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The mod 2 cohomology of the infinite families of
Coxeter groups of type B and D as almost-Hopf rings

LORENZO GUERRA

We describe a Hopf ring structure on the direct sum of the cohomology groups
D=0 H* (W, ;F2) of the Coxeter groups of type Wp,,, and an almost-Hopf ring
structure on the direct sum of the cohomology groups @nzo H*(Wp,,; F») of the
Coxeter groups of type Wp,, with coefficients in the field with two elements .
We give presentations with generators and relations, determine additive bases and
compute the Steenrod algebra action. The generators are described both in terms of a
geometric construction by De Concini and Salvetti and their restriction to elementary
abelian 2—subgroups.

20F55, 20J06; 20J05

1 Introduction

The Coxeter groups of type Wp, and Wp, are two infinite families of finite reflection
groups. Coxeter groups are traditionally described via Coxeter diagrams, ie graphs
in which each edge e has a weight m, > 3. Given such an object, the associated
Coxeter group has a generator s, for every vertex v, with relations of the form s2 = 1,
(5ySw)™e = 1 for every edge e = (v, w), and (sySy)? = 1 if v and w are not connected
by an edge. For an exhaustive introduction to the geometry and topology of these
groups we refer to Davis’s book [3]. The reflection groups of type Wg, and Wp, are
the finite Coxeter groups associated with the Coxeter diagrams in Figure 1.

The goal of this paper is to provide an effective description of the mod 2 cohomology
of these groups. Other authors have previously computed these cohomology groups.
Most notably, Swenson, in his thesis [18], adapted techniques used by Hu’ng [12] and
Feshbach [5], stemming from the analysis of the restriction maps to elementary abelian
2—subgroups, to compute generators and relations for the mod 2 cohomology algebra
of a finite reflection group. However, his presentation is involved and intrinsically
recursive. Borrowing ideas from Giusti, Salvatore and Sinha [7; 9], we exploit additional
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Figure 1: Diagrams of type D, (left) and B, (right).

structures to provide a simpler description of the cup product. Our approach also has
the advantage of being more easily readable from the well-known chain-level geometric
and combinatorial description of a resolution for Coxeter groups by De Concini and
Salvetti [4].

The sequences of Coxeter groups of type B and D have standard embeddings

Wg, x Wg,, — Wp Wp, xWp,, = Wp

n+m

n+m?

that are, in a certain sense, compatible. The homomorphisms induced by these maps on
mod 2 cohomology define a coproduct A. The cohomology transfer maps associated
with them determine a product ©. There is also a canonical embedding of Wp,, into Wp,
as an index-2 subgroup, which induces an involution ¢: H*(Wp, ; F2) — H*(Wp,,; F2).

In the B case, the resulting structure is modeled on that of the symmetric groups, the
Coxeter groups of type A, as described by Giusti, Salvatore and Sinha [7] (mod 2)
and by the author [10] (modulo odd primes). Together with the usual cup product -,
these maps form a ring in the category of Fp—coalgebras, ie a Hopf ring over F». More
explicitly, given a ring R, a (graded) Hopf ring over R is a graded R—module with a
coproduct A and two products, ® and -, such that

e (A, A,©®) is a Hopf algebra, with an antipode S’;

e (A, A,-)is abialgebras over R;

o ifx,y,zeAdand A(x) =), x; ® x/, then the distributivity formula
X (y©2) =Y (~D)*EN I (] y) 0 (] 2)

1

holds.

In the D case, A, ® and - satisfy the last two axioms in the definition of a Hopf ring,
and A and - form a bialgebra. However, as we will explain later, A and ® do not form
a bialgebra. We call this weaker structure an almost-Hopf ring over . Due to this
fact, the study of the cohomology of Wp, , with the cup product, the transfer product,
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and the coproduct, is more complicated. The reader will find similarities between the
cohomology of Wp, and that of the alternating groups, as described by Giusti and
Sinha [9]. Such structures stem from the seminal work of Strickland and Turner [17],
in which the authors discovered a Hopf ring structure on the cohomology of symmetric
groups, even with generalized cohomology theories.

The main results of this paper are Theorems 5.9 and 5.15, stated in Section 5.2, con-
sisting of a presentation in terms of generators and relations of the mod 2 cohomology
of the Coxeter groups of type B, as a Hopf ring and of type D, as an almost-Hopf
ring respectively. We provide here self-contained statements for clarity and reference.

Theorem 5.9 (main theorem for type B) The Hopfring P,,»o H*(Ws,,;F2) over
IF> admits a presentation with two families of generators, yi , € H n(2*-1) (Wank ;)
for k> 0andn >0, and 8§, € H"(Wp, ;) for n > 0, and the following relations:

o AWkm) = it j=m Vki ®Vk,j

* Yen OV = (""" Vkntms

* AGn) =2 kt1=n Sk 615

¢ 6, 08m=("T")8ntm:

e the cup product, -, of classes in different components is 0;

* Yo,n is the -—unit of H*(Wp, ;F2).

The generators are explicitly characterized, both combinatorially at the cochain level
(see Definition 5.1) and geometrically, as suitable Thom classes (see Proposition 5.3).
The classes yi , and the relations among them arise from the presentation of the mod 2
cohomology of the symmetric groups as a Hopf ring. The only new generators are &,
and their behavior is governed by the third and fourth relations above.

The almost-Hopf ring constructed from the cohomology rings of the Coxeter groups
of type D is more complicated. The relations are intricate, and the behavior of gen-
erators is more easily understood with the aid of a “polarized” basis B+ LI B~ LI B°
(see Proposition 5.22). For instance, the bialgebra axiom for ® and A is replaced
with a different compatibility identity involving the projection p™ onto the addend
(Span(B*) ® 45°) @ (Span(B°) ® Span(B+) ® A5?):

AXOY)=0O0)(pT)(AKX)®A(y)) forall x,y,

where t is the transposition of the second and third factors. Nevertheless, this surrogate
axiom can be expressed directly in terms of the generators, without explicit reference
to the additive basis (see Proposition 5.14).
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The main presentation theorem in this regard is the following.

Theorem 5.15 (main theorem for type D) The almost-Hopf ring structure over [
of @nzo H*(Wp,;F2) extends uniquely to a graded almost-Hopf ring structure with
components on the Fo—vector space Fo1T @ Fy1~ @ Ean 1 H*(Wp,,; F2) such that
e ITo_=id170o_=¢1T-1T=1T17-1"=1",and 1T-17 =0;
« AH) =11 +1" 017,
e A =1TQ@x+1"®1(x) + A(x) +1(x) ® 1~ + x ® 1T for all x in
D1 H*(Wp,; F2), where A is the reduced coproduct in Do H*(Wp,; F2).

This almost-Hopf ring admits a presentation with two families of generators,

y,::n € H"(Zk_l)(WDnzk;IFz) for k,n >0,
Sp.m € H" (W, F2) for n # 1 and m > 0,
together with 1~. The compatibility identity above and the following list of equalities
provide a complete set of relations, where 17 is the ©—unit:
e 1701 =17, 1"-1"=17,17. 1" =0,and A7) =1 @ 1"+ 1" ®1T;
o AL =Y evt T oyt e oy, )):;
o AGY.m) =i Z}nzo 8?:‘/ ® 82—i:m—j;
P APOY AR (ajz_b)ylia+b and 8., ©17 = 8.,

e bOb =0if b and b’ are cup products of generators of the form §°

nm’
. y,j'n-(l_Qy,j'm)=0foralln,m,k2landh22;

. yl""m.(l_@yl""m) = (yl":m_l)2®8g:0 forallm > 1;

e the cup product, -, of generators belonging to different components is 0;
o 88:m is the -—product unit of the m'™™ component;

. 82:m-y]j,,+m 282.0-)/,:"L®y,jﬂ forallk >0andm,n >0 withn # 1.
ok : *ok *ok

In this case, too, the generators are explicitly described (see Definitions 5.4 and 5.5).

The relations are spread out in a few lemmas to prove the identities concerning coproduct,
transfer product, and cup product separately. Building on these core theorems, we also
describe convenient additive bases for the cohomology of these groups, with a graphical
description via skyline diagrams similar to that obtained for the symmetric group in [7],
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and compute the Steenrod algebra action. Our formulation of the cohomology of Wpg,
and Wp, yields without additional effort many features of these cohomology algebras.
For instance, Hepworth’s homological stability results [11] in these particular cases
follow directly.

We obtain our presentation via three technical tools. First, we exploit De Concini and
Salvetti’s geometric combinatorial model to realize such (almost) Hopf rings structures
at the cochain level. Specializing their construction to the families of groups of our
interest, we observe that a resolution for Wp, is obtained from the symmetrized version
of the planar level trees used by Giusti and Sinha [9] for the symmetric groups. The
cohomology of Wp, is governed by an oriented version of these objects. We describe
cochain representatives of the structural maps in detail. Our treatment follows the paper
cited above closely. However, we note that while the transfer product is realized very
similarly to the X, case, coproducts are more complicated and require the combinatorial
operation of “pruning” symmetric planar level trees. This cochain-level description
allows us to quickly retrieve some of our relations and give a more geometric flavor
to our generating classes. For instance, they can be interpreted as Thom classes in a
suitable sense.

Second, we use the existence of well-behaved maps between W, , Wp, and X,. These
homomorphisms preserve parts of our structures. Therefore, we exploit them to build
our presentations on the known result for the cohomology of the symmetric groups.
We provide a cochain-level description of these morphisms, and we determine both
their action on generators and their relations to the coproduct and transfer product.

Third, we reconcile with Swenson’s approach, and we investigate restrictions to ele-
mentary abelian 2—subgroups. The mod 2 cohomology of finite reflection groups is
known to be detected by this family of subgroups. We effectively compute the action
of these restriction maps on our additive bases. The multiplicative structure on the
cohomology of (the invariant subalgebras of) such subgroups is known. Thus, these
calculations allow us to deduce cup product relations that would be otherwise difficult
to obtain.

We organize the paper as follows. After describing the structures on the cohomology
of W, and Wp, in Section 2, we devote the following two sections to developing
our geometric tools. In Section 3, we review De Concini and Salvetti’s construction,
and we specialize it to Wp, and Wp,. In Section 4, we investigate the combinatorics
of pruning operations, and we retrieve cochain-level representatives of our structural
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and connecting homomorphisms. Section 5 is devoted to our main theorems. We
define generators and we discuss relations between them. In this context, we also
deduce from our presentation additive bases, and we discuss the relations between
the cohomology of Coxeter groups of type A, B and C. We postpone the proofs of
the presentation theorem and some cup product relations. In Section 6, we turn our
attention to the restriction to elementary abelian 2—subgroups. We review relevant
results from Swenson’s thesis, compute restriction maps, and use them to complete the
proof of our cup-product relations. Section 7 is devoted to completing the proof of our
main theorems. In Section 8, we calculate the Steenrod algebra action.

Acknowledgements

Most of the contents of this paper are part of the author’s PhD thesis, written at Scuola
Normale Superiore in Pisa. The author acknowledges full support from this institution.
The author is indebted to his PhD advisor, Prof. Mario Salvetti, for his guidance, and
also thanks Prof. Dev Sinha for helpful comments.

2 (Almost) Hopf ring structures for the cohomology of Wg,
and Wp_

We begin this paper by describing in detail how the desired algebraic structures on the
cohomology of Coxeter groups of type B and D are obtained. Throughout this paper,
we use several combinatorial descriptions of the groups Wg, and Wp, . We refer to
[2, Chapter 8] for a thorough treatment, and we recall below what we need for our
purposes.

With reference to Figure 1, we recall that there is an inclusion j,: Wp, — Wp,
defined by o — sos150 and #; = s; if i > 0. Wp, can be seen as the group of signed
permutation on n numbers, that is, the group of bijective functions f from the set
{—n,...,—1,1,...,n} into itself that satisfy f(—i) = —f(i) for every 1 <i < n.
Hence Wpg, is naturally a subgroup of X»,, the symmetric group on 2n objects. The
image of j, is Wp, N Alt(2n), the intersection of Wp, with the alternating group
Alt(2n), the subgroup of even permutations in X,,. Note that X, can be identified
with the parabolic subgroup of Wp, generated by s1,...,s,—1, corresponding to the
signed permutations on {—n,...,n} that preserve signs. There is also a standard
projection Wg, — X,, of which the previous inclusion is a section, whose kernel is
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the normal subgroup generated by sg. We observe that this provides an isomorphism
between Wpg, and the wreath product 5 ¢ X5, a semidirect product of 7} and Xj,.
Therefore, the inclusions ¥, x ¥, — 3,4, extend naturally to monomorphisms
Wp,, x Wa,, — Wa,,,.. These inclusions are associative and commutative up to
conjugation.

Let Agp = @nzo H*(Wpg,,; F2). We define a coproduct A and two products, - and O,
on Ap in the following way:

e A is induced by the obvious monomorphisms Wg, x Wg, — Wp

n+m 5
¢ (© is induced by the cohomology transfer maps associated with these inclusions;
¢ . is the usual cup product.

Due to the associativity and the commutativity of the natural inclusions, these morphisms

define an almost-Hopf ring structure. This is a general fact, as noticed in [9]. In this
case, however, Ap is a full Hopf ring.

Proposition 2.1 Ap, with these structural morphisms, is a Hopf ring.

Proof The almost-Hopf ring axioms hold by [9, Theorem 2.3]. It remains only to
prove that (Ap, A, ©) forms a bialgebra. This claim follows from the fact— compare
with [7, Section 3] — that this diagram is a pullback of finite coverings for all n,m € N,

E(WBn+m) |_|7Tp+1,r+s E(WBn—i-m)
I_|P+q=n W W
r+s=m WB,xWp,xWp xWpg, Wg, xWp,,
U ”p+rAq+sl lﬂn.m
I_l E(WBn+m) E(WBn+m)
k+l=n+m WBk % WB; Ll 7k WBn+m
where 7 indicates the projections. |

We remark that, since Ap with A and © is a conilpotent bialgebra, the existence of the
antipode comes for free. This antipodal morphism does not play a role in our treatment;
thus, we will not discuss it further.

Similarly, we can construct an additional almost-Hopf ring structure on the cohomology
of the Coxeter groups of type Dj,. Indeed, on the direct sum Ap =P, H*(Wp,,;: F2),
we can define a coproduct A and two products ® and - as done for A 1; . However, these
do not make Ap a full Hopf ring because, as we will see later, (Ap, A, ®) fails to be
a bialgebra.
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With essentially the same proof used for Ap, we can prove the following easy proposi-
tion, which follows again from [9, Theorem 2.3].

Proposition 2.2 Ap, with the coproduct and the two products defined before, is an
almost-Hopf ring over F5.

As we remarked in the introduction, there is a similar result for the mod 2 cohomology
of the symmetric groups, obtained by Giusti, Salvatore and Sinha in [7]. We recall
their statement here because we will build our computations upon it.

Theorem 2.3 [7, Theorems 1.2 and 3.2] Ay = @,,~o H*(Xn;F2), together with a
coproduct A: Ay — Ax ® Ay induced by the obvious inclusions YuXZm—> Zpm, a
product ©: Ay ® Ay, — Ay, given by the transter maps associated with these inclusions,
and a second product -: Ay ® Ay, — Ay defined as the usual cup product, is a Hopf
ring over .

Ay, is generated, as a Hopf ring, by classes yy , € H"C*=D(% . F,) for k >0 and
n > 1. The coproduct of these classes is given by the formula

n
AWkn) =D Vid ® Vien—1-
1=0

the cup product of generators belonging to different components is 0, and

n+m

n )Vk,n-i—m-

Vien © Vieom = (

There are no more relations between these classes.

The unit of the algebra H*(X,; F2) under the cup product is yo , € H°(Z,:F,). For
this reason, we will often denote it with the symbol 1, throughout the paper.

3 Review of a geometric construction of De Concini and

Salvetti and Fox—Neuwirth type cell structures

3.1 De Concini and Salvetti resolution

In this section, we recall a geometric construction introduced by De Concini and
Salvetti in [4], which we will require to describe the generators of the Hopf ring under
consideration.

Algebraic & Geometric Topology, Volume 23 (2023)
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Given a finite reflection group G < Gl, (R), there is a natural hyperplane arrangement
Ag in R”" associated with G, whose hyperplanes are the fixed points sets of reflections
in G. The choice of a fundamental chamber Cy of Ag gives rise to a Coxeter presenta-
tion (G, S) for G, whose set of generators S is composed by reflections with respect
to hyperplanes that are supports of a face of Cy. Every finite Coxeter group arises this
way.

For any F C R", we can define
Arp={H e Ag: F C H}.

AF gives rise to a stratification ®(Afr) of R”, in which the strata are the connected
components of sets of the form L\ Jge 4 r.HpL H, where L is the intersection of
some of the hyperplanes of Ar. Let R be the direct limit of R” under the inclusions
R™ < R™ x {0} € R™*!. For all m € N U {oo}, there is a stratification ®,, (different
from the product stratification) of the topological space,
yJP=R"®@R"\ | J (HeR™=@®"H"\ |J H™
HeAg HeAg

The strata in ®,, are defined as sets of the form Fy x---x Fy x---, with Fy € ®(Af,_,)
for k > 1. Here we put, by convention, Fy = {0}. In what follows, if there is no
ambiguity, we will use the simpler notations Y™ and Y to indicate Yém) and Y, G(OO)
respectively.

De Concini and Salvetti construct a regular G—equivariant CW—complex X C Y that
is “dual” to the stratification @, in the sense that for every stratum F € Py, of
codimension d, there exist a unique d—dimensional cell in X that intersects F, and
they intersect transversally in a single point. For m < oo, the intersection X m) of X
with Y is a subcomplex of X whose cells are dual to strata in ®,. This construction
is done equivariantly, in the sense that for every stratum F € ®, and every g € G,
if ¢: D? — X is the cell dual to F in X, then (g._)oep: D? — X is the cell dual
to g.F. The authors then show that X is a G—equivariant strong deformation retract
of Y. Since Y is contractible and G—free, the quotient X /G is a cellular model for the
classifying space B(G) and the cellular chain complex C¢ = CSWV(X) is a Z[G]—free
resolution of Z.

The strata of ®,, have a more compact combinatorial description in terms of the
Coxeter presentation. For every s € S generating reflection for G, we let Hg be the
hyperplane fixed by s. Hy divides the space R” into two semispaces, H;™ and H; .
We let H, be the semispace that contains the chosen fundamental chamber Cy. To a
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flagL=(S 21 D215 D--- DI} = @) of subsets of S we can associate a stratum F
of & such that x = (x1, ..., x,) € (R®)" belongs to F if and only if

((xl)r,---,(xn)r)EHs ifSEFr,
((X1)rseeos (Xn)p) € HY if s €T \ T

is satisfied for every s € S and every r > 1. Thus, to a couple (I, g), where I is a
flag as before and g € G, we can associate the stratum g.F obtained from the above F
by applying g. This construction yields an algebraic-combinatorial description of the
cellular chain complex of X. The main theorem of De Concini and Salvetti’s paper is
the following.

Theorem 3.1 [4, Section 3] Let (G, S) be a finite Coxeter group, and consider the
set

{C,y)|lyeG,I'=012L2:-2I2:-), N €8, I} =@ for some k}.

The function described above is a bijection between this set and the set of strata in
& (and thus, by duality, with the set of cells in X). The codimension of the stratum
(and the dimension of the corresponding dual cell) associated with (I, y) is equal to
Y 721 IT}|, and the action of an element g € G on strata and cells corresponds to the
function (I', y) — (T, gy).

Let ¢(L, y) be the cell dual to the stratum corresponding to (I, y). The boundary
homomorphism in CSW(X) is given by the formula

de(T.)=>Y" Yoo eI yp),

i>1tel; ﬂGWIEi\{r}
BT, 11 ST\ (1}
where « is an integer number easily computed in terms of T, i, t, f3, F]é = [} for
k<i,I/=T\{r}and T =B I} B if k >i,and W], for T' C T C S is the set of

minimal length coset representatives for the parabolic subgroup Wy, in Wr.

We remark that in the case of Coxeter groups of type B or D, minimal coset repre-

sentatives are explicitly known. For a complete description, we refer, for instance,
to [14].

3.2 Alexander duality and Fox-Neuwirth complexes

We recall an alternative description of C f . This description has been exposed in [8],
where it is investigated in much detail in the A, case. As observed in that paper, for
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every 1 <m < oo, the strata of ®,, are the interiors of cells in a G—equivariant cell
structure on the Alexandroff compactification (¥ ™)+ =y ") U {0},

Denote its augmented (G—equivariant) cellular chain complex with the symbol IET\IS
Its cells are the closures e(F) of strata F' € ®,, (together with the basepoint {*}) and,
from the construction of X ™ as a CW-—complex dual to ®,, —details in [4] —e(F)
is contained in the boundary of e(F”’) if and only if the cell of X dual to F contains
the cell dual to F’ in its boundary. This fact implies that the complex ﬁN'g is, up to
a shift of degrees, the dual of CSW (X ™), at least modulo 2 (in general, there are
differences in some signs due to orientations). Explicitly, the closure in IET\/I'g of a
stratum of dimension d correspond to the dual of a chain in CSW (X @) of dimension
nm — d. In the remaining sections of this paper, we will always implicitly assume this
shift, and we will grade 15\1\/12 to match the corresponding dimension of the dual cell.

In particular, 1’31\\/1’6’ calculates the cohomology of ¥ ) and is therefore acyclic up to
dimension nm — 2. Alternatively, we can see this, as explained in [8], by observing
that the Atiyah duality theorem implies that the Spanier dual of ¥ ™) is (Y ™)+,

Passing to the limit for m — oo, we obtain an acyclic Fo—complex ﬁVG ® F5, dual to
CEV(X) ® I, for which a basis {e(S)}sea,, is parametrized by strata in ®oo. The
degree of e(S) as a cochain of X is equal to the codimension of F'. This is an equivariant
cochain model for £(G). In particular, the quotient FNg ®IF, = FNg / G ®IF, calculates
H*(G:F,). In the following, when we need to stress the Coxeter group G involved,
we will use the heavier notation ®, ¢ instead of Poo.

This description of the cochain complex FNg calculating the cohomology of G fits
particularly well with a chain-level interpretation of duality via intersection theory that
we will occasionally use in proofs and that we briefly recall here. Given a manifold X
and an immersion i : W — X of a codimension d manifold in X, we say that a smooth
singular chain in X is transverse to i if, for every simplex o: A¥ — X of the chain, o
is transverse on every face of A¥ and subface, in the sense of manifolds with corners.
It can be proved that the subcomplex consisting of chains that are transverse to i is
chain equivalent to the full one. To every d—dimensional singular simplex o : A — X
transverse to i we can associate the element tyy (o) € 5 given by the mod 2 cardinality
of 0~ (W). This procedure defines a cochain dual in the complex dual to the chain
complex of singular chains transverse to i. If i is a proper embedding, ty is a cocycle
and defines a cohomology class. The most important constructions in cohomology
can be understood geometrically using this model. In particular, if f:Y — X is
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transverse to i, then f#(ty) = Tr—1(w)- The reader will find a complete reference of
this approach to cohomology in [6].

In our particular context, each stratum S € ®, defines such a cochain tg. We
understand the coboundary of tg as 7y(s), so we can identify FN*,, at least modulo 2,
with the cochain complex spanned by tg for strata S € ®,. Suppose W C Y, éoo) isa
proper submanifold of codimension d obtained as a union of strata. In that case, its
associated cochain Ty is the sum of tg for strata S € W of minimal codimension, and
8(tw) = 0. If, in addition, the action of G preserves W, then, passing to the quotient,
its image W C Yéoo) /G defines a Thom class represented in FNg; by the sum of strata
contained in W. This construction is made precise in [7, Definition 4.6].

3.3 The special case of Coxeter groups of type B

We conclude this section by further investigating the cases of our interest G = Wp,
and, in the following subsection, G = Wp, . The strata of ®,, for the symmetric group
>, can be described in terms of leveled trees, as shown in [8] using ideas dating back
to Vassiliev [19]. A straightforward adaptation of these ideas shows that, in the case of
the Coxeter groups of type Bj,, we can describe them in terms of symmetric leveled
trees. This interpretation encodes geometrically and combinatorially the structure of
Wg,, as a wreath product of %, with a cyclic group of order 2. Below we provide the
precise definitions.

First, we observe that, since Wp, is generated by a set S = {so,...,sp—1} of n
fundamental reflections as described in Figure 1, the Fox—Neuwirth complex IE\IJ\I*WB
has a Z[Wp,]-basis {e(a)} indexed by n—tuples of nonnegative integer numbers
((10, ey an_l).

The reflection hyperplane arrangement associated with W, can be described as Ap, =
{Hij—“j}lf,-qf,, U {H)}, where

Hif/:{EERn|Xi=ixj}, HY ={xeR"|x; =0}.

Moreover, s can be identified with the reflection with respect to H {) and, for every i >0,
s; with the reflection with respect to H l.J; 41~ Thus the basis element corresponding to
a = (ap,...,an—1) is described as the stratum

e(@={(x1.....xx) €ER®)"|VI<i<n—-1,V1=<j <a;:(x); = (xi+1);,

(Dai+1 < (Xit1)a;+1. V1 <k <ag: (x1)k =0, (x1)ag+1 > 0}.
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Passing to the quotient by the action of Wg,, we see that FN*WB has a Z-basis
constituted by [ag :---:an—1] = [e(ao, ..., an—1)].

The differential on FN"I}VB is complicated, but it is combinatorially accessible via a
n
description of its basis in terms of trees.

Definition 3.2 A signed depth-ordering is a sequence of labeled inequalities of the
form I' = (0 <4y i1 <a, *** <a,_, in), Where iy € {—n,...,—1,1,...,n} for all
1 <k <n, and these indices have pairwise different absolute values. By convention,
we let ig = 0.

A planar level tree is a planarly embedded tree T satisfying the following conditions:
¢ it has a root vertex embedded in (0, 0) and all the other vertices having their
second coordinate (the “height”) equal to a positive integer;
¢ two edges connected by an edge have heights whose difference is 1;
¢ the height along the unique minimal path from the root to every leaf is always

increasing.

A planar level tree with labels in I is a couple (T, 1) defined as follows: T is a planar
level tree, and A is a bijective labeling of the leaves of 7" with elements of /.

A symmetric planar level tree is a planar level tree invariant under the reflection r along
the y—axis and having an odd number of leaves.

An antisymmetric planar level tree with labels in {—n, ..., n} is a labeled planar level
tree (7, A) with labels in {—n, ..., n} such that T is symmetric, and two leaves that
correspond to each other under the application of r have labels opposite to each other.

The antisymmetric planar level tree associated with a depth ordering I' is the antisym-
metric planar level tree T, unique up to isotopy, defined by the following properties:

¢ the labels of the leaves, from left to right, are —ij, ..., —i1,0,i1,...,ixn;
o the leaves labeled iy _1, ig, for 1 <k <n, are separated by a vertex of height ay,

but not by vertices of height less than ay.

Let k > 0. The k—symmetrization Sy (T) (resp. §k(T)) of a planar level tree T (with
labels in {1,...,n}) is a symmetric planar level tree S (resp. antisymmetric planar
level tree with labels in {—n,...,n}) obtained by the following procedure. Glue T
from the right to a vertical linear planar level tree lying into the y—axis up to height k.
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~L

Figure 2: An example of antisymmetric planar level tree with labels in [—3, 3].

Then, add the mirror image of such tree under r to obtain a symmetric planar level
tree (choosing the unique antisymmetric labeling that extends the labeling of 7" in the
labeled case).

There is a free action of Wp, on the set antisymmetric planar level trees with labels
in {—n,...,n} given by interpreting elements of Wp, as signed permutations and
permuting labels accordingly. We always assume that the edges of a level tree are
oriented so that there is a unique oriented path from the root vertex to each leaf.

Similarly to the symmetric group case, we have the following immediate proposition.

Proposition 3.3 The function I' — Tt is a bijection between the set of signed depth-
orderings with n labels and the set of isotopy classes of antisymmetric planar level
trees with labels in {—n, ..., n}. Furthermore, toI' = (0 <4, i1 <g, *** <a,_, In) IS
associated a stratum oe(a) € ®oo, Wy, » Where 0(k) = ix, a = (ao, . ..,an—1), and this
provides a Wg, —equivariant additive basis of I:“T\I*I,‘VBn labeled by signed depth-orderings
or, equivalently, by isotopy classes of antisymmetric planar level trees with labels in
{—n,....n}. Wp, acts on this basis by permuting labels. Consequently, an additive
basis for FN;VB” is given by symmetric planar level trees with 2n + 1 leaves.

An example of an antisymmetric planar level tree (7, 1), with labels in [3, 3], is given
in Figure 2. The associated signed depth-ordering is I' = (0 <; —2 <9 —3 <3 1) and
the corresponding stratum is oe([1, 0, 1]), where 6(1) = -2, 0(2) = -3 and 6 (3) = 1.

We observe that we can use Proposition 3.3 to reinterpret operations on (symmetric)
level trees in terms of n—tuples or (signed) depth-orderings. For instance, the k—
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symmetrization of trees provides a linear map Si: FNEn — FN’ISVB that we can
n
interpret as [ay :+--:ap—1|—>[k:ar1: - 1an—1].

We can now describe the differential in terms of this basis.

Definition 3.4 [8] Let (7, A) be a planar level tree. Let v be an internal vertex. Let
E(v) be the set of edges whose source vertex is v. The planar embedding of 7" induces
an order on E(v), defined from left to right. A vertex permutation of (7, 1) at v is
another planar level tree that is isomorphic to (7, A) as a labeled tree but with a different
planar embedding that differs from the original one only by the ordering on E (v).

Given a planar level tree (7, A) and an internal vertex v, let (e, ), withe < f, be a
couple of adjacent edges in E(v). Let u, and us be the targets of e and f', respectively.
Let o be a shuffle of the two sets E(u,) and E(uy). Let d,, £+ (T, 1) be the planar level
tree obtained by gluing together e and f, with common target #, and then applying the
vertex permutation that permutes the edges in £ (i) by o.

Recall that, in the A, case, the differential in FN* of the basis element corresponding
to a planar level tree with labels (7, A) is given by the sum over (v, 0) as above of
dy,o (T, A). Similarly, we have the following proposition, which essentially states that
a symmetrization of the previous construction gives the differential in the B, case.

Proposition 3.5 With the correspondence provided by Proposition 3.3, the differential
of the cochain complex IET\I*WB” ® 5 is given in terms of antisymmetric level trees
with labels d(T, 1) = Y (.. £.5) 2_(e'.f'.1) Qe. fiode’, g/« (T, A), where the sum is over
sextuples (e, f,0,€’, f', ) such that d, s,de f/(T, ) is again an antisymmetric
planar level tree. Equivalently, d(T, 1) is obtained by performing an operation d r.,
starting from a couple of adjacent vertices (e, f) lying into the positive half-plane
{(x,y) | x = 0}, and then perform the mirror operation on the mirror pair of adjacent
edges (¢’, f') in the negative half-plane. If we call such symmetric operation d 2 fo

d(T.0)= > ngﬁU(T,k),
(e.f) ©

where the sum is over couples (e, f) of adjacent edges in the positive half-plane and

we have that

shuffles o of the two sets of vertices incident to the target of e and f', respectively.

We can equivalently express this construction using planar level trees T with n + 1
leaves labeled by (—n,...,—1,0,1,...,n), with labels having pairwise different ab-
solute values, such that the leftmost leaf has label 0. We recover the corresponding

Algebraic & Geometric Topology, Volume 23 (2023)



3236 Lorenzo Guerra

antisymmetric level tree as follows. We choose a representative of the isotopy class of
(T, X) in which the entire oriented path from the root vertex to the label O lies on the
y—axis. Then we merge T with its mirror image along y with opposite labels. In this
case, the differential is given by contracting a couple of adjacent edges and shuffling.
When the result is a tree whose leftmost leaf is not labeled by 0, we replace the part of
the tree belonging to the negative half-plane {(x, y) | x < 0} with its mirror image in
the positive half-plane, with opposite labels, and shuffle the corresponding edges in all
possible ways.

3.4 The special case of Coxeter groups of type D

We now turn to the description of the complex FNW . Once again, since this Cox-
eter group has n fundamental reflections fg, ..., -1, a Z[Wp, ]-basis for FN* is
indexed by n—tuples of nonnegative integers a = (ag, ...,dn—1).

The inclusion j, : Wp, — Wp,, identifies the reflection arrangement associated to Wp,
with the subarrangement of Ay, composed by the hyperplanes H l.jfj, forl <i<j<n,
and t; = s; for 1 <i <n, while 7¢ is the reflection along H, ,. Thus the basis element
of FN*WD corresponding to a is described as the stratum

n

e(@)={(x1,....xp) e R®)" |V1<i<n—-1,1<j <a;:(xi); = (Xi+1)).
(Xi)a;+1 < (Xit1)a;+1. V1 <k Sao: (x2)k = —=(XxDk. (X2)ag+1 > —(X1)ag+1}-

Passing to the quotient by the action of Wp,, we see that FNy,  has a Z-basis
constituted by [ag :---:an—1] = [e(aop, ..., an—1)].

The complex FNW / Jjn(Wp,) also calculates the cohomology of Wp, . Therefore,
there is a cochain equlvalence Q: FNW — FN / Jn(Wp,) between the two reso-
lutions. In the subsequent section, we compute an explicit formula for ¢ that we will
use to perform cochain-level computation in the following sections. For instance, we
will prove the relations for coproduct of transfer products of Hopf ring generators by
mapping them to IE\I\JI* / Jn(Wp, ), where their expressions are Closer to the B, case.
As a notational conventlon we denote this cochain complex by FN'} W, -

First, we observe that [Wpg, : j,(Wp,)] = 2; thus j,(Wp,) is a normal subgroup
of Wp,,. The two cosets of j,(Wp, ) in Wp, are represented by the identity and sq, the
only fundamental reflection of Wp, that is not contained in j,(Wp, ). Thus, given a
Z[Wpg,,]-basis B for IEN*WBn , the classes of x and s¢.x, where x € B, provide a Z-basis
for FN’ *WDn' Let B be the basis defined above in terms of n—tuples or equivalently
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of symmetric planar level trees, parametrized by n—tuples of nonnegative integers
a=(ag,...,an—1). We denote by [ag:---:a,—1]" and [ag:---:an—1]” the cochains
in FN' >VkVD,, arising from the basis element corresponding to a and soa.

The complex FN’ };,Dn also has a description in terms of trees.

Definition 3.6 Let 7 be a symmetric planar level tree with 2n + 1 leaves. An orien-
tation of T is the choice of an element of L/~, where L is the set of antisymmetric
labelings of T with labels in {—n, ...,n}, and ~ is the equivalence relation defined by

A~LA & M=o forsome o< Alt(2n+1).

An oriented symmetric planar level tree is a couple (T, O), where T is a symmetric
planar level tree and O is an orientation of 7.

Note that if two antisymmetric labelings of a symmetric planar level tree T differ by
a permutation o € X¢_, 1, then o must fix 0 and act as a signed permutation on
{—n,...,—1,1,...,n}. Hence, an orientation of T is the choice of an antisymmetric
labeling up to the action of j,(Wp, ). Since the index [Wp, : j»(Wp, )] is 2, there are
two possible orientations for a symmetric planar level tree 7', determined by the parity
of the number of negative labels of leaves in the positive half-plane. In particular, we
can identify an orientation O with a sign 4 or —, corresponding to labelings with an
even or odd number of positively labeled leaves in the positive half-plane, respectively.

Moreover, from the fact that Alt(2n + 1) is normal in X551, it follows that if 7" is a
symmetric planar level tree, A is a labeling of 7" and o (7') is a vertex permutation of
T at a vertex v, then the orientation of the permuted labeled tree o (T, A) only depends
on the orientation determined by A. Therefore, the rule for the differential in FN*WB,,

induces a formula for the differential in FN’ ;VD” in terms of trees. Hence, we have the
following description.

Proposition 3.7 FN’ ;VD" can be described as the cochain complex having additive
basis indexed by oriented symmetric planar level trees with 2n 4+ 1 leaves, with
ditferential induced by the symmetric tree ditferential in ﬁN;VB” by keeping track of
orientations.

The reader is encouraged to compare this description with the notion of “charged”
configuration used in [9].
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4 Geometry and combinatorics: chain-level formulas

We devote this section to developing some formulas that will allow us to perform
calculations at the (co)chain level. These computations will be needed at points,
especially when retrieving relations. We first compute some connecting maps between
the Fox—Neuwirth complexes of Coxeter groups of type A, B and D. Then, we provide
cochain representatives of the structural maps of our almost-Hopf ring structures.

4.1 The connecting homomorphisms

As I::N*WD and IET\I’V’I‘}D are both free resolutions of Z as a Z[Wp, ]-module, they need

to be Wp,—equivariantly cochain equivalent. We begin by providing a formula for an
explicit equivalence ¢ relating the two models FN*WD and FN’ ;VD" .

Lemma 4.1 There is a cochain homotopy equivalence ¢™* FN"IjVDn — FN’ ;,};Dn defined

by the formula
[ao:alzazz---:an_1]+ ifa0<a1,
o*lag:-+:an—1] =3 lag:ar:az:--:an—1)t +ar:ao:az:---:an—1]" if ag = ay,
[ar:ao:az:---1an—1]" if ag > ay,

induced by the inclusion Y’ V(VOE) CY V(VO;) and yielding the identity in cohomology.

Proof We observe that the inclusion

(00) (00)
YWB,, < YWDn
is a Wp, —equivariant homotopy equivalence. Moreover, the inverse image in Y, V(Vo:) of
n
each stratum of @ 7, is a union of strata in @, ,, - Thus, passing to quotients,
this yields a map

(c0) (c0)
Ywu,  Ywn,

g —2 > —=1
Wp, Wb,

that induces a well-defined map between the cochain complexes ¢*: FN’;VD” — FN’ ;Von'

We now check that ¢* satisfies the given formulas. It is sufficient to consider the finite

approximations
(d) (d)
). YWBn YWDn
o —" - —,
Wb, Wp,
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For any given stratum S = e(ayo, ..., an—1) for Wp,, since @@ being a O—codimen-
sional immersion, is transverse to S, we have that (¢(@))*(zg) = T(p@)—1(s)- We now
distinguish three cases:

e ifag <ay, then (p)71(S) = e(ag.a1.az.....an1);
e ifag > ay, then (p{)~1(S) = s0.¢(ar.a0.az. ... an—1);
. ifa0=a1,then((p(d))_l(S)istheunionofe(ag,...,an_l),so.e(ao,...,an_l)

and strata of bigger codimension.

This implies that ¢* has the desired form. O

We also consider the following group homomorphisms:

e the standard inclusion j : X, — Wp, already considered in the previous section;

e the involution ¢y, : Wp, — Wp, given by conjugation by s¢, the unique gener-
ating reflection of Wp,, that does not belong to Wp,,, that fixes ; for 2 <i <n
and switches #p and #;;

e the two inclusions iy, i_: X, — Wp, given, in terms of the Coxeter generators
to,...,tp of Figure 1,by iy (i,i+1)=¢ifi >2,i4(1,2) =11 andi_(1,2) =1p.

We denote by t: H*(Wp, ;F2) — H*(Wp,;F2) the morphism induced by cg, on
cohomology.

We note that the two following properties hold by construction:
e wj =idy,,;
e moiy =moi_ =idy,, where w: Wp, — X, is the composition of the inclusion
Jj: Wp, — Wg, with the projection W, — Z;

® C5p0i4 =i
We compute cochain representatives of ¢ in the following lemmas.
Lemma 4.2 1 is induced by the cochain-level map (*: FN;VD” — FN;VD” defined by

L#[aoza1:az:--~:an_1]=[a1:ao:a2:-~-:an_1].

Proof Since the image under ¢y, of a fundamental reflection for W = Wp is again a

fundamental reflection, for every I C T" C {t9,...,,—1}, the set of minimal-length
: : I’y _ cso(T)

coset representatives satisfies c5, (W ) = Wcsoo(I‘) . Thus,

e 22T 2+ ) elesg(I1) 2+ 2eso(Ti) 2-+)

Algebraic & Geometric Topology, Volume 23 (2023)



3240 Lorenzo Guerra

defines a cy,—equivariant chain map CIV b C:V Pn This yields, dually, the desired
cochain map FN*WD” — FN"IjVDn . O

We can also describe ¢ in terms of FN’ ;VDn' The proof of the following lemma is
straightforward.

Lemma 4.3 ¢ is induced by the cochain-level map '*: FN/ ;VD,; — FN/ >VkVD,, defined by

/#[

# — _
Mlag:+ian—1]" =lao:--:an—1]". Mlaog:--ian—1]" =lag: - :an—1]"

In terms of oriented symmetric planar level trees, the map ! * acts on (T, O) by replacing
O with the opposite orientation.

The following identity is also proved by direct inspection.
Lemma 4.4 The following diagram commutes:

* 9" 1%
FNWD” — FN W,

/| |-

* 1%
Ny, — PN,

The formulas for the other connecting maps follow from a general remark.

Lemma 4.5 Let G be a Coxeter group, with Coxeter generators S = {sg, ..., Sy} and
H < G be a parabolic subgroup, generated by a subset T = {sj,,...,Si, } € S. The
inclusion H < G is represented at the chain level by the chain map CH — CS given
byc(L,y)—c(L,y), forflagsT =[5 21 2--- 21, 2@) with[i, CT C S and
elements y € H.

Dually, it is represented at the cochain level by the cochain map FNg, — FN7; given by

le(ao. ....an)] € C,fl . le(aiy, ..., ai,)] ifa; ='0 forall j & {ig,...,im},

0 otherwise.

Proof Since the inclusion of parabolic subgroups preserves minimal coset representa-
tives, the De Concini—Salvetti boundary formula of Theorem 3.1 implies that the given
linear morphism CH — Cf is an H —equivariant chain map. Dualizing this yields the
cochain formula between Fox—Neuwirth complexes. |
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As particular cases of this lemma, we retrieve cochain formulas for our connecting
homomorphisms:

Corollary 4.6 The following statements are true.
(1) The linear morphism j*: FN"{VB” — FNg, given by

[a a ]|_> [al,...,an_l] ifa():O,
0o Bnl 0 if ag > 0,

represents j at the cochain level.
(2) The linear morphism i¥ : FNy, — FN5, given by

[a a ]|_> [alﬂ“'aan—l] 1fa0 =09
Oreeo il 0 if ag > 0,

represents i4 at the cochain level.

(3) The linear morphism i* : FN’V"VD — FNEH given by

[a a ] s [a05a29- . 9an—1] ifal = 0,
05---5Un—1 0 I'fal >O’

represents i4 at the cochain level.

4.2 Structural morphisms: A p

We want to describe the almost-Hopf ring structures presented in Section 2 in our
geometric context. We begin with the coproduct map in Ap. In contrast with the
symmetric group case, the cochain-level map inducing the coproduct is relatively
complicated. Its underlying combinatorics is built upon elementary steps that we,
mindful of the botanic analogy, suggestively call “prunings”.

Definition 4.7 Let T be a planar level tree. An elementary k—pruning of T is a planar
level tree T’ obtained by the following procedure. Choose an internal vertex v of T
of height k, and consider on E(v) the order induced by the planar embedding. Let
1 <[ < |E(v)|, consider the [/ biggest elements e, ...,e; of E(v) with respect to
this order, and let v} be the target of ¢;. T" is the subtree of 7" spanned by v and all
vertices that can be reached from one of the v; through an oriented path. 7" is the
complementary subtree of 7" in T. We call the planarly embedded subtree 7" the
scrap of the elementary k—pruning. An elementary k—pruning is said to be minimal if
[ = 1. A k—pruning is a couple (T’, T") constructed as follows:
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e T’ is obtained from a sequence of elementary k—prunings
T«»T{«»Tz’«»---«»Tj’:T’
performed on pairwise different vertices vy, ..., v; of T', with scraps 7}/, . . ., Tj’ ",

e T" is a planar level tree obtained by joining these scrap subtrees along a vertex
w of height k and performing a vertex permutation at w that shuffles the edges
of the scraps.

Let T be a symmetric planar level tree. An elementary symmetric k—pruning of T is
a tree T’ obtained as follows. Apply to T an elementary (nonsymmetric) k—pruning
whose scrap T does not contain the central leaf belonging to the y—axis. Then, remove
the image of the subtree of 7" under the reflection r along the vertical axis. 7" is called
the scrap of the elementary symmetric pruning. An elementary symmetric k—pruning is
said to be minimal if it is obtained from a minimal elementary k—pruning. A symmetric
k—pruning is a couple (T’, T"), where

e T’ is obtained from a sequence of elementary k—prunings
TA»TI’«»TZ’A»---«»Tj’zT/
performed on pairwise different vertices of T, with scraps 77/, ..., Tj” ;

e T is a nonsymmetric planar level tree obtained by joining the scrap subtrees to
a vertex w of height k and performing a vertex permutation at w that shuffles
the edges of the scraps.

We note that elementary k—prunings at different vertices commute, both in the symmetric
and nonsymmetric cases. Hence, a k—pruning or symmetric k—pruning is uniquely
determined by the set of elementary k—prunings that compose it, independently of the
order in which they are performed.

There is also an alternative way to define (symmetric) k—prunings in terms of minimal
k—prunings instead of elementary ones. A (symmetric) k—pruning is obtained by
performing a sequence of minimal elementary (symmetric) k—prunings, not necessarily
at pairwise different vertices, and then joining the scraps at a vertex of height k& without
shuffling the edges.

We now consider three linear morphisms that we will need to define the cochain-level
coproduct map:
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e the k—pruning map

Pi:FNyy, ®F:— (P FNj, ®FNj, ®F
a+b=n
that maps a symmetric planar level tree 7' to the sum > T’ ® S (T") over all
the possible symmetric k—prunings (7, T") of T,
¢ the minimal k—pruning map
PM Ny, ®F — (D FNy, ®FNj, ®F,
a+b=n

that maps a symmetric planar level tree T to the sum Y T’ ® Si(T") over all
the possible minimal elementary symmetric k—prunings (77, T") of T’;

 the concatenation map C': FN’;VB ® FN;VB QF, — FN;VB such that

C(ag: - :an—1]Q®[bo: - :bm—1]) =lao: - :an-1 :boz---:b;tn;].
The map Py is exemplified in Figure 3. We understand C at the level of symmetric
planar level trees as the function given by the following procedure. Take a couple of
such objects (7, ). Cut S along its central vertical axis. Finally, glue the right piece of
S onto the right side of 7" and the left part onto its left side to obtain a new symmetric
planar level tree. We remark that these linear morphisms are degree-preserving, but
they are not chain maps.

In the A, case, we can define a similar k—pruning map P]é by summing all nonsymmetric
k—prunings. For k = 0, P{ is a chain map, and it is shown in [8] to induce the
coproduct in cohomology. This statement is not true in the B, case because the
differential of an antisymmetric planar level tree with labels behaves badly near the
central “trunk” labeled 0. Nevertheless, at each level k, away from this central stem,
this is essentially true. For this intuitive reason, we must define our cochain-level
coproduct map differently: prune a symmetric planar level tree at every level and tensor
it with a symmetric planar level tree whose principal k—blocks, as defined below in
Definition 4.10, are the scraps of the performed prunings. To prove this statement, we
need some preliminary calculations.

Suppose that a symmetric planar level tree 7' corresponds to [ag :-+-:an—1] € FNy, .
In that case, consider the set of couples of adjacent edges (e, f), withe < f,in T
having the same source vertex and belonging to the positive half-plane {(x, y) | x > 0}.
This set in bijective correspondence with {0, ...,n — 1}, and the height of the common
vertex of the couple (e, f) corresponding to i is a;. This bijection is explicitly given by
counting the leaves in the positive half-plane that lie on the left of e. For 0 <i <n —1,
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Figure 3: The map P, defined as the sum of all possible symmetric 1—
pruning, on a given symmetric planar level tree.

we denote by d;(T') or equivalently by d, s the sum of the addends d eS fo of the

differential d, as expressed in Proposition 3.5, in which a vertex shuffle constructed

from the couple (e, /) corresponding to i appear. Thus, d(T) = Z;:é d; (T).

Lemma 4.8 Let T be a symmetric planar level tree corresponding to [ag :---:dp—1].

Let my be the smallest index such that a,,, = k. Let I be the trivial symmetric planar

level tree. Then the following statements are true:

ey

2)

3)

“4)
(&)

the pruning maps and the differential satisfy the equality

Prd + dPy + (id ® do) (P —id ® 1) = (id ® dm,_,) (id ® C) (P ®id) P
P(T)=T®I ifa; <k forall 0 <i <n;

foralla =[ag:---:an—1] andb = [bg:---:bm—1] with bg < min{ao, ..., an—1},

Cd;i ®id)(a®b) if0<i<n,

d;C b) =

iCa®b) =\ cidod_)asb) ifn<i<ntm.

and the latter also holds for i = n if bg < min{ag,...,an—1}—1;
(i[d® C) (P ®@id) Pr(T) = Pr(T) - T ® I ;

C(C ®id) = C(id® C).
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Proof The statements from (2) to (5) are easy. Regarding (2), if a; < k foralli, T
has no vertex of height k with more than one outgoing edge. Thus the only possible
symmetric k—pruning is the trivial one. Regarding (3), the bijection

0:{0,....,n—=1}{0,.... m—1}—>{0,...,n+m—1}

that shifts elements of {0,...,m — 1} by n yields a bijection between pairs (e, f)
of adjacent edges of the symmetric planar level tree T corresponding to C(a ® b)
and those of the symmetric planar level trees 77 and T"” corresponding to a and b
respectively. If by < min{ao, ...,an—1}, then for all i €{0,...,n +m — 1}, with the
only possible exception of i = n, this bijection preserves E(ve;) and E(vy,), where
ve; and vy, are the target vertices of the corresponding pair of edges (e;, f;). The
edges in E(ve;) and E(vy,) of the corresponding pair come either both from 7’ or
both from 7”. Hence d;C(a ® b) = dy-1ya ®b. If bg < min{ay, ..., ap—1} — 1 the
same is also true for the edges e, and f;, so the equality is satisfied also in this case.
Statement (4) is immediate from the definition of k—prunings and the combinatorics of
shuffles, and (5) is obvious.

On the contrary, (1) is more complicated and requires a more detailed proof. As
a notational convention, let d lh = Zi:a,-:l d;, the sum of the contributions to the
differential coming from vertices at height k. We compare d lh P (T) with Prd lh(T).
We consider different cases depending on the difference between k and /.

o If ] >k, dlh is computed by gluing together a pair (e, f) of adjacent edges of
height bigger than k (and its mirror pair) and performing a shuffle at the new target
vertex. These operations only change a connected subtree whose vertices all have
height bigger than k, and, by construction, k—prunings commute with such operations.
Hence dthk = Pkdlh.

e If =k, then we can write d,i’ Pre(T) =317 2(e, 1) e, r (T'®Sk(T")), where
the sum is over symmetric k—prunings (7”7, T”) of T and pairs of adjacent edges (e, 1)
in the positive half-plane with a common source vertex of height k in 77 or S (T").
We also note that Si(7") has a unique vertex w of height k. There is an obvious

bijection
| ] Em< || E@uEwW)\{e})
veV(T) ueV(T’)
h(v)=k h(v)=k

that maps an edge to its image in 7’ (if it is not pruned away) or in Sy (T") (if it is),
and that arises from the fact that, for elementary prunings, 7 = T'UT"” Ur(T"). The
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edge e is the unique edge belonging to the central vertical stem whose source vertex
is w. Moreover, this bijection preserves the properties of belonging to the positive
and negative half-plane. Therefore, we can write the summation above expressing
d ,ﬁ’ P (T) as the sum of three pieces:

e The first piece is the sum of the terms corresponding to (e, f) such that (e, f)
come from adjacent edges in 7". These terms correspond to symmetric k—prunings
of d f f,o(T)’ for shuffles o at the common vertex of e and f. Hence, their sum
yields Pd!'(T).

e The second piece is the sum of the terms corresponding to (e, f) in Si(T")
such that e # e and (e, f) do not come from adjacent vertices of 7. Under this
condition, the symmetric vertex permutation o (S (7")) of Si(T") at w that
switched the positions of e and f still produces a shuffle of the scraps of the
elementary prunings involved in (77, T”). Every tree in d, )(Sk(T")) cancel
out with a tree in d( 7,0y (0 (Sk(T"))). Hence, this second piece is 0.

¢ The third piece is given by the terms corresponding to (e, f) with e = eg. These
terms yield (id ® do) Pr. (T).

Finally, we deduce that d} P (T) = (id ® do) P¢(T) + Pyd}!(T).

o Ifl =k—1, Pkd]i‘_l(T) =D (e.f) 2(T".T") T’ ® Si(T"), where the sum is taken
over couples (e, f) of adjacent edges in 7" whose common source v has height k — 1,
and symmetric k—prunings (7', T") of trees in d(,, r)(T'). Let v, and v¢ be the targets
of e and f, respectively. By construction, d(, r)(T') glues v, and vy to a single
vertex v, such that E(v) = E(ve) U E(vy), suitably shuffled. Let A be the set of
edges removed by the corresponding elementary symmetric prunings at v and at r (),
the mirror vertex of v (which might coincide). We retrieve symmetric k—prunings
for which E(v.) € A and E(vy) € A from symmetric k—prunings (T, T") of T by
applying d, ry to T'. Now assume that v is not on the central stem of the tree. If
e # min(E(v)), it is the successor of an edge g € E(v), and the terms of Prd, 7 (T)
for which E(ve) € A cancel out with the terms of Prdg (T) for which E(ve) C A.
Similarly, all the terms for which E(vs) € A and f # max(E(v)) cancel out. The
only remaining terms are those in which we remove an entire subtree corresponding to
min(E (v)) — which is the mirror image of max(E (r(v)). If v belongs to the central
axis, we must slightly modify the argument to take into account only edges in the
positive half-plane and shows that the surviving terms are those in which an entire
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subtree stemming from max (£ (v)) is removed. The sum of all these elements is exactly
equal to the correcting term (id ® dp,_,)(id ® C) (P ®id) P]?l_ml (T). We deduce that

AP Pr(T) = Ped]'_ | (T) + (id ® dpm,_,)(id ® C) (P ® id) P (T).
e If/ <k —1, since k—prunings only depend on the part of the tree above height k and
d lh does not change it, the same argument used for / > k shows that d lh P, = Prd lh

Combining the equalities obtained in these cases yields (1). |

We are now ready to construct a cochain representative of the cohomological coproduct
map H*(Wp,) — @i=o H*(Wg,) ® H*(Wp,_,).

Proposition 4.9 Let Ay : FN;VB” RF, - Do FN’I,"VBi ® FN’I’ZVBn_i ® F, be the lin-
ear maps defined recursively by the formulas
e Ao = Py,
o fork>0,Ar =(G0dQ®C)(P, ®id)Ar_1.
Then
(1) the limit A = h_I)n Ay exists,
(2) A is a cochain map,

(3) A represents the cohomology coproduct map at the cochain level.

Proof (1) Let a € FN* and let m = max{ag,...,a,—1}. Statement (2) of
Lemma 4.8 guarantees that Ak (a) = Ay (a) for all k > m. Thus, the sequence
{Ar}r—, stabilizes and consequently has a limit.

(2) We first observe that Lemma 4.8(4) and (5) imply that
(d® C)(PM™ ®@id)Ax = Ak — Ag—y

for all k > 0, with the convention that A_{(7T) = T ® I. Combining this remark with

Lemma 4.8(3) and (5), we obtain that, for all k > 1,

([dR®C)d®dn,_, ®id)(id® C ®id)(Pr ®id ® id)(Pmm Rid)Ar_q
=[d®dn,_)dR®C)[{d®C ®id)(Pr ®id® 1d)(Pmln ®id)Ar_;
=[(d®dm,_)dRC)(Pr® C)(Pmm ®id)Ar_q
= (d®dm;_)(1d® C)(Pr ®id)(Ag—1 — Ag—2)-
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We use this to prove by induction on k that Apd = d A + (1d® do) (A — Ag—_1). For
k = 0 this identity is the content of the first statement of Lemma 4.8. For k > 0, we
deduce from the identity above and the previous lemma that

Ard = (i[d® C)(Py ®id)Ay_d
— (d®C)(P, ®id)dAp_; + (id®C)(Pr ®do)(Ap—_1 — Ap—2)
— ([d®C) (P, ®id)dAp_; + (1d® C)d(Pr ®id)(Ag_ — Ap_s)
+(d —dm;_)(1dQ C)(Pr Qid)(Ax—1 — Ag—2)
— (i[d® C)d(P; ®id)Ay_; + ({d® C)(id® do ®id)[( Py —id® I) ®id]As_,
+(d®C)d (P ®1d)(Ag—1—Ak—2) +d(dQ C)(Pr ®id)(Ag—1 — Ag—2)
= (i[d® C)d (P ®id) Ag_s + (id® do) (id ® C)[(Pr —id ® ) ®id] Ag_
Y dAr—d(1®C) (P, ®id)Ag_n
— dA; —([d®do)(Ap — Ap_y) + (d® C)d(P, ®id)Ap_,
—d(id®C)(P; ®id)Ag_s
=dA;—(1d®do)(Ax — Ag—1)-

To justify the last equality, we observe that (P, ®id) Ag_» is a sum of terms of the form
¢ ®a ® b with by < min{a; } — 1, and we apply the stronger clause of Lemma 4.8(3).

Now the identity d A = Ad follows by passing to the limit, and using that the sequence
{Ar}re, stabilizes.

(3) Consider the dg-module U over F, with basis given by symmetric planar level
trees with antisymmetric labels in any finite subset / C N, not necessarily {—n, ..., n},
with the symmetric tree differential. Note that (P,,~ IE\I\JI*IjVBn ® [, embeds in U in
the obvious way. We observe that the linear maps Py, P;™" and C lift to linear maps
P, P U —>UQU and C:UQ®U — U. Py and P are still defined via prunings,
but we additionally keep track of the labels of the subtrees involved. We compute C
on 7" ® T” by splitting 7" symmetrically along the vertical axis, keeping labels, and
symmetrically attach the two parts to 7’ to obtain a new basis element of U. Lemma 4.8
still holds for this labeled version of the morphisms by the same proof. Consequently,
there is a labeled version A: U — U ® U of A, constructed recursively via finite
approximations Zk, that still commutes with the differential. Note that we can also
embed

IET\I"I},BH ® IE\N)I';VBM ®F;
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into U ® U by keeping the labels of trees in FN* and relabeling trees in FN*

via the bijection {0,...,m — 1} — {n n+ m — 1} that raises numbers by Z
There is also a projection UxU — FN}'},BH ® F,I:I,WB ® IFz that maps every ba-
sis element of U ® U that does not belong to FNJ, ®FN ®F, to 0. By
induction, we easﬂy see that restricting each Ak for all k (and consequently, A)
to FN’;V ® FN ® F» and composmg with this projection we obtain linear
maps @n>0 FNW ® F2 = Dps0 FN ® Drso FN*WB” ® I that are equivariant
with respect to the monomorphisms WB x Wp,, — Ws,,,, and satisfy the same
formal relation with respect to the differential. By identifying FNy,, ~ with the invariant
subspace (FN* )WBn the limit map A restricts to A, which is thus a cochain-level
realization of the coproduct map. |

We now turn our attention to the transfer map. We need a preliminary definition.

Definition 4.10 (partially from [8]) Leta =[ag:---:an—1] € FN’;VB” be as defined
above. In what follows, we assume, by convention, that a_; = a, = 0. We say that the
chain [a; :---:a;]is a k—-block of a if a; > k foralli <! < j and max{a;_1,a;+1} <k.
We say that a k—block [a; :---:a;] of a is principal if, in addition, ming<,<; a, = k.
We denote by PBIy (@) the tuple of the principal k—blocks of a, ordered from left to
right.

For example, the basis elementa = [3:2:3:1:2:1:3:2:0: 3] has four 1-blocks:
B1,1=1[3:2:3], B12 =[2], B1,3=[3:2], and By 4 = [3]. PBly(a) = (B1,2. B1,3).

Note that a basis element a is uniquely determined by {PBlx (a)}7, the collection
of its principal blocks. To retrieve a from these data, we can use the following
procedure. First, for all k > 0, add an entry equal to k before each principal k—block
and concatenate all such tuples to obtain a;. Then, we obtain a as the concatenation of

..@k.,@g_1,...,ag. This sequence is necessarily finite because for k > max['— 3 ai,
PBIl(a) is the empty O—tuple. With this method, we can construct a basis element a
from an eventually empty collection of tuples { B }, where the entries of By are tuples

of natural numbers strictly bigger than k.

We also observe that k—blocks can be retrieved from the corresponding symmetric level
tree T. They are given by the connected components of TN{(x,y) eR? |x >0,y > k}.
Interpreted this way, a k—block is principal if and only if it does not intersect the central
vertical axis but is contained in the (k—1)-block intersecting it.
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Proposition 4.11 Givena € FN’;VB” ,be FN*WBm and k > 0, let n, x and np, ;. be
the lengths of PBly(a) and PBI (b), respectively. Given a sequence o = {0k }3—
of permutations oy € Xy, +n, . define o(a,b) as the unique basis elements of
FN}?VBner such that, for all k > 0, PBli(o(a, b)) = o (PBli(a), PBl; (b)), where
(PBlg (a), PBlg (b)) is the concatenated (n 4 x +np i )—tuple and oy acts on (ng g +np i )—
tuples by permuting the entries. Let O FN’;VB” ® FN*WBm ®F, - FN ;VB,,er ®IF, be
the homomorphism that maps a ® b to the sum ) o (a, b) over sequences of permu-
tations ¢ = {0}y, such that oy is a (ng i, nb’kf—shufﬂe for all k > 0. Informally,
a © b is the sum of basis elements whose principal k—blocks are obtained by shuffling
the principal k—blocks of a and b. This defines a morphism of complexes that induces
the transfer product in cohomology.

Proof The reflection arrangement of Wp, x Wp, , with its product reflection action
on R" x R™, is Ap, x Ap,, = {H xR™}geca, U{R" x H'}grc, . Beingita
subarrangement of Ap, ., we have a natural inclusion

ABy XABm, Wg, W *

n+m
We can explicitly obtain such inclusion by splitting a configuration of n 4 m points
into the two subconfigurations consisting of its first n points and its last m points,
respectively, and relabeling the indices of the second one. This map is a (Wg, xWg,, )—
equivariant homotopy equivalence.

Therefore, passing to quotients, this yields a map

(00) (c0) (c0)
YWBn+m — YWBn % YWBm

T

Wg, x Wg,, Wg Wpg
that models the standard homotopy equivalence B(Wpg, x Wp, ) >~ B(Wp,) x B(Wg,,).
Moreover, the obvious quotient map

(00) (00)
YWBn +m YWB

Wg, x Wg, Wpg

n m

/
T

n—+m

n+m

is a covering model for B(Wp, x Wg,,) — B(Wp, ).

Letx =[ag:---:an—1]®[bo:---:bm—1] be a basis element for the Fox—Neuwirth
complex FNE,, ® FNEm ® F». Let 0 be a smooth singular simplex transverse to our
strata. By construction, the evaluation of [ag:---:au—1]® [bo:*--:bm—1] On o is the
sum of the evaluations of x on 7 (), as ¢ varies among all liftings of o. A direct
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calculation shows that some (6 intersects the stratum corresponding to x if and only
if o intersects some stratum e(c), where the k—principal blocks of ¢ are obtained by
shuffling the k—principal blocks of a and b. |

We conclude the treatment of the structural maps on the cohomology of Wp, with
some potentially helpful remarks. Since we will not use these facts in this paper, we
will not provide complete statements nor proofs of these last claims. Nevertheless, it
should be straightforward, although notationally heavy, to fill in the details.

Remark 4.12 (1) The transfer and coproduct maps commute already at the cochain
level. To see this, you can observe that, by construction, A(a) is a sum of tensors
a’ ® a”, where PBly(a”) is given by the leftovers of symmetric k—prunings of a,
suitably shuffled, and that the pruning map Py, itself commute with ©.

(2) The same constructions of the coproduct map in terms of prunings and the transfer
map in terms of principal block shuffles can be generalized to the cohomology with
integral coefficients. In these cases, additional signs that we can compute from those
appearing in Theorem 3.1 are required.

4.3 Structural morphisms: A p

The coproduct and the transfer product for Wp, are described geometrically, similarly
to what we did for Wp,. However, some complications arise. For example, we cannot
repeat the proof of Proposition 4.11 as it is for FN*I,‘VD , because, in this case, a product
n
of strata S x §" C YV(VO;)) X YI/(VOZ) is not necessarily the closure of a union of strata in
n m
v However, these ideas adapt well to the cochain complex FN'3;, | which we
WDn+m Wb,
will use in the following as a cochain model. We can retrieve the identities we need in

FN*;VD by using the equivalence ¢ of Lemma 4.1.

We can now state the formulas parallel to Propositions 4.9 and 4.11 for Wp, . First,
we consider the following oriented versions of the pruning and concatenation maps.
Given a symmetric k—pruning (7’, T") of a symmetric planar level tree T, let O and
O’ be orientations of 7 and T’ respectively. Fix an antisymmetric labeling A" of 7’
inducing ', and an antisymmetric labeling A of 7" inducing O such that its restriction
to 77, seen as a subtree of T, is . By keeping track of the labels of scraps, A induces
an antisymmetric labeling A” on Si (T") and, consequently, an orientation O”. Unless
the k—pruning is trivial, it is always possible to find such labelings A and A, and the
resulting orientation O” only depends on O and O'.
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Definition 4.13 Let k € N and let (7, O) be an oriented symmetric planar level tree.
An oriented k—pruning of (T, ©) is a quadruple (T, 0’, T”, ©") where

e (T',T")is a k—pruning of T,

e (0’ is an orientation of 7",

e (" is the orientation of S (7T") determined from O and O’ via the procedure

above.

An oriented k—pruning of (77, 0’, T”,0") of T is called positive (resp. negative) if
O’ is the positive (resp. negative) orientation of 7.

Given a nontrivial k—pruning (7', T") of T, there are precisely two ways to extend it
to an oriented k—pruning (7', O, T”, 0"), one positive and one negative.

We now mimic the construction we produced for Wp, to describe the coproduct. We
thus consider the following maps:

 the positive and negative k—pruning maps
Pl PLEPFNY, ®F, > NG, @ PN, ®F,
n>0 n>0 m=>0
given by the formula
PEM =Y (T.0)&SK(T"). 0",
(T/,O/,T//’O//)
where the sum runs over all positive and negative oriented k—prunings of 7', respectively;

e C:FN }',‘VD” ® FN’ ;VDm ®F, > FN’ ;:VD . ® 5, the oriented concatenation map,
given by the formulas '

Cl@H)®®.+)=(Casb).+). Cla.Hebd.-)=(Cavb).-).
C@-)®b.+)=(Ca®b).-). C(a.-)®(Ob.-)=(Cacb).+).
We can also define AJIE, AL FN/};/Dn ®F, > P, FN/*WDi ®FN/*WDn—i ®IF, by the

recursive formulas
. &= pf
o Af=(d® C)(PE®iDAT | ifk>1.
Let A be the direct limit lim, (AT + A}).
Proposition 4.14 The oriented pruning coproduct A is a cochain map and induces the
coproduct A: Ap — Ap ® Ap in cohomology.
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Proof It is enough to observe that, looking at the proof of Proposition 4.9, we can
*

obtain the map A: FN'y, @ F» — Br_o FN’ wp, ®FN *WD,H- ®F, from

n
A:FNy, ®F, > PNy, @y, ©F,
i=0

by restricting to Wp,—invariants. ]

Proposition 4.15 Let a* and b* be generic basis elements of FN";VD" and FN' :Vom

respectively, where a (resp. b) is defined by an n—tuple a (resp. an m—tuple b) of
nonnegative integers. Let ©: FN’ ;VD” ® FN'p  ® Fo — FN/ *WDn+/n ® 5 be the
homomorphism that maps a* ®b¥ to the sum of all elements ¢*, such that the principal
k—blocks of ¢ are obtained by shuffling the principal k—blocks of a and b for all k > 0,
and the sign of ¢ is deduced from the signs of a and b by applying the multiplication
sign rule (+,+) —~ +, (+,—) > —, (—,+) — —, and (—,—) — +. This map is a
morphism of complexes and induces the transfer product in cohomology.

Proof The proof is essentially the same as that of Proposition 4.11. O

5 The almost-Hopf ring presentations

This section contains the statements of the Hopf ring presentation for Ap and the
almost-Hopf ring presentation for Ap. We thus state our main theorems, whose proof
will be postponed until Section 7 because we still need to develop some necessary
algebraic machinery. In the first subsection, we construct our generators, providing
cochain representatives and a geometric interpretation. In the second one, we explain
our relations and state Theorems 5.9 and 5.15. We then apply these results to extract
combinatorially accessible additive bases for Ap and Ap in Section 5.2. Finally, the
last subsection is devoted to the link between all these almost-Hopf ring structures.

5.1 Generators

We define certain cohomology classes that we will later prove to generate our (almost)
Hopf rings. We begin with Ap.

Definition 5.1 In FN’;VB , the following cochains are defined for k > 0, m > 0, and
n>0:
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* Vem=[0:1:1:-01:0:0:0:--01:00e--0: 0 ce-0 0 1],

2k —1 times 2k —1 times 2k —1 times
m times
o Sp=[1:1:---:1].
n times

A direct calculation shows that both yy ,, and 8, have trivial differential, and thus
define cohomology classes yx , € H’"(zk_l)(WBmzk ,IF») and 8, € H" (Wp,,; F2), that
we still denote, with a slight abuse of notation, by the same symbols. While the proof
of this fact is entirely straightforward, we provide a proof for the sake of completeness.

Lemma 5.2y ,, and 8y are cocycles in FNy, L ® > and FNy, . ® 2, respec-
m2 n

tively.

Proof yy ,, is represented by the symmetric planar level tree in Figure 4. We prove
that d; (Yk,m) =0 forall 0 <i < m2¥ by considering different cases:

o Ifi # (2% for 0 < < m, the addend d; of the differential identifies two edges
adjacent in a vertex v; for 1 < j < m, and performs a vertex shuffle at the new vertex.
Exactly two possible vertex shuffles yield the same tree. Hence d; (Y m) = 0.

o Ifi =12k for some 1 <[ < m, then dj (Vk,m) 1s obtained by gluing together v; and
v;+1 and shuffling the outgoing edges of these two vertices. Since all these shuffles
yield the same tree, and there is an even number of them — precisely (2];:1) — we have
again that d; (v ,) = 0.

e Ifi =0, vy and its mirror vertex are glued to the central axis of the tree, and the
corresponding outgoing edges are permuted with a symmetric shuffle. Again, there is
an even number of them (precisely 22k), and thus do(yk,m) = 0.

8y, is represented by a symmetric planar level tree with 2n + 1 leaves and a single
internal vertex of height 1. The same proof used in the second case of yi ,,, shows that
di(8y) =0forall0 <i <n. O

Another possible point of confusion is that the symbol y ,, is used in [8] to indicate a
classin H m(zk_l)(zmzk ;IF2). The class we define is the image of this cohomology
class of the symmetric group in H ’"(Zk_l)(WBmzk ;IF) via the map induced by the
projection 7 : WB « = ok, as we will prove later (Proposition 5.26).

We can interpret all the cohomology classes that we defined above geometrically.
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m m
2k 2k 2k 2k
V1 Um
Vo

Figure 4: The planar symmetric level tree representing Yg .

Proposition 5.3 The following statements are true:

(1) Consider the proper submanifold Ty ,, of YI/(Vo;;zk /WBmzk consisting of 2™
points that can be partitioned into m sets of 2¥ points, where all the points in the
same subset share the first coordinate. Then yy ,, is the Thom class of 1} ,, in
Yyoo) . in the sense of [7, Definition 4.6

(2) Consider the vector bundle n: E(Wp,) xw, R"™ — B(Wp, ), where Wp, acts
on R” via its irreducible reflection representation. Then &, is the n—dimensional
Stiefel-Whitney class of n (the nonoriented version of the Euler class).

Proof The description of yi , is a direct consequence of the conclusions of the
geometric arguments of the previous section.

Regarding the second point, consider the vector bundle n: E(n) — B(n) above, with
zero section ag: B(n) — E(n), and let T'(n) € H"(E(n), E(n)\co(B(n))) be its Thom
class. Define

Xp={(x1,...,xn) EY];:O) | (x1)1=---=(xn)1 =0}.

We observe that X, is a proper submanifold of YI/(VO;),Z and that the Thom class of the
image X, of X, in Y () /Wa,, is §,. We observe that the normal bundle of X, in
y (o) /W, is isomorphic to n|x,. Since restriction of vector bundles to subspaces
preserve Thom classes, we deduce that, if we take ¥ (*) /Wp as a model for B(Wp, ),
then j*(I*)~1k*(T () = 8,, where

e k:i(Elx,). E(lx,) \0o(Xn)) = (E(), E(n) \ 0o(B(1))),

e [:(E(lx,). E(lx,) \ 00(Xn)) = (B(W,), B(WB,) \ X») is a tubular neigh-
borhood of X, in B(n), and

e j:(B(Ws,),@)— (B(Ws,), B(Wg,)\ Xy).
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Note that the induced map /* in cohomology is invertible by excision.

Let ®: H*(B(n);F2) — H*(E(n), E(n) \ 00(B(n));F2) be the Thom isomorphism.
We recall that ®(«) = p*(«) U T'(n), where p: E(n) — B(n) is the projection. We
know, for instance from Milnor and Stasheff’s book [13, page 91], that the Thom class
T (n) and wy, (n) are linked by the formula

wa(n) = @ 1(Sq"(T () = 1 (T(n)?).

Therefore, in order to prove that wy (1) = 6,, it is sufficient to show that

i*(T(n) = p*j*(I*) k™ (T (n)),

where i is the obvious inclusion map between pairs of spaces,

i:(E(m).2) — (E(m). E(n) \ 60(B(1))).

To prove this claim, we first observe that we can use a slightly different model for B(7).
We recall that there is a tubular neighborhood N of X, in Y( ) determined by an
embedding of the total space of the normal bundle. Exphcltly, we can define the
embedding by the formula

(X1, Xn) X (A1, oo An) € Xn X R™ > (X1 + A1e1,..., Xn + Ane1),
where e is the first element of the canonical basis of R®°. Hence
N ={(x1.....xn) | (xi — (xi)1€1) # £(x; — (x)1€1) forall 1 <i < j <n,
(xi —(xj)1€1) #0forall 1 <i < n}
Note that the action of Wp, preserves N, and N is provided with a stratification
induced from that on Y\ B) by restriction. Further, every stratum of N is obtained
from a stratum of Y(Oo) by removing an infinite-codimensional affine subspace. Thus,
N - YV(VO? isa homotopy equivalence. N is still contractible, and therefore we can
use its quotient N = N /Wa,, as an alternative model for B(Wp, ). In this model, the
inclusion / is an isomorphism. Thus we do not need to worry about excision maps, and

this simplifies the argument. The claim now follows by observing that i and kjp are
homotopic. An explicit homotopy is

(X1, Xn) A1) €N xw, R"x[0,1]
= (== xDrer, ..., xp—(1=0)(xn)1€1), (I=DA+((x1)1,- ... (x2)1))). O

We now turn our attention to Wp,,. First, we give the following definition.
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Definition 5.4 Let n > 1 and m > 0. We define §9.,, € H"(Wp,_,,:F2) as the

restriction of §, © 1,, € H*(Wp,_,,,:F2) to the cohomology of Wp, ., . We also let
88:m be the unique nonzero class in H%(Wp,, ;F,) for all m > 0.

We will require some other generators that do not arise as restrictions of cohomology
classes of Wp,,.

Definition 5.5 Given k,m > 1, we define two cochains in FN’{{%k :

¢ =100 i1 :0: Leee i L0 ees Lot 1)
2Kk —1 times 2Kk —1 times 2k —1 times
m times
e vy, =[1:0:1:---:1:0:1:---:1:0:---21:---:1].
Vk,m [ N—— N—— W—’]
2Kk —2 times 2K —1 times 2K —1 times
m times

Lemma 5.6 )/,;Ir m and y,are cocycles.

Proof The cochain equivalence ¢* of Lemma 4.1 maps y,étm to

[0:1:1:+--:1:0:1:1:---:1:0:-+-:0:1:1:+--: 1]F.
N —  —
2Kk —1 times 2Kk —1 times 2k —1 times

m times
The same proof used for Lemma 5.2, with the additignal requirement of keeping track
with orientations, shows that these cochains in FN’ ’{}%n are cocycles. As @™ is injective,
y,jcm must also be a cocycle.

An alternative proof can be obtained by directly using the De Concini and Salvetti
description of the boundary in C¥?n and dualizing. |
A consequence of the previous lemma is that y]j . and y, represent cohomology
classes, that, once again, we denote by the same symbols with a slight abuse of notation.

To adapt our notation to Giusti and Sinha’s for the alternating groups, we will refer to
)/];|r o (1€sp. v, ,) for some k and m as positively (resp. negatively) charged generators,
and to 8., for some n and m as neutral generators.

5.2 Relations

This subsection is devoted to deriving algebraic relations between the generators defined
above. We will mainly obtain the relations as a consequence of the results in Section 4.
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We first focus on Ag. We can retrieve in Ap the same relations among the classes yi
that appear in Giusti, Salvatore and Sinha’s Theorem 2.3.

Proposition 5.7 The following formulas hold in Ap:

n—+m

n )th+m-

AWkm) = Y. Vi ®Vkj» Yin © Viom = (
i+j=m

Proof We use the chain-level formulas computed in Propositions 4.9 and 4.11.

To compute the coproduct, we represent yi , by the symmetric planar level tree
depicted in Figure 4. Note that P;(yk ) is trivial for [ > 2 and that the O—pruning
map gives Po(Vk.m) = Ziﬂ-:m Yk,i ® Yk,j- Therefore it is enough to prove that
P1(Yk.n) = Vk.n ® 1, where [ is the trivial symmetric level tree, for all k > 0 and n > 0.
Consider a 1-pruning (7’, T") of yk . Every vertex v;, for 1 <i <m, as depicted in
Figure 4 corresponds to a vertex u; of height 1 in 7”. Let 2¥ — n; be the number of
outgoing edges of u; for some integer 0 < n; < 2%. We can obtain the pruning (77, T")
from yi ,, by applying a sequence of elementary 1—-prunings at each vertex v; and their
mirror vertices r(v;) that prunes away a; outgoing edges from v; and n; —a; outgoing
edges from r(v;), for some 0 < a; < n;. Therefore, summing over all the possible
shuffles of leftovers, whose number is

(i ni)!
l_[:'n=1 a;! l_[lr'n=1(ni —a;)!’
we deduce that (77, S1(T")) appears in P1(y,,) with coefficient

m m - m
0<a;<ny,..0<am<nm [Tizy @it [Tz (i —ai)! [Ti=yni!

i=1
This number is even unless n; = 0 for all 1 <i < m, yielding the trivial 1—pruning.

The transfer product formula follows directly from the application of the cochain-level
map of Proposition 4.11, by observing that yi ,, has m principal 0-blocks all equal
to [1,...,1], where the entry 1 is repeated 2¥ — 1 times, and that it has no principal
[-block for I > 1. Thus yk , © Vm is given by a single basis element in FN*W32k -
(representing Y ,+m) counted as many times as the number of (n, m)-shuffles, that is

the binomial coefficient appearing in the equation. |

We can obtain coproduct formulas for §, via the same geometric description. The
following is again a consequence of the formulas in Lemmas 4.9 and 4.11.
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Proposition 5.8 A() = Y & @4, 5,,@5,,,:(”;”1)5,,%.
k+l=n

Proof Since all the entries of §, are equal to 1, the cochain-level coproduct map on §,
reduces to the 1-pruning map P; and provides the desired formula. We compute the
transfer product as in Proposition 5.7, by observing that §, has no principal /-blocks
for / # 1, and has n principal 1-blocks all empty. m|

These relations will suffice to describe Ap completely. We restate here our main result,
which we will prove in Section 7.

Theorem 5.9 (main theorem for type B) The Hopf ring Ap is generated by classes
Yk.n (With k > 0 and n > 0) and 8, (with n > 0) with the relations described in
Propositions 5.7 and 5.8, together with the following additional relations:

e the product - of generators from different components is 0;

* Yo is the -—product unit of the n'™" component.

We now turn our attention to Ap. A trick borrowed from [9, page 9] can be used to
simplify the presentation of this almost-Hopf ring. We recall that there is an involution
1: Ap — Ap. We can define A%, to be the bigraded F»—vector space defined by
(Apn.a = HIWp,:F2) if (n,d) # (0,0) and (A))e,0 = F2{1T,17}. We can
embed Ap as a vector space in A%, by identifying the nonzero class in H "(Wpy:F2)
with 1T+ 17,

Lemma 5.10 The following statements are true in Ap:
(D) txOy)=1tx) Oy =x0u)y),
2) (®idDAX) =(>1d®1)A(x) = Au(x),
(3) tlx-y)=1(x)-t(y).
Proof (1) © is commutative, and the following diagram induces a pullback of finite
coverings at the level of classifying spaces:
Wp, *Wp,, — Wb, .,

CSO del J/CSO

WDn X WDm WDn—i—m

Algebraic & Geometric Topology, Volume 23 (2023)



3260 Lorenzo Guerra

(2) This follows from the cocommutativity of A and the commutativity of the diagram
above.

(3) Itis the cohomological consequence of the diagonal map being equivariant with
respect to the conjugation cg,. a

Proposition 5.11 Write the coproduct of every element x € Ap in Ap as
x®lo+AX)+1o®x,

so A is the reduced coproduct. By letting 1= -1t =0,17-1" =17, 17.1T = 1T,
1"01 =1 and A(1T) = 1T ® 1* + 1~ ® 1T, the almost-Hopf ring structure on
Ap extends to an almost-Hopf ring structure on A, such that 1~ O x =1(x), 17 -x =0
and A(x) =17 ®@x+ 1" ®1(x) + A(x) + x® 1T +1(x) ® 1™ forevery x € A}, of
positive degree.

Proof Using the formulas in the statement of this proposition, we can extend © and -
uniquely to two commutative products on A}, and A to a unique cocommutative
coproduct on A7,. The coassociativity of A follows from Lemma 5.10(3). The
associativity of - on A7, is obvious. The bialgebra structure of A7, with - and A
follows from the bialgebra structure on Ap and (2) of the previous lemma. Moreover,
the fact that the transfer product with 17 is associative follows from (1). Hopf ring
distributivity with classes involving a transfer product with 1~ follows again from (3)
of the result referenced above. d

Instead of determining a presentation for Ap, we calculate a presentation for A’
o . - - + . /.
because we can write it more concisely. For example, Vern = |INO) Yeem 10 Al thus
the formulas for y,  arise as a direct consequence of the formulas for y;" and the
k.m k.m
almost-Hopf ring structure of A’,. The two approaches are equivalent.

Proposition 5.12 Letk,m > 1 and n > 0. The following coproduct formulas hold
in A’,, where Vim— =170 Vlj:m—l:

m
+ + + - -
AW ) = Z Y1 @ Vem—1 Vi s ®Viem—1>
1=0

n o m
A(87(1):m) = Z Z 8?:j ® Sg—i:m—j'

i=0,;=0
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Moreover, the transfer product in A7, satisfies the following formulas for every choice
of indexes:

+ + _
%ﬂ@Mﬁ—(
b®b =0if b and b’ are cup products of neutral generators (ie 8°.,,).

52:m Ol = 82:m'

a+b +
a )yha+h

Proof Note that Yeon = 1— @y]i = L()/]:: ) as adirect consequence of Lemma 4.2 and
the definition of the cochain representatives of these classes. The coproduct formulas
for y]:f ,» follow from Lemma 4.1 and Proposition 4.14. More precisely, we observe
that mapping y]:f 10O FN’ *Wszk ® IF, via ¢* yields a cohomology class represented
by the same symmetric planar level tree of Figure 4, with positive orientation. The
same proof of Proposition 5.7 holds in this case by keeping track of orientations.

The coproduct formula for §2.,. is a consequence of Proposition 5.8, the Hopf ring
properties of Ap, and the fact that the restriction map p: Ap — Ap preserves coproducts.

Regarding transfer product, we prove the first identity using Proposition 4.15 precisely
in the same way as the second part of Proposition 5.7.

Let p: Ap — Ap be the restriction map. For every x € H*(Wp,;F,) and y €
H*(Wp,,:F2), we can prove that p(x) © p(y) =0in H*(Wp,,,,,: F2) with the same
argument used in [9, Proposition 3.14]. Essentially, it is sufficient to observe that
both the restriction H*(Wp, x Wg, ;F2) — H*(Wp, x Wp,,;F2) and the transfer
H*(Wp, x Wp,,:F2) — H*(Wp,_,.:F2) factor through the cohomology of the

subgroup G = Wp N (Wg, x Wg,,), and that the composition

n+m
H*(G;Fy) & H*(Wp, x Wp,,;F2) > H*(G;F»)

is 0 for mod 2 coefficients because Wp, x Wp, has even index in G. In particular,
nontrivial transfer products of blocks obtained by cup-multiplying neutral generators
must be 0. The last relation also follows from the invariance of §2.,, with respect to
the involution ¢. O

After these coproduct and transfer product formulas, we will also need some cup
product relations. Since the Fox—Neuwirth type cell complex does not behave well
with cup products, we found that it is simpler to obtain these formulas via restriction to
elementary abelian subgroups. This approach is fruitful because of a detection theorem
for these subgroups. We postpone the proof of the following proposition to Section 6,
where we will explain this in detail.
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Proposition 5.13 Lety, , =170 y,j . as an element of A’y Then the following
formulas hold in Ap:

(1 V,jn-)/h_mZOforaHn,m,kz 1 and h > 2;
(2) yl—i,_myl_,m = (Vl—i:m_l)z @8(2):0 for all m > 1;

(3) the - product of generators belonging to different components is 0 and 88:m is
the -—product unit of the m™ component

@) 89, =0forall m>0;
(5) 82:,” . V]:_ner = 82.0 . )/,:FL ©) y,:rﬂ for all k > 0 and m,n > 0, where we
v ok ’ > 2k > 2k

understand that y,j . = 0if r is not an integer.

The last relation we require involves the behavior of the coproduct with the transfer
product. We need a preliminary remark. Let b € A7, be an element obtained as a
cup-product of positively and neutrally charged generators (ie y,: m OF 82:,,1), with at
least one positively charged generator. Note that, by Propositions 5.12 and 5.13, A(b)
can be written as a sum »_; b/ ® b; where b and b’ are elements obtained as iterated
transfer products of elements of the same form, or the images of such elements via the
involution : = 17 © _. We let A'(b) be that sum restricted only to addends b} ® b in
which the involution is not performed to obtain b; or b; is fixed by ¢ and the involution
is not performed to obtained b;. As A is (1 ® t)—invariant, this intuitively amounts to
keeping half of the addends of the coproduct in A',.

Proposition 5.14 (cf[9, Theorem 3.21]) Lett:a®B e A @A — fRac A ® A,
be the map that exchanges the two factors. For all b € A', the cup-product of positively
and neutrally charged generators, with at least a positively charged generator appearing,
and for all x € A’,, we have that

AbOx)=(0®0)o(id®t®id)(A(b) ® A(x)),
where A is the expression described above.
The proof of the analog of this proposition is done in [9] by a careful examination
of certain spectral sequences. It can be done this way also for Ap. Still, we decide
to argue here using detection by elementary abelian subgroups that for finite Coxeter

groups comes for free and leads to a shorter proof. Therefore, we postpone the proof
of this proposition until the next section.

We restate our presentation theorem for A’,, whose proof we postpone.
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Theorem 5.15 (main theorem for type D) A7, is generated, as an almost-Hopf ring,
by the classes 8., forn > 0 and m > 0, )/,j:m for k,m > 1, and 1~ defined above,
under the relations described in Propositions 5.12, 5.13 and 5.14 and the relations
"ol =171"1"=17,1T-1"=0and A(1") = 1T ® 1™+ 1~ ® 1" coming
from Proposition 5.11.

5.3 Additive bases

We describe here additive bases for Agp and Ap. In this subsection, we assume that
the statements of Theorems 5.9 and 5.15 are true. They do not rely logically on the
existence of such bases in Ap and Ap. Thus this choice does not invalidate their proof.

We begin with Ap.

Definition 5.16 (cf [7]) A gathered block in Ap is an element of the form

_8t0 l_[ ytkm s

where m is a positive integer, 2" divides m, and n is the maximal index such that Vn, 2
appears in b with a nonzero exponent. The profile of b is the (n+1)-tuple (to,..., ).
We also allow n = 0: in this case, b = 8;‘2 for some g > 0.

A Hopf monomial is a transfer product of gathered blocks x = b1 ©®---® b,. We denote
by Mp the set of Hopf monomials whose constituent gathered blocks have pairwise
different profiles.

Note that, given a possible profile (g, ..., ), for all [ > 1, there is a unique gathered
block b in the (/2")™ component having that profile. As a notational convention, we
denote it by ;.

We can describe elements of Mp graphically. We represent yj ,, as a rectangle of
width n2% and height 1 — 27% and 8, as a rectangle of width n and height 1. The
width of a box is the number of the component to which the class belongs. Its area
is its cohomological dimension. We understand the cup product of two generators as
stacking the corresponding boxes on top of the other. In contrast, their transfer product
corresponds graphically to placing them next to each other horizontally. The profile
of a gathered block is described by the height of the rectangles of the corresponding
column. Thus, we can represent every gathered block as a column made of boxes with
the same width. Hence, an element of Mp is a diagram consisting of columns placed
next to each other, such that there are not two columns that consist of rectangles of the
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Figure 5: Computations via skyline diagrams.

same height. Following the notation of Giusti, Salvatore and Sinha [7], we call these
objects B—skyline diagrams or, more concisely, skyline diagrams where it is clear that
we are considering the Hopf ring Ap.

As in [7], the coproduct and the two products in M p have a graphical description,
derived from our relations:

* We divide rectangles corresponding to 8, or yk , in n equal parts via vertical dashed
lines. The coproduct is then given by dividing along all vertical lines (dashed or not)
of full height and then partitioning the new columns into two to make two new skyline
diagrams.

e The transfer product of two skyline diagrams is given by placing them next to each
other and merging every two columns with constituent boxes of the same heights, with
a coefficient of O if the widths of these columns share a 1 in their binary expansion.

¢ To compute the cup product of two diagrams, we consider all possible ways to
split each into columns, along vertical lines (dashed or not) of full height. We then
match columns of each in all possible ways up to automorphism and stack the resulting
matched columns to build a new diagram.

We depict some examples of calculations with skyline diagrams in Figure 5.

Proposition 5.17 (cf [7, Proposition 6.4]) Mp is an additive basis for Ap and A,
and O and - of basis elements are computed graphically via the algorithmic procedures
described above.
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Proof We first prove the correctness of the graphical interpretation of the structural
morphisms. The coproduct of a gathered block b, ; with profile (7, ..., ) is of the
form
Abmg)= Y biy®bjy.
i+j=m

We prove this formula by induction on the number of cup-product generators constitut-
ing b; ;: for single generators §,, or Vi, 2t the formula appears in the set of relations
for Ap, and the induction step is a consequence of the bialgebra structure formed by -
and A. Thus, the graphical procedure for the calculation of the coproduct is correct on
single-column skyline diagrams. As a general skyline diagram represents the transfer
product of its columns, the general algorithm is justified because A and © form a
bialgebra.

Regarding ©, the transfer product of two Hopf monomials corresponds to the horizontal
juxtaposition of the corresponding skyline diagrams. Thus, we only need to justify the
merging of columns. In formulas, this reads as follows. Fix a profile t = (g, ..., 1),
with t > 0 for 0 <k <n and ¢, > 0. Then

i+]
Again, we prove this by induction on r = 9 + --- 4 #,,. For r = 1, gathered blocks
with profile ¢ are single generators, and the formula above is exactly our transfer
product relation among them. For r > 1, the induction step is proved by combining

the coproduct formula for y; ;4 j),n—1, Hopf ring distributivity, and the fact that cup
products of elements in different components is 0 to deduce that

VG4 )2n—1 (bit ©bjg) = (big - vy jon—1) © (bjs - ¥y, jon—1),
or the analogous formula with ;. ; in place of y,, (; 4 jyon—1 if n = 0.
The -—product algorithm above graphically encodes Hopf ring distributivity.

Finally, we prove that Mp is an additive basis for Ag. We consider the bigraded
vector space V' over ', with skyline diagrams or, equivalently, Mp as a basis. Define
linear maps ©,-:V®V — Vand A: V — V ® V by computing their values on basis
elements via the algorithm above. Note that these maps define a Hopf ring structure
on V. There is a map VV — Ap that realizes every Hopf monomial as the corresponding
element of Ap. Since the procedures to compute the structural morphisms on Mp are
deduced from the Hopf ring structure of Ap and the relations of Theorem 5.9, this
map is a morphism of Hopf rings. We also note that V' is generated as a Hopf ring by
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single rectangles, corresponding to yi , and &, and that the relations of Theorem 5.9
are satisfied in V. Since Ap is presented by such generators and relations, it follows
that the map V' — Ap is an isomorphism. a

We now construct an additive basis for Ap, assuming Theorem 5.15. The first step is
to identify the subalgebra of Ap under the cup product generated by neutral generators.
Let B be the set of Hopf monomials x € Ap of the form x = SZ; Q-0 8“:_', ordered
with aq > --- > a, and k1 > 2. These correspond to skyline diagrams in which only
boxes of height 1 appear and in which the highest column has width strictly bigger
than 1.

Lemma 5.18 Every element of B° N H *(Wa,,: F2) lies in the cup product subalgebra
generated by 6,,0,—1 © 11,...,81 © 1,—1. Moreover, the images in Ap of elements
of B° are a vector space basis for the subalmost-Hopf ring generated by elements of
the form §9., for n,m > 0.

Proof Let B° be the set of Hopf monomials x € Ap of the form x = 821‘ Q08
ordered with a; > --- > a,, without the condition k; > 2. We can define an injective
function e, : B® N H*(Wp, ; F2) — N” given by

ai a _
8n(8k @~-®8k’) =(ay,...,a1,az,...,4r—1,Ar,...,dy)
1 r N e’ N ——
k1 times k; times

By identifying B N H *(Wp,,;F») with a subset of N” this way, the lexicographic
ordering on N induces a total order on B°. We observe that ]_[?:1 6 Oly—i)% isa
linear combination of elements of B°. In this linear combination, the maximal nonzero
Hopf monomial corresponds to (37— @i, Y i—5di,....dn—1 + an,an). Moreover,
this belongs to B if and only if a1 = 0, ie if and only if §; © 1,_; does not appear as a
factor. Since these are all different, §,,8,—1®11,...,8; ®1,—1 generate, under the cup
product, a polynomial subalgebra with basis B° N H *(Wa,,: F2). By Proposition 5.13,
the kernel of the restriction map to H*(Wp, ;F2) on this subalgebra is the ideal
generated by 6; © 1,—1. Consequently, the images of elements of B° in Al are a
basis for the cup product subalgebra generated by the elements §2.,.. Since the transfer
products of these elements are trivial and this subalgebra is closed under coproduct by
Proposition 5.12, this is a subalmost-Hopf ring. O

Definition 5.19 We call a neutral gathered block in Ap an element b € A, obtained
as the image in A%, of an element of the set B considered in the previous lemma. A
positively charged gathered block, or simply positive gathered block, is an element of
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the form b = (S(Z)Hm;o)to [Ti=: (V,imzn_k)tk, forsomen,m>1,t, >0for0 <k <n and
tn > 0. The profile of b is (tg, ..., t,). A negatively charged gathered block, or simply
negative gathered block, is an element of the form b = (§9,,,,.0)" [ 17—, (y]:: . 2n_k)’k ,
for some n,m > 1, > 0for 0 <k <n and ¢, > 0. The profile of b is (to,...,tn). A
Hopf monomial is a transfer product of gathered blocks.

Note that, given a possible profile ¢t = (to,...,t,), for all [ > 1, there is a unique
positively (resp. negatively) charged gathered block in the (/2")" component having
that profile. As a notational convention, we denote it by bZ’t (resp. bl_,t)' Moreover,
we stress that we require that a positively charged generator and a negatively charged
one do not appear in the same gathered block. This is not a restriction since, due to
Proposition 5.13, a cup product of two such generators is 0, or we can write it as a
transfer product of gathered blocks. Therefore Hopf monomials generate A’ as an

F—vector space.

We also define a filtration of A’D that we will use to extract an additive basis from this
set of (linear) generators.

Definition 5.20 Define the weight of a neutral gathered block b as w(b) = 0. Define

+
I’I’

t=(to,....ty),n>1,as W(blﬂ;) = [2"71¢,. Define the weight of a Hopf monomial
x =b; ©--- O by as the sum w(x) = w(by) + --- + w(b,) of the weights of its
constituent gathered blocks. Define the weight filtration as the increasing filtration
F(A}) ={Fu(A})}5, of A, suchthat F,, (A',) is the linear span of Hopf monomials
in A, of weight at most .

the weight of a positively or negatively charged gathered block b;~, with profile

We first compute formulas for the coproduct and transfer product of gathered blocks

in A’,. These are essentially the charged versions of the corresponding identities in Ap,
+

1,n°
the graded space grp(A,) associated with the weight filtration. Complete formulas in

except for gathered blocks involving the generators y;- , for which this is true only in

A’y are complicated and can be retrieved recursively on the filtration F.

Lemma 5.21 Letn > 1. Lett = (tp,...,t,) witht > 0 for all 0 < k < n and
t, > 0. In any almost-Hopf ring satisfying the relations of Theorem 5.15 the following
statements are true for all i, j > 0:

(1) 17Ob, =bj, and 1~ O b, =b/';;

(2) if n > 1, the coproduct satisfies A(bnt,;) = Zi-{—j:n (b;; ® b;; + bi_,z ® bj_,z)
and Aby ) = Y4+ j=n (b ® b7, + b7, ®b);
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3) ifn> 1+ o) sz_i_t:s_ﬁes b obt, =b, 0b;, = (b},
— I —

bi, ©bf, = (7 )biy

(4) for all neutral gathered block b°, bi+t obhl = b, © bo:

(5) for all profiles u, possibly different from t, b} @b}fy = bi_’ ; ob7,, bt @bj_’y =

N > YLt J,u’> Tt
bi ©bjys

(6) ifn > 1, for all profiles u, b}', -b7, = b, -bf, = 0;
(7) for all neutral gathered block b, b7, -b' =17 0O (b;rt -b).

+ op =
and bi,z ® bj,z =

Moreover, (2), (3) and (6) are true in gr g (A’D) evenifn = 1.

Proof (1) Recall that, by definition, y,, =17 © Vlj - Combining the link between
transfer product and coproduct provided by Proposition 5.14 with the coproduct formula
for 17 and )/]:r > We deduce that

-y _ + — — +
AView) = ) Vi ® Vi) T Vi OV, j)-
i+j=m
with the convention that j/kio = 1%, Then, we can prove that 1~ © b;; = b;, by
induction on the number of cup-product factors of the involved gathered block. If bi+t

is a single generator y,:' . the statement holds by definition. The induction step
by Ve o) = (T OB Y n =17 O, v 1)
’ ok > 2k > ok

is deduced from Hopf ring distributivity and the coproduct formula derived above for
Y using that 1717 =17, 17 - 17 = 0 and that the cup product of elements in
different components is zero. The statement for negatively charged gathered blocks is
obtained from its analog for positively charged ones by taking the transfer product of
both members of the identity with 1~ and using the relation I~ © 1~ = 1.

(2) We begin with the case of positively charged gathered blocks b;,,"’t. We proceed,
again, by induction on the number of - generators appearing in the expfession of b,}'l",.
If bnt’t is a single generator, then the statement holds by the coproduct identities of
Propoéition 5.12. The induction step follows from the fact that - and A form a bialgebra,
and relations 1,2,3 of Proposition 5.13. For instance, for k > 2, we explicitly have

Al 7 ) = (9 )OO T (B, 98}, +57, 907

2k

i+j=m

® Y. (y,;f,@y,;;w;r@w;s)}

_ m2"
r+s= oK
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— + .t + .+ — —

= > (bre ¥, 20 ®D3 " pon +biy 7y 1 ®bj -y, s
i+j=m 12k P2k > 2k ks
+ .= + .- - .t - .t

+b; Y, ion Qb ‘Y, jon +b; Y, ian ®b; ‘Y. ion
1,t k,l27 Jst kjij2k 1,t k’ilzzk Jst k,/22k )

_ + .+ + .+ - - -
= > (Bify Ve 120 ®B ¥ jon +Di ¥y o0 @by ¥, jon ).
i+j=m 12k 2k 2 $2k
We only need to be careful when k; > 1 because )/1+ 1 V1, 1s not necessarily 0. Note
that for k > 2 we have by Hopf ring distributivity

+ — +
Vier a1, Vimtty = Vier (] et )2 ©83:0) =0,

because the coproduct of ykjfr does not have an addend x’ ® x” with the component of
x" equal to 2. This observation guarantees that, if n > 1, the mixed-charge terms vanish.
Even if n = 1, we obtain the additional terms by applying relation 2 of Proposition 5.13
to expressions of this form, and this procedure lowers weights. Thus, the desired
formula holds in grp (A',) in this case.

The formulas for negatively charged gathered blocks are, once again, obtained by
applying the transfer product with 17.

(3) The formula is easily deduced from the coproduct formulas (2) by induction on
+

1,
obvious fact that © preserves the weight filtration to deduce that the desired formula

the number of -—product generators appearing in b:-. In the case n = 1, we use the

holds in the graded space.
(4) This is a combination of (1) and the relations 1~ © 82.,, = §9.,.
(5) This is a combination of (1) and the relations I* ©@1F =1 T and 1T 01T =1".

(6) Ifn > 1, it follows directly from relation (1) of Proposition 5.13. If n = 1, assume
that bl.+t € F, and bj_u € Fp. Relation (2) of Proposition 5.13 provides a way to write
b;; -bj_,ﬂ as a product of the form (()/;tl_l)2 0) 8‘2):0) . blf;, 'bj_,g’
b;;, € F,_; and b; , € Fp_;. By relation (5) of the same proposition, these - products

for some [/ > 1, where

preserve the weight filtration. Therefore the statement is true in grp (A').

(7) We argue as we did for (1), combining the formula given in (1) with the relation
17 ®8n:m = 8n:m, which implies that neutral gathered blocks are invariant by the action
of 17O _. O

Using this lemma, we can use Hopf monomials in the additive basis for Ap to construct
basis elements of Ap by adding charges.
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Proposition 5.22 Let M p be the Hopf monomial basis for Ap of Proposition 5.17. Let
B° c Mp be as in Lemma 5.18. Let B¢ be the subset of Mp consisting of nontrivial
Hopt monomials in which every constituent gathered block has profilet = (tg, ..., t,)
withn > 1. Let Mp = B°uBt LB~ C A}, where

k
o B+ fd {x+ = ®l=1 bl—:‘_,zi }x=@;€:1 bll-,ll- EEC U {1+}9
- - k—1 4+ _ _
B~ = {X - @i:l bl,’,[,’ lekslk }x=®{_c:l bliii eBe U {1 }’
® BO = {xo = ,O(y) @Z+}x=y®z,yGEO\{IO},ZGECU{I()}'

Then M p is an additive basis for A’,.

Before providing a proof of this statement, we make a remark that clarifies the cumber-
some identity of Proposition 5.14.

Remark 5.23 Proposition 5.22 provides a direct sum decomposition of A7, as an
[F,—vector space with three addends, V', V™ and V°, defined as the linear span of
B*, B~ and B, respectively. Note that the involution : = 1~ ®_ switches VT and V—
and fixes all elements of VV? by Lemma 5.21. We can consider the linear projection
7.V — V7T defined as the identity on V' and as 0 on V'~ and V°. With this notation,
we can rewrite Proposition 5.14 as

AbOX)=(OR0)(TR®T®id) (AR A) (LX)
for all x € A}, and b charged gathered block.

A further reduction can be performed. We can consider the free F4—module V with basis
M p and define a Z-linear map A: Ap® A — V as follows. Given x, y € Mp, first
compute the expansions of the coproducts A(x) =}, x; ®x;" and A(y) =}, yJ’. ® yj//
on the basis Mp ® Mp of Ay ® A7,. Then, let

Ax®y) =) Y (xoy)®(x/ 0y)),
i

where, this time, the sum is computed in V. Recall that both ® and A are (t®1)—
invariant. Hence, each addend appears twice, except possibly the elements of the form
(x/© y}) R0 yj/-/), where x/, x//, y; and y;’ are all fixed by ¢. But this implies that
these classes belong to B°, and thus their transfer product is zero. Consequently, such
addends do not appear in the summation. This implies that Z(x ® y) is killed by the
multiplication by 2, and thus A extends linearly to a map as desired. The image of A

is contained in the image of the embedding £: A}, — V that maps every x € Mp to
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2x € V. We can rephrase Proposition 5.14 by saying that
(AQ):x®y e Ap @ A > A(x O y) € A

is the unique linear map satisfying £ o (A®) = A. We immediately see that this
statement is equivalent to the formulation above when x or y is a charged gathered
block. If both x and y belong to B°, then Z(x ® y) = 0 because the transfer product
of two neutral gathered blocks is always zero. The general case follows by induction
on the number of ®—factors in the Hopf monomials involved.

Proof of Proposition 5.22 We can write every element in an almost-Hopf ring with

generators y,j ,» 1 and §9.  satisfying the relations of Theorem 5.15 as a linear

n.m
combination of addends in M p due to Lemmas 5.18 and 5.21. Therefore Mp is a set

of linear generators for A7,.

The fact that Hopf monomials in M p are linearly independent is a byproduct of the
proof of Theorem 5.15. It is nevertheless possible to provide a fully independent proof
that a basis for the almost-Hopf ring with the presentation of Theorem 5.15 has an
additive basis given by M p, but we will not provide it, as it would be uselessly long. O

5.4 Comparison between Ay, Ag and Ap
In this subsection, we compute the action of the connecting homomorphisms on the

elements of the additive bases determined in the previous subsection.

We first start with the link between Ay and Ap. We recall that there are a natural
injection j : ¥, — Wp, and a natural projection 7w : Wp, — X,, providing linear maps
linking Ap and Ay. We begin by analyzing the relationship between Ax and Ap.

Proposition5.24 Let j:%,, — Wp, and w: Wp, — X, be the natural homomorphisms.
The induced maps j*: Ap — Ay and n*: Ay — Ap are Hopf-ring homomorphisms.

Proof It is obvious from the fact that the diagrams

(00)
Confim((0.+00%°) J, Wiy EE)" " XE(Snim) x, E(Znim)
DIMD I Wg,xWg, (F22Zp) x (F22Zm) Y X

Lo T
Confy4m ((0, +00)°)  J . "Whyim E(FZ)n+mXE(En+m) LN E(Zn+m)
Er1-+-m WB,H_m IFZzzrz—i-m z:n+m

are pullbacks of finite coverings, where p indicates covering maps. |

Algebraic & Geometric Topology, Volume 23 (2023)



3272 Lorenzo Guerra

The following proposition is a direct consequence of Corollary 4.6 and Proposition 5.24.

Proposition 5.25 With reference to the notation of Theorem 2.3, j* (Vg n) = Yk n and
Jj*(8,) = 0. More generally, given a B—skyline diagram x € Mp, j*(x) is zero if x
contains a rectangle of height 1. Otherwise, it is obtained by interpreting x as a skyline
diagram in Ay.

We can now use our algebraic description to compute the action of 7* on generators.

Proposition 5.26 7*(yk ,) = Vk.». For a skyline diagram x € Ax, 7*(x) is obtained
by interpreting x as a B—skyline diagram without rectangles of height 1.

Proof We proceed by induction on n. If n = 1, since w o j = id, n* is injective.
Hence 7*(yk,1) is a nonzero class in H 261 (Wsz ; IF2). Thanks to Proposition 5.24,
7*(Yk,1) is primitive. From our description of Ap in terms of skyline diagrams,
formalized with the statement of Proposition 5.17, we see that the only nontrivial
primitive of Ap in the right component and cohomological degree is yi ;. Forn > 1,
Proposition 5.24 guarantees that * preserves coproducts. Hence we inductively have
that 7*(Vk ») + Yk, is primitive. However, there are no nonzero primitive in that
bidegree, thus 7*(Vk.n) = Vi.n- ad

We now turn to Ap. There is a restriction map p: Ap — Ap induced by the inclusions
Wp,, < Wa, . Moreover, we recall that we have natural injections i4,i_: X, — Wp,
determining maps Ap — Ay and an involution ¢: Ap — Ap induced on H*(Wp, ;F2)
by the conjugation with so € Wpg,. We analyzed these maps in Section 4.1.

First, we explain the relation between Vlj o and y,—and the natural maps between

Wp,,, Wp, and X,.

Proposition 5.27 Forall n,k > 1 and m > 0,
. =+ _ . — _
l-T—(Vk,n) =Yk.n> Z-T-(yk,n) =0, i * (89 —i*(80 _

Lk — Lk 4 l+( n:m)_l—( n:m)_O’

ZWiep) = Vi 12 ,,) =0,

More generally, with reference to Proposition 5.22, i (resp. i*) is zero on all neutral
or negatively (resp. neutral or positively) charged Hopf monomials. We obtain the
value of positively (resp. negatively) charged Hopf monomials under i (resp. i*) by
forgetting the charge to get a Hopf monomial in Mg and then applying j * as described
in Proposition 5.25.
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Proof The formulas involving y,i‘fn are a direct consequence of Corollary 4.6 and the
form of the chain representative of yy , € FNEH ®IF5 retrieved in [8, Definition 4.9]. To
deduce that i%(89.,,) =0, we recall that §9.,, = p(8, ® 1) and that the composition
En<i>WDn — Wpg, is equal to j. By Proposition 5.25 j*(6, © 1,,) = 0; therefore
i _";(82:,") = 0. The same is also true for i *(89.,,) because i_ is obtained by composing
i+ with the conjugation with an element of Wp, , whose action is trivial on elements
coming from Ap. |

Since we identify the involution ¢ with the transfer product with 17, the following
proposition is essentially a restatement of the description of the previous subsection.

Proposition 5.28 If x° is a neutral Hopf monomial in Mp, then 1(x%) = x°. If x*
is a charged Hopf monomial in Mp, we get 1(x*¥) by inverting the charge.

To complete the description of the homomorphisms connecting our structures, we need
to compute the restriction p: Ap — Ap and transfer tr: Ap — Ap maps. To do this,
we need to establish preliminary identities.

Lemma 5.29 For all x,x’ € Ap and for all y € Ap, the following identities are
satisfied:

(D) plr(x) ©y) =x O p(y),

(2) tr(x)-tr(x") =tr(x - x" +1(x)-x7),

(3) u(x-p(y)) =t(x)-y,

4) tr(x ©x’) = tr(x) O tr(x’).

Proof The first statement follows from the fact that this commutative diagram induces
a pullback of covering spaces at the level of classifying spaces:
Wp, x Wp,, —— Wp, x Wg,,
WDn—i—m — WBn+m

Regarding the second statement, since the conjugation by so is an endomorphism of
the covering B(Wp,, x Wp,) = B(Wp,,, N (W, x Wg,)),

¢ Wpo, NWe,xWE,) & ¢ Wp,, "Wg,, xWg),)
W, xWp, Cso = Cso Uwp, xWp,, .
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Moreover, the classifying space functor applied to the following square produces a
diagram homotopy equivalent to a pullback of covering, where d and d’ are diagonal
maps:

Wb, ;) Wp, x Wp,

| |

Wa, 7) Wp,, N (W, x Wg,)

w. N, w . .
Hence trd* = d'* trWZZ”Xu(,D 50> WBn) Tece facts imply that, denoting by d the

diagonal subgroups,

tr(x) - tr(x")

_ W, xWpg, Wp,xWp, ’

= Pa(Wy, trWDn W (x®x")

— pWDZI’I ﬂ(WBn XWBn)pWBn XWBn tI'WBn XWBn trWDzn ﬂ(WBn XWBn)(_)C ® x/)

dWpg),) Wp,, NWp, xWg,,) “Wp,, NWpg,xWg,) “Wp, xWp,
Wp, N(Wg, xWg, )

Ik * 2n n n /

=d (1d+cs0)trWanan (x®x")
WD2n ﬂ(WBn XWBn
WDn XWDn

2
=d™*tr )(id—l—cs*o)(x@)x/)
=trd*(id +c5 ) (x ® x')

=tr(x-x" +(x)-x').

Similarly, the last two statements follow from the diagrams below, where the vertical
maps of the first one are the diagonal morphisms:

WDn — WBn WDn X WDm — WDn+m
WDn X WB,, R — WBn X WB,, WBn X WBm E— WBn+m O

Proposition 5.30 The transfer map tr: Ap — Ap is such that tr(ykin) = Yk.n and
tr(89.,,) = 0. More generally, if blit is a charged gathered block with profile t =

(to,t1,....tn), then tr(blit) = by, if n > 2, while if n = 1 the transfer of gathered
blocks is computed inductively by the formula
Lt1/2]
by = Z tr(bl:l,:(to,tl—a) (qujl)a)'
a=0

The transfer of every neutral gathered block is 0, and we realize the transfer of a Hopf
monomial as the transfer product of the transfer of its constituent gathered blocks.
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Proof The statement for generators is a direct consequence of their definition at the
cochain level. The general claim for Hopf monomials in Ap follows directly from
Lemma 5.29. o

Proposition 5.31 p(yk ,) = Vlj_n + ¥¢, foralln, k > 1. Moreover, p(8m) = 521:0 for
n > 2 and p(§1) = 0. More generally, for every Hopf monomial x € Mg, p(x) can be
computed as follows. If x = by ; is a gathered block with profile t = (fo, ..., ), we

have that 0 iFn=0
p(x) =) Lo ()0 oy vi)" ™ i =1,
b +b, ifn>2.

The restriction of a Hopf monomial x with a constituent gathered block in B° is x°,

We calculate the restriction of a Hopf monomial x € B¢ as follows. First, replace every
constituent gathered block in x with the sum of the positively or neutrally charged
elements of its restriction. Then, write the resulting linear combination as a sum of
Hopf monomials in Ap. Finally, add to that the negatively charged counterpart of every
positively charged Hopf monomials appearing in the sum.

Proof Using the cochain-level representative of yi , introduced in Definition 5.1,

we immediately see that its restriction is represented in FN’ W,k by the sum of

two elements obtained by providing this cochain with the two possible orientations.

These elements correspond to cochain representatives of y;” and y;  via the cochain
k.n k.n

equivalence ¢ of Lemma 4.1. The formulas for §,, are a consequence of the generators’

definition in Ap and relation (4) of Proposition 5.13. O

We conclude this section with a short description of the Gysin sequence of the double
cover Wp, — Wg, . In [9], Giusti and Sinha adopt the analysis of a similar Gysin
exact sequence as the starting point to compute the cohomology of the alternating
groups as an almost-Hopf ring. While we retrieve that as a byproduct of our algebraic
description, we stress that Giusti and Sinha’s approach could be used in our framework
as an alternative method to deduce relations in A’,. Indeed, a direct consequence of
the following proposition is that Mp = B% LI BT LI B~ is the polarized basis arising
from a Gysin decomposition in the sense of [9].

Proposition 5.32 (cf [9, Section 3]) The restriction p: Ap — A}) and the transfer
tr: A, — Ap fit into the Gysin sequence

=l K (W, Bo) 255 HF (W, F2) ™ HY (Wi, F2) 2 HFH (Wi, F2)

Prtl,

’
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where 0 is the multiplication with §; ® 1,,—1. It can be described on skyline diagrams
by the operation of replacing each column corresponding to §; with the diagram
corresponding to 87" t! © Sy

Proof By a general fact, the connecting homomorphism d is the multiplication with
the Euler class e of the double covering. In the case n = 1, this covering is isomorphic
to the universal double covering §*° — P°°(R), and its Euler class is §;. For bigger n,
the Euler class is §; © 1,—; because it is the only class in the right degree that restricts
to J1.

tr op = 0 because we are working modulo 2. Therefore the transfer of a neutral gathered
block is 0. If b = bft is a charged gathered block, then the restriction of tr(b) must be
b + 1(b), and the multiplication with §; ® 1,,—; must kill tr(b). These two conditions
force tr(b) = by ;. Since tr preserves the transfer product ©, the formula for a general
Hopf monomial follows. |

6 Restriction to elementary abelian subgroups

We recall here some theorems from Swenson’s thesis [18], which constitute the formal
framework in which we will calculate the cohomology of W, and Wp, . We will then
exploit these theorems to determine the restriction of our generators in Ap and Ap to
elementary abelian 2—subgroups. This yields the restriction of all the cohomology of the
groups Wp, and Wp, to maximal elementary abelian subgroups, because the structural
morphisms of our almost-Hopf rings behave in a predictable way: cup products and
coproducts are preserved by such restriction, while the relation with transfer product
is determined via double cosets formulas, as stated in Adem and Milgram’s book [1,
Section II.6].

6.1 Quillen’s theorem for finite reflection groups

The relevance of these restriction maps is encompassed by a result of Quillen [15; 16],
which we state here. Let G be a finite group and F a family of subgroups. Let
Og: H*(K;F,) — H*(gKg™';F,) be the conjugation homomorphism. Define

F'={{fx}ker. [k €H"(K;Fp)|g ' Kg CK'= fx =03 (fx))|k forall K, K'}.
Alternatively, we can consider F as a category in which

Hom(K,K')={g|g 'Kg S K'}.
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Then F" is the inverse limit of the functor H" from F into the category of I ,—vector
spaces. In other words, F* consists of collections of cohomology classes of groups in
F that are stable under restrictions and conjugation by elements of G. Observe that
F* =P, F" has a natural ring structure.

Theorem 6.1 [15, Theorem 6.2, page 564] Let G be a finite group. Let F* be as
before. The map g : H*(G;F,) — F* given by g6 (f) = { f |k }x is a well-defined
ring homomorphism. Moreover, if F is the family of elementary abelian p—subgroups,
then the kernel and cokernel of g are nilpotent.

Hence elementary abelian p—subgroups give much information on the IF ,—cohomology
of a group. In the case of a finite reflection group, an even stronger property holds.

Theorem 6.2 [18, Theorem 11, page 2] If G is a finite reflection group and F is the
family of elementary abelian p—subgroups of G, then qg is an isomorphism.

6.2 Restriction from A g

For the reasons explained in the previous subsection, Swenson has calculated the
elementary abelian 2—subgroups of Wp, . Before stating his result, we need to recall
the structure of elementary abelian 2—groups of the symmetric group X, on n objects.
The relevant calculations are reviewed in [1]. ¥, admits a transitive elementary abelian
2—subgroup if and only if n = 2 1In this case, all these subgroups are conjugated in
%, to the image Vj of the homomorphism py : ]Fé‘ < X,k given by the regular action
of Fé‘ on itself. More generally, a maximal elementary abelian 2—subgroup of 3, is
conjugated to a direct product

Vk X oeo X Vkr > Ezkl Xoeee X Ezkr — Ezkl 42k

1

Hence, conjugacy classes of maximal elementary abelian 2—subgroups in X, are
parametrized by partitions 7t of n such that every element of 7 is an integral power of
2 and the multiplicity of 1 =2 in 7 is at most 1.

To further simplify notation, we borrow from Swenson’s thesis the following definition.

Definition 6.3 [18] Letn € N. We say that a partition 7 of n is admissible if it
consists only of parts that are integral powers of 2.

The main results about elementary abelian 2—subgroups in Wpg, is the following:
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Proposition 6.4 [18, page 22] Let A1, A < Wp, be maximal elementary abelian
2—subgroups. Then

e Ai=A;NZ, <X, is conjugated to a subgroup of the form Vi, x---x Vg,
with k; > 0 forall i;

e Aj and A, are conjugated in Wp, if and only if;fl and /Tz are conjugated in X,,.

In particular, conjugacy classes of maximal elementary abelian 2—subgroups in Wp,, are
parametrized by admissible partitions 7. Moreover, if we denote by A, the subgroup
corresponding to a partition 7, we have that A;xy = Vi X Cy, where Cy = 5 is the
center of 1438 and, more generally, if m; is the multiplicity of 2" in a partition 7,
then Ay is isomorphic to the direct product [ [; AZ’;). Letd,i_q,...,dyi_si—1 be the
Dickson invariants in H*(V;;F2) < H™*(A,i); F2) and define

fai = l_[ (x+ ),
yeH ! (V;;F2)

where x € H'(A,i;Fy) is the linear dual to the nontrivial element in the C;—factor
of A,i. There is a natural isomorphism

N Ar) ~ mj m:
[H* (A F2)]W 50 A7) = QY(Fal foi s iy i _imt]®" )P

1

We can calculate the restriction of our generating classes Yk , and §, to these abelian
subgroups. The calculation for yi , has been essentially carried out by Giusti, Salvatore
and Sinha [7]. We state here the result.

Proposition 6.5 [7, Corollary 7.6, page 189] Let [,n > 1. Let & be a partition of

n2! consisting of powers of 2, m = (21, ..., 2kr). Then
®;=1 dyk; _oki—1 if ki > 1 foralll <i <r,
Vl,n |A7r = .
0 otherwise.
Proposition 6.6 Letn > 0. Let 7 = (2%1,...,2k") be an admissible partition. The

restriction of 8, to the cohomology of the maximal elementary abelian 2—subgroup A
is equal to Q;_, f,k; . Moreover, 8, is the unique class in H" (Wp,,; F,) that has this
property for every 7.

Proof We observe that the restrictions of a cohomology class to A, for all the partitions
7 of n determine its restriction to every elementary abelian 2—subgroup (not necessarily
maximal). Hence, by Theorem 6.2, a class that satisfies the condition in the statement
for every = is necessarily unique.
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Let U, = R” be the reflection representation of Wp . Recall that, if n = 2K and
7 = (2K), then A, = Vj, x Cy, where Cy, = (t) is a cyclic group of order 2, the center
of Wg,, and Vi = (v1,...,vg) < Xy« is the subgroup defined above. H*(Ax;[F2)
is polynomial on degree 1 elements x, y1,..., Yk, the linear duals to ¢, vy,..., vg,
respectively. Given a € A \ {1}, let &4, sgn,, and R(a) be the 1-dimensional trivial
representation, the signum representation, and the regular representation of (a) = [,
respectively. We first observe that, since ¢ acts on U, as the multiplication by —1,
Unla, =sgn, ®Uy|y, . Moreover, the inclusion of Vi in X,« is given by the regular
representation; hence

k k
Uy =QRvi) = D @ Us.i,

i=1 Sc{l,..k}i=1

where Uy ; is equal to sgn,, if i € S, and to &y, if i ¢ S. Thus, with the notation used
before in this document, the Stiefel-Whitney class of Uy |4, is

1_[ (l—i-x—i-Zyi).

Scil,...,n} ieS

Its n—dimensional part is exactly f,«. Hence, the thesis for 7 = (2%) follows from the
naturality of the characteristic classes and Proposition 5.3

In the case of a general admissible partition 7 = (Zk L., Zk’), the proposition follows
from the fact that A, = [[;—, A(ox;y and Up l4, = Pi—; U, |A(2ki>' |
To complete the calculation of the restriction morphisms from Ap to maximal ele-
mentary abelian 2—subgroups, we need to describe how such maps behave with the
structural morphisms of Ap. Restrictions preserve cup products, and, regarding the
coproduct, there is nothing to say because every maximal elementary abelian subgroup

of Wg, x Wg,, is itself a maximal elementary abelian subgroup of Wp, . . The only

n+m

nontrivial behavior occurs with the transfer product. We describe it in the following
proposition.

Proposition 6.7 Letx,y € Ap be in positive components n and m respectively. Let
T = (2k1 e 2k’) be an admissible partition of n +m. Forall I C{1,...,r}, write
I ={i1,... i} withiy <--- < iz and let 7y = (2Ki1, ... 2Kis). Then

xOYNa, = ZTI,J(XIA,,, ® yld,, )
1,7
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where the sum runs over all partitions {1, ...,r} =1UJ of {1,...,r} into two subsets
such that ) ;g 2ki = n (and, consequently, djes 2ki = m), and

11,7 H* (An; i F2) @ H*(Ax,  F2) — H*(Ay: F2)

is the obvious permutation of tensor factors.

Proof We begin by assuming that r = 1; thus 7 = (2) for some k and n + m = 2k.
Then, since A, acts transitively on {1,..., 2k }, no conjugate of A, in Wg, _, is
contained in Wpg, x Wp, . Given that A, is abelian, the classically known property
stated in [1, Proposition 5.6, page 69] implies that the transfer map

H*(Az No(Wg, x Wg,,)o~ i F2) = H*(Az; F2)

is identically zero. Eilenberg’s double coset formula then guarantees that the composi-
tion of the restriction with the transfer product

H*(Wp,:F2) @ H*(Wg,,;F2) 2> H*(Wg, ,,:F2) = H*(Az:F2)

n+m?

is zero. Thus (x © y)|4,_,. = 0.

k)
In the general case, the restriction of x ® y to this subgroup factors through the r—fold
coproduct. By the calculations above, addends in this coproduct for which a factor is
a nontrivial transfer product restrict to 0. Since ® and A form a bialgebra structure
on Ap, the other addends have the desired form. O

6.3 Restriction from A p and proof of relations

We can adapt the argument to calculate the restriction to elementary abelian subgroups
of generators also in the D, case. First, we state the analog of Proposition 6.4. Recall
that a partition 7 of n is admissible if and only if it consists of parts that are powers
of 2.

Theorem 6.8 [18, Theorem 5.4.3, page 40] Let m be an admissible partition of n.
Let my and m, be the multiplicities of 1 and 2 in 7. We write w = (1)1 U (2)"2Ux’.
Let Ar < Wp,, the maximal elementary abelian 2—subgroup corresponding to 7 and let
/f,, = A, N Wp,. Then /T,, is maximal as an elementary abelian subgroup of Wp, if
and only if my # 2. Moreover:

o If mp > 0, then 1:1\,, = ker(z: IF;"I — ]Fz) X A@ymaunr- If €1,...,em, are the
elementary symmetric functions in H*(IF;"1 i F2) = H*(A@ymi; F2), we define e; =
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e +erej—1 if 2 <i <m and e;, = eyje;y—1. There is an isomorphism between the
invariant subalgebra [H* (A ; F2)|NWp, (47) and

_ _ N (A iy )
Falé, ..., em] ® [H*(Aymzynri Fa)] " Brmmy 2 @M20777

Moreover, the cohomological restriction from Ajym to A, (1ym 1s given by ey — 0 and

eir>e If2<i<m.

e If my =0 and my > 0, then Ay = Ay. Identifying H*(A;F2)®" with

Q2 Falxi, yi], we can define

Sc{l,...,.mp}i€S JES

Then [H* (Ay; F2)]N"0n A7) s the free [H* (Ax:; F2)]VW8n ™) _module with basis
L hmy, ® Lg+(4,,,F) )
e Ifm; =my =0, then /fﬂ = An and Nw,,, (Az) = Nwy, (Ar); hence

[H* (A BV 0n A7) = [H* (A Fp)) VW (),
Moreover, if my # 0 or my # 0, then Ay is Wp,—conjugate to A’ if and only if
Ay is Wp, —conjugate to A’ N Wp,. Conversely, if my = mp = 0, then the Wg, —
conjugacy class of Ay contains exactly two Wp, —conjugacy classes of elementary
abelian 2—subgroups.

We now determine the restriction of our generators to the elementary abelian subgroups.

Proposition 6.9 Letn = 2k, for some k,m > 1. Let w be an admissible partition
of n. Let my and my be the multiplicities of 1 and 2 in 7. Then

(1) for every k > 1, if m; = my = 0, then ylimlAn = YimlAy- yl;i:m|Af,0 =0,
Viemlaz = 0-and v | 450 = Viem| 4505
(2) foreveryk =2, if m; #0ormy #0, orfork =1 if my # 0, then Vlimlff,, =0;
(3) if my =0 butmy #0, ie w = (2)"™2Un’, then the restriction of )/ffm (resp. Y1 m)
oAy = A(2)m2 X Ag is hmg RV1,m—m» |Aﬂ/ (resp. (dig 2+hm2)®yl,m—m2 |A”/);
(4) ifr = (1)™ Un’, then the restriction of 8£:m to fT,, = /T(l)ml X Ay is
k

18 Bk O 1wy Ay + D& ® ki O lwy,
i=2
with the convention that 1y, =0 whenr <O0.

oy i) A
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Proof If 7 has more than 1 element and is different from (1,1,...,1), then the
restriction to A or A, 29 factors through the coproduct. Thus, by applying the coproduct
formulas of Proposition 5.12, we can inductively reduce to these two cases.

We begin by assuming that 7 = (2") has only one element, and we prove the first
statement. If kK > 1 and n > 2, the restriction of ylic,zl to Ay (n = k + /) must
be NWD2n (Ax)—invariant. Hence, for degree reasons, it can be 0 or d,»_,:. Since
i +(yk 1) = Vit (resp. i +()/k 1) = 0) by Proposition 5.27, its restriction to Az N Xpn
must be the Dickson invariant of degree 2" — 2! (resp. 0). This forces

+ _ _
Vi 21 4z = don_o1 =V 2114,

res A, = essentia e same argument, considering i_ instead of i,
( Pszl . =0). By tially th g t, idering tead of i+
we determine the restrictions to A5, proving the first point.

Claim (2) is immediate from the fact that, if k > 1, there are no nonzero elements
in H* (A(l)zkn :Fo)Mwp Sk n (A(l)zkn) in the same degree of y,;'fn, and that if k > 2 the
coproduct of Vk has no element in component 2.

To prove (3) when w = (2), we notice that Ay = Wp, and lef , can be identified
with &1, while Y11, With di+ hi.

By the coproduct formula for 82,m, we have 80 ml Alm = eg. Thus, the last statement

formr = (1,...,1) follows directly by combimng Proposition 6.6 and Theorem 6.8. O

As in Ap, the behavior of the restriction to maximal elementary abelian 2—subgroups
with the cup product and coproduct is straightforward. We describe the relation between
such restriction maps and the transfer product in the following proposition, which is
the counterpart of Proposition 6.7.

Proposition 6.10 Let x,y € Ap be elements in positive component n and m re-

spectively. Let = = (2K1,...,2kr) be an admissible partition of n + m. For all
IC{1,....r}, write ] ={i1,...,is} withi; <---<is and let 7y = (21, ... 2kis).
Then

(x@y)un = ZII’J(XLT”] ®y|/fw +L(x)|/fﬂ] ®L(J’)|gnj)’
1,J

where the sum runs over all partitions {1,...,r} = I U J of {l,...,r} into two
subsets such that ) ;. 2ki = n (and, consequently, ZjeJ 2ki = m) and at least one
between I and J does not contains any [ € {1,...,r} such that k; = 0, and where
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IR H*(/T,T,;IFZ) ® H*(/T,”;IFZ) — H*(z‘i\n;]Fz) is the obvious permutation of
tensor factors. Moreover, if 1 ¢ w and 2 ¢ 7,

— * -~ -~ ~ -~
(oMl g0 =<5, ;m(mn[ ®lg,, +@lz, ®©ylF ).
where I, J, 7y j are as above, and cg : H*(Ay:Fy) — H*(AY;F,) is induced by the
conjugation with s.

Proof We cannot repeat the proof of Proposition 6.7 because in A7, the transfer
product and the coproduct do not form a bialgebra. Therefore, we argue by considering
Eilenberg’s double coset formula associated with the two subgroups Wp, x Wp,, and
Ay of Wb, 4m- We preliminarily fix some notation. Let Py be the partition of the set
{l,...,n+m} given by

r—1
P, = {1,...,2k1},{2k1+1,...,2k1+2k2},...,%22k’+l,...,n+m}}.
=1

Moreover, let Pj , = {Zl];ll oki 1, Z{:l 2k},

Assume that 1 ¢ 7. A set of representatives for Wp, .. /(Wp, x Wp,,) is the set
Sh(n,m) - {1,¢}, where Sh(n.m) C X, 1, < Wp,_,, is the set of (n, m)-shuffles,
and 1 = so x 59 € Wg, x Wg, . Note that A, C (518)(Wp, x Wp,,)(c1¢)~ ! if and
only if o({1,...,n}) is a union of parts of P;. Since Ay is abelian, these provide
the only nonzero terms in the summation of the double coset formula. Moreover, by
inspecting the image of {1,...,n} C {1,...,n + m} under the signed permutation
action of Wp, .. < Wg, . we see that if ot and 0’1 are two coset representatives
satisfying this condition, then A,0t*(Wp, x Wp,,) = Aro’ tS/(WDn x Wp,,) if and
onlyifo =0’ and e = ¢'.

w
Consequently, the double coset formula allows us to rewrite Py Dntm (x ®y) as the
sum

* WDn XWDm * * * WDn XWDm
Z (CUI ’O;fnl X;fﬂ] (’x ® y) ® +CO’1 (CS() ® CS())IOA‘;(I) ®/’1‘;(‘)I )7

I1c{1,...,r}

Yiel 2ki=n
where o7 is the unique (n, m)—shuffle satisfying o ({1, ...,n}) = ;¢ Pi,x and J =
{1,...,r}\ 1. The statement follows by observing that ¢;, = 77 s and

WDZ B WD[

*
C ~ =P~ 1
S0 pA;O/ pA,,/

for all / > 1 and an 7’ admissible partition of /.
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The case of /T,STO where 1,2 ¢ 7 is done similarly. If 1 € 7, the same argument holds,
but if there exists i € I and j € J such that k; = k; = 0, then, interpreting the

elements of Wp as signed permutations, (p;, —p;)(p;,—p;) belongs to A but

n+m
not to (07t8)(Wp,, x Wp,,)(o7t¢)~, where Pi » = {p;} and P; = {p;}. Thus, we
need to restrict the summation only to partitions {1,...,r} = I U J in which all the
occurrences of 1 in 7w belong to the same part. a

This result provides a way to detect the charge of a Hopf monomial via restriction to
maximal elementary abelian 2—subgroups. We first fix preliminary notation.

Definition 6.11 With the notation of Theorem 6.8, write H *(/’1\ 2): F2) =TF3[x, y] and
letz=x+y. Let H) + (resp H, Ao ) be the vector subspace generated by elements
of the form x4z? Where a>b (resp b > a). If 7 is an admissible partition of n, write
7= (1)™UQ@)"2Un’ where 1 ¢ n’ and 2 ¢ /. For S C {l1,...,m5,}, we define
His = Hjm if i ¢ Sand Hy  ifi€S. Then we define

ot — {O if m; >0,
Ax @Scu ..... m»},|S|=2k ®;'n=21 His @ H*(Az:;[F2) if my =0,
H- — {O if m; >0,
Ax @Sc{l,...,mz},|S|=2k+1 ®;n=21 His @ H*(Az;F2) if my =0.

Moreover, if m; = m, = 0, we define H;ETO =0 and HA_;O = H*(Af,o; F>).

Proposition 6.12 Referring to Definition 6.11, for every maximal elementary abelian
2—subgroup A = ffn or A= A5 of Wp,, the restriction of a positively (resp. negatively)
charged Hopf monomial in Mp N H*(Wp,,; F2) to the cohomology of A () belongs
to H: (resp. H}).

Proof Every positively charged gathered block b restricts to an element of H:.
Nontrivial computations arise only if b = (83,”:0)’ ()/1": n)” with r >0 and s > 0 and
A = Aym. In this case, with the notation of Theorem 6.8, we observe that

Zk _ | | 2k | | 2k
hm = E Zi X7 ’
Sc{l,...m}ieS JES

IS|=21

where z; = x; + yl Thus h2 € HY.,,. Let 2% be the biggest power of 2 smaller

@m:
than s. Then A3, 2% is a sum of pure tensors of the form w; ® - - - ® wy,, where w; is a

k k
monomial in x; and z; with total degree smaller than 2. Therefore, i3, = h2, h$;2
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still belongs t(:_ H (;)m. The restriction of b to Azym is equal to Q)7 (f z;)"h3,, which

belongs to H 2ym because multiplication by ®;~":1 Xx;zi preserves H Qym-

We see the corresponding statement for negatively charged gathered blocks by noting
that conjugation with sg exchanges H:’ and H 5.

In general, a positively (resp. negatively) charged Hopf monomial x is a transfer product
of gathered blocks, all positively charged (resp. all positively charged except one).
Consequently, Proposition 6.10 yields the statement for x. a

We can finally complete our relations for A, by providing the proofs of the two leftover
propositions of Section 5.2.

Proof of Proposition 5.14 Let b be a positively charged gathered block in Ap
and x € Ap. From Lemma 5.10 and the definition of A’ we deduce that A(b) =
N(b) 4+ (t ® )N (b), and that A(t(h)) = (id ® ¢t + ¢ ® id)A'(b). During this proof,
we assume, by convention, that x|4, = 0 when x € H*(Wp,;F») and x is not an
admissible partition of n. Let 7 = (k1 ... 2kryand 7' = (2", ..., 2P5) be admissible
partitions of some integers. From Proposition 6.10, we deduce that

[(0®0)(dor@id)(X®A) (B4 4
= Y ursr(MO)RAX)+(de) A (D)@ (d®) A(x)
it +(®id) A ()@ (:®id) A(x)
+(t1®0) A’(b)®(L®t)A(x))

ey %y xny %A
= Y ursr((d+H@)NB)RAX)
Hvmrrad +(d+H@O)NONOACCN) 1, 4, xdy, x4

(24

= ), 0xt®®)lg

TuJ={1,....,r+s}
= [A(bQX)]|an2ﬂ/'

]T/)TXA(JTI_IT[/)j

In these equalities we used the identities of Lemma 5.10 to perform the substitutions
(t®)A(x) = A(x) and (id ® ) A(x) = (t ®id)A(x) = A(t(x)); w U n’ is assumed
tobe (2K, ... 2kr 2 2hsy T =TnN{l,....r¥and J = J N{1,...,r}, while
I'and J'are IN{r+1,....,r+stand J N{r+1,...,r + s} suitably shifted. The
sum should be over all I, J, I’ and J’ such that at least one between I and J does not
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contain an [ such that k; = 0 and at least one between I’ and J’ does not contain an /
such that h; = 0. However, since the restriction of positively charged gathered blocks
is zero on elementary abelian 2—subgroups corresponding to admissible partitions
containing 1, we can restrict the sum only to the terms for which k; # 0 for alli € 1
and h; # 0 for all i’ € I’. This condition is equivalent to / not containing 1, and we
can, once again, restrict the last sum only to these terms and get the last equality. O

Proof of Proposition 5.13 Using Proposition 6.9, the newly proved Proposition 5.14,
Proposition 6.10, and the fact that cup products commute with restrictions, we check that
the desired identity hold when restricted to maximal elementary abelian 2—subgroups.
Then Theorem 6.2 yields the relations in Ap. a

7 Proofs of the main theorems

We devote this section to the proofs of the presentation theorems for Ap and Ap.
They will be proved by comparing restrictions to elementary abelian 2—subgroups and
exploiting Theorem 6.2. We will separate two technical lemmas from the proofs for
the sake of clarity of exposition.

We first provide a proof for our structure theorem for Ap.

Lemma 7.1 Let k > 0. The kernel of the restriction map

NWsz (A(zk))

H*(A(Zk), ]Fz) — H*(A(zk) N A(zk—l ,Zk_l); ]FZ)

is the ideal generated by d,« _;.

Proof From Swenson’s description of A, stated as in Proposition 6.4, we can identify
A axy with the image of the diagonal embedding idxd : o x Vi1 = X2V — Wsz .
Its intersection with the product A k-1 px-1y = Vk—1 X Vg—1 is identified with the
subgroup Vi _; C ¥, x Vi _1, embedded diagonally in WB, -

The restriction to this subgroup maps fy« to (fox—1)2, dok _p1 0 (dak—1_pi—1)?if 1 >0,
and d,«_; to 0. This is known, but we sketch a proof for completeness. If we chose
bases {x, y1.....yr} of H'(Aqky:F2) and {x, y1..... yi—1} of H'(Apk-1):F2) as
in Section 6.2, the restriction is given by x — x, y; — y; if 1 <i <k and y; — 0. The
polynomial Fi(t) = [Tyeq1 (v, (¢ +v) in H*(Vi:F2)[t] restricts to (Fx_y(1))>.
Since fox = Fj(x), we deduce the formula for f,x. The identities for d,x_,: are
obtained from this by using the classical identity Fy(¢) = Zf:o 12 dok _pi . |
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Proof of Theorem 5.9 Let A’y be the Hopf ring generated by yk ,, and &, with the
desired relations. Since the relations mentioned above hold in Ap, there exists an
obvious morphism ¢: A’y — Ap.

We need to fix a total ordering < on the set P, of admissible partitions of 7 such that, for
all &, 7’ € Py, 7’ > m if 7’ is a refinement of 7. In other words, < extends the partial
ordering given by refinement. Let b be a nontrivial gathered block in Ap. There exist
unique nonnegative integers n and m such that b = []/_, )/Zzn_,-mc?g,?m with ap # 0.
We consider the partition of 2"m 7 = (2",...,2"). Givenx =b; ®--- O by € Mp,
let mx = | |{_; 7p,. As a consequence of Propositions 6.5, 6.6 and 6.7, x|4, # 0
implies that 7, > 7. Explicitly, if b = []7_, )/ - ,mSSSm

&
blA”bz( l—[dzn —on— 1) .
i=1
Forany x =01 ©---©by € MBp, X|4,, is the symmetrization of Qi bi |Anb,- . Given
a partition 7, let M be the set of elements x € M such that 7, = 7.

We first prove that ¢ is injective. We proceed by contradiction, and we assume that
there exists a nontrivial sum ) ; x; of elements of Mp that is 0 when restricted to
every elementary abelian 2—subgroup. Let 7 be maximal among the set of partitions
{mx, }i. Since, by the explicit calculation above, the restrictions of the elements of M
to A, are linearly independent, this gives a contradiction.

To prove surjectivity, it is sufficient, by Theorem 6.2, to prove that an element « of the
Quillen group ]—"I’fVBn can be written as the image via g, of a linear combination of
elements of M p. Note that such an « is determined by its values o on the maximal
abelian 2—subgroups A, . Let 714 = max{mw € Py, | ar # 0} with respect to the chosen
linear ordering. We write 7o = (2%1,...,2k"). We proceed by induction on 7.
a7z, must be invariant with respect to the action of the normalizer Ny, (Az,). By
Swenson’s description of these invariant subalgebras stated in Proposition 6.4, it is a
sum of elements Zl- Ci1® Q¢ r, with

ki—1

Ci,j = 1_[ d;f]jlzkjfl [2”0 eH* (A(2 j)?IFZ)
=1

We must have a; j i, # 0 for all i and j. Otherwise, we can define a partition 7’
obtained from 7, by substituting 2%/ with two parts both equal to 25/ ~1 and observe
that, by Lemma 7.1, we must have @z, [4;,n4,, 7 0. Thus az/ # 0 and this would
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contradict the maximality of 7. By our calculations above, since a5, must be invariant
by permutations of tensor factors, this condition guarantees the existence of an element
x in the linear span of M3y, such that x|4, = az,. This reduces the statement to
o' = a +qwp, (x) for which, by construction, 774/ < 77y, and completes the induction
argument. m|

We now focus on the presentation of Ap.

Lemma 7.2 Let My C Mp be the set of Hopf monomials in A/D whose constituent
gathered blocks are all of the form (8gk:0)’ (yi:k)s withr > 0 and s > 0, or of the form
(82:0)” witha > 0. Then, for allm > 0, M, N H*(Wp,,, ;) restricts to a linearly
independent set in H *(/T(z)m ;IF2). Moreover, the image of M5 in the cohomology of
A, (2)ym generates the kernel of the restriction

~ N Aym ~ ~
p2,1: H* (A@yn;Fa) Wooy i) H*(Aqysu@yn—=2 N A@,2):Fa).

Proof Note that, due to Theorem 6.8 and Proposition 6.9, the Hopf monomials
in My N H*(Wp,;F,) restrict to linearly independent elements in H *(/f(z); F»).
Therefore, to prove the linear independence claim for 7 > 1, it is enough to check that
the restrictions of the elements of M, N H*(Wp,,,:F2) to H*(Wp ;F2) (which is
a component Ay of the coproduct) are linearly independent. Let F be the weight
filtration on A%, provided by Definition 5.20. It is enough to prove that this set is
linearly independent when working in the associated graded spaces gry(A’,) and
grr-(H *(Wm2; F»)). In this setting, the image of a gathered block b;’rt € M, (resp.
bl_,g € Mp) under gre(A@ym)is Y g, X, bf‘;g, where the sum is over all /-tuples
(e1,...,&7) with &; € {4, —} and the cardinality of the set {i : | <i <[,g; = —} is
even (resp. odd). Combining this with Proposition 5.14, we check the claim directly.

By Propositions 6.9 and 6.10, every element of M5 restricts to 0 on Ay whenever
1 € . Therefore, it is contained in the kernel of p; 1. We now prove the opposite
inclusion. With the notation of Theorem 6.8, we write

A m
H*(Aym: F2) WP2m 4™ = (By[ £y, dy ™) % {1, By}

We note that Azym ﬂff(l)m(z)m—z = A@ym NA(1)4y(2)ym—2. Moreover, hy, = yl":m |4 2ym
is 0 when restricted to Azym N Ajy4ypym—2. Therefore, Lemma 7.1 implies that
ker(pz,1) is the ideal generated by /1, and d 2" = ,02,1()/[5,,, + ¥1.m)|4ym - Finally,
the generators belong to the image of M5, the linear subspace generated by M, is a
-—subalgebra by our formulas in A, and restriction maps preserve cup products. O
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Proof of Theorem 5.15 Let A7, be the almost Hopf ring generated by elements of the
form §2.,,, y]jfm, and 1~ with the desired relations. Let ¢: A7, — A, be the obvious
morphism. We also consider the Fo—vector space A} with basis Mp. By our relations
for A7), Mp generates A,. Thus, there is a surjective linear map ¢’: A7) — A7,.
To prove that ¢’ is an isomorphism it is enough to prove that ¢” = ¢’¢ is. Since in
component O this is obvious, we can consider only positive components and replace
A’D with Ap. For technical reasons, we consider the set M'D, which differ from Mp
by replacing neutral gathered blocks with elements of the form p(]_[?=2(8,- ©) ln_l-)kf)
for ko, ...,k > 0. As shown in Lemma 5.18, this corresponds, at the level of A}’)/, to
performing a change of basis. Hence, it does not affect the argument.

We adapt the argument used in the proof of Theorem 5.9. We define 7y for x € M/, as
we did for Ap, with the only difference that gathered blocks of the form b = (§9.,)"
have 7, = (2), because (1, 1) does not define a maximal elementary abelian subgroup
in Wp,. It is still true that x| i, = 0 unless 7 is a refinement of 7. We extend
refinement of admissible partitions to a total ordering <, and we use the same argument
by induction on < adopted for Ap. Our choice of the new basis M, makes evident that
for all admissible partitions 7 the set M}, = {x € M7, | mx = 7} restricts to a linearly
independent set in the cohomology of Ay when 1 € 7, and Lemma 7.2 guarantees
that this is true if 1 ¢ 7 and 2 € w. Hence, the injectivity part works verbatim. We
need to adapt the surjectivity argument for admissible partitions 7 such that 1 ¢ 7 and
2 € & (in all other cases, nothing changes). In these cases, we use Lemma 7.2 instead
of Lemma 7.1 to carry on the proof. |

8 Steenrod algebra action

This section is devoted to the calculation of the Steenrod algebra action on Ag and Ap.
We first observe that, since the coproducts and transfer products are induced by (stable)
maps, they satisfy a Cartan formula with respect to Steenrod squares. In other words,
Ap and Ap are almost-Hopf rings over the Steenrod algebra. Thus it is sufficient
to determine the action of the Steenrod squares on the generators 8n, Yg on, 80,
and Vlgc,zﬂ‘

Definition 8.1 [7] We define the following notions:

e The height (ht) of a gathered block in Ap or Ap is the number of generators
that are cup-multiplied to obtain it, and the height of a Hopf monomial x =
by ©--- O by is maxi_, ht(b;).
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e The effective scale (effsc) of a gathered block in the cohomology of Wpg,
(resp. WDn) is the least [ such that n/ 2! is an integer and its restriction to
W / 2! (resp. W n/2! ) is nonzero, and the effective scale of a Hopf monomial
X = b1 Q---0b, 2as min/_, effsc(b;).

e A full-width monomial is a Hopf monomial in Ap (resp. Ap) of which no
constituent block is of the form ly, (resp. lw,, ).

Theorem 8.2 (cf [7, Theorem 8.3, page 191]) Let k,n > 1 andi > 0. Then, in Ap,
the following formulas hold:

. Sqi (Vk27) is the sum of all the full-width monomials x € Mp of degree
antk _on 4 i with ht(x) < 2 and effsc(x) > k in which generators of the
form §;, do not appear.

o Sq'(82n) is the sum of all the full-width monomials x € Mp of degree 2" + i
with ht(x) <2 and effsc(x) > 1 such that a generator of the form §;, appears in
every constituent gathered block of x.

Proof The calculation for Sq' (Yk 2n) is an obvious consequence of [7, Theorem 8.3,
page 191]. Regarding Sq' (827), since 8, is the top-dimensional Stiefel-Whitney class
of the reflection representation Up» by Proposition 5.3, by Wu’s formula Sq (821) =
w; (Uzn)d2n. Defining, by convention, yx o = 1, let
n—1
up = Z Q Yr.jr © 0, © 1W3j0-
J0seessinZ 0,021 27 ot jntjo=2" 71
P @ =D jr+jn=i

We computed the restriction of w; (Uan) to the maximal elementary abelian subgroups
Ay in the proof of Proposition 6.6. It coincides with the restriction of u; by our previous
calculations based on Proposition 6.5. Thus,

Sq' (821) = w; (Uzn)82n = u;San,
and this class is exactly the sum of all the desired Hopf monomials x. |
Regarding the calculation of the Steenrod squares on the generators of Ap, We observe
that the calculation for Sq’ (8., ) is implicit in Theorem 8.2 since 8p:m = p(8n © 1,n)

and p commute with Steenrod operations. Thus we only need to consider generators of
the form ylzt
N/
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Theorem 8.3 Let k,n > 1andi > 0. Then, in Ap, Sq’ (y,j'n) (resp. Sq' (V) 1s the
sum of all the full-width monomials x € BT (resp. x € B™) of degree 2"tk —2n 4
with ht(x) <2 and effsc(x) > [ in which generators of the form ., do not appear.

Proof We recall that Definition 6.11 provides, for all maximal elementary abelian
2—subgroup A € Wp,, , subspaces H: and H of the cohomology of A. A direct
calculation shows that Sq’ (h,) € H ("2')”. Since restrictions preserve the Steenrod
squares, Sq’ (yf: ,,) is mapped to an element of H:’ for all maximal elementary abelian
2—subgroups A € Wp,, and all choices of i and n. Similarly, the restriction of
Sq’ (yl_, ) to every such subgroup A4 lies in H, . Let xT (resp. x7) be the sum of all
the positively (resp. negatively) charged Hopf monomials considered in the statement.

By Proposition 6.12, the restriction of x* (resp. x™) belongs to HI (resp. H).

Moreover Sq' ()/,j W)t Sq’ Vi) = o(Sq’ (Yk,n))- Consequently, Theorem 8.2 implies
that Sq’ (y,j:n) +5¢' (v ) =xF +x7

Since H: N H, =0 for all A, the two facts above guarantee that Sq’ ()/]:r n) = xT and
Sq' () =x"- O
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