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We use unoriented versions of instanton and knot Floer homology to prove inequalities
involving the Euler characteristic and the number of local maxima appearing in
nonorientable cobordisms, which mirror results of a recent paper by Juhász, Miller
and Zemke concerning orientable cobordisms. Most of the subtlety in our argument
lies in the fact that maps for nonorientable cobordisms require more complicated
decorations than their orientable counterparts. We introduce unoriented versions of
the band unknotting number and the refined cobordism distance and apply our results
to give bounds on these based on the torsion orders of the Floer homologies. Finally,
we show that the difference between the unoriented refined cobordism distance of a
knot K from the unknot and the nonorientable slice genus of K can be arbitrarily large.

57K18; 57K16

1 Introduction

A classical problem in low-dimensional topology is the study of embedded orientable
surfaces in 4–manifolds. The special case of surfaces with boundary has been a
particularly popular topic for a very long time, and it includes for example questions
pertaining to the slice genus of a knot or the complexity of a knot or link cobordism.

On the other hand, the study of nonorientable surfaces and knot cobordisms in I �S3

has received increasing attention in the last decade — see Batson [3], Ozsváth, Stipsicz
and Szabó [25], Golla and Marengon [8] and Fan [7] — and there are now several bounds
to the nonorientable slice genus of a knot. However, if a knot bounds a nonorientable
surface of a given “genus”, it is not clear how complicated the embedding must be. We
tackle this question by proving a nonorientable analogue of a recent result of Juhász,
Miller and Zemke. In a recent paper [11], they proved an inequality involving the
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2628 Sherry Gong and Marco Marengon

number of local maxima and the genus appearing in an oriented knot cobordism using
a version of knot Floer homology. Here we prove similar inequalities for nonorientable
knot cobordisms using the torsion orders of unoriented versions of knot Floer homology
and instanton Floer homology.

As for knot Floer homology, we use Ozsváth, Stipsicz and Szabó’s unoriented knot
Floer homology HFK0 [26], which is a module over F ŒU �. For a knot K � S3 we
define its unoriented knot Floer torsion order as

OrdU .K/Dminfn� 0 j U n
�TorsD 0g;

where Tors� HFK0.K/ denotes the F ŒU �–torsion subgroup.

In the instanton setting, we use Kronheimer and Mrowka’s instanton Floer homology
with local coefficients, denoted by I ].K/, which is a module over a Noetherian domain
S which has a special element P [17]. We will restrict our attention to certain domains S,
for which I ].K/ is functorial for nonorientable knot cobordisms with singular bundles
represented by surfaces ! with @! on the cobordism. In this case, it can be shown that,
for a knot K and for the torsion part Tors of I ].K/, there is a positive integer n such
that Pn �TorsD 0. Thus, we define

OrdI .K/Dminfn� 0 j Pn
�TorsD 0g:

For a nonorientable surface†with n boundary components, recall that its nonorientable
genus is


 .†/D 2��.†/� n:

For example, RP2 (with an arbitrary number of punctures) has nonorientable genus 1.
Note that, for nonorientable knot cobordisms, 
 .†/D��.†/. With this notation in
mind, we state our main theorem:

Theorem 1.1 Let K1 and K2 be knots in S3. Suppose that there is a nonorientable
knot cobordism † in I �S3 from K1 to K2 with M local maxima. Then

(1) OrdI .K1/�maxfOrdI .K2/;M gC 
 .†/

and

(2) OrdU .K1/�maxfOrdU .K2/;M gC 
 .†/:

From a formal viewpoint, Theorem 1.1 is analogous to [11, Theorem 1.1]. The proof of
Theorem 1.1 uses the functorial properties of HFK0 and I ] (see [7; 17]), in a similar way
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as [11, Theorem 1.1] relies on knot Floer homology cobordism maps; see Juhász [10]
and Zemke [35]. Despite being inspired by [11, Theorem 1.1], the proof of Theorem 1.1
must necessarily deviate from it. Recall that, in order to define a cobordism map in
knot Floer homology, one needs to choose a properly embedded 1–manifold on the
surface, often called the set of decorations. In [11], the chosen decorations were a pair
of parallel arcs, which make the computations of the cobordism maps more tractable.
This choice does not work for nonorientable cobordisms in HFK0, so we are forced
to choose different decorations, which make the cobordism map more complicated.
To circumvent this problem, we relate the resulting nonorientable cobordism to an
orientable one, then use a stabilisation lemma proved by Ian Zemke (see Lemma 5.4).
In the case of I ], for a cobordism † to define a map, one needs a surface ! with
boundary @! �†. The natural choice for orientable cobordisms would be ! D∅, in
which case [11] applies verbatim to the case of I ]. The map can be defined for the
nonorientable surfaces we are interested in, but it will usually vanish. To overcome
this problem, we choose a particular ! that allows us to control the induced map.

Remark 1.2 While Theorem 1.1 is stated for nonorientable cobordisms, both inequal-
ities also hold for orientable cobordisms. The proof follows verbatim from [11], by
replacing knot Floer homology with the desired Floer theory.

We prove several applications of Theorem 1.1, which mirror those of [11, Theorem 1.1].

1.1 Nonorientable ribbon cobordism

A knot cobordism in I �S3 is called ribbon if it has no local maxima. For example,
a ribbon concordance (ie a cobordism of genus 0) from the unknot to a knot K is
equivalent to a ribbon disc for K. Theorem 1.1 has a straightforward application to
nonorientable ribbon cobordisms:

Corollary 1.3 Let K1 and K2 be knots in S3. Suppose that there is a nonorientable
ribbon cobordism † in I �S3 from K1 to K2. Then

OrdI .K1/� OrdI .K2/C 
 .†/ and OrdU .K1/� OrdU .K2/C 
 .†/:

1.2 The nonorientable refined cobordism distance

The standard cobordism distance between two knots K1 and K2 is do.K1;K2/ D

2g4.K1 # K2/, where g4 denotes the standard slice genus. This is not a distance on the
set of knots, because concordant knots have distance 0, but it descends to a well-defined
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distance on the concordance group; see Baader [2]. In [11], Juhász, Miller and Zemke
define a refined cobordism distance on the set of knots, and give lower bounds to it in
terms of the torsion order in knot Floer homology.

There are analogous nonorientable notions too. For an (orientable or nonorientable)
cobordism † in I �S3 from K1 to K2 with m local minima and M local maxima, let

j†j Dmaxfm;M g��.†/:

Definition 1.4 Given knots K1;K2;� S3, we define the standard nonorientable
cobordism distance du and the refined nonorientable cobordism distance dr

u between
them as

du.K1;K2/Dminf��.†/g and dr
u .K1;K2/Dminfj†jg;

where in both cases † varies over all nonorientable connected cobordisms and all
genus-0 orientable cobordisms (ie concordances).

Remark 1.5 The orientable counterparts — the standard orientable cobordism dis-
tance do from [2] and the refined orientable cobordism distance dr

o from [11] — are
defined in the same way as in Definition 1.4, but the surface † now varies over all
orientable connected cobordisms. One can also define analogous notions da and dr

a ,
which we can call all-surface cobordism distances, where † varies over all (orientable
or nonorientable) connected cobordisms.

It is immediate to see that do, du and da are distances on the concordance group and
dr

o , dr
u and dr

a are distances on the set of knots.

Theorem 1.1 implies the following lower bounds:

Corollary 1.6 If K1 and K2 are knots in S3, then

jOrdI .K1/�OrdI .K2/j � dr
u .K1;K2/

and
jOrdU .K1/�OrdU .K2/j � dr

u .K1;K2/:

In view of Remark 1.2, one can in fact replace dr
u with dr

a . However, for orientable
cobordisms, one can also use the standard versions of instanton and knot Floer homology,
which should give better bounds.

We use Corollary 1.6 to show that the difference between dr
u .K1;K2/ and du.K1;K2/

can be arbitrarily large.
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Corollary 1.7 For all 
 � 1 and m� 1, there exists a knot K
;m with du.K
;m;U1/D


4.K
;m/D 
 and such that dr
u .K
;m;U1/� 
 Cm.

Thus , each nonorientable surface †� B4 with @†DK
;m and 
 .†/D 
 has at least
m local minima (with respect to the radial function).

The knots K
;m that we consider in the proof of Corollary 1.7 are a subfamily of torus
knots for which OrdU can be computed explicitly.

1.3 The unoriented band-unlinking number

For a knot K in S3, the oriented band-unknotting number ub.K/ is defined as the
minimum number of oriented band surgeries that turn K into the unknot. This was called
the SH.2/–unknotting number by Hoste, Nakanishi and Taniyama [9]. Its unoriented
counterpart uu

b
.K/, called the H.2/–unknotting number in [9], seems to predate ub.K/

in the literature, since Lickorish proved that there exist knots with uu
b
.K/ > 1 in [22].

Note that, in the definition of uu
b
.K/, we allow both orientable and nonorientable band

surgeries.

Juhász, Miller and Zemke [11] introduced a variation, called the oriented band-unlinking
number ulb.K/, which is defined as the minimum number of oriented band surgeries
that turn K into an unlink. Of course, ulb.K/�ub.K/, and they proved that Ordv.K/�
ulb.K/ for all knots K in S3. Using Theorem 1.1, we can derive a similar result for
the corresponding unoriented notion.

Definition 1.8 The unoriented band-unlinking number ulub.K/ of a knot K in S3 is
defined as the minimum number of (orientable or nonorientable) band surgeries that
turn K into an unlink.

Clearly, we have
ulub.K/� uu

b.K/� �

ulb.K/� ub.K/

Corollary 1.9 For a knot K in S3,

OrdI .K/� ulub.K/ and OrdU .K/� ulub.K/:

Remark 1.10 Wong (personal communication, 2020) has informed us of a proof,
using methods analogous to Alishahi and Eftekhary [1], that, if there is a cobordism
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†� I �S3 from K1 and K2 (no matter whether orientable or nonorientable) with m

minima, b saddles and M maxima, then

jOrdU .K1/�OrdU .K2/j �mC bCM:

Since the unlink has vanishing torsion order, this would recover the inequality of
Corollary 1.9 involving OrdU.

Ours is one of several recent papers related to ribbon cobordisms. Zemke [33] showed
that knot Floer homology obstructs ribbon concordance, a result that prompted a
flurry of interesting results in this area, including Levine and Zemke [21], Miller
and Zemke [23], Daemi, Lidman, Vela-Vick and Wong [5], Kang [13] and Caprau,
González, Lee, Lowrance, Sazdanović and Zhang [4]. Other papers in the area are
Sarkar’s paper on the ribbon distance [31] and the already-cited paper of Juhász, Miller
and Zemke [11], which is the closest paper to ours.

Organisation

The first two sections of the paper are on instanton Floer homology: we review the
necessary background in Section 2, and we prove the main instanton technical result
(Proposition 3.3) in Section 3. In the following two sections we do the same for knot
Floer homology: after a review in Section 4, we prove the main knot Floer technical
result (Proposition 5.5) in Section 5. In Section 6 we prove Theorem 1.1 and the
applications discussed in the introduction (Corollaries 1.3, 1.6, and 1.9). Finally, in
Section 7 we compute the torsion order OrdU for a subfamily of torus knots and prove
Corollary 1.7.
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2 Background on instanton homology with local systems

2.1 Instanton homology groups

Kronheimer and Mrowka introduced singular instanton homology with local systems
in [15], and introduced several more involved variants of it in [17]. We will be working
with a variant from the latter. Let us now review the relevant definitions and properties,
following [17; 18].

Let Y be a closed, oriented 3–manifold, let L be a link in Y, let y0 be a basepoint
in Y, and let By0

be a ball around y0 that does not intersect L. Let �0 � Y be a
standard �–web in By0

. Let ! be a 1–dimensional submanifold of Y which consists of
components that are circles disjoint from L and By0

and arcs which have endpoints
on L and are otherwise disjoint from L.

Then there is an associated space B].Y;L/! of SO.3/–connections on Y which are
singular at L[�0, lift to SU.2/ away from the L[![�0, and are such that the SU.2/–
holonomy around ! is �1 and the SU.2/-holonomies around components of L and
arcs of �0 are conjugate to I 2 SU.2/, when we regard SU.2/ as the unit quaternions
and 1, I, J and K are the fundamental quaternion units.

The local system � is defined using three maps hi W B].Y;L/!!R=Z for i D 1; 2; 3,
given by taking holonomy along the three arcs of the �–web, which gives three maps
to SU.2/, and then composing with a character SU.2/! U.1/ D R=Z to get maps
to R=Z. Let R D F2ŒZ

3� be the group ring, which we can also write as the ring of
Laurent polynomials in three variables,

RD F2ŒT
˙1
1 ;T˙1

2 ;T˙1
3 �:

Then � is defined as the pullback via .h1; h2; h3/ of a particular local system over
.R=Z/3 with fibre the free rank 1 module over R. For a commutative ring S and a
homomorphism � WR! S, let �� denote the induced local system of S–modules.

The instanton homology group I ].Y;LI�� /! is defined as the Floer homology of
B].Y;L/! with a perturbed Chern Simons functional and with the local system �� .
(In [17], there is an additional map h0 W B].Y;L/!!R=Z coming from taking holo-
nomy along the link itself, and R is defined to be F2ŒZ

4�, but, for our purposes, we
will only be using the local system coming from h1, h2 and h3.)
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2.2 Maps induced by cobordisms with dots

We now review the functoriality of I ].Y;LI�� /! . Keeping previous notation, let
� WR! S be a map of commutative rings.

For i D 1; 2, let Yi denote a closed, oriented 3–manifolds, with a link Li and a
1–manifold !i embedded in Yi with boundary on Li and otherwise not intersecting Li .

For a cobordism of pairs .X;S/ from .Y1;L1/ to .Y2;L2/, and ! a 2–manifold with
corners whose boundary pieces are !1 and !2 in Y1 and Y2, respectively, together with
arcs and circles in S, there is an induced map

I ].X;S I�� /! W I
].Y1;L1I�� /!1

! I ].Y2;L2I�� /!2

of S–modules.

This functoriality can be extended to morphisms given by cobordisms of pairs with dots
on the surfaces. That is, for a cobordism of pairs .X;S/, define a dot on S to be an
interior point p 2 S along with an orientation of TpS. Then, for dots p1;p2; : : : ;pd

on S, there is an induced map of S–modules

I ].X;S;p1;p2; : : : ;pd I�� /! W I
].Y1;L1I�� /!1

! I ].Y2;L2I�� /!2
:

In our computations, we will always have Y1;Y2D S3 and X D S3� Œ0; 1�. Moreover,
we will be using the same �� . Thus, we will denote our cobordisms by

I ].S;p1;p2; : : : ;pd /! D I ].X;S;p1;p2; : : : ;pd I�� /! :

2.3 Properties of the induced maps

Before going over some of the properties of the maps of S–modules induced by
cobordisms, let us recall two particular elements of the rings R and S. Writing
RD F2ŒT

˙1
1
;T˙1

2
;T˙1

3
�, the elements P and Q are given by

P D T1T2T3CT1T �1
2 T �1

3 CT �1
1 T2T �1

3 CT �1
1 T �1

2 T3

and
QD T 2

1 CT �2
1 CT 2

2 CT �2
2 CT 2

3 CT �2
3 :

For � WR!S, the elements �.P /; �.Q/2S will also be denoted P and Q, respectively.

(a) [18, Lemma 3.2] Let S be an oriented cobordism. Suppose S 0 is obtained from S

by adding an internal 1–handle connecting points p; q 2 S, where p and q both have
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the same orientation as S. Then

I ].S 0/D I ].S;p/C I ].S; q/CPI ].S/:

Here and throughout we assume that ! D∅ when it is not denoted.

(b) [17, Lemma 4.2] Let .S; !/ be a cobordism between .L1; !1/ and .L2; !2/. Let
RC and R� be the two standard embedded copies of RP2 in S4 with self-intersection
C2 and �2, respectively. Let � be a disk whose boundary is the generator of H1.RP2/.
Then

I ].S # RC/!C� D I ].S/! and I ].S # R�/!C� D PI ].S/! :

(c) Künneth formula for split links [14, Section 5.5; 16, Section 2.2; 17, Section 5.3]
Let L be a split link, so that LDL0qL1, and L0 and L1 are contained in disjoint
balls in S3. Then

I ].L/' I ].L0/˝ I ].L1/;

and this is natural with respect to cobordisms with dots.

This is shown in [14, Section 5.5] using a version of excision without local coefficients,
Hopf link instead of a �–web, and without dots. There is an argument in [16, Section 2.2]
for why it does not matter whether one uses a �–web or a Hopf link, and it is explained
in [17, Section 5.3] why it still works with local coefficients. The proof of functoriality
in [14] carries over with no problems to the situation of cobordisms with dots.

(d) [17, Section 5.2] Let Ul be the l–component unlink. Then I ].U0/ is a free
module of rank 1 over S, which we write as I ].U0/ D Su0, and I ].U1/ is the free
module over S of rank 2, which we write as I ].U1/D SuC˚Su�. For D the standard
disk viewed as a cobordism from the empty link to the unknot, and q a point with
orientation compatible with the choice of orientation of the knot,

I ].D/.u0/D uC and I ].D; q/.u0/D u�:

Moreover, if Do is the standard disk viewed as a cobordism from the unknot to the
empty link, and q a point with orientation compatible with the choice of orientation of
the knot,

I ].Do/.u�/D 1; I ].Do/.uC/D 0; I ].Do; q/.uC/D 1; I ].Do; q/.u�/D P:

For Ul , by the previous point, we have

I ].Ul/D .SuC˚Su�/
˝l :
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(e) [17, Section 5.4] Let m and � denote the standard “pair of pants” cobordisms
between the two-component unlink U2 and the unknot U1, the merge

m W U2! U1

and the split
� W U1! U2:

The map on I ] induced by m (with no dots) is given by

(3) uC˝uC 7! uC; u˙˝u� 7! u�; u�˝u� 7! Pu�CQuC;

and the map induced by � (with no dots) is given by

(4) uC 7! uC˝u�Cu�˝uCCPuC˝uC; u� 7! u�˝u�CQuC˝uC:

3 A technical result for instantons

In this section we prove the main technical result for instanton Floer homology I ]

which we will use to prove Theorem 1.1. To do so, we will use a classical result in
Morse theory, Lemma 3.2 below. We state it in the most convenient form for us, and
give a quick sketch of its proof.

Definition 3.1 Given a knot K in S3 and a band B for K, ie an embedded rectangle B

in S3 which intersects K in two opposite sides, we say that B is orientable with respect
to K if the knot K and the result of band surgery on K along B can be given coherent
orientations (equivalently, if surgering K along B gives a two-component link).

Lemma 3.2 Let †� I �S3 be a nonorientable cobordism between knots K and K0

with m local minima , b saddles and M local maxima. Then , after an isotopy rel
boundary , we can break it into a sequence of cobordisms as follows:

(a) m births (from K1 DK to L1);

(b) m band surgeries that join the various components of the link (from L1 to K0
1
);

(c) b� .mCM C 1/ band surgeries orientable with respect to K0
1

(this cobordism
ends with a knot or a two-component link L0);

(d) 1 band surgery nonorientable with respect to K0
1

(this cobordism goes from L0

to a knot K0
2
);

(e) M band surgeries that split the knot K0
2

into M C 1 components;

(f) M deaths.

Algebraic & Geometric Topology, Volume 23 (2023)



Nonorientable link cobordisms and torsion order in Floer homologies 2637

Moreover , in this decomposition , the attaching arcs of the b bands on K0
1

can be as-
sumed to be all disjoint , and we can assume that both attaching arcs of the nonorientable
band are already contained in K1.

Sketch of the proof We can arrange all births to appear first and all deaths to appear
last (steps (a) and (f)). We can also find bands that connect the various components
(steps (b) and (e)). Thus, we can restrict to the part of the cobordism between K0

1

and K0
2
, which consists of saddles (ie band surgeries). Note that both K0

1
and K0

2
are

knots.

If all bands were orientable with respect to K0
1
, then all † would be orientable, so there

is at least one band nonorientable with respect to K0
1
.

Arrange for all bands from K0
1

to K0
2

to appear at the same time.

If there is more than one band nonorientable with respect to K0
1
, pick one of them (call

it B) and slide it following the surgery of K0
1

along all the other bands. When B slides
over an orientable band, it stays nonorientable. When B slides over a nonorientable
band, it becomes orientable. Note that eventually it must slide over a nonorientable
band because K0

2
is connected, so K0

2
nB consists of just two arcs.

Repeat until you have only one nonorientable band left.

If B is the unique nonorientable band, then you can slide its endpoints along L0 so that
they are disjoint from all the other (oriented) bands, so we can think of it as in K1.

The main technical result of this section, needed to prove Theorem 1.1, is the following
proposition:

Proposition 3.3 Let S be a cobordism from K to K0 with m local minima , b saddles ,
and M local maxima. Then there is a surface ! that meets S cleanly and only at
@! � S, whose boundary is a circle in S such that , for x! its mirror , we have

(5) PM I ].S ıS/![x! D Pb�m Id:

Towards this goal, let us start by doing some computations of maps induced by cobor-
disms with !.

First let us understand the dependence of I ].†/! on ! when ! is a surface with
boundary on † which intersects † cleanly and only at @! � S. Note that, for a
link L in S3, up to isomorphism, I ].S3;L/! depends only on the homology of Œ@!� 2
H0.LIZ=2/, because it counts flat connections and instantons on spaces determined
by the homology class.
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Figure 1: Cylinders with the magenta surfaces depicting !.

Similarly, I ].†/! depends only on the homology class Œ@!� 2H1.†;Z=2/. This is
because the map counts instantons on a moduli space built from †, Œ@!�2H 1.†;Z=2/

and Œ!; @!� 2H2.X; †;Z=2/, and H1.†/'H2.X; †/ for X D S3 �R.

From here, we can see that, for a cylinder † and ! given by either a small disk or a
small tube with boundary on †, as in Figure 1, I ].†/! induces the identity: here @!
is trivial in H1.†/, and Œ!; @!� is also trivial in H2.X; †;Z=2/.

When the cobordism in Figure 2, left, is composed with its inverse, the map in-
duced is the identity. Moreover, up to isomorphism, I ].U; !/ depends only on
Œ@!� 2H0.U IZ=2/, so the two ends of the cobordism have the same instanton Floer
homology. Thus, the cobordism in Figure 2, left, induces an isomorphism.

We will call the two generators of the instanton Floer homology of the unknot with an
arc ! on the right, which is depicted in Figure 2, centre, xC and x�, so that, in the u˙

and x˙ bases, the cobordism depicted in Figure 2, left, is the identity matrix.

The cobordism from the two-component unlink to itself induced by two standard
cylinders with ! as a tube between them, as depicted in Figure 2, right, induces the
identity map, because, in this situation, .!; @!/ is trivial in homology in .S3 � I; †/.

Figure 2
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Figure 3

The same is true for the map depicted in Figure 3 precomposed with its mirror. Thus,
the map induced by the cobordism depicted in Figure 3 is an isomorphism whose
inverse is its mirror image. Here, we are identifying the link with ! on the right end of
Figure 3 with the unlink with empty ! via the isomorphism induced by Figure 2, left,
and the link with ! on the left has isomorphic instanton Floer homology.

For the link on the left in Figure 3, its homology is then a free module of rank 4 over S.
Let fxCC;xC�;x�C;x��g be a basis of this homology, so that, if we choose the basis
fxC˝xC;xC˝x�;x�˝xC;x�˝x�g for the two-component unlink on the right,
the matrix the cobordism induces is the identity. (Recall that x˙ are the basis elements
of the instanton homology of the unknot with an arc, so the cobordism of Figure 2, left,
induces the identity matrix.)

A central step in our proof will be dealing with a cobordism that flips an unknot but
does not change !. To describe this, consider a link L with decoration ! which has
an unknot component U that is split from the rest of L; we may isotope U so that
it is a geometric circle. Suppose that ! has two endpoints on U, p and q, which we
may isotope to be the endpoints of a diameter of U. Then the flip cobordism is a
cobordism in I �S3 that is traced by the isotopy obtained by rotating U by � about the
diameter pq. So this is an isotopy that does not change ! and reverses the orientation
of one of the two components.

Claim 1 The map on the instanton homology of U2 with ! consisting of two arcs ,
each going between the two components , that results from flipping one of the unknots
(as described above) in a way that does not change !, is the identity map.
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Figure 4

Proof By composing with the isomorphisms induced by the cobordism depicted in
Figure 3, if ˆ is the matrix associated to the flip in the basis fxCC;xC�;x�C;x��g,
then

ˆD

2664
a 0 b 0

0 a 0 b

c 0 d 0

0 c 0 d

3775 ;
where ˆ1 D

�
a b
c d

�
is the flip on the unknot with an arc in the basis fxC;x�}, depicted

in Figure 4, right. This is because ˆ is the matrix for ˆ1˝ Id for Id the identity map,
in the basis fxC˝ xC;xC˝ x�;x�˝ xC;x�˝ x�g, and we are using the basis of
the instanton homology of Figure 4, left, corresponding to this basis.

Now let us compute some of the entries of ˆ1. Note that if we pre- or postcompose
ˆ1 with caps like those in Figure 5, we get back the cap itself. These caps induce the
maps

�
1
0

�
and Œ0 1�, so, from these compositions, we can see that aD d D 1 and c D 0.

Note that, if we did not have !, then we could do the same argument with a cap with
a dot, and, using the fact that doing a flip and then a cap with a dot is the same as
doing a negative dot, we would be able to get the remaining entry, b, and recover [17,
Proposition 5.8], in which the flip map does not induce the identity. However, because
we have ! here, this does not work: the flip changes which side of @! the dot is on.

Figure 5
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Figure 6

Going back to our computation, we now have that

ˆD

2664
1 0 b 0

0 1 0 b

0 0 1 0

0 0 0 1

3775 :
We would now like to show that b is 0. Consider the pair of pants cobordism with
! as two half-disks from the unlink with two arcs going between components to the
unknot, as depicted in Figure 6, left. Because we can precompose with isomorphisms
to make a regular merge with a null-homotopic disk on top, as in Figure 6, right,
we see that Figure 6, left, induces the same as the merge map, if we use the basis
fxCC;xC�;x�C;x��g. Here we are using that the reverse of the map in Figure 3 is
also the identity matrix with our choice of basis.

Thus, in this basis, it induces the map

mD

�
1 0 0 Q

0 1 1 P

�
:

Similarly, the reverse of this cobordism induces the same map as �, so it induces

�D

2664
P Q

1 0

1 0

0 1

3775 :
Thus, composing m ıˆ ı�, we get the map

m ıˆ ı�D

�
bCP 0

0 bCP

�
:
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A2

A3

A1

A4

B

Figure 7: The cobordism S is cylindrical on the dotted part.

However, if we compose these cobordisms, we get a Klein bottle, which is a connected
sum of RP2

C and RP2
�, with ! given by two disks, one on each RP2, such that the

boundary circle of each disk is the generator of that H1.RP2/. It is shown in [17] that
this Klein bottle with these ! induces the map P � Id, so b D 0, as desired.

Claim 2 Let S � S3 � Œ0; 2� be a cobordism from K1 to K2 such that in S3 � Œ0; 1�

it is the cylinder on K1 and in S3 � Œ1; 2� it consists of adding a single nonorientable
band. More precisely , we may consider a band B � S3 with vertices A1;A2;A3;A4 2

S3 with A1A2 and A3A4 on K1, as in Figure 7. In S3 � Œ1; 2�, S then looks like
.K1 n .A1A2[A3A4//� Œ1; 2� away from the band B � Œ1; 2�, and within the band it
goes from A1A2[A3A4 at time 1 to A2A3[A4A1 at time 2.

The cobordism is depicted in frames in Figure 8.

Then there is a surface ! with boundary in the interior of S such that ! meets S only
at the boundary , where they meet cleanly, and such that , for S the reverse of S with
corresponding x!,

I ].S/x! ı I ].S/! D P � Id W I ].K1/! I ].K1/:

Figure 8
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A2

A3

A1

A4

B

c

b a

Figure 9: The cobordism S is cylindrical on the dotted part.

Proof Observe that A1 and A3 split K1 into two parts, which we call a and b (these
are coloured magenta and blue, respectively, in Figure 9). Let c be the diagonal on the
band that goes from A1 to A3.

Consider a[c as a knot in S3 and let F0 be a Seifert surface of it. Then F0 is a surface
with corners, with boundary a[ c, and which meets b at the ends, A1 and A3. We
may isotope a, b and c so that F0 meets b cleanly at the ends and transversely in the
interior, as in Figure 10.

If we choose an orientation of F0 and b, then the intersection points may have positive
or negative sign. We can increase the number of positive or negative intersection points
without changing the isotopy type of the embedding of K1[ c into S3 by twisting b

around A1 or A3, as in Figure 11. Let us do this, adding either positive or negative
intersections as needed until there are the same number of positive as negative interior
intersection points between b and F0.

A1 A3

a

b

c

Figure 10: Here F0 is depicted as a disk though it could have higher genus.
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a
a

bb

c c

Figure 11

Now say that the intersection points are A1;p1;p2; : : :p2k ;A3, in order along b. Then,
if pi and piC1 are intersection points with opposite sign, we may remove a small disk
around each of pi and piC1 and replace it with a small tube around the part of b

that goes from pi to piC1, thus reducing the number of intersection points. We may
continue in this manner, removing adjacent opposite-sign intersection points until none
remain.

We now have a surface, which we call F1 with boundary a[ c, which intersects b only
at A1 and A3, where the intersection is clean.

We now consider a surface F2 � S3 � Œ0; 2� with boundary on S which is given by the
union of F1 � S3 � f1g with a disk sitting between c � 1 � S3 � Œ1; 2� and S, as in
Figure 12.

Then this F2 can have its corners smoothed out to a surface with boundary !.

Let us now show that, for this !, we have

I ].S/x! ı I ].S/! D P � Id W I ].K1/! I ].K1/:

Let † denote the composition of S with S, and let !† D ! [ x! be the decoration on
this cobordism. See Figure 13.

Let 
 denote the circle composed of the cocore of the band and its mirror, depicted
in blue in Figure 13. A regular neighbourhood of 
 in † is a tube, represented in

Figure 12
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Figure 13: This is S with ! composed with the reverses S with x!.

Figure 14. If we cut the surface along 
 , we get the twice-punctured cylinder as a
cobordism from K1 to itself.

Figure 14 shows @!† as well. The mod 2 homology class Œ@!†� on the surface † is
the same as Œ
 �. One way to see this is to perform surgery on @!† along the green arc
in Figure 14: this operation does not change the homology class and it yields a curve
which is easily checked to be isotopic to 
 in †.

Let †0 be the cobordism obtained from † by inserting a flip in the tube in the centre
of Figure 14, with the same decoration !†. Using Claim 1, we will see below that
I ].†/!†

D I ].†0/!†
. However, the curve @!† is homologically trivial in†0. One can

check this again by doing surgery on the green arc, but this time the extra flip ensures that
the obtained curve is not 
 , but a homotopically trivial one. Thus, I ].†0/!†

D I ].†0/∅,

Figure 14
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Figure 15

since the map depends only on Œ@!†�. If !D∅, one can apply the neck-cutting relation
(property (a) in Section 2.3) to obtain that

I ].†0/D P � I ].I �K1/D P � IdI ].K1/
:

We still have to show that I ].†/!†
D I ].†0/!†

. To see this, isotope the tube in the
middle as shown in Figure 15.

Let’s restrict our attention to the piece contained in the cylinder in green, which is the
identity cobordism on a two-component unlink. By Claim 1, the map induced by this
cobordism is the same that we get if we introduce a flip on one of the two components.
Since instanton Floer maps respect composition of cobordisms and disjoint unions,
the map induced by the whole cobordism is not affected by the insertion of the flip, ie
I ].†/!†

D I ].†0/!†
.

Claim 3 Let S be a cobordism from a knot K1 to a knot K2 such that S consists of
only b bands. That is , there are no births nor deaths. Then there is a surface ! with
boundary on S such that

I ].S/x! ı I ].S/! D Pb
� Id:

Proof We proceed by induction on b. The base case b D 0 is obvious.
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For the inductive step, we divide into two cases. If S is orientable, then the statement
holds for ! empty, because the cobordism S ı S is the same as the cylinder on K1

with b orientable tubes, and the result follows from the tube-cutting formula.

In the case that S is not orientable, at least one of the bands of S must be nonorientable
with respect to K. In this case, let us write S D Sr ı Su, where Su is a cobordism
consisting of the nonorientable band and Sr is the rest of the cobordism, which may or
may not be orientable.

Then, by the induction hypothesis, there is some !r such that

I ].Sr /x!r
ı I ].Sr /!r

D Pb�1
� Id:

Applying Claim 2, there is a surface !u with boundary on Su such that

I ].Su/x!u
ı I ].Su/!u

D P � Id:

The statement
I ].S/x! ı I ].S/! D Pb

� Id
now follows.

Now we can proceed with the proof of Proposition 3.3.

Proof of Proposition 3.3 Applying Lemma 3.2, we may break S into

(a) m births (from K1 to L1);

(b) m band surgeries that join the various components of the link (from L1 to K0
1
);

(c) b� .mCM / band surgeries which may or may not be orientable, ending in a
knot K0

2
;

(d) M band surgeries that split the knot K0
2

into M C 1 components;

(e) M deaths.

Let us call the cobordisms corresponding to the five steps S1;S2; : : :S5. We may
isotope the cobordism in S3 �R so that Si is in S3 � Œi; i C 1�.

We will choose ! to be in S3 � Œ2; 3�, so that its boundary is in S3 as in Claim 3, so
that

I ].S3/x! ı I ].S3/! D Pb�m�M
� Id:

The proof now proceeds the same way as the proof of [11, Proposition 4.1]. The main
argument is by considering a cobordism† that comes from adding M tubes connecting
points on the death caps to their mirrors.
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By [18, Lemma 3.2], for a connected, oriented cobordism †, if †0 is obtained from †

by adding a tube between points p and q, then

(6) I ].†0/D I ].†;p/C I ].†; q/CPI ].†/D PI ].†/;

where the second equality is because † is connected, so I ].†;p/ and I ].†; q/ induce
the same map, and, since we are working over characteristic two, they cancel.

Let †1 denote the cobordism that takes S ıS and adds M tubes, one for each death,
connecting a point in the death to its reverse, so that †1 D S1S2S3S4S4S3S2S1.
Applying (6) for each death, to the part of the cobordism from K3 to itself coming
from doing S4, S5 and their reverses, we see that

I ].†1/D PM I ].S ıS/:

Here, we are allowed to use the above result because S4S5S5S4 and S4S4 are both
orientable and connected.

In †1 D .S1S2S3S4/.S1S2S3S4/, M splitting bands of S4 and their reverses, cap
off the ends, and call the resulting cobordism †2. Then, for the same reason as above,
we have

I ].†1/D PM I ].†2/;

because again S3S4S4S3 and S3S3 are both orientable and connected.

Now we have †2 D .S1S2S3/.S1S2S3/.

Because of our construction of !, S3S3 with ! [ x! falls under the setting of Claim 3,
so the map it induces is Pb�m�M � IdI ].K2/

. Thus, if we let †3D .S1S2/.S1S2/, then

I ].†2/D Pb�m�M I ].†3/:

Now †3 is given by a cylinder on K1 and m S2’s, with m tubes, with the tubes
connecting the S2’s and the cylinder in a tree-like fashion. Applying the tube-cutting
formula, Lemma 3.2 of [18], and observing that a sphere without any dots induces the
zero map while a sphere with one dot induces the identity, we see that I ].†3/ induces
the same map as the cylinder, which is to say the identity.

Putting all of this together, we get

PM I ].S ıS/D I ].†1/D Pb�m
� Id;

as desired.
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4 Background on unoriented knot Floer homology

Unoriented knot Floer homology was introduced by Ozsváth, Stipsicz and Szabó
[25; 26]. Fan [7] showed that a nonorientable cobordism (with some extra data) induces
maps on the unoriented knot Floer homology. We now review the relevant definitions,
following mostly [35; 7].

4.1 Zemke’s oriented TQFT

Cobordism maps in link Floer homology were first defined by Juhász [10]. Here we use
Zemke’s setup [35], specified to unoriented link Floer homology in the case Y D S3.

Definition 4.1 An oriented multibased link in S3 is a triple LD .L;w; z/ consisting
of an oriented, embedded link L � S3, with two disjoint collections of basepoints
w and z on L, such that each component of L has at least two basepoints and the
basepoints alternate between those in w and those in z as one traverses a component
of L.

To an oriented multibased link L, Zemke’s most general construction gives a curved
F ŒUw;Vz �–complex CFL�.L/ up to F ŒUw;Vz �–equivariant chain homotopy. Here
F ŒUw;Vz � denotes the polynomial ring generated by a U variable for each w basepoint
and a V variable for each z basepoint. The curved complex is also endowed with
gradings and a filtration.

In our case, we only need a simpler version of Zemke’s complex, namely unoriented
link Floer homology. This is defined as

CFL0.L/ WD CFL�.L/˝F ŒUw;Vz� F ŒU �;

where all variables act on F ŒU � as multiplication by U. For the reader familiar with
Heegaard Floer homology, this is the free F ŒU �–module generated by the intersection
points T˛\Tˇ in the symmetric product, with differential given by

(7) @x D
X

y2T˛\Tˇ

X
�2�2.x;y/
�.�/D1

#M.�/ �U no.�/ �y ;

where no.�/D
P
w2w nw.�/C

P
z2z nz.�/.

Definition 4.2 For a doubly based knot K D .K; w; z/, we also use the notation
CFK0.K/ and HFK0.K/ for CFL0.K/ and HFL0.K/, respectively.
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If K1 D .K; w1; z1/ and K2 D .K; w2; z2/ are two doubly based knots with the same
underlying knot K, then HFK0.K1/ and HFK.K2/ are noncanonically isomorphic as
F ŒU �–modules. Thus, the following number is well defined:

Definition 4.3 If K is a knot, we define its unoriented torsion order as

OrdU .K/Dminfn� 0 j U n
�TorsD 0g;

where Tors is the torsion submodule of HFK0.K/, considered as a module over F ŒU �.
Here K is any doubly based knot with underlying knot K.

Remark 4.4 CFL0 enjoys the following properties:

(a) CFL0.L/ is a genuine chain complex (ie its curvature vanishes), so one can
compute its homology HFL0.L/, known as the unoriented link Floer homology
of L. This is still an F ŒU �–module.

(b) For a doubly based knot KD .K; w; z/, HFK0.K/Š F ŒU �˚Tors, where Tors
is the torsion as an F ŒU �–module.

(c) For a doubly based unknot U1 D .U1; w; z/, HFK0.U1/Š F ŒU �.

(d) Given doubly based knots K1 and K2,

CFK0.K1 # K2/D CFK0.K1/˝F ŒU � CFK0.K2/:

As a consequence, for knots K1 and K2 in S3,

OrdU .K1 # K2/DmaxfOrdU .K1/;OrdU .K2/g:

(e) If L is the mirror of L (with the same basepoints), then, by [26, Proposition
2.17],

CFL0.L/D homF ŒU �.CFL0.L/;F ŒU �/:

As a consequence, for a knot K in S3,

OrdU .K/D OrdU .K/:

Definition 4.5 If L1 D .L1;w1; z1/ and L2 D .L2;w2; z2/ are two oriented multi-
based links, an (oriented) decorated link cobordism from L1 to L2 is a pair SD .†;A/
such that:

(a) †�I�S3 is a properly embedded, compact, oriented surface with†\f0g�S3D

f0g � .�L1/ and †\f1g �S3 D f1g �L2.

(b) A�† is a properly embedded 1–manifold, which we refer to as the decorations.
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(c) The components of † nA are partitioned into two subsurfaces, †w and †z,
which meet along A.

(d) Each component of Li nA contains exactly one basepoint of wi t zi .

(e) w1 tw2 �†w and z1 t z2 �†z.

Definition 4.6 The identity (decorated link) cobordism idL from LD .L;w; z/ to itself
is given by the surface †D I �L with decorations AD I �Q, where Q�Ln .w[z/

is a finite set such that the inclusion induces an isomorphism in �0.

By the work of Zemke [35], an oriented decorated link cobordism S from L1 to L2

induces an F ŒU �–equivariant map

FZ
S W HFL0.L1/! HFL0.L2/:

Remark 4.7 The map FZ
S enjoys the following properties:

(a) FZ
S is invariant under isotopy of † in I �S3 while fixing the boundary, and

under isotopy of A in † while keeping

@A� .L1 n .w1[ z1//[ .L2 n .w2[ z2//:

(b) If idL is the identity cobordism from L to itself, then

FZ
idL
D idHFL0.L/:

(c) If S1 and S2 are oriented decorated link cobordisms from L1 to L2 and from
L2 to L3, respectively, then one can stack S2 on top of S1 (after isotoping
the decorations so that they match on the L2 level), and obtain a new oriented
decorated link cobordism S2 ıS1 from L1 to L3. In such a case,

FZ
S2ıS1

D FZ
S2
ıFZ

S1
:

(d) If S0 D .†0;A0/ is obtained from SD .†;A/ by attaching a tube with both feet
in †z (or both feet in †w), then FZ

S0 D U �FZ
S .

4.2 Fan’s unoriented TQFT

By the work of Fan [7], the link Floer TQFT can be extended to the nonorientable case.
We review the relevant definitions.
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Definition 4.8 A disoriented link in S3 is a tuple L D .L;p; q/ consisting of an
unoriented, embedded link L � S3, with two disjoint collections of points p and q

on L, called the dividing set, such that each component of L has at least two points
in the dividing set and the points in the dividing set alternate between those in p and
those in q as one traverses a component of L.

Each component of Ln.p[q/ is given a canonical orientation from q to p. We denote
the oriented manifold L n .p[ q/ by l . Note that these orientations do not glue to an
orientation of L.

As it is customary, we consider isotopic disoriented knots as different disoriented knots.
It is well known that isotopies can induce nontrivial maps in knot Floer homology, such
as the moving basepoint maps [30; 32].

Definition 4.8 looks exactly the same as Definition 4.1, except that the link is now
unoriented. However, we emphasise that the basepoints w[ z from Definition 4.1
are ontologically different from the dividing set from Definition 4.8. From a Morse-
theoretical viewpoint, the former arise as the intersection between L and the middle
level surface of a Morse function, whereas the latter are the index-0 and index-3 critical
points of the function.

However, we can define a notion of compatibility between oriented decorated links and
disoriented links.

Definition 4.9 We say that an oriented decorated link LD .L;w; z/ and a disoriented
link LD .L;p; q/ are compatible if

� the underlying unoriented link L is the same (but note that in L it also comes
with an orientation);

� p[ q is disjoint from w[ z;

� each component of L n .p[ q/ contains exactly one basepoint in w[ z;

� the components of L n .w[ z/ containing the p point are oriented from z to w
(with orientation induced from L).

Remark 4.10 Every disoriented link admits a (noncanonical) compatible oriented dec-
orated link. Likewise, every oriented decorated link admits a (noncanonical) compatible
disoriented link.
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If two oriented decorated links L1 and L2 are compatible with the disoriented link L,
then HFL0.L1/ and HFL0.L2/ are canonically isomorphic. Thus, we can define
HFL0.L/ as HFL0.L/ for any L compatible with L. (More precisely, HFL0.L/ is
the transitive system over all compatible oriented decorated links.)

Note that HFL0.L/ does not depend on the orientation chosen on L. If .L;w; z/ is
a compatible oriented decorated link, then the orientation reversal Lr is also part of
a compatible oriented decorated link, namely .Lr ; z;w/. The swap of the w and z

basepoints does not affect the homology, since the differential was defined to be
symmetric in w and z (see (7)). This justifies the name unoriented knot Floer homology
used in [26].

Remark 4.11 Fan [7] defines other categories of unoriented links, which he calls
bipartite links and bipartite disoriented links. These are essential to define a TQFT
framework for disoriented links, but we do not recall them here.

We now revise the cobordism maps defined by Fan [7].

Definition 4.12 A disoriented link cobordism from L1 D .L1;p1; q1/ to L2 D

.L2;p2; q2/ is a pair S D .†;M/ such that

(a) † � I � S3 is a properly embedded, compact surface with †\ f0g � S3 D

f0g � .�L1/ and †\f1g �S3 D f1g �L2;

(b) M�† is a properly embedded, compact, oriented 1–manifold, which we refer
to as the motion of the critical points;

(c) the components of†nM are compact, oriented surfaces with orientation induced
by M;

(d) @MD q1�p1Cp2� q2.

Note that, with the orientation given in point (c), @.† nM/ D l2 � l1 C 2M. The
surface † does not need to be oriented.

There is a natural notion of identity cobordism, in the same spirit as Definition 4.6. We
do not write this definition explicitly.

By the work of Fan [7], an disoriented link cobordism S from L1 to L2 induces an
F ŒU �–equivariant map

FF
S W HFL0.L1/! HFL0.L2/:
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Remark 4.13 The map FF
S enjoys the following properties:

(a) FF
S is invariant under isotopy of † in I � S3 while fixing the boundary, and

under isotopy of M in † while fixing the boundary.

(b) If idL is the identity cobordism from L to itself, then

FF
idL D idHFL0.L/:

(c) If S1 and S2 are oriented disoriented link cobordisms from L1 to L2 and from
L2 to L3, respectively, then one can stack S2 on top of S1, and obtain a new
oriented disoriented link cobordism S2 ıS1 from L1 to L3. In such a case,

FF
S2ıS1

D FF
S2
ıFF

S1
:

4.3 Relation between Zemke’s TQFT and Fan’s TQFT

Definition 4.14 For i D 1; 2, suppose that Li D .Li ;wi ; zi/ and Li are compatible.
We say that a decorated link cobordism SD .†;A/ from L1 to L2 and a disoriented
link cobordism S D .†;M/ from L1 to L2 are compatible if

� the underlying unoriented surface † is the same (but note that in S it also comes
with an orientation);

� after isotoping A without crossing w1 t z1 tw2 t z2, ADM.

Remark 4.15 For i D 1; 2, suppose that Li and Li are compatible. Moreover, suppose
that S is a decorated link cobordism from L1 to L2 and S is a compatible disoriented
link cobordism from L1 to L2. Then

FZ
S D FF

S :

5 A technical result for HFK0

5.1 The flip cobordism in HFK0

Definition 5.1 The standard disoriented unknot is U1 D .U1;p; q/, where U1 D

fx2Cy2 D 1g\ fz D 0g, p D .1; 0; 0/ and q D .�1; 0; 0/.

Definition 5.2 The flip cobordism F D .†F ;MF / from the standard disoriented
unknot U1 D .U1;p; q/ to itself is the disoriented cobordism traced by the isotopy
obtained by rotating U1 by � along the x–axis. The points p and q stay fixed throughout
the isotopy, so we can set MF D I � fp; qg.
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p q

p q p q

p q

p q

p q

p q

Figure 16: Our notation for the flip cobordism (left) and a few sections of
the cobordism (right). We use different colours for the two components of
U1 n fp; qg to help the visualisation.

Note that the surface underlying a flip cobordism is orientable, although no orientation
of the surface restricts to the same orientation on the two standard disoriented unknots
on the boundary.

Lemma 5.3 The map FF
F induced by the flip cobordism is the identity map on

HFK0.U1/Š F ŒU �.

Proof The fourth iteration F4 is the disoriented cobordism traced by a 4� rotation
about the x–axis. Since �1.SO.3// D Z=2Z, the rotation by 4� is isotopic to the
identity. Thus, F4 is isotopic to the identity cobordism, and

(8) .FF
F /

4
D FF

F4 D idF ŒU � :

The map
FF
F W F ŒU �! F ŒU �

is U –equivariant, so it is completely determined by the image of 1. If we set p.U / WD

FF
F .1/ 2 F ŒU �, equation (8) implies that .p.U //4 D 1. Since every invertible element

of F ŒU � must be in F, we deduce p.U /D 1.

5.2 A stabilisation lemma

In this subsection only, we will need to work in a more general setting than the one
outlined in Section 4.

First, we will consider decorated links L in a 3–manifold Y, and decorated link cobor-
disms .†;A/ in a 4–manifold W. In Section 4, we have stated the definitions of
decorated link and decorated link cobordism only when Y D S3 and W D I � S3.
The general definitions are only needed in this subsection, and they can be found in
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[35, Definitions 2.1 and 2.4]. Again in this subsection only, we will consider the full
chain complex CFL�.Y;K/ associated to a decorated knot, which is a complex over
F ŒU;V �, up to chain homotopy equivalence.

We will also use the homological action on link Floer homology. (See [27, Section 4.2.5]
for the original definition of Heegaard Floer homology, Theorem 3.1 of [29] for the
cobordism action, and [34, Section 12.2] for its extension to link Floer homology.)
Given a decorated link L in a 3–manifold Y, there is a homological action

A Wƒ�.H1.Y IZ/=Tors/˝ CFL�.Y;L/! CFL�.Y;L/;

and, given a decorated link cobordism .†;A/ in a 4–manifold W, there is a version of
the cobordism map incorporating the homological action,

FH
W ;†;A Wƒ

�.H1.W IZ/=Tors/˝ CFL�.Y1;L1/! CFL�.Y2;L2/:

(We use the notation FH to distinguish it from the cobordism map FZ, which does
not incorporate the homological action.) If the 4–manifold W is obtained by adding
1–handles to B4, then the map FH can be recovered from FZ by postcomposing with
the homological action on Y1. The following lemma, which is needed to establish
Proposition 5.5, was proved by Ian Zemke. A related argument appeared in [12,
Section 5] (see in particular [12, Lemma 5.3]):

Lemma 5.4 Let †D I �K � I �S3 be the identity cobordism from the knot K to
itself , and let †0 denote a surface obtained by adding a compressible 1–handle to †. If

 �† denotes an embedded arc joining the feet of the 1–handle , define decorations A0

on †0 as two parallel embedded arcs from f0g �K to f1g �K such that :

� A0 does not intersect 
 .

� Each arc of A0 crosses the cocore of the 1–handle exactly once.

� The arcs of A0 join the points .0;p/ and .0; q/ to the points .1;p/ and .1; q/ in
I �K, respectively.

� The decorations A, obtained by restricting A0 to † and by reconnecting each pair
of arcs with an arc parallel to 
 , are isotopic rel boundary to a product decoration
I � fp; qg.

Then , if KD .K; w; z/ for some points w and z alternated to p and q, the cobordism
map

FZ
†0;A0 W HFK0.K/! HFK0.K/

coincides with the map U � idHFK0.K/.
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A0

ı

A00 A000

Figure 17: The three decorations A0, A00 and A000 on the surface †0 appearing
in the bypass relation arising from the arc ı.

Proof If a1 and a2 denote the two components of A0, let ı be an arc on †0 which
starts from a1 near a foot of the 1–handle, then traverses a2, follows 
 to the other foot
of the 1–handle, and ends on a2. See Figure 17, left, for an illustration.

We apply Zemke’s bypass relation on a disc��†0 obtained as a regular neighbourhood
of the arc ı in †0. If A00 and A000 denote the other decorations appearing in the bypass
relation as in Figure 17, we have that

FZ
†0;A0 D FZ

†0;A00 CFZ
†0;A000 :

The decorations A00 can be isotoped away from the cocore of the 1–handle. After
compressing the 1–handle, the surface becomes isotopic to † and the decorations
become isotopic to the product decorations A. Thus, by Remark 4.7(d),

FZ
†0;A00 D U �FZ

†;A D U � idHFK0.K/:

Thus, we only need to show that FZ
†0;A000 D 0. From this point until the end of the proof

we will work on the chain level CFL�.K/, considered as an F ŒU;V �–complex, up to
chain homotopy equivalence. (The variable U is associated to the basepoint w.)

We split the cobordism .I �S3; †0;A000/ as the composition of two cobordisms. The
first one, which we call W1 D .W1; †1;A1/, is obtained by taking as W1 the (disjoint)
union of a regular neighbourhood of f0g �S3 and a neighbourhood of 
 [ c (where c

denotes the core of the 1–handle) containing the 1–handle entirely. Note that the latter
component of W1 is diffeomorphic to S1 �D3. The decorated surface .†1;A1/ is
obtained by intersecting W1 with .†0;A000/. The second cobordism W2 is obtained by
taking the closure of the complement of W1 in I �S3. Thus, we have

FZ
†;A000 D FH

.I�S3;†0;A000/ D FH
W2
ıFH

W1
:
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Figure 18: Left: the decorated surface .z†1; zA1/. The punctured torus z†1 sits
in S1 �D3 in such a way that its longitude generates H1.S

1 �D3/, while
its meridian is null-homotopic. Right: the decorated surface .†1;A1/.

(In the first equality we used the fact that H1.I �S3/D 0.)

We focus on the map FH
W1

. Since W1 has two connected components (one of which is
an identity cobordism over K), the map splits as a tensor product

(9) FH
W1
D idCFL�.K/˝FH�W1

;

where �W1 D .S1 �D3; z†1; zA1/ is a cobordism from the empty link in the empty
3–manifold to a doubly pointed unknot U in S1 �S2, illustrated in Figure 18, left.

The knot Floer complex CFL�.S1 �S2;U/ is generated over F ŒU;V � by two homo-
geneous elements xC and x�. Their grw and grz gradings (as defined in [34]) are
given by

.grw; grz/.x˙/D
�
˙

1
2
;˙1

2

�
:

For grading reasons [34], we have

(10) FH�W1
.1/D k �x�

for some k 2 Z=2Z. An explicit computation of the action of H1.S
1 �S2/D Zh�i

shows that A.�˝xC/D x�. From this fact, a direct computation shows that

(11) FH
W1
.�˝ 1/D x�;

where W1 D .S
1 �S2; †1;A1/ is the cobordism shown in Figure 18, right.

Recall that the cobordism W1 is the disjoint union of an identity cobordism over K

and the cobordism �W1. If �W1 denotes the cobordism obtained by replacing the �W1

component with W1, then, by combining (9), (10) and (11), we have

(12) FH
W1
.x/D x˝FH�W1

.1/D k �x˝FH
W1
.�˝ 1/D k �FH�W1

.�˝x/:

Finally, let �W denote the composition of �W1 and W2. Note that the 4–manifold
underlying �W is still I �S3 (the same as W), since the replacement of W1 with �W1
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did not affect the underlying 4–manifold. Then, by (12),

FZ
†;A000.x/D FH

W2
ıFH

W1
.x/D k �FH

W2
ıFH�W1

.�˝x/D k �FH�W .��.�/˝x/D 0:

The last term vanishes because the map �� WH1.S
1�D3/!H1.I �S3/D 0 induced

by the inclusion of �W1 into �W must map � to 0.

5.3 The main theorem in HFK0

Proposition 5.5 Suppose that † is a connected nonorientable knot cobordism from
K1 to K2 in I �S3 with m local minima , b saddles and M local maxima , and let †
denote the mirrored upside down cobordism from K2 to K1.

Then there are choices of motions of the critical points such that the disoriented knot
cobordisms S D .†;M1/ and S D .†;M2/ can be composed to S ıS, and

(13) U M
�FF

S ıFF
S D U b�m

� idHFK0.K1/:

Proof Using Lemma 3.2, we can break the cobordism † into the composition of
cobordisms labelled (a)–(f). Let K0

1
and K0

2
be the knots after steps (b) and (d),

respectively, as in the statement of Lemma 3.2, and let L0 be the link after step (c).
Note that L0 differs from K0

2
by a single band surgery.

By removing the two attaching arcs of the nonorientable band B from L0, we are left
with two arcs 
 and ı. If L0 is a knot, let pa; qa;pb; qb be points on 
 , appearing in
this order, such that pa and qa are close to one end of 
 and pb and qb are close to
the other end of 
 , so that all the intersections of L0\ 
 with the oriented bands are
between pb and qa. See Figure 19, left. If instead L0 is a two-component link, let pa

and qa be on 
 and pb and qb be on ı such that they are near opposite corners of the
band and pa (resp. qb) is closer to the band than qa (resp. pb). See Figure 20.

Let S be the disoriented cobordism from .K1;pa; qa/ to .K2;pb; qa/ obtained by
endowing † with the following motion of basepoints:

� On steps (a)–(c), the motion consists of straight arcs I � fpa; qag.

� On step (d), the motion consists of a straight arc I �fqag and of an arc that starts
from pa, goes through the nonorientable saddle, and ends at pb (see Figure 19).

� On steps (e)–(f), the motion consists of straight arcs I � fpb; qag.
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B

L0

ı




pa
qa

pb

qb

L0

K0
2

Figure 19: Left: the circle represents L0 after step (c) in the case it is a knot.
Right: step (d) of the cobordism †, from L0 to K0

2
, together with the motion

chosen to define S.

A crucial condition in Definition 4.12 is that each component of † nM1 must be
orientable. In fact, we show that †nM1 consists of a single and orientable component.
If L0 is a knot, one can check from Figure 19 that † nM1 restricted to step (d) has a
single component; in steps (a)–(c) the surface † is orientable and the motion is given
by two parallel arcs, so there are two components of † nM1, which are then glued
to the unique component in step (d); steps (e)–(f) define a concordance of disoriented
knots, which does not change the abstract topology of the disoriented cobordism. The
compatibility of the orientation of † nM1 with the orientation of M1 is dealt with in
an analogous way.

K0
2

L0

qa

pa

pb

qb

L0

Figure 20: Step (d) of S in the case L0 is a two-component link, represented
above by the two inner circles.
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If L0 is a two-component link, then one should consider Figure 20 instead. Let � be
the closed component of L0 containing pb and qb (which appears in Figure 20, right),
and let " be the component containing pa and qa, minus the short arc connecting pa

and qa (which appears in Figure 20, right). From Figure 20, it is immediate to check
that † nM1 has two components in step (d), which deformation retract on � and
on ". Since K1 is a knot, † nM1 in steps (a)–(c) also has two components: a “small”
rectangular one, S, spanned by the short arc connecting pa and qa, and a large one, L,
the complement of it, which contains all the genus. When you glue steps (a)–(c) to
step (d), the rectangular component S is glued to the component containing �, without
affecting the topology, whereas the component L glues to both components of step (d).
Thus, we see that there is only one component of † nM1. Its orientability and the
compatibility with the orientation of M1 is left to the reader (it basically follows from
the fact that cutting along M1 effectively cuts the nonorientable saddle, leaving an
orientable cobordism). As before, we do not worry about steps (e)–(f), since they define
a concordance, which does not change the abstract topology.

We next introduce a disoriented cobordism S from .K2;pb; qa/ to .K1;pa; qa/ with
underlying surface †. To define it, we play the steps of the cobordism S in reverse
order, but we use a different motion of basepoints:

� On the reversed steps (f)–(e), the motion consists of straight arcs I � fpb; qag.

� On the reversed step (d), the motion consists of a straight arc I �fpbg and of an
arc that starts from qa, goes through the (dual) nonorientable saddle, and ends
at qb .

� On the reversed steps (c)–(a), the motion consists of straight arcs I � fpb; qbg.

� Finally, in a collar of the K1 boundary component, the motion of the basepoints
brings pb and qb back to pa and qa.

Note that S is not S turned upside down as disoriented cobordisms (even if the dis-
oriented knots at the boundary are not the same).

We also define a disoriented cobordism T u from .K1;pa; qa/ to .K1;pa; qa/, obtained
in three steps:

� The first step is the same disoriented cobordism as in Figure 19, except that
the knot L0 is replaced with K1; more explicitly, the surface † in the first step
consists of the cylinder I �K1, with the nonorientable band B attached on the
upper end (recall that by Lemma 3.2 all bands have disjoint attaching arcs, so
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pa
qa pa

qa

pa
qa pa

qa

Figure 21: The disoriented cobordism T u (left) and the disoriented cobordism T o (right).

we can attach B to K1), and the motion of the basepoints consists of I � fqag

and of an arc that starts from pa, goes through the band, and ends at pb .

� The surface in the second step is simply the surface from the first step turned
upside down, and the motion consists of a straight arc I � fpbg and of an arc
that starts from qa, goes through the (dual) band, and ends at qb .

� Finally, in a collar of the end boundary component, the motion of the basepoints
brings pb and qb back to pa and qa.

Note that the surface† of the disoriented cobordism T u is a genus-1 surface, consisting
of a cylinder I �K1 with a flipped tube attached to it. The flipped tube is made up of
the two nonorientable bands. See Figure 21, left.

Lastly, we define a variant of T u: the disoriented cobordism T o from .K1;pa; qa/ to
.K1;pa; qa/ is obtained by replacing the flipped tube in T u with an orientable tube, so
that the underlying surface † is orientable (in other words, the nonorientable bands are
replaced with orientable bands); the motion of the basepoints divides † into a disc and
a punctured torus; see Figure 21, right. Note that Lemma 5.3 implies that FF

T u D FF
T o ,

since it is possible to isolate a flip cobordism.

In order to prove Proposition 5.5 we argue in a similar way as in [11, Proposition 4.1]:
we define a cobordism Gu, and we compute the map FF

Gu in two different ways, which
will be the two sides of equation (13).
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The disoriented cobordism Gu, from .K1;pa; qa/ to itself, is obtained by playing all
the steps of S except (f) followed by all the reversed steps of S except (f). (In S we
also play the basepoint moving step in a collar of K1.)

Since the attaching arc of the unoriented band can be isotoped in K1, we can move
step (d) of S and the corresponding reversed step of S up past all the other steps of S
and S. These two steps together make up the cobordism T u, which we can replace with
the orientable cobordism T o. The replacement yields a new disoriented cobordism Go

from Gu, with FF
Go D FF

Gu . The advantage of Go over Gu is that the underlying surface
of the former is orientable, so FF

Go DFZ
G for a compatible decorated link cobordism G,

and we can use the properties of Zemke’s TQFT on FZ
G , in particular the one about

compressing discs.

Note that in the definition of Gu (or Go) we do not play the M deaths of S (step (f))
and the M births of S, obtained by mirroring the deaths of S. Thus, S ıS is obtained
from Gu by compressing M discs with boundary in the complement of the motion of the
basepoints. By transiting through their orientable replacements, and by Remark 4.7(d),
we get

(14) FF
Gu D U M

� ıFF
S ıFF

S :

On the other hand, we saw earlier that the cobordism Go can be rearranged so that we
have T o at the top. The first part consists of a cylindrical cobordism from .K1;pa; qa/

to itself with b� 1�m tubes added, as in [11]. (The �1 here comes from the fact that
we have moved the nonorientable band to the top of the cobordism.) Thus, we can
compress the cobordism Go b� 1�m times to get T o, so

FF
Go D U b�1�m

�FF
T o :

But the cobordism T o is of the form studied in Lemma 5.4, so the map that it induces
is multiplication by U. Thus,

(15) FF
Gu D FF

Go D U b�m
� idHFL0.K1/:

By combining (14) and (15), we finish the proof.

Remark 5.6 The careful reader will note that the motions of the basepoints play an
important role in the proof of Proposition 5.5. This is by contrast with Proposition 4.1
of [11], where the decorations of the cobordism were the simplest possible, ie two
parallel arcs from the bottom to the top. In the unoriented setting it is impossible to
choose two parallel arcs as the motion of basepoints, otherwise the cobordism would
not fall in the correct category.
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6 Applications

In this section we prove Theorem 1.1, which we restate below, together with its
corollaries.

Theorem 1.1 Let K1 and K2 be knots in S3. Suppose that there is a nonorientable
knot cobordism † in I �S3 from K1 to K2 with M local maxima. Then

(1) OrdI .K1/�maxfOrdI .K2/;M gC 
 .†/

and

(2) OrdU .K1/�maxfOrdU .K2/;M gC 
 .†/:

Proof The proof closely follows that of [11, Theorem 1.1].

Add decorations on † and † (in the instanton or unoriented knot Floer sense) to obtain
cobordisms with decorations S and S that satisfy the relation in Proposition 3.3 or
Proposition 5.5,

(16) vM
�FS ıFS D v

b�m
� idH .K1/ :

Here m is the number of local minima and b is the number of saddles on †, H is either
I ] or HFK0, F denotes the corresponding map induced by an unoriented cobordism
with decorations, and v denotes the relevant variable P or U.

Suppose that x 2H.K1/ is a torsion element. Since FS.x/ must be torsion in H.K2/,
vl �FS ıFS.x/D FS.v

l �FS.x//D 0 whenever l � Ord.K2/. Thus, in view of (16),
vlCb�m�M �xD 0 whenever l �maxfOrd.K2/;M g. Since this holds for every torsion
element x 2H.K1/, we obtain

Ord.K1/�maxfOrd.K2/;M gC b�m�M;

and we conclude by noticing that 
 .†/D��.†/D b�m�M.

We now focus on the proofs of the corollaries from the introduction. Corollary 1.3
follows immediately from Theorem 1.1 by setting M D 0, so we move directly to the
following corollary, about the refined unoriented cobordism distance.

Recall that, for a cobordism † in I �S3 from K1 to K2, we define

j†j Dmaxfm;M g��.†/;
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and that the refined nonorientable cobordism distance between two knots K1 and K2

is given by
dr

u .K1;K2/Dminfj†jg;

where† varies over all connected nonorientable cobordisms and oriented concordances
from K1 to K2.

Corollary 1.6 If K1 and K2 are knots in S3, then

jOrdI .K1/�OrdI .K2/j � dr
u .K1;K2/

and
jOrdU .K1/�OrdU .K2/j � dr

u .K1;K2/:

Proof The proof follows closely that of [11, Corollary 1.5]. Given a cobordism †

from K1 to K2 with M maxima and m minima of the kind considered in the definition
of dr

u , by Theorem 1.1 (if † is nonorientable) and Remark 1.2 (if † is an orientable
concordance), we have

Ord.K1/�maxfOrd.K2/;M g��.†/� Ord.K2/CM ��.†/;

where Ord is either OrdI or OrdU. From here we get

Ord.K1/�Ord.K2/�M ��.†/�maxfm;M g��.†/;

and we conclude by exchanging the roles of K1 and K2, and taking the minimum on
the right-hand side.

Recall that the unoriented band-unlinking number ulub.K/ of a knot K in S3 is defined
as the minimum number of (orientable or nonorientable) band surgeries that turn K

into an unlink.

Corollary 1.9 For a knot K in S3,

OrdI .K/� ulub.K/ and OrdU .K/� ulub.K/:

Proof The proof is similar to that of [11, Corollary 1.6]. If b D ulub.K/, one can
build a cobordism † from K to the unknot U with b saddles and M local maxima, by
attaching b bands to K to get an .MC1/–component unlink and then capping off M

components of the latter. By applying Theorem 1.1, and Remark 1.2 if necessary (ie if
† is orientable), we get (for I ] or HFK0)

Ord.K/�maxfOrd.U /;M g��.†/DM ��.†/;

since the unknot has vanishing torsion order in both I ] and HFK0. We conclude by
noticing that �.†/DM � b.
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7 Examples

Lemma 7.1 For the torus knot Tn;nC1, OrdU .Tn;nC1/D
�

1
2
n
˘

.

Proof Any torus knot is an L–space knot, so its Alexander polynomial determines
the full knot Floer complex CFK1 up to chain homotopy equivalence, and in turn the
unoriented knot Floer homology. See [28; 25; 11].

If K is an L–space knot, its Alexander polynomial takes the form

(17) �K .t/D

2lX
kD0

.�1/k t˛k

for a decreasing sequence of integers ˛0; : : : ; ˛2l . Let d1; : : : ; d2l denote the gaps,
ie dk D ˛k � ˛k�1. Then the full knot Floer complex is (up to chain homotopy
equivalence) a staircase F ŒU;U�1�–module, generated by x0; : : : ;x2l , with

@x2k D 0; @x2kC1 D x2k Cx2kC2:

Moreover, the filtration over Z˚Z is determined up to an overall shift by the following
properties:

� The element x2kC1 has the same j –filtration as x2k , but the i–filtration differs
by d2kC1.

� The element x2kC1 has the same i–filtration as x2kC2, but the j –filtration differs
by d2kC2.

Then the unoriented knot Floer complex CFK0.K/ (up to chain homotopy equivalence)
is generated over F ŒU � by y0; : : : ;y2l , with differential

@y2k D 0; @y2kC1 D U d2kC1 �y2k CU d2kC2 �y2kC2:

In the language of [6], this is a standard complex associated to a graded root. Graded
roots were introduced by Némethi [24] to study HFC of plumbed 3–manifolds. We in-
stead consider the “upside-down” graded roots as in [6], which are used to describe HF�.
Note that our generators y0; : : : ;y2lC1 were called v1; ˛1; v2; ˛2; : : : ; ˛n�1; vn in [6].
The numbers di determine the graded root up to an overall shift: the (relative) grading
is given by

�.y2k/��.y2kC1/D d2kC1; �.y2kC2/��.y2kC1/D d2kC2:
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:::
:::

Figure 22: The graded roots homotopy equivalent to CFK0.T7;8/ and CFK0.T8;9/,
respectively. Each dot denotes a generator of the complex over F , and the edges
encode the U –action: for a dot x, U �x is the dot you get by following the edge
exiting from the bottom of the dot x. The height of the dot denotes its (relative)
Maslov grading, and the U –action decreases the Maslov grading by 2. Note that
when n is odd (eg T7;8), there is one branch of length

˙
1
2
n
�

and two branches of
length

�
1
2
n
˘

, whereas when n is even (eg T8;9) there are two branches of length 1
2
n.

We now determine the numbers di in the case of the torus knot Tn;nC1. Recall that the
Alexander polynomial of Tp;q is

�p;q.t/D
.tpq � 1/ � .t � 1/

.tp � 1/ � .tq � 1/
:

The coefficients of �p;q.t/ have been computed in the general case (see for example
[20, (1.6) and (2.16)] or [19]). In our case, p D n and q D nC 1, and �p;q is simple
enough to be computed explicitly. After simplifying

�n;nC1 D
.xn/nC .xn/n�1C � � �xnC 1

xnCxn�1C � � �CxC 1
;

one can carry out the long division explicitly and find that�n;nC1 is in the form of (17),
with

.d1; d2; d3; d4; : : : ; d2l�1; d2l/D .1; n� 1; 2; n� 2; : : : ; n� 1; 1/:
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From this one can check that the graded root has a picture with n branches, of lengths
1; 2; : : : ; 2; 1. See Figure 22. The longest branch is in the middle, of length

˙
1
2
n
�

. This
is also the top graded branch, so it generates the infinite tower. Thus, the order of HFK0 is
given by the next longest branch, which has length

�
1
2
n
˘

. Thus, OrdU .Tn;nC1/D
�

1
2
n
˘

.

We now restrict the attention to the torus knots of the form T2r�1;2r .

Remark 7.2 Batson [3] first proved that 
4.T2r�1;2r /D r � 1. This can be proved
with any of the bounds from [3; 26; 8] (for T2r�1;2r or T2r�1;2r ), which all give the
same sharp obstruction. We choose to use � from [26] because it is an additive quantity,
like the knot signature. In [26, Theorem 1.2], Ozsváth, Stipsicz and Szabó proved that,
for a knot K in S3,

(18) 
4.K/� �.K/�
1
2
�.K/:

Batson [3] computed that �.T2r�1;2r /D �2r2C 2, and, by [26, Theorem 1.3], one
can compute �.T2r�1;2r /D�r2C r . Thus,

(19) �.T2r�1;2r /�
1
2
�.T2r�1;2r /D r � 1:

We now restate and prove Corollary 1.7 from the introduction:

Corollary 1.7 For all 
 � 1 and m� 1, there exists a knot K
;m with du.K
;m;U1/D


4.K
;m/D 
 and such that dr
u .K
;m;U1/� 
 Cm.

Thus , each nonorientable surface †� B4 with @†DK
;m and 
 .†/D 
 has at least
m local minima (with respect to the radial function).

Proof Let K
;m D T2r�1;2r # T2s�1;2s for r D 
 Cm and s D m. By (18), the
additivity of � and � , and (19), we have


4.K
;m/�
�
�.T2r�1;2r /�

1
2
�.T2r�1;2r /

�
�
�
�.T2s�1;2s/�

1
2
�.T2s�1;2s/

�
D .r � 1/� .s� 1/D r � s D 
:

On the other hand, Batson showed that there is a sequence of r � s unoriented band
surgeries from T2r�1;2r to T2s�1;2s [3, Figure 7]. Thus, we get a sequence of
r � s unoriented band surgeries from K
;m to T2s�1;2s # T2s�1;2s , which is slice,
so 
4.K
;m/D r � s.
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Now let † be a (possibly nonorientable) surface † � B4 with @† D K
;m and
b1.†/D 
 . Theorem 1.1 gives a lower bound on the number of local minima. More
precisely, if† has n local minima, by removing a small ball from B4 we get a cobordism
from K
;m to the unknot U1 with M D n� 1 maxima (note that the cobordism is
upside down, so the minima are turned into maxima, and one of them disappears when
we remove the ball). Thus, Theorem 1.1 implies that

OrdU .K
;m/� .n� 1/C .r � s/D n� sC r � 1:

We also know that

OrdU .K
;m/DmaxfOrdU .T2r�1;2r /;OrdU .T2s�1;2s/g D r � 1

by Remark 4.4(d)–(e) and Lemma 7.1, so we get

n� s Dm:

The statement about du and dr
u follows from the computation of 
4.K
;m/ above and

from Corollary 1.6.

Remark 7.3 We do not know if the bound on dr
u .K
;m;U1/ and on the number of

minima of † in Corollary 1.7 is sharp on the knots used in the proof of the corollary.
Recall that we set

K
;m WD T2r�1;2r # T2s�1;2s

for r D 
 Cm and s Dm. Batson showed that with 
 bands we can get to K0;m D

T2s�1;2s # T2s�1;2s , and Juhász, Miller and Zemke showed that K0;m bounds a ribbon
disc with 2m� 1 local minima. Thus,

dr
u .K
;m;U1/� 
 C 2m� 2:

We conjecture that this inequality is actually an equality.
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