
ATG

Algebraic & Geometric
Topology

Volume 23 (2023)

Issue 5 (pages 1935–2414)

msp



ALGEBRAIC & GEOMETRIC TOPOLOGY
msp.org/agt

EDITORS

PRINCIPAL ACADEMIC EDITORS

John Etnyre
etnyre@math.gatech.edu

Georgia Institute of Technology

Kathryn Hess
kathryn.hess@epfl.ch

École Polytechnique Fédérale de Lausanne

BOARD OF EDITORS

Julie Bergner University of Virginia
jeb2md@eservices.virginia.edu

Steven Boyer Université du Québec à Montréal
cohf@math.rochester.edu

Tara E. Brendle University of Glasgow
tara.brendle@glasgow.ac.uk

Indira Chatterji CNRS & Université Côte d’Azur (Nice)
indira.chatterji@math.cnrs.fr

Alexander Dranishnikov University of Florida
dranish@math.ufl.edu
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Splitting Madsen–Tillmann spectra
II: The Steinberg idempotents and Whitehead conjecture

TAKUJI KASHIWABARA

HADI ZARE

We show that there is a splitting of the spectrum †�nD.n/ off the Madsen–Tillmann
spectrum MTO.n/ D BO.n/�
n compatible with the classic splitting of M.n/ off
BO.n/C, localized at the prime pD 2. For nD 2, together with our previous splitting
result on Madsen–Tillmann spectra, this shows that MTO.2/ is homotopy equivalent
to BSO.3/C _†�2D.2/. We also discuss its implication for characteristic classes.

55P42, 55P47, 55R40, 57R20; 55R35, 55S12, 55S15, 57N70
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1. Introduction 1935

2. Some splitting derived from Steinberg idempotents 1940

3. Maps from MTO.n/ to †�nD.n/ 1943
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5. Homology of the associated infinite loop spaces 1950
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1 Introduction

The Madsen–Tillmann spectrum MTO.n/ is defined to be the Thom spectrum of
the virtual bundle �
n over BO.n/, where 
n is the universal n–plane bundle; see
Galatius, Tillmann, Madsen and Weiss [4] — see also Galatius and Randal-Williams [3,
Section 1.1.2] for the general construction of Madsen–Tillman spectra. It is known that
these spectra filter the spectrum MO; i.e. there is a sequence

(1) S0
DMTO.0/!†MTO.1/!� � �!†n�1MTO.n�1/

�n
�!†nMTO.n/!� � � ;
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1936 Takuji Kashiwabara and Hadi Zare

where �n is induced by the inclusion O.n� 1/�O.n/, with the property that

hocolim†nMTO.n/ŠMO

[4, remark after (3.4)].1 Furthermore, the cofiber of the successive stages is homotopy
equivalent to BO.n/C; i.e. we have a cofibration sequence

(2) � � � !†�1MTO.n� 1/!MTO.n/ !O.n/
���! BO.n/C

�
�!MTO.n� 1/! � � �

[4, (3.3)], where !O.n/ is the map induced by the “embedding” of �
n into the 0–
dimensional trivial bundle, XC is the union of X with a disjoint base point, � is the
Becker–Schultz–Mann–Miller–Miller transfer [1, Section 2; 10, 3.7] — see also [6,
Section 2.3] — associated to the inclusion O.n � 1/ � O.n/. In other words, the
spectrum MO can be built up from pieces BO.n/C.

We have shown in our previous work that localized away from 2, MTO.2n/'BO.2n/C

and MTO.2nC 1/ ' � for all n � 0 [6, Theorem 1.1.B], reducing essentially the
study of MTO.n/’s to 2–local problems. Thus we will work at the prime p D 2. So
throughout the paper homology and cohomology are taken with Z=2 coefficients unless
otherwise stated. We work most of the time in the 2–local stable homotopy category
whose objects are 2–local spectra and morphisms are homotopy classes of maps of
spectra; consequently, by commutative we mean homotopy commutative. We identify
a spectrum with its 2–localization. We note that when both sides of a morphism in this
category are of finite type then inducing an isomorphism in Z=2–cohomology implies an
isomorphism of 2–local spectra; we shall use this reasoning freely throughout the paper.
We identify a (pointed) space X with its suspension spectrum †1X unless otherwise
stated. In the literature, sometimes a space X is identified with †1XC, which explains
notational discrepancies the reader may find between the current paper and results
we quote. We use the same letter to denote a map f W X ! Y and its suspensions
f W†kX !†kY with k 2 Z. For a spectrum E, we shall write �1E D colim�iEi

for the infinite loop space associated to E and �1
0

E denotes it base point component
corresponding to 0 2 �0E, noting that if E is 0–connected then �1E D�1

0
E. For a

pointed space X the standard notations QX D�1.†1X / and Q0X D�1
0
.†1X /

will be used.

1In [4] this is said to be the colimit. The use of the word colimit can be justified by the fact that this
is actually the colimit on the level of underlying point set at each n if one considers spectrum X as a
collection of spaces Xn and structure maps †Xn!XnC1. However, this is clearly not the colimit in the
category of spectra, so we avoid the use of this term.

Algebraic & Geometric Topology, Volume 23 (2023)



Splitting Madsen–Tillmann spectra, II 1937

At the prime 2, Randal-Williams computed H�.�
1
0

MTO.i// for i D 1 and 2 [16,
Theorems A and B]. Combining the two theorems, we get an exact sequence of Hopf
algebras

(3) H�.Q0BO.2/C/!H�.Q0BO.1/C/!H�.Q0BO.0/C/! Z=2;

where the (Hopf) kernel of the first two maps are isomorphic to H�.�
1
0

MTO.i//
for i D 2 and 1, respectively. Thus a natural question to ask was whether this exact
sequence could be extended further to the left with H�.�

1
0

MTO.i// isomorphic to the
kernel of each stage. We showed that this was impossible in [6, Proposition 1.11]. So a
new question to ask, then, is to what extent we can generalize [16, Theorems A and B].
This question leads to a search for another sequence of spectra with the beginning as
in (1). It turns out that there indeed is such a sequence, well known to stable homotopy
theorists. For a space X , denote by Spk.X / the k th symmetric product of X , that is
the quotient of X k by the obvious action of the symmetric group †k . It is easy to
show that this induces a functor in the stable category which we still denote by Spk .
Define the spectrum D.n/ as the cofiber of the diagonal map Sp2n�1

S0! Sp2n

S0; see
Mitchell and Priddy [14, Section 4.2]. We have D.0/DS0 and D.1/Š†MTO.1/ [14,
Proposition 4.4]. Furthermore, Mitchell and Priddy defined a map �n WD.n�1/!D.n/

[14, Proposition 4.3]; thus we get a sequence

(4) S0
DD.0/!D.1/! � � � !D.n� 1/

�n
�!D.n/! � � � :

Taking the cohomology, this sequence realizes the length filtration of the Steenrod
algebra A [14, Proposition 4.3]. That is, we have isomorphisms

(5) H�.D.n//ŠA=Gn; where Gn is the span of SqI, I is admissible and l.I/ > n:

We note that Gn happens to be a left A–ideal, so that this isomorphism is as A modules.
It happens that this cohomological property characterizes the sequence of spectra D.n/

[5, Corollary 1.4.1]. Of course, as an immediate consequence of (5), we see that
hocolim D.n/ŠHZ=2.

On the other hand, the spectrum BO.1/�n
C admits a natural (left) Gln.Z=2/–action. Thus

the Steinberg idempotent en 2Z=2ŒGln.Z=2/� [14, Definition 2.2] and its conjugate e0n
[14, the sentence above Proposition 2.6] give rise to a splitting of BO.1/�n

C and we have
M.n/' enBO.1/�n

C ' e0nBO.1/�n
C [14, Theorem 5.1]. Moreover, through the Becker–

Gottlieb transfer map, this splitting gives rise to a splitting of M.n/ off BO.n/C. We

Algebraic & Geometric Topology, Volume 23 (2023)



1938 Takuji Kashiwabara and Hadi Zare

will review this splitting in more details in Section 2. The spectra M.n/’s and D.n/’s
are related by the cofibration sequences [14]

(6) � � � !†n�1M.n/!D.n� 1/!D.n/!†nM.n/! � � �:

Thus one can say that MO can be constructed with BO.n/C’s as building blocks,
whereas HZ=2 can be constructed with M.n/’s as building blocks. Furthermore,
HZ=2 and M.n/’s split off MO and BO.n/C’s, respectively. It is then natural to ask
whether one can split intermediate stages as well. The purpose of this paper is to answer
affirmatively to this question, and discuss some consequences, including an answer to
the question on generalization of the exact sequence (3). We have the following, the
main results of this paper.

Theorem 1.1 For each n, the spectrum D.n/ splits off †nMTO.n/.

An immediate consequence of Theorem 1.1 is the following.

Corollary 1.2 H�.�
1†�nD.n// splits off H�.�

1MTO.n// as a Hopf algebra.

Thus the “correct way to extend” the exact sequence (3) is just the following standard
fact.

Proposition 1.3 (Kuhn and Priddy [8]) The sequence of Hopf algebras

� � � !H�.�
1
0 M.n//!H�.�

1
0 M.n� 1//! � � �

� � � !H�.�
1
0 M.2//!H�.Q0BZ=2C/!H�.Q0S0/! Z=2

is exact. Furthermore , the image of H�.�
1
0

M.n//!H�.�
1
0

M.n�1// is isomorphic
to H�.�

1
0
†�nC1D.n� 1//.

As D.0/ Š S0, †�1D.1/ Š MTO.1/, and M.1/ Š BO.1/C, combined with the
n D 2 case of Theorem 1.1, we recover Theorems A and B of [16]. Of course, the
cohomology being dual of homology, the exact sequences above give some information
on certain characteristic classes. More precisely, recall from [6; 16] (with correction
from Randal-Williams, via personal communication):

Definition 1.4 A universally defined characteristic class in H�.�1MTO.n// is an
element in the subalgebra generated by the image of

H�.BO.n// �
1�

��!H�.QBO.n/C/
.�1!O.n//

�

�������!H�.�1MTO.n//:

Algebraic & Geometric Topology, Volume 23 (2023)



Splitting Madsen–Tillmann spectra, II 1939

We denote by �i1;:::;in
D .�1!O.n//

�.�1�.�
i1

1
; : : : ; �

in
n //, where

H�.BO.n//Š Z=2Œ�1; : : : ; �n�

and �1� denotes the cohomology suspension.

We note that in the definitions in [16] and [6], only basepoint components of the infinite
loop spaces was considered. However, this has the effect of missing out nontrivial
0–dimensional classes as also confirmed by Randal-Williams (personal communication).
Therefore, we have removed the restriction to the basepoint component in our definition.
We note that [6, Theorem 1.9] remains valid as is stated.2

In [6], we used the summand BSO.2nC1/C that split off MTO.2n/ to show that some
of these classes remain algebraically independent. Here we use the splitting of D.n/

off MTO.n/ to show that there are “linear” relations corresponding to elements of
H�.M.n//, and that in the case of dimension 2, these relations together with the ones
derived from the action of top Steenrod squares are the only relations. More precisely,
we will show:

Theorem 1.5 (i) In H�.�1MTO.n//, we have relations

.�1!O.n//
�.�1�.x//D 0 for x 2H�.M.n//�H�.BO.n//:

(ii) For nD 2, the only relations among the �i;j are those above , and �2i;2j D �
2
i;j .

(iii) Again for n D 2, the subalgebra of universally defined characteristic classes
in H�.�1MTO.2// is the polynomial algebra generated by �i;j ’s with i and j odd ,
where �i;j is defined in [6], tensored with the boolean algebra Z=2Œ�0;0�=.�

2
0;0
��0;0/.

We will give a more precise description of the inclusion H�.M.n//�H�.BO.n// in
Proposition 5.7.

The paper is organized as follows. In Section 2 we recall the splitting related to the
Steinberg idempotents and construct a map from D.n/ to †nMTO.n/ for each n. In
Section 3, we recall relevant results from [8] and construct a map going the other way
around. In Section 4 we study the composition and show that we indeed have a splitting.
In Section 5 we discuss the consequences in homology of infinite loop spaces.

2As a matter of fact, it was assumed implicitly that the sequence I was nonzero, due to the obvious relation
�0;0 D 0 with the “old” definition. This relation holds no longer. One can easily adapt the proof of [6,
Theorem 1.9] to the “new” definition.

Algebraic & Geometric Topology, Volume 23 (2023)



1940 Takuji Kashiwabara and Hadi Zare

Most of the current paper is independent of the results from the previous one, except
for Theorem 1.5(ii), (iii) and the contents of Section 4.2. Thus, the current paper can be
read separately from [6]. A word is due on the way some of proofs are written. In some
places, the reader familiar with works we quote may find that our proofs are somewhat
going backward. For example, we deduce Proposition 5.1 from Theorem 3.7, but as a
matter of fact in [8, Section 5], a large part of the latter was proved as a main ingredient
of the proof of the former. This is our deliberate choice; we preferred referring the
readers to statements that are ready available to be quoted, rather than letting them look
for details of proofs, or reproducing them ourselves.

Acknowledgements Kashiwabara thanks Andrew Baker, Masaki Kameko, Nick Kuhn,
Bob Oliver, Stewart Priddy, Lionel Schwartz and Steve Wilson for helpful conversations.
A special thanks is due to Oscar Randal-Williams for helpful discussions. Zare is
grateful to Institut Fourier for its hospitality and support for a visit during October
2014. The authors thank Haynes Miller and Geoffrey Powell for helpful conversations.
The authors also thank the referees for their constructive critics of earlier versions.
Kashiwabara was supported in part by grant ANR-08–BLAN-0248 and ANR-16-CE40-
0003 ChroK. Zare has been supported in part by IPM grant 93550117.

2 Some splitting derived from Steinberg idempotents

In this section we recall from [14] and [17] the splitting related to Steinberg idempotents.

Let X be a spectrum, e 2 ŒX;X � an idempotent, i.e. a map such that e ı eD e 2 ŒX;X �.
Note that ŒX;X � has a natural ring structure where the multiplication is given by
the composition, and e is an idempotent in terms of ring theory. Denote by eX the
homotopy colimit X e

�!X e
�! � � � . Then we have a splitting

X ' eX _ .1� e/X:

Furthermore, if we still denote by e the induced map in (co)homology, we get

H�.eX /Š eH�.X /; H�.eX /ŠH�.X /e:

We are particularly interested in the case of idempotents arising from a group action
on spectra. That is, let G be a group acting on the spectrum X from the left. There
are several different notions of group action on spectra, here we can take any of them:
all we need is a group homomorphism G ! Aut.X / where Aut.X / is the group

Algebraic & Geometric Topology, Volume 23 (2023)



Splitting Madsen–Tillmann spectra, II 1941

consisting of invertible elements in ŒX;X �. This group homomorphism extends to a
ring homomorphism Z.2/ŒG�! ŒX;X �, thus sending an idempotent to an idempotent.
We see that an idempotent in the group ring Z.2/ŒG� gives rise to a splitting of spectra
on which G acts. Actually the theory of lifting idempotents allows us to settle for
something less, which is one of the reasons why completion is crucial in the theory of
splitting, but we will not need this for our purpose.

Now, let GDGln.Z=2/. Its group-ring Z.2/ŒGln.Z=2/� contains well-known Steinberg
idempotents en and e0n defined by

(7) en D
1

qn

X
g2Bn

g
X
�2†n

.�1/sgn.�/�; e0n D
1

qn

X
�2†n

.�1/sgn.�/�
X

g2Bn

g;

where Bn denotes the subgroup consisting of upper triangular matrices, †n denotes
the subgroup of permutation matrices, and qn is the index of Bn in G.

Remark 2.1 (i) Traditionally we consider the above elements as idempotents mod-
ulo 2, and use the lifting theory. However, as was noticed in [14, proof of Proposi-
tion 2.6] (see also [8, page 462]), en and e0n actually are conjugate idempotents, and they
can even be defined in Z.2/ŒGln.Z=2/�. Let’s note that working with spectra completed
at 2 has some advantages, e.g. we get a better control over maps among spectra [13,
Corollary 1.4(b)]. However, as far as our current work is concerned, localization is
sufficient.

(ii) We use the additive structure in ŒX;X � to extend the G–action on X . Thus even
in the case when G acts on the space X (via maps of spaces, not just maps of spectra),
the idempotents are not necessarily maps of spaces. However, in this case they can
be realized as self maps of the space †X . In other words, the spectrum †eX is a
suspension spectrum.

Write �n for O.1/n. The identification of O.1/ with Z=2 gives a natural action of
Gln.Z=2/ on B�n, thus on B�nC, and we have:

Definition 2.2 We define the spectra M.n/ by

M.n/Š enB�nC:

Remark 2.3 Originally M.n/ was defined as †�nD.n/=D.n� 1/, but in terms of
[14, Theorem A] this is equivalent, and in recent literature we encounter this definition
more often.

Algebraic & Geometric Topology, Volume 23 (2023)



1942 Takuji Kashiwabara and Hadi Zare

Now, results in representation theory imply that for any Z=2ŒGln.Z=2/��module W ,
we have an isomorphism We0n ŠWen induced by

P
�2†n

� [14, Proposition 2.6(b)].
On the other hand, the composition

B�nC
Bi
�! BO.n/C

TrBi
��! B�nC

induces
P
�2†n

� in H�.B�n/; that is, the composition

(8) B�nC
en
�! B�nC! BO.n/C! B�nC

induces in the cohomology e0n. Therefore

enB�nC! B�nC! BO.n/C! B�nC! e0nB�nC

induces an isomorphism in mod 2 cohomology. In other words:

Theorem 2.4 [14, Theorem C] M.n/ splits off BO.n/C.

Of course, cohomology of a space is related to that of Thom spectra of bundles over it
via Thom isomorphisms, so we can “Thomify” all of the above. More precisely, let �n

be the reduced regular representation of �n and 
 D �n
1

its canonical representation.
The canonical representation is the direct sum of n distinct projections, while the regular
representation is the direct sum of all possible 1–forms. As these 1–forms are tensor
products of projections, we get an isomorphism of representationsM

i>0

ƒi.
 /Š �n;

where ƒi.�/ is the i th exterior power functor. Therefore, if we define a representation
N�n of O.n/ by

N�n D

M
i>0

ƒi.
n/;

it restricts to �n over �n �O.n/. Now, if k denotes an integer, k�n is invariant under
the action of Gln.Z=2/; thus if g 2 Gln.Z=2/, we have g�.k�n/D k�n, giving rise to
a Thomified map B�

k�n
n D B�

g�.k�n/
n

Th.g/
��! B�

k�n
n . Here, and throughout the paper,

given a (virtual) vector bundle �!X , we shall write X � for its Thom spectrum. This
furnishes the Thom spectrum B�

k�n
n with a Gln.Z=2/–action. When k is negative,

slightly more careful arguments are needed, but this is taken care of by [17]. Thus we
can split it using the Steinberg idempotents en and e0n. Then we get a sequence of maps

B�n
k�n en
�! B�k�n

n ! BO.n/k N�n ! B�k�n
n ;

Algebraic & Geometric Topology, Volume 23 (2023)



Splitting Madsen–Tillmann spectra, II 1943

where the last map is the twisted Becker–Gottlieb transfer [6, Theorem 1.1(1)]. As
everything in sight is compatible with the Thom isomorphism, the effect of these maps
in the cohomology can be deduced from those in the sequence (8). Noting that e0n is
also a sum of Thomified maps, we see that this composition induces e0n in cohomology.
Thus, as in Theorem 2.4:

Theorem 2.5 enB�
k�n
n splits off BO.n/k N�n .

The spectra enB�
k�n
n ’s are studied notably in [17] where it is called M.n/k ; when

k D 0, we recover Theorem 2.4. The case k D�1 also interests us for the following
result, which is implicit in [17]:

Theorem 2.6 enB���n
n Š†�nD.n/.

Proof This seems to be well known, but as we haven’t found it spelled out in literature,
for the sake of reference we give a proof here. It suffices to note that R.n/en in
[17, Theorem 4.1.1(1)] is same as M.n/�1 in [17, Proposition 4.1.6], which is the
cohomology of M.n/�1 (cf. [17, page 386], whereas by Theorem 5.8 and Lemma 5.6
of [14] it is isomorphic to the cohomology of †�nD.n/.

Combining the theorems above shows that †�nD.n/ splits off BO.n/� N�n . As the
inclusion of the representation 
n � N�n induces a map of Thom spectra

BO.n/� N�n ! BO.n/�
n DMTO.n/;

we get a map ˇn W†
�nD.n/!MTO.n/. Or, equivalently, we can construct the map

as the composition

†�nD.n/! B���n
n ! B��
n ! BO.n/�
n DMTO.n/:

We will denote the resulting map by ˇn. Here, the map B�
��n
n ! B�

�

n is induced

by the inclusion of bundles 
 � �n and the map B�
�

n ! BO.n/�
n is the twisted

Becker–Gottlieb transfer [6, Theorem 1.1(1)], noting that 
nj�n
D 
 .

3 Maps from MTO.n/ to †�nD.n/

3.1 Exact sequences of spectra and the Whitehead conjecture

In this section we use results from [8] to construct maps from †nMTO.n/’s to D.n/’s.
We start by fixing terminology.
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Definition 3.1 (i) A filtered spectrum .X;F�X; ��/ is a sequence of spectra F�X

(9) F0X
�0
�! F1X

�1
�! � � �

�n�1
��! FnX

�n
�! FnC1X

�nC1
��! � � �

with a homotopy equivalence hocolim FnX 'X . Usually �� is clear from the context,
and X is determined by F�X ’s, so we simply refer to it as F�X . To distinguish with
individual spectra, we also write .F�X;� � 0/

(ii) A map of filtered spectra f� from F�X to F�Y is a collection of maps fn WFnX!

FnY that makes the squares
FnX FnC1X

FnY FnC1Y

commutative.

Note that we don’t require any condition that would be a counterpart of the injectivity
on �n’s here.

Definition 3.2 (i) By a chain complex of spectra .Cn; dn/we understand a sequence of
spectra Cn with maps dn�1 WCn!Cn�1 such that the composition CnC1!Cn!Cn�1

is null for all n. By a map f of chain complexes of spectra .Cn; d
C
n /! .C 0n; d

C 0

n / we
mean a collection of maps fn WCn!C 0n such that fnıd

C
n D dC 0

n ıfnC1. Furthermore,
if we have a map � W C0!E�1 with � ıd0 D 0, we say that the complex is augmented
over E�1.

(ii) Let F�X be a filtered spectrum. Define its associated graded complex Gr�.F�X /
by Gr0.F�X / D F0X and Gri.F�X / D †

�i cofib.Fi�1X ! FiX /. Then we can
compose the canonical maps Gri.F�.X //!†�iFi�1X !Gri�1.F�.X // to define a
map d

Gr�.F�X /
i�1

. As a matter of the fact, the composition d
Gr�.F�X /
i�1

ıd
Gr�.F�X /
i factors

through the composition FiX ! GriF�X !†Fi�1X , which is trivial.

Remark 3.3 Our notion of complex is more general than that in [7]. The complexes
dealt with in [7] are the ones that arise as associated graded complexes of filtered spectra.

Example 3.4 (i) Let FnX DD.n/. Then the associated graded complex Gr�.F�X /
is

� � � !M.nC 1/
ın
�!M.n/! � � � !M.0/

considered in [8, Corollary 1.2].

(ii) Let FnY D†nMTO.n/. Then the associated graded complex Gr�.F�X / is given
by .BO.n/C; tr/, where tr is the Becker–Gottlieb transfer associated to the inclusion
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O.n� 1/�O.n/, as the Becker–Gottlieb transfer BO.n/C! BO.n� 1/C factors as
BO.n/C

�
�!MTO.n�1/

!O.n�1/
�����! BO.n�1/C [6, Proposition 2.3]. We can also see

that .BO.n/C; tr/ is a complex directly as follows: O.n/�O.n/�O.2/�O.nC 2/;
thus O.2/�NO.nC2/.O.n//. So the composition of the transfer associated to O.n/�

O.nC 1/ and that associated to O.nC 1/�O.nC 2/, which is the transfer associated
to O.n/�O.nC 2/, is trivial by [9, Chapter 4, Lemma 2.12]. Moreover, the complex
of free spectra .BO.n/C; tr/ is augmented over HZ=2 since the composition

BO.1/C! BO.0/C!HZ=2

is trivial. This is just another way of saying that the transfer in Z=2–cohomology
H�.BO.0/CIZ=2/!H�.BO.1/CIZ=2/ is trivial.

Definition 3.5 [8] (i) A fibration sequence of spectra F ! X
f
�! Y is called

exact if there exists a map of spaces (i.e. not a map between their suspension spectra)
g W�1Y !�1X such that �1f ıg ' id.

(ii) A chain complex of spectra � � � ! Xn! � � �X1! X0! E�1 augmented over
E�1 is called exact if for each n � 0, En ! Xn ! En�1 is exact, where En is
inductively defined as the fiber of the map Xn! En�1. Note that by the exactness
of En�2! Xn�2! En�3, ŒXn;En�2� injects to ŒXn;Xn�2�, so the triviality of the
composition Xn!Xn�1!Xn�2 implies that of the composition Xn!Xn�1!En�2.

(iii) A spectrum is said to be projective if it is a summand of a suspension spectrum.

The category of spectra being a triangulated category instead of an abelian category, we
have some complication here. The notion of exactness with three terms is more or less a
counterpart of a split short exactness in abelian categories. The use of this seemingly too
strong condition is motivated by the following fact. By definition, an exact sequence of
spectra yields an exact sequence of abelian groups upon applying ŒY;�� for a suspension
spectrum Y , or a spectrum which is a summand of a suspension spectrum. Thus one can
regard suspension spectra as free objects, summands of suspension spectra as projective
objects, and carry out homological algebra in the category of spectra. This idea was
developed further in [7]. For example, we get the following:

Proposition 3.6 Let .P�; d�/ be a chain complex of projective R–modules with an
augmentation P0! A, and .A�; d�/ be a projective resolution of A. Then we get a
chain map from .P�; d�/ to .A�; d�/.

Proof This is just [7, Proposition 2.11] applied to id WA!A.
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Note that the proof of [7, Proposition 2.11] is still valid with our broader notion of
complexes. However, for readers who would rather not go through the proof, we also
remark that we will be using this later only when .P�; d�/ is of the form .Grn.X /; dn/

for a filtered spectrum Fn.X /, which is also a complex in the sense of [7].

Now, we are ready to quote from [8]:

Theorem 3.7 (mod 2 Whitehead conjecture [8, Corollary 1.2]) (i) The sequence of
Example 3.4(i),

(10) � � �
ıkC1
��!M.kC 1/

ık
�!M.k/! � � � !M.1/

ı0
�!M.0/ �

�!HZ=2;

is exact.

(ii) Denote by Ek the fiber of the map †�kD.k/! †�kHZ=2. Then the above
sequence can be obtained splicing together short exact sequences Ek!M.k/!Ek�1.

Remark 3.8 It is easy to see that our definition of Ek agrees with that in [8].

3.2 Maps into .D.n/;n � 0/

With the above preparation, we are ready to prove the following.

Theorem 3.9 Let .X;F�X; �/ be a filtered spectrum such that

(i) H�.�n/ is injective for all n, and

(ii) Grn.F�X / is a suspension spectrum.

Then any map of spectra F0.X /! S0 extends to a map of filtered spectra F�.X /

to D.�/.

Proof First note that condition (i) implies that in the associated graded complex,
the differential induces trivial map in cohomology. In particular, one can augment
it by any map from F0.X /! HZ=2. Let’s do so by using the composition of the
given map F0.X / ! S0 and the augmentation in the .M.n/; ın/, S0 ! HZ=2.
Since Gr0.F�X / D F0X , this yields a map Gr0.F�X /! HZ=2. By Theorem 3.7,
the augmented complex .M.n/; ın/ is a projective resolution of HZ=2, so we can
apply Proposition 3.6 to obtain a map of complex of spectra f from .Grn.X /; dn/ to
.M.n/; ın/. From the proof of [7, Proposition 2.11], we see that we can choose f0 to
be the prescribed map in the statement of the theorem.
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Thus we have found maps fn making the square

(11)
Grn.X / Grn�1.X /

M.n/ M.n� 1/

fn

dn�1

fn�1

dn�1

commutative. Next we will show that there exists a map ˛n W†
�nFn.X /!†�nD.n/

which makes the diagram

(12)
†�nFn.X / Grn.X /

†�nD.n/ M.n/

˛n fn

commutative for each n. We proceed by induction on n. The case n D 0 is trivial.
Suppose that we have constructed such ˛n�1. Consider the diagram

(13)
Grn.X / †1�nFn�1.X /

M.n/ †1�nD.n� 1/

fn
˛n�1

By the definition of associated graded complex, the fiber of the top row is †�nFn.X /

whereas by the cofibration (6), that of the bottom row is †�nD.n/. Thus if we
can show the commutativity of the diagram (13), then we can define the map ˛n

making the diagram (12) commute. Note that the two horizontal maps induce trivial
maps in cohomology, which implies that the two compositions from the top left
corner to the bottom right corner factor through En�1 where Ei is the same as in
Theorem 3.7. Thus it suffices to show that the lifts in ŒGrn.X /;En�1� of the two maps
agree. However, by Theorem 3.7(ii), ŒGrn.X /;En�1� injects to ŒGrn.X /;M.n� 1/�.
Thus it suffices to show that the two maps agree after composition with the map
†1�nD.n� 1/!M.n� 1/. Now, consider the diagram

Grn.X / †1�nFn�1.X / Grn�1.X /

M.n/ †1�nD.n� 1/ M.n� 1/

fn
˛n�1 fn�1

The right square is commutative by the inductive hypothesis. But we chose our maps fn

so that the big square commutes.
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The proof is complete now, noting that, by considering the cofibers of the rows in the
diagram (12), we see that the family f˛ng forms a map of filtered spectra.

Corollary 3.10 There exists a map of filtered spectra

˛� W .MO; †nMTO.n//! .HZ=2;D.n//

which extends the identity MTO.0/D S0! S0.

Proof It follows from Thom isomorphism that the map

�n�1 W†
n�1MTO.n� 1/!†nMTO.n/

induces a monomorphism in Z=2–homology. Moreover, for the associated graded spec-
trum of .Y;F�Y /D .MO; †nMTO.n//we have Grn.MO/DBO.n/C (Example 3.4(ii)).
We also have F0Y DMTO.0/ D S0 and we take the identity S0! S0 as our map
F.0/!D.0/D S0. The result now follows from Theorem 3.9.

4 The splitting

4.1 Proof of Theorem 1.1

We have constructed the maps ˇn in Section 2, and the maps ˛n in Section 3. All
that remains is to show that the composition ˛n ı ˇn induces an isomorphism in 2–
local cohomology. As D.n/ is of finite type, it is enough to show that it induces an
isomorphism in mod 2 cohomology. Since a map of spectra induces a map of modules
over Steenrod algebra in cohomology, and H�.D.n// is generated by the bottom class
as a module over Steenrod algebra (5), it suffices to show that

H�n.˛n ıˇn/DH�n.ˇn/ ıH�n.˛n/

is an isomorphism. Since ˛0 is just the equivalence MTS.0/Š S0 ŠD.0/, H 0.˛0/

is an isomorphism. As the family f˛ng forms a map of filtered spectra, we see that
H�n.˛n/ is an isomorphism for all n� 0.

Unfortunately we have been unable to prove the fact that the family of maps going the
other way, fˇng, forms a map of filtered spectra.3 So we honestly compute H�n.ˇn/

for all n. We have

H�.BO.n//Š Z=2Œ�1; : : : ; �n��H�.B�n/Š Z=2Œx1; : : : ;xn�;

3The claim we made in earlier versions available online on arXiv is erroneous: one of the errors is the fact
that the fiber of j�2 has positive-dimensional cells if n> 1.
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where �i denotes the i th elementary symmetric polynomial in xj ’s. Of course, the
identification is made through Bi� where i W �n Š O.1/n � O.n/ is the standard
inclusion. Thus, the map B�

��n
n !MTO.n/ induces an inclusion

H�.MTO.n//ŠZ=2Œ�1; : : : ; �n� �.�n/
�1
�H�B.���n

n /ŠZ=2Œx1; : : : ;xn� �e.�n/
�1

where
e.�/D

Y
�i20;1;

Q
i �i¤0

†�ixi :

Here and later, for a ring R and a 2 R nondivisor of 0, we denote R � a�1 the free
R–module generated by a�1 in an appropriate localization of R. Now, we see that the
only nontrivial element of H�n.MTO.n//, ��1

n , maps to x�1
1
� � �x�1

n 2H�n.B�
��n
n /.

But, this class is invariant under the en–action, so it survives in H�n.†�nD.n// by
[14, the first sentence of Remark 5.12]. Thus H�n.ˇn/ is also an isomorphism for
all n. This concludes the proof of Theorem 1.1.

4.2 Further refinements

We have shown in [6, Theorem 1.1.A] that BSO.2nC 1/C splits off MTO.2n/. More
precisely, we show that the composition Bf2n ı!O.2n/ ıTrBf2n

is a homotopy equiv-
alence, where f2n W O.2n/! SO.2nC 1/ is given by X 7! .det X /.X ˚ 1/, !O.2n/

is the map of Thom spectra induced by the embedding of �
n in 0, and TrBf2n
is the

associated Becker–Schultz–Mann–Miller–Miller transfer BSO.2nC 1/C!MTO.2n/

[10, Section 2]; see also [1, Section 4]. One may ask how this splitting interacts with
the splitting of the current paper. We show that they are complementary.

Corollary 4.1 †�2nD.2n/_BSO.2nC 1/C splits off MTO.2n/. When nD 1, we
have a homotopy equivalence MTO.2/Š†�2D.2/_BSO.3/C.

Proof Consider the composition

H�.BSO.2nC 1//˚H�.†�2nD.2n//

.˛2n_Bf2nı!O.2n//
�ı.ˇ2n_TrBf2n

/�

����������������������!H�.BSO.2nC 1//˚H�.†�2nD.2n//:

The components H�.BSO.2nC 1//!H�.BSO.2nC 1// and H�.†�2nD.2n//!

H�.†�2nD.2n// are automorphisms by [6, Theorem 1.1.A] and Theorem 1.1, re-
spectively. Consider now the component H�.†�2nD.2n// ! H�.BSO.2nC 1//.
This is trivial since the source is generated over the Steenrod algebra by a negative-
degree element, and the target is concentrated in nonnegative degrees by (5). Thus

Algebraic & Geometric Topology, Volume 23 (2023)



1950 Takuji Kashiwabara and Hadi Zare

the map .˛2n _Bf2n ı!O.2n//
� ı .ˇ2n _TrBf2n

/� is an automorphism. This proves
the splitting for general n. When n D 1, it suffices to compare the cohomology of
both sides, or, alternatively, to compare the fibrations MTO.2/! BO.2/C!MTO.1/
and †�2D.2/!M.2/!D.1/. Noting that BO.2/C ŠM.2/_BSO.3/C (cf. [15,
Theorem C]), we see that .˛2_Bf2 ı!O.2//

� induces mod 2 cohomology equivalence,
which implies 2–local homotopy equivalence as everything is of finite type.

5 Homology of the associated infinite loop spaces

In this section, we discuss the consequences of our splitting theorem to the homology
of associated infinite loop spaces.

5.1 Exact sequences

We start with the following refinement of Proposition 1.3.

Proposition 5.1 The sequence of Hopf algebras

� � � !H�.�
1
0 M.n//!H�.�

1
0 M.n� 1//! � � �

� � � !H�.�
1
0 M.2//!H�.Q0BZ=2C/!H�.Q0S0/! Z=2

is exact. It gives rise to an exact sequence of graded vector spaces after taking the mod-
ule of indecomposables. Moreover , the image of H�.�

1
0

M.n//!H�.�
1
0

M.n�1//

is isomorphic to H�.�
1
0
†1�nD.n� 1//.

Proof Suppose we have a short exact sequence of spectra F !X ! Y . By the defi-
nition of the exactness, Definition 3.5, we see that the map H�.�

1X /!H�.�
1Y /

is surjective. Thus by standard arguments (see e.g. [16, Section 2.6])

H�.�
1F /!H�.�

1X /!H�.�
1Y /

is short exact. Furthermore, it is clear that this short exact sequence splits as

H�.�
1
0 F /˝ kŒ�0.F /�!H�.�

1
0 X /˝ kŒ�0.X /�!H�.�

1
0 Y /˝ kŒ�0.Y /�;

where k D Z=2. Noting that both in abelian categories and in the category of spectra,
an exact sequence can be decomposed into a series of short exact sequences, we see that
an exact sequence of spectra leads to an exact sequence of Hopf algebras by applying
the functor H�.�

1/ or H�.�
1
0
/.
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Now, note that the Gln.Z=2/–action on B�nC extends that on B�n. Thus it is easy to
see from (7) that we have e0nB�nD e0nB�nC for n> 1. As a matter of fact, Gln.Z=2/
acts trivially on S0 � B�nC, so qne0n restricted to S0 is the signed sum of 1’s and
.�1/’s which is zero. Thus for n � 2, M.n/ is a summand of B�n (and not just
a summand of B�nC), so �1M.n/ splits off QB�n as infinite loop spaces. Of
course, this also implies that M.n/ is connected for n� 2, so �1

0
M.n/D�1M.n/.

Therefore H�.�
1
0

M.n// splits off H�.QB�n/ as Hopf algebras; in particular, the
former is isomorphic to a Hopf subalgebra of the latter, which is a polynomial algebra.
It is known that any Hopf subalgebra of a polynomial algebra is polynomial by the
structure theorem of Hopf algebras over Z=2 ([2, Theorem 6.1] or [11, Theorem 7.11]).
So H�.�

1
0

M.n// is also a polynomial algebra. Thus everything in the exact sequence
is polynomial. As any surjective map of algebras to a polynomial algebra splits, we
see that a short exact sequence of Hopf algebras involving only polynomial algebras
remain exact after passing to the modules of indecomposables. Noting that an exact
sequence of polynomial Hopf algebras can be obtained by splicing together short exact
sequences of polynomial Hopf algebras, we can say the same about an exact sequence
of Hopf algebras, not necessarily short exact.

It remains to identify the image of each map. But this follows from Theorem 3.7(ii)
and the fact that the map En!†�nD.n/ induces homotopy equivalence �1

0
En!

�1
0
†�nD.n/.

Remark 5.2 By the comments in the first paragraph of the above proof we also have an
exact sequence of Hopf algebras even if we don’t restrict to the base point components;
that is we also have an exact sequence of Hopf algebras

� � � !H�.�
1M.n//!H�.�

1M.n� 1//! � � �

� � � !H�.�
1M.2//!H�.QBZ=2C/!H�.QS0/! Z=2:

An immediate consequence of Proposition 5.1 is:

Corollary 5.3 H�.�1
0

MTO.2// is a polynomial algebra.

Proof By Corollary 4.1 we have �1
0

MTO.2/ŠQ0BSO.3/C ��1E2, noting that
�0.E2/ D 0 since it is a direct summand of �0.M.2//. The short exact sequence
above, dualized, implies that H�.�1E2/ injects to H�.�1M.3//. Since M.3/ is a
stable summand of BO.3/, we see that H�.�1E2/ injects to H�.Q0BO.3// which
is polynomial [19, Theorem 3.11]. Since H�.�1E2/ is a connected Hopf algebra, as

Algebraic & Geometric Topology, Volume 23 (2023)



1952 Takuji Kashiwabara and Hadi Zare

in the above, by the structure theorem of Hopf algebras over Z=2, this implies that
H�.�1E2/ itself is a polynomial algebra. Now the corollary follows as the other
tensor factor H�.Q0BO.3// is polynomial again by [19, Theorem 3.11].

5.2 Relations among �–classes

We now prove Theorem 1.5 as an application. We start with the following defini-
tions. For a Z=2–algebra R, denote by Q.R/ its module of indecomposables, i.e.
I.R/=.I.R/2/ where I.R/ denotes the augmentation ideal. We will write often QR

instead of Q.R/ to avoid heavy notations.

Lemma 5.4 Let X be a pointed space , uX WX !QX be the unit map , and

�1� WQH�.QX /!H�.X /

the homology suspension. Write W .QH�.QX // for the image of zH�.X / in QH�.QX /

by the composition of H�.uX / and the projection zH�.QX /!QH�.QX /, and write
F.QH�.QX //D Ker.�1� /.

4 Then we have

QH�.QX /ŠW .QH�.QX //˚F.QH�.QX //:

This direct sum decomposition is natural with respect to maps of spaces (and not map
of suspension spectra). We will refer to it as the WF decomposition.

Proof The direct sum decomposition is an immediate consequence of the standard
fact that the homology suspension surjects to zH�.X / (e.g. [6, Lemmas 4.4 and 4.5]).
Since �1� is natural with respect to maps of spectra, and uX is natural with respect to
maps of spaces, the decomposition is natural with respect to maps of spaces.

We will extend this to slightly wider category of infinite loop spaces including the
�1M.n/’s.

Lemma 5.5 Let X be a space on which a group G acts , e 2 Z.2/ŒG� an idempotent.
Denote by � WX ! eX the projection and by i W eX !X the section associated to the
splitting of X by e such that e D i ı� . Then one can decompose QH�.�

1eX / as

QH�.�
1eX /ŠW .QH�.�

1eX //˚F.QH�.�
1eX //

so that the direct sum decomposition is compatible with that of H�.QX / via H�.�
1�/

as well as H�.�
1i/.

4The notation is voluntarily reminiscent of what we used in earlier versions. W here corresponds to W1,
F to F2.
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Proof This is equivalent to saying that QH�.�
1e/ respects the WF–decomposition.

Let g 2 G. Then g acts on X via a map of spaces, so QH�.�
1g/ respects the

WF–decomposition. On the other hand, for x 2H�.QX /,

H�.�
1.g1Cg2//.x/D†H�.�

1.g1//.x
0/H�.�

1.g2//.x
00/;

H�.�QX /.x/D†x0 �x00;

but we have H�.�QX /.x/D 1˝xCx˝1 modulo I˝I where I is the augmentation
ideal of H�.QX /. Thus,

QH�.�
1.g1Cg2//DQH�.�

1.g1//CQH�.�
1.g2//;

so QH�.�
1e/ also respects the WF decomposition.

As noted above, maps of spectra don’t necessarily respect the WF decomposition.
However, as the summand F is defined in terms of stable information only, some maps
of spectra have nice behavior with respect to this decomposition. For example, we can
prove:

Lemma 5.6 The map

QH�.�
1ın�1/ WQH�.�

1M.n//!QH�.�
1M.n� 1//

induces an inclusion

W .QH�.�
1M.n///! F.QH�.�

1M.n� 1///:

Proof The long exact sequence for the homology of the cofibration (6) implies that
H�.ık/ is trivial for all k. Thus by naturality of the homology suspension, we see that
the image of QH�.�

1ın�1/ is included in F.QH�.�
1M.n� 1///. By Remark 5.2

we have Ker.QH�.�
1ın�1//D Im.QH�.�

1ın//, but as before this is included in
F.QH�.�

1M.n///. So the restriction of QH�.�
1ın�1/ to W .QH�.�

1M.n/// is
injective.

Now we are ready to prove Theorem 1.5. The inclusion H�.M.n//�H�.BO.n// is
given by H�.fn/, and this is determined uniquely by its compatibility with H�.˛n/,
which in turn is determined uniquely by the fact that H�n.MTO.n// contains only
one nontrivial element, and the fact that H�.D.n// is generated by the bottom class
as a module over the Steenrod algebra (5). The cofibration sequence (2) implies that
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.�1!O.n//
�.�1�.x// D 0 if �1�.x/ 2 H�.Q.BO.n/C// belongs to the image of

H�.�1MTO.n�1//. Now, Theorem 3.9 implies that we have a commutative diagram

BO.n/C M.n/

MTO.n� 1/ †1�nD.n� 1/ M.n� 1/

fn

ın�1

˛n�1

Thus we get

H�.Q.BO.n/C// H�.�1M.n//

H�.�1MTO.n� 1// H�.�1.†1�nD.n� 1// H�.�1M.n� 1//

H �.�1fn/

H �.�1ın�1/

On the other hand, dualizing Lemma 5.6, we see that the dual of F
�
QH�.�

1M.n�1//
�

surjects to the dual of W .QH�.�
1M.n///, which is precisely the image of �1�

M.n/
.

Thus we have inclusions

Im.�1�M.n//� Im.PH�.�1ın�1//� Im.H�.�1ın�1//:

Therefore by the commutativity of the diagram above, we see that the image of the
composition

H�.M.n// �
1�

��!H�.�1M.n//!H�.Q.BO.n/C//

is contained in the image of H�.�1MTO.n� 1//. This concludes the proof of (i).

Now, notice that the splitting BO.2/C ' BSO.3/C _M.2/ combined with part (i)
shows that the only nontrivially characteristic classes may arise from the restriction of
.�1!O.2//

� ı �1� to the H�BSO.3/ summand of H�BO.2/, which was studied in
[6, Theorem 1.9]. Noting that [6, Remark 4.7] allows us to talk about �–classes and
�–classes interchangeably, we get (ii) and (iii).

To conclude, we give some explicit examples of those relations. First of all, we have
[12, Corollary 3.11].

Proposition 5.7 The image of H�.M.n// in H�.BO.n// is the free-module over
H�.B�n/

Gln.Z=2/ generated by a basis of A.n� 2/Sq2n�1;:::;2;1.x�1
1
� � �x�1

n /, where

A.k/ is the subalgebra of the Steenrod algebra generated by Sq1;Sq2; : : : ;Sq2k

. Here
we identify H�.BO.n// with its image in

H�.B�n/�H�.B�n/
�
n ŠH�.B�n/ � .x1 � � �xn/

�1
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via Bi� where i W�n�O.n/. In terms of cohomology classes , we identify H�.BO.n//
with the subalgebra of H�.B�n/ generated by the elementary symmetric polynomials
�1 D �1.x1; : : : ;xn/; : : : ; �n D �n.x1; : : : ;xn/.

The action of the Steenrod algebra on H�.B�n/ � .x1 � � �xn/
�1 is determined by the

action of the total Steenrod square (see e.g. [18]) SqT .xi/D xi C x2
i for 1 � i � n,

and the Cartan formula SqT .yz/D SqT .y/SqT .z/ for any y; z. Thus

SqT .x�1
i /D x�1

i .1Cxi/
�1
D x�1

i .1Cxi Cx2
i Cx3

i C � � � /:

When nD 2, A.0/ is just the exterior algebra generated by Sq1, that is, a graded vector
space spanned by 1 and Sq1. Furthermore, by the above, we see that

Sq2;1.x�1
1 x�1

2 /D x1Cx2 D �1;Sq1 Sq2;1.x�1
1 x�1

2 /D Sq1.�1/D x2
1 Cx2

2 D �
2
1 :

Since the Dickson invariant algebra H�.B�n/
Gln.Z=2/ is generated by

w2 D x2
1 Cx1x2Cx2

2 D �
2
1 C �2; w3 D x1x2.x1Cx2/D �1�2

[12, Theorem A1], we derive:

Corollary 5.8 The set˚
.�2

1 C �2/
i.�1�2/

j��1 j i � 0; j � 0; � 2 f1; 2g
	

forms a basis of the image of H�.M.2// in H�.BO.2//.

Combined with Theorem 1.5, we get a table of these relations in low dimensions,

�1;0 D 0 .i D 0; j D 0; � D 1/;

�3;0C�1;1 D 0 .i D 1; j D 0; � D 1/;

�2;1 D 0 .i D 0; j D 1; � D 1/;

�5;0C�3;1C�1;2 D 0 .i D 2; j D 0; � D 1/;

�3;1 D 0 .i D 0; j D 1; � D 2/;

�4;1C�2;2 D 0 .i D 1; j D 1; � D 1/:

Here we have omitted the relations that follow from lower degree relations and the
general relation �2i;2j D �

2
i;j . For example, setting � D 2; i D 1 and j D 0 gives

�4;0C�2;1D0; however, we have already listed �2;1D0, and we can deduce �4;0D0

from �4;0 D �
4
1;0

and �1;0 D 0.
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Free and based path groupoids

ANDRÉS ÁNGEL

HELLEN COLMAN

We give an explicit description of the free path and loop groupoids in the Morita
bicategory of translation topological groupoids. We prove that the free path groupoid
of a discrete group acting properly on a topological space X is a translation groupoid
given by the same group acting on the topological path space XI . We give a detailed
description of based path and loop groupoids and show that both are equivalent to
topological spaces. We also establish the notion of homotopy and fibration in this
context.

18B40, 55P35, 58E40; 55R91, 58D19

1 Introduction

Our aim is to give an explicit description of the path object in the bicategory of
translation topological groupoids. Our main application will be in the setting of
orbifolds as groupoids.

We adopt the model developed by Moerdijk and Pronk [9] to describe orbifolds in
terms of groupoids. Essentially an orbifold is a Morita equivalence class of groupoids
of a certain type, which we will call orbifold groupoids.

In this spirit, the right notion of morphism between orbifold groupoids is that of a
generalized map. These generalized maps arise as morphisms in the bicategory of
topological groupoids, functors and natural transformations when inverting the essential
equivalences; see Pronk [13].

All orbifolds can be represented by a groupoid given by a certain type of action of
a group G on a topological space X . This representation G ËX is called translation
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License 4.0 (CC BY). Open Access made possible by subscribing institutions via Subscribe to Open.
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groupoid. In particular we will be interested in developable orbifolds defined by a
translation groupoid given by a discrete group acting properly on a space.

For these orbifolds, we use their groupoid characterization to obtain a description of
the generalized maps from the interval to the orbifold as a translation groupoid. We
prove that the free path groupoid of the translation groupoid G ËX is the translation
groupoid G ËXI. In fact we describe three different approaches resulting in three
characterizations of the path groupoid: as a colimit of G–paths, as a groupoid of
multiple G–paths and as a translation groupoid G Ë XI. We prove that the three
groupoids are equivalent.

We show that this construction of the path groupoid is functorial and invariant under
Morita equivalence.

The pullback along the diagonal of this model gives us as a particular case, the free
loop groupoid which coincides with the descriptions given by Lupercio and Uribe [7],
Adem, Leida and Ruan [1] and Noohi [10] in various contexts.

Moreover, we use this model to calculate the based groupoid of paths between two
points. We prove that this groupoid is actually equivalent to a topological space.

Using our description of the path groupoid, we provide an explicit characterization
for a homotopy between two generalized maps, as well as a definition of orbifold
fibrations. We prove that the evaluation map is both a groupoid homotopy equivalence
and a groupoid fibration.

Organization

In Section 2 we present some basic definitions and constructions for topological
groupoids. We define translation groupoids and introduce the bicategory of translation
groupoids resulting from inverting the essential equivalences. Section 3 introduces
the model for orbifolds as groupoids that gives the setting for the construction of the
path groupoid in the next section. Section 4 is devoted to the construction of the free
path groupoid. We give here an explicit equivalence between all models for the path
groupoid. We prove that this construction is functorial and invariant under Morita
equivalence. Section 5 provides a detailed description of the based path and loop
groupoids and describes some examples. Section 6 concerns the characterization of the
homotopy between generalized maps. In Section 7 we provide a definition of groupoid
fibration and prove that the evaluation morphism is a groupoid fibration.

Algebraic & Geometric Topology, Volume 23 (2023)
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2 Context

2.1 Topological groupoids

A topological groupoid G is a groupoid object in the category Top of topological spaces
and continuous maps. Our notation for groupoids is that G0 is the space of objects and
G1 is the space of arrows, with source and target maps s; t WG1!G0, multiplication
m WG1 �G0 G1!G1, inversion i WG1!G1, and object inclusion u WG0 ,!G1.

The set of arrows from x to y is denoted byG.x; y/Dfg2G1 j s.g/Dx and t .g/Dyg.
The set of arrows from x to itself, G.x; x/, is a group called the isotropy group of G at
x and denoted by Gx .

A strict morphism � W K! G of groupoids is a functor given by two continuous maps
� WK1!G1 and � WK0!G0 that together commute with all the structure maps of
the groupoids K and G.

A natural transformation T W � )  between two morphisms �; W K ! G is a
continuous map T WK0!G1 with T .x/ W�.x/! .x/ such that for any arrow h Wx!y

inK1, the identity .h/T .x/DT .y/�.h/ holds. Since we are in a topological groupoid
and inversion is continuous, we also have a natural transformation T �1 W  ) � and
write � �T  .

Topological groupoids, strict morphisms and natural transformations form a 2–category,
which we denote by TopG.

A strict morphism � W K! G of topological groupoids is an essential equivalence if:

(i) � is essentially surjective in the sense that

s�1 WG1 �
t
G0
K0!G0

is an open surjection whereG1�tG0K0 is the pullback along the target t WG1!G0.

(ii) � is fully faithful in the sense that K1 is the pullback of topological spaces

K1 G1

K0 �K0 G0 �G0

�

.s;t/ .s;t/

���

Note that if there exists a functor ı W G!K with natural transformations � W idG) � ı ı

and � W ı ı �) idK in TopG, the functor � is essentially surjective — indeed, s�1 has

Algebraic & Geometric Topology, Volume 23 (2023)
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a section defined by .�x; ı.x// WG0!G1 �
t
G0
K0, which implies that it is open and

surjective — and � is fully faithful because the map K1! K0 �K0 �G0�G0 G1 has an
inverse defined by .x; y; h/! �y ı ı.h/ ı �

�1
x .

An essential equivalence � WK! G does not generally have an inverse functor ı W G!K
such that � ı ı �T idG and ı ı � �T 0 idK in TopG. The functor ı exists by the axiom of
choice but in general it is not continuous.

Definition 2.1 Let  W K ! G and � W L ! G be strict morphisms. The groupoid
pullback P D K�G L is the topological groupoid whose space of objects is

P0 DK0 �
t
G0
G1 �

s
G0
L0

and space of arrows is P1 D K1 �tG0 G1 �
s
G0
L1. Source and target maps are given

by s.k; g; l/ D .s.k/;  .k/�1g�.l/; s.l// and t .k; g; l/ D .t.k/; g; t.l//. There is a
square of morphisms and a natural transformation T that makes the diagram

K�G L K

L G

�1

�2  

�

�T

commutative and is universal with this property.

Definition 2.2 The groupoids K and G are Morita equivalent if there exists a groupoid L
and a span

K �
 � L �

�! G;

where � and � are essential equivalences. We write G �M K.

The proof that a Morita equivalence is an equivalence relation is based on the groupoid
pullback defined above.

A generalized map .�; �/ from K to G is a span K �
 � J �

�! G such that � is an
essential equivalence. Two generalized maps K �

 � J �
�! G and K �0

 � J 0 �
0

�! G are
equivalent if there exists a diagram

J
�

��

�

~~

K L

u

OO

v
��

G

J 0
�0

__

�0

??
�T 0�T
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which is commutative up to natural transformations and where L is a topological
groupoid, and u and v are essential equivalences.

2.2 The Morita bicategory of topological groupoids MTopG

Consider the class of arrows E given by the essential equivalences in the 2–category
TopG. It was proven by Pronk in [13; 14] that E satisfies the conditions to admit a
bicalculus of fractions. The bicategory of fractions TopG.E�1/ obtained by formally
inverting the essential equivalences is what we call the Morita bicategory of topological
groupoids and we denote by MTopG.

The explicit description of the bicategory MTopG is as follows:

� Objects are topological groupoids G.

� A 1–morphism from K to G is a generalized map

K �
 � J �

�! G

such that � is an essential equivalence.

� A 2–morphism from K �
 � J �

�! G to K �0
 � J 0 �

0

�! G is given by a class of
diagrams

J
�

��

�

~~

K L

u

OO

v
��

G

J 0
�0

__

�0

??
�T 0�T

where L is a topological groupoid, and u and v are essential equivalences.

The horizontal composition of generalized maps K �
 � J �

�! G and G �
 � J 0  �! L

is given by the diagram
J 0 �G J

����

J
�

��

�

��

J 0
�

��

 

��

K G L

where J 0�G J is the groupoid pullback. Note that this composition is associative only
up to a 2–morphism.

Algebraic & Geometric Topology, Volume 23 (2023)
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2.3 Translation groupoids

Let G be a topological group with a continuous left action on a topological space X .
Then the translation groupoid G ËX is defined by:

� The space of objects is X itself, and the space of arrows is the Cartesian product
G �X .

� The source s WG�X!X is the second projection, and the target t WG�X!X

is given by the action. Then .g; x/ is an arrow x! gx.

� The other structure maps are defined by the unit u.x/D .e; x/, where e is the
identity element in G, and .h; gx/ ı .g; x/ D .h ? g; x/ where ? is the group
multiplication.

Example 2.3 These examples will appear later on in our applications.

(1) Unit groupoid Consider the groupoid e ËX given by the action of the trivial
group e on the topological space X . This is a topological groupoid whose arrows
are all units. In this way, any topological space can be considered as a groupoid.

(2) Multiplication groupoid Let H be a subgroup of a topological group G.
Consider the translation groupoid H ËG where H acts by multiplication on G.

(3) Conjugation groupoid Let H be a subgroup of a topological group G. Con-
sider the translation groupoid H ËG where H acts by conjugation on G.

(4) Point groupoid Let G be a topological group. Let � be a point. Consider
the groupoid G Ë � where G acts trivially on the point. This is a topological
groupoid with exactly one object, �, and G is the space of arrows in which the
maps s and t coincide. We call GË� the point groupoid associated to G. In this
way any group can be considered as a groupoid.

We will denote by 1 the trivial groupoid with one object and one arrow; that is, 1D eË�,
the unit groupoid over a point or a point groupoid associated to the trivial group.

An equivariant map G ËX ! K Ë Y between translation groupoids consists of a
pair ' Ë f , where ' W G ! K is a group homomorphism and f W X ! Y satisfies
f .gx/D '.g/f .x/ for g 2G and x 2X .

Translation groupoids, equivariant maps and natural transformations form a 2–category
that we denote by TrG.

Algebraic & Geometric Topology, Volume 23 (2023)
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2.4 The Morita bicategory of translation groupoids MTrG

We construct now a subbicategory MTrG of the Morita bicategory of topological
groupoids MTopG where the objects are strictly the translation groupoids and the maps
are equivariant ones.

Proposition 2.4 [14] Let  WGËX!LËZ and � WH ËY !LËZ be equivariant
maps. The fiber product K

K
�1Ëf

//

�2Ëg

��

G ËX

 
��

H ËY
�
// LËZ

is again a translation groupoid. Moreover , its structure group isG�H , KD .G�H/ËP
and the first components of the equivariant maps �1 Ë f and �2 Ë g are the group
projections �1 WG �H !G and �2 WG �H !H .

An equivariant essential equivalence is an equivariant map � Ë � which is an essential
equivalence.

Consider the bicategory whose

� objects are translation groupoids G ËX ;

� 1–morphisms from G ËX to K ËY are equivariant generalized maps

G ËX �Ë�
 �� LËZ 'Ëf

��!K ËY

such that � Ë � is an equivariant essential equivalence;

� a 2–morphism) from the equivariant generalized map GËX �Ë�
 ��LËZ 'Ëf

��!

K ËY to G ËX �0Ë�0
 ��� L0 ËZ0 '

0Ëf 0
���!K ËY is given by a class of diagrams

LËZ
'Ëf

%%

�Ë�

yy

G ËX RËU

u

OO

v
��

K ËY

L0 ËZ0
�0Ë�0

ee

'0Ëf 0

99
�T 0�T

where R ËU is a translation groupoid, and u and v are equivariant essential
equivalences.

Translation groupoids, equivariant generalized maps and diagrams as above form the
Morita bicategory of translation groupoids, which we denote by MTrG.
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3 Orbifolds as groupoids

We recall now the description of orbifolds as groupoids due to Moerdijk and Pronk
[9; 13]. Orbifolds were first introduced by Satake [16] as a generalization of a manifold
defined in terms of local quotients. The groupoid approach provides a global language
to reformulate the notion of orbifold.

A groupoid G is proper if .s; t/ W G1! G0 �G0 is a proper map and it is a foliation
groupoid if each isotropy group is discrete.

Definition 3.1 An orbifold groupoid is a proper foliation groupoid.

Given an orbifold groupoid G, its orbit space jGj is a locally compact Hausdorff space.
Given an arbitrary locally compact Hausdorff space X we can equip it with an orbifold
structure as follows:

Definition 3.2 An orbifold structure on a locally compact Hausdorff space X is given
by an orbifold groupoid G and a homeomorphism h W jGj !X .

If � WH!G is an essential equivalence and j�jW jHj!jGj is the induced homeomorphism
between orbit spaces, we say that the composition hıj�jW jHj!X defines an equivalent
orbifold structure.

Definition 3.3 An orbifold X is a space X equipped with an equivalence class of orb-
ifold structures. A specific such structure, given by G and h W jGj!X , is a presentation
of the orbifold X .

If two groupoids are Morita equivalent, then they define the same orbifold. Therefore
any structure or invariant for orbifolds, if defined through groupoids, should be invariant
under Morita equivalence.

Definition 3.4 An orbifold map f W Y ! X is given by an equivalence class of
generalized maps .�; �/ from K to G between presentations of the orbifolds such that
the following diagram commutes:

jKj jGj

Y X

j�jj�j�1

A specific such generalized map .�; �/ is called a presentation of the orbifold map f .

Algebraic & Geometric Topology, Volume 23 (2023)



Free and based path groupoids 1967

We can obtain an orbifold by considering the action of a compact group G acting on a
space X with finite stabilizers. All orbifolds can be described in this way [12].

The orbifold X is developable if it is presented by a groupoid Morita equivalent to a
translation groupoid G ËX with G a discrete group acting properly on X .

4 Path groupoid

From now on, we will focus on developable orbifolds and G will be a discrete group
acting properly on X . In this context, we will show that in the bicategory of topological
groupoids any path in G ËX

I  I!G ËX
is equivalent to a strict map

I !G ËX

where I is the unit groupoid e Ë I , I D Œ0; 1� and I is any topological groupoid.

4.1 Generalized paths

A path in the groupoid G ËX in the Morita bicategory of topological groupoids is a
generalized map .ı; ˇ/ from the unit groupoid I to G ËX . That is, a span

I ı
 � I ˇ

�!G ËX:

Since I ı
 � I is an essential equivalence, we can use groupoid atlases [15; 17] to see

that the equivalence class ŒI ı
 � I ˇ

�!G ËX� has a representative of the form

I �
 � ISn

˛
�!G ËX;

where ISn is the groupoid associated to a subdivision

Sn D f0D r0 � r1 < � � �< rn�1 � rn D 1g

of the interval I D Œ0; 1� as explained below.

The space of objects of the groupoid ISn is the disjoint union
nG
iD1

Ii ;

where Ii is a small open neighborhood of Œri�1; ri � and .r; i/ denotes an element r in
the connected component Ii .
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The space of arrows of ISn is given by the disjoint union

nG
iD1

Ii

n�1G
iD1

. QIi t QIi /;

where
Fn
iD1 Ii is the set of unit arrows, QIi D Ii \IiC1 and another copy QIi was added

for inverse arrows. For each point ri in the subdivision Sn, QIi is an open neighborhood
of ri . Two arrows were added for each point .r; i/ in the interval QIi : Qri and its inverse
arrow such that the source of Qri is .r; i/ and its target is .r; i C 1/.

Definition 4.1 A generalized path in the groupoid G Ë X is a generalized map
I �
 � ISn

˛
�!G ËX such that:

(1) � W ISn! I on objects is the inclusion in each connected component, �.r; i/D r
and on arrows it sends all arrows to identity arrows, �. Qri /D idr .

(2) ˛ W ISn ! G ËX on objects is given by a map ˛i W Ii ! X in each connected
component and on arrows is given by ˛. Qri /D .ki ; ˛i .r// satisfying the condition
ki˛i .r/D ˛iC1.r/ for all r 2 QIi .

We denote by Map.ISn ; GËX/ this space of maps from ISn toGËX with the compact
open topology.

4.1.1 Equivalence of generalized paths We will establish now an equivalence
relation between the generalized maps defining our generalized paths which will allow
us to give a groupoid structure to the space of generalized paths.

Definition 4.2 Two generalized paths I �
 � ISm

˛
�!GËX and I �0

 � ISm0
ˇ
�!GËX

are equivalent if there exist a subdivision Sn and essential equivalences u and v such
that the following diagram commutes up to natural transformations:

ISm

I ISn G ËX

ISm0

˛�

�

u

v

�

�0 ˇ
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Since G is discrete, the condition ˛u� ˇv guarantees the existence of a natural trans-
formation T W

Fn
iD1 Ii !G �X such that T .r; i/D .gi ; ˛i .r// with ˇi .r/D gi˛i .t/.

By naturality of the transformation, the diagram

˛i .r; i/ ˇi .r; i/

˛iC1.r; i/ ˇiC1.r; i/

gi

ki k0
i

giC1

commutes for all r 2 QIi . Therefore k0i D giC1kigi
�1 for all i D 1; : : : ; n� 1.

Remark 4.3 Two generalized paths are equivalent if there exists a common subdivision
Sn and gi 2 G such that ˇi .r/ D gi˛i .r/ for all i D 1; : : : ; n and k0i D giC1kigi

�1

for all i D 1; : : : ; n� 1.

Then, we have a translation groupoid Gn ËMap.ISn ; G ËX/ given by this action of
Gn on the space Map.ISn ; G ËX/. Source and target are given by

s..g1; : : : ; gn/; .˛1; : : : ; ˛n; k1; : : : ; kn�1//D .˛1; : : : ; ˛n; k1; : : : ; kn�1/

and

t ..g1; : : : ; gn/; .˛1; : : : ; ˛n; k1; : : : ; kn�1//

D .g1˛1; : : : ; gn˛n; g2k1g
�1
1 ; : : : ; gnkn�1g

�1
n�1/:

4.1.2 Colimit construction In order to account for all possible subdivisions, we will
consider the colimit of the groupoids Gn ËMap.ISn ; G ËX/ over a partially ordered
set that we describe next.

We define the category CI as the category with objects the ordered tuples

Sn D f0D r0 � r1 � � � � � rn D 1g

with an open cover of I D Œ0; 1� given by connected intervals fIi j 1 � i � ng. We
require that:

(1) Œri�1; ri � � Ii and Ii \ fr0; r1; : : : ; rng D fri�1; rig, which is one point if
ri�1 D ri and two points if ri�1 < ri .

(2) (a) If rk�2 < rk�1 D rk D � � � D rl < rlC1 then we require that

Ik D IkC1 D � � � D Il � Ik�1\ IlC1:
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(b) If 0D r0 D r1 D � � � D rk < rkC1 then we require that

I1 D I2 D � � � D Ik � IkC1:

(c) If rk�1 < rk D rkC1 D � � � D rn D 1 then we require that

IkC1 D IkC2 D � � � D In � Ik :

We have a morphism from .fr0 � r1 � � � � � rng; fIig/ to .ft0 � t1 � � � � � tmg; f QIj g/ if:

(I) fr0; r1; : : : ; rng � ft0; t1; : : : ; tmg.

(II) The multiplicity of repeated elements decreases; ie for every i ,ˇ̌
fj j rj D rig

ˇ̌
�
ˇ̌
fj j tj D rig

ˇ̌
:

(III) The open cover fIig is a refinement of the open cover f QIj g in the following way:
(a) For each closed interval Œri�1; ri � with nonempty interior there is a unique

Œtj�1; tj � with Œri�1; ri �� Œtj�1; tj � and we have

Ii
�

// QIj

Œri�1; ri �

�

OO

�
// Œtj�1; tj �

�

OO

(b) If there is a repeated element in the ft0 � t1 � � � � � tmg, tj�1D tj , it is also
a repeated element of fr0 � r1 � � � � � rng, ri�1 D ri . We require Ii � QIj .

The morphisms are generated (as a category) by the set of morphisms:

(1) Eliminating a point from the subdivision f0D r0 � r1 � � � � � ri � � � � � rnD 1g:

di W .fr0 � � � � � ri � � � � � rng; fIig/! .fr0 � � � � � Ori � � � � � rng; f QIj g/;

where di drops the i th element and concatenates the consecutive intervals Ii
and IiC1, ie QIj D Ij for j D 0; : : : ; i � 1, QIi D Ii [ IiC1 and QIj D Ij for
j D i C 1; : : : ; n.

(2) Enlarging the intervals without changing the points of the subdivision given by
f0D r0 � r1 � � � � � rn D 1g:

u W .fr0 � � � � � rng; fIig/! .fr0 � � � � � rng; f QIig/

when Ii � QIi .
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We call CI the category of subdivisions of I which is a cofiltered category, which boils
down to the fact that for two subdivisions there is a common refinement.

For every morphism, there is a continuous map given by concatenation and inclusionG
i

Ii !
G
j

QIj :

To the morphism di W Sn ! Sn�1, we assign the functor di� W ISn ! ISn�1 that on
objects concatenates Ii [ IiC1 and on morphisms sends Qri and its inverse arrow
Qr 0i to the identity arrow on .r; i/. Similarly, for u W Sn ! Sn, there is a functor
u� W ISn ! ISn given by inclusion at the level of objects and morphisms. This gives
a functor from CI ! Gpd. We can obtain a contravariant functor  from Cop

I to
topological spaces that on objects sends Sn to Map.ISn ; GËX/ and on morphisms sends
di W Sn! Sn�1 to the morphism d�i WMap.ISn�1 ; G ËX/!Map.ISn ; G ËX/ given
by taking ˛ 2 Map.ISn�1 ; G ËX/ represented by .˛1; : : : ; ˛n�1; k1; : : : ; kn�2/ and
sending it to .˛1; : : : ; ˛i jIi ; ˛i jIiC1 ; : : : ; ˛n�1; k1; : : : ; ki�1; id; ki ; kiC1; : : : ; kn�2/,
ie taking ˛i W Ii [ IiC1!X to the restrictions to Ii and IiC1. Similarly,

u� WMap.ISn ; G ËX/!Map.ISn ; G ËX/

is just restriction of all the paths: taking ˛ 2 Map.ISn ; G Ë X/ represented by
.˛1; : : : ; ˛n; k1; : : : ; kn�1/ and sending it to .˛1jI1 ; : : : ; ˛njIn ; k1; : : : ; kn�1/.

We have an action of Gn on the space Map.ISn ; G ËX/ given by

.g1; : : : ; gn/ � .˛1; : : : ; ˛n; k1; : : : ; kn�1/

D .g1˛1; : : : ; gn˛n; g2k1g
�1
1 ; : : : ; gnkn�1g

�1
n�1/:

The map d�i WMap.ISn�1 ; GËX/!Map.ISn ; GËX/ is equivariant with respect to the
map �i W Gn�1! Gn given by �i .g1; : : : ; gn�1/D .g1; : : : ; gi ; gi ; giC1; : : : ; gn�1/.
This means that

�i .g1; : : : ; gn�1/ � d
�
i .˛1; : : : ; ˛n�1; k1; : : : ; kn�2/

D d�i ..g1; : : : ; gn�1/ � .˛1; : : : ; ˛n�1; k1; : : : ; kn�2//

This is because .g1; : : : ; gi ; gi ; giC1; : : : ; gn�1/ acting on

.˛1; : : : ; ˛i jIi ; ˛i jIiC1 ; : : : ; ˛n�1; k1; : : : ; ki�1; id; ki ; kiC1; : : : ; kn�2/

is equal in the first part to

.g1˛1; : : : ; gi˛i jIi ; gi˛i jIiC1 ; : : : ; gn�1˛n�1/
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and in the second part to

.g2k1g
�1
1 ; : : : ; giki�1g

�1
i�1; gi idg

�1
i ; giC1kig

�1
i ; : : : ; gn�1kn�2g

�1
n�2/;

which is

.g2k1g
�1
1 ; : : : ; giki�1g

�1
i�1; id; giC1kig

�1
i ; : : : ; gn�1kn�2g

�1
n�2/:

This is precisely

d�i ..g1; : : : ; gn�1/ � .˛1; : : : ; ˛n�1; k1; : : : ; kn�2//:

Similarly the map u� WMap.ISn ; GËX/!Map.ISn ; GËX/ is equivariant with respect
to the identity map Gn!Gn.

Therefore we have a contravariant functor from CI to the category of translation
groupoids that on objects sends Sn to GnËMap.ISn ; GËX/ and on morphisms sends
di WSn!Sn�1 to the functor .d�i ; �i / and u WSn!Sn to the functor .u�; id/; formally
we have a (covariant) functor ˚ W Cop

I ! TrG.

We consider now the (filtered) colimit of ˚ ,

P D colim
Cop
I

˚

given by an object P 2 TrG together with morphisms from Map.ISn ; G Ë X/ for
each Sn such that for each morphism the following diagrams commute:

For di :
Gn ËMap.ISn ; G ËX/

P

Gn�1 ËMap.ISn�1 ; G ËX/

�iËd
�
i

For u:
Gn ËMap.ISn ; G ËX/

P

Gn ËMap.ISn ; G ËX/

idËu�
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Moreover, P D colim˚ has the following universal property. Given another translation
groupoid W with functors from Gn ËMap.ISn ; G Ë X/ that are compatible, such
functors factor uniquely through the colimit P as shown in the diagrams

Gn ËMap.ISn ; G ËX/

P W

Gn�1 ËMap.ISn�1 ; G ËX/

�iËd
�
i

Gn ËMap.ISn ; G ËX/

P W

Gn ËMap.ISn ; G ËX/

idËu�

Definition 4.4 The path groupoid P.G ËX/ of the translation groupoid G ËX is

P.G ËX/D colim
Cop
I

˚;

where ˚ W Cop
I ! TrG is as above.

We are ready now to give an explicit construction of the groupoid P D P.G ËX/ by
using the constructions of colimits in the category of topological spaces Top and in the
category of groups Grp.

The colimit of the contravariant functor  W Cop
I ! Top is a topological space M D

colim such that

M D

�a
CI

Map.ISn ; G ËX/
�.
�;

where� is the equivalence relation generated by ˛�d�i .˛/ for all Sn and di WSn!Sn�1

and ˛ � u�.˛/ for all Sn and u W Sn! Sn.

This topological spaceM D colim will be the space of objects of the path groupoid P.
To construct the space of arrows of the path groupoid, we consider now a colimit in
the category of groups.

Algebraic & Geometric Topology, Volume 23 (2023)



1974 Andrés Ángel and Hellen Colman

Consider the functor ' W Cop
I ! Grp which sends Sn to Gn and on morphisms sends

u WSn!Sn to the identityGn!Gn and di WSn!Sn�1 to the morphism �i WG
n�1!

Gn given by �i .g1; : : : ; gn�1/D .g1; : : : ; gi ; gi ; giC1; : : : ; gn�1/.

The colimit of ' is a group H D colim' such that

H D

�a
CI

Gn
�.
�

where � is generated by .g1; : : : ; gn�1/ � .g1; : : : ; gi ; gi ; giC1; : : : ; gn�1/. This
group H is discrete and acts on the topological space M constructed above.

We can describe now explicitly the object and arrow spaces of the path groupoid
P D P.G ËX/ in TrG:

P0 DM D colim D
a
CI

Map.ISn ; G ËX/=�

and

P1DH�M Dcolim'�colim D

��a
CI

Gn
�.
�

�
�

��a
CI

Map.ISn ; G ËX/
�.
�

�
;

which we endow with the inductive topology.

Remark 4.5 Let G be a discrete group acting on X . The path groupoid of G ËX is
the translation groupoid

P D P.G ËX/DH ËM:

We will show that this path groupoidP Dcolim˚ described above is actually equivalent
to the translation groupoid G ËXI . In order to give an explicit characterization of the
equivalence of categories, we will introduce some auxiliary groupoids which in turn
will relate to the idea introduced in [4] of multiple G–paths.

4.2 Multiple G–paths

We will provide now another description of the path groupoid in terms of equivariant
generalized maps. We will see that for each generalized path .�; ˛/, its equivalence
class ŒI �

 � ISn
˛
�!G ËX� contains a representative in MTrG of the form

I ı
 �G ËY �

�!G ËX;

where G ËY is a translation groupoid.
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Given a generalized path I �
 � ISn

˛
�!GËX , we will construct a space Y D Y˛ such

that GËY is Morita equivalent to ISn , and maps ı WGËY ! I and � WGËY !GËX
such that .ı; �/ is 2–isomorphic to the given G–path .�; ˛/.

4.2.1 Construction of G Ë Y˛ Let ˛ D .˛1; : : : ; ˛n; k1; : : : ; kn�1/. Consider the
product space

G � .ISn/0 D f.g; .r; i// j g 2G; .r; i/ 2 Iig

and the identifications, for all r 2 QIi ,

.g; .r; i C 1//� .k�1i g; .r; i//;

where ˛. Qri /D .ki ; ˛i .r//.

Now Y˛ is defined as the quotient space

fŒ.g; .r; i//� j .g; .r; i//2G�.ISn/0 and .g; .r; iC1//� .k�1i g; .r; i// for all r 2 QIig:

Observe that the space Y˛ depends on ˛ in the sense that it is given by the subdivision Sn
and the group elements k1; : : : ; kn�1, but it is independent of the actual pieces of the
path ˛1; : : : ; ˛n.

The action of G on Y˛ is given by the multiplication in the group h
�
Œg; .r; i/�

�
D

Œgh�1; .r; i/�.

We can consider then the translation groupoid G ËY˛ where the source and target are
given by the maps s

�
h; Œg; .r; i/�

�
D Œg; .r; i/� and t

�
h; Œg; .r; i/�

�
D Œgh�1; .r; i/�.

4.2.2 Morita equivalence ISn
�M G ËY˛ We will show now that the translation

groupoid constructed above is Morita equivalent to the groupoid ISn . Let

� W ISn !G ËY˛

be the morphism defined by �..r; i//D Œe; .r; i/� on objects and �. Qri /D
�
ki ; Œe; .r; i/�

�
on arrows for all r 2 QIi . The open map � is essentially surjective since

s�1 WG � .ISn/0! Y˛ D .G � .ISn/0/=�

is the quotient projection. It is also fully faithful since .ISn/1 is given by the pullback
of the maps

G �Y˛

.ISn/0 � .ISn/0 Y˛ �Y˛

.s;t/

���
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Therefore given a groupoid ISn , we can construct another groupoid Y˛ for each set of
elements k1; : : : ; kn�1 such that ISn is Morita equivalent to G ËY˛.

4.2.3 The 2–isomorphism .�; ˛/) .ı; �/ We will define now the maps ı and � to
obtain the generalized map I ı

 �G ËY˛
�
�!G ËX being 2–isomorphic to the given

generalized path .�; ˛/.

We define �
�
Œg; .r; i/�

�
D g�1˛i .r/ on objects and �.h; Œg; .r; i/�/D .h; g�1˛i .r// on

arrows. Moreover, the morphism � is G–equivariant in the ordinary sense (the group
homomorphism is the identity).

The essential equivalence ı W G ËY˛! I is given by projection on both objects and
arrows, ı

�
h; Œg; .r; i/�

�
D r . Both morphisms � and ı are well defined and ı is open,

surjective on objects and fully faithful.

The diagram
ISn

˛

%%

�

||
�

��

I G ËX

G ËY˛
ı

cc

�

99

is commutative since ��..r; i//D�
�
Œe; .r; i/�

�
D˛i .ri / and ��. Qri /D�

�
ki ; Œe; .r; i/�

�
D

.ki ; ˛i .r// for all r 2 QIi .

Thus there is a 2–isomorphism between the generalized map I ı
 �G ËY˛

�
�!G ËX

and the generalized path I �
 � ISn

˛
�!G ËX .

Observe that the identifications we have made in the quotient to obtain the space Y˛
determine a gluing of the segments Ii at the different levels of G � .ISn/0 to obtain
copies of the entire interval I D Œ0; 1�. This gluing is determined by the group elements
k1; : : : ; kn�1.

To define the map � from the groupoid G ËY˛ associated to the generalized path ˛,
we are concatenating the different pieces ˛i in these different levels by multiplying by
the correct group element to obtain an honest path in X .

4.2.4 The homeomorphism 
 W Y˛!G � I For each map ˛ W ISn !G ËX , let us
show now that the space Y˛ we just constructed is G–equivariantly homeomorphic to
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the space G � I , where the action on the latter is determined by the action of G on Y˛
given by hŒg; .r; i/�D Œgh�1; .r; i/�. We have that the action on G � I is given by

G � .G � I /!G � I; .h; .g; r//D .gh�1; r/:

We define the homeomorphism 
 W Y˛!G � I as



�
Œg; .r; i/�

�
D ..ki�1 � � � k1/

�1g; r/

for i D 1; : : : ; n. The morphism 
 depends only on Sn and k1; : : : ; kn�1 and is
independent on the actual paths ˛1; : : : ; ˛n. The inverse morphism 
�1 WG � I ! Y˛

is given by

�1.h; r/D Œki�1 � � � k1h; .r; i/�

if r 2 Ii . Moreover, the homeomorphism 
 is G–equivariant by construction.

Definition 4.6 A multiple G–path in the groupoid G ËX is a generalized map

I  G Ë .G � I / �
�!G ËX;

where � is a G–equivariant map in the ordinary sense.

4.2.5 Equivalence of multiple G–paths Given two multiple G–paths

I  G Ë .G � I / �
�!G ËX and I  G Ë .G � I / �

�!G ËX;

they are equivalent if there exists a subdivision Sn and k1; : : : ; kn�1 2G such that the
diagram

G Ë .G � I /
�

&&

p

zz
I ISn

�

OO

�

��

G �X

G Ë .G � I /
p

dd

�

88

commutes up to natural transformations, where � D �k1;:::;kn�1 and �D �k1;:::;kn�1 .

Since p is an essential equivalence, we have that � � � and then �� � ��. That means
that there exists a natural transformation T W .ISn/0! G �X such that T .r; i/ is an
arrow between ��.r; i/ D �..ki�1 � � � k1/�1; r/ and �..ki�1 � � � k1/�1; r/. Therefore
we have that the multiple G–paths are equivalent if there exists a subdivision Sn,
k1; : : : ; kn�1 2G and g1; : : : ; gn 2G such that

gi�..ki�1 � � � k1/
�1; r/D �..ki�1 � � � k1/

�1; r/ if r 2 Ii :
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Since � is equivariant,

gi .ki�1 � � � k1/�.e; r/D .ki�1 � � � k1/�.e; r/ if r 2 Ii :

For i D 1 this means that there exists g1 2G such that �.e; r/D g1�.e; r/. Since the
interval e � I is connected, we have that gi D .ki�1 � � � k1/g1.ki�1 � � � k1/�1 for all
i D 1; : : : ; n. In other words, all other gi for i D 2; : : : ; n are determined by g1. Once
that we have a group element g1 2G that makes �.e; r/D g1�.e; r/ in the first piece
of the interval, r 2 Œ0; r1�, then all the other pieces of the interval coming from the
subdivision Sn will also coincide since, for all r 2 Ii ,

gi .ki�1 � � � k1/�.e; r/D .ki�1 � � � k1/�.e; r/

and
gi D .ki�1 � � � k1/g1.ki�1 � � � k1/

�1:

Then

.ki�1 � � � k1/g1.ki�1 � � � k1/
�1.ki�1 � � � k1/�.e; r/D .ki�1 � � � k1/�.e; r/;

which implies that g1�.e; r/D �.e; r/ for all r 2 I .

Proposition 4.7 Two multiple G–paths � and � are equivalent if there exists g 2G
such that

g�.e; r/D �.e; r/:

We have the group G acting now on the space of equivariant maps GMap.G � I;X/.
Let P 0 DG ËGMap.G � I;X/ be the multiple G–path groupoid.

Since �.g; r/ D g�.e; r/, we observe that a multiple G–path is determined by the
honest path ˇ W I !X given by ˇ.r/D �.e; r/. Conversely, any path ˇ W I !X can
be made into a multiple G–path by putting �.g; r/D gˇ.r/. Consider the translation
groupoid of honest paths, given by the obvious action of G on X . Let P 00 DG ËXI ,
where XI DMap.I; X/.

We will prove next that all three characterizations of the path groupoid, as generalized
paths, as multiple G–paths and as honest paths are equivalent.

4.3 Equivalence of the different models for path groupoids

Recall the definition of the path groupoid and the other two characterizations introduced
in the previous section:
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(1) The groupoid P D colim'Ëcolim , whereM D colim is the space of classes
of generalized paths.

(2) The groupoid P 0 DG ËGMap.G� I;X/, where GMap.G� I;X/ is the space
of G–equivariant maps.

(3) The groupoid P 00 DG ËXI , where XI is the free path space.

4.3.1 The equivalence of categories � W colim'Ëcolim !G ËGMap.G �I;X/
Recall that M D colim is the space of classes of generalized paths, ie

M D

�a
CI

Map.ISn ; G ËX/
�.
�;

where� is the equivalence relation generated by ˛�d�i .˛/ for all Sn and di WSn!Sn�1

and ˛ � u�.˛/ for all Sn and u W Sn! Sn. We will use the same notation,

.˛1; : : : ; ˛n; k1; : : : ; kn�1/;

to denote the elements in M .

The idea is to complete each piece ˛i of the generalized path

˛ D .˛1; : : : ; ˛n; k1; : : : ; kn�1/

to have the entire branch �i of a multiple G–path � .

The functor � W colim'Ë colim ! G ËGMap.G � I;X/ Given a generalized
path ˛ D .˛1; : : : ; ˛n; k1; : : : ; kn�1/ for the subdivision Sn of the interval I , we can
define (as in the previous section)

(1) a space Y˛ D fŒ.g; .r; i//� j .g; .r; i// 2G � .ISn/0g with the relation

.g; .r; i C 1//� .k�1i g; .r; i//

for all r 2 QIi ,

(2) a homeomorphism 
˛ WG ËY˛!G Ë .G � I /,

(3) an essential equivalence �˛ W ISn !G ËY˛, and

(4) a generalized map I ı
 �G ËY˛

�˛
�!G ËX such that .�; ˛/) .ı; �˛/.

We define � W colim'ËM !GËGMap.G�I;X/ as �.˛/D �˛
˛�1 on objects and
�.g1; : : : ; gn; ˛/D .g1; �˛
˛

�1/ on arrows.
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:::
:::

�

e

g �e

˛1

k�11 ˛2
.k1k2/

�1˛3

Figure 1

Then �.˛/.g; r/D �˛
˛�1.g; r/D �˛Œki�1 � � � k1g; .r; i/�D .ki�1 � � � k1g/�1˛i .r/ if
r 2 Ii . We are sending each generalized path ˛ D .˛1; � � � ; ˛n; k1; � � � ; kn�1/ into the
multiple G–path � given by

�.g; r/D g�1.ki�1 � � � k1/
�1˛i .r/ if r 2 Ii :

In particular, we have that the branch �e corresponding to the interval e� I is given by
the concatenation (see also Figure 1)

�.e; r/D ˛1.r/� k1
�1˛2.r/� .k2k1/

�1˛3.r/� � � � � .kn�1 � � � k1/
�1˛n.r/:

On arrows, we send ..g1; � � � ; gn/; ˛1; � � � ; ˛n; k1; � � � ; kn�1/2 colim'�colim into
the arrow .g1; �˛/, where �˛ is defined as before.

We will show next that � is an equivariant map between translation groupoids where
the group homomorphism is given by the projection on the first coordinate.

Let ˛0 D .g1˛1; : : : ; gn˛n; g2k1g1�1; : : : ; gnkn�1gn�1�1/. We have that

�.˛0/D g1�..˛1; : : : ; ˛n; k1; � � � ; kn�1//

since

�˛0.e; r/

D g1˛1.r/�.g2k1g1
�1/�1g2˛2.r/�� � ��.gnkn�1gn�1

�1
� � �g2k1g1

�1/�1gn˛n.r/

D g1.˛1.r/�k1
�1˛2.r/�.k2k1/

�1˛3.r/�� � ��.kn�1 � � � k1/
�1˛n.r/D g1�˛.e; r/:

The functor ��1 WG ËGMap.G �I;X/! colim'Ëcolim Consider the contin-
uous functor given by ��1.�/D � je�I ıie on objects and ��1..g; �//D .g; � je�I ıie/
on arrows, where ie W I! e�I sends r 2 I to .e; r/2 e�I . Recall that by our notation
convention the right side means in both cases the class in the colimit. Note that the
generalized path � je�I ı ie corresponds to a subdivision S1 with only one subinterval;
that is, � je�I ı ie is an honest path.
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The functors � and ��1 are inverse up to natural transformation The composition
� ı��1 WG ËGMap.G � I;X/!G ËGMap.G � I;X/ is the identity map since the
generalized map ˛� associated to � has only one piece. On objects,

� ı��1.�/D �.˛� /D �˛�

such that �˛� .g; r/D g
�1�.e; r/D �.g; r/, so �˛� D � . On arrows,

� ı��1.g; �/D �.g; �˛� /D �.g; �/D .g; �/:

We will prove next that the composition in the other direction is equivalent by a natural
transformation to the identity. We have that

��1 ı� W colim' Ë colim ! colim' Ë colim 

sends each generalized path class ˛ D .˛1; : : : ; ˛n; k1; : : : ; kn�1/ to the generalized
path ˛�˛ , where

˛�˛ .r/D �˛.e; r/D ˛1.r/�k1
�1˛2.r/� .k2k1/

�1˛3.r/�� � �� .kn�1 � � � k1/
�1˛n.r/;

and each arrow ..g1; : : : ; gn/; ˛1; : : : ; ˛n; k1; : : : ; kn�1/ 2 colim' � colim to the
arrow .g1; ˛�˛ /.

There is a natural transformation T W colim ! colim' � colim given by

T .˛/D ..id; k1�1; .k2k1/�1; : : : ; .kn�1 � � � k1/�1/; .˛1; : : : ; ˛n; k1; : : : ; kn�1//

which is an arrow between ˛ and ˛�˛ since

.id; k1�1; .k2k1/�1; : : : ; .kn�1 � � � k1/�1/.˛1; : : : ; ˛n; k1; : : : ; kn�1/

D
�
.id˛1; k1�1˛2; : : : ; .kn�1 � � � k1/�1˛n/; .k1�1k1; : : : ; .kn�1 � � � k1/�1kn�1.kn�2 � � � k1//

�
�
.˛1; k1

�1˛2; : : : ; .kn�1 � � � k1/
�1˛n/; .id; : : : ; id/

�
:

This generalized path is equal to the concatenation of the n pieces

˛1.r/� k1
�1˛2.r/� .k2k1/

�1˛3.r/� � � � � .kn�1 � � � k1/
�1˛n.r/

since the connecting arrows are all identities. Moreover, T satisfies the naturality
condition and is continuous by the universal property of the colimit.

Therefore � is an equivalence of categories between the groupoid of generalized paths
and the groupoid of multiple G–paths. We will see next that the groupoid of multiple
G–paths is just the free path space XI together with G acting on it.
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4.3.2 The isomorphism of categories � W G ËGMap.G � I;X/! G ËXI To
construct this isomorphism we will use the fact that a multiple G–path � is determined
by its value at the branch �e corresponding to the interval e� I , since � is equivariant.

We define �.�/D � ie 2XI on objects and �.g; �/D .g; � ie/ on arrows. Conversely,
��1.ˇ/D �ˇ where �ˇ .g; r/D g�1ˇ.r/. The functor

� WG ËGMap.G � I;X/!G ËXI

is an isomorphism of categories since it has a strict inverse functor, � ı ��1 D idGËXI

and ��1 ı � D idGËGMap.G�I;X/, satisfying that the restriction � and the action ��1

are both continuous.

Theorem 4.8 All models for the path groupoid of G ËX are equivalent ;

P.G ËX/D colim' Ë colim �G ËGMap.G � I;X/DG ËXI :

Remark 4.9 We can also prove that any generalized map is equivalent to a strict map
in the context of translation groupoids, without using groupoids atlases. It was proven
by Pronk and Scull in [14] that any generalized map

I ı
 � I ˇ

�!G ËX

between translation groupoids is equivalent to a generalized map

I �
 �G ËY ˇ 0

�!G ËX;

where the middle groupoid is a translation groupoid. In the same paper, they proved that
any essential equivalence between translation groupoids has to be of some prescribed
form. In our case, this implies that the essential equivalence I �

 � G Ë Y satisfies
e DG=K and I D Y=K where K acts freely on Y. Hence K DG and G acts freely
on Y. Since G acts also properly on Y we have that Y DG � I . Then any generalized
map .ı; ˇ/ is equivalent to a generalized map

I  G Ë .G � I / ˇ
00

�!G ËX:

Now, applying our isomorphism � W P 0! P 00 to the right leg of the span, we obtain
˛ D �.ˇ00/ 2XI which gives the equivalent strict map I ˛

�!G ËX .

4.4 Functoriality and Morita invariance of the path groupoid

In this section we will see that the path groupoid is functorial and that the path groupoid
is well defined up to Morita equivalence.
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4.4.1 Functoriality We will show that an equivariant map between translation
groupoids induces an equivariant map between the path groupoids.

For a strict equivariant map ' Ë f W G Ë X ! H Ë Y , we have an induced map
'� Ë f� W G ËXI !H Ë Y I defined by f�.˛/ D f ı ˛ for all ˛ 2 XI and '� D '.
We construct now an equivariant map P.'Ëf / WP.GËX/!P.H ËY / between the
colimit constructions.

For every n we have induced maps

.' Ëf /� WMap.ISn ; G ËX/!Map.ISn ;H ËY /

in terms of the description Map.ISn ; G ËX/ D Gn Ë .XI /n �Xn�1 Gn�1; this map
corresponds just to 'n Ë .f n�1� �'n/. By taking the colimit we obtain an equivariant
map P.' Ëf / W P.G ËX/! P.H ËY /.

Similarly, we have an induced map

'� Ëf� WG ËGMap.G � I;X/!H ËHMap.H � I; Y /

between the multipleG–path groupoids. We consider an equivariant map .G�I / �
�!X

and define f�.�/ WH � I ! Y by f�.�/.h; r/D h�1f .�.e; r//.

In any of the three models the functoriality is easy to check and we have the following
theorem.

Theorem 4.10 The path groupoid of G ËX is functorial for equivariant maps.

Moreover, the equivalence of the three models for the path groupoid is natural.

Theorem 4.11 For a strict equivariant map ' Ë f W G ËX ! H Ë Y the following
diagram is commutative:

P.G ËX/ P.H ËY /

G ËGMap.G � I;X/ H ËHMap.H � I; Y /

G ËXI H ËY I

P.'Ëf /

� �

'�Ëf�

� �

'�Ëf�

4.4.2 Morita invariance We will start by proving that an essential equivalence
G �X !H �Y induces an essential equivalence between the path groupoids,

P.G ËX/! P.H ËY /:
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This will give that for a given Morita equivalence

G ËX �
 �G0 ËX 0 �

�!H ËY;

where � and � are essential equivalences, we have induced essential equivalences

P.G ËX/ P.�/
 �� P.G0 ËX 0/ P.�/��! P.H ËY /:

Proposition 4.12 If 'Ëf WGËX!H ËY is an essential equivalence , then P.'Ëf /
is an essential equivalence.

Proof (1) P.' Ë f / is fully faithful. We will show that P.G ËX/1 is the pullback
of topological spaces

P.G ËX/1 P.H ËY /1

P.G ËX/0 �P.G ËX/0 P.H ËY /0 �P.H ËY /0

�

.s;t/ .s;t/

���

Specifically we have to prove that the natural map � from P.GËX/1 to the fibered prod-
uct P.G ËX/0�P.G ËX/0�P.HËY /0�P.HËY /0/ P.H ËY /1 is a homeomorphism.

Let us define the inverse map ��1. For ˛; ˇ2P.GËX/0 and an element � 2P.HËY /1
with s.�/D t .�/D˛, we can assume that there is a subdivision of the interval such that ˛
and ˇ are represented both by elements of Map.ISn ; GËX/ and � by an element ofHn.
Therefore we have ˛D .˛1; : : : ; ˛n; k1; : : : ; kn�1/ and ˇD .ˇ1; : : : ; ˇn; k01; : : : ; k

0
n�1/

such that f .ˇi .r// D hif .˛i .r// for all i D 1; : : : ; n and k0i D hiC1kihi
�1 for all

i D 1; : : : ; n� 1.

But then by fixing r and using that 'Ëf is an essential equivalence, we have a fibered
product of topological spaces

.G ËX/1 .H ËY /1

.G ËX/0 � .G ËX/0 .H ËY /0 � .H ËY /0

�

.s;t/ .s;t/

���

and therefore for every r 2 Ii there is gri 2G such that �.gri /D hi . Since G is discrete
and the dependence on r is continuous, the n–tuple .gr1; : : : ; g

r
n/ actually does not

depend on r and represents an element of P.G ËX/1.
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(2) P.' Ëf / is essentially surjective. We will show that

s�1 W P.H ËY /1 �tP.HËY /0
P.G ËX/0! P.H ËY /0

is an open surjection.

For étale groupoids, the condition that the morphism

s�1 W .H ËY /1 �t.HËY /0
.G ËX/0! .H ËY /0

is an open surjection implies that it has local sections. We will use these local sections
to construct local sections of s�1 W P.H ËY /1 �tP.HËY /0

P.G ËX/0! P.H ËY /0.

Let fU˛g˛2� be a cover of Y and s˛ W U˛ ! .H Ë Y /1 �t.HËY /0
.G ËX/0 the local

sections. Take 
 2 P.H Ë Y /0 and suppose that 
 is represented by an element of
Map.ISn ;H ËY /; therefore 
 D .
1; : : : ; 
n; k1; : : : ; kn�1/ with 
i W Ii ! Y .

Given the subdivision f0D r0 � r1 � � � � � rn D 1g associated to 
 and with an open
cover of Œ0; 1� given by connected intervals fIi j 1 � i � ng, we want to construct a
refinement of the subdivision

f0D r0 � s
1
0 � � � � � s

1
m1
D r1 � � � � � ri�1 D s

i
0 � � � � � s

i
mi
D ri � � � � � rn D 1g

along with connected intervals I ij with the property that 
i .I ij / � U˛i
j

for some ˛ij .
To construct the subdivision, first for Œri�1; ri � with nonempty interior, we consider
the covering fIi \ U˛g˛2�. By compactness of the interval Œri�1; ri � we can find
a partition ri�1 D si0 < � � � < s

i
mi
D ri such that each 
i .Œsij�1; s

i
j �/ is contained in

some U˛i
j

. Let I ij be an open connected neighborhood of Œsij�1; s
i
j � small enough such

that I ij \fs
i
0; s

i
1; : : : ; s

i
mi
g D fsij�1; s

i
j g.

For the repeated elements ri�1 D ri , it is a matter of just shrinking the interval Ii to
get 
i .Ii /� U˛i for some ˛i and to obtain an object of the category of subdivisions.

With the local sections s˛i
j

we obtain maps �2s˛i
j
.
i .r// W I

i
j !X and functions

�1�1s˛i
j
.
i .r// W I

i
j ! H , since the intervals are connected and H is a discrete

group, actually these functions are constant and we have elements hij 2 H with
s�1.f .�2s˛i

j
.
i .r///; h

i
j /D 
i .r/, ie

f .�2s˛i
j
.
i .r///D h

i
j 
i .r/

for r 2 I ij .
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Note that .hij /
�1f .�2s˛i

j
.
i .s

i
j ///D .h

i
jC1/

�1f .�2s˛i
jC1

.
i .s
i
j /// (both are 
i .sij /)

and therefore

hijC1.h
i
j /
�1f .�2s˛i

j
.
i .s

i
j ///D f .�2s˛i

jC1
.
i .s

i
j ///:

Since f is full and faithful, there is a gij 2G with �.gij /D h
i
jC1.h

i
j /
�1 such that

gij�2s˛i
j
.
i .s

i
j //D �2s˛i

jC1
.
i .s

i
j //:

Similarly at the intersection points of two consecutive paths we have ki
i .r/D 
iC1.r/
for all r 2 QI ij and therefore

ki .h
i
mi
/�1f .�2s˛imi

.
i .ri //Dki
i .ri /D
iC1.ri /D .h
iC1
0 /�1f .�2s˛iC10

.
iC1.ri //:

Then
hiC10 ki .h

i
mi
/�1f .�2s˛imi

.
i .ri //D f .�2s˛iC10

.
iC1.ri //;

and since f is full and faithful, we have elements gi 2G with �.gi /D hiC10 ki .h
i
mi
/�1

such that
gi�2s˛imi

.
i .ri //D �2s˛iC10

.
iC1.ri //:

Therefore we have a generalized path�
.�2s˛i

j
.
i .r///i;j ; g

1
1; g

1
2; : : : ; g

1
m1
; g1; g21; : : : ; g

n
mn

�
and elements .h11; h

1
2; : : : ; h

1
m1�1

; : : : ; hnmn�1/ of H . By construction,

.h11; h
1
2; : : : ; h

1
m1�1

; : : : ; hnmn�1/
�
.�2s˛i

j
.
i .r///i;j ; g

1
1; g

1
2; : : : ; g

1
m1
; g1; g21; : : : ; g

n
mn

�
is

.
1jI11
; 
1jI12

: : : ; 
1jI1m1
; : : : ; 
njInmn ; id; id; : : : ; k1; id; : : : ; kn/:

In the colimit this represents the same element as .
1; : : : ; 
n; k1; : : : ; kn�1/. Therefore
we have constructed local sections on the set˚

.
1; : : : ; 
n; k1; : : : ; kn�1/ 2Map.ISn ;H ËY / j 
i .Œs
i
j�1; s

i
j �/� U˛i

j

	
;

which is an open set in the compact open topology of Map.ISn ;H ËY /.

Thus, we have proved that the path groupoid functor sends essential equivalences
to essential equivalences and therefore the path groupoid is invariant under Morita
equivalence.

Theorem 4.13 If G ËX �M H ËY , then P.G ËX/�M P.H ËY /.
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4.5 The free loop groupoid L.G ËX/

We use the model of the path groupoid P 00 DG ËXI to define the loop groupoid as
the following pullback along the diagonal:

(1)
G ËXI

� WG ËX .G �G/Ë .X �X/

ev

Definition 4.14 The free loop groupoid L.G ËX/ of a translation groupoid G ËX is

L.G ËX/D .G �G/ËL0;
where

L0 D f.ˇ; h; l/ 2X
I
�G �Gjˇ.0/D hl�1ˇ.1/g

and the group G �G acts on L0 by .a; b/.ˇ; h; l/D .aˇ; bha�1; bla�1/.

Figure 2 depicts an arrow .a; b/ 2G �G from .ˇ; h; l/ to .aˇ; bha�1; bla�1/.

We will show that this groupoid .G �G/ËL0 is Morita equivalent to the translation
groupoid G ËL where

LD f.˛; g/ 2XI �Gj˛.0/D g˛.1/g

and the action is given by .˛; g/� .k˛; kgk�1/. Figure 3 depicts an arrow .k; .˛; g//

between .˛; g/ and .k˛; kgk�1/.

Proposition 4.15 If GËX is a topological groupoid , then the loop groupoidL.GËX/
is Morita equivalent to G ËL, where L and the action are defined above.

ˇ

aˇ

aa

h
l

alb�1ahb�1

b

Figure 2
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˛

k˛

kk

g

Figure 3

Proof We define an equivariant map � Ë � W .G �G/ËL0!G ËL by �..a; b//D a
and �..ˇ; h; l//D .ˇ; l�1h/. This map is an essential equivalence since the map

s�1 WG �L0! L

given by s�1.k; .ˇ; h; l//D .k�1ˇ; k�1l�1hk/ is an open surjection and G �G �L0
is given by the pullback of the maps

G �L

L0 �L0 L�L

.s;t/

���

Remark 4.16 We can use our description for the free loop groupoid in the special case
of the point groupoid. We obtain that L.G Ë �/D .G �G/Ë .G �G/ with the action
.a; b/ � .h; l/D .bha�1; bla�1/. This groupoid is equivalent to G acting on itself by
conjugation by using the second characterization of the loop groupoid as G ËL with
LD f.ˇ; g/ 2XI �G j ˇ.0/D gˇ.1/g. In this way, we recover a result of Lupercio
and Uribe in [7]. Observe that L.G Ë �/DG ËG, whereas P.G Ë �/DG Ë �.

5 Based path and loop groupoids

Now that we have defined the free path groupoid of a translation groupoid and have
given several equivalent models, we can give an explicit characterization of the various
groupoids resulting from fixing certain points. These based groupoids of paths will be
of great significance to the groupoid Lusternik–Schnirelmann theory defined in [3] and
further studied in [2].
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5.1 The groupoid�x;y of paths from x to y

The groupoid of paths from x to y, �x;y , is defined as a pullback of the evaluation map
ev WP.GËX/! .G�G/Ë.X�X/ and the constant map x�y W1! .G�G/Ë.X�X/,
where 1 is the trivial groupoid with one object and one arrow, ie 1 D e Ë �, and
.x �y/.�/D .x; y/. That is,

�x;y P.G ËX/

1 .G �G/Ë .X �X/

ev

x�y

Note that by the definition of groupoid pullback, we have that if we take the model of
the path groupoid of generalized paths, P D colim� Ë colim , then the object space
of the pullback is

f..˛1; : : : ; ˛n; k1; : : : ; kn�1/; h; l/2 colim �.G�G/ j˛1.0/Dhx and ˛n.1/D lyg;

ie the objects of �x;y are sequences of paths and arrows .h; ˛1; k1; : : : ; kn; ˛n; l/
where s.ki /D ˛iC1.ri / for i D 1; : : : ; n�1, t .ki /D ˛i .ri / for i D 0; : : : ; n, s.h/D x
and s.l/ D y; which are precisely the Haefliger G–paths [6] when restricted to the
closed intervals in the subdivision. Note that the sequences in Haefliger paths start and
end with arrows and not with paths like our generalized paths in the free path groupoid
defined in Section 4. We recover the original sequence in the Haefliger G–paths when
we fix the endpoints x and y in our free generalized paths.

For an equivalent characterization of the groupoid of paths from x to y, we can consider
our simplest model for the path groupoid P 00 DG ËXI . In this case, we describe the
space of objects as .�x;y/0 D f.ˇ; h; l/ 2XI � .G �G/ j ˇ.0/D hx and ˇ.1/D lyg.

These are paths that start at any point in the orbit of x and end at any point in the orbit
of y. The space of arrows is the Cartesian product G � .�x;y/0 where the action is
given by g.ˇ; h; l/D .gˇ; gh; gl/; see Figure 4.

Since .ˇ; h; l/ � .gˇ; gh; gl/ for all g 2 G, we can consider g D h�1 and we have
that all classes Œ.ˇ; h; l/� have a representative of the form .˛; k/ with ˛ D h�1ˇ and
k D h�1l . Then we can consider the space of objects

Px;y D f.˛; k/ 2X
I
�G j ˛.0/D x and ˛.1/D kyg:
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ˇ

gˇ

gg

l

gl

h

gh

Figure 4

Observe that

.˛; k/� .h�1ˇ; e; h�1l/� .gh�1ˇ; ge; gh�1l/D .g˛; g; gk/� .e˛; e; k/� .˛; k/;

so the action is trivial on the space of objects Px;y .

Therefore the groupoid of paths between x and y is the translation groupoid �x;y D
G Ë .�x;y/0 which is equivalent to the topological space Px;y .

5.2 The groupoid�x of based loops

Similarly, we define the based loop groupoid as the groupoid pullback,

�x P.G ËX/

1 G �G Ë .X �X/

ev

x�x

where x � x is the constant map with .x � x/.�/D .x; x/.

That is, the based loop groupoid is the translation groupoid �x DG Ë .�x/0 where
the object space is

.�x/0 D f.ˇ; h; l/ 2X
I
� .G �G/ j ˇ.0/D hx and ˇ.1/D lxg;

ie the space of paths that begin and end at (possibly different) points in the orbit of x.
The action is given by g.ˇ; h; l/D .gˇ; gh; gl/; see Figure 5.

Again, the groupoid �x is equivalent to the topological space

Px;x D f.˛; k/ j ˛.0/D x and ˛.1/D kxg:
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ˇ

gˇ

gg

lh

x

Figure 5

Alternatively, the based loop groupoid �x can be obtained as the groupoid pullback

�x L.G ËX/

1 G ËX

ev0

x

where L.G ËX/ is the free loop groupoid.

5.3 The groupoid Px of paths from x

We define the x–based path groupoid as the groupoid pullback

Px P.G ËX/

1� .G ËX/ .G �G/Ë .X �X/

ev

.x;id/

where .x; id/ W 1� .G ËX/! .G �G/Ë .X �X/ is given by .x; id/.�; z/ D .x; z/.
Then the object space of the pullback Px is

.Px/0 D f.ˇ; .h; l/; .�; z// 2X
I
�G �G � 1�X j ˇ.0/D hx and ˇ.1/D lzg

D f.ˇ; .h; l/; z/ j ˇ.0/D hx and ˇ.1/D lzg:

The group G �G acts on .Px/0 by .g; k/.ˇ; .h; l/; z/ D .gˇ; .gh; glk�1/; kz/; see
Figure 6.

The x–based path groupoid is the translation groupoid Px D .G �G/Ë .Px/0.
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ˇ

gˇ

gg

lh

x
k

glk�1
gh

Figure 6

Observing that the equivalence class of each .ˇ; .h; l/; z/ 2 .Px/0 contains an element
of the form .˛; g;w/ 2 XI � G � X we have that the based path groupoid Px is
equivalent to GËP where P Df.˛; g;w/ j ˛.0/D x and ˛.1/D gwg and the action is
given by k.˛; g;w/D .˛; gk�1; kw/. Figure 7 depicts an arrow .k; .˛; g; w//2G�P

between .˛; g;w/ and .˛; gk�1; kw/.

The x–based path groupoid Px is not in general equivalent to a topological space.

Given points x; y 2X , our various path groupoids are related by

�x;y 1y

�x Px G ËXI G ËX

1x G ËX

ev0

ev1

where 1x D e Ë x and 1y D e Ë y and all diagrams are commutative up to a natural
transformation.

˛

kw

gk�1

w

k

g

Figure 7
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5.4 Examples

We will illustrate in this section the concepts described in the previous sections by
calculating various path groupoids in some particular cases.

5.4.1 Topological spaces The free path groupoid of the topological space X is
P.e ËX/ D e ËXI D XI and the free loop groupoid is L.e ËX/ D e ËL where
L D f˛ 2 XI j ˛.0/ D ˛.1/g. In this way we recover the classical free path and
loop spaces of a topological space. Likewise, the based path and loop groupoids also
coincide with the classical ones for topological spaces.

5.4.2 Groups For a point groupoidGË�we have shown before that the path groupoid
is itself and the loop groupoid is .G �G/Ë .G �G/ with the action .a; b/ � .h; l/D
.bha�1; bla�1/, which is equivalent to G acting on itself by conjugation; that is,
L.G Ë �/ D G Ë G and P.G Ë �/ D G Ë �. The based loop groupoid is the unit
groupoidG, as a discrete topological space. The based path groupoid of paths emanating
from � is G ËG.

5.4.3 Free actions If G acts freely on a topological space X , we observe that the
groupoid G ËX and the topological space X=G are Morita equivalent. Then, we have
that P.GËX/DP.eËX=G/D eË.X=G/I D .X=G/I and the free loop groupoid is
L.G ËX/D L.X=G/ where L.X=G/ is the free loop space of the topological space
X=G. In the same way, we have that the based groupoids coincide with the ones of the
topological space X=G.

5.4.4 Orbifolds We proved that for developable orbifolds G Ë X , the free path
groupoid is P.GËX/DGËXI and the free loop groupoid isL.GËX/DGËL where
LDf.˛; g/2XI �G j ˛.0/D g˛.1/g. Also, the groupoid of paths between x and y is
the topological space Px;yDf.˛; k/2XI�G j˛.0/Dx and ˛.1/Dkyg, the groupoid
of based loops is the topological space Px;x D f.˛; k/ j ˛.0/D x and ˛.1/D kxg and
the groupoid of based paths from x is the translation groupoid Px D .G �G/Ë .Px/0.

6 Homotopy

We will define in this section a notion of homotopy based on the explicit description of
the path groupoid P.GËX/ given in the previous section. This will provide a concrete
alternative to the more abstract presentation given by Noohi in [10; 11] for stacks.
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6.1 Natural transformations for translation groupoids

The equivariant maps ' Ë f W K Ë Z ! G Ë X and  Ë g W K Ë Z ! G Ë X are
equivalent by a natural transformation if there exists a K–map 
 W Z! G such that

.z/f .z/ D g.z/ for all z 2 Z where both Z and G are K–spaces considering the
action of K on G,

K �G!G; .k; g/ 7!  .k/g'.k/�1:

Therefore ' Ëf �  Ëg if there exists 
 WZ!G such that

(1) 
.z/f .z/D g.z/ for all z 2Z, and

(2) 
.kz/D  .k/
.z/'.k/�1 for all k 2K.

If Z is connected, then 
 is a constant map since G is discrete. Then ' Ëf � Ëg if
there exists h 2G such that hf .z/D g.z/ for all z 2Z and hD  .k/h'.k/�1 for all
k 2K. Then gD hf and  D h'h�1. In other words,  .k/ is conjugated to '.k/ for
all k 2K.

In addition, if G is abelian, then ' Ëf �  Ëg if gD hf for some h 2G and ' D  .

If X DZ D �, then ' Ë � �  Ë � if and only if ' and  are conjugate, ' D h�1 h.
In particular, when the group acting is abelian we have that two maps between point
groupoids are equivalent by a natural transformation only if they are equal.

We give now a characterization of 2–isomorphism for strict maps. Namely, if two strict
maps are 2–isomorphic then when composed with an essential equivalence they are
equivalent by a natural transformation, and if two strict maps are equivalent by a natural
transformation then they are 2–isomorphic as generalized maps.

Proposition 6.1 If f and g are equivalent by a natural transformation , then f ) g as
generalized equivariant maps.

Proof Just consider the essential equivalences � and � as identity maps and the
following diagram is commutative up to natural transformations since f � g:

G ËX

G ËX G ËX H ËY

G ËX

fid

�

id

id

�

id g
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Proposition 6.2 If two strict maps f W G ËX ! H Ë Y and g W G ËX ! H Ë Y
are 2–isomorphic , then there exists an essential equivalence � W L!G ËX such that
f �� g�.

Proof We have that there exist essential equivalences �; � such that the diagram

G ËX
f

%%

id

yy

G ËX L

�

OO

�
��

H ËY

G ËX
id

ee

g

99
��

commutes up to natural transformation. That is, � � � and f � � g�. Therefore,
f �� g�.

Proposition 6.3 If .�; f /) .�; g/, then there exist essential equivalences � and �
such that f �) g�.

Proof By definition of 2–isomorphism, there are essential equivalences � and � such
that f � � g�. The result follows from Proposition 6.1.

Proposition 6.4 If f ) g, then .�; f /) .�; g/ for all essential equivalences � and �
with � � � .

6.2 Diagonal map

We will consider the pullback of the unique morphism G ËX c
�! 1 with itself, where

1 is the terminal object in MTopG. This pullback defines the product and then by
the universal property we obtain the definition of the diagonal map. Then, the path
groupoid will be a factorization of that diagonal.

Definition 6.5 [5] An object T in a bicategory B is terminal if the category BŒC; T �
is equivalent to the terminal category for every object C in B. A terminal object is
unique up to equivalence when it exists.

The trivial groupoid 1D e Ë � is the terminal object in the bicategory of translation
groupoids MTrG since the category MTrGŒG ËX; 1� is equivalent to the category 1.
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Indeed, the objects in the category MTrGŒG Ë X; 1� are generalized maps and the
arrows are classes of diagrams. We can see that all objects are related by an arrow, ie
MTrGŒG ËX; 1� is the pair groupoid. Given two generalized maps,

G ËX �0
 �G0 ËX 0 c

0

�! 1 and G ËX �00
 �G00 ËX 00 c

00

�! 1;

we can see that they are equivalent, ie

G0 ËX 0

##

�0

yy

G ËX P

OO

��

1

G00 ËX 00
�00

ff ;;
��

by considering P as the pullback of �0 and �00. In particular, the strict constant map
G ËX c

�! 1 is the (unique up to 2–isomorphism) map to the terminal object.

Let us now consider the pullback of this constant map with itself which defines the
product

G �G Ë .X �X/

��

// G ËX

c

��

G ËX
c

// 1

The product .G � G/ Ë .X � X/ of the object G Ë X with itself is unique up to
equivalence.

By the universal property of the pullback, there exists a map � that makes the two
triangles commutative up to natural transformation

G ËX

.G �G/Ë .X �X/ G ËX

G ËX 1

id

id

�

p1

p2 c

c

The map � WG ËX ! .G �G/Ë .X �X/ is the diagonal map. Its explicit definition
on objects is �.x/D .x; x/ and on arrows, �.g; x/D .g; g; x; x/. The diagonal map
is defined up to 2–isomorphism.
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Remark 6.6 The diagonal defined in [1] is 2–isomorphic to this one.

Definition 6.7 The evaluation map ev W G ËXI ! .G �G/Ë .X �X/ is given by
ev.g; ˛/D .g; g; ˛.0/; ˛.1//.

We have that the diagonal map factors through the path groupoid as expected.

Proposition 6.8 There is a factorization of the diagonal map �

G ËX .G �G/Ë .X �X/

G ËXI
k

�

e

where k and e are generalized maps.

Proof Let k be the functor G Ë X ! G Ë XI given by x  ˛x on objects, and
.g; x/ .g; ˛x/, where ˛x W I ! X is a constant path at x 2 X , and let e be the
evaluation map, e D ev. Then, we have that the composition e ı c is equivalent by a
natural transformation to the diagonal �.

6.3 Homotopic maps

We will now give an explicit characterization of the homotopy between generalized
maps.

Definition 6.9 Two generalized maps,

K ËY �
 �K 0 ËY 0 f�!G ËX and K ËY �

 �K 00 ËY 00 g�!G ËX;

are homotopic if there is a generalized map K ËY �
 � zK Ë zY H

�!GËX such that the
following diagram commutes up to 2–isomorphism:

G ËX G ËXI
ev1

//
ev0

oo G ËX

K 0 ËY 0
f

ee

�
%%

zK Ë zY

H

OO

�

��

K 00 ËY 00
g

99

�
xx

K ËY

This means that the generalized map .�; f / is isomorphic to the generalized map
.�; ev0 ıH/ and .�; g/ is isomorphic to .�; ev1 ıH/.
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That is, .�; f / is homotopic to .�; g/ if there exists .�;H/ and two commutative
diagrams up to natural transformations,

zK Ë zY
ev0H

%%

�

yy

KËY L0

u0

OO

v0
��

G ËX

K 0 ËY 0
�

ee

f

99
��

zK Ë zY
ev1H

%%

�

yy

KËY L1

u1

OO

v1
��

G ËX

K 00 ËY 00
�

ee

g

99
��

where Li is a translation groupoid, and ui and vi are equivariant essential equivalences
for i D 0; 1. We will denote this homotopy between equivariant generalized maps by'.

Remark 6.10 .�; f /' .�; g/ if there exists .�;H/ and essential equivalences u0, u1,
v0 and v1 such that

f v0 � ev0Hu0 and gv1 � ev1Hu1

with �u0 � �v0 and �u1 � �v1.

Proposition 6.11 If .�; f /) .�; g/, then .�; f /' .�; g/.

Proof ConsiderH D iX ıf where iX is the inclusion ofX inXI given by iX .x/D˛x
with ˛x being the constant map ˛x.t/D x for all t 2 I . Then the following diagram is
commutative up to 2–isomorphism:

G ËX G ËXI
ev1

//
ev0

oo G ËX

K 0 ËY 0
f

ee

�
&&

K 0 ËY 0
H

OO

�
��

K 00 ËY 00
g

99

�
xx

K ËY

The first triangle is an equality and the second is commutative since .�; f /) .�; g/.

Remark 6.12 Let f and g be strict maps. Following the characterization for isomor-
phism of strict maps given in Proposition 6.2 and the definition of groupoid homotopy,
we have that f ' g if there exists a generalized map .�;H/ and essential equivalences
� and � such that f��� ev0H� and g�� � ev1H�.
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Proposition 6.13 Let f and g be strict maps.

(1) If f and g are  –equivariantly homotopic maps , then f ' g as generalized
equivariant maps.

(2) If f and g are equivalent by a natural transformation , then f ' g as generalized
equivariant maps.

Proof (1) LetH WY !XI be the –equivariant homotopy, ieHt .ky/D .k/Ht .y/.
Then the following diagram is commutative:

G ËX G ËXI
ev1
//

ev0
oo G ËX

K ËY
f

ee

H

OO

g

99

(2) This follows from Propositions 6.1 and 6.11.

Therefore our definition of homotopy generalizes both the notion of natural transforma-
tion and the notion of equivariant homotopy.

Proposition 6.14 If .�; f / ' .�; g/ then there exist essential equivalences a and b
such that fa' gb as strict maps.

Proof Since we have a homotopy between generalized maps, we know that there
exists .ı;H/ and essential equivalences u0, v0, u1 and v1 such that

f v0 � ev0Hu0; gv1 � ev1Hu1; ıu0 � �v0; ıu1 � �v1:

Take aD v0.u0/�1ı�1 and b D v1.u1/�1ı�1. Then fa and gb are homotopic.

Proposition 6.15 The path groupoid G ËXI is homotopy equivalent to the groupoid
G ËX . The evaluation e1 WG ËXI !G ËX is a homotopy equivalence.

Proof Consider the map H WG ËXI !G Ë .XI /I such that H.˛/D � with

� W I !XI ; �.t/D ˛.r C t � rt/:

We have the commutative diagram

G ËXI G Ë .XI /I
ev1

//
ev0
oo G ËXI

G ËXI
id

ff

H

OO

iıe1

88

showing that i ı e1 is homotopic to the identity map.
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7 Fibrations

We recall the definition of fibration for topological spaces given as a dualization of the
notion of cofibration.

Definition 7.1 [8; 18] A map p W E ! B is a fibration if for all spaces U with
ev0 ıK D p ı k in the diagram

U

EI BI

E B

K

k

zK

p�

ev0 ev0
p

there exists zK that makes the diagram commute.

We want to introduce a notion of fibration for generalized maps. First, let us note that a
strict equivariant map 'Ëf WGËX!HËY induces a map '�Ëf� WGËXI!HËY I

by f�.˛/D f ı ˛ for all ˛ 2 XI and '� D '. We proved in Proposition 4.12 that if
� W G ËX ! H Ë Y is an essential equivalence, then �� W G ËXI ! H Ë Y I is an
essential equivalence as well.

Then every generalized map GËX �
 �G0ËX 0 f�!H ËY induces a generalized map

G ËXI ��
 �G0 ËX 0I f�

�!H ËY I between the path groupoids.

Definition 7.2 A generalized map G Ë X �
 � G0 Ë X 0 f�! H Ë Y is a groupoid

fibration if for all translation groupoids LËU with ev0 ı .�;K/) .!; k/ ı .�; f / in
the diagram

LËU

zL L

` G ËXI G0 ËX 0I H ËY I

G ËX G0 ËX 0 H ËY

zK

z�
K

�

k

!

ev0

f�

ev0

��

ev0

�

f

there exists . z�; zK/ that makes the diagram commute up to 2–isomorphism.
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Since a 2–isomorphism between strict maps induces a 2–isomorphism between the
induced maps between their path groupoids, being a fibration is a property invariant
under 2–isomorphism.

Proposition 7.3 Consider 2–isomorphic maps

f WG ËX !H ËY and g WG ËX !H ËY;

f ) g. Then f is a fibration if and only if g is a fibration.

We will see that for .�; f / to be a groupoid fibration it is necessary and sufficient that
the right leg of the span is a groupoid fibration (considered as a generalized map with
identity as a left leg).

Proposition 7.4 A generalized map G ËX �
 � G0 ËX 0 f�! H Ë Y is a groupoid

fibration if and only if f WG0 ËX 0!H ËY is a groupoid fibration.

Proof If the generalized map .�; f / is a groupoid fibration, then there exists .� 0; zH 0/
that makes the diagram

LËU L

zL P

G ËXI G0 ËX 0I H ËY I

` G ËX G0 ËX 0 H ËY

H

�

zH 0

� 0

zH

�

ev0

f�

��

ev0 ev0

�H0

H0

�0

�

f

commute up to 2–isomorphism.

Let P be the pullback

P G0 ËX 0I

zL G ËXI

zH 00

�0� ��

zH 0

Take � D � 0�0� and zH D zH 00. Then f WG0 ËX 0!H ËY is a groupoid fibration.
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Conversely, if f is a groupoid fibration then we have this commutative diagram

LËU L

P

` G ËXI G0 ËX 0I H ËY I

`0 G ËX G0 ËX 0 H ËY

H

�

zH

zH 0

�

H0

�0

ev0

f�

��

ev0 ev0

H 00

� 00

�

f

where .� 00;H
0
0/D � ı .�0;H0/. Now take zH D �� zH 0 and � D � 0. Therefore, .�; f / is

a fibration.

Then, the test to decide if a generalized map is a groupoid fibration amounts to check
the definition of groupoid fibration with a strict map. Moreover, we know that any
generalized map L Ë U  ` ! G Ë X is equivalent to a generalized map of the
form LËU  L0 ËU 0! G ËX , where L0 may be chosen as L�G and the group
homomorphisms are the appropriate projections onto L and G [14].

The groupoid fibration definition specializes to the following:

Definition 7.5 A strict map f W G ËX ! H Ë Y is a groupoid fibration if for all
translation groupoids LËU with ev0 ı .�;K/) f ı .!; k/ in the diagram

LËU

zL L00 ËU 00

L0 ËU 0 G ËXI H ËY I

G ËX H ËY

zK

z�

K

�

k

!

ev0

f�

ev0
f

there exists . z�; zK/ that makes the diagram commute up to 2–isomorphism.
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In other words, f is a groupoid fibration if for all commutative diagrams

.L00/ËU 00

LËU H ËY

.L�G/ËU 0

ev0ıK�

�

�

�

�

! f ık

there exists . z�; zK/ such that the following diagrams commute:

zL

L00 G ËX

.L�G/ËU 0

ev0ı zKz�

�

�0

�0

�

! k

zL

LËU H ËY I

.L�H/ËU 00

f�ı zKz�

�

�00

�00

�

� K

Proposition 7.6 The evaluation map ev0 WG ËXI !G ËX is a groupoid fibration.

Proof For all translation groupoids LËU making the following diagram commutative
up to 2–isomorphism, we will construct the required generalized map . z�; zK/:

LËU

zL L00 ËU 00

L0 ËU 0 G Ë .XI /I G ËXI

G ËXI G ËX

zK

z� K

�

k

!

ev0
ev0

Since there is a 2–isomorphism between the generalized maps .�; ev0K/ and .!; ev0k/,
we know that there exists a groupoid zL and essential equivalences � and � such that
the following diagram commutes up to natural transformations:

L00 ËU 00

LËU zL G ËX

L0 ËU 0

ev0ıK�

�

�

�

�

! ev0ık
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We take z�D�� and will construct a map zK W zL!G Ë .XI /I such that the following
diagram commutes up to natural transformations:

LËU

zL L00 ËU 00

L0 ËU 0 G Ë .XI /I G ËXI

G ËXI G ËX

z� �

�

zK
K

�

k

!

ev0

ev0

Consider the groupoid pullback

P G ËXI

G ËXI G ËX

�1

�2 ev0

ev0

where P is the translation groupoid

P D .G �G/Ë .XI �X XI �X G/

with XI �X XI �X G D f.˛1; ˛2; k/ j k˛1.0/D ˛2.0/g. We observe that in fact P is
equivalent to Map.IS2 ; G ËX/. To show this equivalence, we construct first a functor
K W P !G Ë .XI �X XI /, where XI �X XI DXI_I is the pullback of the diagram

XI

XI X

ev0

ev0

given by K.˛1; ˛2; k//D .k˛1; ˛2/ on objects and K.g1; g2/D g2 on morphisms.

Since .g1; g2/ � .˛1; ˛2; k/D .g1˛1; g2˛2; g2kg�11 / and

K.g1˛1; g2˛2; g2kg
�1
1 /D .g2kg

�1
1 g1˛1; g2˛2/D .g2k˛1; g2˛2/D g2.k˛1; ˛2/;

we can see that this is just a special case of the equivalences of the path groupoid
models from Section 4,

Map.IS2 ; G ËX/Š P �G ËX
I_I
ŠG ËXI :
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We observe that the diagram of functors

G ËXI G ËXI_I
j�2
//

j�1
oo G ËXI

P

�1

ff

K

OO

�2

88

commutes up to natural transformations since the right-hand side commutes on the nose
and the left-hand side commutes up to a natural transformation. Here j1 W I ! I _ I

and j2 W I ! I _ I are the natural maps for the coproduct of pointed spaces

I

j1 ""

i1
// I � I

�
��

I

j2||

i2
oo

I _ I

where i1.t/ D .t; 0/, i2.s/ D .0; s/ and � W I � I ! I _ I is a deformation retract.
Therefore, we have the commutative diagram

(2)

P

G ËXI_I

G ËXI�I G ËXI

G ËXI G ËX

K

�1

�2

j�1

j�2

��

i�2

i�1

ev0

ev0

Now, by the universal property of the groupoid pullback, there exists a functor � WL!P

such that the diagram

(3)

L

P G ËXI

G ËXI X

K�

k�

�

ev0

ev0

commutes up to natural transformation.
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Now, we put together diagrams (2) and (3) to obtain

zL L00 ËU 00

L0 ËU 0 P

G ËXI_I

G ËXI�I G ËXI

G ËXI G ËX

�

�
� K

k

K

�1

�2

j�1

j�2

��

i�2

i�1

ev0

ev0

and define zK D �� ıK ı �.
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Discrete real specializations of sesquilinear representations
of the braid groups

NANCY SCHERICH

Using Salem numbers, this paper gives real specializations of sesquilinear representa-
tions of the braid groups that make the images discrete groups. This method is applied
to the Burau, Jones and Lawrence–Krammer representations, and some details on the
commensurability of the target groups are given.

20C08, 57M99

1 Introduction

Representations of the braid groups have attracted attention because of their wide variety
of applications from discrete geometry to quantum computing. This paper takes the
point of view that one should ask structural questions about the image of a braid group
representation, in particular whether the image is discrete for specializations of the
parameter. Venkataramana in [15] also followed this pursuit for discrete specializations
of the Burau representation but with a different approach toward arithmeticity.

Since the Jones representations are used in modeling quantum computations, much
work has been done to understand specializations at roots of unity, as explored by Funar
and Kohno in [7], Freedman, Larsen and Wang in [6], and many others. However, there
seems to be a lack of exploration of the real specializations of these representations.
This paper takes a more general approach to find discrete real specializations of any
sesquilinear group representation, and show how this can be applied to representations
of the braid groups. The main theorem follows.

Theorem 1.1 Let �t WG!GLm.ZŒt; t�1�/ be a group representation with parameter t .
Suppose there exists a matrix Jt such that :

(1) For all M in the image of �t , M �JtM D Jt , where M �.t/DM |.1=t/.

© 2023 MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution
License 4.0 (CC BY). Open Access made possible by subscribing institutions via Subscribe to Open.

http://msp.org
http://dx.doi.org/10.2140/agt.2023.23.2009
http://www.ams.org/mathscinet/search/mscdoc.html?code=20C08, 57M99
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://msp.org/s2o/


2010 Nancy Scherich

(2) Jt D .J1=t /
|.

(3) Jt 2 GLm.Q.t//, where no entry of Jt has denominator with 1 as a root.

(4) Jt is positive definite for t in a neighborhood � of 1 in C.

Then there exist infinitely many Salem numbers s such that the specialization represen-
tation �s at t D s is discrete.

Further applying a classification theorem of hermitian forms from Scharlau [13] proves
the following commensurability result of the target groups.

Corollary 1.2 For �t WG!SL2mC1.ZŒt; t
�t �/ as in Theorem 1.1, there exist infinitely

many Salem numbers s such that for infinitely many integers n and k the specializations
�sk at t D sk and �sn at t D sn map into commensurable lattices.

Squier showed in [14] that the reduced Burau representation is sesquilinear and satisfies
the criteria for Theorem 1.1. Example 3.2 gives explicit Salem numbers such that
specializing the reduced Burau representation to these numbers is discrete. Using the
Burau representation as motivation, Section 2 introduces the main tools of discrete
generalized unitary groups and Salem numbers. In Section 3 we apply Theorem 1.1 to
the Jones and Lawrence–Krammer representations of the braid group, and we suspect
it also applies to all of the BMW representations. Lastly, Section 4 discusses the
lattice structure and commensurability of the target groups for the Salem number
specializations.
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2 Discrete representations using Salem numbers

2.1 Motivation from Squier and the Burau representation

The (reduced) Burau representation �n;t W BnC1 ! GLn.ZŒt; t�1�/ is an irreducible
representation of the braid group. These representations depend on n, where nC 1
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is the number of braid strands, and are parametrized by a variable t . Squier showed
in [14] that there is a nondegenerate n–dimensional matrix Jn;t satisfying the equation

(2-1) M �Jn;tM D Jn;t ;

for all M in the image of �n;t . Here M � is the transpose of M after replacing t with
1=t in the entries of M , M �.t/ WDM.1=t/|. Jn;t is sesquilinear with respect to �,
J�n;t D Jn;t , and letting t D x2, Jn;t is given by the tridiagonal matrix

Jn;t D

26664
xCx�1 �1

�1
: : :

: : :
: : : �1

�1 xCx�1

37775 :
If t is a unit complex number, (2-1) agrees with the usual unitary relation .M /|M D Id.
Representations that satisfy (2-1) are called sesquilinear, and are said to map into a
generalized unitary group. This terminology will be made precise in the next section.

These generalized unitary groups are the key to finding discrete specializations. The
method described here is to show that carefully chosen specializations of the parameter
t make the entire generalized unitary group discrete, thus making the image of the
representation discrete.

2.2 Unitary groups

In general, unitary groups are matrix groups which respect a form, or inner product.
These notions heavily rely on the ring of coefficients and an involution of that ring.
Let R be a ring and � an order 2 automorphism of R. For a matrix M defined over R,
let M � D .M �/|, where M � is the matrix obtained by applying � to the entries
of M . For the Burau representation in Section 2.1, � is the map given by t 7! 1=t , and
RD ZŒt; t�1�.

Definition 2.1 For a matrix J such that J� D J , the generalized unitary group is

Um.J; �;R/ WD fM 2 GLm.R/ jM
�JM D J g:

Here, J is called a sesquilinear form with respect to �. For example, in this notation
the familiar unitary group Um can be written as Um.Id;� ;C/, where “�” is complex
conjugation. A representation is called sesquilinear if its image is contained in a
generalized unitary group.

Algebraic & Geometric Topology, Volume 23 (2023)
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2.2.1 Creating discrete unitary groups The Burau representation can be written
as �n;t W BnC1! Un.Jn;t ; �;ZŒt; t�1�/. With the goal of parameter specialization in
mind, the relevant choice for the coefficient ring is a number ring. Discreteness of the
unitary group is a delicate relationship between the form J and the algebraic structure
of the number ring. More precisely, let L be a totally real algebraic field extension
of Q and let K be a degree 2 field extension of L, with L;K�C. Let � be the order 2

generator of Gal.K=L/, and let OK and OL denote the rings of integers of K and L,
respectively:

K

L

2

�

OK

OL

�

K� �C

L� �R

��

Let � be a complex place of K, which in this setting is a field homomorphism � WK!C

different from � and the identity map. We write X � D �.X / for any X in K. The
algebraic structure is passed along by � , meaning OK� D .OK /

� is the ring of integers
for K� and �� D ����1 is an involution on K� .

Let J be a matrix over OK that is sesquilinear with respect to �. Then J� is sesquilinear
with respect to �� . So, in particular,

Um.J
� ; �� ;OK� /D fM 2 GLm.OK� / j .M �� /|J�M D J�g:

Since � is a homomorphism, we can see that .Um.J; �;OK //
� D Um.J

� ; �� ;OK� /

by applying � to the equation J DM �JM .

The following results outline compatibility requirements between J and OK , which
show that Um.J; �;OK / is a discrete subgroup of GLm.R/ under the standard euclidean
topology.

Proposition 2.2 Um.J
� ; �� ;OK� / is a bounded group when J� is positive definite

and �� is complex conjugation.

Proof Because J� is positive definite, by Sylvester’s law of inertia and the Gram–
Schmidt process, there exists a matrix Q 2 GLm.C/ such that J� DQ� Id Q. This
implies that QUm.J

� ; �� ;OK� /Q�1 � Um.Id; �� ;C/, which is a subgroup of the
compact group Um.

Algebraic & Geometric Topology, Volume 23 (2023)
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Theorem 2.3 Um.J; �;OK / is discrete if , for every complex place � of K, J� is
positive definite and �� is complex conjugacy.

Proof Assume that fMng converges to the identity in Um.J; �;OK /. To show fMng

is eventually constant, we will show that for n large there are only finitely many
possibilities for the entries .Mn/ij .

By assumption, for each � the group Um.J
� ; �� ;OK� / is bounded by Proposition 2.2.

Also, for every Mn, M �
n 2 Um.J

� ; �� ;OK� /. Thus, there exists a B such that for
large n, for all i; j , and for all � , we have that j.M �

n /ij j< B.

For every M 2 Um.J; �;OK /, the equation M �JM D J can be rearranged to
JMJ�1D ..M �/|/�1, showing that M and ..M �/|/�1 are simultaneously conjugate.
Thus fM �

n g also converges to the identity. Convergent sequences are bounded, so for
large enough n, j.Mn/ij j< B and j.Mn/

�
ij j< B for every ij –entry.

L is a totally real degree 2 subfield of K, and � generates Gal.K=L/. So K has one
nonidentity real embedding �, and all other embeddings are complex. Thus we have
shown above that for large n there is a uniform bound B for each entry .Mn/ij and each
Galois conjugate of .Mn/ij . There are only finitely many algebraic integers ˛ such that
deg.˛/� deg.K=Q/, and with the property that ˛ and all of the Galois conjugates of ˛
have absolute values bounded above by B. So there are only finitely many possible
entries for .Mn/ij , which implies the sequence fMng is eventually constant.

Corollary 2.4 If � WG!Um.J; �;OK / is a representation of a group G such that for
every nonidentity place � of K, J� is positive definite and �� is complex conjugacy,
then � is a discrete representation.

At first glance, the requirements for Corollary 2.4 seem very specific and perhaps
it is doubtful that any such a representation could exist. However, as described in
Section 2.1, Squier showed that the Burau representation maps into a generalized
unitary group over ZŒt; t�1�, so the next task is to find values of t such that the form
and coefficient ring satisfy the specific hypothesis of Corollary 2.4.

2.3 Salem numbers

Salem numbers are the key ingredient to the application of Corollary 2.4, which requires
a real algebraic number field with tight control and understanding of each of its complex
embeddings.
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s

Figure 1: A schematic picture of an order 6 Salem number.

Definition 2.5 A Salem number s is a real algebraic unit greater than 1, with one
real Galois conjugate 1=s, and all of the complex Galois conjugates of s have absolute
value equal to 1.

For example, the largest real root of Lehmer’s polynomial, called Lehmer’s number,

x10
Cx9

�x7
�x6

�x5
�x4

�x3
CxC 1;

is a Salem number. Trivial Salem numbers of degree 2 are solutions to s2� nsC 1 for
n 2 N and n > 2. It is well known that there are infinitely many Salem numbers of
arbitrarily large absolute value and degree. In particular, if s is a Salem number, then
sm is also a Salem number for every positive integer m. One geometric consequence
of the property that powers of Salem numbers are Salem numbers is that by taking
powers, one can control the spatial configuration of the complex Galois conjugates of a
Salem number, as described in Lemma 2.6.

Lemma 2.6 For any Salem number s, and for any interval containing 1 on the complex
unit circle , there exist infinitely many integers m such that every complex Galois
conjugate of sm lies in the interval.

Proof Let ei�1 ; : : : ; ei�k be all the Galois conjugates of the Salem number s with
positive imaginary part. Suppose that

Qk
jD1.e

i�j /mj D 1. Let � be the automorphism
of the Galois closure of s with the property that �.ei�1/D s. Since � must permute the

s  
sm

Figure 2: A schematic picture of Lemma 2.6.
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Galois conjugates of s, for j ¤ 1, �.ei�j / is again on the complex unit circle. Thus,

1D�

� kY
jD1

.ei�j /mj
�
Dsm1

kY
jD2

�.ei�j /mj ; which implies
kY

jD2

�.ei�j /mj D1=sm1 :

Since each �.ei�j / is a unit complex number, it must be the case that each mj D 0.
This shows that the point p D .ei�1 ; : : : ; ei�k / satisfies the criteria for Kronecker’s
theorem. In particular, the set fpm j2 Zg is dense in the torus T k .

Fixing an arbitrary Salem number s, let K DQ.s/, LDQ.sC 1=s/ and OK be the
ring of integers of K:

Q.s/DK

Q.sC 1=s/DL

Q

2

Since s and 1=s are real and all other Galois conjugates of s are complex, K has exactly
two real embeddings. For a complex embedding � of K, .sC1=s/� D 2 Re.s� /, which
is real. This shows that all embeddings of L are real, and that L is a totally real subfield
of K. Since s is a root of X 2� .sC 1=s/X C 1, K is degree 2 over L.

The Galois group of K=L is generated by �, which maps s to 1=s. (This exactly matches
the involution t 7!1=t needed in the sesquilinear condition for the Burau representation.)
On the complex unit circle, inversion is the same as complex conjugation. So for the
complex embeddings � of K, �� is complex conjugacy. Notice for a sesquilinear
matrix Jt over OK with a parameter t , specializing t D s leaves J�s hermitian.

Theorem 1.1 Let �t WG!GLm.ZŒt; t�1�/ be a representation of a group G. Suppose
there exists a matrix Jt such that :

(1) M �JtM D Jt for all M in the image of �t .

(2) Jt D .J1=t /
|.

(3) Jt 2 GLm.Q.t//, where no entry of Jt has denominator with 1 as a root.

(4) Jt is positive definite for t in a neighborhood � of 1 in C.

Then there exist infinitely many Salem numbers s such that the specialization �s at
t D s is discrete.
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Proof The neighborhood � can be chosen so that no entry of Jt has a denominator
with a root in �. By Lemma 2.6, there are infinitely many Salem numbers with the
property that all the complex Galois conjugates lie in �. Let s be one such Salem
number. Specializing t to s gives �s W G ! Um.Js; �;OQ.s//, where � is the usual
map given by s 7! 1=s.

Let � be a complex place of Q.s/ which is given by s 7! z for z a complex Galois
conjugate of s. Then J�s DJz , and since z 2 �, Jz is positive definite. By Corollary 2.4,
the specialization �s at t D s is discrete.

Remark 2.7 If the representations in Theorem 1.1 all have determinant 1, then the
image is more than just discrete, and in fact is a subgroup of a lattice. See Section 4
for more details.

3 Applications to braid group representations

3.1 The Burau representation

Proposition 3.1 There are infinitely many Salem numbers s such that the Burau
representation specialized to t D s is discrete.

Proof The specialization of �n;1 at t D 1 collapses to an irreducible representation
of the symmetric group. As a representation of a finite group, �n;1 fixes a positive
definite form which is unique up to scaling, by Lemma 3.7, which is proved later. At
t D 1, Jn;1 is positive definite, and the signature of Jn;t can only change at zeroes of
its determinant.

An inductive computation shows that det.Jn;t /D .t
2nC2� 1/=.tn.t2� 1// for t ¤ 1,

and the zeroes of det.Jn;t / occur at .nC1/th roots of unity. Thus, Jn;t remains positive
definite for unit complex values of t with argument less than 2�=.nC 1/. This shows
the Burau representation satisfies the criteria of Theorem 1.1.

Example 3.2 The Burau representation �4;t of B4 is discrete when specializing t to
the following Salem numbers:

� Lehmer’s number raised to the powers 16, 32 and 47,

� the largest real root of 1�x4�x5�x6Cx10 raised to the powers 17, 23, and 43.
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3.2 The Jones representations

The Hecke algebra (of type An), denoted by Hn.q/, is the complex algebra generated
by invertible elements g1; : : : ;gn�1 with relations

gigiC1gi D giC1gigiC1 for all i < n;

gigj D gj gi for ji � j j> 1;

g2
i D .1� q/gi C q for all i < n:(3-1)

Here, q is viewed as a complex parameter. Hn.q/ is a quotient of CŒBn� by the
relation (3-1). The Jones representations of Bn are defined by precomposing a repre-
sentation of Hn.q/ by the quotient map from CŒBn�. The Jones representations have
matrix entries in ZŒt; t�1�.

3.2.1 The Jones representations are sesquilinear The Hecke algebras have a natural
automorphism, denoted here by �, which sends q to 1=q. Taking q to be a unit complex
number, this automorphism becomes complex conjugacy. The Jones representations
are known to be sesquilinear with respect to � for various complex specializations of q

and with many different types of proofs, as in [2; 3; 9; 17]. To be overtly clear that all
of the criteria of Theorem 1.1 are satisfied by the Jones representations, we provide
a simple proof of sesquilinearity here that is very similar to [3, Proposition 3.7] by
Brunat and Marin.

The irreducible representations of Hn.q/ are parametrized by the Young diagrams.
(For a more detailed discussion of Young diagrams see [18], and for a construction
of the Jones representations see [16].) Every Young diagram contains sub-Young
diagrams, obtained by removing boxes in a way that retains the weakly decreasing
row length condition. If � is a Young diagram with n boxes, then we will call the
sub-Young diagrams found by removing one box from � the .n�1/–subdiagrams of �.
A Young diagram is completely determined by any two of its .n�1/–subdiagrams.
These .n�1/–subdiagrams also determine representations of the Hecke algebras in a
powerful way. The following theorem, originally due to Curtis, Iwahori and Kilmoyer
in [5] and popularized by Jones in [8], states concretely the relationship between Young
diagrams and the representations of the Hecke algebras.

Theorem 3.3 Up to equivalence , the finite-dimensional irreducible representations of
Hn.q/, for generic q, are in one to one correspondence with the Young diagrams of n

boxes. Moreover , if � is a representation corresponding to Young diagram �, then �
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restricted to Hn�1.q/ is equivalent to the representation
Lk

iD1 ��i
, where �1; : : : ; �k

are all of the .n�1/–subdiagrams of � and each ��i
is an irreducible representation of

Hn�1.q/ corresponding to �i .

Here equivalence means the existence of an intertwining isomorphism, made precise
by the following definition.

Definition 3.4 The representations ' WG!GL.V / and WG!GL.W / are equivalent
if there exists a linear isomorphism T W V !W such that T '.g/.v/D  .g/T .v/ for
all g 2G and v 2 V , or that the following diagram commutes:

V V

W W

'.g/

T T

 .g/

Choosing bases for V and W , the equivalence T gives the matrix equation

ŒT �Œ'.g/�ŒT ��1
D Œ .g/�:

At the level of matrices, representations are equivalent exactly when they are simulta-
neously conjugate. In the context of Theorem 3.3, the restriction of � to Hn�1.q/ is
equivalent to the representation

Lk
iD1 ��i

, which means there is a change of basis such
that the restriction of � is block diagonal. These restriction rules are combinatorially
depicted in the Young lattice of Young diagrams; see [18].

A representation is sesquilinear if there exists an invertible matrix J such that for every
M in the image of the representation the following equation is satisfied:

(3-2) M �JM D J:

Rearranging this equation, we see that M D J�1..M �/|/�1J , showing that M

and ..M �/|/�1 are simultaneously conjugate and the conjugating matrix J is the
sesquilinear form. Changing views slightly, consider the following definition.

Definition 3.5 For ' WG!GL.V / a complex linear representation, Q' WG!GL.V �/
is called the �–twisted contragredient representation of ' and is given by

Q'.g/f .v/D f .'.g�1/�v/

for every g 2G, v 2 V and f 2 V �.
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If a basis for V is chosen, then as matrices, Œ Q'.g/� D .Œ'.g/� �|/�1. So another
way to view a sesquilinear representation is one that is equivalent to its �–twisted
contragredient.

Lemma 3.6 Every finite-dimensional irreducible representation of the Hecke algebra is
equivalent to its �–twisted contragredient representation , when q is a generic complex
number.

Proof We can establish this result for nD 3. There are three nonequivalent irreducible
representations of H3.q/ corresponding to the following Young diagrams:

Up to equivalence, the first two representations are 1–dimensional, given by gi 7! q

and gi 7! �1, and are in fact equal to their �–twisted contragredient representations.
The third representation is known to be the Burau representation for B3. As described
earlier, Squier showed that the Burau representations are sesquilinear and are therefore
equivalent to their �–twisted contragredient.

Inductively moving forward, let � WHn.q/!GL.V / be a finite-dimensional irreducible
representation and Q� be the �–twisted contragredient representation of �. Up to
equivalence, � corresponds to a Young diagram �. To show that � and Q� are equivalent,
it suffices to show that both representations correspond to the same �. A Young diagram
is completely characterized by its list of .n�1/–subdiagrams, which correspond to the
restriction of the representation to Hn�1.q/. So it is enough to show that the restrictions
of � and Q� correspond to the same list of .n�1/–subdiagrams.

Writing �j D �jHn�1.q/, by Theorem 3.3 there is an equivalence T such that

T�j.h/T �1
D

kM
iD1

��i
.h/ for every h 2Hn�1.q/;

where each �i is an .n�1/–subdiagram of �, k is the number of .n�1/–subdiagrams
of �, and ��i

is an irreducible representation of Hn�1.q/ corresponding to �i . Choosing
a basis for V , the matrix for ŒT� j .h/T �1� is block diagonal. Taking the �–twisted
contragredient of a block diagonal matrix preserves the block decomposition, which
gives

.ŒT � �|/�1Œ Q� j .h/�ŒT � �| D

kM
iD1

Œ Q��i
.h/� for every h 2Hn�1.q/:
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This equation shows that Q�j is equivalent to
L
Q��i

. Since each ��i
is an irreducible

representation of Hn�1.q/, we can inductively assume that ��i
is equivalent to Q��i

, for
all i � k. Therefore, ��i

and Q��i
correspond to the same Young diagram �i . Thus the

restrictions of � and Q� correspond to the same list of .n�1/–subdiagrams.

Lemma 3.7 If an absolutely irreducible matrix representation has an invertible matrix
J satisfying M �JM D J for all M in the representation , then J is unique up to
scaling.

Proof Suppose there were two such matrices J1 and J2. Then (3-2) gives, for all
matrices M in the representation,

J1MJ�1
1 D ..M �/|/�1

D J2MJ�1
2 D) .J�1

1 J2/
�1M.J�1

1 J2/DM:

This shows that J�1
1

J2 is in the centralizer of the entire irreducible representation.
Schur’s lemma gives that J�1

1
J2 D ˛ � Id for some scalar ˛, and finally J2 D ˛J1.

Proposition 3.8 If � is an irreducible Jones representation of Bn and q is a generic
unit complex number close to 1, then there exists a nondegenerate , positive definite ,
sesquilinear matrix J with entries in Q.q/ such that for all M in the image of �,
.M �/|JM D J .

Proof Let � be a finite-dimensional irreducible representation of Hn.q/ over V . By
Lemma 3.6, � is equivalent to its �–twisted contragredient representation Q� by an
equivalence T . Choose a basis for V and its dual basis for V �, and let T be the matrix
for T with respect to these bases. We will use this matrix T to find the desired matrix J .
Let the superscript � denote the �–twisted transpose of a matrix to ease computation.
For all g 2Hn.q/, we get the matrix equations

T Œ�.g/�T �1
D Œ Q�.g/�D .Œ�.g/��1/� D) .T �1/�Œ�.g/��T � D Œ�.g/��1(3-3)

D) T �Œ�.g/�.T �/�1
D .Œ�.g/��1/�:

This shows that T and T � are two possible forms for �. By Lemma 3.7, T D ˛T � for
some ˛ 2C. Applying � again gives T D ˛˛�T and ˛˛� D 1.

Define J D ˇT Cˇ�T � D .˛ˇCˇ�/T � where ˇ is as follows. (Here ˇ is needed to
ensure that J is invertible.) If ˛¤�1, let ˇD1, which gives that det J Ddet..˛C1/T /,
which is nonzero. If ˛ D�1, let ˇ 2C be such that ˇ� ¤ ˇ. Then

det J D detŒ.˛ˇCˇ�/T ��D detŒ.�ˇCˇ�/T �

is nonzero. So, in both cases, J is invertible.
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Next note that J is sesquilinear, that is, J� D .ˇT Cˇ�T �/� D ˇ�T �CˇT D J . If
M is a matrix in the image of �, rearranging the right-hand equation of (3-3) gives
M �T �M D T . So inserting J gives

M �JM DM �.˛ˇCˇ�/T �M D .˛ˇCˇ�/M �T �M D .˛ˇCˇ�/T D J:

To show that the entries of J are in Q.q/ we will proceed by induction on n, as in
the proof of Lemma 3.6. As a base case with n D 3, Squier’s form for the Burau
representation has entries in Q.q/. Let � be an irreducible Jones representation of Bn

with �jBn�1
D
Lk

iD1 �i , where each �i is an irreducible Jones representation of Bn�1.
We can inductively assume each �i is sesquilinear with form Ji whose coefficients are
in Q.q/. Thus, there exist some scalars ˛i such that J D Œ˛iJi �, the block diagonal
matrix, and J is the sesquilinear form for �.

It remains to show that J is positive definite. Taking q D 1, � is an irreducible
representation of the symmetric group †n. As a linear representation of a finite group,
V admits an inner product that is invariant under the action of †n, given by a positive
definite nondegenerate matrix yJ . Lemma 3.7 guarantees that yJ is unique up to scaling.
Since J jqD1 is also a form for this representation, it must be that yJ is a multiple
of J jqD1, which gives that J is positive definite for q D 1. Since J is Hermitian for
unit complex q it has real eigenvalues, and continuity of the determinant map finally
gives that either J or �J is positive definite for q close to 1.

Corollary 3.9 For each irreducible Jones representation , there are infinitely many
Salem numbers s such that specializing qD sm, for some m, is a discrete representation.

3.3 The Lawrence–Krammer and BMW representations

The BMW algebras are a 2–parameter family of algebras, denoted by Cn.l;m/, with
n � 1 generators and parameters l and m. The BMW representations of the braid
group come from representations of the BMW algebras [1; 12]. Similar to how the
Burau representation is one irreducible summand of the Jones representations, Zinno
proved in [19] that the Lawrence–Krammer representation is one summand of the
BMW representations. To make sense of the � operation, the relevant involution for
the BMW algebra is given by l 7! 1= l , m 7!m and ˛ 7! 1=˛, where mD ˛C 1=˛.
Budney proved that the Lawrence–Krammer representation is sesquilinear [4], and
Brunat and Marin give a more general proof that all the BMW representations are
sesquilinear [3]; see also [10]. It is also known that the sesquilinear forms Jl;m are
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positive definite for a neighborhood of .1; 1/ in the unit complex sphere in C2 [17];
see [2, Theorem 1.2] for a concise restatement. It is suspected that the forms Jl;m

have coefficients in Q.m; l/, and this is known to be true for the Lawrence–Krammer
representation.

Corollary 3.10 For the Lawrence–Krammer representation there are infinitely many
Salem numbers s such that specializing l D sk1 and ˛ D sk2 , for some k1 and k2, is a
discrete representation.

Example 3.11 Let � be the Lawrence–Krammer representation of B4 given on
page 272 of [1]. Taking the Salem number S D 1=2C 1=

p
2C 1=.2

p
�1C 2

p
2/,

specializing ˛ D S15 and l D S3 makes � a discrete representation.

4 Commensurability

Ideally, we would like to find real specializations so that the Jones representations have
images that are not just discrete, but are arithmetic groups or lattices in GLn.R/. A first
step in this direction is to further study the unitary groups coming from Salem number
specializations, and consider when the images are subsets of lattices. Specializing
to two different powers of the same Salem number can give commensurable unitary
groups, but the defining sesquilinear forms might be very different.

Recall the notation of K, L, OK and � from Section 2.3. In general, fixing a number
ring OK and dimension m, the group Um.J; �;OK / is determined by the form J .
Notice that Um.J; �;OK /D Um.�J; �;OK / for every � 2L, and that the form J is
not completely unique. This motivates that following definition.

Definition 4.1 Matrices J and H are equivalent over K if Q�JQD �H for some
Q 2 GLm.K/ and � 2 Fix.�/.

It would be nice if equivalent forms gave rise to equal unitary groups, but this is not true
in general. However, in the careful scenario that the unitary group is a lattice in SLm.R/,
changing the form by equivalence yields “the same” lattice, up to commensurability in
the following sense.

Definition 4.2 Two groups G1 and G2 are commensurable if there are finite-index
subgroups H1 �G1 and H2 �G2 such that H1 is isomorphic to H2.
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Definition 4.3 A lattice in a semisimple Lie group is a discrete subgroup with finite
covolume.

For our purposes, we will take SLm.R/ or PSLm.R/ as the semisimple Lie group.

Proposition 4.4 Assume that SUm.J1; �;OK / and SUm.J2; �;OK / are lattices in
SLm.R/. If J1 and J2 are equivalent over K, then SUm.J1; �;OK / is commensurable
to SUm.J2; �;OK /

Proof Let �J1 D Q�J2Q for some Q 2 GLm.K/ and � 2 Fix.�/. For notational
clarity, write SU.Ji ;OK /D SUm.Ji ; �;OK /.

Since scalar multiplication commutes with matrix multiplication, M �JM D J if and
only if M ��JM D �J . So scaling the form preserves the unitary group, and without
loss of generality we may assume �D 1.

It is clear that M �JM DJ if and only if .Q�M �Q��1/.Q�JQ/.Q�1MQ/DQ�JQ,
which seems like it implies that SU.Q�J1Q;OK /DQ�1 SU.J1;OK /Q. However,
since Q has coefficients in K, Q�1MQ may not have coefficients in OK , so we can
only conclude that Q�1 SU.J;OK /Q � SU.Q�JQ;K/. To avoid this, we need to
pass to a finite-index subgroup.

Since K is the ring of fractions of OK , there exists 
 2OK such that 
Q 2Mm.OK /.
As a ring of integers of an algebraic extension, OK is a Dedekind domain and every
quotient is finite. So OK=h


2i is finite and SU.J1;OK=h

2i/ is finite. The kernel N

of the quotient map SU.J1;OK /! SU.J1;OK=h

2i/ has finite index in SU.J1;OK /.

Any element B in the kernel has the form BD IdC
 2A for some matrix A2Mm.OK /.
Substituting Q�J2Q for J1 in the equation B�J1B D J1 gives that QBQ�1 fixes the
form J2. Because Q has coefficients over K, QBQ�1 has coefficients in K and not
necessarily in OK . However, since QBQ�1 D IdC .
Q/A.
Q�1/, and both A and

Q are integral, QBQ�1 is also integral. Thus QBQ�1 2 SU.J2;OK /.

Since SU.J1;OK / is a lattice and N is a finite-index subgroup, N is also a lattice
in SL.R/ with finite covolume. Thus QNQ�1 has finite covolume in SL.R/ and is
therefore a lattice. So QNQ�1 is a sublattice of SU.J2;OK / and must have finite
index by Margulis’s theorem for lattices.

This shows that N is a finite-index subgroup of SU.J1;OK / and QNQ�1 has finite
index in SU.J2;OK /.
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So how does this lattice information apply to the Jones representations? Firstly, after
rescaling and reparametrization the Jones representations can be made to have determi-
nant ˙1, allowing the image to land in PSU.J; �;OK / instead of just U.J; �;OK /.
Secondly, an arithmetic group theory result of Harish and Chandra that is formalized
in our setting in Chapter 6 of Morris [11], states that SUm.J; �;OK / is a lattice in
SLm.R/ under the exact Salem number circumstances as required by Theorem 1.1. So
Corollary 3.9 can be restated using this new vocabulary.

Corollary 4.5 For each irreducible Jones representation , after a change of parameter ,
there are infinitely many Salem numbers s such that specializing q to a power of s

maps into a lattice in PSLm.R/.

Proof Let �q be an irreducible Jones representation of dimension m. The images of
the braid generators under �q have determinant ˙qk for some k 2N. After a change
of variable q D ym and scaling the generators by 1=ym�k , this adjusted representation
Q�y maps into PSUm.J

y ;ZŒy˙1�/.

The subgroup Beven
n of even braids (the preimage of the alternating group under the

standard projection to Sn) is a noncentral normal subgroup of Bn of finite index. The
restriction Q�y j maps Beven

n into SUm.Jy ;ZŒy˙1�/, and by Theorem 1.1 there exist
infinitely many Salem numbers s such that the specialization �sj at y D s is discrete.
Further, by the results in Chapter 6 of [11] described above, these specializations make
SUm.Js;OK / lattices in SLm.R/. Finite-index arguments imply PSUm.Js;OK / is a
lattice in PSLm.R/.

Since the goal is to obtain commensurable lattices as images of our Jones representations,
and it is more natural to think of lattices in SLm.R/ instead of in PSLm.R/, one may
simply pass to the finite-index subgroup Beven

n and continue to think only about lattices
in SLm.R/. To apply Proposition 4.4 requires equivalent defining forms. In general, it
is difficult to determine when two forms are equivalent. The following theorem gives
a complete classification of the sesquilinear forms in a very specific algebraic setting
that applies to the Salem number field scenario.

Theorem 4.6 (Scharlau [13, Chapter 10]) If L is a global field and K D L.
p
ı/,

sesquilinear forms over K=L are classified by dimension , determinant class and the
signatures for those orderings of L for which ı is negative.
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This classification relies on the determinant class, which is defined here. Recall for a
Salem number s the following tower of fields:

Q.s/DK K�

Q.sC 1=s/DL L� .L�/2 � Norm.K�/

Q

2 Norm

The Galois group of K=L is generated by �, which maps s to 1=s. There is a
multiplicative group homomorphism Norm W K� ! L� given by Norm.˛/ D ˛˛� ,
where K� D K � f0g. Notice for ˇ 2 L we have Norm.ˇ/ D ˇˇ� D ˇ2, and so
.L�/2 � Norm.K/.

Definition 4.7 The determinant class of a sesquilinear form H over K=L is the coset
of det.H / in K�=Norm.K�/:

Œdet.H /�D det.H /Norm.K/:

Taking ı D .s � 1=s/2, K can be rewritten as K D L.
p
ı/. Thus we can restate

Scharlau’s classification in the specific context of Salem numbers.

Theorem 4.8 (Scharlau restated) Sesquilinear forms over K=L are classified by
dimension , determinant class and the signatures for those orderings of L for which
.s� 1=s/2 is negative.

In odd dimensions it is very simple to show that all sesquilinear forms have the same
determinant class, up to scaling. However, for even dimensions, the situation is very
unclear.

Proposition 4.9 For every odd-dimensional invertible sesquilinear matrices H and J

over K, Œdet.H /�D Œdet.�J /� for � 2L.

Proof Let H and J be sesquilinear matrices over K of dimension 2kC 1. Since H

and J are Hermitian, they are both diagonalizable with diagonal entries fixed by �.
So, the determinants of both H and J are elements in L. Let dH and dJ denote the
nonzero determinants of H and J . Thus,

dH D
dH

dJ

dJ
mod.L�/2

�

�
dH

dJ

�2kC1

dJ D det
�

dH

dJ

J

�
:
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Since .L�/2 �Norm.K/, we have that H and �J have the same determinant class for
�D dH =dJ 2L.

As a result, to determine whether two forms of the same odd dimension are equivalent,
it suffices to only check that they have the same signatures.

Theorem 4.10 For Jt a sesquilinear form that is positive definite for t in a neigh-
borhood � of 1, there are infinitely many Salem numbers s and integers n and m

such that , in all odd dimensions , SU2kC1.Jsn ; �;OK / and SU2kC1.Jsm ; �;OK / are
commensurable , discrete groups.

Proof By Lemma 2.6 there are infinitely many Salem numbers s and integers n and m

such that every complex Galois conjugate of sm and sn lies in �. Fix one such Salem
number s, and K, L and ı as above.

By Theorem 4.6, sesquilinear forms are completely classified by dimension, determinant
class, and the signatures for the places of L for which .s � 1=s/2 is negative. By
Proposition 4.9, Jsn and �Jsm have the same determinant class for � in L, namely
�D det Jsn=det Jsm .

Let � be a complex placement of L. Then �.sm/ is a complex Galois conjugates of sm,
and similarly for �.sn/ and sn. Since n and m were chosen so that all of the complex
Galois conjugates of sm and sn have arguments in �, J�.sm/ and J�.sn/ are positive
definite. Moreover, det Jsn=det Jsm and �.det Jsn=det Jsm/ are both positive, making
� > 0. So regardless of whether �..s� 1=s/2/ is positive or negative, the forms J�.si /

have the same signature.

Therefore Jsn is equivalent to �Jsm , and so SU.Jsn ; �;OK / is commensurable to
SU.Jsm ; �;OK /. The groups are discrete by Theorem 2.3.

Corollary 4.11 Let �t W G ! SL2kC1.ZŒt; t
�t �/ be a group representation with a

parameter t . Suppose there exists a matrix Jt such that :

(1) For all M in the image of �t , M �JtM D Jt , where M �.t/DM |.1=t/.

(2) Jt D .J1=t /
|.

(3) Jt 2 GLm.Q.t//, where no entry of Jt has denominator with 1 as a root.

(4) Jt is positive definite for t in an neighborhood � of 1.
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Then there exist infinitely many Salem numbers s such that for infinitely many integers
n and m the specializations �sm at t D sm and �sn at t D sn map into commensurable
lattices of SL2kC1.R/.

Example 4.12 The reduced Burau representation of B4 is 3–dimensional and, after the
appropriate rescaling to have determinant 1, satisfies Corollary 4.11. So certain powers
of the specializations in Example 3.2 map into commensurable lattices in SL3.R/.
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We construct a real combinatorial model for the configuration spaces of points of
compact smooth oriented manifolds without boundary. We use these models to show
that the real homotopy type of configuration spaces of a simply connected such
manifold only depends on the real homotopy type of the manifold.

Moreover, we show that for framed D–dimensional manifolds these models capture
a natural right homotopy action of the little D–disks operad.
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1 Introduction

Given a smooth manifold M , we study the configuration space of n nonoverlapping
points on M ,

Confn.M/D f.m1; : : : ; mn/ 2M
n
jmi ¤mj for i ¤ j g:

These spaces are classical objects in topology, whose homological and homotopical
properties have been subject to intensive study over the decades. One of the first
important results dates back to 1978 when Cohen and Taylor [15] constructed a spectral
sequence converging to the cohomologyH �.Confn.M//. A different spectral sequence
was constructed by Bendersky and Gitler [4] and both spectral sequences have been
shown to coincide from the E2 term on by Felix and Thomas [19]. In the particular
case of smooth compact projective complex manifolds, it was shown by Totaro [44]
that the Cohen–Taylor spectral sequence collapses after the second page, and Kriz [30]
showed that for those manifolds the E2 page is actually a model of Confn.M/ in the
sense of rational homotopy theory.

In this paper, we aim to understand the rational homotopy type of configuration spaces.
Classical rational homotopy theory à la Sullivan [42] states that we can understand
topological spaces via algebraic models which are differential graded commutative
K–algebras (dgca), where K is a field of characteristic zero. This roughly amounts to
capturing the nontorsion part of the homotopy groups of such spaces. Usually, the field
K is taken to be the rational numbers, but due to the transcendental methods we use,
we take the base field KDR to be the real numbers and we will therefore refer to the
real homotopy type of configuration spaces.

Our first main result is the construction of a differential graded commutative R–algebra
model �GraphsM for Conf�.M/, in the case when M is a D–dimensional compact
smooth oriented manifold without boundary, with D � 2. Our model depends on M
only through the following data:

� The cohomology V DH �.M/ as a vector space with a nondegenerate pairing
of degree D D dim.M/.

� The partition function ZM of the “universal” perturbative AKSZ topological
field theory on M . This is a Maurer–Cartan element in a certain graph complex
only depending on V .
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In particular, this shows that the latter perturbative invariants ZM — special cases of
which have been studied in the literature, eg by Bonechi, Cattaneo and Mnev [6] —
contain at least as much information as the real homotopy type of Conf�.M/. Further-
more, the real homotopy type of M is encoded in the tree-level components of ZM .
The higher loop order pieces of ZM “indicate” (in a vague sense) the failure of the
homotopy type of Conf�.M/ to depend only on M . Finally, the real cohomology of
Conf�.M/ can be computed just from the tree level knowledge; see Section 7.

Now suppose that M is furthermore framed, ie the frame bundle of M is trivialized.
Then the totality of spaces Conf�.M/ carries additional algebraic structure, in that it
can be endowed with a homotopy right action of the little D–disks operad as follows.
First we consider the natural compactification FMM .n/ of Confn.M/ introduced by
Axelrod and Singer [2]; see also Sinha [41]. It is naturally acted upon from the right
by the Fulton–MacPherson–Axelrod–Singer variant of the little disks operad FMD

introduced by Getzler and Jones in [21] by “insertion” of configurations of points.

The right ED–module structure on configuration spaces has been receiving much
interest in the last decade, since it has been realized that the homotopy theory of these
right modules captures much of the homotopy theory of the underlying manifolds. For
example, by the Goodwillie–Weiss embedding calculus the derived mapping spaces
(“Ext’s”) of those right ED–modules capture (under good technical conditions) the
homotopy type of the embedding spaces of the underlying manifolds; see Boavida
de Brito, Goodwillie and Weiss [9; 10; 22]. Dually, the factorization homology (“Tor’s”)
of ED–algebras has been widely studied and captures interesting properties of both
the manifold and the ED–algebra; see Ayala and Francis [3]. However, in order to use
these tools in concrete situations it is important to have models for Conf�.M/ (as a
right Hopf ED–module) that are computationally accessible, ie combinatorial. In this
paper we provide such models.

Concretely, our second main result is that our model �GraphsM above combinatorially
captures this action of the little D–disks operad as well, in the sense that it is a right
Hopf operadic comodule over the Kontsevich Hopf cooperad �GraphsD , modeling the
topological little D–disks operad, and the combinatorially defined action models the
topological action of ED on Conf�.M/.

In fact, one can consider the following “hierarchy” of invariants of a manifold M :

(1) The real (or rational) homotopy type of M .

(2) The real (or rational) homotopy types of FMM .m/ for mD 1; 2; : : : .

Algebraic & Geometric Topology, Volume 23 (2023)
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(3) The real (or rational) homotopy type of FMM considered as a right FMD–module,
for parallelized M . (For nonparallelizable M one may consider similarly the
homotopy type of the FM–module of framed configuration spaces of points
FFMM .)

The relative strength of this invariants has been unknown. In particular, it is a long
standing open problem if for simply connected M the rational homotopy type of
Conf�.M/ depends only on the rational homotopy type of M ; see Félix, Halperin and
Thomas [18, Problem 8, page 518] — see also Levitt [34] for a stronger conjecture
disproved by Longoni and Salvatore in [37].

In our model the above hierarchy is nicely encoded in the loop order filtration on a
certain graph complex GCM , in which item (1) is encoded by the tree level piece of
ZM along with the cohomology of item (2), while the full ZM encodes item (3).

Our third main result states that for a simply connected smooth closed framed mani-
fold M , these invariants are of equal strength. We show furthermore that without the
framed assumption, item (1) is still equally strong as item (2); thus establishing [18,
Problem 8, page 518] under the assumption of smoothness.

Finally, if we consider a nonparallelized manifold there is still a way to make sense
of the insertion of points at the boundary, but the price to pay is that one has to
consider configurations of framed points in M . The resulting framed configuration
spaces Conf fr

�
.M/ then come equipped with a natural right action of the framed little

disks operad Efr
D . In Section 9 we present BVGraphsM , a natural modification of

GraphsM that encompasses the data of the frames and we show that if we consider a
two-dimensional orientable manifold†, BVGraphs† models this additional right action.
In the framed case we restrict ourselves to the 2–dimensional setting.

Outline and statement of the main result

Let us summarize the construction and state the main result here. First recall from
[27] the Kontsevich dg cooperad �GraphsD . Elements of �GraphsD.r/ consist of linear
combinations of graphs with r numbered and an arbitrary number of unidentifiable
vertices, like the following:

1 2 3 4

The precise definition of �GraphsD will be recalled in Section 3. The graphs con-
tributing to �GraphsD may be interpreted as the nonvaccuum Feynman diagrams of
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the perturbative AKSZ �–models on RD; see Alexandrov, Schwarz, Zaboronsky and
Kontsevich [1].

Kontsevich constructs an explicit map �GraphsD ! �PA.FMD/ to the dgca of PA
forms on the compactified configuration spaces FMD . This map is compatible with the
(co)operadic compositions, in the sense described in Section 3 below.

Now fix a smooth compact manifoldM of dimensionD, of which we pick an algebraic
realization, so that we can talk about PA forms�PA.M/. Then we consider a collection
of dg commutative algebras �GraphsM .r/. Elements of �GraphsM .r/ are linear com-
binations of graphs, but with additional decorations of each vertex in the symmetric
algebra S. zH.M// generated by the reduced cohomology zH.M/. The following graph
is an example, where we fixed some basis f!j g of zH.M/:

1 2 3 4

!1 !1

!2 !3

These graphs may be interpreted as the nonvaccuum Feynman diagrams of the per-
turbative AKSZ �–model on M . We equip the spaces �GraphsM .r/ with a nontrivial
differential built using the partition function ZM of those field theories. This partition
function can be considered as a special Maurer–Cartan element of a certain graph
complex GCM . Algebraically, the spaces �GraphsM .r/ assemble into a right dg Hopf
cooperadic comodule over the Hopf cooperad �GraphsD .

By mimicking the Kontsevich construction, we construct, for a parallelized manifoldM ,
a map of dg Hopf collections1

�GraphsM !�PA.FMM /;

compatible with the (co)operadic (co)module structure, where we consider FMM as
equipped with the right FMD–action. If M is not parallelized, we do not have an
FMD–action on FMM . Nevertheless we may consider a (quasi-isomorphic) dg Hopf
collection

�GraphsM �
�GraphsM

that still comes with a map of dg Hopf collections

�GraphsM !�PA.FMM /:

1A (dg) Hopf collection C for us is a sequence C.r/ of dg commutative algebras, with actions of the
symmetric groups Sr . A (dg) Hopf cooperad is a cooperad in dg commutative algebras.
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Our first main result is the following.

Theorem 1 The map �GraphsM !�PA.FMM / is a quasi-isomorphism of dg Hopf
collections. In the parallelized case the map �GraphsM ! �PA.FMM / is a quasi-
isomorphism of dg Hopf collections , compatible with the (co)operadic (co)module
structures.

This result provides us with explicit combinatorial dgca models for configuration spaces
of points, compatible with the right ED–action on these configuration spaces in the
parallelizable setting. An extension to the nonparallelized case is provided in Section 9,
albeit only in dimension D D 2.

We note that our model �GraphsM depends on M only through the partition function
ZM 2 GCM . The tree part of this partition function encodes the real homotopy type
of M . The loop parts encode invariants of M . Now, simple degree counting arguments
may be used to severely restrict the possible graphs occurring in M . In particular, one
finds that if H 1.M;R/ vanishes, then for D � 4 there are no contributions to ZM of
positive loop order, and one hence arrives at the following result.

Corollary 2 (Theorem 63) Let M be an orientable compact manifold without bound-
ary of dimension D � 4, such that H 1.M;R/D 0. Then the (naive)2 real homotopy
type of Conf�.M/ depends only on the (naive) real homotopy type of M .

For D D 2 the analogous statement is empty, as there is only one connected manifold
satisfying the assumption. If we replace the condition H 1.M;R/D 0 by the stronger
condition of simple connectivity, the statement is also true in dimension 3, but for
the trivial reason that by the Poincaré conjecture there is only one simply connected
manifold M in dimension 3. Hence the above result also solves the real version of the
long standing question in algebraic topology of whether for simply connected M the
rational homotopy type of the configuration space of points on M is determined by the
rational homotopy type of M ; see [18, Problem 8, page 518]

Remark 3 Our result also shows that the “perturbative AKSZ”-invariant ZM is at
least as strong as the invariant of M given by the totality of the real homotopy types of
the configuration spaces of M , considered as right ED–modules. The latter “invariant”

2We call the naive real homotopy type the quasi-isomorphism type of the dg commutative algebra of (PL
or smooth) forms. Note that in the nonsimply connected case this definition is not the correct one; one
should rather consider the real homotopy type of the universal cover with the action of the fundamental
group. We do not consider this better notion here, and in this paper “real homotopy type” shall always
refer to the naive real homotopy type.
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is the data entering the factorization or “manifoldic” homology — see [3] and Markarian
and Tanaka [38] — and the Goodwillie–Weiss calculus [22] (over the reals). Conversely,
from the fact that the models �GraphsM encode the real homotopy type of configuration
spaces, one may see that the expectation values of the perturbative AKSZ theories onM
may be expressed through the factorization homology ofM . However, we will leave the
physical interpretation to forthcoming work and focus here on the algebraic-topological
goal of providing models for configuration spaces.

Remark 4 After the first version of this article appeared on the arXiv, Idrissi [25]
obtained results very similar to ours by showing that for simply connected closed
oriented manifolds the Lambrechts–Stanley dg model [32] is actually a real model of
Confn.M/. We sketch in Appendix A how this latter statement can also be obtained as
a consequence of our main results.

Plan of the paper

In Section 2 we introduce the spaces FMM , the compactifications of configuration
spaces of points on a smooth manifold M (with D D dimM ) and its semialgebraic
realizations and adapt results in the literature to construct the propagator.

Starting with the framed case, in Section 3 we construct the first graph complex �GraM
(a Hopf �GraD–comodule) and construct the map into �PA.FMM / which is not yet a
quasi-isomorphism. In Section 4 we use operadic twisting to obtain the graph complex
�GraphsM and in Section 5 we show that �GraphsM is indeed a model for the real
homotopy type of FMM as a right FMD–module.

In Section 6 we construct a no-tadpole variant of the graph complex to deal with the
case where M is not parallelized and show that it models the real homotopy type of
the collection of topological spaces FMM , concluding the proof of Theorem 1.

The next goal is to study the dependence of the homotopy type of the configuration
spaces on the base manifold. In Sections 7 and 8 we study the partition function ZM
that gives rise to the differential in �GraphsM and we show that it is gauge equivalent
to one vanishing on graphs containing � 2–valent vertices. We conclude that in good
conditions the real homotopy type of M can be recovered from the tree piece of the
graph complex, thus proving Corollary 2.

Finally, in the last section we construct a graphical model of configuration spaces
of framed points in 2–dimensions, together with the action of the framed little disks
operad.
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1.1 Notation and conventions

Throughout the text all algebraic objects (vector spaces, algebras, operads, etc) are
differential graded (or just dg) and are defined over the field R.

We use cohomological conventions, ie all differentials have degree C1. We use the
language of operads and follow mostly the conventions of Loday and Vallette’s text-
book [36]. One notable exception is that we denote the k–fold operadic (de)suspension
of an operad P by ƒkP .

Acknowledgements

We would like to thank Pascal Lambrechts for useful remarks and references, and
Najib Idrissi, Nils Prigge and Victor Turchin for valuable discussions and for pointing
out some mistakes in the original version. Both authors have been supported by the
Swiss National Science Foundation, grant 200021_150012, by the NCCR SwissMAP
funded by the Swiss National Science Foundation, and the ERC starting grant 678156
(GRAPHCPX).

2 Compactified configuration spaces

2.1 Semialgebraic manifolds

Given a compact semialgebraic set X one can consider its dgca of piecewise semialge-
braic (PA) forms, �PA.X/, which is quasi-isomorphic to Sullivan’s dgca of piecewise
polynomial forms [24; 29].

Dually, one can also consider its complex of semialgebraic chains, which we denote by
Chains.X/, which is also quasi-isomorphic to the usual complex of singular chains.

By the Nash–Tognoli theorem [43] — see also [5, Section 14] — any smooth compact
manifold is diffeomorphic to a component of a nonsingular algebraic subset of RN for
some N . In particular, any such manifold can be realized as a smooth semialgebraic (ie
Nash) submanifold of Euclidean space. Throughout this paper, whenever we consider a
closed smooth manifold M we will consider implicitly a chosen such realization of M
as a Nash submanifold of RN .

We refer to [5] for an introduction to real algebraic geometry. An overview is also
contained in the introductory sections of [24].
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Even though all manifolds considered in this paper will be smooth, it is not sufficient
for our purposes to consider the de Rham complex. The main reason for this is that
we would like to consider fiber integration over nonsmooth fiber bundles E ! B .
Nonetheless, the relevant bundles will be SA (semialgebraic) bundles [24] and, for such
bundles, there is a pushforward map �min.E/!�PA.B/, where �min.M/��PA.M/

is the (nonquasi-isomorphic) subalgebra of minimal forms.

While this pushforward cannot be naturally extended to the whole space of PA forms
�PA.E/, as described in Appendix C, we can consider a subalgebra of trivial forms
�triv.E/, sitting between�min.E/ and�PA.E/ and quasi-isomorphic to�PA.E/, such
that the pushforward extends naturally to a map �triv.E/!�PA.B/.

2.2 Configuration spaces of points in RD

Let D be a positive integer. We will use the Fulton–MacPherson topological operad
FMD that was introduced by Getzler and Jones [21]. Its n–ary space FMD.n/ is a
suitable compactification of the quotient of the configuration space

Confn.RD/=.R>0 ËRD/;

with the Lie group R>0 ËRD acting by scaling and translations. For n > 1 the spaces
FMD.n/ are .Dn�D�1/–dimensional manifolds with corners whose boundary strata
represent sets of points getting infinitely close.

The first few terms are3

FMD.0/D f�g; FMD.1/D f�g; FMD.2/D S
D�1:

The operadic composition ıi is given by inserting a configuration at the boundary
stratum at the point labeled by i . A thorough study of these operads can be found
in [33].

The operad FMD can be related to a shifted version of the homotopy Lie operad via
the operad morphism

(1) ƒD�1L1! Chains.FMD/;

given by sending the generator �n 2ƒD�1L1.n/ to the fundamental chain of FMD.n/,
ie the semialgebraic chain corresponding to FMD.n/ as a submanifold of itself.4

3We work with the unital version of the Fulton–MacPherson operad.
4Recall that due to our cohomological conventions these spaces live in nonpositive degree. In particular,
the generator �n 2 L1 has degree 2�n.
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2.3 Configuration spaces of points on a manifold

LetM be a closed smooth oriented manifold of dimensionD. We denote by Confn.M/,
the configuration space of n points in M . Concretely, Confn.M/DM n��, where �
is the fat (or long) diagonal �D f.m1; : : : ; mn/ 2M n j 9i ¤ j Wmi Dmj g.

The Fulton–MacPherson–Axelrod–Singer compactification of Confn.M/ is a smooth
manifold with corners FMM .n/ whose boundary strata correspond to nested groups of
points becoming “infinitely close”; see [41] for more details and a precise definition.
Since the inclusion Confn.M/ ,! FMM .n/ is a homotopy equivalence, we work
preferably with FMM .n/ as these spaces have a richer structure.

Convention 5 (semialgebraicity of FMM .n/) The choice of semialgebraic structure
on FMM .n/ is done in a way compatible with the one from M as follows: Let us
consider the chosen semialgebraic realization of the manifold M in RN for some N .

For 1� i ¤ j � n, let �i;j W Confn.M/! SN�1 be defined by

�i;j ..x1; : : : ; xn//D
xi � xj

kxi � xj kRN
:

For 1� i ¤ j ¤ k � n, we define di;j;k W Confn.M/! .0;C1/ by

di;j;k..x1; : : : ; xn//D
kxi � xj k

kxi � xkk
:

Considering all possibilities of i , j and k, we have defined a natural embedding

� W Confn.M/!M n
� .SN�1/n.n�1/ � Œ0;C1�n.n�1/.n�2/:

We define FMM .n/ as the closure �.Confn.M//, thus inheriting a semialgebraic struc-
ture.

Remark 6 (SA bundles) For every m> n there are various projection maps

FMM .m/! FMM .n/

corresponding to forgetting m � n of the points. These maps are not smooth fiber
bundles, but they are SA (semialgebraic) bundles [24], which allows us to consider
pushforwards (fiber integration) of forms along these maps.

The proof of this fact is a straightforward adaptation of the proof of the same fact
for FMD done in [33, Section 5.9]. In this case one starts instead by associating to a
configuration in FMM .n/ a configuration of nested disks in M .
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Convention 7 From here onward, we fix representatives of the cohomology of M , ie
we fix an embedding

(2) � WH �.M/ ,!��triv.M/

that yields a right inverse of the projection from closed forms to cohomology.

2.3.1 The diagonal class Since M is compact and oriented, the pairingZ
WH �.M/˝H �.M/!R; .!; �/ 7!

Z
M

! ^ �

given by Poincaré duality is nondegenerate. We shall also consider a version of this
pairing which is antisymmetric for odd D,

h!; �i D .�1/D deg.�/
Z
M

! ^ �:

The diagonal map � W M ! M �M defines an element in H�.M �M/ and its
dual under Poincaré duality is called the diagonal class, which is also denoted by
� 2H �.M �M/DH �.M/˝H �.M/.

If we pick a homogeneous basis e1; : : : ; ek of H �.M/, we have �D
P
i;j g

ij ei ˝ ej ,
where .gij / is the matrix inverse to the Poincaré duality pairing h�;�i. Alternatively,
this can also be written as �D

P
i .�1/

deg.ei /ei ˝ e
�
i , where fe�i g is the dual basis of

feig with respect to .�;�/.

In FMM .2/, if we consider the case in which the two points come infinitely close to
one another, we obtain a map @FMM .2/!M Š��M �M which is a sphere bundle
(with SD�1 fibers). Notice that @FMM .2/ can be identified with ST .M/, the sphere
tangent bundle of M .

The following proposition can essentially be found in the literature — see for instance
[7, Section 3; 14; 13, Lemma 2] — we only have to apply minor modifications in order
to work in the semialgebraic setting.

Proposition 8 Let p1 W FMM .2/! M (resp. p2 W FMM .2/! M ) be the map that
forgets the point labeled by 2 (resp. 1) from a configuration. Then there is a form
�12 2�

D�1
triv .FMM .2// satisfying the following properties:

(i) d�12 D p
�
1 ^p

�
2 .�/D

P
i;j g

ijp�1 .ei /^p
�
2 .ej / 2�

D
triv.FMM .2//.

(ii) The fiber integral of the restriction of �12 to @FMM .2/ is equal to .�1/D. (We
then say that this restriction is a global angular form.) Additionally, if D D 2,
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the restriction of �12 to every fiber of the circle bundle yields a round volume
form of that circle , with respect to some metric.

(iii) The form �12 is symmetric with respect to the Z2–action induced by swapping
points 1 and 2 for D even and antisymmetric for D odd.

(iv) For any ˛ 2H �.M/, Z
2

�12p
�
2 �.˛/D 0;

where � is as in (2) and the integral is along the fiber of p1, ie one integrates out
the second coordinate.

Notice that the form �122�
D�1
triv .FMM .2// is also called the propagator in the literature.

More generally, we consider the forms �ij 2�D�1triv .FMM .n// to be p�ij .�12/, where
pij W FMM .n/! FMM .2/ is the projection map that remembers only the points labeled
i and j .

Proof Let  2�D�1triv .@FMM .2// be a global angular form of the sphere bundle. Such
a form always exists — see for example [8] where such construction is made in the
smooth case — but the argument can be adapted to the semialgebraic case. It is also
shown in [8] that for a circle bundle the global angular form can be chosen to restrict
to the standard volume form on each fiber. Moreover, the differential of such a form
is basic (it is the pullback of the Euler class of the sphere bundle). Let E be a collar
neighborhood of @FMM .2/ inside FMM .2/. (See [40, Lemma VI.1.6] for the existence
of a semialgebraic (even Nash) collar.) Let us extend the form  to E by pulling it
back along the projection E ! @FMM .2/. We can consider a semialgebraic cutoff
function � W FMM .2/! R such that � is constant equal to zero outside of E and is
constant equal to 1 in some open set U such that @FMM .2/�U �E. We can therefore
consider the well-defined form � 2�D�1triv .FMM .2//.

Since d.� /j@FMM .2/ D d is basic, the form d.� / 2 �Dtriv.FMM .2// induces a
form in �Dtriv.M �M/, still denoted by d.� /. This form is clearly closed, but not
necessarily exact, as � itself might not extend to the boundary.

Let ! 2H �.M �M/��triv.M �M/. Then

(3)
Z
M�M

! d.� /D

Z
FMM .2/

! d.� /D .�1/D
Z
@FMM .2/

!� D

Z
�ŠM

!:

It follows that the cohomology class of d.� / is the Poincaré dual of the diagonal
�ŠM �M�M . Thus p�1^p

�
2 .�/ and d.� / are cohomologous in�Dtriv.M�M/. It
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follows that there exists a form ˇ2�D�1triv .M�M/ such that dˇDp�1^p
�
2 .�/�d.� /.

We define the form �12 2�
D�1
triv .FMM .2// to be ��ˇC � , where

� W FMM .2/!M �M

is the projection. It is clear that �12 satisfies property (i) and since the restriction of
��ˇ to the boundary is a basic form and properties (ii) is preserved.

To ensure (iv) one can replace the �12 constructed so far by

�12�

Z
3

�13p
�
23��

Z
3

�23p
�
13�C

Z
3;4

�34.p
�
13�/.p

�
24�/;

where pij is the forgetful map, forgetting all but points i and j from a configuration of
points. We refer the reader to [13] where more details can be found. (The reference
contains a construction of the propagator in the smooth setting, but the trick to ensure
(iv) is verbatim identical in our semialgebraic setup.)

Finally, we can (anti)symmetrize �12 to ensure it satisfies property (iii), while preserving
the other properties.

Remark 9 For M parallelizable, we can (and will) require a stronger version of
property (ii). A parallelization is a choice of a trivialization @FMM .2/'M �SD�1

and given such a parallelization, in the proof of the previous proposition we can take
 D ��.!SD�1/ 2�

D�1
triv .M �SD�1/, the pullback of the standard volume form of

SD�1 via the projection � WM �SD�1!SD�1. By construction of �12 the restriction
of �12 to @FMM .2/ has the form

(4) �12j@FMM .2/ D  Cp
��;

where p W @FMM .2/!M is the projection to the base and � 2�triv.M/ is some form
on the base. Note in particular that from the closedness of  and condition (i) above, it
follows that

(5) d�D�M ;

where �M 2�Dtriv.M/ denotes the pullback of � along the diagonal map (ie the wedge
product of its components).

3 The Cattaneo–Felder–Mnev graph complex and operad

Let n, N and D be positive integers and let V be an N–dimensional graded vector
space with a nondegenerate pairing of degree �D; h � ; � iW V ˝ V ! RŒ�D�. We
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4

Figure 1: An example of a graph describing an element in �GraV .4/.

require that for all homogeneous x; y 2 V of degrees k and l the pairing satisfies the
(anti)symmetry condition hx; yi D .�1/klCDhy; xi. Moreover, we assume V to be
“augmented” in the sense that we are also given a canonical decomposition V DR˚V .
One should keep in mind the example of the Poincaré pairing on the cohomology of a
connected N –manifold.

Let e2; e3; : : : ; eN be a graded basis of V and for convenience of notation we define
e1 D 1 2R. We consider the free graded commutative algebra generated by symbols
sij of degree D� 1, where 1� i; j � n, sij D .�1/Dsj i , and symbols ej1 ; : : : ; e

j
N for

j D 1; : : : ; n of the same degrees as the elements of the basis e1; : : : ; eN . We define a
differential on it by the rules

dej˛ D 0; dsij D
X
˛;ˇ

g˛ˇei˛e
j

ˇ
;

where gkl is the inverse of the matrix describing the pairing on V . (So
P
˛;ˇ g

˛ˇei˛e
j

ˇ

is the “diagonal class”.)

We define the dgca �GraV .n/ as the quotient of this algebra by the sub-dgca generated
by elements of the form e

j
1 � 1. Notice that there is a natural right action of the

symmetric group Sn on �GraV .n/ by permuting the superscript indices (the i and j
above) running from 1 to n.

Remark 10 All definitions are independent of the choice of graded basis of V and
can be given in a basis-free way.

Remark 11 The notation �GraV .n/ stands for “predual graphs” as one may represent
elements of �GraV .n/ as linear combinations of decorated directed graphs with n
vertices and an ordering of the edges. The decorations are elements of V that may
be attached to vertices; see Figure 1. Each such graph corresponds to monomial in
�GraV .n/, an edge between vertices i and j corresponds to one occurrence of sij and
a decoration by an element e˛ 2 V at vertex j corresponds to one occurrence of ej˛ .
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Directions of the edges and their ordering might be ignored, keeping in mind that then
a graph is only well defined up to a ˙1 prefactor. Notice that while both tadpoles and
double edges are allowed, for (anti)symmetry reasons one has that si i D 0 if D is odd
and sij sij D 0 if D is even.

3.1 Cooperadic comodule structure

Definition 12 Let D be a positive integer. For n� 2, the space �GraD.n/ is defined to
be the free graded commutative algebra generated by symbols sij in degree D� 1, for
i ¤ j , quotiented by the relations sij D .�1/Dsj i . We set �GraD.0/D �GraD.1/DR.

As before, the spaces �GraD.n/ can be seen as the span of undecorated graphs such
that every edge has degree D� 1.

Proposition 13 The spaces �GraD.n/ form a cooperad in dg commutative alge-
bras. The cooperadic structure is given by removal (contraction) of subgraphs; ie for
� 2 �Gra.n/, the component of �.�/ in �GraD.k/˝ �GraD.i1/˝ � � �˝ �GraD.ik/ is

(6)
X
˙� 0˝�1˝ � � �˝�k;

where the sum runs over all .kC1/–tuples .� 0; �1; : : : ; �k/ such that when each graph
�i is inserted at the vertex i of � 0, there is a way of reconnecting the loose edges such
that one obtains � .

To obtain the appropriate signs one has to consider the full data of graphs with an
ordering of oriented edges. In this situation the orientation of the edges of � is preserved
and one uses the symmetry relations on � in such a way that for all i D 1; : : : ; k, the
labels of the edges of the subgraph �i come before the labels of the edges of the
subgraph �iC1 and all of those come before the labels of the edges of the subgraphs � 0.
Notice that if one of the ij D 0, the cooperadic cocomposition is given by adding a
disconnected vertex to � 0 [20, Section 2.2.1]. The cooperad axioms are a straightforward
verification.

Proposition 14 The dg commutative algebras �GraV .n/ for nD 1; 2; : : : assemble to
form a cooperadic right �GraD–comodule �GraV in dg commutative algebras.

Proof The cooperadic coactions are defined through formulas similar to (6), and proof
of the associativity axiom is formally the same as the proof of the previous proposition.

To show that the differential respects the comodule structure it suffices to check this
on generators of the commutative algebra. This is clear for decorations ei˛ and for
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tadpoles si i . For edges connecting different vertices let us do the verification for
s12 2 �GraV .2/ for simplicity of notation. The only nontrivial commutative diagram
to check is

1 2 1 2 ˝ 1 ˝ 1„ ƒ‚ …
�GraV .2/˝

�GraD.1/˝
�GraD.1/

C 1 ˝ 1 2„ ƒ‚ …
�GraV .1/˝

�GraD.2/

C 1 ˝ 1 2„ ƒ‚ …
�GraV .1/˝

�GraD.2/

X
˛;ˇ

g˛;ˇ 1 2
e˛

eˇ

X
˛;ˇ

g˛;ˇ 1 2
e˛

eˇ
˝ 1 ˝ 1 C 0C

X
˛;ˇ

g˛;ˇ 1 ˝ 1 2

e˛ eˇ

�

d d

�

where the vertical arrows correspond to the differential and the horizontal ones to the
coaction.

3.2 Forms on (closed) manifolds

LetM be a closed smooth framed connected manifold of dimensionD and let FMM be
the Fulton–MacPherson compactification of the spaces of configurations of points ofM
as described in Section 2. It is naturally an operadic right module over the operad FMD ,
where the i th composition of c 2 FMD.k/ in a configuration Nc 2 FMM .n/ corresponds
to the insertion of the configuration c at the i th point of Nc. The parallelization of the
manifold ensures that this insertion can be made in a consistent way.

It follows that �PA.FMM / is naturally equipped with a right cooperadic coaction of
the cooperad (in dg commutative algebras) �PA.FMD/ (mind Remark 15 below). The
coaction is obtained from the restriction of forms to boundary strata where multiple
points collide.

There is a map of (“almost”) cooperads in dg commutative algebras

(7) �GraD!�PA.FMD/

given by associating to every edge the angle form relative to the two incident vertices
[28; 33]. More explicitly, one considers the standard volume form

�12 2�
D�1
PA .SD�1/D�D�1PA .FMD.2//;

which plays the role of the propagator. The forms �ij 2�D�1PA .FMD.2// are defined
by pulling back �12 by the appropriate projection map. Finally, the map (7) above is
obtained by extending the assignment sij 7! �ij to a map of dgcas.
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Remark 15 The functor �PA is not comonoidal since the canonical map

�PA.A/˝�PA.B/!�PA.A�B/

goes “in the wrong direction”; therefore �PA.FMD/ is not a cooperad. Nevertheless,
by abuse of language throughout this paper we will refer to maps such as (7) as maps
of cooperads (or cooperadic modules) if they satisfy a compatibility relation such as
commutativity of the diagram

�GraD.n/ �PA.FMD.n//

�PA.FMD.n� kC 1/� FMD.k//

�GraD.n� kC 1/˝
�GraD.k/ �PA.FMD.n� kC 1//˝�PA.FMD.k//

Since M is connected, its cohomology H �.M/ has a canonical augmentation given
by the constant functions on M , and since M is closed, Poincaré duality gives us a
pairing on H �.M/ of degree �D. We define, for any manifold M ,

�GraM WD
�GraH�.M/:

Let us denote by � WH �.M/ ,!�triv.M/ the embedding from Convention 7; that is,
for every ! 2H �.M/, �.!/ is a representative of the class !. Following Cattaneo and
Mnev [13], we can define a map of dg commutative algebras (which a priori depends
on various pieces of data)

(8) �GraM !�triv.FMM /��PA.FMM /

as follows: The map sends the generator sij for i ¤ j to �ij , where �ij is the form
constructed in the discussion preceding the proof of Proposition 8 with the additional
assumption from Remark 9. The map sends the decoration ! 2 H �.M/ on the j th

vertex to !j 2 �GraD to p�j .�.!//, where pj W FMM !M is the map that remembers
only the point labeled by j . Finally the map sends sjj to p�j �, where � is as in (4).

Lemma 16 The map �GraM !�PA.FMM / is a map of dg Hopf collections , compat-
ible with the cooperadic comodule structures along the map �GraD!�PA.FMD/, in
the sense of Remark 15. In other words there is a map of 2–colored dg Hopf collections ,

�GraM
�GraD!�PA.FMM / �PA.FMD/;

compatible with the (2–colored ) cooperadic cocompositions.
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Proof The compatibility with the differentials is clear for every generator of �GraM
except possibly sjj , for which one uses (5). By definition the map consists of morphisms
of commutative algebras; therefore it is enough to check the compatibility of the
cocompositions on generators. For elements ej˛ this is clear. For the other generators
we will sketch the verification for the case of s12 2 �GraM .2/ for simplicity of notation.

The composition map in .FMM ; FMD/ is done by insertion at the boundary stratum.
Since the cocomposition map �PA.FMM /!�PA.FMM /ı�PA.FMD/ is given by the
pullback of the composition map we get, using (4),5

�12 2�PA.FMM .2//

7! �12˝ 1˝ 1„ ƒ‚ …
�PA.FMM .2//˝�PA.FMD.1//˝�PA.FMD.1//

C 1˝�12C �˝ 1„ ƒ‚ …
�PA.FMM .1//˝�PA.FMD.2//

:

On the other hand, the corresponding cocomposition �GraM ! �GraM ı �GraD given
by de-insertion sends s12 to

1 2 ˝ 1 ˝ 1„ ƒ‚ …
�GraM .2/˝�GraD.1/˝�GraD.1/

C 1 ˝ 1 2„ ƒ‚ …
�GraM .1/˝�GraD.2/

C 1 ˝ 1 2„ ƒ‚ …
�GraM .1/˝�GraD.2/

I

therefore the cocomposition is respected by the map.

4 Twisting GraM and the comodule �GraphsM

Let GraD and GraV be the duals of �GraD and �GraV , respectively. GraV is an operadic
right GraD–module in dg cocommutative coalgebras.

Recall that there is a map of operads ƒD�1Lie!GraD given by mapping the generator
� 2ƒD�1Lie.2/ to the single edge graph in GraD.2/ [45]. This extends to a map from
the canonical operadic right module

ƒD�1Lie ƒD�1Lie! GraM GraD

sending the generator � to s12 2 GraM .2/. One can then apply the right module
twisting procedure described in [45, Appendix I] to GraM GraD , thus obtaining the
bimodule TwGraM TwGraD .

5Notice that on the second summand �12 refers to the volume form of SD�1 D FMD.2/. We are using
Remark 9 to ensure that this term is indeed of that form.
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�
!

�

a b D h!; �i a b ; ds a D
a

�

Figure 2: Internal vertices are depicted in black. Gray vertices are either
internal or external vertices.

TwGraM can be described via a different kind of graphs. The space TwGraM .n/ is
spanned by graphs with n vertices labeled from 1 to n, called “external” vertices and
k indistinguishable “internal” vertices. Both types of vertices can be decorated by
elements of .H �.M//� (with �� 1, see Remark 17 below), that can be identified with
H jDj��.M/ via the canonical pairing. The degree of the internal vertices is D, the
degree of edges is 1�D and the degree of the decorations is the correspondent degree
in .H �.M//�, even if there is an identification with the cohomology. The differential
in TwGraM can be split into 3 pieces: d D�C dexC din D�C ds , where � is the
differential coming from GraM , that connects decorations by making an edge, dex splits
an internal vertex out of every external vertex and reconnecting incident edges in all
possible ways and din splits similarly an internal vertex out of every internal vertex;
see Figure 2.

Remark 17 Notice that due to �GraM being given by a quotient by ej1 �1, if a certain
vertex v of � 2 �GraM is decorated with the volume form on M , then we find as
summands of �.�/ all possibilities of connecting v to every other vertex in � .

The operad TwGraD is spanned by similar kinds of graphs, except that there are no
decorations. We will therefore also refer to the vertices of TwGraD as internal and
external.

The degrees of graphs in TwGraD are computed similarly, but the differential of
TwGraD is different (since GraM is twisted as a Lie–module whereas GraD is twisted
as an operad under Lie). Not only there is no � term, but also the splitting piece has an
extra term subtracting all possible ways of adding a univalent internal vertex.

We are interested in a suboperad of TwGraD , since TwGraD is in homologically “too
big”. The following result originates in [27; 33].

Proposition 18 [45] The operad TwGraD has a suboperad that we call GraphsD
spanned by graphs � such that :
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� All internal vertices of � are at least trivalent ,

� � has no connected components consisting only of internal vertices.

Moreover there is a cooperadic quasi-isomorphism

�GraphsD!�PA.FMD/;

extending the map (7).

This quasi-isomorphism is defined by integrating over all possible configurations
of points corresponding to the internal vertices, a formula similar to the one from
Lemma 19.

We will from now on interpret TwGraM as a right GraphsD–module.

Let �TwGraM be the cooperadic right �GraphsD–comodule that is (pre)dual to TwGraM.

The differential in �TwGraM decomposes as d D ıcutC ıcontr, where ıcut is the piece
originating from �GraM that splits edges into “diagonal classes” and ıcontr contracts
any edge adjacent to one or two internal vertices.

Lemma 19 For M a closed compact framed connected manifold as above there is a
natural map of right cooperadic comodules

!� W
�TwGraM !�PA.FMM /;

extending the map f W �GraM !�PA.FMM / from (8).

Proof Let � be a graph in �GraM .nCk/Sk � �TwGraM .n/, ie � has n external and
k internal vertices. Let us consider f .�/ 2�PA.FMM .nC k//, the image of � under
the map (8). We define !� to be the integral of f .�/ over all configurations of the
internal vertices. Concretely, if FMM .nCk/! FMM .n/ denotes the map that forgets
the last k points, then !� is given by the fiber6 integralZ

FMM .nCk/!FMM .n/

f .�/:

The commutativity with the right cooperadic cocompositions is formally the same
as why �TwGraD ! �PA.FMD/ is a map of cooperads — see [33, Section 9.5] —
together with the fact that the propagator on FMM on clusters of points is given by

6Notice that here we make use of the fact that f .�/ is actually in �triv.FMM .nC k//.
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the corresponding propagator of FMD . It remains to check the compatibility of the
differentials.

Notice that �TwGraM is a quasifree dgca generated by internally connected graphs, ie
graphs that remain connected if we delete all external vertices. Since the map !� is
compatible with the products, it suffices to check the compatibility of the differentials
on internally connected graphs. Let � 2 �TwGraM .n/ be such a graph with k internal
vertices.

If we denote by F the fiber of the map FMM .nC k/! FMM .n/, we have, by Stokes’
theorem,

d!� D

Z
F

df .�/˙

Z
@F

f .�/:

If we compute d� D ıcut�C ıcontr� , we retrieve

!ıcut� D

Z
F

f .dcut�/D

Z
F

df .�/:

The boundary of the fiber decomposes into various pieces, namely

@F D
[

n<i;j�nCk

@i;jF [
[
a�n

n<i�nCk

@a;iF [ @�3F;

where @i;jF is the boundary piece where points i and j (corresponding to internal
vertices) collided, @a;iF is the boundary piece where point i (corresponding to an
internal vertex) collided with point a (corresponding to an external vertex) and @�3F
is the boundary piece in which at least three points corresponding to internal vertices
collided.

If points i and j are not connected by an edge in � , then
R
@i;jF

f .�/D 0. To see this,
note that this integral has the form

R
@i;jF

f .�/D
R
i f .�/jiDj

R
SD�1 1D 0. Here the

integral vanishes by degree reasons since there is no top degree component of the form
on the factor SD�1. Here we used that the tangent bundle is trivialized. However, the
same argument goes through without using this feature by using trivializations of the
tangent bundle.

If points i and j are connected by an edge, then by property (ii) of Proposition 8
we have

R
@i;jF

f .�/ D !�=e, where �=e is the graph � with edge e contracted.
An analogous argument for the boundary pieces @a;iF allows us to conclude that
!d� D d!� ˙

R
@�3F

f .�/.
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The vanishing of
R
@�3F

f .�/ results from Kontsevich’s vanishing lemmas. Concretely,
suppose there are 3� l � k points colliding together. By integrating over the l points
first we obtain an integral of the form

R
FMD.l/

�, where � is a product of �i;j . If the
dimension D is at least 3, this integral vanishes as in [26, Lemma 2.2], using property
(iii) of Proposition 8.

To factor the integral we used the trivialization of the tangent bundle in this step. For
later use we shall however remark that this is not necessary. More precisely, let the
full subgraph on the “colliding” vertices be 
 . Then by the same argument as in the
proof of [26, Lemma 2.2], using property (iii) of Proposition 8, we may assume that
all vertices of 
 have valence � 3. But then the inner integral describes a form of
degree � 3

2
l.D � 1/� lDCDC 1 D 1

2
l.D � 3/CDC 1 > D on M , and M is of

dimension D. Hence this integral must vanish.

If DD 2, because of property (ii) of Proposition 8 we can use the Kontsevich vanishing
lemma from [28, Section 6.6] to ensure the vanishing of the integral.

4.1 The full graph complex and GraphsM

The map constructed in Lemma 19 is not (in general) a quasi-isomorphism and the
fundamental obstruction is the existence of graphs containing connected components of
only internal vertices in �TwGraM . The desired complex �GraphsM will be a quotient
of �TwGraM through which the map !� factors. A formal construction can be done
making use of the full graph complex that we define as follows.

Definition 20 The full graph complex of M , �fGCH�.M/ is defined to be the complex
�TwGraM .0/ consisting of graphs with no external vertices. This vector space forms a
differential graded commutative R–algebra with product defined to be the disjoint union
of graphs. We reserve the symbol fGCH�.M/ D .

�fGCH�.M//
� for the dual complex

and the symbol GCH�.M/ � fGCH�.M/ for the subcomplex of connected graphs.

The vector space �TwGraM can be naturally regarded as a left module over the al-
gebra �fGCH�.M/, where the action is given by taking the disjoint union of graphs.
Furthermore, we define the partition function

(9) ZM W
�fGCH�.M/!R

to be the map of dg commutative algebras obtained by restriction of the map !� from
Lemma 19.
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There is a commutative diagram of dg commutative algebras and modules

�fGCH�.M/
�TwGraM

R �PA.FMM /

ZM !�

Definition 21 The right �GraphsD cooperadic comodule �GraphsM is defined by

�GraphsM DR˝ZM
� TwGraM :

Remark 22 We pick as representatives for a basis of �GraphsM the set of graphs that
contain no connected components without external vertices. With this convention it
still makes sense to talk about the total number of vertices of a graph in �GraphsM .

Notice that as a consequence, part of the differential of �GraphsM might reduce the
number of vertices by more than 1 by “cutting away” a part of the graph that contains
only internal vertices, which did not happen with �TwGraM .

Corollary 23 The map �TwGraM ! �PA.FMM / defined in Lemma 19 induces a
map of cooperadic comodules �GraphsM !�PA.FMM /, still denoted by !�.

Remark 24 One may also endow fGCH�.M/ with the (free) product given by union
of graphs. The differential is not a derivation with respect to this product, but it is
a coderivation and it splits into a first-order and a second-order part, say ı1 C ı2.
Concretely, the second-order part ı2 replaces a pair of H �.M/–decorations in different
connected components by an edge, while the first-order piece splits vertices and joins
decorations in the same connected component. By Koszul duality, the commutator of
the product and the operator ı2 defines a Lie bracket of degree 1 on fGCH�.M/, which
reduces to a Lie bracket on the connected piece GCH�.M/.

Now the partition function ZM 2 fGCH�.M/ is a map from the free graded commuta-
tive algebra �fGCH�.M/ and hence completely characterized by the restriction to the
generators, ie to the connected graphs, say zM 2 GCH�.M/. The closedness of ZM
then translates to the statement that the connected part zM satisfies the Maurer–Cartan
equation. See Section 7.1 for details.

To summarize, we constructed a cooperadic right Hopf comodule �GraphsM . As a
vector space, �GraphsM .n/ is spanned by graphs with n labeled external vertices and
an unspecified number of indistinguishable internal vertices that can be decorated by
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(possibly multiple) cohomology classes of degree at least 1, under the condition that
there are no connected components without external vertices:

1 2 3 4

!1 !1

!2 !3 2
�GraphsM .4/

There is a graded commutative algebra structure given by superposition of external
vertices:

1 2.

!
�

1 2

.
�
D 1 2.

!

.
�

The differential ı splits as ı D ıcontrC ıcut, where ıcontr contracts edges adjacent to
at least one internal vertex and ıcut splits any edge into two decorations given by the
diagonal class of M . Due to the constraint of not allowing connected components
without external vertices, ıcutD�

�CıZM splits again into two pieces, �� which does
not create forbidden graphs and ıZM that when creating such forbidden connected
components transforms them into a scalar as prescribed by the partition function ZM :

ıcontr a

.

!

D a

!

; �� a b D

X
ei basis ofH�.M/ ei

e�i

a b

ıZM
:

.!

�
D

X
ei basis ofH�.M/

ZM

�
ei

:
.!

�

�
e�i C � � �

The cooperadic right comodule structure is obtained by collapsing subgraphs containing
at least one external vertex into a single external vertex.

4.2 Historic remark

The above graph complexes can be seen as a version of the nonvacuum Feynman
diagrams appearing in the perturbative expansion of topological field theories of AKSZ
type, in the presence of zero modes. In this setting the field theories have been studied
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by Cattaneo and Felder [12] and Cattaneo and Mnev [13], whose names we hence
attach to the above complexes of diagrams, though the above construction of �GraphsM
does not appear in these works directly. Furthermore, it has been pointed out to us by
A Goncharov that similar complexes have been known by experts before the works
of the aforementioned authors. Finally, in the local case the construction is due to
M Kontsevich [27].

5 Cohomology of the CFM (co)operad

The following theorem relates the right GraphsD–module GraphsM with the right
FMD–module FMM .

Theorem 25 The map !� W �GraphsM !�PA.FMM / established in Corollary 23 is a
quasi-isomorphism. Similarly, the composition map

Chains.FMM /!�PA.FMM /
� !
�
��! GraphsM

is a quasi-isomorphism of right modules.

Note that there is in general no known explicit formula for the cohomology of the
configuration spaces FMM .n/ on a manifold. However, two spectral sequences con-
verging to the (co)homology are known, one by Cohen and Taylor [15] and one by
Bendersky and Gitler [4]. Both spectral sequences have been shown to be isomorphic
(via Poincaré duality) from the E2 term on by Felix and Thomas [19]. The E2 term
is the cohomology of a relatively simple complex described below. It was shown
by B Totaro [44] and I Kriz [30] that the spectral sequence abuts at the E2 term for
smooth projective varieties. However, it does not in general abut at the E2 term; a
counterexample was given in [19].

The strategy to prove Theorem 25 will be as follows. We will compare the double
complex BG giving rise to the Bendersky–Gitler spectral sequence (its definition will
be recalled below) to �GraphsM . There is a complex fBG quasi-isomorphic to BG
that comes with a natural map f W fBG! GraphsM . Our goal is to show that f is a
quasi-isomorphism, and for that we set up another spectral sequence. The detailed
proof is contained in Section 5.6.

5.1 The Bendersky–Gitler spectral sequence

Let us recall the definition of the Bendersky–Gitler spectral sequence. See also the
exposition in [19].
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Recall that the configuration space of n points in M is Confn.M/ WDM n n�, where
�D f.p1; : : : ; pn/ j 9i ¤ j W pi D pj g. By Poincaré–Lefschetz duality,

H�d .Confn.M//ŠHn dim.M/�d .M n; �/:

The relative cohomology H �.M n; �/ on the right is the cohomology of the complex

H �.M n/!H �.�/:

The left-hand side is the cohomology of �PA.M/˝n. The right-hand side may be
computed as the cohomology of the Čech–de Rham complex corresponding to any
covering of �. To obtain the Bendersky–Gitler double complex one takes the cover of
the diagonal by the sets

Ui;j D fpi D pj g ��:

The Bendersky–Gitler complex is the total complex of the double complex obtained
using the natural quasi-isomorphism �PA.M/˝n!�PA.M

n/, ie

BG.n/ WD Total.�PA.M/˝n! Čech–de Rham.�//:

By the statements above and a simple spectral sequence argument, it follows that
H �.BG.n//ŠH.M n; �/.

For what we will say below it is important to describe BG.n/ in a more concise way.
Elements of BG.n/ can be seen as linear combinations of decorated graphs on n vertices,
the decoration being one element of �PA.M/ for each connected component of the
graph. The degree of such a graph is computed as

.degree/D #.edges/C #.total degree of decorations/�n � dim.M/:

The differential is composed of two parts, one of which comes from the de Rham
differential and one of which comes from the Čech differential:

dtotal D ddRC ı:

Concretely, ı adds an edge in all possible ways, and multiplies the decorations of the
connected components the edge joins.

Remark 26 The original construction of the Bendersky–Gitler spectral sequence uses
the de Rham complex ofM , but since there is only semialgebraic data involved, namely
intersections of sets Ui;j ŠM n�1, we are allowed to replace differential forms by
piecewise algebraic (PA) forms.
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5.2 A general construction

Recall that the monoidal product of symmetric sequences ı is given by

.S ıS 0/.n/D
M

kDk1C���Ckn

S.k/˝S 0.k1/˝ � � �˝S 0.kn/˝RŒSh.k1; : : : ; kn/�;

where Sh.k1; : : : ; kn/ are the k1; : : : ; kn shuffles. Let C be a cooperad, M be a co-
operadic right C–comodule with coaction �M WM!M ı C, and let A be some dg
commutative algebra, which can be seen as a symmetric sequence concentrated in
arity 1. Then the spaces

M.n/˝A˝n D .M ıA/.n/

assemble into another cooperadic right C–comodule.

More formally, since A is a dg commutative algebra, for every symmetric sequence S
there is a morphism

s W S ıA! A ıS

given by the multiplication in A.

The coaction of C on M ıA is given by the composition of the maps

M ıA �MıidA
�����! .M ı C/ ıAŠM ı .C ıA/ idMıs

���!M ı .A ı C/Š .M ıA/ ı C:

It is a straightforward verification to check that the axioms for cooperadic comodules
hold.

5.3 The definition of eBG

Let C be a coaugmented cooperad and M be a right C–comodule. Applying the
cobar construction to the cooperad C we obtain an operad �.C/. Applying the cobar
construction to the comodule M we obtain a right �.C/–module ��.C/.M/, also
denoted just by �.M/. As a symmetric sequence, �.M/ D M ı �.C/ and the
differential splits as d D d1C d2C d3, where d1 comes from the differential in M,
d2 comes from the differential in �.C/ and d3 is induced by the comodule structure.
Of course, if A is a dg commutative algebra, then replacing M by M ıA we obtain a
right �.C/–module �.M ıA/. We can now define

fBG WD�ƒD�1L1.s
�DƒDcoComm ı�PA.M//;
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where on the right-hand side we consider s�DƒDcoComm as a right comodule over
ƒDcoComm and then we use the construction from the previous section that gives us
a ƒDcoComm–right comodule structure on s�DƒDcoComm ı�.M/. Notice that the
operadic cobar construction is given by

�.ƒDcoComm/D�..ƒD�1Lie/_/DƒD�1L1:

Up to degrees, one can picture fBG as multiple (“commuting”) L1 words, each labeled
by a PA form onM . Besides the de Rham and theL1 differential, the cobar differential
acts by merging two L1 words while multiplying the associated forms.

5.4 Some other general remarks and the definition of sBG

Let P be a Koszul operad, P_ the Koszul dual cooperad and P1D�.P_/ the minimal
cofibrant model for P . There are bar and cobar construction functors between the
categories of right P–modules and right P_–comodules,

BP_ WMod–P$ coMod–P_ W�P :

Given a right P_–comodule M there are two ways to construct a right P1–module:

(1) Take the right P1–module �P1.M/.

(2) Take�P.M/ and consider it as a right P1–module via the morphism of operads
p W P1! P .

Lemma 27 Let P be a Koszul operad with zero differential such that P.0/D 0 and
P.1/DR and let M be a right P_–comodule. Then there is a canonical (surjective)
quasi-isomorphism

� W�P1.M/!�P.M/:

Proof As symmetric sequences, �P1.M/ DM ıP1 and �P.M/ DM ıP . We
define � D idM ı p. It is clear that each piece of the differential commutes with � .
The remaining claim that � is a quasi-isomorphism follows from a spectral sequence
argument.

Concretely, we consider a filtration Fp�P1.M/ spanned by elements for which the
sum of the degree in M with the weight in P1 (the amount of elements from P_ used)
does not exceed p. On the first page of the spectral sequence given by this filtration
we recover �P.M/ and thus the result follows.

Now let us give the definition of sBG,

sBGD�ƒD�1Lie.s
�DƒDcoComm ı�PA.M//;
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where on the right we consider ƒDcoCommD .ƒD�1Lie/_ as a right comodule over
itself and the algebra of differential forms �PA.M/. Then, by the lemma above, we
see that there is a canonical quasi-isomorphism

fBG! sBG:

Similar to fBG, one can picture sBG as connected components of Lie words, each
labeled by a PA form on M . One can consider a basis of Lie.n/ consisting of graphs
on n vertices, with n� 1 edges, such that there are no two edges .i; r/ and .j; r/ with
r bigger than both i and j . Taking the degrees and differentials into account, we see
that sBG.n/ is precisely what in [19] is denoted by E.n;A/, for AD�PA.M/.

Furthermore it was shown in [19, Proposition 2.4] that there is a canonical quasi-
isomorphism

BG! sBG:

In particular one obtains:

Corollary 28 The following symmetric sequences are isomorphic:

H�.Conf�.M//ŠH.BG/ŠH.sBG/ŠH.fBG/:

5.5 The map eBG! GraphsM

The goal of this subsection is to construct the map of right ƒD�1L1–modules

ˆ W fBG! GraphsM :

Since fBG WD�ƒD�1L1.s
�DƒDcoComm ı�PA.M// is quasifree as right ƒD�1L1–

module, it suffices to define our map ˆ on the module generators and verify that this
map is compatible with the differential. Note that s�DƒDcoComm.n/ D RŒnD��n
is one-dimensional, generated by the n–fold coproduct �n. We define the map ˆ on
generators by setting, for ˛1; : : : ; ˛n 2�PA.M/ and � 2 �GraphsM ,

(10) .ˆ.�n˝˛1˝ � � �˝˛n//.�/ WD

Z
FMM .n/

.��1˛1/ � � � .�
�
n˛n/!� :

Here �j W FMM .n/! FMM .1/DM is the map that forgets the position of all points in
the configuration except for the j th point. Notice that the element �n˝˛1˝ � � �˝˛n
has degree �nD C j˛1j C � � � C j˛nj D �.dim.FMM .n// � j��1˛1j � � � � � j�

�
n˛nj/;

therefore F preserves degrees.
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A general element of fBG is a linear combination of elements obtained by acting with
elements of the operad `j 2ƒD�1L1 on generators,

x WD .�n˝˛1˝ � � �˝˛n/ ı .`1; : : : ; `n/:

For such elements x we have that ˆ.x/Dˆ.�n˝˛1˝� � �˝˛n/ı .`1; : : : ; `n/, using
the right action of ƒD�1L1 on GraphsM . This latter action factors through the right
action of GraphsD on GraphsM via the maps

ƒD�1L1
f
�! Chains.FMD/

!�
�! GraphsD:

Denoting the cooperadic coaction on � 2 �GraphsM by
P
� 0˝ 
1˝ � � � ˝ 
k , with


j 2
�GraphsD , this implies that

(11) ˆ.x/.�/D .ˆ.�n˝˛1˝ � � �˝˛n/ ı .`1; : : : ; `n//.�/

D

X
˙ˆ.�n˝˛1˝ � � �˝˛n/.�

0/ �
Y
j

Z
f .`j /

!
j

D

X
˙

Z
FMM .n/

.��1˛1/ � � � .�
�
n˛n/!� 0

Y
j

Z
f .`j /

!
j

D

Z
Fund.FMM .n//ı.f .`1/;��� ;f .`n//

.��i1˛1/ � � � .�
�
in
˛n/!� :

In the last line we are integrating over the fundamental chain of a boundary stratum
of FMM in which groups of points are infinitesimally close together. The indices
i1; : : : ; in shall be those of one (arbitrary) point in each such group. Furthermore, we
used the compatibility of the map ! with the operadic FMD–action on FMM . Using
the formula above we can show the following result.

Lemma 29 The map ˆ W fBG! GraphsM defined above is compatible with the dif-
ferentials and is hence a map of right ƒD�1L1–modules. It furthermore factorizes
through the adjoint !� of the map ! W �GraphsM !�PA.FMM / of Corollary 23 asfBG F

�!�PA.FMM /
� !�
�! GraphsM

with

F..�n˝˛1˝ � � �˝˛n/ ı .`1; : : : ; `n//.!/

D

Z
Fund.FMM .n//ı.f .`1/;���;f .`n//

.��i1˛1/ � � � .�
�
in
˛n/!:

Proof The factorization through !� is clear by (11).
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It remains to check that the differentials are preserved by ˆ. Note that the differential
on fBG decomposes into three terms, d D d�PA.M/ C dƒD�1Ł1 C dcobar, stemming
from the internal differentials on �PA.M/ and ƒD�1Ł1, and the cobar construction
respectively. Note that the second summand is zero on generators.

On the other hand we compute, applying Stokes’ theorem,

.ˆ.�n˝˛1˝�� �˝˛n//.d�/

D

Z
FMM .n/

.��1˛1/ � � �.�
�
n˛n/!d�

D

Z
FMM .n/

.��1˛1/ � � �.�
�
n˛n/d!�

D

nX
jD1

˙

Z
FMM .n/

.��1˛1/ � � �.�
�
j d˛j / � � �.�

�
n˛n/!�˙

Z
@FMM .n/

.��1˛1/ � � �.�
�
n˛n/!� :

The two terms exactly reproduce the differential on fBG. The first term corresponds to the
part from the internal differential on �PA.M/. The second term (the boundary integral)
produces the part of the differential from the cobar construction. More precisely, it is
the sum over codimension 1 boundary strata corresponding to some subset of the n
points colliding. But each such term is, using the computation (11) again, identified
with an action of a generator of ƒD�1L1, so that all these terms together assemble to
˙dcobarˆ.�n˝˛1˝ � � �˝˛n/.

5.6 The map eBG! GraphsM is a quasi-isomorphism

In this section we will show the following proposition:

Proposition 30 The mapˆ WfBG!GraphsM constructed above is a quasi-isomorphism.

There is a filtration on GraphsM by the number of connected components in graphs.
Concretely, let FpGraphsM be the set of elements of GraphsM which contain only
graphs with p or fewer connected components. There is a similar filtration on fBG com-
ing from the arity of elements of the generating symmetric sequence s�DƒDcoComm.
Concretely, elements of FpfBG are those elements of fBG that can be built without using
any generators �pC1; �pC2; : : : in ƒDcoComm. The filtration is aritywise bounded,
since the number of connected components in arity r is necessarily between 1 and r .

Lemma 31 The map ˆ from above is compatible with the filtration , ie

ˆ.FpfBG/� FpGraphsM :
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Proof The result is clear for generators of fBG, since graphs with n vertices cannot
have more than n connected components. In general ˆ is compatible with the filtration
since is a morphism of ƒD�1L1 right modules and the right action of ƒD�1L1
on GraphsM is given by the insertion of connected graphs which cannot increase the
number of connected components.

It follows that ˆ induces a morphism of the respective spectral sequences. We will
show the following lemma:

Lemma 32 The map ˆ induces an isomorphism at the first pages of the associated
spectral sequences.

The statement of the lemma is equivalent to saying that the graded version of ˆ,

grˆ W gr fBG! grGraphsM ;
is a quasi-isomorphism.

One can compute the cohomology of gr fBG explicitly.

Lemma 33 H.gr fBG/D .s�DƒDcoComm ıH �.M// ıƒD�1LieDW sBGH.M/.

Proof The differential on gr fBG is precisely the one induced by the de Rham differential
and the differential on ƒD�1L1. Therefore, by the Künneth formula,

H.gr fBG/DH.s�DƒDcoComm/ ıH.�PA.M// ıH.ƒD�1L1/

D .s�DƒDcoComm ıH �.M// ıƒD�1Lie:

Having fixed the embeddingH �.M/ ,!�PA.M/ and fixing any aritywise right inverse
(as cochain complexes) of the projection ƒD�1L1 ! ƒD�1Lie, from now on we
interpret the space sBGH.M/ (with zero differential) as a subcomplex of gr fBG.

Proposition 34 The map grˆ restricts to an injective map sBGH.M/! grGraphsM
and the inclusion morphism ˆ.sBGH.M// ,! grGraphsM is a quasi-isomorphism.

The proof is by an argument similar to the one used by P Lambrechts and I Volic in [33,
Lemma 8.3]. If we believe Proposition 34 for now, Lemma 32 follows as a corollary.

Proof of Proposition 30 As a consequence of Lemma 32, the map ˆ induces a
quasi-isomorphism at the level of the associated graded with respect to an (aritywise)
bounded filtration, and therefore is a quasi-isomorphism itself.
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5.7 Proof of Proposition 34

Proposition 35 The vector spaces sBGH.M/.n/ satisfy the recursion

(12) sBGH.M/.n/D sBGH.M/.n� 1/˝H
�.M/˚ sBGH.M/.n� 1/ŒD� 1�

˚n�1:

Proof We have

sBGH.M/.n/

D

M
i1C���CikDn

H �.M/˝kŒkD�˝ƒD�1Lie.i1/˝� � �˝ƒ
D�1Lie.ik/˝RŒSh.i1; : : : ; ik/�:

Let us take an element of sBGH.M/.n/ and consider two different cases. If the input
labeled by 1 corresponds to the unit 1 2ƒD�1Lie.1/, it is associated to an element of
H �.M/ and by ignoring these we are left with a generic element of sBGH.M/.n� 1/,
thus giving us the first summand of (12).

Alternatively, if the vertex labeled by 1 corresponds to some Lie word in ƒD�1Lie.ij /
with j > 1, the only possibility is that it came from the insertion of the generator
�2 2ƒ

D�1Lie.2/ in some other Lie word. Since there are n� 1 such choices and �2
has degree has degree 1�D, we obtain the summand sBGH.M/.n�1/ŒD�1�

˚n�1.

Lemma 36 The map grˆ restricts to an isomorphism from sBGH.M/.n/ onto its
image ˆ.sBGH.M/.n//� grGraphsM .n/.

Proof It suffices to show the injectivity of the map grˆwhen restricted to sBGH.M/.n/.

Recall that

sBGH.M/.n/

D

M
i1C���CikDn

H �.M/˝kŒkD�˝ƒD�1Lie.i1/˝� � �˝ƒ
D�1Lie.ik/˝RŒSh.i1; : : : ; ik/�:

Let us start by considering the case in which the numbers i1; : : : ; in are all equal to 1.
Let !1˝� � �˝!n 2H �.M/˝nŒnD�˝ƒD�1Lie.1/˝� � �˝ƒD�1Lie.1/. The element
ˆ.!1˝� � �˝!n/ 2 GraphsM .n/ is in principle a sum of many terms, but its projection
into the subspace of GraphsM .n/ made only of graphs with no internal vertices, no
more than one decoration per vertex, and precisely n connected components is simply
the graph

˙

1

!�1

2

!�2

: : : n

!�n
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where !�i is dual to !i under the pairing on H �.M/. This implies in particular that ˆ
is injective when restricted to H �.M/˝nŒnD�˝ƒD�1Lie.1/˝ � � �˝ƒD�1Lie.1/.

The same idea can be adapted for the case of arbitrary ij . The image of the elements
of sBGH.M/ might be very complicated, but to conclude injectivity it is enough to
see that the components on a “disconnected enough” subspace are different and by
compatibility with the L1–action these components are just given by insertion of
graphs representing L1 words.

Let p � 2f1;:::;ng denote a partition of the numbers 1; : : : ; n. To every such p we can
associate a subspace Vp � GraphsM .n/ spanned by graphs with no internal vertices
and such that the vertices labeled by a and b are on the same connected component if
and only if a and b are in the same element of the partition p.

Every partition p is determined the number of elements of the partition, which is a
number k � n, the sizes of the partitions, i1; : : : ; ik such that i1C � � �C ik D n and an
element of Sh.i1; : : : ; ik/ specifying which numbers are included in each element of
the partition. This data defines a subspace Wp of sBGH.M/.n/ and the map ˆ induces
maps ˆp W Wp ! Vp, where Vp D

L
p0 coarser than p Vp0 and similarly for Wp. It can

shown by induction on the size of the partition p that the maps ˆp are injective for
every partition p, so in particular for p the discrete partition we obtain the injectivity
of the full map.

This follows from the fact that a linear map f WA˚B! V is injective if its restriction
to both A and B is injective and f .A/\f .B/D 0 and in our case these two conditions
can be verified just by looking at the component of Vp � Vp.

Corollary 37 The family of graded vector spacesˆ.sBGH.M//�grGraphsM satisfies
the recursion

ˆ.sBGH.M/.0//DR;

ˆ.sBGH.M/.n//Dˆ.sBGH.M/.n�1//˝H
�.M/˚ˆ.sBGH.M/.n�1//ŒD�1�

˚n�1:

Proposition 34 will follow from showing that the inclusionˆ.sBGH.M// ,!grGraphsM
is a quasi-isomorphism and for this we will use some additional filtrations.

The differential on grGraphsM splits into the terms

ı D ısC�C�1;

where ıs is obtained by splitting vertices, � (the BV part of the differential) removes
two decorations and creates an edge instead and �1 connects a connected component
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of (possibly decorated) internal vertices to the given graph. Let us call the emv-degree
(edges minus vertices) of a graph the number

#.edges/� #.vertices/:

The differential can only increase or leave constant the emv degree. Hence we can put
a filtration on grGraphsM by emv degree. We will denote the associated graded by

gr0 grGraphsM :

The induced differential on the associated graded ignores the � part of the differential.

Lemma 38 H.gr0 grGraphsM /Dˆ.sBGH.M//.

Since in gr0 grGraphsM the� part of the differential is zero, all pieces of the differential
increase the number of internal vertices by at least one. To show this lemma, we will
put yet another filtration on gr0 grGraphsM by #.internal vertices/�degree. Let us call
the associated graded

gr00 gr0 grGraphsM :

Notice that in gr00 gr0 grGraphsM we have �D 0 and the only “surviving” pieces of �1
replace any decoration by an internal vertex with the same decoration or connect a
single internal vertex to another vertex of the graph. These pieces also appear in ıs and
it can be checked that they appear with opposite signs, thus canceling out.

Lemma 39 H.gr00 gr0 grGraphsM /Dˆ.sBGH.M//.

Proof Let us write V.n/ D gr00 gr0 grGraphsM .n/ for brevity. We will show that
H.V.n//Šˆ.sBGH.M/.n// by induction on n. We can split

V.n/D V0 ˚ V1 ˚ V�2

according to the valence of the external vertex 1 (where decorations are considered to
increase the valence of the vertices). The arrows indicate how the differential maps the
individual parts to each other. The complex V0 is isomorphic to V.n� 1/ and we can
invoke the induction hypothesis. For the remainder we consider a spectral sequence
whose first differential is V�2! V1. Concretely, we consider .Fk/k2Z, a descending
filtration V.n/ � � � � � Fk � FkC1 � � � � � 0, such that Fk is spanned by graphs of
degree at least k in which the vertex 1 is not 1–valent and by graphs of degree at least
k C 1 in which the vertex 1 has valence 1. The map V�2 ! V1 is injective and its
cokernel is generated by graphs of one of the following types:
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(1) Vertex 1 has a decoration and no incoming edges.

(2) Vertex 1 has no decoration and is connected to some other external vertex.

In the first case we obtain a complex isomorphic to V.n � 1/ for every choice of
decoration, with a degree shift given by the decoration. In the second case, each choice
of connecting external vertex yields a complex isomorphic to V.n� 1/ with a degree
shift given by the additional edge. This gives us the following expression of the first
page of the spectral sequence:

E1.V .n//DH.grV.n//D V0˚V.n� 1/˝H �.M/˚V.n� 1/ŒD� 1�˚n�1

D V.n� 1/˝H �.M/˚V.n� 1/ŒD� 1�˚n�1:

Under this identification, on the this page of the spectral sequence we obtain precisely
the differential of V.n�1/. Notice that V1˚V�2 is a double complex concentrated on
a double column and therefore the spectral sequence collapses at the second page E2.
From this observation we obtain the recursion

H.V.n//DH.V.n� 1//˝H �.M/˚H.V.n� 1//ŒD� 1�˚n�1;

which is the same as the recursion for ˆ.sBGH.M/.n//, as shown in Corollary 37. To
see that the inclusion ˆ.sBGH.M/.n//! V.n/ induces a quasi-isomorphism on the
second page of the spectral sequence, we start by noticing that the result holds triv-
ially on the 1–dimensional initial terms ˆ.sBGH.M/.0// and H.V.0//, and therefore
ˆ.sBGH.M/.n// and H.V.n// have the same dimension.

The second page of the inclusion map

ˆ.sBGH.M/.n�1//˝H
�.M/˚ˆ.sBGH.M/.n�1//ŒD�1�

˚n�1

!H.V.n�1//˝H �.M/˚H.V.n�1//ŒD�1�˚n�1

can be written as �
f11 f12
f21 f22

�
;

where f12 Wˆ.sBGH.M/.n�1//ŒD�1�
˚n�1!H.V.n�1//˝H �.M/ is actually the

0 map, since ˆ.sBGH.M/.n� 1//ŒD� 1�
˚n�1 corresponds to the image of elements

in H �.M/˝kŒkD�˝ƒD�1Lie.i1/˝ � � � ˝ƒ
D�1Lie.ik/ with i1 � 2 and the vertex 1

cannot be the only labeled vertex in its connected component. The maps f11 and f22
are isomorphisms by induction, and therefore the second page of the inclusion map is
an isomorphism, whence the result follows.
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Proof of Lemma 38 The E1 term of the spectral sequence is a quotient complex,
hence it abuts at that point.

Proof of Theorem 25 We have shown that the compositionfBG F
�!�PA.FMM /

� !�
�! GraphsM

is a quasi-isomorphism, but since the homology of �PA.FMM /
� is also isomorphic

to the other two homologies which are finite-dimensional in each arity and degree, it
follows that F and !� are quasi-isomorphisms themselves.

Consequentially, the map Chains.FMM /!�PA.FMM /
�!GraphsM is a composition

of quasi-isomorphisms, therefore is a quasi-isomorphism as well.

Remark 40 For the proof of Theorem 25 we consider the functor�PA of semialgebraic
forms, but one could equally use any contravariant functor� landing in dgca’s satisfying
the following properties:

� � is quasi-isomorphic to the Sullivan functor APL of piecewise-linear de Rham
forms.

� � admits pushforwards of the forgetful maps FMM .n/!FMM .n�k/ satisfying
the usual properties of fiber integrals, in particular Stokes’ theorem.

� � is “almost” comonoidal, as in Remark 15.

6 The nonparallelizable case

Let M be a closed oriented connected manifold. In this section we show that even
in absence of the parallelizability hypothesis, a slight variant of the collection of
commutative algebra �GraphsM is still a model of FMM .

In this respect it is not natural to consider graphs with tadpoles as the compatibility
of the differential of the map from Lemma 16 depended on the vanishing of the Euler
characteristic for those graphs. More precisely, the problem is that in the map of
Lemma 16 a tadpole edge is sent to a form whose coboundary is the Euler class.

We define �GraM �
�GraM to be the dg Hopf subcollection spanned by graphs without

tadpoles.

Note that this subcollection is indeed closed under the product and differential. It
furthermore retains a ƒD�1Lie�–comodule structure from �GraM , but not the full
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�GraD–comodule structure, as the proof of Proposition 14 fails in the absence of
tadpoles. Furthermore, the map (8) naturally restricts to a map of dg Hopf collections

�GraM !�triv.FMM /��PA.FMM /;

which is well defined even if M has a nontrivial Euler class. The twisting construction
of Section 4 and in particular the construction of the map ! of Corollary 23 also
naturally yields a map

! W �GraphsM !�PA.FMM /; � 7! !� ;

where we denote by �GraphsM �
�GraphsM the subcollection spanned by graphs

without tadpoles.

To be clear, if M has nonvanishing Euler class then the map ! of Corollary 23 is not a
priori not well-defined on GraphsM because we would need to send a tadpole edge to
a form whose coboundary is the Euler class. Furthermore, the partition function (9) is
only well defined on the tadpole-free part �fGC

H�.M/
� �fGCH�.M/. Hence one does

not even get a well-defined (square-zero) differential on the graded collection �GraphsM
from the partition function, one only has this on the tadpole-free part �GraphsM .

In particular, we note that the differential on �GraphsM can indeed not produce tadpoles.
The only term in the differential that is able to produce a tadpole is the edge contraction
in the presence of a multiple edge. However, multiple edges are zero by symmetry
reasons for even D while tadpoles are not present by symmetry reasons for odd D,
hence no problem arises.

Also, ifM is not parallelized, there is no consistent way of defining a right FMD–action
on FMM . Nonetheless, disregarding the cooperadic coactions, the map

�GraphsM !�PA.FMM /

is well defined as a map of dgcas since the proof of Lemma 19 uses parallelizability
condition only for the tadpoles and the coaction; see the remarks within that proof on
using the trivialization of the tangent bundle.

Before proceeding, let us furthermore show that the exclusion of tadpoles has no effect
on the homotopy type, provided �GraphsM is well defined. (See [45, Proposition 3.4]
for similar results and arguments.)

Proposition 41 Suppose that M is parallelizable (or at least has vanishing Euler
class), so that the dg Hopf collection �GraphsM is well defined. Then the inclusion
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�GraphsM !
�GraphsM is a quasi-isomorphism of collections of dg commutative

algebras.

Proof sketch We consider a spectral sequence on �GraphsM whose associated graded
has a differential contracting internal vertices with only an adjacent edge and a tadpole
along the nontadpole edge:

d0

:

D

Such a spectral sequence can be obtained by filtering first by the number of tadpoles
and then by lCdegree, where l is the sum of lengths of maximal connected subgraphs
consisting of 2–valent internal vertices and one internal vertex with just a tadpole at
the end.

We can then set up a homotopy h that splits out an internal vertex with a tadpole:

h D

We have d0hC hd0 D T id, where T is the number of tadpoles, whence it follows that
H.�GraphsM ; d0/D

�GraphsM .

Finally, one has the following version of Theorem 25 for nonparallelizable M .

Theorem 42 Let M be a closed oriented manifold. The map

!� W
�GraphsM !�PA.FMM /

is a quasi-isomorphism of symmetric sequences of dg commutative algebras. Similarly ,
the composition map

Chains.FMM /!�PA.FMM /
� !
�
��! GraphsM WD .

�GraphsM /
�

is a quasi-isomorphism.

Proof We follow the proof of Theorem 25. First we note that while in general one does
not have a right FMD–module structure on FMM if M is not framed, the insertion of
fundamental chains of FMD at points in FMM is independent of the framing so in fact
it gives us a well-defined operadic action Chains.FMM /ıƒD�1L1! Chains.FMM /.
Similarly, as mentioned above, GraphsM inherits a right ƒD�1L1–module structure
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from the one on GraM WD .
�GraM /

�. These structures suffice to define the map of
right ƒD�1L1–modules

ˆ W fBG! GraphsM

as in Section 5.5 by formula (10) (respectively (11)). Furthermore, Lemma 29 does not
make use of tadpoles and holds in this case as well.

Furthermore, the remaining arguments of Sections 5.6 and 5.7 leading to Theorem 25
are agnostic to the presence or absence of parallelizability of M or tadpoles in graphs,
and hence also show Theorem 42.

7 A simplification of �GraphsM and relations to the literature

7.1 An alternative construction of GraphsM .

Recall that in Section 4 the space �GraphsM was constructed by identifying connected
components without external vertices with real numbers via a “partition function”,
which is a map of commutative algebras ZM W �fGCH�.M/!R.

In this subsection and the next we present an alternative construction of GraphsM that
will allow us to understand better the relevance of the partition function ZM in the
homotopy type of GraphsM .

Notice that �fGCH�.M/ is a quasifree commutative algebra generated by its subspace
of connected graphs �GCH.M/. The differential d on �fGCH�.M/ defines then a
ƒL1 coalgebra structure on �GCH�.M/. In fact, since the differential can increase the
number of connected components by at most one, this is in fact a strict Lie coalgebra
structure.

The dual Lie algebra structure is denoted by GCH�.M/ D .
�GCH�.M//

� and is repre-
sented by infinite sums of graphs decorated by H�.M/ (or dually by H �.M/, via the
Poincaré pairing). The Lie bracket Œ�; � 0� is given by summing over all possible ways
of selecting a decoration in � and another decoration in � 0 and connecting them into
an edge, with a factor given by their pairing. The differential acts by vertex splitting
and joining decorations.

It follows that maps of dg commutative algebras �fGCH�.M/!R are identified with
maps in the Lie algebra satisfying the Maurer–Cartan equation,

MC.GCH�.M//D Homdgca.
�fGCH�.M/;R/:
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We denote by zM 2GCH�.M/ the Maurer–Cartan element corresponding to the partition
function ZM . If we consider the subrepresentation S � TwGraM given by graphs
with no connected components consisting only of internal vertices, then GraphsM is
obtained by twisting S by the Maurer–Cartan element zM , as recalled in the following
section.

Analogously, we denote by GCM WD GCzM
H�.M/

the Lie algebra obtained by twisting
with the Maurer–Cartan element zM .

For later use let us also split the Maurer–Cartan element

zM D

DX
i;jD1

gij ei ej

„ ƒ‚ …
DWz0

C z0M

into a part z0 given by graphs with exactly one vertex and 2 or 1 decorations and
a remainder z0M WD zM � z0. Note in particular that z0 is determined solely by the
nondegenerate pairing on H.M/. The element z0 is itself a Maurer–Cartan element,
and below we will consider the twisted dg Lie algebra

GC0H.M/ WD GCz0
H.M/

;

and consider z0M as a Maurer–Cartan element in GC0H.M/.

7.2 Twisting of modules

While the differential of GraphsM can be very nonexplicit, expressing it as twist by a
Maurer–Cartan element opens the door to simplifications of the model, as long as we
have some control over the gauge equivalence class of the Maurer–Cartan element.

Indeed, let us pause for a moment to consider the following general situation. Suppose
g is a dg Lie algebra, acting on M , where M can be just a dg vector space, or a
(co)operad or a (co)operadic (co)module, or a pair of a (co)operad and a (co)operadic
(co)module. In any case we require the g–action to respect the given algebraic structure,
in the sense that the action is by (co)derivations.

Suppose now that m 2 g is a Maurer–Cartan element, ie dmC 1
2
Œm;m� D 0. Then

we can form the twisted Lie algebra gm with the same Lie bracket, but differential
dm D d C Œm;��. We can furthermore form the twisted (gm–)module Mm, which
is the same space as M , carrying the same action and underlying algebraic structure
(operad, operadic module, etc), but whose differential becomes

dm D d Cm�;
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where m� shall denote the action of m and we denote the original differential on M
by d . Next suppose that m0 2 g is another Maurer–Cartan element. We say that m
and m0 are gauge equivalent if there is a Maurer–Cartan element ym 2 gŒt; dt � whose
restriction to t D 0 agrees with m, and whose restriction to t D 1 agrees with m0. More
concretely,

ymDmt C dtht ;

where mt can be understood as a family of Maurer–Cartan elements in g, connected by
a family of infinitesimal homotopies (gauge transformations) ht . The Maurer–Cartan
equation for ym translates into the two equations

dmt C
1
2
Œmt ; mt �D 0;

@mt
@t
C dht C Œht ; mt �D 0:

Now suppose that g is pro-nilpotent. Then we may form the exponential group Exp.g/,
which is identified with the degree 0 subspace g0 � g, with group product given by the
Baker–Campbell–Hausdorff formula. We can integrate the flow of ht into the element
Ht 2 Exp.g/, which acts on x 2 g by

Ht .x/D exp.ht / � x D ˛C
X
n�0

adn.ht /
.nC 1/Š

.Œht ; x�� dht /:

The action of Ht is compatible with the Lie bracket and has the property that, for every
x 2 g,

Ht .dxC Œm; x�/D .d C Œmt ;��/Ht .x/:

In particular, the action of H1 induces an isomorphism of dg Lie algebras,

H1 W g
m
! gm

0

:

Next suppose that also the action of g on M is pro-nilpotent. Then, by a similar
argument, the action of H1 yields an isomorphism

(13) H1� WM
m
!Mm0 :

Now let us relate these general statements to the objects of relevance in this paper. First
consider gD GCD to be the graph complex, but as a graded Lie algebra, ie considered
with zero differential. The correct differential on the graph complex is then obtained
by twisting with the Maurer–Cartan element [45]

m0 D :

Furthermore, consider M D �GraphsD , again with zero differential. There is a natural
action of g on M [17; 45]. The differential on �GraphsD DMm0 is then reproduced
by twisting with m0.
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Secondly, the above picture can be extended to include the (co)operadic right modules.
First, GCD acts on GCH.M/. We take

gD GCD ËGCH.M/;

where we consider again the first factor with trivial differential, and the second factor
only with the part of the differential joining two decorations to an edge. The element
m0 from above is then a Maurer–Cartan element, and twisting by this Maurer–Cartan
element reproduces the differential on the factors of g considered above. Similarly, we
may consider the Maurer–Cartan elements

m0 WDm0C z0 or mM WDm0C zM ;

where z0 and zM are as above. Twisting then reproduces on the second factor either
the differential on GC0H.M/, or that on GCM .

Next consider for M the pair consisting of a cooperad and a comodule

.�GraphsD;
�GraphsM /;

where the first factor we consider with the zero differential, and in the second we
consider only the part that connects two decorations to an edge. Then twisting with the
Maurer–Cartan element mM reproduces the full differential on the factors.

Remark 43 An immediate consequence of the above way of constructing �GraphsM
is that one has a large class of (co)derivations at hand. Namely, we have an action of
gzM onM zM . In particular, it was shown in [45] that the 0th cohomology of GC2 is the
Grothendieck–Teichmüller algebra grt1. Hence, overstretching the analogy a bit, we
may consider the dg Lie algebra gzM , consisting of factors GCD and GCM , as a version
of the Grothendieck–Teichmüller dg Lie algebra associated to the manifold M . Note
however that this “definition” is a little provisional; a more invariant definition would
be to define the M–Grothendieck–Teichmüller Lie algebra as the homotopy derivations
of a real model of the pair .FMD; FMM /. It is yet an open question in how far the
homotopy derivations in gzM exhaust all homotopy derivations. For example, gzM

itself does not readily capture the (nonnilpotent) action of the Lie algebra o.H.M//

(of linear maps that preserve the pairing) on all objects involved.

Next, let us note that the right comodule �GraphsM is unaltered (up to isomorphism) if
one replaces the Maurer–Cartan element zM used in its definition by a gauge equivalent
Maurer–Cartan element. Indeed, the action of GCH.M/ is nilpotent since the action
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of any element in GCH.M/ always kills at least on vertex. Hence given two gauge-
equivalent Maurer–Cartan elements, an explicit isomorphism between the two versions
of �GraphsM produced is given by (13).

Finally, let us note that the above construction works equally well for the tadpole-free
version �GraphsM of �GraphsM . In this case, one needs to work with the tadpole-free
version of the graph complex GCM . Also, in this case one does not have a right
�GraphsD coaction.

7.3 Valence conditions

In this section we show that the Hopf comodule �GraphsM is quasi-isomorphic to
(essentially) a quotient that can be identified with graphs containing only � 3–valent
internal vertices. For this, we would like that the Maurer–Cartan element (partition
function) z0M above vanished on the subspace spanned by graphs containing a � 2–
valent internal vertex. While this might not be the case in general, we show that zM is
gauge equivalent to a partition function satisfying this property.

Lemma 44 The subspace GC�3
H�.M/

� GC0H�.M/ spanned by graphs having no 1 or
2–valent vertex is a dg Lie subalgebra.

Proof GC�3
H�.M/

is closed under the Lie bracket since it does not decrease the valence
of vertices. It remains to check the stability under the differential.

Recall that the differential has three pieces, a first one that splits an internal vertex, a
second one that joins decorations into an edge, and a third one arising from the twist
by z0. Joining decorations into an edge cannot decrease the valency on vertices and
therefore preserves GC�3

H�.M/
. Univalent or bivalent vertices can a priori be created

both by the second and third term in the differential. However, one easily checks that
these � 2–valent contributions cancel due to signs. For example, when computing the
differential of the graph , bivalent vertices are created by vertex splitting .
However, since there are two contributions corresponding to each of the two vertices,
and they appear with opposite signs, they cancel out. For bivalent vertices carrying a
decoration, or for a univalent vertex, the argument is similar.

Let GC00H�.M/ be the subspace of GC0H�.M/ spanned by graphs that (i) do not contain
any univalent vertices, and (ii) contain at least one � 3–valent vertex. Notice that
GC00H�.M/ is a sub-Lie algebra of GCH�.M/ since the Lie bracket cannot decrease any
valences. Furthermore, we have the following easy result.
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Lemma 45 The Maurer–Cartan element z0M 2 GC0H�.M/ constructed above lives in
the subspace GC00H�.M/.

Proof First note that by definition z0M contains no graphs with a single � 2–valent
vertex, as those graphs have been absorbed into z0 above. Hence the only instance
of a (connected) graph with a univalent vertex is a graph with an “antenna”, ie an
edge connected to a univalent vertex. However, to such graphs the configuration space
integral formula associates weight 0, by property (iv) of Proposition 8 (or alternatively
by a degree argument, since there are not enough form degrees depending on the
position of the antenna vertex). Next, if the graph has no trivalent vertices, it is either a
string, with some decorations at the ends, or a loop. In case of a string, the weight is
zero again by (iv) of Proposition 8. Finally, the loops all have zero weight by degree
reasons.

The following proposition is essentially proven in [45, Proposition 3.4]. One uses
essentially the dual argument of Theorem 49.

Proposition 46 The inclusion map GC�3
H�.M/

,! GC00H�.M/ is a quasi-isomorphism
of Lie algebras. Furthermore , endowing both sides with the descending complete
filtrations by the number of nonbivalent vertices ,7 the map between the associated
graded spaces is already a quasi-isomorphism.

Due to this proposition we can apply the Goldman–Millson theorem [16] to conclude
that any Maurer–Cartan element in GC00H�.M/ is gauge equivalent to a Maurer–Cartan
element in the subspace GC�3

H�.M/
. In particular:

Corollary 47 The Maurer–Cartan element z0M is gauge equivalent to a Maurer–Cartan
element in the subspace GC�3

H�.M/
.

Next, we apply the remark of the previous subsection to conclude that we may use
a � 3–valent Maurer–Cartan element (say z3M ) gauge equivalent to z0M to construct
�GraphsM . For the sake of concreteness, let us temporarily (for this subsection) denote
the version of �GraphsM constructed as before by Graphs

z0M
M , and the one constructed

with z3 instead by �Graphsz3M , though this is an abuse of notation.

Let us consider a subspace S of �Graphsz3M spanned by graphs having at least one
internal 1– or 2–valent vertex. Recall that decorations count as valence and there are
no 0–valent internal vertices in �GraphsM .

7On GC�3
H�.M/

this filtration is quite trivial.
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Lemma 48 The space S described above is a subcomplex of �Graphsz3M .

Proof Recall that the differential has two pieces, a first one that contracts an edge
connected to an internal vertex and a second one that either cuts an edge into the
diagonal class or deletes a subgraph of internal vertices producing a factor given by the
image of such subgraph under ZM . Due to the Maurer–Cartan element z3 containing
only � 3–valent diagrams, the differential cannot cut out a subgraph containing a
bivalent internal vertex. Let us consider a graph with a 2–valent internal vertex that is
adjacent to two other vertices. There, the differential acts as follows:

d a D .1� 1/ C

X
�

˙ a

�

��

C

X
�

˙ a
�

��

The contributions of contracting both edges appear with opposite signs and therefore
cancel. Notice that 1–valent internal vertices are produced on the other summands
when the decoration of the internal vertex takes the value 1.

If there is a 2–valent internal vertex that is adjacent to only one other vertex and has
one decoration, the action of the differential there is:

d a

!

D

!
�

X
�

˙

�
a

!

��

D

!

�

!

D 0

It is easy to see that if there is one 1–valent internal vertex the two pieces of the
differential cancel each other, thus concluding the proof.

The following proof is an adaptation of [45, Proposition 3.4].

Theorem 49 The projection map �Graphsz3M !
�graphsM WD

�Graphs
z3
M=S is a quasi-

isomorphism of dg Hopf right �GraphsD–comodules.

Proof It suffices to show that H.S/D 0. If we set up a filtration on S by the total
number of decorations, on the zeroth page of the spectral sequence we recover d0 as the
contracting piece and a piece that cuts out a connected component of internal vertices
with a factor given by an integral. We claim that the spectral sequence collapses already
on the first page.
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a a a
D

3

Figure 3: Replacing bivalent internal vertices by a single labeled edge.

Notice that d0 cannot produce 1–valent internal vertices from 2–valent internal vertices
and it follows from the proof of Lemma 48 that a 1–valent internal vertex cannot be
destroyed.

It follows that on the zeroth page S decomposes as a sum of complexes S D S1˚S2,
where S1 is spanned by graphs with at least one 1–valent internal vertex and S2 is
spanned by graphs whose internal vertices are at least 2–valent.

To see that S1 is acyclic one can look at “antennas” of the graphs, ie maximal connected
subgraphs consisting of one 1–valent and some 2–valent internal vertices. By setting a
spectral sequence whose differential decreases only the length of antennas, one can
construct a contracting homotopy that increases this length; thus showing H.S1/D 0.

As for S2, the same idea can used by replacing every path on the graph consisting of
2–valent internal vertices by single edges labeled by their length; see Figure 3.

By considering a spectral sequence whose differential on the zeroth page only reduces
the numbers on the labels, being careful with the signs one can construct a contracting
homotopy which gives H.S2/D 0.

Overall, we conclude that �graphsM is a dgca model for FMM , by the explicit zigzag

�graphsM
� �
�Graphs

z3
M

Š
 �

�Graphs
z0M
M

��!�PA.FMM /:

Moreover, the above maps are morphisms of dg Hopf right comodules.

If M is not parallelizable, one can construct the space �graphsM as the analogous
quotient of �Graphsz3M . The same proof allows us to conclude that �graphsM is a dgca
model for the collection of topological spaces FMM by a similar zigzag.

Remark 50 The smaller model �graphsM (as well as �graphsM ) has the advantage
that for D � 3 it is connected in the sense that each dgca �graphsM .r/ is concentrated
in nonnegative cohomological degrees, and one-dimensional in degree 0. This can be
shown by a degree counting argument similar to Lemma 54, using the trivalence condi-
tion and the existence of at least one external vertex per connected component. Similarly,
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one sees that if in addition H 1.M/ D 0, then �graphsM .r/ is finite-dimensional in
each cohomological degree.

Remark 51 The propagator �12 established in Proposition 8 can be chosen so thatR
2 �12˛ D 0, where the integration is conducted along the fiber of the forgetful map
p2 W FMM .2/! M , and where ˛ is any of the chosen representative forms for the
cohomology; see Convention 7 (also [13]). It would be desirable to show that �12
may be chosen so that in addition

R
3 �13�32 D 0, where the integration is performed

along the fiber of the forgetful map p3 W FMM .3/! FMM .2/. In that case the above
discussion could be considerably simplified, since the extra condition immediately
renders the integral weights of all graphs with bivalent vertices zero. A propagator
with this desired property has been constructed in the smooth setting in [13, Lemma 4].
We expect that the proof carries over to the semialgebraic setting. However, there is a
technical difficulty due to our use of PA instead of smooth forms, whose resolution we
leave to future work. Roughly speaking, the technical problem is that for a PA form
ˇ 2�.M �N/ one has to define a good notion of “de Rham differential in the first
slot” dNˇ.

7.4 Computing the cohomology and loop orders

Above we construct real dgca models �GraphsM and �graphsM for configuration spaces
of points on a manifold M , which depend on M only through the Maurer–Cartan
element zM 2GCH�.M/. Note that GCH�.M/ is naturally filtered by the loop order of
graphs. We can decompose the Maurer–Cartan element

zM D z
0
M C z

1
M C � � �

accordingly into pieces of various loop orders.

The differential on �graphsM .n/ can only maintain or decrease the number of loops
(genus) of the graphs. It follows that the subspace �graphsfor

M .n/�
�graphsM .n/ spanned

by graphs of genus zero, ie forests, is a subcomplex and a dg subalgebra for n D 1.
Notice that however it is not a subalgebra if n > 1. In any case the object �graphsfor

M

depends on M only through the tree-level piece z0M of our Maurer–Cartan element zM .

Lemma 52 The inclusion of �graphsfor
M in �graphsM is a quasi-isomorphism (of sym-

metric sequences of complexes).

Proof The proof follows essentially from the spectral sequence argument given in
Lemma 39.
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The differential in �graphsM cannot decrease the number of connected components
of a graph, so by considering a filtration by the number of connected components
of the graphs we obtain the respective associated graded complexes gr �graphsfor and
gr �graphsM . Then we notice that the number # edges�#vertices cannot increase so we
take the respective filtration obtaining the associated graded complexes gr0 gr �graphsfor

and gr0 gr �graphsM (notice that this filtration is bounded below since there are no
connected components of only internal vertices). After this, the only piece of the
differential remaining is the one cutting out a (decorated) tree of internal vertices and
evaluating the partition function on it.

At last, filtering by #internal vertices � degree, we obtain in the associated graded
complexes gr00 gr0 gr �graphsfor and gr00 gr0 gr �graphsM a the piece of the differential
that reduces the number of internal vertices exactly by 1, ie the differential contracts
one edge connected to one or two internal vertices or cuts out a tree consisting only of
a single decorated internal vertex.

We claim that the induced inclusion map is a quasi-isomorphism at this level. As in
Lemma 39, by induction on n one can show that the homology of

V.n/D gr00 gr0 gr �graphsM .n/

satisfies

H.V.n//DH.V.n� 1//˝H �.M/˚H.V.n� 1//Œ1�D�˚n�1;

but the same proof gives the same result for the homology of gr00 gr0 gr �graphsfor
M , so

the result follows.

In particular we see the following:

(1) The dgca �graphsfor
M .1/ is a real model for M , so that the tree-level piece of zM

encodes the real homotopy type of M .

(2) Knowledge of the tree-level piece of zM suffices to compute the real cohomology
of FMM .n/, as a graded vector space, for all n.

8 The real homotopy type of M and FMM

The goal of this section is to compare the information contained in the partition function
zM from above to the real homotopy type ofM . By the latter, we mean the isomorphism
type of a homotopy commutative (C1) algebra structure on the cohomology H.M/.
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The end result will be that the knowledge of the real homotopy type of M suffices to
recover zM (up to gauge equivalence) in the case that D � 4 and H 1.M/D 0.

Let us first see how the C1–algebra structure on H.M/ can be obtained from our
graphical models. For every closed oriented connected manifoldM we fix the following
homotopy data of chain complexes,

H �.M/ �graphsfor
M .1/

i

p

h

pi D id; id� ip D dhC hd;

where the map i is defined so that

i.!/D
1

!

and the map h is defined so that

h 1

�

D 1

�

and it vanishes on graphs with a � 1–valent external vertex.

Finally, p is defined so that for every � 2 �graphsfor
M , p.�/ D

P
i ei

R
M e�i ^ f .�/,

where the feig form a basis of H �.M/ and fe�i g the respective dual basis and

f W �graphs
for
M .1/!�PA.M/

is the map induced by the one constructed in Section 3.

By the homotopy transfer theorem [33, Section 10.3] such homotopy data defines a
C1–structure on H �.M/ and such structure retains the real homotopy type of M .

Notice that C1–structures on H �.M/ are identified with Maurer–Cartan elements in
the Harrison complex

Harr.H �.M/;H �.M//D HomS.Lie
c
f1gŒ�1� ıH �.M/;H �.M//

D

Y
n2N

Lie.n/˝Sn H�.M/˝n˝H �.M/Œn�:

Proposition 53 [35, Proposition 1.6.5] The projection map

Harr.H �.M/;H �.M//! Harr.H �.M/;H �.M//

is a quasi-isomorphism of Lie algebras.
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Lemma 54 If M is a connected manifold of dimension at least D � 4 such that
H 1.M/ WDH 1.M;R/D 0, then all the degree 0 graphs in �GC�3M are trees.

Proof The proof is a simple combinatorial argument. Let � 2 �GC�3M be a nontree
graph with E edges and V vertices. We denote the sum of degrees of the decorations
of a vertex vi by deg dec.vi / and the number of incident vertices at vi by edges.vi /.

From the relation
PV
iD1 edges.vi /D 2E, it follows that

deg.�/D .D� 1/E �DV C
VX
iD1

deg dec.vi /

D .D� 3/.E �V /C

VX
iD1

.deg dec.vi /C edges.vi /� 3/:

Because of the � 3–valence condition, each term deg dec.vi /C edges.vi /� 3 must be
greater than or equal te zero. In fact, since decorations have degree at least 2 if there
is at least one decoration in � , the sum

PV
iD1.deg dec.vi /C edges.vi /� 3/ is strictly

positive.

Now notice that since � is a not a tree, we have E � V and in case of equality there
must be at least one decoration. In any of those cases it follows that deg� > 0.

Remark 55 From the proof we also observe the following:

� IfDD3 andH 1.M/D0, the only nontree graphs of degree 0 have no decorations
and every vertex is exactly trivalent. These graphs are also called simple cubic
graphs.

� For D � 4 but H 1.M/ ¤ 0, there are nontree graphs of degree zero but they
take on a very simple form: Besides trees, there are only graphs of genus 1
that are trivalent and decorated only by 1–forms. Such graphs are given by a
“fundamental loop” such that every vertex has a decorated trivalent tree attached.
Here is an example:

˛2

˛1

˛3 ˛4

˛5

From now on, let us suppose M to be simply connected and of dimension D � 4.
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Proposition 56 The dgla GC�3;tree
M is the quotient of GC�3M by the dg Lie ideal

spanned by graphs with at least one loop.

Proof First notice that the Lie bracket of two graphs �; � 0 2 GC�3M will be a sum of
graphs with loop order given by the sum of the loop orders of � and � 0. It follows that
the subspace spanned by graphs with at least one loop is a Lie ideal.

The splitting part of the differential preserves the loop order and the part of the differ-
ential that connects decorations increases the loop order by one and the twisted piece
of the differential does not reduce loops. It follows that the differential preserves the
ideal.

Proposition 57 The dgla GCLie
M is defined as the quotient of GC�3;tree

M by the ideal
generated by trees with vertices � 4–valent and the IHX (or Jacobi ) relations that
originate from the splitting differential of a 4–valent vertex.

The quotient map GC�3;tree
M ! GCLie

M is a quasi-isomorphism.

Proof It is clear that the differential preserves the ideal.

To see that the quotient map is a quasi-isomorphism, consider first a filtration by
deg� # edges such that on the associated graded the differential cannot increase the
number of vertices by more than one. Then, take a second filtration by the number of
decorations and notice that on the associated graded we obtain (the cyclic version of)
the quasi-isomorphism ƒ�D�1L1!ƒ�D�1Lie.

The dgla GCLie
M is a cyclic variant of the Harrison complex of H �.M/. Indeed, let us

consider more generally a graded vector space AD xA˚R, with a degree �D pairing.
A C1–structure on A is given by a Maurer–Cartan element in Hom.Liecf1gŒ�1�ıA;A/
which, via the pairing, can be identified with the space

Hom
�
A��D˝ .Liecf1gŒ�1� ıA�/;R

�
:

There is a map A˝ .Liecf1gŒ�1�ıA/Œ�D�! �GCLie
xA

determined in the following way:
A basis of the cooperad Liec can be identified with rooted planar trivalent trees modulo
the Jacobi (co)relations. Forgetting about the position of the root and considering it as
any other leaf, and replacing every leaf with a decoration by A, we obtain an element
in �GCLie

xA
.

Definition 58 Let AD xA˚R be a graded vector space with a nondegenerate pairing of
degree �D. A cyclic C1–algebra structure on A is a Maurer–Cartan element in GCLie

xA
.
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If such a cyclic C1–algebra structure z maps into a C1–structure � via the dual of the
map described before Definition 58, we say that z extends �.

Remark 59 Due to the implicit usage of the degree �D pairing, such structure would
be more appropriately called a “D–cyclic C1–algebra”.

Proposition 60 An orientable closed manifold M determines a cyclic C1–algebra
structure on its cohomology H �.M/ extending the one arising from the homotopy
transfer theorem.

Proof The C1–structure on H �.M/ is given by a map in

Hom
�
Liecf1gŒ�1� ıH �.M/;H �.M/

�
which, by the Poincaré duality pairing, is equivalent to an element

f 2 Hom
�
H �.M/˝ .Liecf1gŒ�1� ıH �.M//;R

�
:

We claim that there is a factorization of f by

H �.M/˝ .Liecf1gŒ�1� ıH �.M// R

�GCLie
M

f

g
Z

and the dashed arrow corresponds to a Maurer–Cartan Z 2 GCLie
M which is gauge

equivalent to the image of Z3M 2 GC�3;tree
M .

To show that f factors through g it is sufficient to show that for every�2Liecf1gŒ�1�.n/
and !0; : : : ; !n 2H �.M/,

f .!0˝�˝!1˝ � � �˝!n/D f .!n˝�˝!0˝ � � �˝!n�1/;

but this follows from the explicit formula the C1–action given by the homotopy
transfer theorem. This corresponds to computing the partition function on the trivalent
graph given by the C1 operation � where the root is replaced by a decoration by the
element !0, which is clearly cyclically invariant.

As an example, suppose that � corresponds to �2 ı1 �2 2 Liec.3/. Then

�.!1; !2; !3/D p.h.i.!1/i.!2//i.!3//

D p

1

!1
!2

!3

D

X
i

ei

Z
1;2

��1 .e
�
i /�
�
1 .!3/�1;2�

�
2 .!1/�

�
2 .!2/:
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Therefore,

f .!0; �.!1; !2; !3//D

Z
1;2

��1 .!0/�
�
1 .!3/�1;2�

�
2 .!1/�

�
2 .!2/DZ

!1
!2

!3!0

Remark 61 For simply connected � 4–dimensional M , the cyclic C1–structure on
H �.M/ determines the spaces �graphsM .n/, which encode the real homotopy type of
FMM .n/. Moreover, if M is parallelized, the cyclic C1–structure determines the Hopf
comodule structure of �graphsM , which encodes the real homotopy type of FMM seen
as a right FMD–module.

Finally, one can check that the isomorphism type of the (noncyclic) C1–algebra
structure onH.M/ already determines the cyclic C1–algebra structure. In other words,
the cyclicity is not to be seen as extra data on, but rather a property of the real homotopy
type, reflecting Poincaré duality. More concretely, the following result has been shown
in [23, Theorems 5.5 and 5.8]. We also sketch a short proof here for completeness.

Proposition 62 The real homotopy type of a closed orientable manifold determines
its cyclic homotopy type. More precisely , given two cyclic C1–algebra structures on
H.M/ that are C1 isomorphic as noncyclic C1–structures , they are also isomorphic
as cyclic C1–structures.

Proof sketch We are given two cyclic C1–structures onH.M/ and a C1 isomorphism
between them. We may assume that the linear part of the C1 isomorphism is the identity,
otherwise we just pull back one cyclic C1–structure along this linear part. Note also
that the implicit underlying nondegenerate pairing on H.M/ is determined by the
product up to an unimportant scale factor, so we may assume it is the same for both
our cyclic C1–structures.

We denote by �1 and �2 the two Maurer–Cartan elements in GCLie
H.M/ encoding our

cyclic C1–structures. The underlying (noncyclic) C1–structure is encoded by the
images of �1 and �2 under the natural inclusion of dg Lie algebras into the reduced
Harrison complex

root W GCLie
H.M/! Harr.H �.M/;H �.M//:

Graphically, elements on the left-hand side can be interpreted as linear combinations
of nonrooted Lie trees, and elements of the right-hand sides can be seen as rooted
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Lie trees as above, and the map root is defined by summing over all possible ways of
making one leaf into the root.

The C1 morphism between our two C1–structures (with linear term being the identity)
then yields a gauge equivalence between the MC elements root.�1/ and root.�2/
in Harr.H �.M/;H �.M//. We desire to check that this implies that �1 and �2 are
already gauge equivalent in GCLie

H.M/. To this end we can employ the Goldman–Millson
theorem [16]. To check the conditions of this theorem we consider a filtration such
that Fp Harr.H �.M/;H �.M// is spanned by rooted Lie trees with � p leaves that
are decorated by classes of nonzero degree.

On the associated graded the only piece of the differential that survives replaces the
root (say decorated by some ˛ 2Hk.M/) by two leaves, with one decorated ˛ and the
new root decorated with 1 2H0.M/:

. ˛ root
d0
7�! . .

1 root

˛

It is an easy exercise to check that the cohomology of the pth graded piece of the
Harrison complex is identified for p � 3 precisely with nonrooted trees all of whose
leaves are decorated by elements ofH �.M/. But this is precisely the image of GCLie

H.M/

under the map root.

Hence the Goldman–Millson theorem is applicable to the inclusion of dg Lie algebras
root W GCLie

H.M/! F2 Harr.H �.M/;H �.M//. To conclude the desired result we then
just need to remark that our gauge equivalence between root.�1/ and root.�2/ in
Harr.H �.M/;H �.M// may actually be taken in F2 Harr.H �.M/;H �.M//. To see
this in turn one also computes the pth graded piece of the Harrison complex for p D 2,
and sees that there is no cohomology in the at least quadratic part. But since the
underlying C1 morphism has trivial linear part, we may always remove the parts in
the 2–graded piece by adding an exact terms, to yield the required gauge equivalence
in F2.

The real homotopy type of a manifold determines its cyclic homotopy type by the
previous proposition. This in turn determines the (gauge equivalence class of) the
Maurer–Cartan element zM by Propositions 46 and 57, and Lemma 54 which itself
determines the quasi-isomorphism type of the graph complex by the discussion in
Section 7.2. We obtain thus the following theorem as a corollary:
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Theorem 63 LetM be an orientable compact manifold without boundary of dimension
D � 4, such that H 1.M;R/D 0. Then the real homotopy type of FMM depends only
on the real homotopy type of M . By this statement we mean that there is a zigzag of
quasi-isomorphisms of symmetric sequences of dgcas over R

�PA.FMM /! � X

with X being a sequence of dgcas defined using only knowledge of the quasi-isomor-
phism class of �PA.M/ as a real dgca.

Remark 64 We generally work with unbounded cochain complexes, and a priori in
the zigzag as constructed above there will occur dgcas which have unbounded degrees.
However, the concrete X we use is (see above) X D �Graphs�3M , which is concentrated
in nonnegative degrees. Furthermore, X is cofibrant in the category of sequences of
(unbounded) dgcas, and by homotopy lifting of the zigzag we may in fact construct
a quasi-isomorphism of dgcas X ! �.FMM /. For the statement above it is hence
inessential whether we work over nonnegatively graded cochain complexes or cochain
complexes of unbounded degrees.

Moreover, if we suppose M to be parallelized, the action of the Lie algebra GCM
on GraphsM is compatible with the right GraphsD–module structure. In this case, the
(real homotopy type) of GraphsM as a right GraphsD–module is determined by (the
gauge equivalence class of) the Maurer–Cartan element zM . In that case, by the same
argument we obtain a stronger version of the previous theorem.

Theorem 65 Let M be a parallelizable compact manifold without boundary of dimen-
sion D � 4, such that H 1.M;R/ D 0. Then the real homotopy type of the operadic
right module FMM FMD depends only on the real homotopy type ofM , in the sense
that there is a zigzag of quasi-isomorphisms of right dg Hopf comodules connecting
�PA.FMM / and some X , with X depending only on the quasi-isomorphism type of the
dgca �PA.M/.

We note again that we abuse slightly the notation since �PA.FMD/ is not (strictly
speaking) a dg Hopf cooperad and �PA.FMM / is not a right comodule; see Remark 15.
The cleaner variant of stating the above theorem is to work in a category of homotopy
cooperads and homotopy comodules, whose construction we however leave to future
work; see [33, Section 3].
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9 The framed case in dimension D D 2

In Section 3 we considered parallelized manifolds since a trivialization of the tangent
bundle is needed to define the right operadic FMD–module structure. Informally, to
define the action one needs to know in which direction to insert, and the parallelization
provides us the direction of the insertion.

In this section we wish to focus on the 2–dimensional case where unfortunately the
only parallelizable (connected closed) manifold is the torus.

To go around the problem of not having a consistent choice of direction of insertion,
instead of working with configuration spaces of points, we consider the framed configu-
ration spaces. In other words, at every point of the configuration there is the additional
datum of a direction, ie an element of the Lie group SO.2/D S1.

In this section † shall denote a connected oriented closed surface with a smooth and
semialgebraic manifold structure. Most results will be an adaptation of the arguments
in the previous sections to the framed case.

9.1 Definitions

In this section we introduce the compactification of the configuration space of framed
points on †. A more detailed introduction to the subject can be found in [39].

9.1.1 The operad of configurations of framed points The construction of the operad
of the framed version of FM2 is a special case of the notion of the semidirect product
of an operad and a group, as described below.

Definition 66 Let P be a topological operad such that there is an action of a topological
group G on every space P.n/ and the operadic compositions are G–equivariant. The
semidirect product P ÌG is a topological operad with n–spaces

.P ÌG/.n/DGn �P.n/;

and composition given by

. Ng; p/ ıi . Ng
0; p0/D .g1; : : : ; gi�1; gig

0
1; : : : ; gig

0
m; giC1; : : : ; gn; p ıi .gi �p

0//;

where Ng D .g1; : : : ; gn/ and Ng0 D .g01; : : : ; g
0
m/.

The group SO.2/ has a well-defined action on FM2 given by rotation.
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1
 
ı1

1
2

'
D 1
2  C'

Figure 4: Operadic composition in FFM2.

Definition 67 The framed Fulton–MacPherson topological operad FFM2 is the semidi-
rect product FM2 ÌSO.2/.

When the operadic composition is performed, the configuration inserted rotates accord-
ing to the frame on the point of insertion, as depicted in Figure 4, where at every point
we draw a small line indicating the associated element of SO.2/.

9.1.2 Configurations of framed points on a surface

Definition 68 The Fulton–MacPherson compactification of the configuration spaces
of points on the surface †, FFM†, is a symmetric sequence in semialgebraic smooth
manifolds which is given as the pullback of the diagram

SO.†/�n

FM†.n/ †�n

�n

where � W SO.†/!† is the frame bundle over † (assuming some Riemannian metric).

As in the nonframed case, the space FFM†.n/ is a manifold with corners. The interior of
this manifold is the framed configuration space of points and is denoted by FConfn.†/.

Proposition 69 The insertion of points at the boundary of FFM† according to the
direction of the frame defines a right FFM2 operadic module structure on FFM†.

The associativity of the operadic module structure is clear.

9.2 Graphs

In this subsection we work with the operadic module BVGraphs† BVGraphs2 which
is the version of Graphs† Graphs2 adapted to the framed case.

Informally, the difference between Graphs† (resp. Graphs2) and BVGraphs† (resp.
BVGraphs2) is that we now allow tadpoles (edges connecting a vertex to itself) at
external vertices but graphs with tadpoles at internal vertices are considered to be 0.
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This can be done by considering the subalgebra �BVGraphs† �� Graphs† of graphs
with no tadpoles on internal vertices or dually defining BVGraphs† as a quotient of
Graphs†. A precise definition of BVGraphs2 can be found in [11].

The nontwisted analog of �BVGraphs.n/ is �BVGra.n/, the symmetric algebra on
symbols sij D sj i for 1 � i; j � n. One can also consider the nontwisted analog
�BVGra†, but notice that this is just the same space as �Gra† as tadpoles are not
forbidden in �Gra† and there are no internal vertices upon which we can impose any
condition.

Let � 2�1triv.FFM†.1// be a global angular form of the S1–bundle

� W FFM†.1/D SO.†/!†:

Such a form satisfies d� D ��.e/, where e 2�2triv.†/ is the Euler class of the circle
bundle.

Let 1� i � n. We denote by �i i 2�1triv.FFM†.n// the form ��i .�/, where

�i W FFM†.n/! FFM†.1/

is the map that remembers only the point labeled by 1.

We define a map �BVGra†.n/!�triv.FFM†.n// as a morphism of algebras sending sij

to �ij , where if i¤j , �ij is the form constructed in Section 2 and sends Œ!�j 2�BVGra†
to p�j .�.Œ!�//, where pj WFFM.n/!M is the map that remembers only the point labeled
by j .

Similarly one defines a map �BVGra2.n/!�triv.FFM2.n//D�triv.FM2.n/�SO.2/�n/
as a morphism of algebras sending a tadpole at the vertex i to the volume form of the
i th SO.2/.

Lemma 70 This defines a morphism of cooperadic comodules

�BVGra†
�BVGra2!�triv.FFM†/ �triv.FFM2/:

Proof Regarding the compatibility with the differentials, the only case not covered in
Lemma 16 is �i i , but this follows from the fact that the Euler form can be expressed asP
i;j g

ij ei ^ ej .

For the compatibility with the cooperadic comodule structure it remains to check it
for the elements si i 2 BVGraphs†.n/. For simplicity of notation, we consider the
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element s11 2 BVGraphs†.1/ which is sent to �11 2�1PA.FFM†.1// whose coaction
gives �11˝ 1C 1˝ volS1 2�PA.FFM†.1//˝�PA.FFM2.1//.

On the other hand, the coaction on s11 2 BVGraphs†.1/ gives us

s11˝ 1C 1˝ s11 2 BVGraphs†.1/˝BVGraphs2.1/;

from which the compatibility follows.

Similarly to what was done in Section 4, one can prove the following proposition:

Proposition 71 There is a morphism of cooperadic modules

�BVGraphs†
�BVGraphs2!�PA.FFM†/ �PA.FFM2/

extending the morphism from Lemma 70.

The only difference relatively to the nonframed case is that the map

�BVGraphs†.n/!�PA.FFM†.n//

evaluated at a graph � 2 BVGraphs† with k internal vertices is given by an integral
over the fiber of FFM†.n; k/! FFM†.n/, where the space FFM†.n; k/ is the (com-
pactification of the) configuration space of n framed points and k unframed points
corresponding respectively to the external vertices and the internal vertices of � .

A similar procedure is done for the map �BVGraphs2.n/!�PA.FFM2.n//.

The goal of this section is to prove the following theorem.

Theorem 72 The map �BVGraphs† �BVGraphs2!�PA.FFM†/ �PA.FFM2/ is
a quasi-isomorphism of Hopf cooperadic comodules.

Proposition 73 The map �BVGraphs2!�PA.FFM2/ is a quasi-isomorphism.

Proof On the one hand,

H �.FFM2.n//DH
�.FM2.n/�SO.2/�n/DH �.FM2.n//˝H �.SO.2//˝n

DH �.FM2.n//˝ .R˚RŒ�1�/˝n

by the Künneth formula. On the other hand, notice that as dg symmetric sequences
BVGraphs2 D Graphs2 ı .RŒ�1�˚R/; therefore,

H.�BVGraphs2.n//DH.
�Graphs2.n/˝ .R˚RŒ�1�/˝n/

DH.�Graphs2.n//˝ .R˚RŒ�1�/˝n:
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Since a tadpole at the vertex labeled by i is sent to the volume form of the i th SO.2/,
which is the generator of H 1.SO.2//, we have that at the cohomology level the map

H.�BVGraphs2/DH.
�Graphs2.n//˝ .R˚RŒ�1�/˝n

!H �.FFM2.n//DH
�.FM2.n//˝ .R˚RŒ�1�/˝n

is just the map f�˝ id, where f W �Graphs2!�PA.FM2/ is the quasi-isomorphism
from Proposition 18, whence the result follows.

9.3 Proof of Theorem 72

Let n; k�0 and let us consider an auxiliary differential graded vector spaceG.n; k/ that
is the subcomplex of �BVGraphs†.nCk/ in which the points labeled nC1; : : : ; nCk
cannot have tadpoles. This should be seen as the algebraic analog of the space
FFM†.n; k/, the compactification of the configuration space of n framed points and k
unframed points in †.

The map �BVGraphs†.n C k/ ! �PA.FFM†.n C k// restricts naturally to a map
G.n; k/! �PA.FFM†.n; k//. We will show that this map is a quasi-isomorphism;
thus proving Theorem 72 which corresponds to the cases with k D 0. The proof will
be done by induction on n. The case nD 0 was already proven in Theorem 42.

9.3.1 A long exact sequence of graphs Let us prove the following auxiliary result.

Proposition 74 There is a long exact sequence of graded vector spaces

� � � !Hd .G.nC1; k�1//
f
�!Hd�1.G.n; k//

^e
�!HdC1.G.n; k//

i�
�!HdC1.G.nC1; k�1//! � � � ;

where the map i� is induced by the inclusion of G.n; k/ in G.nC 1; k� 1/.

Proof Let us clarify the undescribed maps. The map f removes a tadpole on the
vertex labeled by nC 1 if there exists one, otherwise it sends a graph to zero. The map
^e decorates the vertex nC 1 with the “Euler form”:

nC1
^e
7�!

X
j

˙ nC1

ej e�
j

It is not clear that these maps are well defined at the cohomology level, but this will
become clear by the construction of the sequence.
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Let us consider the decomposition of G.nC 1; k� 1/

G.nC 1; k� 1/DG.n; k/Œ�1�˚G.n; k/

d0 d0
d1

where the first summand corresponds to graphs in which the vertex labeled by nC1 has
a tadpole and the second summand corresponds to graphs in which the vertex labeled
by nC 1 does not have a tadpole. The differential splits into two terms, d0 and d1, as
in the picture. Let us consider a two-level filtration on the number of tadpoles at the
vertex nC 1. On the zeroth page of the spectral sequence the differential is d0, which
acts as the ordinary differential of G.n; k/.

The differential on the second page is induced by d1 and is the map that was denoted
by ^e,

^e WH �.G.n; k/Œ�1�/DH ��1.G.n; k//!H �C1.G.n; k//:

The spectral sequence converges at the second page since we considered a two-level
filtration; therefore

H �.G.nC 1; k� 1//D ker.^e/˚ coker.^e/:

The map f is defined to be the composition

H �.G.nC 1; k� 1//� ker.^e/ ,!H ��1.G.n; k//:

It is then clear that Im.f /D ker.^e/, which gives us exactness at Hd�1.G.n; k//.

The map i� is given by the composition

H �.G.n; k//� coker.^e/ ,!H ��1.G.nC 1; k� 1//:

Therefore its image coincides with the kernel of f , which shows exactness at

HdC1.G.nC 1; k� 1//:

Since i� is the projection to the cokernel of ^e, its kernel is precisely the image of ^e,
which shows the remaining exactness.

9.3.2 The Gysin sequence The map � W FFM†.nC1; k�1/! FFM†.n; k/ that for-
gets the frame at the point nC1 is a circle bundle. We denote by e 2�PA.FFM†.n; k//

the Euler form of the circle bundle. The Gysin sequence of this circle bundle is the
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long exact sequence

(14) Hd .FFM†.nC1; k�1//

R
�
�!Hd�1.FFM†.n; k//

^e
�!HdC1.FFM†.n; k//

��
�!HdC1.FFM†.nC1; k�1//! � � � :

Using the maps G.a; b/! �PA.FFM†.a; b//, we obtain the morphism of exact se-
quences

Hd .FFM†.nC1; k�1//

Hd .G.nC1; k�1// Hd�1.FFM†.n; k//

Hd�1.G.n; k// HdC1.FFM†.n; k//

HdC1.G.n; k// HdC1.FFM†.nC1; k�1//

HdC1.G.nC1; k�1//

R
�

f ^e

^e ��

i�

Since by induction G.n; k/ ! �PA.FFM†.n; k// is a quasi-isomorphism, the five
lemma implies thatG.nC1; k�1/!�PA.FFM†.nC1; k�1// is a quasi-isomorphism
as well; thus concluding the proof of Theorem 72.

Appendix A Comparison to the Lambrechts–Stanley model
through cyclic C1–algebras

In this appendix we show how to obtain from the �GraphsM model a proof that the
Lambrechts–Stanley algebra is a dgca model for the FMM (Conjecture 76).

Definition 75 [31] A Poincaré duality algebra of dimension D is a nonnegatively
graded connected dgca A together with a linear map

� W AD!R

such that � ı d D 0 and such that the bilinear maps

A˝A!RŒ�D�; a˝ b 7! �.a; b/

are nondegenerate.

Note that by the connectivity assumption necessarily AD DR and hence � is unique
up to scale, if it exists. Note that a Poincaré duality algebra is a particular case of a
cyclic C1–algebra.
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A Poincaré duality model for a manifold M is a Poincaré duality algebra weakly
equivalent (as a dgca) to �.M/. It is shown in [31] that such a Poincaré duality model
always exists for simply connected compact orientable manifolds.

Lambrechts and Stanley furthermore define the following family of dgcas from a
Poincaré duality algebra A, generalizing earlier work by Kriz [30] and Totaro [44].
Consider the algebra

A˝nŒ!ij I 1� i ¤ j � n�:

For a 2 A let p�j .a/ be the element 1˝ � � �˝ a˝ � � �˝ 1, with a in the j th slot. Then
one imposes on the above algebra the relations

(1) !ij D .�1/
D!j i ,

(2) !2ij D 0,

(3) !ij!ikC!jk!j i C!ki!kj D 0 for distinct i , j and k,

(4) .p�i .a/�p
�
j .a//!ij D 0.

Let us define for A a Poincaré duality algebra as above the diagonal � 2 A˝A to
be the inverse of the nondegenerate bilinear pairing. Let us further denote by �ij the
corresponding element in A˝n, the two “nontrivial” factors of A situated in positions i
and j . Then one defines

.A˝nŒ!ij I 1� i ¤ j � n�=�; dACr/;

where the differential dA is that induced by the differential on A and r is defined as

r!ij D�ij :

One readily checks that the ideal generated by the relation is closed under this differ-
ential. Furthermore, if the Euler class of A, ie the image � under the multiplication,
vanishes, then the F.A;�/ naturally assemble into a right Pois�D cooperadic comodule.

Lambrechts and Stanley [32] show that for A a Poincaré duality model for M , we have
that H.F.A; n//DH.FMM .n//, and furthermore raise the following conjecture.

Conjecture 76 [32] If A is a Poincaré duality model for the simply connected
compact orientable manifold M then F.A; n/ is a dgca model for Conf.M; n/.

A proof of (a slightly weaker form of) this statement is given in [25], using methods
similar to ours. While in this paper we work with cyclic C1–structures on H.M/,
rather than Poincaré duality models to capture the real homotopy type “with Poincaré
duality” for M , one can still deduce the conjecture of Lambrechts and Stanley from our
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methods, at least in the case that the dimension of M is at least 4. (The case M D S2

also follows from the computation in Appendix B, leaving only the case M D S3.) Let
us sketch this reduction.

First let V be a finite-dimensional differential nonnegatively graded vector space with
the subspace of degree 0 elements V0 D R and a nondegenerate symmetric bilinear
pairing of degree D

V ˝V !RŒ�D�:

We denote by � 2 V ˝V the corresponding dual degree D element (the “diagonal”) as
above. Then we may define a graph complex (and dg Lie algebra) GCV akin to GCM
above, just replacing each occurrence of H�.M/ by V and with an additional piece of
the differential coming from dV . Concretely, this means that vertices in graphs of GCV
may be decorated by copies of V �. Furthermore, suppose a cyclic C1–structure is
given on V , for the above bilinear form. We may see this structure as a Maurer–Cartan
element Z 2 GCV , all of whose coefficients in front of nontree graphs vanish. We
may furthermore use it to define a Graph complex �GraphsV analogously to �GraphsM
above, replacing each occurrence of H.M/ by V , and using the given Z in place of
the partition function.

Next, fix representatives of the cohomology of V by providing a map

(15) H.V / ,! V:

The pairing on V induces a pairing on H.V /, independent of the representatives
chosen. We denote the corresponding diagonal by �H 2 H.V /˝H.V /. Via the
chosen embedding we may as well consider �H as an element in V ˝ V , in which
case it becomes cohomologous to �. We may hence choose � 2 A˝A (of the same
symmetry under exchange of the two A’s as �) such that

(16) �H D�� dV �:

We may then define a natural map of dg cooperadic comodules

(17) �GraH.V /!
�GraV

by sending the decorations in H.V / to V using our map (15), and by sending an
edge between vertices i and j to the same edge, minus the element �, considered as
decoration at vertices i and j . In pictures:

7! �
�
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Equation (16) implies that the map (17) is indeed compatible with the differentials.

Following the construction of GCV , (17) induces an L1–morphism of dg Lie algebras

GCV ! GCH.V /;

and we can hence transfer the Maurer–Cartan element Z 2 GCV inducing the cyclic
C1–structure on V to a Maurer–Cartan element ZH 2 GCH . (The MC element ZH
is still supported on trees, and encodes the cyclic C1–structure on H.V / induced by
homotopy transfer.) Furthermore, we obtain from (17) a map

�GraphsH.V /!
�GraphsV ;

that one can check to be a quasi-isomorphism by an easy spectral sequence argument.

In particular, let us take for V a Poincaré duality model for the simply connected
manifold M . Then if the dimension D of M is at least 4, the Maurer–Cartan element
ZH is gauge equivalent to the partition functionZM constructed above. This is because
by degree reasons there cannot be loop order � 1 contributions to this partition function,
and the tree part of ZM encodes the real homotopy type of M (in the form of a cyclic
C1–structure on H.V /DH.M/), and hence must be gauge equivalent to ZH , which
also encodes the real homotopy type by construction. Hence we can conclude that
�GraphsV is quasi-isomorphic to �GraphsM and is hence a dgca model for FMM , with
the partition function concentrated on trees with one vertex. Furthermore, in this case
we have a direct map

(18) �GraphsV ! F.V;�/

to the Lambrechts–Stanley algebra, by sending all graphs with internal vertices to
zero, and imposing the defining relations. Again, by a spectral sequence argument,
the map (18) can be seen to be a quasi-isomorphism. Furthermore, it is evidently
compatible with the right Pois�D cooperadic comodule structures, in the case the Euler
class vanishes. This shows that F.V;�/ is quasi-isomorphic to �GraphsM , ie to a dgca
model for FMn. Hence Conjecture 76 follows, in dimension D � 4.

Appendix B Example computation: the partition function of
the 2–sphere

As an illustration, let us show that the partition function of the two-sphere is essentially
trivial. We cover S2 by two coordinate charts C via stereographic projection as usual.
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The coordinate transformation relating the two charts is then

ˆ WC n f0g !C; z 7!
1

z
:

We take a basis 1 2 H 0.S2/, ! 2 H 2.S2/ of the cohomology, with
R
! D 1. Take

as a representative for ! any compactly supported top form of volume 1, which we
also denote by !. In fact, to abuse the notation further, denote by ! 2�2.C/ also the
coordinate expression in one of our charts. To achieve somewhat nicer formulas later,
let us also assume that this ! is supported away from the origin and that

(19) ˆ�! D !:

Let �0 be the propagator on C, ie

�0.z; w/D
1

2�
=d log.z�w/:

Note that

(20) �0

�
1

z
;
1

w

�
D

1

2�
=d log

�
w�z

wz

�
D �0.z; w/��0.z; 0/��0.w; 0/:

Then we will take as propagator of the sphere8

�.z; w/D �0.z; w/�

Z
u

�0.z; u/!.u/�

Z
u

�0.w; u/!.u/:

Let us first verify that this 2–form extends from our coordinate chart to FM2.S
2/. To

this end, apply the coordinate transformation ˆ and compute

�
�
1

z
;
1

w

�
D �0

�
1

z
;
1

w

�
�

Z
u

�0

�
1

z
; u
�
!.u/�

Z
u

�0

�
1

w
; u
�
!.u/:

Changing the integration variable from u to 1=u, using (19) and applying (20) three
times, we obtain

�
�
1

z
;
1

w

�
D �0.z; w/��0.z; 0/��0.w; 0/�

Z
u

.�0.z; u/��0.z; 0/��0.u; 0//!.u/

�

Z
u

.�0.w; u/��0.w; 0/��0.w; 0//!.u/

D �.z; w/��0.z; 0/��0.w; 0/C�0.z; 0/

Z
u

!.u/C�0.w; 0/

Z
u

!.u/

D �.z; w/:

8In Proposition 8 the propagator has been denoted �12. Here we choose to drop the subscript 12 for
brevity.
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Hence the propagator has the same form in the other coordinate chart, and in particular
it has no singularity at the coordinate origin, and hence readily extends to FM2.S

2/.

Furthermore one checks the following properties:

� Clearly �.z; w/D �.w; z/.

� By Stokes’ theorem,
d�.z; w/D !.z/C!.w/

as required.

� By degree reasons, Z
v

�.z; v/D 0:

Furthermore,Z
v

�.z; v/!.v/D

Z
v

�0.z; v/!.v/�

Z
v

Z
u

�0.z; u/!.u/!.v/�

Z
v

Z
u

�0.v; u/!.u/!.v/

D

Z
v

�0.z; v/!.v/�

Z
u

�0.z; u/!.u/�0

D 0:

Here the third term on the right-hand side vanishes by degree reasons. (One integrates
a 5–form over a 4–dimensional space.)

� We haveZ
v

�.z; v/�.u;w/

D

Z
v

�0.z; v/�0.v; w/�

Z
v

Z
u1

�0.z; u1/!.u1/�0.v; w/�

Z
v

Z
u2

�0.v; w/�0.w; u2/!.u2/

�

Z
v

Z
u1

�0.v; u1/!.u1/�0.v; w/�

Z
v

Z
u2

�0.v; w/�0.v; u2/!.u2/

C

Z
v

Z
u1

Z
u2

�0.z; u1/!.u1/�0.w; u2/!.u2/C

Z
v

Z
u1

Z
u2

�0.v; u1/!.u1/�0.w; u2/!.u2/

C

Z
v

Z
u1

Z
u2

�0.z; u1/!.u1/�0.v; u2/!.u2/C

Z
v

Z
u1

Z
u2

�0.v; u1/!.u1/�0.v; u2/!.u2/:

The first term on the right-hand side vanishes by a standard vanishing lemma of
Kontsevich. The fourth, fifth and last terms vanish by the same reason. The remaining
terms vanish by degree reasons: their forms with v–dependence are of degree � 1.
Hence we conclude that the whole expression is zero, and graph weights computed
using our propagator will be zero for graphs with bivalent vertices.
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� Identify the pullback of @FM2.S2/ to our coordinate chart with C �S1, and fix the
standard coordinate ' on the S1 factor. Then restricting � to the boundary @FM2.S2/,
(ie we take the limit w! z in our coordinate chart) we obtain the form

1

2�
d'C �.z/;

where
�D�2

Z
u

�0.z; u/!.u/

depends only on z, and not on ', as desired.

B.1 Vanishing of integrals

Proposition 77 Using the propagator � and the top form ! as above , the partition
function becomes

(21) zS2 D ! :

In other words , the weights of all graphs with more than one vertex vanish.

Proof By the properties above, all graphs vanish if either some vertex has valence
2 or some vertex has more than one decoration by ! or some vertex has valence one,
and there is one incident edge. The only connected graph with a vertex of valence one
is the one appearing in (21). All other graphs with potentially nonvanishing weight
must hence be of the following kind:

(1) There are � 2 edges incident to any vertex, and at most one decoration !.

(2) If there are exactly 2 edges incident on some vertex, it must come with a
decoration !.

From an admissible graph � , we can build another linear combination of admissible
graphs �0 by formally replacing each edge by the linear combination

7! � ! � ! :

Clearly, Z
FMd .jV �j/

!� D

Z
FMd .jV �0j/

!0�0

where now the weight form !0
�

is defined just like !� above, but using the Euclidean
propagator �0 instead of �.
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It hence suffices to show that for each admissible graph � with more than one vertex,Z
FMd .jV �j/

!0� D 0:

We may assume that the vertices are numbered such that the vertices decorated by !
have indices 1; : : : ; k for some k � 0. Then the above integral factorizes asZ

FMd .jV �j/

!0� D

Z
FMd .k/

!.x1/!.x2/ � � �!.xk/

Z
FMd .jV �j�k/

!0�„ ƒ‚ …
DWf .x1;:::;xk/

:

Note that here f .x1; : : : ; xk/ is a function associated to a graph with decorations !.
(There can be no form piece in f .: : : /, because the remainder of the integrand is
already a top form.) Hence by the Kontsevich vanishing lemma [28, Lemma 6.4]
f .x1; : : : ; xk/� 0. Hence the desired vanishing result follows.

Appendix C Pushforward of PA forms

Given an SA bundle p WM !N of rank l , the pushforward map of “integration along
the fiber” defined in [24] is a map p� W��min.M/!���lPA .N /. This map is only defined
on minimal forms as the natural extension to the full algebra of PA forms is not well
defined due to the failure of the relevant semialgebraic chain to be continuous; see the
discussion on [24, Section 9].9

For our purposes we need to consider pushforwards of the propagator

�12 2�PA.FMM .2//

constructed in Proposition 8. Since we cannot construct the propagator in such a way
that �12 2�min.FMM .2//, in this section we consider a different space of forms, �triv

such that �PA ��triv ��min, to which the pushforward map can be extended and still
satisfies Stokes’ theorem.

Recall that for F a compact oriented semialgebraic manifold and M a semialgebraic
manifold, the constant continuous chain yF 2 C str.M �F !M/ is defined by

yF .x/D ŒŒfxg �F ��:

9We note that in the original sketch of the construction of PA forms by Kontsevich and Soibelman [29],
the pushforward was (claimed to be) defined for all PA forms, for a slightly laxer definition of PA forms
compared to [24].
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Definition 78 Let M be a semialgebraic manifold. The space �triv.M/ of trivial
forms is the subvector space of �PA.M/ spanned by forms of the type /

R
yF
�, where

� 2�min.M �F / and yF is a constant continuous chain.

Lemma 79 The subspace �triv.M/��PA.M/ is a dg commutative subalgebra.

Proof �triv.M/��PA.M/ is closed under the differential by the fiberwise Stokes’
theorem [24, Proposition 8.12] and since the fiberwise boundary of a trivial bundle is
again a trivial bundle. Furthermore, the subspace �triv.M/ is closed under addition and
the commutative product on �PA.M/ because the union and product of trivial bundles
is again trivial; see the construction of these operations in [24, Section 5].

Let us consider a strongly continuous chain ˆ 2 C str
l
.E

f
�! B/ along a semialgebraic

map f W E ! B . Let E � F be the trivial bundle over E with fiber F , a compact
oriented semialgebraic k manifold.

Proposition 80 Under the previous conditions , there is a strongly continuous chain

ˆË yF 2 C str
kCl.E �F

f ıpr2
���! B/

defined by .ˆË yF /.b/ WDˆ.b/�F .

Proof If we consider the family f.S˛; F˛; g˛/˛2I g that trivializes the continuous
chain ˆ, it is easy to see that f.S˛; F˛ �F; g˛ � idF /˛2I g trivializes ˆË yF since, by
hypothesis, the two squares

S˛ �F˛ �F E �F

S˛ �F˛ E

S˛ B

g˛�idF

pr2

g˛

f

commute.

Corollary 81 Let p W Y !X be an oriented SA bundle and ˆ 2 C str
l
.Y !X/ be the

associated strongly continuous chain. Then there is a well-defined map

p� W�
�

triv.Y /!���lPA .X/

extending the one on minimal forms , given by p�.!/D /
R
ˆË yF

!.
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Remark 82 Recall that the proof of the fiberwise Stokes’ theorem relies essentially
on the fact that for 
 2 Ck.X/ and ‰ 2 C str

l
.Y !X/,

@.
 Ë‰/D @
 Ë‰C .�1/deg

 Ë @‰:

With the same proof as [24, Proposition 5.17] we see that this formula is still valid if
we take ‰ and 
 to be ˆ and yF as above, and therefore Stokes’ theorem is also valid
for pushforwards of trivial forms.

We prove now the Poincaré lemma for the sheaf of complexes �triv.

Proposition 83 If U is a contractible semialgebraic set , then H.�triv.U // is one-
dimensional and concentrated in degree zero.

Proof Let h W Œ0; 1� � U ! U be a contraction of U such that h.1; x/ D x and
h.0; x/D x0 for some fixed x0 2 U . Suppose ! 2�triv.U / is a closed form of degree
at least 1. By Stokes’ formula,

d

Z
I

h�! D

Z
I

h�d!˙ .! �!x0/D˙!;

whence it follows that ! is exact.

We can now conclude more generally that the cohomology of a semialgebraic manifold
M agrees with the homology of �triv.M/.

Corollary 84 Let M be a compact semialgebraic manifold , possibly with corners.
The inclusion �triv.M/!�PA.M/ is a quasi-isomorphism of commutative algebras.

Proof Every compact semialgebraic manifold admits a good cover: Indeed, every
compact semialgebraic set has a finite semialgebraic triangulation [5, Theorem 9.2.1],
and can hence be identified with a finite simplicial complex; see also the discussion
in [24, Section 2]. Given a semialgebraic triangulation, one can construct a semialge-
braic good cover fU˛g by taking the open stars of the vertices of a refinement of the
triangulation.10

We also choose a subordinate semialgebraic partition of unity f�˛g. For convenience
we shall also pick cutoff functions �˛ with support in U˛ such that �˛.x/D 1 on the

10The star of a vertex v is the union of the interiors of faces that contain v.
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support of �˛ . (We may slightly enlarge the U˛ to this purpose or alter the partition of
unity; see also the proof of [24, Proposition 6.7].)

This allows us to run the standard Čech–de Rham argument with respect to such a good
cover to conclude by the Poincaré lemma that the homology of �triv.M/ coincides
with the (Čech) cohomology of M ; see for instance [8, Example 14.16].

To be concrete, we consider the Čech–de Rham complex

C WD
�Y

�triv.U˛0:::˛p /Œ�p�; d C ı
�
;

where
U˛0:::˛p D U˛0 \ � � � \U˛p ;

d is induced by the differential on the factors �triv.U˛0:::˛p /, and ı is the Čech part of
the differential, defined on a cochain ! D .!˛0:::˛p / with !˛0:::˛p 2 U˛0:::˛p by

.ı!/˛0:::˛p D

pX
iD0

.�1/i!˛0::: Ǫ i :::˛p :

The Čech–de Rham complex C is a first quadrant double complex, and one compares
the two convergent spectral sequences associated to this complex.

The first (“columnwise”) spectral sequence has the complex .C; d/ as its E0–page. By
the Poincaré lemma (Proposition 83), the E1–page is then identified with the Čech
complex associated to the constant sheaf R. The E2–page is hence the cohomology
H.M/, and the spectral sequence abuts at this point by degree reasons.

The other (“rowwise”) spectral sequence has first page .C; ı/. We claim that the
cohomology of this page is identified with �triv.M/. This can in fact be shown
identically to [8, Proposition 8.5]. Concretely, one may naturally extend .C; ı/ to a
complex

zC WD .�triv.M/ ı
�! C/;

with the map
ı W�triv.M/!

Y
˛

�triv.U˛/� C

given by the natural restriction. One then checks that . zC ; ı/ is acyclic by providing an
explicit homotopy. Concretely, for a p–cocycle ! D .!˛0:::˛p / 2 zC , one defines the
.p�1/–cochain � such that

�˛0:::˛p�1 D
X
˛

�˛!˛˛0:::˛p�1 :
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Note that here we extend �˛!˛˛0:::˛p�1 2 �triv.U˛˛0:::˛p�1/ by zero to an element
(abusively also denoted by) �˛!˛˛0:::˛p�1 of �triv.U˛0:::˛p�1/. To be precise, this
extension by zero may be defined as follows. Suppose

!˛˛0:::˛p�1 D

Z
Y

ˇ

is given by a fiber integral associated to the trivial bundle Y �U˛˛0:::˛p�1!U˛˛0:::˛p�1 ,
with ˇ 2�min.Y �U˛˛0:::˛p�1/. Then we extend �˛ˇ (by zero) to a minimal form on
U˛0:::˛p�1 , which we (abusively) also denote by �˛ˇ. For example, if ˇD .f0; : : : ; fk/
in the notation of [24, Section 5.2], we may take �˛ˇ WD .�˛f0; �˛f1; : : : ; �˛fk/, with
all appearing semialgebraic functions extended by zero, using our cutoff functions �˛ .
Then one sets

�˛!˛˛0:::˛p�1 D

Z
Y

�˛ˇ;

with the fiber integral now being the one associated to the trivial semialgebraic bundle
Y �U˛0:::˛p�1 ! U˛0:::˛p�1 .

Having defined the cochain � above one then checks as in the proof [8, Proposition 8.5]
that ı� D!, using that ı!D 0. Overall, we have then shown that the second (E1–)page
of the “rowwise” spectral sequence is identified with .�triv.M/; d/.

We also note that this step of the proof is closely analogous to that of [24, Lemma 6.7],
but slightly simpler since trivial bundles can be extended trivially.

The next page of the “rowwise” spectral sequence is then H.�triv.M/; d/, and the
spectral sequence converges at this point by degree reasons. Hence

H.�triv.M/; d/ŠH �.M/:

It is shown in [24] that H.�PA.M/; d/ŠH.M/. To see that the inclusion

�triv.M/��PA.M/

induces the isomorphism on cohomology one may consider the PA Čech–de Rham
complex CPA, defined by replacing�triv by�PA in the definition of C above. Using the
PA Poincaré lemma [24, Lemma 6.3] it is then clear that the natural inclusion C !CPA

induces an isomorphism on the E2–page of the “columnwise” spectral sequences on
both sides, and hence is a quasi-isomorphism.

We note that in fact in the definition of �triv we do not need globally trivial bundles,
local triviality suffices.
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Proposition 85 Let M be a compact semialgebraic manifold and let p WE!M be an
oriented SA bundle; see [24, Definition 8.1]. Let ! 2�triv.E/. Then the corresponding
fiber integral

R
E!M ! 2�PA.M/ is an element of �triv.M/��PA.M/.

Proof We may assume that ! 2�min.M/ by replacing E with a product of E with
some trivial bundle if needed. We pick a finite trivializing cover fUig, a semialgebraic
partition of unity �i , and cutoff functions �i as in the proof of Corollary 84.

We then rewrite Z
E!M

! D
X
i

�i

Z
E!M

! D
X
i

Z
E!M

�i!:

For the last equality we abused notation and defined �i WD p��i , and we implicitly
used [24, Proposition 8.9]. Let the local trivialization of the bundle on Ui be denoted
by hi W Ui �F

Š
�! p�1.Ui /. As in the previous proof we extend the minimal form

�ih
�
i ! 2�min.Ui �F / to a minimal form �ih

�
i ! 2�min.M �F /, which we abusively

denote by the same symbols. We then claim that

(22)
Z
E!M

�i! D

Z
M�F!M

�ih
�
i !:

Since the right-hand side is a fiber integral over a trivial bundle the proposition then
follows.

To check (22) we need to consider a trivializing stratification fS˛g for the strongly
continuous chain ˆ corresponding to the bundle E !M . The stratification can be
taken such that the closure of each stratum is contained in one of the Uj as in the
proof of [24, Proposition 8.2]. We can furthermore refine it so that each S˛ is either
contained in Ui or disjoint from the support of �i . (For example, refine the stratification
by intersecting the strata with fx j �i .x/� 0:9g and the closure of its complement.)

Now consider some stratum S˛, and the restriction of (22) to its closure. If S˛ is
disjoint from the support of �i then trivially both sides of (22) vanish on it. Otherwise
we may assume that S˛ � Ui . But the bundle isomorphism hi transforms one side of
(22) into the other; see [24, Proposition 8.10].
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We prove the Hurewicz theorem in homotopy type theory, ie that for X a pointed,
.n�1/–connected type, with n � 1, and A an abelian group, there is a natural
isomorphism �n.X/

ab˝AŠ zHn.X IA/ relating the abelianization of the homotopy
groups with the homology. We also compute the connectivity of a smash product of
types and express the lowest nontrivial homotopy group as a tensor product. Along
the way, we study magmas, loop spaces, connected covers and prespectra, and we
use 1–coherent categories to express naturality and for the Yoneda lemma.

As homotopy type theory has models in all1–toposes, our results can be viewed as
extending known results about spaces to all other1–toposes.

55Q99; 03B38, 18N60, 55N99

1 Introduction

Homotopy type theory is a formal system which has models in all1–toposes [2; 3; 11;
15; 19].1 As such, it provides a convenient way to prove theorems for all1–toposes.
In addition, homotopy type theory is well suited to being formalized in a proof assistant
[1; 8].

Working in homotopy type theory as described in the book [16], we prove the Hurewicz
theorem:

Theorem H (Theorem 3.12) For n� 1, X a pointed , .n�1/–connected type , and A
an abelian group , there is a natural isomorphism

�n.X/
ab
˝AŠ zHn.X IA/;
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where on the left-hand side we take the abelianization (which only matters when
n D 1). In particular , when A is the integers , this specializes to an isomorphism
�n.X/

ab Š zHn.X/.

As mentioned above, this holds in any 1–topos, and so is more general than the
well-known Hurewicz theorem in topology. Interpreting the statement in an1–topos
is somewhat subtle. The groups that appear in the statement are internal group objects
whose underlying object is 0–truncated (a “set”, internally). The quantification over n
means that there is a map h WH !N in the1–topos representing a family of objects
over the natural numbers object, and that this map has a section. In particular, since
each ordinary natural number gives a global element of N, it follows that the fibre of h
over that element must itself have a global element. Continuing in this way, we deduce
that for given objects X and A as in the statement, the two internal group objects shown
are equivalent as group objects. For more on the interpretation of type theory, see
Shulman [18, Section 4.2; 19] for the interpretation in arbitrary1–topoi, and Kapulkin
and Lumsdaine [12] for a more explicit interpretation in simplicial sets.

Since we prove this theorem for an arbitrary 1–topos, we must be careful to use
arguments that apply in this generality. For example, it is not true in every1–topos
that a surjective map of sets has a section, so we cannot use the axiom of choice.
Similarly, the law of excluded middle and Whitehead’s theorem can both fail, so we
must not use these results either. Because of this, our proof is different from other
known proofs.

Before giving more details, we give some motivation for the interest in this result, for
those less familiar with traditional homotopy theory.

Motivation

In topology, homotopy groups are in a certain sense the strongest invariants of a
topological space, and so their computation is an important tool when trying to classify
spaces up to homotopy. In homotopy type theory, homotopy groups play a fundamental
role in that they capture information about iterated identity types. Unfortunately, even
in classical topology, the computation of homotopy groups is a notoriously difficult
problem. Nevertheless, topologists have come up with a variety of powerful tools for
attacking this problem, and one of the most basic tools is the Hurewicz theorem. In
most cases, it is much easier to compute homology groups than homotopy groups, and
so one can use the isomorphism from right to left (with A taken to be the integers) to
compute certain homotopy groups. Moreover, one can apply the theorem even when X
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is not .n�1/–connected using the following technique. Let Xhn� 1i denote the fibre
of the truncation map X !kXkn�1 over the image of the basepoint. Then Xhn� 1i
is .n�1/–connected and �n.Xhn� 1i/Š �n.X/, so �n.X/ab Š zHn.Xhn� 1i/. The
Serre spectral sequence can often be used to compute the required homology group.

Techniques and main results

We first recall that for n � 1, the nth homology group zHn.X IA/ of a type X with
coefficients in an abelian group A is defined to be the colimit of a certain sequential
diagram,

(1-1) �nC1.X^K.A; 1//�!�nC2.X^K.A; 2//�!�nC3.X^K.A; 3//�! � � � :

Here ^ denotes the smash product and K.A;m/ is the Eilenberg–Mac Lane space
constructed by Licata and Finster in [13], which is an m–truncated, .m�1/–connected,
pointed type with a canonical isomorphism �m.K.A;m//Š A.

We now state one of our main results, which is used to prove the Hurewicz theorem,
and also has other consequences:

Theorem S (Corollary 2.32 and Theorem 2.38) If X is a pointed , .n�1/–connected
type with n� 1 and Y is a pointed , .m�1/–connected type with m� 1, then X ^Y is
.nCm�1/–connected and �nCm.X^Y / is the tensor product of �n.X/ab and �m.Y /ab

in a natural way.

Taking Y to be K.A;m/ in this result shows that the groups appearing in the sequential
diagram (1-1) are tensor products of �n.X/ab and A. The proof of the Hurewicz
theorem follows from showing that the induced maps are isomorphisms, which we do
in Lemma 3.11. With this ingredient, we prove the Hurewicz theorem as Theorem 3.12.

In order to define the isomorphism appearing in Theorem S, we must give a bilinear
map �n.X/!Grp �m.Y /!Grp �nCm.X ^Y /. To do so, we define and study a more
general natural map

smashing W .X !� Y !� Z/ �!
�
�n.X/!Grp �m.Y /!Grp �nCm.Z/

�
for any pointed types X , Y and Z and any n;m� 1. The map we require is obtained
by applying smashing to the natural map X !� Y !� X ^Y .

Constructing the map smashing requires some work. While it lands in group homo-
morphisms between (0–truncated) groups, in order to construct it, we pass through
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magmas. A magma is a (not necessarily truncated) type M with a binary operation
� WM �M !M , with no conditions or coherence laws. As a technical trick which
simplifies the formalization, we work with weak magma morphisms. A weak magma
morphism from a magma M to a magma N is a map f WM !N which merely has
the property that it respects the operations. This is sufficient for our purposes, because
when M and N are groups, it reproduces the notion of group homomorphism. All
loop spaces are magmas under path concatenation, and many natural maps involving
loop spaces are weak magma morphisms. By working with magmas, we can factor the
map smashing into simpler pieces, and still land in group homomorphisms at the end,
without keeping track of higher coherences.

Proving the rest of Theorem S requires a number of results that build on work of
Buchholtz, van Doorn and Rijke [4]. For example, Lemma 2.15 and Theorem 2.19
are results of [4], which we use to prove Proposition 2.23: for n � 1, X a pointed,
.n�1/–connected type, and Y a pointed, n–truncated type, the map

�n W .X !� Y /! .�nX !Mgm �
nY /

is an equivalence. In order to prove this, we prove results about connected covers in
Section 2.3.

We go on to define a natural Hurewicz homomorphism hn W �n.X/
ab˝A! zHn.X IA/,

without assuming any connectivity hypothesis on X , and show that it is unique up to
a sign among such natural transformations that give isomorphisms for X � Sn and
A� Z (Theorem 3.16).

Homology

The theory of homology in homotopy type theory is currently limited by the absence
of some important tools and facts that would make it easier to compute. For example,
we don’t have complete proofs that homology satisfies the Eilenberg–Steenrod axioms,
although partial work was done by Graham [9]. The Serre spectral sequence for
homology has not been formalized, but high level arguments can be found in [8] and
it is expected that techniques similar to those used for cohomology will go through.
We are also missing the fact that the homology of a cellular space can be computed
cellularly (which is done for cohomology in [5]), the universal coefficient theorem,
and the relationship between homology and localization (developed in homotopy type
theory in [7; 17]).
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Structure of the paper

Section 2 contains our work on smash products and tensor products. After listing
our conventions in Section 2.1, we give the basic theory of 1–coherent categories in
Section 2.2. We use this theory to express and reason about natural transformations, and
we make use of the Yoneda lemma in this setting. In Section 2.3 we study connected
covers. Section 2.4 introduces magmas and weak magma morphisms, and proves a
variety of results about loop spaces, including Proposition 2.23, mentioned above.
We also define the map smashing in this section. We introduce smash products in
Section 2.5 and prove the connectivity part of Theorem S here. Section 2.6 is a short
section that defines abelianization and gives a particularly efficient construction of the
abelianization of a group as a higher inductive type. In Section 2.7, we define tensor
products of abelian groups and prove the second part of Theorem S. Section 2.8 proves
results about smash products, truncation and suspension that are needed in Section 3.

Section 3 applies the results of Section 2 to homology, leading up to the Hurewicz
theorem and its consequences. In Section 3.1, we define prespectra and their stable
homotopy groups, and use this to define homology. The Hurewicz theorem is proved
in Section 3.2, and we describe the Hurewicz homomorphism and its uniqueness up to
sign in Section 3.3. In Section 3.4, we give some applications of our main results.

Formalization

Formalization of these results is in progress, with help from Ali Caglayan, using the
Coq HoTT library [10]. The current status can be seen at [6], where the README.md
file explains where results from the paper can be found. Currently, we have formalized
much of Section 2 but none of Section 3. In Section 2, the only substantial result that
is missing is Theorem 2.38. Also missing are Theorem 2.28 and the naturality of many
of the maps defined in this section. In our formalization, we take as axioms several
results that have been formalized in other proof assistants.

2 Smash products and tensor products

In this section, we give a variety of results about loop spaces, magmas, smash products
and tensor products, including the proof of Theorem S. None of the results in this
section depend on the definition of homology, but these results are used in the next
section to prove the Hurewicz theorem.
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2.1 Background and conventions

We follow the conventions and notation used in [16]. We assume we have a univalent
universe U closed under higher inductive types (HITs) and contained in another uni-
verse U 0. In fact, the higher inductive types we use can all be described using pushouts
and truncations. By convention, all types live in the lower universe U , unless explicitly
stated. We implicitly use function extensionality for U throughout.

A pointed type is a type X and a choice of x0 W X , and the type of pointed types is
denoted by U� W�

P
.X W U/X . We often keep the choice of basepoint implicit. A pointed

map between pointed types X and Y is a map f WX ! Y and a path p W f .x0/D y0.
The type of pointed maps is denoted by X !� Y W�

P
.f WX!Y /f .x0/D y0.

We frequently make use of functions of type X ! Y !Z, and remind the reader that
this associates as X ! .Y !Z/, which is the curried form of a function X �Y !Z.

In the paper, we define the sum mCn of natural numbers by induction on n, so that
mC 1 is the successor of m. In the HoTT library, the other convention is used, so to
translate between the paper and the formalization, one must change mCn to nCm
everywhere.

2.2 1–coherent categories

In this section, we briefly discuss the notion of a 1–coherent category, which we use
to express that various constructions are natural. The definitions generalize those of
[8, Section 4.3.1], which deals with the 1–coherent category of pointed types, except
that our hom types are unpointed. A more general notion of wild category has been
formalized in the HoTT library [10] by Ali Caglayan, tslil clingman, Floris van Doorn,
Morgan Opie, Mike Shulman and Emily Riehl.

Recall that U 0 is a universe such that U W U 0.

Definition 2.1 A 1–coherent category C consists of a type C0 W U 0, a map

homC W C0! C0! U ;
maps

id W
Y
aWC0

homC .a; a/;

�ı�W

Y
a;b;cWC0

homC .b; c/! homC .a; b/! homC .a; c/;
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and equalities

unitl W
Y
a;bWC0

Y
f WhomC .a;b/

idb ıf D f;

unitr W
Y
a;bWC0

Y
f WhomC .a;b/

f ı ida D f;

assoc W
Y

a;b;c;d WC0

Y
f WhomC .a;b/

Y
gWhomC .b;c/

Y
hWhomC .c;d/

.h ıg/ ıf D h ı .g ıf /;

witnessing left and right unitality and associativity, respectively. We do not assume
coherence laws or that any of the types are truncated.

If C is a 1–coherent category, the elements of C0 are called objects and, for objects
a; b W C0, the elements of homC .a; b/ are called morphisms from a to b.

The wild 1–categories considered in [10] allow 2–cells to be specified, which are then
used in place of the identity types in the above equalities. For simplicity, we use the
identity types.

Example 2.2 There is a 1–coherent category U of types, with U0 W� U and

homU.X; Y / W�X ! Y

for every pair of types X; Y W U . Identity morphisms, composition, unitalities, and
associativity all work in the expected way.

Example 2.3 There is a 1–coherent category Grp of groups whose objects are the set-
level groups, that is, 0–truncated types equipped with an associative binary operation,
a unit and inverses. The morphisms are standard group homomorphisms.

Similarly, there is 1–coherent category Ab of abelian groups.

Example 2.4 Any precategory in the sense of [16, Definition 9.1.1] gives rise to a
1–coherent category, simply by forgetting that its hom types are sets. Moreover, the
notions of isomorphism, functor, and natural transformation given in [16, Section 9]
are equivalent to the notions we give in this section, in the case of precategories.

Many constructions one can carry out with categories are easy to extend to 1–coherent
categories. We mention two that are particularly important for us. Given a 1–coherent
category C , we can form the opposite 1–coherent category C op by letting the type of
objects of C op be C0, and homC op.a; b/ W� homC .b; a/ for all a; b W C0. The rest of
the structure is straightforward to define.
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Given 1–coherent categories C and D, one can form a product 1–coherent cate-
gory, denoted by C �D. The underlying type of C �D is simply C0 �D0, and
homC�D..c; d/; .c0; d 0// W� homC .c; c0/� homD.d; d 0/. The rest of the structure is
again straightforward to define.

Definition 2.5 Let C be a 1–coherent category, a; b W C0, and f W homC .a; b/. An
isomorphism structure for f is given by morphisms g; h W homC .b; a/ together with
paths l W g ıf D ida and r W f ı hD idb .

In many cases, such as in the 1–coherent category U, being an isomorphism is a mere
property of a morphism. The wild 1–categories considered in [10] allow biinvertibility
to be replaced by more general notions of isomorphism.

Definition 2.6 A 1–coherent functor F between 1–coherent categories C and D,
usually denoted by F W C !D, consists of a map F0 W C0!D0, a map

F1 W
Y
a;bWC0

homC .a; b/! homD.F0.a/; F0.b//;

and equalities
Fid W

Y
aWC0

F.ida/D idF.a/;

Fı W
Y

a;b;cWC0

Y
f WhomC .a;b/

Y
gWhomC .b;c/

F1.g/ ıF1.f /D F.g ıf /;

witnessing the functoriality of F .

Example 2.7 For a 1–coherent category C and an object a W C0, we can define a
1–coherent corepresentable functor Ya W C ! U. On objects, Ya0 .b/ W� homC .a; b/.
The action on morphisms is defined as Ya1 .f / W��g:f ıg W homC .a; b/! homC .a; c/
for f W homC .b; c/. The witnesses of functoriality, that is Y aid and Y aı , are defined
using the equalities unitl and assoc of C , respectively.

Definition 2.8 Let C and D be 1–coherent categories and let F;G W C ! D be
1–coherent functors. A 1–coherent natural transformation ˛ from F to G, usually
denoted by ˛ W F !G, consists of a map

˛0 W
Y
aWC0

homD.F.a/;G.a//;

and equalities

˛1 W
Y
a;bWC0

Y
f WhomC .a;b/

˛0.b/ ıF1.f /DG1.f / ı˛0.a/:
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Definition 2.9 Let ˛ W F ! G be a 1–coherent natural transformation between 1–
coherent functors F;G WC !D, for C and D 1–coherent categories. An isomorphism
structure for ˛ is given by an isomorphism structure for each of its components. A
natural isomorphism is given by a natural transformation together with an isomorphism
structure.

The following lemma is straightforward.

Lemma 2.10 Let C and D be 1–coherent categories , F;G;H W C !D 1–coherent
functors , and ˛ W F ! G and ˇ W G ! H 1–coherent natural transformations. Then ,
by defining .ˇ ı ˛/.c/ W� ˇ.c/ ı ˛.c/ and the naturality squares by composing the
naturality squares of ˛ and ˇ, one obtains a natural transformation ˇ ı ˛ W F ! H .
Moreover , if both ˛ and ˇ are natural isomorphisms , so is ˇ ı˛.

The following is a 1–coherent version of the fact that the Yoneda functor is an embed-
ding.

Proposition 2.11 [10] Let C be a 1–coherent category and let a; b W C0. Assume
given a 1–coherent natural isomorphism ˛ WY b!Y a. Then i W�˛0.b/.idb/WhomC .a; b/
is part of an isomorphism between a and b, and it satisfies , for every c W C0,

˛0.c/D �g:g ı i

as maps homC .b; c/! homC .a; c/.

The proof is the same as the usual proof, and has been formalized in the HoTT
library [10]. Note that we are not claiming that the naturality proofs for ˛ can be
recovered using the associativity of composition.

2.3 Connected covers

In order to generalize a result of Buchholtz, van Doorn and Rijke (see Theorem 2.19)
to the case where Y has no connectivity assumption, we prove some results about
connected covers. In this section, we fix n� �1.

Definition 2.12 A type X is n–connected if kXkn is contractible.

For X pointed, it is equivalent to require that �i .X/ be trivial for all i � n. Every
pointed type is .�1/–connected.

Definition 2.13 LetX be a pointed type. The n–connected cover Xhni ofX is defined
to be the fibre of the pointed map X !� kXkn.
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Note that Xhni is indeed n–connected and that we have a canonical pointed map
i W Xhni !� X which induces an equivalence on the homotopy groups �k for k > n.
In fact, this map has a stronger universal property:

Definition 2.14 A pointed map f WX !� Y is an hni–equivalence if for any pointed,
n–connected type Z, postcomposition by f gives an equivalence

.Z!� X/
��! .Z!� Y /:

Lemma 2.15 [4, Lemma 6.2] Let X be a pointed type. Then the map i WXhni !� X
is an hni–equivalence.

It follows that the operation sending X to Xhni is functorial in a unique way making
i WXhni !� X natural, and that a map f is an hni–equivalence if and only if f hni is
an equivalence.

Note that there is a 1–coherent category with objects all pointed types and morphisms
given by pointed functions. We denote this 1–coherent category by U�. There are
1–coherent functors †;� W U�! U� forming a 1–coherent adjunction, in the following
sense.

Lemma 2.16 [16, Lemma 6.5.4] Let X and Y be pointed types. There is an equiva-
lence

.†X !� Y /' .X !� �Y /;

natural in X and Y . Here , we are interpreting .†.�/!� �/ and .� !� �.�// as
1–coherent functors Uop

�
�U�! U.

The naturality is not proven in [16], but is proven in the HoTT library [10].

The following two facts will be used in Proposition 2.23.

Proposition 2.17 Let f WX !� Y be a pointed map. If f is an hnC1i–equivalence ,
then �f is an hni–equivalence.

Proof Let A be an n–connected, pointed type. By naturality of the adjunction between
suspension and loops (Lemma 2.16), we have a commutative square

.†A!� X/ .†A!� Y /

.A!� �X/ .A!� �Y /

�

f ı�

�

�f ı�
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in which the vertical maps are equivalences. Since the suspension of an n–connected
type is .nC1/–connected, the top map is also an equivalence. Therefore, the bottom
map is an equivalence, as required.

Proposition 2.18 Let f WX!� Y be a pointed map. If f is a h�1i–equivalence , then
f is an equivalence.

Proof Since S0 is .�1/–connected, we know that f induces an equivalence

.S0!� X/!� .S
0
!� Y /:

Moreover, .S0!� Z/ is equivalent to Z for any pointed type Z, and this equivalence
is natural. It follows that f is an equivalence.

This also follows from the facts that Zh�1i!� Z is an equivalence for any pointed Z,
and that f h�1i is an equivalence.

2.4 Loop spaces and magmas

In this section, we study loop spaces and the natural magma structures that they carry
and define the map smashing that plays an important role in this paper. We begin by
generalizing the following result of Buchholtz, van Doorn and Rijke.

Theorem 2.19 [4, Theorem 5.1] Let n� 1. For X and Y pointed , .n�1/–connected ,
n–truncated types , the map

�n W .X !� Y / �!� .�
nX !Grp �

nY /:

is an equivalence.

In order to state our generalization, we introduce the notion of magma.

Definition 2.20 A magma is given by a type X together with an operation

�X WX �X !X:

A map of magmas is given by a map f W X ! Y between the underlying types that
merely respects the operations. More formally, we define

X !Mgm Y WD
X

.f WX!Y /





 Y
.x;x0WX/

f .x �X x
0/D f .x/ �Y f .x

0/






�1

:

An equivalence of magmas is a map of magmas whose underlying map is an equivalence.
We write X 'Mgm Y for the type of magma equivalences from X to Y . Magmas form
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a 1–coherent category that we denote by Mgm. We will omit the subscript on the
operation � when it is clear from context.

The propositional truncation in the definition of magma map is a technical trick to
simplify the formalization. With our definition, the type of equalities between magma
maps is equivalent to the type of equalities between the underlying maps. All of our
results should go through without the truncation, but omitting it leads to path algebra
that is not needed in order to get our later results. The maps we are considering should
be called “weak magma maps”, but since they are the only maps we use, we simply
call them “magma maps” in this paper.

Definition 2.21 A pointed magma is a magma X with a chosen point x0 WX and an
equality x0 � x0 D x0. A map of pointed magmas is a pointed map f WX !� Y whose
underlying map f WX! Y is a map of magmas. We write X!Mgm� Y for the type of
pointed magma maps. An equivalence of pointed magmas is a map of pointed magmas
whose underlying map is an equivalence. We write X 'Mgm� Y for the type of pointed
magma equivalences. Pointed magmas form a 1–coherent category, which we denote
by Mgm�.

There are no propositional truncations in the above definition, except for the one in the
definition of magma map.

Remark 2.22 The loop space �X is a pointed magma for any pointed type X ,
with path concatenation as the operation, reflexivity as the basepoint, and a higher
reflexivity as the proof that the basepoint is idempotent. There is a natural map
� W .X !� Y / !� .�X !Mgm� �Y /, which can be iterated. Any magma map
�X !Mgm �Y induces a group homomorphism �1.X/!Grp �1.Y /. Also note that
for groups G and H , .G!Grp H/' .G!Mgm H/, where we write G!Grp H for
the type of group homomorphisms. (We assume that all groups have an underlying
type that is a set, which means that the propositional truncation can be removed.)

When X is a pointed magma and G is a group, every magma map X !Mgm G can be
made pointed in a unique way, so the forgetful map .X!Mgm� G/! .X!Mgm G/ is
an equivalence.

When A is a pointed type and X is a pointed magma, the type A!� X of pointed
maps is a pointed magma under the pointwise operation. The requirement that the
basepoint x0 WX be idempotent ensures that for f; g W A!� X , f �g is again pointed:
.f �g/.a0/� f .a0/ �g.a0/D x0 � x0 D x0.
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Similarly, when Y is a pointed magma andZ is a pointed type, the type Y !Mgm� �
2Z

of pointed magma maps and the type Y !Mgm �
2Z of all magma maps are pointed

magmas under the pointwise operation. This uses that path composition in the double
loop space is commutative (by Eckmann–Hilton) and associative. (More precisely, we
only use that the operation is merely commutative and merely associative, which will
be convenient in Definition 2.26.)

With this background, we can now state our first generalization of Theorem 2.19.

Proposition 2.23 Let n� 1, let X be a pointed , .n�1/–connected type , and let Y be
a pointed , n–truncated type. Then the map

�n W .X !� Y /
��! .�nX !Mgm �

nY /

is an equivalence , natural in X and Y . Similarly,

�n W .X !� Y /
��! .�nX !Mgm� �

nY /

is a natural equivalence.

Proof Since �nY is a group, the second equivalence follows from the first, using
Remark 2.22, so we focus on the first one. By the functoriality of �n, the diagram

.X !� Y / .�nX !Mgm �
nY /

.kXkn!� Y / .�n.kXkn/!Mgm �
nY /

.kXkn!� Y hn� 1i/ .�n.kXkn/!Mgm �
n.Y hn� 1i//

commutes, where the vertical maps are induced by the maps j�jn W X !� kXkn and
i W Y hn� 1i !� Y . The vertical maps on the left are equivalences by the universal
properties of truncations and of connected covers.

To see that the upper vertical map on the right is an equivalence, let f denote the map
�n.j�jn/ W�

nX !� �
n.kXkn/. This map is 0–connected, since j�jn is n–connected

and � decreases connectivity. Since �nY is a set, it follows that f induces an
equivalence .�n.kXkn/!�nY /! .�n.X/!�nY /. Given g W�n.kXkn/!�nY ,
we need to show that g merely preserves the magma structures if and only if g ı f
merely preserves the magma structures. The map f induces an equivalence� Y
a;bW�n.kXkn/

g.a�b/Dg.a/�g.b/

�
'

� Y
a;bW�n.X/

g.f .a/�f .b//Dg.f .a//�g.f .b//

�
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since f is 0–connected and the identity types are sets (in fact, propositions). Note
that f , being defined using the functoriality of �, preserves the concatenation oper-
ation (without any propositional truncation). It follows that the type on the right is
equivalent to the type of proofs that g ıf preserves the magma structure. Therefore,
the propositional truncations are also equivalent, so f induces an equivalence on the
types of magma maps.

The lower vertical map on the right is an equivalence since �n.i/ is an equivalence of
magmas: it is certainly a map of magmas, and the fact that it is an equivalence follows
from Propositions 2.17 and 2.18.

The bottom horizontal map is an equivalence by Theorem 2.19, and so the top horizontal
map is an equivalence, as required.

The fact that �n is natural in X and Y follows from the functoriality of �n as an
operation from pointed maps to magma maps, which is straightforward to check.

Our next goal is to define the map smashing, using the following lemmas.

Lemma 2.24 Let n�1 and let Y and Z be pointed types. Then there is an equivalence
of pointed magmas

�n.Y !� Z/'Mgm� .Y !� �
nZ/;

natural in Y and Z. Here we are regarding �n.� !� �/ and � !� �n.�/ as
1–coherent functors U� �U�!Mgm�.

On the right-hand side, we are using the pointwise magma structure described in
Remark 2.22.

Proof We prove this for nD 1, and then iterate, using that the functor � sends pointed
equivalences to equivalences of pointed magmas.

In order to prove that our equivalence respects the magma structures, it is best to
generalize: for f; g W Y !� Z we define an equivalence

' W .f D g/ ��!
X

KWf�g

K.y0/D f0 �g
�1
0 :

Here K is a homotopy, y0 is the basepoint of Y , and f0 and g0 are the paths witnessing
that f and g are pointed. This equivalence is a variant of the standard result that
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equalities of pointed maps are equivalent to pointed homotopies; the particular choice
of the right-hand side means that when f and g are the constant map Y !� Z pointed
by refl, we obtain a pointed equivalence

�.Y !� Z/'� .Y !� �Z/:

Our pointed homotopies can be composed, and we show that ' sends composition of
paths to composition of homotopies by first doing induction on the paths to reduce the
goal to

'.refl/D '.refl/ �'.refl/

and then using path induction to assume that f0 is refl. We conclude that

�.Y !� Z/'Mgm� .Y !� �Z/:

To prove naturality in Y , consider a pointed map h W Y !� Y 0. We must show that the
following square commutes:

�.Y 0!� Z/ �.Y !� Z/

.Y 0!� �Z/ .Y !� �Z/

'

�.�ıh/

'

�ıh

By path induction, we can assume that h is strictly pointed, ie that the given path
h0 W h.y0/D y

0
0 is reflexivity. In this case, writing c W Y !� Z and c0 W Y 0!� Z for

the constant maps, we have that c0 ıh and c are definitionally equal as pointed maps.
Therefore, the corners and vertical maps in the required square are definitionally equal
to those in the square

c0 D c0 c0 ı hD c0 ı h

c0 �� c
0 c0 ı h�� c

0 ı h

'

ap�ıh

'

whh

where �� denotes the type of pointed homotopies defined above, and whh denotes
prewhiskering with h. One can check that the horizontal arrows are homotopic to those
in the required square, so it remains to show that the new square commutes. To show
this, one generalizes from c0 D c0 to f D g, in which case the commutativity follows
by path induction.

The proof of naturality inZ is very similar. Since both naturalities have been formalized,
we give no further details.
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Lemma 2.25 Let n;m� 1 and let Y and Z be pointed types. The action of �m on
maps gives a pointed magma map

.Y !� �
nZ/ �!Mgm� .�

mY !Mgm� �
m�nZ/:

Moreover , the forgetful maps

.�mY !Mgm� �
m�nZ/ �!Mgm� .�

mY !Mgm �
m�nZ/

and
.�mY !Mgm� �

m�nZ/ �!Mgm� .�
mY !� �

m�nZ/

are also pointed magma maps. In all cases , we are using the pointwise magma structure
described in Remark 2.22. These maps are all natural.

Proof That the forgetful maps are natural pointed magma maps is straightforward, so
we focus on the first map. By replacing Z with �n�1Z, we can assume that nD 1.
To prove that �m is a natural pointed magma map, we induct on m. For the inductive
step, we define �mC1 to be the composite

.Y !� �Z/
�m

�! .�mY !Mgm� �
m�Z/

�! .�mY !� �
m�Z/ �

�! .�mC1Y !Mgm� �
mC1�Z/

so that the claim follows from the inductive hypothesis, the fact that the middle forgetful
map is a natural pointed magma map, and the mD 1 case.

It remains to prove the m D 1 case. It is easy to see that for f W Y !� �Z, �f is
a pointed magma map. Next we must show that given f; g W Y !� �Z, �.f � g/
and .�f / � .�g/ are equal as pointed magma maps, where � denotes the pointwise
operations. Because we are using weak magma maps, it is equivalent to show that
these two maps are equal as pointed maps, or in other words that there is a pointed
homotopy �.f � g/ �� .�f / � .�g/. The underlying homotopy involves some path
algebra, and ultimately follows from the fact that horizontal and vertical composition
agree in the codomain, which is a double-loop space. The pointedness of the homotopy
follows by a simple path induction on the paths f .y0/D refl and g.y0/D refl, after
generalizing f .y0/ and g.y0/ to arbitrary loops. The argument in this paragraph has
been formalized.

The naturality of � follows from the fact that for pointed maps h and k,

�.h ı k/D�.h/ ı�.k/

as pointed maps, where again we are taking advantage of the fact that we are using
weak magma maps.
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Definition 2.26 For pointed types X , Y , and Z and natural numbers n;m � 1, we
have maps

(2-1) .X !� Y !� Z/ �! .�nX !Mgm �
n.Y !� Z//

��! .�nX !Mgm .Y !� �
nZ//

�! .�nX !Mgm .�
mY !Mgm� �

m�nZ//

��! .�nX !Mgm .�
mY !Mgm� �

nCmZ//

�! .�n.X/!Grp �m.Y /!Grp �nCm.Z//:

These maps are natural in X , Y , and Z. The first and third arrows apply �n and �m to
morphisms, using Lemma 2.25. The second arrow is an equivalence by Lemma 2.24. To
understand the fourth arrow, writemD kC1 for some k WN. Then�k�nZD�nCkZ
as pointed types. Applying � on the outside, we see that �m�nZ D �nCmZ as
magmas. Since the magma structure on the set of magma maps only uses that the
iterated loop space is merely commutative and merely associative, we can conclude
that .�mY !Mgm� �

m�nZ/D .�mY !Mgm� �
nCmZ/ as magmas. From this we

deduce the required equivalence. The fifth arrow applies 0–truncation on the inside
and then on the outside. Let

smashing W .X !� Y !� Z/ �! .�n.X/!Grp �m.Y /!Grp �nCm.Z//

denote the composite.

The map smashing corresponds to the following construction in topology, which uses the
smash product from the next section. Given a map f WX !� Y !� Z and homotopy
classes ˛ W �n.X/ and ˇ W �m.Y /, one can smash representatives of the homotopy
classes together to get an element ˛ ^ ˇ W �nCm.X ^ Y /. The adjoint X ^ Y !� Z
of f then induces a map taking this to an element of �nCm.Z/ which (up to sign) is
smashing.f; ˛; ˇ/. This correspondence motivates the name.

Since we’ll use it several times, we quote the following result from [4].

Lemma 2.27 [4, Corollary 4.3] Let m � 0 and n � �1. If Y is a pointed , .m�1/–
connected type and Z is a pointed , .nCm/–truncated type , then the type Y !� Z is
n–truncated.

The last result in this section plays an important role in our proof, and can be thought
of as a generalization of Theorem 2.19 to functions with two arguments.
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Theorem 2.28 Let n;m� 1. If X is a pointed .n�1/–connected type , Y is a pointed
.m�1/–connected type , and Z is a pointed .nCm/–truncated type , then the map
smashing is an equivalence.

Proof The first arrow in (2-1) is an equivalence by Lemma 2.27 and Proposition 2.23.
The third arrow is an equivalence by Proposition 2.23. To show that the fifth arrow is
an equivalence, one uses the same methods as in the proof of Proposition 2.23, using
that �nCmZ is a set.

2.5 The connectivity of smash products

We recall some basic facts about smash products, and then prove a result about their
connectivity.

Definition 2.29 For pointed types X and Y , the smash product X ^Y is defined to
be the higher inductive type with constructors:

� sm WX �Y !X ^Y ,

� auxl WX ^Y ,

� auxr WX ^Y ,

� gluel W
Q
.yWY /sm.x0; y/D auxl,

� gluer W
Q
.xWX/sm.x; y0/D auxr.

The smash product is pointed by sm.x0; y0/. It has the expected induction principle.

It is straightforward to see that the smash product is a functor. That is, given pointed
maps f W X !� X 0 and g W Y !� Y 0 between pointed types, there is a pointed map
f ^g WX ^Y !� X

0 ^Y 0 defined by induction on the smash product in the evident
way, and this operation respects identity maps and composition.

Given pointed types X and Y , the constructors of the smash product X ^Y combine
to give a map X !� .Y !� X ^Y /, which we now describe.

Definition 2.30 Let X; Y W U�. Currying the constructor sm, we get a map

X ! .Y !X ^Y /:

Using the constructor gluer twice, this map lifts to a mapX! .Y !�X^Y /. Similarly,
using gluel, this last map lifts to a map sm� WX !� .Y !� X ^Y /.
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The following adjunction between pointed maps and smash products is fundamental to
our work.

Lemma 2.31 [8, Theorem 4.3.28] Let X , Y , and Z be pointed types. The map

.X ^Y !� Z/ �!� .X !� .Y !� Z//

induced by precomposition with sm� is a pointed equivalence , natural in X , Y , and Z.
Here , we are interpreting .�^�!� �/ and .�!� .�!� �// as 1–coherent functors
Uop
�
�Uop

�
�U�! U�.

Note that, by construction, sm� WX !� Y !� X ^Y is the adjunct of the identity map
X ^Y !� X ^Y .

In the form stated here, Lemma 2.31 has been formalized [8]. A stronger statement,
which roughly involves regarding the category U� as being enriched over U�, has not
yet been proven, but we do not use this stronger form.

We now give a bound on the connectivity of smash products, proving the first part of
Theorem S from the introduction.

Corollary 2.32 Let n;m� 0, let X be a pointed , .n�1/–connected type , and let Y
be a pointed , .m�1/–connected type. Then X ^Y is .nCm�1/–connected.

Proof It is enough to show that the truncation map X ^ Y ! kX ^ Y knCm�1 is
nullhomotopic. Since the truncation map is pointed, this follows from the following
more general fact: for any pointed, .nCm�1/–truncated type Z, the type X ^Y !� Z
is contractible. Indeed, by Lemma 2.31, we have .X ^Y !� Z/' .X !� Y !� Z/.
By Lemma 2.27, the type Y !� Z is .n�1/–truncated. Therefore, using Lemma 2.27
again, we see that the type X !� Y !� Z is .�1/–truncated, and thus contractible,
since any pointed mapping space is inhabited.

2.6 Abelianization

In this section, we introduce the notion of abelianization, and give an efficient construc-
tion of the abelianization of a group.

Definition 2.33 Given a group G, an abelianization of G consists of an abelian
group A together with a homomorphism � WG!Grp A, initial among homomorphisms
to abelian groups. In other words, for each abelian group B and homomorphism
h WG!Grp B , the type

P
.f WA!B/hD f ı � is contractible.
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Since the type of abelianizations of a given group is a mere proposition, we abuse
notation and denote any such abelianization by G!Gab.

Remark 2.34 The existence of abelianizations can be proved in several different ways.
One could mimic the classical definition, describing Gab as the quotient of G by the
subgroup generated by commutators, but this is awkward to work with constructively.

A second method that clearly works is to define Gab as a higher inductive type with a
point constructor � WG!Gab, a point constructor giving Gab an identity element, recur-
sive point constructors giving addition and inverses in Gab, recursive path constructors
showing that the group laws hold and that the operation is abelian, a path constructor
showing that � is a homomorphism, and a recursive path constructor forcing Gab to
be a set. While there is no doubt that this will work, it is difficult to use in practice
because of the number of constructors and the fact that many of them are recursive.

A much simpler construction is as the higher inductive type with the constructors

� � WG!Gab,

� comm W
Q
a;b;cWG �.a � .b � c//D �.a � .c � b//,

� isset W
Q
x;yWGab

Q
p;qWxDy p D q.

Equivalently, this is the 0–truncation of the coequalizer of the two obvious maps
G �G �G!G. Using either description, it is straightforward to show that Gab has a
unique group structure making � a group homomorphism, that this group structure is
abelian, and that � satisfies the universal property. We don’t give further details here,
since this has been formalized by Ali Caglayan in the HoTT library [10].

Given a group homomorphism f WG!Grp H , there is a unique group homomorphism
f ab WGab!Grp H

ab making the square

G H

Gab H ab

�

f

�

f ab

commute. This makes abelianization into a functor and � into a natural transformation.

2.7 Tensor products

In this section, we define tensor products and use them to complete the proof of
Theorem S.
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Recall that for a group G and an abelian group H , the set G !Grp H is an abelian
group. The group operation is given by .'C /.g/ W� '.g/C .g/, and the inverse
by .� /.g/ W� � .g/, along with the natural proofs that these are homomorphisms.

Definition 2.35 Given abelian groups A and B , a tensor product of A and B consists
of an abelian group T together with a map t W A!Grp B !Grp T such that for any
abelian group C the map

t� W .T !Grp C/ �! .A!Grp B!Grp C/

given by composition with t is an equivalence.

One can show in a straightforward way that tensor products exist, although we don’t
need this, and in fact the existence follows from Theorem 2.38. Moreover, the type of
tensor products of a given pair of abelian groups is a mere proposition. We denote any
such tensor product by A˝B . Given a W A, and b W B , we form the elementary tensor
a˝ b W A˝B as a˝ b W� t .a; b/.

Example 2.36 Let A W Ab. Then A ' A ˝ Z, and the isomorphism is given by
mapping a W A to a˝ 1. This follows from the fact that Z represents the identity; that
is, .Z!Grp C/'Grp C for any C W Ab, where the isomorphism is given by mapping
f W Z!Grp C to f .1/.

Lemma 2.37 Let A;B;C W Ab, and '; WA˝B!Grp C . If for every a WA and b WB
we have '.a˝ b/D  .a˝ b/, then ' D  .

Proof By construction, we have '.a˝b/D t�.'/.a; b/ and  .a˝b/D t�. /.a; b/.
By assumption and function extensionality, we have t�.'/D t�. /, and since t� is an
equivalence, we deduce that ' D  .

A key step towards proving the Hurewicz theorem is constructing a map

�n.X/
ab
˝�m.Y /

ab
!Grp �nCm.X ^Y /

natural in the pointed types X and Y , and proving that this map is an equivalence
under connectivity assumptions on X and Y . Equivalently, we are looking for a map
�n.X/

ab !Grp �m.Y /
ab !Grp �nCm.X ^ Y / that is a tensor product under these

assumptions.
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In order to do this, observe that, for G and H groups and A an abelian group, we have
an equivalence

.Gab
!Grp H

ab
!Grp A/

��! .G!Grp H !Grp A/;

given by precomposition with the corresponding abelianization maps. Applying the
smashing map from Definition 2.26 to the map sm� W X !� Y !� X ^ Y from
Definition 2.30 and using the above observation, we get a natural map

tX;Y W �n.X/
ab
!Grp �m.Y /

ab
!Grp �nCm.X ^Y /:

Theorem 2.38 Let n;m� 1, let X be a pointed , .n�1/–connected type , and let Y be
a pointed , .m�1/–connected type. Then the map tX;Y exhibits �nCm.X ^ Y / as the
tensor product of �n.X/ab and �m.Y /ab.

This implies in particular that tensor products of abelian groups exist.

Proof Given an abelian group C , we must show that the map

t�X;Y W .�nCm.X ^Y /!Grp C/ �! .�n.X/
ab
!Grp �m.Y /

ab
!Grp C/:

is an equivalence. The following diagram will let us show that t�X;Y is homotopic to
a map that is easily proven to be an equivalence. Let h W �nCm.X ^Y /!Grp C and
consider the diagram

.�nCm.X^Y /!Grp C/

.X^Y !�X^Y / .X^Y !�K.C; nCm//

.X!� Y !�X^Y / .X!� Y !�K.C; nCm//

.�n.X/!Grp �m.Y /!Grp �nCm.X^Y // .�n.X/!Grp �m.Y /!Grp C/

.�n.X/
ab!Grp �m.Y /

ab!Grp �nCm.X^Y // .�n.X/
ab!Grp �m.Y /

ab!Grp C/

h0�

�

�nCm�

�

smashing

h0�

smashing�

h�

h�

� �

We explain the diagram. The right-hand vertical arrow at the top is an equivalence by
Corollary 2.32 and Proposition 2.23, and also implicitly uses a chosen equivalence
e W �nCm.K.C; nCm//' C . The unlabeled vertical arrows bordering the first square
are the adjunction from Lemma 2.31. The vertical arrows labelled smashing are from
Definition 2.26; the right-hand one uses e and is an equivalence by Theorem 2.28. The

Algebraic & Geometric Topology, Volume 23 (2023)



The Hurewicz theorem in homotopy type theory 2129

unlabeled vertical arrows at the bottom are from the universal property of abelianization.
The horizontal maps labelled h� are postcomposition by h. The horizontal maps labelled
h0� are postcomposition with the map h0 WX ^Y !� K.C; nCm/ which corresponds
to h under the displayed equivalence �nCm. It is straightforward to check that the three
squares commute.

The right-hand column is an equivalence which we will show is homotopic to t�X;Y .
Consider the identity map idX^Y at the top of the left-hand side. Its image in the
bottom left corner is tX;Y , and the image of tX;Y under h� is equal to the image of h
under t�X;Y . By definition of h0, the image of idX^Y in the top-right corner is h. So the
right-hand column sends h to t�X;Y .h/. That is, the composite vertical equivalence is
homotopic to t�X;Y .

2.8 Smash products, truncation, and suspension

The goal of this section is to prove a result about the interaction of smash products and
truncation, and a result about the interaction of smash products and suspension. Both
results make use of the symmetry of the smash product, so we begin with that.

Definition 2.39 Given pointed types X and Y , there is a pointed map

� WX ^Y !� Y ^X

defined by induction on the smash product in the following way:

� �.sm.x; y// W� sm.y; x/,
� �.auxl/ W� auxr,
� �.auxr/ W� auxl,
� ap� .gluely/ WD gluer y,
� ap� .gluer x/ WD gluel x.

It is pointed by reflsm.y0;x0/.

Lemma 2.40 For pointed types X and Y , the composite � ı � WX ^Y !� X ^Y is
pointed homotopic to the identity. In particular , the map � is an equivalence.

Proof We first show that for every z WX ^Y , �.�.z//D z. We prove this using the
induction principle for smash products. For the three point-constructors, this holds
definitionally. The two 1–dimensional constructors are similar, so we only consider the
first one. We must show that for each y W Y ,

transportz 7!�.�.z//Dz.gluel y; reflsm.x0;y//D reflauxl:
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By a calculation similar to those in [16, Section 2.11], the left-hand side is equal to

ap� .ap� .gluel y//
�1
� reflsm.x0;y/ � gluel y:

By the definition of � in Definition 2.39, this is equal to

.gluel y/�1 � reflsm.x0;y/ � gluel y;

which is equal to reflauxl, as required.

We must also show that this homotopy is pointed. Up to definitional equality, this
amounts to showing that reflsm.x0;y0/ D reflsm.x0;y0/, which is true by reflexivity.

Next we show that the map � is natural.

Lemma 2.41 Given pointed maps f W X !� X 0 and g W Y !� Y 0 between pointed
types , the following square of pointed maps commutes:

X ^Y X 0 ^Y 0

Y ^X Y 0 ^X 0

f ^g

� �

g^f

Proof By path induction we can reduce to the case that f .x0/� x00 and g.y0/� y00.
Next we use the induction principle for X ^Y . The square commutes definitionally on
the three point constructors of X ^Y , but requires some straightforward path algebra in
the remaining two cases. Since the proof has been formalized, we omit the details.

Lemma 2.42 Let m� �1, let n� 0, let Y be a pointed type , and let X be a pointed ,
.n�1/–connected type. Then the map

kj�jm ^ idXknCm W kY ^XknCm!


kY km ^X

nCm

is an equivalence.

Proof Since the map in the statement is pointed, it is enough to show that for ev-
ery pointed, .nCm/–truncated type T , precomposition with j�jm ^ idY induces an
equivalence

.kY km ^X !� T / �! .Y ^X !� T /:

By the naturality in the first variable of the adjunction from Lemma 2.31, it is enough
to show that precomposition with j�jm induces an equivalence

.kY km!� X !� T / �! .Y !� X !� T /;

and this follows from the fact that the type X !� T is m–truncated (Lemma 2.27).
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Corollary 2.43 Let m � �1, let n � 0, let X be a pointed , .n�1/–connected type ,
and let Y be a pointed type. Then the map

kidX ^ j�jmknCm W kX ^Y knCm!kX ^kY kmknCm

is an equivalence.

Proof The square
X ^Y X ^kY km

Y ^X kY km ^X

idX^j�jm

� �

j�jm^idX

commutes by Lemma 2.41. The vertical maps are equivalences by Lemma 2.40. By
Lemma 2.42, the bottom map is an equivalence after .nCm/–truncation, so the top
map must also be an equivalence after truncating.

We conclude this section with a result letting us commute suspension and smash
products.

Lemma 2.44 Given pointed types X and Y , there is a pointed equivalence

c† W†.X ^Y /'� X ^†Y;

natural in both X and Y .

Proof By Definition 2.39 and Lemmas 2.40 and 2.41, it is enough construct a natural
equivalence †.X ^ Y /'� †X ^ Y . In order to do this, it suffices to show that, for
every pointed type Z, there is an equivalence .†.X ^Y /!� Z/' .†X ^Y !� Z/
natural in X , Y , and Z, by the Yoneda lemma (Proposition 2.11). Given a pointed
type Z, we define the equivalence as the composite of natural equivalences,

.†.X ^Y /!� Z/' .X ^Y !� �Z/

' .X !� Y !� �Z/

' .X !� �.Y !� Z//

' .†X !� Y !� Z/

' .†X ^Y !� Z/:

The first and fourth equivalences follow from the adjunction between suspension and
loops (Lemma 2.16). The second and fifth equivalences use Lemma 2.31. The third
equivalence follows from Lemma 2.24. This concludes the proof.

Algebraic & Geometric Topology, Volume 23 (2023)



2132 J Daniel Christensen and Luis Scoccola

This result was formalized in the spectral repository [8], but the proof of naturality is
not complete.

3 Homology and the Hurewicz theorem

In this section, we begin by defining homology and proving the Hurewicz theorem.
Then we define the Hurewicz homomorphism and prove that it is unique up to sign.
We conclude by giving some applications about the interaction between homology,
connectedness, and truncation.

3.1 Prespectra and homology

In this section, we introduce prespectra as a tool for defining the homology groups of a
type.

Definition 3.1 A prespectrum .Y; s/ is a family of pointed types Y WN! U� and a
family of pointed structure maps s W

Q
.nWN/Yn!� �YnC1. When the structure maps

of Y are clear from the context, we will denote the prespectrum simply by Y .

Definition 3.2 A map of prespectra f W .T; s/! .T 0; s0/ consists of a family of pointed
maps f W

Q
.nWN/Yn!� Y

0
n, and a family of pointed homotopiesY
.nWN/

�s0n ıfn �� �fnC1 ı sn:

Note that a prespectrum can be equivalently defined by giving a family of pointed types
Y WN! U� and a family of pointed maps †Yn!� YnC1. This is the way that we will
specify prespectra.

Example 3.3 Eilenberg–Mac Lane spaces are defined in homotopy type theory in [13].
Given an abelian group A, the Eilenberg–Mac Lane prespectrum HA of type A is given
by the family �n:K.A; n/ of pointed types, where we let K.A; 0/ W� A, pointed at 0.
For n� 1, the structure map is

j�jnC1 W†K.A; n/!k†K.A; n/knC1 �K.A; nC 1/:

When n� 0, we define †K.A; 0/!K.A; 1/ by induction on suspension, by mapping
the north and south poles of †K.A; 0/ to the base point of K.A; 1/, and merid.a/ to
the loop of K.A; 1/ represented by a.
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Definition 3.4 Given a pointed typeX and a prespectrum .Y; s/, we form a prespectrum
X ^Y , called the smash product of X and Y , as follows. The type family is given by
.X ^Y /n �X ^Yn. The structure maps are given by the composite

(3-1) †.X ^Yn/
c†
�!� X ^†Yn

idX^Nsn
����!� X ^YnC1;

where Nsn W†Yn!� YnC1 corresponds to sn W Yn!� �YnC1.

Note that, by the naturality of Lemma 2.44 and the functoriality of the smash product
on pointed types, the smash product of a pointed type and a prespectrum is functorial.

Definition 3.5 The type of sequential diagrams of groups is the type

GrpN
W�

X
AWN!Grp

Y
nWN

An!Grp AnC1:

Analogously, we define the type of sequential diagrams of abelian groups, which we
denote by AbN .

The most important example in this paper is given by sequential diagrams of groups
that come from prespectra.

Example 3.6 Let .Y; s/ be a prespectrum and let n; k WN. The map sk WYk!��YkC1
induces a morphism �n.sk/ W �n.Yk/!Grp �n.�YkC1/' �nC1.YkC1/. Iterating this
process, we get a sequential diagram of groups �i:�nCi .YkCi / WN! Grp. We denote
this diagram by Sn

k
.Y /. This construction is natural in Y .

Note that, if n� 2, the diagram Sn
k
.Y / is a sequential diagram of abelian groups.

Definition 3.7 Let .A; '/ W UN be a sequential diagram of types. We define the
sequential colimit of .A; '/, denoted by colimA W U , as the higher inductive type
generated by the constructors � W

Q
nWN An! colimA and

glue W
Y
nWN

Y
aWAn

�n.a/D �nC1.'n.a//:

Lemma 3.8 Let .A; '/ W AbN be a sequential diagram of abelian groups. Then the
sequential colimit colimA of the underlying sets is a set , and it has a canonical abelian
group structure such that all of the induced maps in WAn! colimA are homomorphisms.
Moreover , the abelian group colimA has the universal property of the colimit in the
category of abelian groups.
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Proof The main difficulty is to show that colimA is 0–truncated. For this, we use
[20, Corollary 7.7(1)], which says that a sequential colimit of n–truncated types is
n–truncated.

To show that colimA has an abelian group structure we start by using induction
to define the operation C on colimA. In the case of point constructors, we define
�l.a/C �n.b/ W� �m.'

m
l
.a/C'mn .b//, where m � max.l; n/ and 'm

l
W Al ! Am and

'mn W An! Am are defined by iterating '. The case of a path constructor glue and a
point constructor is straightforward, and the case of two path constructors is immediate,
since colimA is a set. The fact that, with these operation, colimA is an abelian group
is clear.

The map �n W An ! colimA is a group morphism for every n by construction, and
the fact that colimA satisfies the universal property of the colimit follows from the
induction principle of colimA.

Definition 3.9 Let Y be a prespectrum, let n WZ, and let j �max.0; 2�n/. We define
the nth stable homotopy group of Y as

�sn.Y / W� colimSnCjj .Y /:

Note that the stable homotopy groups of a prespectrum are defined for any integer n, and
not only for natural numbers. Moreover, by construction, the sequential diagram in the
definition of �sn.Y / is a sequential diagram of abelian groups, so stable homotopy groups
are always abelian. As an aside, one can show that any SnCjj .Y /with j �max.0; 2�n/
will have an isomorphic colimit. Finally, since the construction Sn

k
.Y / is functorial

in Y , stable homotopy groups are functorial in the prespectrum.

Definition 3.10 We define the nth reduced homology of X with coefficients in Y as

zHn.X IY / W� �
s
n.X ^Y /:

We define the nth (ordinary) reduced homology of X with coefficients in an abelian
group A by

zHn.X IA/ W� zHn.X IHA/:

Notice that these types carry an abelian group structure, given by the group structure
of stable homotopy groups (Definition 3.9).
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3.2 The Hurewicz theorem

In this section, we prove our main result, Theorem H. To do so, we first show that
when X is sufficiently connected, we can compute zHn.X IA/ without taking a colimit.

Lemma 3.11 Let n � 1, let A W Ab, and let X be a pointed , .n�1/–connected type.
Then the natural homomorphism �nC1.X ^K.A; 1//! zHn.X IA/ is an equivalence.

Proof Recall that

zHn.X IA/� �
s
n.X ^HA/� colimSnCjj .X ^HA/;

for j D max.0; 2� n/. Since n � 1, we must consider two cases, n D 1 and n � 2.
When nD 1, we have j D 1, and the sequential diagram that defines zHn.X IA/ starts
as

�nC1.X ^K.A; 1//! �nC2.X ^K.A; 2//! � � � :

When n� 2, we have j D 0, and the sequential diagram that defines zHn.X IA/ starts
as

�n.X ^K.A; 0//! �nC1.X ^K.A; 1// �! �nC2.X ^K.A; 2//! � � � :

It suffices to show that in either case the morphism

�nCi .X ^K.A; i//! �nCiC1.X ^K.A; i C 1//

is an equivalence for i � 1. To prove this, we use (3-1) to factor the map as

�nCi .X ^K.A; i//! �nCiC1.X ^†K.A; i//! �nCiC1.X ^K.A; i C 1//:

Now, the first of these two maps is induced by the Freundenthal map

X ^K.A; i/!�†.X ^K.A; i//

composed with the equivalence †.X ^K.A; i//' .X ^†K.A; i//. Notice that, by
Corollary 2.32, X ^K.A; i/ is .nCi�1/–connected. If i � 1, we have that nC i � 2,
and thus .nC i � 1/C 1 � 2.nC i � 1/, so the Freudenthal suspension theorem [16,
Theorem 8.6.4] implies that the map �nCi .X ^K.A; i//! �nCiC1.X ^†K.A; i//

is an equivalence.

The second map is an equivalence by Corollary 2.43, sinceK.A;iC1/�k†K.A; i/kiC1
by definition.
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Theorem 3.12 (Hurewicz theorem) Given an abelian group A, a natural number
n� 1, and a pointed , .n�1/–connected type X , we have an isomorphism

�n.X/
ab
˝A'Grp

zHn.X IA/;

natural in X and A.

By naturality in X , we mean naturality with respect to pointed maps between .n�1/–
connected types.

Proof By Lemma 3.11, it is enough to show that we have a natural isomorphism
�nC1.X^K.A; 1//'Grp �n.X/

ab˝A, and this follows directly from Theorem 2.38.

3.3 The Hurewicz homomorphism

In this section we give a construction of the Hurewicz homomorphism and prove that
it is unique up to sign.

Let X be a pointed type, A an abelian group, and n � 1. Applying zHn.�IA/ to the
.n�1/–connected cover map Xhn� 1i !� X we obtain a morphism

zHn.Xhn� 1iIA/!Grp
zHn.X IA/;

natural in X and A. By Theorem 3.12, there is a natural isomorphism

�n.Xhn� 1i/
ab
˝A'Grp

zHn.Xhn� 1iIA/:

Since �n.Xhn� 1i/!Grp �n.X/ is also a natural isomorphism, we can compose with
the abelianization of its inverse to obtain a morphism �n.X/

ab˝A!Grp
zHn.X IA/.

Definition 3.13 For every X W U�, A W Ab, and n� 1, the morphism

hn W �n.X/
ab
˝A! zHn.X IA/

described above is the nth Hurewicz homomorphism.

By construction, when X is .n�1/–connected, hn is an isomorphism.

Definition 3.14 Let n � 1. A morphism of n–Hurewicz type is given by a group
homomorphism �n.X/

ab ˝ A !Grp
zHn.X IA/ for each X W U� and A W Ab, that is

natural in both A and X , and that is an isomorphism when X � Sn and A� Z. Here
we are regarding �n.�/ab˝� and zHn.�I�/ as 1–coherent functors U� �Ab! Ab.
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Example 3.15 For any n� 1, the nth Hurewicz homomorphism (Definition 3.13) is a
morphism of n–Hurewicz type.

Theorem 3.16 Let n WN and let F and G be morphisms of n–Hurewicz type. Then
either F.X;A/ D G.X;A/ or F.X;A/ D �G.X;A/ for every pointed type X and
abelian group A. The choice of sign is independent of X and A.

Proof The morphisms F.Sn;Z/ and G.Sn;Z/ give us two isomorphisms between
�n.S

n/˝Z and zHn.SnIZ/. We now show that there are exactly two possible isomor-
phisms between �n.Sn/˝Z and zHn.SnIZ/, and that these differ by a sign. On the
one hand, by [14] (see also [16, Section 8.1]), we know �n.S

n/ ' Z. On the other
hand, we have Z˝Z ' Z (Example 2.36). So it is enough to show that there are
exactly two isomorphisms between Z and Z, and that they differ by a sign. This is
straightforward, using the fact that if two integers n and m satisfy n�m D 1, then
nDmD 1 or nDmD�1, which follows from the fact that Z has decidable equality.

There are then two cases, F.Sn;Z/ D G.Sn;Z/ and F.Sn;Z/ D �G.Sn;Z/. We
consider only the first case, the second one being analogous. We thus assume that
F.Sn;Z/DG.Sn;Z/ and we want to show that for every pointed type X and every
abelian group A we have F.X;A/DG.X;A/.

By Lemma 2.37, it is enough to check that F.X;A/ D G.X;A/ when evaluated on
elementary tensors. Since the abelianization map is surjective and we are proving a
proposition, it is enough to check this on elementary tensors .�˛/˝ˇ for ˛ W�n.X/ and
ˇ W A. Since we are proving a mere proposition, we can assume that we have a pointed
map N̨ W Sn!� X representing ˛. Define Ň W Z! A by sending 1 to ˇ. Consider the
following diagram, which commutes by the naturality assumption:

�n.S
n/ab˝Z zHn.S

nIZ/

�n.X/
ab˝A zHn.X IA/

F.Sn;Z/

�n. N̨ /
ab˝ Ň zHn. N̨ ; Ň/

F .X;A/

The commutativity of the diagram implies that

F.X;A/..�˛/˝ˇ/D zHn. N̨ ; Ň/.F.S
n;Z/.� ˝ 1//;

where � W �n.Sn/ is represented by the identity map Sn!� Sn. Similarly, we get that
G.X;A/..�˛/˝ˇ/D zHn. N̨ ; Ň/.G.S

n;Z/.� ˝ 1//, and since F.Sn;Z/DG.Sn;Z/,
we conclude that F.X;A/.˛˝ˇ/DG.X;A/.˛˝ˇ/.
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3.4 Applications

In this section, we give some consequences of the main results in the paper. We start
with two immediate applications of the Hurewicz theorem.

Proposition 3.17 Let n�1, let X be a pointed , n–connected type , and letA WAb. Then
zHi .X IA/D 0 for all i � n. Conversely , if X is a pointed , connected type with abelian

fundamental group such that zHi .X IZ/D 0 for all i � n, then X is n–connected.

Proposition 3.18 Let n� 1 and let A;B W Ab. Then zHn.K.A; n/IB/' A˝B , and ,
in particular , zHn.K.A; n/IZ/' A.

The following result says that truncation does not affect low-dimensional homology.

Proposition 3.19 Let X be a pointed type and let m � n be natural numbers. For
every abelian group A W Ab, the truncation map X !kXkm induces an isomorphism
zHn.X IA/

��! zHn.kXkmIA/.

Proof The objects in the sequential diagram that defines zHn.X IA/ have the form
�nCi .X^K.A; i// for i�min.0; 2�n/, and the morphism zHn.X IA/! zHn.kXkmIA/
is induced by levelwise morphisms �nCi .X ^K.A; i//! �nCi .kXkm ^K.A; i//

given by the functoriality of �nCi and the smash product. We will show that these
levelwise morphisms are isomorphisms, which implies that the induced map is an
isomorphism.

Consider the commutative square

�nCi .X ^K.A; i// �nCi .kXkm ^K.A; i//

�nCi
�
kX ^K.A; i/kiCm

�
�nCi

�

kXkm ^K.A; i/

iCm�
given by functoriality of .iCm/–truncation and �nCi . It suffices to show that the
bottom map and the vertical maps in the square are isomorphisms. The vertical maps
are isomorphisms since nC i � i Cm, and the bottom map is an isomorphism by
Lemma 2.42.

We conclude by showing that1–connected maps induce an isomorphism in all homol-
ogy groups.
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Corollary 3.20 Let f WX !� Y be a pointed map between pointed types that induces
an isomorphism in �0 and an isomorphism in �n for n� 1 and all choices of basepoint
x0 W X . Then f induces an isomorphism in all homology groups for all choices of
coefficients.

Proof Let A W Ab and let n� 0. We have a commutative square

zHn.X IA/ zHn.Y IA/

zHn.kXknIA/ zHn.kY knIA/

where the vertical maps are isomorphisms, by Proposition 3.19. The bottom map is
induced by kf kn W kXkn!kY kn, which is an equivalence, by the truncated Whitehead
theorem [16, Theorem 8.8.3]. It follows that the top map is an isomorphism, concluding
the proof.
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A concave holomorphic filling of an
overtwisted contact 3–sphere

NAOHIKO KASUYA

DANIELE ZUDDAS

We prove that the closed 4–ball admits non-Kähler complex structures with strongly
pseudoconcave boundary. Moreover, the induced contact structure on the boundary
3–sphere is overtwisted.

32V40; 32Q55, 57R17

1 Introduction

In [4], Antonio J Di Scala and the authors constructed a family of pairwise inequivalent
complex surfaces E D E.�1; �2/ together with a holomorphic map f W E ! CP1

admitting compact fibers (the parameters �1 and �2 are such that 1 < �2 < ��11 ). A
relevant property of E is that it is diffeomorphic to R4, giving an extension to real
dimension four of a result of Calabi and Eckmann [2].

The compact fibers of f were shown to be smooth elliptic curves and a singular rational
curve with one node, and these are the only compact complex curves of E. The
existence of embedded compact holomorphic curves implies the nonexistence of a
compatible symplectic structure on E. Thus, the complex surface E is non-Kähler.

Further, in [5] we proved that E cannot be realized as a complex domain in any smooth
compact complex surface.

In the present paper, we study the structure of E away from a compact subset by
providing an exhausting family of embedded strongly pseudoconcave 3–spheres; see
Proposition 4.1. From this we derive our main theorem. In order to state our results, we
recall the notion of Calabi–Eckmann type complex manifold introduced in [4], which
was inspired by the results of [2].
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2142 Naohiko Kasuya and Daniele Zuddas

Definition 1.1 A complex manifold W is said to be of Calabi–Eckmann type if
there exists a compact complex manifold X of positive dimension, and a holomorphic
immersion k WX !W which is nullhomotopic as a continuous map.

We also recall the definition of strong pseudoconvexity and pseudoconcavity. Let
.W; J / be a complex manifold with complex structure J and complex dimension � 2,
and let M �W be a smooth real oriented hypersurface. Then, near every point p 2M
we can consider a local defining function for M , namely a smooth function u W U !R

defined in a certain open neighborhood U of p in W , such that u has no critical points
and M \U D u�1.0/ is the oriented boundary of the sublevel u�1.�1; 0�. Moreover,
M carries the complex tangencies distribution � D TM \J.TM/, which we assume
to be endowed with the canonical complex orientation induced by J .

Definition 1.2 We say that a real oriented hypersurface M �W is strongly pseudo-
convex in W if there exists a strictly plurisubharmonic local defining function for M
near every point p 2M , namely a defining function u whose complex Hessian Hu is
positive definite. The oriented hypersurface M is said to be strongly pseudoconcave if
it becomes strongly pseudoconvex by reversing its orientation.

In particular, we can consider complex manifolds with strongly pseudoconvex or
pseudoconcave boundary. It is a standard fact that when dimC W is even, an oriented
real hypersurfaceM �W is strongly pseudoconvex (resp. pseudoconcave) if and only if
the complex tangencies distribution onM is a positive (resp. negative) contact structure.
Since we consider real 3–manifolds embedded in complex surfaces, we mainly refer to
strong pseudoconvexity or pseudoconcavity by means of this characterizing property.

Main Theorem The closed ball B4 admits a Calabi–Eckmann type complex structure
J with strongly pseudoconcave boundary. Moreover , the .negative/ contact structure �
determined on @B4 D S3 by the complex tangencies is overtwisted and homotopic as a
plane field to the standard positive tight contact structure on S3.

In other words, .B4; J / is a concave holomorphic filling of the overtwisted contact
sphere .S3; �/. As far as the authors know, this is the first example of this sort in the
literature.

This 4–ball arises as a smooth submanifold of E containing certain compact fibers of
the map f WE!CP1, and so it is evidently of Calabi–Eckmann type.
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Our strategy for proving the theorem relies on finding a closed piecewise smooth 3–
manifoldM �E supporting an open book decomposition whose pages are holomorphic
annuli and whose monodromy is a left-handed (negative) Dehn twist about the core of
the annulus; hence the underlying manifold M is homeomorphic to S3.

Moreover, we prove that M can be approximated by a 1–parameter family of strongly
pseudoconcave smoothly embedded 3–spheres M� � E, for a suitable parameter
� 2 .0; 1/. Namely, the complex domain outside the embedded 4–ball with corners
D �E bounded by M is foliated by strongly pseudoconcave 3–spheres. This implies
the existence of a strictly plurisubharmonic function on E �D.

As a consequence, the open book decomposition of M is compatible with the contact
structure of M� given by complex tangencies, which is then overtwisted. For the basics
of the three-dimensional contact topology we use throughout the paper, the reader is
referred, for example, to the book of Ozbagci and Stipsicz [15, Chapters 4 and 9].

Remark By Eliashberg’s classification of overtwisted contact structures on closed
oriented 3–manifolds [7], the negative contact structure in the main theorem is uniquely
determined up to isotopy.

We point out that in all (odd) dimensions greater than three, a closed co-oriented
overtwisted contact manifold (see Borman, Eliashberg and Murphy [1] for the definition)
cannot be the strongly pseudoconcave boundary of a complex manifold. Indeed, such a
holomorphic filling would give a strongly pseudoconvex CR structure on the contact
manifold with reversed orientation. Thus, it can be filled by a Stein space — Rossi’s
theorem [17] — and therefore it can be filled by a Kähler manifold — Hironaka’s
theorem [9; 10] — which is impossible for an overtwisted contact manifold. In this
sense, our result is particular to dimension three.

Lisca and Matić [13, Theorem 3.2] proved that any Stein filling W of a contact 3–
manifold can be realized as a domain in a smooth complex projective surface S . Hence
S � IntW is a concave holomorphic filling of a Stein fillable contact 3–manifold.

On the other hand, Eliashberg in [6] proved that for any closed contact 3–manifold
.N; �/, the 4–manifold N � Œ0; 1� admits a complex structure such that the height
function is strictly plurisubharmonic, providing a holomorphic cobordism of .N; �/
with itself. However, its proof is not constructive.

Our result gives a rather explicit complex cobordism of an overtwisted contact 3–sphere
with itself, by taking

S
�2Œ1=3; 1=2�M� Š S

3 � Œ0; 1� as a complex domain in E.
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Remark In [11] the authors prove that every closed contact 3–manifold can be filled as
the strongly pseudoconcave boundary of a compact complex surface of Calabi–Eckmann
type. We point out that this generalization depends on our main theorem.

The paper is organized as follows. In Section 2, we recall the construction of the
complex surface E given in [4] and present a holomorphic model of the complement
C D E � IntD, which will be helpful for the proof of the main theorem, with D
the 4–ball mentioned above. In Section 3, we construct a holomorphic open book
decomposition embedded in E. Finally, in Section 4, we prove the main theorem by
showing the existence of a strictly plurisubharmonic function near the embedded open
book decomposition based on contact topology.

2 The complex surface E

In this section, we recall the construction of E, by sketching the original one in [4].
This will be helpful for the proof of our main theorem.

Throughout this paper we make use of the following notation:

�.a; b/D fz 2C j a < jzj< bg;

�Œa; b�D fz 2C j a � jzj � bg;

�.a/D fz 2C j jzj< ag;

and similarly with mixed brackets. We also denote the closed disk and the circle of
radius a in C by B2.a/ and S1.a/, respectively. When a D 1, we drop it from the
notation.

According to [4], the construction of EDE.�1; �2/ proceeds as follows. Let �1 and �2
be positive numbers such that 1 < �2 < ��11 , and choose �0 such that �1��12 < �0 < �1.

We want to realize E as the union of two pieces. One of them is the product

V D�.1; �2/��.�
�1
0 /;

and the other one is the total space W of a genus-1 holomorphic Lefschetz fibration
h WW !�.�1/ with only one singular fiber †.

In order to define the analytical gluing between V andW , we make use of the following
Kodaira model [12]. Consider the elliptic fibration

.C� ��.0; �1//=Z!�.0; �1/;
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defined by the canonical projection on the quotient space of C� � �.0; �1/ with
respect to the Z–action given by n � .w1; w2/ D .w1w

n
2 ; w2/. Then, it canonically

extends to a singular elliptic fibration h WW !�.�1/, and so we have an identification
W �† D .C� ��.0; �1//=Z. The critical point of h is nondegenerate, namely the
complex Hessian is of maximal rank, and so h is a genus-1 holomorphic Lefschetz
fibration. In what follows, we shall keep the convention of denoting by .w1; w2/ the
usual complex coordinates of C� ��.�1/�C2 when referring to W (up to the above
identification), and by .z1; z2/ the usual coordinates of C2 when referring to V �C2.

Now, let us consider the multivalued holomorphic function ' W�.0; �1/!C� defined
by

'.w/D exp
�
1

4�i
.logw/2� 1

2
logw

�
:

We denote by ˆ W U !W the holomorphic map defined by

ˆ.z1; z2/D Œ.z1'.z
�1
2 /; z�12 /�;

where U � C� ��.��11 ; ��10 / is a certain open subset that will be specified later.
Notice that ˆ is single-valued. This depends on the fact that any two branches '1
and '2 of ' are related by the formula '2.w/ D wk'1.w/ for some k 2 Z, which
is compatible with the above Z–action. For the purpose of this section, we take
U D�.1; �2/��.�

�1
1 ; ��10 /� V.

It follows that ˆ is a biholomorphism between U � V and ˆ.U /�W.

We are now ready to holomorphically glue V and W by identifying the open subsets
U � V and ˆ.U /�W by means of ˆ. That is, we define the complex surface

E DE.�1; �2/D V [ˆW:

We consider V and W as open subsets of E via the quotient map.

By construction, there is a holomorphic map f WE!CP1 defined by the canonical
projection onto the second factor on V and by the elliptic fibration h on W , where
CP1 is regarded as the result of gluing the disks �.��10 / and �.�1/ by identify-
ing �.��11 ; ��10 / � �.��10 / with �.�0; �1/ � �.�1/ by means of the inversion map
z 7! z�1.

Notice that the resulting complex surface E does not depend on �0, since this parameter
determines only the size of the gluing region.

Remark By taking �01 and �02 such that �2 < �02 < .�
0
1/
�1 < ��11 , our construction

yields an obvious holomorphic embedding of E in E 0 D E.�01; �
0
2/ as a relatively
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compact complex domain. The closure yE D ClE in E 0 has Levi flat piecewise smooth
boundary, and @ yE is homeomorphic to S3. This agrees with the interpretation of the
map f WE!CP1 given in [4] as the restriction of the Matsumoto–Fukaya fibration
S4 ! S2 [14] to the complement of a neighborhood of the negative critical point
in S4. This also relates to the embedded open book decomposition that we construct
in Proposition 3.1.

Let V 0 D�.1; s/��.��11 ; ��10 /, where the additional parameter s is chosen so that
��10 <s<��11 �2. LetU 0 be the subset of V 0 defined byU 0Df.z1; z2/2V 0 j jz2j< jz1jg.
We put V 00 D V [V 0 � C2 and identify a point .z1; z2/ 2 U 0 with  .z1; z2/, where
 W U 0! V 0 is the holomorphic embedding defined by  .z1; z2/D .z1z�12 ; z2/. Let
Y D V 00=� be the quotient.

Proposition 2.1 The manifold Y D V 00=� is biholomorphic to the preimage of the
disk �.��10 /�CP1 by the holomorphic fibration f WE!CP1.

Proof The preimage f �1.�.��10 // is described as follows. Let W.�0; �1/ be the
subset of W given, in the Kodaira model above, by

W.�0; �1/D .C
�
��.�0; �1//=ZD f

�1.�.�0; �1//;

being f D h in W.�0; �1/. Then, we have U 0 �W.�0; �1/, and so

f �1.�.��10 //D V [U�U 0 W.�0; �1/:

Now, we define a map ‰ W Y ! f �1.�.��10 // by putting ‰.Œ.z1; z2/�/D .z1; z2/ on
V=� and ‰.Œ.z1; z2/�/Dˆ.z1; z2/ on V 0=�. It is easy to check that ‰ is well defined
and is a biholomorphism.

In order to obtain the complement C �E of a 4–ball D containing the singular fiber
of f , we remove from Y the subset

Z D f.z1; z2/ j c1 < jz1j< c2g � V;

where s�1 < c1 < c2 < �2. Then, by Proposition 2.1, it is enough to set C D Y �Z.

3 The holomorphic open book decomposition

We briefly recall the notion of open book decomposition of a 3–manifold. For a more
thorough treatment, the reader is referred to Ozbagci and Stipsicz [15, Chapter 9] and
to Rolfsen [16, Chapter 10K].
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By an open book decomposition of a closed, connected, oriented, manifold M of real
dimension three, we mean a smooth map f WM ! B2 such that

(1) the restriction f jCl.f �1.IntB2// WCl.f �1.IntB2//!B2 is a (trivial) fiber bundle
with fiber a link LD f �1.0/, called the binding of the open book;

(2) the map ' W M � L ! S1 D @B2 defined by '.x/ D f .x/=jf .x/j is a fiber
bundle.

The closure of every fiber F� D Cl.'�1.�//, for � 2 S1, is a compact surface in M ,
called a page of the open book, and @F� DL. By a little abuse of terminology, we also
call the surfaces f �1.�/, for all � 2 S1 D @B2, pages of f . The two kinds of pages
are ambient isotopic in M to each other.

Given an open book decomposition f WM ! B2, the orientations of M and of B2

induce an orientation on the pages, and hence on the binding LD @F� .

For an open book decomposition f W M ! B2, there is an associated monodromy
!f of the bundle ', which is a diffeomorphism of a page F� that fixes the boundary
pointwise, and it is well defined up to isotopy fixing the boundary.

On the other hand, given an element ! of the mapping class group Modg;b of a compact,
connected, oriented surface Fg;b of genus g � 0 and with b � 1 boundary components,
there is an open book decomposition f! WM! ! B2 with monodromy ! and page
F DFg;b , and this is uniquely determined up to orientation-preserving diffeomorphisms.
The construction goes as follows. Take a representative  W F ! F of the isotopy
class ! and consider the mapping torus T! D .F � R/=Z, where the Z–action is
generated by the diffeomorphism � WF �R!F �R defined by �.x; t/D . .x/; t�1/.

Let M! be the result of gluing @F �B2 to T! along the boundary, by means of the
obvious identifications @.@F �B2/Š @F �S1 Š @F � .R=Z/Š @T! , where the last
identification comes from the fact that  is the identity on @F . Then, let f WM!!B2

be the canonical projection @F �B2!B2 on @F �B2�M! , while it is the projection
T!!R=ZŠ @B2 on T! �M! .

Consider an oriented surface F and let 
 � IntF be a connected simple closed curve.
A Dehn twist ı
 W F ! F about the curve 
 is a diffeomorphism of F such that away
from a tubular neighborhood T of 
 in F , ı
 is the identity, while in T Š S1 � Œ0; 1�
the diffeomorphism ı
 either corresponds to the map ı� W S1 � Œ0; 1�! S1 � Œ0; 1�

defined by
ı�.z; t/D .ze

�2�it ; t /;

Algebraic & Geometric Topology, Volume 23 (2023)



2148 Naohiko Kasuya and Daniele Zuddas

or to the map ıC D ı�1� , where S1� Œ0; 1� is endowed with the product orientation and
its identification with T � F is orientation-preserving. In the former case, ı
 is called
a left-handed (or negative) Dehn twist, while in the latter it is called a right-handed (or
positive) Dehn twist. By changing the orientation of F , the two types of Dehn twists
are swapped.

The 3–sphere admits an open book decomposition h� W S3 ! B2 with binding the
negative Hopf link H�, and with page the annulus S1 � Œ0; 1�. The monodromy is the
left-handed Dehn twist about the core circle 
 D S1�

˚
1
2

	
of the annulus (there is also

the positive version hC W S3! B2 of this). This is the well-known realization of the
(negative) Hopf link in S3 as a fibered link, with page the Hopf band [8].

The following proposition will be helpful in the proof of the main theorem. We keep
the notation of Section 2.

Proposition 3.1 There is a piecewise smooth embedded 3–sphere M �E such that
the restriction f jM WM !B2 of the holomorphic map f WE!CP1, is diffeomorphic
to the open book decomposition h� of S3 described above , with B2 a suitable closed
disk in�.��10 /�CP1. Every page of f jM is a holomorphic annulus in an elliptic fiber
of f . Moreover , M is not globally smooth , since it has corners along the two linked
tori given by @f j�1M .@B2/, on the complement of which M is foliated by holomorphic
curves. Thus , M is Levi flat in E.

We endow M with the orientation determined by the open book decomposition, where
the pages are oriented by the induced complex structure, and the base disk B2 takes the
orientation from CP1. By construction, this disk is in the part of CP1 that corresponds,
via the map f , to the Stein open subset V �E, with the boundary in the gluing region.

Fix two numbers c and � such that �0 < c < �1 and

0 < � < 1
2

min.�1� �0; �0� �1��12 /:

We put a D �2 � � and b D c�1C �, and let AD �Œa; b�. It is then straightforward
to check that .�kA/ \ A D ∅ for all � 2 �Œc; �1� and for all k 2 Z � f0g, with
�kAD�Œ j�jka; j�jkb �. Moreover, by taking into account the inequalities among the
�i ’s at the beginning of Section 2, we can easily obtain

(1) bc < 1C
c.�1� �0/

�0�1
< �2:

Proof Consider the set

G D f �1.S1.c//�ˆ.�.bc; a/�S1.c�1//�E;
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with S1.c/ � �.�1/ � CP1. The map fG D f jG W G ! S1.c/ Š S1 is a compact
annulus bundle over the circle S1.c/��.�1/�CP1 of radius c. Here S1.c/ has the
clockwise orientation in the disk �.�1/, namely it is oriented as the boundary of the
disk it bounds in �.��10 /�CP1. This choice depends on the inversion in the map ˆ0

below.

This bundle is trivial, and a trivialization is provided by the map ˆ0 W A � S1 ! G

defined by

ˆ0.w1; w2/Dˆ.w1; c
�1w2/D Œ.w1'.cw

�1
2 /; cw�12 /�:

Notice that ˆ0 is holomorphic on every fiber.

Now, we construct an open book decomposition of S3 embedded in E. We begin with
an abstract description of this open book, and then we see how it is embedded in E.

Let  1 be the identity map of S1.a/�S1, and let

 2 W S
1.b/�S1! S1.b/�S1

be defined by  2.w1; w2/D .w1w2; w2/.

We use the diffeomorphism  D  1[ 2 W @.@A�B
2/! @.A�S1/ to construct the

oriented 3–manifold
M D .@A�B2/[ .A�S

1/

obtained by gluing @A�B2 to A�S1 along the boundary (these two pieces are oriented
in the canonical way).

Let p WM ! B2 be defined by p.w1; w2/D w2, for .w1; w2/ in @A�B2 or A�S1.
It is clear that .M; p/ is an open book decomposition of M with binding

LD @A� f0g � @A�B2 �M

and the annulus A as the page.

Now, we show that the monodromy of p is the diffeomorphism ı W A! A defined by

ı.z/D ze2�i�.jzj/;

where � W Œa; b�! Œ0; 1� is an increasing diffeomorphism (for example, the affine one).
Thus, ı is the identity on @A. Let

T .ı/D
A� Œ0; 1�

.z; 1/� .ı.z/; 0/
be the mapping torus of ı.
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The open book decomposition with page A and monodromy ı represents a 3–manifold
B.ı/ obtained by capping off T .ı/ with @A �B2 glued along the boundary by the
identity, up to the obvious identification @B2 D S1 Š Œ0; 1�=.0� 1/.

Define the map k W T .ı/! A�S1 by setting

k.Œ.z; t/�/D .ze2�i�.jzj/.t�1/; e2�it /:

Then, k is an orientation-preserving fibered diffeomorphism.

The gluing maps  1 and  2 used for building M correspond, by means of k, to the
identity of @.T .ı//D @A�S1. This implies that there is a diffeomorphism M ŠB.ı/,
with respect to which the open book p corresponds to that of B.ı/, and so ı is the
monodromy of p.

In order to understand ı, we consider the diffeomorphism q W A! S1 � Œ0; 1� defined
by

q.z/D
�
Nz

jzj
; �.jzj/

�
:

This is orientation-preserving, as it can be easily shown by writing q in polar coordinates.
Moreover, q�1.w; t/D ��1.t/ xw.

It is now straightforward to prove the identity ı� D q ı ı ı q�1, where ı� is the
left-handed Dehn twist defined above. Therefore, ı is a left-handed Dehn twist of A
about the curve 
 � A of equation �.jzj/D 1

2
(that is, the core of A). It follows that

p WM ! B2 is equivalent to the open book h� of S3, and in particular M Š S3.

Next, we define an embedding g WM !E by

g.z1; z2/D

8<:
ˆ0.z1; z2/ for .z1; z2/ 2 A�S1;
j.z1; c

�1z2/ for .z1; z2/ 2 S1.a/�B2;
j.cz1; c

�1z2/ for .z1; z2/ 2 S1.b/�B2;

where j W V ,!E is the inclusion map.

We show that g is well defined. For .z1; z2/ 2 S1.a/�S1,

g.z1; z2/D j.z1; c
�1z2/Dˆ.z1; c

�1z2/D Œ.z1'.cz
�1
2 /; cz�12 /�D .ˆ0 ı 1/.z1; z2/:

Finally, we check consistency at .z1; z2/ 2 S1.b/�S1. First, .z1; z2/ 2 S1.b/�B2

implies .cz1; c�1z2/ 2 V by inequality (1) above, so we can compute j.cz1; c�1z2/.
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We have
g.z1; z2/D j.cz1; c

�1z2/

Dˆ.cz1; c
�1z2/

D Œ.cz1'.cz
�1
2 /; cz�12 /�

D Œ.z1z2'.cz
�1
2 /; cz�12 /�

D .ˆ0 ı 2/.z1; z2/;

where we are using the Z–action considered in Section 2.

By abusing notation, we still denote by M � E the image of g. Therefore, M is a
piecewise smooth embedded submanifold of E, although it is not globally smooth.
Indeed, the two codimension-0 submanifolds of E ŠR4 bounded by M have corners
along @A�S1�M . Away from the corners, M is foliated by holomorphic curves, and
hence it is Levi flat. These holomorphic curves are the images of the disks fz1g �B2

and the images of the annuli A�fz2g by the embedding g, with .z1; z2/ 2 @A�S1.

Let D �E be the compact submanifold bounded by M , and let C be the noncompact
one. Hence, E DD[M C .

The argument based on Kirby calculus in [4] proves the following proposition.

Proposition 3.2 Up to smoothing the corners , D is diffeomorphic to B4 and C is
diffeomorphic to S3 � .0; 1�.

The same conclusion follows from the existence of a proper continuous function
u W C ! .0; 1�, which is smooth, regular (namely, with no critical points) and strictly
plurisubharmonic in IntC . In the next section, we show the existence of such a function
to prove our main theorem.

4 The proof of the main theorem

In this section we prove the following proposition and then prove our main theorem.

Proposition 4.1 There exists a smooth 3–sphere M1 �E such that

(1) the noncompact submanifold C1 � E Š R4 bounded by M1 admits a proper
smooth regular strictly plurisubharmonic function u W C1! .0; 1�;

(2) the complement D1 DE � IntC1 is of Calabi–Eckmann type;

(3) M1 is piecewise smoothly isotopic to M in E.
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Remark Property (3) of the above proposition and Proposition 3.2 imply that M1 is
smoothly standard in E, meaning that there exists a diffeomorphism E!R4 mapping
M1 to the standard unit sphere S3. Thus, C1Š S3� .0; 1� and D1DE� IntC1ŠB4.

Proposition 4.1 follows from the construction of C in Section 2 and the following
well-known facts.

Lemma 4.2 Let U �C be a nonempty open subset , and let  W U !R be a smooth
function. Let �D f.z1; z2/ 2U �C j jz2j � exp.� .z1//g �C2. Then the following
two conditions are equivalent :

(1) @� is strongly pseudoconvex (resp. pseudoconcave);

(2)  (resp. � ) is a strictly subharmonic function.

Lemma 4.3 Let c be a smooth regular curve in R2. Then the hypersurface

Mc D f.z1; z2/ j .log jz1j; log jz2j/ 2 cg � .C�/2

is strongly pseudoconvex if and only if the plane curve c is strictly convex.

Now we construct a strongly pseudoconcave hypersurface M1 which is a perturbation
of the holomorphic open book M . We make use of Proposition 2.1 and of the notation
established in Section 2.

Proof of Proposition 4.1 We construct a family fMtgt2.0;1� of smooth closed hy-
persurfaces in C as follows. First, for any t 2 .0; 1� and a sufficiently small positive
number ı, we take the two functions ft ; gt W Œ0; ��11 �! .1; �2/ given by

ft .x/D log aC tı.1C x2/; gt .x/D log.bc/� tı.1C x2/:

Recall that .z1; z2/ are the coordinates on V D�.1; �2/��.��10 /�C2. We then define
the hypersurfaces Qt and Rt in V by jz1j D exp.ft .jz2j// and jz1j D exp.gt .jz2j//,
respectively. By orienting Qt and Rt as the boundary components of the manifold

f.z1; z2/ 2 V j exp.gt .jz2j//� jz1j � exp.ft .jz2j//g;

it turns out that they are both strongly pseudoconcave by Lemma 4.2. Now we retake
the coordinates .w1; w2/ on V 0 so that .w1; w2/ D .z1; z

�1
2 /. Then, near Qt , the

coordinate transformation between V and V 0 is .w1; w2/ D .z1; z�12 /, and near Rt ,
it is .w1; w2/ D .z1z2; z

�1
2 /, by taking the embedding  W U 0 ! V 0 into account;
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see Section 2. Putting uj D log jzj j and vj D log jwj j for j D 1; 2, the coordinate
transformation is given by�

v1
v2

�
D

�
1 0

0 �1

��
u1
u2

�
near Qt ;

�
v1
v2

�
D

�
1 1

0 �1

��
u1
u2

�
near Rt :

Then the defining equations of Qt and Rt are

u1Dft .e
u2/ for u2��log �1 () v1D log aCtı.1Ce�2v2/ for v2� log �1;

u1Dgt .e
u2/ for u2��log �1 () v1D log.bc/�v2�tı.1Ce�2v2/ for v2� log �1;

respectively. Hence, they give plane curves in the .v1v2/–plane, say cQt
and cRt

. Then
there exists a smooth family of strictly convex curves ct satisfying:

(a) each curve ct is contained in the trapezoid

f.v1; v2/ j v1 > log a; log c < v2 < log �1; v1C v2 < log.bc/gI

(b) ct , cQt
and cRt

are smoothly connected to be a regular curve;

(c) the family of curves foliates a subdomain of the trapezoid;

(d) as t goes to 0, the curve ct piecewise smoothly converges to the polygonal line

f.log a; v2/ j log c < v2 < log �1g[ f.v1; log c/ j log a � v1 � log bg

[ f.v1; v2/ j v1C v2 D log.bc/; log c < v2 < log �1g:

Now we define the hypersurface St � V 0 by St D f.w1; w2/ j .v1; v2/ 2 ctg. Then
it is strongly pseudoconvex with one orientation by Lemma 4.3, but with the natural
orientation respecting those of Qt and Rt , it is strongly pseudoconcave. Hence, the
three pieces Qt , Rt and St form a smooth closed strongly pseudoconcave hypersurface
in Y , which we denote by Mt . Strictly speaking, Rt and the union Ht D Qt [ St

are hypersurfaces in V 00 D V [ V 0. In the quotient Y D V 00=�, they are glued
together to form a smooth closed hypersurface Mt in Y . Since each piece is strongly
pseudoconcave, so is Mt . Thus, Mt is a smooth closed strongly pseudoconcave
hypersurface in Y . The equations defining Qt and Rt above and condition (d) of ct
imply that Mt piecewise smoothly converges to M when t goes to 0. In particular,
M1 is a smooth strongly pseudoconcave 3–sphere and satisfies condition (3) of the
statement.

Moreover, the smooth 3–sphere M1 divides the complex manifold E into the two
submanifolds, the compact one D1, which is a closed 4–ball, and the noncompact
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one C1. Then condition (2) is automatically fulfilled because D1 is contractible and
contains the singular rational curve of E.

By a similar construction as that of the family fMtgt2.0;1�, we can easily prove that
IntC1 is foliated by a family of strongly pseudoconcave 3–spheres fMtgt2.1;2/. There-
fore, the following lemma, which proves the existence of a strictly plurisubharmonic
function, concludes the proof.

Lemma 4.4 Let 
 W X ! R be a proper smooth regular function on a complex
manifold X such that the complex tangencies define a contact structure on the level sets

�1.c/ for all c 2 
.X/. Then there exists a smooth convex and increasing function
g W 
.X/!R such that g ı 
 is strictly plurisubharmonic on X .

Proof See for example [3, Lemma 2.7].

Proof of Main Theorem Endow B4 with the complex structure J induced by an
orientation-preserving diffeomorphism B4 Š D1, the 4–ball in E bounded by M1.
Then .B4; J / is of Calabi–Eckmann type and with strongly pseudoconcave boundary
.S3; �/, where � is the induced contact structure.

Since J is homotopic, through almost complex structures, to the standard complex
structure of B4 �C2, the boundary contact structure � is homotopic as a plane field to
the standard positive tight contact structure of S3.

We are left to show the compatibility of the contact structure on M1 Š S
3 with the

open book decomposition inherited from M by a suitable diffeomorphism ' WM !M1

compatible with the splitting M D .@A�B2/[ .A�S1/ of the definition of M in
Section 3, and the splitting M1DQ1[R1[S1 above; that is, '.@A�B2/DQ1[R1
and '.A � S1/ D S1. We want to prove that the contact form ˛ is positive on the
binding (oriented as the boundary of a page) and that d˛ is a volume form on the
pages (oriented as holomorphic curves of E) of the open book decomposition; see [15,
Section 9.2].

Since u is strictly plurisubharmonic on C1, the 1–form ˛ D�dCu is a contact form
on each level set of u, and the 2–form d˛ defines a symplectic structure compatible
with the complex structure J . The contactness of M1 is equivalent to the fact that
the restriction .˛ ^ d˛/jTM1

is a volume form. On the other hand, the open book
decomposition of M1 is given by the function

' WM1�L! S1; '.z1; z2/D
z2

jz2j
;
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where L � M1 is the link of equation z2 D 0. The vector @=@�1 is tangent to the
binding and the tangent space of the page is spanned by @=@�1 and V , where V is the
tangent vector of the curve f.ev1 ; ev2/ j .v1; v2/ 2 c1g. Notice that the binding consists
of two components L1 D f.z1; z2/ 2Q1 j z2 D 0g and L2 D f.z1; z2/ 2R1 j z2 D 0g,
which are naturally oriented by �@=@�1 and @=@�1, respectively.

Now, we check the compatibility. Since the partial derivative @u=@r1 is negative
near L1 and positive near L2,

˛
�
�
@

@�1

�
r1Dd1;z2D0

D dCu
�
@

@�1

�
r1Dd1;z2D0

D� r1

�
@u

@r1

�
r1Dd1;z2D0

> 0;

˛
�
@

@�1

�
r1Dd2;z2D0

D� dCu
�
@

@�1

�
r1Dd2;z2D0

D r1

�
@u

@r1

�
r1Dd2;z2D0

> 0;

which imply the positivity of ˛ along the binding.

In order to see that d˛ is a volume form on the pages, it is enough to show that the
vectors @=@�1, V and R span the tangent space of M1, where

RD J

�
ru

kruk

�
is the Reeb vector field of the contact form ˛jTM1

. Since the r2 component of the
gradient vector is positive except on the binding, so is the �2 component ofR. Therefore,
the three vectors indeed span the tangent space except on the binding.
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Modifications preserving hyperbolicity of link complements
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Given a link in a 3–manifold such that the complement is hyperbolic, we provide
two modifications to the link, called the chain move and the switch move, that
preserve hyperbolicity of the complement, with only a relatively small number of
manifold-link pair exceptions, which are also classified. These modifications provide
a substantial increase in the number of known hyperbolic links in the 3–sphere and
other 3–manifolds.

57K10, 57K32

1 Introduction

Thurston proved that every knot in the 3–sphere S3 is either a torus knot, a satellite knot
or a hyperbolic knot; by which we mean that its complement in S3 admits a complete
hyperbolic metric. By the Mostow–Prasad rigidity theorem, the complement of a hyper-
bolic knot in S3 has a unique hyperbolic metric, which must have finite volume; hence,
a hyperbolic knot in S3 has associated to it a well-defined set of hyperbolic invariants
such as volume, cusp volume, cusp shape, etc. More generally, Thurston proved that
a link in a closed, orientable 3–manifold has hyperbolic complement (necessarily of
finite volume) if and only if the exterior of the link contains no properly embedded
essential disks, spheres, tori or annuli — terms that are described in Definition 2.1.

One would like to be able to identify link complements that satisfy Thurston’s criteria,
and that therefore possess a hyperbolic metric. In [12], Menasco proved that every non-
2–braid prime alternating link in S3 is hyperbolic. In [2], Adams extended this result to
augmented alternating links, where additional nonparallel trivial components wrapping
around two adjacent strands in the alternating projection were added to the link. These
additional components bound twice-punctured disks, which are totally geodesic in the
hyperbolic structure of the complement. By Adams [1], the link complement can be
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1 
2

C
B


1

2

C1 C2

k

B

Figure 1: Replacing the left with the right preserves hyperbolicity of the complement.

cut open along such a twice-punctured disk, twisted a half-twist and reglued to obtain
another hyperbolic link complement, with identical volume. This operation adds one
crossing to the link projection. In many hyperbolic link complements, twice-punctured
disks are particularly useful, because they are totally geodesic; see for instance the
survey article by Purcell [15] and the references therein.

We consider two moves that one can perform on a link in a 3–manifold with hyperbolic
complement. The first move we consider is called the chain move. Here, we start with
a trivial component bounding a twice-punctured disk in a ball B as in Figure 1, and we
replace the tangle on the left with the tangle on the right in Figure 1, where k is any
integer. Assuming that the rest of the manifold outside B is not the complement of a
rational tangle in a 3–ball (see Adams [4, Chapter 2] for this definition), the result is
hyperbolic.

There are counterexamples to extending the result to the case where the manifold outside
B is a rational tangle complement in a 3–ball, as demonstrated by the hyperbolic link
in the 3–sphere appearing in Figure 2. When the chain move is applied with k D 3, the
resultant 3–component link is 63

3
in Alexander–Rolfsen notation, which is not hyperbolic.

However, in Lemma 3.4, we delineate explicitly the only possible exceptions.

The second move is called the switch move. Suppose we have a 3–manifold M and a
link L in M with hyperbolic complement. Let ˛ be an embedded arc that runs from L

to L with interior that is isotopic to an embedded geodesic in the complement, as in
Figure 3.

�! Š

Figure 2: Applying the chain move to this hyperbolic link with k D 3 yields
the nonhyperbolic link complement 63

3
.
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B

˛

G

G0

Figure 3: The trace of a geodesic ˛ of .M n L; h/ connects one or two
components of L to one another, and a neighborhood B of ˛ intersects L in
two arcs.

Such a geodesic always exists since we could take one with minimal length outside
fixed cusp boundaries. We consider the possibility that the arc runs from one component
of L back to the same component or from one component to a second component. Let
B be a neighborhood of ˛. Then B intersects L in two arcs, as in Figure 4, left. The
switch move allows us to surger the link and add in a trivial component as in Figure 4,
right, while preserving hyperbolicity.

Remark 1.1 The projection depicted in Figure 3 is not well defined, since if the two
arcs are skew inside the ball, there are two different projections, depending on point
of view. So in fact, for each such geodesic ˛, there are two switch moves possible.
This is equivalent to cutting along the twice-punctured disk D bounded by C and
twisting a half-twist in either direction before regluing. Once we prove that the switch
move depicted in Figure 4 preserves hyperbolicity, the hyperbolicity of the half-twisted

B

g

g0

G

G0

�!


1 
2

C

Figure 4: The switch move replaces the arcs g and g0 by the tangle 
1[ 
2[C .
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version follows immediately from the previously mentioned results of [1], and the
volumes of the resulting manifolds are identical. Further twists give link complements
homeomorphic to the original or the half-twisted version.

These moves show that many additional link complements in 3–manifolds are hyper-
bolic. The authors [6] used the chain move and the switch move, together with the
related switch move gluing operation described in Section 5, in the proof that for any
given surface S of finite topology and negative Euler characteristic and any H 2 Œ0; 1/,
there exists a proper, totally umbilic embedding of S into some hyperbolic 3–manifold
of finite volume with image surface having constant mean curvature H .

Moreover, Adams, Eisenberg, Greenberg, Kapoor, Liang, O’Connor, Pacheco-Tallaj
and Wang [5] used the chain move in the proof that a virtual link obtained by taking
a reduced classical prime alternating link projection and changing one crossing to be
virtual yields a nonclassical virtual link.

We can also use the chain move and the switch move to obtain straightforward proofs
of hyperbolicity of well-known classes of links.

Example 1.2 We can show that every chain link of five or more components, no matter
how twisted, is hyperbolic. This was first proved by Oertel [14] (or see Neumann and
Reid [13] for a proof using explicit hyperbolic structures for manifolds covered by
these link complements).

Start with the alternating 4–chain, known to be hyperbolic by Menasco’s work in [12].
Then apply the chain move repeatedly. This proves hyperbolicity of any chain link of
five or more components with an arbitrary amount of twisting in the chain.

We note that the chain and switch moves apply more broadly than is apparent from
Figures 1 and 4. In the case of the chain move, instead of specifying a hyperbolic link
complement M nL, we can start with a cusped hyperbolic 3–manifold M 0 containing a
two-sided essential embedded thrice-punctured sphere S . Treating two of the boundary
curves on the cusps as the meridional punctures of the disk in Figure 4 and the third
as the longitudinal boundary of the disk, we can apply the chain move, removing the
cusp that contains the longitude by doing a Dehn filling along a curve that crosses the
longitude once and adding in the additional two components within a neighborhood
of S . In the case that two of the boundaries of S are on the same cusp, they must play
the role of the meridional punctures. (Note that if a two-sided thrice-punctured sphere
has all three boundaries on the same cusp, no move is possible.)

Algebraic & Geometric Topology, Volume 23 (2023)
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C1 C2

k
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Figure 5: The augmented chain move.

In the case of the switch move, we can again begin with a cusped hyperbolic 3–
manifold M 0. For two cusps connected by an embedded geodesic, we can choose a
nontrivial simple closed curve on each torus corresponding to each cusp. Then by
Dehn filling along those curves we obtain a 3–manifold M for which M 0 is a link
complement and the switch move applies.

The same procedure holds for a geodesic from a cusp back to the same cusp, and a
specification of a nontrivial simple closed curve on the torus corresponding to the cusp,
two copies of which play the role of the meridians around 
1 and 
2. Note that when
applied to a link complement M nL, but with a choice of curve other than meridians,
the end result is not a new link complement in the same manifold.

Finally, we point out that there is a variant of the chain move called the augmented
chain move as in Figure 5 wherein the two new components of the chain move are
added in but the previous trivial component is not removed. We prove here that this
move also preserves hyperbolicity.

To see this, we consider the link appearing in Figure 6, which is a twisted five-chain.

All five-chains are hyperbolic, as we just proved, so it has a hyperbolic complement.
Now we apply the idea of a walnut as in [3]. We can cut the manifold M open along
the twice-punctured disk E bounded by C , cut the 5–chain link complement open
along the twice punctured disk bounding the bottom component in Figure 6 and then

k

Figure 6: All 5–chains are hyperbolic.
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glue copies of the twice-punctured disks to one another to insert the cut-open link
complement into M . As in [1], since a twice-punctured disk is totally geodesic with a
rigid unique hyperbolic structure, the gluings are isometries and the resulting manifold
is hyperbolic with volume the sum of the volumes of the two manifolds.

Next, we explain the organization of the paper. First, we remark that it suffices to
demonstrate our results when the ambient manifold is orientable. This property is
proved by showing that the oriented cover of a related nonorientable link complement
admits a hyperbolic metric and then one applies the Mostow–Prasad rigidity theorem to
conclude that the associated order-two covering transformation is an isometry, which in
turn implies that the hyperbolic metric on the oriented covering descends. In Section 2,
we present some of the background material necessary to the proofs of our main results
in the orientable setting. In Section 3, we prove the chain move theorem, stated there
as Theorem 3.1. In Section 4, we prove the switch move theorem, Theorem 4.1. In
Section 5 we prove the switch move gluing operation, Theorem 5.1, which allows us
to glue together two diffeomorphic genus one boundary components from one or two
hyperbolic 3–manifolds of finite volume and then operate to generate new hyperbolic
3–manifolds of finite volume.

Acknowledgements Thanks to the referee for very thorough and helpful comments,
including a much shorter proof of Lemma 3.4 and a strengthened version of Theorem 5.1.
Meeks and Ramos were partially supported by the CNPq Brazil, grant 400966/2014-0.

2 Preliminaries

In this section, we recall some definitions and results that are needed to understand
hyperbolic 3–manifolds of finite volume and certain embedded surfaces in such ambient
spaces. Our first goal is to understand the statement of Thurston’s hyperbolization
theorem in our setting. Before stating this result, we first explain some of the definitions
and notations we use. Throughout this discussion, P will denote a connected, orientable,
compact 3–manifold with nonempty boundary @P consisting of tori and int.P / will
denote the interior of P . Moreover, a surface † in P means a properly embedded
surface †� P , ie † is embedded in P with @†D†\ @P .

Definition 2.1 (1) Given a surface † in P , a compression disk for † is a disk E �P

with @E DE \† such that @E is homotopically nontrivial in †. If † does not admit
any compression disk, we say † is incompressible.
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(2) Given a surface † in P , a boundary-compression disk for † is a disk E � P

with @E DE \ .†[ @P / such that @E D ˛[ˇ, where ˛ and ˇ are arcs intersecting
only in their endpoints such that ˛ D E \† and ˇ D E \ @P and ˛ does not cut
a disk from †. If † does not admit any boundary-compression disk, we say † is
boundary-incompressible.

(3) A torus T in P is boundary parallel if T is isotopic to a boundary component
of P .

(4) An annulus A in P is boundary parallel if A is isotopic, relative to @A, to an
annulus A0 � @P .

(5) A sphere S in P is essential if S does not bound a ball in P .

(6) A disk E in P is essential if @E is homotopically nontrivial in @P .

(7) A torus T is essential in P if T is incompressible and not boundary parallel.

(8) An annulus A is essential in P if A is incompressible, boundary-incompressible
and not boundary parallel.

Using the above definitions, Thurston’s hyperbolization theorem implies that a con-
nected, orientable, noncompact 3–manifold N admits a hyperbolic metric of finite
volume if and only if N is diffeomorphic to int.P / as above and there are no essential
spheres, disks, tori or annuli properly embedded in P . In this case, we shall say that
N is hyperbolic. When a link L in a 3–manifold M has hyperbolic complement, we
will say either M nL is hyperbolic, or L is hyperbolic.

A useful fact is that if ˛ is an arc with endpoints in a link L in a 3–manifold M such that
˛ corresponds to a geodesic in the hyperbolic link complement M nL, then ˛ cannot
be homotoped through M nL into L while fixing its endpoints on L. This follows
from the fact any such geodesic will lift to geodesics connecting distinct horospheres
in the universal cover H3, whereas an arc that is homotopic into L will lift to arcs,
each of which connects one and the same horosphere.

In the case that a manifold M has no essential disks, we say it is boundary-irreducible.
In the case that a manifold M has no essential spheres, we say it is irreducible. Note
that if M has only toroidal boundaries and it is not a solid torus, which is the situation
we will consider, irreducibility implies boundary-irreducibility. This is because if there
exists an essential disk D with boundary in a torus T � @M , then @N.D [ T / is a
sphere which must bound a ball to the non-D side, implying M is a solid torus. Here
and elsewhere, N.G/ denotes a regular neighborhood of a set G �M .
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Given an annulus A properly embedded in an irreducible manifold M with toroidal
boundary, we note that if A is boundary-compressible, it is boundary-parallel. This
follows because we can surger the annulus along the boundary-compressing disk to
obtain a properly embedded disk D, with trivial boundary on @M . Then @D bounds a
disk D0 in @M , and D[D0 is a sphere bounding a ball. This allows us to isotope A

relative @A into @M .

Finally, we remark that if S is a two-sided, incompressible surface properly embedded
in an irreducible manifold M with toroidal boundary, then either S is boundary-
incompressible or S is a boundary parallel annulus; see for instance [11, Lemma 1.10].

3 The chain move theorem

Let L be a hyperbolic link in a 3–manifold M and let B �M be a ball in M that
intersects L as in Figure 1, left. In this section we prove the chain move theorem, as
stated by Theorem 3.1 below. The proof breaks up into two cases depending on whether
or not the pair .M nB;L nB/ is a rational tangle in a 3–ball; see [4, Chapter 2] for
this definition and for the representation of a rational tangle by a sequence of integers.

Theorem 3.1 (chain move theorem) Let L be a link in a 3–manifold M such that the
link complement M nL admits a complete hyperbolic metric of finite volume. Suppose
that there is a sphere S in M bounding a ball B that intersects L as in Figure 1, left.
Let L0 be the resulting link obtained by replacing L\B by the components as appear
in Figure 1, right. Then if .M nB;L n .B\L// is not any of the rational tangles �k,
�.kC 1/, or �2� k in a 3–ball , then M nL0 admits a complete hyperbolic metric of
finite volume.

In Figure 7, top, we see the new link components that are inserted into the ball B. In
Figures 7, bottom, we see, for any fixed integer k, the three cases of rational tangles in
the exterior 3–ball that do not yield a hyperbolic link complement.

Remark 3.2 The crossings around the single trivial component need not be nonalter-
nating for Theorem 3.1 to apply. If the crossings alternate (as shown in Figure 8, left),
we could add a crossing to 
2 and work in a subball as in Figure 8, right, so that the
crossings are those shown in Figure 1, left.

Remark 3.3 Repeated application of the chain move theorem allows us to create a
hyperbolic link complement with an arbitrarily long chain of trivial components and
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1

2

C1 C2

k

B

B B B

�k �.kC 1/ �2� k

Figure 7: The link components we are inserting in B and the three rational
tangles in an exterior ball that do not generate a hyperbolic link complement.

with any amount of twist. Moreover, if the original exterior tangle is assumed not to be
rational, the subsequent exterior tangles to which we apply the move cannot be rational
either, so all resulting link complements are hyperbolic. In fact, even if the initial
exterior tangle is rational, if our first application of the move results in a hyperbolic
link complement, all repeated applications will also be hyperbolic.

We set the stage for the proof of Theorem 3.1 with the following lemma.

Lemma 3.4 Let L be a link in the 3–sphere such that the tangle RDLnB is a rational
tangle and the tangle L\ B is the tangle Tk appearing in Figure 1, right , for some

�!

Figure 8: Using an isotopy within B to obtain a subball where the chain move
theorem applies.
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integer k. If R is none of the rational tangles1, �k, �.k C 1/ or �2� k, the link
complement is hyperbolic.

Proof We represent rational tangles by a fraction p
q
2 Q[ f1g. We also use the

notation K.p1=q1; : : : ;pn=qn/ to denote the Montesinos link created by the tangles
p1=q1; : : : ;pn=qn. For more details, see [14] or [16].

Note that if L is as stated in Lemma 3.4, then it is a Montesinos link of either three or
four components. Furthermore, after untwisting the k half-twists into R, the rational
tangles in B are �1

2
, 1

2
and 1

2
and R is also a rational tangle. Thus, there exists

p
q
2Q[ f1g such that L is equivalent to K

�
�

1
2
; 1

2
; 1

2
; p

q

�
. If p

q
D1, then L is not

prime (and not hyperbolic).

Next, we use the classification of all the nonhyperbolic Montesinos links given by
work of Bonahon and Siebenmann [8] (or see [9] for a different proof) and Oertel [14,
Corollary 5] to analyze the possibilities for p

q
2 Q for which L is not hyperbolic.

In [8], the Montesinos “torus links” are determined, all of which are nonhyperbolic.
These include torus links in the usual sense but additionally allowing for the inclusion
of the core curves of the solid tori to either side of the defining torus. In [14], the
nonhyperbolic Montesinos links that are not “torus links” are determined. See [16]
(Theorem 4.1 and the following paragraph) for a complete list of the nonhyperbolic
Montesinos links.

If L has three components, then 
1 and 
2 are in the same component C3 � L. But
the only nonhyperbolic Montesinos links of three components are LDK

�
�

1
2
; 1

2
; 1

m

�
,

for m 2 2N, L D K
�
�

1
2
; 1

4
; 1

4

�
, or their mirror images. Since lk.C1;C2/ D ˙1,

lk.C2;C3/D˙1 and lk.C3;C1/D˙1, the only possibility is LDK
�
�

1
2
; 1

2
;˙1

2

�
. In

this situation, note that K
�
�

1
2
; 1

2
; 1

2
; p

q

�
is equivalent to K

�
�

1
2
; 1

2
;˙1

2

�
if and only if

p
q
D 0 or p

q
D�1.

In the case when L is a nonhyperbolic 4–component Montesinos link, the only possi-
bility is LDK

�
�

1
2
; 1

2
; 1

2
;�1

2

�
. But suppose it has another description as a 4–tangle

Montesinos link. Let L0 D K
�
�

1
2
; 1

2
; 1

2
; r

s

�
, and suppose L D L0. Then s D 2 by

consideration of the Seifert invariants of the double branched cover. Then r is odd,
and L0 is a chain link. But L is nonhyperbolic, while L0 is hyperbolic by [13] unless
r D�1 (corresponding to chain link C.4;�2/ in their notation).

Hence, there are only four possibilities for p
q

which make L nonhyperbolic, namely
1, 0, �1 and �1

2
. After compensating for the k twists being moved into R, these

correspond exactly to the four tangles in the statement of the lemma.
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Proof of Theorem 3.1 Let X DM nL and, for i D 1; 2, let �i be the connected
component of L containing the arc 
i (note that possibly �1D�2). First, we assume that
M is orientable. We let L0 be the link formed by the replacement stated in Theorem 3.1.
As stated in the introduction of this section, we will assume that .M nB;Ln.B\L// is
not a rational tangle in a 3–ball as this special case has been dealt with by Lemma 3.4.

Note that we do not include the rational tangle1 as a tangle to exclude in the statement
of Theorem 3.1 since, in the case of this tangle, the original link L is not prime and
hence X is not hyperbolic. We prove Theorem 3.1 when M is orientable by showing
that the resulting link complement Y DM nL0 does not admit essential disks, spheres,
tori or annuli. In order to do so, we first prove the following.

Claim 3.5 The four-punctured sphere Q D S nL is incompressible and boundary-
incompressible in X and also in Y .

Proof We prove that if Q is compressible in X or in Y , then .M nB;Ln .B\L// is a
rational tangle in a 3–ball. We first prove this property in X . Let 
 be a nontrivial simple
closed curve in Q and assume that there is a compact disk E�X with @ED 
 DE\Q.
Then each of the two disks E1 and E2 bounded by 
 in S must contain exactly two of
the punctures of Q, otherwise we could attach a one-punctured disk in Q to E to find
an essential disk in X , contradicting its hyperbolicity.

If E were contained in B, then E[E1 and E[E2 are two spheres in B, each punctured
twice by L. Since both punctures in each sphere cannot come from distinct arcs in
L\B, E separates B into two balls B1 and B2, where 
1 � B1 and 
2 � B2, and it
then follows that C cannot link 
1 and 
2 simultaneously, a contradiction.

Next assume that E\ int.B/D∅. Let Ai DE[Ei nL for i D 1; 2. Then each Ai is
an annulus in X . Since each Ai is incompressible and X is hyperbolic, Ai is boundary
parallel. Therefore, the closure of Ai in M bounds a closed ball Bi �M n int.B/ with
@Bi DEi [E and such that Bi \L is an unknotted arc in Bi . Hence, we can isotope
L\Bi through Bi to the surface S. Then, after the isotopy, @N.B/ is a sphere in X .
Since X is hyperbolic, @N.B/ bounds a ball which is disjoint from B, and this is a
contradiction unless M D S3.

If M D S3, then the fact L\Bi can be isotoped through Bi to the surface S implies
L n .B\L/ can be isotoped to be two disjoint embedded arcs on S. Hence,

.M nB;L n .B\L//
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is a rational tangle determined by 
 , and up to isotopy, E is the only compression disk
for Q in X .

Note that the above argument implies that Q is also incompressible in Y , as we next
explain. If E � Y was a compressing disk with @E DE \Q, then E necessarily is
contained in B, otherwise E � Y nB and Y nBDX nB would give a compression disk
for Q in X . Once again, E � B gives that E separates B into two balls, B1 and B2,
such that 
1 � B1 and 
2 � B2. Then, since C1 links 
1, C1 � B1. And since C2

links 
2, C2 � B2. But then E separates C1 from C2 in B, a contradiction to the fact
they are linked in B.

To prove boundary-incompressibility of Q in either X or Y , suppose E is a boundary-
compression disk such that @ED˛[ˇ with ˛DE\Q. If ˛ connects two distinct punc-
tures of Q and N.E/ is a small neighborhood of E in M , then @N.E/n .@N.E/\B/
is a compression disk for Q, a contradiction.

If both endpoints of ˛ are at the same puncture, then, since the interior of ˇ is disjoint
from Q, ˇ together with an arc in Q bound a disk zE in @N.L/. Thus, E [ zE is a
compression disk for Q, a contradiction.

Claim 3.6 Y does not admit any essential spheres or essential disks.

Proof We argue by contradiction and first suppose that there is an essential sphere S

in Y . If S intersects Q, then, by incompressibility of Q, we can exchange disks on S

for disks on Q in order to obtain an essential sphere S 0 in Y that does not intersect Q.
If S 0 � Y nB, then S 0 �X , which implies S 0 is the boundary of a ball B �X . In this
case, B must be disjoint from B, since C � B; hence, B � Y which contradicts that S 0

is essential in Y . Thus, we may assume that S 0 is contained in B, and so it bounds a
subball B of B. If B intersects C1[C2, then, by the linking properties of these circles,
C1 [C2 must be contained in B. As 
1 links C1 in B, we arrive at a contradiction
because the endpoints of 
1 lie outside of B. This contradiction implies that L0\B is
disjoint from B, which in turn implies that B � Y , contradicting that S 0 is essential
in Y .

Suppose now that there is an essential disk D with boundary in @N.L0/. Then there is
a component J of L0 such that @D � @N.J /, and we let S D @N.D[N.J //. It then
follows that S is an essential sphere, as it splits J from the other components of L0,
contradicting the nonexistence of such spheres.
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For the next arguments in the proof, let D1;D2 � Y \B denote two twice-punctured
disks bounded respectively by C1;C2 �L0 and let Di denote the closure of Di in M ;
thus each Di is a disk in B. We prove the following.

Claim 3.7 The twice punctured disks D1 and D2 are incompressible and boundary-
incompressible in Y .

Proof Suppose there were a disk E � Y , int.E/\Di D∅ with nontrivial boundary
in Di . Since Q is incompressible and we may assume general position, any component
in E\Q is a simple closed curve that is trivial both in E and in Q. Choose an innermost
curve ˛ �E \Q in the sense that the interior of the disk E0 �E bounded by ˛ does
not intersect Q and let E00 be the disk bounded by ˛ in Q. Then E0[E00 is a sphere
that is either in the hyperbolic manifold X or in Y \B. In either case, E0[E00 bounds
a ball in Y that can be used to isotope E0 to E00 and further to remove ˛ from the
intersection E \Q. After repeating this disk replacement argument a finite number of
times, we may assume that E � B.

Let E0 be the disk in Di bounded by @E. Then E [E0 is a sphere in B which is
punctured only once by at least one of the components in L0\B, a contradiction that
shows that D1 and D2 are incompressible in Y .

To finish the proof of Claim 3.7, we note that Di is 2–sided and incompressible, and
Y is irreducible by Claim 3.6. Thus, as explained in the end of Section 2, Di is
boundary-incompressible.

Claim 3.8 Y does not admit essential annuli.

Proof Arguing by contradiction, assume there exists an essential annulus A in
M nN.L0/. Let ˛1 and ˛2 denote the two boundary components for A. Then there are
components J1 and J2 of L0 such that ˛1� @N.J1/ and ˛2� @N.J2/. After an isotopy
of A we will assume without loss of generality that both ˛1 and ˛2 are taut in the
respective tori @N.J1/ and @N.J2/, in the sense that, in the product structure generated
by respective meridional curves in @N.Ji/, each ˛i is transverse to all meridians and
also to all longitudes, unless ˛i is one of them.

We next rule out the various possibilities for A, starting with the assumption that A

does not intersect D1[D2.

In this case, we may use the fact that @N.D1[D2/ nN.
1[ 
2/ is isotopic to Q to
isotope A in M nN.L0/ to lie outside of B. Thus, A is an annulus in X , and the fact
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that X is hyperbolic implies that A is either compressible or boundary parallel in X . If
A is compressible in X , then we may use the fact that Q is incompressible in Y and a
disk replacement argument to show that A is compressible in Y , a contradiction.

Next, we treat the case when A is boundary parallel in M nN.L/. In this case, A

defines a product region W �M nN.L/ through which A is parallel to a subannulus
in @N.L/. Since C lies outside of W , separation properties imply that B is disjoint
from W ; hence, W �M nN.L0/ from where it follows that A is boundary parallel
in Y , a contradiction.

Now suppose that A intersects D1[D2 and assume that A has the fewest number of
intersection components in A\ .D1[D2/ for an essential annulus in Y . Note that for
i D 1; 2, the intersection curves which may appear in A\Di are either simple closed
curves or arcs with endpoints in @A.

We next eliminate the possibility that A\Di contains a simple closed curve. Since
Di is incompressible, by minimality of intersection curves, any simple closed curve
in the intersection A\Di is nontrivial in A. Note that if A\Di contains a simple
closed curve that circles one puncture, we may take an innermost such curve and use
the once-punctured disk on Di that it bounds to surger A to obtain two annuli, each
with fewer intersection curves and at least one of them must be essential. So we may
assume that all simple closed curves in A\Di circle both punctures of Di . But then,
the outermost of such intersection curves bounds an annulus that again allows us to
surger A to obtain an essential annulus with fewer intersection curves. Hence, all
curves in A\Di are arcs with endpoints in @A.

Next, we show that there are no arcs in A\Di that have endpoints on the same boundary
component of A. Assume that ˛ is such an arc and let E1 be the disk defined by ˛ in A.
We assume that ˛ is innermost in the sense that the interior of E1 is disjoint from Di .
Since Claim 3.7 implies that Di is boundary-incompressible, it follows that ˛ must cut
a disk E2 from Di . Then E DE1[E2 is a disk with boundary @E � @N.J /. Since
Y does not admit essential disks, it follows that @E is trivial in @N.J /, and we may
use the fact that all spheres in Y bound balls to isotope A so that E1 moves past E2,
thus eliminating the intersection curve ˛ and contradicting minimality of the number
of intersection components.

In particular, if A intersects Di , both ˛1 and ˛2 must intersect Di , and none of the
intersection arcs on A\Di can cut a disk off Di , as if they did, A would be boundary-
compressible and hence boundary-parallel since Y is irreducible. Note that because
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there is at least one arc of intersection of A with a Di , and such arc goes from ˛1

to ˛2, we have @A� .@N.C1/[ @N.C2/[ @N.�1/[ @N.�2//. Moreover, since both
˛1 and ˛2 intersect D1[D2 and we assume minimality of intersection components
in @A\ .D1[D2/, no component of @A can be a meridian in @N.�1/ or in @N.�2/;
hence any closed curve in A\Q must be trivial in A, and, consequently, trivial in Q.

We next consider the case that @A�@N.C1/[@N.C2/. Then by incompressibility of Q,
we can isotope A to lie inside B. Moreover, C1[C2 is a Hopf link with complement
in the 3–sphere that is a thickened torus T � Œ0; 1�. Thus, B n .N.C1/[N.C2// is the
complement of a ball B in T � Œ0; 1�, where we identify @N.C1/ with T � f0g and
@N.C2/ with T � f1g.

Assume that both boundary components of A are on @N.C1/. Then A is an annulus
in .T � Œ0; 1�/ nB with both boundaries on T � f0g. In particular, in T � Œ0; 1�, A

is boundary-parallel through a solid torus V that A cuts from T � Œ0; 1�. Since @V
is a closed surface in the interior of the three-ball B, it defines a unique compact
region disjoint from @B D @B, from where it follows that B must be disjoint from V .
But then both the arcs 
1 and 
2, which have endpoints on @B, must also be disjoint
from V , meaning that V �Y , and then A is boundary-parallel in Y , a contradiction. By
symmetry, the same argument also proves that A cannot have both boundary components
on @N.C2/.

Next, suppose that one boundary of A is on @N.C1/ and the other is on @N.C2/. Then
again, A can be seen as an annulus in .T � Œ0; 1�/ nB, but now its boundary is a pair
of nontrivial parallel curves on T � f0g and T � f1g. These curves are respectively
realized as a .p; q/–curve1 on @N.C1/ and a .q;p/–curve on @N.C2/. But there exist
arcs z
1 and z
2 on Q such that the closed curve 
1 [ z
1 wraps meridionally around
C1 and the closed curve 
2 [ z
2 wraps meridionally around C2, where in T � Œ0; 1�,
a meridian of @N.C2/ corresponds to a longitude of N.C1/. Hence, when we add 
1

and 
2 to T � Œ0; 1� nB, one wrapping meridionally around T � Œ0; 1� and the other
wrapping longitudinally, at least one will puncture A, a contradiction.

Thus, at least one boundary component of A, say ˛1, must be on @N.�i/, for some
i 2 f1; 2g. As already explained, ˛1 is not a meridian on @N.�i/.

Next, assume that ˛2 is on @N.C1/ or @N.C2/. Since Q is incompressible and Y is
irreducible, after performing a disk replacement argument, we may assume that A\Q is

1For given relatively prime integers p and q, a .p; q/–curve is a torus knot that winds p times around the
meridian of the torus and q times around its longitude.
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a family of pairwise disjoint arcs, each with both endpoints in ˛1. Let a be one of such
arcs and assume that a cuts an innermost disk D from A, in the sense that D\QD a. If
D�B, then, if we let bD @Dna, it follows that b� .@N.
i//\B and our assumptions
on ˛1 being taut imply that b joins two distinct punctures of Q. But then it follows that
@D links Ci on B, and D must be punctured by Ci , a contradiction. Hence, it follows
that D is to the outside of B. Once again, our assumptions on ˛1 imply that a joins
two distinct punctures of Q, from where it follows that D is a boundary-compression
disk for Q, which contradicts Claim 3.5.

It remains to rule out the case where ˛1[˛2 � @N.�1/[ @N.�2/. Let a be an arc of
intersection A\ .D1[D2/. Then our previous arguments give that a joins ˛1 and ˛2

and that a cannot cut a disk off Di . In particular, a must necessarily intersect the disk
Dj for j ¤ i and that creates another arc b �A\Dj which meets a transversely at a
point p and joins ˛1 and ˛2. In particular, �1 D �2. The point p separates both arcs a

and b, and that defines a unique disk D �A with boundary given by one arc in a, one
arc in b and one arc c in ˛1. Note that D\Di � a[ b, since any arc in A\Di must
join ˛1 and ˛2. Let E be a connected component of D nB that contains a subarc of
c in its boundary. Such component exists because the endpoints of a and b on D are
on distinct disks, D1 and D2, and hence c cannot be contained in B. Once again, the
fact that ˛1 is taut gives that @E\Q is an arc joining two distinct punctures of Q. But
then, E is a boundary-compression disk for Q, a contradiction.

The cases treated above rule out the possibility that Y admits an essential annulus,
thereby proving Claim 3.8.

Claim 3.9 Y does not admit essential tori.

Proof We argue by contradiction and suppose that T � Y is a torus which is in-
compressible and not boundary-parallel in Y . First, suppose that T does not intersect
D1[D2. Then we can isotope T in Y to assume that T \B D∅, and then T � X .
Since X is hyperbolic, either T admits a compression disk in X or T is boundary
parallel in X .

First assume that E�X is a compression disk for T �X nB. Since Q is incompressible
in X , after disk replacements, we may assume that E is disjoint from Q. In particular,
E �X nB � Y , which is a contradiction.

Next, suppose that T is parallel to the boundary of a neighborhood of one of the com-
ponents J of L, and let W �X be the related proper product region with boundary T .
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We claim that Q must be disjoint from W . Otherwise, Q �W which would imply
that B n .
1 [ 
2 [ C / � W ; this is a contradiction because W has only one end
corresponding to a single component of L. Since Q separates X and is disjoint from
W , we have W � Y , which means T is boundary parallel in Y . This proves that any
essential torus in Y must intersect D1[D2.

Let T � Y be an essential torus that intersects Di , for some i 2 f1; 2g. Next, we prove
that Y must contain an essential annulus, which contradicts Claim 3.8. After possibly
replacing disks in T by disks in the incompressible surface Di , we may assume that
any component in T \Di is homotopically nontrivial in Di ; let 
 � T \Di be one
such component. First assume that 
 encircles a single puncture in Di and choose it
to be an innermost such curve in T \Di . Using the once-punctured disk bounded by

 in Di to surger T , we obtain an essential annulus in Y , as claimed. Next, assume
that 
 encircles both punctures of Di and that it is an outermost such curve on T \Di .
In this case, we may use the outer annulus on Di to surger T in order to obtain an
essential annulus in Y , thereby proving Claim 3.9.

Having proved that there are no essential disks, spheres, tori or annuli in Y , it follows
that Y satisfies Thurston’s conditions for hyperbolicity, proving Theorem 3.1 when M

is orientable.

The case when M is nonorientable can be proved using the orientable case as we next
explain. Suppose that M is nonorientable and that L, L0 and B are as stated. Let
… W yM !M be the oriented two-sheeted covering of M and let yLD…�1.L/ and B1

and B2 be the two connected components of …�1.B/. Then, yL is a hyperbolic link
in yM and yL n B1 is not a rational tangle in a 3–ball, since yL\ B2 is diffeomorphic
to L\ B. Then, we may use the chain move to modify yL in B1, replacing yL\ B1

by a tangle diffeomorphic to L0\B, which creates a hyperbolic link yL0 in yM . Then,
since yL0\B2 D

yL\B2 and yM n yL0 is hyperbolic, we can use the chain move in B2 to
replace yL0\B2 by a tangle diffeomorphic to L0\B and create another hyperbolic link
yL00 in yM . Since we may do this second replacement in an equivariant manner with
respect to the nontrivial covering transformation � defined by …, the restriction of …
to the hyperbolic manifold yM n yL00 is the two-sheeted covering space of M nL0. Since
� is an order-two diffeomorphism of yM n yL00, the Mostow–Prasad rigidity theorem
implies that we may consider � to be an isometry of the hyperbolic metric of yM n yL00.
Hence, the hyperbolic metric of yM n yL00 descends to M nL0 via …, which finishes the
proof of Theorem 3.1.
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4 The switch move theorem

Theorem 4.1 (switch move theorem) Let L be a link in a 3–manifold M such that
M nL admits a complete hyperbolic metric of finite volume. Let ˛ �M be a compact
arc which intersects L transversely in its two distinct endpoints , and such that int.˛/
is a complete , properly embedded geodesic of M nL. Let B be a closed ball in M

containing ˛ in its interior and such that B \ L is composed of two arcs in L, as
in Figure 3. Let L0 be the resulting link in M obtained by replacing L\ B by the
components as appearing in Figure 4, right. Then M nL0 admits a complete hyperbolic
metric of finite volume.

Proof We begin the proof by setting the notation. Let G and G0 be the connected
components of L containing the arcs g and g0 respectively, as in Figure 4, left. Note
that it can be the case G D G0. Let L0 be the link formed by replacing g [ g0 in B
by 
1[ 
2[C . For i D 1; 2, let �i be the component of L0 containing 
i . Note that
possibly �1 D �2 and let � D �1[�2.

We split the proof into two cases, depending on whether or not .M nB;L n .B\L//

is a rational tangle in a 3–ball.

Claim 4.2 If .M n B;L n .B \L// is a rational tangle in a 3–ball , then M nL0 is
hyperbolic.

Proof A rational tangle in a 3–ball always has a projection that is alternating; see for
instance [10]. Then L is a rational, alternating link in S3 that is prime, since M nL

is hyperbolic. By [12, Corollary 2], a rational, alternating link in S3 that is prime
is hyperbolic if and only if it is nontrivial and not a 2–braid. After forming L0, we
consider the link L00 obtained from L0 by doing a half-twist on the twice-punctured
disk bounded by C to add a crossing so that L00 nC has an alternating projection, as
in Figure 9. Then L00 is in an augmented alternating link projection obtained from a
prime, nonsplit reduced alternating projection. If L00 nC is neither trivial nor a 2–braid,
L00 is hyperbolic by [2]. However, if L00 nC is trivial, then L is a 2–braid and hence it
does not satisfy the hypothesis that M nL is hyperbolic. And if L00 nC is a 2–braid,
then L is a trivial knot, again not satisfying the same hypothesis. So L00 is a hyperbolic
link in S3. But by [1, Theorem 4.1], L00 is hyperbolic if and only if L0 is hyperbolic.

Remark 4.3 If M nL is hyperbolic and .M nB;L n .B\L// is a rational tangle in
a 3–ball, then L is either a rational link or a rational knot in S3 which is hyperbolic.
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L L0 L00

Figure 9: Creating L, L0 and L00.

In this case, there is always an arc ˛ as depicted in Figure 3 which is isotopic to a
geodesic and hence the switch move can be applied. This follows because ˛ can be
chosen to be part of the fixed point set of an involution of the complement, which is
realized by an isometry, and fixed-point sets of isometries must be geodesics (see [7]
for the details).

From now on, we assume that .M n B;L n .B \L// is not a rational tangle in a 3–
ball. As in the proof of the chain move theorem (Theorem 3.1), we first assume that
M is orientable. We also let X DM nL and Y DM nL0 and we will prove that
Y is hyperbolic by showing that there are no essential disks, spheres, tori or annuli
in Y . Once again, we let S D @B, Q D S n L D S n L0 and notice that the same
arguments used to prove Claim 3.5 can be used to prove that Q is incompressible and
boundary-incompressible in Y ; the details are left to the reader.

Claim 4.4 Y does not admit essential spheres or essential disks.

Proof We first show that there are no essential spheres in Y . Suppose that S � Y is a
sphere and first assume that S \BD∅. Then S �X , and, since there are no essential
spheres in X , it follows that S bounds a ball B �X . Since L intersects B, this gives
that B \B D∅, hence B � Y , proving that S is not essential in Y .

Next, we treat the case where S intersects B. We can take S to have the least number
of intersection curves in S \Q over all essential spheres. If S were contained in B, it
bounds a ball in B which is also a ball in Y DM nL0, since S \L0 D∅. Next, we
assume that S \Q ¤ ∅. Then there exists a disk E � S with @E D E \Q. After
a standard disk replacement argument using that Q is incompressible and that there
are no essential spheres that do not intersect Q, we isotope S to lower the number of
components in S \Q, which proves that there are no essential spheres in Y .
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To prove that there are no essential disks in Y , we argue by contradiction and assume
that E is such a disk with boundary on a regular neighborhood of a component J of L0.
Then S D @N.E [N.J // is an essential sphere in Y , as it splits J from the other
components of L0, a contradiction.

Let D be the interior of a twice-punctured disk in B nL0 bounded by C and let D be
its closure in M .

Claim 4.5 D is incompressible and boundary-incompressible in Y .

Proof Using the facts that Q is incompressible in Y , X is hyperbolic and Y nBDX nB,
we may use a disk replacement argument to assume that any compression disk for D is
contained in B nL0. Arguing by contradiction, assume that E � B nL0 is a disk with
@E DE \D, and that @E is nontrivial in D. Let E1 �D be the subdisk bounded by
@E in D. Let S DE1[E. Then, S is a two-sphere in the ball B which is punctured
only once by at least one of the arcs 
1 or 
2, which is impossible.

In order to prove that D is boundary-incompressible, we proceed as in the proof of
Claim 3.7 and just observe that D is two-sided, incompressible, properly embedded in
the irreducible manifold Y .

Using that both D and Q are incompressible and boundary incompressible, we next
proceed with the proof of Theorem 4.1.

Claim 4.6 There are no essential annuli in M nN.L0/.

Proof Suppose that A is an essential annulus in M nN.L0/. Our next arguments rule
out the several distinct possibilities for A, which are separated into cases.

Case 1 Assume that A\B D∅.

In this case, A �M nN.L/ and it must either compress or be boundary-parallel in
M nN.L/. First, let us assume that E �M nN.L/ is a compression disk to A with
boundary ˇ. Then ˇ separates A into two subannuli A1 and A2, and E [A1 and
E [A2 give rise to two essential disks in X , which contradicts its hyperbolicity.

Hence, we may assume that A is boundary-parallel in M nN.L/. Then, there is a
component J of L and an annulus A0 � @N.J / such that @A0D @A and A[A0 bounds
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a solid torus W in M nN.L/, through which A is parallel to A0. If B\W D∅, then
A is boundary parallel in Y , a contradiction. Hence, we may assume that B\W ¤∅.
Since A\BD∅ and L\W D∅, then A0 must intersect B and J must be either G

or G0, which could be the same component. Suppose first that G and G0 are distinct.
Then if � is an arc in B nN.L/ with an endpoint in @N.G/ and the other in @N.G0/,
at least one endpoint of � is not in W . Since int.�/ cannot intersect A, it follows that
G0 �W , a contradiction.

Suppose now G and G0 are the same component J . Since A\ B D ∅, @A is a pair
of meridians on @N.J /. Then, there is a ball B0 in N.J / bounded by A0 and two
meridional disks in N.J /nB bounded by @A. Then W 0 DW [B0 is a ball in M , and
J \W 0 is an unknotted properly embedded arc within it. Since B\W ¤∅, we have
B\W 0 ¤∅. But then, the fact that @W 0\B D∅ implies that B �W 0. Hence ˛ can
be homotoped into @N.J /, contradicting the fact it is a geodesic with endpoints on L.

Case 2 Assume that A� B.

Let ˛1 and ˛2 denote the two components of @A. First, we assume that ˛1 � @N.�/

and ˛2� @N.C /. Since A�BnN.L0/, ˛1 is either a meridian of @N.
1/ or a meridian
of @N.
2/, and the symmetry between 
1 and 
2 allows us to assume ˛1 � @N.
1/.
Take a meridional disk E1 in N.
1/ \ B with @E1 D ˛1. Then E D A [E1 is a
disk in B nN.C / with @E D ˛2 � @N.C /. Hence, ˛2 is a longitude of @N.C /. In
particular, ˛2 links 
2 in B, and hence 
2 must puncture E, which is a contradiction.
This contradiction shows that if A� B nN.L0/ is an essential annulus, then ˛1 and ˛2

are either both parallel curves on @N.C / or both meridians on @N.�/.

Assume that A is an essential annulus in M nN.L0/ such that A�B and ˛1 and ˛2 are
meridians on @N.�/. Let E1 and E2 be two meridional disks in N.�/ with respective
boundaries ˛1 and ˛2. Then A[E1[E2 is a sphere in B that bounds a ball B � B,
which is either punctured once by each 
1 and 
2, which is not possible, or twice by
one of them, say 
1. Since A is not boundary parallel, C �B. However, since C links
both 
1 and 
2, 
2 must be contained in B, which is a contradiction.

Still assuming that A� B, it remains to obtain a contradiction when both ˛1 and ˛2

are .p; q/–curves on @N.C /. In this case, B n .N.
1/[N.C // is diffeomorphic to
T � Œ0; 1�, where T D S1 �S1 is a torus, and we identify @N.C / with T � f0g. Since
any annulus in T � Œ0; 1� with boundary in T �f0g is parallel to an annulus in T �f0g,
it follows that A is parallel to an annulus A0 � @N.C / with @A0 D ˛1 [ ˛2, in the
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sense that there is a solid torus region W � T � Œ0; 1� with @W D A [ A0. Since
N.
2/� T � Œ0; 1� and does not intersect @W , the fact that the endpoints of 
2 lie in
T � f1g implies that N.
2/ is disjoint from W . Therefore, A is boundary parallel in
B nN.L0/, contradicting the assumption that A was essential.

Having proved Claim 4.6 in Cases 1 and 2, from now on, we assume that A intersects Q.
We also assume that A minimizes the number of intersection curves of an essential
annulus of M nN.L0/ with Q. In particular, since Q is incompressible, the connected
components of A nQ are either annuli or disks whose boundary intersect @A.

Case 3 Assume that there is an intersection arc in A\Q that cuts a disk from A.

Let a be an intersection arc in A\Q that cuts a disk E from A. Then both endpoints
of a are on the same boundary component of A and E \ Q � @E. Because Q is
boundary-incompressible, it must be the case that a cuts a disk E1 from Q. Then
E2 DE[E1 is a disk properly embedded in M nN.L0/. Since there are no essential
disks in M nN.L0/, then @E2 bounds a disk E3 in @N.L0/. Then E2[E3 is a sphere
that bounds a ball in M nN.L0/, through which E can be isotoped to E1, and just
beyond to eliminate a from A\Q, contradicting that we assumed a minimal number
of intersection components.

Thus, we now know that there are only two possibilities for the intersection curves in
A\Q. Either they are all parallel nontrivial closed curves on A or they are all arcs
with endpoints on distinct boundary components of A.

Case 4 Assume that @A\QD∅, with A\Q¤∅.

In this case, there are no arcs in A\Q. Since A and Q are incompressible in M nL0,
the minimality condition on the number of curves in A\Q implies that any curve in
A\Q is nontrivial on both A and on Q.

Next, we prove that any curve in A \ Q must encircle two of the punctures of Q.
Arguing by contradiction, assume that a is a simple closed curve in A\Q and assume
that a bounds a once-punctured disk E in Q. Without loss of generality, we may assume
that E is innermost in the sense that E \AD a. Using E to surger A, we obtain two
annuli in M nL0, where at least one is still essential, and, after a small isotopy, with a
lesser number of intersection components with Q, which is a contradiction. Thus, any
curve in A\Q encircles two of the punctures of Q and all intersection curves must be
parallel on Q, separating one pair of punctures from the other pair.
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Still under the assumption that @A\QD∅ and A\Q¤∅, we next rule out the case
where at least one boundary component of A, say ˛1, lies in @N.C /. In this case, let
A1 be the connected component of A\B containing ˛1 and let aD @A1n˛1 denote the
other boundary component of the annulus A1. Let E be one of the two disks defined by
a in S. Then A1[E is a disk in B nN.C / which has nontrivial boundary in @N.C /;
hence, ˛1 is a longitude. After an isotopy on A1, we may assume that ˛1 \D D ∅,
and thus @A1 \D D∅. Since D is incompressible, we may isotope A1 in B nL0 to
assume that A1 \D does not contain any trivial curves. Moreover, if ˇ � A1 \D

is a nontrivial simple closed curve both in D and in A1, then ˇ cannot encircle one
puncture in D, since this would generate a sphere in B punctured three times by L0, a
contradiction. Hence, any curve in A1\D encircles both punctures of D; this gives
rise to solid tori regions in B nN.L0/ that can be used to further isotope A1 in B nL0

to assume that A1\D D∅. In particular, after capping ˛1 with a longitudinal disk in
B n .N.C /[A1/, it follows that a is the boundary of a disk in B nL.

Since any other curve in A\Q must be parallel to a, A\Q is a family fa1; a2; : : : ; ang

of pairwise disjoint simple closed curves, all parallel to each other both in Q and in A. In
particular, for each i 2 f1; 2; : : : ; ng, ai generates �1.A/ and bounds a disk Ei �BnL,
punctured once by the arc ˛. Note that n� 2, since otherwise ˛2 � @N.J /, where J

is a component of L and then capping A with a disk in B nL bounded by ˛1 would
yield an essential disk in X . This implies that there exists a subannulus A2 � A nB
with boundary @A2 � Q. Let us assume that @A2 D a1 [ a2. Then (after possibly
isotoping the disks E1 and E2 in B nL so they become disjoint) S DA2[E1[E2 is
a sphere in X , which bounds a ball B �X . Let V D B nB, then V is a solid torus in
X nBDY nB and we may use V to isotope A in Y to reduce the number of intersection
components in A\Q, a contradiction.

At this point in the proof of Case 4 of Claim 4.6, it remains to rule out the case where
no boundary component of A is on @N.C /. Then @A \ B D ∅, since otherwise a
boundary component of A would be a meridian in @N.�/ and we could isotope A to
reduce the number of intersection components in A\Q. Next, we show that, after
an isotopy, A\D D∅. Indeed, since D and A are both incompressible, after a disk
replacement argument we may assume that any curve in A\D is a simple closed curve
that generates �1.A/ and either encircles one or two of the punctures of D. If there is
a curve a�A\D, we may assume that either a encircles one puncture of D and is
innermost or that a encircles the two punctures of D and is outermost. In either case,
we can surger A to obtain two annuli in Y , where at least one is still essential in Y and
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type I type II

Figure 10: Possibilities for E, a connected component of A\ B when all
intersections of A\Q are arcs.

with less intersection components with Q, a contradiction that proves that A\D D∅.
Next, using Q� Œ0; 1� as a coordinate system for B nN.D [L0/, we can isotope A

in Y to make A disjoint from B. Since we already showed that there are no essential
annuli in Y disjoint from B, this is a contradiction.

Case 5 Assume that each intersection curve in A\Q is an arc with endpoints on
distinct boundary components of A.

The arcs in A\Q cut A into a collection of disks. Because S separates M , there must
be an even number of such arcs and hence such disks, and the disks must alternate
between lying inside and outside B.

There are no such arcs that cut a disk from Q. Indeed, if there were such a disk, by
choosing an innermost one, we could surger A along this disk to obtain a disk � with
boundary in @N.L0/. Since there are no essential disks in M nN.L0/, @� must bound
a disk �0 on @N.L0/. Then �[�0 is a sphere bounding a ball in M nN.L0/. Thus
we can isotope � to �0 through the ball, and hence isotope A to an annulus in @N.L0/,
contradicting the fact that A is not boundary parallel in M nN.L0/.

Let E be a connected component of A\B, which necessarily is a disk. Next, we show
that there are two possibilities for E up to isotopy and switching the roles of 
1 and 
2.
These two possibilities are depicted in Figure 10.

Let @E D ˇ1[�1[ˇ2[�2 where ˇ1 and ˇ2 lie in Q and �1 and �2 lie in @N.L0/.
Note that each of �1 and �2 must begin and end at distinct components of @N.�/\Q,
since otherwise we could lower the number of intersection curves of A with Q.
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For the arguments that follow, we set coordinates and consider

B D f.x;y; z/ 2R3
j x2
Cy2

C z2
� 1g;

D a horizontal disk in fz D 0g and the two arcs 
1 and 
2 parallel to the z–axis. Let
A0 be the annular connected component of .B nN.C //\fz D 0g. Then A0 is annulus
with one boundary component in Q and the other boundary component a longitude on
@N.C /.

We assume that we have isotoped E in BnN.L0/ to minimize the number of intersection
curves in E\A0, and next we prove that E\A0D∅. First, we claim that E\A0 does
not contain any arc. Indeed, if there were an arc � �E \A0, since @E \ @N.C /D∅,
� would cut a disk H1 from A0 and a disk H2 from E. Let H3 D H1 [H2. If �
has both endpoints in the same ˇi , then @H3 �Q, which, by incompressibility of Q,
implies that @H3 is a trivial curve bounding a disk H4 �Q. Then H3[H4 is a sphere
bounding a ball, through which we can isotope H1 through H2, and lower the number
of intersection curves in E \A0, a contradiction.

If � has one endpoint in ˇ1 and the other in ˇ2, then @H3 consists of one arc in Q and
one taut arc on @N.
i/. Then we can use H3 to isotope 
i to Q, a contradiction to the
fact that C links 
i in B. So E \A0 can only contain simple closed curves.

If � � E \A0 is a simple closed curve, then there is a disk E0 � E with @E0 D �.
In particular, � is nontrivial in A0, since otherwise we could use a disk replacement
argument to isotope E removing � from E \A0. Since � is isotopic to C through A0,
we could obtain a disk in Y with nontrivial boundary in @N.C /, a contradiction. Thus,
A0\E D∅.

If �1 and �2 lie on @N.
1/ and @N.
2/ respectively, then by an isotopy on

Q[ @N.
1[ 
2/;

we can assume that �1 and �2 are vertical arcs that do not wind around @N.
1/ or
@N.
2/. Then because ˇ1 and ˇ2 cannot cross the equator @A0 \Q, after possibly
reindexing, ˇ1 connects the top two punctures of Q and ˇ2 connects the bottom two
punctures. Since @E must be trivial as an element of the fundamental group of the
handlebody B nN.
1[
2/, there can be no twisting around the punctures, and E must
appear as in Figure 10, left.

If �1 and �2 both lie on @N.
1/, then ˇ1 and ˇ2 are loops on Q based at a puncture
and restricted to the upper and lower hemisphere. Since no arcs in A\Q can cut disks
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off Q, each ˇ1 and ˇ2 circle a puncture in Q. Hence, E must appear as in Figure 10,
right. A similar case occurs when �1 and �2 both lie on @N.
2/.

This argument allows us to introduce the following language. If ˇ �A\Q is any arc,
then there is a unique disk E �A\B with ˇ � @E. If E is a type I disk (where type I
and type II are defined as in Figure 10), we shall say that ˇ is a type I arc. Otherwise,
we will say that ˇ is a type II arc.

Next, we show that all intersection arcs in A\Q are of the same type. If �1 ¤ �2,
then, if there exists a type I disk, the two boundaries of A are on different components
and only type I disks can occur. If there is not a type I disk, then all disks are type II.
On the other hand, if �1 D �2, both components of @A intersect @N.
1/ and @N.
2/

the same equal number of times. In this case, the existence of a type II disk E1 with
boundary intersecting @N.
1/ in two arcs, implies that there exists a type II disk E2

intersecting @N.
2/. But E1 and E2 would then intersect, a contradiction.

Assume that all arcs in A\Q are of type I and let E be a connected component of
A n B. Then, when we switch from L0 to L, E can be extended to a disk properly
embedded in M nN.L/. Thus, there is a trivial component in L, a contradiction to its
hyperbolicity.

Our next argument eliminates the last case when all intersections of A \Q are of
type II, and �1 ¤ �2, since we cannot mix the two types of type II intersections. Until
the end of the proof we will assume that @A � @N.�1/. Let E � A be a connected
component of A nB, and we label @E D ˇ1[�1[ˇ2[�2, where ˇ1 and ˇ2 lie in
Q and �1 and �2 lie in @N.�1/. Then �1 and �2 define two disks, � and z�, in the
annulus @N.�1/ nB. We assume that the disk � is the one that makes zADE [� an
annulus in Y nB with both boundary components in Q parallel to the punctures that
come from �2.

After capping zA with the two once-punctured disks bounded by @ zA in Q, we create an
incompressible annulus yA in Y nB which also lives and is incompressible in X nB.
Since X is hyperbolic, it follows that yA must be boundary-parallel to �2. But this
implies that �1 is parallel in X n B to the arc j2 D �2 n B, and there exists a disk
E0�X nB with @E0D�1[�1[j2[�2, where �1[�2DE0\Q are two arcs joining
the respective two upper punctures and the two lower punctures of Q which avoid the
equator of Q. It then follows that �1 [ g and �2 [ g0 bound two respective disks in
B nL, and the union of those disks with E0 is an essential disk in M nL, contradicting
hyperbolicity of X and finishing the proof of Claim 4.6.
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Claim 4.7 Y does not admit essential tori.

Proof We argue by contradiction and suppose that T is a torus which is incompressible
and not boundary-parallel in Y . First, suppose that T \D D∅. Then, after an isotopy
in Y , we may assume that T \B D∅. Hence, T �X and, since X is hyperbolic, T

is either compressible or boundary parallel in X . If T is boundary parallel, since both
G and G0 intersect B, T must be parallel to a component J of L which lives in L0,
contradicting that T is essential in Y .

Next, we treat the case where T is compressible in X ; let E � X be a compression
disk for T and assume that E has the least number of intersection curves with Q among
compression disks for T . Since T is incompressible in Y , E intersects B\L0 and the
arc ˛, which is a complete geodesic in the hyperbolic metric of X . Let N .E/�X be
a closed neighborhood of E with coordinates E� Œ0; 1� and such that .@E� Œ0; 1�/� T .
Since ˛ is transverse to E, we may choose such a coordinate system on N .E/ in
such a way that, for each t 2 Œ0; 1�, each component of ˛\N .E/ intersects E � ftg

transversely in a single point.

Let S D .T n .@E � Œ0; 1�//[ .E � f0g/[ .E � f1g/. Then S is a sphere in X and
T n S D @E � .0; 1/. Since X is hyperbolic, S separates and must bound a closed
ball B � X . Let ˛1; ˛2; : : : ; ˛n be the arcs in ˛ \N .E/. We claim that each ˛i is
contained in B. This follows because the endpoints of ˛ are in L, L\B D ∅ and
T \B D∅. In particular, N .E/� B.

Let W D B nN .E/. Then @W D T and W is a knot exterior in B bounded by T (in
fact, we think of W as obtained from B by removing a potentially knotted hole; see
Figure 11). Since T \L0 D ∅ and L0 intersects N .E/, we have W � Y . Our next
argument is to show that N .E/ is unknotted in B; thus W is a solid torus bounded
by T , which contradicts the essentiality of T in Y .

Let … W H3 ! X be the Riemannian universal covering map of X . By appropri-
ately choosing a neighborhood N.L/, it follows that …�1.@N.L// is a collection of
horospheres in H3. Moreover, …�1.˛/ is a collection of geodesics connecting these
horospheres. On the other hand, B lifts to a collection of balls, one of which is a ball zB,
containing a lift of W , denoted by zW .

In order for T to be incompressible in Y , a lift of ˛, which we denote by z̨, must
pass through the hole zB n zW in zB. Since z̨ is a geodesic in H3, it follows that z̨ is
unknotted, which implies that zW is a solid torus. Since W is homeomorphic to zW ,
this gives a contradiction, as previously explained.
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N .E/

E

T

B

Figure 11: Left: the compressing disk E for the torus T and the neighborhood
N .E/. Right: the sphere S bounding the ball B and the (possibly knotted)
region N .E/�B, which defines the highlighted knot exterior W DB nN .E/.

It remains to prove that there are no essential tori in Y which intersect D. Arguing by
contradiction, assume that T is such a torus. Since D is incompressible in Y , a disk
replacement argument allows us to further assume that any curve in T \D is nontrivial
both in T and in D. Let ˇ be a curve in T \D. If ˇ encircles one puncture of D, take
an innermost curve in such intersection and use the one-punctured disk it bounds in
D to surger T and obtain an essential annulus in Y with boundary in @N.�i/. If ˇ
encircles both punctures of D, take an outermost curve on T \D and use the outer
annulus on D to surger T and obtain an essential annulus with boundary in @N.C /.
Since Claim 4.6 gives that Y does not admit essential annuli, this proves Claim 4.7.

Thus, having proved that Y satisfies Thurston’s hyperbolicity conditions, Theorem 4.1
follows when M is orientable.

Next, we assume that M is nonorientable and that L, L0, ˛ and B are as before. Let
… W yM !M be the two-sheeted oriented covering map of M . Then yL D …�1.L/

is a hyperbolic link in yM . We also let yL00 D…�1.L0/, B1 and B2 be the connected
components of …�1.B/ and ˛1 and ˛2 be the connected components of …�1.˛/. We
claim that yY D yM n yL00 is also hyperbolic. Note that, as explained in the proof of the
nonorientable setting for the chain move, the fact that yY is hyperbolic implies that
Y DM nL0 is hyperbolic.

Since ˛ is a complete geodesic in the hyperbolic metric of M nL, both ˛1 and ˛2

are complete geodesics in yM n yL. In particular, since yM is orientable, the switch
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move allows us to replace yL\B1 by a tangle diffeomorphic to L0\B to create a new
hyperbolic link yL0 in yM . Note that yL00 may be obtained from yL0 by replacing the
tangle yL0\B2 D

yL\B2 by a tangle diffeomorphic to L\B.

Since it might be the case that ˛2 is not isotopic to a geodesic in the hyperbolic metric
of yX D yM n yL0, one cannot directly apply the switch move a second time. However,
most of the arguments in its proof can be repeated without change for this setting. We
next guide the reader over the steps in the proof that need some adaptation.

First, the arguments in the proof of the orientable case for the switch move can be used
to prove that the four-punctured sphere Q1D @B1n

yL00 is incompressible and boundary-
incompressible in yX and in yY D yM n yL00, that Q2 D @B2 n

yL00 is incompressible
and boundary-incompressible in yY and that yY does not admit any essential disks and
essential spheres.

To prove that yY does not admit any essential annuli, the arguments in Claim 4.6 apply
to show that if A is an essential annulus in yY , then both boundary components of A

are meridians in a component yG0 of yL0 that intersects B2 and that we may isotope A in
yY to assume that A\B2D∅. Since yX nB2D

yY nB2, A is an incompressible annulus
in yX , and A must be boundary-parallel in yM nN. yL0/. In particular, after an isotopy in
yY that does not change the property A\B2 D∅, we may assume that @A\B1 D∅
and that if A intersects B1, then each connected component of A\B1 is an annulus
parallel to one of the two arcs in the tangle yL0\B1.

If A\B1 D∅, A is an incompressible annulus in the hyperbolic manifold yM n yL, and
the same arguments in the proof of Claim 4.6 apply to show that the neighborhood
through which A is parallel to an annulus A0 in @N. yL/ can be capped off by meridional
disks to define a ball W 0 in yM that contains both B1 and B2 and may be used to
homotope the arcs ˛1 and ˛2 to @N. yL/, a contradiction with the fact that both ˛1 and
˛2 are geodesics in the hyperbolic metric of yM n yL.

Hence, there must exist A0 a connected component of A\B1. We assume that A0 is
innermost in the sense that no other component of A\B1 lies in the ball region defined
by A0 in B1. Then each boundary component of A0 is a curve in Q1 that encircles
one puncture, defining a once-punctured disk in Q1. Using these two once-punctured
disks to surger A gives three incompressible annuli in yM nN. yL0/, all disjoint from B2.
One of them lies in B1 and at least one of the other two must be essential in yY . By
induction on the number of components in A\B1, this argument yields an essential
annulus yA in yY , with both boundary components being meridians, and that is disjoint
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both from B1 and from B2. As already shown, this is a contradiction that proves that
yY does not admit any essential annuli.

The proof that yY does not admit any essential tori uses the arguments in Claim 4.7.
Among all possible essential tori, the only case that still needs an adaptation is when V

is an essential torus in yY that can be isotoped to be disjoint from B2. Let D1 be a twice
punctured disk in B1 n

yL0 bounded by the trivial component yC1 of yL0\B1. Then D1

is incompressible and we may isotope V in yY to assume that there are no trivial curves
in V \D1. Hence, V \D1 D∅, since the existence of a nontrivial curve in V \D1

allows us to surger V to produce an essential annulus in yY , which we already proved
that cannot exist. In particular, V can also be isotoped in yY to be disjoint from B1,
and then V is a torus in the hyperbolic manifold yM n yL. Since V cannot be boundary
parallel in yM n yL, there exists a compressing disk E for V in yM n yL, and the fact that
V is incompressible in yY implies that E must necessarily intersect the arcs ˛1 and ˛2,
which are geodesics in the hyperbolic metric of yM n yL. Now, the same arguments in
the proof of Claim 4.7 apply to show that V bounds a unknotted solid region W in yY ,
contradicting the fact that V is essential in yY . This argument finishes the proof that
yY satisfies Thurston’s hyperbolicity conditions and, as already explained, proves the
switch move theorem for the nonorientable case.

5 The switch move gluing operation

We describe in Theorem 5.1 below a method to obtain new hyperbolic 3–manifolds
of finite volume from previously given ones; this method uses a variant of the switch
move (Theorem 4.1). Before stating this result, we set the notation.

Let P be a compact 3–manifold with nonempty genus one boundaries and let L be
a link in P . We allow for P to consist of one connected manifold or two connected
manifolds. Let M D P nL and assume that int.M / admits a complete hyperbolic
metric of finite volume. Let T1 and T2 be two distinct, diffeomorphic components
of @P and, for i 2 f1; 2g, let ˛i be a complete geodesic in the hyperbolic metric of
int.M /, with one endpoint in Ti and the other in a component Ji of L. Note that J1

can equal J2. Let ˆ W T1! T2 be a gluing diffeomorphism that maps the endpoint of
˛1 in T1 to the endpoint of ˛2 in T2. Let P 0 D P=ˆ be the manifold obtained from P

by identifying T1 and T2 to a genus one surface T using ˆ. Note that P 0 is compact
(possibly with empty boundary, if @P D T1 [ T2), connected and that L � P 0. Let
X D P 0 nL.
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Theorem 5.1 (switch move gluing operation) With the above notation , let ˛ be the
concatenation of ˛1 and ˛�1

2
in P 0. Let B be a ball neighborhood of ˛ in P 0 that

intersects L in two arcs g � J1 and g0 � J2 and intersects T in a disk �. Let L0 be
the resulting link obtained in P 0 by replacing g [ g0 by the tangle 
1 [ 
2 [C as in
Figure 4, right. Then the manifold Y D P 0 nL0 is hyperbolic.

After choosing � as above, as in the case of the switch move, the operation described
above may yield two distinct hyperbolic 3–manifolds depending on the projection of
the strands g and g0; see Remark 1.1.

Proof of Theorem 5.1 We first prove the theorem in the case when P is orientable.
In this circumstance, the setting in Theorem 5.1 is the same as in the switch move
theorem (Theorem 4.1), with the exception that X is no longer hyperbolic. However,
X is close to being hyperbolic in the following sense:

Claim 5.2 X does not admit any essential spheres , essential disks and essential annuli.
Moreover , any essential torus in X is isotopic to T .

Proof Suppose there were an essential disk E in X . Since int.M / is hyperbolic, it
follows that E must intersect T . But because T is incompressible and @E is disjoint
from T , we may replace subdisks in E by disks in T to obtain an essential disk in M , a
contradiction. The same argument shows that an essential sphere in X would generate
an essential sphere in M , also a contradiction.

Because int.M / is hyperbolic, an essential torus in X that does not intersect T must
be parallel to T , and hence isotopic to T . To prove that T is the only possible essential
torus up to isotopy, we argue by contradiction. Suppose T 0 is an essential torus in X that
is not isotopic to T and has the fewest number of intersection curves with T . Then any
curve in T 0\T is nontrivial both in T and in T 0. It follows that there is a component
of T 0 nT that is an essential annulus in int.M /, a contradiction. Analogously, we may
show that X does not admit any essential annuli, and this proves Claim 5.2.

Having proved Claim 5.2, we observe that L n B is not a rational tangle in a 3–ball
as X contains an essential torus that intersects the 3–ball in an essential punctured
torus, which cannot exist in a rational tangle complement. Then we note that the
arguments in the proof of the switch move theorem apply directly to show that Y

does not admit any essential spheres or essential disks and that the four-punctured
sphere QD @B nLD @B nL0 and the twice-punctured disk D bounded by C on T are
incompressible and boundary-incompressible in Y .
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To prove that Y does not admit any essential annuli, the proof of Claim 4.6 applies
directly. Hence, to prove Theorem 5.1 when M is orientable, it remains to show that
Y does not admit any essential tori.

We argue by contradiction and assume that V is an essential torus in M nL0 that has
the least number of intersection components with T among all essential tori in Y . Then,
after assuming general position, T \V is a finite collection of pairwise disjoint simple
closed curves. Let 
 be one of such intersection components. If 
 �D, then it does
not bound a disk in T nL0 and either encircles one or two of the punctures of D. Then
we can choose a component 
 0 in V \D (if 
 encircles one puncture, we choose 
 0

as an innermost curve, otherwise we choose 
 0 as an outermost curve) and surger V

(along a punctured disk in the first case and an annulus in the second case) to obtain
an essential annulus in Y , a contradiction. It then follows that V \D D∅, and then
V can be isotoped through Y to be disjoint from B, without increasing the number of
intersection components in V \T . Hence, V is a torus that is contained in X .

In X , V is not isotopic to T , since V �M nL0 and any torus isotopic to T is punctured
by L0. We claim that V \T D∅. Argue by contradiction and assume that there exists
a curve 
 in V \T . Then 
 does not intersect D and there are two possibilities: either

 is a nontrivial curve in T or 
 , together with C , bounds an annulus in T nD. In
the latter case, we may use this annulus to surger V and obtain an essential annulus
in Y . Since Y does not admit essential annuli, 
 is nontrivial in T . Then there is a
component of V nT that is an essential annulus in X , which cannot occur, proving
that V \T D∅.

Thus, V is a torus in the hyperbolic manifold int(M ). Note that V cannot be boundary
parallel in M , since this either contradicts its essentiality in Y or the fact that it is not
isotopic to T . Hence, it must be the case that V is compressible in M . Let E �M

be a compression disk for V . Then, since V is incompressible in Y , the geodesic ˛1

must intersect E. Now, the same arguments used in the proof of Claim 4.7 for the case
when T was an essential torus in Y , disjoint from B and compressible in X apply to
obtain that V is compressible in Y , a contradiction that proves Theorem 5.1 when M

is orientable.

Next, we sketch the arguments that prove Theorem 5.1 when M is nonorientable, using
the notation already introduced. Let yX be the oriented double cover of X and let
… W yX !X be the covering map. Let yT D…�1.T / in yX . Then yT consists of one or
two tori.
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In the case of two tori V1 and V2, …�1.˛/ consists of two arcs �1 and �2 each of
which intersects one of the two tori. Since yX is orientable, we may apply Theorem 5.1
twice first for V1 and �1 and then, in an equivariant manner to the first switch move
with respect to the covering translation, for V2 and �2, to obtain a hyperbolic link
complement. Then, by Mostow–Prasad rigidity, the covering translation can be re-
alized as an isometry, proving that the switch move gluing operation on the original
nonorientable manifold M yields a hyperbolic manifold.

In the case that yT consists of one torus, both copies �1 and �2 intersect yT . In this
situation, we may apply Theorem 5.1 on �1, obtaining a hyperbolic link complement
where Theorem 4.1 can be performed, in an equivariant manner with respect to the
covering translation, on a neighborhood of �2 and again the result is hyperbolic.
Realizing the covering translation as an isometry allows us to prove that the switch move
gluing operation on the nonorientable manifold M yields a hyperbolic manifold Y .
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Golod and tight 3–manifolds

KOUYEMON IRIYE

DAISUKE KISHIMOTO

The notions Golodness and tightness for simplicial complexes come from algebra and
geometry, respectively. We prove these two notions are equivalent for 3–manifold
triangulations, through a topological characterization of a polyhedral product for a
tight-neighborly manifold triangulation of dimension � 3.

57Q15; 13F55, 55U10

1 Introduction

Let F be a field, and let S D F Œx1; : : : ; xm�, where we assume each xi is of degree 2.
Serre [26] proved that for RD S=I where I is a homogeneous ideal of S , there is a
coefficientwise inequality

P.TorR.F ;F/I t /�
.1C t2/m

1� t .P.TorS .R;F/I t /� 1/
;

where P.V I t / denotes the Poincaré series of a graded vector space V . In the extreme
case that the equality holds, R is called Golod. It was Golod who proved that R is
Golod if and only if all products and (higher) Massey products in the Koszul homology
of R vanish, where the Koszul homology of R is isomorphic to TorS .R;F/ as a vector
space.

Let K be a simplicial complex with vertex set Œm�D f1; 2; : : : ; mg. Let F ŒK� denote
the Stanley–Reisner ring of K over F , where we assume generators of F ŒK� are of
degree 2. Then F ŒK� expresses combinatorial properties of K, and conversely, it is of
particular interest to translate a given algebraic property of the Stanley–Reisner ring
F ŒK� into a combinatorial property of K. We say that K is F–Golod if F ŒK� is Golod.
We aim to characterize Golod complexes combinatorially.

Recently, a new approach to a combinatorial characterization of Golod complexes
has been taken. We can construct a space ZK , called the moment–angle complex
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for K, in accordance with the combinatorial information of K. Then combinatorial
properties are encoded in the topology of ZK , and in particular, Golodness can be read
from a homotopical property of ZK as follows. Baskakov, Buchstaber and Panov [6]
proved that the cohomology of ZK with coefficients in F is isomorphic to the Koszul
homology of F ŒK�, where the isomorphism respects products and (higher) Massey
products. Then it follows that K is Golod over any field whenever ZK is a suspension,
and so Golod complexes have been studied also in connection with desuspension of ZK
and a more general polyhedral product; see Grbić, Panov, Theriault and Wu [10; 11],
Grujić and Welker [12], and the authors [14; 15; 16; 17; 18; 19]. See the survey by
Bahri, Bendersky and Cohen [4] for more information about moment–angle complexes
and polyhedral products. Here we remark that there is a Golod complex K such that
ZK is not a suspension as shown by Yano and the first author [20].

In [15; 17; 19], the authors characterized Golod complexes of dimension one and two in
terms of both combinatorial properties ofK and desuspension ofZK . Here we recall the
characterization of Golodness of a closed connected surface triangulation, proved in [15].
The original statement in [15] is given in terms of polyhedral products, but here we state
in terms of moment–angle complexes, which is easier, as in [17, Theorem 1.3]. Recall
that a simplicial complex is called neighborly if every pair of vertices forms an edge.

Theorem 1.1 [15, Theorem 1.1] Let S be a triangulation of a closed connected
F–orientable surface. Then the following statements are equivalent :

(1) S is F–Golod.

(2) S is neighborly.

(3) ZS is a suspension.

We introduce another notion of simplicial complexes coming from geometry. S-S Chern
and R K Lashof proved that the total absolute curvature of an immersion f WM !Rn

of a compact manifold M is bounded below by the Morse number of some Morse
function on M . On the other hand, the Morse number is bounded below by the Betti
number. Tightness of an immersion f is defined by the equality between the total
absolute curvature of an immersion f and the Betti number ofM , which is the case that
the total absolute curvature is minimal. See Kühnel and Lutz [22] and Kuiper [23]. It is
known that an immersion f is tight if and only if for almost every closed half-space H ,
the inclusion f .M/\H ! f .M/ is injective in homology.

Tightness of a simplicial complex is defined as a combinatorial analog of tightness of
an immersion. See [22] for details. Let K be a simplicial complex with vertex set Œm�.

Algebraic & Geometric Topology, Volume 23 (2023)



Golod and tight 3–manifolds 2193

For ∅¤ I � Œm�, the full subcomplex of K over I is defined by

KI D f� 2K j � � I g:

Definition 1.2 Let K be a connected simplicial complex with vertex set Œm�. We
say that K is F–tight if the natural map H�.KI IF/!H�.KIF/ is injective for each
∅¤ I � Œm�.

Golodness and tightness have origins in different fields of mathematics, algebra and
geometry, respectively. The aim of this paper is to prove the seemingly irrelevant these
two notions are equivalent for 3–manifold triangulations through the topology of ZK
or more general polyhedral products (see Section 5). Now we state the main theorem.

Theorem 1.3 LetM be a triangulation of a closed connected F–orientable 3–manifold.
Then the following statements are equivalent :

(1) M is F–Golod.

(2) M is F–tight.

(3) ZM is a suspension.

Recall that a d–manifold triangulation is called stacked if it is the boundary of a .dC1/–
manifold triangulation whose interior simplices are of dimension�d . Stacked manifold
triangulations have been studied in several directions, and we will use its connection to
tightness (Section 2). See Bagchi, Datta, Murai and Spreer [3; 9] and [22] for more on
stacked manifold triangulations. Bagchi, Datta and Spreer [3] (cf Theorem 2.3) proved
that a closed connected F–orientable 3–manifold triangulation is F–tight if and only
if it is neighborly and stacked. Then we get the following corollary of Theorem 1.3,
which enables us to compare with Theorem 1.1, the 2–dimensional case.

Corollary 1.4 Let M be a triangulation of a closed connected F–orientable 3–mani-
fold. Then the following statements are equivalent :

(1) M is F–Golod.

(2) M is neighborly and stacked.

(3) ZM is a suspension.

We will investigate a relation between Golodness and tightness of d–manifold triangu-
lations for d � 3, not only for d D 3, through tight-neighborliness. We will prove the
following theorem, where Theorem 1.3 is its special case d D 3.
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Theorem 1.5 LetM be a triangulation of a closed connected F–orientable d–manifold
for d � 3, and consider the following conditions:

(1) M is F–Golod.

(2) M is F–tight.

(3) M is tight-neighborly.

(4) the fat-wedge filtration of RZM is trivial.

Then there are implications

.1/ D) .2/ D).3/ D) .4/ D) .1/:

Moreover , for d D 3, the implication .2/ D) .3/ also holds , so all conditions are
equivalent.

Remarks on Theorem 1.5 are in order. Tight-neighborly triangulations of d–manifolds
for d � 3 will be defined in Section 2. To clarify a connection to Theorem 1.3 and
Corollary 1.4, we need to mention that a triangulated manifold of dimension � 3
is tight-neighborly if and only if it is neighborly and stacked as noted soon before
Theorem 2.3 below. The space RZK is the real moment–angle complex, and properties
of its fat-wedge filtration will be given in Section 5. In particular, we will see that if
the fat-wedge filtration of RZK is trivial, then ZK is a suspension. So Theorem 1.3 is
the special case of Theorem 1.5 for d D 3 as mentioned above. Datta and Murai [9]
proved that if M is tight-neighborly and d � 4, then it is F–tight and ˇi .M IF/D 0
for 2� i � d � 2, where ˇi .M IF/D dimHi .M IF/ denotes the i th Betti number. So
if ˇi .M IF/ D 0 for 2 � i � d � 2 and d � 4, then all conditions in Theorem 1.5
are equivalent, where the triviality of the Betti numbers is necessary because as in
[2, Example 3.15], there is an F–tight 9–vertex triangulation of CP 2 for any field F ,
which is not tight-neighborly.

The paper is organized as follows. Section 2 collects properties of tight and tight-
neighborly manifold triangulations that will be needed in later sections. Section 3
introduces a weak version of Golodness and proves that weak Golodness implies
tightness of orientable manifold triangulations. Section 4 investigates a simplicial
complex F.M/ constructed from a tight-neighborly d–manifold triangulation M for
d � 3, and Section 5 recalls the fat-wedge filtration technique for polyhedral products,
which is the main ingredient in desuspending ZK . Section 6 applies the results in
Sections 4 and 5 to prove Theorem 1.5. Finally, Section 7 poses a problem on Golodness
and tightness of d–manifold triangulations for d � 4, and shows related results.
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2 Tightness

This section collects facts about tight and tight-neighborly manifold triangulations that
we will use. As mentioned in Section 1, tightness of a simplicial complex is a discrete
analog of a tight space studied in differential geometry with connection to minimality of
the total absolute curvature, and tight complexes have been studied mainly for manifold
triangulations. First, we show:

Lemma 2.1 Every F–tight complex is neighborly.

Proof Let K be an F–tight complex. Then for two vertices v and w of K, the natural
map H0.Kfv;wgIF/!H0.KIF/ is injective. Since K is connected, H0.KIF/Š F ,
and so H0.Kfv;wgIF/Š F . Then v and w must be joined by an edge.

Next, we explain a conjecture on tight manifold triangulations. Let K be a simplicial
complex. Let jKj denote its geometric realization of K, and let

f .K/D .f0.K/; f1.K/; : : : ; fdimK.K//

denote the f –vector of K. We say that K is strongly minimal if for any simplicial
complex L with jKj Š jLj, it holds that

fi .K/� fi .L/

for each i � 0. Kühnel and Lutz [22] conjectured that every F–tight triangulation of
a closed connected manifold is strongly minimal. Clearly, the only F–tight closed
connected 1–manifold triangulation is the boundary of a 2–simplex, so the conjecture
is true in dimension 1. Moreover, the 2–dimensional case was verified, as mentioned
in [22], and the 3–dimensional case was verified by Bagchi, Datta and Spreer [3]. But
the case of dimensions � 4 is still open.

As for minimality of manifold triangulations, we have another notion introduced by
Lutz, Sulanke and Swartz [24].

Definition 2.2 A closed connected d–manifold triangulation M with vertex set Œm�
for d � 3 is tight-neighborly if�m�d�1

2

�
D

�dC2
2

�
ˇ1.M IF/:
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Tight-neighborly manifold triangulations are known to be vertex minimal. By definition,
tight-neighborliness seems to depend on the ground field F , but it is actually independent
of the ground field F as tight-neighborly manifold triangulations are neighborly and
stacked. Tightness and tight-neighborliness have the following relation. Let S1 z�Sd�1

denote the nontrivial Sd�1–bundle over S1.

Theorem 2.3 Let M be a closed connected F–orientable d–manifold triangulation
for d � 3, and consider the following conditions:

(1) M is F–tight.

(2) M is tight-neighborly.

(3) M is neighborly and stacked.

(4) M has the topological type of either

Sd ; .S1 z� Sd�1/#k; .S1 �Sd�1/#k :

Then there are implications

.1/ D).2/ () .3/ D) .4/:

Moreover , the implication .1/D) .2/ also holds for d D 3.

Proof The implications are shown in [9] for d � 4 and [3] for d D 3.

Remark The integer k in Theorem 2.3 for d D 3 is known to satisfy 80k C 1 is
a perfect square. For k D 1; 30; 99; 208; 357; 546, tight-neighborly triangulations of
.S1 z�S2/#k are constructed in [8], but no tight-neighborly triangulation of .S1�S2/#k

is known.

3 Weak Golodness

This section introduces weak Golodness and studies it for manifold triangulations. Let
K be a simplicial complex with vertex set Œm�, and let H�.F ŒK�/ denote the Koszul
homology of the Stanley–Reisner ring F ŒK�. As mentioned in Section 1, K is F–Golod
if and only if all products and (higher) Massey products in H�.F ŒK�/ vanish. Now we
define weak Golodness.

Definition 3.1 A simplicial complexK is weakly F–Golod if all products in H�.F ŒK�/
vanish.
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Clearly, K is weakly F–Golod whenever it is F–Golod. Berglund and Jöllenbeck [7]
stated that Golodness and weak Golodness of every simplicial complex are equivalent,
but this was disproved by Katthän [21]. Thus defining weak Golodness makes sense.

We recall a combinatorial description of the multiplication in H�.F ŒK�/. For disjoint
nonempty subsets I; J � Œm�, there is an inclusion

�I;J WKItJ !KI �KJ ; � 7! .� \ I; � \J /:

Baskakov, Buchstaber and Panov proved:

Lemma 3.2 [6, Theorem 1] There is an isomorphism of vector spaces

Hi .F ŒK�/Š
M

∅¤I�Œm�

zH i�jI j�1.KI IF/

for i > 0 such that for nonempty subsets I; J � Œm� the multiplication

zH i�jI j�1.KI IF/˝ zH
j�jJ j�1.KJ IF/! zH iCj�jI[J j�1.KI[J IF/

is trivial for I \J ¤∅ and the induced map of �I;J for I \J D∅.

Let M be a triangulation of a closed connected F–oriented d–manifold with vertex
set Œm�. We consider a relation between the inclusion �I;J and Poincaré duality. For
any subset I � Œm�, Poincaré duality [13, Proposition 3.46] holds such that the map

H i .jMI jIF/!Hd�i .jM j; jM j � jMI jIF/; ˛ 7! ˛ _ ŒM�

is an isomorphism, where ŒM � denotes the fundamental class of M . By Lemma 70.1
of [25], jM j � jMI j ' jMJ j for J D Œm�� I . Then there is an isomorphism

DI;J WH
i .MI IF/

Š
�!Hd�i .M;MJ IF/:

Let @ WH�.M;MJ IF/!H��1.MJ IF/ denote the boundary map of the long exact
sequence

� � � !H�.MJ IF/!H�.M IF/!H�.M;MJ IF/
@
�!H��1.MJ IF/! � � � :

Lemma 3.3 Let M be a triangulation of a closed connected F–oriented d–manifold
with vertex set Œm�. For any partition Œm�D I tJ and ˛ 2H i .MI IF/,

.@ ıDI;J /.˛/D .�1/
iC1.˛˝ 1/..�I;J /�.ŒM �// 2Hd�i�1.MJ IF/;

where we regard .�I;J /�.ŒM �/ as an element ofM
iCjDd�1

Hi .MI IF/˝Hj .MJ IF/ŠHd .MI �MJ IF/:
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Proof Let ' 2 C i .MI IF/ be a representative of ˛. We define N' 2 C i .M IF/ by

N'.�/D

�
'.�/ if � 2MI ;

0 otherwise:

Then ˛ _ ŒM� is represented by N' _ � where � represents ŒM �. Let Œv0; : : : ; vi �
denote an oriented i–simplex with vertices v0; : : : ; vi . We may set

�D
X
k

akŒv
k
0 ; v

k
1 ; : : : ; v

k
d � 2 Cd .M IF/

for ak 2 F , where vk0 ; : : : ; v
k
nk
2 I and vknkC1

; : : : ; vk
d
2 J for some nk . Then

.@ ıDI;J /.˛/ is represented by

@. N' _�/D . N' ı @/_ �D Œ. N' ı @/_ ��D
X
k

ak N'.@Œv
k
0 ; : : : ; v

k
iC1�/Œv

k
iC1; : : : ; v

k
d �:

Since . N' ı @/jCiC1.MI IF/ D ' ı @ D 0, we have N'.@Œvk0 ; : : : ; v
k
iC1�/ ¤ 0 only when

nk D i . Then .@ ıDI;J /.˛/ is represented byX
nkDi

ak N'.@Œv
k
0 ; : : : ; v

k
iC1�/Œv

k
iC1; : : : ; v

k
d �

D .�1/iC1
X
nkDi

ak'.Œv
k
0 ; : : : ; v

k
i ;

b
vkiC1�/Œv

k
iC1; : : : ; v

k
d �:

On the other hand, since the Ci .MI IF/ ˝ Cd�i�1.MJ IF/ part of � is given byP
nkDi

akŒv
k
0 ; : : : ; v

k
d
�, .�I;J /�.ŒM �/ is represented byX
nkDi

akŒv
k
0 ; : : : ; v

k
i �˝ Œv

k
iC1; : : : ; v

k
d �:

Now we are ready to prove:

Theorem 3.4 If a triangulation of a closed connected F–orientable d–manifold is
weakly F–Golod , then it is F–tight.

Proof Let M be a triangulation of a closed connected F–oriented d–manifold with
vertex set Œm�. Let Œm�D I tJ be a partition. Suppose that the map �I;J is trivial in
cohomology with coefficients in F . Then by the universal coefficient theorem, �I;J is
trivial in homology with coefficients in F too. Thus, by Lemma 3.3, the boundary map

@ WH�.M;MJ IF/!H��1.MJ IF/

is trivial, and so the natural map H�.MJ IF/!H�.M IF/ is injective, completing the
proof.
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4 The complex F.M/

Throughout this section, let M be a closed connected tight-neighborly d–manifold
triangulation for d � 3 with vertex set Œm�. Let K be a simplicial complex with vertex
set Œm�. A subset I � Œm� is a minimal nonface of K if every proper subset of I is a
simplex of K and I itself is not a simplex of K. Define a simplicial complex F.M/

by filling all minimal nonfaces of cardinality d C 1 into M . This section investigates
the complex F.M/.

We set notation. The link of a vertex v in a simplicial complex K is defined by

lkK.v/D f� 2K j v … � and � t v 2Kg:

For a finite set S , let �.S/ denote the simplex with vertex set S . Then I � Œm� is
a minimal nonface of K if and only if KI D @�.I /. Let K1 and K2 be simplicial
complexes of dimension d such that K1\K2 is a single d–simplex � . Then we write

K1 #K2 DK1[K2� � and K1 ıK2 DK1[K2:

The following lemma may be known, but we produce a proof for completeness of the
paper; cf [1; 3; 9].

Lemma 4.1 For each v 2 Œm�, there exist V.v; 1/; : : : ; V .v; nv/ � Œm� such that
jV.v; k/j D d C 1 for 1� k � nv and

lkM .v/D @�.V.v; 1// # � � � # @�.V.v; nv//:

Proof The case d D 3 is proved in [3, Proof of Theorem 1.2]. For d � 4, tight-
neighborliness implies local stackedness, that is, every vertex link is a stacked sphere,
as in [9]. Moreover, stacked spheres are characterized by Bagchi and Datta [1] such
that every stacked .d�1/–sphere is of the form @�d # � � � # @�d . Then we obtain the
result for d � 4.

Generalizing neighborliness, we say that a simplicial complex is k–neighborly if every
kC 1 vertices form a simplex. So 1–neighborliness is precisely neighborliness.

Lemma 4.2 For each v 2 Œm� and 1� k � nv, MV.v;k/tv is .d�1/–neighborly.

Proof By Lemma 4.1, lkM .v/V.v;k/ is @�d with some .d�1/–simplices removed,
implying it is .d�2/–neighborly. So if I is a subset of V.v; k/ with jI j D d � 1, then
Itv is a simplex ofM . It remains to showMV.v;k/ is .d�1/–neighborly. Let J be any
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subset of V.v; k/ with jJ j D d . Then @�.J / is a subcomplex of M . If MJ D @�.J /,
then MJtv D @�.J /� v, which is contractible. So the inclusion MJ !MJtv is not
injective in homology with coefficients in F . By Theorem 2.3, M is F–tight, so we get
a contradiction. Thus J must be a simplex of M , completing the proof.

We prove local properties of the complex F.M/.

Proposition 4.3 (1) For each v 2 Œm�,

lkF.M/.v/D @�.V.v; 1// ı � � � ı @�.V.v; nv//:

(2) For each v 2 Œm� and 1� k � nv, V.v; k/t v is a minimal nonface of F.M/.

Proof (1) Let � be the .d�1/–simplex

.@�.V.v; 1// # � � � # @�.V.v; k///\ @�.V.v; kC 1//:

Then by Lemma 4.2, @�.� t v/ is a subcomplex of M , implying � t v is a simplex
of F.M/. Then by induction, we get @�.V.v; 1// ı � � � ı @�.V.v; nv// � lkF.M/.v/.
The reverse inclusion is obvious by the construction of F.M/, completing the proof.

(2) By Lemma 4.2, V.v; k/ is a simplex of F.M/, so every proper subset I of
V.v; k/t v is a simplex of F.M/. By (1), V.v; k/t v is not a simplex of F.M/.

We compute the homology of F.M/. Let

S.M/D fV.v; k/t v j v 2 Œm� and 1� k � nvg:

Then S.M/ is the set of all subsets I � Œm� such that jI j D d C 2 and lkMI
.v/ is

.d�2/–neighborly for some v 2 I .

Lemma 4.4 F.M/D
[

I2S.M/

@�.I /.

Proof LetKD
S
I2S.M/ @�.I /. By Proposition 4.3, K �F.M/. For any k–simplex

� of F.M/ with 0 � k � d � 1 and v 2 � , � � v is a simplex of lkM .v/ because
� is a simplex of M too. Then � � v � V.v; l/ for some 1 � l � nv, implying �
is a simplex of K. Thus the .d�1/–skeleton of F.M/ is included in K. Take any
d–simplex � of F.M/. Then � is either a simplex or a minimal nonface of M . In
both cases, @�.� � v/ is a subcomplex of lkM .v/ for v 2 � . Then � � v � V.v; l/ for
some 1� l � nv, implying � is a simplex of K. Thus F.M/�K.

By Lemma 4.4, there is an inclusion gI W @�.I /! F.M/ for each I 2 S.M/. Let
uI 2Hd .F.M/IZ/ be the Hurewicz image of gI .
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Proposition 4.5 The integral homology of F.M/, except for dimension 1, is given by

zH�.F.M/IZ/D

�
ZhuI j I 2 S.M/i if � D d;
0 if � ¤ 1; d:

Proof Since F.M/ is obtained from M by attaching d–simplices, we only need to
calculate Hd�1 and Hd by Theorem 2.3. By Proposition 4.3, each component of
lkMI

.v/ is .d�2/–connected, where lkMI
.v/ D lkM .v/I�v. Then there is an exact

sequence

(1) 0! zHd .F.M/I�vIZ/!Hd .F.M/I IZ/
@
�!Hd�1.lkF.M/I .v/IZ/

!Hd�1.F.M/I�vIZ/!Hd�1.F.M/I IZ/! 0:

By Proposition 4.3, there is an inclusion @�.V.v; k//! lkF.M/I .v/ for V.v; k/tv�I ,
and we write the Hurewicz image of this inclusion by NuV.v;k/. Then we have

Hd�1.lkF.M/I .v/IZ/D Zh NuV.v;k/ j V.v; k/t v � I i

such that @.uV.v;k/tv/D NuV.v;k/. Hence the map @ in (1) is surjective, so we get an
isomorphism

Hd�1.F.M/I�vIZ/ŠHd�1.F.M/I IZ/:

Thus we obtain Hd�1.F.M/I IZ/ D 0 for any I � Œm� by induction on jI j, where
Hd�1.F.M/I IZ/D 0 for jI j D 1. We also get a split exact sequence

0!Hd .F.M/I�vIZ/!Hd .F.M/I IZ/
@
�!Hd�1.lkF.M/I .v/IZ/! 0:

Then by induction on jI j, we also obtain

Hd .F.M/I IZ/D ZhuV.v;k/ j V.v; k/t v � I i:

By Theorem 2.3, �1.jM j/ is a free group. Since jF.M/j is obtained by attaching
d–cells to jM j, the inclusion jM j! jF.M/j is an isomorphism in �1, so �1.jF.M/j/

is a free group too. Then there is a map f W B ! jF.M/j which is an isomorphism
in �1, where B is a wedge of circles. Let yF .M/ be the cofiber of f . Since there is an
exact sequence

� � � !H�.BIZ/
f�
�!H�.F.M/IZ/! zH�. yF .M/IZ/! � � � ;

the natural map H�.F.M/IZ/! H�. yF .M/IZ/ is an isomorphism for � ¤ 1. Let
OgI be the composite j@�.I /j gI

�! jF.M/j ! yF .M/ for I 2 S.M/, and let OuI be the
Hurewicz image of OgI . By Proposition 4.5, we get:
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Corollary 4.6 The reduced homology of yF .M/ is given by

zH�. yF .M/IZ/D

�
Zh OuI j I 2 S.M/i if � D d;
0 if � ¤ d:

Since yF .M/ is path-connected, there is a map

g W
_

I2S.M/

j@�.I /j ! yF .M/

such that gjj@�.I/j' OgI for each I 2 S.M/. Then by Corollary 4.6 and the Whitehead
theorem, we obtain the following.

Corollary 4.7 The map g W
W
I2S.M/ j@�.I /j !

yF .M/ is a homotopy equivalence.

5 Polyhedral product

Throughout this section, let K be a simplicial complex with vertex set Œm�. Let
.X;A/D f.Xi ; Ai /g

m
iD1 be a collection of pairs of pointed spaces indexed by vertices

of K. For I � Œm�, let
.X;A/I D Y1 � � � � �Ym

where Yi DXi for i 2 I and Yi DAi for i … I . The polyhedral product of .X;A/ over
K is defined by

ZK.X;A/D
[
�2K

.X;A/� :

For ∅¤ I � Œm�, let .XI ; AI /D f.Xi ; Ai /gi2I . Then we can define ZKI
.XI ; AI /.

The following lemma is immediate from the definition of a polyhedral product.

Lemma 5.1 For each ∅¤ I � Œm�, ZKI
.XI ; AI / is a retract of ZK.X;A/.

For a collection of pointed spaces X D fXigmiD1, let .CX;X/D f.CXi ; Xi /gmiD1. For
0� i �m, we define a subspace of ZK.CX;X/ by

ZiK.CX;X/

D f.x1; : : : ; xm/ 2ZK.CX;X/ j at least m� i of x1; : : : ; xm are basepointsg:

Using the basepoint of eachXi , we regardZKI
.CXI ; XI/ as a subspace ofZK.CX;X/

so that we can alternatively write

(2) ZiK.CX;X/D
[

I�Œm�; jI jDi

ZKI
.CXI ; XI /:
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There is a filtration

� DZ0K.CX;X/�Z
1
K.CX;X/� � � � �Z

m
K .CX;X/DZK.CX;X/;

which we call the fat-wedge filtration of ZK.CX;X/. By [17, Theorem 4.1],

ZiK.CX;X/=Z
i�1
K .CX;X/D

_
I�Œm�; jI jDi

j†KI j ^ yX
I ;

where yXI D
V
i2I Xi . Moreover, it is shown in [17, Corollary 4.2] that the fat-wedge

filtration of ZK.CX;X/ splits after a suspension, and the decomposition of Bahri,
Bendersky, Cohen and Gitler [5, Theorem 2.2.1] is reproduced as:

Theorem 5.2 (BBCG decomposition) There is a homotopy equivalence

†ZK.CX;X/'†
_

∅¤I�Œm�

j†KI j ^ yX
I :

In particular, if the BBCG decomposition desuspends, then ZK.CX;X/ itself desus-
pends. Moreover, if eachXi is a connected CW complex, then the BBCG decomposition
desuspends whenever ZK.CX;X/ desuspends [17]. Then we aim to desuspend the
BBCG decomposition. Desuspension of the BBCG decomposition was studied for
specific Golod complexes such as shifted complexes [11; 12; 14] by ad hoc methods,
and desuspension for much broader classes of simplicial complexes, including the
previous specific simplicial complexes, was proved by using the fat-wedge filtration
technique [17].

The moment–angle complex ZK introduced in Section 1 is the polyhedral product
ZK.D

2; S1/. The real moment–angle complex RZK is defined to be the polyhedral
product ZK.D1; S0/, and we denote its fat-wedge filtration by

� DRZ0K �RZ1K � � � � �RZmK DRZK

where we choose the basepoint of S0 D f�1;C1g to be �1. The fat-wedge filtration
of RZK is proved to be a cone decomposition [17, Theorem 3.1]. For ∅¤ I � Œm�,
let jKI

WRZjI j�1KI
!RZjI j�1K denote the inclusion.

Theorem 5.3 [17, Theorem 3.1] For each ∅¤ I � Œm�, there is a map

'KI
W jKI j !RZjI j�1KI

such that
RZiK DRZi�1K

[
I�Œm�; jI jDi

C jKI j;

where the attaching maps are jKI
ı'KI

.
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We say that the fat-wedge filtration of RZK is trivial if 'KI
is nullhomotopic for each

∅¤ I � Œm�. We remark that 'KI
is nullhomotopic if and only if jKI

ı'KI
is, because

RZjI j�1KI
is a retract of RZjI j�1K . The fat-wedge filtration is useful for desuspending

the BBCG decomposition because we have the following criterion.

Theorem 5.4 [17, Theorem 1.2] If the fat-wedge filtration of RZK is trivial , then
for any X , there is a homotopy equivalence

ZK.CX;X/'
_

∅¤I�Œm�

j†KI j ^ yX
I :

For∅¤I � Œm�, define a map ˛I WRZ
jI j�1
KI

!RZm�1K by ˛I .xi j i 2I /D .y1; : : : ; ym/
such that

yi D

�
xi if i 2 I;
C1 if i … I;

for .xi j i 2I /2RZjI j�1KI
. Note that ˛I is not the natural inclusion because the basepoint

of S0 D f�1;C1g is taken to be �1 as mentioned above. For ∅¤ J � I � Œm� and
jJ j � i � jI j, let � denote the composite of projections

RZiKI
!RZKJ

!RZKJ
=RZjJ j�1KJ

D j†KJ j:

By the construction of 'K , we have:

Lemma 5.5 For ∅¤ J ¨ I � Œm�, there is a commutative diagram

jKI j RZjI j�1KI
j†KJ j

jKj RZm�1K j†KJt.Œm��I/j

'KI �

˛I j†j j

'K �

where j WKJ !KJt.Œm��I/ is the inclusion.

The following two lemmas, proved in [17, Proof of Theorem 7.2] and [17, Lemma 10.1]
respectively, are quite useful in detecting the triviality of 'K .

Lemma 5.6 Let K be a simplicial complex obtained by filling all minimal nonfaces
into K. Then 'K factors through the inclusion jKj ! jKj.

Lemma 5.7 If 'KI
' � for each ∅¤ I ¨ Œm�, then the composite

jKj
'K
�!RZm�1K !RZKJ

�
�! j†KJ j

is nullhomotopic for each ∅¤ J ¨ Œm�.
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Finally, we estimate the connectivity of RZK .

Lemma 5.8 If K is k–neighborly , then RZK is k–connected.

Proof The proof can be done by the same calculation as [17, Proposition 5.3]. Here,
we give an alternative proof. By definition, ��.RZK/ is isomorphic to ��.RZKk

/ for
� � k, where Kk denotes the k–skeleton of K. Since K is k–neighborly, Kk D�m�1k

.
Since �m�1

k
is shifted, it follows from [14] that there is a homotopy equivalence

RZ�m�1
k
'

_
∅¤I�Œm�

j†.�m�1k /I j:

Since each j†.�m�1
k

/I j is k–connected, the proof is done.

6 Proof of Theorem 1.5

Throughout this section, letM be a tight-neighborly triangulation of a closed connected
F–orientable d–manifold with vertex set Œm�, unless otherwise is specified. We aim to
prove that the fat-wedge filtration of RZM is trivial. First, we compute the fundamental
group of jF.M/I j for ∅¤ I � Œm�.

Lemma 6.1 For each ∅¤ I � Œm�, �1.jF.M/I j/ is a free group.

Proof Since the fundamental group of a suspension is a free group, we prove jF.M/I j

is a suspension by induction on I . For jI j D 1, jF.M/I j is obviously a suspension.
Suppose that jF.M/I�vj is a suspension for v 2 I . Note that

(3) F.M/I D F.M/I�v [ .lkF.M/I .v/� v/

whereF.M/I�v\.lkF.M/I .v/�v/D lkF.M/I .v/. Since lkF.M/I .v/D lkF.M/.v/I�v ,
it follows from Proposition 4.3 that there are inclusions

lkF.M/I .v/! .�.V.v; 1// ı � � � ı�.V.v; nv///I�v! F.M/I�v:

Since M is neighborly by Theorem 2.3, so is MI�v , implying F.M/I�v is connected.
On the other hand, each component of .�.V.v; 1// ı � � � ı�.V.v; nv///I�v is con-
tractible. Then the inclusion j.�.V.v; 1// ı � � � ı�.V.v; nv///I�vj ! jF.M/I�vj is
nullhomotopic, and so the inclusion j lkF.M/I .v/j! jF.M/I�vj is nullhomotopic too.
Thus by (3), we get a homotopy equivalence

jF.M/I j ' jF.M/I�vj _ j† lkF.M/I .v/j:

Since jF.M/I�vj is a suspension by the induction hypothesis, jF.M/I j turns out to
be a suspension, completing the proof.

Algebraic & Geometric Topology, Volume 23 (2023)



2206 Kouyemon Iriye and Daisuke Kishimoto

Let ∅¤ I � Œm�. By Lemma 5.6, the map 'MI
decomposes as

(4) jMI j ! jF.M/I j !RZjI j�1MI
:

By Lemma 6.1, there is a map fI W BI ! jF.M/I j, where BI is a wedge of circles,
such that fI is an isomorphism in �1. Let yF .M/I denote the cofiber of fI , where
yF .M/Œm� coincides with yF .M/ in Section 4. On the other hand, sinceM is neighborly

by Lemma 2.1, so is MJ for any ∅¤ J � Œm�. Then by (2) and Lemma 5.8, we can
see that RZjI j�1MI

is simply connected. In particular, there is a commutative diagram

(5)

jF.M/I j //

��

yF .M/I

��

RZjI j�1MI
RZjI j�1MI

Then by combining (4) and (5), we get:

Lemma 6.2 For each ∅ ¤ I � Œm�, the map 'MI
factors through the inclusion

jMI j !
yF .M/I .

Proposition 6.3 For each ∅¤ I ¨ Œm�, the map 'MI
is nullhomotopic.

Proof As is computed in the proof of Proposition 4.5, zH�.F.M/I IZ/ D 0 unless
� D 1; d . Thus as well as yF .M/, we can see that yF .M/I is .d�1/–connected. Since
I ¤ Œm�, jMI j is homotopy equivalent to a CW complex of dimension � d � 1. Then
we obtain that the inclusion jMI j !

yF .M/I is nullhomotopic. Thus by Lemma 6.2,
the proof is complete.

It remains to show that 'M is nullhomotopic. By Lemma 5.5, there is a commutative
diagram W

I2S.M/ jMI j
//

W
I2S.M/ 'MI

��

jM j

'M

��W
I2S.M/RZdC1MI

W
I2S.M/ ˛I

// RZm�1M

Then since F.M/I D @�.I / for I 2 S.M/ by Proposition 4.3, we get a commutative
diagram

(6)

W
I2S.M/ j@�.I /j

W
I2S.M/ gI

//

��

jF.M/j

��W
I2S.M/RZdC1MI

W
I2S.M/ ˛I

// RZm�1M

Algebraic & Geometric Topology, Volume 23 (2023)



Golod and tight 3–manifolds 2207

Juxtaposing the commutative diagrams (5) and (6), we get a commutative diagramW
I2S.M/ j@�.I /j

g
//

��

yF .M/

��W
I2S.M/RZdC1MI

W
I2S.M/ ˛I

// RZm�1M

and by Corollary 4.7 and Lemma 6.2, we obtain:

Lemma 6.4 The map 'M W jM j !RZm�1M is homotopic to the composite

jM j ! yF .M/
g�1

��!

_
I2S.M/

j@�.I /j !
_

I2S.M/

RZdC1MI

W
I2S.M/ ˛I
�������!RZm�1M :

We will investigate the composition of maps in Lemma 6.4 by identifying a homotopy
set with a homology.

Lemma 6.5 Let W be a finite wedge of Sd . Then there is an isomorphism of sets

ŒjM j; W �ŠHd .M IZ/˝Hd .W IZ/

which is natural with respect to maps among finite wedges of Sd .

Proof Since dimM D d , the statement follows from the Hopf degree theorem.

Lemma 6.6 For each v 2 I 2 S.M/, the natural map

Hd .M IZ/˝Hd�1.MI�vIZ/!Hd .M IZ/˝Hd�1.MŒm��vIZ/

is injective.

Proof By Lemma 4.2, jMI�vj is contractible or Sd�1. In particular,Hd�1.MI�vIZ/

is a free abelian group, and so there is a natural isomorphism

(7) Hd�1.MI�vIF/ŠHd�1.MI�vIZ/˝F :

By definition, jMŒm��vj is jM j removed the open star of v, which is homotopy equiva-
lent to jM j � v by [25, Lemma 70.1]. Then by Theorem 2.3, jMŒm��vj is homotopy
equivalent to a wedge of finitely many, possibly zero, copies of S1 and Sd�1. Then
H�.MŒm��vIZ/ is a free abelian group, and so there is a natural isomorphism

(8) Hd�1.MŒm��vIF/ŠHd�1.MŒm��vIZ/˝F :
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Since M is F–tight by Theorem 2.3, the natural map

Hd�1.MI�vIF/!Hd�1.MŒm��vIF/

is injective. Then by (7) and (8), the natural map

Hd�1.MI�vIZ/˝F !Hd�1.MŒm��vIZ/˝F

is injective too. Since both Hd�1.MI�vIZ/ and Hd�1.MŒm��vIZ/ are free abelian
groups, the case that M is orientable is proved because Hd .M IZ/ Š Z. If M is
nonorientable, then Hd .M IZ/Š F2 and the base field F is of characteristic 2, where
F2 is the field of two elements. Thus the case that M is not orientable is proved too.

Proposition 6.7 The map 'M W jM j !RZm�1M is nullhomotopic.

Proof Note that m � d C 2. Let ∅ ¤ J � I 2 S.M/. By Lemma 4.2, jMJ j is
contractible for jJ j � d , and jMJ j is contractible or Sd�1 for jJ j D d C 1. Then by
Proposition 6.3, there is a homotopy equivalence

(9) RZdC1MI
'

_
v2I

j†MI�vj;

where j†MI�vj is contractible or Sd as mentioned above. Let

AD
_

I2S.M/

_
v2I

j†MI�vj and B D
_

I2S.M/

_
v2I

j†MŒm��vj;

where A '
W
I2S.M/RZdC1MI

by (9). Let f W jM j ! A denote the composition of
the first three maps in Lemma 6.4. Then it suffices to show f is nullhomotopic. By
Lemma 6.5, f is identified with some element � of Hd .M IZ/˝Hd .AIZ/, so f is
nullhomotopic if and only if � D 0.

As in the proof of Lemma 6.6, j†MŒm��vj is a wedge of finitely many copies of S2 and
Sd for each vertex v of M . Let Cv denote the Sd–wedge part of j†MŒm��vj. Then
there is a projection qv W B! Cv. By Lemmas 5.5, 5.7 and 6.4, the composite

(10) jM j
f
�! A! j†MI�vj ! j†MŒm��vj

is nullhomotopic for each v 2 I 2 S.M/. Then by Lemma 6.5, � is mapped to 0 by

1˝ .qv ı j /� WH
d .M IZ/˝Hd .AIZ/!Hd .M IZ/˝Hd .CvIZ/

for each v 2 I 2 S.M/, where j W A! B denotes the inclusion. Since the mapM
v2I2S.M/

.qv/� WHd .BIZ/!
M

v2I2S.M/

Hd .CvIZ/
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is an isomorphism, we get .1˝ j�/.�/ D 0. Thus we obtain � D 0 by Lemma 6.6,
completing the proof.

Now we are ready to prove Theorem 1.5.

Proof of Theorem 1.5 The implications .1/D) .2/ D).3/ are proved by Theorems 2.3
and 3.4. The implication .3/D) .4/ is proved by Propositions 6.3 and 6.7. If (4) holds,
then by Theorem 5.4, ZM is a suspension. So by the fact that K is F–Golod whenever
ZK is a suspension, as mentioned in Section 1, we obtain the implication .4/D) .1/,
completing the proof.

7 A further problem

So far, we have been studying a relationship between Golodness and tightness through
tight-neighborliness which perfectly works in dimension 3. However, in dimensions�4,
tight-neighborliness does not work well because it is not equivalent to tightness as
mentioned in Section 1. So we pose:

Problem 7.1 What condition on closed connected d–manifold triangulations with
d � 4 guarantees F–Golodness and F–tightness being equivalent?

One approach is to put a topological condition on manifolds. For example, the condition
on the Betti number is stated in Section 1. We also have the following theorem, in
which manifold triangulations are not tight-neighborly.

Theorem 7.2 Let M be a triangulation of a closed .d�1/–connected 2d–manifold
for d � 2. Then the following are equivalent :

(1) M is F–Golod for any field F .

(2) M is F–tight for any field F .

(3) M is d–neighborly.

(4) the fat-wedge filtration of RZM is trivial.

Proof The implication .1/ D) .2/ holds by Theorem 3.4 because M is orientable.
Suppose M has a minimal nonface I with jI j � d C 1. Then MI D @�.I /, implying
HjI j�2.MI IF/¤ 0. Since M is F–tight, the natural map

HjI j�2.MI IF/!HjI j�2.M IF/
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is injective, and since M is .d�1/–connected, zH�.M IF/D 0 for �< d . Then we get
a contradiction, so we obtain the implication .2/D) .3/. The implication .3/D) .4/

follows from [17, Theorem 1.6]. The implication .4/D) .1/ holds by the fact that K
is F–Golod over any field F whenever ZK is a suspension, as mentioned in Section 1.
Therefore, the proof is complete.

In closing the paper, we consider a relation between weak F–Golodness and F–tightness.
As proved in Theorem 3.4, weak F–Golodness implies F–tightness for a closed con-
nected F–orientable manifold triangulations. So one might ask whether or not this
implication holds for simplicial complexes which are not manifolds. The answer is
no. For example, if K is the join of a vertex and the boundary of a simplex, then it
is F–Golod for any field F as the fat-wedge filtration of RZK is trivial but it is not
F–tight as in the proof of Lemma 4.2. However, the opposite implication always holds
as follows, which shows that Theorem 3.4 is thought of as a “wrong way” implication.

Proposition 7.3 Let K be a simplicial complex with vertex set Œm�. If K is F–tight ,
then it is weakly F–Golod.

Proof Take any disjoint subsets ∅¤ I; J � Œm�. Then there is a map

�I;J WKItJ !KI �KJ

as in Section 3. By Lemma 3.2, K is weakly F–Golod if and only if the map �I;J is
trivial in homology with coefficients in F . Now we suppose K is F–tight. Then KItJ
is F–tight too, and so we only need to consider the case I tJ D Œm�. By the Künneth
theorem, the map

.jI � jJ /� W zH�.KI �KJ IF/! zH�.K �KIF/

is injective, where jI W KI ! K denotes the inclusion. Then it suffices to show the
composite .jI � jJ / ı �I;J is nullhomotopic.

Now we may assume jKj �Rm by identifying a simplex fi1; : : : ; ikg 2K with

ft1ei1 C � � �C tkeik j t1C � � �C tk D 1; t1; : : : ; tk � 0g;

where e1; : : : ; em is the standard basis of Rm. We may assume jK �Kj �R2m in the
same way. Consider a homotopy hit WR

2m � Œ0; 1�!R2m defined by

hit .x1; : : : ; xm; y1; : : : ; ym/

D .x1; : : : ; .1� t /xi C tyi ; : : : ; xm; y1; : : : ; txi C .1� t /yi ; : : : ; ym/
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for .x1; : : : ; xm; y1; : : : ; ym/ 2R2m. Then hit restricts to a homotopy

hit W jK �Kj � Œ0; 1�! jK �Kj

such that for i 2 I ,

.jI �jJ /ı �I;J D h
i
0ı.jI �jJ /ı �I;J ' h

i
1ı.jI �jJ /ı �I;J D .jI�i �jJ[i /ı �I�i;J[i :

Thus for v 2 Œm�, .jI � jJ / ı �I;J ' .jv � jŒm��v/ ı �v;Œm��v. Since jv �KŒm��vj is
contractible, we get .jI � jJ / ı �I;J ' �, completing the proof.
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A remark on the finiteness of purely cosmetic surgeries

TETSUYA ITO

By estimating the knot Floer thickness in terms of the genus and the braid index,
we show that a knot K in S3 does not admit purely cosmetic surgery whenever
g.K/ � 3

2
b.K/, where g.K/ and b.K/ denote the genus and the braid index,

respectively. In particular, this establishes the finiteness of purely cosmetic surgeries;
for a fixed b, all but finitely many knots with braid index b satisfies the cosmetic
surgery conjecture.

57K10; 57K30

For a knot K in the 3–sphere S3 and r 2Q, let S3
K
.r/ be the r–surgery on K. Two

Dehn surgeries S3
K
.r/ and S3

K
.r 0/ on the same knot K are purely cosmetic if r ¤ r 0

but S3
K
.r/Š S3

K
.r 0/. Here we write M ŠN if M and N are orientation-preservingly

homeomorphic.

Conjecture 1 (cosmetic surgery conjecture) A nontrivial knot does not admit purely
cosmetic surgeries.

One must be careful to take account of orientations; there are several examples of
chirally cosmetic surgery, a pair of Dehn surgeries on the same knot, that yields
orientation-reversingly homeomorphic 3–manifolds. For example, for the trefoil knot K,
S3

K
.9/ Š �S3

K

�
9
2

�
; see Mathieu [7]. Here �M is the 3–manifold M with opposite

orientation.

For a knot K in S3, let g.K/ be the genus and b.K/ be the braid index of K. The aim
of this note is to point out the following finiteness result on purely cosmetic surgeries,
which gives strong supporting evidence for Conjecture 1:

Theorem 1 If g.K/� 3
2
b.K/, then K does not admit a purely cosmetic surgery. In

particular , for given b > 0, there are only finitely many knots with braid index b that
admit purely cosmetic surgeries.

© 2023 MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution
License 4.0 (CC BY). Open Access made possible by subscribing institutions via Subscribe to Open.
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Here, the latter finiteness assertion follows from Birman and Menasco’s finiteness
theorem [2]: for given g; b > 0 there are only finitely many knots with genus g and
braid index b.

Our proof of Theorem 1 is based on a quantitative refinement of Birman and Menasco’s
finiteness theorem [5] and the following quite strong constraint for purely cosmetic
surgeries:

Theorem 2 (Hanselman [4]) Let K be a nontrivial knot and th.K/ be the Heegaard
Floer thickness of K. If S3

K
.r/Š S3

K
.r 0/ for r ¤ r 0, then either

� fr; r 0g D f2;�2g and g.K/D 2, or
� fr; r 0g D f1=q;�1=qg for some 0< q � .th.K/C 2g.K//=2g.K/.g.K/� 1/.

Here, th.K/ is the thickness of the knot Floer homology.

Thus, if g.K/¤ 2 and th.K/ is small compared with g.K/, then K does not admit
purely cosmetic surgery. This motivates us to study a relation between g.K/ and th.K/,
in particular the (upper) bound of th.K/=g.K/. Here, we give an upper bound of the
thickness th.K/ in terms of g.K/ and b.K/.

Although our argument applies in the cases b.K/D 2; 3, we restrict our attention to
the case b.K/� 4.

Lemma 3 If b.K/� 4,

th.K/� 1
2
.2b.K/� 5/.2g.K/� 1C b.K//:

Proof For a knot diagram D, the Turaev genus gT .D/ is defined by

gT .D/D
1
2
.c.D/C 2� jsAj � jsBj/;

where c.D/ is the crossing number of D and jsAj and jsBj are the number of circles
obtained by A– and B–smoothing, respectively, of crossings of D given by

A
 �

B
�! :

The Turaev genus gT .K/ of a knot K is the minimum of gT .D/ among diagrams D

of K. In [6], Lowrance showed the inequality

th.K/� gT .K/:

For any diagram D, jsAj; jsBj � 1, so gT .D/ �
1
2
c.D/. Hence, we have a canonical

upper bound of the Turaev genus,

(1) gT .K/�
1
2
c.K/:
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Finally, by the quantitative Birman–Menasco finiteness theorem1 [5], if b.K/� 4, we
get

c.K/� .2b.K/� 5/.2g.K/� 1C b.K//:

These three inequalities prove the desired inequality.

Proof of Theorem 1 In the following we assume that b.K/� 4 since Varvarezos [8]
proved the cosmetic surgery conjecture for the case b.K/D 3. Also, we assume that
g.K/¤ 2.

Assume to the contrary that K admits a purely cosmetic surgery. By Theorem 2, such
a knot must satisfy

1�
th.K/C 2g.K/

2g.K/.g.K/� 1/
() 2g.K/.g.K/� 2/� th.K/;

so, by Lemma 3, we conclude that, when a knot K admits a purely cosmetic surgery, it
satisfies

2g.K/.g.K/� 2/� 1
2
.2b.K/� 5/.2g.K/� 1C b.K//:

That is, we get a constraint for a knot K to admit a purely cosmetic surgery:

(2) 4g.K/2C .2� 4b.K//g.K/C .2b.K/� 5/.1� b.K//� 0:

Now the assertion of the theorem follows from an easy computation that, if g.K/�
3
2
b.K/, then (2) is never satisfied.

As the proof indicates, our sufficient condition g.K/� 3
2
b.K/ can be improved if one

can improve on the estimate of th.K/ in Lemma 3.

Remark 4 Instead of using an obvious bound (1) of the Turaev genus, by using a
different upper bound [3, Corollary 7.3]

gT .K/� c.K/� span VK .t/;

where VK .t/ denotes the Jones polynomial, we get a different constraint: if K admits
a purely cosmetic surgery, then

(3) 2g.K/2C .6� 4b.K//g.K/C .2b.K/� 5/.1� b.K//C span VK .t/� 0:

1When b.K/D 2; 3, a similar inequality holds but the coefficient 2b.K/� 5 is 1 or 5
3

, respectively.
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Here, we give a mild improvement of Lemma 3. For a diagram D of a knot K, the
dealternation number dalt.D/ of D is the minimum number of crossing change needed
to make D into an alternating diagram. The dealternation number of a knot K is the
minimum of dalt.D/ among diagrams D of K. It is known that gT .K/� dalt.K/ [1],
so evaluating the dealternation number also gives an upper bound on the thickness.

We prove the following estimate of the dealternation number (and hence the Turaev
genus and the thickness) in terms of the genus and braid index, which is interesting in
its own right:

Theorem 5 If b.K/� 4, then

th.K/� gT .K/� dalt.K/�
�

b.K/� 3C
1

b.K/

�
.2g.K/� 1C b.K//:

Proof Let n D b.K/ and let Bn be the braid group of n strands. We denote the
standard generators of Bn by �1; : : : ; �n�1. We say that a braid is alternating if it
is a product of f�1; �

�1
2
; �3; �

�1
4
; : : : ; �2i�1; �

�1
2i
; : : :g. Obviously, the closure of an

alternating braid is an alternating diagram.

For 1� i < j � n, let ai;j be the band generator given by

ai;j D .�i�iC1 � � � �j�2/�j�1.�i�iC1 � � � �j�2/
�1:

A band generator ai;j can be seen as the boundary of a twisted band connecting the
i th and j th strands of the braid. Thus, when K is represented as the closure of a braid
ˇ 2Bn, by giving ˇ as a product of band generators, we get a Seifert surface Fˇ of K,
called the Bennequin surface associated to the braid (word) ˇ.

First we treat the case that K bounds a minimum genus Bennequin surface of minimum
braid index. That is, K is represented by a closed n–braid ˇ such that its Bennequin
surface Fˇ is a minimum genus Seifert surface of K.

Thanks to the relation

�j�1�
˙1
j ��1

j�1 D �
�1
j �˙1

j�1�j ;

by taking suitable word representatives of the a˙1
i;j , each band generator ai;j except a1;n

can be made so that it is alternating by changing at most n�3 crossings. The exceptional
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case a˙1
1;n

can be made so that it is alternating by changing n� 2 crossings. Thus,

dalt.K/�
X

1�i<j�n
.i;j/¤.1;n/

.n� 3/ri;j C .n� 2/r1;n D

X
1�i<j�n

.n� 3/ri;j C r1;n;

where ri;j is the number of a˙1
i;j in the braid ˇ.

On the other hand, since we assume that the Bennequin surface Fˇ associated with the
n–braid ˇ has genus g.K/, X

1�i<j�n

ri;j D 2g.K/� 1C n:

Let ıD�1�2�3 � � � �n�1. Since ıai;jı
�1DaiC1;jC1 (here we regard indices modulo n;

for example, ıa1;nı
�1 D a2;nC1 is understood as a1;2), by taking conjugates of ı if

necessary, we may assume that

r1;n �
1

n
.r1;2C r2;3C r3;4C � � �C rn�1;nC r1;n/�

1

n
.2g.K/� 1C n/:

Thus, we conclude

dalt.K/�
X

1�i<j�n

.n� 3/ri;j C r1;n �

�
n� 3C

1

n

�
.2g.K/� 1C n/;

as desired.

Next, we assume that K does not bound a minimum genus Bennequin surface of the
minimum braid index. To treat this case we quickly review a main strategy of the proof
of the quantitative Birman–Menasco theorem [5], namely how to relate the genus, braid
index and crossing number (although we do not need to use or know the details).

We put a minimum genus Seifert surface F of K so that it admits a braid foliation. Let
Raa and Rab be the number of aa tiles and ab tiles of the braid foliation. What we
showed in [5] is two inequalities:

(4) c.K/� .2n� 5/RaaC .n� 3/Rab

and

(5) 2RaaCRab � 2.2g.K/� 1C b.K//:

More precisely, the inequality (4) is obtained by observing that the braid foliation gives
rise to an explicit closed n–braid representative ˇ such that one aa tile provides a braid
which is a band generator,

a˙1
i;j ; .i; j /¤ .1; n/;

Algebraic & Geometric Topology, Volume 23 (2023)
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and that one ab tile provides a braid of the form


˙1
i;j ; ji � j j � n� 3:

Here, 
i;j denotes the braid


i;j D

�
�i�iC1 � � � �j�1 if i < j ;

�i�i�1 � � � �j�1 if i > j:

(when i D j, we regard 
i;j as the trivial braid).

If n is odd, then each braid 
i;j can be made into an alternating braid by at most
1
2
.n� 3/ crossing changes. Each band generator ai;j coming from an aa tile can be

made into an alternating braid by at most n� 3 changes since a1;n does not appear.
Therefore,

dalt.K/� .n� 3/RaaC
1
2
.n� 3/Rab D

1
2
.n� 3/.2RaaCRab/

� .n� 3/.2g.K/� 1C n/:

If n is even, let M be the number of the 
i;j produced by ab tiles such that 
i;j is
made into an alternating braid by 1

2
.n� 2/ crossing changes. By taking the mirror

image of ˇ if necessary, we may assume that M � 1
2
Rab . Since other braids 
i;j from

ab tiles can be made into an alternating braid by at most 1
2
.n� 4/ crossing changes,

dalt.K/� .n� 3/RaaC
1
2
.n� 4/.Rab �M /C 1

2
.n� 2/M

� .n� 3/RaaC
1
2
.n� 3/Rab D

1
2
.n� 3/.2RaaCRab/

� .n� 3/.2g.K/� 1C n/:

Using this refinement we can improve a sufficient condition in Theorem 1. For example,
for the case b.K/D 4, a direct computation shows that:

Corollary 6 A knot K with braid index 4 does not admit purely cosmetic surgery if
g.K/¤ 2; 3.
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Geodesic complexity of homogeneous Riemannian manifolds
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We study the geodesic motion planning problem for complete Riemannian manifolds
and investigate their geodesic complexity, an integer-valued isometry invariant intro-
duced by D Recio-Mitter. Using methods from Riemannian geometry, we establish
new lower and upper bounds on geodesic complexity and compute its value for certain
classes of examples with a focus on homogeneous Riemannian manifolds. To achieve
this, we study properties of stratifications of cut loci and use results on their structures
for certain homogeneous manifolds obtained by T Sakai and others.
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1 Introduction

A topological abstraction of the motion planning problem in robotics was introduced
by M Farber [12]. The topological complexity of a path-connected space X is denoted
by TC.X/ and intuitively given by the minimal number of open sets needed to cover
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2222 Stephan Mescher and Maximilian Stegemeyer

X �X such that, on each of the open sets, there exists a continuous motion planner.
Here, a continuous motion planner is a map associating with each pair of points a
continuous path from the first point to the second point which varies continuously with
the endpoints. Such maps are interpreted as algorithms telling an autonomous robot in
the workspace X how it is supposed to move from its position to a desired endpoint.
Unfortunately, the topological complexity of a space does not tell us anything about the
feasibility or efficiency of the paths taken by motion planners having TC.X/ domains
of continuity; see the discussion of Z Błaszczyk and J Carrasquel-Vera [3, Introduction].
For example, the explicitly constructed motion planners for configuration spaces of
Euclidean spaces by H Mas-Ku and E Torres-Giese [29] and Farber [16, Section 8]
require few domains of continuity, but have paths among their values which are far
from being length-minimizing. Considering a general metric space, paths taken by
the motion planners might become arbitrarily long and thus be unsuited for practical
motion planning problems.

Recently, D Recio-Mitter [34] has introduced the notion of geodesic complexity of metric
spaces. There, the paths taken by motion planners are additionally required to be length-
minimizing between their endpoints. Intuitively, this is seen as the complexity of efficient
motion planning in metric spaces. Recio-Mitter’s seminal article has already triggered
research in geodesic complexity, especially computations of geodesic complexity for
interesting classes of examples; see Davis, Harrison and Recio-Mitter [8; 9; 10].

In this article we study the geodesic complexity of complete Riemannian manifolds
and derive new lower and upper bounds for their geodesic complexities by methods
from Riemannian geometry.

Before continuing, we recall the definition of geodesic complexity of geodesic spaces
from [34, Definition 1.7] for the special case of a complete Riemannian manifold. Let
.M; g/ be a complete connected Riemannian manifold and let PM WD C 0.Œ0; 1�;M/

be equipped with the compact–open topology. We recall that a geodesic segment

 W Œ0; 1�!M is called minimal if it minimizes the length compared to all rectifiable
paths from 
.0/ to 
.1/. For simplicity, we shall call a minimal geodesic segment
simply a minimal geodesic. Consider

GM WD f
 2 PM j 
 is a minimal geodesic in .M; g/g

as a subspace of PM and let

� WGM !M �M; �.
/D .
.0/; 
.1//:
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By standard results from Riemannian geometry, � is surjective since .M; g/ is complete;
see Petersen [33, Corollary 5.8.5]. The geodesic complexity of .M; g/ is given by
GC.M; g/ D r , where r 2 N is the smallest integer with the following property:
there are r pairwise disjoint locally compact subsets E1; : : : ; Er � M �M withSr
iD1Ei DM �M such that, for each i 2 f1; 2; : : : ; rg, there exists a continuous geo-

desic motion planner si WEi!GM, ie a continuous local section of the map � . If there
is no such r , we let GC.M; g/DC1. Since it is not at all evident how to compute this
number explicitly, one is interested in establishing lower and upper bounds for GC.M; g/.
This approach is also common in studies of Lusternik–Schnirelmann category or, more
generally, sectional categories of fibrations. Given a fibration p WE! B, the sectional
category of p is given by secat.p/Dk, where k 2N is the minimal number with the fol-
lowing property: there exists an open cover of B consisting of k open subsets such that
p admits a continuous local section over each of these sets. This notion was introduced
under the name genus of a fibration by A Schwarz [39]. The topological complexity
of a topological space X is for example given as the sectional category of the fibration

PX !X �X; 
 7! .
.0/; 
.1//:

Schwarz worked out several ways of obtaining lower and upper bounds for sectional
categories which have direct consequences for topological complexity; see eg Farber
[14; 15, Chapter 4] for an overview.

However, the restriction � W GM ! M �M of this fibration to minimal geodesics
is in general not a fibration. For example, if M D Sn is an n–sphere with n 2 N,
equipped with a round metric, then ��1.f.p; q/g/ consists of one element if q ¤�p,
while it is homeomorphic to Sn�1 if q D �p. In particular, not all preimages are
homotopy-equivalent, so � is not a fibration in this case. Therefore, Schwarz’s results
are not applicable to the setting of geodesic complexity. Instead we will derive several
lower and upper bounds for the geodesic complexity of Riemannian manifolds using
methods from Riemannian geometry. By [34, Remark 1.9], every complete Riemannian
manifold satisfies TC.M/� GC.M; g/. This formalizes the observation that requiring
the paths a robot takes to be as short as possible can increase the complexity of the
problem. For example, as shown in [34, Theorem 1.11], for each n� 3 there exists a
Riemannian metric gn on the sphere Sn for which GC.Sn; gn/�TC.Sn/� n� 3. In
practical applications, a person designing robotic systems that are supposed to move
autonomously might not mind a higher complexity. In fact, such a person might accept
more instabilities in the motions of robots as a downside if the upside is that the robots
move fast and efficiently.

Algebraic & Geometric Topology, Volume 23 (2023)



2224 Stephan Mescher and Maximilian Stegemeyer

An important observation is that the difficulties of geodesic motion planning lie in
the cut loci of .M; g/, as was pointed out by Recio-Mitter [34, page 144] in the more
general framework of metric spaces. Let Cutp.M/ denote the cut locus of p 2M in
.M; g/. We refer to Lee [27, page 308], Petersen [33, page 219] or Definition 2.5 below
for its definition. If A�M �M satisfies q …Cutp.M/ for each .p; q/2A, then there is
a unique minimal geodesic from p to q for each .p; q/2A. The corresponding geodesic
motion planner A!GM is continuous; see also the observations of Błaszczyk and
Carrasquel-Vera [3]. Thus, to compute the geodesic complexity of a manifold, we need
to understand its cut loci. While the cut locus of a point in a Riemannian manifold is
always closed and of measure zero — see [27, Theorem 10.34(a)] — little else is known
about cut loci in general.

In [34, Corollary 3.14], Recio-Mitter establishes a lower bound on the geodesic com-
plexity of metric spaces given in terms of the structure of their cut loci. He considers
cut loci which possess stratifications admitting finite coverings. For this purpose, Recio-
Mitter introduces the notion of a levelwise stratified covering in [34, Definition 3.8].
He then defines a notion of inconsistency, which is roughly a condition on the relations
between the coverings of the different strata of cut loci by minimal geodesics. It
formalizes certain incompatibility properties of families of geodesics connecting a
point with points in its cut locus.

Focusing on complete Riemannian manifolds, we will use Riemannian exponential
maps to establish a similar inconsistency condition on cut loci, which is more concise
than the one from [34]. Given a complete Riemannian manifold M and a point p 2M
for which Cutp.M/ admits a stratification, we study the preimages of the different
strata of Cutp.M/ under the Riemannian exponential map expp W TpM !M. Assume
that some x 2M lies in the closure of multiple connected components of the same
stratum of Cutp.M/. We then study the closures of the preimages of all of these
components under expp as subsets of TpM. The inconsistency condition demands that
these closures have no point in common that is mapped to x by expp . We will see that
this condition excludes the existence of an open neighborhood U of x with a single
continuous geodesic motion planner which connects p to all points of Cutp.M/ that
lie in U.

Note that our definition is only applicable to Riemannian manifolds and not to arbitrary
geodesic spaces. One of its benefits in the Riemannian setting is the fact that we can
deduce an easier condition than the one introduced by Recio-Mitter. More precisely,
we do not require anymore that any point in a cut locus of another point is connected
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to that point by only finitely many minimal geodesics. Moreover, our inconsistency
condition is explicitly stated as an intersection condition on certain subsets of a tangent
cut locus, instead of using the notion of levelwise stratified coverings as in [34].

Our main result on inconsistent stratifications is the following theorem. This result is
similar to [34, Corollary 3.14] and our proof is inspired by Recio-Mitter’s proof as
well.

Theorem 4.8 Let .M; g/ be a closed Riemannian manifold. Assume that there exists
a point p 2M for which Cutp.M/ admits an inconsistent stratification of depth N 2N.
Then

GC.M/�N C 1:

There is more to say about cut loci of homogeneous Riemannian manifolds, ie Rie-
mannian manifolds .M; g/ whose isometry groups act transitively on M. An isometry
� WM !M maps the cut locus of p 2M onto that of �.p/. Hence, the cut locus of a
point is identified with that of another point by an isometry. This translation property
of the cut loci allows us to estimate the geodesic complexity of M from above, once
we understand how we can decompose one single cut locus into domains of continuous
geodesic motion planners. The following result provides an upper bound for geodesic
complexity in terms of a sectional category and the subspace geodesic complexities
of considerably smaller subsets of M �M. Here, the subspace geodesic complexity
of A�M �M is defined in terms of covers of A by domains of continuous geodesic
motion planners.

Corollary 5.8 Let .M; g/ be a homogeneous Riemannian manifold with isome-
try group Isom.M; g/. Let p 2 M and assume that Cutp.M/ has a stratification
.S1; : : : ; Sk/ of depth k. Then

GC.M/� secat.evp W Isom.M; g/!M/ �

kX
iD1

max
Zi2�0.Si /

GCp.Zi /C 1;

where evp.�/ D �.p/ for all � 2 Isom.M; g/ and where GCp.Zi / is the subspace
geodesic complexity of fpg �Zi �M �M.

In the case of compact, simply connected, irreducible symmetric spaces, we are able to
further estimate this upper bound from above in terms of certain sectional categories.
This means that for such symmetric spaces we obtain an upper bound on GC.M/ which
does not involve any geodesic complexities.
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Note that this result produces the first upper bound for geodesic complexity in terms of
categorical invariants. Indeed, the only previously known upper bounds were derived by
Recio-Mitter [34] either from explicit constructions of geodesic motion planners or from
the existence of particularly simple coverings of cut loci. We pick up Recio-Mitter’s
so-called trivially covered stratifications in this article in the setting of Riemannian
manifolds as well.

In addition to establishing new lower and upper bounds for geodesic complexity,
we compute the geodesic complexities of some Riemannian manifolds whose cut
loci are well understood. We will show that every three-dimensional Berger sphere
.S3; g˛/ satisfies GC.S3; g˛/ D 2 and that GC.T 2; gf / D 3 for every flat metric
gf on the two-dimensional torus. This extends the two-dimensional case of Recio-
Mitter’s computation of the geodesic complexity of the standard flat n–torus from [34,
Theorem 4.4].

The article is structured as follows: In Section 2 we introduce some additional termi-
nology and recall elementary facts about geodesic complexity and cut loci. Section 3
contains some basic nonexistence results on continuous geodesic motion planners.
These results illustrate the difficulties for motion planning that cut loci can create.
In Section 4 we establish lower bounds on geodesic complexity by two different
approaches. On the one hand, this is done in terms of principal bundles over the
manifold and the topological complexities of their total spaces. On the other hand, we
study manifolds with stratified cut loci whose stratifications satisfy the above-mentioned
inconsistency property. We focus on homogeneous Riemannian manifolds in Section 5.
More precisely, we show that their geodesic complexities can be estimated from above
in terms of the subspace complexities of a single cut locus. In Section 6 we consider
Riemannian manifolds whose cut loci admit trivially covered stratifications. For such
stratifications the relations between a cut locus and its corresponding tangent cut
locus are particularly simple. Section 7 deals with examples of geodesic complexities.
Combining results from the previous sections with new observations, we reobtain
Recio-Mitter’s computation of geodesic complexity of the standard flat n–torus and
determine the geodesic complexity of arbitrary flat 2–tori. As another class of examples,
we explicitly compute the geodesic complexity of three-dimensional Berger spheres.
In the final Section 8 we consider consequences of the previous results for compact
simply connected symmetric spaces. In both situations, the considered cut loci have
been studied by T Sakai. Using the estimates from Section 5, we derive an upper
bound for geodesic complexity that is given in terms of the Lie groups from which the
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symmetric space is built. We further make explicit computations for two examples of
symmetric spaces.
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Throughout this article we assume all manifolds to be smooth and connected and all
Riemannian metrics to be smooth.

2 Basic notions and definitions

We begin by introducing subspace versions of geodesic complexity for Riemannian
manifolds. Afterwards, we recall some basic computations from [34] and several facts
about cut loci in Riemannian manifolds.

Definition 2.1 Let .M; g/ be a complete Riemannian manifold and � WGM!M �M,
�.
/D .
.0/; 
.1//. LetGM be equipped with the subspace topology ofC 0.Œ0; 1�;M/

with the compact–open topology.

(a) Let X �M �M. A geodesic motion planner on X is a section s W X ! GM

of � .

(b) Given A�M �M we let GC.M;g/.A/ be the minimum r 2N for which there
are r pairwise disjoint locally compact subsets E1; : : : ; Er � M �M such
that A �

Sr
iD1Ei and, for each i 2 f1; 2; : : : ; rg, there exists a continuous

geodesic motion planner si W Ei ! GM. If no such r exists, then we put
GC.M;g/.A/ WD C1. We call GC.M;g/.A/ the subspace geodesic complexity
of A.

We recall that the map � is surjective for complete Riemannian manifolds. This is a
consequence of the Hopf–Rinow theorem; see [33, Corollary 5.8.5].

Remarks 2.2 (1) If it is obvious which Riemannian metric we are referring to, we
occasionally suppress it from the notation and write

GC.M/ WD GC.M; g/ and GCM .A/ WD GC.M;g/.A/:

Note that, in particular, GC.M/D GCM .M �M/.
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(2) Given p 2M and B �M, we further put

GCp.B/ WD GC.M;g/.fpg �B/:

(3) Our definition differs from Recio-Mitter’s original definition by 1 in the sense
that for us GC.fptg/D 1, while it would be 0 in the sense of [34, Definition 1.7].

Examples 2.3 (1) As proven in [34, Proposition 4.1], if gr is a round metric on the
sphere Sn with n 2N, then

GC.Sn; gr/D TC.Sn/D

�
2 if n is odd,
3 if n is even.

(2) Let gf be the standard flat metric on T 2 and let gemb denote the metric induced
by the standard embedding T 2 ,!R3 and the Euclidean metric on R3. By [34,
Theorems 4.4 and 5.1],

GC.T 2; gf /D 3; GC.T 2; gemb/D 4:

(3) It was further shown in [34, Theorem 1.11] that, for each k 2 N with k � 3,
there exists a Riemannian metric gk on Sk with GC.Sk; gk/� k.

Remarks 2.4 Let .M; g/ be a complete Riemannian manifold.

(1) For all A �M �M, it holds that TCM .A/ � GCM .A/, where TCM .A/ is the
relative topological complexity of A in M �M ; see [15, Section 4.3]. Here, we
made use of the characterization of topological complexity by locally compact
subsets shown in [15, Proposition 4.9].

(2) It is easy to see that

(2-1) GCM .A[B/� GCM .A/CGCM .B/ for all A;B �M �M:

This is shown in analogy with [15, Proposition 4.24].

As pointed out by Recio-Mitter, the crucial ingredients for the discussion of geodesic
complexity are the cut loci of points in the space under consideration. The notions of
cut loci in metric and in Riemannian geometry are slightly different from each other.
While Recio-Mitter used the former notion in his work — see [34, Definition 3.1] — we
will use the latter throughout this manuscript. We next recall the notion of cut loci from
Riemannian geometry. The relation between the two will be discussed in Remark 2.7(3)
below. See also [27, page 308] or [33, page 219] for the following definition:
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Definition 2.5 Let .M; g/ be a complete Riemannian manifold and let p 2M.

(a) Let 
 W Œ0;C1/!M be a unit-speed geodesic with 
.0/D p and P
.0/ 2 TpM.
The cut time of 
 is given by

tcut.
/D supft > 0 W 
 jŒ0;t� is minimalg:

If tcut.
/ is finite, then tcut.
/ P
.0/ 2 TpM is a tangent cut point of p and

.tcut.
// 2M is a cut point of p along 
 . Note that


.tcut.
//D expp.tcut.
/ P
.0//:

(b) The set of all cut points of p is called the cut locus of p and denoted by Cutp.M/.
The set of all tangent cut points of p is called the tangent cut locus of p and
denoted by eCutp.M/.

(c) The total cut locus of M is given by

Cut.M/ WD
[
p2M

.fpg �Cutp.M//�M �M:

Example 2.6 Let n 2N and let g be a round metric on the sphere Sn. Then, by [27,
Example 10.30(a)], Cutp.Sn/D f�pg for every p 2 Sn.

Further examples of cut loci will appear in the upcoming sections.

Remarks 2.7 Let .M; g/ be a complete Riemannian manifold.

(1) In general, Cutp.M/ does not need to be a submanifold of M. H Gluck and D
Singer [20, Theorem A] have shown that, if dimM � 2, then there exists a Rie-
mannian metric on M and a point p 2M for which Cutp.M/is not triangulable.

(2) By [34, Theorem 3.3], there exists a continuous geodesic motion planner

.M �M/XCut.M/!GM;

from which Recio-Mitter derived that GC.M/ D 1 if Cut.M/ D ∅. By [3,
Lemma 4.2], .M �M/XCut.M/ is open and therefore locally compact. Using
(2-1), this shows that

GC.M; g/� GCM .Cut.M//C 1:

(3) Let p 2M. By [2, page 133], the set of points q 2M such that there is more
than one minimal geodesic from p to q is a dense subset of Cutp.M/. This set
is also called the ordinary cut locus of p. In metric geometry — in particular in
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[34, Definition 3.1] — the ordinary cut locus of a point is called its cut locus.
The reader should thus keep in mind that the cut locus of a point, as considered
in [34], is not the cut locus of a point in the sense of this article, but a dense
subset of the cut locus.

3 Nonexistence results for geodesic motion planners

We begin our study by discussing two nonexistence results showing that certain subsets
of a Riemannian manifold never admit continuous geodesic motion planners. First, we
will study complete oriented Riemannian manifolds and see that the Euler class obstructs
the existence of some geodesic motion planners. Then we will show that a complete
Riemannian manifold .M; g/ has the following property: if a subset A � M �M
contains an element of the total cut locus in its interior, then there will be no continuous
geodesic motion planner on A. Before doing so, we first want to establish a technical
proposition that we will make frequent use of throughout the article.

Definition 3.1 Let .M; g/ be a complete Riemannian manifold. We call the map

v WGM ! TM; v.
/D P
.0/;

the velocity map of GM .

Proposition 3.2 Let .M; g/ be a complete Riemannian manifold. The velocity map
v WGM ! TM is continuous.

Proof Let .
n/n2N be a convergent sequence in GM and let 
 WD limn!1 
n 2GM.
By our choice of topology on GM, this means that

(3-1) lim
n!1


n.t/D 
.t/ for all t 2 Œ0; 1�:

We need to show that limn!1 v.
n/D v.
/. Let Lg WGM !R denote the length of
a minimal geodesic with respect to g. From the minimality property of the curves, we
derive that

lim
n!1

Lg.
n/D lim
n!1

dM .
n.0/; 
n.1//D dM .
.0/; 
.1//D Lg.
/;

where dM WM �M ! R is the distance function induced by g. Let j � j W TM ! R

denote the fiberwise norm induced by g. Since Lg.˛/ D j P̨ .0/j D jv.˛/j for each
˛ 2GM, it follows that

(3-2) lim
n!1

jv.
n/j D jv.
/j:
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To show the continuity of v, we need to derive that limn!1 v.
n/D v.
/. Let

Exp W TM !M �M; Exp.p; v/D .p; expp.v//;

be the extended exponential map. Let K �M be a compact neighborhood of 
.0/ and
let

�0 WD supfr > 0 W expxjBr .0/ is injective for all x 2Kg;

where Br.0/ denotes the open n–ball around the origin in the respective tangent space.
Since K is compact, �0 > 0 by [27, Lemma 6.16]. For r 2 .0; �0/ we put

DrK WD f.p; v/ 2 TM j p 2K; kvk � rg;

ie DrK is the closed disk bundle over K of radius r . Then Exp maps DrK diffeo-
morphically onto its image

VrK WD Exp.DrK/D f.p; q/ 2K �M j dM .p; q/� rg:

Let ExpK WDrK!VrK be the corresponding restriction of Exp. Since ExpK WDrK!
VrK is a diffeomorphism, its inverse Exp�1K WVrK!DrK is a diffeomorphism as well.
Thus, if we choose and fix a distance function dTM W TM �TM !R which induces
the topology of TM, then Exp�1K W VrK!DrK is locally Lipschitz-continuous with
respect to dM � dM and dTM . We further observe that, for all ˛ 2GM with ˛.0/ 2K
and dM .˛.0/; ˛.1//� r ,

Exp�1K .˛.0/; ˛.1//D v.˛/:

We consider two different cases:

Case 1 Assume that jv.
/j< r . This implies that .
.0/; 
.1// 2 VrK. Then, by (3-2),
there exists n0 2N with


n.0/ 2K and jv.
n/j � r for all n� n0:

Thus, .
n.0/; 
n.1// 2 VrK for all n � n0. Let C be a local Lipschitz constant for
Exp�1K in a neighborhood of .
.0/; 
.1//. Then, for sufficiently big n 2N,

dTM .v.
n/; v.
//D dTM
�
Exp�1K .
n.0/; 
n.1//;Exp�1K .
.0/; 
.1//

�
� C

�
dM .
n.0/; 
.0//C dM .
n.1/; 
.1//

�
:

By (3-1), this yields limn!1 dTM .v.
n/; v.
//D 0, which we wanted to show.

Case 2 Consider the case that jv.
/j � r . By (3-2), there exists n1 2N such that


n.0/ 2K and jv.
n/j< jv.
/jC 1 for all n� n1:
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Let c WD r=
�
jv.
/jC1

�
2 .0; 1/ and put �n WD c �v.
n/ for each n2N and � WD c �v.
/.

Then � 2DrK and �n 2DrK for all n� n1. If we define

z
n; z
 W Œ0; 1�!M; z
n.t/ WD 
n.ct/; z
.t/ WD 
.ct/ for all t 2 Œ0; 1�;

then z
; z
n 2 GM with v.z
/ D � and v.z
n/ D �n for each n � n1. Since .
n/n2N

converges to 
 in the C 0–topology, it easily follows that limn!1 z
n D z
 in the C 0–
topology as well. Thus, it follows from Case 1 that limn!1 �n D � , which obviously
yields limn!1 v.
n/D v.
/.

In the following proposition, we observe that the Euler class of an oriented manifold
can obstruct the existence of geodesic motion planners:

Proposition 3.3 Let .M; g/ be a complete , oriented Riemannian manifold whose
Euler class is nonvanishing. Let f W M ! M be a continuous map with f .p/ ¤ p
for all p 2M. If A�M �M satisfies graphf � A, then there will be no continuous
geodesic motion planner on A.

Proof Assume by contradiction that there exists a continuous geodesic motion planner
s W A!GM. Then, by Proposition 3.2, the map

g WM ! TM; g.p/D .v ı s/.p; f .p//;

is a continuous vector field, where v is the velocity map. Since f .p/¤ p for each p,
the geodesic s.p; f .p// is nonconstant for all p 2M. Hence, g.p/¤ 0 for all p 2M.
But such a vector field cannot exist since the Euler class of M is nonvanishing.

Corollary 3.4 Let .M; g/ be a complete , oriented manifold whose Euler class is
nonvanishing. Let f WM !M be continuous and fixed-point-free. Then , for every
Riemannian metric g on M, there exists p 2M with f .p/ 2 Cutp.M; g/.

Proof Assume by contradiction that there is such a metric g for which f .p/ …
Cutp.M; g/ for all p 2M. Then graphf lies in .M �M/XCut.M; g/. But, since
there exists a continuous geodesic motion planner on .M �M/X Cut.M; g/— see
Remark 2.7(3) — this contradicts Proposition 3.3. Hence, such a metric does not exist.

Corollary 3.5 Let n2N. For every Riemannian metric g on S2n there exists p 2S2n,
such that �p 2 Cutp.S2n; g/.

Proof Apply Corollary 3.4 to the case of M D S2n and f .x/D�x.

Remark 3.6 Our Corollary 3.4 is complementary to results of M Frumosu and S
Rosenberg from [17, page 338], who studied far-point sets, ie sets of points mapped
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to their cut loci under self-maps of a Riemannian manifold, in a very general way.
Frumosu and Rosenberg focused on self-maps whose far-point sets are infinite and
established connections to the Lefschetz numbers of such maps.

In [34, Remark 3.17], Recio-Mitter mentioned that, whenever a subset of M �M
contains a point of the total cut locus in its interior, there is no continuous geodesic
motion planner defined on that subset. For the sake of completeness, we report here a
proof in the case of Riemannian manifolds.

Proposition 3.7 Let .M; g/ be a complete Riemannian manifold , p2M, q2Cutp.M/

and let U �M be an open neighborhood of q. Then there is no continuous geodesic
motion planner on fpg �U.

Proof As discussed in Remark 2.7(3), the set of points r 2 M for which there is
more than one minimal geodesic from p to r is dense in Cutp.M/. Hence, U contains
a point q0 such that there are at least two minimal geodesics from p to q0. In the
following, we thus assume without loss of generality that q itself has this property.
Assume that a continuous geodesic motion planner s W fpg�U !GM existed. By our
choice of q, there are 
1; 
2 2GM with


1 ¤ 
2; 
1.0/D 
2.0/D p and 
1.1/D 
2.1/D q:

Let .tn/n2N be a sequence in .0; 1/ with limn!1 tn D 1 and 
1.tn/; 
2.tn/ 2 U for
all n 2N. One checks without difficulties that 
1.t/¤ 
2.t/ for all t 2 .0; 1/, so that,
in particular, 
1.tn/¤ 
2.tn/ for all n 2N.

By definition of a cut locus, it follows for all r 2 .0; 1/ and i 2 f1; 2g that


i;r 2GM; 
i;r.t/ WD 
i .rt/;

is the unique minimal geodesic from p to 
i .r/. In particular, this shows that necessarily

(3-3) s.p; 
i .tn//D 
i;tn for all n 2N; i 2 f1; 2g:

Let v WGM ! TM be the velocity map. It follows from Proposition 3.2 that

v ı s W fpg �U ! TM

is continuous. Since 
1 ¤ 
2, there are �1; �2 2 TpM with �1 ¤ �2 such that 
1.t/D
expp.t�1/ and 
2.t/ D expp.t�2/ for all t 2 Œ0; 1�. By (3-3) and the fact that the
differential of expp in 0 is idTpM , we thus obtain that

lim
n!1

.v ı s/.p; 
i .tn//D lim
n!1

P
i;tn.0/D lim
n!1

tn�i D �i :
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In particular, limn!1.v ı s/.p; 
1.tn//¤ limn!1.v ı s/.p; 
2.tn//. This contradicts
the continuity of s, since by assumption .v ı s/.p; 
1.1// D .v ı s/.p; 
2.1//. Thus,
such a continuous s does not exist.

This proposition has an immediate consequence in terms of geodesic complexity.

Corollary 3.8 Let .M; g/ be a complete Riemannian manifold and let A�M �M
be a locally compact subset with

int.A/\Cut.M/¤∅;

where int.A/ is the interior of A as a subset of M �M. Then GCM .A/� 2.

Proof Assume that there was a continuous geodesic motion planner s W A! GM.
Let .p; q/ 2 int.A/\Cut.M/. By definition of the product topology, there are open
neighborhoods U of p and V of q with U � V � int.A/, so, in particular, sjfpg�V
would be a continuous geodesic motion planner. Since q 2 Cutp.M/, this contradicts
Proposition 3.7, so there is no such motion planner. This shows that GCM .A/� 2.

Remark 3.9 There is another connection between cut loci and another numerical
invariant, namely the Lusternik–Schnirelmann category of a Riemannian manifold M,
which we denote by cat.M/. Here, we use the convention that cat.X/ D 1 if X is
contractible. One observes that M XCutp.M/ is contractible for all p 2M, which
follows from [27, Theorem 10.34(c)]. If p1; : : : ; pk 2M satisfy

Tk
iD1 Cutpi .M/D∅,

then
fM XCutp1.M/; : : : ;M XCutpk .M/g

will be an open cover of M by contractible subsets, and hence cat.M/ � k. By
contraposition this shows that, if cat.M/ � k C 1 for some k 2 N, then, for every
choice of p1; : : : ; pk 2M,

k\
iD1

Cutpi .M/¤∅:

4 Lower bounds for geodesic complexity

Lower bounds on topological complexity are mostly derived from the cohomology
rings of a space. In this section, we derive lower bounds on geodesic complexity
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from the Riemannian structures of manifolds. We first establish a result involving a
principal bundle over the manifold under consideration. By explicitly constructing
motion planners, we will establish a lower bound on geodesic complexity in terms
of categorical invariants of total space and fiber of the bundle. Afterwards, we will
establish the notion of inconsistent stratification that we lined out in the introduction.
Then we will go on to prove the second theorem stated in that introduction.

We first establish a technical lemma, whose proof follows that of [14, Theorem 13.1].

Lemma 4.1 Let E and X be topological spaces , let p W E ! X be a fibration with
r WD secat.p/ <C1 and assume that X is normal. Then there are pairwise disjoint
locally compact subsets A1; : : : ; Ar � X with X D

Sr
iD1Ai such that , for each

i 2 f1; 2; : : : ; rg, there exists a continuous local section Ai !E of p.

Proof Let fU1; : : : ; Urg be an open cover of X such that, for each i 2 f1; 2; : : : ; rg,
there exists a continuous local section si WUi!E of p. Since X is normal, there exists
a partition of unity ff1; : : : ; frg subordinate to this finite open cover by Theorem 36.1
of [30]. Let c1; : : : ; cr 2 .0;C1/ with c1C � � � C cr D 1. For each i 2 f1; 2; : : : ; rg,
we put

Ai WD fx 2X j fi .x/� ci ; fj .x/ < cj for all j < ig:

Each Ai is the intersection of a closed and an open subset of X, and hence is locally
compact. One checks without difficulties that the Ai are pairwise disjoint and that
X D

Sr
iD1Ai . Moreover, Ai � Ui for each i , so si jAi W Ai !E is a continuous local

section of p for each i 2 f1; 2; : : : ; rg.

The following proposition establishes a lower bound on GC.M; g/ in terms of a principal
G–bundle over M that is a Riemannian submersion. This submersion property will
be used in its proof to ensure the existence of horizontal lifts of curves. For each
orientable M, its orthonormal frame bundle is an example of such a bundle with
G D SO.dimM/; see eg [25, Example I.5.7].

Proposition 4.2 Let .M; g/ be a complete Riemannian manifold and let � WE!M

be a smooth principal G–bundle , where G is a connected Lie group. Assume that E is
equipped with a Riemannian metric for which � is a Riemannian submersion. Then

GC.M; g/�
TC.E/

cat.G/
:
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Proof Let GC.M/ D k and choose pairwise disjoint and locally compact subsets
A1; : : : ; Ak �M �M with

Sk
iD1Ai DM �M such that, for each i 2 f1; 2; : : : ; kg,

there exists a continuous geodesic motion planner si W Ai !GM. Let v WGM ! TM

be the velocity map and put

vi W Ai ! TM; vi WD v ı si for all i 2 f1; 2; : : : ; kg:

The vi are continuous by Proposition 3.2. For each i we put

Bi WD .� � id/�1.Ai /D f.u; q/ 2E �M j .�.u/; q/ 2 Aig:

Clearly the Bi are again pairwise disjoint with
Sk
iD1Bi DE �M. Let Hor.E/� TE

denote the horizontal subbundle with respect to � . Since d�jHor.E/ W Hor.E/! TM

maps Horu.E/ isomorphically onto T�.u/M for each u 2E, we obtain continuous lifts
of the vi by

wi WBi!Hor.E/; wi .u;q/D .d�jHoru.E//
�1vi .�.u/;q/ for all i 2f1;2; : : : ; kg:

For each u2E we let expu WTuE!E be the exponential map of the given Riemannian
metric on E. With PE D C 0.Œ0; 1�; E/, we define continuous maps

�i W Bi ! PE

by

.�i .u; q//.t/D expu.twi .u; q// for all .u; q/ 2 Bi ; t 2 Œ0; 1�; i 2 f1; 2; : : : ; kg:

Each �i induces a continuous map

˛i W Bi !E �E; ˛i .u; q/D
�
.�i .u; q//.0/; .�i .u; q//.1/

�
D
�
u; expu.wi .u; q//

�
:

Since horizontal geodesics in E project to geodesics in M, we compute that

.id��/.˛i .u; q//D .id��/.u; �i .u; q/.1//D
�
u;
�
si .�.u/; q/

�
.1/
�
D .u; q/

for all .u; q/2Bi . Here we used that �.�i .u; q//D si .u; q/ for all .u; q/2Bi . Hence,
for each i 2 f1; 2; : : : ; kg, the map ˛i is a continuous local section of id�� WE�E!
E �M, which is again a principal G–bundle. The right G–action on E �E is given
by E �E �G! E �E, .u; v; h/ 7! .u; vh/, where we consider the right G–action
on E given by the bundle structure. Thus, we get a local trivialization of id�� over
each Bi , given explicitly by the homeomorphism

ˆi W Bi �G!E �EjBi ; ˆi .u; q; h/D ˛i .u; q/hD
�
u; expu.wi .u; q//h

�
:
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Put l D cat.G/. Let e 2G be the unit, PeG D f
 2 PG j 
.0/D eg and

q W PeG!G; q.
/D 
.1/:

Since PeG is contractible, by [39, Theorem 18], cat.G/D secat.q W PeG! G/. By
Lemma 4.1, there are pairwise disjoint and locally compact subsets C1; : : : ; Cl �G
with

Sl
jD1 Cj D G such that, for each j 2 f1; 2; : : : ; lg, there is a continuous local

section rj W Cj ! PeG of q.

If we putDi;j WDˆi .Bi�Cj /�E�E for all i 2f1; 2; : : : ; kg and j 2f1; 2; : : : ; lg, then
the Di;j are pairwise disjoint, locally compact and satisfy

Sk
iD1

Sl
jD1Di;j DE �E.

For all i and j we further consider the map

�i;j W Bi �Cj ! PE

given by

.�i;j .u; q; h//.t/D .�i .u; q//.t/ � .rj .h//.t/ for all .u; q/ 2 Bi ; h 2 Cj :

Then
.�i;j .u; q; h//.0/D .�i .u; q//.0/D u;

.�i;j .u; g; h//.1/D .�i .u; q//.1/.rj .h//.1/D expu.wi .u; q//h

and thus

.�i;j .u; q; h/.0/; �i;j .u; q; h/.1//Dˆi .u; q; h/ for all .u; q/ 2 Bi ; h 2 Cj :

This shows that �i;j ı ˆ�1i jDi;j W Di;j ! PE is a continuous motion planner for
all i 2 f1; 2; : : : ; kg and j 2 f1; 2; : : : ; lg. As a smooth manifold, E is a Euclidean
neighborhood retract (ENR). Since the Di;j are locally compact subsets of an ENR,
they are ENRs themselves. Hence, it follows from [13, Theorem 6.1] that

TC.E/� k � l D GC.M/ � cat.G/;

which proves the claimed inequality.

Remark 4.3 Since GC.M/� TC.M/ for all complete Riemannian manifolds M, the
lower bound from Proposition 4.2 improves this basic inequality if and only if

TC.E/

cat.G/
> TC.M/ () TC.E/ > cat.G/TC.M/D TC.G/TC.M/;

where we used [13, Lemma 8.2]. Note that the assumption on the bundle to be principal
in the previous result is necessary, as the following example shows. Consider the Klein
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bottleK, which is given as a fiber bundle over S1 with fiber S1 and satisfies TC.K/D 5
by [5], while TC.S1/D 2. Since the round metric gr on S1 satisfies

GC.S1; gr/D TC.S1/D 2 < 5
2
D

TC.K/

cat.S1/

by [34, Proposition 4.1], the inequality from Proposition 4.2 would indeed be false in this
situation. However,K is not given as a principal S1–bundle over S1, so Proposition 4.2
is not applicable to this setting. By the classification theorem for principal bundles —
see [11, Theorem 14.4.1] — the set of isomorphism classes of principal S1–bundles
over S1 is in bijection with the set of homotopy classes ŒS1; BS1�D ŒS1;CP1�. But
CP1 is simply connected, so it follows that ŒS1;CP1� has only one element. Thus,
every principal S1–bundle over S1 is trivial. Since �1.K/© Z2 D �1.S1 �S1/, the
bundle K is a nontrivial S1–bundle. Hence, it cannot be principal.

Our next aim is to derive a lower bound on geodesic complexity from the structure of
the cut locus of a point in the manifold. We first introduce the notion of stratification
that we are using.

Definition 4.4 Let M be a manifold and let B �M be a subset. A stratification of B
of depthN 2N is a family .S1; : : : ; SN / of locally closed and pairwise disjoint subsets
of M such that the following conditions hold:

(i) B D
SN
iD1 Si and S i D

SN
jDi Sj for all i 2 f1; 2; : : : ; N g.

(ii) Let i; j 2 f1; 2; : : : ; N g. If Zj is a connected component of Sj and Zi is a
connected component of Si with Zj \Zi ¤∅, then Zj �Zi .

Example 4.5 Let M DR2 and let B D Œ�1; 1�2. Consider

S1 D .�1; 1/� .�1; 1/;

S2 D ..�1; 1/� f�1; 1g/[ .f�1; 1g � .�1; 1//;

S3 D f.�1;�1/; .�1; 1/; .1;�1/; .1; 1/g:

One checks without difficulties that .S1; S2; S3/ has properties (i) and (ii) from
Definition 4.4. Hence, .S1; S2; S3/ is a stratification of B.

Given a stratification of the cut locus of a point, we want to introduce an additional
condition on those parts of the corresponding tangent cut locus that are mapped to
the same stratum. This will be the crucial step for finding a lower bound for geodesic
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complexity. The following notion is an analogue of [34, Definition 3.10]; see our
introduction and Remark 4.7(2) below for a comparison of the two notions. The terms
from Riemannian geometry that are used are to be found, for example, in [27, page 310].

Definition 4.6 Let .M; g/ be a complete Riemannian manifold, p 2M and let S D
.S1; : : : ; SN / be a stratification of Cutp.M/. Let K � TpM denote the union of the
tangent cut locus eCutp.M/ with the domain of injectivity of expp and let

(4-1) expK WD exppjK WK!M

denote the restriction. We call S inconsistent if, for all i 2f2; 3; : : : ; N g and x2Si , there
exists an open neighborhood U �M of x with the following property: Let Z1; : : : ; Zs
be the connected components of U \Si�1. Then x 2Zj for all j 2 f1; 2; : : : ; sg and

eCutp.M/\ exp�1p .fxg/\

s\
jD1

exp�1K .Zj /D∅:

In Section 7.1, we will encounter explicit examples of inconsistent stratifications when
we consider flat tori. Examples for cut loci with nontrivial stratifications which are not
inconsistent are Berger spheres, as we shall see in Section 7.2.

Remarks 4.7 Let .M; g/ be a complete Riemannian manifold.

(1) IfM is a closed manifold, then the setK from Definition 4.6 will be homeomorphic
to a closed ball — see [27, Corollary 10.35] — and the map expK from (4-1) is a
surjection. As an example, consider the round n–dimensional sphere Sn of radius 1. If
p 2 Sn is a point, then the domain of injectivity of expp is an open ball of radius �
in the tangent space TpSn. The tangent cut locus eCutp.Sn/ is the .n�1/–sphere of
radius � in TpM. Consequently, the set K in this example is the closed ball of radius �
in TpM.

(2) Recio-Mitter [34, Definition 3.8] introduced the concept of a levelwise stratified
covering for arbitrary surjective maps. He then applied this concept to the restriction
of the path fibration

� WGX !X �X;

where X is a geodesic space and GX is the space of geodesic paths in X.

To work with this notion, one must study a stratification of the total cut locus of X
and explore covering properties of the restrictions of � to its preimage. In contrast,
the above Definition 4.6 for Riemannian manifolds only requires a stratification of the
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cut locus of a single point p in a Riemannian manifold M as well as properties of
the Riemannian exponential map expp . Thus, for complete Riemannian manifolds the
above definition seems easier to verify than the corresponding notion from [34].

The following result is an analogue of the corresponding result of Recio-Mitter; see [34,
Corollary 3.14]. The proof requires M to be compact, since we will use the property
mentioned in Remark 4.7(1). We recall the notation GCp.A/D GCM .fpg �A/ for all
A�M.

Theorem 4.8 Let .M; g/ be a closed Riemannian manifold. Assume that there exists
p 2M for which Cutp.M/ admits an inconsistent stratification of depth N 2N. Then

GC.M/� GCp.M/�N C 1:

Proof Let .S1; : : : ; SN / be an inconsistent stratification of Cutp.M/. Assume that
there are pairwise disjoint locally compact setsE1;E2; : : : ;Er�M with

Sr
iD1EiDM

such that, for each i 2 f1; 2; : : : ; rg, there exists a continuous geodesic motion planner
si W fpg �Ei !GM.

We want to show by induction that, for all k 2 f1; 2; : : : ; N g and all x 2 Sk ,

(4-2) #
˚
i 2 f1; 2; : : : ; rg j x 2Ei

	
� kC 1:

Consider the base case of k D 1 and assume by contradiction that there is an i 2
f1; 2; : : : ; rg with x 2Ei , but x …Ej for all j ¤ i . Then x has an open neighborhood
U �M such that U �Ei and the restriction si jfpg�U is a continuous geodesic motion
planner on fpg �U. But, since x 2 Cutp.M/, this contradicts Proposition 3.7. Hence,
#
˚
i 2 f1; 2; : : : ; rg j x 2Ei

	
� 2, which we wanted to show.

Assume as induction hypothesis that, for some k 2 f2; 3; : : : ; N g, we have shown that

#
˚
i 2 f1; 2; : : : ; rg j y 2Ei

	
� k for all y 2 Sk�1:

Let x 2 Sk . Assume that (4-2) is false and assume up to reordering that x … Ei for
all i > k. Then there exists an open neighborhood U of x with U �

Sk
iD1Ei . By the

induction hypothesis, this yields

(4-3) U \Sk�1 �Ei for all i 2 f1; 2; : : : ; kg:

We assume without loss of generality that U is chosen as in Definition 4.6, since this
can be achieved by shrinking U. We further assume that x 2 E1. Let Z1; : : : ; Zs be
the connected components of U \Sk�1, where s 2N is suitably chosen.
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Let j 2 f1; 2; : : : ; sg and let .an/n2N be a sequence in Zj with limn!1 anD x, which
exists by our choice of U. For all n 2N it further holds by (4-3) that an 2E1. Thus,
for each n, there exists a sequence .bnm/m2N in U \E1 with limm!1 bnm D an. Put

v1 WE1! TpM; v1.y/ WD .v ı s1/.p; y/;

where v is the velocity map. By Proposition 3.2, v1 is continuous. Let expK WK!M

be given as in (4-1). The set K is homeomorphic to a closed ball in TpM ; see
Remark 4.7(1). By construction, v1.y/ 2K for each y 2E1; hence, .v1.bnm//m2N is
a sequence in K for each n 2N. Since K is compact, it has a convergent subsequence
.v1.b

n
mk
//k2N for each n2N. Put �n WD limk!1 v1.bnmk / for all n2N. By continuity

of the exponential map,

expK.�n/D expp.�n/D lim
k!1

expp.v1.b
n
mk
//D lim

k!1
bnmk D an for all n 2N:

Thus,
�n 2K \ exp�1K .fang/�K \ exp�1K .Zj / for all n 2N:

Now .�n/n2N is a sequence in K, so it has a convergent subsequence .�nl /l2N . With
�0 WD liml!1 �nl , we obtain

expp.�0/D lim
l!1

expp.�nl /D lim
l!1

anl D x:

In particular, it follows from x 2Cutp.M/ that �0 2eCutp.M/. Since �n 2 exp�1K .fang/

for each n 2N, we conclude that

�0 2eCutp.M/\ exp�1p .fxg/\ exp�1K .Zj /:

Note that �0 depends on the choice of j. To conclude, we still need to show that the
same �0 can be chosen for each j 2 f1; 2; : : : ; sg. We will do so by showing next that
�0 D v1.x/, which does not depend on j.

Let dM WM �M !R be the distance function induced by the Riemannian metric. By
definition of the �nl , for each l 2N there exists kl 2N such that

dM .anl ; b
nl
mk
/ <

1

l
and k�nl � v1.b

nl
mk
/k<

1

l
for all k � kl :

We can further choose the kl in such a way that liml!1 kl D 1. By a diagonal
argument, liml!1 b

nl
mkl
D x. This in particular shows, by continuity of v1, that

�0 D lim
l!1

�nl D lim
l!1

v1.b
nl
mkl

/D v1.x/:
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Thus, v1.x/ 2 exp�1p .fxg/\ exp�1K .Zj /. Since j was chosen arbitrarily, it follows that

v1.x/ 2eCutp.M/\ exp�1p .fxg/\

s\
jD1

exp�1K .Zj /:

This contradicts the inconsistency of the stratification .S1; : : : ; SN /. Hence, there is
no such U, which concludes the proof of the induction step. For k DN, it in particular
follows from (4-2) that r �N C 1. Thus, GCp.M/�N C 1.

We will see in Section 7.1 that flat tori are indeed examples for Riemannian manifolds
whose cut loci admit inconsistent stratifications. Next we will discuss a more tangible
criterion on a cut locus that implies the existence of an inconsistent stratification. For
this purpose, we will use results and constructions of J-I Itoh and Sakai [24]. Large
parts of these methods are extensions of those applied by V Ozols [32].

Definition 4.9 [24, page 68 and Definition 2.1] Let .M; g/ be a complete Riemannian
manifold and let p 2M.

(a) We say that q 2 Cutp.M/ is of order kC 1, where k 2N, if there are precisely
kC 1 minimal geodesics 
0; 
1; : : : ; 
k 2GM with 
i ¤ 
j if i ¤ j and with

i .0/D p and 
i .1/D q for all i 2 f0; 1; 2; : : : ; kg.

(b) We call q nondegenerate if the vectors P
0.1/; P
1.1/; : : : ; P
k.1/ 2 TqM are in
general position, ie if

˚
P
i .1/� P
0.1/ j i 2 f1; 2; : : : ; kg

	
is linearly independent.

As carried out by Itoh and Sakai [24, Remark 2.2], a large class of two-dimensional
flat tori provides an example for manifolds with nondegenerate cut points. However,
our study of flat tori in Section 7.1 will not rely on this notion of nondegeneracy, but
will employ the above inconsistency condition directly.

We recall that a conjugate point of a point p in a Riemannian manifold .M; g/ is a
point q 2M such that there is a geodesic segment from p to q along which there exists
a nontrivial Jacobi field which vanishes in p and q; see [27, page 298].

Remarks 4.10 (1) As shown by A Weinstein [40, page 29], every closed manifold
M with dimM � 2 and not homeomorphic to S2 admits a Riemannian metric
for which there exists p 2M such that Cutp.M/ does not contain any conjugate
points. Itoh and Sakai conjectured in [24, Remark 2.9] that the set of all such
metrics on M contains as a dense subset the set of those metrics for which all
points in Cutp.M/ are nondegenerate.
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(2) It is evident from the definition of nondegeneracy that the order of a non-
degenerate cut point is at most dimM C 1.

Theorem 4.11 Let .M; g/ be a closed Riemannian manifold and assume that there
exists p 2M for which Cutp.M/ does not contain any conjugate points of p and for
which all points in Cutp.M/ are nondegenerate. Let

N WDmaxfk 2N j there is q 2 Cutp.M/ of order kC 1g:

Then Cutp.M/ admits an inconsistent stratification of depth N.

Proof Let C WD .C1; : : : ; CN / be given by

Ck WD fq 2 Cutp.M/ j q is of order kC 1g for all k 2 f1; 2; : : : ; N g:

It is shown in [24, Proposition 2.4] that, under the nondegeneracy assumption on
the points in Cutp.M/, C is a Whitney stratification of Cutp.M/, as defined in [21,
page 37]. Hence, C is in particular an S –decomposition in the sense of Goresky
and MacPherson; see [21, page 36]. One checks immediately that the two conditions
defining such an S –decomposition imply that C is a stratification of Cutp.M/ in the
sense of Definition 4.4. It remains to show that C is inconsistent. Fix k 2 f1; 2; : : : ; N g,
let q 2 Ck and let 
0; 
1; : : : ; 
k W Œ0; 1�!M be geodesics from p to q with 
i ¤ 
j
whenever i ¤ j. For each i 2 f0; 1; : : : ; kg, put vi WD P
i .0/ 2 TpM, so that

eCutp.M/\ exp�1p .fqg/D fv0; v1; : : : ; vkg:

Choose an open neighborhood U of q such that U \Ck is connected and such that

(4-4) Cutp.M/\U D

k[
iD1

Ci \U:

Such a neighborhood exists by the stratification properties. As discussed in [24, page 68],
since q is nondegenerate, we can choose an open neighborhood Vi � TpM of vi for
each i 2 f0; 1; : : : ; kg such that expp maps Vi diffeomorphically onto U. Put Fi WD
.exp jVi /

�1 W U ! Vi . As explained in [32, pages 220–221], up to shrinking U we can
assume that every minimal geodesic 
 from p to an element of U has P
.0/ 2

Sk
iD0 Vi .

We further assume that Vi \Vj D∅ whenever i ¤ j. For i 2 f1; 2; : : : ; kg, we define

fi W U !R; fi .x/D kFi .x/k�kF0.x/k;
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where k � k denotes the norm on TpM defined by the Riemannian metric. With
f W U ! Rk , f D .f1; f2; : : : ; fk/, it follows that f �1.f0g/ D Ck \ U. For i 2
f1; 2; : : : ; kg we further let

gi W U !Rk�1; gi D .f1; : : : ; fi�1; fiC1; : : : ; fk/

and put
g0 W U !Rk�1;

g0.x/D
�
kF2.x/k�kF1.x/k; kF3.x/k�kF1.x/k; : : : ; kFk.x/k�kF1.x/k

�
:

Then, by assumption on U,

Ck�1\U D

k[
iD0

g�1i .f0g/XCk D

k[
iD0

g�1i .f0g/Xf �1.f0g/:

The connected components of Ck�1\U are the sets Z0; Z1; : : : ; Zk , where

Zi WD g
�1
i .f0g/\f �1i .0;C1/ for all i 2 f1; 2; : : : ; kg;

Z0 WD g
�1
0 .f0g/\f �11 .�1; 0/:

By construction of the sets,

eCutp.M/\ exp�1p .Zi /�
[
j¤i

Vj for all i 2 f0; 1; : : : ; kg:

A closer investigation, using that eCutp.M/\ exp�1p .fqg/D fv0; v1; : : : ; vkg and that
the closures of the Vi are pairwise disjoint, shows that

eCutp.M/\ exp�1p .fqg/\ exp�1p .Zi /D fv0; v1; : : : ; vi�1; viC1; : : : ; vkg

for all i 2 f0; 1; : : : ; kg. This implies

eCutp.M/\ exp�1p .fqg/\

k\
iD0

exp�1p .Zi /D∅:

Since k and q were chosen arbitrarily, this shows the inconsistency of C.

Combining the previous theorem with our lower bound from Theorem 4.8 yields:

Corollary 4.12 Let .M; g/ be a closed Riemannian manifold and assume that there
exists p 2M such that Cutp.M/ does not contain any conjugate points of p and such
that all points in Cutp.M/ are nondegenerate. If Cutp.M/ contains a point of order
kC 1, where k 2N, then

GC.M; g/� kC 1:
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5 An upper bound for homogeneous Riemannian manifolds

From this section on, we will mostly consider homogeneous Riemannian manifolds
and exploit their symmetry properties. Given a Riemannian manifold .M; g/, we let
Isom.M/ WD Isom.M; g/ denote its group of isometries and consider it as a subspace
of C 0.M;M/ with the compact–open topology. We recall that .M; g/ is called homo-
geneous if Isom.M/ acts transitively on M. Note that every homogeneous Riemannian
manifold is necessarily complete; see [25, Theorem IV.4.5].

Having derived lower bounds for geodesic complexity in the previous section, we
next want to find upper bounds. After some preparatory lemmas, we will establish
an upper bound on GC.M/ for a homogeneous Riemannian manifold M in terms of
the subspace complexity GCM .fpg�Cutp.M// and a categorical invariant determined
by its isometry action. Intuitively, the transitivity of the isometry action implies that
continuous geodesic motion planners on subsets of cut loci of single points can be
continuously extended to larger subsets of the total cut locus. We will then go on to
study further upper bounds on GC.M/ in the case that Cutp.M/ admits a stratification.
The following is a folklore result from Riemannian geometry:

Lemma 5.1 Let .M; g/ be a homogeneous Riemannian manifold and let p 2M. Then

evp W Isom.M/!M; evp.�/D �.p/;

is a principal Isomp.M/–bundle , where Isomp.M/ denotes the isotropy group of the
isometry action on M in p.

Proof By [26, Theorem 21.17], evp induces an Isom.M/–equivariant diffeomor-
phism f W Isom.M/=Isomp.M/ ! M. Moreover, the projection q W Isom.M/ !

Isom.M/=Isomp.M/ is a principal Isomp.M/–bundle by [25, Example I.5.1]. One
easily shows that evp D f ıq, which implies that evp is a principal Isomp.M/–bundle
as well.

Example 5.2 Given a Lie group G with a left-invariant Riemannian metric, the left
multiplication lg W G ! G, lg.h/ D gh, is an isometry for each g 2 G. With e 2 G
denoting the unit, one further derives from lg.e/ D g for each g 2 G that the map
s WG! Isom.G/, s.g/D lg , is a continuous section of the bundle eve W Isom.G/!G.

Lemma 5.3 Let A;B �M and p 2M. Assume that there are a continuous geodesic
motion planner �B W fpg �B!GM and a continuous local section s W A! Isom.M/
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of evp. Then there exists a continuous geodesic motion planner � W F !GM, where

F WD f.x; y/ 2M �M j x 2 A; y 2 s.x/ �Bg:

Proof We define � W F !GM by

�.x; y/D s.x/ ı �B.p; s.x/
�1
�y/ for all .x; y/ 2 F:

By construction, �B.p; s.x/�1 �y/ is a minimal geodesic from p to s.x/�1 �y. Since
s.x/ is an isometry for each x, �.x; y/ is indeed a minimal geodesic from

s.x/ �p D evp.s.x//D x to s.x/ � .s.x/�1 �y/D y:

So � is a geodesic motion planner and it only remains to show its continuity.

Let � W Isom.M/�M !M denote the action of the isometry group by evaluation and
again let PM D C 0.Œ0; 1�;M/. By [4, Theorem VII.2.10], the composition map

' W C 0.M;M/�PM ! PM; '.f; 
/D f ı 
;

is continuous with respect to the compact–open topologies. Thus, the restriction of ' to

Isom.M/�GM � C 0.M;M/�PM

defines a continuous action

z� W Isom.M/�GM !GM; z�D 'jIsom.M/�GM :

The inversion i W Isom.M/! Isom.M/, i.g/D g�1, is continuous since Isom.M/ is
a topological group. We can express � as

�.x; y/D z�
�
s.x/; �B

�
p; �

�
i.s.x//; y

���
for all .x; y/ 2 F:

All maps on the right-hand side are continuous, so � is continuous as well.

The previous lemma allows us to make a useful estimate between the subspace geodesic
complexity of the total cut locus and that of one single cut locus in the homogeneous
case.

Theorem 5.4 Let .M; g/ be a homogeneous Riemannian manifold and let p 2 M.
Then

GC.M/� secat.evp W Isom.M/!M/ �GCp.Cutp.M//C 1:

Proof As seen in Remark 2.7(2), it holds that GC.M/ � GCM .Cut.M//C 1, so it
suffices to show that

GCM .Cut.M//� secat.evp/ �GCp.Cutp.M//:
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Let k WD secat.evp/ and r WDGCp.Cutp.M//. By Lemma 4.1, there are pairwise disjoint
locally compact A1; : : : ; Ak �M with M D

Sk
iD1Ai for which there is a continuous

local section si WAi! Isom.M/ of evp for each i 2 f1; 2; : : : ; kg. Let B1; : : : ; Br �M
be pairwise disjoint and locally compact with Cutp.M/�

Sr
jD1Bj such that, for each j,

there exists a continuous geodesic motion planner �j W fpg �Bj !GM. Put

Fi;j WD f.x; y/ 2M �M j x 2 Ai ; y 2 si .x/ �Bj g

for all i 2 f1; 2; : : : ; kg and j 2 f1; 2; : : : ; rg. By construction, the elements of˚
Fi;j j i 2 f1; 2; : : : ; kg; j 2 f1; 2; : : : ; rg

	
are pairwise disjoint. Furthermore, for all i 2 f1; 2; : : : ; kg and j 2 f1; 2; : : : ; rg,

 i;j W Ai �Bj ! Fi;j ;  i;j .x; y/D .x; si .x/ �y/;

is a homeomorphism. Consequently, the Fi;j are locally compact. If .x; y/ 2 Cut.M/,
then x 2 Ai for some i 2 f1; 2; : : : ; kg. Since si .x/�1 is an isometry, it holds that
si .x/

�1 � y 2 Cutp.M/. Hence, there is a j 2 f1; 2; : : : ; rg with si .x/�1 � y 2 Bj and
therefore .x; y/ 2 Fi;j by definition. This shows that

Cut.M/�

k[
iD1

r[
jD1

Fi;j :

Moreover, by Lemma 5.3 we can find a continuous geodesic motion planner Fi;j!GM

of p for all i and j. Thus, GCM .Cut.M//� kr , which shows the claim.

The previous upper bound has a particularly strong consequence for connected Lie
groups.

Corollary 5.5 Let G be a connected Lie group equipped with a left-invariant Rie-
mannian metric and let e 2G denote the unit element. Then

GC.G/� GCe.Cute.G//C 1:

Proof This is an immediate consequence of Theorem 5.4. Since eve W Isom.G/!G

admits a continuous section — see Example 5.2 — it follows that secat.eve/D 1.

Sectional categories of fibrations are in general hard to compute. A common way of
estimating their values from above is by the Lusternik–Schnirelmann categories of
their base spaces using [39, Theorem 18]. In our situation, this leads to the following
estimate:
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Corollary 5.6 Let .M; g/ be a homogeneous Riemannian manifold and let p 2M.
Then

GC.M/� cat.M/ �GCp.Cutp.M//C 1:

Proof This is an immediate consequence of Theorem 5.4 and the fact that every
fibration p WE! B satisfies secat.p/� cat.B/ by [39, Theorem 18].

We want to further estimate geodesic complexity from above by finding upper bounds
for subspace geodesic complexities of cut loci. When Cutp.M/ admits a stratification,
we can compare GCp.Cutp.M// to the subspace geodesic complexities of its strata.

Proposition 5.7 Let .M; g/ be a complete Riemannian manifold , let p 2 M and
assume that Cutp.M/ has a stratification .S1; : : : ; Sk/ of depth k. Then

GCp.Cutp.M//�

kX
iD1

max
Zi2�0.Si /

GCp.Zi /;

where �0.X/ denotes the set of connected components of a space X.

Proof Since Cutp.M/D S1[ � � � [Sk , it follows from Remark 2.2(3) that

GCp.Cutp.M//�

kX
iD1

GCp.Si /:

Now fix i 2 f1; 2; : : : ; kg and let Z1; : : : ; Zr be the connected components of Si . Put

si WD max
j2f1;2;:::;rg

GCp.Zj /:

For each j 2 f1; 2; : : : ; rg, let Aj1 ; : : : ; A
j
si � Zj be pairwise disjoint and locally

compact, such that, for each j 2 f1; 2; : : : ; rg and l 2 f1; 2; : : : ; sig, either Aj
l
D ∅

or there exists a continuous geodesic motion planner �j;l W fpg � A
j

l
! GM. Put

Al WD
Sr
jD1A

j

l
for each l 2 f1; 2; : : : ; sig. Then the Al are pairwise disjoint and

locally compact with Si D
Ssi
lD1

Al . Moreover, since, by definition of a stratification,
Zi \Zj D∅ for all i ¤ j, the maps

�l W fpg �Al !GM; �l.p; x/D �j;l.p; x/ for all x 2 Aj
l
; j 2 f1; 2; : : : ; rg;

are well-defined continuous geodesic motion planners. This shows GCp.Si /� si for
each i 2 f1; 2; : : : ; kg, which implies the claim.
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Corollary 5.8 Let .M; g/ be a homogeneous Riemannian manifold , let p 2M and
assume that Cutp.M/ has a stratification .S1; : : : ; Sk/ of depth k. Then

GC.M/� secat.evp W Isom.M/!M/ �

kX
iD1

max
Zi2�0.Si /

GCp.Zi /C 1:

Proof This follows from Theorem 5.4 and Proposition 5.7.

6 Trivially covered stratifications

Recio-Mitter [34] considered total cut loci with stratifications whose strata are finitely
covered by the path fibration. As a part of [34, Corollary 3.14], he showed that, if such
a stratification is inconsistent and trivially covered, this knowledge about the total cut
locus suffices to compute the geodesic complexity of the space.

In this section, we will revisit the notion of trivially covered stratifications in the setting
of Riemannian manifolds, but, in contrast to [34], we will put a covering condition on
the cut locus of a single point instead of the total cut locus. We will then derive an upper
bound for the numbers GCp.M/ that we have studied in the previous section. From this
estimate we will derive an upper bound for the geodesic complexity of homogeneous
Riemannian manifolds for which the cut locus of a point admits a trivially covered
stratification.

Definition 6.1 Let M be a complete Riemannian manifold, let p 2M and let S D
.S1; : : : ; SN / be a stratification of Cutp.M/. We call S trivially covered if, for all
k 2 f1; 2; : : : ; N g and for all connected components Z of Sk , the restriction

exppjeCutp.M/\exp�1p .Z/ W
eCutp.M/\ exp�1p .Z/!Z

is a trivial covering. Here, a trivial covering is understood to be a covering q WX ! Y

for which there is a discrete set D and a homeomorphism f W X ! Y �D such that
q D pr ıf, where pr W Y �D! Y is the projection onto the first factor.

Theorem 6.2 Let M be a complete Riemannian manifold , let p 2M and assume that
Cutp.M/ admits a trivially covered stratification of depth N 2N. Then

GCp.Cutp.M//�N:

Proof Let S D .S1; : : : ; SN / be a trivially covered stratification of Cutp.M/. We
want to show that fpg � Sk admits a continuous geodesic motion planner for each
k 2 f1; 2; : : : ; N g. For a fixed k 2 f1; 2; : : : ; N g, let Z1; : : : ; Zr be the connected
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components of Sk for suitable r 2N. For i 2 f1; 2; : : : ; rg, let Bi be an arbitrary sheet
of the trivial covering

exppjeCutp.M/\exp�1p .Zi /
WeCutp.M/\ exp�1p .Zi /!Zi :

Then exppjBi WBi !Zi is a homeomorphism. With 'i WD .exppjBi /
�1 WZi !Bi , one

checks without difficulties that

si W fpg �Zi !GM; .si .p; q//.t/D expp.t'
�1
i .q//;

is a continuous geodesic motion planner and thus GCp.Zi /D1. Since k 2f1; 2; : : : ; N g
was chosen arbitrarily, the claim follows from Proposition 5.7.

With the additional hypotheses that M is compact and that the stratification in Theorem
6.2 is inconsistent, one can derive an equality from Theorem 6.2. The following result
is analogous to the corresponding part of [34, Corollary 3.14]:

Corollary 6.3 Let M be a closed Riemannian manifold , let p 2M and assume that
Cutp.M/ admits a trivially covered inconsistent stratification of depth N 2N. Then
GCp.M/DN C 1.

Proof By restricting the motion planner from Remark 2.7(2), one obtains a continuous
geodesic motion planner on fpg � .M XCutp.M//. It follows from Theorem 6.2 that

GCp.M/� GCp.Cutp.M//C 1�N C 1:

But, by Theorem 4.8, it also holds that GCp.M/�N C1, which proves the equality.

Corollary 6.4 Let G be a compact connected Lie group equipped with a left-invariant
Riemannian metric and let e 2G denote the unit element. If Cute.G/ admits a trivially
covered inconsistent stratification of depth N, then

GC.G/DN C 1:

Proof Combining Theorem 6.2 with Corollary 5.5 yields

GC.G/� GCe.Cute.G//C 1�N C 1:

But, by Theorem 4.8, GC.G/�N C 1 as well, so the claim follows.

7 Examples: flat tori and Berger spheres

We want to use the results of Sections 5 and 6 to compute the geodesic complexities of
two classes of examples: two-dimensional flat tori and three-dimensional Berger spheres.
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The cut loci of points in such spaces are well understood and admit stratifications of a
well-behaved kind.

7.1 Geodesic complexity of flat tori

Recio-Mitter has computed the geodesic complexity of a standard flat n–dimensional
torus in [34, Theorem 4.4]. More precisely, he has shown that the standard flat metric gf
on the n–torus T n satisfies GC.T n; gf /D nC 1 for each n 2N.

In the course of this subsection, we will extend the two-dimensional case of Recio-
Mitter’s result to arbitrary flat metrics on two-dimensional tori. The cut loci of such
metrics are well understood.

Before we do so, we will reobtain Recio-Mitter’s computation for standard flat tori
using the methods of this article. This example is particularly instructive and illustrates
the use of inconsistent stratifications. Moreover, in contrast to [34, Theorem 4.4],
we only need to consider the cut locus of a single point, while in the proof of [34,
Theorem 4.4] a stratification of T n �T n is required and the structure of the space of
geodesic paths in T n needs to be examined.

Example 7.1 Let n 2N and consider the n–torus T n with the standard flat metric gf ,
ie the quotient metric induced by the standard metric on Rn and by identifying T n D
Rn=.2Z/n. Equivalently, T n is obtained from Rn by collapsing the lattice defined by
an arbitrary family of n pairwise orthogonal vectors of length two. Let � WRn! T n

be the projection and put o WD �.0/ and M WD .T n; gf /. We identify Rn with ToM in
the obvious way.

Note that T n is isometric to the Riemannian product .R=.2Z//n. For N WDR=.2Z/

let pr W R! N be the obvious Riemannian covering and put p0 WD pr.0/ 2 N. Then
Cutp0.N /D fpr.1/g and the tangent cut locus is given by

eCutp0.N /D f�1; 1g

under the identification Tp0N ŠR.

Given the Riemannian product of two Riemannian manifolds .M1; g1/ and .M2; g2/,
the cut locus of a point .p1; p2/ 2M1 �M2 is easily seen to be

Cut.p1;p2/.M1 �M2/D .Cutp1.M1/�M2/[ .M1 �Cutp2.M2//I

see [7, page 328]. For i 2 f1; 2g, let Ki be the union of the injectivity domain in TpiMi

with the tangent cut locus eCutpi .Mi /. Similar to the cut locus, the tangent cut locus of
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.p1; p2/ is given by

eCut.p1;p2/.M1 �M2/D .eCutp1.M1/�K2/[ .K1 �eCutp2.M2//

under the identification T.p1;p2/.M1�M2/ŠTp1M1�Tp2M2. For products of finitely
many manifolds, one iteratively derives analogous results for cut loci and tangent cut
loci.

We conclude that, if In WD Œ�1; 1�n, then the tangent cut locus of o in M D .T n; gf / is

eCuto.M/D @In:

See also [19, page 107] for the case nD 2. The boundary @In admits a stratification
@In D

Sn
kD1Ak of depth n, given as follows: For each k 2 f1; 2; : : : ; ng, we put

Jk WD f.i1; : : : ; ik/ 2Nk
j 1� i1 < � � �< ik � ng:

Then each Ak is given as the disjoint union Ak D
S
.i1;:::;ik/2Jk

Ai1;:::;ik , where

Ai1;:::;ik WD
˚
.x1; : : : ;xn/2I

n
W jxl jD1 if l 2fi1;i2; : : : ;ikg; jxl j<1 if l …fi1; : : : ;ikg

	
:

For .i1; : : : ; ik/ 2 Jk and j1; : : : ; jk 2 f�1; 1g, we put

Ai1;:::;ik ;j1;:::;jk

D
˚
.x1; : : : ; xn/ 2Rn W xi1 D j1; : : : ; xik D jk; jxl j< 1 if l … fi1; : : : ; ikg

	
:

Then the sets Ai1;:::;ik ;j1;:::;jk , where j1; : : : ; jk 2 f�1; 1g, are precisely the connected
components of Ai1;:::;ik .

Put Bk WD expo.Ak/. We claim that .B1; : : : ;Bn/ is a trivially covered stratification of
Cuto.M/. One checks that the connected components of each of the Bk are precisely
the sets

Bi1;:::;ik WD expo.Ai1;:::;ik / for .i1; : : : ; ik/ 2 Jk :

Moreover, for all .i1; : : : ; ik/ 2 Jk and all j1; : : : ; jk 2 f�1; 1g, the restriction

expojAi1;:::;ik;j1;:::;jk W Ai1;:::;ik ;j1;:::;jk ! Bi1;:::;ik

is a homeomorphism. From the explicit description of the Ai1;:::;ik , one derives that
.B1; : : : ;Bn/ is a stratification. It further follows from the above observations that

expojAi1;:::;ik W Ai1;:::;ik ! Bi1;:::;ik

is a trivial covering map for all .i1; : : : ; ik/ 2 Jk . Since k 2 f1; 2; : : : ; ng was chosen
arbitrarily, this shows that .B1; : : : ;Bn/ is trivially covered.
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We now want to prove that .B1; : : : ;Bn/ is indeed an inconsistent stratification of
Cuto.M/. For this purpose, let k 2 f2; 3; : : : ; ng, .i1; : : : ; ik/ 2 Jk and x 2 Bi1;:::;ik .
We assume without loss of generality that .i1; i2; : : : ; ik/D .1; 2; : : : ; k/. Then there
are y1; : : : ; yn�k 2 .�1; 1/ such that

x D expo.1; 1; : : : ; 1; y1; : : : ; yn�k/:
It further holds that

(7-1) exp�1K .fxg/D
˚
.j1; : : : ; jk; y1; : : : ; yn�k/ 2 ToM j j1; : : : ; jk 2 f�1; 1g

	
;

where K WD In and expK WD expojK W K ! M, which is a special case of the map
defined in (4-1). Let i 2 f1; 2; : : : ; kg and let yBi WD B1;:::;i�1;iC1;:::;k � Bk�1. Given
" > 0, put

U" WD expo

�
.1� "; 1C "/k �

n�kY
jD1

.yj � "; yj C "/

�
�M:

Then U" is an open neighborhood of x and, for sufficiently small " > 0, it holds that
yBi\U" has two components CCi and C�i . With IC WD .1�"; 1/ and I� WD .�1;�1C"/,

we put, for all j1; : : : ; ji�1; jiC1; : : : ; jk 2 f�1; 1g,

A˙j1;:::;ji�1;jiC1;:::;jk

WD

�
.j1; : : : ; ji�1; t; jiC1; : : : ; jk; q/

ˇ̌̌
t 2 I˙; q 2

n�kY
lD1

.yl � "; yl C "/

�
:

The two components CCi and C�i then satisfy

exp�1K .C˙i /D
[

j1;:::;ji�1;jiC1;:::;jk2f�1;1g

A˙j1;:::;ji�1;jiC1;:::;jk :

Combining this observation with (7-1) yields

eCuto.M/\ exp�1o .fxg/\ exp�1K .C˙i /

D
˚
.j1; : : : ;ji�1;˙1;jiC1; : : : ;jk;y1; : : : ;yn�k/ jj1; : : : ;ji�1;jiC1; : : : ;jk 2f�1;1g

	
;

In particular, exp�1o .fxg/\exp�1K .CCi /\exp�1K .C�i /D∅, implying that .B1; : : : ;Bn/
satisfies the inconsistency condition at x. Since x 2 Cuto.M/ was chosen arbitrarily,
this shows that .B1; : : : ;Bn/ is inconsistent. Note that in general Bk�1\U" has more
connected components than CCi and C�i , but considering these two components is
sufficient for proving the inconsistency condition.

Since T n is a Lie group and gf is left-invariant, it follows from Corollary 6.4 that

GC.T n; gf /D nC 1:
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Next we will compute the geodesic complexity of arbitrary two-dimensional flat tori.
The reader should note that, in general, the geodesic complexity of .T 2; g/ will vary
with the metric g; see Example 2.3(2). For arbitrary flat tori of higher dimensions, the
cut loci of points are not as well understood as in the two-dimensional case. While it
might be possible to extend our result to flat tori of higher dimensions, we are not aware
of any systematic study of cut loci of flat higher-dimensional tori in the literature.

For p; q 2R2, we let Œp; q�D f.1� t /pC tq 2R2 j t 2 Œ0; 1�g denote the line segment
from p to q.

Theorem 7.2 Let g be an arbitrary flat metric on T 2. Then GC.T 2; g/D 3.

Proof By elementary Riemannian geometry, .T 2; g/ is isometric to T 2 with a quotient
metric induced by the standard metric on R2 and a projection � WR2!R2=� D T 2,
where � �R2 is a lattice. We thus assume that g itself is such a quotient metric. Put
o WD �.0; 0/. We are going to describe eCuto.T 2/, following [19, page 108]. The case
that � is generated by two orthogonal vectors is covered in Example 7.1, so we assume
in the following that � is generated by two vectors a1; a2 2 R2 such that the angle
between a1 and a2 is acute.

If we identify ToM with R2, then eCuto.M/ is given by a hexagon whose construction
we will describe next. Consider the perpendicular bisectors of the line segments

Œ0; a1�; Œ0; a2�; Œ0;�a1�; Œ0;�a2�; Œ0; a1� a2�; Œ0; a2� a1�:

These perpendicular bisectors enclose a hexagon in R2; see Figure 1. The tangent
cut locus eCuto.M/ consists of the boundary curve of the hexagon, while the domain
of injectivity of expo is given by the interior of the hexagon. Let the segments and
the corner points of the hexagon be labeled as in Figure 1. Then there are p; q 2M
with p ¤ q such that p D expo.p1/ D expo.p2/ D expo.p3/ and q D expo.q1/ D
expo.q2/D expo.q3/.

For x; y 2 R2 we put ŒŒx; y�� WD Œx; y� X fx; yg. With p and q as above, the set
Cuto.M/X fp; qg has three connected components

A1 WD expo.ŒŒp1; q1��/D expo.ŒŒq2; p3��/;

A2 WD expo.ŒŒq1; p2��/D expo.ŒŒp3; q3��/;

A3 WD expo.ŒŒp2; q2��/D expo.ŒŒq3; p1��/:
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a2� a1 a2

q1

p2 p1

�a1 0 a1

q2 q3
p3

�a2 a1� a2

Figure 1: Tangent cut loci of flat two-dimensional tori.

More precisely, expo maps both ŒŒp1; q1�� and ŒŒq2; p3�� homeomorphically onto A1,
both ŒŒq1; p2�� and ŒŒp3; q3�� homeomorphically ontoA2, and both ŒŒp2; q2�� and ŒŒq3; p1��
homeomorphically onto A3.

Let S2 WD fp; qg and S1 WD A1 [A2 [A3. By construction, .S1; S2/ is a trivially
covered stratification of Cuto.T2; g/. We want to show that .S1; S2/ is inconsistent as
well. Let K � ToT 2 denote the union of eCuto.T 2; g/ with the domain of injectivity
of expo and let expK WK! T 2 be the restriction of expo to K. This is again a special
case of the map defined in (4-1). Let U � T 2 be an open neighborhood of p and put
Zi WDAi \U for all i 2 f1; 2; 3g. If U is chosen sufficiently small, then, by the above
description of eCuto.T 2; g/, there are x1 2 ŒŒp1; q1�� and x01 2 ŒŒq2; p3�� such that

exp�1K .Z1/D ŒŒx
0
1; p3��[ ŒŒp1; x1��:

Analogously, one shows that there are

x2 2 ŒŒq1; p2��; x02 2 ŒŒp3; q3��; x3 2 ŒŒp2; q2�� and x03 2 ŒŒq3; p1��

such that

exp�1K .Z2/D ŒŒx2; p2��[ ŒŒp3; x
0
2��; exp�1K .Z3/D ŒŒx

0
3; p1��[ ŒŒp2; x3��:

Since exp�1K .fpg/D fp1; p2; p3g, this shows that

exp�1K .fpg/\ exp�1K .Z1/D fp2; p3g;

exp�1K .fpg/\ exp�1K .Z2/D fp1; p3g;

exp�1K .fpg/\ exp�1K .Z3/D fp1; p2g:
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Consequently,

eCuto.T 2/\ exp�1o .fpg/\

3\
iD1

exp�1K .Zi /D∅;

which shows that .S1; S2/ satisfies the inconsistency condition at p. In complete
analogy, one shows that the condition is satisfied at q as well, implying that .S1; S2/ is
inconsistent. Since g is, by construction, left-invariant, it follows from Corollary 6.4
that GC.T 2; g/D 3.

7.2 Geodesic complexity of Berger spheres

In this subsection we consider a class of homogeneous Riemannian manifolds whose
geodesic complexity can be computed explicitly without making use of the upper and
lower bounds we previously studied. In [1], M Berger has constructed a one-parameter
family of homogeneous metrics g˛ for 0 < ˛ � �

2
on the three-dimensional sphere S3,

whose cut loci have been described by Sakai [38].

In the following, we will first recall a particularly interesting class of homogeneous
Riemannian manifolds, namely naturally reductive spaces. Berger spheres are special
cases of them and we will outline the construction of Berger’s metrics following [38].

Given a Lie group G, we always let e 2 G denote its unit element. Let g denote
the Lie algebra of G and assume that H is a closed subgroup of G. Then the Lie
algebra h of the Lie group H is a Lie subalgebra of g. If there is an AdH–invariant
subspace m of the Lie algebra g which is complementary to h then there is a bijective
correspondence between AdH–invariant inner products on m and G–invariant metrics
on the homogeneous space G=H. See [31, Proposition 11.22(2)] for details.

Definition 7.3 [31, page 317] Let G be a Lie group with a closed subgroup H. Let g
be the Lie algebra of G and h be the Lie algebra of H. Assume that there is a subspace
m� g which is complementary to h and such that AdH .m/�m, where AdH denotes
the adjoint representation of H. Suppose there is an AdH–invariant inner product h � ; � i
on m such that

hŒX; Y �m; Zi D hX; ŒY;Z�mi

for all X; Y;Z 2 m, where the subscript m of an element of g denotes its projection
onto m. Then G=H together with the G–invariant Riemannian metric corresponding
to this inner product is called a naturally reductive space.
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Example 7.4 All symmetric spaces are examples of naturally reductive spaces as
discussed in [31, page 317]. The real Stiefel manifolds Vk.Rn/ for n� 4 and 2� k �
n� 2 are examples of naturally reductive spaces which are not symmetric spaces; see
[18, page 748].

For our purposes, the crucial property of naturally reductive spaces is the observation
made in the following proposition. We refer to [31, Proposition 11.25] for its proof.

Proposition 7.5 Let G be a Lie group andH �G be a closed subgroup. IfM DG=H
is a naturally reductive space and � W G ! M is the projection , then the geodesics
starting at oD �.e/ are precisely the curves of the form 
.t/D �.exp.t�// for � 2m,
where exp W g!G is the Lie group exponential of G.

We proceed by constructing Berger spheres as naturally reductive spaces following the
exposition of [38]. Let G D SU.2/�R and let gD su.2/˚R be its Lie algebra. We
consider the AdG–invariant inner product on g given by

h.A; x/; .B; y/i D �1
2

Tr.AB/C xy for all .A; x/; .B; y/ 2 g:

For ˛ 2
�
0; �
2

�
, we define a linear subspace of g as

h˛ D

���
i l cos˛ 0

0 �i l cos˛

�
; l sin˛

�
2 g

ˇ̌̌
l 2R

�
:

Consider the closed subgroup H˛ �G, H˛ D exp.h˛/, where exp again denotes the
Lie group exponential of G. Explicitly, H˛ is given as

H˛ D

���
eil cos˛ 0

0 e�il cos˛

�
; l sin˛

� ˇ̌̌
l 2R

�
:

One checks that G=H˛ is diffeomorphic to S3. The orthogonal complement to h˛ in g

with respect to h � ; � i is the space

m˛ D

���
ir sin˛ aC ib

�aC ib �ir sin˛

�
;�r cos˛

�
2 g

ˇ̌̌
a; b; r 2R

�
:

A direct computation shows that m˛ is AdH˛–invariant. The restriction of the inner
product h � ; � i to m˛ �m˛ defines an AdH˛–invariant inner product on m˛ . We equip
the homogeneous space G=H˛ with the G–invariant metric that is defined by this inner
product and the abovementioned correspondence between G–invariant Riemannian
metrics on G=H˛ and AdH˛–invariant inner products on m˛.
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Since m˛ ? h˛ by construction, the space M˛ DG=H˛ equipped with the described
homogeneous metric is a naturally reductive space; see [18, Proposition 23.29]. Thus,
by Proposition 7.5, the geodesics in M˛ emanating from o are precisely the images of
the one-parameter groups in G under � of elements of m˛. For ˛ D �

2
, one further

observes that G=H˛ is isometric to the round sphere S3 of sectional curvature one; see
[28, page 77].

The following observation gives us a strong upper bound on GC.M˛/. We refer to [28,
Section 3] for its proof.

Proposition 7.6 For each ˛ 2
�
0; �
2

�
the Berger sphere M˛ is isometric to SU.2/

equipped with a left-invariant metric.

Combining Proposition 7.6 with Corollary 5.5 yields

(7-2) GC.M˛/� GCo.Cuto.M˛//C 1;

where oD �.1/. To compute GCo.Cuto.M˛//, we will outline the results from [38]
about the cut loci of M˛. For ˛ D �

2
, we already know that GC.M�=2/ D 2; see

Examples 2.3(1). Thus, in the following we fix ˛ 2
�
0; �
2

�
.

Let S �m˛ denote the unit sphere in m˛ with respect to the norm induced by h � ; � i
and let D�e W g! ToM˛ denote the differential of � in the unit e 2G. Consider the
isometric isomorphism of vector spaces

' WDD�ejm˛ Wm˛
Š�! ToM˛:

Then ' maps S to the unit sphere in ToM˛. Let  W ToM˛ ! ToM˛ be the radial
homeomorphism which maps the unit sphere homeomorphically onto the tangent cut
locus eCuto.M˛/ of o in M˛. Then the map F W S !eCuto.M˛/, F WD  ı 'jS is a
homeomorphism. We consider e1; e2 2m˛ given by

e1 D

��
0 1

�1 0

�
; 0

�
; e2 D

��
0 i

i 0

�
; 0

�
:

Let U WD spanR.fe1; e2g/ and let rU Wm˛!m˛ denote the reflection through U. Let
m1 and m2 denote the two components of m˛ XU and put Di WD S \mi for i 2 f1; 2g.
By the results of [38, page 151]:

� Cuto.M˛/D .expo ıF /.S/.

� expo ıF jD1 and expo ıF jD2 are injective.

� .expo ıF /.v/D .expo ıF /.rU .v// for all v 2D1[D2.

Algebraic & Geometric Topology, Volume 23 (2023)



Geodesic complexity of homogeneous Riemannian manifolds 2259

Hence, the map expo ıF jD1 is a bijective continuous map from a closed disk onto the
cut locus Cuto.M˛/. Since the disk is compact and Cuto.M˛/ is a Hausdorff space, this
shows that Cuto.M˛/ is homeomorphic to a closed disk. Moreover, expoıF jDi WDi!
M˛ is an embedding of Di onto Cuto.M˛/ for i 2 f1; 2g.

Theorem 7.7 For all ˛ 2
�
0; �
2

�
, it holds that GC.M˛/D 2.

Proof For ˛D �
2

, ie the case of a round metric, this is observed in [34, Proposition 4.1],
so we will only consider the case of ˛ 2

�
0; �
2

�
. In the notation from above, we put

E WD F.D1/ and let f W Cuto.M˛/!E, f WD .expo ıF jE /
�1. Define

s W fog �Cuto.M˛/!GM˛; .s.o; q//.t/D expo.t �f .q// for all t 2 Œ0; 1�:

By Proposition 7.5, the map s is a continuous geodesic motion planner, which shows

GCo.Cuto.M˛//D 1

and thus GC.M˛/� 2 by (7-2). Since GC.M˛/�TC.S3/D 2, this shows the claim.

Remarks 7.8 (1) As Recio-Mitter has shown [34, Example 2.4], there exists a
Riemannian metric gm on S3 for which GC.S3; gm/D 3. This shows that also in the
case of S3, the value of GC depends on the chosen metric.

(2) The cut locus of a point in the Berger sphere M˛ for 0 < ˛ < �
2

is a closed
disk. It therefore seems tempting to determine the geodesic complexity of M˛ via
a stratification of this cut locus similarly to what we have done in previous sections.
More precisely, an obvious stratification of a closed disk is given by taking one stratum
as its interior and another stratum as its boundary. However, this is not an inconsistent
stratification as in Definition 4.6 since we would then obtain GC.M˛/� 3, whereas we
have shown that GC.M˛/D 2.

(3) As this example is particularly instructive, we want to sketch briefly how to show
directly that the stratification from the previous paragraph is not inconsistent. Let
K � ToM˛ be the union of the injectivity domain with the tangent cut locus eCuto.M˛/.
Using the same notation as in the exposition above, put

S1 WD .expo ıF /. VD1/� Cuto.M˛/ and S2 WD .expo ıF /.@D1/� Cuto.M˛/:

Under the identification of Cuto.M˛/ and a closed disk, this is the decomposition from
part (2) of this remark. Evidently, this is a stratification in the sense of Definition 4.4.
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Let x 2 S2 and let U � M˛ be a neighborhood of x. For sufficiently small U, the
intersection U \S1 has only one connected component, which we call Z. We claim
that

eCuto.M˛/\ exp�1o .fxg/\ exp�1K .Z/¤∅:

By the above discussion of Cuto.M˛/, the intersection eCuto.M˛/\exp�1o .fxg/ consists
of a single point v 2 ToM˛ . By choosing a sequence in Z converging to x and recalling
that expo ıF jDi is a homeomorphism for i 2 f1; 2g, we see that

v 2 exp�1K .Z/:

This shows that

eCuto.M˛/\ exp�1o .fxg/\ exp�1K .Z/D fvg ¤∅:

Hence, the stratification .S1; S2/ of Cuto.M˛/ is not inconsistent.

8 Explicit upper bounds for symmetric spaces

In [36, Theorem 5.3], Sakai has determined the cut loci of compact simply connected
irreducible symmetric spaces. He showed that their cut loci always allow for strati-
fications for which each stratum is a submanifold. Since every symmetric space is a
Riemannian product of irreducible symmetric spaces, Sakai’s results are enough to
determine the cut loci of compact simply connected symmetric spaces in general; see
our explanations on cut loci of product manifolds in Example 7.1.

In this section, we will first apply the results from Section 5 to find an upper bound
for the geodesic complexity of a compact, simply connected, irreducible symmetric
space. From Sakai’s results, in particular [36, Proposition 4.10], we will further derive
estimates on the subspace geodesic complexities of the strata of a cut locus. These
numbers appeared on the right-hand side of the inequality in Corollary 5.8 and we
will show that they can be estimated from above by certain sectional categories. As a
result, we will obtain an upper bound for the geodesic complexity of compact, simply
connected, irreducible symmetric spaces given purely in terms of categorical invariants.

We begin by summarizing the main results of [36], stated here in the form of [37,
Section 4]. We assume basic knowledge on symmetric spaces that is provided by
textbooks in Riemannian geometry like [23] or [33]. In the following, we always let
Dfx denote the differential of a differentiable map f in the point x.
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Let M D G=K be a compact, simply connected and irreducible symmetric space,
where .G;K/ is a Riemannian symmetric pair. Explicitly, G is a compact, connected
Lie group, K is a closed, connected Lie subgroup of G and G admits an involutive
automorphism � W G ! G whose fixed-point set satisfies .Fix.�//0 � K � Fix.�/,
where .Fix.�//0 is the identity component of Fix.�/.

Let � W G!M denote the orbit space projection, let e 2 G denote the unit element
and put o WD �.e/ 2M. Let g and k denote the Lie algebras of G and K, respectively,
and let m � g be the �1 eigenspace of D�e. Then, since k is the C1 eigenspace
of D�e , there is a vector space decomposition gD k˚m. Furthermore, the restriction
D�ejm Wm! ToM is a linear isomorphism; see [23, Theorem IV.3.3].

In the following we give a concise overview of the most important notions related to
root systems of symmetric spaces:

� Let gC denote the complexification of g. By [23, page 284], there exists a Cartan
subalgebra h� gC . We recall that a root ˛ of the Lie algebra gC is an element of the
dual space h� such that there is a nonzero vector X 2 gC satisfying

ŒH;X�D ˛.H/X for all H 2 h:

The set of nonzero roots of the Lie algebra gC will be called R.

� Let a be a maximal abelian subalgebra of m, which again exists by [23, page 284].
We will call a a Cartan subalgebra of .G;K/.

A root ˛ 2R with ˛ja ¤ 0 will be called a root of the symmetric pair .G;K/. The set
of roots of the symmetric pair .G;K/ will be denoted by R.G;K/.

� By choosing a certain real subspace hR of the Cartan subalgebra h and defining a
lexicographic ordering on hR, one defines an ordering on the set of roots R; see [23,
page 173]. This defines a set of positive roots RC �R of gC . The set of positive roots
of .G;K/ is then defined as

R.G;K/C WDRC\R.G;K/:

There is a maximal element of R.G;K/C with respect to this ordering, which we
denote by ı and call the highest root of .G;K/.

� Let k be the rank of the symmetric space M DG=K. A simple root of .G;K/ is a
positive root ˛ which cannot be written as a sum ˛ D ˇC 
 with ˇ; 
 2 R.G;K/C.
There are precisely k simple roots and one finds that every positive root can be written
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as a linear combination of the simple roots with nonnegative integer coefficients; see
[23, Theorem VII.2.19]. Denote the system of simple roots of .G;K/ by �.G;K/.

� By virtue of the chosen AdK–invariant inner product on g, we will from now on
consider the roots to be vectors in a in order to follow [36, Section 2].

Based on this terminology, we next recall Sakai’s results on the structure of cut loci of
symmetric spaces. In the case that there are two or more positive roots of .G;K/, we
define a subset D of the power set of �.G;K/ by

D WD f�� �.G;K/ j�¤∅; ı …�g:

If there is only one positive root 
 , which is therefore also the only simple root and
also the highest root, define

D WD ff
gg:

Let h � ; � i denote the chosen AdK–invariant inner product on g and consider the Weyl
chamber of �.G;K/ that is given by

W WD fX 2 a j h
;Xi> 0 for all 
 2 �.G;K/g:

See [23, Section VII.2] for further details on Weyl chambers and their connection to
root systems. If there is more than one positive root, let

S� WD

fX 2W j h
;Xi>0 for all 
 2�; h
;XiD 0 for all 
 2�.G;K/X�; 2hı; XiD 1g

for each � 2 D. If there is just one positive root 
 , then set

Sf
g WD fX 2 a j 2h
;Xi D 1g:

Since a is one-dimensional in that case, Sf
g consists of a single point.

Let exp W g!G be the exponential map of G and put

Exp Wm!M; Exp WD � ı exp jm:

For � 2 D, we let

ẑ
� WK �S�!M; ẑ

�.k;X/D Exp.Ad.k/.X//;

and put Z� WD fk 2K j Exp.Ad.k/.X//D Exp.X/ for all X 2 S�g. One checks with-
out difficulties that Z� is a closed subgroup of K. As shown in [36, Proposition 4.10],
each ẑ� induces a differentiable embedding

ˆ� WK=Z� �S�!M:
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Put C� WD imˆ� for each � 2 D. By [36, Theorem 5.3], the cut locus of M at o is
then given by

Cuto.M/D
[
�2D

C�

and the C� satisfy

(8-1)
C�\C�0 D∅ for all �;�0 2 D; �¤�0;

C� D
[
�0��

C�0 for all � 2 D:

Let k be the rank of M. For i 2 f1; 2; : : : ; kg, we put

Di WD f� 2 D j #�D ig and Ci WD
[
�2Di

C�:

It follows from (8-1) that .Ck; Ck�1; : : : ; C1/ is a stratification of Cuto.M/ and that
the C� for � 2 Di are precisely the connected components of Ci . Since M is a
homogeneous Riemannian manifold, we thus obtain from Corollary 5.8 that

(8-2) GC.M/� secat.evo W Isom.M/!M/ �

kX
iD1

max
�2Di

GCo.C�/C 1:

It remains to find upper bounds on the numbers GCo.C�/.

Proposition 8.1 For each � 2 D, it holds that

GCo.C�/� secat.q� WK!K=Z�/;

where q� denotes the orbit space projection.

Proof Let r WD secat.q�/. Then, by Lemma 4.1, there are pairwise disjoint and locally
compact subsets B1; : : : ; Br �K=Z� such that, for each i 2 f1; 2; : : : ; rg, there is a
continuous local section si W Bi !K of q�. Using these si , we define

�i W fog �ˆ�.Bi �S�/!GM;
�
�i .o;ˆ�.x;X//

�
.t/D Exp

�
t �Ad.si .x//.X/

�
;

for every i 2 f1; 2; : : : ; rg. By construction, each �i is continuous and �i .o;ˆ�.x;X//
is a geodesic segment for all .x;X/ 2 Bi �S� and each i 2 f1; 2; : : : ; rg. Moreover,�

�i .o;ˆ�.x;X//
�
.0/D Exp.0/D o;�

�i .o;ˆ�.x;X//
�
.1/D Exp

�
Ad.s.x//.X/

�
Dˆ�.x;X/;

by definition of ˆ�. Thus, the �i are continuous geodesic motion planners. Since the
sets ˆ�.B1�S�/; : : : ; ˆ�.Br �S�/ are pairwise disjoint, locally compact and cover
ˆ.K=Z� �S�/D C�, this shows that GCo.C�/� r .
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Combining Proposition 8.1 with (8-2) yields the following upper bound:

Theorem 8.2 Let .G;K/ be a Riemannian symmetric pair and let M DG=K be the
corresponding symmetric space. Assume that M is compact , simply connected and
irreducible. Then , with Di and Z� given as above ,

GC.M/� secat.evo W Isom.M/!M/ �

rk.M/X
iD1

max
�2Di

secat.q� WK!K=Z�/C 1;

where rk.M/ denotes the rank of M.

Corollary 8.3 Let .G;K/ be a Riemannian symmetric pair and let M DG=K be the
corresponding symmetric space. Assume that M is compact , simply connected and
irreducible. Then , with Di and Z� given as above ,

GC.M/� cat.M/ �

rk.M/X
iD1

max
�2Di

cat.K=Z�/C 1:

Proof This is an immediate consequence of Theorem 8.2 and [39, Theorem 18].

We want to conclude by applying the upper bounds to two examples of compact
symmetric spaces whose cut loci have already been discussed in the works of Sakai,
more precisely in [36, Example 5.4; 35, Section 4.2].

Example 8.4 Consider the complex projective space CP nDU.nC1/=.U.1/�U.n//

with the Fubini–Study metric. This is a compact and simply connected symmetric space
of rank one. Its cut locus is studied in detail in [36, Example 5.4]. Let G D U.nC 1/,
let gD u.nC1/ be its Lie algebra and let K DU.1/�U.n/. Let gD k˚m denote the
decomposition of g with respect to the symmetric pair .G;K/. By the same methods
as in [23, page 452], which treats the Lie algebra of SU.n/, one computes that

kD

��
ia 0

0 �

� ˇ̌̌
a 2R; � 2 u.n/

�
and mD

��
0 NuT

�u 0

� ˇ̌̌
u 2Cn

�
:

Then a D spanR.fH0g/ is a Cartan subalgebra of .G;K/, where H0 D .hij / 2 g is
given by

hij D

8<:
�
2

if .i; j /D .1; nC 1/;
�
�
2

if .i; j /D .nC 1; 1/;
0 otherwise:

In particular, every system of simple roots of .G;K/ consists of a unique element. Let
o be the equivalence class of the neutral element of G in G=K DCP n. Then Cuto.M/
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consists of a unique submanifold, given by

Cuto.M/D fExp.Ad.k/.H0// j k 2 U.1/�U.n/g:

Sakai further showed that

Z0 WD fk 2 U.1/�U.n/ j Exp.Ad.k/.H0//D Exp.H0//g

can be identified with Z0 D U.1/�U.n� 1/�U.1/. Hence, by Proposition 8.1,

(8-3) GCM .Cuto.M//

� secat
�
U.1/�U.n/! .U.1/�U.n//=.U.1/�U.n� 1/�U.1//

�
:

One easily checks that the map

' W .U.1/�U.n//=.U.1/�U.n� 1/�U.1//! U.n/=.U.n� 1/�U.1//DCP n�1;

'.Œz; A�/D ŒA�;

where .z; A/2U.1/�U.n/, is a well-defined homeomorphism. Let p WU.n/!CP n�1

denote the principal U.1/–bundle over the homogeneous space CP n�1. Assume that
s W V ! U.n/ is a continuous local section of p over a subset V �CP n�1. Then we
obtain a continuous local section Qs W V ! U.1/�U.n/ of the principal fiber bundle

U.1/�U.n/! .U.1/�U.n//=.U.1/�U.n� 1/�U.1//

by setting Qs.'�1.p//D .z0; s.p// for p 2 V, where z0 2 U.1/ is a fixed element. This
shows that

secat
�
U.1/�U.n/!.U.1/�U.n//=.U.1/�U.n�1/�U.1//

�
�secat.U.n/!CP n�1/:

Hence, we derive from (8-3) that

GCo.Cuto.M//� secat.U.n/!CP n�1/� cat.CP n�1/D n;

where we used [39, Theorem 18] for the second inequality. The fact that cat.CP n�1/D
n is shown in [6, Example 1.51]. Eventually, by Theorem 5.4 and the same references,

GC.CP n/� secat.U.nC 1/!CP n/GCo.Cuto.M//C 1

� cat.CP n/ cat.CP n�1/C 1

D .nC 1/nC 1:

Since TC.CP n/ D 2n C 1, as computed in [14, Lemma 28.1], we derive using
Remark 2.4(1) that

2nC 1� GC.CP n/� .nC 1/nC 1 for all n 2N:

For nD 2, this shows that GC.CP 2/ 2 f5; 6; 7g.
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Example 8.5 Consider the complex Grassmann manifold

G2.C
4/D U.4/=.U.2/�U.2//:

As a quotient of a compact Lie group by a closed subgroup, G2.C4/ is compact. Let
V2.C4/ be the corresponding complex Stiefel manifold. As shown in Example 4.54
of [22], V2.C4/ is simply connected. Since the fiber U.2/ of the fibration V2.C4/!

G2.C4/ is connected, it follows from the long exact homotopy sequence of this fibration
that G2.C4/ is simply connected as well. The cut loci of G2.C4/ are discussed in [35,
Section 4.2; 36, Example 5.5]. The corresponding decomposition of the Lie algebra
gD u.4/ of G D U.4/ is given by gD k˚m, where

kD

��
˛ 0

0 ˇ

� ˇ̌̌
˛; ˇ 2 u.2/

�
and mD

��
0 �

�x�T 0

� ˇ̌̌
� 2M2.C/

�
:

Here, k is the Lie algebra of K D U.2/�U.2/. A Cartan subalgebra a�m is spanned
by

e1 WD
1

2�

0BB@
0 0 1 0

0 0 0 0

�1 0 0 0

0 0 0 0

1CCA and e2 WD
1

2�

0BB@
0 0 0 0

0 0 0 1

0 0 0 0

0 �1 0 0

1CCA :
By [36, page 143], one can define positive roots and simple roots of .U.4/; U.2/�U.2//
in such a way that 2e1D ı is the highest root and that a system of simple roots is given
by

�.G;K/D f
1; 
2g; where 
1 WD 2e2; 
2 WD e1� e2:

Thus, in the notation from above, DDf�0; �1; �2g, where �0Df
1; 
2g, �1Df
1g
and �2 D f
2g. With Si WD S�i for i 2 f0; 1; 2g, one computes that

S0 D f�
2e1C�e2 2 a j � 2 .0; �

2/g; S1 D f�
2e1g; S2 D f�

2.e1C e2/g:

We further put Zi WDZ�i for each i . By computing the corresponding matrix expo-
nentials, we obtain

Z1 D fdiag.a; b; c; d/ 2 U.2/�U.2/ j a; b; c; d 2 U.1/g Š U.1/4:

Since U.2/=.U.1/�U.1// is diffeomorphic to CP 1 Š S2, it follows that K=Z1 Š
S2 � S2. Hence, cat.K=Z1/ D cat.S2 � S2/ � 3 by the product inequality for cat;
see [6, Theorem 1.37]. One further computes by matrix exponentials that Z2 DK, so
K=Z2 consists of a single point, which yields cat.K=Z2/D 1. By [36, Lemma 4.9],

Algebraic & Geometric Topology, Volume 23 (2023)



Geodesic complexity of homogeneous Riemannian manifolds 2267

for every fixed X 2 S0 we obtain Z0 D fk 2 K j Exp.Ad.k/.X// D Exp.X/g. We
choose X D �2e1C 1

2
�2e2 and claim that

Z0 D fdiag.a; b; c; b/ 2 U.2/�U.2/ j a; b; c 2 U.1/g:

To see this, we compute that

exp.X/D

0BBB@
0 0 1 0

0 1p
2
0 1p

2

�1 0 0 0

0 � 1p
2
0 1p

2

1CCCA :
The condition Exp.Adk.X//D Exp.X/ is equivalent to exp.�X/k exp.X/ 2K: One
then checks by an explicit computation that k 2K satisfies this condition if and only if

k D diag.a; b; c; b/ with a; b; c 2 U.1/:

Hence, K ! K=Z0 is a bundle with typical fiber U.1/3, where an inclusion of the
fiber is given by

f W U.1/3! U.2/�U.2/; f .a; b; c/D diag.a; b; c; b/:

We want to show that K=Z0 is simply connected. By the long exact sequence of
homotopy groups of that bundle, it suffices to show that f� W �1.U.1/3/! �1.U.2/

2/

is surjective. Let 
 W Œ0; 1�! U.1/, 
.t/ D e2�it . We observe that �1.U.1/3/ Š Z3.
A set of generators of �1.U.1/3/ is given by the homotopy classes of the loops

1; 
2; 
3 W Œ0; 1�! U.1/3 defined as


1.t/D .
.t/; 1; 1/; 
2.t/D .1; 
.t/; 1/; 
3.t/D .1; 1; 
.t//:

We further observe that �1.U.2/2/ Š Z2, where a set of generators is given by the
homotopy classes of

ˇ1;ˇ2W Œ0;1�!U.2/�U.2/; ˇ1.t/Ddiag.
.t/;1;1;1/; ˇ2.t/Ddiag.1;1;
.t/;1/:

Here we used [4, Example VII.8.1]. One immediately sees that f ı 
1 D ˇ1 and
f ı 
3 D ˇ2. This shows that the image f� contains a set of generators, and hence f�
is surjective. Thus, �1.K=Z0/ is the trivial group, which implies by [6, Theorem 1.50]
that

cat.K=Z0/�
1
2

dim.K=Z0/C 1D 5
2
C 1D 7

2
:

Since cat is integer-valued, we obtain cat.K=Z0/� 3. To employ Corollary 8.3, we
still need to estimate cat.G2.C4// from above. Another use of [6, Theorem 1.50]
shows that

cat.G2.C
4//� 1

2
dim.G2.C4//C 1D 5:
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Inserting the results of our computations into Corollary 8.3, we derive

GC.G2.C
4//� cat.G2.C

4//
�
cat.K=Z0/Cmaxfcat.K=Z1/; cat.K=Z2/g

�
C 1

� 5.3C 3/C 1D 31:

By [14, Lemma 28.1], it further holds that TC.G2.C4// D dim.G2.C4//C 1 D 9.
Thus, by the previous inequality and Remarks 2.4, we obtain

9� GC.G2.C
4//� 31:
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Adequate links in thickened surfaces
and the generalized Tait conjectures

HANS U BODEN

HOMAYUN KARIMI

ADAM S SIKORA

We apply Kauffman bracket skein algebras to develop a theory of skein adequate
links in thickened surfaces. We show that any alternating link diagram on a surface is
skein adequate. We apply our theory to establish the first and second Tait conjectures
for adequate links in thickened surfaces. Our notion of skein adequacy is broader and
more powerful than the corresponding notions of adequacy previously considered for
link diagrams in surfaces.

For a link diagram D on a surface † of minimal genus g.†/, we show that

span.ŒD�†/� 4c.D/C 4jDj � 4g.†/;

where ŒD�† is its skein bracket, jDj is the number of connected components of D,
and c.D/ is the number of crossings. This extends a classical result of Kauffman,
Murasugi and Thistlethwaite. We further show that the above inequality is an equality
if and only if D is weakly alternating. This is a generalization of a well-known result
for classical links due to Thistlethwaite. Thus, the skein bracket detects the crossing
number for weakly alternating links. As an application, we show that the crossing
number is additive under connected sum for adequate links in thickened surfaces.

57K10, 57K12; 57K14, 57K31

1 Introduction

The Kauffman bracket is a ZŒA˙1�–valued invariant of framed links in R3 determined
by the skein relations

(1) �A �A�1 and � ı;

where ı D�A2�A�2.
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It naturally extends to an invariant of framed links in an arbitrary oriented 3–manifoldM
(possibly with boundary), via the skein module construction: Let L .M/ be the set
of all unoriented, framed links in M, including the empty link ¿. The skein module
S .M/ of M is the quotient of the free ZŒA˙1�–module spanned by L .M/ by the
submodule generated by the Kauffman bracket skein relations (1); see Przytycki [44]
and Turaev [50; 51].

By this construction, the bracket

Œ � � WL .M/!S .M/;

sending framed links to their equivalence classes in S .M/, called the skein bracket, is
the universal invariant of framed links in M satisfying (1).

Independently of this initial motivation, skein modules quickly began to play a much
broader role in the development of quantum topology, for example in connection with
SL.2;C/ character varieties (see Bullock [12], Przytycki and Sikora [45], Frohman,
Kania-Bartoszynska and Lê [25], Turaev [51] and Bullock, Frohman and Kania-
Bartoszynska [13]), topological quantum field theory (see Blanchet, Habegger, Mas-
baum and Vogel [7] and Turaev [52]), (quantum) Teichmüller spaces and (quantum) clus-
ter algebras (see Bonahon and Wong [11], Costantino [17], Fock and Goncharov [22],
Fomin, Shapiro and Thurston [23] and Muller [42]), the AJ conjecture (see Frohman,
Gelca and Lofaro [24] and Lê [36]), and many more.

Here we develop a general theory of skein adequacy (called adequacy, for short) for
links in thickened surfaces with the aid of skein modules.

Let † be an oriented surface and I D Œ0; 1� be the unit interval. The skein module of
the thickened surface †�I comes naturally equipped with a product structure given by
stacking, ie the product L1 �L2 is defined by placing L1 on top of L2 in †� I. With
this product structure, the skein module S .†� I / becomes an algebra over ZŒA˙1�.

Let C .†/ denote the set of all nontrivial unoriented simple loops on† up to isotopy and
MC .†/ denote the set of all nontrivial unoriented multiloops on †, ie collections of
pairwise disjoint simple noncontractible loops, including ¿, up to isotopy. Then, by [44]
(cf Sikora and Westbury [46]), the skein module S .†� I / is a free ZŒA˙1�–module
with basis MC .†/. Consequently, via this identification, the skein bracket gives a map

(2) Œ � �† WL .†� I /!S .†� I /D ZŒA˙1�MC .†/:

We use the association (2) to develop a theory of skein adequacy for links in †� I
which extends that for classical links. This theory is broader and more powerful than the

Algebraic & Geometric Topology, Volume 23 (2023)
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corresponding notions of simple adequacy (see Lickorish and Thistlethwaite [38]) and
homological adequacy (see Boden and Karimi [8]). For example, we will see that every
weakly alternating link in†�I without removable nugatory crossings is skein adequate.

We will apply the skein bracket to establish the first and second Tait conjectures for skein
adequate link diagrams on surfaces. The first one says that skein adequate diagrams have
minimal crossing number, and the second one says that two skein adequate diagrams
for the same oriented link have the same writhe. (The writhe of a link diagram D is
denoted by w.D/ and is defined to be the sum of its crossing signs.) These results
strengthen the earlier work of Adams, Fleming, Levin and Turner [3], who showed the
minimal crossing number result for reduced alternating knot diagrams in surfaces. We
also strengthen the minimality result of [8] for homologically adequate link diagrams in
surfaces, and further show that any connected sum of two skein adequate link diagrams
on surfaces is again skein adequate. This implies that the crossing number and writhe are
essentially additive under connected sum of skein adequate links in thickened surfaces.

For any link diagram D on a surface † of minimal genus, we prove that

span.ŒD�†/� 4c.D/C 4jDj � 4g.†/;

where jDj is the number of connected components ofD, c.D/ is the number of crossings
and g.†/ is the genus of †. This inequality generalizes a result proved by Kauffman,
Murasugi and Thistlethwaite for link diagrams on R2 [31; 43; 48], extending their
nice geometric application of the Kauffman bracket. It also extends and strengthens
an analogous recent result proved in [8] using the homological Kauffman bracket.

Additionally, we prove that the above inequality is an equality if and only ifD is weakly
alternating. Therefore, the skein bracket, together with the crossing number, distin-
guishes weakly alternating links. That generalizes the analogous result of Thistlethwaite
for classical links.

Broader context and motivation

While the results presented here are new only for links in noncontractible surfaces,
generalized link theory is of growing interest and has many potential connections to
classical links and 3–dimensional geometry. We take a moment to discuss some of them.

One motivation for our results is their connection to the theory of virtual knots and links,
which can be viewed as links in thickened surfaces, considered up to homeomorphisms

Algebraic & Geometric Topology, Volume 23 (2023)
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and stabilization; see Carter, Kamada and Saito [14]. By Kuperberg’s theorem [33],
minimal genus realizations of virtual links are unique up to homeomorphism. Our
theory of adequate and alternating links in thickened surfaces is invariant under surface
homeomorphisms and, therefore, many of the results given here can be restated in the
language of virtual links.

A second motivation involves potentially novel applications to classical link theory. The
Turaev surface construction associates to any classical link diagram an alternating link in
a thickened surface; see Turaev [49], Dasbach, Futer, Kalfagianni, Lin and Stoltzfus [18]
and Champanerkar and Kofman [15]. Menasco [40] famously proved hyperbolicity
for prime alternating (nontorus) links in S3, and his result has been extended to prime
alternating links L�†� I by Adams, Albors-Riera, Haddock, Li, Nishida, Reinoso
and Wang [1]. This result opens the door to using the hyperbolic geometry of alternating
links in higher-genus surfaces to profitably study nonalternating classical links; eg
see Adams, Eisenberg, Greenberg, Kapoor, Liang, O’Connor, Pachecho-Tallaj and
Wang [2] and the many other papers cited below.

Dasbach and Lin [19] proved a remarkable result giving a bound on the volume of
alternating link complements in terms of the second and penultimate coefficients of
the Jones polynomial. Lackenby [34] established an equally remarkable bound on the
volume of alternating link complements in terms of the diagrammatic twist number.
For alternating hyperbolic links in S3, the results of [19] imply that the twist number
is essentially an isotopy invariant of L, but this is not true in general.

These methods have been generalized to nonalternating hyperbolic links in S3 (see Blair,
Allen and Rodriguez [5; 6]) and to hyperbolic links in arbitrary compact oriented 3–
manifolds by Howie and Purcell [27]. In general, there is a notion of weakly generalized
alternating link diagrams on surfaces due to Howie [26], extended to links in compact
oriented 3–manifolds via “generalized projection surfaces” by Howie and Purcell [27].

The volume bounds have been extended to alternating links in thickened surfaces
by Bavier and Kalfagianni [4] and Will [53] and also to virtual alternating links by
Champanerkar and Kofman [16]. In [16; 53], the volume bounds are expressed in terms
of the Jones–Krushkal polynomial — see Krushkal [32] and Boden and Karimi [8] —
and in [4] they are expressed in terms of a skein invariant derived from fully contractible
smoothings. In [4, Corollary 1.3], they deduce that, for certain alternating links in
thickened surfaces, the twist number is an isotopy invariant. Interestingly, this result is
consistent with the generalized Tait flyping conjecture.

Algebraic & Geometric Topology, Volume 23 (2023)
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2 State sum formula and the generalized Jones polynomial

We will assume throughout that † is an oriented surface with one or more connected
components, which may also have boundary. Links in †� I will be represented as
diagrams on † up to Reidemeister moves.

Every framed link in†�I can also be represented by a link diagram with framing given
by the blackboard framing. Equivalence of framed links is given by regular isotopy,
which includes the second and third Reidemeister moves, as well as the modified first
Reidemeister move, which replaces or with .

Let D be a link diagram on a surface †. Given a crossing of D, we consider its
A–type and B–type resolution, as in the Kauffman bracket construction. A
choice of resolution for each crossing of D is called a state. Let S.D/ denote the set
of all states of D. Thus, jS.D/j D 2c.D/, where c.D/ is the crossing number of D.

For S 2 S.D/, let jS j denote the number of loops in S and t .S/ the number of
contractible loops in S. Also let yS denote S with contractible loops removed. Hence,
yS 2MC .†/. Generalizing the usual formula for the classical Kauffman bracket, we
get the following state sum formula as an immediate consequence of the definition:

(3) ŒD�† D
X

S2S.D/

Aa.S/�b.S/ıt.S/ yS 2 ZŒA˙1�MC .†/;

where a.S/ and b.S/ are the numbers ofA– andB–smoothings in S and ıD�A2�A�2

as before. A similar formula appears in the paper of Dye and Kauffman on the surface
bracket polynomial [21].

Any invariant of framed links in †� I satisfying (1) can be normalized to obtain a
Jones-type polynomial invariant of oriented links. In the case of the skein bracket (2),
one obtains the generalized Jones polynomial, an invariant for oriented links in †� I
given by

(4) J†.D/D .�1/
w.D/t3w.D/=4.ŒD�†/ADt�1=4 :

3 Adequate link diagrams in surfaces

Given a link diagram D, let SA be the pure A state and let SB be the pure B state.
Then SA and SB are the states which theoretically give rise to the terms of maximal
and minimal degree in (3). The notion of adequacy of a link diagram is designed to
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guarantee that the terms from SA and SB survive in the state sum formula. Therefore,
when D is a skein adequate diagram, its skein bracket ŒD�† has maximal possible span.

Two states S and S 0 are said to be adjacent if their resolutions differ at exactly one
crossing.

Definition 1 A link diagramD on a surface† is said to beA–adequate if t .S/� t .SA/
or yS ¤ ySA in MC .†/ for any state S adjacent to SA. It is said to be B–adequate if
t .S/� t .SB/ or yS ¤ ySB for any state S adjacent to SB . The diagram D is called skein
adequate if it is both A– and B–adequate.

The notions of A– and B–adequacy are modeled on the notions of plus- and minus-
adequacy for classical links [37]. Recall that a classical link diagram is said to be
plus-adequate if jS j D jSAj�1 for any state S adjacent to SA, and it is minus-adequate
if jS j D jSB j � 1 for any state S adjacent to SB . This simpler notion of adequacy
extends verbatim to link diagrams on surfaces. For link diagrams on surfaces, plus-
and minus-adequacy is a special case of the notion of homological adequacy, which
was introduced in [8] and will be reviewed in Section 4. We will see that adequacy as
defined above is more general than simple or homological adequacy.

The following provides an alternative definition of adequacy:

Proposition 2 (1) A link diagramD on† isA–adequate if and only if t .S/� t .SA/
or j yS j ¤ j ySAj for any state S adjacent to SA.

(2) A link diagramD on † is B–adequate if and only if t .S/� t .SB/ or j yS j ¤ j ySB j
for any state S adjacent to SB .

Proof We begin with some general comments. Given a link diagram D and two
adjacent states S and S 0, the transition from S to S 0 is one of the following types:

(i) jS 0j D jS jC 1, ie one cycle of S splits into two cycles of S 0.

(ii) jS 0j D jS j � 1, ie two cycles of S merge into one cycle of S 0.

(iii) jS 0j D jS j, ie one cycle C of S rearranges itself into a new cycle C 0 of S 0.1

In cases (ii) and (iii), either t .S 0/� t .S/ or bS 0¤ yS. Specifically, in case (ii), t .S 0/>t.S/
only when two nontrivial parallel cycles in S merge to form one trivial cycle in S 0,
which implies that yS ¤ bS 0. Likewise, in case (iii), we claim that neither C nor C 0 is

1The transition S ! S 0 in this case is called a single cycle bifurcation.
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trivial and, consequently, t .S 0/D t .S/. To see that, note that, if S 0 is obtained from S

by a smoothing change of a crossing x, then there are two simple closed loops ˛; ˇ�†
intersecting at x only and such that the two different smoothings of x yield C and C 0.
Assigning some orientations to ˛ and ˇ, we see that C and C 0 with some orientations
equal ˙.˛Cˇ/ and ˙.˛�ˇ/ in H1.†/. Since the algebraic intersection number of ˛
and ˇ is 1, we know that ˛ ¤˙ˇ and, consequently, neither C nor C 0 is trivial.

Therefore, to verify that a given diagram is A– or B–adequate, it is enough to check
that the conditions of Definition 1 hold in case (i).

We will now prove part (1). Suppose S is a state adjacent to SA with t .S/D t .SA/C1.
Then the transition from SA to S must either be case (i) or (ii).

If it is case (i), then jS j D jSAj C 1 and t .S/D t .SA/C 1; therefore, yS D ySA. Thus,
D is not A–adequate and j yS j D j ySAj. If it is case (ii), then jS j D jSAj � 1, and two
nontrivial cycles of SA must merge into a trivial cycle of S. In this case, the conditions
for A–adequacy are satisfied and j yS j ¤ j ySAj.

The proof of part (2) is similar and is left to the reader.

For any diagram D, its bracket has a unique presentation

ŒD�† D
X
�

p�.D/� 2S .†� I /;

where the sum is over all multiloops � in †. Denote the maximal and minimal degrees
(in the variable A) of the nonzero polynomials p�.D/ in this expression by dmax.ŒD�†/

and dmin.ŒD�†/.

Proposition 3 For any link diagram D on †,

(1) dmax.ŒD�†/� c.D/C 2t.SA/, with equality if D is A–adequate;

(2) dmin.ŒD�†/� �c.D/� 2t.SB/, with equality if D is B–adequate.

Proof (1) By (3), ŒD�† is given by a state sum with term .�1/t.SA/Ac.D/C2t.SA/ ySA

for the state SA. Now the inequality of (1) follows from the fact that every change of a
smoothing in SA decreases a.S/� b.S/ by two and increases t .S/ by at most one.

The proof of equality in (1) when D is A–adequate follows immediately from part (1)
of the lemma below.

The proof of (2) is analogous, and the proof of equality in (2) when D is B–adequate
follows from part (2) of the lemma below.
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Lemma 4 (1) If D is A–adequate and S is a state with at least one B–smoothing ,
then either

a.S/� b.S/C 2t.S/ < c.D/C 2t.SA/ or yS ¤ ySA:

(2) If D is B–adequate and S is a state with at least one A–smoothing , then either

a.S/� b.S/C 2t.S/ > �c.D/� 2t.SB/ or yS ¤ ySB :

Proof We prove (1) by contradiction: Suppose to the contrary that S is a state with at
least one B–smoothing such that yS D ySA and

a.S/� b.S/C 2t.S/D c.D/C 2t.SA/:

Clearly, S can be obtained from SA by a sequence of smoothing changes from A to B,
SADS0!S1!� � �!Sk DS. Further, each smoothing change must increase t . � / by
one, ie t .SiC1/D t .Si /C1 for iD0; : : : ; k�1. Since each smoothing change increases
the number of cycles in a state by at most one, none of these smoothing changes can
add a new cycle to ySi for i D 0; : : : ; k. Therefore, j ySiC1j � j ySi j for i D 0; : : : ; k� 1.
However, since yS D ySA, none of the smoothing changes can decrease j ySi j either. It
follows that ySiC1 D ySi for i D 0; : : : ; k� 1. Thus, j ySiC1j D j ySi j and

jSiC1j D t .SiC1/Cj ySiC1j D t .Si /C 1Cj ySi j D jSi jC 1

for i D 0; : : : ; k�1. In particular, each transition Si! SiC1 is of type (i), as discussed
in the proof of Proposition 2, ie one where a cycle of Si splits into two cycles of SiC1.

However, since D is A–adequate, the first smoothing change SA D S0! S1 has either
t .S1/� t .SA/ or yS1 ¤ ySA, which is a contradiction.

This completes the proof of the first statement. The proof of the second one is similar
and is left to the reader.

The next result is an immediate consequence of Proposition 3. Below, span.ŒD�†/
denotes the difference between the maximal and minimal A–degree of ŒD�†.

Corollary 5 If D is a link diagram on †, then

span.ŒD�†/� 2c.D/C 2t.SA/C 2t.SB/;

with equality if D is skein adequate.

The map ‰ WMC .†/! ZŒz� sending S to zjS j extends linearly to the skein module,

‰ WS .†� I /D ZŒA˙1�MC .†/! ZŒA˙1; z�:
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The composition ‰.ŒD�†/ is called the reduced homotopy Kauffman bracket. Obvi-
ously,

span.‰.ŒD�†//� span.ŒD�†/;

where span. � / refers to the span in the A–degree.

Proposition 6 If D is a skein adequate link diagram on †, then

span.‰.ŒD�†//D span.ŒD�†/:

Proof Let S be a state with at least one B–smoothing such that j yS j D j ySAj and
a.S/ � b.S/ C 2t.S/ D c.D/ C 2t.SA/. As before, S can be obtained from SA

by a sequence of smoothing changes from A to B, and each smoothing change can
increase t . � / by at most one, ie SA D S0 ! S1 ! � � � ! Sk D S. As in the proof
of Lemma 4, we must have t .SiC1/D t .Si /C 1. Further, since a smoothing change
can increase the number of cycles in Si by at most one, we have j ySiC1j � j ySi j for
i D 0; : : : ; k�1. Now the assumption that j yS jD j ySAj then implies that j ySiC1jD j ySi j for
i D 0; : : : ; k� 1. However, since D is adequate, for the first transition SA D S0! S1,
either t .S1/ ¤ t .S0/C 1 or yS1 ¤ yS0. But t .S1/ D t .S0/C 1 and j yS1j D j yS0j imply
that yS1 D yS0, which gives a contradiction.

Therefore, the term with maximum A–degree in ‰.ŒD�†/ must survive. A similar
argument applies to show that the term with minimumA–degree survives. It follows that

span.‰.ŒD�†//D 2c.D/C 2t.SA/C 2t.SB/D span.ŒD�†/:

The next proposition shows that skein adequacy is inherited under passing to subsurfaces
†0 �†.

Proposition 7 If a link diagram D on a subsurface †0 of † is A– or B–adequate in †,
then it is A– or B–adequate , respectively, in †0.

Proof In the following, let t .S;†/ be the value of t .S/ when S is regarded as a state
in †, and let t .S;†0/ be its value when S is regarded as a state in †0.

Suppose D is not A–adequate in †0. By Proposition 2, there exists a state S adjacent
to SA with t .S;†0/D t .SA; †0/C1 and j yS j D j ySAj in †0. In particular, jS j D jSAjC1,
and the transition from SA to S must involve one cycle C of SA splitting into two
cycles C1 and C2 of S. At least one of C1 and C2 must be trivial in †0, for otherwise
t .S;†0/� t .SA; †

0/. If, say, C1 is trivial in†0, then it must also be trivial in†, because
†0 �† is a subsurface.
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As a cycle in †, C is either trivial or nontrivial. If it is trivial, then C2 must also
be trivial in †, and so in fact all three of C , C1 and C2 are trivial. This implies
that t .S;†/ D t .SA; †/C 1 and j yS j D j ySAj in †, contradicting the assumption of
A–adequacy of D.

If, on the other hand, C is nontrivial in †, then C2 must also be nontrivial in †. This
again implies that t .S;†/D t .SA; †/C 1 and j yS j D j ySAj in †, leading to the same
contradiction. Therefore, D must be A–adequate on †0.

The proof of B–adequacy of D is identical.

4 Skein and homological adequacy

For completeness of discussion, in this section we compare Definition 1 of skein
adequacy to two legacy versions, namely simple and homological adequacy. We will
see that our notion of adequacy is broader and that the statements of Lemma 4 and
Corollary 5 are strictly stronger than the corresponding statements for simple and
homological adequacy. Henceforth, we will say a link diagram on a surface is adequate
if it is skein adequate.

For any state S �†, let us denote the ranks of the kernel and the image of

i� WH1.S IZ=2/!H1.†IZ=2/;

by k.S/ and r.S/, respectively.

The homological Kauffman bracket,

hDi† D
X

S2S.D/

Aa.S/�b.S/ık.S/zr.S/;

was introduced by Krushkal [32] and studied in [8].

Based on this invariant, Boden and Karimi [8] introduced the notion of homological
adequacy for link diagrams in surfaces. A diagramD on† is homologicallyA–adequate
if k.S/� k.SA/ for any state S adjacent to SA, and it is homologically B–adequate if
k.S/� k.SB/ for any state S adjacent to SB . A diagram D is homologically adequate
if it is both homologically A– and B–adequate.

It is not difficult to show that a diagram that is plus-adequate is homologically A–
adequate, and one that is minus-adequate is homologically B–adequate. (For further
details, see [8, Section 2.2].)
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Figure 1: An alternating diagram on the torus.

Proposition 8 Every homologicallyA–adequate link diagram isA–adequate and every
homologically B–adequate link diagram is B–adequate.

Proof Recall from the discussion at the beginning of the proof of Proposition 2
that there are the three possible cases and, to verify that a given diagram is A– or
B–adequate, it is enough to check that the conditions of Definition 1 hold in case (i).
Hence, it is enough to focus on states S adjacent to SA or SB with jS j D jSAjC 1 or
jS j D jSB jC 1, respectively.

If D is not A–adequate, then there exists a state S adjacent to SA with jS j D jSAjC 1,
t .S/D t .SA/C 1 and yS D ySA. (Notice that if jS j D jSAj C 1 and t .S/D t .SA/C 1,
then yS D ySA automatically holds.) In this case, we have k.S/ D k.SA/C 1, and it
follows that D is not homologically A–adequate. This proves the first statement in the
proposition, and the proof of the second statement on B–adequacy is similar.

In summary, then, for a link diagram D on a surface †, it follows that

(5) plus-adequacy D) homological A–adequacy D) A–adequacy;

with similar statements relating minus-adequacy, homological B–adequacy, and B–
adequacy.

In Example 20, we will see a knot diagram in a genus two surface which is adequate
but not homologically adequate. On the other hand, it is easy to construct examples
which are homologically adequate but not simply adequate. For instance, consider the
alternating diagram D with three crossings on the torus in Figure 1. A straightforward
calculation shows that it is homologically adequate but not simply adequate. These
examples show that none of the reverse implications in (5) hold; therefore, the notion
of adequacy in Definition 1 is strictly more general than either homological or simple
adequacy.
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In general, notice that

span.hDi†/� span.ŒD�†/� 2c.D/C2t.SA/C2t.SB/� 2c.D/C2k.SA/C2k.SB/;

where span. � / is the span in the A–degree. Therefore, Corollary 5 immediately implies
an analogous inequality holds for homological adequacy; see [8, Corollary 2.7].

5 Alternating links and the Tait conjectures

When tabulating knots, Tait formulated three conjectures on alternating links. The
first one states that any reduced alternating diagram of a classical link has minimal
crossing number. The second one asserts that any two such diagrams representing the
same link have the same writhe. The third one states that any two reduced alternating
diagrams of the same link are related by flype moves. The first two conjectures were
resolved almost 100 years later, independently by Kauffman [31], Murasugi [43] and
Thistlethwaite [48], using the newly discovered Jones polynomial. The third conjecture
was established shortly after by Menasco and Thistlethwaite [41]. The first two Tait
conjectures actually hold more generally for adequate links [38], and their proofs have
been generalized to homologically adequate links in thickened surfaces in [8]. Here,
we generalize these results even further to adequate links in thickened surfaces.

Henceforth, all links in thickened surfaces will be unframed, unless stated otherwise.
Given an oriented link diagram D, let cC.D/ be the numbers of crossings of type ,
and let c�.D/ be the number of crossings of type . The proof of the following
theorem can be found in Section 7.1:

Theorem 9 Let D and E be oriented link diagrams on † representing the same
oriented unframed link in †� I.

(i) If D is A–adequate , then c�.D/� c�.E/.

(ii) If D is B–adequate , then cC.D/� cC.E/.

The crossing number c.L/ of a link L � † � I is defined as the minimal crossing
number among all diagram representatives ofL. A linkL�†�I is said to be adequate
if it admits an adequate diagram on †.

Using Theorem 9, one can deduce the first and second Tait conjectures for adequate
links in surfaces.
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Corollary 10 (i) Any adequate diagram of a link in †� I has c.L/ crossings.

(ii) Any two adequate diagrams of the same oriented link in †� I have the same
writhe.

Proof Statements (i) and (ii) are immediate consequences of Theorem 9. In the
case of (ii), if adequate diagrams D and E represent the same oriented link, then
cC.D/D cC.E/ and c�.D/D c�.E/ by the above theorem and, hence,

w.D/D cC.D/� c�.D/D cC.E/� c�.E/D w.E/:

Corollary 10 implies that for an adequate link L�†� I, the writhe is a well-defined
invariant of its oriented link type.

Let g.†/ be the sum of the genera of the connected components of †. A link diagram
D on † is minimally embedded if it does not lie on a subsurface of † of smaller genus.
In other words, the complement of D on † has no nonseparating loops. Let ND be a
neighborhood of D in † small enough that it is a ribbon surface retractable onto D. A
diagram D is minimally embedded if and only if g.ND/D g.†/.

Furthermore, note that, if D is connected and † is closed, then D is minimally
embedded if and only if †XD is composed of disks. In that case, we say that D is
cellularly embedded.

A link diagram D on a closed surface † is said to have minimal genus if it is minimally
embedded within its isotopy class.

In [39], it is proved that any cellularly embedded knot diagram with minimal crossing
number has minimal genus. This result was recently extended to link diagrams, and
the following is a restatement of [10, Theorem 1]:

Theorem 11 Any cellularly embedded link diagram with minimal crossing number
has minimal genus.

A link diagram D on † is alternating if, when traveling along any of its components,
its crossings alternate between over and under. A link L�†� I is alternating if it
can be represented by an alternating link diagram.

A crossing x of D is nugatory if there is a simple loop in † which separates † and
intersects D only at x.
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Figure 2: An essential nugatory crossing.

As observed in [8], although nugatory crossings in diagrams in †DR2 can always be
removed by rotating one side of the diagram 180ı relative to the other, this is not always
true for diagrams in noncontractible surfaces †; see Figure 2. A nugatory crossing
is said to be removable if the simple loop can be chosen to bound a disk, otherwise
it is called essential. A link diagram is reduced if it does not contain any removable
nugatory crossings. For example, the knot in Figure 6 contains an essential nugatory
crossing.

The following strengthens [8, Proposition 2.8]. Its proof is given in Section 7.2.

Theorem 12 Any reduced alternating diagram is adequate.

Note that, unlike [8, Proposition 2.8], we do not assume here that D is cellularly
embedded or checkerboard colorable, nor that D has no nugatory crossings.

A link diagram on† is called weakly alternating if it is a connected sumD0#D1#� � �#Dk
of an alternating diagram D0 in † and alternating diagrams D1; : : : ;Dk in S2 (see
Lemma 16). Theorem 12 can be generalized to show that weakly alternating diagrams
are adequate. In fact, in the next section we will prove Proposition 17, showing that
any diagram on a surface obtained as the connected sum of two adequate link diagrams
is itself adequate.

Let us return to Tait conjectures now. By Corollary 10, any reduced alternating
diagram D has the minimal crossing number for all diagrams representing the same
unframed link L in †� I. Furthermore, all such oriented diagrams representing the
same link L have the same writhe.

The results of Kauffman, Murasugi and Thistlethwaite [31; 43; 48] imply that the span
of the Kauffman bracket of any diagram D � S2 satisfies

span.ŒD�S2/� 4c.D/C 4;
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Figure 3: Two knots in a genus two surface with the same homological
Kauffman bracket.

or, equivalently, for the Jones polynomial, that span.VD.t//� c.D/, with equality if
D is alternating. Furthermore, in [48], Thistlethwaite proved that, if D � S2 is prime
and nonalternating, then

span.ŒD�S2/ < 4c.D/C 4:

In [49], it is observed that the above results hold ifD�S2 is weakly alternating, namely
if D is a connected sum of alternating diagrams. Thus, the Kauffman bracket ŒD�S2 ,
together with c.D/, detects weakly alternating classical links.

The homological Kauffman bracket of [8] is not sufficiently strong to prove an analogous
statement for links in thickened surfaces. Consider the two knots in the genus two
surface in Figure 3. These knots have the same homological Kauffman bracket, namely

hD1i† D hD2i† D 3ız
2
� 4ı2zC .A4C 3CA�4/ı;

but one of them is alternating and the other is not. Consequently, the homological
Kauffman bracket does not detect alternating knots in thickened surfaces.

However, we are going to show that the Kauffman, Murasugi and Thistlethwaite
statements hold for the Kauffman bracket Œ � �† of diagrams in closed surfaces † after
replacing 4 by 4jDj � 4g.†/ on the right.

Let jDj denote the number of connected components of D (which may be smaller than
the number of connected components of the link in †� I represented by D).

Let r.D/ be the rank of the image of i� WH1.DIZ=2/!H1.†IZ=2/. If D � † is
minimally embedded, then i� is surjective and r.D/D 2g.

The proof of the next result is given in Section 7.4.
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Figure 4: Minimally embedded alternating diagram for which the equality of
Theorem 13(ii) does not hold.

Theorem 13 (i) For any link diagram D �†,

span.ŒD�†/� 4c.D/C 4jDj � 2r.D/:

(ii) If D is cellularly embedded , reduced , and weakly alternating , then

span.ŒD�†/D 4c.D/C 4jDj � 4g.†/:

(iii) If D is not weakly alternating then

span.ŒD�†/ < 4c.D/C 4jDj � 2r.D/:

The assumptions of Theorem 13(ii) are necessary:

If D has a removable nugatory crossing, then eliminating it decreases the right-hand
side of the above equality but not the left-hand side. Therefore, (ii) does not hold for
diagrams with removable crossings.

It can also fail whenD is not cellularly embedded. For example, consider the alternating
link in Figure 4. It has t .SA/D 4 and t .SB/D 2. Therefore, by Corollary 5, we have
span.ŒD�†/ � 16C 12 D 28, whereas 4c.D/C 4jDj � 4g.†/ D 32. Note that this
diagram is minimally embedded but not cellularly embedded.

Although (ii) holds for weakly alternating diagrams, in the next section we will see
that it does not hold generally for connected sums of alternating diagrams in arbitrary
surfaces (see Example 19).

Corollary 14 Let L be a link in †� I with a reduced , weakly alternating diagram D

which is cellularly embedded. Then any other cellularly embedded diagram E for L
satisfies c.D/� c.E/. If E is not weakly alternating , then c.D/ < c.E/.

Proof The first part is a direct consequence of Tait conjecture, Corollary 10. Let us
prove the full statement now: Any cellularly embedded link diagram on a connected
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surface is itself connected. Therefore, it is enough to prove the statement under
the assumption that † and D are both connected. Theorem 13(ii) then implies that
c.D/ D 1

4
span.ŒD�†/C g.†/� 1. If E is a second link diagram for L on †, then,

since E is cellularly embedded, it must also be connected. Theorem 13(i) implies that

c.D/D 1
4

span.ŒD�†/Cg.†/� 1D 1
4

span.ŒE�†/Cg.†/� 1� c.E/:

If E is not weakly alternating, then Theorem 13(iii) shows the last inequality is strict;
therefore, it follows that c.D/ < c.E/.

Remark 15 The corollary gives an alternative proof of Theorem 11 for nonsplit
alternating links as follows. Let L be a nonsplit alternating link in †� I, where † is
closed oriented surface, and letD�† a minimal crossing cellularly embedded diagram
for L. Then Corollary 14 implies that D is an alternating diagram. The argument
is completed by appealing to [9, Proposition 6], which shows that alternating link
diagrams have minimal genus.

6 Crossing number and connected sums

In this section, we will study the behavior of the crossing number under connected sum
of links in thickened surfaces. This problem is closely related to an old and famous
conjecture for classical links, which asserts that, for any two links L1 and L2,

(6) c.L1 #L2/D c.L1/C c.L2/:

This conjecture has been verified for a wide class of links, including alternating links,
adequate links, and torus links [20]. Clearly, c.L1 #L2/� c.L1/C c.L2/. In addition,
in [35], Lackenby has proved that, in general, one has a lower bound of the form

c.L1 #L2/� 1
152
.c.L1/C c.L2//:

The operation of connected sum is not so well behaved for arbitrary links in thickened
surfaces.

Just as for classical links, it depends on the choice of components which are joined as
well as their orientations. However, unless one of the links is in S2� I, it also depends
on the diagram representatives as well as the choice of basepoints xi 2Di where the
link components are joined. The issue is the fact that a Reidemeister move applied to
either of the link diagrams may change the link type of their connected sum. We take a
moment to quickly review its construction.
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Suppose †1 and †2 are oriented surfaces and let †1 #†2 denote their connected sum.
It is obtained from the union .†1 X intB1/[ .†2 X intB2/ by gluing @B1 � †1 to
@B2 �†2 by an orientation-reversing homeomorphism g W @B1! @B2. For connected
surfaces, †1 #†2 is independent of the choice of disks Bi �†i and gluing map.

If D1 �†1 and D2 �†2 are link diagrams, we can choose cutting points xi 2Di and
disk neighborhoods Bi from †i such that Bi \Di is an interval for i D 1; 2. Then the
surface †1 #†2 can be formed in such a way that D D .D1 X intB1/[ .D2 X intB2/
is a link diagram in †1 #†2. If D1 and D2 are oriented link diagrams, then we require
the gluing to respect the orientations of the arcs. The resulting diagram is called a
connected sum of D1 and D2. In general, it depends on the choice of link diagrams
D1 and D2, components being joined, and points xi 2Di . However, it is independent
of the choice of disk neighborhoods Bi containing xi .

The next result shows that, when one of the diagrams lies in S2 � I, the operation of
connected sum is well behaved.

Lemma 16 Let D1 �†� I and D2 � S2 � I be oriented diagrams , where † is an
arbitrary surface. Then the connected sum of D1 and D2 is independent of the choice
of the cutting points x1 and x2 on the selected components of D1 and of D2.

We will denote the connected sum in this case by D1 #D2. The oriented link type
of D1 #D2 depends only on the link types of D1 and D2 and a choice of which
components are joined.

Proof One can shrink the image of D2 in the connected sum so that all its crossings
lie in a small 3–ball B3 in †�I. By an isotopy, we can move the ball along arcs of D1
representing the component to which D1 is joined, and moving over or under the other
arcs at any crossing that we encounter.

This shows that the connected sum is independent of the choice of the cut point x1
on D1. The independence on the cut point x2 on D2 follows from the well-known
fact that all long knots — or rather .1; 1/ tangles — obtained by cutting D2 at different
points x2 of its specified component are isotopic (as .1; 1/ tangles). Shrinking D2 into
a small 3–ball also allows one to translate any Reidemeister move of D1 or D2 into a
Reidemeister move on the connected sum D1 #D2. This proves the last statement.

Proposition 17 Any connected sum of two A– or B–adequate diagrams is itself A– or
B–adequate , respectively.
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Proof Let D be a link diagram in †1 #†2 obtained as the connected sum of A–
adequate diagrams D1 � †1 and D2 � †2, and suppose to the contrary that D is
not A–adequate. By Proposition 2, there is a state S for D adjacent to SA with
t .S;†1 #†2/D t .SA; †1 #†2/C 1 and j yS j D j ySAj in †1 #†2. In particular, jS j D
jSAjC 1, and the transition from SA to S involves one cycle of SA splitting into two
cycles.

Let x be the crossing of D where the smoothing is changed in the transition from SA

to S. We can assume, without loss of generality, that x is a crossing from D1. Let C
be the cycle of SA that splits into two cycles, C 0 and C 00, under this transition. Since
t .S;†1 #†2/ D t .SA; †1 #†2/C 1, one of the cycles C 0 and C 00, say C 0, must be
trivial.

If C is a cycle contained in SA.D1/, then the same is true for C 0 and C 00. However,
this contradicts the assumption that D1 is A–adequate.

Otherwise, C D C1 #C2 must be a connected sum of a cycle C1 in SA.D1/ with a
cycle C2 in SA.D2/. In the transition from SA to S, by the previous argument, we may
assume the cycle C1 #C2 splits into C 01 #C2 and C 001. Further, since C 0 D C 01 #C2 is
trivial, it follows that C 01 must be trivial in †1 and C2 must be trivial in †2.

If C1 #C2 is trivial, then C 001 #C2 must also be trivial. That would imply that all three
of C1, C 01 and C 001 are trivial in †1. This again contradicts the assumption that D1 is
A–adequate, and we take a moment to explain this point.

Let S.D1/ be the corresponding state for D1. It is obtained from SA.D1/ by switching
the smoothing at x. The transition from SA.D1/ to S.D1/ involves C1 splitting into
C 01 and C 001. Since all three of C1, C 01 and C 001 are trivial in †1, we have t .S.D1//D
t .SA.D1//C 1 and j yS.D1/j D ySA.D1/ in †1, which contradicts the assumption of
A–adequacy of D1.

The other possibility is that C1 #C2 is nontrivial. Since C2 is trivial in †2, the cycles
C1 and C 001 must both be nontrivial in †1. The transition from SA.D1/ to S.D1/ still
involves C1 splitting into C 01 and C 001, only now C1 and C 001 are nontrivial and C 01 is
trivial in †1. Thus, t .S.D1//D t .SA.D1//C1 and j yS.D1/j D ySA.D1/j in †1, which
again contradicts the assumption of A–adequacy of D1. Therefore, DDD1 #D2 must
be A–adequate.

The proof of B–adequacy of D is similar.
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Figure 5: A connected sum of alternating diagrams.

Corollary 18 SupposeL1�†1�I andL2�†2�I are links represented by adequate
diagramsD1�†1 andD2�†2. Then any linkL in .†1#†2/�I admitting a diagram
which is a connected sum ofD1 andD2 is itself adequate. Further , the crossing number
and writhe satisfy c.L/D c.L1/C c.L2/ and w.L/D w.L1/Cw.L2/.

Proof Suppose L is represented by D DD1 #D2 �†1 #†2. Then D is adequate by
Proposition 17. Further, by parts (i) and (ii) of Corollary 10, we see that

c.L/D c.D/D c.D1/C c.D2/D c.L1/C c.L2/;

w.L/D w.D/D w.D1/Cw.D2/D w.L1/Cw.L2/:

Example 19 Figure 5 shows a knot diagram D in the genus two surface obtained
as the connected sum of two alternating diagrams of the same knot in the torus.
One can easily verify that D is reduced and cellularly embedded, but not alternating.
Further, Proposition 17 implies that this diagram is adequate, and therefore a min-
imal crossing diagram for the knot type. Direct calculation reveals that t .SA/ D 2,
t .SB/ D 0 and j ySAj D j ySB j D 1. Therefore, span.ŒD�†/ D 16. On the other hand,
since 4.c.D/CjDj �g.†//D 20, by Theorem 13(ii), it follows that D is not weakly
alternating and, in fact, not equivalent to any weakly alternating knot in †� I.

Example 20 Figure 6 shows a knot in a genus two surface with an essential nugatory
crossing. Since it is reduced and alternating, Theorem 12 shows that it is adequate.

Figure 6: An alternating diagram with an essential nugatory crossing.
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D1 D2 D1 � � � D2

Figure 7: Adding twists to a connected sum to create essential nugatory crossings.

Note that this diagram is not homologically adequate. In fact, if S is the state with a
B–smoothing at the nugatory crossing and A–smoothings at all the other crossings,
then one can show that jS j D jSAjC 1 and k.S/ > k.SA/.

Notice that this knot can also be obtained as the connected sum of two alternating knots
K1 and K2 in T 2 � I with c.Ki /D 3, but after performing a Reidemeister one move
on one of them to obtain a diagram with four crossings. In particular, this example
shows that a connected sum of two diagrams D1 �†1 and D2 �†2 can be adequate
even when one of them is not adequate.

Suppose L1 �†1� I and L2 �†2� I are two alternating links in thickened surfaces
with g.†i />0 for iD1; 2. Suppose further thatDi is a link diagram on†i representing
Li for i D 1; 2, and that D1 and D2 are both reduced and alternating.

Instead of forming the connected sum of D1 and D2, take one of the diagrams and
insert an arbitrary number (say n) of twists before forming the connected sum. See
Figure 7.

The result will be a diagram D which is similar to a connected sum of D1 and D2,
but with n essential nugatory crossings in between. This construction can be carried
out so that D is reduced and alternating. In particular, it will have crossing number
c.D/D c.D1/C c.D2/C n. If L denotes the link type of D, and since D1 and D2
are alternating and have minimal crossing number, this shows that the analogue of (6)
can fail arbitrarily badly for links in thickened surfaces other than S2 � I.

The reason (6) fails in general for connected sums of links in thickened surfaces is due
to the use of nonminimal diagrams in forming the connected sum. However, if one
restricts the connected sum operation to minimal crossing diagrams, then one gets a
plausible generalization:

Conjecture 21 Suppose L1�†1�I and L2�†2�I are links in thickened surfaces
with minimal crossing representatives D1 and D2, respectively. Then any link L in the
thickening of †1 #†2 arising as a connected sum of D1 and D2 satisfies

c.L/D c.L1/C c.L2/:
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Note that the assumption that D1 and D2 are minimal crossing representatives implies
immediately that

c.L/� c.L1/C c.L2/:

In fact, the inequality may fail without that assumption. This is related to the fact that
crossing number is not additive under connected sum for virtual knots. For example,
the Kishino knot is the connected sum of two virtual unknots. As evidence, notice that
Corollary 18 confirms that the conjecture is true if L1 and L2 are adequate links in
thickened surfaces. In particular, it holds for alternating and weakly alternating links.

7 Proofs of Theorems 9, 12 and 13

7.1 Proof of Theorem 9

Given a link diagram D on † and positive integer r , the r th parallel of D is the
link diagram Dr on † in which each link component of D is replaced by r parallel
copies, with each one repeating the same “over” and “under” behavior of the original
component.

Lemma 22 If D is A–adequate , then Dr is also A–adequate. If D is B–adequate ,
then Dr is also B–adequate.

Proof Let SA.D/ and SA.Dr/ be the pure A–smoothings of D and the pure A–
smoothings of Dr , respectively. It is straightforward to check that SA.Dr/ is the
r–parallel of SA.D/.

Suppose Dr is not A–adequate. Then there is a state S 0 obtained by switching one A–
smoothing in SA.Dr/ to aB–smoothing such that t .SA.Dr//< t.S 0/ and ySA.Dr/D bS 0.
In the terminology of the proof of Proposition 2, that can only happen for a smoothing
change of type (i), more specifically when the smoothing change involves one of the
innermost cycles in SA.Dr/ which is self-abutting and which, when split, creates a new
trivial cycle in S 0. That is only possible if there is a self-abutting cycle in SA.D/ which,
when split, creates a new trivial cycle. Since D is A–adequate, this cannot happen.

An analogous argument proves the statement for B–adequate diagrams.

Proof of Theorem 9 (i) Since

c.D/�w.D/D cC.D/C c�.D/� .cC.D/� c�.D//D 2c�.D/;

we will prove that
c.D/�w.D/� c.E/�w.E/:
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Our argument is an adaptation of Stong’s proof [47] (see also [37, Theorem 5.13]).

Let L1; : : : ; Lm be the components of L and let Di and Ei be the subdiagrams of D
and E corresponding to Li . For each i D 1; : : : ; m, choose nonnegative integers �i
and �i such that w.Di /C �i D w.Ei /C �i . Let D0 be composed of components
D01; : : : ;D

0
m, where each D0i is obtained from Di by adding �i positive kinks to it.

(These kinks do not cross with other components). Similarly, let E 0 be composed of
components E 01; : : : ; E

0
m, where each E 0i is obtained from Ei by adding �i positive

kinks to it. Notice that D0 is still A–adequate.

The writhes of the individual components satisfy

w.D0i /D w.Di /C�i D w.Ei /C �i D w.E
0
i /:

Further, the sum of the signs of the crossings of D0i \D
0
j coincides with the sum of

the signs of the crossings of E 0i \E
0
j , since both are equal to the linking number of Li

and Lj . Thus, w.D0/D w.E 0/.

For any r , consider the r th parallels .D0/r and .E 0/r now. Then w..D0/r/D r2w.D0/,
because each crossing ofD0 corresponds to r2 crossings in .D0/r of the same sign. The
diagrams .D0/r and .E 0/r are equivalent and have the same writhe; thus, their Kauffman
brackets must be equal. In particular, we have dmax

�
Œ.D0/r �†

�
D dmax

�
Œ.E 0/r �†

�
.

Proposition 3 implies now that

dmax
�
Œ.D0/r �†

�
D

�
c.D/C

mX
iD1

�i

�
r2C 2

�
t .SA.D//C

mX
iD1

�i

�
r;

dmax
�
Œ.E 0/r �†

�
�

�
c.E/C

mX
iD1

�i

�
r2C 2

�
t .SA.E//C

mX
iD1

�i

�
r:

Since this is true for all r , by comparing coefficients of the r2 terms, we find that

(7) c.D/C

mX
iD1

�i � c.E/C

mX
iD1

�i :

Subtracting
Pm
iD1.�i Cw.Di //D

Pm
iD1.�i Cw.Ei // from both sides of (7), we get

that

(8) c.D/�

mX
iD1

w.Di /� c.E/�

mX
iD1

w.Ei /:

Subtracting the total linking number of L from both sides of (8) gives the desired
inequality.

The proof of (ii) is analogous. One adds negative kinks to D and E in this case.
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Figure 8: A knot diagram in the torus which is not alternable.

7.2 Proof of Theorem 12

A link diagram D on † is alternable if it can be made alternating by inverting some of
its crossings. Every classical link diagram is alternable, but the same is not true for link
diagrams in arbitrary surfaces. For example, the knot diagram in the torus in Figure 8
is not alternable.

A link diagram D on † is checkerboard colorable if the components of †XD can be
colored by two colors such that any two components of †XD that share an edge have
opposite colors.

Proposition 23 Any minimal embedding D on † is alternable if and only if it is
checkerboard colorable.

Proof Observe that filling the boundaries of † with disks does not affect alternability
or checkerboard colorability. Likewise, removing disks from†XD also does not affect
alternability or checkerboard colorability. This has two consequences:

(a) It is enough to prove this statement for surfaces † with all boundary components
capped, ie for closed surfaces.

(b) Since Kamada proved that, if a diagram D is a deformation retract of †, then
it is alternable if and only if it is checkerboard colorable [28, Lemma 7], our
statement holds for cellularly embedded diagrams.

Our strategy is to reduce the proof to this case of cellular embeddings. Suppose that C is
a nondisk component of†XD. Then it contains a noncontractible simple closed loop ˛.
Let †0 be obtained by cutting † along ˛ and by capping the boundary components.
The loop ˛ must be separating †, since otherwise D ,!†0 would be a lower-genus
embedding ofD. Observe now that, since† is a connected sum of two surfaces†1#†2,
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where †1[†2D†0 and D is a disjoint union of D\†1 and of D\†2, it is enough
to prove that D �†i is checkerboard colored for i D 1; 2.

By repeating this process as long as possible, we reduce the statement to cellularly
embedded diagrams, which is covered by (b) above.

Lemma 24 Any alternable diagram can be extended by disjoint simple closed loops to
a checkerboard colorable one.

Proof The surface ND �†, being a regular neighborhood of D, is checkerboard col-
orable by the earlier mentioned result of Kamada [28, Lemma 7]. The only reason that
coloring does not extend toD�† is that some connected components C of†XintND
may have multiple connected components of their boundary whose neighborhoods are
colored differently. However, that issue can be resolved by adding simple closed loops
around those boundary components of C which are white.

Proof of Theorem 12 Let D be alternating diagram without removable crossings.
By Lemma 24, by adding disjoint simple closed loops to D, we obtain a diagram D0

which is alternating and checkerboard colorable. Hence, it is enough to prove that D0

is adequate. Let us assume for simplicity of notation that D is checkerboard colorable.

We will prove theA–adequacy ofD only, as the proof ofB–adequacy is identical. Let S
be a state with allA–smoothings except for aB–smoothing at a crossing x ofD. We will
prove that D is A–adequate “at x”, meaning that t .S/� t .SA/ or yS ¤ ySA in S .†�I /.

As in the proof of Proposition 2, there are three cases and, to check adequacy, it is
enough to check that the conditions of Definition 1 hold in the first case, namely when
jS jD jSAjC1. Therefore, SA must contain a self-abutting cycle C and, in the transition
from SA to S, the cycle C splits into two cycles C1 and C2 of S. Since D is alternating
and checkerboard colorable, SA bounds a subsurface †0 of † of a certain color, say
white, which contains no crossings of D.

We claim that neither C1 nor C2 is trivial. Indeed, if, say, C1 were trivial, then there
would be a loop 
 parallel to C1 totally inside †0 except for a little neighborhood of x,
in which it would cross x. Such a curve would imply that the crossing x is removable,
(see for example Figure 9), which is a contradiction. Therefore, neither C1 nor C2 is
trivial, and it follows that t .S/ D t .SA/. Therefore, D is A–adequate at x, and this
completes the proof of the theorem.
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 SA

Figure 9: A trivial cycle, resulting in a removable crossing.

7.3 Link diagrams and shadows

A link shadow in † is a 4–valent graph in †, possibly with loop components. In other
words, a shadow is a link diagram with crossing types ignored. For that reason we refer
to shadow vertices as crossings and the components of any link realization of a shadow
as its link components. (Not to be confused with connected components of a shadow.)

Some properties of link diagrams are entirely determined by its link shadow. For
example, we will say that a link shadow D on † is checkerboard colorable if the
components of †XD can be colored by two colors such that any two components of
†XD that share an edge have opposite colors. Clearly, a link diagram is checkerboard
colorable if and only if its link shadow is. Similarly, a link shadow is minimally
embedded if it does not lie in a subsurface of † of smaller genus, and it is immediate
that a link diagram on † is minimally embedded if and only if its link shadow is.

Each shadow crossing has two smoothings, which cannot be differentiated as A– and
B–type, as in the case of link diagrams. For that reason, for link shadows it is customary
to place markers at the crossings indicating the smoothing as in Figure 10.

Two consecutive crossings can have identical or opposite smoothings; see Figure 11.
An alternating state of a shadow is one with alternating crossing smoothings along all
of its link components. In other words, a state is alternating if the smoothings at every
pair of consecutive crossings are opposite.

Not all link shadows admit alternating smoothings, for example the shadow of the
nonalternable knot in the torus in Figure 8. On the other hand, any link shadow of

D S D S

Figure 10: Two types of markers for a state of a link shadow.
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Figure 11: Two consecutive crossings with identical markers (left) and oppo-
site markers (right).

an alternating link diagram admits two alternating smoothings, namely the shadow
smoothings coming from SA and SB .

Given a state S for a link shadow D, the dual state is denoted by S_ and has opposite
smoothing to S at each crossing of D. Notice that a state S is alternating if and only if
its dual state S_ is alternating.

We say that a 2–disk D2 is 2–cutting or, simply, cutting a shadow D if its boundary
intersects D transversely at two points (which are not crossings) and D2\D contains
some but not all the crossings of D. A connected shadow D is said to be strongly prime
if it has no cutting disk. More generally, a shadow D is strongly prime if all of its
connected components are.

Lemma 25 Every crossing of every strongly prime shadow D � † has at least one
smoothing producing a shadow which is again strongly prime. If D is connected , then
the smoothing can be chosen so the resulting shadow is connected and strongly prime.

For classical links, a proof of this statement can be found in [37]. That proof relies on
checkerboard colorability of the diagram, which is of course true for classical links.
Below, we give a proof that does not require the shadow to be checkerboard colorable.

Proof For the first part, it is enough to prove it for each of the connected components
of D. Assume now that the smoothings of a crossing v in a strongly prime D produce
diagrams D1 and D2 neither of which is strongly prime. Let B1 and B2 be cutting
disks for D1 and D2. Since D is strongly prime, we can assume that v 2 @Bi for
i D 1; 2. We can also assume that @B1 and @B2 are in transversal position. Let C be
the connected component of B1\B2 containing v, as in Figure 12, left. The circles
@B1 and @B2 are broken because they may intersect each other many times.

By modifying B1 or B2 slightly if necessary we can assume that D does not contain
the second intersection point, w, of @B1\ @B2 in C.
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v

B1 B2

˛2 ˛1

C

w

v

S
T

v

R S
T

Figure 12: The cutting disks B1 and B2.

Let ˛1 D int.C \ @B1/ and ˛2 D int.C \ @B2/. (Note that v … ˛1 [ ˛2.) Since D
intersects @Bi �fvg twice for i D 1; 2 and D intersects ˛1[˛2 at an odd number of
points, we have the following possibilities:

(1) jD\˛2j D 1 and D\˛1 D¿.

(2) jD\˛2j D 2 and jD\˛1j D 1.

(3) One of the two cases above with ˛1 interchanged with ˛2. We will ignore this
case without loss of generality.

In the first case, D looks like in Figure 12, center, where S and T (in dashed circles)
are shadow tangles. In that case, since neighborhoods of S and T are not cutting disks
for D, the tangles S and T are crossingless. That means that B2 is not a cutting disk
for D2 — a contradiction.

In the second case, D looks like in Figure 12, right, where R, S and T are shadow
tangles. Note that all crossings of D, other than v, are contained in R, S or T, since
otherwise a disk containing v, R, S and T but no other crossings of D would be
cutting for D. Note also that, as in the first case, T is crossingless. That means that all
crossings of D1 are in R and S. Hence, B1 is not cutting for D1 — a contradiction.

For the second part, assume that D is connected. Then one of the smoothings of D at v
will be connected. Let D0 denote the connected shadow obtained from smoothing D,
and assume the other smoothing is disconnected. We claim that D0 is strongly prime.

Assume to the contrary that D0 is not strongly prime. Then there is a cutting disk B
containing some but not all the crossings of D0 (see Figure 13). We can assume that

R
T

v

B

Figure 13: A cutting disk for D0.
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v 2 @B and that D0 is obtained by the smoothing of v tangential to @B. However, since
the other smoothing of D at v is disconnected, the strands from the tangles R and T
cannot cross each other. The neighborhoods of R and T give cutting disks for D unless
the tangles R and T are crossingless, but then B would not be a cutting disk for D0,
which is a contradiction.

Suppose D � † is a link shadow. Let ND denote a neighborhood of D in † small
enough that it is a ribbon surface retractable onto D. A local checkerboard coloring
of D is a checkerboard coloring of D � ND . If one exists, we say that D is locally
checkerboard colorable. (The pair .D;ND/ is the shadow of an abstract link diagram,
or ALD for short [29]. This condition is equivalent to saying that .D;ND/ is the
shadow of a checkerboard colorable ALD.)

Obviously, ifD�† is checkerboard colorable, then it is locally checkerboard colorable.
The converse holds if D �† is cellularly embedded, but, in general, a shadow can be
locally checkerboard colorable without being checkerboard colorable.

Lemma 26 SupposeD�† is a link shadow. ThenD is locally checkerboard colorable
if and only if it admits an alternating state.

Proof IfD is locally checkerboard colorable, then let S be the state whose smoothings
at each crossing join the white regions. Then S is an alternating state.

Conversely, suppose S is an alternating state. Let y† be the surface obtained from ND

by attaching disks to each of its boundary component. Then D � y† is cellularly
embedded. We can color y†XD so that each cycle in S bounds a black disk and each
cycle in S_ bounds a white disk. To see this, notice that, at each smoothing of S, two
local regions are joined. We can color the joined regions white and extend the coloring
to the rest of y†XD. This determines a local checkerboard coloring of D.

If S and S 0 are adjacent states on a shadow D with jS 0j D jS j, then the transition from
S to S 0 is called a single cycle bifurcation.

Lemma 27 A connected shadow D is locally checkerboard colorable if and only if
there is no single cycle bifurcation in its cube of resolutions.

Proof For one implication, we apply [30, Proposition 5.11] to see that, if D is locally
checkerboard colorable, then its cube of resolutions does not contain any single cycle
bifurcations.
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The other implication is proved by induction on the crossing number. To start, we
verify it for 1–crossing shadows, which can be classified into the first type or the
second type . The shadows of the first type are locally checkerboard colorable and
of the second type are not. The cubes of resolutions for these shadows are �! �, and
they have just one edge, which is a split/join for the shadow of the first type and a
single cycle bifurcation for the shadow of the second type.

Now assume the lemma has been proved for all connected shadows with fewer than n
crossings. Let D be a connected shadow with n crossings. We will show that, if D is
not locally checkerboard colorable, then there is a single cycle bifurcation in its cube
of resolutions. Pick a crossing x and let D0 be the diagram obtained by smoothing D
at x. (It does not matter which smoothing is chosen.)

Assume first that D0 is not locally checkerboard colorable. By induction, the cube of
resolutions for D0 contains a single cycle bifurcation. Since the cube of resolutions
of D0 is a face of the cube of resolutions of D, the result follows.

On the other hand, if D0 is locally checkerboard colorable, then, by Lemma 26, it
admits an alternating state S 0. We color ND0 XD0 consistently, so that the smoothings
of S 0 join white regions. Let S be a state of D which coincides with S 0, and S_ its dual
state. Switching the smoothing of x in S_, we obtain S 0_, considered as a state of D.

The ribbon surfaceND is obtained by adding a 2–dimensional 1–handle (a band) toND0 .
Unless the transition from S 0_ to S_ is a single cycle bifurcation, we can extend the
coloring of .ND0 ;D0/ to .ND;D/. Since D is not locally checkerboard colorable, the
transition from S 0_ to S_ must be a single cycle bifurcation.

Recall that r.D/ denotes the rank of the image of i� W H1.DIZ=2/! H1.†IZ=2/.
Any connected shadow is homotopy equivalent to a bouquet of circles. If D has c.D/
crossings, then �.D/D �c.D/. It follows that 0 � r.D/ � c.D/C 1 for connected
shadows with c.D/ crossings.

Proposition 28 Let D be a link shadow in † (not necessarily connected ).

(i) If S is a state of D, then

t .S/C t .S_/� c.D/C 2jDj � r.D/:

(ii) If D is not locally checkerboard colorable , then , for any state S of D,

t .S/C t .S_/ < c.D/C 2jDj � r.D/:
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(iii) If D is strongly prime and S is nonalternating , then

t .S/C t .S_/ < c.D/C 2jDj � r.D/:

Proof Let us write †D†1[ � � � [†n as a disjoint union of connected components.
Any component disjoint from D does not contribute to the terms in (i), (ii) and (iii), so
it can be discarded. Therefore, we can assume that Di DD\†i ¤¿ for i D 1; : : : ; n.

Since all terms of the inequalities of the statements are additive under taking disjoint
unions of surfaces, it is enough to prove the statement for † connected.

On the other hand, if D D D1 [D2 is disconnected, then r.D/ � r.D1/C r.D2/.
Thus, r.D/ is subadditive, and, since the other terms on the right-hand side of (i), (ii)
and (iii) are additive, it is enough to prove the proposition for connected shadows in
connected surfaces. Assume henceforth that † is a connected surface.

Let us prove the statement for single crossing abstract shadows D now. Recall from the
proof of Lemma 27 that single crossing shadows D are of two types. For both of them,
r.D/� 2. If r.D/D 0, then t .S/C t .S_/D 2. If r.D/D 1; 2, then t .S/C t .S_/� 1.
Therefore, statement (i) holds for 1–crossing shadows. Since shadows of the first type
are locally checkerboard colorable and t .S/D t .S_/D 0 for shadows of the second
type, statements (ii) and (iii) hold as well.

The proof of (i) proceeds by induction on the crossing number c.D/. Let D be a
connected shadow in † with c.D/ � 2 crossings. We assume that statement (i) has
been established for all connected shadows in † with fewer than c.D/ crossings.

Let D0 be the shadow resulting from smoothing at a crossing x of D. We choose the
smoothing so that D0 is connected. Notice that

(9) r.D/� 1� r.D0/� r.D/:

Let S be a state of D. The chosen smoothing of x coincides with the smoothing of x
either in S or in S_ and, without loss of generality, we can assume that it coincides
with the smoothing of x in S. Then S induces a state on D0, denoted by S 0. Clearly,
t .S 0/ D t .S/. The dual state S 0_ to S 0 differs from S_ at x only. The states S_

and S 0_ are adjacent in the cube of resolutions of D. Thus,

(10) t .S 0_/� 1� t .S_/� t .S 0_/C 1:

Lemma 29 Either r.D0/D r.D/ or t .S_/� t .S 0_/.
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Proof Assume that t .S_/ > t.S 0_/. Then, either two trivial loops in S_ join to make
a trivial loop in S 0_, or a trivial and a nontrivial loop in S_ join to make a nontrivial
loop in S 0_, or a trivial loop in S_ splits to make two nontrivial loops in S 0_. In each
case, r.D0/D r.D/.

We prove the inductive step for part (i). By Lemma 29, there are the two possibilities.
If r.D0/D r.D/, then (10) and the inductive assumption imply that

t .S/C t .S_/� t .S 0/C t .S 0_/C 1� c.D0/C 2� r.D0/C 1D c.D/C 2� r.D/:

On the other hand, if r.D0/¤ r.D/, then t .S_/ � t .S 0_/, and (9) and the inductive
assumption imply that

t .S/C t .S_/� t .S 0/C t .S 0_/� c.D0/C 2� r.D0/D c.D/C 2� r.D/:

This completes the proof in case (i).

We prove part (ii) also by induction on c.D/. Let D be a connected shadow in † with
c.D/� 2 crossings, and assume D is not locally checkerboard colorable. We assume
that statement (ii) has been established for all connected shadows in † with fewer than
c.D/ crossings that are not locally checkerboard colorable. By Lemma 27, there is a
single cycle bifurcation in the cube of resolutions of D.

Let D0 be the shadow resulting from smoothing D at a crossing x, and we assume D0

is connected and that the smoothing at x coincides with the smoothing of x in S.

If D0 is locally checkerboard colorable, then the transition from S_ to S 0_ must be a
single cycle bifurcation, for otherwise the local checkerboard coloring would extend
from D0 to D.

Since the transition is a single cycle bifurcation, we have t .S_/D t .S 0_/ and r.D/D
r.D0/. Therefore, applying part (i) to D0, we see that

t .S/C t .S_/D t .S/C t .S 0_/� c.D0/C 2� r.D0/ < c.D/C 2� r.D/:

If D0 is not locally checkerboard colorable, then we can apply the inductive hypothesis
for part (ii) to D0 and use it to deduce the desired strict inequality just as before. This
completes the proof of (ii).

The last step is to prove statement (iii). We begin by verifying (iii) for connected
shadows with one or two crossings. For a single crossing shadow D of the first type,
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1 2 3 4 5

Figure 14: Connected shadow diagrams with 2–crossings.

both states are alternating, so (iii) is vacuously true. Single crossing shadow of the
second type are not locally checkerboard colorable, and so the result follows from (ii).

All abstract connected 2–crossing shadows D are depicted in Figure 14. For a type 1
shadowD, its nonalternating states appear in Figure 15, left. Note that 0� r.D/�3 and
0� t .S/; t.S_/� 1. If r.D/D 0 or 1, then t .S/Ct .S_/� 2 and 3� c.D/C2�r.D/.
Thus, (iii) holds in this case. If r.D/D 2 or 3, then t .S/D t .S_/D 0, and statement
(iii) holds.

For a type 2 shadow D, its nonalternating states are shown in Figure 15, right. Note
that 0� r.D/� 3 and 0� t .S/; t.S_/� 2. Since D is strongly prime, r.D/ > 0 and
t .S/; t.S_/�1. If r.D/D1, then t .S/Ct .S_/�2; if r.D/D2, then t .S/Ct .S_/�1;
and if r.D/D 3, then t .S/C t .S_/D 0. In all three cases, statement (iii) is seen to
hold.

Note that none of the shadows of the third, fourth and fifth types is locally checkerboard
colorable. Therefore statement (iii) follows from (ii) in these cases.

The proof of (iii) proceeds by induction on the crossing number c.D/. Let D be
a strongly prime connected shadow in †. By (ii), we can assume that D is locally

Figure 15: Nonalternating states on 2–crossing shadows of type 1 (left) and
type 2 (right).
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checkerboard colorable. We assume additionally that c.D/� 3 and that statement (iii)
has been established for all strongly prime shadows in†with fewer than c.D/ crossings.

Let S be a nonalternating state for D. Then S has two consecutive smoothings that are
identical, and we choose a third crossing x of D. By Lemma 25, one of the smoothings
of x yields a shadow which is connected and strongly prime. Let D0 be the resulting
shadow. As before, we assume that the smoothing at x coincides with the smoothing
of x in S. The state S induces a state on D0, denoted by S 0, which is nonalternating.
SinceD0 is connected, one can apply Lemma 29 as before and argue again by induction
that (iii) holds for D.

7.4 Proof of Theorem 13

Part (i) follows immediately by combining Corollary 5 and Proposition 28(i).

For parts (ii)–(iii), if D is a connected sum of D0 �† and D1; : : : ;Dk � S2, then

(11) ŒD�† D ı
�kŒD0�† �

kY
iD1

ŒDi �S2 :

Therefore, it is enough to prove (ii)–(iii) for prime diagrams (alternating for (ii) and
nonalternating for (iii)).

The condition that D is prime implies that it is not a nontrivial connected sum diagram
as above. More precisely, a link diagram D on † is said to be prime if any contractible
simple loop 
 in † that meets D transversely at two points bounds a 2–disk that
intersects D in an unknotted arc (possibly with self-crossings).

For the proof of part (iii), assume D is prime. If the shadow diagram of D is strongly
prime, then the statement follows from Corollary 5 and Proposition 28(iii). If it is not
strongly prime, then D must contain a self-crossing trivial arc. Let D0 be obtained by
replacing it by a simple trivial arc. Since span.ŒD�†/ is invariant under Reidemeister
moves and r.D0/D r.D/,

span.ŒD�†/D span.ŒD0�†/� 4c.D0/C 4jD0j � 2r.D0/ < 4c.D/C 4jDj � 2r.D/

by part (i).

The proof of part (ii) follows that of [8, Theorem 2.9]. Since both sides of the equality
in (ii) are additive under disjoint union of diagrams, it is enough to prove it for connected
diagrams.
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By Proposition 23, D is checkerboard colorable. Then all regions of one color, say
white, are enclosed by the cycles in the state SA of D, and all regions of the other
color, ie black, are enclosed by the cycles in the state SB . Therefore, the numbers of
white and black regions are t .SA/ and t .SB/, respectively. Since D defines a cellular
decomposition of † into c.D/ 0–cells, 2c.D/ 1–cells, and t .SA/C t .SB/ 2–cells,

2� 2g.†/D �.†/D c.D/� 2c.D/C t .SA/C t .SB/;

and
t .SA/C t .SB/D c.D/C 2� 2g.†/:

By Proposition 3,

span.ŒD�†/D dmax.ŒD�†/� dmin.ŒD�†/;

D 2c.D/C 2t.SA/C 2t.SB/;

D 4c.D/C 4� 4g.†/:
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Homotopy types of gauge groups over Riemann surfaces

MASAKI KAMEKO

DAISUKE KISHIMOTO

MASAHIRO TAKEDA

Let G be a compact connected Lie group with �1.G/Š Z. We study the homotopy
types of gauge groups of principal G–bundles over Riemann surfaces. This can be
applied to an explicit computation of the homotopy groups of the moduli spaces of
stable vector bundles over Riemann surfaces.

57S05; 55Q15

1 Introduction

Let G be a compact connected Lie group, and let P be a principal G–bundle over a
finite complex X . The gauge group of P is defined to be the topological group of
G–equivariant self-maps of P which fix X . There may be infinitely many distinct
principal G–bundles over X . For example, there are infinitely many bundles when X is
an orientable 4–manifold. Each bundle has a gauge group, so there may be potentially
infinitely many gauge groups. However, Crabb and Sutherland [6] showed that these
gauge groups have only finitely many homotopy types. Subsequently, the precise
number of homotopy types of gauge groups for specific G and X has been intensely
studied. The study began with simply connected Lie groups by Cutler [7], Hamanaka,
Hasui, Kishimoto, Kono, So, Theriault and Tsutaya [10; 12; 15; 16; 18; 20; 30; 31], and
recently, nonsimply connected cases are also studied by Hasui, Kamiyama, Kishimoto,
Kono, Membrillo-Solis, Sato, Theriault and Tsukuda [11; 14; 17] and Rea [26].

In this paper, we study the homotopy types of gauge groups of principal G–bundles over
a compact connected Riemann surface, where �1.G/Š Z. This includes an important
case: gauge groups of principal U.n/–bundles over a Riemann surface, whose topology
was first studied by Atiyah and Bott [2]. To state the results, we introduce a numerical
invariant of G. Suppose �1.G/Š Z. Then as in Mimura and Toda [24, Corollary 5.1,
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Chapter II], there is a compact connected simply connected Lie group H and a subgroup
C of the center of S1 �H such that

(1-1) G Š .S1
�H /=C:

In other words, G is locally isomorphic to S1�H . Note that H is uniquely determined
by G, but C is not. For example, if G D S1�H , then C can be any finite subgroup of
S1 � 1� S1 �H . We define

s.G/D jp2.C /j;

where p2 W S
1 �H ! H is the projection. By Theorem 1.4 below, we can see that

s.G/ is independent of the choice of C .

Example 1.1 Since U.n/ is the quotient of S1�SU.n/ by the diagonal central subgroup
isomorphic to Z=n, we have s.U.n//D n.

Let X be a compact connected Riemann surface. Then there is a one-to-one correspon-
dence between principal G–bundles over X and �2.BG/Š Z. Let Gk.X;G/ denote
the gauge group of a principal G–bundle over X corresponding to k 2 Z. Now we
state our results.

Theorem 1.2 Let G be a compact connected Lie group with �1.G/Š Z, and let X

be a compact connected Riemann surface. If .k; s.G//D .l; s.G//, then Gk.X;G/ and
Gl.X;G/ are homotopy equivalent after localizing at any prime or zero.

We remark that the p–localization of a disconnected space will mean the disjoint union
of the p–localization of path-connected components. For a prime p, Theriault [29]
gave a p–local homotopy decomposition of Gk.X;U.p//, which implies the converse
implication of Theorem 1.2 holds for GDU.p/. We will prove the converse implication
of Theorem 1.2 holds for other Lie groups.

Theorem 1.3 Let G be a compact connected Lie group with �1.G/Š Z, and let X

be a compact connected Riemann surface. If G is locally isomorphic to S1 �SU.n/r

or S1 �SU.4n� 2/s �Sp.2n� 1/t , then the following statements are equivalent :

(1) .k; s.G//D .l; s.G//.

(2) Gk.X;G/ and Gl.X;G/ are homotopy equivalent after localizing at any prime
or zero.

Note that since U.n/D .S1 �SU.n//=.Z=n/ as in Example 1.1, Theorem 1.3 applies
to the case G D U.n/.

Algebraic & Geometric Topology, Volume 23 (2023)



Homotopy types of gauge groups over Riemann surfaces 2311

The homotopy type of a gauge group Gk.X;G/ is closely related with a Samelson
product in G, as we will see in Section 2. In our context, the Samelson product of a
generator of �1.G/ŠZ and the identity map of G is of particular importance. We will
prove the following theorem, which is of independent interest.

Theorem 1.4 Let G be a compact connected Lie group with �1.G/Š Z, and let �
denote a generator of �1.G/. Then the Samelson product h�; 1Gi in G is of order s.G/.

Now we consider an application. Gauge groups over a Riemann surface are closely
related to the moduli spaces of stable vector bundles over a Riemann surface as follows.
Let X be a Riemann surface of genus g, and let M.n; k/ denote the moduli space of
stable vector bundles over X of rank n and degree k. Daskalopoulos and Uhlenbeck [8]
showed that there is an isomorphism

�i.M.n; k//Š �i�1.Gk.X;U.n///

for 2 < i � 2.g � 1/.n � 1/ � 2 and .n; k/ ¤ .2; 2/. There is a polystable Higgs
bundle analog due to Bradlow, García-Prada and Gothen [5]. We can compute the
homotopy groups of these moduli spaces in a range through the following homotopy
decomposition.

Theorem 1.5 Let G be a compact connected Lie group with �1.G/Š Z, and let X

be a compact connected Riemann surface of genus g. If s.G/ divides k, then

Gk.X;G/'G � .�G/2g
��2G:

Moreover , the above homotopy equivalence also holds after localizing at p whenever p

does not divide s.G/.

The paper is structured as follows. Section 2 recalls a connection between gauge
groups and Samelson products, and then proves Theorems 1.2 and 1.5 by assuming
Theorem 1.4 holds. Section 3 shows some general results on Samelson products in a
Lie group, which will be used for a practical computation. Sections 4 and 5 compute
the Samelson products in G when H is simple. Finally, Section 6 collects all results so
far together to prove Theorems 1.3 and 1.4.
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2 Gauge groups and Samelson products

This section recalls a connection between gauge groups and Samelson products, and
then Theorems 1.2 and 1.5 are proved by assuming Theorem 1.4 holds. First, we
recall a connection between gauge groups and mapping spaces. Let G be a topological
group, and let P be a principal G–bundle over a base X , which is classified by a map
˛ WX ! BG. Recall that the gauge group of P , denoted by G.P /, is the topological
group of G–equivariant self-maps of P which fix X . Gottlieb [9] proved that there is a
natural homotopy equivalence

BG.P /'map.X;BGI˛/;

where map.A;BIf / denotes the path component of the space of maps map.A;B/
containing a map f WA!B. Then evaluating at the basepoint of X yields a homotopy
fibration

(2-1) map�.X;BGI˛/! BG.P /! BG;

where map�.X;BGI˛/ is the subspace of map.X;BGI˛/ consisting of basepoint
preserving maps. So the gauge group G.P / is homotopy equivalent to the homotopy
fiber of the connecting map

@˛ WG!map�.X;BGI˛/

of the above homotopy fibration.

Next, we assume X D Sn for n � 1 and describe the connecting map @˛. Clearly,
there is a homotopy equivalence map�.S

n;BGI˛/'�n�1
0

G, where �n�1
0

G denotes
the path component of �n�1G containing the constant map. Then by adjointing, the
connecting map @˛ corresponds to a map

d˛ W S
n�1
^G!G:

The original definition of Whitehead products in [32] and adjointness of Whitehead
products and Samelson products prove the following.

Lemma 2.1 The map d˛ is the Samelson product h N̨ ; 1Gi in G, where N̨ W Sn�1!G

is the adjoint of ˛ W Sn! BG.

The following lemma due to Theriault [27] shows how to identify the homotopy type
of a gauge group G.P / from the order of a Samelson product h N̨ ; 1Gi.

Algebraic & Geometric Topology, Volume 23 (2023)
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Lemma 2.2 Suppose that a map f W X ! Y into an H-space Y is of order n <1.
Then .n; k/ D .n; l/ implies Fk .p/ ' Fl .p/ for any prime p, where Fk denotes the
homotopy fiber of a map k ıf WX ! Y .

Finally, we recall a homotopy decomposition of a gauge group. Theriault [28] showed a
homotopy decomposition of a gauge group over principal U.n/–bundle over a Riemann
surface. We can easily see that his proof works in verbatim for any compact connected
Lie group G with �1.G/Š Z. Then we get:

Proposition 2.3 Let G be a compact connected Lie group with �1.G/Š Z, and let
X be a compact connected Riemann surface of genus g. Then there is a homotopy
equivalence

Gk.X;G/' .�G/2g
�Gk.S

2;G/:

Now we prove Theorems 1.2 and 1.5 by assuming Theorem 1.4 holds.

Proof of Theorem 1.2 Combine Lemmas 2.1 and 2.2, Proposition 2.3 and Theorem 1.4.

Proof of Theorem 1.5 By Lemma 2.1 and Theorem 1.4, if k is divisible by s.G/,
then Gk.S

2;G/ is homotopy equivalent to the homotopy fiber of the constant map
G ! �0G. So since �2.G/ D 0, Gk.S

2;G/ ' G ��2G. Thus by Proposition 2.3,
the proof is done.

3 Samelson products in Lie groups

This section shows some criteria for computing Samelson products in a Lie group. For
the rest of the paper, we will use the following notation:

� Let G be a compact connected Lie group with �1.G/Š Z.

� Let �G denote a generator of �1.G/Š Z.

� Let H and C be as in the decomposition (1-1).

� Let jH W†H ! BH denote the natural map.

� Let pG W S
1 �H !G denote the quotient map.

� Let p1 W S
1 �H ! S1 and p2 W S

1 �H !H denote projections.

� Let K DH=p2.C /.

� Let qG WG!K and NqK WH !K denote the quotient maps.

Algebraic & Geometric Topology, Volume 23 (2023)
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We will abbreviate �G , jH , pG , qG and NqK to �, j , p, q and Nq, respectively, if G, H

and K are clear from the context. First, we show two properties of the group C .

Lemma 3.1 The abelian group p2.C / is cyclic.

Proof There is a fibration

(3-1) S1
!G

q
�!K

and so by the homotopy exact sequence, we can see that �1.K/Š p2.C / is a quotient
of �1.G/Š Z. Then p2.C / is a cyclic group, as stated.

Lemma 3.2 We may choose a group C such that jp1.C /j D s.G/.

Proof Note that p2.C / is a cyclic group by (3-1). We prove that the inequality
jp1.C /j � s.G/ always holds. If jp1.C /j< s.G/, then C1 D jp1.C /jC is a nontrivial
subgroup of the center of 1�H � S1 �H . In particular, there is a covering

C=C1! .S1
�H /=C1!G:

Then �1.G/ŠZ includes a nontrivial finite abelian group C1, which is a contradiction.
Thus jp1.C /j � s.G/.

Suppose that jp1.C /j>s.G/. Then C2Ds.G/C is a finite subgroup of S1�1�S1�H .
Then .S1 �H /=C2 Š S1 �H , implying

G Š .S1
�H /=C Š ..S1

�H /=C2/=.C=C2/Š .S
1
�H /=.C=C2/:

Note that C is a subgroup of p1.C / � p2.C / generated by .g1;g2/, where gi is a
generator of a cyclic group pi.C / for i D 1; 2. Then C2 D s.G/p1.C /� 0, and so
C=C2 is identified with the diagonal subgroup of

.p1.C /=s.G/p1.C //�p2.C /Š Z=s.G/�Z=s.G/:

Thus jp1.C=C2/j D s.G/, finishing the proof.

By Lemma 3.1, �1.K/Š p2.C / is a cyclic group of order s.G/. For the rest of this
section, we will also use the following notation:

� Let N�K denote a generator of �1.K/.

We will abbreviate it by N� if K is clear from the context.

Next, we show an upper bound and a lower bound for the order of h�; 1Gi.

Lemma 3.3 The order of h�; 1Gi, hence h�;pi, divides s.G/.

Algebraic & Geometric Topology, Volume 23 (2023)
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Proof The proof of Lemma 3.1 implies q ı � D N�. Then since q is a homomorphism,
we get

q�.s.G/h�; 1Gi/D s.G/hq ı �; qi D hs.G/N�; qi D 0:

So since there is a fibration (3-1), s.G/h�; 1Gi lifts to a map S1 ^G ! S1. Since
S1 ^G is simply connected, this lift is trivial, and thus s.G/h�; 1Gi itself is trivial,
completing the proof.

Lemma 3.4 The order of hN�; Nqi divides the order of h�;pi.

Proof Let i WH ! S1 �H denote the inclusion. By definition, q ıp ı i D Nq, and the
proof of Lemma 3.2 implies that q ı � D N�. Then

.1^ i/� ı q�.h�;pi/D q�.h�;p ı ii/D hq ı �; q ıp ı ii D hN�; Nqi

and so the proof is done.

Finally, we give a cohomological criterion for the Samelson product hN�; Nqi being
nontrivial. For an algebra A, let QA denote the module of indecomposables.

Lemma 3.5 Suppose there are x;y; z 2QH�.BKIZ=p/ and a Steenrod operation �
satisfying the following conditions:

(1) jyj D 2 and QH n.BKIZ=p/D hzi for n> 2.

(2) �.x/ is decomposable and includes the term y˝ z.

(3) . Nq ı j /�.z/ is nontrivial and not included in any element of �.H�.†H IZ=p//.

Then the Samelson product hN�; Nqi is nontrivial.

Proof Suppose that hN�; Nqi is trivial. Let O� W S2 ! BK and Oq W †H ! BK denote
the adjoint of N� and Nq, respectively. Then by adjointness of Samelson products and
Whitehead products, the Whitehead product ŒO�; Oq� is trivial, so that there is a homotopy
commutative diagram

S2 _†H
O�_Oq
//

��

BK

S2 �†H
�
// BK

Since BK is simply connected, H 1.BKIZ=p/D 0 and H 2.BKIZ=p/D hyi. Then
by the Hurewicz theorem and the first condition in the statement, we may assume
O��.y/D u, where u is a generator of H 2.S2IZ=p/ŠZ=p. Hence by the first and the

Algebraic & Geometric Topology, Volume 23 (2023)
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second conditions, ��.�.x// includes the term u˝ Oq�.z/. Since Oq D Nq ı j , the third
condition implies u˝ Oq�.z/¤ 0. On the other hand, by the third condition, �.��.x//
cannot include the term u˝ Oq�.z/. Thus since ��.�.x// D �.��.x//, we obtain a
contradiction. Therefore hN�; Nqi is nontrivial, completing the proof.

Recall that compact simply connected simple Lie groups with nontrivial center are

SU.n/; Sp.n/; Spin.n/ .n� 7/; E6; E7:

Then in the following two sections, we will compute the Samelson product h�;pi for
H being one of the above Lie groups.

4 Classical case

This section determines the order of the Samelson product h�;pi for H DSU.n/, Sp.n/
and Spin.n/.

4.1 The case H D SU.n/

First we consider the case H D SU.n/.

Proposition 4.1 If H D SU.n/, then h�;pi is of order s.G/.

Proof By Lemma 3.3, it suffices to show that the order of h�;pi is a nonzero multiple
of s.G/. The center of SU.n/ is isomorphic to Z=n. Then since U.n/DS1�Z=nSU.n/,
it follows from Lemma 3.2 that there is a homomorphism � W G ! U.n/ which is a
n=s.G/ sheeted covering. Let ˛2i�1 denote a generator of �2i�1.U.n// Š Z for
i D 1; 2; : : : ; n. Then

��.�/D
n

s.G/
˛1:

On the other hand, it is shown in [4] that the order of h˛1; ˛2n�1i is a nonzero multiple
of n. Since �� W�2n�1.G/!�2n�1.U.n// is an isomorphism, there is an Q̨ 2�2n�1.G/

such that ��. Q̨ /D ˛2n�1. Then since

��.h�; Q̨ i/D h��.�/; ��. Q̨ /i D
D

n

s.G/
˛1; ˛2n�1

E
D

n

s.G/
h˛1; ˛2n�1i;

the order of ��.h�; Q̨ i/ is a nonzero multiple of s.G/. Thus, since the map

�� W �2n.G/! �2n.U.n//

is an isomorphism, the order of h�; Q̨ i is a nonzero multiple of s.G/ too. Since

p� W �2n�1.S
1
�SU.n//! �2n�1.G/
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is an isomorphism, there is a ˇ 2 �2n�1.S
1�SU.n// such that p ıˇ D Q̨ . Thus since

.1^ˇ/�.h�;pi/D h�; Q̨ i, the order of h�;pi is a nonzero multiple of s.G/, completing
the proof.

4.2 The case H D Sp.n/

Next, we consider the case H D Sp.n/. Recall that the center of Sp.n/ is isomorphic to
Z=2, and the quotient of Sp.n/ by its center is denoted by PSp.n/. We apply Lemma 3.5
to the case H D Sp.n/. To this end, we compute the mod 2 cohomology of BPSp.2n/

in low dimensions.

Lemma 4.2 Let �D f˙.1; : : : ; 1/ 2 Sp.2/ng. Then for � � 7,

H�.B.Sp.2/n=�/IZ=2/D Z=2Œx2;x3;x5�˝

nO
kD1

Z=2Œx4;k �; Sq2 x4;k D x2x4;k ;

where jxi j D i and jx4;k j D 4.

Proof Consider the Serre spectral sequence for a homotopy fibration

RP1! BSp.2/n! B.Sp.2/n=�/:

Since H�.RP1IZ=2/D Z=2Œw� with jwj D 1,

H�.RP1IZ=2/D�.w;Sq1w;Sq2 Sq1w/

for � � 7, where �.a1; : : : ; ak/ denotes the simple system of generators in a1; : : : ; ak .
Clearly, �.w/ D x2 for a generator x2 of H 2.B.Sp.2/n=�/IZ=2/ Š Z=2, where �
denotes the transgression. Then by [23, Corollary 6.9], Sq1w and Sq2 Sq1w are also
transgressive, and so we get H�.B.Sp.2/n=�/IZ=2/ for � � 7 as stated. It remains
to show Sq2 x4;k D x2x4;k . Recall that

(4-1)

H�.BSO.n/IZ=2/D Z=2Œw2; w3; : : : ; wn�;

Sqi wj D

iX
kD0

�
j C k � i � 1

k

�
wi�kwjCk ;

where wi is the i th Stiefel–Whitney class. Then since PSp.2/Š SO.5/,

H�.BPSp.2/IZ=2/D Z=2Œy2;y3;y4;y5�; Sq2 y4 D y2y4;

where jyi j D i . Let qk W B.Sp.2/n=�/! BPSp.2/ denote the induced map of the k th

projection for k D 1; 2; : : : ; n. Then q�
k
.y2/D x2 and q�

k
.y4/D x4;k . Thus we obtain

Sq2 x4;k D x2x4;k , completing the proof.
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Proposition 4.3 For � � 7,

H�.BPSp.n/IZ=2/D Z=2Œx2;x3;x4;x5�; Sq2 x4 D x4x2; jxi j D i:

Proof We can compute the mod 2 cohomology of BPSp.2n/ in the same way as in
the proof of Lemma 4.2 by considering a homotopy fibration

RP1! BSp.2n/! BPSp.2n/:

Then it remains to show Sq2 x4 D x4x2. Let � be as in Lemma 4.2. Then there is an
inclusion i WSp.2/n=�!PSp.2n/. Clearly, i�.x2/Dx2 and i�.x4/Dx4;1C� � �Cx4;n.
Then we obtain Sq2 x4 D x4x2 by Lemma 4.2.

Now we prove:

Proposition 4.4 If H D Sp.n/, then h�;pi is of order s.G/.

Proof Since the center of Sp.n/ is isomorphic to Z=2, we only consider

G D S1
�Z=2 Sp.n/:

In this case, s.G/D 2, so by Lemma 3.3, it suffices to show h�;pi is nontrivial. First,
we consider the case G D S1 �Z=2 Sp.2n� 1/. The natural inclusion

Sp.2n� 1/! SU.4n� 2/

sends the center of Sp.2n� 1/ injectively into the center of SU.4n� 2/. Then we
get a homomorphism G ! S1 �Z=2 SU.4n� 2/ which is an isomorphism in �1. It
is well known that the induced map �8n�5.Sp.2n� 1//! �8n�5.SU.4n� 2// is an
isomorphism; hence so is �8n�5.G/! �8n�5.S

1 �Z=2 SU.4n� 2//. Then the proof
of Proposition 4.1 implies that the Samelson product h�;pi is nontrivial.

Next, we consider G D S1 �Z=2 Sp.2n/. We apply Lemma 3.5 to K D PSp.2n/ by
setting x D z D x4, y D x2 and � D Sq2. By Proposition 4.3, the first and the second
conditions of Lemma 3.5 are satisfied. The proof of Proposition 4.3 implies Nq�.x4/ is
nontrivial, where H 4.BSp.2n/IZ=2/ŠQH 4.BSp.2n/IZ=2/ŠZ=2. Since the map

j � WQH 4.BSp.2n/IZ=2/!†QH 3.Sp.2n/IZ=2/

is an isomorphism, we have . Nqıj /�.x4/¤0. Moreover, for degree reasons, . Nqıj /�.x4/

is not included in any element of �.H�.†Sp.2n/IZ=2//. Then the third condition of
Lemma 3.5 is also satisfied. Thus hN�; Nqi is nontrivial, and so by Lemma 3.4, h�;pi is
nontrivial too.
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4.3 The case H D Spin.n/

Finally, we consider the case H D Spin.n/. We show some properties of the mod 2
cohomology of BSpin.n/ that we are going to use. Recall that the mod 2 cohomology
of BSO.n/ is given as in (4-1).

Lemma 4.5 (1) The mod 2 cohomology of BSpin.n/ is given by

H�.BSpin.n/IZ=2/D Z=2Œu2;u3; : : : ;un; z�=.u2;Sq2k

Sq2k�1

� � � Sq1 u2 j k � 0/;

where Nq�SO.n/.wj /D uj , jzj D 2h for some h> 0 and Sqi uj is computed by replacing
wj with uj in (4-1).

(2) For 2� i � n with i ¤ 2k C 1, j �Spin.n/.ui/¤ 0.

Proof Item (1) is a result of Quillen [25]. We prove statement (2). It is well known
that .j 0/�.wi/ ¤ 0 for i D 2; 3; : : : ; n, where j 0 W †SO.n/! BSO.n/ is the natural
map. On the other hand, it is shown in [13] that .† NqSO.n//

� ı .j 0/�.wi/¤ 0. Then for
2� i � n with i ¤ 2k C 1,

0¤ .† NqSO.n//
�
ı .j 0/�.wi/D j � ı NqSO.n/.wi/D j �.ui/:

The following lemma is easily deduced from the formula (4-1).

Lemma 4.6 In H�.BSO.n/IZ=2/, we have:

(1) If n � 0; 1 mod 4, then Sq2wi for i D n � 3; n � 1 are decomposable and
Sq2wn�1 includes the term w2wn�1.

(2) If n� 2 mod 8, then Sq5wi for i Dn�4; n�9 are decomposable and Sq5wn�4

includes the term w2wn�1.

(3) If n� 6 mod 8, then Sq3wi for i Dn�2; n�4 are decomposable and Sq3wn�2

includes the term w2wn�1.

(4) If n � 3 mod 4, then Sq2wi for i D n � 2; n are decomposable and Sq2wn

includes the term w2wn.

Let Cn denote the center of Spin.n/. Then we have:

(1) C2nC1 Š Z=2 and Spin.2nC 1/=C2nC1 Š SO.2nC 1/.

(2) C4nC2 Š Z=4 and Spin.4nC 2/=.Z=2/Š SO.4nC 2/.

(3) C4n Š Z=2�Z=2, Spin.4n/=.Z=2� 1/Š SO.4n/ and Spin.4n/=.1�Z=2/Š

Ss.4n/.

Proposition 4.7 If H D Spin.n/ and K D SO.n/, then h�;pi is of order s.G/.
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Proof We only give a proof for n odd because the case n even is quite similarly
proved. We apply Lemma 3.5 by setting x D z D wn�1, y D w2 and � D Sq2.
By Lemma 4.6, the first and the second conditions of Lemma 3.5 are satisfied. By
Lemmas 4.5 and 4.6, . Nq ı j /�.wn�1/ is nontrivial and not included in any element of
Sq2.H�.†Spin.n/IZ=2//. Then the third condition of Lemma 3.5 is also satisfied, so
hN�; Nqi ¤ 0. Thus, since s.G/D 2, Lemmas 3.3 and 3.4 complete the proof.

Let PO.n/D Spin.n/=Cn. Then we have:

Corollary 4.8 If H D Spin.4nC2/ and KD PO.4nC2/, then h�;pi is of order s.G/.

Proof Let N� WSO.4nC2/!PO.4nC2/ denote the projection. Then N��.N�SO.4nC2//D

2N�PO.4nC2/. Since S1 ^Spin.4nC 2/ is simply connected, the map

N�� W ŒS
1
^Spin.4nC 2/;SO.4nC 2/�! ŒS1

^Spin.4nC 2/;PO.4nC 2/�

is an isomorphism. By definition, NqPO.4nC2/ D N� ı NqSO.4nC2/. So by Proposition 4.7,

2hN�PO.4nC2/; NqPO.4nC2/i D N��.hN�SO.4nC2/; NqSO.4nC2/i/¤ 0:

Then by Lemma 3.3, the order of hN�PO.4nC2/; NqPO.4nC2/i is a nonzero multiple of
s.G/D 4. Thus the proof is complete by Lemmas 3.3 and 3.4.

Let � denote the diagonal subgroup of Z=2�Z=2.

Proposition 4.9 If H D Spin.4n/ and p2.C / D 1 � Z=2; �, then h�;pi is of or-
der s.G/.

Proof By triality of Spin.8/, the case H D Spin.8/ is proved by Proposition 4.7. Then
we assume n> 2. The mod 2 cohomology of PO.4n/ was determined by Baum and
Browder [3] such that

H�.PO.4n/IZ=2/D Z=2Œv�=.v2r

/˝�.u1; : : : ; Ou2r�1; : : : ;un�1/; N��.ui/D wi ;

where 4n D 2r .2mC 1/, jvj D 1 and jui j D i . The elements v and u1 correspond
respectively to generators of subgroups 1�Z=2 and Z=2� 1 of C4n Š Z=2�Z=2.
The Hopf algebra structure of H�.PO.4n/IZ=2/ was also determined such that

N�.v/D 0 and N�.ui/D

i�1X
jD1

�
i

j

�
uj ˝ v

i�j ;

where N� is the reduced diagonal map. Let 
 W PO.4n/2 ! PO.4n/ denote the com-
mutator map. Since N�.v/ ¤ 0, it suffices to show 
 �.x/ includes the term v ˝ y
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such that ��.y/ ¤ 0, where � W Spin.4n/ ! PO.4n/ denotes the projection. Let
� W PO.4n/2! PO.4n/ and � W PO.4n/! PO.4n/2 denote the multiplication and the
diagonal map, respectively. Let � W PO.4n/! PO.4n/ be a map given by �.x/D x�1,
and let T W PO.4n/2! PO.4n/2 be the switching map. Then


 D � ı .���/ ı .1� 1� �� �/ ı .1�T � 1/ ı .���/:

Let Ik D
zH�.PO.n/k IZ=2/. Now we compute 
 �.ui/:

ui
��

7�! ui˝1C1˝uiCiui�1˝v mod I3
2

.���/�
7����! i.ui�1˝v˝1˝1C1˝1˝ui�1˝vCui�1˝1˝1˝vC1˝ui�1˝v˝1/

mod I1˝1˝I1˝1C1˝I1˝1˝I1CI3
4

.1�1����/�
7������! i.ui�1˝v˝1˝1C1˝1˝ui�1˝vCui�1˝1˝1˝vC1˝ui�1˝v˝1/

mod I1˝1˝I1˝1C1˝I1˝1˝I1CI3
4

.1�T�1/�
7�����! i.ui�1˝1˝v˝1C1˝ui�1˝1˝vCui�1˝1˝1˝vC1˝v˝ui�1˝1/

mod I1˝I1˝1˝1C1˝1˝I1˝I1CI3
4

.���/�
7����! i.ui�1˝vCv˝ui�1/ mod I1˝1C1˝I1CI3

2 :

Then for n odd, 
 �.u7/ includes the term v˝u6, where ��.u6/¤ 0 by Lemma 4.5,
and for n even, 
 �.u11/ includes the term v˝u10, where ��.u10/¤ 0 by Lemma 4.5.
Thus the Samelson product hN�; Nqi is nontrivial, completing the proof by Lemmas 3.3
and 3.4 because s.G/D 2.

5 Exceptional case

First, we consider the case H DE6.

Proposition 5.1 If H DE6, then h�;pi is of order s.G/.

Proof Since the center of E6 is isomorphic to Z=3, we only need to consider the case
G D S1 �Z=3 E6. The mod 3 cohomology of Ad.E6/, which is the quotient of E6 by
its center, was determined by Kono [19] as

H�.Ad.E6/IZ=3/D Z=3Œx2;x8�=.x
9
2 ;x

3
8/˝ƒ.x1;x3;x7;x9;x11;x16/

such that

N�.x9/D x8˝x1Cx2˝x7�x3
2 ˝x3Cx4

2 ˝x1 and Nq�.x8/¤ 0;
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where jxi j D i . Then by the same computation as in the proof of Proposition 4.9,
we can see that hN�; Nqi is nontrivial. Thus by Lemmas 3.3 and 3.4, h�; 1Gi is of order
s.G/D 3.

Next, we consider the case H DE7. Because the center of E7 is isomorphic to Z=2,
we only need to consider the case G D S1 �Z=2 E7. The Hopf algebra structure of
H�.Ad.E7/IZ=2/ was determined by Ishitoya, Kono and Toda [13], from which we
can see that the same computation as Ad.E6/ does not apply to Ad.E7/. So we apply
Lemma 3.5. Kono and Mimura [21] showed that the mod 2 cohomology of BAd.E7/ is
generated by elements xi for i 2 f2; 3; 6; 7; 10; 11; 18; 19; 34; 35; 64; 66; 67; 96; 112g,
where jxi j D i . We determine Sq2 x6.

Let e1; e2; : : : ; en be the standard basis of Rn. Elements of the spin group Spin.n/ are
expressed by using e1; e2; : : : ; en. See [1, Chapter 3]. Recall from [1, Proposition 4.2]
that there are two representations

�C
2n
; ��2n W Spin.2n/! SU.2n�1/

such that �Cn has weights 1
2
.˙x1˙x2˙ � � �˙xn/ with even numbers of minus signs

and ��n has weights 1
2
.˙x1˙x2˙ � � �˙xn/ with odd numbers of minus signs.

Proposition 5.2 There is a natural isomorphism

Spin.4/Š Ker�C
4
�Ker��4 :

Proof There is a product decomposition Spin.4/Š SU.2/�SU.2/ such that

�˙4 W Spin.4/! SU.2/

are identified with projections SU.2/�SU.2/! SU.2/.

As in [1, Theorem 6.1], there is a homomorphism

� W Spin.16/!E8

whose kernel is f1; e1e2 � � � e16g. Let � W Spin.4/� Spin.12/! Spin.16/ denote the
homomorphism covering the inclusion

SO.4/�SO.12/! SO.16/; .A;B/ 7!

�
A O

O B

�
:

Define N�D � ı� W Spin.4/�Spin.12/!E8. Then

Ker N�D f.1; 1/; .�1;�1/; .e1e2e3e4; e5e6 � � � e16/; .�e1e2e3e4;�e5e6 � � � e16/g:
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Recall from [1, Chapter 8] that E7 is defined as the centralizer of N�.Ker�C
4
�1/ in E8.

Then, by Proposition 5.2, there is a homomorphism

O� W Ker��4 �Spin.12/!E7:

Since �e1e2e3e4 2 Ker�C
4

, N�.�e1e2e3e4; 1/ commutes with every element of E7

in E8. Moreover, N�.�e1e2e3e4; 1/ D N�.e1e2e3e4;�1/ D O�.e1e2e3e4;�1/, which
belongs to E7 and is not the unit of E7. Then we obtain:

Proposition 5.3 The center of E7 is f1; O�.e1e2e3e4;�1/g.

Let LD .Ker��
4
�Spin.12//=f.1; 1/; .e1e2e3e4;�1/g. Then by Proposition 5.3, there

is a map
� WL! Ad.E7/;

which is an isomorphism in the second mod 2 cohomology.

Lemma 5.4 In H�.BAd.E7/IZ=2/, Sq2 x6 is decomposable and includes the term
x2x6.

Proof By [21; 22], . N� ı .1� Nq//�.x6/ includes the term 1˝ u6, where ui is as in
Lemma 4.5. Note that the composition

Spin.12/! Ker��4 �Spin.12/!L
q2
�! SO.12/

is the natural projection, where q2 is the second projection. Then by degree reasons,

��.x6/C a��.x2/
3
C b��.x3/

2
D q�2 .w6/

for some a; b 2 Z=2. On the other hand, q�
2
W H 2.BSO.12/IZ=2/! H 2.BLIZ=2/

is an isomorphism, implying ��.x2/D q�
2
.w2/. Then since Sq2w6 D w2w6 by (4-1)

and Sq2 x6 is decomposable by degree reasons, Sq2 x6 is decomposable and includes
the term x2x6, as stated.

We are ready to prove:

Proposition 5.5 If H DE7, then h�;pi is of order s.G/.

Proof As mentioned above, we only need to consider G D S1 �Z=2 E7. We apply
Lemma 3.5 by setting x D z D x6, y D x2 and � D Sq2. By Lemma 5.4, the first and
second conditions of Lemma 3.5 are satisfied. As in [22], Nq�.x6/ is a generator of
H 6.BE7IZ=2/ such that . Nq ı j /�.x6/ is nontrivial. Then by degree reasons, the third
condition of Lemma 3.5 is also satisfied, implying hN�; Nqi is nontrivial. Since s.G/D 2,
the proof is complete by Lemmas 3.3 and 3.4.
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6 Proofs of Theorems 1.3 and 1.4

This section proves Theorems 1.3 and 1.4. First, we prove Theorem 1.4.

Proof of Theorem 1.4 Suppose H ŠH1 � � � � �Hk , where each Hi is a simple Lie
group. Let ri WS

1�H!S1�Hi be the projection, and let GiD .S
1�Hi/=.ri.C // for

i D 1; 2; : : : ; k. By definition, s.G/ is the least common multiple of s.G1/; : : : ; s.Gk/.

Let Nri W G! Gi and �i W S1 �Hi ! S1 �H denote the projection and the inclusion,
respectively. Then Nri ı �G D �Gi

and Nri ıpG ı �i D pGi
, so

.1^ �i/
�
ı . Nri/�.h�G ;pGi/D hNri ı �G ; Nri ıpG ı �ii D h�Gi

;pGi
i:

Thus the order of h�G ;pGi is a nonzero multiple of the order of h�Gi
;pGi
i. So by

Propositions 4.1, 4.4, 4.7, 5.1 and 5.5, the order of h�G ;pGi is a nonzero multiple of
s.Gi/ for i D 1; 2; : : : ; k; hence so is h�G ; 1Gi. Therefore, by Lemma 3.3, the proof is
complete.

Next, we prove Theorem 1.3.

Proof of Theorem 1.3 First, we prove the case H D SU.n/r . The implication
(1) D) (2) follows from Theorem 1.2. We prove the implication (2) D) (1). Let
@k W G ! map�.S

2;BGI k/ ' �0G be as in Section 2, and let qi W H ! SU.n/ be
the projection onto the i th SU.n/. Then by Lemma 2.1, the proof of Proposition 4.1
implies that the image of the map

.@k/� W �2n�1.G/! �2n�1.�0G/

is isomorphic to
Qr

iD1 Z= n!
.k;jqi .C /j/

, where �2n�1.�0G/Š .Z=n!/r . By (2-1), there
is an exact sequence

0!

rY
iD1

Z
. n!

.k; jqi.C /j/

! �2n�1.BGk.S
2;G//! �2n�1.BG/Š �2n�1.BSU.n/r /D 0:

Then since �2n�1.BGk.S
2;G//Š �2n�2.Gk.S

2;G//,

�2n�2.Gk.S
2;G//Š

rY
iD1

Z=.k; jqi.C /j/:

So if Gk.X;G/' Gl.X;G/, then �2n�2.Gk.S
2;G//' �2n�2.Gl.S

2;G//, implying�
k; jq1.C /j

�
� � �
�
k; jqr .C /j

�
D
�
l; jq1.C /j

�
� � �
�
l; jqr .C /j

�
:
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As in the proof of Theorem 1.4, s.G/ is the least common multiple of

jq1.C /j; : : : ; jqr .C /j:

Then it is easy to see that the above equality implies .k; s.G//D .l; s.G//.

Next, we prove the case H D SU.4n� 2/s �Sp.2n� 1/t . Note that

�8n�4.Sp.2n� 1//Š Z=2:

Then similarly to the above case, the proofs of Propositions 4.1 and 4.4 imply that the
image of the map

.@k/� W �8n�5.G/! �8n�5.�0G/

is isomorphic to
sY

iD1

Z
. .4n� 2/!�

k; jqi.C /j
� � tY

iD1

Z
. 2

.k; qi.C //
:

So we also get an exact sequence

0!

sY
iD1

Z
. .4n� 2/!�

k; jqi.C /j
� � tY

iD1

Z
. 2�

k; jqi.C /j
� ! �8n�5.BGk.S

2;G//

! �2n�1.BG/Š �8n�5.BSU.4n� 2/s �BSp.2n� 1/t /D 0:

Thus, by arguing as above, we obtain .k; s.G// D .l; s.G// whenever Gk.X;G/ '

Gl.X;G/. Therefore, the proof is complete.
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Diffeomorphisms of odd-dimensional discs,
glued into a manifold

JOHANNES EBERT

Let �M WBDiff@.D2nC1/!BDiff.M /, for a compact .2nC1/–dimensional smooth
manifold M , be the map defined by extending diffeomorphisms on an embedded disc
by the identity. By a classical result of Farrell and Hsiang, the rational homotopy
groups and the rational homology of BDiff@.D2nC1/ are known in the concordance
stable range. We prove two results on the behaviour of the map�M in the concordance
stable range. Firstly, it is injective on rational homotopy groups, and secondly, it
is trivial on rational homology if M contains sufficiently many embedded copies
of Sn � SnC1 n int.D2nC1/. We also show that �M is generally not injective on
homotopy groups outside the stable range.

The homotopical statement is probably not new and follows from the theory of smooth
torsion invariants. The noninjectivity outside the stable range is based on recent work
by Krannich and Randal-Williams. The homological statement relies on work by
Botvinnik and Perlmutter on diffeomorphisms of odd-dimensional manifolds.

57S05

1 Introduction

For a smooth compact manifold M with boundary, we denote by Diff.M / the topolog-
ical group of diffeomorphisms of M , and by Diff@.M / � Diff.M / the subgroup of
those diffeomorphisms which agree with the identity near @M . A celebrated classical
result by Farrell and Hsiang [10] states that

.1.1/ �k.BDiff@.D
2nC1//˝QŠ

�
Q if k � 0 .mod 4/;

0 if k 6� 0 .mod 4/;

in a range of degrees which was originally given by k < 1
3
n, but (1.1) holds more

generally if k � �Q.D2n/, where �Q.D2n/ is the rational concordance stable range
for D2n, which we briefly recall.
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License 4.0 (CC BY). Open Access made possible by subscribing institutions via Subscribe to Open.
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2330 Johannes Ebert

For a compact smooth manifold M , let

C.M / WD Diff.M � Œ0; 1�;M � f0g[ @M � Œ0; 1�/

be the concordance diffeomorphism group of M , and let �C W C.M /! C.M � Œ0; 1�/

be the (positive) suspension map defined in eg Igusa [16, Section 6.2]. Define �.M / to
be the largest integer k such that the maps �C W C.M � Œ0; 1�m/! C.M � Œ0; 1�mC1/,
for m � 0, are all k–connected. Similarly, define �Q.M / � �.M / using rational
connectivity instead of connectivity (this makes sense if dim.M /� 6 as �0.C.M // is
abelian in that case, by Hatcher and Wagoner [14, Lemma 1.1]).

Igusa’s stability theorem [15, page 6] states that

.1.2/ �.M d /�min
�

1
2
.d � 7/; 1

3
.d � 4/

�
:

Recent work by Krannich and Randal-Williams [21] gives the optimal range in which
(1.1) holds. Corollary B of [21] shows that

.1.3/ �Q.Dd /D d � 4 if d � 10;

and hence (1.1) holds if k�2n�4, provided that n�5. Theorem A of [21] improves this
to k � 2n�3, again for n� 5. These results slightly exceed Krannich [20, Corollary B].

For an arbitrary smooth compact and nonempty manifold M of dimension 2nC 1,
choose an embedding D2nC1! int M . Extending diffeomorphisms by the identity
gives a gluing map

�@M W Diff@.D
2nC1/! Diff@.M /:

We may also consider the composition

�M W Diff@.D
2nC1/

�@
M
��! Diff@.M /! Diff.M /:

The purpose of this note is to study the effect of the maps B�M and B�@
M

on rational
homotopy and homology. The precise choice of the embedding does not play a role
for this question as long as M is connected. This is because the homotopy class
of B�M only depends on the isotopy class of the embedding. If M is connected
and not orientable there is only one isotopy class of embeddings, and if M is con-
nected and orientable there are two such isotopy classes, which differ by the reflection
automorphism of the group Diff@.D2nC1/.

Theorem 1.4 (homotopical theorem) For every .2nC1/–dimensional manifold M ,
the maps

.�M /� W �k.BDiff@.D
2nC1//˝Q! �k.BDiff.M //˝Q

Algebraic & Geometric Topology, Volume 23 (2023)
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and
.�@M /� W �k.BDiff@.D

2nC1//˝Q! �k.BDiff@.M //˝Q

are injective when k ¤ 1 and k � �Q.D2n/.

Remark 1.5 Note that �1.BDiff@.D2nC1//D �0.Diff@.D2nC1// is always a finite
group; this is trivial when n D 0 and follows from Cerf [7] for n D 1. For n � 2,
Cerf [8, corollaire 2] and the h-cobordism theorem identify �0.Diff@.D2nC1// with
the group of homotopy .2nC2/–spheres, which is finite by Kervaire and Milnor [19].

Remark 1.6 By [21, Corollary B], Theorem 1.4 holds for k � 2n � 4 if n � 5.
Theorem 1.4 is also true for kD2n�3 and n�5, since �2n�3.BDiff@.D2nC1/˝QD0

for such n by [21, Theorem A].

Theorem 1.4 could have been proven with little effort in Badzioch, Dorabiała, Klein
and Williams [1] at latest. It was in fact known by experts and we learnt the statement
from Mauricio Bustamante. The proof is given here for the sake of completeness and
to contrast it with our main result (Theorem 1.7 below), which seemingly goes the
opposite direction.

Our result concerns the effect of �M in rational homology. Since BDiff@.D2nC1/ is a
connected E2nC1–space (and hence a homotopy commutative H-space), we have that
H�.BDiff@.D2nC1/IQ/ (with the Pontryagin product) is the free graded-commutative
algebra generated by ��.BDiff@.D2nC1//˝Q. Therefore, in the concordance stable
range, H�.BDiff@.D2nC1/IQ/ is a polynomial algebra with one generator in each
dimension divisible by 4.

Let
U n

g WD#g
.Sn
�SnC1/

be the connected sum of g copies of Sn �SnC1, and let

U n
g;1 WD U n

g n int D2nC1

be U n
g with the interior of a disc removed.

Theorem 1.7 (homological theorem) Let M be a connected manifold of dimension
2nC 1� 9 and suppose that M contains an embedded copy of U n

g;1
. Then the maps

.�M /� W zHk.BDiff@.D
2nC1/IQ/! zHk.BDiff.M /IQ/

and
.�@M /� W zHk.BDiff@.D

2nC1/IQ/! zHk.BDiff@.M /IQ/

are trivial if k � �Q.D2n/C 1 and k � 1
2
.g� 4/.

Algebraic & Geometric Topology, Volume 23 (2023)
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Finally, using the recent work [21], we can show that the range for the validity of
Theorem 1.4 given in Remark 1.6 is optimal.

Theorem 1.8 For even n� 6, there is a closed .2nC1/–dimensional smooth manifold
M such that the kernel of

.�M /� W �2n�2.BDiff@.D
2nC1//˝Q! �2n�2.BDiff.M //˝Q

is nonzero.
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2 Proof of the homotopical theorem

The proof of Theorem 1.4 relies on higher torsion invariants as axiomatized by
Igusa [18], and we review some background beforehand. Let K.Z/ be the algebraic
K–theory spectrum of Z and let

u WQ.S0/!�1K.Z/

be the unit map on infinite loop spaces.

Let M be a finite CW complex of dimension d , and let � WE! B be a fibration with
fibres homotopy equivalent to M . Let

.2.1/ �k.�/ W B! BGL.Hk.M IZ//

be the map induced by the monodromy action of the fundamental group on the homology
of the fibre. The Z–module Hk.M IZ/ is finitely generated, and hence there is a
canonical map

� W BGL.Hk.M IZ//!�1K.Z/:
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Such a map exists even if the homology groups are not free, essentially because Z is a
regular ring (each finitely generated Z–module has a finite length resolution by projec-
tive finitely generated Z–modules). See the discussion leading up to [9, Proposition 6.7]
for details.

The map � hits the component of ŒHk.M IZ/� 2 K0.Z/ D �0.�
1K.Z// Š Z. The

algebraic K–theory Euler characteristic of the fibration � is the alternating sum

�.�/ WD

dX
kD0

.�1/k � ı �k.�/ W B!�1K.Z/;

where d D dim.M / and we have used the H–space structure on �1K.Z/ to form the
sum. Of course, �.�/ hits the component indexed by �.M / 2 ZDK0.Z/.

The fibration � has an associated transfer map [3]

trf� W†1BC!†1EC

on the level of suspension spectra; we mostly consider its adjoint, also written

trf� W B!Q.EC/:

The Dwyer–Weiss–Williams index theorem [9, Corollary 8.12] implies that if � is a
smooth fibre bundle, the diagram

.2.2/

B

�.�/ ##

trf�
// Q.EC/

uıc

��

�1K.Z/

commutes, up to a preferred homotopy (here u ı c is the composition of the unit map
with the collapse map c WQ.EC/!Q.S0/).

Remark 2.3 Actually, Theorem 8.5 of [9] proves a stronger version involving the
algebraic K–theory A.E/ of the space E and a fibrewise version thereof. Raptis and
Steimle gave a substantially simpler proof of the homotopy-commutativity of (2.2)
in [24]; they also showed [9, Theorem 8.5] for smooth bundles in [25].

The diagram (2.2) can be used to define secondary invariants under additional hypotheses
on the bundle �; we follow the approach of [2] here, with some modifications. The
extra hypothesis to be made is that the monodromy action of �1.B/ on Hk.M IZ/ is
unipotent for all k (in [2] the authors consider homology with coefficients in a field,

Algebraic & Geometric Topology, Volume 23 (2023)
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but the construction generalizes to regular rings such as Z; see [2, Remark 6.11]).
Moreover, we assume as in [2] that the base space B is a compact manifold, possibly
with boundary.

Under these assumptions, the map �.�/ comes with a preferred homotopy to the
constant map to the point

�.M / WD

dX
kD0

.�1/k ŒHk.M IZ/� 2�
1K.Z/I

see [2, Theorem 6.7]. Combining this homotopy with the preferred homotopy from
(2.2) yields a map

.2.4/ T .�/ W B! hofib�.M /.u/' hofib0.u/;

where we use the infinite loop space structures to identify the homotopy fibres. Using
Borel’s computation [5] of ��.�1K.Z//˝ R, we define characteristic classes of
unipotent smooth bundles as follows. Note that

.2.5/ H�.hofib0.u/IR/DRŒa4; a8; : : : �

for certain generators a4k of degree 4k (the transgression of ak is the Borel class in
H 4kC1.�1K.Z/IR/). Following [2, Section 7] (but using the notation of [1]), define

.2.6/ t s
4k.�/ WD T .�/�a4k 2H 4k.BIR/:

It is convenient for us to replace the coefficient field by Q, which can be done as follows.
First, the Borel class comes from a spectrum cohomology class bk 2H 4kC1.K.Z/IR/.
Second, Borel showed that H 4kC1.K.Z/IR/ is 1–dimensional, and so there is ˛k 2R�

such that ˛kbk lies in H�.K.Z/IQ/. We now define

.2.7/ Nt s
4k.�/D Nt

s
4k.E/ WD ˛k t s

4k.�/ 2H 4k.BIQ/:

The construction of (2.4) is given in [2] only for compact manifold bases; the definition
of (2.7) can be generalized to arbitrary base spaces as follows. For an arbitrary
unipotent bundle E! B, we define Nt s

4k
.E/ 2H 4k.BIQ/ as the class corresponding

to the homomorphism

.2.8/ �fr
4k.B/!QI ŒX; f � 7! hNt s

4k.f
�E/I ŒX �i

from the framed bordism group of B under the isomorphism

H 4k.BIQ/Š Hom.�fr
4k.B/IQ/

(we need [2, Proposition 7.3] to show that (2.8) is well defined).
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Now let Torr.M /� Diff.M / be the Torelli diffeomorphism group, ie the subgroup of
those diffeomorphisms which act as the identity on H�.M IZ/ and H�.M; @M IZ/.
The universal M –bundle over BTorr.M / is clearly unipotent, and combining the
classes Nt s

4k
, we obtain a map

.2.9/ �M W BTorr.M /!
Y
k�1

K.Q; 4k/:

Observing that Torr.D2nC1/D DiffC.D2nC1/ is the group of orientation-preserving
diffeomorphisms, we obtain in particular

.2.10/ �D2nC1 W BDiff@.D
2nC1/! BDiffC.D2nC1/

D BTorr.D2nC1/!
Y
k�1

K.Q; 4k/:

Farrell and Hsiang’s theorem may be restated as follows.

Theorem 2.11 The map �D2nC1 induces an isomorphism on rational homotopy groups
in degrees at most �Q.D2n/.

Proof The map �D2nC1 factors through

BDiff@.D
2nC1/! BC.D2n/! BDiffC.D2nC1/:

Consider the diagram

.2.12/

BC.D2n/

�ım
C

��

// BDiffC.D2nC1/

Ś

idDm

��

BC.D2nCm/ // BDiffC.D2nCmC1/

The left vertical map is a composition of the suspension map and the right vertical map
is given by taking products with Dm and the identification D2nCmC1 DD2nC1�Dm.
The square commutes up to homotopy by the definition of the suspension map �C. A
special case of [1, Theorem 7.1] states that Nt s

4k
.E �Dm/D Nt s

4k
.E/ for each unipotent

bundle E!B. It follows that �D2nC1 WBDiff@.D2nC1/!
Q

k�1 K.Q; 4k/ factors as

.2.13/ BDiff@.D
2nC1/! BC.D2n/! BC.D2n/

WD hocolimmBC.D2nCm/!
Y

m�1

K.Q; 4k/:

All three maps in (2.13) induce isomorphisms on rational homotopy up to degree
�Q.D2n/. This is true for the second map by definition.
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The third map is a rational equivalence. Since the Whitehead group of �1.D
2n/ is

trivial, BC.D2n/ is the stable h–cobordism space H.D2n/. The stable h–cobordism
theorem [27] states an equivalence H.D2n/ ' hofib.Q.S0/ ! A.�//, and the lin-
earization map from A.�/ to �1K.Z/ induces a rational equivalence

hofib.Q.S0/!A.�//! hofib.Q.S0/!�1K.Z//:

Together with [5], this shows that the rational homotopy groups of BC.D2n/ and ofQ
m�1 K.Q; 4k/ are abstractly isomorphic and at most 1–dimensional.

To conclude that the third map in (2.13) is a rational isomorphism, it is therefore enough
to prove that the induced map on rational homotopy groups is nontrivial whenever its
target is nonzero, and this amounts to proving that for each k � 1, there is an m and an
element in �4k.BC.D2nCm// such that Nt s

D2nCmC1 is nontrivial on that element. This
was done by Igusa in [16, Theorem 6.4.2], but with the higher Franz–Reidemeister
torsion classes tFR

4k
2H 4k.BC.D2nCm/IR/ in place of Nt s

4k
. These were constructed

using ideas from Morse theory in [16, Section 5.7.2] (for bundles with structure group
Torr.M /) and in [17, Section 2.11] for unipotent bundles. The main theorem of [1]
shows that there is a universal constant �4k 2 R� such that Nt s

4k
.�/D �4k t IK

4k
.�/ for

all unipotent bundles over compact manifold bases, and so the third map in (2.13) is a
rational equivalence.

It is shown in [16, Section 6.5] that the first map in (2.13) induces an isomorphism on
rational homotopy groups up to degree �Q.D2n/. In loc. cit., the result is stated in
terms of (1.2), so we give a few more details here. Consider the fibre sequence

Diff@.D
2nC1/! C.D2n/! Diff@.D

2n/:

The two maps are compatible with the following involutions on the spaces: the group
inversion on Diff@.D2n/, an involution defined at the beginning of [16, Section 6.5] on
C.D2n/, and the involution

.2.14/ I W Diff@.D
2nC1/! Diff@.D

2nC1/

given by conjugation with the reflection map

r.x1; : : : ;x2nC1/ WD .x1; : : : ;x2n;�x2nC1/:

The rational homotopy sequence of the fibration splits into negative and positive
eigenspaces of these involutions. An Eckmann–Hilton argument proves that

�C� .Diff@.D
2nC1//˝Q! �C� .C.D

2n//˝Q

Algebraic & Geometric Topology, Volume 23 (2023)
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is an isomorphism in all degrees. On the other hand, I� D id on �k. _ /˝Q for
k � �Q.D2n/; Corollary 6.5.3 of [16] states this when k is in the range given by (1.2),
but the proof clearly works for k � �Q.D2n/. Hence, for k � �Q.D2n/C 1,

�k.BDiff@.D
2nC1//˝QD �C

k
.BDiff@.D

2nC1//˝QŠ �C
k
.BC.D2n//˝Q:

Finally, ��
k
.BC.D2n//˝Q D 0 for k � �Q.D2n/. To see this, observe that the

stabilization map BC.Dd //!BC.DdC1/ switches the eigenspaces of the involutions
by [16, Lemma 6.5.1]. Hence it is enough to check that ��

k
.BC.D2n//˝QD 0 for

very large n, and this follows from Theorem 6.4.2 and Lemma 6.5.4 of [16], using that
the third map in (2.13) is a rational equivalence.

Proof of Theorem 1.4 for closed M We first consider the case where M is closed.
The cohomology classes Nt s

4k
have the following additivity property: for unipotent

bundles �j WEj !B with common (vertical) boundary bundle E01 D @E0 D @E1, the
boundary bundle �01 WE01! B and the glued bundle � WE DE0[@Ej

E1! B are
also unipotent, and

.2.15/ Nt s
4k.�/C Nt

s
4k.�01/D Nt

s
4k.�1/C Nt

s
4k.�2/ 2H 4k.BIQ/:

This is proven for B a compact manifold in [1, Corollary 5.2], the case of a general
base follows by using framed bordism as in the construction of Nt s

4k
for general base

spaces.

Next, �M WBDiff@.D2nC1/!BDiff.M / lifts to Q�M WBDiff@.D2nC1/!BTorr.M /,
and (2.15) shows that

.2.16/ �M ı Q�M � �D2nC1 :

By Theorem 2.11, it follows that Q�M is injective on �k. _ /˝Q when k � �Q.D2n/.
Because Torr.M /� Diff.M / is a union of path components,

p� W �k.BTorr.M //! �k.BDiff.M //

is injective when kD 1 and an isomorphism when k � 2, and �M Dpı Q�M is injective
on rational homotopy groups up to degree �Q.D2n/.

We have used that M is closed in order to apply (2.15), which in the quoted source
is only covered for closed M . The case of a general M reduces to the closed case
by “doubling”. Let M be a manifold with boundary, let A � @M be a compact
codimension-0 submanifold, and form M [@M�int A M . This is a manifold with
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boundary A [@A A. Let DiffA.M / be the group of diffeomorphisms which fix A

pointwise. There is a doubling map

dA W BDiffA.M /! BDiff@.M [@M�int A M /

given by extending a diffeomorphism with its reflection. The diagram

.2.17/

BDiff@.D2nC1/
�M

//

d
D2n

��

BDiffA.M /

dA

��

BDiff@.D2nC1[D2n D2nC1/
�M[@M�int AM

// BDiff@.M [@M�int A M /

commutes up to homotopy, where D2n � @D2nC1 denotes a half disc in the boundary.

Lemma 2.18 The doubling map induces an isomorphism

.dD2n/� W �k.BDiff@.D
2nC1//˝Q! �k.BDiff@.D

2nC1
[D2n D2nC1//˝Q

when k � �Q.D2n/C 1.

Proof By the Eckmann–Hilton argument, the effect of d on rational homotopy groups
is the map

1C .BI/� W ��.BDiff@.D
2nC1//˝Q! ��.BDiff@.D

2nC1//˝Q

(here I is the involution (2.14), and we identify D2nC1[D2n D2nC1 DD2nC1). The
lemma now follows from the fact that BI� D id on �k. _ /˝Q for k � �Q.D2n/C 1

(see the proof of Theorem 2.11 above for more details).

Remark 2.19 The bound given in Lemma 2.18 is optimal: [21, Corollary 8.4] shows
that the involution acts nontrivially on �2n�2.BDiff@.D2nC1//˝Q when n� 5, while
�Q.D2n/C 1D 2n� 3 for such n.

Proof of Theorem 1.4 for general M To prove the statement for �M , use (2.17)
with AD∅ and apply Lemma 2.18. The statement for �@

M
follows from that for �M

in view of the definition of �M .

Remark 2.20 From the proof of Theorem 1.4 given above, one can also deduce a
statement about H�.BTorr.M /IQ/, namely that Q�M is injective on rational homology
in the concordance stable range, at least when M is closed or orientable.
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In the case where M is closed, this follows from (2.16) and Theorem 2.11. For
manifolds with nonempty boundary, a bit more care is needed to check that doubling
really gives a map Torr.M /! Torr.M [@M M /. For oriented M , the argument goes
as follows.

Mapping both halves of M [@M M to M and excision in homology gives a Diff.M /–
equivariant isomorphism H�.M [@M M IZ/ Š H�.M IZ/˚H�.M; @M IZ/, from
which it follows that the double of f also induces the identity on homology.

We leave it to the reader to figure out statements in cohomology or a variant for
nonorientable M .

3 Proof of the homological theorem

We now turn to the proof of Theorem 1.7, which relies on work by Botvinnik and
Perlmutter [6; 23]. To state their results, let

V n
g WD \

g
.Sn
�DnC1/

be the boundary connected sum of g copies of Sn �DnC1, and let D DD2n � @V n
g

be a disk in the boundary of V n
g . Note that V n

0
DD2nC1. There is a stabilization map

.3.1/ BDiffD.V n
g /! BDiffD.V n

gC1/;

given by taking the boundary connected sum with Sn �DnC1 at D and extending
diffeomorphisms by the identity. Perlmutter [23, Theorem 1.1] proved that the map (3.1)
induces an isomorphism in homology in degrees � � 1

2
.g � 4/ provided that n � 4.

Botvinnik and Perlmutter [6] computed the homology of BDiffD.V n
g / in the stable

range. Let

�n W BO.2nC 1/hni ! BO.2nC 1/

be the n–connected cover of BO.2nC1/. Let � WE!B be a bundle with fibre V n
g and

structure group DiffD.V n
g /. The vertical tangent bundle TvE admits a �n–structure,

ie a bundle map ` W TvE ! ��n 
2nC1 to the pullback of the universal bundle over
BO.2nC 1/. This �n–structure is unique up to contractible choice once the following
condition is imposed. Inside E, there is a trivial D–subbundle B�D. The restriction of
the vertical tangent bundle TvE to B�D has a canonical trivialization, and one requires
that ` is compatible with that trivialization (see [6, Proposition 6.16] for all this).
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Let ` WE! BO.2nC 1/hni be the map of spaces underlying `. Let

˛� W B
trf�
��!Q.EC/

Q.`/
���!Q.BO.2nC 1/hniC/

be the composition of the transfer with the map induced by `. In particular, we can
apply this construction to the universal bundle over BDiffD.V n

g / and obtain a map

.3.2/ ˛g W BDiffD.V n
g /!Q1C.�1/ng.BO.2nC 1/hniC/:

The target is the path component indexed by

�.V n
g /D 1C .�1/ng 2 ZD �0

�
Q.BO.2nC 1/hniC/

�
:

The following is essentially [6, Corollary B].

Theorem 3.3 (Botvinnik and Perlmutter) Let n� 4. Then the map (3.2) induces an
isomorphism in integral homology in degrees � � 1

2
.g� 4/.

Theorem 3.3 as stated above differs from the formulation given in [6] in so far as loc.
cit. does not mention the transfer at all, so some remarks have to be made here. For a
fibration � W X ! BO.d/, Genauer [13] introduced the cobordism category Cob@� of
.d�1/–dimensional �–manifolds with boundaries and their cobordisms (which have
corners). He proved that there is a weak equivalence BCob@� ' �

1�1†1XC, and
the equivalence is given by a parametrized Pontryagin–Thom construction (this result
is parallel to the well-known result [12] for the usual cobordism category). Given
any bundle � W E ! B of smooth compact d–manifolds with boundary equipped
with a �–structure ` on the vertical tangent bundle, one obtains a tautological map
B!�BCob@� , and from the description of the transfer for smooth bundles, one sees
that the composition of this tautological map with Genauer’s equivalence agrees with
the composition B

trf�
��!Q.EC/

Q.`C/
����!Q.XC/. Using this observation, one derives

Theorem 3.3 from the results of [6].

Corollary 3.4 If n� 4, the iterated stabilization map

BDiffD.V n
0 /! BDiffD.V n

g /

induces the zero map on integral reduced homology in degrees � � 1
2
.g� 4/.

Proof The transfer has an additivity property [4] which implies that

BDiffD.V
n

0
/ //

˛0

��

BDiffD.V
n

g /

˛g

��

Q1.BO.2nC 1/hniC/ // Q1C.�1/ng.BO.2nC 1/hniC/

Algebraic & Geometric Topology, Volume 23 (2023)



Diffeomorphisms of odd-dimensional discs, glued into a manifold 2341

commutes up to homotopy. The lower map takes the sum with a fixed point in
Q.�1/ng.BO.2nC 1/hniC/ and is a weak equivalence. We shall show that the left
vertical map is trivial in reduced homology (in all degrees); this will imply the claim
by Theorem 3.3.

The map ˛0 factors as

BDiffD.V n
0 /

trf
�!Q1..EDiffD.V n

0 /�DiffD.V n
0
/ V n

0 /C/
Q.l/
���!Q1.BO.2nC 1/hniC/:

The map Q.l/ is induced from the vertical tangent bundle of the universal bundle
EDiffD.V n

0
/�DiffD.V n

0
/V

n
0
!BDiffD.V n

0
/, which is trivial by the following argument:

The choice of a point in D � @V n
0

determines a section s of the bundle, which is a
homotopy equivalence as V n

0
is a disc, and the pullback of the vertical tangent bundle

along s is trivial. Hence Q.l/ factors through Q1.S
0/, which is rationally acyclic.

Therefore ˛0 induces the zero map on rational homology. This finishes the proof for
rational homology, which is all we need for the proof of Theorem 1.7.

For the integral version, we use that the transfer is defined more generally for fibrations
with finite CW fibres. It follows that there is a commutative diagram

BDiffD.V
n

0
/

trf
//

��

Q1..EDiffD.V
n

0
/�DiffD.V

n
0
/ V n

0
/C/

��

BHomeoD.V
n

0
/

trf
// Q1..EHomeoD.V

n
0
/�HomeoD.V

n
0
/ V n

0
/C/

Because the map

` WEDiffD.V n
0 /�DiffD.V n

0
/ V n

0 ! BO.2nC 1/hni

is nullhomotopic as we just argued, it extends to a map

`0 WEHomeoD.V
n

0 /�HomeoD.V
n

0
/ V n

0 ! BO.2nC 1/hni:

Therefore ˛0 factors up to homotopy through BHomeoD.V
n

0
/, which is contractible

by the Alexander trick.

Proof of Theorem 1.7 Since both �M and �@
M

factor through

�@U n
g;1
W BDiff@.D

2nC1/! BDiff@.U
n
g;1/;

it suffices to show that this map induces the trivial map in rational homology in the
indicated range of degrees. Note that

V n
g [@V n

g nint D V n
g D U n

g;1:
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Pick an embedding f WD2nC1! V n
0
� V n

g disjoint from the disc D � V n
0

such that
f �1.@V n

0
/DD2n is a disc in @D2nC1. This gives � WBDiff@.D2nC1/!BDiffD.V n

0
/,

and by Corollary 3.4 composition with the stabilization map to BDiffD.V n
g / is trivial

in integral homology in degrees � � 1
2
.g� 4/.

Diagram (2.17) becomes

.3.5/

BDiff@.D2nC1/ //

d
��

BDiffD.V
n

g /

d

��

BDiff@.D2nC1[D2n D2nC1/
�
// BDiff@.U n

g;1
/

Lemma 2.18 shows that the left vertical in (3.5) induces an isomorphism in rational
homotopy in degrees at most �Q.D2n/C 1. The same is true in rational homology
since both spaces are connected H–spaces and their rational homology is the free
graded commutative algebra on the rational homotopy, and so the proof is complete.

4 Optimality of the range in the homotopical theorem

Proof of Theorem 1.8 The composition

BDiff@.D
2nC1/

�M
��! BDiff.M /! BHomeo.M /

factors through BHomeo@.D2nC1/' �. Hence �M factors through the space

hofib.BDiff.M /! BHomeo.M //:

By [21, Theorem A], �2n�2.BDiff@.D2nC1//˝Q¤ 0 if n� 6. Therefore, it is enough
to find a closed .2nC1/–manifold M such that

�2n�2.hofib.BDiff.M /! BHomeo.M ///˝QD 0:

Now, by smoothing theory [26], hofib.BDiff.M / ! BHomeo.M // is homotopy
equivalent to a union of path components of the section space

�

�
M IFr.M /�O.2nC1/

Top.2nC 1/

O.2nC 1/

�
:

We now prove that

.4.1/ �2n�2

�
�

�
RP2
�S2n�1

IFr.RP2
�S2n�1/�O.2nC1/

Top.2nC1/

O.2nC1/

��
˝QD 0
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when n is even. Homotopy groups of section spaces can be computed by means of
the Federer spectral sequence [11]; see [22, Section 5.2] for the variant we shall be
using. Let E! B be a fibration over a finite-dimensional CW-complex with simply
connected fibre F and a fixed section s. Then there is a spectral sequence

E2
p;q DH�p.BI�q.F //) �pCq.�.BIE/; s/

(the coefficient systems in the E2–term are twisted). Hence �m.�.BIE/; s/ admits
a finite filtration whose filtration quotients are subquotients of H�p.BI�q.F // with
pC q Dm, and so in order to prove that �m.�.BIE/; s/˝QD 0, it suffices to show
that H�p.BI�q.F //˝QD 0 if pC q Dm.

Because Top.2nC1/=O.2nC 1/ is simply connected by [26, 5.0(4)–(5)], we can apply
the Federer spectral in our case. Furthermore, by loc. cit., Top.2nC 1/=O.2nC 1/

is rationally .2nC2/–connected. So the only entries in the E2–page which could
potentially be rationally nonzero and contribute to (4.1) are

H 2nC1�i

�
RP2

�S2n�1
I�4n�1�i

�
Top.2nC 1/

O.2nC 1/

�
˝Q

�
for 0� i � 2. It remains to be shown that

.4.2/ H 2�i

�
RP2
I�4n�1�i

�
Top.2nC 1/

O.2nC 1/

�
˝Q

�
D 0

when 0� i � 2.

The fundamental group �1.RP2/D C2 acts on �4n�1�i.Top.2nC 1/=O.2nC 1// by
conjugation with an isometry of determinant �1. There is an isomorphism

�4n�1�i

�
Top.2nC 1/

O.2nC 1/

�
D �2n�2�i.BDiff@.D

2nC1//

coming from Morlet’s theorem, [26, Section 3.4] which states that

BDiff@.D
2nC1/'�2nC1

0

�
Top.2nC 1/

O.2nC 1/

�
:

By the discussion in [21, Section 8.2], we have that the action of the generator of C2 on
�4n�1�i.Top.2nC 1/=O.2nC 1// corresponds under this isomorphism to minus the
involution .BI/� considered in the proof of Lemma 2.18 above. By [21, Corollary 8.4],
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we therefore have, for even n, that

�4n�1

�
Top.2nC 1/

O.2nC 1/

�
˝QDQC;

�4n�2

�
Top.2nC 1/

O.2nC 1/

�
˝QD 0;

�4n�3

�
Top.2nC 1/

O.2nC 1/

�
˝QDQ�

as C2–modules. Since H 2.RP2IQC/DH 0.RP2IQ�/D 0, we obtain (4.2), which
concludes the proof.
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Intrinsic symmetry groups of links

CHARLES LIVINGSTON

The set of isotopy classes of ordered n–component links in S3 is acted on by the
symmetric group Sn via permutation of the components. The subgroup S.L/� Sn

is defined to be the set of elements in the symmetric group that preserve the ordered
isotopy type of L as an unoriented link. The study of these groups was initiated in
1969, but the question of whether or not every subgroup of Sn arises as such an intrinsic
symmetry group of some link has remained open. We provide counterexamples; in
particular, if n� 6, then there does not exist an n–component link L for which S.L/
is the alternating group An.

57K10

1 Introduction

The oriented diffeomorphism group of an ordered link LDfL1; : : : ;Lng�S3 consists
of all orientation-preserving diffeomorphisms of S3 that preserve the link setwise. We
denote this group by D.L/. The action of D.L/ on the components of L defines a
homomorphism from D.L/ to the symmetric group Sn; its image is denoted by S.L/.
A basic question asks whether every subgroup H � Sn arises as S.L/ for some n–
component link. We provide obstructions. Our examples of groups that do not arise
are the alternating groups An for n� 6.

Theorem If n � 6, then there does not exist an ordered n–component link L that
satisfies S.L/DAn.

The study of symmetries of links is usually placed in the context of an extension of the
symmetric group, called the Whitten group,

�n D Z2˚ ..Z2/
n Ì Sn/:

In the semidirect product, Sn acts on .Z2/
n by permuting the coordinates. If we let

D�.L/ denote the set of diffeomorphisms of an n–component link L, including those
that reverse the orientation of S3, then there is a natural map of D�.L/ to �n. The first
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Z2 factor keeps track of the orientation of S3 and the remaining Z2 factors track the
orientations of the components of L. The image of this map is denoted by †.L/. The
question of which subgroups of �n arise as †.L/ for some n–component link L was
considered by Fox and Whitten in the mid-1960s, first appearing in print in 1969 [17].

There is a quotient map ˆ W�n! Sn which carries †.L/\
�
0˚ ..Z2/

n ÌSn/
�

to S.L/.
Thus, we have the following corollary:

Corollary If n�6 and H ��n has the property that ˆ
�
H\

�
0˚..Z2/

nÌSn/
��
DAn,

then there is no link L with †.L/ D H. In particular , if n � 6, then the subgroup
0˚ .0˚An/� �n is not of the form †.L/ for any n–component link.

Summary of proof The basic idea of our approach is as follows. For a given link L

there is a Jaco–Shalen–Johannson (JSJ) decomposition of the complement of L into
hyperbolic and Seifert fibered components fCig. This decomposition is unique up to
isotopy. We first observe that, if S.L/ does not contain an index two subgroup, then
one of the Ci (say C1) is invariant under the action of D.L/ up to isotopy.

If C1 is hyperbolic, we can replace the action of D.L/ restricted to C1 with a finite
group of isometries of C1. We then use a reembedding of C1 into S3 (as first described
by Budney in [3]) to extend that action to S3. It follows from results such as Boileau,
Leeb and Porti [2] that the action on S3 is conjugate to a linear action. We then find
that S.L/ is a quotient of a finite subgroup of SO.4/. Finally, a group-theoretic analysis
reduces the problem to the simpler one of considering quotients of finite subgroups
of SO.3/, which are enumerated.

In contrast to the hyperbolic case, if C1 is Seifert fibered, then the diffeomorphism
group of C1 itself is large, sufficiently so that we can construct enough symmetries
of L to show that S.L/D Sn.

Outline Section 2 describes the general theory of intrinsic symmetry groups of oriented
links, as first considered by Fox and Whitten [17]. Sections 3 and 4 describe the classical
case of knots, nD 1, and results for the case of nD 2. Section 5 presents prime, nonsplit
links, with full symmetry group for all n.

In Section 6 we describe JSJ decompositions, the associated tree diagrams, and a proof
that, in the case of S.L/ D An, some component of the decomposition is fixed (up
to isotopy) by the action of the diffeomorphism group. Section 7 explains how that
distinguished component can be reembedded into S3 as the complement of a link. The
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reembedding is used in Section 8 to show that if the fixed component is hyperbolic, then
S.L/ is a subgroup of a quotient of a finite subgroup of SO.4/. Finally, in Section 9
we present the Seifert fibered case. In the concluding Section 10, we present a few
questions and include an example of a four-component link L with S.L/DA4.

Notational comment We are calling the groups studied here the intrinsic symmetry
groups of links. The symmetry group of a link consists of the group of diffeomorphisms
of S3 that leave the link invariant, modulo isotopy. Even for knots, these symmetry
groups include, for instance, all dihedral groups.

Acknowledgments I have benefited from comments from Ryan Budney, whose work
provides a backdrop for our approach. Nathan Dunfield provided an example of a
four-component link L with S.L/D A4. I was also helped by discussions with Jim
Davis, Allan Edmonds, Charlie Frohman, Michael Larsen, Swatee Naik and Dylan
Thurston. Suggestions from the referee led to several improvements in the exposition.
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2 The general setting of oriented links

We now describe the general theory of intrinsic symmetry groups of links. This theory
was initially developed by Fox and was first presented by Whitten in [17]. To be
precise, we will momentarily consider links in three-manifolds that are diffeomorphic
to S3, rather than work specifically with S3. In this setting we have the following
definition: an n–component link is an ordered .nC1/–tuple of oriented manifolds,
L D .S;L1;L2; : : : ;Ln/, where S is diffeomorphic to S3 and the Li are disjoint
submanifolds of S, each diffeomorphic to S1. The set of n–component links will be
denoted by Ln.

Given a second link L0 D .S 0;L0
1
;L0

2
; : : : ;L0n/, an orientation-preserving diffeo-

morphism from L to L0 is an orientation-preserving diffeomorphism F W S ! S 0

such that F.Li/DL0i as oriented manifolds for all i .

For any oriented manifold M, �M denotes its orientation reverse. Let Z2 be the cyclic
group of order two written multiplicatively: Z2 D f1;�1g. If � D �1 2 Z2, we will
let �M D�M, and if � D 1 2 Z2, we will let �M DM. The group Z2˚ .Z2/

n acts
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on Ln by changing the orientations of the factors. The symmetric group Sn acts on Ln

by permuting the component knots. These actions do not commute, but together define
an action on the set of knots by the Whitten group

�n D Z2˚ ..Z2/
n Ì Sn/:

In this semidirect product, Sn acts on the n–fold product by permuting the coordinates.
To be precise, given an element s D .�; .�1; : : : ; �n/; �/ 2 �n and an n–component
link L, we let

sLD .�S; �1L�.1/; � � � ; �nL�.n//:

Notice that these group actions are defined to be on the left. Thus, elements in Sn are
multiplied right to left.

Definition 2.1 For a link L 2 Ln, the intrinsic symmetry group of L is the subgroup
†.L/Dfs 2�n j sLŠLg��n. Note that “Š” indicates the existence of an orientation-
and order-preserving diffeomorphism.

There are two fundamental questions regarding such link symmetries:

Problem 1 Given an n–component link L, determine †.L/.

Problem 2 For each subgroup H � �n, does there exist an n–component link L such
that †.L/DH?

The first can be effectively answered for low crossing number links with programs such
as SnapPy [6]. The second is the focus of this paper; we present the first examples of
groups that cannot arise as the symmetry group of a link.

2.1 Restricting to the oriented category and basic observations

There is a canonical index two subgroup �n � �n consisting of elements of the form

.1; .�1; : : : ; �n/; �/:

This subgroup maps onto Sn. We leave it to the reader to verify the following, which
implies that any constraint on what groups occur as S.L/ places a constraint on what
groups can arise as †.L/:

Theorem 2.2 The image of †.L/\�n in Sn is precisely S.L/.

After the initial sections of this paper, we will be restricting our work to orientation-
preserving diffeomorphisms of S3 and will work with unoriented links. We will use
the following conventions, which were summarized in the introduction:
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(1) Links will all be of the form LD .S3;L1;L2; : : : ;Ln/, where S3 has some fixed
orientation and the Li are disjoint unoriented submanifolds, each diffeomorphic
to S1.

(2) We will consider diffeomorphisms of the link that are orientation-preserving
on S3 and that possibly permute the set of Li .

(3) The set of such diffeomorphisms will be denoted by D.L/.

(4) Given F 2 D.L/, we have

.S3;F.L1/;F.L2/; : : : ;F.Ln//D .S
3;L�.1/;L�.2/ : : : ;L�.n//

for some � 2 Sn. This defines a homomorphism ˆ W D.L/! Sn.

(5) The image ˆ in Sn is denoted by S.L/.

3 Examples: knots

Before restricting to the orientation-preserving diffeomorphism group, in this section
and the next we will summarize what is known in general for links of one and of two
components. Then, in Section 5, we show that for all n there is a prime, nonsplittable
n–component link L with †.L/D �n.

Let n D 1. The symmetric group S1 is trivial and thus the first Whitten group is
�1 Š Z2 ˚ Z2. The knots .1;�1/K, .�1; 1/K and .�1;�1/K have been called
the reverse, Kr , the mirror image, m.K/, and the reversed mirror image, m.K/r ,
respectively. (Older references have called the reverse of K the inverse. The name
“reverse” is used to distinguish it from the concordance inverse, which is represented
by the reversed mirror image.) Figure 1 illustrates the possibilities. A detailed account
of the key results in the study of knot symmetries is contained in [8]. Here is a brief
summary.

The group �1 has five subgroups: the entire group, the trivial subgroup and the three
subgroups containing exactly one of the nontrivial elements of �1. Each is realized
as †.K/ for some knot K.

� The unknot and the figure eight knot, 41, have full symmetry group. They are
called fully amphicheiral.

� The trefoil knot is reversible. Dehn showed that it does not equal its mirror
image, a fact that can now be proved using such invariants as the signature or
the Jones polynomial. Thus, 31 is reversible.
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K .1;�1/K DKr .�1; 1/K Dm.K/ .�1; 1/K Dm.K/r

Figure 1: Symmetries of knots.

� Trotter [14] proved the existence of nonreversible knots. His examples in [14]
have nonzero signature and thus have trivial symmetry group. We say that such
knots are chiral. Hartley [7] proved that 932 is nonreversible and, since it has
nonzero signature, it too is chiral.

� Kawauchi [9] proved that K D 817 is nonreversible. It is easily seen that
K Dm.K/r , and thus 817 is negative amphicheiral.

� The simplest example of a low crossing number knot that is nonreversible and
for which K Dm.K/ is 12a147, which was detected by the program SnapPy.
(Presumably the general techniques developed by Hartley in [7] would also show
that this knot is not reversible.) More complicated examples of such positive
amphicheiral knots were first discovered by Trotter.

4 Two-component links

Here we summarize the results of [1; 5] concerning two-component links. We have
that �2 D Z2 ˚ ..Z2/

2 Ì S2/ is of order 16. In [1; 5], the authors describe the 27
conjugacy classes of subgroups of �2. They then show that tables of prime, nonsplittable
links provide examples of links realizing 21 of these subgroups. One of the missing
subgroups is �2 itself. This is clearly the symmetry group of the unlink; in a note on
MathOverflow [4], Budney showed that �2 is the symmetry group of a nonsplittable
Brunnian link. We will expand on that example in the next section.

To conclude this section, we list the subgroups that are currently not known to be the
symmetry groups of two-component links, where � denotes the transposition in S2:

� h.1; .�1; 1/�/i Š Z4.

� h.1; .�1; 1//; .�1; .1; 1//i Š Z2˚Z2.

� h.1; .1;�1//; .�1; .�1; 1//i Š Z2˚Z2.
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� h.�1; .�1; 1//; .1; .�1; 1/�/i ŠD4, the dihedral group with four elements.

� h.1; .1;�1//; .1; .�1; 1//; .�1; .1; 1//i Š Z2˚Z2˚Z2.

5 Fully amphicheiral links for all n

In Figure 2, we illustrate a knot K in a solid torus D. Two parallel strands of K are tied
in a knot J, where J is chosen to be fully amphicheiral; the figure eight knot would be
sufficient. As oriented pairs, we have .D;K/Š .�D;K/Š .D;�K/Š .�D;�K/.

Budney’s example [4] of a two-component link L with full symmetry group†.L/D�2

is formed from the Hopf link by replacing neighborhoods of each component with
copies of .D;K/. An example of a three-component link with full symmetry group
is built in the same way, starting with the Borromean link. Notice that, in both these
examples, the links are Brunnian. Problem (5) in Section 10 asks: Does there exist a
Brunnian link with four or more components with full symmetry group?

We conclude this section with an elementary observation:

Theorem 5.1 For every n, there exists a prime , nonsplittable link L for which
†.L/Š �n.

Proof To form an n–component link with full symmetry group, proceed as follows:
Starting with any nontrivial fully amphicheiral knot J 0, form a link by replacing J 0 with
n parallel copies of J 0; formally, form the .0; n/–companion of J 0. (Again, the simplest
example would be to let J 0 be the figure eight knot.) Next, replace a neighborhood
of each component of that link with a copy of .D;K/ as illustrated in Figure 2, built

J

Figure 2: Companion.
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using the fully amphicheiral knot J. Innermost circle arguments, dating to the work of
Schubert [13], can be used to show that this link L is prime and nonsplittable. The fact
that we used parallel copies of J 0 implies that the components can be freely permuted.
By replacing the components with .D;K/, we have ensured that the components can
be independently reversed. The fact that J and J 0 are fully amphicheiral ensures that
there is an orientation-reversing diffeomorphism of S3 that preserves the link.

6 Torus decompositions and tree diagrams

A principal tool in understanding knot and link complements is the Jaco–Shalen–
Johannson torus decomposition, which we refer to as the JSJ decomposition. An
excellent resource is [3], which contains details for the results we summarize here.

Let X be the complement of a nonsplittlable link L in S3. The JSJ decomposition
of X is given by a finite family of disjoint incompressible embedded tori, fTig, with
the property that each component of the complement of

S
Ti has either a complete

hyperbolic structure or is Seifert fibered. There is the additional condition that no Ti

is boundary parallel and that no two of the Ti are parallel. Up to isotopy, there is a
unique minimal set fTig with these properties; this set provides the JSJ decomposition.
No two Ti in the decomposition are isotopic.

We can associate a finite tree Tr.L/ to this decomposition, as follows: Let the compo-
nents of X n

S
Ti be denoted by fCig. The vertices of the Tr.L/ correspond to the Cj .

Two vertices are joined by an edge if the closures of the corresponding Ci intersect;
there is one edge for each Ti . When possible, we will use the names Ci and Ti to
denote the vertices and edges. We will say that a component Ci contains a component
Lj 2L if Lj is in the closure of Ci .

6.1 The subtrees TrL.K / and cTr.L/

Let K be a component of L. Its orbit under the action of D.L/ is a sublink of L,
fK1; : : : ;Klg for some l � 1 with K1DK. Each Ki is contained in a vertex of Tr.L/.
The set of such vertices is denoted by fD1; : : : ;Dkg. Since the action of D.L/ on the
set of Ki is transitive, each Dj contains the same number of components of L. In
particular, k divides l . Later we will expand on this observation.

The vertices fD1; : : : ;Dkg in Tr.L/ span a unique minimal subtree, which we denote
by TrL.K/. In the case that the action of D.L/ is transitive on L, the orbit of K is

Algebraic & Geometric Topology, Volume 23 (2023)



Intrinsic symmetry groups of links 2355

all of L, and we write bTr.L/D TrL.K/. (Notice that bTr.L/ need not equal T .L/; for
instance, vertices of T .L/ of valence one that do not contain components of L are not
included in bTr.L/.)

Theorem 6.1 If D.L/ acts transitively on L, then the tree bTr.L/ either contains
exactly one vertex, or its valence one vertices are precisely the set fD1; : : : ;Dkg.

Proof It is an elementary observation that, in the subtree of a tree spanned by the
set of vertices fDj g, the only vertices of valence one correspond to elements in the
set fDj g, and that, if there is more than one Dj , then at least one of them is a vertex
of valence one. We need to see that each Dj has valence one.

Suppose that the vertex D1 is of valence one in bTr.L/ and that it contains L1. Let D2

be another vertex and suppose it contains L2. There is an element F 2 D.L/ such
that F.L1/D L2. The map F is isotopic relative to L to a diffeomorphism F 0 that
preserves the JSJ decomposition. This F 0 induces an automorphism of Tr.L/ that
leaves bTr.L/ invariant. Thus, there is an automorphism of bTr.L/ that carries D1 to D2.
It follows that D2 is of valence one in bTr.L/.

6.2 The group D�.L/

Fix a JSJ decomposition of S3 nL.

Definition 6.2 We let D�.L/ � D.L/ be the subgroup consisting of elements that
leave the JSJ decomposition invariant.

Theorem 6.3 The image of D�.L/ in Sn equals S.L/.

Proof Given an element in S.L/, there is a diffeomorphism F 2 D.L/ that maps to
it. We have that F is isotopic relative to L to an element F 0 2 D�.L/. The map F 0

induces the same permutation of the components of L as does F.

Theorem 6.4 In the case that D�.L/ acts transitively on the components of L, the
action of D�.L/ on bTr.L/ factors through an action of S.L/ on bTr.L/.

Proof An automorphism of a tree is completely determined by its action on the valence
one vertices of the tree. We leave this elementary observation to the reader.

6.3 The structure of cTr.L/ when S.L/ D An

In Figure 3 we provide an example of a labeled tree to serve as a model for the discussion
that follows.
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D1 D2 D3 D4 D5 D6

C1 C2

C0

Figure 3: Tree diagram for a sublink K of L on which D.L/ acts transitively.

Lemma 6.5 If S.L/D An and bTr.L/ contains more than one vertex , then each Di

contains exactly one L1 and the number of vertices in the set fDig is n.

Proof Suppose that D1 contains L1 and L2 and that D2 contains L3 and L4. Then
the permutation .123/ 2An does not induce an action on bTr.L/.

Theorem 6.6 If S.L/DAn with n� 3, then bTr.L/ is a rooted tree with either exactly
one vertex, C, or with n vertices of valence one. In the second case , there is a unique
vertex with valence greater than two; the tree bTr.L/ is built from that high valence
vertex C by attaching n linear branches , all of the same length. The vertex C is invariant
under the action of An on bTr.L/.

Proof Figure 4 is a schematic of a tree. We are asserting that bTr.L/ is of this form.

We have seen that each Di contains precisely one Li and these are the valence one
vertices of bTr.L/. A tree with more than two valence one vertices always contains

D1 D2 D3 D4 D5

C

Figure 4: Possible tree diagram bTr.L/ for a five-component link L on which
S.L/DA5.
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some vertex with valence greater than 2. It remains to show that there is a unique such
vertex of valence greater than two. (For an example of the sort of tree we need to rule
out, build a tree from two copies of the graph illustrated in Figure 4 by joining the
roots with single edge.)

An elementary exercise shows that, for any tree on which An acts with this action
transitive on the vertices of valence one, there is an invariant vertex or edge: proceed
by induction, removing all valence one vertices and their adjacent edges from the tree.

We next observe that, in the case that the symmetry group is An, there must be an
invariant vertex. The action of the symmetry group of the tree is transitive on its valence
one vertices, so, if there is an invariant edge, some elements must reverse that edge.
It follows that the subgroup of the symmetry group that does not reverse the edge is
index two. But An does not contain an index two subgroup for n� 3.

6.4 The structure of the core C in the case that S.L/ D An

Suppose that S.L/DAn. Then, by Theorem 6.6, there is a core C in the JSJ decom-
position of L. This core is acted on by D�.L/. The boundary of C is the union of two
sets of tori, fT1; : : : ;Tng [ fS1; : : : ;Smg. Each Ti bounds a submanifold Wi � S3

that contains the link component Li and does not contain C. A schematic appears in
Figure 5. In this diagram we have included extra edges showing bTr.L/ might be a
proper subtree of Tr.L/ and that C might have more than n boundary components.

Let D.C / be the diffeomorphism group of the core C. It contains a subgroup D.C;T /
that leaves invariant the set of Ti . This group maps to Sn via its action on fTig.

L1 L2 L3 L4 L5

C

Figure 5: Possible tree diagram bTr.L/ for a five-component link L on which
D�.L/ acts transitively.
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Theorem 6.7 In the case that S.L/DAn with n� 5, with core C, the group D.C;T /
acts on fTig as either An or Sn.

Proof It is clear that the action contains An. The only subgroups of Sn that contain An

are An and Sn.

Notice that it might happen that there are elements of D.C;T / that do not map to
elements of An; it is possible that not every action on C extends to S3.

7 Reembeddings

Reembeddings appear in two different ways in our proof. In the case of C hyperbolic,
we embed C in S3 as a link complement. In the Seifert fibered case, we embed C

into a closed Seifert fibered space as the complement of a set of regular fibers. In this
section, we describe the embedding into S3.

In the previous section, some of the (torus) boundary components of the core C were
denoted by Ti . We will now see that by using reembeddings we can view these Ti ,
along with the other boundary components Si of C, as peripheral tori for a link in S3.
This is presented in [3], where Budney gave a reembedding theorem for submanifolds
of S3. Here we present a slightly enhanced version of that result, keeping track of
boundary curves. First we set up some notation.

Let X �S3 be a compact, connected submanifold with one of its boundary components
a torus T. The complement of T consists of two spaces, Y1 and Y2. We have H1.Y1/Š

ZŠH1.Y2/. We assume X � Y1. When needed, we will write these as Y1.X;T / and
Y2.X;T /.

We have that ker.H1.T /!H1.Y1//ŠZ. The generator can be represented by a simple
closed curve we denote by l . Similarly, a representative of ker.H1.T /!H1.Y2//ŠZ

is denoted by m. There is no natural orientation for these choices. However, we can
assume that they are oriented so that the intersection number of m and l is 1 with
respect to the orientation of T viewed as the boundary of Y1. We can also assume
that m and l intersect transversely in exactly one point. With this setup, we have the
following:

Theorem 7.1 There exists an orientation-preserving embedding F WX ! S3 such that
F.T / is the boundary of a tubular neighborhood of a knot in S3 having meridian F.m/

and longitude F.l/.
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Proof An embedded torus in S3 bounds (on one side or the other) a solid torus, which
we denote by W. If Y2 DW, then m is the meridian of W and F can be taken to be
the identity.

If Y1 DW, then form the boundary union Z D Y1 [W 0, where W 0 is a solid torus,
attached so that its meridian is identified with m and its longitude is identified with l .
Then Z is the union of two solid tori and the choice of identification ensures that
H1.Z/D 0. Thus, Z Š S3.

Corollary 7.2 Suppose that X � S3 is a compact manifold with boundary a union of
tori fT1; : : : ;Tkg. There exists a link LD fL1; : : : ;Lkg and an orientation-preserving
homeomorphism F W X ! S3 n �.L/, where �.L/ is an open tubular neighborhood.
Furthermore , it can be assumed that F preserves meridians and longitudes.

Corollary 7.3 With X �S3 and L as in Corollary 7.2, suppose that a diffeomorphism
g W S3 ! S3 satisfies g.X / D X. Then the diffeomorphism of F.X / given as the
composition F ıg ıF�1 extends to a diffeomorphism of .S3;L/.

Note Not every diffeomorphism of X determines a diffeomorphism of L. It is essential
here that the diffeomorphism of X extends to S3.

7.1 Summary theorem

Theorem 7.4 Suppose that S.L/DAn. Then there is a link .L0
1
; : : : ;L0n;J1; : : :Jm/

with complement diffeomorphic to C and that is either hyperbolic or Seifert fibered.
The mapping class group of this link has a subgroup that preserves .L0

1
; : : :L0n/. The

image of this subgroup in Sn is either An or Sn.

Proof To prove this using the previous results, we need to show that a JSJ decom-
position exists — that is, that L is nonsplittable. If L does split, it splits as a union
of nonsplit sublinks, say D1; : : : ;Dk , where each Di is contained in a ball that does
not intersect the other Dj . The transitivity of the An–actions implies that the Di are
identical links. Thus, we can write Di DfD

1
i ; : : : ;D

m
i g for some m that is independent

of i .

If mD 1, then L is consists of n copies of a knot J, each copy in a separate ball. In
this case, the symmetry group would be Sn. If mD n, then we are in the nonsplit case,
as desired.

Finally, if 1<m< n, then any element of M that carries D1
1

to D1
2

must carry D2
1

to
some Di

2
. But not every element of An behaves in this way.
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To complete the proof that An for n � 6 is not the intrinsic symmetry group of any
link, we consider the hyperbolic and Seifert fibered cases separately.

8 The case of C hyperbolic

We use the notion of core as in the previous section.

Theorem 8.1 If An � S.L/ and the core C is hyperbolic , then some finite subgroup
of SO.4/ contains a finite subgroup having An as a quotient.

Proof For each element � 2 D.C; @C / that extends to S3, let �0 denote an isometry
that is isotopic to � relative to the boundary. Note that the actions of � and �0 on the
finite set of components f@C g are the same. The set of �0 generates a subgroup of
Isom.C /. This is necessarily a finite group, H. The group H contains the subgroup
H 0�H that leaves invariant the set fL0

1
; : : : ;L0ng. The image of H 0 in Sn contains An.

By restricting to a further subgroup H 00, we can assume the image is precisely An.

By results such as [12; 2], any finite subgroup of Diff.S3/, such as H 00, is isomorphic
to a subgroup of SO.4/.

Corollary 8.2 If An � S.L/ then n� 5.

Proof This follows from the results of the next subsection.

8.1 The only subgroup of SO.4/ that maps onto a noncyclic simple group
is isomorphic to A5

We prove somewhat more than this.

Theorem 8.3 If A is a nonabelian simple group and a subgroup H � SO.4/ surjects
onto A, then AŠA5.

Denote the surjection from H to A by � WH !A. We begin by recalling the structure
of SO.4/.

The set of unit quaternions is homeomorphic to S3 and as a Lie group is isomorphic
to SU.2/. Quotienting by ˙1 yields a two-fold cover SU.2/! SO.3/.

Let x and y be unit quaternions and view elements v 2R4 as quaternions. Then x and
y define a homomorphism  x;y W SU.2/�SU.2/! SO.4/ by  x;y.v/D xvy�1. This
yields a two-fold covering of SU.2/�SU.2/! SO.4/. Hence,

SO.4/Š .SU.2/�SU.2//=h.�1;�1/i:
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There is a two-fold covering space q W .SU.2/�SU.2//=h.�1;�1/i ! SO.3/�SO.3/.
We thus have the diagram

.SU.2/�SU.2//=h.�1;�1/i
Š //

two-fold cover q

��

SO.4/

SO.3/�SO.3/

We will write elements of SO.4/ and of SO.3/�SO.3/ as equivalence classes of pairs
of unit quaternions.

Lemma 8.4 The map � induces a surjection �0 W q.H /� SO.3/�SO.3/!A.

Proof If the map q W H ! q.H / is an isomorphism, then this is trivially true. It is
possible that q WH ! q.H / is two-to-one, which can occur if and only if the central
element .1;�1/ 2H. In this case, q.H /ŠH=h.1;�1/i. Since A is nonabelian and
simple, the image of .1;�1/ in A is trivial.

Lemma 8.5 Let G � SO.3/�SO.3/. Let G1 and G2 be the images of the projections
of G onto the first and second factors of the product. If �0 W G ! A where A is
nonabelian and simple , then a subgroup of G1 or G2 maps onto A. In particular , A is a
quotient of a finite subgroup of SO.3/.

Proof Let F DG\.SO.3/�f1g/. We have that F is a normal subgroup of G and, thus,
�0.F /DA or �0.F /D f1g. In the first case, we are done, so assume that �0.F /D f1g.

We now define a surjective homomorphism �00 W G2 ! A. Given y 2 G2, there
exists an element x 2 G1 such that .x;y/ 2 G. Set �00.y/ D �0..x;y//. To see that
this is well defined, notice that, if .x1;y/ 2 G and .x2;y/ 2 G, then x1x�1

2
2 F.

Thus, �0..x1;y// D �0..x2;y//. It is easily checked that �0 is surjective and is a
homomorphism.

Lemma 8.6 The group A5 is the only finite noncyclic simple group contained in SO.3/.

Proof The finite subgroups of SO.3/ are classified. Here is the list of possibilities:

� Cyclic groups An Š Zn.

� Dihedral groups Dn.

� Tetrahedral group E6 ŠA4.
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� Octahedral group E7 Š S4.

� Icosahedral group E8 ŠA5.

The subgroups of the dihedral group are either dihedral, and thus not simple, or cyclic.
The smallest nonabelian simple group is A5.

9 The case of C Seifert fibered

We begin with a basic example.

Example 9.1 Consider the .nC2/–component link L formed as follows. Let T be a
standardly embedded torus in S3 and form the .np; nq/–torus link on T with q>p> 1

relatively prime. Add to this the cores of two solid tori bounded by T. There is a Seifert
fibration of S3 with the torus link represented by regular fibers and the two cores being
neighborhoods of singular fibers of type p=q and q=p.

We leave it to the reader to confirm that, for this link, †.L/Š Z2˚Sn. It should be
clear how the components of the .np; nq/–torus link can be freely permuted. The Z2

arises from a diffeomorphism that reverses all the components.

Two exercises arise here. The first is to show that every symmetry fixes the two core
circles. The second is to show that the complement of this link is homeomorphic to the
complement of nC 2 fibers of the Hopf fibration of S3.

More examples can be built from this one. Let J � S1 �B2 be a knot for which
@.S1 �B2/ is incompressible in the complement of J. A new link can be formed by
replacing neighborhoods of the components of L with copies of S1 �B2. Then the
symmetry group of this new link will be isomorphic to either Z2 ˚ Sn�2 or Sn�2,
depending on the symmetry type of J.

9.1 C is the complement of regular fibers in a closed Seifert manifold

Example 9.2 Figure 6 provides a schematic of one possible case in which the core C

is Seifert fibered. Some of the labels in the diagram will be explained later. A link L

can be formed by filling each Ti with pairs .S1 �B2;Ji/ and the Si are filled with
either solid tori or nontrivial knot complements. There are constraints required for this
to produce a link in S3 and we do not assert that in all cases in which C is Seifert
fibered it will be of this form. We illustrate it to provide a good model to have in mind
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T1

f

Tl TlC1 Tp Si

Sj

Figure 6: Possible Seifert fibered core C.

as we develop the notation and arguments that follow. Another good model is provided
by Example 9.1.

Notice the complement of this link is homeomorphic to the complement of the link
formed by giving the parallel strands a full twist. In this case, all the components,
including the horizontal one, are fibers of the Hopf fibration of S3. More generally we
have the following:

Theorem 9.3 The core C is diffeomorphic to the complement of a set of regular fibers
in a closed Seifert manifold.

Proof Build a manifold M by attaching solid tori to the boundary components of C

so that each longitude is identified with the fiber of the fibration of C. Then the Seifert
fibration of C extends to M and the cores of the solid tori are regular fibers.

We now fix the choice of that M and its Seifert fibration.

9.2 Notation and a basis for H1.Ti /

For each Ti , there is a basis of H1.Ti/ represented by a pair of curves, ffi ;gig; since
Ti bounds the solid torus neighborhood of a regular fiber, we let fi denote the fiber
and let gi denote the meridian of the solid torus.

Each torus Ti bounds a submanifold of S3 that contains the component Li ; denote
it by Wi . All the pairs .Wi ;Li/ are diffeomorphic, so we choose one and denote it
by .W;K/ with boundary T. We have that T contains a canonical longitude that is
null-homologous in W, which we denote by �; choose a second curve intersecting it
once and denote it by �.

Algebraic & Geometric Topology, Volume 23 (2023)



2364 Charles Livingston

We now see that .S3;L/ is built from C by attaching copies of W to the Ti using
attaching maps we denote by Gi . (Other manifolds have to be attached along the other
boundary components of C, which we have denoted by Si .) Denote the images of
f�;�g under Gi by f�i ; �ig.

Theorem 9.4 The intersection number of �i with fi is nonzero.

Proof Our proof depends on the uniqueness of the fibrations of Seifert fibered man-
ifolds, up to isotopy. This does not hold for all Seifert manifolds (eg S1 �B2), but
Waldhausen [15; 16] proved that, if the Seifert fibered manifold M is sufficiently large,
that is, if it contains an incompressible surface that is not boundary parallel, then the
fibration is unique. (See also [10].) In the case that the three-manifold has four or more
boundary components, it is clearly sufficiently large. The preimage of a circle in the
base space that bounds two of the boundary components is an incompressible torus
and is not boundary parallel.

We now claim that the �i are not fibers of the fibration. Consider i ¤ j and the
pair �i and �j . Any element of D.L/ that maps Li to Lj carries �i to ˙�j . Self-
homeomorphisms of Seifert fibered spaces with more than three boundary components
preserve fibers up to isotopy, so, if �i is a fiber, then �j is also a fiber.

Suppose that are �i and �j are fibers. Then there is a vertical annulus A in C joining
�i to �j . There are also surfaces Bi and Bj in Wi and Wj with boundaries �i and �j .
The union of A with Bi [Bj is a closed surface in S3. There is also a curve on Ti

meeting this surface in exactly one point. This is impossible in S3.

9.3 Maps between the Ti

Without loss of generality, we will focus on T1 and T2. We denote a chosen element
in D.L/ that carries L1 to L2 by F. Note that we can assume F.f1/D f2, F.�1/D �2

and F.�1/ D �2. However, maps of C do not necessarily preserve the gi . We can
assume that F.g1/D g2Cwf2 for some w.

For both values of i we have constants such that

�i D ˛ifi Cˇigi ; �i D ıifi C 
igi :

Applying F to the set with i D 1 and renaming variables, we have

�1 D f̨1Cˇg1; �1 D ıf1C 
g1

and
�2 D . f̨2Cˇg2/Cˇwf2; �2 D .ıf2C 
g2/C 
wf2:
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9.4 Constructing the transposition

Theorem 9.5 There is a diffeomorphism G of C that interchanges T1 and T2 and is
the identity on all other boundary components of C. The map G can be chosen so that
it preserves the f1 and satisfies G.g1/D g2Cwf2 and G.g2/D g1�wf2.

Proof Using the fact that Ti are boundaries of regular fibers, there is a diffeomorphism
G of C that interchanges T1 and T2 that also preserves the pairs ffi ;gig. This map
can be assumed to be the identity on the other components.

There is a vertical annulus in C joining f1 and f2. We can perform a w–fold twist
along this annulus. This is the identity map on all boundary components other than T1

and T2. On T1 and T2, it preserves the f1 and f2, it maps g1 to g1�wf1 and it maps
g2 to g2Cwf2.

9.5 Main theorem in the Seifert fibered case

Theorem 9.6 If An � S.L/ and the associated core C is Seifert fibered , then there is
an element H 2 D.L/ which transposes L1 and L2. Equivalently, S.L/D Sn.

Proof The map G given in Theorem 9.5 satisfies

G.�1/D f̨2Cˇ.g2Cwf2/ and G.m1/D ıf2C 
 .g2Cwf2/:

It also satisfies

G.�2/D f̨1Cˇ.g1�wf1/Cˇwf1 and G.�1/D ıf1C 
 .g1�wf1/C 
wf1:

Simplifying shows that this interchanges the attaching maps of W to T1 and T2, and
thus extends as desired.

10 Questions

(1) For the four-component link illustrated in Figure 7, the group of symmetries
that preserve string orientations is isomorphic to A4. This example was found by
Nathan Dunfield using the program SnapPy [6], where it is listed as L12a2007. We
have illustrated the link so that each component is in a regular neighborhood of a
face of the standard projection of the tetrahedron to S2 D R2 [1. Recall that the
orientation-preserving symmetry group of the tetrahedron is isomorphic to A4.
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Figure 7: The link L12a2007.

Notice that rotation about the vertical axis interchanges two components, so the un-
oriented symmetry group is S.L/DS4. However, if we build a new link by forming the
connected sum of each component of L12a2007 with the same nonreversible knot J,
then any symmetry of this new link, L0, would have to preserve the orientations of the
components. Thus, S.L0/DA4.

Similar constructions will likely produce links with symmetry groups that are iso-
morphic to polyhedral groups. For instance, using the dodecahedron would yield a
12–component link with symmetry group A5. It is not clear how to reduce the number
of components without changing the symmetry group, and we are left with the following
question:

Does there exist a five-component link L with S.L/DA5?

(2) The Fox–Whitten group �n maps onto Sn, and thus the obstructions we have
developed here provide obstructions to groups G � �n from being oriented intrinsic
symmetry groups of links. Can the techniques used here provide finer obstructions in
the oriented case?

(3) As a particular example of (2), can any of the unknown cases for two-component
links described in Section 4 be eliminated as possible intrinsic symmetry groups?

(4) If a subgroup H � Sn or H � �n is the intrinsic symmetry group for a link, is it
the intrinsic symmetry group of a nonsplit link or of an irreducible link?

(5) A natural class of links consists of Brunnian links; these are nonsplittable but
become the unlink upon removing any one of the components. The links produced
in Theorem 5.1 having symmetry group Sn are not Brunnian. The examples of two-
component and three-component links with S.L/D Sn that precede the proof of that
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theorem are Brunnian. Hence, we ask: For all n� 3, does there exist a Brunnian link L

with S.L/D Sn?

(6) Another class to consider is alternating links, and presumably there are strong
constraints on S.L/ for these.

(7) Let M be a compact three-manifold with n torus boundary components, @i.M /.
Choose a basis of H1.@i.M // for each i . One can form a Whitten-like group �n D

Z2˚ .G
n Ì Sn/, where G is the automorphism group of Z˚Z. Each manifold M

gives rise to a subgroup of �n. What subgroups arise in this way? This is particularly
interesting in the case that the interior of M has a complete hyperbolic structure.

(8) The previous question can be modified. Given a subgroup H � Sn, is there a
complete hyperbolic three-manifold with n cusps such that the H represents the permu-
tations of the cusps that are realized by isometries of M ? In relation to this, Paoluzzi
and Porti [11] proved that every finite group is the isometry group of the complement of
a hyperbolic link in S3. Notice that their isometries need not extend to S3. Applying
their construction to a subgroup of Sn does not produce an n–component link.
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Loop homotopy of 6–manifolds over 4–manifolds

RUIZHI HUANG

Let M be the 6–manifold M arising as the total space of the sphere bundle of a
rank 3 vector bundle over a simply connected closed 4–manifold. We show that,
after looping, M is homotopy equivalent to a product of loops on spheres in general.
This particularly implies a cohomological rigidity property of M after looping.
Furthermore, passing to rational homotopy we show that such an M is Koszul.

55P15, 55P35, 57R19; 55P10, 55P40, 55P62

1 Introduction

Classification of manifolds is a fundamental problem in geometry and topology. Nu-
merous investigations have been made around this problem in both the smooth and
topological categories. For instance, in the general case, Wall [33; 35] studied .n�1/–
connected 2n–manifolds and .n�1/–connected .2nC1/–manifolds. For concrete cases
with specified dimension, Barden [2] classified simply connected 5–manifolds, and
Wall [34], Jupp [23] and Zhubr [37; 38] classified simply connected 6–manifolds. More
recently, Kreck and Su [25] classified certain nonsimply connected 5–manifolds, while
Crowley and Nordström [15] and Kreck [24] studied the classification of various kinds
of 7–manifolds.

In the literature mentioned, the homotopy classification of M was usually carried
out as a byproduct of a system of invariants. However, it is almost impossible to
extract nontrivial homotopy information of M directly from the classification. On the
other hand, unstable homotopy theory is a powerful tool for studying the homotopy
properties of manifolds preserved by suspending or looping. From the suspension
viewpoint, So and Theriault [31] determined the homotopy type of the suspension of
connected 4–manifolds, while Huang [19] studied the suspension of simply connected
6–manifolds. From the loop viewpoint, Beben and Theriault [6] studied the loop
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decompositions of .n�1/–connected 2n–manifolds, while Beben and Wu [8] and
Huang and Theriault [20] studied the loop decompositions of the .n�1/–connected
.2nC1/–manifolds. The homotopy groups of these manifolds were also investigated
by Samik Basu and Somnath Basu [3; 4] from different point of view. Moreover, a
theoretical method of loop decomposition was developed by Beben and Theriault [7],
which is quite useful for studying the homotopy of manifolds.

We study the loop homotopy of certain simply connected 6–manifolds constructed from
4–manifolds. Let N be a simply connected closed 4–manifold with H 2.N IZ/ŠZ˚d

for d � 1. A rank 3 vector bundle � over N is classified by a map f WN ! BSO.3/,
where BSO.3/ is the classifying space of the special orthogonal group SO.3/. The
sphere bundle of �

(1) S2 i
�!M

p
�!N

defines the closed 6–manifold M . Since the integral cohomologies of N and S2 are
free and concentrated in even degree, the Serre spectral sequence of (1) collapses, and
H�.M IZ/ Š H�.N IZ/˝H�.S2IZ/. Our main result is the following theorem,
which will be proved in Section 4.

Theorem 1.1 Let N be a simply connected closed 4–manifold with H 2.N IZ/ŠZ˚d

for d � 1. Let M be the total manifold of the sphere bundle of a rank 3 vector bundle
over N . Then:

� If d D 1,
�M ' S1

��S2
��S5:

� If d � 2,

�M ' S1
��S2

��.S2
�S3/��

�
J _ .J ^�.S2

�S3//
�
;

where J D
Wd�2

iD1 .S
2 _S3/.

From Theorem 1.1 and its proof, it can be easily seen that the decompositions in
Theorem 1.1 are compatible with the S2–bundle (1) after looping. In particular, this
means that though the fibre bundle (1) does not split in general, its loop does. Moreover,
as discussed in [6, page 217], the term J_.J^�.S2�S3// in the second decomposition
of Theorem 1.1 is a bouquet of spheres. Hence by the Hilton–Milnor theorem, we see
that�M is homotopy equivalent to a product of loops on spheres with S1. Additionally,
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since the decompositions of Theorem 1.1 only depend on the value of d , which is
determined by and determines H 2.M IZ/, we have a rigidity property for M after
looping.

Corollary 1.2 Let M and M 0 be two 6–manifolds satisfying the conditions of
Theorem 1.1. Then �M '�M 0 if and only if H 2.M IZ/ŠH 2.M 0IZ/.

Theorem 1.1 can be improved if we pass from integral homotopy to rational homotopy.
Indeed, by Theorem 1.1 it is straightforward to compute the homotopy groups of M

in terms of those of spheres. However, there is an additional Lie algebra structure on
the homotopy groups of any CW complex X . In rational homotopy theory, the graded
Lie algebra ��.�X /˝Q is called the homotopy Lie algebra of X , and X is called
coformal if the rational homotopy type of X is completely determined by its homotopy
Lie algebra. If X is further formal, that is the homotopy type of X is determined by
the graded commutative algebra H�.X IQ/, then X is Koszul in the sense of Berglund
[9, Definition 1.1]. In the latter case, H�.X IQ/ is a Koszul algebra and ��.�X /˝Q

is a Koszul Lie algebra [9]. The following theorem concerns these additional structures
on M of the type in Theorem 1.1.

Theorem 1.3 Let N be a simply connected closed 4–manifold with H 2.N IZ/ŠZ˚d .
Let M be the total manifold of the sphere bundle of a rank 3 vector bundle over N .
Then:

� If d D 1, M is not coformal.

� If d � 2, M is Koszul , and there is an isomorphism of graded Lie algebras

��.�M /˝QŠH�.M IQ/!Lie;

where .� /!Lie is the Koszul dual Lie functor defined in [9, Section 2].

We turn to the remaining case, when d D 0, that is, N Š S4. Note, we still have
the 6–manifold M as constructed in (1). Though the homotopy classification of such
manifolds was almost determined by Yamaguchi [36], this case is surprisingly much
harder than the general one. We will explain this point after the statement of our result
in this case. Let �2 W S

3! S2 be the Hopf map. For any integer n, let Smfng be the
homotopy fibre of the degree n map on Sm.
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Theorem 1.4 Let M be the total space of the sphere bundle of a rank 3 vector bundle
over S4. Then M has a cell structure of the form

M ' S2
[k�2

e4
[ e6;

where k 2 Z. Let k D p
r1

1
� � �p

r`

`
be the prime decomposition of k. Further:

� If k is odd ,

�M ' S1
�

Ỳ
jD1

S3
fp

rj

j g ��S7:

� If k D 2r with r � 3,

�M ' S1
�S3
f2r
g ��S7:

Note that we still have cohomological rigidity in this case, since the homotopy type
of �M only depends on k, which is determined by the square of a generator in
H 2.M IZ/. But it is less interesting since the cohomological rigidity of M without
looping holds except for the case when k is even and M is Spin [36]. Further note
that Theorem 1.4 is only a partial result. The difficulty in this case is due to the fact
that the proof of Theorem 1.4 heavily relies on a result of Huang and Theriault [20] on
the loop decomposition of 2–connected 7–manifolds. As discussed in [20, Section 6],
the case when k D 2r m with m odd and greater than 1 is much more difficult. Also,
since it is known that S3f2g is not an H–space (see Cohen [11]), we cannot expect
a decomposition of the form �M ' S1 �S3f2g ��S7 for the case when k D 2. In
contrast, the rational homotopy of M in this case is simple. As shown in Lemma 5.2, M

is rationally homotopy equivalent to CP3 or S2 �S4. Moreover, it is well known that
CP3 is not coformal (see Neisendorfer and Miller [27, Example 4.7]), while S2 �S4

is Koszul; see Berglund [9, Examples 5.1 and 5.4].

Before we close the introduction, let us make two remarks. Firstly, our results provide
further evidence on the Moore conjecture. Recall that the Moore conjecture states that a
simply connected finite CW complex Z is rationally elliptic if and only if it has a finite
homotopy exponent at all primes, or equivalently, Z is rationally hyperbolic if and only
if it has unbound homotopy exponent at some prime. For M in our context, it is elliptic
if and only if d � 2, and in any of these cases M has a finite homotopy exponent at
all primes by Cohen, Moore and Neisendorfer [12; 13] and James [21]. When d � 3,
M is hyperbolic such that �M has �.S2 _S3/ as product summand, hence it has no
bound on its homotopy exponent for any prime p; see Neisendorfer and Selick [28]
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or Boyde [10] for instance. Secondly, Amorós and Biswas [1] characterized simply
connected rationally elliptic compact Kähler threefolds in terms of Hodge diamonds,
and in particular, their second Betti numbers satisfy b2 � 3. For M in our context,
this is equivalent to d � 2, and our decompositions provide further information on the
homotopy of M . For instance, the homotopy groups of M can be computed in terms
of those of spheres.

The paper is organized as follows. In Section 2 we classify rank 3 bundles over the
4–manifold N . In Section 3, we prove Lemma 3.1, which implies that under Lemma 2.1
one component of the classifying map f of the bundle � over N is trivial in a special
case. This is crucial for proving Theorem 1.1. In Section 4, we prove Theorem 1.1 by
dividing it into two cases. Section 5 is devoted to the remaining case when d D 0 and
we prove Theorem 1.4 there. We discuss the rational homotopy of 6–manifolds and
prove Theorem 1.3 in Section 6.

Acknowledgements Ruizhi Huang was supported by the National Natural Science
Foundation of China (grants 11801544 and 11688101), and the Chen Jingrun Future
Star Program of the AMSS. He would like to thank Professor Stephen Theriault for
the international online lecture series Loop space decomposition, which stimulated his
research interest in the homotopy of 6–manifolds. He also want to thank Professor
Yang Su for helpful discussions on obstructions to trivializing vector bundles.

2 Rank 3 bundles over 4–manifolds

In this section, we discuss necessary knowledge of rank 3 vector bundles over simply
connected 4–manifolds, which will be used in the subsequent sections. There are
various ways to study the classification of vector bundles. Here, we adopt an approach
from a homotopy theoretical point of view for later use.

Let N be a simply connected 4–manifold such that H 2.N IZ/Š Z˚d with d � 0. A
rank 3 vector bundle � over N is classified by a map f W N ! BSO.3/. The sphere
bundle of �

S2 i
�!M

p
�!N

defines the closed 6–manifold M . For N , there is the homotopy cofiber sequence

(2) S3 �
�!

d_
iD1

S2 �
�!N

q
�! S4 †�

��!

d_
iD1

S3;
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where � is the attaching map of the top cell of N , � is the injection of the 2–skeleton,
and q is the pinch map onto the top cell. Let s W S1Š SO.2/! SO.3/ be the canonical
inclusion of Lie groups.

Lemma 2.1 There is a surjection

ˆ W ŒS4;BSO.3/�� ŒN;BS1�! ŒN;BSO.3/�

of pointed sets that restricts to q� on ŒS4;BSO.3/�, and to .Bs/� on ŒN;BS1�.

Proof By (2), there is the exact sequence of pointed sets

0D

� d_
iD1

S3;BSO.3/
�
! ŒS4;BSO.3/� q�

�! ŒN;BSO.3/�

��
�!

� d_
iD1

S2;BSO.3/
�
! ŒS3;BSO.3/�D 0;

in a strong sense: there is an action of ŒS4;BSO.3/� on ŒN;BSO.3/� through q� such
that the sets ���1.x/, for x 2

�Wd
iD1 S2;BSO.3/

�
, are precisely the orbits. It is known

that
�Wd

iD1 S2;BSO.3/
�
Š
L

d Z=2Z and ŒS4;BSO.3/�Š Z. Moreover, there is the
commutative diagram

ŒN;BS1�
��

Š
//

.Bs/�

��

�Wd
iD1 S2;BS1

�
.Bs/�
��

Š
//
L

d Z

L
d �2

��

ŒN;BSO.3/�
��
//
�Wd

iD1 S2;BSO.3/
� Š

//
L

d Z=2Z

where �� is an isomorphism onto
�Wd

iD1 S2;BS1
�
Š
L

d Z and �2 is the mod 2 reduc-
tion, hence .Bs/� is surjective onto

�Wd
iD1 S2;BSO.3/

�
. Now for any f 2 ŒN;BSO.3/�

we have ��.f / D .Bs/�.x/ for some x 2
�Wd

iD1 S2;BS1
�
. Write ˛ D .���1/.x/.

Then Bs�.˛/ and f belong to the same orbit of the action, for they have same image
in
�Wd

iD1 S2;BSO.3/
�

through ��. Hence, there exists an f 0 2 ŒS4;BSO.3/� such
that q�.f 0/ � .Bs�.˛//D f .

From Lemma 2.1 and its proof, for the classifying map f W N ! BSO.3/, we have
associated a pair of maps

(3) .f 0; ˛/ 2 ŒS4;BSO.3/�� ŒN;BS1�;
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such that q�.f 0/�.Bs�.˛//Df and!2.�/�˛ mod 2. We also notice that if ��.f /¤0,
or equivalently � is non-Spin, the element ˛ can be always chosen to be primitive, that
is, ˛ is not divisible by any integer k with k ¤˙1. This is important for our later use.

Let � WW ! N be a map from a closed manifold W . The pullback of the bundle �
along � has an associated sphere bundle

S2 �
�!Z

p
�!W;

which defines the closed manifold Z. The following lemma is critical for proving
Proposition 4.1.

Lemma 2.2 Suppose for W there is a homotopy cofibration

Wm�1
%
�!W

q
�! Sm;

such that � ı % factors as

Wm�1
�0
�!

d_
iD1

S2 �
�!N

for some �0, where Wm�1 is the .m�1/–skeleton of W . Then if f 0 ı q ı� and ˛ ı�
are both nullhomotopic , the bundle ��.�/ is trivial , and in particular

Z Š S2
�W:

Proof By the assumption, there is a diagram of homotopy cofibrations

Wm�1

%
//

�0
��

W
q
//

�

��

Sm

� 0

��W
d S2 �

// N
q
// S4

which defines the map � 0. It follows that there is a morphism of exact sequences of
pointed sets

ŒS4;BSO.3/�
q�
//

� 0�

��

ŒN;BSO.3/�
��
//

��

��

�Wd
iD1 S2;BSO.3/

�
��0
��

ŒSm;BSO.3/�
q�
// ŒW;BSO.3/�

%�
// ŒWm�1;BSO.3/�
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such that the action of ŒS4;BSO.3/� on ŒN;BSO.3/� is compatible with the action of
ŒSm;BSO.3/� on ŒW;BSO.3/� through � 0�. Hence, by (3), the classifying map f ı�
of ��.�/ satisfies

f ı� D ��
�
q�.f 0/ � .Bs�.˛//

�
D q�.� 0�.f 0// ���.Bs�.˛//

D ��.q�.f 0// ���..Bs�.˛///D .f
0
ı q ı�/ �Bs�.˛ ı�/;

which is nullhomotopic by the assumption.

Lemma 2.1 also gives a byproduct on the classification of rank 3 vector bundles over
N via characteristic classes, which could also be proved by other methods, like the
classical obstruction theory.

Proposition 2.3 A rank 3 vector bundle � over N is completely determined by its
second Stiefel–Whitney class !2.�/ and its first Pontryagin class p1.�/.

Proof Given two rank 3 vector bundles �1 and �2 over N , suppose that!2.�1/D!2.�2/

and p1.�1/D p1.�2/. We want to show that �1 Š �2, or equivalently, f1 ' f2, where
f1; f2 WN!BSO.3/ are the classifying maps of �1 and �2, respectively. By Lemma 2.1
and (3), f1D q�.f 0

1
/ � .Bs�.˛// for a pair of maps .f 0

1
; ˛/ 2 ŒS4;BSO.3/�� ŒN;BS1�

such that !2.�1/� ˛ mod 2. Since !2.�1/D !2.�2/, there exists f 0
2
2 ŒS4;BSO.3/�

such that f2 D q�.f 0
2
/ � .Bs�.˛//. It follows that to show f1 ' f2, it suffices to show

f 0
1
' f 0

2
. Indeed, for either �i the expression of fi can be explicitly described as

fi WN
�0
�!N _S4 ˛_f 0

i
���! BS1

_BSO.3/ Bs_id
����! BSO.3/_BSO.3/ r�! BSO.3/;

where �0 is the coaction map and r is the folding map. In particular, it is easy to see
that

(4) p1.�i/D q�.p1.f
0

i //C˛
2;

where we denote by p1.f
0

i / the first Pontryagin class of the bundle over S4 determined
by f 0i . Since p1.�1/Dp1.�2/, (4) implies that q�.p1.f

0
1
//D q�.p2.f

0
i //. Moreover, it

is clear that q� WH 4.S4IZ/!H 4.N IZ/ is an isomorphism. Hence p1.f
0

1
/Dp1.f

0
2
/.

Now since ŒS4;BSO.3/�' Z, and the morphism 1
4
p1 W ŒS

4;BSO.3/�!H 4.S4IZ/

sending each map to one fourth of the first Pontryagin class of the associated bundle
is an isomorphism [18], we see that f 0

1
' f 0

2
. Then f1 ' f2 and the proposition

follows.
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3 The induced map between top cells

Let N be a simply connected closed 4–manifold such that H 2.N IZ/ Š Z˚d with
d � 1. Consider the circle bundle

S1 j
�! Y

�
�!N

classified by a primitive element ˇ 2H 2.N IZ/, which defines the simply connected
5–manifold Y . By [16, Lemma 1], Y has cell structure of the form

Y '
_
d�1

.S2
_S3/[ e5:

Then, by the cellular approximation theorem, there is the diagram of homotopy co-
fibration

(5)

W
d�1.S

2 _S3/

��

%
// Y

�

��

q
// S5

� 0

��W
d S2 �

// N
q
// S4

where the bottom cofibration is part of (2), % is the inclusion of the 3–skeleton of Y

followed by the quotient q, and � 0 is induced from � . In this section, we prove the
following key lemma for understanding rank 3–bundles over Y in a special case. Let
ŒN � be the fundamental class of N . Let hx[y; ŒN �i 2 Z be the canonical pairing for
any cohomology classes x, y 2H 2.N IZ/.

Lemma 3.1 The induced map � 0 in (5) is nullhomotopic when hˇ2; ŒN �i is odd.

Proof The primitive element ˇ is represented by a map ˇ W N ! CP1 'K.Z; 2/.
By the cellular approximation theorem, ˇ factors through CP2,

ˇ WN
ž
�!CP2 x

�!CP1;

which defines the map ž, and x represents a generator x 2H 2.CP2IZ/. The factor-
ization gives a diagram of circle bundles

(6)

S1 j
// Y

�
//

y̌

��

N

ž

��

S1 // S5 �0
// CP2
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where the bundle in the second row is classified by x, and y̌ is the induced map. By
the cellular approximation theorem, there is a homotopy commutative diagram

(7)

Y
q

||

�
//

y̌

��

N
q

{{

ž

��

S5

y̌0

��

� 0
// S4

ž0

��

S5 �0
// CP2

q0

{{

S5
� 0

0
// S4

where the rear and top faces are the right squares in (6) and (5), respectively, q0 is the
quotient map onto the top cell of CP2, � 0

0
is defined to be q0ı�0, and y̌0 and ž0 are the

induced maps. By the homotopy commutativity of the right face of (7), the assumption
that hˇ2; ŒN �i is odd is equivalent to ž0 having odd degree. Further, since the homotopy
cofibre of �0 is CP3, for which the Steenrod operation Sq2

W H 4.CP3IZ=2Z/ !

H 6.CP3IZ=2Z/ is trivial, we obtain that � 0
0
D q0 ı �0 is nullhomotopic. Now

consider the front face of (7). Combining the above arguments and the fact that
�5.S

4/Š Z=2Zf�4g [32], we see that � 0 ' ž0 ı� 0 ' � 0
0
ı y̌0 is nullhomotopic.

4 Proof of Theorem 1.1

Let N be a simply connected 4–manifold such that H 2.N IZ/ Š Z˚d with d � 1.
A rank 3 vector bundle � over N is classified by a map f W N ! BSO.3/ with the
associated sphere bundle

S2 i
�!M

p
�!N;

which defines the closed 6–manifold M . Recall, by Lemma 2.1 and (3), the classifying
map f WN ! BSO.3/ for the bundle � is determined by

.f 0; ˛/ 2 ŒS4;BSO.3/�� ŒN;BS1�

such that f D q�.f 0/ � .Bs/�.˛/ and !2.�/ � ˛ mod 2, where q and s are defined
before Lemma 2.1. Moreover, by the discussion after Lemma 2.1, when � is non-Spin
we suppose that ˛ is primitive.

For the loop homotopy of M , we may study S1–bundles over M pulled back from
those over the 4–manifold N . Consider the circle bundle

(8) S1 j
�! Y

�
�!N
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classified by a primitive element ˇ 2H 2.N IZ/, which defines the simply connected
5–manifold Y . Based on the previous remark on the choice of ˛, we make the following
convention on the choice of ˇ:

� ˇ D ˛ if � is non-Spin, or

� ˇ can be any primitive element if � is Spin.

The remainder of this section is devoted to the proof of Theorem 1.1 by dividing it into
two cases according to the parity of hˇ2; ŒN �i. In Section 4.1, we prove Theorem 1.1
using Lemma 3.1 under the assumption that hˇ2; ŒN �i is odd. This is the case when
the circle bundle (8) plays an essential role. However, when hˇ2; ŒN �i is even, we have
to apply a different method to prove Theorem 1.1. This is done in Section 4.2.

4.1 Case I: hˇ2; ŒN �i is odd

In this case, by the choice of the circle bundle (8), consider the pullback of fibre bundles

(9)

S2

�

��

S2

i
��

S1 |
// X

p

��

 
// M

p

��

S1 j
// Y

�
// N

which defines the closed 7–manifold X with bundle projections  and p onto M and Y ,
respectively. We show that the induced bundle over Y in (9) is trivial in this case.

Proposition 4.1 If hˇ2; ŒN �i is odd , then the bundle ��.�/ defined in (9) is trivial ,
and , in particular ,

X Š S2
�Y:

Proof By Lemma 3.1, � 0 is nullhomotopic. This implies that f 0 ı q ı� ' f 0 ı� 0 ı q

is nullhomotopic by the homotopy commutativity of the right square in (5).

If � is non-Spin, then ˇD˛. We obtain the homotopy fibration Y
�
�!N

˛
�!BS1, which

implies that ˛ ı� is nullhomotopic, hence so is .Bs�/.˛ ı�/. Then by Lemma 2.2
the classifying map f ı� of the bundle ��.�/ is nullhomotopic, and the proposition
follows in this case.

If � is Spin, by Lemma 2.1 the classifying map f W N ! BSO.3/ of � is in the
image of q�, that is, there exists a map f 0 W S4! BSO.3/ such that f 0 ı q ' f , and
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then the bundle � is the pullback of the bundle � 0 over S4 classified by f 0. Hence
f ı� ' f 0 ı q ı� is nullhomotopic by the previous argument, and then the bundle
��.�/ is trivial. In particular, X Š S2 �Y and the proposition follows in this case.

Proof of Theorem 1.1 in Case I As in the beginning of this subsection, consider
the circle bundle S1 j

�! Y ��! N classified by the primitive element ˛ 2 H 2.N IZ/.
Then by Proposition 4.1, the total space X of the sphere bundle of ��.�/ satisfies
X Š S2 �Y . Hence, by (9),

(10) �M ' S1
��X ' S1

��S2
��Y:

If d D 1, then Y has to be S5, and hence �M ' S1 ��S2 ��S5. If d � 2, by
[7, Example 4.4] or [3] there is a homotopy equivalence

(11) �Y '�.S2
�S3/��

�
J _ .J ^�.S2

�S3//
�

with J D
Wd�2

iD1 .S
2_S3/. Combining (10) with (11), we obtain the loop decomposition

of M in the theorem.

4.2 Case II: hˇ2; ŒN �i is even

In this case, the induced bundle ��.�/ defined in (9) may not be trivial, and we need
to apply a different method to prove Theorem 1.1. Indeed, in this case we can work
with the sphere bundle S2 i

�!M
p
�!N directly, and show that it splits after looping.

Proposition 4.2 If hˇ2; ŒN �i is even , the sphere bundle S2 i
�!M

p
�!N of � defined

in (1) is homotopically trivial after looping , and in particular

�M '�S2
��N:

Proof By Poincaré duality there exists a class ˛2H 2.N IZ/ such that h˛[ˇ; ŒN �iD1.
Since by assumption hˇ2; ŒN �i is even, ˛¤ˇ. Hence by [6, proof of proposition 3.2 and
Lemma 3.3] there is a Poincaré duality space Q such that H�.QIZ/ŠH�.S2�S2IZ/

as graded rings, �Q'�S2 ��S2, and there is a map

h WN !Q

such that �h has a right homotopy inverse and h�.x/ D ˛ with x 2 H 2.QIZ/ a
generator. Let us fix a homotopy equivalence e W �S2 � �S2 ! �Q defined in
[6, Lemma 2.3] with its inverse denoted by e�1.
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Recall, � is determined by a pair of maps .f 0; ˛/2 ŒS4;BSO.3/��ŒN;BS1�. By Lemma
2.1, define a rank 3 vector bundle � over Q by .f 0;x/ 2 ŒS4;BSO.3/�� ŒQ;BS1�. It
follows that � D h�.�/ and there is a pullback of sphere bundles

(12)

S2 i
// M

p
//

Qh
��

N

h

��

S2
Qi
// zQ

Qp
// Q

where the second row is the sphere bundle of � and Qh is the induced map. Since
H�.QIZ/ and H�.S2IZ/ are concentrated in even degrees, the Serre spectral sequence
for the fibration S2! zQ!Q collapses for degree reasons, and then

H�. zQIZ/ŠH�.S2
IZ/˝H�.QIZ/:

Apply the loop functor to (12). It is clear that there is a map i1 � i2 W S
1 �S1!� zQ

such that the composition

S1
�S1 i1�i2

���!� zQ
� Qp
��!�Q

e�1

��!�S2
��S2

is homotopic to E �E with E W S1 ! �S2 the suspension map. By the universal
property of �†, there is a unique extension I W�S2 ��S2!� zQ of i1 � i2 up to
homotopy such that

�S2
��S2 I

�!� zQ
� Qp
��!�Q

e�1

��!�S2
��S2

is homotopic to the identity. Therefore, the sphere bundle of � splits after looping to
give

� zQ'�S2
��Q'�S2

��S2
��S2:

In particular, �Qi has a left homotopy inverse Qr , which implies that Qr ı� Qh is a left
homotopy inverse of �i . Then the sphere bundle in the top row of (12) splits after
looping, and in particular �M '�S2 ��N .

Proof of Theorem 1.1 in Case II Since hˇ2; ŒN �i is even and ˇ is primitive, we have
d � 2. By Proposition 4.2, �M '�S2 ��N . Further, by [6, Theorem 1.3] there is
a homotopy equivalence

�N ' S1
��.S2

�S3/��
�
J _ .J ^�.S2

�S3//
�

with J D
Wd�2

iD1 .S
2 _S3/. Then in this case the theorem follows by combining the

above decompositions.
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5 The case when d D 0

In this section, we study the case when d D 0 and prove Theorem 1.4 as an immediate
corollary of Propositions 5.3 and 5.4. Indeed, we work in a slightly more general
context, that is, we study the loop decomposition of the closed 6–manifold M with
cell structure of the form

(13) M ' S2
[ e4
[ e6:

Notice that M in Theorem 1.4, as the total space of an S2–bundle over S4, is an
example of (13). Yamaguchi [36] almost determined the homotopy classification of M

in (13) with correction by [5; 29], and summarized the criterion for whether M has the
same homotopy type as an S2–bundle over S4 in [36, Remark 4.8] based on [30].

By (13) there are generators x 2H 2.M IZ/ and y 2H 4.M IZ/ such that

(14) x2
D ky

for some k 2 Z. Consider the S1–bundle

(15) S1 j
�!X !M

classified by x 2 H 2.M IZ/ Š ŒM;BS1�, which defines the closed 7–manifold X .
Let Pn.k/ be the Moore space such that zH�.Pn.k/IZ/ Š Z=kZ if � D n and 0

otherwise [26].

Lemma 5.1 If k ¤ 0, there is a homotopy equivalence

X ' P4.k/[ e7:

Proof The lemma can be proved directly by analyzing the Serre spectral sequence of
the fibration X !M

x
�!BS1 induced from (15). Here we provide an alternative proof

using results in geometric topology. By [22, Theorem 1.3], X is homotopy equivalent
to the total space of an S3–bundle over S4. Then by the homotopy classification of
S3–bundles over S4 [14; 30], X is homotopy equivalent to P4.k 0/ [ e7 for some
k 0 2 Z. Notice that �3.X /Š �3.M /Š �3.S

2[k�2
e4/Š Z=k, where �2 2 �3.S

2/

is the Hopf element. Then k D k 0 because �3.P
4.k 0/[ e7/Š Z=k 0, and the lemma

follows.

Lemma 5.1 has an immediate consequence on the rational homotopy of M .

Algebraic & Geometric Topology, Volume 23 (2023)



Loop homotopy of 6–manifolds over 4–manifolds 2383

Lemma 5.2 Let M be a closed 6–manifold with cell structure of the form (13). Then
if k ¤ 0 there is a rational homotopy equivalence M 'Q CP3, and if k D 0 then
M 'Q S2 �S4.

Proof Let x2 D ky for some k 2 Q, where x;y 2 H�.M IQ/ are two generators
with deg.x/D 2. By Poincaré duality, it is easy to see that the cohomology algebra
H�.M IQ/ is determined by k, and is isomorphic to H�.CP3IQ/ if k ¤ 0 and
H�.S2 � S4IQ/ if k D 0. Since every simply connected 6–manifold is formal
[27, Proposition 4.6], the rational homotopy type of M is determined by its rational
cohomology algebra H�.M IQ/. Hence M 'Q CP3 or M 'Q S2 �S4.

5.1 The subcase when k is odd

When k is odd, the loop decomposition of the Poincaré complex P4.k/ [ e7 was
determined by Huang and Theriault [20]. For any prime p, let Smfpr g be the homotopy
fibre of the degree pr map on Sm. Let k D p

r1

1
� � �p

r`

`
be the prime decomposition

of k. By [20, Theorem 1.1], when k is odd there is a homotopy equivalence

(16) �.P4.k/[ e7/'
Ỳ
jD1

S3
fp

rj

j g ��S7:

Proposition 5.3 Let M be a closed 6–manifold with cell structure of the form
S2[k�2

e4[ e6. If k is odd , then M has the same homotopy type as an S2–bundle
over S4, and there is a homotopy equivalence

(17) �M ' S1
�

Ỳ
jD1

S3
fp

rj

j g ��S7:

Proof The homotopy equivalence (17) follows immediately from Lemma 5.1, (15)
and (16). For the first statement, recall that there is the fibre bundle [18, Section 1.1]

S2
!CP3

! S4;

classified by a generator of �4.BSO.3//Š Z. Pulling back this bundle along a self-
map of S4 of degree k, we obtain the 6–manifold M 0 in the following diagram of
S2–bundles:

S2 // M 0 //

��

S4

k
��

S2 // CP3 // S4
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It is easy to see that x02 D ky0, where x0 2H 2.M 0IZ/ and y0 2H 4.M 0IZ/ are two
generators. By [36, Corollary 4.6], when k is odd the homotopy type of M is uniquely
determined by k, and hence M 'M 0.

5.2 The subcase when k is even

In [20, Section 6], Huang and Theriault showed that for P4.2r /[ e7 with r � 3, there
is an homotopy equivalence

(18) �.P4.2r /[ e7/' S3
f2r
g ��S7;

provided there is a map P4.2r /[ e7! S4 inducing a surjection in mod-2 homology.

Proposition 5.4 Let M be a closed 6–manifold with cell structure of the form
S2[2r�2

e4[ e6. If r � 3, then there is a homotopy equivalence

�M ' S1
�S3
f2r
g ��S7:

Proof Recall by Lemma 5.1 and its proof that X ' P4.2r /[ e7 and X is homotopy
equivalent to the total space of an S3–bundle over S4

S3
!X

q
�! S4:

It is clear that q� W H4.X IZ=2Z/ ! H4.S
4IZ=2Z/ is surjective. Hence, by (18),

�X ' S3f2r g ��S7. The lemma then follows from (15) immediately.

6 Coformality of 6–manifolds

In this section, we study the rational homotopy theory of 6–manifolds as an application
of our decompositions in Theorem 1.1. We briefly recall some necessary terminology
used in this section, and for a detailed account of rational homotopy theory one can
refer to the standard literature [17].

Recall, a CW complex X is rationally formal if its rational homotopy type is determined
by the graded commutative algebra H�.X IQ/, and is rationally coformal if its rational
homotopy type is determined by the graded Lie algebra ��.�X /˝Q, which is called
the homotopy Lie algebra of X and is denoted by LX . Suppose .ƒVX ; d/ is a Sullivan
model of X . The differential d equals

P
i�0 di with di WVX !ƒiC1VX , and .ƒVX ; d/

is minimal if the linear part d0 equals 0. In the latter case, VX is dual to ��.�X /˝Q.
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Moreover, X is coformal if and only if it has a purely quadratic Sullivan model
C �.LX ; 0/ D .ƒ.sLX /

#; d1/, where C �.� / is the commutative cochain algebra
functor, s is the suspension, and # is the dual operation.

Proposition 6.1 Let M be a 6–manifold as in Theorem 1.1 such that d � 2. Then M

is coformal.

Proof Consider the S2–bundle

(19) S2 i
�!M

p
�!N

in (9). By [27, Proposition 4.4] N is coformal since d � 2, and hence has a minimal
Sullivan model of the form C �.LN ; 0/D .ƒ.sLN /

#; d1/ as the associated commutative
cochain algebra of .LN ; 0/ [17, Example 7 in Chapter 24(f)]. Let

Op W C �.LN ; 0/! .C �.LN /˝ƒ.a; b/; d/

be a relative minimal Sullivan model of p whose quotient .ƒ.a; b/; Nd/ is a minimal
Sullivan model of S2 with db D a2 and deg.a/D 2. It follows that there is the short
exact sequence of the linear part of the model of (19),

(20) 0! ..sLN /
#; 0/! ..sLN /

#
˚Q.a; b/; d0/! .Q.a; b/; 0/! 0;

such that H�..sLN /
# ˚Q.a; b/; d0/ is dual to ��.M / ˝Q. However, since the

homotopy groups of (19) split by Theorem 1.1 and its proof, we see from (20) that the
linear part d0 equals 0 for .sLN /

#˚Q.a; b/, and hence .C �.LN /˝ƒ.a; b/; d/ is a
minimal model of M .

To show M is coformal, it suffices to show that the differential d is quadratic on
Q.a; b/ in .C �.LN /˝ƒ.a; b/; d/. Since N is simply connected, .sLN /

# concentrates
in degrees larger than or equal to 2. So, by the minimality of .C �.LN /˝ƒ.a; b/; d/

and degree reasons,

daD 0 and db D a2
C ayC

X
i

ziwi

for some degree 2 elements y; zi ; wi 2 .sLN /
#. So d D d1 in .C �.LN /˝ƒ.a; b/; d/.

This shows that M is coformal.

Proof of Theorem 1.3 First, it is well known that CPi is not coformal for i � 2 by
[27, Example 4.7]. If d D 1, then M is determined by a fibre bundle S2!M !CP2.
It has a model of the form

.ƒ.c;x/; dx D c3/! .ƒ.c;x; a; b/; Qd/! .ƒ.a; b/; db D a2/;
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where deg.c/ D deg.a/ D 2. By degree reasons Qd.a/ D 0, and Qd.b/ D a2 C kc2

for some k 2Q, which implies that .ƒ.c;x; a; b/; Qd/ is minimal. However, Qd is not
quadratic as Qd.x/D c3. Hence M is not coformal.

When d � 2, by Proposition 6.1 M is coformal. Moreover, Neisendorfer and Miller
[27, Proposition 4.6] showed that every simply connected 6–manifold is formal. Hence,
by [9, Theorem 1.2], M is Koszul. By [9, Theorem 1.3], there is an isomorphism of
graded Lie algebras

��.�M /˝QŠH�.M IQ/!Lie;

where .� /!Lie is the Koszul dual Lie functor.
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Infinite families of higher torsion in the
homotopy groups of Moore spaces

STEVEN AMELOTTE

FREDERICK R COHEN

YUXIN LUO

We give a refinement of the stable Snaith splitting of the double loop space of a Moore
space and use it to construct infinite periodic families of elements of order prC1

in the homotopy groups of mod pr Moore spaces. For odd primes p, our splitting
implies that the homotopy groups of the mod prC1 Moore spectrum are summands
of the unstable homotopy groups of each mod pr Moore space.

55P35, 55P42, 55Q51, 55Q52

1 Introduction

The purpose of this note is to combine three standard results in homotopy theory:

(1) the construction of elements of order prC1 in the homotopy groups of the mod pr

Moore space Pn.pr /, as described in [8];

(2) the stable splitting of �2Pn.pr / first proved by Snaith [21]; and

(3) the introduction of v1–periodic self-maps by Adams in his work on the image of
the J–homomorphism.

In their fundamental work on the homotopy theory of Moore spaces, Cohen, Moore and
Neisendorfer [7; 8; 17; 18] proved that Pn.pr /DSn�1[pr en has homotopy exponent
exactly prC1 when p is a prime number greater than 3. We will refer to elements of this
maximal possible order in ��.Pn.pr // as higher torsion elements. The main results of
this paper give additional infinite families of higher torsion elements in the homotopy
groups of odd primary Moore spaces which are different from those constructed via
Samelson products in [8]. The main technical ingredient is a slightly finer stable
decomposition of �2P2nC1.pr / which essentially follows from a combination of
results (1) and (2) above. The reason that this question arose is because of computations
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of Roman Mikhailov and Jie Wu, who asked about “functorial elements” of order prC1

in the homotopy groups of mod pr Moore spaces not given by those in [8].

By considering the integral homology of the double loop space of a Moore space, it
is clear that certain spherical homology classes force the classical Snaith splitting of
�2P2nC1.pr / to stably decompose further than previously described. This new stable
splitting allows for the construction of new higher torsion elements which are detected
by K–theory but not detected in the ordinary homology of any iterated loop space of a
Moore space, unlike the elements of order prC1 in [8] which have nontrivial Hurewicz
images in the homology of �2P2nC1.pr / (see Lemma 4.1).

The main results are described next. Recall that the Snaith splitting gives a functorial
stable homotopy equivalence

†1�2†2X '†1
1_

jD1

Dj .�
2†2X /

for any path-connected CW–complex X , where the stable summands are given by
suspension spectra of the extended powers Dj .�

2†2X /DC2.j /C^†j X^j , and C2.j /

denotes the space of j little 2–cubes disjointly embedded in R2. In the case that X is
an odd-dimensional sphere S2n�1, the stable summands Dj .�

2S2nC1/ of �2S2nC1

have been well studied; they are p–locally contractible unless j � 0 or 1 mod p,
in which case they can be identified with suitably suspended Brown–Gitler spectra.
In particular, after localizing at a prime p, they are stably indecomposable. Below
we consider the case of an odd-dimensional Moore space and the stable summands
Dpk .�2P2nC1.pr // which map naturally onto these Brown–Gitler spectra by the map
�2†2q where q W P2n�1.pr /! S2n�1 is the pinch map.

Theorem 1.1 Suppose p is prime and n> 1.

(a) If p � 3 and r � 1, then Dpk .�2P2nC1.pr // is stably homotopy equivalent to

P2npk�2.prC1/_Xpk

for some finite CW–complex Xpk for all k � 1.

(b) If p D 2 and r > 1, then D2.�
2P2nC1.2r // is homotopy equivalent to

P4n�2.2rC1/_X2

for some 4–cell complex X2 D P4n�3.2r /[CP4n�2.2/.

(c) If p D 2 and r D 1, then D2.�
2P2nC1.2// is a stably indecomposable 6–cell

complex.

Algebraic & Geometric Topology, Volume 23 (2023)
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The reason the stable splitting of �2P2nC1.pr / described by Theorem 1.1 has impli-
cations for the unstable homotopy groups of P2nC1.pr / is that maps

P2npk�2.prC1/!�2P2nC1.pr /

admitting stable retractions exist unstably when p is odd (and in only a few cases when
p D 2; see Section 6).

Theorem 1.2 Let p be an odd prime , r � 1 and n > 1. Then for every k � 1 there
exist homotopy commutative diagrams

P2npk�2.prC1/ //

E1 ''

�2P2nC1.pr /

��

QP2npk�2.prC1/

P .4n�2/pk�2.prC1/ //

E1 ''

�2P2n.pr /

��

QP .4n�2/pk�2.prC1/

where E1 is the stabilization map (ie , unit of the adjunction †1 a�1).

The loop space decompositions of odd primary Moore spaces given in [8; 9] imply that
the stable homotopy groups �s

�.P
n.pr // are in a certain sense retracts of the unstable

homotopy groups ��.Pn.pr //. Different loop space decompositions were used by
Chen and Wu [4] to obtain the same result for 2–primary Moore spaces, and other
examples of spaces whose stable and unstable homotopy groups share this property are
given by Beben and Wu [3]. As a consequence of Theorem 1.2, the stable homotopy
groups of the mod prC1 Moore spectrum retract off the unstable homotopy groups of
each mod pr Moore space in a similar sense when p is an odd prime (see Corollary 5.1).

This observation clearly suggests that ��.Pn.pr // contains many Z=prC1 summands
when p is odd. To generate explicit examples, in Section 6 we use desuspensions of
Adams maps in conjunction with Theorem 1.2 to construct infinite v1–periodic families
of higher torsion elements and obtain the following. Let q D 2.p� 1/.

Theorem 1.3 Let p be an odd prime , r � 1 and n> 1. Then for all sufficiently large k,

�2npk�1Ctqpr .P2nC1.pr // and �.4n�2/pk�1Ctqpr .P2n.pr //

contain Z=prC1 summands for every t � 0.

Remark 1.4 A lower bound on k in Theorem 1.3 is required to ensure the existence of
unstable Adams maps v1 W P

`Cqpr

.prC1/! P `.prC1/ which induce isomorphisms
in K–theory. See Section 6 for a more precise statement. In particular, in the most
interesting case when r D 1, we only require k � 1.
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For p D 2, unstable maps analogous to those in Theorem 1.2 rarely exist for reasons
related to the divisibility of the Whitehead square. When r > 1, the inclusion of
the stable summand P4n�2.2rC1/ of �2P2nC1.2r / given by Theorem 1.1(b) exists
unstably if and only if nD 2 or 4. As examples in these cases, we describe unstable
v1–periodic families of higher torsion elements in ��.P5.2r // and ��.P9.2r // for
some small values of r (Theorem 6.6).

Remark 1.5 When p is odd, the r > 1 case of Theorem 1.1(a) follows quickly from
an unstable product decomposition of �2P2nC1.pr / proved by Neisendorfer. More
precisely, [19, Theorem 1] shows that �S2npk�1fprC1g is a retract of �2P2nC1.pr /

for all k � 1, and it is readily checked that P2npk�2.prC1/ is a stable retract of
�S2npk�1fprC1g; cf [2, Proposition 4.1]. The r D 1 case of Theorem 1.1(a) gives
some evidence for conjectures surrounding the unstable homotopy type of�2P2nC1.p/

considered by Cohen, Moore and Neisendorfer [7; 19], Gray [14] and Theriault [22].

In Section 2 we describe the homology of the double loop space of P2nC1.pr / and
establish some basic properties of its Snaith summands. In Section 3 we review Cohen,
Moore and Neisendorfer’s construction of higher torsion elements and, in particular,
their work on the homotopy and homology Bockstein spectral sequences for the single
loop space of a Moore space. In Section 4 we compute higher Bocksteins in the
homology of the double loop space of a Moore space and prove the splittings of
Theorem 1.1. In Section 5 we derive Theorem 1.2 from Theorem 1.1 and discuss
implications for the unstable homotopy groups of odd primary Moore spaces. Finally,
in Section 6 we construct the infinite families of higher torsion elements discussed
above.

Acknowledgements This material is based upon work partly supported by the National
Science Foundation under grant DMS-1929284 while Amelotte was in residence at
the Institute for Computational and Experimental Research in Mathematics in Provi-
dence, RI.

2 Homology of the stable summands Dj .�2P 2nC1.pr//

The homology of �n†nX taken with field coefficients as a filtered algebra was worked
out in [6]. A short summary of that information elucidates the homology of the stable
Snaith summands, usually denoted by Dn;j X . In the applications below where nD 2,
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the j th stable summand D2;j X of �2†2X will be denoted by Dj .�
2†2X /. All

homology groups have Z=p coefficients unless indicated otherwise.

Start with the connected graded vector space

V DH�.X /

given by the reduced mod p homology of a path-connected space X . Next, consider
the reduced homology of the suspension †X , denoted by �V . Form the free graded
Lie algebra generated by �V , denoted by

LŒ�V �:

In addition, consider the free graded restricted Lie algebra

Lp Œ�V �:

This restricted Lie algebra is isomorphic to the module of primitive elements in the
tensor algebra generated by �V , so the tensor algebra is a primitively generated Hopf
algebra.

A basis for Lp Œ�V � is given by the union of

(1) a basis BD fb˛ j ˛ 2 Ig for LŒ�.V /�odd, the elements of odd degree in LŒ�.V /�;

(2) a basis CDfc
 j 
 2J g for LŒ�.V /�even, the elements of even degree in LŒ�.V /�;
and

(3) a basis for the .pk/th powers of LŒ�.V /�even, say PC D fc
pk

j 
 2 J; k � 1g.

It follows from the Bott–Samelson theorem that a basis for the module of primitives in
the mod p homology of �†2X is given by

B[ C [PC:

The mod p homology of �2†2X can now be described using the preparations of the
previous paragraph. First, for each .pk/th power x D c


pk

2 PC, let ��1x denote the
formal desuspension, lowering the degree of x by one. Let ˇ��1x denote the formal
first Bockstein of ��1c


pk

, with degree jxj�2. Let ‰ denote the set of elements given
by

‰ D f��1x; ˇ��1x j x 2 PCg:

Theorem 2.1 [6] If X is a path-connected CW–complex and p is an odd prime ,
then the mod p homology H�.�

2†2X / is isomorphic as an algebra to the free graded
commutative algebra generated by

��1B[ ��1C [‰:
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Remark 2.2 The result in case p D 2 is different and mildly simpler (see [6] and the
remarks preceding Lemma 2.5 below).

The homology of iterated loop-suspensions are free En–algebras naturally equipped
with more algebraic structure than we will need here, but we briefly mention two
homology operations which will often be used below to label elements of H�.�

2†2X /

when X D P2n�1.pr /; namely, the Dyer–Lashof operation

Q1 WHn.�
2†2X /!HnpCp�1.�

2†2X /

and the Browder bracket

� WHn.�
2†2X /˝Hm.�

2†2X /!HnCmC1.�
2†2X /:

The images of Q1 and � contain the transgressions of .pk/th powers and iterated com-
mutators, respectively, of primitive elements in the tensor Hopf algebra H�.�†

2X /.
See [6] for a description of the generators in ��1B [ ��1C [ ‰ in terms of these
operations.

We recall that the set of indecomposables ��1B[��1C[‰ is also graded by weights
as in [6] in such a way that the reduced mod p homology of Dj .�

2†2X / is spanned
by the monomials of weight j in the free graded commutative algebra generated by
��1B[ ��1C [‰.

Explicitly, for X D P2n�1.pr /, let fu; vg be a basis for the graded vector space
V DH�.P

2n�1.pr // with juj D 2n�2, jvj D 2n�1 and ˇ.r/vD u. Then, if p is odd,
Theorem 2.1 implies that H�.�

2P2nC1.pr // is a free graded commutative algebra on
generators

u; v; �.u;u/; �.u; v/; �.u; �.u; v//; �.v; �.u; v//; : : : 2 ��1B[ ��1C;

Q1v; ˇ
.1/Q1v; Q2

1
v; ˇ.1/Q2

1
v; : : :

Q1�.u;u/; ˇ
.1/Q1�.u;u/; Q2

1
�.u;u/; ˇ.1/Q2

1
�.u;u/; : : :

Q1�.u; �.u; v//; ˇ
.1/Q1�.u; �.u; v//; : : :

:::

9>>>=>>>; 2‰;
with weights defined by

wt.u/D wt.v/D 1;

wt.Qk
1x/D wt.ˇ.1/Qk

1x/D pkwt.x/;

wt.�.x;y//D wt.x/Cwt.y/;

and extended to all monomials by wt.xy/D wt.x/Cwt.y/.
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We will often use the same notation, u and v, to denote generators of the bottom two
mod p homology groups of P2nC1.pr /, �P2nC1.pr / and �2P2nC1.pr /, indicating
degrees with subscripts when necessary.

To prove the splittings in Theorem 1.1, we will need to know the top two homology
groups of the Snaith summands Dpk .�2P2nC1.pr // explicitly. Although the list of
generators above is specific to the case of p odd, the following lemma holds for all
primes p.

Lemma 2.3 For each k � 0, Dpk .�2P2nC1.pr // is a .2npk�2pk�1/–connected
.2npk�1/–dimensional space with

(a) H2npk�1.Dpk .�2P2nC1.pr ///D spanfQk
1
vg,

(b) H2npk�2.Dpk .�2P2nC1.pr ///D spanfˇ.1/Qk
1
v; adpk�1

�
.v/.u/g,

where adpk�1

�
.v/.u/ denotes the .pk�1/–fold iterated Browder bracket

�.v; �.v; : : : ; �.v;u/; : : : //:

Proof Since the reduced mod p homology of Dpk .�2P2nC1.pr // consists of the
elements of homogeneous weight pk in H�.�

2P2nC1.pr //, the connectivity and
dimension of Dpk .�2P2nC1.pr // follow from the fact that the weight pk monomi-
als of lowest and highest homological degree are upk

and Qk
1
v, respectively, with

jupk

j D 2npk � 2pk and jQk
1
vj D 2npk � 1.

Observe that any nonzero iterated Browder bracket with arguments in fu; vg must
involve u 2 H2n�2.�

2P2nC1.pr // since �.v; v/ D 0 (being the transgression of
the graded commutator of an even degree element with itself in the tensor algebra
H�.�P2nC1.pr //). Parts (a) and (b) now follow easily by inspection of monomials
of weight pk in homological degrees 2npk � 1 and 2npk � 2.

Remark 2.4 For k D 0, the span in Lemma 2.3(b) is 1–dimensional since ˇ.1/v
and ad0

�.v/.u/ coincide if r D 1, and ˇ.1/v D 0 if r > 1. Of course, in this case
Dpk .�2P2nC1.pr // D D1.�

2P2nC1.pr // is simply P2n�1.pr /. For all k � 1,
dim H2npk�2.Dpk .�2P2nC1.pr ///D 2.

In the pD2 case we will need to know the homology of D2.�
2P2nC1.2r // as a module

over the Steenrod algebra. The mod 2 homology generators of weight 2 differ somewhat
from those appearing in the list above for odd primes. First, since H�.�

2P2nC1.2r // is
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a polynomial algebra, we have the quadratic generator v2 in addition to u2 and uv. Sec-
ond, the Browder bracket �.u;u/ is trivial since this class represents the transgression of
the commutator Œu;u�Du2Cu2D 0 in the tensor algebra H�.�P2nC1.2r //DT .u; v/

over Z=2. On the other hand, since u2 2H4n�2.�P2nC1.2r // is primitive, this class
transgresses to a generator Q1u in H4n�3.�

2P2nC1.2r //, unlike in the odd primary
case.

It follows that D2.�
2P2nC1.2r // is a 6–cell complex with

H4n�1.D2.�
2P2nC1.2r ///D spanfQ1vg;

H4n�2.D2.�
2P2nC1.2r ///D spanfv2; �.u; v/g;

H4n�3.D2.�
2P2nC1.2r ///D spanfuv; Q1ug;

H4n�4.D2.�
2P2nC1.2r ///D spanfu2

g:

Lemma 2.5 The action of the Steenrod algebra on H�.D2.�
2P2nC1.2r /// is deter-

mined by

(a) Sq1
�Q1v D

�
v2C�.u; v/ if r D 1;

v2 if r > 1;

(b) Sq2
�Q1v D

�
Q1u if r D 1;

0 if r > 1;

(c) Sq2
�v

2 D Sq1
�uv D

�
u2 if r D 1;

0 if r > 1:

Proof By [6, III.3.10], ˇ.1/Q1xD x2C�.x; ˇ.1/x/ for x 2H�.�
2†2X IZ=2/ with

jxj odd. Part (a) follows since ˇ.1/v D u if r D 1, and ˇ.1/v D 0 if r > 1.

Part (b) follows from the Nishida relation Sq2
�Q1 DQ1Sq1

�.

For part (c), the Cartan formula and the fact that Sq1
� D ˇ

.1/ is a derivation on the
Pontryagin ring H�.�

2P2nC1.2r // imply that Sq2
�v

2 and Sq1
�uv are as claimed.

Since the Browder bracket satisfies the Cartan formula [6, III.1.2(7)]

Sqn
��.x;y/D

X
iCjDn

�.Sqi
�x;Sqj

�y/;

we have Sq2
��.u; v/ D Sq1

��.u; v/ D 0. The relations above therefore determine all
nontrivial Steenrod operations in H�.D2.�

2P2nC1.2r ///.
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3 Review of the work of Cohen, Moore and Neisendorfer

To prepare for the proofs of Theorems 1.1 and 1.2 in the next sections, we briefly
review some of the work of Cohen, Moore and Neisendorfer [8; 17] on torsion in the
homotopy groups of Moore spaces.

Recall that the mod pr homotopy groups of a space X are defined by

�n.X IZ=p
r /D ŒPn.pr /;X �:

Provided pr > 2, there are splittings [20, Proposition 6.2.2]

Pn.pr /^Pm.pr /' PnCm.pr /_PnCm�1.pr /

for n;m� 2 which allow for the definition of mod pr Samelson products

�n.�X IZ=pr /˝�m.�X IZ=pr /! �nCm.�X IZ=pr /:

Together with the Bockstein differential, this gives ��.�X IZ=pr / the structure of
a differential graded Lie algebra when p � 5 and r � 1, and a differential graded
quasi-Lie algebra when p D 3 and r � 2; see [17; 20]. The mod p Hurewicz map

h W ��.�X IZ=p/!H�.�X IZ=p/

intertwines mod p Samelson products with commutators in the Pontryagin ring and
commutes with Bockstein differentials, thereby inducing a morphism of spectral se-
quences from the mod p homotopy Bockstein spectral sequence .Es

�.�X /; ˇ.s// to
the mod p homology Bockstein spectral sequence .Es

H
.�X /; ˇ.s//.

Consider ��.�P2nC1.pr /IZ=p/. In degrees 2n and 2n� 1, denote the mod p reduc-
tion of the adjoint of the identity map and its r th Bockstein by

� W P2n.p/!�P2nC1.pr / and ˇ.r/� D � W P2n�1.p/!�P2nC1.pr /;

respectively. Then the Hurewicz images h.�/D v and h.�/D u generate

H2n.�P2nC1.pr /IZ=p/ and H2n�1.�P2nC1.pr /IZ=p/;

respectively, and by the Bott–Samelson theorem,

(1) H�.�P2nC1.pr /IZ=p/Š T .u; v/Š UL.u; v/;

where L.u; v/ is the free differential graded Lie algebra on two generators u and v
with differential ˇ.r/v D u.
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In any graded (quasi-)Lie algebra L (more generally, any graded module with an anti-
symmetric bracket operation), let ad.x/.y/D Œx;y� for x;y 2L. Define ad0.x/.y/Dy

and inductively define adk.x/.y/D ad.x/.adk�1.x/.y// for k � 1. To detect higher
torsion in ��.P2nC1.pr //, Cohen, Moore and Neisendorfer [8] consider the mod p

Samelson products

�k.�/D adpk�1.�/.�/;

�k.�/D
1

2p

pk�1X
jD1

�
pk

j

�
Œadj�1.�/.�/; adpk�j�1.�/.�/�

in ��.�P2nC1.pr /IZ=p/ and their mod p Hurewicz images �k.v/ and �k.v/ defined
similarly in terms of graded commutators. Since the tensor algebra (1) is acyclic with
respect to the differential ˇ.r/, the homology Bockstein spectral sequence collapses
at the .rC1/st page and no higher differentials in the homotopy Bockstein spectral
sequence can be detected by the Hurewicz map:

E1
H .�P2nC1.pr //D � � � DEr

H .�P2nC1.pr //D T .u; v/;

ErC1
H

.�P2nC1.pr //D 0:

In particular, �k.v/ 2H2npk�1.�P2nC1.pr // is killed by the differential

ˇ.r/vpk

D �k.v/

for all k � 0. To tease out higher torsion, Cohen, Moore and Neisendorfer instead
compute the homology Bockstein spectral sequence of the loops on the fibre F2nC1.pr /

of the pinch map q W P2nC1.pr /! S2nC1, where lifts

� 0k.�/; �
0
k.�/ 2 ��.�F2nC1.pr /IZ=p/

of �k.�/ and �k.�/, and their Hurewicz images � 0
k
.v/ and � 0

k
.v/, are shown to survive

to the .rC1/st page, at least when p is odd.

Theorem 3.1 [8, Theorem 10.3] Let p be an odd prime and r � 1. Then there is an
isomorphism of differential graded Hopf algebras

ErC1
H

.�F2nC1.pr //Šƒ.� 00.v/; �
0
1.v/; �

0
2.v/; : : : /˝Z=pŒ� 01.v/; �

0
2.v/; : : : �;

where j� 0
k
.v/j D 2npk � 1, j� 0

k
.v/j D 2npk � 2 and

ˇ.rC1/� 0k.v/D `�
0
k.v/; `¤ 0;

for k � 1.
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Since the homology classes � 0
k
.v/D h.� 0

k
.�// support nontrivial Bocksteins ˇ.rC1/ for

k � 1, the same is true of the mod p homotopy classes

� 0k.�/ 2 �2npk�1.�F2nC1.pr /IZ=p/:

It follows that there exist maps

(2) ı0k W P
2npk�1.prC1/!�F2nC1.pr /

for each k � 1 which satisfy .ı0
k
/�.v2npk�1/D �

0
k
.v/ in mod p homology and induce

split monomorphisms in integral homology.

To exhibit nontrivial classes in the image of ˇ.rC1/ in ErC1
� .�P2nC1.pr //, Cohen,

Moore and Neisendorfer show that the composition of ˇ.rC1/� 0
k
.�/ with

�F2nC1.pr /!�P2nC1.pr /

does not represent zero in ErC1
� .�P2nC1.pr //, thereby proving the following.

Theorem 3.2 [8; 17] Let p be an odd prime and r � 1. Then �2npk�1.P
2nC1.pr //

contains a Z=prC1 summand for every k � 1.

Remark 3.3 It follows from Theorem 3.2 and the loop space decomposition for
even-dimensional odd primary Moore spaces [8, Theorem 1.1],

(3) �P2nC2.pr /' S2nC1
fpr
g ��

� 1_
jD0

P4nC2njC3.pr /

�
;

that ��.Pn.pr // contains Z=prC1 summands for all n� 3 when p is odd.

4 Splittings of Dpk.�2P 2nC1.pr//

In this section we prove Theorem 1.1 in a series of lemmas and discuss the stable
homotopy type of �2P2nC1.pr /. We assume throughout that n> 1.

The higher torsion discussed in the previous section is not reflected in the homology
of the single loop space of a Moore space since H�.�Pn.pr // is acyclic with respect
to ˇ.r/. The next lemma shows that it becomes visible in homology after looping twice.

Lemma 4.1 Let p be an odd prime and r � 1. Then in the mod p homology Bockstein
spectral sequence of �2P2nC1.pr /,

ˇ.rC1/adpk�1

�
.v/.u/¤ 0
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in ErC1
H

.�2P2nC1.pr // for each k � 1. Moreover , there exist maps

ık W P
2npk�2.prC1/!�2P2nC1.pr /

for each k � 1 which satisfy .ık/�.v2npk�2/D adpk�1

�
.v/.u/ in mod p homology and

induce split monomorphisms in integral homology.

Proof Consider the composite

P2npk�1.prC1/
ı0

k
�!�F2nC1.pr /!�P2nC1.pr /;

where ı0
k

is the map from (2) and the second map is the fibre inclusion of the looped pinch
map�q W�P2nC1.pr /!�S2nC1. In mod p homology, .ı0

k
/�.v2npk�1/D �

0
k
.v/ and

.ı0
k
/�.u2npk�2/D `�

0
k
.v/ for `¤ 0 by Theorem 3.1 and naturality of the Bockstein.

Since these classes map to �k.v/; `�k.v/ 2H�.�P2nC1.pr //, the composite above
induces a monomorphism in mod p homology (with Bocksteins acting trivially on the
image).

Define ık WP2npk�2.prC1/!�2P2nC1.pr / to be the adjoint of the composite above.
Let ��

k
.v/ denote the iterated Browder bracket

��k .v/D adpk�1

�
.v/.u/ 2H2npk�2.�

2P2nC1.pr //;

which is the transgression of the iterated commutator

�k.v/D adpk�1.v/.u/ 2H2npk�1.�P2nC1.pr //:

It follows that .ık/�.v2npk�2/D �
�
k
.v/. Similarly, .ık/�.u2npk�3/D `�

�
k
.v/¤ 0,

where ��
k
.v/ denotes the transgression of �k.v/ 2H2npk�2.�P2nC1.pr //.

We now have a map ık W P2npk�2.prC1/!�2P2nC1.pr / inducing

v2npk�2

ˇ.rC1/

��

� // ��
k
.v/

u2npk�3
� // `��

k
.v/

in homology and it remains to show that ˇ.rC1/��
k
.v/ ¤ 0. It suffices by naturality

of ˇ.rC1/ to show that ��
k
.v/ does not represent zero in

ErC1
H

.�2P2nC1.pr //DH�.E
r
H .�

2P2nC1.pr //; ˇ.r//:

First note that ��
k
.v/ and ��

k
.v/ are ˇ.s/–cycles for s � r since v2npk�2 and u2npk�3

are. To see that they are not ˇ.s/–boundaries for any s � r , consider the Snaith splitting
of �2P2nC1.pr /. Since all Bocksteins must respect the induced splitting in homology
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and ��
k
.v/ and ��

k
.v/ lie in the homology of the stable summand Dpk .�2P2nC1.pr //,

it follows from Lemma 2.3 that for degree reasons the only class x which could
potentially satisfy ˇ.s/x D ��

k
.v/ is a linear combination of ˇ.1/Qk

1
v and ��

k
.v/. But

ˇ.s/ˇ.1/Qk
1
vD ˇ.s/��

k
.v/D 0 for all s � r . Therefore ��

k
.v/ and ��

k
.v/ represent non-

trivial classes in ErC1
H

.�2P2nC1.pr //, where the differential ˇ.rC1/��
k
.v/D `��

k
.v/

is forced.

As a partial 2–primary analogue of Lemma 4.1, we show that the class ad2k�1
� .v/.u/

supports a higher Bockstein when k D 1.

Lemma 4.2 Let p D 2 and r � 1. Then in the mod 2 homology Bockstein spectral
sequence of �2P2nC1.2r /,

ˇ.rC1/�.u; v/DQ1u

in ErC1
H

.�2P2nC1.2r //.

Proof We give a direct chain level calculation similar to the proof of [6, III.3.10].
Consider the †2–invariant map � W C2.2/�X �X !X given by the action of the little
2–cubes operad on X D�2P2nC1.2r /. Let ek and ˛ be as defined in [16, Section 6]
and let a and b be chains representing v and u, respectively, with d.a/D 2r b. Then

d..˛C 1/e1˝ a˝ b/D .˛2
� 1/e0˝ a˝ b� 2r .˛C 1/e1˝ b˝ b

D�2rC1e1˝ b˝ b:

Since �� commutes with d , it follows from the definitions of � and Q1 (cf [6; 16]) that
ˇ.s/�.u; v/D 0 for s � r and ˇ.rC1/�.u; v/DQ1u.

Let i W Sn�1! Pn.pr / denote the inclusion of the bottom cell and � W Sn! Sn�1 the
Hopf map.

Lemma 4.3 Let n� 4 and r � 1. Then:

(a) �n�1.P
n.pr //D Z=pr hii.

(b) �n.P
n.pr //D

�
Z=2hi�i if p D 2;

0 if p is odd:

Proof Both parts follow immediately from the sequence

�j .S
n�1/! �j .S

n�1/! �j .P
n.pr //! �j .S

n/! �j .S
n/

induced by the cofibration defining Pn.pr /, which is exact for j D n� 1; n by the
Blakers–Massey theorem. Note that the degree pr map on Sn�1 induces multiplication
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by pr on �n.S
n�1/D Z=2h�i since � is a suspension for n� 4 (whereas S2 2

�! S2

induces multiplication by 4 on �3.S
2/, implying �3.P

3.2//D Z=4, eg).

We are now ready to prove the splittings of Theorem 1.1, parts (a) and (b) of which are
restated below as Lemmas 4.4 and 4.5, respectively.

Lemma 4.4 If p is an odd prime and r � 1, then Dpk .�2P2nC1.pr // is stably
homotopy equivalent to

P2npk�2.prC1/_Xpk

for some finite CW–complex Xpk for all k � 1.

Proof Suppose p is an odd prime, r � 1 and let k � 1. By Lemma 4.1, the map

ık W P
2npk�2.prC1/!�2P2nC1.pr /

induces a monomorphism in mod p homology with

.ık/�.v2npk�2/D adpk�1

�
.v/.u/; .ık/�.u2npk�3/D ˇ

.rC1/adpk�1

�
.v/.u/:

Since these elements have weight pk in H�.�
2P2nC1.pr //, by stabilizing ık and

composing with the Snaith splitting, we obtain a stable map

P2npk�2.prC1/!Dpk .�2P2nC1.pr //

with the same image in homology.

It therefore suffices to produce a map fk W Dpk .�2P2nC1.pr //! P2npk�2.prC1/

with

(4) .fk/�.adpk�1

�
.v/.u//D v2npk�2:

By collapsing the .2npk�4/–skeleton of Dpk .�2P2nC1.pr // to a point, we are left
with a complex with cells only in dimensions 2npk � 3, 2npk � 2 and 2npk � 1 (by
Lemma 2.3) of the form

(5)
� d_

iD1

S2npk�3

�
[ e2npk�2

[ e2npk�2
[ e2npk�1;

where d D dim H2npk�3.Dpk .�2P2nC1.pr /// and the top three cells carry the ho-
mology classes Qk

1
v, ˇ.1/Qk

1
v and adpk�1

�
.v/.u/. Since

adpk�1

�
.v/.u/ 2H2npk�2.Dpk .�2P2nC1.pr ///

supports a nontrivial .rC1/st Bockstein by Lemma 4.1, we may assume (altering by
a self-homotopy equivalence if necessary) that the inclusion of one of the bottom cells
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in (5) has Hurewicz image ˇ.rC1/adpk�1

�
.v/.u/. Then by further collapsing a wedgeWd�1

iD1 S2npk�3 of the other bottom cells to a point, we obtain a 4–cell complex C

with mod p homology Bockstein spectral sequence given by

2npk � 1 Qk
1
v

ˇ.1/
��

2npk � 2 ˇ.1/Qk
1
v adpk�1

�
.v/.u/

ˇ.rC1/





2npk � 3 ˇ.rC1/adpk�1

�
.v/.u/

and a map Dpk .�2P2nC1.pr //! C inducing an epimorphism in homology.

It follows from the description of H�.C / above that

C ' P2npk�2.prC1/[˛ e2npk�2
[
 e2npk�1

for some attaching maps ˛ and 
 . Since ˇ.1/Qk
1
v 2 H2npk�2.C / does not sup-

port any differential in the Bockstein spectral sequence and every nonzero element
˛ 2 �2npk�3.P

2npk�2.prC1//D Z=prC1 is detected by a Bockstein, we conclude
that ˛ is trivial. Next we consider


 2 �2npk�2.P
2npk�2.prC1/_S2npk�2/

D �2npk�2.P
2npk�2.prC1//˚�2npk�2.S

2npk�2/:

By Lemma 4.3, �2npk�2.P
2npk�2.prC1// D 0 since p is odd, and since the top

homology class Qk
1
v 2H2npk�1.C / supports a nontrivial first Bockstein differential,

it follows that the second component of 
 is of degree ˙p. Therefore,

C ' P2npk�2.prC1/_P2npk�1.p/:

Finally, using this splitting we define the map fk by the composite

fk WDpk .�2P2nC1.pr //!C 'P2npk�2.prC1/_P2npk�1.p/
�1
�!P2npk�2.prC1/;

where the first map is the quotient map described in the previous paragraph and �1 is
the projection onto the first wedge summand. By construction, fk satisfies (4) so the
assertion follows.

Lemma 4.5 If r > 1, then there is a homotopy equivalence

D2.�
2P2nC1.2r //' P4n�2.2rC1/_X2

for some 4–cell complex X2 D P4n�3.2r /[CP4n�2.2/.
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Proof Let r>1 and note that the mod 2 homology generators u; v2H�.�
2P2nC1.2r //

in respective degrees 2n� 2, 2n� 1 give a basis for the homology of the first stable
summand D1.�

2P2nC1.2r // D P2n�1.2r / of �2P2nC1.2r /. Next, a basis for the
quadratic part of H�.�

2P2nC1.2r // is given by the classes

4n� 1 Q1v

ˇ.1/
��

4n� 2 v2 �.v;u/

ˇ.rC1/
��

4n� 3 uv

ˇ.r /
��

Q1u

4n� 4 u2

with Bockstein differentials acting as indicated by Lemmas 2.5 and 4.2 and the fact
that ˇ.r/v D u. It follows that D2.�

2P2nC1.2r // has the homotopy type of a 6–cell
complex

D2.�
2P2nC1.2r //' P4n�3.2r /[˛ e4n�3

[
 e4n�2
[ı e4n�2

[� e4n�1

with homology as above, where the bottom Moore space carries the homology classes
uv and u2. As in the proof of Lemma 4.4, the attaching map ˛ is null homotopic since
every nonzero element of �4n�4.P

4n�3.2r //D Z=2r is detected by a Bockstein and
Q1u supports no differential in the homology Bockstein spectral sequence. The next
attaching maps 
 and ı may therefore be regarded as elements of

�4n�3.P
4n�3.2r /_S4n�3/D Z=2˚Z;

where the first summand is generated by i� by Lemma 4.3. Naturality and the morphism
of cofibrations

S4n�3 �
// S4n�4 //

i

��

†4n�6CP2

��

S4n�3 i�
// P4n�3.2r / // Ci�

imply that i� is detected by Sq2
� since � is. Since Sq2

� acts trivially on

H�.D2.�
2P2nC1.2r ///

when r > 1 by Lemma 2.5, the first components of 
 and ı must therefore be triv-
ial. Without loss of generality, we may assume the second components of 
 and
ı are trivial and degree ˙2rC1, respectively, since we have a basis fv2; �.v;u/g of
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H4n�2.D2.�
2P2nC1.2r /// where v2 is a permanent cycle and �.v;u/ supports a

nontrivial ˇ.rC1/.

We now have a homotopy equivalence

D2.�
2P2nC1.2r //' .P4n�3.2r /_P4n�2.2rC1/_S4n�2/[� e4n�1;

where v2 2H4n�2.D2.�
2P2nC1.2r /// corresponds to the fundamental class of the

.4n�2/–sphere on the right. Denote the components of the attaching map � by

� D .�1; �2; �3/ 2 �4n�2.P
4n�3.2r //˚�4n�2.P

4n�2.2rC1//˚�4n�2.S
4n�2/:

It suffices to show that �2 and �3 are trivial and degree ˙2, respectively. Clearly the
first Bockstein ˇ.1/Q1v D v

2 on the top class of D2.�
2P2nC1.2r // implies �3 is of

degree ˙2. To see that �2 is trivial, collapse the bottom Moore space P4n�3.2r / to a
point and repeat the argument above analyzing the attaching map 
 .

To conclude the proof of Theorem 1.1, it remains to show that D2.�
2P2nC1.2// is a

stably indecomposable 6–cell complex. This follows immediately from homological
considerations: by Lemmas 2.5 and 4.2, H�.D2.�

2P2nC1.2/// clearly does not admit
any nontrivial decomposition respecting Steenrod and higher Bockstein operations.

5 Proof of Theorem 1.2

In this section we derive Theorem 1.2 from Theorem 1.1 and discuss some implications
for the unstable homotopy groups of odd primary Moore spaces.

Proof of Theorem 1.2 Suppose p is an odd prime and r � 1. Then for each k � 1, the
map ık WP2npk�2.prC1/!�2P2nC1.pr / from Lemma 4.1 admits a stable retraction
by Lemma 4.4. Taking adjoints in the resulting homotopy commutative diagram

†1P2npk�2.prC1/
†1ık

// †1�2P2nC1.pr /

��

†1P2npk�2.prC1/

yields the desired factorization of the unstable map

E1 W P2npk�2.prC1/!QP2npk�2.prC1/

through �2P2nC1.pr /.
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In order to similarly factor the stabilization map of a mod prC1 Moore space through
�2P2n.pr /, we reduce to the odd-dimensional case using the fact that �2P4n�1.pr /

is an unstable retract of �2P2n.pr / by the loop space decomposition (3). Explicitly,
there is a map

P .4n�2/pk�2.prC1/
ık
�!�2P4n�1.pr /!�2P2n.pr /

admitting a stable retraction, so the argument above implies that the stabilization map
of P .4n�2/pk�2.prC1/ factors through �2P2n.pr /.

Note that if p is prime and �j .P
2npk�2.prC1// is in the stable range such that the

map E1 W P2npk�2.prC1/! QP2npk�2.prC1/ is an isomorphism on �j . � /, then
Theorem 1.2 implies that �j .P

2npk�2.prC1// is a summand of �jC2.P
2nC1.pr //.

Since for any given j 2 Z we have �s
j .P

2npk�2.prC1//D �j .P
2npk�2.prC1// for

k sufficiently large, it follows that every stable homotopy group of a mod prC1 Moore
space is a summand of ��.P2nC1.pr //.

Rephrasing a little, we have the following consequence of Theorem 1.2. Let S=pr

denote the mod pr Moore spectrum; that is, the cofibre of S
pr

�! S where S is the
sphere spectrum.

Corollary 5.1 Let p be an odd prime and r � 1. Then for each j 2Z, �j .S=prC1/ is
a summand of �2npkCj�1.P

2nC1.pr // for every sufficiently large k.

Proof For each j 2 Z,

�j .S=p
rC1/D �s

jC2npk�3
.P2npk�2.prC1//D �jC2npk�3.P

2npk�2.prC1//

for all sufficiently large k. Therefore the first commutative diagram in Theorem 1.2
implies that �j .S=prC1/ retracts off

�jC2npk�3.�
2P2nC1.pr //D �jC2npk�1.P

2nC1.pr //:

Remark 5.2 The second commutative diagram in Theorem 1.2 implies that similar
results hold for the unstable homotopy groups of even-dimensional odd primary Moore
spaces.

6 v1–periodic families

In this section we construct new infinite families of higher torsion elements in the
unstable homotopy groups of Moore spaces using Theorem 1.2 and periodic self-maps

v1 W P
nCqr .pr /! Pn.pr /;
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as introduced by Adams [1] in his study of the image of the J–homomorphism. Here,

qr D

�
qpr�1 if p is odd;
max.8; 2r�1/ if p D 2;

where q D 2.p � 1/ and v1 induces an isomorphism in K–theory. Such maps exist
unstably provided n� 2r C3 by [12] and desuspend further to P3.p/ in case p is odd
and r D 1 by [10].

Restricting each iterate vt
1
D v1 ı†

qr v1 ı � � � ı†
tqr v1 of v1 to the bottom cell gives an

infinite family of maps

SnCtqr�1
! PnCtqr .pr /

vt
1
�! Pn.pr /

which generate Z=pr summands in �nCtqr�1.P
n.pr // for t � 0, and composing with

the pinch map q W Pn.pr /! Sn gives rise to the first studied infinite families in the
stable homotopy groups of spheres. For example, if p is odd, these composites form
the ˛–family and generate the p–component of the image of J in �tqr�1.S/; see [11,
Proposition 1.1]. To generate Z=prC1 summands in ��.Pn.pr // when p is odd, we
apply the same procedure to mod prC1 Moore spaces and compose into Pn.pr / along
the maps in the diagrams of Theorem 1.2.

When p D 2, analogous unstable maps ı1 W P4n�2.2rC1/!�2P2nC1.2r / realizing
the stable splittings of Theorem 1.1 only exist when nD 2 or 4, as we show below. In
the nD 2 case, no Adams self-map of the mod 2rC1 Moore spectrum desuspends far
enough to precompose ı1 with. Instead, we show that an infinite family of elements of
order 8 in the homotopy groups of spheres constructed in [15] factors through P6.8/

and injects along ı1 W P6.8/!�2P5.4/; see Theorem 6.6 below.

6.1 The odd primary case

Let n> 1. As usual, for an odd prime p we let q D 2.p� 1/. The following is a more
precise statement of Theorem 1.3.

Theorem 6.1 Let p be an odd prime and r � 1.

(a) If k � logp..r C 4/=n/, then �2npk�1Ctqpr .P2nC1.pr // contains a Z=prC1

summand for every t � 0.

(b) If k � logp..r C 3/=.2n � 1//, then �.4n�2/pk�1Ctqpr .P2n.pr // contains a
Z=prC1 summand for every t � 0.
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Proof By Theorem 1.2, E1 W P2npk�2.prC1/ ! QP2npk�2.prC1/ factors as a
composite

P2npk�2.prC1/
ık
�!�2P2nC1.pr /!QP2npk�2.prC1/:

Note, the restriction of ık to the bottom cell defines an element of �2npk�1.P
2nC1.pr //

of order prC1. The bound on k ensures that 2npk � 2� 2.r C 1/C 4, which implies
that an unstable representative v1 W P

2npk�2Cqpr

.prC1/! P2npk�2.prC1/ of the
Adams map exists by [12, Proposition 2.11]. That the restriction of any iterate vt

1
to

the bottom cell has order prC1 follows from the fact that vt
1

induces an isomorphism
in K–theory. Therefore the composite

S2npk�3Ctqpr

! P2npk�2Ctqpr

.prC1/
vt

1
�! P2npk�2.prC1/

ık
�!�2P2nC1.pr /

also has order prC1 for all t � 0 since composing further into QP2npk�2.prC1/ gives
the adjoint of the restriction of †1vt

1
to the bottom cell. Part (b) is proved similarly.

Remark 6.2 The proof above shows that each ık generates an infinite v1–periodic
family in ��.P2nC1.pr /IZ=prC1/ giving rise to an infinite family of higher torsion
elements in ��.P2nC1.pr //. We point out that in the loop space decomposition [9]

�P2nC1.pr /' T 2nC1
fpr
g ��

�_
˛

Pn˛ .pr /

�
;

each of these elements lands in the homotopy of the bottom indecomposable factor
T 2nC1fpr g, and many more infinite families than are indicated here can be obtained by
applying the Hilton–Milnor theorem to the second factor and iterating our construction
above.

6.2 The 2–primary case

We consider next the problem of desuspending the inclusion of the stable summand
P4n�2.2rC1/ of �2P2nC1.2r / given by Theorem 1.1(b) and mimicking the construc-
tion above of unstable v1–periodic families of higher odd primary torsion elements.

Note that a homotopy commutative diagram

(6)

P4n�2.2rC1/ //

E1 ((

�2P2nC1.2r /

��

QP4n�2.2rC1/
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cannot exist unless r >1 since D2.�
2P2nC1.2// is stably indecomposable by Theorem

1.1(c). Furthermore, such a factorization implies Q1u 2 H4n�3.�
2P2nC1.2r // is

spherical since only this class lies in the image of the .rC1/st Bockstein in degree
4n�3. For r D 1, it follows from the proposition below that this class is spherical only
in Kervaire invariant dimensions.

Proposition 6.3 [23, Proposition 2.21] The class u2 2H4n�2.�P2nC1.2// is spher-
ical if and only if the Whitehead square w2n�1 2 �4n�3.S

2n�1/ is divisible by 2.

For r > 1, the same argument leads to the following.

Proposition 6.4 Let r > 1. The following conditions are equivalent :

(a) Q1u 2H4n�3.�
2P2nC1.2r // is spherical ;

(b) u2 2H4n�2.�P2nC1.2r // is spherical ;

(c) nD 1, 2 or 4.

Proof If a map f WS4n�3!�2P2nC1.2r / has mod 2 reduced Hurewicz image Q1u,
then the adjoint of f factors as

f 0 W S4n�2 †f
�!†�2P2nC1.2r / �

�!�P2nC1.2r /;

where � induces the homology suspension

�� WH�.�
2P2nC1.2r //!H�C1.�P2nC1.2r //:

Thus ��.Q1u/D u2 is the Hurewicz image of f 0.

Conversely, given g0 W S4n�2!�P2nC1.2r / with g0�.�4n�2/D u2, the adjoint of g0

factors as
g W S4n�3 E

�!�S4n�2 �g0
��!�2P2nC1.2r /:

Consider the morphism of path-loop fibrations induced by g0. Since u2 transgresses
to Q1u in the Serre spectral sequence associated to the path-loop fibration over
�P2nC1.2r /, it follows by naturality that g�.�4n�3/DQ1u. Therefore conditions (a)
and (b) are equivalent.

If n D 1, 2 or 4, then the adjoint of the Hopf invariant one map S4n�1 ! S2n has
Hurewicz image �2

2n�1
2H4n�2.�S2n/, so the composite

S4n�2
!�S2n �i

�!�P2nC1.2r /

has Hurewicz image u2.
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Conversely, if u2 2H4n�2.�P2nC1.2r // is spherical, then the proof given in [23] of
Proposition 6.3 above shows that i ıw2n�1 is null homotopic in the diagram

�P2n.2r / // E
f
// S2n�1 i

// P2n.2r /

S4n�3

w2n�1

OO

`

bb

where the top row is a fibration sequence. By [5, Lemma 21.1],

Œu; v� 2H4n�3.�P2n.2r //

is spherical and so is its image in H4n�3.E/. As in [23], it follows that the .4n�3/–
skeleton of E is homotopy equivalent to S2n�1_S4n�3 and f jS4n�3 is null homotopic.
Therefore a lift ` may be chosen to factor through f jS2n�1 , which is of degree 2r .
Since the degree 2 map induces multiplication by 2 on �4n�3.S

2n�1/ by Barratt’s
distributivity formula [5, Proposition 4.3], the Whitehead square w2n�1 is divisible
by 2r , which implies n 2 f1; 2; 4g since r > 1.

By Proposition 6.4, diagrams of the form (6) inducing the stable splittings of Theorem
1.1(b) (where n> 1 is assumed) cannot exist if n¤ 2 or 4. We verify that such diagrams
do exist in these two exceptional dimensions.

Theorem 6.5 Let r > 1. Then there exist homotopy commutative diagrams

P6.2rC1/ //

E1 &&

�2P5.2r /

��

QP6.2rC1/

P14.2rC1/ //

E1 ''

�2P9.2r /

��

QP14.2rC1/

Proof Let n D 2 or 4 and let f W S4n�3 ! �2P2nC1.2r / be a map with mod 2

reduced Hurewicz image Q1u. Then by Lemma 4.2, the integral Hurewicz image of f
is a generator of H4n�3.�

2P2nC1.2r /IZ/Š Z=2rC1, so f has order at least 2rC1.
That f has order at most 2rC1 follows from [5, Proposition 13.3], so f extends to a
map Nf W P4n�2.2rC1/!�2P2nC1.2r / with ˇ.rC1/ Nf�.v4n�2/DQ1u. Since r > 1,
the Snaith splitting and Theorem 1.1(b) give a composite

�2P2nC1.2r /!QD2.�
2P2nC1.2r //!QP4n�2.2rC1/;

which is an epimorphism on H4n�2. � / and H4n�3. � /. It follows that the composition
of Nf with the composite above is .4n�2/–connected and hence homotopic to the
stabilization map E1 W P4n�2.2rC1/!QP4n�2.2rC1/ up to a self-equivalence.
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Theorem 6.6 Let r D 2 or 3. Then

(a) �3C8t .P
5.4// contains a Z=8 summand for every t � 1;

(b) �7C8t .P
9.2r // contains a Z=2rC1 summand for every t � 1.

Proof We begin with part (b). Consider the second diagram in Theorem 6.5 and let
r D 2 or 3. Then for stability reasons, an unstable Adams map

v1 W P
nC8.2rC1/! Pn.2rC1/

exists for nD 14. As in the odd primary case, restricting any iterate

vt�1
1 W P6C8t .2rC1/! P14.2rC1/

to the bottom cell yields a homotopy class of order 2rC1 and stable order 2rC1. The
resulting composition with the map P14.2rC1/! �2P9.2r / therefore generates a
Z=2rC1 summand in �5C8t .�

2P9.2r //D �7C8t .P
9.2r // by Theorem 6.5.

For part (a), we use the fact that an unstable Adams map v1 W P
nC8.8/! Pn.8/ exists

for n� 9 with the property that the composite

Nt W S
8t i
�! P1C8t .8/

vt�1
1
��! P9.8/ �

]

�! S5

has order 8 in �8t .S
5/ for all t � 1 by [15, Theorem E]. Here �] denotes an extension

of � W S8! S5. Suspending once, an extension �] W P10.8/! S6 of � W S9! S6 can
be chosen to factor through the pinch map q W P6.8/! S6 (we postpone a proof of
this claim to Lemma 6.7 below). Combining this with the first diagram in Theorem 6.5,
we obtain a homotopy commutative diagram

P2C8t .8/
vt�1

1
// P10.8/ // P6.8/ //

E1 $$

q

��

�2P5.4/

��

S1C8t

i

OO

†Nt
// S6

E1 $$

QP6.8/

Qq
��

QS6

The composite E1 ı†Nt is adjoint to †1Nt 2 �8t�5.S/ and therefore has order
8 since the proof of [15, Theorem E] shows Nt has real e–invariant b=8 where b is
odd. Hence the composite S1C8t !�2P5.4/ has order at least 8. Since 8i D 0, the
theorem follows.
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It remains to prove the following factorization of � 2 �9.S
6/ used in the proof above.

Lemma 6.7 There is a homotopy commutative diagram

P10.8/ // P6.8/

q
��

S9

i

OO

�
// S6

Proof Since 8 ı � D � ı 8 D 0 in �9.S
6/, � lifts to the fibre S6f8g of the degree 8

map, and since sk9.S
6f8g/'P6.8/, it follows that � factors as S9 `

�!P6.8/
q
�! S6.

It suffices to show that ` has order 8. The fibre F of the pinch map q has the homotopy
type of a CW–complex S5[ e10[ e15[ � � � where the first attaching map is 8w5 D 0

by [13, Corollary 5.8]. It follows that �9.F /D Z=2. The short exact sequence

0D �10.S
6/! �9.F /! �9.P

6.8//
q�
�! �9.S

6/ 0
�! �8.F /

therefore implies �9.P
6.8//D Z=2˚Z=8. In particular, ` has order 8.
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