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Leighton’s theorem and regular cube complexes

DANIEL J WOODHOUSE

Leighton’s graph covering theorem states that two finite graphs with common uni-
versal cover have a common finite cover. We generalize this to a large family of
nonpositively curved special cube complexes that form a natural generalization of
regular graphs. This family includes both hyperbolic and nonhyperbolic CAT(0) cube
complexes.

20F65, 20F67; 20E26, 20E42, 20F55

Leighton’s graph covering theorem states that two finite graphs with isomorphic univer-
sal covers have isomorphic finite covers. First conjectured by Angluin [2] and proven by
Leighton [16], whose background was in computer science and the study of networks,
the topic has been picked up by topologists and group theorists interested in producing
generalizations to graphs with extra structure, including colourings and line patterns;
see Bass and Kulkarni [3], Neumann [18], Shepherd [21], and the author [24]. Although
it is desirable to generalize such a theorem to higher dimensions, counterexamples are
known even when the universal cover is the product of two trees. Standard arithmetic
constructions were known to give irreducible lattices acting on the product of trees,
and in the 90s nonresidually finite and even simple examples were given; see Burger
and Mozes [6] and Wise [22].

A particularly exciting conjecture was made by Haglund in [11] that Leighton’s graph
covering theorem should generalize to special cube complexes. In the same paper
Haglund proved the conjecture for the class of right-angled Fuchsian buildings (com-
monly referred to as “Bourdon buildings”) and more generally for “type-preserving”
lattices in the automorphism group of a building associated to a finite graph product of
finite groups.

In this paper we will prove Haglund’s conjecture for a large family of CAT(0) cube
complexes which exhibit symmetry and homogeneity reminiscent of finite regular trees.
Let L be a finite simplicial flag complex. An L–cube-complex X is a cube complex
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such that every link is isomorphic to L. Given a flag complex, the Davis complex
D.L/ of the associated right-angled Coxeter group is a CAT(0) L–cube-complex. In
general, D.L/ is not the unique CAT(0) L–cube-complex, but in [15] Lazarovich
shows that D.L/ is unique if and only if L is superstar-transitive. Recall that the
star of simplex � in L, denoted by St.�/, is the subcomplex given by the union of all
simplices containing � . We say that flag complex L is superstar-transitive if for any
two simplices �; � 0 � L, any isomorphism St.�/! St.� 0/ sending � to � 0 extends to
an automorphism of L. Lazarovich also showed that in this case Aut.X/ is virtually
simple.

The principal set of examples of superstar transitive flag complexes presented by
Lazarovich are Kneser complexes. Let � be a finite set. The Kneser complex Kn.�/ is
the simplicial flag complex defined with vertex set the n–element subsets of �, and
edges joining disjoint n–element subsets. In the particular case that j�j D nd C 1,
the Kneser complex is superstar transitive and its automorphism group is precisely
the natural action of the permutation group Sym.�/; see Section 1.2. We prove the
following:

Theorem 0.1 Let n� 2, d � 1 and � be a finite set of cardinality nd C 1. Let L be
the Kneser complex Kn.�/. Suppose that X1 and X2 are compact , L–cube-complexes
such that all finite-index subgroups of the hyperplane subgroups are separable in �1X1
and �1X2, respectively. Then X1 and X2 have a common finite cover.

If the hyperplane subgroups of a compact nonpositively curved cube complex are
separable, then there is a finite cover such that the hyperplanes are 2–sided, embed,
and do not self-osculate. If no interosculations could be added to this list, then the
cube complex would be virtually special. Conversely, specialness implies separable
hyperplane subgroups, and it is conjectured that the converse holds as well.

Note that in the case d D 1 that L is the set of nC 1 disconnected points, so the
L–cube-complexes will be .nC1/–regular trees. If n D 2 and d D 2 then L is the
famous Petersen graph. In the case when L has no induced squares (as in the case
of the Petersen graph), the fundamental groups of X1 and X2 will be hyperbolic —
see Moussong [17] — and as a consequence of Agol’s proof of the virtual Haken
conjecture [1], X1 and X2 are virtually special. Thus we have:

Corollary 0.2 Let n� 2, d D 1; 2, j�j D nd C 1 and LD Kn.�/. If X1 and X2 are
compact L–cube complexes then X1 and X2 have common finite covers.
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Proof In the case d D 1 the cube complexes are graphs, so it suffices to show that
L is square free when d D 2. Let �D f1; : : : ; 2nC 1g. Suppose that v1, v2, v3 and
v4 are the vertices of an induced square in L. Then without loss of generality we can
assume that v1Df1; : : : ; ng and v2DfnC1; : : : ; 2ng since they are disjoint sets. Thus
we can further assume that v3 D f2; : : : ; n; 2nC 1g since it must be an n–element set
disjoint from v2. Then we have a contradiction since v4 must be an n–element subset
disjoint from v1[ v3 D f1; : : : ; n; 2nC 1g, so v2 D v4.

0.1 Strategy

The plan is to show (in Proposition 4.1) that each L–cube-complex has a finite cover
X admitting a finite orbicovering X !XL, where XL is the orbicomplex WLnD.L/.
We seek to construct this orbicovering by identifying the link of the 0–cube in XL with
Kn.�/ and finding a suitable map lk.x/! Kn.�/ for each 0–cube x in X such that
the orbicovering is defined. By associating a copy �x of � with each 0–cube in X we
identify lk.x/ with Kn.�x/. The orbicovering is then locally defined by a choice of
map qx W�x!�; see Lemma 1.3.

In order for the set of qx to define an orbicover we need to ensure that certain conditions
are satisfied. If e D .x; y/ is a 1–cube, then we need to ensure that e will be mapped
to the same half edge in XL by the maps induced by qx and qy . Given a square in X ,
we also need to ensure that it will be mapped to a quarter-square in XL.

In Section 3, we formulate the problem in the language of a �–category, which is a
choice of bijection �e W�x!�y for each edge eD .x; y/, satisfying certain conditions.
Most of the action in this paper concerns being able to (virtually) construct a�–category.
Once we have the �–category we obtain a holonomy

‰ W �1.X; x/! Sym.�x/

and the kernel of this holonomy will give a finite cover for which we can define
suitable qx; see Section 4.

0.2 Previous results and connections to QI–rigidity

A major motivation for proving Haglund’s conjecture is the potential applications to
Gromov’s program of understanding groups up to quasi-isometry [10]. In [11], Haglund
proved his conjecture for Bourdon buildings and his result can be combined with a
result of Bourdon and Pajot [4] which says that each quasi-isometry of such a building
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is finite distance from a unique automorphism. Thus we deduce that if G is a group
quasi-isometric to the graph product W associated to such a Bourdon building B , then
in fact it acts by isometries on B . By Agol’s result [1], G will be virtually special,
thus acting faithfully on B , and by Haglund G will be weakly commensurable with W .
Thus W is quasi-isometrically rigid.

This argument motivates the following problem:

Problem 0.3 Let LD Kn.�/, where j�j D nd C 1. Is every quasi-isometry of D.L/
finite distance from an automorphism?

A positive answer to Problem 0.3 in the hyperbolic case would immediately give
quasi-isometric rigidity for the associated groups W� by a similar argument to the case
of Bourdon buildings. That is to say that any group quasi-isometric to W� would be
weakly commensurable with W� . In the “higher rank” nonhyperbolic case one might
look to Huang’s results on the quasi-isometric rigidity of large families of right-angled
Artin groups [13]. In this case following would need to be considered:

Problem 0.4 Suppose that L is a Kneser complex as above , such that W� is not
hyperbolic. Are there groups acting geometrically on D.�/ that are not virtually
special?

Acknowledgements I would like to thank Daniel Groves and Kevin Whyte for men-
tioning the particularly interesting case of the Petersen graph, and Nir Lazarovich
and Jingyin Huang for discussions relating to these results. I would like to thank
Sam Shepherd for pointing out a mistake and suggesting the alternative separability
condition on the hyperplane subgroups. Thanks to the referee for their comments.

1 Preliminaries

1.1 Right-angled Coxeter groups

We refer to Davis [8] for classical background on Coxeter groups and their geometry
and to [7] for a recent survey of their large scale geometry.

Let L denote a finite simplicial flag complex. The right-angled Coxeter group WL
associated to L is given by the presentation:

WL D hv 2 L
.0/
j v2 D 1 and Œu; v�D 1 if .u; v/ 2 L.1/i:
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The Davis complex D.L/ is the CAT(0) cube complex obtained from the Cayley 2–
complex constructed from the above presentation, after collapsing each v2 bigon to a
single edge, and inserting higher dimensional cubes wherever their 2–skeleta appear.
The link of each vertex inD.L/ is isomorphic to L, which makes it an L–cube-complex.
The following theorem tells us when D.L/ is the unique CAT(0) L–cube-complex:

Theorem 1.1 [15, Theorem 1.2] The Davis complex D.L/ is the unique CAT (0)
cube complex with each link isomorphic to L if and only if L is superstar-transitive.

If we colour the edges in D.L/ according to the corresponding element of L, or
alternatively the conjugacy class of the associated generator, we can identify WL as
the subgroup of Aut.D.L// that preserves the colours. Sometimes this subgroup is
referred to as the type-preserving automorphisms. The quotient XL DWLnD.L/ has
the structure of an orbicomplex. Each face given by the intersection of k hyperplanes
has the associated group .Z=2/k with a factor corresponding to a hyperplane.

1.2 Kneser complexes

Let � be a finite set. The Kneser complex Kn.�/ is the flag complex with underlying
graph with vertex set given by n–elements subsets of �, and edges corresponding to
disjoint n–element subsets. There is a natural action of Sym.�/ on Kn.�/.

If K WD Kn.�/ is a Kneser complex, then we let sv D s.v/ � � denote the subset
associated to v 2 K.0/.

Example 1.2 If j�j D 5, then P WD K2.�/ is the Petersen graph. It is a simple
exercise to verify that P is triangle and square free; see Figure 1.

More generally, if j�j D nd C 1, then Kn.�/ is a .d�1/–dimensional flag simplicial
complex with a superstar-transitive automorphism group; see [15]. We also note the
following:

Lemma 1.3 [9, Corollary 7.8.2] If j�j ¤ 2n, then Aut.Kn.�// is equal to Sym.�/.

Given a subset †��, the inclusion induces an embedding Kn.†/� Kn.�/, where
the vertex in Kn.†/ corresponding to s�†�� is sent to the corresponding vertex
in Kn.�/. Indeed, an automorphism .�;†/ ! .�;†/ induces an automorphism
of Kn.�/ that restricts to an automorphism on Kn.†/. Conversely, by Lemma 1.3,
provided 2n is not equal to j�j or j†j, an automorphism of Kn.�/ that preserves
Kn.†/ gives a self-bijection of � that preserves †.
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Figure 1: The Petersen graph (courtesy of Tilman Piesk [19]).

Kneser complexes were presented by Lazarovich as a large and readily accessible set
of superstar transitive graphs.

Theorem 1.4 [15, Corollary 5.5] Let n � 2 and d � 1. Let j�j D nd C 1 and
L WD Kn.�/. Then Aut.D.L// is virtually simple.

We note that D.L/ is Gromov hyperbolic if and only if L does not contain any induced
squares [17]. Thus, it is an exercise to verify that D.L/ is hyperbolic only if d � 2.

Remark The most direct means that a result like Theorem 0.1 could be true is if
the automorphism group of D.L/ were to act properly. In which case any other
uniform lattice in Aut.D.L// would lie inside Aut.D.L// as a finite-index subgroup.
Common covers of the corresponding quotient spaces could be constructed by taking
the intersections of the associated lattices. In general the automorphism groups of
universal covers will be far too large for this argument to work. Theorem 1.4 is the most
extreme example of this: since WL is residually finite (and indeed virtually special), it
cannot lie inside a virtually simple group like Aut.D.L// as a finite-index subgroup.

2 Special cube complexes

We refer to [5; 12; 14; 20; 23] for more detailed background on nonpositive curvature,
cube complexes, and specialness. We outline here the terminology that we will use.
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An n–cube C is a metric space isometrically identified with Œ�1; 1�n. A 0–cube is a
singleton. A subcube S � C of dimension m in an n–cube is the m–cube obtained by
restricting .m�n/–many coordinates to 1 or �1. The i th midcubeM �C , for 1� i �n,
is the .n�1/–cube obtained by restricting the i th coordinate to 0.

The reflection of an n–cube over it’s i th midcube M � C is the map C ! C obtained
by multiplying the i th coordinate by �1. Note that all the reflections in a cube commute.
The antipodal map C ! C is obtained by reflection over all the midcubes in C .

The link lk.x/ of a 0–cube x in an n–cube C is the simplex � given by the �–sphere
of x in the `1–metric (where 1 > � > 0). Each subcube of C that contains x has a
link at x that gives a corresponding face in � . If x and y are 0–cubes in C , then x is
mapped to y by the composition R of all the reflections over midcubes separating x
and y. Thus R induces an isomorphism lk.x/! lk.y/.

By a cube complex X we will mean a topological space that decomposes into cubes
C.X/, such that every subcube of a cube in C.X/ is a cube in C.X/, and such that
the intersection of any two cubes C;C 0 2 C.X/ give subcubes of C and C 0, or the
intersection is empty. The link lk.x/ of a 0–cube x in X is the complex given by
the union of all the links of all the cubes containing x, with inclusion of simplices
induced by inclusion of subcubes. Alternatively, it can also be thought of as the �
neighbourhood of x inside X itself. A cube complex X is nonpositively curved if the
link of each vertex is a simplicial flag complex. Each n–simplex � in lk.x/ corresponds
to a unique .nC1/–cube C.�/ in X containing x. Conversely, each .nC1/–cube C
that contains x corresponds to a simplex �.C / in lk.x/.

Unless otherwise noted, our 1–cubes will be directed in the sense that eD .x; y/ comes
with an initial and terminal 0–cube, denoted by �e D x and �e D y. The reversed
1–cube with the opposite direction will be denoted by Ne D .y; x/. Let X be a compact
nonpositively curved cube complex. A hyperplane ƒ in X is an equivalence class of
directed 1–cubes generated by the relation e � e0 if they are opposite faces of a square
in X or Ne D e0. Associated to the equivalence class is the realization of ƒ. This is
a nonpositively curved cube complex, which we will also denote by ƒ, constructed
from the midcubes dual to the edges in the equivalence class that immerses by a local
isometry ƒ#X . Note that this immersion is only a cellular map when both ƒ and
X have been cubically subdivided. The hyperplane subgroup associated to ƒ is the
image of �1.ƒ/ in �1.X/ under the injective homomorphism given by the immersion.
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A hyperplane is embedded if no two edges in the equivalence class form the corner
of a square (that is to say a 2–cube) in X . Equivalently a hyperplane is embedded
if the immersion of the realization is an embedding. The carrier N.ƒ/ � X of a
hyperplane is the subcomplex obtained by taking all cubes that contain an edge in the
associated equivalence class. We say that a hyperplane is fully clean and 2–sided if
N.ƒ/Šƒ� Œ�1; 1�. That is to say that we can extend the embedding of the realization
to an embedding N.ƒ/Dƒ� Œ�1; 1� ,!X . If the hyperplane subgroups of �1.X/
are separable then there is a finite cover of X such that the hyperplanes are fully clean
and 2–sided. Indeed, fully clean follows from [12, Lemma 9.14], and with hyperplanes
embedded a standard cut-and-paste argument applied to a 1–sided hyperplane yields a
degree 2 cover with a two sided hyperplane; see also the proof of [12, Proposition 3.10].
Thus, we will now assume going forward that all hyperplanes satisfy this condition.
In terms of the definition of specialness, this is equivalent to the hyperplanes being
2–sided, embedded, and without self-osculations. Such a cube complex may fail to be
special since interosculations do not contradict this assumption (see Figure 2 for an
illustration of the hyperplane pathologies). In terms of the assumptions of Theorem 0.1,
if the finite-index subgroups of hyperplane subgroups are separable in �1X , then this
remains true of the hyperplane subgroups in a finite cover.

A 0–cube x is incident to ƒ if it is contained in N.ƒ/. An edge e D .x; y/ is parallel
to ƒ if it is contained in N.ƒ/ without being dual to ƒ. Under the assumption that the
hyperplane ƒ is fully clean and 2–sided, the immersion of the realization extends to an
embedding ƒ� Œ�1; 1� ,!X , where the realization is the 0 fiber. The edges parallel
to ƒ are contained in the �1 and 1 fibers. We will refer to the subcomplexes of X
given by the ˙1 fibers as the sides of the carrier.

2.1 The adjacency map

Let eD .x; y/ be an edge in X dual to ƒ and let v be the vertex in lk.x/ corresponding
to e, and u be the vertex in lk.y/ corresponding to e. The star Star.�/ of a simplex
� in a simplicial complex is the subcomplex spanned by the union of all simplices
containing � . We note that in [15] the star of a simplex is defined by Lazarovich to be
the combinatorial 1–neighbourhood. The two notions only coincide in the case when
the simplex is the singleton. This alternative notion, which we denote by St.�/ in the
introduction, applies to the definition of superstar transitive, but will not be otherwise
relevant to the content of this paper.
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Figure 2: An illustration of the standard hyperplane pathologies. The dotted
line depicts the topological realization of the hyperplane. The edges in the
equivalence classes are given arrows indicating the direction. The top left
depicts a self intersection. The top right depicts a 1–sided hyperplane, and
the edges with the arrows reversed also belong to the equivalence class. The
bottom left depicts a direct self-osculation. The bottom right depicts an
interosculation.

The adjacency map for e is the natural isomorphism

ade W Star.v/! Star.u/

such that if v 2 � then ade.�/ is the unique simplex such that C.ade.�//DC.�/. (This
is referred to as the transfer map in [15].)

More generally, let x and y be 0–cubes in X that belong to some n–cube. Let C be
the minimal such n–cube in X containing x and y. Let �x � lk.x/ and �y � lk.y/ be
the simplices corresponding to C . Then we have a natural adjacency map for C given
by the natural isomorphism

adC W Star.�x/! Star.�y/

such that if � is a simplex in lk.x/ containing �x , then adC on � is induced by the
composition of reflections in C.�/ over the midcubes separating x and y. Note that
C.adC .�//D C.�/.
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Furthermore, suppose that x, y and z are 0–cubes in C such that C is the minimal
cube containing x and z. If C1 and C2 are the minimal subcubes in C containing x, y
and y, z respectively, then adC D adC1

ı adC2
, where each adCi

is suitably restricted.

3 Constructing�–categories

This section will be devoted to constructing a �–category on a compact L–cube-
complex X such that all finite-index subgroups of the hyperplane subgroups are separa-
ble in �1X , where L is the Kneser graph as specified in the statement of Theorem 0.1.
We will assume, as stated in Section 2, that we have passed to a finite-index cover such
that the hyperplanes are fully clean and 2–sided.

3.1 A note on notation

In what follows we will be constructing a category over a cube complex. We will be
doing this by assigning objects to 0–cubes and assigning morphisms to each 1–cube.
For example we might denote the morphism associated to e by �e . In this case, given
an edge path  D .e1; : : : ; en/, we will let � denote the composition �en

ı � � � ı�e1
. If

all the edges are parallel to a given hyperplane ƒ, then we will call  a parallel path.

3.2 Our objects

Let n� 2, d � 1 and � be a finite set with j�j D ndC1. Let X be a compact, nonpos-
itively curved cube complex with 2–sided hyperplanes such that lk.x/ is isomorphic
to Kn.�/. To each 0–cube x in X let �x be a copy of �, and identify lk.x/ with the
associated Kneser complex Kn.�x/. Let ƒ be a hyperplane incident to x. Let e be
the 1–cube dual to ƒ with �e D x. Let v D �.e/ be the vertex in lk.x/ corresponding
to e. The identification of lk.x/ with K.�x/ allows us to define ƒx WD s.v/��x . We
will also let s.e/ WD s.v/ when it is clear which 0–cube link we are working with. This
is well defined since ƒ is fully clean, so the 1–cube e is the only 1–cube dual to ƒ
incident to x.

3.3 �–categories on X

Definition 3.1 A �–category on X is a collection of bijections

�e W�x!�y ;

one for each 1–cube e D .x; y/ in X , such that the following conditions are satisfied:
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e02 e2

e1

e01

x

y0

y

z

Figure 3: The square. The hyperplane ƒ1 is depicted as the vertical dotted
line with the arrows on e1 and e01 giving the direction. The hyperplane ƒ2 is
the horizontal dotted line with the arrows on e2 and e02 giving the direction.

(1) Invertibility If e is a directed one cube then � Ne D ��1e .

(2) Let e1 D .x; y/, e2 D .y; z/, e01 D .y
0; z/, e02 D .x; y

0/ be the edges bounding a
square S , and ƒi the hyperplane dual to ei and e0i (see Figure 3). Then:

(a) Commutativity �e2
ı�e1

D �e01
ı�e02

.

(b) Parallel transport �e1
.ƒ2x/Dƒ

2
y and �e02.ƒ

1
x/Dƒ

1
y0 .

Remark The parallel transport condition applied to all squares containing e allows us
to deduce that �e1

.ƒ1x/Dƒ
1
y .

Let f�eg be a �–category on X , and f W yX ! X a cover. By identifying each link
lk. Ox/ in yX with Kn.y� Ox/, where y� Ox is the copy of � assigned to Ox, by Lemma 1.3 the
induced isomorphism between the links

f Ox W lk. Ox/! lk.f . Ox//

induces an isomorphism
f Ox W y� Ox!�f . Ox/:

Thus we can lift the �–category f�eg on X to a unique �–category on yX such that the
following diagram commutes, for each 1–cube Oe D . Ox; Oy/ in yX mapping to e D .x; y/
in X :

y� Ox

f Ox
��

O� Oe
// y� Oy

f Oy

��

�x
�e
// �y

It is straightforward to verify that f O� Oeg satisfies the invertibility and commutativity
conditions, since f Ox is invertible, and since the squares inX lift to squares in yX . Parallel

Algebraic & Geometric Topology, Volume 23 (2023)
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transport holds for f O� Oeg by tracing the correspondence of n–element subsets of y� Ox
to vertices in lk. Ox/, which then correspond to hyperplanes incident to Ox. Consider a
square in yX covering the square in Figure 3, labelled with the vertices Ox, Oy, Oy0 and Oz,
and bounded by edges Oe1, Oe2, Oe01 and Oe02. Then for the hyperplane yƒ2 covering ƒ2, we
deduce that

O� Oe1
.yƒ2
Ox
/D O� Oe1

ı f�1
Ox
.ƒ2x/D f�1

Oy
ı�e1

.ƒ2x/D f�1
Oy
.ƒ2y/D

yƒ2
Oy
:

The second equality follows from commutativity of the above square, and the third
from parallel transport for f�eg in X . The corresponding conclusion follows similarly
for yƒ1.

3.4 Constructing a�–category

We will construct our �–category in two stages. In the first stage we will define
functions ��e that will be defined on subsets of the domain �x . We note that in this
section we will be composing functions whose domain and ranges will be subsets of
larger sets. In this case the composition will be given by restricting to the intersection
of the corresponding domains and ranges.

Lemma 3.2 There exists a unique family of functions

f��e W .�x �ƒx/! .�y �ƒy/ jƒ is dual to e D .x; y/ 2X .1/g

such that :

(1) ��
Ne D .�

�
e /
�1.

(2) Let e1D .x; y/, e2D .y; z/, e01D .y
0; z/ and e02D .x; y

0/ be the edges bounding
a square S , and ƒi the hyperplane dual to ei and e0i (see Figure 3). Then

(a) after suitably restricting domains ,

��e2
ı��e1

D ��
e02
ı��

e01
W .�x �ƒ

1
x �ƒ

2
x/! .�z �ƒ

1
z �ƒ

2
z/;

(b) ��e1
.ƒ2x/Dƒ

2
y and ��

e02
.ƒ1x/Dƒ

1
y0 .

Proof Let e D .x; y/ be a directed 1–cube in X dual to ƒ. Let v be the vertex in
lk.x/ corresponding to Ne, and u be the vertex in lk.y/ corresponding to e. Then Star.v/
decomposes as the simplicial join v �Kn.�x �ƒx/ and similarly Star.u/ decomposes
as u�Kn.�y �ƒy/. Thus the adjacency map ade restricts to an isomorphism

Kn.�x �ƒx/! Kn.�y �ƒy/:
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Since j�x �ƒxj D j�y �ƒy j D n.d � 1/C 1, by Lemma 1.3 this isomorphism is
induced by the bijection

��e W .�x �ƒx/! .�y �ƒy/:

(This requires checking that n.d � 1/C 1¤ 2n for n� 2 and d � 1.)

In the case that d D 1 there are no squares in X , so conditions (2)(a)–(b) are satisfied
automatically. So we assume d � 2. Suppose that e1D .x; y/, e2D .y; z/, e01D .y

0; z/

and e02 D .x; y
0/ are the edges bounding a square S , and ƒi is the hyperplane dual to

ei and e0i (see Figure 3). We now check that conditions (2)(a)–(b) are satisfied.

Verifying (2)(b) follows from observing that ƒ2x ��x �ƒ
1
x corresponds to a vertex

u 2 lk.x/D Kn.�x/ and ƒ2y ��y�ƒ
1
y corresponds to a vertex v in lk.y/D Kn.�y/

such that ade1
.u/ D v. (Stare at Figure 3.) Thus ��e1

.ƒ2x/ D ƒ2y and similarly
��
e02
.ƒ1x/Dƒ

1
y0 .

We now consider (2)(a). Observe that (2)(b) implies

��e2
ı��e1

..�x �ƒ
2
x/�ƒ

1
x/D �

�
e2
..�y �ƒ

1
y/�ƒ

2
y/D�z �ƒ

1
z �ƒ

2
z :

Combined with the similar set of equalities for ��e02 ı�
�
e01

this verifies (2)(b) when d D 2
since there is only one possible map between singletons.

In the case that d > 2, let �x � lk.x/, �y � lk.y/, �y0 � lk.y0/ and �z � lk.z/ denote
the 1–simplices corresponding to the square S . We know that

adS D ade2
ı ade1

D ade01 ı ade02 W Star.�x/! Star.�z/:

We also have the decomposition

Star.�x/D �x �Kn.�x �ƒ1x �ƒ
2
x/

and similar decompositions for the stars of �y , �y0 and �z . The adjacency map adS
therefore restricts to an isomorphism

Kn.�x �ƒ
1
x �ƒ

2
x/! Kn.�z �ƒ

1
z �ƒ

2
z/

which, by Lemma 1.3, is induced by an isomorphism

.�x �ƒ
1
x �ƒ

2
x/! .�z �ƒ

1
z �ƒ

2
z/

that must coincide with the compositions ��e2
ı��e1

and ��
e01
ı��

e02
, as their restrictions

induce the same isomorphism. Thus ��e2
ı��e1

D ��
e01
ı��

e02
.
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Finally, we show uniqueness of the family f��e g. Note that j�x �ƒxj D .n� 1/d C 1.
Therefore, if n D 1 then uniqueness is trivial as the maps are between singletons.
Otherwise, for n > 1 each element of �x �ƒx is given by the intersection of the
n–element subsets ƒy that contain the given element and are disjoint from ƒx . Thus,
condition (2)(b) applied to each these ƒy allows us to deduce that ��e is uniquely
determined on the given element of �x �ƒx .

We will refer to the maps f��e g as the pre–�–category. Note that if f W yX ! X

is a cover, then we can lift the pre–�–category to yX and check that the conditions
are satisfied, in the same way we checked for the �–category. Alternatively, since
such pre–�–categories are unique, we could instead verify that the following square
commutes:

.y� Ox � yƒ Ox/

f Ox
��

O��
Oe
// .y� Oy � yƒ Oy/

f Oy

��

.�x �ƒx/
��e
// .�y �ƒy/

This would follow from the parallel transport conditions and the correspondence
between hyperplanes and the corresponding subsets of y� Ox , in a similar fashion to the
argument given for lifting �–categories.

3.5 The hyperplane parallel holonomy

As a consequence of Lemma 3.2 we deduce that if an edge e D .x; y/ is parallel to ƒ
then we have a bijection

 e Wƒx!ƒy

obtained by restricting ��e as given by Lemma 3.2. Indeed, if ƒ0 is the hyperplane
dual to e, then ƒx � �x �ƒ0x . We note that this is a category, with the n–element
set ƒx associated to each vertex x that ƒ is incident to, and there is a morphism  e

associated to each edge e parallel to ƒ. In fact, since ƒ is 2–sided, there is a category
corresponding to each side.

Thus if we fix a choice of side of ƒ and a 0–cube p in ƒ as a basepoint, we obtain a
parallel holonomy

‰p W �1.ƒ; p/! Sym.ƒx/:

If e0 is the edge dual to ƒ with midpoint p such that �e0D x lies on the given side, this
holonomy is given by identifying ƒ with the side of the hyperplane carrier containing
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the basepoint x, and letting the equivalence class of a parallel path Œ�D Œe1; : : : ; en�
based at x map to

‰p.Œ�/D   ;

where   denotes the composition  en
ı � � � ı  e1

. Conditions (1) and (2)(a) in
Lemma 3.2 ensure that this does not depend on the choice of representative.

We note that the triviality of the holonomy does not depend on the choice of basepoint p
(but may depend on the side of the carrier that is chosen). Indeed, given another 1–cube
e00 dual to ƒ, with �e00D y on the same side of ƒ, with midpoint p0, we can check the
following diagram commutes:

�1.ƒ; p/

��

‰p
// Sym.ƒx/

��

�1.ƒ; p
0/

‰p0
// Sym.ƒy/

We have chosen some path  connecting x to y in �.ƒ/. The left vertical map is given
by conjugating closed loops by Œ�, in the standard fashion, and the right vertical map
is given by conjugating by   .

The kernel of ‰p is a finite-index normal subgroup of �1.ƒ/, and by the assumptions
of Theorem 0.1 will be separable in �1X .

Lemma 3.3 There exists a finite cover yX !X such that the parallel holonomies in yX
are trivial.

Proof Let ‰ be a parallel holonomy for some hyperplane ƒ, and some choice of
side and basepoint. The kernel of ‰ is a finite-index normal subgroup of �1.ƒ/,
and therefore, by the assumption of Theorem 0.1, will be separable in �1X . Let
fid; g1; : : : ; g`g be a minimal set of representatives for the left cosets of ker.‰/ in
�1.ƒ/. As gi …ker.‰/, by separability there exists a finite-index subgroupNi 6�1.X/
such that ker.‰/ � Ni and gi … Ni . Thus ker.‰/ D

T`
iD1Ni \ �1.ƒ/, since we

know ker.‰/�
T`
iD1Ni and that if gih 2

T`
iD1Ni \�1.ƒ/, where h 2 ker.‰/, then

gi 2
T`
iD1Ni . The normal core, Core

�T`
iD1Ni

�
, is a finite-index normal subgroup of

�1X such that �1.ƒ/\Core
�T`

iD1Ni
�

is contained in ker.‰/.

By repeating this for each side of each hyperplane, and intersecting all the resulting
normal cores, we obtain a finite-index normal subgroup N 6 �1.X/ such that for each
hyperplane ƒ, the intersection N \ �1.ƒ/ is contained in the kernel of the parallel
holonomies on either side of ƒ. Then the desired finite cover f W yX!X is given by N .
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Let f O��
Oe
g denote the lift of the pre–�–category on X to yX . Then the following diagram

commutes, where hyperplane yƒ covers ƒ, and the bottom arrow is the isomorphism
induced by conjugation by f Ox:

�1.yƒ/

y‰ Op
��

f�
// �1.ƒ/

‰p

��

Sym.y� Ox/ // Sym.�x/

Indeed, if we take a combinatorial path Œ O� given by the edge sequence Oe1; : : : ; Oen that
traversed the vertices Ox D Ox0; Ox1; : : : ; Oxn�1, and let f .Œ O�/D Œ� with f . Oei /D ei and
f . Oxi /D xi , we deduce that

‰p ıf�.Œ O�/D‰p.Œ�/D   D  en
ı � � � ı e1

D f Ox0
ı O Oen

ı f�1
Oxn�1
ı f Oxn�1

ı � � � ı f Ox1
ı O Oe1

ı f�1
Ox0

D f Ox0
ı O Oen

ı � � � ı O Oe1
ı f�1
Ox0

D f Ox0
ı y‰ Op ı f

�1
Ox0
:

Thus the square commutes and the parallel holonomies in yX are trivial.

3.6 Extending the maps ��
e

By Lemma 3.3, we now assume that we have passed to a suitable finite cover such that
X has trivial parallel holonomies in its pre–�–category. Given an edge e dual to ƒ,
it remains to extend ��e , and this means making a choice of bijection ƒx!ƒy . We
can certainly make such choices so that the inversion condition (2)(a) is satisfied, and
condition (2)(b) holds as it holds for ��e . It therefore remains to ensure we can make
our choices so that the commutativity condition (2)(a) is satisfied.

For each hyperplane ƒ let eD .x; y/ be a choice of edge dual to ƒ. We make a choice
of map

�ıe Wƒx!ƒy

that extends ��e to �e.

Suppose that e0 is some other edge dual to ƒ such that �e0 lies on the same side of ƒ
as �e. Then let  D .e1; : : : ; ep/ be an edge path parallel to ƒ that connects �e to �e0.
We also let  0D .e01; : : : ; e

0
q/ be an edge path parallel to ƒ that connects �e to �e0. Then

we define
�ıe0 D  ep ı � � � ı e1

ı�ıe ı 
�1
e01
ı � � � ı �1

e0q
;
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where  ei
and  e0

i
are the parallel holonomies on either side of ƒ. Since the parallel

holonomies are trivial, �ıe0 will not depend on the choice of paths  and  0. We let
�ı
Ne D .�

ı
e /
�1 and recover that �ı

Ne0 D .�
ı
e0/
�1.

It remains to check that f�eg, as defined, satisfy our commutativity relations. Let
e1 D .x; y/, e2 D .y; z/, e01 D .y

0; z/ and e02 D .x; y
0/ be edges bounding a square,

and let ƒi be the hyperplane dual to ei and e0i (see Figure 3). Then we consider the
separate cases

�e2
ı�e1

D

8̂̂̂<̂
ˆ̂:
��e2
ı��e1

W .�x �ƒ
1
x �ƒ

2
x/! .�z �ƒ

1
z �ƒ

2
z/;

�ıe2
ı��e1

Wƒ2x!ƒ2z;

��e2
ı�ıe1

Wƒ1x!ƒ1z;

�ıe2
ı�ıe1

W∅!∅:

It follows from Lemma 3.2 that ��e2
ı ��e1

D ��e01
ı ��e02

. By considering the parallel
holonomies with respect to ƒ2 we can see that

�ıe2
ı��e1

D �ıe2
ı e1

D  e01
ı�ı

e02
D ��

e01
ı�ı

e02
:

A similar sequence of equalities gives that ��e2
ı�ıe1

D �ıe01
ı��e02

. Altogether this allows
us to conclude that �e2

ı�e1
D �e01

ı�e02
, and that f�eg is a �–category, and that we

have proven the following:

Proposition 3.4 Let n � 2, d � 1 and � be a finite set of cardinality nd C 1. Let
L be the Kneser complex Kn.�/. Suppose that X is an L–cube-complex such that
hyperplane subgroups have separable finite-index subgroups. Then there exists a finite
cover yX !X , such that there is a �–category over X .

4 The holonomy

Given a �–category f�eg for X we obtain a holonomy map

ˆx W �1.X; x/! Sym.�x/;

where the homotopy class Œ�D Œe1; : : : ; en� of the edge path based at x has image

ˆx.Œ�/D � :

The invertibility and commutativity conditions guarantee that this does not depend on
the choice of representative of the homotopy class. Note that if ˆx is trivial, then the
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holonomy is trivial with respect to any basepoint since the following diagram commutes:

�1.X; x/

��

ˆx
// Sym.�x/

��

�1.X; y/
ˆy
// Sym.�y/

If  is an edge path connecting x to y, then the vertical left arrow is the isomorphism
given by conjugating a homotopy class of based loops by Œ�, and the vertical right
arrow is the isomorphism given by conjugating by � .

The kernel of ˆx is a finite-index normal subgroup of �1X and corresponds to a
finite-sheeted, regular cover f W yX ! X . Lift the �–category on X to a �–category
f O� Oeg on yX . We can check that the following diagram commutes:

�1. yX; Ox/

f�
��

ŷ
Ox
// Sym.� Ox/

��

�1.X; x/
ˆx
// Sym.�x/

The 0–cube Ox is chosen so that f . Ox/Dx, and the right vertical arrow is the isomorphism
given by conjugation by f Ox . Thus we conclude that the holonomy ŷx on yX is trivial.
If the holonomy on X obtained from a �–category is trivial, then we say that the
�–category itself is flat.

4.1 Constructing the orbicover

Proposition 4.1 Let LD Kn.�/ where j�j D nd C 1. Let X be a compact L–cube-
complex that has a flat�–category on X . Then there is an orbicomplex cover X!XL,
where XL DWLnD.L/.

Proof Let f�eg be the flat �–category on X . For a basepoint x, fix an identification
qx W�x!�. For any other 0–cube y in X , let qy D qx ı � where  is an edge
path connecting y to x. Note that qy does not depend on the choice of  since the
�–category is flat.

We will prove the claim by producing an orbicomplex cover X !XL. First we map
all 0–cubes in X to the unique 0–cube in XL. We can extend X to the 1–skeleton of
X by mapping each 1–cube e D .x; y/ dual to ƒ to the half 1–cube corresponding to
q.ƒx/. This makes sense since we know that qx.ƒx/D qy ı�e.ƒx/D qy.ƒy/ by the
remark following Definition 3.1, so e and Ne are mapped to the same half edge.
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Now we want to extend X .1/! XL to the 2–skeleton. Let e1 D .x; y/, e2 D .y; z/,
e01 D .y

0; z/ and e02 D .x; y
0/ be the directed 1–cubes bounding a square S in X such

that ei and e0i are dual to the hyperplane ƒi (as in Figure 3). We want to show that
ei and e0i map to the same half edge, and the e1 and e02 map to half edges that bound
a quarter-square in XL. The first fact follows from the parallel transport property
since �e1

.ƒ2x/ D ƒ2y so qx.ƒ2x/ D qy ı �e1
.ƒ2x/ D qy.ƒ

2
y/. The second follows

from the fact that ƒ1x \ƒ
2
x D ∅ since e1 and e02 bound the corner of a square, so

qx.ƒ
1
x/\ qx.ƒ

2
x/D∅.

It is immediate that we can extend X .2/!XL to the entire skeleton since the higher
dimension cubes are entirely determined by the 1–skeleton. In this particular case, we
have an orbicovering since the induced maps on the vertex links are isomorphisms.
Thus we can lift this orbicovering to an isomorphism zX !D.L/ such that the deck
transformation group �1.X/ is a subgroup of WL.

Proof of Theorem 0.1 Let X1 and X2 be our L–cube-complexes. Finite-index
subgroups of the hyperplane subgroups are separable, so by Proposition 3.4 there is
a finite cover X 0i ! Xi such that there is a �–category over X 0i . By considering the
holonomy given by the �–category, we can pass to a further finite cover yXi ! X 0i
such that the induced �–category is flat. By Proposition 4.1, there are finite orbicovers
fi W yXi ! XL. The common cover is then obtained by taking the intersection of the
corresponding deck transformation groups inside of WL.
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