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Asymptotic translation lengths and normal generation for
pseudo-Anosov monodromies of fibered 3—manifolds
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HYUNSHIK SHIN
CHENXI WU

Let M be a hyperbolic fibered 3—manifold. We study properties of sequences
(Sa,, » Yay,) of fibers and monodromies for primitive integral classes in the fibered
cone of M. The main object is the asymptotic translation length £¢ (g, ) of the
pseudo-Anosov monodromy ¥, on the curve complex. We first show that there
exists a constant C > 0 depending only on the fibered cone such that for any primitive
integral class (S, ¥) in the fibered cone, £¢ () is bounded from above by C /| y(S)]|.
We also obtain a moral connection between £ () and the normal generating property
of ¥ in the mapping class group on S. We show that for all but finitely many primitive
integral classes (S, 1) in an arbitrary 2—dimensional slice of the fibered cone, ¥
normally generates the mapping class group on S. In the second half of the paper,
we study if it is possible to obtain a continuous extension of normalized asymptotic
translation lengths on the curve complex as a function on the fibered face. An
analogous question for normalized entropy has been answered affirmatively by Fried
and the question for normalized asymptotic translation length on the arc complex in
the fully punctured case has been answered negatively by Strenner. We show that such
an extension in the case of the curve complex does not exist in general by explicit
computation for sequences in the fibered cone of the magic manifold.

30F60, 37E30; 32G15, 37B40

1 Introduction

Let M be a hyperbolic fibered 3—-manifold. Thurston introduced the so-called Thurston
norm on the first cohomology group of M, and showed that the unit norm ball is a finite
sided polyhedron. Let F' be a top-dimensional face of this polyhedron and consider a
primitive integral class contained in the open cone € = € over F. Thurston showed
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that if this cohomology class corresponds to a fibration of M over the circle S!, then
all primitive integral classes in ¢ correspond to fibrations of M over S'. In such a
case, we call F a fibered face and the open cone € a fibered cone.

For each primitive integral class o € €6, let (Sy, ¥) be the pair of corresponding
fiber and its monodromy. Since M is hyperbolic, the monodromy v, is pseudo-
Anosov by Thurston’s hyperbolization theorem; see, for example Farb and Margalit [8,
Theorem 13.4]. We will study the asymptotic translation length of ¥, on the curve
complex of the surface S, and the normal generators of mapping class groups Mod(Sy).

Let G be a group acting isometrically on a metric space (X,dy). For h € G, the
asymptotic translation length (or stable length) of h is defined by
dy (x,h"
Oy () = liminf X0
n—o00 n
where x is a point in X. It is not hard to see that £x (k) is independent of the choice
of x.

For a surface S, let 7(S) be the Teichmiiller space of S and let C(S) be the curve
complex of S. Since ¥, acts by an isometry on both 7(S,) and C(Sy), one can
consider the asymptotic translation lengths of 1, on 7(S) and on C(S), denoted by
L1 (Yq) and £¢ (V) respectively.

There has been a lot of work on £(1y) for primitive integral classes « in the fibered
cone; see Fathi, Laudenbach and Poénaru [9], Fried [10; 11], Long and Oertel [22],
Matsumoto [26], and McMullen [27]. In the case of £¢ (1), there has also been some
progress in the literature; see Aougab and Taylor [1], Bowditch [5], Farb, Leininger and
Margalit [7], Gadre, Hironaka, Kent and Leininger [12], Gadre and Tsai [13], Masur
and Minsky [24], Valdivia [34; 35], and the authors [2; 3; 16].

The following is a general upper bound of £¢ (1) in the fibered cone in terms of the
Euler characteristic y(Sy) of Sg.

Theorem 1.1 [3] Let F be a fibered face of a closed hyperbolic fibered 3—manifold M
and K be a compact subset of int(F), the interior of F. Then there exists a con-
stant C depending on K such that for any sequence (Sq,,, Ve, ) of primitive integral
classes which is contained in the intersection between the cone over K and a (d +1)—
dimensional rational subspace of H' (M),

le(Yay,) < W-
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Here a (d 4 1)-dimensional rational subspace of H!(M) means a subspace of H!(M)
which admits a basis vy, ...,vg41 € H'(M;Q). We note that in [3] the above theorem
was stated in the case of closed hyperbolic fibered 3—manifolds, but almost the same
proof can be adapted to the case of compact hyperbolic fibered 3—manifolds possibly
with boundary; see Remark 2.5.

Two additional questions naturally arise from Theorem 1.1. First, what can we say if
the sequence is not contained in the cone over any compact subset of the fibered face F'?
For instance, given a sequence that has a subsequence converging projectively to the
boundary dF, can we determine the upper bound of the asymptotic translation length
of the pseudo-Anosov monodromies? We answer the first question in the following
theorem.

Theorem 3.1 Let F be a fibered face of a compact hyperbolic fibered 3—manifold,
possibly with boundary. Then there exists a constant C depending on F such that for
any primitive integral class (S, V) € 6,
C
le(y

G

We make a couple of remarks regarding Theorem 3.1. We first note that a version
of Theorem 3.1 was obtained by Schleimer in [30]. Even though he used different
language, [30, Theorem 4.4] can be reinterpreted to give a statement of the form of
Theorem 3.1 when the manifold is closed. We give an alternative argument which
works for the nonclosed case as well.

Secondly we remark that the upper bound in Theorem 3.1 is optimal. In Lemma 4.12,
we give an explicit sequence (Sq,, . Vg, ) converging projectively to a point in dF such
that the asymptotic translation length of the corresponding pseudo-Anosov monodromy
is comparable to 1/|y(Sg,)|- That is, there exists a constant C such that

l; ) <

C [X(Se,)l ~ X (Sa,)l
In general, for real-valued functions A(x) and B(x), we say that A(x) is comparable to
B(x) if there exists a constant C independent of x such that 1/C < A(x)/B(x) <C,
and we denote it by A(x) < B(x).

= Kc(lﬁa”

The second question is whether the upper bound in Theorem 1.1 is sharp. It is noted
in [3] that the bound is optimal for d = 1. We show that it is also optimal when d =2
by constructing an example coming from the magic manifold N, which is the exterior
of some 3—component link in the 3—sphere S3.
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Theorem 4.13 Let F be a fibered face of the magic manifold. Then there exist two
points, bg € dF and ¢q € int(F), which satisfy the following:

(1) Foranyr € QN[l,2), there exists a sequence (Sq,,, Va, ) of primitive integral
classes in 6 g converging projectively to bg as n — oo such that
1

% (Sa,) ™

(2) ForanyreQn [%, 2], there exists a sequence (Sg,, . Vo, ) of primitive integral

Le(Ya,) <

classes in € g converging projectively to ¢y as n — oo such that
1
| X(San ) |r .

In particular, the upper bound in Theorem 1.1 is optimal when d = 2.

le(Ya,) <

As an immediate corollary of Theorem 4.13, we conclude that there is no normalization
of the asymptotic translation length function defined on the rational classes of the
fibered face, which continuously extends to the whole fibered face. More precisely, we
have the following.

Corollary 4.15 Let F be a fibered face of the magic manifold N. Fora e FNH(N;Q),
let (Sg, V) be the fiber and pseudo-Anosov monodromy corresponding to the primitive
integral class & lying on the ray of o passing through the origin. Then there is no
normalization of the asymptotic translation length function

FNHYN;Q) > Rsg, ar Lle(Vg),

in terms of the Euler characteristic y(Sg) which admits a continuous extension on F .

For the arc complex, Strenner defined in [31] the normalized asymptotic translation
length function 4 for each integer d > 1 on the rational classes of a fibered face with
the fully punctured condition. Strenner proved in the same paper that the functions
g for d > 2 are typically nowhere continuous. His result and Corollary 4.15 stand
in contrast to Fried’s result [10]. See also Matsumoto [26] and McMullen [27]. They
proved that the normalized entropy function of pseudo-Anosov monodromies has a
continuous extension on the fibered face, which is strictly convex.

Now we turn our attention to normal generation of mapping class groups. Let S = Sg
be an orientable surface of genus g with n punctures, possibly n = 0. We denote Sg o
by Sg. We say that an element / of a group G normally generates G if the normal

Algebraic € Geometric Topology, Volume 23 (2023)
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closure of % is equal to G. For a given primitive class (S, ¥/¢) in the fibered cone €,
when does 1/, normally generate Mod(Sy)? Normal generation in the mapping class
group has been studied by many authors. For instance, D Long [21] asked if there
exist pseudo-Anosov normal generators. Later Ivanov asked in [14] what properties are
satisfied by the pseudo-Anosov normal generators. A work of Lanier and Margalit [20]
(partially) answered the questions of Long and Ivanov. In particular, they showed
that for a pseudo-Anosov element f € Mod(Sy), if the stretch factor A( /') is smaller
than +/2, then f normally generates Mod(S ¢). The normal closure of random elements
was studied as well, for instance by Maher and Tiozzo [23]. They showed that with
asymptotic probability 1, the normal closure of a random element is free. This in
particular implies that random elements are not normal generators.

This connects to our brief discussion of asymptotic translation length, since the log-
arithm of the stretch factor, log A(f'), is equal to £7( ). In other words, if a pseudo-
Anosov element of Mod(S) is contained in some proper normal subgroup, then its
asymptotic translation length on the Teichmiiller space cannot be too small. It is natural
to ask an analogous statement for the curve complexes, ie if a pseudo-Anosov element
of Mod(S) is contained in some proper normal subgroup, then its asymptotic translation
length on the curve complex cannot be too small in some sense. The following question
was raised by Dan Margalit (via personal communication).

Question 1.2 For a subgroup H of Mod(Sg), set
Le(H) =min{le(f) | f is pseudo-Anosov and f € H}.
Is there a constant C > 0 such that
C
Le(H) > —
c(H) = g
for any g > 2 and for any proper normal subgroup H of Mod(Sg)?

As a partial evidence toward this question, it is shown by Baik and Shin [2] that
1
LC (I = —,
g) 7

where Z is the Torelli group, ie the proper normal subgroup of Mod(Sg ) whose action
on the first homology is trivial. In fact, by [2, Theorem 3.2],

Le(Zg) = m

forall g > 2.

Algebraic € Geometric Topology, Volume 23 (2023)



1368 Hyungryul Baik, Eiko Kin, Hyunshik Shin and Chenxi Wu

Combining with Theorem 3.1, we propose the following conjecture regarding the
normal generators of mapping class groups contained in the fibered cone which was
originally asked as a question by Dan Margalit (via personal communication).

Conjecture 1.3 Let F be a fibered face of a closed hyperbolic fibered 3—manifold M.
Then for all but finitely many primitive classes (Sq, Vo) € € F, Yo normally generates
Mod(Sg).

We give a partial answer when primitive integral classes are contained in a 2—dimensional
rational subspace of H!(M). See also Remark 3.7.

Theorem 3.4 Let F be a fibered face of a closed hyperbolic fibered 3—manifold M,
and let L be a 2—dimensional rational subspace of H'(M). Then for all but finitely
many primitive integral classes (S, V) in € r N L, ¥ normally generates Mod(S). In
particular, if the rank of H'(M) equals 2, then Conjecture 1.3 is true.
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2 Arithmetic sequences in the fibered cone

For a hyperbolic 3—manifold M, possibly with boundary dM, Thurston [32] defined a
norm || - || on Hz(M, oM ;R). It turns out the unit norm ball Bys with respect to the
Thurston norm is a finite-sided polyhedron. Let F' be a top-dimensional face of Byy.
We consider an open cone € = € over F. Thurston showed that if M is a fibered
3-manifold, then either all integral points in ‘6 are fibered or none of them are fibered.
(When an integral cohomology class corresponds to a fibration of M over S, we say
the integral point is fibered.) In the former case, we call € a fibered cone. We denote
by € the closure of the fibered cone €.

Algebraic € Geometric Topology, Volume 23 (2023)



Asymptotic translation lengths for pseudo-Anosov monodromies of fibered 3—manifolds 1369

By abuse of notation, the first cohomology classes are treated as their dual second
homology classes throughout this paper without explicitly mentioning it. Furthermore,
we will write a primitive integral class & € H!(M) as a pair (S, ) when S and ' are
the fiber and the monodromy for the fibration over S! corresponding to a.

In this section, we will show a key property of infinite arithmetic sequences in a fibered
cone for the proof of Theorem 3.4. Here by an arithmetic sequence we mean a sequence
(¢ +nB)nez., where a (resp. B) is a primitive integral class in a fibered cone 6
(resp. the closure % of the fibered cone €). We first need to find some criterion for
a given element of the mapping class group to be a normal generator. In [20], the
so-called well-suited curve criterion is introduced. Roughly speaking, this criterion
says that if there is a simple closed curve ¢ such that the configuration of ¢ U f(c) is
simple enough, then f is a normal generator for the mapping class group.

Here we state one special case that we need and show its proof for the sake of com-
pleteness. For more general statements, see [20, Sections 2, 7 and 9]. For a closed
curve ¢ in the surface S without specified orientation, [c] means the homology class
in H;(Sg) with arbitrary orientation.

Lemma 2.1 [20, Lemma 2.3] Let f € Mod(Sg) for g > 3. Suppose that there is a
nonseparating curve ¢ in Sg such that ¢ and f(c) are disjoint and

Ele] # [f(e)] € Hi(Sg).
Then the normal closure of f is Mod(Sy).

Proof Let f and c be as in the statement of the lemma. Then one can find nonsepa-
rating curves a, b, d, x and y which satisfy the following conditions.

* a, b, c and d bound a subsurface S of Sg which is homeomorphic to a 4—
punctured sphere.

e Each of the triple of curves (a, b, x), (b,d, y) and (b, ¢, f(c)) bounds a pair of
pants contained in S.

e No two of the curves a, b, ¢, d, x, y and f(c) are homologous.
To see the existence of such curves, start with Figure 1, left, which is the surface of
genus 0 with four boundary components (ie, a 4—punctured sphere) labeled 4, B, C

and D. Glue a pair of pants along the boundary components labeled A and B, and glue
another pair of pants along the boundary components labeled C and D. Then we get a

Algebraic € Geometric Topology, Volume 23 (2023)
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Figure 1: Left: a 4—punctured sphere. Right: a genus 2 surface with two
boundary components.

surface of genus 2 with two boundary components (Figure 1, right). Along the two
boundary components, we glue in another surface of genus k > 0 with two boundary
components. The resulting surface is a closed surface of genus 3 + k. We take k so that
3 + k = g which is the genus of our given surface Sg. This is our model surface, and
we let ¥ denote the model surface. If weseta=A,b=B,c=C,d=D,x=X,
y =Y and f(c) = Z, then the above conditions are satisfied by construction.

By the classification of the compact orientable surfaces, for any two pairs of disjoint
nonhomologous simple closed curves on the surface, there exists a homeomorphism
which maps one pair to the other. (This is a special case of the so-called change of
coordinates principle. See for instance [8].) Hence, there exists a homeomorphism ©
from X to Sg such that ®(C) = c and ®(Z) = f(c). Now seta = ®(A), b = O(B),
d =®(D), x =P(X) and y = ®(Y). Then we get the desired set of curves a, b, d,
x and y which satisfy all the conditions together with ¢ and f(c).

For any curve y on Sg, let T, be the left-handed Dehn twist about y. Then by the
lantern relation, we have T, Tp T Ty = Tr()TxTy. Using the commutativity of the
Dehn twists about disjoint curves, one can rewrite the lantern relation as

Ty =T ' TryT; ' Tu T, ' Ty

Note that 7, ' Ty) = TV (fTe f ') = (T fTe) f~1 which is contained in the
normal closure of f.

As before, by the change of coordinates principle, there exists an orientation-preserving
homeomorphism £ of Sg such that 4(c) = a and h(f(c)) = x. Then

T, T = Ty Thir ey = b T  Treph,
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ie it is just a conjugate of Tc_le(c). Hence T !Ty is in the normal closure of f.
Similarly, Tb_1 Ty is also contained in the normal closure of f.

This shows that T lies in the normal closure of f. From the fact that there exists only
one mapping class group orbit of nonseparating simple closed curves and the Dehn
twists about nonseparating simple closed curves generate the mapping class group, we
can now conclude that the entire mapping class group Mod(S) is contained in the
normal closure of f. ad

Now we prove the key proposition on the sequences in the fibered cone.

Proposition 2.2 Let ¢ be a fibered cone for a closed hyperbolic fibered 3—manifold M .
Leto € € and B € € be integral classes. Then there is some integer ng > 0 depending
on « and 8 which satisfies the following. If (S,¥) = o + nf € € is a primitive
integral class for n > ng, then there is an essential simple closed curve ¢ on S such that
e, y(c), ..., ¥"1(c) are disjoint, and %[c] # [V (c)] in H{(S).

Proof Let n be a positive integer such that o 4+ nf is a primitive integral class. Let
S¢ and Sg be embedded surfaces in M which represent « and B respectively. Note
that their orientations are assigned, and each connected component of those surfaces
has genus at least 2, since M is a closed hyperbolic 3—-manifold. In what follows, we
explain how to choose these representatives more explicitly.

For any primitive integral class in ‘6, one obtains a suspension flow F of the monodromy.
Fried showed that when M is a closed hyperbolic fibered 3—-manifold, the flow F is an
invariant of € in the following sense: if one considers the suspension flows from two
primitive integral classes in 6, then they are the same flow up to reparametrization and
conjugation by homeomorphisms on M. Moreover Fried showed that if an embedded
surface S in M is a fiber for a primitive integral class in ‘6, then S can be made
transverse to JF, and the first return map along the flow F represents the monodromys;
see [11] and [9, Theorem 14.11 and Lemma 14.12].

Surely Sy can be made transverse to F, since o € 6. If § € 6, then the same holds for S 8-
However if 8 € 96 = € \ 6, then this may or may not be possible for representatives
of . The transverse surface theorems by Mosher [28] and Landry [19] including the
case of compact hyperbolic 3—manifolds tells us that, for any integral class B € €, there
exists a flow F, which is semiconjugate to F, such that a representative Sg of f is
transverse to 7. Here 7 is obtained from F by using the dynamic blowup of some
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(possibly empty) singular periodic orbits of F. The flow F is called a dynamic blowup
of F for B € €. (The dynamic blowups of F may not be unique.) For more details of
the dynamic blowup of singular orbits, see [28, pages 8-9] and [19, Section 3.1].

We now explain some relevant properties of F which are needed in the proof of
Proposition 2.2. The new flow F is obtained from F by replacing the singular orbits of
F by a set of annuli such that flow lines in the interior of each annulus spiral toward
boundary components of the annulus. Moreover Sy N A is a union of embedded trees
in Sy, where A is the collection of annuli created during the finitely many blowups of
singular orbits. When 8 € 46, it is shown in the transverse surface theorem that Fis
obtained by dynamically blowing up F along an empty collection of periodic orbits,
and hence F is the same as F. Now S p 1S transverse to F. From the construction of F,
we may suppose that Sy, is still transverse to F.

For any positive integer n, we can consider n parallel copies of Sg, say S1,..., Sy
such that the S; are very close to each other. Whenever we are in this situation, the n
copies of S; are labeled so that for 1 <i < n, S; gets mapped to S; 4+ by the flow F
before touching any other S;. Note that 7 is not fixed.

We now describe the surgery, ie cut and paste, on Sy, S1, ..., S, along the intersection
locus to get a surface S which represents o + nff. Along each component of the
intersection between Sy and each copy of Sg, we cut those surfaces. Locally there are
four sheets of surfaces, two from Sy and two from the copy of Sg. Glue one sheet
from Sy to one sheet from Sg so that the orientations on those sheets match up. One
can do the same for the other two remaining sheets. The resulting surface S represents
o +np. Clearly S is transverse to F. We note that this is a standard operation. For
instance, it is the same as the oriented sum in [6].

The transversality of S to F implies two things. First of all, this means § is transverse
to A. Since the original flow F is obtained from F by collapsing the annuli in 4 to
singular orbits of F, § is transverse to F after the collapsing. Second, the intersection
S N A is a collection of trees on S by transversality together with the construction of A
in the dynamic blowup. Now let U and W be the first return maps on S for 7 and F,
respectively. Since U and W differ only on the trees and each tree is contractible, v
and W are clearly homotopic to each other. Therefore v represents the monodromy
Y = [W] for « + np.

Note that because all S; are parallel copies of Sg, any curve or region on Sg gives rise
to a curve or region on each of the S; that are parallel to it. Hence, in what follows,
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de") =1

d(e) = —1

Figure 2: Left: a multicurve C together with its 3—regular graph G on Sg =~
closed surface of genus 2. Middle: an example of a cochain d on G: for three
edges from w to v, their values are —1, 0 and 1 respectively. Right: a Z—fold
cover G’ corresponding to d of the middle diagram.

whenever we specify any multicurve on Sg we implicitly specify multicurves on all of
the S; which are parallel to each other.

Let C be a multicurve on Sg such that all the connected components of Sg \ C have
genus 0 with three ends (Figure 2, left). Furthermore, we assume that every intersecting
curve between Sy and Sg is parallel to one of the curves in C. Such a multicurve
C always exists. To construct one, group the intersecting curves between S, and
Sp into parallel families, choose one in each parallel family and use them to form
a multicurve C’. Now, if some connected component of Sg \ C’ has genus greater
than 0, or has more than three ends, then we can add an extra curve to C’ to break it
into components of lower complexity, and repeat this process until all the connected
components of Sg \ C’ have genus 0 with three ends.

Now we make use of the graph theoretic lemma below.

Lemma 2.3 Let G be a 3—regular finite graph. Let d be an integer valued cellular
cochain on G whose value on each edge is bounded above by k > 0, and let G’ be the
Z—fold cover constructed from d (ie the vertices of G’ are Z—copies of the vertices
of G and each edge e in G from w to v is lifted to edges from the j™ lift of w to the
(j +d(e))™ lift of v; see Figure 2, middle and right). Then there is some R depending
only on k and the number of edges |E(G)| of G such that G’ has a simple loop y’ of
length no more than 2R.

Proof Suppose there are no such loops of length less than 2R in G’ for any R. Then
the R—neighborhood (ie neighborhood with radius R assigning each edge length 1)
of any vertex vg in G’ must be a tree whose vertices have valence 1 or 3. Hence it
contains 3 x (2R — 1) edges. However, such a neighborhood must contain at most
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A// A//

N
R
S
S

A// A A/

At A AtA-

Figure 3: Left: parallel curves on Sg which are some components of the
intersection between Sy and Sg. Middle: an annular neighborhood of A
and the side of AT, Right: for an edge e starting from the side of A1, 4
contributes to d(e) by +1.

(2Rk + 1)|E(G)| edges. (This is because in R steps, one can travel up at most Rk
levels, ie Rk copies of the fundamental domain, or travel down at most Rk levels.
Together with the original level, there are (2Rk + 1) levels in total that one might be
able to pass through, and hence there are at most (2Rk + 1)| E(G)| edges in them.)

Since the exponential function grows faster than the linear one, one can set R sufficiently
large to reach a contradiction. |

We continue the proof of Proposition 2.2. Note that the multicurve C above gives a pants
decomposition of Sg. Let G be the 3—regular graph where each vertex corresponds
to a pair of pants in the pants decomposition of Sg, and each edge corresponds to the
component of the multicurve between two pairs of pants; see Figure 2, left. Now we
define the cochain d on G which only depends on Sy and Sg as follows; see Figure 3.

Consider the surface S obtained from the cut and paste construction of S, and n copies
of Sg. If a curve A is one component of the intersection between S, and Sg, we cut
Sp along A (hence we cut each copy of Sg along a curve corresponding to A) which
results in two boundary curves for each copy of Sg, say AT and A™. The labeling A
and A~ are determined as follows: in the surface obtained from S, and the copies of
Sp via the cut and paste construction, an annular piece of S, connecting the i™ copy
of Sg to the (i + 1) copy of S p 1s attached to the i™ copy of S g along AT (the index
of each copy of Sg is understood as an integer modulo ). We label the other boundary
component A~

Now the labeling on each copy of Sg is well defined, and if one considers an annular
neighborhood of A, then one can make sense of the statement that one side is the side
of A and the other side is the side of A™.

Let us consider an edge e on G which intersects the curve A. If e is with the orientation
so that it passes from the side of A™ to that of A~ then A contributes to d(e) by +1,
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and A contributes to d(e ') by —1, where e~ ! is the same edge as e with the opposite
orientation. The number d (e) is obtained by summing up all the contributions of curves
in Sy N Sg that the edge e passes through. Note that the cochain d does not depend on
n but only on Sy and Sg, since we consider copies of Sg very close to each other, the
intersection with Sy looks exactly the same in any copy of Sg.

Let k be the maximum of the values of d on all edges on G, and let R be the constant
from Lemma 2.3. Now let n be any integer so that n > 2Rk + 2, and consider the
surface § obtained from S, and n copies of Sg by a cut and paste construction. (In
other words, here we will argue that the integer n¢ in Proposition 2.2 can be chosen
as 2Rk + 2.) Let y’ be a simple loop in G’ in Lemma 2.3. The fact that |d(e)| < k
implies that y’ passes through at most 2Rk + 1 consecutive fundamental domains of
the deck group action on G’. The embedding of these 2Rk + 1 fundamental domains,
together with one more, to 2Rk + 2 copies of Sg after the surgery, sends y’ to some
simple loop y on the surface S. (To do that, pick a point in each pant in S;. Now pick
a starting vertex vg on y’, and let y start at the point associated to the corresponding
pant in Sgx». Now, we travel along y’, and for each edge, connect the points in the
two pants associated with the two end points of the edge. The construction of G’ and
Lemma 2.3 imply that the resulting path y will also be closed.)

Let ¢ € C be a component of the multicurve on Sg and let ¢; be the corresponding
copies of ¢ on the i™ copy S; of S 4. Suppose that ¢ is chosen such that ¢; is crossed by
y once for some /, and that y does not cross the lowest copy S7; see Figure 4. One can
choose such a ¢ since the length of y’ is no more than 2R. Note that all ¢; survive under
surgery because they do not cross the intersections between S; and S,. Furthermore,
except for the top c,, their images under the first return map are ¥ (c;) = ¢j+1. By the
construction of S, it follows that ¢y, ¥ (c1) = c2, ..., wn_l (c1) = cp, are disjoint. For
the proof of Proposition 2.2, we only need to show that [c2] &£ [¢1] is not homologous
to 0. (This also implies that ¢c; on S is essential.) To do so, one only needs to show that

WL+ 9l o ido) (el = [e]) = [er] = [ea]
and
W2 =yl o (=D Edd) (2] + [ea]) = [er] + (=12 [ed]

are not 0. Since y passes through ¢; and it does not pass through ¢y, the simple closed
curves ¢; and ¢ do not bound a subsurface. Therefore [c;] # £[c1]. This completes
the proof of Proposition 2.2. O
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_ S
1

Figure 4: The horizontal line segments (with dots) represent the copies
S1,82,... of Sg, and the curve with arrow represents the loop y which
passes through S; but not the lowest copy S of Sg.

We now consider a compact hyperbolic fibered 3—manifold M. In order to obtain an
estimate for the asymptotic translation length of monodromies from the arithmetic
sequences in the fibered cone for M, we show the following variant of Proposition 2.2.

Proposition 2.4 Let € be a fibered cone for a compact hyperbolic fibered 3—manifold
M possibly with boundary, let « € € and B € € be integral classes, and suppose
(S,¥) =a+npB €% is a primitive integral class for an integer n > 2. Then there is an es-
sential simple closed curve ¢ on S or essential arc on S such thatc, ¥ (c), ..., ¥"~1(c)
are disjoint. In particular,

2
lLe(Y) < 1

Proof Let F be the suspension flow for the fibered cone €. In [19, Appendix A],
Landry generalized Fried’s theory on the fibered cone (for closed hyperbolic fibered
3-manifolds) to the case of compact hyperbolic fibered 3—manifolds M possibly with
boundary. In particular F is an invariant of € as well. Then we use the transverse
surface theorem [19; 28] for compact hyperbolic fibered 3—manifolds M again. Let
Fbea dynamic blowup of F for f € €. We can take representatives S and S g of a
and B respectively so that Sy and Sg are transverse and they intersect the new flow
F transversely. We may assume that Sy and Sg intersect minimally, ie the number of
components of the intersection between Sy and Sg is minimal among all representatives
of o and B. The surface obtained from S, and Sg by a cut and paste construction is
a fiber of the fibration associated with o + B € 6. This implies that S, and Sg are
minimal representatives of « and S.
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Do surgery (as in the proof of Proposition 2.2) at the intersection locus of S, and
n copies of Sg to obtain a surface S representing a + nf8. We now find the desired
essential simple closed curve on S or an essential arc ¢ on S. Let ¢ be one of the
intersection curves or arcs between Sy and Sg, and let S be the lowest copy of Sg.
The fact that ¢ is essential on Sq and on Sg follows from the fact that the intersection
between Sy and Sg is minimal; see [32] or [6, Lemma 5.8]. It is not hard to see from
the cut and paste construction that ¢ is also essential on S.

From the choice of c, it follows that ¢ and ¥"*~!(c) are disjoint. They are distinct in the
arc and curve complex AC(S), since ¥ is pseudo-Anosov. Thus the distance between ¢
and ¥"~1(¢) in AC(S) equals 1. This implies that (n — 1)€ac(¥) = Lac(y* 1) <1 —
cf [16, Lemma 2.1]— where £ 4¢(3) is the asymptotic translation length of ¥ on
AC(S). It is known that the inclusion map C(S) — AC(S) is 2-bilipschitz; see, for
instance, [25, Lemma 2.2] or [18]. In particular, this tells us that

le(Y) <2Lac(V).
Thus we have £o (V) <28 c(¥) <2/(n—1). ad

Remark 2.5 In [3], Theorem 1.1 was proved in the case of closed hyperbolic fibered
3-manifolds. We note that almost the same proof can be adapted to the case of compact
hyperbolic fibered 3—manifold. In fact, one only needs to modify the last paragraph
(after Lemma 8) in the proof of [3, Theorem 5] to allow y and y’ to be either an essential
simple closed curve or an essential simple arc. Then one obtains the same conclusion
of Theorem 1.1 by the fact that inclusion map C(S) — AC(S) is 2-bilipschitz as in the
proof of Proposition 2.4 in this paper.

3 Applications of arithmetic sequences

3.1 Asymptotic translation lengths in fibered cones

In this section, we show the following estimate for the asymptotic translation lengths
in the curve complexes.

Theorem 3.1 Let F be a fibered face of a compact hyperbolic fibered 3—manifold
possibly with boundary. Then there exists a constant C depending on F such that for
any primitive integral class (S, V) € 6,

C
Vs I
c() = )
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To prove this theorem, we need the following lemma about rational cones. Here a
rational cone in Euclidean space R™ is the set of the points of the form

{x =(x1,...,xm) €ER™ | Ax! > 0}

for some k x m matrix A with integer entries (where x’ is the transpose of x.) We
further assume that this set has nonempty interior.

Lemma 3.2 Let P be a rational cone in R™, and let int(P) be its interior. Then there
exist two nonempty finite sets Qo C int(P) N Z™ and 2 C P N Z™ such that

int(P)ﬂZmZ{a—l—Zkbb‘aGQo,kbEZ,ka()%.
beQ

Proof Tt is a classical result—see [33, Proposition 3.4] —that P N Z™ is a finitely
generated monoid. Let 2 be a finite set of generators of P N Z™, and let

Qoz%Zb’WcQ,WgZFforallfacesFofaP}.
bew

Here a face of dP is a polytope of dimension m — 1 which is the intersection of 9P
with a (m—1)—dimensional subspace of R™. Note that W can possibly contain only a
single point in int(P). Clearly ¢ is a finite set with at most 219l elements.

Note that a linear combination of elements in €2 with nonnegative coefficients lie on a
face of 0P if and only if all the coefficients for those generators that are not on this
face are 0. In other words, if ) ;g kpb is in int(P) and kj are all nonnegative, then
the set {h € Q | kp > 1} must not be contained in any face of dP. Hence

int(P)Nz™ = {a—i—Zkbb)aEQo,kb €Z,kp>0
beQ
and in particular ¢ C int(P) N Z™ as we desire. a
Here is an example of the two finite sets $2¢ and 2 for a rational cone in R2.
Example 3.3 Let us consider the following rational cone in R?.

e frmtn| 1))

One can take Q = {b1 = (1,0),b2 = (1,1),b3 = (2,3)} as a set of generators of
P N Z?. There are two faces of dP. One is {(x,0) | x > 0} which contains {b;} as a
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subset, and the other is {(x, %x) | x > O} which contains {3} as a subset. One sees that
Qo consists of five elements, by, b1 + by = (2,1), by + b3z = (3,3), b + b3 = (3, 4)
and by + by + b3 = (4,4).

Proof of Theorem 3.1 For a fibered cone €, the closure % is a rational cone in
H(M), because the unit Thurston norm ball is a polytope whose vertices are rational
points [32]. By Lemma 3.2, if an integral class § is in 6, then it can always be written
of the form § =a + ) ;g kpb, where a € Qg and kp, is a nonnegative integer. If S is

a norm-minimizing surface of 8, then we have ||6|| = | x(S)| and it is bounded above by
max(l,max(kb))(||a|| +> ||b||).
beQ bew

Hence, when [x(S)| > maxaeq, lall + X peq 101,

105)1 = st (el + 3 111 )

beQ
Therefore,

|x(S)] |x(S)]
max(kp) > > .
beQ lall + X peq 161 — maxqeqq lall + X peq 101

Let by, be a b in Q that maximizes k. We set @ = a + Zbesz,b;ébm kpb, B = by, and
n=kp,. Wehave o € ‘6 and B € %. Then § is given by § = « + nf with
) £(5)|
T MaxgeQ, lall + ZbeQ 5]l

Note that the denominator in the right hand side only depends on the fibered cone. Now,

when [|§]| = | x(S)| > maxzeq, llal|+D_pcq |0, the conclusion of the theorem follows
directly from Proposition 2.4. The remaining case ||§| < maxzeq, [|a|| + D _pecq |0
consisting of finitely many primitive integral classes §; hence the theorem is proved. O

3.2 Normal generation in the fibered cone

In this section we prove the following theorem as a partial answer to Conjecture 1.3.

Theorem 3.4 Let F be a fibered face of a closed hyperbolic fibered 3—manifold M,
and let L be a 2—dimensional rational subspace of H'(M). Then for all but finitely
many primitive integral classes (S, V) in € N L, Y normally generates Mod(S). In
particular, if the rank of H'(M) equals 2, then Conjecture 1.3 is true.
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o

o

Figure 5: Left: the fibered face F in the fibered cone € (p and p lie on the
same ray in 6 r passing through the origin). Right: the subset Np C 6.

For the proof of Theorem 3.4, we first prove the following result.

Theorem 3.5 Let“€ be a fibered cone of a closed hyperbolic fibered 3—manifold M .
Then there exists some x € %€ such that for each primitive integral class (S, V) € x + €,
Y normally generates Mod(S), where x + 6 = {x +v | v € 6}.

Proof Let d be any Euclidean metric on H'(M). Let F be the fibered face correspond-
ing to 6. For every point p € €, let p be the intersection of F' with the ray starting from
the origin and passing p (Figure 5, left). By [27, Corollary 5.4], we have a real analytic,
strictly concave and degree 1 homogeneous function y = 1/log K(-) defined on <,
such that the stretch factor A(p) for p € € isequalto K(p) and y(p) =1/log K(p) —0
as p — dF. The concavity implies that there must be some k£ > 0 (independent of the
choice of p) such that

—— >k -d(p, 09).
log(k(py) —© 4700

A way to see the existence of k is as follows. Concavity of y implies that there is some
point pg € F where y(po) > 0. Then, for any point p € F, consider the line segment
from pg to the boundary of F passing through p. Then concavity of y means that on
this line segment, y is bounded from below by the linear function L which takes value
0 at one end and y(po) at another end. Hence it has a slope s = s(p) that depends on p
and s = s(p) is continuous on p. On the other hand, the function d( -, 0%), restricted
to this line segment, is piecewise linear, and hence it is also bounded from above by a
linear function L’ taking value O at the end on dF . We choose such linear function L’
with the smallest slope s” = s’(p). Then s’ = s’(p) is continuous on p. Now k can be
chosen as any number below the ratio s/s’ between these two slopes. As both slopes
depend continuously on p, and F has compact closure, we can choose a universal k
that works on the whole face F.
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Furthermore, the degree 1 homogeneity implies that
1 _d(O, p) 1
log(K(p)) ~ d(0.p) log(K(p))
For D > 0, we consider the set Np (Figure 5, right),

Np ={p€€|d(p,d6) < Dj.

From the above computation, the stretch factor for p € € \ Np satisfies
A(p) = e K(p) — (eIOg K(ﬁ))d(O,ﬁ)/d(O,P)

< (e1/(kd(ﬁ,a%)))d(O,ﬁ)/d(O,p) = o1/ (kd(p.0€)) < ,1/(kD)

Hence as long as D is sufficiently large, A(p) can be made to be as close to 1 as needed.
In particular it is smaller than /2 when D is large enough. This together with [20,
Theorem 1.2] shows that for some D, all primitive integral classes in 6\ Np are normal
generators. The theorem now follows by picking an arbitrary x € 6\ Ap, due to the
fact that the boundary of Np must be parallel to that of 06 itself; see Figure 5, right. O

The next result follows immediately from Lemma 2.1 and Proposition 2.2.

Theorem 3.6 Let € be a fibered cone of a closed hyperbolic fibered 3—manifold.
Suppose that (S, , Va,) is a sequence of primitive integral classes in € such that
0n = v+ nw, where v € ¢ and w € € are fixed integral classes. Then Y, normally
generates Mod(Sy,,) for sufficiently large n.

We are now ready to prove Theorem 3.4.

Proof of Theorem 3.4 Let L be a 2—-dimensional rational subspace of H!(M) sat-
isfying the assumption of Theorem 3.4. Theorem 3.5 says that there is some x € €
such that all primitive integral classes (.S, ¥) in x + 6 normally generate Mod(S). In
particular this holds for all primitive integral classes in (x 4+ %) N L. Because L is of
dimension 2, the integral classes in (€ \ (x + %)) N L are the union of finitely many
sequences of the form (v +nw),cN, Where v € € and w € %. Thus by Theorem 3.6, for
all but finitely many primitive integral classes (S, ¥) in (€ \ (x +%)) N L, ¥ normally
generates Mod(S). ad

Remark 3.7 Our approach to Theorem 3.4 does not work when the dimension of
the rational subspace L of H!(M) is more than 2. This is because in this case, the
intersection (€ \ (x +%)) N L no longer consists of finitely many sequences of primitive
integral classes of the form v + nw, where v € 6 and w € 6.

Algebraic € Geometric Topology, Volume 23 (2023)



1382 Hyungryul Baik, Eiko Kin, Hyunshik Shin and Chenxi Wu

4 Sequences in the fibered cone of the magic manifold

Let C3 be the 3—chain link in S3 as in Figure 6, left. The magic manifold N is the
exterior of C3 (hence dN consists of three boundary tori), and it is a hyperbolic and
fibered 3—-manifold. We give some background on invariant train tracks in Section 4.1
and we discuss the fibered cone of N in Section 4.2. We compute the upper and lower
bounds of the asymptotic translation length of particular sequences in the fibered cone
of N in Sections 4.3 and 4.4. Then we prove Theorem 4.13 in Section 4.5.

4.1 Invariant train tracks for pseudo-Anosov maps

For definitions and basic results on train tracks, see [4; 8; 29]. Let Y : S — S be a pseudo-
Anosov homeomorphism defined on a surface S possibly with boundary/punctures.
When S is a punctured surface, we say that  is fully punctured if the set of singularities
of the unstable foliation for v is contained in the set of punctures of S.

Let 7 be an invariant train track for . Then ¢ : § — § induces a map on t to itself
which takes switches (vertices) to themselves. Such a map is called the train track map.
By abuse of notation, we denote the train track map on t also by ¥ : ¢ — t. Following
[4, Section 3.3], we say that a branch e of t is real if there exists an integer 71 > 1 such
that ¥"" (e) passes through all branches of t. Otherwise we say that e is infinitesimal.
The train track map v : T — t induces a finite digraph I" by taking a vertex for each
real branch of 7, and then adding m;; directed edges from the j  real branch e ; to the
i real branch e;, where m;, j is the number of times that the image v/ (e;) under the
train track map 1 passes through e; in either direction.

For the lower bound of £¢(), we recall a result of Gadre and Tsai. The follow-
ing statement is a consequence of [13, Lemma 5.2] together with the proof of [13,
Theorem 5.1].

Proposition 4.1 Lety € Mod(Sg ») be a pseudo-Anosov element and let T be an in-
variant train track for y. Suppose that r is a positive integer such that for any real branch
e of T, Y" (e) passes through every real branch. If we seth =r +24|(Sg »)|—8n, then
wh(e) passes through every branch of t (including infinitesimal branches). Moreover,
if we set

w="h+6|y(Sgn)|—2n=r+30|x(Sg,n)|—10n <r +30|x(Sg.n)|,
then we have 1

1
Y, >
c(‘ﬂ) ~w " r +30|X(Sg,n)|
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(1/3,2/3,0)
(1/201/2,0)

(0,0,—1) (1,0,0)

(_13_15_1)

Figure 6: Left: the 3—chain link C3. Right: the Thurston norm ball of N and
fibered face F'.

4.2 Fibered cones of the magic manifold

We consider coordinates of integral classes in fibered cones of N. We assign orien-
tations of the three components of C3 as in Figure 6, left. Let Sy, Sg and S, be the
oriented 2—punctured disks bounded by these components of C3. We set « = [Sq],
B =I[Sgland y =[S)] in Hy(N,IN;Z) ~ HY(N:;Z). Then «, B and y form a basis
of Hy(N,dN;Z). We denote by (x, y, z) the class xa + yf + zy. The Thurston
norm ball By is the parallelepiped with vertices o = £(1,0,0), £8 = £(0, 1, 0),
+y =4(0,0,1) and £( + B + y) = £(1, 1, 1); see Figure 6, right.

A symmetry of C3 tells us that every top-dimensional face of By is a fibered face.
Moreover all fibered faces of N are permuted transitively by homeomorphisms of N.
Hence they have the same topological types in their fibers and the same dynamics of their
monodromies. To study monodromies of fibrations on N, it suffices to pick a particular
fibered face, say F with vertices (1,0, 0), (1,1, 1), (0, 1,0) and (0, 0, —1); see Figure 6,
right. For a primitive integral class (S, ¥) € € F, the monodromy v is pseudo-Anosov
defined on S with boundary components, since dN # &. Each connected component
of 4§ is a simple closed curve which lies on one of the boundary tori of N. By abusing
notation, we often regard boundary components of S as punctures of S by crushing
each boundary component to a puncture. Hence we think of i as a pseudo-Anosov map
defined on the punctured surface S. Such ambiguity does not matter for our purpose
since the computation of the asymptotic translation lengths of the pseudo-Anosov
monodromies on the curve complex will not be affected. Under this convention, one
sees that for any primitive integral class (S, ¥) € €, the pseudo-Anosov monodromy
¥ is fully punctured; see for example [15].
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Figure 7: Digraphs Iy, k), left, F(l,n,nz)_;,_’ middle, and I'(y 3,0) , right.

The open face int(F) is written by
int(F)={(x,y,2) | x+y—z=1,x>0,y>0,x>z,y>z}.
This implies that (x, y,z) € €F if and only if x >0, y >0, x > z and y > z. The next

lemma tells us the topological type of the corresponding fiber Sy . -).

Lemma 4.2 [17] For a primitive integral class (x,y,z) € €, let [0Sy, »)| denote
the number of the boundary components of S(y,y. ). The Thurston norm

1Ges y. DI =[x (Sex,p,2)]
equals x +y —z, and |08y, )| is given by
108 (x,y,2)| = ged(x, y +2) +ged(y, z +x) + ged(z, x + y).
More precisely, each term in the right-hand side expresses the number of boundary
components of Sy, ) which lie on one of the boundary tori of N.
We introduce another coordinate, (i, j, k)+. For i, j,k > 0, define
(i, j.k)+ =i(1,1,1)+j(0,1,0) +k(1,1,0) = (i + k,i +j +k,i).

Note that (1,1,0) € €, but (0,1,0) ¢ €F and (1,1, 1) ¢ €F (in fact the two classes
lie on JF); see Figure 6, right. We denote by (i, j, k) +, the class with the Thurston
norm 1 which is projectively equal to (i, j, k)+.
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If i, j and k are integers with i > 0, j > 0 and k > 0, then (i, j, k)4 € €Ff. If
(i, J,k)+ is a primitive integral class in €, then we let (S(_ j k), V(,j k), ) be the
pair of the fiber and its monodromy. In [15, Section 3], the second author constructs
an invariant train track T = 7(; ; x), and the digraph I' = I';; ; ), of the train track
map V¥ = ¥ jk), : T — t for each primitive integral class (i, j,k)+ € €. Figure 7,
left, illustrates I" = I‘(l,j’k)Jr wheni =1, j > 0and k > 0; see also [15, Figure 22(4)].
The vertices in the left column of I" are denoted by s, aq, ..., a; from bottom to top;
vertices in the right column of I'" are denoted by rq,...,r;, b1, ..., by from bottom to
top. (Recall that each vertex of I' corresponds to a real branch of t.) The numbers
j —1 and k — 1 near the “thick” edges of I" indicate their lengths of paths. For instance,
the edge r; Q r; from rq to r; indicates the edge path r; — -+ —rj—1 — r;. See
Figure 7, right, for the concrete example. When j = 1 or k = 1, the corresponding
“thick” edges collapse; see Figure 11.

4.3 Computing the lower bounds

For fixed positive integers p and g, we consider the sequence
1,n?,n?)yy =0 +n?,1+nP+n?1)ebr

for a varying positive integer n. The integral class (1,n?,n?)4 is primitive, since
ged(1,n?,n?) = 1. From the formula of the Thurston norm in Lemma 4.2, it is
immediate to see the following lemma. See also Figure 6, right.

Lemma 4.3 Let (1,n?,n9)4+ be the projective class of (1,n?,n?) .

(1) If p=q, then (1,n? n9)4 — (%, %,0) €int(F) asn — oo.

(2) If p<gq,then(1,n? n?); — (% %O) €int(F) asn — oo.

(3) Ifp>gq,then(1,n?,n?); — (0,1,0) € OF asn — oo.

Here we consider the following three cases: ¢ < p <2¢, p <q <2p and 2p <¢q. We

define
n?(2n? +1) if g < p <2gq,

k=kpqg=n12n? +1) if p<q<2p,
nf(2n?=P 4+ 1) if2p <gq.

Proposition 4.4 For any two vertices v and w of I' = I'(y y» na), , there exists an
edge path from v to w of length k 4+ 2n? + 3n4.
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In other words, if we set k' = kp,q + 2n? + 3n4, then for any real branch v of t,
wk/(v) passes through every real branch. For the proof of Proposition 4.4, we need
some lemmas. Recall that s is the bottom vertex in the left column of I'. Let vg be the
top vertex aq in the left column of I'; see Figure 9.

Lemma 4.5 For any vertex v in the left column of I', there exists an edge path from s
tov of length k.

Proof We have an edge path s — a; LN ana = vg from s to vy of length n4. For
the proof of the lemma, it suffices to show that for any vertex v in the left column of T,
there exists an edge path from vg to v of length k —n4. Then the desired path can be
obtained from the concatenation of the two paths, the path from s to vg and the path
from vg to v. Equivalently, we show that for any i = 0, ..., n?, there exists a cycle
based at v of length k —n? +i.

It is easy to find two cycles based at vg in I' of lengths n? and n? + 1; see Figure 7,

left. We have another cycle based at vg in " of length n? +n? + 1,
np—1 ng—1
Vg =dpa —>Fr] ——>TI'yp > 8§ —>d1 —> Apa = Vg

We show that repeated use of these three cycles is enough to produce the cycles we
desire. Suppose ¢ < p < 2¢g. Then k —n? = 2n??. We now show that for any
i =0,...,n%, there exist nonnegative integers a, b and ¢ such that

an? +bm? + 1) +c(n? +n? +1)=2n9 +i.
This is done by setting c =0, b =i anda =2n? —i.

Suppose p < g < 2p. Then k —n9 = 2nP*4. We claim that for any i =0, ...,n9,
there exist nonnegative integers a, b, and ¢ such that

an? +b(n? + 1) +cn? +n? +1) =2nP%1 4.

This can be done by setting

_ i — i (nP i — 92,0 _}_
C_an+lJ’ b=i—m?P+1) pralll a=2n b—c,

where | - | is the floor function. Here » and ¢ are nonnegative integers by definition, and
b is the remainder of i divided by n” + 1. Hence b must be no larger than n”. On the
other hand ¢ <n9=?,because i <n? <n9=P(mP+1). Thusb+c <nP +n4=? <2n?,
which implies that a is nonnegative.
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Lastly, suppose 2p < ¢g. Then k —n? = 2n%9—P_ We claim that for anyi =0,...,n9,
there exist nonnegative integers a, b, and ¢ such that

an? +b(n? +1)+cm? +n? + 1) =2n%4"P 4,

This can be done by setting

_ i — i _(nP i — q—Dr _ } _
C—an+1J, b=i—m?P+1) el a=2n b—c.

Here b and ¢ are nonnegative integers by definition, and b is the remainder of i divided

by n? 4+ 1. Hence b must be no larger than #n?. On the other hand ¢ < n?~?, because
i <n? <n?7P(n? +1). Thus b+ c <nP +n?7? <2p9 P, which says that a is
nonnegative. This finishes the proof. O

Lemma 4.6 For any vertex v in the left column of " and for any m > 0, there exists
an edge path from s to v of length k + m.

Proof Let v be any vertex in the left column of I". For any m > 0, one can find a
vertex v’ in the left column of T" such that there is an edge path from v’ to v of length
m. (To see this, use the above cycles based at vg of lengths n? and n? + 1.) Lemma 4.5
tells us that there exists an edge path from s to v’ of length k. The concatenation of
these edge paths is a desired edge path of length k + m. O

Lemma 4.7 For any vertex v in the right column of I" and for any m > 0, there exists
an edge path from s to v of length k + n? +n4 4+ m.

Proof Let v be an arbitrary vertex in the right column of I'. Then there exists an edge
path from vg to v of length £ with 1 <{ <n? + n9. To see this, use the path

np—1 ng—1
Vo =dAapqa —> 11 —> I'na —>b1 —>bnq

from vg to bye. On the other hand, Lemma 4.6 tells us that there exists an edge path
from s to vg of length k + (n? +n? —£) + m. Here (n? + n4 —£) + m plays the role
of m in Lemma 4.6. Concatenating these two paths, one obtains an edge path from s
to v of length k +n? +n? + m. O

By Lemmas 4.6 and 4.7, we immediately have the following lemma.

Lemma 4.8 For any vertex v of I" and for any m > 0, there exists an edge path from s
tov of length k +n? +n? 4+ m.

We are now ready to prove Proposition 4.4.
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Proof of Proposition 4.4 Note that for any vertex v, there exists an edge path from
v to s of length 0 < £ <n? 4 2n?. To see this, one can use the edge path of length
n? + 2n4 passing through all vertices of ',

np—1 ng—1 ng—1
r —> rpa = b1 —— bpa — a1 ——— apa —> 5.

By Lemma 4.8 there exists an edge path from s to any vertex w of length exactly
k + (2n? 4 3n4 — 1), since 2n? + 3n? —{ > n? 4+ n4. The concatenation of the two
paths has length k 4+ 2n? + 3n4. O

Now we are ready to compute the lower bounds. For real-valued functions A(x) and
B(x), we write A(x) = B(x) if there is a constant C > 0 independent of x such that
A(x) = C - B(x).

Theorem 4.9 The sequence (1,n?,n?) in € satisfies
1/n%4 if g <p<2q,

Le(Wanrnay,) 2 1/nPte if p<q<2p,
1/n%4=P if2p<gq.

Proof By Lemma 4.2, it is not hard to see that
n24 if g < p <2g,
(kp,g +2n? +3n7) + 301 x(S(1,n7 nay, )| =< nPt4  if p<q <2p,
n24=P if2p <gq.

Then the desired claim follows from Propositions 4.1 and 4.4. O

4.4 Computing the upper bounds

To prove Theorem 4.13, we will also compute the upper bound of the asymptotic
translation length of Y1 »r na), -

Theorem 4.10 For any fixed positive integers p and g with g < p < 2q, the sequence
(1,n?,n4) 4 of primitive integral classes in ‘6 g converges projectively to (0, 1,0) € OF
asn — 0o, and

be(Wanrnayy) < 27

The first half of Theorem 4.10 follows from Lemma 4.3(3). For the rest of the proof,
we first introduce the dual arcs of real branches of train tracks. Consider an invariant
train track t for the monodromy 1 defined on the fiber S of a fibration on N. If we
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Figure 8: Cell decomposition, branches, and dual arcs.

think of the surface S with boundary as the punctured surface which is again denoted
by S abusing notation, each component of the complement S \ t of the train track
is a once-punctured ideal polygon, because ¥ is fully punctured. Consider the cell
decomposition of S corresponding to 7. That is, O—cells are switches of 7, 1—cells are
branches of 7, and 2—cells are ideal polygons of S \ t.

Given a real branch v, the dual arc «y, of v is defined to be the edge of the dual cell
complex that connects the punctures in two polygons (possibly the same polygon)
sharing the real branch v; see Figure 8.

Notice that the dual arc o, is an essential arc. In order to see this, consider a rectangle
associated with the real branch v, contained in a Markov partition for a pseudo-Anosov
homeomorphism which represents yy. Then v corresponds to leaves of the unstable
foliation and the dual arc «, corresponds to leaves of the stable foliation in this rectangle.
If the dual arc is not essential, then this implies that the real branch v cannot support a
positive transverse measure, which is a contradiction to a property of pseudo-Anosov
homeomorphisms.

Readers may notice that the dual arc associated to a real branch is a general notion for
fully punctured pseudo-Anosov homeomorphisms. More precisely, if T is an invariant
train track for a fully punctured pseudo-Anosov i, then for a real branch v of 7, one
can define the dual arc o, which is essential.

Proof of Theorem 4.10 Let (S, V) = (S(1,n2 na),» ¥(1,n7,ne),) be the pair of the
fiber and its monodromy for (1,n?,n9)4. Let I' be the digraph of the train track t for
(1,n?,n9) 4, and let Y«: V(I') = V(I") be the induced map, where V(I") is the set of
vertices of I'. The map ¥« can be read off Figure 9.
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Here is the outline of the proof. We will compute the upper bound of the asymptotic
translation length £ 4¢ () of ¥ on the arc and curve complex AC(S). Since C(S) and
AC(S) are quasi-isometric, this gives an upper bound on C(S). We show that there are
distinct vertices ¢t and v in I', ie distinct real branches ¢ and v of t, such that w,fzq (1)
does not contain v. Using this fact, we also show that there are disjoint arcs §; and
ay in AC(S) such that w”zq (B:¢) and o, are disjoint. This implies that the distance in
AC(S) satisfies d 4c (B¢, w”zq (B1)) <2, and we deduce that £ 4 () <2/n?4.

Step1 C(S) and AC(S) are quasi-isometric.
Proof Just recall that the inclusion map C(S) — AC(S) is 2-bilipschitz. |

Hence for the proof of Theorem 4.10, it is enough to show that the asymptotic translation
length ¥ on AC(S) satisfies

2
bac(¥) = -7,

Step 2 Let ¢ be the vertex bya of I'. Then szq (t) doesn’t contain all vertices in I.

Proof We will show that there is a vertex v that is not contained in wfzq (t). Consider
the partition {A, B, Ry, Ra, ..., Ryr—a} of vertices a;, b;, and r; of I', where each
partition element consists of n9 vertices as in Figure 9. Under the iteration of the (n9)"
power wfq of ¥«, one can see that

Y (t) = {ana, rna},

q
2n%(t) = {ana, ana—1, rpa, rana},

q
Sn (t) = {anq, anq—l, anq—z, rnq, rnq—l, anQ, r3n‘1}v

and that the number of vertices in each partition element contained in %{ n (t) is
increasing by at most one as j increases. Hence one can see that there are vertices in
each Ry (k=1,...,n?79) that are not contained in w,’,}zq (t). More precisely, consider
Ry ={ri,ra,...,rpa}. One can check that for vertices in Ry, the image wﬂ{'nq ()
contains only

{}’nq, Ynd—1,.--, rnq_j+2} C Ry

. 2 .
for 2 < j <n4. Therefore V2 ? (1) does not contain r1, and we may choose v to be 1. O
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ana bpa

r

Figure 9: Left: digraph I'(n» n4), . Right: digraph F(1,23,22)+ with
partition {4, B, Ry, R,}.

Step 3 There are distinct arcs oy and f; in AC(S) such that wnzq (B:) and oy are
disjoint.

Before proving Step 3, we first discuss some properties of the primitive integral class
(1, j,k)+ with j > 0 and k > 0. Recall that r1,...,7;,b1,..., b are vertices of
I' =T'(4, k), Which lie on the right column of I' (Figure 7, left). There is a single
ideal polygon P = P(q ; ), containing a single puncture cp of the fiber S =S¢y, k),
such that the two endpoints of each real branch b; (i = 1,..., k) are switches (of ) in
the boundary dP of P; see Figure 10. From the construction of t in [15], it follows that
dP consists of periodic branches, ie infinitesimal branches, and ¥ = ¥y, j x), maps
cp to itself (and hence the ideal polygon P is preserved by y). To see ¥ (cp) = cp,
we consider the fiber S = S; ; x), with boundary. (So we now think of the above
cp as a boundary component of S.) By using Lemma 4.2 for the primitive integral
class (1, j, k)4, we see that there is a boundary torus 7" of N such that cp is the only
boundary component of S which lies on 7'. This implies cp is preserved by .

For the real branch r; (i = 1,..., ), consider its dual arc o;,. Let ¢;; and c;i be
boundary components in S which are connected by «;,. (Possibly ¢, = c;[_ .) Then
there is another boundary torus 7" of N on which the both ¢,; and ¢}, lie.
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Figure 10: Part of the train track 7. The ideal polygon P, real branch t = b4,
and arc f; based at cp.

Proof of Step 3 Consider the primitive integral class (1,n?,n9)+ in question. The
two endpoints of the real branch ¢ = b, are switches (of ) in dP. Join ¢p and each
endpoint of the real branch ¢ by an arc and then we obtain an arc §; in S; see Figure 10.
Since ¢ is a real branch, one sees that the arc f; is essential. Since ¥ maps cp to itself,
w¥(B;) is an essential arc based at the same cp for each £ > 0. Moreover ¥¢(B;) is not
homotopic to 8; for each £ > 0, since 1 is pseudo-Anosov. Let us consider the dual
arc oy of v = rq. Recall that ¢, and ¢}, which are connected by o, lie on a boundary
torus 77 of N, yet cp lies on the different boundary torus 7" of N. The arc 8; has end
points at ¢p, and hence f; is not homotopic to oy, .

Now we prove that 29 (8;) and «, are disjoint. The ideal polygon P is preserved
by ¥, and w”zq (¢) is carried by 7 since t is invariant under . Moreover, since w”zq )
does not pass through v by the proof of Step 2, it follows that w”zq (B:) is disjoint
from v, and hence also disjoint from its dual arc oy. a

2
Step 4 Lac(y) < an

Proof Clearly ; and «, are disjoint. Since wnzq (B:) is an essential arc based at cp,
we have w”zq (B:) # ay in AC(S) by the same argument as in the proof of Step 3.
This together with the fact that the geometric intersection number i(lﬂ”zq (Be),ay) =0
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implies that §; and W”M (B:) are at most distance 2 in AC(S), ie d_4c (B¢, w"zq (B:)) <2.
By the definition of the asymptotic translation length, it follows that

2
Cac(y) < 24 o
Thus we have finished the proof of Theorem 4.10. a

Theorem 4.11 For any fixed positive integers p and q with 2p < q, the sequence
(1,n?,n?)4 of primitive integral classes in € g converges projectively to (% %, 0) in
int(F) asn — oo, and c

Le(Wanr nayy) < prymrl

where C is a constant independent of n.

Proof The first half of the claim follows from Lemma 4.3(2). For the rest of the
proof, let ¥ = Y(y ur nay, . Consider the digraph I' = T’y ,» »«), and the induced
map ¥«: V(I') — V(I'). Let  be the vertex by« of I'. By using a similar argument as
in Step 2 of the proof of Theorem 4.10, one can show that the set of vertices w,,{ e (1) is
contained in V(I')\Rfor j =1,...,[(n?—1)/(n? +1)], where R={ry,ra,...,mr}.
In other words, each vertex in R is not contained in w,,{ e () for such j. In particular,
if we set D = D(n) = |(n? — 1)/(n? + 1), then ry is not contained in 2"’ (¢).
Then we consider the two arcs B; and ay as in Step 3 of the proof of Theorem 4.10.
By the same argument, it follows that By, «; and ¥ 2"’ (8;) are distinct elements in
AC(S). Moreover we have i (2"’ (8;), @) = 0 and i (B;, ay) = 0. Therefore f; and
P (B,) are at most distance 2 in .AC(S), and we have £_4c () < 2/(Dn?), which
implies that £¢(y) < 4/(Dn9). Since Dn4 =< n?4=? we have finished the proof. O

4.5 The behaviors of asymptotic translation lengths

We prove the following lemma which implies that the upper bound of Theorem 3.1 is
optimal.

Lemma 4.12 The sequence (1, n, 1)+ of primitive integral classes in ‘€ g converges
projectively to a point in F as n — oo, and

1

¢ S Sannl
c(Wann,) Ix(Sn,1) )]
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1

Figure 11: The digraph I'¢y,5,1) -

Proof The first half of the claim follows from that fact that (1,7, 1)y — (0, 1,0) € 9F
as n — oo. Since | x(S(1,2,1),.)| =n+3, itis enough to prove that £c (V¥ (1 ,1),) < 1/n.
By the digraph I' = I'(y 1), (see Figure 11) together with Proposition 4.1, it is not
hard to see that £c(Y(1,0,1),) R 1/n.

Now we compute the upper bound. Let (S, V) = (S(1,n,1); > ¥(1,1,1),) and let 7 be
the vertex b of I". We have

1p*(l‘) = {rl}’ Wf(f) = {VZ}’ RN Wf(f) = {rn}

In particular this implies that " (¢) does not pass through the real branch r; of
T =7(1,n,1), - We consider the essential arc B; for ¢ as in the proof of Theorem 4.10, and
consider the dual arc o, of r;. By the same argument as in the proof of Theorem 4.10,
one sees that the three arcs 8;, ¥"(B;) and o, are distinct elements in AC(S). Fur-
thermore for the geometric intersection numbers between arcs, we have i (B, o) =0
and i (Y"(B¢), ar,) = 0. Therefore B; and ¥"(B;) are at most distance 2 in AC(S),
and we have € 4¢(¥) < 2/n, which gives the desired upper bound {¢(¥) <4/n. O

Now we are ready to prove the following theorem.

Theorem 4.13 Let F be a fibered face of the magic manifold. Then there exist two
points, by € 0F and ¢q € int(F'), which satisfy the following:
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(1) Foranyr € QN[l,2), there exists a sequence (Sq,,, Va, ) of primitive integral
classes in 6 g converging projectively to bg as n — oo such that

1
T X (Sa)l

(2) ForanyreQn [%, 2], there exists a sequence (Sq,,, Yo, ) of primitive integral

te(Ya,)

classes in € g converging projectively to ¢y as n — oo such that
1
| X(Se,)I"

In particular, the upper bound in Theorem 1.1 is optimal when d = 2.

KC (Wan) =

Proof Because of the symmetry of the Thurston norm ball By, it suffices to prove
the theorem for the fibered face as we picked in Section 4.2. For (1), if 1 <r <2, let
p and ¢ be positive integers such that r = 2¢g/p with ¢ < p < 2¢. By Lemma 4.3,
the sequence(1, n?,n?) converges projectively to (0, 1,0) € dF. By Theorems 4.9
and 4.10, we have Lc(Y(1,nr na),) < 1/n%4. Since we have ||(1,n?,n9) 4| =< n?, it
follows that

1 1

|X(Sne nay )22 X (Sane pay )N

ZC(W(I,nP,n‘i)+) =

where r =2¢/p € (1,2). If r = 1, it follows from Lemma 4.12.

For (2), if % <r <2,let p and g be positive integers such that r =2— p/q with2p <gq.
By Lemma 4.3, the sequence (1,n7,n?)4 converges projectively to (%, %, 0) € int(F)
as n — 0o. By Theorems 4.9 and 4.11, we have £¢(¥q,) < 1/n297P. Since we have
|(1,n?,n?)4 || < n4, it follows that

1 1

{ = = ,
Wt ne)y) XSamrnty PP/~ [X(Snrnny )"

where r =2 — p/q € [%, 2). For r = 2, one can choose a sequence of primitive
integral classes contained in the intersection between the cone over some compact set
K C int(F) and some 2-dimensional rational subspace of H!(M), eg the sequence
(1,n,n)4. Then the sequence satisfies the desired property from [3, Corollary 1].

Finally we consider the upper bound in Theorem 1.1 when d = 2. If (p,q) = (1, 2),

then
1

) 2 S ey DT
of by +
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Then Theorem 1.1 implies that the sequence (1,7, n2)4 of primitive integral classes
can not be contained in any finite union of 2-dimensional rational subspaces of H!(N).
The fibered cone € is a (241)—dimensional rational subspace of H!(N). Thus
Theorem 1.1 is optimal when d = 2. O

In light of Theorem 4.13(1), we ask the following question.

Question 4.14 Let F be a fibered face of a compact hyperbolic fibered 3—manifold.
Does there exist a sequence (Sg,, . Va, ) of primitive integral classes in €  converging
projectively to dF as n — oo such that £c(Vg, ) < 1/|x(Sq,)|*?

By Theorem 4.13, we immediately have the following corollary.

Corollary 4.15 Let F be a fibered face of the magic manifold N. Fora e FNH(N;Q),
let (Sg, ¥g) be the fiber and pseudo-Anosov monodromy corresponding to the primitive
integral class & lying on the ray of a passing through the origin. Then there is no
normalization of the asymptotic translation length function

FNHY(N;Q) = Rxo, ot Le(¥z),

in terms of the Euler characteristic y(Sg) which admits a continuous extension on F .
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