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Hierarchically hyperbolic spaces (HHSs) are a large class of spaces that provide
a unified framework for studying the mapping class group, right-angled Artin and
Coxeter groups, and many 3–manifold groups. We investigate strongly quasiconvex
subsets in this class and characterize them in terms of their contracting properties,
relative divergence, the coarse median structure, and the hierarchical structure itself.
Along the way, we obtain new tools to study HHSs, including two new equivalent
definitions of hierarchical quasiconvexity and a version of the bounded geodesic
image property for strongly quasiconvex subsets. Utilizing our characterization, we
prove that the hyperbolically embedded subgroups of hierarchically hyperbolic groups
are precisely those that are almost malnormal and strongly quasiconvex, producing a
new result in the case of the mapping class group. We also apply our characterization
to study strongly quasiconvex subsets in several specific examples of HHSs. We
show that while many commonly studied HHSs have the property that every strongly
quasiconvex subset is either hyperbolic or coarsely covers the entire space, right-
angled Coxeter groups exhibit a wide variety of strongly quasiconvex subsets.
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1 Introduction

From Gromov’s original work on hyperbolic groups to the resolution of the virtual Haken
conjecture, quasiconvex subsets have played a central role in the study of hyperbolic
metric spaces and groups; see Agol [2], Gromov [31; 32] and Wise [55]. A subset
Y is quasiconvex if every geodesic based on Y in contained in a fixed neighborhood
of Y . A central feature of quasiconvex subsets of hyperbolic spaces is their quasi-
isometry invariance, ie the image of a quasiconvex subset of a hyperbolic space under
a quasi-isometry is quasiconvex.

Outside of hyperbolic spaces, quasiconvexity fails to be a quasi-isometry invariant.
However, a strengthening of this definition to require “quasiconvexity with respect to
quasigeodesics” and not just geodesics is sufficient to ensure quasi-isometry invariance.
A subset Y of a quasigeodesic metric space X is strongly quasiconvex if every quasi-
geodesic based in Y is contained in a bounded neighborhood of Y , where the radius of
the neighborhood is determined by the quasigeodesic constants. Strong quasiconvexity
provides a “coarsification” of the classical definition of a convex subset that ensures
that the image of a strongly quasiconvex subset under a quasi-isometry will be strongly
quasiconvex, regardless of the geometry of the ambient space. Strongly quasiconvex
subsets are therefore an avenue to study the geometry of any space up to quasi-isometry.

The study of strongly quasiconvex geodesics in nonhyperbolic spaces (often called
Morse geodesics) has been a vibrant and fruitful area of research over the last decade;
for example, Arzhantseva, Cashen, Gruber and Hume [6], Charney and Sultan [19],
Drut,u, Mozes and Sapir [22] and Ol’shanskii, Osin and Sapir [44]. Recently, consid-
erable interest has arisen in understanding general strongly quasiconvex subsets in
nonhyperbolic spaces.

The third author studied strongly quasiconvex subsets and subgroups in [54] and showed
that many important properties of quasiconvex subsets in hyperbolic spaces persist
for strongly quasiconvex subsets of any geodesic metric space. These result have
found applications in understanding the cell stabilizers of groups acting on CAT(0)
cube complexes — see Groves and Manning [33] — and the splittings of groups over
codimension 1 subgroups — see Petrosyan [46]. Using the name Morse instead of
strongly quasiconvex, Genevois studied strongly quasiconvex subsets of CAT(0) cube
complexes in [28] and Kim studied strongly quasiconvex subgroups of the mapping
class groups in [38]. Strongly quasiconvex subgroup that are also hyperbolic were intro-
duced by Durham and Taylor as stable subgroups [25] and have received considerable
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Convexity in hierarchically hyperbolic spaces 1169

study; for a sampling see Abbott, Behrstock and Durham [1], Antolín, Mj, Sisto and
Taylor [3], Aougab, Durham and Taylor [4], Behrstock [7], and Koberda, Mangahas
and Taylor [39].

In this paper, we are primarily interested in understanding the strongly quasiconvex
subsets of hierarchically hyperbolic spaces (HHSs). Introduced by Behrstock, Hagen
and Sisto in [9] and refined in [10], examples of hierarchically hyperbolic spaces include
hyperbolic spaces, the mapping class group of a surface, Teichmüller space with either
the Weil–Petersson or Teichmüller metrics, many cocompactly cubulated groups, and
the fundamental groups of 3–manifolds without Nil or Sol components. Important
consequences of hierarchical hyperbolicity include a Masur–Minsky style distance
formula [10], a quadratic isoperimetric inequality [10], restrictions on morphisms from
higher rank lattices (Haettel [34]), a largest acylindrical action on a hyperbolic space [1],
rank-rigidity and Tits alternative theorems (Durham, Hagen and Sisto [24]), control
over the top-dimensional quasiflats (Behrstock, Hagen and Sisto [11]), and bounds on
the asymptotic dimension (Durham, Hagen and Sisto [8]). The definition and much
of the theory of hierarchically hyperbolic spaces is inspired by the Masur–Minsky
subsurface projection machinery for the mapping class group. Our investigation is
therefore a natural extension of the problem purposed by Farb in [27, Problem 2.3.8]
to study convexity in the mapping class group.

Heuristically, a hierarchically hyperbolic space consists of a metric space X with an
associated collection of hyperbolic spaces S, such that for each space Z in S, there
is a projection map X ! Z. The philosophy of hierarchically hyperbolic spaces is
that one can study the coarse geometry of X by studying the projection of X to each
of the spaces in S. In this paper, we shall consider hierarchically hyperbolic spaces
satisfying the bounded domain dichotomy; a minor regularity condition requiring every
space in S to have either infinite or uniformly bounded diameter. The bounded domain
dichotomy simplifies the statements and proofs of our results while being satisfied by
all of the examples of hierarchically hyperbolic spaces given above and more broadly
by all hierarchically hyperbolic groups.

Equivalent conditions to being strongly quasiconvex The main goal of this paper is
to provide several equivalent conditions for a subset of a hierarchically hyperbolic space
to be strongly quasiconvex. A major theme is that several different notions of convexity
that coincide with being quasiconvex in a hyperbolic space, coincide with being strongly
quasiconvex in a hierarchically hyperbolic spaces. One such notion of convexity is
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that of contracting subsets. A subset Y �X of a quasigeodesic space is contracting
if there exists a coarsely Lipschitz retraction r W X ! Y under which large balls far
from Y have images with uniformly bounded diameter. Being contracting generalizes
the strong contracting behavior of the closest point projection onto a convex subset of
the hyperbolic plane. In general, strongly quasiconvex subsets are not contracting (see
Example 3.8); however these two notions of convexity tend to agree in the presence of
nonpositive curvature. Indeed, it is a classical fact that a subset of a hyperbolic space
is strongly quasiconvex if and only if it is contracting; the same is true for subsets of a
CAT(0) cube complex [19; 28]. The first of our equivalent condition is to extend these
results to hierarchically hyperbolic spaces.

Theorem 1.1 (strongly quasiconvex and contracting are equivalent) Let X be a
hierarchically hyperbolic space with the bounded domain dichotomy. A subset Y �X
is strongly quasiconvex if and only if Y is contracting.

In [6], a different notion of contracting subset is considered, and it is shown that a
subset of a geodesic metric space is strongly quasiconvex if and only if the subset is
sublinearly contracting. Example 3.8 demonstrates that our definition of contracting
(Definition 2.10) is strictly stronger than sublinear contracting, but the two notions
agree in the setting of hierarchically hyperbolic spaces. Another key difference between
our definition of contracting and that in [6] is that we do not require the contracting
map r WX ! Y to be the closest point projection, but allow for any coarsely Lipschitz
retraction that has the contracting property. This has the advantage of turning contracting
into a quasi-isometry invariant directly from the definition and is crucial in allowing us
to utilize a naturally occurring retraction map in hierarchically hyperbolic spaces that
is far more tractable than the closest point projection.

The third notion of convexity considered is hierarchical quasiconvexity, which is
specific to hierarchically hyperbolic spaces. Introduced in [10] by Behrstock, Hagen
and Sisto, hierarchically quasiconvex subsets have played a central role in the study of
hierarchically hyperbolic space [8; 10; 11]. Notably, a hierarchical quasiconvex subset
of an HHS is itself an HHS. While hierarchically quasiconvex subsets are not always
strongly quasiconvex, we classify precisely when the two concepts agree. Strongly
quasiconvex subsets are exactly the hierarchically quasiconvex subsets that satisfy the
orthogonal projection dichotomy (Definition 6.2), which describes how the projections
of a strongly quasiconvex subset to each of the associated hyperbolic spaces must look.
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Theorem 1.2 (strongly quasiconvex subsets are hierarchically hyperbolic) Let X
be a hierarchically hyperbolic space with the bounded domain dichotomy. A subset
Y �X is strongly quasiconvex if and only if Y is hierarchically quasiconvex and has
the orthogonal projection dichotomy. In particular , if Y �X is strongly quasiconvex ,
then Y is hierarchically hyperbolic.

Theorem 1.2 is truly the central result of this paper as it explains how the strongly
quasiconvex subsets interact with the projections defining the hierarchically hyperbolic
structure of the ambient space. Further, this characterization is complete as the theorem
fails whenever any of the hypotheses are weakened; see Remark 6.14.

In [1], Abbott, Behrstock and Durham give several equivalent conditions for quasi-
geodesics in a hierarchically hyperbolic space to be strongly quasiconvex and for a
map from a quasigeodesic space Y into a hierarchically hyperbolic space to be a stable
embedding; see Proposition 2.8. Theorems 1.1 and 1.2 generalize these results to
general strongly quasiconvex subsets and do not require the hypothesis of unbounded
products utilized by Abbott, Behrstock and Durham. This generalization to all strongly
quasiconvex subsets is essential to our applications in Sections 7 and 8.

Part of the proof of Theorem 1.2 involves studying hierarchically quasiconvex hulls in
hierarchically hyperbolic spaces. The hierarchically quasiconvex hull of a subset Y is
(coarsely) the smallest hierarchically quasiconvex set containing Y . We show that the
hull of any subset of a hierarchically hyperbolic space can be constructed using special
quasigeodesics called hierarchy paths (see Theorem 5.2 for the precise statement).

Theorem 1.3 (constructing hulls with hierarchy paths) If Y is a subset of a hier-
archically hyperbolic space X , then the hierarchically quasiconvex hull of Y can be
constructed in a uniformly finite number of steps by iteratively connecting points by
hierarchy paths.

This construction is reminiscent of the construction of quasiconvex hulls in hyperbolic
spaces by connecting pairs of points by geodesics and is similar to the join construction
of hulls in coarse median spaces presented by Bowditch in [16]. The main purpose of
Theorem 1.3 in this article is to establish that hierarchically quasiconvex subsets are
exactly the subsets that are “quasiconvex with respect to hierarchy paths”. However,
we expect this construction to have further applications in the study of hierarchically
hyperbolic spaces. Indeed, Hagen and Petyt have used this construction to build quasi-
isometries from some hierarchically hyperbolic groups to cube complexes [35], and
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in Section 5.1 we apply Theorem 1.3 to provide a characterization of hierarchical
quasiconvexity in terms of the coarse median structure on a hierarchically hyperbolic
space. This later result allows us to conclude that, in the setting of hierarchically
hyperbolic spaces, the coarse median hull constructed in [16] is coarsely equal to the
hierarchically quasiconvex hull; extending [16, Lemma 7.3] from finite to arbitrary
subsets.

Charney and Sultan proved that strongly quasiconvex geodesics in a CAT(0) space
are characterized by having at least quadratic lower divergence [19]. The third author
introduced a generalization of lower divergence to all subsets [53] and studied its
relationship with strong quasiconvexity [54]. If Y is a subset of the quasigeodesic
space X , the lower relative divergence of X with respect to Y (or the divergence of Y
in X ) is a family of functions that measures how efficiently one can travel in X while
avoiding Y . Building on the work in [54], we establish the following.

Theorem 1.4 (contracting subsets have at least quadratic divergence) Let X be a
quasigeodesic metric space. If Y �X is contracting , then the lower relative divergence
of X with respect to Y is at least quadratic. Further , if X is a hierarchically hyperbolic
space with the bounded domain dichotomy, then the lower relative divergence ofX with
respect to Y is at least quadratic if and only if Y is strongly quasiconvex (equivalently
if and only if Y is contracting).

Since the lower relative divergence of X with respect to Y agrees with Charney and
Sultan’s lower divergence when Y is a geodesic in X , Theorem 1.4 proves that strongly
quasiconvex geodesics (aka Morse geodesics) in hierarchically hyperbolic spaces with
the bounded domain dichotomy are also characterized by having at least quadratic
lower divergence.

After proving Theorems 1.1 through 1.4, we establish several HHS analogues of the
“bounded geodesic image property” of quasiconvex subsets of hyperbolic spaces. One
of these analogues is the following.

Theorem 1.5 Let Y be a strongly quasiconvex subset of a hierarchically hyperbolic
space X with the bounded domain dichotomy. There is a contracting map gY WX ! Y

such that for each � � 1 there exists a constant r� > 0 such that , for all x; y 2 X ,
if d.gY .x/; gY .y// > r�, then any �–hierarchy path from x to y must intersect the
r�–neighborhood of Y .
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Strongly quasiconvex subsets in specific examples After characterizing the strongly
quasiconvex subsets of hierarchically hyperbolic spaces, we apply our results to study
the strongly quasiconvex subsets of some of the most common examples of hierar-
chically hyperbolic spaces: the mapping class group, Teichmüller space, right-angled
Artin and Coxeter groups, and the fundamental groups of graph manifolds.

It has been shown that strongly quasiconvex subgroups of the mapping class group [38],
right-angled Artin groups with connected defining graph [28; 54], and certain CFS
right-angled Coxeter groups (Nguyen and Tran [43]) are either hyperbolic or finite-
index. We give sufficient conditions for a hierarchically hyperbolic space to have the
property that all its strongly quasiconvex subsets are either hyperbolic or coarsely
cover the entire space; see Proposition 7.2. Applying this criteria to specific examples
yields a new, unified proof of the work of Kim, Genevois, Nguyen and Tran as well
as the following new results for Teichmüller space, graph manifolds, and a class of
right-angled Coxeter groups that we call strongly CFS.

Corollary 1.6 The following HHSs have the property that every strongly quasiconvex
subset is either hyperbolic or coarsely covers the entire space:

(a) The Teichmüller space of a finite-type surface with the Teichmüller metric.

(b) The Teichmüller space of a finite-type surface of complexity at least 6 with the
Weil–Petersson metric.

(c) The mapping class group of an oriented , connected , finite type surface.

(d) A right-angled Artin group with connected defining graph

(e) A right-angled Coxeter group with strongly CFS defining graph.

(f) The fundamental group of a nongeometric graph manifold.

In particular , if H is a strongly quasiconvex subgroup in any of the groups (c)–(f), then
H is either stable or finite-index.

Stable subgroups of the mapping class group and right-angled Artin groups have been
studied extensively and have several interesting equivalent characterizations including
convex cocompactness in the mapping class group and purely loxodromic in right-
angled Artin groups [25; 39].

We also use HHS theory and Theorem 1.2 to give a new proof of [54, Theorem 1.11]
and [28, Proposition 4.9] characterizing when a special subgroup of a right-angled
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Coxeter group is strongly quasiconvex. We then utilize this characterization, along
with a construction of Behrstock, to demonstrate the large variety of different strongly
quasiconvex subsets that can be found in the class of CFS right-angled Coxeter groups.

Theorem 1.7 Every right-angled Coxeter group is an infinite-index strongly quasicon-
vex subgroup of some CFS right-angled Coxeter group.

Hyperbolically embedded subgroups As a final application of our characterization
of strongly quasiconvex subsets, we study the hyperbolically embedded subgroups of
hierarchically hyperbolic groups. Hyperbolically embedded subgroups are generaliza-
tions of peripheral subgroups in relatively hyperbolic groups (see Dahmani, Guirardel
and Osin [20]) and are a key component of studying acylindrically hyperbolic groups,
a large class of groups exhibiting hyperbolic-like behavior (see Osin [45]). Work of
Dahmani, Guirardel and Osin [20] and Sisto [50] showed that if a finite collection
of subgroups fHig is hyperbolically embedded in a finitely generated group G, then
fHig is an almost malnormal collection and each Hi is strongly quasiconvex. While
the converse of this statement is false in general (see the beginning of Section 8
for a counterexample), the converse does hold in the case of hyperbolic groups — see
Bowditch [13, Theorem 7.11] — and cocompactly cubulated groups [28, Theorem 6.31].
We prove the converse in the setting of hierarchically hyperbolic groups.

Theorem 1.8 (characterization of hyperbolically embedded subgroups) Let G be a
hierarchically hyperbolic group. A finite collection of subgroups fHig is hyperbolically
embedded in G if and only if fHig is an almost malnormal collection and each Hi is
strongly quasiconvex.

By [38, Theorem A], an infinite-index subgroup of the mapping class group of a surface
is strongly quasiconvex if and only if it is convex cocompact (this fact can also be
deduced from Corollary 1.6). Thus, as a specific case of Theorem 1.8, we have the
following new result for the mapping class group.

Corollary 1.9 If S is an oriented , connected , finite-type surface of complexity at
least 2 and fHig is a finite collection of subgroups of the mapping class group of S
then the following are equivalent :

� fHig is hyperbolically embedded.

� fHig is an almost malnormal collection and each Hi is strongly quasiconvex.

� fHig is an almost malnormal collection and each Hi is convex cocompact.
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1.1 Open questions

We believe that strongly quasiconvex subgroups are a rich area of study with many
interesting open questions both in the setting of hierarchically hyperbolic groups and
beyond. In light of Theorem 1.1, it is natural to wonder which results for strongly
quasiconvex subgroups of hyperbolic groups can be extended to strongly quasiconvex
subgroups of hierarchically hyperbolic groups (or even finitely generated groups). As
a starting point, one may aim to extend work of Gromov [31], Arzhantseva [5], and
Gitik [30] on combination theorems for strongly quasiconvex subgroups of hyperbolic
groups.

Question 1 Prove combination theorems for strongly quasiconvex subgroups of hierar-
chically hyperbolic groups (or even finitely generated groups). In particular , investigate
conditions guaranteeing that the subgroup generated by two strongly quasiconvex
subgroups , Q1 and Q2, is strongly quasiconvex and isomorphic to Q1 �Q1\Q2

Q2.

As strongly quasiconvex subsets are invariant under quasi-isometry, they have the
potential to play an important role in the quasi-isometric classification of hierarchically
hyperbolic spaces. The following would be an interesting first step in this direction.

Question 2 Provide necessary conditions for an HHS to have the property that all its
strongly quasiconvex subsets are either hyperbolic or coarsely cover the entire space.
Using defining graphs , characterize all right-angled Coxeter groups whose strongly
quasiconvex subsets are hyperbolic or coarsely cover the entire group.1

Looking beyond hierarchically hyperbolic spaces, we wonder about the possibilities of
understanding strongly quasiconvex subsets in other spaces with a notion of nonpositive
curvature. Specifically we ask the following.

Question 3 For what other spaces are strongly quasiconvex subsets contracting (in the
sense of Definition 2.10)?

Some of the first spaces one could consider are CAT(0) spaces, coarse median spaces,
and the outer automorphism groups of free groups. Sultan [52] shows that strongly
quasiconvex geodesics in CAT(0) spaces are always contracting. We conjecture the

1The case of right-angled Coxeter groups has been resolved by Genevois [29].
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same holds for all strongly quasiconvex subsets of a CAT(0) space.2 A possible starting
point for coarse median spaces could be the recently posted paper [16], in which
Bowditch constructs hulls for subsets of coarse median spaces and produces a number
of results similar to our work in Section 5.

Our proof of Theorem 1.8 rests strongly upon the equivalence between strongly qua-
siconvex and contracting subsets. One may then presume that any group that is an
answer to Question 3 is also an answer for the following question.

Question 4 For what other finitely generated groups are almost malnormal , strongly
quasiconvex subgroups hyperbolically embedded?

A long-standing open question in the study of quasiconvex subgroups of hyperbolic
group is whether or not finitely generated, almost malnormal subgroups of hyperbolic
groups must be quasiconvex. Accordingly, we ask the analogous question for the larger
class of hierarchically hyperbolic groups.

Question 5 Are finitely generated , almost malnormal subgroups of hierarchically
hyperbolic groups strongly quasiconvex?

Outline

In Section 2, we begin with the basic definitions and properties of strongly quasi-
convex subsets and the related notions of stability and contracting subsets of general
quasigeodesic spaces. In Section 3, we define lower relative divergence and study
the relationship between contracting subsets, strongly quasiconvex subsets, and lower
relative divergence in any quasigeodesic space. We move on to hierarchically hyperbolic
spaces in Section 4, where we give the definition of an HHS and detail the relevant
tools and constructions we will need from the theory. In Section 5, we explain how
to construct hierarchically quasiconvex hulls using hierarchy paths. As applications
of this construction, we give a characterization of hierarchically quasiconvex sets in
terms of the coarse median structure on the HHS and prove that strongly quasiconvex
subsets are also hierarchically quasiconvex. In Section 6, we state and prove our
equivalent characterizations of strongly quasiconvex subsets, finishing the proofs of
Theorems 1.1, 1.2, and 1.4. The remaining sections are devoted to applications of this
characterization. We give a generalization of the bounded geodesic image property

2This conjecture has been confirmed by Cashen [18].
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for strongly quasiconvex subsets in Section 6.3, study strongly quasiconvex subsets in
specific examples in Section 7, and characterize hyperbolically embedded subgroups
of HHGs in Section 8.
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strongly quasiconvex subgroup that is not hyperbolically embedded; and Johanna
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of this paper. We are also grateful to Kevin Schreve for pointing out an error in the
first version of this paper. Russell and Spriano thank the organizers of YGGT 2018 and
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special thanks to their respective advisors, Jason Behrstock and Alessandro Sisto, for
their ongoing support and their many helpful comments on early drafts of this paper.
Finally, we would like to thank the referees for a number of comments that improved
this paper.

2 Coarse geometry

2.1 Quasigeodesic spaces, conventions, and notation

This paper focuses on understanding the geometry of metric spaces up to quasi-isometry.
While many of the metric spaces we are interested in applying our results to are geodesic
metric spaces, many of the subspaces we will be studying will be quasigeodesic, but
not geodesic metric spaces. Thus, we will almost always assume our metric spaces are
quasigeodesic metric spaces.

Definition 2.1 A metric space X is a .K;L/–quasigeodesic metric space if for all
x; y 2X there exists a .K;L/–quasigeodesic 
 W Œa; b�!X with 
.a/Dx and 
.b/Dy.

Given a .K;L/–quasigeodesic metric space X , we can construct a geodesic metric
space quasi-isometric to X as follows: fix an �–separated net N � X and connect a
pair of points x; y 2 N by an edge of length d.x; y/ if d.x; y/ < 2�. The resulting
metric graph will be quasi-isometric to X . Since � can be chosen to depend only on K
and L, this graph can be constructed such that the quasi-isometry constants will also
depend only on K and L. When convenient, we will exploit this fact to reduce proofs
to the geodesic case.
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A particularly important collection of metric spaces in geometric group theory is
the class of ı–hyperbolic metric spaces, introduced by Gromov in [31; 32]. While
ı–hyperbolic spaces are usually required to be geodesic, the following is a direct
extension of the definition to the setting of quasigeodesic metric spaces.

Definition 2.2 A .K;L/–quasigeodesic metric space is ı–hyperbolic if for every
.K;L/–quasigeodesic triangle the ı–neighborhood of the union of any two of the edges
contains the third.

Gromov’s four-point condition can also be used to define a hyperbolic quasigeodesic
metric space; however as shown in [21, Example 11.36], this definition fails to be a
quasi-isometry invariant if the spaces are not geodesic. In contrast, Definition 2.2 is a
quasi-isometry invariant among quasigeodesic spaces. In particular, using the “guessing
geodesic” criterion, from [42, Theorem 3.15] or [15, Theorem 3.1], one can show that
a quasigeodesic space is hyperbolic in the sense of Definition 2.2 if and only if it is
quasi-isometric to a geodesic metric space that is hyperbolic in the usual sense.

When referring to a property defined by a parameter (eg ı–hyperbolic), we will often
suppress that parameter when its specific value is not needed. To reduce the prolifera-
tion of additive and multiplicative constants throughout this paper, we will adopt the
following notation.

Notation 2.3 Let A;B;K;L be real numbers. We write

A�K;L B if A�KBCL:

If A�K;L B and B �K;L A, we write A�K;L B .

We say two subsets of a metric space K–coarsely coincide if their Hausdorff distance
is at most K.

2.2 Strong quasiconvexity, contracting, and stability

The primary notion of convexity we will consider is the following notion of strong
quasiconvexity.

Definition 2.4 (strongly quasiconvex subset) A subset Y of a quasigeodesic metric
spaceX is strongly quasiconvex if there is a functionQ W Œ1;1/�Œ0;1/! Œ0;1/ such
that for every .K;L/–quasigeodesic 
 with endpoints in Y , we have 
 �NQ.K;L/.Y /.
We call the function Q the convexity gauge for Y .

Algebraic & Geometric Topology, Volume 23 (2023)
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It follows directly from the definition that strong quasiconvexity is a quasi-isometry
invariant in the following sense.

Lemma 2.5 Let X and Z be a quasigeodesic metric spaces and f W X ! Z be a
.K;L/–quasi-isometry. If Y is a Q–strongly quasiconvex subset of X , then f .Y / is a
Q0–strongly quasiconvex subset of Z, with Q0 depending only on Q, K and L.

In the setting of hyperbolic spaces, strong quasiconvexity is equivalent to the weaker
condition of quasiconvexity.

Definition 2.6 A subset Y of a geodesic metric space X is quasiconvex if there exists
D � 0 such that for any geodesic 
 with endpoints on Y , we have 
 � ND.Y /. We
call the constant D the convexity constant for Y .

If Y is a Q–strongly quasiconvex subset of the .K;L/–quasigeodesic space X , then
any two points in Y can be joined by a .K;L/–quasigeodesic in X that lies uniformly
close to Y . Thus Y equipped with the metric inherited from X will be a .K 0; L0/–
quasigeodesic metric space where K 0 and L0 depend only on K, L, and Q. For the
rest of the paper, when discussing geometric properties (such as hyperbolicity) of
a strongly quasiconvex subset, we shall implicitly do so with respect to the metric
inherited from the ambient space. In particular, if f W X ! Z is a quasi-isometry
between quasigeodesic spaces and Y is a strongly quasiconvex subset of X , then Y is
quasi-isometric to f .Y /.

In [25], Durham and Taylor introduced the following related notion of convexity.

Definition 2.7 A quasi-isometric embedding ˆ from a quasigeodesic metric space Y
into a quasigeodesic metric space X is a stable embedding if there is a function
R W Œ1;1/� Œ0;1/! Œ0;1/ such that if ˛ and ˇ are two .K;L/–quasigeodesics of X
with the same endpoints in ˆ.Y /, then dHaus.˛; ˇ/�R.K;L/.

While the images of stable embeddings maintain many of the features of quasiconvex
subsets of hyperbolic spaces, the definition is highly restrictive. In particular, as the
next proposition records, stable embeddings must always be onto hyperbolic subsets.

Proposition 2.8 Let ˆ W Y !X be a quasi-isometric embedding from a quasigeodesic
metric space Y to a quasigeodesic metric space X . Then ˆ is a stable embedding if
and only if Y is hyperbolic and ˆ.Y / is strongly quasiconvex. In particular , if Y is a
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strongly quasiconvex subset of X , then the inclusion i W Y ,!X is a stable embedding
if and only if Y is hyperbolic with respect to the metric inherited from X .

In [54, Proposition 4.3], the third author proves the above proposition for the case of
geodesic spaces. The more general statement above follows immediately from the fact
that a quasigeodesic space is always quasi-isometric to a geodesic space plus the fact
that strong quasiconvexity, stability, and hyperbolicity are all quasi-isometry invariants.

One class of metric spaces we are particularly interested in are finitely generated
groups equipped with a word metric. In this setting we are particularly interested in
understanding the strongly quasiconvex and stable subgroups.

Definition 2.9 Let G be a finitely generated group equipped with a word metric from
some finite generating set. A subgroup H < G is a strongly quasiconvex subgroup
of G if H is a strongly quasiconvex subset of G with respect to the word metric on G.
A subgroup H <G is a stable subgroup if H is a strongly quasiconvex subgroup and
H is a hyperbolic group.

The above definition of stable subgroup is different than the one originally given in [25],
but it is equivalent by Proposition 2.8.

If H is a strongly quasiconvex subgroup of G, then H is also finitely generated and
undistorted in G. Further, since strongly quasiconvex is a quasi-isometry invariant,
being a strongly quasiconvex or a stable subgroup is independent of the choice of finite
generating set for G.

It is common in the literature to study various “contracting” properties of strongly
quasiconvex subsets. We compare strongly quasiconvex subsets with the following
notion of a contracting subset.

Definition 2.10 Let X be a quasigeodesic metric space and Y �X . A map g WX! Y

is said to be .A;D/–contracting for some A 2 .0; 1� and D � 1 if

(1) g is .D;D/–coarsely Lipschitz;

(2) for any y 2 Y , d.y; g.y//�D;

(3) for all x 2X , if we set RD Ad.x; Y /, then diam.g.BR.x///�D.

A subset Y is said to be .A;D/–contracting if there is an .A;D/–contracting map
from X to Y .
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The above definition is motivated by [40, Definition 2.2] and generalizes the usual
definition of contracting in hyperbolic and CAT(0) spaces to include maps that are not
the closest point projection. This is critical to our study of hierarchically hyperbolic
spaces in Section 6 and allows quasi-isometry invariance to be established directly
from the definition.

Lemma 2.11 Let X and Z be quasigeodesic metric spaces and f W X ! Z be a
.K;L/–quasi-isometry. If Y is an .A;D/–contracting subset of X , then f .Y / is an
.A0;D0/–contracting subset of Z, where A0 and D0 depend only on A, D, K and L.

In the setting of hyperbolic spaces, strongly quasiconvex subsets are contracting. The
contracting map will be the following coarse closest point projection: if X is a ı–
hyperbolic metric space and Y � X is Q–strongly quasiconvex, then there exist K
depending on ı and Q and a .1;K/–coarsely Lipschitz map pY WX ! Y such that for
all x 2X , d.x; pY .x//� d.x; Y /C 1. By an abuse of language, we will refer to pY
as the closest point projection of X onto Y . For any Q–strongly quasiconvex subset Y
of a ı–hyperbolic space, the map pY is .1;D/–contracting where D depends only on
Q and ı.

3 Divergence of contracting subsets

In this section we show that contracting subsets are always strongly quasiconvex.
Without some negative curvature hypotheses, such as being hierarchically hyperbolic,
the converse is not always true as we show in Example 3.8. Both of these statements
are proved using lower relative divergence which was originally introduced by the third
author in [53]. The lower relative divergence is a family of functions that measures
how efficiently one can travel in X while avoiding a subset Y ; see Figure 1.

Definition 3.1 (lower relative divergence) Let X be a geodesic space and Y � X .
For r > 0 we adopt the notation

(1) @Nr.Y /D fx 2X j d.x; Y /D rg,

(2) dr is the induced path metric on X �Nr.Y /.

The lower relative divergence of X with respect to Y (or the divergence of Y in X),
denoted by div.X; Y /, is the set of functions f�n� g defined as follows: For each
� 2 .0; 1�, integer n � 2 and r 2 .0;1/, if there is no pair of x1; x2 2 @Nr.Y /
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x1 x2

Y

r

�r

� nr

Figure 1: A sketch of a step in the construction of the function �n� . The points
x1; x2 2 @Nr .Y / are at least nr far apart, so we measure the distance between
x1 and x2 in the complement of the �r–neighborhood of Y . We then take the
infimum of these distances over all such pairs of points to obtain �n� .r/.

such that dr.x1; x2/ <1 and d.x1; x2/� nr , we define �n� .r/D1. Otherwise, we
define �n� .r/D inf d�r.x1; x2/ where the infimum is taken over all x1; x2 2 @Nr.Y /
such that dr.x1; x2/ <1 and d.x1; x2/� nr .

The lower relative divergence is often characterized by how the asymptotics of the
functions f�n� g compare to linear, polynomial and exponential functions. Such descrip-
tions are described in detail in [53]. We will restrict our attention to the following two
properties of div.X; Y /.

Definition 3.2 Let X be a geodesic metric space and Y �X .

The lower relative divergence of X with respect to Y is completely superlinear if there
exists n0� 3 such that for every �2 .0; 1� and C >0 the set fr 2 Œ0;1/ j �n0

� .r/�Crg

is bounded.

The lower relative divergence of X with respect to Y is at least quadratic if there exists
a positive integer M such that for every � 2 .0; 1� and n � 2 there exist C > 0 and
r0 > 0 such that �Mn

� .r/ > Cr2 for all r > r0.

The properties of being completely superlinear and at least quadratic are preserved
under quasi-isometry in the following sense.

Lemma 3.3 (consequence of [53, Proposition 4.9]) Let f W X ! Z be a quasi-
isometry between geodesic spaces. If Y �X and W �Z with dHaus.f .Y /;W / <1,
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then div.X; Y / is completely superlinear (resp. at least quadratic) if and only if
div.Z;W / is completely superlinear (resp. at least quadratic).

In [53], the lower relative divergence was defined only for geodesic ambient spaces;
however the definition can be extended to include quasigeodesic metric spaces as
follows.

Definition 3.4 (lower relative divergence in quasigeodesic spaces) Let X be a quasi-
geodesic space and Y � X . Let Z be a geodesic space and f W X ! Z be a quasi-
isometry. Then the lower relative divergence of X with respect to Y (or the divergence
of Y in X), denoted by div.X; Y /, is the lower relative divergence of Z with respect
to f .Y /.

We say div.X; Y / is completely superlinear (resp. at least quadratic) if div.Z; f .Y //
is completely superlinear (resp. at least quadratic).

While the definition of div.X; Y / in a quasigeodesic space depends on a choice of Z
and f , div.X; Y / being completely superlinear (resp. at least quadratic) is independent
of this choice by Lemma 3.3. In fact, while it will not be relevant for the content of this
paper, div.X; Y / is independent of the choice of Z and f in a much stronger sense.
In [53] the third author defined an equivalence relation � between the collections of
functions used to define the lower relative divergence. If f1 WX!Z1 and f2 WX!Z2

are two quasi-isometries withZ1 andZ2 geodesic spaces, then by [53, Proposition 4.9],
div.Z1; f1.Y //� div.Z2; f2.Y //. Thus div.X; Y / is well defined up to this notion of
equivalence.

The following proposition shows that contracting subsets always have at least quadratic
divergence.

Proposition 3.5 If X is a quasigeodesic space and Y is a contracting subset of X , then
the lower relative divergence of X with respect to Y is at least quadratic.

Proof Since every quasigeodesic space is quasi-isometric to a geodesic metric space,
Lemma 2.11 allows us to assume X is geodesic. Assume that Y is .A;D/–contracting
and let g WX ! Y be an .A;D/–contracting map. We first show that for all x 2X ,

d.x; g.x//� 2Dd.x; Y /C 4D:
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Let y 2 Y be such that d.x; y/ � d.x; Y /C 1. Then from the definition of .A;D/–
contracting,

d.x; g.x//� d.x; y/C d.y; g.y//C d.g.y/; g.x//

� d.x; Y /C 1CDCDd.x; y/CD

� .DC 1/d.x; Y /C 3DC 1

� 2Dd.x; Y /C 4D:

Now, let f�n� g be the lower relative divergence of X with respect to Y . We claim that
for each n� 4DC 2 and � 2 .0; 1�,

�n� .r/�

�
A�

4D

�
r2 for each r > 8D:

Let r > 8D, n be an integer greater than 4DC2, and � 2 .0; 1�. If �n� .r/D1, then the
above inequality is true. Otherwise, let x1; x2 2 @Nr.Y / be such that d.x1; x2/� nr
and dr.x1; x2/�1. The distances d.x1; g.x1// and d.x2; g.x2// are bounded above
by 2Dr C 4D. Therefore,

d.g.x1/; g.x2//� d.x1; x2/� d.x1; g.x1//� d.x2; g.x2//� nr � 4Dr � 8D � r:

Let 
 be a rectifiable path in N�r.Y / connecting x1 and x2 and R D A�r=2. There
exist t0 < t1 < t2 < � � �< tm�1 < tm such that 
.t0/D x1, 
.tm/D x2 and

1
2
R � `.
 jŒti�1;ti � /�R;

where `. � / denotes the length of a path. This implies

(1) `.
/D

mX
iD1

`.
 jŒti�1;ti � /�
1
2
mR:

Since g is an .A;D/–contracting map and d.
.ti�1/; 
.ti // < Ad.
.ti�1/; Y /, we
have d.g.
.ti�1//; g.
.ti ///�D for each 1� i �m. Thus

(2) d.g.x1/; g.x2//�

mX
iD1

d
�
g.
.ti�1//; g.
.ti //

�
�mD:

Since d.g.x1/; g.x2// � r , inequality (2) implies m � r=D. Combining this with
inequality (1), we have

`.
/� 1
2
mR �

�
A�

4D

�
r2:

Therefore,

�n� .r/�

�
A�

4D

�
r2
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for n� 4DC2, � 2 .0; 1�, and r > 8D. This implies that the lower relative divergence
of X with respect to Y is at least quadratic.

In [53], the third author classified strongly quasiconvex subsets in terms of their lower
relative divergence. This result continues to hold in the slightly more general setting of
quasigeodesic spaces.

Theorem 3.6 [54, Theorem 3.1] Let X be a quasigeodesic space and Y �X . Then
Y is strongly quasiconvex if and only if the lower relative divergence of X with respect
to Y is completely superlinear.

Proof Since every quasigeodesic metric space is quasi-isometric to a geodesic metric
space, the result follows immediately from [54, Theorem 1.5] when Y is infinite
diameter. If diam.A/D r0<1, then for all r > r0, @Nr0

.Y /D∅ and thus �n� .r/D1.
Hence div.X; Y / is completely superlinear and Y is strongly quasiconvex.

Proposition 3.5 and Theorem 3.6 combine to say that if a subset Y � X is .A;D/–
contracting, then Y is strongly quasiconvex. A direct proof of this result was shown
by Sultan for the case of quasigeodesics, but the proof extends to any subset without
modification [52, Lemma 3.3]. For completeness, we include a proof using the bound
on the lower relative divergence of Y from Proposition 3.5.

Corollary 3.7 Let X be a .K;L/–quasigeodesic space and Y � X . If Y is .A;D/–
contracting , then Y is Q–strongly quasiconvex where Q is determined by A, D, K
and L.

Proof Let Y be a .A;D/–contracting subset ofX . We first assume thatX is a geodesic
metric space. Let f�n� g be the lower relative divergence of X with respect to Y . The
proof of Proposition 3.5 shows that for each n� 4DC 2 and � 2 .0; 1�,

�n� .r/�

�
A�

4D

�
r2 for all r > 8D:

Therefore, by fixing nD n0 D 4DC 3 and �D 1,

�
n0

1 .r/�

�
A

4D

�
r2 for all r > 8D:

If 
 is a .�; �/–quasigeodesic with endpoints on Y , let mD inffB 2R j 
 �NB.Y /g.
The proof of [54, Proposition 3.1] establishes that if m is larger than a fixed constant
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x0 x1 x2 x3 xn�1 xn

J1

J2

J3

Jn

Y

Figure 2: The space X of Example 3.8.

depending on � and �, then there exist constants C0 and C1 depending only on �, �
and n0, such that �n0

1 .C0m/� C1m. Thus,�
A

4D

�
.C0m/

2
� �

n0

1 .C0m/� C1m;

and hence m is bounded by some constant depending only on �, �, A and D. Thus,
there exists a function Q depending only on A and D such that Y is Q–strongly
quasiconvex.

When X is a .K;L/–quasigeodesic space, there exist a geodesic metric space Z and a
quasi-isometry f WX !Z with constants determined by K and L. The result follows
from the geodesic case by Lemmas 2.5 and 2.11.

We finish this section by adapting [6, Example 3.4] to give a counterexample to the
converse of Corollary 3.7.

Example 3.8 (strongly quasiconvex subsets need not be contracting) Let Y be a
ray with initial point x0 and let .xn/ be the sequence of points along Y such that for
each n � 1 the distance between xn�1 and xn is equal to n. We connect each pair
.xn�1; xn/ by an additional segment Jn of length n3=2 as shown in Figure 2. Let X be
the resulting geodesic space.

By Proposition A.2 the lower relative divergence of X with respect to Y is completely
superlinear, but not at least quadratic — heuristically, div.X; Y / behaves like r3=2. So
Y is strongly quasiconvex, but not contracting by Proposition 3.5 and Theorem 3.6.

4 Hierarchically hyperbolic spaces

We now recall the main definitions of hierarchically hyperbolic groups and spaces. The
main references, where not specified, are [9; 10]. While we give the entire definition
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of an HHS for completeness, we advise the reader that we shall only directly utilize
axioms (1), (2), (3), (5), (8), and (10) of Definition 4.1 in the remainder of the paper.

Definition 4.1 (hierarchically hyperbolic space) Let X be a quasigeodesic space. A
hierarchically hyperbolic space (HHS) structure on X consists of constants E � �0>0,
an index set S, and a set fCW jW 2Sg of geodesic ı–hyperbolic spaces .CW; dW /,
such that the following conditions are satisfied.

(1) Projections For each W 2S, there exists a projection �W W X ! 2CW such that
for all x 2 X , �W .x/¤∅, and diam.�W .x// < E. Moreover, there exists a K such
that each �W is .K;K/–coarsely Lipschitz and �W .X / is K–quasiconvex in CW .

(2) Nesting S is equipped with a partial order v, and either SD∅ or S contains a
unique v–maximal element; when V vW , we say V is nested in W . For each W 2S,
we denote by SW the set of V 2 S such that V v W . Moreover, for all V;W 2 S

with V ĹW there is a specified nonempty subset �VW � CW with diamCW .�VW /�E.
There is also a projection �WV W CW ! 2CV .

(3) Orthogonality S has a symmetric and antireflexive relation called orthogonality;
we write V ?W when V and W are orthogonal. Whenever V vW and W ? U , we
require that V ? U . Additionally, if V ?W , then V and W are not v–comparable.

(4) Containers For each T 2S and each U 2ST for which fV 2ST jV ?U g¤∅,
there exists a W 2ST �fT g, such that whenever V ?U and V v T , we have V vW .
We say W is a container for U in ST .

(5) Transversality and consistency If V;W 2 S are not orthogonal and neither
is nested in the other, then we say V and W are transverse, denoted by V t W . If
V tW , then there are nonempty sets �VW � CW and �WV � CV , each of diameter at
most E, satisfying

min
˚
dW .�W .x/; �

V
W /; dV .�V .x/; �

W
V /
	
� �0

for all x 2 X .

For V;W 2S satisfying V vW and for all x 2 X ,

min
˚
dW .�W .x/; �

V
W /; diamCV

�
�V .x/[ �

W
V .�W .x//

�	
� �0:

Finally, if U v V , then dW .�UW ; �
V
W / � �0 whenever W 2S satisfies either V ĹW

or V tW and W 6? U .
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(6) Finite complexity There exists n� 0 such that any set of pairwisev–comparable
elements has cardinality at most n.

(7) Large links There exists � � 1 such that the following holds. Let W 2S and
x; x0 2 X . There exist fUigiD1;:::;m �SW �fW g such that

m� �d
W
.�W .x/; �W .x

0//C �

and for all V 2SW � fW g, either V 2SUi
for some i , or dV .�V .x/; �V .x0// < E.

Also, dW .�W .x/; �
Ui

W /� �dW .�W .x/; �W .x
0//C � for each i .

(8) Bounded geodesic image For all W 2S, all V 2SW �fW g, and all geodesics

 of CW , either diam.�WV .
//�E or 
 \NE .�VW /¤∅.

(9) Partial realization There exists a constant ˛ with the following property. Let
fVj g be a family of pairwise orthogonal elements of S, and let pj 2 �Vj

.X /� CVj .
Then there exists x 2 X such that

� dVj
.x; pj /� ˛ for all j ;

� for each j and each V 2S with Vj v V , we have dV .x; �
Vj

V /� ˛;

� if W t Vj for some j , then dW .x; �
Vj

W /� ˛.

(10) Uniqueness For each � � 0, there exists �u D �u.�/ such that if x; y 2 X and
d.x; y/� �u, then there exists V 2S such that dV .x; y/� �.

We will refer to the elements of the index set S as domains and use S to denote the
entire HHS structure, including all the spaces, constants, projections and relations
defined above. A quasigeodesic space X is a hierarchically hyperbolic space (HHS) if
it admits a hierarchically hyperbolic structure. We will use the pair .X ;S/ to denote
X equipped with the hierarchically hyperbolic structure S.

If .X ;S/ is a hierarchically hyperbolic space and f W Y! X is a quasi-isometry, then
S is also an HHS structure for Y where the projections maps are defined by �W ıf
for each W 2S.

Many of the key examples of hierarchically hyperbolic spaces are finitely generated
groups where the Cayley graph admits an HHS structure. In the case where this structure
is preserved by the group action, we will call those groups hierarchically hyperbolic
groups.
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Definition 4.2 (hierarchically hyperbolic groups) Let G be a finitely generated group.
We say G is a hierarchically hyperbolic group (HHG) if:

(1) G with the word metric from a finite generating set admits an HHS structure S.

(2) There is a v, ? and t preserving action of G on S by bijections such that S
contains finitely many G orbits.

(3) For each W 2 S and g 2 G, there exists an isometry gW W CW ! C.gW /

satisfying the following for all V;W 2S and g; h 2G:
� The map .gh/W WCW !C.ghW / is equal to ghW ıhW WCW !C.ghW /.
� For each h 2G, gW .�W .h// and �gW .gh/ E–coarsely coincide.
� If V tW or V vW , then gW .�VW / and �gVgW E–coarsely coincide.
� If V v W and p 2 CW �NE .�VW /, then gW .�VW .p// and �gVgW .gW .p//
E–coarsely coincide.

The HHS structure S satisfying (1)–(3) is called a hierarchically hyperbolic group
(HHG) structure on G and we use .G;S/ to denote a group G equipped with a specific
HHG structure S.

Being a hierarchically hyperbolic group is independent of choice of generating set by
virtue of being able to pass the HHG structure through a G–equivariant quasi-isometry.
The reader may find it helpful to note that the conditions in (3) above can be summarized
by saying the diagrams

G G

CW C.gW /

g

�W �gW

gW

and
CV C.gV /

CW C.gW /

gV

�V
W �

gV
gW

gW

coarsely commute whenever V;U 2S are not orthogonal.

Notation 4.3 When writing distances in CW for some W 2S, we often simplify the
notation by suppressing the projection map �W , that is, given x; y 2X and p 2CW we
write dW .x; y/ for dW .�W .x/; �W .y// and dW .x; p/ for dW .�W .x/; p/. Note that
when we measure distance between a pair of sets (typically both of bounded diameter)
we are taking the minimum distance between the two sets. Given A� X and W 2S
we let �W .A/ denote

S
a2A �W .a/.

The guiding philosophy of hierarchically hyperbolic spaces is that one can “pull back”
the hyperbolic geometry of the various CW ’s to obtain features of negative curvature
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in the original space. The most prominent example of this philosophy is the following
distance formula which allows distances in the main space X to be approximated by
distances in the hyperbolic spaces.

Theorem 4.4 (the distance formula; [10, Theorem 4.4]) Let .X ;S/ be a hierarchi-
cally hyperbolic space. Then there exists �0 such that , for all � � �0, there exist K � 1
and L� 0 such that , for all x; y 2 X ,

dX .x; y/�K;L
X
U2S

ffdU .x; y/gg� ;

where ffN gg� DN if N � � and 0 otherwise.

The distance formula can be “distributed” over a sum of distances in the hyperbolic
spaces as described in the next lemma.

Lemma 4.5 [48, Lemma 2.26] Let .X ;S/ be an HHS and x0; x1; : : : ; xn be points
in X . If there exists C � 1 such that

Pn�1
iD0 dW .xi ; xiC1/ �C;C dW .x0; xn/ for all

W 2S, then there exist K depending only on C , n, and .X ;S/ such that
n�1X
iD0

dX .xi ; xiC1/�K;K dX .x0; xn/:

Part of the content of Theorem 4.4 is that for any pair of points in an HHS, there is only
a finite number of domains where that pair of points can have a large projection. More
precisely, if .X ;S/ is a hierarchically hyperbolic space, then a domain W 2S is said
to be �–relevant for x; y 2 X if dW .x; y/ > � . We denote the set of all �–relevant
domains for x; y 2 X by Rel� .x; y/. By Theorem 4.4, for all � � �0, Rel� .x; y/ has
finite cardinality. The relevant facts about Rel� .x; y/ that we will need are summarized
in the following proposition.

Proposition 4.6 [10, Lemma 2.2, Proposition 2.8, Lemma 2.14] Let .X ;S/ be a
hierarchically hyperbolic space and E � 0 be the maximum of all the constants in the
HHS structure for .X ;S/.

(1) There exists � > 0 such that if U � S does not contain a pair of transverse
domains , then jUj � �.

(2) If � � 100E and x; y 2 X , then the set Rel� .x; y/ can be partially ordered by

U � V () U D V or U t V and dV .�UV ; y/� �0:

Algebraic & Geometric Topology, Volume 23 (2023)



Convexity in hierarchically hyperbolic spaces 1191

(3) If � � 100E and x; y 2 X , then there exists n � � such that Rel� .x; y/ can
be partitioned into n disjoint subsets U1; : : : ;Un where , for each i , Ui is totally
ordered with respect to the above ordering on Rel� .x; y/.

Hierarchically hyperbolic spaces contain a particularly nice class of quasigeodesics,
called hierarchy paths. Even when considering a geodesic HHS, it is often preferable
to work with hierarchy paths over geodesics.

Definition 4.7 (hierarchy path) For � � 1, a (not necessarily continuous) path

 W Œa; b�! X is a �–hierarchy path if

(1) 
 is a .�; �/–quasigeodesic,

(2) for each W 2S, the path �W ı 
 is an unparametrized .�; �/–quasigeodesic.

Recall that a map f W Œa; b�! X is an unparametrized .�; �/–quasigeodesic if there
exists an increasing function g W Œ0; `�! Œa; b� such that g.0/D a, g.`/D b, and f ıg
is a .�; �/–quasigeodesic of X .

While not every quasigeodesic in an HHS is a hierarchy path, every pair of points can
be connected by a hierarchy path as the next theorem describes.

Theorem 4.8 (existence of hierarchy paths; [10, Theorem 5.4]) Let .X ;S/ be a
hierarchically hyperbolic space. Then there exists a �0 such that any x; y 2 X are
joined by a �0–hierarchy path.

4.1 Hierarchical quasiconvexity and gate maps

In [10], Behrstock, Hagen and Sisto introduced hierarchical quasiconvexity, a notion
of convexity unique to hierarchically hyperbolic spaces.

Definition 4.9 (hierarchical quasiconvexity; [10, Definition 5.1]) Let .X ;S/ be
a hierarchically hyperbolic space and k W Œ0;1/ ! Œ0;1/. A subset Y � X is k–
hierarchically quasiconvex if:

(1) For all U 2 S, the projection �U .Y / is a k.0/–quasiconvex subspace of the
ı–hyperbolic space CU .

(2) For every � > 0 and every point x 2 X satisfying dU .x; Y /� � for all U 2S,
we have that dX .x; Y /� k.�/.
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While hierarchically quasiconvex subsets need not be strongly quasiconvex, they are
“quasiconvex with respect to hierarchy paths”. That is, if Y � X is k–hierarchically
quasiconvex then any �–hierarchy path with endpoints in Y must stay uniformly close
to Y . The existence of hierarchy paths (Theorem 4.8) therefore ensures that if Y
is equipped with the induced metric from X , then Y is also a quasigeodesic metric
space with constants depending only on .X ;S/ and k. In Section 5 we will prove that
hierarchically quasiconvex subsets are actually characterized by this “quasiconvexity
with respect to hierarchy paths”.

One of the key features of hierarchically quasiconvex subsets is that they are hierar-
chically hyperbolic spaces with the restriction of the HHS structure from the ambient
space.

Theorem 4.10 [10, Proposition 5.6] Let .X ;S/ be a hierarchically hyperbolic space
and Y �X be k–hierarchically quasiconvex. Then .Y;S/ is a hierarchically hyperbolic
space , where Y is equipped with the induced metric from X .

The following lemma is a special case of the powerful realization theorem for hierar-
chically hyperbolic spaces; see [10, Theorem 3.1]. It is often useful when verifying
that a subset is hierarchically quasiconvex.

Lemma 4.11 [10, Theorem 3.1, Lemma 5.3] For eachR�0 there is a ��0 such that
the following holds. Let Y �X be such that �W .Y / is R–quasiconvex for eachW 2S.
Let x 2 X and for each W 2S, let pW 2 �W .Y / satisfy dV .x; pW /� dW .x; Y /C 1.
Then there exists p 2 X such that dW .p; pW /� � for all W 2S.

Given a subset Y �X , there exists a hierarchically quasiconvex hull of Y which can be
thought of as the coarsely smallest hierarchically quasiconvex subset of X containing Y .

Definition 4.12 (hierarchically quasiconvex hull) For each set Y � X and W 2S,
let hullCW .Y / denote the convex hull of �W .Y / in CW , ie the union of all CW –
geodesics connecting pairs of points in �W .Y /. Given � � 0, let H� .Y / be the set of
all p 2 X such that, for each W 2S, the set �W .p/ lies at distance at most � from
hullCW .Y /. Note that Y �H� .Y /.

Lemma 4.13 [10, Lemma 6.2] Let .X ;S/ be an HHS. There exists �0 such that for
each � � �0 there exists k W Œ0;1/! Œ0;1/ such that for each Y � X , the hull H� .Y /
is k–hierarchically quasiconvex.
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In Section 5 we strengthen the analogy between hierarchically quasiconvex hulls and
convex hulls in hyperbolic spaces, by showing that H� .Y / can be constructed by
iteratively connecting points in Y by hierarchy paths.

One of the important properties of hierarchically quasiconvex subsets is the existence
of a gate map which retracts the entire space onto the hierarchically quasiconvex subset.
The gate map is a generalization to hierarchically hyperbolic spaces of the closest point
projection, p, defined at the end of Section 2.

Lemma 4.14 (existence of coarse gates; [10, Lemma 5.5]) If .X ;S/ is a hierarchi-
cally hyperbolic space and Y � X is k–hierarchically quasiconvex and nonempty , then
there exists a gate map gY W X ! Y such that

(1) gY is .K;K/–coarsely Lipschitz;

(2) for all y 2 Y , dX .y; gY .y//�K;

(3) for all x 2 X and U 2S, dU .gY .x/; p�U .Y /.�U .x///�K;

where K depends only on k and S.

While the gate map need not be the closest point projection, it approximates the closest
point projection with a multiplicative and additive error.

Lemma 4.15 [11, Lemma 1.27] Let Y be a k–hierarchically quasiconvex subset of
the HHS .X ;S/ and x 2 X . If y 2 Y is a point such that dX .x; y/ � dX .x; Y /C 1,
then dX .x; y/� dX .x; gY .x// where the constants depend only on k and S.

In the case of hierarchically hyperbolic groups, the gate is also coarsely equivariant.

Lemma 4.16 (coarse equivariance of gate maps) Let .G;S/ be a hierarchically
hyperbolic group and let Y be a k–hierarchically quasiconvex subspace of G. There
exists K depending on .G;S/ and k such that , for every g; x 2G,

dG.ggY .x/; ggY .gx//�K:

Proof Since G acts on the disjoint union of the CW ’s by isometries, Lemma 4.14 and
the definition of HHG provide a uniform bound on dW

�
�W .ggY .x//; �W .ggY .gx//

�
for all W 2 S, which depends only on S, k, and the choice of finite generating set
for G. The result now follows from the distance formula (Theorem 4.4).
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The following lemma explains the nice behavior of the gates of hierarchically quasicon-
vex sets onto each other. The lemma is stated in slightly more generality than presented
in [11], but the more general statement is implicit in the proof of [11, Lemma 1.20].
The following notation will simplify the exposition.

Notation 4.17 If S is an HHS structure on a metric space X and H�S we use H?

to denote the set fW 2S j 8H 2H;H ?W g. In particular, S?U D fW 2S jU ?W g
for any U 2S. Note, if HD∅, then H? DS as every domain in S would vacuously
satisfy the condition of the set.

Theorem 4.18 (the bridge theorem; [11, Lemma 1.20]) Let .X ;S/ be a hierarchi-
cally hyperbolic space and �0 be as in Lemma 4.13. For every k and � � �0, there exist
k0 W Œ0;1/! Œ0;1/ and K0 � 0 such that , for any k–hierarchically quasiconvex sets
A and B:

(1) gA.B/ is k0–hierarchically quasiconvex.

(2) The composition gA ı gB jgA.B/ is bounded distance from the identity map
gA.B/! gA.B/.

(3) For any a 2 gA.B/ and b D gB.a/, we have a .K0; K0/–quasi-isometric em-
bedding f W gA.B/�H� .a; b/! X with image H� .gA.B/[ gB.A// such that
f .gA.B/� fbg/ K0–coarsely coincides with gB.A/.

Let K �K0 and HD fU 2S W diam
�
�U .gA.B//

�
>Kg.

(4) For each p; q 2 gA.B/ and t 2H� .a; b/,

RelK.f .p; t/; f .q; t//�H:

(5) For each p 2 gA.B/ and t1; t2 2H� .a; b/,

RelK.f .p; t1/; f .p; t2//�H?:

(6) For each p 2 A; q 2 B ,

d.p; q/

�K0;K0
d.p; gA.B//C d.q; gB.A//C d.A;B/C d.ggB.A/.p/; ggB.A/.q//:

We name Theorem 4.18 the bridge theorem as one should think of the set

H� .gA.B/[ gB.A//

as a “bridge” between A and B: in order to efficiently travel between A and B one
needs to always traverse this bridge. The bridge theorem, along with the construction of
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the gate map and hulls produces the following fact about the set H� .gA.B/[ gB.A//

which we will need in Section 8.

Lemma 4.19 For every k and � � �0, there existsK such that for any k–hierarchically
quasiconvex sets A and B , the sets gB

�
H� .gA.B/[ gB.A//

�
and gB.A/ K–coarsely

coincide.

We finish this section by recalling the construction of standard product regions intro-
duced in [9, Section 13] and studied further in [10]. For what follows, fix a hierarchically
hyperbolic space .X ;S/.

Definition 4.20 (nested partial tuple FU ) Recall SU D fV 2S j V v U g. Define
FU to be the set of tuples in

Q
V 2SU

2CV satisfying the conditions of Definition 4.1(5)
for all V;W 2SU with V 6?W .

Definition 4.21 (orthogonal partial tuple EU ) Recall S?U DfV 2S jV ?U g. Define
EU to be the set of tuples in

Q
V 2S?U

2CV satisfying the conditions of Definition 4.1(5)
for all V;W 2S?U with V 6?W .

Definition 4.22 (product regions in X ) Let U 2S. There exists � depending only
on S such that for each .aV /V 2SU

2 FU and .bV /V 2S?U 2 EU , there exists x 2 X
such that for each V 2S:

� If V v U , then dV .x; aV /� �.

� If V ? U , then dV .x; bV /� �.

� If V t U or U v V , then dV .x; �UV /� �.

Thus there is a map �U WFU �EU !X , whose image is k–hierarchically quasiconvex
where k only depends on S. We call �U .FU �EU / the product region for U and
denote it by PU .

For any e 2EU and f 2 FU , the sets �U .FU � feg/ and �U .ff g �EU / will also be
hierarchically quasiconvex; thus EU and FU are quasigeodesic metric spaces when
equipped with the subspace metric from �U .FU � feg/ and �U .ff g �FU /. While
these metrics depend on the choice of e and f , the distance formula (Theorem 4.4)
ensures that the different choices are all uniformly quasi-isometric.

The definition of the product regions ensure that they are not only uniformly hierarchi-
cally quasiconvex, but have easily described gate maps.
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Lemma 4.23 [11, Section 5] Let .X ;S/ be an HHS. The exists k W Œ0;1/! Œ0;1/

such that for all U 2 S, the product region PU is k–hierarchically quasiconvex.
Moreover , there exists K � 0 depending only on .X ;S/ such that for all x 2 X ,

� dV .gPU
.x/; x/�K if V v U or V ? U ,

� dV .gPU
.x/; �UV /�K if V t U or U Ĺ V .

A version of our last result appeared as [10, Proposition 5.17]. However, that result
contains an error in both its statement and its proof.3 We provide a corrected statement
and proof.

Proposition 4.24 (active subpaths; corrected version of [10, Proposition 5.17]) Let
.X ;S/ be an HHS. There exist constants D; �; � � 1 such that for all x; y 2 X , if
dU .x; y/ > D for some U 2 S, then there exists a �–hierarchy path 
 W Œa; b�! X
joining x and y that has a subpath ˛ D 
 jŒa1;b1� such that

(1) ˛ �N�.PU /;

(2) the diameters of �W .
.Œa; a1�// and �W .
.Œb1; b�// are both bounded by �, for
all W 2SU [S?U ;

(3) for any point p 2 
.Œa; a1�/ or q 2 
.Œb1; b�/,

dX .gPU
.x/; gPU

.p//� � and dX .gPU
.y/; gPU

.q//� �:

We call ˛ the active subpath of 
 for U .

Proof Let ı, E, and �0 be the constants appearing in the HHS structure S for X . Let
x0DgPU

.x/ and y0DgPU
.y/. Let �0�1 be the constant such that every pair of points

in X can be joined by a �0–hierarchy path and � be the constant from Definition 4.22.
Both � and �0 depend only on .X ;S/.

Let 
0, 
1, and 
2 be �0–hierarchy paths connecting the pairs .x; x0/, .x0; y0/, and
.y0; y/ respectively. Let 
 W Œa; b�!X be the concatenation 
0�
1�
2. We first verify
that the path 
 satisfies the requirements of the proposition with ˛D 
1 and then verify
that 
 is in fact a hierarchy path with constant depending only on the HHS .X ;S/.

3The error in the proof of [10, Proposition 5.17] is the incorrect claim that V v U D)PV �PU . The
error in the statement is that all hierarchy paths have the stated properties instead of there existing at least
one hierarchy path with the stated properties.
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For the first item, let z 2 ˛ D 
1. By Lemma 4.23, �W .gPU
.z// and �W .z/ are

uniformly close for all W 2SU [S?U . If W …SU [S?U , then �W .x0/, �W .y0/, and
�W .gPU

.z// are all �–close to �UW because x0, y0, and gPU
.z/ are all in PU . Since

�W ı 
1 is an unparametrized �0–quasigeodesic, �W .z/ must also be uniformly close
to �UW . Therefore, dW .gPU

.z/; z/ is uniformly bounded for all W …SU [S?U . Since
dW .gPU

.z/; z/ is uniformly bounded for allW 2S, the distance formula (Theorem 4.4)
provides �1 � 0 such that 
1 �N�.PU /.

For the second item, if W 2 SU [ S?U , then dW .x; x0/ and dW .y0; y/ are both
uniformly bounded by Lemma 4.23. Since �W ı 
0 and �W ı 
2 are unparametrized
.�0; �0/–quasigeodesics, there is a constant �2 � 0 satisfying the second item.

We prove the third item for p 2 
0 as the case q 2 
2 is identical. By the second item,
dW .x; p/ � �2 for all W 2 SU [S?U . Since dW .x; gPU

.x// and dW .p; gPU
.p//

are uniformly bounded for all W 2 SU [S?U as well (Lemma 4.23), we have that
dW .gPU

.x/; gPU
.p// has a bound depending only on .X ;S/ for all W 2SU [S?U .

If instead U ĹW or W tU , then �W .gPU
.x// and �W .gPU

.p// are both uniformly
close of �UW as they are points in the product region PU . Hence dW .gPU

.x/; gPU
.p//

is uniformly bounded for all W 2 S. Thus, the distance formula provides �3 � 0
depending only on S such that dX .gPU

.x/; gPU
.p//� �3.

Set � D maxf�1; �2; �3g. This depends only on .X ;S/ since each of the �i depend
only on .X ;S/. It remains to show that 
 is a hierarchy path with constant depending
only on .X ;S/. For this we need to assume that dU .x; y/ > 10.EC �0/.

We first show that �W ı 
 is a uniform unparametrized quasigeodesic for each W 2S.

� If W 2 SU [ S?U , then diam.�W .
0// � �, diam.�W .
2// � �, and �W ı 
1
is an unparametrized .�0; �0/–quasigeodesic. Hence �W ı 
 is an unparametrized
.�0; �0C2�/–quasigeodesic.

� If U ĹW , then by the bounded geodesic image axiom (8) any CW –geodesic from
�W .x/ to �W .y/ must intersect the E–neighborhood of �UW . Since all of �W ı 
1
is contained in N�0.EC�/C�0

.�UW /, the hyperbolicity of CW implies that both of
the unparametrized quasigeodesics �W ı 
0 and �W ı 
2 are contained in a regular
neighborhood of a CW –geodesic from �W .x/ to �W .y/. Thus �W ı 
 will be a
unparametrized quasigeodesic with constants depending on �0, �, E, and ı.

� If W t U , then since dU .x; y/ > 10.EC �0/, the consistency axiom (5) ensures
that at most one of dW .x; �UW / and dW .y; �UW / are larger than �0. Without loss of
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generality, assume dW .x; �UW / � �0. Since �W .x0/ and �W .y0/ are �–close to �UW
and 
0 and 
1 are both �0–hierarchy paths, the diameter of �W .
0/[ �W .
1/ is at
most

2�0.3EC�C �0/C 2�0:

This makes �W ı 
 an unparametrized .�0; 2�0.3EC�C�0/C3�0/–quasigeodesic.

The above shows that there exists �0 � 1 depending only on .X ;S/ such that �W ı 

is an unparametrized .�0; �0/–quasigeodesic for all W 2S.

Finally we show that 
 W Œa; b�! X is a quasigeodesic with constants depending only
on .X ;S/. Let t; s 2 Œa; b� and let uD 
.t/ and v D 
.s/. Since 
0, 
1 and 
2 are all
.�0; �0/–quasigeodesics, we can assume u and v do not lie in the same 
i . Without
loss of generality we have two cases.

In the first case, u 2 
0 and v 2 
1. Since �W ı 
 is a uniform unparametrized
quasigeodesic, there exists C � 1 such that

dW .u; x
0/C dW .x

0; v/�C;C dW .u; v/

for all W 2S. By Lemma 4.5, there is a K � 1 depending only on .X ;S/ such that

dX .u; x
0/C dX .x

0; v/�K;K dX .u; v/;

which implies

1

�0K
jt � sj �

2�0
K
�K � dX .
.t/; 
.s//� �0jt � sjC 2�0

because 
0 and 
1 are .�0; �0/–quasigeodesics.

The second case is when u 2 
0 and v 2 
2. The proof is the same as the first case
using the fact that

dW .u; x
0/C dW .x

0; y0/C dW .y
0; v/� dW .u; v/

for all W 2S instead. Hence 
 is a quasigeodesic with constants depending only on
.X ;S/, as desired.

4.2 Summary of constants

Before continuing we summarize the constants associated to the hierarchically hyper-
bolic space .X ;S/ that we will utilize frequently.

� ı is the hyperbolicity constant of CW for each W 2S.
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� �0 is the consistency constant from axiom (5).

� E is the bound on projections in axioms (1), (5) and (8).

� �0 is the minimal threshold constant from the distance formula (Theorem 4.4).

� �0 is the constant such that any two points in X can be joined by a �0–hierarchy
path (Theorem 4.8).

� � is the constant from Proposition 4.6 which bounds the cardinality of any subset
of S that does not contain a pair of transverse domains.

� �0 is the constant such that for all � � �0 and Y � X , H� .Y / is hierarchically
quasiconvex (Lemma 4.13).

We can and shall assume that E � �0 and E � ı. When we say that a quantity depends
on S, we mean that it depends on any of the above constants.

5 Constructing hulls with hierarchy paths

In this section, we study hierarchically quasiconvex hulls in hierarchically hyperbolic
spaces. The main result is Theorem 5.2 which says that the hierarchically quasiconvex
hull can be constructed by iteratively connecting points with hierarchy paths. While
our motivation for such a construction is to establish that strongly quasiconvex subsets
are hierarchically quasiconvex (Proposition 5.7) we believe it will have many other
applications. At the end of the section, we give an example of such an application by
characterizing hierarchical quasiconvexity in terms of the coarse median structure on a
hierarchically hyperbolic space.

Definition 5.1 (hierarchy path hull) Let Y be a subset of the hierarchically hyperbolic
space .X ;S/. Define P1

�
.Y / to be the union of all �–hierarchy paths between points

in Y . Inductively define Pn
�
.Y /D P1

�
.Pn�1
�

.Y // for all integers n� 2. For all �� �0
and n� 1, Pn

�
.Y /¤∅.

Theorem 5.2 (constructing hulls using hierarchy paths) Let .X ;S/ be a hierarchi-
cally hyperbolic space andN D 2�, where � is as in Proposition 4.6. There exist N� � �0
and N�� �0 depending only on S such that for all � � N� , �� N� and Y � X ,

dHaus.PN� .Y /;H� .Y // < D

where D depends only on � , �, and S.
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In a recent paper, Bowditch [16] independently constructs hulls in coarse medians spaces
in a similar manner to the construction in Definition 5.1. Hierarchically hyperbolic
spaces are one of the primary examples of coarse median spaces and [16, Lemma 7.3]
establishes a version of Theorem 5.2 for finite subsets of hierarchically hyperbolic
spaces. At the end of this section we show that Bowditch’s coarse median hull is
coarsely equal to the hierarchical quasiconvex hull for any subset of an HHS. This
is achieved by using Theorem 5.2 to give a new characterization of the hierarchical
quasiconvexity in terms of the coarse median structure on a hierarchically hyperbolic
space.

The number of iterations of connecting pairs of points by hierarchy paths required
by Theorem 5.2 is unlikely to be optimal. However, a simple example illustrates that
the number of iteration required must increase with the maximal number of pairwise
orthogonal domains. Consider the group Zn with the standard HHG structure. Let Y
be the union of the positive halves of each of the coordinate axes. The hull H� .Y / then
coarsely coincides with the positive orthant of Zn, but Pm

�
.Y / coarsely coincides with

the set of points in the positive orthant where at most 2m coordinates are nonzero. Thus,
the number of iterations of P1

�
. � / required to achieve H� .Y / will be approximately

log.n/.

For the remainder of this section, let .X ;S/ be a hierarchically hyperbolic space and
Y � X . Recall, there exist �0 and �0 such that for all � � �0, H� .Y / is hierarchically
quasiconvex (Lemma 4.13) and any two points in X can be joined by a �0–hierarchy
path (Theorem 4.8).

The following lemma can be found in [10, Proposition 6.4.4] and says for sufficiently
large � , all hierarchically quasiconvex hulls coarsely coincide. We record the proof for
completeness.

Lemma 5.3 [10, Proposition 6.4.4] There exists N� � �0 depending only on S, such
that for all �1; �2 � N� ,

dHaus.H�1
.Y /;H�2

.Y //�D;

where D depends on �1 and �2.

Proof Without loss of generality, assume �0 < N� � �1 < �2 with N� to be deter-
mined below. By definition, H�1

.Y / �H�2
.Y /. Let x 2H�2

.Y /. For each U 2 S,
�U .H�0

.Y // is K–quasiconvex, where K depends on �0 and ı. Let yU be the closest
point projection of �U .x/ onto �U .H�0

.Y //. By Lemma 4.11, there exist y 2 X
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and � 0 depending on �0 and S such that dU .�U .y/; yU / � � 0. In particular, setting
N� D �0C �

0, we have y 2H N� .Y /�H�1
.Y /. To bound dX .x; y/, we will uniformly

bound dU .x; yU / in terms of �2 for every U 2 S; the bound on dX .x; y/ will then
follow from the distance formula (Theorem 4.4). By the definition of yU we have
dU .x; yU /�dU .x; �U .H�0

.Y ///C1. Since �U .H�0
.Y // is quasiconvex, contains Y ,

and is contained in the �0–neighborhood of hullCU .Y /, there exists a D0 depending
only on S such that hullCU .Y /�ND0.�U .H�0

.Y ///. Since dU .x; hullCU .Y //� �2,

dU .x; yU /� dU .x; �U .H�0
.Y ///C 1� �2CD

0
C 1;

providing the result.

For the remainder of this section, N� will denote the constant from Lemma 5.3.

To prove Theorem 5.2 we will show for sufficiently large � and �, we can find � 0 > �
and �0 > � such that

PN� .Y /�H� 0.Y / and H� .Y /� PN�0 .Y /:

Theorem 5.2 will then follow by applying Lemma 5.3. The inclusion PN
�
.Y /�H� 0.Y /

is the following direct consequence of hierarchical quasiconvexity.

Lemma 5.4 For each �; n� 1, there exists � � N� such that for any Y � X ,

Pn�.Y /�H� .Y /:

Proof The nD 1 case follows directly from the definition of H� .Y / and hierarchy
paths. We can proceed by induction on n and assume there exists � 0 � N� such that
Pn�1
�

.Y / � H� 0.Y /. Let x 2 Pn
�
.Y /. There exist y1; y2 2 Pn�1

�
.Y / such that x

is on a �–hierarchy path from y1 to y2. For each U 2 S, �U .yi / is within � 0 of
hullCU .Y /. Therefore, quasiconvexity of hullCU .Y / in CU guarantees there exists a
� depending only on � and � 0 (which in turn depends on n) such that �U .x/ is within
� of hullCU .Y / and thus x 2H� .Y /.

The other inclusion, H� .Y / � PN
�0
.Y /, requires two main steps. First we prove that

if x 2 H� .Y /, then there exists at most 2�C 1 points, x1; : : : ; xn, in Y such that
x 2H� 0.x1; : : : ; xn/ where � 0 depends only on � (Lemma 5.5). We then show that for
any finite collection of points x1; : : : ; xn 2 X , H� 0.x1; : : : ; xn/ � Pn�1

�
.x1; : : : ; xn/

where � ultimately depends only on n and � (Proposition 5.6). Together, these imply
H� .Y /� P2�C1

�
.Y /.
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We start with the first step, which can be thought of a version of Carathéodory’s theorem
for HHSs.

Lemma 5.5 Let Y � X , � � N� , and � be as in Proposition 4.6. For each x 2H� .Y /,
there exist x1; : : : ; x`C1 2 Y , where 1� `� 2�, and � 0 depending only on � such that
x 2H� 0.x1; : : : ; x`C1/.

Proof Let K D 100.EC2�0C �/ and x 2H� .Y /. If for all y 2 Y , RelK.x; y/D∅,
then x 2 HK.y/ for each y 2 Y . Thus we can assume there is y 2 Y such that
RelK.x; y/¤∅.

As in Proposition 4.6, we can partition RelK.x; y/ in subsets U1; : : : ;Un where n� �.
Further, for each i , all the elements of Ui are pairwise transverse and are totally ordered
with respect to the order U �V if dU .�VU ; y/� �0. Let Ui;1< � � �<Ui;ki

be the distinct
domains in Ui . For each i , there exist ai ; bi 2 Y such that �Ui;1

.x/ is within � of the
CUi;1 geodesic between ai and bi . If ai and bi project 2�0CE close to y inCUi;1, then
dUi;1

.x; y/� �C4�0C3E which contradicts Ui;1 2RelK.x; y/. Thus without loss of
generality, dUi;1

.ai ; y/ > 2�0CE and in particular dUi;1
.ai ; �

Ui;j
Ui;1

/ > �0 for all j > 1.
The total order on Ui and the consistency axiom (5) ensure that dUi;j

.x; ai /� 2�0CE

for all 1 < j � ki . Thus for each Ui;j , x projects � C 2�0CE close to the CUi;j
geodesic between ai and bi and x 2HK.y; a1; : : : ; an; b1; : : : ; bn/.

Armed with Lemma 5.5, the next step is to prove that for a finite set of points, the
hierarchical hull is contained in the path hull.

Proposition 5.6 For each � � N� and n� 2, there exists �� 1 such that

H� .x1; : : : ; xn/� Pn�1� .x1; : : : xn/

for any n distinct points x1; : : : ; xn 2 X .

Proof We shall proceed by induction on n. First we will show the base case of nD 2.

Claim 1 (base case) For each � � N� there exists �� 1 such that

H� .x; y/� P1�.x; y/
for each x; y 2 X .

Proof of Claim 1 Let z 2 H� .x; y/, 
0 W Œa; b�! X be a �0–hierarchy path from
x to z and 
1 W Œb; c�! X is a �0–hierarchy path from z to y. We will show that
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 D 
0 �
1 W Œa; c�!X is a �–hierarchy path from x to y, where � depends only on � .
By the definition of H� .x; y/ and hyperbolicity of the CU ’s we have that �U .
/ is an
unparametrized .�1; �1/–quasigeodesic for each U 2S, where �1 depends only on � .
Therefore, it suffices to show that 
 is a .�; �/–quasigeodesic in X , where � depends
only on � . That is, we need to prove for each t; s 2 Œa; c�,

jt � sj ��;� dX .
.t/; 
.s//:

Since 
0 and 
1 are both .�0; �0/–quasigeodesics, we can restrict ourselves to the case
where t 2 Œa; b/ and s 2 .b; c�. Let uD 
.t/ and v D 
.s/. Since �U .
/ is a uniform
unparametrized quasigeodesic for each U 2S,

dU .u; z/C dU .z; v/�C;C dU .u; v/

where C � 1 depends only on � . Hence, Lemma 4.5 provides a constant K � 1
depending only on � such that

dX .u; z/C dX .z; v/�K;K dX .u; v/:

Since 
0 and 
1 are both .�0; �0/–quasigeodesics,

1

�0K
jt � sj �

2�0
K
� k � dX .
.t/; 
.s//� �0jt � sjC 2�0;

as desired.

We now show the key fact for the inductive step, that the hull of n points can be obtained
by taking the hull on n�1 points, and then considering all the hierarchy paths between
this smaller hull and the remaining point.

Claim 2 Let x1; : : : ; xn 2 X , for n � 2. If x 2 H� .x1; : : : ; xn/ where � � N� , then
there exist � 0 and � depending only on � and y 2H� 0.x1; : : : ; xn�1/ such that x is on
a �–hierarchy path from xn to y.

Proof of Claim 2 For 1� i�n, letAiDfx1; : : : ; xig. For eachU 2S, �U .H� .An�1//
is R–quasiconvex where R depends only on � . Let yU be the closest point projection
of �U .x/ to �U .H� .An�1//, zU be a point in hullCU .An/ within � of �U .x/, and
z0U be the closest point projection of zU to �U .H� .An�1//. By Lemma 4.11, there
exist y 2 X and a constant � 0 depending on � and ı such that dU .�U .y/; yU / � � 0.
Further, we can assume � 0 is large enough that

(1) � 0 > � C ıCRC 1;

(2) y 2H� 0.An�1/;
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(3) for all v;w 2 CU , if dU .v; w/ < dU .v;H� .An�1//, then the closest point
projection of v and w to �U .H� .An�1// are no more than � 0 apart.

For each U 2 S, let 
U be a CU geodesic from �U .xn/ to �U .y/. We will show
that dU .xn; 
U / is uniformly bounded for each U 2 S. If dU .yU ; zU / � 5� 0, then
dU .x; yU /�6�

0 which implies dU .x; 
U /�7� 0. Otherwise dU .yU ; zU />5� 0 implies
that dU .x;H� .An�1//>dU .x; zU / and thus dU .yU ; z0U /��

0 by (3). This implies that
dU .zU ;H� .An�1// > 3�

0. Since zU 2 hullCU .An/ and zU …H� .An�1/, there exist
D � 0 depending only on � and xU 2 �U .An�1/ such that zU is within D of any CU
geodesic from �U .xn/ to xU . Further, by increasing � 0, we can assume D<� 0. Take a
geodesic triangle with endpoints �U .xn/, yU and xU . Since dU .zU ;H� .An�1//>3� 0,
it must be the case that zU is within 2� 0 of any CU geodesic from �U .xn/ to yU .

Thus there exists � 00 depending ultimately only on � , such that dU .x; 
U / � � 00 for
all U 2 S. Therefore x 2 H� 00.xn; y/ and the statement in Claim 2 follows from
Claim 1.

We now finish the proof of Proposition 5.6. Let x 2H� .x1; : : : ; xn/. Claim 2 shows
that there exist a �0 � 1 and � 0 � N� such that x is on a �0–hierarchy path from
xn to a point in H� 0.x1; : : : ; xn�1/. By induction, there exists � � �0 such that
H� 0.x1; : : : ; xn�1/� Pn�2

�
.x1; : : : ; xn�1/ and therefore x 2 Pn�1

�
.x1; : : : ; xn/.

We can now finish the proof of Theorem 5.2.

Proof of Theorem 5.2 Recall, we need to show that for all sufficiently large � and �,
H� .Y / coarsely coincides with PN

�
.Y / where N D 2�. First we will show that for all

� � N� , there exists �� 1 such that H� .Y /� PN
�
.Y /.

Let x 2H� .Y / and let x1; : : : ; x`C1 be the finite number of points in Y provided by
Lemma 5.5. By Proposition 5.6, there exists � depending on � such that

x 2 P`�.x1; : : : ; x`C1/� P`�.Y /� PN� .Y /:

Thus H� .Y /� PN
�
.Y /.

Now, fix N�� �0 such that H N� .Y /� PN
N�
.Y /. If � � N� and �� N�, then by Lemma 5.4

there exists � 0 > N� such that

H N� .Y /� PN� .Y /�H� 0.Y /:

The conclusion now follows by Lemma 5.3.
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The primary use of Theorem 5.2 in this paper is the following proof that hierarchically
quasiconvex subsets are exactly the subsets that are “quasiconvex with respect to
hierarchy paths”. From this it immediately follows that all strongly quasiconvex subsets
are hierarchically quasiconvex.

Proposition 5.7 Let .X ;S/ be a hierarchically hyperbolic space. A subset Y � X is
k–hierarchically quasiconvex if and only if there exists a function R W Œ1;1/! Œ0;1/

such that if 
 is a �–hierarchy path with endpoints on Y , then 
 �NR.�/.Y / where k
and R each determines the other. In particular , if Y is Q–strongly quasiconvex , then Y
is k–hierarchically quasiconvex where k is determined by Q.

Proof The proof of the forward implication follows directly from the definition
of hierarchical quasiconvexity and hierarchy path. Assume there exists a function
R W Œ1;1/! Œ0;1/ such that if 
 is a �–hierarchy path with endpoints in Y , then

 �NR.�/.Y /. The first condition of hierarchical quasiconvexity now follows from the
existence of hierarchy paths (Theorem 4.8), the coarse Lipschitzness of the projection
maps (axiom (1)), and the hyperbolicity of the CU ’s. For the second condition, observe
that the hypothesis implies there exists a bound on the Hausdorff distance between
Y and Pn

�
.Y / depending only on R, n, and �. Thus by Theorem 5.2, for each � � N� ,

there exists D� such that dHaus.H� .Y /; Y / � D� . Let � > 0 and x 2 X such that
dU .x; Y /� � for all U 2S. Thus x 2H� .Y / for each � � �C N� . Let k.�/DD N�C� .
Then dX .x; Y /� k.�/ and Y is hierarchically quasiconvex.

Remark 5.8 If X is a hyperbolic space, there exist many HHS structures on X ;
see [51]. In this case, Proposition 5.7 recovers [51, Proposition 3.5], which states that
a subset Y � X is quasiconvex if and only if Y is hierarchically quasiconvex in any of
the HHS structures on X .

5.1 Hulls and coarse medians

We now take a small detour from the main thrust of the paper to highlight an application
of Theorem 5.2 and discuss the relation of our work in this section to the hulls in coarse
median spaces constructed in [16].

In [14], Bowditch axiomatized the notion of a coarse center of three points in a metric
space and defined coarse median spaces as metric spaces where every triple of points
has such a coarse center. Bowditch observed that all hierarchically hyperbolic spaces
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are coarse median spaces; see also [10, Theorem 7.3]. The salient property of the
coarse median structure of an HHS is the following fact.

Lemma 5.9 (see proof of [10, Theorem 7.3]) Let .X ;S/ be a hierarchically hyper-
bolic space. There exist � > 0 and a map m W X �X �X ! X with the property that
for every .x; y; z/ 2 X 3 and U 2S, the projection �U .m.x; y; z// is within � of all
three sides of any CU triangle with vertices �U .x/, �U .y/ and �U .z/.

We call the point m.x; y; z/ the coarse center of x, y and z. There is a natural notion of
convexity for coarse median spaces, which we formulate in the hierarchically hyperbolic
setting as follows.

Definition 5.10 (coarse median quasiconvexity) Let .X ;S/ be an HHS. A subset Y
of X is said to be Q–median quasiconvex if for every y; y0 2 Y and x 2 X we have
m.y; y0; x/ 2NQ.Y /.

Behrstock, Hagen and Sisto showed that a hierarchically quasiconvex subset is median
quasiconvex in [10, Proposition 7.12]. Using Theorem 5.2, we establish the converse.

Proposition 5.11 Let .X ;S/ be an HHS and Y � X . Y is k–hierarchically quasicon-
vex if and only if Y is Q–median quasiconvex where k and Q each determines the
other.

Proof Let Y be a Q–median quasiconvex subset of the HHS .X ;S/ and 
 be a
�–hierarchy path with endpoints y1; y2 2 Y . If x 2 
 , then dU .x;m.y1; y2; x// is
uniformly bounded in terms of � and S for each U 2 S. By the distance formula
(Theorem 4.4), dX .x;m.y1; y2; x// is also uniformly bounded. Since Y is median
quasiconvex, this implies that there existR.�/ such that dX .x; Y /�R.�/. In particular,

 � NR.�/.Y / and Y is k–hierarchically quasiconvex, with k determined by Q, by
Proposition 5.7.

If Y � X , let M.Y / denote the coarse median hull defined in [16, Proposition 6.2].
Proposition 5.11 implies the following corollary that extends [16, Lemma 7.3] in the
special case of hierarchically hyperbolic spaces.

Corollary 5.12 Let .X ;S/ be an HHS and Y � X . For each � � �0, there exists D
depending only on � and S such that

dHaus.H� .Y /;M.Y //�D:
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Proof Let Y �X and � � �0. By Proposition 5.11,H� .Y / isQ1–median quasiconvex
for some Q1 depending on � and S. By [16, Proposition 6.2] M.Y / is Q2–median
quasiconvex, where Q2 depends only on S, and there exists D1 depending on �
such that M.Y / � ND1

.H� .Y //. By Proposition 5.11, M.Y / is k–hierarchically
quasiconvex where k depends only on S. By the second condition in Definition 4.9,
there exists D2 depending on � and S such that H� .Y /�ND2

.M.Y //.

6 Characterization of strongly quasiconvex subsets in HHSs

We now turn our attention to the main objective of this paper, characterizing the strongly
quasiconvex subsets of hierarchically hyperbolic spaces. From now on we shall restrict
our attention to HHSs with the bounded domain dichotomy; a minor regularity condition
satisfied by all HHGs as well as Teichmüller space with either the Weil–Petersson or
Teichmüller metric and the fundamental groups of 3–manifolds without Nil or Sol
components.

Definition 6.1 (bounded domain dichotomy) A hierarchically hyperbolic space
.X ;S/ has the B–bounded domain dichotomy if there exists B > 0 such that for
all U 2S, if diam.CU / > B , then diam.CU /D1.

The key to characterizing the strongly quasiconvex subsets of hierarchically hyperbolic
spaces is to determine what the projection of a strongly quasiconvex subset to each of the
associated hyperbolic spaces looks like. The property that characterizes the projection
of strongly quasiconvex subsets is the following orthogonal projection dichotomy.

Definition 6.2 (orthogonal projection dichotomy) For B � 0, a subset Y of an HHS
.X ;S/ has the B–orthogonal projection dichotomy if for all U; V 2S with U ? V , if
diam.�U .Y // > B then CV �NB.�V .Y //.

From now on, when we consider an HHS with the B0–bounded domain dichotomy and
a subspace with the B–orthogonal projection dichotomy, we will assume that B � B0.

We can now state our characterization of strongly quasiconvex subsets of hierarchically
hyperbolic spaces with the bounded domain dichotomy.

Theorem 6.3 (characterization of strong quasiconvexity) Let .X ;S/ be a hierarchi-
cally hyperbolic space with the bounded domain dichotomy and Y � X . Then the
following are equivalent :
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(1) Y is an .A;D/–contracting subset.

(2) The lower relative divergence of X with respect to Y is at least quadratic.

(3) The lower relative divergence of X with respect to Y is completely superlinear.

(4) Y is Q–strongly quasiconvex.

(5) Y is k–hierarchically quasiconvex and has the B–orthogonal projection di-
chotomy.

Moreover , the pair .A;D/ in part (1), the convexity gauge Q in part (4), and the pair
.k; B/ in part (5) each determine the other two.

The work in Section 3 showed that the implications

.1/ D) .2/ D) .3/ D) .4/

hold in any quasigeodesic space and that the pair .A;D/ determines Q. Further,
Proposition 5.7 showed that every Q–strongly quasiconvex subset of a hierarchically
hyperbolic space is k–hierarchically quasiconvex with Q determining k. Thus in the
next two subsections, we only need to prove:

� If Y is Q–strongly quasiconvex, then there exists B > 0 determined by Q such
that Y has the B–orthogonal projection dichotomy (Section 6.1).

� If Y is k–hierarchically quasiconvex and has the B–orthogonal projection di-
chotomy, then Y is .A;D/–contracting where .A;D/ is determined by .k; B/
(Section 6.2).

Before beginning the proof, we record of the following corollary to Theorem 6.3 that
allows us to characterize stable embeddings.

Corollary 6.4 Let .X ;S/ be an HHS with the bounded domain dichotomy and let
i W Y ! X be a quasi-isometric embedding from a uniform quasigeodesic space Y to X .
The following are equivalent :

(1) i is a stable embedding.

(2) Z D i.Y / is hierarchically quasiconvex and there exists a B > 0 such that for all
U; V 2S with U ? V , if diam.�U .Z// > B , then diam.CV / < B .

Proof By [11, Corollary 2.16], an HHS .Z;T/ is hyperbolic if and only if there exists
B such that for allU; V 2T withU ?V , either diam.�U .Z//<B or diam.�V .Z//<B .

Algebraic & Geometric Topology, Volume 23 (2023)



Convexity in hierarchically hyperbolic spaces 1209

By Proposition 2.8, i is a stable embedding if and only if the imageZD i.Y / is strongly
quasiconvex in X and hyperbolic. The equivalence follows from these observations
and the fact that hierarchically quasiconvex subsets inherit the hierarchy structure from
the ambient space as described in [10, Proposition 5.6].

Corollary 6.4 should be compared with [1, Corollary 6.2]. If .X ;S/ has the extra
assumption of unbounded products required in [1, Corollary 6.2], then Corollary 6.4
can be immediately improved to [1, Corollary 6.2]. However, Corollary 6.4 is a strict
expansion of [1, Corollary 6.2] as many HHS structures do not have unbounded products.
Naturally occurring HHS structures without unbounded products can be found in right
angled Coxeter groups and the Weil–Petersson metric on Teichmüller space. We briefly
describe these structures in Section 7.

6.1 Strongly quasiconvex subsets have orthogonal projection dichotomy

In this subsection, we provide the implication (4) to (5) in Theorem 6.3. Our focus will
be on studying the following set of domains.

Definition 6.5 Define S� to be the set of domains U 2S such that diam.CU /D1
and there exists V 2S?U such that diam.CV /D1.

For each U 2 S� we have that both factors of the product region PU have infinite
diameter. In particular, if S� D ∅ and S has the bounded domain dichotomy, then
.X ;S/ is hyperbolic by [11, Corollary 2.16]. Thus the intuition for restricting our
attention to these domains is that the domains in S� are the source of nonhyperbolic
behavior in .X ;S/.

The crucial step to proving strongly quasiconvex subsets have the orthogonal projection
dichotomy is the following proposition that establishes a sort of orthogonal projection
dichotomy for the product regions of domains in S�.

Proposition 6.6 Let .X ;S/ be an HHS with the bounded domain dichotomy and
Y � X be a Q–strongly quasiconvex subset. There is a constant B0 > 0 depending on
S and Q such that for all B � B0 and U 2S�,

diam.�U .Y // > B D) PU �NB.gPU
.Y //:
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Y




Figure 3: In R2 (equipped with the `1–metric) consider Y to be the x–axis.
Let 
 be the .3; 0/–quasigeodesic consisting of three sides of a square with the
fourth side on Y . While the quasigeodesic constants do no change, increasing
the distance between the endpoints of 
 produces points of 
 arbitrarily far
away from Y .

Since U is in S�, the product region PU coarsely coincides with the product of two
infinite diameter metric spaces. The proof of Proposition 6.6 is therefore motivated
by the situation described in Figure 3. Namely, if Y is a subset of the product of
two infinite-diameter metric spaces, then either Y coarsely coincides with the whole
product or there exists a quasigeodesic 
 with endpoints on Y and fixed constants such
that there are points of 
 whose distance to Y is comparable to diam.Y /. Thus if Y is
Q–strongly quasiconvex, then either Y has bounded diameter or it coarsely covers the
entire product.

In Proposition 6.10, we prove that a similar situation holds for PU . We show if
diam.�U .Y // is sufficiently large and Y does not coarsely coincide with PU , then we
can find a uniform constant quasigeodesic with endpoints on gPU

.Y / that contains
points relatively far from gPU

.Y /. To utilize this to prove Proposition 6.6, we must
promote this statement on gPU

.Y / to a statement on Y . Specifically, we show that
we can realize every quasigeodesic of PU with endpoints on gPU

.Y / as a segment
of a quasigeodesic with endpoints on Y , while maintaining uniform quasigeodesic
constants (Lemma 6.11). This yields a quasigeodesic with endpoints on Y that contains
a point x of PU such that dX .x; gPU

.Y // is comparable with diam.gPU
.Y //. If Y is

strongly quasiconvex, the bridge theorem (Theorem 4.18) implies that dX .x; gPU
.Y //

also provides a lower bound on the distance between x and Y . However, since Y is
strongly quasiconvex, the distance between x and Y is uniformly bounded. Hence, if
Y does not coarsely cover PU , we obtain that gPU

.Y / must have bounded diameter
which contradicts the assumption on diam.�U .Y //.

We begin by describing a particularly nice class of paths in product spaces and show
that they are quasigeodesics (Lemma 6.8).
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Definition 6.7 (spiral path) Let X and Y be .K;L/–quasigeodesic metric spaces,
and let Z D X � Y be equipped with the `1–metric. A spiral path 
 in Z is the
concatenation 
 D 
1 � � � � � 
n of .K;L/–quasigeodesic of Z satisfying the following:

� Every 
i is of the form ��cy or cx�ı where � (resp. ı) is a .K;L/–quasigeodesic
of X (resp. Y ) and cx0

(resp. cy0
) is the constant function with value x0 2 X

(resp. y0 2 Y ).

� For every i , if 
i is constant on the X (resp. Y ) factor of Z DX �Y , then 
iC1
is constant on the Y (resp. X ) component of Z DX �Y .

A spiral path 
 D 
1 � � � � � 
n has slope N if for every i 2 f1; : : : ; n� 2g,

d.
CiC1; 

�
iC1/�Nd.


C
i ; 


�
i /;

where 
˙j are the endpoints of 
j . Note that the distance between the endpoints of 
n
can be arbitrary.

Lemma 6.8 (spiral paths are quasigeodesics) For each K � 1 and L � 0 there
are constants K 0 and L0 such that the following holds. Let X and Y be .K;L/–
quasigeodesic metric spaces. If 
 D 
1 � � � � � 
n is a spiral path of slope N > 4K2 in
Z DX �Y such that the endpoints of 
1 are at least 3K2LC 1 far apart , then 
 is a
.K 0; L0/–quasigeodesic of X �Y .

The following proof is essentially the same as showing the logarithmic spiral in R2

is a quasigeodesic. However, as we were not able to find a sufficient reference in the
literature, we have included it in the interest of completeness.

Proof Let 
 D 
1 � � � � � 
n W Œa0; an�! Z be spiral path of slope N > 4K2 and let
a1 < � � �< an be points in Œa0; an� such that 
i D 
 jŒai�1;ai �.

Let t1; t2 2 Œa0; an�. We claim that

(3) d.
.t1/; 
.t2//� .KC 1/jt2� t1jC 2L:

Since each 
i is a .K;L/–quasigeodesic of Z for each i , we only need to consider the
case where t1 2 Œak; akC1� and t2 2 Œaj ; ajC1� with j � k � 1. By the choice on the
distance between endpoints of 
1 and the slope N ,

d.
.ai�1/; 
.ai // > 3K
2LC 1;
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.aj�3/
.aj�2/


.aj�1/ 
.aj /


.t1/


.t2/


.ajC1/


j�1


j�2


j


jC1

Figure 4

which implies jai � ai�1j>L. Therefore,

jt2� t1j � jaj � akC1j � .j � k� 1/L:

Since each 
i is .K;L/–quasigeodesic,

d.
.t1/; 
.t2//�Kjt2� t1jC .j � kC 1/L� .KC 1/jt2� t1jC 2L:

The remainder of the proof will show jt2� t1j � d.
.t1/; 
.t2//.

For every i , 
i � 
iC1 is a .K; 2L/–quasigeodesic of Z, so we only need to consider
the case where t1 2 Œak; akC1� and t2 2 Œaj ; ajC1� with j � k � 2 as in Figure 4.

We encourage the reader to refer to Figure 4 as they follow the remainder of the proof.

By the triangle inequality,

(4) d.
.t2/; 
.t1//� d.
.t2/; 
.aj�1//� d.
.aj�1/; 
.t1//:

The remainder of the proof has two parts. First we show that, d.
.t2/; 
.aj�1// is
much larger than d.
.aj�1/; 
.t1//, so

d.
.t2/; 
.t1//� d.
.t2/; 
.aj�1//� jt2� aj�1j:

We then finish by showing that jt2� aj�1j � jt2� t1j.

To simplify notation let `.
i / D d.
.ai�1/; 
.ai //. The slope condition then says
1
N
`.
i / > `.
i�1/ for each 1 � i � n� 1. Since N > 4K2, we can iteratively apply

the slope condition to get

(5)
j�1X
iD1

`.
i /�

�
1

N j�2
C � � �C

1

N
C 1

�
`.
j�1/� 2`.
j�1/�

2

N
`.
j /:

Algebraic & Geometric Topology, Volume 23 (2023)



Convexity in hierarchically hyperbolic spaces 1213

From the triangle inequality and the fact jakC1� t1j � jakC1� akj,

d.
.t1/; 
.aj�1//� d.
.t1/; 
.akC1//C

j�1X
iDkC2

`.
i /

�KjakC1� akjCLC

j�1X
iDkC2

`.
i /

�K
�
K`.
kC1/CKL

�
CLC

j�1X
iDkC2

`.
i /

�K2
� j�1X
iDkC1

`.
i /

�
C 2K2L:

Then by applying inequality (5),

d.
.t1/; 
.aj�1//�
�
2K2

N

�
`.
j /C 2K

2L�
1

2
d.
.t2/; 
.aj�1//C 2K

2L:

Substituting this into inequality (4) produces

d.
.t2/; 
.t1//�
1
2
d.
.t2/; 
.aj�1//� 2K

2L:

We can then use the fact that 
j � 
jC1 is a .K; 2L/–quasigeodesic to obtain

(6) d.
.t2/; 
.t1//�
1

2
d.
.t2/; 
.aj�1//� 2K

2L

�
1

2

�
1

K
jt2� aj�1j � 2L

�
� 2K2L

�
1

2K
jt2� aj�1j � 3K

2L:

We now show that jt2� aj�1j � jt2� t1j, which completes the proof by inequality (6).
Since we required that `.
1/ > 3K2LC 1 and N > 4K2, we have 1

K
jai �ai�1j> 2L

for each i . This implies

`.
i /�
1

K
jai � ai�1j �L>

1

2K
jai � ai�1j:

In particular, using inequality (5) we obtain

2

N
.Kjaj �aj�1jCL/�

2

N
`.
j /�

j�1X
iD1

`.
i /�

j�1X
iD1

1

2K
jai �ai�1j �

1

2K
jaj�1� t1j:

Hence,

jaj�1� t1j �
4K2

N
jaj � aj�1jC

4KL

N
� jaj � aj�1jCL
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and we can conclude

jt2� t1j D jt2� aj jC jaj � aj�1jC jaj�1� t1j

� jt2� aj jC 2jaj � aj�1jCL

� 3jt2� aj�1jCL:

Combining this with inequalities (3) and (6), we obtain that there are constants K 0 and
L0 depending on K and L such that

1

K 0
.t2� t1/�L

0
� d.
.t2/; 
.t1//�K

0.t2� t1/CL
0:

For the remainder of this section .X ;S/ will be an HHS with the bounded domain
dichotomy and S� is as in Definition 6.5. Recall, for each U 2S, the space FU �EU

consists of tuples a D .aV /, where V 2 SU [S?U , and that PU is defined as the
image of �U W FU �EU ! X . By restricting to a choice of factor, we can endow FU

and EU with the subspace metric of their images under �U . While this relies on the
choice of factor, the distance formula (Theorem 4.4) says any two choices result in
uniformly quasi-isometric metric spaces. Given a; b 2 FU �EU we use dV .a; b/ to
denote dV .aV ; bV /, where V 2 SU [S?U . If U 2 S�, then both FU and EU are
infinite diameter and so we can apply Proposition 6.9 to build the desired quasigeodesic
in PU based on gPU

.Y /.

Proposition 6.9 Let Y � X . There exist constants L0 and r0, and functions

f; g; h W Œr0;1/! Œ0;1/;

all depending only on S, such that f .r/; g.r/; h.r/!1 as r!1 and the following
holds: for each U 2 S� and each r � r0, if the r–neighborhood of ��1U .gPU

.Y //

does not cover FU � EU and diam.�U .Y // > f .r/, then there exists a .L0; L0/–
quasigeodesic � with endpoints a; b 2 ��1U .gPU

.Y // such that � is not contained in the
g.r/–neighborhood of ��1U .gPU

.Y // and dU .a; b/ > h.r/.

Proof Our approach is to construct a spiral path of sufficient slope in FU � EU

and then apply Lemma 6.8 to conclude it is a quasigeodesic. Let d. � ; � / denote the
`1–distance in FU �EU and fix the following constants, which depend only on S:

� L such that FU and EU are .L;L/–quasigeodesic spaces.

� K such that �U is .K;K/–coarsely Lipschitz.

� N D 4L2C 1 will be the slope of the spiral path we construct.
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A

aD .x2; y2/

z D .x1; y1/

z0 D .x2; y1/ .x3; y1/

a0 D .x3; y3/

Figure 5: Spiral path constructed when dFU
.x1; x2/�

1
2
.r C 2LC 1/.

Let r > 10L3 C 6 and A D ��1U .gPU
.Y //. Suppose that the r–neighborhood of A

does not cover FU �EU . Thus there exists a point z D .x1; y1/ 2 FU �EU such that
r � d.z; A/� rC2L. Let aD .x2; y2/ be a point of A such that d.z; a/�1� d.z; A/.
We have minfdFU

.x1; x2/; dEU
.y1; y2/g �

1
2
.r C 2L C 1/. There are two cases

depending on which of the two factors realizes the minimum.

Case 1 If dFU
.x1; x2/ realizes the minimum, let z0D .x2; y1/ andDrD 1

2
.r�2L�1/.

Then d.z0; A/� d.z; A/� d.z; z0/�Dr , which implies d.z0; a/ > 3L3C 1 because
r > 10L3C 6.

There exists Br > r such that for any pair of points u and v of FU , if dU .u; v/� Br
then

dFU
.u; v/� 2.r C 2LC 1/N:

We shall assume diam.�U .Y // > 2Br , so there is a point a0 D .x3; y3/ of A such that
dU .x2; x3/�Br and dFU

.x2; x3/ > dEU
.y2; y1/N . We can now form a spiral path �

of slope N D 4L2C 1 by connecting each sequential pair of points in the sequence

aD .x2; y2/� .x2; y1/� .x3; y1/� .x3; y3/D a
0

by .L;L/–quasigeodesics. Since dEU
.y2; y1/ > 3L

3C1, � satisfies the hypothesis of
Lemma 6.8 and is therefore an .L0; L0/–quasigeodesic for some L0 determined by L.

Since z0D .x2; y1/ is at least Dr far from A, � has endpoints in A and is not contained
in the Dr–neighborhood of A. Moreover, dU .a; a0/� Br and we get the claim with
f .r/D 2Br , g.r/DDr , and h.r/D Br
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A

aD .x2; y2/

z D .x1; y1/

z0 D .x1; y2/

.x4; y3/

a0 D .x4; y4/

.x1; y3/

Figure 6: Spiral path constructed when dEU
.y1; y2/�

1
2
.r C 2LC 1/.

Case 2 If dEU
.y1; y2/ realizes the minimum, let z0 D .x1; y2/. As before we have

that d.z0; A/ �Dr D 1
2
.r � 2L� 1/, which implies d.z0; a/ > 3L3C 1. Let y3 be a

point of EU such that

.r C 2LC 1/N � dEU
.y2; y3/� 2.r C 2LC 1/N:

There exists Cr > r such that for any pair of points u and v of FU , if dU .u; v/� Cr
then

dFU
.u; v/� 2.r C 2LC 1/N 2:

We shall assume diam.�U .Y // > 2Cr , so there exists a0 D .x4; y4/ 2 A such that
dU .x1; x4/ >Cr . This implies dFU

.x1; x4/ > 2.rC2LC1/N
2 and we can now form

a spiral path � of slope N D 4L2C 1 by connecting each sequential pair of points in
the sequence

aD .x2; y2/� .x1; y2/� .x1; y3/� .x4; y3/� .x4; y4/D a
0

by an .L;L/–quasigeodesics.

As before, � satisfies the hypothesis of Lemma 6.8 and is therefore an .L0; L0/–quasi-
geodesic for someL0 determined byL. The remaining claims follow as in the preceding
case.

The distance formula makes the map �U W FU �EU ! X a uniform quasi-isometric
embedding. Thus gPU

.Y / coarsely covers PU if and only if ��1U .gPU
.Y // coarsely

covers FU � EU , Proposition 6.9 therefore allows us to immediately deduce the
following result for PU � X .
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Proposition 6.10 Let Y � X . There exist constants L0 and r0, and functions

f; g; h W Œr0;1/! Œ0;1/;

all depending only on S, such that f .r/; g.r/; h.r/!1 as r!1 and the following
holds: for each U 2S�and each r � r0, if the r–neighborhood of gPU

.Y / does not
cover PU and diam.�U .Y // > f .r/, then there exists an .L0; L0/–quasigeodesic �
with endpoints a; b 2 gPU

.Y / such that

(1) ��PU ,

(2) � is not contained in the g.r/–neighborhood of gPU
.Y /,

(3) dU .a; b/ > h.r/.

Proposition 6.10 furnishes a quasigeodesic � with endpoints in gPU
.Y / that can be

made as far from gPU
.Y / as desired by increasing diam.�U .Y //. However, to exploit

the fact that Y is a strongly quasiconvex subset, we need the next lemma, which
“promotes” � to a quasigeodesic with endpoints in Y .

Lemma 6.11 There existsD>0 such that if x; y 2X and U 2S, with dU .x; y/>D
and � is a .k; c/–quasigeodesic contained in PU with endpoints gPU

.x/ and gPU
.y/,

then there exists a .k0; c0/–quasigeodesic containing � and with endpoints x and y,
where k0 and c0 depend only on � and �.

Proof Let D and � be as in Proposition 4.24. We further assume � is large enough
that every pair of points in X can be joined by a �–hierarchy path (Theorem 4.8).

Assume dU .x; y/ >D and let Q
 be the �–hierarchy path connecting x and y provided
by Proposition 4.24. Let ˛ be the active subpath of Q
 corresponding to U . Define x0

(resp. y0) to be the endpoint of ˛ closest to x (resp. y) and x00 D gPU
.x/ (resp. y00 D

gPU
.y/). If � W Œb; c�!PU is any .k; c/–quasigeodesic in PU connecting x00 and y00,

let 
 be the concatenation of Q
 �˛, any �–hierarchy path from x0 to x00, �, and any �–
hierarchy path from y0 to y00. We will show that this path 
 is a .k0; c0/–quasigeodesic
where the constants depend only on k and c.

The distances dX .x0;PU / and dX .y0;PU / are uniformly bounded by Proposition 4.24.
By Lemma 4.15, the distances dX .x0; gPU

.x0// and dX .y0; gPU
.y0// are uniformly

bounded as well. Again by Proposition 4.24, gPU
.x/ coarsely coincides with gPU

.x0/

and gPU
.y/ coarsely coincides with gPU

.y0/. Thus there exists � depending only on
S such that dX .x0; x00/; dX .y0; y00/� �.
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Now, let 
x (resp. 
y) be the subset of 
 from x to x00 (resp. y to y00). Since dX .x0; x00/
and dX .y0; y00/ are uniformly bounded by�, 
x and 
y are both uniform quasigeodesics.
By Lemma 4.15 and Proposition 4.24, there exists K � 1 depending on k, c, and S

such that

� dX .x
0; x00/, dX .y0; y00/�K;

� diam.gPU
.
x//; diam.gPU

.
y//�K;

� 
x , 
y and � are all .K;K/–quasigeodesics;

� for all p 2PU and q 2 X , dX .q; gPU
.q//�KdX .p; q/CK.

Let 
D
x���
y W Œa; d �!X and a<b<c <d such that 
 jŒa;b�D
x , 
 jŒb;c�D� and

 jŒc;d�D
y . For t; s2 Œa; d �, let uD
.t/, vD
.s/. We want to show jt�sj�dX .u; v/
for some constants depending only on K. The only interesting cases are when u and v
are in different components of 
 D 
x � �� 
y , so without loss of generality, we have
the following two cases.

Case 1 Assume t 2 Œa; b� and s 2 Œb; c�. Thus u 2 
x and v 2 �, and

dX .u; v/� dX .u; x
00/C dX .x

00; v/�Kjt � bjCKjb� sjC 2K �Kjt � sjC 2K:

For the inequality jt � sj � dX .u; v/, our choice of K provides

dX .u; x
00/� dX .u; gPU

.u//CK �KdX .u; v/C 2K:

By the triangle inequality dX .v; x00/� dX .v; u/CdX .u; x00/ and we derive the desired
inequality as

jt � sj D jt � bjC jb� sj

�KdX .u; x
00/CKdX .v; x

00/C 2K

�K2dX .u; v/CK.dX .u; v/C dX .u; x
00//C 2K2C 2K

�K2dX .u; v/CKdX .u; v/CK
2dX .u; v/C 4K

2
C 2K

� 3K2dX .u; v/C 6K
2:

Case 2 Assume t 2 Œa; b� and s 2 Œc; d � so that u 2 
x and v 2 
y . Further we can
assume u; v 2 Q
 , since otherwise the above proof holds by increasing the constants
by 4K. The inequality dX .u; v/ � jt � sj can be established by a nearly identical
argument to the previous case. For the inequality jt � sj � dX .u; v/ we need to utilize
the fact that Q
 is a .�0; �0/–quasigeodesic. Thus, by increasing K, we can ensure that

� dX .u; v/�K;K dX .u; x
0/C dX .x

0; y0/C dX .y
0; v/,
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� dX .x
0; y0/�1;2K dX .x

00; y00/�K;K jb� cj,

� dX .u; x
0/�1;K dX .u; x

00/�K;K jt � bj,

� dX .v; y
0/�1;K dX .v; y

00/�K;K jc � sj.

We then have the calculation

jt � sj D jt � bjC jb� cjC jc � sj

�KdX .u; x
00/CKdX .x

00; y00/CKdX .y
00; v/C 3K

�KdX .u; x
0/CKdX .x

0; y0/CKdX .y
0; v/C 7K2

�K2dX .u; v/C 8K
2:

We can now provide the proof of Proposition 6.6.

Proof of Proposition 6.6 Let Y � X be Q–strongly quasiconvex and U 2S such
that diam.CU /D1 and there exists V 2S?U with diam.CV /D1. Recall our goal
is to show that there exists B depending on S and Q such that if diam.�U .Y // > B ,
then PU �NB.gPU

.Y //. Begin by fixing the following constants that all depend only
on S and Q:

� � such that for all x 2 X , dU .x; gPU
.x// < �.

� D, the constant from Lemma 6.11.

� L0, the quasigeodesic constant from Proposition 6.10.

� k0, the quasigeodesic constant obtained by applying Lemma 6.11 to a .L0; L0/–
quasigeodesic.

� K, the constant from the bridge theorem (Theorem 4.18) for Y and PU (recall
Y is hierarchically quasiconvex by Proposition 5.7).

Let f, g and h be as in Proposition 6.10 and fix r be large enough that

g.r/ > 2KQ.k0; k0/CK2CK and h.r/ > DC 2�:

If PU � Nr.gPU
.Y //, then we are done. So for the purposes of contradiction, sup-

pose that PU 6� Nr.gPU
.Y // and that diam.�U .Y // > f .r/. Let � be the .L0; L0/–

quasigeodesic provided by Proposition 6.10 and let a1; b1 2 gPU
.Y / be the endpoints

of �. Let a0; b0 2 Y such that gPU
.a0/D a1 and gPU

.b0/D b1. Since

dU .a0; b0/ > dU .a1; b1/� 2� > h.r/� 2� >D;
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Lemma 6.11 produces a .k0; k0/–quasigeodesic 
 with endpoints a0 and b0 and
containing � where k0 depending ultimately only on S. Since Y is Q–strongly
quasiconvex, 
 � NQ.k0;k0/.Y /. By Proposition 6.10, there exists x 2 � such that
dX .x; gPU

.Y // > g.r/. Let y 2 Y be such that dX .x; y/� 1 � dX .x; Y /. Then by
the bridge theorem (Theorem 4.18) we have a contradiction,

Q.k0; k0/� dX .x; y/� 1�
1

K
dX .x; gPU

.Y //�K � 1 > 2Q.k0; k0/:

The following proposition uses Proposition 6.6 to finish the proof of the implication
from (4) to (5) in Theorem 6.3.

Proposition 6.12 If .X ;S/ is an HHS with the bounded domain dichotomy and Y is
a Q–strongly quasiconvex subset of X , then there exists B > 0 depending only on Q
and S such that Y has the B–orthogonal projection dichotomy.

Proof Let Y � X be Q–strongly quasiconvex and B 0 > 0 be larger than the bounded
domain dichotomy constant for S and the constant B0 from Proposition 6.6. Let U 2S.
If U …S�, then by the bounded domain dichotomy, either diam.CU / < B 0 or for all
V 2S?U , diam.CV / < B 0. In either case, the B 0–orthogonal projection dichotomy is
satisfied for U . Thus we can assume that U 2S�, so diam.CU /D1 and there exists
V 2 S?U with diam.CV / D 1. Suppose diam.�U .Y // > B 0. By Proposition 6.6,
PU �NB 0.gPU

.Y //. For all V 2S?U , �V .PU / uniformly coarsely covers CV , thus
there exists B � B 0 depending only on Q and S such that CV �NB.�V .Y //.

6.2 Contracting subsets in HHSs

We now finish the proof of Theorem 6.3 by showing that for hierarchically quasiconvex
subsets, the orthogonal projection dichotomy implies that the gate map gY is contracting.

Proposition 6.13 Let .X ;S/ be a hierarchically hyperbolic space with the bounded
domain dichotomy and Y � X be k–hierarchically quasiconvex. If Y has the B–
orthogonal projection dichotomy, then the gate map gY WX ! Y is .A;D/–contracting ,
where A and D depend only on k, B , and S.

Proof The gate map satisfies the first two condition in the definition of a contracting
map by Lemma 4.14. It only remains to prove: there exist 0 < A < 1 and D � 1
depending only on k, B , and S, such that for all x 2 X , diam.gY .BR.x//�D where
RD Ad.x; Y /.
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Fix a point x0 2 X with dX .x0; Y /� C0 and let x 2 X be any point with

dX .x0; x/ < C1dX .x0; Y /

for constants C0 and C1 to be determined below. We will prove that for each domain
U 2 S the distance dU .gY .x0/; gY .x// is uniformly bounded, then the above will
follow from the distance formula (Theorem 4.4).

We choose a “large” number L (we will clarify how large L is later). Let K � 1 be the
coarse equality constant from the distance formula with thresholds L and 2L. Take
C0 > .2KC1/K sufficiently large so there is W 2S such that dW .x0; gY .x0// > 2L.
Choose C1 < 1=.2K2C 1/, ensuring that dX .x0; gY .x0// > .2K2C 1/dX .x0; x/. If
dX .x0; x/�C0, then by the coarse Lipschitzness of the projections dU .gY .x0/; gY .x//
is uniformly bounded by a number depending on C0 for each U 2 S. Therefore,
we can assume that dX .x0; x/ > C0. We claim that there is a V 2 S such that
dV .x0; gY .x0// > dV .x0; x/CL.

Assume for the purpose of contradiction that dW .x0; gY .x0//� dW .x0; x/CL for all
W 2S. Therefore, dW .x0; gY .x0//� 2LD) dW .x0; x/� L and this implies

ffdW .x0; gY .x0//gg2L � 2ffdW .x0; x/ggL

for all W 2S. Thus,

dX .x0; gY .x0//�K
X
W 2S

ffdW .x0; gY .x0//gg2LCK

� 2K
X
W 2S

ffdW .x0; x/ggLCK

� 2K.KdX .x0; x/CK/CK

� 2K2dX .x0; x/C .2KC 1/K

� 2K2dX .x0; x/CC0

� .2K2C 1/dX .x0; x/

which contradicts C1 < 1=.2K2C 1/. Therefore, we can fix V 2S such that

dV .x0; gY .x0// > dV .x0; x/CL:

The construction of the gate map and the hyperbolicity of CV ensure that, after
enlarging L and shrinking C1 if necessary, dV .gY .x0/; gY .x// < r where r depends
only on k and S. The triangle inequality then gives us

dV .x; gY .x0// > L and dV .x; gY .x// > L� r:
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Now let U 2 S. If diam.�U .Y // � B , then dU .gY .x0/; gY .x// � B and we are
done. Thus we can assume that diam.�U .Y // > B . If U D V , then the distance
dU .gY .x0/; gY .x// is uniformly bounded above by the number r and we are done. We
now consider the other possible cases depending on the relation between U and V .

Case 1 Suppose V v U . If we choose L greater than EC r , then

dV .x0; gY .x0// > E and dV .x; gY .x// > E:

Thus by the bounded geodesic image axiom (8), the CU geodesics from �U .x0/ to
�U .gY .x0// and from �U .x/ to �U .gY .x// must intersect NE .�VU /. Therefore, the
distance dU .gY .x0/; gY .x// is uniformly bounded due to the hyperbolicity of CU and
the properties of the gate map (Lemma 4.14).

Case 2 Suppose U v V . If some CV geodesic from �V .gY .x0// to �V .gY .x// stays
E–far from �UV , then by the bounded geodesic image axiom (8), dU .gY .x0/; gY .x//�E
and we are done. Therefore, we assume that all CV geodesics from �V .gY .x0// to
�V .gY .x// intersect NE .�UV /. Since dV .x0; gY .x0// > dV .x0; x/CL, if there was
also a CV geodesic from �V .x0/ to �V .x/ that intersected NE .�UV / we would have

dV .gY .x0/; �
U
V /� dV .gY .x0/; x0/� dV .x0; �

U
V /

> dV .gY .x0/; x0/� dV .x0; x/� 2E

� L� 2E:

However, dV .gY .x0/; gY .x// � r which implies �V .gY .x0// lies in NECr.�UV /.
Therefore, by assuming L> 4EC r we can ensure that no CV geodesic from �V .x0/

to �V .x/ intersects NE .�UV /. Thus dU .x0; x/ < E by the bounded geodesic image
axiom and it immediately follows that dU .gY .x0/; gY .x// is bounded by a constant
depending on k and S.

Case 3 Suppose U 6v V and V 6v U . Recall that we can assume diam.�U .Y // > B .
Thus if U ? V , we have CV �NB.�V .Y // by the orthogonal projection dichotomy.
However dV .x0; gY .x0// > L, so by Lemma 4.15 we can choose L large enough such
that �V .x0/ does not lie in the B–neighborhood of �V .Y /. Thus U and V cannot be
orthogonal and hence U t V .

Now assume L> 2�0C 3r C 2EC 1. Then if dV .gY .x0/; �UV /� �0C r CE,

dV .x0; �
U
V /� dV .x0; gY .x0//� dV .gY .x0/; �

U
V /�E � L� .�0C r CE/�E > �0

and

dV .x; �
U
V /� dV .x; gY .x0//� dV .gY .x0/; �

U
V /�E > L� .�0C r CE/�E > �0:
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Therefore, dU .x0; �VU / < �0 and dU .x; �VU / < �0 by consistency (axiom (5)). This
implies that dU .x0; x/�2�0CE and thus dU .gY .x0/; gY .x// is bounded by a constant
depending on k and S.

If instead dV .gY .x0/; �UV / > �0C r CE, then dV .gY .x/; �UV / > �0 since

dV .gY .x0/; gY .x// < r:

By consistency, dU .gY .x0/; �VU / < �0 and dU .g.x/; �VU / < �0, which implies that

dU .gY .x0/; gY .x//� 2�0CE:

Remark 6.14 Both hypotheses on the subspace in Proposition 6.13 are in fact required.
In the standard HHG structure of Z2, the subgroup h.1; 0/i is hierarchically quasiconvex,
but does not satisfy the orthogonal projection dichotomy. On the other hand, the
subgroup h.1; 1/i has the orthogonal projection dichotomy, but is not hierarchically
quasiconvex. Neither of these subsets are strongly quasiconvex and thus neither are con-
tracting. Both of the above examples can even be made to be (nonstrongly) quasiconvex
by choosing {(1,0), (1,1), (0,1)} to be the generating set for Z2.

6.3 A generalization of the bounded geodesic image property

As a first application of Theorem 6.3 — our characterization of strongly quasiconvex
subsets — we show that strongly quasiconvex subspaces of HHSs satisfy a version of
the bounded geodesic image property. First recall the bounded geodesic image property
for quasiconvex subsets of hyperbolic spaces (not to be confused with the bounded
geodesic image axiom of an HHS).

Proposition 6.15 (bounded geodesic image property for hyperbolic spaces) Let Y
be a K–quasiconvex subset of a geodesic ı–hyperbolic space X . Then there exists
r > 0 (depending on ı and K) such that if d.pY .x/; pY .y// > r , then every geodesic
connecting x and y must intersect the r–neighborhood of Y .

In the case of strongly quasiconvex subsets of hierarchically hyperbolic space, we
replace the closest point projection with the gate map and geodesics with hierarchy
paths. Theorem 1.5 from the introduction will follow as a result of the following
proposition, which is a version of the active subpath theorem (Proposition 4.24) for
strongly quasiconvex subsets.
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Proposition 6.16 Let .X ;S/ be an HHS with the bounded domain dichotomy and
Y � X be a Q–strongly quasiconvex. For all � � 1, there exist constants � and D,
depending on � and Q, such that for all x; y 2 X , if dX .gY .x/; gY .y// > D and

 W Œa; b�!X is a �–hierarchy path joining x and y, then there is a subpath ˛D
 jŒa1;b1�

of 
 with

(1) ˛ �N�.Y /,

(2) the diameters of gY .
.Œa; a1�// and gY .
.Œb1; b�// both bounded by �.

Proof By Theorem 6.3, Y is hierarchically quasiconvex and has the orthogonal
domain dichotomy. In particular, �U .Y / is uniformly quasiconvex in CU for all
U 2S. Let x; y 2 X and 
 be a �–hierarchy path connecting x and y. Since 
 is a
.�; �/–quasigeodesic, we can choose

x D x0; x1; x2; : : : ; xn D y

on 
 such that the distances between xi and xiC1 are all bounded by 2�. We will show
that there exist 0� i0 � j0 � n such that:

� For i D i0 or i D j0, dX .xi ; gY .xi // is bounded by a constant depending only
on Q, �, and S.

� If s < t < i0 or j0 < s < t , then dX .gY .xs/; gY .xt // is bounded by a constant
depending only on Q, �, and S.

Since Y is strongly quasiconvex, once we have shown the above, the proposition will
follow with ˛ as the subsegment of 
 between xi0 and xj0

.

For each U 2 S, the projection �U is uniformly coarsely Lipschitz, thus there is a
�0 depending on .X ;S/ and � such that the distances dU .xi ; xiC1/ are all bounded
above by �0.

By the hyperbolicity of each CU and the properties of gate map (Lemma 4.14), there
are constants B and � depending only on S, Q, and � such that for each V 2 S

satisfying dV .gY .x/; gY .y// > B there are 0 � IV < JV � n with the following
properties:

(1) dV .xi ; gY .xi //� � for IV � i � JV .

(2) If s < t < IV or JV < s < t , then dV .gY .xs/; gY .xt // < �.

(3) dV .xIV
; xJV

/� 10D, where D D 3.EC�C �0C�0/.
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For future convenience, we can and shall assume B is large enough that B > E,
.X ;S/ has the B–bounded domain dichotomy, and Y has the B–orthogonal projection
dichotomy. By the uniqueness axiom (10), there is a constant K depending on B and
.X ;S/ such that if dX .gY .x/; gY .y// > K, then the set RD RelB.gY .x/; gY .y// is
nonempty. Since for each V 2 R we have dV .xIV

; xJV
/ � 10D and each distance

dV .xi ; xiC1/ is bounded above by �0 <D, there are IV < iV < jV < JV such that

(�) D � dV .xiV ; xIV
/� 2D and D � dV .xjV

; xJV
/� 2D:

Let i0 DminV 2R iV and j0 DmaxV 2R jV .

We first prove that for each s and t that are both less than i0 or both greater than j0
the distance dX .gY .xs/; gY .xt // is uniformly bounded by some constant depending
only on S, Q and �. We will provide the proof for the case s and t are both less than
i0 and the proof for the other case is essentially identical. Let V 2S. If V …R, then
dV .gY .x/; gY .y//�B which implies diam.�V .gY .
/// is bounded by a constant that
depends only on B , �, Q and S. In particular, dV .gY .xs/; gY .xt // is also uniformly
bounded by this constant. When V 2R, then s and t are both less than iV . Therefore
by item (2) above and (�) we have that dV .gY .xs/; gY .xt // is bounded by a constant
depending only on S, Q, and �. By the distance formula (Theorem 4.4) the distance
dX .gY .xs/; gY .xt // is therefore bounded by a constant that ultimately depends only
on S, Q and �.

We now prove that there exists �0 depending on S, Q and � such that for i D i0 or
i D j0,

(��) dX .xi ; gY .xi //� �
0:

Again we only give the proof for the case of i D i0 and the argument for the case
i D j0 is almost identical. By the distance formula, it is sufficient to check that we can
uniformly bound dU .xi ; gY .xi // for each U 2S.

Fix a domain V 2 R such that i D i0 D iV . We shall show dU .xi ; gY .xi // for all
U 2S by examining the four cases for how U can be related to V .

Case 1 Suppose V?U . Since Y has the B–orthogonal domain dichotomy,

V 2R D) CU �NB.�U .Y //:

Therefore by the properties of the gate map (Lemma 4.14), we have that dX .xi ; gY .xi //
is uniformly bounded.
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Case 2 Suppose V t U . If dV .xi ; �UV / > �0C�CE, then

dV .gY .xi /; �
U
V / > �0

and by the consistency axiom (5) and triangle inequality,

dU .xi ; gY .xi //� 2�0CE:

Now assume that dV .xi ; �UV /< �0C�CE. SinceD>�CEC�0, dV .xi ; xIV
/�D,

and dV .xi ; xJV
/�D, we have that xIV

, gY .xIV
/, xJV

and gY .xJV
/ all project at least

�0 far from �UV in CV . Therefore, by the consistency axiom and triangle inequality,

dU .xIV
; gY .xIV

//� 2�0CE and dU .xJV
; gZ.xJV

//� 2�0CE:

Thus, by the quasiconvexity of �U .Y / in CU and the properties of the gate map, the
distance dU .xi ; gY .xi // is bounded by a uniform constant determined by S, Q and �.

Case 3 Suppose U v V . Consider geodesics in CV connecting the projections of the
pairs of points .xIV

; gY .xIV
//, .xi ; gY .xi // and .xJV

; gY .xJV
//. By the assumptions

on IV , i and JV , at most one of these geodesics intersects NE .�UV /. If such a geodesic
is not the one connecting �V .xi / and �V .gY .xi //, then we are done by the bounded
geodesic image axiom (8). Otherwise, the bounded geodesic image axioms requires
that �V .xIV

/ and �V .xJV
/ are contained in the 3E–neighborhood of �U .Y / in CU .

By the quasiconvexity of �U .Y / in CU and the properties of the gate map, the distance
dU .xi ; gY .xi // is thus bounded by a uniform constant determined by S, Q and �.

Case 4 Suppose V v U . Recall that �U .
/ is a unparametrized quasigeodesic in
CU , and let 
0 be the subsegment of �U .
/ from xIV

to xi and 
1 be the subsegment
from xi to xJV

. By the bounded geodesic image axiom and (�), there exists E 0 �E
determined by S, such that both 
0 and 
1 intersect the E 0–neighborhood of �VU . Since
�U .
/ is an unparametrized .�; �/–quasigeodesic, there exists R depending on E 0 and
� such that dU .xi ; �VU /�R. If ˛ is some CU geodesic connecting gY .x/ and gY .y/,
then ˛ also intersects the E–neighborhood of �VU by the bounded geodesic image
axiom. Therefore, by the quasiconvexity of �U .Y / in CU and the properties of the
gate map, the distance dU .xi ; gY .xi // is bounded by a uniform constant determined
by S, Q and �.

Remark 6.17 The hypotheses of Proposition 6.16 cannot be relaxed by taking Y to
be hierarchically quasiconvex instead of strongly quasiconvex. As a counterexample,
one can consider Z2 with the standard HHG structure and let Y be the x–axis. As any
horizontal line in Z2 is a hierarchy path, for any D > 0, there exists a hierarchy path 

where both dX .
; Y / > D and diam.gY .
// > D.
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7 Strongly quasiconvex subsets in familiar examples

In this section, we utilize Theorem 6.3 to give descriptions of the strongly quasiconvex
subsets in well studied examples of hierarchically hyperbolic spaces. We will begin by
briefly discussing the HHS structure for the mapping class group, Teichmüller space,
right-angled Artin and Coxeter groups, and graph manifolds. The descriptions are not
complete as we only describe the parts of the HHS structure that we shall need to be
able to apply the results from the general case. We direct the reader to the references
provided alongside each example for complete details.

The mapping class group and Teichmüller space For the mapping class group, see
[10; 41]; for the Teichmüller metric, see [23; 26; 47]; and for the Weil–Petersson
metric, see [17].

Let S be an oriented, connected, finite-type surface with genus g and p punctures. The
complexity of S is �.S/ D 3g � 3C p. Assume �.S/ � 1 and let X be the marking
complex of S .

� Index set S will be the collection of isotopy classes of (not necessarily con-
nected) essential subsurfaces of S excluding 3–punctured sphere, but including
annuli.

� Hyperbolic spaces For each U 2S, CU will be the curve graph of U . The
space CU will be infinite diameter if and only if U is connected. The projection
maps, �U , are the well studied subsurface projections of Masur and Minsky.

� Relations U ? V if U and V are disjoint and U v V if U is nested into V . If
U v V , then �UV will be the subset of curves in CV corresponding to @U .

The HHS structure for Teichmüller space with either metric is identical except for the
annular domains of S. For the Teichmüller metric, modify the curve graphs of the
annular domains by attaching a horoball. For the Weil–Petersson metric, the index
set S simply excludes annuli. This difference in the treatment of annular domains
accounts for all of the differences in the coarse geometry of the these three spaces.

RAAGs and RACGs [9] Let � be a finite simplicial graph and G� be the associated
right-angled Artin or right-angled Coxeter group equipped with a word metric from
a finite generating set. For an induced subgraph ƒ � � , link.ƒ/ is the subgraph of
��ƒ induced by the vertices adjacent to every vertex in ƒ and star.ƒ/ be the induced
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subgraph of link.ƒ/[ƒ. If ƒ is an induced subgraph of � , then Gƒ is a subgroup
of G� . We call subgroups of this form the special subgroups of G� . The following is
an HHG structure on G� .

� Index set For g; h 2 G� and ƒ a nonempty, induced subgraph of � , define
the equivalence relation gGƒ � hGƒ if g�1h 2 Gstar.ƒ/. Let S be defined as
fgGƒg=�.

� Hyperbolic spaces C ŒgGƒ� can be obtained by starting with the coset gGƒ and
coning off each left coset of the special subgroups contained in gGƒ. C ŒgGƒ�
is infinite diameter if and only if Gƒ is infinite and ƒ does not split as a join.

� Relations ŒgGƒ0 � v ŒgGƒ� if ƒ0 � ƒ and ŒgGƒ0 � ? ŒgGƒ� if ƒ � link.ƒ0/
(and hence ƒ0 � link.ƒ/). If ŒgGƒ0 �v ŒgGƒ�, then �ŒgGƒ0 �

ŒgGƒ�
will be the subset

gGƒ0 in C ŒgGƒ�.

Graph manifolds [10] Let M be a nongeometric graph manifold and X be the
universal cover of M . Since the fundamental group of every graph manifold is quasi-
isometric to the fundamental group of a flip graph manifold, we will assume M is
flip. Let T be Bass–Serre tree for M and Xv be the subspace of X corresponding
to a vertex v 2 T . Each Xv is bi-Lipschitz to the product Rv �Hv where Rv is a
copy of the real line and Hv is the universal cover of a hyperbolic surface with totally
geodesic boundary. If v;w are adjacent vertices in T , then let @wHv and @vHw denote
the boundary components of Hv and Hw such that Rv � @wHv is identified with
Rw � @vHw in X . Since M is flip, Rv is identified with @vHw . For each v 2 T , let
yHv denote the spaced obtained from Hv after coning off each copy of @wHv for each

vertex w adjacent to v. The following is an HHS structure on X .

� Index set For adjacent vertices v;w 2 T , define Rv � @vHw and then let
SD fT;Rv; @vHw ; yHwg=�.

� Hyperbolic spaces Every element of S is a hyperbolic space, so we have
CU D U for all U 2S. The diameter of CU is infinite for all U 2S.

� Relations T is the v–maximal domain and Œ@wHv� v yHv for all w and v
adjacent in T . For adjacent vertices v;w 2 T , �ŒRv�

T D �
Œ@wHv�
T D fv;wg � T

and �Œ@wHv�
yHv

is the cone point for @wHv in yHw . For v and w adjacent in T , we
have ŒRv�? yHv and ŒRv�? ŒRw � (recall Œ@wHv�D ŒRw �).

Remark 7.1 When the manifold M is flip, the above describes an HHG structure
on �1.M/. However, if M is not flip, then the quasi-isometry from �1.M/ to the
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fundamental group of the flip graph manifold need not be equivariant and the above
will be an HHS, but not an HHG structure on �1.M/. See [10, Remark 10.2] for a
discussion of the existence of HHG structures on 3–manifold groups.

In the case of right-angled Artin groups with connected defining graphs, Tran and
Genevois independently showed that strongly quasiconvex subgroups are either finite-
index or hyperbolic (and are actually free when they are hyperbolic) [28; 54]. The
same result is shown for the mapping class group in [38] and for certain CFS right-
angled Coxeter groups in [43]. Based on these examples, one may conjecture that the
strongly quasiconvex subsets of any not relatively hyperbolic, hierarchically hyperbolic
space are either hyperbolic or coarsely cover the entire space. While [54] provides
a counterexample to this conjecture in right-angled Coxeter groups, it nevertheless
holds in many of the examples described above. In Proposition 7.2, we give sufficient
conditions for every strongly quasiconvex subset of an HHS to be either hyperbolic
or coarsely covering. We then unite and expand the work of Genevois, Kim, Nguyen
and Tran by applying Proposition 7.2 to the mapping class group, Teichmüller space,
right-angled Artin and Coxeter groups, and graph manifolds in Corollary 7.4.

Proposition 7.2 Let .X ;S/ be an HHS with the bounded domain dichotomy and let
S� be as defined in Definition 6.5. Assume the following two conditions hold :

(1) For all W 2S�S� either CW has bounded diameter or the set

f�VW j V 2S
� with V tW or V vW g

uniformly coarsely covers CW .

(2) For every U; V 2S� there exists a sequence U D U1; : : : ; Un D V of domains
in S� with Ui ? UiC1 for all 1� i � n� 1.

Then , if Y � X is strongly quasiconvex, either Y is hyperbolic or some finite neighbor-
hood of Y covers all of X .

Proof Let Y � X be Q–strongly quasiconvex. By Theorem 6.3 there exists B ,
depending only on Q and S, such that Y has the B–orthogonal projection dichotomy.
Further, we can assume B is large enough such that .X ;S/ satisfies the B–bounded
domain dichotomy. We will show that if Y is not hyperbolic, then for all W 2S we
have that CW is uniformly coarsely covered by �W .Y /. Thus for all x 2 X we will
have that dW .x; gY .x// is uniformly bounded and therefore Y will coarsely cover X
by the distance formula (Theorem 4.4).

Algebraic & Geometric Topology, Volume 23 (2023)



1230 Jacob Russell, Davide Spriano and Hung Cong Tran

Suppose that Y is not hyperbolic. By Proposition 2.8, the inclusion map i W Y ,! X

cannot be a stable embedding. Therefore by Corollary 6.4, there exists a domain
U 2S� such that diam.�U .Y // >B . First we will show that for any domain W 2S�,
CW �NB.�W .Y //.

Let W 2S�. By hypothesis, there exists a sequence U DU1; : : : ; UnDW of domains
in S� with Ui ? UiC1 for all 1� i � n� 1. Since Y has the B–orthogonal projection
dichotomy and diam.CUi /D1 for each 1� i � n, we have CUi �NB.�Ui

.Y // for
all 1� i � n. In particular, CW �NB.�W .Y //.

Now let W 2S�S� such that diam.CW /D1. We will show that �W .Y / uniformly
coarsely covers CW by showing that for all V 2 S� such that �VW is defined there
exists y 2 Y such that �W .y/ is uniformly close to �VW . First suppose V 2S� with
V vW . By the preceding paragraph, there exist x; x0 2 Y such that dV .x; x0/ > 100E.
If 
 is a hierarchy path connecting x and x0, then �W .
/ is uniformly close to �VW by
the bounded geodesic image axiom (8). Further, since Y is strongly quasiconvex there
exists y 2 Y such that dW .�VW ; �W .y// < B

0 where B 0 depends only on Q and S. If
instead V 2S� and V tW , then there exists y 2 Y such that dV .y; �WV / > �0. Thus
dW .y; �

V
W /� �0 by the consistency axiom (5). Since the set

f�VW j V 2S
� with V tW or V vW g

uniformly coarsely covers CW by hypothesis, we have that �W .Y / uniformly coarsely
covers all of CW as well.

Hence we have that for all W 2S, CW is uniformly coarsely covered by �W .Y / and
so Y coarsely covers X by the distance formula.

Before continuing, we will take a brief detour to define a property of graphs that will
be relevant to our study of right-angled Coxeter groups. Given a graph � , define �4 as
the graph whose vertices are induced 4–cycles of � . Two vertices in �4 are adjacent if
and only if the corresponding induced 4–cycles in � have two nonadjacent vertices in
common. Given graphs ƒ1 and ƒ2, recall that the join ƒ1 �ƒ2 is the graph obtained
from ƒ1 tƒ2 by adding an edge between each vertex of ƒ1 and each vertex of ƒ2.

Definition 7.3 (constructed from squares) A graph � is CFS if � D��K, where
K is a (possibly empty) clique and � is a nonempty subgraph such that �4 has a
connected component T where every vertex of � is contained in a 4–cycle that is a
vertex of T . If � is CFS and �4 is connected, then we say � is strongly CFS. If � is
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�1 �2

Figure 7: Two graphs �1 and �2 are both CFS. However, graph �1 is
graph strongly CFS but �2 is not since the red induced 4–cycle in �2 is not
“connected” to any other induced 4–cycle in the graph.

(strongly) CFS, then by abuse of language we will say that the right-angled Coxeter
group G� is (strongly) CFS. See Figure 7 for examples of CFS and strongly CFS
graphs.

Corollary 7.4 The following HHSs have the property that every strongly quasiconvex
subset is either hyperbolic or coarsely covers the entire space:

(a) The Teichmüller space of a finite-type , oriented surface with the Teichmüller
metric.

(b) The Teichmüller space of a finite-type , oriented surface of complexity at least 6
with the Weil–Petersson metric.

(c) The mapping class group of a finite-type , oriented surface.

(d) A right-angled Artin group with connected defining graph.

(e) A right-angled Coxeter group with strongly CFS defining graph.

(f) The fundamental group of a nongeometric graph manifold.

In particular , if H is a strongly quasiconvex subgroup in any of the groups (c)–(f), then
H is either stable or finite-index.

Proof All of the above examples have the bounded domain dichotomy. We shall show
they satisfy the two hypotheses of Proposition 7.2.
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Mapping class group and Teichmüller metric If �.S/� 1, then the mapping class
group and Teichmüller space will both be hyperbolic; thus we can assume �.S/� 2.
In this case, S� is the set of all connected proper subsurfaces. Thus hypothesis (1)
follows from the fact that every curve on the surface corresponds to the boundary curve
of some connected subsurface. Given two subsurfaces U and V , a sequence satisfying
hypothesis (2) is found by taking a path in CS connecting @U and @V .

Weil–Petersson S� is the collection of all connected proper subsurfaces whose
complement contains a subsurface of complexity at least 1. In particular, since the
complexity is at least 6, S� contains every subsurface of complexity 1. For every
connected subsurfaceW …S�, every curve onW corresponds to the boundary curve of
some complexity 1 subsurface providing hypothesis (1). Hypothesis (2) follows from
the observations that if U � S is a subsurface of complexity 1 and ˛ is a curve disjoint
from U , then there exists V � S , a subsurface of complexity 1, such that ˛ � @V
and U is disjoint from V . Thus any path in CS can be promoted to a sequence of
sequentially disjoint subsurfaces in S�.

RAAGs S� is the collection of ŒgGƒ� such that there exists � � link.ƒ/ where
ƒ and � are both nonempty and not joins. In particular, since � is connected, S�

contains all of the ŒgGƒ� where ƒ is a single vertex. Hypothesis (1) follows from the
fact that Gƒ acts cocompactly on its Cayley graph and the construction of C ŒgGƒ�.
For hypothesis (2), let Œg1Gƒ1

�; Œg2Gƒ2
� 2S� and mD jg�11 g2j. We shall proceed

by induction on m. If mD 0, then g1 D g2 D g and since � is connected, there is a
sequence of vertices v1; v2; : : : ; vn such that vi and viC1 are adjacent for all 1� i�n�1
and v1 2 link.ƒ1/, vn 2 link.ƒ2/. Thus ŒgGƒ1

�; ŒgGv1
�; : : : ; ŒgGvn

�; ŒgGƒ2
� is the

required sequence.

If m> 0, then there exists g3 2G� such that jg�11 g3j Dm� 1 and jg�13 g2j D 1. Let
v be the vertex of � such that g�13 g2 is either v or v�1. By induction, there exist two
sequences of elements of S�,

Œg1Gƒ1
�D U1; U2; : : : ; Un D Œg3Gv� and Œg2Gv�D V1; V2; : : : ; Vk D Œg2Gƒ2

�;

such that Ui ? UiC1 for 1 � i � n� 1 and Vi ? ViC1 for all 1 � i � k � 1. Since
Œg3Gv�D Œg2Gv�,

Œg1Gƒ1
�D U1; U2; : : : ; Un; V2; : : : ; Vn D Œg2Gƒ2

�

is the required sequence.
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RACGs Since � is strongly CFS, we can write � D � �K where K is a clique
(possibly empty) and� is a nonempty graph such that�4 is connected and every vertex
of � is contained a 4–cycle that is a vertex of �4. Since G� is a finite-index subgroup
of G� , it suffices to prove that every strongly quasiconvex subset of G� is either
hyperbolic or coarsely covers G�. We now prove that the standard HHG structure, S,
on G� satisfies satisfy the two hypotheses of Proposition 7.2. The argument will be
similar to the case of right-angled Artin groups above.

We first observe that S� is the collection of ŒgGƒ� such that there exists �� link.ƒ/
where ƒ and � both have at least two points and they are not joins. In particular,
S� contains all domains ŒgGfa;bg� where a and b are two nonadjacent vertices of an
induced 4–cycle. Hypothesis (1) follows from the fact that Gƒ acts cocompactly on its
Cayley graph and the construction of C ŒgGƒ�.

For hypothesis (2), let Œg1Gƒ1
�; Œg2Gƒ2

� 2S� and mD jg�11 g2j. We shall proceed by
induction on m. We first assume that mD 0. Therefore, g1D g2D g. We note that for
i D 0 or 1 there exists�i � link.ƒi / whereƒi and�i both contain at least two vertices
and are not joins. Therefore, link.ƒi / contains a pair .ui ; vi / of two nonadjacent
vertices of some induced 4–cycle. Since �4 is connected, there is a sequence of
pairs of nonadjacent vertices .u1; v1/ D .a1; b1/; .a2; b2/; : : : ; .an; bn/ D .u2; v2/

such that ai and bi are both adjacent to aiC1 and biC1 for all 1 � i � n� 1. Thus
ŒgGƒ1

�; ŒgGfa1;b1g
�; : : : ; ŒgGfan;bng�; ŒgGƒ2

� is the required sequence.

If m> 0, then there exists g3 2G� such that jg�11 g3j Dm�1 and jg�13 g2j D 1. Let v
be the vertex of � such that g�13 g2 D v. Since every vertex of � is contained in a four
cycle that is a vertex of �4, there is a vertex w such that v and w are two nonadjacent
vertices of an induced 4–cycle. By induction, there exist two sequences of elements
of S�,

Œg1Gƒ1
�D U1; U2; : : : ; Un D Œg3Gfv;wg�

and

Œg2Gfv;wg�D V1; V2; : : : ; Vk D Œg2Gƒ2
�;

such that Ui ? UiC1 for 1 � i � n� 1 and Vi ? ViC1 for all 1 � i � k � 1. Since
Œg3Gfv;wg�D Œg2Gfv;wg�,

Œg1Gƒ1
�D U1; U2; : : : ; Un; V2; : : : ; Vn D Œg2Gƒ2

�

is the required sequence.
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Graph manifolds In this case, S� D S � fT g and hypothesis (1) is immediate
from the facts that for every vertex v 2 T is an element of �ŒRv�

T and every point
in Hv is uniformly close to some boundary component @wHv. For hypothesis (2),
consider U;W 2 S�. If U D ŒRu� and W D ŒRw �, let v1; : : : ; vn be a sequence of
adjacent vertices in T such that v1 is adjacent to u and vn is adjacent to w. In this
case the sequence ŒRu�; ŒRv1

�; : : : ; ŒRvn
�; ŒRw � satisfies the hypothesis. If U D Œ yHu�

or W D Œ yHw �, the hypothesis is satisfied by adding Œ yHu� before ŒRu� or Œ yHw � after
ŒRw � to ŒRu�; ŒRv1

�; : : : ; ŒRvn
�; ŒRw � as needed.

In the setting of 2–dimensional right-angled Coxeter groups, Tran provided a character-
ization of the special strongly quasiconvex subgroups [54]. This characterization was
expanded by Genevois to include all right-angled Coxeter groups in [28]. We provide a
new proof of this characterization using Theorem 6.3.

Theorem 7.5 [28; 54] Let � be a simplicial graph and � an induced subgraph of � .
If G� is the right-angled Coxeter group corresponding to � and G� is the subgroup
generated by the vertices of �, then the following conditions are equivalent.

(1) The subgroup G� is strongly quasiconvex in G� .

(2) If � contains two nonadjacent vertices of an induced 4–cycle � , then � contains
all vertices of � .

Proof Before we begin, we document a few additional facts we will need about the
HHG structure on a right-angled Coxeter group. For any induced subgraph ƒ, PŒGƒ� is
coarsely equal to the subgroup Gƒ �Glink.ƒ/ and Gƒ can be coarsely identified with
FŒGƒ�. In particular, Gƒ is hierarchically quasiconvex, �U .Gƒ/ uniformly coarsely
covers CU for U v ŒGƒ�, and �V .Gƒ/ is uniformly bounded for all V 6v ŒGƒ�. See
[9] for full details on the HHG structure on right-angled Coxeter groups.

.1/ D) .2/ Assume for a contradiction that G� is strongly quasiconvex, but there
is a 4–cycle � with two pairs of nonadjacent vertices fa1; a2g and fb1; b2g such that
fa1; a2g is a subset of � and fb1; b2g is not. We know that U D ŒGfa1;a2g

� and
ŒGfb1;b2g

�D V are orthogonal domains. However, �U .G�/ coarsely covers CU , but
�V .G�/ has uniformly bounded diameter which contradicts Theorem 6.3.

.2/D) .1/ As G� is hierarchically quasiconvex, we only need to demonstrate that
G� satisfies the orthogonal projection dichotomy. Let B be a positive number such
that .G� ;S/ has the B–bounded domain dichotomy, CW � NB.�W .G�// for all
W v ŒG��, and diam.�W .G�// <B for allW 6v ŒG��. If diam.�U .G�// >B , then it
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must be the case that U D ŒGƒ� where ƒ�� and ƒ contains two nonadjacent vertices
s and t . If V 2S?U , then V D ŒGƒ0 � where ƒ0 � link.ƒ/ and ƒ� link.ƒ0/. If ƒ0 is a
join or ƒ0 D fvg, then diam.CV / � B and CV � N2B.�V .G�//. In the other case,
we will show ƒ0 ��.

If ƒ0 is not a join and contains at least two vertices, then for each vertex v 2ƒ0 there
exists a vertex w 2ƒ0 that is not adjacent to v. Since ƒ� link.ƒ0/, the vertices v, s,
w and t form a 4–cycle. However, (2) then requires v;w 2 �. Hence, ƒ0 � � and
V D ŒGƒ0 �v ŒG�� implying CV �NB.�V .G�//. Thus G� has the 2B–orthogonal
projection dichotomy and we are finished by Theorem 6.3.

7.1 CFS right-angled Coxeter groups

Recently, Behrstock proposed the program of classifying all CFS right-angled Coxeter
groups up to quasi-isometry and commensurability. This was motivated by the genericity
of CFS right-angled Coxeter groups among random right-angled Coxeter groups as
well as the fact that being CFS is a necessary (but not sufficient) condition for a
right-angled Coxeter group to be quasi-isometric to a right-angled Artin group; see [7].

In [7], Behrstock presented the first example of a CFS right-angled Coxeter group that
contains a one-ended stable subgroup answering outstanding questions about stable
subgroups and quasi-isometries between right-angled Artin groups and right-angled
Coxeter groups. Using Theorem 7.5, we can expand Behrstock’s construction to
produce CFS right-angled Coxeter groups that contain any other right-angled Coxeter
group as a strongly quasiconvex subgroup. This shows that there is incredible diversity
among the quasi-isometry types of CFS right-angled Coxeter groups.

Proposition 7.6 Any right-angled Coxeter group (resp. hyperbolic right-angled Cox-
eter group) is an infinite-index strongly quasiconvex subgroup (resp. stable subgroup)
of a CFS right-angled Coxeter group.

Proof To prove the proposition we shall utilize a construction of certain CFS graphs
described in [7]. Let �n be a graph with 2n vertices built in the following inductive
way. Let �1 be a pair of vertices a1, b1 with no edge between them. Given the graph
�n�1, we obtain the graph �n by adding a new pair of vertices an and bn to the graph
�n�1 and adding four new edges, one connecting each of fan�1; bn�1g to each of
fan; bng. In Figure 8, graph �1 is exactly �13. For each integer m � 2 there is a
sufficiently large n such that the graph�n containsm vertices whose pairwise distances
are at least 3.
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�1

�2 �3

Figure 8: Three graphs �1, �2, and �3 are all CFS, but no pair of them are
quasi-isometric.

Let G� be an arbitrary right-angled Coxeter group. We will construct a CFS right-
angled Coxeter group G� that contains G� as a strongly quasiconvex subgroup. Let m
be a number of vertices of � . Choose a positive integer n sufficient large so the graph
�n contains a set S of m vertices whose pairwise distance is at least 3. We glue the
graphs � and �n by identifying the vertex set of � to S . Let � be the resulting graph.
In Figure 8, graph �2 is an example of graph � when � is the 5–cycle graph and graph
�3 is another example of graph � when � is the 4–cycle graph.

Algebraic & Geometric Topology, Volume 23 (2023)



Convexity in hierarchically hyperbolic spaces 1237

G�1
G�2

G�3

strongly CFS yes yes no

noncoarsely covering all hyperbolic; contains a strongly
strongly quasiconvex all quasitrees contains a one-ended quasiconvex

subsets stable subgroup virtually Z2 subgroup

Morse boundary totally disconnected contains a circle connectivity unknown

quasi-isometric yes no no
to an RAAG

Table 1: Note that Karrer has since shown that the Morse boundary of G�3
is

totally disconnected [37].

The graphs � and �n have the same vertex set and �4n � �
4. Thus � is a CFS

graph as �n is a CFS graph. Since the distance in �n between any distinct vertices
of S is at least 3, � is an induced subgraph of � with the property that if � contains
two nonadjacent vertices of an induced 4–cycle � , then � contains all vertices of � .
Therefore, G� is a strongly quasiconvex subgroup of G� by Theorem 7.5. If G� is a
hyperbolic group, then it is a stable subgroup of G�.

In light of Proposition 7.6, we believe that strongly quasiconvex subgroups will play an
important role in understanding the quasi-isometry classification of CFS right-angled
Coxeter groups. In particular, it suggests that the quasi-isometry classification of CFS
right-angled Coxeter groups may be no simpler than the quasi-isometry classification
of all right-angled Coxeter groups.

We finish this section by illustrating the results of this section with three CFS right-
angled Coxeter groups whose quasi-isometry types can be distinguished utilizing their
strongly quasiconvex subsets.

Example 7.7 Let �1, �2, and �3 be the graphs in Figure 8. All of the right-angled
Coxeter groups G�1

, G�2
, and G�3

are CFS, but no pair of them are quasi-isometric.
By [43], G�1

is quasi-isometric to a right-angled Artin group with connected defining
graph. Thus, all of G�1

’s noncoarsely covering strongly quasiconvex subsets are
quasitrees. However, G�2

contains a one-ended hyperbolic strongly quasiconvex
subgroup (induced by the blue 5–cycle) and G�3

contain a virtually Z2 strongly
quasiconvex subgroup (induced by the red 4–cycle). Table 1 summarizes some of the
differences between G�1

, G�2
, and G�3

.
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8 Hyperbolically embedded subgroups of HHGs

In this section, we utilize Theorem 6.3 to prove the following classification of hyperbol-
ically embedded subgroups of hierarchically hyperbolic groups. As our proof does not
directly utilize the definition of hyperbolically embedded, we shall omit the definition
here and direct the curious reader to [20].

Theorem 8.1 Let G be a hierarchically hyperbolic group and let fHig be a finite
collection of subgroups. Then the following are equivalent :

(1) The collection fHig is hyperbolically embedded in G.

(2) The collection fHig is almost malnormal and each Hi is strongly quasiconvex.

Combining work of Dahmani, Guirardel and Osin [20] and Sisto [50], the implication
.1/D) .2/ holds for all finitely generated groups. To see that the converse does not
hold in general, consider a nonvirtually cyclic lacunary hyperbolic group G where
every proper subgroup is infinite cyclic and strongly quasiconvex — the existence of
such a group is shown in [44, Theorem 1.12]. If I is a proper subgroup of G, then by
[54, Theorem 1.2], I has finite index in its commensurator H . Thus H is a proper,
infinite, almost malnormal, strongly quasiconvex subgroup of G. However, H cannot
be hyperbolically embedded as G does not contain any nonabelian free subgroups and
thus fails to be acylindrically hyperbolic; see [20; 45].

Despite this failure in general, Genevois showed that in the setting of CAT(0) cubical
groups, .2/ does imply .1/ [28, Theorem 6.31]. Genevois employees a combination
of the Bestvina–Bromberg–Fujiwara construction [12, Theorems A and B] with some
work of Sisto [49, Theorems 6.3 and 6.4] that is summarized in the following sufficient
conditions for a collection of subgroups to be hyperbolically embedded.

Theorem 8.2 [12; 49] Let G be a finitely generated group and Z be the collection
of all (left) cosets of a finite collection of finitely generated subgroups fHig in G. Fix
a finite generating set S for G such that Hi D hHi \ Si for all i . Suppose for every
Z1 ¤ Z2 2 Z we are given a subset �Z1

.Z2/ � Z1 and for Z1; Z2; Z3 2 Z define
d �Z3

.Z1; Z2/D diamZ3
.�Z3

.Z1/[ �Z3
.Z2//. The collection fHig is hyperbolically

embedded in G if there exists C > 0 such that :

(P0) For all Z1 ¤Z2, diam.�Z1
.Z2//� C .

(P1) For any triple Z1; Z2; Z3 2 Z of distinct elements , at most one of the three
numbers d �Z1

.Z2; Z3/, d �Z2
.Z1; Z3/ and d �Z3

.Z1; Z2/ is greater than C .
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(P2) For any Z1; Z2 2 Z , the set

fZ 2 Z j d �Z.Z1; Z2/ > C g
is finite.

(P3) For all g 2G, d �gZ1
.gZ2; gZ3/D d

�
Z1
.Z2; Z3/ for any Z1; Z2; Z3 2 Z .

As Genevois does in the cubical case, we shall show that an almost malnormal collection
of strongly quasiconvex subgroups of an HHG satisfies (P0)–(P3) of Theorem 8.2. The
bulk of that work is in Proposition 8.6, which we will state and prove after collecting a
few preliminary lemmas.

Lemma 8.3 Let fH1; : : : ;Hng be an almost malnormal collection of subgroups of
a finitely generated group G and B � 0. For all g1; g2 2 G, if g1Hi ¤ g2Hj , then
diam.NB.g1Hi /\NB.g2Hj // is finite.

Proof The conclusion follows directly from [36, Proposition 9.4] and the definition of
almost malnormal.

The next two lemmas tell us that a hierarchically quasiconvex subset coarsely intersects
a strongly quasiconvex subset whenever the image under the gate map is large. Further,
the diameter of this coarse intersection is proportional to the diameter of the gate. In
addition to being key components in our proof of Theorem 8.1, these lemmas can also
be interpreted as additional generalizations of the bounded geodesic image property of
strongly quasiconvex subsets of hyperbolic spaces.

Lemma 8.4 Let .X ;S/ be an HHS with the bounded domain dichotomy, A�X be k–
hierarchically quasiconvex subset , and Y �X beQ–strongly quasiconvex. There exists
r > 1 depending on Q and k such that if diamX .gY .A// > r , then dX .a; gY .a// < r
for each a 2 gA.Y /.

Proof By Proposition 5.7, there exists k0 such that both A and Y are k0–hierarchically
quasiconvex. Recall that for each point x 2X and U 2S, the distance in CU between
gY .x/ and the closest point projection of �U .x/ onto �U .Y / is uniformly bounded by
some � > 1. Let K � � be such that Y has the K–orthogonal projection dichotomy and
that K is larger than the constant from the bridge theorem (Theorem 4.18) determined
by k0. Define HD fU 2S W diam.�U .gY .A/// > 2Kg. By the uniqueness axiom (10),
there exists C such that if diam.gY .A// > C , then H¤∅. Assume diam.gY .A// > C
and let a 2 gA.Y /. By (5) of the bridge theorem, Rel2K.a; gY .a//�H?. Suppose for
the purposes of contradiction that V 2Rel2K.a; gY .a//. Thus, there must exist H 2H
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with V ?H . By Theorem 6.3, CH �NK.�H .Y // and CV �NK.�V .Y // which im-
plies that dV .a; gY .a//<KC� <2K. However, this contradicts V 2Rel2K.a; gY .a//.
Hence, Rel2K.a; gY .a//D∅, and by the distance formula (Theorem 4.4), there exists
K 0 depending only on K (and thus only on Q and �1) such that dX .a; gY .a// < K 0.
The conclusion follows by choosing r DmaxfK 0; C g.

Lemma 8.5 Let .X ;S/ be an HHS with the bounded domain dichotomy, A� X be
a k–hierarchically quasiconvex subset and Y � X be Q–strongly quasiconvex. There
exists r > 1 depending on k and Q such that for all D � r if diam.gY .A// > r , then
there exists K � 1 depending on k, D and Q such that

diam.ND.A/\ND.Y //�1;K diam.gY .A//:

Proof Let r be the constant given by Lemma 8.4 and suppose diam.gY .A//> r . Thus,
for D � r , diam.ND.A/\ND.Y //¤∅. First consider x; y 2ND.A/\ND.Y /. Let
x0; y0 2A be points such that dX .x; x0/�D and dX .y; y0/�D. By Lemma 4.15 and
the fact that x; y 2ND.Y /, there exists K 0 depending on Q such that

dX .x; gY .x
0//� 4DK 0 and dX .y; gY .y

0//� 4DK 0:

Hence,
dX .x; y/� dX .gY .x

0/; gY .y
0//C 8DK 0;

which shows

diam.ND.A/\ND.Y //� diam.gY .A//C 8DK 0:

For the inequality diam.gY .A// � diam.ND.A/ \ ND.Y //, Lemma 8.4 provides
gY .gA.Y // � ND.A/ \ND.Y / and the bridge theorem (Theorem 4.18) says there
exists K 00 depending on k and Q such that gY .A/�NK00.gY .gA.Y ///. Thus,

diam.gY .A//� diam.gY .gA.Y ///C 2K 00 � diam.ND.A/\ND.Y //C 2K 00

and we are finished by choosing K Dmaxf2K 00; 6DK 0C 3K 0g.

We now prove that the cosets of a collection of almost malnormal, strongly quasiconvex
subgroups of an HHG satisfy (P0)–(P2) of Theorem 8.2 when �Z1

.Z2/ is defined by
the gate map. This is the main tool for the proof of Theorem 8.1.

Proposition 8.6 Let .G;S/ be an HHG and d. � ; � / denote the distance in the word
metric on G with respect to some fixed finite generating set. If fH1; : : : ;Hng is a
collection of Q–strongly quasiconvex, almost malnormal subgroups of G and Z is the
collection of all left cosets of the Hi , then there exists C > 0 such that , for all distinct
Z1; Z2; Z3 2 Z:
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(1) diam.gZ1
.Z2//� C .

(2) If d.gZ3
.Z1/; gZ3

.Z2// > C , then

d.gZ2
.Z1/; gZ2

.Z3// < C and d.gZ1
.Z2/; gZ1

.Z3// < C:

(3) fZ 2 Z j d.gZ.Z1/; gZ.Z2// > C g has only a finite number of elements.

Proof We will prove each of the three assertions individually. Before beginning, we
remind the reader that all hierarchically hyperbolic groups satisfy the bounded domain
dichotomy and that every element of Z is k–hierarchically quasiconvex for some k
depending only on Q.

Assertion (1) There exists C1 > 0 such that diam.gZ1
.Z2//� C1 for all Z1; Z2 2 Z .

Proof Let r > 1 be the constant from Lemma 8.5 for Q and define

F D fgHi 2 Z j gHi \Br.e/¤∅g

where Br.e/ is the ball of radius r around the identity in G. Since F is a finite set,
Lemma 8.3 provides a uniform number D1 such that diam.Nr.gHi /\Nr.Hj //�D1
for any distinct gHi ;Hj 2 F . By Lemma 8.5, there exists D2 depending on Q such
that diam.gHj

.gHi //�D2 where gHi ¤Hj are elements in F .

We now prove that there is a uniform constant C1 such that for each pair of distinct
cosets g1Hi and g2Hj we have

diam.gg1Hi
.g2Hj //� C1:

If diam.gg1Hi
.g2Hj // � r , then we are done. Otherwise, by Lemma 8.4, there are

elements hi 2 Hi and hj 2 Hj such that dG.g1hi ; g2hj / < r . This implies that
h�1i g�11 g2Hj is an element in F and h�1i g�11 g2Hj ¤Hi . Therefore,

diam.gHi
.h�1i g�11 g2Hj //�D2:

Thus, by the coarse equivariance of the gate maps (Lemma 4.16), the diameter of
gg1Hi

.g2Hj / is bounded above by a uniform number C1.

Assertion (2) There exists C2 > 0 such that for all Z1; Z2; Z3 2 Z , if

d.gZ3
.Z1/; gZ3

.Z2// > C2;

then
d.gZ2

.Z1/; gZ2
.Z3// < C2 and d.gZ1

.Z2/; gZ1
.Z3// < C2:
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Proof Fix � � �0. LetZ1; Z2; Z3 2Z and BDH� .gZ2
.Z1/[gZ1

.Z2//. We remind
the reader that they should view B as a bridge between Z1 and Z2. Our goal is to
show that there exists b 2 B such that d.b; gZ3

.b// is uniformly bounded. From this
our conclusion will follow from the coarse Lipschitzness of the gate map.

By assertion (1), gZ3
.Z1/ and gZ3

.Z2/ are uniformly coarsely contained in gZ3
.B/.

Since the gate map is coarsely Lipschitz,

diam.gZ3
.B//� d.gZ3

.Z1/; gZ3
.Z2//

with constants depending only onQ. Let r be the constant from Lemma 8.4 withADB
and Y DZ3 and suppose d.gZ3

.Z1/; gZ3
.Z2// is large enough that diam.gZ3

.B//>r .
By Lemma 8.4, there exists b 2 B such that d.b;Z3/ < r .

By Lemma 4.19, we have that gZ2
.Z1/ is uniformly coarsely equal to gZ2

.B/ in partic-
ular gZ2

.b/ is uniformly coarsely contained in gZ2
.Z1/. Since the gate maps are uni-

formly coarsely Lipschitz and d.b;Z3/ < r , we have that d.gZ2
.Z3/; gZ2

.Z1// < C2.
By switching the roles of Z1 and Z2, we get d.gZ1

.Z3/; gZ1
.Z2// < C2.

Assertion (3) There exists C3 > 0 such that for all Z1; Z2 2 Z , the set

fZ 2 Z j dX .gZ.Z1/; gZ.Z2// > C3g

has only a finite number of elements.

Proof Let Z1; Z2 2 Z. Fix � � �0 and let B D H� .gZ2
.Z1/[ gZ1

.Z2//. By the
bridge theorem, we have that B is coarsely equals to the product of gZ1

.Z2/�H� .a; b/,
where a 2 gZ1

.Z2/ and bD gZ2
.a/. By assertion (1), the gate gZ1

.Z2/ has uniformly
bounded diameter. By Proposition 5.6, there exists � � �0 such that H� .a; b/ is
contained in P1

�
.a; b/, the set of �–hierarchy paths between a and b. Since the distance

between a and b is finite, so is the diameter of P1
�
.a; b/. Therefore H� .a; b/ has

bounded diameter and so does the set B D H� .gZ2
.Z1/ [ gZ1

.Z2//. Since G is
locally finite, B can contain only a finite number of elements of G.

Let r be as in Lemma 8.4. Since gZ2
.Z1/; gZ1

.Z2/ � B , for any Z 2 Z with
d.gZ.Z1/; gZ.Z2// larger than r we have diam.gZ.B// > r . Thus every such Z
intersects the r–neighborhood of B . By locally finiteness of G, we obtain that Nr.B/
contains a finite number of element of G. Since the elements of Z are cosets of finitely
many subgroups, every point of Nr.B/ can belong to uniformly finitely many elements
of Z , which concludes the proof of assertion (3).

Proposition 8.6 now holds by taking C DmaxfC1; C2; C3g.
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We now have all the ingredients needed to give the proof of Theorem 8.1.

Proof of Theorem 8.1 Recall, we need to show that if G is a hierarchically hyperbolic
group and fHig a finite almost malnormal collection of strongly quasiconvex subgroups,
then fHig is hyperbolically embedded in G. In particular, we shall show that the
left cosets of the Hi ’s satisfy the requirements of Theorem 8.2. Since each Hi is a
strongly quasiconvex subgroup of G, by [54, Theorem 1.2] we have that they are all
finitely generated. Let S be a finite generating set for G such that for each i , Hi \S
generates Hi . As before, let Z be the set of all left cosets of fHig. For every pair
of distinct Z1; Z2 2 Z we want to define a set �Z1

.Z2/ that satisfies (P0)–(P3) of
Theorem 8.2. If we define �Z1

.Z2/ as gZ1
.Z2/, Proposition 8.6 provides that (P0)–(P2)

will be satisfied. However, since the gate maps are only coarsely equivariant, condition
(P3) may not hold.

Thus, for Z1 ¤Z2 define

�Z1
.Z2/D

[
g2G

g�1ggZ1
.gZ2/:

By construction we have that �gZ1
.gZ2/D g.�Z1

.Z2// and thus (P3) holds. Since
�Z1

.Z2/ and gZ1
.Z2/ uniformly coarsely coincide by the coarse equivariance of the

gates maps (Lemma 4.16), (P0)–(P2) are satisfied as a corollary of Proposition 8.6.
Hence, the collection fHig is hyperbolically embedded in G by Theorem 8.2.

Our method of proof for Theorem 8.1 relies in a fundamental way upon the coarse
equivariance of the gate map. If the group G has an HHS structure, but not an HHG
structure, then the gate map need not be coarsely equivariant. In particular, Theorem 8.1
does not (currently) apply to the fundamental groups of nonflip graph manifolds and
thus we have the following interesting case of Question 4.

Question 6 If M is a nonflip graph manifold and fHig is a finite , almost malnor-
mal collection of strongly quasiconvex subgroups of �1.M/, is fHig hyperbolically
embedded in �1.M/?

Appendix Subsets with arbitrary reasonable lower relative
divergence

The proposition in this appendix utilizes the notion of asymptotic equivalence between
families of functions. We will present the definition in the specific case we need and
direct the reader to [53, Section 2] for the more general case.
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x0 x1 x2 x3 xi�1 xi

J1

J2

J3

Ji

Y

X

Figure 9: By controlling the length of each arc Ji we can get the desired
lower relative divergence of the geodesic space X with respect to the sub-
space Y .

Definition A.1 Let f and g be two functions from Œ0;1/ to Œ0;1/. The function f
is dominated by the function g if there are positive constants A, B , C and D such that
f .r/ � Ag.Br/CCr for all r > D. Two functions f and g are equivalent if f is
dominated by g and vice versa.

LetX be a geodesic metric space and f�n� gDdiv.X; Y / be the lower relative divergence
of X with respect to some subset Y �X . We say div.X; Y / is equivalent to a function
f W Œ0;1/! Œ0;1/ if there exists L 2 .0; 1� and a positive integer M such that �Mn

L�

is equivalent to f for all � 2 .0; 1� and n� 2.

Proposition A.2 Let f W Œ0;1/! Œ0;1/ be a nondecreasing function , and assume
that there is a positive integer r0 such that f .r/ � r for each r > r0. There is a
geodesic space X with a subspace Y such that the lower relative divergence div.X; Y /
is equivalent to f .

Proof Let Y be a ray with initial point x0. Let .xi / be the sequence of points
along Y such that for each i � 1 the distance dY .xi�1; xi /D i and we connect each
pair .xi�1; xi / by a segment Ji of length f .i/; see Figure 9. Let X be the resulting
geodesic space and div.X; Y /Df�n� g. We shall show that div.X; Y / is equivalent to f .

We first prove that for all n � 3 and � 2 .0; 1�, f dominates �n� by showing that
�n� .r/ � f ..nC 3/r/ for each r > r0. Let i0 be a smallest integer that is greater or
equal to .nC 2/r . Let x and y be two points in the segment Ji0 such that

d.xi0�1; x/D d.xi0 ; y/D r:

Both x and y belong to @Nr.Y /. Moreover, the subpath ˛ of Ji0 connecting x and
y lies outside the r–neighborhood of Y , and the length of ˛ is exactly is f .i/� 2r .
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Therefore, d.x; y/Dminfi0C 2r; f .i0/� 2rg. Hence d.x; y/� nr as

f .i0/� 2r � f ..nC 2/r/� 2r � .nC 2/r � 2r D nr

and
i0C 2r � .nC 4/r � nr:

Since ˛ is the unique path outside the �r–neighborhood of Y connecting x and y,

�n� .r/� d�r.x; y/D f .i0/� 2r � f .i0/:

Since i0 � .nC 2/r C 1 � .nC 3/r and f is nondecreasing, f .i0/ � f ..nC 3/r/.
Thus, �n� .r/� f ..nC 3/r/, which implies that �n� is dominated by f .

Now we prove that for all n � 3 and � 2 .0; 1�, �n� dominates f by showing that
�n� .r/ � f .r/� 2r for each r > r0. Let u and v be an arbitrary points in @Nr.Y /
such that d.u; v/� nr and there is a path outside the r–neighborhood of Y connecting
u and v. Therefore, u and v must lies in some segment Ji1 . We can assume that
d.u; xi1�1/D d.v; xi1/D r . Therefore,

i1 � d.xi1�1; xi1/� d.u; v/� 2r � nr � 2r � r:

This implies that f .i1/� f .r/ since f is nondecreasing. Since the subpath ˇ of Ji1
connecting u and v is the unique path outside the �r–neighborhood of Y connecting
these points,

d�r.u; v/D f .i1/� 2r � f .r/� 2r:

Therefore, �n� .r/ � f .r/� 2r which implies that �n� dominates f . Thus, the lower
relative divergence div.X; Y / is equivalent to f .

References
[1] C Abbott, J Behrstock, M G Durham, Largest acylindrical actions and stability in

hierarchically hyperbolic groups, Trans. Amer. Math. Soc. Ser. B 8 (2021) 66–104 MR
Zbl

[2] I Agol, The virtual Haken conjecture, Doc. Math. 18 (2013) 1045–1087 MR Zbl

[3] Y Antolín, M Mj, A Sisto, S J Taylor, Intersection properties of stable subgroups and
bounded cohomology, Indiana Univ. Math. J. 68 (2019) 179–199 MR Zbl

[4] T Aougab, M G Durham, S J Taylor, Pulling back stability with applications to
Out.Fn/ and relatively hyperbolic groups, J. Lond. Math. Soc. 96 (2017) 565–583 MR
Zbl

[5] G N Arzhantseva, On quasiconvex subgroups of word hyperbolic groups, Geom. Dedi-
cata 87 (2001) 191–208 MR Zbl

Algebraic & Geometric Topology, Volume 23 (2023)

http://dx.doi.org/10.1090/btran/50
http://dx.doi.org/10.1090/btran/50
http://msp.org/idx/mr/4215647
http://msp.org/idx/zbl/1498.20109
https://www.math.uni-bielefeld.de/documenta/vol-18/33.html
http://msp.org/idx/mr/3104553
http://msp.org/idx/zbl/1286.57019
http://dx.doi.org/10.1512/iumj.2019.68.7592
http://dx.doi.org/10.1512/iumj.2019.68.7592
http://msp.org/idx/mr/3922043
http://msp.org/idx/zbl/1472.20088
http://dx.doi.org/10.1112/jlms.12071
http://dx.doi.org/10.1112/jlms.12071
http://msp.org/idx/mr/3742433
http://msp.org/idx/zbl/1476.57034
http://dx.doi.org/10.1023/A:1012040207144
http://msp.org/idx/mr/1866849
http://msp.org/idx/zbl/0994.20036


1246 Jacob Russell, Davide Spriano and Hung Cong Tran

[6] G N Arzhantseva, C H Cashen, D Gruber, D Hume, Characterizations of Morse
quasi-geodesics via superlinear divergence and sublinear contraction, Doc. Math. 22
(2017) 1193–1224 MR Zbl

[7] J Behrstock, A counterexample to questions about boundaries, stability, and com-
mensurability, from “Beyond hyperbolicity” (M Hagen, R Webb, H Wilton, editors),
London Math. Soc. Lecture Note Ser. 454, Cambridge Univ. Press (2019) 151–159 MR
Zbl

[8] J Behrstock, M F Hagen, A Sisto, Asymptotic dimension and small-cancellation
for hierarchically hyperbolic spaces and groups, Proc. Lond. Math. Soc. 114 (2017)
890–926 MR Zbl

[9] J Behrstock, M F Hagen, A Sisto, Hierarchically hyperbolic spaces, I: Curve com-
plexes for cubical groups, Geom. Topol. 21 (2017) 1731–1804 MR Zbl

[10] J Behrstock, M Hagen, A Sisto, Hierarchically hyperbolic spaces II: Combination
theorems and the distance formula, Pacific J. Math. 299 (2019) 257–338 MR Zbl

[11] J Behrstock, M F Hagen, A Sisto, Quasiflats in hierarchically hyperbolic spaces,
Duke Math. J. 170 (2021) 909–996 MR Zbl

[12] M Bestvina, K Bromberg, K Fujiwara, Constructing group actions on quasi-trees
and applications to mapping class groups, Publ. Math. Inst. Hautes Études Sci. 122
(2015) 1–64 MR Zbl

[13] B H Bowditch, Relatively hyperbolic groups, Internat. J. Algebra Comput. 22 (2012)
art. id. 1250016 MR Zbl

[14] B H Bowditch, Coarse median spaces and groups, Pacific J. Math. 261 (2013) 53–93
MR Zbl

[15] B H Bowditch, Uniform hyperbolicity of the curve graphs, Pacific J. Math. 269 (2014)
269–280 MR Zbl

[16] B H Bowditch, Convex hulls in coarse median spaces, preprint (2018) Available at
http://homepages.warwick.ac.uk/~masgak/papers/hulls-cms.pdf

[17] J F Brock, The Weil–Petersson metric and volumes of 3–dimensional hyperbolic convex
cores, J. Amer. Math. Soc. 16 (2003) 495–535 MR Zbl

[18] C H Cashen, Morse subsets of CAT.0/ spaces are strongly contracting, Geom. Dedicata
204 (2020) 311–314 MR Zbl

[19] R Charney, H Sultan, Contracting boundaries of CAT.0/ spaces, J. Topol. 8 (2015)
93–117 MR Zbl

[20] F Dahmani, V Guirardel, D Osin, Hyperbolically embedded subgroups and rotating
families in groups acting on hyperbolic spaces, Mem. Amer. Math. Soc. 1156, Amer.
Math. Soc., Providence, RI (2017) MR Zbl

[21] C Drut,u, M Kapovich, Geometric group theory, American Mathematical Society
Colloquium Publications 63, Amer. Math. Soc., Providence, RI (2018) MR Zbl

[22] C Drut,u, S Mozes, M Sapir, Divergence in lattices in semisimple Lie groups and
graphs of groups, Trans. Amer. Math. Soc. 362 (2010) 2451–2505 MR Zbl

Algebraic & Geometric Topology, Volume 23 (2023)

http://dx.doi.org/10.4171/dm/592
http://dx.doi.org/10.4171/dm/592
http://msp.org/idx/mr/3690269
http://msp.org/idx/zbl/1483.20077
http://dx.doi.org/10.1017/9781108559065.010
http://dx.doi.org/10.1017/9781108559065.010
http://msp.org/idx/mr/3966609
http://msp.org/idx/zbl/1418.20002
http://dx.doi.org/10.1112/plms.12026
http://dx.doi.org/10.1112/plms.12026
http://msp.org/idx/mr/3653249
http://msp.org/idx/zbl/1431.20028
http://dx.doi.org/10.2140/gt.2017.21.1731
http://dx.doi.org/10.2140/gt.2017.21.1731
http://msp.org/idx/mr/3650081
http://msp.org/idx/zbl/1439.20043
http://dx.doi.org/10.2140/pjm.2019.299.257
http://dx.doi.org/10.2140/pjm.2019.299.257
http://msp.org/idx/mr/3956144
http://msp.org/idx/zbl/07062864
http://dx.doi.org/10.1215/00127094-2020-0056
http://msp.org/idx/mr/4255047
http://msp.org/idx/zbl/07369844
http://dx.doi.org/10.1007/s10240-014-0067-4
http://dx.doi.org/10.1007/s10240-014-0067-4
http://msp.org/idx/mr/3415065
http://msp.org/idx/zbl/1372.20029
http://dx.doi.org/10.1142/S0218196712500166
http://msp.org/idx/mr/2922380
http://msp.org/idx/zbl/1259.20052
http://dx.doi.org/10.2140/pjm.2013.261.53
http://msp.org/idx/mr/3037559
http://msp.org/idx/zbl/1283.20048
http://dx.doi.org/10.2140/pjm.2014.269.269
http://msp.org/idx/mr/3238474
http://msp.org/idx/zbl/1330.57023
http://homepages.warwick.ac.uk/~masgak/papers/hulls-cms.pdf
http://homepages.warwick.ac.uk/~masgak/papers/hulls-cms.pdf
http://dx.doi.org/10.1090/S0894-0347-03-00424-7
http://dx.doi.org/10.1090/S0894-0347-03-00424-7
http://msp.org/idx/mr/1969203
http://msp.org/idx/zbl/1059.30036
http://dx.doi.org/10.1007/s10711-019-00457-x
http://msp.org/idx/mr/4056705
http://msp.org/idx/zbl/07160020
http://dx.doi.org/10.1112/jtopol/jtu017
http://msp.org/idx/mr/3339446
http://msp.org/idx/zbl/1367.20043
http://dx.doi.org/10.1090/memo/1156
http://dx.doi.org/10.1090/memo/1156
http://msp.org/idx/mr/3589159
http://msp.org/idx/zbl/1396.20041
http://dx.doi.org/10.1090/coll/063
http://msp.org/idx/mr/3753580
http://msp.org/idx/zbl/1447.20001
http://dx.doi.org/10.1090/S0002-9947-09-04882-X
http://dx.doi.org/10.1090/S0002-9947-09-04882-X
http://msp.org/idx/mr/2584607
http://msp.org/idx/zbl/1260.20065


Convexity in hierarchically hyperbolic spaces 1247

[23] M G Durham, The augmented marking complex of a surface, J. Lond. Math. Soc. 94
(2016) 933–969 MR Zbl

[24] M G Durham, M F Hagen, A Sisto, Boundaries and automorphisms of hierarchically
hyperbolic spaces, Geom. Topol. 21 (2017) 3659–3758 MR Zbl

[25] M G Durham, S J Taylor, Convex cocompactness and stability in mapping class
groups, Algebr. Geom. Topol. 15 (2015) 2839–2859 MR Zbl

[26] A Eskin, H Masur, K Rafi, Large-scale rank of Teichmüller space, Duke Math. J. 166
(2017) 1517–1572 MR Zbl

[27] B Farb, Some problems on mapping class groups and moduli space, from “Problems
on mapping class groups and related topics” (B Farb, editor), Proc. Sympos. Pure Math.
74, Amer. Math. Soc., Providence, RI (2006) 11–55 MR Zbl

[28] A Genevois, Hyperbolicities in CAT.0/ cube complexes, Enseign. Math. 65 (2019)
33–100 MR Zbl

[29] A Genevois, Quasi-isometrically rigid subgroups in right-angled Coxeter groups,
Algebr. Geom. Topol. 22 (2022) 657–708 MR Zbl

[30] R Gitik, Ping-pong on negatively curved groups, J. Algebra 217 (1999) 65–72 MR
Zbl

[31] M Gromov, Hyperbolic groups, from “Essays in group theory” (S M Gersten, editor),
Math. Sci. Res. Inst. Publ. 8, Springer (1987) 75–263 MR Zbl

[32] M Gromov, Asymptotic invariants of infinite groups, from “Geometric group theory, II”
(G A Niblo, M A Roller, editors), London Math. Soc. Lecture Note Ser. 182, Cambridge
Univ. Press (1993) 1–295 MR Zbl

[33] D Groves, J F Manning, Hyperbolic groups acting improperly, preprint (2018) arXiv
1808.02325

[34] T Haettel, Hyperbolic rigidity of higher rank lattices, Ann. Sci. Éc. Norm. Supér. 53
(2020) 439–468 MR Zbl

[35] M F Hagen, H Petyt, Projection complexes and quasimedian maps, Algebr. Geom.
Topol. 22 (2022) 3277–3304 MR Zbl

[36] G C Hruska, Relative hyperbolicity and relative quasiconvexity for countable groups,
Algebr. Geom. Topol. 10 (2010) 1807–1856 MR Zbl

[37] A Karrer, Right-angled Coxeter groups with totally disconnected Morse boundaries,
preprint (2021) arXiv 2105.04029

[38] H Kim, Stable subgroups and Morse subgroups in mapping class groups, Internat. J.
Algebra Comput. 29 (2019) 893–903 MR Zbl

[39] T Koberda, J Mangahas, S J Taylor, The geometry of purely loxodromic subgroups of
right-angled Artin groups, Trans. Amer. Math. Soc. 369 (2017) 8179–8208 MR Zbl

[40] H A Masur, Y N Minsky, Geometry of the complex of curves, I: Hyperbolicity, Invent.
Math. 138 (1999) 103–149 MR Zbl

[41] H A Masur, Y N Minsky, Geometry of the complex of curves, II: Hierarchical structure,
Geom. Funct. Anal. 10 (2000) 902–974 MR Zbl

Algebraic & Geometric Topology, Volume 23 (2023)

http://dx.doi.org/10.1112/jlms/jdw065
http://msp.org/idx/mr/3614935
http://msp.org/idx/zbl/1360.30038
http://dx.doi.org/10.2140/gt.2017.21.3659
http://dx.doi.org/10.2140/gt.2017.21.3659
http://msp.org/idx/mr/3693574
http://msp.org/idx/zbl/1439.20044
http://dx.doi.org/10.2140/agt.2015.15.2839
http://dx.doi.org/10.2140/agt.2015.15.2839
http://msp.org/idx/mr/3426695
http://msp.org/idx/zbl/1364.20027
http://dx.doi.org/10.1215/00127094-0000006X
http://msp.org/idx/mr/3659941
http://msp.org/idx/zbl/1373.32012
http://dx.doi.org/10.1090/pspum/074/2264130
http://msp.org/idx/mr/2264130
http://msp.org/idx/zbl/1191.57015
http://dx.doi.org/10.4171/lem/65-1/2-2
http://msp.org/idx/mr/4057355
http://msp.org/idx/zbl/1472.20090
http://dx.doi.org/10.2140/agt.2022.22.657
http://msp.org/idx/mr/4464462
http://msp.org/idx/zbl/07570603
http://dx.doi.org/10.1006/jabr.1998.7789
http://msp.org/idx/mr/1700476
http://msp.org/idx/zbl/0936.20019
http://dx.doi.org/10.1007/978-1-4613-9586-7_3
http://msp.org/idx/mr/919829
http://msp.org/idx/zbl/0634.20015
https://www.ihes.fr/~gromov/metricinvariants/126/
http://msp.org/idx/mr/1253544
http://msp.org/idx/zbl/0841.20039
http://msp.org/idx/arx/1808.02325
http://msp.org/idx/arx/1808.02325
http://dx.doi.org/10.24033/asens.2425
http://msp.org/idx/mr/4094562
http://msp.org/idx/zbl/7201744
http://dx.doi.org/10.2140/agt.2022.22.3277
http://msp.org/idx/mr/4545918
http://msp.org/idx/zbl/7658993
http://dx.doi.org/10.2140/agt.2010.10.1807
http://msp.org/idx/mr/2684983
http://msp.org/idx/zbl/1202.20046
http://msp.org/idx/arx/2105.04029
http://dx.doi.org/10.1142/S0218196719500346
http://msp.org/idx/mr/3978121
http://msp.org/idx/zbl/1479.20030
http://dx.doi.org/10.1090/tran/6933
http://dx.doi.org/10.1090/tran/6933
http://msp.org/idx/mr/3695858
http://msp.org/idx/zbl/1476.20042
http://dx.doi.org/10.1007/s002220050343
http://msp.org/idx/mr/1714338
http://msp.org/idx/zbl/0941.32012
http://dx.doi.org/10.1007/PL00001643
http://msp.org/idx/mr/1791145
http://msp.org/idx/zbl/0972.32011


1248 Jacob Russell, Davide Spriano and Hung Cong Tran

[42] H Masur, S Schleimer, The geometry of the disk complex, J. Amer. Math. Soc. 26
(2013) 1–62 MR Zbl

[43] H T Nguyen, H C Tran, On the coarse geometry of certain right-angled Coxeter
groups, Algebr. Geom. Topol. 19 (2019) 3075–3118 MR Zbl

[44] A Y Ol’shanskii, D V Osin, M V Sapir, Lacunary hyperbolic groups, Geom. Topol. 13
(2009) 2051–2140 MR Zbl

[45] D Osin, Acylindrically hyperbolic groups, Trans. Amer. Math. Soc. 368 (2016) 851–888
MR Zbl

[46] N Petrosyan, Decomposing groups by codimension-1 subgroups, Proc. Amer. Math.
Soc. 150 (2022) 4587–4601 MR Zbl

[47] K Rafi, A combinatorial model for the Teichmüller metric, Geom. Funct. Anal. 17
(2007) 936–959 MR Zbl

[48] J Russell, From hierarchical to relative hyperbolicity, Int. Math. Res. Not. 2022 (2022)
575–624 MR Zbl

[49] A Sisto, On metric relative hyperbolicity, preprint (2012) arXiv 1210.8081

[50] A Sisto, Quasi-convexity of hyperbolically embedded subgroups, Math. Z. 283 (2016)
649–658 MR Zbl

[51] D Spriano, Hyperbolic HHS, II: Graphs of hierarchically hyperbolic groups, preprint
(2018) arXiv 1801.01850

[52] H Sultan, Hyperbolic quasi-geodesics in CAT.0/ spaces, Geom. Dedicata 169 (2014)
209–224 MR Zbl

[53] H C Tran, Relative divergence of finitely generated groups, Algebr. Geom. Topol. 15
(2015) 1717–1769 MR Zbl

[54] H C Tran, On strongly quasiconvex subgroups, Geom. Topol. 23 (2019) 1173–1235
MR Zbl

[55] D T Wise, From riches to raags: 3–manifolds, right-angled Artin groups, and cubical
geometry, CBMS Regional Conference Series in Mathematics 117, Amer. Math. Soc.,
Providence, RI (2012) MR Zbl

Math Department, Rice University
Houston, TX, United States

Mathematical Institute, University of Oxford
Oxford, United Kingdom

Department of Mathematics, The University of Oklahoma
Norman, OK, United States

jacob.russell@rice.edu, davide.spriano@chch.ox.ac.uk,
hungtran280687@gmail.com

Received: 16 September 2020 Revised: 17 June 2021

Geometry & Topology Publications, an imprint of mathematical sciences publishers msp

http://dx.doi.org/10.1090/S0894-0347-2012-00742-5
http://msp.org/idx/mr/2983005
http://msp.org/idx/zbl/1272.57015
http://dx.doi.org/10.2140/agt.2019.19.3075
http://dx.doi.org/10.2140/agt.2019.19.3075
http://msp.org/idx/mr/4023336
http://msp.org/idx/zbl/07142626
http://dx.doi.org/10.2140/gt.2009.13.2051
http://msp.org/idx/mr/2507115
http://msp.org/idx/zbl/1243.20056
http://dx.doi.org/10.1090/tran/6343
http://msp.org/idx/mr/3430352
http://msp.org/idx/zbl/1380.20048
http://dx.doi.org/10.1090/proc/16136
http://msp.org/idx/mr/4489298
http://msp.org/idx/zbl/07594300
http://dx.doi.org/10.1007/s00039-007-0615-x
http://msp.org/idx/mr/2346280
http://msp.org/idx/zbl/1129.30031
http://dx.doi.org/10.1093/imrn/rnaa141
http://msp.org/idx/mr/4366027
http://msp.org/idx/zbl/1483.30085
http://msp.org/idx/arx/1210.8081
http://dx.doi.org/10.1007/s00209-016-1615-z
http://msp.org/idx/mr/3519976
http://msp.org/idx/zbl/1380.20044
http://msp.org/idx/arx/1801.01850
http://dx.doi.org/10.1007/s10711-013-9851-4
http://msp.org/idx/mr/3175245
http://msp.org/idx/zbl/1330.20065
http://dx.doi.org/10.2140/agt.2015.15.1717
http://msp.org/idx/mr/3361149
http://msp.org/idx/zbl/1371.20048
http://dx.doi.org/10.2140/gt.2019.23.1173
http://msp.org/idx/mr/3956891
http://msp.org/idx/zbl/07079057
http://dx.doi.org/10.1090/cbms/117
http://dx.doi.org/10.1090/cbms/117
http://msp.org/idx/mr/2986461
http://msp.org/idx/zbl/1278.20055
mailto:jacob.russell@rice.edu
mailto:davide.spriano@chch.ox.ac.uk
mailto:hungtran280687@gmail.com
http://msp.org
http://msp.org


ALGEBRAIC & GEOMETRIC TOPOLOGY
msp.org/agt

EDITORS

PRINCIPAL ACADEMIC EDITORS

John Etnyre
etnyre@math.gatech.edu

Georgia Institute of Technology

Kathryn Hess
kathryn.hess@epfl.ch

École Polytechnique Fédérale de Lausanne

BOARD OF EDITORS

Julie Bergner University of Virginia
jeb2md@eservices.virginia.edu

Steven Boyer Université du Québec à Montréal
cohf@math.rochester.edu

Tara E. Brendle University of Glasgow
tara.brendle@glasgow.ac.uk

Indira Chatterji CNRS & Université Côte d’Azur (Nice)
indira.chatterji@math.cnrs.fr

Alexander Dranishnikov University of Florida
dranish@math.ufl.edu
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