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Adequate links in thickened surfaces
and the generalized Tait conjectures

HaNS U BODEN
HOMAYUN KARIMI
ADAM S SIKORA

We apply Kauffman bracket skein algebras to develop a theory of skein adequate
links in thickened surfaces. We show that any alternating link diagram on a surface is
skein adequate. We apply our theory to establish the first and second Tait conjectures
for adequate links in thickened surfaces. Our notion of skein adequacy is broader and
more powerful than the corresponding notions of adequacy previously considered for
link diagrams in surfaces.

For a link diagram D on a surface ¥ of minimal genus g(X), we show that
span([D]z) = 4c(D) +4|D| —4g(X),

where [D]y is its skein bracket, | D| is the number of connected components of D,
and c¢(D) is the number of crossings. This extends a classical result of Kauffman,
Murasugi and Thistlethwaite. We further show that the above inequality is an equality
if and only if D is weakly alternating. This is a generalization of a well-known result
for classical links due to Thistlethwaite. Thus, the skein bracket detects the crossing
number for weakly alternating links. As an application, we show that the crossing
number is additive under connected sum for adequate links in thickened surfaces.

57K10, 57K12; 57K 14, 57K31

1 Introduction

The Kauffman bracket is a Z[A%!]-valued invariant of framed links in R3 determined
by the skein relations

(1) K =4)(~47X and O-3,
where § = —A42 — A2,
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It naturally extends to an invariant of framed links in an arbitrary oriented 3—-manifold M
(possibly with boundary), via the skein module construction: Let .Z (M) be the set
of all unoriented, framed links in M, including the empty link &. The skein module
(M) of M is the quotient of the free Z[A®!]-module spanned by .-Z(M) by the
submodule generated by the Kauffman bracket skein relations (1); see Przytycki [44]
and Turaev [50; 51].

By this construction, the bracket
[-]: Z(M) — (M),

sending framed links to their equivalence classes in .(M ), called the skein bracket, is
the universal invariant of framed links in M satisfying (1).

Independently of this initial motivation, skein modules quickly began to play a much
broader role in the development of quantum topology, for example in connection with
SL(2, C) character varieties (see Bullock [12], Przytycki and Sikora [45], Frohman,
Kania-Bartoszynska and L& [25], Turaev [51] and Bullock, Frohman and Kania-
Bartoszynska [13]), topological quantum field theory (see Blanchet, Habegger, Mas-
baum and Vogel [7] and Turaev [52]), (quantum) Teichmiiller spaces and (quantum) clus-
ter algebras (see Bonahon and Wong [11], Costantino [17], Fock and Goncharov [22],
Fomin, Shapiro and Thurston [23] and Muller [42]), the AJ conjecture (see Frohman,
Gelca and Lofaro [24] and L€ [36]), and many more.

Here we develop a general theory of skein adequacy (called adequacy, for short) for
links in thickened surfaces with the aid of skein modules.

Let X be an oriented surface and I = [0, 1] be the unit interval. The skein module of
the thickened surface ¥ x I comes naturally equipped with a product structure given by
stacking, ie the product Lj - L is defined by placing L on top of L5 in X x I. With
this product structure, the skein module .7’ (X x I) becomes an algebra over Z[A*1].

Let ¥(X) denote the set of all nontrivial unoriented simple loops on X up to isotopy and
A€ (%) denote the set of all nontrivial unoriented multiloops on X, ie collections of
pairwise disjoint simple noncontractible loops, including &, up to isotopy. Then, by [44]
(cf Sikora and Westbury [46]), the skein module . (X x I) is a free Z[A*!]-module
with basis .#Z ¢ (X). Consequently, via this identification, the skein bracket gives a map

) [[g: L(ExI)—> A(Ex])=Z[ATN e (D).

We use the association (2) to develop a theory of skein adequacy for links in ¥ x [
which extends that for classical links. This theory is broader and more powerful than the
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Adequate links in thickened surfaces and the generalized Tait conjectures 2273

corresponding notions of simple adequacy (see Lickorish and Thistlethwaite [38]) and
homological adequacy (see Boden and Karimi [8]). For example, we will see that every
weakly alternating link in ¥ x [ without removable nugatory crossings is skein adequate.

We will apply the skein bracket to establish the first and second Tait conjectures for skein
adequate link diagrams on surfaces. The first one says that skein adequate diagrams have
minimal crossing number, and the second one says that two skein adequate diagrams
for the same oriented link have the same writhe. (The writhe of a link diagram D is
denoted by w(D) and is defined to be the sum of its crossing signs.) These results
strengthen the earlier work of Adams, Fleming, Levin and Turner [3], who showed the
minimal crossing number result for reduced alternating knot diagrams in surfaces. We
also strengthen the minimality result of [8] for homologically adequate link diagrams in
surfaces, and further show that any connected sum of two skein adequate link diagrams
on surfaces is again skein adequate. This implies that the crossing number and writhe are
essentially additive under connected sum of skein adequate links in thickened surfaces.

For any link diagram D on a surface ¥ of minimal genus, we prove that
span([D]x) < 4c(D) +4|D| - 4g(%).

where | D | is the number of connected components of D, ¢ (D) is the number of crossings
and g(X) is the genus of X. This inequality generalizes a result proved by Kauffman,
Murasugi and Thistlethwaite for link diagrams on R? [31; 43; 48], extending their
nice geometric application of the Kauffman bracket. It also extends and strengthens
an analogous recent result proved in [8] using the homological Kauffman bracket.

Additionally, we prove that the above inequality is an equality if and only if D is weakly
alternating. Therefore, the skein bracket, together with the crossing number, distin-
guishes weakly alternating links. That generalizes the analogous result of Thistlethwaite
for classical links.

Broader context and motivation

While the results presented here are new only for links in noncontractible surfaces,
generalized link theory is of growing interest and has many potential connections to
classical links and 3—dimensional geometry. We take a moment to discuss some of them.

One motivation for our results is their connection to the theory of virtual knots and links,
which can be viewed as links in thickened surfaces, considered up to homeomorphisms
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and stabilization; see Carter, Kamada and Saito [14]. By Kuperberg’s theorem [33],
minimal genus realizations of virtual links are unique up to homeomorphism. Our
theory of adequate and alternating links in thickened surfaces is invariant under surface
homeomorphisms and, therefore, many of the results given here can be restated in the
language of virtual links.

A second motivation involves potentially novel applications to classical link theory. The
Turaev surface construction associates to any classical link diagram an alternating link in
a thickened surface; see Turaev [49], Dasbach, Futer, Kalfagianni, Lin and Stoltzfus [18]
and Champanerkar and Kofman [15]. Menasco [40] famously proved hyperbolicity
for prime alternating (nontorus) links in S3, and his result has been extended to prime
alternating links L C ¥ x I by Adams, Albors-Riera, Haddock, Li, Nishida, Reinoso
and Wang [1]. This result opens the door to using the hyperbolic geometry of alternating
links in higher-genus surfaces to profitably study nonalternating classical links; eg
see Adams, Eisenberg, Greenberg, Kapoor, Liang, O’Connor, Pachecho-Tallaj and
Wang [2] and the many other papers cited below.

Dasbach and Lin [19] proved a remarkable result giving a bound on the volume of
alternating link complements in terms of the second and penultimate coefficients of
the Jones polynomial. Lackenby [34] established an equally remarkable bound on the
volume of alternating link complements in terms of the diagrammatic twist number.
For alternating hyperbolic links in S3, the results of [19] imply that the twist number
is essentially an isotopy invariant of L, but this is not true in general.

These methods have been generalized to nonalternating hyperbolic links in 3 (see Blair,
Allen and Rodriguez [5; 6]) and to hyperbolic links in arbitrary compact oriented 3—
manifolds by Howie and Purcell [27]. In general, there is a notion of weakly generalized
alternating link diagrams on surfaces due to Howie [26], extended to links in compact
oriented 3—manifolds via “generalized projection surfaces” by Howie and Purcell [27].

The volume bounds have been extended to alternating links in thickened surfaces
by Bavier and Kalfagianni [4] and Will [53] and also to virtual alternating links by
Champanerkar and Kofman [16]. In [16; 53], the volume bounds are expressed in terms
of the Jones—Krushkal polynomial — see Krushkal [32] and Boden and Karimi [8] —
and in [4] they are expressed in terms of a skein invariant derived from fully contractible
smoothings. In [4, Corollary 1.3], they deduce that, for certain alternating links in
thickened surfaces, the twist number is an isotopy invariant. Interestingly, this result is
consistent with the generalized Tait flyping conjecture.
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2 State sum formula and the generalized Jones polynomial

We will assume throughout that ¥ is an oriented surface with one or more connected
components, which may also have boundary. Links in ¥ x I will be represented as
diagrams on X up to Reidemeister moves.

Every framed link in ¥ x I can also be represented by a link diagram with framing given
by the blackboard framing. Equivalence of framed links is given by regular isotopy,
which includes the second and third Reidemeister moves, as well as the modified first
Reidemeister move, which replaces QL or 2R with _~_.

Let D be a link diagram on a surface X. Given a crossing X of D, we consider its
A-type >< and B-type X resolution, as in the Kauffman bracket construction. A
choice of resolution for each crossing of D is called a state. Let S(D) denote the set
of all states of D. Thus, |S(D)| = 2°P), where c¢(D) is the crossing number of D.

For S € &(D), let |S| denote the number of loops in S and #(S) the number of
contractible loops in S. Also let S denote S with contractible loops removed. Hence,
Se.ne (X). Generalizing the usual formula for the classical Kauffman bracket, we
get the following state sum formula as an immediate consequence of the definition:

(3) Dls = Y AP e z[4F e ().
Se&(D)

where a(S) and 5(S) are the numbers of A—and B—smoothingsin S and § = —4%2—A4~2
as before. A similar formula appears in the paper of Dye and Kauffman on the surface
bracket polynomial [21].

Any invariant of framed links in ¥ x [ satisfying (1) can be normalized to obtain a
Jones-type polynomial invariant of oriented links. In the case of the skein bracket (2),
one obtains the generalized Jones polynomial, an invariant for oriented links in X x
given by

4) Js(D) = (=) P2 PV4([D]5) yoy1/a.
3 Adequate link diagrams in surfaces
Given a link diagram D, let S4 be the pure A state and let Sp be the pure B state.

Then S4 and Sp are the states which theoretically give rise to the terms of maximal
and minimal degree in (3). The notion of adequacy of a link diagram is designed to
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guarantee that the terms from Sy and Sp survive in the state sum formula. Therefore,
when D is a skein adequate diagram, its skein bracket [ D]y has maximal possible span.

Two states S and S’ are said to be adjacent if their resolutions differ at exactly one
crossing.

Definition 1 A link diagram D on a surface X is said to be A—adequate if t(S) <t(Sy4)
or § # Sy in 4% (Z) for any state S adjacent to Sy4. It is said to be B—adequate if
1(S)<t(Sp)or S # Sp for any state S adjacent to Sp. The diagram D is called skein
adequate if it is both A— and B—adequate.

The notions of A— and B—adequacy are modeled on the notions of plus- and minus-
adequacy for classical links [37]. Recall that a classical link diagram is said to be
plus-adequate if | S| =|S4|—1 for any state S adjacent to S4, and it is minus-adequate
if |S| = |Sp| — 1 for any state S adjacent to Sp. This simpler notion of adequacy
extends verbatim to link diagrams on surfaces. For link diagrams on surfaces, plus-
and minus-adequacy is a special case of the notion of homological adequacy, which
was introduced in [8] and will be reviewed in Section 4. We will see that adequacy as
defined above is more general than simple or homological adequacy.

The following provides an alternative definition of adequacy:

Proposition2 (1) A link diagram D on X is A-adequate if and only if t (S) <t(Sy4)
or |§| #* |§A| for any state S adjacent to S4.

(2) A link diagram D on X is B-adequate if and only if t(S) <t(Sp) or |§| # |§B|
for any state S adjacent to Sp.

Proof We begin with some general comments. Given a link diagram D and two
adjacent states S and S’, the transition from S to S’ is one of the following types:

(i) |S’| =|S|+ 1, ie one cycle of S splits into two cycles of S”.
(ii) |S’| =|S|—1, ie two cycles of S merge into one cycle of S,
(iii) |S’| =|S]|, ie one cycle C of S rearranges itself into a new cycle C’ of S”.!

In cases (ii) and (iii), either z(S”) <¢(S) or S’ £ §. Specifically, in case (ii), (S") > 7(S)
only when two nontrivial parallel cycles in S merge to form one trivial cycle in S,
which implies that S # S’ S’ Likewise, in case (iii), we claim that neither C nor C’ is

I The transition S — S’ in this case is called a single cycle bifurcation.
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trivial and, consequently, 7(S’) = 7(S). To see that, note that, if S’ is obtained from S
by a smoothing change of a crossing x, then there are two simple closed loops o, 8 C X
intersecting at x only and such that the two different smoothings of x yield C and C".
Assigning some orientations to « and 8, we see that C and C’ with some orientations
equal (o + B) and (o — B) in H1(X). Since the algebraic intersection number of o
and B is 1, we know that @ # £+ and, consequently, neither C nor C’ is trivial.

Therefore, to verify that a given diagram is A— or B—adequate, it is enough to check
that the conditions of Definition 1 hold in case (i).

We will now prove part (1). Suppose S is a state adjacent to S4 with (S) =#(S4) + 1.
Then the transition from S4 to S must either be case (i) or (ii).

If it is case (i), then |S| = |S4| + 1 and 7(S) = #(S4) + 1; therefore, S = S4. Thus,
D is not A—adequate and |§| = |§A|. If it is case (ii), then |S| = |S4| — 1, and two
nontrivial cycles of S4 must merge into a trivial cycle of S. In this case, the conditions
for A—adequacy are satisfied and |§ | # |§A|.

The proof of part (2) is similar and is left to the reader. O

For any diagram D, its bracket has a unique presentation

[Dls =) pu(D)pe #(Ex1),
n

where the sum is over all multiloops w in %. Denote the maximal and minimal degrees
(in the variable A) of the nonzero polynomials p,, (D) in this expression by dmax ([D]x)
and dpin([D]x).

Proposition 3 For any link diagram D on %,
(1) dmax([Dlx) < c(D) + 2t(Sy), with equality if D is A—adequate;
(2) dmin([D]x) = —c(D) —2t(Sp), with equality if D is B-adequate.
Proof (1) By (3), [D]y is given by a state sum with term (—1)7(54) 4¢(P)+21(Sa)

for the state S4. Now the inequality of (1) follows from the fact that every change of a
smoothing in Sy decreases a(S) —b(S) by two and increases #(S) by at most one.

The proof of equality in (1) when D is A—adequate follows immediately from part (1)
of the lemma below.

The proof of (2) is analogous, and the proof of equality in (2) when D is B—adequate
follows from part (2) of the lemma below. O
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Lemmad4 (1) If D is A—adequate and S is a state with at least one B—smoothing,
then either

a(S)—b(S)+2t(S) <c(D)+2:(S4) or S # 8y.
(2) If D is B—adequate and S is a state with at least one A—smoothing, then either
a(S)—b(S) +2t(S) > —c(D)—2t(Sg) or S+#8p.

Proof We prove (1) by contradiction: Suppose to the contrary that S is a state with at
least one B—smoothing such that S =84 and

a(S) —b(S) +2¢(S) = c(D) + 2¢(Sq).

Clearly, S can be obtained from S4 by a sequence of smoothing changes from A to B,
S4=S80— S1 —---— S = S. Further, each smoothing change must increase (- ) by
one, ie 1 (S;+1) =1(S;)+1fori =0,...,k—1. Since each smoothing change increases
the number of cycles in a state by at most one, none of these smoothing changes can
addanewcycleto S; fori =0,..., k. Therefore, |§,+1|<|§,|f0ri—0 L k—1.
However, since S = Sy4, none of the smoothing changes can decrease |S, | either. It
follows that S,+1 = Sl fori =0,...,k—1. Thus, |S,+1| = |S,| and

1Si41] = 1(Si41) + |Si1] = 1(S) + 1+ 1Si| = S|+ 1

fori =0,...,k—1. In particular, each transition S; — S; 11 is of type (i), as discussed
in the proof of Proposition 2, ie one where a cycle of S; splits into two cycles of S; 1.

However, since D is A—adequate, the first smoothing change S4 = So — S has either
t(Sy1) <t(Sy) or Si # S4, which is a contradiction.

This completes the proof of the first statement. The proof of the second one is similar
and is left to the reader. |

The next result is an immediate consequence of Proposition 3. Below, span([D]x)
denotes the difference between the maximal and minimal A-degree of [D]x.

Corollary 5 If D is a link diagram on X, then
span([D]z) < 2¢(D) +2t(S4) +21(SB).

with equality if D is skein adequate.

The map U: .#Z%(Z) — Z|z] sending S to z!S! extends linearly to the skein module,
U: A (S x1)=Z[AT N ae(Z) — Z2[AT!, z].
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The composition ¥([D]y) is called the reduced homotopy Kauffman bracket. Obvi-
ously,

span(¥([D]x)) < span([D]x),

where span( - ) refers to the span in the A—degree.

Proposition 6 If D is a skein adequate link diagram on X, then
span(¥([D]z)) = span([D]z).

Proof Let S be a state with at least one B—smoothing such that |§ | = |§A| and
a(S) —b(S) + 2t(S) = c¢(D) + 2t(S4). As before, S can be obtained from Sy
by a sequence of smoothing changes from A to B, and each smoothing change can
increase #(-) by at most one, ie Sy = So — S; — --- = S = S. As in the proof
of Lemma 4, we must have ¢(S;+1) = ¢(S;) + 1. Further, since a smoothing change
can increase the number of cycles in S; by at most one, we have |§,~+1| < |§,| for
i =0,...,k—1. Now the assumption that |§| = |§A| then implies that |§,~+1| = |§,| for
i =0,...,k—1. However, since D is adequate, for the first transition Sy = So — S1,
either 1(S1) # t(So) + 1 or S # So. But #(S1) = 1(Sp) + 1 and |S;| = |So| imply
that §; = §0, which gives a contradiction.

Therefore, the term with maximum A-degree in W([D]x) must survive. A similar
argument applies to show that the term with minimum A-degree survives. It follows that

span(V([D]x)) = 2¢(D) + 21(S4) +2¢(Sp) = span([D]x). =

The next proposition shows that skein adequacy is inherited under passing to subsurfaces
Y cCx.

Proposition 7 If a link diagram D on a subsurface X' of ¥ is A— or B—adequate in X,
then it is A— or B—adequate, respectively, in X',

Proof In the following, let (S, X) be the value of #(S) when S is regarded as a state
in X, and let £(S, X’) be its value when S is regarded as a state in X',

Suppose D is not A—adequate in ¥’. By Proposition 2, there exists a state S adjacent
to Sq with 7(S, ') = t(S4, T')+ 1 and |S| = |S4| in ¥/, In particular, | S| = |Sa| + 1,
and the transition from S4 to S must involve one cycle C of S4 splitting into two
cycles C;1 and C, of S. At least one of C; and C, must be trivial in X/, for otherwise
t(S, X)) <t(S4q,Y). If, say, Cq is trivial in ¥/, then it must also be trivial in X, because
¥’ C X is a subsurface.
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As a cycle in X, C is either trivial or nontrivial. If it is trivial, then C, must also
be trivial in X, and so in fact all three of C, C; and C; are trivial. This implies
that (S, X) = 1(S4, X) + 1 and |§| = |§A| in X, contradicting the assumption of
A-adequacy of D.

If, on the other hand, C is nontrivial in X, then C, must also be nontrivial in X. This
again implies that #(S, ¥) = (5S4, X) + 1 and |§| = |§A| in X, leading to the same
contradiction. Therefore, D must be A—adequate on X',

The proof of B—adequacy of D is identical. O

4 Skein and homological adequacy

For completeness of discussion, in this section we compare Definition 1 of skein
adequacy to two legacy versions, namely simple and homological adequacy. We will
see that our notion of adequacy is broader and that the statements of Lemma 4 and
Corollary 5 are strictly stronger than the corresponding statements for simple and
homological adequacy. Henceforth, we will say a link diagram on a surface is adequate
if it is skein adequate.

For any state S C X, let us denote the ranks of the kernel and the image of
ix: H1(S;7/2) - H(2;Z/2),
by k(S) and r(S), respectively.
The homological Kauffman bracket,
(D)y = Z A9(S)=b(S) gk(S) ,7(S)
Se&(D)
was introduced by Krushkal [32] and studied in [8].

Based on this invariant, Boden and Karimi [8] introduced the notion of homological
adequacy for link diagrams in surfaces. A diagram D on X is homologically A-adequate
if k(S) < k(S,) for any state S adjacent to S4, and it is homologically B—adequate if
k(S) < k(Sp) for any state S adjacent to Sg. A diagram D is homologically adequate
if it is both homologically A— and B-adequate.

It is not difficult to show that a diagram that is plus-adequate is homologically A-
adequate, and one that is minus-adequate is homologically B—adequate. (For further
details, see [8, Section 2.2].)
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Figure 1: An alternating diagram on the torus.

Proposition 8 Every homologically A-adequate link diagram is A—adequate and every
homologically B—adequate link diagram is B—adequate.

Proof Recall from the discussion at the beginning of the proof of Proposition 2
that there are the three possible cases and, to verify that a given diagram is A— or
B-adequate, it is enough to check that the conditions of Definition 1 hold in case (i).
Hence, it is enough to focus on states S adjacent to S4 or Sp with |[S| = |S4| + 1 or
|S| = |SB| + 1, respectively.

If D is not A-adequate, then there exists a state S adjacent to S4 with |S| = |S4| + 1,
1(S) =1(S4) + 1 and S = S4. (Notice that if |S| = |S4| + 1 and 7(S) = 1(S4) + 1,
then S = Sy automatically holds.) In this case, we have k(S) = k(S4) + 1, and it
follows that D is not homologically A—adequate. This proves the first statement in the
proposition, and the proof of the second statement on B—adequacy is similar. |

In summary, then, for a link diagram D on a surface %, it follows that
5) plus-adequacy = homological A—adequacy = A-adequacy,

with similar statements relating minus-adequacy, homological B—adequacy, and B—
adequacy.

In Example 20, we will see a knot diagram in a genus two surface which is adequate
but not homologically adequate. On the other hand, it is easy to construct examples
which are homologically adequate but not simply adequate. For instance, consider the
alternating diagram D with three crossings on the torus in Figure 1. A straightforward
calculation shows that it is homologically adequate but not simply adequate. These
examples show that none of the reverse implications in (5) hold; therefore, the notion
of adequacy in Definition 1 is strictly more general than either homological or simple
adequacy.
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In general, notice that
span({D)x) <span([D]x) <2¢(D)+2t(S4) +2t(Sp) =2¢(D)+2k(S4) +2k(SB),

where span( - ) is the span in the A—degree. Therefore, Corollary 5 immediately implies
an analogous inequality holds for homological adequacy; see [8, Corollary 2.7].

5 Alternating links and the Tait conjectures

When tabulating knots, Tait formulated three conjectures on alternating links. The
first one states that any reduced alternating diagram of a classical link has minimal
crossing number. The second one asserts that any two such diagrams representing the
same link have the same writhe. The third one states that any two reduced alternating
diagrams of the same link are related by flype moves. The first two conjectures were
resolved almost 100 years later, independently by Kauffman [31], Murasugi [43] and
Thistlethwaite [48], using the newly discovered Jones polynomial. The third conjecture
was established shortly after by Menasco and Thistlethwaite [41]. The first two Tait
conjectures actually hold more generally for adequate links [38], and their proofs have
been generalized to homologically adequate links in thickened surfaces in [8]. Here,
we generalize these results even further to adequate links in thickened surfaces.

Henceforth, all links in thickened surfaces will be unframed, unless stated otherwise.
Given an oriented link diagram D, let ¢4 (D) be the numbers of crossings of type X,
and let c_(D) be the number of crossings of type X The proof of the following
theorem can be found in Section 7.1:

Theorem 9 Let D and E be oriented link diagrams on ¥ representing the same
oriented unframed link in ¥ x 1.

(1) If D is A-adequate, then c_(D) < c_(E).
(i) If D is B—adequate, then c+ (D) < c4+(E).
The crossing number ¢(L) of alink L C ¥ x [ is defined as the minimal crossing

number among all diagram representatives of L. A link L C ¥ x [ is said to be adequate
if it admits an adequate diagram on X.

Using Theorem 9, one can deduce the first and second Tait conjectures for adequate
links in surfaces.
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Corollary 10 (i) Any adequate diagram of a link in X x I has c(L) crossings.

(i) Any two adequate diagrams of the same oriented link in X x I have the same
writhe.

Proof Statements (i) and (ii) are immediate consequences of Theorem 9. In the
case of (ii), if adequate diagrams D and E represent the same oriented link, then
c+(D)=c4(E) and c—(D) = c_(E) by the above theorem and, hence,

w(D) =c4+(D)—c—(D)=c+(E)—c—(E) =w(E). |

Corollary 10 implies that for an adequate link L C X x I, the writhe is a well-defined
invariant of its oriented link type.

Let g(X) be the sum of the genera of the connected components of X. A link diagram
D on X is minimally embedded if it does not lie on a subsurface of ¥ of smaller genus.
In other words, the complement of D on X has no nonseparating loops. Let Np be a
neighborhood of D in ¥ small enough that it is a ribbon surface retractable onto D. A
diagram D is minimally embedded if and only if g(Np) = g(X).

Furthermore, note that, if D is connected and X is closed, then D is minimally
embedded if and only if ¥ ~ D is composed of disks. In that case, we say that D is
cellularly embedded.

A link diagram D on a closed surface X is said to have minimal genus if it is minimally
embedded within its isotopy class.

In [39], it is proved that any cellularly embedded knot diagram with minimal crossing
number has minimal genus. This result was recently extended to link diagrams, and
the following is a restatement of [10, Theorem 1]:

Theorem 11 Any cellularly embedded link diagram with minimal crossing number
has minimal genus.

A link diagram D on X is alternating if, when traveling along any of its components,
its crossings alternate between over and under. A link L C ¥ x [ is alternating if it
can be represented by an alternating link diagram.

A crossing x of D is nugatory if there is a simple loop in ¥ which separates ¥ and
intersects D only at x.
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Figure 2: An essential nugatory crossing.

As observed in [8], although nugatory crossings in diagrams in ¥ = R? can always be
removed by rotating one side of the diagram 180° relative to the other, this is not always
true for diagrams in noncontractible surfaces X; see Figure 2. A nugatory crossing
is said to be removable if the simple loop can be chosen to bound a disk, otherwise
it is called essential. A link diagram is reduced if it does not contain any removable
nugatory crossings. For example, the knot in Figure 6 contains an essential nugatory
crossing.

The following strengthens [8, Proposition 2.8]. Its proof is given in Section 7.2.
Theorem 12 Any reduced alternating diagram is adequate.

Note that, unlike [8, Proposition 2.8], we do not assume here that D is cellularly
embedded or checkerboard colorable, nor that D has no nugatory crossings.

A link diagram on X is called weakly alternating if it is a connected sum Do#D#- - -# Dy
of an alternating diagram Dy in ¥ and alternating diagrams D1, ..., Dy in S? (see
Lemma 16). Theorem 12 can be generalized to show that weakly alternating diagrams
are adequate. In fact, in the next section we will prove Proposition 17, showing that
any diagram on a surface obtained as the connected sum of two adequate link diagrams
is itself adequate.

Let us return to Tait conjectures now. By Corollary 10, any reduced alternating
diagram D has the minimal crossing number for all diagrams representing the same
unframed link L in ¥ x I. Furthermore, all such oriented diagrams representing the
same link L have the same writhe.

The results of Kauffman, Murasugi and Thistlethwaite [31; 43; 48] imply that the span
of the Kauffman bracket of any diagram D C S? satisfies

span([D]g2) < 4c(D) + 4,
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Figure 3: Two knots in a genus two surface with the same homological
Kauffman bracket.

or, equivalently, for the Jones polynomial, that span(Vp(¢)) < c(D), with equality if
D is alternating. Furthermore, in [48], Thistlethwaite proved that, if D C S? is prime
and nonalternating, then

span([D]g2) < 4c(D) + 4.

In [49], it is observed that the above results hold if D C S? is weakly alternating, namely
if D is a connected sum of alternating diagrams. Thus, the Kauffman bracket [D] g2,
together with ¢(D), detects weakly alternating classical links.

The homological Kauffman bracket of [8] is not sufficiently strong to prove an analogous
statement for links in thickened surfaces. Consider the two knots in the genus two
surface in Figure 3. These knots have the same homological Kauffman bracket, namely

(D1)s = (Da)x = 3827 —48%z + (A* + 3+ 4748,

but one of them is alternating and the other is not. Consequently, the homological
Kauffman bracket does not detect alternating knots in thickened surfaces.

However, we are going to show that the Kauffman, Murasugi and Thistlethwaite
statements hold for the Kauffman bracket [- ]y of diagrams in closed surfaces X after
replacing 4 by 4| D| —4g(X) on the right.

Let | D| denote the number of connected components of D (which may be smaller than
the number of connected components of the link in ¥ x I represented by D).

Let r(D) be the rank of the image of ix: Hi(D;Z/2) - H{(X;Z/2). If D C X is
minimally embedded, then i, is surjective and r (D) = 2g.

The proof of the next result is given in Section 7.4.
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Figure 4: Minimally embedded alternating diagram for which the equality of
Theorem 13(ii) does not hold.

Theorem 13 (i) For any link diagram D C X,
span([D]x) < 4c(D)+4|D|—2r (D).
(ii) If D is cellularly embedded, reduced, and weakly alternating, then
span([D]x) = 4c(D) +4|D| —4g(2).
(iii) If D is not weakly alternating then

span([D]x) < 4c(D)+4|D|—2r(D).

The assumptions of Theorem 13(ii) are necessary:

If D has a removable nugatory crossing, then eliminating it decreases the right-hand
side of the above equality but not the left-hand side. Therefore, (ii) does not hold for
diagrams with removable crossings.

It can also fail when D is not cellularly embedded. For example, consider the alternating
link in Figure 4. It has #(S4) = 4 and ¢(Sp) = 2. Therefore, by Corollary 5, we have
span([D]y) < 16 4+ 12 = 28, whereas 4c¢(D) + 4|D| — 4g(X) = 32. Note that this
diagram is minimally embedded but not cellularly embedded.

Although (ii) holds for weakly alternating diagrams, in the next section we will see
that it does not hold generally for connected sums of alternating diagrams in arbitrary
surfaces (see Example 19).

Corollary 14 Let L be a link in X x I with a reduced, weakly alternating diagram D
which is cellularly embedded. Then any other cellularly embedded diagram E for L
satisfies c(D) < c(E). If E is not weakly alternating, then c(D) < c(E).

Proof The first part is a direct consequence of Tait conjecture, Corollary 10. Let us
prove the full statement now: Any cellularly embedded link diagram on a connected
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surface is itself connected. Therefore, it is enough to prove the statement under
the assumption that 3 and D are both connected. Theorem 13(ii) then implies that
c(D) = %span([D]g) + g(X) — 1. If E is a second link diagram for L on X, then,
since E is cellularly embedded, it must also be connected. Theorem 13(i) implies that

¢(D) = gspan([D]z) + g(%) — 1 = g span([E]x) + g(T) — 1 < c(E).

If E is not weakly alternating, then Theorem 13(iii) shows the last inequality is strict;
therefore, it follows that ¢(D) < c(E). |

Remark 15 The corollary gives an alternative proof of Theorem 11 for nonsplit
alternating links as follows. Let L be a nonsplit alternating link in ¥ x I, where X is
closed oriented surface, and let D C ¥ a minimal crossing cellularly embedded diagram
for L. Then Corollary 14 implies that D is an alternating diagram. The argument
is completed by appealing to [9, Proposition 6], which shows that alternating link
diagrams have minimal genus.

6 Crossing number and connected sums

In this section, we will study the behavior of the crossing number under connected sum
of links in thickened surfaces. This problem is closely related to an old and famous
conjecture for classical links, which asserts that, for any two links L and L,,

(6) c(L1#L2) =c(Ly1)+c(L2).

This conjecture has been verified for a wide class of links, including alternating links,
adequate links, and torus links [20]. Clearly, ¢ (L1 # L») <c(L1) 4+ c(L>). In addition,
in [35], Lackenby has proved that, in general, one has a lower bound of the form

c(L1#Ly) > 135 (c(L1) + c(L2)).

The operation of connected sum is not so well behaved for arbitrary links in thickened
surfaces.

Just as for classical links, it depends on the choice of components which are joined as
well as their orientations. However, unless one of the links is in S2 x 7, it also depends
on the diagram representatives as well as the choice of basepoints x; € D; where the
link components are joined. The issue is the fact that a Reidemeister move applied to
either of the link diagrams may change the link type of their connected sum. We take a
moment to quickly review its construction.
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Suppose 31 and X, are oriented surfaces and let 31 # 3, denote their connected sum.
It is obtained from the union (X1 ~int B1) U (X, ~int By) by gluing dB; C X; to
dB> C X5 by an orientation-reversing homeomorphism g: dB; — dB». For connected
surfaces, 31 # 3, is independent of the choice of disks B; C 3; and gluing map.

If D1 C X1 and D, C X, are link diagrams, we can choose cutting points x; € D; and
disk neighborhoods B; from X; such that B; N D; is an interval for i = 1, 2. Then the
surface X1 # 35 can be formed in such a way that D = (D ~int B1) U (D3 ~int B)
is a link diagram in X #3,. If D1 and D, are oriented link diagrams, then we require
the gluing to respect the orientations of the arcs. The resulting diagram is called a
connected sum of D1 and D5. In general, it depends on the choice of link diagrams
D1 and D5, components being joined, and points x; € D;. However, it is independent
of the choice of disk neighborhoods B; containing x;.

The next result shows that, when one of the diagrams lies in S2 x I, the operation of
connected sum is well behaved.

Lemma 16 Let D; C X x I and Dy C S% x I be oriented diagrams, where % is an
arbitrary surface. Then the connected sum of D1 and D is independent of the choice
of the cutting points x1 and x, on the selected components of D1 and of D,.

We will denote the connected sum in this case by D1 # D,. The oriented link type
of Dy # D5 depends only on the link types of Dy and D, and a choice of which
components are joined.

Proof One can shrink the image of D, in the connected sum so that all its crossings
lie in a small 3-ball B3 in ¥ x 1. By an isotopy, we can move the ball along arcs of D
representing the component to which D is joined, and moving over or under the other
arcs at any crossing that we encounter.

This shows that the connected sum is independent of the choice of the cut point x;
on D;. The independence on the cut point xp on D, follows from the well-known
fact that all long knots — or rather (1, 1) tangles — obtained by cutting D at different
points x5 of its specified component are isotopic (as (1, 1) tangles). Shrinking D into
a small 3-ball also allows one to translate any Reidemeister move of D or D into a
Reidemeister move on the connected sum D1 # D,. This proves the last statement. O

Proposition 17 Any connected sum of two A— or B—adequate diagrams is itself A— or
B-adequate, respectively.

Algebraic & Geometric Topology, Volume 23 (2023)



Adequate links in thickened surfaces and the generalized Tait conjectures 2289

Proof Let D be a link diagram in X; # ¥, obtained as the connected sum of A—
adequate diagrams D C ¥; and D, C X5, and suppose to the contrary that D is
not A—adequate. By Proposition 2, there is a state S for D adjacent to S4 with
1(S,S1#35) =1(Sq, T1#35) + 1 and |S| = |S4| in = # Z,. In particular, |S| =
|S4| + 1, and the transition from S4 to S involves one cycle of Sy splitting into two
cycles.

Let x be the crossing of D where the smoothing is changed in the transition from Sy
to S. We can assume, without loss of generality, that x is a crossing from Dj. Let C
be the cycle of Sy that splits into two cycles, C’ and C”, under this transition. Since
1(S, X1 #35) =1(Sq, X1 #X5) + 1, one of the cycles C’ and C”, say C’, must be
trivial.

If C is a cycle contained in S4(D1), then the same is true for C’ and C”. However,
this contradicts the assumption that D, is A—-adequate.

Otherwise, C = C; # C, must be a connected sum of a cycle C; in Sq(D1) with a
cycle Cy in S4(D>). In the transition from S4 to S, by the previous argument, we may
assume the cycle C; # C, splits into C{ # C, and C{’. Further, since C' = C{ #C; is
trivial, it follows that C { must be trivial in X1 and C, must be trivial in X5.

If Cq #C5 is trivial, then C {/ # C, must also be trivial. That would imply that all three
of C1, C{ and C{’ are trivial in X;. This again contradicts the assumption that D is
A-adequate, and we take a moment to explain this point.

Let S(D1) be the corresponding state for D. It is obtained from S4(D;) by switching
the smoothing at x. The transition from S4(D1) to S(D1) involves Cy splitting into
C{ and C{" Since all three of Cy, C{ and C{’ are trivial in X1, we have (S(D1)) =
t(S4(D1)) + 1 and |§(D1)| =S4 (D1) in X1, which contradicts the assumption of
A-adequacy of D;.

The other possibility is that C; # C5 is nontrivial. Since C is trivial in X5, the cycles
C1 and C{ must both be nontrivial in 2. The transition from S4(D1) to S(D1) still
involves C splitting into C{ and C{, only now C; and C{ are nontrivial and C| is
trivial in 1. Thus, 7(S(D1)) = 1(S4(D1)) + 1 and [S(D1)| = S4(D1)| in 1, which
again contradicts the assumption of A—adequacy of D;. Therefore, D = D # D, must
be A-adequate.

The proof of B—adequacy of D is similar. |
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Figure 5: A connected sum of alternating diagrams.

Corollary 18 Suppose L1 C ¥y x [ and L, C ¥, x [ are links represented by adequate
diagrams D1 C X1 and Dy C 5. Then any link L in (X1#3X5)x [ admitting a diagram
which is a connected sum of D and D>, is itself adequate. Further, the crossing number
and writhe satisfy c(L) = c(L1) + c¢(L2) and w(L) = w(L1) + w(L>).

Proof Suppose L is represented by D = D1 # D, C X1 #X5. Then D is adequate by
Proposition 17. Further, by parts (i) and (ii) of Corollary 10, we see that

c(L)y=c(D)=c(D1)4+c(D2)=c(Ly)+c(Lp),
w(L) =w(D)=w(D1) +w(Dz) =w(Ly)+ w(L2). ]

Example 19 Figure 5 shows a knot diagram D in the genus two surface obtained
as the connected sum of two alternating diagrams of the same knot in the torus.
One can easily verify that D is reduced and cellularly embedded, but not alternating.
Further, Proposition 17 implies that this diagram is adequate, and therefore a min-
imal crossing diagram for the knot type. Direct calculation reveals that 7(S4) = 2,
t(Sp) = 0 and |§A| = |§B| = 1. Therefore, span([D]x) = 16. On the other hand,
since 4(c(D) + |D|— g(X)) = 20, by Theorem 13(ii), it follows that D is not weakly
alternating and, in fact, not equivalent to any weakly alternating knot in X x /.

Example 20 Figure 6 shows a knot in a genus two surface with an essential nugatory
crossing. Since it is reduced and alternating, Theorem 12 shows that it is adequate.

Figure 6: An alternating diagram with an essential nugatory crossing.
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o, D ( b o, DoCX] b

Figure 7: Adding twists to a connected sum to create essential nugatory crossings.

Note that this diagram is not homologically adequate. In fact, if S is the state with a
B—smoothing at the nugatory crossing and A—smoothings at all the other crossings,
then one can show that |S| = |Sq| + 1 and k(S) > k(S4).

Notice that this knot can also be obtained as the connected sum of two alternating knots
K7 and K5 in T? x I with ¢(K;) = 3, but after performing a Reidemeister one move
on one of them to obtain a diagram with four crossings. In particular, this example
shows that a connected sum of two diagrams D; C ¥; and D, C X5 can be adequate
even when one of them is not adequate.

Suppose L1 C X1 x 1 and L, C ¥, x I are two alternating links in thickened surfaces
with g(X;) >0 fori =1, 2. Suppose further that D; is a link diagram on X; representing
L; fori = 1,2, and that D and D, are both reduced and alternating.

Instead of forming the connected sum of Dy and D>, take one of the diagrams and
insert an arbitrary number (say n) of twists before forming the connected sum. See
Figure 7.

The result will be a diagram D which is similar to a connected sum of D and D5,
but with n essential nugatory crossings in between. This construction can be carried
out so that D is reduced and alternating. In particular, it will have crossing number
c(D) =c(D1) + c(D3) +n. If L denotes the link type of D, and since Dy and D,
are alternating and have minimal crossing number, this shows that the analogue of (6)
can fail arbitrarily badly for links in thickened surfaces other than S? x I.

The reason (6) fails in general for connected sums of links in thickened surfaces is due
to the use of nonminimal diagrams in forming the connected sum. However, if one
restricts the connected sum operation to minimal crossing diagrams, then one gets a
plausible generalization:

Conjecture 21 Suppose L1 C 31 x 1 and L, C ¥, x I are links in thickened surfaces
with minimal crossing representatives D1 and D, respectively. Then any link L in the
thickening of X1 # X5 arising as a connected sum of D and D satisfies

c(L)=c(Ly) +c(Ly).
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Note that the assumption that D and D, are minimal crossing representatives implies
immediately that
c(L) <c(Ly) +c(Ly).

In fact, the inequality may fail without that assumption. This is related to the fact that
crossing number is not additive under connected sum for virtual knots. For example,
the Kishino knot is the connected sum of two virtual unknots. As evidence, notice that
Corollary 18 confirms that the conjecture is true if L; and L, are adequate links in
thickened surfaces. In particular, it holds for alternating and weakly alternating links.

7 Proofs of Theorems 9, 12 and 13

7.1 Proof of Theorem 9

Given a link diagram D on ¥ and positive integer r, the r" parallel of D is the
link diagram D" on ¥ in which each link component of D is replaced by r parallel
copies, with each one repeating the same “over” and “under” behavior of the original
component.

Lemma 22 If D is A—adequate, then D" is also A—adequate. If D is B-adequate,
then D" is also B—adequate.

Proof Let S4(D) and S4(D") be the pure A—smoothings of D and the pure A—
smoothings of D”, respectively. It is straightforward to check that S4(D") is the
r—parallel of S4(D).

Suppose D’ is not A-adequate. Then there is a state S’ obtained by switching one A—
smoothing in S4(D") to a B—smoothing such that 7 (S4(D")) <¢(S’) and §A(Dr) =5
In the terminology of the proof of Proposition 2, that can only happen for a smoothing
change of type (i), more specifically when the smoothing change involves one of the
innermost cycles in S4(D") which is self-abutting and which, when split, creates a new
trivial cycle in S’. That is only possible if there is a self-abutting cycle in S4 (D) which,
when split, creates a new trivial cycle. Since D is A—adequate, this cannot happen.

An analogous argument proves the statement for B—adequate diagrams. O

Proof of Theorem 9 (i) Since
¢(D)—w(D) =c4 (D) +c—(D) = (c+(D) —c-(D)) = 2c-(D),

we will prove that
c(D)—w(D) <c(E)—w(E).
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Our argument is an adaptation of Stong’s proof [47] (see also [37, Theorem 5.13]).

Let Ly,..., Ly be the components of L and let D; and E; be the subdiagrams of D
and E corresponding to L;. For eachi =1, ..., m, choose nonnegative integers u;
and v; such that w(D;) + u; = w(E;) + v;. Let D’ be composed of components
Dj.....D,,, where each D] is obtained from D; by adding j; positive kinks to it.
(These kinks do not cross with other components). Similarly, let £’ be composed of
components E7, ..., E,,, where each E] is obtained from E; by adding v; positive
kinks to it. Notice that D’ is still A-adequate.

The writhes of the individual components satisfy
w(D}) = w(D;) + pi = w(E;) +v; = w(E;).

Further, the sum of the signs of the crossings of D N D]’. coincides with the sum of
the signs of the crossings of E/ N E j’-, since both are equal to the linking number of L;
and L;. Thus, w(D') = w(E’).

For any r, consider the r'" parallels (D’)” and (E’)" now. Then w((D’)") = r?w(D’),
because each crossing of D’ corresponds to 72 crossings in (D’)” of the same sign. The
diagrams (D’)" and (E’)" are equivalent and have the same writhe; thus, their Kauffman
brackets must be equal. In particular, we have dmax ([(D')]5) = dmax([(E) ]x)-
Proposition 3 implies now that

dnex (I(D'Y]5) = (c(D) T Zm)rz +2(r<SA(D>> T Zui)r,

i=1 i=1
dnan ([(E'Y'5) < (c(E) 'y vi)rz T z(z(SA<E>> Y vl-)r.
i=1 i=1

Since this is true for all 7, by comparing coefficients of the 72 terms, we find that

() c(D)+ Y pi <c(E)+) v

i=1 i=1

Subtracting Y 7L ; (i + w(D;)) = Y7, (vi + w(E;)) from both sides of (7), we get
that

m m
®) c(D) =) w(Di) < c(E) =) w(Ey).

i=1 i=1
Subtracting the total linking number of L from both sides of (8) gives the desired
inequality.

The proof of (ii) is analogous. One adds negative kinks to D and E in this case. O
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Ne3

Figure 8: A knot diagram in the torus which is not alternable.

7.2 Proof of Theorem 12

A link diagram D on X is alternable if it can be made alternating by inverting some of
its crossings. Every classical link diagram is alternable, but the same is not true for link
diagrams in arbitrary surfaces. For example, the knot diagram in the torus in Figure 8
is not alternable.

A link diagram D on X is checkerboard colorable if the components of ¥ ~ D can be
colored by two colors such that any two components of X ~ D that share an edge have
opposite colors.

Proposition 23 Any minimal embedding D on X is alternable if and only if it is
checkerboard colorable.

Proof Observe that filling the boundaries of ¥ with disks does not affect alternability
or checkerboard colorability. Likewise, removing disks from 3~ D also does not affect
alternability or checkerboard colorability. This has two consequences:

(a) Itisenough to prove this statement for surfaces ¥ with all boundary components
capped, ie for closed surfaces.

(b) Since Kamada proved that, if a diagram D is a deformation retract of X, then
it is alternable if and only if it is checkerboard colorable [28, Lemma 7], our
statement holds for cellularly embedded diagrams.

Our strategy is to reduce the proof to this case of cellular embeddings. Suppose that C is
a nondisk component of 3~ D. Then it contains a noncontractible simple closed loop «.
Let X/ be obtained by cutting ¥ along « and by capping the boundary components.
The loop o must be separating X, since otherwise D < X’ would be a lower-genus
embedding of D. Observe now that, since X is a connected sum of two surfaces X1 #35,
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where X1 U X, = X" and D is a disjoint union of D N X7 and of D N X5, it is enough
to prove that D C ¥; is checkerboard colored fori =1, 2.

By repeating this process as long as possible, we reduce the statement to cellularly
embedded diagrams, which is covered by (b) above. O

Lemma 24 Any alternable diagram can be extended by disjoint simple closed loops to
a checkerboard colorable one.

Proof The surface Np C X, being a regular neighborhood of D, is checkerboard col-
orable by the earlier mentioned result of Kamada [28, Lemma 7]. The only reason that
coloring does not extend to D C X is that some connected components C of £ ~int Np
may have multiple connected components of their boundary whose neighborhoods are
colored differently. However, that issue can be resolved by adding simple closed loops
around those boundary components of C which are white. O

Proof of Theorem 12 Let D be alternating diagram without removable crossings.
By Lemma 24, by adding disjoint simple closed loops to D, we obtain a diagram D’
which is alternating and checkerboard colorable. Hence, it is enough to prove that D’
is adequate. Let us assume for simplicity of notation that D is checkerboard colorable.

We will prove the A—adequacy of D only, as the proof of B—adequacy is identical. Let S
be a state with all A—smoothings except for a B—smoothing at a crossing x of D. We will
prove that D is A-adequate “at x”, meaning that ¢(S) <¢(S4) or S # Sy in L(ZxT).

As in the proof of Proposition 2, there are three cases and, to check adequacy, it is
enough to check that the conditions of Definition 1 hold in the first case, namely when
|S|=|S4|+ 1. Therefore, S4 must contain a self-abutting cycle C and, in the transition
from S4 to S, the cycle C splits into two cycles C; and C; of S. Since D is alternating
and checkerboard colorable, S4 bounds a subsurface ¥’ of T of a certain color, say
white, which contains no crossings of D.

We claim that neither C; nor Cs is trivial. Indeed, if, say, C; were trivial, then there
would be a loop y parallel to Cy totally inside X’ except for a little neighborhood of x,
in which it would cross x. Such a curve would imply that the crossing x is removable,
(see for example Figure 9), which is a contradiction. Therefore, neither C; nor Cs is
trivial, and it follows that #(S) = ¢(S4). Therefore, D is A—adequate at x, and this
completes the proof of the theorem. |
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Figure 9: A trivial cycle, resulting in a removable crossing.

7.3 Link diagrams and shadows

A link shadow in ¥ is a 4—valent graph in X, possibly with loop components. In other
words, a shadow is a link diagram with crossing types ignored. For that reason we refer
to shadow vertices as crossings and the components of any link realization of a shadow
as its link components. (Not to be confused with connected components of a shadow.)

Some properties of link diagrams are entirely determined by its link shadow. For
example, we will say that a link shadow D on X is checkerboard colorable if the
components of 3 ~ D can be colored by two colors such that any two components of
3~ D that share an edge have opposite colors. Clearly, a link diagram is checkerboard
colorable if and only if its link shadow is. Similarly, a link shadow is minimally
embedded if it does not lie in a subsurface of ¥ of smaller genus, and it is immediate
that a link diagram on X is minimally embedded if and only if its link shadow is.

Each shadow crossing has two smoothings, which cannot be differentiated as A— and
B-type, as in the case of link diagrams. For that reason, for link shadows it is customary
to place markers at the crossings indicating the smoothing as in Figure 10.

Two consecutive crossings can have identical or opposite smoothings; see Figure 11.
An alternating state of a shadow is one with alternating crossing smoothings along all
of its link components. In other words, a state is alternating if the smoothings at every
pair of consecutive crossings are opposite.

Not all link shadows admit alternating smoothings, for example the shadow of the
nonalternable knot in the torus in Figure 8. On the other hand, any link shadow of

>l< W>< X WX
D S D S
Figure 10: Two types of markers for a state of a link shadow.

Algebraic & Geometric Topology, Volume 23 (2023)



Adequate links in thickened surfaces and the generalized Tait conjectures 2297

P PR PR
T 7 T

Figure 11: Two consecutive crossings with identical markers (left) and oppo-
site markers (right).

an alternating link diagram admits two alternating smoothings, namely the shadow
smoothings coming from S4 and Sp.

Given a state S for a link shadow D, the dual state is denoted by SV and has opposite
smoothing to S at each crossing of D. Notice that a state S is alternating if and only if
its dual state SV is alternating.

We say that a 2—disk D? is 2—cutting or, simply, cutting a shadow D if its boundary
intersects D transversely at two points (which are not crossings) and D? N D contains
some but not all the crossings of D. A connected shadow D is said to be strongly prime
if it has no cutting disk. More generally, a shadow D is strongly prime if all of its
connected components are.

Lemma 25 Every crossing of every strongly prime shadow D C X has at least one
smoothing producing a shadow which is again strongly prime. If D is connected, then
the smoothing can be chosen so the resulting shadow is connected and strongly prime.

For classical links, a proof of this statement can be found in [37]. That proof relies on
checkerboard colorability of the diagram, which is of course true for classical links.
Below, we give a proof that does not require the shadow to be checkerboard colorable.

Proof For the first part, it is enough to prove it for each of the connected components
of D. Assume now that the smoothings of a crossing v in a strongly prime D produce
diagrams D; and D, neither of which is strongly prime. Let B; and B, be cutting
disks for D1 and D5. Since D is strongly prime, we can assume that v € dB; for
i =1,2. We can also assume that By and 0B, are in transversal position. Let C be
the connected component of By N B, containing v, as in Figure 12, left. The circles
dBj and 0B, are broken because they may intersect each other many times.

By modifying B, or B; slightly if necessary we can assume that D does not contain
the second intersection point, w, of dB; N dB; in C.
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Figure 12: The cutting disks B; and B,.

Let 1 = int(C N dBy) and oy = int(C N dB3). (Note that v ¢ oy U ap.) Since D
intersects dB; — {v} twice for i = 1,2 and D intersects a; U a» at an odd number of
points, we have the following possibilities:

(1) |DNaz|=1and DNa; =3.
2) |[DNaz|=2and |DNay|=1.

(3) One of the two cases above with «; interchanged with a». We will ignore this
case without loss of generality.

In the first case, D looks like in Figure 12, center, where S and T (in dashed circles)
are shadow tangles. In that case, since neighborhoods of S and T are not cutting disks
for D, the tangles S and T are crossingless. That means that B, is not a cutting disk
for D, —a contradiction.

In the second case, D looks like in Figure 12, right, where R, S and 7" are shadow
tangles. Note that all crossings of D, other than v, are contained in R, S or 7, since
otherwise a disk containing v, R, S and T but no other crossings of D would be
cutting for D. Note also that, as in the first case, T is crossingless. That means that all
crossings of Dj are in R and S. Hence, B; is not cutting for D{ — a contradiction.

For the second part, assume that D is connected. Then one of the smoothings of D at v
will be connected. Let D" denote the connected shadow obtained from smoothing D,
and assume the other smoothing is disconnected. We claim that D’ is strongly prime.

Assume to the contrary that D’ is not strongly prime. Then there is a cutting disk B
containing some but not all the crossings of D’ (see Figure 13). We can assume that

Figure 13: A cutting disk for D’.
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v € 0B and that D’ is obtained by the smoothing of v tangential to dB. However, since
the other smoothing of D at v is disconnected, the strands from the tangles R and T
cannot cross each other. The neighborhoods of R and T give cutting disks for D unless
the tangles R and T are crossingless, but then B would not be a cutting disk for D’
which is a contradiction. a

Suppose D C X is a link shadow. Let Np denote a neighborhood of D in ¥ small
enough that it is a ribbon surface retractable onto D. A local checkerboard coloring
of D is a checkerboard coloring of D C Np. If one exists, we say that D is locally
checkerboard colorable. (The pair (D, Np) is the shadow of an abstract link diagram,
or ALD for short [29]. This condition is equivalent to saying that (D, Np) is the
shadow of a checkerboard colorable ALD.)

Obviously, if D C X is checkerboard colorable, then it is locally checkerboard colorable.
The converse holds if D C X is cellularly embedded, but, in general, a shadow can be
locally checkerboard colorable without being checkerboard colorable.

Lemma 26 Suppose D C X is a link shadow. Then D is locally checkerboard colorable
if and only if it admits an alternating state.

Proof If D is locally checkerboard colorable, then let S be the state whose smoothings
at each crossing join the white regions. Then S is an alternating state.

Conversely, suppose S is an alternating state. Let T be the surface obtained from N, D
by attaching disks to each of its boundary component. Then D C T is cellularly
embedded. We can color £ ~ D so that each cycle in S bounds a black disk and each
cycle in S bounds a white disk. To see this, notice that, at each smoothing of S, two
local regions are joined. We can color the joined regions white and extend the coloring
to the rest of &~ D. This determines a local checkerboard coloring of D. |

If S and S’ are adjacent states on a shadow D with |S’| = |S|, then the transition from
S to S’ is called a single cycle bifurcation.

Lemma 27 A connected shadow D is locally checkerboard colorable if and only if
there is no single cycle bifurcation in its cube of resolutions.

Proof For one implication, we apply [30, Proposition 5.11] to see that, if D is locally
checkerboard colorable, then its cube of resolutions does not contain any single cycle
bifurcations.
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The other implication is proved by induction on the crossing number. To start, we
verify it for 1-crossing shadows, which can be classified into the first type < or the
second type (X>. The shadows of the first type are locally checkerboard colorable and
of the second type are not. The cubes of resolutions for these shadows are e — e, and
they have just one edge, which is a split/join for the shadow of the first type and a
single cycle bifurcation for the shadow of the second type.

Now assume the lemma has been proved for all connected shadows with fewer than n
crossings. Let D be a connected shadow with n crossings. We will show that, if D is
not locally checkerboard colorable, then there is a single cycle bifurcation in its cube
of resolutions. Pick a crossing x and let D’ be the diagram obtained by smoothing D
at x. (It does not matter which smoothing is chosen.)

Assume first that D’ is not locally checkerboard colorable. By induction, the cube of
resolutions for D’ contains a single cycle bifurcation. Since the cube of resolutions
of D’ is a face of the cube of resolutions of D, the result follows.

On the other hand, if D’ is locally checkerboard colorable, then, by Lemma 26, it
admits an alternating state S”. We color Np, ~ D’ consistently, so that the smoothings
of S’ join white regions. Let S be a state of D which coincides with S’, and SV its dual
state. Switching the smoothing of x in SV, we obtain S’V considered as a state of D.

The ribbon surface Np is obtained by adding a 2—dimensional 1-handle (a band) to Np-.
Unless the transition from S’V to SV is a single cycle bifurcation, we can extend the
coloring of (Np+, D’) to (Np, D). Since D is not locally checkerboard colorable, the
transition from S’ to S must be a single cycle bifurcation. O

Recall that (D) denotes the rank of the image of ix: H1(D;7Z/2) — H1(X;7Z/2).
Any connected shadow is homotopy equivalent to a bouquet of circles. If D has c¢(D)
crossings, then y(D) = —c(D). It follows that 0 < r(D) < c(D) + 1 for connected
shadows with ¢(D) crossings.
Proposition 28 Let D be a link shadow in ¥ (not necessarily connected).
(i) If S is a state of D, then
t(S)+1t(SY) <c(D)+2|D|—-r(D).
(ii) If D is not locally checkerboard colorable, then, for any state S of D,
t(S)+1t(SY) <c(D)+2|D|—r(D).
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(iii) If D is strongly prime and S is nonalternating, then

1(S) +1(SY) < (D) +2|D|—r(D).

Proof Let us write ¥ = ¥ U-.-U X, as a disjoint union of connected components.
Any component disjoint from D does not contribute to the terms in (i), (ii) and (iii), so
it can be discarded. Therefore, we can assume that D; = DN Y; # @ fori =1,...,n.

Since all terms of the inequalities of the statements are additive under taking disjoint
unions of surfaces, it is enough to prove the statement for ¥ connected.

On the other hand, if D = Dy U D5 is disconnected, then (D) < r(D1) + r(D3).
Thus, (D) is subadditive, and, since the other terms on the right-hand side of (i), (ii)
and (iii) are additive, it is enough to prove the proposition for connected shadows in
connected surfaces. Assume henceforth that X is a connected surface.

Let us prove the statement for single crossing abstract shadows D now. Recall from the
proof of Lemma 27 that single crossing shadows D are of two types. For both of them,
r(D)<2.Ifr(D)=0,thent(S)+t(SY)=2.If r(D) = 1,2, then t(S) +1(SY) < 1.
Therefore, statement (i) holds for 1-crossing shadows. Since shadows of the first type
are locally checkerboard colorable and #(S) = #(S") = 0 for shadows of the second
type, statements (ii) and (iii) hold as well.

The proof of (i) proceeds by induction on the crossing number c(D). Let D be a
connected shadow in ¥ with c¢(D) > 2 crossings. We assume that statement (i) has
been established for all connected shadows in X with fewer than c¢(D) crossings.

Let D’ be the shadow resulting from smoothing at a crossing x of D. We choose the
smoothing so that D’ is connected. Notice that

€) r(D)—1=<r(D’) <r(D).

Let S be a state of D. The chosen smoothing of x coincides with the smoothing of x
either in S or in SV and, without loss of generality, we can assume that it coincides
with the smoothing of x in S. Then S induces a state on D', denoted by S’. Clearly,
t(S’) = t(S). The dual state S’V to S’ differs from S at x only. The states S
and SV are adjacent in the cube of resolutions of D. Thus,

(10) t(S™)—=1<t(SY)<t(S"V)+1.

Lemma 29 Either r(D') = r(D) ort(SY) < t(S").
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Proof Assume that 7(SY) > ¢(S’V). Then, either two trivial loops in SV join to make
a trivial loop in S’V or a trivial and a nontrivial loop in SV join to make a nontrivial
loop in SV, or a trivial loop in SV splits to make two nontrivial loops in S’V. In each
case, r(D") = r(D). O

We prove the inductive step for part (i). By Lemma 29, there are the two possibilities.
If (D) = r(D), then (10) and the inductive assumption imply that

t(S)+t(SY)<t(SH+t(S™V)+1<c(D')+2—r(D')+1=c(D)+2-r(D).

On the other hand, if r(D’) # r(D), then £(SY) <(S"V), and (9) and the inductive
assumption imply that

1(S)+1t(SY)<t(S)+1t(S"Y)<c(D')+2—r(D')=c(D)+2—r(D).
This completes the proof in case (i).

We prove part (ii) also by induction on c(D). Let D be a connected shadow in ¥ with
c¢(D) > 2 crossings, and assume D is not locally checkerboard colorable. We assume
that statement (ii) has been established for all connected shadows in X with fewer than
c(D) crossings that are not locally checkerboard colorable. By Lemma 27, there is a
single cycle bifurcation in the cube of resolutions of D.

Let D’ be the shadow resulting from smoothing D at a crossing x, and we assume D’
is connected and that the smoothing at x coincides with the smoothing of x in S.

If D’ is locally checkerboard colorable, then the transition from SV to S’Y must be a
single cycle bifurcation, for otherwise the local checkerboard coloring would extend
from D’ to D.

Since the transition is a single cycle bifurcation, we have 7(SY) = ¢(S"V) and r(D) =
r(D’). Therefore, applying part (i) to D’, we see that

1(S)+1(SV) =t(S) +1(S"V) <c(D')+2—r(D') < c(D) +2—r(D).

If D’ is not locally checkerboard colorable, then we can apply the inductive hypothesis
for part (i) to D’ and use it to deduce the desired strict inequality just as before. This
completes the proof of (ii).

The last step is to prove statement (iii). We begin by verifying (iii) for connected
shadows with one or two crossings. For a single crossing shadow D of the first type,
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Figure 14: Connected shadow diagrams with 2—crossings.

both states are alternating, so (iii) is vacuously true. Single crossing shadow of the
second type are not locally checkerboard colorable, and so the result follows from (ii).

All abstract connected 2—crossing shadows D are depicted in Figure 14. For a type 1
shadow D, its nonalternating states appear in Figure 15, left. Note that 0 <r(D) <3 and
0<1(S),1(SY)<1.Ifr(D)=0o0r 1, thent(S)+¢(SV)<2and3<c(D)+2—r(D).
Thus, (iii) holds in this case. If (D) = 2 or 3, then £(S) = ¢(S") = 0, and statement
(iii) holds.

For a type 2 shadow D, its nonalternating states are shown in Figure 15, right. Note
that 0 < r(D) <3 and 0 <7(S),#(S") < 2. Since D is strongly prime, r(D) > 0 and
1(8),t(SY)<1.Ifr(D)=1,thent(S)+1(SY)<2;if r(D)=2,thent(S)+1(SY)<1;
and if (D) = 3, then 1(S) + ¢(SY) = 0. In all three cases, statement (iii) is seen to
hold.

Note that none of the shadows of the third, fourth and fifth types is locally checkerboard
colorable. Therefore statement (iii) follows from (ii) in these cases.

The proof of (iii) proceeds by induction on the crossing number c(D). Let D be
a strongly prime connected shadow in X. By (ii), we can assume that D is locally
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checkerboard colorable. We assume additionally that ¢ (D) > 3 and that statement (iii)
has been established for all strongly prime shadows in X with fewer than ¢ (D) crossings.

Let S be a nonalternating state for D. Then S has two consecutive smoothings that are
identical, and we choose a third crossing x of D. By Lemma 25, one of the smoothings
of x yields a shadow which is connected and strongly prime. Let D’ be the resulting
shadow. As before, we assume that the smoothing at x coincides with the smoothing
of x in S. The state S induces a state on D’, denoted by S’, which is nonalternating.
Since D’ is connected, one can apply Lemma 29 as before and argue again by induction
that (iii) holds for D. O

7.4 Proof of Theorem 13

Part (i) follows immediately by combining Corollary 5 and Proposition 28(i).

For parts (ii)—(iii), if D is a connected sum of Do C ¥ and Dy, ..., Dy C S?, then

k
(1) [Dls = 8*[Dols- [ [[Pils2-
i=1
Therefore, it is enough to prove (ii)—(iii) for prime diagrams (alternating for (ii) and
nonalternating for (iii)).

The condition that D is prime implies that it is not a nontrivial connected sum diagram
as above. More precisely, a link diagram D on X is said to be prime if any contractible
simple loop y in X that meets D transversely at two points bounds a 2—disk that
intersects D in an unknotted arc (possibly with self-crossings).

For the proof of part (iii), assume D is prime. If the shadow diagram of D is strongly
prime, then the statement follows from Corollary 5 and Proposition 28(iii). If it is not
strongly prime, then D must contain a self-crossing trivial arc. Let D’ be obtained by
replacing it by a simple trivial arc. Since span([D]x) is invariant under Reidemeister
moves and r(D’) = r(D),

span([D]x) = span([D’]x) < 4c(D’) +4|D’| —2r(D’) < 4c(D) + 4|D| —2r(D)
by part (i).

The proof of part (ii) follows that of [8, Theorem 2.9]. Since both sides of the equality
in (ii) are additive under disjoint union of diagrams, it is enough to prove it for connected
diagrams.
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By Proposition 23, D is checkerboard colorable. Then all regions of one color, say
white, are enclosed by the cycles in the state S4 of D, and all regions of the other
color, ie black, are enclosed by the cycles in the state Sp. Therefore, the numbers of
white and black regions are ¢(S4) and ¢(Sp), respectively. Since D defines a cellular
decomposition of X into c(D) O—cells, 2¢(D) 1—cells, and #(S4) + t(Sp) 2—cells,

2-2¢(%) = x(2) = c(D) —2¢(D) +1(S4) +1(Sp),
and
1(S4) +1(Sp) = ¢(D) +2 —2g().
By Proposition 3,
span([D]x) = dmax([D]5s) — dmin([D]x).
=2c(D)+2t(S4) +2t(Sp),
=4c(D)+4—-4g(%). O
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