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The spectrum for commutative complex K –theory

SIMON PHILIPP GRITSCHACHER

We study commutative complex K–theory, a generalised cohomology theory built
from spaces of ordered commuting tuples in the unitary groups. We show that the
spectrum for commutative complex K–theory is stably equivalent to the ku–group
ring of BU.1/ and thus obtain a splitting of its representing space BcomU as a product
of all the terms in the Whitehead tower for BU, BcomU 'BU �BU h4i�BU h6i�� � � .
As a consequence of the spectrum level identification we obtain the ring of coefficients
for this theory. Using the rational Hopf ring for BcomU we describe the relationship of
our results with a previous computation of the rational cohomology algebra of BcomU.
This gives an essentially complete description of the space BcomU introduced by
A Adem and J Gómez.

55N15; 55R35, 55R40, 55R50

1 Introduction and results

We describe the unitary variant of commutative K–theory, which was introduced by
Adem and Gómez [5]. The definition is based on a variation of the classical infinite
loop space BU which represents complex topological K–theory. Recall that if G is a
topological group such that the identity element 1G 2G is a nondegenerate basepoint,
then a simplicial model for the classifying space BG is the geometric realisation of
the nerve N�G, where G is regarded as a category with one object. Adem, Cohen and
Torres-Giese [4] consider a natural subcomplex BcomG �BG encoding commutativity
in G. It is obtained from BG by restricting to those simplices which are ordered tuples
of pairwise commuting elements in G. More precisely, let

Ck.G/ WD f.g1; : : : ; gk/ 2G
k
j gigj D gjgi for all 1� i; j � kg;

considered as a subspace of the product Gk. Then it is easy to see that C�.G/�N�G
is a subsimplicial space. It is common, in fact, to identify Ck.G/ with the set of
group homomorphisms Hom.Zk; G/, where Zk is the free abelian group of rank k .
Evaluating homomorphisms on the standard basis for Zk gives a natural identification
Hom.Zk; G/Š Ck.G/ and this induces a topology on Hom.Zk; G/.
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Definition 1.1 The classifying space for commutativity in G is the geometric realisa-
tion BcomG WD jk 7! Hom.Zk; G/j. This construction is natural for homomorphisms
of groups and there is a natural inclusion map i W BcomG! BG.

This paper is concerned with the case G D U, where U D colimn U.n/ is the direct
limit of the Lie groups U.n/ of unitary n�n matrices. Recall that BU is an E1–ring
space without unit, whose addition and multiplication are induced from the direct sum
and the tensor product in the unitary groups, respectively. Adem, Gómez, Lind and
Tillmann [6, Theorem 4.1] showed that the same operations induce an E1–ring space
structure on BcomU (which is called B.2; U / in the following theorem).

Theorem 1.2 [6] For all q � 2, the spaces B.q; U /, B.q;SU/, B.q;SO/ and
B.q;O/ provide a filtration by nonunital E1–ring spaces of the classical nonunital
E1–ring spaces BU, BSU, BSO and BO, respectively.

Thus they make the following definition (see Remark 2.12).

Definition 1.3 [6; 5] Commutative complex K–theory zK�com is the cohomology
theory represented by the E1–ring space BcomU.

An intriguing aspect of the construction BcomG is the fact that it can be used to
parametrise an additional structure on principal G–bundles. In [5], Adem and Gómez
introduce a notion of transitional commutativity. Let X be a CW complex. We
say that a principal G–bundle qW P ! X is transitionally commutative if there
exists an open trivialising cover fUi j i 2 I g of X and a representing cocycle
fgij W Ui \ Uj ! G j i; j 2 I g for qW P ! X such that for each x 2 X the set
fgij .x/ j i; j 2 I; gij is defined at xg � G is a subset of commuting elements. The
authors then show that if G is a Lie group and f W X ! BG is the classifying map of
a principal G–bundle P !X, then P is transitionally commutative if and only if f
can be factored, up to homotopy, through i W BcomG! BG. In particular, this gives
zK0com.X/ D ŒX; BcomU � an interpretation as a group of “transitionally commutative

structures” on stable isomorphism classes of complex vector bundles over X (see [6,
Theorem 5.5]).

The first objective of this paper is to determine the homotopy type of BcomU. We will
use the deformation K–theory (see Carlsson [10] and Lawson [19]) of free abelian
groups to define a spectrum for commutative K–theory. We then apply Lawson’s Bott
cofibre sequence in deformation K–theory [20] to determine the homotopy type of this
spectrum. Thus our first result is:
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Theorem 2.11 There is a commutative ku–algebra spectrum E which satisfies

�1E ' Z�BcomU�U

and an equivalence of commutative ku–algebras E ' ku^BU.1/C .

Here ku denotes the connective K–theory spectrum. The space BcomU has an action
of U simplexwise by conjugation, and BcomU�U is the resulting homotopy orbit
space. A line bundle has a natural “transitionally commutative structure” as BU.1/D
BcomU.1/. The equivalence in the theorem is induced by embedding BU.1/ in the
natural way in the space BcomU and then into f1g �BcomU�U, corresponding to the
inclusion fline bundlesg � ftransitionally commutative bundlesg. Thus one can say
that commutative K–theory is the free ku–algebra theory “generated by line bundles”.

The theorem shows that ��.E/ is the connective K–Pontrjagin ring of BU.1/. The
structure of this ring is well known. Let x 2ku2.BU.1// be the standard choice of com-
plex orientation for ku–theory and let yn2ku2n.BU.1// be dual to xn2ku2n.BU.1//.
Then ku�.BU.1// is a free ��.ku/–module on generators 1 and yn for n� 1. In the
algebra ku�.BU.1//, the yn satisfy certain relations (see Section 2.3).

Corollary 2.13 The homotopy ring ��.BcomU/ is the ideal

.yn j n� 1/� ku�.BU.1//:

In particular, the homotopy groups of the space BcomU are

�2n.BcomU/D Zn; �2nC1.BcomU/D 0

for all n� 0.

We also describe the homotopy ring of BcomSU (see Corollary 3.7).

The inclusion map i W BcomU !BU induces a natural transformation of multiplicative
cohomology theories from commutative to ordinary K–theory. In [6, Theorem 4.2] it
is shown that this map has a section by an infinite loop map, so that BU is a direct
factor of BcomU.

For any G let EcomG denote the homotopy fibre of the map i W BcomG! BG.

Theorem 1.4 [6, case q D 2] For G D U, SU, SO, O and Sp, there is a homotopy
split fibration of infinite loop spaces EcomG! BcomG! BG. In particular, there is a
splitting of spaces BcomG ' BG �EcomG.
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Using the fact that ku^BU.1/C splits as a wedge of suspensions of ku, we obtain
the following strengthening of their theorem for G D U and SU; let BU h2ni ! BU

denote the 2n�1–connected cover of BU.

Theorem 3.4 There are splittings of E1–Z�BU –modules BcomU ' BU �EcomU,
and BcomSU' BSU�EcomU, and

EcomU '
Y
n�2

BU h2ni:

Prior to this work, Adem and Gómez had computed the rational cohomology algebra of
BcomU by regarding it as the direct limit of all BcomU.n/ for n� 1. It is a polynomial
algebra QŒza;b j .a; b/2N2; b � 1�, where the za;b are generators of degree 2.aCb/.
Their computation relies on Lie group theory and shows that the classes za;b are related
to multisymmetric functions in the same way that the components of the Chern character
are related to elementary symmetric polynomials. It seems interesting now to compare
the description of the homotopy groups of BcomU via K–homology theory to the
description of the cohomology groups via multisymmetric functions. To do this we
describe the rational Hopf ring of BcomU in a basis determined by the za;b .

Let �a;b be dual to za;b and let Œn� 2H0.Z;Q/ be the homology class determined by
n 2 Z. We write ı for the Hopf ring multiplication.

Theorem 4.4 The Hopf ring H�.Z�BcomU�U;Q/ is generated by Œ1�˝ 1, and the
classes Œ0�˝ �1;0 and Œ0�˝ �0;1 in degree two. In this ring the class �a;b WD Œ0�˝ �a;b
has the presentation

�a;b D
�ıa1;0 ı �

ıb
0;1

aŠbŠ
; .a; b/ 2N2

�f.0; 0/g:

Using this theorem we obtain some interesting formulas. Recall the definition of the
Stirling numbers of the first and second kind (eg Berge [8]).

Corollary 4.6 The Hurewicz homomorphism hW ��.BcomU/! zH�.BcomU;Q/ is
determined by the formula

h.yn/D

n�1X
jD0

s.n; n� j /�
n
j

� �j;n�j ; n� 1;

where the s.n; n� j / are the Stirling numbers of the first kind.
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We also describe the splitting in Theorem 3.4 on rational cohomology: For k � 1 let
fk W BcomU ! BU be the composition of the splitting, the projection onto BU h2ki
and the covering BU h2ki ! BU. Let chn 2H 2n.BcomU;Q/ be the nth component
of the Chern character.

Corollary 4.7 For all k � 1 and all n� 1,

nŠf �k .chn/D kŠ
n�1X
jD0

� n
j

�
S.n� j; k/zj;n�j ;

where the S.n� j; k/ are the Stirling numbers of the second kind.

Finally, we discuss the relationship between the integral cohomology of BcomU and
that of BcomSU.2/, relying on work in progress with Camarena and Villarreal [7].

The first interesting commutative K–group of spheres is zK0com.S
4/Š Z˚Z. In the

last part of the paper we use cohomology to prove:

Proposition 5.2 The natural map BcomSU.2/! BcomU induces an isomorphism

�4.BcomSU.2//Š zK0com.S
4/;

and the map BcomU.2/! BcomU is 4–connected.

Outline In Section 2 we use deformation K–theory to represent commutative K–
theory by a commutative ku–algebra spectrum, prove Theorem 2.11 and deduce the
homotopy ring of BcomU. In Section 3 we identify BcomSU as the homotopy fibre
of the determinant map, prove Theorem 3.4 and thus identify the homotopy type of
BcomU as well as BcomSU. We include, furthermore, a brief discussion of cohomology
operations in commutative K–theory. In Section 4 we turn to cohomological results.
We prove Theorem 4.4, which describes the rational Hopf ring of BcomU. We use this
to describe the rational Hurewicz map, the splitting of BcomU on rational cohomology,
and the canonical map BcomU.2/! BcomU on integral cohomology. In Section 5 we
prove Proposition 5.2 by constructing classifying maps for transitionally commutative
SU.2/–bundles and computing their characteristic classes. Finally, in the appendix we
offer a description of the inclusion map BcomG1! BG on rational cohomology.

Acknowledgements This paper contains material from my doctoral thesis, which
was written at the University of Oxford. I would like to thank my supervisor Ulrike
Tillmann for introducing me to the topic, and for all her encouragement and help. I

Algebraic & Geometric Topology, Volume 18 (2018)



1210 Simon Philipp Gritschacher

would also like to thank André Henriques for a clarifying discussion and Graeme Segal
for his useful comments. This work also profited from conversations with Bernardo
Villarreal and Omar Antolín Camarena. I gratefully acknowledge financial support
through an EPSRC studentship. Finally, I would like to thank the referee for reading
the manuscript.

2 The spectrum for commutative K –theory

In order to analyse the space BcomU we use a model based on the deformation K–
theory of free abelian groups.

2.1 Deformation K –theory

Suppose that � is a finitely generated discrete group. We may consider the category
R.�/ of finite-dimensional unitary representations of � and their isomorphisms. It is
naturally a topological category, that is, it has an object and a morphism space such
that the domain, codomain, identity and composition maps are all continuous. Indeed,
if S� � is a finite generating set for � , then Hom.�; U.n// can be topologised as a
subspace of the product U.n/S. The category R.�/ is then the “action groupoid” for
the continuous action of the topological group U.n/ on Hom.�; U.n// � U.n/S by
conjugation,

R.�/D
G
n�0

U.n/Ë Hom.�; U.n//I

see Lawson [19]. In addition, the category R.�/ can be given the structure of a per-
mutative category with monoidal product induced by the direct sum of representations.

Definition 2.1 The (unitary) deformation K–theory of � is the K–theory of the
permutative topological category R.�/.

The study of this K–theory was first suggested by Carlsson [10]. Let us write kdef.�/

for the unitary deformation K–theory spectrum of � . For example, if �D1 is the trivial
group, then kdef.1/ is the K–theory spectrum of the category of finite-dimensional
unitary vector spaces and isometries, so it is a model for ku–theory.

In [19], Lawson explains how the tensor product of representations gives kdef.�/

the structure of a commutative ring spectrum. In fact, he shows that kdef.�/ is
a ku–algebra spectrum via the unit map ku ' kdef.1/ ! kdef.�/ induced by the
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homomorphism �! 1. More precisely, he constructs a functor

(1) kdef
W ffinitely generated discrete groupsgop

! com-Algku;

from finitely generated discrete groups and homomorphisms into the category of
commutative ku–algebras in symmetric spectra (for background on symmetric spectra
see Hovey, Shipley and Smith [16]).

Let us explain this construction in a bit more detail. Let C1 be equipped with the
standard inner product. Let �op be the category of finite sets with basepoint and
based functions between them. Associated to the group � is a � –space (Segal [26])
K.�/W �op! Top� which takes a finite pointed set S 2 �op to the space

K.�/.S/ WD

8<:.Wa; �a/a2S
ˇ̌̌̌
ˇ
Wa �C1 a finite-dimensional inner product space;

�aW �! U.Wa/ a unitary representation;
Wa ?Wb if a¤ b; Wa D f0g if a is the basepoint

9=; :
The space K.�/.S/ is topologised as a subspace of the product� G

n�0

Vn �U.n/ Hom.�; U.n//
�S
;

where Vn is the “Stiefel manifold” of orthonormal n–frames in C1 and the action
of U.n/ on Hom.�; U.n// is by isomorphisms of representations (or by conjugation
if we identify Hom.�; U.n// with a subspace of a finite product of copies of U.n/).
Given a morphism ˛W S ! T in �op, a map K.�/.˛/W K.�/.S/!K.�/.T / can be
defined by

K.�/.˛/..Wa; �a/a2S / WD

� M
a2˛�1.b/

Wa;
M

a2˛�1.b/

�a

�
b2T

;

which makes sense because the Wa are mutually orthogonal inside C1. The � –space
K.�/ is special. In fact, it is the � –space associated — in the manner described in
[26, Section 2] — to the permutative category R.�/. Thus the symmetric spectrum
associated to K.�/ is an �–spectrum above the zero space. We denote this spectrum
by K.�/.S/ (which means K.�/ evaluated on the sphere spectrum).

For k � 0, let L ..C1/˝k;C1/ denote the space of linear isometric embeddings
.C1/˝k ,!C1 with the compact–open topology. Lawson observed that the tensor
product of representations yields continuous and natural multiplication maps

L ..C1/˝k;C1/C ^K.�/^ � � � ^„ƒ‚…
k

K.�/
˝
�!K.�/;
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where the smash product is formed in the topologically enriched permutative category
of � –spaces (Lydakis [21]). These multiplication maps can be fed into the machine of
Elmendorf and Mandell [13], which associates to K.�/ a so-called E1–ku–algebra
object in the category of symmetric spectra (to be precise, here symmetric spectra
means symmetric spectra of simplicial sets). The general theory of [13] allows one to
rigidify this spectrum, which then yields the functor kdef.�/ in (1). This procedure is
described in detail in [19, Section 7]. In particular, the infinite loop space associated to
kdef.�/ is weakly equivalent to �1K.�/.S/.

One may also consider the category of isomorphisms classes of representations

R.�/=Š D
G
n�0

Hom.�; U.n//=U.n/;

with only identity morphisms. This is a strictly commutative topological ring under
direct sum and tensor product of representations. It gives rise to a � –space R.�/ and
there is an obvious map of � –spaces K.�/! R.�/ sending a representation to its
isomorphism class.

Definition 2.2 The symmetric spectrum determined by R.�/ is called the deformation
representation ring spectrum of � (Lawson [18]).

The deformation representation ring can be modelled as a commutative HZ–algebra
in symmetric spectra and is denoted by RŒ��. Via the canonical map ku!HZ, the
spectrum RŒ�� can also be regarded as a commutative ku–algebra. There is then a
natural transformation of functors kdef.�/!RŒ��.

In [20], Lawson shows that RŒ�� is the cofibre of “multiplication by the Bott element”
on kdef.�/. Let u 2 �2.ku/ be the Bott class. Using the structure of kdef.�/ as a
ku–module, there is a map u � �, defined as the composite

S2 ^ kdef.�/
u^id
��! ku^ kdef.�/! kdef.�/:

Theorem 2.3 [20] There is a homotopy cofibre sequence of ku–modules

†2kdef.�/ u��! kdef.�/!RŒ��;

where the first map is “multiplication by the Bott element”.
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2.2 The spectrum kdef.Z�/

We now define a spectrum for BcomU. For this it is convenient to corepresent the
simplicial space k 7! Hom.Zk; U /. Let Fk denote the free group on k generators
x1; : : : ; xk .

Definition 2.4 Define a cosimplicial group F�W �!Grp with coface maps

d i W Fk�1! Fk; d ixj D

8<:
xj if j < i;
xjxjC1 if j D i;
xjC1 if j > i;

for 0� i � k and k > 0 and codegeneracy maps si W FkC1! Fk given by

sixj D

8<:
xj if j < i C 1:
1 if j D i C 1;
xj�1 if j > i C 1;

for 0� i � k and k � 0. Another cosimplicial group Z� sending k 7! Zk is defined
by simplexwise abelianisation of F� . It comes with a morphism F�! Z�.

It is easily verified that the composite Hom.F�; U / WDHom.�; U /ıF� is the simplicial
bar construction for U, and Hom.Z�; U / is the simplicial space whose realisation
is BcomU. The morphism of cosimplicial groups F�! Z� induces the canonical map
i W BcomU ! BU.

The composition of Z� with kdef.�/ defines a simplicial ku–algebra k 7! kdef.Zk/,
which we denote by kdef.Z�/. Since the geometric realisation of simplicial symmetric
spectra commutes with smash products and coequalisers up to natural isomorphism,
the spectrum jkdef.Z�/j inherits the structure of a commutative ku–algebra from the
deformation K–theory spectra kdef.Zk/.

Definition 2.5 Define the commutative ku–algebra E WD jkdef.Z�/j.

Recall that the deformation K–theory spectrum kdef.Zk/ comes from a � –space
K.Zk/. The assignment k 7! K.Zk/ defines a simplicial �–space. Let jK.Z�/j
be the � –space whose value on a finite set S 2 �op is the geometric realisation
jK.Z�/j.S/ WD jk 7!K.Zk/.S/j.

Lemma 2.6 There is a zigzag of stable equivalences between E and the symmetric
spectrum associated to the � –space jK.Z�/j.

Algebraic & Geometric Topology, Volume 18 (2018)
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Proof Let Sing denote the singular complex functor from topological spaces to simpli-
cial sets. The rigidification in [19, Section 7] produces a zigzag of stable equivalences
between kdef.Zk/ and the symmetric spectrum associated to the � –space SingıK.Zk/.
Furthermore, the maps in the zigzag are natural with respect to homomorphisms of
groups, so there is a zigzag of maps of simplicial symmetric spectra

.Sing ıK.Z�//.S/ � � � ! kdef.Z�/

which are stable equivalences in each simplicial degree. By Shipley’s realisation lemma
[27, Corollary 4.1.6], this induces a stable equivalence on geometric realisations, ie
between E and jSingıK.Z�/j.S/. By adjunction, we have a map jSingıK.Z�/j.S/!
jK.Z�/j.S/, which we need to show is a stable equivalence. Since both spectra are
�–spectra above the zero space, it suffices to check that the map on level-one spaces,
jSing ıK.Z�/j.S1/! jK.Z�/j.S1/, is a weak homotopy equivalence. The map is
a weak equivalence in every simplicial degree, so the result follows from May [22,
Theorem A.4] and the fact that k 7! K.Zk/.S1/ is a proper simplicial space (see
Lemma 2.7).

Lemma 2.7 The simplicial space k 7!K.Zk/.S1/ is proper.

Proof Let mC 2 �op be the set f0; 1; : : : ; mg with 0 as basepoint. We first show that
for fixed m� 0 the simplicial space k 7!K.Zk/.mC/ is proper. Let Vn be the Stiefel
manifold of orthonormal n–frames in C1. By definition, K.Zk/.mC/ is a disjoint
union over spaces of the form

Vn �U.n1/�����U.nm/ Hom.Zk; U.n1//� � � � �Hom.Zk; U.nm//;

where the ni are nonnegative integers with
Pm
iD1 ni D n. Let n D .n1; : : : ; nm/

and write U.n/ D U.n1/� � � � �U.nm/. Let Sk � Hom.Zk; U.n// be the space of
degenerate k–simplices in the simplicial space Hom.Z�; U.n//. It was proved by
Adem, Cohen and Gómez [3, Theorem 4.8] — in their notation, we choose G D U.n/,
K D 1 and r D 1— that the pair of spaces

�
Hom.Zk; U.n//; Sk

�
is a strong U.n/–

equivariant NDR pair. It follows that the pair
�
Vn�U.n/Hom.Zk; U.n//; Vn�U.n/Sk

�
is strongly NDR and, therefore, k 7!K.Zk/.mC/ is proper.

Let �1=@�1 be the simplicial circle with mC 1 simplices in degree m. For every
fixed k � 0, K.Zk/.�1=@�1/ is a simplicial space, in which the degeneracy maps
K.Zk/.mC/!K.Zk/.mC1C/ are inclusions of connected components, thus closed
cofibrations. It follows that the bisimplicial space K.Z�/.�1=@�1/ is proper in the
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simplicial direction of Z� and good in the simplicial direction of the circle. Now
we use the fact that levelwise cofibrations between good simplicial spaces induce a
cofibration on realisations (eg Warner [30, Section 14-5]) to see that if we realise first
in the “good” direction, the resulting simplicial space k 7!K.Zk/.S1/ is proper.

Lemma 2.8 There is a weak equivalence �1jK.Z�/j.S/' Z�BcomU�U.

Proof The � –space jK.Z�/j is the one associated to the permutative category

(2)
G
n�0

U.n/ËBcomU.n/;

which is the action groupoid for the action of U.n/ on BcomU.n/ by conjugation. The
infinite loop space �1jK.Z�/j.S/ D �jK.Z�/j.S1/ is then the group completion
of the classifying space of (2). The classifying space of (2) is the homotopy orbitF
n�0BcomU.n/�U.n/, so by the group-completion theorem of McDuff and Segal [23]

we get a map

Z� teln!1BcomU.n/�U.n/!�1jK.Z�/j.S/;

which is an integer homology equivalence. In fact, it is a weak equivalence, because the
telescope is simply connected: for all n� 1, the space BcomU.n/�U.n/ is simply con-
nected, because it is the geometric realisation of a simplicial space with only one vertex
and a connected space of 1–simplices. Finally, teln!1BcomU.n/�U.n/'BcomU�U.
This follows by first commuting the telescope with geometric realisation, then re-
placing the telescope by a colimit (using the fact that the maps Hom.Zk; U.n//!
Hom.Zk; U.nC1// are cofibrations), and finally identifying colimn Hom.Zk; U.n//Š
Hom.Zk; U /, since Zk is finitely generated.

We now identify the spectrum E .

Lemma 2.9 There is a stable equivalence of commutative HZ–algebras

jRŒZ��j 'HZ^BU.1/C:

Proof Fix k � 0. The symmetric spectrum RŒZk� is determined by the � –space
associated to the abelian semiring

F
n�0 Hom.Zk; U.n//=U.n/. The spectral theorem

implies that there is a natural homeomorphism

(3)
G
n�0

Hom.Zk; U.n//=U.n/Š SP1.U.1/kC/;

Algebraic & Geometric Topology, Volume 18 (2018)
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where SP1.U.1/k
C
/ is the free abelian monoid generated by the space U.1/k with

a disjoint basepoint as the additive unit (for a proof of (3) see eg Adem, Cohen
and Gómez [3, Theorem 6.1]). There is a multiplication map U.1/k

C
^ U.1/k

C
Š

.U.1/k � U.1/k/C ! U.1/k
C

using the group structure of U.1/k. This defines a
multiplication map

SP1.U.1/kC/^SP1.U.1/kC/! SP1.U.1/kC/

via
�P

i nixi
�
^
�P

k mkyk
�
7!
P
i;k nimkxiyk , making SP1.U.1/k

C
/ into an abelian

semiring in such a way that (3) is an isomorphism of semirings. By the theorem
of Dold and Thom [12, Satz 6.10], SP1.U.1/k

C
/ represents the reduced integral

Pontrjagin ring of U.1/k
C

. The commutative ring spectrum associated to SP1.U.1/k
C
/

is stably equivalent to HZ ^ U.1/k
C

as an HZ–algebra. The stable equivalence
jRŒZ��j 'HZ^BU.1/C follows from this after geometric realisation.

Corollary 2.10 There is a homotopy cofibre sequence of ku–modules

†2E u�
�!E �

�!HZ^BU.1/C;

in which the first map is multiplication by the Bott element.

Proof This follows from Theorem 2.3 applied to Z� and geometric realisation, in
view of Lemma 2.9.

We can now prove the main result of this section:

Theorem 2.11 There is a commutative ku–algebra spectrum E which satisfies

�1E ' Z�BcomU�U

and a stable equivalence of commutative ku–algebras E ' ku^BU.1/C .

Proof The first part follows directly from Lemmas 2.6 and 2.8.

There is a map of commutative ring spectra j W †1BU.1/C!E which is induced by
the canonical map BU.1/!BcomU. Recall from Section 2.1 that if S 2�op, then a point
in the space K.Zk/.S/ is an S –indexed tuple .Wa; �a/a2S of finite-dimensional mutu-
ally orthogonal inner product spaces Wa �C1 with representations �aW Zk!U.Wa/

on them. Now let �U.1/k be the � –space which is obtained from K.Zk/ by specifying
in addition the data of an unordered orthonormal frame fwa;1; : : : ; wa;na

g�Wa , where
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na D dimWa for each a 2 S, so that the representation �a is diagonal with respect to
this frame. The � –space �U.1/k has as underlying H –space

�U.1/k .1
C/D

G
n�0

Vn �†n
.U.1/k/n;

the free E1–algebra on the space U.1/k. Moreover, it has multiplication maps induced
from tensor product and thus leads to the group ring spectrum �U.1/k .S/D†

1U.1/k
C

.
There is now an obvious forgetful map of � –spaces �U.1/k !K.Zk/, yielding a map
of commutative ring spectra †1U.1/k

C
! kdef.Zk/. The map j W †1BU.1/C!E

is then induced on geometric realisations.

The composite map †1BU.1/C
j
�!E �

�!HZ^BU.1/C is easily seen to be the
natural one, representing the stable Hurewicz map for BU.1/. Since E is a ku–algebra,
j extends over the free ku–algebra ku^BU.1/C . Thus we obtain a sequence

ku^BU.1/C
j 0
�!E �

�!HZ^BU.1/C;

whose composite is the smash product of the canonical map ku!HZ with BU.1/C .
If we combine this with Corollary 2.10, we obtain a map of homotopy cofibre sequences

†2ku^BU.1/C //

†2j 0

��

ku^BU.1/C //

j 0

��

HZ^BU.1/C

†2E // E
�

// HZ^BU.1/C

where the top cofibring is obtained from the Bott periodicity sequence by smashing
with BU.1/C . Inductively, using the five lemma, we see that j 0 induces an isomorphism
of homotopy groups, hence is a stable equivalence.

Remark 2.12 It appears that either the space BcomU or Z�BcomU�U is the nat-
ural output of a multiplicative infinite loop space machine, but not Z�BcomU. We
therefore prefer to think of commutative K–theory zK�com as being represented by the
space BcomU, even though this does not quite agree with the definitions in [6], where
Z�BcomU is taken to represent the unreduced K–theory.

2.3 The homotopy groups of BcomU

The structure of the K–homology ring ku�.BU.1// is well known. If we think of BU
as the second term in an �–spectrum for ku, then the canonical map BU.1/!BU de-
termines a class x2ku2.BU.1//. Let yn2ku2n.BU.1// be dual to xn2ku2n.BU.1//.

Algebraic & Geometric Topology, Volume 18 (2018)



1218 Simon Philipp Gritschacher

Let ZŒu�Š ��.ku/ be the coefficient ring for ku–theory. It follows from the Atiyah–
Hirzebruch spectral sequence that ku�.BU.1// is a free ZŒu�–module on the generators
1 and yn for n� 1 (see eg Adams [1, Lemma 2.14]).

Multiplicatively, the yn satisfy certain relations which are similar to those in a divided
polynomial algebra, but “twisted” by the Bott element. From Ravenel and Wilson [25,
Theorem 3.4] we can get the following compact description: Consider the formal power
series

y.t/ WD 1C
X
n�1

ynt
n
2 ku�.BU.1//ŒŒt ��:

Then the relations in ku�.BU.1// are equivalent to the identity of power series

(4) y.s/y.t/D y.sC t Cust/:

Note that sCtCust is the multiplicative formal group law for ku–theory. For example,
(4) yields the relations

(5) y1yn D .nC 1/ynC1Cnuyn

for all n� 1, but these are not the only ones (over Q, all relations are generated by (5)).

By Theorem 2.11, ku�.BU.1// describes the homotopy ring of Z�BcomU�U. We
now have the standard homotopy fibre sequence

(6) BcomU ! Z�BcomU�U p
�!Z�BU:

Since the basepoint of BcomU is fixed by the conjugation action of U, the map p in (6)
has a section Z � BU ! Z � BcomU�U, thus it is surjective on homotopy groups.
Since the inclusion of the fibre is a map of additive and multiplicative H –spaces,
this shows that ��.BcomU/� ��.Z�BcomU�U/ is a subring. On homotopy groups,
p corresponds to the map ku�.BU.1//! ku�.pt/Š ZŒu� induced by BU.1/! pt,
which sends all the yn to zero and is the identity on u. This proves:

Corollary 2.13 The homotopy ring ��.BcomU/ is the ideal

.yn j n� 1/� ku�.BU.1//:

In particular, the homotopy groups of the space BcomU are

�2n.BcomU/D Zn; �2nC1.BcomU/D 0

for all n� 0.

A similar description applies to the homotopy ring of BcomSU, which we determine at
the end of Section 3.
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3 The homotopy types of BcomU and BcomSU

Recall that the space EcomG is defined to be the homotopy fibre of i W BcomG!BG. It
is also the total space of the universal transitionally commutative G–bundle over BcomG.
The main result of the present section identifies the homotopy type of EcomG for GDU
and SU (the two are equivalent; see Remark 3.6).

Adem, Gómez, Lind and Tillmann [6, Theorem 4.2] prove that the map i W BcomU!BU

admits a section up to homotopy sW BU ! BcomU, which is also an infinite loop map.
As a consequence, the authors obtain a splitting of infinite loop spaces

BcomU ' BU �EcomU:

This situation is quite different from the case of a compact Lie group G, where one
usually gets a splitting of BcomG only after looping once (Adem, Cohen and Torres-
Giese [4, Theorem 6.3]). And indeed, the construction of the section sW BU !BcomU

makes explicit use of the loop space structure on BcomU.

In order to understand the map i W BcomU ! BU on the spectrum level we use an
auxiliary spectrum F . Recall from Definition 2.4 the cosimplicial group F� . Define
F WD jkdef.F�/j and let �W E!F be the map induced by the morphism of cosimplicial
groups F�! Z�. Then � realises the map of spaces i W BcomU ! BU as a map of
ku–algebras. Indeed, �1F ' Z�BU�U and the map �1�W �1E!�1F is the
extension of i over the homotopy orbit. There is a homotopy fibre sequence

(7) BU ! Z�BU�U ! Z�BU;

which is split by a map (of E1–ring spaces) r W Z �BU ! Z �BU�U using the
U –fixed basepoint of BU. Let x 2�2.F / and u2�2.F / be the classes determined by
the Bott element of the fibre and the base of this homotopy fibre sequence, respectively.

Lemma 3.1 The homotopy ring of F is ��.F /Š ZŒu; x�=.x2�ux/.

Proof The following fact will be useful. Let G be a group acting on itself via
conjugation. This action induces a simplicial action of G on the nerve N�G, hence
on BG, whose homotopy orbit BG�G can be regarded as the classifying space of the
semidirect product G ÌG. The shear map G ÌG!G �G sending .g; h/ 7! .gh; h/

gives an isomorphism with the direct product, thus showing that BG�G Š BG �BG.
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In the special case G D U.n/, the shear isomorphism commutes with direct sum and
tensor product. Thus, the induced homeomorphismG

n�0

BU.n/�U.n/ Š�!
G
n�0

BU.n/�BU.n/

is compatible with the additive and multiplicative H –spaces structures on both the
domain and target, where on the target space the H –space structures are the ones
defined factorwise. After group completion we obtain a homotopy equivalence

� W Z�BU�U �
�!Z�BU �BU;

which is in addition a map of H –rings (that is, a ring in the homotopy category). The
homotopy ring of Z�BU �BU is isomorphic to ZŒb; c�=.bc/, where b and c are
the Bott classes corresponding to the two factors of BU.

Let l W BU!Z�BU�U be the inclusion of the fibre, ie the first arrow in (7). Restricting
to the components of the basepoints we obtain a homotopy commutative diagram

BU �BU
r�l

//

��id
��

BU�U �BU�U
˚
// BU�U

�'

��

BU �BU �BU
id�˚

// BU �BU

We write �� for the map induced by � on homotopy groups. The diagram shows that
��.u/D bC c and ��.x/D c . Therefore, ��.ux/D ��.x2/D c2, so ux D x2. We
also see that, as a ring, ��.F / is generated by u and x . From counting ranks we
see that ux D x2 is the only relation and therefore ��.F /Š ZŒu; x�=.ux � x2/, as
claimed.

Remark 3.2 If X� is a simplicial space, we write FkjX�j � jX�j for the simplicial
k–skeleton of jX�j, that is, for the image of

F
n�k Xn��

n in the geometric realisation.
We can apply the same construction to the terms in a simplicial spectrum. In [20],
Lawson determines the unitary deformation K–theory of free groups. He finds that
kdef.Fk/' ku_

Wk
†ku as ku–modules. From this one can deduce that the inclusion

of the simplicial 1–skeleton F1jkdef.F�/j ! jkdef.F�/j D F is an equivalence of
ku–modules (eg by comparing spectral sequences). As F1jkdef.F�/j D F1jkdef.Z�/j,
this inclusion factors through the commutative K–theory spectrum E . The resulting
ku–module map F ' F1jkdef.F�/j !E can be viewed as a spectrum-level version of
the splitting map sW BU ! BcomU constructed in [6].
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Lemma 3.3 There is a diagram of ku–modulesW
n�0†

2nku
f

'
//

��

E

�

��

ku_†2ku
f 0

'
// F

commuting up to homotopy, where the two horizontal maps are stable equivalences and
the left vertical map collapses the summands †2nku for n� 2.

Proof The splitting of ku^BU.1/C as a wedge of suspensions of ku is well known.
Recall that ��.E/Š ku�.BU.1// is a free ZŒu�–module on generators y0 WD 1 and yn
for n� 1. Using the structure of E as a ku–module we can define for every n� 0 a
ku–module map fnW †2nku!E to be the composite

S2n ^ ku
yn^id
���!E ^ ku

mult.
��!E:

The coproduct over the fn defines the top horizontal map in the diagram,W
n�0fnW

W
n�0†

2nku!E;

which is a ��–isomorphism by construction, thus a stable equivalence. The equivalence
f 0W ku_†2ku!F is defined similarly, using the homotopy class x 2 �2.F / and the
structure of the homotopy ring described in Lemma 3.1. Let us write �� for the map
induced by � on homotopy groups. To see that the diagram commutes up to homotopy,
we first note that ��.y1/ D x , by definition of y1 , x and �. Using Lemma 3.1 and
inducting over the multiplicative relations in (5), we see that ��.yn/D 0 for all n� 2.
This shows that � ıf factors, up to homotopy, through f 0 in the way displayed in the
diagram.

Let BU h2ni!BU denote the 2n�1–connected cover of BU, that is, ��.BU h2ni/D0
for � � 2n� 1 and the map to BU induces an isomorphism ��.BU h2ni/Š ��.BU /

for � � 2n. The main result of this section is:

Theorem 3.4 There are splittings of E1–Z�BU –modules BcomU ' BU �EcomU,
and BcomSU' BSU�EcomU, and

EcomU '
Y
n�2

BU h2ni:

Proof Let �W ku!E be the ku–algebra unit. The ku–module spectrum bcomu WD

hcofib.�/ satisfies �1bcomu'BcomU. Moreover, by Lemma 3.3 there is a splitting of
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ku–modules bcomu'
W
n�1†

2nku such that the map i W BcomU !BU corresponds to
the projection onto the †2ku–summand. The infinite loop space associated to †2nku
is the 2nth term in an �–spectrum for ku, ie the 2n�1–connected cover BU h2ni
of BU. Thus, applying �1 we obtain a splitting of E1–Z�BU –modules

BcomU '
Y
n�1

BU h2ni

such that EcomU D hofib.i/ corresponds to the factors with n� 2.

The splitting for BcomSU is obtained in a similar way. Modifying the constructions in
Section 2, we obtain a ku–algebra E 0 with �1E 0'Z�BcomSU�U and a morphism
of ku–algebras E 0! E induced by the inclusion BcomSU � BcomU. Corollary 3.7
below shows that ��.E 0/ is a ZŒu�–submodule of ��.E/ generated by 1, uy1 and yn
for n� 2.

Lemma 3.5 and Corollary 3.7 complete the proof of Theorem 3.4. Let j W SU.n/!U.n/

be the inclusion and let detW U.n/! U.1/ be the determinant map.

Lemma 3.5 For every 1� n�1 there is a homotopy fibre sequence

BcomSU.n/
Bcom.j /
���!BcomU.n/

Bcom.det/
����!BU.1/:

For nD1, Bcom.j / is a map of nonunital E1–ring spaces and Bcom.det/W BcomU˚!

BU.1/ is an infinite loop map.

Proof Fix an integer n� 1. We consider the n–sheeted covering map

qW U.1/�SU.n/! U.n/; .z; A/ 7! zA;

with covering group the cyclic group Z=nZ. Let k � 1. Applying the functor
Hom.Zk;�/ gives a sequence of maps

Hom.Zk;Z=nZ/! Hom.Zk; U.1/�SU.n//
Hom.Zk;q/
�������! Hom.Zk; U.n//:

By Adem and Cohen [2, Corollary 2.4], the space Hom.Zk; U.n// is path-connected
for all k and n. Thus a result of Goldman [14, Lemma 2.2] shows that Hom.Zk; q/
is a covering map with covering group Hom.Zk;Z=nZ/Š .Z=nZ/k. The resulting
covering sequence fits into a commutative diagram
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.Z=nZ/k // U.1/k �Hom.Zk;SU.n//
Hom.Zk ;q/

//

pr1

��

Hom.Zk; U.n//

Hom.Zk ;det/
��

.Z=nZ/k // U.1/k
p�k

n
// U.1/k

The bottom row is the k–fold cartesian product of the covering map pnW U.1/!U.1/

sending z 7! zn. Since both rows are homotopy fibre sequences, the right-hand square is
homotopy cartesian. Taking vertical homotopy fibres yields a homotopy fibre sequence

Hom.Zk;SU.n//
Hom.Zk ;j /
�������! Hom.Zk; U.n//

Hom.Zk ;det/
��������! U.1/k :

Each term in the sequence forms a levelwise path-connected simplicial space when k
varies. The theorem of Bousfield and Friedlander [9, Theorem B.4] implies now that

(8) BcomSU.n/
Bcom.j /
�����! BcomU.n/

Bcom.det/
������! BU.1/

is a homotopy fibre sequence. Here we use the fact that the simplicial spaces are good,
so that we can replace them up to weak equivalence by the diagonals of bisimplicial
sets. This proves the lemma for 1� n <1. The maps in (8) are natural with respect
to the standard maps BcomSU.n/!BcomSU.nC 1/ and BcomU.n/!BcomU.nC 1/.
Passing to homotopy colimits as n!1 proves the case nD1. The second statement
is clear, because the inclusion maps SU.n/ ,! U.n/ are compatible with block sum
and tensor product.

Remark 3.6 Lemma 3.5 implies that for all n � 1 the inclusion SU.n/ ,! U.n/

induces a weak equivalence EcomSU.n/' EcomU.n/. Indeed, comparing (8) to the
homotopy fibre sequence BSU.n/! BU.n/ B.det/

���!BU.1/ and extending one term to
the left, we obtain a map of homotopy fibre sequences

U.1/ // BcomSU.n/ //

i
��

BcomU.n/

i
��

U.1/ // BSU.n/ // BU.n/

showing that the right-hand square is a homotopy pullback. Taking homotopy fibres
vertically shows that there is a weak equivalence EcomSU.n/'EcomU.n/.

The determinant map Bcom.det/W BcomU !BU.1/ factors through BU and induces an
isomorphism on second homotopy groups. From the long exact sequence of homotopy
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groups for BcomSU! BcomU ! BU.1/ we see that ��.BcomSU/� ��.BcomU/ is a
subring, only missing the class y1 2 �2.BcomU/.

Corollary 3.7 The homotopy ring ��.BcomSU/ is the subring of ��.BcomU/ given
by the ideal .uy1; yn j n� 2/� ku�.BU.1//.

We finish this section with a remark about cohomology operations.

Operations There are a couple of interesting cohomology operations which can be
defined as self-maps of BcomU. They were first defined and discussed in more detail in
Gritschacher [15].

Clearly, we have complex conjugation  �1W BcomU ! BcomU, but there are also
involutions �t induced by transposition A 7! At and ��1 induced by taking inverses
A 7! A�1 for A 2 U. All these operations are compatible with direct sum and tensor
product, so they induce stable multiplicative cohomology operations on zK�com.�/. It is
not difficult to see that they extend to operations on E . Under the equivalence E '
ku^BU.1/C they can be identified with more familiar operations: complex conjugation
 �1 corresponds to complex conjugation on both ku and BU.1/C , transposition �t

corresponds to complex conjugation only on ku and leaves BU.1/C fixed, and ��1 is
complex conjugation on BU.1/C and the identity on ku. This way one could easily
compute their effect on the homotopy groups of BcomU, but we will not use them in
this paper.

More generally than ��1, one has an operation �k W BcomU !BcomU for every integer
k 2 Z induced from the kth power map A 7! Ak in the unitary groups. In terms of
vector bundles, it represents the operation which takes a commuting cocycle to its kth

power. Recall that BcomU D jHom.Z�; U /j. The map �k is then the map induced by
the endomorphism of Z� which is multiplication by k in every simplicial degree. It is
obvious then that �k extends to a ku–algebra operation on E . Under the equivalence
with ku^BU.1/C , it is the map induced by the kth power map in BU.1/C .

These “wanna-be” Adams operations can be quite useful. In [15] they were used to
determine the homotopy ring ��.E/ from the cofibre sequence in Corollary 2.10. They
also show that the canonical map i W BcomU ! BU cannot have a section which is
an infinite loop map and a map of multiplicative H –spaces at the same time. Indeed,
first note that �k.y1/ D ky1 on �2.BcomU/. Now suppose that sW BU ! BcomU

is a multiplicative section; then the effect of the composite i ı �k ı s on �2n.BU /
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is multiplication by kn. By a result of Clarke [11], this uniquely identifies the H –
map i ı �k ı s as the kth Adams operation  k W BU ! BU. However, i ı �k ı s
is a composite of infinite loop maps, while  k is unstable unless k 2 f0;˙1g. We
arrive at a contradiction. A similar argument, using the fact that Adams operations
are determined by their effect on line bundles, shows that if j W BU.1/! BcomU and
l W BU.1/! BU are the canonical maps, then s ı l 6' j .

4 On the rational (co)homology of BcomU

In this section we investigate the relationship between the homotopy groups of BcomU

and certain rational characteristic classes introduced by Adem and Gómez [5].

4.1 The conjugation map and cohomology of BcomU.n/

The rational cohomology algebra of BcomU was first described in [5]. Their computa-
tion relies on a general description of the rational cohomology of BcomG in terms of
Weyl group invariants, which we now recall from [4, Section 6; 5, Section 7].

Let G be a compact connected Lie group. Unlike the cases G D U.n/ or G D SU.n/,
the space of homomorphisms Hom.Zk; G/ need not be path-connected for general G
(see eg [5, page 493]). Thus, let Hom.Zk; G/1 � Hom.Zk; G/ denote the path
component of the trivial representation. The path components Hom.Zk; G/1 assemble
into a simplicial space too, whose geometric realisation is denoted by

BcomG1 WD jk 7! Hom.Zk; G/1j:

Fix a maximal torus T 6 G and let W D N.T /=T be its Weyl group. An element
wD nT 2W acts on gT 2G=T by w �gT D gn�1T and on t 2 T by w � t D ntn�1.
The action on T induces an action on Hom.Zk; T / for every k � 0. There is a map

G=T�WHom.Zk; T /!Hom.Zk;G/1; ŒgT; .t1; : : : ; tk/� 7!.gt1g
�1; : : : ; gtkg

�1/;

which generalises the well-known conjugation map G=T �T !G in Lie group theory.
For varying k � 0, both the domain and target of this map assemble into a simplicial
space (we may regard G=T as a constant simplicial space), and it is easy to check that
there is a map induced on the geometric realisation,

(9) 'W G=T �W BT ! BcomG1:
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Now [4, Theorem 6.1] asserts that the “conjugation map” ' induces an isomorphism
of Q–algebras

(10) H�.BcomG1;Q/Š .H
�.G=T;Q/˝H�.BT;Q//W :

Equivalently, using the Borel presentation for the algebra H�.G=T;Q/, the isomor-
phism (10) can be written as

(11) H�.BcomG1;Q/Š .H
�.BT;Q/˝H�.BT;Q//W=J;

where J is the ideal in .H�.BT;Q/˝H�.BT;Q//W generated by the image of the
positive-degree elements of H�.BG;Q/ŠH�.BT;Q/W under the inclusion given
by x 7! x˝ 1. This is [5, Proposition 7.1].

Notation For the rest of Section 4, H� and H� will always mean (co)homology with
rational coefficients, unless stated otherwise.

The case G DU.n/ (see [5, Section 8.1]) Let T .n/6U.n/ denote the maximal torus
consisting of diagonal matrices with entries in U.1/. The associated Weyl group is the
symmetric group †n on n letters, which acts on T .n/ by permuting the diagonal. The
classifying space BT .n/ is a product of n copies of BU.1/, so its rational cohomology
ring is a polynomial algebra QŒy1; : : : ; yn� on a set of n independent variables of
degree two. In the following we shall frequently write QŒy� for a polynomial algebra,
where y WD fy1; : : : ; yng. Thus, by (11),

H�.BcomU.n//Š .QŒx�˝QŒy�/†n=Jn;

where xD fx1; : : : ; xng is another set of variables of degree two, the symmetric group
acts diagonally on the tensor product by permuting the variables in x and y , and Jn
is the ideal generated by all ej .x/˝ 1 for j � 1, where

ej .x/D
X

1�i1<���<ij�n

xi1 � � � xij

denotes the j th elementary symmetric polynomial in x . For .a; b/ 2N2, let

za;b;n 2QŒx�˝QŒy�

denote the †n–invariant polynomial of degree 2.aC b/ given by

(12) za;b;n WD x
a
1y

b
1 C � � �C x

a
ny

b
n :
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Elements of this form in the polynomial ring are called multisymmetric functions; see
eg Vaccarino [28]. It is shown in [5, Section 8.1] that H�.BcomU.n// is generated as
an algebra by the za;b;n for .a; b/ 2N2 with b � 1 and 2.aC b/� 2n. The authors
also verify that H�.BcomU/Š limnH�.BcomU.n// and that there are no relations in
H�.BcomU/, that is, it is generated as a polynomial algebra by the sequences

(13) za;b WD .za;b;n/n�1;

so that

(14) H�.BcomU/ŠQŒza;b j .a; b/ 2N2; b � 1�:

4.2 The rational Hopf ring for BcomU

Now we want to establish a precise relationship between the K–homology classes
yn 2 ku�.BU.1// and the rational cohomology classes za;b 2H�.BcomU/. To do so,
we shall exploit the full multiplicative structure of the space BcomU induced by direct
sum and tensor product. In fact, we wish to work with the larger space Z�BcomU�U
instead of BcomU, so we begin by analysing its homology and cohomology.

The cohomology ring We first compare H�.BcomU/ to H�.BcomU�U/. Let

x'W U.n/=T .n/�BT .n/! BcomU.n/

be the conjugation map (9) before passing to W –orbits. It is a U.n/–equivariant map
if we let U.n/ act on U.n/=T .n/ by left translation, on BcomU.n/ by conjugation,
and trivially on BT .n/. Let

ˆW .U.n/=T .n/�BT .n//�U.n/! BcomU.n/�U.n/

be the induced map on homotopy orbits. Note that

.U.n/=T .n/�BT .n//�U.n/D .U.n/=T .n//�U.n/�BT .n/' BT .n/�BT .n/:

Recall that there is a homotopy fibre sequence of the form

U.n/=T .n/ l
�!BT .n/

j
�!BU.n/;

where j is the map induced by the inclusion T .n/ ,!U.n/. We obtain a commutative
diagram
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(15)

U.n/=T .n/�BT .n/

l�id
��

U.n/=T .n/�BT .n/
x'

//

��

BcomU.n/

��

BT .n/�BT .n/
'
//

pr1

��

.U.n/=T .n/�BT .n//�U.n/ ˆ
//

��

BcomU.n/�U.n/

��

BT .n/
j

// BU.n/ BU.n/

where the unlabelled vertical maps are the inclusion of the fibre and the projection
onto the base in the Borel construction. The Weyl group acts in the usual way on
U.n/=T .n/ and BT .n/ and these actions are compatible with all maps in the diagram.
Specifically, the action on BT .n/�BT .n/ is the diagonal one.

Now consider the right half of the diagram. After passing to W –orbits, x' and ˆ
describe a map of homotopy fibre sequences. The induced map between the fibres is
the conjugation map ' (9), which is a rational cohomology isomorphism by (10). By
comparison of spectral sequences, we see that the map ˆ induces a rational cohomology
isomorphism on W –orbits. The horizontal composite in the centre of the diagram
yields

H�.BcomU.n/�U.n//Š
�
H�.BT .n//˝H�.BT .n//

�W
:

The leftmost column in the diagram shows that the rightmost column takes the following
form on cohomology:

(16) H�.BT .n//W
x 7!x˝1
����!

�
H�.BT .n//˝H�.BT .n//

�W
proj.
��!

�
H�.BT .n//˝H�.BT .n//

�W
=J:

We can pass to the colimit as n!1 in exactly the same way as in [5, page 526] to
conclude that

(17) H�.BcomU�U/ŠQŒza;b j .a; b/ 2N2; .a; b/¤ .0; 0/�:

The classes za;b acquire the same definition as in (13). The only difference between
(17) and (14) is that the restriction b� 1 present in (14) is now omitted, which accounts
for the additional classes coming from the base space BU in the Borel construction
BcomU�U.

Recall that H�.BU /ŠQŒcha ja� 1�, where cha 2H 2a.BU / is the ath component of
the Chern character. Define the class za WD aŠ cha . We see from (16) that the sequence
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of maps BcomU ! BcomU�U ! BU translates to

(18) QŒza j a � 1�!QŒza;b j .a; b/ 2N2; .a; b/¤ .0; 0/�

� � � !QŒza;b j .a; b/ 2N2; b � 1�;

where the two arrows send

za 7! za;0 and za;b 7!

�
za;b if b > 0;
0 if b D 0;

respectively.

The Pontrjagin ring Now we take into account the H –space structure

BcomU�U �BcomU�U ˚
�!BcomU�U

induced by block sum. It makes the polynomial algebra H�.BcomU�U/ into a Hopf
algebra.

Lemma 4.1 The polynomial generators za;b in (17) are primitive.

Proof This is proved in exactly the same way as one proves the primitivity of the
components of the Chern character cha 2H�.BU / (see eg Kochman [17]).

Next we consider the dual Hopf algebra H�.BcomU�U/. Define �a;b to be the
dual in degree 2.aC b/ of the indecomposable element za;b . Then the collection
f�a;b j .a; b/2N2; .a; b/¤ .0; 0/g spans the subspace of primitives in H�.BcomU�U/.

Lemma 4.2 The Hopf algebra H�.BcomU�U/ is polynomial on the primitive genera-
tors �a;b of degree 2.aC b/ for .a; b/ 2N2�f.0; 0/g.

Proof Since BcomU�U is path-connected and a homotopy commutative H –space,
its rational Pontrjagin algebra is the free graded commutative algebra on the subspace
of primitives, by Milnor and Moore [24, Appendix].

Remark 4.3 We could have formulated Lemma 4.2 for the H –space BcomU rather
than the homotopy orbit BcomU�U. From the fact that the inclusion BcomU !

BcomU�U is a map of H –spaces and by dualising (18), we infer that the map of
Pontrjagin rings H�.BcomU/!H�.BcomU�U/ is the embedding onto the subring
generated by �a;b for b � 1.
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The Hopf ring So far we have only used the additive H –space structure on BcomU�U.
In order to further simplify the homology algebra we can take into account the second
H –space structure,

BcomU�U �BcomU�U ˝
�!BcomU�U;

coming from the tensor product in the unitary groups. This leads naturally to the concept
of a Hopf ring. The original reference for this notion is Ravenel and Wilson [25], but
see also the exposition by Wilson [31].

Suppose that X is a space equipped with a grouplike “additive” H –space product
˚W X �X ! X and a “multiplicative” one ˝W X �X ! X satisfying the axioms
of a ring up to homotopy. In our case, X will be the space Z � BcomU�U. The
additive structure induces the graded Pontrjagin product on H�.X/. Using the diagonal
map �W X ! X �X, the Pontrjagin algebra H�.X/ becomes a Hopf algebra. The
multiplicative H –space structure on X induces an additional graded product on H�.X/,
which is denoted by the symbol ı. The Hopf algebra H�.X/ together with the ı–
product is called a Hopf ring. More abstractly, a Hopf ring is a ring object in the
category of coalgebras (while a Hopf algebra would be a group object in the same
category).

Let Œn� 2H0.Z/ be the homology class determined by n 2 Z.

Theorem 4.4 Rationally, the Hopf ring H�.Z�BcomU�U/ is generated by Œ1�˝1 and
the classes Œ0�˝�1;0 and Œ0�˝�0;1 in degree two. In this ring, the class �a;b WD Œ0�˝�a;b
has the presentation

�a;b D
�ıa1;0 ı �

ıb
0;1

aŠbŠ
; .a; b/ 2N2

�f.0; 0/g:

We point out that the purely algebraic structure of the Hopf ring can be easily obtained
from the homotopy ring ��.E/˝Q. Instead, our intention in proving this result is to
obtain a presentation of each class �a;b of a simple form, as displayed in the theorem.
The proof of the theorem is a straightforward computation, and we shall present it in
Section 4.3. We conclude this section with a sequence of corollaries.

Remark 4.5 The inclusion BcomU ! Z�BcomU�U is a map of additive and multi-
plicative H –spaces, so by Remark 4.3 we can regard zH�.BcomU/ as the ideal in the
Hopf ring generated by �0;1 WD Œ0�˝ �0;1 .
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The Hurewicz homomorphism The Hurewicz map gives a direct relationship be-
tween the K–homology classes yn and the cohomology classes za;b . Recall that the
space Z � BcomU�U has two Bott elements, denoted by u and y1 , which live in
the second homotopy group of the base space and the fibre, respectively, of the split
fibration sequence

BcomU ! Z�BcomU�U ! Z�BU:

It is readily checked that the Hurewicz homomorphism in dimension 2 takes u to �1;0
and y1 to �0;1 (see Remark 4.3).

Corollary 4.6 The Hurewicz homomorphism hW ��.BcomU/! zH�.BcomU/ is deter-
mined by the formula

h.yn/D

n�1X
jD0

s.n; n� j /�
n
j

� �j;n�j ; n� 1;

where the s.n; n� j / are the Stirling numbers of the first kind.

Proof By construction, the Hurewicz map is multiplicative for the graded ring structure
on homotopy groups and the ı–product on homology. Using (5) we can present the
homotopy class yn as

nŠyn D

n�1Y
jD0

.y1� ju/

and, therefore,

nŠh.yn/D
n�1


jD0

.�0;1� j�1;0/D

n�1X
jD0

s.n; n� j /�
ı.n�j /
0;1 ı �

ıj
1;0;

by definition of the Stirling numbers (see Berge [8, page 21]). Using the relation in
Theorem 4.4 and dividing by nŠ yields the desired formula.

The splitting of BcomU on cohomology Our next aim is to describe the equivalence
in Theorem 3.4 on rational cohomology groups. Let us write tk W BU h2ki ! BU

for the canonical map. Let �k W BcomU ! BU h2ki denote the composite of the
equivalence in Theorem 3.4 with the projection onto the kth factor. Finally, recall that
H�.BU /ŠQŒzn j n � 1�, where zn D nŠ chn is a multiple of the nth component of
the Chern character.
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Corollary 4.7 For all k � 1 and all n� 1,

.tk ı�k/
�.zn/D kŠ

n�1X
jD0

� n
j

�
S.n� j; k/zj;n�j ;

where the S.n� j; k/ are the Stirling numbers of the second kind.

Proof We use the commuting diagram

��.BcomU/
�k
//

h
��

��.BU h2ki/

h
��

tk
// ��.BU /

h
��

zH�.BcomU/
.�k/�

// zH�.BU h2ki/
.tk/�

// zH�.BU /

to compute the map induced by tk ı �k on homology and then dualise to obtain
the displayed formula for cohomology. The vertical maps in the diagram are the
corresponding Hurewicz maps.

Let �a;b 2 zH�.BcomU/. As the splitting in Theorem 3.4 is a splitting of BU –modules,
the map induced by tk ı�k on homology is a map of zH�.BU /–Hopf modules. The
Hopf ring zH�.BU / can be viewed as the subring of H�.Z�BcomU�U/ generated
by Œ0�˝ �1;0 . Thus, if we decompose �a;b using Theorem 4.4, we obtain

.tk ı�k/�.�a;b/D
�ıa1;0

aŠbŠ
ı .tk ı�k/�.�

ıb
0;1/:

As h.y1/D �0;1 and the Hurewicz map is multiplicative, we have that h.yb1 /D �
ıb
0;1.

We can expand yb1 in the basis fub�kyk j 1� k � bg for �2b.BcomU/. Let cb;k 2 Z

denote the coefficient in front of ub�kyk . Then

.tk ı�k/�.�a;b/D
cb;k

aŠbŠ
�ıa1;0 ı h.u

b/D
cb;k

aŠbŠ
�ıa1;0 ı �

ıb
1;0 D cb;k

� aCb
a

�
�aCb;0;

where �aCb;0 2H�.BU / is dual to zaCb 2H�.BU /.

It remains to determine the coefficient cb;k . Recall from (4) that the multiplicative
structure of ��.BcomU/ is encoded in the identity of power series y.x1/y.x2/ D
y.x1C x2C ux1x2/. Let ej denote the j th elementary symmetric polynomial. By
iteration,

bY
jD1

y.xj /D y

� bX
jD1

uj�1ej .x1; : : : ; xb/

�
;
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so that cb;k is the coefficient of x1 � � � xb in the expansion of� bX
jD1

uj�1ej .x1; : : : ; xb/

�k
:

This coefficient counts kŠ times the number of ways to partition the set fx1; : : : ; xbg
into k disjoint nonempty subsets, that is, cb;k D kŠS.b; k/, by definition of the Stirling
numbers of the second kind (see [8, page 40]).

Example 4.8 In the case k D 1, Corollary 4.7 describes the effect of the inclusion
map i W BcomU ! BU on cohomology. We get

i�.zn/D

n�1X
jD0

� n
j

�
zj;n�j ;

using the fact that S.n� j; 1/D 1. This formula can also be obtained in a different
way. See the appendix, specifically Example A.6.

Our next result describes the classes z0;k . Recall that the space BU h2kC2i is obtained
from BU h2ki by killing the 2kth homotopy group, ie it is obtained as the homotopy
fibre of a certain map

zck W BU h2ki !K.Z; 2k/:

The map zck represents a fractional Chern class. Suppose that ck W BU ! K.Z; 2k/

represents the kth Chern class; then the effect of the composite map ck ıtk W BU h2ki!
K.Z; 2k/ on homotopy groups in degree 2k is multiplication by the integer ck.uk/D
.�1/k�1.k � 1/Š (the kth Chern class of the kth power of the Bott element). This
shows that the homotopy class of ck ı tk is divisible by .k�1/Š and we can take zck to
be zck D .�1/k�1ck=.k� 1/Š.

Definition 4.9 There are integral characteristic classes �k 2H 2k.BcomU;Z/ deter-
mined by the homotopy class of the composite map zck ı�k in the diagram

BcomU
�k
//

�k

&&

BU h2ki
zck
//

tk
��

K.Z; 2k/

Z!Q
��

BU
chk

// K.Q; 2k/
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The square homotopy commutes, because, in rational cohomology, .tk/�W H�.BU /!
H�.BU h2ki/ is the quotient map by the ideal generated by the Chern classes cj for
all j < k and zck is the class represented by chk in this quotient.

Let �Q
k

be the image of �k in H 2k.BcomU;Q/ under the map induced by the coefficient
homomorphism Z!Q.

Corollary 4.10 For all k � 1 we have z0;k D �
Q
k

in H 2k.BcomU;Q/, hence the
classes z0;k are defined in integral cohomology.

Proof The diagram shows that �Q
k

is determined by the homotopy class of chkıtkı�k .
By Corollary 4.7, this is the cohomology class

�
Q
k
D .tk ı�k/

�.chk/D .tk ı�k/
�

�
zk

kŠ

�
D z0;k;

where we used the fact that S.k� j; k/D 0 for j > 0 and S.k; k/D 1.

Remark 4.11 In terms of spectra, the characteristic classes �k are given by the
components of the splitting E '

W
n�0†

2nku and then smashing over ku with HZ.
In other words, they are given by the components of the map �W E!HZ^BU.1/C'W
n�0†

2nHZ which appears in Corollary 2.10. Thus they come from diagonalising
unitary representations of free abelian groups or, in more geometric terms, they are
related to the eigenvalues of the transition functions of a transitionally commutative
vector bundle.

Comparison to the cohomology of BcomSU.2/ The formula in Corollary 4.7 also
tells us something about integral cohomology. We will illustrate this in an example,
which relates to work in preparation with Antolín Camarena and Villarreal [7].

In [5, Example 6.4], Adem and Gómez show that Hk.BcomSU.2/;Z/Š Z=2Z for all
k > 2 with k � 2 mod 4, and the authors were curious about the origin of this torsion
(note that H�.BSU.2/;Z/ is torsionfree!). The purpose of this segment is to show
that these torsion classes are related to the stable cohomology class �3 , that is, to the
fractional Chern class

BcomSU.2/ incl.
��!BcomU

�3
�!BU h6i

c3=2
��!K.Z; 6/:

To explain this, we start by describing the canonical maps iSU.2/W BcomSU.2/!BcomU

and iU.2/W BcomU.2/! BcomU induced by the inclusions of groups SU.2/ ,! U and
U.2/ ,! U on integral cohomology.
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In [29] (see also [7]), Villarreal shows that the ring H�.BcomU.2/;Z/ admits a pre-
sentation with four generators1

(19) H�.BcomU.2/;Z/Š ZŒc1; c2; d1; d2�=.2d2� c1d1; d
2
1 ; d1d2; d

2
2 /:

The generators live in degrees deg.ci / D 2i and deg.di / D 2i C 2 for i D 1; 2.
Abusing notation, the classes c1 and c2 are defined to be the images of the first and
second universal Chern classes living in H�.BU.2/;Z/ under the canonical map
i�W H�.BU.2/;Z/!H�.BcomU.2/;Z/. In the work cited, it is also shown that

(20) H�.BcomSU.2/;Z/ŠH�.BcomU.2/;Z/=.c1/;

and that the map induced by SU.2/ ,! U.2/ is the projection map. From the presen-
tation, one sees that the class d2 becomes 2–torsion in H�.BcomSU.2/;Z/ and its
c2–multiples give rise to the Z=2Z–summands discovered in [5].

The integral cohomology groups of BcomU can be obtained from the equivalence in
Theorem 3.4. Since the cohomology of BcomU.2/ is generated in degrees � 6, it will
suffice to consider the cohomology of BU �BSU�BU h6i. In the relevant degrees
these spaces have the following cohomology classes, each generating an infinite cyclic
summand:

deg BU BSU BU h6i

2 c1
4 c2 �2
6 c3 cSU

3 �3

Here we use the notation cSU
3 to distinguish the third Chern class in BSU from that

in BU, and �2 denotes minus the second Chern class in BSU to match with our earlier
notation.

Lemma 4.12 The integral cohomology of BcomU in degree � 6 maps onto the
cohomology of BcomSU.2/ and BcomU.2/ as indicated in Table 1.

In particular, the canonical map iU.2/W BcomU.2/! BcomU induces a surjective map
of integral cohomology rings.

1In [29] the classes d1 and d2 are denoted by y1 and y2 , respectively. Unfortunately, we have already
reserved these names for elements in the homotopy groups of BcomU .
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BcomU BcomU.2/ BcomSU.2/

c1 c1 0

c2 c2 c2
c3 0 0

�2 c21 � 2c2C d1 �2c2C d1

cSU
3 2c31 � 6c1c2C 8d2 0

�3 c31 � 3c1c2C 3d2 d2

Table 1

Proof From the presentation we see that H�.BcomU.2/;Z/ is torsionfree. In view
of the rational isomorphism (10), this implies that the conjugation map (9) detects the
integral cohomology of BcomU.2/, that is, the map

(21) H�.BcomU.2/;Z/!
�
H�.U.2/=T .2/;Q/˝H�.BT .2/;Q/

�†2

is injective. The target is generated as a Q–algebra by the multisymmetric functions
z0;1 , z0;2 and z1;1 defined in (12) (here we omitted the third index from these classes,
which only indicated the rank of the group). A careful inspection of the calculations
in [29, pages 65–67] (alternatively, [7]) shows that d1 7! 2z1;1 and d2 7! z0;1z1;1

under (21). Moreover, either from Example 4.8 or from (28) we see that c1 7! z0;1

and c2 7! 1
2
.z20;1� z0;2/C z1;1 under (21). The effect of

i�U.2/W H
�.BcomU;Z/!H�.BcomU.2/;Z/

can be described, then, by composing i�
U.2/

with (21) and identifying its image in terms
of z0;1 , z0;2 and z1;1 .

From Corollary 4.10, we see that �2 7! z0;2 and �3 7! z0;3 under this composite map.
For cSU

3 we use Corollary 4.7. First note that the map t�2 W H
�.BU /!H�.BSU/ is

the projection sending c1 7! 0. Also recall that z3 D c31 � 3c1c2C 3c3 in H�.BU /,
by definition of the class z3 D 3Š ch3 . Therefore,

.t2 ı�2/
�.z3/D 3�

�
2 .c

SU
3 /D 2Š.S.3; 2/z0;3C 3S.2; 2/z1;2/;

and, noting that S.3; 2/D 3 and S.2; 2/D 1, we get cSU
3 7! 2.z0;3Cz1;2/ under i�

U.2/

followed by (21). Both z0;3 and z1;2 can be written in terms of z0;1 , z0;2 and z1;1 ,
namely z0;3 D 1

2
.3z0;1z0;2 � z

3
0;1/ and z1;2 D z0;1z1;1 . In this way one obtains the

second column in the lemma. The third column is obtained from the second by setting
c1 to zero and noting that d2 becomes an element of order two.
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The entry in the bottom right corner of Table 1 shows that the 2–torsion class d2 is
the image of the stable class �3 .

We see that, for every n� 2, the class d2 lifts to a class d2In 2H 6.BcomSU.n/;Z/,
namely the image of �3 under H 6.BcomU;Z/!H 6.BcomSU.n/;Z/.

Lemma 4.13 For n� 3, the class d2In is nontorsion.

Proof It suffices to show that the rational class �Q
3 is mapped nontrivially to

H 6.BcomSU.n/;Q/

whenever n � 3. We can identify �Q
3 with the multisymmetric function z0;3 (see

Corollary 4.10). In [5, Section 8] the authors show that the map H�.BcomU.n/;Q/!

H�.BcomSU.n/;Q/ is the quotient map by the ideal generated by z0;1 . Suppose that
n � 3 and that z0;3 is a multiple of z0;1 in H�.BcomU.n/;Q/. Then this lifts to a
relation in the ring .QŒx�˝QŒy�/†n expressing z0;3 as a polynomial in multisymmetric
functions. However, it follows from Vaccarino [28, Proposition 3.1(2)] that for n� 3
there are no nontrivial relations amongst multisymmetric functions in .QŒx�˝QŒy�/†n

which are of degree � 3 in the variables x and y . So z0;3 is not a multiple of z0;1
and therefore z0;3 D �

Q
3 is mapped nontrivially to H 6.BcomSU.n/;Q/.

We summarise:

Corollary 4.14 The cohomology classes in

H�.BcomSU.2/;Z/ and H�.BcomU.2/;Z/

are stable, in the sense that they are pulled back from

H�.BcomU;Z/:

In particular, the Z=2Z–summands in H�.BcomSU.2/;Z/ correspond to the c2–
multiples of �3 2H 6.BcomU;Z/. For n� 3, they correspond to nontorsion classes in
H�.BcomSU.n/;Z/.

4.3 Proof of Theorem 4.4

We consider the ring space up to homotopy Z�BcomU�U. For n 2 Z we write XŒn�
for the subspace fng �BcomU�U. The cohomology of XŒn� is described in (17). The
multiplicative H –space structure restricts to component maps

(22) �m;nW XŒm��XŒn�!XŒmn� for all m; n 2 Z:
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The following lemma describes the effect of (22) on cohomology groups.

Lemma 4.15 Let za;b 2H�.XŒmn�/ with m; n� deg.za;b/D 2.aC b/. Then

��m;n.za;b/D

aX
iD0

bX
jD0

� a
i

�� b
j

�
za�i;b�j ˝ zi;j ;

where z0;0˝ 1 WDm and 1˝ z0;0 WD n.

Proof For k�1 let jk W BcomU.k/�U.k/!XŒk� be the inclusion into the direct limit
XŒk�' coliml�k BcomU.l/�U.l/. The map j �

k
W H�.XŒk�/!H�.BcomU.k/�U.k//

is then the projection onto the kth component in the inverse limit H�.XŒk�/ Š
liml H�.BcomU.l/�U.l//. By [28, Proposition 3.1(2)], the map j �

k
is injective in

cohomological degrees � � k . Consider the diagram

BcomU.m/�U.m/�BcomU.n/�U.n/
�0m;n

//

jm�jn

��

BcomU.mn/�U.mn/

jmn

��

XŒm��XŒn�
�m;n

// XŒmn�

where �0m;n is also induced by tensor product. The diagram commutes up to homotopy,
because the product map �m;n is induced by extending �0m;n over the group completion.

Both vertical maps are injective in cohomological degree 2.aC b/ by our assumption
that m; n � deg.za;b/. Thus the formula displayed in the lemma can be checked by
computing .�0m;n/

�.za;b;mn/ instead, where za;b;mn is as defined in (12). Because
the composite in the middle row of diagram (15) is multiplicative with respect to
tensor product, this amounts to computing the pullback of the multisymmetric function
za;b;mn under the map

BT .m/�BT .m/�BT .n/�BT .n/
.˝�˝/ı.1���1/
�����������! BT .mn/�BT .mn/;

where � is the transposition of the two factors in the middle. It is readily checked that
this yields the formula displayed in the lemma.

Note that, even though H�.XŒmn�/ Š H�.XŒ0�/, the right-hand side of the above
formula depends on m and n.

We now dualise to obtain the corresponding formula for homology.
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Lemma 4.16 Let �a;b 2H�.XŒm�/ and �c;d 2H�.XŒn�/ and assume that m; n �
deg.�a;b/C deg.�c;d /. Then

.�m;n/�.�a;b˝ �c;d /D
� aCc

a

�� bCd
b

�
�aCc;bCd Cmn�a;b�c;d :

Proof Let zI be any monomial in the cohomology algebra of XŒmn� of total degree
2.aC bC cC d/. Then

hzI ; .�m;n/�.�a;b˝ �c;d /i D h�
�
m;n.z

I /; �a;b˝ �c;d i

is nonzero if and only if the term za;b˝ zc;d appears in ��m;n.z
I /. By Lemma 4.15

(this uses the assumption on m and n), this happens if either zI D zaCc;bCd or
zI D za;bzc;d . In the first case, the pairing evaluates to the product of binomial
coefficients and, since zaCc;bCd is dual to �aCc;bCd , this gives the first term in the
claimed formula. In the latter case we have

��m;n.za;b/�
�
m;n.zc;d /

Dmn.za;b˝ zc;d C zc;d ˝ za;b/C terms evaluating to zero on �a;b˝ �c;d :

If .a; b/¤ .c; d/, then this evaluates to mn on �a;b˝ �c;d , and because za;bzc;d is
dual to �a;b�c;d , we are done. If .a; b/D .c; d/, then the pairing evaluates to 2mn,
but in this case z2

a;b
is dual to 2�2

a;b
, and again we arrive at the displayed formula.

We can now finish the proof of Theorem 4.4. We have an isomorphism of Pontrjagin
algebras

(23) H�.Z�BcomU�U/ŠQŒZ�˝Q QŒ�a;b j .a; b/¤ .0; 0/�;

where QŒZ� is the rational group ring of the additive group of integers. Denote the
coproduct by �. If Œn� 2H0.Z/ denotes the homology class determined by n 2 Z,
then the coproduct in QŒZ� is given by �.Œn�/D Œn�˝ Œn�. Furthermore, because Z is
a ring, the group ring QŒZ� is a Hopf ring with Œm� ı Œn�D Œmn�.

Let us write inW XŒn�! Z�BcomU�U for the inclusion of the nth component. Then
in sends the class �a;b 2H�.XŒn�/ to the class Œn�˝ �a;b under the isomorphism (23).

Now let �a;b; �c;d 2H�.BcomU�U/ be given and choose m; n�deg.�a;b/Cdeg.�c;d /.
The commutative diagram
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XŒm��XŒn�
�m;n

//

im�in
��

XŒmn�

imn

��

.Z�BcomU�U/� .Z�BcomU�U/
˝
// Z�BcomU�U

together with Lemma 4.16 yields the relation

.Œm�˝�a;b/ı.Œn�˝�c;d /D
� aCc

c

�� bCd
b

�
Œmn�˝�aCc;bCdCmnŒmn�˝.�a;b�c;d /

in H�.Z � BcomU�U/. Simple formal manipulations in the Hopf ring, which we
learned from [31], turn this into

.Œ0�˝ �a;b/ ı .Œ0�˝ �c;d /D
� aCc

c

�� bCd
b

�
Œ0�˝ �aCc;bCd :

This gives us the presentation of Œ0�˝ �a;b asserted in the theorem.

5 The commutative K –theory of S 4

We now give a description of the group zKcom.S
4/Š Z˚Z. We will show that it is

generated by rank-2 bundles, in the sense that the natural map

�4.BcomSU.2//! �4.BcomU/

is an isomorphism.

We first fix an orientation for S4. Let ŒS4�2H4.S4;Z/ be the image of the fundamental
class of CP 2 under the quotient map CP 2!CP 2=CP 1 Š S4. The following lemma
allows us to work with cohomology.

Lemma 5.1 There is an isomorphism

�4.BcomSU.2//Š Hom
�
H 4.BcomSU.2/;Z/;Z

�
that takes f 7!

�
a 7! hf �.a/; ŒS4�i

�
.

Proof This follows from the Hurewicz theorem and universal coefficients, because
BcomSU.2/ is 3–connected and H4.BcomSU.2/;Z/ is torsionfree. Both these facts
were shown in [5].

As a basis for the cohomology group H 4.BcomSU.2/;Z/Š Z2 we use c2 and b WD
d1� 2c2 in the notation of (19). Let c�2 and b� be their Z–linear duals.
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Construction of c�
2

We define an element v2�4.BcomSU.2// as follows. The simpli-
cial 1–skeleta of BSU.2/ and BcomSU.2/ agree and they are both given by †SU.2/.
We have that †SU.2/ Š S4. Thus the inclusion of the simplicial 1–skeleton into
BSU.2/ can be factored through a map

vW S4 Š†SU.2/! BcomSU.2/:

The composition i ıv is 6–connected, because the homotopy fibre of i ıvW †SU.2/!
BSU.2/ is equivalent to the simplicial 1–skeleton of ESU.2/, which is equivalent
to the join SU.2/ � SU.2/ Š S7. In particular, .i ı v/�.c2/ D v�.c2/ is a generator
of H 4.S4;Z/. By choosing the identification S4 Š †SU.2/ we can arrange for
v�.c2/D 1.

We now claim that v�.b/D 0. To see this, we use the commutative diagram

(24)

SU.2/=T �†T incl.
//

�2
��

SU.2/=T �BT

x'

��

†SU.2/ v
// BcomSU.2/

where T 6 SU.2/ is a maximal torus and x' is the conjugation map (9) before taking
Weyl group orbits. The left-hand vertical arrow is the restriction of x' to the simplicial
1–skeleta. It is a map of degree 2 (the order of the Weyl group W D †2 ). We
now appeal to the proof of Lemma 4.12, from which it follows that d1 7! 4z1;1 and
2c2 7! 4z1;1� 2z0;2 under x'� (the extra factor of 2 comes from changing tori from
T .2/6U.2/ to T 6 SU.2/). Thus, d1�2c2 7! 0 in the top left corner of the diagram,
because z0;2 lands in H 4.†T;Q/D 0. Then also v�.b/D v�.d1�2c2/D 0, because
the left vertical map is injective on cohomology.

Construction of b� The construction of b� seems more complicated. We expect
that this class is related to an element in the second homotopy group of the space
Hom.Z2;SU.2//=SU.2/ _ SU.2/. For the purpose of this section, however, it is
enough to define a representative for a multiple of b�. Consider the map

(25) CP 2 incl.
��!CP1 ' BT incl.

��!BcomSU.2/:

As noted earlier, the space BcomSU.2/ is 3–connected, so this composite map factors
up to homotopy through the quotient space CP 2=CP 1'S4. Let w denote the induced
map on S4. The homotopy class of w is determined by that of (25), because we
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are collapsing the 2–dimensional complex CP 1 inside a 3–connected space. By our
choice of orientation of S4, the quotient map CP 2! S4 has degree 1.

To check the effect of w on cohomology, we can use the composition of the map
x' in the diagram above with the inclusion BT ! SU.2/=T � BT of the second
factor. We find w�.c2/ D �1 and w�.b/ D 2. Thus w corresponds to �c�2 C 2b

�

under the isomorphism in Lemma 5.1. Consequently, v and 1
2
.vCw/ freely generate

�4.BcomSU.2//.

Proposition 5.2 The natural map

�4.BcomSU.2//! �4.BcomU/

induced by SU.2/ ,! U is an isomorphism. As a consequence, the map BcomU.2/!

BcomU is 4–connected.

Proof The proof is a computation of characteristic classes. Let iSU.2/W BcomSU.2/!
BcomU be the inclusion. We have the maps

S4
v;w
// BcomSU.2/

iSU.2/
// BcomU

i
��

�2
// K.Z; 4/

BU

The group �4.BU / Š Z is generated by the square of the Bott class u2, which has
second Chern class �1. The group �4.BcomU/Š Z˚Z is generated by the classes
uy1 and y2 . The maps i� and .�2/� induced on homotopy groups act as the projections
onto the two Z–factors, that is, i�.uy1/D u2 and .�2/�.uy1/D 0, and i�.y2/D 0
and .�2/�.y2/D 1. As elements of �4.BcomU/ we can write iSU.2/ ıvD ˛uy1Cˇy2

for some ˛; ˇ 2 Z. To determine ˛ we compute

.i ı iSU.2/ ı v/
�.c2/D v

�.c2/D 1;

hence ˛ D�1 (because uy1 corresponds to u2, which has c2.u2/D�1). For ˇ we
use Table 1, which shows that

.iSU.2/ ı v/
�.�2/D v

�.�2c2C d1/D v
�.b/D 0;

so ˇ D 0. This shows that iSU.2/ ı v D �uy1 in �4.BcomU/. In a similar way one
shows that iSU.2/ ı w D 2y2 C uy1 . Hence, iSU.2/ ı

1
2
.v C w/ D y2 , and the first

assertion follows.
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For the second statement note that both BcomU.2/ and BcomU are simply connected,
and that the natural map BcomU.2/ ! BcomU is an isomorphism on homotopy in
dimension 2 by the Hurewicz theorem and Lemma 4.12. By Lemma 3.5, the map
BcomSU.2/!BcomU.2/ induces isomorphisms on homotopy groups in dimensions �3.
The second assertion follows now, because BcomSU.2/! BcomU is an isomorphism
on homotopy groups in dimensions 3 (trivially) and 4 (by the first statement), and a
surjection in dimension 5 (because �5.BcomU/D 0).

Remark 5.3 Let hW SU.2/=T �†T !BcomSU.2/ be the composite map through the
top right corner of (24). In [5, Example 2.5], the authors construct the classifying map
of a transitionally commutative SU.2/–bundle over S4 by factoring this map through
the smash product

zhW S4 Š SU.2/=T ^†T ! BcomSU.2/;

using the fact that BcomSU.2/ is 3–connected. With the results of this section we can
easily determine the class represented by zh in zKcom.S

4/. We have seen above that
h�.c2/D˙2 and that h�.b/D 0. Thus zhD˙2v as an element of �4.BcomSU.2//.
By Proposition 5.2, then, zhD˙2uy1 in zKcom.S

4/ (the sign can be fixed by choosing
orientations).

We finish this section by explaining how the class y2 2 zKcom.S
4/ arises from the

difference of the tautological bundle on CP 2 thought of as a transitionally commutative
bundle on the one hand, and as an ordinary line bundle on the other hand:

Recall the spectrum F 'ku_†2ku from Section 3. We have a map `W †1BU.1/!F

adjoint to the canonical map BU.1/ ! BU ' �1†2ku. Similarly, we have a
map `0W †1BU.1/! E corresponding to the inclusion BU.1/! BcomU. Now let
sW F !E be the splitting defined in Remark 3.2. Under the equivalences F ' ku^S2

C

and E ' ku^BU.1/C , it is the map induced by the canonical map S2!BU.1/. We
claim that the restriction of the difference class

`0� s ı ` 2 zKcom.BU.1//

along the inclusion j W CP 2 ,! CP1 ' BU.1/ descends to a unique class on S4

which represents the generator y2 2 zKcom.S
4/.

The cofibre sequence CP 1 ,!CP 2
q
�!S4 yields an exact sequence

0D zKcom.†CP 1/! zKcom.S
4/

q�
�! zKcom.CP

2/! zKcom.CP
1/;
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which shows that a class in the kernel of the restriction map to CP 1 comes from a unique
class in zKcom.S

4/. Since zKcom.CP 1/Š zK.CP 1/, the image of `0�sı` in zKcom.CP 1/

is zero. Thus there exists a unique y 2 zKcom.S
4/ such that q�.y/ D j �.`0 � s ı `/.

By construction, y lies in the kernel of the projection map zKcom.S
4/! zK.S4/, so its

component in the “uy1–direction” is zero. To determine the “y2–component” we note
that the cohomology class �2 can be computed from the map of spectra

ku^BU.1/C '
W
n�0†

2nku!†4ku!†4HZ;

where ku ! HZ is the standard map. That is, we regard �2 as a natural map
zKcom.�/! zH 4.�;Z/. Since sW F !E only hits the wedge summands for nD 0; 1,

this shows that �2.s ı `/ D 0 in zH 4.BU.1/;Z/. Furthermore, we see (eg from the
proof of Lemma 4.12) that �2.`0/ is the canonical generator of zH 4.BU.1/;Z/. Thus,
by naturality, �2.y/ is a generator of zH 4.S4;Z/. This shows that y and y2 agree as
elements of zKcom.S

4/.

Appendix: The map BcomG1 ! BG on rational cohomology

Recall the definition of BcomG1 from Section 4.1. The inclusion map i W BcomG1!BG

induces a ring homomorphism

i�W H�.BG/!H�.BcomG1/;

which gives H�.BcomG1/ the structure of a H�.BG/–module [5]. When rational
coefficients are used, the map i� can be completely described by means of the rational
isomorphism (10) and a general observation about the conjugation map that we shall
now explain.

Let G be a compact Lie group and H 6G an abelian, closed subgroup. Let BH and
BG denote the bar construction, and let j W BH ! BG be the map induced by the
inclusion H ,! G. Let us regard G=H as a constant simplicial space. Recall that a
map

(26) ˛W G=H �BH ! BG

can be defined simplexwise by letting

.gH; h1; : : : ; hk/
˛
�! .gh1g

�1; : : : ; ghkg
�1/

on k–simplices.
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In the following proposition we give an alternative description of the map (26) up to
homotopy, and determine its homotopy fibre. Let EH �H G be the one-sided bar
construction for the action of H on G by left translation. Then we have the standard
homotopy fibre sequence

EH �H G
l
�!BH

j
�!BG;

where l is the evident projection map. Note that EH �H G 'G=H. The equivalence
is .h1; : : : ; hk jg/ 7! g�1H on k–simplices. By abuse of notation, we shall also write
l W G=H ! BH for the map obtained by implicitly inverting this equivalence.

Since H is assumed abelian, there is a multiplication map �W BH �BH ! BH.

Proposition A.4 The conjugation map ˛W G=H �BH ! BG is homotopic to the
composition of maps

G=H �BH
l�id
��!BH �BH

�
�!BH

j
�!BG:

Moreover, there is a homotopy fibre sequence

G=H �G=H sh
�!G=H �BH ˛

�!BG;

where the map sh is the “shear” map given by

sh.gH; g0H/D
�
gH;�.l.gH/�1; l.g0H//

�
:

Proof To prove the first part of the proposition it suffices to show that the two principal
G–bundles over G=H �BH classified by j ı�ı.l�id/ respectively ˛ are isomorphic.
Thus, we must compare the pullbacks of the universal bundle � W EG!BG under both
maps. It is known that a levelwise pullback of simplicial spaces remains a pullback after
geometric realisation. Then it is easily seen that the following diagram is a pullback
square by verifying the pullback simplexwise:

(27)

E.H �H/�� .G �G/
p

//

q

��

EG

�

��

.EH �H G/�BH
jı�ı.l�id/

// BG

In the top left corner, the one-sided bar construction is formed by regarding G �G as
a left H�H –space via the action

�W H �H �G �G!G �G; .h; h0; g; g0/ 7! .hg; hh0g0/:
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Right multiplication on the second factor of G makes the bar construction the total
space of a principal G–bundle. The bundle projection q is given by two component
maps: The component into EH �H G is obtained by projecting onto the first factors.
The component map into BH is the projection onto B.H �H/ followed by projection
onto the second factor. The bundle map p is induced by multiplication in H and
projection onto the second factor of G.

On the other hand, pulling back the universal G–bundle along the map ˛ produces the
diagram

E.H �H/��0 .G �G/
p0
//

q

��

EG

�

��

.EH �H G/�BH
˛

// BG

The action �0 is given by

�0W H �H �G �G!G �G; .h; h0; g; g0/ 7! .hg; g�1h0gg0/;

and the bundle map p0 is most easily described on k–simplices, where it is given by

..h1; h
0
1/; : : : ; .hk; h

0
k/ j .g; g

0//
p0
7�! .g�1h01g; : : : ; g

�1h0kg jg
0/:

The bundle projection q is the same as in (27).

It remains to compare the resulting principal G–bundles over the common base space
.EH �H G/�BH. One can check that the shear map

G �G!G �G; .g; g0/ 7! .g; g�1g0/;

is H�H –equivariant for the actions � and �0 and induces an isomorphism of the two
principal bundles. This proves that ˛ ' j ı� ı .l � id/.

To prove the second part of the proposition we may take the homotopy fibre of ˛ to be
the space in the top left corner of (27). We have the commutative diagram

.EH �H G/� .EH �H G/
Š

�
//

sh

--

E.H �H/�� .G �G/

q

��

.EH �H G/�BH

where the horizontal isomorphism is given by

..h1; : : : ; hk jg/; .h
0
1; : : : ; h

0
k jg

0// �
�! ..h1; h

�1
1 h01/; : : : ; .hk; h

�1
k h0k/ j .g; g

0//
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on k–simplices. The composite map sh WD q ı � is then given by

..h1; : : : ; hk jg/; .h
0
1; : : : ; h

0
k jg

0// sh
�! ..h1; : : : ; hk jg/; .h

�1
1 h01; : : : ; h

�1
k h0k//:

Under the equivalence EH �H G 'G=H it becomes the shear map sh as described
in the proposition.

Let H� denote cohomology with Q coefficients.

Consider the case where H D T is a maximal torus in G and W D N.T /=T is its
Weyl group. The multiplication �W BT �BT ! BT makes the algebra H�.BT / a
Hopf algebra with comultiplication ��.

Corollary A.5 Under the well-known isomorphism H�.BG/ŠH�.BT /W and the
isomorphism (11), the map i�W H�.BG/!H�.BcomG1/ is given by

H�.BT /W
��
�! .H�.BT /˝H�.BT //W

proj.
��! .H�.BT /˝H�.BT //W=J:

Proof This is immediate from Proposition A.4.

Example A.6 Consider the case GDU.k/. We have recalled the rational cohomology
of BcomU.k/ in Section 4.1. The cohomology ring is generated by the multisymmetric
functions (12), that is, by the

za;b;k D x
a
1y

b
1 C � � �C x

a
ky

b
k

for b � 1. Similarly, H�.BU.k// Š H�.BT .k//W D QŒt1; : : : ; tk�
†k is generated

by the polynomials zn WD tn1 C � � �C t
n
k

. Since each ti is primitive, we have

��.zn/D

kX
iD1

.ti ˝ 1C 1˝ ti /
n
D

nX
jD0

� n
j

� kX
iD1

t
j
i ˝ t

n�j
i :

Identifying tji ˝ t
n�j
i with xji y

n�j
i in H�.BcomU.k// and applying Corollary A.5

shows that

(28) i�.zn/D

n�1X
jD0

� n
j

�
zj;n�j;k :

In the limit k!1 we arrive at the formula derived in Example 4.8.
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