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An algorithmic definition of Gabai width

RICKY LEE

We define the Wirtinger width of a knot and prove that this equals its Gabai width.
This leads to an efficient technique for establishing upper bounds on Gabai width.
We demonstrate an application of this technique by calculating the Gabai width of
54 756 tabulated prime 4–bridge knots. This is done by writing code for a special
category of prime 4–bridge tabulated knots to get upper bounds on Gabai width
via the Wirtinger width, then comparing with the theoretical lower bound on Gabai
width for prime 4–bridge knots. We also provide results showing the advantages our
methods have over the obvious method of obtaining upper bounds on Gabai width
via planar projections.

57M25, 57M27

1 Introduction

Gabai width is a geometric invariant of knots that was first used by Gabai in his proof
of the property R conjecture [6]. Since then, the notion of Gabai width has played
central roles in many important results in 3–manifold topology. Some examples are the
resolution of the knot complement problem by Gordon and Luecke [8], the recognition
problem for S3 by Thompson [12], and the leveling of unknotting tunnels by Goda,
Scharlemann and Thompson [7]. The importance of Gabai width is largely due to its
deep connections with the topology of the knot exterior. For example, Gabai width can
often be used to find incompressible surfaces; see Thompson [13] and Wu [15].

The bridge number of a knot is a closely related geometric invariant, defined as the
minimal number of local maxima needed to construct an embedding of the knot.
Roughly speaking, Gabai width depends on the number of critical points of a projection
as well as their relative heights. Like most geometric invariants, both bridge number
and Gabai width are notoriously difficult to calculate. However, there has been recent
progress on finding algorithmically accessible definitions of bridge number. Blair,
Kjuchukova, Velazquez and Villanueva [4] defined the Wirtinger number of a link and
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showed that it is equal to the bridge number. The Wirtinger number is calculated using
a combinatorial coloring algorithm applied to a link diagram. Using ideas inspired by
the Wirtinger number, we define the Wirtinger width of a knot and show it is equal to
the Gabai width of a knot.

We now briefly summarize our procedure. The formal definition of Wirtinger width is
given in Section 3. The Wirtinger width is also computed by coloring knot diagrams.
Let D be a knot diagram. View D as the image of the knot K �R3 under the standard
projection onto the xy–plane. Our goal, given the diagram D, is to obtain a knot K 0

in the same ambient isotopy class of K, but embedded so that K 0 realizes the Gabai
width. Our coloring procedure allows us to obtain a knot yK from D such that yK is
ambient isotopic to K, and the relative heights of the critical points of yK are controlled
by combinatorial data attached to our coloring.

The coloring proceeds as follows. Suppose the knot diagram D has J strands. Then
there are J C 1 stages in the procedure. The knot diagram D begins uncolored at
stage 0. To transition from one stage to the next, one can either add a new color to an
uncolored strand, or extend an existing color to include another uncolored strand. The
procedure terminates once all strands of D are colored.

In general, there are many different ways to color a knot diagram. Not all colorings
will give data which corresponds to a thin position embedding of the knot. We assign a
natural number to each coloring of a knot diagram, then let the Wirtinger width of the
diagram D, denoted by W .D/, be the minimum of these numbers over all colorings
of D. Finally, for any ambient isotopy class of knots K, we define the Wirtinger width
of K, denoted by W .K/, to be the minimum of W .D/ over all diagrams of knots in
the ambient isotopy class K. Letting w.K/ be the Gabai width of K, we can state our
main theorem as follows:

Theorem 1.1 If K is an ambient isotopy class of knots , then W .K/D w.K/.

The coloring can be viewed as an attempt to discretize the following process. Suppose
now K � R3 is a knot in thin position with respect to the standard height function
h.x; y; z/ WD z. Let h�1.r/ be a level surface above K. The Gabai width of K is
calculated by analyzing the intersection setK\h�1.r/ as r!�1 and h�1.r/ sweeps
across the maxima and minima of K. The addition of a new color to D represents
h�1.r/ sweeping across a maximum of K. The occurrence of a multicolored crossing
(crossings where the over-strand is colored and both under-strands are assigned different
colors) represents h�1.r/ sweeping across a minimum of K. The order in which new
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colors and multicolored crossings appear in our coloring procedure dictates the ordering
of the maxima and minima of yK by height.

There is an easy method of obtaining upper bounds on Gabai width. One can take a
knot diagram, perform some planar isotopies if necessary, and use the original Gabai
definition of width to obtain an upper bound in the obvious way. While our coloring
procedure is less straightforward, it is more computationally accessible and enjoys the
following advantage over any potential algorithm written to calculate upper bounds on
Gabai width utilizing only planar isotopies on a knot diagram. Let wp.D/ denote the
planar width of a knot diagram D. A formal definition of planar width will be given
in Section 2, but, roughly speaking, wp.D/ is the upper bound on width one would
get by applying the original Gabai definition to calculate width on D, after minimizing
over all planar isotopies of D. We will prove:

Theorem 1.2 For any ambient isotopy class K of knots and any positive integer n,
there exist infinitely many diagrams D of knots in K such that W .D/ D w.K/ but
wp.D/�W .D/Cn.

Colloquially, Theorem 1.2 states that, if a planar isotopy algorithm were to be im-
plemented, there would still be an infinite number of cases where Wirtinger width
performs better.

Since there are many different ways to completely color a knot diagram, the problem of
finding a coloring which corresponds to a calculation of Gabai width is subtle. However,
one can modify the Wirtinger number algorithm of Villanueva [14] to exhaust all
possible colorings of a given diagram. This is possible because the rules for extending a
coloring in the Wirtinger width procedure are the same as those for extending a coloring
in the Wirtinger number procedure. We illustrate these ideas in Section 8, where we
describe an algorithm that we implemented in Python [10] and used to calculate the
Gabai width of 54 756 prime 4–bridge knots.

Our algorithm runs fast in practice, but depends on knowing beforehand that the inputted
Gauss codes are of prime knots with bridge number 4 and such that the code from [14]
can actually detect bridge number 4. The algorithm takes as input such a Gauss code,
and outputs upper bounds on Wirtinger width. By Theorem 1.1, this gives upper bounds
on Gabai width. It is known, and explained in Section 8, that the Gabai width of a
prime 4–bridge knot must be 32 or 28. Of 86 981 knots tested, our code gave an upper
bound of 28 on Wirtinger width for 54 756 knots. Since our upper bound equals the
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theoretical lower bound on Gabai width for such prime 4–bridge knots, this means we
got the exact Gabai width in this case.

Structure of the paper In Section 2, we give preliminary definitions. In Section 3,
we give the formal definition of Wirtinger width via a coloring procedure similar to the
coloring algorithm of Wirtinger number in [4]. Section 4 contains results showing how
Wirtinger number is related to Wirtinger width. In Section 5, we describe a specific
coloring sequence, which, when performed on a projection of a knot in thin position,
shows that W .K/ � w.K/. In Section 6, we show how to use our coloring data to
obtain Morse embeddings of knots from a colored knot diagram. This is used to show
W .K/ � w.K/. In Section 7, we use the results of the previous sections to prove
Theorems 1.1 and 1.2. Many technical lemmas and results from Sections 4, 5 and 6 do
not apply to diagrams of the unknot, so Section 7 handles this special case separately.
In Section 8, we explain how we used Wirtinger width to write an algorithm in Python
that obtained our numerical results, and present some open questions.

Acknowledgments The author would like to thank Ryan Blair for introducing this
topic and for many helpful discussions, especially about Theorem 1.2. We also thank
the referee for a close reading of our initial drafts, leading to many corrections and a
great improvement to our exposition.

2 Preliminaries

Let K denote an ambient isotopy class of knots in R3. As stated in the introduction, let
h W R3! R defined by h.x; y; z/ WD z be the standard height function. Let K � R3

denote a knot in the ambient isotopy class K. We will always assume that the embedding
of K is such that hjK is a Morse function.

Let p W R3! R2 defined by p.x; y; z/ WD .y; z/ be the projection map onto the yz–
plane. We will always assume K is embedded so that pjK is a regular projection. Then
p.K/ is a finite four-valent graph in the yz–plane. We say that D is a knot diagram of
K resulting from the projection p if D is the graph p.K/ together with labels at each
vertex to indicate which edges are over and which are under. By convention, these
labels take the form of deleting parts of the under-arc at every crossing. Thus, we
can view D as a disjoint union of closed arcs in the plane. Let ˛1; : : : ; ˛J denote the
connected components of D. For each ˛i , we let si denote the union of all edges in
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Figure 1: The unique knot diagram containing a strand adjacent to itself.

p.K/ whose interiors have nonempty intersection with ˛i . We refer to each si as a
strand and let s.D/ denote the set of strands of D. We refer to the vertices of p.K/ as
crossings and denote the set of vertices by v.D/.

If s 2 s.D/, then the two endpoints of s will be referred to as the crossings incident
to s. If sp and sq are the under-strands of the same crossing x 2 v.D/, then we say sp
and sq are adjacent at x, or just adjacent. We say the subset A� s.D/ is connected if
there exists a reordering of the strands si1

; si2
; : : : ; sijAj in A such that sij is adjacent to

sijC1
for all 1� j � jAj. Note that there is a unique knot diagram up to planar isotopy

for which there exists a strand adjacent to itself (see Figure 1). In all cases considered,
we assume that adjacent strands are distinct. We say a knot diagram is trivial if it is a
diagram of the unknot.

For s 2 s.D/, we define h.s/ WD maxy2s h.y/ and refer to h.s/ as the height of the
strand s. For a crossing x 2 v.D/, we refer to h.x/ as the height of the crossing x.

Note we do not consider the labels of the knot diagram when we calculate the height
of a strand. It is therefore possible that a strand and a crossing have equal heights. In
fact, if a strand is monotonic with respect to h, then it must have height equal to one of
its incident crossings.

By critical points ofD we will always be referring to images of the critical points of hjK
under the projection p. We say that D is in general position with respect to h if all the
critical points and crossings of D have distinct heights with respect to h, hjK is Morse,
and p.K/ is a regular projection. Observe that, if the knot diagram D is in general
position with respect to h, then all the strands must have different heights. See Figure 2.

s

x

Figure 2: The strand s and the incident crossing x have equal heights (h.s/D h.x/).
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Now we recall the definition of bridge number. We let ˇ.K/ denote the number of
maxima of hjK . Then the bridge number ˇ.K/ is defined as minK02K ˇ.K/, where the
minimum is taken over all Morse embeddings of knots in the equivalence class K.

We now recall the definition of Gabai width. Order the critical values of hjK by
c1 > � � � > cN . Let ri 2 .ciC1; ci / denote arbitrarily chosen regular values of hjK
for 1 � i � N � 1. For any y 2 R, define w.y/ WD jK \ h�1.y/j. Define w.K/ WDPN�1

iD1 w.ri /. The Gabai width of K is defined as minK02Kw.K
0/, where the minimum

is taken over all Morse embeddings of knots in the equivalence class K. If K 0 is such
that w.K 0/D w.K/, then we say K 0 is in thin position.

Finally, we give our formal definition of planar width. For any knot diagram D in the
yz–plane that is in general position with respect to h, let KD � R3 be any knot in
the ambient isotopy class K such that p.KD/DD. We define the planar width of D,
denoted by wp.D/, as

wp.D/ WDminw.KD/;

where the minimum is taken over all planar isotopies of D.

3 The coloring rules

In this section, we define Wirtinger width via a combinatorial method for coloring knot
diagrams. Let D be a knot diagram. Let s.D/D fs1; : : : ; sJ g denote the set of strands
of D.

Definition 3.1 A partial coloring is a tuple .A; f /, where A is a subset of s.D/ and
f W A!Z is a function with Z � Z.

Remark Set A0 WD∅, Z0 WD∅, and let f0 be the empty function. Then .A0; f0/ is
a partial coloring. We fix .A0; f0/ to denote this vacuous partial coloring.

We define two rules for extending partial colorings. Let .At�1; ft�1/ denote a partial
coloring, where t 2N and f W At�1!Zt�1. See Figure 3 for examples of each rule.

Seed addition We say the partial coloring .At ; ft / is the result of a seed addition to
.At�1; ft�1/, denoted by .At�1; ft�1/! .At ; ft /, if:

� At�1 � At and At nAt�1 D fsig for some strand si 2 s.D/ nAt�1.

� Zt WDZt�1[ftg.

� ft W At !Zt is defined by ft jAt�1
D ft�1 and ft .si / WD t .

Algebraic & Geometric Topology, Volume 23 (2023)



An algorithmic definition of Gabai width 2421

Figure 3: The first two transitions depict seed additions, the first adding
the color red the second adding the color blue. The last transition depicts a
coloring move extending the color red.

Coloring move We say .At ; ft / is the result of a coloring move on .At�1; ft�1/,
denoted by .At�1; ft�1/! .At ; ft /, if:

� At�1 � At and At nAt�1 D fsqg for some strand sq 2 s.D/ nAt�1.

� sq is adjacent to sp at some crossing x 2 v.D/ and sp 2 At�1.

� The over-strand sv of x is an element of At�1.

� Zt WDZt�1.

� ft W At !Zt is defined by ft jAt�1
WD ft�1 and ft .sq/ WD ft�1.sp/.

There are two ways we refer to a coloring move. We say that sq inherits its color
from sp, or that the coloring move was performed over the crossing x.

Remark We can always perform a seed addition to any uncolored strand. This allows
us to use seed additions to extend the vacuous partial coloring .A0; f0/.

Definition 3.2 If .A0; f0/! � � �! .At ; ft / is a sequence of coloring moves and seed
additions on D, then we say the sequence is a partial coloring sequence. If we have a
partial coloring sequence .A0; f0/! � � � ! .AJ ; fJ / such that s.D/D AJ , then we
say the sequence is a completed coloring sequence. If t is an index of a partial coloring
.At ; ft / in a specified coloring sequence, then we will refer to t as a stage.

Note that we can define a completed coloring sequence for any knot diagram since we
can perform a seed addition to any strand.

Algebraic & Geometric Topology, Volume 23 (2023)



2422 Ricky Lee

Definition 3.3 If .At ; ft / is the result of a seed addition to .At�1; ft�1/ with fsig D
At nAt�1, then we call si a seed strand.

Definition 3.4 Let .A0; f0/! � � � ! .AJ ; fJ / be a completed coloring sequence
on the knot diagram D. Let x 2 v.D/. Denote the over-strand of x by sv and the
under-strands of x by sp and sq . If there exists a stage t such that sp; sq; sv 2 At and
ft .sp/¤ ft .sq/, then we say x is a multicolored crossing. The smallest stage at which
all previously stated conditions are satisfied will be referred to as the stage at which
the crossing x becomes multicolored.

Completed coloring sequences allow us to extract geometric information from knot
diagrams. To do this, we first record the order in which strands become colored, and
crossings become multicolored.

Definition 3.5 Let .A0; f0/! � � � ! .AJ ; fJ / be a completed coloring sequence
with multicolored crossing set C. Let Ct denote the set of crossings that become
multicolored at stage t . A �–ordering is an enumeration of the elements in s.D/[ C,
� WD .di /

js.D/jCjCj
iD1 , satisfying the following conditions:

(1) For all 0� t < u� J, all elements colored (or multicolored) at stage t are listed
before any element colored (or multicolored) at stage u.

(2) For each stage 0 � t � J, the element in At nAt�1 is listed, followed by all
elements in Ct (if Ct ¤∅). That is, if at stage t a strand receives its color and a
subset of crossings become multicolored, then we list the strand first, followed
by all crossings that become multicolored at stage t .

Later, we use �–orderings to reconstruct an embedding of our knot in R3 from a
colored knot diagram. Each seed strand will induce a single maximum and each
multicolored crossing will induce a single minimum in our reconstructed embedding.
The ordering of the critical points, by decreasing height with respect to h, is reflected
in our �–ordering. We now show how to elevate this relationship into a calculation of
Gabai width.

Definition 3.6 Let .A0; f0/!� � �! .AJ ; fJ / be a completed coloring sequence. Let
S� s.D/, C� v.D/ and� be the seed strands, multicolored crossings and�–ordering,
respectively, of our completed coloring sequence. Let �0 WD .dij /

jSjCjCj
jD1 denote the

subsequence of � formed by restricting our �–ordering to the set S [ C. We define
the attached sequence .ai /

j�0j
iD0 to be the sequence created via the following rule:
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� Set a0 WD 0.

� If dij 2�
0 is a seed strand, then set aj WD aj�1C 2.

� If dij 2�
0 is a multicolored crossing, then set aj WD aj�1� 2.

If the first t stages of the completed coloring involve jS j total seed additions, and
jC j total crossings become multicolored by stage t , then we say the partial coloring
sequence .A0; f0/! � � � ! .At ; ft / induces the first jS jC jC j terms of the attached
sequence .ai /

j�0j
iD0.

Definition 3.7 Define W .D/ WD min
PN

iD0 ai , where the minimum is taken over
all possible completed coloring sequences defined for the diagram D. Let W .K/ WD
min W .D/, where the minimum is taken over all possible knot diagrams of knots in
the isotopy class K. We define W .K/ to be the Wirtinger width of K.

Remark The �–ordering resulting from a completed coloring sequence need not be
unique. For example, if at some stage in a coloring sequence the strand s becomes
colored and the crossings xi and xj both become multicolored, then both

�1 WD f : : : ; s; xi ; xj ; : : : g and �2 WD f : : : ; s; xj ; xi ; : : : g

are�–orderings resulting from the same coloring. In the ultimate calculation of W .D/,
such nuances do not matter as both�1 and�2 would induce the same attached sequence
.ai /

�0

iD0. This is because, in each possible �–ordering, the crossings that become
multicolored at the same stage must always be listed consecutively by the second
condition in Definition 3.5.

In order to prove statements about Wirtinger width, one often needs to specify a
�–ordering to work with. The following definition allows us to do this:

Definition 3.8 Let �D fdig
js.D/jCjCj
iD1 be a �–ordering resulting from a completed

coloring sequence on the knot diagram D. We define the height function ho W�! Z

associated to � by ho.dt / WD �t .

The function ho retrieves the negative of the position of dt in the �–ordering. We
introduce a negative sign to allow us to focus on maxima instead of minima in later
constructions. The main use of ho in later proofs will be to compare the relative
positions of strands and multicolored crossings in a �–ordering. If di and dj represent
strands of a knot diagram, then the inequality ho.di / > ho.dj / should be interpreted
as “di is colored before dj ”.

Algebraic & Geometric Topology, Volume 23 (2023)



2424 Ricky Lee

Remark The name Wirtinger width comes from the fact, proved in [4], that the
minimum number of seed additions necessary to obtain a completed coloring sequence
on the knot diagram D is equal to the minimum number of meridional generators
needed in a Wirtinger presentation of the knot group from a diagram.

4 Connections to the Wirtinger number

In this section, we prove some preliminary results that will be needed for our proof of
Theorem 1.1. These results are the Wirtinger width analogues of [4, Proposition 2.2].
Let s.D/D fs1; : : : ; sJ g denote the strands of the knot diagram D.

Definition 4.1 Let A WD fs1; : : : ; sng be a connected subset of s.D/, ordered by
adjacency. Let g W A! Z. We say g has a local maximum at sj if n > 1 and

g.sj / >

8<:
maxfg.sj�1/; g.sjC1/g if 1 < j < n;
g.s2/ if j D 1;
g.sn�1/ if j D n:

If nD 1, then g has a maximum at s1.

The following is an equivalent reformulation of being k–meridionally colorable, and
the main theorem, from [4]:

Definition 4.2 D is k–meridionally colorable if there exists a completed coloring
sequence .A0; f0/! � � � ! .AJ ; fJ / containing only k seed additions.

Theorem 4.3 Let �.K/ denote the minimal k such that there exists a knot diagram D

of a knot in the ambient isotopy class K which is k–meridionally colorable. Recall
ˇ.K/ denotes the bridge number of K. Then �.K/D ˇ.K/.

Proposition 4.4 Let .A0; f0/! � � � ! .AJ ; fJ / be a completed coloring sequence
on a knot diagram D. Let � WD .di /

M
iD1 be a �–ordering on s.D/ [ C induced by

the completed coloring sequence on D. Let ho W�! Z be the height function on �
defined by ho.dt / WD �t . Let x 2 v.D/ be a crossing with under-strands sp and sq and
over-strand sv. Let sp and sr be the strands adjacent to sq .

(1) For all u 2 f0; 1; : : : ; J g and y 2 fu.Au/, f �1
u .y/ is connected.

(2) For all y 2 fJ .AJ /, ho has a unique local maximum on f �1
J .y/ when the set

f �1
J .y/ is ordered sequentially by adjacency. The local maximum is the unique

seed strand contained in f �1
J .y/.
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(3) Suppose nowD is a nontrivial knot diagram and fJ .sp/D fJ .sq/D fJ .sr/D y.
If k is such that fsqg D Ak nAk�1, then we cannot have fsp; srg � Ak�1.

(4) If D is a nontrivial knot diagram and x … C, then ho.sv/ >minfho.sp/; ho.sq/g.

(5) If D is any knot diagram and x 2 C, then ho.x/ <minfho.sp/; ho.sq/; ho.sv/g.

Proof (1) This result is a reformulation of [4, Proposition 2.2(1)] in our notation.
We induct on the stage u. Recall A0 D∅ and f0 is the empty function, so the claim is
vacuously true for f0.

Suppose for induction that f �1
u .y/ is connected for all u < t and y 2 fu.Au/. We

will show that f �1
t .y/ is connected for all y 2 ft .At /. Say fsig D At nAt�1 and

ft .si /D r . We consider two cases.

First suppose .At ; ft / is the result of a seed addition to .At�1; ft�1/. By our definition
of seed addition, f �1

t .r/ D fsig and f �1
t .y/ D f �1

t�1.y/ for all y 2 ft .At / n frg.
Since f �1

t .r/ is a singleton, it is connected. By our induction hypothesis, f �1
t�1.y/ is

connected for all y ¤ r .

Now suppose .At ; ft / is the result of a coloring move on .At�1; ft�1/. By our
definition of coloring move, f �1

t .r/ D f �1
t�1.r/[ fsig and si must be adjacent to a

strand in f �1
t�1.r/. Our induction hypothesis implies f �1

t�1.r/ is connected. Therefore,
f �1

t .r/ must also be connected. For all y 2 ft .At /nfrg, we have f �1
t .y/D f �1

t�1.y/.
Therefore, our induction hypothesis also implies f �1

t .y/ is connected for all y 2ft .At /.
This completes the induction.

(2) This result is a reformulation of [4, Proposition 2.2(2)] in our notation. The
assertion comes from the following observation. For every color y 2 fJ .AJ / used in
the coloring of D, the set f �1

J .y/ contains a single seed strand se, which is the first
strand assigned the color y. All other strands sj 2 f �1

J .y/ assigned the color y occur
after se in the sequence �.

We induct on the stage u. By definition, A1 is a singleton and f1 W A1! f1g. Thus ho

trivially attains a unique local maximum on the set A1 D f
�1.1/, which contains only

a seed strand.

Suppose for induction that, for all u< t and all y 2 fu.Au/, the seed strand of f �1
u .y/

is the unique local maximum of ho on the set f �1
u .y/ when ordered sequentially by

adjacency. We claim the same holds for ft . Say fsig D At nAt�1 and ft .si /D r . We
consider two cases.
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First suppose .At ; ft / is the result of a seed addition to .At�1; ft�1/. By our definition
of seed addition, f �1

t .r/ D fsig, so ho trivially attains a unique local maximum on
this set. For all y 2 ft .At / n frg, we have f �1

t .y/D f �1
t�1.y/, so our claim follows

from the induction hypothesis.

Now suppose .At ; ft / is the result of a coloring move on .At�1; ft�1/. Then there
exists a strand sl 2At�1 such that ft .sl/D r and sl is adjacent to si . By our definition of
coloring move and ho, since sl is adjacent to si but colored before si , ho.si / < ho.sl/.
Thus si is not a local maximum in f �1

t .r/. Since f �1
t .r/ D f �1

t�1.r/ [ fsig and
f �1

t .y/ D f �1
t�1.y/ for all y 2 ft .At / n frg, our claim follows from the induction

hypothesis. This completes the induction.

(3) Colloquially, our assertion is that, if D is not a diagram of the unknot, then at
no stage in the coloring process can we have an uncolored strand sq adjacent to two
strands sp and sr that were assigned the same color. Suppose for contradiction that
sp; sr 2 Ak�1. By assumption, sq … Ak�1. By part (1) of this proposition, f �1

k�1
.y/

is connected. Since fJ .sp/D fJ .sr/, we have fsp; srg � f �1
k�1

.y/. Since D is a knot
diagram, the connectivity of f �1

k�1
.y/ and the inclusion fsp; srg � f �1

k�1
.y/ implies

s.D/nfsqgD f
�1

k�1
.y/. Thus s.D/D f �1

J .y/ and so our completed coloring sequence
has a single seed strand. By Theorem 4.3, this implies D is a diagram of a knot with
bridge number 1. But the unknot is the only knot with bridge number 1. This contradicts
the nontriviality of D.

(4) Colloquially, the claim states that, if D is nontrivial and x is not multicolored,
then the over-strand of x is colored before one of its under-strands. Hence, the x comes
earlier in the sequence � than at least one of sp or sq .

Assume for contradiction that ho.sv/ <minfho.sp/; ho.sq/g. That is, the over-strand
of x is colored after both under-strands sp and sq have been colored. Since D is a
nontrivial knot diagram, the adjacent strands sp and sq are distinct. Without loss of
generality, say sp is colored before sq . Let k be the stage that sq receives its color, so
fsqg D Ak nAk�1.

Since ho.sv/ <minfho.sp/; ho.sq/g and k is the stage at which sq receives its color,
sv has not been colored by stage k. Therefore, no coloring move was performed over x
in the completed coloring sequence.

Let sp and sr be the strands adjacent to sq . By assumption, x … C. That is, x is not
multicolored, so sp and sq have been assigned the same color. Since sp and sq have
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been assigned the same color and are adjacent at x, but no coloring move was performed
at x, sq must have inherited its color from sr via a coloring move. But sp was colored
before sq . Therefore, fsp; srg � Ak�1.

Since sp and sq were assigned the same color and sq inherited its color from sr , we
have fJ .sp/ D fJ .sq/ D fJ .sr/. But we have also showed fsqg D Ak nAk�1 and
fsp; srg �Ak�1. Since D is a nontrivial knot diagram, we get the desired contradiction
by part (3) of this proposition.

(5) The inequality is a reformulation of condition (2) in Definition 3.5 in terms of the
height function ho. In words, it states that, in the definition of sequence�, at each stage,
the strand is listed before any crossings that become multicolored, as such a crossing
does not become multicolored at stage t unless all of sp, sq , and sv are in At .

5 Coloring by height

In this section we describe a specific procedure for coloring diagrams of knots in thin
position. It will be used to establish the inequality W .K/ � w.K/. Our goal is to
obtain a coloring sequence that induces a �–ordering which respects the ordering of
the critical points of hjD by height.

For the rest of this section, let K be an embedding of the knot K in R3 that is in
thin position with respect to h. Furthermore, let K be such that the knot diagram
D � fyz–planeg, resulting from the projection p into the yz–plane is in general
position with respect to h. Let c1 > c2 > � � �> cN be the critical values of hjK ordered
by decreasing height with respect to h. We also assume that K is not the ambient
isotopy class of the unknot, so that D is a nontrivial diagram.

Definition 5.1 Let L be any knot diagram embedded in the yz–plane that is in general
position with respect to h. Let x 2 v.L/. Denote the under-strands of x by sf and sr .
If hjsf

has a local maximum at x, then we say sf is the falling strand of x. If hjsr
has

a local minimum at x, then we say sr is the rising strand of x.

sr

sf

Figure 4: The rising strand and falling strand of the pictured crossing are
denoted by sf and sr .
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Recall that, for a strand s, we have defined the height of the strand to be h.s/ D
maxy2s h.y/. The assumption that D is in general position with respect to h means
that all strands have distinct heights. This enables the following definition:

Definition 5.2 We say that we color D by height if we obtain a completed coloring
sequence .A0; f0/! � � � ! .AJ ; fJ / by the following procedure:

Step 1 Write s.D/D fs1; : : : ; sjs.D/jg, where h.s1/ > � � �> h.sjs.D/j/.

Step 2 Let .A1; f1/ be the result of a seed addition to .A0; f0/ such that fs1gDA1nA0.

Step 3 Suppose we have a partial coloring sequence .A0; f0/! � � � ! .An�1; fn�1/

defined, where An�1 D fs1; : : : ; sn�1g. Let xi and xj be the crossings incident to sn.
Say h.xi / < h.xj /. We consider two cases:

Case 1 Suppose hjsn
is maximized in int.sn/. Then we let .An; fn/ be the result of

a seed addition to .An�1; fn�1/ such that fsng D An nAn�1.

Case 2 Suppose hjsn
is maximized in @sn (so sn is the falling strand of xj ). Then

we let .An; fn/ be the result of a coloring move over xj .

Remark When a coloring move is performed over a crossing x during the color by
height process, colors must extend from the rising strand of x to the falling strand of x.
Recall that, since D is assumed to be a nontrivial knot diagram, adjacent strands are
distinct, so the rising and falling strands of x will always be distinct.

We first verify that knot diagrams in general position can always be colored by height.

Proposition 5.3 If D is a knot diagram in general position with respect to h, then D
can be colored by height.

Proof We verify that each step of the color by height procedure can always be
performed on D. Since D is in general position with respect to h, all strands have
distinct heights. Thus, they can be ordered by decreasing height. By definition, we can
always perform seed addition moves at any stage. What remains to be verified is that
we can perform the coloring move stated in Step 3, Case 2 of Definition 5.2.

Let .An; fn/, sn, xi and xj be as stated in Step 3, Case 2 of Definition 5.2. Let sv and
sr denote the over-strand and rising strand of the crossing xj , respectively. Since hjsn

is maximized in @sn, we have h.sn/D h.xj /. By assumption, D is in general position
with respect to h. Therefore, h.sn/ D h.xj / < minfh.sv/; h.sr/g. Since the strands

Algebraic & Geometric Topology, Volume 23 (2023)



An algorithmic definition of Gabai width 2429

Figure 5: It will be shown that, sinceK is in thin position andD is in general
position with respect to h, the strands of D can have at most two critical
points. Moreover, if a strand has two critical points, then one must be a
maximum and the other must be a minimum. This figure illustrates the stated
possibilities.

were ordered by decreasing height, this implies fsv; srg � An�1, so we can perform
the desired coloring move.

Our goal now is to show that, when we color D by height, we will get W .D/�w.K/.
The idea behind the upcoming technical results is that, since K is in thin position
and the resulting diagram D is in general position with respect to h, the strands of D
can be classified by how many critical points they contain. Figure 5 illustrates the
classification, which will be used to show that the number of seed additions that occur
when we color by height is equal to the number of maxima in K. Moreover, the number
of multicolored crossings that occur is equal to the number of minima in K.

Lemma 5.4 If s 2 s.D/ and r 2R is a regular value of hjD , then js\ h�1.r/j � 2.

Proof Suppose for contradiction we have a strand s 2 s.D/ and a regular value r 2R

of hjD such that js\ h�1.r/j � 3. (See eg Figure 6.)

Recall that c1 > c2 > � � � > cN are the critical values of hjK , and say r 2 .cjC1; cj /.
Choose regular values ri 2 .ciC1; ci / for 1 � i � N � 1 with rj D r . Recall K is in
thin position, so w.K/D w.K/. To obtain our desired contradiction, we will exhibit
an isotopy on K to produce another embedding of K with strictly lower width.

Take three points a, b and c in s\h�1.r/ that are consecutive in the strand s with respect
to some orientation on s. Let sa;b denote the subarc of s in the yz–plane with boundary

sq

level surface

Figure 6: An example of a violation of Lemma 5.4.
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a ac cbb
˛a;c

˛b;c ˛b;c

sa;b
sa;b

sb;csb;c

˛a;b

Figure 7: The setup for Cases 1 and 2 in the proof of Lemma 5.4 are on the
left and right, respectively.

set fa; bg. Define sa;c and sb;c similarly. Let ˛a;b be the arc in yz–plane\ h�1.r/

with boundary set fa; bg. Define ˛a;c and ˛b;c similarly.

Before describing the isotopy, we must consider cases based on the order of the points
fa; b; cg in yz–plane\h�1.r/. The ordering is by the y–coordinates of the points. Up
to symmetry, there are two cases to consider, as depicted in Figure 7.

Case 1 Suppose a < c < b. Let Da;c be the disk cobounded by sa;c and ˛a;c in the
yz–plane. We now define the steps of the isotopy. Let Osa;c be the arc component of
K \p�1.sa;c/.

Step 1 Perform an isotopy on K that fixes the y– and z–coordinates of all points
on K, and arranges that Osa;c D p.Osa;c/D sa;c and all points in K n Osa;c have
negative x–coordinate. Note now Osa;c cobounds the disk Da;c with ˛a;c in
the yz–plane.

Step 2 Perform an isotopy on Osa;c that fixes a and c and pushes Osa;c across Da;c

onto ˛a;c .

Step 3 After performing the isotopy, perturb the portion of K in a neighborhood
of ˛a;c so that hjK is Morse and has two fewer critical points than it had
originally.

Let s0a;c and K 0 denote the image of sa;c and K, respectively, after the isotopy and
perturbation. Let D0 denote the diagram of K 0 given by projection into the yz–plane.
Let s0a;c denote the image of Osa;c in D0.

Case 2 Suppose a < b < c. Then sa;b and sb;c cobound disks with ˛a;b and ˛b;c ,
respectively, in the yz–plane. We obtain s0a;c , K 0 and D0 from a procedure analogous
to that in Case 1. The only modification is that, in Step 2, we push across two disks
instead of one.
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We now claim w.K 0/ < w.K/. By construction,

js0a;c \ h
�1.rj /j< jOsa;c \ h

�1.rj /j:

Our procedure fixed the height of all points in K outside of a small neighborhood
of Osa;c and did not introduce any new critical points. Therefore,

N�1X
iD1

jK 0\ h�1.ri /j<

N�1X
iD1

jK \ h�1.ri /j D w.K/:

The above inequality showsw.K 0/<w.K/. SinceK was assumed to be in thin position,
we get our desired contradiction.

Proposition 5.5 Let .A0; f0/! � � � ! .AJ ; fJ / be a completed coloring sequence
obtained from coloring D by height.

(1) A seed addition is performed on the strand s if and only if hjs is maximized in
the interior of s.

(2) Let xi be a crossing with falling strand sq , where xi and xj are the crossings
incident to sq . Then xi is multicolored if and only if hjsq

is minimized in the
interior of sq and h.xi / < h.xj /.

Proof (1) By Definition 5.2, a seed addition is performed on a strand if and only if
that strand has a maximum in its interior.

(2) Let t be the stage at which sq receives its color, so fsqg D At nAt�1.

Suppose xi is a multicolored crossing. Then hjsq
must be minimized in the interior

of sq , for otherwise, as sq is the falling strand of xi , it would be minimized at xj .
But, if sq is the falling strand of xi and hjsq

is minimized at xj , then hjsq
would

also have to be maximized at xi , for otherwise we could find a regular value r such
that jsq \ h�1.r/j � 3, which would violate Lemma 5.4. In other words, sq would
be monotonic with respect to h. But this would mean .At ; ft / was the result of a
coloring move on .At�1; ft�1/ over xi , which is impossible because xi is assumed to
be multicolored.

In addition, if h.xi / > h.xj /, then sq would have been colored via a seed addition,
because the assumption that xi is multicolored forbids any coloring move from being
performed over xi . The inequality h.xi / > h.xj / would mean no coloring move was
performed over xj because we are coloring by height. By part (1) of this proposition,
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sl

sp
xi

sq

sr

xj

Figure 8: The setup for the proof of Proposition 5.5(2), where we want to
show xi is multicolored. It is assumed that sq has a minimum in its interior
and xi is the lower incident crossing of sq . The strands adjacent to sq are sp
and sr . The strands adjacent to sp are sl and sq .

hjsq
would be maximized in the interior of sq . But it was shown that hjsq

is also
minimized in the interior of sq . Since sq is the falling strand of xi and contains both a
maximum and a minimum of hjsq

in its interior, the inequality h.xi / > h.xj / would
imply the existence of a regular value r such that jsq \ h�1.r/j � 3, which would
violate Lemma 5.4. We conclude h.xi / < h.xj /.

Conversely, suppose that hjsq
is minimized in the interior of sq and h.xi / < h.xj /. We

will show xi is a multicolored crossing. Let sp and sr be the strands adjacent to sq at
the crossings xi and xj , respectively. Let sl be the other strand adjacent to sp. See
Figure 8 for a diagram of this setup. Let u be the stage at which sp is colored, so that
fspg D Au nAu�1.

Suppose for contradiction that xi is not multicolored. Observe that, since h.xi /<h.xj /

and sq is the falling strand of xi , no coloring move could have been performed at xi

when we color D by height. We consider two cases.

Recall fsqg D At nAt�1. First suppose .At ; ft / was the result of a seed addition to
.At�1; ft�1/. By assumption, xi … C, so fJ .sp/ D fJ .sq/. Thus sp cannot also be
a seed strand. Hence, sp must have inherited its color from sl because no coloring
move could have been performed over xi when we colored D by height. But this
means fJ .sl/ D fJ .sp/ D fJ .sq/ and fsl ; sqg � Au�1 must hold. This contradicts
Proposition 4.4(3).

Now suppose .At ; ft / was the result of a coloring move on .At�1; ft�1/. No coloring
move could have been performed over xi when we colored D by height, so sq must
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have inherited its color from sr . But xi … C. Therefore, fJ .sp/D fJ .sq/D fJ .sr/.
If u < t (that is, if sp was colored before sq), then fsp; srg � At�1 and we have a
contradiction to Proposition 4.4(3).

Now say t < u (that is, sq was colored before sp). We still have fJ .sp/D fJ .sq/, so
sp cannot be a seed strand under the current assumptions. Thus sp must have inherited
its color from sl since no coloring move could have been performed over xi when
we colored D by height. This forces fJ .sl/D fJ .sp/D fJ .sq/ and fsl ; sqg � Au�1,
contradicting Proposition 4.4(3).

We conclude xi is multicolored.

Recall thatK is in thin position andD, which is the diagram ofK obtained by projection
into the yz–plane, has N critical points.

Corollary 5.6 If S and C are the sets of seed strands and multicolored crossings
resulting from a coloring of D by height , then jSjC jCj DN.

Proof Proposition 5.5 implies that S and C are in bijective correspondence with the
set of local maxima and the set of local minima of hjK , respectively. This follows
because K is assumed to be such that D is in general position with respect to h.

Theorem 5.7 If K is an ambient isotopy class of knots that does not contain the
unknot , then W .K/� w.K/.

Proof Since D is a diagram of the knot K in K, it suffices to show W .D/� w.K/.
Let .A0; f0/! � � �! .AJ ; fJ / be a completed coloring sequence on D obtained from
coloring D by height. Let .ai /

N
iD0 be the attached sequence of the coloring. We claimPN

iD0 ai � w.K/.

Note that Corollary 5.6 verifies that the number of critical points of K is equal to N,
where the attached sequence .ai /

N
iD0 resulting from coloring D by height contains

N C 1 terms. Let rn 2 .cnC1; cn/ denote a regular value of hjD . It suffices to show
an � w.rn/ for 1� n�N. Recall that we always have a0 D 0 by definition. Fix one
such n.

First we fix some notation. For all critical values ci , let i be the unique strand at which
h�1.ci / fails to intersect D transversely. Set w.r0/ WD 0 for notational convenience.
Write

an D

nX
iD1

ai � ai�1; w.rn/D

nX
iD1

w.ri /�w.ri�1/;
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so that our goal is to show

(1)
nX

iD1

ai � ai�1 �

nX
iD1

w.ri /�w.ri�1/:

Observe that ai � ai�1 2 f�2; 2g and w.ri /�w.ri�1/ 2 f�2; 2g for each i . Thus, it
suffices to show that the number of positive terms in the left sum is bounded above by
the number of positive terms in the right sum in equation (1).

Let t be the stage such that s 2 At if and only if rn < h.s/. That is, a strand is colored
by stage t if and only if its height is greater than rn. We can acquire such a t because
our completed coloring sequence was obtained from coloring D by height. To count
the number of positive terms in the sums for equation (1), define

Sn WD fi j ai � ai�1 D 2; 1� i � ng; Mn WD fi j w.ri /�w.ri�1/D 2; 1� i � ng:

The value jMnj is the number of maxima above rn. The value jSnj is related to the
number of seed additions that have been performed by stage t . When coloring by height,
it is possible that the lower incident crossing corresponding to a minimum below rn

becomes multicolored by stage t . Therefore, we cannot guarantee the equality of jSnj

and jMnj. However, we have the following claim, which suffices for our desired result:

Claim jSnj � jMnj:

Proof By Proposition 5.5(1), each strand containing a maximum with height above rn
must have been colored via a seed addition by stage t . Since D is in general position
with respect to h, for all cj above rn corresponding to a minimum of a strand j , the
over- and under-strands of the lower incident crossing of j have height greater then cj ,
and hence rn. Therefore, by Proposition 5.5(2), each minimum above rn corresponds
to a crossing that becomes multicolored by stage t . Since there are n critical points
above rn, we conclude that .A0; f0/! � � � ! .At ; ft / induces at least the first nC 1
terms .ai /

n
iD0 in the attached sequence .ai /

N
iD0.

By Definition 5.2, of coloring by height, jMnj is the number of seed additions in the
partial coloring sequence .A0; f0/! � � �! .At ; ft /. Since .A0; f0/! � � �! .At ; ft /

induces at least the first nC 1 terms .ai /
n
iD0 in the attached sequence .ai /

N
iD0, jSnj is

bounded above by the number of seed additions in .A0; f0/!� � �! .At ; ft /. Therefore,
jSnj � jMnj, as desired.

This claim shows that the number of positive terms in
Pn

iD1 ai � ai�1 is bounded
above by the number of positive terms in

Pn
iD1w.ri /�w.ri�1/, which verifies the

inequality in equation (1).
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6 Lifting a colored diagram

In this section we give a method for obtaining a Morse embedding of a knot from
a colored knot diagram such that the ordering of the maxima and minima by height
matches the �–ordering of seed strands and multicolored crossings. Then we use this
method to show W .K/� w.K/.

For the rest of this section, let D be a diagram of a knot in the ambient isotopy class K
such that W .D/DW .K/. Assume K is not the ambient isotopy class of the unknot,
so that D is a nontrivial diagram. Let .A0; f0/! � � � ! .AJ ; fJ / be a completed
coloring sequence on D with attached sequence .ai /

N
iD0. Let S, C and �D fdig

M
iD1

denote the set of seed strands, multicolored crossings and the �–ordering on s.D/[ C
induced by our completed coloring sequence, respectively. Let �0 WD fdij g

N
jD1 be the

subsequence of � formed by restricting our �–ordering to S [ C. Let ho W�! Z be
the height function associated to �, defined by ho.dt / WD �t .

In this section, we embed our diagram into the plane z D �M � 1. Recall that D
is defined as a four-valent graph with labels at each vertex containing over/under
information. The labels take the form of deleting parts of the edges in the graph
corresponding to under-strands. We now want to view D as a disjoint union of arcs in
the plane. To this end, for all di 2� representing a strand, let d�i be the strand di with
neighborhoods of the boundary of di removed, as dictated by the labels on the vertices
of D. For each di 2� representing a multicolored crossing, let d�i WD di . This switch
in perspective on knot diagrams, from a four-valent graph to a disjoint union of arcs in
the plane, is necessary to adapt the proof of the main theorem in [4] to our situation.

Theorem 6.1 There exists a knot yK in the ambient isotopy class K embedded so that
hj yK has N critical values c1 > c2 > � � �> cN . For all critical values , cj is a maximum
if and only if dij is a seed strand. In addition , cj is a minimum if and only if dij is a
multicolored crossing.

Proof For all dt 2�, let Odt denote the copy of d�t embedded in the plane z D ho.dt /

so that the orthogonal projection of Odt onto the plane z D�M � 1 is d�t . Recall that
the crossings of a knot diagram are by definition just points on the plane, so, if dt is a
crossing, then d�t is the point in the plane z D h0.dt / projecting orthogonally onto dt .
We call Odt the lift of dt .

In what follows, we show that the lifts Odt can be connected in such a way that the
resulting knot has D as the diagram of its projection onto the plane z D�M � 1. Let
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Odq

Odv

Odp

Odi

dq

dp

dv

Figure 9: The construction of spq (the black dashed line) at the multicolored
crossing di .

dp and dq be strands adjacent at the crossing x. Let dv be the over-strand of x. Let
� > 0 be such that the ball, denoted by B.x; �/, in the plane zD�M �1 has nonempty
connected intersection with the strands dp, dq and dv and empty intersection with all
other strands. Then the cylinder B.x; �/�R (where R denotes the z–direction) has
nonempty connected intersection with Odp, Odq , and Odv. The cylinder B.x; �/�R is
disjoint from all other lifts. At the crossing x, we embed an arc connecting the lifts Odp

and Odq , denoted by spq , via the following rule based on whether or not x is multicolored:

Connection case 1 Suppose x is a multicolored crossing. Say xD di . By Proposition
4.4(5), ho.di / < minfho.dp/; ho.dq/; ho.dv/g. This means the plane z D ho.di / is
below the planes containing the lifted under- and over-strands of x. Therefore, we
can let spq be the union of two smooth monotone arcs connecting the endpoints of Odp

and Odq in B.x; �/�R to the point Odi . This means Odi is the unique minimum of hjspq
.

Moreover, we can choose spq such that it is contained in B.x; �/�R, disjoint from
int. Odv/, and such that the orthogonal projection of

. Odp [ spq [
Odq [

Odv [
Odi /\ .B.x; �/�R/
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Odq

Odv

Odp

dq

dp

dv

Figure 10: The construction of spq (the black dashed line) at crossings that
are not multicolored.

onto the plane z D�M � 1 is B.x; �/\D, where spq projects to the deleted portions
of the under-strands of x in D. See Figure 9 for a diagram of this construction.

Connection case 2 Suppose x is not a multicolored crossing. By Proposition 4.4(4),
ho.sv/ >minfho.sp/; ho.sq/g. This means the plane z D ho.dv/ containing the lifted
over-strand of x is above at least one of the planes containing the lifted under-strands
of x. Therefore, we can let spq be a smooth monotone arc that connects the endpoints
of Odp and Odq that intersect B.x; �/�R. Moreover, we can choose spq such that it is con-
tained in B.x; �/�R, disjoint from int. Odv/, and such that the orthogonal projection of

. Odp [ spq [
Odq [

Odv/\ .B.x; �/�R/

onto the plane z D�M � 1 is B.x; �/\D, where spq projects to the deleted portions
of the under-strand of x in D. See Figure 10 for a diagram of this construction.

Performing the above procedure at each crossing of D to connect all the lifts gives us a
knot. Let zK WD

˚S
t
Odt

	
[
˚S

p;q spq

	
. Since we respected the crossings under projec-

tion when defining each spq , D is a diagram of zK under orthogonal projection onto the
plane z D�M � 1. Hence, zK is in the ambient isotopy class K. However, zK does not
have the desired local extrema because the lifted strands are parallel to the xy–plane.
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Odq

Odp

Odr

ypq

yqr
Odq

Odp

Odr

ypq

yqr

Figure 11: The setup of perturbation case 1, divided into subcases based
on whether ypq does (right) or does not (left) orthogonally project onto a
multicolored crossing. Here dq is not a seed strand. The idea is to perturb
Œypq; yqr �, the subarc from ypq to yqr containing Odq , into a monotonic arc
with endpoints ypq and yqr .

We now show how to perturb the lifted strands contained in zK so that we have the
desired local extrema. For all spq , let ypq denote the point in @spq that orthogonally
projects to the corresponding crossing. Let dp and dr be the strands adjacent to dq .
Let Œypq; yqr � denote the subarc of spq [

Odq [ sqr from ypq to yqr . We consider cases
based on whether dq is a seed strand.

Perturbation case 1 Suppose dq is not a seed strand. See Figure 11 for diagrams of
what the lifts and Œypq; yqr � could look like in this case. By Proposition 4.4(2), dq is
not the local maximum of ho on f �1

J .fJ .dq//.

Claim minfypq; yqrg< ho.dq/ <maxfypq; yqrg:

Proof We consider cases based on whether the points ypq and yqr orthogonally
project onto multicolored crossings. First suppose neither ypq nor yqr orthogonally
projects onto multicolored crossings. Then dp, dq and dr have all been assigned the
same color. That is, dp; dq; dr 2 f

�1
J .fJ .dq//. Since D is assumed to be nontrivial,

if k denotes the stage at which dq receives its color, then Proposition 4.4(3) asserts
that fdp; drg š Ak�1. That is, either dp or dr is uncolored at stage k. This implies
minfho.dp/; ho.dr/g < ho.dq/. But dq is not the local maximum of ho. Therefore,
ho.dq/ <maxfho.dp/; ho.dr/g. By the proof of connection case 2 of this theorem, the
strands spq and sqr are monotonic, so

minfho.dp/; ho.dr/g<minfypq; yqrg< ho.dq/ <maxfypq; yqrg

<maxfho.dp/; ho.dr/g;

which gives the claim in this case.

Now say ypq orthogonally projects onto a multicolored crossing. Then there ex-
ists some di such that Odi D ypq and ho.di / D ypq . Proposition 4.4(5) implies
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Odq

Odp

Odrypq

yqr

Odq

Odp
Odr

ypq

yqr

Figure 12: The setup of perturbation case 2, divided into subcases based
on whether ypq does (right) or does not (left) orthogonally project onto a
multicolored crossing. Here dq is a seed strand. The idea is to perturb
Œypq; yqr �, the subarc from ypq to yqr containing Odq , into an arc with a single
maximum at the midpoint of Œypq; yqr �.

ypq D ho.di / < ho.dq/. Since f �1
J .fJ .dq// is connected by Proposition 4.4(1)

and dq is not a seed strand, yqr does not orthogonally project onto a multicolored
crossing. Therefore, dp must have inherited its color from dr via a coloring move, so
ho.dq/ < ho.dr/. Since ho.dq/ < yqr < ho.dr/, we get the claim in this case. The
argument for if yqr orthogonally projects onto a multicolored crossing is similar.

By the above claim, we can let the subarc Œypq; yqr �
0 be an arbitrarily small perturbation

of Œypq; yqr � into a smooth monotonic arc, strictly increasing or decreasing as dictated
by the values of ho.dp/ and ho.dr/. The perturbation is assumed to fix ypq , yqr and
the projection to the plane z D�M � 1.

Perturbation case 2 Suppose dq is a seed strand. See Figure 12 for diagrams of what
the lifts and Œypq; yqr � could look like in this case. By Proposition 4.4(2), dq is the
unique local maximum of ho on f �1

J .fJ .dq//.

Claim maxfypq; yqrg< ho.dq/:

Proof If ypq orthogonally projects onto a multicolored crossing, then ypq <ho.dq/ by
the same reasoning as in the proof of the claim for perturbation case 1. So suppose ypq

does not orthogonally project onto a multicolored crossing. Then dp and dq received the
same color. That is, dp 2 f

�1
J .fJ .dq//. Since dq is the unique local maximum of ho

on f �1
J .fJ .dq//, the plane zD ho.dp/ containing Odp lies below the plane zD ho.dq/

containing Odq . Hence, ypq < ho.dq/. We have yqr < ho.dq/ by similar reasoning.

Let mq be the midpoint of Odq . By the previous claim, we can let Œypq; yqr �
0 be an

arbitrarily small perturbation of Œypq; yqr � that fixes ypq , mq and yqr . In addition, we
arrange Œypq; yqr �

0 so that hjŒypq ;yqr �0 strictly increases from ypq to mq and strictly
decreases from mq to yqr while fixing the projection to the plane z D�M � 1.
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Perform a perturbation on the set of subarcs fŒypq; yqr �g of zK as dictated above. Let
yK denote the resulting knot. Note yK is ambient isotopic to zK. Recall �0 WD fdij g is

the restriction of our �–ordering to S [ C.

By perturbation case 2, each lifted seed strand Odij results in a maximum of yK. The
critical point corresponding to this maximum is the midpoint mij of Odij . Therefore,
yK has a single maximum for every seed strand dij with height ho.dij /. By perturbation

case 1, all other lifted strands become monotonic after perturbation.

By connection case 1, each multicolored crossing results in a minimum of yK. The critical
point corresponding to this minimum is the lifted multicolored crossing. Therefore,
yK has a single minimum for every multicolored crossing dij with height ho.dij /.

Since the monotonicity of the subarcs of spq from ypq to @ Odq is preserved by our
perturbation, yK has only jS [ Cj D N local extrema. Ordering the critical values
c1 > c2 > � � �> cN of hj yK by decreasing height for each j between 1 and N, cj is a
maximum if and only if dij is a seed strand and cj is a minimum if and only if dij is
a multicolored crossing, as desired.

Corollary 6.2 If K is an ambient isotopy class of knots that does not contain the
unknot , then W .K/� w.K/

Proof LetD be a diagram of a knot in the ambient isotopy class K such that W .D/D

W .K/. Then there exists a completed coloring sequence on D with attached sequence
.ai /

N
iD0 such that

PN
iD0 ai D W .K/. Let �0 D fdij g

N
jD1 denote the �–ordering

resulting from this coloring, restricted to the resulting seed strands and multicolored
crossings. By Theorem 6.1, there exists a knot yK in the ambient isotopy class K
with N local extrema that satisfy the following property: if c1 > c2 > � � � > cN are
the critical values of hj yK ordered by decreasing height, then cj is a maximum if and
only if dij is a seed strand and cj is a minimum if an only if dij is a multicolored
crossing. This property ensures that, if ri 2 .ciC1; ci / is a regular value of hj yK , then
ai D j yK \ h

�1.ri /j. Therefore,

W .K/DW .D/D w. yK/� w.K/:

7 Proof of the main theorems

In this section we summarize previous results to prove our main theorems. Note that
most results of Sections 5 and 6 do not apply to the unknot, so we must handle that
case separately.
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Before proving Theorem 1.1, we need one more technical lemma. Colloquially, it
states that, at any stage of a coloring sequence, the number of multicolored crossings
that have occurred is bounded above by the number of colors (seed strands) that have
appeared.

Lemma 7.1 Let .A0; f0/! � � � ! .At ; ft / be a partial coloring sequence on the knot
diagram D. Let C WD fx1; : : : ; xmg � v.D/ be the set of crossings of D that have
become multicolored by stage t . Then jC j � jft .At /j.

Proof We define a graph associated to the partial coloring sequence. Let V WD
fv1; : : : ; vmg be the vertex set, where we have one vertex for every multicolored
crossing. Recall from Proposition 4.4(1) that, for all y 2 ft .At /, the set f �1

t .y/ is
connected. This means that, for all y 2 ft .At /, there are at most two multicolored
crossings with under-strands assigned the color y. That is, the set f �1

t .y/ contains
the under-strands of at most two multicolored crossings. For each y 2 ft .At / where
f �1

t .y/ contains the under-strands of two distinct multicolored crossings xi ; xj 2 C

(so i ¤ j ), let eij be an edge that joins the vertices vi and vj . For each y 2 ft .At /

where f �1
t .y/ contains the under-strand of a single multicolored crossing xi 2 C, let

ei i be a loop based at the vertex vi . That is, ei i is an edge with both endpoints at vi .
Let E be the set of all edges obtained by this procedure.

Let G WD .V;E/ denote the resulting graph. From the definition of G, it is clear that
jEj � jft .At /j and jC j D jV j. Let deg.v/ denote the number of edges incident to v,
where any loop based at v is counted twice. The handshaking lemma, which is a
standard result in graph theory, states thatX

v2V

deg.v/D 2jEj:

The under-strands of each multicolored crossing must be assigned different colors, and
loops based at v are counted twice in the definition of deg.v/, so 2� deg.v/� 4 for
all v 2 V. Therefore,

2jV j �
X
v2V

deg.v/:

But jC j D jV j and jEj � jft .At /j. Therefore,

2jC j D 2jV j �
X
v2V

deg.v/D 2jEj � 2jft .At /j;

which gives the desired inequality.
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We now restate and prove our main theorems.

Theorem 1.1 If K is an ambient isotopy class of knots , then W .K/D w.K/.

Proof We begin with the case where K is not the ambient isotopy class of the unknot.
Theorem 5.7 gives W .K/� w.K/. Corollary 6.2 gives w.K/�W .K/, so we get the
desired equality.

Now suppose that K is the ambient isotopy class of the unknot. Thenw.K/D 2. We can
obtain a completed coloring sequence on the standard diagram of the unknot, with no
crossings, by performing a single seed addition. This shows W .K/� 2. We now verify
that W .K/� 2. Let U be a diagram of the unknot. Let .A0; f0/! � � � ! .AJ ; fJ / be
a completed coloring sequence on U with attached sequence .ai /

N
iD0.

Let an WDminfaig
N
iD0. Then there exists a stage t such that the partial coloring sequence

.A0; f0/! � � � ! .At ; ft / induces the first n terms, .ai /
n
iD0, in our attached sequence.

Write

(2) an D

nX
iD1

ai � ai�1:

Define

S WD fi j ai � ai�1 D 2; 1� i � ng; C WD fi j ai � ai�1 D�2; 1� i � ng:

The quantity jS j is equal to the number of seed additions that have been performed
by stage t . Thus, jS j D jft .At /j. The quantity jC j is the number of crossings that
have become multicolored by stage t , because an D minfaig

N
iD0. By Lemma 7.1,

jC j � jft .At /j D jS j. We have ai �ai�1 2 f�2; 2g for all i between 1 and n, so jS j is
also the number of positive terms in equation (2), and jC j is also the number of negative
terms in equation (2). Therefore, Lemma 7.1 implies that the number of negative terms
is bounded above by the number of positive terms in equation (2). We conclude an � 0.

Since an Dminfaig
N
iD0, all terms in the attached sequence are nonnegative. Any com-

pleted coloring sequence on a knot diagram must start with a seed addition. Therefore,
a0D 0 and a1D 2. Hence, our conclusion verifies that W .U /� 2. But U was arbitrary,
so W .K/� 2. Therefore, W .K/D 2D w.K/.

Theorem 1.2 For any ambient isotopy class K of knots and any positive integer n,
there exist infinitely many diagrams D of knots in K such that W .D/ D w.K/ but
wp.D/�W .D/Cn.
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Figure 13: The diagram of the unknot U with a highlighted crossing.

Proof Let U be the diagram of the unknot depicted in Figure 13, contained in the
yz–plane. Let E be the diagram obtained by performing a crossing change to the
highlighted crossing in Figure 13. See Figure 14. Let E denote the ambient isotopy
class of the figure 8 knot and KE denote a knot in E such that p.KE /D E. (Recall
p WR3!R2 is the standard projection into the yz–plane.)

By Theorem 1.1, there exists a diagramD0 of a knotKD0 in K such that W .D0/Dw.K/.
Let

D DD0 #U # � � � #U;

where there are m terms in the connected sum, and the connected sum is performed as
shown in Figure 15.

We take the strand of D0 on which we surger to form D to be a seed strand of a
completed coloring sequence on D0 which realizes the equality W .D0/Dw.K/. After
performing a seed addition to the strand ofD labeled s in Figure 15, we can use coloring
moves to extend the color to all other strands of D which correspond to components
of U. Since D was formed by surgering the aforementioned seed strand of D0, it is
easy to see W .D/DW .D0/D w.K/. These equalities are independent of m.

By performing a crossing change at each crossing of D highlighted in Figure 15, we
get a diagram of the knot KD0 #KE # � � � #KE . See Figure 16.

Without loss of generality, we can perform an arbitrarily small perturbation on the knot
KD0 #KE # � � � #KE , which descends to a planar isotopy on D0 #E # � � � #E, such that

!

Figure 14: The crossing change performed on U (left) at the highlighted
crossing to obtain E (right).
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D0 � � �

� � �
D0

s

Figure 15: Top: D0 with m copies of U. The rectangles along which we
surger to form D are in red. Our calculations of width are independent of the
orientations of the diagrams, so we assume each diagram is oriented to make
the depicted connected sum well defined. Bottom: D with some crossings
highlighted and a strand labeled s.

hjKD0#KE#���#KE
is Morse. Since planar width is unaffected by crossing changes, we get

wp.D/D wp.D
0 #E # � � � #E/� w.KD0 #KE # � � � #KE /:

Recall Schubert’s theorem on the additivity of bridge number (see [11, Theorem 1]),
which states that, for any two ambient isotopy classes of knots K1 and K2,

ˇ.K1 #K2/D ˇ.K1/Cˇ.K2/� 1:

For any ambient isotopy class of knots, bridge number is a lower bound on Gabai width.
By inductively applying Schubert’s theorem with this observation, and the fact that
ˇ.E/D 2 (recall E is the ambient isotopy class of the figure 8 knot), we get

w.KD0 #KE # � � �#KE /� ˇ.KD0 #KE # � � �#KE /� ˇ.K/Cmˇ.E/�mD ˇ.K/Cm;

where we got the second inequality becausem is just the number of copies of E that we
used in the connected sum to form D. Since the equalities W .D/DW .D0/D w.K/
are independent of m, we can take m arbitrary large. Taking mDW .D/Cn�ˇ.K/
in particular gives wp.D/�W .D/Cn.

D0 � � �

Figure 16: The resulting diagram of the knot KD0 # KE # � � � # KE after
performing a crossing change at each highlighted crossing in Figure 15.
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8 Applications and further questions

In this section, we demonstrate how Theorem 1.1 can be used to write algorithms for
calculating Gabai width. We will describe an algorithm we wrote that calculated the
Gabai width of a large subset of tabulated knots from [9]. The data and code for our
calculation are available at [10].

Our strategy was to modify the code in [14], which is the original algorithm for
calculating Wirtinger number developed by the authors in [4], so that, given a Gauss
code, it will output a completed coloring sequence for Wirtinger width. The modification
is easy because the coloring moves for Wirtinger number and Wirtinger width are the
same. Our modifications were motivated by the following lemma:

Lemma 8.1 If K � S3 is a 4–bridge prime knot in thin position , and thin position for
K is not bridge position , then K has Gabai width 28.

Proof Consider R3 now as in S3 D R3 [ f1g, with h the same height function as
before. A thin position embedding of a 4–bridge knot must have four maxima and
four minima. Since K is prime, S3 n �.K/ does not contain any essential 2–punctured
spheres, where �.K/ is a tubular neighborhood of K. Wu [15] showed that the thinnest
thin level of a knot that is in thin position but not bridge position is an essential surface
in S3 n �.K/. Therefore, jK \ h�1.r/j ¤ 2 for any regular value r of hjK . For any
regular value r of hjK at the thinnest level, the number of maxima above h�1.r/ must
be greater than or equal to the number of minima above h�1.r/. These facts mean that
the only possible orderings of the critical points of a prime 4–bridge knot are

M >M >M >M >m>m>m>m and M >M >M >m>M >m>m>m;

where the M ’s represent maxima and m’s represent minima. The first ordering corre-
sponds to a Gabai width of 32 while the second corresponds to a Gabai width of 28.
However, the first ordering also corresponds to a bridge position embedding of a 4–
bridge knot. Since bridge position of K is not thin position, the ordering of the critical
points of K must be as in the second ordering above, so K has Gabai width 28.

We focused on a subset of tabulated knots from [9] that are known to be prime with
bridge number 4, with Gauss codes such that the code in [14] can actually detect bridge
number 4. A prime knot with bridge number 4 such that thin position is bridge position
must have Gabai width 32. Therefore, given a Gauss code representing a prime knot
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with bridge number 4, Lemma 8.1 implies that such a knot must have Gabai width 32
or 28. By Theorem 1.1, such a knot must have Wirtinger width 32 or 28. So every time
we can find a completed coloring sequence on such a Gauss code giving Wirtinger
width 28, we know the Gauss code represents a knot with Gabai width 28. Whenever
our algorithm outputs an upper bound of 32 on the Wirtinger width for a given Gauss
code, we unfortunately do not get any new information about Gabai width for the
corresponding knot.

In light of these observations, we modified the code in [14] to search for a completed
coloring sequence that starts with three seed additions, followed by coloring moves
until we get a multicolored crossing, then finishes coloring the diagram with a seed
addition that comes before three more multicolored crossings appear. Recall that seed
strands correspond to maxima and the multicolored crossings correspond to minima, so
such a coloring sequence corresponds to an embedding of the knot with Gabai width 28.

Our code implemented the above strategy and was able to verify that 54 756 tabulated
knots have Gabai width 28, out of 86 981 knots that were tested. This is the first
time a systematic calculation of Gabai width has been performed on this collection
of Gauss codes. The appendix of [4] states that the code we modified in [14] for our
algorithm runs in factorial time. Our modifications are such that our algorithm also
runs in factorial time. However, our algorithm ran fast in practice since we had such
specific information about the ordering of the seed strands and multicolored crossings
in the completed coloring sequence we desired. In general, whenever bridge number is
much less than the crossing number, the code in [14] runs fast in practice.

We remark that it was important to know the Gauss codes we were working on had
diagrams such that the code in [14] can actually detect Wirtinger number 4 (and hence
bridge number 4). In general, this does not always happen. In [3], the authors give
examples of prime, reduced, alternating diagrams of a knot such that the Wirtinger
number is strictly greater then the bridge number.

We briefly describe how we knew the bridge number. In [1], the authors give a
method of establishing bridge number based on homomorphisms from the knot group
to Coxeter groups. In ongoing work [2], the authors use computational methods to
find homomorphisms as described in [1] to verify that each of the knots tested in our
code [10] have bridge number 4.

Our implementation depended heavily on the Wirtinger number of a knot diagram. In
general, the search for the minimum W .D/ over all possible diagrams D is subtle. We
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took great advantage of the fact that the diagrams we worked on actually realized the
Wirtinger number �.D/. In order to find a more robust implementation of our notions,
it is important to understand how Wirtinger number and Wirtinger width interact. This
leads to the following natural questions:

Question How can we determine whether or not a diagram D realizes the minimal
W .D/ without knowing beforehand that it realizes the minimal �.D/, the Wirtinger
number?

Question If the knot diagram D realizes the Wirtinger number, then does D also
realize the Wirtinger width?

One expects the answer to the second question to be no, since in [5] the authors exhibit
a knot K such that the thin position embedding has more that ˇ.K/ many maxima.
However, finding a knot diagram which disproves our question seems difficult. An
obvious first step is to check our knot data for a knot such that our algorithm outputs
an upper bound of 32 for Gabai width, and try to show that the Gabai width of such a
knot is actually 28.
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