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New bounds on maximal linkless graphs

RAMIN NAIMI

ANDREI PAVELESCU

ELENA PAVELESCU

We construct a family of maximal linklessly embeddable graphs on n vertices and
3n� 5 edges for all n� 10, and another family on n vertices and m< 25

12
n� 1

4
edges

for all n � 13. The latter significantly improves the lowest edge-to-vertex ratio for
any previously known infinite family. We construct a family of graphs showing that
the class of maximal linklessly embeddable graphs differs from the class of graphs
that are maximal without a K6 minor studied by L Jørgensen. We give necessary and
sufficient conditions for when the clique sum of two maximal linklessly embeddable
graphs over K2, K3 or K4 is a maximal linklessly embeddable graph, and use these
results to prove our constructions yield maximal linklessly embeddable graphs.

57M15; 05C10

1 Introduction

All graphs in this paper are finite and simple. A graph is intrinsically linked (IL) if every
embedding of it in R3 (or, equivalently, S3) contains a nontrivial 2–component link. A
graph is linklessly embeddable if it is not intrinsically linked (nIL). A nIL graph G is
maxnil if it is not a proper subgraph of a nIL graph of the same order. The combined
work of Conway and Gordon [2], Sachs [11] and Robertson, Seymour and Thomas [9]
fully characterized IL graphs: a graph is IL if and only if it contains a graph in the
Petersen family as a minor. The Petersen family consists of seven graphs obtained
from K6 by rY –moves and Yr–moves, as described in Figure 1. The rY –move and
the Yr–move preserve the IL property.

The property of being maxnil is, in a way, analogous to the property of being maximal
planar. While it is well known that every maximal planar graph with n vertices has
3n� 6 edges, an analogous statement for maxnil graphs does not exist. For example,
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rY

Yr

Figure 1: rY – and Yr–moves.

start with a maximal planar graph G and add one vertex v together with all the edges
from v to the vertices of G. Such a graph is maxnil by [11], and if it has n vertices,
then it has 4n� 10 edges. In fact, 4n� 10 is an upper bound on the number of edges
of a maxnil graph on n vertices. This follows from work of Mader [7], who proved that
having more than 4n� 10 edges implies the existence of a K6 minor, which implies
the graph is IL.

On the other hand, Jørgensen [5] and Dehkordi and Farr [3] constructed maxnil graphs
with n vertices and 3n� 3 edges. Jørgensen’s maxnil graphs are obtained from the
Jørgensen graph in Figure 2, left, by subdividing the highlighted edge incident to the
vertex y and then adding edges that connect every new vertex to u and v. We denote
the graph obtained this way through i subdivisions by Ji for i � 1. See Figure 2, right.

Recently, Aires [1] found a family of graphs with fewer than 3n� 3 edges. For each
value n� 13 with n� 3 (mod 10), he constructed a maxnil graph with 14

5
n� 27

5
edges.

He also proved that, if G is a maxnil graph with n � 5 vertices and m edges, then
m� 2n. This bound is sharp: the maxnil graph Q.13; 3/ described by Maharry [8] has
26 edges and 13 vertices.

In Section 2, we present two constructions of maxnil graphs. The first one is a family
of maxnil graphs with n� 10 vertices and 3n� 5 edges. This construction builds upon
a maxnil graph on 10 vertices and 25 edges and uses edge subdivisions. The second
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Figure 2: Left: the Jørgensen graph. Right: the graph Ji in Jørgensen’s 3n� 3 family.
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construction significantly improves on Aires’ result on the number of edges. Using
clique sums of copies ofQ.13; 3/, we construct examples with a smaller “edge-to-vertex
ratio”, as in the following theorem:

Theorem For each n � 13, there exists a maxnil graph G with n vertices and m <
25
12
n� 1

4
edges.

In Section 3, we study the properties of maxnil graphs under clique sums. Some of
these results are used in the constructions of Section 2. We give sufficient and necessary
conditions for when the clique sum of two maxnil graphs over K2, K3 or K4 is maxnil.
Jørgensen [5] studied clique sums of graphs that are maximal without a K6 minor. We
give examples showing that the class of maxnil graphs and the class of graphs that are
maximal without a K6 minor are distinct.

2 Two families of maxnil graphs

We note that the Jørgensen graph is 2–apex, ie removing the vertices u and v leaves
a planar graph P. Furthermore, the embedding of P in R2 shown in Figure 2, left,
has no separating cycles, ie for every cycle C in P, one of the components of R2 nC

contains no vertices of P. These properties are generalized in the next lemma, which
we use to prove the graphs in the 3n� 5 family are nIL.

Lemma 1 Let G be a graph with two nonadjacent vertices u; v such that there exists
an embedding † of G � fu; vg in R2, where , for every cycle C in †, R2 nC has a
component X such that X [ C separates u and v (ie every path in G from u to v
contains a vertex in X [C ). Then embedding u as .0; 0; 1/ and v as .0; 0;�1/ and
connecting each of them to its neighbors in † with straight edges yields a linkless
embedding of G in R3.

Proof Let � denote the embedding of G as described in the lemma, and let K [K 0

be a 2–component link in �. We consider two cases.

Case 1 (neither K nor K 0 contains both u and v) Then we have three subcases: zero,
one or both of K and K 0 are in †. In each of these three subcases it is easy to see that
K [K 0 is a trivial link. We prove this for one of the three subcases here; the other
two are similar and easier. Suppose K contains u but not v, and K 0 � †. Then K
consists of two edges incident to u and a path P �†. Connecting u with straight line
segments to every point in P gives us a �–panel for K. On the other hand, K 0 bounds
a disk D in R2. We isotop D, while keeping its boundary fixed, by pushing its interior
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slightly below R2, to make it disjoint from K (since K contains no points below R2).
It follows that K [K 0 is a trivial link.

Case 2 (one of the link’s components, say K, contains both u and v) Then K 0 �†.
So R2 nK 0 has two components such that one of them, X, separates u and v. Therefore
all vertices of K except u and v lie in X. Now, K has exactly two vertices, call them a

and b, that are adjacent to u, and two vertices, c and d , adjacent to v. Note that fa; bg
is not necessarily disjoint, or even distinct, from fc; dg. Furthermore, K \X consists
of two components, P1 and P2, each of which is a path of length zero or greater. We
can assume a; c 2 P1 and b; d 2 P2. We consider three subcases.

Case 2.1 (a D c and b D d ) Join a to b by an arc ˇ � X (not necessarily in †),
and then connect each of u and v by straight line segments to every point in ˇ. See
Figure 3, left. This gives us a disk bounded by K and disjoint from K 0. Similarly to
Case 1 above, K 0 also bounds a disk disjoint from K. Hence K [K 0 is a trivial link.

Case 2.2 (a D c and b ¤ d ) Join a to each of b and d by disjoint arcs ˇ and ı
respectively, both in X, such that ˇ [ ı [P2 is a simple closed curve. See Figure 4,
right. Connect each of u and v by straight line segments to every point in ˇ and ı
respectively. This gives us two disks whose union with the disk bounded by ˇ[ ı[P2

in X is a disk bounded by K and disjoint from K 0. As before, K 0 bounds a disk disjoint
from K. Hence, K [K 0 is a trivial link.

Case 2.3 (a¤ c and b ¤ d ) This case is similar to Case 2.2, except that we join a
to b and c to d by disjoint arcs ˇ and ı in X such that ˇ [ ı [P1 [P2 is a simple
closed curve.

2.1 The 3n � 5 family

We construct a family of graphs with n vertices and 3n� 5 edges for n � 10. This
family is obtained from the graph G pictured in Figure 4, left, through a sequence of
subdivisions and edge additions. The graph G is obtained from the Jørgensen graph
by splitting (the opposite of contracting edges) the vertices a and b into the edges ad
and bc. See Figures 2, left, and 4, left. With the notation in Figure 4, left, construct
the graph G1 by subdividing the edge xy with a new vertex z1, then adding edges z1u

and z1v. Construct graphs Gi for i � 2 as follows: subdivide the edge zi�1y of Gi�1

with a new vertex zi , then add edges ziu and ziv to Gi�1. Notice that Gi has one
more vertex and three more edges than Gi�1. The graph Gi has 10C i vertices and
25C 3i D 3.10C i/� 5 edges. We note that the graphs Gi can also be obtained by
successive splittings of the vertex y into the edge yzi .

Algebraic & Geometric Topology, Volume 23 (2023)
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uD.0; 0; 1/

K

aDc bDd

vD.0; 0;�1/

ˇ
K 0 R2

uD.0; 0; 1/

K

aDc b
d

vD.0; 0;�1/

P2

ˇ

ı

K 0 R2

Figure 3: Left: configuration for Case 2.1. Right: configuration for Case 2.2.

Proposition 2 The graphs G and Gi in Figure 4 are linklessly embeddable.

Proof It is straightforward to check that these graphs satisfy the hypotheses of Lemma 1
and hence are nIL.

Proposition 3 The graph G in Figure 4, left , is maxnil.

Proof Since G is linklessly embeddable, it remains to show that adding any edge to G
gives an IL graph.

Note that both of the minors G=.ab [ cd/ and G=.ad [ bc/ are isomorphic to the
Jørgensen graph. If an edge e other than bd is added to G �fu; vg, then e is an edge
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Figure 4: Left: the graph G is maxnil with 10 vertices and 25 edges. Right:
the graph Gi is obtained through i edge subdivisions and edge additions.
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in .GC e/=.ab[ cd/ or .GC e/=.ad [ bc/. Thus GC e contains a minor that itself
contains the Jørgensen graph plus an edge.

Since the Jørgensen graph is maxnil, GC e is IL. The same holds if e D uv is added
to G. If the edge bd is added, then contracting the edges dt , cz, ux and vy creates a
K6 minor of GC bd .

Lastly, suppose an edge e from u or v to G � fu; vg is added; by symmetry, we can
assume that eD ua or eD vb. If eD ua, then contracting the edges cd , dt , by and uz
creates a K6 minor of GCua. If eD vb, then contracting the edges ax, cz, du and dt
creates a K6 minor of GC vb.

Proposition 4 All graphs Gi for i � 1 are maxnil.

Proof Since Gi is linklessly embeddable, it remains to show that adding any edge
to Gi gives an IL graph. Adding any edge e different from xy and disjoint from
fz1; z2; : : : ; zig to Gi gives a graph Gi C e that contains GC e as a minor (obtained
by contracting the path xz1z2 : : : zi ). Since G is maxnil, GC e is IL and so is Gi C e.
Adding an edge e that is either xy or has at least one endpoint in fz1; z2; : : : ; zig to Gi

gives a graph GiCe that contains JiCe as a minor (obtained by contracting the edges
ad and bc). Since Ji is maxnil, Ji C e is IL and so is Gi C e.

2.2 The Q.13; 3/ family

A graph G is called triangular if each edge of G belongs to at least one triangle. In a
nontriangular graph, an edge that is not part of a triangle is a nontriangular edge. In
Section 3, we study the properties of maxnil graphs under the operation of clique sum
(defined in Section 3). For the construction presented in the next theorem we use the
result of Lemma 10 about clique sums of maxnil graphs over K2.

Theorem 5 For each n � 13, there exists a maxnil graph G with n vertices and
m< 25

12
n� 1

4
edges.

Proof The construction is based on the maxnil graph Q13;3 described by Maharry [8].
See Figure 5, left. This graph has 13 vertices and 26 edges, and it is triangle free.

For each n with 13� n� 39, we construct a set of maxnil graphs with n vertices and
2n edges by adding n� 13 new vertices, and then choosing n� 13 edges in Q13;3 and
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Figure 5: Left: Q13;3 is a maxnil graph with 13 vertices and 26 edges. Right:
a maxnil graph with 17 vertices and 34 edges obtained from Q13;3 by adding
four vertices of degree 2 and eight edges.

connecting the two endpoints of each of them to one of the new vertices. Equivalently,
we are taking the clique sum of Q13;3 with n�13 disjoint triangles over n�13 copies
of K2. See Figure 5, right. By Lemma 10, the resulting graph is maxnil.

The graph on 39 vertices obtained this way is triangular, so the construction cannot
proceed further. To build graphs with a larger number of vertices, we use multiple copies
of Q13;3 joined along an edge (clique sum over K2). Consider k � 1 copies of Q13;3

and choose one edge in each copy. Then join the k graphs together by identifying the
k chosen edges into one edge. This graph, which we denote by Hk , is maxnil (by
repeated application of Lemma 10) and has 11kC 2 vertices and 25kC 1 edges. All
edges of Hk are nontriangular and adding vertices of degree 2 (as above) along any
subset of the edges of Hk gives a maxnil graph.

For n � 13, let k D
˙

1
36
.n� 3/

�
and add n� .11k C 2/ vertices of degree 2 along

any n� .11k C 2/ edges of Hk . With every added vertex of degree 2, the number
of edges is increased by 2. This gives a maxnil graph with n vertices and m D
.25kC 1/C 2Œn� .11kC 2/�D 2nC 3k� 3 edges. Moreover,

mD 2nC 3
˙

1
36
.n� 3/

�
� 3 < 2nC 3

�
1

36
.n� 3/C 1

�
� 3D 25

12
n� 1

4
:

Remark 6 The above shows there exist maxnil graphs of arbitrarily large order n with
an edge-to-vertex ratio of less than 25

12
� 1=.4n/. Whether this edge-to-vertex ratio can

be lowered further is an open question.
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3 Clique sums of maxnil graphs

In this section we study the properties of maxnil graphs under taking clique sums. A
set S � V.G/ is a vertex cut set of a connected graph G if G �S is disconnected. We
say a vertex cut set S � V.G/ is minimal if no proper subset of S is a vertex cut set
of G. A graph G is the clique sum of G1 and G2 over Kt if V.G/D V.G1/[V.G2/,
E.G/D E.G1/[E.G2/ and the subgraphs induced by V.G1/\ V.G2/ in both G1

and G2 are complete of order t . Since the vertices of the clique over which a clique
sum is taken form a vertex cut set in the resulting graph, the vertex connectivity of
a clique sum over Kt is at most t . For a set of vertices fv1; v2; : : : ; vkg � V.G/,
hv1; v2; : : : ; vkiG denotes the subgraph of G induced by this set of vertices. By abuse
of notation, the subgraph induced in G by the union of the vertices of subgraphs
H1;H2; : : : ;Hk is denoted by hH1;H2; : : : ;HkiG .

Holst, Lovász and Schrijver [4, Theorem 2.10] studied the behavior of the Colin de
Verdière �–invariant for graphs under clique sums. Since a graph G is nIL if and only
if �.G/� 4 [6; 10], their theorem implies the following:

Theorem 7 (Holst, Lovász and Schrijver [4]) If G is the clique sum over S of two
nIL graphs , then G is IL if and only if one can contract two or three components of
G �S so that the contracted nodes together with S form a K7 minus a triangle.

Theorem 7 implies that, for t � 3, the clique sum over Kt of nIL graphs is nIL. While
Theorem 7 shows when a clique sum is nIL, it does not establish when a clique sum of
maxnil graphs is maxnil.

Lemma 8 Any maxnil graph is 2–connected.

Proof Let G be a maxnil graph. If G is disconnected, let A and B denote two of its
connected components. Let a 2 V.A/ and b 2 V.B/. Then GCab is a nIL graph, as it
can be obtained by performing two consecutive clique sums over K1 of nIL summands,
namely

GC ab D A[fag ab[fbg .G �A/:

But this contradicts the maximality of G.

If the vertex connectivity of G is one, assume x 2 V.G/ is a cut vertex; that is,
G �fxg D AtB, with A and B nonempty, and no edges between vertices of A and
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vertices of B. Let a 2 V.A/ and b 2 V.B/ be neighbors of x in G. Then GC ab is
nIL, as it can be obtained by performing two consecutive clique sums over K2 of nIL
summands. If � denotes the triangle axb,

GC ab D hA; xiG [ax �[xb hB; xiG :

But this contradicts the maximality of G.

Lemma 9 Let G be a maxnil graph with a vertex cut set S D fx; yg, and let
G1; G2; : : : ; Gr denote the connected components of G � S. Then xy 2 E.G/ and
hGi ; SiG is maxnil for all 1� i � r .

Proof By Lemma 8, x and y are distinct and each of them has at least one neighbor in
eachGi . Suppose xy …E.G/. LetG0DGCxy andG0i DhGi ; SiG0 . Then, for every i ,
G0i is a minor ofG since, if we pick a j ¤ i and in hGi ; Gj ; SiG contractGj to x, we get
a graph isomorphic to G0i . So G0i is nIL. Then, by Theorem 7, G0DG01[xy � � �[xyG

0
r

is nIL, contradicting the assumption that G is maxnil. So xy 2E.G/.

For each i , we repeatedly add new edges to hGi ; SiG , if necessary, to get a maxnil
graph Hi . Then H WD H1 [xy � � � [xy Hr is nIL and contains G as a subgraph, so
H DG and every hGi ; SiG is maxnil.

Lemma 10 Let G1 and G2 be maxnil graphs. Pick an edge in each Gi and label it e.
Then G DG1[e G2 is maxnil if and only if e is nontriangular in at least one Gi .

Proof The graph G is nIL by Theorem 7. Suppose e is nontriangular in at least one
Gi , say G2. Denote the endpoints of e in G by x and y. To prove G is maxnil, it is
enough to show that GC b1b2 is IL for all bi 2 V.Gi / n fx; yg. By Lemma 8, G1 is
2–connected, so each of x and y has at least one neighbor in G1. So, if we contract
G1 to b1 and then contract b1b2 to b2, we obtain a graph G02 that contains G2 as a
proper subgraph, since b2x and b2y are both in G02, while e is nontriangular in G2.
So G02 is IL since G2 is maxnil. But G02 is a minor of G, which is nIL, so we have a
contradiction.

To prove the converse, suppose e is triangular in G1 and G2. Let ti 2V.Gi / be adjacent
to both endpoints of e. Let K be a complete graph on four vertices, with vertices
labeled x, y, t1 and t2. Denote the triangles induced by x, y and ti in K and in Gi

by �i . Then, by Theorem 7, G0 WD G1 [�1
K [�2

G2 is nIL. But G0 is isomorphic
to GC t1t2, so G is not maxnil.
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Lemma 11 Let G be a maxnil graph with vertex connectivity 3 and a vertex cut set
S D fx; y; zg. Let G1; G2; : : : ; Gr denote the connected components of G �S. Then
hSiG 'K3 and hGi ; SiG is maxnil for all 1� i � r .

Proof Suppose hSiG 6' K3. Let G0 be the graph obtained from G by adding one
or more edges to hSiG so that S induces a triangle T in G0. For 1 � i � r , let
G0i D hGi ; T iG0 . We see that G0i is nIL as follows. Pick any j ¤ i and, in the graph
hGi ; Gj ; SiG , contract Gj to an arbitrary vertex v in Gj . Then v is connected to each
of x, y and z since G is 3–connected and hence each of x, y and z has at least one
neighbor in Gj . The graph Mi obtained this way is a minor of G, and hence is nIL.
Performing a rY –move on T �G0i we obtain a subgraph of Mi . Since Mi is nIL, so
is G0i . By Theorem 7, G0 DG01[T � � � [T G

0
r is nIL, which contradicts the maximality

of G. So T D hSiG 'K3.

To show hGi ; SiG is maxnil, repeatedly add new edges to it, if necessary, to get a
maxnil graph Hi . Then H WDH1[T � � � [T Hr is nIL by Theorem 7 and contains G
as a subgraph, so H DG and every hGi ; SiG is maxnil.

Let G be a graph and let T D hx; y; z; tiG be an induced K4 subgraph (tetrahedral
graph). We say T is strongly separating ifG�T has at least two connected components
C1 and C2 such that every vertex of T has a neighbor in each Ci .

Lemma 12 Let G1 and G2 be maxnil graphs and let G D G1 [4G2 be the clique
sum of G1 and G2 over a K3 subgraph �D hx; y; ziG . Assume � is a minimal vertex
cut set in G. Then G is maxnil if and only if , for some i 2 f1; 2g, every induced K4

subgraph of the form hx; y; z; tiGi
is strongly separating.

Proof By Theorem 7, G WD G1 [�G2 is nIL. Then G is maxnil if and only if, for
every t1 2 V.G1/ nV.�/ and t2 2 V.G2/ nV.�/, the graph G0 WDGC t1t2 is IL.

First, suppose for some i at least one of x, y and z is not connected to ti , say
xt2 … E.G2/. Contracting G1 � fy; zg to x produces G2 C t2x as a minor of G0.
Since G2 is maxnil, this minor is IL, and hence G0 is IL, as desired. So we can assume
hx; y; z; ti iGi

is a tetrahedral graph for both i D 1; 2.

Assume every tetrahedral graph in G2 that contains � is strongly separating. So
G2 � hx; y; z; t2iG2

has at least two connected components each of which, when
contracted to a single vertex, is adjacent to all four vertices x, y, z and t2. In Figure 6,
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x
c2

t1 y
c1

t2

z

Figure 6: A K7 minus a triangle minor of the graph G.

these vertices are denoted by c1 and c2. Now, if the component of G1 � � that
contains t1 is contracted to t1, this vertex too will be adjacent to x, y, z and t2. So
we get a minor of G0 isomorphic to K7 minus a triangle, which is IL since it contains
a Petersen family graph (the one obtained by one rY –move on K6) as a minor. It
follows that G0 is IL, and therefore G is maxnil.

To prove the converse, for i D 1; 2 let ti be a vertex in Gi such that Ti WD hx; y; z; ti iGi

is a tetrahedral graph that is not strongly separating. Let G0 D G C t1t2. Then
G0 DG1[T1

hx; y; z; t1; t2iG0 [T2
G2. Each of these clique sums is over a K4, each

summand is nIL, and each of T1 and T2 is nonstrongly separating; so, by Theorem 7,
G0 is nIL, and hence G is not maxnil.

Unlike the vertex connectivity 2 and 3 cases, it is not true that a minimal vertex cut
set in a 4–connected maxnil graph must be a clique. The four neighbors of b in the
graph depicted in Figure 4, left, form a vertex cut set, but the graph induced by its
vertices has exactly two edges. The four neighbors of any vertex in the graph Q13;3 in
Figure 5, left, form a discrete vertex cut set. However, if a maxnil graph G has vertex
connectivity 4, the following lemma provides some restrictions on the shape of the
subgraph induced by the vertices of any minimal vertex cut set:

Lemma 13 Let G be a maxnil graph and assume fx; y; z; tg is a minimal vertex cut.
Let S D hx; y; z; tiG . Then S is either a clique or a subgraph of a 4–cycle.

Proof Assume that S is neither a clique nor a subgraph of a 4–cycle. This implies
that, if every vertex of S has degree less than 3, then S contains K3 as a subgraph; and
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if S has a vertex of degree at least 3, then it contains K1;3 as a subgraph. Below, we
consider these two cases separately. In both cases, we use the fact that since fx; y; z; tg
is a minimal vertex cut set in G, each of x, y, z and t has at least one neighbor in each
component of G �S.

Case 1 (S has a K3 subgraph) We can assume that x, y and z induce a triangle in G.
If G �S has at least three connected components, contracting each of them to a single
node would produce a minor of G which has a subgraph isomorphic to G7, the graph
in the Petersen family obtained by one rY move on K6. This contradicts the fact that
G is nIL.

It follows that G � S has at most two components, G1 and G2. For each i D 1; 2,
contract hGi ; tiG to t to produce a minor of G, denoted by G0i , which must be nIL.
Then fx; y; z; tg induces a 4–clique K in both G01 and G02. By Theorem 7, the clique
sum G0 DG01[K G

0
2 is nIL since G0�K has only two components and K has only

four vertices. But G0 strictly contains G as a subgraph; this implies G is not maxnil, a
contradiction.

Case 2 (S has a K1;3 subgraph) We can assume that t is adjacent to x, y and z in G.
If G �S has at least three connected components, contracting each of them to a single
node would produce a minor of G containing a subgraph isomorphic to K3;3;1; thus,
G is IL. So G �S DG1 tG2, with G1 and G2 connected. For i D 1; 2, contracting
each of Gi to a single node ti , deleting the edge ti t , deleting any existing edges of
hx; y; ziG , and then performing a Yr–move at ti produces a nIL graph, denoted by G0i .
Let G0 DG01[K4

G02 be the clique sum over the complete graph with vertices x, y, z
and t . By Theorem 7, G0 is nIL since G0�S DG1tG2; but G0 strictly contains G as
a subgraph, a contradiction.

Lemma 14 Let G DG1[S G2 be the clique sum of maxnil graphs G1 and G2 over
S D hx; y; z; tiG 'K4. Assume S is a minimal vertex cut set in G. Then G is maxnil
if and only if , in both G1 and G2, S is not strongly separating.

Proof If S is strongly separating in G1 or G2, then G�S has at least three connected
components and contracting each of them to a single node produces a minor isomorphic
to K7 minus a triangle.

If, in both G1 and G2, S is not strongly separating, then G�S has only two connected
components. Contracting each of the two components to a single node produces K6

Algebraic & Geometric Topology, Volume 23 (2023)
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Figure 7: A maxnil graph that is a clique sum over K5.

minus an edge as a minor (not K7 minus a triangle); hence, G is nIL by Theorem 7.
Adding an edge between a vertex in G1 �S and a vertex in G2 �S and contracting
G1�S and G2�S to single nodes produces a K6 minor. It follows that G is maxnil
in this case.

The graph G of Figure 7 is maxnil since G � fug is a maximal planar graph. If
S D hx; y; z; t; ui, G1 D ha; x; y; z; t; ui and G2 D hb; x; y; z; t; ui, then S ' K5,
G1 'G2 'K

�
6 (K6 minus one edge) and G DG1[S G2. This shows it is possible

for the clique sum of two maxnil graphs over S 'K5 to be nIL (and maxnil). However,
no clique S of order 5 can be a minimal vertex cut set in a nIL graph G, since then any
connected component of G�S would form a K6–minor together with S, which would
imply G is IL. For t � 6, any clique sum over Kt is IL since K6 is IL.

Jørgensen studied clique sums of graphs that are maximal without a K6 minor [5].
These are graphs that do not contain a K6 minor and a K6 minor is created by the
addition of any edge. The class of maxnil graphs and the class of graphs that are
maximal without a K6 minor are not the same, as shown in the following proposition:

Proposition 15 The graph in Figure 8 is maxnil , and it is not maximal without a K6

minor.

Proof The graph G in Figure 8 is obtained by adding vertices v and w to the plane
triangulation H : the vertex v connects to all nine vertices of H and the vertex w
connects to the vertices a, b and c of H. The graph H C v is maxnil since it is a cone
over a maximal planar graph [11]. The graph G is the clique sum over K3D ha; b; ciG

of maxnil graphs H C v and K4 D ha; b; c; wiG . The graph ha; b; c; viHCv is the
only induced K4 subgraph in H Cv containing a; b and c and it is strongly separating

Algebraic & Geometric Topology, Volume 23 (2023)
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Figure 8: A maxnil graph G (left) that is not maximal without a K6 minor is
obtained by adding two vertices to a plane triangulation with nine vertices
(right).

in H Cv. So, by Lemma 12, G is maxnil; in particular, it has no K6 minor. The graph
GCvw is a clique sum overK4Dha; b; c; viG of graphsHCv andK5Dha; b; c; v; wi,
both of which are K6 minor free. Hence, by [5], GC vw is K6 minor free, so G is
not maximal without a K6 minor. The graph GC vw has order 11 and size 34, so it is
maximal without a K6 minor by Mader’s result [7], since 34D 4� 11� 10.

Remark 16 Starting with the graph G in Proposition 15, one can construct graphs
Gn with n � 11 vertices that are maxnil but not maximal without a K6 minor. Take
G11DG and constructG11Ck fromG by triangulating the disk bounded by the triangle
efg with k new vertices, and then adding edges between v and these new vertices. The
argument used in the proof of Proposition 15 shows that Gn for n� 11 is maxnil but
not maximal without a K6 minor. Furthermore, nD 11 is the minimal order of a graph
with this property, ie every maxnil graph with n� 10, vertices is maximal without a
K6 minor. We used Mathematica to generate all 136 maxnil graphs of orders between
6 and 10 and we confirmed that all of them are maximal without a K6 minor.
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