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Loop homotopy of 6–manifolds over 4–manifolds

RUIZHI HUANG

Let M be the 6–manifold M arising as the total space of the sphere bundle of a
rank 3 vector bundle over a simply connected closed 4–manifold. We show that,
after looping, M is homotopy equivalent to a product of loops on spheres in general.
This particularly implies a cohomological rigidity property of M after looping.
Furthermore, passing to rational homotopy we show that such an M is Koszul.

55P15, 55P35, 57R19; 55P10, 55P40, 55P62

1 Introduction

Classification of manifolds is a fundamental problem in geometry and topology. Nu-
merous investigations have been made around this problem in both the smooth and
topological categories. For instance, in the general case, Wall [33; 35] studied .n�1/–
connected 2n–manifolds and .n�1/–connected .2nC1/–manifolds. For concrete cases
with specified dimension, Barden [2] classified simply connected 5–manifolds, and
Wall [34], Jupp [23] and Zhubr [37; 38] classified simply connected 6–manifolds. More
recently, Kreck and Su [25] classified certain nonsimply connected 5–manifolds, while
Crowley and Nordström [15] and Kreck [24] studied the classification of various kinds
of 7–manifolds.

In the literature mentioned, the homotopy classification of M was usually carried
out as a byproduct of a system of invariants. However, it is almost impossible to
extract nontrivial homotopy information of M directly from the classification. On the
other hand, unstable homotopy theory is a powerful tool for studying the homotopy
properties of manifolds preserved by suspending or looping. From the suspension
viewpoint, So and Theriault [31] determined the homotopy type of the suspension of
connected 4–manifolds, while Huang [19] studied the suspension of simply connected
6–manifolds. From the loop viewpoint, Beben and Theriault [6] studied the loop

© 2023 MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution
License 4.0 (CC BY). Open Access made possible by subscribing institutions via Subscribe to Open.

http://msp.org
http://dx.doi.org/10.2140/agt.2023.23.2369
http://www.ams.org/mathscinet/search/mscdoc.html?code=55P15, 55P35, 57R19, 55P10, 55P40, 55P62
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://msp.org/s2o/


2370 Ruizhi Huang

decompositions of .n�1/–connected 2n–manifolds, while Beben and Wu [8] and
Huang and Theriault [20] studied the loop decompositions of the .n�1/–connected
.2nC1/–manifolds. The homotopy groups of these manifolds were also investigated
by Samik Basu and Somnath Basu [3; 4] from different point of view. Moreover, a
theoretical method of loop decomposition was developed by Beben and Theriault [7],
which is quite useful for studying the homotopy of manifolds.

We study the loop homotopy of certain simply connected 6–manifolds constructed from
4–manifolds. Let N be a simply connected closed 4–manifold with H 2.N IZ/ŠZ˚d

for d � 1. A rank 3 vector bundle � over N is classified by a map f WN ! BSO.3/,
where BSO.3/ is the classifying space of the special orthogonal group SO.3/. The
sphere bundle of �

(1) S2 i
�!M

p
�!N

defines the closed 6–manifold M . Since the integral cohomologies of N and S2 are
free and concentrated in even degree, the Serre spectral sequence of (1) collapses, and
H�.M IZ/ Š H�.N IZ/˝H�.S2IZ/. Our main result is the following theorem,
which will be proved in Section 4.

Theorem 1.1 Let N be a simply connected closed 4–manifold with H 2.N IZ/ŠZ˚d

for d � 1. Let M be the total manifold of the sphere bundle of a rank 3 vector bundle
over N . Then:

� If d D 1,
�M ' S1

��S2
��S5:

� If d � 2,

�M ' S1
��S2

��.S2
�S3/��

�
J _ .J ^�.S2

�S3//
�
;

where J D
Wd�2

iD1 .S
2 _S3/.

From Theorem 1.1 and its proof, it can be easily seen that the decompositions in
Theorem 1.1 are compatible with the S2–bundle (1) after looping. In particular, this
means that though the fibre bundle (1) does not split in general, its loop does. Moreover,
as discussed in [6, page 217], the term J_.J^�.S2�S3// in the second decomposition
of Theorem 1.1 is a bouquet of spheres. Hence by the Hilton–Milnor theorem, we see
that�M is homotopy equivalent to a product of loops on spheres with S1. Additionally,
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since the decompositions of Theorem 1.1 only depend on the value of d , which is
determined by and determines H 2.M IZ/, we have a rigidity property for M after
looping.

Corollary 1.2 Let M and M 0 be two 6–manifolds satisfying the conditions of
Theorem 1.1. Then �M '�M 0 if and only if H 2.M IZ/ŠH 2.M 0IZ/.

Theorem 1.1 can be improved if we pass from integral homotopy to rational homotopy.
Indeed, by Theorem 1.1 it is straightforward to compute the homotopy groups of M

in terms of those of spheres. However, there is an additional Lie algebra structure on
the homotopy groups of any CW complex X . In rational homotopy theory, the graded
Lie algebra ��.�X /˝Q is called the homotopy Lie algebra of X , and X is called
coformal if the rational homotopy type of X is completely determined by its homotopy
Lie algebra. If X is further formal, that is the homotopy type of X is determined by
the graded commutative algebra H�.X IQ/, then X is Koszul in the sense of Berglund
[9, Definition 1.1]. In the latter case, H�.X IQ/ is a Koszul algebra and ��.�X /˝Q

is a Koszul Lie algebra [9]. The following theorem concerns these additional structures
on M of the type in Theorem 1.1.

Theorem 1.3 Let N be a simply connected closed 4–manifold with H 2.N IZ/ŠZ˚d .
Let M be the total manifold of the sphere bundle of a rank 3 vector bundle over N .
Then:

� If d D 1, M is not coformal.

� If d � 2, M is Koszul , and there is an isomorphism of graded Lie algebras

��.�M /˝QŠH�.M IQ/!Lie;

where .� /!Lie is the Koszul dual Lie functor defined in [9, Section 2].

We turn to the remaining case, when d D 0, that is, N Š S4. Note, we still have
the 6–manifold M as constructed in (1). Though the homotopy classification of such
manifolds was almost determined by Yamaguchi [36], this case is surprisingly much
harder than the general one. We will explain this point after the statement of our result
in this case. Let �2 W S

3! S2 be the Hopf map. For any integer n, let Smfng be the
homotopy fibre of the degree n map on Sm.
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Theorem 1.4 Let M be the total space of the sphere bundle of a rank 3 vector bundle
over S4. Then M has a cell structure of the form

M ' S2
[k�2

e4
[ e6;

where k 2 Z. Let k D p
r1

1
� � �p

r`

`
be the prime decomposition of k. Further:

� If k is odd ,

�M ' S1
�

Ỳ
jD1

S3
fp

rj

j g ��S7:

� If k D 2r with r � 3,

�M ' S1
�S3
f2r
g ��S7:

Note that we still have cohomological rigidity in this case, since the homotopy type
of �M only depends on k, which is determined by the square of a generator in
H 2.M IZ/. But it is less interesting since the cohomological rigidity of M without
looping holds except for the case when k is even and M is Spin [36]. Further note
that Theorem 1.4 is only a partial result. The difficulty in this case is due to the fact
that the proof of Theorem 1.4 heavily relies on a result of Huang and Theriault [20] on
the loop decomposition of 2–connected 7–manifolds. As discussed in [20, Section 6],
the case when k D 2r m with m odd and greater than 1 is much more difficult. Also,
since it is known that S3f2g is not an H–space (see Cohen [11]), we cannot expect
a decomposition of the form �M ' S1 �S3f2g ��S7 for the case when k D 2. In
contrast, the rational homotopy of M in this case is simple. As shown in Lemma 5.2, M

is rationally homotopy equivalent to CP3 or S2 �S4. Moreover, it is well known that
CP3 is not coformal (see Neisendorfer and Miller [27, Example 4.7]), while S2 �S4

is Koszul; see Berglund [9, Examples 5.1 and 5.4].

Before we close the introduction, let us make two remarks. Firstly, our results provide
further evidence on the Moore conjecture. Recall that the Moore conjecture states that a
simply connected finite CW complex Z is rationally elliptic if and only if it has a finite
homotopy exponent at all primes, or equivalently, Z is rationally hyperbolic if and only
if it has unbound homotopy exponent at some prime. For M in our context, it is elliptic
if and only if d � 2, and in any of these cases M has a finite homotopy exponent at
all primes by Cohen, Moore and Neisendorfer [12; 13] and James [21]. When d � 3,
M is hyperbolic such that �M has �.S2 _S3/ as product summand, hence it has no
bound on its homotopy exponent for any prime p; see Neisendorfer and Selick [28]
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or Boyde [10] for instance. Secondly, Amorós and Biswas [1] characterized simply
connected rationally elliptic compact Kähler threefolds in terms of Hodge diamonds,
and in particular, their second Betti numbers satisfy b2 � 3. For M in our context,
this is equivalent to d � 2, and our decompositions provide further information on the
homotopy of M . For instance, the homotopy groups of M can be computed in terms
of those of spheres.

The paper is organized as follows. In Section 2 we classify rank 3 bundles over the
4–manifold N . In Section 3, we prove Lemma 3.1, which implies that under Lemma 2.1
one component of the classifying map f of the bundle � over N is trivial in a special
case. This is crucial for proving Theorem 1.1. In Section 4, we prove Theorem 1.1 by
dividing it into two cases. Section 5 is devoted to the remaining case when d D 0 and
we prove Theorem 1.4 there. We discuss the rational homotopy of 6–manifolds and
prove Theorem 1.3 in Section 6.

Acknowledgements Ruizhi Huang was supported by the National Natural Science
Foundation of China (grants 11801544 and 11688101), and the Chen Jingrun Future
Star Program of the AMSS. He would like to thank Professor Stephen Theriault for
the international online lecture series Loop space decomposition, which stimulated his
research interest in the homotopy of 6–manifolds. He also want to thank Professor
Yang Su for helpful discussions on obstructions to trivializing vector bundles.

2 Rank 3 bundles over 4–manifolds

In this section, we discuss necessary knowledge of rank 3 vector bundles over simply
connected 4–manifolds, which will be used in the subsequent sections. There are
various ways to study the classification of vector bundles. Here, we adopt an approach
from a homotopy theoretical point of view for later use.

Let N be a simply connected 4–manifold such that H 2.N IZ/Š Z˚d with d � 0. A
rank 3 vector bundle � over N is classified by a map f W N ! BSO.3/. The sphere
bundle of �

S2 i
�!M

p
�!N

defines the closed 6–manifold M . For N , there is the homotopy cofiber sequence

(2) S3 �
�!

d_
iD1

S2 �
�!N

q
�! S4 †�

��!

d_
iD1

S3;
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where � is the attaching map of the top cell of N , � is the injection of the 2–skeleton,
and q is the pinch map onto the top cell. Let s W S1Š SO.2/! SO.3/ be the canonical
inclusion of Lie groups.

Lemma 2.1 There is a surjection

ˆ W ŒS4;BSO.3/�� ŒN;BS1�! ŒN;BSO.3/�

of pointed sets that restricts to q� on ŒS4;BSO.3/�, and to .Bs/� on ŒN;BS1�.

Proof By (2), there is the exact sequence of pointed sets

0D

� d_
iD1

S3;BSO.3/
�
! ŒS4;BSO.3/� q�

�! ŒN;BSO.3/�

��
�!

� d_
iD1

S2;BSO.3/
�
! ŒS3;BSO.3/�D 0;

in a strong sense: there is an action of ŒS4;BSO.3/� on ŒN;BSO.3/� through q� such
that the sets ���1.x/, for x 2

�Wd
iD1 S2;BSO.3/

�
, are precisely the orbits. It is known

that
�Wd

iD1 S2;BSO.3/
�
Š
L

d Z=2Z and ŒS4;BSO.3/�Š Z. Moreover, there is the
commutative diagram

ŒN;BS1�
��

Š
//

.Bs/�

��

�Wd
iD1 S2;BS1

�
.Bs/�
��

Š
//
L

d Z

L
d �2

��

ŒN;BSO.3/�
��
//
�Wd

iD1 S2;BSO.3/
� Š

//
L

d Z=2Z

where �� is an isomorphism onto
�Wd

iD1 S2;BS1
�
Š
L

d Z and �2 is the mod 2 reduc-
tion, hence .Bs/� is surjective onto

�Wd
iD1 S2;BSO.3/

�
. Now for any f 2 ŒN;BSO.3/�

we have ��.f / D .Bs/�.x/ for some x 2
�Wd

iD1 S2;BS1
�
. Write ˛ D .���1/.x/.

Then Bs�.˛/ and f belong to the same orbit of the action, for they have same image
in
�Wd

iD1 S2;BSO.3/
�

through ��. Hence, there exists an f 0 2 ŒS4;BSO.3/� such
that q�.f 0/ � .Bs�.˛//D f .

From Lemma 2.1 and its proof, for the classifying map f W N ! BSO.3/, we have
associated a pair of maps

(3) .f 0; ˛/ 2 ŒS4;BSO.3/�� ŒN;BS1�;
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such that q�.f 0/�.Bs�.˛//Df and!2.�/�˛ mod 2. We also notice that if ��.f /¤0,
or equivalently � is non-Spin, the element ˛ can be always chosen to be primitive, that
is, ˛ is not divisible by any integer k with k ¤˙1. This is important for our later use.

Let � WW ! N be a map from a closed manifold W . The pullback of the bundle �
along � has an associated sphere bundle

S2 �
�!Z

p
�!W;

which defines the closed manifold Z. The following lemma is critical for proving
Proposition 4.1.

Lemma 2.2 Suppose for W there is a homotopy cofibration

Wm�1
%
�!W

q
�! Sm;

such that � ı % factors as

Wm�1
�0
�!

d_
iD1

S2 �
�!N

for some �0, where Wm�1 is the .m�1/–skeleton of W . Then if f 0 ı q ı� and ˛ ı�
are both nullhomotopic , the bundle ��.�/ is trivial , and in particular

Z Š S2
�W:

Proof By the assumption, there is a diagram of homotopy cofibrations

Wm�1

%
//

�0
��

W
q
//

�

��

Sm

� 0

��W
d S2 �

// N
q
// S4

which defines the map � 0. It follows that there is a morphism of exact sequences of
pointed sets

ŒS4;BSO.3/�
q�
//

� 0�

��

ŒN;BSO.3/�
��
//

��

��

�Wd
iD1 S2;BSO.3/

�
��0
��

ŒSm;BSO.3/�
q�
// ŒW;BSO.3/�

%�
// ŒWm�1;BSO.3/�
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such that the action of ŒS4;BSO.3/� on ŒN;BSO.3/� is compatible with the action of
ŒSm;BSO.3/� on ŒW;BSO.3/� through � 0�. Hence, by (3), the classifying map f ı�
of ��.�/ satisfies

f ı� D ��
�
q�.f 0/ � .Bs�.˛//

�
D q�.� 0�.f 0// ���.Bs�.˛//

D ��.q�.f 0// ���..Bs�.˛///D .f
0
ı q ı�/ �Bs�.˛ ı�/;

which is nullhomotopic by the assumption.

Lemma 2.1 also gives a byproduct on the classification of rank 3 vector bundles over
N via characteristic classes, which could also be proved by other methods, like the
classical obstruction theory.

Proposition 2.3 A rank 3 vector bundle � over N is completely determined by its
second Stiefel–Whitney class !2.�/ and its first Pontryagin class p1.�/.

Proof Given two rank 3 vector bundles �1 and �2 over N , suppose that!2.�1/D!2.�2/

and p1.�1/D p1.�2/. We want to show that �1 Š �2, or equivalently, f1 ' f2, where
f1; f2 WN!BSO.3/ are the classifying maps of �1 and �2, respectively. By Lemma 2.1
and (3), f1D q�.f 0

1
/ � .Bs�.˛// for a pair of maps .f 0

1
; ˛/ 2 ŒS4;BSO.3/�� ŒN;BS1�

such that !2.�1/� ˛ mod 2. Since !2.�1/D !2.�2/, there exists f 0
2
2 ŒS4;BSO.3/�

such that f2 D q�.f 0
2
/ � .Bs�.˛//. It follows that to show f1 ' f2, it suffices to show

f 0
1
' f 0

2
. Indeed, for either �i the expression of fi can be explicitly described as

fi WN
�0
�!N _S4 ˛_f 0

i
���! BS1

_BSO.3/ Bs_id
����! BSO.3/_BSO.3/ r�! BSO.3/;

where �0 is the coaction map and r is the folding map. In particular, it is easy to see
that

(4) p1.�i/D q�.p1.f
0

i //C˛
2;

where we denote by p1.f
0

i / the first Pontryagin class of the bundle over S4 determined
by f 0i . Since p1.�1/Dp1.�2/, (4) implies that q�.p1.f

0
1
//D q�.p2.f

0
i //. Moreover, it

is clear that q� WH 4.S4IZ/!H 4.N IZ/ is an isomorphism. Hence p1.f
0

1
/Dp1.f

0
2
/.

Now since ŒS4;BSO.3/�' Z, and the morphism 1
4
p1 W ŒS

4;BSO.3/�!H 4.S4IZ/

sending each map to one fourth of the first Pontryagin class of the associated bundle
is an isomorphism [18], we see that f 0

1
' f 0

2
. Then f1 ' f2 and the proposition

follows.
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3 The induced map between top cells

Let N be a simply connected closed 4–manifold such that H 2.N IZ/ Š Z˚d with
d � 1. Consider the circle bundle

S1 j
�! Y

�
�!N

classified by a primitive element ˇ 2H 2.N IZ/, which defines the simply connected
5–manifold Y . By [16, Lemma 1], Y has cell structure of the form

Y '
_
d�1

.S2
_S3/[ e5:

Then, by the cellular approximation theorem, there is the diagram of homotopy co-
fibration

(5)

W
d�1.S

2 _S3/

��

%
// Y

�

��

q
// S5

� 0

��W
d S2 �

// N
q
// S4

where the bottom cofibration is part of (2), % is the inclusion of the 3–skeleton of Y

followed by the quotient q, and � 0 is induced from � . In this section, we prove the
following key lemma for understanding rank 3–bundles over Y in a special case. Let
ŒN � be the fundamental class of N . Let hx[y; ŒN �i 2 Z be the canonical pairing for
any cohomology classes x, y 2H 2.N IZ/.

Lemma 3.1 The induced map � 0 in (5) is nullhomotopic when hˇ2; ŒN �i is odd.

Proof The primitive element ˇ is represented by a map ˇ W N ! CP1 'K.Z; 2/.
By the cellular approximation theorem, ˇ factors through CP2,

ˇ WN
ž
�!CP2 x

�!CP1;

which defines the map ž, and x represents a generator x 2H 2.CP2IZ/. The factor-
ization gives a diagram of circle bundles

(6)

S1 j
// Y

�
//

y̌

��

N

ž

��

S1 // S5 �0
// CP2
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where the bundle in the second row is classified by x, and y̌ is the induced map. By
the cellular approximation theorem, there is a homotopy commutative diagram

(7)

Y
q

||

�
//

y̌

��

N
q

{{

ž

��

S5

y̌0

��

� 0
// S4

ž0

��

S5 �0
// CP2

q0

{{

S5
� 0

0
// S4

where the rear and top faces are the right squares in (6) and (5), respectively, q0 is the
quotient map onto the top cell of CP2, � 0

0
is defined to be q0ı�0, and y̌0 and ž0 are the

induced maps. By the homotopy commutativity of the right face of (7), the assumption
that hˇ2; ŒN �i is odd is equivalent to ž0 having odd degree. Further, since the homotopy
cofibre of �0 is CP3, for which the Steenrod operation Sq2

W H 4.CP3IZ=2Z/ !

H 6.CP3IZ=2Z/ is trivial, we obtain that � 0
0
D q0 ı �0 is nullhomotopic. Now

consider the front face of (7). Combining the above arguments and the fact that
�5.S

4/Š Z=2Zf�4g [32], we see that � 0 ' ž0 ı� 0 ' � 0
0
ı y̌0 is nullhomotopic.

4 Proof of Theorem 1.1

Let N be a simply connected 4–manifold such that H 2.N IZ/ Š Z˚d with d � 1.
A rank 3 vector bundle � over N is classified by a map f W N ! BSO.3/ with the
associated sphere bundle

S2 i
�!M

p
�!N;

which defines the closed 6–manifold M . Recall, by Lemma 2.1 and (3), the classifying
map f WN ! BSO.3/ for the bundle � is determined by

.f 0; ˛/ 2 ŒS4;BSO.3/�� ŒN;BS1�

such that f D q�.f 0/ � .Bs/�.˛/ and !2.�/ � ˛ mod 2, where q and s are defined
before Lemma 2.1. Moreover, by the discussion after Lemma 2.1, when � is non-Spin
we suppose that ˛ is primitive.

For the loop homotopy of M , we may study S1–bundles over M pulled back from
those over the 4–manifold N . Consider the circle bundle

(8) S1 j
�! Y

�
�!N
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classified by a primitive element ˇ 2H 2.N IZ/, which defines the simply connected
5–manifold Y . Based on the previous remark on the choice of ˛, we make the following
convention on the choice of ˇ:

� ˇ D ˛ if � is non-Spin, or

� ˇ can be any primitive element if � is Spin.

The remainder of this section is devoted to the proof of Theorem 1.1 by dividing it into
two cases according to the parity of hˇ2; ŒN �i. In Section 4.1, we prove Theorem 1.1
using Lemma 3.1 under the assumption that hˇ2; ŒN �i is odd. This is the case when
the circle bundle (8) plays an essential role. However, when hˇ2; ŒN �i is even, we have
to apply a different method to prove Theorem 1.1. This is done in Section 4.2.

4.1 Case I: hˇ2; ŒN �i is odd

In this case, by the choice of the circle bundle (8), consider the pullback of fibre bundles

(9)

S2

�

��

S2

i
��

S1 |
// X

p

��

 
// M

p

��

S1 j
// Y

�
// N

which defines the closed 7–manifold X with bundle projections  and p onto M and Y ,
respectively. We show that the induced bundle over Y in (9) is trivial in this case.

Proposition 4.1 If hˇ2; ŒN �i is odd , then the bundle ��.�/ defined in (9) is trivial ,
and , in particular ,

X Š S2
�Y:

Proof By Lemma 3.1, � 0 is nullhomotopic. This implies that f 0 ı q ı� ' f 0 ı� 0 ı q

is nullhomotopic by the homotopy commutativity of the right square in (5).

If � is non-Spin, then ˇD˛. We obtain the homotopy fibration Y
�
�!N

˛
�!BS1, which

implies that ˛ ı� is nullhomotopic, hence so is .Bs�/.˛ ı�/. Then by Lemma 2.2
the classifying map f ı� of the bundle ��.�/ is nullhomotopic, and the proposition
follows in this case.

If � is Spin, by Lemma 2.1 the classifying map f W N ! BSO.3/ of � is in the
image of q�, that is, there exists a map f 0 W S4! BSO.3/ such that f 0 ı q ' f , and
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then the bundle � is the pullback of the bundle � 0 over S4 classified by f 0. Hence
f ı� ' f 0 ı q ı� is nullhomotopic by the previous argument, and then the bundle
��.�/ is trivial. In particular, X Š S2 �Y and the proposition follows in this case.

Proof of Theorem 1.1 in Case I As in the beginning of this subsection, consider
the circle bundle S1 j

�! Y ��! N classified by the primitive element ˛ 2 H 2.N IZ/.
Then by Proposition 4.1, the total space X of the sphere bundle of ��.�/ satisfies
X Š S2 �Y . Hence, by (9),

(10) �M ' S1
��X ' S1

��S2
��Y:

If d D 1, then Y has to be S5, and hence �M ' S1 ��S2 ��S5. If d � 2, by
[7, Example 4.4] or [3] there is a homotopy equivalence

(11) �Y '�.S2
�S3/��

�
J _ .J ^�.S2

�S3//
�

with J D
Wd�2

iD1 .S
2_S3/. Combining (10) with (11), we obtain the loop decomposition

of M in the theorem.

4.2 Case II: hˇ2; ŒN �i is even

In this case, the induced bundle ��.�/ defined in (9) may not be trivial, and we need
to apply a different method to prove Theorem 1.1. Indeed, in this case we can work
with the sphere bundle S2 i

�!M
p
�!N directly, and show that it splits after looping.

Proposition 4.2 If hˇ2; ŒN �i is even , the sphere bundle S2 i
�!M

p
�!N of � defined

in (1) is homotopically trivial after looping , and in particular

�M '�S2
��N:

Proof By Poincaré duality there exists a class ˛2H 2.N IZ/ such that h˛[ˇ; ŒN �iD1.
Since by assumption hˇ2; ŒN �i is even, ˛¤ˇ. Hence by [6, proof of proposition 3.2 and
Lemma 3.3] there is a Poincaré duality space Q such that H�.QIZ/ŠH�.S2�S2IZ/

as graded rings, �Q'�S2 ��S2, and there is a map

h WN !Q

such that �h has a right homotopy inverse and h�.x/ D ˛ with x 2 H 2.QIZ/ a
generator. Let us fix a homotopy equivalence e W �S2 � �S2 ! �Q defined in
[6, Lemma 2.3] with its inverse denoted by e�1.
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Recall, � is determined by a pair of maps .f 0; ˛/2 ŒS4;BSO.3/��ŒN;BS1�. By Lemma
2.1, define a rank 3 vector bundle � over Q by .f 0;x/ 2 ŒS4;BSO.3/�� ŒQ;BS1�. It
follows that � D h�.�/ and there is a pullback of sphere bundles

(12)

S2 i
// M

p
//

Qh
��

N

h

��

S2
Qi
// zQ

Qp
// Q

where the second row is the sphere bundle of � and Qh is the induced map. Since
H�.QIZ/ and H�.S2IZ/ are concentrated in even degrees, the Serre spectral sequence
for the fibration S2! zQ!Q collapses for degree reasons, and then

H�. zQIZ/ŠH�.S2
IZ/˝H�.QIZ/:

Apply the loop functor to (12). It is clear that there is a map i1 � i2 W S
1 �S1!� zQ

such that the composition

S1
�S1 i1�i2

���!� zQ
� Qp
��!�Q

e�1

��!�S2
��S2

is homotopic to E �E with E W S1 ! �S2 the suspension map. By the universal
property of �†, there is a unique extension I W�S2 ��S2!� zQ of i1 � i2 up to
homotopy such that

�S2
��S2 I

�!� zQ
� Qp
��!�Q

e�1

��!�S2
��S2

is homotopic to the identity. Therefore, the sphere bundle of � splits after looping to
give

� zQ'�S2
��Q'�S2

��S2
��S2:

In particular, �Qi has a left homotopy inverse Qr , which implies that Qr ı� Qh is a left
homotopy inverse of �i . Then the sphere bundle in the top row of (12) splits after
looping, and in particular �M '�S2 ��N .

Proof of Theorem 1.1 in Case II Since hˇ2; ŒN �i is even and ˇ is primitive, we have
d � 2. By Proposition 4.2, �M '�S2 ��N . Further, by [6, Theorem 1.3] there is
a homotopy equivalence

�N ' S1
��.S2

�S3/��
�
J _ .J ^�.S2

�S3//
�

with J D
Wd�2

iD1 .S
2 _S3/. Then in this case the theorem follows by combining the

above decompositions.
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5 The case when d D 0

In this section, we study the case when d D 0 and prove Theorem 1.4 as an immediate
corollary of Propositions 5.3 and 5.4. Indeed, we work in a slightly more general
context, that is, we study the loop decomposition of the closed 6–manifold M with
cell structure of the form

(13) M ' S2
[ e4
[ e6:

Notice that M in Theorem 1.4, as the total space of an S2–bundle over S4, is an
example of (13). Yamaguchi [36] almost determined the homotopy classification of M

in (13) with correction by [5; 29], and summarized the criterion for whether M has the
same homotopy type as an S2–bundle over S4 in [36, Remark 4.8] based on [30].

By (13) there are generators x 2H 2.M IZ/ and y 2H 4.M IZ/ such that

(14) x2
D ky

for some k 2 Z. Consider the S1–bundle

(15) S1 j
�!X !M

classified by x 2 H 2.M IZ/ Š ŒM;BS1�, which defines the closed 7–manifold X .
Let Pn.k/ be the Moore space such that zH�.Pn.k/IZ/ Š Z=kZ if � D n and 0

otherwise [26].

Lemma 5.1 If k ¤ 0, there is a homotopy equivalence

X ' P4.k/[ e7:

Proof The lemma can be proved directly by analyzing the Serre spectral sequence of
the fibration X !M

x
�!BS1 induced from (15). Here we provide an alternative proof

using results in geometric topology. By [22, Theorem 1.3], X is homotopy equivalent
to the total space of an S3–bundle over S4. Then by the homotopy classification of
S3–bundles over S4 [14; 30], X is homotopy equivalent to P4.k 0/ [ e7 for some
k 0 2 Z. Notice that �3.X /Š �3.M /Š �3.S

2[k�2
e4/Š Z=k, where �2 2 �3.S

2/

is the Hopf element. Then k D k 0 because �3.P
4.k 0/[ e7/Š Z=k 0, and the lemma

follows.

Lemma 5.1 has an immediate consequence on the rational homotopy of M .
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Lemma 5.2 Let M be a closed 6–manifold with cell structure of the form (13). Then
if k ¤ 0 there is a rational homotopy equivalence M 'Q CP3, and if k D 0 then
M 'Q S2 �S4.

Proof Let x2 D ky for some k 2 Q, where x;y 2 H�.M IQ/ are two generators
with deg.x/D 2. By Poincaré duality, it is easy to see that the cohomology algebra
H�.M IQ/ is determined by k, and is isomorphic to H�.CP3IQ/ if k ¤ 0 and
H�.S2 � S4IQ/ if k D 0. Since every simply connected 6–manifold is formal
[27, Proposition 4.6], the rational homotopy type of M is determined by its rational
cohomology algebra H�.M IQ/. Hence M 'Q CP3 or M 'Q S2 �S4.

5.1 The subcase when k is odd

When k is odd, the loop decomposition of the Poincaré complex P4.k/ [ e7 was
determined by Huang and Theriault [20]. For any prime p, let Smfpr g be the homotopy
fibre of the degree pr map on Sm. Let k D p

r1

1
� � �p

r`

`
be the prime decomposition

of k. By [20, Theorem 1.1], when k is odd there is a homotopy equivalence

(16) �.P4.k/[ e7/'
Ỳ
jD1

S3
fp

rj

j g ��S7:

Proposition 5.3 Let M be a closed 6–manifold with cell structure of the form
S2[k�2

e4[ e6. If k is odd , then M has the same homotopy type as an S2–bundle
over S4, and there is a homotopy equivalence

(17) �M ' S1
�

Ỳ
jD1

S3
fp

rj

j g ��S7:

Proof The homotopy equivalence (17) follows immediately from Lemma 5.1, (15)
and (16). For the first statement, recall that there is the fibre bundle [18, Section 1.1]

S2
!CP3

! S4;

classified by a generator of �4.BSO.3//Š Z. Pulling back this bundle along a self-
map of S4 of degree k, we obtain the 6–manifold M 0 in the following diagram of
S2–bundles:

S2 // M 0 //

��

S4

k
��

S2 // CP3 // S4
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It is easy to see that x02 D ky0, where x0 2H 2.M 0IZ/ and y0 2H 4.M 0IZ/ are two
generators. By [36, Corollary 4.6], when k is odd the homotopy type of M is uniquely
determined by k, and hence M 'M 0.

5.2 The subcase when k is even

In [20, Section 6], Huang and Theriault showed that for P4.2r /[ e7 with r � 3, there
is an homotopy equivalence

(18) �.P4.2r /[ e7/' S3
f2r
g ��S7;

provided there is a map P4.2r /[ e7! S4 inducing a surjection in mod-2 homology.

Proposition 5.4 Let M be a closed 6–manifold with cell structure of the form
S2[2r�2

e4[ e6. If r � 3, then there is a homotopy equivalence

�M ' S1
�S3
f2r
g ��S7:

Proof Recall by Lemma 5.1 and its proof that X ' P4.2r /[ e7 and X is homotopy
equivalent to the total space of an S3–bundle over S4

S3
!X

q
�! S4:

It is clear that q� W H4.X IZ=2Z/ ! H4.S
4IZ=2Z/ is surjective. Hence, by (18),

�X ' S3f2r g ��S7. The lemma then follows from (15) immediately.

6 Coformality of 6–manifolds

In this section, we study the rational homotopy theory of 6–manifolds as an application
of our decompositions in Theorem 1.1. We briefly recall some necessary terminology
used in this section, and for a detailed account of rational homotopy theory one can
refer to the standard literature [17].

Recall, a CW complex X is rationally formal if its rational homotopy type is determined
by the graded commutative algebra H�.X IQ/, and is rationally coformal if its rational
homotopy type is determined by the graded Lie algebra ��.�X /˝Q, which is called
the homotopy Lie algebra of X and is denoted by LX . Suppose .ƒVX ; d/ is a Sullivan
model of X . The differential d equals

P
i�0 di with di WVX !ƒiC1VX , and .ƒVX ; d/

is minimal if the linear part d0 equals 0. In the latter case, VX is dual to ��.�X /˝Q.
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Moreover, X is coformal if and only if it has a purely quadratic Sullivan model
C �.LX ; 0/ D .ƒ.sLX /

#; d1/, where C �.� / is the commutative cochain algebra
functor, s is the suspension, and # is the dual operation.

Proposition 6.1 Let M be a 6–manifold as in Theorem 1.1 such that d � 2. Then M

is coformal.

Proof Consider the S2–bundle

(19) S2 i
�!M

p
�!N

in (9). By [27, Proposition 4.4] N is coformal since d � 2, and hence has a minimal
Sullivan model of the form C �.LN ; 0/D .ƒ.sLN /

#; d1/ as the associated commutative
cochain algebra of .LN ; 0/ [17, Example 7 in Chapter 24(f)]. Let

Op W C �.LN ; 0/! .C �.LN /˝ƒ.a; b/; d/

be a relative minimal Sullivan model of p whose quotient .ƒ.a; b/; Nd/ is a minimal
Sullivan model of S2 with db D a2 and deg.a/D 2. It follows that there is the short
exact sequence of the linear part of the model of (19),

(20) 0! ..sLN /
#; 0/! ..sLN /

#
˚Q.a; b/; d0/! .Q.a; b/; 0/! 0;

such that H�..sLN /
# ˚Q.a; b/; d0/ is dual to ��.M / ˝Q. However, since the

homotopy groups of (19) split by Theorem 1.1 and its proof, we see from (20) that the
linear part d0 equals 0 for .sLN /

#˚Q.a; b/, and hence .C �.LN /˝ƒ.a; b/; d/ is a
minimal model of M .

To show M is coformal, it suffices to show that the differential d is quadratic on
Q.a; b/ in .C �.LN /˝ƒ.a; b/; d/. Since N is simply connected, .sLN /

# concentrates
in degrees larger than or equal to 2. So, by the minimality of .C �.LN /˝ƒ.a; b/; d/

and degree reasons,

daD 0 and db D a2
C ayC

X
i

ziwi

for some degree 2 elements y; zi ; wi 2 .sLN /
#. So d D d1 in .C �.LN /˝ƒ.a; b/; d/.

This shows that M is coformal.

Proof of Theorem 1.3 First, it is well known that CPi is not coformal for i � 2 by
[27, Example 4.7]. If d D 1, then M is determined by a fibre bundle S2!M !CP2.
It has a model of the form

.ƒ.c;x/; dx D c3/! .ƒ.c;x; a; b/; Qd/! .ƒ.a; b/; db D a2/;
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where deg.c/ D deg.a/ D 2. By degree reasons Qd.a/ D 0, and Qd.b/ D a2 C kc2

for some k 2Q, which implies that .ƒ.c;x; a; b/; Qd/ is minimal. However, Qd is not
quadratic as Qd.x/D c3. Hence M is not coformal.

When d � 2, by Proposition 6.1 M is coformal. Moreover, Neisendorfer and Miller
[27, Proposition 4.6] showed that every simply connected 6–manifold is formal. Hence,
by [9, Theorem 1.2], M is Koszul. By [9, Theorem 1.3], there is an isomorphism of
graded Lie algebras

��.�M /˝QŠH�.M IQ/!Lie;

where .� /!Lie is the Koszul dual Lie functor.
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