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On some p–differential graded link homologies, II
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In a previous article, we constructed a link invariant categorifying the Jones polyno-
mial at a 2pth root of unity, where p is an odd prime. This categorification utilized an
N D 2 specialization of a differential introduced by Cautis in an slN –link homology
theory. Here we give a family of link homologies where the Cautis differential is
specialized to a positive integer of the form N D kpC 2. When k is even, all these
link homologies categorify the Jones polynomial evaluated at a 2pth root of unity, but
they are distinct link invariants.
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1 Introduction

Given any link L, Khovanov and Rozansky [5] constructed a triply graded link homol-
ogy theory HHH.L/ whose graded Euler characteristic is the HOMFLYPT polynomial
of L using the theory of matrix factorizations. Khovanov reformulated this construction
using categories of Soergel bimodules [3]. The connection between Soergel bimodules
and link homology began with Rouquier’s categorification of the braid group [14]. He
also extended this categorification to a link homology [15].
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Link homology theories are important examples of categorification. In 1994, Crane and
Frenkel [2] introduced their categorification program with the purpose of constructing
.3C1/–dimensional TQFTs by lifting the .2C1/–dimensional TQFTs coming from
quantum groups. The .2C1/–dimensional TQFTs utilize quantum groups at roots of
unity. Motivated by this goal, Khovanov [4] introduced the subject of hopfological
algebra, which was further developed in [7]. The basic idea is to take a categorification
of a quantum group (for a generic quantum parameter) or its representations, defined
over a field of characteristic p and look for differentials @ such that @p D 0. Searching
for such p–differentials is equivalent to constructing an action of the Hopf algebra
H D kŒ@�=.@p/ (hence the word “hopfological”). We refer the reader to [10] for a
survey of some recent progress in this direction.

Cautis [1] defined an additional differential, depending upon a natural number N ,
on the chain groups for the triply graded theory, which produced a categorification
of the quantum slN –link invariant (also known as the symmetric glN homology).
Independently, Robert and Wagner [13] and Queffelec, Rose and Sartori [12] constructed
the same slN –link homology from different perspectives.

In a more recent work [6], Khovanov and Rozansky equipped the triply graded link
homology with an action of the positive half of the Witt algebra. One of the Witt
algebra generators (denoted by L1Dx2 @

@x
) in [6] acts as a p–differential over a field of

characteristic p on HHH.L/. For degree reasons, this is the only Witt algebra generator
that can play the role of a p–differential. In [11], we utilized this p–differential along
with the Cautis differential for N D 2, to construct a categorification of the Jones
polynomial evaluated at a 2pth root of unity. The Cautis differential has the effect of
applying L1 ^ . � / to HHH.L/. A key property that facilitated the construction in [11]
is that the two actions of L1, as the p–differential and the Cautis differential, commute
with each other.

In this work, we generalize the previous results by considering the Cautis differential
for N D kpC 2 where p is an odd prime — this condition could be removed but was
used in the braid group action in the prequel [11] — and k is a nonnegative integer.
The essential reason that this generalization works is that, in characteristic p, the
polynomial algebra generated by xp lies in the center of the Witt algebra. Therefore
the p–differential L1 still commutes with LkpC1 D xkpC2 @

@x
, the latter now serving

as the Cautis differential. Thus, for each N D kpC 2 and braid ˇ, we obtain a finite-
dimensional object pH.ˇ; kpC 2/ which is well defined in the homotopy category of
p–complexes. Our main result is the following.
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Theorem 4.9 Let L be a link presented as the closure of a braid ˇ and p be an odd
prime. The object pH.ˇ; kpC 2/ is a finite-dimensional framed link invariant. When
k 2 2Z, its Euler characteristic is the Jones polynomial evaluated at a 2pth root of unity.

Varying the Cautis differential categorifies slN –link invariants for different ranks. But
when q is a 2pth root of unity, and k is even, qkpC2 D q2 so the slkpC2–link invariant
is just the Jones polynomial. While this is true on the decategorified level, we show
in Section 5 that on the level of homology, the invariant for the Hopf link depends
upon k. Thus we obtain a family of distinct link homologies categorifying the Jones
polynomial at 2pth roots of unity.

In a parallel direction [8], we show that the root of unity categorification of [11] can be
extended to the colored case. Combining the approach of [8] with the current work,
one can construct certain colored slN –link homologies, which we plan to explore.

Acknowledgements The authors would like to thank Louis-Hadrien Robert and Em-
manuel Wagner for helpful conversations.

While working on the project, Qi was partially supported by the NSF grant DMS-
1947532. Sussan is partially supported by the NSF grant DMS-1807161 and PSC
CUNY Award 63047-0051.

2 Background

In this section, we recall some background material from [11]. We assume the reader
has some familiarity with the constructions in [11].

2.1 p–DG algebras and their relative homotopy categories

Let k be a field of characteristic p > 2. For any graded or ungraded algebra B over k,
denote by d0 the zero superdifferential (d2

0
D 0) and by @0 the zero p–differential

(@p
0
D 0) on B, while letting B sit in homological degree zero. When B is graded, the

homological grading is independent of the internal grading of B. We will usually refer
to the internal grading as the q–degree in what follows.

We will let C.B; d0/ and C.B; @0/ stand for the homotopy categories and p–homotopy
categories of B respectively. For more details on hopfological algebra of p–homotopy
categories, see [4; 7].
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For a graded module M over a graded algebra B, we let M fng denote the module M ,
where the internal grading has been shifted up by n. When convenient, we sometimes
call this shifted module qnM .

We will need the following functor introduced in [11, Section 2.1] which is called the
p–extension functor. Let B be a k–algebra. Given a chain complex of B–modules, we
repeat every term sitting in odd homological degrees .p� 1/ times while keeping even
degree terms unchanged. More explicitly, for a given complex

� � �
d2kC2
����!M2kC1

d2kC1
����!M2k

d2k
��!M2k�1

d2k�1
����!M2k�2

d2k�2
����! � � � ;

the p–extended complex looks like

� � �
d2kC2

// M2kC1 � � � M2kC1

d2kC1
//// M2k

d2k

// M2k�1 � � � M2k�1

d2k�1
// M2k�2

d2k�2
// � � �

Similarly, for chain maps of B–modules, the odd degree maps are repeated p�1 times
while the even ones are kept unchanged. In [9, Proposition 2.3], it is shown that this
construction leads to an exact functor between homotopy categories

(2-1) P W C.B; d0/! C.B; @0/:

The exactness of P means that it commutes with homological shifts, denoted by
Œ˙1�d and Œ˙1�@, respectively, on C.B; d0/ and C.B; @0/, and preserves the class of
distinguished triangles.

Suppose .A; @A/ is a p–DG algebra, ie a graded algebra equipped with a differential
@A of degree two, satisfying

(2-2) @
p
A
.a/� 0; @A.ab/D @A.a/bC a@A.b/

for all a; b 2 A. In other words, A is an algebra object in the module category of
the graded Hopf algebra Hq D kŒ@q �=.@

p
q /, where the primitive degree-two generator

@q 2Hq acts on A by the differential @A. Below we will usually take B to be a certain
smash product algebra associated with .A; @A/, which we next recall.

Given a p–DG algebra A, we may form the smash product algebra A # Hq in this case.
As a k–vector space, A#Hq is isomorphic to A˝Hq . The multiplication on the smash
product, given in pure tensor elements, is determined by

(2-3) .a˝ @q/.b˝ @q/D ab˝ @2
qC a@A.b/˝ @q:

Algebraic & Geometric Topology, Volume 23 (2023)



On some p–differential graded link homologies, II 3361

Notice that, by construction, A˝ 1 and 1˝Hq sit in A # Hq as subalgebras.

For later use, let us record a family of balanced Hq–modules

(2-4) Vi WD
��i

k
�iC2

k � � �
i�2

k
i

k
�

for each q–degree i in f0; : : : ;p � 1g. Here the module sits in a single homological
degree, while the labels on top indicate the various q–degrees that the module lives in.
As graded modules over Hq , we have Vi Š q�iHq=.@

iC1
q /.

We will also need a relative version of certain homotopy categories that play an essential
role in [11]. There is an exact forgetful functor between the usual homotopy categories
of chain complexes of graded A#Hq–modules

Fd W C.A # Hq; d0/! C.A; d0/:

An object K� in C.A # Hq; d0/ lies inside the kernel of the functor if and only if,
when forgetting the Hq–module structure on each term of K�, the complex of graded
A–modules Fd .K�/ is nullhomotopic. The nullhomotopy map on Fd .K�/, though, is
not required to intertwine Hq–actions.

Likewise, there is an exact forgetful functor

F@ W C.A # Hq; @0/! C.A; @0/:

Similarly, an object K� in C.A # Hq; @0/ lies inside the kernel of the functor if and
only if, when forgetting the Hq–module structure on each term of K�, the p–complex
of A–modules F.K�/ is nullhomotopic. The nullhomotopy map on F.K�/, though, is
not required to intertwine Hq–actions.

Definition 2.1 Given a p–DG algebra .A; @A/, the relative homotopy category is the
Verdier quotient

C@q .A; d0/ WD
C.A # Hq; d0/

Ker.Fd /
:

Likewise, the relative p–homotopy category is the Verdier quotient

C@q .A; @0/ WD
C.A # Hq; @0/

Ker.F@/
:

The superscripts in the definitions are to remind the reader of the Hq–module structures
on the objects.

Algebraic & Geometric Topology, Volume 23 (2023)
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The categories C@q .A; d0/ and C@q .A; @0/ are triangulated. By construction, there are
factorizations of the forgetful functors

C.A # Hq; d0/ C.A; d0/

C@q .A; d0/

Fd C.A # Hq; @0/ C.A; @0/

C@q .A; @0/

F@

Proposition 2.2 [11, Proposition 2.13] The p–extension functor

P W C.A # Hq; d0/! C.A # Hq; @0/

descends to an exact functor , still denoted by P , between the relative homotopy cate-
gories ,

P W C@q .A; d0/! C@q .A; @0/:

2.2 p–DG bimodules over the polynomial algebra

The polynomial algebra Rn D kŒx1; : : : ;xn� has a natural graded algebra structure
by setting the degree of each xi to be two. We can equip Rn with a p–DG algebra
structure, where the generator @q 2Hq acts as a derivation determined by @q.xi/D x2

i

for i D 1; : : : ; n. As before, the internal grading on Rn will be referred to as the
q–degree. When n is clear from the context, we will abbreviate Rn by just R.

The differential is invariant under the permutation action of the symmetric group Sn

on the indices of the variables. Therefore let the subalgebra of polynomials symmetric
in variables xi and xiC1 with its inherited Hq–module structure be denoted by

Ri
n D kŒx1; : : : ;xi�1;xi CxiC1;xixiC1;xiC2; : : : ;xn�:

More generally, given a (Young) subgroup G�Sn, the invariant subalgebra RG
n inherits

an Hq–algebra structure from Rn (and is thus a p–DG algebra). In particular, we will
also use the Hq–subalgebra R

i;iC1
n WDR

S3
n , where S3 is identified with the subgroup

generated by permuting the indices i , i C 1 and i C 2.

The .R;R/–bimodule Bi D R˝Ri R has the structure of an Hq–module (and is
thus a p–DG bimodule) where the differential acts via the Leibniz rule: for any
h˝g 2R˝Ri R,

@q.h˝g/D @q.h/˝gC h˝ @q.g/:

Algebraic & Geometric Topology, Volume 23 (2023)
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With respect to ˝R , the monoidal category of .R;R/–bimodules generated by the Bi

has an Hq–module structure, where the @q action is given by the Leibniz rule. We
denote this category by .R;R/#Hq–mod.

Let f D
Pn

iD1 aixi 2Fp Œx1; : : : ;xn��R be a linear function. We twist the Hq–action
on the bimodule Bi to obtain a bimodule B

f
i defined as follows. As an .R;R/–

bimodule, it is the same as Bi but the action of Hq is twisted by defining

(2-5a) @q.1˝ 1/D .1˝ 1/f:

Similarly, we define fBi where now

(2-5b) @q.1˝ 1/D f .1˝ 1/:

For Rn as a bimodule over itself, it is clear that fRn Š R
f
n as p–DG bimodules. It

follows that there are pn ways to put an Hq–module structure on a rank-one free module
over Rn. Each such Hq–module is quasi-isomorphic to a finite-dimensional p–complex.
Choose numbers bi 2 f2; : : : ;p;pC 1g such that bi � ai .mod p/, i D 1; : : : ; n, and
define the Hq–ideal of R,

(2-6) I D .x
pC1�b1

1
; : : : ;xpC1�bn

n /:

Then the natural quotient map

(2-7) � WRf �Rf =.I �Rf /

is readily seen to be a quasi-isomorphism. The right hand side of (2-7) computes the
slash homology (see [11, Section 2.1] for more details), denoted by H=

�
, of Rf .

Lemma 2.3 [11, Lemma 3.1] For each f D
P

i aixi , the rank-one p–DG module
Rf has slash homology

H=
�
.Rf /Š

nO
iD1

Vp�ai
fp� aig:

In particular , the slash homology is finite-dimensional , and vanishes if any ai of
f D

P
i aixi is equal to one.

Corollary 2.4 [11, Corollary 3.2] Let M be a p–DG module over R which is
equipped with a finite filtration , whose subquotients are isomorphic to Rf for various f .
Then M has finite-dimensional slash homology.

Algebraic & Geometric Topology, Volume 23 (2023)
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2.3 Relative p–Hochschild homology

In [11, Section 2.3], we introduced an absolute version of the p–Hochschild (co)homol-
ogy functor. In what follows, we will instead need a relative version of p–Hochshild
homology for a p–DG algebra, which we recall now. An important reason for introduc-
ing the relative homotopy category is that the relative p–Hochschild homology functor
descends to this category.

Let .A; @A/ be a p–DG algebra. Equip A with the zero differential d0 and zero
p–differential @0, and denote the resulting trivial (p–)DG algebras by .A0; d0/ and
.A0; @0/ respectively. Likewise, for a (p–)DG bimodule M over A, we temporarily
denote by M0 the A–bimodule equipped with zero (p–)differentials.

The usual Hochschild homology of M0 over .A0; d0/ in this case carries a natural
Hq–action, since the Hq–action commutes with all differentials in the usual simplicial
bar complex for A0.

Definition 2.5 The relative Hochschild homology of a p–DG bimodule .M; @M / over
.A; @A/ is the usual Hochschild homology of M0 over .A0; d0/ equipped with the
induced Hq–action from @M and @A, and denoted by

HH@q
�
.M / WD HH�.A0;M0/:

Replacing the usual simplicial bar complex by Mayer’s p–simplicial bar complex (see
[11, Definition 2.10]), we make the next definition (see [11, Section 2.3] for details).
Mayer’s p–simplicial bar complex is obtained by removing the alternating signs in
the usual simplicial bar complex of an algebra. In turn this results in a p–complex
bimodule resolution of an algebra.

Definition 2.6 The relative p–Hochschild homology of M is the p–complex

pHH@q
�
.M / WD H=

�
.A0˝

L
A0˝A

op
0

M0/D H=
�
.p.A0/˝A0˝A

op
0

M0/;

where the notation ˝L is the derived tensor functor. Here, the usual simplicial bar
resolution of M0 over A0 is replaced by Mayer’s p–simplicial bar complex p.A0/.

Similar to the usual Hochschild homology, the relative p–Hochschild homology is also
covariant functor: if f WM !N is a morphism of p–DG bimodules over A, it induces

pHH@q
�
.f / WD H=

�
.IdA0

˝f / W H=
�
.A0˝

L
A0˝A

op
0

M0/! H=
�
.A0˝

L
A0˝A

op
0

N0/:

Algebraic & Geometric Topology, Volume 23 (2023)



On some p–differential graded link homologies, II 3365

Proposition 2.7 [11, Proposition 2.20] The relative p–Hochschild homology de-
scends to a functor defined on the relative homotopy category C@q .A; @0/ of p–DG
bimodules over A.

We also have the trace-like property for relative p–Hochschild homology.

Proposition 2.8 [11, Proposition 2.21] Given two p–DG bimodules M and N

over A, there is an isomorphism of p–complexes of Hq–modules

pHH@q
�
.M ˝L

A N /Š pHH@q
�
.N ˝L

A M /:

We next recall a technical tool that allows us to use a simpler bimodule resolution to
compute the relative Hochschild homology than the usual simplicial bar resolution.

Theorem 2.9 [11, Theorem 2.22] Let M be a p–DG bimodule over A. Suppose
f WQ�!M is a p–complex resolution of M over .A0; @0/ which is Hq–equivariant ,
and each term of Q� is projective as an A0 ˝ A

op
0

–module. Then f induces an
isomorphism of Hq–modules

H=
�
.A0˝A0˝A

op
0

Q�/Š pHH@q
�
.M /:

2.4 Elementary braiding complexes

Here and below, for ease of notation, we will abbreviate tn D Œn�d for homological
shifts, where n 2 Z. Recall that in [11], we show that there are .R;R/#Hq–module
homomorphisms

(i) rbi WR! q�2B
�.xiCxiC1/

i , where 1 7! .xiC1˝ 1� 1˝xi/;

(ii) bri W Bi!R, where 1˝ 1 7! 1.

Thus we have complexes of .R;R/#Hq–modules

(2-8) Ti WD
�
tBi

bri
�!R

�
; T 0i WD

�
R

rbi
�! q�2t�1B

�.xiCxiC1/

i

�
:

In the coming sections we will, for presentation reasons, often omit the various shifts
built into the definitions of Ti and T 0i .

We associate respectively to the left and right crossings �i and � 0i between the i th and
.iC1/st strands in (2-9) the chain complexes of .R;R/#Hq–bimodules Ti and T 0i ,

(2-9) �i WD � � � � � � �
0

i
WD � � � � � �

Algebraic & Geometric Topology, Volume 23 (2023)
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More generally, if ˇ 2 Brn is a braid group element written as a product in the
elementary generators ��1

ii
� � � �

�k

ik
, where �i 2 f∅; 0g, we assign the chain complex of

.R;R/#Hq–bimodules

(2-10) Tˇ WD T
�1

i1
˝R � � � ˝R T

�k

ik
:

The complex is well defined in the relative homotopy category thanks to the following
result.

Theorem 2.10 The complexes of Ti and T 0i are mutually inverse complexes in the
relative homotopy category C@q .R;R; d0/. They satisfy the braid relations

� TiTj Š Tj Ti if ji � j j> 1,

� TiTiC1Ti Š TiC1TiTiC1 for all i D 1; : : : ; n� 1.

Consequently, given any braid group element ˇ 2 Brn, the chain complex of Tˇ associ-
ated to it is a well-defined element of the relative homotopy category C@q .R;R; d0/.

Proof This is proven in [11, Section 3].

3 Specialized HOMFLYPT theories

3.1 HOMFLYPT homologies

In this section we categorify the HOMFLYPT polynomial of any link using analogous
arguments from [1], [13] and [15] adapted to the p–DG setting.

For the first construction, we will allow complexes of Soergel bimodules to sit in
half-integer degrees in the Hochschild (a) and the homological, sometimes called the
topological, (t ) degrees when considering the usual complexes of vector spaces.

We modify the elementary braiding complexes of (2-8) to be

(3-1) Ti WD .at/�
1
2 q�2

�
tBi

bri
�!R

�
; T 0i WD .at/

1
2 q2

�
R

rbi
�! q�2t�1B

�.xiCxiC1/

i

�
:

Here we have extended the degree shift convention for q–degrees (see the beginning of
Section 2) to a– and t–degrees.

Let ˇ 2 Brn be a braid group element in n strands. By Theorem 2.10, there is a chain
complex of .Rn;Rn/#Hq–bimodules Tˇ, well defined up to homotopy, associated
with ˇ. Then set

(3-2) Tˇ D
�
� � �

d0
�! T iC1

ˇ

d0
�! T i

ˇ

d0
�! T i�1

ˇ

d0
�! � � �

�
:

Algebraic & Geometric Topology, Volume 23 (2023)
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Definition 3.1 The untwisted Hq–HOMFLYPT homology of ˇ is the object

1HHH
@q
.ˇ/ WD a�

n
2 t

n
2 H�

�
� � �!HH@q

�
.T iC1
ˇ

/
dt
�!HH@q

�
.T i
ˇ/

dt
�!HH@q

�
.T i�1
ˇ /!� � �

�
in the category of triply graded Hq–modules, where dt WD HH@q

� .d0/ is the induced
map of d0 on relative Hochschild homology. Here, the relative Hochschild homology
is defined in Definition 2.5, and H� means the usual homology of a chain complex.

By construction, the space 1HHH@q .ˇ/ is triply graded by topological (t) degree,
Hochschild (a) degree as well as quantum (q) degree. When necessary to emphasize
each graded piece of the space, we will write 1HHH@q

i;j ;k
.ˇ/ to denote the homogeneous

component concentrated in t–degree i , a–degree j and q–degree k.

The following theorem is a particular case of the main result of [6], where we have only
kept track of the degree two p–nilpotent differential — which is denoted by L1 in [6] —
in finite characteristic p. The detailed verification given in Section 3.2, however, uses
the main ideas of [15] and differs from that of [6]. This proof serves as the model for
the other link homology theories in this paper.

Theorem 3.2 The untwisted Hq–HOMFLYPT homology of ˇ depends only on the
braid closure of ˇ as a framed link in R3.

As a convention for the framing number of braid closure, if a strand for a component
of link is altered as in the left of (3-3), then we say that the framing of the component
is increased by 1 (with respect to the blackboard framing). If a strand for a component
of link is altered as in the right of (3-3), then we say that the framing of the component
is decreased by 1.

(3-3)   

Denote by fi.L/ the framing number of the i th component of a link L. Then, under the
Reidemeister moves of (3-3), fi.L/ is increased or decreased by one when changing
from the corresponding left local picture to the right local picture.
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We next seek to define a triply graded analogue with a–, t– and q–degrees in the
homotopy category of p–complexes. Let us first discuss what degrees of freedom we
have in the constructions.

First, we may adapt (3-1) into

pTi WD autvqw Œn�a@ Œm�
t
@

�
Bi Œ1�

t
@

bri
�!R

�
;(3-4a)

pT 0i WD a�ut�vq�w Œ�n�a@ Œ�m�t@
�
R

rbi
�! q�2B

�xi�xiC1

i Œ�1�t@
�
:(3-4b)

Here, the superscripts in homological shifts indicate in which of the three gradings
they are occurring. See the discussion around (2-1) for the meaning of the subscripts in
the notation. We let u; v; w;m; n 2 Z denote possible grading shifts to be determined,
which will be made into the simplest possible form at the end of the next subsection.

Definition 3.3 Let ˇ 2 Brn be a braid group element written as a product in the
elementary generators ��1

ii
� � � �

�k

ik
, where �i 2 f∅; 0g. We assign to ˇ the p–chain

complex of .Rn;Rn/#Hq–bimodules

(3-5) pTˇ WD pT
�1

i1
˝R � � � ˝R pT

�k

ik
:

We will denote the boundary maps in the p–complex pTˇ by @0 (@p
0
D 0), in contrast

to the usual, also called the topological, differential d0 satisfying d2
0
D 0.

Definition 3.4 The untwisted Hq–HOMFLYPT p–homology of ˇ is the object

p1HHH
@q
.ˇ/

WD qf .n/H=
�

�
� � � ! pHH@q

�
.pT iC1

ˇ
/
@t
�! pHH@q

�
.pT i

ˇ/
@t
�! pHH@q

�
.pT i�1

ˇ /! � � �
�

in the homotopy category of bigraded Hq–modules, where f .n/ is a function on N

which is determined below in (3-16). Here @t stands for the induced map of the
topological differentials on p–Hochschild homology groups @t WD pHH@q

�
.@0/.

In the definition of the Hq–HOMFLYPT p–homology, we have applied the p–extensions
in both the topological and the Hochschild direction so that they can be collapsed into
a single degree. The reason will become clearer later when categorifying certain slN
polynomials at prime roots of unity. Therefore, in contrast to 1HHH.ˇ/, p1HHH.ˇ/ is
only doubly graded, and we will adopt the notation p1HHHi;j .ˇ/ as above to stand
for its homogeneous components in topological degree i and q–degree j . Further,
the overall grading shift in the definition will be utilized in the invariance under the
Markov II move below.
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Theorem 3.5 The untwisted Hq–HOMFLYPT p–homology of ˇ depends only on the
braid closure of ˇ as a framed link in R3.

The proof of Theorems 3.2 and 3.5 will occupy the next few subsections, after we
introduce the Hq–equivariant (p–)Koszul resolutions.

3.2 Examining Markov II invariance

In this subsection, let us examine the invariance under the Markov II move for p1HHH.

In order to satisfy the second Markov move, one needs to show that for a Soergel bimod-
ule M (or a complex of Soergel bimodules) over the polynomial p–DG algebra Rn,
that the Hq–HOMFLYPT (p–)homologies of the bimodules (3-6) are isomorphic (up
to grading shifts and twists in Hq actions),

(3-6) M

� � �

� � �

M

� � �

� � �

By definition, the one-variable p–extended Koszul complex is given by

(3-7) pC1 D q2kŒx�x˝kŒx�x Œ1�a@
x˝1�1˝x
������! kŒx�˝kŒx�:

Set pCnC1 WD pC˝nC1
1

. For the ease of notation, we will write pC 0
1

for the p–
extended Koszul complex pC1 in the variable xnC1. Using the isomorphism of p–DG
bimodules,

(3-8) pCnC1˝.RnC1;RnC1/ ..M ˝kŒxnC1�/˝RnC1
pTn/

D .pCn˝pC 01/˝.RnC1;RnC1/ ..M ˝kŒxnC1�/˝RnC1
pTn/

Š pCn˝.Rn;Rn/ .M ˝Rn
.pC 01˝.kŒxnC1�;kŒxnC1�/ pTn//;

we are reduced to analyzing the p–homology of the “square” pC 0
1
˝kŒxnC1�;kŒxnC1�pTn:

(3-9a)

autvqw.xnC1B
xnC1

i /ŒkC 1�a
@
ŒmC 1�t

@
//

��

autvqwR2xnC1 ŒkC 1�a
@
Œm�t

@

��

autvqwBnŒk�
a
@
ŒmC 1�t

@
// autvqwRŒk�a

@
Œm�t

@
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0

��

q4R
xnC3xnC1

nC1
Œ1�a
@
Œ1�t
@

�

%%

2.xnC1�xn/
//

��

q2R
2xnC1

nC1
Œ1�a
@

��
Id

��

WD pY1

��

0 // 0

q2.xnC1B
xnC1
n /Œ1�a

@
Œ1�t
@

br
//

xnC1˝1�1˝xnC1

��
zbr

$$

q2R
2xnC1

nC1 Œ1�a
@

0

��

D pC 0
1
˝.kŒxnC1�;kŒxnC1�/

pTn

��

BnŒ1�
t
@

br
//

2Id

%%

RnC1

2Id

��

q2 zR
xnCxnC1

nC1 Œ1�t
@

//

.xnC1�xn/˝1�1˝.xnC1�xn/

��

0

��

WD pY2

��

BnŒ1�
t
@

br
// RnC1

0

Figure 1

and pC 0
1
˝kŒxnC1�;kŒxnC1� pT 0n:

(3-9b)

a�ut�vq2�wR2xnC1 Œ1� k�a
@
Œ�m�t

@
//

��

a�ut�vq2�w.xnC1B
�xn
n /Œ1� k�a

@
Œ�1�m�t

@

��

a�ut�vq�w Œ�k�a
@
Œ�m�t

@
// a�ut�vq�w�2B

�xi�xi�1
n Œ�k�a

@
Œ�1�m�t

@

Let us begin by studying the first p–complex square (3-9a). We will exhibit a sub–
p–complex pY1 of (3-9a), whose quotient will be denoted by pY2. Ignoring for the
moment the overall grading shift autvqw Œk�a

@
Œm�t

@
for simplicity, we have a filtration

of the square given by a short exact sequence of (p–complexes) of bimodules as in
Figure 1, where by definition the first square is pY1 and the third square is pY2. Here
� is the map that sends 1 to .xnC1�xn/˝ 1C 1˝ .xnC1�xn/.

It is not hard to show that pCn˝.Rn;Rn/ .M ˝Rn
pY2/ is annihilated by taking first

the vertical p–Hochschild homology and then the horizontal topological homology.
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0

��

q2R
2xnC1

nC1
Œ1�a
@

Id

��

Id
//

��

q2R
2xnC1

nC1
Œ1�a
@
Œ�1�t

@

��
rb

ww

WD pZ1

��

0 // 0

q2R
2xnC1

nC1 Œ1�a
@

rb
//

0

��

.xnC1B
�xn
n /Œ1�a

@
Œ�1�t

@

xnC1˝1�1˝xnC1

��
zbr

ww

D pC 0
1
˝.kŒxnC1�;kŒxnC1�/

pT 0n

��

RnC1
rb

//

Id

��

q�2B
�.xnCxnC1/
n Œ�1�t

@

Id

xx

0 //

��

zRnC1Œ1�
a
@
Œ�1�t

@

xnC1˝1�1˝xnC1

��

WD pZ2

��

RnC1
rb

// q�2B
�.xnCxnC1/
n Œ�1�t

@

0

Figure 2

Further, the p–complex pY1 is quasi-isomorphic to q2R
2xn
n Œ1�a

@
. Putting back the

grading shifts ignored earlier, we obtain the isomorphism

(3-10) p bHHH
@q
..M ˝kŒxnC1�/˝RnC1

pTn/Š H=
�
.pHH@q ..M ˝Rn pY1//

Š p bHHH
@q
.autvqwC2M ŒkC 1�a@ Œm�

t
@/

2xn :

For the second square (3-9b), again there is a short exact sequence of bicomplexes of
.RnC1;RnC1/–bimodules. Ignoring the overall grading shift a�ut�vq�w Œ�k�a

@
Œ�m�t

@
,

it is as in Figure 2. Next, consider the morphism of bicomplexes

0 //

��

zRnC1Œ1�
a
@
Œ�1�t

@

xnC1˝1�1˝xnC1
��

0 //

��

0

��
pZ2 WD WD pZ0

2

RnC1
rb
//

Id

44B
�.xnCxnC1/
n Œ�1�t

@

br

22
RnC1

xnC1�xn
// R
�.xnCxnC1/

nC1 Œ�1�t
@
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whose kernel is isomorphic to the contractible p–complex

zRnC1Œ1�
a
@
Œ�1�t

@

Id
��

pZ00
2
WD

zRnC1Œ�1�t
@

Upon taking pHH, the contribution from pZ00
2

vanishes. Taking back into account the
overall grading shift, it follows that we have

(3-11) p bHHH
@q
..M ˝kŒxnC1�/˝RnC1

pT 0n/Š H=
�
.pHH@q ..M ˝Rn pZ02//

Š p bHHH
@q
.a�ut�vq�w�2M Œ�k�a@ Œ�m� 1�t@/

�2xn :

Now, let us observe that taking closure of the following diagram of p–DG bimodules

(3-12)

M

� � �

� � �

introduces a canceling pair of Markov II moves. By (3-10) and (3-11), we obtain that

(3-13) p1HHH
@q�
.M ˝kŒxnC1;xnC2�/˝RnC2

pTnC1˝RnC2
pT 0nC2

�
Š qf .nC2/H=

�
.pHH�.M Œ1�a@ Œ�1�t@//:

For the last term to be isomorphic to

(3-14) p1HHH
@q
.M /Š qf .n/H=

�
.pHH�.M //;

we need to require the functor isomorphism

(3-15) Œ1�a@ Œ�1�t@ D qf .n/�f .nC2/:

We are therefore forced to collapse the a grading onto the t grading such that aD qr t ,
where r D f .n/�f .nC 2/ 2 Z. For simplicity, let us assume that

(3-16) K D f .n/�f .nC 1/

is a constant independent of n. Then r D 2K 2 2Z, and we have aD q2K t such that
Œ1�a
@
D q2K Œ1�t

@
.
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Revisiting (3-4), we now set

pTi WD q�K�2Œ�1�t@
�
Bi Œ1�

t
@

bri
�!R

�
;(3-17a)

pT 0i WD qKC2Œ1�t@
�
R

rbi
�! q�2B

�xi�xiC1

i Œ�1�t@
�
;(3-17b)

and

p bHHH
@q
.ˇ;KC 1/

WD q�KnH=
�

�
� � � ! pHH@q

� .pT iC1
ˇ

/
@t
�! pHH@q

� .pT i
ˇ/

@t
�! pHH@q

� .pT i�1
ˇ /! � � �

�
:

Recall from Section 2.2 — see the discussion around (2-5a) and (2-5b) — that, for a
given linear polynomial f D

P
i aixi , ai 2 Fp, and a p–DG Rn–module M , we can

twist the Hq–module structure on M by f . The resulting p–DG module is denoted
by M f .

Theorem 3.6 Let ˇ1 and ˇ2 be two braids whose closures represent the same link L

of r components up to framing. Suppose the framing numbers of the closures Ǒ1 of ˇ1

and Ǒ2 of ˇ2 differ by fi. Ǒ1/� fi. Ǒ2/D ai , i D 1; : : : ; r . Then

1HHH
@q
.ˇ1/Š1HHH

@q
.ˇ2/

2
Pr

iD1 ai xi

and
p1HHH

@q
.ˇ1;KC 1/Š p1HHH

@q
.ˇ2;KC 1/2

Pr
iD1 ai xi

where the generator of the polynomial action for the i th component is denoted by
xi and 1HHH@q .ˇ2/

2
P

i ai xi means that we twist the Hq–module structure on the i th

component by 2aixi .

Proof The topological invariance follows from Theorem 2.10 and the proof above of
invariance under the Markov moves.

3.3 Unlinks and twistings

In this section, we compute 1HHH
@q

and p1HHH
@q

for the identity element of the braid
group Brn, and define an unframed link invariant in R3 by correcting the framing
factors appearing in Theorem 3.6.

For the unknot, the Koszul resolution C1 of kŒx� as bimodules is given by

q2akŒx�x˝kŒx�x x˝1�1˝x
������! kŒx�˝kŒx�:

Tensoring this complex with kŒx� as a bimodule yields

q2akŒx�2x 0
�! kŒx�:
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Thus the homology of the unknot (up to shift) is identified with the bigraded Hq–module

kŒx�˚ q2akŒx�2x :

More generally, via the Koszul complex Cn D C˝n
1

, we have that the homology of the
n–component unlink L0 is equal to

(3-18) 1HHH
@q
.L0/Š a�

n
2 t

n
2 HH�.Rn/Š a�

n
2 t

n
2

nO
iD1

.kŒxi �˚ q2akŒxi �
2xi /:

Alternatively, up to the grading shift a�
n
2 t

n
2 , we may identify 1HHH

@q
.L0/ with the

exterior algebra over Rn generated by the differential forms dxi of bidegree aq2 for
i D 1; : : : ; n, subject to the condition that each dxi accounts for a twisting of the
Hq–module structure by 2xi .

It follows that, as for the ordinary HOMFLYPT homology, given a framed link L of
` components arising as a braid closure Ǒ, its untwisted HOMFLYPT Hq–homology
1HHH@q .ˇ/ is a module over

1HHH
@q

0;0;�.L0/ŠR`;

and thus one may consider a twisting of the Hq–module structure on 1HHH
@q
.ˇ/ by the

functor R
f

`
˝R` . � /, where f is a linear polynomial in x1; : : : ;x`; see Section 2.2.

Definition 3.7 Let L be a framed link arising from the closure of an n–strand braid ˇ.
Label the components of L by 1 through `, and set the (linear) framing factor of ˇ to
be the linear polynomial

fˇ D�
X̀
iD1

2fixi :

(1) The Hq–HOMFLYPT homology of ˇ is the triply graded Hq–module

HHH@q .ˇ/ WD1HHH
@q
.ˇ/fˇ ŠR

fˇ
`
˝R`

1HHH
@q
.ˇ/:

(2) Likewise, the Hq–HOMFLYPT p–homology is the doubly graded Hq–module

pHHH@q .ˇ;KC1/ WD pHHH@q .ˇ;KC1/fˇ ŠR
fˇ
`
˝R` p1HHH

@q
.ˇ;KC1/:

Corollary 3.8 Given a braid ˇ, both HHH@q .ˇ/ and pHHH@q .ˇ/ are link invariants
that only depend on the closure of ˇ as a link in R3. Moreover , these invariants satisfy
the following properties:
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(i) The slash homologies of HHH@q .ˇ/ and pHHH@q .ˇ;KC 1/ are finite-dimen-
sional.

(ii) Furthermore , the Euler characteristic of HHH@q .ˇ/ is equal to the HOMFLYPT
polynomial of Ǒ in the formal variables q and a, while the Euler characteristic
of pHHH@q .ˇ;K C 1/ is equal to the slKC1–polynomial of Ǒ in a formal q–
variable.

(iii) The Euler characteristic of the slash homology of HHH@q .ˇ/ is equal to the
specialization of the HOMFLYPT polynomial of Ǒ at a root of unity q, while the
Euler characteristic of the slash homology of pHHH@q .ˇ;KC 1/ is the equal to
the specialization of the slKC1–polynomial of Ǒ at a root of unity q.

Proof For the first statement, we note that the twisting of the p–DG structure by the
framing factor takes care of the Markov II move.

Next, the finite-dimensionality of the homology theories follows, by construction, from
the fact that fi1B

gi1

i1
˝R � � � ˝R

fimB
gim

im
is an Hq–module with 2m–step filtration

whose subquotients are isomorphic to Rf as left R#Hq–modules; thus Corollary 2.4
applies.

Remark 3.9 The previous discussion in Section 3.2 forces us to make a specialization
aD qr t in the homotopy category of t and q–bigraded p–complexes to obtain a framed
Markov II invariance. In particular, when r DK D 0, this forces the relation, on the
Grothendieck group level, that aD tD�1. This specialization leads to a categorification
of the Alexander skein relation.

4 Specialized homology theories

4.1 A singly graded homology

Fix k 2N. Consider the Hq–Koszul complex in one-variable,

(4-1) C1 W 0! aq2kŒx�x˝kŒx�x
dC
�! kŒx�˝kŒx�! 0;

where dC is the map dC .f /D .x
kpC2˝1C1˝xkpC2/f and k 2N. We regard the

differential on the arrow as an endomorphsim of the Koszul complex, of .a; q/–bidegree
.�1; 2kpC 2/.

Lemma 4.1 The commutator of the endomorphisms dC and @q 2Hq is nullhomotopic
on the Koszul complex C1.
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Proof The commutator map � WD ŒdC ; @q � is given by

0 // kŒx�x˝kŒx�x
x˝1�1˝x

//

�
��

kŒx�˝kŒx� // 0

0 // kŒx�x˝kŒx�x
x˝1�1˝x

// kŒx�˝kŒx� // 0

where � maps the bimodule generator 1˝ 1 2 kŒx�x˝kŒx�x as follows:

�.1˝1/D dC .@q.1˝1//�@qdC .1˝1/

D dC .x˝1C1˝x/�@q.x
kpC2

˝1C1˝xkpC2/

D .x˝1C1˝x/.xkpC2
˝1C1˝xkpC2/�2.xkpC3

˝1C1˝xkpC3/

D�xkpC3
˝1CxkpC2

˝xCx˝xkpC2
�1˝xkpC3

D xkpC2
˝1.1˝x�x˝1/C.x˝1�1˝x/1˝xkpC2

D .x˝1�1˝x/.1˝xkpC2
�xkpC2

˝1/:

We may thus choose a nullhomotopy to be

0 // kŒx�x˝kŒx�x

h

tt

x˝1�1˝x
//

�
��

kŒx�˝kŒx� // 0

0 // kŒx�x˝kŒx�x
x˝1�1˝x

// kŒx�˝kŒx� // 0

where h is given by multiplication by the element 1˝xkpC2�xkpC2˝ 1, and acts
on the rest of the complex by zero.

The Koszul complex Cn inherits the endomorphism dC by forming the n–fold tensor
product from the one-variable case. It follows, that for a given p–DG bimodule M

over Rn, there is an induced differential, still denoted by dC , given via the identification

(4-2) HH@q
�
.M /Š H�.M ˝.Rn;Rn/ Cn/;

where the induced differential acts on the right hand side by IdM˝dC . By construction,
dC has Hochschild degree �1 and q–degree 2kpC 2.

Lemma 4.1 immediately implies the following.

Corollary 4.2 The induced differential dC on HH@q
� .M / commutes with the Hq–

action. �

Remark 4.3 The differential dC , first observed by Cautis [1], has the following more
algebrogeometric meaning. Identifying HH1.Rn/ as vector fields on Spec.Rn/DAn,
HH1.Rn/ acts as differential operators on HH�.M / for any .Rn;Rn/–bimodule M ,
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regarded as a coherent sheaf on An �An Š T �.An/. Under this identification dC is
given by, up to scaling by a nonzero number, contraction with the vector field

�C WD

nX
iD1

x
kpC2
i

@

@xi
:

On the other hand, @q is given by the polynomial derivation by the vector field

�q WD

nX
iD1

x2
i
@

@xi
:

Since these two vector fields satisfy

Œ�C ; �q �D
X
i;j

h
x

kpC2
i

@

@xi
;x2

j
@

@xj

i
D

X
i

�
2x

kpC3
i

@

@xi
� .kpC 2/x

kpC3
i

@

@xi

�
D 0;

the two actions naturally commute with each other on HH�.M / via the Gerstenhaber
module structure on HH�.M /.

In a more general context, Hochschild homology is a Gerstenhaber module over
Hochschild cohomology viewed as a Gerstenhaber algebra. We may view dC and @q

as commuting elements in Hochschild cohomology ring but the element dC acts on
homology via cap product �C \ . � / and the element @q acts via a Lie algebra action
L�q

. � /. The compatibility of these actions is given by the equation

�C \L�q
.x/D Œ�C ; �q �\xCL�q

.�C \x/:

Since Œ�C ; �q �D 0, these actions commute.

Now we are ready to introduce a further collapsed p–homology theory of a braid
closure. Let ˇ 2 Brn be an n–stranded braid. We have associated to ˇ a usual chain
complex of Hq–equivariant Soergel bimodules Tˇ as in (3-2), of which we take pHH@q

�

for each term:

(4-3)

:::
:::

:::

: : :
@t
// pHH@q

i .pT mC1
ˇ

/

@C

OO

@t
// pHH@q

i .pT m
ˇ
/

@C

OO

@t
// pHH@q

i .pT m�1
ˇ

/

@C

OO

@t
// : : :

: : :
@t
// pHH@q

iC1
.pT mC1

ˇ
/
@t
//

@C

OO

pHH@q

iC1
.pT m

ˇ
/

@C

OO

@t
// pHH@q

iC1
.pT m�1

ˇ
/

@C

OO

@t
// : : :

:::

@C

OO

:::

@C

OO

:::

@C

OO
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Here, @C is a p–differential arising from dC as follows. By [11, Proposition 4.8], the
p–Hochschild homology groups in a column above are identified with the terms in

(4-4) � � �
dC
�! HH@q

2iC1
.pT m

ˇ /D � � �

� � � D HH@q

2iC1
.pT m

ˇ /
dC
�! HH@q

2i
.pT m

ˇ /
dC
�! HH@q

2i�1
.pT m

ˇ /D � � � ;

where each term in odd Hochschild degree is repeated p�1 times. Here the horizontal
differential is the p–Hochschild induced map of the topological differential, which
we have denoted by @t to indicate its origin. On the arrows connecting even and
odd Hochschild degree terms, we put the map dC while keeping the repeated terms
connected by identity maps. This defines a p–complex structure, denoted by @C , in
each column in diagram (4-3). The p–differential @C commutes with the Hq–action
on each term by Corollary 4.2. Denote the total p–differential by @T WD @t C @C C @q ,
which collapses the double grading into a single q–grading.

Remark 4.4 We would like to emphasize an important point about the vertical grading
collapse. In order to p–extend the Koszul complex (4-1) into a p–Koszul complex
with @C of degree two, we are forced to make the functor specialization from Œ1�a

d
D a

into q2kpC2Œ1�
q

@
, so that the p–extended complex looks like

(4-5) pC1 W 0! q2kpC4kŒx�x˝kŒx�x Œ1�q
@

dC
�! kŒx�˝kŒx�! 0:

Taking tensor products of pC1, this determines the correct vertical q–degree shifts in
each column of diagram (4-3) of the p–Hochschild homology groups.

Notice that, on the level of Grothendieck groups, this has the effect of specializing the
formal variable a into �q2kpC2.

When Œ1�t
@
D Œ1�

q

@
and aD q2kpC2Œ1�

q

@
, the braiding complexes (3-17) specialize to

(4-6)
pTi WD q�kp�3

�
Bi

bri
�!RŒ�1�

q

@

�
;

pT 0i WD qkpC3
�
RŒ1�

q

@

rbi
�! q�2B

�.xiCxiC1/

i

�
:

Comparing (3-17) with (4-6), this forces

(4-7) K D kpC 1:

This also explains the necessity of p–extension in the collapsed t and a direction in
pHHH in the previous section: the homological shift in that direction needs to be
p–extended to agree with the homological shift in the q–direction.

Furthermore, the bigrading in diagram (4-3) is now interpreted as a single grading,
with both @C and @t raising q–degree by two.
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Definition 4.5 Let ˇ be an n stranded braid. The untwisted slkpC2 p–homology of ˇ
is the slash homology group

pyH.ˇ; kpC 2/ WD q�n.kpC1/H=
�
.pHH@q

�
.pTˇ/; @T /;

viewed as an object in C.k; @q/. We will drop the kpC 2 decoration whenever k is
fixed and clear from context.

The homology group pyH.ˇ/ is only singly graded as an object in C.k; @q/. By construc-
tion, pyH.ˇ/ is the slash homology with respect to the @T action on

L
i;j pHH@q

i .pT
j

ˇ
/;

see diagram (4-4). The latter space is doubly graded by the topological degree and
q–degree with values in Z�Z (the Hochschild a degree is already forced to be collapsed
with the q degree to make the Cautis differential @C homogeneous). However, as in
Section 3.2, the Markov II invariance for the homology theory already requires one to
collapse the t–grading onto the a–grading, thus also onto the q–grading. We will use
pyHi.ˇ/ to stand for the homogeneous subspace sitting in some q–degree i .

Remark 4.6 This approach to a categorification of the Jones polynomial, at generic
values of q, was first developed by Cautis [1]. We follow the exposition of Robert and
Wagner from [13] and the closely related approach of Queffelec, Rose and Sartori [12].

4.2 Topological invariance

In this subsection, we establish the topological invariance of the untwisted homology
theory.

Theorem 4.7 The homology pyH.ˇ; kpC2/ is a finite-dimensional framed link invari-
ant depending only on the braid closure of ˇ.

Proof The proof of the theorem is similar to [11, Theorem 5.6]. It amounts to showing
that taking slash homology of pHH@

�
.ˇ/ with respect to @T satisfies the Markov II

move.

We start by discussing the normal Hq–equivariant Hochschild homology version. Let
L be a link in R3 obtained as a braid closure Ǒ, where ˇ 2 Brn is an n–stranded
braid. Recall that the homology groups HH@

�
.L/ are defined by tensoring a complex of

Soergel bimodules M determined by ˇ with the Koszul complex Cn and computing its
termwise vertical (Hochschild) homology. The differential dC is defined on the Koszul
complex Cn. To emphasize its dependence on n, we will write dC on Cn as dn in this
proof, and likewise write @n for the p–extended differential on pCn.
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Since
CnC1 D Cn˝C 01 D Cn˝kŒxnC1�˝ƒhdxnC1i˝kŒxnC1�;

the vertical differential may be inductively defined as

(4-8) dnC1 D dn˝ IdC Id˝ d 01:

Here we have set C 0
1
D kŒxnC1�˝ƒhdxnC1i ˝ kŒxnC1� equipped with part of the

Cautis differential

d 01 WD x
kpC2
nC1

˝ � @
@xnC1

˝ 1C 1˝ � @
@xnC1

˝x
kpC2
nC1

:

The notation � denotes the contraction of dxnC1 with @
@xnC1

. Under p–extension, write
@C for the p–extended Cautis differential and @0

1
as the p–extended differential of d 0

1
.

We start by reexamining the diagram in Figure 1 with the shifts in (4-6). It will
be helpful to keep the a and t gradings separate for the proof, with it understood
that Œ1�a

@
D q2kpC2Œ1�

q

@
and Œ1�t

@
D Œ1�

q

@
. Thus we have a short exact sequence as in

Figure 3. Further, the sequence splits as bimodules over .Rn;Rn/ (see the proof of
[11, Proposition 4.12] for an explicit splitting).

We claim that, as modules over kŒ@T �=.@
p
T
/, the p–homology groups

pHH@q
�
..M ˝kŒxnC1�/˝RnC1

Tn/

fit into a distinguished triangle

(4-9) H=
�
.pCn˝.Rn;Rn/.M˝Rn

pY2//! HH@q
�
..M˝kŒxnC1�/˝RnC1

pTn/

! H=
�
.pCn˝.Rn;Rn/.M˝Rn

pY1//
Œ1�
�!

after taking vertical slash (p–Hochschild) homology. Note that this p–complex triangle
is in reverse order of the filtration in Figure 3.

Indeed, since @C acts on the pY1 and pY2 tensor factors via @0
1
, it suffices to check that

@0
1

preserves the submodule arising from pY2 and presents the part arising from pY1

as a quotient. To do this, we reexamine the sequence in Figure 1 under vertical slash
(p–Hochschild) homology, with the auxiliary a and t–gradings. The part pY2, under
vertical homotopy equivalence, contributes to the horizontal (topological) complex

(4-10a) pY 02 WD
�
q�kp�3RnC1

@tDId
����! q�kp�3RnC1Œ�1�t@

�
sitting entirely in p–Hochschild degree 0. Likewise, the part pY1 contributes to the
horizontal

(4-10b) pY 01 WD
�
q�kpC1R

xnC3xnC1

nC1
Œ1�a@

@tD2.xnC1�xn/
����������! q�kp�1R

2xnC1

nC1
Œ1�a@ Œ�1�t@

�
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0

q�kpC1R
xnC3xnC1

nC1
Œ1�a
@

q�kp�1R
2xnC1

nC1
Œ1�a
@
Œ�1�t

@

WD pY1

0 0

q�kp�1.xnC1B
xnC1
n /Œ1�a

@
q�kp�1R

2xnC1

nC1 Œ1�a
@
Œ�1�t

@

DpC 0
1˝.kŒxnC1�;kŒxnC1�/

pTn

q�kp�3Bn q�kp�3RnC1Œ�1�t
@

q�kp�1 zR
xnCxnC1

nC1
Œ1�a
@

0

WD pY2

q�kp�3Bn q�kp�3RnC1Œ�1�t
@

0

�

2.xnC1�xn/

Id

br

xnC1˝1�1˝xnC1

zbr

0

br

2Id 2Id

.xnC1�xn/˝1�1˝.xnC1�xn/

br

Figure 3

sitting entirely in p–Hochschild degrees 1; : : : ;p�1. Since @0
1

decreases the a–degree
by one (ie acting vertically downwards), pY 0

2
must be preserved under @0

1
, acting upon

it trivially, and pY 0
1

is equipped with the quotient action of @0
1
.

By the above discussion, @T D @t C @C C @q acts on the term containing pY 0
2

only
through @t C @q . Since this term is the cone of the identity map, it is nullhomotopic
and thus

H=
�
.pCn˝.Rn;Rn/ .M ˝Rn

pY2//Š 0:

Consequently, using that Œ1�a
@
D q2kpC2Œ1�t

@
, we have an isomorphism

H=
�
.pHH�..M ˝kŒxnC1�/˝RnC1

pTn/; @T /Š H=
�
.pHH�.M ˝Rn

pY 01/; @T /

Š qkpC1H=
�
.pHH�.M /; @T /

2xn :

The qkpC1 factor is canceled out in the overall shift of pyH. This finishes the first part
of Markov II move.
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The other case of the Markov II move is entirely similar, which we omit.

Finally, the finite-dimensionality of pyH.ˇ/ follows from Corollary 2.4.

To obtain a categorical link invariant, we need to introduce a p–differential twisting
to correct the framing factor occurring in Theorem 4.7, as done in [11, Section 5.3].
For a braid ˇ 2 Brn whose closure is a framed link with ` components, choose for
each framed component of Ǒ in ˇ a single strand in ˇ that lies in that component after
closure, say, the i th

r strand is chosen for the r th component. Then define the polynomial
ring kŒxi1

; : : : ;xi` � as a subring of kŒx1; : : : ;xn� generated by the chosen variables.
Set

(4-11) kŒxi1
; : : : ;xi` �

fˇ WD kŒxi1
; : : : ;xi` � � 1ˇ; @.1ˇ/ WD �

X̀
rD1

2fr xir
1ˇ:

Then we make the twisting of Hq–modules on the pHH�–level termwise on pHH�.pT i
ˇ
/,

(4-12) pHHfˇ
� .pTˇ/ WD pHH�.pTˇ/˝kŒxi1

;:::;xi`
� kŒxi1

; : : : ;xi` �
fˇ :

Definition 4.8 Given ˇ 2 Brn whose closure is a framed link with ` components, the
slkpC2 p–homology is the object

pH.ˇ; kpC 2/ WD q�n.kpC1/H=
�
.pHHfˇ

� .pTˇ/; @T /

in the homotopy category C.k; @q/.

As done for pHHH, we will often drop kpC 2 in the notation of the homology.

Theorem 4.9 The slkpC2 p–homology pH.ˇ; kp C 2/ is a singly graded , finite-
dimensional link invariant depending only on the braid closure of ˇ as a link in R3.
Furthermore , when k 2 2Z, its graded Euler characteristic

�.pH.L; kpC 2// WD
X

i

qi dimk.pHi.L; kpC 2//

is equal to the Jones polynomial evaluated at a 2pth root of unity.

Proof The above framing twisting compensates for the linear factors appearing in
Markov II moves, thus establishing the topological invariance of pH.ˇ/.

For the last statement, we will use the fact that the Euler characteristic does not
change before or after taking slash homology. This is because, as with the usual chain
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complexes, taking slash homology only gets rid of acyclic summands whose Euler
characteristics are zero.

Let us revisit diagram (4-4). Before collapsing the t and q–gradings, the diagram arises
by p–extending HH�.Tˇ/ in the vertical (t–)direction. Let Pˇ.v; t/ be the Poincaré
polynomial of the bigraded complex HH�.Tˇ/ where, for now, v and t are treated
as formal variables coming from q and t grading shifts. As shown by Cautis [1],
Pˇ.v;�1/ is the slkpC2 polynomial of the link Ǒ in the variable v.

The p–extension in the topological direction is equivalent to categorically specializing
Œ1�t

d
to Œ1�q

@
. It has the effect, on the Euler characteristic level, of specializing t D�1.

Thus we obtain that the Euler characteristic of pH.ˇ/ is equal to Pˇ.v D q; t D�1/.
This the evaluation of the slkpC2 polynomial evaluated at a 2pth root of unity q. When
k 2 2Z, we have qkpC2 D q2 in

Op WDK0.C.k; @q//Š
ZŒq�

.1C q2C � � �C q2.p�1//
;

so this evaluation is equal to the value of the Jones polynomial in Op.

5 Examples

In this section we compute the various homologies constructed earlier for .2; n/ torus
links T2;n. Note that there are no framing factors to incorporate in this family of
examples. The calculations are straightforward modifications of the computations made
in [6] and adjusted for p–DG notions in [11, Section 6]. We refer the reader to [11]
and just state the modified results here with minimal explanation.

Throughout the remainder of this subsection, let RD kŒx1;x2�, B D B1, and T D T1.

5.1 The HOMFLYPT homology of the .2 ; n/ torus link

First note that the homology of the n–component unlink L0 is

pHHH@q .L0;KC 1/Š

nO
iD1

q�K .kŒxi �˚ q2KC2Œ1�t@kŒxi �
2xi /:

The following simplification of T˝n is proved in the same way as [11, Lemma 6.1].
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Lemma 5.1 In C@q .R;R; @0/, one has T˝n Š .q�K�1Œ�1�t
@
/n�

q2.n�1/B.n�1/e1 Œn�t@
pn
�! q2.n�2/B.n�2/e1 Œn� 1�t@

pn�1
��! � � �

� � �
p3
�! q2Be1 Œ2�t@

p2
�! B Œ1�t@

br
�!R

�
;

where

p2i D 1˝ .x2�x1/� .x2�x1/˝ 1; p2iC1 D 1˝ .x2�x1/C .x2�x1/˝ 1:

The following result is proved in the same way as [11, Proposition 6.3]

Proposition 5.2 The bigraded Hq–HOMFLYPT p–homology of a .2; n/ torus knot ,
as an Hq–module depends on the parity of n.

(i) If n is odd , it is

q�nK�2n�2K Œ�n�t@.q
2KC2Œ1�t@kŒx�

2x
˚ q4KC4Œ2�t@kŒx�

4x/

˚

M
i2f2;4;:::;n�1g

q�nK�2n�2K Œi � n�t@

 
q2.i�1/kŒx�2.i�1/x

˚ q2K Œ1�t@

0@ q2ikŒx�
˚

q2iC2kŒx�

1A
˚ q2iC4C4K Œ2�t@kŒx�

2.iC1/x

!
with the Hq–structure on the middle object0@kŒx�

˚

kŒx�

1A
given by �

2ix 0
�2 (2i C 2/x

�
:

(ii) If n is even , it is

q�nK�2n�2K Œ�n�t@.q
2KC2Œ1�t@kŒx�

2x
˚ q4KC4Œ2�t@kŒx�

4x/

˚

M
i2f2;4;:::;n�2g

q�nK�2n�2K Œi � n�t@

0BBBBBBBBB@

q2.i�1/kŒx�2.i�1/x

˚

q2K Œ1�t
@

0@ q2ikŒx�
˚

q2iC2kŒx�

1A
˚

q2iC4C4K Œ2�t
@
kŒx�2.iC1/x

1CCCCCCCCCA
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˚ q�nK�2n�2K Œ�n�t@

0BBBBBBBBB@

q2.n�1/kŒx1;x2�
.n�1/.x1Cx2/

˚

q2K Œ1�t
@

0@ q2nkŒx1;x2�

˚

q2nC2kŒx1;x2�

1A
˚

q2nC4C4K Œ2�t
@
kŒx1;x2�

.nC2/.x1Cx2/

1CCCCCCCCCA
Œn�t@

with the Hq–structure on the middle object0@ q2ikŒx�
˚

q2iC2kŒx�

1A
given by �

2ix 0
�2 (2i C 2/x

�
and the Hq–structure on the middle object0@ q2nkŒx1;x2�

˚

q2nC2kŒx1;x2�

1A
given by �

(nC 1/x1C .n� 1/x2 0
�2 n.x1Cx2/C 2x2

�
:

Corollary 5.3 In the stable category of Hq–modules , the slash homology of the Hq–
HOMFLYPT p–homology of a .2; n/ torus link pHHH@q .T2;n;KC1/ depends on the
parity of n.

(i) If n is odd , it is

q�nK�2n�2K Œ�n�t@.q
pC2K V

q
p�2

Œ1�t@˚ qpC4K V
q

p�4
Œ2�t@/

˚

M
i2f2;4;:::;n�1g

q�nK�2n�2K Œ�n�t@

 
qpV

q

p�2.i�1/
˚

0B@ qpC2K V
q

p�2i

˚

qpC2K V
q

p�2i�2

1CA Œ1�t@
˚qpC2C4K V

q

p�2.iC1/
Œ2�t@

!
Œi �t@:
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(ii) If n is even , it is

q�nK�2n�2K Œ�n�t@.q
pC2K V

q
p�2

Œ1�t@˚ qpC4K V
q

p�4
Œ2�t@/

˚

M
i2f2;4;:::;n�2g

q�nK�2n�2K Œ�n�t@

 
qpV

q

p�2.i�1/

˚

0B@ qpC2K V
q

p�2i

˚

qpC2K V
q

p�2.iC1/

1CA Œ1�t@˚ qpC2C4K V
q

p�2.iC1/
Œ2�t@

!
Œi �t@

˚ q�nK�2n�2K Œ�n�t@

0BBBBBB@
q2pV

q

p�.n�1/
˝V

q

p�.n�1/

˚

(q2pC2K V
q

p�n�1˝V
q

p�nC1˚ q2pC2K V
q

p�n˝V
q

p�n�2/Œ1�
t
@

˚

q2pC4K V
q

p�.nC2/
˝V

q

p�.nC2/
Œ2�t
@

1CCCCCCA Œn�
t
@:

5.2 The slkpC2–homology of the .2 ; n/ torus link

To compute this homology, we will use the following tool. If

M� D
�
� � �

@t
�!MiC1

@t
�!Mi

@t
�!Mi�1

@t
�! � � �

�
;

we write T .M�/ to be the total complex whose p–differential is the sum @T WD @tC@q .

Proposition 5.4 [11, Proposition 6.6] Let M� be a contractible p–complex of
HqDkŒ@q �=.@

p
q /–modules. Then the complex .T .M�/; @T D @t C @q/ is acyclic.

We will be applying Proposition 5.4 in the following situation. Suppose N� is a p–
complex of Hq–modules whose boundary maps preserve the Hq–module structure.
Further, let M� be a sub–p–complex that is closed under the Hq–action, and there is
a map � on M� as in Proposition 5.4 that preserves the Hq–module structure. Then,
when totalizing the p–complexes, we have T .M�/� T .N�/ and the natural projection
map

T .N�/! T .N�/=T .M�/

is a quasi-isomorphism. Similarly, if M� is instead a quotient complex of N� that
satisfies the condition of Proposition 5.4, and K� is the kernel of the natural projection
map

0!K�!N�!M�! 0;

then the inclusion map of totalized complexes T .K�/! T .N�/ is a quasi-isomorphism.
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We modify the calculation in the previous section of the .2; n/ torus link to include the
Cautis p–differential @C . Recall that in this singly graded theory, aD q2kpC2Œ1�

q

@
and

t D Œ1�
q

@
.

The Hochschild homology pHH@q
� .R/ with the induced Cautis differential @C is given

by

(5-1)

R

q4R2x1 Œ1�a
@

x
kpC2

1

55

q4R2x2 Œ1�a
@

x
kpC2

2

ii

q8R2e1 Œ2�a
@

�x
kpC2

2

hh

x
kpC2

1

66

First we study pHH@q
� .br/ W pHH@q

� .B/Œ1�
q

@
! pHH@q

� .R/,

(5-2)

RŒ1�
q

@
R

q2kpC4RŒ2�
q

@
q2kpC6RŒ2�

q

@
q2kpC4R2x1 Œ1�

q

@
q2kpC4R2x2 Œ1�

q

@

q4kpC10R3e1 Œ3�
q

@
q4kpC8R2e1 Œ2�

q

@

1 7!1

x
kpC2
1

Cx
kpC2
2

x
kpC2
2

.x2�x1/

�
1
1

0
x2�x1

�
x

kpC2
1

x
kpC2
2

x
kpC2
2

.x1�x2/
x

kpC2
1

Cx
kpC2
2

1 7!.x2�x1/

�x
kpC2
2

x
kpC2
1

where the object q2kpC4RŒ2�
q

@
˚q2kpC6RŒ2�

q

@
in the left square is twisted by the matrix

(5-3)
�

2x1 0

2 x1C 3x2

�
:

Filtering the total complex (5-2) we obtain that it is quasi-isomorphic to

khxa
1xb

2 j0� a� kpC 2; 0� b � kpC 1iŒ1�
q

@
1
�! khxa

1xb
2 j0� a; b � kpC 1i;

which is quasi-isomorphic to

khxkpC2
1

;x
kpC2
1

x2; : : : ;x
kpC2
1

x
kpC1
2

iŒ1�
q

@
;

where
@.x

kpC2
1

x
j
2
/D .kpC 2C j /x

kpC2
1

x
jC1
2

:

This is quasi-isomorphic to q5V1Œ1�
q

@
if k D 0. If k > 0, it’s quasi-isomorphic to

.q3pC2Vp�2˚ q4kpC4V2/Œ1�
q

@
:
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Next we analyze

pHH@q
�
.p2iC1/ W pHH@q

�
.q4iB2ie1 Œ2i C 1�

q

@
/!HH@q

�
.q4i�2B.2i�1/e1 Œ2i �

q

@
/;

pHH@q
� .q

4iB2ie1 Œ2i C 1�
q

@
/D

q4iR2ie1 Œ2i C 1�
q

@

q4iC2kpC4RŒ2i C 1�
q

@
Œ1�

q

@

x
kpC2
1

Cx
kpC2
2

99

q4iC2kpC6RŒ2i C 1�
q

@
Œ1�

q

@

x
kpC2
2

.x2�x1/
ee

q4iC4kpC10R.2iC3/e1 Œ2i C 1�
q

@
Œ2�

q

@

x
kpC2
2

.x1�x2/

ee

x
kpC2
1

Cx
kpC2
2

99

pHH@q
� .q

4i�2B.2i�1/e1 Œ2i �
q

@
/D

q4i�2R.2i�1/e1 Œ2i �
q

@

q4iC2kpC2RŒ2i �
q

@
Œ1�

q

@

x
kpC2
1

Cx
kpC2
2

88

q4iC2kpC4RŒ2i �
q

@
Œ1�

q

@

x
kpC2
2

.x2�x1/
ff

q4iC4kpC8R.2iC2/e1 Œ2i �
q

@
Œ2�

q

@

x
kpC2
2

.x2�x1/

ff

x
kpC2
1

Cx
kpC2
2

88

where the differentials for both objects in the middle horizontal rows of the diagrams
above are twisted by (5-3) and pHH@q

�
.p2iC1/D 2.x2�x1/ (diagonal multiplication

by 2.x2�x1/). Filtering this total complex yields the total complex

(5-4)

q4ikhxa
1
xb

2
j0� a� kpC 2; 0� b � kpC 1iŒ2i C 1�

q

@

2.x2�x1/
��

q4i�2khxa
1
xb

2
j0� a� kpC 2; 0� b � kpC 1iŒ2i �

q

@

This is quasi-isomorphic to

q4ikhxkpC2
1

;x
kpC2
1

x2; : : : ;x
kpC2
1

x
kpC1
2

iŒ2iC1�
q

@
˚q4i�2kh1;x1; : : : ;x

kpC1
1

iŒ2i �
q

@

where the differential on the basis elements is given by

x
kpC2
1

kpC4iC2
��

x
kpC2
1 x2

kpC4iC3
��
:::

kpC4iCkpC2
��

x
kpC2
1 x

kpC1
2

˚

1

4i�2
��

x1

4i�1
��
:::

4i�2Ckp
��

x
kpC1
1

Algebraic & Geometric Topology, Volume 23 (2023)



On some p–differential graded link homologies, II 3389

Thus the total homology of this complex is isomorphic to Xi , which is defined by

(5-5)

8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
<̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂:

0BB@
q4i.q2.kpC2/Cj Vj ˚ q2.kpC2CjC1C.k�1/p/Cp�j Vp�j /Œ2i C 1�

q

@

˚

q4i�2.q
Nj V Nj ˚ q2..k�1/pC NjC1/Cp� Nj Vp� Nj /Œ2i �

q

@

1CCA if j ; Nj ¤ 0;

0BB@
q4i.q2.kpC2/V0˚ q2.kpC2CkpC1/V0/Œ2i C 1�

q

@

˚

q4i�2.q
Nj V Nj ˚ q2..k�1/pC NjC1/Cp� Nj Vp� Nj /Œ2i �

q

@

1CCA if j D 0; Nj ¤ 0;

0BB@
q4i.q2.kpC2/Cj Vj ˚ q2.kpC2CjC1C.k�1/p/Cp�j Vp�j /Œ2i C 1�

q

@

˚

q4i�2.V0˚ q2.kpC1/V0/Œ2i �
q

@

1CCA if j ¤ 0; Nj D 0;

where j 2 f0; : : : ;pg such that 4i C 2C j is divisible by p and Nj 2 f0; : : : ;pg such
that 4i � 2C Nj is divisible by p.

Once again when n is even, the leftmost term in T˝n maps by zero into the rest of the
complex so we have to understand the total homology of pHH�.q2.n�1/B.n�1/e1 Œn�

q

@
/.

Filtering
q2.n�1/R.n�1/e1 Œn�

q

@

q2.nC1/C2kpR.n�1/e1 Œn�
q

@
Œ1�

q

@
q2.nC2/C2kpR.n�1/e1 Œn�

q

@
Œ1�

q

@

q2.nC4/C4kpR.nC2/e1 Œn�
q

@
Œ2�

q

@

x
kpC2
1

Cx
kpC2
2

x
kpC2
2

.x2�x1/

x
kpC2
2

.x1�x2/ x
kpC2
1

Cx
kpC2
2

where the middle terms q2.nC1/C2kpR.n�1/e1 Œn�
q

@
Œ1�

q

@
˚q2.nC2/C2kpR.n�1/e1 Œn�

q

@
Œ1�

q

@

are further twisted by the matrix (5-3), yields that the diagram above is quasi-isomorphic
to

(5-6) Y n
2
D q2.n�1/khxa

1xb
2 j 0� a� kpC 2; 0� b � kpC 1iŒn�

q

@

with a differential inherited from the polynomial algebra and twisted by .n� 1/e1. All
of these computations together with an overall shift of q�.nC2/kp�3n�2Œ�n�

q

@
yields

the slash homology of the .2; n/ torus link for k > 0,

(5-7) pH.T2;n; kpC2/

Š

8<:q�.nC2/kp�3n�2Œ�n�
q

@

�
.q3pC2Vp�2˚q4kpC4V2/Œ1�

q

@
˚
Ln�1

2

iD1 Xi

�
if 2−n;

q�.nC2/kp�3n�2Œ�n�
q

@

�
.q3pC2Vp�2˚q4kpC4V2/Œ1�

q

@
˚
Ln�2

2

iD1 Xi˚H=�.Y n
2
/
�

if 2 jn;

where Xi is the p–complex in (5-5) and Y n
2

is the p–complex in (5-6).
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1 x2 x2
2

� � � x
p�1
2

x
p
2

x
pC1
2

x1 x1x2 x1x2
2

� � � x1x
p�1
2

x1x
p
2

x1x
pC1
2

:::
:::

:::
:::

:::
:::

:::

x
p�1
1

x
p�1
1 x2 x

p�1
1 x2

2
� � � x

p�1
1 x

p�1
2

x
p�1
1 x

p
2

x
p�1
1 x

pC1
2

x
p
1

x
p
1

x2 x
p
1

x2
2

� � � x
p
1

x
p�1
2

x
p
1

x
p
2

x
p
1

x
pC1
2

x
pC1
1 x

pC1
1 x2 x

pC1
1 x2

2 � � � x
pC1
1 x

p�1
2 x

pC1
1 x

p
2 x

pC1
1 x

pC1
2

x
pC2
1

x
pC2
1

x2 x
pC2
1

x2
2

� � � x
pC2
1

x
p�1
2

x
pC2
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x
p
2

x
pC2
1

x
pC1
2

1

1

2

1

3

1
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�2
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p�1 p�1 p�1 p�1 p�1 p�1
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0
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1

0
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�2

1

1

2

2

2

3

2

p�1 0

2

1

2

�2

2

4 5 6 pC2 pC3 pC4

Figure 4

Decategorifying the slash homology, for instance on the Hopf link (nD 2), we obtain
that the Euler characteristic of pH.T2;2; kpC 2/ is equal to

q�8.q2
C q4

C q6
C q8/:

Finding the homology of Y n
2

is nontrivial. In the example below we take nD 2 which
means we are computing part of the homology for the Hopf link. We also take k D 1

just for convenience of notation.

We thus need to compute the homology of Z1, given in Figure 4, where the arrows
labeled �2 mean that the differential acts by x

j
1
x

pC1
2
7! �2x

pC2
1

x
j
2

.

There is a large contractible summand Z2 in the upper-left corner. Then there is short
exact sequence of complexes

Z2!Z1!Z3

where Z3 is as in Figure 5. The second row from the bottom with the rightmost column,
along with the third row from the bottom and second column from the right give a
contractible summand Z4 of Z3:

Z4D khxpC1
1 Cx

pC1
2 ; : : : ;x

pC1
1 x

p�1
2 Cx

p�1
1 x

pC1
2 i˚khxp

1 Cx
p
2 ; : : : ;x

p
1 x

p�1
2 Cx

p�1
1 x

p
2 i:
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x
p
2

x
pC1
2

x1x
p
2

x1x
pC1
2

:::
:::

x
p�1
1

x
p
2

x
p�1
1

x
pC1
2

x
p
1

x
p
1

x2 x
p
1

x2
2

� � � x
p
1

x
p�1
2

x
p
1

x
p
2

x
p
1

x
pC1
2

x
pC1
1

x
pC1
1

x2 x
pC1
1

x2
2

� � � x
pC1
1

x
p�1
2

x
pC1
1

x
p
2

x
pC1
1

x
pC1
2

x
pC2
1

x
pC2
1 x2 x

pC2
1 x2

2
� � � x

pC2
1 x

p�1
2

x
pC2
1 x

p
2

x
pC2
1 x

pC1
2

1

1

�2

1

1

2

�2

2

p�1 p�1

1

0

�2

0

1

1

2

1

3

1

p�1 0

1

1

1

�2

1

1

2

2

2
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2
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2
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Figure 5

Then there is a short exact sequence of complexes

Z4!Z3!Z5;

where Z5 is

x
p
1

x
p
1

x2 x
p
1

x2
2

� � � x
p
1

x
p�1
2

x
p
1

x
p
2

x
p
1

x
pC1
2

x
pC1
1 x

pC1
1 x2 x

pC1
1 x2

2 � � � x
pC1
1 x

p�1
2 x

pC1
1 x

p
2 x

pC1
1 x

pC1
2

x
pC2
1 x

pC2
1 x2 x

pC2
1 x2

2 � � � x
pC2
1 x

p�1
2 x

pC2
1 x

p
2 x

pC2
1 x

pC1
2

1

1

2

1

3

1

p�1 0

1

1

1

�2

1

1

2

2

2

3

2

p�1 0

2

1

2

�2

2

4 5 6 pC2 pC3 pC4

Now let Z6 be the contractible subcomplex of Z5 generated by x
pC1
1

. That is

Z6 D khxpC1
1

; 1!x
pC1
1

x2C a0x
pC1
2

; : : : ; .p� 1/!x
pC1
1

x
p�1
2
C ap�2x

pC2
1

x
p�2
2
i

for some coefficients a0; : : : ; ap�2. Then there is a short exact sequence of complexes

Z6!Z5!Z7
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where Z7 is

x
p
1

x
p
1

x2 x
p
1

x2
2

� � � x
p
1

x
p�1
2

x
p
1

x
p
2

x
p
1

x
pC1
2

x
pC1
1

x
p
2

x
pC1
1

x
pC1
2

x
pC2
1

x
pC2
1 x2 x

pC2
1 x2

2
� � � x

pC2
1 x

p�1
2

x
pC2
1 x

p
2

x
pC2
1 x

pC1
2

1 2 3 p�1 0 1

1

�2

1

1

2

�2

2

4 5 6 pC2 pC3 pC4

Consider the contractible summand

Z8 D khxp
1
; : : : ;x

p
1

x
p�1
2
i:

Then there is a short exact sequence

Z8!Z7!Z9;

where Z9 is

x
p
1 x

p
2

x
p
1 x

pC1
2

x
pC1
1 x

p
2

x
pC1
1 x

pC1
2

x
pC2
1

x
pC2
1

x2 x
pC2
1

x2
2

� � � x
pC2
1

x
p�1
2

x
pC2
1

x
p
2

x
pC2
1

x
pC1
2

1

1

�2

1

1

2

�2

2

4 5 6 pC2 pC3 pC4

We now easily decompose Z9 into a sum of complexes

Z09˚Z009 ˚Z0009 ˚Z00009 ;

where Z0
9

comes from the bottom row. More specifically,

Z09 D khxpC2
1 ;x

pC2
1 x2; : : : ;x

pC2
1 x

p�4
2 i;

Z009 D khxpC2
1

x
p�3
2

;x
pC2
1

x
p�2
2

;x
pC2
1

x
p�1
2

;x
pC2
1

x
p
2
;x

pC2
1

x
pC1
2
i;

Z0009 D k
˝
x

p
1 x

p
2 �

1
2
x

pC2
1 x

p�2
2 ;x

pC1
1 x

p
2 Cx

p
1 x

pC1
2 �x

pC2
1 x

p�1
2 ;�x

pC2
1 x

p
2 C2x

pC1
1 x

pC1
2

˛
;

Z00009 D kh2x
pC2
1 x

p�1
2 �3x

pC1
1 x

p
2 C3x

p
1 x

pC1
2 i:

Thus for k D 1 and nD 2 we get

H=
�
.Y 2

2
/Š q2Œ2�

q

@
.q3pVp�4˚ q4pC1V3˚ q4pC2V2˚ q4pC2V0/:

Corollary 5.5 For distinct k 2N, pH. � ; kpC2/ are distinct as link homology theories.
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Proof If we repeat the above calculation for k D 2 and n D 2, everything would
proceed in the same way. Other than internal q–grading shifts, the homology H=

�
.Y 2

2
/

would be the same as above and contain objects Vp�4, V3, V2 and V0.

The homology of the Hopf link in [11] does not contain objects of the form Vp�4

or V3 (see [11, (6.17)], in particular) in this tail part of the calculation. For more
general k, these objects appear with different shifts; see (5-7). Thus we obtain here
new categorifications of the Jones polynomial at a 2pth root of unity different from the
original one constructed in [11].
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