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Geometrically bounding 3–manifolds,
volume and Betti numbers

JIMING MA

FANGTING ZHENG

A hyperbolic 3–manifold is geometrically bounding if it is the only boundary of a
totally geodesic hyperbolic 4–manifold. According to previous results of Long and
Reid (2000) and Meyerhoff and Neumann (1992), geometrically bounding closed
hyperbolic 3–manifolds are very rare. Assume the value v � 4:3062 : : : for the
volume of the regular right-angled hyperbolic dodecahedron P in H3. For each
positive integer n and each odd integer k in Œ1; 5n C 3�, we construct a closed
hyperbolic 3–manifold M with ˇ1.M / D k and vol.M / D 16nv which bounds a
totally geodesic hyperbolic 4–manifold. In particular, for every positive odd integer k,
there are infinitely many geometrically bounding 3–manifolds whose first Betti
numbers are k. The proof exploits the real toric manifold theory over a sequence of
stacking dodecahedra, together with some results obtained by Kolpakov, Martelli and
Tschantz (2015).

57R90, 57M50, 57S25

1 Introduction

1.1 Geometrically bounding 3–manifolds

There is a well-known result given by Rohlin in 1951, saying that any closed orientable
3–manifold is null-cobordant (see, for example, Corollary 2.5 of [18]), whereas for
higher dimensions, it remains an open problem to say which closed n–manifolds can
bound .nC1/–manifolds. Farrell and Zdravkovska [7] conjectured that every almost flat
n–manifold bounds an .nC1/–manifold; see also Davis and Fang [5]. This conjecture
is far from being solved. Farrell and Zdravkovska also conjectured in the same paper
that every flat n–manifold M is the cusp section of a one-cusped hyperbolic .nC1/–
manifold. However, Long and Reid [11] refuted this stronger conjecture by showing that
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1056 Jiming Ma and Fangting Zheng

if M is the cusp section of a one-cusped hyperbolic 4n–manifold, its �–invariant �.M /

must be an integer.

If a hyperbolic n–manifold M is the unique totally geodesic boundary of a hyperbolic
.nC1/–manifold N, we say that M bounds geometrically or M is a geometrically
bounding n–manifold. In this context, Long and Reid [11] studied what kinds of
3–manifolds bound geometrically; Ratcliffe and Tschantz [16] provided some cosmo-
logical motivations for studying geometrically bounding 3–manifolds. In general, it is
not a trivial task to look for geometrically bounding 3–manifolds, since only few explicit
hyperbolic 4–manifolds are known. Moreover, Long and Reid showed in [11] that if
a closed hyperbolic 3–manifold M is geometrically bounding, its �–invariant �.M /

must be an integer. This, together with the result of Meyerhoff and Neumann [13]
that the set of �–invariants of all hyperbolic 3–manifolds is dense in R, shows that
geometrically bounding 3–manifolds are very rare in the set of hyperbolic 3–manifolds.
To the best of our knowledge, the following question remains open:

Question 1.1 Given a closed hyperbolic 3–manifold M with �–invariant �.M / 2 Z,
is there a totally geodesic hyperbolic 4–manifold N with @N DM ?

By Jorgensen–Thurston’s Dehn surgery theory [23], we know that there are only finitely
many (possibly zero) hyperbolic 3–manifolds with a given volume x. More precisely,
if we consider the function

f .x/D supfn j there are n different hyperbolic 3–manifolds with volume v � xg;

then Jorgensen–Thurston theory implies that f .x/ is finite. Furthermore, Millichap [14]
showed that f .x/ grows at least factorially.

In this paper, we consider instead the number of geometrically bounding 3–manifolds
with a given volume. That is, we focus on the function

fb.x/D

supfn j there are n different geometrically bounding 3–manifolds with volume v�xg:

Building on Kolpakov, Martelli and Tschantz [9] and real toric manifold theory, we
prove the following:

Theorem 1.2 Assume that v � 4:3062 : : : is the volume of the regular right-angled
hyperbolic dodecahedron in H3. Then , for each positive integer n and each odd
integer k in Œ1; 5nC 3�, there is a closed hyperbolic 3–manifold M with ˇ1.M /D k

and vol.M /D 16nv that bounds a totally geodesic hyperbolic 4–manifold.

Algebraic & Geometric Topology, Volume 23 (2023)
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Therefore, we construct some families Fn, n � 1, of closed hyperbolic 3–manifolds
having the following special features:

� They all bound geometrically, ie for any n, each manifold in Fn is the connected
geodesic boundary of a compact hyperbolic 4–manifold.

� Each manifold in Fn can be decomposed into 16n right-angled dodecahedra.
The set Fn contains manifolds with first Betti numbers 1; 3; 5; : : : ; 5nC 3. In
particular, Fn contains at least n elements.

This implies that the above-defined function fb.x/ grows at least linearly. Moreover,
we have a corollary of Theorem 1.2 as follows.

Corollary 1.3 For every positive odd number k, there are infinitely many geometrically
bounding 3–manifolds whose first Betti numbers are k.

We refer to the paper of Ratcliffe and Tschantz [17] for counting the number of totally
geodesic hyperbolic 4–manifolds with the same 3–manifold M as boundary, and to
Chu and Kolpakov [4] and Slavich [19; 20] for other topics regarding geometrically
bounding hyperbolic manifolds. Also see the recent paper by Kolpakov, Reid and
Slavich [10] for problems related to geodesically embedding hyperbolic manifolds.
However, we emphasize that being geometrically bounding is a more subtle property
than being geodesically embedding.

1.2 Real toric manifolds

Small covers, also known as Coxeter orbifold coverings, have been studied by Davis
and Januszkiewicz [6], see also Vesnin [24]. They are a class of n–manifolds which
admit locally standard Zn

2
–actions, such that the orbit spaces are n–dimensional simple

polytopes. The algebraic and topological properties of a small cover are closely related
to the combinatorics of the orbit polytope and to the coloring on the codimension-one
faces of that polytope. For example, the mod 2 Betti numbers ˇ.2/i of a small cover M

over the polytope L is equal to hi , where hD .h0; h1; : : : ; hn/ is the h–vector of the
polytope L; see [6].

Those manifolds admitting locally standard Zk
2

–actions are usually referred to as real
toric manifolds and form a wider class. Given an n–dimensional simple polytope L,
we can define a map � W F ! Zk

2
that satisfies certain conditions, where F is the set of

codimension-one faces of L. Furthermore, by the equivalence relation determined by
the map �, we can construct a smooth closed manifold M.L; �/. See Section 2.1 for
more details.
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For instance, we may color the four codimension-one faces of a tetrahedron by e1,
e2, e3 and e1C e2C e3, where e1, e2 and e3 are the standard basis of Z3

2
. From the

construction mentioned in the previous paragraph, we construct the closed orientable 3–
manifold RP3. Note that a tetrahedron admits a unique right-angled spherical structure.
We thus naturally obtain a unique spherical structure on RP3 by inheriting spherical
structures from the four tetrahedral copies.

In the rest of this section, we assume that P is the regular right-angled hyperbolic
dodecahedron in H3 with twelve 2–dimensional facets, and nP is the polytope obtained
by stacking n copies of P . It is obvious that nP has 12 pentagonal facets and 5n� 5

hexagonal facets. See Section 2.3 for more details.

Given a Z3
2
–coloring � over the polytope nP , we generate the natural Z4

2
–coloring ı

on nP in the following manner. Suppose fe1; e2; e3; e4g is the standard basis of Z4
2
.

For each facet F of nP , if �.F / D
P3

iD1 xiei with xi D 1 or 0, we take ı.F / DP4
iD1 xiei , where x4D 1C

P3
iD1 xi mod 2. A Z3

2
–coloring � is called nonorientable

if the corresponding 3–manifold M.nP; �/ is nonorientable. Furthermore, if the
3–manifold M.nP; �/ is nonorientable, then its natural Z4

2
–coloring ı is called the

natural Z4
2
–extension of �. It can be shown that M.nP; ı/ is the orientable double

cover of M.nP; �/ when M.nP; �/ is nonorientable. Our main technical theorem is
the following.

Theorem 1.4 For each positive integer n and each odd integer k in Œ1; 5nC 3�, there
is a nonorientable Z3

2
–coloring � on the polytope nP such that the first Betti number of

the orientable 3–manifold M.nP; ı/ is k, where ı is the natural Z4
2
–extension of �.

From Theorem 1.4, given a positive integer n and an odd integer k in Œ1; 5nC 3�,
there exists an orientable 3–manifold M.nP; ı/ whose first Betti number is exactly k.
Moreover, we conjecture that there is no coloring on nP leading to an orientable
manifold M.nP; ı/ with first Betti number not an odd integer k � 5n C 3. The
converse has been checked numerically, but has not been proved rigorously yet.

Proof of Theorem 1.2 For a nonorientable Z3
2
–coloring � on the polytope nP , there

is a natural Z4
2
–extension ı on nP . Both M.nP; ı/ and M.nP; �/ are 3–manifolds

and M.nP; ı/ is the orientable double cover of M.nP; �/. See Proposition 2.11 in
Section 2.4 for more details.

Next, we want to show that M.nP; ı/ is geometrically bounding. First, we use Propo-
sition 2.9 in [9] to extend the Z4

2
–coloring ı on the 3–dimensional polytope nP to

Algebraic & Geometric Topology, Volume 23 (2023)
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a Z5
2
–coloring " on the 4–dimensional polytope nE. Here, nE is a 4–dimensional

polytope obtained by stacking n copies of the hyperbolic right-angled 120–cell E. Then
M.nE; "/ is an orientable hyperbolic 4–manifold in which M.nP; �/ can be embedded.
Second, since M.nP; ı/ is the orientable double cover of M.nP; �/, it admits a fixed-
point-free orientation-reversing involution. We may thus apply Corollary 9 of [12].
By cutting M.nE; "/ along the hypersurface M.nP; �/ and applying completion, we
can obtain a totally geodesic hyperbolic 4–manifold with boundary M.nP; ı/. Now,
Theorem 1.2 follows from Theorem 1.4.

Outline of the paper

In Section 2, we provide some preliminaries on the algebraic theory of real toric
manifolds. In Section 3, we prove Lemma 3.1, which is the key element of the main
theorem. In Sections 4 and 5, we prove Theorem 1.4 for the cases of even and odd n,
respectively.
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2 Preliminaries

In this section, we list some facts concerning real toric manifolds and introduce the
3–dimensional right-angled hyperbolic polytope nP . Proofs, details, and definitions can
be found in [1]. For the sake of brevity, we write n–polytope instead of n–dimensional
polytope, and by facet we mean a face of codimension one. An n–polytope is called
simple if every r–face belongs to exactly n� r facets.

2.1 Real toric manifolds

Given a simple n–polytope L, let F.L/D fF1;F2; : : : ;Fmg be its set of facets. Let
us define the Zk

2
–coloring characteristic function, n� k �m, as a function

� W F.L/D fF1;F2; : : : ;Fmg ! Zk
2

Algebraic & Geometric Topology, Volume 23 (2023)
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that satisfies the nonsingularity condition. That is, �.Fi1
/; �.Fi2

/; : : : ; �.Fin
/ generate

a subgroup of Zk
2

which is isomorphic to Zn
2

when the n facets Fi1
;Fi2

; : : : ;Fin
share

a common vertex. The binary matrix ƒ.n�m/ D .�.F1/; �.F2/; : : : ; �.Fm// is called
the characteristic matrix of �.

Then, we can construct a smooth manifold M.L; �/ WDL�Zk
2
=�, called a real toric

manifold over the polytope P, by the equivalence relation

.x;g1/� .y;g2/ ()

�
x D y and g1 D g2 if x 2 Int L;

x D y and g�1
1

g2 2Gf if x 2 @L;

where f DFi1
\� � �\Fin�r

is the unique face of codimension n� r that contains x as
an interior point, and Gf is the subgroup generated by �.Fi1

/; �.Fi2
/; : : : ; �.Fin�r

/.
The notation M.L; �/ also highlights that each real toric manifold corresponds to a pair
f.L; �/g that is made of a polytope and a characteristic function. For brevity, we refer
to the colorings when the polytope is given instead of talking about both colorings and
manifolds. When k Dm, M.L; �/ is known as the real moment-angle manifold over
the polytope L, which admits a natural Zm

2
–action. If k D n, then the corresponding

manifold is called a small cover. By the four color theorem, we know that small covers
can always be realized over any 3–dimensional simple polytope.

Example 2.1 Define a Z3
2
–coloring characteristic function � on the right-angled

spherical triangle 42 as shown in Figure 1. Namely, the characteristic function is

� W ffa; bg; fb; cg; fa; cgg ! f.1; 0; 0/; .0; 1; 0/; .0; 0; 1/g;

.a; b/ 7! .1; 0; 0/;

.b; c/ 7! .0; 1; 0/;

.a; c/ 7! .0; 0; 1/;

where .1; 0; 0/ D e1, .0; 1; 0/ D e2 and .0; 0; 1/ D e3 are the standard basis vectors
of Z3

2
.

b
.1; 0; 0/

a

.0; 0; 1/

c

.0; 1; 0/

Figure 1: The coloring in Example 2.1.
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b

a c
L1.0; 0; 0/ L2.1; 0; 0/ L3.0; 1; 0/ L4.0; 0; 1/

b b b

a a ac c c

b b b b

L5.1; 1; 0/ L6.1; 0; 1/ L7.0; 1; 1/ L8.1; 1; 1/
a a c a ac c c

Figure 2: The eight polytopes42 �Z2
3 of Example 2.1.

Now, we have eight copies of the polytope, namely 42 �Z3
2
, as shown in Figure 2.

By the equivalence relation

.p;g1/� .q;g2/ ()

�
p D q;

g1�g2 2 f.1; 0; 0/; .0; 1; 0/; .0; 0; 1/g;

we can finally obtain the manifold M.�2; �/�S2 as shown in Figure 3, which inherits
a spherical structure from the eight copies of right-angled triangles.

In order to keep notation concise, we regard every Z�
2
–color as a binary number and

encode it with an integer. For example in the Z3
2
–coloring case, we can use 1, 2, 3, 4,

5, 6 and 7 to represent the seven colors .1; 0; 0/, .0; 1; 0/, .1; 1; 0/, .0; 0; 1/, .1; 0; 1/,
.0; 1; 1/ and .1; 1; 1/, respectively. Then, a characteristic matrix can also be viewed

z

b

cc

x b

a

a

L1L2

L6 L4

L3L5

L8 L7

y

Figure 3: The real toric manifold M.�2; �/.
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as a characteristic vector. For example, the characteristic matrix of the Z3
2
–coloring

characteristic function in Example 2.1 is

ƒ.3�3/ D .�.F1/; �.F2/; �.F3//D .�.a; b/; �.b; c/; �.a; c//D

 
1 0 0
0 1 0
0 0 1

!
:

Then the corresponding characteristic vector C is .1; 2; 4/. The characteristic function �,
characteristic matrix ƒ, and the characteristic vector C can be constructed from each
other easily; the characteristic vector C represents the most concise form.

2.2 Cohomology of real toric manifolds

Davis and Januszkiewicz [6] formulated how to calculate the Z2–coefficient cohomol-
ogy groups of a small cover from the polytope and characteristic function. In 2013,
Cai [2] suggested a method to calculate the Z–coefficient cohomology groups of a real
moment-angle manifold. Based on the results of Cai, Suciu and Trevisanon [21; 22]
on rational homology groups of real toric manifolds, Choi and Park [3] obtained a
formula for the cohomology groups of real toric manifolds. This can also be viewed as
a combinatorial version of the Hochster theorem [8].

Since the dual of the boundary of a simple polytope L is a simplicial complex K

(see eg [1]), the definition of real toric manifolds introduced above has a dual version.
By substituting the facet set F.L/ with the vertex set V of the simplicial complex K,
we can define the characteristic function � on K, namely

� W V.K/D fv1; v2; : : : ; vmg ! Zk
2 :

The nonsingularity condition changes as follows: if for n vertices vi1
; vi2

; : : : ; vin
the

convex hull convfvi1
; vi2

; : : : ; vin
g is a facet of K, the images �.vi1

/; �.vi2
/; : : : ; �.vin

/

shall generate a subgroup isomorphic to Zn
2
. For the sake of brevity, we denote the

linear space ZjVj
2

by ZV
2

. In addition, we can identify ZV
2

with the power set 2V in
the canonical way, where ∅ corresponds to the identity element and multiplication
to the symmetric difference. Namely, we have a map ' W ZV

2
! 2V. Denote by K!

the full subcomplex of K D .@L/� obtained by restricting to ! � V . Then every full
subcomplex K! of K, where ! � V , is identified with an element of ZV

2
.

Let � be a Zk
2

–coloring characteristic function. Denote by rowƒ the row space of the
characteristic matrix ƒ. The following Choi–Park theorem shows that the cohomology
group of a real toric manifold M.L; �/ is the direct sum of the cohomology groups of
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some full subcomplexes of the dual polytope K D .@L/�. The full subcomplexes are
determined by the characteristic function.

Theorem 2.2 (Choi–Park [3]) Assume G is the coefficient ring Q or Zq for a positive
odd integer q. There is an additive isomorphism

H p.M.L; �/IG/Š
M

'�1.!/2rowƒ

zH p�1.K! IG/;

where ƒ is the characteristic matrix of �.

We use ˇi to denote the rank of H i.M.L; �/IQ/, called the i th Betti number of
M.L; �/; and use ž0 to denote the rank of zH 0.K! IQ/, called the reduced zeroth Betti
number of K! . For the purpose of this paper, we only need the following result.

Corollary 2.3 For a simple polytope L,

ˇ1.M.L; �/IQ/D
X

'�1.!/2rowƒ

ž0.K! IQ/;

where ƒ is the characteristic matrix of �.

By means of Corollary 2.3, we can calculate the first Betti number of a real toric
manifold using the combinatorial information of the orbit polytope and the row space
of its characteristic matrix. In the following, we show a simple example.

Example 2.4 Calculate the first Betti number of the Klein bottle S DM.L; �/.

Figure 4, left, is a colored 2–dimensional square L, whereas Figure 4, right, is its dual
K D .@L/�, with its vertices colored accordingly.

.0; 1/

.1; 1/

.0; 1/

.1; 0/ a .1; 0/

b .0; 1/

.1; 1/ c

d .0; 1/

Figure 4: The colored square for Example 2.4.

Algebraic & Geometric Topology, Volume 23 (2023)
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a

b

c

d d d

c

b

Figure 5: Left to right, the subcomplexes K!i
, 2� i � 4.

Thus, the row space is

rowƒD h.1; 0; 1; 0/; .0; 1; 1; 1/i D f.0; 0; 0; 0/; .1; 0; 1; 1/; .0; 1; 0; 1/; .1; 1; 1; 0/g:

For !1 D .0; 0; 0; 0/, K!1
D∅.

For !2 D .1; 0; 1; 1/, then K!2
is as shown in Figure 5, left. So ž0.K!2

/D 0.

For !3 D .0; 1; 0; 1/, then K!3
is as shown in Figure 5, center. So ž0.K!3

/D 1.

For !4 D .1; 1; 1; 0/, then K!4
is as shown in Figure 5, right. So ž0.K!4

/D 0.

By Corollary 2.3, we have

ˇ1.S/D ž0.K!1
/C ž0.K!2

/C ž0.K!3
/C ž0.K!4

/D 0C 0C 1C 0D 1;

which coincides with the well-known result of rational homology groups of the Klein
bottle.

2.3 The 3–polytopes nP

In the following, we assume that P is the regular right-angled dodecahedron in H3

with twelve 2–dimensional facets. We use nP to denote the stacking of n copies of P,
ie the polytope made of n dodecahedra in a row; see Figures 6, 7 and 12. The simplicial
complex nK is the dual of the boundary of nP. For each polytope nP with n > 2, there
are nC 3 layers of facets of nP : the first and the last layers are pentagons, the second
and the .nC2/nd layers consist of five pentagons, and each layer from the third to the
.nC1/st is made of five hexagons. There is no hexagonal layer in 1P , and the polytope
nP has 5nC 7 facets in total. All the polytopes nP , with n 2 ZC, are right-angled
hyperbolic polytopes. In addition, we call the i–layer of a colored 3–polytope nP a
brick, where 2� i � nC 1 and n� 2. The symbols nP and nK are used throughout
the paper with this meaning, unless stated otherwise.
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P

stacking
2P

Figure 6: Build up the polytope 2P by stacking.

Definition 2.5 Given a polytope L with m facets, we define X.L/D .aij /m�m to be
the adjacency matrix of L, where

aij D

�
1 if Fi \Fj for Fi ;Fj 2 F.L/ is an .n�2/–face of L or i D j ,
0 otherwise.

Definition 2.6 A simple polytope L is called a flag polytope if every collection of
pairwise intersecting facets has a nonempty intersection.

For a flag polytope, all of the information about the intersection of its facets is included
in the adjacency matrix. As can be easily checked, the polytope nP is a flag polytope
for every n. In order to obtain more unified adjacency matrices X.nP /, n 2 ZC, we
order the facets of the polytope nP in the following manner. The first and the last layer
are labeled as 1 and 5nC7, respectively, while the facets in between are labeled layer by
layer. For even layers, we start from the middle and order the rest by left-right double
siding, whereas for odd layers, we adopt a right-left double siding. We illustrate the
labeling manner on the polytope 5P in Figure 7, where the double sidings of even and
odd layers are displayed by the arrow-lines on the second and third layers, respectively.

1

23 45 6

7 89 1011

1213 1415 16

17 1819 2021

2223 2425 26

27

2nd layer

4th layer
even layer

6th layer

5th layer

odd layer

3rd layer

Figure 7: Facet ordering of the polytope 5P .
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Figure 8: The adjacency matrices of the polytopes P , 2P and 3P are given
at top left, top right and bottom, respectively.

Using this ordering, we obtain more unified increasing patterns of the adjacency
matrices. We display some of them in Figure 8 (the omitted entries are zeros).

2.4 Orientability of real toric manifolds

H Nakayama and Y Nishimura discussed the orientability of small covers in [15].
Below we quote their main theorem.
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Theorem 2.7 (Nakayama–Nishimura [15]) For a simple n–dimensional polytope L,
and for a basis fe1; : : : ; eng of Zn

2
, a homomorphism � W Zn

2
! Z2 D f0; 1g is defined

by �.ei/D 1 for each i D 1; : : : ; n. A small cover M.L; ı/ is orientable if and only if
there exists a basis fe1; : : : ; eng of Zn

2
such that the image of �ı is f1g.

The techniques used in proving Theorem 2.7 are actually suitable for all real toric
manifolds, not just for small covers. Corollary 2.3 with rational coefficients implies
this conclusion as well. The nth Betti number of a real toric manifold M.L; ı/ over the
n–polytope L is 1 if and only if there is an element in the row space of the characteristic
matrix of ı with all entries equal to 1.

Corollary 2.8 (Nakayama–Nishimura [15] and Choi–Park [3]) For a simple n–
dimensional polytope L, the real toric manifold M.L; ı/ is orientable if and only
if there is a basis such that the sum of every column of the characteristic matrix ƒ of ı
is 1 mod 2.

In particular, the four vectors .1; 0; 0/, .0; 1; 0/, .0; 0; 1/ and .1; 1; 1/, which are the
binary forms of 1, 2, 4 and 7, are the only four elements in Z3

2
whose entry sums are

1 mod 2. These four vectors are called orientable colors. The three colors left are
.1; 1; 0/, .1; 0; 1/ and .0; 1; 1/, which are the binary forms of 3, 5 and 6. An orientable
basis in Z3

2
is defined to be a basis in Z3

2
that consists of three linearly independent

orientable colors. In particular, the standard basis in Z3
2
, ie .1; 0; 0/, .0; 1; 0/, .0; 0; 1/,

is an orientable basis. If the small cover M.L; �/ is orientable, then there exists an
orientable basis such that all the colors of � are orientable. Note that, for an orientable
color, the number of entries with value 1 is always odd. In other words, when changing
from one orientable basis to another orientable one, we actually add or remove an even
number of 1s from the previous characteristic matrix to form the new one. Hence the
parity of the number of 1s in each column is preserved under different orientable bases.
Therefore, we have the following corollary.

Corollary 2.9 Given a 3–polytope nP with facets ordered as required in Section 2.3,
we fix the colors on first three facets to be .1; 0; 0/, .0; 1; 0/ and .0; 0; 1/. Suppose
.1; 2; 4; a1; : : : ; am/ is a characteristic vector of nP . Then the corresponding small
cover is nonorientable if there is some ai 2 f3; 5; 6g.

Starting from a Z3
2
–coloring � on the polytope nP , we can obtain 2m�1 Z4

2
–colorings

on nP by adding a nonzero fourth row to the 3 �m characteristic matrix ƒ of �
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as shown: 0BB@
1 0 0 � � � � � �

0 1 0 � � � � � �

0 0 1 � � � � � �

� � � � � � �

1CCA ;
where mD5nC7 and �2f0; 1g. Those characteristic functions are called the extensions
of �, and they naturally satisfy the nonsingularity condition.

Definition 2.10 A Z3
2
–coloring � on the polytope nP is admissible if there is a

Z4
2
–coloring extension of �, denoted by ı, such that M.nP; �/ is nonorientable and

M.nP; ı/ is the orientable double cover of M.nP; �/.

Along with some basic facts about the fundamental group of a double cover we have
the following proposition. It is valid for any polytope and we are now interested in the
case of polytope nP .

Proposition 2.11 A Z3
2
–coloring � over a simple 3–dimensional polytope nP is

admissible if M.nP; �/ is nonorientable.

Proof Because M.nP; �/ is nonorientable, at least one column of its characteristic
matrix ƒ has an even sum. Therefore, we can add a nonzero fourth row to the
characteristic matrix ƒ to obtain a Z4

2
–coloring extension of �, denoted by ı, satisfying

that the sum of all its columns are odd. By Corollary 2.8, M.nP; ı/ is orientable.

Let W .nP / be the Coxeter group of nP and � W F.L/D fF1;F2; : : : ;Fmg ! Zm
2

be
the map that sends each Fi to ei . Now we have the diagram

W .nP / Zm
2

Z4
2

Z3
2

l

y�

yı

p

where l is the abelianization, p is the natural projection of Z4
2

to Z3
2

that keeps only the
first three coordinates, and y� and yı are the maps induced by the characteristic functions
� and ı, ie � D y� ı � and ı D yı ı � . It is easy to check that the triangular circuit
commutes, namely, p ı yı D y�.

By [6, Corollary 4.5], �1.M.nP; �//D ker.y�ı l/D ker.pıyıı l/ and �1.M.nP; ı//D

ker.yı ı l/. Thus M.nP; ı/ is an orientable double cover of M.nP; �/.
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The Z4
2
–coloring ı on the polytope nP in Proposition 2.11 is called an admissible

extension of � or a natural Z4
2
–coloring associated to � (also referred to as the natural

Z4
2
–extension of � for short). We use the symbols � and ı with this meaning in the rest

of the paper, unless stated otherwise. Moreover, by Corollary 2.3, the Betti numbers of
the orientable manifold recovered by the natural Z4

2
–extension ı can be easily computed,

as we are going to show in Example 2.12.

Example 2.12 Let us calculate the Betti numbers of some orientable real toric manifold
M.P; ı/.

We show in Figure 9, left, a plane figure of the dodecahedron P whose facets are
ordered in the “double siding” manner introduced in Section 2.3. In Figure 9, right, is
the dual simplicial complex K D .@P /� with its 12 vertices labeled correspondingly.

Color the polytope P with the characteristic vector v D .1; 2; 4; 5; 3; 7; 7; 3; 5; 4; 2; 1/
and denote the corresponding characteristic function by �. Then we have a Z3

2
–coloring

characteristic matrix

ƒD

0@0 0 1 1 0 1 1 0 1 1 0 0

0 1 0 0 1 1 1 1 0 0 1 0

1 0 0 1 1 1 1 1 1 0 0 1

1A
3�12

:

By Corollary 2.9, � is nonorientable. The characteristic matrix � of its admissible
extension ı is

�D

�
ƒ

0 0 0 1 1 0 0 1 1 0 0 0

�
4�12

:

1

23 45 6

7 89 1011

12

1 2

3

4

5

6

7

8

9

10

11 12

Figure 9: The facet-ordered polytope P , left, and its dual simplicial complex
K D .@P /�, right.
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The row space of � is given by

row�D
˝
.0; 0; 1; 1; 0; 1; 1; 0; 1; 1; 0; 0/; .0; 1; 0; 0; 1; 1; 1; 1; 0; 0; 1; 0/;

.1; 0; 0; 1; 1; 1; 1; 1; 1; 0; 0; 1/; .0; 0; 0; 1; 1; 0; 0; 1; 1; 0; 0; 0/
˛
:

For each !i 2 rowƒ, we calculate its reduced 0th Betti number in Tables 1–2.

From Tables 1–2 and Corollary 2.3, we have

ˇ1.M.P; ı/IQ/D

16X
iD1

ž0.K!i
IQ/D ˇ2.M.P; ı/IQ/

D

16X
iD1

ž1.K!i
IQ/D 7:

For an orientable 3–manifold M.nP; ı/, by Poincaré duality we have ˇ0.M.nP; ı//D

ˇ3.M.nP; ı// D 1 and ˇ1.M.nP; ı// D ˇ2.M.nP; ı//. So ˇ1 is the only thing
we need in order to determine the free part of H�.M.nP; ı//. By Corollary 2.3,
ˇ1.M.nP; ı// is equal to the sum of the reduced zeroth Betti numbers of the 16 full
subcomplexes k!i

of the simplicial complex nK D .@.nP //�. Each subcomplex k!i

corresponds to a nonzero vector in the row space row�.

3 The key lemma

The purpose of this section is to prove Lemma 3.1, which is the key element in proving
Theorem 1.4. We want to find a special family of admissible Z3

2
–colorings over the

polytope nP . According to the correspondence discussed in Section 2, we construct a
family of orientable 3–manifolds M.nP; ı/.

Lemma 3.1 For every positive even integer n, there is a nonorientable Z3
2
–coloring �

over the polytope nP such that ˇ1.M.nP; ı//DnC1, where ı is the natural associated
Z4

2
–coloring extension of �.

Proof We first prove the special case in which nD 2. We use the notation a1 D 1,
S1 D .24247/ and S2S1 D .35716 24247/. By [a1S1S2S1a1], we mean the colored
polytope 2P shown in Figure 10. The corresponding characteristic vector C is

.1; 2; 4; 4; 2; 7; 7; 1; 5; 6; 3; 2; 4; 4; 2; 7; 1/:

It can be checked with little effort that the nonsingularity condition holds at every
vertex. We call Si ; 1 � i � 2, a brick and ai , which represents the first or the last
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i !i K!i
ž0.K!i

/ ˇ1.K!i
/ ˇ2.K!i

/

1 .0; 0; 1; 1; 0; 1; 1; 0; 1; 1; 0; 0/
3

4
6

7

9

10

1

2 .0; 1; 0; 0; 1; 1; 1; 1; 0; 0; 1; 0/

2

5

6

7

8

11

1

3 .1; 0; 0; 1; 1; 1; 1; 1; 1; 0; 0; 1/
1

4

5

6

7

8

9
12

0 1

4 .0; 0; 0; 1; 1; 0; 0; 1; 1; 0; 0; 0/

4
8

5
9

1

5 .0; 1; 1; 1; 1; 0; 0; 1; 1; 1; 1; 0/
23

4

5
8

9

10

11

0 1

6 .1; 0; 1; 0; 1; 0; 0; 1; 0; 1; 0; 1/ 1

35
8

10

12

1

7 .0; 0; 1; 0; 1; 1; 1; 1; 0; 1; 0; 0/

10

6 8

5 3 7

0 1

8 .1; 1; 0; 1; 0; 0; 0; 0; 1; 0; 1; 1/ 1 2

4

9

10

11 12

1

Table 1: The values of ž0.K!i
/ for i D 1; : : : ; 8.

colored facet, an affix. They are used for building the coloring. The symbols Si and ai

are used with this meaning in the rest of the paper unless stated otherwise.
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i !i K!i
ž0.K!i

/ ˇ1.K!i
/ ˇ2.K!i

/

9 .0; 1; 0; 1; 0; 1; 1; 0; 1; 0; 1; 0/

2
4

6

7

9
11

0 1

10 .1; 0; 0; 0; 0; 1; 1; 0; 0; 0; 0; 1/
6 1

2

7 1

11 .1; 1; 1; 0; 0; 1; 1; 0; 0; 1; 1; 1/ 1 2

3
6 7

10

11 12

0 1

12 .1; 1; 0; 0; 1; 0; 0; 1; 0; 0; 1; 1/

1 2
5

8

11 12

0 1

13 .1; 0; 1; 1; 0; 0; 0; 0; 1; 1; 0; 1/ 1
3

4

9

10

12

0 1

14 .0; 1; 1; 0; 0; 0; 0; 0; 0; 1; 1; 0/ 2

3

10

11

1

15 .0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0/ ∅ no contribution to ˇ1.M.P; ı//

16 .1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1/ Š S2 0 0 1

Table 2: The values of ž0.K!i
/ for i D 9; : : : ; 16.

Let us denote by � the characteristic function of C . Corollary 2.9 and Proposition 2.11
imply that � is admissible, and we denote by ı its natural Z4

2
–extension. It follows that

M.2P; �/ is nonorientable, and M.2P; ı/ is the orientable double cover of M.2P; �/.
The characteristic matrix � of the coloring ı is

(3-1)

0BBB@
0 0 1 1 0 1 1 0 1 1 0 0 1 1 0 1 0

0 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 0

1 0 0 0 0 1 1 1 1 0 1 0 0 0 0 1 1

0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0

1CCCA :
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1

2 4 2 4 7

3 5 7 1 6

2 4 2 4 7

1

a1

S1

.35716 24247/DS2S1

a1

Figure 10: Colored polytope 2P .

Then, the row space row� is given by

(3-2)

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

0 0 1 1 0 1 1 0 1 1 0 0 1 1 0 1 0

0 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 0

1 0 0 0 0 1 1 1 1 0 1 0 0 0 0 1 1

0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0

0 1 1 1 1 0 0 0 1 0 1 1 1 1 1 0 0

1 0 1 1 0 0 0 1 0 1 1 0 1 1 0 0 1

0 0 1 1 0 1 1 0 0 0 1 0 1 1 0 1 0

1 1 0 0 1 0 0 1 1 1 0 1 0 0 1 0 1

0 1 0 0 1 1 1 0 1 0 0 1 0 0 1 1 0

1 0 0 0 0 1 1 1 0 1 0 0 0 0 0 1 1

1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1

1 1 0 0 1 0 0 1 0 0 1 1 0 0 1 0 1

1 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 1

0 1 1 1 1 0 0 0 0 1 0 1 1 1 1 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

:

By Corollary 2.3, we can calculate ˇ1.M.2P; ı// through its 15 nonempty full sub-
complexes K! . Since ž0= ž0, the reduced zeroth Betti number of each K! is equal to
the number of connected components of K! minus one.

For every i th row !i.�/ D .wi1; : : : ; wij ; : : : ; wim/ of the row space row�, where
mD 5nC 7 is the number of facets of nP and 1� i � 24� 1, we define

!�i .�/ WD fj j 1 6 j 6 m and !ij D 1; where !ij 2 row�g:

Then define X.nP; !i.�// to be the submatrix of X.nP / obtained by selecting the qth

rows and qth columns as q varies in !�i .�/.

For example, pick the first row !1.�/D .0; 0; 1; 1; 0; 1; 1; 0; 1; 1; 0; 0; 1; 1; 0; 1; 0/ of
the row space row� shown in matrix (3-2); then !�

1
.�/D .3; 4; 6; 7; 9; 10; 13; 14; 16/.
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!1.�/
0 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
1 2 1 1 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0
0 3 1 1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0
0 4 1 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0
1 5 1 0 1 0 1 1 0 0 1 0 1 0 0 0 0 0 0
1 6 1 0 0 1 1 1 0 0 0 1 1 0 0 0 0 0 0
1 7 0 1 1 0 0 0 1 1 1 0 0 1 1 0 0 0 0
0 8 0 1 0 1 0 0 1 1 0 1 0 1 0 1 0 0 0
0 9 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0
1 10 0 0 0 1 0 1 0 1 0 1 1 0 0 1 0 1 0
1 11 0 0 0 0 1 1 0 0 1 1 1 0 0 0 1 1 0
1 12 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0 0 1
0 13 0 0 0 0 0 0 1 0 1 0 0 1 1 0 1 0 1
0 14 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 1
1 15 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 1 1
1 16 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 1
0 17 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1

!1.�/
1 1 1 1 1 1 1 1 1
3 4 6 7 9 10 13 14 16

1 3 1 0 0 1 1 0 0 0 0
1 4 0 1 1 0 0 1 0 0 0
1 6 0 1 1 0 0 1 0 0 0
1 7 1 0 0 1 1 0 1 0 0
1 9 1 0 0 1 1 0 1 0 0
1 10 0 1 1 0 0 1 0 1 1
1 13 0 0 0 1 1 0 1 0 0
1 14 0 0 0 0 0 1 0 1 1
1 16 0 0 0 0 0 1 0 1 1

!
.1/
1
.�/D .3; 7; 9; 13/

!
.2/
1
.�/D .4; 6; 10; 14; 16/

ž0.K!1.�/
/D 1

Figure 11: The computation of ž0.K!1.�/
/. Left: X.2P /. Right: X.2P; !1.�//.

Let us consider the submatrix X.2P; !1.�// which is obtained from the adjacency
matrix X.2P / by selecting the rows and columns set by !�

1
.�/. By examining this

matrix, it is obvious that there are two connected components. Use the notation !.i/j .�/

to denote the vertex set of the i th connected component of the full subcomplex K!j .�/.
Then, we have !.1/

1
.�/ D .3; 7; 9; 13/ and !.2/

1
.�/ D .4; 6; 10; 14; 16/; therefore,

ž0.K!1.�//D 1. The procedure is illustrated in Figure 11.

Likewise, we can calculate all of the ž0.K!i .�//, 1� i � 15, and the computation for
i D 2; 3; : : : ; 7 is illustrated in (A) and (B) of Figures 16–21 in the online supplement.
Finally, we obtain ˇ1.M.2P; ı//=3, as shown in the second line in Table 3. This
completes the proof of Lemma 3.1 for the case nD 2.

From the results above, it follows that the first Betti numbers increase by a constant
factor if the reduced 0th Betti numbers ž0 of the full subcomplexes corresponding
to !i.�/ increase by a constant factor for 1 � i � 15. Since the reduced Betti
number ž0.K!i .�// is obtained through the matrix X.2P; !i.�//, we only need to
guarantee that matrices X.nP; !i/ for nD 2; 4; 6; : : : change with a certain pattern for
all 1� i � 15. Notice that such a submatrix is completely determined by the adjacency
matrix and the coloring of the polytope.
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i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Betti number

ž0.K!i
.�// 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 ˇ1.M.2P; ı//D 3

ž0.K!i
.�1// 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 ˇ1.M.4P; ı1//D 5

ž0.K!i
.�2// 1 1 0 2 0 2 1 0 0 0 0 0 0 0 0 ˇ1.M.6P; ı2//D 7

ž0.K!i
.�3// 1 1 0 3 0 3 1 0 0 0 0 0 0 0 0 ˇ1.M.8P; ı3//D 9

ž0.K!i
.�4// 1 1 0 4 0 4 1 0 0 0 0 0 0 0 0 ˇ1.M.10P; ı4//D 11

ž0.K!i
.�5// 1 1 0 5 0 5 1 0 0 0 0 0 0 0 0 ˇ1.M.12P; ı5//D 13

Table 3: The computation of the first Betti number.

As for the adjacency matrices, they do change in a uniform manner when using the
facet ordering described in Section 2.3; see also Figure 22 in the online supplement for
the facet ordering and adjacency matrix of the polytopes 2P , 4P and 6P .

As for the coloring, we duplicate the last two bricks of the colored 2P a total of 1
2
n�1

times to construct the desired coloring on nP , where n is a positive even integer equal
to or greater than 2. It can be easily proved that the nonsingularity condition holds at
every vertex. The colorings constructed this way on polytopes 4P and 6P are shown
in Figure 12, lower left and lower right, respectively. The colorings are denoted by

Œa1S1S2S1S2S1a1� and Œa1S1S2S1S2S1S2S1a1�:

Their characteristic functions are written �1 and �2, respectively, where the superscripts
denote how many times the last two bricks .S2S2/ of the coloring [a1S1S2S1a1]
of � are repeated. The repeated parts are highlighted in blue and underlined. The
nonorientability of these Z3

2
–colorings is guaranteed by Corollary 2.9. Moreover, we

can obtain their natural Z4
2
–extensions ı1 and ı2. By Proposition 2.11, the colorings ı1

and ı2 are admissible. That is, M.4P; ı1/ and M.6P; ı2/ are the orientable double
covers of the nonorientable manifolds M.4P; �1/ and M.6P; �2/, respectively. We
denote the characteristic matrices of ı1 and ı2 by�1 and�2. The three matrices row�,
row�1 and row�2 are shown in Figure 23 of the online supplement. Since the coloring
on nP is obtained by duplicating the last two bricks of the coloring [a1S1S2S1a1]
on 2P a total of 1

2
n� 1 times, the row space row�i can be obtained from row space

row � by duplicating its columns, from the 11th to the second columns (counting from
right to left), 1

2
n� 1 times.

By the method outlined before, we also calculate ˇ1.M..2 C 2i/P; ıi// for i D

1; 2; : : : ; 5, as shown in Table 3. We illustrate the calculation of ž0.K!1
.�1// and

ž0.K!1
.�2// in Figures 13 and 14, respectively. See also panels (C)–(D) and (E)–(F)

Algebraic & Geometric Topology, Volume 23 (2023)
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1

2 4 2 4 7

3 5 7 1 6

2 4 2 4 7

1

a1

S1

S2S1

a1

1

2 4 2 4 7

3 5 7 1 6

2 4 2 4 7

3 5 7 1 6

2 4 2 4 7

a1

S1

S2S1

S2S1

a11

1

2 4 2 4 7

3 5 7 1 6

2 4 2 4 7

3 5 7 1 6

2 4 2 4 7

3 5 7 1 6

2 4 2 4 7

1

a1

S1

S2S1

S2S1

S2S1

a1

Figure 12: Top: The cololored polytope 2P . Bottom left: The colored
polytope 4P . Bottom right: The colored polytope 6P . Duplicate the last
two bricks of the coloring [a1S1S2S1a1] on 2P a total of 1

2
n� 1 times to

construct the desired coloring on nP .

in Figures 16–21 of the online supplement for the computation of ž0.K!i
.�1// and

ž0.K!i
.�2// for i D 2; 3; : : : ; 7. The corresponding results are highlighted in blue in

Table 3.

From Figure 11 and Table 3 we can see that the matrices X.nP; !i/ for nD 2; 4; 6; : : :

follow certain patterns for all 1 � i � 15. In order to guarantee that the sequence
f ž0.K!i

.�t //g with t 2 ZC is an arithmetic progression, we just need to guarantee
that the first three items satisfy the relation of an arithmetic progression. For example,
since ž0.K!4

.�//D 0, ž0.K!4
.�1//D 1, ž0.K!4

.�2//D 2 and the full subcomplex
K!4

.�t / changes regularly as the colorings are obtained by duplicating t times the last
two bricks of the colored 2P of [a1S1S2S1a1], it follows that f ž0.K!i

.�t //g with

Algebraic & Geometric Topology, Volume 23 (2023)
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!1.�
1/

0 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 2 1 1 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 3 1 1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 4 1 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 5 1 0 1 0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 6 1 0 0 1 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 7 0 1 1 0 0 0 1 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 8 0 1 0 1 0 0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 9 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
1 10 0 0 0 1 0 1 0 1 0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0
1 11 0 0 0 0 1 1 0 0 1 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0
1 12 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0
0 13 0 0 0 0 0 0 1 0 1 0 0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0
0 14 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0
1 15 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 1 0 0 1 0 1 0 0 0 0 0 0
1 16 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 0 0 0 1 1 0 0 0 0 0 0
1 17 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0 0 1 1 0 0 0 0
0 18 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 0 1 0 1 0 1 0 0 0
0 19 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0
1 20 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 1 0 0 1 0 1 0
1 21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 0 0 0 1 1 0
1 22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0 0 1
0 23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 0 1 0 1
0 24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 1
1 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 1 1
1 26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 1
0 27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1

!1.�
1/

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3 4 6 7 9 10 13 14 16 17 19 20 23 24 26

1 3 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0
1 4 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0
1 6 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0
1 7 1 0 0 1 1 0 1 0 0 0 0 0 0 0 0
1 9 1 0 0 1 1 0 1 0 0 0 0 0 0 0 0
1 10 0 1 1 0 0 1 0 1 1 0 0 0 0 0 0
1 13 0 0 0 1 1 0 1 0 0 1 1 0 0 0 0
1 14 0 0 0 0 0 1 0 1 1 0 0 1 0 0 0
1 16 0 0 0 0 0 1 0 1 1 0 0 1 0 0 0
1 17 0 0 0 0 0 0 1 0 0 1 1 0 1 0 0
1 19 0 0 0 0 0 0 1 0 0 1 1 0 1 0 0
1 20 0 0 0 0 0 0 0 1 1 0 0 1 0 1 1
1 23 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0
1 24 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1
1 26 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1

!
.1/
1
.�1/D .3; 7; 9; 13; 17; 19; 23/

!
.2/
1
.�1/D .4; 6; 10; 14; 16; 20; 24; 26/

ž0.K!1.�
1//D 1

Figure 13: The computation of ž0.K!1.�
1//. Top: X.4P /. Bottom: X.4P; !1.�

1//.
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!1.�
2/

0 0 1 1 0 1 1 0 1 1 0 0 1 1 0 1 1 0 1 1 0 0 1 1 0 1 1 0 1 1 0 0 1 1 0 1 0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 2 1 1 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 3 1 1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 4 1 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 5 1 0 1 0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 6 1 0 0 1 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 7 0 1 1 0 0 0 1 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 8 0 1 0 1 0 0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 9 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 10 0 0 0 1 0 1 0 1 0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 11 0 0 0 0 1 1 0 0 1 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 12 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 13 0 0 0 0 0 0 1 0 1 0 0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 14 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 15 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 16 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 17 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 18 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 19 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
1 20 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0
0 21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0
0 22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0
1 23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0
1 24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0
0 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 1 0 0 1 0 1 0 0 0 0 0 0
1 26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 0 0 0 1 1 0 0 0 0 0 0
1 27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0 0 1 1 0 0 0 0
0 28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 0 1 0 1 0 1 0 0 0
1 29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0
1 30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 1 0 0 1 0 1 0
0 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 0 0 0 1 1 0
0 32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0 0 1
1 33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 0 1 0 1
1 34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 1
0 35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 1 1
1 36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 1
0 37 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1

!1.�
2/

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3 4 6 7 9 10 13 14 16 17 19 20 23 24 26 27 29 30 33 34 36

1 3 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 4 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 6 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 7 1 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 9 1 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 10 0 1 1 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 13 0 0 0 1 1 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0
1 14 0 0 0 0 0 1 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0
1 16 0 0 0 0 0 1 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0
1 17 0 0 0 0 0 0 1 0 0 1 1 0 1 0 0 0 0 0 0 0 0
1 19 0 0 0 0 0 0 1 0 0 1 1 0 1 0 0 0 0 0 0 0 0
1 20 0 0 0 0 0 0 0 1 1 0 0 1 0 1 1 0 0 0 0 0 0
1 23 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 1 1 0 0 0 0
1 24 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 1 0 0 0
1 26 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 1 0 0 0
1 27 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 0 0
1 29 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 0 0
1 30 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 1 1
1 33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0
1 34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1
1 36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1

!
.1/
1
.�2/D

.3; 7; 9; 13; 17; 19; 23; 27; 29; 33/

!
.2/
1
.�2/D

.4; 6; 10; 14; 16; 20; 24; 26; 30; 34; 36/

ž0.K!1.�
2//D 1

Figure 14: The computation of ž0.K!1.�
2//. Top: X.6P /. Bottom: X.6P; !1.�

2//.
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t 2 ZC is an arithmetic progression. Namely, ž0.K!4
.�3//D 3, ž0.K!4

.�4//D 4,
ž0.K!4

.�5//D 5; : : : . As a consequence, if we want to prove that the whole Betti
number sequence ˇ1.M.nP; ı

1
2

n//, where n is an even positive integer, is an arith-
metic progression, we only need to verify that ˇ1.M.4P; ı1// � ˇ1.M.2P; ı// D

ˇ1.M.6P; ı2//� ˇ1.M.4P; ı1//. Summarizing all these findings, we have the fol-
lowing proposition:

Proposition 3.2 Let ı be a Z4
2
–coloring over the polytope nP . For an arbitrary even

number s > n, if

ˇ1.M..nC 2/P; ı.1///�ˇ1.M.nP; ı//

D ˇ1.M..nC 4/P; ı.2///�ˇ1.M..nC 2/P; ı.1///;

we have

ˇ1.M.sP; ı
1
2
.s�n///

D ˇ1.M.nP; ı//C 1
2
.s� n/

�
ˇ1.M.nC 1/P; ı1/�ˇ1.M.nP; ı//

�
;

where ı.t/ represents a Z4
2
–coloring over the polytope .nC 2t/P. The coloring vector

of ı.t/ is obtained by duplicating the last two bricks of ı exactly t times.

By Proposition 3.2 and using the facts that ˇ1.M.2P; ı//D 3, ˇ1.M.4P; ı1//D 5

and ˇ1.M.6P; ı2//D 7, we can produce Table 4.

This concludes the proof of Lemma 3.1.

4 Proof of Theorem 1.2 for n even

In this section, we prove Theorem 1.2 when n is even. It is similar to the proof of
Lemma 3.1.

Lemma 4.1 For any even positive number n, there is a nonorientable Z3
2
–coloring

� over the polytope nP , such that , for its natural associated Z4
2
–coloring ı, we have

ˇ1.M.nP; ı//D 5n� 3.

Proof Let S1 D .65372/, S2S3 D .72424 65372/ and a1 D 1. By the same idea of
Lemma 3.1, we first construct a suitable nonorientable Z3

2
–coloring � over the polytope

2P as follows:
.1; 3; 5; 7; 6; 2; 4; 2; 2; 4; 7; 3; 5; 7; 6; 2; 1/:

Algebraic & Geometric Topology, Volume 23 (2023)
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nD 2 nD 4 nD 6 � � � nD 2C 2t , t 2N

1 1 1 1 � � � 1
2 1 1 1 � � � 1
3 0 0 0 � � � 0
4 0 1 2 � � � t

5 0 0 0 � � � 0
6 0 1 2 � � � t

7 1 1 1 � � � 1
8 0 0 0 � � � 0
9 0 0 0 � � � 0

10 0 0 0 � � � 0
11 0 0 0 � � � 0
12 0 0 0 � � � 0
13 0 0 0 � � � 0
14 0 0 0 � � � 0
15 0 0 0 � � � 0

total ˇ1 3 5 7 � � � 3C 2t D nC 1

Table 4: The values of ˇ1 in Lemma 3.1.

This colored polytope 2P is denoted by Œa1S1S2S1a1�. It follows from Corollary 2.9
and Proposition 2.11 that � is nonorientable and admissible. Denote by ı the natural
Z4

2
–extension of �. The 3–manifold M.2P; ı/ is the orientable double cover of the

nonorientable 3–manifold M.2P; �/. By Corollary 2.3, we have ˇ1.M.2P; ı//D 7.

We repeat the last two bricks t times to construct a coloring over the polytope .2C2t/P ,
and denote its characteristic function by �t . In turn, the colored polytope .2C 2t/P is
denoted by

Œa1S1 S2S1 � � �S2S1„ ƒ‚ …
t pairs

a1�:

It can be easily checked that the nonsingularity condition holds at every vertex. Likewise,
by Corollary 2.9 and Proposition 2.11, we can obtain an admissible extension ıt of
the nonorientable coloring �t . Moreover, M..2C 2t/P; ıt / is the orientable dou-
ble cover of the nonorientable manifold M..2C 2t/P; �t /. The Betti numbers of
.M.2P; ı/, .M.4P; ı1/ and .M.6P; ı2/ are shown in the second, third and fourth
columns of Table 5. By Proposition 3.2 and using the facts that ˇ1.M.2P; ı//D 7,
ˇ1.M.4P; ı1// D 17 and ˇ1.M.6P; ı2// D 27, we can deduce the last column of
Table 5.
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nD 2 nD 4 nD 6 � � � nD 2C 2t , t 2N

1 0 0 0 � � � 0
2 0 0 0 � � � 0
3 2 4 6 � � � 2t C 2

4 1 2 3 � � � t C 1

5 0 0 0 � � � 0
6 1 3 5 � � � 2t C 1

7 0 0 0 � � � 0
8 1 2 3 � � � t C 1

9 0 0 0 � � � 0
10 0 1 2 � � � t

11 0 0 0 � � � 0
12 1 3 5 � � � 2t C 1

13 1 2 3 � � � t C 1

14 0 0 0 � � � 0
15 0 0 0 � � � 0

total ˇ1 7 17 27 � � � 10t C 7D 5n� 3

Table 5: The values of ˇ1 for Lemma 4.1.

In other words, we may always find a nonorientable Z3
2
–coloring � such that its natural

Z4
2
–extension ı has ˇ1.M.nP; ı//D 5n� 3.

Lemma 4.2 For any even positive integer n and any odd integer k 2 Œ5n� 1; 5nC 3�,
there is a nonorientable Z3

2
–coloring � over the polytope nP such that , for its natural

associated Z4
2
–coloring ı, we have ˇ1.M.nP; ı//D k.

Proof We start at nD 2 and construct suitable characteristic functions of the desired
manifolds, whose first Betti numbers increase by 10t when the last pair of their coloring
bricks are repeated t times. First, in Table 6 we prepare an affix and some bricks for
constructing the coloring vectors needed.

Let �0
1
, �1

1
and �2

1
be the three nonorientable Z3

2
–coloring characteristic functions of

the coloring vectors

Œa1S1S2S1a1�; Œa1S1S2S1S2S1a1�; Œa1S1S2S1S2S1S2S1a1�

over the polytopes 2P , 4P and 6P , respectively. Their characteristic vectors are

.1; 2; 4; 4; 3; 6; 5; 1; 6; 3; 2; 2; 4; 4; 3; 6; 1/;

.1; 2; 4; 4; 3; 6; 5; 1; 6; 3; 2; 2; 4; 4; 3; 6; 5; 1; 6; 3; 2; 2; 4; 4; 3; 6; 1/;

.1; 2; 4; 4; 3; 6; 5; 1; 6; 3; 2; 2; 4; 4; 3; 6; 5; 1; 6; 3; 2; 2; 4; 4; 3; 6; 5; 1; 6; 3; 2; 2; 4; 4; 3; 6; 1/:
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to construct affixes brick pair of bricks being repeated

�t
1

a1 D 1 S1 D 34246 S2S1 D .26513 34246/

�t
2
, �t

3

a1 D 1

a2 D 3

a3 D 7

S1 D .24246/ S2S3 D .73153 14245/

Table 6: The affixes and bricks for constructing �t
1, �t

2 and �t
3 of Lemma 4.2.

It can be easily checked that the nonsingularity condition holds at every vertex. The
natural associated Z4

2
–extensions are denoted by ı0

1
, ı1

1
and ı2

1
. By Corollary 2.3, we

can calculate the first Betti numbers of those manifolds, namely ˇ1.M.2P; ı0
1
//D 13,

ˇ1.M.4P; ı1
1
//D 23 and ˇ1.M.6P; ı2

1
//D 33. Thus, according to Proposition 3.2,

(4-1) ˇ1.M..2C 2t/P; ıt
1//D 13C 10t; where t 2 ZC:

Similarly, we describe the affixes and bricks for constructing �t
2

and �t
3

of Lemma 4.2
in Table 6.

Let us denote by �0
2
, �1

2
and �2

2
the three nonorientable Z3

2
–coloring characteristic

functions of the following colored polytopes 2P , 4P and 6P :

Œa1S1S2S3a2�; Œa1S1S2S3S2S3a2�; Œa1S1S2S3S2S3S2S3a2�;

and let �0
3
, �1

3
and �2

3
be the Z3

2
–coloring characteristic functions of the following

colored polytopes 2P , 4P and 6P :

Œa1S1S2S3a3�; Œa1S1S2S3S2S3a3�; Œa1S1S2S3S2S3S2S3a3�:

Their natural associated Z4
2
–extensions are denoted as ı0

2
, ı1

2
, ı2

2
and ı0

3
, ı1

3
, ı2

3
.

The first Betti numbers of these manifolds, namely ˇ1.M.2P; ı0
2
//, ˇ1.M.4P; ı1

2
//,

ˇ1.M.6P; ı2
2
// and ˇ1.M.2P; ı0

3
//, ˇ1.M.4P; ı1

3
//, ˇ1.M.6P; ı2

3
//, are explicitly

calculated to be 15, 25, 35 and 17, 27, 37, respectively.

Thus we have, for each t 2 ZC,

ˇ1.M..2C 2t/P; ıt
2//D 15C 10t;(4-2)

ˇ1.M..2C 2t/P; ıt
3//D 17C 10t:(4-3)

Putting together the results in (4-1), (4-2) and (4-3), we have the proof of Lemma 4.2.

Lemma 4.3 For any even positive integer n and any odd integer k 2 Œ1; n� 1�, there is
a nonorientable Z3

2
–coloring � over the polytope nP such that , for its natural associated

Z4
2
–coloring ı, we have ˇ1.M.nP; ı//D k.
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affixes bricks compatible pairs of bricks being repeated

a1 D 1

a2 D 3

S1 D .24247/

S2 D .54241/

S3 D .67172/

A1 D .6717254241/

A2 D .7317254241/

Table 7: The affixes, bricks and compatible pairs for �.t1;t2/ of Lemma 4.3.

Figure 15: Compatible pair.

Proof We consider some affixes and bricks as described in Table 7. For the sake of
brevity, we use the symbol Ai to denote a compatible pair of bricks, where “compatible”
means the nonsingular condition is satisfied at all ten intersecting vertices of the two
bricks as shown in Figure 15.

At first, we construct a nonorientable Z3
2
–coloring � over the polytope 2P , where the

colored polytope is Œa1S1S3S2a2�. The nonorientability is guaranteed by Corollary 2.9.
The natural Z4

2
–extension of � is denoted by ı. Let �.t1;t2/ be the Z3

2
–coloring charac-

teristic function of the colored polytope 2.t1C t2C 1/P ,

ŒaS1S3S2 A1; : : : ;A1„ ƒ‚ …
t1

A2; : : : ;A2„ ƒ‚ …
t2

a2�:

It can be easily checked that the nonsingularity condition holds at every vertex. More-
over, ı.t1;t2/ is the natural Z4

2
–extension of �.t1;t2/, which is also defined on the polytope

2.t1C t2C 1/P . In particular, �.0;0/ D �. The colored 2P s corresponding to �.1;0/

and �.0;1/ are Œa1S1S3S2A1a2� and Œa1S1S3S2A2a2�, respectively. In this case, the
nonsingularity condition holds at every vertex. The calculated Betti numbers are given
in Table 8.

By Proposition 3.2 and

ˇ1.M.2P; ı.0;0///D 1; ˇ1.M.4P; ı.1;0///D 1; ˇ1.M.6P; ı.2;0///D 1;

ˇ1.M.2P; ı.0;0///D 1 ˇ1.M.4P; ı.1;0///D 1 ˇ1.M.6P; ı.2;0///D 1 � � �

ˇ1.M.4P; ı.0;1///D 3 ˇ1.M.6P; ı.1;1///D 3 � � �

ˇ1.M.6P; ı.0;2///D 5 � � �

Table 8: The values of ˇ1.M..2.t1C t2C 2//P; ı.t1;t2/// in Lemma 4.3.
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we have

(4-4) ˇ1.M.2.t1C t2C 1/P; ı.t1;t2///D ˇ1.M.2.t1C t2C 2/P; ı.t1C1;t2///:

Likewise, from

ˇ1.M.2P; ı.0;0///D 1; ˇ1.M.4P; ı.0;1///D 3; ˇ1.M.6P; ı.0;2///D 5;

we have

(4-5) ˇ1.M.2.t1C t2C 1/P; ı.t1;t2///C 2D ˇ1.M.2.t1C t2C 2/P; ı.t1;t2C1///:

By (4-4) and (4-5), we obtain

(4-6) ˇ1.M.nP; ı.t;
1
2

n�1�t///D n� 2t � 1;

where n is even and 0 6 t 6 1
2
n� 1, which completes the proof of Lemma 4.3.

Lemma 4.4 For any even positive integer n and any odd integer k 2 ŒnC 3; 5n� 5�,
there is a nonorientable Z3

2
–coloring � over the polytope nP such that , for its natural

associated Z4
2
–coloring ı, we have ˇ1.M.nP; ı//D k.

Proof The considered affixes and bricks are described in Table 9.

First, we construct three nonorientable Z3
2
–coloring characteristic functions z�0, z�1 and

z�2 of polytopes 2P , 4P and 6P , respectively as below:

Œa1S1A3a1�;

Œa1S1A3A3a1�;

Œa1S1A3A3A3a1�:

Their characteristic vectors are

.1; 2; 4; 4; 2; 7; 3; 7; 5; 2; 6; 2; 4; 4; 2; 7; 1/;

.1; 2; 4; 4; 2; 7; 3; 7; 5; 2; 6; 2; 4; 4; 2; 7; 3; 7; 5; 2; 6; 2; 4; 4; 2; 7; 1/;

.1; 2; 4; 4; 2; 7; 3; 7; 5; 2; 6; 2; 4; 4; 2; 7; 3; 7; 5; 2; 6; 2; 4; 4; 2; 7; 3; 7; 5; 2; 6; 2; 4; 4; 2; 7; 1/:

affixes brick compatible pairs of bricks being repeated

a1 D 1, a2 D 4 S1 D .24247/ A1 D .42472 71635/

A2 D .42472 37265/

A3 D .65372 24247/

A4 D .65372 71635/

Table 9: The affixes, brick and compatible pairs for constructing �.t1;t2/i of Lemma 4.4.
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Also in this case, the nonsingularity condition holds at every vertex. Their natural
associated Z4

2
–colorings are denoted by zı0, zı1 and zı2. By Corollary 2.3, we obtain that

the first Betti numbers of the corresponding manifolds are 5, 15 and 25, respectively.
Thus, we have

(4-7) ˇ1.M..2C 2t/P; zıt //D 5C 10t

for each t 2Z�0, where t is the number of times the last two bricks of zı0 are repeated.

Next, we use �.t1;t2/
i to represent the Z3

2
–coloring characteristic function of coloring

vector
ŒaS1A3; : : : ;A3„ ƒ‚ …

t1

A4A1; : : : ;A1„ ƒ‚ …
t2

Aiaj �

over the polytope 2.t1C t2C2/P . Here aj is the affix element and j D 2; 1; 1; 2 when
i D 1; 2; 3; 4, respectively. In particular, the coloring vector of �.0;0/i is ŒaS1A4Aiaj �.
The nonsingularity condition holds at every vertex. Moreover, ı.t1;t2/

i is the natural
associated Z4

2
–extension of �.t1;t2/

i .

From
ˇ1.M.4P; ı

.0;0/
i //D 5C 2i;

ˇ1.M.6P; ı
.0;1/
i //D 7C 2i;

ˇ1.M.8P; ı
.0;2/
i //D 9C 2i

for i D 1; 2; 3; 4, we have

(4-8) ˇ1.M.2.t1C t2C 2/P; ı
.t1;t2/
i //C 2D ˇ1.M.2.t1C t2C 3/P; ı

.t1;t2C1/
i /

for i D 1; 2; 3; 4. From

ˇ1.M.4P; ı
.0;0/
i //D 5C 2i;

ˇ1.M.6P; ı
.1;0/
i //D 15C 2i;

ˇ1.M.8P; ı
.2;0/
i //D 25C 2i

for i D 1; 2; 3; 4, we have

(4-9) ˇ1.M.2.t1C t2C 2/P; ı
.t1;t2/
i //C 10D ˇ1.M.2.t1C t2C 3/P; ı

.t1C1;t2/
i //:

By (4-8) and (4-9) it follows that

(4-10) ˇ1.M.nP; ı
.t; 1

2
n�2�t/

i //D nC 8t C 2i C 3

for n even and 0 6 t 6 1
2
n� 2.

Algebraic & Geometric Topology, Volume 23 (2023)



1086 Jiming Ma and Fangting Zheng

2P 4P 6P 8P 10P � � �

ı ˇ1 ı ˇ1 ı ˇ1 ı ˇ1 ı ˇ1 � � �

ı
.0;0/
1

7 ı
.0;1/
1

9 ı
.0;2/
1

11 ı
.0;3/
1

13 � � �

zı0 5 ı
.0;0/
2

9 ı
.0;1/
2

11 ı
.0;2/
2

13 ı
.0;3/
2

15 � � �

ı
.0;0/
3

11 ı
.0;1/
3

13 ı
.0;2/
3

15 ı
.0;3/
3

17 � � �

ı
.0;0/
4

13 ı
.0;1/
4

15 ı
.0;2/
4

17 ı
.0;3/
4

19 � � �

ı
.1;0/
1

17 ı
.1;1/
1

19 ı
.1;2/
1

21 � � �

zı1 15 ı
.1;0/
2

19 ı
.1;1/
2

21 ı
.1;2/
2

23 � � �

ı
.1;0/
3 21 ı

.1;1/
3 23 ı

.1;2/
3 25 � � �

ı
.1;0/
4 23 ı

.1;1/
4 25 ı

.1;2/
4 27 � � �

ı
.2;0/
1 27 ı

.2;1/
1 29 � � �

zı2 25 ı
.2;0/
2 29 ı

.2;1/
2 31 � � �

ı
.2;0/
3 31 ı

.2;1/
3 33 � � �

ı
.2;0/
4 33 ı

.2;1/
4 35 � � �

ı
.3;0/
1 37 � � �

zı3 35 ı
.3;0/
2 39 � � �

ı
.3;0/
3

41 � � �

ı
.3;0/
4

43 � � �

zı4 45 � � �

Table 10: The values of ˇ1 D ˇ1.M.nP; ı/ for Lemma 4.4.

By (4-7) and (4-10), we finish the proof of Lemma 4.4. All of the Betti numbers of
Lemma 4.4 are listed in Table 10.

Now, using Lemmas 3.1 and 4.1–4.4, we complete the proof of Theorem 1.2 for n even.

5 Proof of Theorem 1.2 for n odd

In this section, we analogously prove Theorem 1.2 for odd n.

Lemma 5.1 For any odd positive integer n, there is a nonorientable Z3
2
–coloring �

over the polytope nP such that , for its natural associated Z4
2
–coloring ı, we have

ˇ1.M.nP; ı//D n.
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nD 3 nD 5 nD 7 � � � nD 3C 2t , t 2N

1 1 1 1 � � � 1
2 1 1 1 � � � 1
3 0 0 0 � � � 0
4 0 1 2 � � � t

5 0 0 0 � � � 0
6 0 1 2 � � � t

7 1 1 1 � � � 1
8 0 0 0 � � � 0
9 0 0 0 � � � 0

10 0 0 0 � � � 0
11 0 0 0 � � � 0
12 0 0 0 � � � 0
13 0 0 0 � � � 0
14 0 0 0 � � � 0
15 0 0 0 � � � 0

total ˇ1 3 5 7 � � � 3C 2t D n

Table 11: The values of ˇ1.M.nP; ıt // for nD 3C 2t in Lemma 5.1.

Proof We first prove the special case in which nD 3. Consider bricks S1 D .24247/

and S2 D .35716/, and affixes a1 D 1 and a2 D 4. We construct a nonorientable
Z3

2
–coloring � over the polytope 3P whose coloring and characteristic vector are

Œa1S1S2S1S2a2� and .1; 2; 4; 4; 2; 7; 7; 1; 5; 6; 3; 2; 4; 4; 2; 7; 7; 1; 5; 6; 3; 4/;

respectively.

By Corollary 2.3, ˇ1.M.3P; ı//D 3, where ı is the natural Z4
2
–extension of �. We

repeat the last two bricks t times to construct a coloring over the polytope .3C2t/P , and
denote its characteristic function by �t . It can be easily checked that the nonsingularity
condition holds at every vertex. By Corollary 2.9 and Proposition 2.11, we obtain
the admissible extension ıt of the nonorientable �t . That is, M..3C 2t/P; ıt / is
the orientable double cover of the nonorientable manifold M..3C 2t/P; �t /. The
progressions of corresponding Betti numbers are shown in Table 11.

This concludes the proof of Lemma 5.1.

Lemma 5.2 For any odd positive integer n and any odd integer k 2 Œ5n� 9; 5nC 3�,
there is a nonorientable Z3

2
–coloring � over the polytope nP such that , for its natural

associated Z4
2
–coloring ı, we have ˇ1.M.nP; ı//D k.
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affix compatible pairs of bricks being repeated

a1 D 1 A1 D .53726 71635/

A2 D .24724 37265/

A3 D .53726 74242/

Table 12: An affix and compatible pairs of bricks for Lemma 5.2, I.

Proof We start at n D 3 and construct six suitable characteristic vectors whose
corresponding manifolds’ Betti numbers would increase by 10t when repeating the last
pair of coloring bricks t times. An affix and some useful compatible pairs are described
in Table 12.

For every i D 0; 1; 2, let �0
i , �1

i and �2
i be the three Z3

2
–coloring characteristic functions

of the three colorings over the polytopes 3P , 5P and 7P as shown in Table 13. Here t

represents how many times the last compatible pair of �0
i is repeated. It can be checked

with little effort that the nonsingularity condition holds at every vertex.

Let ıt
i be the natural Z4

2
–extensions of �t

i for i D 0; 1; 2. By Corollary 2.3, we may
calculate the first Betti numbers of the manifolds corresponding to the coloring vectors
in Table 13, namely

ˇ1.M.3P; ı0
0//D 7; ˇ1.M.5P; ı1

0//D 17; ˇ1.M.7P; ı2
0//D 27;

ˇ1.M.3P; ı0
1//D 9; ˇ1.M.5P; ı1

1//D 19; ˇ1.M.7P; ı2
1//D 29

and

ˇ1.M.3P; ı0
2//D 11; ˇ1.M.5P; ı1

2//D 21; ˇ1.M.7P; ı2
2//D 31:

Therefore, according to Proposition 3.2, for each t 2N,

ˇ1.M..3C 2t/P; ıt
1//D 7C 10t;(5-1)

ˇ1.M..3C 2t/P; ıt
2//D 9C 10t;(5-2)

ˇ1.M..3C 2t/P; ıt
3//D 11C 10t:(5-3)

i t D 0 1 2

0 Œa1A1A2a1� Œa1A1A2A2a1� Œa1A1A2A2A2a1�

1 Œa1A1A3a1� Œa1A1A3A3a1� Œa1A1A3A3A3a1�

2 Œa1A1A1a1� Œa1A1A1A1a1� Œa1A1A1A1A1a1�

Table 13: The coloring vectors of �t
i in Lemma 5.2.
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affixes compatible pairs of bricks being repeated

a1 D 1, a2 D 3 A0 D .34246 26513/

A1 D .31245 26416/

A2 D .31245 16416/

A3 D .31245 46452/

Table 14: The affixes and compatible pairs for Lemma 5.2, II.

Similarly, we prepare the affixes and compatible pairs for constructing the desired
characteristic function z�t

i in Table 14.

For every i D 0; 1; 2, let z�0
i , z�1

i and z�2
i be the three Z3

2
–coloring characteristic functions

of the three colorings over the polytopes 3P , 5P and 7P as shown in Table 15. Here t

represents how many times the last compatible pair of z�0
i is repeated. It can be easily

checked that the nonsingularity condition holds at every vertex.

Let zıt
i be the natural Z4

2
–extensions of z�t

i , for i D 1; 2; 3. By Corollary 2.3, we
calculate the first Betti numbers of the manifolds corresponding to the coloring vectors
in Table 15, namely

ˇ1.M.3P; zı0
0//D 13; ˇ1.M.5P; zı1

0//D 23; ˇ1.M.7P; zı2
0//D 33;

ˇ1.M.3P; zı0
1//D 15; ˇ1.M.5P; zı1

1//D 25; ˇ1.M.7P; zı2
1//D 35;

and

ˇ1.M.3P; zı0
2//D 17; ˇ1.M.5P; zı1

2//D 27; ˇ1.M.7P; zı2
2//D 37:

Thus, according to Proposition 3.2, for each t 2N,

ˇ1.M..3C 2t/P; zıt
1//D 13C 10t;(5-4)

ˇ1.M..3C 2t/P; zıt
2//D 15C 10t;(5-5)

ˇ1.M..3C 2t/P; zıt
3//D 17C 10t:(5-6)

Putting together the results in (5-1)–(5-6), we have the proof of Lemma 5.2.

i t D 0 1 2

0 Œa1A0A1a2� Œa1A0A1A1a2� Œa1A0A1A1A1a2�

1 Œa1A0A2a2� Œa1A0A2A2a2� Œa1A0A2A2A2a2�

2 Œa1A0A3a2� Œa1A0A3A3a2� Œa1A0A3A3A3a2�

Table 15: The coloring vectors of z�t
i in Lemma 5.2.
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affixes compatible pairs of bricks being repeated

a1 D 1, a2 D 4 A1 D .24247 17532/

A2 D .53176 17532/

A3 D .53147 17532/

Table 16: The affixes and compatible pairs for �.t1;t2/ of Lemma 5.3.

Lemma 5.3 For any odd positive integer n and any odd integer k 2 Œ1; n�1�, there is a
nonorientable Z3

2
–coloring � over the polytope nP such that , for its natural associated

Z4
2
–coloring ı, we have ˇ1.M.nP; ı//D k.

Proof We prepare some affixes and compatible pairs as described in Table 16.

At first, we construct a nonorientable Z3
2
–coloring characteristic function �, whose

coloring vector is Œa1A1A2a2�, on the polytope 3P , and denote its natural Z4
2
–extension

by ı. Let �.t1;t2/ be the Z3
2
–coloring characteristic function of

Œa1A1A2A2; : : : ;A2„ ƒ‚ …
t1

A3; : : : ;A3„ ƒ‚ …
t2

a2�

over the polytope .2.t1C t2/C 3//P . We use ı.t1;t2/ to denote the natural associated
Z4

2
–extension of �.t1;t2/. In particular, �.0;0/ D �. It can be easily checked that the

nonsingularity condition holds at every vertex. The results of the calculations of the
Betti numbers are reported in Table 17.

According to Proposition 3.2, the Betti number sequence would be an arithmetic
progression if the first three numbers satisfy the relation of arithmetic progression.

From

ˇ1.M.3P; ı.0;0///D 1; ˇ1.M.5P; ı.1;0///D 1; ˇ1.M.7P; ı.2;0///D 1;

we have

(5-7) ˇ1
�
M
�
.2.t1C t2/C 3/P; ı.t1;t2/

��
D ˇ1

�
M
�
.2.t1C t2/C 5/P; ı.t1C1;t2/

��
:

ˇ1.M.3P; ı.0;0///D 1 ˇ1.M.5P; ı.1;0///D 1 ˇ1.M.7P; ı.2;0///D 1 � � �

ˇ1.M.5P; ı.0;1///D 3 ˇ1.M.7P; ı.1;1///D 3 � � �

ˇ1.M.7P; ı.0;2///D 5 � � �

Table 17: The values of ˇ1
�
M
�
.2.t1C t2/C 3/P; ı.t1;t2/

��
in Lemma 5.3.
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From

ˇ1.M.3P; ı.0;0///D 1; ˇ1.M.5P; ı.0;1///D 3; ˇ1.M.7P; ı.0;2///D 5;

we have

(5-8) ˇ1
�
M
�
.2.t1Ct2/C3/P; ı.t1;t2/

��
C2Dˇ1

�
M
�
.2.t1Ct2/C5/P; ı.t1;t2C1/

��
:

By (5-7) and (5-8), we obtain

(5-9) ˇ1.M.nP; ı.t;
1
2
.n�3/�t///D n� 2� 2t;

for each n odd with n 2 Z�3 and 0 6 t 6 1
2
.n� 3/.

This concludes the proof of Lemma 5.3.

Lemma 5.4 For any odd positive integer n and any odd integer k 2 ŒnC 1; 5n� 9�,
there is a nonorientable Z3

2
–coloring � over the polytope nP such that , for the natural

associated Z4
2
–coloring ı, we have ˇ1.M.nP; ı//D k.

Proof The affixes and compatible pairs of bricks considered are described in Table 18.

At first, we construct a nonorientable Z3
2
–coloring � over the polytope 3P whose

coloring vector is Œa1A4A1a2�. We denote by ı the natural associated Z4
2
–extension.

By calculation, we have

(5-10) ˇ1.M.3P; ı//D 5:

We denote by �t�1
i , where t 2 Z�1 and i D 1; 2; 3; 4, the nonorientable Z3

2
–coloring

characteristic function � on the polytope .2t C 3/P corresponding to coloring vector

Œa1A4A1; : : : ;A1„ ƒ‚ …
t

Aiaj �;

where aj is an affix element and j is given by 2; 1; 1; 2 for i D 1; 2; 3; 4, respectively.

affixes compatible pairs of bricks being repeated

a1 D 1, a2 D 4 A1 D .42472 57163/

A2 D .42472 53726/

A3 D .65372 72424/

A4 D .65372 57163/

Table 18: The affixes and compatible pairs for Lemma 5.4.
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3P 5P 7P 9P 11P � � �

ı ˇ1 ı ˇ1 ı ˇ1 ı ˇ1 ı ˇ1 � � �

zı 5 ı0
1

7 ı1
1

9 ı2
1

11 ı3
1

13 � � �

zı0 5 ı0
2

9 ı1
2

11 ı2
2

13 ı3
2

15 � � �

ı0
3 11 ı1

3 13 ı2
3 15 ı3

3 17 � � �

ı0
4

13 ı1
4

15 ı2
4

17 ı3
4

19 � � �

ı
.0;0/
1

17 ı
.0;1/
1

19 ı
.0;2/
1

21 � � �

zı1 15 ı
.0;0/
2

19 ı
.0;1/
2

21 ı
.0;2/
2

23 � � �

ı
.0;0/
3

21 ı
.0;1/
3

23 ı
.0;2/
3

25 � � �

ı
.0;0/
4

23 ı
.0;1/
4

25 ı
.0;2/
4

27 � � �

ı
.1;0/
1

27 ı
.1;1/
1

29 � � �

zı2 25 ı
.1;0/
2

29 ı
.1;1/
2

31 � � �

ı
.1;0/
3 31 ı

.1;1/
3 33 � � �

ı
.1;0/
4 33 ı

.1;1/
4 35 � � �

ı
.2;0/
1 37 � � �

zı3 35 ı
.2;0/
2 39 � � �

ı
.2;0/
3 41 � � �

ı
.2;0/
4 43 � � �

zı4 45 � � �

Table 19: The values of ˇ1.M.nP; ı//, nD 3; 5; 7; 9; 11; : : : , for Lemma 5.4.

In particular, �t
1

is obtained by inserting .t C 1/ copies of A1 into the coloring vector
of �. We denote by ıt�1

i the natural Z4
2
–extension of �t�1

i . From

ˇ1.M.5P; ı0
i //D 5C 2i; ˇ1.M.7P; ı1

i //D 7C 2i; ˇ1.M.9P; ı2//D 9C 2i;

we have

(5-11) ˇ1
�
M
�
.2t C 3/P; ıt�1

i

��
C 2D ˇ1

�
M
�
.2t C 5/P; ıt

i

��
for i D 1; 2; 3; 4.

Next, we construct three nonorientable Z3
2
–colorings z�0, z�1 and z�2 on the polytopes

3P , 5P , 7P , whose coloring vectors are, respectively,

Œa1A1A3a1�; Œa1A1A3A3a1�; Œa1A1A3A3A3a1�:
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The natural Z4
2
–extensions are denoted by zı0, zı1 and zı2. By calculation, we have

ˇ1.M.3P; zı0//D 5; ˇ1.M.5P; zı1//D 15; ˇ1.M.7P; zı2//D 25:

For t 2 Z�1, we denote by z�t�1 the Z3
2
–coloring characteristic function of

Œa1A1A3; : : : ;A3„ ƒ‚ …
t

a1�

over the polytope .2tC1/P and write its natural Z4
2
–extension as zıt�1. Then we have,

for each t 2 Z�1,

(5-12) ˇ1.M..2t C 1/P; zıt�1//D 10t � 5:

Let �.t1�1;t2/
i denote the Z3

2
–coloring characteristic function of the coloring vector

Œa1A1A3; : : : ;A3„ ƒ‚ …
t1

A4 A1; : : : ;A1„ ƒ‚ …
t2

Aiaj �

over the polytope .2.t1C t2/C 5/P , where aj is an affix element and j is given by
2; 1; 1; 2 for i D 1; 2; 3; 4, respectively. In particular, the coloring vector of �.0;0/i

is ŒaA1A3A4Aiaj �. Also ı.t1�1;t2/
i is the natural Z4

2
–extension of �.t1�1;t2/

i over the
polytope .2.t1C t2/C 5/P .

From
ˇ1.M.7P; ı

.0;0/
i //D 5C 2i;

ˇ1.M.9P; ı
.0;1/
i //D 7C 2i;

ˇ1.M.11P; ı
.0;2/
i //D 9C 2i

for i D 1; 2; 3; 4, we have

(5-13) ˇ1
�
M
�
.2.t1C t2/C 5/P; ı.t1�1;t2/

��
C 2

D ˇ1
�
M
�
.2.t1C t2/C 7/P; ı.t1�1;t2C1/

��
for each t 2 Z�1.

From
ˇ1.M.7P; ı

.0;0/
i //D 5C 2i;

ˇ1.M.9P; ı
.1;0/
i //D 15C 2i;

ˇ1.M.11P; ı
.2;0/
i //D 25C 2i

for i D 1; 2; 3; 4, we have

(5-14) ˇ1
�
M
�
.2.t1Ct2/C5/P; ı

.t1�1;t2/
i

��
C10Dˇ1

�
M
�
.2.t1Ct2/C7/P; ı

.t1;t2/
i

��
for each t 2 Z�1.
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� ˇ1.M.P; ı//

1 (1, 2, 4, 4, 2, 7, 1, 7, 7, 5, 6, 4) 1
2 (1, 2, 4, 4, 2, 7, 7, 3, 1, 5, 4, 2) 3
3 (1, 2, 4, 4, 2, 7, 3, 5, 5, 6, 3, 1) 5
4 (1, 2, 4, 5, 2, 6, 3, 6, 5, 4, 3, 1) 7

Table 20: The Z3
2–colorings and ˇ1 of their natural Z4

2–extensions of Lemma 5.5.

By (5-13) and (5-14), we have

(5-15) ˇ1.M.nP; ı
.t; 1

2
.n�1/�3�t/

i //D nC 2i C 8t

for n 2 Zodd
�7

and 0 6 t 6 1
2
.n� 7/.

Putting together the results in (5-10)–(5-12) and (5-15), we complete the proof of
Lemma 5.4. All the Betti numbers of Lemma 5.4 are listed in Table 19.

Lemma 5.5 For any odd integer k 2 Œ1; 7�, there is a nonorientable Z3
2
–coloring

over the dodecahedron P such that , for its natural associated Z4
2
–coloring ı, we have

ˇ1.M.P; ı//D k.

Proof We report the required characteristic functions in Table 20 to conclude this
lemma.

Now, using Lemmas 5.1–5.5, we complete the proof of Theorem 1.2 for an odd n.
Thus, together with Section 4, we finish the proof of Theorem 1.2.
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