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The mod 2 cohomology of the infinite families of
Coxeter groups of type B and D as almost-Hopf rings

LORENZO GUERRA

We describe a Hopf ring structure on the direct sum of the cohomology groupsL
n�0H

�.WBn IF2/ of the Coxeter groups of type WBn , and an almost-Hopf ring
structure on the direct sum of the cohomology groups

L
n�0H

�.WDn IF2/ of the
Coxeter groups of type WDn, with coefficients in the field with two elements F2.
We give presentations with generators and relations, determine additive bases and
compute the Steenrod algebra action. The generators are described both in terms of a
geometric construction by De Concini and Salvetti and their restriction to elementary
abelian 2–subgroups.

20F55, 20J06; 20J05

1 Introduction

The Coxeter groups of type WBn and WDn are two infinite families of finite reflection
groups. Coxeter groups are traditionally described via Coxeter diagrams, ie graphs
in which each edge e has a weight me � 3. Given such an object, the associated
Coxeter group has a generator sv for every vertex v, with relations of the form s2v D 1,
.svsw/

me D 1 for every edge eD .v; w/, and .svsw/2D 1 if v and w are not connected
by an edge. For an exhaustive introduction to the geometry and topology of these
groups we refer to Davis’s book [3]. The reflection groups of type WBn and WDn are
the finite Coxeter groups associated with the Coxeter diagrams in Figure 1.

The goal of this paper is to provide an effective description of the mod 2 cohomology
of these groups. Other authors have previously computed these cohomology groups.
Most notably, Swenson, in his thesis [18], adapted techniques used by Hu’ng [12] and
Feshbach [5], stemming from the analysis of the restriction maps to elementary abelian
2–subgroups, to compute generators and relations for the mod 2 cohomology algebra
of a finite reflection group. However, his presentation is involved and intrinsically
recursive. Borrowing ideas from Giusti, Salvatore and Sinha [7; 9], we exploit additional
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Figure 1: Diagrams of type Dn (left) and Bn (right).

structures to provide a simpler description of the cup product. Our approach also has
the advantage of being more easily readable from the well-known chain-level geometric
and combinatorial description of a resolution for Coxeter groups by De Concini and
Salvetti [4].

The sequences of Coxeter groups of type B and D have standard embeddings

WBn �WBm !WBnCm ; WDn �WDm !WDnCm

that are, in a certain sense, compatible. The homomorphisms induced by these maps on
mod 2 cohomology define a coproduct �. The cohomology transfer maps associated
with them determine a productˇ. There is also a canonical embedding ofWDn intoWBn
as an index-2 subgroup, which induces an involution � WH�.WDn IF2/!H�.WDn IF2/.

In the B case, the resulting structure is modeled on that of the symmetric groups, the
Coxeter groups of type A, as described by Giusti, Salvatore and Sinha [7] (mod 2)
and by the author [10] (modulo odd primes). Together with the usual cup product � ,
these maps form a ring in the category of F2–coalgebras, ie a Hopf ring over F2. More
explicitly, given a ring R, a (graded) Hopf ring over R is a graded R–module with a
coproduct � and two products, ˇ and � , such that

� .A;�;ˇ/ is a Hopf algebra, with an antipode S ;

� .A;�; � / is a bialgebras over R;

� if x; y; z 2 A and �.x/D
P
i x
0
i ˝ x

00
i , then the distributivity formula

x � .yˇ z/D
X
i

.�1/deg.y/ deg.x00
i
/.x0i �y/ˇ .x

00
i � z/

holds.

In the D case, �, ˇ and � satisfy the last two axioms in the definition of a Hopf ring,
and � and � form a bialgebra. However, as we will explain later, � and ˇ do not form
a bialgebra. We call this weaker structure an almost-Hopf ring over F2. Due to this
fact, the study of the cohomology of WDn , with the cup product, the transfer product,
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and the coproduct, is more complicated. The reader will find similarities between the
cohomology of WDn and that of the alternating groups, as described by Giusti and
Sinha [9]. Such structures stem from the seminal work of Strickland and Turner [17],
in which the authors discovered a Hopf ring structure on the cohomology of symmetric
groups, even with generalized cohomology theories.

The main results of this paper are Theorems 5.9 and 5.15, stated in Section 5.2, con-
sisting of a presentation in terms of generators and relations of the mod 2 cohomology
of the Coxeter groups of type Bn as a Hopf ring and of type Dn as an almost-Hopf
ring respectively. We provide here self-contained statements for clarity and reference.

Theorem 5.9 (main theorem for type B) The Hopf ring
L
n�0H

�.WBn IF2/ over
F2 admits a presentation with two families of generators , 
k;n 2Hn.2k�1/.WB

n2k
IF2/

for k � 0 and n > 0, and ın 2Hn.WBn IF2/ for n > 0, and the following relations:

� �.
k;m/D
P
iCjDm 
k;i ˝ 
k;j ;

� 
k;nˇ 
k;m D
�
nCm
n

�

k;nCm;

� �.ın/D
P
kClDn ık˝ ıl ;

� ınˇ ım D
�
nCm
n

�
ınCm;

� the cup product , � , of classes in different components is 0;
� 
0;n is the �–unit of H�.WBn IF2/.

The generators are explicitly characterized, both combinatorially at the cochain level
(see Definition 5.1) and geometrically, as suitable Thom classes (see Proposition 5.3).
The classes 
k;n and the relations among them arise from the presentation of the mod 2
cohomology of the symmetric groups as a Hopf ring. The only new generators are ın
and their behavior is governed by the third and fourth relations above.

The almost-Hopf ring constructed from the cohomology rings of the Coxeter groups
of type D is more complicated. The relations are intricate, and the behavior of gen-
erators is more easily understood with the aid of a “polarized” basis BC t B� t B0

(see Proposition 5.22). For instance, the bialgebra axiom for ˇ and � is replaced
with a different compatibility identity involving the projection pC onto the addend
.Span.BC/˝A˝3D /˚ .Span.B0/˝Span.BC/˝A˝2D /:

�.xˇy/D .ˇ˝ˇ/�.pC/.�.x/˝�.y// for all x; y;

where � is the transposition of the second and third factors. Nevertheless, this surrogate
axiom can be expressed directly in terms of the generators, without explicit reference
to the additive basis (see Proposition 5.14).
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The main presentation theorem in this regard is the following.

Theorem 5.15 (main theorem for type D) The almost-Hopf ring structure over F2
of
L
n�0H

�.WDn IF2/ extends uniquely to a graded almost-Hopf ring structure with
components on the F2–vector space F21C˚F21�˚

L
n�1H

�.WDn IF2/ such that

� 1Cˇ _D id, 1�ˇ _D �, 1C � 1C D 1C, 1� � 1� D 1�, and 1C � 1� D 0;

� �.1˙/D 1C˝ 1˙C 1�˝ 1�;

� �.x/ D 1C ˝ x C 1� ˝ �.x/ C �.x/ C �.x/ ˝ 1� C x ˝ 1C for all x inL
n�1H

�.WDnIF2/, where� is the reduced coproduct in
L
n�0H

�.WDnIF2/.

This almost-Hopf ring admits a presentation with two families of generators ,


C
k;n
2Hn.2k�1/.WD

n2k
IF2/ for k; n > 0;

ı0nWm 2H
n.WDnCm IF2/ for n¤ 1 and m� 0;

together with 1�. The compatibility identity above and the following list of equalities
provide a complete set of relations , where 1C is theˇ–unit :

� 1�ˇ 1� D 1C, 1� � 1� D 1�, 1C � 1� D 0, and �.1�/D 1C˝ 1�C 1�˝ 1C;

� �.
C
k;m
/D

Pm
lD0

�

C
k;l
˝ 
C

k;m�l
C .1�ˇ 
C

k;l
/˝ .1�ˇ 
C

k;m�l
/
�
;

� �.ı0nWm/D
Pn
iD0

Pm
jD0 ı

0
i Wj ˝ ı

0
n�i Wm�j ;

� 
C
k;a
ˇ 
C

k;b
D
�
aCb
a

�

C
k;aCb

and ı0nWmˇ 1
� D ı0nWm,

� bˇ b0 D 0 if b and b0 are cup products of generators of the form ı0nWm;

� 
C
k;n
� .1�ˇ 
C

h;m
/D 0 for all n;m; k � 1 and h� 2;

� 
C1;m � .1
�ˇ 
C1;m/D .


C
1;m�1/

2ˇ ı02W0 for all m� 1;

� the cup product , � , of generators belonging to different components is 0;

� ı00Wm is the �–product unit of the mth component ;

� ı0nWm � 

C

k;nCm
2k

D ı0nW0 � 

C

k; n
2k

ˇ 
C
k; m
2k

for all k > 0 and m; n� 0 with n¤ 1.

In this case, too, the generators are explicitly described (see Definitions 5.4 and 5.5).

The relations are spread out in a few lemmas to prove the identities concerning coproduct,
transfer product, and cup product separately. Building on these core theorems, we also
describe convenient additive bases for the cohomology of these groups, with a graphical
description via skyline diagrams similar to that obtained for the symmetric group in [7],
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and compute the Steenrod algebra action. Our formulation of the cohomology of WBn
and WDn yields without additional effort many features of these cohomology algebras.
For instance, Hepworth’s homological stability results [11] in these particular cases
follow directly.

We obtain our presentation via three technical tools. First, we exploit De Concini and
Salvetti’s geometric combinatorial model to realize such (almost) Hopf rings structures
at the cochain level. Specializing their construction to the families of groups of our
interest, we observe that a resolution forWBn is obtained from the symmetrized version
of the planar level trees used by Giusti and Sinha [9] for the symmetric groups. The
cohomology of WDn is governed by an oriented version of these objects. We describe
cochain representatives of the structural maps in detail. Our treatment follows the paper
cited above closely. However, we note that while the transfer product is realized very
similarly to the†n case, coproducts are more complicated and require the combinatorial
operation of “pruning” symmetric planar level trees. This cochain-level description
allows us to quickly retrieve some of our relations and give a more geometric flavor
to our generating classes. For instance, they can be interpreted as Thom classes in a
suitable sense.

Second, we use the existence of well-behaved maps betweenWBn ,WDn and†n. These
homomorphisms preserve parts of our structures. Therefore, we exploit them to build
our presentations on the known result for the cohomology of the symmetric groups.
We provide a cochain-level description of these morphisms, and we determine both
their action on generators and their relations to the coproduct and transfer product.

Third, we reconcile with Swenson’s approach, and we investigate restrictions to ele-
mentary abelian 2–subgroups. The mod 2 cohomology of finite reflection groups is
known to be detected by this family of subgroups. We effectively compute the action
of these restriction maps on our additive bases. The multiplicative structure on the
cohomology of (the invariant subalgebras of) such subgroups is known. Thus, these
calculations allow us to deduce cup product relations that would be otherwise difficult
to obtain.

We organize the paper as follows. After describing the structures on the cohomology
of WBn and WDn in Section 2, we devote the following two sections to developing
our geometric tools. In Section 3, we review De Concini and Salvetti’s construction,
and we specialize it to WBn and WDn . In Section 4, we investigate the combinatorics
of pruning operations, and we retrieve cochain-level representatives of our structural
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and connecting homomorphisms. Section 5 is devoted to our main theorems. We
define generators and we discuss relations between them. In this context, we also
deduce from our presentation additive bases, and we discuss the relations between
the cohomology of Coxeter groups of type A, B and C . We postpone the proofs of
the presentation theorem and some cup product relations. In Section 6, we turn our
attention to the restriction to elementary abelian 2–subgroups. We review relevant
results from Swenson’s thesis, compute restriction maps, and use them to complete the
proof of our cup-product relations. Section 7 is devoted to completing the proof of our
main theorems. In Section 8, we calculate the Steenrod algebra action.

Acknowledgements

Most of the contents of this paper are part of the author’s PhD thesis, written at Scuola
Normale Superiore in Pisa. The author acknowledges full support from this institution.
The author is indebted to his PhD advisor, Prof. Mario Salvetti, for his guidance, and
also thanks Prof. Dev Sinha for helpful comments.

2 (Almost) Hopf ring structures for the cohomology of WBn

and WDn

We begin this paper by describing in detail how the desired algebraic structures on the
cohomology of Coxeter groups of type B and D are obtained. Throughout this paper,
we use several combinatorial descriptions of the groups WBn and WDn . We refer to
[2, Chapter 8] for a thorough treatment, and we recall below what we need for our
purposes.

With reference to Figure 1, we recall that there is an inclusion jn W WDn ,! WBn
defined by t0 7! s0s1s0 and ti 7! si if i > 0. WBn can be seen as the group of signed
permutation on n numbers, that is, the group of bijective functions f from the set
f�n; : : : ;�1; 1; : : : ; ng into itself that satisfy f .�i/ D �f .i/ for every 1 � i � n.
Hence WBn is naturally a subgroup of †2n, the symmetric group on 2n objects. The
image of jn is WBn \ Alt.2n/, the intersection of WBn with the alternating group
Alt.2n/, the subgroup of even permutations in †2n. Note that †n can be identified
with the parabolic subgroup of WBn generated by s1; : : : ; sn�1, corresponding to the
signed permutations on f�n; : : : ; ng that preserve signs. There is also a standard
projection WBn !†n, of which the previous inclusion is a section, whose kernel is
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the normal subgroup generated by s0. We observe that this provides an isomorphism
between WBn and the wreath product F2 o†n, a semidirect product of Fn2 and †n.
Therefore, the inclusions †n �†m ! †nCm extend naturally to monomorphisms
WBn �WBm ! WBnCm . These inclusions are associative and commutative up to
conjugation.

Let AB D
L
n�0H

�.WBn IF2/. We define a coproduct � and two products, � and ˇ,
on AB in the following way:

� � is induced by the obvious monomorphisms WBn �WBm !WBnCm ;

� ˇ is induced by the cohomology transfer maps associated with these inclusions;

� � is the usual cup product.

Due to the associativity and the commutativity of the natural inclusions, these morphisms
define an almost-Hopf ring structure. This is a general fact, as noticed in [9]. In this
case, however, AB is a full Hopf ring.

Proposition 2.1 AB , with these structural morphisms , is a Hopf ring.

Proof The almost-Hopf ring axioms hold by [9, Theorem 2.3]. It remains only to
prove that .AB ; �;ˇ/ forms a bialgebra. This claim follows from the fact — compare
with [7, Section 3] — that this diagram is a pullback of finite coverings for all n;m2N,F

pCqDn
rCsDm

E.WBnCm/

WBp�WBq�WBr�WBs

F
�pC1;rCs

//

F
�pCr;qCs

��

E.WBnCm/

WBn�WBm

�n;m

��F
kClDnCm

E.WBnCm/

WBk�WBl
F
�k;l

//
E.WBnCm/

WBnCm

where � indicates the projections.

We remark that, since AB with � and ˇ is a conilpotent bialgebra, the existence of the
antipode comes for free. This antipodal morphism does not play a role in our treatment;
thus, we will not discuss it further.

Similarly, we can construct an additional almost-Hopf ring structure on the cohomology
of the Coxeter groups of typeDn. Indeed, on the direct sumADD

L
n�0H

�.WDn IF2/,
we can define a coproduct � and two productsˇ and � as done for AB . However, these
do not make AD a full Hopf ring because, as we will see later, .AD; �;ˇ/ fails to be
a bialgebra.
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With essentially the same proof used for AB , we can prove the following easy proposi-
tion, which follows again from [9, Theorem 2.3].

Proposition 2.2 AD , with the coproduct and the two products defined before , is an
almost-Hopf ring over F2.

As we remarked in the introduction, there is a similar result for the mod 2 cohomology
of the symmetric groups, obtained by Giusti, Salvatore and Sinha in [7]. We recall
their statement here because we will build our computations upon it.

Theorem 2.3 [7, Theorems 1.2 and 3.2] A† D
L
n�0H

�.†nIF2/, together with a
coproduct� WA†!A†˝A† induced by the obvious inclusions†n�†m!†nCm, a
product ˇWA†˝A†!A† given by the transfer maps associated with these inclusions ,
and a second product � W A†˝A†! A† defined as the usual cup product , is a Hopf
ring over F2.

A† is generated , as a Hopf ring , by classes 
k;n 2Hn.2k�1/.†n2k IF2/ for k � 0 and
n� 1. The coproduct of these classes is given by the formula

�.
k;n/D

nX
lD0


k;l ˝ 
k;n�l ;

the cup product of generators belonging to different components is 0, and


k;nˇ 
k;m D
�nCm

n

�

k;nCm:

There are no more relations between these classes.

The unit of the algebra H�.†nIF2/ under the cup product is 
0;n 2H 0.†nIF2/. For
this reason, we will often denote it with the symbol 1n throughout the paper.

3 Review of a geometric construction of De Concini and
Salvetti and Fox–Neuwirth type cell structures

3.1 De Concini and Salvetti resolution

In this section, we recall a geometric construction introduced by De Concini and
Salvetti in [4], which we will require to describe the generators of the Hopf ring under
consideration.

Algebraic & Geometric Topology, Volume 23 (2023)
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Given a finite reflection group G � Gln.R/, there is a natural hyperplane arrangement
AG in Rn associated with G, whose hyperplanes are the fixed points sets of reflections
in G. The choice of a fundamental chamber C0 of AG gives rise to a Coxeter presenta-
tion .G; S/ for G, whose set of generators S is composed by reflections with respect
to hyperplanes that are supports of a face of C0. Every finite Coxeter group arises this
way.

For any F �Rn, we can define

AF D fH 2AG W F �H g:

AF gives rise to a stratification ˆ.AF / of Rn, in which the strata are the connected
components of sets of the form L n

S
H2AF ;H 6�LH , where L is the intersection of

some of the hyperplanes of AF . Let R1 be the direct limit of Rm under the inclusions
Rm ,!Rm�f0g �RmC1. For all m 2N[f1g, there is a stratification ˆm (different
from the product stratification) of the topological space,

Y
.m/
G DRn˝Rm n

[
H2AG

.H ˝Rm/D .Rn/m n
[

H2AG

Hm:

The strata inˆm are defined as sets of the form F1�� � ��Fk�� � � , with Fk 2ˆ.AFk�1/
for k � 1. Here we put, by convention, F0 D f0g. In what follows, if there is no
ambiguity, we will use the simpler notations Y .m/ and Y to indicate Y .m/G and Y .1/G

respectively.

De Concini and Salvetti construct a regular G–equivariant CW–complex X � Y that
is “dual” to the stratification ˆ1, in the sense that for every stratum F 2 ˆ1 of
codimension d , there exist a unique d–dimensional cell in X that intersects F , and
they intersect transversally in a single point. For m<1, the intersection X .m/ of X
with Y .m/ is a subcomplex of X whose cells are dual to strata in ˆm. This construction
is done equivariantly, in the sense that for every stratum F 2 ˆ1 and every g 2 G,
if ' W Dd ! X is the cell dual to F in X , then .g:_/ ı ' W Dd ! X is the cell dual
to g:F . The authors then show that X is a G–equivariant strong deformation retract
of Y . Since Y is contractible and G–free, the quotient X=G is a cellular model for the
classifying space B.G/ and the cellular chain complex CG� D C

CW
� .X/ is a ZŒG�–free

resolution of Z.

The strata of ˆ1 have a more compact combinatorial description in terms of the
Coxeter presentation. For every s 2 S generating reflection for G, we let Hs be the
hyperplane fixed by s. Hs divides the space Rn into two semispaces, HCs and H�s .
We let HCs be the semispace that contains the chosen fundamental chamber C0. To a
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flag � D .S � �1 � �2 � � � � � �k D¿/ of subsets of S we can associate a stratum F

of ˆ1 such that x D .x1; : : : ; xn/ 2 .R1/n belongs to F if and only if

..x1/r ; : : : ; .xn/r/ 2Hs if s 2 �r ;

..x1/r ; : : : ; .xn/r/ 2H
C
s if s 2 �r�1 n�r

is satisfied for every s 2 S and every r � 1. Thus, to a couple .�; g/, where � is a
flag as before and g 2G, we can associate the stratum g:F obtained from the above F
by applying g. This construction yields an algebraic-combinatorial description of the
cellular chain complex of X . The main theorem of De Concini and Salvetti’s paper is
the following.

Theorem 3.1 [4, Section 3] Let .G; S/ be a finite Coxeter group , and consider the
set

f.�; 
/ j 
 2G; � D .�1 � �2 � � � � � �k � � � �/; �1 � S; �k D¿ for some kg:

The function described above is a bijection between this set and the set of strata in
ˆ1 (and thus , by duality , with the set of cells in X ). The codimension of the stratum
(and the dimension of the corresponding dual cell ) associated with .�; 
/ is equal toP1
rD1 j�r j, and the action of an element g 2G on strata and cells corresponds to the

function .�; 
/ 7! .�; g
/.

Let c.�; 
/ be the cell dual to the stratum corresponding to .�; 
/. The boundary
homomorphism in CCW

� .X/ is given by the formula

@c.�; 
/D
X
i�1

X
�2�i

X
ˇ2W

�inf�g

�i

ˇ�1�iC1ˇ��inf�g

.�1/˛.�;i;�;ˇ/c.� 0; 
ˇ/;

where ˛ is an integer number easily computed in terms of � , i , � , ˇ, � 0
k
D �k for

k < i , � 0i D �i n f�g and � 0
k
D ˇ�1�kˇ if k > i , and W T

T 0 , for T 0 � T � S is the set of
minimal length coset representatives for the parabolic subgroup WT 0 in WT .

We remark that in the case of Coxeter groups of type B or D, minimal coset repre-
sentatives are explicitly known. For a complete description, we refer, for instance,
to [14].

3.2 Alexander duality and Fox–Neuwirth complexes

We recall an alternative description of CG� . This description has been exposed in [8],
where it is investigated in much detail in the An case. As observed in that paper, for
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every 1 � m �1, the strata of ˆm are the interiors of cells in a G–equivariant cell
structure on the Alexandroff compactification .Y .m//C D Y .m/[f1g.

Denote its augmented (G–equivariant) cellular chain complex with the symbol fFNmG .
Its cells are the closures e.F / of strata F 2ˆm (together with the basepoint f�g) and,
from the construction of X .m/ as a CW–complex dual to ˆm — details in [4] — e.F /

is contained in the boundary of e.F 0/ if and only if the cell of X dual to F contains
the cell dual to F 0 in its boundary. This fact implies that the complex fFNmG is, up to
a shift of degrees, the dual of CCW

� .X .m//, at least modulo 2 (in general, there are
differences in some signs due to orientations). Explicitly, the closure in fFNmG of a
stratum of dimension d correspond to the dual of a chain in CCW

� .X .m// of dimension
nm� d . In the remaining sections of this paper, we will always implicitly assume this
shift, and we will grade fFNmG to match the corresponding dimension of the dual cell.

In particular, fFNmG calculates the cohomology of Y .m/ and is therefore acyclic up to
dimension nm� 2. Alternatively, we can see this, as explained in [8], by observing
that the Atiyah duality theorem implies that the Spanier dual of Y .m/ is .Y .m//C.

Passing to the limit for m!1, we obtain an acyclic F2–complex fFNG ˝F2, dual to
CCW
� .X/˝F2, for which a basis fe.S/gS2ˆ1 is parametrized by strata in ˆ1. The

degree of e.S/ as a cochain ofX is equal to the codimension of F . This is an equivariant
cochain model forE.G/. In particular, the quotient FNG˝F2DfFNG=G˝F2 calculates
zH�.GIF2/. In the following, when we need to stress the Coxeter group G involved,

we will use the heavier notation ˆ1;G instead of ˆ1.

This description of the cochain complex FNG calculating the cohomology of G fits
particularly well with a chain-level interpretation of duality via intersection theory that
we will occasionally use in proofs and that we briefly recall here. Given a manifold X
and an immersion i WW !X of a codimension d manifold in X , we say that a smooth
singular chain in X is transverse to i if, for every simplex � W�k!X of the chain, �
is transverse on every face of �k and subface, in the sense of manifolds with corners.
It can be proved that the subcomplex consisting of chains that are transverse to i is
chain equivalent to the full one. To every d–dimensional singular simplex � W�d !X

transverse to i we can associate the element �W .�/2 F2 given by the mod 2 cardinality
of ��1.W /. This procedure defines a cochain dual in the complex dual to the chain
complex of singular chains transverse to i . If i is a proper embedding, �W is a cocycle
and defines a cohomology class. The most important constructions in cohomology
can be understood geometrically using this model. In particular, if f W Y ! X is
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transverse to i , then f #.�W /D �f �1.W /. The reader will find a complete reference of
this approach to cohomology in [6].

In our particular context, each stratum S 2 ˆ1 defines such a cochain �S . We
understand the coboundary of �S as �@.S/, so we can identify fFN�G , at least modulo 2,
with the cochain complex spanned by �S for strata S 2ˆ1. Suppose W � Y .1/G is a
proper submanifold of codimension d obtained as a union of strata. In that case, its
associated cochain �W is the sum of �S for strata S �W of minimal codimension, and
ı.�W /D 0. If, in addition, the action of G preserves W , then, passing to the quotient,
its image W � Y .1/G =G defines a Thom class represented in FN�G by the sum of strata
contained in W . This construction is made precise in [7, Definition 4.6].

3.3 The special case of Coxeter groups of type B

We conclude this section by further investigating the cases of our interest G DWBn
and, in the following subsection, G DWDn . The strata of ˆm for the symmetric group
†n can be described in terms of leveled trees, as shown in [8] using ideas dating back
to Vassiliev [19]. A straightforward adaptation of these ideas shows that, in the case of
the Coxeter groups of type Bn, we can describe them in terms of symmetric leveled
trees. This interpretation encodes geometrically and combinatorially the structure of
WBn as a wreath product of †n with a cyclic group of order 2. Below we provide the
precise definitions.

First, we observe that, since WBn is generated by a set S D fs0; : : : ; sn�1g of n
fundamental reflections as described in Figure 1, the Fox–Neuwirth complex fFN�WBn
has a ZŒWBn �–basis fe.a/g indexed by n–tuples of nonnegative integer numbers
.a0; : : : ; an�1/.

The reflection hyperplane arrangement associated withWBn can be described as ABn D
fH˙i;j g1�i<j�n[fH

0
i g, where

H˙i;j D fx 2Rn j xi D˙xj g; H 0
i D fx 2Rn j xi D 0g:

Moreover, s0 can be identified with the reflection with respect toH 0
1 and, for every i >0,

si with the reflection with respect to HCi;iC1. Thus the basis element corresponding to
aD .a0; : : : ; an�1/ is described as the stratum

e.a/D
˚
.x1; : : : ; xn/ 2 .R

1/n j 81� i � n� 1;81� j � ai W .xi /j D .xiC1/j ;

.xi /aiC1 < .xiC1/aiC1;81� k � a0 W .x1/k D 0; .x1/a0C1 > 0
	
:
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Passing to the quotient by the action of WBn , we see that FN�WBn has a Z–basis
constituted by Œa0 W � � � W an�1�D Œe.a0; : : : ; an�1/�.

The differential on FN�WBn is complicated, but it is combinatorially accessible via a
description of its basis in terms of trees.

Definition 3.2 A signed depth-ordering is a sequence of labeled inequalities of the
form � D .0 <a0 i1 <a1 � � � <an�1 in/, where ik 2 f�n; : : : ;�1; 1; : : : ; ng for all
1� k � n, and these indices have pairwise different absolute values. By convention,
we let i0 D 0.

A planar level tree is a planarly embedded tree T satisfying the following conditions:

� it has a root vertex embedded in .0; 0/ and all the other vertices having their
second coordinate (the “height”) equal to a positive integer;

� two edges connected by an edge have heights whose difference is 1;

� the height along the unique minimal path from the root to every leaf is always
increasing.

A planar level tree with labels in I is a couple .T; �/ defined as follows: T is a planar
level tree, and � is a bijective labeling of the leaves of T with elements of I .

A symmetric planar level tree is a planar level tree invariant under the reflection r along
the y–axis and having an odd number of leaves.

An antisymmetric planar level tree with labels in f�n; : : : ; ng is a labeled planar level
tree .T; �/ with labels in f�n; : : : ; ng such that T is symmetric, and two leaves that
correspond to each other under the application of r have labels opposite to each other.

The antisymmetric planar level tree associated with a depth ordering � is the antisym-
metric planar level tree T� , unique up to isotopy, defined by the following properties:

� the labels of the leaves, from left to right, are �in; : : : ;�i1; 0; i1; : : : ; in;

� the leaves labeled ik�1; ik , for 1� k � n, are separated by a vertex of height ak
but not by vertices of height less than ak .

Let k � 0. The k–symmetrization Sk.T / (resp. zSk.T /) of a planar level tree T (with
labels in f1; : : : ; ng) is a symmetric planar level tree S (resp. antisymmetric planar
level tree with labels in f�n; : : : ; ng) obtained by the following procedure. Glue T
from the right to a vertical linear planar level tree lying into the y–axis up to height k.
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�1�1 10 �33 2 �2

Figure 2: An example of antisymmetric planar level tree with labels in Œ�3; 3�.

Then, add the mirror image of such tree under r to obtain a symmetric planar level
tree (choosing the unique antisymmetric labeling that extends the labeling of T in the
labeled case).

There is a free action of WBn on the set antisymmetric planar level trees with labels
in f�n; : : : ; ng given by interpreting elements of WBn as signed permutations and
permuting labels accordingly. We always assume that the edges of a level tree are
oriented so that there is a unique oriented path from the root vertex to each leaf.

Similarly to the symmetric group case, we have the following immediate proposition.

Proposition 3.3 The function � 7! T� is a bijection between the set of signed depth-
orderings with n labels and the set of isotopy classes of antisymmetric planar level
trees with labels in f�n; : : : ; ng. Furthermore , to � D .0 <a0 i1 <a1 � � � <an�1 in/ is
associated a stratum �e.a/ 2ˆ1;WBn , where �.k/D ik , aD .a0; : : : ; an�1/, and this
provides aWBn–equivariant additive basis of fFN�WBn labeled by signed depth-orderings
or , equivalently, by isotopy classes of antisymmetric planar level trees with labels in
f�n; : : : ; ng. WBn acts on this basis by permuting labels. Consequently, an additive
basis for FN�WBn is given by symmetric planar level trees with 2nC 1 leaves.

An example of an antisymmetric planar level tree .T; �/, with labels in Œ�3; 3�, is given
in Figure 2. The associated signed depth-ordering is � D .0 <1 �2 <0 �3 <1 1/ and
the corresponding stratum is �e.Œ1; 0; 1�/, where �.1/D�2, �.2/D�3 and �.3/D 1.

We observe that we can use Proposition 3.3 to reinterpret operations on (symmetric)
level trees in terms of n–tuples or (signed) depth-orderings. For instance, the k–
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symmetrization of trees provides a linear map Sk W FN�†n ! FN�WBn that we can
interpret as Œa1 W � � � W an�1� 7! Œk W a1 W � � � W an�1�.

We can now describe the differential in terms of this basis.

Definition 3.4 [8] Let .T; �/ be a planar level tree. Let v be an internal vertex. Let
E.v/ be the set of edges whose source vertex is v. The planar embedding of T induces
an order on E.v/, defined from left to right. A vertex permutation of .T; �/ at v is
another planar level tree that is isomorphic to .T; �/ as a labeled tree but with a different
planar embedding that differs from the original one only by the ordering on E.v/.

Given a planar level tree .T; �/ and an internal vertex v, let .e; f /, with e < f , be a
couple of adjacent edges in E.v/. Let ue and uf be the targets of e and f , respectively.
Let � be a shuffle of the two sets E.ue/ and E.uf /. Let de;f;� .T; �/ be the planar level
tree obtained by gluing together e and f , with common target Nu, and then applying the
vertex permutation that permutes the edges in E. Nu/ by � .

Recall that, in the An case, the differential in fFN� of the basis element corresponding
to a planar level tree with labels .T; �/ is given by the sum over .v; �/ as above of
dv;� .T; �/. Similarly, we have the following proposition, which essentially states that
a symmetrization of the previous construction gives the differential in the Bn case.

Proposition 3.5 With the correspondence provided by Proposition 3.3, the differential
of the cochain complex fFN�WBn ˝ F2 is given in terms of antisymmetric level trees
with labels d.T; �/D

P
.e;f;�/

P
.e0;f 0;�/ de;f;�de0;f 0;� .T; �/, where the sum is over

sextuples .e; f; �; e0; f 0; �/ such that de;f;�de0;f 0;� .T; �/ is again an antisymmetric
planar level tree. Equivalently , d.T; �/ is obtained by performing an operation de;f;�
starting from a couple of adjacent vertices .e; f / lying into the positive half-plane
f.x; y/ j x � 0g, and then perform the mirror operation on the mirror pair of adjacent
edges .e0; f 0/ in the negative half-plane. If we call such symmetric operation dS

e;f;�
,

we have that
d.T; �/D

X
.e;f /

X
�

dSe;f;� .T; �/;

where the sum is over couples .e; f / of adjacent edges in the positive half-plane and
shuffles � of the two sets of vertices incident to the target of e and f , respectively.

We can equivalently express this construction using planar level trees T with nC 1
leaves labeled by .�n; : : : ;�1; 0; 1; : : : ; n/, with labels having pairwise different ab-
solute values, such that the leftmost leaf has label 0. We recover the corresponding
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antisymmetric level tree as follows. We choose a representative of the isotopy class of
.T; �/ in which the entire oriented path from the root vertex to the label 0 lies on the
y–axis. Then we merge T with its mirror image along y with opposite labels. In this
case, the differential is given by contracting a couple of adjacent edges and shuffling.
When the result is a tree whose leftmost leaf is not labeled by 0, we replace the part of
the tree belonging to the negative half-plane f.x; y/ j x � 0g with its mirror image in
the positive half-plane, with opposite labels, and shuffle the corresponding edges in all
possible ways.

3.4 The special case of Coxeter groups of type D

We now turn to the description of the complex FN�WDn . Once again, since this Cox-
eter group has n fundamental reflections t0; : : : ; tn�1, a ZŒWDn �–basis for fFN�WDn is
indexed by n–tuples of nonnegative integers aD .a0; : : : ; an�1/.

The inclusion jn WWDn!WBn identifies the reflection arrangement associated to WDn
with the subarrangement of AWBn composed by the hyperplanesH˙i;j , for 1� i <j �n,
and ti D si for 1� i � n, while t0 is the reflection along H�1;2. Thus the basis element
of fFN�WDn corresponding to a is described as the stratum

e.a/D
˚
.x1; : : : ; xn/ 2 .R

1/n j 81� i � n� 1; 1� j � ai W .xi /j D .xiC1/j ;

.xi /aiC1 < .xiC1/aiC1;81� k � a0 W .x2/k D�.x1/k ; .x2/a0C1 > �.x1/a0C1
	
:

Passing to the quotient by the action of WDn , we see that FN�WDn has a Z–basis
constituted by Œa0 W � � � W an�1�D Œe.a0; : : : ; an�1/�.

The complex fFN�WBn=jn.WDn/ also calculates the cohomology of WDn . Therefore,
there is a cochain equivalence ' W FN�WDn !

fFN�WBn=jn.WDn/ between the two reso-
lutions. In the subsequent section, we compute an explicit formula for ' that we will
use to perform cochain-level computation in the following sections. For instance, we
will prove the relations for coproduct of transfer products of Hopf ring generators by
mapping them to fFN�WBn=jn.WDn/, where their expressions are closer to the Bn case.
As a notational convention, we denote this cochain complex by FN0�WDn .

First, we observe that ŒWBn W jn.WDn/� D 2; thus jn.WDn/ is a normal subgroup
of WBn . The two cosets of jn.WDn/ in WBn are represented by the identity and s0, the
only fundamental reflection of WBn that is not contained in jn.WDn/. Thus, given a
ZŒWBn �–basis B for fFN�WBn , the classes of x and s0:x, where x 2B, provide a Z–basis
for FN0�WDn . Let B be the basis defined above in terms of n–tuples or equivalently
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of symmetric planar level trees, parametrized by n–tuples of nonnegative integers
aD .a0; : : : ; an�1/. We denote by Œa0 W � � � W an�1�C and Œa0 W � � � W an�1�� the cochains
in FN0�WDn arising from the basis element corresponding to a and s0a.

The complex FN0�WDn also has a description in terms of trees.

Definition 3.6 Let T be a symmetric planar level tree with 2nC 1 leaves. An orien-
tation of T is the choice of an element of L=�, where L is the set of antisymmetric
labelings of T with labels in f�n; : : : ; ng, and � is the equivalence relation defined by

�� �0 () �0 D �� for some � 2 Alt.2nC 1/:

An oriented symmetric planar level tree is a couple .T;O/, where T is a symmetric
planar level tree and O is an orientation of T .

Note that if two antisymmetric labelings of a symmetric planar level tree T differ by
a permutation � 2 †f�n;:::;ng, then � must fix 0 and act as a signed permutation on
f�n; : : : ;�1; 1; : : : ; ng. Hence, an orientation of T is the choice of an antisymmetric
labeling up to the action of jn.WDn/. Since the index ŒWBn W jn.WDn/� is 2, there are
two possible orientations for a symmetric planar level tree T , determined by the parity
of the number of negative labels of leaves in the positive half-plane. In particular, we
can identify an orientation O with a sign C or �, corresponding to labelings with an
even or odd number of positively labeled leaves in the positive half-plane, respectively.

Moreover, from the fact that Alt.2nC 1/ is normal in †2nC1, it follows that if T is a
symmetric planar level tree, � is a labeling of T and �.T / is a vertex permutation of
T at a vertex v, then the orientation of the permuted labeled tree �.T; �/ only depends
on the orientation determined by �. Therefore, the rule for the differential in fFN�WBn
induces a formula for the differential in FN0�WDn in terms of trees. Hence, we have the
following description.

Proposition 3.7 FN0�WDn can be described as the cochain complex having additive
basis indexed by oriented symmetric planar level trees with 2n C 1 leaves , with
differential induced by the symmetric tree differential in fFN�WBn by keeping track of
orientations.

The reader is encouraged to compare this description with the notion of “charged”
configuration used in [9].
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4 Geometry and combinatorics: chain-level formulas

We devote this section to developing some formulas that will allow us to perform
calculations at the (co)chain level. These computations will be needed at points,
especially when retrieving relations. We first compute some connecting maps between
the Fox–Neuwirth complexes of Coxeter groups of type A, B and D. Then, we provide
cochain representatives of the structural maps of our almost-Hopf ring structures.

4.1 The connecting homomorphisms

As fFN�WDn and fFN0�WDn are both free resolutions of Z as a ZŒWDn �–module, they need
to be WDn–equivariantly cochain equivalent. We begin by providing a formula for an
explicit equivalence ' relating the two models FN�WDn and FN0�WDn .

Lemma 4.1 There is a cochain homotopy equivalence '� WFN�WDn!FN0�WDn defined
by the formula

'�Œa0 W � � � Wan�1�D

8<:
Œa0 Wa1 Wa2 W � � � Wan�1�

C if a0 < a1;
Œa0 Wa1 Wa2 W � � � Wan�1�

CC Œa1 Wa0 Wa2 W � � � Wan�1�
� if a0 D a1;

Œa1 Wa0 Wa2 W � � � Wan�1�
� if a0 > a1;

induced by the inclusion Y .1/WBn
� Y

.1/
WDn

and yielding the identity in cohomology.

Proof We observe that the inclusion

Y
.1/
WBn
� Y

.1/
WDn

is a WDn–equivariant homotopy equivalence. Moreover, the inverse image in Y .1/WBn
of

each stratum of ˆ1;WDn is a union of strata in ˆ1;WBn . Thus, passing to quotients,
this yields a map

' W
Y
.1/
WBn

WDn
!

Y
.1/
WDn

WDn

that induces a well-defined map between the cochain complexes '� WFN�WDn!FN0�WDn.

We now check that '� satisfies the given formulas. It is sufficient to consider the finite
approximations

'.d/ W
Y
.d/
WBn

WDn
!

Y
.d/
WDn

WDn
:
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For any given stratum S D e.a0; : : : ; an�1/ for WDn , since '.d/, being a 0–codimen-
sional immersion, is transverse to S , we have that .'.d//�.�S /D �.'.d//�1.S/. We now
distinguish three cases:

� if a0 < a1, then .'.d//�1.S/D e.a0; a1; a2; : : : ; an�1/;

� if a0 > a1, then .'.d//�1.S/D s0:e.a1; a0; a2; : : : ; an�1/;

� if a0Da1, then .'.d//�1.S/ is the union of e.a0; : : : ; an�1/, s0:e.a0; : : : ; an�1/
and strata of bigger codimension.

This implies that '� has the desired form.

We also consider the following group homomorphisms:

� the standard inclusion j W†n!WBn already considered in the previous section;

� the involution cs0 WWDn !WDn given by conjugation by s0, the unique gener-
ating reflection of WBn that does not belong to WDn , that fixes ti for 2� i < n
and switches t0 and t1;

� the two inclusions iC; i� W†n!WDn given, in terms of the Coxeter generators
t0; : : : ; tn of Figure 1, by i˙.i; iC1/D ti if i � 2, iC.1; 2/D t1 and i�.1; 2/D t0.

We denote by � W H�.WDn IF2/ ! H�.WDn IF2/ the morphism induced by cs0 on
cohomology.

We note that the two following properties hold by construction:

� �j D id†n ;

� � ıiCD� ıi�D id†n , where � WWDn!†n is the composition of the inclusion
j WWDn !WBn with the projection WBn !†n;

� cs0 ı iC D i�.

We compute cochain representatives of � in the following lemmas.

Lemma 4.2 � is induced by the cochain-level map �# W FN�WDn ! FN�WDn defined by

�#Œa0 W a1 W a2 W � � � W an�1�D Œa1 W a0 W a2 W � � � W an�1�:

Proof Since the image under cs0 of a fundamental reflection for W DWDn is again a
fundamental reflection, for every � 0 � � � ft0; : : : ; tn�1g, the set of minimal-length
coset representatives satisfies cs0.W

� 0

� /DW
cs0 .�

0/

cs0 .�/
. Thus,

e.�1 � � � � � �k � � � � / 7! e.cs0.�1/� � � � � cs0.�k/� � � � /
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defines a cs0–equivariant chain map CWDn� ! C
WDn
� . This yields, dually, the desired

cochain map FN�WDn ! FN�WDn .

We can also describe � in terms of FN0�WDn . The proof of the following lemma is
straightforward.

Lemma 4.3 � is induced by the cochain-level map �0# W FN0�WDn! FN0�WDn defined by

�0
#
Œa0 W � � � W an�1�

C
D Œa0 W � � � W an�1�

�; �0
#
Œa0 W � � � W an�1�

�
D Œa0 W � � � W an�1�

C:

In terms of oriented symmetric planar level trees , the map �0# acts on .T;O/ by replacing
O with the opposite orientation.

The following identity is also proved by direct inspection.

Lemma 4.4 The following diagram commutes:

FN�WDn
'�
//

�#

��

FN0�WDn

�0
#

��

FN�WDn '�
// FN0�WDn

The formulas for the other connecting maps follow from a general remark.

Lemma 4.5 Let G be a Coxeter group , with Coxeter generators S D fs0; : : : ; sng and
H � G be a parabolic subgroup , generated by a subset T D fsi0 ; : : : ; simg � S . The
inclusion H ,!G is represented at the chain level by the chain map CH� ! CG� given
by c.�; 
/ 7! c.�; 
/, for flags � D .�0 � �1 � � � � � �k �¿/ with �0 � T � S and
elements 
 2H .

Dually , it is represented at the cochain level by the cochain map FN�G! FN�H given by

Œe.a0; : : : ; an/� 2 C
H
� 7!

�
Œe.ai0 ; : : : ; aim/� if aj D 0 for all j … fi0; : : : ; img;
0 otherwise:

Proof Since the inclusion of parabolic subgroups preserves minimal coset representa-
tives, the De Concini–Salvetti boundary formula of Theorem 3.1 implies that the given
linear morphism CH� ! CG� is an H–equivariant chain map. Dualizing this yields the
cochain formula between Fox–Neuwirth complexes.
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As particular cases of this lemma, we retrieve cochain formulas for our connecting
homomorphisms:

Corollary 4.6 The following statements are true.

(1) The linear morphism j # W FN�WBn ! FN�†n given by

Œa0; : : : ; an�1� 7!

�
Œa1; : : : ; an�1� if a0 D 0;
0 if a0 > 0;

represents j at the cochain level.

(2) The linear morphism i#
C
W FN�WDn ! FN�†n given by

Œa0; : : : ; an�1� 7!

�
Œa1; : : : ; an�1� if a0 D 0;
0 if a0 > 0;

represents iC at the cochain level.

(3) The linear morphism i#
� W FN�WDn ! FN�†n given by

Œa0; : : : ; an�1� 7!

�
Œa0; a2; : : : ; an�1� if a1 D 0;
0 if a1 > 0;

represents iC at the cochain level.

4.2 Structural morphisms: AB

We want to describe the almost-Hopf ring structures presented in Section 2 in our
geometric context. We begin with the coproduct map in AB . In contrast with the
symmetric group case, the cochain-level map inducing the coproduct is relatively
complicated. Its underlying combinatorics is built upon elementary steps that we,
mindful of the botanic analogy, suggestively call “prunings”.

Definition 4.7 Let T be a planar level tree. An elementary k–pruning of T is a planar
level tree T 0 obtained by the following procedure. Choose an internal vertex v of T
of height k, and consider on E.v/ the order induced by the planar embedding. Let
1 � l < jE.v/j, consider the l biggest elements e1; : : : ; el of E.v/ with respect to
this order, and let v0i be the target of ei . T 00 is the subtree of T spanned by v and all
vertices that can be reached from one of the v0i through an oriented path. T 0 is the
complementary subtree of T 00 in T . We call the planarly embedded subtree T 00 the
scrap of the elementary k–pruning. An elementary k–pruning is said to be minimal if
l D 1. A k–pruning is a couple .T 0; T 00/ constructed as follows:
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� T 0 is obtained from a sequence of elementary k–prunings

T ÝT 01ÝT 02Ý � � �ÝT 0j D T
0

performed on pairwise different vertices v1; : : : ; vj of T , with scraps T 001 ; : : : ; T
00
j ;

� T 00 is a planar level tree obtained by joining these scrap subtrees along a vertex
w of height k and performing a vertex permutation at w that shuffles the edges
of the scraps.

Let T be a symmetric planar level tree. An elementary symmetric k–pruning of T is
a tree T 0 obtained as follows. Apply to T an elementary (nonsymmetric) k–pruning
whose scrap T 00 does not contain the central leaf belonging to the y–axis. Then, remove
the image of the subtree of T 00 under the reflection r along the vertical axis. T 00 is called
the scrap of the elementary symmetric pruning. An elementary symmetric k–pruning is
said to be minimal if it is obtained from a minimal elementary k–pruning. A symmetric
k–pruning is a couple .T 0; T 00/, where

� T 0 is obtained from a sequence of elementary k–prunings

T ÝT 01ÝT 02Ý � � �ÝT 0j D T
0

performed on pairwise different vertices of T , with scraps T 001 ; : : : ; T
00
j ;

� T 00 is a nonsymmetric planar level tree obtained by joining the scrap subtrees to
a vertex w of height k and performing a vertex permutation at w that shuffles
the edges of the scraps.

We note that elementary k–prunings at different vertices commute, both in the symmetric
and nonsymmetric cases. Hence, a k–pruning or symmetric k–pruning is uniquely
determined by the set of elementary k–prunings that compose it, independently of the
order in which they are performed.

There is also an alternative way to define (symmetric) k–prunings in terms of minimal
k–prunings instead of elementary ones. A (symmetric) k–pruning is obtained by
performing a sequence of minimal elementary (symmetric) k–prunings, not necessarily
at pairwise different vertices, and then joining the scraps at a vertex of height k without
shuffling the edges.

We now consider three linear morphisms that we will need to define the cochain-level
coproduct map:
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� the k–pruning map

Pk W FN�WBn ˝F2!
M

aCbDn

FN�WBa ˝FN�WBb ˝F2

that maps a symmetric planar level tree T to the sum
P
T 0˝Sk.T

00/ over all
the possible symmetric k–prunings .T 0; T 00/ of T ;

� the minimal k–pruning map

Pmin
k W FN�WBn ˝F2!

M
aCbDn

FN�WBa ˝FN�WBb ˝F2

that maps a symmetric planar level tree T to the sum
P
T 0˝Sk.T

00/ over all
the possible minimal elementary symmetric k–prunings .T 0; T 00/ of T ;

� the concatenation map C W FN�WBn ˝ FN�WBm ˝ F2 ! FN�WBnCm
such that

C.Œa0 W � � � W an�1�˝ Œb0 W � � � W bm�1�/D Œa0 W � � � W an�1 W b0 W � � � W bm�1�.

The map Pk is exemplified in Figure 3. We understand C at the level of symmetric
planar level trees as the function given by the following procedure. Take a couple of
such objects .T; S/. Cut S along its central vertical axis. Finally, glue the right piece of
S onto the right side of T and the left part onto its left side to obtain a new symmetric
planar level tree. We remark that these linear morphisms are degree-preserving, but
they are not chain maps.

In theAn case, we can define a similar k–pruning mapP 0
k

by summing all nonsymmetric
k–prunings. For k D 0, P 00 is a chain map, and it is shown in [8] to induce the
coproduct in cohomology. This statement is not true in the Bn case because the
differential of an antisymmetric planar level tree with labels behaves badly near the
central “trunk” labeled 0. Nevertheless, at each level k, away from this central stem,
this is essentially true. For this intuitive reason, we must define our cochain-level
coproduct map differently: prune a symmetric planar level tree at every level and tensor
it with a symmetric planar level tree whose principal k–blocks, as defined below in
Definition 4.10, are the scraps of the performed prunings. To prove this statement, we
need some preliminary calculations.

Suppose that a symmetric planar level tree T corresponds to Œa0 W � � � W an�1� 2 FNWBn .
In that case, consider the set of couples of adjacent edges .e; f /, with e < f , in T
having the same source vertex and belonging to the positive half-plane f.x; y/ j x � 0g.
This set in bijective correspondence with f0; : : : ; n� 1g, and the height of the common
vertex of the couple .e; f / corresponding to i is ai . This bijection is explicitly given by
counting the leaves in the positive half-plane that lie on the left of e. For 0� i � n�1,
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7! ˝ C

˝ C ˝ C

˝ C ˝ C

˝ C ˝ C

˝

Figure 3: The map P1, defined as the sum of all possible symmetric 1–
pruning, on a given symmetric planar level tree.

we denote by di .T / or equivalently by de;f the sum of the addends dS
e;f;�

of the
differential d , as expressed in Proposition 3.5, in which a vertex shuffle constructed
from the couple .e; f / corresponding to i appear. Thus, d.T /D

Pn�1
iD0 di .T /.

Lemma 4.8 Let T be a symmetric planar level tree corresponding to Œa0 W � � � W an�1�.
Let mk be the smallest index such that amk D k. Let I be the trivial symmetric planar
level tree. Then the following statements are true:

(1) the pruning maps and the differential satisfy the equality

Pkd C dPkC .id˝ d0/.Pk � id˝ I /D .id˝ dmk�1/.id˝C/.Pk˝ id/Pmin
k�1I

(2) Pk.T /D T ˝ I if ai < k for all 0� i < n;

(3) for all aD Œa0 W � � � Wan�1� and bD Œb0 W � � � Wbm�1� with b0 <minfa0; : : : ; an�1g,

diC.a˝b/D

�
C.di ˝ id/.a˝b/ if 0� i < n;
C.id˝ di�n/.a˝b/ if n < i < nCm;

and the latter also holds for i D n if b0 <minfa0; : : : ; an�1g� 1;

(4) .id˝C/.Pmin
k
˝ id/Pk.T /D Pk.T /�T ˝ I ;

(5) C.C ˝ id/D C.id˝C/.
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Proof The statements from (2) to (5) are easy. Regarding (2), if ai < k for all i , T
has no vertex of height k with more than one outgoing edge. Thus the only possible
symmetric k–pruning is the trivial one. Regarding (3), the bijection

' W f0; : : : ; n� 1g t f0; : : : ; m� 1g ! f0; : : : ; nCm� 1g

that shifts elements of f0; : : : ; m � 1g by n yields a bijection between pairs .e; f /
of adjacent edges of the symmetric planar level tree T corresponding to C.a˝ b/

and those of the symmetric planar level trees T 0 and T 00 corresponding to a and b

respectively. If b0 <minfa0; : : : ; an�1g, then for all i 2 f0; : : : ; nCm� 1g, with the
only possible exception of i D n, this bijection preserves E.vei / and E.vfi /, where
vei and vfi are the target vertices of the corresponding pair of edges .ei ; fi /. The
edges in E.vei / and E.vfi / of the corresponding pair come either both from T 0 or
both from T 00. Hence diC.a˝b/D d'�1.i/a˝b. If b0 <minfa0; : : : ; an�1g� 1 the
same is also true for the edges en and fn, so the equality is satisfied also in this case.
Statement (4) is immediate from the definition of k–prunings and the combinatorics of
shuffles, and (5) is obvious.

On the contrary, (1) is more complicated and requires a more detailed proof. As
a notational convention, let dh

l
D
P
i WaiDl

di , the sum of the contributions to the
differential coming from vertices at height k. We compare dh

l
Pk.T / with Pkdhl .T /.

We consider different cases depending on the difference between k and l .

� If l > k, dh
l

is computed by gluing together a pair .e; f / of adjacent edges of
height bigger than k (and its mirror pair) and performing a shuffle at the new target
vertex. These operations only change a connected subtree whose vertices all have
height bigger than k, and, by construction, k–prunings commute with such operations.
Hence dh

l
Pk D Pkd

h
l

.

� If lDk, then we can write dh
k
Pk.T /D

P
.T 0;T 00/

P
.e;f / de;f .T

0˝Sk.T
00//, where

the sum is over symmetric k–prunings .T 0; T 00/ of T and pairs of adjacent edges .e; f /
in the positive half-plane with a common source vertex of height k in T 0 or Sk.T 00/.
We also note that Sk.T 00/ has a unique vertex w of height k. There is an obvious
bijection G

v2V.T /
h.v/Dk

E.v/$
G

u2V.T 0/
h.v/Dk

E.u/t .E.w/ n fe0g/

that maps an edge to its image in T 0 (if it is not pruned away) or in Sk.T 00/ (if it is),
and that arises from the fact that, for elementary prunings, T D T 0[T 00[ r.T 00/. The
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edge e0 is the unique edge belonging to the central vertical stem whose source vertex
is w. Moreover, this bijection preserves the properties of belonging to the positive
and negative half-plane. Therefore, we can write the summation above expressing
dh
k
Pk.T / as the sum of three pieces:

� The first piece is the sum of the terms corresponding to .e; f / such that .e; f /
come from adjacent edges in T . These terms correspond to symmetric k–prunings
of dS

e;f;�
.T /, for shuffles � at the common vertex of e and f . Hence, their sum

yields Pkdhk .T /.

� The second piece is the sum of the terms corresponding to .e; f / in Sk.T 00/
such that e¤ e0 and .e; f / do not come from adjacent vertices of T . Under this
condition, the symmetric vertex permutation �.Sk.T 00// of Sk.T 00/ at w that
switched the positions of e and f still produces a shuffle of the scraps of the
elementary prunings involved in .T 0; T 00/. Every tree in d.e;f /.Sk.T 00// cancel
out with a tree in d.f;e/.�.Sk.T 00///. Hence, this second piece is 0.

� The third piece is given by the terms corresponding to .e; f / with eD e0. These
terms yield .id˝ d0/Pk.T /.

Finally, we deduce that dh
k
Pk.T /D .id˝ d0/Pk.T /CPkdhk .T /.

� If l D k�1, Pkdhk�1.T /D
P
.e;f /

P
.T 0;T 00/ T

0˝Sk.T
00/, where the sum is taken

over couples .e; f / of adjacent edges in T whose common source v has height k� 1,
and symmetric k–prunings .T 0; T 00/ of trees in d.e;f /.T /. Let ve and vf be the targets
of e and f , respectively. By construction, d.e;f /.T / glues ve and vf to a single
vertex Nv, such that E. Nv/ D E.ve/ t E.vf /, suitably shuffled. Let A be the set of
edges removed by the corresponding elementary symmetric prunings at Nv and at r. Nv/,
the mirror vertex of Nv (which might coincide). We retrieve symmetric k–prunings
for which E.ve/ 6� A and E.vf / 6� A from symmetric k–prunings .T 0; T 00/ of T by
applying d.e;f / to T 0. Now assume that v is not on the central stem of the tree. If
e ¤min.E.v//, it is the successor of an edge g 2E.v/, and the terms of Pkde;f .T /
for which E.ve/� A cancel out with the terms of Pkdg;e.T / for which E.ve/� A.
Similarly, all the terms for which E.vf / � A and f ¤ max.E.v// cancel out. The
only remaining terms are those in which we remove an entire subtree corresponding to
min.E.v//— which is the mirror image of max.E.r.v//. If v belongs to the central
axis, we must slightly modify the argument to take into account only edges in the
positive half-plane and shows that the surviving terms are those in which an entire
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subtree stemming from max.E.v// is removed. The sum of all these elements is exactly
equal to the correcting term .id˝ dmk�1/.id˝C/.Pk˝ id/Pmin

k�1
.T /. We deduce that

dhk�1Pk.T /D Pkd
h
k�1.T /C .id˝ dmk�1/.id˝C/.Pk˝ id/Pmin

k�1.T /:

� If l < k�1, since k–prunings only depend on the part of the tree above height k and
dh
l

does not change it, the same argument used for l > k shows that dh
l
Pk D Pkd

h
l

.

Combining the equalities obtained in these cases yields (1).

We are now ready to construct a cochain representative of the cohomological coproduct
map H�.WBn/!

Ln
iD0H

�.WBi /˝H
�.WBn�i /.

Proposition 4.9 Let �k W FN�WBn ˝F2!
Ln
iD0 FN�WBi

˝FN�WBn�i
˝F2 be the lin-

ear maps defined recursively by the formulas

� �0 D P0,

� for k > 0, �k D .id˝C/.Pk˝ id/�k�1.

Then

(1) the limit �D lim
��!

�k exists ,

(2) � is a cochain map ,

(3) � represents the cohomology coproduct map at the cochain level.

Proof (1) Let a 2 FN�WBn and let m D maxfa0; : : : ; an�1g. Statement (2) of
Lemma 4.8 guarantees that �k.a/ D �m.a/ for all k > m. Thus, the sequence
f�kg

1
kD0

stabilizes and consequently has a limit.

(2) We first observe that Lemma 4.8(4) and (5) imply that

.id˝C/.Pmin
k ˝ id/�k D�k ��k�1

for all k � 0, with the convention that ��1.T /D T ˝ I . Combining this remark with
Lemma 4.8(3) and (5), we obtain that, for all k � 1,

.id˝C/.id˝ dmk�1 ˝ id/.id˝C ˝ id/.Pk˝ id˝ id/.Pmin
k�1˝ id/�k�1

D .id˝ dmk�1/.id˝C/.id˝C ˝ id/.Pk˝ id˝ id/.Pmin
k�1˝ id/�k�1

D .id˝ dmk�1/.id˝C/.Pk˝C/.P
min
k�1˝ id/�k�1

D .id˝ dmk�1/.id˝C/.Pk˝ id/.�k�1��k�2/:
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We use this to prove by induction on k that �kd D d�kC .id˝d0/.�k��k�1/. For
k D 0 this identity is the content of the first statement of Lemma 4.8. For k > 0, we
deduce from the identity above and the previous lemma that

�kd D .id˝C/.Pk˝ id/�k�1d

D .id˝C/.Pk˝ id/d�k�1C.id˝C/.Pk˝d0/.�k�1��k�2/

D .id˝C/.Pk˝ id/d�k�1C.id˝C/d.Pk˝ id/.�k�1��k�2/

C.d �dmk�1/.id˝C/.Pk˝ id/.�k�1��k�2/

D .id˝C/d.Pk˝ id/�k�1C.id˝C/.id˝d0˝ id/Œ.Pk� id˝I /˝ id��k�1

C.id˝C/d.Pk˝ id/.�k�1��k�2/Cd.id˝C/.Pk˝ id/.�k�1��k�2/

D .id˝C/d.Pk˝ id/�k�2C.id˝d0/.id˝C/Œ.Pk� id˝I /˝ id��k�1

Cd�k�d.1˝C/.Pk˝ id/�k�2

D d�k�.id˝d0/.�k��k�1/C.id˝C/d.Pk˝ id/�k�2

�d.id˝C/.Pk˝ id/�k�2

D d�k�.id˝d0/.�k��k�1/:

To justify the last equality, we observe that .Pk˝id/�k�2 is a sum of terms of the form
c˝ a˝b with b0 <minfaig� 1, and we apply the stronger clause of Lemma 4.8(3).

Now the identity d�D�d follows by passing to the limit, and using that the sequence
f�kg

1
kD0

stabilizes.

(3) Consider the dg-module U over F2 with basis given by symmetric planar level
trees with antisymmetric labels in any finite subset I �N, not necessarily f�n; : : : ; ng,
with the symmetric tree differential. Note that

L
n�0

fFN�WBn ˝F2 embeds in U in
the obvious way. We observe that the linear maps Pk , Pmin

k
and C lift to linear maps

zPk; zP
min
k
WU !U˝U and zC WU˝U !U . zPk and zPmin

k
are still defined via prunings,

but we additionally keep track of the labels of the subtrees involved. We compute zC
on T 0˝T 00 by splitting T 00 symmetrically along the vertical axis, keeping labels, and
symmetrically attach the two parts to T 0 to obtain a new basis element of U . Lemma 4.8
still holds for this labeled version of the morphisms by the same proof. Consequently,
there is a labeled version z� W U ! U ˝ U of �, constructed recursively via finite
approximations z�k , that still commutes with the differential. Note that we can also
embed fFN�WBn ˝

fFN�WBm ˝F2
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into U ˝U by keeping the labels of trees in fFN�WBn and relabeling trees in fFN�WBm
via the bijection f0; : : : ; m � 1g ! fn; : : : ; n C m � 1g that raises numbers by n.
There is also a projection U � U ! fFN�WBn ˝

fFN�WBm ˝ F2 that maps every ba-
sis element of U ˝ U that does not belong to fFN�WBn ˝

fFN�WBm ˝F2 to 0. By
induction, we easily see that restricting each z�k for all k (and, consequently, z�)
to fFN�WBn ˝

fFN�WBm ˝ F2 and composing with this projection we obtain linear
maps

L
n�0

fFN�WBn˝F2!
L
n�0

fFN�WBn˝
L
n�0

fFN�WBn˝F2 that are equivariant
with respect to the monomorphisms WBn �WBm ! WBnCm and satisfy the same
formal relation with respect to the differential. By identifying FN�WBn with the invariant
subspace .fFN�WBn /

WBn , the limit map z� restricts to �, which is thus a cochain-level
realization of the coproduct map.

We now turn our attention to the transfer map. We need a preliminary definition.

Definition 4.10 (partially from [8]) Let aD Œa0 W � � � W an�1� 2 FN�WBn be as defined
above. In what follows, we assume, by convention, that a�1D anD 0. We say that the
chain Œai W � � � Waj � is a k–block of a if al >k for all i � l � j and maxfai�1; ajC1g � k.
We say that a k–block Œai W � � � W aj � of a is principal if, in addition, min0�r<i ar D k.
We denote by PBlk.a/ the tuple of the principal k–blocks of a, ordered from left to
right.

For example, the basis element a D Œ3 W 2 W 3 W 1 W 2 W 1 W 3 W 2 W 0 W 3� has four 1–blocks:
B1;1 D Œ3 W 2 W 3�, B1;2 D Œ2�, B1;3 D Œ3 W 2�, and B1;4 D Œ3�. PBl1.a/D .B1;2; B1;3/.

Note that a basis element a is uniquely determined by fPBlk.a/g1kD0, the collection
of its principal blocks. To retrieve a from these data, we can use the following
procedure. First, for all k � 0, add an entry equal to k before each principal k–block
and concatenate all such tuples to obtain ak . Then, we obtain a as the concatenation of
: : : ; ak; ak�1; : : : ; a0. This sequence is necessarily finite because for k >maxn�1iD0 ai ,
PBl.a/ is the empty 0–tuple. With this method, we can construct a basis element a

from an eventually empty collection of tuples fBkg, where the entries of Bk are tuples
of natural numbers strictly bigger than k.

We also observe that k–blocks can be retrieved from the corresponding symmetric level
tree T . They are given by the connected components of T \f.x; y/2R2 jx� 0; y >kg.
Interpreted this way, a k–block is principal if and only if it does not intersect the central
vertical axis but is contained in the .k�1/–block intersecting it.
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Proposition 4.11 Given a 2 FN�WBn , b 2 FN�WBm and k � 0, let na;k and nb;k be
the lengths of PBlk.a/ and PBlk.b/, respectively. Given a sequence � D f�kg1kD0
of permutations �k 2 †na;kCnb;k , define �.a;b/ as the unique basis elements of
FN�WBnCm such that , for all k � 0, PBlk.�.a;b// D �k.PBlk.a/;PBlk.b//, where
.PBlk.a/;PBlk.b// is the concatenated .na;kCnb;k/–tuple and �k acts on .na;kCnb;k/–
tuples by permuting the entries. LetˇW FN�WBn ˝FN�WBm ˝F2! FN�WBnCm

˝F2 be
the homomorphism that maps a˝b to the sum

P
� �.a;b/ over sequences of permu-

tations � D f�kg1kD0 such that �k is a .na;k; nb;k/–shuffle for all k � 0. Informally ,
aˇb is the sum of basis elements whose principal k–blocks are obtained by shuffling
the principal k–blocks of a and b. This defines a morphism of complexes that induces
the transfer product in cohomology.

Proof The reflection arrangement of WBn �WBm , with its product reflection action
on Rn �Rm, is ABn �ABm D fH �RmgH2ABn [ fR

n �H 0gH 02ABm . Being it a
subarrangement of ABnCm , we have a natural inclusion

Y
.1/
WBnCm

! Y
.1/
ABn�ABm

Š Y
.1/
WBn
�Y

.1/
WBm

:

We can explicitly obtain such inclusion by splitting a configuration of nCm points
into the two subconfigurations consisting of its first n points and its last m points,
respectively, and relabeling the indices of the second one. This map is a .WBn�WBm/–
equivariant homotopy equivalence.

Therefore, passing to quotients, this yields a map

� W
Y
.1/
WBnCm

WBn �WBm
!

Y
.1/
WBn

WBn
�

Y
.1/
WBm

WBm

that models the standard homotopy equivalence B.WBn�WBm/'B.WBn/�B.WBm/.
Moreover, the obvious quotient map

� 0 W
Y
.1/
WBnCm

WBn �WBm
!

Y
.1/
WBnCm

WBnCm

is a covering model for B.WBn �WBm/! B.WBnCm/.

Let x D Œa0 W � � � W an�1�˝ Œb0 W � � � W bm�1� be a basis element for the Fox–Neuwirth
complex FN�Bn ˝ FN�Bm ˝F2. Let � be a smooth singular simplex transverse to our
strata. By construction, the evaluation of Œa0 W � � � W an�1�ˇ Œb0 W � � � W bm�1� on � is the
sum of the evaluations of x on �. Q�/, as Q� varies among all liftings of � . A direct
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calculation shows that some �. Q�/ intersects the stratum corresponding to x if and only
if � intersects some stratum e.c/, where the k–principal blocks of c are obtained by
shuffling the k–principal blocks of a and b.

We conclude the treatment of the structural maps on the cohomology of WBn with
some potentially helpful remarks. Since we will not use these facts in this paper, we
will not provide complete statements nor proofs of these last claims. Nevertheless, it
should be straightforward, although notationally heavy, to fill in the details.

Remark 4.12 (1) The transfer and coproduct maps commute already at the cochain
level. To see this, you can observe that, by construction, �.a/ is a sum of tensors
a0 ˝ a00, where PBlk.a00/ is given by the leftovers of symmetric k–prunings of a,
suitably shuffled, and that the pruning map Pk itself commute with ˇ.

(2) The same constructions of the coproduct map in terms of prunings and the transfer
map in terms of principal block shuffles can be generalized to the cohomology with
integral coefficients. In these cases, additional signs that we can compute from those
appearing in Theorem 3.1 are required.

4.3 Structural morphisms: AD

The coproduct and the transfer product for WDn are described geometrically, similarly
to what we did for WBn . However, some complications arise. For example, we cannot
repeat the proof of Proposition 4.11 as it is for FN�WDn , because, in this case, a product
of strata S �S 0 � Y .1/WDn

�Y
.1/
WDm

is not necessarily the closure of a union of strata in
Y
.1/
WDnCm

. However, these ideas adapt well to the cochain complex FN0�WDn , which we
will use in the following as a cochain model. We can retrieve the identities we need in
FN�WDn by using the equivalence ' of Lemma 4.1.

We can now state the formulas parallel to Propositions 4.9 and 4.11 for WDn . First,
we consider the following oriented versions of the pruning and concatenation maps.
Given a symmetric k–pruning .T 0; T 00/ of a symmetric planar level tree T , let O and
O0 be orientations of T and T 0 respectively. Fix an antisymmetric labeling �0 of T 0

inducing O0, and an antisymmetric labeling � of T inducing O such that its restriction
to T 0, seen as a subtree of T , is �0. By keeping track of the labels of scraps, � induces
an antisymmetric labeling �00 on Sk.T 00/ and, consequently, an orientation O00. Unless
the k–pruning is trivial, it is always possible to find such labelings � and �0, and the
resulting orientation O00 only depends on O and O0.
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Definition 4.13 Let k 2N and let .T;O/ be an oriented symmetric planar level tree.
An oriented k–pruning of .T;O/ is a quadruple .T 0;O0; T 00;O00/ where

� .T 0; T 00/ is a k–pruning of T ,

� O0 is an orientation of T 0,

� O00 is the orientation of Sk.T 00/ determined from O and O0 via the procedure
above.

An oriented k–pruning of .T 0;O0; T 00;O00/ of T is called positive (resp. negative) if
O0 is the positive (resp. negative) orientation of T 0.

Given a nontrivial k–pruning .T 0; T 00/ of T , there are precisely two ways to extend it
to an oriented k–pruning .T 0;O; T 00;O00/, one positive and one negative.

We now mimic the construction we produced for WBn to describe the coproduct. We
thus consider the following maps:

� the positive and negative k–pruning maps

PC
k
; P�k W

M
n�0

FN0�WDn ˝F2!
M
n�0

FN0�WDn ˝
M
m�0

FN0�WDm ˝F2

given by the formula

P˙k .T /D
X

.T 0;O0;T 00;O00/

.T 0;O0/˝ .Sk.T 00/;O00/;

where the sum runs over all positive and negative oriented k–prunings of T , respectively;

� yC W FN0�WDn ˝ FN0�WDm ˝F2! FN0�WDnCm ˝F2, the oriented concatenation map,
given by the formulas

yC..a;C/˝ .b;C//D .C.a˝b/;C/; yC..a;C/˝ .b;�//D .C.a˝b/;�/;

yC..a;�/˝ .b;C//D .C.a˝b/;�/; yC..a;�/˝ .b;�//D .C.a˝b/;C/:

We can also define �C
k
; ��

k
W FN0�WDn ˝F2!

Ln
iD0 FN0�WDi ˝FN0�WDn�i ˝F2 by the

recursive formulas

� �˙0 D P
˙
0 ,

� �˙
k
D .id˝ yC/.P˙

k
˝ id/�˙

k�1
if k � 1.

Let � be the direct limit lim
��!k

.�C
k
C��

k
/.

Proposition 4.14 The oriented pruning coproduct � is a cochain map and induces the
coproduct � W AD! AD˝AD in cohomology.
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Proof It is enough to observe that, looking at the proof of Proposition 4.9, we can
obtain the map � W FN0�WDn ˝F2!

Ln
iD0 FN0�WDi ˝FN0�WDn�i ˝F2 from

z� W fFN�WBn ˝F2!
nM
iD0

fFN�WBi ˝
fFN�WBn�i ˝F2

by restricting to WDn–invariants.

Proposition 4.15 Let a˙ and b˙ be generic basis elements of FN0�WDn and FN0�WDm
respectively, where a (resp. b) is defined by an n–tuple a (resp. an m–tuple b) of
nonnegative integers. Let ˇW FN0�WDn ˝ FN0�Dm ˝ F2 ! FN0�WDnCm ˝ F2 be the
homomorphism that maps a˙˝b˙ to the sum of all elements c˙, such that the principal
k–blocks of c are obtained by shuffling the principal k–blocks of a and b for all k � 0,
and the sign of c is deduced from the signs of a and b by applying the multiplication
sign rule .C;C/ 7! C, .C;�/ 7! �, .�;C/ 7! �, and .�;�/ 7! C. This map is a
morphism of complexes and induces the transfer product in cohomology.

Proof The proof is essentially the same as that of Proposition 4.11.

5 The almost-Hopf ring presentations

This section contains the statements of the Hopf ring presentation for AB and the
almost-Hopf ring presentation for AD . We thus state our main theorems, whose proof
will be postponed until Section 7 because we still need to develop some necessary
algebraic machinery. In the first subsection, we construct our generators, providing
cochain representatives and a geometric interpretation. In the second one, we explain
our relations and state Theorems 5.9 and 5.15. We then apply these results to extract
combinatorially accessible additive bases for AB and AD in Section 5.2. Finally, the
last subsection is devoted to the link between all these almost-Hopf ring structures.

5.1 Generators

We define certain cohomology classes that we will later prove to generate our (almost)
Hopf rings. We begin with AB .

Definition 5.1 In FN�WBn , the following cochains are defined for k � 0, m> 0, and
n > 0:
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� 
k;m D Œ0 W 1 W 1 W � � � W 1„ ƒ‚ …
2k�1 times

W0 W 1 W 1 W � � � W 1„ ƒ‚ …
2k�1 times

W0 W � � � W 0 W 1 W 1 W � � � W 1„ ƒ‚ …
2k�1 times„ ƒ‚ …

m times

�,

� ın D Œ1 W 1 W � � � W 1„ ƒ‚ …
n times

�.

A direct calculation shows that both 
k;m and ın have trivial differential, and thus
define cohomology classes 
k;n 2Hm.2k�1/.WB

m2k
;F2/ and ın 2Hn.WBn IF2/, that

we still denote, with a slight abuse of notation, by the same symbols. While the proof
of this fact is entirely straightforward, we provide a proof for the sake of completeness.

Lemma 5.2 
k;m and ın are cocycles in FN�WB
m2k

˝F2 and FN�WBn ˝ F2, respec-
tively.

Proof 
k;m is represented by the symmetric planar level tree in Figure 4. We prove
that di .
k;m/D 0 for all 0� i < m2k by considering different cases:

� If i ¤ l2k for 0 � l < m, the addend di of the differential identifies two edges
adjacent in a vertex vj for 1� j �m, and performs a vertex shuffle at the new vertex.
Exactly two possible vertex shuffles yield the same tree. Hence di .
k;m/D 0.

� If i D l2k for some 1� l < m, then di .
k;m/ is obtained by gluing together vl and
vlC1 and shuffling the outgoing edges of these two vertices. Since all these shuffles
yield the same tree, and there is an even number of them — precisely

�
2kC1

2k

�
— we have

again that di .
k;m/D 0.

� If i D 0, v1 and its mirror vertex are glued to the central axis of the tree, and the
corresponding outgoing edges are permuted with a symmetric shuffle. Again, there is
an even number of them (precisely 22

k

), and thus d0.
k;m/D 0.

ın is represented by a symmetric planar level tree with 2nC 1 leaves and a single
internal vertex of height 1. The same proof used in the second case of 
k;m shows that
di .ın/D 0 for all 0� i < n.

Another possible point of confusion is that the symbol 
k;m is used in [8] to indicate a
class in Hm.2k�1/.†m2k IF2/. The class we define is the image of this cohomology
class of the symmetric group in Hm.2k�1/.WB

m2k
IF2/ via the map induced by the

projection � WWB
m2k
!†m2k , as we will prove later (Proposition 5.26).

We can interpret all the cohomology classes that we defined above geometrically.
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: : :
2k‚ …„ ƒ 2k‚ …„ ƒ2k‚ …„ ƒ2k‚ …„ ƒ : : :

m‚ …„ ƒm‚ …„ ƒ

v1 vm

v0

Figure 4: The planar symmetric level tree representing 
k;m.

Proposition 5.3 The following statements are true:

(1) Consider the proper submanifold �k;m of Y .1/WBm2k
=WB

m2k
consisting of 2m

points that can be partitioned into m sets of 2k points , where all the points in the
same subset share the first coordinate. Then 
k;m is the Thom class of �k;m in
Y
.1/
WBm2k

, in the sense of [7, Definition 4.6].

(2) Consider the vector bundle � W E.WBn/�WBn Rn! B.WBn/, where WBn acts
on Rn via its irreducible reflection representation. Then ın is the n–dimensional
Stiefel–Whitney class of � (the nonoriented version of the Euler class).

Proof The description of 
k;n is a direct consequence of the conclusions of the
geometric arguments of the previous section.

Regarding the second point, consider the vector bundle � WE.�/! B.�/ above, with
zero section �0 WB.�/!E.�/, and let T .�/2Hn.E.�/; E.�/n�0.B.�/// be its Thom
class. Define

zXn D f.x1; : : : ; xn/ 2 Y
.1/
Bn
j .x1/1 D � � � D .xn/1 D 0g:

We observe that zXn is a proper submanifold of Y .1/WBn
and that the Thom class of the

image Xn of zXn in Y .1/=WBn is ın. We observe that the normal bundle of Xn in
Y .1/=WBn is isomorphic to �jXn . Since restriction of vector bundles to subspaces
preserve Thom classes, we deduce that, if we take Y .1/=WBn as a model for B.WBn/,
then j �.l�/�1k�.T .�//D ın, where

� k W .E.�jXn/; E.�jXn/ n �0.Xn//! .E.�/; E.�/ n �0.B.�///,

� l W .E.�jXn/; E.�jXn/ n �0.Xn//! .B.WBn/; B.WBn/ nXn/ is a tubular neigh-
borhood of Xn in B.�/, and

� j W .B.WBn/;¿/! .B.WBn/; B.WBn/ nXn/.
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Note that the induced map l� in cohomology is invertible by excision.

Let ˆ WH�.B.�/IF2/!H�.E.�/; E.�/ n �0.B.�//IF2/ be the Thom isomorphism.
We recall that ˆ.˛/ D p�.˛/[ T .�/, where p W E.�/! B.�/ is the projection. We
know, for instance from Milnor and Stasheff’s book [13, page 91], that the Thom class
T .�/ and wn.�/ are linked by the formula

wn.�/Dˆ
�1.Sqn.T .�///Dˆ�1.T .�/2/:

Therefore, in order to prove that wn.�/D ın, it is sufficient to show that

i�.T .�//D p�j �.l�/�1k�.T .�//;

where i is the obvious inclusion map between pairs of spaces,

i W .E.�/;¿/!
�
E.�/; E.�/ n �0.B.�//

�
:

To prove this claim, we first observe that we can use a slightly different model for B.�/.
We recall that there is a tubular neighborhood zN of zXn in Y .1/WBn

determined by an
embedding of the total space of the normal bundle. Explicitly, we can define the
embedding by the formula

.x1; : : : ; xn/� .�1; : : : ; �n/ 2 zXn �Rn 7! .x1C�1e1; : : : ; xnC�ne1/;

where e1 is the first element of the canonical basis of R1. Hence

zN D
˚
.x1; : : : ; xn/ j .xi � .xi /1e1/¤˙.xj � .xj /1e1/ for all 1� i < j � n;

.xi � .xi /1e1/¤ 0 for all 1� i � n
	
:

Note that the action of WBn preserves zN , and zN is provided with a stratification
induced from that on Y .1/WBn

by restriction. Further, every stratum of N is obtained
from a stratum of Y .1/WBn

by removing an infinite-codimensional affine subspace. Thus,
zN ! Y

.1/
WBn

is a homotopy equivalence. zN is still contractible, and therefore we can
use its quotient N D zN=WBn as an alternative model for B.WBn/. In this model, the
inclusion l is an isomorphism. Thus we do not need to worry about excision maps, and
this simplifies the argument. The claim now follows by observing that i and kjp are
homotopic. An explicit homotopy is

..x1; : : : ;xn/;�; t/2 zN�WBnRn�Œ0;1�

7!
�
.x1�.1�t /.x1/1e1; : : : ;xn�.1�t /.xn/1e1/; ..1�t /�Ct ..x1/1; : : : ; .xn/1//

�
:

We now turn our attention to WDn . First, we give the following definition.
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Definition 5.4 Let n � 1 and m � 0. We define ı0nIm 2 H
n.WDnCm IF2/ as the

restriction of ınˇ 1m 2H�.WBnCm IF2/ to the cohomology of WDnCm . We also let
ı00Wm be the unique nonzero class in H 0.WDm IF2/ for all m� 0.

We will require some other generators that do not arise as restrictions of cohomology
classes of WBn .

Definition 5.5 Given k;m� 1, we define two cochains in FNm2
k

WDn
:

� 
C
k;m
D Œ0 W 1 W � � � W 1„ ƒ‚ …

2k�1 times

W0 W 1 W � � � W 1„ ƒ‚ …
2k�1 times

W0 W � � � W 1 W � � � W 1„ ƒ‚ …
2k�1 times„ ƒ‚ …

m times

�;

� 
�k;m D Œ1 W 0 W 1 W � � � W 1„ ƒ‚ …
2k�2 times

W0 W 1 W � � � W 1„ ƒ‚ …
2k�1 times

W0 W � � � W 1 W � � � W 1„ ƒ‚ …
2k�1 times„ ƒ‚ …

m times

�.

Lemma 5.6 
C
k;m

and 
�
k;m

are cocycles.

Proof The cochain equivalence '� of Lemma 4.1 maps 
˙
k;m

to

Œ0 W 1 W 1 W � � � W 1„ ƒ‚ …
2k�1 times

W0 W 1 W 1 W � � � W 1„ ƒ‚ …
2k�1 times

W0 W � � � W 0 W 1 W 1 W � � � W 1„ ƒ‚ …
2k�1 times„ ƒ‚ …

m times

�˙:

The same proof used for Lemma 5.2, with the additional requirement of keeping track
with orientations, shows that these cochains in FN0m2

k

WDn
are cocycles. As '� is injective,


˙
k;m

must also be a cocycle.

An alternative proof can be obtained by directly using the De Concini and Salvetti
description of the boundary in CWDn� and dualizing.

A consequence of the previous lemma is that 
C
k;m

and 
�
k;m

represent cohomology
classes, that, once again, we denote by the same symbols with a slight abuse of notation.

To adapt our notation to Giusti and Sinha’s for the alternating groups, we will refer to

C
k;m

(resp. 
�
k;m

) for some k and m as positively (resp. negatively) charged generators,
and to ı0nWm for some n and m as neutral generators.

5.2 Relations

This subsection is devoted to deriving algebraic relations between the generators defined
above. We will mainly obtain the relations as a consequence of the results in Section 4.
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We first focus on AB . We can retrieve in AB the same relations among the classes 
k;m
that appear in Giusti, Salvatore and Sinha’s Theorem 2.3.

Proposition 5.7 The following formulas hold in AB :

�.
k;m/D
X

iCjDm


k;i ˝ 
k;j ; 
k;nˇ 
k;m D
�nCm

n

�

k;nCm:

Proof We use the chain-level formulas computed in Propositions 4.9 and 4.11.

To compute the coproduct, we represent 
k;m by the symmetric planar level tree
depicted in Figure 4. Note that Pl.
k;m/ is trivial for l � 2 and that the 0–pruning
map gives P0.
k;m/ D

P
iCjDm 
k;i ˝ 
k;j . Therefore it is enough to prove that

P1.
k;n/D 
k;n˝I , where I is the trivial symmetric level tree, for all k� 0 and n> 0.
Consider a 1–pruning .T 0; T 00/ of 
k;m. Every vertex vi , for 1� i �m, as depicted in
Figure 4 corresponds to a vertex ui of height 1 in T 0. Let 2k � ni be the number of
outgoing edges of ui for some integer 0� ni <2k . We can obtain the pruning .T 0; T 00/
from 
k;m by applying a sequence of elementary 1–prunings at each vertex vi and their
mirror vertices r.vi / that prunes away ai outgoing edges from vi and ni �ai outgoing
edges from r.vi /, for some 0 � ai � ni . Therefore, summing over all the possible
shuffles of leftovers, whose number is�Pm

iD1 ni
�
ŠQm

iD1 ai Š
Qm
iD1.ni � ai /Š

;

we deduce that .T 0; S1.T 00// appears in P1.
k;m/ with coefficientX
0�a1�n1;:::;0�am�nm

�Pm
iD1 ni

�
ŠQm

iD1 ai Š
Qm
iD1.ni � ai /Š

D

�Pm
iD1 ni

�
ŠQm

iD1 ni Š

mY
iD1

2ni :

This number is even unless ni D 0 for all 1� i �m, yielding the trivial 1–pruning.

The transfer product formula follows directly from the application of the cochain-level
map of Proposition 4.11, by observing that 
k;m has m principal 0–blocks all equal
to Œ1; : : : ; 1�, where the entry 1 is repeated 2k � 1 times, and that it has no principal
l–block for l � 1. Thus 
k;nˇ
k;m is given by a single basis element in FN�WB2k.nCm/
(representing 
k;nCm) counted as many times as the number of .n;m/–shuffles, that is
the binomial coefficient appearing in the equation.

We can obtain coproduct formulas for ın via the same geometric description. The
following is again a consequence of the formulas in Lemmas 4.9 and 4.11.
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Proposition 5.8 �.ın/D
X

kClDn

ık˝ ıl ; ınˇ ım D
�nCm

n

�
ınCm.

Proof Since all the entries of ın are equal to 1, the cochain-level coproduct map on ın
reduces to the 1–pruning map P1 and provides the desired formula. We compute the
transfer product as in Proposition 5.7, by observing that ın has no principal l–blocks
for l ¤ 1, and has n principal 1–blocks all empty.

These relations will suffice to describe AB completely. We restate here our main result,
which we will prove in Section 7.

Theorem 5.9 (main theorem for type B) The Hopf ring AB is generated by classes

k;n (with k � 0 and n > 0) and ın (with n > 0) with the relations described in
Propositions 5.7 and 5.8, together with the following additional relations:

� the product � of generators from different components is 0;

� 
0;n is the �–product unit of the nth component.

We now turn our attention to AD . A trick borrowed from [9, page 9] can be used to
simplify the presentation of this almost-Hopf ring. We recall that there is an involution
� W AD ! AD . We can define A0D to be the bigraded F2–vector space defined by
.A0D/n;d D Hd .WDn IF2/ if .n; d/ ¤ .0; 0/ and .A0D/0;0 D F2f1C; 1�g. We can
embed AD as a vector space in A0D by identifying the nonzero class in H 0.WD0 IF2/

with 1CC 1�.

Lemma 5.10 The following statements are true in AD:

(1) �.xˇy/D �.x/ˇy D xˇ �.y/,

(2) .�˝ id/�.x/D .id˝ �/�.x/D��.x/,

(3) �.x �y/D �.x/ � �.y/.

Proof (1) ˇ is commutative, and the following diagram induces a pullback of finite
coverings at the level of classifying spaces:

WDn �WDm
//

cs0�id
��

WDnCm

cs0
��

WDn �WDm
// WDnCm
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(2) This follows from the cocommutativity of � and the commutativity of the diagram
above.

(3) It is the cohomological consequence of the diagonal map being equivariant with
respect to the conjugation cs0 .

Proposition 5.11 Write the coproduct of every element x 2 AD in AD as

x˝ 10C�.x/C 10˝ x;

so � is the reduced coproduct. By letting 1� � 1C D 0, 1� � 1� D 1�, 1C � 1C D 1C,
1�ˇ 1� D 1C and �.1˙/D 1C˝ 1˙C 1�˝ 1�, the almost-Hopf ring structure on
AD extends to an almost-Hopf ring structure on A0D such that 1�ˇxD �.x/, 1� �xD 0
and �.x/D 1C˝ xC 1�˝ �.x/C�.x/C x˝ 1CC �.x/˝ 1� for every x 2 A0D of
positive degree.

Proof Using the formulas in the statement of this proposition, we can extend ˇ and �
uniquely to two commutative products on A0D and � to a unique cocommutative
coproduct on A0D . The coassociativity of � follows from Lemma 5.10(3). The
associativity of � on A0D is obvious. The bialgebra structure of A0D with � and �
follows from the bialgebra structure on AD and (2) of the previous lemma. Moreover,
the fact that the transfer product with 1� is associative follows from (1). Hopf ring
distributivity with classes involving a transfer product with 1� follows again from (3)
of the result referenced above.

Instead of determining a presentation for AD , we calculate a presentation for A0D
because we can write it more concisely. For example, 
�

k;m
D 1�ˇ 
C

k;m
in A0D; thus

the formulas for 
�
k;m

arise as a direct consequence of the formulas for 
C
k;m

and the
almost-Hopf ring structure of A0D . The two approaches are equivalent.

Proposition 5.12 Let k;m � 1 and n � 0. The following coproduct formulas hold
in A0D , where 
�

k;m�l
D 1�ˇ 
C

k;m�l
:

�.
C
k;m
/D

mX
lD0


C
k;l
˝ 
C

k;m�l
C 
�k;l ˝ 


�
k;m�l ;

�.ı0nWm/D

nX
iD0

mX
jD0

ı0i Wj ˝ ı
0
n�i Wm�j :
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Moreover , the transfer product in A0D satisfies the following formulas for every choice
of indexes:


C
k;a
ˇ 
C

k;b
D

�aCb
a

�

C
k;aCb

;

bˇ b0 D 0 if b and b0 are cup products of neutral generators (ie ı0nWm);

ı0nWmˇ 1
�
D ı0nWm:

Proof Note that 
�
k;m
D1�ˇ


C

k;m
D �.
C

k;m
/ as a direct consequence of Lemma 4.2 and

the definition of the cochain representatives of these classes. The coproduct formulas
for 
C

k;m
follow from Lemma 4.1 and Proposition 4.14. More precisely, we observe

that mapping 
C
k;m

into FN0�WDm2k ˝F2 via '� yields a cohomology class represented
by the same symmetric planar level tree of Figure 4, with positive orientation. The
same proof of Proposition 5.7 holds in this case by keeping track of orientations.

The coproduct formula for ı0nWm is a consequence of Proposition 5.8, the Hopf ring
properties ofAB , and the fact that the restriction map � WAB!AD preserves coproducts.

Regarding transfer product, we prove the first identity using Proposition 4.15 precisely
in the same way as the second part of Proposition 5.7.

Let � W AB ! AD be the restriction map. For every x 2 H�.WBn IF2/ and y 2
H�.WBm IF2/, we can prove that �.x/ˇ �.y/D 0 in H�.WDnCm IF2/ with the same
argument used in [9, Proposition 3.14]. Essentially, it is sufficient to observe that
both the restriction H�.WBn �WBm IF2/! H�.WDn �WDm IF2/ and the transfer
H�.WDn � WDm IF2/ ! H�.WDnCm IF2/ factor through the cohomology of the
subgroup G DWDnCm \ .WBn �WBm/, and that the composition

H�.GIF2/
res
�!H�.WDn �WDm IF2/

tr
�!H�.GIF2/

is 0 for mod 2 coefficients because WDn �WDm has even index in G. In particular,
nontrivial transfer products of blocks obtained by cup-multiplying neutral generators
must be 0. The last relation also follows from the invariance of ı0nWm with respect to
the involution �.

After these coproduct and transfer product formulas, we will also need some cup
product relations. Since the Fox–Neuwirth type cell complex does not behave well
with cup products, we found that it is simpler to obtain these formulas via restriction to
elementary abelian subgroups. This approach is fruitful because of a detection theorem
for these subgroups. We postpone the proof of the following proposition to Section 6,
where we will explain this in detail.
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Proposition 5.13 Let 
�
k;m
D 1�ˇ 
C

k;m
as an element of A0D . Then the following

formulas hold in AD:

(1) 
C
k;n
� 
�
h;m
D 0 for all n;m; k � 1 and h� 2;

(2) 
C1;m

�
1;m D .


C
1;m�1/

2ˇ ı02W0 for all m� 1;

(3) the � product of generators belonging to different components is 0 and ı00Wm is
the �–product unit of the mth component

(4) ı01Wm D 0 for all m� 0;

(5) ı0nWm � 

C

k;nCm
2k

D ı0nW0 � 

C

k; n
2k

ˇ 
C
k; m
2k

for all k > 0 and m; n � 0, where we

understand that 
C
k;r
D 0 if r is not an integer.

The last relation we require involves the behavior of the coproduct with the transfer
product. We need a preliminary remark. Let b 2 A0D be an element obtained as a
cup-product of positively and neutrally charged generators (ie 
C

k;m
or ı0nWm), with at

least one positively charged generator. Note that, by Propositions 5.12 and 5.13, �.b/
can be written as a sum

P
i b
0
i ˝ b

00
i where b0i and b00i are elements obtained as iterated

transfer products of elements of the same form, or the images of such elements via the
involution �D 1�ˇ _. We let �0.b/ be that sum restricted only to addends b0i ˝ b

00
i in

which the involution is not performed to obtain b0i or b0i is fixed by � and the involution
is not performed to obtained b00i . As � is .�˝ �/–invariant, this intuitively amounts to
keeping half of the addends of the coproduct in A0D .

Proposition 5.14 (cf [9, Theorem 3.21]) Let � W˛˝ˇ2A0D˝A
0
D 7!ˇ˝˛2A0D˝A

0
D

be the map that exchanges the two factors. For all b 2A0D the cup-product of positively
and neutrally charged generators , with at least a positively charged generator appearing ,
and for all x 2 A0D , we have that

�.bˇ x/D .ˇ˝ˇ/ ı .id˝ � ˝ id/.�0.b/˝�.x//;

where �0 is the expression described above.

The proof of the analog of this proposition is done in [9] by a careful examination
of certain spectral sequences. It can be done this way also for AD . Still, we decide
to argue here using detection by elementary abelian subgroups that for finite Coxeter
groups comes for free and leads to a shorter proof. Therefore, we postpone the proof
of this proposition until the next section.

We restate our presentation theorem for A0D , whose proof we postpone.
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Theorem 5.15 (main theorem for type D) A0D is generated , as an almost-Hopf ring ,
by the classes ı0nWm for n � 0 and m � 0, 
C

k;m
for k;m � 1, and 1� defined above ,

under the relations described in Propositions 5.12, 5.13 and 5.14 and the relations
1�ˇ 1� D 1C, 1� � 1� D 1�, 1C � 1� D 0 and �.1�/D 1C˝ 1�C 1�˝ 1C coming
from Proposition 5.11.

5.3 Additive bases

We describe here additive bases for AB and AD . In this subsection, we assume that
the statements of Theorems 5.9 and 5.15 are true. They do not rely logically on the
existence of such bases in AB and AD . Thus this choice does not invalidate their proof.

We begin with AB .

Definition 5.16 (cf [7]) A gathered block in AB is an element of the form

b D ıt0m

nY
kD1



tk
k; m
2k

;

where m is a positive integer, 2n divides m, and n is the maximal index such that 
n; m
2n

appears in b with a nonzero exponent. The profile of b is the .nC1/–tuple .t0; : : : ; tn/.
We also allow nD 0: in this case, b D ıt0m for some t0 � 0.

A Hopf monomial is a transfer product of gathered blocks xD b1ˇ� � �ˇbr . We denote
by MB the set of Hopf monomials whose constituent gathered blocks have pairwise
different profiles.

Note that, given a possible profile .t0; : : : ; tn/, for all l � 1, there is a unique gathered
block b in the .l2n/th component having that profile. As a notational convention, we
denote it bl;t .

We can describe elements of MB graphically. We represent 
k;n as a rectangle of
width n2k and height 1 � 2�k and ın as a rectangle of width n and height 1. The
width of a box is the number of the component to which the class belongs. Its area
is its cohomological dimension. We understand the cup product of two generators as
stacking the corresponding boxes on top of the other. In contrast, their transfer product
corresponds graphically to placing them next to each other horizontally. The profile
of a gathered block is described by the height of the rectangles of the corresponding
column. Thus, we can represent every gathered block as a column made of boxes with
the same width. Hence, an element of MB is a diagram consisting of columns placed
next to each other, such that there are not two columns that consist of rectangles of the
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� D ˝ 1 C ˝ C 1 ˝

ı4
1;2 ı4
1;2 ı2
1;1 ı2
1;1 ı4
1;2

ˇ D

ı2
1;1ˇ ı2 ı4
1;2 ı6
1;3

� D C

ı2ˇ 12 ı1ˇ 
1;1ˇ 11 ı21 ˇ 
1;1ˇ ı1 ı1ˇ ı2
1;1ˇ 11

Figure 5: Computations via skyline diagrams.

same height. Following the notation of Giusti, Salvatore and Sinha [7], we call these
objects B–skyline diagrams or, more concisely, skyline diagrams where it is clear that
we are considering the Hopf ring AB .

As in [7], the coproduct and the two products in MB have a graphical description,
derived from our relations:

� We divide rectangles corresponding to ın or 
k;n in n equal parts via vertical dashed
lines. The coproduct is then given by dividing along all vertical lines (dashed or not)
of full height and then partitioning the new columns into two to make two new skyline
diagrams.

� The transfer product of two skyline diagrams is given by placing them next to each
other and merging every two columns with constituent boxes of the same heights, with
a coefficient of 0 if the widths of these columns share a 1 in their binary expansion.

� To compute the cup product of two diagrams, we consider all possible ways to
split each into columns, along vertical lines (dashed or not) of full height. We then
match columns of each in all possible ways up to automorphism and stack the resulting
matched columns to build a new diagram.

We depict some examples of calculations with skyline diagrams in Figure 5.

Proposition 5.17 (cf [7, Proposition 6.4]) MB is an additive basis for AB and �,
and ˇ and � of basis elements are computed graphically via the algorithmic procedures
described above.
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Proof We first prove the correctness of the graphical interpretation of the structural
morphisms. The coproduct of a gathered block bm;t with profile .t0; : : : ; tn/ is of the
form

�.bm;t /D
X

iCjDm

bi;t ˝ bj;t :

We prove this formula by induction on the number of cup-product generators constitut-
ing bi;t : for single generators ım or 
k; m

2k
the formula appears in the set of relations

for AB , and the induction step is a consequence of the bialgebra structure formed by �
and �. Thus, the graphical procedure for the calculation of the coproduct is correct on
single-column skyline diagrams. As a general skyline diagram represents the transfer
product of its columns, the general algorithm is justified because � and ˇ form a
bialgebra.

Regardingˇ, the transfer product of two Hopf monomials corresponds to the horizontal
juxtaposition of the corresponding skyline diagrams. Thus, we only need to justify the
merging of columns. In formulas, this reads as follows. Fix a profile t D .t0; : : : ; tn/,
with tk � 0 for 0� k < n and tn > 0. Then

bi;t ˇ bj;t D
� iCj

i

�
biCj;t :

Again, we prove this by induction on r D t0C � � � C tn. For r D 1, gathered blocks
with profile t are single generators, and the formula above is exactly our transfer
product relation among them. For r > 1, the induction step is proved by combining
the coproduct formula for 
l;.iCj /2n�l , Hopf ring distributivity, and the fact that cup
products of elements in different components is 0 to deduce that


l;.iCj /2n�l .bi;t ˇ bj;t /D .bi;t � 
l;i2n�l /ˇ .bj;t � 
l;j2n�l /;

or the analogous formula with ıiCj in place of 
n;.iCj /2n�l if nD 0.

The �–product algorithm above graphically encodes Hopf ring distributivity.

Finally, we prove that MB is an additive basis for AB . We consider the bigraded
vector space V over F2 with skyline diagrams or, equivalently, MB as a basis. Define
linear maps ˇ; � W V ˝V ! V and � W V ! V ˝V by computing their values on basis
elements via the algorithm above. Note that these maps define a Hopf ring structure
on V . There is a map V !AB that realizes every Hopf monomial as the corresponding
element of AB . Since the procedures to compute the structural morphisms on MB are
deduced from the Hopf ring structure of AB and the relations of Theorem 5.9, this
map is a morphism of Hopf rings. We also note that V is generated as a Hopf ring by
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single rectangles, corresponding to 
k;n and ın, and that the relations of Theorem 5.9
are satisfied in V . Since AB is presented by such generators and relations, it follows
that the map V ! AB is an isomorphism.

We now construct an additive basis for AD , assuming Theorem 5.15. The first step is
to identify the subalgebra of AD under the cup product generated by neutral generators.
Let zB0 be the set of Hopf monomials x 2AB of the form x D ı

a1
k1
ˇ� � �ˇ ı

ar
kr

, ordered
with a1 > � � � > ar and k1 � 2. These correspond to skyline diagrams in which only
boxes of height 1 appear and in which the highest column has width strictly bigger
than 1.

Lemma 5.18 Every element of zB0\H�.WBn IF2/ lies in the cup product subalgebra
generated by ın; ın�1ˇ 11; : : : ; ı1ˇ 1n�1. Moreover , the images in AD of elements
of zB0 are a vector space basis for the subalmost-Hopf ring generated by elements of
the form ı0nWm for n;m� 0.

Proof Let B0 be the set of Hopf monomials x 2 AB of the form x D ı
a1
k1
ˇ � � �ˇ ı

ar
kr

ordered with a1 > � � �> ar , without the condition k1 � 2. We can define an injective
function "n W B0\H�.WBn IF2/!Nn given by

"n.ı
a1
k1
ˇ � � �ˇ ı

ar
kr
/D .a1; : : : ; a1„ ƒ‚ …

k1 times

; a2; : : : ; ar�1; ar ; : : : ; ar„ ƒ‚ …
kr times

/

By identifying B0 \H�.WBn IF2/ with a subset of Nn this way, the lexicographic
ordering on Nn induces a total order on B0. We observe that

Qn
iD1.ıi ˇ 1n�i /

ai is a
linear combination of elements of B0. In this linear combination, the maximal nonzero
Hopf monomial corresponds to

�Pn
iD1 ai ;

Pn
iD2 ai ; : : : ; an�1C an; an

�
. Moreover,

this belongs to zB0 if and only if a1D 0, ie if and only if ı1ˇ1n�1 does not appear as a
factor. Since these are all different, ın; ın�1ˇ11; : : : ; ı1ˇ1n�1 generate, under the cup
product, a polynomial subalgebra with basis B0\H�.WBn IF2/. By Proposition 5.13,
the kernel of the restriction map to H�.WDn IF2/ on this subalgebra is the ideal
generated by ı1 ˇ 1n�1. Consequently, the images of elements of zB0 in A0D are a
basis for the cup product subalgebra generated by the elements ı0nWm. Since the transfer
products of these elements are trivial and this subalgebra is closed under coproduct by
Proposition 5.12, this is a subalmost-Hopf ring.

Definition 5.19 We call a neutral gathered block in AD an element b 2 A0D obtained
as the image in A0D of an element of the set zB0 considered in the previous lemma. A
positively charged gathered block, or simply positive gathered block, is an element of
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the form bD .ı02nmW0/
t0
Qn
iD1.


C

k;m2n�k
/tk , for some n;m�1, tk �0 for 0�k <n and

tn > 0. The profile of b is .t0; : : : ; tn/. A negatively charged gathered block, or simply
negative gathered block, is an element of the form b D .ı02nmW0/

t0
Qn
iD1.


C

k;m2n�k
/tk ,

for some n;m� 1, tk � 0 for 0� k < n and tn > 0. The profile of b is .t0; : : : ; tn/. A
Hopf monomial is a transfer product of gathered blocks.

Note that, given a possible profile t D .t0; : : : ; tn/, for all l � 1, there is a unique
positively (resp. negatively) charged gathered block in the .l2n/th component having
that profile. As a notational convention, we denote it by bC

l;t
(resp. b�

l;t
). Moreover,

we stress that we require that a positively charged generator and a negatively charged
one do not appear in the same gathered block. This is not a restriction since, due to
Proposition 5.13, a cup product of two such generators is 0, or we can write it as a
transfer product of gathered blocks. Therefore Hopf monomials generate A0D as an
F2–vector space.

We also define a filtration of A0D that we will use to extract an additive basis from this
set of (linear) generators.

Definition 5.20 Define the weight of a neutral gathered block b as w.b/D 0. Define
the weight of a positively or negatively charged gathered block b˙

l;t
, with profile

t D .t0; : : : ; tn/, n� 1, as w.b˙
l;t
/D l2n�1t1. Define the weight of a Hopf monomial

x D b1 ˇ � � � ˇ br as the sum w.x/ D w.b1/ C � � � C w.br/ of the weights of its
constituent gathered blocks. Define the weight filtration as the increasing filtration
F.A0D/DfFn.A

0
D/g
1
nD0 ofA0D such that Fn.A0D/ is the linear span of Hopf monomials

in A0D of weight at most n.

We first compute formulas for the coproduct and transfer product of gathered blocks
in A0D . These are essentially the charged versions of the corresponding identities in AB ,
except for gathered blocks involving the generators 
˙1;n, for which this is true only in
the graded space grF .A

0
D/ associated with the weight filtration. Complete formulas in

A0D are complicated and can be retrieved recursively on the filtration F .

Lemma 5.21 Let n � 1. Let t D .t0; : : : ; tn/ with tk � 0 for all 0 � k < n and
tn > 0. In any almost-Hopf ring satisfying the relations of Theorem 5.15 the following
statements are true for all i; j > 0:

(1) 1�ˇ bCi;t D b
�
i;t and 1�ˇ b�i;t D b

C
i;t ;

(2) if n > 1, the coproduct satisfies �.bCm;t / D
P
iCjDn.b

C
i;t ˝ b

C
j;t C b

�
i;t ˝ b

�
j;t /

and �.b�m;t /D
P
iCjDn.b

C
i;t ˝ b

�
j;t C b

�
i;t ˝ b

C
j;t /;
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(3) if n > 1, ˇ satisfies bCi;t ˇ b
C
j;t D b

�
i;t ˇ b

�
j;t D

�
iCj
i

�
bCiCj;t and bCi;t ˇ b

�
j;t D

b�i;t ˇ b
C
j;t D

�
iCj
i

�
b�iCj;t ;

(4) for all neutral gathered block b0, bCi;t ˇ b
0 D b�i;t ˇ b

0;

(5) for all profiles u, possibly different from t , bCi;tˇb
C
j;uD b

�
i;tˇb

�
j;u, bCi;tˇb

�
j;uD

b�i;t ˇ b
C
j;u;

(6) if n > 1, for all profiles u, bCi;t � b
�
j;u D b

�
i;t � b

C
j;u D 0;

(7) for all neutral gathered block b0, b�i;t � b
0 D 1�ˇ .bCi;t � b

0/.

Moreover , (2), (3) and (6) are true in grF .A
0
D/ even if nD 1.

Proof (1) Recall that, by definition, 
�
k;m
D 1�ˇ
C

k;m
. Combining the link between

transfer product and coproduct provided by Proposition 5.14 with the coproduct formula
for 1� and 
C

k;m
, we deduce that

�.
�k;m/D
X

iCjDm

.
C
k;i
˝ 
�k;j C 


�
k;i ˝ 


C

k;j
/;

with the convention that 
˙
k;0
D 1˙. Then, we can prove that 1� ˇ bCi;t D b�i;t by

induction on the number of cup-product factors of the involved gathered block. If bCi;t
is a single generator 
C

k;m
, the statement holds by definition. The induction step

.b�i;t � 

�

k; i2
n

2k

/D .1�ˇ bCi;t / � 

�

k; i2
n

2k

D 1�ˇ .bCi;t � 

C

k; i2
n

2k

/

is deduced from Hopf ring distributivity and the coproduct formula derived above for

�
k;m

, using that 1� � 1� D 1�, 1� � 1C D 0 and that the cup product of elements in
different components is zero. The statement for negatively charged gathered blocks is
obtained from its analog for positively charged ones by taking the transfer product of
both members of the identity with 1� and using the relation 1�ˇ 1� D 1C.

(2) We begin with the case of positively charged gathered blocks bCm;t . We proceed,
again, by induction on the number of � generators appearing in the expression of bCm;t .
If bCm;t is a single generator, then the statement holds by the coproduct identities of
Proposition 5.12. The induction step follows from the fact that � and� form a bialgebra,
and relations 1,2,3 of Proposition 5.13. For instance, for k � 2, we explicitly have

�.bCm;t �

C

k;m2
n

2k

/D . � ˝ � /.id˝�˝id/
� X
iCjDm

.bCi;t˝b
C
j;tCb

�
i;t˝b

�
j;t /

˝

X
rCsDm2

n

2k

.
C
k;r
˝
C

k;s
C
�k;r˝


�
k;s/

�
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D

X
iCjDm

�
bCi;t �


C

k; i2
n

2k

˝bCj;t �

C

k; j2
n

2k

Cb�i;t �

�

k; i2
n

2k

˝b�j;t �

�

k; j2
n

2k

CbCi;t �

�

k; i2
n

2k

˝bCj;t �

�

k; j2
n

2k

Cb�i;t �

C

k; i2
n

2k

˝b�j;t �

C

k; j2
n

2k

�
D

X
iCjDm

�
bCi;t �


C

k; i2
n

2k

˝bCj;t �

C

k; j2
n

2k

Cb�i;t �

�

k; i2
n

2k

˝b�j;t �

�

k; j2
n

2k

�
:

We only need to be careful when k1 > 1 because 
C
1;l

�
1;l

is not necessarily 0. Note
that for k � 2 we have by Hopf ring distributivity


˙k;r

C

1;2k�1r

�
1;2k�1r

D 
˙k;r..

C

1;2k�1r�1
/2ˇ ı02W0/D 0;

because the coproduct of 
˙
k;r

does not have an addend x0˝x00 with the component of
x00 equal to 2. This observation guarantees that, if n>1, the mixed-charge terms vanish.
Even if nD 1, we obtain the additional terms by applying relation 2 of Proposition 5.13
to expressions of this form, and this procedure lowers weights. Thus, the desired
formula holds in grF .A

0
D/ in this case.

The formulas for negatively charged gathered blocks are, once again, obtained by
applying the transfer product with 1�.

(3) The formula is easily deduced from the coproduct formulas (2) by induction on
the number of �–product generators appearing in b˙i;t . In the case nD 1, we use the
obvious fact that ˇ preserves the weight filtration to deduce that the desired formula
holds in the graded space.

(4) This is a combination of (1) and the relations 1�ˇ ı0nWm D ı
0
nWm.

(5) This is a combination of (1) and the relations 1˙ˇ 1˙ D 1C and 1˙ˇ 1� D 1�.

(6) If n > 1, it follows directly from relation (1) of Proposition 5.13. If nD 1, assume
that bCi;t 2 Fa and b�j;u 2 Fb . Relation (2) of Proposition 5.13 provides a way to write
bCi;t � b

�
j;u as a product of the form ..
C

1;l�1
/2ˇ ı02W0/ � b

C
i;t 0 � b

�
j;u0 for some l � 1, where

bCi;t 0 2 Fa�l and bi;u0 2 Fb�l . By relation (5) of the same proposition, these � products
preserve the weight filtration. Therefore the statement is true in grF .A

0
D/.

(7) We argue as we did for (1), combining the formula given in (1) with the relation
1�ˇınWmD ınWm, which implies that neutral gathered blocks are invariant by the action
of 1�ˇ _.

Using this lemma, we can use Hopf monomials in the additive basis for AB to construct
basis elements of AD by adding charges.
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Proposition 5.22 Let MB be the Hopf monomial basis forAB of Proposition 5.17. Let
zB0 �MB be as in Lemma 5.18. Let zBc be the subset of MB consisting of nontrivial
Hopf monomials in which every constituent gathered block has profile t D .t0; : : : ; tn/
with n� 1. Let MD D B0 tBC tB� � A0D , where

� BC D fxC D
Jk
iD1 b

C

li ;t i
g
xD

Jk
iD1 bli ;ti2

zBc [f1
Cg,

� B� D fx� D
Jk�1
iD1 b

C

li ;t i
ˇ b�

lk ;tk
g
xD

Jk
iD1 bli ;ti2

zBc [f1
�g,

� B0 D fx0 D �.y/ˇ zCgxDyˇz;y2zB0nf10g;z2zBc[f10g.

Then MD is an additive basis for A0D .

Before providing a proof of this statement, we make a remark that clarifies the cumber-
some identity of Proposition 5.14.

Remark 5.23 Proposition 5.22 provides a direct sum decomposition of A0D as an
F2–vector space with three addends, V C, V � and V 0, defined as the linear span of
BC, B� and B0, respectively. Note that the involution �D 1�ˇ_ switches V C and V �

and fixes all elements of V 0 by Lemma 5.21. We can consider the linear projection
� W V ! V C defined as the identity on V C and as 0 on V � and V 0. With this notation,
we can rewrite Proposition 5.14 as

�.bˇ x/D .ˇ˝ˇ/.� ˝ � ˝ id/.�˝�/.b˝ x/

for all x 2 A0D and b charged gathered block.

A further reduction can be performed. We can consider the free F4–module zV with basis
MD and define a Z–linear map z� WA0D˝A

0
D!

zV as follows. Given x; y 2MD , first
compute the expansions of the coproducts�.x/D

P
i x
0
i˝x

00
i and�.y/D

P
j y
0
j˝y

00
j

on the basis MD˝MD of A0D˝A
0
D . Then, let

z�.x˝y/D
X
i

X
j

.x0i ˇy
0
j /˝ .x

00
i ˇy

00
j /;

where, this time, the sum is computed in zV . Recall that both ˇ and � are .�˝�/–
invariant. Hence, each addend appears twice, except possibly the elements of the form
.x0i ˇy

0
j /˝ .x

00
i ˇy

00
j /, where x0i , x

00
i , y0j and y00j are all fixed by �. But this implies that

these classes belong to B0, and thus their transfer product is zero. Consequently, such
addends do not appear in the summation. This implies that z�.x˝y/ is killed by the
multiplication by 2, and thus z� extends linearly to a map as desired. The image of z�
is contained in the image of the embedding � W A0D ,! zV that maps every x 2MD to
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2x 2 zV . We can rephrase Proposition 5.14 by saying that

.�ˇ/ W x˝y 2 A0D˝A
0
D 7!�.xˇy/ 2 A0D

is the unique linear map satisfying � ı .�ˇ/ D z�. We immediately see that this
statement is equivalent to the formulation above when x or y is a charged gathered
block. If both x and y belong to B0, then z�.x˝y/D 0 because the transfer product
of two neutral gathered blocks is always zero. The general case follows by induction
on the number of ˇ–factors in the Hopf monomials involved.

Proof of Proposition 5.22 We can write every element in an almost-Hopf ring with
generators 
C

k;n
, 1� and ı0nWm satisfying the relations of Theorem 5.15 as a linear

combination of addends in MD due to Lemmas 5.18 and 5.21. Therefore MD is a set
of linear generators for A0D .

The fact that Hopf monomials in MD are linearly independent is a byproduct of the
proof of Theorem 5.15. It is nevertheless possible to provide a fully independent proof
that a basis for the almost-Hopf ring with the presentation of Theorem 5.15 has an
additive basis given by MD , but we will not provide it, as it would be uselessly long.

5.4 Comparison between A†, AB and AD

In this subsection, we compute the action of the connecting homomorphisms on the
elements of the additive bases determined in the previous subsection.

We first start with the link between A† and AB . We recall that there are a natural
injection j W†n!WBn and a natural projection � WWBn!†n, providing linear maps
linking AB and A†. We begin by analyzing the relationship between A† and AB .

Proposition 5.24 Let j W†n!WBn and � WWBn!†n be the natural homomorphisms.
The induced maps j � W AB ! A† and �� W A†! AB are Hopf-ring homomorphisms.

Proof It is obvious from the fact that the diagrams

ConfnCm..0;C1/1/
†n�†m

Y
.1/
WBnCm

WBn�WBm

E.F2/nCm�E.†nCm/
.F2 o†n/�.F2 o†m/

E.†nCm/

†n�†m

ConfnCm..0;C1/1/
†nCm

Y
.1/
WBnCm

WBnCm

E.F2/nCm�E.†nCm/
F2 o†nCm

E.†nCm/

†nCm

j

p
p

�

p p

j �

are pullbacks of finite coverings, where p indicates covering maps.
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The following proposition is a direct consequence of Corollary 4.6 and Proposition 5.24.

Proposition 5.25 With reference to the notation of Theorem 2.3, j �.
k;n/D 
k;n and
j �.ın/D 0. More generally, given a B–skyline diagram x 2MB , j �.x/ is zero if x
contains a rectangle of height 1. Otherwise , it is obtained by interpreting x as a skyline
diagram in A†.

We can now use our algebraic description to compute the action of �� on generators.

Proposition 5.26 ��.
k;n/D 
k;n. For a skyline diagram x 2 A†, ��.x/ is obtained
by interpreting x as a B–skyline diagram without rectangles of height 1.

Proof We proceed by induction on n. If n D 1, since � ı j D id, �� is injective.
Hence ��.
k;1/ is a nonzero class in H 2k�1.WB

2k
IF2/. Thanks to Proposition 5.24,

��.
k;1/ is primitive. From our description of AB in terms of skyline diagrams,
formalized with the statement of Proposition 5.17, we see that the only nontrivial
primitive of AB in the right component and cohomological degree is 
k;1. For n > 1,
Proposition 5.24 guarantees that �� preserves coproducts. Hence we inductively have
that ��.
k;n/C 
k;n is primitive. However, there are no nonzero primitive in that
bidegree, thus ��.
k;n/D 
k;n.

We now turn to AD . There is a restriction map � WAB!AD induced by the inclusions
WDn ,!WBn . Moreover, we recall that we have natural injections iC; i� W†n!WDn
determining maps AD!A† and an involution � WAD!AD induced onH�.WDn IF2/
by the conjugation with s0 2WBn . We analyzed these maps in Section 4.1.

First, we explain the relation between 
C
k;m

and 
�
k;m

and the natural maps between
WDn , WBn and †n.

Proposition 5.27 For all n; k � 1 and m� 0,

i�C.

C

k;n
/D 
k;n; i�C.


�
k;n/D 0;

i��.

�
k;n/D 
k;n; i��.


C

k;n
/D 0;

i�C.ı
0
nWm/D i

�
�.ı

0
nWm/D 0:

More generally , with reference to Proposition 5.22, i�
C

(resp. i��) is zero on all neutral
or negatively (resp. neutral or positively) charged Hopf monomials. We obtain the
value of positively (resp. negatively) charged Hopf monomials under i�

C
(resp. i��) by

forgetting the charge to get a Hopf monomial in MB and then applying j � as described
in Proposition 5.25.

Algebraic & Geometric Topology, Volume 23 (2023)



The mod 2 cohomology of the infinite families of Coxeter groups of type B and D 3273

Proof The formulas involving 
˙
k;n

are a direct consequence of Corollary 4.6 and the
form of the chain representative of 
k;n 2FN�†n˝F2 retrieved in [8, Definition 4.9]. To
deduce that i�

C
.ı0nWm/D 0, we recall that ı0nWm D �.ınˇ 1m/ and that the composition

†n
iC,�!WDn ,!WBn is equal to j . By Proposition 5.25 j �.ınˇ 1m/D 0; therefore

i�
C
.ı0nWm/D 0. The same is also true for i��.ı

0
nWm/ because i� is obtained by composing

iC with the conjugation with an element of WBn , whose action is trivial on elements
coming from AB .

Since we identify the involution � with the transfer product with 1�, the following
proposition is essentially a restatement of the description of the previous subsection.

Proposition 5.28 If x0 is a neutral Hopf monomial in MD , then �.x0/D x0. If x˙

is a charged Hopf monomial in MD , we get �.x˙/ by inverting the charge.

To complete the description of the homomorphisms connecting our structures, we need
to compute the restriction � W AB ! AD and transfer tr W AD! AB maps. To do this,
we need to establish preliminary identities.

Lemma 5.29 For all x; x0 2 AD and for all y 2 AB , the following identities are
satisfied :

(1) �.tr.x/ˇy/D xˇ �.y/,

(2) tr.x/ � tr.x0/D tr.x � x0C �.x/ � x0/,

(3) tr.x � �.y//D tr.x/ �y,

(4) tr.xˇ x0/D tr.x/ˇ tr.x0/.

Proof The first statement follows from the fact that this commutative diagram induces
a pullback of covering spaces at the level of classifying spaces:

WDn �WDm
//

��

WDn �WBm

��

WDnCm
// WBnCm

Regarding the second statement, since the conjugation by s0 is an endomorphism of
the covering B.WDn �WDn/! B.WD2n \ .WBn �WBn//,

tr
WD2n\.WBn�WBn /

WDn�WDn
c�s0 D c

�
s0

tr
WD2n\.WBn�WBn /

WDn�WDn
:
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Moreover, the classifying space functor applied to the following square produces a
diagram homotopy equivalent to a pullback of covering, where d and d 0 are diagonal
maps:

WDn
d

//

j

��

WDn �WDn

��

WBn
d 0
// WD2n \ .WBn �WBn/

Hence tr d� D d 0� tr
WD2n\.WBn�WBn /

WDn�WDn
. These facts imply that, denoting by d the

diagonal subgroups,

tr.x/ � tr.x0/

D �
WBn�WBn
d.WBn

tr
WBn�WBn
WDn�WDn

.x˝ x0/

D �
WD2n

\.WBn�WBn /

d.WBn /
�
WBn�WBn
WD2n

\.WBn�WBn /
tr
WBn�WBn
WD2n

\.WBn�WBn /
tr
WD2n

\.WBn�WBn /

WDn�WDn
.x˝ x0/

D d 0�.idC c�s0/ tr
WD2n

\.WBn�WBn /

WDn�WDn
.x˝ x0/

D d 0� tr
WD2n

\.WBn�WBn /

WDn�WDn
.idC c�s0/.x˝ x

0/

D tr d�.idC c�s0/.x˝ x
0/

D tr.x � x0C �.x/ � x0/:

Similarly, the last two statements follow from the diagrams below, where the vertical
maps of the first one are the diagonal morphisms:

WDn
//

��

WBn

��

WDn �WDm
//

��

WDnCm

��

WDn �WBn
// WBn �WBn WBn �WBm

// WBnCm

Proposition 5.30 The transfer map tr W AD ! AB is such that tr.
˙
k;n
/ D 
k;n and

tr.ı0nWm/ D 0. More generally , if b˙
l;t

is a charged gathered block with profile t D
.t0; t1; : : : ; tn/, then tr.b˙

l;t
/ D bl;t if n � 2, while if n D 1 the transfer of gathered

blocks is computed inductively by the formula

bl;t D

bt1=2cX
aD0

tr.b˙l;.t0;t1�a/.

�

1;l
/a/:

The transfer of every neutral gathered block is 0, and we realize the transfer of a Hopf
monomial as the transfer product of the transfer of its constituent gathered blocks.
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Proof The statement for generators is a direct consequence of their definition at the
cochain level. The general claim for Hopf monomials in AD follows directly from
Lemma 5.29.

Proposition 5.31 �.
k;n/D 

C

k;n
C 
�

k;n
for all n; k � 1. Moreover , �.ım/D ı0mW0 for

n� 2 and �.ı1/D 0. More generally, for every Hopf monomial x 2MB , �.x/ can be
computed as follows. If x D bl;t is a gathered block with profile t D .t0; : : : ; tn/, we
have that

�.x/D

8̂<̂
:
x0 if nD 0;Pt1
aD0

�
t1
a

�
bC
l;.t0;a/

.
�
1;l
/t1�a if nD 1;

bC
l;t
C b�

l;t
if n� 2:

The restriction of a Hopf monomial x with a constituent gathered block in zB0 is x0.
We calculate the restriction of a Hopf monomial x 2 zBc as follows. First , replace every
constituent gathered block in x with the sum of the positively or neutrally charged
elements of its restriction. Then , write the resulting linear combination as a sum of
Hopf monomials in AD . Finally , add to that the negatively charged counterpart of every
positively charged Hopf monomials appearing in the sum.

Proof Using the cochain-level representative of 
k;n introduced in Definition 5.1,
we immediately see that its restriction is represented in FN0�WDn2k by the sum of
two elements obtained by providing this cochain with the two possible orientations.
These elements correspond to cochain representatives of 
C

k;n
and 
�

k;n
via the cochain

equivalence ' of Lemma 4.1. The formulas for ım are a consequence of the generators’
definition in AD and relation (4) of Proposition 5.13.

We conclude this section with a short description of the Gysin sequence of the double
cover WDn ! WBn . In [9], Giusti and Sinha adopt the analysis of a similar Gysin
exact sequence as the starting point to compute the cohomology of the alternating
groups as an almost-Hopf ring. While we retrieve that as a byproduct of our algebraic
description, we stress that Giusti and Sinha’s approach could be used in our framework
as an alternative method to deduce relations in A0D . Indeed, a direct consequence of
the following proposition is that MD D B0 tBC tB� is the polarized basis arising
from a Gysin decomposition in the sense of [9].

Proposition 5.32 (cf [9, Section 3]) The restriction � W AB ! A0D and the transfer
tr W A0D! AD fit into the Gysin sequence

� � �
@k�1
��!Hk.WBn IF2/

�k
�!Hk.WDn IF2/

trk
�!Hk.WBn IF2/

@k
�!HkC1.WBn IF2/

�kC1
��!� � � ;
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where @ is the multiplication with ı1ˇ 1n�1. It can be described on skyline diagrams
by the operation of replacing each column corresponding to ım

k
with the diagram

corresponding to ımC11 ˇ ım
k�1

.

Proof By a general fact, the connecting homomorphism @ is the multiplication with
the Euler class e of the double covering. In the case nD 1, this covering is isomorphic
to the universal double covering S1! P1.R/, and its Euler class is ı1. For bigger n,
the Euler class is ı1ˇ 1n�1 because it is the only class in the right degree that restricts
to ı1.

tr ı�D 0 because we are working modulo 2. Therefore the transfer of a neutral gathered
block is 0. If b D b˙

l;t
is a charged gathered block, then the restriction of tr.b/ must be

bC �.b/, and the multiplication with ı1ˇ 1n�1 must kill tr.b/. These two conditions
force tr.b/D bl;t . Since tr preserves the transfer product ˇ, the formula for a general
Hopf monomial follows.

6 Restriction to elementary abelian subgroups

We recall here some theorems from Swenson’s thesis [18], which constitute the formal
framework in which we will calculate the cohomology of WBn and WDn . We will then
exploit these theorems to determine the restriction of our generators in AB and AD to
elementary abelian 2–subgroups. This yields the restriction of all the cohomology of the
groups WBn and WDn to maximal elementary abelian subgroups, because the structural
morphisms of our almost-Hopf rings behave in a predictable way: cup products and
coproducts are preserved by such restriction, while the relation with transfer product
is determined via double cosets formulas, as stated in Adem and Milgram’s book [1,
Section II.6].

6.1 Quillen’s theorem for finite reflection groups

The relevance of these restriction maps is encompassed by a result of Quillen [15; 16],
which we state here. Let G be a finite group and F a family of subgroups. Let
�g WH

�.KIFp/!H�.gKg�1IFp/ be the conjugation homomorphism. Define

FnDfffKgK2F ; fK 2Hn.KIFp/ jg
�1Kg�K 0D)fKD�

�
g .fK0/jK for all K;K 0g:

Alternatively, we can consider F as a category in which

Hom.K;K 0/D fg j g�1Kg �K 0g:
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Then Fn is the inverse limit of the functor Hn from F into the category of Fp–vector
spaces. In other words, F� consists of collections of cohomology classes of groups in
F that are stable under restrictions and conjugation by elements of G. Observe that
F� D

L
n Fn has a natural ring structure.

Theorem 6.1 [15, Theorem 6.2, page 564] Let G be a finite group. Let F� be as
before. The map qG WH�.GIFp/! F� given by qG.f /D ff jKgK is a well-defined
ring homomorphism. Moreover , if F is the family of elementary abelian p–subgroups ,
then the kernel and cokernel of qG are nilpotent.

Hence elementary abelian p–subgroups give much information on the Fp–cohomology
of a group. In the case of a finite reflection group, an even stronger property holds.

Theorem 6.2 [18, Theorem 11, page 2] If G is a finite reflection group and F is the
family of elementary abelian p–subgroups of G, then qG is an isomorphism.

6.2 Restriction from AB

For the reasons explained in the previous subsection, Swenson has calculated the
elementary abelian 2–subgroups of WBn . Before stating his result, we need to recall
the structure of elementary abelian 2–groups of the symmetric group †n on n objects.
The relevant calculations are reviewed in [1]. †n admits a transitive elementary abelian
2–subgroup if and only if nD 2k . In this case, all these subgroups are conjugated in
†n to the image Vk of the homomorphism �k W F

k
2 ,!†2k given by the regular action

of Fk2 on itself. More generally, a maximal elementary abelian 2–subgroup of †n is
conjugated to a direct product

Vk1 � � � � �Vkr ,!†2k1 � � � � �†2kr ,!†2k1C���C2kr :

Hence, conjugacy classes of maximal elementary abelian 2–subgroups in †n are
parametrized by partitions � of n such that every element of � is an integral power of
2 and the multiplicity of 1D 20 in � is at most 1.

To further simplify notation, we borrow from Swenson’s thesis the following definition.

Definition 6.3 [18] Let n 2 N. We say that a partition � of n is admissible if it
consists only of parts that are integral powers of 2.

The main results about elementary abelian 2–subgroups in WBn is the following:
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Proposition 6.4 [18, page 22] Let A1; A2 �WBn be maximal elementary abelian
2–subgroups. Then

� zAi D Ai \†n � †n is conjugated to a subgroup of the form Vk1 � � � � � Vkr ,
with ki � 0 for all i ;

� A1 and A2 are conjugated inWBn if and only if zA1 and zA2 are conjugated in†n.

In particular , conjugacy classes of maximal elementary abelian 2–subgroups inWBn are
parametrized by admissible partitions � . Moreover , if we denote by A� the subgroup
corresponding to a partition � , we have that A.2k/ D Vk �Ck , where Ck Š F2 is the
center of WB

2k
and , more generally, if mi is the multiplicity of 2i in a partition � ,

then A� is isomorphic to the direct product
Q
i A

mi
.2i /

. Let d2i�1; : : : ; d2i�2i�1 be the
Dickson invariants in H�.Vi IF2/ ,!H�.A.2i /IF2/ and define

f2i D
Y

y2H1.Vi IF2/

.xCy/;

where x 2 H 1.A2i IF2/ is the linear dual to the nontrivial element in the Ci–factor
of A2i . There is a natural isomorphism

ŒH�.A� IF2/�
NWBn

.A� /
Š

O
i

.F2Œf2i ; d2i�1; : : : ; d2i�2i�1 �
˝mi /†mi :

We can calculate the restriction of our generating classes 
k;n and ın to these abelian
subgroups. The calculation for 
k;n has been essentially carried out by Giusti, Salvatore
and Sinha [7]. We state here the result.

Proposition 6.5 [7, Corollary 7.6, page 189] Let l; n � 1. Let � be a partition of
n2l consisting of powers of 2, � D .2k1 ; : : : ; 2kr /. Then


l;njA� D

�Nr
iD1 d2ki�2ki�l if ki � l for all 1� i � r;

0 otherwise:

Proposition 6.6 Let n � 0. Let � D .2k1 ; : : : ; 2kr / be an admissible partition. The
restriction of ın to the cohomology of the maximal elementary abelian 2–subgroup A�
is equal to

Nr
iD1 f2ki . Moreover , ın is the unique class in Hn.WBn IF2/ that has this

property for every � .

Proof We observe that the restrictions of a cohomology class toA� for all the partitions
� of n determine its restriction to every elementary abelian 2–subgroup (not necessarily
maximal). Hence, by Theorem 6.2, a class that satisfies the condition in the statement
for every � is necessarily unique.
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Let Un D Rn be the reflection representation of WBn . Recall that, if n D 2k and
� D .2k/, then A� D Vk �Ck , where Ck D hti is a cyclic group of order 2, the center
of WBn , and Vk D hv1; : : : ; vki � †2k is the subgroup defined above. H�.A� IF2/
is polynomial on degree 1 elements x; y1; : : : ; yk , the linear duals to t; v1; : : : ; vk ,
respectively. Given a 2 A� n f1g, let "a, sgna, and Rhai be the 1–dimensional trivial
representation, the signum representation, and the regular representation of hai Š F2,
respectively. We first observe that, since t acts on Un as the multiplication by �1,
UnjA� Š sgnt ˝UnjVk . Moreover, the inclusion of Vk in †2k is given by the regular
representation; hence

UnjVk Š

kO
iD1

Rhvi i Š
M

S�f1;:::;kg

kO
iD1

US;i ;

where US;i is equal to sgnvi if i 2 S , and to "vi if i … S . Thus, with the notation used
before in this document, the Stiefel–Whitney class of UnjA� isY

S�f1;:::;ng

�
1C xC

X
i2S

yi

�
:

Its n–dimensional part is exactly f2k . Hence, the thesis for � D .2k/ follows from the
naturality of the characteristic classes and Proposition 5.3

In the case of a general admissible partition � D .2k1 ; : : : ; 2kr /, the proposition follows
from the fact that A� Š

Qr
iD1A.2ki / and UnjA� Š

Lr
iD1 U2ki jA.2ki /

.

To complete the calculation of the restriction morphisms from AB to maximal ele-
mentary abelian 2–subgroups, we need to describe how such maps behave with the
structural morphisms of AB . Restrictions preserve cup products, and, regarding the
coproduct, there is nothing to say because every maximal elementary abelian subgroup
of WBn �WBm is itself a maximal elementary abelian subgroup of WBnCm . The only
nontrivial behavior occurs with the transfer product. We describe it in the following
proposition.

Proposition 6.7 Let x; y 2 AB be in positive components n and m respectively. Let
� D .2k1 ; : : : ; 2kr / be an admissible partition of nCm. For all I � f1; : : : ; rg, write
I D fi1; : : : ; isg with i1 < � � �< is and let �I D .2ki1 ; : : : ; 2kis /. Then

.xˇy/jA� D
X
I;J

�I;J .xjA�I ˝yjA�J /;
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where the sum runs over all partitions f1; : : : ; rg D I tJ of f1; : : : ; rg into two subsets
such that

P
i2I 2

ki D n (and , consequently,
P
j2J 2

kj Dm), and

�I;J WH
�.A�I IF2/˝H

�.A�J IF2/!H�.A� IF2/

is the obvious permutation of tensor factors.

Proof We begin by assuming that r D 1; thus � D .2k/ for some k and nCmD 2k .
Then, since A� acts transitively on f1; : : : ; 2kg, no conjugate of A� in WBnCm is
contained in WBn �WBm . Given that A� is abelian, the classically known property
stated in [1, Proposition 5.6, page 69] implies that the transfer map

H�.A� \ �.WBn �WBm/�
�1
IF2/!H�.A� IF2/

is identically zero. Eilenberg’s double coset formula then guarantees that the composi-
tion of the restriction with the transfer product

H�.WBn IF2/˝H
�.WBm IF2/

ˇ
�!H�.WBnCm IF2/!H�.A� IF2/

is zero. Thus .xˇy/jA
.2k/
D 0.

In the general case, the restriction of xˇy to this subgroup factors through the r–fold
coproduct. By the calculations above, addends in this coproduct for which a factor is
a nontrivial transfer product restrict to 0. Since ˇ and � form a bialgebra structure
on AB , the other addends have the desired form.

6.3 Restriction from AD and proof of relations

We can adapt the argument to calculate the restriction to elementary abelian subgroups
of generators also in the Dn case. First, we state the analog of Proposition 6.4. Recall
that a partition � of n is admissible if and only if it consists of parts that are powers
of 2.

Theorem 6.8 [18, Theorem 5.4.3, page 40] Let � be an admissible partition of n.
Let m1 and m2 be the multiplicities of 1 and 2 in � . We write � D .1/m1[ .2/m2[� 0.
Let A� �WBn the maximal elementary abelian 2–subgroup corresponding to � and let
yA� D A� \WDn . Then yA� is maximal as an elementary abelian subgroup of WDn if

and only if m1 ¤ 2. Moreover:

� If m1 > 0, then yA� D ker
�P
W Fm12 ! F2

�
� A.2/m2[� 0 . If e1; : : : ; em1 are the

elementary symmetric functions in H�.Fm12 IF2/DH
�.A.1/m1 IF2/, we define Nei D

Algebraic & Geometric Topology, Volume 23 (2023)



The mod 2 cohomology of the infinite families of Coxeter groups of type B and D 3281

ei C e1ei�1 if 2 � i < m and Nem D e1em�1. There is an isomorphism between the
invariant subalgebra ŒH�. yA� IF2/�NWDn .

yA� / and

F2Œ Ne2; : : : ; Nem�˝ ŒH
�.A.2/m2[� 0 IF2/�

NWBn�m1
.A.2/m2[�0 /:

Moreover , the cohomological restriction from A.1/m to yA.1/m is given by e1 7! 0 and
ei 7! Nei if 2� i �m.

� If m1 D 0 and m2 > 0, then yA� D A� . Identifying H�.A.2/IF2/˝
m2 withNm2

iD1 F2Œxi ; yi �, we can define

hm2 D
X

S�f1;:::;m2g
jS jD2l

Y
i2S

.xi Cyi /
Y
j…S

xj :

Then ŒH�. yA� IF2/�
NWDn

. yA� / is the free ŒH�.A� IF2/�
NWBn

.A� /–module with basis
f1; hm2 ˝ 1H�.A�0 IF2/g.

� If m1 Dm2 D 0, then yA� D A� and NWDn .A�/DNWBn .A�/; hence

ŒH�. yA� IF2/�
NWDn

. yA� /
D ŒH�.A� IF2/�

NWBn
.A� /:

Moreover , if m1 ¤ 0 or m2 ¤ 0, then A� is WBn–conjugate to A0 if and only if
yA� is WDn–conjugate to A0 \WDn . Conversely, if m1 D m2 D 0, then the WBn–

conjugacy class of A� contains exactly two WDn–conjugacy classes of elementary
abelian 2–subgroups.

We now determine the restriction of our generators to the elementary abelian subgroups.

Proposition 6.9 Let nD 2km, for some k;m � 1. Let � be an admissible partition
of n. Let m1 and m2 be the multiplicities of 1 and 2 in � . Then

(1) for every k � 1, if m1 D m2 D 0, then 
C
k;m
jA� D 
k;mjA� , 
C

k;m
j
A
s0
�
D 0,


�
k;m
jA� D 0, and 
�

k;m
j
A
s0
�
D 
k;mjAs0�

;

(2) for every k � 2, if m1¤ 0 or m2¤ 0, or for kD 1 if m1¤ 0, then 
˙
k;m
j yA�
D 0;

(3) if m1D 0 butm2¤ 0, ie �D .2/m2t� 0, then the restriction of 
C1;m (resp. 
�1;m)
to yA�DA.2/m2�A� 0 is hm2˝
1;m�m2 jA�0 (resp. .d˝

m2

1 Chm2/˝
1;m�m2 jA�0 );

(4) if � D .1/m1 t� 0, then the restriction of ı0
kWm

to yA� D yA.1/m1 �A� 0 is

1˝ .ıkˇ 1WBm�m1
/jA�0 C

kX
iD2

Nei ˝ .ık�i ˇ 1WBm�m1Ci
/jA�0 ;

with the convention that 1WBr D 0 when r < 0.
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Proof If � has more than 1 element and is different from .1; 1; : : : ; 1/, then the
restriction to yA� or yA s0� factors through the coproduct. Thus, by applying the coproduct
formulas of Proposition 5.12, we can inductively reduce to these two cases.

We begin by assuming that � D .2n/ has only one element, and we prove the first
statement. If k � 1 and n � 2, the restriction of 
˙

k;2l
to A� (n D k C l) must

be NWD2n .A�/–invariant. Hence, for degree reasons, it can be 0 or d2n�2l . Since
i�
C
.
C
k;2l

/D 
k;2l (resp. i�
C
.
�
k;2l

/D 0) by Proposition 5.27, its restriction to A� \†2n
must be the Dickson invariant of degree 2n� 2l (resp. 0). This forces


C
k;2l
jA� D d2n�2l D 
k;2l jA�

(resp. 
�
k;2l
jA� D 0). By essentially the same argument, considering i� instead of iC,

we determine the restrictions to As0� , proving the first point.

Claim (2) is immediate from the fact that, if k � 1, there are no nonzero elements
in H�. yA

.1/2
kn IF2/

NWD
2kn

. yA
.1/2

kn
/ in the same degree of 
˙

k;n
, and that if k � 2 the

coproduct of 
˙
k;n

has no element in component 2.

To prove (3) when � D .2/, we notice that A.2/ D WD2 and 
C1;1 can be identified
with h1, while 
�1;1; with d1C h1.

By the coproduct formula for ı0
kWm

, we have ı0
kWm
jAkCm
.1/
D ek . Thus, the last statement

for � D .1; : : : ; 1/ follows directly by combining Proposition 6.6 and Theorem 6.8.

As in AB , the behavior of the restriction to maximal elementary abelian 2–subgroups
with the cup product and coproduct is straightforward. We describe the relation between
such restriction maps and the transfer product in the following proposition, which is
the counterpart of Proposition 6.7.

Proposition 6.10 Let x; y 2 AD be elements in positive component n and m re-
spectively. Let � D .2k1 ; : : : ; 2kr / be an admissible partition of n C m. For all
I � f1; : : : ; rg, write I D fi1; : : : ; isg with i1 < � � �< is and let �I D .2ki1 ; : : : ; 2kis /.
Then

.xˇy/j yA�
D

X
I;J

�I;J .xj yA�I
˝yj yA�J

C �.x/j yA�I
˝ �.y/j yA�J

/;

where the sum runs over all partitions f1; : : : ; rg D I t J of f1; : : : ; rg into two
subsets such that

P
i2I 2

ki D n (and , consequently,
P
j2J 2

kj Dm) and at least one
between I and J does not contains any l 2 f1; : : : ; rg such that kl D 0, and where
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�I;J W H
�. yA�I IF2/ ˝H

�. yA�J IF2/ ! H�. yA� IF2/ is the obvious permutation of
tensor factors. Moreover , if 1 … � and 2 … � ,

.xˇy/j yAs0�
D c�s0

X
I;J

�I;J .xj yA�I
˝ �.y/j yA�J

C �.x/j yA�I
˝yj yA�J

/;

where I; J; �I;J are as above , and c�s0 WH
�. yA� IF2/!H�. yA

s0
� IF2/ is induced by the

conjugation with s0.

Proof We cannot repeat the proof of Proposition 6.7 because in A0D the transfer
product and the coproduct do not form a bialgebra. Therefore, we argue by considering
Eilenberg’s double coset formula associated with the two subgroups WDn �WDm and
yA� of WDnCm . We preliminarily fix some notation. Let P� be the partition of the set
f1; : : : ; nCmg given by

P� D

�
f1; : : : ; 2k1g; f2k1 C 1; : : : ; 2k1 C 2k2g; : : : ;

�r�1X
lD1

2kl C 1; : : : ; nCm

��
:

Moreover, let Pj;� D
˚Pj�1

lD1
2kl C 1; : : : ;

Pj

lD1
2kl
	
.

Assume that 1 … � . A set of representatives for WDnCm=.WDn �WDm/ is the set
Sh.n;m/ � f1; tg, where Sh.n:m/ � †nCm ,! WDnCm is the set of .n;m/–shuffles,
and t D s0 � s0 2 WBn �WBm . Note that yA� � .� t"/.WDn �WDm/.� t

"/�1 if and
only if �.f1; : : : ; ng/ is a union of parts of P� . Since yA� is abelian, these provide
the only nonzero terms in the summation of the double coset formula. Moreover, by
inspecting the image of f1; : : : ; ng � f1; : : : ; nCmg under the signed permutation
action of WDnCm �WBnCm , we see that if �t" and � 0t"

0

are two coset representatives
satisfying this condition, then yA��t".WDn �WDm/D yA��

0t"
0

.WDn �WDm/ if and
only if � D � 0 and "D "0.

Consequently, the double coset formula allows us to rewrite �
WDnCm
yA�

.xˇ y/ as the
sum X

I�f1;:::;rgP
i2I 2

kiDn

.c��I �
WDn�WDm
yA�I �

yA�J
.x˝y/˝Cc��I .c

�
s0
˝ c�s0/�

WDn�WDm
yA
s0
�I
˝ yA

s0
�J

/;

where �I is the unique .n;m/–shuffle satisfying �.f1; : : : ; ng/D
S
i2I Pi;� and J D

f1; : : : ; rg n I . The statement follows by observing that c��I D �I;J and

c�s0�
WDl
yA
s0
�0

D �
WDl
yA�0

�

for all l � 1 and an � 0 admissible partition of l .
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The case of yA s0� where 1; 2 … � is done similarly. If 1 2 � , the same argument holds,
but if there exists i 2 I and j 2 J such that ki D kj D 0, then, interpreting the
elements of WDnCm as signed permutations, .pi ;�pi /.pj ;�pj / belongs to yA� but
not to .�I t"/.WDn �WDm/.�I t

"/�1, where Pi;� D fpig and Pj;� D fpj g. Thus, we
need to restrict the summation only to partitions f1; : : : ; rg D I t J in which all the
occurrences of 1 in � belong to the same part.

This result provides a way to detect the charge of a Hopf monomial via restriction to
maximal elementary abelian 2–subgroups. We first fix preliminary notation.

Definition 6.11 With the notation of Theorem 6.8, writeH�. yA.2/IF2/DF2Œx; y� and
let z D xCy. Let HCA.2/ (resp. H�A.2/) be the vector subspace generated by elements
of the form xazb where a > b (resp. b > a). If � is an admissible partition of n, write
� D .1/m1 [ .2/m2 [ � 0 where 1 … � 0 and 2 … � 0. For S � f1; : : : ; m2g, we define
Hi;S DH

C

A.2/
if i … S and H�A.2/ if i 2 S . Then we define

HC
yA�
D

�
0 if m1 > 0;L
S�f1;:::;m2g;jS jD2k

Nm2
iD1Hi;S ˝H

�.A� 0 IF2/ if m1 D 0;

H�
yA�
D

�
0 if m1 > 0;L
S�f1;:::;m2g;jS jD2kC1

Nm2
iD1Hi;S ˝H

�.A� 0 IF2/ if m1 D 0:

Moreover, if m1 Dm2 D 0, we define HC
A
s0
�

D 0 and H�
A
s0
�

DH�.A
s0
� IF2/.

Proposition 6.12 Referring to Definition 6.11, for every maximal elementary abelian
2–subgroupAD yA� orADAs0� of WDn , the restriction of a positively (resp. negatively)
charged Hopf monomial in MD \H

�.WDn IF2/ to the cohomology of A.�/ belongs
to HCA (resp. H�A ).

Proof Every positively charged gathered block b restricts to an element of HCA .
Nontrivial computations arise only if b D .ı02mW0/

r.
C1;m/
s with r � 0 and s > 0 and

AD A.2/m . In this case, with the notation of Theorem 6.8, we observe that

h2
k

m D

X
S�f1;:::;mg
jS jD2l

Y
i2S

z2
k

i

Y
j…S

x2
k

j ;

where zi D xi C yi . Thus h2
k

m 2 H
C

.2/m
. Let 2k be the biggest power of 2 smaller

than s. Then hs�2
k

m is a sum of pure tensors of the form w1˝ � � �˝wm, where wi is a
monomial in xi and zi with total degree smaller than 2k . Therefore, hsm D h

2k

m h
s�2k

m
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still belongs toHC
.2/m

. The restriction of b to A.2/m is equal to
Nm
iD1.xizi /

rhsm, which
belongs to HC

.2/m
because multiplication by

Nm
iD1 xizi preserves HC

.2/m
.

We see the corresponding statement for negatively charged gathered blocks by noting
that conjugation with s0 exchanges HCA and H�

As0
.

In general, a positively (resp. negatively) charged Hopf monomial x is a transfer product
of gathered blocks, all positively charged (resp. all positively charged except one).
Consequently, Proposition 6.10 yields the statement for x.

We can finally complete our relations for A0D by providing the proofs of the two leftover
propositions of Section 5.2.

Proof of Proposition 5.14 Let b be a positively charged gathered block in AD
and x 2 AD . From Lemma 5.10 and the definition of �0 we deduce that �.b/ D
�0.b/C .�˝ �/�0.b/, and that �.�.b// D .id˝ �C �˝ id/�0.b/. During this proof,
we assume, by convention, that xjA� D 0 when x 2 H�.WDn IF2/ and � is not an
admissible partition of n. Let �D .2k1 ; : : : ; 2kr / and � 0D .2h1 ; : : : ; 2hs / be admissible
partitions of some integers. From Proposition 6.10, we deduce that

Œ.ˇ˝ˇ/.id˝�˝id/.�0˝�/.b˝x/�j yA�� yA�0

D

X
ItJDf1;:::;rg
I 0tJ 0Df1;:::;sg

�I;I 0;J;J 0
�
�0.b/˝�.x/C.id˝�/�0.b/˝.id˝�/�.x/

C.�˝id/�0.b/˝.�˝id/�.x/

C.�˝�/�0.b/˝.�˝�/�.x/
�
j yA�I �

yA
�0
I 0
� yA�J �

yA
�0
J 0

D

X
ItJDf1;:::;rg
I 0tJ 0Df1;:::;sg

�I;I 0;J;J 0
�
.idC�˝�/�0.b/˝�.x/

C.idC�˝�/�0.�.b//˝�.�.x//
�
j yA�I �

yA
�0
I 0
� yA�J �

yA
�0
J 0

D

X
ItJDf1;:::;rCsg

.b˝xC�.b/˝�.x//j yA.�t�0/
I
� yA.�t�0/

J

D Œ�.bˇx/�j yA�� yA�0
:

In these equalities we used the identities of Lemma 5.10 to perform the substitutions
.�˝ �/�.x/D�.x/ and .id˝ �/�.x/D .�˝ id/�.x/D�.�.x//; � t� 0 is assumed
to be .2k1 ; : : : ; 2kr ; 2h1 ; : : : ; 2hs /; I D I \ f1; : : : ; rg and J D J \ f1; : : : ; rg, while
I 0 and J 0 are I \fr C 1; : : : ; r C sg and J \fr C 1; : : : ; r C sg suitably shifted. The
sum should be over all I , J , I 0 and J 0 such that at least one between I and J does not
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contain an l such that kl D 0 and at least one between I 0 and J 0 does not contain an l
such that hl D 0. However, since the restriction of positively charged gathered blocks
is zero on elementary abelian 2–subgroups corresponding to admissible partitions
containing 1, we can restrict the sum only to the terms for which ki ¤ 0 for all i 2 I
and hi ¤ 0 for all i 0 2 I 0. This condition is equivalent to I not containing 1, and we
can, once again, restrict the last sum only to these terms and get the last equality.

Proof of Proposition 5.13 Using Proposition 6.9, the newly proved Proposition 5.14,
Proposition 6.10, and the fact that cup products commute with restrictions, we check that
the desired identity hold when restricted to maximal elementary abelian 2–subgroups.
Then Theorem 6.2 yields the relations in AD .

7 Proofs of the main theorems

We devote this section to the proofs of the presentation theorems for AB and AD .
They will be proved by comparing restrictions to elementary abelian 2–subgroups and
exploiting Theorem 6.2. We will separate two technical lemmas from the proofs for
the sake of clarity of exposition.

We first provide a proof for our structure theorem for AB .

Lemma 7.1 Let k > 0. The kernel of the restriction map

H�.A.2k/IF2/
NWB

2k
.A
.2k/

/
!H�.A.2k/\A.2k�1;2k�1/IF2/

is the ideal generated by d2k�1.

Proof From Swenson’s description of A� , stated as in Proposition 6.4, we can identify
A.2k/ with the image of the diagonal embedding id�d W†2�Vk�1!†2oVk�1!WB

2k
.

Its intersection with the product A.2k�1;2k�1/ D Vk�1 � Vk�1 is identified with the
subgroup Vk�1 �†2 �Vk�1, embedded diagonally in WB

2k
.

The restriction to this subgroup maps f2k to .f2k�1/
2, d2k�2l to .d2k�1�2l�1/

2 if l >0,
and d2k�1 to 0. This is known, but we sketch a proof for completeness. If we chose
bases fx; y1; : : : ; ykg of H 1.A.2k/IF2/ and fx; y1; : : : ; yk�1g of H 1.A.2k�1/IF2/ as
in Section 6.2, the restriction is given by x 7! x, yi 7! yi if 1� i < k and yk 7! 0. The
polynomial Fk.t/ D

Q
v2H1.Vk IF2/

.t C v/ in H�.VkIF2/Œt � restricts to .Fk�1.t//2.
Since f2k D Fk.x/, we deduce the formula for f2k . The identities for d2k�2l are
obtained from this by using the classical identity Fk.t/D

Pk
iD0 t

2id2k�2i .
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Proof of Theorem 5.9 Let A0B be the Hopf ring generated by 
k;m and ım with the
desired relations. Since the relations mentioned above hold in AB , there exists an
obvious morphism ' W A0B ! AB .

We need to fix a total ordering� on the set Pn of admissible partitions of n such that, for
all �; � 0 2 Pn, � 0 > � if � 0 is a refinement of � . In other words, � extends the partial
ordering given by refinement. Let b be a nontrivial gathered block in AB . There exist
unique nonnegative integers n and m such that b D

Qn
iD1 


ai
i;2n�im

ı
a0
2nm with an ¤ 0.

We consider the partition of 2nm �b D .2
n; : : : ; 2n/. Given x D b1ˇ � � �ˇ br 2MB ,

let �x D
Fr
iD1 �bi . As a consequence of Propositions 6.5, 6.6 and 6.7, xjA� ¤ 0

implies that �x > � . Explicitly, if b D
Qn
iD1 


ai
i;2n�im

ı
a0
2nm,

bjA�b D

�
f
a0
2n

nY
iD1

d
ai
2n�2n�i

�̋ m

:

For any xD b1ˇ� � �ˇbr 2MB , xjA�n is the symmetrization of
Nr
iD1 bi jA�bi

. Given
a partition � , let M� be the set of elements x 2M such that �x D � .

We first prove that ' is injective. We proceed by contradiction, and we assume that
there exists a nontrivial sum

P
i xi of elements of MB that is 0 when restricted to

every elementary abelian 2–subgroup. Let � be maximal among the set of partitions
f�xi gi . Since, by the explicit calculation above, the restrictions of the elements of M�

to A� are linearly independent, this gives a contradiction.

To prove surjectivity, it is sufficient, by Theorem 6.2, to prove that an element ˛ of the
Quillen group F�WBn can be written as the image via qWBn of a linear combination of
elements of MB . Note that such an ˛ is determined by its values ˛� on the maximal
abelian 2–subgroups A� . Let N�˛ Dmaxf� 2 Pn j ˛� ¤ 0g with respect to the chosen
linear ordering. We write N�˛ D .2k1 ; : : : ; 2kr /. We proceed by induction on N�˛.
˛ N�˛ must be invariant with respect to the action of the normalizer NWBn .A N�˛ /. By
Swenson’s description of these invariant subalgebras stated in Proposition 6.4, it is a
sum of elements

P
i ci;1˝ � � �˝ ci;r , with

ci;j D

kj�1Y
lD1

d
ai;j;l

2
kj�2

kj�l
f
ai;j;0

2
kj
2H�.A

.2
kj /
IF2/:

We must have ai;j;kj ¤ 0 for all i and j . Otherwise, we can define a partition � 0

obtained from N�˛ by substituting 2kj with two parts both equal to 2kj�1 and observe
that, by Lemma 7.1, we must have ˛ N�˛ jA N�˛\A�0 ¤ 0. Thus ˛� 0 ¤ 0 and this would
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contradict the maximality of N�˛ . By our calculations above, since ˛ N�˛ must be invariant
by permutations of tensor factors, this condition guarantees the existence of an element
x in the linear span of M N�˛ such that xjA N�˛ D ˛ N�˛ . This reduces the statement to
˛0 D ˛C qWBn .x/ for which, by construction, N�˛0 < N�˛ , and completes the induction
argument.

We now focus on the presentation of AD .

Lemma 7.2 Let M2 �MD be the set of Hopf monomials in A0D whose constituent
gathered blocks are all of the form .ı0

2kW0
/r.
˙

1;k
/s with r � 0 and s > 0, or of the form

.ı02W0/
a with a � 0. Then , for all m � 0, M2 \H

�.WD2m IF2/ restricts to a linearly
independent set in H�. yA.2/m IF2/. Moreover , the image of M2 in the cohomology of
yA.2/m generates the kernel of the restriction

�2;1 WH
�. yA.2/m IF2/

NWD2m
. yA.2/m /

!H�. yA.1/4[.2/m�2 \ yA.2;2/IF2/:

Proof Note that, due to Theorem 6.8 and Proposition 6.9, the Hopf monomials
in M2 \ H

�.WD2 IF2/ restrict to linearly independent elements in H�. yA.2/IF2/.
Therefore, to prove the linear independence claim for m> 1, it is enough to check that
the restrictions of the elements of M2 \H

�.WD2m IF2/ to H�.W m
D2
IF2/ (which is

a component �.2/m of the coproduct) are linearly independent. Let F be the weight
filtration on A0D provided by Definition 5.20. It is enough to prove that this set is
linearly independent when working in the associated graded spaces grF .A

0
D/ and

grF .H
�.W m

D2
IF2//. In this setting, the image of a gathered block bC

l;t
2M2 (resp.

b�
l;t
2M2) under grF .�.2/m/ is

P
"1;:::;"l

Nm
iD1 b

"i
1;t , where the sum is over all l–tuples

."1; : : : ; "l/ with "i 2 fC;�g and the cardinality of the set fi W 1 � i � l; "i D �g is
even (resp. odd). Combining this with Proposition 5.14, we check the claim directly.

By Propositions 6.9 and 6.10, every element of M2 restricts to 0 on yA� whenever
1 2 � . Therefore, it is contained in the kernel of �2;1. We now prove the opposite
inclusion. With the notation of Theorem 6.8, we write

H�.A.2/m IF2/
NWD2m

.A.2/m /
D .F2Œf2; d1�

˝m/†mf1; hmg:

We note thatA.2/m\ yA.1/4[.2/m�2DA.2/m\A.1/4[.2/m�2 . Moreover, hmD
C1;mjA.2/m
is 0 when restricted to A.2/m \ yA.1/4[.2/m�2 . Therefore, Lemma 7.1 implies that
ker.�2;1/ is the ideal generated by hm and d˝m1 D �2;1.


C
1;mC 


�
1;m/jA.2/m . Finally,

the generators belong to the image of M2, the linear subspace generated by M2 is a
�–subalgebra by our formulas in A0D , and restriction maps preserve cup products.
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Proof of Theorem 5.15 Let A00D be the almost Hopf ring generated by elements of the
form ı0nWm, 
˙

k;m
, and 1� with the desired relations. Let ' W A00D! A0D be the obvious

morphism. We also consider the F2–vector space A000D with basis MD . By our relations
for A0D , MD generates A00D . Thus, there is a surjective linear map '0 W A000D ! A00D .
To prove that '0 is an isomorphism it is enough to prove that '00 D '0' is. Since in
component 0 this is obvious, we can consider only positive components and replace
A0D with AD . For technical reasons, we consider the set M0D , which differ from MD

by replacing neutral gathered blocks with elements of the form �
�Qn

iD2.ıi ˇ 1n�i /
ki
�

for k2; : : : ; kn � 0. As shown in Lemma 5.18, this corresponds, at the level of A000D , to
performing a change of basis. Hence, it does not affect the argument.

We adapt the argument used in the proof of Theorem 5.9. We define �x for x 2M0D as
we did for AB , with the only difference that gathered blocks of the form b D .ı02W0/

m

have �b D .2/, because .1; 1/ does not define a maximal elementary abelian subgroup
in WD2 . It is still true that xj yA� D 0 unless �x is a refinement of � . We extend
refinement of admissible partitions to a total ordering �, and we use the same argument
by induction on� adopted for AB . Our choice of the new basis M0D makes evident that
for all admissible partitions � the set M0� D fx 2M0D j �x D �g restricts to a linearly
independent set in the cohomology of yA� when 1 2 � , and Lemma 7.2 guarantees
that this is true if 1 … � and 2 2 � . Hence, the injectivity part works verbatim. We
need to adapt the surjectivity argument for admissible partitions � such that 1 … � and
2 2 � (in all other cases, nothing changes). In these cases, we use Lemma 7.2 instead
of Lemma 7.1 to carry on the proof.

8 Steenrod algebra action

This section is devoted to the calculation of the Steenrod algebra action on AB and AD .
We first observe that, since the coproducts and transfer products are induced by (stable)
maps, they satisfy a Cartan formula with respect to Steenrod squares. In other words,
AB and AD are almost-Hopf rings over the Steenrod algebra. Thus it is sufficient
to determine the action of the Steenrod squares on the generators ı2n , 
k;2n , ı0nWm
and 
˙

k;2n
.

Definition 8.1 [7] We define the following notions:

� The height (ht) of a gathered block in AB or AD is the number of generators
that are cup-multiplied to obtain it, and the height of a Hopf monomial x D
b1ˇ � � �ˇ br is maxriD1 ht.bi /.
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� The effective scale (effsc) of a gathered block in the cohomology of WBn
(resp. WDn) is the least l such that n=2l is an integer and its restriction to
W
n=2l

B
2l

(resp. W n=2l

D
2l

) is nonzero, and the effective scale of a Hopf monomial
x D b1ˇ � � �ˇ br as minriD1 effsc.bi /.

� A full-width monomial is a Hopf monomial in AB (resp. AD) of which no
constituent block is of the form 1WBn (resp. 1WDn ).

Theorem 8.2 (cf [7, Theorem 8.3, page 191]) Let k; n� 1 and i � 0. Then , in AB ,
the following formulas hold :

� Sqi .
k;2n/ is the sum of all the full-width monomials x 2 MB of degree
2nCk � 2n C i with ht.x/ � 2 and effsc.x/ � k in which generators of the
form ık do not appear.

� Sqi .ı2n/ is the sum of all the full-width monomials x 2MB of degree 2nC i
with ht.x/� 2 and effsc.x/� 1 such that a generator of the form ık appears in
every constituent gathered block of x.

Proof The calculation for Sqi .
k;2n/ is an obvious consequence of [7, Theorem 8.3,
page 191]. Regarding Sqi .ı2n/, since ı2n is the top-dimensional Stiefel–Whitney class
of the reflection representation U2n by Proposition 5.3, by Wu’s formula Sqi .ı2n/D
wi .U2n/ı2n . Defining, by convention, 
k;0 D 1, let

ui D
X

j0;:::;jn�0;
Pn�1
rD1 2

rjrCjnCj0D2
nPn�1

rD1.2
r�1/jrCjnDi

n�1K
rD1


r;jr ˇ ırn ˇ 1WBj0
:

We computed the restriction of wi .U2n/ to the maximal elementary abelian subgroups
A� in the proof of Proposition 6.6. It coincides with the restriction of ui by our previous
calculations based on Proposition 6.5. Thus,

Sqi .ı2n/D wi .U2n/ı2n D uiı2n ;

and this class is exactly the sum of all the desired Hopf monomials x.

Regarding the calculation of the Steenrod squares on the generators of AD , We observe
that the calculation for Sqi .ınWm/ is implicit in Theorem 8.2 since ınWm D �.ınˇ 1m/
and � commute with Steenrod operations. Thus we only need to consider generators of
the form 
˙

k;n
.
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Theorem 8.3 Let k; n� 1 and i � 0. Then , in AD , Sqi .
C
k;n
/ (resp. Sqi .
�

k;n
/) is the

sum of all the full-width monomials x 2 BC (resp. x 2 B�) of degree 2nCk � 2nC i
with ht.x/� 2 and effsc.x/� l in which generators of the form ınWm do not appear.

Proof We recall that Definition 6.11 provides, for all maximal elementary abelian
2–subgroup A � WD2n , subspaces HCA and H�A of the cohomology of A. A direct
calculation shows that Sqi .hn/ 2 HC.2/n . Since restrictions preserve the Steenrod
squares, Sqi .
C1;n/ is mapped to an element of HCA for all maximal elementary abelian
2–subgroups A � WD2n and all choices of i and n. Similarly, the restriction of
Sqi .
�1;n/ to every such subgroup A lies in H�A . Let xC (resp. x�) be the sum of all
the positively (resp. negatively) charged Hopf monomials considered in the statement.
By Proposition 6.12, the restriction of xC (resp. x�) belongs to HCA (resp. H�A ).

Moreover Sqi .
C
k;n
/C Sqi .
�

k;n
/D �.Sqi .
k;n//. Consequently, Theorem 8.2 implies

that Sqi .
C
k;n
/CSqi .
�

k;n
/D xCC x�.

Since HCA \H
�
A D 0 for all A, the two facts above guarantee that Sqi .
C

k;n
/D xC and

Sqi .
�
k;n
/D x�.
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