; n;m/D .2; 12; 18/, or .7; 12; 18/, we first prove the following lemma:

Lemma 4.10 Let X be a p–local Ap–space with cohomology ring H�.X;Z=pZ/ŠV
.x2m1�1; : : : ;x2mr�1/, such that each x2mi�1 is Ap–primitive, m1 �mj for all j ,

and p < mr . Then there is an x2mk�1 such that Pi.x2mk�1/ D x2mr�1 for some
suitable nonzero i .

Proof This is essentially [24, Lemma 4.4], which claims that in the f pg–submodule
K D Z.p/Œxm1

; : : : ;xmr
�=.height pC1/ of K.Pp.X //˝Z.p/ , there is an xmk

such
that

 p.xmk
/D �xmr

C other terms

with �¤ 0, for in [5, Theorem 6.5], Atiyah has shown that if  p.xq/D
P

i pq�ixi ,
then Pi.xxq/D xxi holds on the cohomology level.

Now we return to the proof Theorem 1.2. Using Lemma 4.10, we see P3.x12/D x18

holds in xK �H�.P3.X // for both mentioned cases. Then we apply Adem relation
(4-6) to x12 . Since in both cases P11P1.x12/D 0, we have P3P9.x12/D˙x3

12
.

However, xK30 D Z=pZ.x12x18/, and since xK is truncated,

P3.x12x18/D x12P3.x18/CP3.x12/x18 D x12P3.x18/Cx2
18;

which is not equal to ˙x3
12

. Accordingly, neither case can be the type of X .

We notice that .r; n;m/D .2; 3; 6/ is impossible directly by the above lemma.

For the remaining cases which do not appear in the final list, we can check whether the
condition (2-1) fails or not in an appropriate f kg–module K0 constructed from K

(with the help of a computer), and find that (2-1) holds when .r; n;m/ is one of
.2; 3; 9/, .2; 21; 27/, .2; 30; 36/, .2; 39; 45/, .18; 24; 26/, .16; 30; 36/, .19; 30; 36/,
.21; 27; 29/ or .30; 36; 38/, which implies X cannot be a mod 3 A3–space.
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Acylindrical group actions on quasi-trees

SAHANA H BALASUBRAMANYA

A group G is acylindrically hyperbolic if it admits a non-elementary acylindrical
action on a hyperbolic space. We prove that every acylindrically hyperbolic group
G has a generating set X such that the corresponding Cayley graph � is a (non-
elementary) quasi-tree and the action of G on � is acylindrical. Our proof utilizes
the notions of hyperbolically embedded subgroups and projection complexes. As an
application, we obtain some new results about hyperbolically embedded subgroups
and quasi-convex subgroups of acylindrically hyperbolic groups.

20F67; 20F65, 20E08

1 Introduction

Definition 1.1 An isometric action of a group G on a metric space .S; d/ is acylin-
drical if for every � > 0 there exist R;N > 0 such that for every two points x; y with
d.x; y/�R , there are at most N elements g 2G satisfying

d.x; gx/� � and d.y; gy/� �:

Obvious examples are provided by geometric (ie proper and cobounded) actions; note,
however, that acylindricity is a much weaker condition.

In order to define an acylindrically hyperbolic group, we must define non-elementary
actions, for which we will need the following definition and theorem.

Definition 1.2 Let G be a group acting on a hyperbolic metric space S . An element
g 2G is called loxodromic if the map Z! S given by

n 7! gns

is a quasi-isometric embedding for some (equivalently any) s 2 S . Every loxodromic
element has exactly two limit points fg˙1g on the Gromov boundary @S . Two
loxodromic elements g; h are said to be independent if the sets fg˙1g and fh˙1g
are disjoint.

Published: 3 August 2017 DOI: 10.2140/agt.2017.17.2145

http://msp.org
http://www.ams.org/mathscinet/search/mscdoc.html?code=20F67, 20F65, 20E08
http://dx.doi.org/10.2140/agt.2017.17.2145


2146 Sahana H Balasubramanya

Theorem 1.3 (Osin [12, Theorem 1.1]) Let G be a group acting acylindrically on a
hyperbolic space S . Then exactly one of the following holds:

(a) G has bounded orbits.

(b) G is virtually cyclic and contains a loxodromic element.

(c) G has infinitely many independent loxodromic elements.

Definition 1.4 An acylindrical action of a group G is said to be elementary in cases
(a) and (b) above, and non-elementary is case (c). Equivalently, a non-elementary
acylindrical action of a group G on a hyperbolic space is an action with unbounded
orbits, and where G is not virtually cyclic.

Definition 1.5 A group G is called acylindrically hyperbolic if it admits a non-
elementary acylindrical action on a hyperbolic space.

Over the last few years, the class of acylindrically hyperbolic groups has received
considerable attention. It is broad enough to include many examples of interest, eg non-
elementary hyperbolic and relatively hyperbolic groups, all but finitely many mapping
class groups of punctured closed surfaces, Out.Fn/ for n� 2, most 3–manifold groups,
and finitely presented groups of deficiency at least 2. On the other hand, the existence of
a non-elementary acylindrical action on a hyperbolic space is a rather strong assumption,
which allows one to prove non-trivial results. In particular, acylindrically hyperbolic
groups share many interesting properties with non-elementary hyperbolic and relatively
hyperbolic groups. For details we refer to Dahmani, Guirardel and Osin [5], Minasyan
and Osin [10], Osin [12; 11] and references therein.

The main goal of this paper is to answer the following.

Question 1.6 Which groups admit non-elementary cobounded acylindrical actions on
quasi-trees?

By a quasi-tree we mean a connected graph which is quasi-isometric to a tree. Quasi-
trees form a very particular subclass of the class of all hyperbolic spaces. From the
asymptotic point of view, quasi-trees are exactly “1–dimensional hyperbolic spaces”.

The motivation behind our question comes from the following observation. If instead
of cobounded acylindrical actions we consider cobounded proper (ie geometric) ones,
then there is a crucial difference between the groups acting on hyperbolic spaces
and quasi-trees. Indeed, a group G acts geometrically on a hyperbolic space if and
only if G is a hyperbolic group. On the other hand, Stallings’ theorem on groups
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with infinitely many ends and Dunwoody’s accessibility theorem implies that groups
admitting geometric actions on quasi-trees are exactly virtually free groups. Yet another
related observation is that acylindrical actions on unbounded locally finite graphs are
necessarily proper. Thus if we restrict to quasi-trees of bounded valence in Question 1.6,
we again obtain the class of virtually free groups. Other known examples of groups
having non-elementary, acylindrical and cobounded actions on quasi-trees include
groups associated with special cube complexes and right-angled Artin groups (see
Behrstock, Hagen and Sisto [1], Hagen [6] and Kim and Koberda [8]).

Thus one could expect that the answer to Question 1.6 would produce a proper subclass
of the class of all acylindrically hyperbolic groups, which generalizes virtually free
groups in the same sense as acylindrically hyperbolic groups generalize hyperbolic
groups. Our main result shows that this does not happen.

Theorem 1.7 Every acylindrically hyperbolic group admits a non-elementary co-
bounded acylindrical action on a quasi-tree.

In other words, being acylindrically hyperbolic is equivalent to admitting a non-
elementary acylindrical action on a quasi-tree. Although this result does not produce
any new class of groups, it can be useful in the study of acylindrically hyperbolic
groups and their subgroups. In this paper we concentrate on proving Theorem 1.7 and
leave applications for future papers to explore (for some applications, see [10]).

It was known before that every acylindrically hyperbolic group admits a non-elementary
cobounded action on a quasi-tree satisfying the so-called weak proper discontinuity
property, which is weaker than acylindricity. Such a quasi-tree can be produced by
using projection complexes introduced by Bestvina, Bromberg and Fujiwara [2]. To
the best of our knowledge, whether the corresponding action is acylindrical is an open
question. The main idea of the proof of Theorem 1.7 is to combine the Bestvina–
Bromberg–Fujiwara approach with an “acylindrification” construction from Osin [12],
in order to make the action acylindrical. An essential role in this process is played by
the notion of a hyperbolically embedded subgroup, introduced by Dahmani, Guirardel
and Osin [5]. This fact is of independent interest since it provides a new setting for the
application of the Bestvina–Bromberg–Fujiwara construction.

The above-mentioned construction has been applied in the setting of geometrically
separated subgroups (see [5, Section 4.5]). However, not every hyperbolically embedded
subgroup H � G arises from an action of G on a hyperbolic space in which H is
geometrically separated. Nevertheless, it is possible to employ hyperbolically embedded
subgroups in this construction, possibly with interesting applications. If fact, we prove
much stronger results in terms of hyperbolically embedded subgroups (see Theorem 3.1)
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of which Theorem 1.7 is an easy consequence, and derive an application which is stated
below (see Corollary 3.24).

Corollary 1.8 Let G be a group. If H �K �G , H is countable and H is hyperbol-
ically embedded in G , then H is hyperbolically embedded in K .

This result continues to hold even when we have a finite collection fH1;H2; : : : ;Hng
of hyperbolically embedded subgroups in G such that Hi � K for i D 1; 2; : : : ; n.
Interestingly, A Sisto obtains a similar result in [14, Corollary 6.10]. His result does not
require H to be countable, but under the assumption that H \K is a virtual retract of
K , it states that H \K ,!h K . Although similar, these two theorems are independent
in the sense that neither follows from the other.

Another application of Theorem 3.1 is to the case of finitely generated subgroups, as
stated below (see Corollary 3.27).

Corollary 1.9 Let H be a finitely generated subgroup of an acylindrically hyperbolic
group G . Then there exists a subset X �G such that

(a) �.G;X/ is hyperbolic, and the action of G on �.G;X/ is non-elementary and
acylindrical, and

(b) H is quasi-convex in �.G;X/.

This result indicates that in order to develop a theory of quasi-convex subgroups in
acylindrically hyperbolic groups, the notion of quasi-convexity is not sufficient, ie
a stronger set of conditions is necessary in order to prove results similar to those
known for quasi-convex subgroups in hyperbolic groups. For example, using Rips’
construction [13] and Corollary 1.9, one can easily construct an example of an infinite,
infinite-index, normal subgroup in an acylindrically hyperbolic group, which is quasi-
convex with respect to some non-elementary acylindrical action.

Acknowledgements My heartfelt gratitude to my advisor Denis Osin for his guidance
and support, and to Jason Behrstock and Yago Antolin Pichel for their remarks. I am
also grateful to the referee for remarks. My sincere thanks to Bryan Jacobson for his
thorough proofreading and comments on this paper.

2 Preliminaries

We recall some definitions and theorems which we will need to refer to.
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2.1 Relative metrics on subgroups

Definition 2.1 (relative metric) Let G be a group and fH�g�2ƒ a fixed collection
of subgroups of G . Let X �G such that G is generated by X along with the union of
all fH�g�2ƒ . Let HD

F
�2ƒH� . We denote the corresponding Cayley graph of G

(whose edges are labeled by elements of X tH) by �.G;X tH/.

Remark 2.2 It is important that the union in the definition above is disjoint. This
disjoint union leads to the following observation: for every h2Hi\Hj , the alphabet H
will have two letters representing h in G , one from Hi and another from Hj . It may
also be the case that a letter from H and a letter from X represent the same element of
the group G . In this situation, the corresponding Cayley graph �.G;XtH/ has bigons
(or multiple edges in general) between the identity and the element, one corresponding
to each of these letters.

We think of �.H�;H�/ as a complete subgraph in �.G;X t H/. A path p in
�.G;X t H/ is said to be �–admissible if it contains no edges of the subgraph
�.H�;H�/. In other words, the path p does not travel through H� in the Cayley
graph. Using this notion, we can define a metric yd�W H� �H�! Œ0;1�, known as
the relative metric, by setting yd�.h; k/ for h; k 2H� to be the length of the shortest
admissible path in �.G;X tH/ that connects h to k . If no such path exists, we define
yd�.h; k/D1. It is easy to check that yd� is a metric.

Definition 2.3 Let q be a path in the Cayley graph of �.G;X tH/. A non-trivial
subpath p of q is said to be an H�–subpath if the label of p (denoted Lab.p/) is a
word in the alphabet H� . Such a subpath is further called an H�–component if it is
not contained in a longer H�–subpath of q . If q is a loop, we must also have that p is
not contained in a longer H�–subpath of any cyclic shift of q .

We refer to an H�–component of q (for some � 2ƒ) simply by calling it a component
of q . We note that, on a geodesic, H�–components must be single H�–edges. In
general, however, the subpath p of q may consist of more than one edge.

Let p1; p2 be two H�–components of a path q for some � 2ƒ. These components
are said to be connected if there exists a path p in �.G;X tH/ such that Lab.p/ is a
word consisting only of letters from H� , and p connects some vertex of p1 to some
vertex of p2 . In algebraic terms, this means that all vertices of p1 and p2 belong to
the same (left) coset of H� . We refer to a component of a path q as isolated if it is
not connected to any other component of q .

If p is a path, we denote its initial point by p� and its terminating point by pC .
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Lemma 2.4 [5, Proposition 4.13] Let G be a group and fH�g�2ƒ a fixed collection
of subgroups in G . Let X �G such that G is generated by X together with the union
of all fH�g�2ƒ . Then there exists a constant C > 0 such that for any n–gon p with
geodesic sides in �.G;X tH/, any � 2ƒ and any isolated H�–component a of p ,
yd�.a�; aC/� Cn.

2.2 Hyperbolically embedded subgroups

Hyperbolically embedded subgroups will be our main tool in constructing the quasi-
tree. The notion has been taken from Dahmani, Guirardel and Osin [5], where it was
introduced. We recall the definition here.

Definition 2.5 (hyperbolically embedded subgroups) Let G be a group. Let X be a
(not necessarily finite) subset of G and let fH�g�2ƒ be a collection of subgroups of G .
We say that fH�g�2ƒ is hyperbolically embedded in G with respect to X (denoted
by fH�g�2ƒ ,!h .G;X/) if the following conditions hold:

(a) The group G is generated by X together with the union of all fH�g�2ƒ .

(b) The Cayley graph �.G;X tH/ is hyperbolic, where HD
F
�2ƒH� .

(c) For every � 2 ƒ, the metric space .H�; yd�/ is proper, ie every ball of finite
radius has finite cardinality.

Furthermore, we say that fH�g�2ƒ is hyperbolically embedded in G (denoted by
fH�g�2ƒ ,!h G ) if fH�g�2ƒ ,!h .G;X/ for some X � G . The set X is called a
relative generating set.

Since the notion of a hyperbolically embedded subgroup plays a crucial role in this
paper, we include two examples borrowed from [5].

Example 2.6 Let G D H �Z and Z D hxi. Let X D fxg. Then �.G;X tH/ is
quasi-isometric to a line and is hence hyperbolic. The corresponding relative metric
satisfies the inequality yd.h1; h2/ � 3 for every h1; h2 2 H , which is easy to see
from the Cayley graph (see Figure 1, left). Indeed, if �H denotes the Cayley graph
�.H;H/, then in its shifted copy x�H , there is an edge e connecting xh1 to xh2
(labeled by h�11 h2 2H ). There is thus an admissible path of length 3 connecting h1
to h2 . We conclude that if H is infinite, then H is not hyperbolically embedded in
.G;X/, since the relative metric will not be proper. In this example, one can also note
that the admissible path from h1 to h2 contains an H–subpath, namely the edge e ,
which is also an H–component of this path.
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Figure 1: H �Z (left) and H �Z (right)

Example 2.7 Let G DH �Z and ZD hxi. As in the previous example, let X D fxg.
In this case �.G;X tH/ is quasi-isometric to a tree (see Figure 1, right) and it is easy
to see that yd.h1; h2/D1 unless h1 D h2 . This means that every ball of finite radius
in the relative metric has cardinality 1. We can thus conclude that H ,!h .G;X/.

2.3 A slight modification to the relative metric

The aim of this section is to modify the relative metric on countable subgroups that
are hyperbolically embedded, so that the resulting metric takes values only in R, ie is
finite-valued. This will be of importance in Section 3. The main result of this section
is the following.

Theorem 2.8 Let G be a group. Let H < G be countable and such that H ,!h G .
Then there exists a left-invariant metric zd W H �H !R such that

(a) zd � yd , and

(b) zd is proper, ie every ball of finite radius has finitely many elements.

Proof There exists a collection of finite, symmetric (closed under inverses) subsets
fFig of H such that H D

S1
iD1 Fi and 1� F1 � F2 � � � � .

Let yd be the relative metric on H . Let H0 D fh 2H j yd.1; h/ <1g.

Define a function wWH !N by

w.h/D

�
yd.1; h/ if h 2H0;
minfi j h 2 Fig otherwise:

Algebraic & Geometric Topology, Volume 17 (2017)



2152 Sahana H Balasubramanya

Since the Fi are symmetric, w.h/Dw.h�1/ for all h 2H . Define a function l on H
as follows: for every word uD x1x2 � � � xk in the elements of H , set

l.u/D

kX
iD1

w.xi /:

Define a length function on H by

jgjw Dminfl.u/ j u is a word in the elements of H that represents gg;

for each g in H . We can now define a metric dw W H �H !N by

dw.g; h/D jg
�1hjw :

It is easy to check that dw is a (finite-valued) well defined metric. Since

dw.ag; ah/D j.ag/
�1ahjw D jg

�1a�1ahjw D jg
�1hjw D dw.g; h/

for all a; g; h 2G , the metric dw is left-invariant. Further, it is easy to see that for all
h 2H ,

dw.1; h/� w.h/:

It remains to show that dw is proper. Let N 2N . Suppose h2H such that w.h/�N .
If h 2H0 , then yd.1; h/�N , which implies that there are finitely many choices for h,
since yd is proper. If h …H0 , then h 2 Fi for some minimal i . But each Fi is a finite
set, so there are finitely many choices for h. Thus jfh 2H j w.h/�N gj<1 for all
N 2N . This implies dw is proper.

Indeed, if y ¤ 1 is such that jyjw � n, then there exists a word u, written without
the identity element (which has weight zero), representing y in the alphabet H such
that u D x1x2 � � � xr and

Pr
iD1w.xi / � n. Since w.xi / � 1 for every xi ¤ 1, we

have r � n. Further, w.xi /� n for all i . Thus xi 2 fx 2H jw.x/� ng for all i . So
there are only finitely many choices for each xi , which implies there are finitely many
choices for y . By definition, dw � yd . So we can set zd D dw .

2.4 Acylindrically hyperbolic groups

In the following theorem, @ represents the Gromov boundary.

Theorem 2.9 For any group G , the following are equivalent:
(AH1) There exists a generating set X of G such that the corresponding Cayley

graph �.G;X/ is hyperbolic, j@�.G;X/j � 2 and the natural action of G on
�.G;X/ is acylindrical.

(AH2) G admits a non-elementary acylindrical action on a hyperbolic space.
(AH3) G contains a proper infinite hyperbolically embedded subgroup.
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It follows from the definitions that .AH1/D) .AH2/. The implication .AH2/D) .AH3/
is non-trivial and was proved by Dahmani, Guirardel and Osin [5]. The implication
.AH3/D) .AH1/ was proved by Osin [12].

Definition 2.10 We call a group G acylindrically hyperbolic if it satisfies any of the
equivalent conditions .AH1/–.AH3/ from Theorem 2.9.

Lemma 2.11 [5, Corollary 4.27] Let G be a group, fH�g�2ƒ a collection of sub-
groups of G , and X1 and X2 be relative generating sets. Suppose that jX1�X2j<1.
Then fH�g�2ƒ ,!h .G;X1/ if and only if fH�g�2ƒ ,!h .G;X2/.

Theorem 2.12 [12, Theorem 5.4] Let G be a group, fH�g�2ƒ a finite collection
of subgroups of G , and X a subset of G . Suppose that fH�g�2ƒ ,!h .G;X/. Then
there exists Y �G such that the following conditions hold:

(a) X � Y .

(b) fH�g�2ƒ ,!h .G; Y /. In particular, the Cayley graph �.G; Y tH/ is hyper-
bolic.

(c) The action of G on �.G; Y tH/ is acylindrical.

Definition 2.13 Let .X; dX / and .Y; dY / be two metric spaces. A map �W X! Y is
said to be a .�; C /–quasi-isometry if there exist constants � > 1, C > 0 such that

(a) 1
�
dX .a; b/�C � dY .�.a/; �.b//� �dX .a; b/CC , for all a; b 2X , and

(b) Y is contained in the C–neighborhood of �.X/.

The spaces X and Y are said to be quasi-isometric if such a map �W X ! Y exists.
It is easy to check that being quasi-isometric is an equivalence relation. If the map �
satisfies only condition (a), then it is said to be a .�; C /–quasi-isometric embedding.

Definition 2.14 A graph � with the combinatorial metric d� is said to be a quasi-tree
if it is quasi-isometric to a tree T .

Definition 2.15 A quasi-geodesic is a quasi-isometric embedding of an interval I �R
(bounded or unbounded) into a metric space X . Note that geodesics are .1; 0/–quasi-
geodesics. By slight abuse of notation, we may identify the map that defines a quasi-
geodesic with its image in the space.

Theorem 2.16 [9, Theorem 4.6, bottleneck property] Let Y be a geodesic metric
space. The following are equivalent:
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(a) Y is quasi-isometric to some simplicial tree � .

(b) There is some �> 0 such that for all x; y 2 Y , there is a midpoint mDm.x; y/
with d.x;m/D d.y;m/D 1

2
d.x; y/ and the property that any path from x to y

must pass within less than � of the point m.

We remark that if m is replaced with any point p on a geodesic between x and y , then
the property that any path from x to y passes within less than � of the point p still
follows from (a), as proved below in Lemma 2.18. We will need the following lemma.

Lemma 2.17 [4, Proposition 3.1] For all � � 1, C � 0, ı � 0, there exists an
RDR.ı; �; C / such that if X is a ı–hyperbolic space,  is a .�; C /–quasi-geodesic
in X , and  0 is a geodesic segment with the same endpoints, then  0 and  are
Hausdorff distance less than R from each other.

Lemma 2.18 If Y is a quasi-tree, then there exists � > 0 such that for any point z
on a geodesic connecting two points, any other path between the same endpoints passes
within � of z .

Proof Let T be a tree and qW Y ! T be the .�; C /–quasi-isometry. Let dY and dT
denote the metrics in the spaces Y and T , respectively. Note that since T is 0–
hyperbolic, Y is ı–hyperbolic for some ı .

Let x; y be two points in Y , joined by a geodesic  . Let z be any point of  and let
˛ be another path from x to y . Let V denote the vertex set of ˛ , ordered according
to the geodesic  . Take its image q.V / and connect consecutive points by geodesics
(of length at most �CC ) to get a path ˇ in T from q.x/ to q.y/. Then the unique
geodesic � in T must be a subset of ˇ . Since q.V /� q ı˛ , we get that any point of
� is at most �CC from q ı˛ . Also, q ı  is a .�; C /–quasi-isometric embedding of
an interval, and hence a .�; C /–quasi-geodesic. Thus, by Lemma 2.17 the distance
from q.z/ to � is less than RDR.0; �; C /.

Let p be the point on � closest to q.z/. There is a point w 2 Y on ˛ such that
d.q.w/; p/ � �CC . Since d.p; q.z// < R , we have d.q.w/; q.z// � �CC CR .
Thus

d.z; w/� �2C 2�C CR�:

Thus ˛ must pass within �D �2C 2�C CR� of the point z .

2.5 A modified version of Bowditch’s lemma

In this section, Nk.X/ denotes the closed k–neighborhood of a set X in a metric space
.S; dS /, ie

Nk.X/D fs 2 S j 9x 2X such that dS .s; x/� kg:
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In particular, Nk.x/ denotes the closed k–neighborhood of a point x in a metric space.

The following theorem will be used in Section 3. Part (a) is a simplified form of a
result taken from [7], which is in fact derived from a hyperbolicity criterion developed
by Bowditch [3].

Theorem 2.19 Let † be a hyperbolic graph and � be a graph obtained from † by
adding edges.

(a) [3] Suppose there exists M > 0 such that for all vertices x; y 2† joined by an
edge in � and for all geodesics p in † between x and y , all vertices of p lie
in an M–neighborhood of x , ie p �NM .x/ in �. Then � is also hyperbolic,
and there exists a constant k such that for all vertices x; y 2†, every geodesic
q between x and y in † lies in a k–neighborhood in � of every geodesic in �
between x and y .

(b) If, under the assumptions of (a), we additionally assume that † is a quasi-tree,
then � is also a quasi-tree.

Lemma 2.20 Let p; q be two paths in a metric space S between points x and y , such
that p is a geodesic and q �Nk.p/. Then p �N2k.q/.

Proof Let z be any point on p . Let p1; p2 denote the segments of the geodesic p
with endpoints x; z and z; y , respectively.

p2
x y

q

z

w

p1
z1 z2

� k � k

Figure 2: Lemma 2.20

Define a function f W q!R by f .s/D d.s; p1/� d.s; p2/. Then f is a continuous
function. Further, f .x/ < 0 and f .y/ > 0. By the intermediate value theorem,
there exists a point w on q such that f .w/ D 0. Thus d.w; p1/ D d.w; p2/ (see
Figure 2). For i D 1; 2, let zi be a point of pi such that d.pi ; w/D d.zi ; w/. Then
d.z1; w/ D d.z2; w/. By the hypothesis, d.w; p/ D minfd.w; p1/; d.w; p2/g � k .
So we get that d.w; p1/ D d.w; p2/ � k . Thus d.z1; z2/ � 2k , which implies
d.z; w/� 2k .
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Figure 3: Theorem 2.19

Proof of Theorem 2.19 We proceed with the proof of part (b).

We prove that � is a quasi-tree by verifying the bottleneck property from Theorem 2.16.
Let d† and d� denote the distances in the graphs † and �, respectively. Note that
the vertex sets of the two graphs are equal.

Let x; y be two vertices. Let m be the midpoint of a geodesic r in � connecting them.
Let s be any path from x to y in �. The path s consists of edges of two types:

(i) edges of the graph †;

(ii) edges added in transforming † to � (marked as bold edges on Figure 3).

Let p be a geodesic in † between x and y . By part (a), there exists k such that p
is in the k–neighborhood of r in �. Applying Lemma 2.20 , we get a point n on p
such that

d�.m; n/� 2k:

Let s0 be the path in † between x and y , obtained from s by replacing every edge e
of type (ii) by a geodesic path t .e/ in † between its endpoints (marked by dotted lines
in Figure 3). Since † is a quasi-tree, by Lemma 2.18, there exists �0 > 0 and a point
z on s0 such that

d†.z; n/� �
0:

Case 1 If z lies on an edge of s of type (i), then

d�.z;m/� d�.z; n/C d�.n;m/� d†.z; n/C d�.n;m/� �
0
C 2k:

Case 2 If z lies on a path t .e/ that replaced an edge e of type (ii), then by part (a),

d�.e�; m/� d�.e�; z/C d�.z; n/C d�.n;m/� kC�
0
C 2k D �0C 3k:

Thus the bottleneck property holds for �D �0C 3k > 0.
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3 Proof of the main result

Our main result is the following theorem, from which Theorem 1.7 and other corollaries
stated in the introduction can be easily derived (see Section 3.5).

Theorem 3.1 Let fH1;H2; : : : ;Hng be a finite collection of countable subgroups of
a group G such that fH1;H2; : : : ;Hng ,!h .G;Z/ for some Z � G . Let K be a
subgroup of G such that Hi �K for all i . Then there exists a subset Y �K such that:

(a) fH1;H2; : : : ;Hng ,!h .K; Y /.

(b) �.K; Y tH/ is a quasi-tree, where HD
Fn
iD1Hi .

(c) The action of K on �.K; Y tH/ is acylindrical.

(d) Z \K � Y .

3.1 Outline of the proof

Step 1 In order to prove Theorem 3.1, we first prove the following proposition. It
is distinct from Theorem 3.1 since it does not require the action of K on the Cayley
graph �.K;X tH/ to be acylindrical.

Proposition 3.2 Let fH1;H2; : : : ;Hng be a finite collection of countable subgroups
of a group G such that fH1;H2; : : : ;Hng ,!h G with respect to a relative generating
set Z . Let K be a subgroup of G such that Hi �K for all i . Then there exists X �K
such that:

(a) fH1;H2; : : : ;Hng ,!h .K;X/.

(b) �.K;X tH/ is a quasi-tree, where HD
Fn
1D1Hi .

(c) Z \K �X .

Step 2 Once we have proved Proposition 3.2, we will utilize an “acylindrification”
construction from [12] to make the action acylindrical, which will prove Theorem 3.1.
The details of this step are as follows.

Proof By Proposition 3.2, there exists X �K such that:

(a) fH1;H2; : : : ;Hng ,!h .K;X/.

(b) �.K;X tH/ is a quasi-tree.

(c) Z \K �X .

By applying Theorem 2.12 to the above, we get that there exists Y �K such that:
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(a) X � Y .

(b) fH1;H2; : : : ;Hng ,!h .K; Y /. In particular, the Cayley graph �.K; Y tH/ is
hyperbolic.

(c) The action of K on �.K; Y tH/ is acylindrical.

From the proof of Theorem 2.12 (see [12, Lemma 5.6] in particular), it is easy to see
that the Cayley graph �.G; Y tH/ is obtained from �.G;X tH/ in a manner that
satisfies the assumptions of Theorem 2.19, with M D 1 (see [12, Lemma 5.6]). Thus
by Theorem 2.19, �.K; Y tH/ is also a quasi-tree. Further,

K \Z �X � Y:

Thus Y is the required relative generating set.

We will thus now focus on proving Proposition 3.2. To do so, we will use a construction
introduced by Bestvina, Bromberg and Fujiwara in [2]. We describe the construction
below and will retain the same terminology as introduced by the authors in [2].

3.2 The projection complex

Definition 3.3 Let Y be a set and � > 0 be a constant. Suppose that for each Y 2 Y
we have a function

d�Y W .YnfY g �YnfY g/! Œ0;1/

that satisfies the following axioms:

(A1) d�Y .A;B/D d
�
Y .B;A/ for all Y 2 Y and all A;B 2 YnfY g.

(A2) d�Y .A;B/C d
�
Y .B; C /� d

�
Y .A; C / for all Y 2 Y and all A;B;C 2 YnfY g.

(A3) minfd�Y .A;B/; d
�
B .A; Y /g< � for all distinct Y;A;B 2 Y .

(A4) #fY j d�Y .A;B/� �g is finite for all A;B 2 Y .

Let J be a positive constant. Then associated to this data we have the projection
complex PJ .Y /, which is a graph constructed in the following manner: the set of
vertices of PJ .Y / is the set Y . To specify the set of edges, one first defines a
new function dY W .YnfY g �YnfY g/! Œ0;1/, which can be thought of as a small
perturbation of d�Y . The exact definition of dY can be found in [2]. An essential
property of the new function is the following inequality, which is an immediate corollary
of [2, Proposition 3.2].

For every Y 2 Y and every A;B 2 YnfY g, we have

(1) jd�Y .A;B/� dY .A;B/j � 2�:
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The set of edges of the graph PJ .Y / can now be described as follows: two vertices
A;B 2Y are connected by an edge if and only if dY .A;B/�J for every Y 2YnfA;Bg.
This construction strongly depends on the constant J . Complexes corresponding to
different J are not isometric in general.

We would like to mention that if Y is endowed with an action of a group G that
preserves projections (ie d�

g.Y /
.g.A/; g.B//D d�Y .A;B/), then the action of G can

be extended to an action on PJ .Y /. We also mention the following proposition, which
has been proved under the assumptions of Definition 3.3.

Proposition 3.4 [2, Theorem 3.16] For a sufficiently large J > 0, PJ .Y / is con-
nected and quasi-isometric to a tree.

Definition 3.5 (nearest point projection) In a metric space .S; d/, given a set Y and
a point a 2 S , we define the nearest point projection as

projY .a/D fy 2 Y j d.Y; a/D d.y; a/g:

If A, Y are two sets in S , then

projY .A/D
[
a2A

projY .a/:

We note that in our case, since elements of Y will come from a Cayley graph, which is
a combinatorial graph, the nearest point projection will exist. This is because distances
on a combinatorial graph take discrete values in N [ f0g. Since this set is bounded
below, we cannot have an infinite strictly decreasing sequence of distances.

We make all geometric considerations in the Cayley graph �.G;Z tH/. Let dZtH
denote the metric on this graph. Since fH1;H2; : : : ;Hng ,!hG under the assumptions
of Proposition 3.2, from Remark 4.26 of [5] it follows that Hi ,!hG for iD1; 2; : : : ; n.
By Theorem 2.8, we can define a finite-valued, proper metric zdi on Hi , for i D
1; 2; : : : ; n, satisfying

(2) zdi .x; y/� ydi .x; y/

for all x; y 2Hi .

We can extend both ydi and zdi to all cosets gHi of Hi by setting zdi .gx; gy/D zdi .x; y/
and ydi .gx; gy/ D ydi .x; y/ for all x; y 2 Hi . Let bdiam (resp. ediam ) denote the
diameter of a subset of Hi or a coset of Hi with respect to the ydi (resp. zdi ) metric.

Let
Y D fkHi j k 2K; i D 1; 2; : : : ; ng
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x

y y0
e

Y D gHi

p
q

Figure 4: The bold red edge e denotes a single edge labeled by an element of H

be the set of cosets of all Hi in K . We think of cosets of Hi as a subset of vertices of
�.G;Z tH/.

For each Y 2 Y and A;B 2 YnfY g, define

(3) d�Y .A;B/D
ediam.projY .A/[ projY .B//;

where projY .A/ is as in Definition 3.5. The fact that (3) is well-defined will follow
from Lemma 3.6 and Lemma 3.8, which are proved below. We will also proceed to
verify the axioms (A1)–(A4) of the Bestvina–Bromberg–Fujiwara construction in the
above setting.

Lemma 3.6 For any Y 2 Y and any x 2G , ediam.projY .x//� 3C , where C is the
constant as in Lemma 2.4. As a consequence, ediam.projY .x// is bounded.

Proof By (2), it suffices to prove that bdiam.projY .x// is bounded. Let y; y0 2
projY .x/. Then dZtH.x; y/D dZtH.x; y0/D dZtH.x; Y /. Without loss of generality,
x … Y , or else the diameter is zero.

Let Y D gHi . Let e denote the edge connecting y and y0 , which is labeled by an
element of Hi . Let p and q denote geodesics between x and y and between x and y0 ,
respectively (see Figure 4).

Consider the geodesic triangle T with sides e; p; q . Since p and q are geodesics
between the point x and Y , e is an isolated component in T , ie e cannot be connected
to either p or q . Indeed, if e is connected to, say, a component of p , then since eC
and e� are in Y , it would imply that the geodesic p passes through a point of Y
before y . But then y is not the nearest point from Y to x , which is a contradiction.
By Lemma 2.4, ydi .y; y0/� 3C . Hence

bdiam.projY .x//� 3C:
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AD fHj

Y D gHi
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y1 y2
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Figure 5: Lemma 3.8

Remark 3.7 Observe that in the previous lemma, we proved the following fact: If
x is a point in G and y 2 projY .x/, then every geodesic path p between x and y
satisfies the property that no vertex of p , except for y , can belong to the coset Y . We
will use this fact repeatedly in the following lemmas.

Lemma 3.8 For every pair of distinct elements A; Y 2 Y, bdiam.projY .A// � 4C ,
where C is the constant as in Lemma 2.4. As a consequence, ediam.projY .A// is
bounded.

Proof Let Y D gHi and A D fHj . Let y1; y2 2 projY .A/. Then there exist
a1; a22A such that dZtH.a1; y1/DdZtH.a1; Y / and dZtH.a2; y2/DdZtH.a2; Y /.
Now y1 and y2 are connected by a single edge e , labeled by an element of Hi , and
similarly, a1 and a2 are connected by an edge f , labeled by an element of Hj (see
Figure 5). Let p and q be geodesics that connect y1 to a1 and y2 to a2 , respectively.
We note that p and/or q may be trivial paths (consisting of a single point), but this
does not alter the proof.

Consider e in the quadrilateral Q with sides p; f; q; e . By Remark 3.7, e cannot be
connected to a component of p or q .

If i D j , then e cannot be connected to f since A¤ Y . If i ¤ j , then obviously e
and f cannot be connected. Thus e is isolated in this quadrilateral Q . By Lemma 2.4,
ydi .y1; y2/� 4C . Thus

bdiam.projY .A//� 4C:

Corollary 3.9 The function d�Y defined by (3) is well-defined.
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Proof Since the zdi metric takes finite values for i D 1; 2; : : : ; n, using Lemma 3.8,
we have that d�Y also takes only finite values.

Lemma 3.10 The function d�Y defined by (3) satisfies conditions (A1) and (A2) in
Definition 3.3.

Proof (A1) is obviously satisfied. For any Y 2 Y and any A;B;C 2 YnfY g, by the
triangle inequality, we have that

d�Y .A; C /D
ediam.projY .A/[ projY .C //

� ediam.projY .A/[ projY .B//C ediam.projY .B/[ projY .C //

D d�Y .A;B/C d
�
Y .B; C /:

Thus (A2) also holds.

Lemma 3.11 The function d�Y from (3) satisfies condition (A3) in Definition 3.3 for
any � > 14C , where C is the constant from Lemma 2.4

Proof By (2), it suffices to prove that

min
˚ bdiam.projY .A/[ projY .B//; bdiam.projB.A/[ projB.Y //

	
< �:

Let A;B 2 YnfY g be distinct. Let Y D gHi , AD fHj and B D tHk . If

bdiam.projY .A/[ projY .B//� 14C;

then we are done. So suppose that

(4) bdiam.projY .A/[ projY .B/// > 14C:

Choose a 2 A, b 2 B and x; y 2 Y such that dZtH.A; Y / D dZtH.a; x/ and
dZtH.B; Y /D dZtH.b; y/. In particular,

(5) x 2 projY .A/; y 2 projY .B/

and b2projB.Y /. Let p; q denote geodesics connecting a to x and b to y , respectively.
Let h1 denote the edge connecting x and y , which is labeled by an element of Hi .

By (5), we have that

bdiam.projY .A/[ projY .B//� bdiam.projY .A//C bdiam.projY .B//C ydi .x; y/:

Combining this with (4) and Lemma 3.8, we get

ydi .x; y/� bdiam.projY .A/[ projY .B//� bdiam.projY .A//� bdiam.projY .B//

> 14C � 8C D 6C:
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Figure 6: Condition (A3)

Choose any a0 2 A and b0 2 projB.a
0/. Then dZtH.a0; B/ D dZtH.a0; b0/ (see

Figure 6). (Note that if a0 D a , the following arguments still hold.) Let h2 and h3
denote the edges connecting a to a0 and b to b0 , which are labeled by elements of
Hj and Hk , respectively. Let r denote a geodesic connecting a0 and b0 . Consider
the geodesic hexagon W with sides p; h1; q; h3; r; h2 . Then h1 is not isolated in W ;
otherwise, by Lemma 2.4, ydi .x; y/� 6C , a contradiction.

Thus h1 is connected to another Hi–component in W . By Remark 3.7, h1 cannot
be connected to a component of p or q . Since A;B; Y are all distinct, h1 cannot
be connected to h2 or h3 . So h1 must be connected to an Hi–component on the
geodesic r . Let this edge be h0 , with endpoints u and v , as shown in Figure 6. Let s
denote the edge (labeled by an element of Hi ) that connects y and v . Let r 0 denote
the segment of r that connects v to b0 . Then r 0 is also a geodesic.

Consider the quadrilateral Q with sides r 0; h3; q; s . By using arguments similar to
those in the previous paragraph, h3 cannot be connected to r 0; q or s . Thus h3 is
isolated in Q . By Lemma 2.4,

ydk.b; b
0/� 4C:

Since the above argument holds for any a0 2 A and for b0 2 projB.A/, we have that
ydk.b; b

0/� 4C . Using Lemma 3.8 (see Figure 7), we get that

bdiam.projB.Y /[ projB.A//� 4C C 4C D 8C < �:

Lemma 3.12 The function d�Y defined by (3) satisfies condition (A4) in Definition 3.3,
for � > 14C , where C is the constant from Lemma 2.4
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B D tHk

projB.A/ projB.Y /
b0 b c

� 4C
� 4C

Figure 7: Estimating the distance between arbitrary points b0 and c of
projB.A/ and projB.Y /

Proof If d�Y .A;B/� � , then by (2),

bdiam.projY .A/[ projY .B//� d
�
Y .A;B/� �:

Thus it suffices to prove that the number of elements Y 2 Y satisfying

(6) bdiam.projY .A/[ projY .B//� �

is finite. Let A;B 2 Y , AD fHj and B D tHk . Let Y 2 YnfA;Bg, Y D gHi . Let
a0 2 A, b0 2 projB.a

0/. By repeating the computations in Lemma 3.11, we can show
that if Y is such that bdiam.projY .A/[ projY .B// � � , then for any a 2 A, b 2 B ,
x 2 projY .a/, y 2 projY .b/, we have that ydi .x; y/ > 6C .

Let h1 denote the edge connecting x; y , which is labeled by an element of Hi (see
Figure 8). Let h2 denote the edge connecting a; a0 , which is labeled by an element
of Hj , and let h3 denote the edge connecting b; b0 , which is labeled by an element
of Hk . Let p be a geodesic between a; x , let q be a geodesic between b; y and let r
be a geodesic between a0; b0 . As argued in Lemma 3.11, we can show that h1 cannot
be isolated in the hexagon W with sides p; h1; q; h2; r; h3 and must be connected to
an Hi–component of r , say the edge h0 .

We claim that the edge h0 uniquely identifies Y . Indeed, let Y 0 be a member of Y , with
elements x0; y0 connected by an edge e (labeled by an element of the corresponding
subgroup). Suppose that e is connected to h0 . Then we must have that Y 0 is also a
coset of Hi . But cosets of a subgroup are either disjoint or equal, so Y D Y 0 . Thus, the
number of Y 2 Y satisfying (6) is bounded by the number of distinct Hi–components
of r , which is finite.

3.3 Choosing a relative generating set

We now have the necessary details to choose a relative generating set X which will
satisfy conditions (a) and (b) of Proposition 3.2. This set will later be altered slightly
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Figure 8: Condition (A4)

to obtain another relative generating set which will satisfy all three conditions of
Proposition 3.2. We will repeat arguments similar to those made by Dahmani, Guirardel
and Osin in [5, pages 60–63].

Recall that HD
Fn
iD1Hi and that Z is the relative generating set for this collection

of subgroups such that fH1;H2; : : : ;Hng ,!h .G;Z/. Let PJ .Y / be the projection
complex corresponding to the vertex set Y as specified in Section 3.2, where the constant
J is as in Proposition 3.4, ie PJ .Y / is connected and a quasi-tree. Let dP denote the
combinatorial metric on PJ .Y /. Our definition of projections is K–equivariant and
hence the action of K on Y extends to a cobounded action of K on PJ .Y /.

In what follows, by considering Hi to be vertices of the projection complex PJ .Y /,
we denote by star.Hi / the set˚
e is an edge in PJ .Y / j e connects Hi to kHj for some k 2K and 1� j � n

	
:

We choose the set X in the following manner. For all i D 1; 2; : : : ; n and each edge
e in star.Hi / in PJ .Y / that connects Hi to kHj , choose all elements xe 2HikHj
such that

dZtH.1; xe/D dZtH.1;HikHj /:

We say that all such xe have type .i; j /. Since Hi �K for all i , xe 2K . We observe
the following:
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(a) For each xe of type .i; j / as above, there is an edge in PJ .Y / connecting Hi
and xeHj . Indeed if xe D h1kh2 for h1 2Hi and h2 2Hj , then

dP .Hi ; xeHj /D dP .Hi ; h1kh2Hj /D dP .Hi ; h1kHj /

D dP .h
�1
1 Hi ; kHj /D dP .Hi ; kHj /

D 1:

(b) For each edge e connecting Hi and kHj , there is a dual edge f connecting
Hj and k�1Hi . Thus for every element xe of type .i; j /, there is an element
xf D .xe/

�1 of type .j; i/. In particular, the set given by

(7) X D fxe ¤ 1 j e 2 star.Hi /; i D 1; 2; : : : ; ng

is symmetric, ie closed under taking inverses. Obviously, X �K .

(c) If xe 2X is of type .i; j /, then xe is not an element of Hi or Hj . Indeed, if
xe D h1kh2 for some h1 2Hi and some h2 2Hj and xe is an element of Hi
or Hj , then k D hf for some h 2Hi and some f 2Hj . Consequently

dZtH.1;HikHj /D dZtH.1;HiHj /D 0D dZtH.1; xe/;

which implies xe D 1, which is a contradiction to (7).

Lemma 3.13 (cf [5, Lemma 4.49]) The subgroup K is generated by X together with
the union of all the Hi . Further, the Cayley graph �.K;X tH/ is quasi-isometric to
PJ .Y /, and hence a quasi-tree.

Proof Let † D fH1;H2; : : : ;Hng � Y . Let diam.†/ denote the diameter of the
set † in the combinatorial metric dP . Since † is a finite set, diam.†/ is finite. Define

�W K! Y ; �.k/D kH1:

By property (a) above, if xe 2X is of type .i; j /,

dP .xeH1;H1/� dP .xeH1; xeHj /C dP .xeHj ;Hi /C dP .Hi ;H1/

D dP .H1;Hj /C 1C dP .Hi ;H1/

� 2 diam.†/C 1:

Further, for h 2Hi ,

dP .hH1;H1/� dP .hH1; hHi /C dP .hHi ;H1/

D dP .H1;Hi /C dP .Hi ;H1/

� 2 diam.†/:
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v0 DH1

vr D gH1

v1 v2

vr�1

. . .

p

Figure 9: The geodesic p

Thus, for all g 2 hX [H1[H2[ � � � [Hni, we have

(8) dP .�.1/; �.g//� .2 diam.†/C 1/jgjXtH;

where jgjXtH denotes the length of g in the generating set X [H1[H2[ � � � [Hn .
(We use this notation for the sake of uniformity).

Now let g 2K and suppose dP .�.1/; �.g//D r , ie dP .H1; gH1/D r . If r D 0, then
H1 D gH1 , thus g 2H1 and jgjXtH � 1. If r > 0, consider a geodesic p in PJ .Y /
connecting H1 and gH1 . Let

v0 DH1 D g0H1 .g0 D 1/;

v1 D g1H�1
;

v2 D g2H�2
;

:::

vr�1 D gr�1H�r�1
;

vr D gH1 .gr D g/

be the sequence of vertices of p , for some �j 2 f1; 2; : : : ; ng and some gi 2K (see
Figure 9).

Now giH�i
is connected by a single edge to giC1H�iC1

. Thus

dP .giH�i
; giC1H�iC1

/D 1;

which implies
dP .H�i

; g�1i giC1H�iC1
/D 1:

Then there exists x 2X such that

x 2H�i
g�1i giC1H�iC1

and dZtH.1; x/D dZtH.1;H�i
g�1i giC1H�iC1

/:

Thus x D hg�1i giC1k for some h 2 H�i
and some k 2 H�iC1

which implies
g�1i giC1 D h

�1xk�1 . So jg�1i giC1jXtH � 3, which implies

(9) jgjXtH D

ˇ̌̌̌ rY
iD1

g�1i�1gi

ˇ̌̌̌
XtH

�

rX
iD1

jg�1i�1gi jXtH � 3r D 3dP .�.1/; �.g//:
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The above argument also provides a representation for every element g 2 K as a
product of elements from X [H1[H2[ � � �[Hn . Thus K is generated by the union
of X and all the Hi . By (8) and (9), � is a quasi-isometric embedding of .K; j � jXtH/
into .PJ .Y /; dP / satisfying

1
3
jgjXtH � dP .�.1/; �.g//� .2 diam.†/C 1/jgjXtH:

Since Y is contained in the closed diam.†/–neighborhood of �.K/, � is a quasi-
isometry. This implies that �.K;X tH/ is a quasi-tree.

Let zdi denote the modified relative metric on Hi associated with the Cayley graph
�.G;Z tH/ from Theorem 2.8. Let �dX

i denote the relative metric on Hi associated
with the Cayley graph �.K;X tH/. We will now show that �dX

i is proper for all
i D 1; 2; : : : ; n. We will use the fact that zdi is proper and derive a relation between zdi
and �dX

i .

Lemma 3.14 (cf [5, Lemma 4.50]) There exists a constant ˛ such that for any Y 2Y
and any x 2X tH , if

ediam.projY f1; xg/ > ˛;

then x 2Hj and Y DHj for some j .

Proof We prove the result for

˛ DmaxfJ C 2�; 6C g:

Suppose that ediam.projY f1; xg/ > ˛ and x 2X has type .k; l/, ie there exists an edge
connecting Hk and gHl in PJ .Y /, where g 2K . We consider three possible cases
and arrive at a contradiction in each case.

Case 1 (Hk ¤ Y ¤ xHl ) Then

ediam.projY f1; xg/� d
�
Y .Hk; xHl/� dY .Hk; xHl/C 2� � J C 2� � ˛;

using (1) and the fact that Hk and xHl are connected by an edge in PJ .Y /, which is
a contradiction.

Case 2 (Hk D Y ) Since x …Hk , let y 2 projY .x/, ie

dZtH.x; y/D dZtH.x;Hk/D dZtH.x; Y /:
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By Lemma 3.6, if ydk.1; y/� 3C , then

bdiam.projY f1; xg/� bdiam.projY .1//C bdiam.projY .x//C ydk.projY .1/; projY .x//

� 0C 3C C ydk.1; y/

� 6C � ˛:

Then by (2), we have
ediam.projY f1; xg/� ˛;

which is a contradiction. Thus ydk.1; y/ > 3C . This implies that 1 … projY .x/ (see
Figure 10). By definition of the nearest point projection, dZtH.1; x/ > dZtH.y; x/,
which implies dZtH.1; x/ > dZtH.1; y�1x/. Since y�1x 2 HkgHl , we obtain
dZtH.1; x/ > dZtH.1;HkgHl/, which is a contradiction to the choice of x .

x

y 1

Hk D Y

Figure 10: Case 2

Case 3 (Y D xHl , Hk ¤ Y ) This case reduces to Case 2, since we can translate
everything by x�1 .

Thus we must have x 2Hj for some j . Suppose that Hj ¤ Y . But then

ediam.projY f1; xg/� ediam.projY .Hj //� 4C � ˛;

by Lemma 3.8, which is a contradiction.

Lemma 3.15 (cf [5, Lemma 4.45]) If Hi D fHj , then Hi D Hj and f 2 Hi .
Consequently, if gHi D fHj , then Hi DHj and g�1f 2Hi .

Proof If Hi D fHj , then 1D f k for some k 2Hj . Then f D k�1 2Hj , which
implies Hi DHj .

Lemma 3.16 (cf [5, Theorem 4.42]) For i D 1; 2; : : : ; n and any h 2Hi , we have

˛ �dX

i .1; h/�
zdi .1; h/;

where ˛ is the constant from Lemma 3.14. Thus �dX

i is proper.
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e hD vrv0 D 1

v1

v2

v3

. . .

vr�1

x1

x2

x3

. . .

xr

Figure 11: The cycle ep

Proof Let h2Hi be such that �dX

i .1; h/D r . Let e denote the Hi–edge in the Cayley
graph �.K;X tH/ connecting h to 1, labeled by h�1 . Let p be an admissible (see
Definition 2.1) path of length r in �.K;X tH/ connecting 1 and h. Then ep forms
a cycle (see Figure 11). Since p is admissible, e is isolated in this cycle.

Let Lab.p/D x1x2 � � � xr for some x1; x2; : : : ; xr 2X tH . Let

v0 D 1; v1 D x1; v2 D x1x2; : : : ; vr D x1x2 � � � xr D h:

Since these are also elements of G , for k D 1; 2; : : : ; r we have

ediam.projHi
fvk�1; vkg/D ediam.projHi

fx1x2 � � � xk�1; x1x2 � � � xk�1xkg/

D ediam.projY f1; xkg/;

where Y D .x1x2 � � � xk�1/�1Hi .

If ediam.projY f1; xkg/ > ˛ for some k , then by Lemma 3.14, xk 2Hj and Y DHj
for some j . By Lemma 3.15, Hi DHj and x1x2 � � � xk�1 2Hj . But then e is not
isolated in the cycle ep , which is a contradiction.

Hence
ediam.projHi

fvk�1; vkg/� ˛

for all k D 1; 2; : : : ; r , which implies

zdi .1; h/� ediam.projHi
fv0; vrg/

�

rX
jD1

ediam.projHi
fvj�1; vj g/

� r˛ D ˛ �dX

i .1; h/:

3.4 Proof of Proposition 3.2

The goal of this section is to alter our relative generating set X from Section 3.3,
so that we obtain another relative generating set that satisfies all the conditions of
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Proposition 3.2. To do so, we need to establish a relation between the set X and the
set Z . We will need the following obvious lemma.

Lemma 3.17 Let X and Y be generating sets of G , and suppose that

sup
x2X

jxjY <1 and sup
y2Y

jyjX <1:

Then �.G;X/ is quasi-isometric to �.G; Y /. In particular, �.G;X/ is a quasi-tree if
and only if �.G; Y / is a quasi-tree.

Remark 3.18 This lemma implies that if we change a generating set by adding finitely
many elements, then the property that the Cayley graph is a quasi-tree still holds.

We also need to note that from (1) in Definition 3.3, it easily follows that for each
Y 2 Y and every A;B 2 YnfY g, we have

(10) dY .A;B/� d
�
Y .A;B/C 2�:

Lemma 3.19 For a large enough J , the set X constructed in Section 3.3 satisfies
the following property: if z 2 Z \K does not represent an element of Hi for any
i D 1; 2; : : : ; n, then z 2X .

Proof Recall that dZtH denotes the combinatorial metric on �.G;Z t H/. Let
z 2 Z \ K be as in the statement of the lemma. Then z 2 HizHi for all i and
1 …HizHi . Thus

dZtH.1;HizHi /� 1D dZtH.1; z/� dZtH.1;HizHi /;

which implies
dZtH.1;HizHi /D dZtH.1; z/ for all i:

In order to prove z 2 X , we must show that Hi and zHi are connected by an edge
in PJ .Y /. By Definition 3.3, this is true if

dY .Hi ; zHi /� J for all Y ¤Hi ; zHi :

In view of (10), we will estimate d�Y .Hi ; zHi /.

Let dZtH.h; x/D dZtH.Hi ; Y / and dZtH.f; y/D dZtH.zHi ; Y / for some h 2Hi ,
f 2 zHi and for some x; y 2 Y D gHj . Let p be a geodesic connecting h and x ,
and let q be a geodesic connecting y and f . Let h2 denote the edge connecting x
and y , labeled by an element of Hj . Similarly, let s; t denote the edges connecting h
to 1 and z to f respectively, which are labeled by elements of Hi . Let e denote the
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Y D gHj

Hi zHie

x
y

h

1 z

f

s t

p q

h2

Figure 12: Dealing with elements of Z \K that represent elements of H

edge connecting 1 and z , labeled by z . Consider the geodesic hexagon W with sides
p; h2; q; t; e; s (see Figure 12).

By using Remark 3.7 and the fact that Y ¤ Hi ; zHi , we can show that h2 cannot
be connected to q , p , s or t . Since z does not represent an element of Hi for
any i, h2 cannot be connected to e . Thus, h2 is isolated in W . By Lemma 2.4,
ydj .x; y/� 6C . By Lemma 3.8,

dY .Hi ; zHi /� d
�
Y .Hi ; zHi /C 2� � 14C C 2�:

We conclude that by taking the constant J to be sufficiently large so that Proposition 3.4
holds and J exceeds 14C C 2� , we can ensure that z 2X and the arguments of the
previous section still hold.

Lemma 3.20 There are only finitely many elements of Z \K that can represent an
element of Hi for some i 2 f1; 2; : : : ; ng.

Proof Let z 2Z \K represent an element of Hi for some i D 1; 2; : : : ; n. Then in
the Cayley graph �.G;ZtH/, we have a bigon between the elements 1 and h, where
one edge is labeled by z and the other edge is labeled by an element of Hi , say h1
(see Remark 2.2 and Figure 13).

This implies that ydi .1; z/ � 1, so zdi .1; z/ � 1. But then z 2 �Bi .1; 1/, ie the ball of
radius 1 in the subgroup Hi in the relative metric, centered at the identity. But this is a
finite ball. Take

�D

ˇ̌̌̌ n[
iD1

�Bi .1; 1/ˇ̌̌̌:
Then z has at most � choices, which is finite.
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1 z

z

h1

Figure 13: Bigons in the Cayley graph

By Lemma 3.20 and by selecting the constant J as specified in Lemma 3.19, we
conclude that the set X from Section 3.3 does not contain at most finitely many
elements of Z\K . By adding these finitely many remaining elements of Z\K to X ,
we obtain a new relative generating set X 0 such that jX 0�X j<1. By Lemma 2.11,
fH1;H2; : : : ;Hng ,!h .K;X

0/ and Z \K �X 0 . By Remark 3.18, �.K;X 0 tH/ is
also a quasi-tree. Thus X 0 is the required set in the statement of Proposition 3.2, which
completes the proof.

3.5 Applications of Theorem 3.1

In order to prove Theorem 1.7, we first need to recall the following definitions.

Definition 3.21 (loxodromic element) Let G be a group acting on a hyperbolic
space S . An element g 2 G is called loxodromic if the map Z ! S defined by
n 7! gns is a quasi-isometric embedding for some (equivalently, any) s 2 S .

Definition 3.22 (elementary subgroup [5, Lemma 6.5]) Let G be a group acting
acylindrically on a hyperbolic space S and g 2G a loxodromic element. Then g is
contained in a unique maximal elementary subgroup E.g/ of G given by

E.g/D fh 2G j dHau.l; h.l// <1g;

where dHau denotes the Hausdorff distance and l is a quasi-geodesic axis of g in S .

Corollary 3.23 A group G is acylindrically hyperbolic if and only if G has an
acylindrical and non-elementary action on a quasi-tree.

Proof If G has an acylindrical and non-elementary action on a quasi-tree, Theorem 2.9
implies that G is acylindrically hyperbolic. Conversely, let G be acylindrically hy-
perbolic, with an acylindrical non-elementary action on a hyperbolic space X . Let
g be a loxodromic element for this action. By Lemma 6.5 of [5] the elementary
subgroup E.g/ is virtually cyclic and thus countable. By Theorem 6.8 of [5], E.g/
is hyperbolically embedded in G . Taking K DG and E.g/ to be the hyperbolically
embedded subgroup in the statement of Theorem 3.1 now gives us the result. Since
E.g/ is non-degenerate, by Lemma 5.12 of [12], the resulting action of G on the
associated Cayley graph �.G;X tE.g// is also non-elementary.
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The following corollary is an immediate consequence of Theorem 3.1.

Corollary 3.24 Let fH1;H2; : : : ;Hng be a finite collection of countable subgroups
of a group G such that fH1;H2; : : : ;Hng ,!h G . Let K be a subgroup of G . If
Hi �K for all i D 1; 2; : : : ; n, then fH1;H2; : : : ;Hng ,!h K .

Definition 3.25 Let .M; d/ be a geodesic metric space, and � > 0 a fixed constant. A
subset S �M is said to be �–coarsely connected if for any two points x; y in S , there
exist points x0 D x; x1; x2; : : : ; xn�1; xn D y in S such that for all i D 0; : : : ; n� 1,

d.xi ; xiC1/� �:

We say that S is coarsely connected if it is �–coarsely connected for some � > 0.

Recall that we denote the closed �–neighborhood of S by SC� .

Definition 3.26 Let .M; d/ be a geodesic metric space, and � > 0 a fixed constant. A
subset S�M is said to be �–quasi-convex if for any two points x; y in S , any geodesic
connecting x and y is contained in SC� . Further, we say that S is quasi-convex if it
is �–quasi-convex for some � > 0.

Corollary 3.27 Let H be a finitely generated subgroup of an acylindrically hyperbolic
group G . Then there exists a subset X �G such that

(a) �.G;X/ is hyperbolic, and the action of G on �.G;X/ is non-elementary and
acylindrical, and

(b) H is quasi-convex in �.G;X/.

To prove this corollary, we need the following two lemmas.

Lemma 3.28 Let T be a tree, and let Q � T be �–coarsely connected. Then Q is
�–quasi-convex.

Proof Let � > 0 be the constant from Definition 3.25. Let x; y be two points in Q
and p be any geodesic between them. Then there exist points x0 D x; x1; x2; : : : ,
xn�1; xn D y in Q such that d.xi ; xiC1/� � for all i D 0; : : : ; n� 1. Let pi denote
the geodesic segments between xi and xiC1 for i D 0; 1; : : : ; n�1. Since T is a tree,
we must have that

p �

n�1[
iD0

pi :
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By definition, pi �B.xi ; �/, the ball of radius � centered at xi , for i D 0; 1; : : : ; n�1.
Since xi 2Q for i D 0; 1; : : : ; n� 1, we obtain

pi �Q
C�:

This implies p �QC� .

Lemma 3.29 Let � be a quasi-tree, and S � � be coarsely connected. Then S is
quasi-convex.

Proof Let T be a tree such that � is quasi-isometric to T . Let d� and dT denote
distances in � and T , respectively. Let ı > 0 be the hyperbolicity constant of � . Let
qW T ! � be a .�; C /–quasi-isometry, ie

�C C
1

�
dT .a; b/� d�.q.a/; q.b//� �dT .a; b/CC:

Let � > 0 be the constant from Definition 3.25 for S . Set QD q�1.S/. Then Q� T .
It is easy to check that Q is �–coarsely connected with constant �D �.�CC/. By
Lemma 3.28, Q is �–quasi-convex.

Let x; y be two points in S and p be a geodesic between them. Choose points a; b
in Q such that q.a/ D x and q.b/ D y . Let r denote the (unique) geodesic in T
between a and b . Since Q is �–quasi-convex, we have

r �QC�:

Set � D ��CC . Then
q.r/� SC� :

Further, q ı r is a quasi-geodesic between x and y . By Lemma 2.17, there exists a
constant R D R.�; C; ı/ such that q.r/ and p are Hausdorff distance less than R
from each other. This implies that p � SC.RC�/ . Thus S is quasi-convex.

Proof of Corollary 3.27 By Corollary 3.23, there exists a generating set X of G
such that �.G;X/ is a quasi-tree (hence hyperbolic) and the action of G on �.G;X/
is acylindrical and non-elementary. Let dX denote the metric on �.G;X/ induced by
the generating set X . Let H D hx1; x2; : : : ; xni. Set

� DmaxfdX .1; x˙1i / j i D 1; 2; : : : ; ng:

We claim that H is coarsely connected with constant � . Indeed if u; v are elements
of H , then u�1v D

Qk
jD1wj , where wj 2 fx˙11 ; : : : ; x˙1n g. Set

z0 D u; z1 D uw1; : : : ; zk�1 D uw1w2 � � �wk�1; zk D v:
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Clearly zi 2H for all i D 0; 1; : : : ; k� 1. Further,

dX .zi ; ziC1/D dX .1; wiC1/� �

for all i D 0; 1; : : : ; k� 1. By Lemma 3.29, H is quasi-convex in �.G;X/.
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Translation surfaces and the curve graph in genus two

DUC-MANH NGUYEN

Let S be a (topological) compact closed surface of genus two. We associate to
each translation surface .X; !/ 2 �M2 D H.2/ tH.1; 1/ a subgraph yCcyl of the
curve graph of S . The vertices of this subgraph are free homotopy classes of curves
which can be represented either by a simple closed geodesic or by a concatenation
of two parallel saddle connections (satisfying some additional properties) on X .
The subgraph yCcyl is by definition GLC.2;R/–invariant. Hence it may be seen as
the image of the corresponding Teichmüller disk in the curve graph. We will show
that yCcyl is always connected and has infinite diameter. The group AffC.X; !/ of
affine automorphisms of .X; !/ preserves naturally yCcyl , we show that AffC.X; !/
is precisely the stabilizer of yCcyl in Mod.S/ . We also prove that yCcyl is Gromov-
hyperbolic if .X; !/ is completely periodic in the sense of Calta.

It turns out that the quotient of yCcyl by AffC.X; !/ is closely related to McMullen’s
prototypes in the case that .X; !/ is a Veech surface in H.2/ . We finally show that
this quotient graph has finitely many vertices if and only if .X; !/ is a Veech surface
for .X; !/ in both strata H.2/ and H.1; 1/ .

51H20; 54H15

1 Introduction

1.1 The curve complex

Let S be a compact surface. The curve complex of S is a simplicial complex whose
vertices are free homotopy classes of essential simple closed curves on S , and k –
simplices are defined to be the sets of (homotopy classes of) kC 1 curves that can be
realized pairwise disjointly on S . This complex was introduced by Harvey [20] in order
to use its combinatorial structure to encode the asymptotic geometry of the Teichmüller
space. It turns out that its geometry is intimately related to the geometry and topology
of Teichmüller space; see eg Rafi [43]. The curve complex has now become a central
subject in Teichmüller theory, low-dimensional topology, and geometric group theory.
Note that this complex is quasi-isometric to its 1–skeleton, which is referred to as the
curve graph of S . In this paper we will denote the curve graph by C.S/.
The mapping class group Mod.S/ naturally acts on the curve complex by isomorphisms.
In most cases, all automorphisms of the curve complex are induced by elements
of Mod.S/; see Ivanov [24] and Luo [31]. Based on this relation, topological and
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combinatorial properties of the curve complex have been used to study the mapping class
group, for example in Harer [19] and Bestvina and Fujiwara [2]. Masur and Minsky [33]
showed that the curve graph (and the curve complex) is Gromov-hyperbolic; see also
Bowditch [6]. A stronger result, that the hyperbolicity constant is independent of the
surface S , has recently been proved simultaneously by several people: Aougab [1],
Bowditch [7], Clay, Rafi and Schleimer [12], and Hensel, Przytycki and Webb [21]. Its
boundary at infinity has been studied by Klarreich [27] and Hamenstädt [16]. Those
results have led to numerous applications and a fast growing literature on the subject.
In particular, the hyperbolicity of the curve graph has been exploited in the resolution
of the ending lamination conjecture by Brock, Canary and Minsky [8]. For a nice
survey on the curve complex and its applications we refer to Bowditch [5].

1.2 Teichmüller disks and translation surfaces

Another important notion in Teichmüller theory are the Teichmüller disks. These are
isometric embeddings of the hyperbolic disk H in the Teichmüller space. Such a disk
can be viewed as a complex geodesic generated by a quadratic differential q on a
Riemann surface X . This quadratic differential defines a flat metric structure on X

with conical singularities such that the holonomy of any closed curve on X belongs to
the subgroup f˙Idg �R2 of Isom.R2/. If this quadratic differential is the square of a
holomorphic 1–form ! on X , then the holonomy of any closed curve is a translation
of R2 , and we have a translation surface .X; !/.

Using the flat metric viewpoint, one can easily define a natural action of GLC.2;R/
on the space of translation surfaces as follows: given a matrix A 2 GLC.2;R/ and an
atlas f�i j i 2 Ig defining a translation surface structure, we get an atlas for another
translation surface structure defined by fAı�i j i 2 Ig. The Teichmüller disk generated
by a holomorphic 1–form .X; !/ is precisely the projection into the Teichmüller space
of its GLC.2;R/–orbit. Translations surfaces and their GLC.2;R/–orbit also arise in
different contexts such as dynamics of billiards in rational polygons, interval exchange
transformations and pseudo-Anosov homeomorphisms.

The importance of the GLC.2;R/–action is related to the fact that the GLC.2;R/–orbit
closure of a translation surface encodes information on its geometric and dynamical
properties. A remarkable illustration of this phenomenon is the famous Veech di-
chotomy, which states that if the stabilizer of .X; !/ for the action of GLC.2;R/ is
a lattice in SL.2;R/, then the linear flow in any direction on X is either periodic or
uniquely ergodic. By a result of Smillie (see [49; 46]) the stabilizer of .X; !/, denoted
by SL.X; !/, is a lattice in SL.2;R/ if and only if the GLC.2;R/–orbit of .X; !/
is a closed subset of the moduli space. For more details on translation surfaces and
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related problems we refer to the excellent surveys by Masur and Tabachnikov [35] and
Zorich [53].

The group SL.X; !/ is closely related to the subgroup of the mapping class group
that stabilizes the Teichmüller disk generated by .X; !/. This subgroup consists of
elements of Mod.S/ that are realized by homeomorphisms of X preserving the set
of singularities (for the flat metric), and given by affine maps in local charts of the
flat metric structure. This subgroup is denoted by AffC.X; !/. There is a natural
homomorphism from AffC.X; !/ to SL.X; !/ which associates to each element of
AffC.X; !/ its derivative. It is not difficult to see that this homomorphism is surjective
and has finite kernel. The study of AffC.X; !/ and SL.X; !/ is a recurrent theme
in the theory of dynamics in Teichmüller space; see eg McMullen [36], Hubert and
Schmidt [23], Hubert and Lanneau [22], Möller [40] and Lehnert [30].

1.3 The flat metric and curve complex

Consider now the flat metric defined by a holomorphic 1–form ! on a (compact)
Riemann surface X . By compactness, there exists a curve of minimal length in the
free homotopy class of any essential simple closed curve. In general this curve of
minimal length may not be a geodesic as it may contain some singularity in its interior.
Nevertheless, following a result by Masur [32], we know that there are infinitely many
curves that can be realized as simple closed geodesics for ! . Thus .X; !/ specifies a
subset of vertices of C.S/. Note that unlike the situation of hyperbolic surfaces, closed
geodesics of minimal length are not unique in their homotopy class. They actually arise
in family, that is, simple closed geodesics in the same homotopy class fill out a subset
of X which is isometric to .R=cZ/� .0; h/. We will call such a subset a geometric
cylinder, and the corresponding simple closed geodesics its core curves.

Mimicking the construction of the curve graph, we can add an edge between two
vertices representing two cylinders if there exist two curves, one in each homotopy
class, that can be realized disjointly (this condition is equivalent to requiring that the
corresponding geodesics for the flat metric are disjoint). Thus, for each translation
surface, we have a subgraph Ccyl of the curve graph.

Let A be a matrix in GLC.2;R/, and consider the surface .X 0; !0/ WD A � .X; !/.
Since the action of A preserves the affine structure, a geodesic on X corresponds
to a geodesic on X 0 and vice-versa. Therefore, the subgraphs associated to .X 0; !0/
and to .X; !/ are the same. This subgraph is actually associated to the Teichmüller
disk generated by .X; !/. As C.S/ can be viewed as the combinatorial model for
the Teichmüller space, Ccyl can be viewed as the counterpart of a Teichmüller disk
in this setting. By definition, elements of AffC.X; !/ preserve Ccyl and act on Ccyl
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by isomorphisms. As properties of the mapping class group can be studied via its
action on the curve complex, one can expect the knowledge about the combinatorial
and geometric structure of Ccyl to be useful for the study of AffC.X; !/.

1.4 Statement of results

The main purpose of this paper is to investigate Ccyl when X is a surface of genus
two. The reason for this restriction is the technical difficulties for the general cases.
Hopefully, the results and techniques used in this situation may inspire further results
in higher genera.

Recall that the moduli space of translation surfaces is naturally stratified by the zero
orders of the 1–form ! (or equivalently, the cone angles at the singularities). In genus
two, we have two strata: H.2/ which contains pairs .X; !/ such that ! has a unique
double zero, and H.1; 1/ which contains pairs .X; !/ such that ! has two simple
zeros. Our first result shows that the geometry of Ccyl does depend on the stratum
of .X; !/.

Theorem A (Theorem 2.6) If .X; !/ 2H.2/ then Ccyl contains no triangles, but if
.X; !/ 2H.1; 1/ then Ccyl always contains triangles.

Note that a triangle in Ccyl is a triple of simple closed pairwise disjoint curves that are
simultaneously realized as core curves of three cylinders in .X; !/.

From its definition, the geometric structure of the subgraph Ccyl depends very much on
the flat metric of .X; !/. It is not difficult to see that Ccyl is not connected in general;
see Section 3. To get a nicer subgraph of C.S/, we enlarge Ccyl by adjoining to it the
vertices of C.S/ representing degenerate cylinders. Roughly speaking, a degenerate
cylinder on X is a union of two saddle connections in the same direction such that
there are deformations of .X; !/ on which this union is freely homotopic to the core
curves of a geometric cylinder. We refer to Section 3 for a more precise definition. In
particular, any degenerate cylinder is freely homotopic to a simple closed curve. Thus
it corresponds to a vertex of C.S/.

We define yC .0/cyl to be the set of vertices of C.S/ that correspond to geometric cylinders
and degenerate cylinders in .X; !/. We then define yC .1/cyl to be the set of the edges
of C.S/ both of whose endpoints belong to yC .0/cyl . We thus get a subgraph yCcyl of C.S/.
By a slight abuse of notation, we will also call yCcyl the cylinder graph of .X; !/.
Subsequently, this subgraph will be the main object of our investigation. We summarize
the results concerning yCcyl in the following theorem:
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Theorem B For any .X; !/2H.1;1/tH.2/, the subgraph yCcyl is connected and has
infinite diameter. The subgroup of Mod.S/ that stabilizes yCcyl is precisely AffC.X; !/.
Moreover, if .X; !/ is completely periodic in the sense of Calta, then yCcyl is Gromov-
hyperbolic.

Theorem B actually comprises several statements, which are proved in Corollary 4.2,
Propositions 5.1 and 6.1 and Theorem 7.1. The contexts and precise statements will be
given in the corresponding sections.

We finally consider the quotient of yCcyl by the action of AffC.X; !/ in the case that
.X; !/ is a Veech surface, that is, SL.X; !/ is a lattice of SL.2;R/.

Theorem C Let G be the quotient of yCcyl by the group of affine automorphisms. Then
.X; !/ 2H.2/tH.1; 1/ is a Veech surface if and only if G has finitely many vertices.
For any Veech surface in H.2/ the set of edges of G is also finite. There exist Veech
surfaces in H.1; 1/ such that G has infinitely many edges.

The statements of Theorem C are proved in Theorem 8.1 and Proposition 8.2.

1.5 Outline

In Section 2 we recall standard notions concerning translation surfaces. We show some
geometric and topological features of translation surfaces of genus two. We end this
section with the proof of Theorem A.

In Section 3, we introduce the notion of degenerate cylinders and define the cylinder
graphs Ccyl and yCcyl . We show that yCcyl is connected and has infinite diameter in
Sections 4 and 5. These results follow from Theorem 4.1, which gives a bound on the
distance in yCcyl using the intersection number.

Section 6 is devoted to the proof of the fact that the stabilizer subgroup of yCcyl in
Mod.S/ is precisely the group of affine automorphisms.

In Section 7 we show that if .X; !/ is completely periodic in the sense of Calta,
then yCcyl is Gromov-hyperbolic. Our proof follows a strategy of Bowditch and uses a
hyperbolicity criterion by Masur and Schleimer.

We give the proof of Theorem C in Section 8. Finally, in Section 9, we give the
connection between the quotient graph GD yCcyl=AffC and the set of prototypes for
Veech surfaces in H.2/, which were introduced by McMullen [37].

Acknowledgements The author warmly thanks Arnaud Hilion for very helpful and
stimulating discussions.
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2 Preliminaries

In this section we will prove some topological properties of saddle connections and
cylinders on translation surfaces in genus two. The main result of this section is
Theorem 2.6.

Let .X; !/ be a translation surface. A saddle connection on X is a geodesic seg-
ment whose endpoints are singularities, but which contains no singularities in its
interior. A (geometric) cylinder of X is a subset C isometric to .R=cZ/� .0; h/, with
c; h 2R>0 , which is not properly contained in another subset with the same property.
The parameter c is called the circumference and h the width or height of this cylinder.

The isometry from .R=cZ/� .0; h/ to C can be extended by continuity to a map from
.R=cZ/� Œ0; h� to X . We will call the images of .R=cZ/�f0g and .R=cZ/�fhg the
boundary components of C . Each boundary component is a concatenation of some
saddle connections. It may happen that the two boundary components coincide as
subsets of X . We say that C is a simple cylinder if each of its boundary components
is a single saddle connection. It is worth noticing that on a translation surface of genus
two, every cylinder is invariant by the hyperelliptic involution. Therefore, the two
boundary components of any cylinder contain the same number of saddle connections.

Throughout this paper, for any cycle c 2 H1.X; fzeros of !gIZ/, we will use the
notation !.c/ WD

R
c ! , and for any saddle connection s , its euclidean length will be

denoted by jsj. Let us start by the following elementary lemma.

Lemma 2.1 Let .X; !/ be a translation surface in one of the hyperelliptic components
Hhyp.2g � 2/ or Hhyp.g � 1;g � 1/, and s be a saddle connection invariant by the
hyperelliptic involution � of X . We assume that s is not vertical. Then there exist a
parallelogram P D .P1P2P3P4/ in R2 and a locally isometric mapping 'W P !X

such that the following hold:

(a) The vertical lines through the vertices P3 and P4 intersect the diagonal P1P2 .

(b) The vertices of P are mapped to the singularities of X , and P1P2 is mapped
isometrically to s .

(c) The restriction of ' into int.P / is an embedding.

(d) Let � > 0 be the length of the vertical segment from P3 or P4 to a point in
P1P2 . Then for any vertical segment u in X from a singular point to a point
in s , we have juj � �, where juj is the euclidean length of u.

We will call P the embedded parallelogram associated to s .
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P1 P2

P3

P4

P 0
3

P 0
4

u�

uC

s

Figure 1: Here s D '.P1P2/ , uC D '.P3P 03/ , u� D '.P4P 04/ , and P D

.P1P2P3P4/ is the embedded parallelogram associated to s

Remark 2.2 � Since s in invariant by � , we must have �.'.P //D '.P /.

� The sides of P are mapped to saddle connections on X . Even though the
restriction of ' into int.P / is one-to-one, it may happen that ' maps the
opposite sides of P to the same saddle connection.

� This lemma is also valid for translation surfaces in H.0/ and H.0; 0/.

Proof of Lemma 2.1 We will only give the proof for the case .X; !/ 2Hhyp.2g�2/,
as the proof for Hhyp.g� 1;g� 1/ is the same. Using

U� D

��
1 0

t 1

� ˇ̌̌
t 2R

�
;

we can assume that s is horizontal. Let ‰t be the vertical flow on X generated by
the vertical vector field .0; 1/; this flow moves regular points of X vertically, upward
if t > 0.

Consider the vertical geodesic rays emanating from the unique zero x0 of ! in direction
.0;�1/. We claim that one of the rays in this direction must meet s . Indeed, if this is
not the case, then ‰t .s/ does not contain x0 for any t 2R>0 , and it follows that one
can embed a rectangle of infinite area into X . Let uC be a vertical geodesic segment
of minimal length from x0 to a point in s which is included in a ray in direction
.0;�1/. Since s is invariant by � , the segment u� WD �.uC/ is vertical of minimal
length from x0 to a point in s which is included in a ray in direction .0; 1/. Using the
developing map, we can realize s as a horizontal segment P1P2�R2 , uC (resp. u� ) as
a vertical segment P3P 03 (resp. P4P 04 ) where P 03;P

0
4 2P1P2 ; see Figure 1. We remark

that the central symmetry fixing the midpoint of P1P2 exchanges P3P 03 and P4P 04 .
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Let P denote the parallelogram .P1P3P2P4/. We define a map 'W P!X as follows:
for any point M 2P , let M 0 be the orthogonal projection of M in P1P2 , and t be the
length of MM 0 . Let yM 0 be the point in s corresponding to M 0 by the identification
between P1P2 and s . We then define '.M / WD ‰t . yM

0/ if M is above P1P2 , and
'.M / D ‰�t . yM

0/ if M is below P1P2 . By definition, ' is a local isometry and
maps the vertices of P to x0 .

Note that we have jMM 0j � jP3P 03j D jP4P 04j, and the equality only occurs when
M D P3 or M D P4 . Thus, for all M 2 P n fP1;P2;P3;P4g, '.M / is a regular
point in X ; otherwise we would have a vertical segment from P0 to a point in s of
length smaller than juCj.

We now claim that 'jint.P/ is an embedding. Assume that there exist two points
M1;M2 2 int.P / such that '.M1/ D '.M2/. Set �!v WD

����!
M1M2 ; then for any

M;M 0 2P such that
���!
MM 0 D

�!v , we have '.M /D '.M 0/. Since P is a parallelo-
gram, there exists a vertex Pi 2fP1;P2;P3;P4g and a point M 02PnfP1;P2;P3;P4g

such that
���!
PiM

0 D
�!v , which implies that '.M 0/D x0 , and we have a contradiction to

the observation above.

It is now straightforward to verify that P and ' satisfy all the required properties.

In what follows, by a slit torus we will mean a triple .X; !; s/ where X is an elliptic
curve, ! a nonzero holomorphic 1–form and s an embedded geodesic segment (with
respect to the flat metric defined by ! ) on X . We consider the endpoints of s as
marked points on X . Note that there is a unique involution of X that preserves s and
permutes its endpoints. The following lemma is useful for us in the sequel.

Lemma 2.3 Let .X; !; s/ be a slit torus and x1;x2 be the endpoints of s . Assume
that the segment (slit) s is not vertical, that is, jRe!.s/j > 0. Then there exists a
pair of parallel simple closed geodesics c1; c2 with ci passing through xi such that
ci \ int.s/ D ¿, and jRe!.ci/j � jsj. In particular, the geodesics c1; c2 cut X into
two cylinders, one of which contains int.s/. Moreover, any leaf of the vertical foliation
intersecting ci must intersect s , and if every leaf of the vertical foliation meets s , then
we have jRe!.ci/j> 0.

Proof We remark that a slit torus can be considered as hyperelliptic translation
surface with the hyperelliptic involution being the unique one that preserves s and
exchanges its endpoints. Let P D .P1P2P3P4/ be the parallelogram associated to s ,
and 'W P !X the corresponding embedding defined as in Lemma 2.1. Since we have
'.P3/ 2 fx1;x2g, either '.P3/D '.P1/ or '.P3/D '.P2/. It follows that one pair
of opposite sides of P are mapped to a pair of parallel simple closed geodesics c1; c2

of X with ci passing through xi . The other pair of opposite sides of P are mapped
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s

C1 C2

C1

C2

s

s

Figure 2: Configurations of C1 , C2 with respect to s : none of C1 , C2

contains s in its boundary (left) and s is contained in the boundary of C2

(right).

to the same geodesic segment joining x1 and x2 . Thus '.P / is a cylinder in X

that contains s . Since X is a torus, the complement of '.P / is also a cylinder. It is
straightforward to check that the pair fc1; c2g satisfy all the required properties.

We now turn to translation surfaces in genus two. Let .X; !/ be a translation surface
in H.2/tH.1; 1/. We denote by � the hyperelliptic involution of X .

Lemma 2.4 Let s1; s2 be a pair of saddle connections in X which are permuted by � .
If .X; !/ 2 H.2/, then s1 and s2 bound a simple cylinder. If .X; !/ 2 H.1; 1/ then
we have two cases:

� If si joins a zero of ! to itself, then s1 and s2 bound a simple cylinder.
� If si joins two different zeros of ! , then s1[ s2 decomposes X as a connected

sum of two slit tori.

Proof Since � acts by �Id on H1.X;Z/, s1 and s2 must be homologous. This
lemma follows from an inspection on the configurations of rays originating from the
zero(s) of ! in the same direction.

Lemma 2.5 Let .X; !/ be a surface in H.2/ and s be a saddle connection in X

invariant by the hyperelliptic involution � . Then there exist two disjoint cylinders
C1;C2 that do not intersect s , that is, C1\C2 D¿, and the core curves of C1 and C2

do not meet s . We remark that s may be contained in the boundary of C1 or C2 . The
possible configurations of C1 and C2 with respect to s are shown in Figure 2.

Proof Without loss of generality, we can assume that s is horizontal. Let P D

.P1P3P2P4/ be the embedded parallelogram associated to s , and 'W P !X be the
embedding map such that sD '.P1P2/; see Lemma 2.1. We choose the labeling of the
vertices of P such that P3 is the highest vertex, and P4 is the lowest one. Throughout
the proof, we will refer to Figure 3.
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P1 P2

Q2

P5P3

Q1

P4

s

s

dC
4

d�4

d�
3

dC
3

d�2

d�
1

dC
1

dC
2

d�
1

dC

d�

D

Figure 3: Finding a cylinder disjoint from s

Let dC
1
D '.P3P1/; d

C

2
D '.P3P2/; d

�
1
D '.P4P2/; d

�
2
D '.P4P1/. We have d�i D

�.dCi /. By Lemma 2.4, either dCi D d�i as subsets of X or the pair d˙i bound a
simple cylinder. We remark that dC

1
and dC

2
cannot both be invariant by � , otherwise

we would have X D '.P /, and X must be a torus. Thus we must only consider two
cases:

(i) Both pairs d˙
1

and d˙
2

are respectively boundaries of two simple cylinders C1;C2

in X . In this case, it is not difficult to see that both C1 and C2 are disjoint from '.P /,
and C1\C2 D¿. We then get the configuration Figure 2 (left).

(ii) One of the pairs d˙
1
; d˙

2
bound a simple cylinder, the other consist of a single sad-

dle connection invariant by � . In this case, '.P / is actually a simple cylinder. Without
loss of generality, we can assume that the pair d˙

1
bound the cylinder C D '.P /, and

dC
2
D d�

2
.

Let P5 be the point in R2 such that the triangle .P3P5P2/ is the image of .P1P2P4/

by the translation by
���!
P1P3 . Using the assumption that dC

2
D d�

2
, that is, '.P3P2/D

'.P1P4/, we see that ' extends to a local isometric map from P 0 D .P1P2P5P3/

to X such that '.P 0/D C and 'jint.P 0/ is an embedding; see Figure 3.

Consider the horizontal rays emanating from the unique zero x0 of ! to the outside
of C . By the same argument as in Lemma 2.1, we see that one of the rays in direction
.1; 0/ reaches dC

1
D '.P3P1/ from the outside of C . It follows that we can then

extend ' to a convex hexagon H WD .P1P2Q2P5P3Q1/, which is the union of P 0

and two triangles .P2Q2P5/ and .P3Q1P1/. Note that .P2Q2P5/ and .P3Q1P1/

are exchanged by the central symmetry fixing the midpoint of P2P3 , and all the vertices
of H are mapped to x0 .
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Let dC
3
D '.P3Q1/, dC

4
D '.Q1P1/, d�

3
D '.P2Q2/ and d�

4
D '.Q2P5/. Again,

for i D 3; 4, we have either dCi D d�i or the pair d˙i bound a simple cylinder. If
dCi D d�i for both i D 3; 4, then X D '.H / and X must be a flat torus, so we have a
contradiction. If both pairs d˙

3
; d˙

4
are the boundaries of simple cylinders, then these

cylinders are disjoint, and also disjoint from '.H /. It follows that the total angle at x0

is at least 8� (the total angle of H plus 4� ), thus we have again a contradiction. We
can then conclude that one of the pairs d˙

3
; d˙

4
consists of a single saddle connection,

and the other pair bounds a simple cylinder. Without loss of generality, we can assume
that d˙

3
bounds a simple cylinder C3 , and dC

4
D d�

4
D d4 . Note that C3 must be

disjoint from '.H /, and in particular it is disjoint from s .

Let dC D '.Q1P5/ and d� D '.P1Q2/; then the pair d˙ is the boundary of a
cylinder D whose core curves cross d˙4 . If H is strictly convex then D is a simple
cylinder, but if P2Q2 is parallel to P1P2 then D is not simple (in this case we actually
have D D '.H /). Nevertheless, in both cases the core curves of D do not intersect s .
Since D is contained in '.H /, we have C3 \D D ¿. Since both C3 and D are
disjoint from s , the lemma is proved.

We are now ready to show the following theorem:

Theorem 2.6 (a) On any .X; !/ 2 H.2/, there always exist two disjoint simple
cylinders. There cannot exist a triple of pairwise disjoint cylinders in X .

(b) On any .X; !/ 2 H.1; 1/, there always exists a triple of cylinders which are
pairwise disjoint.

Remark 2.7 � The cylinders in Theorem 2.6 are not necessarily parallel.
� There cannot exist more than three simple pairwise disjoint closed curves on S .

Statement (b) means that given any holomorphic 1–form in H.1; 1/, there always
exists a family of three disjoint (simple closed) curves, realized simultaneously
as simple closed geodesics for the flat metric induced by this 1–form.

� The statement (a) of the theorem is a direct consequence of [42, Proposition A.1].

Proof of Theorem 2.6, case H.2/ Lemma 2.5 almost proves the statement for H.2/
except that it does not guarantee that both cylinders are simple. We will give here a
proof by using [41, Lemma 2.1]. Let s be a saddle connection that is invariant by
the hyperelliptic involution � (one can find such a saddle connection by picking a
geodesic segment of minimal length Os joining a regular Weierstrass point of X to
the unique zero of ! , then taking s D Os[ �.Os/). By [41, Lemma 2.1], there exists a
simple cylinder C1 that contains s . Cut off C1 from X then identify the two geodesic
segments on the boundary of the resulting surface, we obtain a flat torus .X 0; !0/ with
a marked geodesic segment s0 .
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We can consider .X 0; !0; s0/ as a slit torus. By Lemma 2.3, there exists a cylinder C 0

in X 0 that contains s0 whose complement in X 0 is another cylinder C2 disjoint from s0 .
By construction C2 is a simple cylinder in X and disjoint from C1 , hence the first
assertion follows.

For the second assertion, we observe that any triple of pairwise disjoint simple closed
curves disconnect X into two three-holed spheres. If all the curves in this triple are
simple closed geodesics (core curves of cylinders), then we get two flat surfaces with
geodesic boundary. Since X has only one singularity, one of the surfaces has no
singularities in its interior. But the Euler characteristic of a three-holed sphere is �1,
thus we have a contradiction to the Gauss–Bonnet formula. We can then conclude
that X can not contain three disjoint cylinders.

Proof of Theorem 2.6, case H.1; 1/ By [41, Lemma 2.1], we know that there exists
a simple cylinder C0 on .X; !/ that is invariant by � . Cut off C0 and glue the two
boundary components of the resulting surface; we obtain a surface . yX ; y!/ 2H.2/ with
a marked saddle connection Os . Note that Os is invariant by the hyperelliptic involution
of yX . By Lemma 2.5, we know that there exist two cylinders C1 and C2 on yX disjoint
from Os such that C1\C2 D¿. It follows immediately that C1 and C2 are actually
cylinders in X and disjoint from C0 , from which we get the desired conclusion.

3 Degenerate cylinders and the cylinder graph

3.1 Cylinders and the curve graph

Each cylinder in a translation surface is filled by simple closed geodesics in the same free
homotopy class. The following elementary lemma shows that two (freely) homotopic
closed geodesics must belong to the same cylinder.

Lemma 3.1 Let c1 and c2 be two simple closed geodesics in .X; !/ which are freely
homotopic. Then c1 and c2 are contained in the same cylinder.

Proof Since c1; c2 are freely homotopic, they are homologous, hence !.c1/D !.c2/.
It follows that c1 and c2 are parallel, thus must be disjoint. The pair c1; c2 cut X into
two components, one of which must be an annulus denoted by A; see Proposition A.11
of [9]. We have a flat metric on A induced by the flat metric of X . Let �1; : : : ; �k be
the cone angles at the singularities in A. Since the boundary of A is geodesic, the
Gauss–Bonnet formula givesX

1�i�k

.2� � �i/D 2��.A/D 0:
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Since any singularity on a translation surface has cone angle at least 4� , the equation
above actually shows that A contains no singularities. Thus A is a flat annulus, which
must be contained in a cylinder of X . Therefore, c1 and c2 are contained in the same
cylinder.

Let S be a fixed topological compact closed surface of genus two. Let C.S/ denote
the curve graph of S . Let �T2 be the abelian differential bundle over the Teichmüller
space T2 . Elements of �T2 are equivalence classes of triples .X; !; f /, where X

is a Riemann surface of genus two, ! is a holomorphic 1–form on X , and f is a
homeomorphism from S to X ; two triples .X; !; f / and .X 0; !0; f 0/ are identified if
there exists an isomorphism 'W X!X 0 such that '�!0D! and f 0 �1ı'ıf W S!S

is isotopic to IdS . The equivalence class of .X; !; f / will be denoted by ŒX; !; f �.

Each element ŒX; !; f � of �T2 defines naturally a subgraph Ccyl.X; !; f / of C.S/.
The vertices of this subgraph are free homotopy classes of the core curves of all
cylinders on the translation surface .X; !/. The set C .1/cyl .X; !; f / consists of the edges
in C.1/.S/ both of whose endpoints belong to C .0/cyl .X; !; f /.

3.2 Degenerate cylinders

If C is a cylinder in X that fills X (ie C DX ), then C represents an isolated vertex in
Ccyl.X; !; f /. This is because the core curve of any other cylinder in X must cross C .
So in general Ccyl.X; !; f / is not a connected graph. To fix this issue we introduce
the notion of degenerate cylinders. Roughly speaking, a degenerate cylinder in X is
a union of parallel saddle connections such that there exist deformations of .X; !/
where this union is freely homotopic to the core curves of a simple cylinder.

To be more precise, let x0 be a singularity on a translation surface .X; !/. For any
pair .r1; r2/ of geodesic rays emanating from x0 , we will denote the counterclockwise
angle from r1 to r2 by #.r1; r2/. If s is an oriented saddle connection from a singular-
ity x1 to a singularity x2 , then we denote by sC (resp. s� ) the intersection of s with
a neighborhood of x1 (resp. a neighborhood of x2 ). This definition also makes sense
when x1 D x2 , in which case the orientation of s is to start in sC and end in s� .

Definition 3.2 (degenerate cylinder) We will call the union of two saddle connections
s1; s2 in .X; !/ 2H.2/tH.1; 1/ a degenerate cylinder if they are both invariant by
the hyperelliptic involution, and up to an appropriate choice for the orientations of s1

and s2 , we have
#.s�1 ; s

C

2
/D #.sC

1
; s�2 /D �:

In Figure 4, we represent the configurations of a degenerate cylinder at the singularities.
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Figure 4: Configuration of a degenerate cylinder at the singularities for
H.2/ (left) and H.1; 1/ (right)

Remark 3.3 � If .X; !/ is in H.2/, then a degenerate cylinder is not a simple
curve: the zero of ! is its unique double point.

� If .X; !/ is in H.1; 1/, then the hyperelliptic involution � of X permutes the
zeros of ! , thus a saddle connection invariant by � must connect the two zeros
of ! . Therefore a degenerate cylinder must be a simple closed curve.

Examples Assume that .X; !/ 2H.2/tH.1; 1/ is horizontally periodic, and has a
unique (geometric) horizontal cylinder C . If .X; !/ 2H.2/ then it has 3 horizontal
saddle connections s1; s2; s3 , which are contained in the boundary of C ; see Figure 5.
Note that all of them are invariant by the hyperelliptic involution. By definition s1[ s2 ,
s2[ s3 and s3[ s1 are three degenerate cylinders. Similarly, if .X; !/ 2H.1; 1/, then
we have 4 horizontal saddle connections denoted by s1; : : : ; s4 (see Figure 5) such
that si [ siC1 is a degenerate cylinder for i D 1; : : : ; 4, with the convention s5 D s1 .

We will now prove some key properties of degenerate cylinders.

Lemma 3.4 Let s1[s2 be a horizontal degenerate cylinder in .X; !/2H.2/tH.1; 1/.
Then there exists in a neighborhood of .X; !/ a continuous family of translation
surfaces f.Xt ; !t / j t 2 Œ0; �/g in the same stratum as .X; !/, with � 2R>0 , such that

� .X0; !0/D .X; !/;
� for any t 2 .0; �/, .Xt ; !t / contains two saddle connections s1;t and s2;t corre-

sponding to s1 and s2 and satisfying the following property: s1;t [ s2;t is freely
homotopic to the core curves of a simple cylinder Ct in Xt ;

� as t ! 0, the width of Ct decreases to zero.

Moreover, for all t 2 .0; �/, any vertical saddle connection (resp. regular geodesic) in
.X; !/ corresponds to a vertical saddle connection (resp. regular geodesic) in .Xt ; !t /.

Proof Let us define a half cylinder to be the quotient .R�Œ0; h�/=� , where �'Z2ËZ
is generated by t W .x;y/ 7! .xC `;y/ and sW .x;y/ 7! .�x; h� y/. We will call h
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Figure 5: Degenerate cylinders on a horizontally periodic surface with a
unique geometric horizontal cylinder for ! 2 H.2/ (left) and ! 2 H.1; 1/
(right)

and ` the width and circumference of the half cylinder, respectively. We will refer
to the projection of .0; 0/ as the marked point on its boundary. Equivalently, a half
cylinder is a closed disc equipped with a flat metric structure with geodesic boundary
and two singularities of angle � in the interior.

Recall that all Riemann surfaces of genus two are hyperelliptic. Let pW X !CP1 be
the hyperelliptic double cover of X . There exists a meromorphic quadratic differential �
on CP1 with at most simple poles such that !2 D p��. Note that � has one zero
and k poles, where k D 5 if ! 2H.2/, and k D 6 if ! 2H.1; 1/. Let P0 denote the
unique zero of �, and P1; : : : ;Pk its simple poles. Let Y be the flat surface defined
by � on CP1 . Observe that the cone angle of Y at P0 is 3� if ! 2H.2/, and 4� if
! 2H.1; 1/. The cone angle at Pi is � for 1; : : : ; k .

Since si , i D 1; 2, is invariant by � , its projection in Y is a geodesic segment s0i
joining P0 to a pole of �. By the definition of degenerate cylinder, one of the angles
at P0 specified by s0

1
and s0

2
is � . Let yY be the flat surface obtained by slitting open Y

along s0
1

and s0
2

. By construction, yY is a flat disc with k � 2 singularities (of cone
angle � ) in its interior, and whose boundary is a geodesic loop c based at P0 . Note
that P0 is also a singular point of yY .

Let c denote the boundary of yY , and ` be the length of c . Fix an � > 0. For
any t 2 .0; �/, let yCt be the half cylinder of circumference ` and width t . We can
glue yCt to yY such that the marked point in the boundary of yCt is identified with P0 .
Let Y 0t denote the resulting flat surface. Observe that Y 0t corresponds to a meromorphic
differential �0t on CP1 which has a unique zero at P0 and the same number of simple
poles as �. It follows that the orienting double cover of .CP1; �0t / is an abelian
differential .Xt ; !t / in the same stratum as .X; !/. We also remark that the double
cover of yCt is a simple cylinder of width to t . We define .X0; !0/ to be .X; !/.
It is now straightforward to check that the family f.Xt ; !t / j t 2 Œ0; �/g satisfies the
properties in the statement of the lemma.

As a byproduct of Lemma 3.4, we also have the following:
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Lemma 3.5 Let s WD s1 [ s2 be a degenerate horizontal cylinder in the surface
.X; !/ 2H.2/tH.1; 1/.

(i) If .X; !/ 2H.2/, then there exist a pair of homologous saddle connections r˙

that cut out a slit torus containing s satisfying the following condition: any
vertical leaf crossing r˙ must intersect s .

(ii) If .X; !/ 2H.1; 1/, then either
(a) there exist a pair of homologous saddle connections r˙ that cut out a slit

torus containing s such that any vertical leaf crossing r˙ must intersect s ,
or

(b) there are two simple cylinders C1;C2 disjoint from s such that any vertical
leaf crossing C1 or C2 must intersect s .

Proof Let us use the same notation as in the proof of Lemma 3.4. Recall that by
slitting open Y along the projections of s1 and s2 , we obtain a flat surface yY whose
boundary is a geodesic loop c based at P0 . One can construct a new flat surface
homeomorphic to the sphere CP1 by “sewing up” c . This operation produces an extra
singular point of angle � at the midpoint of c .

Let Y 0 denote the resulting surface. On Y 0 , we have k � 1 singularities of cone
angles � and a singularity at P0 of cone angle 2� if ! 2H.2/, or 3� if ! 2H.1; 1/.
The loop c corresponds to a segment c0 on Y 0 joining P0 to a singularity of angle � .
Let .X 0; !0/ be the orienting double cover of Y 0 . Then either .X 0; !0/ 2H.0; 0/ or
.X 0; !0/ 2 H.2/. In both cases, c0 gives rise to a saddle connection s0 invariant by
the hyperelliptic involution of X 0 . Note that by construction, we can identify X 0 n s0

with X n s .

Let 'WP!X 0 be the embedded parallelogram associated to s0 introduced in Lemma 2.1.
By construction, ' maps the sides of P to saddle connections on X 0 which do not
intersect s0 in their interior. Thus those saddle connections correspond to some saddle
connections on X . It follows that '.P / � X 0 corresponds to a subsurface of X

containing s . The conclusions of the lemma then follow from a careful inspection on
the boundary of '.P /.

3.3 The cylinder graph

We now define a new subgraph yCcyl.X; !; f / of C.S/ as follows: the vertices of
yCcyl.X; !; f / are free homotopy classes of core curves of cylinders, or free homotopy
classes of degenerate cylinders in X . Elements of yC .1/cyl .X; !; f / are the edges of C.S/
both of whose endpoints are in yC .0/cyl .X; !; f /.
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Let dC denote the distance in C.S/. Recall that by definition each edge of C.S/ has
length equal to one. Let a, b be two simple closed curves on S , and Œa�, Œb� be their
free homotopy classes, considered as vertices of C.S/. We have

dC.Œa�; Œb�/Dmin
˚
leng. / j  is a path in C.S/ from Œa� to Œb�

	
:

We define a distance d in yCcyl.X; !; f / in the same manner, that is, every edge has
length equal to one, and given Œa�; Œb� 2 yCcyl.X; !; f /,

d.Œa�; Œb�/Dmin
˚
leng. / j  is a path in yCcyl.X; !; f / from Œa� to Œb�

	
:

By convention, if there are no paths in yCcyl.X; !; f / from Œa� to Œb�, then we define
d.Œa�; Œb�/D1. The subgraph yCcyl.X; !; f /, called the cylinder graph, will be the
main subject of our investigation in the remainder of this paper. To lighten notation,
when .X; !/ and a marking mapping f W S!X are fixed, we will write Ccyl and yCcyl

instead of Ccyl.X; !; f / and yCcyl.X; !; f /.

Convention In the sequel, a “cylinder” could mean a usual geometric cylinder or a
degenerate one. We will refer to usual geometric cylinders as nondegenerate cylinders.
The term core curve will have the usual meaning for nondegenerate cylinder, for a
degenerate one it just means the cylinder itself.

3.4 Intersection numbers

Let �. � ; � / denote the geometric intersection form on the set of free homotopy classes
of simple closed curves on S . Let a, b be two simple closed curves in S , and Œa�, Œb�
their free homotopy classes, respectively. Recall that Œa� and Œb� are connected by an
edge in C.S/ if and only if �.Œa�; Œb�/D 0.

Assume now that a and b are simple closed geodesics in .X; !/. If a and b are
parallel, then they do not have intersection, hence �.Œa�; Œb�/D 0. If they are not parallel,
then they intersect transversally at every intersection point. By using the bigon criterion
(see [14, Section 1.2.4]), it is not difficult to show that �.Œa�; Œb�/D #fa\ bg. However,
if a or b is a degenerate cylinder then we must be a little more careful since in this
case a or b may be not a simple curve (ie in H.2/), and their intersections are not
always transversal.

To deal with this complication, if a and b are core curves of two cylinders in X (possibly
degenerate), we will fix some parametrizations ˛W S1!X for a, and ˇW S1!X for b

such that ˛ and ˇ are local homeomorphisms onto their images, and the restriction of ˛
(resp. of ˇ ) to S1n˛�1.fsingularities of X g/ (resp. to S1nˇ�1.fsingularities of X g/)
is one-to-one.
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By an intersection of a and b , we will mean a pair .t; t 0/ 2 S1 � S1 such that
˛.t/ D ˇ.t 0/. This intersection is said to be transversal if there exist �; �0 > 0 such
that a1 WD ˛..t � �; t C �// and b1 WD ˇ..t

0 � �0; t 0C �0// are two simple arcs in X ,
a1 intersects b1 transversally at p D ˛.t/ D ˇ.t 0/, and a1 and b1 have no other
intersections. We denote by a\b the set of intersections of a and b , and by a y\b the
subset of transversal intersections.

Lemma 3.6 Let C and D be two cylinders on .X; !/ (both possibly degenerate) that
are not parallel. Let c and d be respectively a core curve of C and a core curve of D .
We denote by Œc� and Œd � the free homotopy classes of c and d , respectively. Let c y\d

denote the set of transversal intersections of c and d . Then we have

�.Œc�; Œd �/D #fc y\ dg:

Since a nontransversal intersection of c and d can only occur at a singularity, it follows
in particular that �.Œc�; Œd �/D #fc \ dg if one of c and d is a regular geodesic.

Proof Let � W � D fz 2 C W jzj < 1g ! X denote the universal cover of X . The
pull-back ��! of ! is a holomorphic 1–form, which defines a flat metric with cone
singularities on �.

Fix a base point x for c and a base point y for d , which are not the singularities of X .
Through any point in ��1.fxg/ (resp. any point in ��1.fyg/), there is a unique lift
of c (resp. a unique lift d ). Since c and d are not necessarily simple curves, a priori
each lift of c and d may not be a simple arc. But this actually does not happen.

Claim 3.7 (i) Each lift of c or of d is a simple arc in �.

(ii) Two lifts of c or of d can meet at at most one point (which is a nontransversal
intersection).

(iii) A lift of c and a lift of d can meet at at most one point.

Proof of the claim Since the argument for the three assertions are the same, we only
give the proof of (iii). Let Qc0 and Qd0 be a lift of c and a lift of d in �, respectively.
Let us assume that Qc0 and Qd0 intersect at two points. There exists then a disc B ��

bounded by a subarc c0� Qc0 and a subarc d0�
Qd0 . Let p; q be the common endpoints

of c0 and d0 , and ˛ and ˇ be respectively the interior angles of B at p and q .
Since c0 and d0 are geodesic segments for the flat metric on �, we have ˛ > 0 and
ˇ > 0 (˛ D 0 or ˇ D 0 means that c and d are parallel).

Let p1; : : : ;pr be the points in @B that correspond to the zeros of ��! and which
are different from p; q . Let �i be the interior angle of B at pi . By the definition of
cylinders, we have �i � � for all i D 1; : : : ; r . Let x1; : : : ;xs be the zeros of ��! in
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int.B/, and O�i be the angles at xi . The Gauss–Bonnet formula gives (see, for instance,
[48, Proposition 1])

sX
iD1

.2� � O�i/C

rX
iD1

.� � �i/C 2� � .˛Cˇ/D 2��.B/D 2�:

Since ˛Cˇ > 0, � � �i � 0 and 2� � O�i < 0, we see that the equality above cannot
be realized. Therefore, B cannot exist, which means that Qc0 and Qd0 can only meet at
at most one point.

Since nontransversal intersections of c and d can only occur at the singularities of X

(zeros of ! ), we can deform c and d slightly in a neighborhood of each zero of !
to get simple closed curves c0 and d 0 in the same free homotopy classes as c and d ,
respectively, such that #fc y\dg D #fc0\d 0g. Claim 3.7 then implies that any lift of c0

in � intersects a lift of d 0 at at most one point and all the intersections are transversal.
It follows from the bigon criterion (see eg [14, Proposition 1.7]) that

�.Œc�; Œd �/D #fc0\ d 0g D #fc y\ dg:

The lemma is then proved.

Remark 3.8 � If C and D are not parallel, we can assume that C is horizontal
and D is vertical. In the case both C and D are degenerate, to compute their inter-
section number, one can use Lemma 3.4 to get a deformation .Xt ; !t / of .X; !/
in which C corresponds to a simple (horizontal) cylinder Ct . In Xt , D corre-
sponds to a vertical cylinder Dt . Consequently, c is freely homotopic to a regular
horizontal geodesic ct in Xt , while d is freely homotopic to a core curve dt

of Dt . It follows from Lemma 3.6 that �.Œc�; Œd �/D �.Œct �; Œdt �/D #fct \ dtg.
� It may happen that two degenerate cylinders in the same direction have a positive

intersection number.

4 Reducing numbers of intersection

In what follows, given two cylinders C;D in X , by �.C;D/ we will mean the geometric
intersection number �.Œc�; Œd �/, where c and d are some core curves of C and D ,
respectively. Our first goal is to estimate the distance in yCcyl using intersection numbers.

Theorem 4.1 There exist two positive constants K1;K2 such that for any ŒX; !; f �
in �T2 , and any cylinders C and D in X (both possibly degenerate) considered as
vertices of yCcyl.X; !; f /, we have

(1) d.C;D/�K1�.C;D/CK2:
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As a direct consequence of inequality (1), we get the following:

Corollary 4.2 The subgraph yCcyl.X; !; f / is connected.

4.1 Reducing to simple cylinders

In what follows, we will fix a point ŒX; !; f � 2�T2 , and use the term “cylinder” to
refer to both degenerate and nondegenerate cylinders. Our first step is to reduce the
problem to the case where C and D are simple cylinders.

Lemma 4.3 Let C be horizontal cylinder that does not fill X , ie C ¤X , and D be
a vertical cylinder. Assume that �.C;D/ > 0. Then there exists a simple cylinder C 0

such that d.C;C 0/� 1 and �.C 0;D/� �.C;D/.

Proof We first consider the case that C is nondegenerate. Let c be a core curve of C

and d a core curve of D . Since c is a regular simple closed geodesic, by Lemma 3.6,
we have �.C;D/D #fc \ dg. Obviously, we only need to consider the case that C is
not simple.

If .X; !/ 2H.2/, then the complement of C is a simple cylinder C 0 whose boundary
is a pair of homologous saddle connections contained in the boundary of C . In
particular, C 0 is also horizontal, and we have �.C;C 0/ D 0, hence d.C;C 0/ D 1.
Any time d crosses C 0 , it must cross C before returning to C 0 . Therefore, we have
�.C 0;D/� �.C;D/.

If .X; !/2H.1; 1/ then the complement of C is either (a) a horizontal simple cylinder,
(b) two disjoint horizontal simple cylinders, or (c) a torus with a horizontal slit. In
case (a) and case (b), the boundaries of the horizontal cylinders in the complement are
contained in the boundary of C . Therefore, it suffices to choose one of them to be C 0 .
In case (c), let .X 0; !0; s0/ be the slit torus which is the complement of C . Note that
the slit s0 corresponds to a pair of homologous saddle connections in the boundary
of C . By Lemma 2.3 we know that X 0 contains a simple cylinder C 0 disjoint from
the slit s0 such that any vertical line crossing C 0 must cross s0 . Since C 0 is disjoint
from C we have d.C;C 0/D 1. Any time d crosses C 0 , it must cross the slit s0 and
hence C . Therefore, we also have �.C 0;D/� �.C;D/.

We now turn to the case that C is degenerate. If .X; !/ 2H.2/, from Lemma 3.5, we
know that C is contained in a slit torus cut out by a pair of homologous saddle connec-
tions r˙ such that every vertical leaf crossing r˙ intersects C . Since .X; !/ 2H.2/,
the complement of the slit torus is a simple cylinder C 0 bounded by r˙ . Clearly,
we have d.C;C 0/D 1. If the core curves of D are regular geodesics (that is, D is
nondegenerate), then we can immediately conclude that �.C 0;D/� �.C;D/. When D

is degenerate, we consider the deformations f.Xt ; !t / j t 2 Œ0; �/g of .X; !/ given by
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Lemma 3.4. For t 2 .0; �/, in .Xt ; !t /, D becomes a simple cylinder Dt , while the
cylinders C and C 0 persist and have the same properties. Since �.C 0;D/D �.C 0;Dt /

and �.C;D/D �.C;Dt /, we also get �.C 0;D/� �.C;D/.

The case .X; !/ 2H.1; 1/ also follows from similar arguments.

Lemma 4.4 Assume that C is a horizontal cylinder that fills X , and D is a vertical
cylinder. Then there exists a simple cylinder C 0 such that

d.C 0;C /D 2; �.C 0;D/� �.C;D/:

Proof Let c be a core curve of C . If .X; !/ 2H.2/ then the complement of C is the
union of three horizontal saddle connections s1; s2; s3 , all invariant by the hyperelliptic
involution. We remark that the union of any two of these saddle connections is a
degenerate cylinder. One can easily find a transverse simple cylinder C 0 containing s1 ,
disjoint from the union s2[ s3 , whose core curves cross c once. Furthermore, we can
choose C 0 such that the horizontal component of its core curves has length smaller
than the length of c . Clearly, we have d.C;C 0/ D 2. Since any vertical geodesic
crossing C 0 crosses also C , we have �.C 0;D/� �.C;D/. Thus the lemma is proved
for this case.

The case .X; !/ 2H.1; 1/ follows from the same arguments.

In what follows, a geodesic line on X that does not contain any singularity is called
regular.

Lemma 4.5 Let C be a horizontal cylinder and D be a vertical cylinder in X . If
there exists a regular vertical leaf which does not cross C , then d.C;D/� 2.

Proof Obviously we only need to consider the case that �.C;D/ > 0. Assume that
there is a regular vertical closed geodesic that does not intersect C . Then there exists
another vertical cylinder D0 which is disjoint from both C and D . Consequently, we
have d.C;D/D 2.

Assume now that there is an infinite regular vertical leaf that does not intersect C .
The closure of this leaf is a subsurface X 0 of X bounded by some vertical saddle
connections. Let s be a saddle connection in the boundary of X 0 . Note that s and �.s/
are homologous. Thus they decompose X into two subsurfaces X1 and X2 both
invariant by � . Since C is invariant by � , it must be contained in one of the subsurfaces,
say X1 . Since s and �.s/ are vertical, the core curves of D cannot cross s and �.s/,
which means that D is also contained in one subsurface. Since we have assumed that
�.C;D/ > 0, D must be contained in X1 .
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The subsurface X2 must be either a slit torus or a surface in H.2/ with a marked saddle
connection. However, the latter case does not occur because it would imply that X1 is
a vertical simple cylinder containing both C and D , which is impossible. Now, by
Lemma 2.3, one can find in the torus X2 a simple cylinder C 0 that does not meet the
slit. Since C 0 corresponds to a simple cylinder of X which is disjoint from both C

and D , and we have d.C;D/D 2. The lemma is then proved.

From Lemmas 4.3, 4.4, we know that if C is not simple then there exists a simple
cylinder C 0 such that d.C;C 0/ � 2 and �.C 0;D/ � �.C;D/. Consequently, we can
find simple cylinders C 0;D0 such that

d.D;D0/� 2; d.C;C 0/� 2; �.C 0;D0/� �.C;D/:

It follows in particular that d.C;D/ � d.C 0;D0/C 4. Therefore, in order to prove
Theorem 4.1, we only need to prove (1) for the case that C and D are simple cylinders.
Moreover, by Lemma 4.5, we can further assume that all the leaves of the foliation in
the direction of D intersect C . Thus, Theorem 4.1 is a consequence of the following:

Proposition 4.6 Let C and D be two simple cylinders such that all the leaves of
the foliation in the direction of D intersect C . Then there always exists a simple
cylinder C 0 such that

(2) d.C 0;C /� 3; �.C 0;D/ < �.C;D/:

To prove this proposition we will make use of the representation of translation surfaces as
polygons in R2 . In Appendix A, we give a uniform construction from symmetric poly-
gons of translation surfaces in genus two satisfying the hypothesis of Proposition 4.6.

4.2 Proof of Proposition 4.6, case H.2/

By using GLC.2;R/, we can assume that C is a horizontal cylinder, and D is vertical.
From Proposition A.1(i), we can construct .X; !/ from a symmetric polygon P WD

.P0 � � �P3Q0 � � �Q3/ in R2 . Note that by construction, the hyperelliptic involution
of X lifts to the central symmetry fixing the midpoint of P0Q0 .

Let X1 , X2 and Y be respectively the vertical projections of P1 , P2 and Q0 on P0P3 .
Let x1;x2;x3;y be respectively the lengths of P0X1;P0X2;P0P3;P0Y . Clearly, we
have 0 � x1 � x2 � x3 and 0 � y � x3 . By cutting and regluing, we see that the
cases y D 0 (Y �P0 ) and y D x3 (Y �P3 ) are equivalent. Therefore we can always
suppose 0< y � x3 .

By symmetry, we can assume that jP1X1j � jP2X2j; see Figure 6. Observe that the
union of the projections of .P0P1P2/ and .Q0Q1Q2/ in X is a cylinder E which is
disjoint from C . Similarly, the union of the projections of .P2P3Q0/ and .Q2Q3P0/
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Figure 6: Finding simple cylinders having fewer intersections with D than
C in the case .X; !/ 2 H.2/ . C is represented by the parallelogram
.P0P3Q0Q3/; D is supposed to be vertical.

is also a cylinder F in X , which is disjoint from E . Observe that by assumption, E

is always a simple cylinder, but F can be a degenerate one (that is, when both P2P3

and P3Q0 are vertical). Note that we have d.C;E/D 1 and d.C;F /D 2.

Let d be a core curve of D and yd be the preimage of d in P . We remark that yd is a
(finite) union of vertical segments with endpoints in the boundary of P and none of
the vertices of P is contained in yd . We first consider the generic case, where none of
the sides of P is vertical. By assumption, we have

0< x1 < x2 < x3 and 0< y < x3:

We have three possibilities:

(a) x2 � y < x3 We observe that if a vertical line intersects P0P2 or P2Q0 then it
must intersect P0X2 or X2Y , respectively. Thus, we have

#f yd \P0P3g � #f yd \P0P2gC #f yd \P2Q0g:

It follows that at least one of the following inequalities is true:

#f yd \P0P2g< #f yd \P0P3g ) �.E;D/ < �.C;D/;

#f yd \P2Q0g< #f yd \P0P3g ) �.F;D/ < �.C;D/:

Therefore, in this case, we can choose C 0 to be either E or F .

(b) x1 � y < x2 In this case, the parallelogram .P0P1Q0Q1/ is contained in P ,
thus it projects to a simple cylinder G in X , which is disjoint from F . In particular,
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we have d.G;C /� 3. We now observe that

#f yd \X1X2g D #f yd \P1Q0gC #f yd \P2Q0g � #f yd \P0P3g:

Therefore, at least one of the following inequalities is true �.F;D/ < �.C;D/ or
�.G;D/ < �.C;D/. Hence we can choose C 0 to be either F or G .

(c) 0 < y < x1 We will show that in this case �.G;D/ < �.C;D/. Let Z be
the vertical projection of P0 to Q0Q3 . We choose a core curve d of D which is
contained in the �–neighborhood of the left boundary of D , with � > 0 small. The left
boundary of D is a vertical saddle connection, thus it contains (the projection of) one
of the following segments: P0Z;P1X1;P2X2 . It follows that yd contains a vertical
segment yd0 which is �–close to one of P0Z;P1X1;P2X2 from the right. Observe
that yd0 always intersects P0P3 , but when � is chosen to be small enough, yd0 does not
intersect P1Q0 . Since any vertical segment in P intersecting P1Q0 must intersect
YX1 � P0P3 , it follows that �.G;D/ < �.C;D/, and we can choose C 0 to be G .

It remains to show that the same arguments work in the degenerating situations, that
is, when one of the sides of P is vertical. First, let us suppose that P2P3 is vertical,
ie x2 D x3 .

� If yD x3 , then F becomes a degenerate cylinder. Clearly F and D are disjoint
since they are both vertical. Therefore d.C;D/� d.C;F /C 1� 3, hence we
can choose C 0 to be D .

� If 0 < y < x3 , then case (a) and case (b) follow from the same arguments.
For case (c), we observe that the left boundary of D is not invariant by the
hyperelliptic involution, and P2P3 projects to an invariant saddle connection.
Therefore yd0 is either �–close to P0Z or P1X1 . Hence we can use the same
argument to conclude that �.G;D/ < �.C;D/ and we can choose C 0 to be G .

Other degenerations are easy to deal with in similar manner; details are left for the
reader.

4.3 Proof of Proposition 4.6, case H.1; 1/

Using the notation in Proposition A.1(ii), we know that .X; !/ is obtained from a
decagon P WD .P0 � � �P4Q0 � � �Q4/�R2 . Our arguments depend on the properties of
this decagon. We have three different models for P (see Figure 7): (I) both int.P0P2/

and int.P2P4/ are contained in int.P /, (II) only one of int.P0P2/ and int.P2P4/ is
contained in int.P /, and (III) none of int.P0P2/ and int.P2P4/ is contained in int.P /.
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Figure 7: Finding a simple cylinder with fewer intersections with D

than C in the case .X; !/2H.1; 1/ . C is represented by the parallelogram
.P0P4Q0Q4/ , D is supposed to be vertical.

Let X1 , X2 , X3 and Y be respectively the vertical projections of P1 , P2 , P3 and Q0

on P0P4 . The lengths of P0Xi , P0P4 and P0Y are denoted by xi , x4 and y ,
respectively. As in the previous case, we have 0 � xi � xiC1 , i D 1; 2; 3, and
0< y � x4 . Let d be a core curve of D , and yd its preimage in P .

4.3.1 Model I In this model, the sets .P0P1P2/ [ .Q0Q1Q2/ and .P2P3P4/ [

.Q2Q3Q4/ project to two disjoint simple cylinders in X which will be denoted by E

and F , respectively. Note that d.C;E/D d.C;F /D 1. Clearly, we have

#f yd \P0P4g D #f yd \P0P2gC #f yd \P2P4g ) �.C;D/D �.E;D/C �.F;D/:

Therefore, we can pick C 0 to be E or F .

4.3.2 Model II By symmetry, we only need to consider the case that int.P0P2/�

int.P /, and int.P2P4/ 6� int.P /. Let E be the simple cylinder on X which is the
projection of .P0P1P2/[ .Q0Q1Q2/. Let F be the cylinder which is the projection
of .P3P4Q0/[ .Q3Q4P0/. We have d.C;E/D 1 and d.C;F /D 2.

We first consider the generic situation, that is, 0<xi<xiC1 , iD1; 2; 3, and 0<y<x4 .
Note that in this situation F is a simple cylinder. We have three cases: (a) x2� y < x4 ,
(b) x1�y<x2 and (c) 0<y<x1 . In all of these cases, one can find a simple cylinder
having the desired property by the same arguments as the case that .X; !/ 2H.2/.

Consider now the degenerating situations: (1) P0P1 is vertical, equivalently x1 D 0;
(2) P1P2 is vertical, equivalently x1D x2 ; (3) P2P3 is vertical, equivalently x2D x3 ;
(4) P3P4 is vertical, equivalently x3 D x4 ; (5) Y � P4 , equivalently y D x4 . If (4)
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or (5) does not occur then F is always a simple cylinder, hence the arguments above
apply. If (4) and (5) hold then F is a vertical degenerate cylinder. Since F must be
disjoint from D , we have d.C;D/� 3. Therefore, we can choose C 0 to be D .

4.3.3 Model III In this case P2 must be the highest point of P , and P1P3 must
be contained in P . Consequently, the union .P1P2P3/[ .Q1Q2Q3/ projects to a
simple cylinder E in X . Let F denote the cylinder in X which is the projection of
.P3P4Q0/[ .Q3Q4P0/. We remark that d.C;E/ D 1 and d.C;F / D 2. It is not
difficult to see that the same arguments as the previous cases also allow us to get the
desired conclusion.

4.4 Proof of Theorem 4.1

By Lemmas 4.3 and 4.4, we know that there exist two simple cylinders C 0 and D0

such that
�.C 0;D0/� �.C;D/ and d.C;D/� d.C 0;D0/C 4:

It follows from Lemma 4.5 and Proposition 4.6 that d.C 0;D0/ � 3�.C 0;D0/ C 2.
Therefore

d.C;D/� 3�.C;D/C 6:

5 Infinite diameter

In this section we prove the following proposition.

Proposition 5.1 For any .X; !/ 2 H.2/tH.1; 1/, the diameter of yCcyl.X; !; f / is
infinite.

The geometry of the curve complex is closely related to the Teichmüller space T .S/.
Recall that given a simple closed curve  on S , for any x 2 T .S/ the extremal length
Extx. / of  is defined to be

Extx. /D suphj
�
j
2
h;

where h ranges over the set of Riemannian metrics of area one in the conformal class
of x , and j �jh is the length of the shortest curve (with respect to h) in the homotopy
class of  . Alternatively, one can define Extx. / to be the inverse of the largest
modulus of an annulus homotopic to  on S . There is a natural coarse mapping ˆ
from T .S/ to C.S/ defined as follows: we assign to each x 2 T .S/ a curve of minimal
x–extremal length on S . It is a well-known fact (see [33, Lemma 2.4]) that there is a
universal constant c depending only the topology of S , such that the diameter of the
subset of C.S/ consisting of simple curves having minimal x–extremal length is at
most c for any x 2 T .S/.
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Teichmüller geodesics in T .S/ through x are the projections of the lines at � q , where q

is a holomorphic quadratic differential on S equipped with the conformal structure x ,
and

at D

�
et 0

0 e�t

�
; t 2R:

It is proven in [33] that if LqW R! T .S/ is a Teichmüller geodesic, then ˆ.Lq.R//
is an unparametrized quasigeodesic in C.S/. It may happen that this quasigeodesic
has finite diameter.

The curve graph C.S/ has infinite diameter; see [33]. Klarreich [27] shows that the
boundary at infinity @1C.S/ of C.S/ can be identified with the space of topological
minimal foliations Fmin.S/ on S . Recall that a foliation on S is minimal if it has
no leaf which is a simple closed curve, here we consider foliations up to isotopy and
Whitehead moves. A characterization of sequences of curves converging to a foliation
in @1C.S/ is given by Hamenstädt [16]. It follows from this result that if the vertical
foliation of q are minimal then ˆ ıLq.Œ0;1// is a quasigeodesic of infinite diameter
in C.S/; see [17; 18].

Recall that a geometric (nondegenerate) cylinder on a translation surface is modeled by
R� .0; h/=..x;y/� .xC c;y//, where c > 0 is its circumference and h is its width.
Vorobets [50], developing Smillie’s ideas in [45], showed the following:

Theorem 5.2 (Smillie and Vorobets) Given any stratum H.�/ of translation surface,
there exists a constant K > 0 depending on � such that, on every translation surface of
area one in H.�/, one can find a geometric cylinder of width bounded below by K .

Proposition 5.1 follows easily from this and the results of Klarreich and Hamenstädt.

Proof of Proposition 5.1 Using the action of GLC.2;R/, we can always assume that
Area.X; !/ D 1 and the vertical foliation of .X; !/ is minimal. Let LW R! T .S/
be the Teichmüller geodesic defined by q D !2 . By the results of Klarreich and
Hamenstädt, the quasigeodesic ˆ ıL.R>0/ has infinite diameter.

Denote by dC the distance in C.S/, and by d the distance in yCcyl.X; !; f /. For any
pair .˛; ˇ/ in yCcyl.X; !; f /, we have dC.˛; ˇ/� d.˛; ˇ/.

For each t 2R, let .Xt ; !t / WDat �.X; !/. For anyR2R>0 there exist t1; t22 .0;C1/

such that dC.ˆ ıL.t1/; ˆ ıL.t2// � R. Let ˛i WD ˆ ıL.ti/. By Theorem 5.2 we
know that there is a geometric cylinder Ci of width bounded below by K in .Xti

; !ti
/.

Let ˇi be a core curve of Ci .

The extremal length of ˛i in Xi is bounded by a universal constant e0.S/; see eg [39,
Lemma 2.1]. Thus by definition, the length of the shortest curve ˛�i in the homotopy
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class of ˛i with respect to !ti
is bounded by e0.S/. Since the width of Ci is at

least K , we have #f˛�i \ˇig � e0.S/=K , which implies that �.Œ˛i �; Œˇi �/� e0.S/=K .

It is well known that the distance in C.S/ is bounded by a linear function of the
intersection number; see eg [33, Lemma 2.1] or [6, Lemma 1.1]. Thus there is a
constant M depending only on S such that dC.Œ˛i �; Œˇi �/�M . Therefore, we have

dC.Œˇ1�; Œˇ2�/� dC.Œ˛1�; Œ˛2�/�dC.Œ˛1�; Œˇ1�/�dC.Œ˛2�; Œˇ2�/�R� 2M:

Since d.C1;C2/D d.Œˇ1�; Œˇ2�/� dC.Œˇ1�; Œˇ2�/, the proposition follows.

6 Automorphisms of the cylinder graph

Let AffC.X; !/ denote the group of affine automorphisms of .X; !/. Recall that
elements of AffC.X; !/ are orientation-preserving homeomorphisms of X that preserve
the zero set of ! , and are given by affine maps in local charts of the flat metric out
side of this set; see [25; 35]. Note that the derivative of such a map (in local charts
associated to the flat metric) is a constant matrix in SL.2;R/. Thus we have a group
homomorphism DW AffC.X; !/ ! SL.2;R/ which associates to each element of
AffC.X; !/ its derivative. The image of D in SL.2;R/ is called the Veech group of
.X; !/ and usually denoted by SL.X; !/. Note that the kernel of D is contained in
the group Aut.X / of automorphisms of X , thus must be finite. The group SL.X; !/
can also be viewed as the stabilizer of .X; !/ for the action of SL.2;R/.

Given a point ŒX; !;f �2�T2 , via the markingf W S!X , one can identify AffC.X; !/
with a subgroup of the mapping class group Mod.S/ of S ; see [35, Section 5]. An
element of Mod.S/ induces naturally an automorphism of the curve graph C.S/. It is a
well-known fact that every automorphism of C.S/ arises from an element of Mod.S/;
see [24; 31]. Since an affine homeomorphism maps cylinders into cylinders, and saddle
connections into saddle connections, it is clear that any element of AffC.X; !/ induces
an automorphism of the subgraph yCcyl.X; !; f /. The aim of this section is to show
the following.

Proposition 6.1 Let � be an element of Mod.S/ which preserves the subgraph
yCcyl.X; !; f /, that is, �.yCcyl.X; !; f // � yCcyl.X; !; f /. Then � is induced by an
affine automorphism in AffC.X; !/. In particular, � realizes an automorphism of
yCcyl.X; !; f /.

Remark 6.2 Proposition 6.1 is equivalent to the following statement: if  W X !X

is a homeomorphism such that for any regular simple closed geodesic or degener-
ate cylinder c ,  .c/ is freely homotopic to the core curves of a cylinder (possibly
degenerate) on X , then  is isotopic to an affine automorphism of .X; !/.
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The proof of this proposition essentially follows from the arguments of [13, Lemma 22].
Before getting into the proof, let us recall some basic notions of Thurston’s compactifi-
cation of the Teichmüller space. Let MF.S/ denote the space of measured foliations
on S . The space of projective measured foliations denoted by PMF.S/ is naturally
the quotient of MF.S/ by R�C . Thurston showed that PMF.S/ can be identified
with the boundary of T .S/. A foliation is minimal if none of its leaves is a closed
curve. A (measured) foliation is uniquely ergodic if it is minimal and there exists a
unique transverse measure up to scalar multiplication.

The set of (free homotopy classes of) simple closed curves in S (that is, the vertex
set of C.S/) is naturally embedded in MF.S/ with the transverse measure being
the counting measure of intersections. The geometric intersection number �. � ; � /
defined on the set of pairs of simple closed curves extends to a continuous symmetric
function �WMF.S/�MF.S/! Œ0;C1/ which satisfies �.a�; b�/D ab�.�; �/, for
all a; b 2 Œ0;C1/ and �;� 2MF.S/. It has been shown by Thurston that the set

f.0;C1/ �˛ j ˛ is a simple closed curveg
is dense in MF.S/.

Two measured foliations are topologically equivalent if the corresponding topological
foliations are the same up to isotopy and Whitehead moves.

Proposition 6.3 [44] If � is a minimal measured foliation, and �.�; �/D 0, then �
and � are topologically equivalent.

Measured foliations are a special case of more general objects called geodesic currents
which were introduced by Bonahon; see [3; 4]. We refer to [13] for an introduction to
this concept with more details. While the space of measure foliations is the completion
of the set of simple closed curves, the space of geodesic currents, denoted by C.S/, can
be viewed as the completion of closed curves on S . In particular, we have a continuous
extension of the intersection number function � to C.S/�C.S/. A characterization of
measured foliations in the space of geodesic currents was given by Bonahon:

Proposition 6.4 [3, Proposition 4.8] MF.S/ is exactly the set of geodesic currents
with zero self-intersection, that is,

MF.S/D f� 2 C.S/ j �.�; �/D 0g:

We will also need the following important feature of geodesic currents, due to Bonahon:

Proposition 6.5 [4, Proposition 4] Let ˛ be a geodesic current with the following
property: every geodesic in zS transversely meets another geodesic in the support of ˛ .
Then the set ˇ 2 C.S/ such that �.˛; ˇ/� 1 is compact in C.S/.
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Note that if � is a minimal foliation, then the corresponding geodesic current satisfies
the hypothesis of Proposition 6.5.

Every holomorphic 1–form .X; !/ (or more generally every holomorphic quadratic dif-
ferential) defines naturally two measured foliations on X . The leaves of these foliations
are respectively vertical and horizontal geodesic lines with the transverse measures
given by jRe!j and jIm!j. It is also a well-known fact that, if � and � are two
uniquely ergodic measured foliations jointly filling up S , that is, for any � 2MF.S/,
we have �.�; �/C �.�; �/ > 0, then there is a unique Teichmüller geodesic g that
joins Œ�� and Œ��, where Œ�� and Œ�� are the projections of � and � in PMF.S/.
As a consequence, assume that .X1; !1/ and .X2; !2/ are two holomorphic 1–forms
that both satisfy the following condition: the vertical foliation of !i is topologically
equivalent to �, and the horizontal foliation is topologically equivalent to �. Then
there exists a diagonal matrix

AD

�
et 0

0 es

�
2 GLC.2;R/

such that .X2; !2/DA � .X1; !1/.

Proof of Proposition 6.1 By definition, � � ŒX; !; f �D ŒX; !; f ı��1�. Equivalently,
we can write � � ŒX; !; f �D ŒX 0; !0; f 0�, where f 0W S ! X 0 satisfies the following
condition: there exists an isomorphism y�W X 0!X such that y��! D !0 , and f ı��1

is isotopic to y� ıf 0 . Using this identification, we have

yCcyl.X
0; !0; f 0/D �.yCcyl.X; !; f //:

Thus, by assumption, we have yCcyl.X
0; !0; f 0/� yCcyl.X; !; f /.

Via the maps f W S !X , f 0W S !X 0 , for any direction � 2RP1 , we denote by ��

and �0 � the measured foliations on S corresponding to the vertical foliations defined
by ei�! and ei�!0 , respectively. The leaves of �� and �0 � are geodesic lines in the
direction of ˙.�=2��/. Observe that if f�kg is a sequence of angles converging to � ,
then ��k converges to �� , and �0 �k converges to �0 � in MF.S/.

It follows from a classical result of Kerckhoff, Masur and Smillie [26] that for almost
all directions � 2RP1 , �� and �0 � are uniquely ergodic. Set

UE.!/ WD fŒ�� � 2 PMF.S/ j �� is uniquely ergodic, � 2RP1
g � PMF.S/:

We define UE.!0/ in the same manner.

We will show that UE.!0/ � UE.!/. Let � be a direction such that �0 � is uniquely
ergodic. Without loss of generality, we can assume that Area.X /D 1. For any t 2R,
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set

.X 0 �t ; !0 �t / WD

�
et 0

0 e�t

�
� .X 0; ei�!0/:

It follows from Theorem 5.2 that there exists a constant R> 0 such that for any t 2R,
X 0 �t has a cylinder C 0t with circumference bounded by R. Let c0t be a core curve
of C 0t , and consider the sequence fc0

k
gk2N . By definition, the length of c0

k
with respect

to !0 �
k

, denoted by `!0�
k
.c0

k
/, is bounded by R. Thus we have

�.ek�0 � ; c0k/D ek �.�0 � ; c0k/� `!0�
k
.c0k/�R:

It follows that
lim

k!C1
�.�0 � ; c0k/D 0:

By Proposition 6.5, up to extracting a subsequence, we can assume that fc0
k
g converges

to a geodesic current �0 2 C.S/. Since c0
k

has zero self-intersection, it follows that
�.�0; �0/ D 0, hence �0 2MF.S/ by Proposition 6.4. By continuity of �, we have
�.�0 � ; �0/D 0. Since �0 � is uniquely ergodic (so, in particular, it is minimal), it follows
from Proposition 6.3 that �0 and �0 � are topologically equivalent. Hence �0 is also
uniquely ergodic.

By definition, fc0kgk2N are vertices of yCcyl.X
0; !0; f 0/. By assumption, we have

yCcyl.X
0; !0;f 0/� yCcyl.X; !;f /. Therefore, fc0

k
gk2N are also vertices of yCcyl.X; !;f /,

which means that c0
k

is freely homotopic to either a simple closed geodesic or a
degenerate cylinder in X . In particular, we see that each c0

k
has a well-defined

direction �k 2 RP1 with respect to ! . Again, by extracting a subsequence, we can
assume that f�kg converges to O� . Thus, f��k g converges to �

O� . Since we have
�.��k ; c0

k
/ D 0, by continuity, it follows that �.� O� ; �0/ D 0. Since �0 is uniquely

ergodic, so is � O� , and we have Œ�0 � �D Œ�0�D Œ� O� � 2PMF.S/. We can then conclude
that UE.!0/� UE.!/.

Now pick a pair of projective uniquely ergodic measured foliations .Œ��; Œ��/2UE.!0/�
UE.!/ that jointly fill up S . There exist two matrices M and M 0 such that the
vertical and horizontal foliations of M �ŒX; !; f � and M 0 �ŒX 0; !0; f 0� are topologically
equivalent to � and �, respectively. Since there is a unique Teichmüller geodesic joining
Œ�� and Œ��, there exists a diagonal matrix A 2GLC.2;R/ such that M 0 � ŒX 0;!0;f 0�D

AM �ŒX;!;f �, implying that � is represented by an affine automorphism of .X; !/.

Remark 6.6 This proof actually works for translation surfaces in any genus with yCcyl

replaced by the subgraph consisting of nondegenerate cylinders.
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7 Hyperbolicity

A translation surface .X; !/ is said to be completely periodic (in the sense of Calta)
if the direction of any nondegenerate cylinder in X is periodic, which means that
whenever we find a simple closed geodesic on X , the surface decomposes as union of
(finitely many) cylinders in the same direction; see [10; 11]. It follows from [10] and
[38] that, in H.2/, a surface is completely periodic if and only if it is a Veech surface.
In H.1; 1/, a surface is completely periodic if and only if it is an eigenform for a real
multiplication of a quadratic order. In particular, there are completely periodic surfaces
in H.1; 1/ that are not Veech surfaces.

Let us denote by ED , where D is a natural number such that D � 0 or 1 mod 4, the
locus of eigenforms for the real multiplication by the quadratic order OD in �M2 .
Each ED is a 3–dimensional irreducible (algebraic) subvariety of �M2 which is
invariant by the SL.2;R/–action. The set of eigenforms in �M2 is then (see [38])

E D
[

D�0;1 mod4

ED :

Even though complete periodicity is initially defined for directions of nondegenerate
cylinders, it is not difficult to show that in the case of genus two, this property actually
implies the periodicity for directions of degenerate cylinders; see Lemma B.1. Alter-
natively, one can also use the argument in [51] to get the same result in more general
contexts; see [52]. In what follows, by a completely periodic surface we will mean
a surface for which the direction of any cylinder (degenerate or not) is periodic. By
Lemma B.1, this apparently new definition agrees with the usual one by Calta. Our
goal in this section is to show the following theorem:

Theorem 7.1 If .X; !/ 2 H.2/tH.1; 1/ is completely periodic then yCcyl.X; !; f /

is Gromov hyperbolic.

To prove this, we will use Masur and Schleimer’s hyperbolicity criterion (see also [7,
Proposition 3.1] and [15]), and follow Bowditch’s approach in [6].

Theorem 7.2 (Masur and Schleimer [34, Theorem 3.13]) Suppose that X is a graph
with all edge lengths equal to one. Then X is Gromov hyperbolic if there is a constant
M � 0 such that for all unordered pairs of vertices x;y in X 0 , there is a connected
subgraph gx;y containing x and y with the following properties:

� (local) If dX .x;y/ � 1 then gx;y has diameter at most M .

� (slim triangle) For any x;y; z 2 X 0 , the subgraph gx;y is contained in the
M –neighborhood of gx;z [gz;y .
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Let us fix ŒX; !; f � 2�T2 , where .X; !/ 2 E and Area.X; !/D 1. We will write yCcyl

instead of yCcyl.X; !; f /. We know from Corollary 4.2 that yCcyl is connected, and
by definition the edges of yCcyl have length equal to one. Let K be the constant in
Theorem 5.2, and C be a cylinder of width bounded below by K in X . Note that
the circumference of C is bounded above by 1=K . Recall that from Theorem 4.1, we
know that there are two constants K1;K2 such that for any pair of cylinders C;D

in X , we have
d.C;D/�K1�.C;D/CK2;

where d is the distance in yCcyl.X; !; f /, and �.C;D/ is the number of intersections
of a core curve of C and a core curve of D .

7.1 Construction of subgraphs connecting pairs of vertices

We will now construct for each unordered pair of cylinders C;D a subgraph yLC;D

of yCcyl that satisfies the conditions of Theorem 7.2 with a constant M which will be
derived along the way.

Let us first consider the case that C and D are parallel. If C or D is nondegenerate
then �.C;D/D 0 hence d.C;D/D 1, which means that C and D are connected by
an edge in yCcyl . We define yLC;D to be this edge. If both C and D are degenerate
then it may happen that �.C;D/ > 0. Since .X; !/ is completely periodic, there is a
nondegenerate cylinder E parallel to C and D . Since �.C;E/D �.D;E/D 0, there
are in yCcyl two edges connecting E to C and to D . In this case, we define yLC;D to
be the union of these two edges.

Assume from now on that C and D are not parallel. By applying an appropriate
element of SL.2;R/, we can assume that C is horizontal, D is vertical, and C and D

have the same circumference. For any t 2R, set

at D

�
et 0

0 e�t

�
and .Xt ; !t /D at � .X; !/:

For any saddle connection s in .X; !/, we will denote by `t .s/ its Euclidean length
in .Xt ; !t /. If E is a cylinder in .X; !/, then ct .E/ and wt .E/ are respectively its
circumference and width in .Xt ; !t /.

For any R 2R>0 , let L�
C;D

.t;R/ denote the set of cylinders (possibly degenerate) of
circumference bounded above by R in .Xt ; !t /. Note that this set is finite. Let us
choose a constant L1 such that

(3) L1 >maxf1=K; 9g;
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and define
L�C;D.L1/D

[
t2R

L�C;D.t;L1/:

We regard L�
C;D

.t;R/ and L�
C;D

.L1/ as subsets of yC .0/cyl . Observe that L�
C;D

.t;L1/

contains C when t tends to �1, and contains D when t tends to C1; therefore
L�

C;D
contains C and D .

For each t 2R, consider now the set L�
C;D

.t; 2L1/. From Theorem 5.2, L�
C;D

.t; 2L1/

contains a vertex corresponding to a cylinder C0;t of width bounded below by K . Set

(4) M1 WDmaxf2.2K1L1=KCK2/; 2g:

Then we have the following lemma:

Lemma 7.3 As subset of yCcyl , L�C;D.t; 2L1/ has diameter bounded by M1 .

Proof Let E be a cylinder in L�
C;D

.t; 2L1/. If �.E;C0;t / D 0, then we have
d.C0;t ;E/ D 1. Otherwise we have K�.E;C0;t / � `t .E/ � 2L1 . Hence, from (1)
we get

d.C0;t ;E/� 2K1L1=KCK2;

and the lemma follows.

Moreover, we have the following lemma as well:

Lemma 7.4 Assume that the surface .X; !/ admits cylinder decompositions in both
vertical and horizontal directions. Then there exists a constant T > 0 such that the
following hold:

� If t > T , then L�
C;D

.t; 2L1/ only contains the vertical cylinders in .X; !/ and
L�

C;D
.t; 2L1/ has diameter at most 2.

� If t < �T , then L�
C;D

.t; 2L1/ only contains the horizontal cylinders in .X; !/
and L�

C;D
.t; 2L1/ has diameter at most 2.

Proof We only give the proof of the first assertion as the second one follows from the
same argument. By assumption, X decomposes into the union of some nondegenerate
vertical cylinders D1; : : : ;Dk . Let wt .Di/ denote the width of Di in .Xt ; !t /. Let
wt Dminfwt .Di/ j i D 1; : : : ; kg. A nonvertical cylinder must cross one of Di , thus
its circumference is bounded below by wt in .Xt ; !t /. Since we have wt D etw0 ; if t

is large enough, any nonvertical cylinder has circumference at least 2L1 in .Xt ; !t /.
Hence L�

C;D
.t; 2L1/ only contains the vertical cylinders. Since any vertical cylinder

is of distance one from D1 in yCcyl , L�C;D.t; 2L1/ has diameter at most two.
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Lemma 7.5 If t � log.2/� t 0 � t C log.2/ then L�
C;D

.t 0;R/� L�
C;D

.t; 2R/ for any
R 2R>0 . In particular, C0;t 0 2 L�

C;D
.t; 2L1/.

Proof Let s be a saddle connection or a regular geodesic in .Xt 0 ; !t 0/. Let xC iy be
the period of s in .Xt 0 ; !t 0/. Note that .Xt ; !t /D at�t 0 � .Xt 0 ; !t 0/. Thus the period
of s in .Xt ; !t / is .et�t 0

x; et 0�ty/. Therefore,

`t .s/D
p

e2.t�t 0/x2C e2.t 0�t/y2 � 2
p

x2Cy2 D 2`t 0.s/:

Set
LC;D.2L1/ WD

[
k2Z

L�C;D.k log.2/; 2L1/� yC .0/cyl :

It follows from Lemma 7.4 that if n 2 N is large enough, then for any m > n,
L�

C;D
.m;L1/D L�

C;D
.n; 2L1/, and L�

C;D
.�m; 2L1/D L�

C;D
.�n; 2L1/. Therefore,

the set LC;D.2L1/ is actually finite. For each unordered pair .x;y/ of vertices in
LC;D.2L1/, let �.x;y/ be a path of minimal length in yCcyl joining x to y . Set

yLC;D.2L1/D
[

x;y2LC;D.2L1/

�.x;y/:

As a direct consequence of Lemma 7.5, we get the following:

Corollary 7.6 (a) If x 2 L�
C;D

.t; 2L1/ and y 2 L�
C;D

.t 0; 2L1/, then d.x;y/ �

M1.2Cjt � t 0j=log.2//.

(b) The set L�
C;D

.L1/ is contained in LC;D.2L1/ and LC;D.2L1/ is contained in
the M1 –neighborhood of L�

C;D
.L1/.

(c) For any pair of vertices .x;y/ 2 L�
C;D

.L1/�L�C;D.L1/, there is a path �.x;y/
in yLC;D.2L1/ from x to y of length equal to d.x;y/.

7.2 The local property for yLC;D

We will now show that the subgraphs yLC;D.2L1/ constructed above satisfy the local
property of Theorem 7.2.

Proposition 7.7 There exists a constant M2 such that if .X; !/ 2 E then for any pair
of cylinders C;D in .X; !/ such that �.C;D/D 0, we have diam yLC;D.2L1/�M2 .

To prove this proposition, we make use of an elementary result on slit tori, Lemma B.3,
and the fact that if C and D are not parallel, then there always exists a splitting of X

into two subsurfaces, each of which contains one of C and D . Those auxiliary results
are proved in Appendix B. The main technical difficulties arise when we have to deal
with degenerate cylinders.
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D

C

Figure 8: Disjoint simple cylinders on surfaces in H.2/

Proof We split this proof into two cases: .X; !/ 2H.2/ and .X; !/ 2H.1; 1/.

Case .X; !/2H.2/ If C and D are parallel then yLC;D.2L1/ has diameter bounded
by 2 and we have nothing to prove. Suppose from now on that C is horizontal, D

is vertical, C and D have the same circumference equal to `, and yLC;D.2L1/ is the
graph constructed above. Note that in this case .X; !/ is a Veech surface, thus both
horizontal and vertical directions are periodic.

Case 1 One of C or D is nondegenerate. Assume that C is nondegenerate. Let c be
a core curve of C and d a core curve of D . Note that c is a regular simple closed
geodesic. By Lemma 3.6, the condition �.C;D/D 0 implies that c \ d D¿. Clearly,
C cannot fill X . If C is not simple then the complement of C is a horizontal simple
cylinder C 0 whose boundary is contained in the boundary of C . Since D is disjoint
from C , it must be contained in C 0 . But this is impossible since C 0 is horizontal and
D is vertical. Therefore, C must be a simple cylinder.

The complement of C is then a slit torus with the slit corresponding to the boundary
of C . We remark that a core curve of D must be disjoint from the interior of the
slit, otherwise it would cross C entirely. Thus, we have in the slit torus an embedded
square bounded by the boundary of D and the slit (which is actually the boundary
of C ); see Figure 8. By assumption, the length of the sides of this square is `. Since
this square has area less than one, we must have ` < 1. Therefore C 2 L�

C;D
.t;L1/

for all t � 0, and D 2 L�
C;D

.t;L1/ for any t � 0. Hence any E 2 LC;D.2L1/ is of
distance at most M1 from C or from D . Thus diam yLC;D.2L1/� 2M1C 1.

Case 2 Both of C and D are degenerate. From Lemma 3.4, for any � > 0 small
enough, we can deform .X; !/ into another surface .X 0; !0/ such that

� C corresponds to a simple horizontal cylinder C 0 in X 0 of width � ,
� D corresponds to a vertical cylinder in X 0 .

Since �.C 0;D0/D �.C;D/D 0, it follows from Lemma 3.6 that D0 must be disjoint
from C 0 . It follows in particular that D and D0 have the same circumference `. By
construction C 0 has the same circumference as C , and

Area.X 0; !0/D Area.X; !/C �`D 1C �`:
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P 00

Figure 9: Disjoint cylinders on surfaces in H.1; 1/: one of C and D is simple

Applying the same arguments as above to .X 0; !0/, we see that X 0 contains an embed-
ded square of size ` disjoint from C 0 . Therefore we have `2 < 1C �`. Since � can be
chosen arbitrarily, we derive that `� 1. We can then conclude by the same arguments
as the previous case.

Case .X; !/ 2H.1; 1/ Again, we only have to consider the case that C and D are
not parallel. Thus we can assume that C is horizontal and D is vertical. We first
choose a positive real number L>

p
2 such that

(5) L1 � 3f .
p

2L/;

where f .x/D
p

x2C 1=x2 ; see Lemma B.3.

Case 1 One of C and D is a simple cylinder. By Lemma B.2, we need to consider
two cases (see Figure 9):

(i) There is a simple cylinder E disjoint from C[D and the complement of C[D[E

is the union of two triangles T ;T 0 ; see Figure 9 (left). Since we have

Area.T /CArea.T 0/D `2 < Area.X; !/D 1;

it follows that `< 1. Hence we can use the same argument as in the case .X; !/2H.2/
to conclude that diam yLC;D.2L1/� 2M1C 1.

(ii) There is a pair of homologous saddle connections s1; s2 that decompose X

into a connected sum of two slit tori, .X 0; !0; s0/ containing C and .X 00; !00; s00/

containing D ; see Figure 9 (right).

By construction, the complement of C in X 0 is an embedded parallelogram P 0

bounded by s1; s2 and the boundary of C . Similarly, the complement of D in X 00

is also an embedded parallelogram P 00 bounded by s1; s2 and the boundary of D .
If `� 1 then we can conclude using the argument above. Suppose that we have `� 1.
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Let !.si/D xC iy . Since we have Area.P 0/D jyj`, and Area.P 00/D jxj`, it follows
that

maxfjxj; jyjg � 1=`� 1 and jsi j D
p

x2Cy2 �
p

2=`�
p

2:

Set A1 DArea.X 0; !0/, A2 DArea.X 00; !00/; we have A1CA2 D 1. Without loss of
generality, let us suppose that A1 �

1
2

. For any t 2R, the period of si in .Xt ; !t / is
.etx; e�ty/. Let .X 0t ; !

0
t ; s
0
t / be the slit torus corresponding to .X 0; !0; s0/ in .Xt ; !t /.

Recall that we have chosen L>
p

2 and L1 satisfies (5). Let us choose a positive real
number L0 � 1 such that

L�
p

L02C 1:

� For 0� t � log.`L0/, we have et jxj �L0 and e�t jyj � jyj � 1, thus

`t .s1/�
p

L02C 1�L:

Rescaling .X 0t ; !
0
t ; s
0
t / by 1=

p
A1 , we get a torus of area one with a slit of length

bounded by
p

2L. Using Lemma B.3, we see that there exists in .1=
p

A1 / �X
0
t

a cylinder E0t disjoint from the slit of circumference bounded by L1 . Note
that in X 0t , the circumference of E0t is at most

p
A1L1 � L1 . We have

d.D;E0t / D 1 and E0t 2 L�
C;D

.t; 2L1/. Thus for any E 2 L�
C;D

.t; 2L1/ we
have d.D;E/�M1C 1.

� For � log.`L0/� t � 0, we have et jxj � jxj � 1 and e�t jyj �L0 , thus

`t .si/�
p

L02C 1�L:

The same argument as the previous case then shows that d.D;E/ �M1C 1,
for any E 2 L�

C;D
.t; 2L1/.

� For t � log.`L0/, we have `t .D/ D e�t` � 1=L0 � 1 � 2L1 . Thus D is in
L�

C;D
.t; 2L1/, which implies that d.D;E/�M1 for any E 2 L�

C;D
.t; 2L1/.

� For t �� log.`L0/, we have `t .C /�1=L0�2L1 , so for any E2L�
C;D

.t; 2L1/,
d.C;E/�M1 , which implies that d.D;E/�M1C 1.

We can then conclude that for any t 2 R, and any E 2 L�
C;D

.t; 2L1/, we have
d.D;E/�M1C 1. Hence diam yLC;D � 2.M1C 1/.

Case 2 One of C;D is nondegenerate and not simple. Without loss of generality,
we can assume that C is neither simple nor degenerate. Lemma 3.6 implies that D

is disjoint from C . Since C is not simple, the complement of C is either (a) empty,
(b) a horizontal simple cylinder, (c) the union of two simple horizontal cylinders, or
(d) another horizontal cylinder whose closure is a slit torus. Since there exists a vertical
cylinder disjoint from C (namely D ), only (d) can occur. In this case, there is a pair of
horizontal homologous saddle connection fs1; s2g contained in the boundary of C that
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Figure 10: Disjoint cylinders on surfaces in H.1; 1/; C is neither simple nor degenerate.

decompose .X; !/ into the connected sum of two slit tori. Let .X 0; !0; s0/ be the slit
torus which is the closure of C , and .X 00; !00; s00/ be the other one that contains D ;
see Figure 10.

Let x D js1j D js2j. Observe that X 00 contains a rectangle bounded by s1; s2 and the
saddle connections bordering D . Therefore we have x`� 1, equivalently 0� x � 1=`.
By the same arguments as the previous case, we also get diam yLC;D � 2.M C 1/.

Case 3 One of C and D is degenerate. Let us assume that C is degenerate. Using
Lemma 3.4, we can find a family .Xt ; !t /; t 2 Œ0; �/, of surfaces in H.1; 1/ that are
deformations of .X; !/, such that C corresponds to a simple horizontal cylinder Ct

on Xt , for t > 0, which has the same circumference. Note that the width of Ct is t .
Therefore, Area.Xt ; !t /D Area.X; !/C t`.

By construction, D corresponds to a cylinder Dt on Xt which is disjoint from Ct (since
we have �.Ct ;Dt /D �.C;D/D 0). By Lemma B.2 we know that either (i) .Xt ; !t /

contains two embedded triangles T ;T 0 disjoint from Ct and Dt , or (ii) there is a
splitting of .Xt ; !t / into two slit tori .X 0t ; !

0
t ; s
0
t / and .X 00t ; !

00
t ; s
00
t / such that Ct �X 0t

and Dt �X 00t .

If (i) occurs, then we have Area.T /DArea.T 0/D 1
2
`2 �

1
2

, which implies that `� 1.
If (ii) occurs, then since the slits (s0 and s00 ) are disjoint from Ct , they persist as
we collapse Ct to get back .X; !/. Thus, we have the same splitting on .X; !/. In
conclusion, we can use the same arguments as in Case 1 to handle this case. The proof
of Proposition 7.7 is now complete.

7.3 The slim triangle property for yLC;D

We now prove that the subgraphs yLC;D.2L1/ satisfy the slim triangle property of
Theorem 7.2. The idea of the proof can found in [6, Lemma 4.4]. To lighten notation,
in what follows we will write yLC;D instead of yLC;D.2L1/.
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Proposition 7.8 There exists a constant M3 such that for any triple of cylinders
fC;D;Eg in .X; !/, we have that yLC;D is contained in the M3 –neighborhood of
yLC;E [ yLE;D in yCcyl.X; !; f /.

Proof If C and D are parallel then yLC;D is contained in the 2–neighborhood of
yLC;E [ yLD;E . From now on we assume that C and D are not parallel.

By Corollary 7.6, we only need to show that L�
C;D

.L1/ is contained in the M3 –
neighborhood of L�

C;E
.L1/[L�

E;D
.L1/. To define LC;D.2L1/ and yLC;D.2L1/ one

needs to specify an origin for the time t by the condition that the circumferences of C

and D are equal. On the other hand to define L�
C;D

.L1/, this normalization is not
required. If E is parallel to C then L�

C;D
.L1/DL�

E;D
.L1/, and if E is parallel to D

then L�
C;D

.L1/D L�
C;E

.L1/. In both of these cases we have nothing to prove.

Let us now assume that E is neither parallel to C nor to D . We can then renormalize
(using SL.2;R/) such that C is horizontal, D is vertical, and E has slope equal to 1.
Recall that for any t 2R, .Xt ; !t /D at � .X; !/, C0;t is a cylinder of width bounded
below by K in .Xt ; !t /, and the constant L1 is chosen so that L1 > 1=K ; see (3).

Claim If t � 0 then C0;t is contained in the M1 –neighborhood of L�
C;E

.L1/.

Proof of the claim Since .X; !/ is completely periodic, it decomposes into cylinders
in both directions of C and E . Let us denote by C D C1; : : : ;Cm the horizontal
cylinders, and by E DE1; : : : ;En the cylinders in the direction of E . As usual we
denote by `t .Ci/ (resp. `t .Ej /) the circumference of Ci (resp. of Ej ) in .Xt ; !t /.
Let ui.t/ be the width of Ci , and vj .t/ be the width of Ej in .Xt ; !t /. We have

`t .Ci/D et`.Ci/; ui.t/D e�tui ;

`t .Ej /D
p

cosh.2t/`.Ej /; vj .t/D
vjp

cosh.2t/
:

Since .X; !/ has area 1, we also have

(6) 1D
X

ui`.Ci/D
X

vj`.Ej /:

Let xj (resp. yi) be the intersection number of a core curve of C0;t and a core curve of Ej

(resp. of Ci ). Since the circumference of C0;t is bounded by 1=K <L1 , we have

(7)
X

yiui.t/D e�t
X

yiui � `.C0;t /�L1 )

X
yiui � etL1:

Since the width of C0;t is bounded below by K , xj K � `t .Ej /D
p

cosh.2t/`.Ej /.
Since t � 0, it follows that

(8) xj �

p
cosh.2t/

K
`.Ej /�

e�t

K
`.Ej /:

Algebraic & Geometric Topology, Volume 17 (2017)



Translation surfaces and the curve graph in genus two 2217

Let .X 0; !0/ WD U � .X; !/, where U D
�

1 �1
0 1

�
. Let `0.Ci/ and u0i (resp. `0.Ej /

and v0j ) be the circumference and the width of Ci (resp. of Ej ) in .X 0; !0/. Note
that Ci is horizontal, and Ej is vertical in .X 0; !0/. Thus, `0.Ci/D `.Ci/, u0i D ui ,
and `0.Ej /D `.Ej /=

p
2, v0j D

p
2vj .

For any s 2 R, let .X 0s; !
0
s/ WD as � .X

0; !0/. Let `0s.Ci/ and u0i.s/ (resp. `0s.Ej /

and v0j .s/) be the circumference and the width of Ci (resp. of Ej ) in .X 0s; !
0
s/.

Let xC iy be the period of the core curves of C0;t in .X 0s; !
0
s/. From (8) we get

(9) jxj D
X

xjv
0
j .s/D es

X
xjv
0
j � es

p
2e�t

K

X
`.Ej /vj D

p
2es�t

K
:

From (7), we get

(10) jyj D
X

yiu
0
i.s/D e�s

X
yiui � et�sL1:

Thus for s D t , the circumference of C0;t in .X 0s; !
0
s/ is at most

p
3L1 < 2L1 .

Let C 00;s be a cylinder of width bounded below by K in .X 0s; !
0
s/. By Lemma 7.3, we

have d.C 00;s;C0;t /�M1 which means that C0;t is contained in the M1 –neighborhood
of L�

C;E
.L1/.

It follows immediately from the claim that L�C;D.t;L1/ is contained in the 2M1 –
neighborhood of L�C;E.L1/ if t � 0. By similar arguments, one can also show
that L�C;D.t;L1/ is contained in the 2M1 –neighborhood of L�E;D.L1/ if t � 0.
Therefore, we can conclude that L�C;D.L1/D [t2RL�C;D.t;L1/ is contained in the
2M1 –neighborhood of L�C;E.L1/[L�E;D.L1/, which implies that yLC;D is contained
in the 3M1 –neighborhood of L�C;E.L1/[L�E;D.L1/.

7.4 Proof of Theorem 7.1

From Proposition 7.7, and Proposition 7.8, we see that yCcyl.X; !; f / with the family of
subgraphs yLC;D satisfies the two conditions of Theorem 7.2 with M DmaxfM2;M3g.
Therefore, yCcyl.X; !; f / is Gromov hyperbolic.

8 The quotient by affine automorphisms

In this section we investigate the quotient of yCcyl.X; !; f / by the group AffC.X; !/.
Our main focus is the case where .X; !/ is a Veech surface, that is, when SL.X; !/ is
a lattice in SL.2;R/. Throughout this section .X; !/ is a fixed translation surface in
H.2/tH.1; 1/, and yCcyl is the cylinder graph of .X; !/ with some marking map. We
denote by G the quotient graph yCcyl=AffC.X; !/, and by V and E the sets of vertices
and edges of G, respectively. Notice that an edge may join a vertex to itself (we then
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have a loop), and there may be more than one edge with the same endpoints. We use
the notations jVj and jEj to designate the cardinalities of E and V. We will show the
following theorem:

Theorem 8.1 Let .X; !/ be a surface in H.2/ tH.1; 1/. Then .X; !/ is a Veech
surface if and only if jVj is finite.

Theorem 8.1 does not mean, when .X; !/ is a Veech surface, that the quotient graph G

is a finite graph, as we have the following:

Proposition 8.2 If .X; !/ is Veech surface in H.2/ then G is a finite graph, that is,
jVj and jEj are both finite. There exist Veech surfaces in H.1; 1/ such that jVj <1
but jEj D1.

8.1 Proof of Theorem 8.1

Recall that the SL.2;R/–orbit of a Veech surface .X; !/ projects to an algebraic curve
in M2 isomorphic to X WDH� SL.X; !/; this curve is called a Teichmüller curve.
The direction of any saddle connection on X is periodic, that is, X is decomposed
into finitely many cylinders in this direction. Moreover, there is a parabolic element in
SL.X; !/ that fixes this direction. Thus each cylinder in X corresponds to a cusp in X .

Let � be a periodic direction for X . Let C1; : : : ;Ck be the cylinders of X in the
direction � , and Ti be the Dehn twist about the core curves of Ci . Let  be the
generator of the parabolic subgroup of SL.X; !/ that fixes � . Then there exist some
integers m1; : : : ;mk such that  is the derivative of an element of AffC.X; !/ isotopic
to T

m1

1
ı � � � ıT

mk

k
.

8.1.1 Proof that .X; !/ is Veech implies that V is finite If .X; !/2H.2/, then X

has one or two cylinders in the direction � . In the first case, we have three more
degenerate ones, and in the second case there is no degenerate cylinder. Thus the
total number of cylinders (degenerate or not) in a periodic direction is at most 4. If
.X; !/ 2H.1; 1/, then by similar arguments, we see that X has at most 5 cylinders in
the direction � . We have seen that � corresponds to a cusp of X . Since X has finitely
many cusps, it follows that X has finitely many cylinders up to action of AffC.X; !/.
Therefore, V is finite.

8.1.2 Proof that V is finite implies that .X; !/ is Veech In what follows, by an
embedded triangle in X , we mean the image of a triangle T in the plane by a map
'W T !X which is locally isometric, injective in the interior of T , and which sends the
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vertices of T to the singularities of X . Note that ' maps a side of T to a concatenation
of some saddle connections. By a slight abuse of notation, we will also denote by T

the image of ' in X . To show that .X; !/ is a Veech surface, we will use the following
characterization of Veech surfaces by Smillie and Weiss [47].

Theorem 8.3 (Smillie and Weiss) .X; !/ is a Veech surface if and only if there
exists an � > 0 such that the area of any embedded triangle T in X is at least � .

We now assume that jVj is finite. If v is a vertex of yCcyl , we denote by Nv its equivalence
class in V. Clearly, the group AffC.X; !/ preserves the areas of the cylinders in X .
Therefore, each element of V has a well-defined area (a degenerate cylinder has zero
area). Since V is finite, we can write V D fNv1; : : : ; Nvng, where n D jVj. Using
GLC.2;R/, we can normalize so that Area.X; !/D 1. Let ai D Area. Nvi/, and define

A1 D fa1; : : : ; ang;

A2 D fjai � aj j W ai ¤ aj g;

A3 D f1� .ai C aj / W ai C aj < 1g;

A4 D f1� .ai C aj C ak/ W ai C aj C ak < 1g:

Set � DminfA1[A2[A3[A4g. We will need the following lemma on slit tori.

Lemma 8.4 Let . yX ; y!; Os/ be a slit torus. By a cylinder in yX , we will mean a
connected component of X that is cut out by a pair of parallel simple closed geodesics
passing through the endpoints of Os .

Assume that Os is not parallel to any simple closed geodesic of yX . Then there exists a
sequence of cylinders f yCkgk2N such that yCk is disjoint from the slit Os for all k 2N ,
and Area. yCk/! Area. yX / as k!C1.

Proof Using GLC.2;R/, we can normalize so that . yX ; y!/D .C=.Z˚ iZ/; dz/. The
slit Os is then represented by a segment Œ0; .1C i˛/ t �, with t 2 .0;1/ and ˛ 2R nQ.
In this setting, each simple closed geodesic c of yX corresponds to a vector pC iq with
p; q 2Z and gcd.p; q/D 1. Let c1 and c2 be the simple geodesics parallel to c which
pass through the endpoints of Os . Note that c1; c2 cut yX into two cylinders. By [41,
Lemma 4.1], we know that one of the two cylinders is disjoint from Os if and only if

t

ˇ̌̌̌
det

�
p 1

q ˛

�ˇ̌̌̌
D t jp˛� qj< 1:

Note that the quantity t jp˛� qj is precisely the area of the cylinder that contains Os .
Since ˛ is an irrational number, one can find a sequence f.pk ; qk/gk2N such that

gcd.pk ; qk/D 1; t j˛pk � qk j< 1 and lim
k!1

j˛pk � qk j D 0:
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Figure 11: Embedded triangles in a surface in H.2/ in Case 1 (left) and
Case 2 (right)

For each .pk ; qk/ in this sequence, we have a cylinder yCk in direction of pk C iqk

disjoint from Os such that

Area. yCk/D 1� t j˛pk � qk j:

In particular, we have limk!1Area. yCk/D 1, which proves the lemma.

As a consequence of this lemma, we get the following.

Corollary 8.5 Let .s1; s2/ be a pair of homologous saddle connections in X that are
exchanged by the hyperelliptic involution � . If one of the connected components cut
out by .s1; s2/ is a slit torus, then the direction of s1; s2 is periodic.

Proof If .X; !/ 2 H.2/ then X is decomposed by .s1; s2/ into a simple cylinder
and a slit torus, if .X; !/ 2 H.1; 1/ then X is decomposed into two slit tori. Thus,
it suffices to show that si is parallel to a closed geodesic in each slit torus. If this is
not the case, then by Lemma 8.4, we can find in this slit torus a sequence of cylinders
disjoint from the slit whose area converges to the area of the torus. Note that such
cylinders are also cylinders of X . Thus their areas belong to A1 . Since A1 is finite, it
cannot contain a nonconstant converging sequence. Therefore, we can conclude that
the direction of .s1; s2/ is periodic.

Let T be an embedded triangle in X . We will show that Area.T / > 1
2
� . We first

remark that it suffices to consider the case where each side of T is a saddle connection,
since otherwise there is another embedded triangle contained in T with this property.
Let � denote the hyperelliptic involution of X , and T 0 D �.T /. Let s1; s2; s3 be the
sides of T and s0i be the image of si by � . The proof that Area.T / > 1

2
� naturally

splits into two cases depending on the stratum of .X; !/.

Case .X; !/ 2H.2/ We need to consider the following two situations:

Case 1 None of the sides of T is invariant by � . From Lemma 2.4, si and s0i bound a
simple cylinder denoted by Ci . Let hi be length of the perpendicular segment from the
opposite vertex of si in T to si . If int.T /\int.C1/¤¿, then both s2 and s3 cross C1
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s1
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Figure 12: Embedded triangles in a surface in H.1; 1/; from left to right we
have Cases 1–3.

entirely, which implies that the width of C1 is at most h1 ; see Figure 11 (left). It follows
that Area.T /� 1

2
Area.C1/ >min 1

2
A1 . The same arguments apply in the cases that

int.T / intersects int.C2/ or int.C3/. If int.T / is disjoint from int.Ci/, i D 1; 2; 3,
then we have three disjoint cylinders in X (if int.Ci/\ int.Cj / ¤ ¿ then si must
cross Cj entirely hence int.T /\ int.Cj /¤ ¿). Since .X; !/ 2 H.2/, this situation
cannot occur; see Theorem 2.6. Hence, we can conclude that Area.T /� 1

2
� here.

Case 2 One of the sides of T is invariant by � . In this case, the union of T and
its image by � is an embedded parallelogram; see Lemma 2.1. This means that there
is a parallelogram P in the plane such that T is one of the two triangles cut out
by a diagonal of P , and there is a map 'W P ! X locally isometric, injective in
int.T /, mapping the vertices of P to the singularity of X . We remark that all the
sides of T cannot be invariant by � because this would imply that X D '.P / is
a torus. If there are two sides of T that are invariant by � , then '.P / is a simple
cylinder in X , hence Area.T / � min 1

2
A1 . If there is only one side invariant by � ,

then the complement of '.P / is the union of two disjoint simple cylinders C1;C2 (see
Figure 11, right), which implies Area.P /D 1� .Area.C1/CArea.C2//. Therefore,
we have Area.T / >min 1

2
A3 �

1
2
� . This completes the proof of Theorem 8.1 for the

case .X; !/ 2H.2/.

Case .X; !/ 2H.1; 1/ We consider the following situations:

Case 1 There exists i such that s0i intersects int.T /. Note that we must have s0i ¤ si .
Let us assume that i D 1. Recall that s1 and s0

1
either bound a simple cylinder

or decompose X into two tori. In the first case, the same argument as in the case
.X; !/ 2H.2/ shows that Area.T /�min 1

2
A1 . For the second case, observe that the

intersection of T with one of the slit tori consists of a domain bounded by s1 and some
subsegments of s2 , s3 and s0

1
; see Figure 12. Let .X1; !1; Qs1/ denote this slit torus.

We can assume that s1 is horizontal. By Corollary 8.5 we know that the horizontal
direction is periodic for X1 , thus X1 is the closure of a horizontal cylinder C1 .
We remark that X1 contains a transverse simple cylinder D1 disjoint from s1 [ s0

1
,
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whose core curves cross C1 once. The complement of D1 in X1 is an embedded
parallelogram P1 bounded by s1; s

0
1

and the boundary of D1 . Clearly, we have
Area.T /� 1

2
Area.P1/. By definition, we have

Area.P1/D Area.C1/�Area.D1/�min A2:

Thus we have Area.T /� 1
2
� .

Case 2 None of s0i intersects int.T /, and s0i ¤ si , i D 1; 2; 3. It is not difficult to
show that this case only happens when si and s0i bound a simple cylinder Ci disjoint
from int.T /[ int.T 0/. Therefore, X is decomposed into the union of three cylinders
C1;C2;C3 , and T [T 0 ; see Figure 12. Thus in this case, we have

Area.T /D 1
2

�
1� .Area.C1/CArea.C2/CArea.C3//

�
�min 1

2
A4 �

1
2
�:

Case 3 None of s0i intersects int.T/ and one of s1; s2; s3 is invariant by � . Assume
that s0

1
D s1 . It follows that T [T 0 is an embedded parallelogram P . If both .s2; s

0
2
/

and .s3; s
0
3
/ are the boundaries of some simple cylinders C2 and C3 , respectively, then

C2 and C3 are disjoint, and C2 [C3 is disjoint from P . By construction we must
have X DP [C2[C3 , which is impossible since .X; !/ 2H.1; 1/. Therefore, we
can assume that .s2; s

0
2
/ decompose X into two slit tori. Let X1 be the slit torus that

contains P . By Corollary 8.5, we know that the direction of .s2; s
0
2
/ is periodic, which

means that X1 is the closure of a cylinder C . Observe that the complement of P

in X1 must be a cylinder D bounded by .s3; s
0
3
/; see Figure 12. Therefore,

Area.T/D 1
2

Area.P /D 1
2
.Area.C /�Area.D//� 1

2
min A2 �

1
2
�:

Case 4 None of s0i intersects int.T/ and two of s1 , s2 , s3 are invariant by � . In this
case T [T 0 is a simple cylinder. Therefore, Area.T/�min 1

2
A1 �

1
2
� .

In all cases Area.T /� 1
2
� , thus Theorem 8.3 implies that .X;!/ is a Veech surface.

8.2 Proof of Proposition 8.2

Case .X; !/ 2H.2/ We have shown that V is finite; it remains to show that E is
also finite. Let v be a vertex of yCcyl , and C be the corresponding cylinder in X . We
denote by Nv the equivalence class of v in G. Using SL.2;R/, we can suppose that C

is horizontal.

If C is a nondegenerate cylinder, then we have three cases: (a) C is the unique
horizontal cylinder, (b) X has two horizontal cylinders and C is not simple, and (c) C

is a simple cylinder. In case (a), there are three edges in yCcyl that have v as an endpoint,
those edges connect v to three degenerate cylinders contained in the boundary of C . In
case (b), there is only one edge in yCcyl having v as an endpoint, this edge connects C
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to the other horizontal simple cylinder. Thus in cases (a) and (b), there are only finitely
many edges having Nv as an endpoint.

Assume now that we are in case (c). Let D be the other horizontal cylinder of X .
Observe that the closure of D is a slit torus .X 0; !0; s0/ where s0 corresponds to the
boundary of C . Let d be a core curve of D , and e be a simple closed geodesic
in X 0 disjoint from the slit s0 and crossing d once. We consider fd; eg as a basis
of H1.X

0;Z/. If C 0 is a cylinder in X disjoint from C , then C 0 must be entirely
contained in D . Thus the core curves of C 0 are determined by a unique element of
H1.X

0;Z/, and we can write C 0 Dmd C ne with m; n 2 Z.

By assumption, a core curve c0 of C 0 cannot cross the slit s0 . The necessary and
sufficient condition for this is that j!0.c0/^!0.s0/j � Area.X 0/D Area.D/; see [41,
Lemma 4.1]. But j!0.c0/^!0.s0/jD jnjj!0.e/^!0.s0/j. Thus we can conclude that jnj
is bounded by some constant n0 .

We have seen that AffC.X; !/ contains an element �D T
m1

1
ıT

m2

2
, where T1 and T2

are the Dehn twists about the core curves of C and D , respectively. Observe that �
fixes the vertices of yCcyl corresponding to C and D . The action of � on the curves
contained in D is given by

�.md C ne/D .m˙m2n/d C ne:

Thus up to action of f�kgk2Z , any cylinder C 0 contained in D belongs to the equiva-
lence class of a cylinder C 00 also contained in D whose core curves are represented
by md C nc with jnj � jn0j and jmj � jm2nj � jm2jjn0j. We can then conclude that
there are finitely many edges in E which contain Nv as an endpoint.

It remains to consider the case that C is degenerate. In this case X has a unique
nondegenerate cylinder in the horizontal direction, which contains C in its boundary.
Note that the complement of C in X can be isometrically identified with a flat torus
with an embedded geodesic segment removed. Therefore, the arguments above also
hold in this case. Since we have proved that the set of vertices of G is finite, it follows
that the set of edges of G is also finite.

Case .X; !/ 2 H.1; 1/ Let .X; !/ be the surface constructed from 6 squares as
shown in Figure 13. This surface has 3 horizontal cylinders denoted by C1;C2;C3 ,
where Ci is the cylinder with i squares. It has two vertical cylinders denoted by D1

and D2 , where the core curves of D1 cross C1 and C3 . Let v be the vertex of yCcyl cor-
responding to C1 , and w be the vertex corresponding to C2 . The fact that G has finitely
many vertices follows from Theorem 8.1. We will show that G has infinitely many edges.

Given a cylinder C on X , we denote by TC the Dehn twist about the core curves
of C . Observe that f D T 6

C1
ı T 3

C2
ı T 2

C3
and g D TD1

ı T 2
D2

are two elements of
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C1

C3

C2

D1

D2

Figure 13: Example of a square-tiled surface in H.1; 1/

AffC.X; !/ whose derivatives are�
1 6

0 1

�
and

�
1 0

2 1

�
;

respectively. If h is an element of AffC.X; !/ that preserves the horizontal direction,
then h must map a horizontal cylinder to a horizontal cylinder. Since C1;C2;C3 have
different circumferences, h must preserve each of them, which implies that hD f k ,
k 2 Z. We derive in particular that there is no affine homeomorphism that maps C2

to C1 .

For any n 2 N , let En be the image of C2 by gn . We remark that En D T 2n
D2
.C2/,

hence En is contained in the closure D2 of D2 . In particular, En is disjoint from C1 .
Thus, there is an edge en in yCcyl connecting v to the vertex wn corresponding to En .
By definition, all the vertices wn belong to the equivalence class w of w in G. We
will show that the edges fengn2N are all distinct up to action of AffC.X; !/, which
means that there are infinitely many edges in E between Nv and w .

Assume that there is an affine automorphism h 2 AffC.X; !/ such that h.en1
/D en2

,
for some n1; n2 2 N . If h.wni

/ D v , then there is an element of AffC.X; !/ that
sends w to v , or equivalently C2 to C1 . But we have already seen that such an
element does not exist, thus this case cannot occur. Therefore, we must have h.v/D v

and h.wn1
/D wn2

. Since any element of AffC.X; !/ preserving C1 belongs to the
subgroup generated by f , we derive that h also preserves C2 and C3 . Observe that a
core curve of Eni

crosses C2 2ni times. Therefore, if n1 ¤ n2 , then h cannot exist.
We can then conclude that the projections of all the edges en are distinct in G, which
proves the proposition.

9 Quotient graphs and McMullen’s prototypes

By the works of McMullen [38; 37], we know that closed GLC.2;R/–orbits in H.2/
are indexed by the discriminant D , that is, a natural number D 2N such that D� 0; 1

mod 4, together with the parity of the spin structure when D� 1 mod 8 and D¤ 9.
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Figure 14: Examples of G for DD 5 (top left), DD 8 (top right) and DD 9

(bottom). For each two-cylinder decomposition, we provide the corresponding
prototype .a; b; c; e/ . A loop at some vertex represents a butterfly move that
does not change the prototype.

Let .X; !/ be an eigenform in ED \H.2/ for some fixed D . Following [37], every
two-cylinder decomposition of X is encoded by a quadruple of integers .a; b; c; e/2Z4

called a prototype satisfying the following conditions:

.PD/
b > 0; c > 0; gcd.b; c/ > a� 0;

D D e2C 4bc; b > cC e; gcd.a; b; c; e/D 1:

Set �D 1
2
.eC
p

D/. Up to action of GLC.2;R/, the decomposition of X consists of
two horizontal cylinders. The first one is simple and represented by a square of size �.
The other one is nonsimple and represented by a parallelogram constructed from the
vectors .b; 0/ and .a; c/. Note that we always have b > �.

The quotient graph G turns out to be closely related to the set of McMullen’s prototypes.
Namely, each prototype corresponds to a cluster of two vertices of G which represent
the cylinders in the corresponding cylinder decomposition. Let C1;C2 be the cylinders
in this decomposition, where C1 is the simple one. Then the vertex corresponding
to C2 is only adjacent to the one corresponding to C1 in G. This is because any other
cylinder of X must cross C2 .

On the other hand, if there is an edge in G between two vertices representing two simple
cylinders which are not parallel, then the two cylinder decompositions are related by a
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“butterfly move”; see [37, Section 7] for the precise definitions. In other words, G can
be viewed as a geometric object representing PD : each prototype is represented by two
vertices connected by an edge, and all the other edges of G represent butterfly moves.

There is nevertheless a slight difference between the two notions. The set PD only
parametrizes two-cylinder decompositions of X , while in G we also have one-cylinder
decompositions. If

p
D 62N , then any cylinder in X is contained in a two-cylinder

decomposition. Thus, the set of prototypes exhausts all the equivalence classes of
cylinders in X (hence it provides the complete list of cusps of the corresponding
Teichmüller curve). But when D is a square (eg D D 9), we need to take into account
one-cylinder decompositions as well as degenerate cylinders. In Figure 14, we draw
the quotient cylinder graphs of surfaces corresponding to some small values of D .

Appendix A: Triangulations

In this section we construct triangulations of .X; !/ that are invariant by the hyper-
elliptic involution. The aim of these triangulations is to provide a preferred way to
represent .X; !/ as a polygon in R2 when we have a horizontal simple cylinder on X .
The results of this section are certainly not new and are known to most people in the
field; see eg [49]. We present them here only for the sake of completeness.

In what follows, for any saddle connection s , we will denote by h.s/ the length of
the horizontal component of s , that is, h.s/D jRe.!.s//j. If � is a triangle bounded
by the saddle connections s1; s2; s3 , we define h.�/Dmaxfh.si/ j i D 1; 2; 3g. Our
main result in this section is the following:

Proposition A.1 Let .X; !/ be a translation surface in H.2/tH.1; 1/ having a simple
horizontal cylinder C . Assume that every regular leaf of the vertical foliation of .X; !/
crosses C .

(i) If .X; !/ 2H.2/, then .X; !/ can be obtained by identifying the pairs of opposite
sides of an octagon P D .P0 � � �P3Q0 � � �Q3/�R2 (see Figure 15), where the vertices
are labeled clockwise, such that the following hold:

�
���!
PiPiC1 D�

����!
QiQiC1 , i D 0; 1; 2, and

���!
P3Q0 D�

���!
Q3P0 .

� The diagonals P0P3 and Q0Q3 are horizontal, the parallelogram .P0P3Q0Q3/

is contained in P and projects to C �X .

� For i D 1; 2, the vertical line through Pi (resp. Qi/ intersects P0P3 (resp.
Q0Q3 ), and the vertical segment from Pi (resp. from Qi ) to the intersection is
contained in P .
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sC

s�

P0

P1
P2

P3

Q0

Q1
Q2

Q3

sC

s�

P0

P1P2

P3

P4

Q0

Q1
Q2

Q3

Q4

Figure 15: Representations of surfaces .X; !/ in H.2/ (left) and H.1; 1/
(right) with symmetric polygons. The simple horizontal cylinder is repre-
sented by the highlighted parallelogram.

(ii) If .X; !/ 2 H.1; 1/, then .X; !/ can be obtained by identifying the pairs of
opposite sides of a decagon P D .P0 � � �P4Q0 � � �Q4/ (see Figure 15), where the
vertices are labeled clockwise, such that the following hold:

�
���!
PiPiC1 D�

����!
QiQiC1 , i D 0; : : : ; 3, and

���!
P4Q0 D�

���!
Q4P0 .

� The diagonals P0P4 and Q0Q4 are horizontal, the parallelogram .P0P4Q0Q4/

is contained in P and projects to C �X .

� For i D 1; 2; 3, the vertical line through Pi (resp. Qi ) intersects P0P4 (resp.
Q0Q4 ), and the vertical segment from Pi (resp. from Qi ) to the intersection is
contained in P .

Proof Cut off C from X , and identify the geodesic segments in the boundary of
the resulting surface, we then obtain either a slit torus (if .X; !/ 2H.2/) or a surface
in H.2/ with a marked saddle connection (if .X; !/ 2H.1; 1/). Let .X 0; !0/ denote
the new surface, and s0 the marked saddle connection. If .X 0; !0/ is a slit torus, then
there is a unique involution of X 0 that acts by �Id on H1.X

0;Z/ and exchanges
the endpoints of s0 . By a slight abuse of notation, we will call this involution the
hyperelliptic involution of X 0 . Thus, in both cases, s0 is invariant by the hyperelliptic
involution.

By assumption all the regular vertical leaves of X 0 intersect s0 . Let f�˙i j i D 1; : : : ; kg

be the triangulation of X 0 provided by Lemmas A.2 and A.3; if .X 0; !0/ 2 H.0; 0/,
k D 2, if .X 0; !0/ 2H.2/, k D 3. We can represent C by a parallelogram in R2 . The
polygon P is obtained from this parallelogram by gluing successively the triangles
�C

1
; : : : ; �C

k
, then ��

1
; : : : ; ��

k
.

Lemma A.2 Let .X; !; s/ be a slit torus. Let � be the elliptic involution of X that
exchanges the endpoints P1;P2 of s . Assume that all the leaves of vertical foliation
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s

�C
1

��
1

�C
2

��
2

P1 P2

P2

P1

P1

P2

s

�C
1

��
1

�C
2

��
2

P1 P2

P1

P2

P2

P1

Figure 16: Triangulation of a slit torus

meet s . Then there exists a unique triangulation of X into four triangles �˙
1
; �˙

2
with

vertices in fP1;P2g, such that the following are satisfied:

� �Ci and ��i are exchanged by � .
� s is contained in both �C

1
and ��

1
.

� For i D 1; 2, the union �Ci [�
�
i is a cylinder in X .

� �C
1

is adjacent to ��
1

and �C
2

, ��
1

is adjacent to �C
1

and ��
2

.
� h.�˙

1
/D h.s/, and h.�˙

2
/D h.cC/, where cC is the unique common side of

�C
2

and �C
1

.

There are two possible configurations for this triangulation, shown in Figure 16.

Proof By Lemma 2.3, we know that there exists a pair of simple closed geodesics
cC; c� passing through the endpoints of s that cut X into two cylinders satisfying
h.c˙/� h.s/. One of the cylinders cut out by c˙ contains s , we denote it by C1 , the
other one is denoted by C2 . Note that we must have h.c˙/ > 0, otherwise there are
vertical leaves that do not meet s . It is easy to see that we get the desired triangulation
by adding some geodesic segments in C1 and C2 joining the endpoints of s .

Lemma A.3 Let .X; !/ be a surface in H.2/ and s be a saddle connection on X ,
invariant by the hyperelliptic involution � . We assume that s is horizontal and all the
leaves of the vertical foliation meet s . Then we can triangulate X into six triangles
�˙i , i D 1; 2; 3, whose sides are saddle connections, satisfying the following:

� �.�Ci /D�
�
i , i D 1; 2; 3.

� �C
1

and ��
1

contain s , and h.�˙
1
/D h.s/.

� �C
2

has a unique common side with �C
1

which will be denoted by aC , and
h.�C

2
/D h.aC/.

� �C
3

either has a unique common side bC with �C
1

and h.�C
3
/Dh.bC/ or �C

3

has a unique common side cC with �C
2

and h.�C
3
/D h.cC/.
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Figure 17: Triangulation of surfaces in H.2/

This triangulation is unique. The configurations of the triangles �˙i , i D 1; 2; 3, are
shown in Figure 17.

Proof From Lemma 2.1, we see that there exist a parallelogram P �R2 and a locally
isometric map 'W P !X that maps a diagonal of P to s . By construction, '.P / is
decomposed into two embedded triangles �˙

1
, where �C1 is the one above s , both of

which satisfy h.�˙
1
/D h.s/D jsj. Note also that �.�C1 /D�

�
1

.

Let us denote the nonhorizontal sides of �C
1

by aC and bC , and their images by � by
a� and b� , respectively. If both of aC and bC are invariant by � then X D '.P /,
which implies that X is a torus, and we have a contradiction. Therefore, we only have
two cases:

(a) None of aC; bC is invariant by � . In this cases, by Lemma 2.4 the complement
of '.P / is the disjoint union of two cylinders bounded by a˙ and b˙ , respectively.
Note that none of aC and bC is vertical, otherwise there would be vertical leaves that
do not meet s . We can then triangulate the cylinders bounded by a˙ and b˙ in the
same way as in Lemma A.2.

(b) One of aC; bC is invariant by � . We can assume that bC is invariant by � . In this
case, '.P / is a simple cylinder bounded by a˙ . The complement of '.P / is then a
slit torus .X1; !1; s1/, where s1 is the identification of a˙ . From the assumption that
all the vertical leaves meet s , we derive that a˙ are not vertical. Thus we can follow
the same argument as in Lemma A.2 to get the desired triangulation.

Appendix B: Cylinders and decompositions

In this section, we give the proofs of some lemmas which are used in Section 7.

Lemma B.1 Let .X; !/ 2 H.2/ tH.1; 1/ be a completely periodic surface in the
sense of Calta. If C is a degenerate cylinder in X , then the direction of C is periodic,
that is, X is decomposed into cylinders in the direction of C .
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Proof If .X; !/ is in H.2/ then .X; !/ is a Veech surface, thus the direction of any
saddle connection is periodic and we are done. Assume now that .X; !/ is in H.1; 1/.
In H.1; 1/, we have a local action of C which only changes the relative periods and
leaves the absolute periods invariant. Orbits of this local action are leaves of the kernel
foliation. It is well known that the any eigenform locus is invariant by this local action.

Let us label the zeros of ! by x1;x2 and define the orientation of any path connecting
x1 and x2 to be from x1 to x2 . Using this local action of C , we can collapse the
two zeros of ! as follows. Let s be a saddle connection invariant by the hyperelliptic
involution satisfying the following condition, which we will call condition .S/: if there
exists another saddle connection s0 joining x1 and x2 such that !.s0/D �!.s/ with
� 2 .0IC1/, then we have � > 1.

We can then reduce the length of s to zero by moving in the kernel foliation leaf
of .X; !/, the resulting surface is an eigenform in H.2/ having the same absolute
periods as .X; !/. The condition on s implies that x1 and x2 do not collide before s

is reduced to a point, for a proof of this fact, we refer to [28; 29]. We remark that the
new surface in H.2/ is a Veech surface.

Without loss of generality, we can assume that C is horizontal. By definition, C is the
union of two saddle connections s1; s2 both invariant by the hyperelliptic involution,
and up to a renumbering we have !.s1/ 2R>0; !.s2/ 2R<0 .

Assume that neither of s1; s2 satisfies .S/, then there exist two other saddle connections
s0
1
; s0

2
such that !.s0i/ D �i!.si/, with �i 2 .0I 1/. This implies that there are four

horizontal saddle connections on X . Since .X; !/2H.1; 1/, there are at most 4 saddle
connections in a fixed direction, and this maximal number is realized if and only if the
direction is periodic. Thus, in this case we can conclude that X is horizontally periodic.

Let us now assume that one of s1; s2 , say s1 , satisfies the condition .S/. We can then
collapse x1;x2 along s1 to get a Veech surface .X0; !0/2H.2/. Since !.s2/�!.s1/

is an absolute period, it stays unchanged along the collapsing procedure. Therefore,
s2 persists in X0 , and we have !0.s2/D !.s2/�!.s1/ 2R. In particular, .X0; !0/

has a horizontal saddle connection, and because .X0; !0/ is a Veech surface, it must
be horizontally periodic. It follows that .X; !/ is also horizontally periodic. This
completes the proof of the lemma.

Lemma B.2 Let .X; !/ 2 H.1; 1/. Let C be a horizontal (possibly degenerate)
cylinder in X , and D be a vertical simple cylinder disjoint from C . Then either

(a) there is another simple cylinder E disjoint from C[D such that the complement
of C [D[E is the union of two embedded triangles, or
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(b) there exists a pair of homologous saddle connections s1; s2 that decompose X

into two slit tori .X 0; !0; s0/ and .X 00; !00; s00/ such that C is contained in X 0

and D is contained in X 00 .

Proof We first consider the case that C is not degenerate. In this case, the complement
of C in X is either (1) empty, (2) a horizontal simple cylinder, (3) the disjoint union
of two horizontal simple cylinders, (4) a torus with a horizontal slit, or (5) a surface
. yX ; y!/ 2H.2/ with a marked horizontal saddle connection s . Since we have a vertical
simple cylinder disjoint from C , only (4) and (5) can occur. In case (4), we automatically
have two slit tori, one of which is the closure of C , and the other one must contain D .
Therefore we get case (b) of the statement of the lemma.

Let us now assume that we are in case (5). In this case C must be a simple horizontal
cylinder, and the saddle connection s in yX corresponds to the boundary of C . Note
that s is invariant by the hyperelliptic involution O� of yX . Let 'W P ! yX be the
embedded parallelogram associated to s . Let a˙ and b˙ be the images by ' of
the sides of P , where O�.aC/D a� and O�.bC/D b� . Note that D must be disjoint
from '.P / since any vertical geodesic intersecting '.int.P // must intersect int.s/,
and hence C , but we have assumed that D is disjoint from C .

If aC D a� and bC D b� then yX must be a torus, and we have a contradiction.
Therefore, we only have two cases:

� aC ¤ a� and bC ¤ b� In this case, the complement of '.P / is the disjoint
union of two simple cylinders. Since D is contained in this union, D must be one
of the two. Let us denote the other one by E . To obtain .X; !/ from . yX ; y!/, we
need to slit open s and glue back C . Consequently, we see that .X; !/ has three
disjoint simple cylinders C;D;E . The complement of C [D[E is the union of two
embedded triangles, which are the images of the triangles in P cut out by s . Thus, we
get case (a) of the statement of the lemma.

� aC D a� and bC ¤ b� In this case, '.P / is a simple cylinder bounded by b˙ .
The complement of '.P / is then a slit torus .X 00; !00; s00/ with the slit s00 corresponding
to b˙ . We can view .X 00; !00; s00/ as a subsurface of X . Observe that D must be
contained in .X 00; !00/ and disjoint from the slit s00 , since otherwise a core curve of
D must cross C . The complement of .X 00; !00; s00/ is another slit torus .X 0; !0; s0/
which is obtained by slitting '.P / along s and gluing back C . Therefore, we get case
(b) of the statement of the lemma.

Assume now C is degenerate. By Lemma 3.4, there exist deformations .Xt ; !t /,
t 2 Œ0; �/, of .X; !/ such that C corresponds to a simple horizontal cylinder Ct in Xt ,
which has the same circumference as C and height equal to t . By construction, D
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corresponds to a simple vertical cylinder Dt in Xt which is disjoint from Ct . Observe
that Ct and Dt satisfy case (5) above. Therefore, by the preceding arguments, the
conclusion of the lemma is true for Ct and Dt . In either case, the corresponding
decomposition of Xt persists as t ! 0, which implies that we have the same decom-
position on .X; !/.

In what follows, if uD .u1;u2/ and v D .v1; v2/ are two vectors in R2 , we denote

u^ v WD det
�

u1 v1

u2 v2

�
;

and juj; jvj are the Euclidean norms of u and v , respectively.

Lemma B.3 Given a constant L> 0, let

(11) L1 WD 3 maxff .L/; f .2ı/g;

where f .x/ D
p

x2C 1=x2 , and ı WD
�

3
4

� 1
4 . Then for any slit torus .X; !; s/ with

Area.X; !/D 1, and jsj<L, there exists in X a cylinder disjoint from s with area at
least 1

2
and circumference bounded above by L1 .

Proof Let ƒ be the lattice in C such that .X; !/ can be identified with .C=ƒ; dz/.
Since ƒ has covolume 1, there exists a vector v 2 ƒ such that jvj � ı . Define
uD !.s/ 2C 'R2 .

Let us first consider the case that juj � 1
2ı

. We then have

ju^ vj � jujjvj � 1
2
:

The vector v corresponds to a simple closed geodesic c on X . The inequality above
implies that there exist a pair of simple closed geodesics parallel to c cutting X into
two cylinders, one of which contains s denoted by C , the other one denoted by C 0

consists of closed geodesics parallel to c that do not intersect s ; see [41, Lemma 4.1] or
[37, Theorem 7.2]. Note that the circumferences of both C and C 0 are jvj � ı . Since
Area.C /D ju^ vj � 1

2
, we have Area.C 0/� 1

2
. Thus C 0 has the required properties.

We can now turn to the case that 1
2ı
� jsj �L. By definition, we have f .jsj/� 1

3
L1 .

By multiplying ! by a complex number of modulus 1, which does not change the area
of X and the length of s , we can assume that s is horizontal. From Lemma 2.1, we
know that there exists a local isometry ' from a parallelogram P �R2 into X such that
a horizontal diagonal of P is mapped to s . Since X is a torus, C WD '.P / is actually
a cylinder in X . Let � be the distance from the highest point of P to its horizontal
diagonal. By construction, we have Area.C / D Area.P / D �jsj � Area.X; !/ D 1.
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Thus �� 1=jsj. Note that the boundary components of C are the images by ' of two
opposite sides of P . Hence the circumference of C is bounded byp

jsj2C �2 � f .jsj/� 1
3
L1:

Observe that the complement of C is another cylinder C 0 in X sharing the same
boundary with C . If Area.C 0/ � 1

2
then we are done. Let us consider the case that

Area.C 0/ < 1
2

, which means that Area.C / > 1
2
> Area.C 0/. By cutting and pasting,

we can also realize C as a parallelogram Q D .P1P2P3P4/ with two horizontal
sides P1P2 and P4P3 identified with s . Note that the distance between P1P2 and
P4P3 is �. We can then realize C 0 as a parallelogram Q0 D .P2P3P5P6/ adjacent
to Q, where P5 is contained in the horizontal stripe bounded by the lines supporting
P1P2 and P4P3 ; see Figure 18. Let P 06 and P 05 be the intersections of the line
supporting P5P6 and the lines supporting P1P2 and P4P3 , respectively.

Clearly we have Area.C 0/D Area.Q0/D Area..P2P3P 05P 06//. Since Area.C 0/ <
Area.C /, we have jP2P 06j< jP1P2j, and jP1P 06j<2jP1P2j�2L. If P 0

6
�P6 , then X

has a horizontal cylinder C0 with circumference equal jP1P 06j and area equal 1. Clearly
the core curves of C0 do not intersect s , therefore C0 has the required properties. If
P6¤P 0

6
, then by construction, P1P5 and P4P5 project to two simple closed geodesics

in X , denoted by c1 and c2 , respectively. These closed geodesics meet s only at one
of its endpoints. Let d1 and d2 be respectively the simple closed geodesics parallel
to c1 and c2 passing through the other endpoint of s . Observe that c1 and d1 (resp. c2

and d2 ) cut X into two cylinders, one of which contains s and will be denoted by C1

(resp. C2 ), and the other is denoted by C 0
1

(resp. C 0
2

). Now, we remark that

Area.C1/D j
���!
P1P5 ^

���!
P1P2j and Area.C2/D j

���!
P4P5 ^

���!
P4P3j:

Since

j
���!
P1P5 ^

���!
P1P2jC j

���!
P4P5 ^

���!
P4P3j D j

���!
P1P2 ^

���!
P1P4j D Area.C /� 1;

we have either Area.C1/ �
1
2

or Area.C2/ �
1
2

. Assume that Area.C1/ �
1
2

, so that
Area.C 0

1
/� 1

2
. We have

jc1j D jP1P5j � jP1P 06jC jP
0
6
P5j �

2
3
L1C

1
3
L1 DL1:

P1 P2

P6

P 06

P5

P 05P3P4

Figure 18: Cylinder with bounded circumference and area at least 1
2

in a slit torus
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Thus we can conclude that C 0
1

satisfies the statement of the lemma. In the case that
Area.C2/ �

1
2

, the same argument shows that the complement C 0
2

of C2 has the
required properties. The proof of the lemma is now complete.
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The diagonal slice of Schottky space

CAROLINE SERIES

SER PEOW TAN
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An irreducible representation of the free group on two generators X;Y into SL.2;C/
is determined up to conjugation by the traces of X;Y and XY . If the representation
is faithful and discrete, the resulting manifold is in general a genus-2 handlebody.
We study the diagonal slice of the representation variety in which Tr X D Tr Y D

Tr XY . Using the symmetry, we are able to compute the Keen–Series pleating
rays and thus fully determine the locus of faithful discrete representations. We also
computationally determine the “Bowditch set” consisting of those parameter values
for which no primitive elements in hX;Y i have traces in Œ�2; 2� , and at most finitely
many primitive elements have traces with absolute value at most 2 . The graphics
make clear that this set is both strictly larger than, and significantly different from,
the discreteness locus.

30F40; 57M50

1 Introduction

It is well known that an irreducible representation � of the free group F2 on two
generators X;Y into SL.2;C/ is determined up to conjugation by the traces of
�.X /, �.Y / and �.XY /. More generally, if we take the GIT quotient of all (not
necessarily irreducible) representations, then the resulting SL.2;C/ character variety
of F2 can be identified with C3 via these traces using an old result of Vogt; see for
example Goldman [10]. If the representation is faithful, discrete, purely loxodromic
and geometrically finite, the resulting manifold is a genus-2 handlebody; see Section 3.
The collection of all such representations is known as Schottky space, denoted by SCH .
It is a consequence of Bers’ density theorem that SCH is the interior of the faithful
discreteness locus; see for example Canary [4]. It is natural to ask: for which values of
xDTr �.X /, yDTr �.Y /, zDTr �.XY / is the corresponding representation in SCH?

Let P denote the set of primitive elements of F2 modulo conjugation and inverse. For
.x;y; z/ 2 C3 , let �.x;y;z/ denote a choice of representation F2! SL.2;C/ in the
conjugacy class determined by the trace triple. The Bowditch set (or BQ–set) B is

Published: 3 August 2017 DOI: 10.2140/agt.2017.17.2239
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http://www.ams.org/mathscinet/search/mscdoc.html?code=30F40, 57M50
http://dx.doi.org/10.2140/agt.2017.17.2239


2240 Caroline Series, Ser Peow Tan and Yasushi Yamashita

defined in Tan, Wong and Zhang [30] as the set of .x;y; z/ 2 C3 corresponding to
irreducible representations for which

Tr �.x;y;z/.g/ 62 Œ�2; 2� for all g 2 P and fg 2 P W jTr �.x;y;z/.g/j � 2g is finite:

(The exceptional case in which Tr �.ŒX;Y �/D 2 corresponds to reducible representa-
tions and is excluded from the discussion; see Remark 2.1.) The Bowditch set is open,
and the set of outer automorphisms Out.F2/ of F2 acts properly discontinuously on it.
Thus it is essentially the domain of discontinuity for the mapping class group acting on
traces of primitive words. Clearly, SCH� B .

Bowditch’s original work [3] was on the case in which the image of the commutator
ŒX;Y � D XYX�1Y �1 is parabolic and Tr �.ŒX;Y �/ D �2. He conjectured that the
subsets of SCH and B corresponding to this restriction coincide. Although this has
not been proven, computer pictures indicate his conjecture may well be true.

In this paper, we restrict to the special case in which x D y D z , which we call the
diagonal slice of the character variety, denoted by � and parametrised by the single
complex variable x . We show that in this slice, the analogue of Bowditch’s conjecture
is far from being true. This is illustrated in Figure 1, which compares the intersections
of � with SCH and B . The discreteness locus is the outer region foliated by rays;
these are the Keen–Series pleating rays which relate to the geometry of the convex hull
boundary as explained in Section 4.2 and whose closure is known to be �\SCH ; see
Theorem 4.23. The Bowditch set, by contrast, is the complement of the black part. It is
clear that B\� contains a large open region not in �\SCH , and also has different
symmetries. In particular, it is not hard to show that the interval .2; 3/ is contained in
B nSCH; see the discussion in Section 2.2.2.

We would like to emphasise that there are two problems at issue here; namely, to find
the locus of discrete faithful representations, and to find the domain of discontinuity
for the automorphism group Out.F2/ acting on traces of primitive words. Both of
these problems are quite difficult and subtle with not many previous results. Moreover,
while there appeared to be some evidence from earlier studies that the two sets might,
modulo some minor caveats, coincide, our results indicate that on the contrary they are
unlikely to be related, or at least that their relationship is not obvious.

The main content of this paper is an explanation and justification of how these plots
were made, in particular, to explain how we enumerated and computed the pleating
rays for the symmetric genus-2 handlebody corresponding to the trace triple .x;x;x/.

To compute the Bowditch set B we use an algorithm based on the ideas in [3] and
developed further in [30]. This is explained in Section 2.2.1.

Algebraic & Geometric Topology, Volume 17 (2017)
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Figure 1: Superposition of the discreteness locus for �1.H/ and the Bowditch
set in the x–plane. The Bowditch set for the .x;x;x/–triple is the comple-
ment of the central black region, while the discreteness locus is the closure of
the region foliated by rays. The rays are actually computed as the pleating rays
for the quotient orbifold S . The vertical ray is at x D 1

2
, and the discreteness

locus intersects R in .�1;�2� and Œ3;1/; see Section 4.5.

The discreteness problem is tackled as follows. If .x;x;x/2SCH , then the quotient 3–
manifold H3=G is a handlebody H with order-3 symmetry. We use the symmetry to re-
duce the problem of finding �\SCH to a problem very similar to that of determining the
so-called Riley slice of Schottky space. This is actually a space of groups on the boundary
of SCH , consisting of those free, discrete and geometrically finite groups for which the
two generators �.X /, �.Y / are parabolic, thus contained in the slice .2; 2; z/�C3 .
The corresponding manifold is a handlebody whose conformal boundary is a sphere
with four parabolic points. The problem of finding those z–values for which such a
group is free, discrete and geometrically finite was solved using the method of pleating
rays in Keen and Series [15]. In the present case, the quotient of H by the symmetry
is an orbifold S with two order-3 cone axes, whose conformal boundary is a sphere
with four order-3 cone points. Thus similar methods enable us to find �\SCH here.

Although Figure 1 shows that in �, the analogue of Bowditch’s conjecture fails since B
and the interior of the discreteness locus are plainly distinct, in many other slices (see
for example Figure 8), the (modified) Bowditch set and the interior of the discreteness
locus appear to coincide. This is connected to the dynamics of the action of a suitable
mapping class group on representations and raises many interesting questions which
we hope to address elsewhere.

Algebraic & Geometric Topology, Volume 17 (2017)
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The plan of the paper is as follows. We begin in Section 2 with a discussion of the
Markoff tree and the algorithm used to compute the Bowditch set. In Section 3, we
introduce a basic geometrical construction which conveniently encapsulates the 3–fold
symmetry. The quotient of the original handlebody H by the symmetry is a ball with
two order-3 cone axes. This orbifold S has a further 4–fold symmetry group whose
quotient is again a topological ball. Our construction allows us to write down specific
SL.2;C/ representations (in some cases, PSL.2;C/ representations; see the discussion
in Section 3.1 and in particular Remark 3.2) of all the groups involved with ease. In
Section 4, we turn to the discreteness question. After reducing the problem to one on S ,
we briefly review material from the Keen–Series theory of pleating rays and recall
what is needed from [15], allowing us to apply a similar proof in the present context.
Section 5, not strictly logically necessary for our development, explains how we did
our trace computations in practice, by relating the problem to one on a commensurable
torus with a single cone point of angle 4�

3
.
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2 The Markoff tree and the Bowditch set

Let AD
�

a b
c d

�
2 SL.2;C/ so that ad � bc D 1. As usual we define its trace Tr AD

aC d .

Let F2 D hX;Y j � i be the free group on two generators. It is well known that a
representation �W F2! SL.2;C/ is determined up to conjugation (modulo taking the
GIT quotient under the conjugation action; see [10]) by the three traces x D Tr �.X /,
yD Tr �.Y /, zD Tr �.XY /. In fact, given x;y; z 2C , we can define a representation

�x;y;z W F2! SL.2;C/; �.X /D

�
x 1

�1 0

�
; �.Y /D

�
0 �

���1 y

�
;

where zD�.�C��1/; see [9]. Clearly, with this definition, Tr �.X /Dx , Tr �.Y /Dy

and Tr �.XY /D z .

2.1 The Markoff tree

For matrices yU ; yV 2 SL.2;C/, set u D Tr yU , v D Tr yV , w D Tr yU yV (where we
use the notation yU ; yV to distinguish from generators U;V of F2 ). Recall the trace

Algebraic & Geometric Topology, Volume 17 (2017)
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�1=0D 1=0

3=1

2=1

3=2

1=1

2=3

1=2

1=3

0=1

�1=1

B

AB3

AB2

ABAB2

AB

A2BAB

A2B

A3B

A

B�1A

Figure 2: The Farey diagram, showing the arrangement of rational numbers
on the left with the corresponding primitive words on the right

relations

Tr yU yV �1
D uv�w;(2-1)

u2
C v2

Cw2
D uvwCTr Œ yU ; yV �C 2:(2-2)

Setting �D Tr Œ yU ; yV �C 2, this last equation takes the form

u2
C v2

Cw2
�uvw D �:

Let F2 D hX;Y j � i as above. An element U 2 F2 is primitive if it is a member of
a generating pair; we denote the set of all primitive elements by P . The conjugacy
classes of primitive elements are enumerated by yQ D Q[1 and are conveniently
organised relative to the Farey diagram F as shown in Figure 2. This consists of the
images of the ideal triangle with vertices at 1=0; 0=1 and 1=1 under the action of
SL.2;Z/ on the upper half plane, suitably conjugated to the position shown in the disk.
The label p=q in the disk is just the conjugated image of the actual point p=q 2R.

Since the rational points are precisely the images of1 under SL.2;Z/, they correspond
bijectively to the vertices of F . A pair p=q; r=s 2 yQ are the endpoints of an edge if
and only if pr�qsD˙1; such pairs are called neighbours. A triple of points in yQ are
the vertices of a triangle precisely when they are the images of the vertices of the initial
triangle .1=0; 0=1; 1=1/; such triples are always of the form .p=q; r=s; .pCr/=.qCs//

where p=q , r=s are neighbours. In other words, if p=q , r=s are the endpoints of an
edge, then the vertex of the triangle on the side away from the centre of the disk is
found by “Farey addition” to be .pC r/=.qC s/. Starting from 1=0 D �1=0 D1

and 0=1, all points in yQ are obtained recursively in this way. (Note we need to start
with �1=0D1 to get the negative fractions on the left side of the left-hand diagram
in Figure 2.)

Algebraic & Geometric Topology, Volume 17 (2017)
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v.uv�w/�u vw�u

u.uv�w/� v uw� v

uv�w w

v

u

Figure 3: The Markoff tree used to compute traces with an initial triple .u; v; w/

The right-hand picture in Figure 2 shows a corresponding arrangement of primitive ele-
ments in F2 , one in each conjugacy class, starting with initial triple .A;B;AB/. Each
vertex is labelled by a certain cyclically reduced representative of the corresponding
word. Pairs of primitive elements form a generating pair if and only if they are at the
endpoints of an edge. Triples at the vertices of a triangle correspond to a generator triple
of the form .U;V;U V /. Corresponding to the process of Farey addition, successive
words can be found by juxtaposition as indicated on the diagram. Note that for this to
work, it is important to preserve the order: if U;V are the endpoints of an edge with U

before V in the anticlockwise order round the circle, the correct concatenation is U V .
Note also that the words on the left side of the diagram involve B�1A, corresponding
to starting with 1D�1=0. We denote the particular representative of the conjugacy
class corresponding to p=q 2 yQ found by concatenation by Wp=q . Its word length in
the generators A;B is a function F.p=q/ of p=q . A function on yQ is said to have
Fibonacci growth if it is comparable with uniform upper and lower bounds to F .

In this paper, we are largely interested in computing traces of primitive elements.
Following Bowditch [3], these can also be easily computed by using the trivalent
tree T dual to F ; see the left frame of Figure 2 and Figure 3. Let � denote the set of
complementary regions of T ; abstractly, a complementary region is the closure of a
connected component of the complement of T . As is apparent from Figure 2, there is
a bijection between � and the set of vertices of F . Thus the set � can be identified
with conjugacy classes of primitive elements and hence with yQ.

Given a representation �W F2! SL.2;C/, each U 2� is labelled by uD Tr �.U /,
the trace of the corresponding generator, as shown in Figure 3. Labels on opposite
sides of an edge of T correspond to traces of a generator pair: the three labels round a
vertex correspond to a generator triple .U;V;U V /.

Algebraic & Geometric Topology, Volume 17 (2017)
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0

�
p
�xC 2

�
p

xC 1

�
p
�xC 2

p
xC 1

p
�xC 2

.�xC 1/
p

xC 1
p
�xC 2

p
xC 1

x
p
�xC 2

p
xC 1

�
p
�xC 2

Figure 4: The Farey tessellation used to compute traces. See Section 5.0.2
for a discussion of the choice of sign of the square roots.

Suppose that .U;V;W / are the labels of regions round a vertex with u D Tr �.U /,
vDTr �.V /, wDTr �.W /. By (2-2), we have u2Cv2Cw2�uvwD�. By (2-1), the
two vertices opposite the ends of the edge between regions .U;V / correspond to regions
U V;U V �1 with labels w;uv�w , respectively. Moving in this way, along the three
edges which meet at the vertex with labels .u; v; w/ to the three adjacent vertices, gives
rise to the three basic moves .u; v; w/! .u; v;uv�w/, .u; v; w/! .u;uw� v;w/,
.u; v; w/! .vw�u; v; w/ which generate traces of all possible elements in � (and
hence P ). Note that any of these three moves leaves Tr �.ŒU;V �/ and hence � invariant;
in other words, � is an invariant of the tree. Bowditch’s original paper was mostly
confined to the case �D 0.

In this way, the Markoff tree provides a fast way to compute traces of elements in P
starting from an initial triple .u; v; w/. This is illustrated in Figure 4 with the initial
triple .

p
xC 1; 0;

p
�xC 2/ which is used in Section 5.0.2. We denote the tree of

traces associated to an initial triple .u; v; w/ by T.u;v;w/ . Later we will use a variant of
this construction to compute traces of curves on a four-pointed sphere; see Section 4.4.

2.2 The Bowditch set

It is convenient to rephrase the above discussion using the terminology introduced
in [3]. As above, let � denote the set of complementary regions of the tree T . Define
a Markoff map to be a map �W �! C such that � satisfies the trace relations (2-1)
and (2-2). The set of all Markoff maps is denoted by ˆ. Since traces depend only
on conjugacy classes, a representation �W F2! SL.2;C/ defines a Markoff map by
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setting �.U / D Tr �.U / for U 2 �. Fixing once and for all an identification of �
with yQ (and recalling that � is identified with conjugacy classes of elements in P ),
we have �.p=q/D Tr �.Wp=q/ for p=q 2 yQ, where Wp=q is the special word in the
conjugacy class corresponding to p=q 2�.

Thus as explained above, using the trace relations (2-1) and (2-2), an initial triple
.x;y; z/ 2C3 uniquely determines a Markoff map � D �x;y;z together with a corre-
sponding labelling of T . Conversely a Markoff map � 2ˆ determines .x;y; z/ 2C3

by setting x D �.0=1/, y D �.1=0/, z D �.1=1/. In this way, we can identify ˆ
with C3 . For � 2ˆ, denote the corresponding tree endowed with the labelling given
by � by T� D T.�.0=1/;�.1=0/;�.1=1// .

The Bowditch set B is the set of all � 2ˆ with �¤ 4 which satisfy the conditions

�.U / 62 Œ�2; 2� for all U 2�;(2-3)

fU 2� W j�.U /j � 2g is finite:(2-4)

The Bowditch set B is open in C3 and Out.F2/ acts properly discontinuously on B .
Furthermore, if � 2 B , then logC j�.U /j Dmaxf0; log j�.U /jg has Fibonacci growth
on �; see [30].

Remark 2.1 The maps � for which �D 4 correspond to the reducible representations:
our definition above automatically excludes them from B . For such � , there are infin-
itely many U 2� such that j�.U /j<m for m> 2, they can alternatively be excluded
from B by relaxing condition (2-4) to the condition that fU 2� W j�.U /j � 2C �g

be finite for any � > 0. As is easily checked from the trace relation (2-2), such
representations occur in � precisely at the points x D�1, x D 2.

2.2.1 Background to the algorithm Our algorithm for computing which points lie
in B is based on results from [3; 30] which we summarise here. We consider only �
for which �¤ 4. Following Bowditch [3], we orient the edges of T� in the following
way. Suppose that labels of the regions adjacent to some edge e are u, v , and the
labels of the two remaining regions at the two end vertices are w , t ; see Figure 3. From
the trace relations, t D uv�w . Orient e by putting an arrow from t to w whenever
jt j> jwj and vice versa. If both moduli are equal, make either choice; if the inequality
is strict, say that the edge is oriented decisively.

A sink region of T� is a connected nonempty subtree T such that the arrow on any
edge not in T points towards T decisively. A sink region may consist of a single
sink vertex v (the three edges adjacent to v point towards v ) and no edges. Clearly a
sink region is not unique: one can always add further vertices and edges around the
boundary of T .
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For any m � 0 and � 2 ˆ, define ��.m/D fU 2� W j�.U /j �mg. The following
lemmas from [30] show that ��.2/ is connected, and that from any initial vertex not
adjacent to regions in ��.2/, the arrows determine a descending path through T which
either runs into a sink, or meets vertices adjacent to regions in ��.2/. Furthermore,
if �.U / takes values away from the exceptional set E D Œ�2; 2�[f˙

p
�g �C , then

there exists a finite segment of @U such that the edges adjacent to U not in this segment
are directed towards this segment.

Lemma 2.2 [30, Lemma 3.7] Suppose U;V;W 2 � meet at a vertex v with the
arrows on both the edges adjacent to U pointing away from v . Then either j�.U /j � 2

or �.V /D �.W /D 0.

Corollary 2.3 [30, Theorem 3.1(2)] Let � 2 ˆ. Then ��.2/ (more generally,
��.m/ for m� 2) is connected.

Lemma 2.4 [30, Lemma 3.11 and following comment] Suppose ˇ is an infinite ray
consisting of a sequence of edges of T� all of whose arrows point away from the initial
vertex. Then ˇ meets at least one region U 2� with j�.U /j< 2. Furthermore, if the
ray does not follow the boundary of a single region, it meets infinitely many regions
with this property.

Lemma 2.5 [30, Lemma 3.20] Suppose that �.U / 62 E , and consider the regions
Vi ; i 2 Z adjacent to U in order round @U . Then away from a finite subset, the values
j�.Vi/j are increasing and approach infinity as i !1 in both directions. Hence there
exists a finite segment of @U such that the edges adjacent to U not in this segment are
directed towards this segment.

We remark that if �.U / D ˙
p
� and

p
� 62 Œ�2; 2�, then the values of j�.Vi/j in

Lemma 2.5 approach zero in one direction round @U [30, Lemma 3.10], and hence
� 62 B since condition (2-4) will not be satisfied. Hence, for � 2 B , we have �.U / 62E

for all U 2�.

The set ��.2/ can be used to construct a sink region T (which depends of course
on � ) which is finite if and only if � 2 B . Essentially, if � 2 B , then T consists
of finite segments of the boundaries of the (finite number of) elements of ��.2/.
These are the segments alluded to in Lemma 2.5; they have to be large enough so the
conclusion of the lemma holds, and also to contain all edges adjacent to any pair U;V ,
both of which are in ��.2/, so that the union is connected. To do this, an explicit
function H�W C!RC[f1g is constructed (see Lemma 3.20, the following remark
and Lemma 3.23 in [30]) as follows:

Algebraic & Geometric Topology, Volume 17 (2017)



2248 Caroline Series, Ser Peow Tan and Yasushi Yamashita

(1) If x 2E , define H�.x/D1.

(2) For x 62E , let x D �C��1 with j�j> 1 (note that j�j ¤ 1 since x 62 Œ�2; 2�).
Define

(2-5) H�.x/Dmax
�

2;

sˇ̌̌̌
x2��

x2� 4

ˇ̌̌̌
2j�j2

j�j � 1

�
:

Then H� is continuous on C nE . Now we can define a specific attracting subtree:

Definition 2.6 Given � 2ˆ, let T D T� be the subset of T� defined as follows:

(1) An edge with adjacent regions U;V is in T if and only if either j�.U /j � 2

and j�.V /j �H�.�.U //, or vice versa.

(2) Any sink vertex is in T , as are any vertices which are the endpoints of two edges
in T .

Based on the above lemmas, we have the following theorem (see also the special
properties of the function H� and Lemmas 3.21–3.24 in [30]).

Theorem 2.7 Given � 2 ˆ (with � ¤ 4), the set T D T� in Definition 2.6 is a
nonempty, connected subtree of T� . Moreover, T is a sink region for T� ; that is, all
edges not in T are directed decisively towards T . Furthermore, T is finite if and only
if � 2 B .

2.2.2 The algorithm Based on the above discussion, our algorithm to decide whether
or not � 2 B is as follows.

Step 1 Starting at any vertex, follow the direction of decreasing arrows. On
reaching a sink vertex, stop. This vertex is in T by Definition 2.6. If the input
is B , then this method always finds a sink vertex in finite time because there is a
finite sink region. Otherwise, the process may not terminate in (prespecified)
finite time, and the algorithm is indecisive.

Step 2 Assuming a stopping point is found in Step 1, starting from this point,
search outwards by a depth first search using Definition 2.6 to identify whether
or not an edge is in T . This works because of the connectedness of T . If this
search terminates in (prespecified) finite time, then �x;y;z 2 B . Otherwise, the
algorithm is indecisive.

Note that if the starting point is a sink vertex and the three adjacent edges are not in T ,
then T consists of just the sink vertex by the connectedness of T , hence �x;y;z 2 B .
This occurs for example for the tree T.x;x;x/ with x 2 .2; 3/.

Figure 5 shows the Bowditch set in the diagonal slice � as determined by this algorithm.
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Figure 5: The Bowditch set B for the Markoff maps �.x;x;x/ , plotted in the
x–plane. The grey (coloured) points are in B and the black ones are outside.
The shades of grey (colours) indicate the size of the sink region T .

Remark 2.8 We do not have an algorithm whose output is �x;y;z 62 B . When �D 0,
it was shown in [25] that if j�.U /j � 0:5 for some U 2�, then �x;y;z 62 B . Hence
in Step 1 above, if �D 0, we can stop when we hit a region satisfying this condition
and conclude that �x;y;z 62 B . Using the same methods, a similar upper bound can be
found for � close to 0. In particular, there is a neighbourhood of .0; 0; 0/ which is
disjoint from B , as clearly illustrated in Figure 5. However, as shown in [11], no such
universal positive bound exists for all �: precisely, for any � > 0 and � > 4, there
exist � 2 B� and U 2� such that j�.U /j< � . Another issue is that the sink region
may be extremely large so may not be detected in a program with a given finite number
of steps, this occurs when we approach the boundary of B . Thus the algorithm is not
completely decisive although it appears to give nice results. In particular, there may be
false negatives; however points which are determined to be in B are correctly marked.

3 Groups, manifolds, symmetries and quotients

In this section we detail a construction which allows us conveniently to exploit the
three-fold symmetry of groups in the diagonal slice �. We denote hyperbolic 3–space
by H3 and identify its group IsomCH3 of orientation-preserving isometries with
PSL.2;C/. As is well known, if the image of a representation �W F2 ! SL.2;C/
is faithful, discrete and geometrically finite without parabolics, then H3=�.F2/ is a
genus-two handlebody H; see [24, Corollary X.H.6] and also [12, Theorem 5.2]. (To
apply Hempel’s result, note that a hyperbolic 3–manifold is irreducible, hence prime,
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and that �2.M / D 0.) Rather than working with H , however, it is much easier to
work with the quotient S of H by the order-3 symmetry � corresponding to cyclic
permutation of the parameters. We also introduce a commensurable orbifold T with a
torus boundary @T .

Both S DH=� and T surject to a 3–orbifold U with fundamental group a so-called
.P;Q;R/–group. Its boundary @U is a sphere with three order-2 and one order-3
cone points. A similar construction has been used extensively by Akiyoshi et al (see for
example [1]), and is the basis of Wada’s program OPTi [31; 32], hence was convenient
for our computations. In this section we explain these constructions in detail, using
them to find explicit representations of all four groups.

3.1 The handlebody and related orbifolds

The symmetric handlebody H can be thought of as made by gluing two solid pairs
of pants each with order-3 symmetry. More precisely, take a 3–ball and choose three
closed disks on the boundary, placed so as to have order-3 rotational symmetry. Gluing
two such balls along the closed disks produces a handlebody H with the required
order-three symmetry � . Rather than write down a suitably symmetric representation
of �1.H/ directly, we consider first the quotient orbifold SDH=� . As will be justified
in retrospect when we have identified the representations explicitly, this is a ball with
two cone axes around each of which the angle is 2�

3
. Its boundary @S is a sphere

†0I3;3;3;3 with four order-3 cone points. We will call S the large coned ball.

The ball S has a further order-4 symmetry group. Consider the two cone axes which
form the singular locus of S , together with their common perpendicular. Lifting
to H3 , we obtain a configuration invariant under the � –rotation about C , the common
perpendicular to the two lifted cone axes, and also under � –rotations about a unique
pair of orthogonal lines in the plane orthogonal to C passing through its midpoint O ;
see Section 3.2.1. Denoting these latter rotations xP ; xQ 2 IsomCH3 , the � –rotation
about C is xP xQ and the entire configuration is invariant under h xP ; xQi D Z2 �Z2 .
Thus we obtain a further quotient orbifold U D S=.Z2 �Z2/, also topologically a
ball, which we call the small coned ball. The singular locus of U is as follows. Let yO
and yE be the images in U of the midpoint O of C and the point where C meets the
axis of xK , respectively, where xK 2 IsomCH3 is one of the two order-three rotations
about the pair of lifted cone axes. Let yC be the image in U of C , so that yC is a line
from yO to yE . From yO emanate three mutually orthogonal lines corresponding to the
order-2 axes of xP , xQ and xP xQ. One of these is the line yC corresponding to xP xQ
which ends at yE . From yE also emanates an order-3 singular line, the axis of xK ,
perpendicular to yC . The boundary @U is a sphere †0I2;2;2;3 with 3 cone points of
order 2 and one of order 3. The order-3 cone point is the image of the endpoint of the
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order-3 singular line and the order-2 cone points correspond to the endpoints on @U
of the axes of xP , xQ and a third involution xR defined below.

Finally, there is a double cover of the small coned ball U by an cone manifold T which
is topologically a solid torus. Its boundary is a torus @T with a single cone point of
angle 4�

3
. Just as the quotient of a once punctured torus †1I1 by the hyperelliptic

involution is the surface †0I2;2;2;1 , so the quotient of @T by the hyperelliptic involu-
tion � is the surface @U D†0I2;2;2;3 . The involution � extends to an involution, also
denoted by �, of T such that T =�D U .

The group �1.U/ is generated by . xP ; xQ; xK/, where . xP ; xQ; xK/ are regarded as ele-
ments of IsomCH3 D PSL.2;C/. We can replace xK by a further involution xR such
that xR xQ xP D xK . To do this, let xR be an order-2 rotation about an axis contained in the
plane through E orthogonal to Ax xK , such that the axis makes an angle 1

3
� with C .

(We will fix orientations more precisely below.) Then xR. xQ xP / is a 2�
3

–rotation about
Ax xK , in other words, provided orientations have been chosen correctly, we can identify
�1.U/ with a group˝

xP ; xQ; xR j xP2
D xQ2

D xR2
D . xR xQ xP /3 D id; xP xQD xQ xP

˛
� PSL.2;C/:

As discussed in Remarks 3.1 and 3.2 below, the above group �1.U/ cannot be lifted
to a subgroup of SL.2;C/ since it contains elements of order two. Nevertheless, we
shall find lifts P;Q;R 2 SL.2;C/ of xP ; xQ; xR 2 PSL.2;C/ for which

�U D
˝
P;Q;R j P2

DQ2
DR2

D .RQP /3 D�id; PQD�QP
˛
� SL.2;C/;

so that �U projects to �1.U/.

To do this, we recall that in [1] and other papers by the same authors, groups generated
by three involutions P;Q;R2SL.2;C/ with RQP parabolic, are used as a convenient
way of parametrising representations of once punctured tori, where the torus in question
is now a two-fold cover of the orbifold with fundamental group hP;Q;Ri with quotient
induced by the hyperelliptic involution. A small modification of their parametrisation
allows us to write down a convenient general form for a representation of the group �U
with the presentation above into SL.2;C/, from which we obtain explicit SL.2;C/
representations of �1.H/, �1.S/, together with groups in SL.2;C/ which project
to PSL.2;C/ representations of �1.U/ and �1.T / as above. This we do in the
next section.

3.2 The basic configuration and the small coned ball

We start with a general construction for representations �U ! SL.2;C/, that is, of
subgroups hP;Q;R j P2 DQ2 DR2 D .RQP /3 D�id; PQD�QP i � SL.2;C/.
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�3
�1

� i�

1
3

Figure 6: The basic configuration for the .P;Q;R/–group �1.U/

For convenience we refer to such a group (or its image in PSL.2;C/) as a .P;Q;R/–
group. The elements P;Q;R;K we construct will project to the PSL.2;C/ elements
xP ; xQ; xR; xK discussed above.

We will make our calculations using line matrices following [8]. Note this will define
representations into SL.2;C/, thus fixing the signs of traces. Let u;u0 2 yC , and denote
the oriented line from u to u0 by Œu;u0�. The associated line matrix M.Œu;u0�/ 2

SL.2;C/ is a matrix which induces an order two rotation about Œu;u0� and such that
M.Œu;u0�/2 D�id, so that in particular,

M.Œ0;1�/D

�
i 0

0 �i

�
:

By [8, page 64, equation (1)], we have, if u;u0 2C ,

M.Œu;u0�/D
i

u0�u

�
uCu0 �2uu0

2 �u�u0

�
:

The representation we require is derived from a basic configuration shown in Figure 6.
It depends on a single parameter � 2C which we will relate to the original parameter x

in Section 3.2.3 below.

Let � 2 C and P;Q;R 2 SL.2;C/ be � –rotations about the oriented lines Œ�;���,
Œi�;�i�� and Œ1;�3�, respectively. By construction P2 DQ2 DR2 D�id. Moreover,
Ax P and Ax Q intersect at the point j�jj 2H3 on the hemisphere of radius j�j and
centre 0 2 C , where zC tj represents the point at height t > 0 above z 2 C in the
upper half space model of H3 . Thus PQ D �QP and PQ is an order-2 rotation
about the vertical axis 0C tj ; t > 0.

Let V be the vertical plane above the real axis in H3 . Note that the oriented axes
of the order two rotations PQ and R both lie in V , intersecting in the point

p
3j

at angle 1
3
� . The line Œ

p
3i;�
p

3i � passes through this point and is orthogonal
to V . It follows that RPQD�RQP is anticlockwise rotation through 2�

3
about the
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line Œ
p

3i;�
p

3i �. Using line matrices as above, we can now easily write down the
corresponding representation in SL.2;C/:

P D M.Œ�;���/ D �
i

2�

�
0 2�2

2 0

�
D

�
0 �i�

�i=� 0

�
;

QDM.Œi�;�i��/D �
1

2�

�
0 �2�2

2 0

�
D

�
0 �

�1=� 0

�
;

R D M.Œ1;�3�/ D �
i

4

�
�2 6

2 2

�
D

�
i=2 �3i=2

�i=2 �i=2

�
:

Let K DRPQ. Then

K D

�
�1=2 �3=2

1=2 �1=2

�
; K3

D

�
1 0

0 1

�
;

so that as expected, K is a anticlockwise rotation about Œ
p

3i;�
p

3i � by 2�
3

.

Note that P2 DQ2 D�id and PQD�QP as matrices in SL.2;C/. As isometries
of H3 , the signs are irrelevant. We could have chosen K D RQP , in which case
K3 D �id, but see Remark 3.1 below. We denote the group generated by P;Q;R

by GU .�/ and the corresponding representation �U ! SL.2;C/ by �U .�/.

3.2.1 The large coned ball S To relate �1.U/ to �1.S/, start with two oriented axes
A0;A1 about each of which we have order-3 anticlockwise rotations K0;K1 , measured
with respect to the orientation of the axes. Let C denoted the common perpendicular
between A0 and A1 , oriented from A0 to A1 . We denote this configuration, which is
clearly well defined up to isometry, by CF . As described in Section 3.1, CF has a further
Z2 �Z2 group of symmetries generated by the � –rotations xP ; xQ 2 PSL.2;C/ with
axes through the mid-point of C : precisely, let … be the plane through the mid-point
of C and orthogonal to C . Then (working equivalently with the lifts P;Q2 SL.2;C/)
the axes of P;Q are the two lines in … which bisect the angles between the projections
of Ax K0;Ax K1 onto …, chosen so that the angle bisected by Ax P is that between
the projection of the lines Ax K0;Ax K1 with the same (say outward) orientation.

This choice of P ensures that PK0P�1 D K1 while QK0Q�1 D K�1
1

. Also PQ

is the order-2 rotation about C , and PQKiQ
�1P�1 D K�1

i for i D 0; 1. As in
Section 3.1, U D S=.Z2 �Z2/, and we can take �1.U/ to be the .P;Q;R/–group
defined in Section 3.2. In terms of .P;Q;R/, the generators of �1.S/ are K0DRPQ,
K1 D PK0P�1 . Thus

K0 D�

�
1=2 3=2

�1=2 1=2

�
; K1 D�

�
1=2 ��2=2

3=.2�2/ 1=2

�
:
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In terms of generators for �1.@S/, we also have K2 D QK0Q�1, K3 D RK0R�1,
where

K2 D�

�
1=2 �2=2

�3=.2�2/ 1=2

�
; K3 D�

�
1=2 �3=2

1=2 1=2

�
;

so that K0K3K1K2 D id.

We denote the group with generators K0;K1 by GS.�/ and the corresponding repre-
sentation �1.S/! SL.2;C/ by �S.�/. From now on, we frequently drop the subscript
and refer to K0 as K .

3.2.2 The handlebody H We are now able to determine the images of generators
X;Y of �1.H/ as matrices in SL.2;C/ under a suitable representation �H.�/. To
simplify notation, we shall from now on frequently identify generators of �1.H/ with
their images in SL.2;C/, thus writing X;Y in place of �H.�/.X /; �H.�/.Y / and
so on.

Observe that the generator X 2 �1.H/ projects to the loop represented by K0K1

in H=� . (This latter is a loop in @H=� which separates one of each pair of the cone
points of K0;K1 from the other pair.) We arrange that the action of � is induced by
conjugation by K�1

0
DK�1 , so the generators of �1.H/ can be written in terms of

the generators of �1.S/ as X DK0K1 , Y DK�1
0

XK0 DK1K0 . Thus we have

K�1XK D Y; K�1YK D .XY /�1; K�1.XY /�1K DX:

Using the formulae from the previous section, this gives

X D

 
9=.4�2/C 1=4 ��2=4C 3=4

3=.4�2/� 1=4 �2=4C 1=4

!
; Y D

 
�2=4C 1=4 ��2=4C 3=4

3=.4�2/� 1=4 9=.4�2/C 1=4

!
:

In particular this reveals the relation between the parameter � and x :

(3-1) x D Tr X D Tr Y D Tr XY D
�2

4
C

9

4�2
C

1

2
:

We denote the group with generators X;Y by GH.�/ and the corresponding representa-
tion �1.H/! SL.2;C/ by �H.�/; we explain in Section 3.2.5 why up to conjugation
�H.�/ in fact depends only on x .

Remark 3.1 In the above discussion, we made choices of sign so that K3 D id,
X DK0K1 (where K DK0 as above). To compute the discreteness locus of a family
of representations only requires looking in PSL.2;C/, however for computations
involving traces we need a lift to SL.2;C/.

Algebraic & Geometric Topology, Volume 17 (2017)



The diagonal slice of Schottky space 2255

By [6], any PSL.2;C/ representation of a Kleinian group can be lifted to SL.2;C/
provided there are no elements of order 2; in particular this applies to PSL.2;C/
representations of �1.S/ and �1.H/. Since the product of the three generating loops
corresponding to X;Y;Z is the identity in �1.H/, we should make a choice of lift in
which XYZ D id in SL.2;C/. We could choose the element K which represents the
3–fold symmetry � to be such that either K3 D id or K3 D�id; however, since we
intend to work with representations of �1.S/! SL.2;C/, we should make the choice
K3 D id because K corresponds to a loop round an order-3 cone axis in the quotient
orbifold S .

In the representation we have written down, we achieve K3 D id with the choice K D

RPQD
�
�1=2 �3=2

1=2 �1=2

�
. It is easy to check that taking K3 D id, if we let X DK0K1 ,

we get XYZ D id as required, but if we choose X D�K0K1 , we get XYZ D�id,
which is wrong.

3.2.3 The singular solid torus T Finally we discuss the associated singular solid
torus T , which is constructed in a standard way from the .P;Q;R/–group. We do not
logically need to use T in our further development, however as explained in Section 5,
in practice we used T for computations, moreover the interpretation of the problem in
the more familiar setting of a torus with a cone point may be helpful.

The boundary @U is a sphere with 4 cone points xP ;xQ;xR and xK corresponding
to P;Q;R and K D RPQ. Thus we can take as generators of �1.T / the element
B D PQ whose projection to T is a loop separating xP ;xQ from xR;xK , and the
element A D RQ which projects to a loop separating xR;xQ from xP ;xK . Since
P;Q have a common fixed point, B is an order-2 elliptic, while since the axes of
R;Q are (generically) disjoint, A is a loxodromic whose axis extends the common
perpendicular to Ax R and Ax Q.

Using the formulae above for the .P;Q;R/–group, we compute

RQDAD

�
3i=.2�/ i�=2

i=.2�/ �i�=2

�
; PQD B D

�
i 0

0 �i

�
;

so that

(3-2) Tr AD
3i

2�
�

i�

2
; Tr B D 0; Tr AB D�

�

2
�

3

2�
:

Note that AB DRP and A2 D�K0K1;B
2 D�id. We also deduce that

ABA�1B�1
D ŒA;B�D

�
1=2 �3=2

1=2 1=2

�
; so that Tr ŒA;B�D 1:
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Note that Tr A2 Œ�2; 2� if and only if j�jD
p

3 or �D i t with 1�jt j�3, justifying the
above remark that generically A is loxodromic. Note also that A2D�K0K1 is consis-
tent with the direct computation using (3-2) that Tr.A2/D�.�2=4C 9=.4�2/C 1=2/.
Also note that ŒA;B�D�K2 , so that the commutator is rotation by 4�

3
about Ax K .

Since Tr K2D .Tr K/2�2, we find also that Tr ŒA;B�D 1 independently of the choice
of sign for K . This is consistent with Tr ŒA;B�D�2 cos

�
2�
3

�
, the sign being negative

by analogy with the well known fact that for any irreducible representation of a once
punctured torus group for which the commutator is parabolic, we have Tr ŒA;B�D�2.

We denote the group with generators A;B by GT .�/ and the corresponding represen-
tation �1.T /! SL.2;C/ by �T .�/.

Remark 3.2 Once again there are questions of sign which this time are a little more
subtle. If ˛ 2 PSL.2;C/ corresponds to an element of order 2 in �1.M /, then
the corresponding representation cannot be lifted to SL.2;C/, because for nontrivial
˛2SL.2;C/, necessarily ˛2D�id; see [20] and [6]. Since in �1.T / the element B2 is
trivial, a PSL.2;C/ representation of �1.T / cannot be lifted to SL.2;C/. Nevertheless,
we can as above write down a group in SL.2;C/ which projects to a PSL.2;C/
representation for �1.T /. See Section 5 for further discussion on this point.

3.2.4 More on the configuration for the large coned ball S The relation (3-1) can
be given a geometrical interpretation in terms of the perpendicular distance between
the axes of K0;K1 which sheds light on the symmetries of the configuration CF in
Section 3.2.1. To measure complex distance, we use the conventions spelled out in
detail in [28, Section 2.1]. The signed complex distance d˛.L1;L2/ between two
oriented lines L1;L2 along their oriented common perpendicular ˛ is defined as
follows. The signed real distance d˛.L1;L2/ is the positive real hyperbolic distance
between L1;L2 if ˛ is oriented from L1 to L2 and its negative otherwise. Let vi for
i D 1; 2 be unit vectors to Li at the points Li \˛ and let w1 be the parallel translate
of v1 along ˛ to the point ˛ \L2 . Then d˛.L1;L2/ D ı˛.L1;L2/C i� where �
is the angle, mod 2� i , from w1 to v2 measured anticlockwise in the plane spanned
by w1 to v2 and oriented by ˛ .

Let � be the signed complex distance from the oriented axis Ax K0 to the oriented
axis Ax K1 , measured along the common perpendicular C oriented from Ax K0 to
Ax K1 . Then Ax K0;Ax K1 together with Ax K0K1 form the alternate sides of a
right angled skew hexagon whose other three sides are the common perpendiculars
between the three axes taken in pairs. The cosine formula gives � in terms of the
complex half translation lengths �0; �1; �2 of K0;K1 and K0K1 , respectively. To get
the sides oriented consistently round the hexagon, we have to reverse the orientation of
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Ax K0 so that the complex distance � should be replaced by � 0 D � C i� and �0 by
�00 D��0 (see [28]), so the formula gives

cosh � 0 D
cosh�2� cosh�00 cosh�1

sinh�00 sinh�1

:

As in Section 3.2.2, we have X D K0K1 so x D Tr K0K1 D 2 cosh�2 while for
i D 0; 1 we have cosh�i D cos 2�

3
D�

1
2

and sinh�i D i sin 2�
3
D

1
2
i
p

3. (Note that
since K0;K1 are conjugate we should take �0D �1 so the possible additive ambiguity
of i� in the definition of the �i does not change the resulting equation.) Substituting,
we find

(3-3) � cosh � D x=2�1=4

.
p

3=2/2
D

1
3
.2x� 1/:

We can also relate � directly to our parameter � . By construction Ax K0 is the
oriented line Œ�

p
3i;
p

3i �, while K1 D PK0P�1 so that Ax K1 is the oriented line
Œi�2=

p
3;�i�2=

p
3� and C is the oriented line from 1 to 0. Thus the real part of the

hyperbolic distance from Ax K0 to Ax K1 is 2 log
p

3=j�j, and the anticlockwise angle,
measured in the plane oriented downwards along the vertical axis C , is �.�C2 Arg �/.
Hence

� D 2 log
p

3

j�j
� 2i Arg � � i� D 2 log

p
3

�
:

Comparing to (3-3), we find��p
3

�

�2

C

�
�
p

3

�2�
D 2 cosh.� C i�/D 2

3
.2x� 1/;

or

(3-4) x�
1

2
D

3

4

��p
3

�

�2

C

�
�
p

3

�2�
;

recovering and giving a more satisfactory geometrical meaning to (3-1).

3.2.5 Dependence on x versus � It is not perhaps immediately obvious why the
groups GS.�/;GH.�/ as defined above depend up to conjugation only on our original
parameter x . This is clarified by the above discussion, because up to conjugation
GS.�/ depends only on the configuration CF and hence on � which is related to x

as in (3-3). An alternative way to see this is the discussion on computing traces in
Section 4.4. Thus from now on, we shall alternatively write GS.x/;GH.x/ in place of
GS.�/;GH.�/.
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3.2.6 Symmetries The discussion in Section 3.2.4 gives insight into various symme-
tries of the parameters x and � . Equation (3-1) shows that the map � 7! x is a 4–fold
covering with branch points at � D˙

p
3, � D˙i

p
3 and z D 0;1. Correspondingly,

we have a Klein 4–group Z2 �Z2 of symmetries which change � but not x :

(1) Replacing � by �� leaves the basic construction unchanged but the line matrices
defining P;Q change sign.

(2) Replacing � by �3=� is an order-2 rotation about the axis Œ�
p

3i;
p

3i �. This
fixes K0 and moves K1 into a position on the opposite side of K0 along the
vertical line C . This changes nothing other than the position we choose for the
basic configuration in Section 3.2. Note however that the line matrices defining
P;Q change sign.

There is also a symmetry which changes x as well as � . Say we fix the orientation of
one of the two axes Ax K0;Ax K1 while reversing the other. On the level of the con-
figuration CF from Section 3.2.1, this interchanges P and Q. Since PK0P�1 DK1

while QK0Q�1 DK�1
1

, this is equivalent to fixing the orientation of one of the two
axes Ax K0;Ax K1 while reversing the other. This symmetry interchanges the marked
group P;Q;R with the marked group Q;P;R, so that one group is discrete if and only
if so is the other. In terms of our parameters, the complex distance � between the axes
changes to �Ci� , so that cosh � 7!� cosh � giving the symmetry

�
x� 1

2

�
7!�

�
x� 1

2

�
of (3-3). Note that the diagonal slice of the Bowditch set �\B does not possess this
symmetry. Interchanging P and Q is induced by the map � 7! i� ; more precisely
this map sends P to Q and Q to �P . This clearly induces the same symmetry in
Equation (3-1). Note that by the definition, in this symmetry R remains unchanged.

On the level of the torus group �1.T /, we have by definition RQ D A, PQ D B

so that AB D RP . Thus sending P to Q and Q to �P while fixing R sends B

to �B and A to �AB . (Recall that on the level of matrices, PQ D �QP .) The
symmetry should therefore replace the trace triple .Tr A;Tr B;Tr AB/ by the triple
.�Tr AB;�Tr B;Tr A/. It is easily checked from (3-2) that this is exactly the change
effected by � 7! i� .

Finally, we have the symmetry of complex conjugation induced by x! xx or equiva-
lently � 7! x� . This sends � 7! x� thus replacing GH.x/ by a conjugate group in which
the distance between Ax K0 and Ax K1 is unchanged but the angle measured along
their common perpendicular changes sign. Clearly these are different groups but one is
discrete if and only if the same is true of the other.

The diagonal slice of the Bowditch set obviously also enjoys the symmetry by conju-
gation, however, that is its only symmetry. In particular .x;x;x/! .�x;�x;�x/ is
not a symmetry and the corresponding SL.2;C/ representations project to different
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representations of F2 into PSL.2;C/. This is because any two distinct lifts of a
representation from PSL.2;C/ to SL.2;C/ differ by multiplying exactly two of the
parameters x;y; z by �1. The allowed replacement X !�X and Y !�Y gives
the group .�x;�x;x/ with parameters which are not in the diagonal slice �.

The symmetries can be seen in our plots by comparing Figure 5, the Bowditch set
for the triple �.x;x;x/ in the x–plane, with the right-hand frame of Figure 13, which
shows the same set in the �–plane. Note the symmetry of complex conjugation in both
pictures. In addition, Figure 13 is invariant under the maps � 7! �� and � 7! �3=� ,
neither of which are seen in Figure 5. Thus the upper half plane in Figure 13 is a
4–fold covering of the upper half plane in Figure 5: as is easily checked from (3-1),
the imaginary axis in Figure 13 maps to the negative real axis in Figure 5 while the
real axis in Figure 13 maps to the positive real axis in Figure 5. In particular, note the
following branch points and special values: if x D 3, then � D˙1;˙3; if x D 2, then
� D˙

p
3; if x D�1, then � D˙

p
3i ; if x D�2, then � D˙i;˙3i .

Finally, the symmetry
�
x� 1

2

�
7! �

�
x� 1

2

�
is not visible in either picture because it

does not preserve the property of lying in the Bowditch set. As we shall see later, this
symmetry is visible in pictures of the discreteness locus; see the upper frame of Figure 8.

4 Discreteness

We now turn to the question of finding those values of the parameter x for which
representation �x W F2 ! SL.2;C/ is faithful with discrete geometrically finite im-
age, where as usual F2 D hX;Y j � i. Let DS ;DH � C denote the subsets of the
complex x–plane on which the representations �S.x/; �H.x/ are respectively faithful
and GS.x/;GH.x/ are discrete and geometrically finite. (See Section 3.2.5 for the
replacement of GS.�/;GH.�/ by GS.x/;GH.x/.) We first show that DS D DH .

We begin with the easy observation that since all the groups in Section 3 are commen-
surable, they are either all discrete or all nondiscrete together:

Lemma 4.1 Suppose that G;H are subgroups of PSL.2;C/ with G � H and that
ŒG WH � is finite. Then G is discrete (geometrically finite) if and only if the same is
true of H .

Proof If G is discrete, clearly so is H . Suppose that H is discrete but G is not.
Then infinitely many distinct orbit points in G �O accumulate in some compact set
D � H3 . Label the cosets of ŒG W H � as g1H; : : : ;gkH . Then for some i there
are infinitely many points gihr �O 2D , which gives infinitely many distinct points
hr 2 g�1

i D . This contradicts discreteness of H . The proof for geometric finiteness is
equally straightforward.
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Lemma 4.2 The representation �S.x/W �1.S/!GS.x/ is faithful if and only if the
same is true of �H.x/W �1.H/!GH.x/.

Proof Note that �1.S/ is isomorphic to Z=3Z �Z=3Z D hk0; k1 j k
3
0
D k3

1
D idi,

while �1.H/ is the subgroup of �1.S/ generated by k0k1 and k1k0 , and is isomorphic
to a free group of rank 2. By construction, �H.x/ is the restriction of �S.x/ to �1.H/.
Thus, if �S.x/ is faithful, then so is �H.x/.

Now �1.H/ has index three in �1.S/ and �1.S/D �1.H/[ k0�1.H/[ k�1
0
�1.H/.

Suppose that �H.x/ is faithful but �S.x/ is not. Then there exists g 2 �1.S/ such
that �S.x/.g/ D id. Now g D ke

0
h, where e D ˙1 and h 2 �1.H/. Thus id D

�S.x/.g/D�S.x/.k
e
0
/�H.x/.h/ so that �H.x/.h3/D�S.x/.k

�3e
0

/D id, contradicting
the assumption that �H.x/ is faithful.

Corollary 4.3 The representations �S.x/; �H.x/ are faithful, discrete and geometri-
cally finite together; that is, DS D DH .

Thus we may write DD DS D DH . Our next aim is to find D �C .

4.1 Fundamental domains

We can make a rough estimate for D by exhibiting a fundamental domain for GS.x/

for sufficiently large x .

Proposition 4.4 Writing x D uC iv , the region D contains the region outside the
ellipse 1

25
.2u� 1/2C 1

4
v2 D 1 in the x–plane.

Proof In view of Corollary 4.3, we can work with the large cone manifold S with
generators K0;K1 of Section 3.2.1. The axis of K0 is the line Œ�i

p
3; i
p

3� passing
through j

p
3. Let H;H 0 be the hemispheres which meet R orthogonally at points

�3; 1 and �1; 3, respectively, and let E;E0 be the closed half spaces they cut out
which contain 0. Then H;H 0 intersect in Ax K0 , moreover E \E0 is a fundamental
domain for the group hK0i acting on H3 .

Recalling that P is the � –rotation about the line Œ��; �� which bisects the common
perpendicular between Ax K0 and Ax K1 , we see that the images of H;H 0 under P

meet along Ax K1 . Since P .z/ D �2=z for z 2 C , we have that P .H /;P .H 0/

meet P .R/ orthogonally in points �1
3
�2; �2 and 1

3
�2;��2 , respectively. If F;F 0 are

the half spaces cut out by P .H /;P .H 0/ which contain1DP .0/ (so that F DP .E//,
then in a similar way, F \F 0 is a fundamental domain for hK1i.
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i
p

3

K0

i�2=
p

3
K1

�1 0 1

Figure 7: The shaded region illustrates the fundamental domain for �1.S/
acting in its regular set in yC when j�j< 1 , so that x is outside the ellipse of
Proposition 4.4.

Thus if j�j < 1, then the hemisphere of radius j�j centred at 0 separates the regions
.E \E0/C and .F \F 0/C . We conclude by Poincaré’s theorem (or a suitable simple
version of the Klein–Maskit combination theorem) that in this situation the region
.E\E0/\.F\F 0/ is a fundamental domain for hK0;K1i, which moreover is discrete
with presentation hK0;K1 j K

3
0
D K3

1
D idi. Thus the representation �S.x/ with

x D x.�/ as in (3-1), is faithful, and hence x 2 D .

Suppose that � D ei� . Then from (3-3), 1
3
.2x� 1/ D cosh � D 1

2

�
1
3
e2i� C 3e�2i�

�
so that x D uC iv lies on the ellipse 1

25
.2u� 1/2C 1

4
v2 D 1 as claimed.

The configuration when x 2 R is of particular interest since in this case GH.x/ is
Fuchsian. The ellipse meets the real axis in points �2; 3 so that GH.x/ is discrete and
the representation is faithful on .1;�2� (corresponding to j�j> 1, � 2 iR) and Œ3;1/
(corresponding to j�j> 1; � 2R). In these two cases the fundamental domains look the
same; see Figure 11. Note that the interval .�2; 3/ is definitely not in D : if �2<x< 2,
then K0K1 is elliptic since xDTr K0K1 , while if �1<x<3, then K0K�1

1
is elliptic

since Tr K0K�1
1
D 1�x ; see also Section 4.5.

In the general case, a fundamental domain can be found by a modification of Wada’s pro-
gram OPTi [31; 32]. This program allows one to compute the limit set and fundamental
domains for the PQR–group GU . A short Python program for doing this is available
at http://vivaldi.ics.nara-wu.ac.jp/~yamasita/DiagonalSlice/.
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4.2 The method of pleating rays

To determine D , we use the Keen–Series method of pleating rays applied to the large
coned sphere S . This is closely analogous to the problem of computing the Riley slice
of Schottky space, that is the parameter space of discrete geometrically finite groups
freely generated by two parabolics, which was solved in [15; 19].

We begin by briefly summarising the elements of pleating ray theory we need. For
more details see various of the first author’s papers, for example [15; 5].

Suppose that G�SL.2;C/ is a geometrically finite Kleinian group with corresponding
orbifold M D H3=G and let C=G be its convex core, where C is the convex hull
in H3 of the limit set of G ; see [7]. Then @C=G is a convex pleated surface (see for
example [7]) also homeomorphic to @M . The bending of this pleated surface is recorded
by means of a measured geodesic lamination, the bending lamination ˇDˇ.G/, whose
support forms the bending lines of the surface and whose transverse measure records
the total bending angle along short transversals. We say ˇ is rational if it is supported
on closed curves: note that closed curves in the support of ˇ are necessarily simple
and pairwise disjoint. If a bending line is represented by a curve  2 �1.S/, then by
definition it is the projection of a geodesic axis to @C=G , so in particular ˇ contains no
peripheral curves in its support. Note that any two homotopically distinct nonperipheral
simple closed curves on @S intersect. Thus in this case, ˇ is rational only if its support
is a single simple essential nonperipheral closed curve on @C=G .

As above, we parametrise representations �S.x/W �1.S/! SL.2;C/ by x 2 C and
denote the image group by GS.x/. From now on, we frequently write �x for �S.x/.

Definition 4.5 Let  be a homotopy class of simple essential nonperipheral closed
curves on @S . The pleating ray P of  is the set of points x 2 D for which
ˇ.GS.x//D  .

Such rays are called rational pleating rays; a similar definition can be made for general
projective classes of bending lamination; see [5].

The following key lemma is proved in [5, Proposition 4.1]; see also [14, Lemma 4.6].
The essence is that because the two flat pieces of @C=G on either side of a bending line
are invariant under translation along the line, the translation can have no rotational part.

Lemma 4.6 If the axis of g 2G is a bending line of @C=GS.x/, then Tr g.x/ 2R.

Notice that the lemma applies even when the bending angle � along  vanishes, so
the corresponding surface is flat, or when the angle is � , in which case either  is
parabolic or GS.x/ is Fuchsian.
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If g2G represents a curve  on @S , define the real trace locus R of  to be the locus
of points in C for which Tr g 2 .�1;�2�[ Œ2;1/. By the above lemma, P �R .

Our aim is to compute the locus of faithful discrete geometrically finite representations
DS D D . In summary, we do this as follows:

(1) Show that up to homotopy in S , the essential nonperipheral curves on @S are
indexed by Q=�, where p=q �˙.pC 2kq/=q for k 2 Z (Proposition 4.9).

(2) Given  2 �1.@S/, give an algorithm for computing Tr �x. / as a polynomial
in x , in particular identifying its two highest order terms in terms of p; q

(Section 4.4 and Proposition 4.11).

(3) Show that P0=1 D .�1;�3� and P1=1 D Œ2;1/ (where Pp=q denotes the
pleating ray of the curve p=q 2 �1.@S/ identified with p=q ) (Section 4.5).

(4) Show Pp=q is a union of connected nonsingular branches of R (Theorem 4.14).

(5) For p; q ¤ 0; 1, identify Pp=q by showing it has two connected components,
namely the branches of R which are asymptotic to the directions e˙i�.p=qC1/

as jxj !1 (Proposition 4.20).

(6) Prove that rational rays Pp=q are dense in DS (Theorem 4.23).

One could carry all this out following almost word for word the arguments in [15].
Rather than do this, we indicate as appropriate how more general results can be put
together to provide a somewhat less ad hoc proof of the results. The claim that Pp=q

has two connected components appears to contradict the results in [15]; see however
the following remark and Proposition 4.20 below. The pleating rays are shown on the
top in Figure 8 with the Riley slice rays from [15] below for comparison.

Remark 4.7 There were two rather subtle errors in [15]. The first was that, in the
enumeration of curves on @S , we omitted to note that p=q is homotopic to �p=q

in S . The second was, that we found only one of the two components of Pp=q . Since
Pp=q D P�p=q , these two errors in some sense cancelled each other out. They were
discussed at length and resolved in [19] and we make corresponding corrections here.

Remark 4.8 The space of all faithful discrete representations is known to be the
closure of the geometrically finite ones by the tameness and density theorems; see [23]
for a detailed overview of this and other facts about deformation spaces. However these
issues are not the main point of concern to us here.

4.3 Step 1: Enumeration of curves on @S

We need to enumerate essential nonperipheral unoriented simple curves on @S up to
free homotopy equivalence in S . As is well known, such curves on @S are, up to free
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Figure 8: Top: pleating rays for GS.x/ . Bottom: pleating rays for the Riley
slice as described in [15]. The underlying colours indicate the Bowditch sets
for the initial triples discussed in Section 5.0.3; conjecturally these coincide
with the closure of the regions filled by the pleating rays. For a discussion of
how the rays were actually computed; see Section 5.0.2

homotopy equivalence in @S , in bijective correspondence with lines of rational slope
in the plane, that is, with Q[1; see for example [15; 19]. For .p; q/ relatively prime
and q � 0, denote the class corresponding to p=q by p=q . We have:

Proposition 4.9 [19, Theorem 1.2] The unoriented curves p=q; p0=q0 are freely
homotopic in S if and only if p0=q0 D˙p=qC 2k for k 2 Z.

Missing the identification p=q � �p=q was the first of the two errors in [15] referred
to in Remark 4.7.

Before proving the proposition, we need to explain the identification of curves on @S
with Q[1. In [15; 19] this was done using the plane punctured at integer points as
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Figure 9: The arrangement of arcs on @S . The curve shown illustrates the
case p D 1; q D 3 .

an intermediate covering between @S and its universal cover. The idea is sketched in
Section 5.0.1. Here we give a slightly different description of the curve p=q which
leads to a nice proof of the above result.

Cut S into two halves along the meridian disk m which is the projection of the plane
which perpendicularly bisects the common perpendicular C to the two singular axes
Ax Ki for i D 0; 1. Each half is a ball yBi with a singular axis Ax Ki . The boundary
@Bi D @ yBi \@S is a sphere with two cone points and a hole @m. Since the axes of Ki

are oriented, we can distinguish one cone point on each @Bi as the positive end of
Ax Ki . Now @S has a hyperbolic structure inherited from the ordinary set (or from
the pleated surface structure on @C=GS.x/), in which @m is geodesic. With respect
to such a structure, each @Bi has a reflectional symmetry � in the (projection of the)
plane containing Ax Ki and C , which maps the cone points to themselves, and which
maps the “front” to the “back” as shown in Figure 9. There is a preferred base point Pi

on @m, namely the foot of the perpendicular from the negative end of Ax Ki to @m.

Let  be an essential nonperipheral simple curve on @S , which we may assume has
minimal intersection in its isotopy class with @m. Then  \ @Bi consists of q arcs
joining @m to itself for each i D 0; 1. On each Bi separately, after suitable isotopies,
we may arrange the strands of  symmetrically with respect to �, that is, with front to
back symmetry. However, these two isotopies may not be consistent, that is, they may
not glue together to form an isotopy of @S . We reconstruct the gluing as follows.
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Orient @m so that it points “upwards” on the front side of the figure. Lifting @m to
its cyclic cover R, enumerate in order the endpoints X k

i ; i D 0; 1I k 2 Z of arcs of 
starting (say) with the arc meeting @m nearest Pi , and so that increasing order is in
the direction of the upwards orientation of @m viewed from the front side in the figure.
Since X k

i DX
kC2q
i , the enumeration is really mod 2qZ.

To reconstruct  we have to join the endpoints X k
0

on @B0 to the endpoints X k0

1

on @B1 . Since the arcs have to be matched in order round @m, if X i
0

is joined to X
j
1

,
then X iCk

0
is joined to X

jCk
1

for all k 2Z. Set pD j � i . Clearly this gluing can be
implemented by an isotopy in an annular neighbourhood of @m, which can be extended
to an isotopy of the whole of S compatible with the previous isotopies on @Bi .

It is not hard to see that the resulting curve p=q is connected if and only if .p; q/ are
relatively prime. Note that with this description, @m is the curve q D 0, that is, 1=0 .
The curve 0=1 is represented by K0K1 and 1=1 by K0K�1

1
. We leave it to the

reader to see that this description is the same as that obtained from the lattice picture
in [15]; see also Section 5.0.1.

Notation From now on, to simplify notation, for  2 �1.S/ and Z 2 SL.2;C/, we
write  $ Z to indicate that the matrix Z corresponds to the geodesic in the free
homotopy class of  under the representation �S.x/. Thus in particular, 0=1$K0K1

and 1=1$K0K�1
1

.

Proof of Proposition 4.9 Write p=q � p0=q0 to indicate that p=q; p0=q0 are homo-
topic in S . Since Dehn twisting round @m is trivial in S and sends X k

i ! X
kC2q
i ,

we have p=q � p=qC2 . To see why p=q � �p=q , first note that the result does not
depend on the relative twisting between Ax K0;Ax K1 . Thus we shall consider the
case in which � 2R (recall that � is the complex distance between these two axes),
so that Ax K0;Ax K1 are coplanar and point in the same “vertical” direction as in
Figure 9.

Consider the orientation-reversing symmetry r of reflection in the “horizontal” plane
of Figure 9, that is the plane containing C orthogonal to the two axes Ax K0;Ax K1 .
(This is where we use that � 2R.) Clearly, this symmetry sends p=q to �p=q . Fixing
an orientation on @S , let ˛; ˇ; ; ı be anticlockwise loops on @S around the four
cone points represented by the projections of the positive endpoints of the (oriented)
axes of K0;K

�1
0
;K1;K

�1
1

, respectively, so that ˛ˇı D id and ˛; ˇ; ; ı generate
�1.@S/. Since r reverses orientation on @S it sends an anticlockwise loop round
the positive endpoint of K0 to a clockwise loop round the negative endpoint of K0 ,
which is the positive endpoint of the oriented axis of K�1

0
. Thus r.˛/ D ˇ�1 , and
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likewise r. / D ı�1 . Since ˛ D ˇ�1 $ K0 and ı D �1 $ K1 , it follows that
r.p=q/D �p=q represents the same element as p=q in �1.S/.

We will show that if p0=q0¤˙p=qC2k for k 2Z, then p=q œ p0=q0 after computing
traces; see Corollary 4.13.

4.4 Step 2: Computation of traces

Let Vp=q 2 SL.2;C/ D �x.p=q/, where, since we want to compute Tr Vp=q , we
only need to consider Vp=q up to cyclic permutation and inversion, and hence p=q
only up to free homotopy. Rather than using the associated torus tree, we will work
directly with a 4–holed sphere †0;4 and the associated tree as described in [22]; see
also [9]. Let ˛; ˇ; ; ı denote loops round the four holes, oriented so that ˛ˇı D id.
The fundamental group is identified with the free group F3 with generators ˛; ˇ;  .
A representation �W F3! SL.2;C/ is determined up to conjugation by its values on
seven elements as follows (where we use yw in place of w in [22] etc to distinguish it
from a variable w already in other use):

Tr �.˛/D aI Tr �.ˇ/D bI Tr �. /D cI Tr �.ı/D d

Tr �.˛ˇ/D yxI Tr �.ˇ /D yyI Tr �.˛/D yz

related by the equation

(4-1) yx2
C yy2

Cyz2
C yx yyyz D ypyxC yq yyCyryzCys;

where

yp D abC cd; yq D bcC ad; yr D acC bd; ys D 4� a2
� b2
� c2
� d2

� abcd:

We identify our generators Ki as: ˛$K0 , ˇ$K1 , $K2 , ı$K3 . Thus we find

aD b D c D d D�1;

yx D Tr K0K1 D x;

yy D Tr K1K2 D 2;

yz D Tr K2K0 D�xC 1:

As a check, it is easy to verify that the trace identity (4-1) holds. Notice that none of
the expressions yp; : : : ; yz depend on the sign choices made in Section 3.2.2.

The traces can be arranged in a trivalent tree in the usual way. As explained above, we
have 0=1$K0K1 , 1=0$ id, 1=1$K0K�1

1
. As explained in [22, Section 2.10],

there are now 3 moves, depending on the values of yp; yq; yr . In our case, ypD yqDyr D 2,
so the three moves described there coincide. Following [22], if u; v; w are labels round
a vertex, with v;w labels adjacent along a common edge e , then the label at the vertex
at the opposite end of e is u0 D 2� vw�u; compare Figure 3 in which u0 D vw�u.
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Clearly this procedure gives an algorithm for arranging curves and computing traces
on a trivalent tree by analogy with that described in Section 2. Curves generated in this
way inherit a natural labelling from the usual procedure of Farey addition as described
in Section 2. Denote the curve which inherits the label p=q by ıp=q ; we say this curve
is in Farey position p=q on the tree. We shall refer to this tree together with its new rule
for computing traces as the S–tree, to distinguish it from the Markoff tree of Section 2.

We need to show that ıp=q is the same as the curve p=q described in the previous
section, namely the curve with 2q intersections with the meridian @m and a twist by p .

Lemma 4.10 With the above notation, ıp=q D p=q .

Proof By definition we have ıp=q D p=q for p; q 2 f0; 1g. With the notation above,
these are the curves ˛ˇ; ˇ; ˛ , each of which separates the punctures in pairs.

Call two essential simple nonperipheral curves on @S neighbours if they intersect
exactly twice when in minimal position. Note that of the initial triple, each pair
adjacent along an initial edge are neighbours, so that the triple round the initial vertex
are neighbours in pairs. Note also that given a pair of neighbours ı; ı0 , there are exactly
two other curves which are neighbours of both ı and ı0 . If ı; ı0 are adjacent along an
edge of the tree, then these two further curves are exactly the remaining curves adjacent
to the vertices at the ends of e .

These two further curves can be found by surgery, more precisely, by the Luo product
defined in [21]. This works as follows. Arrange ı; ı0 so as to have minimal intersection,
cut them at their two intersection points and then make a consistent choice of the
direction in which to turn to rejoin the resulting arcs. The Luo product rejoins the arcs
by turning left at each intersection point (relative to a fixed orientation on the surface)
as illustrated in Figure 10; equally we could rejoin by turning right at both intersection
points. We denote the resulting curves by ı �L ı0 and ı �R ı0 , respectively. It is not hard
to see that ı �L ı0 is a neighbour of both ı and ı0 and likewise for ı �R ı0 . In particular,
it is easy to check that ı0=1 �L ı1=0 D ı1=1 and ı0=1 �R ı1=0 D ı�1=1 .

Now we show inductively that ıp=q D p=q . As noted above, this is true for the initial
values 0=1; 1=0; 1=1 and �1=1. Suppose that it is true for neighbours p=q; r=s where
jps � rqj D 1. By induction we may assume that ıp=q; ır=s are neighbours, hence
adjacent along an edge e of the tree. By the above discussion we know that the additional
curves at the two vertices of e are exactly ıp=q �Lır=s and ıp=q �Rır=s . Moreover, by the
inductive hypothesis, one of these curves must be ır�p=s�qD p�r=q�s (or r�p=s�q ).
Thus it remains only to show that the other curve is pCr=qCs .

On each Bi , arrange ıp=q D p=q and ır=s D r=s symmetrically with respect to
the front and back of S as described above, then join the strands in the usual way.
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K0

K�1
0

B0 B1

K1

K�1
1

Figure 10: Here 1=3 and 1=2 are surgered to give 2=5 ; see the proof of
Lemma 4.10. The inset circles show the direction of surgery.

With p=q in this position, its twist p is its intersection number with the geodesic ˛
joining the two positive cone points given by the axes Ki , and likewise for r=s . To
take the Luo product, we have to cut p=q; r=s at their intersection points and then
make a consistent choice of which direction to rejoin the resulting arcs. Clearly the
curve ıp=q �L ır=s with the “positive” surgery (see the inset circles in Figure 10) will
have 2.qC s/ intersection points with the meridian @m and intersection number pC r

with ˛ , and hence must be pCr=qCs . Since we already know the curve at one vertex
of e is ır�p=s�q D p�r=q�s (or r�p=s�q ), we must have ıpCr=qCs D pCr=qCs .
This completes the proof.

In the following statement we make a particular, unimportant, choice of p=q 2 �1.S/;
see the beginning of Step 2 as above.

Proposition 4.11 Let Vp=q.x/D �S.x/.p=q/. Then:

(1) Tr Vp=q D Tr V.p=q/C2 D Tr V�p=q .

(2) Tr Vp=q.x/D Tr V.pCq/=q.1�x/.

(3) Tr Vp=q is a polynomial in x . If 0 � p=q � 1, then its top two terms are
.�1/p�q�1.xq �pxq�1/.

Remark 4.12 (3) should be compared to [15, Corollary 4.3] in which we showed that
the leading term is of the form .�1/p�q�1cxq for some c > 0; see also the remark
following the corollary in that paper. Notice that by (1) and (2), it suffices to find the
traces of curves the interval 0� p=q � 1.
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Proof (1) This follows immediately from Proposition 4.9 and can also be proved
easily by looking at the symmetries of the S–tree.

(2) This results from the symmetry x 7! 1�x which interchanges 0=1; 1=1 .

(3) Note (1) holds for the three initial traces of 0=1; 1=0; 1=1 . If curves p=q; r=s

are adjacent along an edge, then the two curves at the remaining vertices at the ends
of the edge are p˙r=q˙s . The result then follows easily by induction on the tree.

Now we can prove the “only if” assertion of Proposition 4.9:

Corollary 4.13 If p0=q0 ¤˙p=qC 2k for k 2 Z, then p=q 6� p0=q0 .

Proof This follows directly by comparing the top two terms of Tr Vp=q;Tr Vp0=q0 .

4.5 Step 3: The exceptional Fuchsian case: computation of P0=1 , P1=1

As above, let Pp=q denote the pleating ray of p=q . The rays P0=1;P1=1 are exceptional.
Since 0=1$K0K1 , 1=1$K0K�1

1
, we have Tr V0=1Dx;Tr V1=1D1�x . Thus the

real locus for both trace polynomials is exactly the real axis, and on this locus, the group
GS.x/, if discrete, is Fuchsian. This is exactly the situation discussed in [15, page 84].

In the ball model of H3 , identify the extended real axis with the equatorial circle.
Since the limit set is contained in yR, the convex core (the Nielsen region) of GS.x/ is
contained in the equatorial plane. We can think that the convex core has been squashed
flat and the bending lines are just the boundary of the Nielsen region, that is, the
boundary of the convex core of the surface H2=GS.x/. Thus to find the bending
lamination we just have to determine the boundary of H2=GS.x/.

Now if x 2R, then either � 2R and x > 0, or � 2 iR and x < 0. In both cases, we
find a fundamental domain for GS.x/ as described in Section 4.1; see Figure 11. Thus
regarded as a Fuchsian group acting on the upper half plane H , GS.x/ represents a
sphere with two order-3 cone points and one hole. However the cases x < 0 and x > 0

are slightly different, because of the relative directions of rotation of K0 and K1 .

In both cases, the axis K0 has fixed points ˙i
p

3 and its axis is oriented so that it is
anticlockwise rotation about i

p
3. Thus K1 D PK0P�1 rotates anticlockwise about

P .i
p

3/D �i�2=
p

3. If x < 0 then P .i
p

3/ is in the upper half plane H , while if
x > 0 then P .i

p
3/ is in the lower half plane. Hence if x < 0 then K0;K1 rotate in

the same sense about their fixed points in H , while if x > 0 their rotation directions
are opposite. This leads to the two different configurations shown in Figure 11.
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i
p

3

K0

K1

i�2=
p

3

�1 ��2 0 �2 1

i
p

3

K0

K1

i�2=
p

3

�1 ��2 0 �2 1

Figure 11: Configurations for x 2 R . Left: � 2 iR , x � �2; K0 and K1

rotate in the same directions H and the hole is K0K1 . Right: � 2R , x � 3;
K0 and K1 rotate in opposite directions in H and the hole is K0K�1

1
.

As is easily checked, if x > 0 the boundary of the hole is thus K0K�1
1

while if
x < 0 the boundary of the hole is K0K1 . Since K0K1$ 0=1 and K0K�1

1
$ 1=1 ,

combining this with information about the discreteness locus in the Fuchsian case from
Section 4.1, we conclude that P0=1 D .�1;�2� and P1=1 D Œ3;1/.

4.6 Step 4: Nonsingularity of pleating rays

This is the part of the argument which contains the deepest mathematics. Fortunately,
the results needed have been proved elsewhere.

Theorem 4.14 [18; 15; 5] Suppose that  2 �1.S/. Then P is open and closed
in the real trace locus R . Moreover, Tr �x. / is a local coordinate for C in a
neighbourhood of P , and is a global coordinate for P on any nonempty connected
component of P .

Proof The statement that P is open in R is essentially [15, Proposition 3.1]; see
also [18, Theorems 15 and 26]. The fact that Tr �x. / is a local parameter is equivalent
to the fact, also proved in both [15] and [14], that P is a nonsingular 1–manifold.
The openness and the final statement are actually a special case of Theorems B and C
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of [5] which state that for general hyperbolic manifolds, if the support of the bending
lamination is rational (a union of closed curves), then the traces of these curves are
local parameters for the deformation space in a neighbourhood of the corresponding
pleating variety.

That P is closed in R can be proved as in [15, Theorem 3.7]. Here is a slightly more
sophisticated version of the same idea. Suppose xn! x1 with xn 2 P . The limit
group GS.x1/ is an algebraic limit of groups GS.xn/ and hence the corresponding
representation is discrete and faithful. Each of the two components of .@C=GS.xn//n

is a flat surface corresponding to a conjugacy class of Fuchsian subgroup Fj .xn/ for
j D 1; 2 (the F –peripheral subgroups of [15]). Since the limit is algebraic, Fj .xn/

limits on a Fuchsian subgroup Fj .x1/, and similarly for all its conjugates in GS.x1/.

The limit sets ƒ˛ of each of these subgroups F˛ is spanned by a hyperbolic plane H˛

in H3 . The Nielsen regions of F˛ in H˛ fit together along the lifts of the bending
line  to H3 , forming a pleated surface … in H3 . We claim that …D @C.GS.x1//.
This follows since the closure of the union of the ƒ˛ is the limit set of GS.x1/; see
also Proposition 7.2 in [17]. The result follows.

Remark 4.15 The closedness of P in R is a simple case of both the “local limit
theorem”, Theorem 15 in [18] and the “lemme de fermeture” of [2]. These much more
sophisticated results allow that the bending lines may be part of an irrational lamination.
Our argument above, in which the bending lamination is supported on closed curves, is
very close to that in the first part of the proof of Théorème 6 in [26].

Corollary 4.16 [14; 15; 5] If P ¤∅, then it is a union of connected nonsingular
branches of the real trace locus R .

Proof Suppose that P ¤ ∅ and let x 2 P , so that by Lemma 4.6, x 2 R . By
Theorem 4.14, P is open and closed in R . Since Tr �x. / is a local coordinate, in
a neighbourhood of x the locus R is a 1–manifold.

Notice that the theorem says that Tr �x. / is a local parameter even in a neighbourhood
of a cusp where �x. / is parabolic [5, Theorem C]. Thus we have

Corollary 4.17 Suppose that x 2 P . Then there is a neighbourhood of x in C on
which x 2R implies that x 2 D .

Corollary 4.18 If P ¤∅, then Tr �x. / is unbounded on P .

Proof Since Tr �x. / is a local coordinate on connected components of P , this
follows from the maximum principle on the branch; see [15, Theorem 4.1].
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4.7 Step 5: Finding the nonempty pleating rays

Now we determine the pleating rays. As above, let Pp=q denote the ray corresponding
to the curve p=q and write Rp=q for the real locus of Tr Vp=q . From Proposition 4.9
we have Pp=q D P.pC2q/=q D P�p=q .

By Section 4.6, Pp=q is a union of nonsingular branches of Rp=q . We now find those
p=q 62 f0; 1g for which Pp=q ¤∅, at the same time resolving the connectivity issue.
We follow the method of [15], using an inductive argument on position of the pleating
rays and their asymptotic directions as jxj !1, and at the same time correcting the
second of the two errors referred to in Remark 4.7. We have:

Proposition 4.19 (cf [15, Theorem 4.1]) The set Pp=q is the union of the two
branches of Rp=q which are asymptotic to the half lines �e˙i�.p�q/=q as �!1.

Proof Denote by R.�/ the ray tei� ; t > 0, in the x–plane. By Proposition 4.11,
Tr Vp=q is a polynomial in x whose top term is .�1/p�q�1xq . Now Tr Vp=q takes real
values on Pp=q , moreover by Corollary 4.18 it is unbounded on Pp=q . It follows that
Pp=q must be asymptotic to one of the rays R.k�=q/ for some k 2 Z as jxj !1.

We have already identified P0=1 and P1=1 as the real intervals .�1;�3� and Œ2;1/,
respectively. It follows from Section 4.1 that the semicircular arc from �4 to 4 (say)
in H is a continuous path in D from P0=1 to P1=1 . Hence by the continuity theorem
of [16], if 0< p=q < 1, there is a point on Pp=q in the upper half plane H . Likewise,
there is a point on Pp=q in the lower half plane. (This was missed in [15].) Since
P0=1[P1=1 separates D into two connected components, this shows in particular that
Pp=q must have at least two connected components.

Now we proceed by induction on the Farey tree. Suppose we have shown the result for
two Farey neighbours p=q; r=s . Consider the locus PpCr=qCs . By the inductive hypoth-
esis, H contains exactly one component of each of Pp=q;Pr=s , asymptotic to the rays
R.�.p�q/=q/;R.�.r �s/=s/, respectively. Exactly as in [15], it is easy to check that
there is exactly one integer k 2f0; 1; : : : ; 2.qCs/�1g for which R.k�=.qCs// lies be-
tween R.�.p�q/=q/ and R.�.r �s/=s/, namely k D .pC r/=.qC s/. By the same
continuity theorem as before, a path in this sector joining suitable points on Pp=q;Pr=s

must meet PpCr=qCs . Thus PpCr=qCs has at least one connected component asymp-
totic to R.�.pC r �q� s/=.qC s//. A similar argument in the lower half plane gives
another connected component asymptotic to R.�.pC r C qC s/=.qC s//. Since
PpCr=qCs has exactly two components by Proposition 4.20 below, the result follows.

The issue of connectivity of P is a bit subtle. In the general theory (see [2; 5]), one
shows that P has one connected component. However this result holds in a space
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of manifolds which are consistently oriented throughout the space and all of whose
convex cores have nonzero volume. In our case we have:

Proposition 4.20 If  ¤ 0=1; 1=1 and P ¤∅, then P has exactly two connected
components in D .

Proof The usual argument that the pleating ray of a rational lamination has one
connected component goes as follows. Given a point on P , double the convex core
along its boundary to obtain a cone manifold with a singular axis of angle 2.� � �/

along  , where � is the bending angle along  . (Notice that the convention on defining
bending angles differs between papers by the first author and [2]. In our convention,
a bending line contained in flat subsurface has bending angle 0 but cone angle 2� ,
whereas in [2], the bending angle along a line in a flat surface is defined to be � .)
By [13], such a hyperbolic cone manifold is parametrised by its cone angle. One shows
that one can continuously deform the cone angle to 0, at which point the curve whose
axis is the bending line has to become parabolic. The doubled manifold is an oriented
hyperbolic manifold with a rank-two cusp and finite volume. As long as we are working
in a space in which all manifolds have consistent orientation, such a manifold is unique
up to orientation-preserving isometry, from which one deduces that P is connected.

In our case, the parameter space D is separated by two lines along which G is Fuchsian
so that C.G/=G has zero volume and the above argument fails. Note however that,
provided that G is not Fuchsian, S can be oriented by the triple consisting of the
oriented axes of P;Q and the oriented line C from Ax K0 to Ax K1 . The map �!x�
reverses the relative orientations of Ax P;Ax Q while fixing that of C . Thus D nR
has two connected components in which S has naturally opposite orientations. The
above argument shows that P has at most one component in each component of D .
Since we have already shown in Proposition 4.19 that P has at least one component
in each of the upper and lower half planes, this completes the proof.

This result can alternatively be proved by the more ad hoc methods used in [15].

Remark 4.21 Proposition 4.19 shows that Pp=q ¤ ∅ for all p=q 2 Q. This can
be viewed as a special case of the general result of [2, Theorem 1]; see also [5,
Theorem 2.4]. We have to be careful to include the case, excluded in [2], that the group
GS.x/ is Fuchsian so that C=G has zero volume. The conclusion is the following:

Proposition 4.22 Let  be an essential simple nonperipheral closed curve on @S .
Then P ¤ ∅ if and only if  is nontrivial in �1.S/ and intersects the meridian
disk 1=0 at least twice. If  meets 1=0 exactly twice, then the bending angle is
identically � and GS.x/ is Fuchsian.
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4.8 Step 6: Density of rational pleating rays

Finally, we justify the claim that the rational pleating rays are dense in D :

Theorem 4.23 [14, Corollary 6.2; 15, Theorem 5.2] Rational pleating rays are dense
in DS .

Proof The proof of this result in any one-complex-dimensional parameter space is
the same. Here is a quick sketch. Suppose that � is an irrational lamination with
corresponding pleating variety P� , and that x 2 P� . Pick a sequence of rational
measured laminations �n D cnın

where cn 2 RC so that �n ! � in the space of
projective measured laminations on @S , where ın

is the unit point mass on n . Replace
the traces of n by complex length functions �n and scale to get complex analytic
functions cn�n . One shows that in a neighbourhood of x 2 P� these functions form a
normal family which converges to a nonconstant analytic function [14, Theorem 6.9;
18, Theorem 20], whose real locus contains the pleating ray P� [18, Theorem 23]. By
Hurwitz’s theorem, there are nearby points at which the approximating functions cn�n

must take on real values. In a small enough neighbourhood of x , this is enough to
force y 2 Pn

[18, Theorem 31]. This gives density in IntD . By the result quoted in
the introduction that DD IntD we are done.

Remark 4.24 D as defined above (see the beginning of Section 4) includes the
parabolic cusp groups on @D . In fact these groups are exactly the geometrically finite
groups on @D , and hence exactly the groups in D but not in SCH as defined in the
introduction. Since there are only countably many such groups, and since IntDDSCH ,
whether or not we include them in the parameter space does not materially affect our
computations. See [23] for more on this and related issues.

4.9 The pleating rays for H

By Corollary 4.3, DH D DS . Thus the rational rays for DS are also dense in DH .
However it is easy to see that a rational pleating laminations on @H.x/ correspond
exactly to those on S.x/, and that although the actual bending curves differ, their traces
are related by a simple formula.

Lemma 4.25 Suppose that the bending lamination ˇH.x/ of H.x/ is rational, so that
its support � is a union of disjoint simple closed curves on @H . Let  be a connected
component of �. Then either �. /D  or the three curves ; �. /; �2. / are disjoint.
The support of the bending lamination ˇS.x/ is exactly the projection of  to S , and
all rational bending laminations of S arise in this way.
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Proof The limit set of GH.x/ and hence its convex core are invariant under the
symmetry � . Hence the support � of ˇH.x/ is also �–invariant. Let  be a connected
component of �. Since connected components of � are pairwise disjoint, either
�. / D  or the three curves ; �. /; �2. / are disjoint. In either case,  cannot
pass through a fixed point of � : at the fixed point P the images of  would meet at
angles 2�

3
, so that ; �. /; �2. / would intersect at P , which is impossible.

Let �� be the projection H!S . In a neighbourhood of a bending line �� is a covering
map hence a local isometry. Since being a bending line can be characterised locally,
ˇS.x/ is the projection of  to S .

Let  be a simple closed curve on @S . Clearly, by the same observation about local
characterisation of bending lines, if  is a bending line, then so is any connected
component of its lift to @H . This proves the converse.

We remark that if p=q is congruent to 1=0 or 0=1 mod Z2 , then the lift of p=q has
three connected components which are permuted among themselves by � , while if p=q

is congruent to 1=1, then its lift has one �–invariant connected component. To see this,
check by hand for the curves 1=0; 0=1; 1=1 and then note that the lifting property is
invariant under the mapping class group of @S which at the same time acts transitively
on p=q congruence classes mod Z2 .

To actually compute the pleating rays for DS , we computed the traces Tr Vp=q.x/

corresponding to the curves p=q 2 �1.S/. The above discussion shows that it is
unnecessary to actually compute traces of lifted curves in �1.H/. If for some reason
one wanted to do this, either one could start again enumerating the curves on H , or
one could note that the complex length of a lift of p=q in H would be either the same
as or three times that of the curve p=q in S , depending on the Z2 –parity of p=q .

5 Computing traces

To compute traces of the elements Vp=q , rather than use the S–tree as in Section 4.4,
we actually performed computations on the associated Markoff tree corresponding to
the associated torus T of Section 3.2.3, referred to in this section as the T –tree. To
justify this, we need to compare the curves in Farey position p=q on the two trees
to ensure that they do indeed correspond geometrically as expected. We also need to
address the issue about lifting representations to SL.2;C/ raised in Remark 3.2.

5.0.1 Correspondence of curves Homotopy classes of essential simple nonperiph-
eral loops on @T are well known to be in bijective correspondence to unoriented lines
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K3

R

K0

A

Q

P

K2

B

K1

Figure 12: Lattice representation of a cover of @S . The integer vertices (open
circles) correspond to the endpoints of the order-3 axes on @S ; the endpoints
of the order-2 elliptics P , Q and R are on horizontal segments (blue), in
the middle of squares (green), and on vertical segments (red), respectively.

of rational slope in the plane; see for example [27; 14]. In fact the word Wp=q generated
by the concatenation process following the T –tree described in Section 2 is the cutting
sequence of a line of slope p=q 2 yQ across the lattice; see [27].

The key point here is that the plane with a cone singularity of angle 4�
3

at integer lattice
points (see Figure 12), is an intermediate covering between the universal cover H of @T
and @T itself. As described in for example [15], the same lattice can also be viewed as an
intermediate covering between H and @S : the rectangle with vertices at 0; 1; 2i; 2iC1

can be viewed as a fundamental domain for the lattice action corresponding to @S
which projects, bijectively on its interior, to @S . Likewise, the rectangle with vertices
0; 1; 1

2
i; 1C1

2
i projects in a similar way to @U and the unit square projects to the

torus @T . The lattice points correspond to the cone points belonging to Ki for
i D 1; : : : ; 4 arranged as shown. Thus there is also a bijective correspondence between
lines of rational slope in the punctured plane and simple essential nonperipheral curves
on @S . In this way, one can easily relate the words Wp=q (on @T ) and Vp=q (on @S );
this is explained in detail in [15].

In this picture, the meridian loop @m of Section 4.3 is identified as the “vertical” line
of slope 1=0. One sees easily that the line of slope p=q in the plane projects to a curve
on @S which has exactly 2q intersections with @m and a twist of p as described in
Section 4.3. It follows from Lemma 4.10 that the labelling of curves by lines of rational
slope p=q exactly corresponds to the Farey labelling of curves by their position on the
S–tree.
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As above, the curve represented in Farey position p=q on the S–tree is denoted by p=q ,
corresponding to the word Vp=q ; while the curve represented in Farey position p=q

on the T –tree is denoted by !p=q , corresponding to the word Wp=q . Now S projects
to U by a four-fold cover and T projects to U by a two-fold cover.

Proposition 5.1 The complex translation length of the geodesic representative of p=q
is twice that of !p=q ; hence Tr Vp=q.�/D˙..Tr Wp=q.�//

2� 2/.

Note that this allows for an ambiguity in the signs of the traces since the two lifts
of �1.T / and �1.S/ to SL.2;C/ are not (indeed cannot be) chosen consistently.

Corollary 5.2 Up to sign, the trace of the image Vp=q of p=q 2 �1.U/ may be
computed using the formula of Proposition 5.1 and the T –tree.

Since we are aiming to compute pleating rays which are a geometrical construct and
hence only depend on a PSL.2;C/ representation, this would be sufficient for our
purposes. However it is more satisfying to prove the following more precise result which
shows that working with the SL.2;C/ lift of the representation of �1.T / described in
Section 3.2.3, we can fix the choice of sign.

Proposition 5.3 With Wp=q;Vp=q as above, let fp=q.�/D Tr Vp=q.�/ and gp=q.�/D

Tr Wp=q.�/. Then �fp=q.�/D .gp=q.�//
2� 2 for all p=q 2 yQ.

Proof It is easy to check that this is correct for p=q D 0=1; 1=0; 1=1. In detail,
(recalling that as above  $ Z means that  2 �1.S/ or �1.T / is represented by
Z 2 SL.2;C/):

� !0=1$ A and 0=1$K0K1 , and we have shown that A2 D�K0K1 . Thus
f0=1.�/D x and .g0=1.�//

2� 2D .�xC 2/� 2D�x .

� !1=0$B , 1=0$ id and B2D�id. So f1=0.�/D 2 and .g1=0.�//
2�2D�2.

� !1=1$AB and 1=1$K0K�1
1

. So f1=1.�/D1�x and .g1=1.�//
2�2Dx�1.

Now we do an inductive proof. Suppose that in the S–tree labels u; v are adjacent
along an edge e with w the remaining label at one of the two vertices at the ends of e .
By the formula in Section 4.4 the label at the other vertex is 2�uv�w .

Suppose that the corresponding labels on the T –tree are u0; v0; w0 . Then the remaining
label at the vertex at the other end of e is u0v0�w0 . Replace these labels by the negatives
of the traces of the doubled curves to get labels 2�u02; 2�v02; 2�w02; 2�.u0v0�w0/2

around the same 4 vertices. If we can show that

2� .2�u02/.2� v02/� .2�w02/D 2� .u0v0�w0/2;
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we will be done. This is easily checked by multiplying out, noting that the trace
identity (4-1) round a vertex of the T –tree gives

u02C v02Cw02 D u0v0w0CTr ŒA;B�C 2D u0v0w0C 3:

5.0.2 The actual computations The above discussion justifies the method we actu-
ally used to perform computations involving traces on S . Instead of computing on
the S–tree with initial traces Tr �S.0=1/D Tr K0K1 D x , Tr �S.1=0/D Tr idD 2,
Tr �S.1=1/ D Tr K0K�1

1
D 1 � x , we used the T –tree with initial triple Tr A D

˙i.3=.2�/� �=2/, Tr B D 0 and Tr AB D ˙.3=.2�/C �=2/ corresponding to the
generators A;B of GT . As in Section 3.2.3, A2D�K0K1 , so that Tr A2D�x . Since
Tr BD 0, we can find Tr AB from the identity .Tr A/2C.Tr AB/2DTr ŒA;B�C2D 3.
Thus setting .a; b; c/D .Tr A;Tr B;Tr AB/ we have

a2
� 2D�x; c2

D 1Cx:

It is easily checked that this is in accord with (3-2). Thus associated to GT .x/ we have
the torus tree .a; b; c/D .

p
�xC 2; 0;

p
xC 1/. This is the method we actually used

to compute the pleating rays shown in Figure 1.

Remark 5.4 The sign of the square roots in the above can be uniquely determined by
the formulae for traces in terms of � . What we actually did was to make an arbitrary
choice and plot rays corresponding to curves in the range 0� p=q � 1, thus making
a picture in the upper half plane which we could then reflect. As can be seen from
Figure 4, the signs of the square roots in fact alternate periodically with period 4 rather
than period 2, so that, for example, Tr �T .3/D�Tr �T .1/.

5.0.3 Computations for the Riley slice The traces needed to find the pleating rays
for the Riley slice in the lower frame of Figure 8 were computed by a method similar
to that described above. Our parameter x can be related to the parameter � of [15]
by comparing the traces of the word in Farey position 0=1: these are K0K1 in our
case and XY in the notation of [15]. Thus we find that x corresponds to �C 2. For
the Riley group a similar computation to the one above with Tr ŒA;B� D �2 gives
immediately .Tr A/2 D�.�C2/ and .Tr AB/2 D �C2. Thus writing in terms of the
x–coordinate we find the initial triple .

p
�x; 0;

p
x/.

5.0.4 Comparison of Bowditch sets It is interesting to compare the Bowditch sets
associated to the two initial triples .x;x;x/ and .

p
�xC 2; 0;

p
xC 1/. In the latter

case, one needs to modify the definition of the Bowditch set: since �.U /D 0 for some
U 2�, there is a trace-preserving Z–action on the associated tree T.

p
�xC2;0;

p
xC1/

corresponding to the action of a subgroup of Aut.F2/ generated by a parabolic; see,
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Figure 13: Bowditch sets (grey) plotted in the �–plane with range Œ�4; 4��

Œ�4i; 4i � . Left: initial triple .
p
�xC 2; 0;

p
xC 1/ corresponding to the

torus group GT .x/ . Right: initial triple .x;x;x/ corresponding to the
handlebody group GH.x/ . The two regions are clearly distinct: the grey
region on the right contains that on the left.

for example, [29, Theorem 1.6]. The Bowditch condition should actually be specified
on � n fU g=�, where � is the equivalence coming from this symmetry.

The results, plotted in the �–plane, are shown in Figure 13. On the right, the initial
triple is .x;x;x/ (with x related to � as in (3-1)) corresponding to the handlebody
group GH.x/. On the left, the initial triple is .

p
�xC 2; 0;

p
xC 1/ corresponding to

the torus group GT .x/. The two regions are clearly distinct: the grey region on the right
contains that on the left. Conjecturally, the left-hand grey region is also the discreteness
locus for the groups GT .x/; see Figure 8 for the parametrisation in terms of x .

Note the various symmetries as discussed in Section 3.2.6, in particular note how
Figure 5 looses the left-right reflectional symmetry seen in Figure 13. The coloured re-
gion in Figure 5 is the same region as the right frame of Figure 13, drawn in the x–plane.
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Untwisting information from Heegaard Floer homology

KENAN INCE

The unknotting number of a knot is the minimum number of crossings one must
change to turn that knot into the unknot. We work with a generalization of the
unknotting number due to Mathieu–Domergue, which we call the untwisting number.
The p–untwisting number is the minimum number (over all diagrams of a knot) of
full twists on at most 2p strands of a knot, with half of the strands oriented in each
direction, necessary to transform that knot into the unknot. In previous work, we
showed that the unknotting and untwisting numbers can be arbitrarily different. In
this paper, we show that a common route for obstructing low unknotting number,
the Montesinos trick, does not generalize to the untwisting number. However, we
use a different approach to get conditions on the Heegaard Floer correction terms of
the branched double cover of a knot with untwisting number one. This allows us to
obstruct several 10– and 11–crossing knots from being unknotted by a single positive
or negative twist. We also use the Ozsváth–Szabó � invariant and the Rasmussen
s invariant to differentiate between the p– and q–untwisting numbers for certain
p; q > 1 .

57M25, 57M27; 57R58

1 Introduction

It is a natural knot-theoretic question to seek to measure “how knotted up” a knot is.
One such “knottiness” measure is given by the unknotting number u.K/, the minimum
number of crossings, taken over all diagrams of K , one must change to turn K into
the unknot. By a crossing change we shall mean one of the two local moves on a knot
diagram given in Figure 1.

C �

positive

negative

Figure 1: A positive and negative crossing change
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C1
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D D

K0
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... ... ... ...

... ... ... ...

... ... ... ...

Figure 2: A left-handed, or positive, generalized crossing change

This invariant is quite simple to define but has proven itself very difficult to master.
Fifty years ago, Milnor conjectured that the unknotting number for the .p; q/–torus
knot was 1

2
.p�1/.q�1/; only in 1993, in two celebrated papers [6; 7], did Kronheimer

and Mrowka prove this conjecture true. Hence, it is desirable to look at variants of
the unknotting number which may be more tractable. One natural variant (due to
Murakami [12]) is the algebraic unknotting number ua.K/, the minimum number of
crossing changes necessary to turn a given knot into an Alexander polynomial-one knot.
Alexander polynomial-one knots are significant because they “look like the unknot” to
classical invariants, knot invariants derived from the Seifert matrix. It is obvious that
ua.K/ � u.K/ for any knot K , and there exist knots such that ua.K/ < u.K/ (for
instance, the Whitehead double of any nontrivial knot).

In [9], Mathieu and Domergue defined another generalization of the unknotting number.
In [8], Livingston worked with this definition. He described it as follows:

“One can think of performing a crossing change as grabbing two
parallel strands of a knot with opposite orientation and giving them one
full twist. More generally, one can grab 2k parallel strands of K with
k of the strands oriented in each direction and give them one full twist.”

Following Livingston, we call such a twist a generalized crossing change. We describe
in [4] how a crossing change may be encoded as a ˙1–surgery on a nullhomologous
unknot U � S3 �K bounding a disk D such that D \K D 2 points. From this
perspective, a generalized crossing change is a relaxing of the previous definition to
allow D\KD 2k points for any k , provided lk.K;U /D 0; see Figure 2. In particular,
any knot can be unknotted by a finite sequence of generalized crossing changes.

One may then naturally define the untwisting number tu.K/ to be the minimum length,
taken over all diagrams of K , of a sequence of generalized crossing changes beginning
at K and resulting in the unknot. By tup.K/, we will denote the minimum number of

Algebraic & Geometric Topology, Volume 17 (2017)
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generalized crossing changes on 2p or fewer strands, with p strands oriented in each
direction, needed to unknot K . Notice that tu1 D u and that

tu� � � � � tupC1 � tup � � � � � tu1 D u:

The algebraic untwisting number tua.K/ is the minimum number of generalized
crossing changes, taken over all diagrams of K , needed to transform K into an
Alexander polynomial-one knot. It is clear that tua.K/� tu.K/ for all knots K . In [4],
we showed that, in fact, tua.K/D ua.K/ for all knots K ; hence the unknotting and
untwisting numbers are “algebraically the same”. However, we also showed that tu
and u can be arbitrarily different in general: there exists a family of knots fSq

p g such
that .u� tuq/.S

q
p /� p� 1 for all p; q � 2.

Since the family fSq
p g consists of .p; 1/–cables of (untwisted) Whitehead doubles,

most members of this family have very high crossing number. In this paper, we
compare the unknotting and untwisting numbers for several 10– and 11–crossing knots
with signature 0. In order to do this, we will develop an obstruction to a knot with
signature 0 having untwisting number 1. This will require the methods of Heegaard
Floer homology, specifically the d –invariants or Heegaard Floer correction terms of a
3–manifold.

In [19], Ozsváth and Szabó develop an unknotting number-1 obstruction using d –
invariants. This obstruction relies on the Montesinos trick, which allows them to
construct a definite 4–manifold with boundary the branched double cover †.K/ of an
unknotting number-1 knot K . In Section 3, we give an infinite family of knots which
have untwisting number 1 but which do not satisfy the Montesinos trick, eliminating
that route toward a d –invariant obstruction:

Theorem 1.1 There exists an infinite family fKngn>1 of knots such that tu.Kn/D 1

for all n, but †.Kn/ is not a half-integer surgery on any knot in S3 for any n.

In Section 4, we get around the failure of the Montesinos trick for untwisting number-1
knots by porting the machinery used by Owens and Strle in [16] and Nagel and Owens
in [13] as an obstruction to low untwisting number:

Theorem 1.2 Let K be a knot with signature �.K/ which can be unknotted by p

positive and n negative generalized crossing changes. Then Y D†.K/, the branched
double cover of K , bounds a smooth, definite 4–manifold W with b2.W /D 2nC 2p

and signature 2n � 2p C �.K/. Moreover, H2.W IZ/ contains n classes of self-
intersection C2 and p classes of self-intersection �2 which span a primitive sublattice;
in other words, the quotient of H2.W IZ/ by this sublattice is torsion-free.
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Once we have constructed a definite 4–manifold W with @W D †.K/, the next
step is to apply a result of Ozsváth and Szabó to get conditions that the d –invariants
of †.K/ must satisfy. These invariants are easily computable for alternating K via the
Goeritz matrix associated to K . These computations are discussed further in Section 4.
We successfully obstruct several 10–crossing knots from being unknotted by a single
positive and/or negative generalized crossing change, though these untwisting numbers
cannot be computed using the methods available prior to the development of Heegaard
Floer homology:

Theorem 1.3 The knots 1068 and 1096 have untwisting number 2, the knots 1022 ,
1034 , 1035 , 1087 and 1090 cannot be unknotted by a single positive generalized
crossing change, and the knot 1048 cannot be unknotted by a single negative generalized
crossing change.

Similarly, we apply these obstructions to all 11–crossing knots with signature 0,
algebraic unknotting number 1, and unknotting number 2 to get the following:

Theorem 1.4 The knots 11a37; 11a103; 11a169 , 11a214 and 11a278 have untwisting
number 2.

Finally, we showed in [4] that there can be arbitrarily large gaps between the p–
untwisting number and the 1–untwisting number (which by definition equals the
unknotting number) for several families of knots. However, we had not yet been able
to distinguish between tup and tuq for p; q > 1.

In Section 6, we use invariants coming from Heegaard Floer homology (the Ozsváth–
Szabó � invariant) and Khovanov homology (the Rasmussen s invariant) to give lower
bounds on the p–untwisting number for arbitrary p via the following theorem. While
visiting Mark Powell at the Max Planck Institute, he suggested this theorem and outlined
a proof similar to the proof of Powell and coauthors T Cochran, S Harvey, and A Ray
that the � and s invariants give lower bounds for their bipolar metrics (to appear in
a future paper). The referee suggested a simpler approach involving the 4–genus,
detailed in Section 6.

Theorem 1.5 Let K be a knot which can be converted to the unknot via n generalized
crossing changes, where for every i , the i th generalized crossing change is performed
on 2pi strands. Then

j�.K/j �

nX
iD1

p2
i and 1

2
js.K/j �

nX
iD1

p2
i :
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This allows us to show that there exist p; q > 1 such that the difference between the p–
and q–untwisting numbers of several families of knots can be made arbitrarily large:

Example 1.6 Let Kp3 denote the .p3; 1/–cable of a knot K with genus 1 and
u.K/ D 1 D �.K/ (one example of such a K is the right-handed trefoil knot). We
know from [4, Section 5] that tup3.Kp3/D 1. We may use Theorem 1.5 to show that

tup.Kp3/� tup3.Kp3/
p!1
����!1:

Convention In this paper, all manifolds are assumed to be smooth, compact, orientable
and connected, and all surfaces in manifolds are assumed to be smoothly embedded.
When homology groups are given without specifying coefficients, they are assumed to
have coefficients in Z.
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greatly inspired this work.

2 Preliminaries

2.1 Dehn surgery

In this section, we will describe the operation of Dehn surgery on knots.

Definition 2.1 Let K � S3 be an oriented knot, let N be a closed tubular neighbor-
hood of K , and consider the preferred framing for N (see [20, Definition 2E8]) in
which the longitude L is oriented in the same way as K and the meridian M has
linking number C1 with K . We may write any simple closed curve J � @N in terms
of the homology basis f�D ŒL�; �D ŒM �g:

ŒJ �D q�Cp� 2H1.@N /:

The result of .p=q/–surgery on K is the 3–manifold

S3
p=q.K/ WD .S

3
� VN /[h .S

1
�D2/;
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U

K
K0
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...... ... ...
Figure 3: Performing C1–surgery on an unknot U gives the knot K a
left-handed twist.

where hW @.S1 �D2/! @N is a homeomorphism taking ��S1 onto a curve J of
class ŒJ � D p�C q� in H1.@N /. By convention, we indicate that surgery is to be
performed on K by writing the ratio p=q next to a diagram of K .

If U � S3 nK is an unknot such that lk.K;U /D 0, we define a generalized crossing
change diagram for K to be a diagram of the link KtU with the number ˙1 written
next to U , indicating that U is to have ˙1–surgery performed on it.

There is an orientation-preserving homeomorphism ˆ of the manifold M WD S3
˙1.U /

resulting from ˙1–surgery on U with S3 . However, K0 WDˆ.K/� S3 may have a
different knot type than K . (Note that the knot type of K0 does not depend on the choice
of homeomorphism ˆ since any two orientation-preserving homeomorphisms of S3

are isotopic.) In particular, if D is a disk bounded by U such that 2p strands of K

pass through D in straight segments, then each of the 2p straight pieces is replaced
by a helix which screws through a neighborhood of D in the right- (respectively, left-)
hand sense; see Figure 3.

The process of performing ˙1–surgery on an unknot U in a generalized crossing
change diagram for a knot K , mapping the resulting manifold to S3 via an orientation-
preserving homeomorphism ˆ, then erasing ˆ.U / from the resulting diagram of
ˆ.K/tˆ.U / is called a ˙ generalized crossing change on K . Now, it can be easily
verified that performing a � generalized crossing change on the knot K on the left
side of Figure 4 transforms the crossing labeled C into the crossing labeled �. The
inverse process of introducing an unknot labeled with a C1 to the right side of Figure 4
and performing a C generalized crossing change in the resulting generalized crossing
change diagram transforms the crossing labeled � into the crossing labeled C.

2.2 The untwisting number

In a generalized crossing change diagram for K consisting of a diagram of K and
an unknot U , we have that K must pass through U an even number of times, for
otherwise lk.K;U / ¤ 0. If at most 2p strands of K pass through an unknot U in
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C �

blow down

blow upC1

Figure 4: A crossing change is a 1–generalized crossing change.

a generalized crossing change diagram, we may call the associated ˙ generalized
crossing change a ˙p–generalized crossing change on K .

The untwisting number tu.K/ of K is the minimum length of a sequence of generalized
crossing changes on K such that the result of the sequence is the unknot, where we allow
ambient isotopy of the diagram in between generalized crossing changes. Note that by
the reasoning on page 58 of [1], this definition is equivalent to taking the minimum
length, over all diagrams of K , of a sequence of generalized crossing changes beginning
with a fixed diagram of K such that the result of the sequence is the unknot, where we
do not allow ambient isotopy of the diagram in between generalized crossing changes.

For p D 1; 2; 3; : : : , we define the p–untwisting number tup.K/ to be the minimum
length of a sequence of ˙p–generalized crossing changes on K resulting in the unknot,
where we allow ambient isotopy of the diagram in between generalized crossing changes.
It follows immediately that we have the chain of inequalities

(2-1) tu.K/� � � � � tupC1.K/� tup.K/� � � � � tu2.K/� tu1.K/D u.K/:

2.3 Heegaard Floer homology

In this section, we will recall some properties of Heegaard Floer homology, a set of
invariants of 3–manifolds defined by Ozsváth and Szabó. For details, refer to their
papers, in particular [17; 18; 19].

Let Y be an oriented rational homology 3–sphere. Recall that one can associate to Y

a set Spinc.Y / of spinc structures on Y . In the case where jH 2.Y IZ/j is odd, there
is a canonical bijection H 2.Y IZ/$ Spinc.Y / under which 0 2H 2.Y IZ/ is sent to
the unique spin structure on Y . In this way, we may give Spinc.Y / a group structure
inherited from that of H 2.Y IZ/.

Fix a spinc structure s on Y . Then the (plus flavor of) Heegaard Floer homology
HFC.Y; s/ is a Q–graded abelian group with a ZŒU �–action, where multiplication
by U lowers the grading by 2. Associated to s is a d –invariant d.Y; s/ 2Q which
satisfies the symmetry condition d.Y; s/D�d.�Y; s/. The correction terms are useful
for obstructing the existence of a 4–manifold with boundary Y :
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Theorem 2.2 (Ozsváth and Szabó [17]) Let X be a negative-definite 4–manifold
with boundary Y and intersection form represented by a matrix Q, and let s be any
spinc structure on X . Let c1.s/ denote the first Chern class associated to s. Then

(2-2)
1
4
.c1.s/

2
C b2.X //� d.Y; sjY /;

1
4
.c1.s/

2
C b2.X //� d.Y; sjY / mod 2:

Following [17], we now show how to check this obstruction in practice. In addition
to the assumptions of Theorem 2.2, suppose for simplicity that �1.X /D 1 and that
jH 2.Y IZ/j is odd. (This will always be true for the examples in this paper.) Let
r D b2.X /, the second Betti number of X . It is straightforward to see that H2.X IZ/
is free of rank r in this case. Choose a basis fxig

r
iD1

for H2.X IZ/ and let QD .Qij /

be a negative-definite r � r matrix representing the intersection pairing of X in this
basis; then det QD jH 2.Y IZ/j. The dual basis fxigr

iD1
for H 2.X IZ/ given by the

universal coefficient theorem defines an isomorphism H 2.X IZ/ Š Zr . Under this
isomorphism, the set fc1.s/ j s2Spinc.X /g�H 2.X IZ/ of first Chern classes of spinc

structures on X is sent to the set of characteristic covectors Char.Q/ for Q. (Recall
that a characteristic covector for an r � r matrix Q is a vector � D .�1; : : : ; �r / 2 Zr

such that �i �Qii mod 2 for i D 1; : : : ; r .) In our basis, the square of the first Chern
class of the spinc structure corresponding to a characteristic covector � is given by
�T Q�1� .

Define a function mQW Z
r=Q.Zr /!Q by

mQ.g/Dmax
˚

1
4
.�T Q�1�C r/ j � 2 Char.Q/; Œ��D g

	
;

where Œ�� is the image of � 2Zr under the projection to Zr=Q.Zr /. In computing mQ ,
it is enough to consider characteristic covectors �D .�1; : : : ; �r / with �Qii � �i �Qii ;
if, say, �i <Qii , subtracting twice the i th column of Q from � shows that �T Q�1�

is not maximal. Then we may simplify the conditions (2-2) as follows:

Theorem 2.3 (Ozsváth and Szabó) Let Y be a rational homology 3–sphere which is
the boundary of a simply connected, negative-definite 4–manifold X , with jH 2.Y IZ/j
odd. If the intersection pairing of X is represented in a basis by the matrix Q, then
there is a group isomorphism

�W Zr=Q.Zr /! Spinc.Y /

such that for all g 2 Zr=Q.Zr /,

(2-3)
mQ.g/� d.Y; �.g//

mQ.g/� d.Y; �.g// mod 2:
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Figure 5: Crossing conventions for negative-definite Goeritz matrices of
alternating knots

Under the assumptions of the theorem, we say that the 4–manifold X bounded by Y

is sharp if equality holds in (2-3). In this case, we may compute the correction terms
for Y using the values of mQ . Moreover, if a rational homology sphere Y bounds
a positive-definite 4–manifold X , we may compute the correction terms for Y by
applying Theorem 2.3 to �Y .

If K is an alternating knot, we may compute the d –invariants of †.K/ using the
negative-definite Goeritz matrix computed from an alternating diagram of K as follows.
Consider a regular projection of K into a plane R2 � R3 D S3 n f1g. Color the
regions of R2 nK alternately black and white so that the n white regions X1; : : : ;Xn

are separated by crossings of the type depicted in Figure 5.

For 0� i; j � n, where d is the number of double points incident to Xi and Xj , define

gij D

�
d; i ¤ j ;

�
P

k¤i gik ; i D j:

Let G0 D .gij /. Then the negative-definite Goeritz matrix G associated to K is the
n� n symmetric integer matrix obtained from G0 by deleting the 0th row and column
of G0 . It is shown in [19, Proposition 3.2] that G represents the intersection pairing
of a sharp 4–manifold with boundary †.K/; thus, the correction terms for †.K/ are
given by the values of mG .

3 Failure of the Montesinos trick

The “Montesinos trick” relates crossing changes downstairs on K to surgery upstairs on
†.K/, the branched double cover of K . We use the convention that the determinant of
a knot is given by j�K .�1/j, where �K is the Alexander polynomial for the knot K .

Theorem 3.1 [11] If u.K/ D 1, then †.K/ Š S3
˙D=2.C / for some other knot

C � S3 , where here D is the determinant of K .
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Figure 6: The (local) effect of performing a C generalized crossing change
on the unknot U

We show that this theorem does not generalize to untwisting number-1 knots:

Theorem 3.2 There exists an infinite family fKng of knots such that, for all n � 1,
tu.Kn/D 1, but †.Kn/ is not a half-integer surgery on any knot in S3 .

In order to prove Theorem 3.2, we will need two main ingredients. The first is the
following lemma:

Lemma 3.3 The effect of performing a C generalized crossing change on the un-
knot U in the local picture given in Figure 6 is to add �4 full twists to the knot K .

Proof See Figure 6. The intermediate steps are left to the reader.

Our second ingredient is the following theorem of McCoy [10]:

Theorem 3.4 Let K be an alternating knot. Then the following are equivalent:

(1) u.K/D 1;

(2) the branched double cover †.K/ can be obtained by half-integer surgery on
some knot in S3 ;

(3) in every minimal diagram of K , there exists a crossing which can be changed to
unknot that diagram.
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C1

�2n

4

�2n

Figure 7: The knots Kn , together with the C1–generalized crossing change
that unknots them. Here, positive (resp. negative) numbers in boxes denote
right-handed (resp. left-handed) full twists.

Proof of Theorem 3.2 Fix an orientation on Kn . The generalized crossing change
pictured in Figure 7 introduces �4–twists on the left side of Kn , which undo the
4–twists already present. Hence, tu.Kn/D 1 for all n. Moreover, if n> 1, then Kn

is a minimal diagram of an alternating knot. One can easily see that Kn cannot be
unknotted by any single crossing change in this diagram. By Theorem 3.4, the branched
double cover †.Kn/ cannot be obtained by half-integer surgery on any knot in S3 ,
and moreover, u.Kn/ > 1.

Note 3.5 The first knot in this family is K2 D 12a1166 . The unknotting number
of 12a1166 is listed as “not known” in the KnotInfo tables, but is either 1 or 2. By
Theorem 3.4, we must have that tu.12a1166/D 1< 2D u.12a1166/.

Question 3.6 Does there exist a knot K with tu.K/ D 1 such that †.K/ is not a
surgery on any knot in S3 ?

4 Heegaard Floer-theoretic obstructions
to untwisting number 1

Although the Montesinos trick does not hold for knots with untwisting number 1, we
can still get obstructions to a knot K being unknotted by a single positive or negative
generalized crossing change using techniques similar to those of Owens and Strle
in [16] and Nagel and Owens in [13] together with Theorem 2.2.

In order to apply Theorem 2.2, we first compute a Goeritz matrix G for K and, from G ,
the function mG as in Theorem 2.2. The image of Zr=G.Zr / under mG , where G is
an r � r matrix, is the set of d –invariants for Y . We construct the 4–manifold W as
in [13, Proposition 2.3] using the propositions below, then compute the mQ and show
that no isomorphism satisfying both conditions of (2-2) exists.
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Proposition 4.1 Let K be an oriented knot in S3 , and suppose that K can be un-
knotted by p positive and n negative generalized crossing changes. Then K bounds
a disk � in a manifold C Š B4 #n CP2 #p CP2 with Œ�� D 0 2 H2.C; @C / and
�1.C n�/D Z, generated by a meridian of K .

Proof Suppose that K is an oriented knot in S3 and that K can be unknotted by p

positive and n negative generalized crossing changes. Then there is a sequence of knots

(4-1) K WDKpCn

�pCn

���!KpCn�1

�pCn�1

�����! � � �
�2
�!K1

�1
�!K0 WD U

for which Ki is obtained from KiC1 by a single generalized crossing change of sign
�iC1 2 f˙1g for i D 1; : : : ;p C n, with precisely p of the �i equal to C1 and n

of the �i equal to �1, and U is the unknot. Reversing our point of view, there is a
sequence of knots

(4-2) U WDK0

��1
��!K1

��2
��! � � �

��pCn�1

������!KpCn�1

��pCn

����!KpCn DWK

for which Ki is obtained from Ki�1 by a single generalized crossing change of
sign ��i for i D 1; : : : ;pC n and U is the unknot.

Consider U to be embedded in @B4 D S3 . Since U is an unknot in S3 , it bounds
an embedded disk D � S3 . We push D into B4 to get a disk �0 � B4 such that
�0\@B

4DU and �1.B
4n�0/DZ, where the latter is generated by a meridian of U .

Now, we build a 4–manifold C in which K bounds a disk � as follows. Let C0 WDB4 .
We now build C from C0 by sequentially thickening the boundary of C0 and attaching
2–handles to the new boundary. First, we thicken the boundary S0 WD@B

4 to S0�Œ0; 1�,
obtaining a new 4–manifold B0 . We denote the disk �0[ .U � I/�B0 by �1 . The
first generalized crossing change can be realized via the attachment of a ��1 –framed 2–
handle h1 along an unknot U1 � S0�f1g with lk.U�f1g; U1/D 0. There is a unique
orientation-preserving diffeomorphism from the new boundary S1 resulting from this
handle attachment to S3 , and after this diffeomorphism U � f1g is isotopic to K1 .
We denote by C1 the new 4–manifold resulting from this handle attachment. Since
attaching a ˙1–framed 2–handle to the boundary of a 4–manifold along an unknot
results in connect-summing a ˙CP2 , we have that C1ŠC0#��1CP2

DB4#��1CP2

(here ˙CP2 denotes CP2 or CP2 , respectively). Note that �1 is still a disk in C1

and that @�1 DK1 .

Attaching a 2–handle generally adds a relation to the fundamental group of the resulting
manifold, where the relation is given by the attaching map. Since the attaching circle U1

of h1 is trivial in H1

�
.S0 � f1g/ n .U � f1g/

�
Š Zh�0i, where �0 is a meridian of

U � f1g � S0 � f1g, it is also trivial in �1.B0 n�1/ Š Zh�0i. Thus, we get that
�1.C1 n�1/Š Z as well, generated by a meridian �1 of K1 .
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B4

˙CP 2

˙CP 2

˙CP 2

D
U K1 K2 KpCn�1 K

�

Figure 8: The construction of a manifold C in which K bounds a disk �

We continue in this way to iteratively get 4–manifolds C1; : : : ;CpCn so that CiC1 is ob-
tained from Ci by adding a collar @Ci� Œi; iC1� to @Ci and attaching a ��iC1 –framed
2–handle hiC1 to @Ci�fiC1g. At each stage, the attaching circle UiC1�Si�fiC1g

of hiC1 is trivial in

H1

�
.Si � fiC1g/ n .Ki � fiC1g/

�
Š Zh�ii;

where �i is a meridian of Ki�fiC1g. Hence, UiC1 is trivial in �1.Bin�iC1/ŠZh�ii.
The end result of this process is a 4–manifold C WD CpCn Š B4 #n CP2 #p CP2 in
which K WDKpCn bounds a disk � WD�pCn such that �1.C n�/Š Z, generated
by a meridian �pCn of K DKpCn .

We now consider the nondegenerate intersection form H2.C; @C /�H2.C /! Z in
order to show that Œ��D 0 2H2.C; @C /. Since H2.C /Š ZpCn is generated by the
CP1 factors CP1

1; : : : ;CP1
pCn , where CP1

i is a generator of the second homology
of the i th connect-summed copy of ˙CP2 , we know that an element a 2H2.C; @C /

is 0 if and only if a � ŒCP1
i �D 0 for all i D 1; : : : ;pC n.

Let di denote the disk bounded by the unknot Ui , and let Di denote the second D2

factor in the i th 2–handle attached to C . Then CP1
i is homologous to�

di�1 �
˚
i�1

2

	�
[
�
Ui �

�
i�1

2
; i
��
[ .��Di/:
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The only intersections of � with CP1
i come from the intersections of Ki�1 with di .

Since lk.Ki�1;Ui/D 0 for all i , we have that [Ki�1� � Œdi �D 0 for all i . Therefore,
Œ��D 0 2H2.C; @C /. This completes the proof of the proposition.

Next, we prove a generalization of [13, Proposition 2.3]:

Proposition 4.2 Let K be a knot in S3 D @B4 , and suppose K bounds a properly
embedded disk � in C WD B4 #n CP2 #p CP2 such that Œ�� D 0 2 H2.C; @C / and
�1.C n�/ D Z, generated by a meridian of K . Then there exists an oriented 4–
manifold W with boundary @W D†.K/, the branched double cover of K , such that

(1) W is simply connected;

(2) H2.W IZ/Š Z2.pCn/ ;

(3) the signature of W is �.W /D 2.n�p/C �.K/;

(4) there exist p C n pairwise disjoint classes in H2.W IZ/ represented by p

surfaces of self-intersection �2 and n surfaces of self-intersection C2 which
span a primitive sublattice; in other words, the quotient of H2.W IZ/ by this
sublattice is torsion-free.

Proof Since �1.C n�/ D Z with generator the meridian of K , we may take the
double cover W D †2.C; �/ of C branched along �, and by definition, we have
@W D†2.K/.

(1) Let pW .CC nN.�//! C nN.�/ denote the two-fold, unbranched cover of the
complement of an open tubular neighborhood of � in C . Since �1.C n�/ Š Z,
we have that �1.AC n�/ Š Z as well. The branched cover W may be recovered
from CC nN.�/ by gluing back a closed neighborhood N.�/ Š D2 � � along
p�1.@N.�// Š S1 ��. A straightforward application of the Seifert–van Kampen
theorem to W D AC n� [

p�1.@N.�//
N.�/ shows that �1.W /D 1.

(2) We will need the following claim.

Claim The Euler characteristic of W is �.W /D 2.pC n/C 1.

Proof of claim By a standard Mayer–Vietoris argument, we may show that

Hi.C /D

8̂̂̂<̂
ˆ̂:

Z; i D 0;

0; i D 1; 3;

ZpCn; i D 2;

0; i D 4;
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where H4.C /D 0 because C is a manifold with boundary. Thus, �.C /D 1CpC n.
We have that

�.C /D �.C n�/C�.�/D �.C n�/C 1:

Therefore, the double cover AC n� of C n� has Euler characteristic 2.�.C /� 1/.
Since W D AC n� [

p�1.@N.�//
N.�/ as above, we have that

�.W /D 2.�.C /� 1/C 1D 2.pC n/C 1:

Now, since H1.W IZ/D 0, the universal coefficient theorem together with the long
exact cohomology sequence for .X; @X / implies that H 1.W; @W IZ/ D 0 as well.
By Poincaré–Lefschetz duality, we have that H3.W IZ/ D 0 as well. Note that
H4.W IZ/D 0 since W is a manifold with boundary. Now the Euler characteristic
of W is

2pC 2nC 1D �.W /D 1C b2.W /:

Therefore, b2.W /D 2.pC n/, and H2.W IZ/ is free abelian of rank 2.pC n/.

(3) Our proof follows the proof of [3, Theorem 3.7]. Let F�K be a connected
Seifert surface of the knot �K with interior pushed into �B4 . Then the manifold
. yC ;F / WD .C; �/[.S3;K / .�B4;F�K / is closed. Let yW denote the double cover
†2. yC ;F / of yC branched over F WD�[K F�K . Then yW DW [†2.K /XK , where
XK is the double cover †2.F�K / of �B4 branched along F�K . By [21; 5], the
signature of XK is ��.K/. Applying Novikov additivity, we get that

�. yW /D �.W /C �.XK /:

Furthermore, the G –signature theorem [2, Lemma 2.1] tells us that

�. yW /D 2�. yC /� 1
2
.ŒF � � ŒF �/:

Since in this case Œ��D 0 2H2.C; @C /, we have that ŒF � � ŒF �D 0 so

�.W /D 2�.C /C �.K/:

Since �.C /D n�p , we get that �.W /D 2.n�p/C �.K/.

(4) We let Si be a smoothly embedded surface representing the generator of
H2.��iCP2

i /, the i th summand of C . We define xi to be the homology class
of the two-fold cover ySi �W of Si branched over �\Si , which is a subset of W .
Since the Si are pairwise disjoint downstairs, the ySi are also pairwise disjoint. We
show that the xi have self-intersection �2�i .

Let SCi be a push-off of Si . Then Si �S
C
i D��i . We make the disk � disjoint from

the (codimension-2) intersection points Si \SCi . In the branched cover, denote the
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lk.K;U /D 0

�1 �1

lk.K;U /D˙2

U U

K K

Figure 9: No matter the sign of the crossing to be changed, Nagel and Owens
[13] may perform only �1–generalized crossing changes in order to do so.

preimage of Si by Ti and the preimage of SCi by TCi . Then TCi is also a push-off
of Ti . The intersection points of Ti and TCi are the preimages of the intersection
points of Si and SCi ; since the points of Si\SCi are disjoint from the branch set, there
are geometrically two intersection points of Ti and TCi . Furthermore, the orientations
upstairs give the same signs of intersection as downstairs. Therefore, Ti �T

C
i D�2�i .

The proof of [13, Proposition 2.3] applies to our case to show that these classes span a
primitive sublattice. This completes the proof of the proposition.

Remark 4.3 The proof of Proposition 4.2 is very similar to the proof of [13, Propo-
sition 2.3], with the caveat that Nagel and Owens use only �1–generalized crossing
changes in order to unknot K , no matter the signs of the crossings of K that need to be
changed (see Figure 9). The diagram on the right side of Figure 9 is not a generalized
crossing change diagram, since lk.K;U /¤ 0. Therefore, we must assume that K can
be unknotted only by positive generalized crossing changes.

From Propositions 4.1 and 4.2, we derive a theorem analogous to [13, Theorem 1], but
requiring the additional condition that the signature of the knot K is 0:

Theorem 4.4 Let K�S3 be an oriented knot with signature 0 which can be unknotted
by p generalized crossing changes, all of sign C1. Then the double cover Y WD†.K/

of S3 branched along K bounds a smooth, simply connected, negative-definite 4–
manifold W with H2.W IZ/ Š Z2p . Moreover, H2.W IZ/ contains p pairwise
disjoint homology classes of self-intersection �2 which span a primitive sublattice.

Proof By Proposition 4.1, K bounds a disk � in a manifold C Š B4 #p CP2 such
that Œ��D 0 2H2.C; @C / and �1.C n�/D Zh�i, where � is a meridian of K . By
Proposition 4.2, the double cover W WD†2.C; �/ of C branched over � is simply
connected, has H2.W IZ/Š Z2p , and contains p pairwise disjoint homology classes
of self-intersection �2 which span a primitive sublattice. Moreover, the signature
of W is �.W /D�2pC �.K/D�2p , so W is negative definite.
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Note 4.5 If instead K can be unknotted using n generalized crossing changes, all of
sign �1, Theorem 4.4 applied to �K shows that the double cover �Y of S3 branched
along �K bounds a smooth negative-definite 4–manifold W with b1.W /D 0,
b2.W /D 2n, and such that H2.W IZ/ contains n pairwise disjoint surface classes of
self-intersection �2 which span a primitive sublattice.

In the rest of this paper, we will say tu.K/D˙1 if K can be unknotted by a single
˙ generalized crossing change. If �.K/ D 0 and tu.K/ D ˙1, we can always get
a negative-definite 4–manifold W bounding ˙†.K/: if K can be unknotted by a
positive generalized crossing change, then we get a negative-definite W bounding
C†.K/, and if K can be unknotted by a negative generalized crossing change, then we
get a negative-definite W bounding �†.K/. Moreover, the intersection form on W is
represented by a definite 2� 2 matrix Q. For an n� n matrix M , we denote by �M

the group Zn=M.Zn/. With this terminology established, we may state the following
corollary of Proposition 4.1, which simplifies our computations:

Corollary 4.6 Let K be an alternating knot such that tu.K/ D ˙1 and �.K/ D 0.
We use the convention that det K D j�K .�1/j > 0. Let G be the negative-definite
Goeritz matrix obtained from an alternating diagram for ˙K . Then there exists a
negative-definite matrix of the form

QD

�
�

1
2
.det KC 1/ 1

1 �2

�
such that ˙Y D ˙†.K/ bounds a negative-definite 4–manifold with intersection
form Q. Moreover, there is an isomorphism �W �Q! �G such that, for all g 2 �Q ,

mQ.g/�mG.�.g//;(4-3)

mQ.g/�mG.�.g// mod 2:(4-4)

Proof By Theorem 4.4, ˙Y bounds a negative-definite 4–manifold with intersection
form represented by

P D

�
a b

b �2

�
for some a; b 2 Z. By Theorem 2.2, there must exist isomorphisms

�P

�
�!
Š

Spinc.˙Y /ŠH 2.Y IZ/
PD
��!
Š

H1.Y IZ/;

where the isomorphism labeled “PD” is from Poincaré duality and the order of H1.Y IZ/
is equal to det K . The matrix P presents the group Z=.det P /Z. Therefore, we must
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have det P D˙ det K . Since det K is odd, we have that

b2
��2a� b2

D det P � det K � 1 mod 2;

and hence b is odd. Therefore, we can use simultaneous row and column operations to
change P into a matrix of form

QD

�
a 1

1 �2

�
:

Since Q is negative definite, det Q� 0, so we must have det QDC det K . Therefore,
aD�1

2
.det KC 1/. It follows from Theorem 3.1 that mQ.g/�mG.g/ and that the

two are congruent modulo 2. The corollary follows.

Note 4.7 Ozsváth and Szabó used a similar process to obstruct knots from having
unknotting number 1 in [19], although their isomorphisms � were also required to
satisfy a “symmetry” condition which is not necessarily satisfied in our case. In [19,
Corollary 1.3], Ozsváth and Szabó computed the mQ and mG for various knots to
determine whether there exist isomorphisms � of the type given in Corollary 4.6. The
only knot with signature 0 which had its unknotting number determined by Ozsváth
and Szabó for which the untwisting number was unknown and for which the “symmetry”
condition was not necessary is 1068 . In this way, we get from their computations that
tu.1068/D 2D u.1068/, even though ua.1068/D 1.

5 Examples

In this section, we will prove Theorems 1.3 and 1.4 using Corollary 4.6. Following
Ozsváth and Szabó in [19], we will refer to an isomorphism � satisfying (4-3) as
a positive matching and an isomorphism � satisfying (4-4) as an even matching.
We obstruct the existence of positive, even matchings for each of the cases listed
in Theorem 1.3. We illustrate the proof that tu.1068/ D 2; the remaining knots are
obstructed from having untwisting number C1 and/or �1 similarly.

Example 5.1 Although Ozsváth and Szabó have already verified in [19] that †.1068/

cannot bound a 4–manifold with intersection form

QD

�
�29 1

1 �2

�
;
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as it would have to if tu.1068/ D 1, we replicate the computation below. The knot
1068 has �.1068/D 0, det 1068 D 57 and Goeritz matrix

G D

0BBBBBBBBB@

�4 1 1 0 0 1 0

1 �3 0 0 1 0 0

1 0 �2 1 0 0 0

0 0 1 �2 1 0 0

0 1 0 1 �3 0 1

1 0 0 0 0 �2 1

0 0 0 0 1 1 �2

1CCCCCCCCCA
:

The values of mG mod 2 are

0 98/57 50/57 28/19 86/57 56/57 36/19 14/57 2/57 24/19
110/57 2/57 30/19 32/57 56/57 16/19 8/57 50/57 20/19 2/3

98/57 4/19 8/57 86/57 6/19 32/57 14/57 26/19 110/57 110/57
26/19 14/57 32/57 6/19 86/57 8/57 4/19 98/57 2/3 20/19
50/57 8/57 16/19 56/57 32/57 30/19 2/57 110/57 24/19 2/57
14/57 36/19 56/57 86/57 28/19 50/57 98/57.

If †.1068/ bounded a 4–manifold W as in Corollary 4.6, the matrix

QD

�
a 1

1 �2

�
representing the intersection form on W would have determinant equal to �2a� 1D

det.1068/D 57, so that aD�29 and

QD

�
�29 1

1 �2

�
:

In this case, the values of mQ mod 2 are

0 112/57 106/57 32/19 82/57 64/57 14/19 16/57 100/57 22/19
28/57 100/57 18/19 4/57 64/57 2/19 58/57 106/57 12/19 4/3

112/57 10/19 58/57 82/57 34/19 4/57 16/57 8/19 28/57 28/57
8/19 16/57 4/57 34/19 82/57 58/57 10/19 112/57 4/3 12/19

106/57 58/57 2/19 64/57 4/57 18/19 100/57 28/57 22/19 100/57
16/57 14/19 64/57 82/57 32/19 106/57 112/57.

These lists are not identical (in particular, there is a 112=57 in the mQ list but not in
the mG list), so there are no even matchings here and tu.1068/¤C1.
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The Goeritz matrix for �1068 is

G0 D

0@�3 1 0

1 �5 3

0 3 �6

1A I
the values of mG0 are

0 4/57 16/57 12/19 -50/57 -14/57 10/19 -32/57 28/57 -6/19
-56/57 28/57 2/19 -8/57 -14/57 -4/19 -2/57 16/57 -24/19 -2/3

4/57 -20/19 -2/57 -50/57 -30/19 -8/57 -32/57 -16/19 -56/57 -56/57
-16/19 -32/57 -8/57 -30/19 -50/57 -2/57 -20/19 4/57 -2/3 -24/19
16/57 -2/57 -4/19 -14/57 -8/57 2/19 28/57 -56/57 -6/19 28/57

-32/57 10/19 -14/57 -50/57 12/19 16/57 4/57.

Using a Python program, we check all possible isomorphisms � and find that there
are no positive, even matchings between the values of mQ and the values of mG0 .
Therefore, tu.1068/¤�1. Since u.1068/D 2, we must have that tu.1068/D 2 as well.

6 Ozsváth–Szabó � invariant and Rasmussen s invariant
obstructions to p–untwisting number

In this section, we investigate p–generalized crossing changes for fixed p in order to
prove Theorem 1.5.

Every p–generalized crossing change consists of p.p�1/Cp2Dp.2p�1/ standard
crossing changes. Thus, for every positive integer p and every knot K � S3 , if
tup.K/� n, then there is an unknotting sequence consisting of pn.2p� 1/ crossing
changes such that

u.K/� p.2p� 1/ tup.K/;

whence
j�.K/j � u.K/� p.2p� 1/ tup.K/:

Thus, it is possible to use the � invariant to get lower bounds on tup for all p . These
bounds may be useful in distinguishing tup from tuq for p ¤ q . However, we may
obtain a stronger bound using the smooth 4–genus as follows. While visiting Mark
Powell at the Max Planck Institute, he suggested this theorem and outlined a somewhat
more complicated proof. It is similar to the proof of Powell and coauthors T Cochran,
S Harvey, and A Ray that the � and s invariants give lower bounds for their bipolar
metrics (to appear in a future paper). The following, simpler proof involving the
4–genus was suggested by the referee.
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Di

...

...

...

...

...

...

...

...

...
...

qi

qi
Ki�1

Figure 10: The result of the isotopy on Di and the strands of Ki�1 . We call
the strands on the top left-oriented and those on the bottom right-oriented.

Theorem 6.1 If K can be unknotted by k generalized crossing changes, where the
i th change is performed on 2qi strands, then

g4.K/�

kX
iD1

q2
i :

Proof Suppose that K may be unknotted via k generalized crossing changes. Then
there is a sequence of k generalized crossing changes taking K to U ,

K DK0

q1–gcc
����!K1

q2–gcc
����! � � �

qk�1–gcc
������!Kk�1

qk –gcc
����!Kk D U;

for which Ki is obtained from Ki�1 by a single qi –generalized crossing change
for i D 1; : : : ; k . Let Di be the disk bounded by the unknot Ui on which the i th

qi –generalized crossing change is performed.

First, note that we can isotope Di so that the strands of Ki�1 pass through it as in
Figure 10. The strands passing through Di are oriented in two different ways; we
separate the qi strands of each orientation as in the figure. Let us arbitrarily call one
group of qi strands (say, the ones on the top of the figure) “left-oriented” and the other
group “right-oriented”. Hence, we may assume without loss of generality that we have
a local picture as in Figure 10.

A qi –generalized crossing change can be undone by changing qi.2qi � 1/ crossings;
one changes precisely one crossing between the i th and j th strands (si and sj ) for
each 1 � i < j � 2qi . Since qi of the strands are oriented in one direction and qi

in the other, q2
i of these crossing changes occur between strands oriented in opposite

directions and qi.qi � 1/ occur between strands oriented in the same direction (see
Figure 11 for an illustration in the case of a 4–generalized crossing change). Thus, q2

i

of the crossing changes have one sign, and q2
i � qi have the other sign. Therefore, K

can be unknotted by changing P positive crossings and N negative crossings, where

maxfP;N g �
kX

iD1

q2
i :
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2q2
i negative crossings

2qi.qi � 1/ positive crossings

s1
s2
s3
s4

s5
s6
s7
s8

Figure 11: Two sets of four strands twisted around each other at a positive
4–generalized crossing change

However, it is well known, for instance by the argument in the third paragraph of the
introduction of [15], that if K can be unknotted by changing P positive crossings and
N negative crossings, then g4.K/�maxfP;N g.

Since the Ozsváth–Szabó � invariant and Rasmussen s invariant give lower bounds on
the slice genus of any knot, we immediately get the following:

Corollary 6.2 Let K be a knot which can be converted to the unknot via k generalized
crossing changes, where the i th generalized crossing change is performed on 2qi strands
for i D 1; : : : ; k . Then

j�.K/j �

kX
iD1

q2
i and 1

2
js.K/j �

kX
iD1

q2
i :

This corollary gives rise to a method for distinguishing tuq.K/ from tup.K/ for some
p; q > 1. Suppose that tuq.K/� n. Then there exists an untwisting sequence for K

consisting of n generalized crossing changes on 2pi strands each, where i D 1; : : : ; n

and pi � q for all i . Applying the corollary, we get that

j�.K/j �

nX
iD1

p2
i �

nX
iD1

q2
D nq2;

so we must have

n�
j�.K/j

q2
;

and similarly for 1
2
js.K/j in place of j�.K/j. We thus obtain the following obstruction

to tuq.K/D n:
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Corollary 6.3 For all integers q � 1 and all knots K � S3 ,

tuq.K/�
j�.K/j

q2
and tuq.K/�

js.K/j

2q2
:

Note 6.4 The above obstruction shows that j�.K/j � p2 � tup.K/ for all K , which
is stronger than the obstruction j�.K/j � p.2p � 1/ tup.K/ given by representing a
p–generalized crossing change as p.2p� 1/ standard crossing changes.

Example 6.5 Let Kp3 denote the .p3; 1/–cable of a knot K with u.K/D1D�.K/D

g.K/ (one example is the right-handed trefoil knot). We know from [4, Section 5.1]
that tup3.Kp3/D 1 and that �.Kp3/D p3 . However, the above result shows that

tup.Kp3/�
j�.Kp3/j

p2
D p

for all integers p � 1. Hence

tup.Kp3/� tup3.Kp3/D tup.Kp3/� 1� p� 1
p!1
����!1:
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Cyclotomic structure in the
topological Hochschild homology of DX

CARY MALKIEWICH

Let X be a finite CW complex, and let DX be its dual in the category of spectra. We
demonstrate that the Poincaré/Koszul duality between THH.DX/ and the free loop
space †1CLX is in fact a genuinely S1–equivariant duality that preserves the Cn–
fixed points. Our proof uses an elementary but surprisingly useful rigidity theorem
for the geometric fixed point functor ˆG of orthogonal G–spectra.

19D55, 55P43; 55P25, 55P91

1 Introduction

Topological Hochschild homology (THH) is a powerful and computable invariant of
rings and ring spectra. Like ordinary Hochschild homology, it is built by a cyclic bar
construction on the ring R , but with the tensor products of abelian groups R˝Z R
replaced by smash products of spectra R^S R .

This construction was originally developed by Bökstedt [10], using ideas of Goodwillie
and Waldhausen. The result is a spectrum THH.R/ with a circle action. Out of its fixed
points one builds topological cyclic homology TC.R/, a very close approximation
to the algebraic K–theory spectrum K.R/. This machinery has been tremendously
successful at advancing our understanding of K.R/ when R is a discrete ring, and
Waldhausen’s functor A.X/ D K.†1

C
�X/ for any space X , to say nothing of the

K–theory of other ring spectra. The THH construction is also of intrinsic interest when
one studies topological field theories, and TC appears to be an analogue of “crystalline
cohomology” from algebraic geometry.

In this paper we use THH to study the ring spectrum DX , the Spanier–Whitehead
dual of a finite CW complex. We are motivated by classical work on the Hochschild
homology of the cochains C �.X/. Jones [18] proved that when X is simply connected
there is an isomorphism

HH�.C
�.X//ŠH�.LX/;

where LX is the space of free loops in X , and all homology is taken with field
coefficients. We investigate a lift of this theorem to spectra. Namely, the functional

Published: 3 August 2017 DOI: 10.2140/agt.2017.17.2307
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dual of THH.DX/ is equivalent to †1
C
LX when X is finite and simply connected:

(1) D.THH.DX//'†1CLX ' THH.†1C�X/:

This was observed by Cohen in the course of some string-topology calculations. Kuhn
proved a more general statement for the tensor of the commutative ring DX with any
unbased finite complex K , not just the circle S1 ; see Kuhn [20]. The THH duality (1)
was also extended by Campbell from .†1

C
�X;DX/ to other pairs of Koszul-dual ring

spectra; see Campbell [13]. These generalizations can also be seen as special cases of
the Poincaré/Koszul duality theorem of Ayala and Francis [4].

If X D M is a closed smooth manifold, we refer to (1) as Atiyah duality for the
infinite-dimensional manifold LM . Classical Atiyah duality is an equivalence of ring
spectra M�TM 'DM , where M�TM has the intersection product described by Cohen
and Jones [14]. If K is a finite set, the K–fold multiplicative norm of M�TM is

NK.M�TM/D^k.M�TM/D .M k/�TM˚k

DMap.K;M/�T Map.K;M/:

By analogy, we define the “Thom spectrum” of the infinite-dimensional virtual bundle
�TLM over LM to be the multiplicative S1–norm of M�TM :

LM�TLM
DMap.S1;M/�T Map.S1;M/

DN S1

.M�TM/:

By Angeltveit, Blumberg, Gerhardt, Hill, Lawson and Mandell [2], the THH of a
commutative ring spectrum is a model for this multiplicative S1–norm, so the duality
(1) may be interpreted as

D.LM�TLM/'†1CLM:

Previous work on the duality (1) has left open the question of whether it actually
preserves any of the fixed points under the circle action. We address this with the
following theorem:

Theorem 1.1 When X is finite and simply connected, the map of (1) is an equivalence
of cyclotomic spectra. It therefore induces equivalences of fixed point spectra

ˆCnD.THH.DX//'ˆCn†1CLX;

ŒD.THH.DX//�Cn ' Œ†1CLX�
Cn ;

for all finite subgroups Cn � S1 .

These notions of fixed points are recalled in Section 3.1. Cyclotomic spectra are recalled
in Section 5.1; the main examples are THH.R/ and †1

C
LX , and this is the structure

which allows us to compute TC.R/ and TC.X/.
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Implicit in the above theorem is the construction of a cyclotomic structure on the dual
D.THH.DX//. In fact we show that for any associative ring spectrum R , the functional
dual D.THH.R// comes with a natural precyclotomic structure, and in the case of
RDDX with X finite and simply connected, this becomes a cyclotomic structure.

We believe that this theorem suggests deeper connections between Waldhausen’s functor
A.X/ and the algebraic K–theory of DX . We will attempt to explore this idea further
in future work.

Our work on THH.DX/ builds on very recent results of Angeltveit, Blumberg, Gerhardt,
Hill, Lawson and Mandell [1; 2], along with the thesis of Martin Stolz [29]. They
establish that the cyclic bar construction, in orthogonal spectra, has the same equivariant
behavior as Bökstedt’s original construction [10] of topological Hochschild homology.
But in many respects, this cyclic bar construction is much simpler. This leads to simpli-
fications in the theory of THH, as well as new results, including those outlined above.

Our proofs also have consequences for the general theory of cyclotomic spectra and
G–spectra. Let G be a compact Lie group. We prove a rigidity result for the smash
powers and geometric fixed points of orthogonal spectra, which appears to be new and
of independent interest. Let ˆ be the functor from k–tuples of orthogonal G–spectra
to orthogonal spectra

ˆ.X1; : : : ; Xk/Dˆ
GX1 ^ � � � ^ˆ

GXk;

where ˆG is the monoidal geometric fixed point functor of Mandell and May [26].

Theorem 1.2 Suppose �W ˆ!F is a natural transformation, and � is an isomorphism
on every k–tuple of free G–spectra. Then there are only two natural transformations
from ˆ to F : the given transformation �, and zero.

We emphasize that this theorem applies to point-set functors of orthogonal spectra, not
to functors defined on the homotopy category. It is designed to prove that certain point-
set constructions strictly agree, thereby eliminating the need to construct coherence
homotopies between them.

The rigidity theorem has a host of technical corollaries. Here are two of them.

Corollary 1.3 For G a finite group, the Hill–Hopkins–Ravenel diagonal map

ˆHX
�
�!ˆGNG

HX

is the only nonzero natural transformation from ˆHX to ˆGNG
HX .
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This also applies to the subcategory of cofibrant spectra, giving an easy proof that the
diagonal isomorphism constructed by Brun, Dundas and Stolz [12] agrees with the one
constructed by Hill, Hopkins and Ravenel [17].

Corollary 1.4 For G a compact Lie group, the commutation map

ˆGX ^ˆGY
˛
�!ˆG.X ^Y /

is the only such natural transformation that is nonzero.

The rigidity theorem gives a useful framework for understanding how multiplicative
structure interacts with cyclotomic structure in orthogonal spectra. Motivated by
Kaledin’s ICM address [19], we use Theorem 1.2 to place certain tensors and internal
homs into the model category of cyclotomic spectra; see Blumberg and Mandell [8].
In particular, we get

Corollary 1.5 The homotopy category of cyclotomic spectra is tensor triangulated.

Barwick and Glasman [5] have recently extended this program further.

The paper is organized as follows. In Section 2 we review the theory of cyclic spaces
and spectra. In Section 3 we review orthogonal G–spectra, and prove Theorem 1.2.
In Section 4 we combine the previous two sections and develop the norm model of
THH following [2]. In Section 5 we study the interaction of multiplicative structure
and cyclotomic structure, proving Theorem 1.1.

The author is grateful to acknowledge Andrew Blumberg, Jon Campbell, Ralph Cohen
and Randy McCarthy for several helpful and inspiring conversations throughout this
project. He thanks Nick Kuhn for insightful comments on the first version of the paper,
and the anonymous referee for a very close reading that substantially improved the
exposition throughout. This paper represents a part of the author’s PhD thesis, written
under the direction of Ralph Cohen at Stanford University.

2 Review of cyclic spaces

A cyclic set is a simplicial set with extra structure, which allows the geometric realization
to carry a natural S1–action [15]. Similarly one may define cyclic spaces and cyclic
spectra. In this section we collect together the main results of the theory of cyclic
spaces, and their extensions to cocyclic spaces. We also describe (co)cyclic orthogonal
spectra, though we defer the study of their equivariant behavior to Section 4. This
section is all standard material from [16; 18; 11; 23] or a straightforward generalization
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thereof, but we make an effort to be definite and explicit in areas where our later proofs
require it. We will also be brief; the reader seeking more complete proofs is referred to
the author’s thesis [24].

2.1 The category ƒ and the natural circle action

Recall that � is a category with one object Œn�D f0; 1; : : : ; ng for each n � 0. The
morphisms �.Œm�; Œn�/ are the functions f W Œm�! Œn� which preserve the total ordering.
It is generated by the coface maps and codegeneracy maps

d i W Œn� 1�! Œn�; j 7!

�
j if j < i;
j C 1 if j � i;

si W ŒnC 1�! Œn�; j 7!

�
j if j � i;
j � 1 if j > i;

for 0� i � n:

A simplicial object of C is a contravariant functor X�W �op!C . We are interested in
the case where C is based spaces or orthogonal spectra. Any simplicial object X� has
a canonical presentationW

m;n�.�; Œm�/C ^�.Œm�; Œn�/C ^Xn�
W
n�.�; Œn�/C ^Xn!X�:

There is a geometric realization functor j�j taking simplicial spaces to spaces. It is
the unique colimit-preserving functor that takes �Œn� to �n , the convex hull of the
standard basis vectors in RnC1 . It turns out that for simplicial based spaces X� , the
realization jX�j is given by either of the two coequalizersa

m;n

�m ��.Œm�; Œn�/�Xn�
a
n

�n �Xn! jX�j;

W
m;n�

m
C ^�.Œm�; Œn�/C ^Xn�

W
n�

n
C ^Xn! jX�j:

When X� is a simplicial orthogonal spectrum we define jX�j by the latter of these two
formulas.

Connes’s cyclic category ƒ has the same objects as �, but more morphisms. Let Œn�
denote the free category on the arrows:

� n� 1

�
2

�1

�
0

�
n
{{hh

QQ

;;

The geometric realization jN�Œn�j of the nerve of the category Œn� is homotopy equiva-
lent to the circle. The set ƒ.Œm�; Œn�/ consists of those functors Œm�! Œn� which give
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a degree 1 map on the geometric realizations. This is generated by maps in � plus a
cycle map �nW Œn�! Œn� for each n� 0:

�

1
�

0
�

n
� � � � � �

�

1

�

0

�

n
� � � � � �

oo oo

oo oo�� ��

We may also generate ƒ by � and an extra degeneracy map snC1W ŒnC 1�! Œn� for
each n� 0, corresponding to the functor ŒnC 1�! Œn� pictured below:

�

1
�

0
�

nC 1
�

n
� � � � � �

�

1

�

0

�

n
� � � � � �

oo oo oo

oo oo�� �� �� ��

We note that a morphism f 2 ƒ.Œm�; Œn�/ is determined by the underlying map of
sets Z=.mC 1/! Z=.nC 1/, unless this map of sets is constant, in which case f is
determined by which arrow in Œm� is sent to a nontrivial arrow in Œn�.

Definition 2.1 A cyclic based space is a functor X�W ƒop ! Top� . The geometric
realization jX�j is defined by restricting X� to �op and taking the geometric realization
of the resulting simplicial space.

Theorem 2.2 (eg [16]) The geometric realization jX�j of a cyclic based space X
carries a natural based S1–action.

Proof The cyclic space X� is a colimit of representable cyclic sets

ƒŒn�Dƒ.�; Œn�/:

So, it suffices to prove that the space

ƒn WD jƒŒn�j

has an S1 action for all n, commuting with the action of the category ƒ. By a
combinatorial argument, we have homeomorphisms ƒn Š S1 ��n , and we define an
S1 action by translation on the first coordinate. These actions commute with the action
of ƒ, and so they pass to the realization. We draw a few special cases of ƒn and how
it compares to the simplicial circle times �n in Table 1.
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n ƒn �Œ1�=@��Œn�

0 �.0; 0/ � .1; 0/// �.0; 0/ � .1; 0///

1

�.0; 0/ � .1; 0/

�.0; 1/ � .1; 1/

�� ��

//

//

;;

�.0; 0/ � .1; 0/

�.0; 1/ � .1; 1/

�� ��

//

//

##

2 �.0; 0/ � .1; 0/

�.0; 1/ � .1; 1/

�.0; 2/ � .1; 2/

GG

��

��

GG

��

��

//

//

//

**
::

55

�.0; 0/ � .1; 0/

�.0; 1/ � .1; 1/

�.0; 2/ � .1; 2/

GG

��

��

GG

��

��

//

//

//

33

''

++

Table 1

2.2 Skeleta and latching objects

When X� is a simplicial space, the nth skeleton SknX� is obtained by restricting X�
to the subcategory of �op on the objects 0; : : : ; n and then taking a left Kan extension
back. The geometric realization of each skeleton is obtained from the previous one by
a pushout square:

(2)

LnX ��
n[LnX�@�n Xn � @�

n //

��

Xn ��
n

��

jSkn�1X�j // jSknX�j

Here LnX is the nth latching object, the subspace of Xn consisting of all points in
the images of some degeneracy map si W Xn�1!Xn for 0� i � n� 1. Alternatively,
to each proper subset S � f0; 1; : : : ; ng that contains 0, we define a map of totally
ordered sets Œn�! S by rounding down to the nearest element of S . This makes XS
into a subspace of Xn , and the colimit of these subspaces under inclusions S � T
gives the subspace LnX .

Definition 2.3 X� is Reedy q–cofibrant if each LnX ! Xn is a cofibration in the
Quillen model structure on based spaces. X� is Reedy h–cofibrant if each LnX!Xn
is a classical cofibration, ie a map satisfying the unbased homotopy extension property.

We have stated these definitions for based spaces, but they also apply to orthogonal
spectra. There is a standard cofibrantly generated model structure that provides the
q–cofibrations, while the h–cofibrations are defined as maps having the homotopy
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extension property with respect to the cylinders X^IC [27]. So the following standard
theorem applies to both spaces and spectra, with either notion of “cofibration”:

Proposition 2.4 If X� is Reedy cofibrant then jX�j is cofibrant. If both X� and Y�
are Reedy cofibrant, then any map X� �!� Y� that is an equivalence on each simplicial
level induces an equivalence jX�j �!� jY�j.

Proof For simplicial spaces, the proof is an induction up the cube-shaped diagram
defining LnX , using the usual pushout and pushout-product properties for cofibrations.
The use of unbased h–cofibrations was critical — the theorem is not true with based
h–cofibrations, unless all the spaces are well-based.

For orthogonal spectra and q–cofibrations the proof is largely the same. For h–
cofibrations of orthogonal spectra, the theorem is a little surprising since we do not
assume any of the spectra involved are well-based. The hardest piece of the proof
is the statement that if f W K ! L is a relative CW complex and gW A! X is an
h–cofibration of orthogonal spectra, the pushout-product f �g is an h–cofibration.
This follows from the formal pairing result of Schwänzl and Vogt [28, Corollary 2.9].

When X� is a cyclic space, the simplicial skeleton jSknX�j is of limited utility because
it is not closed under the circle action. So we draw motivation from [6] and make the
following definitions. Since it is important, we remark that here and elsewhere we
work in the category of compactly generated, weak Hausdorff spaces.

Definition 2.5 For n� 0 we define the nth cyclic skeleton Skcyc
n X by restricting X�

to the subcategory of ƒop on the objects 0; : : : ; n and then taking a left Kan extension
back. This may be reexpressed as the coequalizerW

k;`�nƒ.�; Œk�/C ^ƒ.Œk�; Œ`�/C ^X`�
W
k�nƒ.�; Œk�/C ^Xk! Skcyc

n X�:

We take the .�1/st cyclic skeleton to be the space X�1 , defined as the equalizer of the
degeneracy and extra degeneracy maps:

Skcyc
�1X DX�1!X0�X1:

Definition 2.6 The nth cyclic latching object Lcyc
n X � Xn is the closed subspace

consisting of all points lying in the image of some degeneracy map

si W Xn�1!Xn; 0� i � n:

The 0th latching object is also taken to be Skcyc
�1X �X0 rather than being empty.
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The only difference between LnX and Lcyc
n X is that the extra degeneracy is included

in Lcyc
n X . Equivalently, Lcyc

n X is the closure of LnX under the action of the cycle
map tn . It follows that jSkcyc

n X�j is the closure of jSknX�j under the circle action.

We briefly prove an equivalent characterization of Lcyc
n X . Let Œn� denote the cycle cate-

gory with nC1 objects from the definition of ƒ. Each inclusion of a nonempty subset
S�f0; : : : ; ng gives a degree 1 functor Œn�! ŒjS j�1� which rounds down to the nearest
element of S . By the cyclic structure of X , this gives a map XS WDXjS j�1!Xn . If
S is empty then we define XS D X�1 , and define XS ! Xn by including into X0
and applying any composition of degeneracy maps X0!Xn .

Proposition 2.7 This forms a cube-shaped diagram of subspaces of Xn , indexed by
the subsets of f0; : : : ; ng and inclusions. Restricting to the proper subsets, the colimit
of this diagram is Lcyc

n X .

Proof If n<1 then this is easy, so we assume n� 1. It is straightforward to check that
our rule respects inclusions of subsets. Each edge of the cube is a standard degeneracy
map, which is split by some face map. Since we are working in weak Hausdorff spaces,
this implies that each XS is a closed subspace of Xn . To prove that their colimit
is equal to their union, it suffices to check XS \XT D XS\T . This reduces to the
following claim: For each 0 � i � n, let Di W Xn! Xn be the map induced by the
functor Œn�! Œn� that sends i to i �1 and fixes all other points. Then XS is precisely
the subspace that is fixed by Di for every i in the complement of S .

To prove this when S is nonempty, note there is a natural projection map dS W Xn!XS
induced by the inclusion of S into Œn�. Thinking of this as a map Xn!Xn , the subspace
of fixed points is precisely XS . On the other hand, we may write the complement of S
as some cyclically ordered set fm1; : : : ; mkg, arranged so that mkC 1 2 S , and then
we have the identity

dS D dfmkg
c � � � dfm1g

c DDmk
� � �Dm1

:

Therefore, being in XS is equivalent to being fixed by Di for all i 2 Sc .

If S is empty, then X∅ D X�1 is contained in every X0 and so is fixed by all the
projections Di . Conversely, anything fixed by all the projections is in every subspace
of the form Xfsg ŠX0 . In particular it lies in Xf0g and Xf1g . This gives two points
x0; x1 2X0 whose images under the two degeneracy maps are the same point x 2X1 .
But each face map splits both degeneracy maps, so x0 D x1 and this point of X0 lies
in the subspace X�1 .

Now we give the analogue of the standard pushout square (2). We expect this is known,
but have not found a reference.
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Proposition 2.8 For each n� 0, there is a natural pushout square of S1–spaces

(3)

L
cyc
n X �CnC1

ƒn[Lcyc
n X�@ƒn Xn �CnC1

@ƒn //

��

Xn �CnC1
ƒn

��

jSkcyc
n�1X�j

// jSkcyc
n X�j

for each unbased cyclic space X� , and the obvious variant with smash products when
X� is a based cyclic space.

Proof The square is clearly defined and natural, and the top horizontal map is the
inclusion of a subspace. We treat the case nD 0 separately, where the square becomes

.L
cyc
0 X �S1/q∅ //

��

X0 �S
1

��

L
cyc
0 X // jSkcyc

0 X�j

which is easily checked to be a pushout. For n � 1, it suffices to check that it is a
pushout when X� Dƒ.�; Œm�/ is the standard cyclic m–simplex. The square may be
rewritten as:

.L
cyc
n ƒŒm��CnC1

ƒn/q .ƒnŒm��L
cyc
n ƒŒm�/�CnC1

@ƒn //

��

ƒnŒm��CnC1
ƒn

��

jSkcyc
n�1ƒŒm�j

// jSkcyc
n ƒŒm�j

The top map is a disjoint union of some isomorphisms and some nontrivial inclusions.
We strike out the isomorphisms without changing whether the square is a pushout:

.ƒnŒm��L
cyc
n ƒŒm�/�CnC1

@ƒn //

��

.ƒnŒm��L
cyc
n ƒŒm�/�CnC1

ƒn

��

jSkcyc
n�1ƒŒm�j

// jSkcyc
n ƒŒm�j

The complement of the latching object Lcyc
n ƒŒm� consists of maps in ƒ.Œn�; Œm�/ for

which the nC 1 points 0; : : : ; n go to distinct points in 0; : : : ; m. The CnC1–action
on these maps is free and each orbit has a unique representative that comes from
�.Œn�; Œm�/, so we can again simplify the square to:
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.�nŒm��Ln�Œm�/� @ƒ
n //

��

.�nŒm��Ln�Œm�/�ƒ
n

��

jSkcyc
n�1ƒŒm�j

// jSkcyc
n ƒŒm�j

Now one may identify this square as the standard simplicial pushout square for �Œm�,
multiplied by the identity map on S1 . Alternatively, one can enumerate the cells
of jSkcyc

n ƒŒm�j missing from jSkcyc
n�1ƒŒm�j and check that the above map attaches

precisely those cells. So the square is a pushout and the proof is complete.

As a result, Proposition 2.4 applies to cyclic spectra whose cyclic latching maps are
cofibrations, including the “.�1/st latching map” �!X�1 . One can even check that
being Reedy cofibrant in the cyclic sense is stronger than being Reedy cofibrant in the
ordinary sense.

We will need to know when jX�j is a cofibrant as a space with an S1 action:

Definition 2.9 If G is a topological group, a map X ! Y of based G–spaces is a
cofibration if it is a retract of a relative cell complex built out of cells of the form

.G=H � @Dn/C ,! .G=H �Dn/C

with n� 0 and H �G any closed subgroup.

Proposition 2.10 If X� is a cyclic space, X�1 is a cofibrant space and each cyclic
latching map Lcyc

n X ! Xn is a cofibration of CnC1–spaces, then jX�j is a cofibrant
S1–space.

Proof It suffices to show that each map of cyclic skeleta

jSkcyc
n�1X j ! jSkcyc

n X j

is an S1–cofibration. The .�1/–skeleton is already assumed to be cofibrant, and it has
trivial S1–action, so it is also S1–cofibrant. For the induction we use the square from
Proposition 2.8:

L
cyc
n X �CnC1

ƒn[Lcyc
n X�@ƒn Xn �CnC1

@ƒn //

��

Xn �CnC1
ƒn

��

jSkcyc
n�1X�j

// jSkcyc
n X�j

It suffices to prove that the top horizontal is an S1–cofibration. Since Lcyc
n X !X is

a CnC1–cofibration and @ƒn!ƒn is a free S1–cofibration, this reduces to proving
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that the CnC1 orbits of the simpler pushout-product

Œ.CnC1=Cr � @D
k
! CnC1=Cr �D

k/C� .S1 � @D`! S1 �D`/C�CnC1

is an S1–cofibration. By associativity of the pushout-product we rewrite this as

Œ.CnC1=Cr �S
1/C ^ .@D

kC`
!DkC`/C�CnC1

;

which simplifies to
.S1=Cr/C ^ .@D

kC`
!DkC`/C;

and this is one of the generating S1–cofibrations.

2.3 Fixed points and subdivision

We turn our attention to the fixed points jX�jCr , where Cr � S1 is the cyclic subgroup
of order r . The Cr –fixed points have an action of S1=Cr , which we usually regard as
an S1–action by pulling back along the group isomorphism

�r W S
1 Š
�!S1=Cr :

We will recall the standard result that the Cr –fixed points of jX�j are built from the
spaces XCr

rk�1
for k � 1. One applies a subdivision functor to X� to obtain a new

simplicial space sdr X� , whose realization is homeomorphic to jX�j, but with simplicial
Cr action, giving a homeomorphism

jX�j
Cr Š j.sdr X�/Cr j:

In fact, one may even put S1 actions on everything in sight, and the relevant maps are
all equivariant. We recall the precise definitions and theorems below.

Definition 2.11 [11] The r –fold edgewise subdivision functor is a map of categories
�

sdr
�!� which takes Œk�1� to Œrk�1�. Each order-preserving map Œm�1�! Œn�1�

is repeated r times to give a map Œrm� 1�! Œrn� 1�. Given a simplicial space X ,
we let the r –fold edgewise subdivision sdr X denote the simplicial space obtained by
composing with sdr .

Definition 2.12 The r –cyclic category ƒr is the subcategory of ƒ on the objects
of the form Œrk � 1� for k � 1, generated by all maps in the image of sdr W �!�

in addition to the cycle maps. When working in ƒr we relabel the object Œrk � 1�
as Œk� 1�. Equivalently, ƒr.Œk� 1�; Œn� 1�/ consists of all nondecreasing functions
f W Z!Z such that f .xCk/D f .x/Cn, up to the equivalence relation f � f Crn.

Proposition 2.13 If X� is a cyclic space, its r –fold subdivision sdr X� is naturally
an r –cyclic object in Cr –spaces. The Cr –action is generated by tnrn�1 at simplicial
level n� 1.
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Proposition 2.14 [11, 1.1] There is a natural diagonal homeomorphism

jsdr X�j
Dr
�!jX�j

which sends each .k�1/–simplex in Xrk�1 to the corresponding .rk�1/–simplex in
Xrk�1 by the diagonal

.u0; : : : ; uk�1/ 7!
�
1

r
u0; : : : ;

1

r
uk�1;

1

r
u0; : : : ;

1

r
uk�1; : : :

�
:

Theorem 2.15 [11, 1.6–1.8, 1.11] The realization of any r –cyclic space carries
a natural S1–action. The generator of the subgroup Cr � S

1 acts by the simpli-
cial map tnrn�1 . If X� is a cyclic space, the diagonal homeomorphism Dr is S1–
equivariant.

Now that we can freely replace jX�j with jsdr X�j as an S1 space, we see that the Cr –
fixed points can be built from the levelwise fixed points .sdr X�/Cr . These levelwise
fixed points are a priori an r –cyclic space, but they are actually a cyclic space because
they factor through the following quotient functor:

Definition 2.16 The quotient functor

Pr W ƒr.Œm� 1�; Œn� 1�/!ƒ.Œm� 1�; Œn� 1�/

takes a function f W Z!Z up to f �f Crn and mods out by the stronger equivalence
relation f � f Cn.

We always consider .sdrX�/Cr to be a cyclic space, reserving the notation Pr.sdrX�/Cr

for the corresponding r –cyclic space. With these conventions, the isomorphism between
jX�j

Cr and j.sdr X�/Cr j is S1–equivariant:

Proposition 2.17 [11, 1.10–1.12] The passage between cyclic and r –cyclic struc-
tures on sdr X� and .sdr X�/Cr , together with the diagonal of Proposition 2.14, give
natural S1–equivariant homeomorphisms

j.sdr X�/Cr j Š ��r jPr.sdr XCr
�
/j Š ��r .jsdr X�jCr /

Dr
�! ��r .jX�j

Cr /

making the following triangle commute:

j.sdrs X�/Crs j

Š

��

Š

((

��r j.sds X�/Cs jCr
Š

// ��rsjX�j
Crs

Algebraic & Geometric Topology, Volume 17 (2017)



2320 Cary Malkiewich

2.4 Cocyclic spaces

The previous section dualizes easily. Recall that a cosimplicial object is a covariant
functor X�W �! C . This can be canonically expressed as an equalizer

X�!
Y
n

Map.��Œn�; Xn/�
Y
m;n

Map.��Œm���.m; n/;Xn/

and so a right adjoint out of cocyclic spaces is determined by what it does to the
cosimplicial space Map.��Œn�; Xn/. The totalization is the unique limit-preserving
functor to spaces which takes Map.��Œn�; A/ to Map.�n; A/. It is given by the
equalizer

Tot.X�/!
Y
n

Map.�n; Xn/�
Y
m;n

Map.�m ��.m; n/;Xn/:

The totalization of a cosimplicial orthogonal spectrum is given by the same formula.

If X� is not just cosimplicial, but cocyclic, then its totalization is the equalizer

Tot.X�/!
Y
n

Map.ƒn; Xn/�
Y
m;n

Map.ƒm �ƒ.m; n/;Xn/;

which is enough to prove:

Proposition 2.18 The totalization of a cocyclic space X� carries a natural S1–action.
Similarly, the totalization of an r –cocyclic space Y � carries a natural S1–action, in
which the action of Cr � S1 is the totalization of a cosimplicial map.

In the special case of X� DMap.E�; X/, where E� is a cyclic space, the canonical
homeomorphism

Tot.X�/ŠMap.jE�j; X/

is S1–equivariant. A useful example to keep in mind is Map.S1
�
; X/, the standard

cosimplicial model for the free loop space LX .

Next we recall Reedy fibrancy, which we will only need for cosimplicial spectra (as
opposed to spaces). We recall that the construction of the latching map LnX!Xn for
simplicial spectra dualizes to that of the matching map Xn!MnX for cosimplicial
spectra. We say that X� is Reedy fibrant if these matching maps are fibrations in the sta-
ble model structure on orthogonal spectra. The standard analogue of Proposition 2.4 is:

Proposition 2.19 A weak equivalence of Reedy fibrant cosimplicial spectra induces a
weak equivalence on the totalizations.

As expected, one can always replace a cosimplicial spectrum by a Reedy fibrant one
that is equivalent on every cosimplicial level. In this paper, we will only use Reedy
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fibrant cosimplicial spectra of the form F.X�; Y /, where F.�;�/ is the internal hom
in orthogonal spectra, Y is a fibrant spectrum, and X� is a Reedy q–cofibrant simplicial
spectrum. It is straightforward to verify from the properties of the model structure
in [27] that such an F.X�; Y / is always Reedy fibrant.

Finally, any cocyclic space X� may be composed with sdr to give an r –cocyclic space
sdr X� . As before, the fixed points of Tot.X�/ can be recovered as Tot..sdr X�/Cr /:

Proposition 2.20 If X� is a cosimplicial space, there is a natural diagonal homeomor-
phism

Tot.X�/ Dr
�!Tot.sdr X�/:

If X� is cocyclic, Dr is S1–equivariant.

Proposition 2.21 If X� is a cocyclic space, then .sdr X�/Cr may be regarded as a
cocyclic space, and there are natural S1–equivariant homeomorphisms

Tot..sdr X�/Cr /Š ��r Tot.sdr X�/Cr
D

Cr
r
 � ��r Tot.X�/Cr :

The proofs are easy dualizations or direct copies of the proofs for cyclic spaces.

2.5 The suspension spectrum of LX

We end this section with a more concrete example. If X is any unbased space, then
Map.S1

�
; X/ is a cocyclic space. We add a disjoint basepoint, and smash every level

with the sphere spectrum, yielding a cocyclic spectrum

S^Map.S1
�
; X/C D†

1
CX

�C1:

It is not hard to check that there is a natural map

(4) †1CLX D†
1
C Tot.X�C1/! Tot.†1CX

�C1/

given by the interchange

(5) S^
Y
k

Map�.�
k
C; X

k
C/!

Y
k

S^Map�.�
k
C; X

k
C/!

Y
k

F.�kC;S^X
k
C/;

where F.A;E/ denotes the mapping spectrum or cotensor of a space A with an
orthogonal spectrum E . On each spectrum level, the map (4) is a bijection on the
underlying sets, but it is likely not a homeomorphism, because assembly maps of the
form A^Map�.B; C /!Map�.B;A^C/ fail to be closed inclusions [21, Appendix
A, 8.6]. It does not really matter, because the cocyclic spectrum †1

C
X�C1 is not Reedy

Algebraic & Geometric Topology, Volume 17 (2017)



2322 Cary Malkiewich

fibrant, and so it must be replaced if the totalization is to be homotopically meaningful.
Taking a Reedy fibrant replacement R†1

C
X�C1 and totalizing gives a derived version

of the interchange map

†1CLX ! Tot.†1CX
�C1/! Tot.R†1CX

�C1/:

Proposition 2.22 This composite is a stable equivalence when X is simply connected.

Proof We first recall that the case where X is finite follows from [20, 6.6], with
K D S1 and Z DX . To see why, we observe that the cyclic bar construction on the
dual DX can be made into a Reedy cofibrant cyclic spectrum (see Section 4). Applying
F.�; f S/, where f S is a fibrant replacement of the sphere spectrum, gives a Reedy
fibrant cosimplicial spectrum replacing †1

C
X�C1 . One then checks that the map of

Kuhn’s theorem lines up with the interchange we described above.

To get the general case, it suffices to show that both sides of the interchange map
commute with filtered homotopy colimits of simply connected spaces. Using the “cube
of retracts” terminology from [25], we identify the fibers of the coskeletal filtration of
Tot.R†1

C
X�C1/ as

F.�n=@�n; †1CX ^†
1X^n/'�n†1X^n _�n†1X^.nC1/:

The connectivity of these fibers tends to infinity when X is simply connected, and
it follows easily that the limit of the tower commutes with such filtered homotopy
colimits.

An alternative argument uses the “cyclic coskeletal filtration” for the right-hand side,
whose fibers are

F CnC1.ƒn=@ƒn; †1X^.nC1//'�n†1X^.nC1/ _�nC1†1X^.nC1/:

Along the interchange map, this filtration can be shown to agree with Arone’s model
of the Taylor tower for †1

C
LX from [3].

3 Orthogonal G –spectra, equivariant smash powers
and rigidity

We will now review the theory of orthogonal G–spectra and prove our rigidity theorem
for the geometric fixed point functor ˆG . This result is a technical linchpin that
underlies the rest of our treatment of cyclotomic spectra and the cyclic bar construction.
It allows us to cleanly reconstruct and extend the model of THH presented in [2].
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3.1 Basic definitions, model structures and fixed points

We take these definitions from [26; 17].

Definition 3.1 If G is a fixed compact Lie group, an orthogonal G–spectrum is a
sequence of based spaces fXng1nD0 equipped with

� a continuous action of G �O.n/ on Xn for each n,

� a G–equivariant structure map †Xn!XnC1 for each n,

such that the composite

Sp ^Xn! � � � ! S1 ^X.p�1/Cn!XpCn

is O.p/�O.n/–equivariant. A map of orthogonal G–spectra X ! Y is a collection
of maps Xn! Yn commuting with all the structure, including the G–actions.

Definition 3.2 Let U be a complete G–universe as in [26]. The category JG

has objects the finite-dimensional G–representations V � U , or any orthogonal G–
representation isomorphic to such a subspace. The mapping spaces JG.V;W / are the
Thom spaces O.V;W /W�V , consisting of linear isometries f W V !W with choices
of point in the orthogonal complement W �f .V /. The group G acts on O.V;W /W�V

by conjugating the map and acting on the point in W �f .V /.

Definition 3.3 A JG –space is an equivariant functor JG into based G–spaces and
nonequivariant maps. That is, each V is assigned to a based space X.V /, and for each
pair V , W the map

JG.V;W /!Map�.X.V /;X.W //

is equivariant. A map of JG –spaces is a collection of G–equivariant maps

X.V /! Y.V /

commuting with the action of JG .

Proposition 3.4 Every JG –space gives an orthogonal G–spectrum by restricting
to V DRn ; denote this functor by IR1

U . Conversely, given an orthogonal G–spectrum
X one may define a JG –space by the rule

X.V /DXn ^O.n/O.R
n; V /C; nD dimV;

with G acting diagonally on Xn and on O.Rn; V /DJG.Rn; V /. Denote this functor
by IUR1 . Then IUR1 and IR1

U are inverse equivalences of categories.
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Definition 3.5 Given a G–representation V and based G–space A, the free spectrum
FVA is the JG –space

.FVA/.W / WDJG.V;W /^A:

For fixed V , the functor A 7! FVA is the left adjoint to the functor that evaluates a
JG –space at V .

Proposition 3.6 [26] There is a cofibrantly generated model structure on the category
of orthogonal G–spectra, in which the cofibrations are the retracts of the cell complexes
built from

FV ..G=H � @D
k/C/ ,! FV ..G=H �D

k/C/; k � 0; H �G; V � U;

and the weak equivalences are the maps inducing isomorphisms on the stable homotopy
groups

�Hk .X/D

�
colimV�U �k

�
MapH� .S

V ; X.V //
�
; k � 0;

colimV�U �0
�
MapH� .S

V�Rjkj ; X.V //
�
; k < 0; Rjkj � V;

where MapH� .�;�/ denotes the space of H –equivariant maps.

Proposition 3.7 [26] The category J is symmetric monoidal, using the direct sum
of representations. The Day convolution along J defines a smash product on the
category of orthogonal G–spectra, which makes it into a closed symmetric monoidal
category. This smash product is a left Quillen bifunctor with respect to the above model
structure.

When working with G D S1 , it is common to consider a broader class of weak
equivalences that see only the finite subgroups Cn � S1 .

Definition 3.8 A map of S1–spectra is an F –equivalence if it is an equivalence as a
map of Cn–spectra for all n� 1; equivalently it is an isomorphism on the homotopy
groups �Cn

k
.X/ for all n� 1.

Next we recall the definitions of genuine and geometric fixed points. If X is a G–space
and H �G is a subgroup, the fixed point subspace XH has a natural action by only
the normalizer NH �G . Of course H acts trivially and so we are left with a natural
action by the Weyl group

WH DNH=H Š AutG.G=H/:

When X is a G–spectrum there are two natural notions of H –fixed points, each of
which gives a WH–spectrum:
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Definition 3.9 For a JG –space X and a subgroup H �G , the JWH –space of cate-
gorical fixed points XH is defined on each H –fixed G–representation V � UH � U
as just the fixed points X.V /H . More simply, if X is an orthogonal G–spectrum then
XH is obtained by taking H –fixed points levelwise.

Proposition 3.10 The categorical fixed points are a Quillen right adjoint from G–
spectra to WH–spectra. Their right-derived functor is called the spectrum of genuine
fixed points.

Definition 3.11 If X is a JG –space and H � G then the geometric fixed points
ˆHX are defined as the coequalizerW

V;W FWHS0 ^JH
G .V;W /^X.V /

H �
W
V FVHS0 ^X.V /H !ˆHX:

These are naturally JWH –spaces on the complete WH–universe UH .

Theorem 3.12 The geometric fixed points ˆH satisfy these technical properties:

(1) There is a natural isomorphism of WH–spectra

ˆHFVAŠ FVHAH :

(2) ˆH commutes with all coproducts, pushouts along a levelwise closed inclusion,
and filtered colimits along levelwise closed inclusions.

(3) ˆH preserves all cofibrations, acyclic cofibrations and weak equivalences be-
tween cofibrant objects.

(4) If H �K � G then ˆH commutes with the change-of-groups from G down
to K .

(5) There is a canonical commutation map

ˆG.X ^Y /
˛
�!ˆGX ^ˆGY;

which is an isomorphism when X or Y is cofibrant [8, A.1].

Remark 3.13 The geometric fixed point functor ˆH is not a left adjoint, since it does
not commute with all colimits. A simple counterexample with G D Z=2 is given by
the suspension spectra of the diagram of spaces:

.Z=2/C //

��

.�/C

.�/C
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Therefore ˆH is not a Quillen left adjoint. However, since it still preserves weak
equivalences between cofibrant orthogonal G–spectra, we define a left-derived geomet-
ric fixed point functor XÝˆH .cX/ by composing ˆH with a cofibrant replacement
functor c in the above model structure.

It will be important for us that these derived geometric fixed points measure the weak
equivalences of G–spectra. This is standard; for instance we can deduce it from [17,
2.52; 26, 3.5(vi), 4.12].

Proposition 3.14 A map X ! Y of orthogonal G–spectra is a weak equivalence if
and only if the induced map of derived geometric fixed points ˆH .cX/!ˆH .cY / is
an equivalence of spectra for all H �G .

Consequently, a map of S1–spectra X ! Y is an F –equivalence if and only if
ˆCn.cX/!ˆCn.cY / is an equivalence for all n� 1.

Finally, though it does not seem to appear in the literature, the iterated fixed points
map of [8] easily generalizes:

Proposition 3.15 If H �K � NH � G then there is a natural iterated fixed points
map

ˆKX
it
�!ˆK=HˆHX;

which is an isomorphism when X D FVA, and therefore an isomorphism on all
cofibrant spectra. When H and K are normal, this is a map of G=K–spectra.

3.2 The Hill–Hopkins–Ravenel norm isomorphism

When X is an orthogonal spectrum, the smash product X^n has an action of CnŠZ=n
which rotates the factors. This makes X^n into an orthogonal Cn–spectrum. It is
natural to guess that the geometric fixed points of this Cn–action should be X itself,
and in fact there is natural diagonal map

X
�
�!ˆCnX^n:

When X is cofibrant, this map is an isomorphism. More generally, if G is a finite
group, H �G and X is an orthogonal H –spectrum, we can define a smash product
of copies of X indexed by G ,

NG
HX WD

V
giH2G=H .giH/C ^H X Š

VjG=H j
X:

This construction is the multiplicative norm defined by Hill, Hopkins and Ravenel. This
can be given a G–action, which depends on some fixed choice of representatives giH
for each left coset of H (see [9; 17]). Changing the choice of representatives changes
this action, but only up to natural isomorphism. We therefore implicitly assume that
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such representatives have been chosen. The general form of the above observation
about X^n is then:

Theorem 3.16 [17, B.209] There is a natural “diagonal” map of orthogonal spectra

ˆHX
�
�!ˆGNG

HX:

When X is cofibrant, � is an isomorphism.

The full proof now appears in [17], but for the reader’s convenience we also summarize
the proof below:

Proof If A is just a based H –space, the indexed smash product of A over G=H has
fixed points AH :

AH Š
�! .NG

HA/
G
Š
�VjG=H j

A
�G
:

Here the map from left to right is the diagonal,

a 2 AH 7! .a; : : : ; a/:

Now suppose X is an orthogonal H –spectrum. We start by taking its coequalizer
presentationW

V;W FW S
0
^JH .V;W /^X.V /�

W
V FV S

0
^X.V /!X

and taking ˆGNG
H of everything in sight. Since ˆGNG

H commutes with wedges and
smashes up to isomorphism, this givesW
V;Wˆ

GNG
H FW S

0
^ .NG

HJH .V;W //
G
^ .NG

HX.V //
G

�
W
Vˆ

GNG
H FV S

0
^ .NG

HX.V //
G
!ˆGNG

HX;

which simplifies toW
V;Wˆ

GNG
HFW S

0
^JH

H .V;W /^X.V /
H�

W
Vˆ

GNG
HFV S

0
^X.V /H!ˆGNG

HX:

As a diagram, this is no longer guaranteed to be a coequalizer system, but it still
commutes. We can simplify using the string of isomorphisms

ˆGNG
H FVAŠˆ

GFIndG
HV

.NG
HA/Š F.IndG

HV /
G .N

G
HA/

G
Š FVHAH

for any based H –space A and H –representation V . This givesW
V;W FWHS0 ^JH

H .V;W /^X.V /H �
W
V FVHS0 ^X.V /H !ˆGNG

HX

and the coequalizer of the first two terms is exactly ˆHX . The universal property of
the coequalizer then gives us a map

ˆHX !ˆGNG
HX

and we take this as the definition of the diagonal map.
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Now consider the special case when X D FVA. The inclusion of the term

FVHS0 ^AH

into the above coequalizer system maps forward isomorphically to ˆHX , and so we
can evaluate the diagonal map by just examining this term. But back at the top of our
proof, the inclusion of the term

ˆGNG
H FV S

0
^ .NG

HA/
G

also maps forward isomorphically to ˆGNG
HX . Therefore, up to isomorphism, the

diagonal map becomes the string of maps we used to connect FVHS0 ^ AH to
ˆGNG

H FV S
0 ^ .NG

HA/
G , but these maps were all isomorphisms. Therefore the

diagonal is an isomorphism when X D FVA. It is straightforward to verify that both
sides preserve coproducts, pushouts along h–cofibrations and sequential colimits along
h–cofibrations, so, by induction, the diagonal is an isomorphism for all cofibrant X .

3.3 A rigidity theorem for geometric fixed points

Let G be a compact Lie group. We will prove that the geometric fixed point functor
ˆG is rigid, in the sense that it admits very few point-set level natural transformations
into other functors. Let GSpO denote the category of orthogonal G–spectra and G–
equivariant maps between them. Let Free be the full subcategory on the free spectra
FVA for all G–representations V and based G–spaces A. Let

^ı .ˆG ; : : : ; ˆG/W

kY
Free! SpO

denote the composite of the geometric fixed points and the k–fold smash product,
with k � 1.

Proposition 3.17 The only endomorphisms of ^ı .ˆG/k are zero and the identity.

Proof A natural transformation T W ^ ı .ˆG/k ! ^ ı .ˆG/k assigns to a k–tuple
.F0S

0; F0S
0; : : : ; F0S

0/ a map of spectra

F0S
0
! F0S

0;

which is determined at level 0 by a choice of point in S0 . So there are only two such
maps, the identity and zero.

Assume that T is the identity on this object. Then consider T on the k–tuple
.FV1

S0; FV2
S0; : : : ; FVk

S0/:

FVG
1 ˚V

G
2 ˚:::˚V

G
k
S0! FVG

1 ˚V
G

2 ˚:::˚V
G

k
S0:

Algebraic & Geometric Topology, Volume 17 (2017)



Cyclotomic structure in the topological Hochschild homology of DX 2329

Let mi WD dimV Gi and fix an isomorphism between Rmi and V Gi . The above map is
determined by what it does at level m1C � � �Cmk :

O.m1C � � �Cmk/C!O.m1C � � �Cmk/C:

This map, in turn, is determined by the image of the identity point, which is some
element P 2O.m1C� � �Cmk/C . Now for any point .t1; : : : ; tk/2Sm1^� � �^Smk we
can choose maps of spectra FVi

S0! F0S
0 which at level Vi send the nonbasepoint

of S0 to the point ti 2 Smi Š .SVi /G . Since T is a natural transformation, this square
commutes for all choices of .t1; : : : ; tk/:

O.m1C � � �Cmk/C
�P
//

ev.t1;:::;tk/

��

O.m1C � � �Cmk/C

ev.t1;:::;tk/

��

Sm1C���Cmk
id

// Sm1C���Cmk

Since O.m1 C � � � Cmk/ acts faithfully on the sphere Sm1C���Cmk , we must have
P D id. Therefore, our natural transformation T acts as the identity on the k–tuple of
spectra .FV1

S0; FV2
S0; : : : ; FVk

S0/.

Finally, let A1; : : : ; Ak be a sequence of G–spaces, and consider T on the k–tuple
.FV1

A1; : : : ; FVk
Ak/. Each collection of choices of point ai 2 AGi gives a sequence

of maps FVi
S0!FVi

Ai , and applying T to this sequence of maps gives a commuting
square:

FVG
1 ˚:::˚V

G
k
S0 ^ � � � ^S0

id
//

F:::.a1;:::;ak/

��

FVG
1 ˚:::˚V

G
k
S0 ^ � � � ^S0

F:::.a1;:::;ak/

��

FVG
1 ˚:::˚V

G
k
AG1 ^ � � � ^A

G
k

T
// FVG

1 ˚:::˚V
G

k
AG1 ^ � � � ^A

G
k

From inspection of level m1C � � �Cmk , the bottom map must be the identity on the
point id^ .a1; : : : ; ak/. But this is true for all .a1; : : : ; ak/ and so the bottom map is
the identity. Therefore, T is the identity on .FV1

A1; : : : ; FVk
Ak/, so it is the identity

on every object in
Qk Free.

For the second case, we assume T is zero on .F0S0; : : : ; F0S0/ and follow the same
steps as before, concluding that T is zero on .FV1

S0; : : : ; FVk
S0/ and then it is zero

on .FV1
A1; : : : ; FVk

Ak/.

To derive corollaries, we say that a functor �W
Qk

GSpO ! SpO is rigid if restricting
to the subcategory

Qk Free gives an injective map on natural transformations out of � .
In other words, a natural transformation out of � is determined by its behavior on the
subcategory Free.

Algebraic & Geometric Topology, Volume 17 (2017)



2330 Cary Malkiewich

Corollary 3.18 If �1 and �2 are functors
Qk

GSpO ! SpO which when restricted
to the subcategory

Qk Free are separately isomorphic to ^ı .ˆG/k , and �1 is rigid,
then there is at most one nonzero natural transformation �1! �2 .

The example we are interested in is the smash product of geometric fixed points.

Proposition 3.19 The functor ^ı .ˆG ; : : : ; ˆG/ is rigid.

Proof For any orthogonal G–spectrum X , let � denote the map

�W
W
V�UFVX.V /!X

whose V th summand is adjoint to the identity map of X.V /. It suffices to show that
^ ı .ˆG ; : : : ; ˆG/ takes .�; : : : ; �/ to a map of orthogonal spectra that is surjective
on every spectrum level. We will describe this in detail in the case of k D 2, that is,
.X; Y /ÝˆGX ^ˆGY , but the other cases are similar.

The smash product commutes with colimits in each variable, and this gives a definition
of ˆGX ^ˆGY as a colimit of a diagram with four terms. We rearrange this into a
single coequalizer diagram and conclude that there is a natural levelwise surjection of
spectra W

V 0;W 0�UFV 0GX.V
0/G ^FW 0GY.W

0/G!ˆGX ^ˆGY

for all orthogonal G–spectra X and Y . Applying this construction to .�; �/ gives a
commuting square

W
V;W�Uˆ

GFVX.V /^ˆ
GFW Y.W /

ˆG.�/^ˆG.�/
// ˆGX ^ˆGY

Z

OOOO

//
W
V 0;W 0�UFV 0GX.V

0/G ^FW 0GY.W
0/G

OOOO

where

Z D
W
V 0;W 0;V;W�UFV 0G ŒJG.V; V

0/^X.V /�G ^FW 0G ŒJG.W;W
0/^Y.W /�G ;

in which the vertical maps are levelwise surjections. We wish to show ˆG.�/^ˆG.�/

is surjective, and for this it suffices to show that the bottom horizontal map is surjective.
This follows by examining the summands where V D V 0 and W DW 0 , and noting
that the action map O.V /C ^ X.V / ! X.V / is surjective on the G–fixed points.
(Alternatively, one can show that the top horizontal and right vertical maps may be
identified by a homeomorphism.)

As a result, we get new rigidity statements for the maps relating geometric fixed points
and smash powers:
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Theorem 3.20 Let X and Y denote arbitrary G–spectra. Then the commutation map

ˆGX ^ˆGY
˛
�!ˆG.X ^Y /

is the only nonzero natural transformation from ˆGX ^ˆGY to ˆG.X ^Y /.

Remark 3.21 If X and Y are G–spectra and H � G , then there is more than one
natural map

ˆHX ^ˆHY !ˆH .X ^Y /:

Indeed, we could take any element g in the center Z.G/, and postcompose ˛H with
the map IUR1g that acts on the trivial-representation levels by the action of g . However,
˛H is the only natural transformation that respects the forgetful functor to H –spectra.
In other words, it is the only one that is natural with respect to all of the H –equivariant
maps of spectra, and not just the G–equivariant ones. Similar considerations apply to
the iterated fixed points map below.

Theorem 3.22 Let G be a finite group and let X denote an arbitrary H –spectrum
with H �G . Then the Hill–Hopkins–Ravenel diagonal map

ˆHX
�
�!ˆGNG

HX

is the only such map that is both natural and nonzero.

Theorem 3.23 If X is a G–spectrum and N � G is a normal subgroup, then the
iterated fixed points map

ˆGX
it
�!ˆG=NˆNX

is characterized by the property that it is natural in X and nonzero.

We end with five more corollaries, which served as the motivation for the rigidity result.
The first corollary is the most important for our work on tensors and duals of cyclotomic
spectra.

Proposition 3.24 If X and Y are a G–spectra and N � G is a normal subgroup,
then the following rectangle commutes:

ˆGX^ˆGY

it^it
��

˛G
// ˆG.X^Y /

it
��

ˆG=NˆNX^ˆG=NˆNY
˛G=N

// ˆG=N.ˆNX^ˆNY /
ˆG=N˛N

// ˆG=NˆN.X^Y /

The next two corollaries help us simplify and clarify the theory of cyclic orthogonal
spectra.
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Proposition 3.25 (see also [2, Lemma 4.5]) If X is a G–spectrum and g 2 Z.G/,
then multiplication by g on the trivial representation levels gives a map of JG –spaces

X
IU

R1g
// X

which on fixed points,

ˆGX
ˆGIU

R1g
// ˆGX;

is the identity map.

Proposition 3.26 If X and Y are orthogonal spectra, then the self-map of orthogonal
Cr –spectra

f W NCr .X ^Y /ŠX^r ^Y ^r !X^r ^Y ^r

which rotates only the Y factors but not the X factors fits into a commuting triangle:

ˆCr .X^r ^Y ^r/

ˆCr IU
R1f

��

X ^Y

� 44

�
**

ˆCr .X^r ^Y ^r/

The next corollary requires more explanation. Let X be an orthogonal spectrum, and
consider the diagonal map

X^m
�n
�!ˆCn.X^m/^n:

If we write .X^m/^n in lexicographical order

.X^m/^ .X^m/^ � � � ^ .X^m/;

then there is an obvious Cmn–action which rotates the terms. This commutes with the
action of the subgroup Cn , so it passes to a Cmn–action on the geometric fixed points.
By Proposition 3.25, the subgroup Cn acts trivially, giving a Cm–action on the fixed
points.

Proposition 3.27 Under these conventions, �n is Cm–equivariant.

Proof Let g denote the generator of Cm and h the generator of Cmn . Since the
diagonal is natural, �n is equivariant with respect to the action of g , but with g acting
on .X^m/^n by rotating each X^m separately. If we apply g and then the inverse of h,
the composite matches the description of the map f of Proposition 3.26. Therefore,
f �1 ı�n D�n , so

�n ıg D g ı�n D g ıf
�1
ı�n D h ı�n:

Therefore, �n is Cm–equivariant.
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Remark 3.28 This argument generalizes: the diagonal map �n commutes with any
automorphism of X^mn coming from a self-map of the Cn–set Cm�Cn that gives the
identity on the quotient set Cm . In particular, Cmn may be identified with Cm�Cn as
Cn–sets with quotient Cm .

Our final corollary will be the key ingredient for showing that the cyclotomic structure
maps on the cyclic bar construction are compatible with each other.

Proposition 3.29 If X is an ordinary spectrum and m; n� 0 then the following square
commutes:

X
�Cmn

//

�Cm

��

ˆCmnX^mn

it
��

ˆCmX^m
ˆCm .�n/

// ˆCmˆCnX^mn

Remark 3.30 It is reasonable to expect that �n coincides with the generalized HHR
diagonal

NCmn=CnX
��
�!ˆCnNCmnX

of [2, Proposition 2.19]. Of course the above proposition is true for �� as well.

4 Cyclic orthogonal spectra and the cyclic bar construction

Now we will integrate the modern technology from Section 3 into the classical theory
from Section 2. We prove a few more properties of cyclic and cocyclic orthogonal
spectra that concern the genuinely equivariant structure. Then we describe the con-
struction and properties of the cyclic bar construction in orthogonal spectra, expanding
on the treatment in [2].

4.1 Equivariant properties of cyclic and cocyclic spectra

Let X� be a cyclic orthogonal spectrum. Then sdr X� is an r –cyclic orthogonal
spectrum. At each simplicial level, .sdr X/n�1 is an orthogonal spectrum with Cr –
action generated by the nth power of the cycle map tnrn�1 . This commutes with all
the face, degeneracy and cycle maps, making sdr X� an r –cyclic object in orthogonal
Cr –spectra. So we may take the geometric fixed points on each level separately.

Proposition 4.1 If X� is a cyclic spectrum then ˆCr sdr X� is naturally a cyclic
spectrum, and there is a natural S1–equivariant isomorphism

jˆCr sdr X�j Š ��rˆ
Cr jX�j:
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Proof Since geometric fixed points is a functor, we know that ˆCr sdr X� is at
least an r –cyclic orthogonal spectrum. By Proposition 3.25, the nth power of the
cycle map tnrn�1 acts trivially on the geometric fixed points. Therefore ˆCr sdr X� is
actually a cyclic spectrum, ie it factors in a canonical way through the quotient functor
Pr W ƒr !ƒ.

Using Prˆ
Cr sdr X� to denote ˆCr sdr X� as an r –cyclic spectrum, we have the

equivariant isomorphisms

jˆCr sdr X�j Š ��r jPrˆ
Cr sdr X�j Š ��rˆ

Cr jsdr X�j Š ��rˆ
Cr jX�j;

where the middle map is the canonical commutation of ˆCr with geometric real-
ization. These are obtained from the maps of Proposition 2.17 applied to the term
FV Cr S

0^X.V /Cr in the coequalizer system for ˆCrX . They pass to the coequalizer
because ��r , Pr , sdr and geometric realization all commute with colimits.

We already know (Proposition 2.4) that the realization functor jX�j preserves weak
equivalences when X� is Reedy cofibrant. We will also need to know when jX�j is
cofibrant.

Proposition 4.2 If X� is a cyclic spectrum, X�1 is a cofibrant spectrum and each
cyclic latching map Lcyc

n X ! Xn is a cofibration of CnC1–spectra, then jX�j is a
cofibrant S1–spectrum.

Proof As in Proposition 2.10, we reduce to checking that the CnC1 orbits of a pushout-
product of a CnC1–cell of spectra and a free S1–cell of spaces is an S1–cofibration,

Œ.FV .CnC1=Cr�@D
k/C!FV .CnC1=Cr�D

k/C/�.S1�@D`!S1�D`/C�CnC1
:

Here V is any finite-dimensional Cr –representation. This simplifies to

ŒFV .CnC1=Cr/C ^CnC1
S1C�^ .@D

kC`
!DkC`/C:

It suffices to show the left-hand term is cofibrant as an S1–spectrum, but it is ob-
tained by applying the left Quillen functor �^CnC1

S1
C

to the CnC1–cofibrant object
FV .CnC1=Cr/C , so it is cofibrant.

Next, let X� be a cocyclic orthogonal spectrum. Then sdr X� is an r –cocyclic
orthogonal spectrum, and, by the same argument as above, ˆCr sdr X� is naturally a
cocyclic orthogonal spectrum. As before, we get the string of equivariant maps

Tot.ˆCr sdr X�/Š ��r Tot.PrˆCr sdr X�/ ��rˆ
Cr Tot.sdr X�/Š ��rˆ

Cr Tot.X�/:

The middle map is the canonical commutation of ˆCr with totalization, but as one
might expect, it is not an isomorphism.
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Proposition 4.3 There is a natural interchange map

ˆCr Tot.Z�/! Tot.ˆCrZ�/

for cosimplicial spectra with Cr –actions.

Proof The interchange map is given canonically by universal properties, using the
shorthand diagram:

TotˆCr //
Q
k ˆ

Cr //
// Q

k;`ˆ
Cr

ˆCr Tot

88

Q
k

W
V

OO

//
// Q

k;`

W
V

OO

W
V Tot

OO

//
W
V

Q
k

77

//
// W
V

Q
k;`

77

Q
k

W
V;W

OOOO

W
V;W Tot

OOOO

//
W
V;W

Q
k

77

OOOO

A diagram chase shows this is natural with respect to maps of cosimplicial spectra
Z�! zZ� .

Corollary 4.4 If X� is a cocyclic spectrum then ˆCr sdr X� is naturally a cocyclic
spectrum, and there is a natural S1–equivariant map

��rˆ
Cr Tot.X�/! Tot.ˆCr sdr X�/:

4.2 The cyclic bar construction

Let R be an orthogonal ring spectrum. The cyclic bar construction on R is the cyclic
spectrum N

cyc
� R with

N
cyc
n RDR^.nC1/ DR^n ^R:

We underline the last copy of R since in the simplicial structure it plays a special role.
The action of ƒ is best visualized by taking the category Œn� and labeling the arrows
with copies of R :

�

�

�

� �

R

RR

R

{{hh

QQ

;;
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Each map Œk� ! Œn� induces a map R^.nC1/ ! R^.kC1/ as follows. Each arrow
i! iC1 in Œk� is sent to some composition j!� � �! jC` in Œn�, which corresponds
to ` copies of R in R^.nC1/ . We send this smash product R^` to the copy of R in
slot i of R^.kC1/ , using the multiplication on R . When `D 0, we interpret this as
the unit map S!R .

More generally, if C is a category enriched in orthogonal spectra, the cyclic nerve on
C is defined as

N
cyc
n C D

W
c0;:::;cn2ob C C .c0; c1/^C .c1; c2/^ � � � ^C .cn�1; cn/^C .cn; c0/:

One may think of these objects loosely as “functors” from Œk� into C , where ordi-
nary products have been substituted by smash products, and this suggests the correct
face, degeneracy and cycle maps. In particular, as indicated below, the 0th face
map d0W N

cyc
n C ! N

cyc
n�1C switches the first term C .c0; c1/ past the others and

composes it into C .cn; c0/. The extra degeneracy map snC1W N
cyc
n C ! N

cyc
nC1C

inserts a unit S!C .c0; c0/ into the underlined factor in the smash product. The cycle
map tnW N

cyc
n C !N

cyc
n C rotates the factors towards the right:

d0W C .c0; c1/^C .c1; c2/^ � � � ^C .cn; c0/! C .c1; c2/^ � � � ^C .cn; c1/;

snC1W � � �^C .cn�1; cn/^C .cn; c0/^S!� � �^C .cn�1; cn/^C .cn; c0/^C .c0; c0/;

tnW C .c0; c1/^ � � � ^C .cn�1; cn/^C .cn; c0/

! C .cn; c0/^C .c0; c1/^ � � � ^C .cn�1; cn/:

If C has a single object, we recover the definition of N cycR we gave above.

Definition 4.5 The topological Hochschild homology of C is the geometric realization
of the cyclic nerve

THH.C / WD jN cyc
�

C j:

The cyclic bar construction of orthogonal spectra is remarkable because its geometric
fixed points are isomorphic to the original spectrum.

Theorem 4.6 If C is a spectral category then there are natural maps of S1–spectra,
for r � 0,

r W THH.C /! ��rˆ
Cr THH.C /:

They are compatible in the following sense: if T D THH.C / then the square

T
mn

//

m

��

��mnˆ
CmnT

it
��

��mˆ
CmT

��mˆ
Cmn

// ��mˆ
Cm��nˆ

CnT
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strictly commutes. Furthermore, if every C .ci ; cj / is a cofibrant orthogonal spectrum,
then every r is an isomorphism.

Remark 4.7 This extends one of the main results of [2] from ring spectra to spectral
categories. This turns out to not be so difficult. However the treatment in [2] does not
prove the above compatibility square, which seems to be harder. Our rigidity theorem
allows us to check the compatibility easily.

Proof In essence, we need to understand the geometric fixed points of THH.C /. We
start with the isomorphism of S1–spectra from Proposition 4.1:

jˆCr sdr N cyc
�

C j Š�! ��rˆ
Cr jN cyc

�
C j:

It thus suffices to understand the geometric fixed points of the subdivision sdr N
cyc
� C .

This is an r –cyclic spectrum. At simplicial level n�1 it is a wedge of smash productsW
c0;:::;crn�12ob C C .c0; c1/^ � � � ^C .crn�1; c0/

and the Cr –action is by tnrn�1 , which rotates this rn–fold smash product by n slots.
In particular, the generator ˛ 2 Cr sends the summand A indexed by c0; : : : ; crn�1 to
the summand ˛.A/ indexed by

c.r�1/n; : : : ; crn�1; c0; : : : ; c.r�1/n�1

by a homeomorphism. The summands A and ˛.A/ coincide precisely when the list
c0; : : : ; crn�1 repeats with period n:

c0; c1; : : : ; cn�1; c0; c1; : : : ; cn�1; c0; c1; : : : ; cn�1:

If this is not the case, then the Cr –closure zA of A does not have any levelwise Cr –fixed
points: zA.V /Cr D �. This is because any fixed point would have in its Cr –orbit a
point x 2 A, but then x must be in the intersection A\˛.A/D �.

It is therefore a good idea to write Y D sdr N
cyc
n�1C as the wedge of two spectra X_X 0 ,

where X is the wedge of those summands A such that AD ˛.A/, and X 0 contains
the remaining summands. Since the levelwise fixed point functor .�/.V /Cr pre-
serves wedge sums, we immediately conclude that the inclusion X ! Y induces a
homeomorphism on each level X.V /Cr Š Y.V /Cr . Recalling the definition of ˆCr

(Definition 3.11), we conclude that the inclusion also induces an isomorphism on the
geometric fixed points ˆCrX ŠˆCrY .

In conclusion, the geometric fixed points of the subdivision can be rewritten as

ˆCr sdr N
cyc
n�1C Šˆ

Cr
�W
c0;:::;cn�1

.C .c0; c1/^ � � � ^C .cn�1; c0//
^r
�

Š
W
c0;:::;cn�1

ˆCr .C .c0; c1/^ � � � ^C .cn�1; c0//
^r :
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It remains to compare this last term to N cyc
n�1C using Hill–Hopkins–Ravenel norm

diagonal

C .c0; c1/^ � � � ^C .cn�1; c0/
�
�!ˆCr .C .c0; c1/^ � � � ^C .cn�1; c0//

^r :

We want to show that these diagonal maps for each n � 1 assemble into a map of
cyclic spectra

N cyc
�

C
�
�!ˆCr sdr N cyc

�
C

(see [2, Definition 4.6]). It easily commutes with most of the face and degeneracy maps
because the diagonal is natural. One runs into issues with d0 and trn�1 , but these are
fixed by the argument we used in Proposition 3.27. In brief, the r –fold smash .d0/^r

of d0 from the cyclic structure is not the same map as d0 in the r –cyclic structure,
but they differ by the map

f W .C .c0; c1/^ � � � ^C .cn�1; c0//
^r
! .C .c0; c1/^ � � � ^C .cn�1; c0//

^r

that takes the factors C .cn�1; c0/ and cycles them while leaving all the other terms
fixed. It suffices to show that f commutes with �, but we did that in Proposition 3.26.
A similar argument works for trn�1 .

This proves that the Hill–Hopkins–Ravenel diagonal gives a map of cyclic spectra. We
define r to be its geometric realization, combined with the S1–equivariant isomor-
phism of Proposition 4.1:

jN cyc
�

C j
j�r j
��!jˆCr sdr N cyc

�
C j Š�! ��rˆ

Cr jN cyc
�

C j:

When all the C .ci ; ciC1/ are cofibrant, r is a realization of isomorphisms at each
level, so r is an isomorphism.

Now we check compatibility. The compatibility square may be expanded and subdi-
vided:

jN
cyc
� C j

�mn
//

�m

��

ˆCmn jsdmnN
cyc
� C j

it
��

ˆCmnDmn

Š
// ˆCmn jN

cyc
� C j

it
��

ˆCm jsdmN
cyc
� C j

ˆCmDmŠ

��

ˆCmˆCn jsdmnN
cyc
� C j

ˆCmˆCnDmŠ

��

ˆCmˆCnDmn

Š
// ˆCmˆCn jN

cyc
� C j

ˆCm jN
cyc
� C j

ˆCm�n
// ˆCmˆCn jsdnN

cyc
� C j

ˆCmˆCnDn

Š
// ˆCmˆCn jN

cyc
� C j

The top-right square commutes by naturality of the iterated fixed points map, and the
bottom-right commutes by Proposition 2.17. The left-hand rectangle is subtle, so we

Algebraic & Geometric Topology, Volume 17 (2017)



Cyclotomic structure in the topological Hochschild homology of DX 2339

expand and subdivide it once more:

jN
cyc
� C j

�mn
//

�m

��

ˆCmn jsdm sdnN
cyc
� C j

it
��

ˆCm jsdmN
cyc
� C j

ˆCmDmŠ

��

ˆCm sdm�n
// ˆCm jsdmˆCn sdnN

cyc
� C j

ˆCmDmŠ

��

int

Š

// ˆCmˆCn jsdm sdnN
cyc
� C j

ˆCmˆCnDmŠ

��

ˆCm jN
cyc
� C j

ˆCm�n
// ˆCmˆCn jsdnN

cyc
� C j ˆCmˆCn jsdnN

cyc
� C j

The bottom-left square inside commutes by naturality of Dm . The interchange map “int”
is the obvious identification of the two cyclic spectra, which at simplicial level k� 1
are both given by ˆCmˆCnN

cyc
mnk�1

C . The lower-right square then easily commutes,
and the remaining rectangle commutes by Proposition 3.29.

In order to do homotopy theory, we need to know which maps C ! D are sent to
weak equivalences THH.C /! THH.D/, and we need conditions guaranteeing that
THH.C / will be cofibrant. By our work above, this reduces to a calculation of the
latching maps and cyclic latching maps. Let S denote the initial spectrally enriched
category on the objects of C :

S .ci ; cj /D

�
S; ci D cj ;

�; ci ¤ cj :

The latching maps of the cyclic bar construction can be described concisely in terms of
the canonical functor S ! C .

Proposition 4.8 For every n� 0 the latching map LnN cycC !N
cyc
n C is the wedge

of pushout-productsW
c0;:::;cn2ob C .S .c0; c1/! C .c0; c1//� � � �� .S .cn�1; cn/! C .cn�1; cn//

� .�! C .cn; c0//

and the cyclic latching map Lcyc
n N

cyc
� C !N

cyc
n C is the wedge of pushout-productsW

c0;:::;cn2ob C .S .c0; c1/! C .c0; c1//� � � �� .S .cn; c0/! C .cn; c0//:

Proof One proves by induction that the pushout-product of nC 1 different maps
f0W A0!X0 , : : : , fnW An!Xn comes from a cube-shaped diagram indexed by the
subsets S � f0; : : : ; ng and inclusions. Each S is assigned to the smash product of
those Ai for i 62 S and Xi for i 2 S . The pushout-product f0� � � �� fn is then the
map that includes into the final vertex the colimit of the remaining vertices.
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Therefore it suffices to identify the cube for the pushout-product with the cube from
Proposition 2.7 for the nth cyclic latching object Lcyc

n . Each cube sends S �f0; : : : ; ng
to a smash product in which the smash summand for .ci�1; ci / is C .ci�1; ci / if i 2 S
and S .ci�1; ci / if i 62S . In the pushout-product cube, the map induced by the inclusion
S � T is a smash product of S .ci�1; ci /! C .ci�1; ci / for each i 2 T �S , together
with the identity map on S .ci�1; ci / for i 62 T and C .ci�1; ci / for i 2 S . But this
is the same as the map in the cyclic latching cube, because the rounding down map
T ! S preserves every arrow which ends in S and squashes the rest, so in the cyclic
structure this induces a map that includes the unit for every arrow not ending in S and
preserves the rest. Therefore the two cubes coincide. Restricting attention to subsets S
containing 0 gives the cube for the simplicial latching object, giving a pushout-product
in which the last factor is always C .cn; c0/.

Remark 4.9 We have claimed that the 0th cyclic latching map is the wedge of unit
maps �W S .c; c/! C .c; c/. In general, this is not quite correct — it is actually the
wedge of inclusions of the images of these unit maps. However the inclusion of the
image of � is still a pushout of �, so it does not matter which one we use in the latching
square from Proposition 2.8.

The previous proposition suggests that we need a very weak cofibrancy assumption
on C to guarantee that THH.C / is well behaved.

Definition 4.10 C is cofibrant if every map S .ci ; cj /!C .ci ; cj / is a cofibration of
orthogonal spectra. Equivalently, every C .ci ; cj / is a cofibrant orthogonal spectrum.

Proposition 4.11 If C is cofibrant then jN cyc
� C j is a cofibrant S1–spectrum. More-

over the inclusion of each cyclic skeleton into the next is a cofibration of S1–spectra.

Proof By Proposition 4.2, it suffices to show that the cyclic latching map from
Proposition 4.8W

c0;:::;cn�12ob C .S .c0; c1/! C .c0; c1//� � � �� .S .cn�1; c0/! C .cn�1; c0//

is a Cn–cofibration of spectra. We restrict to one wedge summand at a time and consider
its Cn–orbit. If there is no periodicity in the objects c0; : : : ; cn�1 then the orbit is of
the form .Cn/C smashed with a pushout-product of cofibrations, so it is automatically
a Cn–cofibration. When there is r –fold periodicity, the problem instead reduces to
showing that an r –fold pushout-product of a single cofibration f of orthogonal spectra
becomes a Cr –cofibration f �r . Since � preserves retracts, it suffices to show that if
f is a cell complex of orthogonal spectra then f �r is a cell complex of orthogonal
Cr –spectra.
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In fact, it is a cell complex of orthogonal †r –spectra. The argument for this is
tedious but very formal. It holds because the categories of orthogonal G–spectra with
varying G satisfy the following assumptions: the domains of our G–cells are small
with respect to relative cell complexes; ^ commutes with colimits in each variable;
a pushout-product of an H –cell with a K–cell is a coproduct of H �K–cells; the
operation G^H� takes H –cells to G–cells; restriction of group actions takes G–cells
to H –cell complexes; and the n–fold pushout-product of a single cell is a †n–cell
complex. This last assumption can be observed for orthogonal spectra by combining
the space-level argument (eg [25, 3.4]) with the fact that an n–fold smash power of a
free spectrum FRmA is isomorphic to F˚nRmA^n as a †n–spectrum.

Proposition 4.12 If C and D are cofibrant, and C !D is a pointwise weak equiva-
lence which is the identity on objects, then it induces an F –equivalence of S1–spectra
jN

cyc
� C j ! jN

cyc
� Dj (see Definition 3.8).

Proof It is easy to check that N cyc
� C !N

cyc
� D is a levelwise stable equivalence. By

Proposition 4.8, both simplicial spectra are Reedy cofibrant, so the map of realizations is
an equivalence of nonequivariant spectra. By Proposition 4.11, both of these realizations
are cofibrant S1–spectra, and by Theorem 4.6 each one is naturally equivalent its own
geometric fixed points. It follows that the map of left-derived geometric fixed points

ˆCn jN cyc
�

C j !ˆCn jN cyc
�

Dj

is an equivalence for all n� 1. By Proposition 3.14, the map jN cyc
� C j ! jN

cyc
� Dj is

therefore an F –equivalence.

5 Tensors and duals of cyclotomic spectra

In this final section, we discuss how to tensor and dualize cyclotomic structures, and
use this to prove Theorem 1.1.

5.1 A general framework for dualizing cyclotomic structures

Recall that a cyclotomic spectrum is an orthogonal S1–spectrum T with compatible
maps of S1–spectra, for all n� 1,

cnW �
�
nˆ

CnT ! T

for which the composite map

(6) ��nˆ
Cn.cT /! ��nˆ

CnT ! T
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is an F –equivalence of S1–spectra (Definition 3.8). Here c refers to cofibrant replace-
ment in the stable model structure on orthogonal S1–spectra; see Proposition 3.6. To
be more specific about the compatibility, we require that for all m; n� 1 the square

��mnˆ
CmnX

cmn
//

it
��

X

��mˆ
Cm��nˆ

CnX
��mˆ

Cmcn
// ��mˆ

CmX

cm

OO

commutes. The left vertical is the canonical iterated fixed points map described in [8,
Proposition 2.4], and it is an isomorphism when X is cofibrant as an S1–spectrum.

A precyclotomic spectrum has all the same structure except that the map (6) need not
be an equivalence. An op-precyclotomic spectrum has the above structure, but every
map has the opposite direction, except for the iterated fixed points map.

In contrast to this, we give a more restrictive definition:

Definition 5.1 A tight cyclotomic spectrum is a cofibrant S1–spectrum with isomor-
phisms nW T

Š
�! ��nˆ

CnT of S1–spectra for all n� 0 compatible in the following
way:

T
mn

Š
//

mŠ

��

��mnˆ
CmnT

itŠ

��

��mˆ
CmT

��mˆ
Cmn

Š
// ��mˆ

Cm��nˆ
CnT

Here “cofibrant” means in the stable model structure of Proposition 3.6. This implies
that the geometric fixed points compute the left-derived geometric fixed points, ie the
first map of (6) is always an equivalence. So a tight cyclotomic spectrum may be
regarded as a cyclotomic spectrum by taking cn D �1n and forgetting that it is an
isomorphism. We can summarize most of the previous section in a single theorem:

Theorem 5.2 If R is an orthogonal ring spectrum which is cofibrant as an orthogonal
spectrum, then THH.R/ is a tight cyclotomic spectrum. If C is a cofibrant spectral
category, then THH.C / is a tight cyclotomic spectrum.

The point of these definitions is to dualize cyclotomic structures. Our first result is:

Proposition 5.3 If T is a tight cyclotomic spectrum and T 0 is precyclotomic then the
function spectrum F.T; T 0/ has a natural precyclotomic structure.
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Corollary 5.4 If T is a tight cyclotomic spectrum then the functional dual DT D
F.T;S/ is precyclotomic.

Proof We define the structure map cr as the composite

��rˆ
CrF.T; T 0/

x̨
�!F.��rˆ

CrT; ��rˆ
CrT 0/

F.r ;cr /
����!F.T; T 0/;

where x̨ is the “restriction” map adjoint to

��rˆ
CrF.T; T 0/^ ��rˆ

CrT
˛
�! ��rˆ

Cr .F.T; T 0/^T /! ��rˆ
CrT 0

and ˛ is the usual commutation of ˆCr with smash products. By the usual rules for
equivariant adjunctions, cr is automatically S1–equivariant. We verify that these maps
are compatible. Clearly they are natural in T and T 0 , so in the diagram

��mnˆ
CmnF.T; T 0/

x̨
//

it

��

F
� ��mnˆCmnT;

��mnˆ
CmnT 0

�
F.id;it/

// F
���mnˆCmnT;

��mˆ
Cm��nˆ

CnT 0

�
OO

ŠF.it;id/

��mˆ
Cm��nˆ

CnF.T; T 0/
ˆCm x̨

// ��mˆ
CmF

� ��nˆCnT;

��nˆ
CnT 0

�
x̨
//

F.ˆCmn;ˆ
Cmcn/

��

F
� ��mˆCm��nˆ

CnT;

��mˆ
Cm��nˆ

CnT 0

�
F.ˆCmn;ˆ

Cmcn/

��

��mˆ
CmF.T; T 0/

x̨
// F.��mˆ

CmT; ��mˆ
CmT 0/

F.m;cm/

��

F.T; T 0/

the small square automatically commutes. The left-most and right-most paths compose
to give the two maps we are trying to compare. So, we just need to show that the big
rectangle at the top commutes. It is adjoint to:

��mnˆ
CmnF.T; T 0/

^��mnˆ
CmnT

it^it
��

˛
// ��mnˆ

Cmn.F.T; T 0/^T / //

it

��

��mnˆ
CmnT 0

it

��
��mˆ

Cm��nˆ
CnF.T; T 0/

^��mˆ
Cm��nˆ

CnT
˛ı˛

// ��mˆ
Cm��nˆ

Cn.F.T; T 0/^T / // ��mˆ
Cm��nˆ

CnT 0

The right square is by naturality of the iterated fixed points map, and the left square is
by Proposition 3.24.
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We have chosen to state these results for tight cyclotomic spectra, because then every
object we work with has precyclotomic structure, as opposed to a mix of objects with
precyclotomic and op-precyclotomic structure. If we freely allow ourselves to use
both structures then the we get the following more general conclusion. It tells us that
we have something close to, but not quite, a closed symmetric monoidal category of
spectra with these structures.

Proposition 5.5 If X and Y are op-precyclotomic spectra and Z is a precyclotomic
spectrum then X^Y is op-precyclotomic, F.Y;Z/ is precyclotomic and the adjunction

F.X ^Y;Z/Š F.X; F.Y;Z//

respects the precyclotomic structure.

Proof The above proof generalizes to show that F.Y;Z/ is precyclotomic, since we
only used the maps n for Y and cn for Z . For X ^Y we define the op-cyclotomic
structure by

X ^Y
n^n
����!ˆCnX ^ˆCnY

˛
�!ˆCn.X ^Y /;

where the ��n are suppressed. By an easy diagram chase, the compatibility reduces
again to Proposition 3.24. When we check that the adjunction preserves the cyclotomic
structures, we reduce to the claim that the interchange map ˛ has an associativity
property. This can be proven from the definitions with a little bit of work, but it also
follows effortlessly from the rigidity theorem.

This analysis does not quite apply to the categories of precyclotomic or cyclotomic
spectra, because we get zigzags when we try to define a cyclotomic structure on their
tensor product. However this problem goes away if we restrict attention to cofibrant
objects, so we can draw a conclusion about the homotopy category:

Proposition 5.6 The homotopy categories of precyclotomic spectra and of cyclotomic
spectra from [8] have a tensor triangulated structure.

Proof For simplicity we suppress ��n . If X and Y are cofibrant (pre)cyclotomic
spectra, we make X ^Y into a (pre)cyclotomic spectrum using the structure maps

ˆCn.X ^Y / oo
˛

Š
ˆCnX ^ˆCnY

cn^cn
// X ^Y:

The relevant compatibility square is:
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ˆCmn.X^Y /

it

��

oo
˛

Š
ˆCmnX^ˆCmnY

cmn^cmn
//

it^it
��

X^Y

ˆCmˆCnX^ˆCmˆCnY
ˆCmcn^ˆ

Cmcn
//

˛

��

ˆCmX^ˆCmY

cm^cm

OO

ˆCmˆCn.X^Y / oo
ˆCm˛

Š
ˆCm.ˆCnX^ˆCnY /

ˆCm .cn^cn/
// ˆCm.X^Y /

��

˛ Š

Again Proposition 3.24 gives us the left-hand rectangle, the top-right square is the smash
product of the compatibility squares for X and Y , and the bottom-right commutes by
naturality of ˛ . It is straightforward to check that this smash product preserves colimits
and cofibers of (pre)cyclotomic spectra, so this gives the desired tensor triangulated
structure on the homotopy category.

Remark 5.7 The analogue of this theorem for p–precyclotomic spectra and p–
cyclotomic spectra is also true, and it is much easier.

Returning to the precyclotomic structure on F.T; T 0/, our main example of interest
will be when T D jN cycC j is the cyclic nerve of a ring or category. We have just
proven that F.jN cycC j; T 0/ is a precyclotomic spectrum. It is also the totalization of
the cocyclic S1–spectrum

Y k D F.N
cyc
k

C ; T 0/:

To be precise, the S1 is acting only on the T 0 , and ƒ is acting by the dual of the ƒop

action on N cyc
k

C . This puts two commuting S1–actions on the totalization, but we
restrict attention to the diagonal S1–action, because this is the action that agrees with
the precyclotomic structure we just defined.

In order to compare this to the cocyclic spectrum †1
C
X�C1 , we will need to describe

our cyclotomic structure maps using only the cocyclic structure on F.jN cycC j; T 0/:

Proposition 5.8 The cyclotomic structure map on Tot.Y �/ŠF.jN cycC j; T 0/ is equal
to the composite of S1–equivariant maps

��rˆ
Cr Tot.F.N cyc

�
C ; T 0//

Dr
�! ��rˆ

Cr Tot.F.sdr N cyc
�

C ; T 0//

! ��r Tot.ˆCrF.sdr N cyc
�

C ; T 0//
x̨
�! ��r Tot.F.PrˆCr sdr N cyc

�
C ; ˆCrT 0//

Š
�!Tot.F.ˆCr sdr N cyc

�
C ; ��rˆ

CrT 0//
F.�;cr /
����!Tot.F.N cyc

�
C ; T 0//;

where the undecorated map is the interchange of Proposition 4.3.
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Proof We compare to the structure map we defined above:

��rˆ
CrF.jN

cyc
� C j; T 0/

Š
//

x̨

��

Dr

Š

((

��rˆ
Cr Tot.F.N cyc

� C ; T 0//

Dr

��

F
���rˆCr jN

cyc
� C j;

��rˆ
CrT 0

�
Dr

Š
''

��rˆ
CrF.jsdr N

cyc
� C j; T 0/

x̨

��

Š
// ��rˆ

Cr Tot.F.sdr N
cyc
� C ; T 0//

��

F
� ��rˆCr jsdr N

cyc
� C j;

��rˆ
CrT 0

�
Š

��

��r Tot.ˆCrF.sdr N
cyc
� C ; T 0//

x̨

��

F
���r jPrˆCr sdr N

cyc
� C j;

��rˆ
CrT 0

�
Š

��

Š
// ��r Tot

�
F
�PrˆCr sdr N

cyc
� C ;

ˆCrT 0

��
Š

��

F
�
jˆCr sdr N

cyc
� C j;

��rˆ
CrT 0

�
F.�;cr /

��

Š
// Tot

�
F
�ˆCr sdr N

cyc
� C ;

��rˆ
CrT 0

��
F.�;cr /

��

F.jN
cyc
� C j; T 0/

Š
// Tot.F.N cyc

� C ; ˆCrT 0//

Most of these squares commute easily. The nontrivial one in the middle can be simplified
to the following: if X� is a simplicial Cr –spectrum and T is a Cr –spectrum then the
middle rectangle of

FW Cr S
0 ^MapCr

� .jX�j; shW T /

��

ˆCrF.jX�j; T /
Š

//

x̨
��

ˆCr Tot.F.X�; T //

��

F.ˆCr jX�j; ˆ
CrT /

Š
��

Tot.ˆCrF.X�; T //

x̨
��

F.jˆCrX�j; ˆ
CrT /

Š
// Tot.F.ˆCrX�; ˆ

CrT //

��

F.FV Cr S
0 ^�k

C
^Xk.V /

Cr ; ˆCrT /
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commutes. Here shWT is shorthand for the mapping spectrum F.FW S
0; T /, which

is used in the standard formula for level W of a mapping spectrum

F.jX�j; T /.W /Š F.jX�j; shW T /.0/ŠMap�.jX�j; shW T /:

Now, it suffices to show that the composites from the top to the bottom of our rectangle
are identical for any Cr –representations V and W and any integer k � 0. For the
left-hand branch it is easy to check this is adjoint to the composite:

FV Cr S
0 ^�k

C
^Xk.V /

Cr ^FW Cr S
0 ^MapCr

� .jX�j; shW T /

include intoˆCr

��

ˆCr .�k
C
^Xk/^ˆ

CrF.jX�j; T /

include into jX�j
��

ˆCr jX�j ^ˆ
CrF.jX�j; T /

˛
��

ˆCr .jX�j ^F.jX�j; T //

ˆCr .ev/
��

ˆCrT

A careful trace through the diagram in Proposition 4.3 shows that the right-hand branch
is the composite

FW Cr S
0
^MapCr

� .jX�j; shW T / restrict
����!FW Cr S

0
^MapCr

� .�
k
C ^Xk; shW T /

assembly
����!F.�kC; FW Cr S

0
^MapCr

� .Xk; shW T // include
����!F.�kC; ˆ

CrF.Xk; T //

x̨
�!F.�kC; F .ˆ

CrXk; ˆ
CrT //

include
����!F.�kC; F .FV Cr S

0
^Xk.V /

Cr ; ˆCrT //:

The adjoint of this map does indeed agree with the first, by a very long diagram
chase. The essential ingredients are functoriality of ˆCr, naturality of ˛ and ev, and
associativity of ˛ .

Now we know that F.T; T 0/ has a precyclotomic structure. This won’t be very useful
unless we can make cofibrant and fibrant replacements of T and T 0, respectively, while
preserving that structure. For this task, we use the model structure on cyclotomic and
precyclotomic spectra defined in [8]. It has following attractive property:

Lemma 5.9 If T is cofibrant or fibrant in the model* category on (pre)cyclotomic
spectra, then it is also cofibrant or fibrant, respectively, as an orthogonal S1–spectrum
in the F –model structure.
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Proof The fibrant part is true by definition. For the cofibrant part it suffices to check
that the monad

CX D
W
n�1�

�
nˆ

CnX

preserves cofibrant objects in the F –model structure. This is true because wedge sums,
geometric fixed points and change of groups all preserve cofibrations.

In light of this fact, we can replace T 0 with a fibrant cyclotomic spectrum f T 0 , resulting
in the precyclotomic spectrum F.T; f T 0/, whose underlying S1–spectrum has the
homotopy type of the derived mapping spectrum from T to T 0 (ie the first input is
cofibrant and the second input is fibrant). Specializing to T 0D S gives a precyclotomic
structure on the dual F.T; f S/.

Remark 5.10 If T is finite as a genuine S1 spectrum, then F.T; f S/ is actually
cyclotomic, not just precyclotomic. In general, however, this is not true. One can check
that T D†1

C
RP1 gives a counterexample. In the next section we will consider an

example where T is infinite, but F.T; f S/ is still cyclotomic, mainly for reasons of
connectivity.

5.2 The equivariant duality between THH.DX/ and †1
C

LX

Let X be a finite based CW complex and let DX D F.XC;S/ denote its Spanier–
Whitehead dual. Though S is not fibrant, X is compact, so DX has the correct
homotopy type. It is also finite, of course, but it is no longer compact, and this slightly
complicates our proof below.

DX is a commutative ring with multiplication given by the dual of the diagonal map
of X . Likewise, the spectrum zDX D F.X;S/ has a commutative multiplication given
by the dual of the smash diagonal X ! X ^X . It does not have a unit, but we can
make S_ zDX into a ring spectrum by having S act as the unit. The levelwise fiber
sequence of spectra

F.X;S/! F.XC;S/! S

preserves the multiplications, and this allows us to form an equivalence of ring spectra

S_ zDX �!� DX:

Let c zDX denote cofibrant replacement of DX as a unitless ring, so that

cDX WD S_ c zDX ! S_ zDX
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is a particularly nice cofibrant replacement of ring spectra. We’ll take as our example
of a tight cyclotomic spectrum

T D THH.cDX/:

We recall that this cofibrant replacement ensures that THH.cD.�// is homotopy
invariant (Proposition 4.12). Our starting point is the following consequence of
Proposition 2.22. In its statement, we assume implicitly that cofibrant replacements are
taken before each application of D or THH.

Theorem 5.11 [20; 13] When X is a finite simply connected CW complex, there is
an equivalence of spectra with an S1–action

D.THH.DX//' THH.†1C�X/'†
1
CLX

in which LX DMap.S1; X/ is the free loop space.

Remark 5.12 If M is a manifold then DM 'M�TM is a Thom spectrum. But the
analysis of [7] does not apply, because the multiplication on M�TM does not arise
from the normal bundle M ! BO being a loop map.

We will spend the rest of this section proving a more highly structured version of that
result:

Theorem 5.13 Let f S be a fibrant replacement of S as a cyclotomic spectrum. Then
for every unbased space X there is a natural map of precyclotomic spectra

†1CLX ! F.THH.cDX/; f S/:

The left-hand side is always cyclotomic. When X is a finite simply connected CW
complex, the right-hand side is cyclotomic and the map is an F –equivalence.

Corollary 5.14 When X is a finite simply connected CW complex, the equivalence
between THH.†1

C
�X/ and the functional dual of THH.DX/ is an equivalence of

cyclotomic spectra.

Proof We will describe explicitly the map of Theorem 5.11 and check that it respects
the precyclotomic structures. Then we will use connectivity arguments to argue that
these precyclotomic spectra are actually cyclotomic when X is finite.

As above, let Y � denote the cocyclic S1–spectrum

Y k D F.N
cyc
k
cDX; f S/D F..cDX/^.kC1/; f S/:
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The totalization of Y � is isomorphic to F.jN cyccDX j; f S/, and Proposition 5.8 gives
us a recipe for the precyclotomic structure. Furthermore, Y � is the dual of a Reedy
cofibrant simplicial spectrum, and is therefore Reedy fibrant.

We will construct a map †1
C
LX!Tot.Y �/ by going through an intermediary Tot.Z�/.

Let Z� be the cocyclic spectrum †1
C

Map.S1
�
; X/, so that

Zk D†1C Map.ƒ.Œk�; Œ0�/; X/Š†1CX
kC1

with ƒ action given by applying †1
C

to the usual ƒop action on the ƒ.�; Œ0�/ term.
The interchange of Proposition 2.22 gives a map of spectra

†1CLX ! Tot.Z�/:

Next we construct a map of cocyclic spectra Z�! Y � . The evaluation map composed
with the product in S and fibrant replacement

.†1CX/
^.kC1/

^c.DX/^.kC1/!.†1CX/
^.kC1/

^.DX/^.kC1/!.S/^.kC1/!S!f S

is adjoint to a map

Zk D†1CX
kC1
! F..cDX/^.kC1/; f S/D Y k :

Of course, this map is actually an equivalence when X is finite. The map clearly
commutes with the S1–action on each level coming from f S . We check that it
commutes with the cocyclic structure: for each  2ƒ.Œk�; Œ`�/ we have the square

Map.ƒŒ0�k; X/ŠXkC1 //



��

F..cDX/^kC1; f S/



��

Map.ƒŒ0�`; X/ŠX`C1 // F..cDX/^`C1; f S/

which commutes if this one commutes:

XkC1 ^ .cDX/`C1
^id

//

id^
��

X`C1 ^ .cDX/`C1

��

XkC1 ^ .cDX/kC1 // S

Both branches have the same description:  gives a map from a necklace with kC 1
beads and every segment labeled by X to a necklace with `C 1 beads and every
segment labeled by DX . Each copy of X is sent by  to a string of a copies of DX ;
we apply the diagonal to XC

�
�!

�Qa
X
�
C

and pair with those a copies of DX .
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Therefore we have a map of cocyclic S1–spectra Z�! Y � , with S1 acting trivially on
each cosimplicial level of Z� . Composing with the interchange map of Proposition 2.22
gives an S1–equivariant map

(7) †1CLX ! Tot.Z�/! Tot.Y �/:

When X is finite, this is the equivalence of Theorem 5.11. In fact, when X is finite
the map Z�! Y � is an equivalence on each cosimplicial level, and we may therefore
consider Y � to be a Reedy fibrant replacement of Z� , so (7) is also a model for the
derived interchange map of Proposition 2.22.

Our next task is to check that the map (7) respects the precyclotomic structures on the
two ends. The recipe in Proposition 5.8 actually defines a precyclotomic structure on
Tot.Z�/ as well, so our problem breaks up into two steps:

(8)

ˆCr†1
C
LX

Š

��

Š
// ��rˆ

Cr Tot.Z�/ //

DrŠ
��

��rˆ
Cr Tot.Y �/

DrŠ
��

��rˆ
Cr Tot.sdr Z�/ //

��

��rˆ
Cr Tot.sdr Y �/

��

��r Tot.ˆCr sdr Z�/ //

OO

�Š

��r Tot.ˆCr sdr Y �/

F.�;cr /ıx̨
��

†1
C
LX

Š
// Tot.Z�/ // Tot.Y �/

We start with the left-hand rectangle of (8), where everything is a suspension spectrum
and so all maps are completely determined by what they do at spectrum level 0. The
horizontal homeomorphisms may be computed by observing that ƒŒ0�k Dƒ.Œk�; Œ0�/

has kC1 points f0; : : : ; fk , where fi W Z!Z sends 0 through i�1 to 0 and i through
k to 1 (or if i D 0 it sends 0 through k to 0). Using our choice of homeomorphism
jƒŒ0�j Š R=Z from Section 2, the k–simplex given by fi maps down to the circle
R=Z by the formula

.t0; : : : ; tk/ 7! .ti C � � �C tk/� .1� .t0C � � �C ti�1//:

Negating the circle and reparametrizing �k � Rk as points .x1; : : : ; xk/ for which
0� x1 � x2 � � � � � xk � 1 according to the rule xi D t0C� � �C ti�1 , we arrive at the
simple rule

.fi ; x1; : : : ; xk/ 7! xi ; x0 WD 0:

So now the map LX ! Tot.X�C1/ can be expressed by the formula

�k�1 �LX !Xk; .r1; : : : ; rk�1; / 7! ..0/; .r1/; : : : ; .rk�1//;
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as in [14]. Under this change of coordinates, both branches give

.�/!.r1; : : : ; rk�1/ 7!
�
.0/;

�
1

r
r1

�
;
�
1

r
r2

�
; : : : ;

�
1

r
rk�1

�
;.0/;

�
1

r
r1

�
; : : :

�
and so the square commutes.

Returning to (8), the top and middle squares of the right-hand row automatically
commute by the naturality of the cosimplicial diagonal and the interchange map with
geometric fixed points. The final square is then:

Tot.ˆCr sdr Z�/ //

OO

�Š

��r Tot.ˆCr sdr Y �/

F.�;cr /ıx̨
��

Tot.Z�/ // Tot.Y �/

The map � is the cocyclic map

ˆCr†1CX
rk Š
 �†1CX

k

given by the Hill–Hopkins–Ravenel diagonal; this is almost tautologically cosimplicial.
The map F.�; cr/ı x̨ is also cocyclic, so to check that this square commutes it suffices
to check level k� 1. This boils down to this rectangle:

ˆCr†1
C
Xrk ^ˆCr .cDX/^rk

˛
// ˆCr .†1

C
Xrk ^ .cDX/^rk/ // ˆCr S

Š

��

†1
C
Xk ^ .cDX/^k

�^�

OO

�

33

// S

The top triangle commutes because the norm diagonal commutes with smash products.
The trapezoid commutes because the inverse of the right-hand isomorphism is the norm
diagonal on S (in fact there is only one isomorphism S! S), and the norm diagonal
is natural. This finishes the proof that †1

C
LX ! Tot.Y �/ is a map of precyclotomic

spectra.

For the second phase of the proof, we assume that X is finite and 1–connected, and
we check that Tot.Y �/ is actually cyclotomic; in other words, the map

ˆCr Tot.Y �/! Tot.Y �/

is nonequivariantly an equivalence when ˆCr is left-derived. For simplicity, we
may forget the S1–actions and remember only the cosimplicial Cr –action on sdr Y � ,
making it a cosimplicial Cr –spectrum. Then our structure maps respect the restriction
to the k–skeleton for each k � 0:
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(9)

ˆCr cF.jsdr N
cyc
� cDX j; f S/

x̨
��

// ˆCr cF.jSkk sdr N
cyc
� cDX j; f S/

x̨
��

F.ˆCr jsdr N
cyc
� cDX j; ˆCrf S/

F.�;cr /
��

// F.ˆCr jSkk sdr N
cyc
� cDX j; ˆCrf S/

F.�;cr /
��

F.jN
cyc
� cDX j; f S/ // F.jSkkN

cyc
� cDX j; f S/

We first argue that the right vertical composite is an equivalence for each value of k .
The skeleta jSkkN

cyc
� cDX j and jSkk sdr N

cyc
� cDX j all have the homotopy type of

a finite spectrum, so by [22, III.1.9] the interchange map x̨ is an equivalence. Of
course, the diagonal isomorphism � from the proof of Theorem 4.6 is an isomorphism
of simplicial objects, so it also gives an isomorphism of skeleta. This is enough to
conclude that the map F.�; cr/ on the right-hand column is an equivalence.

Thus we get two equivalent towers of spectra underneath ˆCr cF.jsdr N
cyc
� cDX j; f S/

and F.jN cyc
� cDX j; f S/, giving an equivalence of homotopy inverse limits:

ˆCr cF.jsdr N
cyc
� cDX j; f S/

��

// holimk ˆCr cF.jSkk sdr N
cyc
� cDX j; f S/

�
��

F.jN
cyc
� cDX j; f S/

�
// holimk F.jSkkN

cyc
� cDX j; f S/

To finish proving that the left vertical map is an equivalence, it remains to show that
on the top, the derived geometric fixed points ˆCr .c�/ commute with the homotopy
inverse limit. This will require us to look more closely at the homotopy fibers of the
maps in the homotopy limit system.

Although sdr N
cyc
� cDX and N cyc

� cDX^r are not isomorphic as simplicial objects,
they have the same degeneracy maps and therefore have isomorphic latching maps.
The cofiber of this latching map

.S! .cDX/^r/�k� .�! .cDX/^r/

is the smash product of k copies of the Cr –equivariant cofiber of S! .cDX/^r and
one copy of .cDX/^r . The Cr –equivariant dual of this is a smash product of k copies
of †1Xr and one copy of †1

C
Xr .

To evaluate the homotopy fiber of the map of our homotopy limit system

F.jSkk sdr N cyc
�
cDX j; f S/! F.jSkk�1 sdr N cyc

�
cDX j; f S/;

we observe that it is the dual of the cofiber of the inclusion of skeleta. By the usual
latching square, this cofiber is the k–fold suspension of the cofiber of the latching map.
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Therefore our desired homotopy fiber is equivalent as a Cr –spectrum to

�k†1.Xr/^k ^XrC:

Since X is 1–connected, we can arrange so that its lowest nonbasepoint cell is in
dimension 2. This leads to a Cr –equivariant cell structure on Xr in which the lowest
nonbasepoint cell is in the diagonal, and is also dimension 2, so .Xr/^k ^Xr

C
has

lowest nonbasepoint cell in dimension 2k . By induction on these cells, the genuine
fixed points

.f �k†1.Xr/^k ^XrC/
H

are at least .k�1/–connected, for each subgroup H � Cr . Since genuine fixed points
commute with homotopy limits, we conclude that the fiber of the map from the homotopy
limit to the kth term in the homotopy limit system

F.jsdr N cyc
�
cDX j; f S/! F.jSkk sdr N cyc

�
cDX j; f S/

has k–connected genuine fixed points for all H � Cr .

The derived geometric fixed points of this fiber are also k–connected. To see this, we
use an equivalent definition for the derived geometric fixed points of E , as the genuine
fixed points of zEP ^E for a certain complex zEP [17, B.10.1]. Our claim then follows
by induction on the cells of zEP , using the identifications

.f .†nG=HC ^E//
G
'†nF.G=HC; fE/

G
'†n.fE/H :

In fact, this proves that for any finite G , a G–spectrum E with k–connected genuine
fixed points .fE/H for all H �G will also have k–connected geometric fixed points
ˆH cE for all H �G .

Finally, since derived geometric fixed points commute with fiber sequences, we conclude
that the map of derived geometric fixed points

ˆCr cF.jsdr N cyc
�
cDX j; f S/!ˆCr cF.jSkk sdr N cyc

�
cDX j; f S/

is .kC1/–connected. Therefore the map to the homotopy limit is an equivalence:

ˆCr cF.jsdr N cyc
�
cDX j; f S/ �!� holimk ˆ

Cr cF.jSkk sdr N cyc
�
cDX j; f S/:

This finishes the proof that Tot.Y �/D F.jN cyc
� cDX j; f S/ is cyclotomic.

In conclusion, our map †1
C
LX ! Tot.Y �/ is a map of cyclotomic spectra. We

already know that it is a stable equivalence if we ignore the circle action. But any such
equivalence of cyclotomic spectra is automatically an F –equivalence of S1 spectra,
so we are done.
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Remark 5.15 One may similarly check that this duality preserves multiplications and
Adams operations. As a result, when n � 1, the homology of THH.DS2nC1/ is a
tensor of a divided power algebra and an exterior algebra

H�.THH.DS2nC1//ŠH��.LS2nC1/Š �Œ˛�˝ƒŒˇ�;

where j˛j D �2n and jˇj D �.2nC 1/. The Adams operations  n are given by

 n.˛iˇ
j /D ni˛iˇ

j :
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Spectral sequences in smooth generalized cohomology

DANIEL GRADY

HISHAM SATI

We consider spectral sequences in smooth generalized cohomology theories, includ-
ing differential generalized cohomology theories. The main differential spectral
sequences will be of the Atiyah–Hirzebruch (AHSS) type, where we provide a
filtration by the Čech resolution of smooth manifolds. This allows for systematic
study of torsion in differential cohomology. We apply this in detail to smooth Deligne
cohomology, differential topological complex K-theory and to a smooth extension
of integral Morava K-theory that we introduce. In each case, we explicitly identify
the differentials in the corresponding spectral sequences, which exhibit an interesting
and systematic interplay between (refinements of) classical cohomology operations,
operations involving differential forms and operations on cohomology with U.1/
coefficients.

55N15, 55T10, 55T25; 53C05, 55S05, 55S35

1 Introduction

Spectral sequences are very useful algebraic tools that often allow for efficient compu-
tations that would otherwise require brute force; see McCleary [54] for a broad survey.
The Atiyah–Hirzebruch spectral sequence (henceforth AHSS) for K-theory and any
generalized cohomology theory, in the topological sense, was introduced by Atiyah and
Hirzebruch in [3]. An excellent introduction to the generalized cohomology AHSS can
also be found in Hilton [38] and Adams [1, Section III.7]. Other useful references on
the subject include Switzer [67] (Section 15, from a homology point of view, including
the Gysin sequence from AHSS), and interesting remarks in relation to spectra are
given in Rudyak [59]: Theorem 3.45 (homology), Remark 4.24 (sheaves and Čech),
Remark 4.34 (Postnikov) and Corollary 7.12. A description with an eye for applications
is given in Husemöller, Joachim, Jurčo and Schottenloher [42, Chapter 21].

The goal of this paper is to systematically study the spectral sequence in the context of
smooth or differential cohomology; see Cheeger and Simons [20], Freed [27], Hopkins
and Singer [41], Simons and Sullivan [66], Bunke [13], Bunke and Schick [17] and
Schreiber [63]. Existence and interesting aspects of the AHSS in twisted forms of
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such differential cohomology theories have been considered briefly by Bunke and
Nikolaus [15], where the main interest was the effect of the geometric part of the twist
on the spectral sequence. In this paper, we take a step back and consider untwisted
differential generalized cohomology to systematically study the corresponding AHSS
in generality and determine the differentials explicitly as cohomology operations. From
the geometric point of view, one might expect on general grounds that the geometric
information carried by the differential cohomology theory should somehow manifest
itself within the spectral sequence. On the other hand, from an algebraic point of view,
one might a priori expect not much of that information to be retained, or even expect it to
be totally stripped out while running through the homological algebra machine. We will
show that the answer lies somewhat in between, and both intuitions are to some extent
correct: the differentials in the spectral sequence will be essentially refinements of classi-
cal ones, but with additional operations on differential forms. We recently characterized
such operations in [33], and so this paper is a natural continuation of that work.

Just as generalized cohomology theories are represented by spectra, differential coho-
mology theories are represented by certain sheaves of smooth spectra called differential
function spectra. The original definition of differential function spectra was due
to Hopkins and Singer [41], generalized by Bunke, Nikolaus and Völkl [16], and
reformulated in terms of cohesion by Schreiber [63]. The terms smooth cohomology
and differential cohomology seem to be used interchangeably in some of the literature;
see eg Bunke and Schick [18]. However, we will find it useful for us to provide a specific
and precise usage, where the first is viewed as being more general than the second. We
also present most of our 1–categories as combinatorial, simplicial model categories,
rather than quasicategories. We believe that this way, nice objects are more easily and
explicitly identifiable, which is desirable when dealing with differential cohomology.
Indeed, our discussion will be very explicit, and the results will be readily utilizable.

Ordinary cohomology has smooth extension with various different realizations, in-
cluding those of Cheeger and Simons [20], Gajer [30], Brylinski [11], Dupont and
Ljungmann [23], Hopkins and Singer [41] and Bunke, Kreck and Schick [14]. All
these realizations are in fact isomorphic [66; 18]. A description of K-theory with
coefficients that combines vector bundles, connections and differential forms into
a topological context was initiated by Karoubi [45]. Using Karoubi’s description,
Lott introduced R=Z–valued K-theory [49] as well as differential flat K-theory [50].
Currently, there are various geometric models of differential K-theory; see Lott [49],
Bunke and Schick [17], Simons and Sullivan [66], Freed and Lott [28], and Tradler,
Wilson and Zeinalian [69; 70]. As in the case of ordinary differential cohomology,
these models should be equivalent. Indeed, explicit isomorphisms between various
models have been demonstrated: for instance, between the differential K-theory group
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of Hopkins and Singer [41] and that of Freed and Lott [28] in Klonoff [46], between
Lott’s R=Z K-theory and Lott–Freed differential K-theory in [28], between Bunke–
Schick differential K-theory and Lott(–Freed) differential K-theory in Ho [40], and
between Simons–Sullivan [66] and Freed–Lott [28] in Ho [39].

The group structure of differential K-theory splits into odd and even-degree parts; thus
the refinement preserves the grading. However, the odd part turns out to be more
delicate than the even part. In particular, while any two differential extensions of even
K-theory are isomorphic by the uniqueness results in [18], odd K-theory requires extra
data in order to obtain uniqueness. There are various concrete models in the odd case:
using smooth maps to the unitary group [69], via loop bundles (see Hekmati, Murray,
Schlegel and Vozzo [37]) and via Hilbert bundles (see Gorokhovsky and Lott [31]).
Our results in both even and odd K-theory will, of course, not depend on the particular
model chosen.

Suppose E is a spectrum and X is a space of the homotopy type of a CW-complex.
Then there is a half-plane spectral sequence (AHSS)

E
p;q
2 ŠHp.X IEq.�//;

converging conditionally to E�.X/. An immediate matter that we encounter in setting
up the spectral sequence which calculates the generalized differential cohomology
of a smooth manifold X is how to deal with filtrations. Classically, Maunder [52]
gave two approaches to any generalized cohomology theory. The first is by filtering
over the q–skeletons Xq of the topological space X , and the second by filtering
over the Postnikov systems of spaces Yq , which are the layers of an �–spectrum
associated to the cohomology theory. Maunder also gives an isomorphism between
the two approaches. While we expect this to be the case in the differential setting,
the proof might require considerable work. Hence we leave this as an open problem.
Maunder sets up his construction in the simplicial complex setting, which is equivalent
to doing so in the CW-complex setting, as the geometric realization of a simplicial set
is a CW-complex. Simplicial and Čech spectral sequences are discussed by May and
Sigurdsson [53, Chapter 22].

We will prefer the filtration of the spaces/manifolds rather than of the corresponding
spectra, as this will naturally bring out the geometry desired in the smooth setting.
We first would like to replace a topological space with skeletal filtration by a smooth
manifold and then view this manifold as a stack. Hence, in doing this, we need an
analogue of a skeleton in stacks. This will be done via Čech resolution of smooth
spaces, and the replacement of skeletons of a space X will be the various intersections
of open sets covering the smooth manifold X .
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We will use diff.†nE; ch/ to denote the differential refinement in degree n of a coho-
mology theory E. This was the notation used in [41] and carries more data than other
notation, such as E.n/. It also avoids possible confusion with other notations, eg when
dealing with Morava K-theory K.n/ at chromatic level n. The axiomatic approach is
very useful for characterizing a smooth cohomology theory, but one still needs the model
of [41] for actually constructing examples of such smooth spectra. We will be using
features of two main approaches at once, namely from [41] with I W diff.†nE; ch/! E

and from [16; 63] with I W E!…E. Note that E is not discrete while …E is, but both
are equivalent as smooth spectra: E'…E. This essentially boils down to the fact that
since …E is locally constant, the underlying theory satisfies …E�.U /D…E�.�/ on
contractible open sets. On the other hand, the homotopy invariance of the theory E

implies the same thing: namely, E.U /'E.�/ for a contractible U . These relationships
are discussed in further detail in [16].

We will be interested in how the differentials look in our spectral sequences. One
might a priori suspect that the differentials in the refined theories should at least
loosely be connected to the differentials of the underlying topological theory. We
will make this precise below, and so it seems appropriate to understand the form
and structure of the differentials in the topological case. To illustrate the point, we
will focus on what might perhaps be the most prominent example, namely the first
differential d3W H�.X;K0.�//! H�.X;K0.�// in complex topological K-theory
K.X/ of a topological space X . This is given by Sq3Z ; see Atiyah and Hirzebruch [3; 4].
There are exactly two stable cohomology operations H�.X IZ/!H�C3.X IZ/, since
HnC3.K.Z; n//D Z=2 for n sufficiently large. One of these is zero and the other is
ˇ ı Sq2 ı �2 , where ˇ is the Bockstein associated to the sequence Z �2

��! Z
�2
��! Z2

with �2 denoting both the mod 2 reduction and its effect on cohomology with these as
coefficients, ie �2W H i .X IZ/!H i .X IZ=2/.

The above class, which is a priori in mod 2 cohomology, turned out to be a class
in integral cohomology. One could work at any prime [4] by noting the follow-
ing; see eg Fomenko, Fuchs and Gutenmacher [26] or Hatcher [36]. For any class
x 2Hn.X IZ=p/, and with p̌ the Bockstein associated with the sequence Zp

�p
��!

Zp2
�p
��! Zp , the element p̌.x/ is an integral class in HnC1.X IZ=p/; ie it belongs

to the image of the reduction homomorphism �pW H
nC1.X IZ/!HnC1.X IZ=p/.

This can be used to prove the integrality of the class d 2 H 3.K.Z=p; 2/IZ=p/ as
follows; see [26]. The cohomology Serre spectral sequence for the path-loop fibration
�K.Z; 2/! PK.Z; 3/!K.Z; 3/ gives that H�.K.Z; 3/IZ=p/ has a single additive
generator xd in dimension � 2p . Now we have a map ˇW K.Z=p; 2/!K.Z; 3/ such
that ˇ�. xd/Dd 2H 3.K.Z=p; 2/IZ=p/, constructed via the Serre spectral sequence of
the path-loop fibration K.Z=p; 1/! PK.Z=p; 2/!K.Z=p; 2/. The map ˇ induces
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a map of loop spaces which are also Serre fibrations:

K.Z=p; 1/ // PK.Z=p; 2/

��

PK.Z; 3/

��

K.Z=p; 2/oo

K.Z=p; 2/ // K.Z; 3/

The induced homomorphism on the special sequences sends xd to d by the construction
of ˇ . Now we have H 3.K.Z=p; 2/IZ=p/DZ=p ; hence d is contained in the image
of the homomorphism �pW H

3.K.Z=p; 2/IZ/! H 3.K.Z=p; 2/IZ=p/. Therefore,
d is an integral class. This is attractive as it makes it readily amenable to differential
refinement.

Such statements, and generalizations to other primes and to other generalized coho-
mology theories, can be made at the level of spectra; see eg Schwede [64]. The first
nontrivial k–invariant of connective complex K-theory spectrum ku is a morphism
k2.ku/ 2 H

2.HZ;Z/, which is equal to ˇ ı Sq2 , where ˇW HZ=2! †.HZ/ is
the Bockstein operator associated to the extension Z �2

��! Z ! Z=2, and Sq2Z is
the pullback of the Steenrod operation Sq2 2H 2.HZ=2;Z=2/ along the projection
morphism �2W HZ! HZ=2 given by mod 2 reduction. Since ku is a symmetric
ring spectrum, then by [64, Proposition 8.8], the k–invariants are derivations. The
only derivations (up to units) in the mod p Steenrod algebra Ap are the Milnor
primitives Qn 2H 2pn�1.HZ=p;Z=p/. At the lowest level, we have Q0 D p̌ , the
mod p Bockstein, and the others are realized as k–invariants of symmetric spectra,
the connective Morava K-theory spectra k.n/. That is, we have Qn D k2pn�2.k.n//.
We will consider refinements of integral lifts of these.

The classical AHSS collapses already at the first page if the generalized cohomology
theory is rational. In fact, it can be shown that for any reasonably behaved spectrum
like all the ones we consider, all the differentials in the AHSS are torsion, ie zero when
rationalized; see [59, Corollary 7.12]. The differentials in the AHSS in the topological
case are analyzed by systematically by Arlettaz [2]. Using the structure of the integral
homology of the Eilenberg–Mac Lane spectra, it is proved there that for any connected
space X , there are integers Rr such that Rrd

s;t
r D 0 for all r � 2 and for all s , t .

Some aspects of this general feature will continue to hold in the differential setting.
From a homotopy point of view, there is not much difference between the localizations
at R and at Q. However, from a geometric point of view there is a considerable
difference. Nevertheless, we will still use the term “rationalize” when we discuss
localization at R, as is customary in the homotopy theory literature. We stress that the
distinction is needed in certain geometric settings (see Griffiths and Morgan [35]), but
it will not be an issue for us in this paper.
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Note that although the differential cohomology diamond, ie the diagram that character-
izes such theories (see Remark 12), certainly detects torsion classes in the flat part of the
theory, it does not distinguish between torsion at various primes. As a by-product, our
analysis can be seen as a systematic method for addressing p–primary torsion in differ-
ential theories. In [33], we found that the Deligne–Beilinson squaring operation admits
lower-degree operations refining the Steenrod squares. We have the familiar pattern

DD; �Sq1; �Sq2; �Sq3; : : : ; DD2; : : : ;

where DD is the Dixmier–Douady class: a nontorsion differential cohomology oper-
ation. The refined squares �Sq2kC1 , as the classical squares Sq2k , are operations that
are 2–torsion. In this paper, we get �Sq2kC1 as we expect, but also differentials d2m
at lowest degree for every m:

(1-1) d2mW
Y

k
�2k.M/!H 2m.M IU.1//:

We consider this as a cohomology operation, which can be viewed as first projecting
on to the homogeneous component ch2m of the Chern character. A U.1/–valued Čech
cocycle is obtained by restricting to 2m–fold intersections of an open cover, pairing
with an appropriate simplex of degree 2m and exponentiating; this will be spelled out
in detail in Section 4. If indeed the form ch2m arises as the curvature of a bundle, it
must represent a closed form with integral periods. The differential d2m can therefore
be understood as the obstruction to this condition. Similar results hold for the odd part,
ie for differentially refined K1–theory, where the refined Steenrod square takes the
same form as in differential K0–theory, while the differentials arising from forms —
the analogues of those in (1-1) — are now of odd degrees.

The paper is organized as follows. In Section 2, we start by carefully setting up
the background in smooth and differential cohomology, preparing the scene for our
constructions. In particular, in Section 2.1, we adapt abstract general results on stacks
(or simplicial sheaves) to our context and spell out specific definitions and constructions
that will be useful for us in later sections; more general and comprehensive accounts
can be found in Jardine [43], Lurie [51] and Schreiber [63]. Then in Section 2.2, we
take the approach to differential cohomology that allows for a direct generalization.
Our main constructions will be in Section 3. In particular, in Section 3.1, we provide
the filtration via Čech resolutions; then we construct the AHSS for smooth spectra
in Section 3.2 and compare to the AHSS of the underlying topological theory. This
refinement will depend on whether the degree is positive, negative or zero. Then we
explore the compatibility of the differentials with the product structure in Section 3.3.

Having given the main construction, our main applications of the general spectral
sequence to various differential cohomology theories will be presented in Section 4.
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The construction is general enough to apply to any structured cohomology theory
whose coefficients are known. We will explicitly emphasize three main examples:
ordinary differential cohomology, differential K-theory and a differential version of
integral Morava K-theory that we introduce. As a test of our method, in Section 4.1,
we recover the usual hypercohomology spectral sequence for the Deligne complex
(see [11] and Esnault and Viehweg [24, Appendix]), and we do so for manifolds, then
products of these, and then more generally for smooth fiber bundles. Then the AHSS for
K-theory is generalized in Section 4.2 to differential K-theory, where the differentials
involve refinements of Steenrod squares, in the sense of [33], as well as operations on
forms, as indicated above around expression (1-1). We also show that the odd case,
ie smooth extension of K1 , leads to a similar construction, but with the differentials
now involving odd forms. Then in Section 4.3, we first introduce a refinement of the
integral form of Morava K-theory, discussed in Kriz and Sati [47], Sati [60] and Sati
and Westerland [62], and then characterize the corresponding differentials, which turn
out to have a similar pattern as in K-theory, where the operation that gets refined is the
Milnor primitive Qn encountered above. We end with an application to an example
from M-theory and string theory.

Notation We have the following morphism that we will use repeatedly throughout.
Denote by �pW Z! Z=p the mod p reduction on coefficients with corresponding
morphism using the same notation on the cohomology groups with these as coefficients.
We will denote by ˇ , p̌ and ž the Bockstein homomorphisms associated with the
coefficient sequences

0! Z!R
exp
��! U.1/! 0;

0! Z=p
�p
��! Z=p2

�p

�! Z=p! 0;

0! Z
�p
��! Z

�p

�! Z=p! 0;

respectively. We will let �2W Z=2 ,!U.1/ denote the representation as the square roots
of unity, and also the induced map �2W Hn.�IZ=2/!Hn.�IU.1// on cohomology.
We will also use more refined Bockstein homomorphisms associated with spectra, and
these will be defined as we need them.

2 Smooth cohomology

2.1 Smooth cohomology and the stable category of smooth stacks

In this section, we adapt abstract general results on stacks (or simplicial sheaves) to
our context and spell out specific definitions and constructions that will be useful for
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us in later sections. The interested reader can find more general and comprehensive
accounts in [43; 51; 63]. For the reader who is more interested in the applications to
differential cohomology theories, this section can be skipped. However, we would
like to emphasize that although the language used in this section is rather abstract, the
generality gained from this formalism is far reaching and allows this machinery to be
used for a wide variety theories beyond just differential cohomology theories.

Essentially, the axioms characterizing a smooth cohomology theory are not much
different from the axioms characterizing usual cohomology theories. The big difference
is where the theory takes place. More precisely, we want to consider homotopical
functors on the category of pointed smooth stacks Sh1.CartSp/C with CartSp the
category of Cartesian spaces, rather than the category of pointed topological spaces
TopC . Let Abgr be the category of graded abelian groups.

Definition 1 (smooth cohomology) Let E�W Sh1.CartSp/op
C
! Abgr be a functor

satisfying the following axioms:

(1) Invariance E� sends equivalences to isomorphisms.

(2) Additivity For small coproducts (ie ones forming sets) of pointed stacks,W
˛ X˛ , we have

E�
�W̨

X˛
�
D

Y
˛

E�.X˛/:

(3) Mayer–Vietoris For any homotopy pushout of pointed stacks

Z //

��

Y

��

X // X [Z Y

the induced sequence

E�.X [Z Y /! E�.X/˚E�.Y /! E�.Z/

is exact.

(4) Suspension For any stack X , there is an isomorphism EnC1.†X/' En.X/.

Then we call E� a smooth cohomology theory.

Remark 2 Note that the Mayer–Vietoris axiom implies the usual Mayer–Vietoris
sequence. Indeed, let M be a manifold and let V be a local chart of M . Let U be an
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open set such that fU; V g is a cover of M . Then the strict pushout

U \V //

��

V

��

U // U [V

is actually a homotopy pushout. We can equivalently write this diagram as a homotopy
coequalizer

U \V � U tV ! U [V

in which the homotopy cofiber of the second map can be identified with †U \V . By
iterating this argument and applying E� to the resulting diagram, one obtains the long
exact sequence

� � � ! E�.U \V /! E�.M/! E�.U /˚E�.V /! E�C1.U \V /! � � � ;

which is the familiar Mayer–Vietoris sequence.

The above axioms can be taken as a generalization of the Eilenberg–Steenrod axioms
(see [1; 38]), where the Mayer–Vietoris axiom subsumes both the excision axiom and
the long exact sequence axiom. It is interesting to note that the axioms do not require
homotopy invariance. Namely, if two manifolds M and N are homotopic, they may
fail to be equivalent as stacks. In fact, an equivalence of stacks requires, in particular,
that for every sheaf F (embedded as a stack), we have an isomorphism

F.N/' �0 Map.N; F /' �0 Map.M;F /' F.M/:

In particular, we can take the sheaf of smooth R–valued functions on a manifold. Then
if every homotopy equivalence f W M ! N induced an equivalence of stacks, we
would have an induced isomorphism

f �W C1.N IR/! C1.M IR/:

Taking N D � and M D Rn immediately gives a contradiction. On the other hand,
every equivalence of stacks does produce a weak homotopy equivalence of geometric
realizations. To see this, simply note that the geometric realization functor

…W Sh1.CartSp/! sSet;

being a Quillen functor, has a derived functor by Ken Brown’s lemma [10]. It therefore
preserves weak equivalences between fibrant objects. But these objects are exactly
those that satisfy descent, namely stacks (eg manifolds) [63; 22].
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Remark 3 Given a smooth cohomology theory E� , we always get a presheaf of
graded abelian groups on the site CartSp by precomposing with the Yoneda embedding:

E�W CartSp ,
Y
�! Sh.CartSp/ ,

sk0
��! Sh1.CartSp/

C
�! Sh1.CartSp/C

E�

�!Abgr;

where sk0 embeds a sheaf as a discrete simplicial sheaf. We will use this fact later in
the construction of the spectral sequence in Theorem 25.

Just as all cohomology theories are representable by �–spectra, via Brown repre-
sentability, all smooth cohomology theories are representable by smooth spectra. This
follows from the version of Brown representability formulated by Jardine in [43] applied
to the stable homotopy category of smooth stacks. We will quickly review the basic
properties of this category (see [51; 44]) to establish where our objects of interest live.

We first recall some operations on stacks that are counterparts to standard operations
on topological spaces. Let X and Y be two pointed stacks.

(i) The wedge product X _Y is defined via the pushout diagram:

Y // Y _X

�

OO

// X

OO

(ii) The smash product X ^Y is defined as the quotient X ^Y WDX �Y=X _Y
of the Cartesian product by the wedge product.

(iii) The suspension †X is defined via the homotopy pushout diagram:

X

��

// �

��

� // †X

(iv) The looping, ie loop space, �X is defined via the homotopy pullback:

�X

��

// �

��

� // X

Definition 4 We define the stabilization Stab.Sh1.CartSp/C/ of smooth pointed
stacks to be the following category:
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ı The objects of Stab.Sh1.CartSp/C/ are sequences of pointed stacks

fEng � Sh1.CartSp/C; n 2 Z;

equipped with maps �nW †En! EnC1 .
ı The morphisms between E and F are defined to be the levelwise morphisms

En! Fn commuting with the �n .

This category carries a stable model structure given by first taking the projective
model structure on sequences of stacks and then performing Bousfield localization
with respect to stable weak equivalences in the usual way. This process is described
in detail in [43; 51; 44], and we summarize the relevant results found there. The
category Stab.Sh1.CartSp/C/ admits a stable, closed, simplicial model structure with
the following properties:

ı The weak equivalences are stable weak equivalences. That is, a morphism of
smooth spectra f W E�! F� is a weak equivalence if and only if it induces a
weak equivalence

Q.f /W lim
i!1

�iEnCi ! lim
j!1

�jFnCj :

ı The fibrant objects are precisely the smooth �–Spectra, that is, the sequence of
stacks X� whose structure maps

�nW †En! EnC1

induce equivalences En
�
�!�EnC1 .

Remark 5 We will refer to the stable model category Stab.Sh1.CartSp/C/ as the
category of smooth spectra and denote it by

Sh1.CartSpI Sp/ WD Stab.Sh1.CartSp/C/:

Example 6 Let M 2 Sh1.CartSp/C be a manifold, viewed a stack and equipped
with a basepoint. We can define the smooth spectrum †1M in the usual way, as the
sequence of suspensions of the manifold M . Given a smooth �–spectrum E, we can
define a smooth cohomology theory E� , by setting

Eq.M/' �0 Map.†�q†1M;E/:

Differential cohomology theories are examples of the theories introduced above, al-
though it may not be immediately apparent where the differential cohomology “diamond”
diagram [66] fits into this context. In fact, it was observed by Bunke, Nikolaus and Völkl
in [16] that the diamond provides a further characterization of all smooth cohomology
theories in terms of refinement of topological theories. This characterization happens
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in addition to the Brown representability described above, and it happens only when
the category of stacks exhibits so-called cohesion. We now review the properties of the
cohesive structure on smooth stacks [63] that we need, along with the characterization
of smooth cohomology theories described in [16]. It is shown in [63] that the category
Sh1.CartSp/ admits a quadruple 1–categorical adjunction .… a disc a � a codisc/

(2-1) Sh1.CartSp/ �
//

…
//

sSet;
codisc
oo

disc
oo

where … preserves finite 1–limits, and the functors disc and codisc are fully faithful.

One implication of this is that sSet embeds into Sh1.CartSp/ as an 1–subcategory
in two different ways: one reflective, the other reflective and coreflective. From the
reflectors, one can produce two monads and one comonad defined as follows:

… WD… ı disc; [ WD disc ı�; ] WD codisc ı�:

These monads fit into a triple 1–adjunction .… a [ a ]/ which is called a cohesive
adjunction.

Remark 7 Each monad in the cohesive adjunction picks out a different part of the
nature of a smooth stack. This nature is perhaps best exemplified by how the adjoints
behave on smooth manifolds (viewed as stacks). More precisely, if M is a smooth
manifold, then for instance:

(i) The comonad [ takes the underlying set of points of the manifold and then embeds
this set back into stacks as a discrete object. This functor therefore misses the
smooth structure of the manifold and treats it instead as a discrete object.

(ii) The monad … essentially takes the singular nerve of the manifold using smooth
paths and higher smooth simplices on the manifold. It therefore retains the
geometry of the manifold and “knows” that the points of the manifold ought to
be connected together in a smooth way.

The following observation on lifting from simplicial sets to spectra is known [63,
Proposition 4.1.9], but we supply a proof for completeness.

Proposition 8 The 1–adjunction (2-1) lifts to an 1–adjunction

Sh1.CartSpI Sp/ �s
//

…s
//

Sp
codiscs
oo

discs
oo
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on the stable 1–category of smooth spectra. Moreover, the adjoints satisfy the same
condition as the 1–adjunction (2-1) does.

Proof The category of smooth stacks is presented by the combinatorial simplicial
model category

Sh1.CartSp/D ŒCartSp; sSet�loc;proj;

where loc denotes the Bousfield localized model structure at the maps out of Čech nerves.
The quadruple adjunction is presented by Quillen adjoints .…a disca� a codisc/ [63].
We need to show that this adjunction holds on the stable model category of smooth
spectra. The adjunction immediately gives an underlying categorical adjunction by
simply applying the functors degreewise. In the projective model structure, the right
adjoints are Quillen by definition, and the closed model axioms imply that the left
adjoints are also Quillen.

Now the functors (in the global model structure on Sp) disc and codisc both preserve
homotopy limits. Hence for a local weak equivalence f W E! F of spectra, we have

lim
i!1

�idisc.E/nCi ' disc
�

lim
i!1

�iFnCi
�

' disc
�

lim
j!1

�jFnCj
�

' lim
j!1

�j disc.F/nCj ;

and disc.f / induces a weak equivalence Q.disc.f //. Hence disc.f / is a weak
equivalence. In the same way, codisc preserves local weak equivalences. It follows
by the basic properties of Bousfield localization that disc and codisc are right Quillen
adjoints. Again, by the axioms of a closed model category, it follows that the entire
adjunction holds as a Quillen adjunction of stable model categories.

Remark 9 The proof of the previous proposition implies that both disc and codisc
preserve �–spectra. However, … and � need not take �–spectra to �–spectra. This
problem can be remedied by taking …s (or �s ) to be the composition Rı… (or Rı� ),
where R is the fibrant replacement in spectra. Since R defines a left 1–adjoint to
the inclusion of fibrant objects (and preserves finite 1–limits), we will still have an
adjunction at the level of 1–categories (although this is not presented by a Quillen
adjunction).

As in the case of smooth stacks, the quadruple adjunction in Proposition 8 produces
adjoint monads .…s a [s a ]s/ exhibiting stable cohesion. The main observation
in [16], recast in the cohesive setting in [63], is the following. Let j W [s! id be the
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counit of the comonad [s , and let I W id! …s be the unit of the monad …s . Let
E 2 Sh1.CartSpI Sp/ be a smooth spectrum. Then E sits inside a hexagon diagram

(2-2)

fib.�/.E/

""

// cofib.�/.E/

&&

†�1…s cofib.�/.E/

77

''

E
I

##

;;

…s cofib.�/.E/

[sE

j

<<

// …sE

77

where the diagonals are fiber sequences (by definition), the top and bottom sequences
are fiber sequences, and the two squares in the hexagon are homotopy Cartesian; ie
both are homotopy pullback squares and hence homotopy pushouts (via the equivalence
of the two in the stable setting). The latter property is key because it is a homotopy
Cartesian square, as on the right of the hexagon, which Hopkins and Singer [41] took
as the definition of differential cohomology (for a specific choice of the object of
differential forms). Bunke, Nikolaus and Völkl [16] observed that by the hexagon,
every smooth spectrum satisfies this kind of Hopkins–Singer definition, if one just
allows more general objects of differential forms, which is the object cofib.�/.E/ in
our notation above.

It often happens in practice that the smooth spectra fib.�/.E/ and cofib.�/.E/ contain
no information away from degree 0. In particular, it often happens that for n > 0,

�n Map.M; cofib.�/.E//' 0;(2-3)

��n Map.M;fib.�/.E//' 0:(2-4)

In this case, the E–cohomology of a manifold can be calculated as either the flat
cohomology or the underlying topological cohomology in all degrees but 0. This is
summarized as the following result.

Proposition 10 Let E be a smooth spectrum such that (2-3) and (2-4) are satisfied.
Then the E–theory of a manifold M is given by

En.M/ WD

�
.…sE/n.M/; n > 0;

.[sE/n.M/; n < 0;

where E.M/ is already characterized in degree 0 by the diamond (2-2).

Proof Since the diagonals of the diamond are fiber sequences, they induce long exact
sequences in cohomology. Let n be a positive integer. The sequence

[sE! E! cofib.�/.E/
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gives the section of the long sequence

�nC1 Map.M; cofib.�/.E//! [sE�n.M/! E�n.M/! �n Map.M; cofib.�/.E//:

By assumption, the leftmost and rightmost groups are 0. Thus we have an isomorphism

.[sE/�n.M/' E�n.M/:

Similarly, the sequence
fib.�/.E/! E!…sE

gives the long sequence

��n Map.M;fib.�/.E//! En.M/! .…sE/n.M/! ��n�1 Map.M;fib.�/.E//;

and again we get the desired isomorphism.

2.2 Differential cohomology and differential function spectra

The main applications we have in mind, as we indicated in the introduction, concern
differential cohomology theories. In this section, we review some of the concepts
established in [13; 16; 63] (which generalize [66]), adapted to our context.

Definition 11 Let E� be a cohomology theory. A differential refinement yE� of E�

consists of the following data:

(1) a functor yE�W Sh1.CartSpC/op!Abgr ;

(2) three natural transformations:
(a) Integration I W yE�! E� ;
(b) Curvature RW yE�!Z�.�

�˝E�.�//;
(c) Secondary Chern character aW ��˝E�.�/Œ1�= im.d/! yE� ;

such that the following axioms hold:

ı Chern–Weil We have a commutative diagram

yE�
R
//

I

��

Z�.�
�˝E�.�//

q

��

E�
ch
// H�.�

�˝E�.�//

where ch is the Chern character map.

Algebraic & Geometric Topology, Volume 17 (2017)



2372 Daniel Grady and Hisham Sati

ı Secondary Chern–Weil We have a commutative diagram

��˝E�.�/Œ1�= im.d/ d
//

a
''

Z�.�
�˝E�.�//

yE�
R

88

and an exact sequence

� � � ! E�Œ1�!��˝E�.�/Œ1�= im.d/! yE�! E�! � � � :

Note that in the Chern–Weil axiom above, H�.��˝E�.�// appears as the codomain
of the Chern character. As explained in [16], this becomes a locally constant stack
equivalent to just the locally constant stack on the rationalization of E� ; ie ch is
equivalent to chW E�! E� ^HR (or MR).

Remark 12 The above characterization can ultimately be summarized by saying that
differential cohomology fits into an exact diamond

��˝E�.�/Œ1�= im.d/

a

&&

d
// Z�.�

�˝E�.�//

%%

E��1˝R

77

''

yE�

I

$$

R

99

E�˝R

E��1R=Z

88

ˇE
// E�

ch
99

where the diagonal, top and bottom sequences are all part of long exact sequences.
The bottom sequence is obtained by observing that the cofiber of the rationalization
map is an MU.1/ (Eilenberg–Moore spectrum), where we identify R=Z with U.1/
throughout. That is, we have a cofiber sequence involving the unit map from the sphere
spectrum SDMZ:

S!MR!MU.1/:

Smashing on the left with the theory E, we obtain a “Bockstein sequence”

E! E^MR! E^MU.1/
ˇE
�!†E:

We define the flat theory as
EU.1/ WD E^MU.1/

and the rational theory as
ER WD E^MR:
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Remark 13 Differential cohomology theories are special cases of smooth cohomology
theories, while differential function spectra are special cases of smooth spectra. Thus,
this section can be viewed as describing a special case of the previous section.

Since differential cohomology theories will arise as certain homotopy pullbacks (in
Definition 17 below), we will first need to establish the components of the pullback.
We begin with the following lemma that can be found in [13, Lemma 6.10], which
explains how we can transition from a topological cohomology theory to a smooth one,
in a process whose direction is opposite to that of the map I .

Lemma 14 Let E be a spectrum and define the smooth presheaf of spectra E via the
assignments

objects: U 7!Map.†1U;E/;

morphisms: .f W U ! V / 7!
�
f �W Map.†1V;E/!Map.†1U;E/

�
:

Then E satisfies descent.

Proof Let C �.fU˛g/ denote the Čech nerve of a good open cover fU˛g of some
manifold M . The Yoneda lemma and basic properties of the mapping space functor
imply that we have the sequence of equivalences

E.M/ WDMap.†1M;E/

'Map.†1 hocolim�op C �.fU˛g/;E/

'Map.hocolim�op †1C �.fU˛g/;E/

' holim�op Map.†1C �.fU˛g/;E/

' holim
n
� � �

//

//
//
Q
˛ˇ Map.†1U˛ˇ ;E/

oo
oo
oo
oo

//
// Q

˛ˇ Map.†1U˛ˇ ;E/
oo

oo
oo

//
Q
˛ Map.†1U˛;E/

oo
oo

o
' holim

n
� � �

//

//
//
Q
˛ˇ E.U˛ˇ /

oo
oo
oo
oo

//
// Q

˛ˇ E.U˛ˇ /
oo

oo
oo //

Q
˛ E.U˛/

oo
oo

o
;

and so E satisfies descent.

The other components of the pullback we want to establish are presented by sheaves
of chain complexes. There is a general functorial construction by which one can turn
an unbounded chain complex into a spectrum, which we now describe; see [65] for
details. This functor is called the Eilenberg–Mac Lane functor

(2-5) H W Ch! Sp;
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and acts on objects as follows. Let C� be an unbounded chain complex, and let Zn
denote the subgroup of cycles in degree n. The functor H takes C� and forms the
sequence C�.�/ of truncated bounded chain complexes:

C�.0/D .� � � ! Cn! Cn�1! � � � ! C1!Z0/;

C�.1/D .� � � ! Cn! Cn�1! � � � ! C0!Z�1/;

C�.2/D .� � � ! Cn! Cn�1! � � � ! C�1!Z�2/;
:::

C�.k/D .� � � ! Cn! Cn�1! � � � ! C�kC1!Z�k/;
:::

The reason for the group of cycles appearing in degree 0 comes from using the right
adjoint to the inclusion i W ChC! Ch (as opposed to the left). The left adjoint simply
truncates the complex in degree 0, while the right adjoint truncates and then takes only
the cycles in degree 0.

Continuing with our discussion, at each level in the sequence, H applies the Dold–Kan
functor DKW ChC! sSet to the bounded chain complex in that degree. This gives a
sequence DK.C�.�// of spaces

DK.C�.0//; DK.C�.1//; DK.C�.2//; : : : ; DK.C�.k//; : : : :

Since DK preserves looping (being a right Quillen adjoint) and equivalences (being a
Quillen equivalence of model categories), we get induced equivalences

�k W DK.C�.k//!�DK.C�.k� 1//;

which turns DK.C�.�// into a spectrum.

Example 15 Consider the unbounded chain complex ZŒ0�, with Z concentrated in
degree 0. Then

H.ZŒ0�/'HZ;

where the right-hand side denotes the Eilenberg–Mac Lane spectrum.

Example 16 Fix a manifold M and consider the de Rham complex

�� WD .� � � ! 0!�0.M/!�1.M/! � � � !�k.M/! � � � /;
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where the nonzero terms are concentrated in negative degrees. Then H takes �� to
the spectrum:

H.��.M//D

8̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:

DK.� � � ! 0!�0cl.M//;

DK.� � � ! 0!�0.M/!�1cl.M/! : : : /;

DK.� � � ! 0!�0.M/!�1.M/!�2cl.M/! : : : /;
:::

DK.� � � ! 0!�0.M/!�1.M/! � � � !�kcl.M/! : : : /;
:::

By the basic properties of the Dold–Kan functor, the stable homotopy groups of this
spectrum are computed as

�snH.�
�.M//' lim

k!1
�kCn DK.� � � ! 0!�0.M/!�1.M/! � � � !�kcl.M//

' lim
k!1

HkCn.� � � ! 0!�0.M/!�1.M/! � � � !�kcl.M//:

For n > 0, these groups are 0. For n� 0, they are the nth de Rham groups Hn
dR.M/.

Now the functor H in (2-5) prolongs to a functor on prestacks

H W ŒCartSp;Ch�! ŒCartSp; Sp�:

In fact, using the properties of the Dold–Kan correspondence, it is fairly straightforward
to show that this functor preserves local weak equivalences [10]. We therefore get a
functor of smooth stacks

(2-6) H W Sh1.CartSpICh/! Sh1.CartSpI Sp/:

Recall that for an �–spectrum E, we always have a rational equivalence

rW E^MR!H.��.E/˝R/;

where MR denotes an Eilenberg–Moore spectrum. Now, since we are working over the
site of Cartesian spaces, the Poincaré lemma implies that the inclusion j W RŒ0�!��

induces an equivalence

id˝ j W ��.E/˝RŒ0�! ��.E/˝�
�;

where ��.E/D E.�/ (which follows from suspension).

Definition 17 Let E be a spectrum. For an unbounded chain complex C� , let ��0C�
denote the truncated complex

��0C� D .� � � ! 0! C0! C�1! � � � ! C�n! � � � /:
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A differential function spectrum diff.E; ch/ is a homotopy pullback

diff.E; ch/ //

��

H.��0�
�˝��.E//

��

E
ch

// H.��˝��.E//

where chD j ı r, and j induces an equivalence j W ��.E/˝RŒ0� '�! ��.E/˝�
� .

Remark 18 In our definition, we have chosen the complex ��˝��.E/ as the de Rham
complex modeling our rational theory. In general, the differential function spectrum
depends on this choice and on the equivalence j [13]. For the purposes of clarity
and utility, we will always choose this model, although other models can be treated
analogously. We do, however, keep the dependence on the map ch explicit to emphasize
this fact.

Example 19 (Deligne cohomology) Let E D H.ZŒn�/ ' †nHZ be the n–fold
suspension of the Eilenberg–Mac Lane spectrum. In unbounded chain complexes, we
have a natural isomorphism

ZŒn�˝�� '��Œn�;

where ZŒn� is the sheaf of locally constant integer-valued functions in degree n, and the
complex on the right-hand side has been shifted up n units. That is, �n is in degree 0,
while �0 is in degree n. Since †nHZ is in the image of the Eilenberg–Mac Lane
functor H , and H preserves homotopy pullbacks, the homotopy pullback

diff.†nHZ; ch/ //

��

H.��0�
�Œn�/

��

†nHZ
ch

// H.��Œn�/

is presented by the homotopy pullback of unbounded chain complexes:

ZŒn��h
��Œn�

��0�
�Œn�

��

// ��0�
�Œn�

��

ZŒn� // ��Œn�

By stability, we can identify the homotopy pullback with the shifted mapping cone:

ZŒn��h��Œn� ��0�
�Œn�' cone

�
ZŒn�˚ ��0�

�
!��Œn�

�
Œ�1�:
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The right-hand side is precisely the Deligne complex Z1D .nC 1/. We therefore have
an equivalence

H.Z1D .nC 1//' diff.†nHZ; ch/:

The underlying theory this spectrum represents is precisely Deligne cohomology. In fact,
by the Dold–Kan correspondence, we have an isomorphism of graded abelian groups

�0 homCh
�
N
�
C.fUig/;Z

1
D .nC 1/

��
' �0 Map.†1M; diff.†nHZ; ch//:

Here N denotes the normalized Moore complex (adjoint to the Dold–Kan functor DK)
and C.fUig/ denotes the Čech nerve of some good open cover of X . The right-hand
side is simply the definition of diff.†nHZ; ch/0.M/, while the left-hand side is the
shifted total complex of the Čech–Deligne double complex. It therefore computes the
degree-n Deligne cohomology Hn.M IZ1D .nC 1//.

The above example illustrates what exactly differential function spectra have to do with
differential cohomology theories. The following definition can be found in [16].

Definition 20 Let E be a spectrum, and let

chW E!H.��0�
�
˝��.E//

be the Chern character map as in Definition 17. The differential E–cohomology of a
manifold is the smooth cohomology theory with degree-n component

yEn.M/' diff.†nE; ch/0.M/:

Since diff.†nE; ch/ is a smooth spectrum for each n, it fits into a diamond diagram
of the form (2-2), as established in [16; 64]. In [16], it was shown that the form that
this diamond takes is precisely the differential cohomology diamond in Remark 12.
In particular, Proposition 10 allows us to calculate the diff.†nE; ch/ cohomology in
degrees away from 0 as

diff.†nE; ch/q.M/D

�
EnCq.M/; q > 0;

E
n�1Cq

U.1/
.M/; q < 0:

3 The smooth Atiyah–Hirzebruch spectral sequence (AHSS)

In this section, we describe general machinery to construct an Atiyah–Hirzebruch
spectral sequence (AHSS) from a smooth spectrum E. We also describe how to compare
this spectral sequence to the classical AHSS spectral sequence for the underlying
theory …E, in nice cases.
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3.1 Construction of the spectral sequence via Čech resolutions

The trick to describing the spectral sequence is to choose the right filtration on a fixed
manifold. In the local (projective) model structure on smooth stacks, a natural choice
arises: namely, the Čech-type filtration on good open covers. This is indeed the most
natural choice since the maps which are weakly inverted in the local model structure are
precisely those arising from taking the Čech nerve of a good open cover of a manifold.
That is, we have a weak equivalence

wW hocolim
n
� � �

//
//
//
//

`
˛ˇ U˛ˇoo

oo
oo

//

//
//
`
˛ˇ U˛ˇoo

oo //
//

`
˛ U˛

oo

o
!X:

We now explicitly describe a filtration on C.fUig/. Recall that any simplicial diagram
J W �op! Sh1.CartSp/ can be filtrated by skeleta. More precisely, let i W ��k ,!�

denote the embedding of the full subcategory of linearly ordered sets Œr� such that
r � k . Then i induces a restriction between functor categories (the kth truncation)

��k W Œ�
op;Sh1.CartSp/�! Œ�

op
�k
;Sh1.CartSp/�:

By general abstract nonsense (the existence of left and right Kan extensions), there are
left and right adjoints .skk a ��k a coskk/

Œ�op;Sh1.CartSp/�
��k

// Œ�
op
�k
;Sh1.CartSp/�:

coskk
oo

skk
oo

Furthermore, by composing adjoints, we have an adjunction .skk a coskk/

Œ�op;Sh1.CartSp/�
skk

//

Œ�op;Sh1.CartSp/�:coskk
oo

The functor skk freely fills in degenerate simplices above level k , while coskk probes
a simplicial object with simplices only up to level k (the singular k–skeleton).

Proposition 21 Let Y� be a simplicial object in Sh1.CartSp/. Then we can filter Y�
by skeleta

sk0Y�! sk1Y�! � � � ! skkY�! � � � ! Y�:

The homotopy colimit over Y� is presented by the ordinary colimit

hocolim
�op

.Y�/' colim
k!1

Lcolim
�op

.skkY�/;

where Lcolim is the left derived functor of the colimit, hence computable upon suitable
cofibrant replacement of the diagram.1

1We take this particular model of the homotopy colimit in order to ensure that taking the colimit of the
resulting diagram makes sense. The claim will also hold for other presentations of the homotopy colimit.

Algebraic & Geometric Topology, Volume 17 (2017)



Spectral sequences in smooth generalized cohomology 2379

Proof Since Sh1.CartSp/ is presented by a combinatorial simplicial model category,
the homotopy colimit over a filtered diagram is presented by the ordinary colimit, and
the canonical map

Lcolim
k!1

Lcolim
�op

.skkY�/! colim
k!1

Lcolim
�op

.skkY�/

is an equivalence. Since homotopy colimits commute with homotopy colimits, we also
have an equivalence

Lcolim
k!1

Lcolim
�op

.skkY�/' Lcolim
�op

Lcolim
k!1

.skkY�/:

Again, using the fact that the ordinary colimit over a filtered diagram presents the
homotopy colimit, we have an equivalence

Lcolim
�op

Lcolim
k!1

.skkY�/! Lcolim
�op

colim
k!1

.skkY�/' Lcolim
�op

.Y�/:

Remark 22 The above proposition says that the homotopy colimit over the simplicial
object is filtered by homotopy colimits of its skeleta. In particular, if M is a paracompact
manifold, we can fix a good open cover on M and form the simplicial object given by
its Čech nerve

C.fUig/ WD � � �

//
//
//
//

`
˛ˇ U˛ˇoo

oo
oo

//

//
//
`
˛ˇ U˛ˇoo

oo //
//

`
˛ U˛:

oo

The homotopy colimit over this object is then filtered by its skeleta.

Let us see exactly what the skeleta look like in this case. To this end, we recall that in
Sh1.CartSp/, the full homotopy colimit is presented by the local homotopy formula

hocolim
�op

C.fUig/D

Z n2� a
˛0���˛n

U˛0���˛n
ˇ�Œn�:

The filtration on this object is given by first truncating the Čech nerve and then freely
filling in degenerate simplices. As a consequence, in degree k , we can forget about the
simplices of dimension higher than k . The homotopy colimit over this skeleton is then
given by a strict colimit over the diagram

(3-1)
`
˛0���˛k

U˛0���˛k
ˇ�Œk� � � �

//
//
//
//

`
˛ˇ U˛ˇ ˇ�Œ2�oo

oo
oo

//

//
//
`
˛ˇ U˛ˇ ˇ�Œ1�oo

oo //
//

`
˛ U˛

oo ˇ�Œ0�;

where the face and degeneracy maps are induced by the face and degeneracy maps
of �Œk�. Taking k !1, we do indeed reproduce the coend representing the full
homotopy colimit C.fUig/.
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We would like to eventually use this filtration to define a Mayer–Vietoris like spectral
sequence for general cohomology theory E. To get to this step, however, we will
need to identify the successive quotients of the filtration. To simplify notation in what
follows, we will fix a manifold M with Čech nerve C.fUig/, and we set

Xk WD hocolim
�op

�
skkC.fUig/

�
:

Then the quotient Xk=Xk�1 can be identified from the previous discussion by quoti-
enting out the face maps at level k described in diagram (3-1). Since the tensor of a
simplicial set and a stack is given by the product of the stack with the discrete inclusion
of the simplicial set, we can identify the quotient from the pushout of coendsR n<k `

˛0���˛n

U˛0���˛n
� disc.�Œn�/

@

��

// �

Rm�k `
˛0���˛m

U˛0���˛m
� disc.�Œm�/

where @ denotes the boundary inclusion. At the level of points (or elements), a simplex
in
R n<k`

˛0���˛k
U˛0���˛n

� disc.�Œn�/ is given by a pair

.�; �/ 2
a

˛0���˛k�1

U˛0���˛k�1
� disc.�Œk� 1�/;

which is glued to lower simplices via the face and degeneracy relations.

Let us identify where the boundary inclusion takes a generic simplex. Then the quotient
Xk=Xk�1 will be obtained by gluing these simplices together to a single point. Note
that the face and degeneracy relations imply that simplices of the form .�; sjC1�/ are
sent by dj to .dj�; �/. Since simplices in the image of the face maps are precisely
those which are collapsed to a point, we see that

.dj�; �/� � for every �:

We therefore see that each term of the coproduct
`
˛0���˛k

U˛0���˛k
is joined to another

by the inclusion into a lower intersection. These lower intersections are then collapsed
to a point yielding the wedge productW̨

0���˛k
U˛0���˛k

�Xk=Xk�1:

Similarly, the simplex .sjC1�; �/ is sent to .�; dj�/ under dj . We therefore identify
the discrete simplicial sphere in the quotient

disc
�
�Œk�=@�Œk�

�
�Xk=Xk�1:
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Finally, the relations imposed by the coend imply that a simplex of the form .sj�; �/

is glued to .�; dj�/. The former are precisely those simplices in the simplicial sphere,
while the latter are glued to the point. Similarly, .�; sj�/ is glued to the point. Thus
we have the following.

Lemma 23 We can identify the quotient with the smash product:

Xk=Xk�1 ' disc.�Œk�=@�Œk�/^
W̨

0���˛k
U˛0���˛k

' †k
�W̨

0���˛k
U˛0���˛k

�
:

Remark 24 (the filtration as a natural choice) Another way to think of our filtration
above is the following. Let us form a Čech nerve of a manifold, then contract all the
patches and intersections in that Čech nerve as points, so we obtain a simplicial set. Then
Borsuk’s nerve theorem (see [6] for a survey, [36, Corollary 4G.3] or [57, Theorem 3.21])
says that this simplicial set is equivalent — weak homotopy equivalent — to the singular
simplicial complex of the manifold, hence to its homotopy type. Moreover, that singular
simplicial complex (or rather its geometric realization) in turn gives a CW-complex
realization of the original manifold. So with this in mind, one may view our filtration
above as the natural smooth refinement of the filtration by CW-stages of the manifold.
That is, in taking the Čech nerve without contracting all its patches to points, we
retain exactly the smooth information that, via Borsuk’s theorem, corresponds to each
cell in the canonical CW-complex incarnation of the manifold. So in this sense, our
refinement can be viewed as the canonical smooth refinement of the traditional filtering
by CW-stages.

We are now ready to describe the spectral sequence.

Theorem 25 (AHSS for general smooth spectra) Let M be a compact smooth
manifold, and let E be a smooth spectrum. There is a spectral sequence with

E
p;q
2 DHp.M;Eq/ H) EpCq.M/:

Here Hp denotes the pth Čech cohomology with coefficients in the presheaf Eq . More-
over, the differential on the E1–page is given by the differential in Čech cohomology.

Proof The proof is almost immediate from the definitions. Recall that we have
identified the quotients in Lemma 23. By the axioms for a smooth cohomology theory,
we have that the E–cohomology of the quotient is given by

E�.Xk=Xk�1/' E�
�
†k
�W̨

0���˛k
U˛0���˛k

��
' E��k

�W̨
0���˛k

U˛0���˛k

�
'

M
˛0���˛k

E��k.U˛0���˛k
/:
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Applying EpCq to the cofiber sequence Xp ,! XpC1 � XpC1=Xp gives the long
exact sequence in E–cohomology

(3-2) � � � ! EpCq.XpC1=Xp/! EpCq.XpC1/

! EpCq.Xp/! EpCqC1.XpC1=Xp/! � � � :

Forming the corresponding exact triangle, we get a spectral sequence with Ep;q1 –term

E
p;q
1 D

M
˛0;���;˛p

Eq.U˛0���˛p
/:

Now we want to show that the differential on this page is given by the Čech differential

ıW E
p;q
1 D

M
˛0���˛p

Eq.U˛0���˛p
/ !

M
˛0���˛pC1

Eq.U˛0���˛pC1
/DEpC1;q:

To this end, note that differential on the E1–page, by definition, comes from the exact
sequence

� � �!EpCq.XpC1=Xp/
j
�!EpCq.XpC1/

i
�!EpCq.Xp/

@
�!EpCqC1.XpC1=Xp/!� � � :

We need to show that @j D d1 D ı is the Čech differential. By naturality of the
connecting homomorphism @, we have a commutative diagram

LCp�1.M IEq/

'
��

d1
// LCp.M IEq/

'
��L

˛0���˛p�1

Eq.U˛0���˛p�1
/

'
��

//
L

˛0���˛p

Eq.U˛0���˛p
/

'
��

EpCq�1.Xp�1=Xp�2/
j
//

��

EpCq�1.Xp�1/
@

//

��

EpCq.Xp=Xp�1/

��

EpCq�1.@�Œp��U˛0���˛p�1
/

id
**

EpCq.�Œp�=@�Œp�^U˛0���˛p
/

EpCq�1.@�Œp��U˛0���˛p�1
/

@ 44

where the vertical bottom maps are induced from the inclusion of a factor

(3-3)

�Œp��U˛0���˛p

� � // Xp

@�Œp��U˛0���˛p�1

� � //

OO

Xp�1

OO

∅ //

OO

Xp�2

OO
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into the p–level of the filtration. Comparing the top and bottom composite morphisms
in the big diagram, we see that on .p�1/–fold intersections U˛0���˛p�1

, the map d1 is
forced to map a section to the alternating sum of restrictions, as this is precisely the
map induced by the boundary inclusion in (3-3).

All that remains is the convergence. To establish that, we simply note that compactness
implies that, for large values of p , we have an equivalence Xp ' X . Moreover,
there are only finitely many diagonal entries at each page of the sequence. With this
assumption, the convergence to the corresponding graded complex

Ep;q1 D
ker
�
EpCq.X/! EpCq.Xp/

�
ker
�
EpCq.X/! EpCq.XpC1/

� D FpE
pCq.X/

FpC1EpCq.X/

follows exactly as in the classical case in [3].

Fiber bundles We can also construct a spectral sequence for a fiber bundle

F !N
p
�!M;

where each map is a smooth map of manifolds and M is compact. To that end, we
note that for a fixed good open cover fUig of M , the pullbacks fp�1.Ui /g define a
good open cover of N . By local triviality, we have that each p�1.Ui /'F �Ui . Then,
using the filtration

Xk D hocolim
�op

�
skkC.fp

�1.Ui /g/
�

on the total space N , we identify the successive quotients

Xk=Xk�1 '†
k
W̨

0���˛k
U˛0���˛k

^F:

A similar argument as in the proof of Theorem 25 gives:

Theorem 26 (smooth AHSS for fiber bundles) LetM;N and F be manifolds with M
compact. Let F !N

p
�!M be a fiber bundle. Let E be a sheaf of spectra. Then there

is a spectral sequence

E
p;q
2 DHp.M;Eq.�^F // H) EpCq.N /:

Here Hp denotes the pth Čech cohomology with coefficients in the presheaf E�q.�^F /.

Remark 27 (unreduced theories) Note that the smooth spectral sequence works for
reduced theories. One can treat unreduced theories similarly by setting

Eq.M;�/ WD zEq.MC/;
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where the tilde denotes the reduced theory and MC is the pointed stack with basepoint �.
In this case, we have the slight modification on the second spectral sequence, which
takes the form

E
p;q
2 DHp.M;Eq.��F // H) EpCq.N /:

3.2 Morphisms of smooth spectral sequences and refinement of the AHSS

Our next task will be to show that these spectral sequences do indeed refine the classical
Atiyah–Hirzebruch spectral sequence (AHSS) [3]. Since any smooth theory E comes
as a refinement of the underlying topological theory …E, we will immediately get a
morphism of spectral sequences induced by the morphism of spectra

I W E!…E:

Unfortunately, this morphism does not allow us to compare the differentials of the
spectral sequences in the way that we would ideally hope for. However, as we will
progressively see, the situation can be remedied by constructing a slightly different
morphism of spectral sequences. This morphism is related to the boundary map of
spectral sequences which occurs when a morphism of spectra induces the 0 map on
corresponding spectral sequences; see [55] for a discussion in the case of the Adams
spectral sequence. We first discuss the morphism induced by I , then construct this
“boundary-type” map, and prove that it indeed defines a morphism of spectral sequences.

Definition 28 Let Ep;qn and F p;qn be spectral sequences, that is, a sequence of bi-
graded complexes Ep;qn and F p;qn , n 2 N . A morphism of spectral sequences is a
morphism of bigraded complexes

fnW E
p;q
n ! F p;qn ;

defined for all n > N , where N is some fixed positive integer. Furthermore, we
require the map fnC1 to be the map on homology induced by fn . We call the smallest
integer N such that fn are defined for n > N the rank of the morphism.

We now apply this to the smooth AHSS. The next result should follow from general
principles, but we emphasize it explicitly for clarity and for subsequent use.

Proposition 29 Let E and F be smooth spectra. Then a map f W E! F induces a
morphism of corresponding smooth AHSSs

Ep;qn ! F p;qn :

Algebraic & Geometric Topology, Volume 17 (2017)



Spectral sequences in smooth generalized cohomology 2385

Proof Fix a manifold X and a good open cover fUig. Let Xp denote the pth filtration
of the Čech nerve as before. It is clear by naturality that a map of spectra f W E! F
induces a morphism of long exact sequences (see (3-2))

� � �EpCq.XpC1=Xp/ //

��

EpCq.XpC1/ //

��

EpCq.Xp/ //

��

EpCqC1.XpC1=Xp/ � � �

��

� � �FpCq.XpC1=Xp/ // FpCq.XpC1/ // FpCq.Xp/ // FpCqC1.XpC1=Xp/ � � �

It follows immediately from the construction of the corresponding exact triangles that
this morphism commutes with the differentials.

This now allows us to compare the topological and the smooth theories.

Corollary 30 Let E be a smooth spectrum and …E the underlying topological theory.
Let En and Fn denote the spectral sequences corresponding to E and …E, respectively.
The natural map I W E!…E induces a morphism of classical AHSSs2

I W Ep;qn ! F p;qn :

Remark 31 It is interesting that the smooth spectrum …E is, by definition, locally
constant. From the discussion around (2-1), this means that we have an isomorphism

…Eq.U /' ��q Map.U;…E/' ��q Map.�;…E/' ��q…E'…Eq.�/

for every element of a good open cover (or higher intersection) U . This connects,
via Borsuk’s theorem mentioned in Remark 24 above, the “smooth AHSS for locally
constant coefficients” with the classical AHSS: the locally constant coefficients see
each (contractible) patch as a point, and hence by Borsuk’s theorem, they see our “Čech
filtration” to be the classical CW-cell filtration.

From the construction of our smooth AHSS, it directly follows that the spectral sequence
associated to the smooth spectrum is a refinement of the classical topological AHSS.

Corollary 32 The spectral sequence F p;qn is precisely the AHSS for the cohomology
theory …E.

2Here we have an unfortunate conflict of notation. We are using the same symbols for the pages in the
spectral sequences for both the classical and the refined theories. We will aim to make the context explicit
whenever a possible ambiguity arises.
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We now would like to apply the above machinery to differential cohomology theories. In
particular, we note that for a differential function spectrum diff.E; ch/, the natural map

I W diff.E; ch/! E;

which strips the differential theory of the differential data and maps to the bare underly-
ing theory, is precisely the map induced by the unit I W id!…. In the above discussion,
we observed that this map always induces a morphism of spectral sequences. Moreover,
the target spectral sequence is exactly the AHSS for the underlying topological theory.
One might hope to be able to use this map to compare the differentials in the refined
theory with those differentials in the classical AHSS.

Unfortunately, this does not work in practice, as we will see when we discuss applica-
tions in Section 4. The core issue is that the spectral sequence for the refined theory
usually ends up shifted with respect to the classical AHSS. As a consequence, the
nonzero terms in each sequence are interlaced with respect to one another, and the
map I ends up killing all the nonzero terms. This, in turn, stems from the appearance of
the Bockstein map (which raises degree by 1) in the differential cohomology diagram.

However, there is often a different map between the lower quadrants of the two spectral
sequences corresponding to diff.E; ch/ and E, which lowers the degree as to match
the corresponding nonzero entries. This map is related to the so-called boundary map
between spectral sequences studied in [55]. The next proposition concerns this map
and will be essential for comparing the differentials in the refined theory to those of
the classical theory.

Proposition 33 (i) Let E be a spectrum such that ��.E/ is concentrated in degrees
which are a multiple of some integer n� 2 (eg K-theory, Morava K-theory). Suppose,
moreover, that ��.E/ is projective in those degrees. Then the sequence of spectra

E! E^MR! E^MU.1/
ˇE
�!†E

induces a short exact sequence on coefficients

(3-4) 0! ��.E/! ��.E/˝R! ��.E/˝U.1/! 0:

(ii) Let ˇ denote the connecting homomorphism (ie the Bockstein) for the coefficient
sequence (3-4). Let Ep;qn denote the spectral sequence corresponding to †�1E^MU.1/
and let F p;qn denote the spectral sequence corresponding to E. Then

ˇW Ep;qn ! F p;qn

induces a morphism of spectral sequences of rank 2.
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Proof Consider the long Bockstein sequence

� � � ! E
r
�! E^MR

e
�! E^MU.1/

ˇE
�!†E! � � �

induced by the cofiber sequence

S!MR!MU.1/:

Fix a manifold M and let Xp denote the p–level of the Čech filtration. Now each spec-
trum in the above sequence has a long exact sequence induced by the cofiber sequences

Xp�1!Xp!Xp=Xp�1;

from which one builds the exact couple for the corresponding spectral sequence. Using
the properties of ��.E/ along with this sequence, we can fit the long exact sequences
into a diagram

LCp.X I��q�1.E//
q�
//

r
��

EpCq�1.Xp/
i�
//

r
��

EpCq�1.Xp�1/
@

//

r
��

0

��

LCp.X I��q�1.ER//
q�
//

e
��

E
pCq�1
R .Xp/

i�
//

e
��

E
pCq�1
R .Xp�1/

@
//

e
��

0

��

LCp.X I��q�1.EU.1///
q�
//

ˇE
��

E
pCq

U.1/
.Xp/

i�
//

ˇE
��

E
pCq

U.1/
.Xp�1/

@
//

ˇE
��

0

��

0 // EpCq.XpC1/ // EpCq.Xp/ // LCp.X I��qC1.E//

where both the rows and columns are part of exact sequences, and LCp.X IA/ denotes
the group of Čech p–cochains with coefficients in A. Since everything commutes, this
induces a corresponding short exact sequence of E1–pages. At each .p; q/–entry, this
sequence is given by

0! Cp.X I��q.E//! Cp.X I��q.E/˝R/! Cp.X I��q.E/˝U.1//! 0:

Since the differentials on the E1–page are precisely the Čech differentials, the con-
struction of the Bockstein map in Čech cohomology will produce a map of E2–pages

ˇW Hp.X I��q.E/˝U.1//! HpC1.X I��q.E//:

We need to show that this map commutes with the differential. Choose a representative x
of a class in Hp.X I��q.E/˝U.1//. By definition, y D ˇ.x/ is a class such that
r.y/D ı.xx/, where xx is such that e.xx/D x . Then

r.d2y/D d2r.y/D d2ı.xx/:
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We want to show that there is a lift z of d2x such that ı.z/D d2ı.xx/. Indeed, if this
is the case, then d2y represents ˇ.d2x/ and we are done.

To construct z , recall that d2x is defined by first pulling back by the quotient q ,
which lies in the image of the map induced by the inclusion i W Xp ,!XpC1 , and then
applying the boundary to an element of the preimage. Let w be such that

i�.w/D q�.x/:

Chasing the diagram

LCp.X I��q�1.ER//
q�
//

e
��

E
pCq�1
R .Xp/

e
��

e
// E
pCq�1
R .Xp�1/

e
��

LCp.X I��q�1.EU.1///
q�
//

ˇE
��

E
pCq

U.1/
.Xp/

ˇE
��

i�
// E
pCq

U.1/
.Xp�1/

ˇE
��

0 // EpCq.Xp/
i�
// EpCq.Xp�1/

we see that 0DˇEq�.x/DˇEi�.w/D i�.ˇEw/. By exactness of the rows, this implies
that ˇEw D 0. Therefore, there is a class xw 2 EpCqC1R .XpC1/ such that e. xw/D w .

Now, by definition of the differential, we have

e.@ xw/D @.e. xw//D @w D d2x;

and z WD @ xw is a lift of d2x . Using the fact that ı D d1 D @q� , we have

ı.z/D ı.@ xw/D @.q�@ xw/:

By exactness, we have

i�.q�@ xw/D 0D q�@q�.xx/D q�.ı.xx//;

and it follows from the definition that ı.z/D d2.ı.xx//.

To show that H�.ˇ/ commutes with the higher differentials, we proceed by induction.
The above discussion proves the base case. Suppose ˇ induces a map Hn.ˇ/ on En
which commutes with dn . Then Hn.ˇ/ induces a well-defined map HnC1.ˇ/ on the
EnC1–page. Let x 2

Tn
iD1 ker.dnC1/ be a representative of a class on the En–page.

Then by definition, HnC1.ˇ/.x/ D ˇ.x/, and the exact same argument as before
(replacing d2 with dnC1 ) gives the result.

Having done the heavy lifting in the above proposition, we will now apply this to
straightforwardly relate the differentials of the refined theory to those of the underlying
topological theory. This will use an explicit alternative to the map I , along the lines of
the discussion preceding Proposition 33.
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Theorem 34 (refinement of differentials) Let E be a spectrum satisfying the proper-
ties of Proposition 33, and let diff.E; ch/ be a differential function spectrum refining E.
Let En and Fn denote the smooth AHSSs corresponding to diff.E; ch/ and E, respec-
tively. Then the Bockstein ˇ defines a rank-2 morphism of fourth quadrant spectral
sequences

ˇW Ep;qn ! F p;qn ; q < 0:

Proof Recall that for q <0, Proposition 10 implies that diff.E; ch/q.M/'E
q�1

U.1/
.M/.

The claim then follows from the previous proposition.

3.3 Product structure and the differentials

Let E be an E1 ring spectrum. Then the associative graded-commutative product
on E� induces a product (associative and graded-commutative) on the refinement
diff.†nE; ch/� , that is, a map

(3-5) [W diff.†nE; ch/k˝ diff.†mE; ch/j ! diff.†nCmE; ch/kCj

(see [13; 71]). The goal of this section will be to establish the following very useful
property, in analogy with the classical case.

Proposition 35 (compatibility with products) The product

[W diff.†nE; ch/k˝ diff.†mE; ch/j ! diff.†nCmE; ch/kCj

induces a morphism of spectral sequences

[W E�.n/�E�.m/!E�.nCm/:

Moreover, the differentials satisfy the Leibniz rule

d.xy/D d.x/yC .�1/pCqxd.y/:

Let us first work out what the cup product pairing is on the E1–page. Recall from the
construction of the spectral sequence that Ep;q1 is given by

E
p;q
1 D

M
˛0���˛p

diff.†nE; ch/q.U˛0���˛p
/' LCp.M I diff.†nE; ch/q/:

Using the product (3-5), we get a cross product map

(3-6) �W

M
˛0���˛p

diff.†nE; ch/q.U˛0���˛p
/�

M
˛0���˛r

diff.†mE; ch/t .U˛0���˛r
/

!

M
˛0���˛p

M
˛0���˛r

diff.†nCmE; ch/qCt .U˛0���˛p
�U˛0���˛r

/:
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We also have an isomorphismM
˛0���˛s

diff.†nCmE; ch/qCt ..U �U/˛0���˛s
/

' diff.†nCmE; ch/qCt
�W̨

0���˛s
.U �U/˛0���˛s

�
' diff.†nCmE; ch/qCt

�W̨
0���˛p

W̨
0���˛r

W
pCrDs .U˛0���˛p

�U˛0���˛r
/
�

'

M
˛0���˛p

M
˛0���˛r

M
pCrDs

diff.†nCmE; ch/qCt .U˛0���˛p
�U˛0���˛r

/

given by decomposing the product of the cover fU˛g with itself. Finally, we can
pullback by the diagonal map

��W
M
˛0���˛s

diff.†nCmE; ch/qCt ..U �U/˛0���˛s
/

!

M
˛0���˛s

diff.†nCmE; ch/qCt .U˛0���˛s
/' LCpCr.M I diff.†nCmE; ch/qCt /:

The cup product on the E1–page is defined by the composite map ���.

Lemma 36 The differential d1 on the E1–page satisfies the Leibniz rule.

Proof The construction of the cup product on the E1–page is precisely the cup product
structure for Čech cohomology. The Čech differential satisfies the Leibniz rule, and
this is precisely d1 by construction.

We are now ready to prove Proposition 35.

Proof The proof follows by induction on the pages of the spectral sequence. The base
case is satisfied by Lemma 36. Now suppose we have a cup product map

[W E.n/k �E.n/k!E.nCm/k

such that dk satisfies Leibniz. By definition, we have

E.n/
p;q

kC1
D

ker
�
dk W E.n/

p;q

k
!E.n/

pCk;qCk�1

k

�
im
�
dk W E.n/

p�k;q�kC1!E.n/p;q
� ;

and we define the cup product

[W E.n/
p;q

kC1
�E.m/

r;s
kC1
!E.nCm/

pCr;qCs

kC1

by restricting to elements in the kernel of dk . The product is well defined since dk
satisfies the Leibniz rule. At this stage, the problem looks formally like the classical
problem. Hence, analogously to the classical discussion in [36], it is tedious but
straightforward to show that dkC1 also satisfies the Leibniz rule.
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4 Applications to differential cohomology theories

In this section, we would like to apply the spectral sequence constructed in the previous
section to various differential cohomology theories. The construction is general enough
to apply to any structured cohomology theory whose coefficients are known. We will
explicitly emphasize three main examples. The first two are to known theories, namely
ordinary differential cohomology and differential K-theory. We take this opportunity
to explicitly develop the third theory, which is differential Morava K-theory, and then
apply our smooth AHSS construction to it.

4.1 Ordinary differential cohomology theory

We begin by recovering the usual hypercohomology spectral sequence for the Deligne
complex (see [11; 24, Appendix]) using our methods. We will first look at manifolds,
then products of these, and then more generally to smooth fiber bundles.

Let us consider the smooth spectrum diff.†nHZ; ch/ representing differential coho-
mology in degree n. We would like to see what our smooth AHSS gives in this case.
We recall that diff.†nHZ; ch/ is represented by Deligne cohomology of the sheaf of
chain complexes Z1D .n/ via the Eilenberg–Mac Lane functor H W Sh1.CartSpICh/!
Sh1.CartSpI Sp/ (2-6). It follows from the general properties of this functor that the
homotopy groups are given by

�k diff.†nHZ; ch/'HkZ1D .n/:

In this case, we have the immediate corollary to Theorem 25.

Corollary 37 The spectral sequence for Deligne cohomology takes the form

E
p;q
2 DHp.X IH�qZ1D .n// H) HpCq.X IZ1D .n//;

which is essentially the hypercohomology spectral sequence for the Deligne complex,
but shifted as a fourth quadrant spectral sequence.

For the sake of completeness, we work out this spectral sequence and recover the
differential cohomology diamond (2-2) from the sequence. This will help to illustrate
how the general spectral sequence behaves and how it can be used to calculate general
differential cohomology groups.

Now over the site of Cartesian spaces, the Poincaré lemma implies that we have an
isomorphism of presheaves d W �n�1= im.d/ '�! �ncl . Since �ncl is a sheaf over the
site of smooth manifolds, the gluing condition allows us to calculate the relevant terms
on the E2–page of the spectral sequence in Figure 1.
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0 �ncl.M/

::: 0

�.n�2/ 0

�.n�1/ Hn�1.M IU.1//

�n 0

d2

d2

d2

Figure 1: Ep;q2 from Corollary 37

The term Hn�1.M IU.1// will survive to the E1–page, and we have an isomorphism

Hn�1.M IU.1//' Fn�1 yH
n.M IZ/=Fn yH

n.M IZ/:

In fact, it is not hard to see that the definition of the filtration gives Fn yHn.M IZ/' 0,
and we have an injection

Hn�1.M IU.1//' Fn�1 yH
n.M IZ/ ,! yHn.M IZ/:

On the En–page, we get one possibly nonzero differential

dnW �
n.M/cl!Hn.M IU.1//:

Proposition 38 The differential dn for the AHSS for Deligne cohomology can be
identified with the composition

�ncl.M/!Hn
dR.M/

R
�n

��!Hn.M IR/
exp
��!Hn.M IU.1//;

and the kernel is precisely those forms which have integral periods.

Proof We will unpack the definition of the differential in the AHSS in detail. This in
turn will require unpacking the connecting homomorphism in the Deligne model of
ordinary differential cohomology; see [11]. Denote by Xp the Čech filtration, and let

@W diff.†nHZ; ch/q.Xp/! diff.†nHZ; ch/qC1.XpC1=Xp/

denote the connecting homomorphism in the long exact sequence associated to the
cofiber sequence Xp ,! XpC1 � XpC1=Xp in the usual way. In what follows, we
will denote Čech–Deligne cochains on the p–level of the filtration Xp as a p–tuple

.z0; z1; : : : ; zp/ 2 yC
q.Xp/;

where zi is a .q�i/–form defined on i –fold intersections.
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Now, by definition, dnW E
0;0
n !E

n;0
n is given by dnD@.j �/�1 , where .j �/�1 denotes

a choice of element in the preimage of the restriction j � induced by j W X0 ,!Xn�1 .3

Since we have dk D 0 for k < n, the differential dn is defined on all elements
z 2 �ncl.M/. Let g0 be a locally defined .n�1/–form trivializing z . Then we can
choose .j �/�1z to be the Čech–Deligne cocycle

(4-1) .j �/�1z D .g0; g1; g2; : : : ; gn�2/„ ƒ‚ …
n�1

2 yC 0.Xn�1/;

where each gk is a .n�k�1/–form that satisfies the cocycle condition ı.gk/ D

.�1/kdgkC1 . To see where the boundary map takes this element, let y be a Čech–
Deligne cochain given by

y D .g0; g1; g2; : : : ; gn�2; exp.2�ign�1//„ ƒ‚ …
n

2 yC 0.Xn/;

where gn�1 is any smooth R–valued function satisfying d.gn�1/D .�1/n�1ı.gn�2/.4

Now y is not Čech–Deligne closed in general since

Dy D .d C .�1/n�1ı/y D .0; 0; : : : ; exp..�1/n�12�i � ı.gn�1///;

and gn�1 may not satisfy the cocycle condition ı.gn�1/D 0. However, by the Čech–
de Rham isomorphism (see for example [7]), this element in the Čech– de Rham
double complex is isomorphic to an R–valued Čech cocycle on n–fold intersections.
Explicitly, there is a constant R–valued cocycle rn such that ı.gn�1/D rn . It follows
from the isomorphisms between the Čech, de Rham, and singular cohomologies that
the class of rn can be represented by the singular cocycle given by the pairing

R
�z

for any cycle � in M . Since the class
R
� z was just an unraveling of the boundary

@..j �/�1z/, we have proved the claim.

In the next section, we will need to make use of a differential refinement of the
Chern character. To this end, we briefly discuss differential cohomology with rational
coefficients yHn.�IQ/. These groups are obtained via the differential function spectra
diff.†nHQ; ch/ which fit into the homotopy cartesian square:

diff.HQ; ch/ //

��

H.��0�
�Œn�/

��

†nHQ // H.��Œn�/

3Note that the differential only takes this form at the .0; 0/–entry. In general, the differential formed
from the nth derived couple will be more complicated.

4Note that this cocycle condition is necessary for y to be an lift of .j �/�1z to the n–level of the
filtration.
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As a consequence of Proposition 10, the cohomology groups with values in this spectrum
are calculated as

diff.†nHQ; ch/q.M/D

8<:
HnCq.M/; q > 0;

yHn.M IQ/; q D 0;

Hn�1Cq.M IR=Q/; q < 0:

The explicit calculation of the differential in Proposition 38 can be easily modified to
get the following.5

Proposition 39 The differential dn on the En–page for the AHSS spectral sequence
for diff.†nHQ; ch/ is given by

�ncl.M/!Hn
dR.M/

R
�n

��!Hn.M IR/!Hn.M IQ=Z/;

and the kernel is precisely those forms which have rational periods.

We will make use of this result when we discuss the differentials in smooth K-theory
in the next section. For now, from Proposition 38, we immediately get the following
characterization of closed forms with integral periods and forms with rational periods
using our smooth AHSS.

Corollary 40 (i) The group of closed forms with integral periods on a manifold M
is given by

�ncl;Z.M/' yHn.M IZ/=F1 yH
n.M IZ/:

(ii) The group of closed forms with rational periods on a manifold M is given by

�ncl;Q.M/' yHn.M IQ/=F1 yH
n.M IQ/:

4.2 Differential K-theory

In this section, we examine the smooth AHSS for the differential function spectrum
diff.K; ch/, corresponding to complex K-theory. Proposition 10 allows us to calculate
the cohomology groups on a paracompact manifold M as (see [49; 17; 66; 28])

(4-2) diff.K; ch/q.M/D

8̂<̂
:
Kq.M/; q > 0;

yK0.M/; q D 0;

K
q

U.1/
.M/; q < 0:

Both groups K and KU.1/ are periodic. Indeed, KU.1/.M/ fits into an exact sequence

� � � !K�1.M/˝R!K�1U.1/.M/!K.M/!K.M/˝R! � � � :

5The exact argument in the proof of Proposition 38 applies, with R=Q in place of R=Z' U.1/ .
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Consequently, the periodicity of both integral and rational K-theory, along with an
application of the five lemma, imply that KU.1/ is 2–periodic. In particular, we have

K
2q

U.1/
.�/' U.1/ and K

2qC1

U.1/
.�/' 0; q 2 Z:

Given (4-2), we see that for a contractible open set U , we have an isomorphism

diff.K; ch/2qC1.U /'K2q
U.1/

.�/' U.1/

for q < 0. For degree 0, the differential cohomology diamond in this case takes
the form: Q

2k�1

�2k�1= im.d/

a

''

d
//
Q
2k

�2kcl

""

K�1R

77

''

yK0

I

##

R
<<

K0R

K�1
U.1/

77

ˇK
// K0

ch
;;

This implies that for a contractible open set U , differential K-theory yK0.U / fits into
the short exact sequence

0!
Y
2k�1

�2k�1= im.d/.U /! yK0.U /! Z! 0:

Hence, over the site of Cartesian spaces, we have a naturally split short exact sequence
of presheaves

0!
Y
2k�1

�2k�1= im.d/! yK0! Z! 0:

Over that site, the presheaf on the left-hand side is actually a sheaf and is naturally
isomorphic (by the Poincaré lemma) to the sheaf

Q
2k �

2k
cl . We therefore make the

identification

(4-3) yK0 '
Y
2k

�2kcl ˚Z:

Remark 41 It is important to note that the identification (4-3) is only true on the site
of Cartesian spaces, which is to say that it holds only locally. On the site of smooth
manifolds, this is of course not the case.

Next, since both �2kcl and Z are sheaves on the site of smooth manifolds, we can
identify the degree-0 Čech cohomology with these coefficients with the value of this
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0
Q
2k �

2k
cl .M/˚Z

�1 H 1.M IU.1// H 2.M IU.1//

�2 0 0 0

�3 H 4.M IU.1//

d2

Figure 2: Ep;q2 for even differential K-theory

sheaf on M . Isolating the terms on the E2–page which converge to yK0.M/, we get
Figure 2.

We see that all the differentials are zero except for the map labeled d2 above. On the
E3–page, we get Figure 3.

The higher pages will fall into cases depending on the parity. We observe that for each
even page E2m , there is one nonzero differential given by d2m . For the odd pages the
differentials are given by an odd-degree U.1/–cohomology operation.

Note that, in the diagrams, we are interested in the case pC q D 0, corresponding to
diagonal entries. Now p � 0, as the Čech filtrations are of nonnegative degrees, which
implies that q � 0. Hence the entries go down the diagonal. Our first goal will be
to identify the even differentials d2m . In order to do this, let us recall that there is a
differential Chern character map (see [13; 63]) which is stably given by a morphism
of smooth spectra �chW diff.K; ch/!

Y
2k

diff.†2kHQ; ch/:

Postcomposing this map with the projection pr2m onto the 2m–component gives a
map of smooth spectra

pr2m �chW diff.K; ch/! diff.†2mHQ; ch/:

Using this map, we can prove the following analogue of Proposition 39.

Proposition 42 The group of permanent cycles in bidegree .0; 0/ in the AHSS for
diff.K; ch/ is a subgroup of even-degree closed forms with rational periods. That is,
we have

E0;01 �
Y
k

�2kcl;Q.M/˚Z:
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0 ker.d2/

�1 H 2.M IU.1// H 3.M IU.1//

�2 0

�3 H 5.M IU.1//

d3

d3

Figure 3: Ep;q3 for even differential K-theory

Proof We prove by induction on the even pages6 of the spectral sequence that, for
all n, E0;02n must be a subgroup ofY

2k�2n

�2kcl;Q.M/ ˚
Y
2k>2n

�2kcl .M/˚Z:

For the base case, observe that the map pr2 �ch induces a rank-1 morphism of AHSSs
and therefore commutes with d2 . It is straightforward to check, using the definitions,
that this leads to the following commutative diagram:

Q
2k

�2kcl .M/˚Z

d2

��

pr2
// �2cl.M/

d 02
��

H 2.M IR=Z/
q
// H 2.M IR=Q/

We see that the kernel of d2 must be a subgroup of �2cl;Q.M/˚
Q
2k>2�

2k.M/˚Z
by Proposition 38.

Now suppose the claim is true for d2n . Again, we have that pr2nC2 �ch commutes
with d2nC2 , and we have the following commutative diagram:

ker.d2n/
pr2nC2

//

d2nC2

��

�2nC2cl .M/

d 0
2nC2

��

H 2nC2.M IR=Z/
q
// H 2nC2.M IR=Q/

6The differential is 0 for the odd pages, and so no generality is lost by restricting to the even pages.
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By the induction hypothesis,

ker.d2n/�
Y
2k�2n

�2kcl;Q.M/˚
Y
2k>n

�2kcl .M/˚Z;

and the kernel of d2nC2 is as claimed.

We now turn to the first odd differential d3 . Recall that ˇ and ž denote the Bockstein
homomorphisms corresponding to the sequences 0! Z! R

exp
��! U.1/! 0 and

0! Z! Z! Z=2! 0, respectively. We still also denote by �2W Hn.�IZ=2/!
Hn.�; U.1// the map induced by the representation of Z=2 as the square roots of
unity and �2W Z! Z=2 as the mod 2 reduction.

Proposition 43 (degree-3 differential) The first odd-degree differential in the AHSS
for differential K-theory is given by

d3 D

8̂<̂
:
�Sq3 WD �2Sq2�2ˇ; q < 0;

Sq3Z WD žSq2�2; q > 0;

0; q D 0:

Proof The case for q D 0 is obvious. For q > 0, this follows from the fact that the
integration map defines an isomorphism I W diff.K; ch/q.M/ '�! Kq.M/ for q > 0.
Since the differential d3 for the classical AHSS is given by Sq3Z , and the integration
map defines an isomorphism of corresponding first quadrant spectral sequences, the
case q > 0 is settled.

For q < 0, Corollary 30 implies that the Bockstein ˇ commutes with the differentials
on the E3–page. We therefore have

(4-4) ˇd3 D Sq3Zˇ D žSq3�2ˇ:

Rephrasing, we have the commuting diagram:

Hn�1.M IU.1//
d3
//

ˇ
��

HnC3�1.M IU.1//

ˇ
��

Hn.M IZ/
Sq3

Z
// HnC3.M IZ/

We now claim that ž D ˇ ı�2 . Indeed, we have a morphism of short exact sequences:

Z
�2

//

id
��

Z
�2

//

��i
����

Z=2

�2
��

Z
�2�i

// R
exp

// U.1/
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This morphism induces a morphism on the associated long exact sequences on coho-
mology. After delooping once to extend to the left, the homotopy commutativity of the
resulting diagram

Z=2

�2
��

ž
// BZ

U.1/
ˇ
// BZ

immediately establishes the claim.

Now it follows from (4-4) that d3 � �2Sq3�2ˇ is in the kernel of ˇ . By exactness
of the Bockstein, this implies that it must be in the image of the exponential map
expW H�.�IR/ ! H�.�IU.1//. Hence there is an operation  W H�.�IU.1// !
H�.�IR/ such that

� WD exp ı D exp. /D d3��2Sq3�2ˇ:

Equivalently, we have a factorization:

H�.�IU.1//

 ((

�
// H�.�IU.1//

H�.�IR/
exp

66

We expect to have hom.H�.�IU.1//;H�.�IR//D0 since U.1/ is almost completely
torsion (and since the second argument is an R–vector space). However, we need to
be slightly careful here, since not all elements a 2 H�.M IU.1// represent torsion
classes. In fact, identifying U.1/'R=Z, such an element will be torsion if and only
if it represents an element in H�.M IQ=Z/ ,!H�.M IR=Z/. To fix this issue, we
observe that for any abelian group A, we have an isomorphism

r W hom.H�.M IR/; A/! hom.H�.M IQ/; A/

given by restricting a map to the rationals Q�R. The inverse is given by restricting a
map to the generators and extending with real coefficients. This implies, in turn, that
we have an isomorphism

r W hom.H�.M IR=Z/; A/! hom.H�.M IQ=Z/; A/I

ie R=Z and Q=Z behave equivalently when taken as coefficients of cohomology
inside the hom. Finally, since hom.H�.M IQ=Z/;H�.M IR// D 0, we must have
hom.H�.M IR=Z/;H�.M IR//D0, which forces  D0. Consequently, exp ı D0,
so that � D 0. Therefore, indeed we have

d3 D �2Sq3�2ˇ:
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Remark 44 The above proposition suggests that these operations are related to some
sort of differential Steenrod squares. Indeed, this is the case, which has been investigated
by the authors in [33], with �Sq3 being one such operation.

Now that we have established the algebraic construction, we turn to investigating the
convergence of the spectral sequence from a geometric point of view. In particular,
we immediately observe that the only terms in the spectral sequence which contain
information about differential forms are at q D 0. These terms converge to elements in
the filtered graded complex (since q D 0)

yK.M/=F1 yK.M/:

Since the filtration is given by the Čech-type filtration on M , we see that this quotient
contains elements which have nontrivial data on all open sets, intersections and higher
intersections. For the degrees q < 0, the filtration quotients

Fp yK.M/=FpC1 yK.M/

have trivial data below p–intersections.

In fact, it is not too surprising that this occurs. There is a geometric model for
reduced yK0 which is given by the moduli stack BUconn of unitary vector bundles,
equipped with connection. Let Vectr be the moduli stack of vector bundles with
connections. It was shown in [16] that there is a cycle map

cyclW �0 Map.M;Vectr/! yK0.M/;

which induces an isomorphism upon group completion. In our construction, this is
equivalent to

cyclW �0 Map.M;BUconn/! yK0.M/:

Now the stack BUconn can be identified with the moduli stack obtained by taking the
nerve of the action groupoid C1.�; U /==�1.�I u/ with the action given by gauge
transformations, where u is the Lie algebra of the unitary group. Let fU˛g be a good
open cover of M . Then a map M ! BUconn is given by the following data:
ı a choice of smooth U.n/–valued function g˛ˇ on intersections U˛ \Uˇ ,
ı a choice of local connection 1–form A˛ˇ on open sets U˛ .

This is precisely the data needed to define a unitary vector bundle on M .

Remark 45 More relevant to our needs, though, is the fact that the effects of the
filtration become transparent when taking BUconn as a model for yK0 . We now see that
the q D 0 terms converge to terms which involve the data of the connection, while the
q < 0 terms contain data about bundles with trivializable connections (in particular,
flat connections).
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Differential K1 –theory We now consider odd differential K-theory, K1 . In this case,
the representing spectrum is the unitary group U itself. Viewing this as a classifying
space, we can write U D B�U . Of course we are interested in the corresponding
stacks. Unfortunately, we do not have the analogue of the above group-loop group
relation in stacks; ie Uconn 6'B�Uconn . Nevertheless, the machinery that we set up will
work equally well for differential K1–theory, as far as the third differential goes; ie we
still have d3 D �Sq3 . However, the even differentials are now transgressed in degree by
one, so that they are also of odd degree. This is expected as the Chern character in this
case is a map to cohomology of odd degree.

The story for yK1 can be worked out similarly as we indicated above. Let us expand on
this in more detail. In the odd case, the differential cohomology diamond takes the formQ

2k

�2k= im.d/

a

%%

d
//
Q
2kC1

�2kC1cl

##

K0R

::

%%

yK1

I

$$

R
;;

K1R

K0
U.1/

99

ˇK
// K1

ch
::

and we get a short exact sequence of presheaves (on the site of Cartesian spaces)

0! Z!
Y
2k

�2k= im.d/! yK1! 0:

It is straightforward to show that the map Z!
Q
2k �

2k= im.d/ is zero. Consequently,
we have the isomorphism

yK1 '
Y
2k

�2k= im.d/'
Y
2kC1

�2kC1cl :

Using the same type of argument as in the even K-theory K0 , we likewise get a
refinement of the differential of the underlying topological theory. More precisely, we
see that the first nonzero differentials appear on the E3–page as in Figure 4.

Proposition 46 Proposition 43 holds for differential K1–theory. That is, the degree-3
differential in yK1 is given by the refinement of the Steenrod square of dimension three.

Also, using the same argument as in the proof of Proposition 42, we see that the perma-
nent cycles in bidegree .0; 0/ are a subgroup of odd-degree forms with rational periods.
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0
Q
2kC1�

2kC1
cl .M/

�1

�2 H 2.M IU.1// H 3.M IU.1//

�3

�4 H 5.M IU.1//

d3

�Sq3

Figure 4: Ep;q2 for odd differential K-theory

Proposition 47 The group of permanent cycles in bidegree .0; 0/ in the AHSS for
diff.†K; ch/ is a subgroup of odd degree closed forms with rational periods. That is,
we have

E0;01 �
Y
k

�2k�1cl;Q .M/˚Z:

Example 48 (fields in string theory and M-theory) In the string theory and M-theory
literature, one encounters settings where cohomology classes are compared to K-theory
elements, in the sense of asking when a cohomology class arises from or “lifts to” a
K-theory class. This involves, in a sense, a physical modeling of the process of building
the AHSS. One such obstruction is Sq3 , viewed as the first nontrivial differential d3
in K-theory, so that the condition Sq3x D 0 on a cohomology class x amounts to
saying that the class lifts to K-theory. This is desirable in the study of the partition
function of the fields in type-IIA string theory; see [21; 47]. On the other hand, it is
desirable to have differential refinements for physical purposes. Therefore, now that we
have the differential AHSS at our disposal, it is natural to consider expressions such as
d3.yx/ WD �Sq3yx D 0 on the differential cohomology class yx that refines the topological
class x . This can be viewed as a condition on cohomology with U.1/–coefficients (or
flat n–bundles), in order that they lift to flat elements in yK .7 If the degree of the class x
is even, then we are in type-IIA string theory, and we lift to differential K0–theory. On
the other hand, being in type-IIB string theory means the degree of x is odd, and we
are lifting to differential K1–theory. The new differentials d2m and d2mC1 arising
from differential forms will correspond to even- and odd-degree closed differential
forms as the particular forms representing the physical fields F2m and F2mC1 via the
Chern character.

7This could end up being stronger in the sense that it is a condition for lifting differential cohomology
classes to differential K-theory, but we will leave that for future investigations.
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Example 49 (D-brane charges) The charges of D-branes can, a priori, be taken to be
given as a class in cohomology QH 2H�.X IQ/. Quantum effects requires some of
these charges to be (up to shifts) to be in integral cohomology. However, in order to
not discuss isomorphism classes of such physical objects but pinning down a particular
physical object, one considers the charges to take values in differential cohomology,
with Deligne cohomology being one such presentation: Q yH 2 yH

�.X IZ/; see [19].
On the other hand, careful analysis reveals that the charges take values in K-theory
rather than in cohomology QK 2Ki .X/ for i D 0; 1 for type IIB/IIA; see [56; 29; 9].
Such a class exists if the cohomology charge satisfies Sq3QH D 0. Again, at this stage,
adding in the geometry requires the charges to take values in differential K-theory
Q yK 2 yK

i .X/. Our construction now allows for a characterization of when charges
in Deligne cohomology lift to charges in differential K-theory, namely when they are
annihilated by the third differential in the smooth AHSS, ie when �Sq3Q yH D 0.

4.3 Differential Morava K-theory

There are various interesting generalized cohomology theories that descend from
complex cobordism, among which are Morava K-theory and Morava E-theory. Such
theories can be defined using their coefficient rings, which in general are polynomials
over finite or p–adic fields on generators whose dimension depends on the chromatic
level and the prime p . As such, these kind of theories do not lend themselves directly
to immediate geometric interpretation in contrast to the case of K-theory, which can be
formulated via stable isomorphism classes of vector bundles.

However, recent work in [48] (generalizing some aspects of [5]) seems to give hope in
that direction. Nevertheless, just because an entity is defined over a finite field does not
automatically make it ineligible for differential refinement. In fact, we have recently
demonstrated this [33] for the case of Steenrod cohomology operations, which are, a
priori, Z=p–valued operations. The main point there was that as long as these admit
integral lifts, they do have a chance at a differential refinement. What we will seek here
is something analogous: integral refinements of such generalized cohomology theories.

We will consider the integral Morava K-theory zK.n/ highlighted in [47; 60; 62]. Morava
K-theory K.n/ is the mod p reduction of an integral (or p–adic) lift zK.n/ with coeffi-
cient ring zK.n/�DZpŒvn; v�1n �. This theory more closely resembles complex K-theory
than is the case for the mod p versions (for nD 1, it is the p–completion of K-theory).
The integral theory is much more suited to applications in physics [47; 60; 12; 62].

The Atiyah–Hirzebruch spectral sequence for Morava K-theory has been studied by
Yagita in [72]; see also [47]. There is a spectral sequence converging to K.n/�.X/
with E2–term E

p;q
2 DHp.X;K.n/q/. While this can be done for any prime, we will
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focus on the prime 2. In this case, the first possibly nontrivial differential is d2nC1�1 ;
this is given by [72] as

d2nC1�1.xv
k
n/DQn.x/v

k�1
n :

Here Qn is the nth Milnor primitive at the prime 2, which we define inductively
as Q0 D Sq1 , the Bockstein operation, and QjC1 D Sq2

j

Qj � QjSq2
j

, where
Sqj W Hn.X IZ2/!HnCj .X IZ2/ is the j th Steenrod square. These operations are
derivations

Qj .xy/DQj .x/yC .�1/
jxjxQj .y/:

The signs are of course irrelevant at p D 2, but will become important in the integral
version. Extensive discussion of the mod p Steenrod algebra in terms of these operations
is given in [68].

The integral theory is also computable via an AHSS, which can be deduced from
[47; 62]. There is an AHSS converging to zK.n/�.X/ with Ep;q2 DHp.X; zK.n/q/.
The first possibly nontrivial differential is d2nC1�1 ; this is given by

d2nC1�1.xv
k
n/D

zQn.x/v
k�1
n :

Here zQk W H�.X IZ/!H�C2
kC1�1.X IZ/ is an integral cohomology operation lifting

the Milnor primitive Qk .

In order to consider differential refinement of Morava K-theory, we need geometric in-
formation encoded in differential forms, hence rational information. The rationalization
of Morava K-theory zK.n/, like any reasonable spectrum, exists and can be thought of
as localization at zK.0/DHQ; see [8; 58]. We can, in the same way, localize at R.
More precisely, the localized theory is given by

zKR.n/D zK.n/^MR;

where MR is an Eilenberg–Moore spectrum. We have an equivalence

zKR.n/'H.ZŒvn; v
�1
n �˝R/

and a Chern character map

chW zK.n/!H.ZŒvn; v
�1
n �˝��/:

Thus we can form the differential function spectrum diff. zK.n/; ch/, and we can form
the associated AHSS. To see what form the spectral sequence takes, we need to discuss
the flat Morava K-theory zKU.1/.n/, defined by the fiber sequence

zK.n/! zK.n/^MR! zKU.1/.n/ WD zK.n/^MU.1/:
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0
Q
k �

k2.2n�1/
cl .M/˚Z

:::

�2nC1C3 H 2nC1�3.M IU.1// H 2.2n�1/.M IU.1//

:::

�2nC2C5 H 4.2n�1/.M IR=Z/

d2.2n�1/

Figure 5: Ep;q
2.2n�1/

for Morava K-theory

This theory is periodic with period 2.2n�1/. Indeed, both zK.n/ and its rationalization
are periodic, and we have a long exact sequence

� � � ! zK.n/m.M/! . zK.n/^MR/m.M/! zKmU.1/.n/.M/! zK.n/mC1.M/! � � �

relating the flat theory to both the rational and integral theories. This, in particular,
gives the following identification.

Lemma 50 The coefficients of flat Morava K-theory are given by

zKU.1/.n/
m.�/'

�
U.1/; mD 2.2n� 1/;

0; otherwise:

Knowing the coefficients of the flat theory, we can write down the relevant nonzero
terms on the E2.2n�1/–page of the corresponding spectral sequence in Figure 5, and
the only nonzero differential is given by

d2.2n�1/W

Y
k

�
k2.2n�1/
cl .M/˚Z!H 2.2n�1/.M IR=Z/:

Just as in the case for differential K-theory (see Propositions 42 and 47), we have:

Proposition 51 The group of permanent cycles in bidegree .0; 0/ in the AHSS for
diff. zK.n/; ch/ is a subgroup of certain closed forms with rational periods. More
precisely, we have

E0;01 �
Y
k

�
2k.2n�1/
cl;Q .M/˚Z:
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To identify the Čech cohomology groups with coefficients in yK.n/0 , we make the
identification (as we did for differential K-theory)

yK.n/0 '
Y
k

�
2k.2n�1/
cl ˚Z

on the site of Cartesian spaces. Again, using the sheaf condition over smooth manifolds,
we have

Hp.M I yK.n/0/'
Y
k

�
2k.2n�1/
cl .M/˚Z:

We now consider the differential refinement of the (integrally lifted) Milnor primitive.
As before, let �2W Hn.�IZ=2/!Hn.�IU.1// denote the map induced by the repre-
sentation of Z=2 as the square roots of unity, and let �2W Z! Z=2 denote the mod 2
reduction.

Lemma 52 The integral Milnor primitive zQn factors through the representation
�2W Z=2 ,! U.1/. That is, there exists an operation yQn such that

Qn�2 D �2 zQn D �2ˇ�2 yQn;

where ˇ is the Bockstein for the exponential sequence.

Proof Recall first that �2ˇ�2 D �2 ž D Sq1 , where ž is the Bockstein for the mod 2
reduction sequence. We can therefore rewrite the above equation as

Qn�2 D �2 zQn D �2ˇ�2 yQn D Sq1 yQn;

and the existence of the class yQn holds if and only if Sq1Qn�2 D 0. On the other
hand, the existence of the integral lift zQn immediately implies this condition.

Again, let ˇ and ž denote the Bockstein homomorphism corresponding to the sequences
0!Z!R!R=Z!0 and 0!Z!Z!Z=2!0, respectively. Then the following
can be proved in a similar way as we did for Proposition 43 in the case of differential
K-theory.

Proposition 53 (odd differentials for Morava AHSS) The .2nC1�1/–differential in
the AHSS for differential Morava K-theory is given by

d2nC1�1 D

8<:
�2 yQn�2ˇ; q < 0;

zQn; q > 0;

0; q D 0:

Remark 54 (odd primes) The above discussion has been for the prime 2; that is, we
are considering integral Morava K-theory as arising from lifting of the p D 2 Morava
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K-theory. We can do the same for odd primes, leading to integral Morava K-theory lifted
from an odd prime p . A similar discussion follows and we have an integral lift of the
Milnor primitive at odd primes, as in Lemma 52. The differentials will be again given by
these refinements of the Milnor primitive; ie Proposition 53 holds except that the prim-
itives are defined using the Steenrod reduced power operations P j . Precisely, Q0 is
the Bockstein homomorphism associated to reduction mod p sequence, and inductively
QiC1DP

pi

Qi �QiP
pi

. The operations P j have been differentially refined in [33].
Hence the refinement of the Milnor primitives at odd primes will also follow. Then
the .pnC1�1/–differential in the AHSS for differential Morava K-theory is given by

dpnC1�1 D

8<:
�p yQn�pˇ; q < 0;

zQn; q > 0;

0; q D 0:

Example 55 (lifting fields to differential Morava K-theory) We build on Example 48
and aim to lift the cohomology classes beyond K-theory. In particular, for xD�D 1

2
p1

the first Spin characteristic class, we have yx D y� the differential refinements of �
[61; 25] (which can be viewed as a lifted Wu class [41]), and we would have �Sq3y�D 0.
This condition in differential cohomology can be viewed as a refinement of the condition
W7 D Sq3�D 0 leading to orientation with respect to integral Morava K.2/–theory
(lifted from the prime p D 2) as shown in [47] and elaborated further in [12]. From
the structure of the smooth AHSS in relation to the classical AHSS, one can extend
various results to the differential case. For instance, one can generalize the statement
in [47] on orientation to state that: an oriented smooth 10–dimensional manifold is
oriented with respect to differential (integrally lifted from pD 2) Morava K.2/–theory
yK.2/ if the class �W 7 WD

�Sq3y� is equal to 0. The development of this, as well as the
relation to refinements of characteristic classes, deserves a separate treatment and will
be addressed elsewhere.

Remark 56 (i) Note that our construction allows for an AHSS for other spectra
beyond the particular ones we discussed above. This holds for any spectrum which
admits a rationalization, whose coefficients are known, and which can be lifted integrally
in the sense that we discussed at the beginning of this section.

(ii) All the cohomology theories that we used in this paper can be twisted. Indeed,
the construction in this paper can be generalized to construct an AHSS for twisted
differential spectra [32], in the sense of [15], and using [34].
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Epimorphisms between 2–bridge knot groups
and their crossing numbers

MASAAKI SUZUKI

Suppose that there exists an epimorphism from the knot group of a 2–bridge knot K

onto that of another knot K0 . We study the relationship between their crossing
numbers c.K/ and c.K0/ . More specifically, it is shown that c.K/ is greater than
or equal to 3c.K0/ , and we estimate how many knot groups a 2–bridge knot group
maps onto. Moreover, we formulate the generating function which determines the
number of 2–bridge knot groups admitting epimorphisms onto the knot group of a
given 2–bridge knot.

57M25; 57M27

1 Introduction

Let K be a knot and G.K/ the knot group, namely, the fundamental group of the
exterior of K in S3 . We denote by c.K/ the crossing number of K . Recently, many
authors have studied epimorphisms between knot groups. One of the main goals of
their papers was Simon’s conjecture: every knot group maps onto at most finitely many
knot groups. For example, Boileau, Boyer, Reid and Wang [4] showed that Simon’s
conjecture is true for 2–bridge knots. Finally, Agol and Liu [2] proved that Simon’s
conjecture holds for all knots.

In Kitano and Suzuki [12] and Horie, Kitano, Matsumoto and Suzuki [10], the existence
and nonexistence of a meridional epimorphism between knot groups of prime knots
with up to 11 crossings are determined completely. We say that a homomorphism
from G.K/ to G.K0/ is meridional if a meridian of G.K/ is sent to a meridian of
G.K0/; see also Cha and Suzuki [7]. This result raises the following question: if
there exists an epimorphism from G.K/ onto G.K0/, then is c.K/ greater than or
equal to c.K0/? This question is also mentioned in Kitano and Suzuki [13]. If the
answer is affirmative, then we obtain another proof for Simon’s conjecture. This paper
gives a partial affirmative answer for this question. That is to say, if there exists an
epimorphism from the knot group of a 2–bridge knot K onto that of another knot K0 ,
then c.K/ is greater than or equal to 3c.K0/.

Published: 3 August 2017 DOI: 10.2140/agt.2017.17.2413
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In order to prove this result, we make use of the Ohtsuki–Riley–Sakuma construc-
tion [18]; these authors established a systematic construction of epimorphisms between
2–bridge knot groups. Additionally, Garrabrant, Hoste and Shanahan [9] gave necessary
and sufficient conditions for any set of 2–bridge knots to have an upper bound with
respect to the Ohtsuki–Riley–Sakuma construction. Conversely, it is shown that all
epimorphisms between 2–bridge knot groups arise from the Ohtsuki–Riley–Sakuma
construction, as a consequence of Agol’s result announced in [1]. Aimi, Lee and
Sakuma [3] give another proof for this result.

In this paper, we consider the crossing numbers of 2–bridge knots whose knot groups
admit epimorphisms onto a 2–bridge knot group. By using this result, we estimate
how many knot groups a 2–bridge knot group maps onto. Furthermore, we formulate
the generating function which determines the number of 2–bridge knots K admitting
epimorphisms from G.K/ onto the knot group of a given 2–bridge knot.

Throughout this paper, we do not distinguish a knot from its mirror image, since their
knot groups are isomorphic and we discuss epimorphisms between knot groups. The
numberings of the knots with up to 10 and 11 crossings follow Rolfsen’s book [19]
and the web page KnotInfo [6] by Cha and Livingston, respectively

2 2–bridge knot and continued fraction expansion

In this section, we recall some well-known results on 2–bridge knots. See [5; 17] in
detail, for example.

A 2–bridge knot corresponds to a rational number r D q=p 2Q; we denote the knot
by K.q=p/. Schubert classified 2–bridge knots as follows.

Theorem 2.1 (Schubert) Let K.q=p/ and K.q0=p0/ be 2–bridge knots. These knots
are equivalent if and only if the following conditions hold:

(1) p D p0 .

(2) Either q �˙q0 .mod p/ or qq0 �˙1 .mod p/.

By using this theorem, it is sufficient to consider r 2Q\ .0; 1
2/. Note that K.0/ is the

trivial link and that K.1
2/ is the Hopf link. A rational number q=p 2Q\ .0; 1

2/ can
be expressed as a continued fraction expansion

q

p
D Œa1; a2; : : : ; am�1; am�D

1

a1C
1

a2C
1

: : : 1

am�1C
1

am

;
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where a1 > 0. Note that a rational number admits many continued fraction expansions.
For example, we have 29

81
D Œ3;�5; 4; 1;�2�D Œ2; 1; 3; 1; 5�. It is easy to see that the

following properties are satisfied. First, we can delete zeros in a continued fraction
expansion by using the equation

Œa1; a2; : : : ; ai�2; ai�1; 0; aiC1; aiC2; : : : ; am�

D Œa1; a2; : : : ; ai�2; ai�1C aiC1; aiC2; : : : ; am�:

If we consider a 2–bridge knot, we may assume that a1; am ¤˙1, since

Œa1; a2; : : : ; am�1;˙1�D Œa1; a2; : : : ; am�1˙ 1�

and K.Œa1; a2; : : : ; am�/ is equivalent to K.Œam; am�1; : : : ; a1�/ up to mirror image.
Moreover, the euclidean algorithm allows us to take a continued fraction expansion
such that all ai in Œa1; a2; : : : ; am� are positive.

If a rational number r is expressed as Œa1; a2; : : : ; am� with ai > 0 and a1; am � 2,
then the continued fraction expansion is called standard. By the above arguments, we
can always take the standard continued fraction expansion of the rational number r for
a 2–bridge knot K.r/. Furthermore, the standard continued fraction expansion gives us
the unique continued fraction expansion of the rational number which corresponds to a
2–bridge knot in the following sense. Let K.q=p/ and K.q0=p0/ be 2–bridge knots.
Suppose that these rational numbers are written as the standard continued fraction
expansions q=p D Œa1; a2; : : : ; am� and q0=p0 D Œa0

1
; a0

2
; : : : ; a0m0 �. It is known that

K.q=p/ and K.q0=p0/ are equivalent up to mirror image if and only if

.a1; a2; : : : ; am/D .a
0
1; a
0
2; : : : ; a

0
m0/ or .a0m0 ; a

0
m0�1; : : : ; a

0
1/:

Thistlethwaite [21], Kauffman [11] and Murasugi [15; 16] independently proved the
first Tait conjecture. Hence, we can determine the crossing number of a 2–bridge knot
by using the standard continued fraction expansion. Namely, the crossing number for
the standard continued fraction Œa1; a2; : : : ; am� is given by

c.K.Œa1; a2; : : : ; am�//D

mX
iD1

ai :

3 Epimorphisms between 2–bridge knot groups

We have the following remarkable result about epimorphisms between 2–bridge knot
groups: an epimorphism between 2–bridge knot groups is always meridional. Moreover,
the rational numbers for these 2–bridge knots have the following relationship.

Algebraic & Geometric Topology, Volume 17 (2017)
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Theorem 3.1 (Ohtsuki, Riley and Sakuma [18], Agol [1], Aimi, Lee and Sakuma [3])
Let K.r/;K.zr/ be 2–bridge knots, where r D Œa1; a2; : : : ; am�. If there exists an
epimorphism 'W G.K.zr//!G.K.r//, then ' is meridional and zr can be written as

(�) zr D Œ"1a; 2c1; "2a�1; 2c2; "3a; 2c3; "4a�1; 2c4; : : : ; "2na�1; 2c2n; "2nC1a�;

where a D .a1; a2; : : : ; am/, a�1 D .am; am�1; : : : ; a1/, "i D ˙1 ."1 D 1/, and
ci 2 Z.

Remark If a rational number zr is expressed in the form (�), then we say that zr has
an expansion of type 2nC 1 with respect to aD .a1; a2; : : : ; am/.

(1) In this paper, we do not need to consider an expression of type 2n with respect
to a , since K.Œ"1a; 2c1; : : : ; 2c2n�1; "2na�1�/ is a 2–bridge link.

(2) If ci D 0 and "i � "iC1 D�1, then

zr D Œ: : : ; "i�1a˙1; 2ci�1; "ia
�1; 0; "iC1a˙1; 2ciC1; "iC2a�1; : : : �

D Œ: : : ; "i�1a˙1; 2ci�1; 0; 2ciC1; "iC2a�1; : : : �

D Œ: : : ; "i�1a˙1; 2.ci�1C ciC1/; "iC2a�1; : : : �:

It follows that zr has type 2n� 1. Hence we do not deal with the case ci D 0,
"i � "iC1 D�1.

Example 3.2 For example, we consider a 2–bridge knot K. 5
27/. The rational number

5
27

has continued fraction expansions

5
27
D Œ5; 2; 2�D Œ3; 0; 3;�2; 3�:

The second expression implies that the crossing number of K. 5
27/ is 9. The last

expression is of type 3 with respect to aD .3/. Therefore the knot group G.K. 5
27//

admits an epimorphism onto the trefoil knot group G.31/D G.K.1
3//D G.K.Œ3�//.

Similarly, we have

1
9
D Œ9�D Œ3; 0; 3; 0; 3�; 19

45
D Œ2; 2; 1; 2; 2�D Œ3;�2; 3;�2; 3�:

It follows that there exist epimorphisms from G.K.1
9// and G.K.19

45// onto the trefoil
knot group.

The previous papers [12] and [10] determined all the pairs of prime knots with up to 11

crossings which admit meridional epimorphisms between their knot groups. The results
in those works coincide with the above examples. Note that K.1

9/D 91 , K. 5
27/D 96 ,

and K.19
45/D 923 .
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In general, even if Œa1; : : : ; am� is the standard continued fraction expansion, and zr is
of type 2nC 1 with respect to .a1; : : : ; am/, this expansion of zr may not be standard.
However, we can get the standard continued fraction expansion and then determine the
crossing number of K.zr/.

Theorem 3.3 Let Œa1; : : : ; am� be the standard continued fraction expansion. Suppose
that a rational number zr has a continued fraction expansion of the form (�) of type
2nC1 with respect to aD .a1; : : : ; am/. Then the crossing number of K.zr/ is given by

c.K.zr//D .2nC 1/jajC

2nX
iD1

.2jci j � .i/� x .i//;

where jaj D
Pm

iD1 ai and

 .i/D

�
1 if "i � ci < 0;

0 if "i � ci � 0;
x .i/D

�
1 if ci � "iC1 < 0;

0 if ci � "iC1 � 0:

Note that
2nX

iD1

. .i/C x .i//

is the number of sign changes. To prepare for Theorem 3.3, we prove the following
lemma. Namely, negative integers in a continued fraction expansion can be changed
into positive integers.

Lemma 3.4 Let a1; : : : ; ak ; b1; : : : ; bl ; c1; : : : ; cm be integers. We have four cases:

(1) If l � 2, then

Œa1; : : : ; ak ;�b1;�b2; : : : ;�bl�1;�bl ; c1; : : : ; cm�

D Œa1; : : : ; ; ak�1; ak � 1; 1; b1� 1; b2; : : : ; bl�1; bl � 1; 1; c1� 1; c2; : : : ; cm�:

(2) If l D 1 and b1 � 2, then

Œa1; : : : ; ak ;�b1; c1; : : : ; cm�

D Œa1; : : : ; ; ak�1; ak � 1; 1; b1� 2; 1; c1� 1; c2; : : : ; cm�:

(3) If l � 2, then

Œa1; : : : ; ak ;�b1; : : : ;�bl �D Œa1; : : : ; ; ak�1; ak � 1; 1; b1� 1; b2; : : : ; bl �:

(4) If l D 1 and b1 � 2, then

Œa1; : : : ; ak ;�b1�D Œa1; : : : ; ; ak�1; ak � 1; 1; b1� 1�:
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Proof Recall the matrix representation of a continued fraction expansion (see for
instance [14]). For a continued fraction Œx1;x2; : : : ;xm�, we define p; q by�

x1 1

1 0

��
x2 1

1 0

�
� � �

�
xm 1

1 0

�
D

�
p �

q �

�
:

It is known that we have an equality

Œx1;x2; : : : ;xm�D
q

p
:

We will prove (1) by using the above matrix representation on both sides of the equation.
Let A;C be the matrices defined by

AD

�
a1 1

1 0

�
� � �

�
ak�1 1

1 0

�
; C D

�
c2 1

1 0

�
� � �

�
cm 1

1 0

�
;

respectively, and define B by

B D

�
B11 B12

B21 B22

�
D

�
b2 1

1 0

�
� � �

�
bl�1 1

1 0

�
:

The matrix representation of the left-hand side of .1/ is�
a1 1

1 0

�
� � �

�
ak�1 1

1 0

��
ak 1

1 0

��
�b1 1

1 0

��
�b2 1

1 0

�
� � �

�

�
�bl�1 1

1 0

��
�bl 1

1 0

��
c1 1

1 0

��
c2 1

1 0

�
� � �

�
cm 1

1 0

�
DA

�
�akb1C 1 ak

�b1 1

��
.�1/lB11 .�1/lC1B12

.�1/lC1B21 .�1/lB22

��
�blc1C 1 �bl

c1 1

�
C

DA

�
akb1� 1 ak

b1 1

��
.�1/lB11 .�1/lB12

.�1/lB21 .�1/lB22

��
blc1� 1 bl

c1 1

�
C

D .�1/lA

�
akb1� 1 ak

b1 1

��
B11 B12

B21 B22

��
blc1� 1 bl

c1 1

�
C

D .�1/l
�

a1 1

1 0

�
� � �

�
ak�1 1

1 0

��
ak � 1 1

1 0

��
1 1

1 0

�
�

�
b1� 1 1

1 0

��
b2 1

1 0

�
� � �

�
bl�1 1

1 0

��
bl � 1 1

1 0

�
�

�
1 1

1 0

��
c1� 1 1

1 0

��
c2 1

1 0

�
� � �

�
cm 1

1 0

�
:

The last expression is .�1/l times the matrix representation of the right-hand side
of (1). Therefore the rational numbers on both sides of (1) coincide.
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Next, we examine the matrix representation of the left-hand side of (2):�
a1 1

1 0

�
� � �

�
ak�1 1

1 0

��
ak 1

1 0

��
�b1 1

1 0

��
c1 1

1 0

��
c2 1

1 0

�
� � �

�
cm 1

1 0

�
DA

�
�akb1c1C ak C c1 �akb1C 1

�b1c1C 1 �b1

�
C

D .�1/A

�
akb1c1� ak � c1 akb1� 1

b1c1� 1 b1

�
C

D .�1/

�
a1 1

1 0

�
� � �

�
ak�1 1

1 0

��
ak � 1 1

1 0

��
1 1

1 0

��
b1� 2 1

1 0

�
�

�
1 1

1 0

��
c1� 1 1

1 0

��
c2 1

1 0

�
� � �

�
cm 1

1 0

�
:

The last expression is also .�1/ times the matrix representation of the right-hand side
of (2). Hence these continued fraction expressions represent the same rational number.

A similar proof works for (3) and (4).

Example 3.5 Suppose that the rational number 29
81

is expressed as Œ3;�5; 4; 1;�2�.
The above arguments show that

Œ3;�5; 4; 1;�2�D Œ2; 1; 3; 1; 3; 0; 1; 1�D Œ2; 1; 3; 1; 4; 1�D Œ2; 1; 3; 1; 5�:

The last expression is the standard continued fraction expansion, and then the crossing
number of K.29

81/ is

c.K.29
81//D c.K.Œ3;�5; 4; 1;�2�//D c.K.Œ2; 1; 3; 1; 5�//D 12:

In Lemma 3.4, if all ai ; bi ; ci are positive, then the integers on the right-hand sides
of the equations are positive or zero. Hence, we can obtain the standard continued
fraction expansion and determine the crossing number of a 2–bridge knot.

Corollary 3.6 Let ai ; bi ; ci be positive integers. If l ¤ 1 or b1 � 2, then we have

(1) c.K.Œa1; : : : ; ak ;�b1; : : : ;�bl ; c1; : : : ; cm�//D
kP

iD1

ai C

lP
iD1

bi C

mP
iD1

ci � 2,

(2) c.K.Œa1; : : : ; ak ;�b1; : : : ;�bl �//D
kP

iD1

ai C

lP
iD1

bi � 1.

Corollary 3.6 suggests how to determine the crossing number without using the explicit
standard continued fraction expansion. To be precise, it is sufficient to compute the
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sum of the absolute values in a continued fraction expansion and to count the number
of sign changes. In the above example, the signs of components in Œ3;�5; 4; 1;�2� are
changed three times. Then the crossing number is

c.K.Œ3;�5; 4; 1;�2�//D j3jC j� 5jC j4jC j1jC j� 2j � 3D 12:

These arguments prove Theorem 3.3.

Proof of Theorem 3.3 The sum of the absolute values of components in zr is

.2nC 1/jajC

2nX
iD1

.2jci j/:

By Lemma 3.4, if the signs in a continued fraction expansion of zr are changed k times,
then the crossing number of K.zr/ is decreased by k from the above value. The number
of sign changes in zr is

2nX
iD1

. .i/C x .i//

by definition. Since zr is an expression of type 2nC 1 with respect to standard a , we
can apply Corollary 3.6. Therefore this completes the proof.

We define xci to be 2jci j � .i/� x .i/. Then xci is not negative.

Proposition 3.7 Suppose that zr is as above. Then xci � 0 for 1� i � 2n.

Proof If ci ¤ 0, then 2jci j � 2. On the other hand,  .i/ and x .i/ are 0 or 1, and
then we get xci � 0. If ci D 0, then  .i/D 0 and x .i/D 0 by definition. Therefore
xci D 0 in this case.

4 Simon’s conjecture

Simon’s conjecture for 2–bridge knots is proved in [4], and for all knots in [2], as
mentioned in Section 1. In this section, we investigate how many knot groups a 2–bridge
knot group maps onto.

Let EK.n/ be the maximal number of knots whose knot groups a 2–bridge knot group
with n crossings admits epimorphisms onto. Theorem 3.3 and Proposition 3.7 imply
the following, which is one of the main results in this paper. It gives us a rough estimate
of EK.n/.
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Theorem 4.1 Let K.zr/ be a 2–bridge knot. If there exists an epimorphism from
G.K.zr// onto the knot group of another knot K , then

c.K.zr//� 3c.K/:

In particular, all the 2–bridge knots K with up to 8 crossings are minimal, that is to
say, if G.K/ admits an epimorphism onto a knot group G.K0/, then K0 is equivalent
to K or the trivial knot.

Proof By [4, Corollary 1.3] and [20, Proposition 2.4], if G.K.zr// admits an epimor-
phism onto G.K/, then K is also a 2–bridge knot or the trivial knot. In the case that
K is the trivial knot, the desired inequality obviously holds.

Next, we assume that K is a 2–bridge knot and that r is the corresponding rational
number. Take the standard continued fraction expansion Œa1; a2; : : : ; am� of r . Then zr
has an expansion of type 2nC1 with respect to aD .a1; a2; : : : ; am/. By Theorem 3.3,
we have

c.K.zr//D .2nC 1/jajC

2nX
iD1

.2jci j � .i/� x .i//

D .2nC 1/c.K/C

2nX
iD1

xci

� .2nC 1/c.K/ (by Proposition 3.7)

� 3c.K/:

Furthermore, since a nontrivial knot has at least 3 crossings, all the 2–bridge knots
with up to 8 crossings are minimal.

Remark The previous paper [12] shows that there are seven knots with less than
9 crossings whose knot groups admit epimorphisms onto the trefoil knot group. To
be precise, they are the 3–bridge knots 85 , 810 , 815 , 818 , 819 , 820 , 821 . So the
inequality of Theorem 4.1 does not hold for 3–bridge knots.

Ernst and Sumners [8] determined the number TK.n/ of 2–bridge knots in terms of
the crossing number n� 3 as follows:

TK.n/D

8̂̂̂̂
<̂̂
ˆ̂̂̂:

1
3
.2.n�3/C 2.n�4/=2/ if n� 0 .mod 4/;

1
3
.2.n�3/C 2.n�3/=2/ if n� 1 .mod 4/;

1
3
.2.n�3/C 2.n�4/=2� 1/ if n� 2 .mod 4/;

1
3
.2.n�3/C 2.n�3/=2C 1/ if n� 3 .mod 4/:
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Then we can estimate EK.n/ by using Theorem 4.1:

EK.n/�
bn=3cX
kD3

TK.k/:

These numbers are obtained as shown in the following table:

n 9–11 12–14 15–17 18–20 21–23 24–26 27–29 30–32 33–35 36–38 39–41Pbn=3c
kD3

TK.k/ 1 2 4 7 14 26 50 95 186 362 714

In particular, we obtain that the knot groups of 2–bridge knots with 12, 13 or 14

crossings map onto at most two knot groups, which are the trefoil knot group G.31/ and
the figure eight knot group G.41/. On the other hand, Garrabrant, Hoste and Shanahan
studied an upper bound for a set of 2–bridge knots with respect to epimorphisms between
their knot groups. We recall their arguments more precisely. Let aD .a1; a2; : : : ; a2n/

be a vector such that

(1) each ai is in f�2; 0; 2g,

(2) a1 ¤ 0 and a2n ¤ 0,

(3) if ai D 0, then ai�1 D aiC1 D˙2.

For such an a , we call Œa1; a2; : : : ; a2n� an even standard continued fraction expansion.
If we consider aD .a1; a2; : : : ; a2n/ up to the equivalence relations aD˙b and aD

˙b�1 , where b�1 is b read backwards, then a 2–bridge knot can be expressed uniquely
as K.Œa1; a2; : : : ; a2n�/ by using an even standard continued fraction expansion:

Proposition 4.2 (Garrabrant, Hoste and Shanahan [9]) Let Œa1; a2; : : : ; a2n� and
Œb1; b2; : : : ; b2n� be even standard continued fraction expansions of the same length.
If a 2–bridge knot group admits epimorphisms onto G.K.Œa1; a2; : : : ; a2n�// and
G.K.Œb1; b2; : : : ; b2n�//, then .a1; a2; : : : ; a2n/D .b1; b2; : : : ; b2n/.

For example, the trefoil is 31 DK.Œ2;�2�/ and the figure eight knot is 41 DK.Œ2; 2�/.
Since the lengths of these even standard continued fraction expansions are the same,
there does not exist a 2–bridge knot whose knot group admits epimorphisms onto
G.31/ and G.41/ simultaneously, by Proposition 4.2. Similarly, a 2–bridge knot group
maps onto the knot group of at most one of f51; 52; 61; 62; 63g, since

51 DK.Œ2;�2; 2;�2�/; 52 DK.Œ2;�2; 0;�2�/;

61 DK.Œ2; 0; 2; 2�/; 62 DK.Œ2; 2;�2; 2�/; 63 DK.Œ2;�2;�2; 2�/:

In order to extend this argument, we consider the relationship between the length of an
even standard continued fraction expansion and the crossing number.
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Proposition 4.3 Let Œa1; a2; : : : ; a2n� be an even standard continued fraction expan-
sion. Then the crossing number c.K.Œa1; a2; : : : ; a2n�// satisfies the inequalities

2nC 1� c.K.Œa1; a2; : : : ; a2n�//� 4n:

Proof First of all, we delete zeros in .a1; a2; : : : ; a2n/ as before:

Œa1; a2; : : : ; a2n�D Œa
0
1; a
0
2; : : : ; a

0
2n0 �;

where a0i 2 2Znf0g. Let ` be the number of zeros in .a1; a2; : : : ; a2n/. Then we have
2`D 2n� 2n0 and

2n0X
iD1

.ja0i j � 2/D 2`:

It follows that
2n0X
iD1

ja0i j D 2`C 4n0 D 2nC 2n0:

By the same argument as in the proof of Theorem 3.3, we obtain

c.K.Œa1; a2; : : : ; a2n�//D c.K.Œa01; a
0
2; : : : ; a

0
2n0 �//D

2n0X
iD1

ja0i j � k D

2nX
iD1

jai j � k;

where k is the number of sign changes in .a0
1
; a0

2
; : : : ; a0

2n0/. Note that 0� k � 2n0�1.
(If all a0i are positive or negative, then kD 0. If a0i �a

0
iC1

< 0 for all i .0� i � 2n0�1/,
then k D 2n0� 1.) Since jai j � 2, we have

2nX
iD1

jai j � k � 4n:

Moreover, we obtain
2n0X
iD1

ja0i j � k D 2nC 2n0� k

� 2nC 2n0� .2n0� 1/

D 2nC 1:

This completes the proof.

By Proposition 4.2, if two distinct 2–bridge knots K;K0 have even standard continued
fraction expansions of the same length, then there does not exist a 2–bridge knot
whose knot group maps onto G.K/ and G.K0/. Combined with Proposition 4.2 and
Proposition 4.3, we can estimate EK.n/ more precisely.
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Theorem 4.4 The number EK.n/ satisfies

EK.n/�
j

n�3

6

k
:

Proof Let K be a 2–bridge knot with n crossings. If G.K/ admits an epimorphism
onto G.K0/, then the crossing number of K0 is at most bn=3c, by Theorem 4.1. Let
Œa1; a2; : : : ; a2m� be the even standard continued fraction expansion of K0 , namely
K0DK.Œa1; a2; : : : ; a2m�/. By Proposition 4.2, EK.n/ is less than or equal to the num-
ber of the lengths of even standard continued fraction expansions. By Proposition 4.3,
we have

2m� bn=3c� 1:

Hence we obtain
EK.n/�

j
bn=3c�1

2

k
D

j
n�3

6

k
:

For example, the knot group of a 2–bridge knot with 50 crossings maps onto at most
seven distinct knot groups. Actually, we can get the precise number EK.n/ for n� 30

by computer program:

EK.n/D

8<:
0 if nD 3; 4; 5; 6; 7; 8;

1 if nD 9; 10; 11; 12; 13; 14; 18; 19; 20; 24;

2 if nD 15; 16; 17; 21; 22; 23; 25; 26; 27; 28; 29; 30:

In particular, EK.n/ is less than 3 for all n � 30. On the other hand, it is easy to
see that G.K.Œ45�// maps onto G.K.Œ3�//, G.K.Œ5�/, G.K.Œ9�// and G.K.Œ15�//. It
follows that EK.45/� 4.

Problem Does there exist a 2–bridge knot with less than 45 crossings whose knot
group maps onto three (or four) distinct knot groups? In general, determine EK.n/
explicitly for all n� 31.

5 The generating function

As shown in Example 3.2, there exist three distinct 2–bridge knots with 9 crossings
whose knot groups admit epimorphisms onto the trefoil knot group. In this section,
we generalize this result. Namely, for a given 2–bridge knot K.r/, we determine the
number of 2–bridge knots K.zr/ which admit epimorphisms 'W G.K.zr//!G.K.r//,
in terms of c.K.zr//.

Theorem 5.1 For a given rational number r , we take the standard continued fraction
expansion Œa1; a2; : : : ; am� of r and define the generating function f as follows:
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(1) If .a1; a2; : : : ; am/¤ .am; : : : ; a2; a1/, then

f .r/D

1X
nD1

1X
kD0

22n
� 2nCk�1

k

�
t .2nC1/c.K.r//Ck :

(2) If .a1; a2; : : : ; am/D .am; : : : ; a2; a1/, then

f .r/D

1X
nD1

1X
kD0

g.n; k/ t .2nC1/c.K.r//Ck ;

where

g.n; k/D

(
22n�1

�
2nCk�1

k

�
for k odd;

22n�1
�
2nCk�1

k

�
C 2n�1

�nCk=2�1
k=2

�
for k even:

Here
�

a
b

�
D

a!
b!.a�b/!

. Then the number of 2–bridge knots K.zr/ which admit epimor-
phisms 'W G.K.zr//!G.K.r// is the coefficient of tc.K.zr// in f .r/.

Proof We will count the number of 2–bridge knots with .2nC1/c.K.r//Ck crossings
which correspond to rational numbers of the form (�). The crossing number c.K.r//

is
Pm

iD1 ai . Compared with Theorem 3.3, we have

k D

2nX
iD1

xci D

2nX
iD1

2jci j � .i/� x .i/;

where xci � 0 by Proposition 3.7.

Suppose that xci D j (� 0). Then ."ia
˙1; 2ci ; "iC1a�1/, which is a part of zr , has the

following possibilities:

(1) if j is even and "i D 1, then

."ia
˙1; 2ci ; "iC1a�1/D .a˙1; j ; a�1/ or .a˙1;�.j C 2/; a�1/I

(2) if j is even and "i D�1, then

."ia
˙1; 2ci ; "iC1a�1/D .�a˙1;�j ;�a�1/ or .�a˙1; j C 2;�a�1/I

(3) if j is odd and "i D 1, then

."ia
˙1; 2ci ; "iC1a�1/D .a˙1; j C 1;�a�1/ or .a˙1;�.j C 1/;�a�1/I

(4) if j is odd and "i D�1, then

."ia
˙1; 2ci ; "iC1a�1/D .�a˙1; j C 1; a�1/ or .�a˙1;�.j C 1/; a�1/:
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Therefore ."ia
˙1; 2ci ; "iC1a�1/ always has two possibilities. Besides, there are�

2nCk�1
k

�
cases for .xc1; : : : ; xc2n/, namely

.xc1; xc2; : : : ; xc2n/D .k; 0; : : : ; 0/; .k � 1; 1; : : : ; 0/; : : : ; .0; 0; : : : ; 0; k/:

Hence there are 22n
�
2nCk�1

k

�
2–bridge knots with .2nC 1/c.K.r//C k crossings,

and we get the generating function of (1).

In the case when .a1; : : : ; am/D .am; : : : ; a1/, we see

K.Œ"1a; 2c1; "2a�1; : : : ; 2c2n; "2nC1a�/DK.Œ"2nC1a; 2c2n; : : : ; "2a�1; 2c1; "1a�/:

It implies that if zr is not symmetric, that is, if zr is not in the form

Œ"1a; 2c1; : : : ; 2cn; "nC1a˙1; 2cn; : : : ; 2c1; "1a�;

we counted the same knot twice. Then the number of knots is

1

2

�
22n

�2nCk�1

k

�
� 2n

�nCk=2�1

k=2

��
C 2n

�nCk=2�1

k=2

�
D 22n�1

�2nCk�1

k

�
C 2n�1

�nCk=2�1

k=2

�
:

Notice that if k is odd, then zr must not be symmetric. As we saw in Section 2, if
the standard continued fraction expansions are not the same, then the 2–bridge knots
are not equivalent. We can get the standard fraction expansion of zr by Lemma 3.4. It
shows that these knots which are obtained by the Ohtsuki–Riley–Sakuma construction
are not equivalent. This completes the proof.

Example 5.2 First, we apply Theorem 5.1 to the trefoil knot. The generating function
for the trefoil K.1

3/DK.Œ3�/ is

f .1
3/D 3t9

C 4t10
C 7t11

C 8t12
C 11t13

C 12t14

C 25t15
C 48t16

C 103t17
C 180t18

C 309t19
C 472t20

C 743t21
C 1180t22

C 2045t23
C 3584t24

C 6391t25
C � � � :

Then the number of 2–bridge knots with 9 crossings whose knot groups admit epimor-
phisms onto the trefoil knot group is the coefficient of t9 , which is 3. These 2–bridge
knots are 91 , 96 , 923 , as shown in Example 3.2.

Similarly, as shown in [12], there are four distinct 2–bridge knots with 10 crossings
whose knot groups admit epimorphisms onto the trefoil knot group, namely 105 , 109 ,
1032 , 1040 ; as shown in [10], there are seven distinct such 2–bridge knots with 11

crossings, namely 11a117 , 11a175 , 11a176 , 11a203 , 11a236 , 11a306 , 11a355 .
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Another example shows the generating function for 52 DK.3
7/DK.Œ2; 3�/:

f .3
7/D 4t15

C 8t16
C 12t17

C 16t18
C 20t19

C 24t20

C 28t21
C 32t22

C 36t23
C 40t24

C 60t25
C 112t26

C 212t27
C 376t28

C 620t29
C 960t30

C � � � :
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Homotopy decompositions of gauge groups
over real surfaces

MICHAEL WEST

We analyse the homotopy types of gauge groups of principal U.n/–bundles associated
to pseudoreal vector bundles in the sense of Atiyah. We provide satisfactory homotopy
decompositions of these gauge groups into factors in which the homotopy groups are
well known. Therefore, we substantially build upon the low-dimensional homotopy
groups as provided by Biswas, Huisman and Hurtubise.

55P15, 55Q52; 30F50

1 Introduction

Recently, the topology of gauge groups over real surfaces has received widespread
interest due to their intimate ties with the moduli spaces of stable vector bundles; see
Biswas, Huisman and Hurtubise [3] and Schaffhauser [8]. Indeed, there have been
explicit calculations of some of the topological invariants of these gauge groups. For
instance, real vector bundles over real surfaces were originally classified in [3] but
more recently in Georgieva and Zinger [4]. Cohomology calculations of the classifying
spaces appeared in Liu and Schaffhauser [6] and Baird [1; 2]. Furthermore, some
of the low-dimensional homotopy groups were presented in [3]. The purpose of this
paper is to extend the calculations of these homotopy groups by providing homotopy
decompositions of the gauge groups into products of known factors.

In the coming section, we define our objects of interest and state their classification
results. We go on to state the results of this paper, and then proofs are provided in
Section 2. In Section 3, we present tables of homotopy groups and compare them to
those provided in [3] in which we highlight a discrepancy.
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1.1 Definitions

The pair .X; �/, where X is a compact connected Riemann surface and � is an
antiholomorphic involution, will be called a real surface.

To a real surface .X; �/, we associate the triple .g.X /; r.X /; a.X //, where

� g.X / is the genus of X ;

� r.X / is number of path components of the fixed set X � ;

� a.X /D 0 if X=� is orientable and a.X /D 1 otherwise.

We note that the path components of X � are each homeomorphic to S1 . The following
classification of real surfaces was studied in Weichold [13].

Theorem 1.1 (Weichold) Let .X; �/ and .X 0; � 0/ be real surfaces. Then there is a
isomorphism X !X 0 (in the category of real surfaces) if and only if

.g.X /; r.X /; a.X //D .g.X 0/; r.X 0/; a.X 0//:

Furthermore, if a triple .g; r; a/ satisfies one of the following conditions:

(1) if aD 0, then 1� r � gC 1 and r � .gC 1/ mod 2;

(2) if aD 1, then 0� r � g ;

then there is a real surface .X; �/ such that .g; r; a/D .g.X /; r.X /; a.X //.

Therefore, a real surface .X; �/ is completely determined by its triple .g; r; a/, which
we call the type of the real surface.

Let � W P !X be a principal U.n/–bundle over the underlying Riemann surface X

of the real surface .X; �/. A lift of � is a map z� W P ! P satisfying

(1) �� D �z� ;

(2) z�.p �g/D z�.p/ � xg for all p 2 P;g 2 U.n/;

where xg represents the entrywise complex conjugate of g 2 U.n/. We remark that,
due to property 2 of a lift, the fixed point set P z� has the structure of a principal
O.n/–bundle over the real points X � .

Let z� be a lift. Then we say that .P; z�/! .X; �/ is a real principal U.n/–bundle (or
real bundle) if z� further satisfies

(3) z�2.p/D p for all p 2 P ;
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or if n is even, we say that .P; z�/! .X; �/ is a quaternionic principal U.n/–bundle
(or quaternionic bundle) if z� satisfies

(3 0 ) z�2.p/D p � .�In/ for all p 2 P ;

where In represents the n� n identity matrix. Such bundles were classified in [3].

Proposition 1.2 (Biswas, Huisman, Hurtubise) Let .X; �/ be a type-.g; r; a/ real
surface, and denote its fixed components by Xi for 1 � i � r . Then real principal
U.n/–bundles .P; z�/! .X; �/ are classified by the first Stiefel–Whitney classes of
the restriction to bundles Pi!Xi over the fixed components

!1.Pi/ 2H 1.Xi ;Z=2/Š Z=2;

and by the first Chern classes of the bundle over X ,

c1.P / 2H 2.X;Z/Š Z;

subject to the relation

c1.P /�
X

w1.Pi/ mod .2/:

Furthermore, given any such characteristic classes there is a real principal U.n/–bundle
that realises them.

We write

.c; w1; w2; : : : ; wr / WD .c1.P /; w1.P1/; w1.P2/; : : : ; w1.Pr //;

and we will refer to the tuple .c; w1; w2; : : : ; wr / 2Z�
Q

r Z2 as the class of the real
principal U.n/–bundle .P; z�/.

Proposition 1.3 (Biswas, Huisman, Hurtubise) Let .X; �/ be a real surface of type
.g; r; a/, and let n be even. Then quaternionic principal U.n/–bundles .P; z�/! .X; �/

are classified by their first Chern class which must be even. Furthermore, given any
such Chern class, there is a quaternionic principal U.n/–bundle that realises it.

We recall that we only cater for quaternionic bundles of even rank. However, a similar
result for the case when n is odd is also handled in [3].

Writing c D c1.P /, we will therefore refer to c 2 2Z as the class of the quaternionic
principal U.n/–bundle .P; z�/.
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Let .P; z�/! .X; �/ be a real or quaternionic principal U.n/–bundle. An automor-
phism of .P; z�/ is a U.n/–equivariant map �W P!P such that the following diagrams
commute:

P
�
//

��

P

��

X
idX
// X

and
P

�
//

z�
��

P

z�
��

P
�
// P

Let Map.P;P / denote the set of self maps of P endowed with the compact open
topology.

Definition 1.4 The (unpointed) gauge group G .P; z�/ is the subspace of Map.P;P /
whose elements are automorphisms of .P; z�/.

It will be convenient to provide decompositions for certain subspaces of the gauge
group.

Definition 1.5 Choose a basepoint �X of .X; �/ such that �.�X / D �X if r > 0.
Then the (single)-pointed gauge group G �.P; z�/ consists of the elements of G .P; z�/

that restrict to the identity above �X .

Another pointed gauge group of interest was considered in [3]. Let .X; �/ be a real
surface of type .g; r; a/; then for each 1� i � r , choose a designated point �i contained
in the fixed component Xi . Further, if aD 1, choose another designated point �rC1

that is not fixed by the involution. By convention, we choose �1 to be �X as in
Definition 1.5.

Definition 1.6 The .rCa/–pointed gauge group G �
.rCa/ .P; z�/ consists of the ele-

ments of G .P; z�/ that restrict to the identity above these .r C a/ designated points
of .X; �/.

1.2 Main results for real bundles

In this section, we aim to present the main results pertaining to homotopy decompo-
sitions of gauge groups of real principal U.n/–bundles. To ease notation, we will
sometimes use the following:
� G ..g; r; a/I .c; w1; w2; : : : ; wr // to represent the unpointed gauge group of a

real bundle of class .c; w1; w2; : : : ; wr / over a real surface of type .g; r; a/;
� G �..g; r; a/I .c; w1; w2; : : : ; wr // to represent the single-pointed gauge group

of the real bundle as above;
� G �

.rCa/ ..g; r; a/I .c; w1; w2; : : : ; wr // to represent the .rCa/–pointed gauge
group of the real bundle as above.
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We first present the results relating to when gauge groups of different real bundles have
the same homotopy type. For .rCa/–pointed gauge groups this is always the case.

Proposition 1.7 Let .P; z�/ and .P 0; � 0/ be real principal U.n/–bundles over a real
surface .X; �/ of arbitrary type .g; r; a/, then there is a homotopy equivalence

B G
�.rCa/ .P; z�/' B G

�.rCa/ .P 0; � 0/:

However, this is not necessarily the case for the single-pointed and unpointed gauge
groups, although we do have the following results.

Proposition 1.8 For any c; c0; w1; w
0
1

, there is a homotopy equivalence

B G
�..g; r; a/I .c; w1; w2; : : : ; wr //' B G

�..g; r; a/I .c0; w01; w2; : : : ; wr //:

Proposition 1.9 Let the following be classifying spaces of rank-n gauge groups. Then
there are isomorphisms of gauge groups

G ..g; r; a/I .c; w1; w2; : : : ; wr //Š G ..g; r; a/I .cC 2n; w1; w2; : : : ; wr //:

Proposition 1.10 Let n be odd. Then there are isomorphisms of rank-n gauge groups

(1) G ..g; r; a/I .c; w1; w2; : : : ; wr //Š G ..g; r; a/I .c;
Pr

iD1wi ; 0; : : : ; 0//;
(2) G �..g; r; a/I .c; w1; w2; : : : ; wr //Š G �..g; r; a/I .c;

Pr
iD1wi ; 0; : : : ; 0//.

It would be better to provide stronger statements of Propositions 1.7 and 1.8, such as
in the form of the isomorphisms of Propositions 1.9 and 1.10. Indeed, the proofs of the
latter invoke a conceptually simple argument and it may be the case that Propositions 1.7
and 1.8 can be given stronger statements using a similar approach.

We now state homotopy decompositions for .rCa/–pointed gauge groups.

Theorem 1.11 Let .P; z�/ be of arbitrary class. Then there are integral homotopy
decompositions:

type decompositions for G �
.rCa/.P; z�/

.g; 0; 1/ for g even G �..0; 0; 1/I 0/�
Q
g
�U.n/

.g; 0; 1/ for g odd G �..1; 0; 1/I 0/�
Q

g�1

�U.n/

.g; r; 0/ �2.U.n/=O.n//�
Q

.g�rC1/C.r�1/

�U.n/�
Q

r�1

�O.n/

.g; r; 1/
g� r even G �..1; 1; 1/I .0; 0//�

Q
.g�r/C.r�1/C1

�U.n/�
Q

r�1

�O.n/

.g; r; 1/
g� r odd G �..1; 1; 1/I .0; 0//�

Q
.g�r�1/C.r�1/C2

�U.n/�
Q

r�1

�O.n/
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In the single-pointed case, we have to be a little more careful with regards to the class
of the underlying real bundle. For the cases where G �

.rCa/ .P; z�/¤ G �.P; z�/, that is
when r C a> 1, we have the following results.

Theorem 1.12 Let n be odd or let .P; z�/ be of class .c; w1; 0; : : : ; 0/. Let rCa> 1.
Then there are integral homotopy decompositions:

type decompositions for G �.P; z�/

.g; r; 0/ �2.U.n/=O.n//�
Q

g�rC1

�U.n/�
Q

r�1

�O.n/�
Q

r�1

�.U.n/=O.n//

.g; r; 1/
g�r even G �..1; 1; 1/I .0; 0//�

Q
g�r

�U.n/�
Q

r�1

�O.n/�
Q

r�1

�.U.n/=O.n//

.g; r; 1/
g�r odd G �..1; 1; 1/I .0; 0//�

Q
.g�r�1/C1

�U.n/�
Q

r�1

�O.n/�
Q

r�1

�.U.n/=O.n//

The remaining cases seem to integrally indecomposable; however, we will obtain the
following localised homotopy decompositions for odd-rank gauge groups.

Theorem 1.13 Let p ¤ 2 be prime and let n be odd. Then there are the following
p–local homotopy equivalences

(1) G �..0; 0; 1/I c/'p �
2.U.n/=O.n//��.U.n/=O.n//;

(2) G �..1; 0; 1/I c/'p �
2.U.n/=O.n//��.U.n/=O.n//��U.n/;

(3) G �..1; 1; 1/I .c; w1//'p �
2.U.n/=O.n//��.U.n/=O.n//��O.n/.

This result relies upon a self map of U.n/=O.n/ as studied in Harris [5], which is a
p–local homotopy equivalence if and only if n is odd. Hence it seems to be difficult
to provide such satisfactory decompositions in the even-rank case.

We move on to some integral homotopy decompositions for unpointed gauge groups.
The reader is invited to compare the tables of Theorems 1.14 and 1.12.

Theorem 1.14 Let .P; z�/ be of class .c; w1; w2; : : : ; wr /. Then there are integral
homotopy decompositions:

(1)

type decompositions for G .P; z�/

.g; r; 0/ G ..r � 1; r; 0/I .c; w1; : : : ; wr //�
Q

g�rC1

�U.n/

.g; r; 1/
g� r even G ..r; r; 1/I .c; w1; : : : ; wr //�

Q
g�r

�U.n/

.g; r; 1/
g� r odd G ..r C 1; r; 1/I .c; w1; : : : ; wr //�

Q
g�r�1

�U.n/
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(2) G ..2; 1; 1/I .c; w1//' G ..1; 1; 1/I .c; w1//��U.n/:

Further, for r � 1 and when .P; z�/ is of class .c; w1; 0; : : : ; 0/ or n is odd, there are
integral homotopy decompositions:

(3)

type decompositions for G .P; z�/

.r � 1; r; 0/ G ..0; 1; 0/I .c; †wi//�
Q

r�1

�O.n/�
Q

r�1

�.U.n/=O.n//

.r; r; 1/ G ..1; 1; 1/I .c; †wi//�
Q

r�1

�O.n/�
Q

r�1

�.U.n/=O.n//

.r C 1; r; 1/ G ..2; 1; 1/I .c; †wi//�
Q

r�1

�O.n/�
Q

r�1

�.U.n/=O.n//

The remaining unfamiliar spaces in Theorem 1.14 seem to be integrally indecomposable;
however, localising at particular primes permits further decompositions.

Theorem 1.15 Let n be a positive integer and let p be a prime with p − n.

(1) Let the following be gauge groups of rank n. Then there are p–local homotopy
equivalences
(a) G ..g; 1; a/I .c; 0//'p O.n/�G �..g; 1; a/I .c; 0//;
further, if p ¤ 2 and n is odd, then there are p–local homotopy equivalences
(b) G ..0; 0; 1/I c/'p SO.n/��2.U.n/=SO.n//;
(c) G ..1; 0; 1/I c/'p SO.n/��2.U.n/=SO.n//��U.n/.

(2) Let the following be gauge groups of rank p . Then there are p–local homotopy
equivalences
(a) G ..g; 1; a/I .c; 0//'p O.p/�G �..g; 1; a/I .c; 0//;
further, if p ¤ 2, then there are p–local homotopy equivalences
(b) G ..0; 0; 1/I c/'p SO.p/��2.U.p/=SO.p//;
(c) G ..1; 0; 1/I c/'p SO.p/��2.U.p/=SO.p//��U.p/.

1.3 Main results for quaternionic bundles

To distinguish the notation of quaternionic gauge groups from the real case, we will
use a subscript Q, for example GQ.P; z�/. Further, to ease notation we will sometimes
use the following:

� GQ..g; r; a/I c/ to represent the unpointed gauge group of a quaternionic bundle
of class c over a real surface of type .g; r; a/;

� G �Q ..g; r; a/I c/ to represent the single-pointed gauge group of the quaternionic
bundle as above;
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� G �
.rCa/

Q ..g; r; a/I c/ to represent the .rCa/–pointed gauge group of the quater-
nionic bundle as above.

We present results in the same order as we did in the real case. In the quaternionic case,
the homotopy types of the pointed and .rCa/–pointed gauge groups are independent
of the class of the bundle.

Proposition 1.16 Let .X; �/ be a real surface of fixed type .g; r; a/. Let .P; z�/
and .P 0; � 0/ be quaternionic principal U.2n/–bundles over .X; �/. Then there are
homotopy equivalences

(1) B G �Q .P; z�/' B G �Q .P
0; � 0/;

(2) B G �
.rCa/

Q .P; z�/' B G �
.rCa/

Q .P 0; � 0/.

For the unpointed case, we have an analogue of Proposition 1.9.

Proposition 1.17 Let .X; �/ be a real surface of fixed type .g; r; a/ and let the follow-
ing be gauge groups of quaternionic bundles of rank 2n. Then for any even integer c ,
there is an isomorphism of topological groups

GQ..g; r; a/I c/Š GQ..g; r; a/I cC 4n/:

We now present homotopy decompositions for pointed gauge groups in the quaternionic
case. The reader is invited to compare the following results to their real analogues.

Theorem 1.18 Let .P; z�/ be a quaternionic principal U.2n/–bundle of class c . Then
there are integral homotopy decompositions:

type decompositions for G �
.rCa/

Q .P; z�/

.g; 0; 1/ for g even G �Q ..0; 0; 1/I 0/�
Q
g
�U.2n/

.g; 0; 1/ for g odd G �Q ..1; 0; 1/I 0/�
Q

g�1

�U.2n/

.g; r; 0/ �2.U.2n/=Sp.n//�
Q
g
�U.2n/�

Q
r�1

�Sp.n/

.g; r; 1/ for g� r even G �Q ..1; 1; 1/I 0/�
Q
g
�U.2n/�

Q
r�1

�Sp.n/

.g; r; 1/ for g� r odd G �Q ..1; 1; 1/I 0/�
Q
g
�U.2n/�

Q
r�1

�Sp.n/

For the cases where G �
.rCa/

Q .P; z�/¤ G �Q .P; z�/, that is when r C a> 1, we have:
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Theorem 1.19 For .P; z�/ of class c , there are integral homotopy decompositions:

type decompositions for G �Q .P; z�/

.g; r; 0/ �2.U.2n/=Sp.n//�
Q

g�rC1

�U.2n/�
Q

r�1

�Sp.n/�
Q

r�1

�.U.2n/=Sp.n//

.g; r; 1/
g� r even G �Q ..1; 1; 1/I 0/�

Q
g�r

�U.2n/�
Q

r�1

�Sp.n/�
Q

r�1

�.U.2n/=Sp.n//

.g; r; 1/
g� r odd G �Q ..1; 1; 1/I 0/�

Q
g�r

�U.2n/�
Q

r�1

�Sp.n/�
Q

r�1

�.U.2n/=Sp.n//

Again, the remaining cases seem to be integrally indecomposable; however, we will
obtain the following localised decompositions.

Theorem 1.20 Let p ¤ 2 be prime. Then there are p–local homotopy equivalences

(1) G �Q ..0; 0; 1/I 0/'p �
2.U.2n/=Sp.n//��.U.2n/=Sp.n//I

(2) G �Q ..1; 0; 1/I 0/'p �
2.U.2n/=Sp.n//��.U.2n/=Sp.n//��U.2n/;

(3) G �Q ..1; 1; 1/I 0/'p �
2.U.2n/=Sp.n//��.U.2n/=Sp.n//��Sp.n/.

We now present homotopy decompositions for the unpointed case.

Theorem 1.21 For .P; z�/ of class c , there are integral homotopy decompositions:

type decompositions for GQ.P; z�/

.g; 0; 1/
g even GQ..0; 0; 1/I c/�

Q
g
�U.n/

.g; 0; 1/
g odd GQ..1; 0; 1/I c/�

Q
g�1

�U.n/

.g; r; 0/ GQ..0; 1; 0/I c/�
Q

r�1

�Sp.n/�
Q

r�1

�.U.2n/=Sp.n//�
Q

g�rC1

�U.n/

.g; r; 1/ GQ..1; 1; 1/I c/�
Q

r�1

�Sp.n/�
Q

r�1

�.U.2n/=Sp.n//�
Q

g�r
�U.n/

The remaining unfamiliar spaces in Theorem 1.21 seem to be integrally fundamental;
however, localising at a particular prime permits further decompositions.

Theorem 1.22 Let n be a positive integer and let p be a prime such that p − 2n. Let
the following be gauge groups of a quaternionic bundle of rank 2n. Then there are
p–local homotopy equivalences

(1) GQ..g; 1; a/I c/'p Sp.n/�B G �Q ..g; 1; a/I c/;

(2) GQ..0; 0; 1/I c/'p Sp.n/��2.U.2n/=Sp.n//;
(3) GQ..1; 0; 1/I c/'p Sp.n/��2.U.2n/=Sp.n//��U.2n/.
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2 Proofs of statements

For the sake of clarity, we focus on the proofs of statements in the real case, and then
we elaborate on some of the details in the quaternionic case in Section 2.5. We look to
decompose the gauge groups by studying an equivariant mapping space as provided
in [1].

Throughout our analysis, we think of real surfaces as Z2 –spaces. For Z2 –spaces Y

and Z , let MapZ2
.Y;Z/ denote the space of Z2 –maps from Y to Z . We note that the

fixed points of Y must be mapped to the fixed points of Z . If Y and Z are pointed,
we denote a pointed version of this mapping space by Map�Z2

.Y;Z/. Further, recall
the “basepoints” �i of .X; �/ from just before Definition 1.6. Let

A WD

rC1a
iD1

�iq �.�rC1/;

and let Map�.rCa/

Z2
.X;Z/ denote the subspace of MapZ2

.X;Z/ whose elements
send A to �Z .1 Let xX denote the cofibre of A ,! X , and notice that there is a
homeomorphism

Map�.rCa/

Z2
.X;Z/ŠMap�Z2

. xX ;Z/:

A universal real principal U.n/–bundle is given by

.EU.n/; z&/! .BU.n/; &/;

where & is induced by complex conjugation and hence BU.n/& D BO.n/. Using this
Z2 –structure, [1] provides the following theorem.

Theorem 2.1 (Baird) There are homotopy equivalences

(1) B G .P; z�/'MapZ2
.X;BU.n/IP /;

(2) B G �.P; z�/'Map�Z2
.X;BU.n/IP /;

(3) B G �
.rCa/ .P; z�/'Map�.rCa/

Z2
.X;BU.n/IP /ŠMap�Z2

. xX ;BU.n/IP /;

where on the right-hand side, we pick the path component of MapZ2
.X;BU.n// that

induces .P; z�/.

The following lemma can be shown by adapting the proof in the nonequivariant case.
We will frequently require this lemma throughout the paper.

1Of course, it may be necessary to assume that �Z is fixed by the Z2 –action.
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Lemma 2.2 Let Y and Z be Z2 –spaces with basepoints fixed by the action, and
with Y locally compact Hausdorff. Then there are equivalences

(1) �Map�Z2
.X;Y /ŠMap�Z2

.†X;Y /;

(2) Map�Z2
.X; �Y /ŠMap�Z2

.†X;Y /.

Throughout this section, there are a number of Z2 –spaces that will often appear; here
we provide a dictionary:

� .X; id/: any space X with the trivial involution;

� .X _X; sw/: the wedge X _X equipped with the involution that swaps the
factors;

� .Sn;� id/: the sphere Sn equipped with the antipodal involution;

� .Sn; he/: the sphere Sn equipped with the involution that reflects along the
equator.

2.1 Real surfaces as Z2–complexes

In order to provide homotopy decompositions for the gauge groups, it will prove useful
to provide a Z2 CW-complex structure for real surfaces. The following is essentially a
restatement of the structures provided in [3]. We let †p;q denote a Riemann surface of
genus p with q open discs removed.

Type .g; 0; 1/ We first study the case where g is even. We can think of X as two
copies of †g=2;1 glued along their boundary components, each a copy of S1 . The
involution restricted to S1 is the antipodal map and extends to swap the two copies
of †g=2;1 .

We give a CW-structure of X as follows: Let X 0 be two 0–cells, � and �.�/. There
are 2gC 2 1–cells

˛1; : : : ; ˛g=2; ˇ1; : : : ; ˇg=2; ;

�.˛1/; : : : ; �.˛g=2/; �.ˇ1/; : : : ; �.ˇg=2/; �. /:

The boundaries of ˛i ; ˇi are glued to �, and the boundaries of �.˛i/; �.ˇi/ are glued
to �.�/. One end of  is glued to � and the other to �.�/, whilst the same is done
for �. / with the opposite orientation. There are two 2–cells glued on, one with
attaching map

˛1ˇ1˛
�1
1 ˇ�1

1 � � �˛g=2ˇg=2˛
�1
g=2ˇ

�1
g=2�. /;

and the other with the same attaching map but with ˛i ; ˇi replaced with �.˛i/; �.ˇi/

and �. / replaced with �. / .
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As the notation suggests, the involution swaps cells that differ by � . In particular, this
is a � –equivariant CW-structure and hence descends to a CW-structure of X=� .

Now assume that g is odd, and let g0 D .g � 1/. We see that X can be thought of
as two copies of †g0=2;2 glued along their boundaries; two copies of S1 in X . The
involution swaps these copies of S1 but reverses orientations, and it extends to X to
swap the two copies of †g0=2;2 .

There are two 0–cells, � and �.�/, and 2g 1–cells

˛1; : : : ; ˛g0=2; ˇ1; : : : ; ˇg0=2; ; ı;

�.˛1/; : : : ; �.˛g0=2/; �.ˇ1/; : : : ; �.ˇg0=2/; �. /; �.ı/;

where ˛i ; ˇi ; �.˛i/; �.ˇi/; ; �. / are glued as before, but the boundary of ı is glued
to � and �.ı/ to �.�/. Now there are two 2–cells, one with boundary map

˛1ˇ1˛
�1
1 ˇ�1

1 � � �˛g0=2ˇg0=2˛
�1
g0=2ˇ

�1
g0=2ı�.ı/

�1

and the other glued equivariantly. The cells ı and �.ı/ correspond to the copies of S1

above, and here  is a cell joining these copies of S1 .

Type .g; r; 0/ Let the involution fix r circles and let g0 D 1
2
.g� r C 1/. Then X=�

is a †g0;r , and X can be thought of as two copies of †g0;r glued along the r boundary
components.

In this case, the basepoint is preserved under � ; however, X 0 is given r 0–cells, one
for each fixed component. The 1–cells are then

˛1; : : : ; ˛g0 ; ˇ1; : : : ; ˇg0 ; 2; : : : ; r ; ı1; : : : ; ır ;

�.˛1/; : : : ; �.˛g0/; �.ˇ1/; : : : ; �.ˇg0/; �.2/; : : : ; �.r /;

where ˛i ; ˇi are as before and i joins the basepoint to the i th fixed component which
is represented by ıi . One of the two 2–cells has attaching map

˛1ˇ1˛
�1
1 ˇ�1

1 � � �˛g0ˇg0˛
�1
g0 ˇ

�1
g0 ı12ı2

�1
2 � � � rır

�1
r ;

and we again define the other one equivariantly.

Type .g; r; 1/ for r > 0 Let the involution fix r circles. We first consider the case
where g � r mod 2. Let g0 D 1

2
.g � r/. Then X can be thought of as two copies

of †g0;rC1 glued along the boundary components. The involution fixes the first r of
these components whilst restricting to the antipodal map on the extra copy of S1 .
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Now X 0 is given rC2 0–cells �i , one for each fixed component and two for the
extra S1. The 1–cells are then

˛1; : : : ; ˛g0 ; ˇ1; : : : ; ˇg0 ; 2; : : : ; rC1; ı1; : : : ; ır ; ı;

�.˛1/; : : : ; �.˛g0/; �.ˇ1/; : : : ; �.ˇg0/; �.2/; : : : ; �.rC1/; �.ı/;

where ˛i ; ˇi are as before and i joins the basepoint to the i th boundary circle. Each
fixed component is represented by ıi , and ı joins �rC1 to �rC2 ; therefore, ı�.ı/
represents the extra copy of S1 . One of the two 2–cells has attaching map

˛1ˇ1˛
�1
1 ˇ�1

1 � � �˛g0ˇg0˛
�1
g0 ˇ

�1
g0 ı12ı2

�1
2 � � � rır

�1
r rC1ı�.ı/

�1
rC1;

and we again define the other one equivariantly.

For the case where g � r C 1 mod 2, we let g0 D 1
2
.g � r � 1/. Now X can be

thought of as two copies of †g0;rC2 glued along the boundary components. Again, the
involution fixes r of these components, whilst swapping the final two copies of S1,
but reversing orientation.

Again X 0 is given rC2 0–cells, one for each fixed component and one for each of
the extra two copies of S1 . The 1–cells are then

˛1; : : : ; ˛g0 ; ˇ1; : : : ; ˇg0 ; 2; : : : ; rC2; ı1; : : : ; ırC1;

�.˛1/; : : : ; �.˛g0/; �.ˇ1/; : : : ; �.ˇg0/; �.2/; : : : ; �.rC2/; �.ırC1/;

where ˛i ; ˇi are as before and i joins the basepoint to the i th boundary circle. Each
fixed component is represented by ıi for i � r , and ırC1 and �.ırC1/ represent the
extra copies of S1 . One of the two 2–cells has attaching map

˛1ˇ1˛
�1
1 ˇ�1

1 � � �˛g0ˇg0˛
�1
g0 ˇ

�1
g0 ı12ı2

�1
2 � � � rC1ırC1

�1
rC1rC2�.ırC1/

�1
rC2;

and we again define the other one equivariantly.

2.2 Equivalent components of mapping spaces

In this section, we aim to prove Propositions 1.7–1.10. The proofs are motivated from
the analysis of nonequivariant mapping spaces found in [10].

Proof of Proposition 1.7 We study the actions of �2.BU.n// and �1.BO.n// on
the components of Map�Z2

. xX ;BU.n//. In [10], an action of �2.BU.n// on the space
Map.X;BU.n// was defined via

(1) X
pinch
���!X _S2 f_˛

���! BU.n/_BU.n/
fold
��! BU.n/

with ˛ 2 �2.BU.n// and f 2Map�.X;BU.n//.
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We now consider the equivariant case for r D 0. Let S1 be the loop that is pinched
under xX ! xX _S2 , similar to the first map in (1). Due to equivariance, we are also
forced to pinch the loop �.S1/ producing an extra factor of S2, and the action becomes

xX
pinch
���! xX _S2

_ �.S2/
f_˛_x̨
�����! BU.n/_BU.n/_BU.n/

fold
��! BU.n/;

where x̨ D &˛ . Since � and & are both orientation-reversing, the action of

˛ 2 �2.BU.n//Š Z

alters the class Œf � by 2˛ . Hence for 2c 2 Œ xX ;BU.n/�Z2
Š 2Z, this action gives

homotopy equivalences

Map�Z2
.X;BU.n/I 2c/'Map�Z2

.X;BU.n/I 2cC 2˛/:

In particular, this gives the required homotopy equivalences for the case when r D 0.

When r > 0, the path components of Map�Z2
. xX ;BU.n// are classified by the tuple

.c; w1; w2; : : : ; wr / 2 Z�
Y

r

Z2

subject to c �
Pr

iD1wi mod 2. We wish to construct an action of �1.BO.n// to alter
each wi . For ˇ 2�1.BO.n//, we note that the inclusion of the image of ˇ into BU.n/

is nullhomotopic, so there is an extension ˇ0W D2 ! BU.n/ of ˇ . Now, consider
.S2; he/ and denote the fixed equator by E , the upper hemisphere by U and the lower
hemisphere by L. We can extend ˇ to a map žW .S2; he/! BU.n/, where

ž jUD ˇ
0 and ž jLD &ˇ

0;

and therefore, žjE D ˇ . Due to the discussion preceding Proposition 4.12 in [3],
the extension ž can be chosen so that the class Œ ž� 2 Z�Z2 is .0; 0/ if ˇ is trivial or
.˙1; 1/ otherwise.

Let .S1; he/ ,! xX be an inclusion such that the fixed points of .S1; he/ are mapped to
the i th fixed component Xi of xX . As in (1), we apply the pinch map to this copy of
.S1; he/ in xX and hence produce a factor of .S2; he/. Now the action becomes

xX
pinch
���! xX _ .S2; he/

f_ž

���! BU.n/_BU.n/
fold
��! BU.n/:

For ž of class .˙1; 1/, we conclude that this action gives a homotopy equivalence
between the components .c; w1; w2; : : : ; wr / and .c ˙ 1; w1; : : : ; wi C 1; : : : ; wr /.
Combining the actions of �2.BU.n// and �1.BO.n// gives homotopy equivalences
between all the components of Map�Z2

. xX ;BU.n//.
2We note that Proposition 4.1 in [3] is stated as Proposition 1.2 in this paper.
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Proof of Proposition 1.8 Recall from the preamble to Definition 1.6 that we chose �1

as the basepoint of .X; �/. We define actions of �2.BU.n// and �1.BO.n// on
Map�Z2

.X;BU.n// in a similar fashion to the proof of Proposition 1.7, and this obtains
the result. We cannot extend this result as in the .rCa/–pointed case due to the
“unpointed” fixed circles.

We cannot hope to use the actions of �1 and �2 on the unpointed mapping space due
to the lack of basepoint. But, by tensoring the bundle .P; z�/ with a real U.1/–bundle,
we can provide some equivalences between components.

Proof of Proposition 1.9 Let � W .P; z�/! .X; �/ be a real principal U.n/–bundle
of class .c; w1; w2; : : : ; wr / over a real surface of type .g; r; a/. The idea will be to
tensor P with a real U.1/–bundle �QW .Q; �/! .X; �/ of class .2; 0; : : : ; 0/.

Using the inclusion of the centre U.1/ ,! U.n/, there is a U.1/–action on .P; z�/. In
the principal bundle setting, the tensor of .P; z�/ and .Q; �/ is the pullback�

��.P �U.1/Q/; ��.z� � �/
�

//

��

.P �U.1/Q; z� � �/

z�

��

.X; �/
�

// .X; �/� .X; �/

where � is the diagonal map and z� D � ��Q . In a similar fashion to the discussion
preceding Proposition 4.1 in [3], we calculate that .c C 2n; w1; w2; : : : ; wr / is the
class of the pullback .��.P �U.1/Q/;��.z� � �//.

We then define

‚W G .P; z�/! G
�
��.P �U.1/Q/; ��.z� � �/

�
to be the map that sends �W P ! P to ��.� � id/. Then an inverse to ‚ is defined
in the same way as ‚, except that we replace the inclusion U.1/ ,! U.n/ with the
conjugate inclusion defined via

a 7!

0BBB@
xa 0 � � � 0

0 xa � � � 0
:::
:::
: : :

:::

0 0 � � � xa

1CCCA :
Proof of Proposition 1.10 Let � W .P; z�/! .X; �/ be a real principal U.n/–bundle
of class .c; w1; w2; : : : ; wr / over a real surface of type .g; r; a/. The statement is
proven using the same method as Proposition 1.9, except that we tensor with a real
U.1/–bundle . zQ; z�/ of class

�
0;
Pr

iD2wi ; w2; : : : ; wr

�
. If n is odd, the class of the

pullback .��.P �U.1/
zQ/; ��.z� � z�// is then

�
c;
Pr

iD1wi ; 0; : : : ; 0
�
.
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An isomorphism ‚W G .P; z�/! G .��.P �U.1/
zQ/; ��.z� � z�// is then defined in the

same way as for Proposition 1.9.

2.3 Pointed gauge groups

In our analysis, it will be necessary to distinguish the following types of real surfaces:

(0) r D 0 .D) aD 1/;

(1) r > 0 and aD 0;

(2) r > 0 and aD 1.

Generally, we will analyse the gauge groups in order of ease; we first analyse the
.rCa/–pointed gauge group, and then the single-pointed gauge group. Our results for
the single-pointed gauge groups will then be used to analyse the unpointed case.

2.3.1 Integral decompositions For the underlying Riemann surface X of a real
surface .X; �/, the attaching map f W S1 !

W
2g S1 of the top cell is a sum of

Whitehead products, and hence the suspension †f is nullhomotopic. In the real
surface case, we see Whitehead products appearing in the attaching maps of Section 2.1.
Therefore, we still see trivialities appearing in the suspension of these attaching maps,
and these trivialities will provide a large class of homotopy decompositions.

We will use the notation as defined in Section 2.1, and furthermore, we require the
following notation in this section. Let g0 denote the number of 1–cells of X which
are of the form ˛i ; ˇi in X . Explicitly,

g0 D

8<:
g� r C 1 when aD 0;

g� r when aD 1 and g� r is even,
g� r � 1 when aD 1 and g� r is odd.

Proposition 2.3 Let X˛ˇ D
W

S1 be the 1–cells ˛i ; �.˛i/; ˇi ; �.ˇi/ in the decom-
position of .X; �/. Then the map � in the Z2 –cofibration sequence

X˛ˇ ,!X !X 0
�
�!†.X˛ˇ/

is Z2 –nullhomotopic.

Proof We recall that the attaching map of one of the 2–cells in a real surface of type
.g; r; 0/ is

˛1ˇ1˛
�1
1 ˇ�1

1 � � �˛g0ˇg0˛
�1
g0 ˇ

�1
g0 ı12ı2

�1
2 � � � rır

�1
r :
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� �1 �2ı1 ı2

2

�.2/

s
sw

Figure 1: For a type-.5; 2; 0/ real surface, the map s collapses the 1–cells
ı1 , ı2 , 2 and �.2/ .

The attaching map involving the cells ˛i and ˇi is a sum of Whitehead products. The
idea is to collapse the rest of the cells.

Now in the general case, let X be a type-.g; r; a/ real surface, let †g0=2 be a Riemann
surface of genus 1

2
g0 and denote by

sW X ! .†g0=2 _†g0=2; sw/

the map that collapses the 1–skeleton of X other than the cells ˛i ; �.˛i/; ˇi and �.ˇi/.

An example for the map s is illustrated in Figure 1. Note that four of the “holes” are
undisturbed by s ; these correspond to the 1–cells of the form ˛i ; �.˛i/; ˇi and �.ˇi/.

There is a commutative diagram

X˛ˇ // X //

s

��

X 0

s0

��

�
// †.X˛ˇ/

X˛ˇ // .†g0=2 _†g0=2; sw/ // .S2 _S2; sw/
†f_†f

// †.X˛ˇ/

where the rows are Z2 –cofibration sequences, s0 is an induced map on cofibers and f
is the attaching map of the Riemann surface †g0=2 . The Z2 –triviality of � therefore
follows from the triviality of †f .

We deduce the following theorem which greatly contributes to Theorems 1.11 and 1.12.

Theorem 2.4 With notation as above, there are homotopy equivalences

(1) G �.P; z�/' G �..g�g0; r; a/I .c; w1; : : : ; wr //�
Q

g0 �U.n/;

(2) G
.rCa/�.P; z�/' G

.rCa/�..g�g0; r; a/I .c; w1; : : : ; wr //�
Q

g0 �U.n/:
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Proof We use the notation of Proposition 2.3 and run through details for part (1). By
Theorem 2.1, there is a homotopy fibration sequence

G .P; z�/!�Map�Z2
.X˛ˇ;BU.n//

��

��!Map�Z2
.X 0;BU.n/I .c; w1; : : : ; wr //;

and by Lemma 2.2, we can see that �� is induced from � in Proposition 2.3. But
Proposition 2.3 showed that � is nullhomotopic, and the result follows. The proof for
part (2) is similar.

We note that for real surfaces of type .g; 0; 1/, Theorem 2.4 leaves only types .0; 0; 1/
and .1; 0; 1/ to consider. The gauge groups of these types seem to be integrally
indecomposable and so we leave their analysis until later.

2.3.2 The case r > 0, a D 0 Although we restrict to the case a D 0, we will see
that many of the methods in this section will also transfer to the case when aD 1.

Due to Theorem 2.4, we restrict to the case when .X; �/ is of type .r � 1; r; 0/. For
.P; z�/ of class .0; 0; : : : ; 0/, we utilise Theorem 2.1 and Lemma 2.2, and obtain the
equivalences

G
�r .P; z�/'Map�Z2

.†. xX /;BU.n//I

G
�.P; z�/'Map�Z2

.†.X /;BU.n//:

The aim of this section is to prove Theorems 1.11 and 1.12 for types .g; r; 0/, which is
restated below.

Theorem 2.5 Let .P; z�/ be a real bundle of class .c; w1; : : : ; wr / over a real surface
.X; �/ of type .r � 1; r; 0/. Then

(1) there is a homotopy equivalence

G
�r .P; z�/'�2.U.n/=O.n//�

Y
r�1

�O.n/�
Y
r�1

�U.n/I

(2) if wi D 0 for all i > 1 or if n is odd, then there is a homotopy equivalence

G
�.P; z�/'�2.U.n/=O.n//�

Y
r�1

�O.n/�
Y
r�1

�.U.n/=O.n//:

Recall the Z2 –structure of a type-.g; r; 0/ surface in Section 2.1. In the following, X
will be the subcomplex of the 1–cells of X that are denoted by either i or �.i/.

Proposition 2.6 Let .X; �/ be as above. Then in the Z2 –cofibration sequence

X
�
�!X ! zX

�0

�!†.X /;

there is a left Z2 –homotopy inverse to �. In particular, �0 is Z2 –nullhomotopic.
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� ı1

1

�.1/

1

�.1/

zjcollapse

ı1

X2=ı1

he

j2

Figure 2: The map j2 projects to the factor .S1; he/ and j2 factors through X2=ı1 .

XlC1 Xl
X2=ı1

j 0
lC1

.S1 _S1; sw/

Figure 3: Collapse a copy of .S1 _S1; sw/ to obtain the wedge X2=ı1 _Xl .

Proof We will use induction on r , the number of fixed circles of X . Let Xr denote a
real surface of type .r � 1; r; 0/, and let .Xr / be the subcomplex of Xr with 1–cells
denoted by either i or �.i/. We aim to define left homotopy inverses jr W Xr! .Xr /
of � for each r .

Note that the space .Xr / is the wedge
W

r�1.S
1; he/, and hence the first nontrivial

case is when r D 2. In this case, one can see that X2 is the product

.S1; id/� .S1; he/:

We define j2 to be the projection onto the second factor; Figure 2 illustrates this map.

For r D l , we assume that jl exists. For r D l C 1, we first use a map j 0lC1 that
collapses a copy of .S1 _S1; sw/ in XlC1 such that the image is homeomorphic to
Xl_X2=ı1 , where X2=ı1 is a copy of X2 with the 1–cell ı1 collapsed. The map j 0

lC1

is illustrated in Figure 3.
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Figure 2 also shows that j2 factors through the space X2=ı1 . We therefore define jlC1

to be the composition

XlC1

j 0
lC1

���!X2=ı1 _Xl

zj_jl
���! .XlC1/ ;

where zj is defined in Figure 2.

As an easy consequence of Proposition 2.6, we obtain the homotopy equivalences

†X '† zX _†X and † xX '† zX _† xX :

We shall see that the factors †X and † xX give the factors
Qr�1

1 �U.n/ andQr�1
1 �.U.n/=O.n//, respectively, in Theorem 2.5, and that the factor † zX produces

the factors �2.U.n/=O.n// �
Qr�1

1 �O.n/. However, the map jr automatically
induces a map

Map�Z2
.X ;BU.n//!Map�Z2

.X;BU.n/I .0; 0; : : : ; 0//:

Hence we only obtain a splitting on the level of mapping spaces in this trivial case.

We now restrict to this trivial case for the rest of this section. For the other cases,
Proposition 1.7 will then give results for Theorem 2.5(1) and Propositions 1.8 and 1.10
will give results for Theorem 2.5(2). We provide further decompositions at the level of
the real surface to continue the proof of Theorem 2.5.

Proposition 2.7 Let Xı be the 1–cells in zX denoted by ı2; : : : ; ır . Then in the
Z2 –cofibration

Xı
�0

�! zX ! .S2; he/
�00

��!†.Xı/;

the map �00 is Z2 –nullhomotopic.

Proof The space zX is the quotient of a type-.r �1; r; 0/ real surface with the 1–cells
denoted by 2; : : : ; r collapsed to a point. Recall that the attaching map of X is

(2) ı12ı2
�1
2 3ı3

�1
3 � � � rır

�1
r ;

and the induced attached map in zX becomes

ı1ı2 � � � ır :

We conclude that zX is a sphere .S2; he/ with r of its fixed points identified.

Let U denote the upper “hemisphere” of zX ; it is homeomorphic to a disc with r of its
boundary points identified, and notice that zX DU [�.U /. Now there is a deformation
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retract H W U � I ! U of U onto the wedge
Wr

iD2 ıi . Therefore, we define a left
inverse to the map �0 via

x 7!

�
H.x; 1/ for x 2 U;

H.� zX .x/; 1/ for x 2 � zX .U /;

and the result follows.

We deduce that
† zX '†Xı _†.S

2; he/:

The factor †Xı D
Wr�1

1 .S1; id/ provides the factor
Qr�1

1 �O.n/ for both cases in
Theorem 2.5. We now show that the spaces †.S2; he/ and †X provide the other
factors.

Lemma 2.8 There are homotopy equivalences

(1) Map�Z2
.†X ;BU.n//'

Q
r�1�.U.n/=O.n//I

(2) Map�Z2
.† xX ;BU.n//'

Q
r�1�U.n/.

Proof The space †.X / is the same as the wedge
W

r�1†.S
1; he/. Looking at the

r –pointed case, the 0–skeleton of †.X / is collapsed, and the space †.X / becomes
the wedge †

W
r�1.S

1 _S1; sw/. This shows part (2) of the lemma.

For part (1), we introduce a pullback similar to the pullbacks used in [1]. The space
Map�Z2

..S1; he/;BU.n// fits into the following pullback diagram:

Map�Z2
..S1; he/;BU.n//

zr
��

zu
// Map�.D1;BU.n//

r

��

Map�Z2
..S0; id/;BU.n//

u
// Map�.S0;BU.n//

Here zr restricts to the fixed points of .S1; he/, and zu restricts to the upper hemisphere
of .S1; he/ and then forgets about equivariance. Since

Map�Z2
..S0; id/;BU.n//' BO.n/;

the map u is just the inclusion BO.n/ ,! BU.n/, and hence the homotopy fibre of u

is U.n/=O.n/. Since r is a fibration, the square is also a homotopy pullback. We note
that the space Map�.D1;BU.n// is contractible, and so the result follows.
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Lemma 2.9 There is a homotopy equivalence

Map�Z2
..S2; he/;BU.n/I .0; 0//'�.U.n/=O.n//0;

where �.U.n/=O.n//0 denotes the connected component of �.U.n/=O.n// contain-
ing the basepoint.

Proof There is a similar pullback as in Lemma 2.8:

Map�Z2
..S2; he/;BU.n//

zr
��

zu
// Map�.D2;BU.n//

r
��

Map�Z2
..S1; id/;BU.n//

u
// Map�.S1;BU.n//

This time the map u is homotopic to the inclusion O.n/ ,!U.n/, and so the homotopy
fibre of u is �.U.n/=O.n//. The space Map�.D2;BU.n// is contractible, and so
there is an equivalence

Map�Z2
..S2; he/;BU.n//'�.U.n/=O.n//;

and the result follows.

Proof of Theorem 2.5 For (1), it is enough to deal with the trivial component
of Map�Z2

.X;BU.n// by Proposition 1.7. Using a similar method to the proof of
Theorem 2.4, we have that Proposition 2.6 and Lemma 2.8 contribute the factorQ

r�1�U.n/, Proposition 2.7 contributes the factor
Q

r�1�O.n/ and Lemma 2.9
contributes the factor �2.U.n/=O.n//.

For (2), the proof is similar, but one has to be careful with the nontrivial components.

2.3.3 The case r > 0, a D 1 We use the techniques and notation of the previous
section. In particular, let .P; z�/ be a bundle of class .0; 0; : : : ; 0/ over a real surface
.X; �/ of type .g; r; 1/. We first note that by Proposition 2.3, we can restrict to the
cases

(3) g D r or g D r C 1:

With these cases in mind, the main aim will be to prove the following theorem which
is a restatement of Theorems 1.11 and 1.12 for real surfaces of type .g; r; 1/.

Theorem 2.10 For notation as above and g as in (3), there are homotopy equivalences

(1) G �.P; z�/' G �..g� r C 1; 1; 1/I .0; 0//�
Q

r�1

�O.n/�
Q

r�1

�.U.n/=O.n//;

(2) G �rC1.P; z�/' G �2..g� r C 1; 1; 1/I .0; 0//�
Q

r�1

�O.n/�
Q

r�1

�U.n/.
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We note that after we have proven the above theorem, the only cases we have left to
analyse will be gauge groups over real surfaces of type .2; 1; 1/ and type .1; 1; 1/.

For the proof of the theorem, we will essentially follow the methods of the previous
section. Let X denote the subcomplex of X consisting of the 1–cells denoted by
either i or �.i/ for 2� i � r .

Proposition 2.11 Let .X; �/ be as above. Then in the Z2 –cofibration sequence

X
�
�!X ! zX

�
�!†.X /;

the map � is Z2 –nullhomotopic.

Proof We define a left inverse to � . First, in X , collapse the cells

rC1; �.rC1/; ırC1; �.ırC1/

and the cells rC2; �.rC2/ if they exist. We are left with a space Z2 –homeomorphic
to a real surface of type .r �1; r; 0/; we now use the map jr as defined in the proof of
Proposition 2.6.

The proof of the next proposition is identical to that of Proposition 2.7 except we
exchange .S2; he/ for a real surface X 0 of type either .2; 1; 1/ or .1; 1; 1/.

Proposition 2.12 Let Xı be the 1–cells in zX denoted by ı2; : : : ; ır . Then in the
Z2 –cofibration

Xı
�0

�! zX !X 0
�0

�!†.Xı/;

the map �0 is Z2 –nullhomotopic.

Proof of Theorem 2.10 This follows from Lemma 2.8 together with Propositions
2.12 and 2.11.

From Theorem 2.10, we reduce our study to the gauge groups

G
�..1; 1; 1/I .0; 0// and G

�..2; 1; 1/I .0; 0//I

G
�2..1; 1; 1/I .0; 0// and G

�2..2; 1; 1/I .0; 0//:

The following theorem provides the remaining integral homotopy decompositions that
we can obtain for these gauge groups. The theorem contributes to results in the last
two rows of Theorem 1.11 and the last row in Theorem 1.12.
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Theorem 2.13 There are integral homotopy equivalences

(1) G �2..1; 1; 1/I .0; 0//' G �..1; 1; 1/I .0; 0//�U.n/;

(2) G �2..2; 1; 1/I .0; 0//' G �..1; 1; 1/I .0; 0//�U.n/�U.n/;

(3) G �..2; 1; 1/I .0; 0//' G �..1; 1; 1/I .0; 0//�U.n/.

We analyse the structure of a type-.2; 1; 1/ real surface X 0 .

Proposition 2.14 Let X 0 be a type-.2; 1; 1/ real surface, and let X 0 be the 1–cells
2; 3; �.2/; �.3/ of X 0 . Then in the Z2 –cofibration

X 0
�00

�!X 0!X 0=X 0
�00

�!†.X 0 /;

the map �00 is Z2 –nullhomotopic.

Proof We define a left inverse to �00 . In X 0, collapse the cell ı1 , and then collapse
a copy of .S1 _S1; sw/ so that X 0=� is the wedge ..†1=�/_ .†1=�/; sw/, where
.†1=�/ is a torus with ı1 collapsed. We now project to .S1 _S1; sw/ as we did in
the proof of Proposition 2.6; in fact, the left inverse is similar to the map j3 from this
proposition.

In the following, we show that the space X 0=X 0 is Z2 –homotopy equivalent to a
.1; 1; 1/ real surface .X; �/. We first recall the Z2 –decomposition of .X; �/. The
0–skeleton X 0 is given three 0–cells �i for 1� i � 3. The 1–cells are then

ı1; ı; �.ı/; 2; �.2/;

where the fixed circle is represented by ı1 , and ı joins �2 to �3 ; therefore, ı�.ı/
represents the copy of .S1;� id/. The 1–cell 2 joins �1 to �2 , and �.2/ joins �1

to �3 . One of the two 2–cells has attaching map

ı12ı�.ı/
�1
2 ;

and we define the other one equivariantly.

On the other hand, the space X 0=X 0 has an induced Z2 –complex structure as follows.
There is one 0–cell �, to which we attach the 1–cells

ı01; ı
0 and �.ı0/:

There are two 2–cells, one of which is attached to the above 1–skeleton via

ı1ı
0�.ı0/;
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and the other is glued equivariantly. However, the subcomplex given by 2 [ �.2/

of .X; �/ is Z2 –contractible, and therefore, .X; �/ is homotopy equivalent to the
Z2 –complex structure of X 0=X 0 .

Proof of Theorem 2.13(2) and (3) By Proposition 2.14, we obtain the homotopy
equivalences

†X 0 '†X 0 _†X 0=X 0 I

† xX 0 '† xX 0 _†X 0=X 0 :

In the first case, the factor †X 0 is the same as the suspension of .S1_S1; sw/. We see
that collapsing the 0–skeleton of †X 0 provides the suspension of

W
2.S

1 _S1; sw/,
and hence this corresponds to the factor † xX 0 in the second equivalence. The result
follows.

Proof of Theorem 2.13(1) We use the Z2 –structure provided after Proposition 2.14.
In this 2–pointed case, we identify the three 0–cells �1;�2;�3 to produce xX . Let

X D 2[ �.2/;

and let xX be the image in the quotient xX . There is a left inverse to the inclusion

xX ,! xX

using a similar map to j2 in the proof of Proposition 2.6. Therefore, there is a homotopy
equivalence

† xX '† xX _†. xX= xX /;

but by the comments after Proposition 2.14, the factor †. xX= xX / is Z2 –homotopy
equivalent to the suspension of a real surface of type .1; 1; 1/. This finishes the proof.

2.3.4 Nonintegral decompositions By the previous sections, we have reduced our
study of the pointed gauge groups to those over real surfaces of the types

.0; 0; 1/; .1; 0; 1/ and .1; 1; 1/:

These spaces seem fundamental in some way, and for the single-pointed case we do
not obtain any further integral decompositions.

However, one may expect these spaces to become easier to examine when we choose
to invert 2 since the involution has order 2 and the 2–torsion in O.n/ vanishes. This
turns out to be the case, and we will find that localising at a prime p ¤ 2 will prove
particularly fruitful.
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In the coming sections, we aim to prove Theorem 1.13, dealing with each part in turn.
The proof of each part is quite laborious, but we only provide full details for part (1).
We outline the main parts of the proof of Theorem 1.13(1):

� The existence of the pullback (4) gives the existence of the map (6).
� We use an argument of [5] to prove that (6) is a p–local homotopy equivalence

for primes p ¤ 2.
� We calculate the homotopy fibre of qr in (6).

The proofs of Theorem 1.13(2) and (3) will then invoke similar methods.

The case .0; 0; 1/ Let .S2;� id/ be a real surface of type .0; 0; 1/. By Proposition 1.8,
all of the pointed gauge groups over .S2;� id/ are homotopy equivalent, so we assume
that .P; z�/ is of class 0. In this section, we aim to prove the following theorem which
is a restatement of Theorem 1.13(1).

Theorem 2.15 For a prime p¤ 2 and odd n, there is a p–local homotopy equivalence

G
�.P; z�/'p �.U.n/=O.n//��

2.U.n/=O.n//:

Let uW B G �.P; z�/!Map�2.D2;BU.n// be the map that restricts to the upper hemi-
sphere of .S2;� id/ and forgets about equivariance. Let

r W B G
�.P; z�/!Map�Z2

..S1
_S1; sw/;BU.n//

be the map restricting to the 1–skeleton of .S2;� id/. These maps fit into the pullback

(4)

B G �.P; z�/
u

//

r

��

Map�2.D2;BU.n//

r 0

��

Map�Z2
..S1 _S1; sw/;BU.n//

u0
// Map�.S1 _S1;BU.n//

where r 0 restricts to the 1–skeleton and u0 forgets about equivariance.

Let y& W U.n/!U.n/ denote complex conjugation and note that u0 is homotopic to the
map x�W U.n/! U.n/�U.n/, where x�.˛/D .˛; y&˛/. Also note that the map r 0 is
homotopic to the map ��1W U.n/!U.n/�U.n/, where ��1.˛/D .˛; ˛�1/. Let Q

be the strict pullback of x� and ��1 as in the following diagram:

Q

�1

��

�2
// U.n/

��1

��

U.n/
x�
// U.n/�U.n/
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We will see that Q retracts off B G �.P; z�/ after inverting the prime 2.

The map r 0 in diagram (4) is a fibration, and hence this diagram is a homotopy pullback.
Therefore, there is an induced homotopy commuting diagram

(5)

Q

�1

  

�2

((

z�

$$

B G �.P; z�/
u

//

r

��

U.n/

��1

��

U.n/
x�

// U.n/�U.n/

where we have replaced the pullback square (4) with a homotopy equivalent square.

Lemma 2.16 The pullback Q is homeomorphic to U.n/=O.n/.

Proof The pullback Q is the space

fA 2 U.n/ jA�1
D y&.A/g:

Let f W U.n/! Q be defined by f .A/ D Ay&.A/�1 . For matrices A 2 U.n/ and
W 2 U.n/y& DO.n/, we have

.AW /y&.AW /�1
DAW y&.W �1/y&.A�1/DAy&.A/�1

since y& is a homomorphism. Hence f induces a map f 0W U.n/=O.n/!Q.

We show that f 0 is a bijection. For injectivity, let A;B 2 U.n/, and suppose that
Ay&.A/�1 D By&.B/�1 . Then

In D B�1Ay&.A/�1
y&.B/D .B�1A/y&.B�1A/�1

for In 2U.n/ the identity matrix. Hence B�1A 2U.n/y& , and so AU.n/y& �BU.n/y& .

For surjectivity, let A 2 Q. Then A is symmetric, and due to the Autonne–Takagi
factorisation (see [14]), there is a unitary matrix P such that AD PDP t , where D is
a diagonal matrix with real entries. Let

p
D be a diagonal matrix (hence an element

of Q) in U.n/ such that
p

D2 DD . We have

AD P
p

D
p

DP t
D P
p

Dy&.P
p

D/�1;

and therefore, f 0..P
p

D/O.n//DA.

The map f 0 is therefore a continuous bijection, and since U.n/=O.n/ is compact and
Q is Hausdorff, it is a homeomorphism.
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The above diagram and Lemma 2.16 give the following composition

(6) 'W U.n/=O.n/
f 0

�!Q
z�
�! B G

�.P; z�/
r
�! U.n/

q
�! U.n/=O.n/

for q the quotient map. From the properties of �1 , we see that ' is homotopic to
a map that sends an element AO.n/ to AAtO.n/. For odd n, [5] showed that the
related map

(7) SU.n/=SO.n/! SU.n/=SO.n/; A SO.n/ 7!AAt SO.n/;

is a homotopy equivalence when localised at a prime p ¤ 2. Our aim is to show that
the same is true for ' .

Lemma 2.17 For a prime p ¤ 2, there is an p–local homotopy equivalence

U.n/=O.n/'p U.n/=SO.n/:

Proof Consider the following pullback diagram where the downward arrows represent
taking universal covers:

U.n/=SO.n/ //

��

B SO.n/

��

// BU.n/

U.n/=O.n/ //

��

BO.n/

��

// BU.n/

K.Z2; 1/ K.Z2; 1/

The result immediately follows.

We now show that U.n/=SO.n/ further decomposes into the product

SU.n/=SO.n/�S1:

The map B SO.n/!BU.n/ factors through B SU.n/. Hence we obtain the following
commutative diagram which defines the maps i and j :

(8)

U.n/

��

U.n/

f
��

SU.n/=SO.n/ i
// U.n/=SO.n/

��

j
// S1

��

SU.n/=SO.n/ // B SO.n/

��

// B SU.n/

��

BU.n/ BU.n/
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It is not too much more work to show the following lemma.

Lemma 2.18 There is a homotopy equivalence

�W SU.n/=SO.n/�S1 '
�! U.n/=SO.n/:

Proof There is a right inverse l to the map f and there is an action of U.n/ on
U.n/=SO.n/; hence the composition

�W S1
�SU.n/=SO.n/

l�i
��! U.n/�U.n/=SO.n/

“action”
�����! U.n/=SO.n/

is the required homotopy equivalence.

Let ' be the composition in (6), and then define

sW U.n/=SO.n/! U.n/=SO.n/

to be the composition

U.n/=SO.n/
'
�! U.n/=O.n/

'
�! U.n/=O.n/

'
�! U.n/=SO.n/:

Our aim is to show that s restricts to the factors SU.n/=SO.n/ and S1 in a nice
enough way.

Lemma 2.19 There exist maps

s00W SU.n/=SO.n/! SU.n/=SO.n/ and s0W S1
! S1

such that the following is a homotopy commuting square:

SU.n/=SO.n/�S1 s00�s0
//

�

��

SU.n/=SO.n/�S1

�

��

U.n/=SO.n/ s
// U.n/=SO.n/

Furthermore, these maps can be chosen such that s00 is homotopic to the map

A SO.n/ 7!AAt SO.n/;

and s0 is homotopic to the map x 7! x2 .

Proof Let zsW SU.n/=SO.n/�S1! SU.n/=SO.n/�S1 be the composition

SU.n/=SO.n/�S1 �
�! U.n/=SO.n/

s
�! U.n/=SO.n/

��1

��! SU.n/=SO.n/�S1
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for a homotopy inverse ��1 of �. Let �W SU.n/=SO.n/! SU.n/=SO.n/� S1 and
�W S1! SU.n/=SO.n/�S1 be the inclusions. We note that � is homotopic to

SU.n/=SO.n/
i
�! U.n/=SO.n/

��1

��! SU.n/=SO.n/�S1;

where i is as in diagram (8). By the way the homotopy equivalences are defined in
Lemmas 2.17 and 2.18, we see that the composition si is homotopic to

B SO.n/ 7! BBt SO.n/ for B 2 SU.n/;

and hence the image of this map lands in the image of i . We deduce that zs� has image
in SU.n/=SO.n/, and we define

s00 D zs�:

Similarly, zs� has image in S1 and we define s0 D zs� . We see that s00 is homotopic
to a map defined via A SO.n/ 7! AAt SO.n/, and that s0 is homotopic to the map
x 7! x2 .

We immediately obtain the following homotopy commuting diagram where the rows
are homotopy fibrations:

(9)

SU.n/=SO.n/

s00

��

i
// U.n/=SO.n/

s

��

// S1

s0

��

SU.n/=SO.n/ i
// U.n/=SO.n/ // S1

By Lemma 2.19, the map s00 is homotopic to the map in (7), and hence it is a p–local
equivalence when n is odd and p ¤ 2 is a prime. We note that s0 is also a p–local
equivalence. Finally, the spaces in (9) are connected; hence s is also a p–local
equivalence. We are now able to deduce the following.

Proposition 2.20 With the notation as in (6), we let F be the homotopy fibre of
qr W B G �.P; z�/! U.n/=O.n/. Then for n odd and for any prime p ¤ 2, there is a
p–local homotopy equivalence

G
�.P; z�/'p �.U.n/=O.n//��F:

Proof Recall the maps f 0 and z� from (6). Then the above discussion has shown that
z�f 0 provides a p–local homotopy section to the homotopy fibration

F ! B G
�.P; z�/

qr
�! U.n/=O.n/;

and the result follows.

Therefore, to prove Theorem 2.15 it only remains to identify the fibre F .
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Proposition 2.21 For any prime p ¤ 2, there is a p–local homotopy equivalence

F 'p �.U.n/=O.n//:

Proof The map qr from (6) is defined as a composition; hence there is a homotopy
commutative diagram

F

��

// B G �.P; z�/
qr
//

r
��

U.n/=O.n/

O.n/ // U.n/
q

// U.n/=O.n/

where the left square is a homotopy pullback square. The map r is a fibration since it is
induced by i W .S1;� id/ ,! .S2;� id/, the inclusion of the meridian copy of .S1;� id/
into .S2;� id/. Therefore, the space F is homotopy equivalent to the strict pullback
of O.n/! U.n/ r

 � B G �.P; z�/, which is the relative mapping space

Map�Z2

�
..S2;� id/; .S1;� id//; .BU.n/;BO.n//I 0

�
:

We will associate another pullback square with this description of F . There is a map
T W F !Map�Z2

�
.S2;� id/; .BU.n/; id/I 0

�
given by

T .f /.x/D

�
f .x/ for x in the upper hemisphere including the equator,
f .� id.x// for x in the lower hemisphere excluding the equator.

Let i W .S1;� id/ ,! .S2;� id/ be defined as above. Then i induces the following
homotopy pullback diagram:

F
T
//

i�

��

Map�Z2
..S2;� id/; .BU.n/; id/I 0/

i�

��

O.n/
� � // U.n/

There is a homeomorphism

Map�Z2

�
.S2;� id/; .BU.n/; id/I 0

�
ŠMap�.RP2;BU.n/I 0/;

but for a prime p ¤ 2, the space RP2 is p–locally contractible. Therefore, p–locally,
we have identified the space F as the fibre of the inclusion O.n/! U.n/, and the
result follows.

Proof of Theorem 2.15 Use Propositions 2.20 and 2.21.

The case .1; 0; 1/ Let .T; �/ be a real surface of type .1; 0; 1/, and since all pointed
gauge groups over .T; �/ are homotopy equivalent, we restrict to the case where .P; z�/
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is a bundle of class 0 over .T; �/. We will use similar techniques to the even genus
case to obtain the following theorem, which is a restatement of Theorem 1.13(2).

Theorem 2.22 For a prime p¤ 2 and n odd, there is a p–local homotopy equivalence

G
�.P; z�/'p �.U.n/=O.n//��

2.U.n/=O.n//��U.n/:

Proof Let uW B G �.P; z�/!Map�.C;BU.n// be the map that forgets about equivari-
ance and restricts to the upper half of .T; �/, which is homeomorphic to a cylinder C .
Let i be the inclusion of the boundary circles of C . Then i induces a pullback

(10)

B G �.P; z�/
u

//

r

��

Map�.C;BU.n//

r 0

��

Map�Z2
..S1 _S1; sw/;BU.n//

u0
// Map�.S1 tS1;BU.n//

where r 0 D i� and r is the restriction to the 1–skeleton of .X; �/.

In a similar fashion to the way we obtained diagram (5), we replace (10) with a
homotopy equivalent square and obtain the diagram:

Q

  

))$$

B G �.P; z�/
u

//

r

��

U.n/

��1

��

U.n/
x�

// U.n/�LBU.n/

Here LBU.n/ is the free loop space of U.n/, and Q is the strict pullback of the diagram

U.n/
x�
�! U.n/�LBU.n/

��1

 ��� U.n/:

Hence Q is again the symmetric matrices in U.n/. We deduce that U.n/=O.n/ also
p–locally retracts off B G �.P; z�/.

It is clear that, as in the even case, there is a similar description for the fibre F of the
map B G �.P; z�/!U.n/=O.n/. The space F fits into the following pullback diagram:

F //

��

Map�Z2

�
.T; �/; .BU.n/; id/I 0

�
xr

��

O.n/
� � // U.n/
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We note that if we let K be a Klein bottle, then there is an homeomorphism

Map�Z2

�
.T; �/; .BU.n/; id/I 0

�
ŠMap�.K;BU.n/I 0/:

The map xr is induced by the inclusion S1 ,!K which on fundamental groups induces
the quotient

Z! Z�Z2; a 7! .0; Œa�2/;

onto the right factor. We see that for a prime p ¤ 2, the map xr is p–locally nullho-
motopic, and we obtain

�F 'p �
2.U.n/=O.n//��Map�.K;BU.n/I 0/:

Now for p¤ 2 prime, we have a p–local homotopy equivalence K'p S1 because K

is a K.Z�Z2; 1/. Therefore, the space �Map�.K;BU.n/I 0/ is homotopy equivalent
to �U.n/ when localised away from 2, and Theorem 2.22 follows.

The case .1; 1; 1/ Let .X; �/ be a real surface of type .1; 1; 1/. For convenience,
we choose .P; z�/ to be a bundle of class .0; 0/ over .X; �/. We use a very similar
method to the previous sections to prove the following theorem. This theorem is a
more general statement than Theorem 1.13(3), whose statement claims to only be valid
for odd n.

Theorem 2.23 For any prime p ¤ 2, there is a p–local homotopy equivalence

G
�.P; z�/'p G

�..S2;� id/I 0/��O.n/:

Proof We first recall the Z2 –decomposition of .X; �/. The 0–skeleton X 0 is given
three 0–cells �i for 1� i � 3. The 1–cells are then

ı1; ı; �.ı/; 2; �.2/;

where the fixed circle is represented by ı1 , and ı joins �2 to �3 ; therefore, ı�.ı/
represents the copy of .S1;� id/. The 1–cell 2 joins �1 to �2 , and �.2/ joins �1

to �3 . One of the two 2–cells has attaching map

ı12ı�.ı/
�1
2 ;

and we define the other one equivariantly.

Since the subspace 2[�.2/ is Z2 –contractible, we amend the above decomposition
to have only three 1–cells ı1; ı; �.ı/ and amend the attaching map to

ı1ı�.ı/:
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We obtain a pullback similar to that of the previous section:

B G �.P; z�/
u

//

r

��

Map�3.D2;BU.n//

r 0

��

Map�Z2

�
.S1; id/_ .S1 _S1; sw/; BU.n/Iw1

� u0
// Map�.S1 _S1 _S1; BU.n//

where r is the restriction to the 1–skeleton of .X; �/, and u restricts to one of the
2–cells and forgets about equivariance.

In a similar fashion to the way we obtained diagram (5), we obtain the diagram

(11)

O.n/

f1

""

f2

**

f3

&&

B G �.P; z�/
u

//

r

��

U.n/�U.n/

r 0

��

SO.n/�U.n/
u0
// U.n/�U.n/�U.n/

where f1; f2 and f3 are to be defined momentarily.

The map r 0W U.n/�U.n/! U.n/�U.n/�U.n/ is the map

r 0.A;B/D .B�1A�1;A;B/;

and the map u0W SO.n/�U.n/! U.n/�U.n/�U.n/ is the map

u0.C;D/D .C;D; xD/:

We can hence define maps f1W O.n/!SO.n/�U.n/ and f2W O.n/!U.n/�U.n/ by

f1.X /D .X
�2;X / and f2.Y /D .Y;Y /

such that u0f1 D r 0f2 . Since (11) is a homotopy pullback, there exists a map

f3W O.n/! B G
�.P; z�/

such that the composition

�W O.n/
f3
�! B G

�.P; z�/
r
�!O.n/�U.n/

p1
�!O.n/

sends an element X to X�2 . Then observe that � has image lying in SO.n/, and
therefore, when � is restricted to SO.n/, it is the inverse of the H –space squaring map.
We conclude that the restriction of � to SO.n/ is a p–local homotopy equivalence for
p ¤ 2, and therefore, SO.n/ retracts off B G .P; z�/.
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The map p1r is just the restriction to the fixed points of the involution. Hence the fibre
of this map is the space B G �..0; 0; 1/I 0/, which we have already studied. We finish
by noting that �SO.n/ and �O.n/ are homeomorphic.

2.4 Unpointed gauge groups

In the last section, we showed that certain trivialities of the attaching map of the top
cells of X led to homotopy decompositions in the pointed case. We will see that these
decompositions somewhat extend to the unpointed case.

2.4.1 Integral decompositions Let .X; �/ be a real surface of type .g; r; a/. In the
following proposition, g0 will denote the number of ˛i and ˇi cells in the description
of .X; �/ in Section 2.1. Explicitly,

g0 D

8<:
g� r C 1 when aD 0;

g� r when aD 1 and g� r is even,
g� r � 1 when aD 1 and g� r is odd.

We now present Proposition 2.24 which is a restatement of Theorem 1.14(1).

Proposition 2.24 There are homotopy equivalences

G ..g; r; a/I .c; w1; : : : ; wr //' G ..g�g0; r; a/I .c; w1; : : : ; wr //�
Y
g0

�U.n/:

Proof In essence, we follow the proof of [11, Proposition 2.1]. For convenience, we
write

.c; xw/ WD .c; w1; : : : ; wr /:

Let X˛ˇD
W

g0.S
1_S1; sw/ be subcomplex of X represented by ˛i ; �.˛i/; ˇi ; �.ˇi/.

Recall the Z2 –cofibration sequence of Proposition 2.3:

X˛ˇ ,!X
q
�!X 0

�
�!†.X˛ˇ/:

Then the map q induces the diagram

�B
@.c; xw/

// Map�Z2
.X 0;BU.n/I .c; xw//

q�

��

// MapZ2
.X 0;BU.n/I .c; xw//

ev
//

q�

��

B

�B
'.c; xw/

// Map�Z2
.X;BU.n/I .c; xw// // MapZ2

.X;BU.n/I .c; xw//
ev
// B

where

B D

�
BU.n/ if r D 0;

BO.n/ otherwise.
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The equation '.c; xw/ D q�@.c; xw/ results in the diagram

Map�.†.X /;BU.n/I .c; xw//

��

Map�Z2
.†X;BU.n/I .c; xw//

.†i/�

��

G .g�g0/
h0
// G ..g; r; a/I .c; xw//

h
//

��

Map�Z2
.†.X˛ˇ/;BU.n//

��

��

G .g�g0/ // �B
@.c; xw/

//

'.c; xw/

��

Map�Z2
.X 0;BU.n/I .c; xw//

q�

��

Map�Z2
.X;BU.n/I .c; xw// Map�Z2

.X;BU.n/I .c; xw//

which defines the maps h and h0 , and in which G .g�g0/ WD G ..g�g0; r; a/I .c; xw//.
By Proposition 2.3, the map �� is trivial. Hence there is a section to the map .†i/� ,
so there is also a section to h, and the result follows.

The quotient map q in Proposition 2.24 induced an isomorphism on �0 between

Map�Z2
.X;BU.n/I .c; xw// and Map�Z2

.X 0;BU.n/I .c; xw//:

However, for a fixed cell ıi of .X; �/, the quotient map zqW X !X=ıi automatically
induces the map

MapZ2
.X=ıi ;BU.n//

q�

�!MapZ2
.X;BU.n/I 0/;

hence the requirement for wi D 0 in Theorem 1.14(3). Whilst there is an equivalence

Map�Z2
.X;BU.n/I .c; 0//'Map�Z2

.X;BU.n/I .c; 1//;

there is not necessarily an equivalence in the unpointed case in general. Hence there
is not enough information to guarantee the commutativity of the diagram needed to
induce a homotopy decomposition.

Omitting such nontrivialities allows further splittings; let X1 be a subset of the 1–cells
of X such that

(1) if there is a fixed cell ıi �X1 , then wi D 0;

(2) for appropriate components, the induced map

g�W Map�Z2
.†X1;BU.n/I . xw//!Map�Z2

.X=X1;BU.n/I .c; xw//

is Z2 –nullhomotopic.

Under these assumptions, it is clear that the methods in the previous proposition would
yield further homotopy decompositions.
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Proof of Theorem 1.14(2) and (3) The above conditions apply to the 1–cells con-
sidered in Propositions 2.6, 2.11 and 2.14 for bundles of arbitrary type.

Additionally, the conditions are satisfied by the 1–cells considered in Propositions 2.7
and 2.12 for bundles of type .c; w1; 0; : : : ; 0/. When n is odd, we can take advantage
of Proposition 1.10 to obtain the table in Theorem 1.14(3). We have now finished the
proof of Theorem 1.14.

2.4.2 Analysing the boundary map Let .P; z�/! .X; �/ be a real bundle of class
.c; w1; : : : ; wr / over a real surface .X; �/ of type .g; r; a/. Let

B D

�
BO.n/ if r > 0;

BU.n/ otherwise,

and consider the homotopy fibration sequence induced from the map that evaluates at
the basepoint of X :

(12) G .P; z�/!�B
@P
��!Map�Z2

.X;BU.n/IP /!MapZ2
.X;BU.n/IP /! B:

Since G .P; z�/ appears as the homotopy fibre of the boundary map @P , we aim to gather
information about G .P; z�/ by studying @P . Our method will involve comparing @P to
a map arising from a similar homotopy fibration sequence found in [12]. This approach
is particularly fruitful when X � is nonempty, that is, when r > 0. We reserve analysis
of the r D 0 cases not handled by Section 2.4.1 to later sections, however, we will
require discussion from this section and Section 2.3.4.

Note that
�0

�
Map.S2;BU.n//

�
Š Z;

and for d 2 Z, we obtain a fibration sequence

(13) U.n/
@d
�!Map�.S2;BU.n/I d/!Map.S2;BU.n/I d/! BU.n/:

The trivialities of the map @d were extensively studied in [12]. We state the relevant
results from this paper.

Theorem 2.25 (Theriault) Let p be a prime, and let

@d W U.n/!Map�.S2;BU.n/I d/

be as in (13). Then

(1) if p − n, then @d is p–locally trivial;

(2) if nD p with p j d , then @d is p–locally trivial.
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The case nD p − d was also studied in [12]; the map @d is not p–locally trivial, but
the homotopy fibre was identified. The following two propositions adapt some of the
trivialities of @d to our setting.

Proposition 2.26 Fix d 2 Z, and let @d be the boundary map in (13). Let .P; z�/
be a real principal U.n/–bundle of class .2d; 0; : : : ; 0/ over a real surface of type
.g; r; a/. Let

@P W �B! B G
�..g; r; a/I .2d; 0; : : : ; 0//

be the boundary map of the evaluation fibration in (12). For a prime q , if @d is
(q–locally) trivial, then

(1) if r > 0, then @P is (q–locally) trivial;

(2) if r D 0, then the composition

O.n/ ,! U.n/
@P
��! B G

�..g; r; a/I .2d; 0; : : : ; 0//

is (q–locally) trivial.

Proof The key will be to compare both maps to another evaluation boundary map in-
volving the Z2 –space Y D .S2_S2; sw/. Note that components of Map�Z2

.Y;BU.n//

are classified by even integers.

Let S2 i1
�! S2 _S2 D Y be the inclusion onto the left factor, and note that this is not

a Z2 –map. The following diagram commutes:

(14)

O.n/
x@2d
//

� _

��

Map�Z2
.Y;BU.n/I 2d/

i�
1
��

// MapZ2
.Y;BU.n/I 2d/

��

// BO.n/� _

��

U.n/
@d
// Map�.S2;BU.n/I d/ // Map.S2;BU.n/I d/ // BU.n/

Now there is an inverse to i�
1

which sends a map f in Map�.S2;BU.n/I d/ to the
composition

S2
_S2 f_f

���! BU.n/_BU.n/
id_�BU.n/

�������! BU.n/_BU.n/
fold
��! BU.n/;

which is Z2 –equivariant because the involution on S2 _S2 swaps the factors. Note
that the map induced on the unpointed mapping spaces does not have an inverse because
the basepoint of Y must land in BO.n/. We conclude that if @d is q–locally trivial,
then so is x@2d .
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Let qW X ! Y be the map that collapses the 1–skeleton of the real surface .X; �/.
We obtain the following commutative diagram:

O.n/
x@2d
//

f
��

Map�Z2
.Y;BU.n/I 2d/

q�

��

// MapZ2
.Y;BU.n/I 2d/

��

// BO.n/

��

�B
@P
// Map�Z2

.X;BU.n/IP / // MapZ2
.X;BU.n/IP / // B

The map f is an equivalence if r > 0 and is the inclusion O.n/ ,! U.n/ otherwise.
Since x@2d is (q–locally) trivial, the result follows.

Proposition 2.27 Let p be a prime such that p − d , and let .P; z�/ be a real principal
U.p/–bundle of class .2d; 0; : : : ; 0/ over a real surface of type .g; r; a/. Let

@P W �B! B G
�..g; r; a/I .2d; 0; : : : ; 0//

be the boundary map of the evaluation fibration. Then
(1) if r > 0, then @P is p–locally trivial;
(2) if r D 0, then the composition

O.p/ ,! U.p/
@P
��! B G

�..g; r; a/I .2d; 0; : : : ; 0//

is p–locally trivial.

Proof We assume that p − d is a prime and that all spaces and maps are localised at p .
Let Y D .S2 _S2; sw/ be as above. Then there is a homotopy commuting diagram

(15)

O.p/
x@2d

//
� _

i
��

Map�Z2
.Y;BU.n/I 2d/

'

��

U.p/
@d

// �U.p/0

U.p/
@1

//

e
��

�U.p/0

d

OO

.�e/0
��Qp�1

iD0
S2iC1

proj
// S2p�1 ˛

// �S3 incl
//
Qp�1

jD1
�S2jC1

where the top square is from diagram (14) and the bottom two squares are found in [12],
specifically in Proposition 4.1 and the proof of Theorem 1.1(b) and (c).

The d th power map d W �U.p/0!�U.p/0 is a homotopy equivalence because p − d .
Furthermore, the maps e and .�e/0 are homotopy equivalences provided in [9]. Now
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for p ¤ 2 prime, there is a p–local homotopy equivalence

SO.p/'p

.p�1/=2Y
iD1

S4i�1;

and furthermore, the inclusion O.p/ ,! U.p/ is in fact the inclusion of these factors
into

Qp�1
iD0

S2iC1 . We conclude that the composition

(16) �W O.p/ ,! U.p/!

p�1Y
iD0

S2iC1
proj
��! S2p�1

is nullhomotopic, and therefore, so is x@2d .

For p D 2, the space O.2/ is homeomorphic to S1 q S1 . Since � in (16) has
target space S3 , we conclude that � and hence x@2d are nullhomotopic in this case,
too. The result then follows in a similar way to the last paragraph in the proof of
Proposition 2.26.

Proof of Theorem 1.15(1a) and (2a) Theorem 2.25 and Proposition 2.26 immedi-
ately obtain (1a). Similarly, Theorem 2.25 and Proposition 2.26 obtain (2a) when p j d ,
and Proposition 2.27 then gives the remaining case when p − d .

2.4.3 The case .0; 0; 1/ We restrict to analysing gauge groups above real surfaces
of type .0; 0; 1/. Fix an even integer c . Then we wish to analyse the boundary map @c

of the evaluation fibration.

For a Z2 –space A, let x�W A!A�A be the composition

(17) A
�
�!A�A

id��A
����!A�A:

Let u be the composition

B G
�..0; 0; 1/I c/

'
�!Map�Z2

.S2;BU.n/I c/
zu
�!Map�2.D2;BU.n//

'
�! U.n/;

where zu restricts to the upper hemisphere of .S2;� id/ and forgets about equivariance
except at � and �.�/. The last equivalence follows since D2 with two points identified
is homotopy equivalent to S1 . The maps u and x� are the same as in (5), and they fit
into the commutative diagram

U.n/
@c

//

x�
��

B G �..0; 0; 1/I c/

u

��

// B G ..0; 0; 1/I c/

��

// BU.n/

x�
��

U.n/�U.n/
�

// U.n/ // Map.D2;BU.n//
ev2
// BU.n/�BU.n/
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where ev2 evaluates at two antipodal points on the boundary of D2 , and � is defined
via this diagram.

Since D2 is contractible, the map ev2 is homotopic to the diagonal map

�W BU.n/! BU.n/�BU.n/:

Therefore, the map � is homotopic to the map defined by .A;B/ 7! AB�1 . Let
f W U.n/! U.n/ be defined as f .A/DAAt and we conclude that u@c ' f .

After localising the map f at a prime p ¤ 2, we have the composition

(18) SO.n/�U.n/=SO.n/
f
�! SO.n/�U.n/=SO.n/

p2
�! U.n/=SO.n/;

where p2 is the projection map. Recall the map ' from (6) and compare with f .
For p ¤ 2, we showed that ' is a p–local homotopy equivalence, and we conclude
that restricting the composition (18) to the factor U.n/=SO.n/ also obtains a p–local
homotopy equivalence. We have shown the following proposition.

Proposition 2.28 Let n be odd. Then localised at a prime p ¤ 2, the following
composition is a homotopy equivalence:

U.n/=SO.n/ ,! U.n/
@c
�! B G

�..0; 0; 1/I c/
u
�! U.n/! U.n/=SO.n/:

With this proposition, we have enough ammunition to prove Theorem 1.15(1b) and (2b).

Proof of Theorem 1.15(1b) and (2b) We first prove part (1b). Localise at a prime
p ¤ 2 such that p − n, and reconsider the fibration sequence

G ..0; 0; 1/I c/! SO.n/�U.n/=SO.n/
@c
�! B G

�..0; 0; 1/I c/:

By Proposition 2.28, the factor U.n/=SO.n/ retracts off B G �..0; 0; 1/I c/, and by
Proposition 2.26(2) the factor SO.n/ retracts off G ..0; 0; 1/I c/ under a lift

l W SO.n/! G ..0; 0; 1/I c/

of the inclusion SO.n/ ,! U.n/. Then the composition

SO.n/��2.U.n/=SO.n//
l�id
���! G ..0; 0; 1/I c/��

2.U.n/=SO.n//
“action”
������! G ..0; 0; 1/I c/

is a homotopy equivalence, and the result follows. The proof of part (2b) is similar.
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2.4.4 The case .1; 0; 1/ We now analyse unpointed gauge groups above a real
surface .T; �/ of type .1; 0; 1/. We use a similar method to the .0; 0; 1/ case and adopt
some of its notation.

As in the proof of Theorem 2.22, let u0W B G �..1; 0; 1/I c/!Map�.C;BU.n// be the
map that forgets about equivariance and restricts to the upper half of .T; �/, which is
homeomorphic to a cylinder C . Let x� be as in (17). Then we obtain the diagram

U.n/
@c

//

x�
��

B G �..1; 0; 1/I c/

u0

��

// B G ..1; 0; 1/I c/

��

// BU.n/

x�
��

U.n/�U.n/
�0
// Map�2.C;BU.n// // Map.C;BU.n//

ev2
// BU.n/�BU.n/

where ev2 is another double evaluation map; viewing C as a subcomplex of .T; �/,
the map ev2 evaluates at the basepoint �1 and its image under the involution �.�1/.
Again, the map �0 is defined via this diagram.

As in the previous case, we aim to study the homotopy type of the map �0 x�. However,
it is not immediately clear on the homotopy type of the “boundary” map �0 . We note
that C ' S1 under a deformation retract fixing �1 and taking �.�1/ to �1 . Therefore,
if we let LBU.n/ be the free loop space of BU.n/, we deduce that there is a homotopy
commutative diagram

Map.C;BU.n//

'

��

ev2
// BU.n/�BU.n/

LBU.n/
ev

// BU.n/

�

OO

where ev evaluates at the basepoint �1 and � is the diagonal map. Given that � ev is
a composition, we obtain the homotopy commutative diagram

U.n/�U.n/

�0

��

U.n/�U.n/

z�
��

U.n/
h0
// Map�2.C;BU.n//

��

h
// U.n/

�

��

U.n/ // LBU.n/

� ev
��

ev
// BU.n/

�
��

BU.n/�BU.n/ BU.n/�BU.n/
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where the map � is the inclusion of the homotopy fibre, which is nullhomotopic. The
middle square is a homotopy pullback, and hence the maps h and h0 are defined using
this diagram.

By the triviality of the middle right vertical, there is a right homotopy inverse i to h and
a left inverse q to h0 . Therefore, the space Map�2.C;BU.n// is homotopy equivalent
to the product U.n/�U.n/.3 Therefore, the homotopy type of

�0W U.n/�U.n/!Map�2.C;BU.n//

can be determined by studying q�0 and h�0 . It is clear that q�0 � � and h�0 � z� .
However, z� is the same as the map �W U.n/ � U.n/! U.n/ in case .0; 0; 1/, and
therefore, it is homotopic to the map .A;B/ 7!AB�1 .

We conclude that �0 is homotopic to a map

U.n/�U.n/! U.n/�U.n/; .A;B/ 7! .In;AB�1/:

Proof of Theorem 1.15(1c) and (2c) We first prove part (1c). Let p ¤ 2 be a prime
with p − n. Then localised at p , in the same way as Proposition 2.28, we see that the
factor U.n/=SO.n/ in

U.n/'p U.n/=SO.n/�SO.n/

retracts off B G �..1; 0; 1/I c/ via

U.n/=SO.n/ ,! U.n/
@c
�! B G

�..1; 0; 1/I c/
u0

�! U.n/! U.n/=SO.n/:

Additionally, by Proposition 2.26(2), the factor SO.n/ retracts off the gauge group
G ..1; 0; 1/I c/. We then find the required homotopy equivalence as in the proof of
Theorem 1.15(1b). The proof of (2c) is similar.

2.5 The quaternionic case

From here on, we restrict to the quaternionic case. Again, our method of attack will be to
study some mapping spaces related to these gauge groups. In fact, these mapping spaces
are the same as in the real case, except BU.2n/ is endowed with an involution so that

.EU.2n/; z&Q/! .BU.2n/; &Q/

is a universal quaternionic bundle. Recall that in the real case, the involution & was
induced by complex conjugation y& W U.n/! U.n/. In this case, the involution &Q is

3Of course, this can be seen directly by studying the homotopy type of C .
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induced from the homomorphism

y&QW U.n/! U.n/; A 7! J�1AJ;

where

J D

0BBBBBBBBB@

0 1 0 0 � � � 0 0

�1 0 0 0 � � � 0 0

0 0 0 1 � � � 0 0

0 0 �1 0 � � � 0 0
:::
:::
:::
:::
: : :

:::
:::

0 0 0 0 � � � 0 1

0 0 0 0 � � � �1 0

1CCCCCCCCCA
:

Most of the results in the real case come from geometric properties of .X; �/; hence
we will see that these results transfer to the quaternionic setting without too much
hassle. Furthermore, since .BG/&Q D B Sp.n/, we will see that a number of results
will be easier to prove due to the high connectivity of B Sp.n/.

For the Z2 –space .BU.2n/; &Q/ as above, we write

MapQ.X;BU.2n// WDMapZ2
.X;BU.2n//

to distinguish from the real case, and use similar notation for the pointed cases. Now
let xX be as in the preamble to Theorem 2.1, and we state the quaternionic analogue of
Theorem 2.1.

Theorem 2.29 Let .P; z�/ be a quaternionic principal U.2n/–bundle of class c over
a real surface .X; �/ of type .g; r; a/. Then there are homotopy equivalences

(1) B GQ.P; z�/'MapQ.X;BU.2n/IP /;

(2) B G �Q .P; z�/'Map�Q.X;BU.2n/IP /;

(3) B G �
.rCa/

Q .P; z�/'Map�.rCa/

Q .X;BU.2n/I c/'Map�Q. xX ;BU.2n/IP /;

where on the right-hand side, we pick the path component of MapQ.X;BU.n// that
induces .P; z�/.

We now sketch the proofs for the results in Section 1.3.

Proof of 1.16 We use the action of �2.BU.2n// on Œ.X; �/; .BU.2n/; &Q/�Z2
as

presented in the proof of Proposition 1.7.

As in the real case, the lack of a �2.BU.2n// action means that we cannot provide an
analogue for B GQ.P; z�/.
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Proof of 1.17 The idea is to tensor the quaternionic bundle .P; z�/ with a real U.1/–
bundle �QW .Q; �/ ! .X; �/ of class .2; 0; : : : ; 0/. The required isomorphism of
gauge groups is then defined as in the proof of Proposition 1.9.

We sketch the proofs for the results related to homotopy decompositions of the gauge
groups.

Proof of 1.18 and 1.19 The proof is similar to those in Sections 2.3.1–2.3.3, except
that in this case, BU.2n/&Q D B Sp.n/. We recall that decompositions involving fixed
circles in the real case needed to be handled delicately, but this does not occur in the
quaternionic case due to the high connectivity of B Sp.n/.

Our aim is to now prove Theorem 1.20 using a similar method to that of Theorem 2.15.
Localised at a prime p ¤ 2 and for n odd, we obtained a p–local decomposition in
the real case due to the fact that the p–local homotopy equivalence

U.n/=O.n/! U.n/=O.n/; AO.n/ 7!AAtO.n/;

factored through the space B G �..0; 0; 1/I 0/. We shall see that a similar map involving
U.2n/=Sp.n/ also factors through the quaternionic analogue of this gauge group. Let

uW B G
�
Q ..0; 0; 1/I 0/!Map�2.D2;BU.2n//

be the map that restricts to the upper hemisphere of .S2;� id/ and forgets about
equivariance, considering the image as landing in Map�2.D2;BU.2n//. Let

r W B G
�
Q ..0; 0; 1/I 0/!Map�Z2

..S1
_S1; sw/;BU.2n//

be the map restricting to the 1–skeleton of .S2;� id/. We obtain a homotopy commut-
ing diagram similar to diagram (5):

Q

##

**''

B G �Q ..0; 0; 1/I 0/
u

//

r
��

U.2n/

��1

��

U.2n/
�Q

// U.2n/�U.2n/

where �Q is the map A 7! .A; y&QA/. Here Q is the strict pullback of the diagram

U.2n/
�Q

��! U.2n/�U.2n/
��1

 ��� U.2n/;

and B G �Q ..0; 0; 1/I 0/ is the homotopy pullback of the same diagram. Once again, we
aim to show that Q retracts off B G �Q ..0; 0; 1/I 0/.
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Lemma 2.30 The pullback Q is homeomorphic to U.2n/=Sp.n/.

Proof This is essentially the same proof as Lemma 2.16, but we must elaborate on
the details for surjectivity of the map

f 0W U.2n/=Sp.n/!Q; A Sp.n/ 7!Ay&Q.A/
�1:

It can be shown that a matrix A is in Q if and only if AJ is skew-symmetric, and
hence due to the Youla lemma [14], there is a unitary matrix P such that AJ DPJP t .
Therefore,

AD PJP tJ�1
D P .J�1 xPJ /�1

D f 0.P Sp.n//;

and the result follows.

Similar to the map in (6), we obtain the composition

(19) 'W U.2n/=Sp.n/
f 0

�!Q! B G
�
Q ..0; 0; 1/I 0/

r
�! U.2n/

q
�! U.2n/=Sp.n/;

where q is the quotient map. The map ' sends an element A Sp.n/ to the element
Ay&Q.A/

�1 Sp.n/. It was shown in [5] that the related map

(20) s0W SU.2n/=Sp.n/! SU.2n/=Sp.n/; A Sp.n/ 7!Ay&Q.A/
�1 Sp.n/;

is a homotopy equivalence when localised at a prime p ¤ 2.

Clearly, there are analogue statements to Lemmas 2.18 and 2.19 and Proposition 2.21.

Lemma 2.31 There is a homotopy equivalence

�W U.2n/=Sp.n/�S1 '
�! U.2n/=Sp.n/:

Lemma 2.32 There exist maps

s00W SU.n/=SO.n/! SU.n/=SO.n/ and s0W S1
! S1

such that the following is a homotopy commuting square:

SU.2n/=Sp.n/�S1 s00�s0
//

�
��

SU.2n/=Sp.n/�S1

�
��

U.2n/=Sp.n/ s
// U.2n/=Sp.n/

Furthermore, s00 and s0 are p–local equivalences.

Proposition 2.33 Let F be the homotopy fibre of the composition

B G
�
Q ..0; 0; 1/I 0/

r
�! U.2n/

q
�! U.2n/=Sp.n/:
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Then for any prime p ¤ 2, there is a p–local homotopy equivalence

F 'p �.U.2n/=Sp.n//:

Proof of Theorem 1.20(1) For a prime p¤ 2, we have shown that there is a p–local
section to the principal homotopy fibration

�2.U.2n/=Sp.n//! G
�
Q ..0; 0; 1/I 0/

�.qr/
����!�.U.2n/=Sp.n//;

and the result follows.

Proof of Theorem 1.20(2) and (3) These follow using the same proofs as Theorems
2.22 and 2.23.

In the unpointed case, the theorems involving integral decompositions follow immedi-
ately from the real case.

Proof of Theorem 1.21 The results presented in Section 2.3.1 do not depend on
the fixed point set of the involution on BU.n/, and hence Theorem 1.21 follows
immediately.

We proceed to prove the quaternionic analogues of Section 2.4.2. Let

B D

�
B Sp.n/ if r > 0;

BU.2n/ otherwise,

and recall the evaluation fibration

(21) �B
@P
��!Map�Q.X;BU.n/IP /!MapQ.X;BU.n/IP /! B:

The following proposition can be proven using the same method as Proposition 2.26.

Proposition 2.34 Fix d 2 Z and let @d be the boundary map in (13). Denote by

@P W �B! B G
�
Q ..g; r; a/I 2d/

the boundary map of the evaluation fibration as in (21). If @d is (q–locally) trivial, then

(1) if r > 0, then @P is (q–locally) trivial;

(2) if r D 0, then the following composition is (q–locally) trivial:

Sp.n/ ,! U.2n/
@P
��! B G

�
Q ..g; r; a/I 2d/:

Proof of Theorem 1.22(1) Let p be a prime such that p − 2n. Then by Theorem 2.25,
the map @2n is p–locally trivial. The result then follows from Proposition 2.34.
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real �0.G
�.rCa/.P; z�// �0.G .P; z�// �1.G

�.rCa/.P; z�// �1.G .P; z�//

n> 2 ZgCa � .Z2/
r Zg � .Z2/

rC1 Z Z� .Z2/
r

nD 2 ZgCaCr ZgCr �Z2 Z ZrC1

nD 1 ZgCa Zg �Z2 0 0

quat.
rank 2n

ZgCa Zg � .Z2/
a Z Z

Table 1: Results of [3]: the low-dimensional homotopy groups of rank n

gauge groups above a real surface of type .g; r; a/ . The underlined entries
disagree with the author’s results.

Proof of Theorem 1.22(2) and (3) This is similar to the proofs of Theorem 1.15(1b)
and (1c). We do require that p ¤ 2, but this is automatic with the assumption that
p − 2n.

3 Tables of homotopy groups

We present homotopy groups of the .rCa/–pointed and unpointed gauge groups. We
only present these for the trivial components, that is,

� .c; w1; : : : ; wr /D .0; 0; : : : ; 0/ for real bundles;

� c D 0 for quaternionic bundles;

with the understanding that results can be obtained for different components using the
results in Section 1. Specifically, in the .rCa/–pointed case, we can obtain results for
all of the components using Propositions 1.7 and 1.16, and in the unpointed case, we can
obtain results for some of the different components using Propositions 1.9, 1.10 and 1.17.

We first recall the status of the calculation of the homotopy groups before this paper;
that is, we present the low-dimensional homotopy groups from [3] in Table 1.

From the results in Sections 1.2 and 1.3, we can see that our homotopy decompositions
usually contain factors involving U.n/, O.n/ and Sp.n/. Due to Bott periodicity, it is
easy to calculate some of the higher homotopy groups for high-rank gauge groups. We
present such results in Tables 2 and 3 where � is defined via

�D �.g; r; a/D

�
1 if r > 0 and aD 1;

0 otherwise:

Some of the results in Table 2 are a consequence of localised homotopy equivalences
and hence may provide incomplete information. To highlight these localised results we
use the following notation:
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G �
.rCa/.P; z�/ G .P; z�/

�8j Zg�1 �Zr�1
2
� .Z1Ca/p � .Z

1C�
2

/p Zg�1 �Zr�1
2
� .Z/p � .Z

1C�
2

/p

�8jC1 .Z1Ca
2

/p Zr�1
2
� .Z2C�

2
/p

�8jC2 ZgCr�2 � .Z1C�/p � .Za
2
/p Zg�1 �Zr�1

2
� .Z/p � .Z

�
2
/p

�8jC3 .Z/p .Z2/p

�8jC4 Zg�1 � .Z1Ca/p Zg�1 � .Z/p
�8jC5 0 0

�8jC6 ZgCr�2 � .Z1C�/p Zg�1 � .Z1��/p

�8jC7 Zr�1
2
� .Z/p � .Z

�
2
/p Zr�1

2
� .Z2/p � .Z

�
2
/p

Table 2: Homotopy groups for high-rank gauge groups of real bundles, that
is, the homotopy groups �i when the rank n> i C 2 . The results in the first
two rows correspond to the top row in Table 1.

� groups surrounded by .�/p are understood to have come from p–local homotopy
equivalences where p and the rank n of the gauge groups satisfy the requirements
of Theorems 1.13 and 1.15.

Similarly, some of the results in Table 3 are a consequence of localised homotopy
equivalences and hence may provide incomplete information. To highlight these
localised results we use the following notation:

� groups surrounded by .�/p are understood to have come from p–local homotopy
equivalences where p is prime and the rank 2n of the gauge groups satisfy the
requirements of Theorems 1.20 and 1.22.

Due to the properties of Bott periodicity, Table 3 is a translation of Table 2. We note
that additional calculations can be made for the lower-rank cases. We point the reader
to [7, Section 3.2] where explicit homotopy groups of some of the relevant factors can
be found.

We note that the author’s results disagree with the Z–summands underlined in Table 1.
In the pointed case, this Z–summand arises in [3] by studying a fibration arising from
restricting the gauge group to the 1–skeleton of the real surface.

For example, the corresponding fibration for a type-.g; r; 0/ real surface is

�2U.n/! G
�.P; z�/!

gY
1

�U.n/�

rY
1

�O.n/;
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G �
.rCa/

Q .P; z�/ GQ.P; z�/

�8j Zg�1 � .Z1Ca/p Zg�1 � .Z/p
�8jC1 0 0

�8jC2 ZgCr�2 � .Z1C�/p Zg�1 � .Z1��/p

�8jC3 Zr�1
2
� .Z/p � .Z

�
2
/p Zr�1

2
� .Z2/p � .Z

�
2
/p

�8jC4 Zg�1 �Zr�1
2
� .Z1Ca/p � .Z

1C�
2

/p Zg�1 �Zr�1
2
� .Z/p � .Z

1C�
2

/p

�8jC5 .Z1Ca
2

/p Zr�1
2
� .Z2C�

2
/p

�8jC6 ZgCr�2 � .Z1C�/p � .Za
2
/p Zg�1 �Zr�1

2
� .Z/p � .Z

�
2
/p

�8jC7 .Z/p .Z2/p

Table 3: Homotopy groups for high-rank gauge groups of quaternionic bun-
dles, that is, the homotopy groups �i when the rank 2n > 1

4
.i C 1/ . The

results in the first two rows correspond to the bottom row in Table 1.

and we obtain the exact sequence

0! �2.G
�.P; z�//

�
�! ZgCr

! Z
�
�! �1.G

�.P; z�//! 0:

The claim in [3] is that the map � can be thought in terms of the classification of bundles
over S2^X . Further, since � is induced by a map that collapses the 1–skeleton of X ,
the map � is essentially providing an identification of the second Chern class, and
hence is an isomorphism.

The author agrees that this argument holds in the nonequivariant case. Indeed, if we
consider X as a Riemann surface, we obtain that S2 ^X is a wedge of spheres, and
then � is induced by a map that collapses all but the top copy of S4 .

However, we now demonstrate that �1.G
�.P; z�// cannot contain a Z–summand, at

least for the type-.0; 1; 0/ case. We assume that �1.G
�.P; z�// contains a Z–summand,

and that subsequently the map � is an isomorphism. Therefore, � is an isomorphism,
and we recall that it is induced by the map r 0 which restricts to the 1–skeleton of X .
The map r 0 fits into the commutative diagram

G �.P; z�/
u0

//

r 0
��

�Map�.D2;BU.n//

r
��

�Map�Z2
..S1; id/;BU.n/I 0/

u
// �Map�.S1;BU.n//

where u0 is the map that forgets about equivariance and restricts to the upper hemisphere
of X .
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Now u is homotopic to the inclusion �O.n/ ,!�U.n/, and hence, by assumption,
the induced map

u�� D .ur 0/�W ZŠ �2.G
�.P; z�//! �2.�U.n//Š Z

is multiplication by 2. But ru0 is nullhomotopic because it factors through the con-
tractible space �Map�.D2;BU.n//, and we obtain a contradiction. We conclude
that � cannot be an isomorphism.

It remains to show that the other underlined entries in Table 1 cannot contain Z–
summands. However, these entries were obtained from the calculation in the pointed
case, and therefore, we argue that these cannot contain Z–summands either.
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Coarse medians and Property A

JÁN ŠPAKULA

NICK WRIGHT

We prove that uniformly locally finite quasigeodesic coarse median spaces of finite
rank and at most exponential growth have Property A. This offers an alternative proof
of the fact that mapping class groups have Property A.

20F65; 30L05

1 Introduction

Coarse median spaces and groups were invented by Bowditch [4; 5; 6] as (we are
guessing here) a device offering a unified approach to hyperbolic groups and mapping
class groups.

Indeed, hyperbolic groups are precisely coarse median groups of rank 1 [4, Theorem
2.1], and mapping class groups are instances of coarse median groups of finite rank [4,
Theorem 2.5].

Furthermore, groups that are relatively hyperbolic with respect to a collection of coarse
median groups are again coarse median [5]. This provides more examples of coarse
median groups, for instance geometrically finite Kleinian groups and Sela’s limit groups.

The coarse median approach to these classes of groups is quite powerful: in this series
of papers, Bowditch uses it to give unified proofs of some properties, for instance
the rapid decay property and quadratic isoperimetric inequality, and to compute the
dimension of asymptotic cones.

Intuitively, a coarse median space is a metric space endowed with a ternary structure
(a map assigning a point to every triple of points), which is metrically a controlled
amount away from being an actual median structure. (Finite) sets with an actual
median structure are just (vertex sets of) CAT.0/ cube complexes. Hence one may
loosely regard coarse median structures as coarse versions of (metrized) CAT.0/ cube
complexes. This analogy works exactly in the “rank one” situation, where the CAT.0/
cube complexes are trees, and hyperbolic groups are “coarsely tree-like”. For the actual
definitions, see Section 2.
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The main result of this piece is that quasigeodesic coarse median spaces of finite rank,
which are uniformly locally finite and have at most exponential growth, have Yu’s
Property A. For proving Property A we use a criterion which is an adaptation of Brown
and Ozawa’s proof [9] that hyperbolic groups act amenably on the boundary. As a
side-effect, we obtain a quick proof of Property A for finite-dimensional CAT.0/ cube
complexes, a fact originally established by Brodzki, Campbell, Guentner, Niblo and
Wright [8] by a different, more combinatorial method. Our proof for coarse median
spaces is a coarsification of this short argument.

As a consequence, we obtain an alternative proof of the result that mapping class groups
have Property A (ie are exact), originally proved by Hamenstädt [12] and Kida [15].

Finally, we would like to mention a related notion of hierarchically hyperbolic spaces
(and groups), developed recently by Behrstock, Hagen and Sisto [1; 3]. While this
property is stronger (see [1, Section 7]), and somewhat more involved than coarse
medians, it is also substantially more powerful: it implies even finite asymptotic
dimension; see Behrstock, Hagen and Sisto [2]. Having finite asymptotic dimension is
a strictly stronger property than Property A. We close off with a question: do coarse
median groups of finite rank have finite asymptotic dimension?

The structure of the paper is as follows: In Section 2 we recall the relevant definitions
and facts. Section 3 explains Brown and Ozawa’s criterion for Property A. In Section 4
we outline the quick proof of Property A for CAT.0/ cube complexes. In Section 5 we
establish some facts about (metric) median algebras; and finally Section 6 contains the
proof of the main result.

Acknowledgements Špakula thanks Goulnara Arzhantseva for her encouragement,
continuing support, and the initial impetus for this work.

2 Preliminaries

2.1 CAT.0/ cube complexes

We recall the notions related to CAT.0/ cube complexes. For details, please consult
[7; 16].

A cube complex is a polyhedral complex in which the cells are Euclidean cubes of side
length one, the attaching maps are isometries identifying the faces of a given cube with
cubes of lower dimension and the intersection of two cubes is a common face of each.
One-dimensional cubes are called edges; and the complex is finite-dimensional if there
is a bound on the dimension of its cubes.

Algebraic & Geometric Topology, Volume 17 (2017)
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Recall that we can endow a cube complex with a naturally defined geodesic metric.
Furthermore, we can endow the set of vertices of a cube complex with an edge-path
metric; in the finite-dimensional case, this metric is coarsely equivalent to (the restriction
of) the geodesic metric [8, Proposition 1.7].

A cube complex is a CAT.0/ cube complex if the underlying topological space is
simply connected and the complex satisfies Gromov’s link condition [10]. In the finite-
dimensional case, this is equivalent to asking that the geodesic metric should satisfy
the CAT.0/ inequality [7].

A hyperplane H (or a wall) is a geometric hyperplane which cuts each cube that it
intersects exactly in half. Such an H divides the vertex set into two path-connected
subspaces, which are referred to as half-spaces. Two hyperplanes cross if each of the
four possible intersections of the associated half-spaces is nonempty. We say that H

separates two vertices if every edge-path connecting them crosses H . For two sets of
vertices A and B , we shall write A jH B if H separates every vertex in A from every
vertex in B , ie A and B are in different half-spaces determined by H . The interval
Œx;y� between two vertices x and y is the intersection of all half-spaces containing
both vertices.

Every n–dimensional cube in a CAT.0/ cube complex defines n pairwise intersecting
hyperplanes (which it crosses) and, conversely, a collection of n pairwise intersecting
hyperplanes defines a unique n–cube (which crosses exactly these hyperplanes).

Note that the set of vertices of a CAT.0/ cube complex is a median algebra in the
sense defined below — the median of three points x , y , z is the unique vertex in the
intersection Œx;y�\ Œy; z�\ Œz;x�; see [19]. Equivalently the median of x , y , z is the
unique point lying on a geodesic between x and y , on a geodesic between y and z

and a geodesic between z and x . Furthermore, the notions of an interval, wall, etc, are
the same whether defined as here, or using the median structure (below).

In a CAT.0/ cube complex, each collection of pairwise intersecting hyperplanes deter-
mines a unique cube and, conversely, each cube (of dimension k ) provides k pairwise
intersecting hyperplanes. A cube path from a vertex x to a vertex y in a CAT.0/ cube
complex X is a sequence of cubes C0; : : : ;Cn such that x is a vertex of C0 , y is a
vertex of Cn , and every two consecutive cubes intersect in exactly one vertex. A normal
cube path from x to y is a cube path from x to y such that every hyperplane separating
x and y is crossed exactly once, with the maximal number of hyperplanes crossed
at each step [16]. Note that if X is finite-dimensional, then 1

d
�.x;y/� n� �.x;y/,

where d is the dimension of X and � denotes the edge-path distance. We also refer
to the sequence of the common vertices between the consecutive cubes on the normal
cube path as the normal cube path.

Algebraic & Geometric Topology, Volume 17 (2017)
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2.2 Metric median algebras

We summarise the notions that we need for this paper. For a more thorough account
on median structures, we refer to [4; 6]. The median algebras can be thought of as an
abstraction of CAT.0/ cube complexes — every finite median algebra is actually the
vertex set of a finite CAT.0/ cube complex. While one direction of this link works
in general, median algebras can be “larger” (for instance R–trees are also median
algebras).

A median algebra is a set, ˆ, equipped with a ternary operation, �W ˆ3! ˆ, such
that for all a; b; c; d; e 2ˆ we have

(M1) �.a; b; c/D �.b; c; a/D �.b; a; c/,

(M2) �.a; a; b/D a, and

(M3) �.a; b; �.c; d; e//D �.�.a; b; c/; �.a; b; d/; e/.

While this is the formal definition, we prefer to think about finite median algebras as
the vertex sets of finite CAT.0/ cube complexes (with the natural median structure).

Given a; b 2ˆ, the interval Œa; b� is defined to be Œa; b�D fc 2ˆ j �.a; b; c/D cg. A
subset H �ˆ is convex if Œa; b��H for all a; b 2H .

For A � ˆ, define the convex hull, denoted by hull.A/, to be the smallest convex
subset of ˆ containing A. Note that hull.fa; bg/D Œa; b� for a; b 2ˆ. Furthermore,
for A � ˆ, define the join, J.A/ D

S
a;b2AŒa; b�. Continuing inductively, we put

J 0.A/D J.A/ and J i.A/D J.J i�1.A//. In general, there always exists some p 2N
such that J p.A/D hull.A/, and moreover we know that p can be taken to be no larger
than the rank of ˆ; see [4, Lemma 5.5].

A wall, W , is a partition fH�.W /;HC.W /g of ˆ into two nonempty convex subsets.
We say that two walls W and W 0 cross if each of the sets H�.W / \ H�.W 0/,
H�.W /\HC.W 0/, HC.W /\H�.W 0/ and HC.W /\HC.W 0/ is nonempty.

We say that ˆ has rank at most d if there is no collection of d C 1 pairwise crossing
walls of ˆ.

By a topological median algebra we mean a topological space ˆ endowed with a
structure of a median algebra �W ˆ3! ˆ such that � is continuous in the induced
topology. When the topology on ˆ comes from a metric � , we say that ˆ is a metric
median algebra.

Let ˆ be a metric median algebra as above. We also recall one of the conditions used
in [6] to obtain the embedding result:

(L2) There exists K � 1 such that for all a; b; c; d 2ˆ, �.�.a; b; c/; �.a; b; d//�
K�.c; d/.

Algebraic & Geometric Topology, Volume 17 (2017)
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Let us mention that the main embedding result of [6] states that if a metric median
algebra ˆ satisfies (L2), is Lipschitz path-connected and is �–colourable,1 then it
bilipschitzly embeds into a product of � R–trees.

2.3 Coarse median spaces

In this subsection, we recall the definitions and facts related to coarse medians. For
more details, we refer to [4; 6].

Let .X; �/ be a metric space, and let �W X 3!X be a ternary operation. We say that
� is a coarse median and that .X; �; �/ is a coarse median space if the following
conditions hold:

(C1) There are constants K � 1 and H.0/� 0 such that for all a; b; c; a0; b0; c0 2X

we have

�.�.a; b; c/; �.a0; b0; c0//�K.�.a; a0/C �.b; b0/C �.c; c0//CH.0/:

(C2) There is a function H W N! Œ0;1/ with the following property: Suppose that
A�X with 1� jAj � p <1. Then there is a finite median algebra .…;�…/
and maps � W A!… and � W …!X such that for all x;y; z 2… we have

�.��….x;y; z/; �.�x; �y; �z//�H.p/

and
�.a; ��a/�H.p/

for all a 2A.

We refer to K and H as the parameters of .X; �; �/.

Without loss of generality, we may assume that � satisfies the axioms (M1) and (M2),
by [4, page 22].

We say that X has rank at most d if we can always choose … to have rank at most d .

Let us recall the asymptotic cones from [4, Section 9; 6, Section 8]: Let .X; �; �/ be a
coarse median space, let .rn/ be a sequence of positive reals such that rn!1, let
.xn/�X be a sequence of points in X , and finally fix a nonprincipal ultrafilter on N .
With this data, we can construct an ultralimit .X1; �1; �1/ of pointed coarse median
spaces ..X; �=rn; �/;xn/. This ultralimit is referred to as an asymptotic cone of X

(with the given data), and it is a complete2 metric median algebra satisfying (L2) (with
the constant K being the same as in the definition of coarse median). Moreover, if X

has rank at most d , then X1 also has rank at most d .
1This is a more restrictive version of rank, which is equivalent to rank for intervals.
2The completeness here refers to the metric.
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2.4 Property A

Property A is a coarse geometric property of metric spaces (or more generally coarse
spaces), first defined by G Yu [21] as a criterion that (for discrete countable groups)
implies the coarse Baum–Connes conjecture, and hence the Novikov conjecture. The
catchphrase here is “nonequivariant amenability” or “coarse amenability”. Since its
inception, many equivalent formulations were discovered, including analytic (exactness
of the reduced group C �–algebra, nuclearity of the uniform Roe algebra [11; 18]) and
dynamical (admitting an amenable action on a compact topological space [13]).

We shall recall one of the possible definitions (the one used in Proposition 3.1) for
completeness; we refer to [20] for the whole spectrum.

Let .X; �/ be a uniformly locally finite discrete metric space. We say that X has
Property A if for all R; " > 0 there exists a map �W X ! `1.X / from X into the
Banach space `1.X / such that

� k�.x/k1 D 1 for all x 2X ;
� for all x;y 2X with �.x;y/�R, we have k�.x/� �.y/k1 � ";
� there exists S > 0 such that �.x/ is supported in the closed ball B.xIS/ around

x with radius S for each x 2X .

2.5 Geodesicity

We shall say that a metric space .X; �/ is quasigeodesic if there exist constants G1

and G2 such that there exists a .G1;G2/–quasigeodesic between any pair of points
in X . Note that when X is a quasigeodesic coarse median space, all its asymptotic
cones are Lipschitz path-connected. This is required for applying the embedding result
of Bowditch [6] (and is a blanket assumption in [4; 6]).

3 A criterion

We extract a criterion from a proof of Brown and Ozawa [9, Theorem 5.3.15] for
proving Property A. Its proof is just an excerpt from [9], which is in turn inspired
by [14].

Proposition 3.1 Let X be a uniformly finite, discrete metric space. Suppose that we
have an assignment of a set S.x; k; l/�X to every l 2N , k 2 f1; : : : ; 3lg and x 2X

such that:

(i) For every l 2 N there exists Sl > 0 such that S.x; k; l/ � B.x;Sl/ for all
x 2X and k 2 f1; : : : ; 3lg.

Algebraic & Geometric Topology, Volume 17 (2017)



Coarse medians and Property A 2487

(ii) For every x;y 2 X , l � �.x;y/ and k 2 fl C 1; : : : ; 2lg, we have inclu-
sions S.x; k��.x;y/; l/�S.x; k; l/\S.y; k; l/ and S.x; k; l/[S.y; k; l/�

S.x; kC �.x;y/; l/.

(iii) There exists a function p such that jS.x; k; l/j � p.l/ for every x 2X , l 2N
and k 2 f1; : : : ; 3lg with limn!1 p.n/1=n D 1.

Then X has Property A.

To have some mental picture, let us recall that Brown and Ozawa apply this criterion
to hyperbolic groups � , defining the sets as follows: fix a point u 2 @� . Given x , k

and l , the set S.x; k; l/ consists of points that are exactly 3l steps along a geodesic
between a point within the k –ball around x and u. With this definition, the conditions
(i) and (ii) follow from the triangle inequality, and (iii) uses the stability of geodesics
in hyperbolic spaces (in this case p can be taken to be a linear function).

Proof Consider the Banach space `1.X / and for A�X denote by �A 2 `
1.X / the

normalised characteristic function of A. Given n 2N and x 2X , define

�n.x/D
1

n

2nX
kDnC1

�S.x;k;n/:

Note that k�n.x/k D 1 and supp.�n.x//� B.x;Sn/ for all x 2X by (i).

To establish Property A, we use the formulation from [20, Theorem 1.2.4(2)], recalled
also in Section 2.4. We need to show that, for a fixed m, we have

lim
n!1

sup
�.x;y/Dm

k�n.x/� �n.y/k D 0:

First, observe that for any A;B �X , we have

k�A��Bk D 2

�
1�

jA\Bj

maxfjAj; jBjg

�
� 2

�
1�
jA\Bj

jA[Bj

�
:

Take x;y 2X with �.x;y/Dm and assume n�2m. Then for any k 2fnC1; : : : ; 2ng,
applying (ii),

k�S.x;k;n/��S.y;k;n/k � 2

�
1�
jS.x; k �m; n/j

jS.x; kCm; n/j

�
:

Consequently,

k�n.x/� �n.y/k �
1

n

2nX
kDnC1

k�S.x;k;n/��S.y;k;n/k
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� 2

�
1�

1

n

2nX
kDnC1

jS.x; k �m; n/j

jS.x; kCm; n/j

�

� 2

�
1�

� 2nY
kDnC1

jS.x; k �m; n/j

jS.x; kCm; n/j

�1=n �

D 2

�
1�

� QnCm
jDnC1�m jS.x; j ; n/jQ2nCm

jD2nC1�m jS.x; j ; n/j

�1=n �
� 2.1�p.n/�2m=n/:

We have used the inequality between the arithmetic and geometric mean in the middle
step, magic cancellation of many terms in the penultimate step, and the last step uses
(iii) plus a simple estimate of the sizes of sets by 1 from below. By (iii), the last
expression converges to 0 as n converges to 1. We are done.

Remark 3.2 In condition (iii), we ask for a bound in terms of l . However, it is
apparent from the proof that a bound in terms of k with an analogous property also
suffices.

Remark 3.3 It is clear from the proof of the proposition that we need to define
the sets S.x; k; l/ only for an infinite sequence of indices l (and the corresponding
k 2 f1; : : : ; 3lg), not necessarily for all l 2N .

4 CAT.0/ cube complexes

Proposition 3.1 allows us to quickly prove that finite-dimensional CAT.0/ cube com-
plexes have Property A. This was first proved in [8] using a more combinatorial
approach.

Proposition 4.1 Let X be a finite-dimensional CAT.0/ cube complex. Then X has
Property A.

Proof Fix a base vertex x0 2X . Given a vertex x 2X , l 2N and k 2 f1; : : : ; 3lg,
consider the normal cube path from y to x0 , where �.y;x/ � k . We define the set
S.x; k; l/ to contain the 3l th vertex on such a normal cube path (or x0 if we run
out of space). Note that conditions (i) and (ii) from Proposition 3.1 are automatically
satisfied, courtesy of the triangle inequality. To be more precise, if z 2 S.x; k; l/, then
�.x; z/� 6ld , where d D dim.X /.

To prove condition (iii) of Proposition 3.1, we shall argue that if z 2 S.x; k; l/, then
z 2 Œx;x0�. Or, equivalently:
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Claim Every half-space containing both x and x0 contains also z .

Each hyperplane that we need to consider (ie such that one of the associated half-spaces
contains both x and x0 ) either separates x and x0 from y or it does not. In the latter
case, the same half-space also clearly contains z , so it remains to deal with the former
case.

Denote by C0;C1; : : : ;Cm the normal cube path from y to x0 , and denote by y D

v0; v1; : : : ; vm D x0 the vertices on this cube path. We shall argue that any hyperplane
separating y from x and x0 is “used” within the first �.x;y/ steps on the cube
path. Suppose that the cube Ci does not cross any hyperplane H with fyg jH fx;x0g.
Hence every hyperplane K crossing Ci satisfies fy;xg jK fx0; viC1g. If there was
a hyperplane L with fyg jL fx;x0g which was not “used” before Ci on the cube
path, then necessarily fy; viC1g jL fx;x0g, hence L crosses all the hyperplanes K

crossing Ci . This contradicts the maximality of this step on the normal cube path.
Thus there is no such L, and so all the hyperplanes H with fyg jH fx;x0g must be
crossed within the first �.x;y/ steps (as there at most �.x;y/ such hyperplanes).

Since z is the 3l th vertex on the cube path and �.x;y/� k � 3l , all the hyperplanes
H with fyg jH fx;x0g must have been crossed before z . Thus any such H actually
also satisfies fyg jH fx;x0; zg. We have proved our claim.

Coming back to showing condition (iii) of Proposition 3.1, observe that the interval
Œx;x0� embeds isometrically into the cube complex Rd [8, Theorem 1.14], hence it has
polynomial growth. This means that as S.x; k; l/� Œx;x0�\B.x; 6ld/, its cardinality
is bounded by a polynomial in l (of degree d ). This finishes the proof.

For the record, we note that dropping the finite-dimensionality assumption renders
the statement false, namely infinite-dimensional CAT.0/ cube complexes do not have
Property A; this follows from [17], as they contain isometric copies of .Z=2Z/n for
arbitrarily large n.

5 Median algebras

Definition 5.1 Let ˆ be a median algebra. Let n� 2 and x1; : : : ;xn; b 2ˆ. Define

�.x1I b/ WD x1

and inductively, for 1� k < n� 1,

�.x1; : : : ;xkC1I b/ WD �.�.x1; : : : ;xk I b/;xkC1; b/:

Note that this definition “agrees” with the original median map �, since �.x1;x2I b/D

�.x1;x2; b/.
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Intuitively, �.x1; : : : ;xnI b/ should be thought of as a projection of b onto the set
hullfx1; : : : ;xng, just as �.x1;x2; b/ is the projection of b onto Œx1;x2�. However,
we do not prove this in this note (but see Lemma 5.3).

Lemma 5.2 The � symbol from Definition 5.1 is symmetric in x1; : : : ;xn .

Proof Recalling that interchanging the points in �. � ; � ; � / is one of the axioms of
a median algebra, it is clearly sufficient to prove that, for n D 3, we can switch x2

with x3 . However, applying axioms of median algebras, we have that

�.x1;x2;x3I b/D �.�.x1;x2; b/;x3; b/

D �.�.x3; b;x1/; �.x3; b; b/;x2/

D �.�.x1;x3; b/;x2; b/

D �.x1;x3;x2I b/:

We are done.

In fact, it is easy to see that Œx1; b�\ Œx2; b�D Œ�.x1;x2; b/; b� and then by induction
that

Tn
kD1Œxk ; b�D Œ�.x1; : : : ;xnI b/; b�.

Lemma 5.3 Let ˆ be a median algebra. Let x1; : : : ;xn; b 2ˆ.

(i) A wall separates x1; : : : ;xn from b if and only if it separates �.x1; : : : ;xnI b/

from b .

(ii) If �.x1; : : : ;xn�1I b/ 6D �.x1; : : : ;xnI b/ then there exists a wall separating
x1; : : : ;xn�1 from xn and b .

(iii) If, in addition, ˆ has rank at most d, then there exists fy1; : : : ;ykg�fx1; : : : ;xng

with k � d such that �.y1; : : : ;yk I b/D �.x1; : : : ;xnI b/.

(iv) If a 2ˆ and x1; : : : ;xn 2 Œa; b�, then fx1; : : : ;xng � Œa; �.x1; : : : ;xnI b/�.

Proof Since �.x;y; b/ 2 Œx;y�D J.fx;yg/, we can easily prove by induction that
�.x1; : : : ;xnI b/ 2 J n�1.fx1; : : : ;xng/ � hullfx1; : : : ;xng. The “only if” statement
in (i) follows. For the converse, assume for contradiction that there exists a wall
W that separates b from �.x1; : : : ;xnI b/ but does not separate b from (say, using
Lemma 5.2) xn . As half-spaces are convex, the whole interval Œb;xn� is in the same
half-space as b . But as �. � ;xn; b/ 2 Œb;xn�, this contradicts the assumption that b is
separated from �.x1; : : : ;xnI b/D �.�.x1; : : : ;xn�1I b/;xn; b/.

For (ii), write c D �.x1; : : : ;xn�1I b/ and note that �.x1; : : : ;xnI b/ D �.c;xn; b/.
Hence c 6D �.x1; : : : ;xnI b/ implies c 62 Œxn; b�. As fcg and Œxn; b� are convex, this
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implies, by [4, Lemma 6.1], that there is a wall separating c from xn and b . By (i),
this wall separates x1; : : : ;xn�1 from xn and b .

For (iii), we proceed by contradiction. Assume that there are at least d C 1 points in
fx1; : : : ;xng which cannot be removed from the expression �.x1; : : : ;xnI b/ without
changing the result. The previous part of the lemma, together with Lemma 5.2, implies
that there exist at least dC1 different walls which all intersect (for instance, if one wall
separates x1; : : : ;xn�1 from xn and b , and another one separates x1; : : : ;xn�2;xn

from xn�1 and b , they clearly intersect). This contradicts the rank assumption (see [4,
Proposition 6.2]).

Part (iv) follows by induction from the following statement: if x;y 2 Œa; b�, then
x;y 2 Œa; �.x;y; b/� (so in particular Œa;x�� Œa; �.x;y; b/�). It is of course sufficient
to prove that x 2 Œa; �.x;y; b/�, which is done using median axioms as follows:

�.a;x; �.x;y; b//D �.�.a;x;x/; �.a;x; b/;y/D �.x;x;y/D x:

We are done.

Lemma 5.4 Let ˆ be a median algebra and let a; b;x;y 2 ˆ satisfy x;y 2 Œa; b�.
Then y 2 Œa;x� implies x 2 Œy; b�.

Proof We compute

�.y; b;x/D �.�.a;x;y/; b;x/D �.�.b;x; a/; �.b;x;x/;y/D �.x;x;y/D x;

using the median axioms and the lemma’s assumptions.

Proposition 5.5 Let ˆ be a topological median algebra of rank at most d . Given an
interval Œa; b��ˆ and a compact set C � Œa; b�, there exists h1; : : : ; hd 2C , such that
C � Œa; �.h1; : : : ; hd I b/�.

If ˆ is moreover a metric median algebra satisfying the condition (L2), then we have
�.a; �.h1; : : : ; hd I b//� 3dKd max1�i�d �.a; hi/� 3dKd suph2C �.a; h/.

Proof Consider the compact space C d . Given a tuple � 2 C d , write �.�I b/ for the
short. Given � 2 C d , define

A� D f� 2 C d
j �.�I b/ 2 Œ�.�I b/; b�g D f� 2 C d

j Œa; �.�I b/�� Œa; �.�I b/�g:

Note that the two conditions are equivalent: if �.�I b/2 Œ�.�I b/; b�, then by Lemma 5.4
�.�I b/ 2 Œa; �.�I b/�, hence Œa; �.�I b/�� Œa; �.�I b/�. Conversely, the last inclusion
implies �.�I b/ 2 Œa; �.�I b/�, so again by Lemma 5.4 we have �.�I b/ 2 Œ�.�I b/; b�.
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Observe that each set A� is closed: in fact it is exactly the inverse image of the closed3

set Œ�.�I b/; b��ˆ under the continuous map �. � I b/W C d !ˆ.

Finally, the collection fA� j � 2C dg of subsets of C d has the finite intersection property.
Given �; � 2 C d , by Lemma 5.3(iii) there is ! 2 C d such that �.!I b/D �.� [�I b/.
However, from the definition of � and Lemma 5.2, we know that �.� [ �I b/ belongs
to both Œ�.�I b/; b� and Œ�.�I b/; b�. In other words, ! 2A� \A� .

Now, as C d is compact, there exists � 2
T
�2C d A� . Thus Œa; �.�I b/�� Œa; �.�I b/�

for all � 2 C d . In particular, by Lemma 5.3(iv), � � Œa; �.�I b/� � Œa; �.�I b/� for
all � 2 C d , so Œa; �.�I b/� contains all the points of C . Now just enumerate � as
h1; : : : ; hd .

For the second part of the proposition, we do inductive estimates using (L2). Write
T D max1�i�d �.a; hi/. Then, as the first step, �.a; �.h1I b//D �.a; h1/ � T . We
show inductively that �.a; �.h1; : : : ; hi I b//� 3i�1Ki�1T . Assuming this inequality
for i , writing �.h1; : : : ; hi I b/D gi we estimate

�.a; �.h1; : : : ; hiC1I b//D �.a; �.gi ; hiC1I b//

� �.a;gi/C �.�.gi ;gi ; b/; �.gi ; hiC1; b//

� 3i�1Ki�1T CK�.gi ; hiC1/

� 3i�1Ki�1T CK.3i�1Ki�1T CT /

D T .3i�1Ki
C 3i�1Ki�1

CK/� 3iKiT:

We are done.

6 Coarse medians

We shall adapt the idea of “moving deep into the interval” from the CAT.0/ cube
complex setting to the more general coarse median spaces.

To explain the idea, consider two points a and b and the context-appropriate notion of
the interval Œa; b�. In the CAT.0/ cube complex case, we have moved deep into this
interval by stepping sufficiently far along the cube path from a to b . In the coarse
median case we shall, roughly speaking, be looking for “the other end” of the convex
hull of B.a; l/\ Œa; b� (see the second bullet in Corollary 6.3). Along the lines of [6],
this is done by going to the asymptotic cone (where the results of Section 5 can be
applied).

We begin by fixing a fair amount of notation.

3Intervals are closed in topological median algebras; this just uses continuity of � .
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For the rest of this section, when we say that X is a coarse median space, we mean that
X is a coarse median space, with metric denoted by � , the median function denoted
by �, and with parameters K and H . These will be fixed throughout.

When convenient, we shall be using the notation x �s y for �.x;y/� s .

Given � � 0 and a; b 2 X , we shall denote by Œa; b�� the coarse interval between a

and b , ie Œa; b�� WD fx 2X j �.a; b;x/�� xg.

We will denote by � � 0 a constant (depending only on K and H ) such that for all
x;y; z 2X we have �.x;y; z/ 2 Œx;y�� ; its existence is proved in [6, Lemma 9.2].

Recall that since the median axiom (M3) holds exactly in median algebras, it does hold in
coarse median spaces up to a constant  �0 depending only on the parameters K and H

of the coarse median structure (actually  D3K.3KC2/H.5/C.3KC2/H.0/). By this
we mean �.x;y; �.z; v; w//� �.�.x;y; z/; �.x;y; v/; w/ for all x;y; z; v; w 2X .
We shall be using  and this fact throughout this section.

Fixing some more notation, given r; t � 0, let

L1.r/D .KC 1/r CK�C  C 2H.0/;

L2.r/D .KC 2/r CH.0/;

L3.r; t/D 3dKd r t C r:

The point is that L1 and L2 are linear functions of r , and L3 is linear in r with t

fixed, and bounded by a linear function of r t (for t � 1).

Lemma 6.1 Let X be a coarse median space, r � 0, and let a; b 2X and x 2 Œa; b�� .
Then Œa;x�r � Œa; b�L1.r/ .

Proof Let z 2 Œa;x�r . Thus �.a;x; z/�r z and by assumption also �.a; b;x/�� x .
Hence,

�.a; b; z/�KrCH .0/ �.a; b; �.a;x; z//

� �.�.a; b; a/; �.a; b;x/; z/

�K�CH .0/ �.a;x; z/�r z:

Thus �.�.a; b; z/; z/ � .K C 1/r CK�C  C 2H.0/ D L1.r/, which means by
definition that z 2 Œa; b�L1.r/ .

In what follows, r can be thought of as “a scale” and t as “a distance”. In other words,
the statements can read as “given a distance (t ) at which we want the space to behave,
there exists a scale (rt / such that on all larger scales (r � rt ) it behaves as a median
space, with an error proportional to r ”.
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Proposition 6.2 Let X be a quasigeodesic coarse median space of rank at most d .
For every � > 0 and t > 0, there exists rt > 0 such that for all r � rt , a; b 2 X and
A� B.a; r t/\ Œa; b�� with sep.A/� r , there exists h 2 Œa; b�L1.r/ such that

� �.a; h/�L3.r; t/, and
� A� Œa; h�r .

Corollary 6.3 Let X be a quasigeodesic coarse median space of rank at most d . For
every � > 0 and t > 0, there exists rt > 0 such that for all r � rt and a; b 2X there
exists h 2 Œa; b�L1.r/ such that

� �.a; h/�L3.r; t/, and
� B.a; r t/\ Œa; b�� � Œa; h�L2.r/ .

Proof This readily follows from Proposition 6.2, by noting that we may choose A to be
a maximal r –separated subset of B.a; r t/\Œa; b�� . Then any point x2B.a; r t/\Œa; b��
is at most r –far from a point ax 2A, hence the condition A� Œa; h�r implies that

�.a; h;x/�KrCH .0/ �.a; h; ax/�r ax �r x:

Since we wrote Kr CH.0/C r C r DL2.r/, the above reads x 2 Œa; h�L2.r/ .

Proof of Proposition 6.2 We proceed by contradiction: Suppose that for some � and
t the statement is not true, ie there exists a sequence 0 < r1 < r2 < � � � 2 R and for
each n 2N there exist an; bn 2X and An � Œan; bn��\B.an; rnt/ with sep.An/� rn

such that for all h 2 Œan; bn�L1.rn/ with �.an; h/�L3.rn; t/ there exists x 2An with
�.x; �.an; h;x// > rn .

It follows from [6, Lemma 9.7] that we can assume that the cardinalities jAnj are
uniformly bounded by a constant p depending on K , H , d , � and t .

The next step is to argue that we can arrange that the distances from an to bn are linear
in rn .

Claim There exist constants ı1; ı2; �1 � 0 (depending only on K;H; �; t and p ) and
points b0n 2 Œan; bn�� such that �.an; b

0
n/� ı1rnC ı2 and An � Œan; b

0
n��1

.

The claim follows from [6, Lemma 9.6], which says that in our situation there are
constants � , � and �0 (depending only on K;H; �; t and p ) and points cn; dn 2 X

such that An � Œcn; dn��0 and diam.An [ fcn; dng/ � � diam.An/C � � 2�rnt C � .
Since An � B.an; rnt/, by the proof of that lemma we can assume that cn D an for
every n. Finally, we define b0n D �.an; bn; dn/ 2 Œan; bn�� and check that

b0n D �.an; bn; dn/�K.2�rntC�/CH .0/ �.dn; bn; dn/D dn �2�rntC� an;
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and, for every x 2An (so that �.an; bn;x/�� x and �.an; dn;x/��0 x ),

�.an; b
0
n;x/D �.an; �.an; bn; dn/;x/

� �.�.an;x; bn/; �.an;x; dn/; an/

�K.�C�0/CH .0/ �.x;x; an/D x:

So, altogether, we put �1 D K.� C �0/CH.0/C  , ı1 D 2.K C 1/�t and ı2 D
.KC 1/�CH.0/ and the claim is proved.

We have now set up the situation so that we can conclude the proof by going to the
asymptotic cone.

Let .X1; �1; �1/ be an asymptotic cone of X , with the sequence of scales .rn/,
basepoints .an/ and any nonprincipal ultrafilter on N .

The sequences .an/ and .b0n/ determine points a; b 2X1 (with �1.a; b/� ı1 ), and
the intervals Œan; b

0
n��1

converge to the interval Œa; b� in X1 . Also the sets An converge
to a (finite, 1–separated) set A� Œa; b�\B.a; t/.

By Proposition 5.5, there exists h 2 Œa; b� such that A� B.a; t/\ Œa; b�� Œa; h� and
�1.a; h/� 3dKd t . This implies that we have a sequence of points hn 2X , eventu-
ally in Œan; b

0
n�rn

,4 such that lim �.an; hn/=rn � 3dKd t , thus eventually �.an; hn/�

3dKd rnt C rn DL3.rn; t/.

Since b0n2 Œan; bn�� and hn2 Œan; b
0
n�rn

, by Lemma 6.1 we have that hn2 Œan; bn�L1.rn/ .
Hence, by our original assumption, there (eventually) exist points xn 2 An with
�.xn; �.an; hn;xn// > rn . The sequence of xn yields a point x 2 A such that
�1.x; �1.a; h;x//� 1. This point witnesses that A 6� Œa; h�, which is a contradiction.

Lemma 6.4 Let X be a coarse median space. There exist constants ˛; ˇ � 0 (de-
pending only on the parameters of the coarse median structure) such that the following
holds: Let a; b; h;m 2X and r � 0 satisfy m 2 Œa; h�L2.r/ and h 2 Œa; b�L1.r/ . Then
p D �.m; b; h/ satisfies �.h;p/� ˛r Cˇ .

Proof Note that the assumptions say that m�L2.r/�.a; h;m/ and h�L1.r/�.a; b; h/.
We estimate

p D �.m; b; h/�KL2.r/CH .0/ �.�.a; h;m/; b; h/

� �.�.b; h; h/; �.b; h; a/;m/

�KL1.r/CH .0/ �.h; h;m/D h:

Altogether, �.h;p/�K.L1.r/CL2.r//C2H.0/C , which is a linear function of r .

4Since �.a; b; h/D h , we have �.hn; �.an; b
0
n; hn//=rn! 0 , hence the claim.
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Theorem 6.5 Let X be a uniformly locally finite, quasigeodesic, of at most exponen-
tial growth, coarse median space of finite rank. Then X has Property A.

Proof The proof follows the idea of our proof for CAT.0/ cube complexes, which
relies on Proposition 3.1. We shall verify its assumptions. Let ˛; ˇ > 0 be the constants
from Lemma 6.4 and fix a basepoint x0 2X .

We now apply Corollary 6.3 for �D� and all t 2N to obtain a sequence rt 2N , so that
the conclusion of the corollary holds. Furthermore, we can choose the rt inductively
to arrange that the sequence t 7! lt D .t rt �H.0//=.3K/ for t 2N is increasing.

For a moment, fix x 2X , t 2N and k 2f1; : : : ; 3ltg. For every y 2B.x; k/, Corollary
6.3 applied to aD y , b D x0 and r D rt produces for us a point hy 2 Œy;x0�L1.rt / .
We collect these points into the set

S.x; k; lt /D fhy 2X j y 2 B.x; k/g:

Loosely speaking, the set S.x; k; lt / contains one point associated to each y 2B.x; k/,
which should be thought of as being “t rt –deep” inside the interval Œy;x0�� .

Defined like this, condition (ii) of Proposition 3.1 is automatic, (i) follows from the
first bullet of Corollary 6.3, and finally (iii) requires some checking:

Take y 2B.x; k/, with notation as above. Write myD�.x;y;x0/. Then my 2 Œy;x0��
and

�.y;my/�K�.x;y/CH.0/�K � 3lt CH.0/D t rt :

Thus the second bullet of Corollary 6.3 implies my 2 Œy; hy �L2.rt / . Since we also know
that hy 2 Œy;x0�L1.rt / , Lemma 6.4 implies that the point pyD�.my ;x0;hy/2 Œmy ;x0��
satisfies �.hy ;py/ � ˛rt C ˇ . As my D �.x;y;x0/ 2 Œx;x0�� , Lemma 6.1 implies
py 2 Œx;x0�L1.�/ .

To summarise, for each hy 2 S.x; k; lt / we can associate a point py 2 Œx;x0�L1.�/

satisfying �.hy ;py/� ˛rt Cˇ , and consequently also

�.x;py/� �.x;y/C �.y; hy/C �.hy ;py/� 3lt C 3dKd t rt C rt C˛rt Cˇ;

which clearly depends linearly on lt . Hence, by [6, Proposition 9.8], the number of
possible points py is bounded by P .lt / for some polynomial P (depending only on
H , K , d and uniform local finiteness of X ). Since we assume at most exponential
growth of X , it follows that the cardinality of S.x; k; lt / is at most P .lt /c

0crt for
some constants c; c0 � 1. Finally, as lt !1 means by definition also t !1, it is
easy to see that also rt= lt ! 0, thus .P .lt /c

0crt /1= lt ! 1. This finishes the proof of
condition (iii) of Proposition 3.1 and we are done.
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Geometric embedding properties
of Bestvina–Brady subgroups

HUNG CONG TRAN

We compute the relative divergence of right-angled Artin groups with respect to their
Bestvina–Brady subgroups and the subgroup distortion of Bestvina–Brady subgroups.
We also show that for each integer n� 3 , there is a free subgroup of rank n of some
right-angled Artin group whose inclusion is not a quasi-isometric embedding. The
corollary answers the question of Carr about the minimum rank n such that some
right-angled Artin group has a free subgroup of rank n whose inclusion is not a
quasi-isometric embedding. It is well known that a right-angled Artin group A� is
the fundamental group of a graph manifold whenever the defining graph � is a tree
with at least three vertices. We show that the Bestvina–Brady subgroup H� in this
case is a horizontal surface subgroup.

20F65, 20F67; 20F36

1 Introduction

For each � a finite simplicial graph, the associated right-angled Artin group A� has
generating set S the vertices of � , and relations st D ts whenever s and t are adjacent
vertices. If � is nonempty, there is a homomorphism from A� onto the integers that
takes every generator to 1. The Bestvina–Brady subgroup H� is defined to be the
kernel of this homomorphism.

Bestvina–Brady subgroups were introduced by Bestvina and Brady [2] to study the
finiteness properties of subgroups of right-angled Artin groups. One result in [2] is that
the Bestvina–Brady subgroup H� is finitely generated if and only if the graph � is
connected. This fact is a motivation to study the geometric connection between a right-
angled Artin group and its Bestvina–Brady subgroup. More precisely, we examine the
relative divergence of right-angled Artin groups with respect to their Bestvina–Brady
subgroups and the subgroup distortion of Bestvina–Brady subgroups.

Theorem 1.1 Let � be a connected, finite, simplicial graph with at least two vertices.
Let A� be the associated right-angled Artin group and H� the Bestvina–Brady sub-
group. Then the relative divergence Div.A� ;H�/ and the subgroup distortion DistH�

A�

are both linear if � is a join graph. Otherwise, they are both quadratic.
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In the above theorem, we can see that the relative divergence Div.A� ;H�/ and the
subgroup distortion DistH�

A�
are equivalent. In general, we show that the relative

divergence is always dominated by the subgroup distortion for any pair of finitely
generated groups .G;H /, where H is a normal subgroup of G such that the quotient
group G=H is an infinite cyclic group see Proposition 4.3.

Carr [3] proved that nonabelian two-generator subgroups of right-angled Artin groups
are quasi-isometrically embedded free groups. In his paper, he also showed an example
of a distorted free subgroup of a right-angled Artin group. However, the minimum
rank n such that some right-angled Artin group has a free subgroup of rank n whose
inclusion is not a quasi-isometric embedding was still unknown; see [3]. The following
corollary of Theorem 1.1 answers this question.

Corollary 1.2 For each integer n� 3, there is a right-angled Artin group containing a
free subgroup of rank n whose inclusion is not a quasi-isometric embedding.

We remark that a special case of Theorem 1.1 can also be derived as a consequence of
previous work by Hruska and Nguyen [6] on distortion of surfaces in graph manifolds.
They showed that every virtually embedded horizontal surface in a 3–dimensional graph
manifold has quadratic distortion. This led us to prove the following theorem, which
implies that many Bestvina–Brady subgroups are also horizontal surface subgroups.

Theorem 1.3 If � is a finite tree with at least three vertices, then the associated
right-angled Artin group A� is a fundamental group of a graph manifold, and the
Bestvina–Brady subgroup H� is a horizontal surface subgroup.

It is well known that a right-angled Artin group A� is the fundamental group of a graph
manifold whenever the defining graph � is a tree with at least three vertices. However,
the fact that the Bestvina–Brady subgroup H� is a horizontal subgroup does not seem
to be recorded in the literature. With the use of Theorem 1.3, we see that Theorem 1.1
can be viewed as a generalization of a special case of the quadratic distortion theorem
of Hruska and Nguyen. Moreover, Theorem 1.3 combined with the Hruska–Nguyen
theorem gives an alternative proof of Corollary 1.2.
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2 Right-angled Artin groups and Bestvina–Brady subgroups

Definition 2.1 Given a finite simplicial graph � , the associated right-angled Artin
group A� has generating set S the vertices of � , and relations st D ts whenever s

and t are adjacent vertices.

Let S1 be a subset of S . The subgroup of A� generated by S1 is a right-angled Artin
group A�1

, where �1 is the induced subgraph of � with vertex set S1 (ie �1 is the
union of all edges of � with both endpoints in S1 ). The subgroup A�1

is called a
special subgroup of A� .

Definition 2.2 Let � be a finite simplicial graph with the set S of vertices. Let T be
a torus of dimension jS j with edges labeled by the elements of S . Let X� denote the
subcomplex of T consisting of all faces whose edge labels span a complete subgraph
in � (or equivalently, mutually commute in A� ). X� is called the Salvetti complex.

Remark 2.3 The fundamental group of X� is A� . The universal cover zX� of X� is a
CAT.0/ cube complex with a free, cocompact action of A� . Obviously, the 1–skeleton
of zX� is the Cayley graph of A� with respect to the generating set S .

Definition 2.4 Let � be a finite simplicial graph. Let ˆW A�!Z be an epimorphism
which sends all the generators of A� to 1 in Z. The kernel H� of ˆ is called the
Bestvina–Brady subgroup.

Remark 2.5 There is a natural continuous map f W X� ! S1 which induces the
homomorphism ˆW A� ! Z. Moreover, it is not hard to see that the lifting map
zf W zX� !R is an extension of ˆ.

Theorem 2.6 (Bestvina and Brady [2] and Dicks and Leary [4]) Let � be a finite
simplicial graph. The Bestvina–Brady subgroup H� is finitely generated if and only
if � is connected. Moreover, the set T of all elements of the form st�1 whenever s

and t are adjacent vertices form a finite generating set for H� . Furthermore, if � is a
tree with n edges, then the Bestvina–Brady subgroup H� is a free group of rank n.

Definition 2.7 Let �1 and �2 be two graphs; the join of �1 and �2 is a graph obtained
by connecting every vertex of �1 to every vertex of �2 by an edge.

Let J be a complete subgraph of � which decomposes as a nontrivial join. We call AJ

a join subgroup of A� .

Let � be a finite simplicial graph with vertex set S , and let g an element of A� .
A reduced word for g is a minimal-length word in the free group F.S/ representing g .
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Given an arbitrary word representing g , one can obtain a reduced word by a process of
“shuffling” (ie interchanging commuting elements) and canceling inverse pairs. Any
two reduced words for g differ only by shuffling. For an element g 2 A� , a cyclic
reduction of g is a minimal-length element of the conjugacy class of g . If w is
a reduced word representing g , then we can find a cyclic reduction xg by shuffling
commuting generators in w to get a maximal-length word u such that wD u xwu�1 . In
particular, g itself is cyclically reduced if and only if every shuffle of w is cyclically
reduced as a word in the free group F.S/.

3 Relative divergence, geodesic divergence and
subgroup distortion

Before we define the concepts of relative divergence, geodesic divergence and subgroup
distortion, we need to build the tools to measure them, namely the notions of domination
and equivalence.

Definition 3.1 Let M be the collection of all functions from Œ0;1/ to Œ0;1�. Let f
and g be arbitrary elements of M. The function f is dominated by the function g ,
denoted by f � g , if there are positive constants A, B , C and D such that f .x/�
Ag.Bx/C Cx for all x > D . Two functions f and g are equivalent, denoted by
f � g , if f � g and g � f .

Remark 3.2 A function f in M is linear, quadratic or exponential if f is respectively
equivalent to a degree-one polynomial, a degree-two polynomial or a function of the
form abxCc , where a> 1 and b > 0.

Definition 3.3 Let fın
�g and fı0n� g be two families of functions of M, indexed over

� 2 .0; 1� and positive integers n� 2. The family fın
�g is dominated by the family fı0n� g,

denoted by fın
�g � fı

0n
� g, if there exists a constant L 2 .0; 1� and a positive integer M

such that ın
L�
� ı0Mn

� for all � and n. Two families fın
�g and fı0n� g are equivalent,

denoted by fın
�g � fı

0n
� g, if fın

�g � fı
0n
� g and fı0n� g � fı

n
�g.

Remark 3.4 A family fın
�g is dominated by (or dominates) a function f in M if fın

�g

is dominated by (or dominates) the family fı0n� g where ı0n� D f for all � and n. The
equivalence between a family fın

�g and a function f in M can be defined similarly.
Thus, a family fın

�g is linear, quadratic, exponential, etc if fın
�g is equivalent to a

function f with said property.

Definition 3.5 Let X be a geodesic space and A a subspace of X . Let r be any
positive number.
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(1) Nr .A/D fx 2X j dX .x;A/ < rg.

(2) @Nr .A/D fx 2X j dX .x;A/D rg.

(3) Cr .A/DX �Nr .A/.

(4) Let dr;A be the induced length metric on the complement of the r –neighborhood
of A in X . If the subspace A is clear from context, we use the notation dr

instead of dr;A .

Definition 3.6 Let .X;A/ be a pair of metric spaces. For each � 2 .0; 1� and positive
integer n� 2, we define a function ın

� W Œ0;1/! Œ0;1� as follows:

For each r , let ın
�.r/D sup d�r .x1;x2/ where the supremum is taken over all x1;x2 2

@Nr .A/ such that dr .x1;x2/ <1 and d.x1;x2/� nr . The family of functions fın
�g

is the relative divergence of X with respect to A, denoted by Div.X;A/.

We now define the concept of relative divergence of a finitely generated group with
respect to a subgroup.

Definition 3.7 Let G be a finitely generated group with subgroup H . We define the rel-
ative divergence of G with respect to H , denoted by Div.G;H /, to be the relative diver-
gence of the Cayley graph �.G;S/ with respect to H for some finite generating set S .

Remark 3.8 The concept of relative divergence was introduced by the author [9] with
the name upper relative divergence. The relative divergence of geodesic spaces is a
pair quasi-isometry invariant concept. This implies that the relative divergence of a
finitely generated group does not depend on the choice of finite generating sets.

Definition 3.9 The divergence of a bi-infinite geodesic ˛ , denoted by Div˛ , is a
function gW .0;1/! .0;1/ such that for each positive number r , the value g.r/ is
the infimum on the lengths of all paths, outside the open ball about ˛.0/ with radius r ,
connecting ˛.�r/ and ˛.r/.

The following lemma is deduced from the proof of Corollary 4.8 in [1].

Lemma 3.10 Let � be a connected, finite, simplicial graph with at least two vertices.
Assume that � is not a join. Let g be a cyclically reduced element in A� that does not
lie in any join subgroup. Then the divergence of the bi-infinite geodesic � � �ggggg � � �

is at least quadratic.

Definition 3.11 Let G be a group with a finite generating set S and H a subgroup
of G with a finite generating set T . The subgroup distortion of H in G is the function

DistHG W .0;1/! .0;1/; DistHG .r/DmaxfjhjT W h 2H; jhjS � rg:
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Remark 3.12 It is well known that the concept of distortion does not depend on the
choice of finite generating sets.

4 Connection between subgroup distortion
and relative divergence

Lemma 4.1 Let H be a finitely generated group with finite generating set T and �
in Aut.H /. Let G D hH; t=tht�1 D �.h/i and S D T [ftg.

(1) Each element in G can be written uniquely in the form htn , where h is a group
element in H .

(2) The set S is a finite generating set of G , and

dS .htm; h0tn/� jm� nj and dS .htm;Htn/D jm� nj:

Proof The statement (1) is well known, and we only need to prove statement (2).
Let  be the map from G to Z by sending element t to 1 and each generator in T

to 0. It is not hard to see that  is a group homomorphism. We first show that the
absolute value of  .g/ is at most the length of g with respect to S for each group
element g in G . In fact, let w1tn1w2tn2 � � �wk tnk be the shortest word in S that
represents g , where each wi is a word in T . Therefore,

 .g/D n1C n2C � � �C nk

and
jgjS D .`.w1/C `.w2/C � � �C `.wk//C .jn1jC jn2jC � � �C jnk j/:

This implies that the absolute value of  .g/ is at most the length of g with respect
to S . The distance between two elements htm and h0tn is the length of the group
element gD .htm/�1h0tn . Obviously,  .g/D n�m. Therefore, the distance between
two elements htm and h0tn is at least jm � nj. This fact directly implies that the
distance between htm and any element in Htn is at least jm� nj. Also, htn is an
element in Htn , and the distance between htm and htn is at most jm�nj. Therefore,
the distance between htm and Htn is exactly jm� nj.

Lemma 4.2 Let H be a finitely generated group with finite generating set T and �
in Aut.H /. Let G D hH; t=tht�1 D �.h/i and S D T [ ftg. Let n be an arbitrary
positive integer, and let x and y be two points in @Nn.H /. Then there is a path
outside Nn.H / connecting x and y if and only if the pair .x;y/ is of either the form
.h1tn; h2tn/ or .h1t�n; h2t�n/, where h1 and h2 are elements in H .

Proof By Lemma 4.1, the pair .x;y/ must be of the form .h1tm1 ; h2tm2/, where
jm1j D jm2j D n. We first assume that m1m2 < 0. Let  be an arbitrary path
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connecting x and y . By Lemma 4.1, we observe that if two vertices htm and h0tm0

of  are consecutive, then jm�m0j � 1. Therefore, there exists a vertex of  that
belongs to H . Thus, there is no path outside Nn.H / connecting x and y .

If m1 D m2 , then x and y both lie in the same coset tm1
H . Therefore, there is a

path ˛ with all vertices in tm1
H connecting x and y . By Lemma 4.1 again, ˛ must

lie outside Nn.H /. Therefore, the pair .x;y/ is of either the form .h1tn; h2tn/ or
.h1t�n; h2t�n/.

Proposition 4.3 Let H be a finitely generated group and G D hH; t=tht�1 D �.h/i,
where � in Aut.H /. Then Div.G;H /� DistHG .

Proof Let T be a finite generating set of H , and let S D T [ ftg. Then S is
a finite generating set of G . Suppose that Div.G;H / D fın

�g. We will show that
ın
�.r/� DistHG .nr/ for every positive integer r .

Indeed, let x and y be arbitrary points in @Nr .H / such that dr;H .x;y/ <1 and
dS .x;y/ � nr . By Lemma 4.2, x and y both lie in the same coset tmH , where
jmj D r . Therefore, there is a path  with all vertices in tmH connecting x and y ,
and the length of  is at most DistHG .nr/. By Lemma 4.1 again, the path  must
lie outside Nr .H /. Therefore, d�r;H .x;y/� DistHG .nr/. Thus, ın

�.r/� DistHG .nr/.
This implies that Div.G;H /� DistHG .

5 Relative divergence of right-angled Artin groups
with respect to Bestvina–Brady subgroups and
subgroup distortion of Bestvina–Brady subgroups

From now on, we let � be a finite, connected, simplicial graph with at least two vertices.
Let A� be the associated right-angled Artin group and H� its Bestvina–Brady subgroup.
Let X� be the associated Salvetti complex and zX� its universal covering. We consider
the 1–skeleton of zX� as a Cayley graph of A� , and the vertex set S of � as a finite
generating set of A� . By Theorem 2.6, we can choose the set T of all elements of the
form st�1 whenever s and t are adjacent vertices as a finite generating set for H� .
Let ˆ and zf be the group homomorphism and continuous map as in Remark 2.5.

Lemma 5.1 Let M be the diameter of � . Let a and b be arbitrary vertices in S . For
each integer m, the length of amb�m with respect to T is at most M jmj.

Proof Since the diameter of � is M , we can choose a positive integer n�M and
nC 1 generators s0; s1; : : : ; sn in S such that the following conditions hold:
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(1) s0 D a and sn D b .

(2) si and siC1 commute for i 2 f0; 1; 2; : : : ; n� 1g.

Obviously,

amb�m
D sm

0 s�m
n D .sm

0 s�m
1 /.sm

1 s�m
2 /.sm

2 s�m
3 / � � � .sm

n�2s�m
n�1/.s

m
n�1s�m

n /

D .s0s�1
1 /m.s1s�1

2 /m.s2s�1
3 /m � � � .sn�2s�1

n�1/
m.sn�1s�1

n /m:

Also, si�1s�1
i belongs to T . Therefore, the length of amb�m with respect to T is at

most njmj. This implies the length of amb�m with respect to T is at most M jmj.

Proposition 5.2 The subgroup distortion DistH�
A�

is dominated by a quadratic function.
Moreover, DistH�

A�
is linear when � is a join.

Proof We first show that DistH�
A�

is dominated by a quadratic function. Let n be an
arbitrary positive integer and h be an arbitrary element in H� such that jhjS � n. We
can write hD s

m1

1
s

m2

2
s

m3

3
� � � s

mk

k
such that:

(1) Each si lies in S , jmi j � 1 and jm1jC jm2jC jm3jC � � �C jmk j � n.

(2) m1Cm2Cm3C � � �Cmk D 0.

Obviously, we can rewrite h as follows:

hD .s
m1

1
s
�m1

2
/.s

.m1Cm2 /

2
s
�.m1Cm2 /

3
/ � � � .s

.m1Cm2C���Cmk�1 /

k�1
s
�.m1Cm2C���Cmk�1 /

k
/:

Let M be the diameter of � . By Lemma 5.1, we have

jhjT �M jm1jCM jm1Cm2jC � � �CM jm1Cm2C � � �Cmk�1j

�M jm1jCM.jm1jC jm2j/C � � �CM.jm1jC jm2jC � � �C jmk�1j/

�M.k � 1/n�M n2:

Therefore, the distortion function DistH�
A�

is bounded above by M n2 .

We now assume that � is a join of �1 and �2 . We need to prove that the distortion
DistH�

A�
is linear. Let n be an arbitrary positive integer and h be an arbitrary element

in H� such that jhjS � n. Since A� is the direct product of A�1
and A�2

, we can
write hD .a

m1

1
a

m2

2
� � � a

mk

k
/.b

n1

1
b

n2

2
� � � b

n`

`
/ such that:

(1) Each ai is a vertex of �1 and each bj is a vertex of �2 .

(2) .jm1jC jm2jC � � �C jmk j/C .jn1jC jn2jC � � �C jn`j/� n.

(3) .m1Cm2C � � �Cmk/C .n1C n2C � � �C n`/D 0.

Let mDm1Cm2C � � � Cmk . Then n1C n2C � � � C n` D �m and jmj � n. Let a

be a vertex in �1 and b a vertex in �2 . Since a commutes with each bj , b commutes
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with each ai , and a and b commute, we can rewrite h as follows:

hD .a
m1

1
a

m2

2
� � � a

mk

k
b�m/.bma�m/.amb

n1

1
b

n2

2
� � � b

n`

`
/

D .a1b�1/m1.a2b�1/m2 � � � .akb�1/mk .ba�1/m.ab�1
1 /�n1.ab�1

2 /�n2 � � � .ab�1
` /�n`:

Also, ab�1
j , aib

�1 and ba�1 all belong to T . Therefore,

jhjT � .jm1jC jm2jC � � �C jmk j/C .jn1jC jn2jC � � �C jn`j/Cjmj � 2n:

Therefore, the distortion function DistH�
A�

is bounded above by 2n.

Proposition 5.3 If � is not a join graph, then the relative divergence Div.A� ;H�/ is
at least quadratic.

Proof Let J be a maximal join in � , and let v be a vertex not in J . Let g in AJ be
the product of all vertices in J . Let nDˆ.g/ and let hD gv�n . Then h is an element
in H� . Since J is a maximal join in � and v is a vertex not in J , we see that h does not
lie in any join subgroup. Also, h is a cyclically reduced element. Therefore, the diver-
gence of the bi-infinite geodesic ˛D � � � hhhhh � � � is at least quadratic by Lemma 3.10.

Let t be an arbitrary generator in S and k D jhjS . We can assume that ˛.0/D e ,
˛.km/ D hm and ˛.�km/ D h�m . In order to prove that the relative divergence
Div.A� ;H�/ is at least quadratic, it is sufficient to prove each function ın

� dominates
the divergence function of ˛ for each n� 2kC 2.

Indeed, let r be an arbitrary positive integer. Let xDh�r tr and yDhr tr . By a similar
argument as in Lemmas 4.1 and 4.2, the two points x and y both lie in @Nr .H�/, and
dr;H�

.x;y/ <1. Moreover,

dS .x;y/� dS .x; h
�r /CdS .h

�r ; hr /CdS .h
r ;y/� r C2kr C r � .2kC2/r � nr:

Let  be an arbitrary path outside N�r .H / connecting x and y . Obviously, the path 
must lie outside the open ball B.˛.0/; �r/. It is obvious that we can connect x and h�r

by a path 1 of length r which lies outside B.˛.0/; �r/. Similarly, we can connect y

and hr by a path 2 of length r which lies outside B.˛.0/; �r/. Let 3 be the subseg-
ment of ˛ connecting ˛.��r/ and h�r . Let 4 be the subsegment of ˛ connecting
˛.�r/ and hr . It is not hard to see the lengths of 3 and 4 are both .k � �/r .

Let x D3[1[[2[4 . Then x is a path that lies outside B.˛.0/; �r/ connecting
˛.��r/ and ˛.�r/. Therefore, the length of x is at least Div˛.�r/. Also,

`.x /D `.3/C `.1/C `. /C `.2/C `.5/D `. /C 2.k � �C 1/r:

Thus,
`. /� Div˛.�r/� 2.k � �C 1/r:
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This implies that

d�r;H�
.x;y/� Div˛.�r/� 2.k � �C 1/r:

Therefore,
ın
�.r/� Div˛.�r/� 2.k � �C 1/r:

Thus, the relative divergence Div.A� ;H�/ is at least quadratic.

The following theorem is deduced from Propositions 4.3, 5.2 and 5.3.

Theorem 5.4 Let � be a connected, finite, simplicial graph with at least two vertices.
Let A� be the associated right-angled Artin group and H� the Bestvina–Brady sub-
group. Then the relative divergence Div.A� ;H�/ and the subgroup distortion DistH�

A�

are both linear if � is a join graph. Otherwise, they are both quadratic.

Corollary 5.5 For each integer n� 3, there is a right-angled Artin group containing a
free subgroup of rank n whose inclusion is not a quasi-isometric embedding.

Proof For each positive integer n � 3, let � be a tree with n edges such that � is
not a join graph. By the above theorem, the distortion of H� in the right-angled Artin
group A� is quadratic. Also, H� is the free group of rank n by Theorem 2.6.

6 Connection to horizontal surface subgroups

Definition 6.1 A graph manifold is a compact, irreducible, connected orientable 3–
manifold M that can be decomposed along T into finitely many Seifert manifolds,
where T is the canonical toric decomposition of Johannson [8] and of Jaco and
Shalen [7]. We call the collection T its JSJ-decomposition in M , and each element in
T its JSJ-torus.

Definition 6.2 If M is a Seifert manifold, a properly immersed surface gW S # M is
horizontal if g.S/ is transverse to the Seifert fibers everywhere. In the case where M

is a graph manifold, a properly immersed surface gW S # M horizontal if g.S/\Pv
is horizontal for every Seifert component Pv .

Theorem 6.3 If � is a finite tree with at least three vertices, then the associated
right-angled Artin group A� is a fundamental group of a graph manifold, and the
Bestvina–Brady subgroup H� is a horizontal surface subgroup.

Proof First, we construct the graph manifold M whose fundamental group is A� .
Let v be a vertex of � of degree k � 2. Let u1;u2; : : : ;uk be all elements in `k.v/.
Let †v be a punctured disk with k holes whose boundaries are labeled by elements
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u1

u2

u3

u4

u5
u6

u7

bv

Figure 1: A punctured disk †v when the degree of v in � is 7

in `k.v/. We also label the outside boundary component of †v by bv ; see Figure 1.
Obviously, �1.†v/ is the free group generated by u1;u2; : : : ;uk .

Let Pv D†v�S1
v , where we label the circle factor in Pv by v . Obviously, each Pv is

a Seifert manifold. Moreover, for each ui in `k.v/, the Seifert manifold Pv contains
the torus S1

ui
�S1

v as a component of its boundary.

We construct the graph manifold by gluing pairs of Seifert manifolds .Pv1
;Pv2

/ along
their tori S1

v1
�S1

v2
whenever v1 and v2 are adjacent vertices in � . We observe that

the pair of such regions are glued together by switching fiber and base directions. It is
not hard to see that the fundamental group of M is the right-angled Artin group A� .

We now construct the horizontal surface S in M with the Bestvina–Brady subgroup H�

as its fundamental group. We first construct the horizontal surface Sv on each Seifert
piece Pv D†v �S1

v , where v is a vertex of � of degree k � 2.

We remind the reader that †v is a punctured disk with k holes whose boundaries are
labeled by the elements u1;u2; : : : ;uk in `k.v/. We also label the outside boundary
component of †v by bv ; see Figure 1. We label the circle factor in Pv by v .

Let Sv be a copy of the punctured disk †v . However, we relabel all inside circles
by c1; c2; : : : ; ck and the outside circle by cv . We will construct a map .g; h/W Sv!
†v �S1

v as follows:

(1) The map g is the identity map that maps each ci to ui and cv to bv .

(2) The map h has degree �1 on boundary component ci and degree k on cv .

We now construct the map h with the above properties. We observe that the fun-
damental group of Sv is generated by c1; c2; : : : ; ck and cv with a unique relator
c1c2c3 � � � ckcv D e . Here we abused notation for the presentation of �1.Sv/. By
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that presentation of �1.Sv/, we can see that there is a group homomorphism � from
�1.Sv/ to Z that maps each ci to �1 and cv to k . By [5, Proposition 1B.9], the group
homomorphism � is induced by a map h from Sv to S1

v . Therefore, we constructed
the desired map h.

Finally, we identify the surface Sv with its image via the map .g; h/. By construction,
�1.Sv/ is the subgroup of �1.Pv/ generated by elements u1v

�1;u2v
�1; : : : ;ukv

�1.
We observe that if we glue pair of Seifert manifolds .Pv1

;Pv2
/ along their tori S1

v1
�S1

v2
,

the pair of horizontal surfaces .Sv1
;Sv2

/ will be matched up along their boundaries in
S1
v1
�S1

v2
. Therefore, we constructed a horizontal surface S in M . By the Van Kampen

theorem, the fundamental group of S is generated by all elements of the form st�1

whenever s and t are adjacent vertices in � . In other words, �1.S/ is the Bestvina–
Brady subgroup by Theorem 2.6.
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Non-L–space integral homology 3–spheres
with no nice orderings

XINGHUA GAO

We give infinitely many examples of non-L–space irreducible integer homology 3–
spheres whose fundamental groups do not have nontrivial ePSL2.R/ representations.

57M50; 57M25, 57M27

1 Introduction

Before stating the main result, I will review some definitions. A rational homology
3–sphere Y is called an L–space if rkbHF.Y / D jH1.Y IZ/j, ie its Heegaard Floer
homology is minimal. An L–space does not admit any coorientable taut foliation, by
Bowden [1], Kazez and Roberts [13] and Ozsváth and Szabó [15]. A nontrivial group
G is called left-orderable if there exists a strict total ordering of G invariant under
left multiplication. Boyer, Gordon and Watson conjectured in [2] that an irreducible
rational homology 3–sphere is a non-L–space if and only if its fundamental group
is left-orderable. A stronger conjecture states that for an irreducible Q–homology
3–sphere, being a non-L–space, having left-orderable fundamental group and admitting
a coorientable taut foliation are the same (see eg Culler and Dunfield [5]).

To show the fundamental group �1.Y / of a 3–manifold Y is orderable, it is most
common to consider ePSL2.R/ representations of �1.Y /. In fact, in many cases,
ePSL2.R/ representations are sufficient to define an order on �1.Y /; see [5]. However,

Theorem 1 in this paper shows that, even in the case of non-L–space integral homology
spheres, orders coming from ePSL2.R/ are not enough to prove the conjecture of Boyer,
Gordon and Watson.

It is conjectured that any integer homology 3–sphere different from the 3–sphere
admits an irreducible representation in SU2.C/ (see eg Kirby’s problem list [14,
Problem 3.105]). Zentner [20] showed that if one enlarges the target group to SL2.C/,
then every such integral homology 3–sphere has an irreducible representation. By
contrast, I will give examples where there are no irreducible PSL2.R/ representations.
Let M be the manifold m137— see Callahan, Hildebrand and Weeks [3] — and
M.1; n/ be the integral homology sphere obtained by .1; n/ Dehn fillings on M. The
main result of this paper states:
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Theorem 1 For all n� 0, the manifold M.1; n/ is a hyperbolic integral homology
3–sphere where

(a) �1.M.1; n// does not have a nontrivial ePSL2.R/ representation;

(b) M.1; n/ is not an L–space.

This means that we can not produce an order on �1.M.1; n// simply by pulling back
the action of ePSL2.R/ on R.

Section 2 is devoted to proving Theorem 1(a). Let X0.M/ be the component of
the SL2.C/ character variety of M containing the character of an irreducible rep-
resentation (see Culler and Shalen [7] for the definition). Here is an outline of the
approach. Let X0;R.M/ be the real points of X0.M/. Define Œ�� 2 X0;R.M/ and
denote by s the trace of �.�/, where � is the homological longitude of M. The
proof is divided into two parts. In the first part, I show that points on the jsj < 2

components of X0;R.M/ all correspond to SU2.C/ representations, while points on
the jsj> 2 components correspond to SL2.R/ representations. In the second part, I
show that SL2.R/ representations of �1.M/ give rise to no SL2.R/ representations of
�1.M.1; n// when n� 0. This part of the proof is basically analyzing real solutions
to the A–polynomial of M under the relation ��n D 1 given by .1; n/ Dehn filling,
where � is a choice of meridian of @M.

In Section 3, by applying techniques in the paper by Rasmussen and Rasmussen [17]
and Gillespie [11], I show that none of the .1; n/ Dehn fillings on m137 is an L–space,
completing the proof of Theorem 1.

Acknowledgements The author was partially supported by NSF grants DMS-1510204,
and Campus Research Board grant RB15127. I would like to pay special thanks to my
advisor, Nathan Dunfield for suggesting me this problem and offering me extraordinary
help. I would also like to thank the referee for detailed and helpful comments and
suggestions.

2 APSL2.R/ representations

I will prove Theorem 1(a) in this section.

SnapPy [6] gives us the following presentation of the fundamental group of MDm137:

�1.M/D h˛; ˇ j ˛3ˇ2˛�1ˇ�3˛�1ˇ2
i:

The peripheral system of M can be represented as

f�; �g D f˛�1ˇ2˛4ˇ2; ˛�1ˇ�1
g D fˇ2��1ˇ�3��1ˇ2; �g;

Algebraic & Geometric Topology, Volume 17 (2017)
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where � is the homological longitude and � is a choice of meridian. Then we can
rewrite the fundamental group as

(2-1) �1.M/D h�; ˇ j ˇ�1��1ˇ�1��1ˇ2�D �ˇ�2��1ˇ2
i;

and the meridian becomes �D ˇ2��1ˇ�3��1ˇ2 under this presentation.

Remark The triangulation of m137 we used (included in [9]) to get these presentations
is different from SnapPy’s default triangulation. We got it by performing random
Pachner moves on the default triangulation in SnapPy. In particular, our notations for
longitude and meridian in the peripheral system are meridian and longitude, respectively,
in SnapPy’s default notations.

We will first look at irreducible SL2.C/ representations of the fundamental group of
M before we look at those of Dehn fillings of M. Denote by X.M/ the SL2.C/
character variety of M, that is, the geometric invariant theory quotient

Hom.�1.M/;SL2.C//==SL2.C/:

It is an affine variety [7]. Suppose �W �1.M/ �! SL2.C/ is a representation of the
fundamental group of M. Recall that a representation � of G in SL2.C/ is irreducible
if the only subspaces of C2 invariant under �.G/ are f0g and C2 [7]. This is equivalent
to saying that � can’t be conjugated to a representation by upper triangular matrices.
Otherwise � is called reducible. We will call a character irreducible (reducible) if the
corresponding representation is irreducible (reducible).

First, I determine which components of X.M/ contain characters of irreducible repre-
sentations. Computation with SnapPy [6] shows that the Alexander polynomial �M of
m137 is 1, which has no root. So there are no reducible nonabelian representations [4,
Section 6.1]. Therefore all the reducible representations are abelian. Since H1.M/DZ,
there is only one such component and it is parametrized by the image of ˇ and is
isomorphic to Hom.Z;SL2.C//==SL2.C/ ' C . Moreover, it is disjoint from any
component of X.M/ containing the character of an irreducible representation [4,
Section 6.2]. For more details, we refer the readers to Tillmann’s note [19], where he
studied m137 as an example.

If an abelian representation of �1.M/ induces an abelian representation of �1.M.1; n//

then it factors through the abelianization ab
�
�1.M.1; n//

�
D 1. So they correspond to

trivial SL2.C/ representations and we don’t need to worry about them.

Now we consider components of X.M/ that contain the character of an irreducible
representation. We have:

Algebraic & Geometric Topology, Volume 17 (2017)
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Lemma 2 There is a single component X0.M/ of X.M/ containing an irreducible
character. The functions s D tr �.�/D tr �.˛�1ˇ�1/D tr �.˛ˇ/ and t D tr �.ˇ/ give
complete coordinates on X0.M/, which is the curve in C2 cut out by

.�2� 3sC s3/t4C .4C 4s� s2
� s3/t2� 1D 0:

Moreover, w WD tr �.�ˇ/D tr �..�ˇ/�1/D t � 1=.t.sC 1//.

Proof Let X0.M/ be X.M/� freducible charactersg. From the discussion above,
we know that all the reducible characters form a single component of X.M/ and this
component is disjoint from any other component of X.M/. So X0.M/ is Zariski
closed. We will show later that X0.M/ is actually an irreducible algebraic variety, as
claimed in the lemma.

Suppose Œ�� 2 X0.M/. So � is an irreducible representation. By conjugating � if
necessary, we can assume that � has the form

�.�/D

�
z 1

0 1=z

�
; �.ˇ/D

�
x 0

y 1=x

�
:

From the relator of �1.M/ in (2-1) we have �.ˇ/�1�.�/�1ˇ�1�.�/�1�.ˇ/2�.�/D

�.�/�.ˇ/�2�.�/�1�.ˇ/2 . Comparing the entries of the matrices on both sides, we
get four equations. These four equations together with s D z C 1=z , t D x C 1=x
and w D zxC z�1x�1C y form a system S which defines X0.M/. By computing
a Gröbner basis of this system, SageMath [18] gives the following generators of the
radical ideal I D I.X0.M//:

stw� t2�w2
� sC 2;(2-2)

t3�w3
C st � sw� 2t Cw;(2-3)

st2� tw�w2
� sC 1;(2-4)

sw3
� s2t C s2w� t2w� tw2

C st � swC t:(2-5)

Subtracting (2-4) from (2-2), we get

w D t �
1

t.sC 1/
:(2-6)

Eliminating w , we get a defining equation for X0.M/:

(2-7) 0D .�2� 3sC s3/t4C .4C 4s� s2
� s3/t2� 1

D .s� 2/.sC 1/2t4� .s� 2/.sC 2/.sC 1/t2� 1:

Thus, we can think of X0.M/ as living in C2 .
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To prove the lemma, we must show that X0.M/ is irreducible or, equivalently, the
polynomial P.s; t/ WD .s�2/.sC1/2t4� .s�2/.sC2/.sC1/t2�1 in (2-7) does not
factor in CŒs; t �. Assume P.s; t/ factors. Suppose it factors as

.at2CbtCc/
�
dt2Cet�

1

c

�
Dadt4C.aeCbd/t3C

�
cd�

a

c
Cbe

�
t2C

�
ce�

b

c

�
t�1;

where a; b; d; e 2CŒs� and c 2C�f0g. Setting the coefficients of t and t3 to be 0,
we get b D c2e and ae D �c2de . If e ¤ 0, then a D �c2d . But this is impossible
as ad D .s� 2/.sC 1/2 is a polynomial in s of odd degree. So e D 0 and it follows
that b D 0. Comparing the coefficients of t2 and t4 , we get

ad D .s� 2/.sC 1/2;(2-8)

cd �
a

c
D�.s� 2/.sC 2/.sC 1/:(2-9)

So degree.a/C degree.d/ D 3 and maxfdegree.a/; degree.d/g � 3, which implies
exactly one of a and d has degree 3 and the other has degree 0. Without loss of
generality, we can assume that degree.a/D 3 and degree.d/D 0. Multiplying both
sides of (2-9) by c , we get a D c2d C c.s � 2/.sC 2/.sC 1/. So the coefficient of
s3 in a is c . Comparing with the coefficient of s3 in (2-8), we see that d D 1=c .
Eliminating a and d gives us an equality 1C .s� 2/.sC 2/.sC 1/D .s� 2/.sC 1/2 ,
which does not hold.

Otherwise, suppose P.s; t/ factors as

.atCc/
�
bt3Cdt2Cet�

1

c

�
D abt4C.adCcb/t3C.cdCae/t2C

�
ce�

a

c

�
t�1;

where a; b; d; e 2CŒs� and c 2C�f0g. Setting the coefficients of t and t3 to be 0,
we get aD c2e and b D ced . Comparing the coefficients of t2 and t4 , we get

c3de2
D .s� 2/.sC 1/2;(2-10)

cd C c2e2
D�.s� 2/.sC 2/.sC 1/:(2-11)

So degree.d/C2 degree.e/D 3 and maxfdegree.d/; 2 degree.e/g � 3, which implies
degree.d/ D 3 and degree.e/ D 0. Comparing the coefficients of s3 in (2-10) and
(2-11), we know that c2e2 D�1. Plugging into (2-10), we get cd D .s� 2/.sC 1/2 ,
which when plugging into (2-11) implies c2e2 D�.sC 1/.s� 2/, a contradiction. So
P.s; t/ is irreducible over C . Therefore, X0.M/ has only one component.

To find irreducible SL2.R/ representations of �1.M/, we need to check all real points
on X0.M/, which correspond to real solutions of (2-7). Notice that (2-7) has no
solutions when s D�1 or 2, so (2-7) is a quadratic equation in t2 . In order for t to
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be real, t2 has to be real and nonnegative. Then first we need the discriminant to be
nonnegative. That is,

�1 D .sC 1/
2.s� 2/.s3

C 2s2
� 4s� 4/� 0:

So s 2U WD .�1; p1�[ Œp2; p3�[ .2;1/, where p1��2:9032, p2��0:8061 and
p3 � 1:7093 are the three roots of the cubic polynomial s3C 2s2� 4s� 4.

The following lemma will help us determine when a SL2.C/ representation of �1.M/

can be conjugated into SL2.R/ by simply checking where it lies on the character
variety.

Lemma 3 The set of real points X0;R.M/DX0.M/\R2 of X0.M/ has 6 connected
components:

� Points on the two components with jsj< 2 correspond to SU2.C/ representations.

� Points on the four components with jsj> 2 correspond to SL2.R/ representations.

Remark The above lemma shows that, in our case, the absolute value of one character
being smaller than 2 implies that the representation is SU2.C/. But, in general, this is
not true.

To prove this lemma, we need to determine when Œ�� 2 X0;R.M/ corresponds to
� 2 SU2.C/ and when it corresponds to � 2 SL2.R/. It can’t be in both because
otherwise it would be reducible [5, Lemma 2.10] and we know X0.M/ contains only
irreducible characters. The tool we use is a reformulation of Proposition 3.1 in [12],
which states that given three angles �i 2 Œ0; ��, i D 1; 2; 3, there exist three SU2.C/
matrices Ci satisfying C1C2C3 D I with eigenvalues exp.˙i�i /, respectively, if and
only if these angles satisfy

j�1� �2j � �3 �minf�1C �2; 2� � .�1C �2/g:(2-12)

We want to rewrite the above inequality in terms of traces of C1 , C2 and C3 . We have
the following lemma:

Lemma 4 Suppose t1; t2; t3 2 .�2; 2/ are the traces of C1; C2; C3 2 SL2.C/ which
satisfy C1C2C3 D I . Then C1 , C2 and C3 are simultaneously conjugate in SU2.C/
if and only if

.2t3� t1t2/
2
� .4� t21 /.4� t

2
2 /:

Proof Suppose t1D 2 cos �1 , t2D 2 cos �2 and t3D 2 cos �3 with �1; �2; �3 2 Œ0; ��.

If 0 � �1 C �2 � � , then the inequality (2-12) becomes j�1 � �2j � �3 � �1 C �2 .
Taking cosines, we get cos.�1C �2/� cos �3 � cos.�1� �2/.
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If � � �1C �2 � 2� , then the inequality becomes j�1 � �2j � �3 � 2� � .�1C �2/.
Taking cosines, we also get cos.�1C �2/� cos �3 � cos.�1� �2/.

Using the relations t1D 2 cos �1 , t2D 2 cos �2 and t3D 2 cos �3 , we get in both cases
that

t1t2

4
�

s�
1�

t21
4

��
1�

t22
4

�
�
t3

2
�
t1t2

4
C

s�
1�

t21
4

��
1�

t22
4

�
:

Then

�

s�
1�

t21
4

��
1�

t22
4

�
�
t3

2
�
t1t2

4
�

s�
1�

t21
4

��
1�

t22
4

�
:

So we have ˇ̌̌̌
t3

2
�
t1t2

4

ˇ̌̌̌
�

s�
1�

t21
4

��
1�

t22
4

�
:

Squaring both sides and simplifying, we get

.2t3� t1t2/
2
� .4� t21 /.4� t

2/;

as desired.

With the criterion of Lemma 4 in hand, we now can prove Lemma 3.

Proof of Lemma 3 The six components correspond to s2.�1;p1�[Œp2;p3�[.2;1/

and t 2 .�1; 0/[ .0;1/.

Set C1D �.�/, C2D �.ˇ/ and C3D �.ˇ
�1��1/D �..�ˇ/�1/. Then t1D s , t2D t

and t3 D w . Applying Lemma 4 we have

.2w� st/2 � .4� s2/.4� t2/:(2-13)

Plugging (2-6) into (2-13) and simplifying,

.s� 2/2t2C
4.s� 2/

sC 1
C

4

t2.sC 1/2
� .4� s2/.4� t2/:

Multiplying both sides by t2.sC 1/2 , we get

.sC 1/2.s� 2/2t4C 4.s� 2/.sC 1/t2C 4� .4� s2/.sC 1/2.4� t2/t2;

which simplifies to

�.sC 1/2.s� 2/t4C .s2
C 3sC 3/.s� 2/.sC 1/t2C 1� 0:

Plugging in (2-7), we get
.sC 1/3.s� 2/t2 � 0;

which always holds when s 2 .p2; p3/� .�0:8061; 1:7093/� .�2; 2/.
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So, points on X0;R.M/ correspond to SU2.C/ representations if and only if jsj< 2
and correspond to SL2.R/ representations if and only if jsj> 2.

Proof of Theorem 1(a) Lemma 3 tells us a SL2.C/ representation � of m137 is real
if and only if eigenvalues of �.�/ are real. Moreover, the condition ��n D 1 forces
the eigenvalues of �.�/ to also be real in this case. So we could restrict our attention
to jsj > 2 and look at the A–polynomial instead (see eg [4] for the definition of the
A–polynomial). Recall that z is an eigenvalue of �.�/. Denote by m the eigenvalue
of �.�/ which shares its eigenvector with z . The A–polynomial of m137 is computed
by SageMath [18] as

.z4
C 2z5

C 3z6
C z7

� z8
� 3z9

� 2z10
� z11/Cm2.�1� 3z� 2z2

� z3

C 2z4
C 4z5

C z6
C 4z7

C z8
C 4z9

C 2z10
� z11

� 2z12
� 3z13

� z14/

Cm4.�z3
� 2z4

� 3z5
� z6
C z7

C 3z8
C 2z9

C z10/:

Write A D �1� 2z � 3z2 � z3C z4C 3z5C 2z6C z7 D .z � 1/.z2C zC 1/3 and
BD1C3zC2z2Cz3�2z4�4z5�z6�4z7�z8�4z9�2z10Cz11C2z12C3z13Cz14 .
So the A–polynomial can be simplified as �z4A�Bm2C z3Am4 . We are interested
in the real solutions of

(2-14) �z4A�Bm2
C z3Am4

D 0:

Now consider the .1; n/ Dehn filling on m137. Then we are adding an extra relation
��n D 1, which is �.�/�.�/n D I under the representation � , ie

�.�/D �.�/�n
D

�
z�n �

0 zn

�
:

Restricting to @M gives us the relation mD z�n .

When n is negative, we shall write n0D�n. So we have mD zn0

. Plugging into (2-14)
and dividing both sides by z4 , we get

(2-15) �A�Bz2n0�4
CAz4n0�1

D 0:

We will show the following lemma is true, completing the proof of Theorem 1(a).

Lemma 5 Equation (2-15) has no real solutions when n0 is large enough.

Proof Define F.z/D A.z4n0�1� 1/�Bz2n0�4 . We’ll show F.z/ > 0.

First notice that AD 0 only when z D 1. And A > 0 when z > 1 while A < 0 when
z < 1. The polynomial B has 6 real roots, which are all simple: �2:3396, �1:4121,
�0:7082, �0:4274, 0:8684, 1:1516 (rounded to the fourth digit).

Algebraic & Geometric Topology, Volume 17 (2017)



Non-L–space integral homology 3–spheres with no nice orderings 2519

As we saw earlier, the domain for s is

U WD .�1; p1/[ Œp2; p3�[ .2;1/� .�1;�2:9032�[ Œ�0:8061; 1:7093�[ .2;1/:

So the jsj> 2 condition restricts s to .�1; p1�[ .2;1/. Then

z 2 V WD .�1;�2:5038�[ Œ�0:3994; 0/[ .0; 1/[ .1;1/:

Notice that z7A.1=z/D�A.z/ and z14B.1=z/DB.z/. Interchanging z with 1=z in
F.z/ gives us F.1=z/D A.1=z/.z�.4n0�1/� 1/�B.1=z/z�.2n0�4/ D F.z/=z4n0C6 .
So we can assume jzj< 1.

Case 1 (0:8684�z<1) In this case, we have A.z/<0, B.z/�0 and z4n0�1�1<0.
So F.z/ > 0.

Case 2 (�0:3994 � z < 0:8684 and z ¤ 0) In this case, we have A.z/ < C5 < 0

and C6 >B.z/ > 0 for some constants C5 and C6 . When n0 is large enough, we have
jC5j�j.z

4n0�1�1/j>C6z
2n0�4 . So A.z4n0�1�1/D jAj�j.z4n0�1�1/j>Bz2n0�4

and it follows that F.z/ > 0.

Therefore, when n0D�n is large enough, we always have F.z/ > 0 on the domain V .
So (2-15) has no real solution when n0� 0.

It follows from the above lemma that (2-14) has no real solution when n� 0 and thus
the equality �.�/�.�/n D I does not hold for n� 0.

From all the discussion above, we can now conclude that M.1; n/ has no nontrivial
SL2.R/ representation and thus no nontrivial PSL2.R/ representation for n�0. Since
the first Betti number of M.1; n/ is 0, the lift of a trivial PSL2.R/ representation of
�1.M.1; n// into ePSL2.R/ will be trivial. So all representations of �1.M.1; n// into
ePSL2.R/ are trivial for n� 0, proving Theorem 1(a).

In contrast, when n is positive there are examples of nontrivial SL2.R/ representations.

Plugging mD z�n into (2-14) and multiplying both sides by z4n�3 , we get

�ACBz2n�3
CAz4nC1

D 0:

Similarly define G.z/DA.z4nC1�1/CBz2n�3. Since G.1/D�4 and G.0:8684/>0,
G.z/ must have at least one root in Œ0:8684; 1/. So �1.M.1; n// has at least one
nontrivial SL2.R/ representation for any n> 0. They lift to ePSL2.R/ representations,
since the Euler number of any representation of an integral homology sphere vanishes
[10, Section 6].
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3 No L–space fillings

In this section, I will prove Theorem 1(b) using results from Gillespie [11], which
are based on Rasmussen and Rasmussen [17]. In fact, I will show that none of the
nonlongitudinal fillings of m137 is an L–space. The homology groups in this section
are all homology with integral coefficients.

Suppose Y is a compact connected 3–manifold with a single torus as boundary. I will
follow Gillespie’s notation [17]. Define the set of slopes on @Y as

Sl.Y /D fa 2H1.@Y / j a is primitiveg=˙1:

Define the set of L–space filling slopes of Y

L.Y /D fa 2 Sl.Y / j Y.a/ is an L–spaceg:

Moreover, Y is said to have genus 0 if H2.Y; @Y / is generated by a surface of genus 0.

We will use [11, Theorem 1.2], which is stated as:

Theorem 6 The following are equivalent:

(1) L.Y /D Sl.Y /�flg.
(2) Y has genus 0 and has an L–space filling.

Proof of Theorem 1(b) Let l 2 Sl.M/ be the homological longitude. In our case l
can be taken to be Œ��. I will show that none of the .1; n/ fillings to M is an L–space.

I will find one non-L–space filling first. SnapPy [6] shows that .1;�1/ filling on the knot
820 complement with homological framing is homeomorphic to m011.2; 3/, which is
also homeomorphic to M.1;�3/. Ozsváth and Szabó showed that if some .1; p/ Dehn
filling of a knot complement in S3 with homological framing is an L–space, then the
Alexander polynomial of the knot has coefficients ˙1 [16, Corollary 1.3]. We can com-
pute with SnapPy [6] that the Alexander polynomial of 820 is x4�2x3C3x2�2xC1.
So M.1;�3/ is not an L–space. Therefore,

�3l C Œ�� … L.M/¤ Sl.M/�flg 3 �3l C Œ��;

By Theorem 6, either M has no L–space fillings or M has positive genus.

The manifold M can be viewed as the complement of a knot K in S2 �S1 [8]. This
knot K intersects each S2 three times. So ŒK� ¤ 0 in H1.S

2 � S1IZ/. It follows
that H2.M; @M/ is generated by genus 0 surface .S2 � fP g/\M for generic point
P on K . So M has genus 0, which forces M to have no L–space filling. Therefore,
none of the integral homology spheres M.1; n/ is an L–space.
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Noncommutative formality implies
commutative and Lie formality

BASHAR SALEH

Over a field of characteristic zero we prove two formality conditions. We prove that a
dg Lie algebra is formal if and only if its universal enveloping algebra is formal. We
also prove that a commutative dg algebra is formal as a dg associative algebra if and
only if it is formal as a commutative dg algebra. We present some consequences of
these theorems in rational homotopy theory.

55P62

1 Introduction

Formality is an important concept in rational homotopy theory (see Deligne, Griffiths,
Morgan and Sullivan [5]), deformation quantization (see Kontsevich [12]), deformation
theory (see Goldman and Millson [8]) and other branches of mathematics where
differential graded homological algebra is used. The notion of formality exists in many
categories, eg the category of (commutative) dg associative algebras and the category
of dg Lie algebras. An object A in such a category is called formal if there exists a
zigzag of quasi-isomorphisms connecting A with its cohomology H.A/,

A �
 �B1

�
�!� � �

�
 �Bn

�
�!H.A/:

A functor between categories in which the notion of formality exists may or may not
preserve formal objects. For example, over a field of characteristic zero, it is known
that the universal enveloping algebra functor U W DGLk! DGAk preserves formal
objects; see Félix, Halperin and Thomas [6, Theorem 21.7]. That means that the
formality of a dg Lie algebra (dgl) L implies the formality of UL (as a dg associative
algebra (dga)). But what about the reversed relation? Does the formality of UL imply
the formality of L? In this paper we show that this holds for dg Lie algebras over a
field of characteristic zero.

Theorem 1.1 A dg Lie algebra L over a field of characteristic zero is formal if and
only if its universal enveloping algebra UL is formal as a dga.

Among the results in the spirit of Theorem 1.1, there is a theorem by Aubry and
Lemaire [1] saying that two dgl morphisms f; gW L! L0 are homotopic if and only if

Published: 3 August 2017 DOI: 10.2140/agt.2017.17.2523

http://msp.org
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U.f /; U.g/W UL! UL0 are homotopic. The author does not think that the result by
Aubry and Lemaire implies Theorem 1.1 or vice versa.

Milnor and Moore [17] showed that, over a field of characteristic zero, the universal
enveloping algebra defines an equivalence of categories between the category of dg
Lie algebras and the category of connected cocommutative dg Hopf algebras. This
equivalence together with Theorem 1.1 and the fact that a dgl morphism f W L!L0 is a
quasi-isomorphism if and only if U.f /W UL!UL0 is a quasi-isomorphism (see Félix,
Halperin and Thomas [6, Theorem 21.7(ii)]) gives that a connected cocommutative dg
Hopf algebra is formal as a connected cocommutative dg Hopf algebra if and only if it
is formal as a dga.

We demonstrate a topological consequence of Theorem 1.1. The rational homotopy
type of a simply connected space X is algebraically modeled by Quillen’s dg Lie
algebra �.X/ over the rationals [18]. The space X is called coformal if �.X/ is a
formal dgl. It is known that there exists a zigzag of quasi-isomorphisms connecting
U�.X/ to the algebra C�.�X;Q/ of singular chains on the Moore loop space of X ;
see Félix, Halperin and Thomas [6, Chapter 26]. From Theorem 1.1 the following
corollary is immediate:

Corollary 1.2 Let X be a simply connected space. Then X is coformal if and only if
C�.�X IQ/ is formal as a dga.

Our second formality result is concerning the forgetful functor from the category of
commutative dgas (cdgas) to the category of dgas. This functor preserves formality; a
cdga which is formal as a cdga is obviously formal as a dga. Again, we ask whether
this relation is reversible or not. We will prove that over a field of characteristic zero
the answer is positive.

Theorem 1.3 Let A be a cdga over a field of characteristic zero. Then A is formal as
dga if and only if it is formal as a cdga.

Recall that a space X is called rationally formal if the Sullivan–de Rham algebra
APL.X IQ/ is formal as a cdga; see Félix, Halperin and Thomas [6, Chapter 12]. In
that case the rational homotopy type of X is a formal consequence of its cohomology
H�.X IQ/, meaning that H�.X IQ/ determines the rational homotopy type of X .
Moreover, it is known that there exists a zigzag of quasi-isomorphisms connecting
APL.X IQ/ with the singular cochain algebra C �.X IQ/ of X [6, Theorem 10.9]. An
immediate topological consequence is the following corollary:

Corollary 1.4 A space X is rationally formal if and only if the singular cochain
algebra C �.X IQ/ of X is formal as a dga.
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Overview

The reader is assumed to be familiar with the theory of operads and with the notions of
A1–, C1–, and L1–algebras. We refer the reader to Keller [11], Loday and Vallette
[14] and Markl, Shnider and Stasheff [16] for introductions to these subjects.

In Section 2 we review Baranovsky’s universal enveloping construction [2] on the
category of L1–algebras. The construction is a generalization of the universal en-
veloping algebra functor and is an important ingredient in the proof of Theorem 1.1.
In Section 3 we present an obstruction theory for formality in different categories.
The obstructions will be cohomology classes of certain cohomology groups. The
obstruction theory together with Baranovsky’s universal enveloping will give us tools
to compare the concept of formality in DGAk and DGLk (char kD 0). This will be
treated in Section 4 and will finally yield a proof of Theorem 1.1. In Section 5 we
prove Theorem 1.3.

The reader interested only in Theorem 1.1 may skip Section 5, whilst the reader only
interested in Theorem 1.3 may skip Sections 2 and 4.

Conventions
� Sk denotes the symmetric group on k letters.

� The Koszul sign of a permutation � 2 Sk acting on v1 � � � vk 2 V ˝k (where
V is a graded vector space) is given by the following rule: The Koszul sign of
an adjacent transposition that permutes x and y is given by .�1/jxjjyj . This
is then extended multiplicatively to all of Sk (recall that the set of adjacent
transpositions generates Sk ).

� The suspension sV of a graded vector space V is the graded vector space given
by sV i D V iC1 . The suspension of a cochain complex .C; d/ is the cochain
complex .sC;�sds�1/.

� A standing assumption will be that k is a field of characteristic zero. We will
only consider (co)algebras and (co)operads over fields of characteristic zero.

Acknowledgments I would like to thank my advisor Alexander Berglund for his
invaluable guidance during the preparation of this paper and also for proposing the
topics treated here. I would also like to thank Stephanie Ziegenhagen for her careful
reading of this paper and her comments and suggestions. Thanks to Kaj Börjeson and
Felix Wierstra for introducing me to many concepts that I had very little knowledge
about. Finally, I would like to thank Victor Protsak for helping me with the proof of
Proposition 4.2 (at MathOverflow).

Algebraic & Geometric Topology, Volume 17 (2017)

https://mathoverflow.net/questions/243962/what-is-known-about-the-morphism-h-liel-l-to-h-liel-ul-induced-by


2526 Bashar Saleh

2 Baranovsky’s universal enveloping for L1–algebras

The proof of Theorem 1.1 will partly rely on a construction by Baranovsky [2] that
generalizes the universal enveloping algebra construction to L1–algebras.

Applying Baranovsky’s universal enveloping (denoted by U Bar ) to an L1–algebra
.L; flig/ gives an A1–algebra U Bar.L; flig/ D .ƒL; fmig/, where ƒL is the un-
derlying graded vector space of the symmetric algebra on L. Applying U Bar to an
L1–morphism �W L! L0 gives an A1–morphism U Bar.�/W U Bar.L/! U Bar.L0/.

U Bar is not a functor since it fails to preserve compositions (ie in general U Bar. ı�/¤

U Bar. / ıU Bar.�/). However, the restriction of U Bar to DGLk �1–L1–alg (here
1–L1–alg denotes the category of L1–algebras with 1–morphisms) coincides
with the usual universal enveloping algebra functor, denoted by U .

We record some properties of U Bar .

Theorem 2.1 Let .L; flig/ be an L1–algebra with universal enveloping

U Bar.L; flig/D .ƒL; fmig/:

The following properties hold:

(a) m1W ƒL!ƒL is the symmetrization of l1 (ie m1 Dƒ.l1/).

(b) If �W .L; flig/! .L0; fl 0ig/ is an L1–quasi-isomorphism, then

U Bar.�/W .ƒL; fmig/! .ƒL0; fm0ig/

is an A1–quasi-isomorphism.

(c) The map mj W .ƒL/˝j !ƒL depends only on L, l1 , l2; : : : ; lj . In particular,
if .L; fkig/ is another L1–algebra structure on the same vector space L with
lj D kj for j D 1; 2; : : : ; d , then U Bar.L; fkig/ D .ƒL; fnig/ with nj D mj
for j D 1; 2; : : : ; d .

(d) Let v1; : : : ; vj 2 L� U BarL. Then

lj .v1 � � � vj /D
X
�2Sj

.� I v1; : : : ; vj /mj .v��1.1/ � � � v��1.j //;

where .� I v1; : : : ; vn/ is the product of the sign of the permutation � and the
Koszul sign obtained by applying � on v1 � � � vj .

(e) The restriction U BarjDGLk of U Bar to DGLk coincides with the ordinary univer-
sal enveloping algebra functor.

Properties (a)–(c) are not explicitly stated in [2], so we will briefly recall Baranovsky’s
construction in order to prove these properties.

Algebraic & Geometric Topology, Volume 17 (2017)



Noncommutative formality implies commutative and Lie formality 2527

A summary of the construction

Given a complex .V; d/, let T �a .V / (resp. T �c .V /) and ƒ�a.V / (resp. ƒ�c.V /) de-
note the tensor and symmetric algebras (resp. coalgebras) on V with (co)differential
corresponding to the unique (co)derivation extension of d .

Let .L; flig/ be an L1–algebra. We start by considering the complex .L; l1/ and con-
struct from it two coalgebras, .T �c .sƒ�a.L//; d

ı/ and
�
T �c
�
s�.ƒ�c.sL//

�
; ıı
�

(where
� denotes the cobar construction and . � / denotes the augmentation ideal).

Baranovsky shows that there exists a coalgebra contraction from T �c
�
s�.ƒ�c.sL//

�
to

T �c .sƒ
�
a.L//

(2-1) T �c
�
s�.ƒ�c.sL//

�
H

)) F
//
T �c .sƒ

�
a.L//

G

oo :

By comparing T �c
�
s�.ƒ�c.sL//

�
with the cobar–bar construction on the Chevalley–

Eilenberg construction on the L1–algebra .L; flig/, denoted by B�C.L/, we see
that they only differ by their differentials. The differential ı of B�C.L/ is given by

ı D ııC t�C tL;

where t� is the part that encodes the multiplication on �C.L/ and tL D t2C t3C � � �
encodes the L1–structure on L with ti encoding li . Applying the basic perturbation
lemma to the perturbation t�C tL of the contraction above results in a new differential
d D .dı/t�CtL on T �c .sƒ�a.L//, which corresponds to an A1–algebra structure on
ƒL, which will be Baranovsky’s universal enveloping U Bar.L; flig/.

Geometric grading

Baranovsky introduces a geometric grading on B�C.L/ by first declaring that an
element of s�1ƒkc .sL/ is of geometric degree k � 1 and then extends the grading
to B�C.L/ by the following rule: the geometric degree of ˛˝ˇ is the sum of the
geometric degrees of ˛ and ˇ . The maps in the contraction (2-1) and the perturbations
t� and tL D t2C t3C � � � satisfy some conditions regarding the geometric grading:

� The image of G belongs to the geometric degree 0 part.

� H increases the geometric degree by 1.

� t� preserves the geometric degree.

� ti decreases the geometric degree by i�1 and vanishes on elements of geometric
degree < i � 1.

Algebraic & Geometric Topology, Volume 17 (2017)
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Proof of Theorem 2.1 By the basic perturbation lemma (stated in [2, Lemma 2]) we
have that the differential d D .dı/t�CtL is given by

d D dıCF

�X
i�0

..t�C tL/H/
i

�
.t�C tL/G:

Since the image of G belongs to the geometric degree 0 part and since tLD t2Ct3C� � �
vanishes on elements of geometric degree 0, we may rewrite the differential as

(2-2) d D dıCF

�X
i�0

.t�H C t2H C t3H C � � � /
i

�
t�G:

The terms in the differential above that correspond to mnW U Bar.L/˝n! U Bar.L/ are
those terms that contain t� exactly n� 1 times (see the proof of [2, Theorem 3] for
the details).

(a) Since dı is the only term in (2-2) that does not contain t� as a factor, we have
that dı is the part of the differential d that corresponds to m1W U Bar.L/! U Bar.L/.
One can easily see that dı corresponds to ƒ.l1/W ƒL!ƒL.

(b) By [2, Theorem 3.i] we have that the first component U Bar.�/1 of U Bar.�/ is
given by ƒ.�1/, where �1 is the first component of � . In order to show that U Bar.�/

is an A1–quasi-isomorphism, we need to show that

(2-3) U Bar.�/1 Dƒ.�1/W .ƒL;m1/! .ƒL0; m01/

is a quasi-isomorphism of complexes. Since � is an L1–quasi-isomorphism, it follows
that �1W .L; l1/! .L0; l 01/ is a quasi-isomorphism of complexes. By (a), m1 and m01 are
given by symmetrizations of l1 and l 01 , respectively, which means that the map in (2-3)
is obtained by applying the symmetrization functor ƒ.�/ on �1W .L; l1/! .L0; l 01/.
Over a field k of characteristic zero we have that the symmetrization functor ƒ.�/
preserves quasi-isomorphisms (since L˝k� is exact and taking Sn–coinvariants is
also exact), and (b) follows.

(c) Firstly, H depends only on L and l1 , by [2, Theorem 1]. Moreover, we have that
t�H increases the geometric degree by 1 while tiH decreases the geometric degree
by i � 2. Furthermore, tiH vanish on elements of degree < i � 2. That means if
there exists a nonzero term containing tiH , then t�H has to occur at least i �2 times
before tiH (ie to the right of tiH ).

We have that mn corresponds to those nonzero terms that contain t� exactly n� 1
times, which is equivalent to those terms that contain t�H exactly n� 2 times. These
terms cannot contain any tiH where i > n (since they are nonzero). From this and the
fact that ti is completely encoded by li , claim (c) follows.

(d)–(e) See [2, Theorem 3.vii] and [2, Theorem 3.v], respectively.
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3 Minimal P1–algebras and obstructions to formality

Given an algebraic operad P , we have that the cohomology of a dg P –algebra has
an induced dg P –algebra structure with a trivial differential [14, Proposition 6.3.5].
Thus, the notion of formality makes sense in the category of dg P –algebras.

If P is a Koszul operad, we denote by P1 the operad obtained by applying the cobar
construction on the Koszul dual cooperad of P [14, Chapter 10]. The category of P1–
algebras with P1–morphisms (denoted by 1–P1–alg) contains the category of
P –algebras as a subcategory and has some properties that the category of P –algebras
lacks, eg that quasi-isomorphisms are invertible up to homotopy.

Theorem 3.1 [14, Theorem 11.4.9] Let P be a Koszul operad over a field of charac-
teristic zero and let A be a dg P –algebra. Then A is formal as a P –algebra if and
only if there exists a P1–algebra quasi-isomorphism A!H.A/.

In this paper we will be interested in algebras over the operads Ass, Com and L ie,
which are all Koszul. From now on, P is either Ass, Com or L ie, which means
that a dg P –algebras is either a dga, cdga or dgl, and that a P1–algebra is either an
A1–, C1– or L1–algebra.

We denote the Koszul dual operad of P by PŠ (recall that AssŠ DAss, ComŠ DL ie
and L ieŠ D Com). We have that a P1–algebra structure on a vector space A is
a collection .A; fbng/, where bnW PŠ.n/˝Sn A

˝n ! A for n � 1 are linear maps
of degree n � 2 that satisfy certain compatibility conditions (see [14]). A dg P –
algebra .A; b1; b2/ may be regarded as a P1–algebra by identifying .A; b1; b2/ with
.A; b1; b2; 0; 0; : : : /. A morphism of P1–algebras �W .A; fbng/! .A0; fb0ng/ is a
collection � D .�n/, where the �n are maps PŠ.n/˝A˝n!A0 of degree n�1 that
satisfy certain conditions.

Given an operad P there is a notion of the operadic cochain complex C �P.A/ of a
P –algebra A, where C nP.A/D Hom.PŠ.n/˝Sn A

˝n; A/ (see [14, Chapter 12] for
details). We have that C �Ass.A/ is the Hochschild cochain complex of A, C �Com.C / is
the Harrison cochain complex of C , and C �L ie.L/ is the Chevalley–Eilenberg cochain
complex of L. Since we will consider P –algebras with nontrivial homological grading,
the operadic cohomology will be endowed with a nontrivial homological grading, and
C
n;p
P .A/ will denote the part of Hom.PŠ.n/˝Sn A

˝n; A/ that is of homological
degree p 2 Z.

The main goal of this section is to present an obstruction theory for formality in DGAk ,
CDGAk and DGLk over any field k of characteristic zero. This obstruction theory is
presumably well-known to experts, but we will recall it and formulate it in a way that is
suitable for the context of this paper. In order to do that we need to recall some results

Algebraic & Geometric Topology, Volume 17 (2017)



2530 Bashar Saleh

by Kadeishvili [10] on minimal A1–algebras and the Hochschild cochain complex,
and minimal C1–algebras and the Harrison cochain complex. The ideas of Kadeishvili
apply also to minimal L1–algebras and the Chevalley–Eilenberg cochain complex
(we leave the details to the reader).

Minimal P1–algebras

We will now present some results by Kadeishvili [10].

Definition 3.2 Let P D Ass, Com or L ie. A P1–algebra .H; fbig/ is called
minimal if b1 D 0.

Given a minimal P1–algebra .H; 0; b2; b3; : : : /, we have that H D .H; 0; b2/ is a
P –algebra, and therefore it makes sense to consider the operadic cochain complex
C �P.H/ of H .

Proposition 3.3 [10] Suppose P D Ass, Com or L ie. Then the following holds:

(a) Let .H; fbig/ and .H; fb0ig/ be two minimal P1–algebras with b2 D b02 and
let � D .id; 0; : : : ; 0; �k; �kC1; : : : /W .H; fbig/! .H; fb0ig/ be a P1–algebra
isomorphism. The formal sums

Nb D b3C b4C � � � ; Nb0 D b03C b
0
4C � � � ;

x� D �kC�kC1C � � �

in C �P.H/, where HD .H; 0; b2/, satisfy the equality

Nb� Nb0 D @P.x�/C .elements in C�kC2.H//;

where @P is the differential of C �P.H/.

(b) Let .H; fbig/ be a minimal P1–algebra, and let f�n 2 C
n;n�2
P .H/gn�2 be

any collection of maps. Then there exists a minimal P1–algebra .H; fb0ig/
with b02 D b2 such that � D .id; �2; �3; : : : / is a P1–algebra isomorphism
.H; fbig/! .H; fb0ig/.

Obstruction to formality

We will, in the spirit of Halperin and Stasheff [9], present an obstruction theory for
P –algebra formality that is presumably well-known to experts. However, the author
could not find in the literature an exposition that was optimized for the context of
this paper. Obstructions to formality in CDGAk are treated in [9] and obstructions to
formality in DGLk are treated in [15].

We start by recalling an easy consequence of the homotopy transfer theorem for P1–
algebras, where P is a Koszul operad.
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Proposition 3.4 Let P D Ass, Com or L ie and let .A; Nb1; Nb2/ be a dg P –algebra.
Then there exists a P1–algebra structure .H.A/; 0; b2; b3; : : : / on the underlying
vector space of the cohomology H.A/ such that

(i) b2W H.A/
˝2!H.A/ is the induced P –algebra multiplication on the cohomol-

ogy H.A/, and
(ii) .A; Nb1; Nb2/ is P1–quasi-isomorphic to .H.A/; 0; b2; b3; : : : /.

Proof Since Ass, Com and L ie are all Koszul, the theorem follows easily from the
homotopy transfer theorem for P1–algebras (see [14, Section 10.3] or [4]).

Remark 3.5 .A; Nb1; Nb2/ is formal if and only if there exists a P1–algebra quasi-
isomorphism .H.A/; 0; b2; b3; : : : /! .H.A/; 0; b2/ (recall that quasi-isomorphisms
are invertible up to homotopy in the category of P1–algebras). Thus, an obstruction
theory for quasi-isomorphisms .H; 0; b2; b3; : : : /! .H; 0; b2/ is an obstruction theory
for formality.

Now we are ready to formulate the main theorem of this section.

Theorem 3.6 Assume P D Ass, Com or L ie and that HD .H; 0; b2/ is a dg P –
algebra with trivial differential. Given a P1–algebra of the form .H; 0; b2; b3; : : : /,
there is an associated sequence of cohomology classes Œb3�; Œb04�; Œb

00
5 �; : : : , where

Œb
.k�3/

k
� 2 H

k;k�1
P .H/. This sequence is either an infinite sequence of vanishing

cohomology classes, or finite and terminating in a nonzero cohomology class Œb.k�3/
k

�.
There exists a P1–algebra quasi-isomorphism .H; 0; b2; b3; : : : /! .H; 0; b2/ if and
only if Œb3�; Œb04�; Œb

00
5 �; : : : is an infinite sequence of vanishing cohomology classes.

This theorem will follow easily from the following proposition:

Proposition 3.7 Assume P D Ass, Com or L ie. Let H D .H; 0;m2/ be a given
minimal dg P –algebra.

(a) Let H˛ D .H; 0;m2; 0; : : : ; 0;mk; mkC1; : : : / with k � 3 be a P1–algebra
that is quasi-isomorphic to HD .H; 0;m2/. Then mk is a boundary in C �P.H/,
ie Œmk�D 0 in H�P.H/.

(b) Given a P1–algebra H˛ D .H; 0;m2; 0; : : : ; 0;mk; mkC1; : : : /, if Œmk� D 0
in H�P.H/, ie mk D @P.�k�1/ for some �k�1 2 C k�1P .H/, then H˛ is quasi-
isomorphic to some P1–algebra Hˇ of the form

Hˇ D .H; 0;m2; 0; : : : ; 0;m
0
kC1; m

0
kC2; : : : /

Remark 3.8 If all obstructions from Theorem 3.6 vanish, we will get a sequence of
quasi-isomorphisms

.H;0;m2;m3; : : : /! .H;0;m2; 0;m
0
4;m

0
5; : : : /! .H;0;m2; 0; 0;m

00
5;m

00
6; : : : /!� � � :
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One can easily see that the colimit of this diagram is .H; 0;m2; 0; : : : /. Since quasi-
isomorphisms between minimal P1–algebras are isomorphisms, it follows that
.H;0;m2;m3; : : : /! .H;0;m2;0; : : : / is an isomorphism, hence a quasi-isomorphism.

Proof (a) By Lemma A.5, there exists a morphism

� D .id; 0; : : : ; 0; �k�1; �k; : : : /W H˛!H:
It follows from Proposition 3.3(a) that

mkCmkC1C � � � D .@P.�k�1/C @P.�k/C � � � /C .elements in C�kC1P .H//:

Collecting the elements of C kP.H/ from both sides of the equality gives that mk D
@P.�k�1/.

(b) By Proposition 3.3(b) there exists a P1–algebra Hˇ D .H; 0;m2; m03; m
0
4; : : : /

such that
.id; 0; : : : ; 0; �k�1; 0; : : : /W H˛!Hˇ

is a P1–algebra isomorphism. By Proposition 3.3(a) we have that

.mkCmkC1C � � � /� .m
0
3Cm

0
4C � � � /D @P.�k�1/C .elements in C�kC1P .H//:

We see from the equality that m03; : : : ; m
0
k�1

vanish. We also see that mk �m0k D
@P.�k�1/, giving that m0

k
D 0. This completes the proof.

4 Proof of Theorem 1.1

We used the language of operadic cohomology in the obstruction theory for formality
in the previous section. We will compare different cohomology theories corresponding
to different operads in order to compare the concept of formality in different categories.
Recall that H�Ass and H�L ie correspond to the Hochschild and the Chevalley–Eilenberg
cohomologies, respectively. The Hochschild cochain complex of an associative algebra
A with coefficients in A will be denoted by C �Hoch.A/ and its cohomology will be
denoted by HH�.A/. The Chevalley–Eilenberg cochain complex of a Lie algebra L
with coefficients in L will be denoted by C �CE.L/ and its cohomology will be denoted
by H�CE.L/. We will also work with the Chevalley–Eilenberg cochain complex of a
Lie algebra with coefficients in a left L–module M different from L, which will be
denoted by C �CE.L;M/; its cohomology will be denoted by H�CE.L;M/.

Hochschild and Chevalley–Eilenberg cohomology

Recall that the universal enveloping algebra UL of a dg Lie algebra L is explicitly
given by

ULD T �a .L/=
�
ab� .�1/jajjbjba� Œa; b� j a; b 2 L

�
:
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A Lie algebra L is of course a left module over itself via g:hD Œg; h�.

Let ULad denote the left L–module structure on UL given by

g:mD g˝m� .�1/jgjjmjm˝g

for g 2 L and m 2 UL (where m is of some homogenous degree jmj). This makes
the inclusion L ,! ULad a map of left L–modules.

Lemma 4.1 [13, Lemma 3.3.3] There exists a cochain map

AltW C �Hoch.UL/! C �CE.L; UL
ad/

from the Hochschild cochain complex of UL to the Chevalley–Eilenberg cochain
complex of L with coefficients in ULad . If f 2 C nHoch.UL/ D Homk.UL

˝n; UL/,
then Alt.f / 2 C nCE.L; UL

ad/D Homk.L
^n; ULad/ is given by

Alt.f /.l1 ^ � � � ^ ln/D
X
�2Sn

.�; l1; : : : ; ln/f .l��1.1/˝ � � �˝ l��1.n//;

where .� I l1; : : : ; ln/ is the product of the sign of � and the Koszul sign obtained by
applying � on l1 � � � lj .

By the map above we have a tool for comparison of cohomology classes in HH�.UL/
and H�CE.L; UL

ad/. However, the obstruction theory for formality in DGLk was
expressed in terms of cohomology classes in H�CE.L/ (ie H�CE.L;L/). In the next
proposition we show that the inclusion L ,! ULad of left L–modules induces an
injection H�CE.L;L/!H�CE.L; UL

ad/ in cohomology.

Proposition 4.2 The inclusion of L–modules L ,! ULad induces an injection

H�CE.L;L/!H�CE.L; UL
ad/

in cohomology.

Proof We start by recalling the Poisson algebra structure on ƒaL (see [13, Section
3.3.4]). The Poisson bracket f�;�g on ƒaL is determined by the following two
properties: (i) fg; hgD Œg; h� for g; h2L, and (ii) f�;�g is a derivation in each variable.
Now we may give ƒL a left L–module structure, given by g:˛ D fg; ˛g. With this
L–module structure, the Poincaré–Birkhoff–Witt isomorphism �W ƒL! ULad is an
L–module morphism [13, Lemma 3.3.5]. In particular, ƒL and ULad are isomorphic
as L–modules. Since L is a direct summand of the L–module ƒL, it follows by the
L–module isomorphism above that L is also a direct summand of ULad . Hence, there
is a projection ULad � L of L–modules, and therefore idL may be decomposed as
L ,! ULad � L. This in turn gives a decomposition
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idH�
CE.L;L/

W H�CE.L;L/!H�CE.L; UL
ad/!H�CE.L;L/:

Thus, H�CE.L;L/!H�CE.L; UL
ad/ must be injective.

The proof

In this section it will be necessary to be able to distinguish between a dg Lie algebra
.L; Nl1; Nl2/ and the underlying vector space L. Therefore we will denote the Lie algebra
structure by L and the underlying vector space by L. We will denote the Lie algebra
structure on the cohomology of L by H.L/ while its underlying vector space will be
denoted by H.L/. We make the same distinction between UL and UL.

Lemma 4.3 [6, Theorem 21.7] Suppose char k D 0 and L 2 DGLk . Then there
exists a natural isomorphism UH.L/ŠH.UL/ of algebras.

It follows directly from the lemma that U W DGLk!DGAk preserves formality. Thus,
what is left to show in order to prove Theorem 1.1 is that if UL is formal in DGAk ,
then L is formal in DGLk . In the language of A1– and L1–algebras, we need to
prove the following:

Theorem 4.4 Let k be a field of characteristic zero and let L 2 DGLk . If there
exists an A1–quasi-isomorphism UL ! H.UL/ then there exists an L1–quasi-
isomorphism L!H.L/.

Proof Let L be on the form L D .L; Nl1; Nl2/ and let UL D .UL; xm1; xm2/ be its
universal enveloping algebra.

By the homotopy transfer theorem for L1–algebras (Proposition 3.4) there exists an
L1–algebra .H�.L/; 0; l2; l3; : : : / and an L1–quasi-isomorphism

�W L! .H.L/; 0; l2; l3; : : : /:

Applying U Bar to � gives an A1–quasi-isomorphism

(4-1) U Bar.�/W U Bar.L/! U Bar.H.L/; 0; l2; l3; : : : /

(recall from Theorem 2.1(b) that U Bar preserves quasi-isomorphisms). By Theorem
2.1(e), U Bar.L/ is the ordinary universal enveloping algebra UL of L. Let us analyze
the A1–structure of U Bar.H�.L/; 0; l2; l3; : : : /.

Claim U Bar.H.L/; 0; l2; l3; : : : / is an A1–algebra .H.UL/; 0;m2; m3; : : : / whose
2–truncation, .H.UL/; 0;m2/, is isomorphic to the cohomology algebra H.UL/ of
the universal enveloping algebra UL.
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Proof Since U BarjDGLk D U , the following holds:

U Bar.H.L/; 0; l2/D UH.L/

DH.UL/ .by Lemma 4.3/

DH.UL; xm1; xm2/

D .H.UL/; 0;m2/:

Now it follows by Theorem 2.1(c) that

U Bar.H.L/; 0; l2; l3; : : : /D .H.UL/; 0;m2; m3; : : : /:

Thus the quasi-isomorphism in (4-1) is a map of the form

U Bar.�/W .UL; xm1; xm2/! .H�.UL/; 0;m2; m3; : : : /:

Since UL is formal, it follows that .H.UL/; 0;m2; m3; : : : / is A1–quasi-isomorphic
to H.UL/ D .H.UL/; 0;m2/. It follows by Proposition 3.7(a) that Œm3� D 0 in
HH�.UH.L//.

Let Alt�W HH�.UH.L//!H�CE.H.L/; .UH.L//
ad/ be the cohomology-induced map

of the cochain map Alt introduced in Lemma 4.1, and let

j �W H�CE.H.L/;H.L//!H�CE.H.L/; .UH.L//
ad/

be the cochain map induced by the inclusion H.L/ ,! .UH.L//ad . We have by
Theorem 2.1(d) that Alt�Œm3� D j �Œl3�. Since Œm3� D 0, it follows that j �Œl3� D 0.
By Proposition 4.2, j � is injective, and hence Œl3�D 0 in H�CE.H.L/;H.L//.

Since Œl3�D 0, it follows by Proposition 3.7(b), that there exists a quasi-isomorphism

˛W .H.L/; 0; l2; l3; : : : /! .H.L/; 0; l2; 0; l
0
4; l
0
5; : : : /

Applying Theorem 2.1(c) to

U Bar.H.L/; 0; l2; 0; l
0
4; l
0
5; : : : / and U Bar.H.L/; 0; l2; 0; : : : /;

we get that

U Bar.H.L/; 0; l2; 0; l
0
4; l
0
5; : : : /D .H

�.UL/; 0;m2; 0;m
0
4; m

0
5; : : : /:

Note that .H.UL/;0;m2;0;m04;m
0
5; : : : / is A1–quasi-isomorphic to .H.UL/; 0;m2/,

since U Bar.˛/ is a quasi-isomorphism (by Theorem 2.1(b)) connecting

.H.UL/; 0;m2; m3; : : : / and .H.UL/; 0;m2; 0;m
0
4; m

0
5; : : : /:

Again, by Proposition 3.7(a) it follows that Œm04� D 0 in HH�.UH.L//. The same
reasoning as before will give us that Œl 04�D 0 in C �CE.H.L//.
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Continuing this process will yield a sequence

Œl3�; Œl
0
4�; : : : ; Œl

.n�3/
n �; : : :

of vanishing Chevalley–Eilenberg cohomology classes. By Theorem 3.6, it follows that
.H.L/; 0; l2; l3; : : : / is L1–quasi-isomorphic to .H.L/; 0; l2/, which is equivalent
to the DGLk –formality of LD .L; l1; l2/.

5 Proof of Theorem 1.3

We will compare the cohomology theories H�Ass and H�Com , which correspond to
the Hochschild and the Harrison cohomologies, respectively, in order to compare the
concept of formality in DGAk and CDGAk . We will denote the Harrison cochain
complex and the Harrison cohomology of a commutative dg algebra A with coefficients
in A by C �Harr.A/ and Harr�.A/, respectively.

Hochschild and Harrison cohomology

We will start by recalling the notion of shuffle products. A permutation � 2 SpCq
is called a .p; q/–shuffle if �.1/ < � � � < �.p/ and �.pC 1/ < � � � < �.pC q/. Let
�p;q 2 kŒSpCq� be given by

�p;q D
X

.p;q/–shuffles

sgn.�/�

There is an action of kŒSn� on A˝n given by

�:.a1 � � � an/D �.� I a1; : : : ; an/a��1.1/ � � � a��1.n/

for � 2 Sn , where �.� I a1; : : : ; an/ is the Koszul sign obtained when applying �

to a1 � � � an . The shuffle product x�p;qW A˝p ˝A˝q ! A˝.pCq/ is given by letting
�p;q act on A˝p˝A˝q Š A˝.pCq/ .

We will now see how this is related to Harrison cohomology. We have that

C nHarr.A/ŠC
n
Com.A/ŠHomk.ComŠ.n/˝Sn A

˝n; A/ŠHomk.L ie.n/˝Sn A
˝n; A/:

Over a field of characteristic zero, one can show that Homk.L ie.n/˝Sn A
˝n; A/ is

isomorphic to the space of k–morphisms A˝n!A that vanish on all shuffle products
x�k;n�k W A

˝k ˝A˝.n�k/! A˝n (see [14, Sections 1.3.3 and 13.1.7]) In particular
that means that there exists an inclusion

�W C �Harr.A/ ,! C �Hoch.A/Š Homk.A
˝n; A/:

This inclusion induces a map ��W Harr�.A/! HH�.A/ in the cohomology. Over a
field k of characteristic zero, Barr [3] showed that �� is injective.
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Proposition 5.1 [3] Let k be a field of characteristic zero, and let A be a commuta-
tive dg algebra over k. The map ��W Harr�.A/! HH�.A/ induced by the inclusion
�W C �Harr.A/! C �Hoch.A/ is injective.

We will briefly explain the techniques used in the proof of the proposition above. First,
set �n D

Pn�1
iD1 �i;n�i . Next, Barr constructed a family of idempotents feigi�2 with

en 2 kŒSn� that satisfies the following conditions:

(i) Idempotent e2n D en .

(ii) en is a polynomial in �n (without any constant term).

(iii) en�i;n�i D �i;n�i for 1� i � n� 1.

Since en 2 kŒSn�, it defines an action on C nHoch.A/ D Hom.A˝n; A/ (by permuting
the inputs). This allows us to formulate a fourth condition that feig satisfies

(iv) @Hochen D enC1@Hoch , where @Hoch is the Hochschild coboundary.

By (ii)–(iii), there is an equality of ideals .en/ D .�1;n�1; �2;n�2; : : : ; �n�1;1/. In
particular, a map � 2 C nHoch.A/ D Hom.A˝n; A/ vanishes under the action of en if
and only if it vanishes on all �i;n�i (which is equivalent to � 2 C �Harr.A/).

Recall that an endomorphism �W V ! V gives a decomposition V D ker.�/˚ im.�/.
If � is an idempotent we have that �.a; b/ D .0; b/. Applying this to en (which
defines an endomorphism on C nHoch.A/), we get that C nHoch.A/ D ker.en/˚ im.en/.
Since .en/D .�1;n�1; �2;n�2; : : : ; �n�1;1/, it follows that ker.en/D C nHarr.A/. Set
W n.A/ WD im.en/ and C nHoch.A/ is then decomposed as

(5-1) C nHoch.A/Š C
n
Harr.A/˚W

n.A/:

In order to show that ��W Harr�.A/! HH�.A/ is injective, we have to show that if
x 2 C nHarr.A/ � C

n
Hoch.A/ is a coboundary in C �Hoch.A/ then it is also a coboundary

in C �Harr.A/. By (5-1) we have that an element of the Harrison subcomplex may
be represented by an element of the form .x; 0/ 2 C nHarr.A/˚W

n.A/ Š C nHoch.A/.
Assume .x; 0/ is a coboundary in C nHoch.A/, meaning that there is some element
.y1; y2/ 2 C

n�1
Harr .A/˚W.A/ Š C n�1Hoch.A/ such that @Hoch.y1; y2/ D .x; 0/. From

property (iv) we get the following commutative diagram:

.y1; y2/@Hoch

en�1
//

��

.0; y2/

@Hoch
��

.x; 0/en
// .0; 0/

Now we see that @Hoch.y1; 0/D @Hoch..y1; y2/� .0; y2//D .x; 0/, which proves that
.x; 0/ is also a boundary in C �Harr.A/. This proves that �� is injective.
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The idempotents feng cannot be constructed over a field of characteristic p > 0 and,
over such a field, �� is not injective in general (see the example in Section 4 in [3]).

We would like to remark that the overview above is related to the subject of the
�–decomposition of Hochschild homology (see [13, Section 4.5]).

The proof

As mentioned in the introduction, it is obvious that CDGAk –formality implies DGAk –
formality. Hence what is left to show in order to prove Theorem 1.3 is that if a cdga is
formal as a dga, then it is also formal as a cdga.

Proof of Theorem 1.3 Let .C; xm1; xm2/ be a cdga that is formal in DGAk . Let
H D .H.C /; 0;m2/ be the induced commutative graded algebra structure on the
cohomology of .C; xm1; xm2/. The homotopy transfer theorem for C1–algebras (see
Proposition 3.4) gives that there exists a C1–algebra .H.C /; 0;m2; m3; : : : / equipped
with a C1–quasi-isomorphism

.C; xm1; xm2/! .H.C /; 0;m2; m3; : : : /:

Since C is formal in DGAk , there exists an A1–quasi-isomorphism

.H.C /; 0;m2; m3; : : : /! .H.C /; 0;m2/:

It follows by Proposition 3.7(a) that Œm3�Hoch D 0 in HH�.H/. Since the cohomology
map

��W Harr�.A/! HH�.A/

induced by the inclusion �W C �Harr.H.C // ,!C �Hoch.H.C // is injective (Proposition 5.1),
it follows that Œm3�Harr D 0 in Harr�.H/. Now, by Proposition 3.7(b) it follows that
there exists a C1–quasi-isomorphism

.H.C /; 0;m2; m3; : : : /! .H.C /; 0;m2; 0;m
0
4; m

0
5; : : : /:

Applying Proposition 3.7(a) again gives that Œm04�Hoch D 0 in HH�.H/, which in turn
gives together with the injectivity of �� that Œm04�Harr D 0 in Harr�.H/. Continuing
this process will yield a sequence

Œm3�Harr; Œm
0
4�Harr; : : : ; Œm

.n�3/
n �Harr; : : :

of vanishing Harrison cohomology classes in Harr�.H/. By Theorem 3.6, it follows that
.H.C /; 0;m2; m3; : : : / is C1–quasi-isomorphic to .H.C /; 0;m2/, which is equiva-
lent to the CDGAk –formality of .C; xm1; xm2/.
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Appendix: Some technicalities concerning A1–, C1–
and L1–algebras

Given a Koszul operad P there are many equivalent ways of viewing a P1–algebra
structure on a vector space A.

Theorem A.1 [14, Theorem 10.1.13] Let P be a Koszul operad. Then a P1–
algebra structure on a vector space A is the same thing as coderivation on the cofree
PŠ–coalgebra on sA, denoted by V �

PŠ.sA/, and a morphism of P1–algebras is the
same thing as a morphism of cofree PŠ–coalgebras.

We have that V �
PŠ.sA/ D

L
n�0 V n

PŠ.sA/, where V n
PŠ.sA/ D PŠ_.n/˝Sn .sA/

˝n

(and PŠ_ denotes the cooperad obtained by dualizing PŠ ). We say that an element of
V n

PŠ.sA/ is of word-length n.

We will briefly recall the correspondence between P1–algebras and quasifree dg
PŠ–coalgebras. A PŠ–coalgebra differential d on V �

PŠ.sA/ may be decomposed as

d D d0C d1C � � � ;

where di is the part of d that decreases the word-length by i . The dg coalgebra
.V �

PŠ.sA/; d D d0C d1C � � � / corresponds to a P1–algebra .A; b1; b2; : : : /, where
di and biC1 encode each other (ie di may be constructed from biC1 and vice versa).

Analogously, a morphism of dg PŠ–coalgebras ‰W .V �
PŠ.sA/; d/! .V �

PŠ.sA
0/; d 0/

may be decomposed as ‰ D‰0C‰1C� � � , where ‰i is the part of ‰ that decreases
the word-length by i . We have that ‰ corresponds to a P1–quasi-isomorphism
� D .�1; �2; : : : /W A! A0 , where ‰i and �iC1 encode each other. With this corre-
spondence we have tools to prove some technical results that we need in this paper.
The author was inspired by the techniques used in [7, Section 2.72].

Lemma A.2 Assume .A; 0; b2; b3; : : : / and .A; 0; b2/ are quasi-isomorphic as P1–
algebras. Then there exists a P1–algebra quasi-isomorphism

�0W .A; 0; b2; b3; : : : /! .A; 0; b2/;

where �01 D idA .

Proof Let � D .�1; �2; : : : /W .A; 0; b2; b3; : : : /! .A; 0; b2/ be a quasi-isomorphism.
Since � is a quasi-isomorphism of minimal P1–algebras, it follows that � is an
isomorphism.

We have that � corresponds to a map

‰ D‰0C‰1C � � � W .V
�

PŠ.sA/; d1C d2C � � � /! .V �
PŠ.sA/; d1/;
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where ‰i increases the word-length by i and corresponds to �iC1 . Moreover, ‰0 is a
vector space isomorphism (since ‰ is a dg PŠ–coalgebra isomorphism).

We show that ‰0 commutes with the differential d1 . Since ‰ is a chain map, we have
that

.‰0C‰1C � � � / ı .d1C d2C � � � /D d1 ı .‰0C‰1C � � � /:

Collecting the terms that decrease the word-length by 1 from both sides of the equality
gives that ‰0d1 D d1‰0 .

Similar techniques give also that ‰0 commutes with the comultiplication � on
V �

PŠ.sA/. Hence, ‰0W .V �PŠ.sA/; d1/! .V �
PŠ.sA/; d1/ is a dg PŠ–coalgebra automor-

phism, which has an inverse ‰�10 . Now the composition ‰0D .‰�10 /ı.‰0C‰1C� � � /

will give the desired result.

Lemma A.3 Assume that � is a PŠ–coalgebra coderivation on V �
PŠ.V / of cohomo-

logical degree 0 that decreases the word-length by some number i � 1. Then the map

e� D idC � C �2

2Š
C
�3

3Š
C � � �

is a well-defined map of PŠ–coalgebras.

Proof The map is well-defined since, for any element x 2 V �
PŠ.V / of word-length k ,

we have that �m.x/D 0 for all m�
˙
k
i

�
, so e� .x/ will be a finite sum

e� .x/D xC �.x/C � � �C
�m�1.x/

.m� 1/Š
:

Now we prove that e� is a map of PŠ–coalgebras. One can easily prove by induction
that

��n D

� nX
pD0

� n
p

�
�n�p˝ �p

�
ı�:

Thus

� ı e� D

� 1X
nD0

1

nŠ

nX
pD0

�n
p

�
�n�p˝ �p

�
ı�

D

� 1X
nD0

nX
pD0

�n�p

.n�p/Š
˝
�p

pŠ

�
ı�

D .e� ˝ e� / ı�:

Remark A.4 The map e� is an automorphism with inverse e�� .

Lemma A.5 Assume .A; 0;m2; 0; : : : ; 0;mn; mnC1; : : : / and .A; 0;m2/ are quasi-
isomorphic as P1–algebras. Then there exists a map
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�0W .A; 0;m2; 0; : : : ; 0;mn; mnC1; : : : /! .A; 0;m2/

such that �01 D idA and �0i D 0 for 2� i � n� 2.

Proof We prove the lemma by induction on n. For n D 3 the assertion is true by
Lemma A.2. Assume the assertion is true for n� 1 with n � 4. Then we have that
there exists a quasi-isomorphism

�D .id; 0; : : : ; 0; �n�2; �n�1; : : : /W .A; 0;m2; 0; : : : ; 0;mn; mnC1; : : : /! .A; 0;m2/;

which corresponds to a PŠ–coalgebra map

‰ D idC‰n�3C‰n�2C � � � W .V �PŠ.sA/; d1C dn�1C dnC � � � /! .V �
PŠ.sA/; d1/:

Considering the equality .‰˝‰/ı�D�ı‰ and collecting the terms that decrease the
word-length by n�3 gives that .id˝‰n�3C‰n�3˝ id/ı�D�ı‰n�3 . That means
that ˙‰n�3 is a coderivation of V �

PŠ.sA/ and therefore e˙‰n�3 W V �
PŠ.sA/!V �

PŠ.sA/

is a PŠ–coalgebra automorphism.

Considering the equality ‰ ı .d1Cdn�1CdnC� � � /D d1 ı‰ and collecting the terms
that decrease the word-length by n�2 gives that ‰n�3ıd1Dd1ı‰n�3 , ie that ˙‰n�3
commutes with the differential d1 . Hence, e˙‰n�3 commutes with d1 and therefore
e˙‰n�3 W .V �

PŠ.sA/; d1/! .V �
PŠ.sA/; d1/ is a dg PŠ–coalgebra automorphism.

We consider the composition

‰0 D e�‰n�3 ı‰W .V �
PŠ.sA/; d1C dn�1C dnC � � � /! .V �

PŠ.sA/; d1/:

We have that

‰0 D e�‰n�3 ı .idC‰n�3C‰n�2C � � � /

D

�
id�‰n�3C

‰2n�3
2Š
� � � �

�
ı .idC‰n�3C‰n�2C � � � /

D idC (terms that increase the word-length by � n� 2):

Hence, ‰0 is of the form ‰0 D idC‰0n�2 C‰
0
n�1 C � � � , where ‰0i decreases the

word-length by i and will therefore correspond to a P1–algebra quasi-isomorphism
�0W .A; 0;m2; 0; : : : ; 0;mn; mnC1; : : : /! .A; 0;m2/ that satisfies the property given
in the lemma.
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topology: old and new” (M Golasiński, Y Rudyak, P Salvatore, N Saveliev, N Wahl,
editors), Banach Center Publ. 85, Polish Acad. Sci. Inst. Math., Warsaw (2009) 225–240
MR

[11] B Keller, Introduction to A–infinity algebras and modules, Homology Homotopy Appl.
3 (2001) 1–35 MR

[12] M Kontsevich, Deformation quantization of Poisson manifolds, Lett. Math. Phys. 66
(2003) 157–216 MR

[13] J-L Loday, Cyclic homology, 2nd edition, Grundl. Math. Wissen. 301, Springer (1998)
MR

[14] J-L Loday, B Vallette, Algebraic operads, Grundl. Math. Wissen. 346, Springer (2012)
MR

[15] M Manetti, On some formality criteria for DG–Lie algebras, J. Algebra 438 (2015)
90–118 MR

[16] M Markl, S Shnider, J Stasheff, Operads in algebra, topology and physics, Mathe-
matical Surveys and Monographs 96, Amer. Math. Soc., Providence, RI (2002) MR

[17] J W Milnor, J C Moore, On the structure of Hopf algebras, Ann. of Math. 81 (1965)
211–264 MR

[18] D Quillen, Rational homotopy theory, Ann. of Math. 90 (1969) 205–295 MR

Department of Mathematics, Stockholm University
SE-106 91 Stockholm, Sweden

bashar@math.su.se

Received: 10 October 2016 Revised: 1 February 2017

Geometry & Topology Publications, an imprint of mathematical sciences publishers msp

http://dx.doi.org/10.4310/MRL.2008.v15.n6.a1
http://msp.org/idx/mr/2470385
http://dx.doi.org/10.1016/0021-8693(68)90062-8
http://msp.org/idx/mr/0220799
http://dx.doi.org/10.2140/agt.2014.14.2511
http://msp.org/idx/mr/3276839
http://dx.doi.org/10.1007/BF01389853
http://dx.doi.org/10.1007/BF01389853
http://msp.org/idx/mr/0382702
http://dx.doi.org/10.1007/978-1-4613-0105-9
http://msp.org/idx/mr/1802847
http://msp.org/idx/mr/2403898
http://dx.doi.org/10.1090/S0273-0979-1988-15631-5
http://dx.doi.org/10.1090/S0273-0979-1988-15631-5
http://msp.org/idx/mr/929091
http://dx.doi.org/10.1016/0001-8708(79)90043-4
http://msp.org/idx/mr/539532
http://dx.doi.org/10.4064/bc85-0-16
http://msp.org/idx/mr/2503530
http://dx.doi.org/10.4310/HHA.2001.v3.n1.a1
http://msp.org/idx/mr/1854636
http://dx.doi.org/10.1023/B:MATH.0000027508.00421.bf
http://msp.org/idx/mr/2062626
http://dx.doi.org/10.1007/978-3-662-11389-9
http://msp.org/idx/mr/1600246
http://dx.doi.org/10.1007/978-3-642-30362-3
http://msp.org/idx/mr/2954392
http://dx.doi.org/10.1016/j.jalgebra.2015.04.029
http://msp.org/idx/mr/3353026
http://msp.org/idx/mr/1898414
http://dx.doi.org/10.2307/1970615
http://msp.org/idx/mr/0174052
http://dx.doi.org/10.2307/1970725
http://msp.org/idx/mr/0258031
mailto:bashar@math.su.se
http://msp.org
http://msp.org


msp
Algebraic & Geometric Topology 17 (2017) 2543–2564

A note on cobordisms of algebraic knots

JÓZSEF BODNÁR

DANIELE CELORIA

MARCO GOLLA

We use Heegaard Floer homology to study smooth cobordisms of algebraic knots
and complex deformations of cusp singularities of curves. The main tool will be the
concordance invariant �C : we study its behaviour with respect to connected sums,
providing an explicit formula in the case of L–space knots and proving subadditivity
in general.

14B05, 14B07, 57M25; 57M27, 57R58

1 Introduction

A cobordism between two knots K and K0 in S3 is a smoothly and properly embedded
surface F �S3�Œ0; 1�, with @F DK�f0g[K0�f1g. Carving along an arc connecting
the two boundary components of F , one produces a slice surface for the connected
sum K # K0 , where K is the mirror of K . Two knots are concordant if there is a
genus-0 cobordism between them; this is an equivalence relation, and the connected
sum endows the quotient C of the set of knots with a group operation; C is therefore
called the (smooth) concordance group. A knot is smoothly slice if it is concordant to
the unknot.

Litherland [14] used Tristram–Levine signatures to show that torus knots are linearly
independent in C . In fact, Tristram–Levine signatures provide a lower bound for the
slice genus of knots. Sharp lower bounds for the slice genus of torus knots are provided
by the invariants � in Heegaard Floer homology — see Ozsváth and Szabó [21] — and
s in Khovanov homology; see Rasmussen [25].

More recently, Ozsváth, Stipsicz and Szabó [19] defined the concordance invariant ‡ ;
Livingston and Van Cott [15] used ‡ to improve on the bounds given by signatures
along some families of connected sums of torus knots.

In this note we consider algebraic knots, ie links of irreducible curve singularities
(cusps), and more generally L–space knots. Given two algebraic knots K and L, we
give lower bounds on the genus of a cobordism between them by using the concordance
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http://www.ams.org/mathscinet/search/mscdoc.html?code=14B05, 14B07, 57M25, 57M27, 57R58
http://dx.doi.org/10.2140/agt.2017.17.2543


2544 József Bodnár, Daniele Celoria and Marco Golla

invariant �C defined by Hom and Wu [12]. This is computed in terms of the semigroups
of the two corresponding singularities, �K and �L , and the corresponding enumerating
functions �K . � / and �L. � /.

Theorem 1.1 If K and L are algebraic knots with enumerating functions �K . � / and
�L. � /, respectively, then

�C.K # L/Dmax
˚
g.K/�g.L/Cmax

n�0
f�L.n/��K .n/g; 0

	
:

In Section 2.3 we define an appropriate enumerating function for L–space knots;
Theorem 3.1 below mimics the statement above in this more general setting, and
directly implies Theorem 1.1; the key of the definition and of the proofs is the reduced
Floer complex defined by Krcatovich [13].

As an application of Theorem 1.1, we give a different proof of a result of Gorsky
and Némethi [10] on the semicontinuity of the semigroup of an algebraic knot under
deformations of singularities in the cuspidal case. A similar result was obtained by
Borodzik and Livingston [7] under stronger assumptions (see Section 4 for details).

Theorem 1.2 Assume there exists a deformation of an irreducible plane curve singu-
larity with semigroup �K to an irreducible plane curve singularity with semigroup �L .
Then for each nonnegative integer n

#.�K \ Œ0; n//� #.�L\ Œ0; n//:

In fact, there is an analogue of Theorem 1.2 when the deformation has multiple (not
necessarily irreducible) singularities; see Theorem 5.2 below for a precise statement.
As an immediate corollary, we obtain that the multiplicity decreases under deformations.
More precisely, we have the following:

Corollary 1.3 Let K and L be two links of irreducible singularities as above, and
m.K/ and m.L/ denote their multiplicities. Then m.L/�m.K/.

It is worth noting that the multiplicity of an irreducible singularity can be interpreted
topologically as the braid index of the knot, ie the minimal number of strands among
all braids whose closure is the given knot.

Finally, we turn to proving some properties of the function �C . The first one reflects
analogous properties for other invariants (signatures, � , s , etc.) and gives lower bounds
for the unknotting number and related concordance invariants (see Section 5 below).

Theorem 1.4 If KC is obtained from K� by changing a negative crossing into a
positive one, then

�C.K�/� �
C.KC/� �

C.K�/C 1:

Algebraic & Geometric Topology, Volume 17 (2017)
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Theorem 1.5 The function �C is subadditive. Namely, for any two knots K;L� S3,

�C.K # L/� �C.K/C �C.L/:

As an application, we consider some concordance invariants, also studied by Owens
and Strle [18]. Recall that the concordance unknotting number uc.K/ of a knot K is
the minimum of unknotting numbers among all knots that are concordant to K ; the
slicing number us.K/ of K is the minimal number of crossing changes needed to turn
K into a slice knot; finally, the 4–ball crossing number c�.K/ is the minimal number
of double points of an immersed disc in the 4–ball whose boundary is K . It is quite
remarkable that there are knots for which these quantities disagree [18].

Proposition 1.6 The unknotting number, concordance unknotting number, slicing
number and 4–ball crossing number of K are all bounded below by �C.K/C �C.K/.

1.1 Organisation of the paper

In Section 2 we recall some facts about Heegaard Floer correction terms and reduced
knot Floer complex. In Section 3 we prove Theorem 1.1 as a corollary of Theorem 3.1,
and in Section 4 we prove Theorem 1.2. In Section 5 we study cobordisms between
arbitrary knots and prove Theorem 1.4 and Proposition 1.6; in Section 6 we prove
Theorem 1.5. Finally, in Section 7 we study some concrete examples.

Acknowledgements We would like to thank Paolo Aceto, Maciej Borodzik, Matt
Hedden, and Kouki Sato for interesting conversations, Maciej Borodzik for providing
us with some computational tools, Peter Feller for pointing out Corollary 1.3 and the
anonymous referee for useful comments. Bodnár has been supported by the ERC grant
LDTBud at MTA Alfréd Rényi Institute of Mathematics. Celoria has received funding
from the European Research Council (ERC) under the European Union’s Horizon 2020
research and innovation programme (grant agreement No 674978). Golla was partially
supported by the PRIN–MIUR research project 2010–11 Varietà reali e complesse:
geometria, topologia e analisi armonica and by the FIRB research project Topologia e
geometria di varietà in bassa dimensione.

2 Singularities and Heegaard Floer homology

2.1 Links of curve singularities

In what follows, K and L will be two algebraic knots. We will recall briefly what this
means and also what invariants can be associated with such knots. For further details,
we refer to [8; 9; 26].

Algebraic & Geometric Topology, Volume 17 (2017)
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Assume F 2CŒx;y� is an irreducible polynomial which defines an isolated irreducible
plane curve singularity. This means that F.0; 0/ D 0 and, in a sufficiently small
neighbourhood B" D fjxj

2C jyj2 � "2g for some " > 0 of the origin, @1F.x;y/D

@2F.x;y/D0 holds if and only if .x;y/D .0; 0/. The link of the singularity is the zero
set of F intersected with a sphere of sufficiently small radius: KDfF.x;y/D0g\@B" .
Since F is irreducible, K is a knot, rather than a link, in the 3–sphere @B" . A knot
is called algebraic if its isotopy type arises in the above described way. All algebraic
knots are iterated torus knots, ie they arise by iteratively cabling a torus knot.

The zero set of every isolated irreducible plane curve singularity admits a local parametri-
sation, ie there exist x.t/;y.t/2CŒŒt �� such that F.x.t/;y.t//�0 and t 7! .x.t/;y.t//

is a bijection for jt j < �� 1 to a neighbourhood of the origin in the zero set of F .
Consider the set of integers

�K D
˚

ordt G.x.t/;y.t// jG 2CŒŒx;y��; F does not divide G
	
:

It can be seen easily that �K is an additive semigroup. It depends only on the local
topological type of the singularity; therefore, it can be seen as an invariant of the isotopy
type of the knot K . We will say that �K is the semigroup of the algebraic knot K .

We denote by N D f0; 1; : : : g the set of nonnegative integers. The semigroup �K

is a cofinite set in N ; in fact, jN n �K j D ıK <1 and the greatest element not in
�K is 2ıK � 1. The number ıK is called the ı–invariant of the singularity. It is
well-known that ıK is the Seifert genus of K : ıK D g.K/.

We also write �K .n/ for the nth element of �K with respect to the standard ordering
of N , with the convention that �K .0/ D 0. The function �K . � / will be called the
enumerating function of �K .

2.2 Heegaard Floer and concordance invariants

Heegaard Floer homology is a family of invariants of 3–manifolds introduced by
Ozsváth and Szabó [22]; in this paper we are concerned with the “minus” version over
the field F D Z=2Z with two elements. It associates to a rational homology sphere Y

equipped with a spinc structure t a Q–graded F ŒU �–module HF�.Y; t/; the action of
U decreases the degree by 2.

The group HF�.Y; t/ further splits as a direct sum of F ŒU �–modules F ŒU �˚HF�red.Y; t/.
We call F ŒU � the tower of HF�.Y; t/. The degree of the element 1 2 F ŒU � is called
the correction term of .Y; t/, and it is denoted by1 d.Y; t/.

1Note that our definition of d.Y; t/ would differ by 2 from the original definition of [20]; however, it
is more convenient for our purposes to use a shifted grading in HF� .
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When Y is obtained as an integral surgery along a knot K in S3, one can recover the
correction terms of Y in terms of a family of invariants introduced by Rasmussen [24]
and then further studied by Ni and Wu [16] and Hom and Wu [12]. We call these
invariants fVi.K/gi�0 , adopting Ni and Wu’s notation instead of Rasmussen’s — who
used hi.K/ — as this seems to have become more standard.

Recall that there is an indexing of spinc structures on S3
n .K/, as defined in [23,

Section 2.4]: S3
n .K/ is the boundary of the surgery handlebody Wn.K/ obtained

by attaching a single 2–handle with framing n along K � @B4. Notice that, if we
orient K , there is a well-defined generator ŒF � of H2.Wn.K/IZ/ obtained by capping
off a Seifert surface of K with the core of the 2–handle. The spinc structure tk on
S3

n .K/ is defined as the restriction of a spinc structure s on Wn.K/ such that

(1) hc1.s/; ŒF �i � nC 2k .mod 2n/:

Theorem 2.1 [24; 16] The sequence fVi.K/gi�0 takes values in N and is eventu-
ally 0. Moreover, Vi.K/� 1� ViC1.K/� Vi.K/ for every i .

With the spinc labelling defined in (1) above, for every integer n we have

(2) d.S3
n .K/; ti/D�2 maxfVi.K/;Vn�i.K/gC

.n� 2i/2� n

4n
:

Definition 2.2 [12] The minimal index i such that Vi.K/D 0 is called �C.K/.

2.3 Reduced knot Floer homology

Krcatovich [13] introduced the reduced knot Floer complex CFK�.K/ associated to
a knot K in S3. This complex is graded by the Maslov grading and filtered by the
Alexander grading; the differential decreases the Maslov grading by 1 and respects the
Alexander filtration.

Without going into technical details, for which we refer to [13], any knot Floer complex
CFK�.K/ can be recursively simplified until the differential on the graded object
associated to the Alexander filtration becomes trivial (while the differential on the
filtered complex is, in general, nontrivial). Moreover, CFK�.K/ still retains an F ŒU �–
module structure.

The power of Krcatovich’s approach relies in the application to connected sums; if
we need to compute CFK�.K1 # K2/ Š CFK�.K1/˝F ŒU � CFK�.K2/ we can first
reduce CFK�.K1/, and then take the tensor product CFK�.K1/˝F ŒU � CFK�.K2/.
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This is particularly effective when dealing with L–space knots, ie knots that have a
positive integral surgery Y such that HF�.Y; t/ D F ŒU � for every spinc structure t

on Y . Notice that all algebraic knots are L–space knots [11, Theorem 1.8].

In this case, CFK�.K/ is isomorphic to F ŒU � as an F ŒU �–module, and it has at most
one generator in each Alexander degree. If we call x the homogeneous generator
of CFK�.K/ as an F ŒU �–module, then CFK�.K/ D F ŒU �x , and fU nxgn�0 is a
homogeneous basis of CFK�.K/.

We denote by �K .n/ the quantity g.K/�A.U n �x/, where A is the Alexander degree,
and we call �K . � / the enumerating function of K . As observed by Borodzik and
Livingston [6, Section 4], when K is an algebraic knot, the function �K . � / coincides
with the enumerating function of the semigroup associated to K as defined above.
Accordingly, for an arbitrary L–space knot K , we define the semigroup of K as the
image of �K .

Example 2.3 In general, �K . � / is not the enumerating function of a semigroup; to
this end, consider the pretzel knot K D P .�2; 3; 7/D 12n242 . K is an L–space knot
with Alexander polynomial t�5 � t�4C t�2 � t�1C 1� t C t2 � t4C t5, hence the
function �K . � / takes values 0, 3, 5, 7, 8, 10, 11, 12; : : : . Since 3 is in the image
of �K . � / but 6 is not, �K . � / is not the enumerating function of a semigroup.

2.4 An example

We are going to show an application of the reduced knot Floer complex in a concrete
case. Consider the knot K D T3;7 # T4;5 . The genera, signatures and � –function [19]
of T3;7 and T4;5 all agree: g.T3;7/ D g.T4;5/ D 6, �.T3;7/ D �.T4;5/ D 8, and
�.T3;7/D�.T4;5/D�4. It follows that �.K/D s.K/D�.K/D�.K/D 0. However,
we can show the following:

Proposition 2.4 The knot K satisfies �C.K/D �C.K/D 1.

Proof We need to compute a Floer complex of T3;7 , T4;5 and their mirrors, as well
as the reduced Floer complex of T3;7 and T4;5 . Let K1 D T3;7 and K2 D T4;5 .

For an L–space knot L, and in particular for every positive torus knot, each of the
knot Floer complexes CFK�.L/ and CFK�.L/ is determined by a staircase complex;
the staircase for L is obtained by reflecting the one for L across the diagonal of the
second and fourth quarters, and switching the direction of all arrows. For example,
when LD T2;3 the two staircases are:

CFK�.L/ CFK�.L/
� �oo

��
�

�
��
� �oo
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In the case of K1 and K2 , we have:

CFK�.K1/ CFK�.K2/

� �oo

��
� �oo

��
� �oo

��
� �oo

��
�

� �oo

��
� �oo

��
� �oo

��
�

The reduced complex CFK�.K1/, on the other hand, has a single generator in each of
the following bidegrees .�i; j / (where �i records the U –power and j records the
Alexander grading):

.0; 6/; .�1; 3/; .�2; 0/; .�3;�1/; .�4;�3/; .�5;�4/; .�6�n;�6�n/; n�0:

The reduced complex CFK�.K2/ has a generator in each of the bidegrees

.0; 6/; .�1; 2/; .�2; 1/; .�3;�2/; .�4;�3/; .�5;�4/; .�6�n;�6�n/; n�0:

In both cases, the U –action carries a generator with i –coordinate k to one with i –
coordinate k � 1. Taking the tensor product over F ŒU �, one gets twisted staircases as
follows, with a generator in bidegree .0; 0/ (marked with a ?):

CFK�.K1/˝CFK�.K2/ CFK�.K2/˝CFK�.K1/

ı

|| ��

ı

��

��

�
��

?

��

� �

�

ı

����

�
��

�

xx ��

?

		

� � � �oo

��
�

The generators marked with a ı exhibit the fact that V0.K1 # K2/ and V0.K2 # K1/

are both strictly positive (see [13, Section 4] for details).

3 Computing the invariant

In this section we are going to prove a version of Theorem 1.1 for L–space knots.
Given an integer x we denote by .x/C the quantity .x/C Dmaxf0;xg.
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Theorem 3.1 Let K and L be two L–space knots with enumerating functions
�K . � /; �L. � /W N!N . Then

�C.K # L/D
�
g.K/�g.L/Cmax

n�0
f�L.n/��K .n/g

�
C
:

Notice that, since algebraic knots are L–space knots, Theorem 1.1 is an immediate
corollary. Theorem 3.1 will in turn be a consequence of the following proposition:

Proposition 3.2 In the notation of Theorem 3.1, let f0 D a1 < � � � < ad D g.L/g

be the image of the function n 7! �L.n/� n, and define a0
k
D g.L/� adC1�k for

k D 1; : : : ; d . Then

�C.K # L/D
�
g.K/�g.L/C max

1�k�d
fak C a0k ��K .a

0
k/g
�
C
:

Proof Let ıK Dg.K/, ıLDg.L/. Consider the complex CFK�.K/˝F ŒU �CFK�.L/
that computes the knot Floer homology of K # L. Recall that the function �K . � /

describes the reduced Floer complex: CFK�.K/ has a generator xk in each bidegree
.�k; ıK ��K .k//. Moreover, U �xk D xkC1 .

As observed by Krcatovich [13, Section 4], the sequences fakg and fa0
k
g determine

a “twisted staircase” knot Floer complex CFK�.L/ for L: the generator of the tower
F ŒU � in HFK�.L/ is represented by the sum of d generators U a0

1y1; : : : ;U
a0

d yd ,
where yk sits in bidegree .0; a0

k
C ak � ıL/. In more graphical terms, ak will be the

Alexander grading of U a0
k yk , ie its j –coordinate, and �a0

k
will be its i –coordinate.

The tensor product CFK�.K/˝CFK�.L/ has a staircase in Maslov grading 0 gener-
ated by the chain zD

Pd
kD1 x0˝U a0

k yk . Notice that x0˝U a0
k yk D xa0

k
˝yk sits in

Alexander degree A.xa0
k
/CA.yk/DıK��.a

0
k
/CakCa0

k
�ıL . Therefore, the maximal

Alexander degree in the chain z is precisely M D ıK �ıLCmaxfakCa0
k
��K .ak/g,

and we claim that if M � 0, then �C.K # L/DM .

We let A�
k

be the filtration sublevel of C#DCFK�.K/˝CFK�.L/ defined by j � k ,
ie generated by all elements with Alexander filtration level at most k .

If M �k , the entire staircase is contained in the subcomplex A�k . That is, the inclusion
A�

k
! C# induces a surjection onto the tower, hence �C.K # L/� k . In particular, if

M � 0, then �C.K # L/D 0D .M /C .

If M > 0, for each k <M the complex A�
k

misses at least one of the generators of
the chain; this implies that the inclusion A�

k
!CFK�.K/ does not induce a surjection

onto the tower. It follows that Vk.K # L/ > 0. Hence, by definition of �C , we have
�C.K # L/DM D .M /C , as desired.
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Proof of Theorem 3.1 As remarked above, the values of ak and a0
k

determine
the positions of the generators in the staircase. By the symmetry of the Alexander
polynomial (and hence of the staircases), �L.a

0
k
/�a0

k
D ak for each k (compare with

[13, Section 4]).

Moreover, for any a0
k
� n< a0

kC1
, we have �L.n/�nD ak , and for every a0

d
� n we

have �L.n/�nD ad . Furthermore, as �K . � / is strictly increasing, n 7! �K .n/�n is
nondecreasing; therefore, for any a0

k
� n< a0

kC1
we have �K .a

0
j /� a0j � �K .n/� n,

so
ak C a0k ��K .a

0
k/D .�L.a

0
k/� a0k/� .�K .a

0
k/� a0k/

D max
a0

k
�n<a0

kC1

f.�L.n/� n/� .�K .n/� n/g

D max
a0

k
�n<a0

kC1

f�L.n/��K .n/g:

Remark The same argument shows that, for every m� V0.K # L/,

minf i j Vi.K # L/Dm g D
�
g.K/�g.L/Cmax

n�0
f�L.n/��K .nCm/g

�
C
;

thus allowing one to compute all correction terms of K # L from the enumerating
functions of K and L.

4 Semicontinuity of the semigroups

In this section we prove Theorem 1.2 about the deformations of plane curve singularities.
We note here that our Theorem 1.2 differs slightly from both of the results mentioned
in the introduction: it reproves [10, Proposition 4.5.1] in the special case when both
the central and the perturbed singularity are irreducible, but (in the spirit of [7]) using
only smooth topological (not analytic) methods; however, we do not restrict ourselves
to ı–constant deformations, as opposed to [7, Theorem 2.16].

In the context of deformations, inequalities which hold for certain invariants are usually
referred to as semicontinuity of that particular invariant. Our result can be viewed as
the semicontinuity of the semigroups (resembling the spectrum semicontinuity; see
also [7, Section 3.1.B]).

For a brief introduction to the topic of deformations, we follow mainly [7, Section 1.5]
and adapt the notions and definitions from there. By a deformation of a singularity
with link K we mean an analytic family fFsg of polynomials parametrised by jsj< 1

such that there exists a ball B �C2 with the following properties:

� the only singular point of F0 inside B is at the origin;
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� fFs D 0g intersects @B transversely and fFs D 0g \ @B is isotopic to K for
every jsj< 1;

� the zero set of Fs has only isolated singular points in B for every jsj< 1;
� all the singular points of Fs inside B are irreducible for every jsj< 1;
� all fibres Fs with s ¤ 0 have the same collection of local topological type of

singularities.

For simplicity, we also assume that there is only one singular point of Fs inside B

for each s . If such an analytic family of polynomials fFsg exists, we say that the
singularity of F0 at the origin has a deformation to the singularity of F1=2 .

Consider now a sufficiently small ball B2 around the singular point of F1=2 such
that fF1=2 D 0g \ @B2 is isotopic to L, the link of the perturbed singular point.
Then V D fF1=2 D 0g \B nB2 is a genus-g cobordism between K and L, where
g D g.K/�g.L/. By a slight abuse of notation, we also say that L is a deformation
of K .

Let K and L be two L–space knots, with corresponding semigroups �K and �L ,
respectively. We define the semigroup counting functions RK ;RLW N ! N as
RK .n/ D #Œ0; n/ \ �K and RL.n/ D #Œ0; n/ \ �L . For simplicity, we allow n to
run on negative numbers as well: if n < 0, then we define RK .n/DRL.n/D 0. In
this section, we will assume that g.K/D ıK � ıL D g.L/.

Proposition 4.1 Assume there is a genus-g cobordism between two L–space knots
K and L. Then for any a 2 Z we have

RK .aC ıK /�RL.aC ıLCg/:

Proof Since �C is a lower bound for the cobordism genus, by Theorem 1.1 for any
m 2N we have

ıK � ıLC�L.m/��K .m/� g;

equivalently,
�L.m/� ıL�g � �K .m/� ıK :

Notice that since �K .m/ D a implies RK .a/ D m, and the largest a for which
RK .a/ D m is a D �K .m/ (and analogously for �L ), the above inequality can be
interpreted as

RK .aC ıK /�RL.aC ıLCg/:

The proposition above should be compared with [7, Theorem 2.14]. There, Borodzik
and Livingston introduced the concept of positively self-intersecting concordance, and
their result is the counterpart of Proposition 4.1 above: their assumption is on the
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double point count of the positively self-intersecting concordance, while ours is on the
cobordism genus. The former is related to the 4–ball crossing number considered in
Proposition 1.6.

The assumption in [7] allowed Borodzik and Livingston to treat ı–constant deformations
(because irreducible singularities can be perturbed to transverse intersections). However,
equipped with Proposition 4.1, we can prove the semigroup semicontinuity even if the
deformation is not ı–constant (but assuming that there is only one singularity in the
perturbed curve fF1=2 D 0g).

Recall that, with the definition of the function R in place, Theorem 1.2 asserts that if
L is a deformation of K then RK .n/�RL.n/ for each nonnegative integer n.

Proof of Theorem 1.2 Apply Proposition 4.1 with aD n� ıK and recall that g D

ıK � ıL in this case.

Remark In [7, Section 3], the example of torus knots T6;7 and T4;9 was extensively
studied. The semigroup semicontinuity proved in Theorem 1.2 obstructs the existence
of a deformation between the corresponding singularities. Since the difference of the
ı–invariants is 3, a deformation from T6;7 to T4;9 would produce a genus-3 cobordism
between the two knots. However, the bound coming from �C is 4 (compare with [7,
Remark 3.1]).

We now turn to proving Corollary 1.3, ie that the braid index/multiplicity is nonincreas-
ing under deformations.

Proof of Corollary 1.3 The multiplicity m.L/ of the singularity whose link is L is
the minimal positive element in �L . In particular, RL.m.L//D 2, and RL.m/D 1

for 0 � m < m.L/; symmetrically, RK .m/ � 2 for every m � m.K/. Let us ap-
ply Theorem 1.2 with n D m.L/; we obtain RK .m.L// � RL.m.L// D 2, hence
m.L/�m.K/, as desired.

5 Bounds on the slice genus and concordance
unknotting number

Recall that �C.K/ � g�.K/ for every knot K ; as outlined in the introduction, this
shows that �C.K # L/ gives a lower bound on the genus of cobordisms between K

and L. Notice that �C.L # K/ gives a bound, too, and the two bounds are often
different.

We now state a preliminary lemma that we will use to prove Theorem 1.4, ie that
trading a negative crossing for a positive one does not decrease �C , nor does it increase
it by more than 1.
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Lemma 5.1 If there is a genus-g cobordism between two knots K and L then, for
each m� 0,

VmCg.K/� Vm.L/:

As a consequence, �C.K/� �C.L/Cg .

Before proving the lemma, we observe some of its consequences. Most notably, it
allows us to generalise Theorem 1.2 to the case of more than one irreducible singularity
(both in the central and deformed fibre).

Remark In the case of algebraic knots, the lemma is equivalent to Proposition 4.1.
Indeed, using the symmetry property of the semigroup, one has that RK .aC ıK /D

RK .ıK �a/Ca and RL.aC ıLCg/DRL.ıL�a�g/CaCg for every integer a.
Using these substitutions in both sides of the statement of Proposition 4.1, we obtain

RK .ıK � a/�RL.ıL� a�g/Cg:

If we now set aD�g�m, we get

RK .ıK CmCg/�RL.ıLCm/Cg;

and by [3, Equation (5.1)] we have RK .ıK CmC g/ D VmCg.K/CmC g and
RL.ıLCm/D Vm.L/Cm, thus proving the equivalence of the two statements.

Since the proof of Theorem 1.2 relies on Proposition 4.1, which is in turn equivalent
to Lemma 5.1, we can use the latter to generalise its statement. In order to do so,
we introduce the concept of the infimum convolution of two functions [6; 4]: given
R1;R2W N!N bounded below, we define the infimum convolution of R1 and R2 as

.R1 ˘R2/.n/ WD min
iCjDn

R1.i/CR2.j /:

Theorem 5.2 Let fFsgjsj<1 be a deformation of F0 , and suppose that F0 has only irre-
ducible singularities K1; : : : ;Ka , while F1=2 has irreducible singularities L1; : : : ;Lb

(and possibly other reducible singularities). Then, for each nonnegative integer n,

.RK1
˘ � � � ˘RKa

/.n/� .RL1
˘ � � � ˘RLb

/.n/:

Proof (sketch) Similarly as how we argued in Section 4, it is easy to show that a
deformation gives rise to a cobordism †0 from the link K1[ � � � [Ka in the disjoint
union of a copies of S3 to the link L1 [ � � � [Lb in the disjoint union of b copies
of S3, living in S4 with aC b open balls removed. This cobordism will be singular if
there are reducible singularities in F1=2 .
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Figure 1: The Borromean knot KB;1 . The Borromean knot KB;g is the
connected sum of g copies of KB;1 .

We resolve all singularities of †0 , replacing each of them with the Milnor fibre of the
corresponding reducible singularity and obtain a smooth cobordism, †1 ; note that the
difference g.†1/�g.†0/ is the sum of all ı–invariants of the reducible singularities
of F1=2 .

We can now carve paths along the cobordism †1 connecting all the boundary compo-
nents containing a Ki and all boundary components containing an Lj , thus obtaining
a smooth cobordism † from K DK1 # � � � # Ka to LDL1 # � � � # Lb . Note that this
does not change the genus, ie g.†/D g.†1/.

Similarly as in the irreducible case, we have g.†/D g.K/�g.L/; using [6, Theorems
5.4 and 5.6] we know that Vi.K/C i D .RK1

˘� � �˘RKa
/.g.K/C i/ and Vi.L/C i D

.RL1
˘ � � � ˘RLb

/.g.L/C i/.

The statement now follows from Lemma 5.1 and the remark following the lemma, as
in the proof of Theorem 1.2.

Proof of Lemma 5.1 Consider the 4–manifold W obtained by attaching a 4–dimen-
sional 2–handle to S3 � Œ0; 1� along L� f1g � S3 � f1g, with framing n� 2�C.L/.

The cobordism is a genus-g embedded surface F in S3 � Œ0; 1�, whose boundary
components are K � f0g and L� f1g. Capping off the latter boundary component
in W , and taking the cone over .S3 � f0g;K/, we obtain a singular genus-g surface
yF �W 0 DW [B4, whose only singularity is a cone over K .

As argued in [3, Section 4; 5, Theorem 3.1], the boundary @N of a regular neighbour-
hood N of yF in W 0 is diffeomorphic to the 3–manifold Yn obtained as n–surgery
along the connected sum of K and the Borromean knot KB;g in #2g.S2 � S1/. It
follows that Z D�.W 0 nN / can be viewed as a cobordism from S3

n .L/ to Yn .

We can view N as the surgery cobordism from #2g.S2 � S1/ to Yn , filled with a
1–handlebody; since the class of Œ yF � generates both H2.N / and H2.�W 0/, we obtain
that the restriction of any spinc structure on �W 0 to Z induces an isomorphism
between (torsion) spinc structure on its two boundary components that respects the
surgery-induced labelling. Moreover, we also obtain that bC

2
.Z/D 0.
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The 3–manifold Yn has standard HF1 [3; 5], and its bottom-most correction terms
have been computed in [3, Proposition 4.4; 5, Theorem 6.10]:

db.Yn; tm/D min
0�k�g

f2k �g� 2VmCg�2k.K/g�
n� .2m� n/2

4n
:

We observe that, choosing k D 0 in the minimum, we obtain the inequality

db.Yn; tm/� �g� 2VmCg.K/�
n� .2m� n/2

4n
:

Applying the last inequality and [2, Theorem 4.1] to Z , seen as a negative semidefinite
cobordism from S3

n .L/ to Yn , we get

d.S3
n .L/; tm/� db.Yn; tm/Cg;

from which we get

�2Vm.L/� �g� 2VmCg.K/Cg () VmCg.K/� Vm.L/:

The last part of the statement now follows from the observation that V�C.L/Cg.K/�

V�C.L/.L/D 0, hence �C.K/� �C.L/Cg , as desired.

We are now in position to prove Theorem 1.4, which asserts that, if KC and K�
differ at a single crossing (which is positive for KC and negative for K� ), then
�C.K�/� �

C.KC/� �
C.K�/C 1.

Proof of Theorem 1.4 The inequality �C.K�/� �C.KC/ readily follows from [4,
Theorem 6.1]: the latter states that for each nonnegative integer n we have Vn.K�/�

Vn.KC/. Applying the inequality with nD �C.KC/, we obtain V�C.KC/
.K�/� 0,

hence �C.K�/� �C.KC/, as desired.

The inequality �C.KC/� �C.K�/C 1 follows from Lemma 5.1 above; in fact, there
is a genus-1 cobordism from K� to KC obtained by smoothing the double point of
the regular homotopy associated with the crossing change, and the previous lemma
concludes the proof.

Remark In fact, the second inequality follows from [4, Theorem 6.1] as well: Borodzik
and Hedden prove that, in the notation of the proposition, VmC1.KC/� Vm.K�/, and
the claim about �C follows as in the proof of Lemma 5.1. However, Lemma 5.1 is
stronger than [4, Theorem 6.1], and we think it might be of independent interest.

We now turn to applications to other, more geometrically defined, concordance invari-
ants, and we prove Proposition 1.6.
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Proof of Proposition 1.6 We need at least �C.K/ negative crossing changes and at
least �C.K/ positive crossing changes to turn K into a knot K0 such that �C.K0/D

�C.K0/D 0. In particular, we need to change at least �C.K/C �C.K/ crossings to
make K slice, hence us.K/� �

C.K/C �C.K/.

As for the concordance unknotting number, one simply observes that �C.K/ and
�C.K/ are concordance invariants, hence every knot in the same concordance class of
K has unknotting number at least �C.K/C �C.K/.

Finally, [18, Proposition 2.1] asserts that every immersed concordance can be factored
into two concordances and a sequence of crossing changes. That is, given an immersed
concordance from K to the unknot with c double points, there exist knots K0 and
K1 such that K0 is slice, K1 is concordant to K , and there is a sequence of c

crossing changes from K0 to K1 ; from the proposition above, it follows that c �

�C.K0 # K1/C �
C.K0 # K1/D �

C.K/C �C.K/.

6 Subadditivity of �C

The goal of this section is to prove Theorem 1.5. We start with a preliminary proposition.
In the course of the proof, we will make use of twisted correction terms, as defined in [2].
These are a generalisation of ordinary and bottom-most correction terms to arbitrary
3–manifolds; specifically, given a torsion spinc structure t on a 3–manifold Y , there
is an associated rational number d.Y; t/, which is a rational homology cobordism
invariant of the pair .Y; t/.

When Y is a rational homology sphere, d.Y; t/D d.Y; t/. If, on the other hand, Y is
obtained as 0–surgery along a knot in S3, equipped with its unique torsion spinc

structure t, then d.Y; t/D db.Y; t/ (see [2, Section 3.3]).

Moreover, much like db , the twisted correction term d behaves well under negative
semidefinite cobordisms (see [2, Section 4]).

Proposition 6.1 For any two knots K;L� S3 and any two nonnegative integers m

and n, we have
VmCn.K # L/� Vm.K/CVn.L/:

Proof Consider the surgery diagrams in Figure 2 and Figure 3, representing a
closed 4–manifold X and a 4–dimensional cobordism W from �S3

2.mCn/
.K # L/

to �.S3
2m
.K/ # S3

2n
.L//. One should be careful with orientation reversals here; in

particular, notice that in Figure 3 we represent the cobordism W obtained by turning
W upside down.
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2m 2n

K L

0

0 [ 4–handle

Figure 2: The surgery diagram for the closed 4–manifold X

h2mi h2ni

K L

0

Figure 3: The surgery diagram for the upside-down cobordism W from
S3

2m.K/# S3
2n.L/ to S3

2.mCn/
.K # L/ . The coefficients in brackets represent

the negative boundary @�W .

As observed by Owens and Strle [17], if m; n> 0, then W �X is a negative definite
cobordism from S3

2m
.K/ # S3

2n
.L/ to S3

2.mCn/
.K # L/ with H2.W IZ/ D Z and

�.W /D 1. When mD 0 or nD 0, W has signature �.W /D 0; therefore, regardless
of positivity of m and n, W is negative semidefinite. Moreover, W is obtained from
@�W by attaching a single 2–handle, and this does not decrease the first Betti number
of the boundary. It follows that we are in the right setup to apply [2, Theorem 4.1].

The 4–manifold X is even; since 0 is a characteristic vector, it is the first Chern class
of a spinc structure s0 on X . The spinc structure s0 restricts to the spinc structure
on W with trivial first Chern class, hence c1.s0/

2 D 0.

Notice also that X nW is the disjoint union of two 4–manifolds: one is the boundary
connected sum of the surgery handlebodies for S3

2m
.K/ and S3

2n
.L/, and the other is

the surgery handlebody for S3
2.mCn/

.K #L/ with the reversed orientation. In particular,
labelling of the restriction of s0 onto the two boundary components of W is determined
by the evaluation of c1.s0/ on the generators of the second cohomology of the two
pieces [23, Section 2.4].

With the chosen convention for labelling spinc structures (1), since c1.s0/D 0, the
spinc structure s0 restricts to tm on S3

2m
.K/, to tn on S3

2n
.L/, and to tmCn on

S3
2.mCn/

.K/.
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We observe here that

d.�S3
0 .K/; t0/C

1
2
b1.�S3

0 .K//D 2V0.K/;

and the same holds for L and K # L (compare with [20, Proposition 4.12] and [2,
Example 3.9]). When m> 0, however,

d.�S3
2m.K/; tm/C

1
2
b1.�S3

2m.K//D d.�S3
2m.K/; tm/D

1
4
C 2Vm.K/;

and analogous formulae hold for L and K # L.

We now apply additivity of d [2, Proposition 3.7] and [2, Theorem 4.1] to W to obtain
the inequality

(3) b�2 .W /C 4d
�
�.S3

2m.K/ # S3
2n.L//; tm # tn

�
C 2b1.�.S

3
2m.K/ # S3

2n.L///

�4d.�S3
2m.K/; tm/C2b1.�S3

2m.K//C4d.�S3
2n.L/; tn/C2b1.�S3

2n.L//:

When m and n are both positive, (3) becomes

1C 1C 8VmCn.K # L/� 1C 8Vm.K/C 1C 8Vn.L/:

When exactly one among m and n vanishes, say mD 0, (3) turns into

1C 8Vn.K # L/� 8V0.K/C 1C 8Vn.L/:

Finally, when mD nD 0, (3) reads

8V0.K # L/� 8V0.K/C 8V0.L/:

In all cases, we have proved that VmCn.K # L/� Vm.K/CVn.L/, as desired.

We are now ready to prove Theorem 1.5, ie that �C is subadditive.

Proof of Theorem 1.5 This now follows from Proposition 6.1 by setting mD �C.K/

and nD �C.L/. In fact, since Vm.K/D Vn.L/D 0,

VmCn.K # L/� Vm.K/CVn.L/D 0I

that is, �C.K # L/�mC nD �C.K/C �C.L/.

7 Examples

In this section we study a 3–parameter family of pairs of torus knots on which the
lower bound given by �C is sharp. We first start with a 1–parameter subfamily that
we study in some detail, and we then turn to the whole family. The techniques used
here are inspired by Baader’s “scissor equivalence” [1].
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Example 7.1 We are going to present an example in which the bound provided by
�C on the genus of a cobordism between torus knots is stronger than the ones given by
the Tristram–Levine signature function, � , s and ‡ , and moreover it is sharp.

2p=3p
2p=3pD

a=p a1=p

a2=p

a3=p

Figure 4: The knot Ka;p ; the boxes indicate the number of full twists. Equal-
ity holds whenever aD a1C a2C a3 .

3p=2p
3p=2pD

b=p b1=p

b2=p

Figure 5: The knot K0
b;p

; the boxes indicate the number of full twists. Equal-
ity holds whenever b D b1C b2 .

Define the two families of links Ka;p and K0
b;p

as the closure of the braids pictured in
Figures 4 and 5. Notice that Ka;p and K0b;p are .p; s/–cables of the trefoil for some s ,
and that they are knots if and only if gcd.a;p/D 1 and gcd.b;p/D 1, respectively.
Moreover, Ka;p is the product of 2p.3p � 1/C a.p � 1/ positive generators of the
braid group on 3p strands, hence its closure represents a transverse knot in the standard
contact 3–sphere with self-linking number 6p2C .a� 5/p� a. Since for closures of
positive braids the self-linking number agrees with the Seifert genus, we can compute
the cabling parameter s D 6pC a. In conclusion, we have shown that Ka;p is the
.p; 6pC a/–cable of T2;3 .

The same argument applies to K0
b;p

, the self-linking number computation yields
6p2C .b � 5/p � b , hence showing that K0

b;p
is the .p; 6pC b/–cable of T2;3 . In

particular Ka;p and K0
b;p

are isotopic if and only if aD b .

Now consider the knots K12;p DK0
12;p

. Denote by �i the i th elementary generator
of the braid group, and, whenever i < j , denote by �i;j the product �i�iC1 � � � �j .
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Setting a1 D a2 D a3 D 4 in the right-hand side of Figure 4 exhibits K12;p as the
closure of the braid

�
2p
1;3p�1

�

…‚ …„ ƒ
�4

1;p�1„ƒ‚…
†4

1

� �4
pC1;2p�1„ ƒ‚ …

†4
2

� �4
2pC1;3p�1„ ƒ‚ …

†4
3

:

The three elements †1 , †2 and †3 commute, hence …D .†1†2†3/
4. Now, notice

that †1�p†2�2p†3 D �1;3p�1 . Since adding a generator �i corresponds to attaching
a band between two strands, we produce a cobordism built out of 8 bands from K12;p

to T2pC4;3p ; if p is coprime with 6, both ends of the cobordism are connected, and
its genus is 4.

An analogous argument, setting b1D b2D 6 in the right-hand side of Figure 5 produces
a 6–band, genus-3 cobordism from K0

12;p
to T2p;3pC6 whenever p is coprime with 6.

Suppose now that p� 5 .mod 6/ and p� 11. Gluing the two cobordisms above yields
a genus-7 cobordism between K D T2pC4;3p and LD T2p;3pC6 .

Applying Proposition 3.2 above we obtain a sharp bound on the slice genus; in fact, in
the same notation as in Proposition 3.2, we have
� 2ıK D 2g.K/D 6p2C 7p� 3 and 2ıL D 2g.L/D 6p2C 7p� 5;
� �K .2/D 3p and �L.2/D 3pC 6;
� �K .3/D 4pC 8 while �L.3/D 4p .

It follows that
�C.K # L/� 1C�L.2/��K .2/D 7;

�C.L # K/� �1C�K .3/��L.3/D 7:

A direct computation using [19, Theorem 1.15] shows that for p D 11, 17, 23, 29 the
bound given by ‡ is 3, the one given by the Tristram–Levine signatures is either 2

or 5, and the one given by � and s is 1.

Moreover, we need at least 7 positive and 7 negative crossing changes to turn K

into L, hence their Gordian distance is at least 14. Additionally, suppose that we have
a factorisation of the cobordism above into genus-1 cobordisms, and suppose that one
of these cobordisms goes from K1 to K2 . Then both �C.K2/ D �

C.K1/� 1 and
�C.K2/D �

C.K1/� 1.

Example 7.2 We can promote the family above to a family parametrised by suitable
triples of integers .p; q; r/ as follows: Instead of considering the .p; 6pC 12/–cable
of the trefoil K12;p D K0

12;p
we can consider the .p; qr.p C 2//–cable K

p
q;r of

T WD Tq;r . The first condition we impose on the triple .p; q; r/ is that q < r and
gcd.q; r/D 1.
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By looking at K
p
q;r as a cable of T seen as the closure of an r –braid, we can glue

2q � .r � 1/ bands to K
p
q;r and obtain K D Tq.pC2/;rp . Call x1 D q.p C 2/ and

x2 D rp the two generators of the semigroup �K .

By viewing K
p
q;r as a cable of T seen as the closure a q–braid instead, we see that

we can glue 2r � .q�1/ bands to K
p
q;r and obtain LD Tqp;r.pC2/ . Call y1 D qp and

y2 D r.pC 2/ the two generators of the semigroup �L .

If gcd.p; 2qr/D gcd.pC 2; 2qr/D 1, both K and L have one component, ie they
are torus knots; eg both equalities hold if p ��1 .mod 2qr/. Moreover, ıK � ıL D
g.K/�g.L/D r�q , and above we produced a cobordism of genus 2qr�q�r between
K and L, made of 4qr�2q�2r bands. Hence, �C.K #L/; �C.L#K/� 2qr�q�r .

Choose p sufficiently large; it is elementary to check that if p � 2qr � 1 then, for
n1 D ıT C q� 1 and n2 D ıT C r � 1, we have

�T .n1/D .q� 1/r; �T .n2/D .r � 1/q;

�K .n1/D .q� 1/x2 D .q� 1/rp; �K .n2/D .r � 1/x1 D .r � 1/q.pC 2/;

�L.n1/D .q� 1/y2 D .q� 1/r.pC 2/; �L.n2/D .r � 1/y1 D .r � 1/qp:

If we set nD n1 in Theorem 1.1 we obtain

�C.K # L/� ıK � ıLC�L.n1/��K .n1/D 2qr � q� r:

Reversing the roles of K and L and setting nD n2 yields

�C.L # K/� ıL� ıK C�K .n2/��L.n2/D 2qr � q� r:

The lower bound for the genus given by �C is in this case is tight, as the upper and
lower bounds match, and moreover the Gordian distance between K and L is at least
4qr � 2q� 2r .
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