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Geodesic complexity of homogeneous Riemannian manifolds
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We study the geodesic motion planning problem for complete Riemannian manifolds
and investigate their geodesic complexity, an integer-valued isometry invariant intro-
duced by D Recio-Mitter. Using methods from Riemannian geometry, we establish
new lower and upper bounds on geodesic complexity and compute its value for certain
classes of examples with a focus on homogeneous Riemannian manifolds. To achieve
this, we study properties of stratifications of cut loci and use results on their structures
for certain homogeneous manifolds obtained by T Sakai and others.
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1 Introduction

A topological abstraction of the motion planning problem in robotics was introduced
by M Farber [12]. The topological complexity of a path-connected space X is denoted
by TC.X/ and intuitively given by the minimal number of open sets needed to cover
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X �X such that, on each of the open sets, there exists a continuous motion planner.
Here, a continuous motion planner is a map associating with each pair of points a
continuous path from the first point to the second point which varies continuously with
the endpoints. Such maps are interpreted as algorithms telling an autonomous robot in
the workspace X how it is supposed to move from its position to a desired endpoint.
Unfortunately, the topological complexity of a space does not tell us anything about the
feasibility or efficiency of the paths taken by motion planners having TC.X/ domains
of continuity; see the discussion of Z Błaszczyk and J Carrasquel-Vera [3, Introduction].
For example, the explicitly constructed motion planners for configuration spaces of
Euclidean spaces by H Mas-Ku and E Torres-Giese [29] and Farber [16, Section 8]
require few domains of continuity, but have paths among their values which are far
from being length-minimizing. Considering a general metric space, paths taken by
the motion planners might become arbitrarily long and thus be unsuited for practical
motion planning problems.

Recently, D Recio-Mitter [34] has introduced the notion of geodesic complexity of metric
spaces. There, the paths taken by motion planners are additionally required to be length-
minimizing between their endpoints. Intuitively, this is seen as the complexity of efficient
motion planning in metric spaces. Recio-Mitter’s seminal article has already triggered
research in geodesic complexity, especially computations of geodesic complexity for
interesting classes of examples; see Davis, Harrison and Recio-Mitter [8; 9; 10].

In this article we study the geodesic complexity of complete Riemannian manifolds
and derive new lower and upper bounds for their geodesic complexities by methods
from Riemannian geometry.

Before continuing, we recall the definition of geodesic complexity of geodesic spaces
from [34, Definition 1.7] for the special case of a complete Riemannian manifold. Let
.M; g/ be a complete connected Riemannian manifold and let PM WD C 0.Œ0; 1�;M/

be equipped with the compact–open topology. We recall that a geodesic segment

 W Œ0; 1�!M is called minimal if it minimizes the length compared to all rectifiable
paths from 
.0/ to 
.1/. For simplicity, we shall call a minimal geodesic segment
simply a minimal geodesic. Consider

GM WD f
 2 PM j 
 is a minimal geodesic in .M; g/g

as a subspace of PM and let

� WGM !M �M; �.
/D .
.0/; 
.1//:
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By standard results from Riemannian geometry, � is surjective since .M; g/ is complete;
see Petersen [33, Corollary 5.8.5]. The geodesic complexity of .M; g/ is given by
GC.M; g/ D r , where r 2 N is the smallest integer with the following property:
there are r pairwise disjoint locally compact subsets E1; : : : ; Er � M �M withSr
iD1Ei DM �M such that, for each i 2 f1; 2; : : : ; rg, there exists a continuous geo-

desic motion planner si WEi!GM, ie a continuous local section of the map � . If there
is no such r , we let GC.M; g/DC1. Since it is not at all evident how to compute this
number explicitly, one is interested in establishing lower and upper bounds for GC.M; g/.
This approach is also common in studies of Lusternik–Schnirelmann category or, more
generally, sectional categories of fibrations. Given a fibration p WE! B, the sectional
category of p is given by secat.p/Dk, where k 2N is the minimal number with the fol-
lowing property: there exists an open cover of B consisting of k open subsets such that
p admits a continuous local section over each of these sets. This notion was introduced
under the name genus of a fibration by A Schwarz [39]. The topological complexity
of a topological space X is for example given as the sectional category of the fibration

PX !X �X; 
 7! .
.0/; 
.1//:

Schwarz worked out several ways of obtaining lower and upper bounds for sectional
categories which have direct consequences for topological complexity; see eg Farber
[14; 15, Chapter 4] for an overview.

However, the restriction � W GM ! M �M of this fibration to minimal geodesics
is in general not a fibration. For example, if M D Sn is an n–sphere with n 2 N,
equipped with a round metric, then ��1.f.p; q/g/ consists of one element if q ¤�p,
while it is homeomorphic to Sn�1 if q D �p. In particular, not all preimages are
homotopy-equivalent, so � is not a fibration in this case. Therefore, Schwarz’s results
are not applicable to the setting of geodesic complexity. Instead we will derive several
lower and upper bounds for the geodesic complexity of Riemannian manifolds using
methods from Riemannian geometry. By [34, Remark 1.9], every complete Riemannian
manifold satisfies TC.M/� GC.M; g/. This formalizes the observation that requiring
the paths a robot takes to be as short as possible can increase the complexity of the
problem. For example, as shown in [34, Theorem 1.11], for each n� 3 there exists a
Riemannian metric gn on the sphere Sn for which GC.Sn; gn/�TC.Sn/� n� 3. In
practical applications, a person designing robotic systems that are supposed to move
autonomously might not mind a higher complexity. In fact, such a person might accept
more instabilities in the motions of robots as a downside if the upside is that the robots
move fast and efficiently.

Algebraic & Geometric Topology, Volume 23 (2023)
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An important observation is that the difficulties of geodesic motion planning lie in
the cut loci of .M; g/, as was pointed out by Recio-Mitter [34, page 144] in the more
general framework of metric spaces. Let Cutp.M/ denote the cut locus of p 2M in
.M; g/. We refer to Lee [27, page 308], Petersen [33, page 219] or Definition 2.5 below
for its definition. If A�M �M satisfies q …Cutp.M/ for each .p; q/2A, then there is
a unique minimal geodesic from p to q for each .p; q/2A. The corresponding geodesic
motion planner A!GM is continuous; see also the observations of Błaszczyk and
Carrasquel-Vera [3]. Thus, to compute the geodesic complexity of a manifold, we need
to understand its cut loci. While the cut locus of a point in a Riemannian manifold is
always closed and of measure zero — see [27, Theorem 10.34(a)] — little else is known
about cut loci in general.

In [34, Corollary 3.14], Recio-Mitter establishes a lower bound on the geodesic com-
plexity of metric spaces given in terms of the structure of their cut loci. He considers
cut loci which possess stratifications admitting finite coverings. For this purpose, Recio-
Mitter introduces the notion of a levelwise stratified covering in [34, Definition 3.8].
He then defines a notion of inconsistency, which is roughly a condition on the relations
between the coverings of the different strata of cut loci by minimal geodesics. It
formalizes certain incompatibility properties of families of geodesics connecting a
point with points in its cut locus.

Focusing on complete Riemannian manifolds, we will use Riemannian exponential
maps to establish a similar inconsistency condition on cut loci, which is more concise
than the one from [34]. Given a complete Riemannian manifold M and a point p 2M
for which Cutp.M/ admits a stratification, we study the preimages of the different
strata of Cutp.M/ under the Riemannian exponential map expp W TpM !M. Assume
that some x 2M lies in the closure of multiple connected components of the same
stratum of Cutp.M/. We then study the closures of the preimages of all of these
components under expp as subsets of TpM. The inconsistency condition demands that
these closures have no point in common that is mapped to x by expp . We will see that
this condition excludes the existence of an open neighborhood U of x with a single
continuous geodesic motion planner which connects p to all points of Cutp.M/ that
lie in U.

Note that our definition is only applicable to Riemannian manifolds and not to arbitrary
geodesic spaces. One of its benefits in the Riemannian setting is the fact that we can
deduce an easier condition than the one introduced by Recio-Mitter. More precisely,
we do not require anymore that any point in a cut locus of another point is connected
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to that point by only finitely many minimal geodesics. Moreover, our inconsistency
condition is explicitly stated as an intersection condition on certain subsets of a tangent
cut locus, instead of using the notion of levelwise stratified coverings as in [34].

Our main result on inconsistent stratifications is the following theorem. This result is
similar to [34, Corollary 3.14] and our proof is inspired by Recio-Mitter’s proof as
well.

Theorem 4.8 Let .M; g/ be a closed Riemannian manifold. Assume that there exists
a point p 2M for which Cutp.M/ admits an inconsistent stratification of depth N 2N.
Then

GC.M/�N C 1:

There is more to say about cut loci of homogeneous Riemannian manifolds, ie Rie-
mannian manifolds .M; g/ whose isometry groups act transitively on M. An isometry
� WM !M maps the cut locus of p 2M onto that of �.p/. Hence, the cut locus of a
point is identified with that of another point by an isometry. This translation property
of the cut loci allows us to estimate the geodesic complexity of M from above, once
we understand how we can decompose one single cut locus into domains of continuous
geodesic motion planners. The following result provides an upper bound for geodesic
complexity in terms of a sectional category and the subspace geodesic complexities
of considerably smaller subsets of M �M. Here, the subspace geodesic complexity
of A�M �M is defined in terms of covers of A by domains of continuous geodesic
motion planners.

Corollary 5.8 Let .M; g/ be a homogeneous Riemannian manifold with isome-
try group Isom.M; g/. Let p 2 M and assume that Cutp.M/ has a stratification
.S1; : : : ; Sk/ of depth k. Then

GC.M/� secat.evp W Isom.M; g/!M/ �

kX
iD1

max
Zi2�0.Si /

GCp.Zi /C 1;

where evp.�/ D �.p/ for all � 2 Isom.M; g/ and where GCp.Zi / is the subspace
geodesic complexity of fpg �Zi �M �M.

In the case of compact, simply connected, irreducible symmetric spaces, we are able to
further estimate this upper bound from above in terms of certain sectional categories.
This means that for such symmetric spaces we obtain an upper bound on GC.M/ which
does not involve any geodesic complexities.

Algebraic & Geometric Topology, Volume 23 (2023)
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Note that this result produces the first upper bound for geodesic complexity in terms of
categorical invariants. Indeed, the only previously known upper bounds were derived by
Recio-Mitter [34] either from explicit constructions of geodesic motion planners or from
the existence of particularly simple coverings of cut loci. We pick up Recio-Mitter’s
so-called trivially covered stratifications in this article in the setting of Riemannian
manifolds as well.

In addition to establishing new lower and upper bounds for geodesic complexity,
we compute the geodesic complexities of some Riemannian manifolds whose cut
loci are well understood. We will show that every three-dimensional Berger sphere
.S3; g˛/ satisfies GC.S3; g˛/ D 2 and that GC.T 2; gf / D 3 for every flat metric
gf on the two-dimensional torus. This extends the two-dimensional case of Recio-
Mitter’s computation of the geodesic complexity of the standard flat n–torus from [34,
Theorem 4.4].

The article is structured as follows: In Section 2 we introduce some additional termi-
nology and recall elementary facts about geodesic complexity and cut loci. Section 3
contains some basic nonexistence results on continuous geodesic motion planners.
These results illustrate the difficulties for motion planning that cut loci can create.
In Section 4 we establish lower bounds on geodesic complexity by two different
approaches. On the one hand, this is done in terms of principal bundles over the
manifold and the topological complexities of their total spaces. On the other hand, we
study manifolds with stratified cut loci whose stratifications satisfy the above-mentioned
inconsistency property. We focus on homogeneous Riemannian manifolds in Section 5.
More precisely, we show that their geodesic complexities can be estimated from above
in terms of the subspace complexities of a single cut locus. In Section 6 we consider
Riemannian manifolds whose cut loci admit trivially covered stratifications. For such
stratifications the relations between a cut locus and its corresponding tangent cut
locus are particularly simple. Section 7 deals with examples of geodesic complexities.
Combining results from the previous sections with new observations, we reobtain
Recio-Mitter’s computation of geodesic complexity of the standard flat n–torus and
determine the geodesic complexity of arbitrary flat 2–tori. As another class of examples,
we explicitly compute the geodesic complexity of three-dimensional Berger spheres.
In the final Section 8 we consider consequences of the previous results for compact
simply connected symmetric spaces. In both situations, the considered cut loci have
been studied by T Sakai. Using the estimates from Section 5, we derive an upper
bound for geodesic complexity that is given in terms of the Lie groups from which the
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symmetric space is built. We further make explicit computations for two examples of
symmetric spaces.

Acknowledgements

The authors thank the referee for their careful and thoughtful reading of our manuscript.
Their suggestions highly improved the exposition and the clarity of the article.

Throughout this article we assume all manifolds to be smooth and connected and all
Riemannian metrics to be smooth.

2 Basic notions and definitions

We begin by introducing subspace versions of geodesic complexity for Riemannian
manifolds. Afterwards, we recall some basic computations from [34] and several facts
about cut loci in Riemannian manifolds.

Definition 2.1 Let .M; g/ be a complete Riemannian manifold and � WGM!M �M,
�.
/D .
.0/; 
.1//. LetGM be equipped with the subspace topology ofC 0.Œ0; 1�;M/

with the compact–open topology.

(a) Let X �M �M. A geodesic motion planner on X is a section s W X ! GM

of � .

(b) Given A�M �M we let GC.M;g/.A/ be the minimum r 2N for which there
are r pairwise disjoint locally compact subsets E1; : : : ; Er � M �M such
that A �

Sr
iD1Ei and, for each i 2 f1; 2; : : : ; rg, there exists a continuous

geodesic motion planner si W Ei ! GM. If no such r exists, then we put
GC.M;g/.A/ WD C1. We call GC.M;g/.A/ the subspace geodesic complexity
of A.

We recall that the map � is surjective for complete Riemannian manifolds. This is a
consequence of the Hopf–Rinow theorem; see [33, Corollary 5.8.5].

Remarks 2.2 (1) If it is obvious which Riemannian metric we are referring to, we
occasionally suppress it from the notation and write

GC.M/ WD GC.M; g/ and GCM .A/ WD GC.M;g/.A/:

Note that, in particular, GC.M/D GCM .M �M/.

Algebraic & Geometric Topology, Volume 23 (2023)
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(2) Given p 2M and B �M, we further put

GCp.B/ WD GC.M;g/.fpg �B/:

(3) Our definition differs from Recio-Mitter’s original definition by 1 in the sense
that for us GC.fptg/D 1, while it would be 0 in the sense of [34, Definition 1.7].

Examples 2.3 (1) As proven in [34, Proposition 4.1], if gr is a round metric on the
sphere Sn with n 2N, then

GC.Sn; gr/D TC.Sn/D

�
2 if n is odd,
3 if n is even.

(2) Let gf be the standard flat metric on T 2 and let gemb denote the metric induced
by the standard embedding T 2 ,!R3 and the Euclidean metric on R3. By [34,
Theorems 4.4 and 5.1],

GC.T 2; gf /D 3; GC.T 2; gemb/D 4:

(3) It was further shown in [34, Theorem 1.11] that, for each k 2 N with k � 3,
there exists a Riemannian metric gk on Sk with GC.Sk; gk/� k.

Remarks 2.4 Let .M; g/ be a complete Riemannian manifold.

(1) For all A �M �M, it holds that TCM .A/ � GCM .A/, where TCM .A/ is the
relative topological complexity of A in M �M ; see [15, Section 4.3]. Here, we
made use of the characterization of topological complexity by locally compact
subsets shown in [15, Proposition 4.9].

(2) It is easy to see that

(2-1) GCM .A[B/� GCM .A/CGCM .B/ for all A;B �M �M:

This is shown in analogy with [15, Proposition 4.24].

As pointed out by Recio-Mitter, the crucial ingredients for the discussion of geodesic
complexity are the cut loci of points in the space under consideration. The notions of
cut loci in metric and in Riemannian geometry are slightly different from each other.
While Recio-Mitter used the former notion in his work — see [34, Definition 3.1] — we
will use the latter throughout this manuscript. We next recall the notion of cut loci from
Riemannian geometry. The relation between the two will be discussed in Remark 2.7(3)
below. See also [27, page 308] or [33, page 219] for the following definition:

Algebraic & Geometric Topology, Volume 23 (2023)
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Definition 2.5 Let .M; g/ be a complete Riemannian manifold and let p 2M.

(a) Let 
 W Œ0;C1/!M be a unit-speed geodesic with 
.0/D p and P
.0/ 2 TpM.
The cut time of 
 is given by

tcut.
/D supft > 0 W 
 jŒ0;t� is minimalg:

If tcut.
/ is finite, then tcut.
/ P
.0/ 2 TpM is a tangent cut point of p and

.tcut.
// 2M is a cut point of p along 
 . Note that


.tcut.
//D expp.tcut.
/ P
.0//:

(b) The set of all cut points of p is called the cut locus of p and denoted by Cutp.M/.
The set of all tangent cut points of p is called the tangent cut locus of p and
denoted by eCutp.M/.

(c) The total cut locus of M is given by

Cut.M/ WD
[
p2M

.fpg �Cutp.M//�M �M:

Example 2.6 Let n 2N and let g be a round metric on the sphere Sn. Then, by [27,
Example 10.30(a)], Cutp.Sn/D f�pg for every p 2 Sn.

Further examples of cut loci will appear in the upcoming sections.

Remarks 2.7 Let .M; g/ be a complete Riemannian manifold.

(1) In general, Cutp.M/ does not need to be a submanifold of M. H Gluck and D
Singer [20, Theorem A] have shown that, if dimM � 2, then there exists a Rie-
mannian metric on M and a point p 2M for which Cutp.M/is not triangulable.

(2) By [34, Theorem 3.3], there exists a continuous geodesic motion planner

.M �M/XCut.M/!GM;

from which Recio-Mitter derived that GC.M/ D 1 if Cut.M/ D ∅. By [3,
Lemma 4.2], .M �M/XCut.M/ is open and therefore locally compact. Using
(2-1), this shows that

GC.M; g/� GCM .Cut.M//C 1:

(3) Let p 2M. By [2, page 133], the set of points q 2M such that there is more
than one minimal geodesic from p to q is a dense subset of Cutp.M/. This set
is also called the ordinary cut locus of p. In metric geometry — in particular in
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[34, Definition 3.1] — the ordinary cut locus of a point is called its cut locus.
The reader should thus keep in mind that the cut locus of a point, as considered
in [34], is not the cut locus of a point in the sense of this article, but a dense
subset of the cut locus.

3 Nonexistence results for geodesic motion planners

We begin our study by discussing two nonexistence results showing that certain subsets
of a Riemannian manifold never admit continuous geodesic motion planners. First, we
will study complete oriented Riemannian manifolds and see that the Euler class obstructs
the existence of some geodesic motion planners. Then we will show that a complete
Riemannian manifold .M; g/ has the following property: if a subset A � M �M
contains an element of the total cut locus in its interior, then there will be no continuous
geodesic motion planner on A. Before doing so, we first want to establish a technical
proposition that we will make frequent use of throughout the article.

Definition 3.1 Let .M; g/ be a complete Riemannian manifold. We call the map

v WGM ! TM; v.
/D P
.0/;

the velocity map of GM .

Proposition 3.2 Let .M; g/ be a complete Riemannian manifold. The velocity map
v WGM ! TM is continuous.

Proof Let .
n/n2N be a convergent sequence in GM and let 
 WD limn!1 
n 2GM.
By our choice of topology on GM, this means that

(3-1) lim
n!1


n.t/D 
.t/ for all t 2 Œ0; 1�:

We need to show that limn!1 v.
n/D v.
/. Let Lg WGM !R denote the length of
a minimal geodesic with respect to g. From the minimality property of the curves, we
derive that

lim
n!1

Lg.
n/D lim
n!1

dM .
n.0/; 
n.1//D dM .
.0/; 
.1//D Lg.
/;

where dM WM �M ! R is the distance function induced by g. Let j � j W TM ! R

denote the fiberwise norm induced by g. Since Lg.˛/ D j P̨ .0/j D jv.˛/j for each
˛ 2GM, it follows that

(3-2) lim
n!1

jv.
n/j D jv.
/j:

Algebraic & Geometric Topology, Volume 23 (2023)
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To show the continuity of v, we need to derive that limn!1 v.
n/D v.
/. Let

Exp W TM !M �M; Exp.p; v/D .p; expp.v//;

be the extended exponential map. Let K �M be a compact neighborhood of 
.0/ and
let

�0 WD supfr > 0 W expxjBr .0/ is injective for all x 2Kg;

where Br.0/ denotes the open n–ball around the origin in the respective tangent space.
Since K is compact, �0 > 0 by [27, Lemma 6.16]. For r 2 .0; �0/ we put

DrK WD f.p; v/ 2 TM j p 2K; kvk � rg;

ie DrK is the closed disk bundle over K of radius r . Then Exp maps DrK diffeo-
morphically onto its image

VrK WD Exp.DrK/D f.p; q/ 2K �M j dM .p; q/� rg:

Let ExpK WDrK!VrK be the corresponding restriction of Exp. Since ExpK WDrK!
VrK is a diffeomorphism, its inverse Exp�1K WVrK!DrK is a diffeomorphism as well.
Thus, if we choose and fix a distance function dTM W TM �TM !R which induces
the topology of TM, then Exp�1K W VrK!DrK is locally Lipschitz-continuous with
respect to dM � dM and dTM . We further observe that, for all ˛ 2GM with ˛.0/ 2K
and dM .˛.0/; ˛.1//� r ,

Exp�1K .˛.0/; ˛.1//D v.˛/:

We consider two different cases:

Case 1 Assume that jv.
/j< r . This implies that .
.0/; 
.1// 2 VrK. Then, by (3-2),
there exists n0 2N with


n.0/ 2K and jv.
n/j � r for all n� n0:

Thus, .
n.0/; 
n.1// 2 VrK for all n � n0. Let C be a local Lipschitz constant for
Exp�1K in a neighborhood of .
.0/; 
.1//. Then, for sufficiently big n 2N,

dTM .v.
n/; v.
//D dTM
�
Exp�1K .
n.0/; 
n.1//;Exp�1K .
.0/; 
.1//

�
� C

�
dM .
n.0/; 
.0//C dM .
n.1/; 
.1//

�
:

By (3-1), this yields limn!1 dTM .v.
n/; v.
//D 0, which we wanted to show.

Case 2 Consider the case that jv.
/j � r . By (3-2), there exists n1 2N such that


n.0/ 2K and jv.
n/j< jv.
/jC 1 for all n� n1:

Algebraic & Geometric Topology, Volume 23 (2023)
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Let c WD r=
�
jv.
/jC1

�
2 .0; 1/ and put �n WD c �v.
n/ for each n2N and � WD c �v.
/.

Then � 2DrK and �n 2DrK for all n� n1. If we define

z
n; z
 W Œ0; 1�!M; z
n.t/ WD 
n.ct/; z
.t/ WD 
.ct/ for all t 2 Œ0; 1�;

then z
; z
n 2 GM with v.z
/ D � and v.z
n/ D �n for each n � n1. Since .
n/n2N

converges to 
 in the C 0–topology, it easily follows that limn!1 z
n D z
 in the C 0–
topology as well. Thus, it follows from Case 1 that limn!1 �n D � , which obviously
yields limn!1 v.
n/D v.
/.

In the following proposition, we observe that the Euler class of an oriented manifold
can obstruct the existence of geodesic motion planners:

Proposition 3.3 Let .M; g/ be a complete , oriented Riemannian manifold whose
Euler class is nonvanishing. Let f W M ! M be a continuous map with f .p/ ¤ p
for all p 2M. If A�M �M satisfies graphf � A, then there will be no continuous
geodesic motion planner on A.

Proof Assume by contradiction that there exists a continuous geodesic motion planner
s W A!GM. Then, by Proposition 3.2, the map

g WM ! TM; g.p/D .v ı s/.p; f .p//;

is a continuous vector field, where v is the velocity map. Since f .p/¤ p for each p,
the geodesic s.p; f .p// is nonconstant for all p 2M. Hence, g.p/¤ 0 for all p 2M.
But such a vector field cannot exist since the Euler class of M is nonvanishing.

Corollary 3.4 Let .M; g/ be a complete , oriented manifold whose Euler class is
nonvanishing. Let f WM !M be continuous and fixed-point-free. Then , for every
Riemannian metric g on M, there exists p 2M with f .p/ 2 Cutp.M; g/.

Proof Assume by contradiction that there is such a metric g for which f .p/ …
Cutp.M; g/ for all p 2M. Then graphf lies in .M �M/XCut.M; g/. But, since
there exists a continuous geodesic motion planner on .M �M/X Cut.M; g/— see
Remark 2.7(3) — this contradicts Proposition 3.3. Hence, such a metric does not exist.

Corollary 3.5 Let n2N. For every Riemannian metric g on S2n there exists p 2S2n,
such that �p 2 Cutp.S2n; g/.

Proof Apply Corollary 3.4 to the case of M D S2n and f .x/D�x.

Remark 3.6 Our Corollary 3.4 is complementary to results of M Frumosu and S
Rosenberg from [17, page 338], who studied far-point sets, ie sets of points mapped
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to their cut loci under self-maps of a Riemannian manifold, in a very general way.
Frumosu and Rosenberg focused on self-maps whose far-point sets are infinite and
established connections to the Lefschetz numbers of such maps.

In [34, Remark 3.17], Recio-Mitter mentioned that, whenever a subset of M �M
contains a point of the total cut locus in its interior, there is no continuous geodesic
motion planner defined on that subset. For the sake of completeness, we report here a
proof in the case of Riemannian manifolds.

Proposition 3.7 Let .M; g/ be a complete Riemannian manifold , p2M, q2Cutp.M/

and let U �M be an open neighborhood of q. Then there is no continuous geodesic
motion planner on fpg �U.

Proof As discussed in Remark 2.7(3), the set of points r 2 M for which there is
more than one minimal geodesic from p to r is dense in Cutp.M/. Hence, U contains
a point q0 such that there are at least two minimal geodesics from p to q0. In the
following, we thus assume without loss of generality that q itself has this property.
Assume that a continuous geodesic motion planner s W fpg�U !GM existed. By our
choice of q, there are 
1; 
2 2GM with


1 ¤ 
2; 
1.0/D 
2.0/D p and 
1.1/D 
2.1/D q:

Let .tn/n2N be a sequence in .0; 1/ with limn!1 tn D 1 and 
1.tn/; 
2.tn/ 2 U for
all n 2N. One checks without difficulties that 
1.t/¤ 
2.t/ for all t 2 .0; 1/, so that,
in particular, 
1.tn/¤ 
2.tn/ for all n 2N.

By definition of a cut locus, it follows for all r 2 .0; 1/ and i 2 f1; 2g that


i;r 2GM; 
i;r.t/ WD 
i .rt/;

is the unique minimal geodesic from p to 
i .r/. In particular, this shows that necessarily

(3-3) s.p; 
i .tn//D 
i;tn for all n 2N; i 2 f1; 2g:

Let v WGM ! TM be the velocity map. It follows from Proposition 3.2 that

v ı s W fpg �U ! TM

is continuous. Since 
1 ¤ 
2, there are �1; �2 2 TpM with �1 ¤ �2 such that 
1.t/D
expp.t�1/ and 
2.t/ D expp.t�2/ for all t 2 Œ0; 1�. By (3-3) and the fact that the
differential of expp in 0 is idTpM , we thus obtain that

lim
n!1

.v ı s/.p; 
i .tn//D lim
n!1

P
i;tn.0/D lim
n!1

tn�i D �i :
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In particular, limn!1.v ı s/.p; 
1.tn//¤ limn!1.v ı s/.p; 
2.tn//. This contradicts
the continuity of s, since by assumption .v ı s/.p; 
1.1// D .v ı s/.p; 
2.1//. Thus,
such a continuous s does not exist.

This proposition has an immediate consequence in terms of geodesic complexity.

Corollary 3.8 Let .M; g/ be a complete Riemannian manifold and let A�M �M
be a locally compact subset with

int.A/\Cut.M/¤∅;

where int.A/ is the interior of A as a subset of M �M. Then GCM .A/� 2.

Proof Assume that there was a continuous geodesic motion planner s W A! GM.
Let .p; q/ 2 int.A/\Cut.M/. By definition of the product topology, there are open
neighborhoods U of p and V of q with U � V � int.A/, so, in particular, sjfpg�V
would be a continuous geodesic motion planner. Since q 2 Cutp.M/, this contradicts
Proposition 3.7, so there is no such motion planner. This shows that GCM .A/� 2.

Remark 3.9 There is another connection between cut loci and another numerical
invariant, namely the Lusternik–Schnirelmann category of a Riemannian manifold M,
which we denote by cat.M/. Here, we use the convention that cat.X/ D 1 if X is
contractible. One observes that M XCutp.M/ is contractible for all p 2M, which
follows from [27, Theorem 10.34(c)]. If p1; : : : ; pk 2M satisfy

Tk
iD1 Cutpi .M/D∅,

then
fM XCutp1.M/; : : : ;M XCutpk .M/g

will be an open cover of M by contractible subsets, and hence cat.M/ � k. By
contraposition this shows that, if cat.M/ � k C 1 for some k 2 N, then, for every
choice of p1; : : : ; pk 2M,

k\
iD1

Cutpi .M/¤∅:

4 Lower bounds for geodesic complexity

Lower bounds on topological complexity are mostly derived from the cohomology
rings of a space. In this section, we derive lower bounds on geodesic complexity
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from the Riemannian structures of manifolds. We first establish a result involving a
principal bundle over the manifold under consideration. By explicitly constructing
motion planners, we will establish a lower bound on geodesic complexity in terms
of categorical invariants of total space and fiber of the bundle. Afterwards, we will
establish the notion of inconsistent stratification that we lined out in the introduction.
Then we will go on to prove the second theorem stated in that introduction.

We first establish a technical lemma, whose proof follows that of [14, Theorem 13.1].

Lemma 4.1 Let E and X be topological spaces , let p W E ! X be a fibration with
r WD secat.p/ <C1 and assume that X is normal. Then there are pairwise disjoint
locally compact subsets A1; : : : ; Ar � X with X D

Sr
iD1Ai such that , for each

i 2 f1; 2; : : : ; rg, there exists a continuous local section Ai !E of p.

Proof Let fU1; : : : ; Urg be an open cover of X such that, for each i 2 f1; 2; : : : ; rg,
there exists a continuous local section si WUi!E of p. Since X is normal, there exists
a partition of unity ff1; : : : ; frg subordinate to this finite open cover by Theorem 36.1
of [30]. Let c1; : : : ; cr 2 .0;C1/ with c1C � � � C cr D 1. For each i 2 f1; 2; : : : ; rg,
we put

Ai WD fx 2X j fi .x/� ci ; fj .x/ < cj for all j < ig:

Each Ai is the intersection of a closed and an open subset of X, and hence is locally
compact. One checks without difficulties that the Ai are pairwise disjoint and that
X D

Sr
iD1Ai . Moreover, Ai � Ui for each i , so si jAi W Ai !E is a continuous local

section of p for each i 2 f1; 2; : : : ; rg.

The following proposition establishes a lower bound on GC.M; g/ in terms of a principal
G–bundle over M that is a Riemannian submersion. This submersion property will
be used in its proof to ensure the existence of horizontal lifts of curves. For each
orientable M, its orthonormal frame bundle is an example of such a bundle with
G D SO.dimM/; see eg [25, Example I.5.7].

Proposition 4.2 Let .M; g/ be a complete Riemannian manifold and let � WE!M

be a smooth principal G–bundle , where G is a connected Lie group. Assume that E is
equipped with a Riemannian metric for which � is a Riemannian submersion. Then

GC.M; g/�
TC.E/

cat.G/
:
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Proof Let GC.M/ D k and choose pairwise disjoint and locally compact subsets
A1; : : : ; Ak �M �M with

Sk
iD1Ai DM �M such that, for each i 2 f1; 2; : : : ; kg,

there exists a continuous geodesic motion planner si W Ai !GM. Let v WGM ! TM

be the velocity map and put

vi W Ai ! TM; vi WD v ı si for all i 2 f1; 2; : : : ; kg:

The vi are continuous by Proposition 3.2. For each i we put

Bi WD .� � id/�1.Ai /D f.u; q/ 2E �M j .�.u/; q/ 2 Aig:

Clearly the Bi are again pairwise disjoint with
Sk
iD1Bi DE �M. Let Hor.E/� TE

denote the horizontal subbundle with respect to � . Since d�jHor.E/ W Hor.E/! TM

maps Horu.E/ isomorphically onto T�.u/M for each u 2E, we obtain continuous lifts
of the vi by

wi WBi!Hor.E/; wi .u;q/D .d�jHoru.E//
�1vi .�.u/;q/ for all i 2f1;2; : : : ; kg:

For each u2E we let expu WTuE!E be the exponential map of the given Riemannian
metric on E. With PE D C 0.Œ0; 1�; E/, we define continuous maps

�i W Bi ! PE

by

.�i .u; q//.t/D expu.twi .u; q// for all .u; q/ 2 Bi ; t 2 Œ0; 1�; i 2 f1; 2; : : : ; kg:

Each �i induces a continuous map

˛i W Bi !E �E; ˛i .u; q/D
�
.�i .u; q//.0/; .�i .u; q//.1/

�
D
�
u; expu.wi .u; q//

�
:

Since horizontal geodesics in E project to geodesics in M, we compute that

.id��/.˛i .u; q//D .id��/.u; �i .u; q/.1//D
�
u;
�
si .�.u/; q/

�
.1/
�
D .u; q/

for all .u; q/2Bi . Here we used that �.�i .u; q//D si .u; q/ for all .u; q/2Bi . Hence,
for each i 2 f1; 2; : : : ; kg, the map ˛i is a continuous local section of id�� WE�E!
E �M, which is again a principal G–bundle. The right G–action on E �E is given
by E �E �G! E �E, .u; v; h/ 7! .u; vh/, where we consider the right G–action
on E given by the bundle structure. Thus, we get a local trivialization of id�� over
each Bi , given explicitly by the homeomorphism

ˆi W Bi �G!E �EjBi ; ˆi .u; q; h/D ˛i .u; q/hD
�
u; expu.wi .u; q//h

�
:
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Put l D cat.G/. Let e 2G be the unit, PeG D f
 2 PG j 
.0/D eg and

q W PeG!G; q.
/D 
.1/:

Since PeG is contractible, by [39, Theorem 18], cat.G/D secat.q W PeG! G/. By
Lemma 4.1, there are pairwise disjoint and locally compact subsets C1; : : : ; Cl �G
with

Sl
jD1 Cj D G such that, for each j 2 f1; 2; : : : ; lg, there is a continuous local

section rj W Cj ! PeG of q.

If we putDi;j WDˆi .Bi�Cj /�E�E for all i 2f1; 2; : : : ; kg and j 2f1; 2; : : : ; lg, then
the Di;j are pairwise disjoint, locally compact and satisfy

Sk
iD1

Sl
jD1Di;j DE �E.

For all i and j we further consider the map

�i;j W Bi �Cj ! PE

given by

.�i;j .u; q; h//.t/D .�i .u; q//.t/ � .rj .h//.t/ for all .u; q/ 2 Bi ; h 2 Cj :

Then
.�i;j .u; q; h//.0/D .�i .u; q//.0/D u;

.�i;j .u; g; h//.1/D .�i .u; q//.1/.rj .h//.1/D expu.wi .u; q//h

and thus

.�i;j .u; q; h/.0/; �i;j .u; q; h/.1//Dˆi .u; q; h/ for all .u; q/ 2 Bi ; h 2 Cj :

This shows that �i;j ı ˆ�1i jDi;j W Di;j ! PE is a continuous motion planner for
all i 2 f1; 2; : : : ; kg and j 2 f1; 2; : : : ; lg. As a smooth manifold, E is a Euclidean
neighborhood retract (ENR). Since the Di;j are locally compact subsets of an ENR,
they are ENRs themselves. Hence, it follows from [13, Theorem 6.1] that

TC.E/� k � l D GC.M/ � cat.G/;

which proves the claimed inequality.

Remark 4.3 Since GC.M/� TC.M/ for all complete Riemannian manifolds M, the
lower bound from Proposition 4.2 improves this basic inequality if and only if

TC.E/

cat.G/
> TC.M/ () TC.E/ > cat.G/TC.M/D TC.G/TC.M/;

where we used [13, Lemma 8.2]. Note that the assumption on the bundle to be principal
in the previous result is necessary, as the following example shows. Consider the Klein
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bottleK, which is given as a fiber bundle over S1 with fiber S1 and satisfies TC.K/D 5
by [5], while TC.S1/D 2. Since the round metric gr on S1 satisfies

GC.S1; gr/D TC.S1/D 2 < 5
2
D

TC.K/

cat.S1/

by [34, Proposition 4.1], the inequality from Proposition 4.2 would indeed be false in this
situation. However,K is not given as a principal S1–bundle over S1, so Proposition 4.2
is not applicable to this setting. By the classification theorem for principal bundles —
see [11, Theorem 14.4.1] — the set of isomorphism classes of principal S1–bundles
over S1 is in bijection with the set of homotopy classes ŒS1; BS1�D ŒS1;CP1�. But
CP1 is simply connected, so it follows that ŒS1;CP1� has only one element. Thus,
every principal S1–bundle over S1 is trivial. Since �1.K/© Z2 D �1.S1 �S1/, the
bundle K is a nontrivial S1–bundle. Hence, it cannot be principal.

Our next aim is to derive a lower bound on geodesic complexity from the structure of
the cut locus of a point in the manifold. We first introduce the notion of stratification
that we are using.

Definition 4.4 Let M be a manifold and let B �M be a subset. A stratification of B
of depthN 2N is a family .S1; : : : ; SN / of locally closed and pairwise disjoint subsets
of M such that the following conditions hold:

(i) B D
SN
iD1 Si and S i D

SN
jDi Sj for all i 2 f1; 2; : : : ; N g.

(ii) Let i; j 2 f1; 2; : : : ; N g. If Zj is a connected component of Sj and Zi is a
connected component of Si with Zj \Zi ¤∅, then Zj �Zi .

Example 4.5 Let M DR2 and let B D Œ�1; 1�2. Consider

S1 D .�1; 1/� .�1; 1/;

S2 D ..�1; 1/� f�1; 1g/[ .f�1; 1g � .�1; 1//;

S3 D f.�1;�1/; .�1; 1/; .1;�1/; .1; 1/g:

One checks without difficulties that .S1; S2; S3/ has properties (i) and (ii) from
Definition 4.4. Hence, .S1; S2; S3/ is a stratification of B.

Given a stratification of the cut locus of a point, we want to introduce an additional
condition on those parts of the corresponding tangent cut locus that are mapped to
the same stratum. This will be the crucial step for finding a lower bound for geodesic
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complexity. The following notion is an analogue of [34, Definition 3.10]; see our
introduction and Remark 4.7(2) below for a comparison of the two notions. The terms
from Riemannian geometry that are used are to be found, for example, in [27, page 310].

Definition 4.6 Let .M; g/ be a complete Riemannian manifold, p 2M and let S D
.S1; : : : ; SN / be a stratification of Cutp.M/. Let K � TpM denote the union of the
tangent cut locus eCutp.M/ with the domain of injectivity of expp and let

(4-1) expK WD exppjK WK!M

denote the restriction. We call S inconsistent if, for all i 2f2; 3; : : : ; N g and x2Si , there
exists an open neighborhood U �M of x with the following property: Let Z1; : : : ; Zs
be the connected components of U \Si�1. Then x 2Zj for all j 2 f1; 2; : : : ; sg and

eCutp.M/\ exp�1p .fxg/\

s\
jD1

exp�1K .Zj /D∅:

In Section 7.1, we will encounter explicit examples of inconsistent stratifications when
we consider flat tori. Examples for cut loci with nontrivial stratifications which are not
inconsistent are Berger spheres, as we shall see in Section 7.2.

Remarks 4.7 Let .M; g/ be a complete Riemannian manifold.

(1) IfM is a closed manifold, then the setK from Definition 4.6 will be homeomorphic
to a closed ball — see [27, Corollary 10.35] — and the map expK from (4-1) is a
surjection. As an example, consider the round n–dimensional sphere Sn of radius 1. If
p 2 Sn is a point, then the domain of injectivity of expp is an open ball of radius �
in the tangent space TpSn. The tangent cut locus eCutp.Sn/ is the .n�1/–sphere of
radius � in TpM. Consequently, the set K in this example is the closed ball of radius �
in TpM.

(2) Recio-Mitter [34, Definition 3.8] introduced the concept of a levelwise stratified
covering for arbitrary surjective maps. He then applied this concept to the restriction
of the path fibration

� WGX !X �X;

where X is a geodesic space and GX is the space of geodesic paths in X.

To work with this notion, one must study a stratification of the total cut locus of X
and explore covering properties of the restrictions of � to its preimage. In contrast,
the above Definition 4.6 for Riemannian manifolds only requires a stratification of the
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cut locus of a single point p in a Riemannian manifold M as well as properties of
the Riemannian exponential map expp . Thus, for complete Riemannian manifolds the
above definition seems easier to verify than the corresponding notion from [34].

The following result is an analogue of the corresponding result of Recio-Mitter; see [34,
Corollary 3.14]. The proof requires M to be compact, since we will use the property
mentioned in Remark 4.7(1). We recall the notation GCp.A/D GCM .fpg �A/ for all
A�M.

Theorem 4.8 Let .M; g/ be a closed Riemannian manifold. Assume that there exists
p 2M for which Cutp.M/ admits an inconsistent stratification of depth N 2N. Then

GC.M/� GCp.M/�N C 1:

Proof Let .S1; : : : ; SN / be an inconsistent stratification of Cutp.M/. Assume that
there are pairwise disjoint locally compact setsE1;E2; : : : ;Er�M with

Sr
iD1EiDM

such that, for each i 2 f1; 2; : : : ; rg, there exists a continuous geodesic motion planner
si W fpg �Ei !GM.

We want to show by induction that, for all k 2 f1; 2; : : : ; N g and all x 2 Sk ,

(4-2) #
˚
i 2 f1; 2; : : : ; rg j x 2Ei

	
� kC 1:

Consider the base case of k D 1 and assume by contradiction that there is an i 2
f1; 2; : : : ; rg with x 2Ei , but x …Ej for all j ¤ i . Then x has an open neighborhood
U �M such that U �Ei and the restriction si jfpg�U is a continuous geodesic motion
planner on fpg �U. But, since x 2 Cutp.M/, this contradicts Proposition 3.7. Hence,
#
˚
i 2 f1; 2; : : : ; rg j x 2Ei

	
� 2, which we wanted to show.

Assume as induction hypothesis that, for some k 2 f2; 3; : : : ; N g, we have shown that

#
˚
i 2 f1; 2; : : : ; rg j y 2Ei

	
� k for all y 2 Sk�1:

Let x 2 Sk . Assume that (4-2) is false and assume up to reordering that x … Ei for
all i > k. Then there exists an open neighborhood U of x with U �

Sk
iD1Ei . By the

induction hypothesis, this yields

(4-3) U \Sk�1 �Ei for all i 2 f1; 2; : : : ; kg:

We assume without loss of generality that U is chosen as in Definition 4.6, since this
can be achieved by shrinking U. We further assume that x 2 E1. Let Z1; : : : ; Zs be
the connected components of U \Sk�1, where s 2N is suitably chosen.
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Let j 2 f1; 2; : : : ; sg and let .an/n2N be a sequence in Zj with limn!1 anD x, which
exists by our choice of U. For all n 2N it further holds by (4-3) that an 2E1. Thus,
for each n, there exists a sequence .bnm/m2N in U \E1 with limm!1 bnm D an. Put

v1 WE1! TpM; v1.y/ WD .v ı s1/.p; y/;

where v is the velocity map. By Proposition 3.2, v1 is continuous. Let expK WK!M

be given as in (4-1). The set K is homeomorphic to a closed ball in TpM ; see
Remark 4.7(1). By construction, v1.y/ 2K for each y 2E1; hence, .v1.bnm//m2N is
a sequence in K for each n 2N. Since K is compact, it has a convergent subsequence
.v1.b

n
mk
//k2N for each n2N. Put �n WD limk!1 v1.bnmk / for all n2N. By continuity

of the exponential map,

expK.�n/D expp.�n/D lim
k!1

expp.v1.b
n
mk
//D lim

k!1
bnmk D an for all n 2N:

Thus,
�n 2K \ exp�1K .fang/�K \ exp�1K .Zj / for all n 2N:

Now .�n/n2N is a sequence in K, so it has a convergent subsequence .�nl /l2N . With
�0 WD liml!1 �nl , we obtain

expp.�0/D lim
l!1

expp.�nl /D lim
l!1

anl D x:

In particular, it follows from x 2Cutp.M/ that �0 2eCutp.M/. Since �n 2 exp�1K .fang/

for each n 2N, we conclude that

�0 2eCutp.M/\ exp�1p .fxg/\ exp�1K .Zj /:

Note that �0 depends on the choice of j. To conclude, we still need to show that the
same �0 can be chosen for each j 2 f1; 2; : : : ; sg. We will do so by showing next that
�0 D v1.x/, which does not depend on j.

Let dM WM �M !R be the distance function induced by the Riemannian metric. By
definition of the �nl , for each l 2N there exists kl 2N such that

dM .anl ; b
nl
mk
/ <

1

l
and k�nl � v1.b

nl
mk
/k<

1

l
for all k � kl :

We can further choose the kl in such a way that liml!1 kl D 1. By a diagonal
argument, liml!1 b

nl
mkl
D x. This in particular shows, by continuity of v1, that

�0 D lim
l!1

�nl D lim
l!1

v1.b
nl
mkl

/D v1.x/:
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Thus, v1.x/ 2 exp�1p .fxg/\ exp�1K .Zj /. Since j was chosen arbitrarily, it follows that

v1.x/ 2eCutp.M/\ exp�1p .fxg/\

s\
jD1

exp�1K .Zj /:

This contradicts the inconsistency of the stratification .S1; : : : ; SN /. Hence, there is
no such U, which concludes the proof of the induction step. For k DN, it in particular
follows from (4-2) that r �N C 1. Thus, GCp.M/�N C 1.

We will see in Section 7.1 that flat tori are indeed examples for Riemannian manifolds
whose cut loci admit inconsistent stratifications. Next we will discuss a more tangible
criterion on a cut locus that implies the existence of an inconsistent stratification. For
this purpose, we will use results and constructions of J-I Itoh and Sakai [24]. Large
parts of these methods are extensions of those applied by V Ozols [32].

Definition 4.9 [24, page 68 and Definition 2.1] Let .M; g/ be a complete Riemannian
manifold and let p 2M.

(a) We say that q 2 Cutp.M/ is of order kC 1, where k 2N, if there are precisely
kC 1 minimal geodesics 
0; 
1; : : : ; 
k 2GM with 
i ¤ 
j if i ¤ j and with

i .0/D p and 
i .1/D q for all i 2 f0; 1; 2; : : : ; kg.

(b) We call q nondegenerate if the vectors P
0.1/; P
1.1/; : : : ; P
k.1/ 2 TqM are in
general position, ie if

˚
P
i .1/� P
0.1/ j i 2 f1; 2; : : : ; kg

	
is linearly independent.

As carried out by Itoh and Sakai [24, Remark 2.2], a large class of two-dimensional
flat tori provides an example for manifolds with nondegenerate cut points. However,
our study of flat tori in Section 7.1 will not rely on this notion of nondegeneracy, but
will employ the above inconsistency condition directly.

We recall that a conjugate point of a point p in a Riemannian manifold .M; g/ is a
point q 2M such that there is a geodesic segment from p to q along which there exists
a nontrivial Jacobi field which vanishes in p and q; see [27, page 298].

Remarks 4.10 (1) As shown by A Weinstein [40, page 29], every closed manifold
M with dimM � 2 and not homeomorphic to S2 admits a Riemannian metric
for which there exists p 2M such that Cutp.M/ does not contain any conjugate
points. Itoh and Sakai conjectured in [24, Remark 2.9] that the set of all such
metrics on M contains as a dense subset the set of those metrics for which all
points in Cutp.M/ are nondegenerate.
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(2) It is evident from the definition of nondegeneracy that the order of a non-
degenerate cut point is at most dimM C 1.

Theorem 4.11 Let .M; g/ be a closed Riemannian manifold and assume that there
exists p 2M for which Cutp.M/ does not contain any conjugate points of p and for
which all points in Cutp.M/ are nondegenerate. Let

N WDmaxfk 2N j there is q 2 Cutp.M/ of order kC 1g:

Then Cutp.M/ admits an inconsistent stratification of depth N.

Proof Let C WD .C1; : : : ; CN / be given by

Ck WD fq 2 Cutp.M/ j q is of order kC 1g for all k 2 f1; 2; : : : ; N g:

It is shown in [24, Proposition 2.4] that, under the nondegeneracy assumption on
the points in Cutp.M/, C is a Whitney stratification of Cutp.M/, as defined in [21,
page 37]. Hence, C is in particular an S –decomposition in the sense of Goresky
and MacPherson; see [21, page 36]. One checks immediately that the two conditions
defining such an S –decomposition imply that C is a stratification of Cutp.M/ in the
sense of Definition 4.4. It remains to show that C is inconsistent. Fix k 2 f1; 2; : : : ; N g,
let q 2 Ck and let 
0; 
1; : : : ; 
k W Œ0; 1�!M be geodesics from p to q with 
i ¤ 
j
whenever i ¤ j. For each i 2 f0; 1; : : : ; kg, put vi WD P
i .0/ 2 TpM, so that

eCutp.M/\ exp�1p .fqg/D fv0; v1; : : : ; vkg:

Choose an open neighborhood U of q such that U \Ck is connected and such that

(4-4) Cutp.M/\U D

k[
iD1

Ci \U:

Such a neighborhood exists by the stratification properties. As discussed in [24, page 68],
since q is nondegenerate, we can choose an open neighborhood Vi � TpM of vi for
each i 2 f0; 1; : : : ; kg such that expp maps Vi diffeomorphically onto U. Put Fi WD
.exp jVi /

�1 W U ! Vi . As explained in [32, pages 220–221], up to shrinking U we can
assume that every minimal geodesic 
 from p to an element of U has P
.0/ 2

Sk
iD0 Vi .

We further assume that Vi \Vj D∅ whenever i ¤ j. For i 2 f1; 2; : : : ; kg, we define

fi W U !R; fi .x/D kFi .x/k�kF0.x/k;
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where k � k denotes the norm on TpM defined by the Riemannian metric. With
f W U ! Rk , f D .f1; f2; : : : ; fk/, it follows that f �1.f0g/ D Ck \ U. For i 2
f1; 2; : : : ; kg we further let

gi W U !Rk�1; gi D .f1; : : : ; fi�1; fiC1; : : : ; fk/

and put
g0 W U !Rk�1;

g0.x/D
�
kF2.x/k�kF1.x/k; kF3.x/k�kF1.x/k; : : : ; kFk.x/k�kF1.x/k

�
:

Then, by assumption on U,

Ck�1\U D

k[
iD0

g�1i .f0g/XCk D

k[
iD0

g�1i .f0g/Xf �1.f0g/:

The connected components of Ck�1\U are the sets Z0; Z1; : : : ; Zk , where

Zi WD g
�1
i .f0g/\f �1i .0;C1/ for all i 2 f1; 2; : : : ; kg;

Z0 WD g
�1
0 .f0g/\f �11 .�1; 0/:

By construction of the sets,

eCutp.M/\ exp�1p .Zi /�
[
j¤i

Vj for all i 2 f0; 1; : : : ; kg:

A closer investigation, using that eCutp.M/\ exp�1p .fqg/D fv0; v1; : : : ; vkg and that
the closures of the Vi are pairwise disjoint, shows that

eCutp.M/\ exp�1p .fqg/\ exp�1p .Zi /D fv0; v1; : : : ; vi�1; viC1; : : : ; vkg

for all i 2 f0; 1; : : : ; kg. This implies

eCutp.M/\ exp�1p .fqg/\

k\
iD0

exp�1p .Zi /D∅:

Since k and q were chosen arbitrarily, this shows the inconsistency of C.

Combining the previous theorem with our lower bound from Theorem 4.8 yields:

Corollary 4.12 Let .M; g/ be a closed Riemannian manifold and assume that there
exists p 2M such that Cutp.M/ does not contain any conjugate points of p and such
that all points in Cutp.M/ are nondegenerate. If Cutp.M/ contains a point of order
kC 1, where k 2N, then

GC.M; g/� kC 1:
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5 An upper bound for homogeneous Riemannian manifolds

From this section on, we will mostly consider homogeneous Riemannian manifolds
and exploit their symmetry properties. Given a Riemannian manifold .M; g/, we let
Isom.M/ WD Isom.M; g/ denote its group of isometries and consider it as a subspace
of C 0.M;M/ with the compact–open topology. We recall that .M; g/ is called homo-
geneous if Isom.M/ acts transitively on M. Note that every homogeneous Riemannian
manifold is necessarily complete; see [25, Theorem IV.4.5].

Having derived lower bounds for geodesic complexity in the previous section, we
next want to find upper bounds. After some preparatory lemmas, we will establish
an upper bound on GC.M/ for a homogeneous Riemannian manifold M in terms of
the subspace complexity GCM .fpg�Cutp.M// and a categorical invariant determined
by its isometry action. Intuitively, the transitivity of the isometry action implies that
continuous geodesic motion planners on subsets of cut loci of single points can be
continuously extended to larger subsets of the total cut locus. We will then go on to
study further upper bounds on GC.M/ in the case that Cutp.M/ admits a stratification.
The following is a folklore result from Riemannian geometry:

Lemma 5.1 Let .M; g/ be a homogeneous Riemannian manifold and let p 2M. Then

evp W Isom.M/!M; evp.�/D �.p/;

is a principal Isomp.M/–bundle , where Isomp.M/ denotes the isotropy group of the
isometry action on M in p.

Proof By [26, Theorem 21.17], evp induces an Isom.M/–equivariant diffeomor-
phism f W Isom.M/=Isomp.M/ ! M. Moreover, the projection q W Isom.M/ !

Isom.M/=Isomp.M/ is a principal Isomp.M/–bundle by [25, Example I.5.1]. One
easily shows that evp D f ıq, which implies that evp is a principal Isomp.M/–bundle
as well.

Example 5.2 Given a Lie group G with a left-invariant Riemannian metric, the left
multiplication lg W G ! G, lg.h/ D gh, is an isometry for each g 2 G. With e 2 G
denoting the unit, one further derives from lg.e/ D g for each g 2 G that the map
s WG! Isom.G/, s.g/D lg , is a continuous section of the bundle eve W Isom.G/!G.

Lemma 5.3 Let A;B �M and p 2M. Assume that there are a continuous geodesic
motion planner �B W fpg �B!GM and a continuous local section s W A! Isom.M/
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of evp. Then there exists a continuous geodesic motion planner � W F !GM, where

F WD f.x; y/ 2M �M j x 2 A; y 2 s.x/ �Bg:

Proof We define � W F !GM by

�.x; y/D s.x/ ı �B.p; s.x/
�1
�y/ for all .x; y/ 2 F:

By construction, �B.p; s.x/�1 �y/ is a minimal geodesic from p to s.x/�1 �y. Since
s.x/ is an isometry for each x, �.x; y/ is indeed a minimal geodesic from

s.x/ �p D evp.s.x//D x to s.x/ � .s.x/�1 �y/D y:

So � is a geodesic motion planner and it only remains to show its continuity.

Let � W Isom.M/�M !M denote the action of the isometry group by evaluation and
again let PM D C 0.Œ0; 1�;M/. By [4, Theorem VII.2.10], the composition map

' W C 0.M;M/�PM ! PM; '.f; 
/D f ı 
;

is continuous with respect to the compact–open topologies. Thus, the restriction of ' to

Isom.M/�GM � C 0.M;M/�PM

defines a continuous action

z� W Isom.M/�GM !GM; z�D 'jIsom.M/�GM :

The inversion i W Isom.M/! Isom.M/, i.g/D g�1, is continuous since Isom.M/ is
a topological group. We can express � as

�.x; y/D z�
�
s.x/; �B

�
p; �

�
i.s.x//; y

���
for all .x; y/ 2 F:

All maps on the right-hand side are continuous, so � is continuous as well.

The previous lemma allows us to make a useful estimate between the subspace geodesic
complexity of the total cut locus and that of one single cut locus in the homogeneous
case.

Theorem 5.4 Let .M; g/ be a homogeneous Riemannian manifold and let p 2 M.
Then

GC.M/� secat.evp W Isom.M/!M/ �GCp.Cutp.M//C 1:

Proof As seen in Remark 2.7(2), it holds that GC.M/ � GCM .Cut.M//C 1, so it
suffices to show that

GCM .Cut.M//� secat.evp/ �GCp.Cutp.M//:
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Let k WD secat.evp/ and r WDGCp.Cutp.M//. By Lemma 4.1, there are pairwise disjoint
locally compact A1; : : : ; Ak �M with M D

Sk
iD1Ai for which there is a continuous

local section si WAi! Isom.M/ of evp for each i 2 f1; 2; : : : ; kg. Let B1; : : : ; Br �M
be pairwise disjoint and locally compact with Cutp.M/�

Sr
jD1Bj such that, for each j,

there exists a continuous geodesic motion planner �j W fpg �Bj !GM. Put

Fi;j WD f.x; y/ 2M �M j x 2 Ai ; y 2 si .x/ �Bj g

for all i 2 f1; 2; : : : ; kg and j 2 f1; 2; : : : ; rg. By construction, the elements of˚
Fi;j j i 2 f1; 2; : : : ; kg; j 2 f1; 2; : : : ; rg

	
are pairwise disjoint. Furthermore, for all i 2 f1; 2; : : : ; kg and j 2 f1; 2; : : : ; rg,

 i;j W Ai �Bj ! Fi;j ;  i;j .x; y/D .x; si .x/ �y/;

is a homeomorphism. Consequently, the Fi;j are locally compact. If .x; y/ 2 Cut.M/,
then x 2 Ai for some i 2 f1; 2; : : : ; kg. Since si .x/�1 is an isometry, it holds that
si .x/

�1 � y 2 Cutp.M/. Hence, there is a j 2 f1; 2; : : : ; rg with si .x/�1 � y 2 Bj and
therefore .x; y/ 2 Fi;j by definition. This shows that

Cut.M/�

k[
iD1

r[
jD1

Fi;j :

Moreover, by Lemma 5.3 we can find a continuous geodesic motion planner Fi;j!GM

of p for all i and j. Thus, GCM .Cut.M//� kr , which shows the claim.

The previous upper bound has a particularly strong consequence for connected Lie
groups.

Corollary 5.5 Let G be a connected Lie group equipped with a left-invariant Rie-
mannian metric and let e 2G denote the unit element. Then

GC.G/� GCe.Cute.G//C 1:

Proof This is an immediate consequence of Theorem 5.4. Since eve W Isom.G/!G

admits a continuous section — see Example 5.2 — it follows that secat.eve/D 1.

Sectional categories of fibrations are in general hard to compute. A common way of
estimating their values from above is by the Lusternik–Schnirelmann categories of
their base spaces using [39, Theorem 18]. In our situation, this leads to the following
estimate:
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Corollary 5.6 Let .M; g/ be a homogeneous Riemannian manifold and let p 2M.
Then

GC.M/� cat.M/ �GCp.Cutp.M//C 1:

Proof This is an immediate consequence of Theorem 5.4 and the fact that every
fibration p WE! B satisfies secat.p/� cat.B/ by [39, Theorem 18].

We want to further estimate geodesic complexity from above by finding upper bounds
for subspace geodesic complexities of cut loci. When Cutp.M/ admits a stratification,
we can compare GCp.Cutp.M// to the subspace geodesic complexities of its strata.

Proposition 5.7 Let .M; g/ be a complete Riemannian manifold , let p 2 M and
assume that Cutp.M/ has a stratification .S1; : : : ; Sk/ of depth k. Then

GCp.Cutp.M//�

kX
iD1

max
Zi2�0.Si /

GCp.Zi /;

where �0.X/ denotes the set of connected components of a space X.

Proof Since Cutp.M/D S1[ � � � [Sk , it follows from Remark 2.2(3) that

GCp.Cutp.M//�

kX
iD1

GCp.Si /:

Now fix i 2 f1; 2; : : : ; kg and let Z1; : : : ; Zr be the connected components of Si . Put

si WD max
j2f1;2;:::;rg

GCp.Zj /:

For each j 2 f1; 2; : : : ; rg, let Aj1 ; : : : ; A
j
si � Zj be pairwise disjoint and locally

compact, such that, for each j 2 f1; 2; : : : ; rg and l 2 f1; 2; : : : ; sig, either Aj
l
D ∅

or there exists a continuous geodesic motion planner �j;l W fpg � A
j

l
! GM. Put

Al WD
Sr
jD1A

j

l
for each l 2 f1; 2; : : : ; sig. Then the Al are pairwise disjoint and

locally compact with Si D
Ssi
lD1

Al . Moreover, since, by definition of a stratification,
Zi \Zj D∅ for all i ¤ j, the maps

�l W fpg �Al !GM; �l.p; x/D �j;l.p; x/ for all x 2 Aj
l
; j 2 f1; 2; : : : ; rg;

are well-defined continuous geodesic motion planners. This shows GCp.Si /� si for
each i 2 f1; 2; : : : ; kg, which implies the claim.

Algebraic & Geometric Topology, Volume 23 (2023)



Geodesic complexity of homogeneous Riemannian manifolds 2249

Corollary 5.8 Let .M; g/ be a homogeneous Riemannian manifold , let p 2M and
assume that Cutp.M/ has a stratification .S1; : : : ; Sk/ of depth k. Then

GC.M/� secat.evp W Isom.M/!M/ �

kX
iD1

max
Zi2�0.Si /

GCp.Zi /C 1:

Proof This follows from Theorem 5.4 and Proposition 5.7.

6 Trivially covered stratifications

Recio-Mitter [34] considered total cut loci with stratifications whose strata are finitely
covered by the path fibration. As a part of [34, Corollary 3.14], he showed that, if such
a stratification is inconsistent and trivially covered, this knowledge about the total cut
locus suffices to compute the geodesic complexity of the space.

In this section, we will revisit the notion of trivially covered stratifications in the setting
of Riemannian manifolds, but, in contrast to [34], we will put a covering condition on
the cut locus of a single point instead of the total cut locus. We will then derive an upper
bound for the numbers GCp.M/ that we have studied in the previous section. From this
estimate we will derive an upper bound for the geodesic complexity of homogeneous
Riemannian manifolds for which the cut locus of a point admits a trivially covered
stratification.

Definition 6.1 Let M be a complete Riemannian manifold, let p 2M and let S D
.S1; : : : ; SN / be a stratification of Cutp.M/. We call S trivially covered if, for all
k 2 f1; 2; : : : ; N g and for all connected components Z of Sk , the restriction

exppjeCutp.M/\exp�1p .Z/ W
eCutp.M/\ exp�1p .Z/!Z

is a trivial covering. Here, a trivial covering is understood to be a covering q WX ! Y

for which there is a discrete set D and a homeomorphism f W X ! Y �D such that
q D pr ıf, where pr W Y �D! Y is the projection onto the first factor.

Theorem 6.2 Let M be a complete Riemannian manifold , let p 2M and assume that
Cutp.M/ admits a trivially covered stratification of depth N 2N. Then

GCp.Cutp.M//�N:

Proof Let S D .S1; : : : ; SN / be a trivially covered stratification of Cutp.M/. We
want to show that fpg � Sk admits a continuous geodesic motion planner for each
k 2 f1; 2; : : : ; N g. For a fixed k 2 f1; 2; : : : ; N g, let Z1; : : : ; Zr be the connected
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components of Sk for suitable r 2N. For i 2 f1; 2; : : : ; rg, let Bi be an arbitrary sheet
of the trivial covering

exppjeCutp.M/\exp�1p .Zi /
WeCutp.M/\ exp�1p .Zi /!Zi :

Then exppjBi WBi !Zi is a homeomorphism. With 'i WD .exppjBi /
�1 WZi !Bi , one

checks without difficulties that

si W fpg �Zi !GM; .si .p; q//.t/D expp.t'
�1
i .q//;

is a continuous geodesic motion planner and thus GCp.Zi /D1. Since k 2f1; 2; : : : ; N g
was chosen arbitrarily, the claim follows from Proposition 5.7.

With the additional hypotheses that M is compact and that the stratification in Theorem
6.2 is inconsistent, one can derive an equality from Theorem 6.2. The following result
is analogous to the corresponding part of [34, Corollary 3.14]:

Corollary 6.3 Let M be a closed Riemannian manifold , let p 2M and assume that
Cutp.M/ admits a trivially covered inconsistent stratification of depth N 2N. Then
GCp.M/DN C 1.

Proof By restricting the motion planner from Remark 2.7(2), one obtains a continuous
geodesic motion planner on fpg � .M XCutp.M//. It follows from Theorem 6.2 that

GCp.M/� GCp.Cutp.M//C 1�N C 1:

But, by Theorem 4.8, it also holds that GCp.M/�N C1, which proves the equality.

Corollary 6.4 Let G be a compact connected Lie group equipped with a left-invariant
Riemannian metric and let e 2G denote the unit element. If Cute.G/ admits a trivially
covered inconsistent stratification of depth N, then

GC.G/DN C 1:

Proof Combining Theorem 6.2 with Corollary 5.5 yields

GC.G/� GCe.Cute.G//C 1�N C 1:

But, by Theorem 4.8, GC.G/�N C 1 as well, so the claim follows.

7 Examples: flat tori and Berger spheres

We want to use the results of Sections 5 and 6 to compute the geodesic complexities of
two classes of examples: two-dimensional flat tori and three-dimensional Berger spheres.
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The cut loci of points in such spaces are well understood and admit stratifications of a
well-behaved kind.

7.1 Geodesic complexity of flat tori

Recio-Mitter has computed the geodesic complexity of a standard flat n–dimensional
torus in [34, Theorem 4.4]. More precisely, he has shown that the standard flat metric gf
on the n–torus T n satisfies GC.T n; gf /D nC 1 for each n 2N.

In the course of this subsection, we will extend the two-dimensional case of Recio-
Mitter’s result to arbitrary flat metrics on two-dimensional tori. The cut loci of such
metrics are well understood.

Before we do so, we will reobtain Recio-Mitter’s computation for standard flat tori
using the methods of this article. This example is particularly instructive and illustrates
the use of inconsistent stratifications. Moreover, in contrast to [34, Theorem 4.4],
we only need to consider the cut locus of a single point, while in the proof of [34,
Theorem 4.4] a stratification of T n �T n is required and the structure of the space of
geodesic paths in T n needs to be examined.

Example 7.1 Let n 2N and consider the n–torus T n with the standard flat metric gf ,
ie the quotient metric induced by the standard metric on Rn and by identifying T n D
Rn=.2Z/n. Equivalently, T n is obtained from Rn by collapsing the lattice defined by
an arbitrary family of n pairwise orthogonal vectors of length two. Let � WRn! T n

be the projection and put o WD �.0/ and M WD .T n; gf /. We identify Rn with ToM in
the obvious way.

Note that T n is isometric to the Riemannian product .R=.2Z//n. For N WDR=.2Z/

let pr W R! N be the obvious Riemannian covering and put p0 WD pr.0/ 2 N. Then
Cutp0.N /D fpr.1/g and the tangent cut locus is given by

eCutp0.N /D f�1; 1g

under the identification Tp0N ŠR.

Given the Riemannian product of two Riemannian manifolds .M1; g1/ and .M2; g2/,
the cut locus of a point .p1; p2/ 2M1 �M2 is easily seen to be

Cut.p1;p2/.M1 �M2/D .Cutp1.M1/�M2/[ .M1 �Cutp2.M2//I

see [7, page 328]. For i 2 f1; 2g, let Ki be the union of the injectivity domain in TpiMi

with the tangent cut locus eCutpi .Mi /. Similar to the cut locus, the tangent cut locus of
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.p1; p2/ is given by

eCut.p1;p2/.M1 �M2/D .eCutp1.M1/�K2/[ .K1 �eCutp2.M2//

under the identification T.p1;p2/.M1�M2/ŠTp1M1�Tp2M2. For products of finitely
many manifolds, one iteratively derives analogous results for cut loci and tangent cut
loci.

We conclude that, if In WD Œ�1; 1�n, then the tangent cut locus of o in M D .T n; gf / is

eCuto.M/D @In:

See also [19, page 107] for the case nD 2. The boundary @In admits a stratification
@In D

Sn
kD1Ak of depth n, given as follows: For each k 2 f1; 2; : : : ; ng, we put

Jk WD f.i1; : : : ; ik/ 2Nk
j 1� i1 < � � �< ik � ng:

Then each Ak is given as the disjoint union Ak D
S
.i1;:::;ik/2Jk

Ai1;:::;ik , where

Ai1;:::;ik WD
˚
.x1; : : : ;xn/2I

n
W jxl jD1 if l 2fi1;i2; : : : ;ikg; jxl j<1 if l …fi1; : : : ;ikg

	
:

For .i1; : : : ; ik/ 2 Jk and j1; : : : ; jk 2 f�1; 1g, we put

Ai1;:::;ik ;j1;:::;jk

D
˚
.x1; : : : ; xn/ 2Rn W xi1 D j1; : : : ; xik D jk; jxl j< 1 if l … fi1; : : : ; ikg

	
:

Then the sets Ai1;:::;ik ;j1;:::;jk , where j1; : : : ; jk 2 f�1; 1g, are precisely the connected
components of Ai1;:::;ik .

Put Bk WD expo.Ak/. We claim that .B1; : : : ;Bn/ is a trivially covered stratification of
Cuto.M/. One checks that the connected components of each of the Bk are precisely
the sets

Bi1;:::;ik WD expo.Ai1;:::;ik / for .i1; : : : ; ik/ 2 Jk :

Moreover, for all .i1; : : : ; ik/ 2 Jk and all j1; : : : ; jk 2 f�1; 1g, the restriction

expojAi1;:::;ik;j1;:::;jk W Ai1;:::;ik ;j1;:::;jk ! Bi1;:::;ik

is a homeomorphism. From the explicit description of the Ai1;:::;ik , one derives that
.B1; : : : ;Bn/ is a stratification. It further follows from the above observations that

expojAi1;:::;ik W Ai1;:::;ik ! Bi1;:::;ik

is a trivial covering map for all .i1; : : : ; ik/ 2 Jk . Since k 2 f1; 2; : : : ; ng was chosen
arbitrarily, this shows that .B1; : : : ;Bn/ is trivially covered.
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We now want to prove that .B1; : : : ;Bn/ is indeed an inconsistent stratification of
Cuto.M/. For this purpose, let k 2 f2; 3; : : : ; ng, .i1; : : : ; ik/ 2 Jk and x 2 Bi1;:::;ik .
We assume without loss of generality that .i1; i2; : : : ; ik/D .1; 2; : : : ; k/. Then there
are y1; : : : ; yn�k 2 .�1; 1/ such that

x D expo.1; 1; : : : ; 1; y1; : : : ; yn�k/:
It further holds that

(7-1) exp�1K .fxg/D
˚
.j1; : : : ; jk; y1; : : : ; yn�k/ 2 ToM j j1; : : : ; jk 2 f�1; 1g

	
;

where K WD In and expK WD expojK W K ! M, which is a special case of the map
defined in (4-1). Let i 2 f1; 2; : : : ; kg and let yBi WD B1;:::;i�1;iC1;:::;k � Bk�1. Given
" > 0, put

U" WD expo

�
.1� "; 1C "/k �

n�kY
jD1

.yj � "; yj C "/

�
�M:

Then U" is an open neighborhood of x and, for sufficiently small " > 0, it holds that
yBi\U" has two components CCi and C�i . With IC WD .1�"; 1/ and I� WD .�1;�1C"/,

we put, for all j1; : : : ; ji�1; jiC1; : : : ; jk 2 f�1; 1g,

A˙j1;:::;ji�1;jiC1;:::;jk

WD

�
.j1; : : : ; ji�1; t; jiC1; : : : ; jk; q/

ˇ̌̌
t 2 I˙; q 2

n�kY
lD1

.yl � "; yl C "/

�
:

The two components CCi and C�i then satisfy

exp�1K .C˙i /D
[

j1;:::;ji�1;jiC1;:::;jk2f�1;1g

A˙j1;:::;ji�1;jiC1;:::;jk :

Combining this observation with (7-1) yields

eCuto.M/\ exp�1o .fxg/\ exp�1K .C˙i /

D
˚
.j1; : : : ;ji�1;˙1;jiC1; : : : ;jk;y1; : : : ;yn�k/ jj1; : : : ;ji�1;jiC1; : : : ;jk 2f�1;1g

	
;

In particular, exp�1o .fxg/\exp�1K .CCi /\exp�1K .C�i /D∅, implying that .B1; : : : ;Bn/
satisfies the inconsistency condition at x. Since x 2 Cuto.M/ was chosen arbitrarily,
this shows that .B1; : : : ;Bn/ is inconsistent. Note that in general Bk�1\U" has more
connected components than CCi and C�i , but considering these two components is
sufficient for proving the inconsistency condition.

Since T n is a Lie group and gf is left-invariant, it follows from Corollary 6.4 that

GC.T n; gf /D nC 1:
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Next we will compute the geodesic complexity of arbitrary two-dimensional flat tori.
The reader should note that, in general, the geodesic complexity of .T 2; g/ will vary
with the metric g; see Example 2.3(2). For arbitrary flat tori of higher dimensions, the
cut loci of points are not as well understood as in the two-dimensional case. While it
might be possible to extend our result to flat tori of higher dimensions, we are not aware
of any systematic study of cut loci of flat higher-dimensional tori in the literature.

For p; q 2R2, we let Œp; q�D f.1� t /pC tq 2R2 j t 2 Œ0; 1�g denote the line segment
from p to q.

Theorem 7.2 Let g be an arbitrary flat metric on T 2. Then GC.T 2; g/D 3.

Proof By elementary Riemannian geometry, .T 2; g/ is isometric to T 2 with a quotient
metric induced by the standard metric on R2 and a projection � WR2!R2=� D T 2,
where � �R2 is a lattice. We thus assume that g itself is such a quotient metric. Put
o WD �.0; 0/. We are going to describe eCuto.T 2/, following [19, page 108]. The case
that � is generated by two orthogonal vectors is covered in Example 7.1, so we assume
in the following that � is generated by two vectors a1; a2 2 R2 such that the angle
between a1 and a2 is acute.

If we identify ToM with R2, then eCuto.M/ is given by a hexagon whose construction
we will describe next. Consider the perpendicular bisectors of the line segments

Œ0; a1�; Œ0; a2�; Œ0;�a1�; Œ0;�a2�; Œ0; a1� a2�; Œ0; a2� a1�:

These perpendicular bisectors enclose a hexagon in R2; see Figure 1. The tangent
cut locus eCuto.M/ consists of the boundary curve of the hexagon, while the domain
of injectivity of expo is given by the interior of the hexagon. Let the segments and
the corner points of the hexagon be labeled as in Figure 1. Then there are p; q 2M
with p ¤ q such that p D expo.p1/ D expo.p2/ D expo.p3/ and q D expo.q1/ D
expo.q2/D expo.q3/.

For x; y 2 R2 we put ŒŒx; y�� WD Œx; y� X fx; yg. With p and q as above, the set
Cuto.M/X fp; qg has three connected components

A1 WD expo.ŒŒp1; q1��/D expo.ŒŒq2; p3��/;

A2 WD expo.ŒŒq1; p2��/D expo.ŒŒp3; q3��/;

A3 WD expo.ŒŒp2; q2��/D expo.ŒŒq3; p1��/:
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a2� a1 a2

q1

p2 p1

�a1 0 a1

q2 q3
p3

�a2 a1� a2

Figure 1: Tangent cut loci of flat two-dimensional tori.

More precisely, expo maps both ŒŒp1; q1�� and ŒŒq2; p3�� homeomorphically onto A1,
both ŒŒq1; p2�� and ŒŒp3; q3�� homeomorphically ontoA2, and both ŒŒp2; q2�� and ŒŒq3; p1��
homeomorphically onto A3.

Let S2 WD fp; qg and S1 WD A1 [A2 [A3. By construction, .S1; S2/ is a trivially
covered stratification of Cuto.T2; g/. We want to show that .S1; S2/ is inconsistent as
well. Let K � ToT 2 denote the union of eCuto.T 2; g/ with the domain of injectivity
of expo and let expK WK! T 2 be the restriction of expo to K. This is again a special
case of the map defined in (4-1). Let U � T 2 be an open neighborhood of p and put
Zi WDAi \U for all i 2 f1; 2; 3g. If U is chosen sufficiently small, then, by the above
description of eCuto.T 2; g/, there are x1 2 ŒŒp1; q1�� and x01 2 ŒŒq2; p3�� such that

exp�1K .Z1/D ŒŒx
0
1; p3��[ ŒŒp1; x1��:

Analogously, one shows that there are

x2 2 ŒŒq1; p2��; x02 2 ŒŒp3; q3��; x3 2 ŒŒp2; q2�� and x03 2 ŒŒq3; p1��

such that

exp�1K .Z2/D ŒŒx2; p2��[ ŒŒp3; x
0
2��; exp�1K .Z3/D ŒŒx

0
3; p1��[ ŒŒp2; x3��:

Since exp�1K .fpg/D fp1; p2; p3g, this shows that

exp�1K .fpg/\ exp�1K .Z1/D fp2; p3g;

exp�1K .fpg/\ exp�1K .Z2/D fp1; p3g;

exp�1K .fpg/\ exp�1K .Z3/D fp1; p2g:
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Consequently,

eCuto.T 2/\ exp�1o .fpg/\

3\
iD1

exp�1K .Zi /D∅;

which shows that .S1; S2/ satisfies the inconsistency condition at p. In complete
analogy, one shows that the condition is satisfied at q as well, implying that .S1; S2/ is
inconsistent. Since g is, by construction, left-invariant, it follows from Corollary 6.4
that GC.T 2; g/D 3.

7.2 Geodesic complexity of Berger spheres

In this subsection we consider a class of homogeneous Riemannian manifolds whose
geodesic complexity can be computed explicitly without making use of the upper and
lower bounds we previously studied. In [1], M Berger has constructed a one-parameter
family of homogeneous metrics g˛ for 0 < ˛ � �

2
on the three-dimensional sphere S3,

whose cut loci have been described by Sakai [38].

In the following, we will first recall a particularly interesting class of homogeneous
Riemannian manifolds, namely naturally reductive spaces. Berger spheres are special
cases of them and we will outline the construction of Berger’s metrics following [38].

Given a Lie group G, we always let e 2 G denote its unit element. Let g denote
the Lie algebra of G and assume that H is a closed subgroup of G. Then the Lie
algebra h of the Lie group H is a Lie subalgebra of g. If there is an AdH–invariant
subspace m of the Lie algebra g which is complementary to h then there is a bijective
correspondence between AdH–invariant inner products on m and G–invariant metrics
on the homogeneous space G=H. See [31, Proposition 11.22(2)] for details.

Definition 7.3 [31, page 317] Let G be a Lie group with a closed subgroup H. Let g
be the Lie algebra of G and h be the Lie algebra of H. Assume that there is a subspace
m� g which is complementary to h and such that AdH .m/�m, where AdH denotes
the adjoint representation of H. Suppose there is an AdH–invariant inner product h � ; � i
on m such that

hŒX; Y �m; Zi D hX; ŒY;Z�mi

for all X; Y;Z 2 m, where the subscript m of an element of g denotes its projection
onto m. Then G=H together with the G–invariant Riemannian metric corresponding
to this inner product is called a naturally reductive space.
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Example 7.4 All symmetric spaces are examples of naturally reductive spaces as
discussed in [31, page 317]. The real Stiefel manifolds Vk.Rn/ for n� 4 and 2� k �
n� 2 are examples of naturally reductive spaces which are not symmetric spaces; see
[18, page 748].

For our purposes, the crucial property of naturally reductive spaces is the observation
made in the following proposition. We refer to [31, Proposition 11.25] for its proof.

Proposition 7.5 Let G be a Lie group andH �G be a closed subgroup. IfM DG=H
is a naturally reductive space and � W G ! M is the projection , then the geodesics
starting at oD �.e/ are precisely the curves of the form 
.t/D �.exp.t�// for � 2m,
where exp W g!G is the Lie group exponential of G.

We proceed by constructing Berger spheres as naturally reductive spaces following the
exposition of [38]. Let G D SU.2/�R and let gD su.2/˚R be its Lie algebra. We
consider the AdG–invariant inner product on g given by

h.A; x/; .B; y/i D �1
2

Tr.AB/C xy for all .A; x/; .B; y/ 2 g:

For ˛ 2
�
0; �
2

�
, we define a linear subspace of g as

h˛ D

���
i l cos˛ 0

0 �i l cos˛

�
; l sin˛

�
2 g

ˇ̌̌
l 2R

�
:

Consider the closed subgroup H˛ �G, H˛ D exp.h˛/, where exp again denotes the
Lie group exponential of G. Explicitly, H˛ is given as

H˛ D

���
eil cos˛ 0

0 e�il cos˛

�
; l sin˛

� ˇ̌̌
l 2R

�
:

One checks that G=H˛ is diffeomorphic to S3. The orthogonal complement to h˛ in g

with respect to h � ; � i is the space

m˛ D

���
ir sin˛ aC ib

�aC ib �ir sin˛

�
;�r cos˛

�
2 g

ˇ̌̌
a; b; r 2R

�
:

A direct computation shows that m˛ is AdH˛–invariant. The restriction of the inner
product h � ; � i to m˛ �m˛ defines an AdH˛–invariant inner product on m˛ . We equip
the homogeneous space G=H˛ with the G–invariant metric that is defined by this inner
product and the abovementioned correspondence between G–invariant Riemannian
metrics on G=H˛ and AdH˛–invariant inner products on m˛.
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Since m˛ ? h˛ by construction, the space M˛ DG=H˛ equipped with the described
homogeneous metric is a naturally reductive space; see [18, Proposition 23.29]. Thus,
by Proposition 7.5, the geodesics in M˛ emanating from o are precisely the images of
the one-parameter groups in G under � of elements of m˛. For ˛ D �

2
, one further

observes that G=H˛ is isometric to the round sphere S3 of sectional curvature one; see
[28, page 77].

The following observation gives us a strong upper bound on GC.M˛/. We refer to [28,
Section 3] for its proof.

Proposition 7.6 For each ˛ 2
�
0; �
2

�
the Berger sphere M˛ is isometric to SU.2/

equipped with a left-invariant metric.

Combining Proposition 7.6 with Corollary 5.5 yields

(7-2) GC.M˛/� GCo.Cuto.M˛//C 1;

where oD �.1/. To compute GCo.Cuto.M˛//, we will outline the results from [38]
about the cut loci of M˛. For ˛ D �

2
, we already know that GC.M�=2/ D 2; see

Examples 2.3(1). Thus, in the following we fix ˛ 2
�
0; �
2

�
.

Let S �m˛ denote the unit sphere in m˛ with respect to the norm induced by h � ; � i
and let D�e W g! ToM˛ denote the differential of � in the unit e 2G. Consider the
isometric isomorphism of vector spaces

' WDD�ejm˛ Wm˛
Š�! ToM˛:

Then ' maps S to the unit sphere in ToM˛. Let  W ToM˛ ! ToM˛ be the radial
homeomorphism which maps the unit sphere homeomorphically onto the tangent cut
locus eCuto.M˛/ of o in M˛. Then the map F W S !eCuto.M˛/, F WD  ı 'jS is a
homeomorphism. We consider e1; e2 2m˛ given by

e1 D

��
0 1

�1 0

�
; 0

�
; e2 D

��
0 i

i 0

�
; 0

�
:

Let U WD spanR.fe1; e2g/ and let rU Wm˛!m˛ denote the reflection through U. Let
m1 and m2 denote the two components of m˛ XU and put Di WD S \mi for i 2 f1; 2g.
By the results of [38, page 151]:

� Cuto.M˛/D .expo ıF /.S/.

� expo ıF jD1 and expo ıF jD2 are injective.

� .expo ıF /.v/D .expo ıF /.rU .v// for all v 2D1[D2.
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Hence, the map expo ıF jD1 is a bijective continuous map from a closed disk onto the
cut locus Cuto.M˛/. Since the disk is compact and Cuto.M˛/ is a Hausdorff space, this
shows that Cuto.M˛/ is homeomorphic to a closed disk. Moreover, expoıF jDi WDi!
M˛ is an embedding of Di onto Cuto.M˛/ for i 2 f1; 2g.

Theorem 7.7 For all ˛ 2
�
0; �
2

�
, it holds that GC.M˛/D 2.

Proof For ˛D �
2

, ie the case of a round metric, this is observed in [34, Proposition 4.1],
so we will only consider the case of ˛ 2

�
0; �
2

�
. In the notation from above, we put

E WD F.D1/ and let f W Cuto.M˛/!E, f WD .expo ıF jE /
�1. Define

s W fog �Cuto.M˛/!GM˛; .s.o; q//.t/D expo.t �f .q// for all t 2 Œ0; 1�:

By Proposition 7.5, the map s is a continuous geodesic motion planner, which shows

GCo.Cuto.M˛//D 1

and thus GC.M˛/� 2 by (7-2). Since GC.M˛/�TC.S3/D 2, this shows the claim.

Remarks 7.8 (1) As Recio-Mitter has shown [34, Example 2.4], there exists a
Riemannian metric gm on S3 for which GC.S3; gm/D 3. This shows that also in the
case of S3, the value of GC depends on the chosen metric.

(2) The cut locus of a point in the Berger sphere M˛ for 0 < ˛ < �
2

is a closed
disk. It therefore seems tempting to determine the geodesic complexity of M˛ via
a stratification of this cut locus similarly to what we have done in previous sections.
More precisely, an obvious stratification of a closed disk is given by taking one stratum
as its interior and another stratum as its boundary. However, this is not an inconsistent
stratification as in Definition 4.6 since we would then obtain GC.M˛/� 3, whereas we
have shown that GC.M˛/D 2.

(3) As this example is particularly instructive, we want to sketch briefly how to show
directly that the stratification from the previous paragraph is not inconsistent. Let
K � ToM˛ be the union of the injectivity domain with the tangent cut locus eCuto.M˛/.
Using the same notation as in the exposition above, put

S1 WD .expo ıF /. VD1/� Cuto.M˛/ and S2 WD .expo ıF /.@D1/� Cuto.M˛/:

Under the identification of Cuto.M˛/ and a closed disk, this is the decomposition from
part (2) of this remark. Evidently, this is a stratification in the sense of Definition 4.4.
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Let x 2 S2 and let U � M˛ be a neighborhood of x. For sufficiently small U, the
intersection U \S1 has only one connected component, which we call Z. We claim
that

eCuto.M˛/\ exp�1o .fxg/\ exp�1K .Z/¤∅:

By the above discussion of Cuto.M˛/, the intersection eCuto.M˛/\exp�1o .fxg/ consists
of a single point v 2 ToM˛ . By choosing a sequence in Z converging to x and recalling
that expo ıF jDi is a homeomorphism for i 2 f1; 2g, we see that

v 2 exp�1K .Z/:

This shows that

eCuto.M˛/\ exp�1o .fxg/\ exp�1K .Z/D fvg ¤∅:

Hence, the stratification .S1; S2/ of Cuto.M˛/ is not inconsistent.

8 Explicit upper bounds for symmetric spaces

In [36, Theorem 5.3], Sakai has determined the cut loci of compact simply connected
irreducible symmetric spaces. He showed that their cut loci always allow for strati-
fications for which each stratum is a submanifold. Since every symmetric space is a
Riemannian product of irreducible symmetric spaces, Sakai’s results are enough to
determine the cut loci of compact simply connected symmetric spaces in general; see
our explanations on cut loci of product manifolds in Example 7.1.

In this section, we will first apply the results from Section 5 to find an upper bound
for the geodesic complexity of a compact, simply connected, irreducible symmetric
space. From Sakai’s results, in particular [36, Proposition 4.10], we will further derive
estimates on the subspace geodesic complexities of the strata of a cut locus. These
numbers appeared on the right-hand side of the inequality in Corollary 5.8 and we
will show that they can be estimated from above by certain sectional categories. As a
result, we will obtain an upper bound for the geodesic complexity of compact, simply
connected, irreducible symmetric spaces given purely in terms of categorical invariants.

We begin by summarizing the main results of [36], stated here in the form of [37,
Section 4]. We assume basic knowledge on symmetric spaces that is provided by
textbooks in Riemannian geometry like [23] or [33]. In the following, we always let
Dfx denote the differential of a differentiable map f in the point x.
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Let M D G=K be a compact, simply connected and irreducible symmetric space,
where .G;K/ is a Riemannian symmetric pair. Explicitly, G is a compact, connected
Lie group, K is a closed, connected Lie subgroup of G and G admits an involutive
automorphism � W G ! G whose fixed-point set satisfies .Fix.�//0 � K � Fix.�/,
where .Fix.�//0 is the identity component of Fix.�/.

Let � W G!M denote the orbit space projection, let e 2 G denote the unit element
and put o WD �.e/ 2M. Let g and k denote the Lie algebras of G and K, respectively,
and let m � g be the �1 eigenspace of D�e. Then, since k is the C1 eigenspace
of D�e , there is a vector space decomposition gD k˚m. Furthermore, the restriction
D�ejm Wm! ToM is a linear isomorphism; see [23, Theorem IV.3.3].

In the following we give a concise overview of the most important notions related to
root systems of symmetric spaces:

� Let gC denote the complexification of g. By [23, page 284], there exists a Cartan
subalgebra h� gC . We recall that a root ˛ of the Lie algebra gC is an element of the
dual space h� such that there is a nonzero vector X 2 gC satisfying

ŒH;X�D ˛.H/X for all H 2 h:

The set of nonzero roots of the Lie algebra gC will be called R.

� Let a be a maximal abelian subalgebra of m, which again exists by [23, page 284].
We will call a a Cartan subalgebra of .G;K/.

A root ˛ 2R with ˛ja ¤ 0 will be called a root of the symmetric pair .G;K/. The set
of roots of the symmetric pair .G;K/ will be denoted by R.G;K/.

� By choosing a certain real subspace hR of the Cartan subalgebra h and defining a
lexicographic ordering on hR, one defines an ordering on the set of roots R; see [23,
page 173]. This defines a set of positive roots RC �R of gC . The set of positive roots
of .G;K/ is then defined as

R.G;K/C WDRC\R.G;K/:

There is a maximal element of R.G;K/C with respect to this ordering, which we
denote by ı and call the highest root of .G;K/.

� Let k be the rank of the symmetric space M DG=K. A simple root of .G;K/ is a
positive root ˛ which cannot be written as a sum ˛ D ˇC 
 with ˇ; 
 2 R.G;K/C.
There are precisely k simple roots and one finds that every positive root can be written
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as a linear combination of the simple roots with nonnegative integer coefficients; see
[23, Theorem VII.2.19]. Denote the system of simple roots of .G;K/ by �.G;K/.

� By virtue of the chosen AdK–invariant inner product on g, we will from now on
consider the roots to be vectors in a in order to follow [36, Section 2].

Based on this terminology, we next recall Sakai’s results on the structure of cut loci of
symmetric spaces. In the case that there are two or more positive roots of .G;K/, we
define a subset D of the power set of �.G;K/ by

D WD f�� �.G;K/ j�¤∅; ı …�g:

If there is only one positive root 
 , which is therefore also the only simple root and
also the highest root, define

D WD ff
gg:

Let h � ; � i denote the chosen AdK–invariant inner product on g and consider the Weyl
chamber of �.G;K/ that is given by

W WD fX 2 a j h
;Xi> 0 for all 
 2 �.G;K/g:

See [23, Section VII.2] for further details on Weyl chambers and their connection to
root systems. If there is more than one positive root, let

S� WD

fX 2W j h
;Xi>0 for all 
 2�; h
;XiD 0 for all 
 2�.G;K/X�; 2hı; XiD 1g

for each � 2 D. If there is just one positive root 
 , then set

Sf
g WD fX 2 a j 2h
;Xi D 1g:

Since a is one-dimensional in that case, Sf
g consists of a single point.

Let exp W g!G be the exponential map of G and put

Exp Wm!M; Exp WD � ı exp jm:

For � 2 D, we let

ẑ
� WK �S�!M; ẑ

�.k;X/D Exp.Ad.k/.X//;

and put Z� WD fk 2K j Exp.Ad.k/.X//D Exp.X/ for all X 2 S�g. One checks with-
out difficulties that Z� is a closed subgroup of K. As shown in [36, Proposition 4.10],
each ẑ� induces a differentiable embedding

ˆ� WK=Z� �S�!M:

Algebraic & Geometric Topology, Volume 23 (2023)



Geodesic complexity of homogeneous Riemannian manifolds 2263

Put C� WD imˆ� for each � 2 D. By [36, Theorem 5.3], the cut locus of M at o is
then given by

Cuto.M/D
[
�2D

C�

and the C� satisfy

(8-1)
C�\C�0 D∅ for all �;�0 2 D; �¤�0;

C� D
[
�0��

C�0 for all � 2 D:

Let k be the rank of M. For i 2 f1; 2; : : : ; kg, we put

Di WD f� 2 D j #�D ig and Ci WD
[
�2Di

C�:

It follows from (8-1) that .Ck; Ck�1; : : : ; C1/ is a stratification of Cuto.M/ and that
the C� for � 2 Di are precisely the connected components of Ci . Since M is a
homogeneous Riemannian manifold, we thus obtain from Corollary 5.8 that

(8-2) GC.M/� secat.evo W Isom.M/!M/ �

kX
iD1

max
�2Di

GCo.C�/C 1:

It remains to find upper bounds on the numbers GCo.C�/.

Proposition 8.1 For each � 2 D, it holds that

GCo.C�/� secat.q� WK!K=Z�/;

where q� denotes the orbit space projection.

Proof Let r WD secat.q�/. Then, by Lemma 4.1, there are pairwise disjoint and locally
compact subsets B1; : : : ; Br �K=Z� such that, for each i 2 f1; 2; : : : ; rg, there is a
continuous local section si W Bi !K of q�. Using these si , we define

�i W fog �ˆ�.Bi �S�/!GM;
�
�i .o;ˆ�.x;X//

�
.t/D Exp

�
t �Ad.si .x//.X/

�
;

for every i 2 f1; 2; : : : ; rg. By construction, each �i is continuous and �i .o;ˆ�.x;X//
is a geodesic segment for all .x;X/ 2 Bi �S� and each i 2 f1; 2; : : : ; rg. Moreover,�

�i .o;ˆ�.x;X//
�
.0/D Exp.0/D o;�

�i .o;ˆ�.x;X//
�
.1/D Exp

�
Ad.s.x//.X/

�
Dˆ�.x;X/;

by definition of ˆ�. Thus, the �i are continuous geodesic motion planners. Since the
sets ˆ�.B1�S�/; : : : ; ˆ�.Br �S�/ are pairwise disjoint, locally compact and cover
ˆ.K=Z� �S�/D C�, this shows that GCo.C�/� r .
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Combining Proposition 8.1 with (8-2) yields the following upper bound:

Theorem 8.2 Let .G;K/ be a Riemannian symmetric pair and let M DG=K be the
corresponding symmetric space. Assume that M is compact , simply connected and
irreducible. Then , with Di and Z� given as above ,

GC.M/� secat.evo W Isom.M/!M/ �

rk.M/X
iD1

max
�2Di

secat.q� WK!K=Z�/C 1;

where rk.M/ denotes the rank of M.

Corollary 8.3 Let .G;K/ be a Riemannian symmetric pair and let M DG=K be the
corresponding symmetric space. Assume that M is compact , simply connected and
irreducible. Then , with Di and Z� given as above ,

GC.M/� cat.M/ �

rk.M/X
iD1

max
�2Di

cat.K=Z�/C 1:

Proof This is an immediate consequence of Theorem 8.2 and [39, Theorem 18].

We want to conclude by applying the upper bounds to two examples of compact
symmetric spaces whose cut loci have already been discussed in the works of Sakai,
more precisely in [36, Example 5.4; 35, Section 4.2].

Example 8.4 Consider the complex projective space CP nDU.nC1/=.U.1/�U.n//

with the Fubini–Study metric. This is a compact and simply connected symmetric space
of rank one. Its cut locus is studied in detail in [36, Example 5.4]. Let G D U.nC 1/,
let gD u.nC1/ be its Lie algebra and let K DU.1/�U.n/. Let gD k˚m denote the
decomposition of g with respect to the symmetric pair .G;K/. By the same methods
as in [23, page 452], which treats the Lie algebra of SU.n/, one computes that

kD

��
ia 0

0 �

� ˇ̌̌
a 2R; � 2 u.n/

�
and mD

��
0 NuT

�u 0

� ˇ̌̌
u 2Cn

�
:

Then a D spanR.fH0g/ is a Cartan subalgebra of .G;K/, where H0 D .hij / 2 g is
given by

hij D

8<:
�
2

if .i; j /D .1; nC 1/;
�
�
2

if .i; j /D .nC 1; 1/;
0 otherwise:

In particular, every system of simple roots of .G;K/ consists of a unique element. Let
o be the equivalence class of the neutral element of G in G=K DCP n. Then Cuto.M/
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consists of a unique submanifold, given by

Cuto.M/D fExp.Ad.k/.H0// j k 2 U.1/�U.n/g:

Sakai further showed that

Z0 WD fk 2 U.1/�U.n/ j Exp.Ad.k/.H0//D Exp.H0//g

can be identified with Z0 D U.1/�U.n� 1/�U.1/. Hence, by Proposition 8.1,

(8-3) GCM .Cuto.M//

� secat
�
U.1/�U.n/! .U.1/�U.n//=.U.1/�U.n� 1/�U.1//

�
:

One easily checks that the map

' W .U.1/�U.n//=.U.1/�U.n� 1/�U.1//! U.n/=.U.n� 1/�U.1//DCP n�1;

'.Œz; A�/D ŒA�;

where .z; A/2U.1/�U.n/, is a well-defined homeomorphism. Let p WU.n/!CP n�1

denote the principal U.1/–bundle over the homogeneous space CP n�1. Assume that
s W V ! U.n/ is a continuous local section of p over a subset V �CP n�1. Then we
obtain a continuous local section Qs W V ! U.1/�U.n/ of the principal fiber bundle

U.1/�U.n/! .U.1/�U.n//=.U.1/�U.n� 1/�U.1//

by setting Qs.'�1.p//D .z0; s.p// for p 2 V, where z0 2 U.1/ is a fixed element. This
shows that

secat
�
U.1/�U.n/!.U.1/�U.n//=.U.1/�U.n�1/�U.1//

�
�secat.U.n/!CP n�1/:

Hence, we derive from (8-3) that

GCo.Cuto.M//� secat.U.n/!CP n�1/� cat.CP n�1/D n;

where we used [39, Theorem 18] for the second inequality. The fact that cat.CP n�1/D
n is shown in [6, Example 1.51]. Eventually, by Theorem 5.4 and the same references,

GC.CP n/� secat.U.nC 1/!CP n/GCo.Cuto.M//C 1

� cat.CP n/ cat.CP n�1/C 1

D .nC 1/nC 1:

Since TC.CP n/ D 2n C 1, as computed in [14, Lemma 28.1], we derive using
Remark 2.4(1) that

2nC 1� GC.CP n/� .nC 1/nC 1 for all n 2N:

For nD 2, this shows that GC.CP 2/ 2 f5; 6; 7g.
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Example 8.5 Consider the complex Grassmann manifold

G2.C
4/D U.4/=.U.2/�U.2//:

As a quotient of a compact Lie group by a closed subgroup, G2.C4/ is compact. Let
V2.C4/ be the corresponding complex Stiefel manifold. As shown in Example 4.54
of [22], V2.C4/ is simply connected. Since the fiber U.2/ of the fibration V2.C4/!

G2.C4/ is connected, it follows from the long exact homotopy sequence of this fibration
that G2.C4/ is simply connected as well. The cut loci of G2.C4/ are discussed in [35,
Section 4.2; 36, Example 5.5]. The corresponding decomposition of the Lie algebra
gD u.4/ of G D U.4/ is given by gD k˚m, where

kD

��
˛ 0

0 ˇ

� ˇ̌̌
˛; ˇ 2 u.2/

�
and mD

��
0 �

�x�T 0

� ˇ̌̌
� 2M2.C/

�
:

Here, k is the Lie algebra of K D U.2/�U.2/. A Cartan subalgebra a�m is spanned
by

e1 WD
1

2�

0BB@
0 0 1 0

0 0 0 0

�1 0 0 0

0 0 0 0

1CCA and e2 WD
1

2�

0BB@
0 0 0 0

0 0 0 1

0 0 0 0

0 �1 0 0

1CCA :
By [36, page 143], one can define positive roots and simple roots of .U.4/; U.2/�U.2//
in such a way that 2e1D ı is the highest root and that a system of simple roots is given
by

�.G;K/D f
1; 
2g; where 
1 WD 2e2; 
2 WD e1� e2:

Thus, in the notation from above, DDf�0; �1; �2g, where �0Df
1; 
2g, �1Df
1g
and �2 D f
2g. With Si WD S�i for i 2 f0; 1; 2g, one computes that

S0 D f�
2e1C�e2 2 a j � 2 .0; �

2/g; S1 D f�
2e1g; S2 D f�

2.e1C e2/g:

We further put Zi WDZ�i for each i . By computing the corresponding matrix expo-
nentials, we obtain

Z1 D fdiag.a; b; c; d/ 2 U.2/�U.2/ j a; b; c; d 2 U.1/g Š U.1/4:

Since U.2/=.U.1/�U.1// is diffeomorphic to CP 1 Š S2, it follows that K=Z1 Š
S2 � S2. Hence, cat.K=Z1/ D cat.S2 � S2/ � 3 by the product inequality for cat;
see [6, Theorem 1.37]. One further computes by matrix exponentials that Z2 DK, so
K=Z2 consists of a single point, which yields cat.K=Z2/D 1. By [36, Lemma 4.9],
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for every fixed X 2 S0 we obtain Z0 D fk 2 K j Exp.Ad.k/.X// D Exp.X/g. We
choose X D �2e1C 1

2
�2e2 and claim that

Z0 D fdiag.a; b; c; b/ 2 U.2/�U.2/ j a; b; c 2 U.1/g:

To see this, we compute that

exp.X/D

0BBB@
0 0 1 0

0 1p
2
0 1p

2

�1 0 0 0

0 � 1p
2
0 1p

2

1CCCA :
The condition Exp.Adk.X//D Exp.X/ is equivalent to exp.�X/k exp.X/ 2K: One
then checks by an explicit computation that k 2K satisfies this condition if and only if

k D diag.a; b; c; b/ with a; b; c 2 U.1/:

Hence, K ! K=Z0 is a bundle with typical fiber U.1/3, where an inclusion of the
fiber is given by

f W U.1/3! U.2/�U.2/; f .a; b; c/D diag.a; b; c; b/:

We want to show that K=Z0 is simply connected. By the long exact sequence of
homotopy groups of that bundle, it suffices to show that f� W �1.U.1/3/! �1.U.2/

2/

is surjective. Let 
 W Œ0; 1�! U.1/, 
.t/ D e2�it . We observe that �1.U.1/3/ Š Z3.
A set of generators of �1.U.1/3/ is given by the homotopy classes of the loops

1; 
2; 
3 W Œ0; 1�! U.1/3 defined as


1.t/D .
.t/; 1; 1/; 
2.t/D .1; 
.t/; 1/; 
3.t/D .1; 1; 
.t//:

We further observe that �1.U.2/2/ Š Z2, where a set of generators is given by the
homotopy classes of

ˇ1;ˇ2W Œ0;1�!U.2/�U.2/; ˇ1.t/Ddiag.
.t/;1;1;1/; ˇ2.t/Ddiag.1;1;
.t/;1/:

Here we used [4, Example VII.8.1]. One immediately sees that f ı 
1 D ˇ1 and
f ı 
3 D ˇ2. This shows that the image f� contains a set of generators, and hence f�
is surjective. Thus, �1.K=Z0/ is the trivial group, which implies by [6, Theorem 1.50]
that

cat.K=Z0/�
1
2

dim.K=Z0/C 1D 5
2
C 1D 7

2
:

Since cat is integer-valued, we obtain cat.K=Z0/� 3. To employ Corollary 8.3, we
still need to estimate cat.G2.C4// from above. Another use of [6, Theorem 1.50]
shows that

cat.G2.C
4//� 1

2
dim.G2.C4//C 1D 5:
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Inserting the results of our computations into Corollary 8.3, we derive

GC.G2.C
4//� cat.G2.C

4//
�
cat.K=Z0/Cmaxfcat.K=Z1/; cat.K=Z2/g

�
C 1

� 5.3C 3/C 1D 31:

By [14, Lemma 28.1], it further holds that TC.G2.C4// D dim.G2.C4//C 1 D 9.
Thus, by the previous inequality and Remarks 2.4, we obtain

9� GC.G2.C
4//� 31:
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