$\frac{A}{2} g$

ALgebraic é Geometric Topology

Volume 23 (2023)

A remark on the finiteness of purely cosmetic surgeries

Tetsuya Ito

A remark on the finiteness of purely cosmetic surgeries

Tetsuya Ito

By estimating the knot Floer thickness in terms of the genus and the braid index, we show that a knot K in S^{3} does not admit purely cosmetic surgery whenever $g(K) \geq \frac{3}{2} b(K)$, where $g(K)$ and $b(K)$ denote the genus and the braid index, respectively. In particular, this establishes the finiteness of purely cosmetic surgeries; for a fixed b, all but finitely many knots with braid index b satisfies the cosmetic surgery conjecture.

57K10; 57K30
For a knot K in the 3 -sphere S^{3} and $r \in \mathbb{Q}$, let $S_{K}^{3}(r)$ be the r-surgery on K. Two Dehn surgeries $S_{K}^{3}(r)$ and $S_{K}^{3}\left(r^{\prime}\right)$ on the same knot K are purely cosmetic if $r \neq r^{\prime}$ but $S_{K}^{3}(r) \cong S_{K}^{3}\left(r^{\prime}\right)$. Here we write $M \cong N$ if M and N are orientation-preservingly homeomorphic.

Conjecture 1 (cosmetic surgery conjecture) A nontrivial knot does not admit purely cosmetic surgeries.

One must be careful to take account of orientations; there are several examples of chirally cosmetic surgery, a pair of Dehn surgeries on the same knot, that yields orientation-reversingly homeomorphic 3-manifolds. For example, for the trefoil knot K, $S_{K}^{3}(9) \cong-S_{K}^{3}\left(\frac{9}{2}\right)$; see Mathieu [7]. Here $-M$ is the 3-manifold M with opposite orientation.

For a knot K in S^{3}, let $g(K)$ be the genus and $b(K)$ be the braid index of K. The aim of this note is to point out the following finiteness result on purely cosmetic surgeries, which gives strong supporting evidence for Conjecture 1 :

Theorem 1 If $g(K) \geq \frac{3}{2} b(K)$, then K does not admit a purely cosmetic surgery. In particular, for given $b>0$, there are only finitely many knots with braid index b that admit purely cosmetic surgeries.

[^0]Here, the latter finiteness assertion follows from Birman and Menasco's finiteness theorem [2]: for given $g, b>0$ there are only finitely many knots with genus g and braid index b.

Our proof of Theorem 1 is based on a quantitative refinement of Birman and Menasco's finiteness theorem [5] and the following quite strong constraint for purely cosmetic surgeries:

Theorem 2 (Hanselman [4]) Let K be a nontrivial knot and th(K) be the Heegaard Floer thickness of K. If $S_{K}^{3}(r) \cong S_{K}^{3}\left(r^{\prime}\right)$ for $r \neq r^{\prime}$, then either

- $\left\{r, r^{\prime}\right\}=\{2,-2\}$ and $g(K)=2$, or
- $\left\{r, r^{\prime}\right\}=\{1 / q,-1 / q\}$ for some $0<q \leq(\operatorname{th}(K)+2 g(K)) / 2 g(K)(g(K)-1)$.

Here, $\operatorname{th}(K)$ is the thickness of the knot Floer homology.
Thus, if $g(K) \neq 2$ and $\operatorname{th}(K)$ is small compared with $g(K)$, then K does not admit purely cosmetic surgery. This motivates us to study a relation between $g(K)$ and $\operatorname{th}(K)$, in particular the (upper) bound of $\operatorname{th}(K) / g(K)$. Here, we give an upper bound of the thickness th (K) in terms of $g(K)$ and $b(K)$.

Although our argument applies in the cases $b(K)=2,3$, we restrict our attention to the case $b(K) \geq 4$.

Lemma 3 If $b(K) \geq 4$,

$$
\operatorname{th}(K) \leq \frac{1}{2}(2 b(K)-5)(2 g(K)-1+b(K)) .
$$

Proof For a knot diagram D, the Turaev genus $g_{T}(D)$ is defined by

$$
g_{T}(D)=\frac{1}{2}\left(c(D)+2-\left|s_{A}\right|-\left|s_{B}\right|\right),
$$

where $c(D)$ is the crossing number of D and $\left|s_{A}\right|$ and $\left|s_{B}\right|$ are the number of circles obtained by A - and B-smoothing, respectively, of crossings of D given by

The Turaev genus $g_{T}(K)$ of a knot K is the minimum of $g_{T}(D)$ among diagrams D of K. In [6], Lowrance showed the inequality

$$
\operatorname{th}(K) \leq g_{T}(K)
$$

For any diagram $D,\left|s_{A}\right|,\left|s_{B}\right| \geq 1$, so $g_{T}(D) \leq \frac{1}{2} c(D)$. Hence, we have a canonical upper bound of the Turaev genus,

$$
\begin{equation*}
g_{T}(K) \leq \frac{1}{2} c(K) \tag{1}
\end{equation*}
$$

Finally, by the quantitative Birman-Menasco finiteness theorem ${ }^{1}$ [5], if $b(K) \geq 4$, we get

$$
c(K) \leq(2 b(K)-5)(2 g(K)-1+b(K)) .
$$

These three inequalities prove the desired inequality.

Proof of Theorem 1 In the following we assume that $b(K) \geq 4$ since Varvarezos [8] proved the cosmetic surgery conjecture for the case $b(K)=3$. Also, we assume that $g(K) \neq 2$.

Assume to the contrary that K admits a purely cosmetic surgery. By Theorem 2, such a knot must satisfy

$$
1 \leq \frac{\operatorname{th}(K)+2 g(K)}{2 g(K)(g(K)-1)} \Longleftrightarrow 2 g(K)(g(K)-2) \leq \operatorname{th}(K)
$$

so, by Lemma 3, we conclude that, when a knot K admits a purely cosmetic surgery, it satisfies

$$
2 g(K)(g(K)-2) \leq \frac{1}{2}(2 b(K)-5)(2 g(K)-1+b(K)) .
$$

That is, we get a constraint for a knot K to admit a purely cosmetic surgery:

$$
\begin{equation*}
4 g(K)^{2}+(2-4 b(K)) g(K)+(2 b(K)-5)(1-b(K)) \leq 0 . \tag{2}
\end{equation*}
$$

Now the assertion of the theorem follows from an easy computation that, if $g(K) \geq$ $\frac{3}{2} b(K)$, then (2) is never satisfied.

As the proof indicates, our sufficient condition $g(K) \geq \frac{3}{2} b(K)$ can be improved if one can improve on the estimate of $\operatorname{th}(K)$ in Lemma 3.

Remark 4 Instead of using an obvious bound (1) of the Turaev genus, by using a different upper bound [3, Corollary 7.3]

$$
g_{T}(K) \leq c(K)-\operatorname{span} V_{K}(t),
$$

where $V_{K}(t)$ denotes the Jones polynomial, we get a different constraint: if K admits a purely cosmetic surgery, then
(3) $2 g(K)^{2}+(6-4 b(K)) g(K)+(2 b(K)-5)(1-b(K))+\operatorname{span} V_{K}(t) \leq 0$.

[^1]Here, we give a mild improvement of Lemma 3. For a diagram D of a knot K, the dealternation number $\operatorname{dalt}(D)$ of D is the minimum number of crossing change needed to make D into an alternating diagram. The dealternation number of a knot K is the minimum of $\operatorname{dalt}(D)$ among diagrams D of K. It is known that $g_{T}(K) \leq \operatorname{dalt}(K)$ [1], so evaluating the dealternation number also gives an upper bound on the thickness.

We prove the following estimate of the dealternation number (and hence the Turaev genus and the thickness) in terms of the genus and braid index, which is interesting in its own right:

Theorem 5 If $b(K) \geq 4$, then

$$
\operatorname{th}(K) \leq g_{T}(K) \leq \operatorname{dalt}(K) \leq\left(b(K)-3+\frac{1}{b(K)}\right)(2 g(K)-1+b(K)) .
$$

Proof Let $n=b(K)$ and let B_{n} be the braid group of n strands. We denote the standard generators of B_{n} by $\sigma_{1}, \ldots, \sigma_{n-1}$. We say that a braid is alternating if it is a product of $\left\{\sigma_{1}, \sigma_{2}^{-1}, \sigma_{3}, \sigma_{4}^{-1}, \ldots, \sigma_{2 i-1}, \sigma_{2 i}^{-1}, \ldots\right\}$. Obviously, the closure of an alternating braid is an alternating diagram.

For $1 \leq i<j \leq n$, let $a_{i, j}$ be the band generator given by

$$
a_{i, j}=\left(\sigma_{i} \sigma_{i+1} \cdots \sigma_{j-2}\right) \sigma_{j-1}\left(\sigma_{i} \sigma_{i+1} \cdots \sigma_{j-2}\right)^{-1}
$$

A band generator $a_{i, j}$ can be seen as the boundary of a twisted band connecting the $i^{\text {th }}$ and $j^{\text {th }}$ strands of the braid. Thus, when K is represented as the closure of a braid $\beta \in B_{n}$, by giving β as a product of band generators, we get a Seifert surface F_{β} of K, called the Bennequin surface associated to the braid (word) β.

First we treat the case that K bounds a minimum genus Bennequin surface of minimum braid index. That is, K is represented by a closed n-braid β such that its Bennequin surface F_{β} is a minimum genus Seifert surface of K.

Thanks to the relation

$$
\sigma_{j-1} \sigma_{j}^{ \pm 1} \sigma_{j-1}^{-1}=\sigma_{j}^{-1} \sigma_{j-1}^{ \pm 1} \sigma_{j}
$$

by taking suitable word representatives of the $a_{i, j}^{ \pm 1}$, each band generator $a_{i, j}$ except $a_{1, n}$ can be made so that it is alternating by changing at most $n-3$ crossings. The exceptional
case $a_{1, n}^{ \pm 1}$ can be made so that it is alternating by changing $n-2$ crossings. Thus,

$$
\operatorname{dalt}(K) \leq \sum_{\substack{1 \leq i<j \leq n \\(i, j) \neq(1, n)}}(n-3) r_{i, j}+(n-2) r_{1, n}=\sum_{1 \leq i<j \leq n}(n-3) r_{i, j}+r_{1, n}
$$

where $r_{i, j}$ is the number of $a_{i, j}^{ \pm 1}$ in the braid β.
On the other hand, since we assume that the Bennequin surface F_{β} associated with the n-braid β has genus $g(K)$,

$$
\sum_{1 \leq i<j \leq n} r_{i, j}=2 g(K)-1+n
$$

Let $\delta=\sigma_{1} \sigma_{2} \sigma_{3} \cdots \sigma_{n-1}$. Since $\delta a_{i, j} \delta^{-1}=a_{i+1, j+1}$ (here we regard indices modulo n; for example, $\delta a_{1, n} \delta^{-1}=a_{2, n+1}$ is understood as $a_{1,2}$), by taking conjugates of δ if necessary, we may assume that

$$
r_{1, n} \leq \frac{1}{n}\left(r_{1,2}+r_{2,3}+r_{3,4}+\cdots+r_{n-1, n}+r_{1, n}\right) \leq \frac{1}{n}(2 g(K)-1+n)
$$

Thus, we conclude

$$
\operatorname{dalt}(K) \leq \sum_{1 \leq i<j \leq n}(n-3) r_{i, j}+r_{1, n} \leq\left(n-3+\frac{1}{n}\right)(2 g(K)-1+n)
$$

as desired.
Next, we assume that K does not bound a minimum genus Bennequin surface of the minimum braid index. To treat this case we quickly review a main strategy of the proof of the quantitative Birman-Menasco theorem [5], namely how to relate the genus, braid index and crossing number (although we do not need to use or know the details).

We put a minimum genus Seifert surface F of K so that it admits a braid foliation. Let $R_{a a}$ and $R_{a b}$ be the number of $a a$ tiles and $a b$ tiles of the braid foliation. What we showed in [5] is two inequalities:

$$
\begin{equation*}
c(K) \leq(2 n-5) R_{a a}+(n-3) R_{a b} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
2 R_{a a}+R_{a b} \leq 2(2 g(K)-1+b(K)) \tag{5}
\end{equation*}
$$

More precisely, the inequality (4) is obtained by observing that the braid foliation gives rise to an explicit closed n-braid representative β such that one $a a$ tile provides a braid which is a band generator,

$$
a_{i, j}^{ \pm 1}, \quad(i, j) \neq(1, n)
$$

and that one $a b$ tile provides a braid of the form

$$
\gamma_{i, j}^{ \pm 1}, \quad|i-j| \leq n-3 .
$$

Here, $\gamma_{i, j}$ denotes the braid

$$
\gamma_{i, j}= \begin{cases}\sigma_{i} \sigma_{i+1} \cdots \sigma_{j-1} & \text { if } i<j \\ \sigma_{i} \sigma_{i-1} \cdots \sigma_{j-1} & \text { if } i>j\end{cases}
$$

(when $i=j$, we regard $\gamma_{i, j}$ as the trivial braid).
If n is odd, then each braid $\gamma_{i, j}$ can be made into an alternating braid by at most $\frac{1}{2}(n-3)$ crossing changes. Each band generator $a_{i, j}$ coming from an aa tile can be made into an alternating braid by at most $n-3$ changes since $a_{1, n}$ does not appear. Therefore,

$$
\begin{aligned}
\operatorname{dalt}(K) & \leq(n-3) R_{a a}+\frac{1}{2}(n-3) R_{a b}=\frac{1}{2}(n-3)\left(2 R_{a a}+R_{a b}\right) \\
& \leq(n-3)(2 g(K)-1+n) .
\end{aligned}
$$

If n is even, let M be the number of the $\gamma_{i, j}$ produced by $a b$ tiles such that $\gamma_{i, j}$ is made into an alternating braid by $\frac{1}{2}(n-2)$ crossing changes. By taking the mirror image of β if necessary, we may assume that $M \leq \frac{1}{2} R_{a b}$. Since other braids $\gamma_{i, j}$ from $a b$ tiles can be made into an alternating braid by at most $\frac{1}{2}(n-4)$ crossing changes,

$$
\begin{aligned}
\operatorname{dalt}(K) & \leq(n-3) R_{a a}+\frac{1}{2}(n-4)\left(R_{a b}-M\right)+\frac{1}{2}(n-2) M \\
& \leq(n-3) R_{a a}+\frac{1}{2}(n-3) R_{a b}=\frac{1}{2}(n-3)\left(2 R_{a a}+R_{a b}\right) \\
& \leq(n-3)(2 g(K)-1+n) .
\end{aligned}
$$

Using this refinement we can improve a sufficient condition in Theorem 1. For example, for the case $b(K)=4$, a direct computation shows that:

Corollary 6 A knot K with braid index 4 does not admit purely cosmetic surgery if $g(K) \neq 2,3$.

Acknowledgement

The author has been partially supported by JSPS KAKENHI grants 19 K 03490 and 21 H 04428 . He would like to thank the referee for many helpful comments.

References

[1] T Abe, K Kishimoto, The dealternating number and the alternation number of a closed 3-braid, J. Knot Theory Ramifications 19 (2010) 1157-1181 MR Zbl
[2] J S Birman, W W Menasco, Studying links via closed braids, VI: A nonfiniteness theorem, Pacific J. Math. 156 (1992) 265-285 MR Zbl
[3] O T Dasbach, D Futer, E Kalfagianni, X-S Lin, N W Stoltzfus, The Jones polynomial and graphs on surfaces, J. Combin. Theory Ser. B 98 (2008) 384-399 MR Zbl
[4] J Hanselman, Heegaard Floer homology and cosmetic surgeries in S^{3}, J. Eur. Math. Soc. 25 (2023) 1627-1670 MR
[5] T Ito, A quantitative Birman-Menasco finiteness theorem and its application to crossing number, J. Topol. 15 (2022) 1794-1806 MR
[6] A M Lowrance, On knot Floer width and Turaev genus, Algebr. Geom. Topol. 8 (2008) 1141-1162 MR Zbl
[7] Y Mathieu, Closed 3-manifolds unchanged by Dehn surgery, J. Knot Theory Ramifications 1 (1992) 279-296 MR Zbl
[8] K Varvarezos, 3-Braid knots do not admit purely cosmetic surgeries, Acta Math. Hungar. 164 (2021) 451-457 MR Zbl

Department of Mathematics, Graduate School of Science, Kyoto University
Kyoto, Japan
tetitoh@math.kyoto-u.ac.jp

Received: 25 April 2021 Revised: 24 November 2021

Algebraic \& Geometric Topology

msp.org/agt

EDITORS

John Etnyre etnyre@math.gatech.edu
Georgia Institute of Technology
Kathryn Hess
kathryn.hess@epfl.ch
École Polytechnique Fédérale de Lausanne

Principal Academic Editors

Board of Editors

Julie Bergner	University of Virginia jeb2md@eservices.virginia.edu	Robert Lipshitz	University of Oregon lipshitz@uoregon.edu
Steven Boyer	Université du Québec à Montréal cohf@math.rochester.edu	Norihiko Minami	Nagoya Institute of Technology nori@nitech.ac.jp
Tara E. Brendle	University of Glasgow tara.brendle@glasgow.ac.uk	Andrés Navas	Universidad de Santiago de Chile andres.navas@usach.cl
Indira Chatterji	CNRS \& Université Côte d'Azur (Nice) indira.chatterji@math.cnrs.fr	Thomas Nikolaus	University of Münster nikolaus@uni-muenster.de
Alexander Dranishnikov	University of Florida dranish@math.ufl.edu	Robert Oliver	Université Paris 13 bobol@math.univ-paris13.fr
Corneli Druţu	University of Oxford cornelia.drutu@maths.ox.ac.uk	Birgit Richter	Universität Hamburg birgit.richter@uni-hamburg.de
Tobias Ekholm	Uppsala University, Sweden tobias.ekholm@math.uu.se	Jérôme Scherer	École Polytech. Féd. de Lausanne jerome.scherer@epfl.ch
Mario Eudave-Muñoz	Univ. Nacional Autónoma de México mario@matem.unam.mx	Zoltán Szabó	Princeton University szabo@math.princeton.edu
David Futer	Temple University dfuter@temple.edu	Ulrike Tillmann	Oxford University tillmann@maths.ox.ac.uk
John Greenlees	University of Warwick john.greenlees@warwick.ac.uk	Maggy Tomova	University of Iowa maggy-tomova@uiowa.edu
Ian Hambleton	McMaster University ian@math.mcmaster.ca	Nathalie Wahl	University of Copenhagen wahl@math.ku.dk
Hans-Werner Henn	Université Louis Pasteur henn@math.u-strasbg.fr	Chris Wendl	Humboldt-Universität zu Berlin wendl@math.hu-berlin.de
Daniel Isaksen	Wayne State University isaksen@math.wayne.edu	Daniel T. Wise	McGill University, Canada daniel.wise@mcgill.ca
Christine Lescop	Université Joseph Fourier lescop@ujf-grenoble.fr		

[^2]AGT peer review and production are managed by EditFlow ${ }^{\circledR}$ from MSP.
PUBLISHED BY

mathematical sciences publishers

nonprofit scientific publishing

http://msp.org/
© 2023 Mathematical Sciences Publishers

Algebraic \& Geometric Topology

Volume 23 Issue 5 (pages 1935-2414) 2023

Splitting Madsen-Tillmann spectra, II: The Steinberg idempotents and Whitehead conjecture 1935Takuji Kashiwabara and Hadi Zare
Free and based path groupoids 1959
Andrés Ángel and Hellen Colman
Discrete real specializations of sesquilinear representations of the braid groups 2009
Nancy Scherich
A model for configuration spaces of points 2029
Ricardo Campos and Thomas Willwacher
The Hurewicz theorem in homotopy type theory 2107
J Daniel Christensen and Luis Scoccola
A concave holomorphic filling of an overtwisted contact 3 -sphere 2141
NaOHIKO Kasuya and Daniele Zuddas
Modifications preserving hyperbolicity of link complements 2157
Colin Adams, William H Meeks III and Álvaro K Ramos
Golod and tight 3-manifolds 2191
Kouyemon Iriye and Daisuke Kishimoto
A remark on the finiteness of purely cosmetic surgeries 2213
Tetsuya Ito
Geodesic complexity of homogeneous Riemannian manifolds 2221
Stephan Mescher and Maximilian Stegemeyer
Adequate links in thickened surfaces and the generalized Tait conjectures 2271
Hans U Boden, Homayun Karimi and Adam S Sikora
Homotopy types of gauge groups over Riemann surfaces 2309
Masaki Kameko, Daisuke Kishimoto and Masahiro Takeda
Diffeomorphisms of odd-dimensional discs, glued into a manifold 2329
Johannes Ebert
Intrinsic symmetry groups of links 2347
Charles Livingston
Loop homotopy of 6-manifolds over 4-manifolds 2369
Ruizhi Huang

[^0]: © 2023 MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution License 4.0 (CC BY). Open Access made possible by subscribing institutions via Subscribe to Open.

[^1]: ${ }^{1}$ When $b(K)=2,3$, a similar inequality holds but the coefficient $2 b(K)-5$ is 1 or $\frac{5}{3}$, respectively.

[^2]: See inside back cover or msp.org/agt for submission instructions.
 The subscription price for 2023 is US $\$ 650 /$ year for the electronic version, and $\$ 940 /$ year ($+\$ 70$, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues and changes of subscriber address should be sent to MSP. Algebraic \& Geometric Topology is indexed by Mathematical Reviews, Zentralblatt MATH, Current Mathematical Publications and the Science Citation Index.

 Algebraic \& Geometric Topology (ISSN 1472-2747 printed, 1472-2739 electronic) is published 9 times per year and continuously online, by Mathematical Sciences Publishers, c/o Department of Mathematics, University of California, 798 Evans Hall \#3840, Berkeley, CA 94720-3840. Periodical rate postage paid at Oakland, CA 94615-9651, and additional mailing offices. POSTMASTER: send address changes to Mathematical Sciences Publishers, c/o Department of Mathematics, University of California, 798 Evans Hall \#3840, Berkeley, CA 94720-3840.

