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Legendrian large cables and new phenomenon for
nonuniformly thick knots

ANDREW MCCULLOUGH

We define the notion of a knot type having Legendrian large cables and show that
having this property implies that the knot type is not uniformly thick. We then show
that there exists an infinite family of ribbon knots that have Legendrian large cables.
These knots fail to be uniformly thick in several ways not previously seen. We also
give a general construction of ribbon knots, and show when they give similar such
examples.

57K10, 57K33, 57R65

1 Introduction

The contact width w.K/ of a knot K � .S3; �std/ was defined by Etnyre and Honda
in [4] as follows.1 An embedding � WS1�D2 ,!S3 is said to represent K if the core
curve of �.S1 �D2/ is isotopic to K. (To simplify notation, we will not distinguish
between S1�D2 and its image under �.) Define the slope of homotopically nontrivial
curves on @.S1 �D2/ by identifying @.S1 �D2/'R2=Z2, where the meridian has
slope1 and the longitude (which is well defined since K is inside S3) has slope 0.
Now define the contact width w.K/ as

w.K/D sup slope.�@.S1�D2//

where the supremum is taken over S1 �D2 ,! S3 representing K with @.S1 �D2/

convex.

Etnyre and Honda [4] also defined K to have the uniform thickness property if

(1) any solid torus representing the knot type K can be thickened to a standard
neighborhood of a Legendrian representative of K, and

1These definitions are slightly different than those originally made in [4] since we are using a different
slope convention in this paper; see Remark 1.1.
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2562 Andrew McCullough

(2) w.K/ is equal to the maximal Thurston–Bennequin invariant tb.K/ of Legen-
drian representatives of K.

Here a standard neighborhood N.L/ of a Legendrian knot L is an embedded solid
torus N.L/ representing L with convex boundary @N such that #�@N D 2 and
tb.L/D slope.�@N /. Standard neighborhoods are contact isotopic to any sufficiently
small tubular neighborhood N of L with convex boundary and #�@N D 2.

The usefulness of this property became evident when Etnyre and Honda showed in
the same work that if L� S3 is Legendrian simple and uniformly thick, then cables
of L are Legendrian simple as well. Recall that a knot type is Legendrian simple if
Legendrian knots in this knot type are completely determined (up to Legendrian isotopy)
by their Thurston–Bennequin invariant and rotation number. They also showed that if
the cables are sufficiently negative, then they too satisfy the uniform thickness property.
This allows that certain iterated cables of Legendrian simple knots are Legendrian
simple, for example.

Uniform thickness has become a key hypothesis in work since then. For example,
generalizing the above work on cables, Etnyre and Vértesi [6] showed that given a
companion knot L� S3 which is both Legendrian simple and uniformly thick, and a
pattern P � S1 �D2 satisfying certain symmetry hypothesis, the knots in the satellite
knot type PK may be understood.

Broadly, if one wants to classify Legendrian knots in a satellite knot type with companion
knot K � S3, and a pattern P � S1 �D2, then as a first step one needs to understand

(1) contact structures on the complement of a neighborhood N of K,

(2) contact structures on a neighborhood N of K, and

(3) a classification of Legendrian knots in the knot type of the pattern P in the
possible contact structures on N .

If K is uniformly thick, then N can always be taken to be a standard neighborhood of K

with dividing curves on the boundary of slope tb.K/ (ie maximal Thurston–Bennequin
invariant of K), which reduces the problem to items (1) and (3) above. Moreover, if K

is Legendrian simple and uniformly thick, then (1) is more or less known as well [4].
If K is not uniformly thick, then understanding satellites is much more complicated.

Similarly, uniform thickness can be useful in understanding contact surgery construc-
tions. A typical way to obtain a new contact 3–manifold is by removing a solid torus
in the knot type K, and gluing in some new contact solid torus. To understand the
new manifold, one needs to understand items (1) and (2) above, and the gluing map
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defining the surgery. If K is uniformly thick, then N can always be taken to be a
standard neighborhood of K with dividing curves on the boundary of slope tb.K/,
which simplifies (1) and (2) considerably.

On the other hand, there are knot types that are not uniformly thick. For such knot
types, it is important to understand in what ways they can fail to be uniformly thick.

1.1 New phenomenon for nonuniformly thick knots

Given a knot type K � S3, the contact width of K is

w.K/D supfslope.�@N / jN is a solid torus representing K with convex boundaryg:

We say a solid torus represents K if its core is in the knot type of K. The contact width
satisfies the inequality tb.K/� w.K/� tb.K/C 1; see [4].

Remark 1.1 A word about slope conventions: If � and � are the meridional and
longitudinal curves, respectively, on a torus T then Œ�� and Œ�� form a basis for H1.T /.
A .p; q/ curve, or a curve of slope q=p, will refer to any simple closed curve in T

that is in the homology class of pŒ��C qŒ��, where p; q 2 Z are relatively prime. This
is the opposite convention to the one used in several of the main references in this
paper, which were some of the first works in convex surface theory. However, it is
the convention that is standard in low-dimensional topology. We caution however that,
when the phrase “integer slope” is used, it would correspond to the phrase “one over
integer slope” in Etnyre and Honda [3; 4; 10] among others.

We are now in position to define uniform thickness. We say that a knot type K has the
uniform thickness property or is uniformly thick if

(1) tb.K/D w.K/, and

(2) every solid torus representing K can be thickened to a standard neighborhood of
a maximal tb representative of K.

By a standard neighborhood of a Legendrian knot L, we mean a solid torus neighbor-
hood N of L with convex boundary, and dividing set �@N consisting of two curves
with slope tb.L/.

In past work, it is shown that a knot type K can fail to have the uniform thickness
property in two ways. It can have neighborhoods whose slopes are larger than tb, as is
the case with the unknot U which has tb.U /D�1 and w.U /D 0. It can also happen
that there are neighborhoods with slope strictly less than tb, but that do not thicken.
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The first and only such examples are due to [4] and Etnyre, LaFountain and Tosun [5]
where it is shown that all positive torus knots Tp;q have tori N with slopes satisfying
slope.�@N / < tb.Tp;q/ but that do not thicken. Moreover, the contact structure on all
of these N is universally tight.

In what follows we will denote the set of Legendrian knots, up to isotopy, in the same
topological knot type as K by L.K/. We also use the convention that for a pair of
relatively prime integers p and q, the .p; q/ cable of K, that is, the knot type of a
curve of slope q=p on the boundary of a torus neighborhood of K, is denoted by Kp;q .
Notice that if p D˙1, then Kp;q is a trivial cable in the sense that it is isotopic to the
underlying knot K. The following theorem of Etnyre and Honda motivates us to define
some new terminology.

Theorem 1.2 (Etnyre and Honda [4]) If K � S3 satisfies the uniform thickness
property, then for jpj> 1 and any L 2 L.Kp;q/ we have tb.L/� pq.

We generalize this result in Lemma 3.3 below. Notice that if we have a uniformly thick
knot K and we fix a Legendrian representative L 2L.K/ with tb.L/D k, then there is
an isotopy of K which arranges that L is a trivial cable LDK1;k�1. But then we have
that tb.K1;k�1/D tb.L/D k ” k�1, so the inequality in Theorem 1.2 is not satisfied.

Definition 1.3 Given jpj > 1, we will say that a Legendrian cable L 2 L.Kp;q/ is
large if tb.L/ > pq, and call Kp;q Legendrian large if there exists large L 2 L.Kp;q/.
We will then say that K has Legendrian large cables, or has the Legendrian large cable
(LLC) property, if any of its nontrivial cables are Legendrian large.

Notice the example above indicates that if we allowed trivial cables, the LLC property
would be vacuous. Our main theorem relates the LLC property to uniform thickness.

Theorem 1.4 If K has Legendrian large cables , then there exist solid tori V DS1�D2

representing K such that � jV is virtually overtwisted. Moreover , V cannot be thickened
to a standard neighborhood of a Legendrian knot , and so K is not uniformly thick.

Recall that the term universally tight refers to a contact structure that is tight, and that,
when lifted to the universal cover, remains tight. If the lift becomes overtwisted, then
we will refer to the contact structure as virtually overtwisted.

Theorem 1.5 Given K, if there exists a slope q=p > tb.K/ with jpj > 1 such that
Kp;q is Legendrian large , then w.K/ > tb.K/.
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m� 1

Figure 1: The ribbon knots Km. There are m� 1 right-handed full twists.

Question 1 Are there knots K and slopes q=p < tb.K/ such that Kp;q is Legendrian
large?

Question 2 If � is a virtually overtwisted contact structure on S DS1�D2, for which
p and q is there a Legendrian .p; q/ knot L in S with tw.L/ > pq?

In [15], Yasui gave some interesting examples of ribbon knots, which we will denote
by Km, shown in Figure 1. Yasui [15] shows that these knots have tb.Km/D�1. In
what follows, we will be concerned with integers m < 0. Building on his work, we
observe that Km

.�n;1/
is Legendrian large whenever m� �5 and 1< n�

�
1
4
.3�m/

˘
.

This leads to the following theorem.

Theorem 1.6 The knots Km in Figure 1, with m � �5, are not uniformly thick in
.S3; �std/. In particular , there are solid tori T representing Km such that

slope.�@T / > tb.Km/

and �jT is tight , but virtually overtwisted.

Remark 1.7 Previously, there were no known examples of K in .S3; �std/ with
w.K/ > tb.K/ except for the unknot. These are also the first examples of solid tori in
.S3; �std/ with virtually overtwisted contact structures.

It would be interesting to know what w.Km/ is, and what the possible nonthickenable
tori in the knot type of Km are. We have the following partial result, following from
Theorem 1.6 and its proof.

Proposition 1.8 For m� �5, the knots Km in Figure 1 have

w.Km/�
�1�

1
4
.3�m/

˘ :
Algebraic & Geometric Topology, Volume 23 (2023)
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The origin of the examples in Theorem 1.6 come from an interesting connection between
contact structures and the famous cabling conjecture first observed by Lidman and
Sivek in [12] where it is shown that for a knot K with tb.K/ > 0, Legendrian surgery
on K — ie .tb.K/�1/–surgery — never yields a reducible manifold. They conjectured
that this might be true with no condition on tb.K/. This is equivalent to the following
conjecture for any K in S3.

Conjecture 1.9 For a Legendrian representative in the knot type L 2 L.Kp;q/, we
have tb.L/� pq.

If tb.L/ > pq for such an L, then there exists L0 with tb.L0/DpqC1 (we can always
stabilize to achieve this). Legendrian surgery on this L0 would then yield a reducible
manifold; see Moser [14].

Theorem 1.10 (Yasui [15]) There exist infinitely many Legendrian knots in .S3; �std/

(see Figure 1), each of which yields a reducible 3–manifold by a Legendrian surgery in
the standard tight contact structure. Furthermore , K can be chosen so that the surgery
coefficient is arbitrarily less than tb.K/.

Yasui shows that for infinitely many pairs of integers m; n2Z with m��5, Legendrian
surgery on the cables Km

n;�1
yields a reducible manifold. This shows Lidman and Sivek’s

conjecture to be false, and stands in contrast with Theorem 1.2 of Etnyre and Honda.

We can now easily see that Km — see Figure 1 — does not have the uniform thickness
property. The interesting features of how Km fails to be uniformly thick, given in
Theorem 1.6, require much more work.

In [15], Yasui shows that for integers n� 1
4
.3�m/, the cables Km

n;�1 have the property
that tb.Km

n;�1/D �1. But by Theorem 1.2, if Km is uniformly thick, then we must
have that tb.Km

n;�1
/��n. So, for any m��5 and any 1< n�

�
1
4
.3�m/

˘
, we arrive

at a contradiction. This addresses the first assertion of Theorem 1.6.

Theorem 1.6 can be used to address the following conjecture.

Conjecture 1.11 If K � S3 is fibered , then K is uniformly thick if and only if
�K ¤ �std, where �K is the contact structure induced by an open book decomposition
of K.

Building on our above work, Hyunki Min [13] recognized that the Km are counter-
examples. Min showed that the Km are all fibered. We also know that Km are slice
(since they are ribbon knots) and not strongly quasipositive (since they are obtained
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K

K

Figure 2: An example ribbon knot before running the algorithm in Theorem 1.12
(left), and after running the algorithm (right).

by attaching negative bands to two parallel disks), which implies that �K ¤ �std by a
result of Matthew Hedden [9, Proposition 2.1]. Theorem 1.6 tells us that the Km are
not uniformly thick however, so at least one direction of this conjecture is false. The
other direction remains an interesting open question.

1.2 Ribbon knots and Legendrian large cable examples

Yasui’s examples are all ribbon knots with Legendrian large cables, and can be general-
ized to other families of ribbon knots. We first observe a folk result that any ribbon
knot can be described in a simple way.

Theorem 1.12 Suppose K � S3 is an arbitrary ribbon knot with n 2 N ribbon
singularities. Then there is an algorithm to construct a 2–handlebody for D4 having
n�1 or fewer 1–2–handle-canceling pairs such that there is an unknot U in the boundary
of the 1–subhandlebody which , after attaching the 2–handles , is isotopic to K.

A representation of a ribbon knot K as in Theorem 1.12 will be called a handlebody
picture for K. The proof of Theorem 1.12 will be given in Section 3. Figure 2 gives an
example ribbon knot and its image after running the algorithm.

Theorem 1.13 Given an arbitrary ribbon knot K, we can associate to it a handlebody
picture. If it is possible to Legendrian realize the attaching circles of the 2–handles so
that the handle attachments are Stein (ie framings are all tb� 1), and also Legendrian
realize K so that tb.K/ D �1, then K is a Legendrian ribbon knot that bounds a
Lagrangian disk in .B4; !std/.

Proof Given a handlebody picture for K, there is an unknot U in the boundary of
the 1–subhandlebody which, by hypothesis, can be realized with tb.U /D�1. Such

Algebraic & Geometric Topology, Volume 23 (2023)
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SW SE
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Figure 3: Possible examples of knots with Legendrian large cables. The
ellipses are meant to indicate a finite number of strands bundled as shown,
while T is an arbitrary Legendrian tangle.

an unknot bounds a Lagrangian disk in the 1–subhandlebody. Since the 2–handles are
attached disjointly from this disk, K bounds a Lagrangian disk after they are attached,
that is, K bounds a Lagrangian disk in .B4; !std/.

Conway, Etnyre and Tosun [1] make use of this fact to describe when contact surgery
on a knot in .S3; �std/ preserves symplectic fillability.

Corollary 1.14 Given an arbitrary ribbon knot K, we can associate to it a handlebody
picture. If it is possible to Legendrian realize the attaching circles of the 2–handles so
that the handle attachments are Stein , Legendrian realize K so that tb.K/D�1, and
also arrange the local picture of K to be as in Figure 3, left , then K has Legendrian
large cables.

 

Figure 4: The steps in a Legendrian isotopy to change strands of type S into
strands of type N .

Algebraic & Geometric Topology, Volume 23 (2023)
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T
T

Figure 5: A Legendrian isotopy of the tangle T . In this example, strands of
type NE are assumed to have stabilizations.

Proof The proof is exactly the same as that of Yasui’s Theorem 1.3 [15, pages 7–13],
when there are only strands of type N , since everything in the arguments can be done
locally. The rest of the cases follow by Legendrian isotopy of Figure 3, left. For
example, we can change all strands of type S into strands of type N by the Legendrian
isotopy shown in Figure 4. We can also change all strands of types E and W into
strands of type N by even easier isotopies.

Remark 1.15 If the framings of the 2–handles allow stabilizations, then there are
more examples. Given an arbitrary ribbon knot K, we can associate to it a handlebody
picture. If it is possible to Legendrian realize the attaching circles of the 2–handles
so that the handle attachments are Stein, Legendrian realize K so that tb.K/ D �1,
arrange the local picture of K to be as in Figure 3, left, and arrange that there is a
stabilization on each of the strands of at least one group of strands NE , NW , SE ,
or SW , then K has Legendrian large cables. This is true since we can isotope the
stabilizations to have the form of Figure 5, left, Legendrian isotope the tangle T off to
the side as shown in Figure 5, right, and then apply Corollary 1.14.

Acknowledgements The author would like to express profound gratitude to his advisor
John B Etnyre for his patience, encouragement, and many helpful comments and
suggestions, without which this paper would not have been possible. He would also like
to extend thanks to James Conway for making him aware of Conjecture 1.11, and to
Sudipta Kolay, Hyunki Min, Surena Hozoori and Peter Lambert-Cole for many useful
and productive conversations.

2 Background

We will assume that the reader is familiar with Legendrian knots and basic convex
surface theory. Some excellent sources for this material are [3; 7; 10; 11]. We will
need to understand the twisting of a contact structure along a Legendrian curve with
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respect to two different framings. Suppose we are given a solid torus S � .S3; �/ with
convex boundary which represents the knot K. This just means that S D D2 � S1

and K D fptg � S1 for some point in int.D2/. Further suppose that we are given a
Legendrian .p; q/ curve L in S . Since L is null homologous in S3, there is a well
defined framing on L given by any Seifert surface †, and measuring the twisting
of � along L with respect to this framing gives us tw.LI†/ D tb.L/, that is, the
Thurston–Bennequin invariant of L. We can also find a boundary parallel torus T 2�S

containing L, and measure the twisting of � along L with respect to the framing coming
from T 2. We will denote this twisting by tw.LI @S/. The relationship between these
twistings is given by the expression

tw.LI @S/Cpq D tb.L/I
see [4].

Consider a contact structure � on T 2 � I with convex boundary, let T1 and T2 be its
two torus boundary components, and assume without loss of generality that

s1 D slope.�T1
/� slope.�T2

/D s2;

where �S denotes the dividing curves on a convex surface S . Then we will say that
� is minimally twisting if every convex, boundary parallel torus S � T 2 � I has
s1 � slope.�S /� s2. This is the same notion of minimal twisting that Honda defined
in [10]. We will also need to make use of his basic slices to decompose T 2 � I into
layers. Using the same notation as above, we will call .T 2 � I; �/ a basic slice if

(1) � is tight, and minimally twisting;

(2) Ti are convex and #�Ti
D 2;

(3) si form an integral basis for Z2.

Honda showed that, up to isotopy fixing the boundary, there are exactly two tight
contact structures on a basic slice, distinguished by their relative Euler classes in
H 2.T 2 � I; @.T 2 � I/IZ/.

The Farey tessellation, Figure 6, gives a convenient way to describe curves on T 2.

To construct the eastern half of the Farey tessellation, first label the north pole by 0D 0
1

,
the south pole by1D 1

0
, and connect them by an edge (by edge, we mean a hyperbolic

geodesic). Next, label the eastern most point that is midway between 0 and 1 by
1D 1

1
, as shown in Figure 6. Connect 1 by edges to 0 and1. For rational numbers on

the tessellation with the same sign, we can define an addition on the Farey tessellation
by a=bC c=d D .aC c/=.bC d/, locate .aC c/=.bC d/ midway between a=b and
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�1 1

0

1

�1=3

�3

�1=2

�2

�2=3

�3=2

1=3

3

1=2

2

2=3

3=2

Figure 6: Farey tessellation.

c=d , and connect .aC c/=.bC d/ by edges with a=b and c=d respectively. Thus we
can fill in the rest of the positive side of the Farey tessellation by iterating this addition.
Notice that, if a=b and c=d are assumed to be an integral basis for Z2, then bothˇ̌̌̌

a aC c

b bC d

ˇ̌̌̌
D ad � bc D

ˇ̌̌̌
a c

b d

ˇ̌̌̌
D˙1

and, similarly, ˇ̌̌̌
aC c c

bC d d

ˇ̌̌̌
D˙1;

so any two points connected by an edge are an integral basis for Z2. Also notice that,
given two positive rational numbers a=b > c=d , there are exactly two other points with
edges to both a=b and c=d , namely .aC c/=.bC d/ and .a� c/=.b� d/.

To construct the western (negative) half of the Farey tessellation, first relabel the north
pole by 0D 0

�1
. Next, label the western most point that is midway between 0 and1

by �1D 1
�1

, as shown in Figure 6. Connect �1 by edges to 0 and1. Now using the
same addition we defined above, we can iteratively build up the negative side of our
Farey tessellation. Notice that the only point which was labeled twice was the north
pole, which is now given by 0

˙1
.

For any two points p1 and p2 on the Farey tessellation, we define the interval Œp1;p2�

to be the set of all points encountered starting from p1 and moving clockwise around
the tessellation until reaching p2. Given a clockwise sequence of three points connected
by edges p1, p2 and p3 on the Farey tessellation, we say that a jump from p2 to p3

is half maximal if p3 is the half way point of the maximum possible clockwise jump
one could make in the interval .p2;p1/. We will consider only clockwise paths in the

Algebraic & Geometric Topology, Volume 23 (2023)



2572 Andrew McCullough

C

C

C

C

�

Figure 7: Left: a consistent shortening. Right: a shortening which is not consistent.

Farey tessellation, where a path is a sequence of jumps along edges. We call a path
between two points s1; s2 2Q a continued fraction block if, after the first jump, every
jump is half maximal. Notice that, by construction, a path that is a continued fraction
block cannot be shortened. We will also need to consider decorated paths (ie paths
for which each jump gets a “C” or “�”). We can define an equivalence relation “�”
on decorated paths in the Farey tessellation which says that any two paths with the
same endpoints and which differ only by shuffling of signs within continued fraction
blocks are in the same class. The following result, due to Honda [10], and in a different
terminology Giroux [7], describes a relationship between contact structures on T 2 � I

and minimal decorated paths in the Farey tessellation. Given a manifold M and a
multicurve � in @M , let Tight.M; � / denote the set of isotopy classes of tight contact
structures on M with convex boundary such that � is a set of dividing curves for @M .
Similarly, given T 2 � I with boundary T1 t T2, and two multicurves �i on Ti , let
Tight.T 2 � I;T1[T2/ denote the set of tight, minimally twisting contact structures
on T 2 � I with convex boundary such that �i is a set of dividing curves for Ti .

Theorem 2.1 (Honda [10]) Given T 2�I with boundary T1tT2, and two multicurves
�i on Ti with #�i D 2 such that s1D slope.�1/� slope.�2/D s2, there is a one-to-one
correspondence

Tight.T 2
� I; �1[�2/$ fminimal decorated paths from s1 to s2g=�:

Given T 2 � I with a two-component multicurve on each of its two torus boundary
components, and with boundary slopes s1; s2 2Q, then any decorated path starting
from s1 and ending at s2 describes a contact structure on T 2�I . Each jump in the path
describes a basic slice, and therefore has two possible contact structures distinguished
by the relative Euler class. We then get T 2�I by concatenating these basic slices. For
more details, see [10]. It follows from Theorem 2.1 that within any continued fraction
block, shuffling the signs of the jumps results in isotopic contact structures.

Algebraic & Geometric Topology, Volume 23 (2023)
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Suppose we have a decorated path which can be shortened; see Figure 7. It follows
from Honda’s gluing theorem that if the two jumps which are being combined into a
single jump have different signs, then the contact structure on T 2� I described by this
path is overtwisted. If the signs agree, then the contact structure will be tight. For this
reason, we say that a shortening is consistent if the signs of the smaller jumps agree,
and make the following theorem owing to Honda.

Theorem 2.2 Given a decorated path in the Farey tessellation from s1 to s2, the
contact structure on T 2� I with convex boundary T1tT2, #�Ti

D 2, s1 D slope.�T1
/

and slope.�T2
/D s2 described by this path is tight if and only if every shortening is

consistent.

To classify the tight contact structures on solid tori, we will consider a slightly different
type of path. Let a truncated path be a decorated path, as defined above, with the
sign of the first jump omitted from consideration. In other words, the first jump is not
decorated. Suppose we have S1 �D2 with a two-component multicurve on its torus
boundary, and with boundary slope s2 2Q. If the meridian of @.S1 �D2/ has slope
s1 2Q, then we have the following classification. Given S1 �D2 with boundary T ,
and a multicurve � on T , let Tight.S1 �D2; � / denote the set of isotopy classes of
tight, minimally twisting contact structures on S1 �D2 with convex boundary, such
that � is a set of dividing curves for T .

Theorem 2.3 (Honda [10]) Given S1 �D2with boundary T , and a multicurve �
on T with #� D 2 such that s2D slope.� / and s1D slope.�/, where � is a meridional
curve for T ,

Tight.S1
�D2; � /$ fminimal truncated paths from s1 to s2g=�:

Theorem 2.4 (Honda [10]) (1) Given T 2 � I with boundary T1 t T2, and two
multicurves �i on Ti with #�i D 2 such that s1 D slope.�1/ � slope.�2/D s2, there
are exactly two tight contact structures on T 2 � I , and these contact structures are
universally tight. The paths describing these two structures are the same , one decorated
entirely by “C” , and the other decorated entirely by “�”.

(2) Given S1 �D2with boundary T , and a multicurve � on T with #� D 2 such
that s2 D slope.� /, and s1 D slope.�/, where � is a meridional curve for T , then ,
if s1 � s2 ¤ ˙1, there are exactly two tight contact structures on S1 �D2, and these
contact structures are universally tight. The paths describing these two structures are
the same , one decorated entirely by “C” , and the other decorated entirely by “�”. If
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s1 � s2 D ˙1, then there exists a unique tight contact structure on S1 �D2, and this
contact structure is universally tight.

It follows from Theorem 2.4 that if we have a path with a mixture of signs, then the
contact structure described by this path on either T 2 � I , or on S1 �D2, must be
virtually overtwisted.

3 Cables in solid tori

In this section, we will give the proof of Theorems 1.4, 1.5 and 1.6 and Proposition 1.8.
We would like to record and make use of the following result.

Theorem 3.1 (Etnyre and Honda [4]) Any cable in a standard neighborhood of a
Legendrian knot can be put on a convex torus.

Proposition 3.2 If � is a universally tight contact structure on a solid torus S with
convex boundary , then any Legendrian .p; q/ knot L� S has tw.LI @S/� 0.

We delay the proof of Proposition 3.2 to the end of this section, but use it here to give
proofs of our main theorems stated in the introduction.

Proof of Theorem 1.4 If K has Legendrian large cables, then there exists L2L.Kp;q/

such that tb.L/ > pq. Take a solid torus S representing K and containing L as a
.p; q/ curve. Perturb S to have convex boundary. By hypothesis, tw.LI @S/ > 0, so
by Proposition 3.2, �jS must be virtually overtwisted. Suppose that it were possible to
thicken S to a standard neighborhood zS of K. Then slope.�

@ zS / 2 Z, which implies,
by a result of Kanda [11], that �j zS is the unique tight contact structure on zS , and
moreover that �j zS is universally tight. But this is a contradiction since S � zS and �jS
is virtually overtwisted, so no such thickening exists. If K were uniformly thick, then
any neighborhood of K would be thickenable to a slope.tb.K// standard neighborhood
of K, which we have just seen is not possible.

Proof of Theorem 1.5 By assumption, there exists L2L.Kp;q/ such that tb.L/ >pq.
Stabilize L to obtain zL such that tb. zL/Dpq. There is a solid torus S representing K for
which zL� @S , and as discussed at beginning of Section 2, we see that tw. zLI @S/D 0.
We can therefore C 0 perturb a collar neighborhood N of zL in @S to be convex, and
then C1 perturb @S nN to obtain a solid torus zS representing K with convex boundary.
Since tw. zLI @ zS/D 0, and since slope. zL/D q=p, we must have that slope.�

@ zS /D q=p,
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owing to the fact that tw. zLI zS/D�1
2
j zL ��

@ zS j where C1 �C2 denotes the geometric
intersection number of two curves on a torus. But q=p > tb.K/ by assumption, so
w.K/ > tb.K/.

Proof of Theorem 1.6 In [15], Yasui shows that for integers n � 1
4
.3 �m/, the

cables Km
n;�1

have the property that tb.Km
n;�1

/ D �1. So, for any m � �5 and any
1< n�

�
1
4
.3�m/

˘
, we see that Km has Legendrian large cables L2L.Km

n;�1
/. Then,

by Theorem 1.4, Km is not uniformly thick and has virtually overtwisted neighborhoods,
and by Theorem 1.5 we have that w.Km/ > tb.Km/

Proof of Proposition 1.8 The slope of the cable Km
n;�1

is slope.Km
n;�1

/ D �1=n.
Whenever n � 1

4
.3�m/, we know there exist L 2 L.Km

n;�1/ which are Legendrian
large. Stabilize L to obtain zL such that tb. zL/D�n. There is a solid torus S representing
Km for which zL� @S , and we have seen that tw. zLI @S/D 0. Using the strategy of
the proof of Theorem 1.5, we can C 0 perturb a collar neighborhood N of zL in @S to
be convex, and then C1 perturb @S nN to obtain a solid torus zS representing Km

with convex boundary. Since tw. zLI @ zS/ D 0, and since slope. zL/ D �1=n, we must
have slope.�

@ zS /D�1=n, and therefore w.Km/� �1=n.

Now we will give a series of results leading to the proof of Proposition 3.2.

Lemma 3.3 If S is a solid torus with convex boundary, #�@S D 2, and slope.�@S /2Z

with its unique tight contact structure �, then any Legendrian .p; q/ knot L � S has
tw.LI @S/� 0.

Proof Notice that this follows immediately from Theorem 3.1, since S is a stan-
dard neighborhood, and any Legendrian curve L on a convex torus T must have
tw.LIT /D tw.LI @S/� 0. Alternatively, we can reason in the following way. Recall
that Kanda [11] showed that any solid torus with integer slope and two dividing curves
has a unique tight contact structure. Suppose that S is a solid torus with convex
boundary, #�@S D 2, and slope.�@S /D k 2 Z with its unique tight contact structure � ,
and that L � S is a Legendrian .p; q/ knot. Then S is a standard neighborhood of
a Legendrian core curve K. Any two standard neighborhoods are contactomorphic,
so we can find a neighborhood N � .S3; �std/ of a Legendrian unknot U � S3 with
tb.U / D �1, and a contactomorphism ' W S ! N which sends '.K/ D U . This
contactomorphism sends torus knots to torus knots, so our .p; q/ knot L is mapped to a
.p; q�p.kC1// knot '.L/, as one can easily check. But now '.L/ is a torus knot in
.S3; �std/, and Etnyre and Honda [3] have shown that tb.'.L//�p.q�p.kC1//. But
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Figure 8: An arbitrary disk with arcs.

we understand how to switch between the Seifert framing and the framing coming from
the torus @N , that is, tw.'.L/I @N / D tb.'.L//�p.q � .k C 1// � 0. This implies
that tw.LI @S/� 0, since N and S are contactomorphic.

We can strengthen Lemma 3.3 slightly by dropping the assumption that #� D 2.

Lemma 3.4 If S is a solid torus with convex boundary, and slope.�@S / 2 Z with any
tight contact structure � , then any Legendrian .p; q/ knot L� S has tw.LI @S/� 0.

Proof We will show that .S; �/ will embed in a tight contact structure . zS ; Q�/ that
satisfies the hypothesis of Lemma 3.3, and therefore show that tw.LI @S/ � 0. To
this end, we note that we can assume slope.�@S /D 0 by applying a diffeomorphism
to S . Recall from [10], that � is completely determined by the dividing set �D on
a meridional disk D of S . We will build a model situation for S in which we can
construct . zS ; Q�/. Since #�@S > 2 we see that #�D > 1. Suppose that we have a convex
disk D with an arbitrary collection of dividing curves � , as in Figure 8.

Let v be a vector field on D that guides the characteristic foliation. We can label the
regions in D n � as either ˙C or ˙� so that no adjacent pair share the same label.
There exists an area form ! on D which satisfies that ˙div! v > 0 on ˙˙. Assign a
1–form �D �v!; then we know from Giroux [7] that there exists a function u WD!R

Figure 9: An annulus has been attached, and the number of curves has been
reduced by one.
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such that udt C� gives rise to a contact structure � on D �R that is invariant in the
R direction. Moreover, we know from a theorem of Giroux that � is tight, since there
are no homotopically trivial dividing curves. This invariance means that we can mod
out by Z to obtain a tight contact structure on a solid torus .D �R/=Z D D � S1.
The solid torus and contact structure we obtain in this way are contactomorphic to
our original .S; �/, that is, there exist v, ! and u WD!R for which this construction
exactly reproduces .S; �/.

Now suppose that the number of properly embedded arcs is greater than 1. We would
now like to reduce the number of dividing curves by taking a larger disk containing
our original D. So we attach an annulus to D to obtain Dext D D [' .S

1 � Œ0; 1�/,
where ' W S1 � f0g ! @D is the gluing map. Denote the endpoints of the properly
embedded arcs by fx1; : : : ;x2kg. Notice that if we fix a point on p 2 @D and move
counterclockwise from p along @D, then it must happen that we encounter an xi

followed by an xiC1 which are not endpoints of the same curve. If this were not so,
then there could only be one curve, which we have supposed not to be the case. Without
loss of generality, assume that these two points are x1 and x2. Now connect these
points by an arc in S1 � Œ0; 1�. Form arcs from the remaining points fx3; : : : ;x2kg to
@Dext by using fxig � Œ0; 1�, as in Figure 9. Notice that Dext has one fewer embedded
arc than D. So we can iterate this procedure to obtain a disk zD �D which has only 1

properly embedded arc. Call this arc z� . Notice that we can arrange the gluing map '
to be smooth and such that the extension of � to z� is smooth. We can also smoothly
extend ! and v to zD so that the singular foliation on zD guided by v has z� as a dividing
curve. We can now build, just as we did above, a contact structure Q� on zD �S1 D zS

having zD as a convex meridional disk, with convex boundary. Since #� zD D 1, we have
tb.@ zD/D�1, which in turn implies that #�

@ zS D 2. Notice that Q�jS D �. Also notice
that, by construction, the method of reducing the number of dividing curves on @S
yields slope.� /D slope. z� /. Now, by Lemma 3.3, any Legendrian .p; q/ knot L� S

has tw.LI @S/� 0.

Lemma 3.5 If � is a universally tight contact structure on a solid torus S with convex
boundary and #�@S D 2, then any Legendrian .p; q/ knot L� S has tw.LI @S/� 0.

Proof By a diffeomorphism of S , we can assume that slope.�@S / D �r=s where
�1��r=s � �1, and that the meridional slope is �1. Let nD dr=se. Then since
� is universally tight, we know that any path in the Farey tessellation describing our
contact structure has the property that each jump must be decorated with the same
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Figure 10: Farey tessellation picture describing the contact structure on our
solid torus. The original solid torus, S , is shown in blue, while the red
indicates the T 2 � I which is glued on to obtain the larger solid torus zS .

sign by Theorem 2.1. A portion of the Farey tessellation shows this in Figure 10. We
can obtain a larger solid torus zS � S , which is convex, has two dividing curves, and
with slope.�

@ zS / D �nC 1 in the following way. Take a shortest path in the Farey
tessellation from �r=s to �nC 1, and decorate each jump with the sign which appears
in the description of the contact structure on S . This describes a contact structure on
T 2 � I which extends S to zS , and since the signs are all the same we know that zS is
tight by Theorem 2.2. Moreover, we see that zS has integer slope giving it a unique
tight contact structure. Now we have that tw.KI @S/� 0 by Lemma 3.3.

Remark 3.6 In the above proof, we are able to thicken S to a larger solid torus
zS � S with slope.�

@ zS /D�nC 1 because we are thinking of S D S1�D2 abstractly
as a contact 3–manifold with convex boundary, and not embedded in any particular
contact manifold. There is a shortest path in the standard Farey tessellation picture
from any negative rational �r=s to �nC 1 which describes our contact structure. We

S

A A

B

Figure 11: Left: X D T 2 � I . Right: the annulus A and its dividing curves.
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are not claiming that if S is a solid torus representing a knot K � S3 it must always be
thickenable in S3, for example, Etnyre, LaFountain, and Tosun have given examples
of nonthickenable tori in [5].

Proposition 3.2 strengthens Lemma 3.5 slightly by dropping the assumption that #� D2.

Proof of Proposition 3.2 Suppose we are given a solid torus S with convex boundary,
a universally tight contact structure �, and we have a Legendrian .p; q/ knot L in S .
Again, by a diffeomorphism of S , we can assume that slope.�@S / D �r=s, where
�1��r=s � �1, and that the meridional slope is �1. Let nD dr=se. If

#�@S D 2k > 2;

then we can attach a bypass to @S along a Legendrian ruling curve to obtain a smaller
solid torus S 0 � S which has slope.�@S 0/D�r=s and #�@S 0 D 2k � 2. We can repeat
this procedure until we have a solid torus zS � S which has slope.�

@ zS /D �r=s and
#�
@ zS D 2. Notice that the contact structure on zS is just �j zS . If we look at a meridional

disk D�S , we know that along @D there are 2sk intersection points with �@S ; however,
there exists a slope  for which curves on @S of slope  have exactly 2k intersection
points with �@S . For convenience, change coordinates on S so that slope. / 7! �1
and slope.�@S / 7! 0. Notice that we have a T 2 � I layer X D S n zS , and we can find
a convex annulus A in X with Legendrian boundary of slope  . We would like to show
that the contact structure on X is completely determined by the dividing curves on A.
Since #�

@ zS D 2, #�@S D 2k, and slope.�
@ zS / D slope.�@S / D 0, we know that the

dividing curves on A must have the form shown in Figure 11, right, by the green arcs.

We know from Giroux [7] that the contact structure on a neighborhood of A is deter-
mined by its dividing curves. If we cut X along A, and round corners, we obtain a
solid torus Y with convex boundary. Using the edge rounding lemma [10], it is easy
to see that #�@Y D 2 and slope.�@Y / D �1. Notice in Figure 11, left, that we have
a meridional disk B of Y which we have just seen has tw.@B/D�1, and which we
can perturb to be convex. There is a unique choice of dividing curves on such a disk.
Finally, if we cut Y along B and round corners, we obtain a B3 with convex boundary,
which has a unique tight contact structure from work of Eliashberg [2]. So we have
seen that the contact structure of X is determined solely by the dividing curves on A.

Let v be a vector field on A that guides the characteristic foliation. We can label the
regions in A n � as either ˙C or ˙� so that no adjacent pair share the same label.
There exists an area form ! on A which satisfies that ˙div! v > 0 on ˙˙. Assign a
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A A yA

Figure 12: Reducing the number of dividing curves on A by extending with
an annulus yA.

1–form �D �v!; then we know from Giroux [7] that there exists a function u WA!R

such that udt C� gives rise to a contact structure � on A�R that is invariant in the R

direction. Moreover, we know from a theorem of Giroux that � is tight since there are
no homotopically trivial dividing curves. This invariance means that we can mod out
by Z to obtain a tight contact structure on .A�R/=ZD T 2�I . The T 2�I layer and
contact structure we obtain in this way are contactomorphic to our original .X; �/; that
is, there exist v, ! and u WA!R for which this construction exactly reproduces .X; �/.

Now observe that we can smoothly extend A, abstractly, by an annulus yA causing the
number of dividing curves to be reduced to 2, just as we did with the disk in the proof
of Lemma 3.4; see Figure 12.

We can arrange that the extension of �A to �A[ yA is smooth, and we can also smoothly
extend ! and v to a neighborhood of yA so that the singular foliation on yA guided by v
has �A[ yA as a set of dividing curves. We can now build, just as we did above, a contact
structure O� on .A[ yA/�S1D yX with convex boundary. Since #�A[ yAD 2, we see that
tb.@ yA\ @ yX /D �1, which implies that #�

@ yX D 2. Notice that O�jX D �. Also notice
that, by construction, the method of reducing the number of dividing curves on @X
yields slope.�@X /D slope.�

@ yX /. But now we have a minimally twisting T 2 � I layer
yX whose boundary tori each have two dividing curves with slope 0. Honda [10] showed

that there are an integers worth of tight contact structures satisfying these boundary
conditions, and that each one is I–invariant. Adding the I–invariant thickened torus
X [ yX to zS , we get a new solid torus with contact structure contactomorphic to �j zS ,
thus universally tight. Clearly S is contained in this solid torus. Now, by Lemma 3.5,
L has tw.LI @S/D tw.LI @S 0/� 0.
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Dk

ˇ2

ˇ1

˛1

˛2

'

1

2

K � S3

Figure 13: The immersion of a ribbon disk DK .

4 Building ribbon knots from canceling handles

We are concerned here with ribbon knots, which we take to be the following: A knot
K � S3 is a ribbon knot if there is an immersed disk ' WDK ! S3 such that:

(1) @'.DK /DK.

(2) All of the double points of '.DK /D zDK (we will use the symbol � to denote
image under ') occur transversely along arcs i � S3 whose preimage '�1.i/�DK

consists of exactly two arcs. One of these, ˛i , must be contained entirely in the interior,
˛i � int.DK /, and the other, ˇi (meant to suggest boundary), must be a properly
embedded arc in DK (ie @ˇi � @DK and int.ˇi/\ @DK D∅).

An example ribbon disk and its image under ' are shown in Figure 13.

Note that by transversality, the preimages of the i’s are 1–dimensional submanifolds
of the compact manifold DK , so there are only finitely many ribbon singularities i .

We want to give a construction of an arbitrary ribbon knot using 1–2–handle-canceling
pairs. Given any ribbon knot K � S3, it has a ribbon disk DK by definition. Notice,
every ribbon singularity i must appear exactly twice on the ribbon disk: once as a
properly embedded arc, and once as an arc contained entirely in the interior of DK . We
will use a common color when picturing these pairs. So a general ribbon disk might
look something like the one seen in Figure 14.

Figure 14: A general ribbon disk example.
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'

cj

Figure 15: Cutting a ribbon disk along an arc cj .

We will want to make cuts cj , by pushing off two parallel copies of an arc in DK and
removing a small �–strip. The result of this cut is shown in Figure 15.

We also need to set up a tool for manipulating ribbon disks and their images. Suppose
we have an arc b � @DK whose endpoints are the endpoints of one of our ˇ’s. Further
suppose that the subdisk D they bound contains no other singular points, as in Figure 16.

Let N D I � Œ0; �� be a collar neighborhood of ˇ in DK such that .t; 0/D ˇ. We can
form a new disk D� DD[N with boundary

@D� D b[ .0; s/[ .1; s/[ .t; �/

and notice that int.ˇ/� int.D�/. By choosing � > 0 sufficiently small, we can assume
that zD� is embedded. Then we can see that D� guides an isotopy, supported in a small
neighborhood of DK , taking b to .t; �/ so that the disk DK �D� D D0

K
does not

contain ˇ. We will refer to such a move as a disk slide; Figure 17 shows a typical one.

Theorem 4.1 Given an arbitrary ribbon knot K�S3 with n2N ribbon singularities i ,
we can make n� 1 or fewer cuts cj , so that what remains of K is an unlink , and what
remains of zDK is , after n or fewer disk slides , embedded. That is , it is a collection of
disjoint disks.

'
DK

N

D

ˇ

b

'.ˇ/ '.b/

Figure 16: A subdisk and collar neighborhood, and its immersed image under '.
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'
DK

D

ˇ

'.ˇ/

'
DK

ˇ

'.ˇ/

Figure 17: An illustration of a disk slide.

To prove this we will need the following.

Lemma 4.2 Given a ribbon knot K with n ribbon singularities , if we can find a subdisk
D �DK such that

@D D .an arc in @DK /[ˇi

for one of our properly embedded arcs ˇi , and int.D/ is disjoint from all ˛’s and ˇ’s ,
then a disk slide gives an isotopy of K supported in a small neighborhood of D so that
the new slicing disk zD0

K
has n� 1 ribbon singularities.

Proof For reference, let bi D @D\@DK so that @DD bi[ˇi . Also, let N D I � Œ0; ��

be a collar neighborhood of ˇi in DK such that .t; 0/D ˇi , similar to the one shown
in Figure 16.

Then we can define a new subdisk D� DD[N with boundary

@D� D bi [ .0; s/[ .1; s/[ .t; �/

and notice that int.ˇi/ � int.D�/. By choosing � > 0 sufficiently small, we can
assume that zD� is embedded. Then there is a disk slide taking bi to .t; �/ so that the
disk DK �D� D D0

K
does not contain ˇi . But then it also cannot contain ˛i , since

the preimages of singularities occur in pairs, and hence the singularity i has been
eliminated. We also have that the resulting knot @ zD0

K
is isotopic to K.

Algebraic & Geometric Topology, Volume 23 (2023)



2584 Andrew McCullough

DK

D

ˇi

j̨

bi

DK

ˇi

j̨c

D0
K

S

D0

ˇi

j̨

Figure 18: Cutting a ribbon disk.

Notice that Lemma 4.2 says that if we see a boundary parallel arc in DK with no
other singular points between that arc and some portion of @DK , then we can eliminate
that arc and its interior partner from the picture by an isotopy of K. Now back to our
general picture and the proof of Theorem 4.1.

Proof of Theorem 4.1 We will assume that our ribbon disk is reduced in the sense
that, if it were possible to simplify with a disk slide, then we have done so already.
We will consider Figure 14 as our prototypical ribbon disk, and recall the convention
that for each singularity i , '�1.i/ consists of ˛i [ˇi with ˇi properly embedded.
Given an arbitrary ribbon knot K � S3 with n 2 N ribbon singularities i , and
ribbon disk ' W DK ! S3, there will always be an “outermost” properly embedded
arc ˇi . This means that in some subdisk D, whose boundary is ˇi together with an arc
bi � @DK , there are only interior singular points j̨ , and no other properly embedded
arcs. Figure 18, top left, shows one such case.

Let c be a properly embedded arc in D � DK such that c cuts D into D0 [ S with
ˇi �S and D0 containing all arcs j̨ �D. We may cut DK along c so that ' is defined
on D0

K
DDK �D0 and D0, and after a small isotopy of ' jD0 we have that '.D0/ and

'.D0
K
/ are disjoint, as pictured in Figure 18, bottom. Then a disk slide eliminates ˇi

by Lemma 4.2. Notice that when we eliminate a particular ˇi using a disk slide, that
automatically eliminates the corresponding ˛i since they occur in pairs. Also notice,
each cut eliminates at least one ˇi , but could allow for the removal of more than one.
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D0
K

j̨

ǰ

Figure 19: Final iteration.

But after at most n�1 cuts we have at most one ǰ and its corresponding j̨ . Since ǰ

cuts the disk it sits on into two components, one of them contains no ˛ curves — see
Figure 19 — and so ǰ can be removed with no further cuts. Thus we never need to make
the nth cut since this last ˇ curve may be eliminated by a disk slide without making a
cut. Then the image under ' is now n embedded disks whose boundary is an unlink.

We remark that this gives an upper bound on the number of cuts needed, but there are
certainly cases where this number is not optimal as the following example shows.

Example 4.3 Consider the ribbon knot in Figure 20. This knot has nC 2 ribbon
singularities for any n 2 N, and yet only one cut (shown in green) will reduce the
picture to two disjoint disks.

Now we will introduce handles and obtain a Kirby picture in which our knot K takes a
particularly simple form. We assume that the reader is familiar with basic handlebody

{n times

Figure 20: An example ribbon knot with nC2 singularities for which a single
cut suffices.
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'

hj

cj

Figure 21: A 2–handle hj associated to a cut cj .

theory; an excellent reference for this material is [8]. For every cut cj , we will attach
an arc hj seen in Figure 21. We will think of hj as a thin ribbon, which would recover
K if glued along. For this reason we will give the arc hj a framing, by which we
mean a parallel arc, and keep track of this framing through any isotopies of K. By a
1–subhandlebody, we will mean the subhandlebody consisting of the 0–handles and
the 1–handles.

Proof of Theorem 1.12 Using Theorem 4.1, we can make k < n cuts to the ribbon
disk to obtain the unlink. So we have a diagram in which there are k disjoint disks,
and k�1 framed arcs hj . We know that by taking a band sum along these arcs (paying
attention to framings) we can recover our diagram for K. Let Kcut be the union of the
boundaries of these disks. Now in a small neighborhood of the end points of each hj

we insert the attaching spheres of a 1–handle, letting hj be the attaching circle of a
2–handle as seen in Figure 22.

This pair cancels by construction, and also has the effect of doing the band sum that
recovers K for the cut cj as seen in Figure 23. Notice that we make two handle slides
that free Kcut from the 1–handle, and then cancel the pair. Also notice that this has
exactly the same effect that a band sum of Kcut along hj would have had.

There is no obstruction to this handle slide and cancellation caused by the possible
presence of other handle pairs since the double band sum shown on the left can be

Kcut

hj

Kcut

Figure 22: A 1–2–handle-canceling pair.

Algebraic & Geometric Topology, Volume 23 (2023)



Legendrian large cables and new phenomenon for nonuniformly thick knots 2587

Kcut Kcuthj hj

hj hj

hj –framing

Figure 23: An example of handle cancellation to recover K.

carried out in a small neighborhood of the attaching sphere on the left. So, after n� 1

or fewer iterations, we have recovered our diagram for K. It is worth noting that
framings on 2–handles denote an even number of half twists; therefore the framings on
the hj must be even. If our diagram for K requires an odd number of half twists then
we can accommodate this by inserting any number of half twists in one of the disks
spanning Kcut, shown in Figure 24 for the case of a single half twist.

We would like to think of our diagram in which there are k disjoint disks connected
by k � 1 arcs hj abstractly as a graph in order to show that Kcut can be pulled free
of the 1–handles. To do this, we first work in the boundary of the 1–subhandlebody.
We think of each of our disjoint disks as a vertex, and put an edge between vertices

Kcut Kcut

Kcut
Kcut

hj

hj

Figure 24: Framing adjustment.
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Kcut Kcut Kcut

Figure 25: Handle picture corresponding to a univalent vertex of G.

if the corresponding disks are joined by a 1–handle. Notice G embeds in DK as the
“dual” graph to DK cut along '�1.cj /; that is, there is a vertex in the center of each
component of DK �

Sk�1
jD1'

�1.cj / and an edge for each '�1.cj /. Then G is homotopy
equivalent to DK , and so we see that �.G/D �.DK /D 1. It is well known that the
Euler characteristic of a connected graph is one if and only if that graph is a tree, so
G is a tree. Each univalent vertex of G is now associated to a portion of our picture
consisting of two disks connected by a 1–handle, where one disk might have many
1–handle attaching spheres, but the other must have exactly one 1–handle attaching
sphere as shown in Figure 25. In the 1–subhandlebody it is clear that Kcut may be
isotoped off this 1–handle. Notice that the effect of this isotopy on G is to remove the
corresponding edge and univalent vertex from the graph. Since G is a tree, we can iterate
this procedure revealing that Kcut can be pulled completely free of the 1–handles. This
may be seen in Figure 26 by simply ignoring the attaching circles of the 2–handles hj .

The above iteration gives an isotopy of Kcut which extends to an ambient isotopy of the
boundary of the 1–subhandlebody. This, in turn, induces an isotopy on the attaching
circles of the 2–handles hj , resulting in a 2–handlebody as claimed in Theorem 1.12.
See Figure 26. By construction, handle slides and cancellations give us a knot isotopic
to K � S3.

{ K

n� 1 or fewer

Figure 26: A 2–handlebody picture where K appears as the unknot in the
boundary of the 1–subhandlebody.
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Figure 27: A 2–handlebody picture of the complement of the slice disk for K.

So we have shown that any ribbon knot with n ribbon singularities may be constructed
by starting with the unknot in #k S1 �S2, where k � n� 1, and attaching 2–handles
to cancel each of the 1–handles in an appropriate manner.

Example 4.4 It is an exercise in Kirby calculus to show that images in Figure 2 are
two pictures of the same ribbon knot in S3.

Corollary 4.5 In Figure 26, if we replace the unknot in the 1–subhandlebody with a
dotted circle , then we obtain a picture of the 4–manifold which is the complement of
the slicing disk in D4, shown in Figure 27.

Proof The slicing disk can be seen in the picture as the disk filling the unknot that
we have in the 1–subhandlebody. This is because canceling the 1–2–handle pairs not
only recovers K, but also recovers the ribbon disk zDK . The definition of the dotted
circle notation is that we remove a small neighborhood of the dotted unknot along with
a small neighborhood of the disk after pushing it into D4. And so this is exactly the
complement of the slicing disk, D4� zDK .

One nice fact is that, since disk slides, isotopies and handle cancellations can be done
locally, and since ribbon knots always bound an immersed ribbon disk, this construction
actually works in any 3–manifold. We did not rely on any special properties of S3

during the process. One can create examples by combining a 2–handlebody picture for
a ribbon knot K�S3 as in the above construction with a Kirby picture of a 4–manifold
W whose boundary is the intended 3–manifold M 3 D @W . When combining the two
pictures, K may be allowed to run across noncanceling 1–handles to form nontrivial
examples as shown in Figure 28, where we have a Kirby picture of a 4–manifold whose

Algebraic & Geometric Topology, Volume 23 (2023)
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K

K

Figure 28: An example ribbon knot in S1 �S2 and its decomposition.

boundary is S1 �S2. We can see the ribbon disk for K in the image on the left. The
image on the right shows the result using the technique developed above.
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