

Algebraic & Geometric Topology

Volume 23 (2023)

Homotopy types of gauge groups over Riemann surfaces

Masaki Kameko Daisuke Kishimoto Masahiro Takeda

Homotopy types of gauge groups over Riemann surfaces

MASAKI KAMEKO Daisuke Kishimoto Masahiro Takeda

Let *G* be a compact connected Lie group with $\pi_1(G) \cong \mathbb{Z}$. We study the homotopy types of gauge groups of principal *G*-bundles over Riemann surfaces. This can be applied to an explicit computation of the homotopy groups of the moduli spaces of stable vector bundles over Riemann surfaces.

57S05; 55Q15

1 Introduction

Let G be a compact connected Lie group, and let P be a principal G-bundle over a finite complex X. The gauge group of P is defined to be the topological group of G-equivariant self-maps of P which fix X. There may be infinitely many distinct principal G-bundles over X. For example, there are infinitely many bundles when X is an orientable 4-manifold. Each bundle has a gauge group, so there may be potentially infinitely many gauge groups. However, Crabb and Sutherland [6] showed that these gauge groups have only finitely many homotopy types. Subsequently, the precise number of homotopy types of gauge groups for specific G and X has been intensely studied. The study began with simply connected Lie groups by Cutler [7], Hamanaka, Hasui, Kishimoto, Kono, So, Theriault and Tsutaya [10; 12; 15; 16; 18; 20; 30; 31], and recently, nonsimply connected cases are also studied by Hasui, Kamiyama, Kishimoto, Kono, Membrillo-Solis, Sato, Theriault and Tsukuda [11; 14; 17] and Rea [26].

In this paper, we study the homotopy types of gauge groups of principal *G*-bundles over a compact connected Riemann surface, where $\pi_1(G) \cong \mathbb{Z}$. This includes an important case: gauge groups of principal U(*n*)-bundles over a Riemann surface, whose topology was first studied by Atiyah and Bott [2]. To state the results, we introduce a numerical invariant of *G*. Suppose $\pi_1(G) \cong \mathbb{Z}$. Then as in Mimura and Toda [24, Corollary 5.1,

^{© 2023} MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution License 4.0 (CC BY). Open Access made possible by subscribing institutions via Subscribe to Open.

Chapter II], there is a compact connected simply connected Lie group H and a subgroup C of the center of $S^1 \times H$ such that

(1-1)
$$G \cong (S^1 \times H)/C.$$

In other words, G is locally isomorphic to $S^1 \times H$. Note that H is uniquely determined by G, but C is not. For example, if $G = S^1 \times H$, then C can be any finite subgroup of $S^1 \times 1 \subset S^1 \times H$. We define

$$s(G) = |p_2(C)|,$$

where $p_2: S^1 \times H \to H$ is the projection. By Theorem 1.4 below, we can see that s(G) is independent of the choice of *C*.

Example 1.1 Since U(n) is the quotient of $S^1 \times SU(n)$ by the diagonal central subgroup isomorphic to \mathbb{Z}/n , we have s(U(n)) = n.

Let X be a compact connected Riemann surface. Then there is a one-to-one correspondence between principal G-bundles over X and $\pi_2(BG) \cong \mathbb{Z}$. Let $\mathcal{G}_k(X, G)$ denote the gauge group of a principal G-bundle over X corresponding to $k \in \mathbb{Z}$. Now we state our results.

Theorem 1.2 Let *G* be a compact connected Lie group with $\pi_1(G) \cong \mathbb{Z}$, and let *X* be a compact connected Riemann surface. If (k, s(G)) = (l, s(G)), then $\mathcal{G}_k(X, G)$ and $\mathcal{G}_l(X, G)$ are homotopy equivalent after localizing at any prime or zero.

We remark that the *p*-localization of a disconnected space will mean the disjoint union of the *p*-localization of path-connected components. For a prime *p*, Theriault [29] gave a *p*-local homotopy decomposition of $\mathcal{G}_k(X, U(p))$, which implies the converse implication of Theorem 1.2 holds for G = U(p). We will prove the converse implication of Theorem 1.2 holds for other Lie groups.

Theorem 1.3 Let *G* be a compact connected Lie group with $\pi_1(G) \cong \mathbb{Z}$, and let *X* be a compact connected Riemann surface. If *G* is locally isomorphic to $S^1 \times SU(n)^r$ or $S^1 \times SU(4n-2)^s \times Sp(2n-1)^t$, then the following statements are equivalent:

- (1) (k, s(G)) = (l, s(G)).
- (2) $\mathcal{G}_k(X,G)$ and $\mathcal{G}_l(X,G)$ are homotopy equivalent after localizing at any prime or zero.

Note that since $U(n) = (S^1 \times SU(n))/(\mathbb{Z}/n)$ as in Example 1.1, Theorem 1.3 applies to the case G = U(n).

The homotopy type of a gauge group $\mathcal{G}_k(X, G)$ is closely related with a Samelson product in *G*, as we will see in Section 2. In our context, the Samelson product of a generator of $\pi_1(G) \cong \mathbb{Z}$ and the identity map of *G* is of particular importance. We will prove the following theorem, which is of independent interest.

Theorem 1.4 Let G be a compact connected Lie group with $\pi_1(G) \cong \mathbb{Z}$, and let ϵ denote a generator of $\pi_1(G)$. Then the Samelson product $\langle \epsilon, 1_G \rangle$ in G is of order s(G).

Now we consider an application. Gauge groups over a Riemann surface are closely related to the moduli spaces of stable vector bundles over a Riemann surface as follows. Let X be a Riemann surface of genus g, and let M(n,k) denote the moduli space of stable vector bundles over X of rank n and degree k. Daskalopoulos and Uhlenbeck [8] showed that there is an isomorphism

$$\pi_i(M(n,k)) \cong \pi_{i-1}(\mathcal{G}_k(X, \mathbf{U}(n)))$$

for $2 < i \le 2(g-1)(n-1) - 2$ and $(n,k) \ne (2,2)$. There is a polystable Higgs bundle analog due to Bradlow, García-Prada and Gothen [5]. We can compute the homotopy groups of these moduli spaces in a range through the following homotopy decomposition.

Theorem 1.5 Let *G* be a compact connected Lie group with $\pi_1(G) \cong \mathbb{Z}$, and let *X* be a compact connected Riemann surface of genus *g*. If *s*(*G*) divides *k*, then

$$\mathcal{G}_k(X,G) \simeq G \times (\Omega G)^{2g} \times \Omega^2 G.$$

Moreover, the above homotopy equivalence also holds after localizing at p whenever p does not divide s(G).

The paper is structured as follows. Section 2 recalls a connection between gauge groups and Samelson products, and then proves Theorems 1.2 and 1.5 by assuming Theorem 1.4 holds. Section 3 shows some general results on Samelson products in a Lie group, which will be used for a practical computation. Sections 4 and 5 compute the Samelson products in G when H is simple. Finally, Section 6 collects all results so far together to prove Theorems 1.3 and 1.4.

Acknowledgements

The authors are grateful to Jérôme Scherer and the referee for useful comments. The authors were partly supported by JSPS KAKENHI grant numbers 17K05263 (Kameko), 17K05248 and 19K03473 (Kishimoto) and 21J10117 (Takeda).

2 Gauge groups and Samelson products

This section recalls a connection between gauge groups and Samelson products, and then Theorems 1.2 and 1.5 are proved by assuming Theorem 1.4 holds. First, we recall a connection between gauge groups and mapping spaces. Let *G* be a topological group, and let *P* be a principal *G*-bundle over a base *X*, which is classified by a map $\alpha: X \to BG$. Recall that the gauge group of *P*, denoted by $\mathcal{G}(P)$, is the topological group of *G*-equivariant self-maps of *P* which fix *X*. Gottlieb [9] proved that there is a natural homotopy equivalence

$$B\mathcal{G}(P) \simeq \max(X, BG; \alpha),$$

where map(A, B; f) denotes the path component of the space of maps map(A, B) containing a map $f: A \to B$. Then evaluating at the basepoint of X yields a homotopy fibration

(2-1)
$$\operatorname{map}_*(X, BG; \alpha) \to B\mathcal{G}(P) \to BG$$

where map_{*}(*X*, *BG*; α) is the subspace of map(*X*, *BG*; α) consisting of basepoint preserving maps. So the gauge group $\mathcal{G}(P)$ is homotopy equivalent to the homotopy fiber of the connecting map

$$\partial_{\alpha}: G \to \operatorname{map}_{\ast}(X, BG; \alpha)$$

of the above homotopy fibration.

Next, we assume $X = S^n$ for $n \ge 1$ and describe the connecting map ∂_{α} . Clearly, there is a homotopy equivalence map_{*} $(S^n, BG; \alpha) \simeq \Omega_0^{n-1}G$, where $\Omega_0^{n-1}G$ denotes the path component of $\Omega^{n-1}G$ containing the constant map. Then by adjointing, the connecting map ∂_{α} corresponds to a map

$$d_{\alpha}: S^{n-1} \wedge G \to G.$$

The original definition of Whitehead products in [32] and adjointness of Whitehead products and Samelson products prove the following.

Lemma 2.1 The map d_{α} is the Samelson product $\langle \bar{\alpha}, 1_G \rangle$ in G, where $\bar{\alpha} : S^{n-1} \to G$ is the adjoint of $\alpha : S^n \to BG$.

The following lemma due to Theriault [27] shows how to identify the homotopy type of a gauge group $\mathcal{G}(P)$ from the order of a Samelson product $\langle \bar{\alpha}, 1_G \rangle$.

Lemma 2.2 Suppose that a map $f: X \to Y$ into an H-space Y is of order $n < \infty$. Then (n, k) = (n, l) implies $F_{k(p)} \simeq F_{l(p)}$ for any prime p, where F_k denotes the homotopy fiber of a map $k \circ f: X \to Y$.

Finally, we recall a homotopy decomposition of a gauge group. Theriault [28] showed a homotopy decomposition of a gauge group over principal U(n)-bundle over a Riemann surface. We can easily see that his proof works in verbatim for any compact connected Lie group *G* with $\pi_1(G) \cong \mathbb{Z}$. Then we get:

Proposition 2.3 Let *G* be a compact connected Lie group with $\pi_1(G) \cong \mathbb{Z}$, and let *X* be a compact connected Riemann surface of genus *g*. Then there is a homotopy equivalence

$$\mathcal{G}_k(X,G) \simeq (\Omega G)^{2g} \times \mathcal{G}_k(S^2,G).$$

Now we prove Theorems 1.2 and 1.5 by assuming Theorem 1.4 holds.

Proof of Theorem 1.2 Combine Lemmas 2.1 and 2.2, Proposition 2.3 and Theorem 1.4.

Proof of Theorem 1.5 By Lemma 2.1 and Theorem 1.4, if k is divisible by s(G), then $\mathcal{G}_k(S^2, G)$ is homotopy equivalent to the homotopy fiber of the constant map $G \to \Omega_0 G$. So since $\pi_2(G) = 0$, $\mathcal{G}_k(S^2, G) \simeq G \times \Omega^2 G$. Thus by Proposition 2.3, the proof is done.

3 Samelson products in Lie groups

This section shows some criteria for computing Samelson products in a Lie group. For the rest of the paper, we will use the following notation:

- Let G be a compact connected Lie group with $\pi_1(G) \cong \mathbb{Z}$.
- Let ϵ_G denote a generator of $\pi_1(G) \cong \mathbb{Z}$.
- Let H and C be as in the decomposition (1-1).
- Let $j_H : \Sigma H \to BH$ denote the natural map.
- Let $p_G: S^1 \times H \to G$ denote the quotient map.
- Let $p_1: S^1 \times H \to S^1$ and $p_2: S^1 \times H \to H$ denote projections.
- Let $K = H/p_2(C)$.
- Let $q_G: G \to K$ and $\bar{q}_K: H \to K$ denote the quotient maps.

We will abbreviate ϵ_G , j_H , p_G , q_G and \bar{q}_K to ϵ , j, p, q and \bar{q} , respectively, if G, H and K are clear from the context. First, we show two properties of the group C.

Lemma 3.1 The abelian group $p_2(C)$ is cyclic.

Proof There is a fibration

 $(3-1) S^1 \to G \xrightarrow{q} K$

and so by the homotopy exact sequence, we can see that $\pi_1(K) \cong p_2(C)$ is a quotient of $\pi_1(G) \cong \mathbb{Z}$. Then $p_2(C)$ is a cyclic group, as stated.

Lemma 3.2 We may choose a group C such that $|p_1(C)| = s(G)$.

Proof Note that $p_2(C)$ is a cyclic group by (3-1). We prove that the inequality $|p_1(C)| \ge s(G)$ always holds. If $|p_1(C)| < s(G)$, then $C_1 = |p_1(C)|C$ is a nontrivial subgroup of the center of $1 \times H \subset S^1 \times H$. In particular, there is a covering

$$C/C_1 \to (S^1 \times H)/C_1 \to G.$$

Then $\pi_1(G) \cong \mathbb{Z}$ includes a nontrivial finite abelian group C_1 , which is a contradiction. Thus $|p_1(C)| \ge s(G)$.

Suppose that $|p_1(C)| > s(G)$. Then $C_2 = s(G)C$ is a finite subgroup of $S^1 \times 1 \subset S^1 \times H$. Then $(S^1 \times H)/C_2 \cong S^1 \times H$, implying

$$G \cong (S^1 \times H)/C \cong ((S^1 \times H)/C_2)/(C/C_2) \cong (S^1 \times H)/(C/C_2).$$

Note that *C* is a subgroup of $p_1(C) \times p_2(C)$ generated by (g_1, g_2) , where g_i is a generator of a cyclic group $p_i(C)$ for i = 1, 2. Then $C_2 = s(G)p_1(C) \times 0$, and so C/C_2 is identified with the diagonal subgroup of

$$(p_1(C)/s(G)p_1(C)) \times p_2(C) \cong \mathbb{Z}/s(G) \times \mathbb{Z}/s(G).$$

Thus $|p_1(C/C_2)| = s(G)$, finishing the proof.

By Lemma 3.1, $\pi_1(K) \cong p_2(C)$ is a cyclic group of order s(G). For the rest of this section, we will also use the following notation:

• Let $\bar{\epsilon}_K$ denote a generator of $\pi_1(K)$.

We will abbreviate it by $\overline{\epsilon}$ if K is clear from the context.

Next, we show an upper bound and a lower bound for the order of $\langle \epsilon, 1_G \rangle$.

Lemma 3.3 The order of $\langle \epsilon, 1_G \rangle$, hence $\langle \epsilon, p \rangle$, divides s(G).

Algebraic & Geometric Topology, Volume 23 (2023)

$$q_*(s(G)\langle \epsilon, 1_G \rangle) = s(G)\langle q \circ \epsilon, q \rangle = \langle s(G)\bar{\epsilon}, q \rangle = 0.$$

So since there is a fibration (3-1), $s(G)\langle \epsilon, 1_G \rangle$ lifts to a map $S^1 \wedge G \to S^1$. Since $S^1 \wedge G$ is simply connected, this lift is trivial, and thus $s(G)\langle \epsilon, 1_G \rangle$ itself is trivial, completing the proof.

Lemma 3.4 The order of $\langle \bar{\epsilon}, \bar{q} \rangle$ divides the order of $\langle \epsilon, p \rangle$.

Proof Let $i: H \to S^1 \times H$ denote the inclusion. By definition, $q \circ p \circ i = \bar{q}$, and the proof of Lemma 3.2 implies that $q \circ \epsilon = \bar{\epsilon}$. Then

$$(1 \wedge i)^* \circ q_*(\langle \epsilon, p \rangle) = q_*(\langle \epsilon, p \circ i \rangle) = \langle q \circ \epsilon, q \circ p \circ i \rangle = \langle \bar{\epsilon}, \bar{q} \rangle$$

and so the proof is done.

Finally, we give a cohomological criterion for the Samelson product $\langle \bar{\epsilon}, \bar{q} \rangle$ being nontrivial. For an algebra A, let QA denote the module of indecomposables.

Lemma 3.5 Suppose there are $x, y, z \in QH^*(BK; \mathbb{Z}/p)$ and a Steenrod operation θ satisfying the following conditions:

- (1) |y| = 2 and $QH^n(BK; \mathbb{Z}/p) = \langle z \rangle$ for n > 2.
- (2) $\theta(x)$ is decomposable and includes the term $y \otimes z$.
- (3) $(\bar{q} \circ j)^*(z)$ is nontrivial and not included in any element of $\theta(H^*(\Sigma H; \mathbb{Z}/p))$.

Then the Samelson product $\langle \bar{\epsilon}, \bar{q} \rangle$ is nontrivial.

Proof Suppose that $\langle \bar{\epsilon}, \bar{q} \rangle$ is trivial. Let $\hat{\epsilon} \colon S^2 \to BK$ and $\hat{q} \colon \Sigma H \to BK$ denote the adjoint of $\bar{\epsilon}$ and \bar{q} , respectively. Then by adjointness of Samelson products and Whitehead products, the Whitehead product $[\hat{\epsilon}, \hat{q}]$ is trivial, so that there is a homotopy commutative diagram

Since *BK* is simply connected, $H^1(BK; \mathbb{Z}/p) = 0$ and $H^2(BK; \mathbb{Z}/p) = \langle y \rangle$. Then by the Hurewicz theorem and the first condition in the statement, we may assume $\hat{\epsilon}^*(y) = u$, where *u* is a generator of $H^2(S^2; \mathbb{Z}/p) \cong \mathbb{Z}/p$. Hence by the first and the

Algebraic & Geometric Topology, Volume 23 (2023)

П

second conditions, $\mu^*(\theta(x))$ includes the term $u \otimes \hat{q}^*(z)$. Since $\hat{q} = \bar{q} \circ j$, the third condition implies $u \otimes \hat{q}^*(z) \neq 0$. On the other hand, by the third condition, $\theta(\mu^*(x))$ cannot include the term $u \otimes \hat{q}^*(z)$. Thus since $\mu^*(\theta(x)) = \theta(\mu^*(x))$, we obtain a contradiction. Therefore $\langle \bar{\epsilon}, \bar{q} \rangle$ is nontrivial, completing the proof.

Recall that compact simply connected simple Lie groups with nontrivial center are

SU(n), Sp(n), Spin(n) $(n \ge 7)$, E_6 , E_7 .

Then in the following two sections, we will compute the Samelson product $\langle \epsilon, p \rangle$ for *H* being one of the above Lie groups.

4 Classical case

This section determines the order of the Samelson product $\langle \epsilon, p \rangle$ for H = SU(n), Sp(n) and Spin(n).

4.1 The case H = SU(n)

First we consider the case H = SU(n).

Proposition 4.1 If H = SU(n), then $\langle \epsilon, p \rangle$ is of order s(G).

Proof By Lemma 3.3, it suffices to show that the order of $\langle \epsilon, p \rangle$ is a nonzero multiple of s(G). The center of SU(*n*) is isomorphic to \mathbb{Z}/n . Then since U(*n*) = $S^1 \times_{\mathbb{Z}/n} SU(n)$, it follows from Lemma 3.2 that there is a homomorphism $\rho: G \to U(n)$ which is a n/s(G) sheeted covering. Let α_{2i-1} denote a generator of $\pi_{2i-1}(U(n)) \cong \mathbb{Z}$ for i = 1, 2, ..., n. Then

$$\rho_*(\epsilon) = \frac{n}{s(G)}\alpha_1.$$

On the other hand, it is shown in [4] that the order of $\langle \alpha_1, \alpha_{2n-1} \rangle$ is a nonzero multiple of *n*. Since $\rho_*: \pi_{2n-1}(G) \to \pi_{2n-1}(U(n))$ is an isomorphism, there is an $\tilde{\alpha} \in \pi_{2n-1}(G)$ such that $\rho_*(\tilde{\alpha}) = \alpha_{2n-1}$. Then since

$$\rho_*(\langle \epsilon, \tilde{\alpha} \rangle) = \langle \rho_*(\epsilon), \rho_*(\tilde{\alpha}) \rangle = \left\langle \frac{n}{s(G)} \alpha_1, \alpha_{2n-1} \right\rangle = \frac{n}{s(G)} \langle \alpha_1, \alpha_{2n-1} \rangle,$$

the order of $\rho_*(\langle \epsilon, \tilde{\alpha} \rangle)$ is a nonzero multiple of s(G). Thus, since the map

$$\rho_*: \pi_{2n}(G) \to \pi_{2n}(\mathbf{U}(n))$$

is an isomorphism, the order of $\langle \epsilon, \tilde{\alpha} \rangle$ is a nonzero multiple of s(G) too. Since

$$p_*: \pi_{2n-1}(S^1 \times \mathrm{SU}(n)) \to \pi_{2n-1}(G)$$

is an isomorphism, there is a $\beta \in \pi_{2n-1}(S^1 \times SU(n))$ such that $p \circ \beta = \tilde{\alpha}$. Thus since $(1 \wedge \beta)^*(\langle \epsilon, p \rangle) = \langle \epsilon, \tilde{\alpha} \rangle$, the order of $\langle \epsilon, p \rangle$ is a nonzero multiple of s(G), completing the proof.

4.2 The case $H = \operatorname{Sp}(n)$

Next, we consider the case H = Sp(n). Recall that the center of Sp(n) is isomorphic to $\mathbb{Z}/2$, and the quotient of Sp(n) by its center is denoted by PSp(n). We apply Lemma 3.5 to the case H = Sp(n). To this end, we compute the mod 2 cohomology of BPSp(2n) in low dimensions.

Lemma 4.2 Let
$$\Delta = \{\pm (1, ..., 1) \in \operatorname{Sp}(2)^n\}$$
. Then for $* \le 7$,
 $H^*(B(\operatorname{Sp}(2)^n/\Delta); \mathbb{Z}/2) = \mathbb{Z}/2[x_2, x_3, x_5] \otimes \bigotimes_{k=1}^n \mathbb{Z}/2[x_{4,k}], \quad \operatorname{Sq}^2 x_{4,k} = x_2 x_{4,k},$

where $|x_i| = i$ and $|x_{4,k}| = 4$.

Proof Consider the Serre spectral sequence for a homotopy fibration

$$\mathbb{R}P^{\infty} \to B\mathrm{Sp}(2)^n \to B(\mathrm{Sp}(2)^n/\Delta).$$

Since $H^*(\mathbb{R}P^{\infty}; \mathbb{Z}/2) = \mathbb{Z}/2[w]$ with |w| = 1,

$$H^*(\mathbb{R}P^{\infty};\mathbb{Z}/2) = \Delta(w,\operatorname{Sq}^1 w,\operatorname{Sq}^2 \operatorname{Sq}^1 w)$$

for $* \leq 7$, where $\Delta(a_1, \ldots, a_k)$ denotes the simple system of generators in a_1, \ldots, a_k . Clearly, $\tau(w) = x_2$ for a generator x_2 of $H^2(B(\operatorname{Sp}(2)^n/\Delta); \mathbb{Z}/2) \cong \mathbb{Z}/2$, where τ denotes the transgression. Then by [23, Corollary 6.9], Sq¹ w and Sq² Sq¹ w are also transgressive, and so we get $H^*(B(\operatorname{Sp}(2)^n/\Delta); \mathbb{Z}/2)$ for $* \leq 7$ as stated. It remains to show Sq² $x_{4,k} = x_2 x_{4,k}$. Recall that

(4-1)

$$H^{*}(BSO(n); \mathbb{Z}/2) = \mathbb{Z}/2[w_{2}, w_{3}, \dots, w_{n}],$$

$$Sq^{i} w_{j} = \sum_{k=0}^{i} {j+k-i-1 \choose k} w_{i-k} w_{j+k},$$

where w_i is the *i*th Stiefel–Whitney class. Then since $PSp(2) \cong SO(5)$,

 $H^*(BPSp(2); \mathbb{Z}/2) = \mathbb{Z}/2[y_2, y_3, y_4, y_5], \quad Sq^2 y_4 = y_2 y_4,$

where $|y_i| = i$. Let $q_k : B(\operatorname{Sp}(2)^n / \Delta) \to BPSp(2)$ denote the induced map of the k^{th} projection for k = 1, 2, ..., n. Then $q_k^*(y_2) = x_2$ and $q_k^*(y_4) = x_{4,k}$. Thus we obtain $\operatorname{Sq}^2 x_{4,k} = x_2 x_{4,k}$, completing the proof.

Proposition 4.3 For $* \le 7$,

$$H^*(BPSp(n); \mathbb{Z}/2) = \mathbb{Z}/2[x_2, x_3, x_4, x_5], \quad Sq^2 x_4 = x_4 x_2, \quad |x_i| = i.$$

Proof We can compute the mod 2 cohomology of BPSp(2n) in the same way as in the proof of Lemma 4.2 by considering a homotopy fibration

$$\mathbb{R}P^{\infty} \to BSp(2n) \to BPSp(2n).$$

Then it remains to show Sq² $x_4 = x_4x_2$. Let Δ be as in Lemma 4.2. Then there is an inclusion $i: \operatorname{Sp}(2)^n / \Delta \to \operatorname{PSp}(2n)$. Clearly, $i^*(x_2) = x_2$ and $i^*(x_4) = x_{4,1} + \cdots + x_{4,n}$. Then we obtain Sq² $x_4 = x_4x_2$ by Lemma 4.2.

Now we prove:

Proposition 4.4 If H = Sp(n), then $\langle \epsilon, p \rangle$ is of order s(G).

Proof Since the center of Sp(n) is isomorphic to $\mathbb{Z}/2$, we only consider

$$G = S^1 \times_{\mathbb{Z}/2} \operatorname{Sp}(n).$$

In this case, s(G) = 2, so by Lemma 3.3, it suffices to show $\langle \epsilon, p \rangle$ is nontrivial. First, we consider the case $G = S^1 \times_{\mathbb{Z}/2} \text{Sp}(2n-1)$. The natural inclusion

$$\operatorname{Sp}(2n-1) \to \operatorname{SU}(4n-2)$$

sends the center of $\operatorname{Sp}(2n-1)$ injectively into the center of $\operatorname{SU}(4n-2)$. Then we get a homomorphism $G \to S^1 \times_{\mathbb{Z}/2} \operatorname{SU}(4n-2)$ which is an isomorphism in π_1 . It is well known that the induced map $\pi_{8n-5}(\operatorname{Sp}(2n-1)) \to \pi_{8n-5}(\operatorname{SU}(4n-2))$ is an isomorphism; hence so is $\pi_{8n-5}(G) \to \pi_{8n-5}(S^1 \times_{\mathbb{Z}/2} \operatorname{SU}(4n-2))$. Then the proof of Proposition 4.1 implies that the Samelson product $\langle \epsilon, p \rangle$ is nontrivial.

Next, we consider $G = S^1 \times_{\mathbb{Z}/2} \operatorname{Sp}(2n)$. We apply Lemma 3.5 to $K = \operatorname{PSp}(2n)$ by setting $x = z = x_4$, $y = x_2$ and $\theta = \operatorname{Sq}^2$. By Proposition 4.3, the first and the second conditions of Lemma 3.5 are satisfied. The proof of Proposition 4.3 implies $\bar{q}^*(x_4)$ is nontrivial, where $H^4(B\operatorname{Sp}(2n); \mathbb{Z}/2) \cong QH^4(B\operatorname{Sp}(2n); \mathbb{Z}/2) \cong \mathbb{Z}/2$. Since the map

$$j^*: QH^4(BSp(2n); \mathbb{Z}/2) \to \Sigma QH^3(Sp(2n); \mathbb{Z}/2)$$

is an isomorphism, we have $(\bar{q} \circ j)^*(x_4) \neq 0$. Moreover, for degree reasons, $(\bar{q} \circ j)^*(x_4)$ is not included in any element of $\theta(H^*(\Sigma \operatorname{Sp}(2n); \mathbb{Z}/2))$. Then the third condition of Lemma 3.5 is also satisfied. Thus $\langle \bar{\epsilon}, \bar{q} \rangle$ is nontrivial, and so by Lemma 3.4, $\langle \epsilon, p \rangle$ is nontrivial too.

4.3 The case H = Spin(n)

Finally, we consider the case H = Spin(n). We show some properties of the mod 2 cohomology of BSpin(n) that we are going to use. Recall that the mod 2 cohomology of BSO(n) is given as in (4-1).

Lemma 4.5 (1) The mod 2 cohomology of BSpin(n) is given by

 $H^*(B\operatorname{Spin}(n); \mathbb{Z}/2) = \mathbb{Z}/2[u_2, u_3, \dots, u_n, z]/(u_2, \operatorname{Sq}^{2^k} \operatorname{Sq}^{2^{k-1}} \cdots \operatorname{Sq}^1 u_2 \mid k \ge 0),$ where $\bar{q}^*_{\operatorname{SO}(n)}(w_j) = u_j, \mid z \mid = 2^h$ for some h > 0 and $\operatorname{Sq}^i u_j$ is computed by replacing w_j with u_j in (4-1).

(2) For $2 \le i \le n$ with $i \ne 2^k + 1$, $j^*_{\text{Spin}(n)}(u_i) \ne 0$.

Proof Item (1) is a result of Quillen [25]. We prove statement (2). It is well known that $(j')^*(w_i) \neq 0$ for i = 2, 3, ..., n, where $j' \colon \Sigma SO(n) \to BSO(n)$ is the natural map. On the other hand, it is shown in [13] that $(\Sigma \bar{q}_{SO(n)})^* \circ (j')^*(w_i) \neq 0$. Then for $2 \leq i \leq n$ with $i \neq 2^k + 1$,

$$0 \neq (\Sigma \bar{q}_{SO(n)})^* \circ (j')^*(w_i) = j^* \circ \bar{q}_{SO(n)}(w_i) = j^*(u_i).$$

The following lemma is easily deduced from the formula (4-1).

Lemma 4.6 In $H^*(BSO(n); \mathbb{Z}/2)$, we have:

- (1) If $n \equiv 0, 1 \mod 4$, then $\operatorname{Sq}^2 w_i$ for i = n 3, n 1 are decomposable and $\operatorname{Sq}^2 w_{n-1}$ includes the term $w_2 w_{n-1}$.
- (2) If $n \equiv 2 \mod 8$, then Sq⁵ w_i for i = n-4, n-9 are decomposable and Sq⁵ w_{n-4} includes the term $w_2 w_{n-1}$.
- (3) If $n \equiv 6 \mod 8$, then Sq³ w_i for i = n-2, n-4 are decomposable and Sq³ w_{n-2} includes the term $w_2 w_{n-1}$.
- (4) If $n \equiv 3 \mod 4$, then $\operatorname{Sq}^2 w_i$ for i = n 2, *n* are decomposable and $\operatorname{Sq}^2 w_n$ includes the term $w_2 w_n$.

Let C_n denote the center of Spin(n). Then we have:

- (1) $C_{2n+1} \cong \mathbb{Z}/2$ and $\text{Spin}(2n+1)/C_{2n+1} \cong \text{SO}(2n+1)$.
- (2) $C_{4n+2} \cong \mathbb{Z}/4$ and $\operatorname{Spin}(4n+2)/(\mathbb{Z}/2) \cong \operatorname{SO}(4n+2)$.
- (3) $C_{4n} \cong \mathbb{Z}/2 \times \mathbb{Z}/2$, $\operatorname{Spin}(4n)/(\mathbb{Z}/2 \times 1) \cong \operatorname{SO}(4n)$ and $\operatorname{Spin}(4n)/(1 \times \mathbb{Z}/2) \cong Ss(4n)$.

Proposition 4.7 If H = Spin(n) and K = SO(n), then $\langle \epsilon, p \rangle$ is of order s(G).

Proof We only give a proof for *n* odd because the case *n* even is quite similarly proved. We apply Lemma 3.5 by setting $x = z = w_{n-1}$, $y = w_2$ and $\theta = \text{Sq}^2$. By Lemma 4.6, the first and the second conditions of Lemma 3.5 are satisfied. By Lemmas 4.5 and 4.6, $(\bar{q} \circ j)^*(w_{n-1})$ is nontrivial and not included in any element of $\text{Sq}^2(H^*(\Sigma \text{Spin}(n); \mathbb{Z}/2))$. Then the third condition of Lemma 3.5 is also satisfied, so $\langle \bar{e}, \bar{q} \rangle \neq 0$. Thus, since s(G) = 2, Lemmas 3.3 and 3.4 complete the proof.

Let $PO(n) = Spin(n)/C_n$. Then we have:

Corollary 4.8 If H = Spin(4n+2) and K = PO(4n+2), then $\langle \epsilon, p \rangle$ is of order s(G).

Proof Let $\bar{\rho}$: SO(4*n*+2) \rightarrow PO(4*n*+2) denote the projection. Then $\bar{\rho}_*(\bar{\epsilon}_{SO(4n+2)}) = 2\bar{\epsilon}_{PO(4n+2)}$. Since $S^1 \wedge \text{Spin}(4n+2)$ is simply connected, the map

 $\bar{\rho}_* : [S^1 \wedge \operatorname{Spin}(4n+2), \operatorname{SO}(4n+2)] \to [S^1 \wedge \operatorname{Spin}(4n+2), \operatorname{PO}(4n+2)]$

is an isomorphism. By definition, $\bar{q}_{PO(4n+2)} = \bar{\rho} \circ \bar{q}_{SO(4n+2)}$. So by Proposition 4.7,

$$2\langle \bar{\epsilon}_{\text{PO}(4n+2)}, \bar{q}_{\text{PO}(4n+2)} \rangle = \bar{\rho}_*(\langle \bar{\epsilon}_{\text{SO}(4n+2)}, \bar{q}_{\text{SO}(4n+2)} \rangle) \neq 0.$$

Then by Lemma 3.3, the order of $\langle \bar{\epsilon}_{PO(4n+2)}, \bar{q}_{PO(4n+2)} \rangle$ is a nonzero multiple of s(G) = 4. Thus the proof is complete by Lemmas 3.3 and 3.4.

Let Δ denote the diagonal subgroup of $\mathbb{Z}/2 \times \mathbb{Z}/2$.

Proposition 4.9 If H = Spin(4n) and $p_2(C) = 1 \times \mathbb{Z}/2, \Delta$, then $\langle \epsilon, p \rangle$ is of order s(G).

Proof By triality of Spin(8), the case H = Spin(8) is proved by Proposition 4.7. Then we assume n > 2. The mod 2 cohomology of PO(4*n*) was determined by Baum and Browder [3] such that

$$H^*(\text{PO}(4n); \mathbb{Z}/2) = \mathbb{Z}/2[v]/(v^{2^r}) \otimes \Delta(u_1, \dots, \hat{u}_{2^r-1}, \dots, u_{n-1}), \quad \bar{\rho}^*(u_i) = w_i,$$

where $4n = 2^r (2m + 1)$, |v| = 1 and $|u_i| = i$. The elements v and u_1 correspond respectively to generators of subgroups $1 \times \mathbb{Z}/2$ and $\mathbb{Z}/2 \times 1$ of $C_{4n} \cong \mathbb{Z}/2 \times \mathbb{Z}/2$. The Hopf algebra structure of $H^*(\text{PO}(4n); \mathbb{Z}/2)$ was also determined such that

$$\bar{\phi}(v) = 0$$
 and $\bar{\phi}(u_i) = \sum_{j=1}^{i-1} {i \choose j} u_j \otimes v^{i-j}$,

where $\bar{\phi}$ is the reduced diagonal map. Let $\gamma: PO(4n)^2 \to PO(4n)$ denote the commutator map. Since $\bar{\epsilon}(v) \neq 0$, it suffices to show $\gamma^*(x)$ includes the term $v \otimes y$

such that $\rho^*(y) \neq 0$, where ρ : Spin(4*n*) \rightarrow PO(4*n*) denotes the projection. Let μ : PO(4*n*)² \rightarrow PO(4*n*) and Δ : PO(4*n*) \rightarrow PO(4*n*)² denote the multiplication and the diagonal map, respectively. Let ι : PO(4*n*) \rightarrow PO(4*n*) be a map given by $\iota(x) = x^{-1}$, and let T: PO(4*n*)² \rightarrow PO(4*n*)² be the switching map. Then

$$\mu = \mu \circ (\mu \times \mu) \circ (1 \times 1 \times \iota \times \iota) \circ (1 \times T \times 1) \circ (\Delta \times \Delta).$$

Let $I_k = \tilde{H}^*(\text{PO}(n)^k; \mathbb{Z}/2)$. Now we compute $\gamma^*(u_i)$:

Then for *n* odd, $\gamma^*(u_7)$ includes the term $v \otimes u_6$, where $\rho^*(u_6) \neq 0$ by Lemma 4.5, and for *n* even, $\gamma^*(u_{11})$ includes the term $v \otimes u_{10}$, where $\rho^*(u_{10}) \neq 0$ by Lemma 4.5. Thus the Samelson product $\langle \bar{\epsilon}, \bar{q} \rangle$ is nontrivial, completing the proof by Lemmas 3.3 and 3.4 because s(G) = 2.

5 Exceptional case

First, we consider the case $H = E_6$.

Proposition 5.1 If $H = E_6$, then $\langle \epsilon, p \rangle$ is of order s(G).

Proof Since the center of E_6 is isomorphic to $\mathbb{Z}/3$, we only need to consider the case $G = S^1 \times_{\mathbb{Z}/3} E_6$. The mod 3 cohomology of Ad (E_6) , which is the quotient of E_6 by its center, was determined by Kono [19] as

$$H^*(\mathrm{Ad}(E_6); \mathbb{Z}/3) = \mathbb{Z}/3[x_2, x_8]/(x_2^9, x_8^3) \otimes \Lambda(x_1, x_3, x_7, x_9, x_{11}, x_{16})$$

such that

$$\bar{\phi}(x_9) = x_8 \otimes x_1 + x_2 \otimes x_7 - x_2^3 \otimes x_3 + x_2^4 \otimes x_1 \text{ and } \bar{q}^*(x_8) \neq 0,$$

where $|x_i| = i$. Then by the same computation as in the proof of Proposition 4.9, we can see that $\langle \bar{\epsilon}, \bar{q} \rangle$ is nontrivial. Thus by Lemmas 3.3 and 3.4, $\langle \epsilon, 1_G \rangle$ is of order s(G) = 3.

Next, we consider the case $H = E_7$. Because the center of E_7 is isomorphic to $\mathbb{Z}/2$, we only need to consider the case $G = S^1 \times_{\mathbb{Z}/2} E_7$. The Hopf algebra structure of $H^*(\operatorname{Ad}(E_7); \mathbb{Z}/2)$ was determined by Ishitoya, Kono and Toda [13], from which we can see that the same computation as $\operatorname{Ad}(E_6)$ does not apply to $\operatorname{Ad}(E_7)$. So we apply Lemma 3.5. Kono and Mimura [21] showed that the mod 2 cohomology of $B\operatorname{Ad}(E_7)$ is generated by elements x_i for $i \in \{2, 3, 6, 7, 10, 11, 18, 19, 34, 35, 64, 66, 67, 96, 112\}$, where $|x_i| = i$. We determine Sq² x_6 .

Let e_1, e_2, \ldots, e_n be the standard basis of \mathbb{R}^n . Elements of the spin group Spin(*n*) are expressed by using e_1, e_2, \ldots, e_n . See [1, Chapter 3]. Recall from [1, Proposition 4.2] that there are two representations

$$\Delta_{2n}^+, \Delta_{2n}^-: \operatorname{Spin}(2n) \to \operatorname{SU}(2^{n-1})$$

such that Δ_n^+ has weights $\frac{1}{2}(\pm x_1 \pm x_2 \pm \cdots \pm x_n)$ with even numbers of minus signs and Δ_n^- has weights $\frac{1}{2}(\pm x_1 \pm x_2 \pm \cdots \pm x_n)$ with odd numbers of minus signs.

Proposition 5.2 There is a natural isomorphism

$$\operatorname{Spin}(4) \cong \operatorname{Ker} \Delta_4^+ \times \operatorname{Ker} \Delta_4^-.$$

Proof There is a product decomposition $Spin(4) \cong SU(2) \times SU(2)$ such that

$$\Delta_4^{\pm}$$
: Spin(4) \rightarrow SU(2)

are identified with projections $SU(2) \times SU(2) \rightarrow SU(2)$.

As in [1, Theorem 6.1], there is a homomorphism

$$\theta$$
: Spin(16) $\rightarrow E_8$

whose kernel is $\{1, e_1e_2 \cdots e_{16}\}$. Let μ : Spin(4) × Spin(12) \rightarrow Spin(16) denote the homomorphism covering the inclusion

$$SO(4) \times SO(12) \rightarrow SO(16), \quad (A, B) \mapsto \begin{pmatrix} A & O \\ O & B \end{pmatrix}.$$

Define $\bar{\mu} = \theta \circ \mu$: Spin(4) × Spin(12) $\rightarrow E_8$. Then

 $\operatorname{Ker} \bar{\mu} = \{(1, 1), (-1, -1), (e_1e_2e_3e_4, e_5e_6\cdots e_{16}), (-e_1e_2e_3e_4, -e_5e_6\cdots e_{16})\}.$

Algebraic & Geometric Topology, Volume 23 (2023)

Recall from [1, Chapter 8] that E_7 is defined as the centralizer of $\bar{\mu}(\text{Ker }\Delta_4^+ \times 1)$ in E_8 . Then, by Proposition 5.2, there is a homomorphism

$$\hat{\mu}$$
: Ker $\Delta_4^- \times \text{Spin}(12) \to E_7$.

Since $-e_1e_2e_3e_4 \in \text{Ker }\Delta_4^+$, $\bar{\mu}(-e_1e_2e_3e_4, 1)$ commutes with every element of E_7 in E_8 . Moreover, $\bar{\mu}(-e_1e_2e_3e_4, 1) = \bar{\mu}(e_1e_2e_3e_4, -1) = \hat{\mu}(e_1e_2e_3e_4, -1)$, which belongs to E_7 and is not the unit of E_7 . Then we obtain:

Proposition 5.3 The center of E_7 is $\{1, \hat{\mu}(e_1e_2e_3e_4, -1)\}$.

Let $L = (\text{Ker } \Delta_4^- \times \text{Spin}(12))/\{(1, 1), (e_1e_2e_3e_4, -1)\}$. Then by Proposition 5.3, there is a map

$$\rho: L \to \mathrm{Ad}(E_7),$$

which is an isomorphism in the second mod 2 cohomology.

Lemma 5.4 In $H^*(BAd(E_7); \mathbb{Z}/2)$, Sq² x_6 is decomposable and includes the term x_2x_6 .

Proof By [21; 22], $(\bar{\mu} \circ (1 \times \bar{q}))^*(x_6)$ includes the term $1 \otimes u_6$, where u_i is as in Lemma 4.5. Note that the composition

$$\operatorname{Spin}(12) \to \operatorname{Ker} \Delta_4^- \times \operatorname{Spin}(12) \to L \xrightarrow{q_2} \operatorname{SO}(12)$$

is the natural projection, where q_2 is the second projection. Then by degree reasons,

$$\rho^*(x_6) + a\rho^*(x_2)^3 + b\rho^*(x_3)^2 = q_2^*(w_6)$$

for some $a, b \in \mathbb{Z}/2$. On the other hand, $q_2^* \colon H^2(BSO(12); \mathbb{Z}/2) \to H^2(BL; \mathbb{Z}/2)$ is an isomorphism, implying $\rho^*(x_2) = q_2^*(w_2)$. Then since $\operatorname{Sq}^2 w_6 = w_2 w_6$ by (4-1) and $\operatorname{Sq}^2 x_6$ is decomposable by degree reasons, $\operatorname{Sq}^2 x_6$ is decomposable and includes the term $x_2 x_6$, as stated.

We are ready to prove:

Proposition 5.5 If $H = E_7$, then $\langle \epsilon, p \rangle$ is of order s(G).

Proof As mentioned above, we only need to consider $G = S^1 \times_{\mathbb{Z}/2} E_7$. We apply Lemma 3.5 by setting $x = z = x_6$, $y = x_2$ and $\theta = \text{Sq}^2$. By Lemma 5.4, the first and second conditions of Lemma 3.5 are satisfied. As in [22], $\bar{q}^*(x_6)$ is a generator of $H^6(BE_7; \mathbb{Z}/2)$ such that $(\bar{q} \circ j)^*(x_6)$ is nontrivial. Then by degree reasons, the third condition of Lemma 3.5 is also satisfied, implying $\langle \bar{\epsilon}, \bar{q} \rangle$ is nontrivial. Since s(G) = 2, the proof is complete by Lemmas 3.3 and 3.4.

6 Proofs of Theorems 1.3 and 1.4

This section proves Theorems 1.3 and 1.4. First, we prove Theorem 1.4.

Proof of Theorem 1.4 Suppose $H \cong H_1 \times \cdots \times H_k$, where each H_i is a simple Lie group. Let $r_i: S^1 \times H \to S^1 \times H_i$ be the projection, and let $G_i = (S^1 \times H_i)/(r_i(C))$ for $i = 1, 2, \ldots, k$. By definition, s(G) is the least common multiple of $s(G_1), \ldots, s(G_k)$. Let $\bar{r}_i: G \to G_i$ and $\iota_i: S^1 \times H_i \to S^1 \times H$ denote the projection and the inclusion, respectively. Then $\bar{r}_i \circ \epsilon_G = \epsilon_{G_i}$ and $\bar{r}_i \circ p_G \circ \iota_i = p_{G_i}$, so

$$(1 \wedge \iota_i)^* \circ (\bar{r}_i)_* (\langle \epsilon_G, p_G \rangle) = \langle \bar{r}_i \circ \epsilon_G, \bar{r}_i \circ p_G \circ \iota_i \rangle = \langle \epsilon_{G_i}, p_{G_i} \rangle.$$

Thus the order of $\langle \epsilon_G, p_G \rangle$ is a nonzero multiple of the order of $\langle \epsilon_{G_i}, p_{G_i} \rangle$. So by Propositions 4.1, 4.4, 4.7, 5.1 and 5.5, the order of $\langle \epsilon_G, p_G \rangle$ is a nonzero multiple of $s(G_i)$ for i = 1, 2, ..., k; hence so is $\langle \epsilon_G, 1_G \rangle$. Therefore, by Lemma 3.3, the proof is complete.

Next, we prove Theorem 1.3.

Proof of Theorem 1.3 First, we prove the case $H = SU(n)^r$. The implication $(1) \implies (2)$ follows from Theorem 1.2. We prove the implication $(2) \implies (1)$. Let $\partial_k : G \to \max_*(S^2, BG; k) \simeq \Omega_0 G$ be as in Section 2, and let $q_i : H \to SU(n)$ be the projection onto the *i*th SU(*n*). Then by Lemma 2.1, the proof of Proposition 4.1 implies that the image of the map

$$(\partial_k)_* : \pi_{2n-1}(G) \to \pi_{2n-1}(\Omega_0 G)$$

is isomorphic to $\prod_{i=1}^{r} \mathbb{Z}/\frac{n!}{(k,|q_i(C)|)}$, where $\pi_{2n-1}(\Omega_0 G) \cong (\mathbb{Z}/n!)^r$. By (2-1), there is an exact sequence

$$0 \to \prod_{i=1}^{r} \mathbb{Z} \Big/ \frac{n!}{(k, |q_i(C)|)}$$
$$\to \pi_{2n-1}(B\mathcal{G}_k(S^2, G)) \to \pi_{2n-1}(BG) \cong \pi_{2n-1}(BSU(n)^r) = 0.$$

Then since $\pi_{2n-1}(B\mathcal{G}_k(S^2,G)) \cong \pi_{2n-2}(\mathcal{G}_k(S^2,G)),$

$$\pi_{2n-2}(\mathcal{G}_k(S^2,G)) \cong \prod_{i=1}^r \mathbb{Z}/(k,|q_i(C)|).$$

So if $\mathcal{G}_k(X,G) \simeq \mathcal{G}_l(X,G)$, then $\pi_{2n-2}(\mathcal{G}_k(S^2,G)) \simeq \pi_{2n-2}(\mathcal{G}_l(S^2,G))$, implying $(k,|q_1(C)|)\cdots(k,|q_r(C)|) = (l,|q_1(C)|)\cdots(l,|q_r(C)|).$

As in the proof of Theorem 1.4, s(G) is the least common multiple of

$$|q_1(C)|,\ldots,|q_r(C)|.$$

Then it is easy to see that the above equality implies (k, s(G)) = (l, s(G)).

Next, we prove the case $H = SU(4n-2)^s \times Sp(2n-1)^t$. Note that

$$\pi_{8n-4}(\operatorname{Sp}(2n-1)) \cong \mathbb{Z}/2.$$

Then similarly to the above case, the proofs of Propositions 4.1 and 4.4 imply that the image of the map

$$(\partial_k)_* : \pi_{8n-5}(G) \to \pi_{8n-5}(\Omega_0 G)$$

is isomorphic to

$$\prod_{i=1}^{s} \mathbb{Z} \Big/ \frac{(4n-2)!}{\left(k, |q_i(C)|\right)} \times \prod_{i=1}^{t} \mathbb{Z} \Big/ \frac{2}{\left(k, q_i(C)\right)}.$$

So we also get an exact sequence

$$0 \to \prod_{i=1}^{s} \mathbb{Z} / \frac{(4n-2)!}{(k,|q_i(C)|)} \times \prod_{i=1}^{t} \mathbb{Z} / \frac{2}{(k,|q_i(C)|)} \to \pi_{8n-5}(B\mathcal{G}_k(S^2,G)) \\ \to \pi_{2n-1}(BG) \cong \pi_{8n-5}(BSU(4n-2)^s \times BSp(2n-1)^t) = 0.$$

Thus, by arguing as above, we obtain (k, s(G)) = (l, s(G)) whenever $\mathcal{G}_k(X, G) \simeq \mathcal{G}_l(X, G)$. Therefore, the proof is complete.

References

- [1] JF Adams, Lectures on exceptional Lie groups, Univ. Chicago Press (1996) MR Zbl
- [2] MF Atiyah, R Bott, *The Yang–Mills equations over Riemann surfaces*, Philos. Trans. Roy. Soc. London Ser. A 308 (1983) 523–615 MR Zbl
- [3] PF Baum, W Browder, The cohomology of quotients of classical groups, Topology 3 (1965) 305–336 MR Zbl
- [4] R Bott, A note on the Samelson product in the classical groups, Comment. Math. Helv. 34 (1960) 249–256 MR Zbl
- [5] S B Bradlow, O García-Prada, P B Gothen, Homotopy groups of moduli spaces of representations, Topology 47 (2008) 203–224 MR Zbl
- [6] M C Crabb, W A Sutherland, Counting homotopy types of gauge groups, Proc. London Math. Soc. 81 (2000) 747–768 MR Zbl

- T Cutler, The homotopy types of Sp(3)-gauge groups, Topology Appl. 236 (2018)
 44–58 MR Zbl
- [8] **G D Daskalopoulos**, **K K Uhlenbeck**, *An application of transversality to the topology* of the moduli space of stable bundles, Topology 34 (1995) 203–215 MR Zbl
- [9] DH Gottlieb, Applications of bundle map theory, Trans. Amer. Math. Soc. 171 (1972) 23–50 MR Zbl
- [10] H Hamanaka, A Kono, Unstable K¹-group and homotopy type of certain gauge groups, Proc. Roy. Soc. Edinburgh Sect. A 136 (2006) 149–155 MR Zbl
- [11] S Hasui, D Kishimoto, A Kono, T Sato, The homotopy types of PU(3)- and PSp(2)gauge groups, Algebr. Geom. Topol. 16 (2016) 1813–1825 MR Zbl
- [12] S Hasui, D Kishimoto, T So, S Theriault, Odd primary homotopy types of the gauge groups of exceptional Lie groups, Proc. Amer. Math. Soc. 147 (2019) 1751–1762 MR Zbl
- [13] K Ishitoya, A Kono, H Toda, Hopf algebra structure of mod 2 cohomology of simple Lie groups, Publ. Res. Inst. Math. Sci. 12 (1976/77) 141–167 MR Zbl
- [14] Y Kamiyama, D Kishimoto, A Kono, S Tsukuda, Samelson products of SO(3) and applications, Glasg. Math. J. 49 (2007) 405–409 MR Zbl
- [15] D Kishimoto, A Kono, On the homotopy types of Sp(n) gauge groups, Algebr. Geom. Topol. 19 (2019) 491–502 MR Zbl
- [16] D Kishimoto, A Kono, M Tsutaya, On p-local homotopy types of gauge groups, Proc. Roy. Soc. Edinburgh Sect. A 144 (2014) 149–160 MR Zbl
- [17] D Kishimoto, I Membrillo-Solis, S Theriault, *The homotopy types of* SO(4)–gauge groups, Eur. J. Math. 7 (2021) 1245–1252 MR Zbl
- [18] D Kishimoto, S Theriault, M Tsutaya, The homotopy types of G₂-gauge groups, Topology Appl. 228 (2017) 92–107 MR Zbl
- [19] A Kono, Hopf algebra structure of simple Lie groups, J. Math. Kyoto Univ. 17 (1977) 259–298 MR Zbl
- [20] A Kono, A note on the homotopy type of certain gauge groups, Proc. Roy. Soc. Edinburgh Sect. A 117 (1991) 295–297 MR Zbl
- [21] A Kono, M Mimura, On the cohomology mod 2 of the classifying space of AdE₇, J. Math. Kyoto Univ. 18 (1978) 535–541 MR Zbl
- [22] A Kono, M Mimura, N Shimada, On the cohomology mod 2 of the classifying space of the 1–connected exceptional Lie group E₇, J. Pure Appl. Algebra 8 (1976) 267–283 MR Zbl
- [23] J McCleary, A user's guide to spectral sequences, 2nd edition, Cambridge Studies in Advanced Mathematics 58, Cambridge Univ. Press (2001) MR Zbl

msp

- [24] **M Mimura, H Toda**, *Topology of Lie groups, I, II*, Translations of Mathematical Monographs 91, Amer. Math. Soc., Providence, RI (1991) MR Zbl
- [25] D Quillen, The mod 2 cohomology rings of extra-special 2–groups and the spinor groups, Math. Ann. 194 (1971) 197–212 MR Zbl
- [26] S Rea, Homotopy types of gauge groups of PU(p)-bundles over spheres, J. Homotopy Relat. Struct. 16 (2021) 61–74 MR Zbl
- [27] S D Theriault, The homotopy types of Sp(2)–gauge groups, Kyoto J. Math. 50 (2010) 591–605 MR Zbl
- [28] S D Theriault, Odd primary homotopy decompositions of gauge groups, Algebr. Geom. Topol. 10 (2010) 535–564 MR Zbl
- [29] **S D Theriault**, *Homotopy decompositions of gauge groups over Riemann surfaces and applications to moduli spaces*, Internat. J. Math. 22 (2011) 1711–1719 MR Zbl
- [30] S Theriault, The homotopy types of SU(5)-gauge groups, Osaka J. Math. 52 (2015) 15–29 MR Zbl
- [31] S Theriault, Odd primary homotopy types of SU(n)-gauge groups, Algebr. Geom. Topol. 17 (2017) 1131–1150 MR Zbl
- [32] G W Whitehead, On products in homotopy groups, Ann. of Math. 47 (1946) 460–475 MR Zbl

Department of Mathematical Sciences, Shibaura Institute of Technology Saitama, Japan Faculty of Mathematics, Kyushu University Fukuoka, Japan Department of Mathematics, Kyoto University Kyoto, Japan kameko@shibaura-it.ac.jp, kishimoto@math.kyushu-u.ac.jp, takeda.masahiro.87u@kyoto-u.jp

Received: 3 August 2021 Revised: 6 February 2022

ALGEBRAIC & GEOMETRIC TOPOLOGY

msp.org/agt

EDITORS

PRINCIPAL ACADEMIC EDITORS

John Etnyre etnyre@math.gatech.edu Georgia Institute of Technology Kathryn Hess kathryn.hess@epfl.ch École Polytechnique Fédérale de Lausanne

BOARD OF EDITORS

Julie Bergner	University of Virginia jeb2md@eservices.virginia.edu	Robert Lipshitz	University of Oregon lipshitz@uoregon.edu
Steven Boyer	Université du Québec à Montréal cohf@math.rochester.edu	Norihiko Minami	Nagoya Institute of Technology nori@nitech.ac.jp
Tara E. Brendle	University of Glasgow tara.brendle@glasgow.ac.uk	Andrés Navas	Universidad de Santiago de Chile andres.navas@usach.cl
Indira Chatterji	CNRS & Université Côte d'Azur (Nice) indira.chatterji@math.cnrs.fr	Thomas Nikolaus	University of Münster nikolaus@uni-muenster.de
Alexander Dranishnikov	University of Florida dranish@math.ufl.edu	Robert Oliver	Université Paris 13 bobol@math.univ-paris13.fr
Corneli Druţu	University of Oxford cornelia.drutu@maths.ox.ac.uk	Birgit Richter	Universität Hamburg birgit.richter@uni-hamburg.de
Tobias Ekholm	Uppsala University, Sweden tobias.ekholm@math.uu.se	Jérôme Scherer	École Polytech. Féd. de Lausanne jerome.scherer@epfl.ch
Mario Eudave-Muñoz	Univ. Nacional Autónoma de México mario@matem.unam.mx	Zoltán Szabó	Princeton University szabo@math.princeton.edu
David Futer	Temple University dfuter@temple.edu	Ulrike Tillmann	Oxford University tillmann@maths.ox.ac.uk
John Greenlees	University of Warwick john.greenlees@warwick.ac.uk	Maggy Tomova	University of Iowa maggy-tomova@uiowa.edu
Ian Hambleton	McMaster University ian@math.mcmaster.ca	Nathalie Wahl	University of Copenhagen wahl@math.ku.dk
Hans-Werner Henn	Université Louis Pasteur henn@math.u-strasbg.fr	Chris Wendl	Humboldt-Universität zu Berlin wendl@math.hu-berlin.de
Daniel Isaksen	Wayne State University isaksen@math.wayne.edu	Daniel T. Wise	McGill University, Canada daniel.wise@mcgill.ca
Christine Lescop	Université Joseph Fourier lescop@ujf-grenoble.fr		-

See inside back cover or msp.org/agt for submission instructions.

The subscription price for 2023 is US \$650/year for the electronic version, and \$940/year (+\$70, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues and changes of subscriber address should be sent to MSP. Algebraic & Geometric Topology is indexed by Mathematical Reviews, Zentralblatt MATH, Current Mathematical Publications and the Science Citation Index.

Algebraic & Geometric Topology (ISSN 1472-2747 printed, 1472-2739 electronic) is published 9 times per year and continuously online, by Mathematical Sciences Publishers, c/o Department of Mathematics, University of California, 798 Evans Hall #3840, Berkeley, CA 94720-3840. Periodical rate postage paid at Oakland, CA 94615-9651, and additional mailing offices. POSTMASTER: send address changes to Mathematical Sciences Publishers, c/o Department of Mathematics, University of California, 798 Evans Hall #3840, Berkeley, CA 94720-3840.

AGT peer review and production are managed by EditFlow[®] from MSP.

PUBLISHED BY mathematical sciences publishers nonprofit scientific publishing

http://msp.org/ © 2023 Mathematical Sciences Publishers

ALGEBRAIC & GEOMETRIC TOPOLOGY

Volume 23 Issue 5 (pages 1935–2414) 2023

Splitting Madsen–Tillmann spectra, II: The Steinberg idempotents and Whitehead conjecture	1935
TAKUJI KASHIWABARA and HADI ZARE	
Free and based path groupoids	1959
ANDRÉS ÁNGEL and HELLEN COLMAN	
Discrete real specializations of sesquilinear representations of the braid groups	2009
NANCY SCHERICH	
A model for configuration spaces of points	2029
RICARDO CAMPOS and THOMAS WILLWACHER	
The Hurewicz theorem in homotopy type theory	2107
J DANIEL CHRISTENSEN and LUIS SCOCCOLA	
A concave holomorphic filling of an overtwisted contact 3-sphere	2141
NAOHIKO KASUYA and DANIELE ZUDDAS	
Modifications preserving hyperbolicity of link complements	2157
COLIN ADAMS, WILLIAM H MEEKS III and ÁLVARO K RAMOS	
Golod and tight 3–manifolds	2191
KOUYEMON IRIYE and DAISUKE KISHIMOTO	
A remark on the finiteness of purely cosmetic surgeries	2213
Tetsuya Ito	
Geodesic complexity of homogeneous Riemannian manifolds	2221
STEPHAN MESCHER and MAXIMILIAN STEGEMEYER	
Adequate links in thickened surfaces and the generalized Tait conjectures	2271
HANS U BODEN, HOMAYUN KARIMI AND ADAM S SIKORA	
Homotopy types of gauge groups over Riemann surfaces	2309
MASAKI KAMEKO, DAISUKE KISHIMOTO and MASAHIRO TAKEDA	
Diffeomorphisms of odd-dimensional discs, glued into a manifold	2329
JOHANNES EBERT	
Intrinsic symmetry groups of links	2347
Charles Livingston	
Loop homotopy of 6-manifolds over 4-manifolds	2369
Ruizhi Huang	
Infinite families of higher torsion in the homotopy groups of Moore spaces	2389
STEVEN AMELOTTE EPEDEDICK R COHEN and YUXIN LUO	