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A remark on the finiteness of purely cosmetic surgeries

TETSUYA ITO

By estimating the knot Floer thickness in terms of the genus and the braid index,
we show that a knot K in S3 does not admit purely cosmetic surgery whenever
g.K/ � 3

2
b.K/, where g.K/ and b.K/ denote the genus and the braid index,

respectively. In particular, this establishes the finiteness of purely cosmetic surgeries;
for a fixed b, all but finitely many knots with braid index b satisfies the cosmetic
surgery conjecture.

57K10; 57K30

For a knot K in the 3–sphere S3 and r 2Q, let S3
K
.r/ be the r–surgery on K. Two

Dehn surgeries S3
K
.r/ and S3

K
.r 0/ on the same knot K are purely cosmetic if r ¤ r 0

but S3
K
.r/Š S3

K
.r 0/. Here we write M ŠN if M and N are orientation-preservingly

homeomorphic.

Conjecture 1 (cosmetic surgery conjecture) A nontrivial knot does not admit purely
cosmetic surgeries.

One must be careful to take account of orientations; there are several examples of
chirally cosmetic surgery, a pair of Dehn surgeries on the same knot, that yields
orientation-reversingly homeomorphic 3–manifolds. For example, for the trefoil knot K,
S3

K
.9/ Š �S3

K

�
9
2

�
; see Mathieu [7]. Here �M is the 3–manifold M with opposite

orientation.

For a knot K in S3, let g.K/ be the genus and b.K/ be the braid index of K. The aim
of this note is to point out the following finiteness result on purely cosmetic surgeries,
which gives strong supporting evidence for Conjecture 1:

Theorem 1 If g.K/� 3
2
b.K/, then K does not admit a purely cosmetic surgery. In

particular , for given b > 0, there are only finitely many knots with braid index b that
admit purely cosmetic surgeries.
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Here, the latter finiteness assertion follows from Birman and Menasco’s finiteness
theorem [2]: for given g; b > 0 there are only finitely many knots with genus g and
braid index b.

Our proof of Theorem 1 is based on a quantitative refinement of Birman and Menasco’s
finiteness theorem [5] and the following quite strong constraint for purely cosmetic
surgeries:

Theorem 2 (Hanselman [4]) Let K be a nontrivial knot and th.K/ be the Heegaard
Floer thickness of K. If S3

K
.r/Š S3

K
.r 0/ for r ¤ r 0, then either

� fr; r 0g D f2;�2g and g.K/D 2, or
� fr; r 0g D f1=q;�1=qg for some 0< q � .th.K/C 2g.K//=2g.K/.g.K/� 1/.

Here, th.K/ is the thickness of the knot Floer homology.

Thus, if g.K/¤ 2 and th.K/ is small compared with g.K/, then K does not admit
purely cosmetic surgery. This motivates us to study a relation between g.K/ and th.K/,
in particular the (upper) bound of th.K/=g.K/. Here, we give an upper bound of the
thickness th.K/ in terms of g.K/ and b.K/.

Although our argument applies in the cases b.K/D 2; 3, we restrict our attention to
the case b.K/� 4.

Lemma 3 If b.K/� 4,

th.K/� 1
2
.2b.K/� 5/.2g.K/� 1C b.K//:

Proof For a knot diagram D, the Turaev genus gT .D/ is defined by

gT .D/D
1
2
.c.D/C 2� jsAj � jsBj/;

where c.D/ is the crossing number of D and jsAj and jsBj are the number of circles
obtained by A– and B–smoothing, respectively, of crossings of D given by

A
 �

B
�! :

The Turaev genus gT .K/ of a knot K is the minimum of gT .D/ among diagrams D

of K. In [6], Lowrance showed the inequality

th.K/� gT .K/:

For any diagram D, jsAj; jsBj � 1, so gT .D/ �
1
2
c.D/. Hence, we have a canonical

upper bound of the Turaev genus,

(1) gT .K/�
1
2
c.K/:
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Finally, by the quantitative Birman–Menasco finiteness theorem1 [5], if b.K/� 4, we
get

c.K/� .2b.K/� 5/.2g.K/� 1C b.K//:

These three inequalities prove the desired inequality.

Proof of Theorem 1 In the following we assume that b.K/� 4 since Varvarezos [8]
proved the cosmetic surgery conjecture for the case b.K/D 3. Also, we assume that
g.K/¤ 2.

Assume to the contrary that K admits a purely cosmetic surgery. By Theorem 2, such
a knot must satisfy

1�
th.K/C 2g.K/

2g.K/.g.K/� 1/
() 2g.K/.g.K/� 2/� th.K/;

so, by Lemma 3, we conclude that, when a knot K admits a purely cosmetic surgery, it
satisfies

2g.K/.g.K/� 2/� 1
2
.2b.K/� 5/.2g.K/� 1C b.K//:

That is, we get a constraint for a knot K to admit a purely cosmetic surgery:

(2) 4g.K/2C .2� 4b.K//g.K/C .2b.K/� 5/.1� b.K//� 0:

Now the assertion of the theorem follows from an easy computation that, if g.K/�
3
2
b.K/, then (2) is never satisfied.

As the proof indicates, our sufficient condition g.K/� 3
2
b.K/ can be improved if one

can improve on the estimate of th.K/ in Lemma 3.

Remark 4 Instead of using an obvious bound (1) of the Turaev genus, by using a
different upper bound [3, Corollary 7.3]

gT .K/� c.K/� span VK .t/;

where VK .t/ denotes the Jones polynomial, we get a different constraint: if K admits
a purely cosmetic surgery, then

(3) 2g.K/2C .6� 4b.K//g.K/C .2b.K/� 5/.1� b.K//C span VK .t/� 0:

1When b.K/D 2; 3, a similar inequality holds but the coefficient 2b.K/� 5 is 1 or 5
3

, respectively.
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Here, we give a mild improvement of Lemma 3. For a diagram D of a knot K, the
dealternation number dalt.D/ of D is the minimum number of crossing change needed
to make D into an alternating diagram. The dealternation number of a knot K is the
minimum of dalt.D/ among diagrams D of K. It is known that gT .K/� dalt.K/ [1],
so evaluating the dealternation number also gives an upper bound on the thickness.

We prove the following estimate of the dealternation number (and hence the Turaev
genus and the thickness) in terms of the genus and braid index, which is interesting in
its own right:

Theorem 5 If b.K/� 4, then

th.K/� gT .K/� dalt.K/�
�

b.K/� 3C
1

b.K/

�
.2g.K/� 1C b.K//:

Proof Let n D b.K/ and let Bn be the braid group of n strands. We denote the
standard generators of Bn by �1; : : : ; �n�1. We say that a braid is alternating if it
is a product of f�1; �

�1
2
; �3; �

�1
4
; : : : ; �2i�1; �

�1
2i
; : : :g. Obviously, the closure of an

alternating braid is an alternating diagram.

For 1� i < j � n, let ai;j be the band generator given by

ai;j D .�i�iC1 � � � �j�2/�j�1.�i�iC1 � � � �j�2/
�1:

A band generator ai;j can be seen as the boundary of a twisted band connecting the
i th and j th strands of the braid. Thus, when K is represented as the closure of a braid
ˇ 2Bn, by giving ˇ as a product of band generators, we get a Seifert surface Fˇ of K,
called the Bennequin surface associated to the braid (word) ˇ.

First we treat the case that K bounds a minimum genus Bennequin surface of minimum
braid index. That is, K is represented by a closed n–braid ˇ such that its Bennequin
surface Fˇ is a minimum genus Seifert surface of K.

Thanks to the relation

�j�1�
˙1
j ��1

j�1 D �
�1
j �˙1

j�1�j ;

by taking suitable word representatives of the a˙1
i;j , each band generator ai;j except a1;n

can be made so that it is alternating by changing at most n�3 crossings. The exceptional

Algebraic & Geometric Topology, Volume 23 (2023)
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case a˙1
1;n

can be made so that it is alternating by changing n� 2 crossings. Thus,

dalt.K/�
X

1�i<j�n
.i;j/¤.1;n/

.n� 3/ri;j C .n� 2/r1;n D

X
1�i<j�n

.n� 3/ri;j C r1;n;

where ri;j is the number of a˙1
i;j in the braid ˇ.

On the other hand, since we assume that the Bennequin surface Fˇ associated with the
n–braid ˇ has genus g.K/, X

1�i<j�n

ri;j D 2g.K/� 1C n:

Let ıD�1�2�3 � � � �n�1. Since ıai;jı
�1DaiC1;jC1 (here we regard indices modulo n;

for example, ıa1;nı
�1 D a2;nC1 is understood as a1;2), by taking conjugates of ı if

necessary, we may assume that

r1;n �
1

n
.r1;2C r2;3C r3;4C � � �C rn�1;nC r1;n/�

1

n
.2g.K/� 1C n/:

Thus, we conclude

dalt.K/�
X

1�i<j�n

.n� 3/ri;j C r1;n �

�
n� 3C

1

n

�
.2g.K/� 1C n/;

as desired.

Next, we assume that K does not bound a minimum genus Bennequin surface of the
minimum braid index. To treat this case we quickly review a main strategy of the proof
of the quantitative Birman–Menasco theorem [5], namely how to relate the genus, braid
index and crossing number (although we do not need to use or know the details).

We put a minimum genus Seifert surface F of K so that it admits a braid foliation. Let
Raa and Rab be the number of aa tiles and ab tiles of the braid foliation. What we
showed in [5] is two inequalities:

(4) c.K/� .2n� 5/RaaC .n� 3/Rab

and

(5) 2RaaCRab � 2.2g.K/� 1C b.K//:

More precisely, the inequality (4) is obtained by observing that the braid foliation gives
rise to an explicit closed n–braid representative ˇ such that one aa tile provides a braid
which is a band generator,

a˙1
i;j ; .i; j /¤ .1; n/;

Algebraic & Geometric Topology, Volume 23 (2023)
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and that one ab tile provides a braid of the form

˙1
i;j ; ji � j j � n� 3:

Here, i;j denotes the braid

i;j D

�
�i�iC1 � � � �j�1 if i < j ;

�i�i�1 � � � �j�1 if i > j:

(when i D j, we regard i;j as the trivial braid).

If n is odd, then each braid i;j can be made into an alternating braid by at most
1
2
.n� 3/ crossing changes. Each band generator ai;j coming from an aa tile can be

made into an alternating braid by at most n� 3 changes since a1;n does not appear.
Therefore,

dalt.K/� .n� 3/RaaC
1
2
.n� 3/Rab D

1
2
.n� 3/.2RaaCRab/

� .n� 3/.2g.K/� 1C n/:

If n is even, let M be the number of the i;j produced by ab tiles such that i;j is
made into an alternating braid by 1

2
.n� 2/ crossing changes. By taking the mirror

image of ˇ if necessary, we may assume that M � 1
2
Rab . Since other braids i;j from

ab tiles can be made into an alternating braid by at most 1
2
.n� 4/ crossing changes,

dalt.K/� .n� 3/RaaC
1
2
.n� 4/.Rab �M /C 1

2
.n� 2/M

� .n� 3/RaaC
1
2
.n� 3/Rab D

1
2
.n� 3/.2RaaCRab/

� .n� 3/.2g.K/� 1C n/:

Using this refinement we can improve a sufficient condition in Theorem 1. For example,
for the case b.K/D 4, a direct computation shows that:

Corollary 6 A knot K with braid index 4 does not admit purely cosmetic surgery if
g.K/¤ 2; 3.
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