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Homotopy types of gauge groups over Riemann surfaces

MASAKI KAMEKO

DAISUKE KISHIMOTO

MASAHIRO TAKEDA

Let G be a compact connected Lie group with �1.G/Š Z. We study the homotopy
types of gauge groups of principal G–bundles over Riemann surfaces. This can be
applied to an explicit computation of the homotopy groups of the moduli spaces of
stable vector bundles over Riemann surfaces.

57S05; 55Q15

1 Introduction

Let G be a compact connected Lie group, and let P be a principal G–bundle over a
finite complex X . The gauge group of P is defined to be the topological group of
G–equivariant self-maps of P which fix X . There may be infinitely many distinct
principal G–bundles over X . For example, there are infinitely many bundles when X is
an orientable 4–manifold. Each bundle has a gauge group, so there may be potentially
infinitely many gauge groups. However, Crabb and Sutherland [6] showed that these
gauge groups have only finitely many homotopy types. Subsequently, the precise
number of homotopy types of gauge groups for specific G and X has been intensely
studied. The study began with simply connected Lie groups by Cutler [7], Hamanaka,
Hasui, Kishimoto, Kono, So, Theriault and Tsutaya [10; 12; 15; 16; 18; 20; 30; 31], and
recently, nonsimply connected cases are also studied by Hasui, Kamiyama, Kishimoto,
Kono, Membrillo-Solis, Sato, Theriault and Tsukuda [11; 14; 17] and Rea [26].

In this paper, we study the homotopy types of gauge groups of principal G–bundles over
a compact connected Riemann surface, where �1.G/Š Z. This includes an important
case: gauge groups of principal U.n/–bundles over a Riemann surface, whose topology
was first studied by Atiyah and Bott [2]. To state the results, we introduce a numerical
invariant of G. Suppose �1.G/Š Z. Then as in Mimura and Toda [24, Corollary 5.1,
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Chapter II], there is a compact connected simply connected Lie group H and a subgroup
C of the center of S1 �H such that

(1-1) G Š .S1
�H /=C:

In other words, G is locally isomorphic to S1�H . Note that H is uniquely determined
by G, but C is not. For example, if G D S1�H , then C can be any finite subgroup of
S1 � 1� S1 �H . We define

s.G/D jp2.C /j;

where p2 W S
1 �H ! H is the projection. By Theorem 1.4 below, we can see that

s.G/ is independent of the choice of C .

Example 1.1 Since U.n/ is the quotient of S1�SU.n/ by the diagonal central subgroup
isomorphic to Z=n, we have s.U.n//D n.

Let X be a compact connected Riemann surface. Then there is a one-to-one correspon-
dence between principal G–bundles over X and �2.BG/Š Z. Let Gk.X;G/ denote
the gauge group of a principal G–bundle over X corresponding to k 2 Z. Now we
state our results.

Theorem 1.2 Let G be a compact connected Lie group with �1.G/Š Z, and let X

be a compact connected Riemann surface. If .k; s.G//D .l; s.G//, then Gk.X;G/ and
Gl.X;G/ are homotopy equivalent after localizing at any prime or zero.

We remark that the p–localization of a disconnected space will mean the disjoint union
of the p–localization of path-connected components. For a prime p, Theriault [29]
gave a p–local homotopy decomposition of Gk.X;U.p//, which implies the converse
implication of Theorem 1.2 holds for GDU.p/. We will prove the converse implication
of Theorem 1.2 holds for other Lie groups.

Theorem 1.3 Let G be a compact connected Lie group with �1.G/Š Z, and let X

be a compact connected Riemann surface. If G is locally isomorphic to S1 �SU.n/r

or S1 �SU.4n� 2/s �Sp.2n� 1/t , then the following statements are equivalent :

(1) .k; s.G//D .l; s.G//.

(2) Gk.X;G/ and Gl.X;G/ are homotopy equivalent after localizing at any prime
or zero.

Note that since U.n/D .S1 �SU.n//=.Z=n/ as in Example 1.1, Theorem 1.3 applies
to the case G D U.n/.
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The homotopy type of a gauge group Gk.X;G/ is closely related with a Samelson
product in G, as we will see in Section 2. In our context, the Samelson product of a
generator of �1.G/ŠZ and the identity map of G is of particular importance. We will
prove the following theorem, which is of independent interest.

Theorem 1.4 Let G be a compact connected Lie group with �1.G/Š Z, and let �
denote a generator of �1.G/. Then the Samelson product h�; 1Gi in G is of order s.G/.

Now we consider an application. Gauge groups over a Riemann surface are closely
related to the moduli spaces of stable vector bundles over a Riemann surface as follows.
Let X be a Riemann surface of genus g, and let M.n; k/ denote the moduli space of
stable vector bundles over X of rank n and degree k. Daskalopoulos and Uhlenbeck [8]
showed that there is an isomorphism

�i.M.n; k//Š �i�1.Gk.X;U.n///

for 2 < i � 2.g � 1/.n � 1/ � 2 and .n; k/ ¤ .2; 2/. There is a polystable Higgs
bundle analog due to Bradlow, García-Prada and Gothen [5]. We can compute the
homotopy groups of these moduli spaces in a range through the following homotopy
decomposition.

Theorem 1.5 Let G be a compact connected Lie group with �1.G/Š Z, and let X

be a compact connected Riemann surface of genus g. If s.G/ divides k, then

Gk.X;G/'G � .�G/2g
��2G:

Moreover , the above homotopy equivalence also holds after localizing at p whenever p

does not divide s.G/.

The paper is structured as follows. Section 2 recalls a connection between gauge
groups and Samelson products, and then proves Theorems 1.2 and 1.5 by assuming
Theorem 1.4 holds. Section 3 shows some general results on Samelson products in a
Lie group, which will be used for a practical computation. Sections 4 and 5 compute
the Samelson products in G when H is simple. Finally, Section 6 collects all results so
far together to prove Theorems 1.3 and 1.4.
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2 Gauge groups and Samelson products

This section recalls a connection between gauge groups and Samelson products, and
then Theorems 1.2 and 1.5 are proved by assuming Theorem 1.4 holds. First, we
recall a connection between gauge groups and mapping spaces. Let G be a topological
group, and let P be a principal G–bundle over a base X , which is classified by a map
˛ WX ! BG. Recall that the gauge group of P , denoted by G.P /, is the topological
group of G–equivariant self-maps of P which fix X . Gottlieb [9] proved that there is a
natural homotopy equivalence

BG.P /'map.X;BGI˛/;

where map.A;BIf / denotes the path component of the space of maps map.A;B/
containing a map f WA!B. Then evaluating at the basepoint of X yields a homotopy
fibration

(2-1) map�.X;BGI˛/! BG.P /! BG;

where map�.X;BGI˛/ is the subspace of map.X;BGI˛/ consisting of basepoint
preserving maps. So the gauge group G.P / is homotopy equivalent to the homotopy
fiber of the connecting map

@˛ WG!map�.X;BGI˛/

of the above homotopy fibration.

Next, we assume X D Sn for n � 1 and describe the connecting map @˛. Clearly,
there is a homotopy equivalence map�.S

n;BGI˛/'�n�1
0

G, where �n�1
0

G denotes
the path component of �n�1G containing the constant map. Then by adjointing, the
connecting map @˛ corresponds to a map

d˛ W S
n�1
^G!G:

The original definition of Whitehead products in [32] and adjointness of Whitehead
products and Samelson products prove the following.

Lemma 2.1 The map d˛ is the Samelson product h N̨ ; 1Gi in G, where N̨ W Sn�1!G

is the adjoint of ˛ W Sn! BG.

The following lemma due to Theriault [27] shows how to identify the homotopy type
of a gauge group G.P / from the order of a Samelson product h N̨ ; 1Gi.

Algebraic & Geometric Topology, Volume 23 (2023)
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Lemma 2.2 Suppose that a map f W X ! Y into an H-space Y is of order n <1.
Then .n; k/ D .n; l/ implies Fk .p/ ' Fl .p/ for any prime p, where Fk denotes the
homotopy fiber of a map k ıf WX ! Y .

Finally, we recall a homotopy decomposition of a gauge group. Theriault [28] showed a
homotopy decomposition of a gauge group over principal U.n/–bundle over a Riemann
surface. We can easily see that his proof works in verbatim for any compact connected
Lie group G with �1.G/Š Z. Then we get:

Proposition 2.3 Let G be a compact connected Lie group with �1.G/Š Z, and let
X be a compact connected Riemann surface of genus g. Then there is a homotopy
equivalence

Gk.X;G/' .�G/2g
�Gk.S

2;G/:

Now we prove Theorems 1.2 and 1.5 by assuming Theorem 1.4 holds.

Proof of Theorem 1.2 Combine Lemmas 2.1 and 2.2, Proposition 2.3 and Theorem 1.4.

Proof of Theorem 1.5 By Lemma 2.1 and Theorem 1.4, if k is divisible by s.G/,
then Gk.S

2;G/ is homotopy equivalent to the homotopy fiber of the constant map
G ! �0G. So since �2.G/ D 0, Gk.S

2;G/ ' G ��2G. Thus by Proposition 2.3,
the proof is done.

3 Samelson products in Lie groups

This section shows some criteria for computing Samelson products in a Lie group. For
the rest of the paper, we will use the following notation:

� Let G be a compact connected Lie group with �1.G/Š Z.

� Let �G denote a generator of �1.G/Š Z.

� Let H and C be as in the decomposition (1-1).

� Let jH W†H ! BH denote the natural map.

� Let pG W S
1 �H !G denote the quotient map.

� Let p1 W S
1 �H ! S1 and p2 W S

1 �H !H denote projections.

� Let K DH=p2.C /.

� Let qG WG!K and NqK WH !K denote the quotient maps.

Algebraic & Geometric Topology, Volume 23 (2023)
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We will abbreviate �G , jH , pG , qG and NqK to �, j , p, q and Nq, respectively, if G, H

and K are clear from the context. First, we show two properties of the group C .

Lemma 3.1 The abelian group p2.C / is cyclic.

Proof There is a fibration

(3-1) S1
!G

q
�!K

and so by the homotopy exact sequence, we can see that �1.K/Š p2.C / is a quotient
of �1.G/Š Z. Then p2.C / is a cyclic group, as stated.

Lemma 3.2 We may choose a group C such that jp1.C /j D s.G/.

Proof Note that p2.C / is a cyclic group by (3-1). We prove that the inequality
jp1.C /j � s.G/ always holds. If jp1.C /j< s.G/, then C1 D jp1.C /jC is a nontrivial
subgroup of the center of 1�H � S1 �H . In particular, there is a covering

C=C1! .S1
�H /=C1!G:

Then �1.G/ŠZ includes a nontrivial finite abelian group C1, which is a contradiction.
Thus jp1.C /j � s.G/.

Suppose that jp1.C /j>s.G/. Then C2Ds.G/C is a finite subgroup of S1�1�S1�H .
Then .S1 �H /=C2 Š S1 �H , implying

G Š .S1
�H /=C Š ..S1

�H /=C2/=.C=C2/Š .S
1
�H /=.C=C2/:

Note that C is a subgroup of p1.C / � p2.C / generated by .g1;g2/, where gi is a
generator of a cyclic group pi.C / for i D 1; 2. Then C2 D s.G/p1.C /� 0, and so
C=C2 is identified with the diagonal subgroup of

.p1.C /=s.G/p1.C //�p2.C /Š Z=s.G/�Z=s.G/:

Thus jp1.C=C2/j D s.G/, finishing the proof.

By Lemma 3.1, �1.K/Š p2.C / is a cyclic group of order s.G/. For the rest of this
section, we will also use the following notation:

� Let N�K denote a generator of �1.K/.

We will abbreviate it by N� if K is clear from the context.

Next, we show an upper bound and a lower bound for the order of h�; 1Gi.

Lemma 3.3 The order of h�; 1Gi, hence h�;pi, divides s.G/.

Algebraic & Geometric Topology, Volume 23 (2023)
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Proof The proof of Lemma 3.1 implies q ı � D N�. Then since q is a homomorphism,
we get

q�.s.G/h�; 1Gi/D s.G/hq ı �; qi D hs.G/N�; qi D 0:

So since there is a fibration (3-1), s.G/h�; 1Gi lifts to a map S1 ^G ! S1. Since
S1 ^G is simply connected, this lift is trivial, and thus s.G/h�; 1Gi itself is trivial,
completing the proof.

Lemma 3.4 The order of hN�; Nqi divides the order of h�;pi.

Proof Let i WH ! S1 �H denote the inclusion. By definition, q ıp ı i D Nq, and the
proof of Lemma 3.2 implies that q ı � D N�. Then

.1^ i/� ı q�.h�;pi/D q�.h�;p ı ii/D hq ı �; q ıp ı ii D hN�; Nqi

and so the proof is done.

Finally, we give a cohomological criterion for the Samelson product hN�; Nqi being
nontrivial. For an algebra A, let QA denote the module of indecomposables.

Lemma 3.5 Suppose there are x;y; z 2QH�.BKIZ=p/ and a Steenrod operation �
satisfying the following conditions:

(1) jyj D 2 and QH n.BKIZ=p/D hzi for n> 2.

(2) �.x/ is decomposable and includes the term y˝ z.

(3) . Nq ı j /�.z/ is nontrivial and not included in any element of �.H�.†H IZ=p//.

Then the Samelson product hN�; Nqi is nontrivial.

Proof Suppose that hN�; Nqi is trivial. Let O� W S2 ! BK and Oq W †H ! BK denote
the adjoint of N� and Nq, respectively. Then by adjointness of Samelson products and
Whitehead products, the Whitehead product ŒO�; Oq� is trivial, so that there is a homotopy
commutative diagram

S2 _†H
O�_Oq
//

��

BK

S2 �†H
�
// BK

Since BK is simply connected, H 1.BKIZ=p/D 0 and H 2.BKIZ=p/D hyi. Then
by the Hurewicz theorem and the first condition in the statement, we may assume
O��.y/D u, where u is a generator of H 2.S2IZ=p/ŠZ=p. Hence by the first and the

Algebraic & Geometric Topology, Volume 23 (2023)
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second conditions, ��.�.x// includes the term u˝ Oq�.z/. Since Oq D Nq ı j , the third
condition implies u˝ Oq�.z/¤ 0. On the other hand, by the third condition, �.��.x//
cannot include the term u˝ Oq�.z/. Thus since ��.�.x// D �.��.x//, we obtain a
contradiction. Therefore hN�; Nqi is nontrivial, completing the proof.

Recall that compact simply connected simple Lie groups with nontrivial center are

SU.n/; Sp.n/; Spin.n/ .n� 7/; E6; E7:

Then in the following two sections, we will compute the Samelson product h�;pi for
H being one of the above Lie groups.

4 Classical case

This section determines the order of the Samelson product h�;pi for H DSU.n/, Sp.n/
and Spin.n/.

4.1 The case H D SU.n/

First we consider the case H D SU.n/.

Proposition 4.1 If H D SU.n/, then h�;pi is of order s.G/.

Proof By Lemma 3.3, it suffices to show that the order of h�;pi is a nonzero multiple
of s.G/. The center of SU.n/ is isomorphic to Z=n. Then since U.n/DS1�Z=nSU.n/,
it follows from Lemma 3.2 that there is a homomorphism � W G ! U.n/ which is a
n=s.G/ sheeted covering. Let ˛2i�1 denote a generator of �2i�1.U.n// Š Z for
i D 1; 2; : : : ; n. Then

��.�/D
n

s.G/
˛1:

On the other hand, it is shown in [4] that the order of h˛1; ˛2n�1i is a nonzero multiple
of n. Since �� W�2n�1.G/!�2n�1.U.n// is an isomorphism, there is an Q̨ 2�2n�1.G/

such that ��. Q̨ /D ˛2n�1. Then since

��.h�; Q̨ i/D h��.�/; ��. Q̨ /i D
D

n

s.G/
˛1; ˛2n�1

E
D

n

s.G/
h˛1; ˛2n�1i;

the order of ��.h�; Q̨ i/ is a nonzero multiple of s.G/. Thus, since the map

�� W �2n.G/! �2n.U.n//

is an isomorphism, the order of h�; Q̨ i is a nonzero multiple of s.G/ too. Since

p� W �2n�1.S
1
�SU.n//! �2n�1.G/
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is an isomorphism, there is a ˇ 2 �2n�1.S
1�SU.n// such that p ıˇ D Q̨ . Thus since

.1^ˇ/�.h�;pi/D h�; Q̨ i, the order of h�;pi is a nonzero multiple of s.G/, completing
the proof.

4.2 The case H D Sp.n/

Next, we consider the case H D Sp.n/. Recall that the center of Sp.n/ is isomorphic to
Z=2, and the quotient of Sp.n/ by its center is denoted by PSp.n/. We apply Lemma 3.5
to the case H D Sp.n/. To this end, we compute the mod 2 cohomology of BPSp.2n/

in low dimensions.

Lemma 4.2 Let �D f˙.1; : : : ; 1/ 2 Sp.2/ng. Then for � � 7,

H�.B.Sp.2/n=�/IZ=2/D Z=2Œx2;x3;x5�˝

nO
kD1

Z=2Œx4;k �; Sq2 x4;k D x2x4;k ;

where jxi j D i and jx4;k j D 4.

Proof Consider the Serre spectral sequence for a homotopy fibration

RP1! BSp.2/n! B.Sp.2/n=�/:

Since H�.RP1IZ=2/D Z=2Œw� with jwj D 1,

H�.RP1IZ=2/D�.w;Sq1w;Sq2 Sq1w/

for � � 7, where �.a1; : : : ; ak/ denotes the simple system of generators in a1; : : : ; ak .
Clearly, �.w/ D x2 for a generator x2 of H 2.B.Sp.2/n=�/IZ=2/ Š Z=2, where �
denotes the transgression. Then by [23, Corollary 6.9], Sq1w and Sq2 Sq1w are also
transgressive, and so we get H�.B.Sp.2/n=�/IZ=2/ for � � 7 as stated. It remains
to show Sq2 x4;k D x2x4;k . Recall that

(4-1)

H�.BSO.n/IZ=2/D Z=2Œw2; w3; : : : ; wn�;

Sqi wj D

iX
kD0

�
j C k � i � 1

k

�
wi�kwjCk ;

where wi is the i th Stiefel–Whitney class. Then since PSp.2/Š SO.5/,

H�.BPSp.2/IZ=2/D Z=2Œy2;y3;y4;y5�; Sq2 y4 D y2y4;

where jyi j D i . Let qk W B.Sp.2/n=�/! BPSp.2/ denote the induced map of the k th

projection for k D 1; 2; : : : ; n. Then q�
k
.y2/D x2 and q�

k
.y4/D x4;k . Thus we obtain

Sq2 x4;k D x2x4;k , completing the proof.
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Proposition 4.3 For � � 7,

H�.BPSp.n/IZ=2/D Z=2Œx2;x3;x4;x5�; Sq2 x4 D x4x2; jxi j D i:

Proof We can compute the mod 2 cohomology of BPSp.2n/ in the same way as in
the proof of Lemma 4.2 by considering a homotopy fibration

RP1! BSp.2n/! BPSp.2n/:

Then it remains to show Sq2 x4 D x4x2. Let � be as in Lemma 4.2. Then there is an
inclusion i WSp.2/n=�!PSp.2n/. Clearly, i�.x2/Dx2 and i�.x4/Dx4;1C� � �Cx4;n.
Then we obtain Sq2 x4 D x4x2 by Lemma 4.2.

Now we prove:

Proposition 4.4 If H D Sp.n/, then h�;pi is of order s.G/.

Proof Since the center of Sp.n/ is isomorphic to Z=2, we only consider

G D S1
�Z=2 Sp.n/:

In this case, s.G/D 2, so by Lemma 3.3, it suffices to show h�;pi is nontrivial. First,
we consider the case G D S1 �Z=2 Sp.2n� 1/. The natural inclusion

Sp.2n� 1/! SU.4n� 2/

sends the center of Sp.2n� 1/ injectively into the center of SU.4n� 2/. Then we
get a homomorphism G ! S1 �Z=2 SU.4n� 2/ which is an isomorphism in �1. It
is well known that the induced map �8n�5.Sp.2n� 1//! �8n�5.SU.4n� 2// is an
isomorphism; hence so is �8n�5.G/! �8n�5.S

1 �Z=2 SU.4n� 2//. Then the proof
of Proposition 4.1 implies that the Samelson product h�;pi is nontrivial.

Next, we consider G D S1 �Z=2 Sp.2n/. We apply Lemma 3.5 to K D PSp.2n/ by
setting x D z D x4, y D x2 and � D Sq2. By Proposition 4.3, the first and the second
conditions of Lemma 3.5 are satisfied. The proof of Proposition 4.3 implies Nq�.x4/ is
nontrivial, where H 4.BSp.2n/IZ=2/ŠQH 4.BSp.2n/IZ=2/ŠZ=2. Since the map

j � WQH 4.BSp.2n/IZ=2/!†QH 3.Sp.2n/IZ=2/

is an isomorphism, we have . Nqıj /�.x4/¤0. Moreover, for degree reasons, . Nqıj /�.x4/

is not included in any element of �.H�.†Sp.2n/IZ=2//. Then the third condition of
Lemma 3.5 is also satisfied. Thus hN�; Nqi is nontrivial, and so by Lemma 3.4, h�;pi is
nontrivial too.
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4.3 The case H D Spin.n/

Finally, we consider the case H D Spin.n/. We show some properties of the mod 2
cohomology of BSpin.n/ that we are going to use. Recall that the mod 2 cohomology
of BSO.n/ is given as in (4-1).

Lemma 4.5 (1) The mod 2 cohomology of BSpin.n/ is given by

H�.BSpin.n/IZ=2/D Z=2Œu2;u3; : : : ;un; z�=.u2;Sq2k

Sq2k�1

� � � Sq1 u2 j k � 0/;

where Nq�SO.n/.wj /D uj , jzj D 2h for some h> 0 and Sqi uj is computed by replacing
wj with uj in (4-1).

(2) For 2� i � n with i ¤ 2k C 1, j �Spin.n/.ui/¤ 0.

Proof Item (1) is a result of Quillen [25]. We prove statement (2). It is well known
that .j 0/�.wi/ ¤ 0 for i D 2; 3; : : : ; n, where j 0 W †SO.n/! BSO.n/ is the natural
map. On the other hand, it is shown in [13] that .† NqSO.n//

� ı .j 0/�.wi/¤ 0. Then for
2� i � n with i ¤ 2k C 1,

0¤ .† NqSO.n//
�
ı .j 0/�.wi/D j � ı NqSO.n/.wi/D j �.ui/:

The following lemma is easily deduced from the formula (4-1).

Lemma 4.6 In H�.BSO.n/IZ=2/, we have:

(1) If n � 0; 1 mod 4, then Sq2wi for i D n � 3; n � 1 are decomposable and
Sq2wn�1 includes the term w2wn�1.

(2) If n� 2 mod 8, then Sq5wi for i Dn�4; n�9 are decomposable and Sq5wn�4

includes the term w2wn�1.

(3) If n� 6 mod 8, then Sq3wi for i Dn�2; n�4 are decomposable and Sq3wn�2

includes the term w2wn�1.

(4) If n � 3 mod 4, then Sq2wi for i D n � 2; n are decomposable and Sq2wn

includes the term w2wn.

Let Cn denote the center of Spin.n/. Then we have:

(1) C2nC1 Š Z=2 and Spin.2nC 1/=C2nC1 Š SO.2nC 1/.

(2) C4nC2 Š Z=4 and Spin.4nC 2/=.Z=2/Š SO.4nC 2/.

(3) C4n Š Z=2�Z=2, Spin.4n/=.Z=2� 1/Š SO.4n/ and Spin.4n/=.1�Z=2/Š

Ss.4n/.

Proposition 4.7 If H D Spin.n/ and K D SO.n/, then h�;pi is of order s.G/.
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Proof We only give a proof for n odd because the case n even is quite similarly
proved. We apply Lemma 3.5 by setting x D z D wn�1, y D w2 and � D Sq2.
By Lemma 4.6, the first and the second conditions of Lemma 3.5 are satisfied. By
Lemmas 4.5 and 4.6, . Nq ı j /�.wn�1/ is nontrivial and not included in any element of
Sq2.H�.†Spin.n/IZ=2//. Then the third condition of Lemma 3.5 is also satisfied, so
hN�; Nqi ¤ 0. Thus, since s.G/D 2, Lemmas 3.3 and 3.4 complete the proof.

Let PO.n/D Spin.n/=Cn. Then we have:

Corollary 4.8 If H D Spin.4nC2/ and KD PO.4nC2/, then h�;pi is of order s.G/.

Proof Let N� WSO.4nC2/!PO.4nC2/ denote the projection. Then N��.N�SO.4nC2//D

2N�PO.4nC2/. Since S1 ^Spin.4nC 2/ is simply connected, the map

N�� W ŒS
1
^Spin.4nC 2/;SO.4nC 2/�! ŒS1

^Spin.4nC 2/;PO.4nC 2/�

is an isomorphism. By definition, NqPO.4nC2/ D N� ı NqSO.4nC2/. So by Proposition 4.7,

2hN�PO.4nC2/; NqPO.4nC2/i D N��.hN�SO.4nC2/; NqSO.4nC2/i/¤ 0:

Then by Lemma 3.3, the order of hN�PO.4nC2/; NqPO.4nC2/i is a nonzero multiple of
s.G/D 4. Thus the proof is complete by Lemmas 3.3 and 3.4.

Let � denote the diagonal subgroup of Z=2�Z=2.

Proposition 4.9 If H D Spin.4n/ and p2.C / D 1 � Z=2; �, then h�;pi is of or-
der s.G/.

Proof By triality of Spin.8/, the case H D Spin.8/ is proved by Proposition 4.7. Then
we assume n> 2. The mod 2 cohomology of PO.4n/ was determined by Baum and
Browder [3] such that

H�.PO.4n/IZ=2/D Z=2Œv�=.v2r

/˝�.u1; : : : ; Ou2r�1; : : : ;un�1/; N��.ui/D wi ;

where 4n D 2r .2mC 1/, jvj D 1 and jui j D i . The elements v and u1 correspond
respectively to generators of subgroups 1�Z=2 and Z=2� 1 of C4n Š Z=2�Z=2.
The Hopf algebra structure of H�.PO.4n/IZ=2/ was also determined such that

N�.v/D 0 and N�.ui/D

i�1X
jD1

�
i

j

�
uj ˝ v

i�j ;

where N� is the reduced diagonal map. Let 
 W PO.4n/2 ! PO.4n/ denote the com-
mutator map. Since N�.v/ ¤ 0, it suffices to show 
 �.x/ includes the term v ˝ y
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such that ��.y/ ¤ 0, where � W Spin.4n/ ! PO.4n/ denotes the projection. Let
� W PO.4n/2! PO.4n/ and � W PO.4n/! PO.4n/2 denote the multiplication and the
diagonal map, respectively. Let � W PO.4n/! PO.4n/ be a map given by �.x/D x�1,
and let T W PO.4n/2! PO.4n/2 be the switching map. Then


 D � ı .���/ ı .1� 1� �� �/ ı .1�T � 1/ ı .���/:

Let Ik D
zH�.PO.n/k IZ=2/. Now we compute 
 �.ui/:

ui
��

7�! ui˝1C1˝uiCiui�1˝v mod I3
2

.���/�
7����! i.ui�1˝v˝1˝1C1˝1˝ui�1˝vCui�1˝1˝1˝vC1˝ui�1˝v˝1/

mod I1˝1˝I1˝1C1˝I1˝1˝I1CI3
4

.1�1����/�
7������! i.ui�1˝v˝1˝1C1˝1˝ui�1˝vCui�1˝1˝1˝vC1˝ui�1˝v˝1/

mod I1˝1˝I1˝1C1˝I1˝1˝I1CI3
4

.1�T�1/�
7�����! i.ui�1˝1˝v˝1C1˝ui�1˝1˝vCui�1˝1˝1˝vC1˝v˝ui�1˝1/

mod I1˝I1˝1˝1C1˝1˝I1˝I1CI3
4

.���/�
7����! i.ui�1˝vCv˝ui�1/ mod I1˝1C1˝I1CI3

2 :

Then for n odd, 
 �.u7/ includes the term v˝u6, where ��.u6/¤ 0 by Lemma 4.5,
and for n even, 
 �.u11/ includes the term v˝u10, where ��.u10/¤ 0 by Lemma 4.5.
Thus the Samelson product hN�; Nqi is nontrivial, completing the proof by Lemmas 3.3
and 3.4 because s.G/D 2.

5 Exceptional case

First, we consider the case H DE6.

Proposition 5.1 If H DE6, then h�;pi is of order s.G/.

Proof Since the center of E6 is isomorphic to Z=3, we only need to consider the case
G D S1 �Z=3 E6. The mod 3 cohomology of Ad.E6/, which is the quotient of E6 by
its center, was determined by Kono [19] as

H�.Ad.E6/IZ=3/D Z=3Œx2;x8�=.x
9
2 ;x

3
8/˝ƒ.x1;x3;x7;x9;x11;x16/

such that

N�.x9/D x8˝x1Cx2˝x7�x3
2 ˝x3Cx4

2 ˝x1 and Nq�.x8/¤ 0;
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where jxi j D i . Then by the same computation as in the proof of Proposition 4.9,
we can see that hN�; Nqi is nontrivial. Thus by Lemmas 3.3 and 3.4, h�; 1Gi is of order
s.G/D 3.

Next, we consider the case H DE7. Because the center of E7 is isomorphic to Z=2,
we only need to consider the case G D S1 �Z=2 E7. The Hopf algebra structure of
H�.Ad.E7/IZ=2/ was determined by Ishitoya, Kono and Toda [13], from which we
can see that the same computation as Ad.E6/ does not apply to Ad.E7/. So we apply
Lemma 3.5. Kono and Mimura [21] showed that the mod 2 cohomology of BAd.E7/ is
generated by elements xi for i 2 f2; 3; 6; 7; 10; 11; 18; 19; 34; 35; 64; 66; 67; 96; 112g,
where jxi j D i . We determine Sq2 x6.

Let e1; e2; : : : ; en be the standard basis of Rn. Elements of the spin group Spin.n/ are
expressed by using e1; e2; : : : ; en. See [1, Chapter 3]. Recall from [1, Proposition 4.2]
that there are two representations

�C
2n
; ��2n W Spin.2n/! SU.2n�1/

such that �Cn has weights 1
2
.˙x1˙x2˙ � � �˙xn/ with even numbers of minus signs

and ��n has weights 1
2
.˙x1˙x2˙ � � �˙xn/ with odd numbers of minus signs.

Proposition 5.2 There is a natural isomorphism

Spin.4/Š Ker�C
4
�Ker��4 :

Proof There is a product decomposition Spin.4/Š SU.2/�SU.2/ such that

�˙4 W Spin.4/! SU.2/

are identified with projections SU.2/�SU.2/! SU.2/.

As in [1, Theorem 6.1], there is a homomorphism

� W Spin.16/!E8

whose kernel is f1; e1e2 � � � e16g. Let � W Spin.4/� Spin.12/! Spin.16/ denote the
homomorphism covering the inclusion

SO.4/�SO.12/! SO.16/; .A;B/ 7!

�
A O

O B

�
:

Define N�D � ı� W Spin.4/�Spin.12/!E8. Then

Ker N�D f.1; 1/; .�1;�1/; .e1e2e3e4; e5e6 � � � e16/; .�e1e2e3e4;�e5e6 � � � e16/g:
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Recall from [1, Chapter 8] that E7 is defined as the centralizer of N�.Ker�C
4
�1/ in E8.

Then, by Proposition 5.2, there is a homomorphism

O� W Ker��4 �Spin.12/!E7:

Since �e1e2e3e4 2 Ker�C
4

, N�.�e1e2e3e4; 1/ commutes with every element of E7

in E8. Moreover, N�.�e1e2e3e4; 1/ D N�.e1e2e3e4;�1/ D O�.e1e2e3e4;�1/, which
belongs to E7 and is not the unit of E7. Then we obtain:

Proposition 5.3 The center of E7 is f1; O�.e1e2e3e4;�1/g.

Let LD .Ker��
4
�Spin.12//=f.1; 1/; .e1e2e3e4;�1/g. Then by Proposition 5.3, there

is a map
� WL! Ad.E7/;

which is an isomorphism in the second mod 2 cohomology.

Lemma 5.4 In H�.BAd.E7/IZ=2/, Sq2 x6 is decomposable and includes the term
x2x6.

Proof By [21; 22], . N� ı .1� Nq//�.x6/ includes the term 1˝ u6, where ui is as in
Lemma 4.5. Note that the composition

Spin.12/! Ker��4 �Spin.12/!L
q2
�! SO.12/

is the natural projection, where q2 is the second projection. Then by degree reasons,

��.x6/C a��.x2/
3
C b��.x3/

2
D q�2 .w6/

for some a; b 2 Z=2. On the other hand, q�
2
W H 2.BSO.12/IZ=2/! H 2.BLIZ=2/

is an isomorphism, implying ��.x2/D q�
2
.w2/. Then since Sq2w6 D w2w6 by (4-1)

and Sq2 x6 is decomposable by degree reasons, Sq2 x6 is decomposable and includes
the term x2x6, as stated.

We are ready to prove:

Proposition 5.5 If H DE7, then h�;pi is of order s.G/.

Proof As mentioned above, we only need to consider G D S1 �Z=2 E7. We apply
Lemma 3.5 by setting x D z D x6, y D x2 and � D Sq2. By Lemma 5.4, the first and
second conditions of Lemma 3.5 are satisfied. As in [22], Nq�.x6/ is a generator of
H 6.BE7IZ=2/ such that . Nq ı j /�.x6/ is nontrivial. Then by degree reasons, the third
condition of Lemma 3.5 is also satisfied, implying hN�; Nqi is nontrivial. Since s.G/D 2,
the proof is complete by Lemmas 3.3 and 3.4.
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6 Proofs of Theorems 1.3 and 1.4

This section proves Theorems 1.3 and 1.4. First, we prove Theorem 1.4.

Proof of Theorem 1.4 Suppose H ŠH1 � � � � �Hk , where each Hi is a simple Lie
group. Let ri WS

1�H!S1�Hi be the projection, and let GiD .S
1�Hi/=.ri.C // for

i D 1; 2; : : : ; k. By definition, s.G/ is the least common multiple of s.G1/; : : : ; s.Gk/.

Let Nri W G! Gi and �i W S1 �Hi ! S1 �H denote the projection and the inclusion,
respectively. Then Nri ı �G D �Gi

and Nri ıpG ı �i D pGi
, so

.1^ �i/
�
ı . Nri/�.h�G ;pGi/D hNri ı �G ; Nri ıpG ı �ii D h�Gi

;pGi
i:

Thus the order of h�G ;pGi is a nonzero multiple of the order of h�Gi
;pGi
i. So by

Propositions 4.1, 4.4, 4.7, 5.1 and 5.5, the order of h�G ;pGi is a nonzero multiple of
s.Gi/ for i D 1; 2; : : : ; k; hence so is h�G ; 1Gi. Therefore, by Lemma 3.3, the proof is
complete.

Next, we prove Theorem 1.3.

Proof of Theorem 1.3 First, we prove the case H D SU.n/r . The implication
(1) D) (2) follows from Theorem 1.2. We prove the implication (2) D) (1). Let
@k W G ! map�.S

2;BGI k/ ' �0G be as in Section 2, and let qi W H ! SU.n/ be
the projection onto the i th SU.n/. Then by Lemma 2.1, the proof of Proposition 4.1
implies that the image of the map

.@k/� W �2n�1.G/! �2n�1.�0G/

is isomorphic to
Qr

iD1 Z= n!
.k;jqi .C /j/

, where �2n�1.�0G/Š .Z=n!/r . By (2-1), there
is an exact sequence

0!

rY
iD1

Z
. n!

.k; jqi.C /j/

! �2n�1.BGk.S
2;G//! �2n�1.BG/Š �2n�1.BSU.n/r /D 0:

Then since �2n�1.BGk.S
2;G//Š �2n�2.Gk.S

2;G//,

�2n�2.Gk.S
2;G//Š

rY
iD1

Z=.k; jqi.C /j/:

So if Gk.X;G/' Gl.X;G/, then �2n�2.Gk.S
2;G//' �2n�2.Gl.S

2;G//, implying�
k; jq1.C /j

�
� � �
�
k; jqr .C /j

�
D
�
l; jq1.C /j

�
� � �
�
l; jqr .C /j

�
:
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As in the proof of Theorem 1.4, s.G/ is the least common multiple of

jq1.C /j; : : : ; jqr .C /j:

Then it is easy to see that the above equality implies .k; s.G//D .l; s.G//.

Next, we prove the case H D SU.4n� 2/s �Sp.2n� 1/t . Note that

�8n�4.Sp.2n� 1//Š Z=2:

Then similarly to the above case, the proofs of Propositions 4.1 and 4.4 imply that the
image of the map

.@k/� W �8n�5.G/! �8n�5.�0G/

is isomorphic to
sY

iD1

Z
. .4n� 2/!�

k; jqi.C /j
� � tY

iD1

Z
. 2

.k; qi.C //
:

So we also get an exact sequence

0!

sY
iD1

Z
. .4n� 2/!�

k; jqi.C /j
� � tY

iD1

Z
. 2�

k; jqi.C /j
� ! �8n�5.BGk.S

2;G//

! �2n�1.BG/Š �8n�5.BSU.4n� 2/s �BSp.2n� 1/t /D 0:

Thus, by arguing as above, we obtain .k; s.G// D .l; s.G// whenever Gk.X;G/ '

Gl.X;G/. Therefore, the proof is complete.
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