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Stable cohomology of the universal
degree d hypersurface in P n

ISHAN BANERJEE

We consider the universal hypersurface of degree d in CP n and compute its stable
cohomology (with respect to d ). We describe the stable classes geometrically.

14F25, 14J70, 55R80

1 Introduction

Let Ud;n be the parameter space of smooth degree d hypersurfaces in Pn. There

is a natural inclusion Ud;n � P .
nCd

d / D P .Vd;n/, where Vd;n is the vector space of
homogenous degree d complex polynomials in nC 1 variables. Let

U �d;n WD f.f; p/ 2 Ud;n �Pn
j f .p/D 0g:

Let � W U �
d;n
! Ud;n be defined by �.f; p/ D f . The map � W U �

d;n
! Ud;n is the

universal family of smooth degree d hypersurfaces in Pn; it satisfies the following
property: given a family � WE!B of smooth degree d hypersurfaces in Pn, there is a
unique diagram

E U �
d;n

B Ud;n

9Š

9Š

In other words, any family of smooth degree d hypersurfaces is pulled back from this
one. Our main result is as follows:

Theorem 1.1 Let d; n� 1. Then there is an embedding of graded algebras ,

� W H�.PGLnC1.C/IQ/˝QŒx�=.xn/ ,! H�.U �d;nIQ/;

where jxj D 2. Here j � j denotes the cohomological degree. Let c1.E/ denote the first
Chern class of the line bundle E.
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3072 Ishan Banerjee

(1) The element �.x/D c1.L/, where L is the fiberwise canonical bundle (defined
in Section 2).

(2) Suppose d � 4nC 1. Then � is surjective in degree less than .d � 1/=2.

Let Xd;n � Vd;n be the open subspace of polynomials defining a nonsingular hyper-
surface. The complement of Xd;n in Vd;n is known as the discriminant hypersurface;
it is the zero locus of the classical discriminant polynomial. It is known to be highly
singular.

A point of Xd;n determines a projective hypersurface up to a scalar. There is a natural
action of C� on Xd;n such that the quotient Xd;n=C

� is Ud;n. Let

X�d;n WD f.f; p/ j f 2Xd;n; p 2 Pn; f .p/D 0g:

There is a forgetful map � WX�
d;n
!Xd;n defined by �.f; p/D f . The fibres of � are

Z.f / WD ��1.f /D fp 2 Pn
j f .p/D 0g � Pn:

It is well known that the map � is a fibre bundle.

X�
d;n

also has several interesting quotients. The action of GLnC1 on Xd;n lifts to one
on X�

d;n
. We obtain U �

d;n
DX�

d;n
=C�. The map � WX�

d;n
!Xd;n is C�–equivariant

and descends to the map � W U �
d;n
! Ud;n.

We define Md;n WD Ud;n=PGLnC1.C/, the moduli space of degree d smooth hyper-
surfaces in Pn. We also define M �

d;n
DX�

d;n
=GLnC1.C/.

We can rewrite our result in terms of X�
d;n

and M �
d;n

as well. This is important to us
as our proof will mostly involve understanding the space X�

d;n
. The space M �

d;n
is

important conceptually.

Theorem 1.2 Let d; n� 1.

(1) There is an embedding of graded algebras ,

 W .H�.GLnC1.C/IQ/˝QŒx�=.xn// ,! H�.X�d;nIQ/;

where jxj D 2.

(2) There is an embedding of graded algebras ,

' WQŒx�=.xn/ ,! H�.M �d;nIQ/;

where jxj D 2.

Suppose that d � 4nC1. Then the maps  and ' are surjective in degree � .d �1/=2.
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Theorem 1.2 is equivalent to Theorem 1.1 after applying Theorem 2 of Peters and
Steenbrink [6].

Nature of stable cohomology Throughout the course of the proof of Theorem 1.2 we
also obtain the following description of the stable cohomology classes of X�

d;n
. The

stable classes are tautological in the following sense: There is a line bundle L on M �
d;n

defined by taking the canonical bundle fibrewise (we rigorously define L in Section 2).
We will show that c1.L/; : : : ; c1.L/

n�1 are nonzero in H�.M �
d;n
IQ/ and that stably

the entire cohomology ring of M �
d;n

is just the algebra generated by c1.L/. By [6],

H�.X�d;nIQ/Š H�.GLnC1.C/IQ/˝H�.M �d;nIQ/:

In this way we have some qualitative understanding of the stable cohomology of X�
d;n

.

Both the statement of Theorem 1.2 and our proof of it are heavily influenced by [8], in
which Tommasi proves analogous theorems for Xd;n. Our techniques and approach
are also similar to that of Das in [3], where he proves

H�.X�3;3IQ/Š H�.GL3.C/IQ/˝QŒx�=x3

with jxj D 2. We would also like to mention the paper by Tommasi [7] where
H�.X2;4IQ/ is computed.

In some sense, this paper shows that in a stable range, something similar to Das’s
theorem is true for marked hypersurfaces in general.

Some motivation and historical comments At this point we’d like to make some
remarks on historical motivations for computing and understanding stable cohomology
of moduli spaces of algebraic varieties.

The cohomology of moduli spaces are often interesting because they provide us with
invariants for families of varieties. However, in many interesting cases the entire
cohomology ring of the moduli space may be difficult to understand and compute. An
example of such a phenomenon is the moduli space of curves of genus g, Mg . In this
setting, H�.Mg IQ/ is a huge ring which is not fully understood. However, the spaces
Mg are known to satisfy homological stability and the stable cohomology ring can be
explicitly described. For a survey, see Cohen [2].

Another motivation for computing the stable cohomology of moduli spaces has to do
with arithmetic statistics. Let X be an algebraic variety over Z. Often one would like to
compute #X.Fp/ by studying the eigenvalues of Frobp on H�et .X IQl/. There are often
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comparison theorems which relate the étale cohomology with the singular cohomology
of X.C/ and computations ofH�.X.C/IQ/ can often imply bounds on #.X.Fp//. For
an introduction to this topic, see for instance Sections 1 and 2 of Church, Ellenberg
and Farb [1].

Method of proof One could attempt to prove Theorem 1.2 by applying the Serre
spectral sequence to the fibration � WX�

d;n
!Xd;n. To successfully do this however,

one would need to understand the groups Hp.Xd;nIHq.Z.f /IQ//. While we do a
priori understand what the groups Hp.Xd;nIQ/ are (this is the main theorem of [8]),
this is not sufficient for us to understand what the groups Hp.Xd;nIHq.Z.f /IQ// are,
since Hq.Z.f /IQ/ is a nontrivial local coefficient system. Instead we use an idea of
Das and compute H�.Xp

d;n
IQ/, where Xp

d;n
WD ff 2 Xd;n j f .p/D 0g to avoid any

computations with nontrivial coefficient systems. After we have proved Theorem 1.2
we can use it to deduce what these twisted cohomology groups are.

Corollary 1.3 Let d; n > 0. Suppose d � 4nC 1 and k < .d � 1/=2. Then

Hk.Xd;nIH
n�1.Z.f /IQ//D

�
Hk.Xd;nIQ/ if n is odd;
0 if n is even:

Acknowledgements I’d like to thank my advisor, Benson Farb, for his endless patience
and encouragement; Eduard Looijenga for help with Proposition 5.1; Nir Gadish and
Ronno Das for some comments on the paper; Burt Totaro for catching an error in a
previous version of the paper; and, finally, Gal Porat for his help in editing this paper.

2 A lower bound on Hk.X�

d;n
/

We begin by noting that there is an embedding of algebras

Hk.GLnC1.C//˝QŒx�=.xn/ ,! Hk.X�d /

in the stable range. More precisely, we have the following:

Proposition 2.1 Let n� 0 and d > nC 1. There is a natural embedding of algebras ,

i WH�.GLnC1.C/IQ/˝QŒx�=.xn/ ,!H�.X�d;nIQ/;

where jxj D 2.

Proof We first define the fiberwise canonical bundle L over M �
d;n

as

LD f.f; p; v/ j .f; p/ 2M �d ; v 2 ^
n�1T �p .Z.f //g:

Algebraic & Geometric Topology, Volume 23 (2023)
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We can pull back L to a bundle on X�
d;n

, which we will also denote by L. By the same
argument as in Theorem 1 of [6],

H�.X�d;nIQ/Š H�.GLnC1.C/IQ/˝H�.M �d;n.C/IQ/:

Let f 2 Xd;n. Let i W GLnC1.C/! Xd;n be the orbit map defined by i.g/ D g � f.
More precisely, Theorem 1 of [6] states that the natural map

�� W H�.M �d;nIQ/! H�.X�d;nIQ/

makes H�.X�
d;n
IQ/ a free H�.M �

d;n
IQ/–module with a basis given by some set

f˛i } such that the pullbacks fi�.˛i /g give a basis of H�.GLnC1.C/IQ/. But since
H�.GLnC1.C/IQ/ is a free graded commutative algebra, this forces H�.X�

d;n
IQ/ to

be isomorphic to H�.GLnC1.C/IQ/˝H�.M �
d;n
.C/IQ/ as an algebra.

If we restrict L to a particular hypersurface Z, the bundle LjZ D OZ.d �n� 1/. The
Chern class of LjZ satisfies the equality

c1.OZ.d �n� 1//D .d �n� 1/c1.OZ.1//D d.d �n� 1/!Z ;

where !Z is the Kähler class of the variety Z. This implies that for d > nC 1, the
classes c1.L/jZ ; : : : ; c

n�1
1 .L/jZ are nonzero since !Z ; : : : ; !

n�1
Z are nonzero. Now

taking x D c1.L/, this implies that H�.M IQ/ contains a subalgebra isomorphic to
QŒx�=xn.

3 The space X
p

d
and the Vassiliev method

Given a space X , the nth ordered configuration space of X , denoted by PConfnX , is

PConfnX WD f.x1; : : : ; xn/ 2X
n
j xi ¤ xj for all i ¤ j g:

There is a natural action of the symmetric group on n letters Sn on X by permuting
the coordinates. The quotient PConfnX=Sn is called the nth unordered configuration
space and denoted by UConfnX . In order to understand Xd;n we will first look at the
cohomology of a related space. For a fixed point p 2 Pn, we set

X
p

d
D ff 2Xd;n j f .p/D 0g:

Then

X
p

d
� V

p

d
D ff 2 Vd j f .p/D 0g:

Algebraic & Geometric Topology, Volume 23 (2023)
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The space V p

d
is a vector space. The complement of Xp

d
in V p

d
will be called †d;p.

We will compute its Borel–Moore homology and use Alexander duality to compute
H�.X

p

d
/.

Let p 2 Pn. By definition, p is a one-dimensional subspace p � CnC1. Choose a
complementary subspace W �CnC1 (it is not unique, but we will fix a particular one).
We define Gp WD GL.W /.

Let x1; : : : ; xn be local coordinates in a neighbourhood U containing p. Pick a local
trivialization s of the line bundle O.d/ in U . There is an induced map

f � W T �0 .O.d/p/! T �p .P
n/:

Let us use our local coordinates to identify T �0 .O.d/p/ with C and T �p .P
n/ with Cn.

Suppose f 2 Xp

d
. Then the map f � is nonzero because f has a regular zero locus.

This defines a map
� WX

p

d
! T �p .P

n/�f0g ŠCn
�f0g

given by �.f /D f �.1/.

Proposition 3.1 The map � WXp

d
!Cn�f0g is a fibration.

Proof The group Gp acts on Pn fixing p. Therefore it acts on both Xp

d
and Cn�f0g.

The map � is equivariant with respect to these actions. The map � is therefore the
pullback of a map � 0 from X

p

d
=Gp to Cn�f0g=Gp . But Cn�f0g=Gp is a point, and

since � 0 is surjective it is a fibration. Since pullbacks of fibrations are fibrations, � is a
fibration.

Let Xv WD �
�1.v/ and let

Vv WD ff 2 Vd j f
�.1/D vg:

Clearly, Xv � Vv. Let †v WD Vv �Xv. We will try to understand the Borel–Moore
homology of †v.

To accomplish this, the Vassiliev method [10] will be applied. The Vassiliev method to
compute Borel–Moore homology involves stratifying a space and using the associated
spectral sequence to compute its Borel–Moore homology. The space †v will be
stratified based on the points at which a section f is singular. The techniques used are
very similar to that in [8] which contains many of the technical details.
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We denote the k–simplex with vertex set fa0; : : : ; akg by �fa0;:::;akg
. We denote a

k–simplex by �k and an open k–simplex by �ı
k

We will now construct a cubical space C which will be involved in understanding †v.
Let N D .d � 1/=2. Let I be a subset of f1; : : : ; N � 1g. For k < N , let

CI WD f.f; p/ j f 2†v; p W I ! Pn; p.I /� singular zeroes of f g:

We define †�N
v D ff 2†v j f has at least N singular zeroesg. We define

CI[fN g WD f.f; p/ j f 2†v; p W I ! Pn; p.I /� singular zeroes of f; f 2†�N
g:

If I � J then we have a natural map from CJ ! CI defined by restricting p. This gives
C the structure of a cubical space over the set f1; : : : ; N g. We can take the geometric
realization of C, denoted by jCj. Then there is a map � W jCj ! †v, induced by the
forgetful maps CI !†v.

jCj is topologized in a nonstandard way so as to make � proper. We topologize it as
follows: in [8], a space jXj is constructed with a map � W jXj !†. Here, †D Vd �Xd .
The topology on jXj is chosen carefully so as to make � proper. The construction of
jXj as a set identical to that of jCj except we replace †v with †. There is a natural
inclusion jCj ! jXj. We give jCj the subspace topology along this map.

Proposition 3.2 The map � W jCj !†v is a proper homotopy equivalence.

Proof This proof is nearly identical to that of Lemma 15 in [8]. The properness of
� W jCj ! †v follows from the properness of � W jXj ! † and the properties of the
subspace topology. In our setting, having contractible fibres implies that the map � is a
homotopy equivalence; this follows by combining Theorems 1.1 and 1.2 of [5]. We
will now prove that the fibres are contractible. If f … †�N

v , let fp1; : : : ; pkg be the
singular zeroes of f . In this case the fibre ��1.f / is a simplex with vertices given by
the images of the points .f; xi / 2 Cf1g ��f1g. Now suppose f 2 †�N

v . In this case
the fibre ��1.f / is a cone over the point f 2 CN ��fN g.

Now as in any geometric realization, jCj is filtered by

Fn D im
� a
jI j�n

CI ��k

�
:

The Fn form an increasing filtration of jCj, ie F1 � F2 � � � � � Fn � FnC1 � � � � andS1
nD1 Fn D jCj.
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Proposition 3.3 Let d; n� 1 and N D .d � 1/=2. For k < N , the space Fk �Fk�1

is a �ı
k

–bundle , over a vector bundle Bk over UConfk.P
n�p/.

Proof The space Fk � Fk�1 consists of the interiors of k simplices, labelled by
ff; p0; : : : ; pkg. Let

Bk D f.f; fp0; : : : ; pkg/ 2†v �UConfk.P
n
�p/ j pi are singular zeroes of f g:

We have a map � W Fk �Fk�1! Bk , defined by

�..f; fp0; : : : ; pkg/; s0; : : : ; sk/D .f; fp0; : : : ; pkg/:

The map � expresses Fk �Fk�1 as a fibre bundle over Bk with �ı
k

fibres, ie we have
a diagram

�ı
k

Fk �Fk�1

Bk

We have a map Bk ! UConfk.P
n �p/ defined by ff; p0; : : : ; pkg 7! fp0; : : : ; pkg.

This is a vector bundle by Lemma 3.2 in [9].

We have a one-dimensional local coefficient system denoted by˙Q on UConfk.P
n�p/

defined in the following way: Let Sk be the symmetric group on k letters. We
have a homomorphism �1UConfk.P

n � p/! Sk associated to the covering space
PConfk.P

n � p/! UConfk.P
n � p/. Compose this homomorphism with the sign

representation Sk!˙1D GL1.Q/ to obtain our local system.

Proposition 3.4 Let d; n� 1 and ed D dimC.Vv/. For k < .d � 1/=2,

H�.Fk �Fk�1/ŠH��.kC2ed�2.nC1/.kC1//.UConfk.P
n
�p/;˙Q/:

Proof By Proposition 3.3 the space Fk � Fk�1 is a bundle over UConfk.P
n � p/.

This fact implies that

H�.Fk �Fk�1/ŠH��.kC2ed�2.nC1/.kC1//.UConfk.P
n
�p/;Q.�//:

Here Q.�/ is the local system obtained by the action of �1.UConfk.P
n�p// on the

fibresHk.�
ı
k
/, where in this case�ı

k
is the open k–simplex corresponding to the fibres

of the map Fk�Fk�1!Bk . But one observes that the action of �1.UConfk.P
n�p//

on this open simplex is by permutation of the vertices, which implies Q.�/D˙Q.

Algebraic & Geometric Topology, Volume 23 (2023)
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As with any filtered space, we have a spectral sequence with

E
p;q
1 DHpCq.Fp �Fp�1IQ/

converging to H�.Y IQ/. Now for p < N , by Proposition 3.4,

E
p;q
1 DHq�.2ed�2.nC1/.pC1//.UConfp.Pn

�p/I˙Q/:

We would like to claim that EN;q
1 doesn’t matter in the stable range. To be more precise,

we have the following:

Lemma 3.5 Let d; n� 1, let N D .d � 1/=2, and let k > 2ed �N . Then

Hk.jCj �FN IQ/ŠHk.jCjIQ/:

Proof We first will try to bound the H�.FN IQ/ and then use the long exact sequence
of the pair. FN is the union of locally closed subspaces

�k D f.f; x1; : : : ; xk/; p j f 2†
�N ; xi are singular zeroes of f; p 2�kg:

We have a surjection � W�k!UConfk.P
n�p/. This map � is in fact a fibre bundle with

fibres �k �Ced�N.nC1/. The space UConfk.P
n�p/ is kn–dimensional. Therefore,

H�.�kIQ/D 0 if �> 2.ed � .nC 1/N /C kn < 2ed �N:

This implies that for all k,H�.�kIQ/D0 if �>2ed�N . This impliesH�.FN IQ/D0

if �> 2ed �N . By the long exact sequence in Borel–Moore homology associated to
the pair FN ,! Y , Hk.Y �FN IQ/ŠHk.Y IQ/ for k > 2ed �N .

4 Interlude

In [8], Tommasi proves the following result:

Theorem 4.1 [8] Let d; n� 1, let f 2Xd;n, and let  W GLnC1.C/!Xd;n be the
orbit map defined by  .g/D g �f . Then  � WHk.Xd;n;Q/!Hk.GLnC1.C/;Q/ is
an isomorphism for k < .d C 1/=2.

In this section we shall look at the proof of Theorem 4.1 in [8] and use it to prove an
identity used later on in this paper. One of the ingredients in the proof of Theorem 4.1
is a Vassiliev spectral sequence. We introduce a new convention, by letting h denote
the dimension of H . We also define Gr.p; n/ to be the Grassmannian of p–planes

Algebraic & Geometric Topology, Volume 23 (2023)
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in Cn. In what follows we shall need a few basic facts about H�.Gr.p; n/IQ/ and
Schubert symbols. Let

0DE0 ¨E1 ¨ � � �¨En�1 ¨En DCn

be a complete flag. Given U 2 Gr.p; n/, we can associate to it a sequence of numbers,
ai D dimU \Ei . These ai satisfy the conditions

0� aiC1� ai � 1; a0 D 0 and an D p:

Such sequences are called Schubert symbols. Let a D .a0; : : : ; an/. We call a a
Schubert symbol if 0� aiC1�ai � 1, a0D 0 and anDp. Associated to each Schubert
symbol a we have a subvariety Wa � Gr.p;Cn/ defined as

Wa WD fU �Cn j dim.U \Ci /D aig:

The main result we will be using is the following.

Theorem 4.2 Let a be a Schubert symbol. The classes ŒWa� 2H�.Gr.p; n/IQ/ form
a basis.

For a proof of Theorem 4.2 see page 1071 of [4].

Proposition 4.3 Let n be a positive integer. ThenX
k;p

hk.Gr.p;Cn/IQ/D 2n:

Proof By Theorem 4.2,X
k;p

hk.Gr.p;Cn/IQ/D
X
p

#f.a0; : : : ; an/ j 0� aiC1� ai � 1; a0 D 0; an D pg

D #f.a0; : : : ; an/ j 0� aiC1� ai � 1; a0 D 0g

D #f.b1; : : : ; bn/ 2 f0; 1gg:

The last equality follows because if we are given a sequence of ai , we can uniquely
obtain a sequence of bi , by letting bi D ai � ai�1.

Our main aim of this section is to prove the following technical result.

Algebraic & Geometric Topology, Volume 23 (2023)



Stable cohomology of the universal degree d hypersurface in P n 3081

Theorem 4.4 The Vassiliev spectral sequence in [8] degenerates in the stable range: if
p < .d C 1/=2 and q > 0, then Ep;q

1 ŠE1p;q .

Equivalently, for k < .d C 1/=2,

(1)
X
p

h2.pC1/.nC1/�p�k�1.UConfp.Pn/IQ/D hk.GLnC1IQ/:

Remark 4.5 The statements are equivalent because the group Hk.GLnC1.C/IQ/ is a
subquotient of M

H2.pC1/.nC1/�p�k�1.UConfp.Pn/IQ/:

Proof We already know thatX
p

h2.pC1/.nC1/�p�k�1.UConfp.Pn/I˙Q/� hk.GLnC1IQ/

because the left hand side of (1) are the appropriate terms in a spectral sequence
converging to the right hand side of (1).

It suffices to prove thatX
k

X
p

h2.pC1/.nC1/�p�k�1.UConfp.Pn/I˙Q/D
X

k

hk.GLnC1IQ/D 2
nC1:

Lemma 2 in [10] states that

h2.pC1/.nC1/�p�k�1.UConfp.Pn/;˙Q/

D h2.pC1/.nC1/�p�k�1�p.p�1/.Gr.p;CnC1/IQ/:

ThereforeX
k

X
p

h2.pC1/.nC1/�p�k�1.UConfp.Pn/I˙Q/D
X

k

X
p

hk.Gr.p;CnC1/IQ/:

By Proposition 4.3, this is equal to 2nC1.

5 Computation

We would like to know what the groups H�.UConfkC1.P
n�p/I˙Q/ are. First note

that in [10] Vassiliev proves that:

Proposition 5.1 [10] Let k; n > 0. Then

H�.UConfk.P
n/I˙Q/ŠH��.k/.k�1/.Grk.C

nC1/IQ/:
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Also note that in light of Theorem 4.2 the homology of Grassmannians is well under-
stood in terms of Schubert cells.

Consider the long exact sequence in Borel–Moore homology associated to

UConfkC1.P
n
�p/� UConfkC1.P

n/ - UConfk.P
n
�p/:

The last inclusion is defined by the map � WUConfk.P
n�p/!UConfkC1.P

n/, where
�.fx1; : : : ; xng/D fx1; : : : ; xn; pg.

We consider the long exact sequence in Borel–Moore homology associated to the pair
.UConfkC1.P

n/;UConfkC1.P
n�p//. Here UConfkC1.P

n�p/ is an open subset of
UConfkC1.P

n/ with complement homeomorphic to UConfk.P
n�p/. A segment of

this exact sequence is

(2) H�.UConfk.P
n
�p/I˙Q/!H�.UConfkC1.P

n/I˙Q/

!H�.UConfkC1.P
n
�p/I˙Q/

Proposition 5.2 Let k; n > 0. Then there is a canonical decomposition

H�.UConfkC1.P
n/I˙Q/

ŠH�.UConfk.P
n
�p/I˙Q/˚H�.UConfk.P

n
�p/I˙Q/;

due to the fact that (2) splits.

Proof Lemma 2 of [10] implies that (2) decomposes into split short exact sequences,

H�.UConfkC1.P
n/I˙Q/

ŠH�.UConfk.P
n
�p/I˙Q/˚H�.UConfk.P

n
�p/I˙Q/:

Remark 5.3 In factH�.UConfk.P
n�p/I˙Q/ has a basis given by Schubert symbols

with a1 D 0.

Proposition 5.4 If the Vassiliev spectral sequence has no nonzero differentials and
k < .d � 1/=2, then Hk.Xv/ŠH

k.Gp/ as vector spaces.

Proof Now in our spectral sequence we had

E
p;q
1 DHq�.2ed�2.pC1/.nC1//.UConfpC1.P

n
�p/I˙Q/:
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First collect all terms in the main diagonal, ie

V WD
M

pCqDl

Hq�.2Dn�2.pC1/.nC1//.UConfpC1.P
n
�p/I˙Q/

It will suffice to prove that

(3) dimV D
X

p�2Dn�k

h2.pC1/.nC1/�p�k�1.UConfp.Pn
�pt/I˙Q/

D hk.GLnIQ/:

Theorem 4.4 implies

(4)
X
p

h2.pC1/.nC1/�p�k�1.UConfp.Pn/I˙Q/D hk.GLnC1IQ/:

Proposition 5.1 implies

h2.pC1/.nC1/�p�k�1.UConfp.Pn/I˙Q/D 0 if p > n:

So as long as n < 2.DnCnC 1/� k,X
p�2.DnCnC1/�k

h2.pC1/.nC1/�p�k�1.UConfp.Pn/I˙Q/

D

X
p

h2.pC1/.nC1/�p�k�1.UConfp.Pn/I˙Q/:

But the condition n < 2.DnCnC1/�k is equivalent to k < 2.DnC1/Cn, which is
true if k < N . We have another equality from Proposition 5.2,

hk.UConfp.Pn
�pt/I˙Q/Chk.UConfp�1.P

n
�pt/I˙Q/Dhk.UConfp.Pn/I˙Q/:

Plugging this into (4),

hk.GLnC1IQ/D
X

h2.pC1/.nC1/�p�k.UConfp.Pn/I˙Q/

D

X
h2.pC1/.nC1/�p�k�1.UConfp.Pn

�pt/I˙Q/

C h2.pC1/.nC1/�p�k�1.UConfp�1.P
n
�pt/I˙Q/:

We have the identity

hk.GLnIQ/C h
k�.2nC1/.GLnIQ/D h

k.GLnC1IQ/:

This implies

(5) hk.GLnIQ/C h
k�.2nC1/.GLnIQ/

D

X
p

h2.pC1/.nC1/�p�k�1.UConfp.Pn
�pt/I˙Q/

C h2.pC1/.nC1/�p�k�1.UConfp�1.P
n
�pt/I˙Q/:
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Now we will try to prove (3) by induction on k. For k D 0, (3) is trivial. By induction,

hk�.2nC1/.GLnIQ/D
X
p

h2.pC1/.nC1/�p�k�1.UConfp�1.P
n
�pt/I˙Q/:

Putting this into (5), we obtainX
p

h2.pC1/.nC1/�p�k�1.UConfp.Pn
�pt/I˙Q/D hk.GLnIQ/:

Now we can look at the Serre spectral sequence associated to the fibration

Xv ,!Xp!Cn
� 0:

We observe that if there are no nonzero differentials, then

H�.XpIQ/ŠH
�.XvIQ/˝QŒe2n�1�=e

2
2n�1:

This is because the Serre spectral sequence degenerates and since QŒe2n�1�=e
2
2n�1 is

a free graded commutative algebra the ring structure of the total space is forced to be
the tensor product.

Proposition 5.5 Let d > 0 and p 2 Pn. Then

H�.Xd;pIQ/ŠH
�.GpIQ/˝A;

where A is H�.Xp

d
=GpIQ/.

Proof This follows immediately from Theorem 2 in [6].

We will also need the following fact, which is a special case of Lemma 2.6 in [3].

Proposition 5.6 Let d > 0, let k < .d � 1/=2, and let U �
d
DX�

d
=C�. Then

H�.X�d IQ/ŠH
�.U �d IQ/˝QŒe1�=.e

2
1/;

where je1j D 1.

Proposition 5.6 implies if there are no nonzero differentials in both our Vassiliev spectral
sequence and in the Serre spectral sequence associated to the fibration Xp

d;n
!Cn� 0

then
H�.Ud;pIQ/ŠH

�.GpIQ/˝QŒe2n�1�=.e
2
2n�1/

for �< .d � 1/=2. In case there are nonzero differentials in either spectral sequence,
then H�.Ud;pIQ/ŠH

�.GpIQ/ for �< .d � 1/=2.

Algebraic & Geometric Topology, Volume 23 (2023)



Stable cohomology of the universal degree d hypersurface in P n 3085

6 Comparing fibre bundles

In this section we finish the proof of Theorem 1.2.

Proof of Theorem 1.2 We compare three related fibre bundles and their associated
spectral sequences. This is similar to the proof of Theorem 1.1 in [3].

Let PGp WD StabPGL.nC1/.p/:

(6)

PGp

%%

// Ud;p

%%

// Ud

##

PGLnC1.C/ //

��

U �
d

//

��

Ud �Pn

��

Pn Pn Pn

We denote the exterior algebra on generators a1; : : : ; an by

ƒha1; : : : ; ani:

By Proposition 5.4 and [6, Theorem 1], there are two possibilities for H�.Ud;pIQ/:
either

H�.Ud;pIQ/ŠH
�.PGpIQ/˝QŒe2n�1�=.e

2
2n�1/Šƒhu1; u3; : : : ; u2n�1; e2n�1i

or
H�.Ud;pIQ/ŠH

�.PGpIQ/Dƒhu1; u3; : : : ; u2n�1i:

Suppose for the sake of contradictionH�.Ud;p/Dƒhu3; : : : ; u2n�1i for �<.d�1/=2.
In this case,H�.Ud;pIQ/ŠH

�.PGpIQ/ for �<.d�1/=2. Then since the homology
of the base and the fibres are isomorphic, H�.U �

d
IQ/ Š H�.PGLnC1.C/IQ/ for

�< .d � 1/=2. However, by Proposition 2.1,

H�.PGLnC1.C/IQ/˝QŒx�=xn/�H�.U �d IQ/:

But H�.PGLnC1.C/IQ/ does not contain a subalgebra isomorphic to

H�.PGLnC1.C/IQ/˝QŒx�=xn/:

This is a contradiction. So we must be in the case where

H�.Ud;pIQ/ŠH
�.PGpIQ/˝QŒe2n�1�=.e

2
2n�1/:
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Consider the Serre spectral sequence associated to the fibration U �
d
! Pn. Its E2 page

has terms

E
p;q
2 DHp.Pn;H q.U

p

d
IQ//ŠHp.Pn

IQ/˝H q.U
p

d
IQ/:

Now
H q.U

p

d
IQ/ŠH q.PGpIQ/˝QŒe2n�1�=.e

2
2n�1/:

Consider the trivial fibre bundle Ud � Pn ! Pn. There is a natural inclusion of
fibre bundles as shown in (6). This induces a map of spectral sequences between the
associated Serre spectral sequences.

Note that any class ˛ 2H q.U
p

d
IQ/ that lies in the image of H q.Ud IQ/ is mapped to

zero under any differential thanks to the fact that all differentials are zero in the spectral
sequence associated to a trivial fibration. The only possible nonzero differential in
the E2 page of the Serre spectral sequence associated to the fibration U �

d
! Pn is

d.e2n�1/.

Suppose for contradiction that d.e2n�1/D 0. This implies that

Hk.U �d IQ/Š .H
�.Ud;pIQ/˝H

�.Pn
IQ//k D .H

�.PGpIQ/˝H
�.Pn;Q//k

for k < .d � 1/=2.

Let p.t/ be the Poincaré polynomial of U �
d

. We already know that

H�.U �d IQ/ŠH
�.PGLnC1.C/IQ/˝H

�.U �d =PGLnC1.C/IQ/:

So .1C t3/ � � � .1C t2nC1/ j p.t/. On the other hand, if de2n�1 D 0 then

p.t/D .1C t3/ � � � .1C t2n�1/.1C t2C t4C � � �C t2n/ mod t .d�1/=2:

If d � 4nC 1, then this implies that .1C t2nC1/−p.t/. This is a contradiction.

So we must have a differential killing the class in H 2n.Pn;H 0.Ud;p//IQ/. The
differential must come from e2n�1; ie d.e2n�1/D ax

n for some a 2Q�. This (along
with multiplicativity of differentials) determines all differentials and implies (1). By
Proposition 5.6, (1) implies (2). By Theorem 1 of [6],

H�.X�d;nIQ/ŠH
�.M �d;nIQ/˝ .H

�.GLnC1/.C/IQ/:

In light of this, (2) implies (3).

Having finished the proof of Theorem 1.2 we can prove Corollary 1.3.
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Proof of Corollary 1.3 Consider the fibration

Z.f / X�
d

Xd

and its associated Serre spectral sequence whose E2 page is of the form

Hp.Xd IH
q.Z.f /IQ//)H�.X�d IQ/:

By Theorem 4.1 for �< .d C 1/=2,

H�.Xd IQ/ŠH
�.GLnC1.C/IQ/:

By Theorem 1.2, we know that the classes in the E2 page corresponding to the group
Hp.GLnC1.C/I c1.L/

q/ survive until the E1 page, and in the stable range all other
terms are killed by differentials.

Now suppose n is even. Then the only other terms in the spectral sequence are of the
form Hp.Xd IH

n�1.Z.f /IQ//. However it is not possible for any such term to be in
the image or in the preimage of a nonzero differential. This is because all other terms
survive, so any possible nonzero differential must be from Hp1.Xd IH

n�1.Z.f /IQ//

to Hp2.Xd IH
n�1.Z.f /IQ// for some choice of p1 and p2. However no differential

is of bidegree .p2�p1; 0/. This implies that

Hp.Xd IH
n�1.Z.f /IQ//Š 0:

A similar argument shows that if n is odd, Hp.Xd IH
n�1.Z.f /IQ//ŠHp.Xd IQ/.

Essentially the only difference between the even case and the odd case is that in the odd
case we have a class c1.L/

.n�1/=22Hn�1.Z.f /IQ/. LetADQ–span.c1.L/
.n�1/=2/

By Theorem 1.2, we know thatHp.Xd;nIA/ survives until the E1 page. An argument
similar to that in the even case shows that

Hp.Xd IH
n�1.Z.f /IQ//ŠHp.Xd IA/:
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