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We construct a real combinatorial model for the configuration spaces of points of
compact smooth oriented manifolds without boundary. We use these models to show
that the real homotopy type of configuration spaces of a simply connected such
manifold only depends on the real homotopy type of the manifold.

Moreover, we show that for framed D–dimensional manifolds these models capture
a natural right homotopy action of the little D–disks operad.
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1 Introduction

Given a smooth manifold M , we study the configuration space of n nonoverlapping
points on M ,

Confn.M/D f.m1; : : : ; mn/ 2M
n
jmi ¤mj for i ¤ j g:

These spaces are classical objects in topology, whose homological and homotopical
properties have been subject to intensive study over the decades. One of the first
important results dates back to 1978 when Cohen and Taylor [15] constructed a spectral
sequence converging to the cohomologyH �.Confn.M//. A different spectral sequence
was constructed by Bendersky and Gitler [4] and both spectral sequences have been
shown to coincide from the E2 term on by Felix and Thomas [19]. In the particular
case of smooth compact projective complex manifolds, it was shown by Totaro [44]
that the Cohen–Taylor spectral sequence collapses after the second page, and Kriz [30]
showed that for those manifolds the E2 page is actually a model of Confn.M/ in the
sense of rational homotopy theory.

In this paper, we aim to understand the rational homotopy type of configuration spaces.
Classical rational homotopy theory à la Sullivan [42] states that we can understand
topological spaces via algebraic models which are differential graded commutative
K–algebras (dgca), where K is a field of characteristic zero. This roughly amounts to
capturing the nontorsion part of the homotopy groups of such spaces. Usually, the field
K is taken to be the rational numbers, but due to the transcendental methods we use,
we take the base field KDR to be the real numbers and we will therefore refer to the
real homotopy type of configuration spaces.

Our first main result is the construction of a differential graded commutative R–algebra
model �GraphsM for Conf�.M/, in the case when M is a D–dimensional compact
smooth oriented manifold without boundary, with D � 2. Our model depends on M
only through the following data:

� The cohomology V DH �.M/ as a vector space with a nondegenerate pairing
of degree D D dim.M/.

� The partition function ZM of the “universal” perturbative AKSZ topological
field theory on M . This is a Maurer–Cartan element in a certain graph complex
only depending on V .
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A model for configuration spaces of points 2031

In particular, this shows that the latter perturbative invariants ZM — special cases of
which have been studied in the literature, eg by Bonechi, Cattaneo and Mnev [6] —
contain at least as much information as the real homotopy type of Conf�.M/. Further-
more, the real homotopy type of M is encoded in the tree-level components of ZM .
The higher loop order pieces of ZM “indicate” (in a vague sense) the failure of the
homotopy type of Conf�.M/ to depend only on M . Finally, the real cohomology of
Conf�.M/ can be computed just from the tree level knowledge; see Section 7.

Now suppose that M is furthermore framed, ie the frame bundle of M is trivialized.
Then the totality of spaces Conf�.M/ carries additional algebraic structure, in that it
can be endowed with a homotopy right action of the little D–disks operad as follows.
First we consider the natural compactification FMM .n/ of Confn.M/ introduced by
Axelrod and Singer [2]; see also Sinha [41]. It is naturally acted upon from the right
by the Fulton–MacPherson–Axelrod–Singer variant of the little disks operad FMD

introduced by Getzler and Jones in [21] by “insertion” of configurations of points.

The right ED–module structure on configuration spaces has been receiving much
interest in the last decade, since it has been realized that the homotopy theory of these
right modules captures much of the homotopy theory of the underlying manifolds. For
example, by the Goodwillie–Weiss embedding calculus the derived mapping spaces
(“Ext’s”) of those right ED–modules capture (under good technical conditions) the
homotopy type of the embedding spaces of the underlying manifolds; see Boavida
de Brito, Goodwillie and Weiss [9; 10; 22]. Dually, the factorization homology (“Tor’s”)
of ED–algebras has been widely studied and captures interesting properties of both
the manifold and the ED–algebra; see Ayala and Francis [3]. However, in order to use
these tools in concrete situations it is important to have models for Conf�.M/ (as a
right Hopf ED–module) that are computationally accessible, ie combinatorial. In this
paper we provide such models.

Concretely, our second main result is that our model �GraphsM above combinatorially
captures this action of the little D–disks operad as well, in the sense that it is a right
Hopf operadic comodule over the Kontsevich Hopf cooperad �GraphsD , modeling the
topological little D–disks operad, and the combinatorially defined action models the
topological action of ED on Conf�.M/.

In fact, one can consider the following “hierarchy” of invariants of a manifold M :

(1) The real (or rational) homotopy type of M .

(2) The real (or rational) homotopy types of FMM .m/ for mD 1; 2; : : : .
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2032 Ricardo Campos and Thomas Willwacher

(3) The real (or rational) homotopy type of FMM considered as a right FMD–module,
for parallelized M . (For nonparallelizable M one may consider similarly the
homotopy type of the FM–module of framed configuration spaces of points
FFMM .)

The relative strength of this invariants has been unknown. In particular, it is a long
standing open problem if for simply connected M the rational homotopy type of
Conf�.M/ depends only on the rational homotopy type of M ; see Félix, Halperin and
Thomas [18, Problem 8, page 518] — see also Levitt [34] for a stronger conjecture
disproved by Longoni and Salvatore in [37].

In our model the above hierarchy is nicely encoded in the loop order filtration on a
certain graph complex GCM , in which item (1) is encoded by the tree level piece of
ZM along with the cohomology of item (2), while the full ZM encodes item (3).

Our third main result states that for a simply connected smooth closed framed mani-
fold M , these invariants are of equal strength. We show furthermore that without the
framed assumption, item (1) is still equally strong as item (2); thus establishing [18,
Problem 8, page 518] under the assumption of smoothness.

Finally, if we consider a nonparallelized manifold there is still a way to make sense
of the insertion of points at the boundary, but the price to pay is that one has to
consider configurations of framed points in M . The resulting framed configuration
spaces Conf fr

�
.M/ then come equipped with a natural right action of the framed little

disks operad Efr
D . In Section 9 we present BVGraphsM , a natural modification of

GraphsM that encompasses the data of the frames and we show that if we consider a
two-dimensional orientable manifold†, BVGraphs† models this additional right action.
In the framed case we restrict ourselves to the 2–dimensional setting.

Outline and statement of the main result

Let us summarize the construction and state the main result here. First recall from
[27] the Kontsevich dg cooperad �GraphsD . Elements of �GraphsD.r/ consist of linear
combinations of graphs with r numbered and an arbitrary number of unidentifiable
vertices, like the following:

1 2 3 4

The precise definition of �GraphsD will be recalled in Section 3. The graphs con-
tributing to �GraphsD may be interpreted as the nonvaccuum Feynman diagrams of
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the perturbative AKSZ �–models on RD; see Alexandrov, Schwarz, Zaboronsky and
Kontsevich [1].

Kontsevich constructs an explicit map �GraphsD ! �PA.FMD/ to the dgca of PA
forms on the compactified configuration spaces FMD . This map is compatible with the
(co)operadic compositions, in the sense described in Section 3 below.

Now fix a smooth compact manifoldM of dimensionD, of which we pick an algebraic
realization, so that we can talk about PA forms�PA.M/. Then we consider a collection
of dg commutative algebras �GraphsM .r/. Elements of �GraphsM .r/ are linear com-
binations of graphs, but with additional decorations of each vertex in the symmetric
algebra S. zH.M// generated by the reduced cohomology zH.M/. The following graph
is an example, where we fixed some basis f!j g of zH.M/:

1 2 3 4

!1 !1

!2 !3

These graphs may be interpreted as the nonvaccuum Feynman diagrams of the per-
turbative AKSZ �–model on M . We equip the spaces �GraphsM .r/ with a nontrivial
differential built using the partition function ZM of those field theories. This partition
function can be considered as a special Maurer–Cartan element of a certain graph
complex GCM . Algebraically, the spaces �GraphsM .r/ assemble into a right dg Hopf
cooperadic comodule over the Hopf cooperad �GraphsD .

By mimicking the Kontsevich construction, we construct, for a parallelized manifoldM ,
a map of dg Hopf collections1

�GraphsM !�PA.FMM /;

compatible with the (co)operadic (co)module structure, where we consider FMM as
equipped with the right FMD–action. If M is not parallelized, we do not have an
FMD–action on FMM . Nevertheless we may consider a (quasi-isomorphic) dg Hopf
collection

�GraphsM �
�GraphsM

that still comes with a map of dg Hopf collections

�GraphsM !�PA.FMM /:

1A (dg) Hopf collection C for us is a sequence C.r/ of dg commutative algebras, with actions of the
symmetric groups Sr . A (dg) Hopf cooperad is a cooperad in dg commutative algebras.
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Our first main result is the following.

Theorem 1 The map �GraphsM !�PA.FMM / is a quasi-isomorphism of dg Hopf
collections. In the parallelized case the map �GraphsM ! �PA.FMM / is a quasi-
isomorphism of dg Hopf collections , compatible with the (co)operadic (co)module
structures.

This result provides us with explicit combinatorial dgca models for configuration spaces
of points, compatible with the right ED–action on these configuration spaces in the
parallelizable setting. An extension to the nonparallelized case is provided in Section 9,
albeit only in dimension D D 2.

We note that our model �GraphsM depends on M only through the partition function
ZM 2 GCM . The tree part of this partition function encodes the real homotopy type
of M . The loop parts encode invariants of M . Now, simple degree counting arguments
may be used to severely restrict the possible graphs occurring in M . In particular, one
finds that if H 1.M;R/ vanishes, then for D � 4 there are no contributions to ZM of
positive loop order, and one hence arrives at the following result.

Corollary 2 (Theorem 63) Let M be an orientable compact manifold without bound-
ary of dimension D � 4, such that H 1.M;R/D 0. Then the (naive)2 real homotopy
type of Conf�.M/ depends only on the (naive) real homotopy type of M .

For D D 2 the analogous statement is empty, as there is only one connected manifold
satisfying the assumption. If we replace the condition H 1.M;R/D 0 by the stronger
condition of simple connectivity, the statement is also true in dimension 3, but for
the trivial reason that by the Poincaré conjecture there is only one simply connected
manifold M in dimension 3. Hence the above result also solves the real version of the
long standing question in algebraic topology of whether for simply connected M the
rational homotopy type of the configuration space of points on M is determined by the
rational homotopy type of M ; see [18, Problem 8, page 518]

Remark 3 Our result also shows that the “perturbative AKSZ”-invariant ZM is at
least as strong as the invariant of M given by the totality of the real homotopy types of
the configuration spaces of M , considered as right ED–modules. The latter “invariant”

2We call the naive real homotopy type the quasi-isomorphism type of the dg commutative algebra of (PL
or smooth) forms. Note that in the nonsimply connected case this definition is not the correct one; one
should rather consider the real homotopy type of the universal cover with the action of the fundamental
group. We do not consider this better notion here, and in this paper “real homotopy type” shall always
refer to the naive real homotopy type.
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is the data entering the factorization or “manifoldic” homology — see [3] and Markarian
and Tanaka [38] — and the Goodwillie–Weiss calculus [22] (over the reals). Conversely,
from the fact that the models �GraphsM encode the real homotopy type of configuration
spaces, one may see that the expectation values of the perturbative AKSZ theories onM
may be expressed through the factorization homology ofM . However, we will leave the
physical interpretation to forthcoming work and focus here on the algebraic-topological
goal of providing models for configuration spaces.

Remark 4 After the first version of this article appeared on the arXiv, Idrissi [25]
obtained results very similar to ours by showing that for simply connected closed
oriented manifolds the Lambrechts–Stanley dg model [32] is actually a real model of
Confn.M/. We sketch in Appendix A how this latter statement can also be obtained as
a consequence of our main results.

Plan of the paper

In Section 2 we introduce the spaces FMM , the compactifications of configuration
spaces of points on a smooth manifold M (with D D dimM ) and its semialgebraic
realizations and adapt results in the literature to construct the propagator.

Starting with the framed case, in Section 3 we construct the first graph complex �GraM
(a Hopf �GraD–comodule) and construct the map into �PA.FMM / which is not yet a
quasi-isomorphism. In Section 4 we use operadic twisting to obtain the graph complex
�GraphsM and in Section 5 we show that �GraphsM is indeed a model for the real
homotopy type of FMM as a right FMD–module.

In Section 6 we construct a no-tadpole variant of the graph complex to deal with the
case where M is not parallelized and show that it models the real homotopy type of
the collection of topological spaces FMM , concluding the proof of Theorem 1.

The next goal is to study the dependence of the homotopy type of the configuration
spaces on the base manifold. In Sections 7 and 8 we study the partition function ZM
that gives rise to the differential in �GraphsM and we show that it is gauge equivalent
to one vanishing on graphs containing � 2–valent vertices. We conclude that in good
conditions the real homotopy type of M can be recovered from the tree piece of the
graph complex, thus proving Corollary 2.

Finally, in the last section we construct a graphical model of configuration spaces
of framed points in 2–dimensions, together with the action of the framed little disks
operad.
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1.1 Notation and conventions

Throughout the text all algebraic objects (vector spaces, algebras, operads, etc) are
differential graded (or just dg) and are defined over the field R.

We use cohomological conventions, ie all differentials have degree C1. We use the
language of operads and follow mostly the conventions of Loday and Vallette’s text-
book [36]. One notable exception is that we denote the k–fold operadic (de)suspension
of an operad P by ƒkP .

Acknowledgements

We would like to thank Pascal Lambrechts for useful remarks and references, and
Najib Idrissi, Nils Prigge and Victor Turchin for valuable discussions and for pointing
out some mistakes in the original version. Both authors have been supported by the
Swiss National Science Foundation, grant 200021_150012, by the NCCR SwissMAP
funded by the Swiss National Science Foundation, and the ERC starting grant 678156
(GRAPHCPX).

2 Compactified configuration spaces

2.1 Semialgebraic manifolds

Given a compact semialgebraic set X one can consider its dgca of piecewise semialge-
braic (PA) forms, �PA.X/, which is quasi-isomorphic to Sullivan’s dgca of piecewise
polynomial forms [24; 29].

Dually, one can also consider its complex of semialgebraic chains, which we denote by
Chains.X/, which is also quasi-isomorphic to the usual complex of singular chains.

By the Nash–Tognoli theorem [43] — see also [5, Section 14] — any smooth compact
manifold is diffeomorphic to a component of a nonsingular algebraic subset of RN for
some N . In particular, any such manifold can be realized as a smooth semialgebraic (ie
Nash) submanifold of Euclidean space. Throughout this paper, whenever we consider a
closed smooth manifold M we will consider implicitly a chosen such realization of M
as a Nash submanifold of RN .

We refer to [5] for an introduction to real algebraic geometry. An overview is also
contained in the introductory sections of [24].
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Even though all manifolds considered in this paper will be smooth, it is not sufficient
for our purposes to consider the de Rham complex. The main reason for this is that
we would like to consider fiber integration over nonsmooth fiber bundles E ! B .
Nonetheless, the relevant bundles will be SA (semialgebraic) bundles [24] and, for such
bundles, there is a pushforward map �min.E/!�PA.B/, where �min.M/��PA.M/

is the (nonquasi-isomorphic) subalgebra of minimal forms.

While this pushforward cannot be naturally extended to the whole space of PA forms
�PA.E/, as described in Appendix C, we can consider a subalgebra of trivial forms
�triv.E/, sitting between�min.E/ and�PA.E/ and quasi-isomorphic to�PA.E/, such
that the pushforward extends naturally to a map �triv.E/!�PA.B/.

2.2 Configuration spaces of points in RD

Let D be a positive integer. We will use the Fulton–MacPherson topological operad
FMD that was introduced by Getzler and Jones [21]. Its n–ary space FMD.n/ is a
suitable compactification of the quotient of the configuration space

Confn.RD/=.R>0 ËRD/;

with the Lie group R>0 ËRD acting by scaling and translations. For n > 1 the spaces
FMD.n/ are .Dn�D�1/–dimensional manifolds with corners whose boundary strata
represent sets of points getting infinitely close.

The first few terms are3

FMD.0/D f�g; FMD.1/D f�g; FMD.2/D S
D�1:

The operadic composition ıi is given by inserting a configuration at the boundary
stratum at the point labeled by i . A thorough study of these operads can be found
in [33].

The operad FMD can be related to a shifted version of the homotopy Lie operad via
the operad morphism

(1) ƒD�1L1! Chains.FMD/;

given by sending the generator �n 2ƒD�1L1.n/ to the fundamental chain of FMD.n/,
ie the semialgebraic chain corresponding to FMD.n/ as a submanifold of itself.4

3We work with the unital version of the Fulton–MacPherson operad.
4Recall that due to our cohomological conventions these spaces live in nonpositive degree. In particular,
the generator �n 2 L1 has degree 2�n.
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2.3 Configuration spaces of points on a manifold

LetM be a closed smooth oriented manifold of dimensionD. We denote by Confn.M/,
the configuration space of n points in M . Concretely, Confn.M/DM n��, where �
is the fat (or long) diagonal �D f.m1; : : : ; mn/ 2M n j 9i ¤ j Wmi Dmj g.

The Fulton–MacPherson–Axelrod–Singer compactification of Confn.M/ is a smooth
manifold with corners FMM .n/ whose boundary strata correspond to nested groups of
points becoming “infinitely close”; see [41] for more details and a precise definition.
Since the inclusion Confn.M/ ,! FMM .n/ is a homotopy equivalence, we work
preferably with FMM .n/ as these spaces have a richer structure.

Convention 5 (semialgebraicity of FMM .n/) The choice of semialgebraic structure
on FMM .n/ is done in a way compatible with the one from M as follows: Let us
consider the chosen semialgebraic realization of the manifold M in RN for some N .

For 1� i ¤ j � n, let �i;j W Confn.M/! SN�1 be defined by

�i;j ..x1; : : : ; xn//D
xi � xj

kxi � xj kRN
:

For 1� i ¤ j ¤ k � n, we define di;j;k W Confn.M/! .0;C1/ by

di;j;k..x1; : : : ; xn//D
kxi � xj k

kxi � xkk
:

Considering all possibilities of i , j and k, we have defined a natural embedding

� W Confn.M/!M n
� .SN�1/n.n�1/ � Œ0;C1�n.n�1/.n�2/:

We define FMM .n/ as the closure �.Confn.M//, thus inheriting a semialgebraic struc-
ture.

Remark 6 (SA bundles) For every m> n there are various projection maps

FMM .m/! FMM .n/

corresponding to forgetting m � n of the points. These maps are not smooth fiber
bundles, but they are SA (semialgebraic) bundles [24], which allows us to consider
pushforwards (fiber integration) of forms along these maps.

The proof of this fact is a straightforward adaptation of the proof of the same fact
for FMD done in [33, Section 5.9]. In this case one starts instead by associating to a
configuration in FMM .n/ a configuration of nested disks in M .
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Convention 7 From here onward, we fix representatives of the cohomology of M , ie
we fix an embedding

(2) � WH �.M/ ,!��triv.M/

that yields a right inverse of the projection from closed forms to cohomology.

2.3.1 The diagonal class Since M is compact and oriented, the pairingZ
WH �.M/˝H �.M/!R; .!; �/ 7!

Z
M

! ^ �

given by Poincaré duality is nondegenerate. We shall also consider a version of this
pairing which is antisymmetric for odd D,

h!; �i D .�1/D deg.�/
Z
M

! ^ �:

The diagonal map � W M ! M �M defines an element in H�.M �M/ and its
dual under Poincaré duality is called the diagonal class, which is also denoted by
� 2H �.M �M/DH �.M/˝H �.M/.

If we pick a homogeneous basis e1; : : : ; ek of H �.M/, we have �D
P
i;j g

ij ei ˝ ej ,
where .gij / is the matrix inverse to the Poincaré duality pairing h�;�i. Alternatively,
this can also be written as �D

P
i .�1/

deg.ei /ei ˝ e
�
i , where fe�i g is the dual basis of

feig with respect to .�;�/.

In FMM .2/, if we consider the case in which the two points come infinitely close to
one another, we obtain a map @FMM .2/!M Š��M �M which is a sphere bundle
(with SD�1 fibers). Notice that @FMM .2/ can be identified with ST .M/, the sphere
tangent bundle of M .

The following proposition can essentially be found in the literature — see for instance
[7, Section 3; 14; 13, Lemma 2] — we only have to apply minor modifications in order
to work in the semialgebraic setting.

Proposition 8 Let p1 W FMM .2/! M (resp. p2 W FMM .2/! M ) be the map that
forgets the point labeled by 2 (resp. 1) from a configuration. Then there is a form
�12 2�

D�1
triv .FMM .2// satisfying the following properties:

(i) d�12 D p
�
1 ^p

�
2 .�/D

P
i;j g

ijp�1 .ei /^p
�
2 .ej / 2�

D
triv.FMM .2//.

(ii) The fiber integral of the restriction of �12 to @FMM .2/ is equal to .�1/D. (We
then say that this restriction is a global angular form.) Additionally, if D D 2,
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the restriction of �12 to every fiber of the circle bundle yields a round volume
form of that circle , with respect to some metric.

(iii) The form �12 is symmetric with respect to the Z2–action induced by swapping
points 1 and 2 for D even and antisymmetric for D odd.

(iv) For any ˛ 2H �.M/, Z
2

�12p
�
2 �.˛/D 0;

where � is as in (2) and the integral is along the fiber of p1, ie one integrates out
the second coordinate.

Notice that the form �122�
D�1
triv .FMM .2// is also called the propagator in the literature.

More generally, we consider the forms �ij 2�D�1triv .FMM .n// to be p�ij .�12/, where
pij W FMM .n/! FMM .2/ is the projection map that remembers only the points labeled
i and j .

Proof Let  2�D�1triv .@FMM .2// be a global angular form of the sphere bundle. Such
a form always exists — see for example [8] where such construction is made in the
smooth case — but the argument can be adapted to the semialgebraic case. It is also
shown in [8] that for a circle bundle the global angular form can be chosen to restrict
to the standard volume form on each fiber. Moreover, the differential of such a form
is basic (it is the pullback of the Euler class of the sphere bundle). Let E be a collar
neighborhood of @FMM .2/ inside FMM .2/. (See [40, Lemma VI.1.6] for the existence
of a semialgebraic (even Nash) collar.) Let us extend the form  to E by pulling it
back along the projection E ! @FMM .2/. We can consider a semialgebraic cutoff
function � W FMM .2/! R such that � is constant equal to zero outside of E and is
constant equal to 1 in some open set U such that @FMM .2/�U �E. We can therefore
consider the well-defined form � 2�D�1triv .FMM .2//.

Since d.� /j@FMM .2/ D d is basic, the form d.� / 2 �Dtriv.FMM .2// induces a
form in �Dtriv.M �M/, still denoted by d.� /. This form is clearly closed, but not
necessarily exact, as � itself might not extend to the boundary.

Let ! 2H �.M �M/��triv.M �M/. Then

(3)
Z
M�M

! d.� /D

Z
FMM .2/

! d.� /D .�1/D
Z
@FMM .2/

!� D

Z
�ŠM

!:

It follows that the cohomology class of d.� / is the Poincaré dual of the diagonal
�ŠM �M�M . Thus p�1^p

�
2 .�/ and d.� / are cohomologous in�Dtriv.M�M/. It
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follows that there exists a form ˇ2�D�1triv .M�M/ such that dˇDp�1^p
�
2 .�/�d.� /.

We define the form �12 2�
D�1
triv .FMM .2// to be ��ˇC � , where

� W FMM .2/!M �M

is the projection. It is clear that �12 satisfies property (i) and since the restriction of
��ˇ to the boundary is a basic form and properties (ii) is preserved.

To ensure (iv) one can replace the �12 constructed so far by

�12�

Z
3

�13p
�
23��

Z
3

�23p
�
13�C

Z
3;4

�34.p
�
13�/.p

�
24�/;

where pij is the forgetful map, forgetting all but points i and j from a configuration of
points. We refer the reader to [13] where more details can be found. (The reference
contains a construction of the propagator in the smooth setting, but the trick to ensure
(iv) is verbatim identical in our semialgebraic setup.)

Finally, we can (anti)symmetrize �12 to ensure it satisfies property (iii), while preserving
the other properties.

Remark 9 For M parallelizable, we can (and will) require a stronger version of
property (ii). A parallelization is a choice of a trivialization @FMM .2/'M �SD�1

and given such a parallelization, in the proof of the previous proposition we can take
 D ��.!SD�1/ 2�

D�1
triv .M �SD�1/, the pullback of the standard volume form of

SD�1 via the projection � WM �SD�1!SD�1. By construction of �12 the restriction
of �12 to @FMM .2/ has the form

(4) �12j@FMM .2/ D  Cp
��;

where p W @FMM .2/!M is the projection to the base and � 2�triv.M/ is some form
on the base. Note in particular that from the closedness of  and condition (i) above, it
follows that

(5) d�D�M ;

where �M 2�Dtriv.M/ denotes the pullback of � along the diagonal map (ie the wedge
product of its components).

3 The Cattaneo–Felder–Mnev graph complex and operad

Let n, N and D be positive integers and let V be an N–dimensional graded vector
space with a nondegenerate pairing of degree �D; h � ; � iW V ˝ V ! RŒ�D�. We
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Figure 1: An example of a graph describing an element in �GraV .4/.

require that for all homogeneous x; y 2 V of degrees k and l the pairing satisfies the
(anti)symmetry condition hx; yi D .�1/klCDhy; xi. Moreover, we assume V to be
“augmented” in the sense that we are also given a canonical decomposition V DR˚V .
One should keep in mind the example of the Poincaré pairing on the cohomology of a
connected N –manifold.

Let e2; e3; : : : ; eN be a graded basis of V and for convenience of notation we define
e1 D 1 2R. We consider the free graded commutative algebra generated by symbols
sij of degree D� 1, where 1� i; j � n, sij D .�1/Dsj i , and symbols ej1 ; : : : ; e

j
N for

j D 1; : : : ; n of the same degrees as the elements of the basis e1; : : : ; eN . We define a
differential on it by the rules

dej˛ D 0; dsij D
X
˛;ˇ

g˛ˇei˛e
j

ˇ
;

where gkl is the inverse of the matrix describing the pairing on V . (So
P
˛;ˇ g

˛ˇei˛e
j

ˇ

is the “diagonal class”.)

We define the dgca �GraV .n/ as the quotient of this algebra by the sub-dgca generated
by elements of the form e

j
1 � 1. Notice that there is a natural right action of the

symmetric group Sn on �GraV .n/ by permuting the superscript indices (the i and j
above) running from 1 to n.

Remark 10 All definitions are independent of the choice of graded basis of V and
can be given in a basis-free way.

Remark 11 The notation �GraV .n/ stands for “predual graphs” as one may represent
elements of �GraV .n/ as linear combinations of decorated directed graphs with n
vertices and an ordering of the edges. The decorations are elements of V that may
be attached to vertices; see Figure 1. Each such graph corresponds to monomial in
�GraV .n/, an edge between vertices i and j corresponds to one occurrence of sij and
a decoration by an element e˛ 2 V at vertex j corresponds to one occurrence of ej˛ .

Algebraic & Geometric Topology, Volume 23 (2023)



A model for configuration spaces of points 2043

Directions of the edges and their ordering might be ignored, keeping in mind that then
a graph is only well defined up to a ˙1 prefactor. Notice that while both tadpoles and
double edges are allowed, for (anti)symmetry reasons one has that si i D 0 if D is odd
and sij sij D 0 if D is even.

3.1 Cooperadic comodule structure

Definition 12 Let D be a positive integer. For n� 2, the space �GraD.n/ is defined to
be the free graded commutative algebra generated by symbols sij in degree D� 1, for
i ¤ j , quotiented by the relations sij D .�1/Dsj i . We set �GraD.0/D �GraD.1/DR.

As before, the spaces �GraD.n/ can be seen as the span of undecorated graphs such
that every edge has degree D� 1.

Proposition 13 The spaces �GraD.n/ form a cooperad in dg commutative alge-
bras. The cooperadic structure is given by removal (contraction) of subgraphs; ie for
� 2 �Gra.n/, the component of �.�/ in �GraD.k/˝ �GraD.i1/˝ � � �˝ �GraD.ik/ is

(6)
X
˙� 0˝�1˝ � � �˝�k;

where the sum runs over all .kC1/–tuples .� 0; �1; : : : ; �k/ such that when each graph
�i is inserted at the vertex i of � 0, there is a way of reconnecting the loose edges such
that one obtains � .

To obtain the appropriate signs one has to consider the full data of graphs with an
ordering of oriented edges. In this situation the orientation of the edges of � is preserved
and one uses the symmetry relations on � in such a way that for all i D 1; : : : ; k, the
labels of the edges of the subgraph �i come before the labels of the edges of the
subgraph �iC1 and all of those come before the labels of the edges of the subgraphs � 0.
Notice that if one of the ij D 0, the cooperadic cocomposition is given by adding a
disconnected vertex to � 0 [20, Section 2.2.1]. The cooperad axioms are a straightforward
verification.

Proposition 14 The dg commutative algebras �GraV .n/ for nD 1; 2; : : : assemble to
form a cooperadic right �GraD–comodule �GraV in dg commutative algebras.

Proof The cooperadic coactions are defined through formulas similar to (6), and proof
of the associativity axiom is formally the same as the proof of the previous proposition.

To show that the differential respects the comodule structure it suffices to check this
on generators of the commutative algebra. This is clear for decorations ei˛ and for
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tadpoles si i . For edges connecting different vertices let us do the verification for
s12 2 �GraV .2/ for simplicity of notation. The only nontrivial commutative diagram
to check is

1 2 1 2 ˝ 1 ˝ 1„ ƒ‚ …
�GraV .2/˝

�GraD.1/˝
�GraD.1/

C 1 ˝ 1 2„ ƒ‚ …
�GraV .1/˝

�GraD.2/

C 1 ˝ 1 2„ ƒ‚ …
�GraV .1/˝

�GraD.2/

X
˛;ˇ

g˛;ˇ 1 2
e˛

eˇ

X
˛;ˇ

g˛;ˇ 1 2
e˛

eˇ
˝ 1 ˝ 1 C 0C

X
˛;ˇ

g˛;ˇ 1 ˝ 1 2

e˛ eˇ

�

d d

�

where the vertical arrows correspond to the differential and the horizontal ones to the
coaction.

3.2 Forms on (closed) manifolds

LetM be a closed smooth framed connected manifold of dimensionD and let FMM be
the Fulton–MacPherson compactification of the spaces of configurations of points ofM
as described in Section 2. It is naturally an operadic right module over the operad FMD ,
where the i th composition of c 2 FMD.k/ in a configuration Nc 2 FMM .n/ corresponds
to the insertion of the configuration c at the i th point of Nc. The parallelization of the
manifold ensures that this insertion can be made in a consistent way.

It follows that �PA.FMM / is naturally equipped with a right cooperadic coaction of
the cooperad (in dg commutative algebras) �PA.FMD/ (mind Remark 15 below). The
coaction is obtained from the restriction of forms to boundary strata where multiple
points collide.

There is a map of (“almost”) cooperads in dg commutative algebras

(7) �GraD!�PA.FMD/

given by associating to every edge the angle form relative to the two incident vertices
[28; 33]. More explicitly, one considers the standard volume form

�12 2�
D�1
PA .SD�1/D�D�1PA .FMD.2//;

which plays the role of the propagator. The forms �ij 2�D�1PA .FMD.2// are defined
by pulling back �12 by the appropriate projection map. Finally, the map (7) above is
obtained by extending the assignment sij 7! �ij to a map of dgcas.
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Remark 15 The functor �PA is not comonoidal since the canonical map

�PA.A/˝�PA.B/!�PA.A�B/

goes “in the wrong direction”; therefore �PA.FMD/ is not a cooperad. Nevertheless,
by abuse of language throughout this paper we will refer to maps such as (7) as maps
of cooperads (or cooperadic modules) if they satisfy a compatibility relation such as
commutativity of the diagram

�GraD.n/ �PA.FMD.n//

�PA.FMD.n� kC 1/� FMD.k//

�GraD.n� kC 1/˝
�GraD.k/ �PA.FMD.n� kC 1//˝�PA.FMD.k//

Since M is connected, its cohomology H �.M/ has a canonical augmentation given
by the constant functions on M , and since M is closed, Poincaré duality gives us a
pairing on H �.M/ of degree �D. We define, for any manifold M ,

�GraM WD
�GraH�.M/:

Let us denote by � WH �.M/ ,!�triv.M/ the embedding from Convention 7; that is,
for every ! 2H �.M/, �.!/ is a representative of the class !. Following Cattaneo and
Mnev [13], we can define a map of dg commutative algebras (which a priori depends
on various pieces of data)

(8) �GraM !�triv.FMM /��PA.FMM /

as follows: The map sends the generator sij for i ¤ j to �ij , where �ij is the form
constructed in the discussion preceding the proof of Proposition 8 with the additional
assumption from Remark 9. The map sends the decoration ! 2 H �.M/ on the j th

vertex to !j 2 �GraD to p�j .�.!//, where pj W FMM !M is the map that remembers
only the point labeled by j . Finally the map sends sjj to p�j �, where � is as in (4).

Lemma 16 The map �GraM !�PA.FMM / is a map of dg Hopf collections , compat-
ible with the cooperadic comodule structures along the map �GraD!�PA.FMD/, in
the sense of Remark 15. In other words there is a map of 2–colored dg Hopf collections ,

�GraM
�GraD!�PA.FMM / �PA.FMD/;

compatible with the (2–colored ) cooperadic cocompositions.
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Proof The compatibility with the differentials is clear for every generator of �GraM
except possibly sjj , for which one uses (5). By definition the map consists of morphisms
of commutative algebras; therefore it is enough to check the compatibility of the
cocompositions on generators. For elements ej˛ this is clear. For the other generators
we will sketch the verification for the case of s12 2 �GraM .2/ for simplicity of notation.

The composition map in .FMM ; FMD/ is done by insertion at the boundary stratum.
Since the cocomposition map �PA.FMM /!�PA.FMM /ı�PA.FMD/ is given by the
pullback of the composition map we get, using (4),5

�12 2�PA.FMM .2//

7! �12˝ 1˝ 1„ ƒ‚ …
�PA.FMM .2//˝�PA.FMD.1//˝�PA.FMD.1//

C 1˝�12C �˝ 1„ ƒ‚ …
�PA.FMM .1//˝�PA.FMD.2//

:

On the other hand, the corresponding cocomposition �GraM ! �GraM ı �GraD given
by de-insertion sends s12 to

1 2 ˝ 1 ˝ 1„ ƒ‚ …
�GraM .2/˝�GraD.1/˝�GraD.1/

C 1 ˝ 1 2„ ƒ‚ …
�GraM .1/˝�GraD.2/

C 1 ˝ 1 2„ ƒ‚ …
�GraM .1/˝�GraD.2/

I

therefore the cocomposition is respected by the map.

4 Twisting GraM and the comodule �GraphsM

Let GraD and GraV be the duals of �GraD and �GraV , respectively. GraV is an operadic
right GraD–module in dg cocommutative coalgebras.

Recall that there is a map of operads ƒD�1Lie!GraD given by mapping the generator
� 2ƒD�1Lie.2/ to the single edge graph in GraD.2/ [45]. This extends to a map from
the canonical operadic right module

ƒD�1Lie ƒD�1Lie! GraM GraD

sending the generator � to s12 2 GraM .2/. One can then apply the right module
twisting procedure described in [45, Appendix I] to GraM GraD , thus obtaining the
bimodule TwGraM TwGraD .

5Notice that on the second summand �12 refers to the volume form of SD�1 D FMD.2/. We are using
Remark 9 to ensure that this term is indeed of that form.
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�
!

�

a b D h!; �i a b ; ds a D
a

�

Figure 2: Internal vertices are depicted in black. Gray vertices are either
internal or external vertices.

TwGraM can be described via a different kind of graphs. The space TwGraM .n/ is
spanned by graphs with n vertices labeled from 1 to n, called “external” vertices and
k indistinguishable “internal” vertices. Both types of vertices can be decorated by
elements of .H �.M//� (with �� 1, see Remark 17 below), that can be identified with
H jDj��.M/ via the canonical pairing. The degree of the internal vertices is D, the
degree of edges is 1�D and the degree of the decorations is the correspondent degree
in .H �.M//�, even if there is an identification with the cohomology. The differential
in TwGraM can be split into 3 pieces: d D�C dexC din D�C ds , where � is the
differential coming from GraM , that connects decorations by making an edge, dex splits
an internal vertex out of every external vertex and reconnecting incident edges in all
possible ways and din splits similarly an internal vertex out of every internal vertex;
see Figure 2.

Remark 17 Notice that due to �GraM being given by a quotient by ej1 �1, if a certain
vertex v of � 2 �GraM is decorated with the volume form on M , then we find as
summands of �.�/ all possibilities of connecting v to every other vertex in � .

The operad TwGraD is spanned by similar kinds of graphs, except that there are no
decorations. We will therefore also refer to the vertices of TwGraD as internal and
external.

The degrees of graphs in TwGraD are computed similarly, but the differential of
TwGraD is different (since GraM is twisted as a Lie–module whereas GraD is twisted
as an operad under Lie). Not only there is no � term, but also the splitting piece has an
extra term subtracting all possible ways of adding a univalent internal vertex.

We are interested in a suboperad of TwGraD , since TwGraD is in homologically “too
big”. The following result originates in [27; 33].

Proposition 18 [45] The operad TwGraD has a suboperad that we call GraphsD
spanned by graphs � such that :
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� All internal vertices of � are at least trivalent ,

� � has no connected components consisting only of internal vertices.

Moreover there is a cooperadic quasi-isomorphism

�GraphsD!�PA.FMD/;

extending the map (7).

This quasi-isomorphism is defined by integrating over all possible configurations
of points corresponding to the internal vertices, a formula similar to the one from
Lemma 19.

We will from now on interpret TwGraM as a right GraphsD–module.

Let �TwGraM be the cooperadic right �GraphsD–comodule that is (pre)dual to TwGraM.

The differential in �TwGraM decomposes as d D ıcutC ıcontr, where ıcut is the piece
originating from �GraM that splits edges into “diagonal classes” and ıcontr contracts
any edge adjacent to one or two internal vertices.

Lemma 19 For M a closed compact framed connected manifold as above there is a
natural map of right cooperadic comodules

!� W
�TwGraM !�PA.FMM /;

extending the map f W �GraM !�PA.FMM / from (8).

Proof Let � be a graph in �GraM .nCk/Sk � �TwGraM .n/, ie � has n external and
k internal vertices. Let us consider f .�/ 2�PA.FMM .nC k//, the image of � under
the map (8). We define !� to be the integral of f .�/ over all configurations of the
internal vertices. Concretely, if FMM .nCk/! FMM .n/ denotes the map that forgets
the last k points, then !� is given by the fiber6 integralZ

FMM .nCk/!FMM .n/

f .�/:

The commutativity with the right cooperadic cocompositions is formally the same
as why �TwGraD ! �PA.FMD/ is a map of cooperads — see [33, Section 9.5] —
together with the fact that the propagator on FMM on clusters of points is given by

6Notice that here we make use of the fact that f .�/ is actually in �triv.FMM .nC k//.

Algebraic & Geometric Topology, Volume 23 (2023)



A model for configuration spaces of points 2049

the corresponding propagator of FMD . It remains to check the compatibility of the
differentials.

Notice that �TwGraM is a quasifree dgca generated by internally connected graphs, ie
graphs that remain connected if we delete all external vertices. Since the map !� is
compatible with the products, it suffices to check the compatibility of the differentials
on internally connected graphs. Let � 2 �TwGraM .n/ be such a graph with k internal
vertices.

If we denote by F the fiber of the map FMM .nC k/! FMM .n/, we have, by Stokes’
theorem,

d!� D

Z
F

df .�/˙

Z
@F

f .�/:

If we compute d� D ıcut�C ıcontr� , we retrieve

!ıcut� D

Z
F

f .dcut�/D

Z
F

df .�/:

The boundary of the fiber decomposes into various pieces, namely

@F D
[

n<i;j�nCk

@i;jF [
[
a�n

n<i�nCk

@a;iF [ @�3F;

where @i;jF is the boundary piece where points i and j (corresponding to internal
vertices) collided, @a;iF is the boundary piece where point i (corresponding to an
internal vertex) collided with point a (corresponding to an external vertex) and @�3F
is the boundary piece in which at least three points corresponding to internal vertices
collided.

If points i and j are not connected by an edge in � , then
R
@i;jF

f .�/D 0. To see this,
note that this integral has the form

R
@i;jF

f .�/D
R
i f .�/jiDj

R
SD�1 1D 0. Here the

integral vanishes by degree reasons since there is no top degree component of the form
on the factor SD�1. Here we used that the tangent bundle is trivialized. However, the
same argument goes through without using this feature by using trivializations of the
tangent bundle.

If points i and j are connected by an edge, then by property (ii) of Proposition 8
we have

R
@i;jF

f .�/ D !�=e, where �=e is the graph � with edge e contracted.
An analogous argument for the boundary pieces @a;iF allows us to conclude that
!d� D d!� ˙

R
@�3F

f .�/.
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The vanishing of
R
@�3F

f .�/ results from Kontsevich’s vanishing lemmas. Concretely,
suppose there are 3� l � k points colliding together. By integrating over the l points
first we obtain an integral of the form

R
FMD.l/

�, where � is a product of �i;j . If the
dimension D is at least 3, this integral vanishes as in [26, Lemma 2.2], using property
(iii) of Proposition 8.

To factor the integral we used the trivialization of the tangent bundle in this step. For
later use we shall however remark that this is not necessary. More precisely, let the
full subgraph on the “colliding” vertices be  . Then by the same argument as in the
proof of [26, Lemma 2.2], using property (iii) of Proposition 8, we may assume that
all vertices of  have valence � 3. But then the inner integral describes a form of
degree � 3

2
l.D � 1/� lDCDC 1 D 1

2
l.D � 3/CDC 1 > D on M , and M is of

dimension D. Hence this integral must vanish.

If DD 2, because of property (ii) of Proposition 8 we can use the Kontsevich vanishing
lemma from [28, Section 6.6] to ensure the vanishing of the integral.

4.1 The full graph complex and GraphsM

The map constructed in Lemma 19 is not (in general) a quasi-isomorphism and the
fundamental obstruction is the existence of graphs containing connected components of
only internal vertices in �TwGraM . The desired complex �GraphsM will be a quotient
of �TwGraM through which the map !� factors. A formal construction can be done
making use of the full graph complex that we define as follows.

Definition 20 The full graph complex of M , �fGCH�.M/ is defined to be the complex
�TwGraM .0/ consisting of graphs with no external vertices. This vector space forms a
differential graded commutative R–algebra with product defined to be the disjoint union
of graphs. We reserve the symbol fGCH�.M/ D .

�fGCH�.M//
� for the dual complex

and the symbol GCH�.M/ � fGCH�.M/ for the subcomplex of connected graphs.

The vector space �TwGraM can be naturally regarded as a left module over the al-
gebra �fGCH�.M/, where the action is given by taking the disjoint union of graphs.
Furthermore, we define the partition function

(9) ZM W
�fGCH�.M/!R

to be the map of dg commutative algebras obtained by restriction of the map !� from
Lemma 19.
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There is a commutative diagram of dg commutative algebras and modules

�fGCH�.M/
�TwGraM

R �PA.FMM /

ZM !�

Definition 21 The right �GraphsD cooperadic comodule �GraphsM is defined by

�GraphsM DR˝ZM
� TwGraM :

Remark 22 We pick as representatives for a basis of �GraphsM the set of graphs that
contain no connected components without external vertices. With this convention it
still makes sense to talk about the total number of vertices of a graph in �GraphsM .

Notice that as a consequence, part of the differential of �GraphsM might reduce the
number of vertices by more than 1 by “cutting away” a part of the graph that contains
only internal vertices, which did not happen with �TwGraM .

Corollary 23 The map �TwGraM ! �PA.FMM / defined in Lemma 19 induces a
map of cooperadic comodules �GraphsM !�PA.FMM /, still denoted by !�.

Remark 24 One may also endow fGCH�.M/ with the (free) product given by union
of graphs. The differential is not a derivation with respect to this product, but it is
a coderivation and it splits into a first-order and a second-order part, say ı1 C ı2.
Concretely, the second-order part ı2 replaces a pair of H �.M/–decorations in different
connected components by an edge, while the first-order piece splits vertices and joins
decorations in the same connected component. By Koszul duality, the commutator of
the product and the operator ı2 defines a Lie bracket of degree 1 on fGCH�.M/, which
reduces to a Lie bracket on the connected piece GCH�.M/.

Now the partition function ZM 2 fGCH�.M/ is a map from the free graded commuta-
tive algebra �fGCH�.M/ and hence completely characterized by the restriction to the
generators, ie to the connected graphs, say zM 2 GCH�.M/. The closedness of ZM
then translates to the statement that the connected part zM satisfies the Maurer–Cartan
equation. See Section 7.1 for details.

To summarize, we constructed a cooperadic right Hopf comodule �GraphsM . As a
vector space, �GraphsM .n/ is spanned by graphs with n labeled external vertices and
an unspecified number of indistinguishable internal vertices that can be decorated by
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(possibly multiple) cohomology classes of degree at least 1, under the condition that
there are no connected components without external vertices:

1 2 3 4

!1 !1

!2 !3 2
�GraphsM .4/

There is a graded commutative algebra structure given by superposition of external
vertices:

1 2.

!
�

1 2

.
�
D 1 2.

!

.
�

The differential ı splits as ı D ıcontrC ıcut, where ıcontr contracts edges adjacent to
at least one internal vertex and ıcut splits any edge into two decorations given by the
diagonal class of M . Due to the constraint of not allowing connected components
without external vertices, ıcutD�

�CıZM splits again into two pieces, �� which does
not create forbidden graphs and ıZM that when creating such forbidden connected
components transforms them into a scalar as prescribed by the partition function ZM :

ıcontr a

.

!

D a

!

; �� a b D

X
ei basis ofH�.M/ ei

e�i

a b

ıZM
:

.!

�
D

X
ei basis ofH�.M/

ZM

�
ei

:
.!

�

�
e�i C � � �

The cooperadic right comodule structure is obtained by collapsing subgraphs containing
at least one external vertex into a single external vertex.

4.2 Historic remark

The above graph complexes can be seen as a version of the nonvacuum Feynman
diagrams appearing in the perturbative expansion of topological field theories of AKSZ
type, in the presence of zero modes. In this setting the field theories have been studied
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by Cattaneo and Felder [12] and Cattaneo and Mnev [13], whose names we hence
attach to the above complexes of diagrams, though the above construction of �GraphsM
does not appear in these works directly. Furthermore, it has been pointed out to us by
A Goncharov that similar complexes have been known by experts before the works
of the aforementioned authors. Finally, in the local case the construction is due to
M Kontsevich [27].

5 Cohomology of the CFM (co)operad

The following theorem relates the right GraphsD–module GraphsM with the right
FMD–module FMM .

Theorem 25 The map !� W �GraphsM !�PA.FMM / established in Corollary 23 is a
quasi-isomorphism. Similarly, the composition map

Chains.FMM /!�PA.FMM /
� !
�
��! GraphsM

is a quasi-isomorphism of right modules.

Note that there is in general no known explicit formula for the cohomology of the
configuration spaces FMM .n/ on a manifold. However, two spectral sequences con-
verging to the (co)homology are known, one by Cohen and Taylor [15] and one by
Bendersky and Gitler [4]. Both spectral sequences have been shown to be isomorphic
(via Poincaré duality) from the E2 term on by Felix and Thomas [19]. The E2 term
is the cohomology of a relatively simple complex described below. It was shown
by B Totaro [44] and I Kriz [30] that the spectral sequence abuts at the E2 term for
smooth projective varieties. However, it does not in general abut at the E2 term; a
counterexample was given in [19].

The strategy to prove Theorem 25 will be as follows. We will compare the double
complex BG giving rise to the Bendersky–Gitler spectral sequence (its definition will
be recalled below) to �GraphsM . There is a complex fBG quasi-isomorphic to BG
that comes with a natural map f W fBG! GraphsM . Our goal is to show that f is a
quasi-isomorphism, and for that we set up another spectral sequence. The detailed
proof is contained in Section 5.6.

5.1 The Bendersky–Gitler spectral sequence

Let us recall the definition of the Bendersky–Gitler spectral sequence. See also the
exposition in [19].
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Recall that the configuration space of n points in M is Confn.M/ WDM n n�, where
�D f.p1; : : : ; pn/ j 9i ¤ j W pi D pj g. By Poincaré–Lefschetz duality,

H�d .Confn.M//ŠHn dim.M/�d .M n; �/:

The relative cohomology H �.M n; �/ on the right is the cohomology of the complex

H �.M n/!H �.�/:

The left-hand side is the cohomology of �PA.M/˝n. The right-hand side may be
computed as the cohomology of the Čech–de Rham complex corresponding to any
covering of �. To obtain the Bendersky–Gitler double complex one takes the cover of
the diagonal by the sets

Ui;j D fpi D pj g ��:

The Bendersky–Gitler complex is the total complex of the double complex obtained
using the natural quasi-isomorphism �PA.M/˝n!�PA.M

n/, ie

BG.n/ WD Total.�PA.M/˝n! Čech–de Rham.�//:

By the statements above and a simple spectral sequence argument, it follows that
H �.BG.n//ŠH.M n; �/.

For what we will say below it is important to describe BG.n/ in a more concise way.
Elements of BG.n/ can be seen as linear combinations of decorated graphs on n vertices,
the decoration being one element of �PA.M/ for each connected component of the
graph. The degree of such a graph is computed as

.degree/D #.edges/C #.total degree of decorations/�n � dim.M/:

The differential is composed of two parts, one of which comes from the de Rham
differential and one of which comes from the Čech differential:

dtotal D ddRC ı:

Concretely, ı adds an edge in all possible ways, and multiplies the decorations of the
connected components the edge joins.

Remark 26 The original construction of the Bendersky–Gitler spectral sequence uses
the de Rham complex ofM , but since there is only semialgebraic data involved, namely
intersections of sets Ui;j ŠM n�1, we are allowed to replace differential forms by
piecewise algebraic (PA) forms.
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5.2 A general construction

Recall that the monoidal product of symmetric sequences ı is given by

.S ıS 0/.n/D
M

kDk1C���Ckn

S.k/˝S 0.k1/˝ � � �˝S 0.kn/˝RŒSh.k1; : : : ; kn/�;

where Sh.k1; : : : ; kn/ are the k1; : : : ; kn shuffles. Let C be a cooperad, M be a co-
operadic right C–comodule with coaction �M WM!M ı C, and let A be some dg
commutative algebra, which can be seen as a symmetric sequence concentrated in
arity 1. Then the spaces

M.n/˝A˝n D .M ıA/.n/

assemble into another cooperadic right C–comodule.

More formally, since A is a dg commutative algebra, for every symmetric sequence S
there is a morphism

s W S ıA! A ıS

given by the multiplication in A.

The coaction of C on M ıA is given by the composition of the maps

M ıA �MıidA
�����! .M ı C/ ıAŠM ı .C ıA/ idMıs

���!M ı .A ı C/Š .M ıA/ ı C:

It is a straightforward verification to check that the axioms for cooperadic comodules
hold.

5.3 The definition of eBG

Let C be a coaugmented cooperad and M be a right C–comodule. Applying the
cobar construction to the cooperad C we obtain an operad �.C/. Applying the cobar
construction to the comodule M we obtain a right �.C/–module ��.C/.M/, also
denoted just by �.M/. As a symmetric sequence, �.M/ D M ı �.C/ and the
differential splits as d D d1C d2C d3, where d1 comes from the differential in M,
d2 comes from the differential in �.C/ and d3 is induced by the comodule structure.
Of course, if A is a dg commutative algebra, then replacing M by M ıA we obtain a
right �.C/–module �.M ıA/. We can now define

fBG WD�ƒD�1L1.s
�DƒDcoComm ı�PA.M//;
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where on the right-hand side we consider s�DƒDcoComm as a right comodule over
ƒDcoComm and then we use the construction from the previous section that gives us
a ƒDcoComm–right comodule structure on s�DƒDcoComm ı�.M/. Notice that the
operadic cobar construction is given by

�.ƒDcoComm/D�..ƒD�1Lie/_/DƒD�1L1:

Up to degrees, one can picture fBG as multiple (“commuting”) L1 words, each labeled
by a PA form onM . Besides the de Rham and theL1 differential, the cobar differential
acts by merging two L1 words while multiplying the associated forms.

5.4 Some other general remarks and the definition of sBG

Let P be a Koszul operad, P_ the Koszul dual cooperad and P1D�.P_/ the minimal
cofibrant model for P . There are bar and cobar construction functors between the
categories of right P–modules and right P_–comodules,

BP_ WMod–P$ coMod–P_ W�P :

Given a right P_–comodule M there are two ways to construct a right P1–module:

(1) Take the right P1–module �P1.M/.

(2) Take�P.M/ and consider it as a right P1–module via the morphism of operads
p W P1! P .

Lemma 27 Let P be a Koszul operad with zero differential such that P.0/D 0 and
P.1/DR and let M be a right P_–comodule. Then there is a canonical (surjective)
quasi-isomorphism

� W�P1.M/!�P.M/:

Proof As symmetric sequences, �P1.M/ DM ıP1 and �P.M/ DM ıP . We
define � D idM ı p. It is clear that each piece of the differential commutes with � .
The remaining claim that � is a quasi-isomorphism follows from a spectral sequence
argument.

Concretely, we consider a filtration Fp�P1.M/ spanned by elements for which the
sum of the degree in M with the weight in P1 (the amount of elements from P_ used)
does not exceed p. On the first page of the spectral sequence given by this filtration
we recover �P.M/ and thus the result follows.

Now let us give the definition of sBG,

sBGD�ƒD�1Lie.s
�DƒDcoComm ı�PA.M//;
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where on the right we consider ƒDcoCommD .ƒD�1Lie/_ as a right comodule over
itself and the algebra of differential forms �PA.M/. Then, by the lemma above, we
see that there is a canonical quasi-isomorphism

fBG! sBG:

Similar to fBG, one can picture sBG as connected components of Lie words, each
labeled by a PA form on M . One can consider a basis of Lie.n/ consisting of graphs
on n vertices, with n� 1 edges, such that there are no two edges .i; r/ and .j; r/ with
r bigger than both i and j . Taking the degrees and differentials into account, we see
that sBG.n/ is precisely what in [19] is denoted by E.n;A/, for AD�PA.M/.

Furthermore it was shown in [19, Proposition 2.4] that there is a canonical quasi-
isomorphism

BG! sBG:

In particular one obtains:

Corollary 28 The following symmetric sequences are isomorphic:

H�.Conf�.M//ŠH.BG/ŠH.sBG/ŠH.fBG/:

5.5 The map eBG! GraphsM

The goal of this subsection is to construct the map of right ƒD�1L1–modules

ˆ W fBG! GraphsM :

Since fBG WD�ƒD�1L1.s
�DƒDcoComm ı�PA.M// is quasifree as right ƒD�1L1–

module, it suffices to define our map ˆ on the module generators and verify that this
map is compatible with the differential. Note that s�DƒDcoComm.n/ D RŒnD��n
is one-dimensional, generated by the n–fold coproduct �n. We define the map ˆ on
generators by setting, for ˛1; : : : ; ˛n 2�PA.M/ and � 2 �GraphsM ,

(10) .ˆ.�n˝˛1˝ � � �˝˛n//.�/ WD

Z
FMM .n/

.��1˛1/ � � � .�
�
n˛n/!� :

Here �j W FMM .n/! FMM .1/DM is the map that forgets the position of all points in
the configuration except for the j th point. Notice that the element �n˝˛1˝ � � �˝˛n
has degree �nD C j˛1j C � � � C j˛nj D �.dim.FMM .n// � j��1˛1j � � � � � j�

�
n˛nj/;

therefore F preserves degrees.
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A general element of fBG is a linear combination of elements obtained by acting with
elements of the operad `j 2ƒD�1L1 on generators,

x WD .�n˝˛1˝ � � �˝˛n/ ı .`1; : : : ; `n/:

For such elements x we have that ˆ.x/Dˆ.�n˝˛1˝� � �˝˛n/ı .`1; : : : ; `n/, using
the right action of ƒD�1L1 on GraphsM . This latter action factors through the right
action of GraphsD on GraphsM via the maps

ƒD�1L1
f
�! Chains.FMD/

!�
�! GraphsD:

Denoting the cooperadic coaction on � 2 �GraphsM by
P
� 0˝ 1˝ � � � ˝ k , with

j 2
�GraphsD , this implies that

(11) ˆ.x/.�/D .ˆ.�n˝˛1˝ � � �˝˛n/ ı .`1; : : : ; `n//.�/

D

X
˙ˆ.�n˝˛1˝ � � �˝˛n/.�

0/ �
Y
j

Z
f .`j /

!j

D

X
˙

Z
FMM .n/

.��1˛1/ � � � .�
�
n˛n/!� 0

Y
j

Z
f .`j /

!j

D

Z
Fund.FMM .n//ı.f .`1/;��� ;f .`n//

.��i1˛1/ � � � .�
�
in
˛n/!� :

In the last line we are integrating over the fundamental chain of a boundary stratum
of FMM in which groups of points are infinitesimally close together. The indices
i1; : : : ; in shall be those of one (arbitrary) point in each such group. Furthermore, we
used the compatibility of the map ! with the operadic FMD–action on FMM . Using
the formula above we can show the following result.

Lemma 29 The map ˆ W fBG! GraphsM defined above is compatible with the dif-
ferentials and is hence a map of right ƒD�1L1–modules. It furthermore factorizes
through the adjoint !� of the map ! W �GraphsM !�PA.FMM / of Corollary 23 asfBG F

�!�PA.FMM /
� !�
�! GraphsM

with

F..�n˝˛1˝ � � �˝˛n/ ı .`1; : : : ; `n//.!/

D

Z
Fund.FMM .n//ı.f .`1/;���;f .`n//

.��i1˛1/ � � � .�
�
in
˛n/!:

Proof The factorization through !� is clear by (11).
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It remains to check that the differentials are preserved by ˆ. Note that the differential
on fBG decomposes into three terms, d D d�PA.M/ C dƒD�1Ł1 C dcobar, stemming
from the internal differentials on �PA.M/ and ƒD�1Ł1, and the cobar construction
respectively. Note that the second summand is zero on generators.

On the other hand we compute, applying Stokes’ theorem,

.ˆ.�n˝˛1˝�� �˝˛n//.d�/

D

Z
FMM .n/

.��1˛1/ � � �.�
�
n˛n/!d�

D

Z
FMM .n/

.��1˛1/ � � �.�
�
n˛n/d!�

D

nX
jD1

˙

Z
FMM .n/

.��1˛1/ � � �.�
�
j d˛j / � � �.�

�
n˛n/!�˙

Z
@FMM .n/

.��1˛1/ � � �.�
�
n˛n/!� :

The two terms exactly reproduce the differential on fBG. The first term corresponds to the
part from the internal differential on �PA.M/. The second term (the boundary integral)
produces the part of the differential from the cobar construction. More precisely, it is
the sum over codimension 1 boundary strata corresponding to some subset of the n
points colliding. But each such term is, using the computation (11) again, identified
with an action of a generator of ƒD�1L1, so that all these terms together assemble to
˙dcobarˆ.�n˝˛1˝ � � �˝˛n/.

5.6 The map eBG! GraphsM is a quasi-isomorphism

In this section we will show the following proposition:

Proposition 30 The mapˆ WfBG!GraphsM constructed above is a quasi-isomorphism.

There is a filtration on GraphsM by the number of connected components in graphs.
Concretely, let FpGraphsM be the set of elements of GraphsM which contain only
graphs with p or fewer connected components. There is a similar filtration on fBG com-
ing from the arity of elements of the generating symmetric sequence s�DƒDcoComm.
Concretely, elements of FpfBG are those elements of fBG that can be built without using
any generators �pC1; �pC2; : : : in ƒDcoComm. The filtration is aritywise bounded,
since the number of connected components in arity r is necessarily between 1 and r .

Lemma 31 The map ˆ from above is compatible with the filtration , ie

ˆ.FpfBG/� FpGraphsM :
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Proof The result is clear for generators of fBG, since graphs with n vertices cannot
have more than n connected components. In general ˆ is compatible with the filtration
since is a morphism of ƒD�1L1 right modules and the right action of ƒD�1L1
on GraphsM is given by the insertion of connected graphs which cannot increase the
number of connected components.

It follows that ˆ induces a morphism of the respective spectral sequences. We will
show the following lemma:

Lemma 32 The map ˆ induces an isomorphism at the first pages of the associated
spectral sequences.

The statement of the lemma is equivalent to saying that the graded version of ˆ,

grˆ W gr fBG! grGraphsM ;
is a quasi-isomorphism.

One can compute the cohomology of gr fBG explicitly.

Lemma 33 H.gr fBG/D .s�DƒDcoComm ıH �.M// ıƒD�1LieDW sBGH.M/.

Proof The differential on gr fBG is precisely the one induced by the de Rham differential
and the differential on ƒD�1L1. Therefore, by the Künneth formula,

H.gr fBG/DH.s�DƒDcoComm/ ıH.�PA.M// ıH.ƒD�1L1/

D .s�DƒDcoComm ıH �.M// ıƒD�1Lie:

Having fixed the embeddingH �.M/ ,!�PA.M/ and fixing any aritywise right inverse
(as cochain complexes) of the projection ƒD�1L1 ! ƒD�1Lie, from now on we
interpret the space sBGH.M/ (with zero differential) as a subcomplex of gr fBG.

Proposition 34 The map grˆ restricts to an injective map sBGH.M/! grGraphsM
and the inclusion morphism ˆ.sBGH.M// ,! grGraphsM is a quasi-isomorphism.

The proof is by an argument similar to the one used by P Lambrechts and I Volic in [33,
Lemma 8.3]. If we believe Proposition 34 for now, Lemma 32 follows as a corollary.

Proof of Proposition 30 As a consequence of Lemma 32, the map ˆ induces a
quasi-isomorphism at the level of the associated graded with respect to an (aritywise)
bounded filtration, and therefore is a quasi-isomorphism itself.
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5.7 Proof of Proposition 34

Proposition 35 The vector spaces sBGH.M/.n/ satisfy the recursion

(12) sBGH.M/.n/D sBGH.M/.n� 1/˝H
�.M/˚ sBGH.M/.n� 1/ŒD� 1�

˚n�1:

Proof We have

sBGH.M/.n/

D

M
i1C���CikDn

H �.M/˝kŒkD�˝ƒD�1Lie.i1/˝� � �˝ƒ
D�1Lie.ik/˝RŒSh.i1; : : : ; ik/�:

Let us take an element of sBGH.M/.n/ and consider two different cases. If the input
labeled by 1 corresponds to the unit 1 2ƒD�1Lie.1/, it is associated to an element of
H �.M/ and by ignoring these we are left with a generic element of sBGH.M/.n� 1/,
thus giving us the first summand of (12).

Alternatively, if the vertex labeled by 1 corresponds to some Lie word in ƒD�1Lie.ij /
with j > 1, the only possibility is that it came from the insertion of the generator
�2 2ƒ

D�1Lie.2/ in some other Lie word. Since there are n� 1 such choices and �2
has degree has degree 1�D, we obtain the summand sBGH.M/.n�1/ŒD�1�

˚n�1.

Lemma 36 The map grˆ restricts to an isomorphism from sBGH.M/.n/ onto its
image ˆ.sBGH.M/.n//� grGraphsM .n/.

Proof It suffices to show the injectivity of the map grˆwhen restricted to sBGH.M/.n/.

Recall that

sBGH.M/.n/

D

M
i1C���CikDn

H �.M/˝kŒkD�˝ƒD�1Lie.i1/˝� � �˝ƒ
D�1Lie.ik/˝RŒSh.i1; : : : ; ik/�:

Let us start by considering the case in which the numbers i1; : : : ; in are all equal to 1.
Let !1˝� � �˝!n 2H �.M/˝nŒnD�˝ƒD�1Lie.1/˝� � �˝ƒD�1Lie.1/. The element
ˆ.!1˝� � �˝!n/ 2 GraphsM .n/ is in principle a sum of many terms, but its projection
into the subspace of GraphsM .n/ made only of graphs with no internal vertices, no
more than one decoration per vertex, and precisely n connected components is simply
the graph

˙

1

!�1

2

!�2

: : : n

!�n
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where !�i is dual to !i under the pairing on H �.M/. This implies in particular that ˆ
is injective when restricted to H �.M/˝nŒnD�˝ƒD�1Lie.1/˝ � � �˝ƒD�1Lie.1/.

The same idea can be adapted for the case of arbitrary ij . The image of the elements
of sBGH.M/ might be very complicated, but to conclude injectivity it is enough to
see that the components on a “disconnected enough” subspace are different and by
compatibility with the L1–action these components are just given by insertion of
graphs representing L1 words.

Let p � 2f1;:::;ng denote a partition of the numbers 1; : : : ; n. To every such p we can
associate a subspace Vp � GraphsM .n/ spanned by graphs with no internal vertices
and such that the vertices labeled by a and b are on the same connected component if
and only if a and b are in the same element of the partition p.

Every partition p is determined the number of elements of the partition, which is a
number k � n, the sizes of the partitions, i1; : : : ; ik such that i1C � � �C ik D n and an
element of Sh.i1; : : : ; ik/ specifying which numbers are included in each element of
the partition. This data defines a subspace Wp of sBGH.M/.n/ and the map ˆ induces
maps ˆp W Wp ! Vp, where Vp D

L
p0 coarser than p Vp0 and similarly for Wp. It can

shown by induction on the size of the partition p that the maps ˆp are injective for
every partition p, so in particular for p the discrete partition we obtain the injectivity
of the full map.

This follows from the fact that a linear map f WA˚B! V is injective if its restriction
to both A and B is injective and f .A/\f .B/D 0 and in our case these two conditions
can be verified just by looking at the component of Vp � Vp.

Corollary 37 The family of graded vector spacesˆ.sBGH.M//�grGraphsM satisfies
the recursion

ˆ.sBGH.M/.0//DR;

ˆ.sBGH.M/.n//Dˆ.sBGH.M/.n�1//˝H
�.M/˚ˆ.sBGH.M/.n�1//ŒD�1�

˚n�1:

Proposition 34 will follow from showing that the inclusionˆ.sBGH.M// ,!grGraphsM
is a quasi-isomorphism and for this we will use some additional filtrations.

The differential on grGraphsM splits into the terms

ı D ısC�C�1;

where ıs is obtained by splitting vertices, � (the BV part of the differential) removes
two decorations and creates an edge instead and �1 connects a connected component
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of (possibly decorated) internal vertices to the given graph. Let us call the emv-degree
(edges minus vertices) of a graph the number

#.edges/� #.vertices/:

The differential can only increase or leave constant the emv degree. Hence we can put
a filtration on grGraphsM by emv degree. We will denote the associated graded by

gr0 grGraphsM :

The induced differential on the associated graded ignores the � part of the differential.

Lemma 38 H.gr0 grGraphsM /Dˆ.sBGH.M//.

Since in gr0 grGraphsM the� part of the differential is zero, all pieces of the differential
increase the number of internal vertices by at least one. To show this lemma, we will
put yet another filtration on gr0 grGraphsM by #.internal vertices/�degree. Let us call
the associated graded

gr00 gr0 grGraphsM :

Notice that in gr00 gr0 grGraphsM we have �D 0 and the only “surviving” pieces of �1
replace any decoration by an internal vertex with the same decoration or connect a
single internal vertex to another vertex of the graph. These pieces also appear in ıs and
it can be checked that they appear with opposite signs, thus canceling out.

Lemma 39 H.gr00 gr0 grGraphsM /Dˆ.sBGH.M//.

Proof Let us write V.n/ D gr00 gr0 grGraphsM .n/ for brevity. We will show that
H.V.n//Šˆ.sBGH.M/.n// by induction on n. We can split

V.n/D V0 ˚ V1 ˚ V�2

according to the valence of the external vertex 1 (where decorations are considered to
increase the valence of the vertices). The arrows indicate how the differential maps the
individual parts to each other. The complex V0 is isomorphic to V.n� 1/ and we can
invoke the induction hypothesis. For the remainder we consider a spectral sequence
whose first differential is V�2! V1. Concretely, we consider .Fk/k2Z, a descending
filtration V.n/ � � � � � Fk � FkC1 � � � � � 0, such that Fk is spanned by graphs of
degree at least k in which the vertex 1 is not 1–valent and by graphs of degree at least
k C 1 in which the vertex 1 has valence 1. The map V�2 ! V1 is injective and its
cokernel is generated by graphs of one of the following types:
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(1) Vertex 1 has a decoration and no incoming edges.

(2) Vertex 1 has no decoration and is connected to some other external vertex.

In the first case we obtain a complex isomorphic to V.n � 1/ for every choice of
decoration, with a degree shift given by the decoration. In the second case, each choice
of connecting external vertex yields a complex isomorphic to V.n� 1/ with a degree
shift given by the additional edge. This gives us the following expression of the first
page of the spectral sequence:

E1.V .n//DH.grV.n//D V0˚V.n� 1/˝H �.M/˚V.n� 1/ŒD� 1�˚n�1

D V.n� 1/˝H �.M/˚V.n� 1/ŒD� 1�˚n�1:

Under this identification, on the this page of the spectral sequence we obtain precisely
the differential of V.n�1/. Notice that V1˚V�2 is a double complex concentrated on
a double column and therefore the spectral sequence collapses at the second page E2.
From this observation we obtain the recursion

H.V.n//DH.V.n� 1//˝H �.M/˚H.V.n� 1//ŒD� 1�˚n�1;

which is the same as the recursion for ˆ.sBGH.M/.n//, as shown in Corollary 37. To
see that the inclusion ˆ.sBGH.M/.n//! V.n/ induces a quasi-isomorphism on the
second page of the spectral sequence, we start by noticing that the result holds triv-
ially on the 1–dimensional initial terms ˆ.sBGH.M/.0// and H.V.0//, and therefore
ˆ.sBGH.M/.n// and H.V.n// have the same dimension.

The second page of the inclusion map

ˆ.sBGH.M/.n�1//˝H
�.M/˚ˆ.sBGH.M/.n�1//ŒD�1�

˚n�1

!H.V.n�1//˝H �.M/˚H.V.n�1//ŒD�1�˚n�1

can be written as �
f11 f12
f21 f22

�
;

where f12 Wˆ.sBGH.M/.n�1//ŒD�1�
˚n�1!H.V.n�1//˝H �.M/ is actually the

0 map, since ˆ.sBGH.M/.n� 1//ŒD� 1�
˚n�1 corresponds to the image of elements

in H �.M/˝kŒkD�˝ƒD�1Lie.i1/˝ � � � ˝ƒ
D�1Lie.ik/ with i1 � 2 and the vertex 1

cannot be the only labeled vertex in its connected component. The maps f11 and f22
are isomorphisms by induction, and therefore the second page of the inclusion map is
an isomorphism, whence the result follows.
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Proof of Lemma 38 The E1 term of the spectral sequence is a quotient complex,
hence it abuts at that point.

Proof of Theorem 25 We have shown that the compositionfBG F
�!�PA.FMM /

� !�
�! GraphsM

is a quasi-isomorphism, but since the homology of �PA.FMM /
� is also isomorphic

to the other two homologies which are finite-dimensional in each arity and degree, it
follows that F and !� are quasi-isomorphisms themselves.

Consequentially, the map Chains.FMM /!�PA.FMM /
�!GraphsM is a composition

of quasi-isomorphisms, therefore is a quasi-isomorphism as well.

Remark 40 For the proof of Theorem 25 we consider the functor�PA of semialgebraic
forms, but one could equally use any contravariant functor� landing in dgca’s satisfying
the following properties:

� � is quasi-isomorphic to the Sullivan functor APL of piecewise-linear de Rham
forms.

� � admits pushforwards of the forgetful maps FMM .n/!FMM .n�k/ satisfying
the usual properties of fiber integrals, in particular Stokes’ theorem.

� � is “almost” comonoidal, as in Remark 15.

6 The nonparallelizable case

Let M be a closed oriented connected manifold. In this section we show that even
in absence of the parallelizability hypothesis, a slight variant of the collection of
commutative algebra �GraphsM is still a model of FMM .

In this respect it is not natural to consider graphs with tadpoles as the compatibility
of the differential of the map from Lemma 16 depended on the vanishing of the Euler
characteristic for those graphs. More precisely, the problem is that in the map of
Lemma 16 a tadpole edge is sent to a form whose coboundary is the Euler class.

We define �GraM �
�GraM to be the dg Hopf subcollection spanned by graphs without

tadpoles.

Note that this subcollection is indeed closed under the product and differential. It
furthermore retains a ƒD�1Lie�–comodule structure from �GraM , but not the full
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�GraD–comodule structure, as the proof of Proposition 14 fails in the absence of
tadpoles. Furthermore, the map (8) naturally restricts to a map of dg Hopf collections

�GraM !�triv.FMM /��PA.FMM /;

which is well defined even if M has a nontrivial Euler class. The twisting construction
of Section 4 and in particular the construction of the map ! of Corollary 23 also
naturally yields a map

! W �GraphsM !�PA.FMM /; � 7! !� ;

where we denote by �GraphsM �
�GraphsM the subcollection spanned by graphs

without tadpoles.

To be clear, if M has nonvanishing Euler class then the map ! of Corollary 23 is not a
priori not well-defined on GraphsM because we would need to send a tadpole edge to
a form whose coboundary is the Euler class. Furthermore, the partition function (9) is
only well defined on the tadpole-free part �fGC

H�.M/
� �fGCH�.M/. Hence one does

not even get a well-defined (square-zero) differential on the graded collection �GraphsM
from the partition function, one only has this on the tadpole-free part �GraphsM .

In particular, we note that the differential on �GraphsM can indeed not produce tadpoles.
The only term in the differential that is able to produce a tadpole is the edge contraction
in the presence of a multiple edge. However, multiple edges are zero by symmetry
reasons for even D while tadpoles are not present by symmetry reasons for odd D,
hence no problem arises.

Also, ifM is not parallelized, there is no consistent way of defining a right FMD–action
on FMM . Nonetheless, disregarding the cooperadic coactions, the map

�GraphsM !�PA.FMM /

is well defined as a map of dgcas since the proof of Lemma 19 uses parallelizability
condition only for the tadpoles and the coaction; see the remarks within that proof on
using the trivialization of the tangent bundle.

Before proceeding, let us furthermore show that the exclusion of tadpoles has no effect
on the homotopy type, provided �GraphsM is well defined. (See [45, Proposition 3.4]
for similar results and arguments.)

Proposition 41 Suppose that M is parallelizable (or at least has vanishing Euler
class), so that the dg Hopf collection �GraphsM is well defined. Then the inclusion
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�GraphsM !
�GraphsM is a quasi-isomorphism of collections of dg commutative

algebras.

Proof sketch We consider a spectral sequence on �GraphsM whose associated graded
has a differential contracting internal vertices with only an adjacent edge and a tadpole
along the nontadpole edge:

d0

:

D

Such a spectral sequence can be obtained by filtering first by the number of tadpoles
and then by lCdegree, where l is the sum of lengths of maximal connected subgraphs
consisting of 2–valent internal vertices and one internal vertex with just a tadpole at
the end.

We can then set up a homotopy h that splits out an internal vertex with a tadpole:

h D

We have d0hC hd0 D T id, where T is the number of tadpoles, whence it follows that
H.�GraphsM ; d0/D

�GraphsM .

Finally, one has the following version of Theorem 25 for nonparallelizable M .

Theorem 42 Let M be a closed oriented manifold. The map

!� W
�GraphsM !�PA.FMM /

is a quasi-isomorphism of symmetric sequences of dg commutative algebras. Similarly ,
the composition map

Chains.FMM /!�PA.FMM /
� !
�
��! GraphsM WD .

�GraphsM /
�

is a quasi-isomorphism.

Proof We follow the proof of Theorem 25. First we note that while in general one does
not have a right FMD–module structure on FMM if M is not framed, the insertion of
fundamental chains of FMD at points in FMM is independent of the framing so in fact
it gives us a well-defined operadic action Chains.FMM /ıƒD�1L1! Chains.FMM /.
Similarly, as mentioned above, GraphsM inherits a right ƒD�1L1–module structure
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from the one on GraM WD .
�GraM /

�. These structures suffice to define the map of
right ƒD�1L1–modules

ˆ W fBG! GraphsM

as in Section 5.5 by formula (10) (respectively (11)). Furthermore, Lemma 29 does not
make use of tadpoles and holds in this case as well.

Furthermore, the remaining arguments of Sections 5.6 and 5.7 leading to Theorem 25
are agnostic to the presence or absence of parallelizability of M or tadpoles in graphs,
and hence also show Theorem 42.

7 A simplification of �GraphsM and relations to the literature

7.1 An alternative construction of GraphsM .

Recall that in Section 4 the space �GraphsM was constructed by identifying connected
components without external vertices with real numbers via a “partition function”,
which is a map of commutative algebras ZM W �fGCH�.M/!R.

In this subsection and the next we present an alternative construction of GraphsM that
will allow us to understand better the relevance of the partition function ZM in the
homotopy type of GraphsM .

Notice that �fGCH�.M/ is a quasifree commutative algebra generated by its subspace
of connected graphs �GCH.M/. The differential d on �fGCH�.M/ defines then a
ƒL1 coalgebra structure on �GCH�.M/. In fact, since the differential can increase the
number of connected components by at most one, this is in fact a strict Lie coalgebra
structure.

The dual Lie algebra structure is denoted by GCH�.M/ D .
�GCH�.M//

� and is repre-
sented by infinite sums of graphs decorated by H�.M/ (or dually by H �.M/, via the
Poincaré pairing). The Lie bracket Œ�; � 0� is given by summing over all possible ways
of selecting a decoration in � and another decoration in � 0 and connecting them into
an edge, with a factor given by their pairing. The differential acts by vertex splitting
and joining decorations.

It follows that maps of dg commutative algebras �fGCH�.M/!R are identified with
maps in the Lie algebra satisfying the Maurer–Cartan equation,

MC.GCH�.M//D Homdgca.
�fGCH�.M/;R/:
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We denote by zM 2GCH�.M/ the Maurer–Cartan element corresponding to the partition
function ZM . If we consider the subrepresentation S � TwGraM given by graphs
with no connected components consisting only of internal vertices, then GraphsM is
obtained by twisting S by the Maurer–Cartan element zM , as recalled in the following
section.

Analogously, we denote by GCM WD GCzM
H�.M/

the Lie algebra obtained by twisting
with the Maurer–Cartan element zM .

For later use let us also split the Maurer–Cartan element

zM D

DX
i;jD1

gij ei ej

„ ƒ‚ …
DWz0

C z0M

into a part z0 given by graphs with exactly one vertex and 2 or 1 decorations and
a remainder z0M WD zM � z0. Note in particular that z0 is determined solely by the
nondegenerate pairing on H.M/. The element z0 is itself a Maurer–Cartan element,
and below we will consider the twisted dg Lie algebra

GC0H.M/ WD GCz0
H.M/

;

and consider z0M as a Maurer–Cartan element in GC0H.M/.

7.2 Twisting of modules

While the differential of GraphsM can be very nonexplicit, expressing it as twist by a
Maurer–Cartan element opens the door to simplifications of the model, as long as we
have some control over the gauge equivalence class of the Maurer–Cartan element.

Indeed, let us pause for a moment to consider the following general situation. Suppose
g is a dg Lie algebra, acting on M , where M can be just a dg vector space, or a
(co)operad or a (co)operadic (co)module, or a pair of a (co)operad and a (co)operadic
(co)module. In any case we require the g–action to respect the given algebraic structure,
in the sense that the action is by (co)derivations.

Suppose now that m 2 g is a Maurer–Cartan element, ie dmC 1
2
Œm;m� D 0. Then

we can form the twisted Lie algebra gm with the same Lie bracket, but differential
dm D d C Œm;��. We can furthermore form the twisted (gm–)module Mm, which
is the same space as M , carrying the same action and underlying algebraic structure
(operad, operadic module, etc), but whose differential becomes

dm D d Cm�;
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where m� shall denote the action of m and we denote the original differential on M
by d . Next suppose that m0 2 g is another Maurer–Cartan element. We say that m
and m0 are gauge equivalent if there is a Maurer–Cartan element ym 2 gŒt; dt � whose
restriction to t D 0 agrees with m, and whose restriction to t D 1 agrees with m0. More
concretely,

ymDmt C dtht ;

where mt can be understood as a family of Maurer–Cartan elements in g, connected by
a family of infinitesimal homotopies (gauge transformations) ht . The Maurer–Cartan
equation for ym translates into the two equations

dmt C
1
2
Œmt ; mt �D 0;

@mt
@t
C dht C Œht ; mt �D 0:

Now suppose that g is pro-nilpotent. Then we may form the exponential group Exp.g/,
which is identified with the degree 0 subspace g0 � g, with group product given by the
Baker–Campbell–Hausdorff formula. We can integrate the flow of ht into the element
Ht 2 Exp.g/, which acts on x 2 g by

Ht .x/D exp.ht / � x D ˛C
X
n�0

adn.ht /
.nC 1/Š

.Œht ; x�� dht /:

The action of Ht is compatible with the Lie bracket and has the property that, for every
x 2 g,

Ht .dxC Œm; x�/D .d C Œmt ;��/Ht .x/:

In particular, the action of H1 induces an isomorphism of dg Lie algebras,

H1 W g
m
! gm

0

:

Next suppose that also the action of g on M is pro-nilpotent. Then, by a similar
argument, the action of H1 yields an isomorphism

(13) H1� WM
m
!Mm0 :

Now let us relate these general statements to the objects of relevance in this paper. First
consider gD GCD to be the graph complex, but as a graded Lie algebra, ie considered
with zero differential. The correct differential on the graph complex is then obtained
by twisting with the Maurer–Cartan element [45]

m0 D :

Furthermore, consider M D �GraphsD , again with zero differential. There is a natural
action of g on M [17; 45]. The differential on �GraphsD DMm0 is then reproduced
by twisting with m0.
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Secondly, the above picture can be extended to include the (co)operadic right modules.
First, GCD acts on GCH.M/. We take

gD GCD ËGCH.M/;

where we consider again the first factor with trivial differential, and the second factor
only with the part of the differential joining two decorations to an edge. The element
m0 from above is then a Maurer–Cartan element, and twisting by this Maurer–Cartan
element reproduces the differential on the factors of g considered above. Similarly, we
may consider the Maurer–Cartan elements

m0 WDm0C z0 or mM WDm0C zM ;

where z0 and zM are as above. Twisting then reproduces on the second factor either
the differential on GC0H.M/, or that on GCM .

Next consider for M the pair consisting of a cooperad and a comodule

.�GraphsD;
�GraphsM /;

where the first factor we consider with the zero differential, and in the second we
consider only the part that connects two decorations to an edge. Then twisting with the
Maurer–Cartan element mM reproduces the full differential on the factors.

Remark 43 An immediate consequence of the above way of constructing �GraphsM
is that one has a large class of (co)derivations at hand. Namely, we have an action of
gzM onM zM . In particular, it was shown in [45] that the 0th cohomology of GC2 is the
Grothendieck–Teichmüller algebra grt1. Hence, overstretching the analogy a bit, we
may consider the dg Lie algebra gzM , consisting of factors GCD and GCM , as a version
of the Grothendieck–Teichmüller dg Lie algebra associated to the manifold M . Note
however that this “definition” is a little provisional; a more invariant definition would
be to define the M–Grothendieck–Teichmüller Lie algebra as the homotopy derivations
of a real model of the pair .FMD; FMM /. It is yet an open question in how far the
homotopy derivations in gzM exhaust all homotopy derivations. For example, gzM

itself does not readily capture the (nonnilpotent) action of the Lie algebra o.H.M//

(of linear maps that preserve the pairing) on all objects involved.

Next, let us note that the right comodule �GraphsM is unaltered (up to isomorphism) if
one replaces the Maurer–Cartan element zM used in its definition by a gauge equivalent
Maurer–Cartan element. Indeed, the action of GCH.M/ is nilpotent since the action
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of any element in GCH.M/ always kills at least on vertex. Hence given two gauge-
equivalent Maurer–Cartan elements, an explicit isomorphism between the two versions
of �GraphsM produced is given by (13).

Finally, let us note that the above construction works equally well for the tadpole-free
version �GraphsM of �GraphsM . In this case, one needs to work with the tadpole-free
version of the graph complex GCM . Also, in this case one does not have a right
�GraphsD coaction.

7.3 Valence conditions

In this section we show that the Hopf comodule �GraphsM is quasi-isomorphic to
(essentially) a quotient that can be identified with graphs containing only � 3–valent
internal vertices. For this, we would like that the Maurer–Cartan element (partition
function) z0M above vanished on the subspace spanned by graphs containing a � 2–
valent internal vertex. While this might not be the case in general, we show that zM is
gauge equivalent to a partition function satisfying this property.

Lemma 44 The subspace GC�3
H�.M/

� GC0H�.M/ spanned by graphs having no 1 or
2–valent vertex is a dg Lie subalgebra.

Proof GC�3
H�.M/

is closed under the Lie bracket since it does not decrease the valence
of vertices. It remains to check the stability under the differential.

Recall that the differential has three pieces, a first one that splits an internal vertex, a
second one that joins decorations into an edge, and a third one arising from the twist
by z0. Joining decorations into an edge cannot decrease the valency on vertices and
therefore preserves GC�3

H�.M/
. Univalent or bivalent vertices can a priori be created

both by the second and third term in the differential. However, one easily checks that
these � 2–valent contributions cancel due to signs. For example, when computing the
differential of the graph , bivalent vertices are created by vertex splitting .
However, since there are two contributions corresponding to each of the two vertices,
and they appear with opposite signs, they cancel out. For bivalent vertices carrying a
decoration, or for a univalent vertex, the argument is similar.

Let GC00H�.M/ be the subspace of GC0H�.M/ spanned by graphs that (i) do not contain
any univalent vertices, and (ii) contain at least one � 3–valent vertex. Notice that
GC00H�.M/ is a sub-Lie algebra of GCH�.M/ since the Lie bracket cannot decrease any
valences. Furthermore, we have the following easy result.
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Lemma 45 The Maurer–Cartan element z0M 2 GC0H�.M/ constructed above lives in
the subspace GC00H�.M/.

Proof First note that by definition z0M contains no graphs with a single � 2–valent
vertex, as those graphs have been absorbed into z0 above. Hence the only instance
of a (connected) graph with a univalent vertex is a graph with an “antenna”, ie an
edge connected to a univalent vertex. However, to such graphs the configuration space
integral formula associates weight 0, by property (iv) of Proposition 8 (or alternatively
by a degree argument, since there are not enough form degrees depending on the
position of the antenna vertex). Next, if the graph has no trivalent vertices, it is either a
string, with some decorations at the ends, or a loop. In case of a string, the weight is
zero again by (iv) of Proposition 8. Finally, the loops all have zero weight by degree
reasons.

The following proposition is essentially proven in [45, Proposition 3.4]. One uses
essentially the dual argument of Theorem 49.

Proposition 46 The inclusion map GC�3
H�.M/

,! GC00H�.M/ is a quasi-isomorphism
of Lie algebras. Furthermore , endowing both sides with the descending complete
filtrations by the number of nonbivalent vertices ,7 the map between the associated
graded spaces is already a quasi-isomorphism.

Due to this proposition we can apply the Goldman–Millson theorem [16] to conclude
that any Maurer–Cartan element in GC00H�.M/ is gauge equivalent to a Maurer–Cartan
element in the subspace GC�3

H�.M/
. In particular:

Corollary 47 The Maurer–Cartan element z0M is gauge equivalent to a Maurer–Cartan
element in the subspace GC�3

H�.M/
.

Next, we apply the remark of the previous subsection to conclude that we may use
a � 3–valent Maurer–Cartan element (say z3M ) gauge equivalent to z0M to construct
�GraphsM . For the sake of concreteness, let us temporarily (for this subsection) denote
the version of �GraphsM constructed as before by Graphs

z0M
M , and the one constructed

with z3 instead by �Graphsz3M , though this is an abuse of notation.

Let us consider a subspace S of �Graphsz3M spanned by graphs having at least one
internal 1– or 2–valent vertex. Recall that decorations count as valence and there are
no 0–valent internal vertices in �GraphsM .

7On GC�3
H�.M/

this filtration is quite trivial.
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Lemma 48 The space S described above is a subcomplex of �Graphsz3M .

Proof Recall that the differential has two pieces, a first one that contracts an edge
connected to an internal vertex and a second one that either cuts an edge into the
diagonal class or deletes a subgraph of internal vertices producing a factor given by the
image of such subgraph under ZM . Due to the Maurer–Cartan element z3 containing
only � 3–valent diagrams, the differential cannot cut out a subgraph containing a
bivalent internal vertex. Let us consider a graph with a 2–valent internal vertex that is
adjacent to two other vertices. There, the differential acts as follows:

d a D .1� 1/ C

X
�

˙ a

�

��

C

X
�

˙ a
�

��

The contributions of contracting both edges appear with opposite signs and therefore
cancel. Notice that 1–valent internal vertices are produced on the other summands
when the decoration of the internal vertex takes the value 1.

If there is a 2–valent internal vertex that is adjacent to only one other vertex and has
one decoration, the action of the differential there is:

d a

!

D

!
�

X
�

˙

�
a

!

��

D

!

�

!

D 0

It is easy to see that if there is one 1–valent internal vertex the two pieces of the
differential cancel each other, thus concluding the proof.

The following proof is an adaptation of [45, Proposition 3.4].

Theorem 49 The projection map �Graphsz3M !
�graphsM WD

�Graphs
z3
M=S is a quasi-

isomorphism of dg Hopf right �GraphsD–comodules.

Proof It suffices to show that H.S/D 0. If we set up a filtration on S by the total
number of decorations, on the zeroth page of the spectral sequence we recover d0 as the
contracting piece and a piece that cuts out a connected component of internal vertices
with a factor given by an integral. We claim that the spectral sequence collapses already
on the first page.
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a a a
D

3

Figure 3: Replacing bivalent internal vertices by a single labeled edge.

Notice that d0 cannot produce 1–valent internal vertices from 2–valent internal vertices
and it follows from the proof of Lemma 48 that a 1–valent internal vertex cannot be
destroyed.

It follows that on the zeroth page S decomposes as a sum of complexes S D S1˚S2,
where S1 is spanned by graphs with at least one 1–valent internal vertex and S2 is
spanned by graphs whose internal vertices are at least 2–valent.

To see that S1 is acyclic one can look at “antennas” of the graphs, ie maximal connected
subgraphs consisting of one 1–valent and some 2–valent internal vertices. By setting a
spectral sequence whose differential decreases only the length of antennas, one can
construct a contracting homotopy that increases this length; thus showing H.S1/D 0.

As for S2, the same idea can used by replacing every path on the graph consisting of
2–valent internal vertices by single edges labeled by their length; see Figure 3.

By considering a spectral sequence whose differential on the zeroth page only reduces
the numbers on the labels, being careful with the signs one can construct a contracting
homotopy which gives H.S2/D 0.

Overall, we conclude that �graphsM is a dgca model for FMM , by the explicit zigzag

�graphsM
� �
�Graphs

z3
M

Š
 �

�Graphs
z0M
M

��!�PA.FMM /:

Moreover, the above maps are morphisms of dg Hopf right comodules.

If M is not parallelizable, one can construct the space �graphsM as the analogous
quotient of �Graphsz3M . The same proof allows us to conclude that �graphsM is a dgca
model for the collection of topological spaces FMM by a similar zigzag.

Remark 50 The smaller model �graphsM (as well as �graphsM ) has the advantage
that for D � 3 it is connected in the sense that each dgca �graphsM .r/ is concentrated
in nonnegative cohomological degrees, and one-dimensional in degree 0. This can be
shown by a degree counting argument similar to Lemma 54, using the trivalence condi-
tion and the existence of at least one external vertex per connected component. Similarly,
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one sees that if in addition H 1.M/ D 0, then �graphsM .r/ is finite-dimensional in
each cohomological degree.

Remark 51 The propagator �12 established in Proposition 8 can be chosen so thatR
2 �12˛ D 0, where the integration is conducted along the fiber of the forgetful map
p2 W FMM .2/! M , and where ˛ is any of the chosen representative forms for the
cohomology; see Convention 7 (also [13]). It would be desirable to show that �12
may be chosen so that in addition

R
3 �13�32 D 0, where the integration is performed

along the fiber of the forgetful map p3 W FMM .3/! FMM .2/. In that case the above
discussion could be considerably simplified, since the extra condition immediately
renders the integral weights of all graphs with bivalent vertices zero. A propagator
with this desired property has been constructed in the smooth setting in [13, Lemma 4].
We expect that the proof carries over to the semialgebraic setting. However, there is a
technical difficulty due to our use of PA instead of smooth forms, whose resolution we
leave to future work. Roughly speaking, the technical problem is that for a PA form
ˇ 2�.M �N/ one has to define a good notion of “de Rham differential in the first
slot” dNˇ.

7.4 Computing the cohomology and loop orders

Above we construct real dgca models �GraphsM and �graphsM for configuration spaces
of points on a manifold M , which depend on M only through the Maurer–Cartan
element zM 2GCH�.M/. Note that GCH�.M/ is naturally filtered by the loop order of
graphs. We can decompose the Maurer–Cartan element

zM D z
0
M C z

1
M C � � �

accordingly into pieces of various loop orders.

The differential on �graphsM .n/ can only maintain or decrease the number of loops
(genus) of the graphs. It follows that the subspace �graphsfor

M .n/�
�graphsM .n/ spanned

by graphs of genus zero, ie forests, is a subcomplex and a dg subalgebra for n D 1.
Notice that however it is not a subalgebra if n > 1. In any case the object �graphsfor

M

depends on M only through the tree-level piece z0M of our Maurer–Cartan element zM .

Lemma 52 The inclusion of �graphsfor
M in �graphsM is a quasi-isomorphism (of sym-

metric sequences of complexes).

Proof The proof follows essentially from the spectral sequence argument given in
Lemma 39.
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The differential in �graphsM cannot decrease the number of connected components
of a graph, so by considering a filtration by the number of connected components
of the graphs we obtain the respective associated graded complexes gr �graphsfor and
gr �graphsM . Then we notice that the number # edges�#vertices cannot increase so we
take the respective filtration obtaining the associated graded complexes gr0 gr �graphsfor

and gr0 gr �graphsM (notice that this filtration is bounded below since there are no
connected components of only internal vertices). After this, the only piece of the
differential remaining is the one cutting out a (decorated) tree of internal vertices and
evaluating the partition function on it.

At last, filtering by #internal vertices � degree, we obtain in the associated graded
complexes gr00 gr0 gr �graphsfor and gr00 gr0 gr �graphsM a the piece of the differential
that reduces the number of internal vertices exactly by 1, ie the differential contracts
one edge connected to one or two internal vertices or cuts out a tree consisting only of
a single decorated internal vertex.

We claim that the induced inclusion map is a quasi-isomorphism at this level. As in
Lemma 39, by induction on n one can show that the homology of

V.n/D gr00 gr0 gr �graphsM .n/

satisfies

H.V.n//DH.V.n� 1//˝H �.M/˚H.V.n� 1//Œ1�D�˚n�1;

but the same proof gives the same result for the homology of gr00 gr0 gr �graphsfor
M , so

the result follows.

In particular we see the following:

(1) The dgca �graphsfor
M .1/ is a real model for M , so that the tree-level piece of zM

encodes the real homotopy type of M .

(2) Knowledge of the tree-level piece of zM suffices to compute the real cohomology
of FMM .n/, as a graded vector space, for all n.

8 The real homotopy type of M and FMM

The goal of this section is to compare the information contained in the partition function
zM from above to the real homotopy type ofM . By the latter, we mean the isomorphism
type of a homotopy commutative (C1) algebra structure on the cohomology H.M/.
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The end result will be that the knowledge of the real homotopy type of M suffices to
recover zM (up to gauge equivalence) in the case that D � 4 and H 1.M/D 0.

Let us first see how the C1–algebra structure on H.M/ can be obtained from our
graphical models. For every closed oriented connected manifoldM we fix the following
homotopy data of chain complexes,

H �.M/ �graphsfor
M .1/

i

p

h

pi D id; id� ip D dhC hd;

where the map i is defined so that

i.!/D
1

!

and the map h is defined so that

h 1

�

D 1

�

and it vanishes on graphs with a � 1–valent external vertex.

Finally, p is defined so that for every � 2 �graphsfor
M , p.�/ D

P
i ei

R
M e�i ^ f .�/,

where the feig form a basis of H �.M/ and fe�i g the respective dual basis and

f W �graphs
for
M .1/!�PA.M/

is the map induced by the one constructed in Section 3.

By the homotopy transfer theorem [33, Section 10.3] such homotopy data defines a
C1–structure on H �.M/ and such structure retains the real homotopy type of M .

Notice that C1–structures on H �.M/ are identified with Maurer–Cartan elements in
the Harrison complex

Harr.H �.M/;H �.M//D HomS.Lie
c
f1gŒ�1� ıH �.M/;H �.M//

D

Y
n2N

Lie.n/˝Sn H�.M/˝n˝H �.M/Œn�:

Proposition 53 [35, Proposition 1.6.5] The projection map

Harr.H �.M/;H �.M//! Harr.H �.M/;H �.M//

is a quasi-isomorphism of Lie algebras.

Algebraic & Geometric Topology, Volume 23 (2023)



A model for configuration spaces of points 2079

Lemma 54 If M is a connected manifold of dimension at least D � 4 such that
H 1.M/ WDH 1.M;R/D 0, then all the degree 0 graphs in �GC�3M are trees.

Proof The proof is a simple combinatorial argument. Let � 2 �GC�3M be a nontree
graph with E edges and V vertices. We denote the sum of degrees of the decorations
of a vertex vi by deg dec.vi / and the number of incident vertices at vi by edges.vi /.

From the relation
PV
iD1 edges.vi /D 2E, it follows that

deg.�/D .D� 1/E �DV C
VX
iD1

deg dec.vi /

D .D� 3/.E �V /C

VX
iD1

.deg dec.vi /C edges.vi /� 3/:

Because of the � 3–valence condition, each term deg dec.vi /C edges.vi /� 3 must be
greater than or equal te zero. In fact, since decorations have degree at least 2 if there
is at least one decoration in � , the sum

PV
iD1.deg dec.vi /C edges.vi /� 3/ is strictly

positive.

Now notice that since � is a not a tree, we have E � V and in case of equality there
must be at least one decoration. In any of those cases it follows that deg� > 0.

Remark 55 From the proof we also observe the following:

� IfDD3 andH 1.M/D0, the only nontree graphs of degree 0 have no decorations
and every vertex is exactly trivalent. These graphs are also called simple cubic
graphs.

� For D � 4 but H 1.M/ ¤ 0, there are nontree graphs of degree zero but they
take on a very simple form: Besides trees, there are only graphs of genus 1
that are trivalent and decorated only by 1–forms. Such graphs are given by a
“fundamental loop” such that every vertex has a decorated trivalent tree attached.
Here is an example:

˛2

˛1

˛3 ˛4

˛5

From now on, let us suppose M to be simply connected and of dimension D � 4.
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Proposition 56 The dgla GC�3;tree
M is the quotient of GC�3M by the dg Lie ideal

spanned by graphs with at least one loop.

Proof First notice that the Lie bracket of two graphs �; � 0 2 GC�3M will be a sum of
graphs with loop order given by the sum of the loop orders of � and � 0. It follows that
the subspace spanned by graphs with at least one loop is a Lie ideal.

The splitting part of the differential preserves the loop order and the part of the differ-
ential that connects decorations increases the loop order by one and the twisted piece
of the differential does not reduce loops. It follows that the differential preserves the
ideal.

Proposition 57 The dgla GCLie
M is defined as the quotient of GC�3;tree

M by the ideal
generated by trees with vertices � 4–valent and the IHX (or Jacobi ) relations that
originate from the splitting differential of a 4–valent vertex.

The quotient map GC�3;tree
M ! GCLie

M is a quasi-isomorphism.

Proof It is clear that the differential preserves the ideal.

To see that the quotient map is a quasi-isomorphism, consider first a filtration by
deg� # edges such that on the associated graded the differential cannot increase the
number of vertices by more than one. Then, take a second filtration by the number of
decorations and notice that on the associated graded we obtain (the cyclic version of)
the quasi-isomorphism ƒ�D�1L1!ƒ�D�1Lie.

The dgla GCLie
M is a cyclic variant of the Harrison complex of H �.M/. Indeed, let us

consider more generally a graded vector space AD xA˚R, with a degree �D pairing.
A C1–structure on A is given by a Maurer–Cartan element in Hom.Liecf1gŒ�1�ıA;A/
which, via the pairing, can be identified with the space

Hom
�
A��D˝ .Liecf1gŒ�1� ıA�/;R

�
:

There is a map A˝ .Liecf1gŒ�1�ıA/Œ�D�! �GCLie
xA

determined in the following way:
A basis of the cooperad Liec can be identified with rooted planar trivalent trees modulo
the Jacobi (co)relations. Forgetting about the position of the root and considering it as
any other leaf, and replacing every leaf with a decoration by A, we obtain an element
in �GCLie

xA
.

Definition 58 Let AD xA˚R be a graded vector space with a nondegenerate pairing of
degree �D. A cyclic C1–algebra structure on A is a Maurer–Cartan element in GCLie

xA
.
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If such a cyclic C1–algebra structure z maps into a C1–structure � via the dual of the
map described before Definition 58, we say that z extends �.

Remark 59 Due to the implicit usage of the degree �D pairing, such structure would
be more appropriately called a “D–cyclic C1–algebra”.

Proposition 60 An orientable closed manifold M determines a cyclic C1–algebra
structure on its cohomology H �.M/ extending the one arising from the homotopy
transfer theorem.

Proof The C1–structure on H �.M/ is given by a map in

Hom
�
Liecf1gŒ�1� ıH �.M/;H �.M/

�
which, by the Poincaré duality pairing, is equivalent to an element

f 2 Hom
�
H �.M/˝ .Liecf1gŒ�1� ıH �.M//;R

�
:

We claim that there is a factorization of f by

H �.M/˝ .Liecf1gŒ�1� ıH �.M// R

�GCLie
M

f

g
Z

and the dashed arrow corresponds to a Maurer–Cartan Z 2 GCLie
M which is gauge

equivalent to the image of Z3M 2 GC�3;tree
M .

To show that f factors through g it is sufficient to show that for every�2Liecf1gŒ�1�.n/
and !0; : : : ; !n 2H �.M/,

f .!0˝�˝!1˝ � � �˝!n/D f .!n˝�˝!0˝ � � �˝!n�1/;

but this follows from the explicit formula the C1–action given by the homotopy
transfer theorem. This corresponds to computing the partition function on the trivalent
graph given by the C1 operation � where the root is replaced by a decoration by the
element !0, which is clearly cyclically invariant.

As an example, suppose that � corresponds to �2 ı1 �2 2 Liec.3/. Then

�.!1; !2; !3/D p.h.i.!1/i.!2//i.!3//

D p

1

!1
!2

!3

D

X
i

ei

Z
1;2

��1 .e
�
i /�
�
1 .!3/�1;2�

�
2 .!1/�

�
2 .!2/:
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Therefore,

f .!0; �.!1; !2; !3//D

Z
1;2

��1 .!0/�
�
1 .!3/�1;2�

�
2 .!1/�

�
2 .!2/DZ

!1
!2

!3!0

Remark 61 For simply connected � 4–dimensional M , the cyclic C1–structure on
H �.M/ determines the spaces �graphsM .n/, which encode the real homotopy type of
FMM .n/. Moreover, if M is parallelized, the cyclic C1–structure determines the Hopf
comodule structure of �graphsM , which encodes the real homotopy type of FMM seen
as a right FMD–module.

Finally, one can check that the isomorphism type of the (noncyclic) C1–algebra
structure onH.M/ already determines the cyclic C1–algebra structure. In other words,
the cyclicity is not to be seen as extra data on, but rather a property of the real homotopy
type, reflecting Poincaré duality. More concretely, the following result has been shown
in [23, Theorems 5.5 and 5.8]. We also sketch a short proof here for completeness.

Proposition 62 The real homotopy type of a closed orientable manifold determines
its cyclic homotopy type. More precisely , given two cyclic C1–algebra structures on
H.M/ that are C1 isomorphic as noncyclic C1–structures , they are also isomorphic
as cyclic C1–structures.

Proof sketch We are given two cyclic C1–structures onH.M/ and a C1 isomorphism
between them. We may assume that the linear part of the C1 isomorphism is the identity,
otherwise we just pull back one cyclic C1–structure along this linear part. Note also
that the implicit underlying nondegenerate pairing on H.M/ is determined by the
product up to an unimportant scale factor, so we may assume it is the same for both
our cyclic C1–structures.

We denote by �1 and �2 the two Maurer–Cartan elements in GCLie
H.M/ encoding our

cyclic C1–structures. The underlying (noncyclic) C1–structure is encoded by the
images of �1 and �2 under the natural inclusion of dg Lie algebras into the reduced
Harrison complex

root W GCLie
H.M/! Harr.H �.M/;H �.M//:

Graphically, elements on the left-hand side can be interpreted as linear combinations
of nonrooted Lie trees, and elements of the right-hand sides can be seen as rooted
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Lie trees as above, and the map root is defined by summing over all possible ways of
making one leaf into the root.

The C1 morphism between our two C1–structures (with linear term being the identity)
then yields a gauge equivalence between the MC elements root.�1/ and root.�2/
in Harr.H �.M/;H �.M//. We desire to check that this implies that �1 and �2 are
already gauge equivalent in GCLie

H.M/. To this end we can employ the Goldman–Millson
theorem [16]. To check the conditions of this theorem we consider a filtration such
that Fp Harr.H �.M/;H �.M// is spanned by rooted Lie trees with � p leaves that
are decorated by classes of nonzero degree.

On the associated graded the only piece of the differential that survives replaces the
root (say decorated by some ˛ 2Hk.M/) by two leaves, with one decorated ˛ and the
new root decorated with 1 2H0.M/:

. ˛ root
d0
7�! . .

1 root

˛

It is an easy exercise to check that the cohomology of the pth graded piece of the
Harrison complex is identified for p � 3 precisely with nonrooted trees all of whose
leaves are decorated by elements ofH �.M/. But this is precisely the image of GCLie

H.M/

under the map root.

Hence the Goldman–Millson theorem is applicable to the inclusion of dg Lie algebras
root W GCLie

H.M/! F2 Harr.H �.M/;H �.M//. To conclude the desired result we then
just need to remark that our gauge equivalence between root.�1/ and root.�2/ in
Harr.H �.M/;H �.M// may actually be taken in F2 Harr.H �.M/;H �.M//. To see
this in turn one also computes the pth graded piece of the Harrison complex for p D 2,
and sees that there is no cohomology in the at least quadratic part. But since the
underlying C1 morphism has trivial linear part, we may always remove the parts in
the 2–graded piece by adding an exact terms, to yield the required gauge equivalence
in F2.

The real homotopy type of a manifold determines its cyclic homotopy type by the
previous proposition. This in turn determines the (gauge equivalence class of) the
Maurer–Cartan element zM by Propositions 46 and 57, and Lemma 54 which itself
determines the quasi-isomorphism type of the graph complex by the discussion in
Section 7.2. We obtain thus the following theorem as a corollary:
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Theorem 63 LetM be an orientable compact manifold without boundary of dimension
D � 4, such that H 1.M;R/D 0. Then the real homotopy type of FMM depends only
on the real homotopy type of M . By this statement we mean that there is a zigzag of
quasi-isomorphisms of symmetric sequences of dgcas over R

�PA.FMM /! � X

with X being a sequence of dgcas defined using only knowledge of the quasi-isomor-
phism class of �PA.M/ as a real dgca.

Remark 64 We generally work with unbounded cochain complexes, and a priori in
the zigzag as constructed above there will occur dgcas which have unbounded degrees.
However, the concrete X we use is (see above) X D �Graphs�3M , which is concentrated
in nonnegative degrees. Furthermore, X is cofibrant in the category of sequences of
(unbounded) dgcas, and by homotopy lifting of the zigzag we may in fact construct
a quasi-isomorphism of dgcas X ! �.FMM /. For the statement above it is hence
inessential whether we work over nonnegatively graded cochain complexes or cochain
complexes of unbounded degrees.

Moreover, if we suppose M to be parallelized, the action of the Lie algebra GCM
on GraphsM is compatible with the right GraphsD–module structure. In this case, the
(real homotopy type) of GraphsM as a right GraphsD–module is determined by (the
gauge equivalence class of) the Maurer–Cartan element zM . In that case, by the same
argument we obtain a stronger version of the previous theorem.

Theorem 65 Let M be a parallelizable compact manifold without boundary of dimen-
sion D � 4, such that H 1.M;R/ D 0. Then the real homotopy type of the operadic
right module FMM FMD depends only on the real homotopy type ofM , in the sense
that there is a zigzag of quasi-isomorphisms of right dg Hopf comodules connecting
�PA.FMM / and some X , with X depending only on the quasi-isomorphism type of the
dgca �PA.M/.

We note again that we abuse slightly the notation since �PA.FMD/ is not (strictly
speaking) a dg Hopf cooperad and �PA.FMM / is not a right comodule; see Remark 15.
The cleaner variant of stating the above theorem is to work in a category of homotopy
cooperads and homotopy comodules, whose construction we however leave to future
work; see [33, Section 3].
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9 The framed case in dimension D D 2

In Section 3 we considered parallelized manifolds since a trivialization of the tangent
bundle is needed to define the right operadic FMD–module structure. Informally, to
define the action one needs to know in which direction to insert, and the parallelization
provides us the direction of the insertion.

In this section we wish to focus on the 2–dimensional case where unfortunately the
only parallelizable (connected closed) manifold is the torus.

To go around the problem of not having a consistent choice of direction of insertion,
instead of working with configuration spaces of points, we consider the framed configu-
ration spaces. In other words, at every point of the configuration there is the additional
datum of a direction, ie an element of the Lie group SO.2/D S1.

In this section † shall denote a connected oriented closed surface with a smooth and
semialgebraic manifold structure. Most results will be an adaptation of the arguments
in the previous sections to the framed case.

9.1 Definitions

In this section we introduce the compactification of the configuration space of framed
points on †. A more detailed introduction to the subject can be found in [39].

9.1.1 The operad of configurations of framed points The construction of the operad
of the framed version of FM2 is a special case of the notion of the semidirect product
of an operad and a group, as described below.

Definition 66 Let P be a topological operad such that there is an action of a topological
group G on every space P.n/ and the operadic compositions are G–equivariant. The
semidirect product P ÌG is a topological operad with n–spaces

.P ÌG/.n/DGn �P.n/;

and composition given by

. Ng; p/ ıi . Ng
0; p0/D .g1; : : : ; gi�1; gig

0
1; : : : ; gig

0
m; giC1; : : : ; gn; p ıi .gi �p

0//;

where Ng D .g1; : : : ; gn/ and Ng0 D .g01; : : : ; g
0
m/.

The group SO.2/ has a well-defined action on FM2 given by rotation.
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1
 
ı1

1
2

'
D 1
2  C'

Figure 4: Operadic composition in FFM2.

Definition 67 The framed Fulton–MacPherson topological operad FFM2 is the semidi-
rect product FM2 ÌSO.2/.

When the operadic composition is performed, the configuration inserted rotates accord-
ing to the frame on the point of insertion, as depicted in Figure 4, where at every point
we draw a small line indicating the associated element of SO.2/.

9.1.2 Configurations of framed points on a surface

Definition 68 The Fulton–MacPherson compactification of the configuration spaces
of points on the surface †, FFM†, is a symmetric sequence in semialgebraic smooth
manifolds which is given as the pullback of the diagram

SO.†/�n

FM†.n/ †�n

�n

where � W SO.†/!† is the frame bundle over † (assuming some Riemannian metric).

As in the nonframed case, the space FFM†.n/ is a manifold with corners. The interior of
this manifold is the framed configuration space of points and is denoted by FConfn.†/.

Proposition 69 The insertion of points at the boundary of FFM† according to the
direction of the frame defines a right FFM2 operadic module structure on FFM†.

The associativity of the operadic module structure is clear.

9.2 Graphs

In this subsection we work with the operadic module BVGraphs† BVGraphs2 which
is the version of Graphs† Graphs2 adapted to the framed case.

Informally, the difference between Graphs† (resp. Graphs2) and BVGraphs† (resp.
BVGraphs2) is that we now allow tadpoles (edges connecting a vertex to itself) at
external vertices but graphs with tadpoles at internal vertices are considered to be 0.
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This can be done by considering the subalgebra �BVGraphs† �� Graphs† of graphs
with no tadpoles on internal vertices or dually defining BVGraphs† as a quotient of
Graphs†. A precise definition of BVGraphs2 can be found in [11].

The nontwisted analog of �BVGraphs.n/ is �BVGra.n/, the symmetric algebra on
symbols sij D sj i for 1 � i; j � n. One can also consider the nontwisted analog
�BVGra†, but notice that this is just the same space as �Gra† as tadpoles are not
forbidden in �Gra† and there are no internal vertices upon which we can impose any
condition.

Let � 2�1triv.FFM†.1// be a global angular form of the S1–bundle

� W FFM†.1/D SO.†/!†:

Such a form satisfies d� D ��.e/, where e 2�2triv.†/ is the Euler class of the circle
bundle.

Let 1� i � n. We denote by �i i 2�1triv.FFM†.n// the form ��i .�/, where

�i W FFM†.n/! FFM†.1/

is the map that remembers only the point labeled by 1.

We define a map �BVGra†.n/!�triv.FFM†.n// as a morphism of algebras sending sij

to �ij , where if i¤j , �ij is the form constructed in Section 2 and sends Œ!�j 2�BVGra†
to p�j .�.Œ!�//, where pj WFFM.n/!M is the map that remembers only the point labeled
by j .

Similarly one defines a map �BVGra2.n/!�triv.FFM2.n//D�triv.FM2.n/�SO.2/�n/
as a morphism of algebras sending a tadpole at the vertex i to the volume form of the
i th SO.2/.

Lemma 70 This defines a morphism of cooperadic comodules

�BVGra†
�BVGra2!�triv.FFM†/ �triv.FFM2/:

Proof Regarding the compatibility with the differentials, the only case not covered in
Lemma 16 is �i i , but this follows from the fact that the Euler form can be expressed asP
i;j g

ij ei ^ ej .

For the compatibility with the cooperadic comodule structure it remains to check it
for the elements si i 2 BVGraphs†.n/. For simplicity of notation, we consider the
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element s11 2 BVGraphs†.1/ which is sent to �11 2�1PA.FFM†.1// whose coaction
gives �11˝ 1C 1˝ volS1 2�PA.FFM†.1//˝�PA.FFM2.1//.

On the other hand, the coaction on s11 2 BVGraphs†.1/ gives us

s11˝ 1C 1˝ s11 2 BVGraphs†.1/˝BVGraphs2.1/;

from which the compatibility follows.

Similarly to what was done in Section 4, one can prove the following proposition:

Proposition 71 There is a morphism of cooperadic modules

�BVGraphs†
�BVGraphs2!�PA.FFM†/ �PA.FFM2/

extending the morphism from Lemma 70.

The only difference relatively to the nonframed case is that the map

�BVGraphs†.n/!�PA.FFM†.n//

evaluated at a graph � 2 BVGraphs† with k internal vertices is given by an integral
over the fiber of FFM†.n; k/! FFM†.n/, where the space FFM†.n; k/ is the (com-
pactification of the) configuration space of n framed points and k unframed points
corresponding respectively to the external vertices and the internal vertices of � .

A similar procedure is done for the map �BVGraphs2.n/!�PA.FFM2.n//.

The goal of this section is to prove the following theorem.

Theorem 72 The map �BVGraphs† �BVGraphs2!�PA.FFM†/ �PA.FFM2/ is
a quasi-isomorphism of Hopf cooperadic comodules.

Proposition 73 The map �BVGraphs2!�PA.FFM2/ is a quasi-isomorphism.

Proof On the one hand,

H �.FFM2.n//DH
�.FM2.n/�SO.2/�n/DH �.FM2.n//˝H �.SO.2//˝n

DH �.FM2.n//˝ .R˚RŒ�1�/˝n

by the Künneth formula. On the other hand, notice that as dg symmetric sequences
BVGraphs2 D Graphs2 ı .RŒ�1�˚R/; therefore,

H.�BVGraphs2.n//DH.
�Graphs2.n/˝ .R˚RŒ�1�/˝n/

DH.�Graphs2.n//˝ .R˚RŒ�1�/˝n:
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Since a tadpole at the vertex labeled by i is sent to the volume form of the i th SO.2/,
which is the generator of H 1.SO.2//, we have that at the cohomology level the map

H.�BVGraphs2/DH.
�Graphs2.n//˝ .R˚RŒ�1�/˝n

!H �.FFM2.n//DH
�.FM2.n//˝ .R˚RŒ�1�/˝n

is just the map f�˝ id, where f W �Graphs2!�PA.FM2/ is the quasi-isomorphism
from Proposition 18, whence the result follows.

9.3 Proof of Theorem 72

Let n; k�0 and let us consider an auxiliary differential graded vector spaceG.n; k/ that
is the subcomplex of �BVGraphs†.nCk/ in which the points labeled nC1; : : : ; nCk
cannot have tadpoles. This should be seen as the algebraic analog of the space
FFM†.n; k/, the compactification of the configuration space of n framed points and k
unframed points in †.

The map �BVGraphs†.n C k/ ! �PA.FFM†.n C k// restricts naturally to a map
G.n; k/! �PA.FFM†.n; k//. We will show that this map is a quasi-isomorphism;
thus proving Theorem 72 which corresponds to the cases with k D 0. The proof will
be done by induction on n. The case nD 0 was already proven in Theorem 42.

9.3.1 A long exact sequence of graphs Let us prove the following auxiliary result.

Proposition 74 There is a long exact sequence of graded vector spaces

� � � !Hd .G.nC1; k�1//
f
�!Hd�1.G.n; k//

^e
�!HdC1.G.n; k//

i�
�!HdC1.G.nC1; k�1//! � � � ;

where the map i� is induced by the inclusion of G.n; k/ in G.nC 1; k� 1/.

Proof Let us clarify the undescribed maps. The map f removes a tadpole on the
vertex labeled by nC 1 if there exists one, otherwise it sends a graph to zero. The map
^e decorates the vertex nC 1 with the “Euler form”:

nC1
^e
7�!

X
j

˙ nC1

ej e�
j

It is not clear that these maps are well defined at the cohomology level, but this will
become clear by the construction of the sequence.
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Let us consider the decomposition of G.nC 1; k� 1/

G.nC 1; k� 1/DG.n; k/Œ�1�˚G.n; k/

d0 d0
d1

where the first summand corresponds to graphs in which the vertex labeled by nC1 has
a tadpole and the second summand corresponds to graphs in which the vertex labeled
by nC 1 does not have a tadpole. The differential splits into two terms, d0 and d1, as
in the picture. Let us consider a two-level filtration on the number of tadpoles at the
vertex nC 1. On the zeroth page of the spectral sequence the differential is d0, which
acts as the ordinary differential of G.n; k/.

The differential on the second page is induced by d1 and is the map that was denoted
by ^e,

^e WH �.G.n; k/Œ�1�/DH ��1.G.n; k//!H �C1.G.n; k//:

The spectral sequence converges at the second page since we considered a two-level
filtration; therefore

H �.G.nC 1; k� 1//D ker.^e/˚ coker.^e/:

The map f is defined to be the composition

H �.G.nC 1; k� 1//� ker.^e/ ,!H ��1.G.n; k//:

It is then clear that Im.f /D ker.^e/, which gives us exactness at Hd�1.G.n; k//.

The map i� is given by the composition

H �.G.n; k//� coker.^e/ ,!H ��1.G.nC 1; k� 1//:

Therefore its image coincides with the kernel of f , which shows exactness at

HdC1.G.nC 1; k� 1//:

Since i� is the projection to the cokernel of ^e, its kernel is precisely the image of ^e,
which shows the remaining exactness.

9.3.2 The Gysin sequence The map � W FFM†.nC1; k�1/! FFM†.n; k/ that for-
gets the frame at the point nC1 is a circle bundle. We denote by e 2�PA.FFM†.n; k//

the Euler form of the circle bundle. The Gysin sequence of this circle bundle is the
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long exact sequence

(14) Hd .FFM†.nC1; k�1//

R
�
�!Hd�1.FFM†.n; k//

^e
�!HdC1.FFM†.n; k//

��
�!HdC1.FFM†.nC1; k�1//! � � � :

Using the maps G.a; b/! �PA.FFM†.a; b//, we obtain the morphism of exact se-
quences

Hd .FFM†.nC1; k�1//

Hd .G.nC1; k�1// Hd�1.FFM†.n; k//

Hd�1.G.n; k// HdC1.FFM†.n; k//

HdC1.G.n; k// HdC1.FFM†.nC1; k�1//

HdC1.G.nC1; k�1//

R
�

f ^e

^e ��

i�

Since by induction G.n; k/ ! �PA.FFM†.n; k// is a quasi-isomorphism, the five
lemma implies thatG.nC1; k�1/!�PA.FFM†.nC1; k�1// is a quasi-isomorphism
as well; thus concluding the proof of Theorem 72.

Appendix A Comparison to the Lambrechts–Stanley model
through cyclic C1–algebras

In this appendix we show how to obtain from the �GraphsM model a proof that the
Lambrechts–Stanley algebra is a dgca model for the FMM (Conjecture 76).

Definition 75 [31] A Poincaré duality algebra of dimension D is a nonnegatively
graded connected dgca A together with a linear map

� W AD!R

such that � ı d D 0 and such that the bilinear maps

A˝A!RŒ�D�; a˝ b 7! �.a; b/

are nondegenerate.

Note that by the connectivity assumption necessarily AD DR and hence � is unique
up to scale, if it exists. Note that a Poincaré duality algebra is a particular case of a
cyclic C1–algebra.

Algebraic & Geometric Topology, Volume 23 (2023)



2092 Ricardo Campos and Thomas Willwacher

A Poincaré duality model for a manifold M is a Poincaré duality algebra weakly
equivalent (as a dgca) to �.M/. It is shown in [31] that such a Poincaré duality model
always exists for simply connected compact orientable manifolds.

Lambrechts and Stanley furthermore define the following family of dgcas from a
Poincaré duality algebra A, generalizing earlier work by Kriz [30] and Totaro [44].
Consider the algebra

A˝nŒ!ij I 1� i ¤ j � n�:

For a 2 A let p�j .a/ be the element 1˝ � � �˝ a˝ � � �˝ 1, with a in the j th slot. Then
one imposes on the above algebra the relations

(1) !ij D .�1/
D!j i ,

(2) !2ij D 0,

(3) !ij!ikC!jk!j i C!ki!kj D 0 for distinct i , j and k,

(4) .p�i .a/�p
�
j .a//!ij D 0.

Let us define for A a Poincaré duality algebra as above the diagonal � 2 A˝A to
be the inverse of the nondegenerate bilinear pairing. Let us further denote by �ij the
corresponding element in A˝n, the two “nontrivial” factors of A situated in positions i
and j . Then one defines

.A˝nŒ!ij I 1� i ¤ j � n�=�; dACr/;

where the differential dA is that induced by the differential on A and r is defined as

r!ij D�ij :

One readily checks that the ideal generated by the relation is closed under this differ-
ential. Furthermore, if the Euler class of A, ie the image � under the multiplication,
vanishes, then the F.A;�/ naturally assemble into a right Pois�D cooperadic comodule.

Lambrechts and Stanley [32] show that for A a Poincaré duality model for M , we have
that H.F.A; n//DH.FMM .n//, and furthermore raise the following conjecture.

Conjecture 76 [32] If A is a Poincaré duality model for the simply connected
compact orientable manifold M then F.A; n/ is a dgca model for Conf.M; n/.

A proof of (a slightly weaker form of) this statement is given in [25], using methods
similar to ours. While in this paper we work with cyclic C1–structures on H.M/,
rather than Poincaré duality models to capture the real homotopy type “with Poincaré
duality” for M , one can still deduce the conjecture of Lambrechts and Stanley from our
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methods, at least in the case that the dimension of M is at least 4. (The case M D S2

also follows from the computation in Appendix B, leaving only the case M D S3.) Let
us sketch this reduction.

First let V be a finite-dimensional differential nonnegatively graded vector space with
the subspace of degree 0 elements V0 D R and a nondegenerate symmetric bilinear
pairing of degree D

V ˝V !RŒ�D�:

We denote by � 2 V ˝V the corresponding dual degree D element (the “diagonal”) as
above. Then we may define a graph complex (and dg Lie algebra) GCV akin to GCM
above, just replacing each occurrence of H�.M/ by V and with an additional piece of
the differential coming from dV . Concretely, this means that vertices in graphs of GCV
may be decorated by copies of V �. Furthermore, suppose a cyclic C1–structure is
given on V , for the above bilinear form. We may see this structure as a Maurer–Cartan
element Z 2 GCV , all of whose coefficients in front of nontree graphs vanish. We
may furthermore use it to define a Graph complex �GraphsV analogously to �GraphsM
above, replacing each occurrence of H.M/ by V , and using the given Z in place of
the partition function.

Next, fix representatives of the cohomology of V by providing a map

(15) H.V / ,! V:

The pairing on V induces a pairing on H.V /, independent of the representatives
chosen. We denote the corresponding diagonal by �H 2 H.V /˝H.V /. Via the
chosen embedding we may as well consider �H as an element in V ˝ V , in which
case it becomes cohomologous to �. We may hence choose � 2 A˝A (of the same
symmetry under exchange of the two A’s as �) such that

(16) �H D�� dV �:

We may then define a natural map of dg cooperadic comodules

(17) �GraH.V /!
�GraV

by sending the decorations in H.V / to V using our map (15), and by sending an
edge between vertices i and j to the same edge, minus the element �, considered as
decoration at vertices i and j . In pictures:

7! �
�
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Equation (16) implies that the map (17) is indeed compatible with the differentials.

Following the construction of GCV , (17) induces an L1–morphism of dg Lie algebras

GCV ! GCH.V /;

and we can hence transfer the Maurer–Cartan element Z 2 GCV inducing the cyclic
C1–structure on V to a Maurer–Cartan element ZH 2 GCH . (The MC element ZH
is still supported on trees, and encodes the cyclic C1–structure on H.V / induced by
homotopy transfer.) Furthermore, we obtain from (17) a map

�GraphsH.V /!
�GraphsV ;

that one can check to be a quasi-isomorphism by an easy spectral sequence argument.

In particular, let us take for V a Poincaré duality model for the simply connected
manifold M . Then if the dimension D of M is at least 4, the Maurer–Cartan element
ZH is gauge equivalent to the partition functionZM constructed above. This is because
by degree reasons there cannot be loop order � 1 contributions to this partition function,
and the tree part of ZM encodes the real homotopy type of M (in the form of a cyclic
C1–structure on H.V /DH.M/), and hence must be gauge equivalent to ZH , which
also encodes the real homotopy type by construction. Hence we can conclude that
�GraphsV is quasi-isomorphic to �GraphsM and is hence a dgca model for FMM , with
the partition function concentrated on trees with one vertex. Furthermore, in this case
we have a direct map

(18) �GraphsV ! F.V;�/

to the Lambrechts–Stanley algebra, by sending all graphs with internal vertices to
zero, and imposing the defining relations. Again, by a spectral sequence argument,
the map (18) can be seen to be a quasi-isomorphism. Furthermore, it is evidently
compatible with the right Pois�D cooperadic comodule structures, in the case the Euler
class vanishes. This shows that F.V;�/ is quasi-isomorphic to �GraphsM , ie to a dgca
model for FMn. Hence Conjecture 76 follows, in dimension D � 4.

Appendix B Example computation: the partition function of
the 2–sphere

As an illustration, let us show that the partition function of the two-sphere is essentially
trivial. We cover S2 by two coordinate charts C via stereographic projection as usual.
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The coordinate transformation relating the two charts is then

ˆ WC n f0g !C; z 7!
1

z
:

We take a basis 1 2 H 0.S2/, ! 2 H 2.S2/ of the cohomology, with
R
! D 1. Take

as a representative for ! any compactly supported top form of volume 1, which we
also denote by !. In fact, to abuse the notation further, denote by ! 2�2.C/ also the
coordinate expression in one of our charts. To achieve somewhat nicer formulas later,
let us also assume that this ! is supported away from the origin and that

(19) ˆ�! D !:

Let �0 be the propagator on C, ie

�0.z; w/D
1

2�
=d log.z�w/:

Note that

(20) �0

�
1

z
;
1

w

�
D

1

2�
=d log

�
w�z

wz

�
D �0.z; w/��0.z; 0/��0.w; 0/:

Then we will take as propagator of the sphere8

�.z; w/D �0.z; w/�

Z
u

�0.z; u/!.u/�

Z
u

�0.w; u/!.u/:

Let us first verify that this 2–form extends from our coordinate chart to FM2.S
2/. To

this end, apply the coordinate transformation ˆ and compute

�
�
1

z
;
1

w

�
D �0

�
1

z
;
1

w

�
�

Z
u

�0

�
1

z
; u
�
!.u/�

Z
u

�0

�
1

w
; u
�
!.u/:

Changing the integration variable from u to 1=u, using (19) and applying (20) three
times, we obtain

�
�
1

z
;
1

w

�
D �0.z; w/��0.z; 0/��0.w; 0/�

Z
u

.�0.z; u/��0.z; 0/��0.u; 0//!.u/

�

Z
u

.�0.w; u/��0.w; 0/��0.w; 0//!.u/

D �.z; w/��0.z; 0/��0.w; 0/C�0.z; 0/

Z
u

!.u/C�0.w; 0/

Z
u

!.u/

D �.z; w/:

8In Proposition 8 the propagator has been denoted �12. Here we choose to drop the subscript 12 for
brevity.
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Hence the propagator has the same form in the other coordinate chart, and in particular
it has no singularity at the coordinate origin, and hence readily extends to FM2.S

2/.

Furthermore one checks the following properties:

� Clearly �.z; w/D �.w; z/.

� By Stokes’ theorem,
d�.z; w/D !.z/C!.w/

as required.

� By degree reasons, Z
v

�.z; v/D 0:

Furthermore,Z
v

�.z; v/!.v/D

Z
v

�0.z; v/!.v/�

Z
v

Z
u

�0.z; u/!.u/!.v/�

Z
v

Z
u

�0.v; u/!.u/!.v/

D

Z
v

�0.z; v/!.v/�

Z
u

�0.z; u/!.u/�0

D 0:

Here the third term on the right-hand side vanishes by degree reasons. (One integrates
a 5–form over a 4–dimensional space.)

� We haveZ
v

�.z; v/�.u;w/

D

Z
v

�0.z; v/�0.v; w/�

Z
v

Z
u1

�0.z; u1/!.u1/�0.v; w/�

Z
v

Z
u2

�0.v; w/�0.w; u2/!.u2/

�

Z
v

Z
u1

�0.v; u1/!.u1/�0.v; w/�

Z
v

Z
u2

�0.v; w/�0.v; u2/!.u2/

C

Z
v

Z
u1

Z
u2

�0.z; u1/!.u1/�0.w; u2/!.u2/C

Z
v

Z
u1

Z
u2

�0.v; u1/!.u1/�0.w; u2/!.u2/

C

Z
v

Z
u1

Z
u2

�0.z; u1/!.u1/�0.v; u2/!.u2/C

Z
v

Z
u1

Z
u2

�0.v; u1/!.u1/�0.v; u2/!.u2/:

The first term on the right-hand side vanishes by a standard vanishing lemma of
Kontsevich. The fourth, fifth and last terms vanish by the same reason. The remaining
terms vanish by degree reasons: their forms with v–dependence are of degree � 1.
Hence we conclude that the whole expression is zero, and graph weights computed
using our propagator will be zero for graphs with bivalent vertices.
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� Identify the pullback of @FM2.S2/ to our coordinate chart with C �S1, and fix the
standard coordinate ' on the S1 factor. Then restricting � to the boundary @FM2.S2/,
(ie we take the limit w! z in our coordinate chart) we obtain the form

1

2�
d'C �.z/;

where
�D�2

Z
u

�0.z; u/!.u/

depends only on z, and not on ', as desired.

B.1 Vanishing of integrals

Proposition 77 Using the propagator � and the top form ! as above , the partition
function becomes

(21) zS2 D ! :

In other words , the weights of all graphs with more than one vertex vanish.

Proof By the properties above, all graphs vanish if either some vertex has valence
2 or some vertex has more than one decoration by ! or some vertex has valence one,
and there is one incident edge. The only connected graph with a vertex of valence one
is the one appearing in (21). All other graphs with potentially nonvanishing weight
must hence be of the following kind:

(1) There are � 2 edges incident to any vertex, and at most one decoration !.

(2) If there are exactly 2 edges incident on some vertex, it must come with a
decoration !.

From an admissible graph � , we can build another linear combination of admissible
graphs �0 by formally replacing each edge by the linear combination

7! � ! � ! :

Clearly, Z
FMd .jV �j/

!� D

Z
FMd .jV �0j/

!0�0

where now the weight form !0
�

is defined just like !� above, but using the Euclidean
propagator �0 instead of �.
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It hence suffices to show that for each admissible graph � with more than one vertex,Z
FMd .jV �j/

!0� D 0:

We may assume that the vertices are numbered such that the vertices decorated by !
have indices 1; : : : ; k for some k � 0. Then the above integral factorizes asZ

FMd .jV �j/

!0� D

Z
FMd .k/

!.x1/!.x2/ � � �!.xk/

Z
FMd .jV �j�k/

!0�„ ƒ‚ …
DWf .x1;:::;xk/

:

Note that here f .x1; : : : ; xk/ is a function associated to a graph with decorations !.
(There can be no form piece in f .: : : /, because the remainder of the integrand is
already a top form.) Hence by the Kontsevich vanishing lemma [28, Lemma 6.4]
f .x1; : : : ; xk/� 0. Hence the desired vanishing result follows.

Appendix C Pushforward of PA forms

Given an SA bundle p WM !N of rank l , the pushforward map of “integration along
the fiber” defined in [24] is a map p� W��min.M/!���lPA .N /. This map is only defined
on minimal forms as the natural extension to the full algebra of PA forms is not well
defined due to the failure of the relevant semialgebraic chain to be continuous; see the
discussion on [24, Section 9].9

For our purposes we need to consider pushforwards of the propagator

�12 2�PA.FMM .2//

constructed in Proposition 8. Since we cannot construct the propagator in such a way
that �12 2�min.FMM .2//, in this section we consider a different space of forms, �triv

such that �PA ��triv ��min, to which the pushforward map can be extended and still
satisfies Stokes’ theorem.

Recall that for F a compact oriented semialgebraic manifold and M a semialgebraic
manifold, the constant continuous chain yF 2 C str.M �F !M/ is defined by

yF .x/D ŒŒfxg �F ��:

9We note that in the original sketch of the construction of PA forms by Kontsevich and Soibelman [29],
the pushforward was (claimed to be) defined for all PA forms, for a slightly laxer definition of PA forms
compared to [24].
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Definition 78 Let M be a semialgebraic manifold. The space �triv.M/ of trivial
forms is the subvector space of �PA.M/ spanned by forms of the type /

R
yF
�, where

� 2�min.M �F / and yF is a constant continuous chain.

Lemma 79 The subspace �triv.M/��PA.M/ is a dg commutative subalgebra.

Proof �triv.M/��PA.M/ is closed under the differential by the fiberwise Stokes’
theorem [24, Proposition 8.12] and since the fiberwise boundary of a trivial bundle is
again a trivial bundle. Furthermore, the subspace �triv.M/ is closed under addition and
the commutative product on �PA.M/ because the union and product of trivial bundles
is again trivial; see the construction of these operations in [24, Section 5].

Let us consider a strongly continuous chain ˆ 2 C str
l
.E

f
�! B/ along a semialgebraic

map f W E ! B . Let E � F be the trivial bundle over E with fiber F , a compact
oriented semialgebraic k manifold.

Proposition 80 Under the previous conditions , there is a strongly continuous chain

ˆË yF 2 C str
kCl.E �F

f ıpr2
���! B/

defined by .ˆË yF /.b/ WDˆ.b/�F .

Proof If we consider the family f.S˛; F˛; g˛/˛2I g that trivializes the continuous
chain ˆ, it is easy to see that f.S˛; F˛ �F; g˛ � idF /˛2I g trivializes ˆË yF since, by
hypothesis, the two squares

S˛ �F˛ �F E �F

S˛ �F˛ E

S˛ B

g˛�idF

pr2

g˛

f

commute.

Corollary 81 Let p W Y !X be an oriented SA bundle and ˆ 2 C str
l
.Y !X/ be the

associated strongly continuous chain. Then there is a well-defined map

p� W�
�

triv.Y /!���lPA .X/

extending the one on minimal forms , given by p�.!/D /
R
ˆË yF

!.
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Remark 82 Recall that the proof of the fiberwise Stokes’ theorem relies essentially
on the fact that for  2 Ck.X/ and ‰ 2 C str

l
.Y !X/,

@. Ë‰/D @ Ë‰C .�1/deg Ë @‰:

With the same proof as [24, Proposition 5.17] we see that this formula is still valid if
we take ‰ and  to be ˆ and yF as above, and therefore Stokes’ theorem is also valid
for pushforwards of trivial forms.

We prove now the Poincaré lemma for the sheaf of complexes �triv.

Proposition 83 If U is a contractible semialgebraic set , then H.�triv.U // is one-
dimensional and concentrated in degree zero.

Proof Let h W Œ0; 1� � U ! U be a contraction of U such that h.1; x/ D x and
h.0; x/D x0 for some fixed x0 2 U . Suppose ! 2�triv.U / is a closed form of degree
at least 1. By Stokes’ formula,

d

Z
I

h�! D

Z
I

h�d!˙ .! �!x0/D˙!;

whence it follows that ! is exact.

We can now conclude more generally that the cohomology of a semialgebraic manifold
M agrees with the homology of �triv.M/.

Corollary 84 Let M be a compact semialgebraic manifold , possibly with corners.
The inclusion �triv.M/!�PA.M/ is a quasi-isomorphism of commutative algebras.

Proof Every compact semialgebraic manifold admits a good cover: Indeed, every
compact semialgebraic set has a finite semialgebraic triangulation [5, Theorem 9.2.1],
and can hence be identified with a finite simplicial complex; see also the discussion
in [24, Section 2]. Given a semialgebraic triangulation, one can construct a semialge-
braic good cover fU˛g by taking the open stars of the vertices of a refinement of the
triangulation.10

We also choose a subordinate semialgebraic partition of unity f�˛g. For convenience
we shall also pick cutoff functions �˛ with support in U˛ such that �˛.x/D 1 on the

10The star of a vertex v is the union of the interiors of faces that contain v.
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support of �˛ . (We may slightly enlarge the U˛ to this purpose or alter the partition of
unity; see also the proof of [24, Proposition 6.7].)

This allows us to run the standard Čech–de Rham argument with respect to such a good
cover to conclude by the Poincaré lemma that the homology of �triv.M/ coincides
with the (Čech) cohomology of M ; see for instance [8, Example 14.16].

To be concrete, we consider the Čech–de Rham complex

C WD
�Y

�triv.U˛0:::˛p /Œ�p�; d C ı
�
;

where
U˛0:::˛p D U˛0 \ � � � \U˛p ;

d is induced by the differential on the factors �triv.U˛0:::˛p /, and ı is the Čech part of
the differential, defined on a cochain ! D .!˛0:::˛p / with !˛0:::˛p 2 U˛0:::˛p by

.ı!/˛0:::˛p D

pX
iD0

.�1/i!˛0::: Ǫ i :::˛p :

The Čech–de Rham complex C is a first quadrant double complex, and one compares
the two convergent spectral sequences associated to this complex.

The first (“columnwise”) spectral sequence has the complex .C; d/ as its E0–page. By
the Poincaré lemma (Proposition 83), the E1–page is then identified with the Čech
complex associated to the constant sheaf R. The E2–page is hence the cohomology
H.M/, and the spectral sequence abuts at this point by degree reasons.

The other (“rowwise”) spectral sequence has first page .C; ı/. We claim that the
cohomology of this page is identified with �triv.M/. This can in fact be shown
identically to [8, Proposition 8.5]. Concretely, one may naturally extend .C; ı/ to a
complex

zC WD .�triv.M/ ı
�! C/;

with the map
ı W�triv.M/!

Y
˛

�triv.U˛/� C

given by the natural restriction. One then checks that . zC ; ı/ is acyclic by providing an
explicit homotopy. Concretely, for a p–cocycle ! D .!˛0:::˛p / 2 zC , one defines the
.p�1/–cochain � such that

�˛0:::˛p�1 D
X
˛

�˛!˛˛0:::˛p�1 :
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Note that here we extend �˛!˛˛0:::˛p�1 2 �triv.U˛˛0:::˛p�1/ by zero to an element
(abusively also denoted by) �˛!˛˛0:::˛p�1 of �triv.U˛0:::˛p�1/. To be precise, this
extension by zero may be defined as follows. Suppose

!˛˛0:::˛p�1 D

Z
Y

ˇ

is given by a fiber integral associated to the trivial bundle Y �U˛˛0:::˛p�1!U˛˛0:::˛p�1 ,
with ˇ 2�min.Y �U˛˛0:::˛p�1/. Then we extend �˛ˇ (by zero) to a minimal form on
U˛0:::˛p�1 , which we (abusively) also denote by �˛ˇ. For example, if ˇD .f0; : : : ; fk/
in the notation of [24, Section 5.2], we may take �˛ˇ WD .�˛f0; �˛f1; : : : ; �˛fk/, with
all appearing semialgebraic functions extended by zero, using our cutoff functions �˛ .
Then one sets

�˛!˛˛0:::˛p�1 D

Z
Y

�˛ˇ;

with the fiber integral now being the one associated to the trivial semialgebraic bundle
Y �U˛0:::˛p�1 ! U˛0:::˛p�1 .

Having defined the cochain � above one then checks as in the proof [8, Proposition 8.5]
that ı� D!, using that ı!D 0. Overall, we have then shown that the second (E1–)page
of the “rowwise” spectral sequence is identified with .�triv.M/; d/.

We also note that this step of the proof is closely analogous to that of [24, Lemma 6.7],
but slightly simpler since trivial bundles can be extended trivially.

The next page of the “rowwise” spectral sequence is then H.�triv.M/; d/, and the
spectral sequence converges at this point by degree reasons. Hence

H.�triv.M/; d/ŠH �.M/:

It is shown in [24] that H.�PA.M/; d/ŠH.M/. To see that the inclusion

�triv.M/��PA.M/

induces the isomorphism on cohomology one may consider the PA Čech–de Rham
complex CPA, defined by replacing�triv by�PA in the definition of C above. Using the
PA Poincaré lemma [24, Lemma 6.3] it is then clear that the natural inclusion C !CPA

induces an isomorphism on the E2–page of the “columnwise” spectral sequences on
both sides, and hence is a quasi-isomorphism.

We note that in fact in the definition of �triv we do not need globally trivial bundles,
local triviality suffices.
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Proposition 85 Let M be a compact semialgebraic manifold and let p WE!M be an
oriented SA bundle; see [24, Definition 8.1]. Let ! 2�triv.E/. Then the corresponding
fiber integral

R
E!M ! 2�PA.M/ is an element of �triv.M/��PA.M/.

Proof We may assume that ! 2�min.M/ by replacing E with a product of E with
some trivial bundle if needed. We pick a finite trivializing cover fUig, a semialgebraic
partition of unity �i , and cutoff functions �i as in the proof of Corollary 84.

We then rewrite Z
E!M

! D
X
i

�i

Z
E!M

! D
X
i

Z
E!M

�i!:

For the last equality we abused notation and defined �i WD p��i , and we implicitly
used [24, Proposition 8.9]. Let the local trivialization of the bundle on Ui be denoted
by hi W Ui �F

Š
�! p�1.Ui /. As in the previous proof we extend the minimal form

�ih
�
i ! 2�min.Ui �F / to a minimal form �ih

�
i ! 2�min.M �F /, which we abusively

denote by the same symbols. We then claim that

(22)
Z
E!M

�i! D

Z
M�F!M

�ih
�
i !:

Since the right-hand side is a fiber integral over a trivial bundle the proposition then
follows.

To check (22) we need to consider a trivializing stratification fS˛g for the strongly
continuous chain ˆ corresponding to the bundle E !M . The stratification can be
taken such that the closure of each stratum is contained in one of the Uj as in the
proof of [24, Proposition 8.2]. We can furthermore refine it so that each S˛ is either
contained in Ui or disjoint from the support of �i . (For example, refine the stratification
by intersecting the strata with fx j �i .x/� 0:9g and the closure of its complement.)

Now consider some stratum S˛, and the restriction of (22) to its closure. If S˛ is
disjoint from the support of �i then trivially both sides of (22) vanish on it. Otherwise
we may assume that S˛ � Ui . But the bundle isomorphism hi transforms one side of
(22) into the other; see [24, Proposition 8.10].
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