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JULIEN KORINMAN

We provide finite presentations for stated skein algebras and deduce that those algebras
are Koszul and that they are isomorphic to the quantum moduli algebras appearing
in lattice gauge field theory, generalizing previous results of Bullock, Frohman,
Kania-Bartoszynska and Faitg.
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1 Introduction

Stated skein algebras and lattice gauge field theory A punctured surface is a pair
† D .†;P/, where † is a compact oriented surface and P is a (possibly empty)
finite subset of † which nontrivially intersects each boundary component. We write
†P WD† nP . The set @† nP consists of a disjoint union of open arcs, which we call
boundary arcs.

Warning In this paper, the punctured surface † will be called open if the surface
† has nonempty boundary and closed otherwise. This convention differs from the
traditional one, where some authors refer to an open surface as a punctured surface
† D .†;P/ with † closed and P ¤∅ (in which case †P is not closed).
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1250 Julien Korinman

The Kauffman-bracket skein algebras were introduced by Bullock and Turaev as a tool to
study the SU.2/Witten–Reshetikhin–Turaev topological quantum field theories [45; 51].
They are associative unitary algebras S!.†/ indexed by a closed punctured surface †

and an invertible element ! 2 k� in some commutative unital ring k. Bonahon and
Wong [12] and Lê [40] generalized the notion of Kauffman-bracket skein algebras to
open punctured surfaces, where in addition to closed curves the algebras are generated
by arcs whose endpoints are endowed with a sign, ˙ (a state). The motivation for
the introduction of these so-called stated skein algebras is their good behavior for the
operation of gluing two boundary arcs together. This property permitted the authors
of [12] to define an embedding of the skein algebra into a quantum torus, named the
quantum trace, and offers new tools to study the representation theory of skein algebras.

Except for genus 0 and 1 surfaces (see Bullock and Przytycki [21]), no finite presentation
for the Kauffman-bracket skein algebras is known, though a conjecture in that direction
was formulated in Santharoubane [46, Conjecture 1:2]. However, it is well known
that they are finitely generated; see Abdiel and Frohman [1], Bullock [18], Frohman
and Kania-Bartoszynska [30] and Santharoubane [46]. The corresponding problem for
stated skein algebras of open punctured surfaces is easier. Finite presentations of stated
skein algebras were given for a disc with two punctures on its boundary (for the bigon)
and for the disc with three punctures on its boundary (for the triangle) in [40], for the
disc with two punctures on its boundary and one inner puncture in Korinman [35] and
for any connected punctured surface having exactly one boundary component, one
puncture on the boundary and possibly inner punctures in Faitg [27].

Our first purpose is to provide explicit finite presentations for stated skein algebras of an
arbitrary connected open punctured surface †. Let us briefly sketch their construction;
we refer to Section 2.2 for details.

The finite presentations we will define depend on the choice of a finite presentation
P of some groupoid …1.†P ;V /. In brief, for each boundary arc a of †, choose a
point va 2 a and let V be the set of such points. The groupoid …1.†P ;V / is the full
subcategory of the fundamental groupoid of †P whose set of objects is V . A finite
presentation P D .G;RL/ for …1.†P ;V / will consist in a finite set G of generating
paths relating points of V and a finite set RL of relations among those paths which
satisfy some axioms (see Section 2.2 for details). For instance for the triangle T (the disc
with three punctures on its boundary), the groupoid …1.T ;V / admits the presentation
with generators G D f˛; ˇ;  g, drawn in Figure 1, and the unique relation ˛ˇ D 1.
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ˇ

Figure 1: The triangle and some paths.

A path ˛ 2G can be seen as an arc in †P and, after choosing some states "; "0 2 f�;Cg
for its endpoints, we get an element ˛""0 2S!.†/ in the stated skein algebra. We denote
by AG � S!.†/ the (finite) set of such elements. It was proved in Korinman [38] that
AG generates S!.†/ and its elements will be the generators of our presentations.

Concerning the relations, first for each ˛ 2G, one has a q–determinant relation between
the elements ˛""0 . For each pair .˛; ˇ/2G2 we will associate a finite set of arc exchange
relations permitting us to express an element of the form ˛""0ˇ��0 2 S!.†/ as a linear
combination of elements of the form ˇab˛cd . Finally, to each relation R 2RL in the
finite presentation P , we will associate a finite set of so-called trivial loop relations.

Theorem 1.1 Let † be a connected open punctured surface and P a finite presenta-
tion of …1.†P ;V /. Then the stated skein algebra S!.†/ is presented by the set of
generators AG and by the q–determinant , arc exchange and trivial loop relations.

For every open punctured surface, we can choose a finite presentation P of …1.†P ;V /

such that the set of relations is empty (for instance for the triangle of Figure 1, one
might choose the presentation with generators G D f˛; ˇg and no relations). In this
case, the presentation of S!.†/ is quadratic inhomogeneous and, by using the diamond
lemma, we prove:

Theorem 1.2 For † a connected open punctured surface , the quadratic inhomogeneous
algebra S!.†/ is Koszul and admits a Poincaré–Birkhoff–Witt (PBW ) basis.

Theorem 1.2 implies that S!.†/ has an explicit minimal projective resolution (the
so-called Koszul resolution), which permits us to effectively compute its cohomology
(see Loday and Vallette [42] for details).

Let .�; c/ be a ciliated graph, that is a finite graph with the data for each vertex of
a linear ordering of its adjacent half-edges. Inspired by Fock and Rosly’s original
work in [29] on the Poisson structure of character varieties, Alekseev, Grosse and
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Schomerus [2; 3; 5] and Buffenoir and Roche [15; 16] independently defined the so-
called quantum moduli algebras L!.�; c/, which are combinatorial quantizations of
relative character varieties (see Section 4.2 for details). Those algebras arise with some
right comodule map�G WL!.�; c/!L!.�; c/˝Oq ŒG�, where Oq ŒG�DOq ŒSL2�

˝ VV .�/

is the so-called quantum gauge group Hopf algebra and q WD !�4. The subalgebra
Linv
! .�/ � L!.�; c/ of coinvariant vectors plays an important role in combinatorial

quantization. More precisely, as reviewed in Section 4.1, we associate to each ciliated
graph .�; c/ two punctured surfaces: an open one †0.�; c/ and a closed one †.�/,
such that the algebras L!.�; c/ and Linv

! .�/ are quantizations of the SL2.C/ (relative)
character varieties of †0.�; c/ and †.�/, respectively, with their Fock–Rosly Poisson
structures. We deduce from Theorem 1.1:

Theorem 1.3 There exist isomorphisms of algebras S!.†0.�; c// Š L!.�; c/ and
S!.†.�//Š Linv

! .�/.

Theorem 1.3 is not surprising and was already proved in some cases. First it is
well known that (stated) skein algebras also induce deformation quantizations of
(relative) character varieties: it follows from the work in Bullock [17], Przytycki and
Sikora [44] and Turaev [50] for closed punctured surfaces and is proved in Korinman
and Quesney [39, Theorem 1:3] and Costantino and Lê [26, Theorem 8:12] for open
punctured surfaces. So Theorem 1.3 was expected; for instance its statement was
conjectured in [26]. Next the skein origin of the defining relations of quantum moduli
algebra was discovered by Bullock, Frohman and Kania-Bartoszynska in [19] where
the authors already proved that S!.†.�// and Linv

! .�/ are isomorphic in the particular
case where kDCŒŒ„�� and q WD !�4 D exp „. However, their proof does not extend to
arbitrary ring (see item (vi) of Section 5). Finally, in the special case where .�; c/ is
the so-called daisy graph (it has only one vertex, so †0.�; c/ has exactly one boundary
component with one puncture on it), Theorem 1.3 was proved by Faitg in [27] in the
case where ! is not a root of unity. A detailed comparison between Faitg’s isomorphism
and ours is made in Section 4.4. Faitg’s result can also be derived indirectly from the
works in Ben-Zvi, Brochier and Jordan [9] and Gunningham, Jordan and Safronov [31],
as detailed in Section 4.4. As pointed out to us by the anonymous referee, there is an
important difference between our definition of quantum moduli algebras and the original
one. In the original approaches, the algebra L!.�; c/ is seen as a Uqsl˝n

2
–module,

where n is the number of external vertices of � , and Linv
! .�/ is then defined as the

subalgebra of invariant vectors for this action. Here, L!.�; c/ is rather seen as an
Oq ŒSL2�

˝n–comodule and Linv
! .�/ is defined as the subalgebra of coinvariant vectors
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instead. When q is generic both definitions coincide, however when q is a root of
unity they differ in general (see Section 5 for details). In particular, the isomorphism in
Theorem 1.3 holds with our definition of quantum moduli algebra and might fail with
the original one, at roots of unity.

Acknowledgments The author thanks S Baseilhac, F Costantino, M Faitg, L Funar, D
Jordan, A Quesney, P Roche and P Safronov for useful discussions and the anonymous
referees for interesting suggestions and corrections and for pointing out to us the
difference between Uqsl2–invariant and Oq ŒSL2�–coinvariants at roots of unity. He
acknowledges support from the Japanese Society for Promotion of Science (JSPS) and
the Centre National de la Recherche Scientifique (CNRS).

2 Finite presentations for stated skein algebras

2.1 Definitions and first properties of stated skein algebras

Definition 2.1 A punctured surface is a pair † D .†;P/ where † is a compact
oriented surface and P is a finite subset of†which nontrivially intersects each boundary
component. A boundary arc is a connected component of @†nP . We write†P WD†nP .

Definition of stated skein algebras Before precisely stating the definition of stated
skein algebras, let us sketch it informally. Given a punctured surface † and an invertible
element ! 2 k� in some commutative unital ring k, the stated skein algebra S!.†/
is the quotient of the k–module freely spanned by isotopy classes of stated tangles
in †P � .0; 1/ by some local skein relations. Figure 2, left, illustrates such a stated
tangle: each point of @T � @†P is equipped with a sign C or � (the state). Here the
stated tangle is the union of three stated arcs and one closed curve. In order to work
with two-dimensional pictures, we will consider the projection of tangles in †P as in
Figure 2, right; such a projection will be referred to as a diagram.

A tangle in †P � .0; 1/ is a compact framed, properly embedded one-dimensional
manifold T �†P�.0; 1/ such that for every point of @T � @†P�.0; 1/ the framing is
parallel to the .0; 1/ factor and points in the direction of 1. Here, by framing, we refer to
a thickening of T to an oriented surface. The height of .v; h/ 2†P � .0; 1/ is h. If b is
a boundary arc and T a tangle, we impose that no two points in @bT WD @T \b� .0; 1/

have the same heights, hence the set @bT is totally ordered by the heights. Two tangles
are isotopic if they are isotopic through the class of tangles that preserve the boundary
height orders. By convention, the empty set is a tangle only isotopic to itself.
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Figure 2: A stated tangle (left) and its associated diagram (right). The arrows
represent the height orders.

Let � W†P � .0; 1/!†P be the projection with �.v; h/D v. A tangle T is in generic
position if, for each of its points, the framing is parallel to the .0; 1/ factor, points
in the direction of 1 and is such that �jT W T ! †P is an immersion with at most
transversal double points in the interior of †P . Every tangle is isotopic to a tangle in
generic position. A diagram is the image D D �.T / of a tangle in generic position,
together with the over/undercrossing information at each double point. An isotopy
class of diagram D together with a total order of @bD WD @D \ b for each boundary
arc b uniquely define an isotopy class of a tangle. When choosing an orientation o.b/

of a boundary arc b and a diagram D, the set @bD receives a natural order by setting
that the points are increasing when going in the direction of o.b/. We will represent
tangles by drawing a diagram and an orientation (an arrow) for each boundary arc,
as in Figure 2. When a boundary arc b is oriented we assume that the order of the
heights of the points of @bD coincides with the order induced by the orientation of the
boundary arc. A state of a tangle is a map s W @T ! f�;Cg. A pair .T; s/ is called a
stated tangle. We define a stated diagram .D; s/ in a similar manner.

Let ! 2 k� be an invertible element and write A WD !�2.

Definition 2.2 [40] The stated skein algebra S!.†/ is the free k–module generated
by isotopy classes of stated tangles in †P � .0; 1/ modulo the relations (1) and (2):

DA CA�1 and D�.A2
CA�2/ ;(1)

C

C
D

�

�
D 0; C

�
D ! and !�1 �

C
�!�5 C

�
D :(2)

The product of two classes of stated tangles ŒT1; s1� and ŒT2; s2� is defined by isotoping
T1 and T2 in†P�

�
1
2
; 1
�

and†P�
�
0; 1

2

�
, respectively, and then setting ŒT1; s1��ŒT2; s2�

equal to ŒT1[T2; s1[ s2�. Figure 3 illustrates this product.
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Figure 3: An illustration of the product in stated skein algebras.

For a closed punctured surface, S!.†/ coincides with the classical (Turaev’s) Kauffman-
bracket skein algebra.

Reflexion anti-involution Suppose kDZŒ!˙1� and consider the Z–linear involution
x 7! x� on k sending ! to !�1. Let r W †P � .0; 1/

Š
�! †P be the homeomorphism

defined by r.x; t/D .x; 1� t/. Define an antilinear map � W S!.†/ Š�! S!.†/ by

�

�X
i

xi ŒTi ; si �

�
WD

X
i

x�i Œr.Ti/; si ı r �:

Proposition 2.3 [40, Proposition 2.7] The map � is an antimorphism of algebras , ie
�.xy/D �.y/�.x/.

Bases for stated skein algebras A closed component of a diagram D is trivial if it
bounds an embedded disc in†P . An open component of D is trivial if it can be isotoped,
relatively to its boundary, inside some boundary arc. A diagram is simple if it has neither
double point nor trivial component. By convention, the empty set is a simple diagram.
Let o denote an arbitrary orientation of the boundary arcs of †. For each boundary
arc b we denote by <o the induced total order on @bD. A state s W @D ! f�;Cg is
o�increasing if, for any boundary arc b and any two points x;y 2 @bD, then x <o y

implies s.x/ < s.y/, with the convention �<C.

Definition 2.4 We denote by Bo � S!.†/ the set of classes of stated diagrams .D; s/
such that D is simple and s is o–increasing.

Theorem 2.5 [40, Theorem 2.11] The set Bo is a basis of S!.†/.

Remark 2.6 The basis Bo is independent of the choice of the ground ring k and of
! 2k�. This fact has the following useful consequence: Let k WDZŒ!˙1� and k0 be any
other commutative unital ring with an invertible element !0 2 k

0�. There is a unique
morphism of rings � Wk!k0 sending ! to !0 and the two k0 algebras S!.†/˝kk0 and
S!0.†/ are canonically isomorphic through the isomorphism preserving the basis Bo.
This fact permits us to prove formulas in k using the reflexion anti-involution � and
then apply them to any ring k0 by changing the coefficients.
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Figure 4: An illustration of the gluing map ija#b .

Gluing maps Let a and b be two distinct boundary arcs of † and let †ja#b be the
punctured surface obtained from † by gluing a and b. Denote by � W†P! .†ja#b/Pja#b

the projection and c WD �.a/ D �.b/. Let .T0; s0/ be a stated framed tangle of
†ja#bPja#b

� .0; 1/ transverse to c � .0; 1/ and such that the heights of the points of
T0 \ c � .0; 1/ are pairwise distinct and the framing of the points of T0 \ c � .0; 1/

is vertical. Let T �†P � .0; 1/ be the framed tangle obtained by cutting T0 along c.
Any two states sa W @aT !f�;Cg and sb W @bT !f�;Cg give rise to a state .sa; s; sb/

on T . Both the sets @aT and @bT are in canonical bijection with the set T0\ c by the
map � . Hence the two sets of states sa and sb are both in canonical bijection with the
set St.c/ WD fs W c \T0! f�;Cgg.

Definition 2.7 Let ija#b WS!.†ja#b/!S!.†/ be the linear map given, for any .T0; s0/

as above, by
ija#b.ŒT0; s0�/ WD

X
s2St.c/

ŒT; .s; s0; s/�:

Theorem 2.8 [40, Theorem 3:1] The linear map ija#b W S!.†ja#b/! S!.†/ is an
injective morphism of algebras. Moreover the gluing operation is coassociative in the
sense that if a, b, c and d are four distinct boundary arcs , then ija#bıijc#d D ijc#d ıija#b .

Relation with Uqsl2 and OqŒSL2� Recall that A D !�2 and write q WD A2. The
stated skein algebra has deep relations with the quantum enveloping algebra Uqsl2 and
the quantum group Oq.SL2/, explored in [26; 27; 32; 39; 40], that we briefly reproduce
here for later use by using the notation of [22; 33; 47]. Suppose that q is generic (not
a root of unity) and let � W Uqsl2! End.V / be the standard representation of Uqsl2,
where V is two-dimensional with basis .vC; v�/ and

�.E/D

�
0 1

0 0

�
; �.F /D

�
0 0

1 0

�
and �.K/D

�
q 0

0 q�1

�
:

When q is a generic parameter, Uqsl2 has the structure of topological half-ribbon Hopf
algebra in the sense of [47], that is, it admits an R–matrix

RD q
1
2
.H˝H / expq..q� q�1/E˝F / 2

B
Uqsl˝2

2

Algebraic & Geometric Topology, Volume 23 (2023)
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(see [22] for details) and a half-ribbon element � 2AUqsl2 (defined by Kirillov and
Reshetikhin in [34], where� is denoted byw�1) such that�.�/D .�˝�/R and such
that .Uqsl2;R; ��2/ is a topological ribbon Hopf algebra. Note that the ribbon element
v WD��2 is not the usual one (see [47; 49] for details) but the Kauffman-bracket one
(the one for which qdim.V /D�q� q�1 instead of qC q�1).

In the standard basis .vC; v�/ of V , the matrix C DMat.vC;v�/.�
�1/ is written

C D

�
CCC CC�
C�C C��

�
WD

�
0 !

�!5 0

�
:

Therefore

C�1
D�A3C D

�
0 �!�5

!�1 0

�
:

Define the operators �; q
1
2
.H˝H /

2 End.V ˝2/ by

�.vi ˝ vj / WD vj ˝ vi and q
1
2
.H˝H /.vi ˝ vj /DAijvi ˝ vj

for i; j 2 fC;�g (we identified � with �1 and C with C1). The braiding associated
to the R–matrix is

RD cV;V WD � ı q
1
2
.H˝H /

ı expq..q� q�1/�.E/˝ �.F //

D � ı q
1
2
.H˝H /

ı .12C .q� q�1/�.E/˝ �.F //:

In the basis .vC˝ vC; vC˝ v�; v�˝ vC; v�˝ v�/, it is written

RD

0BB@
RCCCC RCCC� RCC�C RCC��
RC�CC RC�C� RC��C RC���
R�CCC R�CC� R�C�C R�C��
R��CC R��C� R���C R����

1CCA WD
0BB@

A 0 0 0

0 0 A�1 0

0 A�1 A�A�3 0

0 0 0 A

1CCA ;
so

R�1
D

0BB@
A�1 0 0 0

0 A�1�A3 A 0

0 A 0 0

0 0 0 A�1

1CCA :
We now list three families of skein relations, which are straightforward consequences
of the definition, work regardless whether q is generic or a root of unity, and will be
used later. Let i; j 2 f�;Cg.

� The trivial arc relations, which are given by

(3) i
j
D C i

j and i
j

D .C�1/ij :

Algebraic & Geometric Topology, Volume 23 (2023)
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� The cutting arc relations, which are given by

(4) D

X
i;jD˙

C i
j

i
j

and D

X
i;jD˙

.C�1/ij
i
j
:

� The height exchange relations, which are given by

(5) i
j
D

j
i
D

X
k;lD˙

Rkl
ij

l
k

and j
i
D

i
j
D

X
k;lD˙

.R�1/kl
ij

k
l
:

We refer to [40] for proofs.

The algebra Oq ŒSL2� is the algebra presented by generators x""0 ; "; "
0 2 f�;Cg and

relations

xCCxC� D q�1xC�xCC; xCCx�C D q�1x�CxCC;

x��xC� D qxC�x��; x��x�C D qx�Cx��;

xCCx�� D 1C q�1xC�x�C; x��xCC D 1C qxC�x�C;

x�CxC� D xC�x�C;

It has a Hopf algebra structure characterized by�
�.xCC/ �.xC�/

�.x�C/ �.x��/

�
D

�
xCC xC�
x�C x��

�
˝

�
xCC xC�
x�C x��

�
;�

�.xCC/ �.xC�/

�.x�C/ �.x��/

�
D

�
1 0

0 1

�
;�

S.xCC/ S.xC�/

S.x�C/ S.x��/

�
D

�
x�� �qxC�

�q�1x�C xCC

�
:

When q 2C� is generic (not a root of unity), Oq ŒSL2� is the subalgebra of the restricted
dual of Uqsl2 generated by the matrix elements of the integrable modules; see [14; 22].
The bigon B is the punctured surface made of a disc with two punctures on its boundary.
It has two boundary arcs a and b and is generated by the stated arcs ˛""; "; "0D˙ made
of an arc ˛ linking a to b with state " on ˛\a and "0 on ˛\b. Consider a disjoint union
BtB of two bigons; by gluing together the boundary arc b1 of the first bigon with the
boundary arc a2 of the second, one obtains a morphism� WD ijb1#a2

WS!.B/!S!.B/˝2

which endows S!.B/ with the structure of Hopf algebra where � is the coproduct.

Theorem 2.9 [26; 39; 40] There is an isomorphism ' W Oq ŒSL2�Š S!.B/ of Hopf
algebras sending the generator x""0 2Oq ŒSL2� to the element ˛""0 2 S!.B/.

Algebraic & Geometric Topology, Volume 23 (2023)
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i
j
k
l

a

b

a

b

c

d

i
j
k
l

a

b

D

X
a;b

�

0B@
1CA D X

a;b;c;d

C c
d
Rac

ij R
db
kl

Figure 5: An example of the boundary skein relation.

More precisely, the fact that ' is an isomorphism of algebras is proved in [40] and the
fact that it preserves the coproduct was noticed independently in [26; 39]. Throughout,
we will (abusively) identify the Hopf algebras Oq ŒSL2� and S!.B/ using '. Note that
the definition of ' depends on an indexing by a and b of the boundary arcs of B.

Now consider a punctured surface † and a boundary arc c. By gluing a bigon B along †

while gluing b with c, one obtains a punctured surface isomorphic to †, hence a map
�L

c WD ijb#c W S!.†/!Oq ŒSL2�˝S!.†/ which endows S!.†/ with the structure of
left Oq ŒSL2� comodule. Similarly, gluing c with a induces a right comodule morphism
�R

c WD ijc#a W S!.†/! S!.†/˝Oq ŒSL2�. The following theorem characterizes the
image of the gluing map and was proved independently in [26; 39].

Theorem 2.10 [26, Theorem 4.7; 39, Theorem 1.1] Let † be a punctured surface ,
and a and b two boundary arcs. The sequence

0! S!.†ja#b/
ija#b
���! S!.†/

�L
a ��ı�

R
b

��������!Oq ŒSL2�˝S!.†/

is exact , where �.x˝y/ WD y˝x.

An easy but very important consequence of the fact that �L
a and �R

a are comodule
maps are the boundary skein relations

(6) .�˝ id/ ı�L
a D id and .id˝�/ ı�R

a D id :

The image through the counit � of a stated diagram in B can be computed using

�
�

i
j

�
D C i

j ; �
�

i
j

�
D .C�1/ij ;(7)

�
�

i
j

k

l

�
DR

ij

kl
; �

�
i
j

k

l

�
D .R�1/

ij

kl
:

Figure 5 illustrates an instance of boundary skein relation (6). Here we draw a dotted
arrow to illustrate where we cut the bigon. Note that all the trivial arc (3), cutting
arc (4) and height exchange (5) relations are particular cases of (6).
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ˇ1

ˇ2

ˇ3 ˇ4

ˇ5

Figure 6: A punctured surface and a set of generators for its small fundamental groupoid.

2.2 The small fundamental groupoid and its finite presentations

In this section we fix a punctured surface † D .†;P/ such that † is connected and
has nonempty boundary. For each boundary arc a of †, fix a point va 2 a and denote
by V the set fvaga.

Definition 2.11 The small fundamental groupoid …1.†P ;V / is the full subcategory
of the fundamental groupoid …1.†P/ generated by V .

Said differently, …1.†P ;V / is the small groupoid whose set of objects is V and such
that a morphism (called a path) ˛ W v1! v2 is a homotopy class of continuous maps
'˛ W Œ0; 1�!†P with '˛.0/D v1 and '˛.1/D v2. The map '˛ will be referred to as a
geometric representative of ˛. The composition is the concatenation of paths. For a
path ˛ W v1! v2 we write s.˛/D v1 (the source point) and t.˛/D v2 (the target point),
and ˛�1 W v2! v1 is the path with opposite orientation ('˛�1.t/D '˛.1� t/).

We will define the notion of finite presentation P of the groupoid…1.†P ;V / and attach
to each such P a finite presentation of S!.†/. In order to get some intuition, consider
the punctured surface in Figure 6: it is an annulus with two punctures per boundary
component, so it has four boundary arcs. The figure shows some paths ˇ1; : : : ; ˇ5 and
we will say that …1.†P ;V / is finitely presented by the set of generators fˇ1; : : : ; ˇ5g

together with the relation ˇ�1
2
ˇ4ˇ5ˇ3 D 1. We will deduce that S!.†/ is generated

by the stated arcs .ˇi/""0 and that the relation ˇ�1
2
ˇ4ˇ5ˇ3 D 1 induces a relation

among them. Alternatively, the fundamental groupoid of the same punctured surface
has a presentation with the smaller set of generators fˇ1; : : : ; ˇ4g and no relation. The
induced finite presentation of S!.†/ will be simpler.

Definition 2.12 (i) A set of generators for …1.†P ;V / is a set G consisting of paths
in …1.†P ;V / such that any path ˛ 2…1.†P ;V / decomposes as ˛D ˛"1

1
� � �˛

"n
n with

"i D˙1 and ˛i 2G. We also require that each path ˛ 2G is the homotopy class of
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: : :

: : :

: : :

: : :

Figure 7: The geometric representatives of a set of generators for …1.†P ;V /.

some embedding '˛ W Œ0; 1�!†P such that the images of the '˛ do not intersect outside
V and possibly intersect transversally at V . The generating graph is the oriented ribbon
graph � �†P whose set of vertices is V and edges are the images of the '˛ . We will
always assume implicitly that the geometric representatives '˛ are part of the data
defining a set of generators. Moreover, when ˛ 2G is a path such that s.˛/D t.˛/ (ie
˛ is a loop) we add the additional datum of a “height order” for its endpoints, that is
we specify whether h.s.˛// < h.t.˛// or h.t.˛// < h.s.˛//.

(ii) For a path ˛ W v1! v2 and "; "0 2 f�;Cg, we denote by ˛""0 2 S!.†/ the class of
the stated arc .˛; �/, where the state � is given by �.v1/D " and �.v2/D "

0. When
both endpoints lie in the same boundary arc (when s.˛/ D t.˛/) we use the chosen
height order to specify which endpoint lies on the top. Set

AG
WD f˛""0 j ˛ 2G and "; "0 2 f�;Cgg � S!.†/:

Example 2.13 For any connected open punctured surface †, the groupoid…1.†P ;V /

admits a finite set of generators depicted in Figure 7 and defined as follows. Denote
by a0; : : : ; an the boundary arcs, by @0; : : : ; @r the boundary components of † with
a0 � @0, and write vi WD ai \V . Let † be the surface obtained from † by gluing a
disc along each boundary component @i for 1� i � r , and choose ˛1; ˇ1; : : : ; ˛g; ˇg

some paths in �1.†P ; v0/ (which equals End…1.†P ;V /.v0/) such that their images in
† generate the free group �1.†; v0/ (said differently, the ˛i and ˇi are longitudes and
meridians of †). For each inner puncture p choose a peripheral curve p 2 �1.†P ; v0/

encircling p once and for each boundary puncture p@ between two boundary arcs ai

and aj , consider the path p̨@
W vi ! vj represented by the corner arc in p@. Finally,

for each boundary component @j , with 1� j � r , containing a boundary arc akj
� @j ,

choose a path ı@j
W v0! vkj

. The set

G0 WD f˛i ; ˇi ; p̨; ı@j
j 1� i � g; p 2 P and 1� j � rg
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0
1
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"0
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X
"1;:::;"

0
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1
"1
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2
"2

C
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3
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Figure 8: How an application of the cutting arc relations permits us to
express any simple stated diagram in terms of the elements of AG . Here
G D fˇ1; ˇ2; ˇ3; ˇ4g is the set of generators of Figure 6. We draw dotted
arrows to exhibit where we perform the cutting arc relations.

is a generating set for …1.†P ;V / and Figure 7 represents a set of geometric repre-
sentatives for G0. Moreover each of its generators which is not one of the ı@j

can be
expressed as a composition of the other ones (we will soon say that there is a relation
among those generators), therefore a set G obtained from G0 by removing one of the
element of the form ˛i ; ˇi or p is still a generating set for …1.†P ;V /. The height
orders can be chosen arbitrarily. Note that G has cardinality 2g� 2C sC n@, where
g is the genus of †, s WD jPj is the number of punctures and n@ WD j�0.@†/j is the
number of boundary components.

In the particular case where † has exactly one boundary component with one puncture
on it (and possibly inner punctures), the generating graph of G is called the daisy graph
(see Figure 9). The daisy graph was first considered in [4] in the context of classical
lattice gauge field theory and in [5; 8; 27; 28] in the quantum case.

Proposition 2.14 [38, Proposition 3.4] If G is a set of generators of …1.†P ;V /,
then the set AG generates S!.†/ as an algebra.

The proof of Proposition 2.14 is an easy consequence of the cutting arc relations
illustrated in Figure 8.

We now define the notion of relations for a generating set G. Let F.G/ denote the free
semigroup generated by the elements of G and let RelG denote the subset of F.G/ of
elements of the form RDˇ1? � � �?ˇn such that s.ˇi/D t.ˇiC1/ and such that the path
ˇ1 : : : ˇn is trivial. We write R�1 WDˇ�1

n ?� � �?ˇ�1
1

. A relation RDˇ1?� � �?ˇn2RelG
is called simple if the ˇi admit as representatives embedded curves whose concatenation
forms a contractible simple closed curve  in †P whose orientation coincides with the
orientation of the disc bounded by  . Note that “being simple” depends on the choice
of geometric representatives of the generators.
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g times 8̂̂̂<̂ˆ̂:
8̂̂̂ <̂ ˆ̂ :

n times

Figure 9: A daisy graph.

Definition 2.15 A finite subset RL � RelG is called a finite set of relations if its
elements are simple and every word R 2 RelG can be decomposed as

RD ˇ ?R
"1

1
? � � �?R"m

m ?ˇ�1;

where Ri 2RL, "i 2 f˙1g and ˇD ˇ1? � � �?ˇn 2F.G/ is such that s.ˇi/D t.ˇiC1/.
The pair P WD .G;RL/ is called a finite presentation of …1.†P ;V /.

As illustrated in the introduction, the small fundamental groupoid of the triangle T

admits the finite presentation with generating set G D f˛; ˇ;  g and unique relation
RLD f˛ ?ˇ ?  g.

For a general connected open punctured surface †, the set G of Example 2.13 is the
generating set of a presentation of …1.†P ;V / with no relations.

2.3 Relations among the generators of the stated skein algebras

We fix a connected open punctured surface †, a finite presentation P D .G;RL/ of
…1.†P ;V /, and look for relations in S!.†/ among the elements of AG.

Definition 2.16 An oriented arc ˇ is a nonclosed connected simple diagram of †P

together with an orientation plus a possible height order of its endpoints in the case
where they both lie in the same boundary arc. We will denote by s.ˇ/ and t.ˇ/ its
endpoints so that ˇ is oriented from s.ˇ/ towards t.ˇ/. For "; "0 2 f�;Cg, we denote by
ˇ""0 2S!.†/ the class of the stated diagram .ˇ; �/where �.s.ˇ//D " and �.t.ˇ//D "0.

Note that to each oriented arc one can associate a path in …1.†P ;V / by first isotoping
its endpoints to V and then taking its homotopy class. However a path in …1.†P ;V /

can be associated to several distinct oriented arcs, so an oriented arc contains more
information than a path in the small fundamental groupoid.
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˛n

˛2

˛1

˛n

˛2
˛1

˛ ˛

ˇ ˇ 

:::
:::va) a va

vb

vc )
a

b

c

Figure 10: Left: an illustration of the local isotopy we perform to turn the set
of edges of a (ribbon) presenting graph into a set of pairwise nonintersecting
oriented arcs. Right: an example in the case of the triangle.

We want to see the elements of G as pairwise nonintersecting oriented arcs as illustrated
in Figure 10. Recall that by Definition 2.12, any path ˛2G is endowed with a geometric
representative '˛ whose image is an oriented arc ˛ �†P such that the ˛ pairwise do
not intersect outside of V and they intersect transversally in V . So each point va 2V is
endowed with a total order <va

on the set of its adjacent arcs (so the presenting graph
has a ciliated ribbon graph structure).

The orientation of †P induces an orientation of its boundary arcs, which, in turn,
induces a total order<a on each boundary arc a, where v1<a v2 if a is oriented from v1

towards v2. After isotoping the ˛ in a small neighborhood of each va in such a way that
the vertex order <va

matches with the boundary arc order <a as illustrated in Figure 10,
we get a family of pairwise nonintersecting oriented arcs representing the elements of G.

Convention 2.17 From now on we consider the elements of G as pairwise noninter-
secting oriented arcs.

Definition 2.18 Let ˛ be an oriented arc, set v1 WD s.˛/ and v2 WD t.˛/ and denote
by u and v the boundary arcs containing v1 and v2, respectively. The arc ˛ is

� of type a if u¤ v,

� of type b if uD v, h.v1/ < h.v2/ and v2 <u v1,

� of type c if uD v, h.v2/ < h.v1/ and v1 <u v2,

� of type d if uD v, h.v1/ < h.v2/ and v1 <u v2,

� of type e if uD v, h.v2/ < h.v1/ and v2 <u v1.

˛ ˛ ˛ ˛ ˛

type a type b type c type d type e

Figure 11: An illustration of the five types of oriented arcs.
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Here h.v/ represents the height of v (h is the second projection †P � .0; 1/! .0; 1/).
Figure 11 illustrates the five types of oriented arcs.

Notation 2.19 (i) For ˛ an oriented arc, write M.˛/ WD
�
˛CC
˛�C

˛C�
˛��

�
, the 2�2 matrix

with coefficients in S!.†/. The relations among the generators of S!.†/ that we will
soon define are much more elegant when written using the matrix

N.˛/ WD

8̂̂̂̂
<̂̂
ˆ̂̂̂:

M.˛/ if ˛ is of type a;

M.˛/C if ˛ is of type b;

M.˛/tC if ˛ is of type c;

C�1M.˛/ if ˛ is of type d;
tC�1M.˛/ if ˛ is of type e;

where tM denotes the transpose of M .

(ii) Let Ma;b.R/ be the ring of a� b matrices with coefficients in some ring R (here
R will be S!.†/). The Kronecker product ˇWMa;b.R/˝Mc;d .R/!Mac;bd .R/ is
defined by .AˇB/

i;k
j ;l
DAi

j Bk
l

. For instance,

M.˛/ˇM.ˇ/D

0BB@
˛CCˇCC ˛CCˇC� ˛C�ˇCC ˛C�ˇC�
˛CCˇ�C ˛CCˇ�� ˛C�ˇ�C ˛C�ˇ��
˛�CˇCC ˛�CˇC� ˛��ˇCC ˛��ˇC�
˛�Cˇ�C ˛�Cˇ�� ˛��ˇ�C ˛��ˇ��

1CCA :
(iii) By abuse of notation � also denotes the matrix of the flip map � W V ˝2! V ˝2

given by vi ˝ vj 7! vj ˝ vi :

� D

0BB@
1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

1CCA :
(iv) For a 4� 4 matrix X D .X

ij

kl
/i;j ;k;lD˙, we define the 2� 2 matrices trL.X / and

trR.X / by
trL.X /ba WD

X
iD˙

X ib
ia and trR.X /

b
a WD

X
iD˙

X bi
ai :

(v) For M D
�

a
c

b
d

�
, we set detq.M / WD ad � q�1bc and detq2.M / WD ad � q�2bc.

Lemma 2.20 (orientation-reversing formulas) Let ˛ be an oriented arc and ˛�1 be
the same arc with opposite orientation. Then one has

M.˛�1/D tM.˛/:
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a

b

c

d

a

b

˛0

i

j

j

i

˛M.˛0/
j
i D D D

X
a;b;c;d

C
j
c .C

�1/d
b
Rca

id

D .trR.C ˇC�1M.˛//R/ji

Figure 12: An illustration of the proof of (9) in the case where ˛ is of type e.

Therefore ,

(8) N.˛�1/D

8<:
tN.˛/ if ˛ is of type a;
tC�1tN.˛/tC if ˛ is of type b or d;

C�1tN.˛/C if ˛ is of type c or e:

Proof This is a straightforward consequence of the definitions.

Lemma 2.21 (height-reversing formulas) Let ˛ be an oriented arc with both end-
points in the same boundary arc and let ˛0 be the same arc with reversed height order
for its endpoints. Then one has

(9) M.˛0/D

8̂̂̂<̂
ˆ̂:

trR.R
�1.tC�1ˇM.˛/tC // if ˛ is of type b;

trL.R�1.M.˛/C ˇC�1// if ˛ is of type c;

trL..tC�1M.˛/ˇ tC /R/ if ˛ is of type d;

trR..C ˇC�1M.˛//R/ if ˛ is of type e:

Proof Equation (9) is obtained by using the boundary skein relations (6). Figure 12
illustrates the proof in the case where ˛ is of type e. The other cases are similar and
left to the reader.

In Figure 12, we represent the curve ˛ in blue to emphasize that, despite what the picture
suggests, the curve can be arbitrarily complicated. Since the boundary arc relation only
involves the intersection of ˛ with a small neighborhood (a bigon) of the boundary arc
(colored in gray), the exact structure of the blue part of the figure does not matter.

Remark 2.22 Reversing the orientation of an arc exchanges type b with type c and
type d with type e, whereas reversing the height order exchanges type b with type e

and type c with type d . Therefore (8) and (9) permit us to switch between the types b, c,
d and e; this will permit us to write the arc exchange and trivial loop relations in a
simpler form by specifying the type of arc.
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j

i
i
j

a b

c
d˛

ˇ.C�1/
j
i

trivial curve rel
D

cutting rel
D

X
a;b;c;dD˙

.C�1/ba.C
�1/dc

D

X
a;b;c;dD˙

M.˛/
j

d
.C�1/dc M.ˇ/cb.C

�1/baM. /ai

Figure 13: An illustration of the proof of (10) in the case of the triangle.

Lemma 2.23 (trivial loop relations) Let R D ˇk ? � � � ? ˇ1 be a simple relation.
Suppose that all arcs ˇi are either of type a or d . Then

(10) 12 D CM.ˇk/C
�1M.ˇk�1/C

�1
� � �C�1M.ˇ1/:

Proof Equation (10) is a consequence of the trivial arc and cutting arc relations illus-
trated in Figure 13 in the case of the triangle with presentation whose generators are the
arcs f˛; ˇ;  g drawn in Figure 1 and where the relation is ˛?ˇ? D 1. Figure 13 shows
the equality between the matrix coefficients of C�1 and M.˛/C�1M.ˇ/C�1M. /.

Let us detail the proof in the general case. Since ˇi is either of type a or d , it can
be represented by a tangle T .ˇi/ such that the height of the source endpoint of ˇi

(say vi) is smaller than the height of its target endpoint (say wi); said differently
h.vi/ < h.wi/. One can further choose the T .ˇi/ so that T .ˇiC1/ lies on the top
of T .ˇi/ (so h.v1/ < h.w1/ < h.v2/ < � � � < h.wk/). Let T be the tangle made of
the disjoint union of the T .ˇi/. By the assumption that R is a simple relation, we
can suppose that T is in generic position (in the sense of Section 2.1) and that its
projection diagram is simple. Fix i; j 2 f�;Cg and let ˛0 be a trivial arc with endpoints
s.˛0/ D v1 and t.˛0/ D wk such that ˛0 can be isotoped (relative to its boundary)
to an arc inside @†P . One the one hand, the trivial arc relation (3) gives the equality
˛0

ij D .C
�1/

j
i . On the other hand, the cutting arc relation (4) gives the equality

.C�1/
j
i D ˛

0
ij D

X
s2St.T /
s.v1/Di

s.wk/Dj

ŒT; s�.C�1/
s.v2/

s.w1/
.C�1/

s.v3/

s.w2/
� � � .C�1/

vk

s.wk�1/

D

X
�1;:::;�2k�2D˙

M.ˇk/
j
�1
.C�1/�1

�2
M.ˇk�1/

�3
�2
� � �M.ˇ1/

�2k�2

i

D .M.ˇk/C
�1M.ˇk�1/C

�1
� � �M.ˇ1//

j
i :
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(vi) (vii) (viii) (ix) (x)

Figure 14: Ten configurations for two nonintersecting oriented arcs.

Let ˛ and ˇ be two nonintersecting oriented arcs. Denote by a, b, c and d the boundary
arcs containing s.˛/, t.˛/, s.ˇ/ and t.ˇ/, respectively. Reversing the orientation and
the height order of ˛ or ˇ if necessary, we have ten different possibilities illustrated in
Figure 14. The proof of the following lemma is very similar to the computations made
by Faitg in [27].

Lemma 2.24 (i) If the elements of fa; b; c; dg are pairwise distinct , one has

(11) N.˛/ˇN.ˇ/D �.N.ˇ/ˇN.˛//�:

(ii) When aD c, fa; b; dg has cardinality 3 and s.ˇ/ <a s.˛/, one has

(12) N.˛/ˇN.ˇ/D �.N.ˇ/ˇN.˛//R:

(iii) When aD c ¤ b D d , s.ˇ/ <a s.˛/ and t.˛/ <b t.ˇ/, one has

(13) N.˛/ˇN.ˇ/DR�1.N.ˇ/ˇN.˛//R:

(iv) When aD c ¤ b D d , s.ˇ/ <a s.˛/ and t.ˇ/ <b t.˛/, one has

(14) N.˛/ˇN.ˇ/DR.N.ˇ/ˇN.˛//R:

(v) When b D c D d ¤ a, s.ˇ/ <a t.ˇ/ <a t.˛/ and h.s.ˇ// < h.t.ˇ//, one has

(15) N.˛/ˇN.ˇ/DR�1.N.ˇ/ˇ 12/R.N.˛/ˇ 12/:

(vi) When b D c D d ¤ a, t.˛/ <a t.ˇ/ <a s.ˇ/ and h.s.ˇ// < h.t.ˇ// < h.t.˛//,
one has

(16) N.˛/ˇN.ˇ/DR�1.N.ˇ/ˇ 12/R.N.˛/ˇ 12/:

(vii) When b D c D d ¤ a, t.ˇ/ <a t.˛/ <a s.ˇ/ and h.s.ˇ// < h.t.˛// < h.t.ˇ//,
one has

(17) N.˛/ˇN.ˇ/DR.N.ˇ/ˇ 12/R.N.˛/ˇ 12/:
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(viii) When aD b D c D d , s.ˇ/ <a s.˛/ <a t.ˇ/ <a t.˛/ and

h.s.ˇ// < h.s.˛// < h.t.ˇ// < h.t.˛//;

one has

(18) .12ˇN.˛//R�1.12ˇN.ˇ//R�1
DR.12ˇN.ˇ//R�1.12ˇN.˛//:

(ix) When aD b D c D d , s.ˇ/ <a t.ˇ/ <a s.˛/ <a t.˛/ and

h.s.ˇ// < h.t.ˇ// < h.s.˛// < h.t.˛//;

one has

(19) R�1.12ˇN.˛//R.12ˇN.ˇ//D .12ˇN.ˇ//R�1.12ˇN.˛//R:

(x) When aD b D c D d , s.˛/ <a s.ˇ/ <a t.ˇ/ <a t.˛/ and

h.s.˛// < h.s.ˇ// < h.t.ˇ// < h.t.˛//;

one has

(20) .12ˇN.˛//R�1.12ˇN.ˇ//RDR.12ˇN.ˇ//R�1.12ˇN.˛//:

Proof Equation (11) says that in case (i) any ˛ij commutes with any ˇkl , which is
obvious. Equations (12), (13) and (14) in cases (ii), (iii) and (iv) are straightforward
consequences of the height exchange relation (5). All other cases will be derived using
the boundary skein relations (6). As in the proof of Lemma 2.21, we will color the arcs
˛ and ˇ in red and blue to remind the reader that they might be much more complicated
than they look in the picture: in the computations we perform while using the boundary
skein relation we only care about the restriction of the diagrams (depicted in gray) in a
small bigon in the neighborhood of the boundary arc a and not the actual shape of the
blue and red parts.

Equations (15) and (16) in cases (v) and (vi) are proved in a very similar way; we detail
the proof of (16) and leave (17) to the reader. In case (vi), one has

.M.˛/ˇM.ˇ//
ij

kl
D ˛kiˇlj D

i
j

k

l

˛

ˇ
D a

b
c

d

e
fi

j

k

l

˛

ˇ

D

X
a;b;c;d;e;fD˙

.R�1/
ij

fd
M.ˇ/fe C e

c Rcd
abM.˛/ak.C

�1/bl

D
�
R�1.M.ˇ/C ˇ 12/R.M.˛/ˇC�1/

�ij
kl
:
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To handle cases (vii)–(x), we introduce the 4�4 matrix V D .V
ij

kl
/i;j ;k;l2f�;Cg, where

V
ij

kl
D Œ˛[ˇ; �ijkl � 2 S!.†/ is the class of the simple diagram ˛[ˇ with state �ijkl

sending t.˛/, t.ˇ/, s.˛/ and s.ˇ/ to i , j , k and l , respectively. Here the height order of
the points of @.˛[ˇ/ is given by the boundary arc orientation drawn in Figure 14. The
trick is to compute V in two different ways and then equate the two obtained formulas.

In case (vii), on the one hand, we first prove V D �.M.ˇ/C ˇ 12/R.M.˛/ˇC�1/:

V
ij

kl
D i

j
k

l

˛
ˇ

D i
j

k
l

˛ˇ

D ..M.ˇ/C ˇ 12/R.M.˛/ˇC�1//
ji

kl
:

On the other hand, we prove V D �R�1.M.˛/ˇM.ˇ//:

V
ij

kl
D i

j
k

l

˛
ˇ

D i
j

k
l

˛

ˇ
D .R�1.M.˛/ˇM.ˇ///

ji

kl
:

So we get the equality R�1.M.˛/ˇM.ˇ//D .M.ˇ/Cˇ12/R.M.˛/ˇC�1/ (which
equals �V / and (17) follows.

In case (viii), on the one hand, we first prove V D �.CˇM.˛//R�1.12ˇC�1M.ˇ//:

V
ij

kl
D

i
j
k
l

˛

ˇ
D

i
j
k
l

˛

ˇ
D ..C ˇM.˛//R�1.12ˇC�1M.ˇ///

ji

kl
:

On the other hand, we prove V D �.CˇC /R.12ˇC�1M.ˇ//R�1.12ˇC�1M.˛//R:

V
ij

kl
D

i
j
k
l

˛

ˇ
D

i
j

k

l

˛

ˇ

D ..C ˇC /R.12ˇC�1M.ˇ//R�1.12ˇC�1M.˛//R/
ji

kl
:

Equation (18) follows by equating the two obtained expressions for V .

In case (x), on the one hand, we first prove V D .C ˇM.˛//R�1.12ˇC�1M.ˇ//R:

V
ij

kl
D

i
j

k
l

˛ ˇ D

i
j

k

l

˛ ˇ
D ..CˇM.˛//R�1.12ˇC�1M.ˇ//R/

ij

kl
:
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On the other hand, we prove V D .C ˇC /R.12ˇC�1M.ˇ//R�1.12ˇC�1M.˛//:

V
ij

kl
D

i
j

k
l

˛ ˇ D

i
j

k

l

˛ ˇ

D ..C ˇC /R.12ˇC�1M.ˇ//R�1.12ˇC�1M.˛///
ij

kl
:

Therefore, we obtain the following equality that will be used in the proof of Lemma 2.25:

V D .C ˇM.˛//R�1.12ˇC�1M.ˇ//R(21)

D .C ˇC /R.12ˇC�1M.ˇ//R�1.12ˇC�1M.˛//:

Equation (20) follows.

In (ix) we slightly change strategy. Define the 4�4 matrix W D .W
ij

kl
/i;j ;k;l2f�;Cg by

W
ij

kl
WD

i
j
k
l

˛

ˇ

We first prove W D .C ˇM.ˇ//R�1.12ˇC�1M.˛//:

W
ij

kl
D

i
j
k
l

˛

ˇ

D
i
j

k
l

˛

ˇ

D ..C ˇM.ˇ//R�1.12ˇC�1M.˛///
ij

kl
:

Next, we prove W D .C ˇC /R�1.12ˇC�1M.˛//R.12ˇC�1M.ˇ//R�1:

W
ij

kl
D

i
j
k
l

˛

ˇ

D

i

j

k

l

˛

ˇ

D ..C ˇC /R�1.12ˇC�1M.˛//R.12ˇC�1M.ˇ//R�1/
ij

kl
:

Equation (19) follows by equating the two obtained expressions for W .

Lemma 2.25 (q–determinant relations) Let ˛ be an oriented arc. Then

(22) detq.N.˛//D 1 if ˛ is of type a, and detq2.N.˛//D 1 otherwise:

Algebraic & Geometric Topology, Volume 23 (2023)



1272 Julien Korinman

Proof First suppose that ˛ is of type a. Applying the trivial arc and cutting arc relation,
we obtain

.C�1/�C D
�

C
D .C�1/C�

C C

� �

˛

˛
C .C�1/�C

C C

� �

˛

˛
;

which is equivalent to the equation ˛CC˛��� q�1˛C�˛�C D 1 as claimed. Next we
suppose that ˛ is of type d . Let ˇ be an arc isotopic to and disjoint from ˛, placed
as in Figure 14(x) (so ˇij D ˛ij ). Consider the matrix V D .V

ij

kl
/i;j ;k;l2f�;Cg, where

V
ij

kl
D Œ˛[ˇ; �ijkl � 2 S!.†/ is the class of the simple diagram ˛[ˇ with state �ijkl

sending t.˛/, t.ˇ/, s.˛/ and s.ˇ/ to i , j , k and l respectively, like in the proof of
Lemma 2.24, ie

V
ij

kl
D

i
j

k
l

˛ ˇ

Again, using the trivial arc and cutting arc relation, we obtain

(23) C�C D
C

�

D .C�1/C�
C

C

�

�

˛
ˇ C .C�1/�C

C

C

�

�

˛
ˇ

() A5V �CC� �A3V �C�C D 1:

To develop the elements V
ij

kl
as linear combinations of the ˛ab˛cd we can either consider

the matrix coefficients of the equality V D .CˇM.˛//R�1.12ˇC�1M.ˇ//R proved
in the proof of Lemma 2.24, or we can perform the skein computation

˛ij˛kl D i

j

k
l

˛ ˇ
D q i

j

k
l

C q�1
i

j

k
l

C i

j

k
l

C i

j

k
l

D qC
j

k
C i

l CC
j
i C l

k C q�1V
ji

lk
CC i

l .C
�1/�CV

j�

Ck
CC i

l .C
�1/C�V

jC

�k
;

from which we deduce the equalities

V �CC� D q˛C�˛�CCA�1; V C��C D q˛�C˛C�CA�1; V �C�C D ˛��˛CC�A�3:

Now, using the skein relation (2), we find

V �CC� D qV C�C� CA�1
D V C��C ;

so V �CC� D V C��C , which implies that ˛C�˛�C D ˛�C˛C�.

Next, replacing the elements V �CC and V �C�C in (23) by their expressions in terms of
the ˛ij˛kl , we find

(24) ˛��˛CC� q2˛C�˛�C DA:
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Using ˛C�˛�C D ˛�C˛C� we obtain the desired equality:

detq2.N.˛//D detq2

�
�!�5˛�C �!

�5˛��
!�1˛CC !�1˛C�

�
D�A3˛�C˛C�CA�1˛��˛CCD 1:

Now, if ˛ is of type e, then ˛�1 is of type d . A simple computation shows that if
M D

�
a
c

b
d

�
is such that ad D da then detq2.M /D detq2.C�1tMC /, so we deduce

the q–determinant formula for ˛ of type e from the fact that it holds for ˛�1, from the
orientation-reversing formula in Lemma 2.20 and from ˛C�˛�C D ˛�C˛C�.

Suppose that ˛ is of type c and choose k D ZŒ!˙1�. Recall from Section 2.1 the
reflexion anti-involution � . The image �.˛/ is of type d , so applying � to (24),

(25) ˛CC˛��� q�2˛�C˛C� DA�1:

By Remark 2.6, since (25) holds for kDZŒ!˙1�, it also holds for any other ring. Also
using � , we find that ˛C�˛�C D ˛�C˛C� and the equation detq2.N.˛//D 1 follows.
Finally, when ˛ is of type b, we deduce the q–determinant relation from the fact that it
holds for ˛�1 (of type c), from the orientation-reversing formulas of Lemma 2.20 and
from the identity ˛C�˛�C D ˛�C˛C�.

Definition 2.26 Let P D .G;RL/ be a finite presentation of …1.†P ;V /. The set AG

generates S!.†/ by Proposition 2.14, and we have found three families of relations:

(i) For each ˛ 2G we have either the relation detq.N.˛//D 1 or detq2.N.˛//D 1

by (22) in Lemma 2.25; we call these the q–determinant relations.

(ii) For each R 2 RL, we have four relations obtained by considering the matrix
coefficients in (10) in Lemma 2.23; we call these trivial loop relations.

(iii) For each pair .˛; ˇ/ of elements in G, we have 16 relations obtained by consid-
ering the matrix coefficients in one of (11)–(20) of Lemma 2.24 after having
possibly replaced ˛ or ˇ by ˛�1 or ˇ�1, if necessary, and using the inversion
formula (8); we call these arc exchange relations.

3 Proof of Theorems 1.1 and 1.2

Definition 3.1 Let L!.P / be the algebra generated by the elements of G modulo the
q–determinant, trivial loops and arc exchange relations, and write ‰ WL!.P /! S!.†/
the obvious algebra morphism.

By Proposition 2.14, ‰ is surjective and we need to show that ‰ is injective to prove
Theorem 1.1. We cut the proof of Theorem 1.1 in three steps: In step 1, we show that
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it is sufficient to consider the case where P has no relations (as in Example 2.13); in
this particular case, the finite presentation defining L!.P / is inhomogeneous quadratic
and we will use the diamond lemma to extract PBW bases of L!.P / and to prove it
is Koszul. In step 2 we extract the rewritten rules and their leading terms from the
q–determinant and arc exchange relations, and exhibit the associated spanning family
BG � L!.P /. Finally in step 3, we show that the image by ‰ of BG is a basis; this
will prove both the injectivity of ‰ and the fact that BG is a Poincaré–Birkhoff–Witt
basis, and conclude the proofs of Theorems 1.1 and 1.2.

3.1 Step 1: reduction to the case where P has no relations

Let � be the presenting graph of P and consider its fundamental groupoid …1.�/:
the objects of …1.�/ are the vertices of � (ie the set V ) and the morphisms are
compositions ˛"k

k
� � �˛

"1

1
where ˛i 2 G. The inclusion � � †P induces a functor

F W …1.�/! …1.†P ;V /, which is the identity on the objects. The fact that G is
a set of generators implies that F is full and P has no relations if and only if F is
faithful. Fix v0 2 V . For a relation R 2 RL of the form R D ˇk ? � � � ? ˇ1, the
basepoint of R is s.ˇ1/D t.ˇk/. By inspecting the trivial loop relation (10), we see
that changing a relation R by a relation ˇ ?R ? ˇ�1 does not change the algebra
L!.P /. Since †P is assumed to be connected, we can suppose that all relations in RL

have the same basepoint v0, so each relation R D ˇk ? � � � ? ˇ1 induces an element
ŒR� D ˇk � � �ˇ1 2 �1.�; v0/. The functor F induces a surjective group morphism
Fv0
W �1.�; v0/! �1.†P ; v0/ and the fact that RL is a set of relations implies that

fŒR� j R 2 RLg generates ker.Fv0
/. Since �1.�; v0/ is a free group, so is ker.Fv0

/.
Let R1; : : : ;Rm 2RL be such that fŒR1�; : : : ; ŒRm�g is a minimal set of generators for
the free group ker.Fv0

/. For each Ri , choose an element ˇi 2G such that either ˇi

or ˇ�1
i appears in the expression of Ri and such that the set G0 obtained from G by

removing the ˇi is a generating set. So if � 0 is the presenting graph of G0, the morphism
F 0v0
W�1.�

0; v0/!�1.†P ; v0/ is injective, thus the functor F 0 W…1.�
0/!…1.†P ;V /

is faithful and P 0 WD .G0;∅/ is a finite presentation of …1.†P ;V / with no relations.

The inclusion G0 � G induces an algebra morphism Q' W T ŒG0� ,! T ŒG� on the free
tensor algebras generated by G0 and G, respectively, and Q' sends q–determinant and
arc exchange relations to q–determinant and arc exchange relations, so it induces an
algebra morphism

' W L!.P 0/! L!.P /:

Lemma 3.2 The morphism ' is an isomorphism.
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Proof To prove the surjectivity we need to show that, for each removed path ˇi 2GnG0,
the stated arcs .ˇi/""0 can be expressed as a polynomial in the stated arcs .˛˙1/��0 for
˛2G0. This follows from the trivial loop relation (10) associated to the relation Ri 2RL

containing ˇ˙1
i . Injectivity of ' is a straightforward consequence of the definition.

3.2 Step 2: Poincaré–Birkhoff–Witt bases and Koszulness

Convention 3.3 In the rest of the section, we suppose that P D .G;∅/ is a presentation
with no relations and that every arc in G is either of type a, c or d .

Note that the convention on the type of the generators is not restrictive but purely
conventional since we can always replace a generator ˛ by ˛�1 without changing the
set AG of generators of S!.†/.

Since P has no relations, the defining presentation of L!.P / contains only q–deter-
minant and arc exchange relations. All these relations are quadratic (inhomogeneous)
in the generators AG and we want to apply the diamond lemma to prove that L!.P / is
Koszul.

Reminder of the diamond lemma for PBW bases Following the exposition in
Section 4 of [42], we briefly recall the statement of the diamond lemma for PBW bases:

Let V be a free finite rank k–module, denote by T .V / WD˚n�0V ˝n the tensor algebra
and fix R � V ˝2 a finite subset. The quotient algebra A WD T .V /=.R/ is called a
quadratic algebra. Let fvigi2I be a totally ordered basis of V and write I Df1; : : : ; kg

so that vi <viC1. Then the set J WD
F

n�0 In (where I0Df0g) is totally ordered by the
lexicographic order and the set of elements vi D vi1

� � � vin
, for i D .i1; : : : ; ik/, forms

a basis of T .V /. We suppose that the elements r 2R (named relators) have the form

r D vivj �
X

.k;l/<.i;j/

�
ij

kl
vkvl :

The term vivj is called the leading term of r . We assume that two distinct relators have
distinct leading terms. Define the family

(26) B WD fvi1
� � � vin

j vik
vikC1

is not a leading term for all 1� k � n� 1g;

and denote by B.3/ � B the subset of elements of length 3 (of the form vi1
vi2
vi3

).
Obviously the set B spans A.

Theorem 3.4 (diamond lemma for PBW bases, Bergman [10]; see also Loday and
Vallette [42, Theorem 4.3.10]) If B.3/ is free , then B is a (Poincaré–Birkhoff–Witt)
basis and A is Koszul.
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The arc exchange relations defining L!.P / are quadratic, however the q–determinant
relations are not (because of the 1 in detq.N.˛//D 1), so L!.P / is not quadratic but
rather inhomogeneous quadratic. An inhomogeneous quadratic algebra is an algebra
of the form A WD T .V /=.R/, where R� V ˝2˚V ˚k� T .V /. We further assume

(ql1) R\V D f0g

and

(ql2) .R˝V CV ˝R/\V ˝2
�R\V ˝2:

The hypothesis .ql2/ says that one cannot create new relations by adding an element
to R, so it is not restrictive. Like before, we fix an ordered basis fvigi2I of V and
suppose that the relators of R have the form

(27) r D vivj �
X

.k;l/<.i;j/

�
ij

kl
vkvl � ci;j ;

where ci;j are some scalars and we suppose that two distinct relators have distinct
leading terms. The associated quadratic algebra qA is the algebra with same generators
vi but where the relators have been changed by replacing the scalars ci;j by 0. Let
qB � qA and B �A be the two generating families defined by (26).

Theorem 3.5 [42, Theorem 4.3.18] Suppose that qB.3/ � qA is free. Then both qB
and B are (PBW ) bases of qA and A, respectively, and both qA and A are Koszul.

There exists a linear surjective morphism ' W qA!A sending the generating family
qB to B; see [42, Section 4:2:9]. So, if B is a basis of A, then qB is free, therefore
Theorem 3.5 implies that A is Koszul. Therefore:

Theorem 3.6 If B is a basis of A, then A is Koszul.

The relators of the stated skein presentations and PBW bases For ˛ 2G, define
B.˛/ as

f.˛CC/
a.˛C�/

b.˛��/
c
j a; b; c� 0g[f.˛CC/

a.˛�C/
b.˛��/

c
j a; b; c� 0g�L!.P /:

Fix a total order< on the set G of generators and index its elements as GDf˛1; : : : ; ˛ng,
where ˛i < ˛iC1. Let

BG
WD fm1m2 � � �mn jmi 2 B.˛i/g � L!.P /:

We want to apply Theorem 3.6 to prove that L!.P / is Koszul. By definition, L!.P / is
an inhomogeneous quadratic algebra with generators AG D f˛ij j ˛ 2G and i; j D˙g

and whose relations are the arc exchange and q–determinant relations.
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We first define a total order � on AG by imposing that ˛ab � ˇcd if ˛ < ˇ and that
˛CC � ˛C� � ˛�C � ˛��.

The goal of this subsection is to rewrite the q–determinant and arc exchange relations
so that they define a set of relators of the form (27) whose leading terms are pairwise
distinct, satisfying .ql1/ and .ql2/ and such that the set of leading terms is

(28) LT WD f˛abˇcd j either ˛ > ˇ; or ˛ D ˇ and either a< c or b < dg:

The set BG is the generating set defined by (26) with this set of leading terms (ie BG

is the set of elements v1 � � � vn where vi 2AG and viviC1 is not in LT). At this stage,
it will become clear that BG spans L!.P /. Once we perform this task, we will prove
in step 3 that BG is free by showing that its image through ‰ W L!.P /! S!.†/ is a
basis of S!.†/. This will imply that ‰ is an isomorphism (proving Theorem 1.1) and
Theorem 3.6 will imply that L!.P / is Koszul (proving Theorem 1.2).

Consider two distinct generators ˛; ˇ 2G such that ˛ > ˇ. For each a; b; c; d 2 f˙g,
we have an arc exchange relation of the form

˛abˇcd D

X
ijklD˙

c
i;j ;k;l

a;b;c;d
ˇij˛kl ;

where c
i;j ;k;l

a;b;c;d
are some scalars. We associate the relator

r D ˛abˇcd �

X
ijklD˙

c
i;j ;k;l

a;b;c;d
ˇij˛kl ;

whose leading term is ˛abˇcd (because ˛ > ˇ implies that ˛abˇcd � ˇij˛kl ) and
denote by R˛;ˇ the set (of cardinality 16) of such relators.

Now suppose that ˛ 2G is of type a. The set of relations between the generators ˛ij

is given by

M.˛/ˇM.˛/DR�1.M.˛/ˇM.˛//R and detq.M.˛//D 1:

Note that in this case, the subalgebra of L!.P / generated by the ˛ij is isomorphic to
Oq ŒSL2�Š S!.B/. We rewrite those relations:

˛C�˛CC D q˛CC˛C�; ˛�C˛CC D q˛CC˛�C;(Ra)

˛��˛C� D q˛C�˛��; ˛��˛�C D q˛�C˛��;

˛C�˛�C D q˛CC˛��� q; ˛�C˛C� D q˛CC˛��� q;

˛��˛CC D q2˛CC˛��C 1� q2:

Algebraic & Geometric Topology, Volume 23 (2023)



1278 Julien Korinman

The associated set of relators R˛ is defined by assigning, to each of the seven equalities
of the form x D y in the system (Ra), the relator r WD x�y with leading term x. Note
that the set of leading terms of the elements of R˛ is the set of elements ˛ab˛cd such
that either a< c or b < d .

Now suppose that ˛ 2G is of type d . The set of relations between the generators ˛ij

are given by

.12ˇN.˛//R�1.12ˇN.˛//RDR.12ˇN.˛//R�1.12ˇN.˛//; detq2.N.˛//D1;

where N.˛/DC�1M.˛/. These relations generate the same ideal as the set of relations

˛�C˛CC D ˛CC˛�CC .q� q�1/q2˛C�˛��; ˛C�˛CC D q2˛CC˛C�;(Rd)

˛��˛�C D ˛�C˛��C .q� q�1/q2˛C�˛��; ˛��˛C� D q2˛C�˛��;

˛C�˛�C D ˛CC˛��� .q� q�1/2˛2
C��A;

˛�C˛C� D ˛CC˛��� .q� q�1/2˛2
C��A;

˛��˛CC D q2˛CC˛��� q2.q� q�1/2˛2
C�CA.1� q2/:

As before, we denote by R˛ the set of relators obtained from system (Rd) by assigning,
to each of the seven equalities of the form x D y in the system (Rd), the relator
r WD x�y with leading term x. Again, the set of leading terms of the elements of R˛

is the set of elements ˛ab˛cd such that either a< c or b < d .

For ˛ 2G of type c, the set of relations between the elements ˛ij can be obtained from
the system (Rd) using the reflection anti-involution. Rearranging the terms, we get the
system of relations

˛�C˛CC D ˛CC˛�CC .q� q�1/˛C�˛��; ˛C�˛CC D q2˛CC˛C�;(Rc)

˛��˛�C D ˛�C˛��C .q� q�1/˛C�˛��; ˛��˛C� D q2˛C�˛��;

˛C�˛�C D q2˛CC˛���A3; ˛�C˛C� D q2˛CC˛���A3;

˛��˛CC D q2˛CC˛��C .q� q�1/2˛2
C�CA�1.1� q2/:

Like previously, we denote by R˛ the associated set of relators and note that the set of
leading terms is the set of elements ˛ab˛cd such that either a< c or b < d .

Let V be the free k–module with basis AG and R� k˚V ˝2 � T .V / be the union of
the sets of relators R˛;ˇ and R˛ , where ˛; ˇ2G and ˛>ˇ. Then L!.P /DT .V /=.R/,
the leading terms of R are pairwise distinct and they form the set LT of (28), and the
hypotheses .ql1/ and .ql2/ are obviously satisfied. Therefore, if we prove that BG is a
basis of L!.P / then Theorem 3.6 would imply that L!.P / is Koszul.
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3.3 Step 3: injectivity of ‰

Denote by BG � S!.P / the image of BG under ‰ W L!.P /! S!.†/.

Theorem 3.7 The set BG is a basis of S!.†/.

Corollary 3.8 (i) The morphism ‰ W L!.P /! S!.†/ is an isomorphism.

(ii) The family BG is a PBW basis and S!.†/ is Koszul.

The fact that BG linearly spans S!.†/ follows from the surjectivity of ‰ (so follows
from Proposition 2.14), however we will reprove this fact. The proof of Theorem 3.7 is
divided into two steps. First we introduce another family BG

C � S!.†/ and prove that
BG
C is free by relating it to the basis B. Next we use a filtration of S!.†/ to deduce

that BG is free from the fact that BG
C is free.

For ˛ 2 G and n � 0, we denote by ˛hni the simple diagram made of n pairwise
nonintersecting copies of ˛. For n 2 NG, we denote by D.n/ the simple diagramF
˛2G ˛

hn.˛/i. Denote by v and w the two endpoints of ˛, and by a and b the (not
necessarily distinct) boundary arcs containing v and w, respectively. Write v1; : : : ; vn

and w1; : : : ; wn the endpoints of ˛hni so that vi <a viC1 and wi <b wiC1 (so vi and
wi are not necessarily the boundary points of the same component of ˛hni). A state
s 2 St.D.n// is positive if for all ˛ 2 G and for all i � j one has s.vi/ � s.vj / and
s.wi/� s.wj /; we let StC.D.n// denote the set of positive states.

Definition 3.9 We denote by BG
C � S!.†/ the set of classes ŒD.n/; s� for n 2 NG

and s 2 StC.D.n//.

Proposition 3.10 The family BG
C is a basis of S!.†/.

The fact that BG
C is free will follow from this elementary lemma, which basically says

that an upper triangular matrix with invertible diagonal elements is invertible:

Lemma 3.11 Let V be a free k–module , B a basis of V equipped with a partial
order�, and B0�V a family such that there exist two maps m WB0!B and c WB0!k�

such that

(i) m is injective , and

(ii) every element b0 2 B0 decomposes as

b0 D c.b0/m.b0/C
X

b>m.b0/

˛b;b0b:

Then B0 is free.
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Proof Consider a vanishing linear combination
P

b02B0 xb0b
0 D 0, where xb0 2 k.

Set S WD fm.b0/ j xb0 ¤ 0g. For contradiction, suppose that S ¤ ∅ and choose b0

a minimum for S . Let b0
0
2 B0 be the unique element such that m.b0

0
/ D b0. Then

the equality
P

b02B0 xb0b
0 D 0 together with the decomposition hypothesis imply that

c.b0
0
/xb0

0
D 0. Since c.b0

0
/ 2 k� is invertible by hypothesis, xb0

0
D 0, so we have a

contradiction.

Notation 3.12 (i) Let .D; s/ be a stated diagram and a a be boundary arc. We
denote by da.ŒD; s�/ 2 N the number of pairs .v; w/ in @aD such that v <a w and
.s.v/; s.w// D .C;�/; recall that the orientation of †P induces an orientation of a

which in turn induces the order <a. We also write d.ŒD; s�/D
P

a da.ŒD; s�/. Note
that ŒD; s� 2 B if and only if d.ŒD; s�/D 0.

(ii) Let D denote the set of stated diagrams .D; s/ with D simple, so both B and BG
C

are subsets of D. Define a binary operation 7!o on D as follows. If .D; s/ contains a
pair .v; w/ in @aD of consecutive points for the height ordering (there is no z 2 @aD

such that v <a z <a w) with v <a w and such that .s.v/; s.w//D .C;�/, let .D0; s0/
be the stated diagram obtained by joining v and w to a single point and then pushing it
to the interior of †, that is .D0; s0/ is obtained from .D; s/ by the local move

�

C
7! :

Let .D00; s00/ be obtained from .D0; s0/ by removing the possible trivial component if any.
In this case, we write .D; s/ 7!o .D

00; s00/. Since d.ŒD00; s00�/ < d.ŒD; s�/, the relation
7!o is terminal, with B as the set of terminal objects. Define a partial order�o by setting
.D; s/ >o .D

0; s0/ if there exists a sequence .D; s/ 7!o .D2; s2/ 7!o � � � 7!o .D
0; s0/.

Clearly, �o is filtrant, ie if .D1; s2/ �o .D; s/ and .D2; s2/ �o .D; s/ there exists
.D0; s0/ such that .D0; s0/�o .Di ; si/ for i D 1; 2.

(iii) Let ˛ be an oriented arc. Since G is a generating set, the associated path in
…1.†P ;V / decomposes as ˛ D ˇ"1

1
� � �ˇ

"k

k
and, since .G;∅/ is a presentation with

no relation, this decomposition is unique. We denote by lw.˛/ WD k its length. For
.D; s/ 2 D, where D D ˛1[ � � � [˛n with ˛i connected, we set

l.D; s/ WD

nX
iD1

.lw.˛i/� 1/:

Note that BG
C is the subset of elements .D; s/ 2 D such that l.D; s/D 0.
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�

�

�
�

�

C

C
C
C C

Figure 15: An element b 2 BG
C (left) and its associated element m.b/ 2 B

(right). Here G D fˇ1; ˇ2; ˇ3; ˇ4g is the set of generators of Figure 6.

(iv) We define a binary operation 7!B on D as follows. Let .D; s/ 2 D and ˛ a
connected component of D with lw.˛/ > 1. Choose a decomposition ˛ D ˛1˛2 where
lw.˛i/ < lw.˛/, set D0 WD .D n˛/[˛1[˛2 and fix the height orders and the state s0

such that .D0; s0/ is obtained from .D; s/ by the local move

7!
�

C
:

In this case, we write .D; s/ 7!G .D
0; s0/. Since l.D0; s0/ < l.D; s/, the relation 7!G is

terminal with Bo
C as the set of terminal objects. Define a partial order�G on D by setting

.D; s/ >G .D0; s0/ if there exists a sequence .D; s/ 7!G .D2; s2/ 7!G � � � 7!G .D0; s0/.
It follows from the unicity of the decomposition of a path in G (so from the fact that
.G;∅/ is a presentation with no relation) that �G is filtrant.

(v) Let m W BG
C ! B be the map sending a class ŒD; s� to the class of the unique

minimum for �o of the successors of .D; s/ (the existence and unicity are guaranteed
by the fact that �o is terminal and filtrant). Similarly, let m0 W B! BG

C be the map
sending a class ŒD; s� to the class of the unique minimum for�G of the set of successors
of .D; s/; see Figure 15 for an example.

Proof of Proposition 3.10 We will apply Lemma 3.11 to the map m W B! BG
C , where

we equip B with the partial order � where ŒD; s�� ŒD0; s0� if j@Dj< j@D0j.

The map m is injective By definition, if .D; s/ 7!G .D0; s0/ then .D0; s0/ 7!o .D; s/

(the converse if false in general). Therefore, for ŒD; s� 2 B, given a sequence

.D; s/ 7!G .D2; s2/ 7!G � � � 7!G .Dn; sn/ 7!G m.D; s/

one has a sequence

m.D; s/ 7!o .Dn; sn/ 7!o � � � 7!o .D2; s2/ 7!o D:

This implies that m0.m.D//DD so m0 ımD id and m is injective.
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BG
C

is upper triangular Suppose that .D; s/ 7!o .D
0; s0/. The skein relation

�

C
D q C

�
C!

shows that ŒD; s�D!ŒD0; s0�CqŒD00; s00�, where j@D0j< j@D00j. So for ŒD; s�2BG
C with

m.ŒD; s�/D ŒD0; s0� and given .D; s/ 7!o .D2; s2/ 7!o � � � 7!o .Dn; sn/ 7!o .D0; s0/,
we have

ŒD; s�D !nm.D; s/C higher terms;

where “higher terms” is a linear combination of elements .D0; s0/ with j@D0j> j@D0j.
Since B is free, Lemma 3.11 implies that BG

C is free. To prove that it spans S!.†/ we
note that if .D; s/ 7!G .D0; s0/, the same skein relation

�

C
D q C

�
C!

implies that

ŒD; s�D !�1ŒD0; s0��!�5ŒD00; s00�

for another element .D00; s00/ 2D such that l.D0; s0/ < l.D; s/ and l.D00; s00/ < l.D; s/.
We then prove that any element of B is a linear combination of elements of BCG by
induction on l.D; s/.

We now want to deduce that BG is a basis from the fact that BG
C is a basis. The argument

is based on the use of an algebra filtration of S!.†/ that we now introduce:

Definition 3.13 For n 2NG , we let jnj WD
P
˛2G n.˛/. For a class ŒD.n/; s�, we set

kŒD.n/; s�k WD .jnj;�d.ŒD.n/; s�// 2N �Z. Denote by < the lexicographic order on
N �Z, ie .k1; k2/ < .k

0
1
; k 0

2
/ if either k1 < k 0

1
, or k1 D k 0

1
and k2 < k 0

2
. Finally, to

kD .k1; k2/ 2N �Z we associate the submodule

Fk WD Span
�
ŒD.n/; s� W kŒD.n/; s�k � k

�
:

In order to prove that fFkg forms an algebra filtration, the following elementary
observation will be quite useful:

Lemma 3.14 Let T and T 0 be two tangles in†P�.0; 1/which are isotopic through an
isotopy that does not preserves the height orders. Let s 2 St.T / and s0 2 St.T 0/ be two
states such that for a boundary arc a, if @aT D fv1; : : : ; vng and @aT 0 D fw1; : : : ; wng
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are ordered so that h.vi/ < h.viC1/ and h.wi/ < h.wiC1/, then s.vi/D s0.wi/ for all
i 2 f1; : : : ; ng. Then one has

(29) ŒT; s�D !nŒT 0; s0�C
X

�2St.T 0/;d.ŒT 0;��/<d.ŒT 0;s0�/

x� ŒT
0; � �;

where n 2Z, x� 2 k and the sum in the right-hand side is over states � of T 0 such that
d.ŒT 0; � �/ < d.ŒT 0; s0�/.

Proof We say that a tangle Ti is obtained from a tangle TiC1 by an elementary height
exchange if there exists a boundary arc a and two consecutive points v and w in
@aTi with h.v/ < h.w/ (“consecutive” means that there does not exist any p 2 @aTi

such that h.v/ < h.p/ < h.w/) such that TiC1 is the tangle obtained from Ti by
exchanging the heights of v and w. Since T and T 0 are isotopic, through an isotopy
that does not preserve the height orders, we can obtain T 0 from T by a finite sequence
T D T1 7! T2 7! � � � 7! Tn D T 0 of elementary height exchanges. It is clear that if one
has a development (29) when the pair .T;T 0/ is equal to a pair .Ti ;TiC1/ and a pair
.TiC1;TiC2/, then it holds for the pair .Ti ;TiC2/. So by induction on the size n of
the finite sequence, it is sufficient to prove the lemma in the particular case where T

and T 0 differ by an elementary height exchange. In this case, (29) follows from the
height exchange relations

C

C
DA C

C
;

�

�
DA �

�
; C

�
DA�1 �

C
;

�

C
DA�1 C

�
C .A�A�3/ �

C
:

Notation 3.15 Let b 2 BG , so by definition b D b˛1
� � � b˛n

, where b˛i
2 B.˛i/. That

is, one has either b˛i
D ˛

ai

CC˛
bi

C�˛
ci
�� or b˛i

D ˛
ai

CC˛
bi

�C˛
ci
�� for some ai ; bi ; ci � 0.

Let n 2NG be defined by n.˛i/ WD ai C bi C ci . Let T .n/ be the tangle underlying
D.n/. Let .T; s/ be a stated tangle (unique up to isotopy) such that b D ŒT; s�, so that
T .n/ is obtained from T by an isotopy that does not necessarily preserve the height
order. Finally we define the element bC WD ŒT .n/; sC� 2 BG

C , where sC 2 StC.T .n// is
the unique state such that .T; s/ and .T .n/; sC/ satisfy the assumptions of (29). Note
that the induced map . � /C W BG! BG

C , sending b to bC, is a bijection.

Lemma 3.16 (i) For k;k0 2N �Z, one has Fk �Fk0 � FkCk0 .

(ii) For b 2 BG, one has

(30) b D !nbCC lower terms;
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where n2Z and “lower terms” is a linear combination of basis elements bCi 2B
G
C

such that kbCi k< kb
Ck.

Note that the second assertion of Lemma 3.16 implies that BG spans S!.†/, so reproves
Proposition 2.14.

Proof (i) Let x WD ŒT .n/; s� and y WD ŒT .n0/; s0�, and denote by .T .n/[T .n0/; s[s0/

the stated tangle obtained by stacking .T .n/; s/ on top of .T .n0/; s0/, so that

x �y D ŒT .n/[T .n0/; s[ s0�:

The tangles T .n/[T .n0/ and T .nCn0/ differ by an isotopy that does not necessarily
preserve the height orders, so Lemma 3.14 implies that x �y is a linear combination
of elements of the form ŒD.nCn0/; �� such that kŒD.nCn0/; ��k � kxkCkyk. This
proves the first assertion.

(ii) Using Notation 3.15, we apply Lemma 3.14 to b D ŒT; s� and bC D ŒT .n/; sC�,
and (30) is just a rewriting of (29).

Proof of Theorem 3.7 Both Proposition 2.14 and the second assertion of Lemma 3.16
imply that BG generates S!.†/. To prove that BG is free, we apply Lemma 3.11 to the
injective map . � /C W BG! BG

C where we equip BG
C with the ordering ŒD; s� < ŒD0; s0�

if kŒD; s�k > kŒD0; s0�k. The hypotheses of Lemma 3.11 are satisfied by virtue of
Proposition 3.10 and Lemma 3.16, so B is free.

4 Lattice gauge field theory

4.1 Ciliated graphs and quantum gauge group coaction

Since the pioneering work of Fock and Rosly [29], constructions in lattice gauge field
theory are based on ciliated graphs. As we now explain, to a ciliated graph .�; c/
one can associate a punctured surface †0 together with a finite presentation P of its
associated groupoid.

Definition 4.1 (i) A ribbon graph � is a finite graph together with the data, for each
vertex, of a cyclic ordering of its adjacent half-edges. An orientation for a ribbon graph
is the choice of an orientation for each of its edges.
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(ii) A ciliated ribbon graph .�; c/ is a ribbon graph � together with a lift, for each
vertex, of the cyclic ordering of the adjacent half-edges to a linear ordering. If the
half-edges adjacent to a vertex have the cyclic ordering e1 < e2 < � � � < en < e1 that
we lift to the linear ordering e1 < e2 < � � �< en, we draw a cilium between en and e1.

(iii) We associate surfaces to ribbon graphs as follows.

(a) Place a disc Dv on top of each vertex v and a band Be on top of each edge e,
then glue the discs to the bands using the cyclic ordering. We thus get a surface
S.�/ named the fattening of � .

(b) The closed punctured surface †.�/D .†.�/;P/ associated to � is the closed
punctured surface obtained from S.�/ by gluing a disc to each boundary com-
ponent and placing a puncture inside each added disc. So S.†/ deformation
retracts to †P.�/.

(c) The open punctured surface †0.�; c/D .†0.�; c/;P0/ associated to .�; c/ is
obtained from S.�/ by first pushing each vertex v to the boundary of S.�/ in
the direction of the associated cilium. Said differently, if the ordered half-edges
adjacent to v are e1 < e2 < � � � < en, we push v in the boundary of Dv so
that it lies between the band Ben

and the band Be1
. Next place a puncture pv

next to v (in the counterclockwise direction) on the same boundary component
as v. Finally, to each boundary component of S.�/ which does not contain any
puncture pv , glue a disc and place a puncture inside the disc. In the so-obtained
punctured surface †0.�; c/, each boundary arc contains exactly one vertex v
of � , so we denote by av the boundary arc containing v. Suppose that � is
oriented. Then the oriented edges of � form a set G of generators of…1.†

0
P ;V /

such that P .�; c/ WD .G;∅/ is a finite presentation without relations.

(iv) For v1 and v2 two distinct vertices of .�; c/, the ciliated graph .�v1#v2
; cv1#v2

/ is
obtained by gluing the vertices v1 and v2 to a vertex v in such a way that if e1< � � �< en

and f1 < � � �< fm are the ordered half-edges adjacent to v1 and v2, respectively, then
the linear order of the half-edges adjacent to v is e1 < � � �< en < f1 < � � �< fm. Note
that cv1#v2

¤ cv2#v1
.

Figure 16 illustrates two examples having the same ribbon graph but different ciliated
structures: the punctured surface †0.�; c/ is a disc with two inner punctures and two
boundary punctures whereas †0.�; c0/ is an annulus with one puncture per boundary
component and one inner puncture.
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.�; c/ S.�/ †0.�; c/ †.�/

.�; c0/ †0.�; c0/

Figure 16: Top, from left to right: a ciliated graph .�; c/, its fattening S.�/,
its open punctured surface †0.�; c/ and its closed punctured surface †.�/.
Bottom: the same ribbon graph with a different ciliated structure c0 (left) and
the associated open punctured surface †0.�; c0/ (right).

Remark 4.2 In [26] Costantino and Lê made the following important remark: the
punctured surface †0.�v1#v2

; cv1#v2
/ is obtained from †0.�; c/ t T by gluing the

boundary arcs av1
and av2

to two faces of the triangle T . In particular, when �D�1t�2

with v1 2 �1 and v2 2 �2, this property, together with Theorem 2.10, permitted the
authors of [26] to prove that S!.†0.�v1#v2

; cv1#v2
// is the cobraided tensor product of

S!.†0.�1; c1// with S!.†0.�2; c2//. The same gluing property was first discovered
by Alekseev, Grosse and Schomerus in [2; 3] for the quantum moduli spaces (see [37]
for a survey on the classical and quantum versions of the fusion operation).

For an oriented ciliated graph .�; c/, we denote by V .�/ its set of vertices and E.�/
its set of (oriented) edges. Like in the previous section, we see the elements of E.�/
as oriented arcs. Denote by D0 the punctured surface made of a disc with a single
puncture on its boundary. The closed punctured surface †.�/ is obtained from the
open one †0.�; c/ by gluing a copy D0 along each boundary arc av . Therefore, writing
yD WD

F
v2V .�/D0, by Theorem 2.10 one has the exact sequence

(31) 0! S!.†.�// i
�! S!.†0.�; c/t yD/

�R��ı�L

��������! S!.†0.�; c/t yD/˝Oq ŒSL2�
˝V .�/;

where i represents the gluing map.

Using the isomorphism S!.D0/Š k sending the class of the empty stated tangle to the
neutral element 1 2 k, we define an isomorphism

� W S!.†0.�; c/t yD/Š S!.†0.�; c//˝
O
v2V .�/

S!.D0/Š S!.†0.�; c//:
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Denote by � WS!.†.�// ,!S!.†0.�; c// the injective morphism � WD �ıi . Also denote
by�G WS!.†0.�; c//!S!.†0.�; c//˝Oq ŒSL2�

˝V .�/ the (unique) morphism making
the following diagram commute:

S!.†0.�; c/t yD/ S!.†0.�; c/t yD/˝Oq ŒSL2�
˝V .�/

S!.†0.�; c// S!.†0.�; c//˝Oq ŒSL2�
˝V .�/

�R

�Š �˝idŠ

�G

Definition 4.3 The quantum gauge group is the Hopf algebra Oq ŒG� WDOq ŒSL2�
˝V .�/.

The (right) Hopf-comodule map �G W S!.†0.�; c//! S!.†0.�; c//˝Oq ŒG� is called
the quantum gauge group coaction.

Note that, by definition, the following diagram commutes:

S!.†0.�; c/t yD/ S!.†0.�; c/t yD/˝Oq ŒG�

S!.†0.�; c// S!.†0.�; c//˝Oq ŒG�

�ı�L

�Š �˝idŠ

id˝�

Therefore the exactness of (31) implies that we have the exact sequence

(32) 0! S!.†.�// ��! S!.†0.�; c// �
G�id˝�
������! S!.†0.�; c//˝Oq ŒG�:

Said differently, �.S!.†.�/// is the subalgebra of S!.†0.�; c// of coinvariant vectors
for the quantum gauge group coaction.

Notation 4.4 For x 2Oq ŒSL2� and v0 2 V .�/ the element of the form
N
v yv , where

yv D 1 for v ¤ v0 and yv0
D x, is denoted by x.v0/ 2Oq ŒG�DOq ŒSL2�

˝V .�/.

Let ˛ be an arc of type either a or d and write v1 and v2 for the elements of V

corresponding to the boundary arcs containing s.˛/ and t.˛/, respectively. The quantum
gauge group coaction is characterized by the following formula illustrated in Figure 17:

(33) �G.˛ij /D
X

a;bD˙

˛ab˝x
.v2/

jb
x
.v1/
ia :

In order to prepare the comparison between stated skein algebras at !DC1 and relative
character varieties in the next subsection, let us derive from Theorem 1.1 an alternative
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j

i

b

a

b

a

j

i

˛ ˛
�G
��!

X
a;bD˙

˝

Figure 17: An illustration of (33).

presentation of S!.†/. During the rest of the section, we fix a finite presentation
P D .G;RL/ of …1.†P ;V / such that every arc of G is either of type a or d .

When comparing skein algebras with character varieties, there is a well-known sign
issue which requires some attention. When † is closed, the skein algebra SC1.†/

is generated by the classes of closed curves  whereas the algebra CŒXSL2
.†/� of

regular functions of the character variety is generated by curve functions � , sending
a class Œ�� of representation � W �1.†P/! SL2.C/ to � .Œ��/ WD tr.�. //. However
there is no isomorphism SC1.†/ŠCŒXSL2

.†/� sending  to � . Instead, we fix a spin
structure on †P with associated Johnson quadratic form � W H1.†P IZ=2Z/! Z=2Z

and define w. / WD 1C�.Œ �/. Then it follows from [7; 17; 44] that we have an
isomorphism SC1.†/Š CŒXSL2

.†/� sending  to .�1/w./� . A similar sign issue
appears when dealing with stated skein algebras and relative character varieties; this
was studied in [39] to which we refer for further details (see also [26; 48] for an elegant
interpretation of this sign issue in term of twisted character variety).

In short, the authors defined in [39] the notion of relative spin structure to which one
can associate a map w WG! Z=2Z having the property that for any simple relation
R D ˇk ? � � � ? ˇ1, one has

Pk
iD1w.ˇi/ D 1. We will call a map w W G ! Z=2Z

satisfying this property a spin function.

Notation 4.5 Let w be a spin function. For ˛ 2G, we denote by U.˛/ the 2�2 matrix
with coefficients in S!.†/ defined by

(34) U.˛/ WD

�
.�1/w.˛/!C�1M.˛/ if ˛ is of type a,
.�1/w.˛/C�1M.˛/D .�1/w.˛/N.˛/ if ˛ is of type d .

Proposition 4.6 (i) The stated skein algebra S!.†/ admits the alternative presenta-
tion with generators the elements U.˛/

j
i and with ˛ 2G and i; j D˙, together

with the following relations:
� The q–determinant relations detq.U.˛// D 1 when ˛ is of type a, and

detq2.U.˛//D 1 when ˛ is of type d .
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� For RD ˇk ? � � �?ˇ1 2RL a relation where l generators ˇi are of type a,
the trivial loop relation

(35) U.ˇk/ � � �U.ˇ1/DA3!l :

� For each pair of generators in G, the arc exchange relations obtained from
the relations in Lemma 2.24 by replacing N.˛/ by U.˛/ if ˛ is of type d or
by CN.˛/ if ˛ is of type a.

(ii) The quantum gauge group coaction is characterized by the formula

(36) �G.U.˛/
j
i /D

X
a;bD˙

U.˛/ba˝S.xbj /
.v2/x

.v1/
ia ;

where we use the same notation as in (33).

Proof It is clear from (34) that the matrix elements U.˛/
j
i generate the same algebra

as the elements M.˛/
j
i D ˛ij , so they generate S!.†/. We need to check that the q–

determinant, trivial loop and arc exchange relations for the elements ˛ij are equivalent
to the relations of the proposition for the elements U.˛/

j
i . When ˛ 2G is of type d ,

clearly the relation detq2.N.˛// D 1 is equivalent to the relation detq2.U.˛// D 1.
When ˛ 2G is of type a, the equivalence

detq.M.˛//D 1 () detq.U.˛//D 1

follows from a straightforward computation (and is the reason for the ! in the ex-
pression U.˛/ D .�1/w.˛/!C�1M.˛/). The equivalence between (10) and (35) is
straightforward (and is responsible for the introduction of the spin function and for
the .�1/w.˛/ factor in the definition of U.˛/). The fact that the arc exchange relations
are equivalent to the same relations with N.˛/ replaced by U.˛/ or C U.˛/ depending
whether ˛ is of type d or a follows from the definition of U.˛/ and the fact that the
arc exchange relations are homogeneous.

It remains to derive the formula (36) from (33). This is done by direct computation,
left to the reader, using the fact that for the two 2� 2 matrices

X D

�
xCC xC�
x�C x��

�
and S.X /D

�
S.xCC/ S.xC�/

S.x�C/ S.x��/

�
with coefficients in Oq ŒSL2�, one has S.X / D C�1tXC . Figure 18 illustrates (36).
In Figure 18, we use a special convention: we have drawn stated diagrams that go
“outside” of †P in some small bigon neighborhoods of the boundary arcs. It must be
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j

i

j

i

b

a

b

a

j

i

˛ ˛ ˛
U.˛/

j
i D

D
�G
��!

X
a;bD˙

˝

Figure 18: An illustration of (36).

understood that we need to apply a boundary skein relation in those neighborhoods.
This convention permits us to draw the matrix coefficients .C�1M.˛//

j
i . Note also

that in Figure 18 we drop the scalar factor .�1/w.˛/.

4.2 Relative character varieties

Since the quantum moduli algebras are deformation quantizations of the (relative)
character varieties studied by Fock and Rosly in [29], we briefly recall their construction
and refer to [6] for a detailed survey.

Let † be a punctured surface and V � †P be a finite subset which intersects each
boundary arc exactly once and each connected component of† at least once. Denote by
VV WDV \ V†P its (possibly empty) subset of inner points and let …1.†P ;V / be the full

subcategory of …1.†P/ generated by V . The representation space RSL2
.†;V / is the

set of functors � W…1.†;V /! SL2.C/. The discrete gauge group is GV WD SL2.C/
VV

and it acts on RSL2
.†;V / by

.� �g/.˛/ WDg.t.˛//�1�.˛/g.s.˛// for �2RSL2
.†;V /; g 2 GV ; ˛ 2…1.†P ;V /:

We claim that RSL2
.†;V / can be given the structure of affine variety in such a way

that the action of the reducible algebraic group GV is algebraic, so we can define the
GIT quotient

XSL2
.†/ WDRSL2

.†;V /==GV ;

which we call the relative character variety. To prove this, consider a finite presentation
P D .G;RL/ of …1.†P ;V / and write G D .˛1; : : : ; ˛n/ and RL D .R1; : : : ;Rm/.
Consider the regular map R W SL2.C/

G ! SL2.C/
RL written R D .R1; : : : ;Rm/,

where the coordinate Ri associated to a relation Ri D ˛
"1

i1
? � � �?˛

"k

ik
is the polynomial

function
Ri.g1; : : : ;gn/D g

"1

i1
� � �g

"k

ik
:
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Clearly one has RSL2
.†;V /DR�1.12; : : : ; 12/, where 12 is the identity matrix, so

RSL2
.†;V / is a subvariety of SL2.C/

G.

Note that the algebra CŒRSL2
.†;V /� of regular functions lies in the exact sequence

(37) CŒSL2.C/�
˝RL R���˝Gı�˝RL

�����������!CŒSL2.C/�
˝G
!CŒRSL2

.†;V /�! 0;

where � and � are the unit and counit of CŒSL2�. So we have turned RSL2
.†;V / into

an affine variety. Now the discrete gauge group action is induced by the Hopf comodule
map �G W CŒRSL2

.†;V /�! CŒRSL2
.†;V /�˝CŒGV �, which is the restriction of the

right comodule map z�G WCŒSL2.C/�
˝G!CŒSL2.C/�

˝G˝CŒSL2.C/�
˝ VV defined by

z�G.x.˛//D
X

x00
.˛/
˝S.x000/.v2/x0

.v1/ for x 2Oq ŒSL2� and ˛ W v1! v2 2G;

using Sweedler’s notation �.2/.x/D
P

x0˝ x00˝ x000. In particular, when x D xij

with i; j 2 f�;Cg, the formula gives

(38) �G.x
.˛/
ij /D

X
a;bD˙

x
.˛/

ab
˝S.xbj /

.v2/x
.v1/
ia :

Note the analogy between (38) and (36).

Finally, the algebra of regular functions of the relative character variety is defined as
the set of coinvariant vectors for this coaction, that is by the exact sequence

(39) 0!CŒXSL2
.†/�!CŒRSL2

.†/� �
G�id˝�
������!CŒRSL2

.†/�˝CŒGV �:

The relative character variety XSL2
.†/ does not depend (up to unique isomorphism) on

the choice of the triple .V ;G;RL/ used to define it, but only on †; we refer to [36]
for a proof. Note that in the particular case where V � @†P , the gauge group is trivial
so XSL2

.†/DRSL2
.†/. Moreover, if the presentation P does not have any relations,

then RSL2
.†/D SL2.C/

G . As we saw in Example 2.13, such a presentation P always
exists when † is a connected punctured surface with nontrivial boundary, therefore in
that case one has

XSL2
.†/D SL2.C/

G:

Now consider an oriented ciliated graph .�; c/ and consider the associated finite
presentation .V ;G;RL/ of the groupoid …1.†

0
P.�; c/;V / associated to the open

punctured surface defined in the previous subsection. The same triple .V ;G;RL/ also
gives a finite presentation of …1.†P.�/;V / associated to the closed punctured surface,
where this time all elements of V are inner vertices of †P.�/. Therefore one has

XSL2
.†0.�; c//DRSL2

.†.�//D SL2.C/
E.�/;
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where as before E.�/ denotes the set of edges of � . So the exact sequence (39) can be
rewritten as

0!CŒXSL2
.†.�//�!CŒXSL2

.†0.�; c//� �
G�id˝�
������!CŒXSL2

.†0.�; c//�˝CŒGV �:

Note the analogy with the exact sequence (32). The main achievement of Fock and Rosly
in [29] is the construction of Poisson structures on CŒXSL2

.†0.�; c//�DCŒSL2�
˝E.�/

and CŒGV �DCŒSL2�
˝ VV .�/ such that the coaction�G is a Poisson morphism. Therefore,

using the above exact sequence, the affine variety XSL2
.†.�// receives a (quotient)

Poisson structure. A good plan then is to show that this Poisson structure only depends
on the surface †P.�/ and not on .�; c/. This strategy permitted the authors of [29] to
extend the Atiyah–Bott–Goldman Poisson structure from unpunctured closed surfaces to
closed general punctured surfaces (see also [36] for a general treatment in the language
of punctured surfaces rather than ciliated graphs and using groupoid cohomology, and
for a Goldman type formula for the Poisson bracket).

Let us conclude this subsection with the following observation. It is well known
that the (stated) skein algebra SC1.†/ is isomorphic (though noncanonically) to the
algebra CŒXSL2

.†/� of regular functions of the (relative) character variety. For closed
punctured surfaces this was shown by Bullock [17] under the assumption that SC1.†/

is reduced; this assumption was proved in [44] (see also [23] for an alternative proof).
For open punctured surfaces this was proved independently in [39, Theorem 1.3] and
[26, Theorem 8.12] using triangulations of surfaces. Let us note that Theorem 1.1
gives a straightforward alternative proof of this result with the additional assumption
that P ¤∅.

Theorem 4.7 [17; 26; 39; 44] The algebras SC1.†/ (where kDC) and CŒXSL2
.†/�

are isomorphic.

Proof First suppose that † is an open connected punctured surface, let V be such that
each of its vertices are on the boundary (so the representation and relative character
varieties are the same), let P D .G;RL/ be a finite presentation of …1.†P ;V / whose
generators are either of type a or d and fix a spin function w. By (37), the algebra
CŒXSL2

.†/� is presented by the generators x
.˛/
ij for ˛ 2G and i; j 2 f�;Cg, with

� the exchange relations x
.˛/
ij x

.ˇ/

kl
D x

.ˇ/

kl
x
.˛/
ij for all ˛; ˇ 2G and i; j 2 f�;Cg,

� the determinant relations det.X.˛//D 1 for all ˛ 2G,

� the trivial loop relations X.ˇk/ � � �X.ˇ1/D 12 for RD ˇk ? � � �?ˇ1 2RL,
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where we set

X.˛/ WD

 
x
.˛/
CC x

.˛/
C�

x
.˛/
�C x.˛/��

!
:

By comparing this presentation of CŒXSL2
.†/� with the presentation of S!.†/ obtained

in Proposition 4.6 by setting ! DC1, we see that one has an isomorphism of algebras
‚ W SC1.†/

Š
�!CŒXSL2

.†/� sending U.˛/ to X.˛/; note that RD � when ! DC1, so
all arc exchange relations become U.˛/ˇU.ˇ/D �U.˛/ˇU.ˇ/� giving relations
˛ijˇkl D ˇkl˛ij . Moreover, by comparing (38) and (36), we see that ‚ is equivariant
for the gauge group coactions.

Now suppose that † is closed and connected with P¤∅, and let .�; c/ be a ciliated fat
graph such that †.�/D†. By the preceding case, one has an equivariant isomorphism
‚ W SC1.†

0.�; c// Š�!CŒXSL2
.†0.�; c//�, so one has a commutative diagram

0 SC1.†.�//� SC1.†
0.�; c//� SC1.†

0.�; c//�˝CŒGV �

0 CŒXSL2
.†.�//� CŒXSL2

.†0.�; c//� CŒXSL2
.†0.�; c//�˝CŒGV �

9!Š

�G�id˝�

‚Š ‚˝idŠ

�G�id˝�

Since both lines are exact there exists an isomorphism SC1.†.�//
Š
�!CŒXSL2

.†.�//�

obtained by restriction of ‚.

4.3 Combinatorial quantizations of (relative) character varieties

The work of Fock and Rosly suggests a natural way of quantizing character varieties.
The following problem was raised and solved independently by Alekseev, Grosse and
Schomerus [2; 3] and Buffenoir and Roche [15] (see also [20] for a survey):

Problem 4.8 Associate to each oriented ciliated graph .�; c/ an (associative unital)
algebra L!.�; c/ over the ring k WDCŒ!˙1� satisfying:

(A1) As a k–module, L!.�; c/ is just the (free) module

CŒRSL2
.†0.�; c//�˝C kŠCŒSL2�

˝E.�/
˝C k:

(A2) As before, write Oq ŒG� WDOq ŒSL2�
˝V .�/. The linear map

�G
W L!.�; c/! L!.�; c/˝Oq ŒG�

defined by the formulas

�G.x
.˛/
ij /D

X
a;bD˙

x
.˛/

ab
˝S.xbj /

.v2/x
.v1/
ia

is a Hopf-comodule map. In particular, it is a morphism of algebras.
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(Inv) The subalgebra Linv
! .�/� L!.�; c/ defined by the exact sequence

0! Linv
! .�/! L!.�; c/ �

G�id˝�
������! L!.�; c/˝Oq ŒG�

only depends (up to canonical isomorphism) on the (homeomorphism class of)
surface S.�/.

(Q) Let k„ WD CŒŒ„�� and write !„ WD exp.�.i�/=.2„// 2 k„ so that � W k! k„
defined by �.!/ WD !„ is a ring morphism. Then the k„ algebra Linv

! .�/˝� k„
is a deformation quantization of the Poisson algebra CŒXSL2

.†.�//� equipped
with its Fock–Rosly Poisson structure.

Theorem 4.9 (Alekseev, Grosse and Schomerus [2; 3; 5], Buffenoir and Roche [15; 16])
Problem 4.8 admits the solution L!.�; c/ WD L!.†0.�; c//, where the k–module
isomorphism L!.�; c/ŠCŒRSL2

.†0.�; c//�˝C k is given by sending U.˛/ to X.˛/.

The algebras L!.�; c/ are the so-called quantum moduli algebras and Theorem 1.3 is
an obvious consequence of Theorem 1.1.

More precisely, the ciliated graphs considered in [15; 16] are those whose underlying
graph is the 1–skeleton of some combinatorial triangulation of a Riemann surface. By
combinatorial we mean that each edge has two distinct endpoints, so every arc is of type
a and the only arc exchange relations among distinct arcs are in configurations (i) or
(ii) (in the notation of Lemma 2.24). In [2; 3; 5] general ciliated graphs are considered,
though in [3; 5] special attention is given to the quantum moduli algebras of the daisy
graphs defined in Example 2.13 (they are called standard graphs in [3; 5]) and are
further studied and related to stated skein algebras in [27]. In those daisy graphs, the
arcs are of type d and the more complicated arc exchange relations in configurations
(viii), (ix) and (x) appear under the name braid relations; see [3, Definition 12].

Note that, except for the study of the Poisson structure (which could have been easily
done), we reproved Theorem 4.9. In [43], Meusburger and Wise proved that the solution
of Problem 4.8 is unique, provided that we add some natural axioms for the operation
of gluing graphs together. Actually the authors of [43] consider quantum moduli
algebras associated to finite-dimensional ribbon algebras, whereas here we consider the
infinite-dimensional one Uqsl2, but their proof extends word-for-word to our context.

4.4 Comparison with previous works

Let †0 be a connected punctured surface with one boundary component, one puncture
on its boundary and possibly some inner punctures. Let .�; c/ be its daisy graph
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and P D .G;∅/ be the associated finite presentation as defined in Example 2.13 (so
†0 D†0.�; c/). In this case, since the presentation has no relations, one can consider
the spin functionw sending every generator to 02Z=2Z. Since every generator ˛2G is
of type d , the isomorphism‰ WS!.†0/ Š�!L!.�; c/ sends U.˛/DC�1M.˛/ to X.˛/.
By precomposing with the reflection anti-involution � , one obtains an isomorphism

‰0 W S!�1.†0/op Š
�! L!.�; c/;

which corresponds to Faitg’s isomorphism in [27]. Let us stress that our notation is
quite different from that in [27]; in particular:

� The letter q in [27] is what we denoted by A (so our q corresponds to q2 in [27]).

� The letter R in [27] is related to our R by RD � ıR.

� Faitg actually considered S!�1.†0/op, the opposite of the stated skein algebra.

As Faitg, Jordan and Safronov kindly explained to the author, the existence of an
isomorphism ‰ W S!.†0/ Š�! L!.�; c/ could have been derived from [9; 31] as we
now briefly explain using the notation in [31] to which we refer for further details. Set
kDCŒ!˙1� and fix a structure of a Riemann surface †. To any k–ribbon category A,
one can associate a skein category SkCatA.†/ whose objects are oriented embeddings
of finitely many disjoint discs D!† colored by objects in A and whose morphisms
are framed A–colored ribbon graphs in †� Œ0; 1� considered up to skein relations; see
[24, Section 4:2] for a precise definition. We denote by 1 2 SkCatA.†0/ the empty set.
Let †0 be obtained from a connected closed oriented surface † by removing an open
disc. Fixing an arbitrary disc embedding D!†0 gives a functor P WA! SkCatA.†0/

in an obvious way. Let yA WD Fun.Aop;Vect/ be the free cocompletion of A (which
inherits a monoidal structure from A). The internal skein algebra is defined as the
coend

SkCatint
A .†

0/ WD
Z x2A

HomSkCatA.†0/.P.x/; 1/˝x 2 yA:

The functor HomSkCatA.†0/.P. � /; 1/ WAop!Vect has a natural lax monoidal structure,
given by stacking ribbon graphs on top of each other, which endows SkCatint

A .†
0/ with

the structure of an algebra object in yA. If A is Tannakian, that is if it is equipped with
a fully faithful monoidal functor for WA! Vect, then

SA.†
0/ WD for.SkCatint

A .†
0//D

Z x2A
HomSkCatA.†0/.P.x/; 1/˝ for.x/ 2 Vect

is a unital associative algebra that we might call the stated skein algebra associated
to A and †0. Let us consider two Tannakian ribbon categories: the (Cauchy closure
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of the) Temperley–Lieb category TL and the category of finite-dimensional Uqsl2
left modules Repfd

q .SL2/ (recall that q is generic here). The Tannakian structure
forget W Repfd

q .SL2/! Vect is just the forgetful functor. It is well known that one has a
monoidal braided equivalence of categories (which does not preserve the pivotal struc-
ture) G W TL! Repfd

q .SL2/ sending the one strand ribbon Œ1� 2 TL to the fundamental
representations V of Section 2.1 with basis fvC; v�g, thus we get a Tannakian structure
forget ıG W TL! Vect.

On the one hand, there is a natural algebra morphism

‰1 W S!.†0/! STL.†
0/

sending the class ŒT; s� of a stated tangle, where @T has n elements, to the class of
T ˝ vs 2 HomSkCatTL.†0/.P.Œ1�˝n/; 1/˝V ˝n, where vs 2 V ˝n is obtained from the
state s by identifying the signs C and � with the basis vectors vC and v� of V . As
noted in [31, Remark 2.21] and fully explored in [32], a detailed comparison of the
definitions shows that ‰1 is an isomorphism.

On the other hand, thanks to Cooke’s excision theorem in [24] and as proved in
[31, Proposition 2:19], the internal skein algebra SkCatint

A .†
0/ is isomorphic to the so-

called moduli algebra A†0 DEnd.1/2 yA introduced in [9, Definition 5:3]. The authors
of [9, Theorem 5:14] defined an explicit isomorphism ŒRepfd

q .SL2/�†0 Š L!.�/, so by
composing the two isomorphisms, one get an isomorphism

‰2 W STL.†
0/ Š�! L!.�/:

Putting ‰1 and ‰2 together, we get an alternative construction of Faitg’s isomorphism.

Remark 4.10 The above construction generalizes the notion of a stated skein algebra
SC.†

0/ to an arbitrary Tannakian ribbon category C (how to replace †0 with an arbitrary
punctured surface is obvious), and [9, Theorem 5:14] seems to permit us to give explicit
finite presentations for SC.†

0/. A detailed study of these generalized stated skein
algebras will appear in a separate publication [25].

5 Concluding remarks

We conclude the paper by making some remarks concerning the usefulness of relating
stated skein algebras and quantum moduli spaces (Theorem 1.3). We can see the stated
skein algebras as defined by a huge set of generators (all stated tangles) and a huge set
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of relations (isotopy and skein relations) whereas the quantum moduli algebra is defined
by a finite subset of generators and by a finite subset of relations. Both presentations
have their own advantages.

(i) The fact that the quantum moduli algebra Linv
! .�/ only depends, up to canonical

isomorphism, on the thickened surface S.�/ (or equivalently †.�/) is usually proved
by defining elementary moves on graphs that preserve the thickened surface and showing
that those elementary moves induce isomorphisms on the algebras. This strategy was
pioneered by Fock and Rosly in the classical case of relative character varieties [29] and
later carried on in [3; 16] for quantum moduli algebras (see also [43] for very detailed
study). Thanks to the isomorphism Linv

! .�/ Š S!.†.�// (and the fact that stated
skein algebras depend on surfaces rather than graphs), this fact is also an immediate
consequence of Theorem 1.3. Also, the image of a closed curve  through the reverse
isomorphism ‰�1 W†.�/! Linv

! .�/ is usually called its holonomy Hol. / or Wilson
loop operators, and the expression of this holonomy in terms of generators as well as the
proof of some composition properties is the subject of long and technical computations
in [2; 3; 15; 16; 28; 43], whereas they become easy in the skein algebra setting.

(ii) Since the quantum moduli algebra L!.�; c/ is quadratic homogeneous, we might
have tried to prove that it is Koszul (proving that BG is free) without the help of the
stated skein algebra. The standard technique to prove that the family B of (26) is a
PBW basis consists in examining the set of critical monomials of the form vivjvk

(we use the notation of Section 3.2) where both vivj and vjvk are leading terms. To
such a critical monomial we associate a finite graph (which might have the shape of a
diamond) and the diamond lemma implies that if each of these graphs is confluent (has a
terminal object) then B is a basis, so the quadratic algebra is Koszul; see [42, Section 4]
for details. In our case, due to the huge amount of different kinds of relations in our
presentation, this strategy would require us to verify the confluence of 6578 different
graphs! This is way too much to be handled by hand. It is thanks to the fact that stated
skein algebras have a lot of relations and generators that Lê was able to successfully
use the diamond lemma in [40] to prove that B is basis, and our proof that BG is a
basis is directly derived from this fact. So proving the Koszulness of L!.�; c/ without
the help of stated skein algebras could have been a very difficult problem.

(iii) Even if we could find PBW bases for the algebras L!.�; c/ without the help
of skein algebras, finding bases for Linv

! .�/ would be extremely difficult, since it
is only defined as a kernel and no presentation is known. However, skein algebras
S!.†.�//Š Linv

! .�/ have well-known bases (of multicurves).
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(iv) As we saw in Section 4.2, the fact that LC1.†;P / is isomorphic to the algebra
of regular functions of the (relative) character variety XSL2

.†/ is very easy to prove,
whereas relating the (stated) skein algebra SC1.†/ to CŒXSL2

.†/� is not so obvious
(see [17; 44] for closed surfaces and [26; 39] for open ones).

(v) In [13] Bonahon and Wong proved that the Kauffman-bracket skein algebra
SC1.†/, with deforming parameter C1, embeds into the center of the skein algebra
S�.†/ with deforming parameter � a root of unity of odd order (see also [41] for
an alternative proof). This result was generalized in [39] to stated skein algebras as
well (see also [11] for generalizations). In [8], Baseilhac and Roche showed that
the construction of this so-called Chebyshev–Frobenius morphism is much easier
in the context of quantum moduli algebras (that is, using the finite presentations of
Theorem 1.1). Even though their study only concerns genus 0 surfaces, their proofs
seem to generalize easily to general surfaces, providing simpler proofs for the results
in [13; 39].

(vi) Bullock, Frohman and Kania-Bartoszynska already proved in [19, Theorem 10]
that Linv

! .�/ and S!.†.�// are isomorphic when k D CŒŒ„�� and ! D � exp
�
�

1
4
„
�
.

Their proof consists of defining an algebra morphism ‰ W Linv
! .�/! S!.†.�// (by

techniques similar to what we did in Section 2.2), and noting that under the .mod „/
identifications Linv

! .�/=.„/ŠCŒXSL2
.†/� and S!.†.�//=.„/Š S�1.†.�//, the mor-

phism ‰ reduces modulo „ to Bullock’s isomorphism CŒXSL2
.†/�Š S�1.†.�//. So

the fact that the reduction of ‰ modulo „ is an isomorphism implies that ‰ is an
isomorphism. This proof does not seem (at least to the author) to generalize to prove
the identification Linv

! .�/Š S!.†.�// for more general rings (such as kDC and ! a
root of unity), whereas our Theorem 1.3 works in full generality. A second reason why
the approach in [19] does not work at roots of unity is described in (vii).

(vii) The following important remark was kindly explained to us by the anonymous
referee, whom the author warmly thanks. In traditional papers in lattice gauge field
theory (like [3; 8]) the algebras L!.�; c/ are seen as Uqsl˝n

2
–modules instead of

Oq ŒSL2�
˝n–comodules (here n is the number of external vertices of � , ie the number of

boundary arcs of †.�; c/) and Linv
! .�/ is then defined as the algebra of Uqsl˝n

2
–invariant

vectors instead of Oq ŒSL2�
˝n–coinvariant vectors. When q is generic, there is a perfect

pairing between the two Hopf algebras Uqsl2 and Oq ŒSL2� so that both definitions
coincide. However, at roots of unity, the induced morphism Oq ŒSL2�! Uqslı2 is no
longer injective nor surjective. As a consequence, the two definitions of Linv

! .�/ do not
coincide anymore and Theorem 1.3 only holds for the definition used in the present
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paper. For instance, consider the case where .�; c/D so that m1 WD†.�; c/

is a once-punctured monogon, that is, a disc with one inner puncture and one boundary
puncture. In this case S!.m1/ŠL!.�; c/ is Majid’s braided quantum group; see [26; 8].
On the one hand, when q WD !�4 is a root of unity of odd order, Baseilhac and Roche
have proved [8, page 41] that the subalgebra of Uqsl2–invariant vectors coincides with
the center of S!.m1/ (denoted by L"

0;1
in [8]). This center is generated by the peripheral

curve p encircling the inner puncture p together with the image of the Chebyshev–
Frobenius morphism. On the other hand, the Oq ŒSL2�–coinvariant vectors form the
algebra CŒp � generated by the peripheral curve, isomorphic to the skein algebra of
a punctured disc †0.�; c/ as expected. Therefore the subalgebra of Uqsl2–invariant
vectors is bigger than the algebra of Oq ŒSL2�–coinvariant vectors and Theorem 1.3
would fail with the original definition of Linv

! .�/ at roots of unity.
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