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Differential geometric invariants for
time-reversal symmetric Bloch bundles

II: The low-dimensional “quaternionic” case

GIUSEPPE DE NITTIS

KIYONORI GOMI

This paper is devoted to the construction of differential geometric invariants for the
classification of “quaternionic” vector bundles. Provided that the base space is a
smooth manifold of dimension two or three endowed with an involution that leaves
fixed only a finite number of points, it is possible to prove that the Wess–Zumino
term and the Chern–Simons invariant yield topological invariants able to distinguish
between inequivalent realizations of “quaternionic” structures. This is a nontrivial
generalization of results previously known only in the case of tori with time-reversal
involution.

57R22; 53A55, 53C80, 55N25

1 Introduction

The present paper continues the study of the classification of “quaternionic” vector
bundles started in [8; 10; 11]. The main novelty with respect to the previous papers
consists of the use of differential geometric invariants to classify inequivalent isomor-
phism classes of “quaternionic” structures. In this sense, as expressed by the title, this
paper represents a continuation of [9] where differential geometric techniques have
been used to classify “real” vector bundles.

At a topological level, “quaternionic” vector bundles, or Q–bundles for short, are
complex vector bundles defined over spaces with involution and endowed with a further
structure at the level of the total space. An involution � on a topological space X is a
homeomorphism of period 2, ie �2 D IdX . The pair .X; �/ will be called an involutive
space. The fixed point set of the involutive space .X; �/ is by definition

X� WD fx 2X j �.x/D xg:
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AQ–bundle over .X; �/ is a pair .E; ‚/, where E!X denotes the underlying complex
vector bundle and ‚ W E! E is an antilinear map which covers the action of � on the
base space and such that ‚2 acts fiberwise as multiplication by �1. A more precise
description is given in Definition 2.2. Q–bundles were introduced for the first time
by J L Dupont in [12] (under the name of symplectic vector bundles). They form a
category of topological objects which is significantly different from the category of
complex vector bundles. For this reason the problem of the classification of Q–bundles
over a given involutive space requires the use of tools which are structurally different
from those typically used in the classification of complex vector bundles. The aim
of the present work is to define differential geometric invariants able to distinguish
the elements of VecmQ.X; �/, where the latter symbol denotes the set of isomorphism
classes of rank m Q–bundles over .X; �/.

The interest for the classification of Q–bundles has increased in the last years because
of the connection with the study of topological insulators. Although this work does
not focus on the theory of topological insulators — the interested reader is referred
to the recent reviews by Ando and Fu [2] and Hasan and Kane [25] — it is worth
mentioning that the first example of topological effects in condensed matter related to a
“quaternionic” structure dates back to the seminal works by L Fu, C L Kane and E J Mele
[18; 31]. The existence of distinguished topological phases for the so-called Kane–Mele
model is the result of the simultaneous presence of two symmetries. The first symmetry
is given by the invariance of the system under spatial translations. This fact allows
the use of the Bloch–Floquet theory — see Kuchment [36] — for the analysis of the
spectral properties of the system. As a result, a well-established procedure provides
the construction of a vector bundle, usually known as Bloch bundle, from each gapped
energy band of the system. Even though the details of the construction of the Bloch
bundle will be omitted in this work — the interested reader is referred to Panati [42]
or the authors [7, Section 2] — it is important to remark that the Bloch bundle is a
complex vector bundle over the torus Td 'Rd=.2�Z/d . The integer d represents the
dimensionality of the system and the physically relevant dimensions are d D 2; 3. The
second crucial ingredient for the topology of the Kane–Mele model is the fermionic (or
odd) time-reversal symmetry (TRS). In terms of the Bloch bundle the TRS translates
into the involution �TR W Td ! Td of the base space given by

�TR.k1; : : : ; kd / WD .�k1; : : : ;�kd /

and into an antilinear map ‚ of the total space such that ‚2D�1 fiberwise. Therefore,
one concludes that the different topological phases of the Kane–Mele model are labeled
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Differential geometric invariants for time-reversal symmetric Bloch bundles, II 2927

by the inequivalent realization of Q–bundles over the torus Td with involution �TR,
namely by the distinct elements of VecmQ.T

d ; �TR/.

The classification of the topological phases of the Kane–Mele model given in [18; 31]
is summarized by

(1-1) VecmQ.T
d ; �TR/D

�
Z2 if d D 2;
Z2˚ .Z2/3 if d D 3;

where Z2 WD f˙1g is the cyclic group of order 2 presented in multiplicative notation.
The topological classification (1-1) has been rigorously derived with the use of different
techniques in various papers — see eg [8], Fiorenza, Monaco and Panati [14], and Graf
and Porta [24] — and generalized to any (low-dimensional) involutive space .X; �/ by
Lawson, Lima-Filho, Michelsohn and dos Santos [37; 45] and in [10; 11], independently.
However, the topological classification based on the construction of homotopy invariants
(such as characteristic classes) has the disadvantage of being difficult to compute. For
this reason one is naturally inclined to look for different types of invariants.

A special role in the classification of complex vector bundles is played by the Chern
classes. The latter, in view of the Chern–Weil homomorphism, can be represented
via differential forms and integrated over suitable cocycles. The resulting Chern
numbers are enough to provide a complete classification of complex vector bundles
in several situations of interest in condensed matter. This is, for instance, the case
of the quantum Hall effect and the related TKNN numbers; see Thouless, Kohmoto,
Nightingale and den Nijs [46]. Using this observation as Ariadne’s thread, one expects
to find differential and integral invariants able to classify Q–bundles at least under
some reasonable hypotheses. Indeed, “gauge-theoretic invariants” have already been
used to reproduce the classification (1-1). The first pioneering works in this direction
are Essin, Moore and Vanderbilt [13], Fu and Kane [17], and Qi, Hughes, Wang and
Zhang [44; 47], where the Chern–Simons field theory has been used to relate the
topological phases of the Kane–Mele model in 2C 1 and 3C 1 space-time dimensions
with integral quantities like the (time-reversal) polarization. Afterwards, these results
have been revisited and put in a solid mathematical background in various works like
Carpentier, Delplace, Fruchart, Gawędzki, Monaco and Tauber [6; 5; 21; 22; 41], Freed
and Moore [16], and Kaufmann, Li and Wehefritz-Kaufmann [32], just to mention
some of them. If one ignores the differences due to the use of distinct mathematical
techniques, it is possible to recognize a common outcome from all the papers listed
above: the topological phases of the two-dimensional Kane–Mele model are governed
by the Wess–Zumino term [15; 20; 21] while in the three-dimensional case the relevant
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2928 Giuseppe De Nittis and Kiyonori Gomi

object is the Chern–Simons invariant [15; 21; 28]. The present work is inspired by
the latter consideration and it aims to provide a general and rigorous description of
the relation between the classification of Q–bundle and the Wess–Zumino term, or the
Chern–Simons invariant. The main achievements are presented below.

The two-dimensional case will be described first. In this case the relevant family of
base spaces is restricted by the following:

Definition 1.1 (oriented two-dimensional FKMM–manifold) An oriented two-dimen-
sional FKMM–manifold is an involutive space .†; �/ subject to the following condi-
tions:

(a0) † is an oriented two-dimensional compact Hausdorff manifold without boundary.

(b0) The involution � preserves the manifold structure and the orientation.

(c0) The fixed point set †� ¤∅ consists of a finite collection of points.

Let us point out that manifold structure in (b0) shall be eventually assumed to be a
smooth one as is stated at the beginning of Section 3. An example of oriented two-
dimensional FKMM–manifold is provided by the torus T2 with the involution �TR.
The set of oriented two-dimensional FKMM–manifolds forms a subclass of the FKMM–
spaces defined in Definition 2.8 below. Q–bundles over these spaces are completely
classified by a characteristic class called FKMM–invariant; see Theorem 2.9.

The crucial result for the classification of Q–bundles over two-dimensional FKMM–
manifolds is expressed by the chain of isomorphisms

(1-2) Vec2mQ .†; �/
{1
' Œ†;SU.2/�Z2=Œ†;U.1/�Z2

{2
' Z2:

The first isomorphism {1 is essentially proved in Theorem 2.13 for mD 1 and justified
in Remark 2.16 for every m 2N. Elements of Œ†;SU.2/�Z2 are Z2–homotopy classes
of Z2–equivariant maps � W †! SU.2/ constrained by the equivariance condition
�.�.x//D �.x/�1 for all x 2†. The set Œ†;U.1/�Z2 consists of Z2–homotopy classes
of Z2–equivariant maps � WX!U.1/ such that �.�.x//D�.x/D�.x/�1. The action
of Œ†;U.1/�Z2 over Œ†;SU.2/�Z2 is specified in the statement of Theorem 2.13. The
second isomorphism {2 is described in Section 2.7 and is given by the composition of
two identifications: The first isomorphism,

Œ†;SU.2/�Z2=Œ†;U.1/�Z2
ˆ�
' Map.†� ; f˙1g/=Œ†;U.1/�Z2 ;

Algebraic & Geometric Topology, Volume 23 (2023)
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proved in Proposition 2.18, shows that the “new” description of Q–bundles in terms of
maps � W†!SU.2/ agrees with the “old” description in terms of the FKMM–invariant
given in Proposition 2.10. The second identification,

Map.†� ; f˙1g/=Œ†;U.1/�Z2
…
' Z2;

is described in Theorem 2.11 and it is induced by the product sign map (also known as
the Fu–Kane–Mele index).

The isomorphism {1 in (1-2) expresses the fact that an element of Vec2mQ .†; �/ can be
completely identified with an equivariant map � W†! SU.2/ that, in many situations,
can be built explicitly; see Remark 2.19. Therefore, the relevant question is whether
there is a way to access directly the isomorphism {2 from the knowledge of the classi-
fying map � without passing through the FKMM–invariant and the product sign map.
The answer is positive. First of all it is important to point out that, without loss of
generality, the map � can be chosen smooth. This allows us to define the Wess–Zumino
term

(1-3) WZ†.�/ WD �
1

24�2

Z
X†

Tr. Q��1 � d Q�/3 mod Z;

where X† is any compact three-dimensional oriented manifold whose boundary coin-
cides with † and Q� WX†! SU.2/ is any smooth extension of �; see Definition 3.16
for more details. The first main result of this paper is:

Theorem 1.2 Let .†; �/ be an oriented two-dimensional FKMM–manifold in the
sense of Definition 1.1. Let .E; ‚/ be a Q–bundle of rank 2m over .†; �/ and
� 2Map.†;SU.2//Z2 any map which represents .E; ‚/ in the sense of the isomor-
phism {1 in (1-2). Then the map

Vec2mQ .†; �/ 3 Œ.E; ‚/�! ei2�WZ†.�/ 2 Z2

provides a realization of the isomorphism Vec2mQ .†; �/' Z2 in (1-2).

The proof of Theorem 1.2 is postponed to Section 3.6. Theorem 1.2 clearly applies
to the classification of Q–bundles over the involutive torus .T2; �TR/, reproducing in
this way results already existing in the literature. In this regard the result [21, (2.9)],
previously announced in [22, II.25, page 19], deserves a special mention. The latter is in
agreement with Theorem 1.2 above in view of the equality ei2�WZ†.w/ D ei2�WZ†.�/

(justified by the Polyakov–Wiegmann formula, see Lemma 3.17) where the map w
employed in [22] is related to the map � of Theorem 1.2 by the relation w D �Q, with
Q the constant matrix in (2-2). However, it is worth pointing out that the validity of
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2930 Giuseppe De Nittis and Kiyonori Gomi

Theorem 1.2 goes far beyond the standard case .T2; �TR/. For instance, Theorem 1.2
extends the classification of Q–bundles over Riemann surfaces of genus g endowed
with an orientation-preserving involution with a finite set of fixed points [8, Appendix A]
and this application seems to be new in the literature.

In order to describe the three-dimensional case it is worth mentioning that anyQ–bundle
.E; ‚/ over the involutive space .X; �/ can be equivalently described by a principal
Q–bundle .P; y‚/ over the same base space (see Section 3.1) and that for principal
Q–bundles there exists a notion of equivariantQ–connection (see Section 3.2). Given a
Q–connection ! 2�1Q.P; u.2m// one can define the associated Chern–Simons 3–form

CS.!/ WD 1

8�2
Tr
�
! ^ d!C 2

3
! ^! ^!

�
and the intrinsic Chern–Simons invariant

(1-4) cs.P; y‚/ WD

Z
X

s�CS.!/ mod Z

as specified in Definitions 3.9 and 3.14. Remarkably, under the hypotheses stipulated
in Proposition 3.12, the quantity in the right-hand side of (1-4) turns out to be inde-
pendent of the choice of the invariant connection ! or of the global section s WX ! P,
and therefore defines an invariant for the underlying principal Q–bundle .P; y‚/, or
equivalently for the associated Q–bundle .E; ‚/.

Let us recall that when .X; �/ is a three-dimensional FKMM–manifold in the sense of
Definition 2.8, Proposition 2.10 applies and we have an isomorphism

Vec2mQ .X; �/
�
'Map.X� ; f˙1g/=ŒX;U.1/�Z2 for all m 2N:

In the formula above, Map.X� ; f˙1g/' Z2
jX� j denotes the set of maps from X� to

f˙1g (recall that X� is a set of finitely many points). The group action of ŒX;U.1/�Z2
on Map.X� ; f˙1g/ is given by multiplication and restriction. The map � which imple-
ments the isomorphism is the FKMM–invariant; see Section 2.3. Given a Q–bundle
.E; ‚/ over .X; �/, its FKMM–invariant �.E; ‚/ can be represented in terms of a map
� 2 Map.X� ; f˙1g/ and one can use the product sign map to define the so-called
strong Fu–Kane–Mele index

(1-5) �s.E; ‚/ WD…Œ��D
Y

xj2X�

�.xj / 2 Z2:

It turns out that the definition above is well-posed in the sense that �s.E; ‚/ only
depends on the equivalence class of � in Map.X� ; f˙1g/=ŒX;U.1/�Z2 ; hence it defines
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a topological invariant for .E; ‚/. This fact is a consequence of the second main result
of this paper:

Theorem 1.3 Let .X; �/ be a three-dimensional FKMM–manifold in the sense of
Definition 2.8 such that X� ¤∅. Assume in addition that :

(e) X is oriented and � reverses the orientation.

Let .E; ‚/ be a Q–bundle over .X; �/ with FKMM–invariant

�.E; ‚/ 2Map.X� ; f˙1g/=ŒX;U.1/�Z2

according to Proposition 2.10. For a given representative � 2 Map.X� ; f˙1g/ of
�.E; ‚/, let …Œ�� be as in (1-5). Then , independent of the choice of �,

(1-6) ei2�cs.P;y‚/
D…Œ��;

where .P; y‚/ is the principal Q–bundle associated to .E; ‚/ and cs.P; y‚/ is the
intrinsic Chern–Simons invariant of Definition 3.14.

The proof of Theorem 1.3 is postponed to Section 3.7. Along with Corollary 3.32, it
expresses the fact that the strong index

(1-7) �s.E; ‚/D ei2�cs.P;y‚/

is a topological invariant which allows us to, at least partially, classify Q–bundles.
In the case of the involutive torus .T3; �TR/ described by (1-1) the invariant �s.E; ‚/

takes values in the first (strong) summand of Z2˚ .Z2/3. For a more recent review of
the topological interpretation of the (strong) Fu–Kane–Mele index we refer to [4].

Theorems 1.2 and 1.3 show that the differential geometric gauge invariants (1-3) and
(1-4) can be used as tools for the classification of Q–bundles in dimension two and
three, provided that the base space meets some restrictive conditions. The results
contained in Theorems 1.2 and 1.3 are valid for base spaces which are much more
general than the involutive tori .Td ; �TR/ usually considered in literature. However,
these results are still not completely satisfactory in view of the restrictions on the nature
of the base space that we need to assume. There are two questions which are still open,
and that it would be interesting to answer: Is it possible to extend Theorems 1.2 and 1.3
to involutive base spaces .X; �/ such that X� is a submanifold of dimension bigger
than zero? In the case of Theorem 1.2, is it possible to construct the classifying map �
directly from the projection which represents theQ–bundle inK–theory without relying
on the use of a predetermined global frame?

Algebraic & Geometric Topology, Volume 23 (2023)
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2 “Quaternionic” vector bundles from a topological
perspective

In this section base spaces will be considered only from a topological point of view.
Henceforth, we will assume that:

Assumption 2.1 (Z2–CW–complex) X is a topological space which admits the
structure of a Z2–CW–complex. The dimension d of X is, by definition, the maximal
dimension of its cells, and X is called low-dimensional if 06 d 6 3.

For the sake of completeness, let us recall that an involutive space .X; �/ has the
structure of a Z2–CW–complex if it admits a skeleton decomposition given by gluing
cells of different dimension in ascending order, and the involution permutes the cells.
For a precise definition of the notion of Z2–CW–complex the reader can refer to [7,
Section 4.5] or [1; 38]. Assumption 2.1 allows the spaceX to have several disconnected
components. However, in the case of multiple components, we will tacitly assume that
vector bundles built over X possess fibers of constant rank on the whole base space.
Let us recall that a space with a CW–complex structure is automatically Hausdorff and
paracompact, and it is compact exactly when it is constructed out of a finite number of
cells [26]. Almost all the examples considered in this paper will concern spaces with a
finite CW–complex structure.

2.1 Basic facts about “quaternionic” vector bundles

In this section we recall some basic facts about the topological category of “quaternionic”
vector bundles. Furthermore, the necessary notation for the description of the various
results will be fixed. We refer to [8; 10; 11; 12] for a more systematic presentation of
the subject.

Algebraic & Geometric Topology, Volume 23 (2023)
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Definition 2.2 (“quaternionic” vector bundles) A “quaternionic” vector bundle, or
Q–bundle, over .X; �/ is a complex vector bundle � W E!X endowed with a homeo-
morphism ‚ W E! E such that

(Q1) the projection � is equivariant in the sense that � ı‚D � ı� ;

(Q2) ‚ is antilinear on each fiber, ie ‚.�p/D N�‚.p/ for all �2C and p 2E, where
N� is the complex conjugate of �;

(Q3) ‚2 acts fiberwise as multiplication by �1, namely ‚2jEx D�1Ex .

Let us recall that it is always possible to endow E with an (essentially unique) equivariant
Hermitian metric m with respect to which ‚ is an antiunitary map between conjugate
fibers [8, Proposition 2.5]. The equivariance is expressed by

m.‚.p1/;‚.p2//Dm.p2; p1/ for all .p1; p2/ 2 E�� E;

where E�� E WD f.p1; p2/ 2 E�E j �.p1/D �.p2/g.

A vector bundle morphism between two vector bundles � WE!X and � 0 WE0!X over
the same base space is a continuous map f WE!E0 which is fiber preserving in the sense
that � D� 0ıf and that restricts to a linear map on each fiber f jx WEx!E0x . Complex
vector bundles over X together with vector bundle morphisms define a category. The
symbol VecmC.X/ is used to denote the set of equivalence classes of isomorphic vector
bundles of rank m. From these data, it is possible to define a category of Q–bundles
and Q–morphisms. A Q–morphism between two Q–bundles .E; ‚/ and .E0; ‚0/ over
the same involutive space .X; �/ is a vector bundle morphism f commuting with the
involutions, ie f ı‚D‚0ıf . The set of equivalence classes of isomorphicQ–bundles
of rank m over .X; �/ will be denoted by VecmQ.X; �/.

Remark 2.3 (“real” vector bundles) By changing condition .Q3/ in Definition 2.2 to

(R) ‚2 acts fiberwise as the multiplication by 1, namely ‚2jEx D 1Ex ,

one ends in the category of “real” vector bundles, orR–bundles. The set of isomorphism
classes of rankmR–bundles over the involutive space .X; �/ is denoted by VecmR.X; �/.
For more details we refer to [3; 7].

In the case of a trivial involutive space .X; IdX /, one has bijections

(2-1) Vec2mQ .X; IdX /' VecmH.X/; VecmR.X; IdX /' VecmR.X/; m 2N;

where VecmF .X/ is the set of equivalence classes of vector bundles over X with typical
fiber Fm and H denotes the skew field of quaternions. The first isomorphism in (2-1)
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is proved in [12] — see also [8, Proposition 2.2] — while the proof of the second is
provided in [3] — see also [7, Proposition 4.5]. These two results justify the names
“quaternionic” and “real” for the related categories.

Let x 2 X� and Ex ' Cm be the related fiber. In this case the restriction ‚jEx � J
defines an antilinear map J W Ex ! Ex such that J 2 D �1Ex . Said differently, the
fibers Ex over fixed points x 2X� are endowed with a quaternionic structure; see [8,
Remark 2.1]. This fact has an important consequence [8, Proposition 2.1]:

Proposition 2.4 If X� ¤∅, then every Q–bundle over .X; �/ has even rank.

The set Vec2mQ .X; �/ is nonempty since it contains at least the trivial element in the
“quaternionic” category. The rank 2m product Q–bundle over the involutive space
.X; �/ is the complex vector bundle

X �C2m
!X

endowed with the product Q–structure

‚0.x; v/D .�.x/;Q Nv/; .x; v/ 2X �C2m;

where the matrix Q is given by

(2-2) Q WD

�
0 �1

1 0

�
˝ 1m D

0BBBB@
0 �1

1 0
: : :

0 �1

1 0

1CCCCA :
A “quaternionic” vector bundle is called Q–trivial if it is isomorphic to the product
Q–bundle.

A section of a complex vector bundle � WE!X is a continuous map s WX!E such that
� ısD IdX . The set �.E/ of sections of E has the structure of a left C.X/–module with
multiplication given by the pointwise product .f s/.x/ WD f .x/s.x/ for any f 2 C.X/
and s 2 �.E/ and for all x 2 X . If .E; ‚/ is a Q–bundle over .X; �/ then �.E/ is
endowed with a natural antilinear antiinvolution �‚ W �.E/! �.E/ given by

�‚.s/ WD‚ ı s ı �:

The compatibility with the C.X/–module structure is given by

�‚.f s/D ��.f /�‚.s/; f 2 C.X/; s 2 �.E/;
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where the antilinear involution �� W C.X/! C.X/ is defined by ��.f /.x/ WD f .�.x//.
The triviality of a “quaternionic” vector bundle can be characterized in terms of global
Q–frames of sections [8, Definition 2.1 and Theorem 2.1].

2.2 Stable range in low dimension

The stable rank condition for vector bundles expresses the pretty general fact that the
nontrivial topology can be concentrated in a subvector bundle of minimal rank. This
minimal value depends on the dimensionality of the base space and on the category
of vector bundles under consideration. For complex (as well as real or quaternionic)
vector bundles the stable rank condition is a well-known result; see eg [29, Chapter 9,
Theorem 1.2]. The proof of the latter is based on an “obstruction-type argument” which
provides the construction of a certain maximal number of global sections [29, Chapter 2,
Theorem 7.1].

The latter argument can be generalized to vector bundles over spaces with involution
by means of the notion of Z2–CW–complex [1; 38] — see also [7, Section 4.5]. A Z2–
CW–complex is a CW–complex with a Z2–action that permutes the cells. The action
of Z2 on each cell is either trivial or free. Since this construction is modeled after the
usual definition of CW–complex, just by replacing “points” with “Z2–points”, (almost)
all topological and homological properties valid for CW–complexes have their natural
counterpart in the equivariant setting. The use of this technique is essential for the
determination of the stable rank condition in the case of R–bundles [7, Theorem 4.25]
and Q–bundles [10, Theorems 4.2 and 4.5].

In this section we recall the results about the stable range for R–bundles and (even
rank) Q–bundles over low-dimensional base spaces. Indeed, these are the only cases
of interest in the present work.

Theorem 2.5 (stable condition in low dimension) Let .X; �/ be an involutive space
such that X has a finite Z2–CW–complex decomposition of dimension d . Assume that
X� is discrete. Then:

� Stable condition for R–bundles For all m 2N,

VecmR.X; �/D 0 if d D 0; 1;

VecmR.X; �/' Vec1R.X; �/ if 26 d 6 3:
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� Stable condition for Q–bundles For all m 2N,

Vec2mQ .X; �/D 0 if d D 0; 1;

Vec2mQ .X; �/' Vec2Q.X; �/ if 26 d 6 5:

In particular, under the hypotheses of validity of Theorem 2.5, the dimensions d D 0; 1
are trivial since in these cases only the trivial R– and Q–bundles (up to isomorphism)
exist. In the cases d D 2; 3, which are the really interesting cases for this work, it is
enough to study the sets Vec1R.X; �/ and Vec2Q.X; �/.

2.3 The FKMM–invariant

Q–bundles can be classified, at least partially, by means of a characteristic class called
FKMM–invariant. This topological object was first introduced in [19] and then studied
and generalized in [8; 10; 11]. In this section we review the main properties of the
FKMM–invariant.

Let .X; �/ be an involutive space and X� � X its fixed point subset. In order to
introduce the FKMM–invariant one needs the equivariant Borel cohomology group of
.X; �/ with coefficients in the local system Z.1/; ie

(2-3) H �Z2.X;Z.1// WDH
�.X�� ;Z.1//:

More precisely, each equivariant cohomology group H j
Z2
.X;Z.1// is given by the

singular cohomology group H j .X�� ;Z.1// of the homotopy quotient

X�� WDX �S1=.� � �1/;

where �1 is the antipodal map on the infinite sphere S1. The local system Z.1/

over .X; �/ can be identified with the product space Z.1/'X �Z made equivariant
by the Z2–action .x; l/ 7! .�.x/;�l/. The fixed point subset X� is closed in X and
�–invariant. The inclusion { WX� ,!X extends to an inclusion { WX��� ,!X�� of the
respective homotopy quotients. The relative equivariant cohomology can be defined as
usual by the identification

H �Z2.X jX
� ;Z.1// WDH �.X�� jX

�
�� ;Z.1//:

For a more detailed description of equivariant Borel cohomology we refer to Section 3.1
of [8].

The FKMM–invariant is a map

(2-4) � W Vec2mQ .X; �/!H 2
Z2
.X jX� ;Z.1//
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which associates the isomorphism class Œ.E; ‚/� of the Q–bundle .E; ‚/ to a coho-
mology class �.E; ‚/ in the relative equivariant cohomology group H 2

Z2
.X jX� ;Z.1//.

The construction of the map � was first described in [8, Section 3.3] and then generalized
in [10, Section 2.5]. In this section we will skip the details of the construction of the
FKMM–invariant and we will focus only on the relevant properties of the map (2-4):

(a) Isomorphic Q–bundles define the same FKMM–invariant.

(b) The FKMM–invariant is natural with respect to equivariant maps.

(c) If .E; ‚/ is Q–trivial, then �.E; ‚/D 0.

(d) The FKMM–invariant is additive with respect to the Whitney sum and the abelian
structure of H 2

Z2
.X jX� ;Z.1//. More precisely,

�.E1˚E2; ‚1˚‚2/D �.E1; ‚1/ � �.E2; ‚2/

for each pair of Q–bundles .E1; ‚1/ and .E2; ‚2/ over the same involutive
space .X; �/.

For the justification of these properties we refer to [10, Section 2.6].

2.4 Topological classification over low-dimensional FKMM–spaces

The FKMM–invariant is an extremely efficient tool for the classification of Q–bundles
in low dimensions. The first observation is that, in great generality, the FKMM–invariant
is injective in low dimensions, ie when the base space has dimension 06 d 6 3. More
precisely, as a consequence of [10, Theorems 4.7 and 4.9] one has that:

Theorem 2.6 (injectivity in low dimensions) Let .X; �/ be an involutive space of
dimension d D 0; 1; 2; 3which satisfies Assumption 2.1. Then the map (2-4) is injective.

This result suggests that in low dimensions the invariant � can be used to label in-
equivalent classes of Q–bundles by means of elements of the cohomology group
H 2

Z2
.X jX� ;Z.1//. The next natural question is about the surjectivity of the map �.

In this case it is possible to provide a general positive answer only if 0 6 d 6 2. As
proved in [11, Corollary 4.2 and Proposition 4.9] one has that:

Theorem 2.7 (surjectivity in dimension two) Let .X; �/ be an involutive space of
dimension d D 2 which satisfies Assumption 2.1. Then

Vec2mQ .X; �/'H 2
Z2
.X jX� ;Z.1// for all m 2N;

namely the map (2-4) is bijective.
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Theorem 2.7 can be juxtaposed with the stable condition described in Theorem 2.5,

Vec2mQ .X; �/D 0 for all m 2N if d D 0; 1;

to obtain a complete classification of Q–bundles in dimension d D 0; 1; 2.

In the case d D 3, the surjectivity of the FKMM–invariant can be recovered by requiring
some extra properties for the base space .X; �/. In the next part of this work we will
mainly focus on spaces of the following type:

Definition 2.8 (FKMM–manifold) An involutive space .X; �/ is called an FKMM–
manifold if

(a) X is a compact Hausdorff manifold without boundary;

(b) the involution � preserves the manifold structure;

(c) the fixed point set X� consists at most of a finite collection of points;

(d) H 2
Z2
.X;Z.1//D 0.

Let us observe that an involutive space .X; �/ which fulfills conditions (a) and (b)
in Definition 2.8 is a closed manifold which automatically admits the structure of a
Z2–CW–complex; see eg [39, Theorem 3.6]. Then an FKMM–manifold meets all
the requirements stated in Assumption 2.1. The conditions (c) and (d) are the crucial
ingredients for the definition of a topological FKMM–space according to the original
definition [8, Definition 1.1]. The requirement of a manifold structure has a twofold
justification: first of all it allows the use of a technical tool (the slice theorem) in the
proof of the crucial result [11, Proposition 4.13]; second, the main aim of this work is
the study of the classification of Q–bundles over involutive manifolds (see Section 3).
The manifold structure and the map � are tacitly assumed to be of some given regularity
(eg C r or smooth). The next result provides the topological classification ofQ–bundles
over low-dimensional FKMM–manifolds.

Theorem 2.9 (classification of FKMM–manifolds) Let .X; �/ be an FKMM–mani-
fold of dimension 06 d 6 3. Then , for all m 2N,

Vec2mQ .X; �/D 0 if d D 0; 1;

Vec2mQ .X; �/'H 2
Z2
.X jX� ;Z.1// if d D 2; 3;

and the isomorphism (in the nontrivial cases) is given by the FKMM–invariant �.
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The cases d D 0; 1 are a consequence of the stable condition described in Theorem 2.5.
The case d D 2 follows from Theorem 2.7. Finally the new case d D 3 is proved in
[11, Proposition 4.13].

Let us observe that Theorem 2.9 also holds trivially in the case of a free involution,
that is, when X� D∅. In this case, as a consequence of condition (d) in Definition 2.8
one has that H 2

Z2
.X j∅;Z.1// ' H 2

Z2
.X;Z.1// D 0. Therefore, as a consequence

of Theorem 2.9, one concludes that an FKMM–manifold with free involution only
supports the trivial Q–bundle. In order to focus on the nontrivial situations we will
assume henceforth that d D 2; 3 and X� ¤∅.

When .X; �/ is an FKMM–manifold, the cohomology group H 2
Z2
.X jX� ;Z.1// has

an explicit representation in terms of equivalence classes of maps. As proved in [8,
Lemma 3.1] one has the isomorphism

(2-5) H 2
Z2
.X jX� ;Z.1//'Map.X� ; f˙1g/=ŒX;U.1/�Z2 ;

where Map.X� ; f˙1g/' Z2
jX� j is the set of maps from X� to f˙1g (recall that X�

is a set of finitely many points) and ŒX;U.1/�Z2 denotes the set of classes of Z2–
homotopy equivalent equivariant maps between the involutive space .X; �/ and the
group U.1/ endowed with the involution given by complex conjugation. The group
action of ŒX;U.1/�Z2 on Map.X� ; f˙1g/ is given by restriction and multiplication.
More precisely, let Œu� 2 ŒX;U.1/�Z2 and s 2Map.X� ; f˙1g/. Then the action of Œu�
on s is given by Œu�.s/ WD ujX� � s. By combining Theorem 2.9 with the isomorphism
(2-5) one gets the following result:

Proposition 2.10 Let .X; �/ be an FKMM–manifold of dimension d D 2; 3 and
assume that X� ¤∅. Then , the FKMM–invariant � induces the isomorphism

Vec2mQ .X; �/'Map.X� ; f˙1g/=ŒX;U.1/�Z2 for all m 2N:

In summary, the content of Theorem 2.9 and Proposition 2.10 is the following: Every
Q–bundle .E; ‚/ over an FKMM–space .X; �/ of dimension d D2; 3 such thatX� ¤∅
is classified by its FKMM–invariant �.E; ‚/. The latter can be represented as a map

s.E;‚/ WX
�
! f˙1g

modulo the (right) multiplication by the restriction over X� of an equivariant function
u WX!U.1/. The map s.E;‚/ is called the canonical section associated to .E; ‚/ and
its construction is described in [8, Section 3.2] or [10, Section 2.2].

Algebraic & Geometric Topology, Volume 23 (2023)



2940 Giuseppe De Nittis and Kiyonori Gomi

2.5 The Fu–Kane–Mele index

Let us focus on the nontrivial case of an FKMM–manifold .X; �/ of dimension d D 2; 3
such that X� ¤∅. At the end of last section we observed that every Q–bundle .E; ‚/
over .X; �/ is classified by the canonical section s.E;‚/ 2Map.X� ; f˙1g/ modulo the
action (multiplication and restriction) of an equivariant map u W X ! U.1/. Clearly
.E; ‚/ is equivalently classified by any other map � 2 Map.X� ; f˙1g/ in the same
equivalence class of s.E;‚/, namely by any representative of

Œs.E;‚/� 2Map.X� ; f˙1g/=ŒX;U.1/�Z2 :

Consider now the product sign map

(2-6) … WMap.X� ; f˙1g/! f˙1g

defined by

(2-7) ….�/ WD
Y

xj2X�

�.xj /; � 2Map.X� ; f˙1g/:

The value ….�/ is called the Fu–Kane–Mele index of �. There is no reason to suspect
a priori that the Fu–Kane–Mele index is well defined on the equivalence classes
in Map.X� ; f˙1g/=ŒX;U.1/�Z2 . In fact, if �1 and �2 were two representatives of
the same class Œ�� 2Map.X� ; f˙1g/=ŒX;U.1/�Z2 related by an equivariant function
u W X ! U.1/ which takes an odd number of times the value �1 on X� , then one
would have that …Œ�1�D�…Œ�2�. For this reason the following result, proved in [8,
Proposition 4.5 and Theorem 4.2] is quite surprising, at first glance, from a topological
point of view.

Theorem 2.11 (Fu–Kane–Mele formula, d D 2) Let .X; �/ be an oriented two-
dimensional FKMM–manifold in the sense of Definition 1.1. Then .X; �/ is an FKMM–
manifold according to Definition 2.8. Moreover ,

(2-8) H 2
Z2
.X jX� ;Z.1//' Z2;

where Z2 is identified with the multiplicative group f˙1g. Moreover , any Q–bundle
.E; ‚/ over .X; �/ is classified by the FKMM–invariant �.E; ‚/ 2 f˙1g which can
be computed by �.E; ‚/ D ….�/, where … is the product sign map (2-6) and � is
any representative of the class Œs.E;‚/� 2Map.X� ; f˙1g/=ŒX;U.1/�Z2 of the canonical
section.

Proof (sketch) Clearly conditions (a0), (b0) and (c0) of Definition 1.1 imply conditions
(a), (b) and (c) of Definition 2.8. Moreover, Proposition 4.4 of [8] assures that (a0), (b0)
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and (c0) imply condition (d) of Definition 2.8, ie H 2
Z2
.X;Z.1//D 0 along with isomor-

phism (2-8). The rest of the claim is proved in [8, Proposition 4.5 and Theorem 4.2].

As a byproduct of Theorem 2.11 one has that the Fu–Kane–Mele index is unambiguously
defined on the whole equivalence class Œs.E;‚/�, and the Q–bundle .E; ‚/ is classified,
up to isomorphism, by the sign ….�/ 2 f˙1g where � 2Map.X� ; f˙1g/ is any map
which differs from s.E;‚/ by the multiplication with the restriction of an equivariant
map u WX !U.1/.

Although with some differences, the next result pairs Theorem 2.11 in dimension d D 3.
It can be considered one of the main achievements of this work.

Theorem 2.12 (Fu–Kane–Mele formula, d D 3) Let .X; �/ be an FKMM–manifold
of dimension d D 3 with X� ¤∅. Assume in addition that :

(e) X is oriented and � reverses the orientation.

Let .E; ‚/ be a Q–bundle over .X; �/ with FKMM–invariant �.E; ‚/ represented by
the class Œs.E;‚/� 2Map.X� ; f˙1g/=ŒX;U.1/�Z2 according to Proposition 2.10. Then
the sign

(2-9) �s.E; ‚/ WD…Œ��

is independent of the choice of the representative � 2 Œs.E;‚/� and provides a topological
invariant for .E; ‚/.

Theorem 2.12 is a direct consequence of Theorem 1.3, which will be proved in
Section 3.7. It is worth noting that even though Theorems 2.11 and 2.12 seem to be of
topological nature, they need the manifold structure of X . In particular, Theorem 1.3
relies on differential geometric techniques.

In general the quantity �s.E; ‚/ in Theorem 2.12 does not completely specify the
FKMM–invariant of .E; ‚/, but only a part of it. We refer to �s.E; ‚/ as the strong
component of the FKMM–invariant.

2.6 Alternative presentation of “quaternionic” vector bundles in low
dimensions

This section is focused on an alternative description of rank 2 Q–bundles over low-
dimensional involutive spaces .X; �/ such that H 2

Z2
.X;Z.1//D 0. It is worth mention-

ing that under these conditions the complex vector bundle underlying each Q–bundle
is necessarily trivial [8, Proposition 4.1].
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Let Map.X;SU.2// be the space of (smooth) maps from X into SU.2/. Given
� 2Map.X;SU.2//, let ��� be the map defined by ���.x/ WD �.�.x// for all x 2X .
The space of equivariant maps from X into SU.2/ is defined by

(2-10) Map.X;SU.2//Z2 WD f� 2Map.X;SU.2// j ��� D ��1g:

The set of Z2–homotopy classes of Z2–equivariant maps will be denoted by

ŒX;SU.2/�Z2 :

Let us consider also the groups

(2-11)
Map.X;U.2//0Z2 WD f 2Map.X;U.2// j det.�� /D det. N /g;

Map.X;U.1//Z2 WD f� 2Map.X;U.1// j ��� D N�g;

where N and N� are the complex conjugates of  and �, respectively, and the group
structures are given by pointwise multiplication. The related sets of equivalence classes
under Z2–homotopy are denoted by ŒX;U.2/�0Z2 and ŒX;U.1/�Z2 , respectively.

By construction one has an inclusion Map.X;SU.2//Z2 �Map.X;U.2//0Z2 . More-
over, the group Map.X;U.2//0Z2 acts on Map.X;SU.2//Z2 as follows: given  2
Map.X;U.2//0Z2 let G be the automorphism of Map.X;SU.2//Z2 given by

(2-12) G .�/ WD �.�
� �1/�Q N Q; � 2Map.X;SU.2//Z2

where Q is the (size 2� 2) matrix (2-2). In fact, given that

det.�� �1/D det.�� /�1 D det. N /�1;

it follows that det.G .�//D det.�/D 1. Moreover, the equality ��G .�/DG .�/�1

follows from a direct calculation along with the equality Q� D N�Q valid for maps with
values in SU.2/.

The main aim of this section is to prove the following result:

Theorem 2.13 Let .X; �/ be an involutive space of dimension 0 6 d 6 2 satisfying
Assumption 2.1. Assume in addition that H 2

Z2
.X;Z.1//D 0 in the case d D 2. Then

there is a natural bijection

Vec2Q.X; �/' ŒX;SU.2/�Z2=ŒX;U.1/�Z2 ;

where the action of ŒX;U.1/�Z2 on ŒX;SU.2/�Z2 is defined as follows: given Œ�� in
ŒX;U.1/�Z2 , let LŒ�� be the automorphism of ŒX;SU.2/�Z2 defined by

LŒ��.Œ��/ WD

��
�� N� 0

0 1

�
�

�
1 0
0 N�

��
:
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We start with a couple of preliminary results which are valid in dimension 06 d 6 3.

Lemma 2.14 Let .X; �/ be a low-dimensional involutive space satisfying Assumption
2.1. Assume in addition that H 2

Z2
.X;Z.1//D 0 in the case d D 2; 3. Then there is a

natural bijection

(2-13) Vec2Q.X; �/'Map.X;SU.2//Z2=Map.X;U.2//0Z2
where the action of Map.X;U.2//0Z2 on Map.X;SU.2//Z2 is given by the automor-
phisms (2-12).

Proof Let � W E! X be a rank 2 Q–bundle. The low-dimensionality of the base
space implies that the underlying complex vector bundle E is isomorphic to the product
bundle X �C2 [8, Proposition 4.1]. The induced Q–structure ‚ on X �C2 is then
expressed through a function � WX !U.2/ of the form ‚ W .x; v/ 7! .�.x/; �.x/Q Nv/

and the “quaternionic” condition is guaranteed by the constraint ��� D�Q N��1Q. Let
us introduce the subset

Map.X;U.2//Z2 WD f� 2Map.X;U.2// j ��� D�Q N��1Qg �Map.X;U.2//:

Two Q–structures ‚ and ‚0 on X �C2, induced respectively by the maps � and � 0 in
Map.X;U.2//Z2 , are isomorphic if there exists a map  2Map.X;U.2// such that
�� � 0QD�Q N . Consider the action of Map.X;U.2// on Map.X;U.2//Z2 defined as
follows: for any  2Map.X;U.2// let G be the automorphism of Map.X;U.2//Z2
given by the formula (2-12). From the argument above it follows that

Vec2Q.X; �/'Map.X;U.2//Z2=Map.X;U.2//

where the equivalence relation is induced by the action of the automorphisms G .
Since H 2

Z2
.X;Z.1//D 0 by hypothesis, any “real” line bundle over X is automatically

trivial [30]. This applies in particular to the determinant line bundle of the Q–bundle
.E; ‚/. The triviality of the “real” structure .x; u/ 7! .�.x/; det.�/.x/ Nu/ on X �C

implies the existence of a map � WX !U.1/ such that det.�/D ����. Consider the
map  0 2Map.X;U.2// given by

 0.x/ WD

�
�.x/ 0

0 1

�
:

A direct computation shows that

(2-14) det.G 0.�//D det.�� 0/�1 det.�/ det. 0/�1 D 1:

As a result, it is possible to choose � 2 Map.X;U.2//Z2 \Map.X;SU.2// as the
representative for the element of Vec2Q.X; �/. Since it holds that �Q N�QD � for maps
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with values in SU.2/, one has that the intersection Map.X;U.2//Z2\Map.X;SU.2//

coincides with the set Map.X;SU.2//Z2 as described by (2-10). Finally, it is straight-
forward to see that Map.X;U.2//0Z2 described by (2-11) is the maximal subgroup of
Map.X;U.2//Z2 preserving such representatives.

Lemma 2.15 Under the hypotheses of Lemma 2.14 there is a natural bijection

(2-15) Vec2Q.X; �/' ŒX;SU.2/�Z2=ŒX;U.2/�
0
Z2
:

Proof Consider the natural surjection onto the equivalence classes

$ WMap.X;SU.2//Z2 ,! ŒX;SU.2/�Z2 :

The action of Map.X;U.2//0Z2 on Map.X;SU.2//Z2 given by (2-12) induces an action
of the group ŒX;U.2/�0Z2 on ŒX;SU.2/�Z2 . Under these actions, $ is equivariant, and
one gets

Vec2Q.X; �/'Map.X;SU.2//Z2=Map.X;U.2//0Z2
$
�! ŒX;SU.2/�Z2=ŒX;U.2/�

0
Z2
:

The latter is a bijection. Indeed, given � 2Map.X;SU.2//Z2 , let E� DX �C2 be the
Q–bundle of rank 2 with Q–structure given by .x; v/ 7! .�.x/; �.x/Q Nv/. In view of
the homotopy property of Q–bundles [8, Theorem 2.3], if � and � 0 are Z2–homotopy
equivalent, then E� and E�0 are isomorphic.

We are now in position to complete the proof of Theorem 2.13. For this purpose the
restriction to dimensions d 6 2 will be crucial.

Proof of Theorem 2.13 We will begin with the case m D 1. Consider the exact
sequence

1! ŒX;SU.2/� {
�! ŒX;U.2/�0Z2

det
�! ŒX;U.1/�Z2 ! 1

where { is induced by the natural inclusion Map.X;SU.2// ,!Map.X;U.2//0Z2 and
det stands for the determinant. The latter sequence is right-split in view of the map
s W ŒX;U.1/�Z2 ! ŒX;U.2/�0Z2 induced (with a slight abuse of notation) by

(2-16) Map.X;U.1//Z2 3 �
s
7�!

�
� 0

0 1

�
2Map.X;U.2//0Z2 :

Indeed, it is straightforward to check det ı s D Id. Consequently, one has a group
isomorphism

ŒX;U.2/�0Z2 ' ŒX;SU.2/�Ì ŒX;U.1/�Z2 ;

where Ì denotes the semidirect product. Since �k.SU.2//D 0 if kD 0; 1; 2, it follows
that ŒX;SU.2/�D 0 whenever X has dimension 06 d 6 2. In these three cases, the
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isomorphism above reduces to ŒX;U.2/�0Z2 ' ŒX;U.1/�Z2 and the combination of the
action G described by (2-12) with the homomorphism s in (2-16) produces the action
L of ŒX;U.1/�Z2 on ŒX;SU.2/�Z2 as described in the claim. In view of the stable
rank condition described in Theorem 2.5, the bijection generalizes to

Vec2mQ .X; �/' ŒX;SU.2/�Z2=ŒX;U.1/�Z2 ; m 2N

and this concludes the proof for the general case.

Remark 2.16 (higher rank case) A representative map � WX ! SU.2/ for a given
Q–bundle .E; ‚/ of rank 2m can be constructed in this way: The Q–structure of
.E; ‚/ is coded in an equivariant map � 0 WX ! SU.2m/ which, for instance, can be
constructed from a global frame according to the prescription described in Remark 2.19.
The stable rank condition implies that � 0 can be always reduced to the form

� 0 '

�
� 0

0 1C2.m�1/

�
up to conjugation with an equivariant map with values in U.2m/. The reduced map
� WX ! SU.2/ obtained in this way provides a representative of the Q–bundle .E; ‚/
as an element of the group ŒX;SU.2/�Z2=ŒX;U.1/�Z2 .

2.7 The FKMM–invariant for oriented two-dimensional
FKMM–manifolds

Throughout this section we will assume that the pair .†; �/ is an oriented two-
dimensional FKMM–manifold in the sense of Definition 1.1. The use of the letter †
instead of X is motivated to easier connect the results discussed here with the theory
developed in Section 3.4 and 3.6

When .†; �/ is an oriented two-dimensional FKMM–manifold, two presentations for
Vec2Q.†; �/ are available. The first description,

Vec2Q.†; �/'Map.†� ; f˙1g/=Œ†;U.1/�Z2 ;

was proved in Proposition 2.10 and uses the FKMM–invariant. The second presentation,

Vec2Q.†; �/' Œ†;SU.2/�Z2=Œ†;U.1/�Z2 ;

comes from Theorem 2.13. Therefore, there must exist an isomorphism of groups

Œ†;SU.2/�Z2=Œ†;U.1/�Z2 'Map.†� ; f˙1g/=Œ†;U.1/�Z2
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which associates the map � 2Map.†;SU.2//Z2 with the FKMM–invariant of the Q–
bundle E� classified by � . Such a map can be constructed by means of the Pfaffian Pf;
see Proposition 2.18.

The evaluation of a map � 2Map.†;SU.2//Z2 on a fixed point x 2†� is an element
of SU.2/ which satisfies �.x/D �.x/�1. This implies that �.x/D˙1C2 if x 2 †� .
Moreover, every matrix �.x/ 2 SU.2/ satisfies the identity Q�.x/D �.x/Q. Then, on
a fixed point x 2 †� , the matrix �.x/Q D˙Q turns out to be skew-symmetric and
the Pfaffian Pf.�.x/Q/ is well defined. In particular one has that

�Pf.�.x/ �Q/D
�
C1 if �.x/DC1C2 ;

�1 if �.x/D�1C2 :

This suggests studying the mapping

(2-17) Map.†;SU.2//Z2 3 �
ˆ�
�!�Pf.�Qj†� / 2Map.†� ; f˙1g/:

Lemma 2.17 Let .†; �/ be an oriented two-dimensional FKMM–manifold in the
sense of Definition 1.1. Then there is a bijection

ˆ� W Œ†;SU.2/�Z2 !Map.†� ; f˙1g/

defined by Œ�� 7! � Pf.�Q/j†� .

Proof We will start by proving the injectivity ofˆ� . Suppose �; � 02Map.†;SU.2//Z2
are such that ˆ�.�/ D ˆ�.� 0/. We want to show the existence of a Z2–equivariant
homotopy Q� W †� Œ0; 1�! SU.2/ such that Q�j†�f0g D � and Q�j†�f1g D � 0. This can
be done by a standard argument in homotopy theory. Let †j be the j–skeleton of †
with respect to a Z2–CW decomposition. The 0–skeleton †0 consists of the 0–cells of
the form e0 (a fixed cell) or Z2 � e0 (a free cell), where e0 D � is a standard 0–cell.
Accordingly, we can express†0 as the disjoint union†0D†fix

0 t†
free
0 . By assumption,

we have †fix
0 DX

� . Notice that the map ˆ� factors through

Œ†;SU.2//�Z2 !Map.†� ;SU.2/#/!Map.†� ; f˙1g/;

where the involution # on SU.2/ is #.�/D ��1, so that the fixed point set SU.2/# D

f˙1C2g consists of two points. The first map is induced from the restriction � 7! �j†� .
The second map is the bijection induced from the obvious identification SU.2/#'f˙1g.
It follows that �j†fix

0
D � 0j†fix

0
. On the other hand, for each free 0–cell Z2�e0 we can find

a homotopy connecting �jf1g�e0 and � 0jf1g�e0 because SU.2/ is path connected. This
homotopy extends to a Z2–equivariant homotopy connecting �jZ2�e0 and � 0jZ2�e0
since the action of Z2 on Z2 � e0 is free. In this way, we get a Z2–equivariant
homotopy Q�0 W†0� Œ0; 1�! SU.2/ such that Q�0j†0�f0gD �j†0 and Q�0j†0�f1gD �

0j†0 .
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By assumption again, the 1–skeleton †1 is given by attaching only free 1–cells of the
form Z2 � e1 to †0. We already have a homotopy Q�0jf1g�@e1�Œ0;1�. This homotopy,
together with �jf1g�e1 and � 0jf1g�e1 , gives a map from

@.f1g � e1 � Œ0; 1�/D .f1g � @e1 � Œ0; 1�/[ .f1g � e1 � @Œ0; 1�/

which can be extended to a map from f1g � e1 � Œ0; 1� in view of �1.SU.2// D 0.
Extending this map equivariantly, and gathering together the maps constructed in this
way for each free 1–cell, one gets a Z2–equivariant homotopy Q�1 W†1� Œ0; 1�!SU.2/

which extends Q�0 and connects �j†1 with � 0j†1 . Finally, the 2–skeleton †2 D † is
given by attaching only free 2–cells of the form Z2 � e2 to †1. We already have
a homotopy Q�1jf1g�@e2�Œ0;1�. This homotopy, together with �jf1g�e2 and � 0jf1g�e2 ,
provides a map from @.f1g � e2 � Œ0; 1�/. This extends to a map from f1g � e2 � Œ0; 1�,
since �2.SU.2//D 0. Extending this equivariantly and gathering together the resulting
maps for each free 2–cell, one gets a Z2–equivariant homotopy Q� W†� Œ0; 1�! SU.2/

connecting � with � 0.

Now the surjectivity. The idea is to construct an element �� 2Map.†;SU.2//Z2 for
each � 2 Map.†� ;Z2/ such that ˆ�.��/ D �. A preliminary fact is necessary. Let
D �C be the closed unit disk endowed with the involution z 7! �z. Then, the map
�D 2Map.D;SU.2//Z2 given by

�D.z/ WD
1

2.jzj2� jzj/C 1

�
2jzj � 1 �2 Nz.jzj � 1/

2z.jzj � 1/ 2jzj � 1

�
satisfies �D.0/ D �1C2 and �D.z/ D C1C2 if z 2 @D. Let †� D fx1; : : : ; xng be
a given labeling for the fixed points. The slice theorem [27, Chapter I, Section 3]
assures that for each xi there exists a closed disk Di � † such that �.Di / D Di ,
xi 2 Di and Di \Dj D ∅ when i ¤ j . Let xi1 ; : : : ; xik 2 †

� be the set of points
such that �.xij /D�1. Using an equivariant diffeomorphism D ŠDij one can induce
the equivariant map �Dij on Dij from �D . Extending these maps by 1C2 outside
of Di1 [ � � � [Dik one gets an equivariant map �� 2 Map.†;SU.2//Z2 such that
��.x/D �.x/1C2 for every x 2†� . This ensures that ˆ�.��/D �.

Proposition 2.18 Let .†; �/ be an oriented two-dimensional FKMM–manifold in the
sense of Definition 1.1. Then the bijection of Lemma 2.17 induces the bijection

ˆ� W Œ†;SU.2/�Z2=Œ†;U.1/�Z2 !Map.†� ; f˙1g/=Œ†;U.1/�Z2 :

Proof Lemma 2.17 asserts the bijectivity of the homomorphism

ˆ� W Œ†;SU.2/�Z2 !Map.†� ; f˙1g/:
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The same group Œ†;U.1/�Z2 acts on both sides and ˆ� is equivariant. An inspection
of the group actions shows that ˆ� descends to a bijective homomorphism between
the quotients.

In view of Theorem 2.13, one can think of a map � 2 Map.†;SU.2//Z2 as a rank
2 Q–bundle on †. Then it makes sense to talk about the “FKMM–invariant of the
map �”. Proposition 2.18 shows that such an invariant is indeed built through the
isomorphism ˆ� . More precisely, by combining Proposition 2.18 with Theorem 2.11
one obtains

(2-18) �.�/ WD… ıˆ�.�/ 2 Z2;

where �.�/ represents the FKMM–invariant of the Q–bundle defined by the map �.

Remark 2.19 (construction of the classifying map from a frame) Let .E; ‚/ be a
Q–bundle of rank 2 over an oriented two-dimensional FKMM–manifold. If the map
� 2Map.†;SU.2//Z2 classifies .E; ‚/ according to Theorem 2.11 then formula (2-18)
provides the computation of the FKMM–invariant of .E; ‚/. Therefore, the relevant
problem is how to extract � from the knowledge of .E; ‚/. This problem has a simple
solution when a global trivializing frame of sections t1; t2 W†! E of the underlying
(trivial) complex vector bundle is known. This situation has been described in detail [8,
Section 4.2]. By a Gram–Schmidt orthonormalization if necessary, one can assume
without loss of generality that the frame t1; t2 is orthonormal, ie m.ti ; tj /D ıi;j where
m is the (unique) ‚–equivariant Hermitian metric on E. Then the classifying map
� D f�ij g is given by the formula

�ij .x/ WDm.��ti .x/;‚tj .x//;

where ��ti .x/ WD ti .�.x// and ‚tj .x/ WD‚.tj .x// are short notations.

3 Differential geometric classification of “quaternionic”
vector bundles

In this section we provide differential geometric realizations of the FKMM–invariant.
However, this require more structure on the involutive space .X; �/. More properly, we
need to pass from the topological category to the smooth category. In this section the
quite general Assumption 2.1 will be replaced by the more restrictive:

Assumption 3.1 (smooth category) X is a compact, path-connected, Hausdorff
smooth d–dimensional manifold without boundary and with a smooth involution � .
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In particular, a space X which fulfills Assumption 3.1 is a closed manifold and the
pair .X; �/ automatically admits the structure of a Z2–CW–complex; see eg [39,
Theorem 3.6]. Observe that the notion of FKMM–manifold given in Definition 2.8 is
compatible with Assumption 3.1. It is worth pointing out that the smooth condition
can be relaxed to a less demanding regularity condition; for instance it is sufficient
to assume that the manifold structure is C r–regular for some r 2N. Anyway, this is
only a technical detail and for a simpler presentation it is enough to focus only on the
smooth case.

Let us point out that in Section 2.1 we introduced the notion of Q–bundle in the
topological category meaning that all the maps involved in the various definitions are
continuous functions between topological spaces. However, when the involutive space
.X; �/ has an additional smooth manifold structure one can equivalently define Q–
bundles in the smooth category by requiring that all spaces involved in the definitions
carry a smooth manifold structure and maps are smooth functions. However, for
what concerns the problem of the classification, the two categories are equivalent [9,
Theorem 2.1], namely

top VecmQ.X; �/'
smoothVecmQ.X; �/:

Clearly, the same holds true also in the “real” category. For more details on this point
we refer to [9, Section 2].

3.1 Principal “quaternionic” bundles and related FKMM–invariant

The next definition was introduced in [9, Section 2.1].

Definition 3.2 (principal R– and Q–bundle) Let .X; �/ be an involutive space which
satisfies Assumption 3.1 and � W P!X a (smooth) principal U.m/–bundle. We say
that P has a “real” structure if there is a homeomorphism y‚ W P! P such that:

(Eq.) The bundle projection � is equivariant in the sense that � ı y‚D � ı� .

(Inv.) y‚ is an involution, ie y‚2.p/D p for all p 2 P.

( yR) The right U.m/–action on the fibers and the homeomorphism y‚ fulfill the
condition

y‚.Ru.p//DR Nu.y‚.p//; for all p 2 P and u 2U.m/;

where Ru.p/ D p � u denotes the right U.m/–action and Nu is the complex
conjugate of u.
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We say that P has a “quaternionic” structure if the structure group U.2m/ has even
rank and condition ( yR) is replaced by:

( yQ) The right U.2m/–action on the fibers and the homeomorphism y‚ fulfill the
condition

y‚.Ru.p//DR�.u/.y‚.p//; for all p 2 P and u 2U.2m/;

where � WU.2m/!U.2m/ is the involution given by

�.u/ WDQ � Nu �Q�1 D�Q � Nu �Q

and Q is the matrix (2-2).

We will often refer to principal “real” and “quaternionic” bundles with the abbreviations
principal R–bundles and principal Q–bundles, respectively.

Remark 3.3 Let us notice that both the “real” and the “quaternionic” case require
that y‚ has to be an involution. This means that both principal R– and Q–bundles
are examples of Z2–equivariant principal bundles (indeed, properties (Eq.) and (Inv.)
define these objects). This is indeed a difference with respect to the vector bundle case;
cf Definition 2.2.

Morphisms (and isomorphisms) between principal R– and Q–bundles are defined in a
natural way: if .P; y‚/ and .P0; y‚0/ are two such principal bundles over the same involu-
tive space .X; �/ then anR– orQ–morphism is a principal bundle morphism f WP!P0

such that f ı y‚0D y‚ıf . We will use the symbols PrinU.m/
R .X; �/ and PrinU.2m/

Q .X; �/

for the sets of equivalence classes of principal “real” and “quaternionic” bundles over
.X; �/, respectively. A principalR–bundle over .X; �/ is called trivial if it is isomorphic
to the product bundle X �U.m/ with trivial R–structure y‚0 W .x; u/ 7! .�.x/; Nu/. In
much the same way, a trivial principal Q–bundle is isomorphic to the product bundle
X �U.2m/ endowed with the trivial Q–structure y‚0 W .x; u/ 7! .�.x/; �.u//.

A standard result says that there is an equivalence of categories between principal U.m/–
bundles and complex vector bundles. This equivalence is realized by the associated
bundle construction along its inverse, called orthonormal frame bundle construction;
see [9, Appendix B] for more details. A similar result extends to the “real” and the
“quaternionic” categories [9, Proposition 2.4] leading to

(3-1) PrinU.m/
R .X; �/' VecmR.X; �/; PrinU.2m/

Q .X; �/' Vec2mQ .X; �/:

We can take advantage of the above isomorphisms to carry the notion of FKMM–
invariant from vector bundles to principal bundles.
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Definition 3.4 (FKMM–invariant: principal bundle version) Let .P; y‚/ be a rank 2m
principal Q–bundle over the involutive space .X; �/. Let Œ.E; ‚/� 2 Vec2mQ .X; �/ be
the unique class associated with Œ.P; y‚/� 2 PrinU.2m/

Q .X; �/ by the isomorphism (3-1).
One defines the FKMM–invariant of .P; y‚/ as the FKMM–invariant of the associated
Q–bundle .E; ‚/, namely

�.P; y‚/ WD �.E; ‚/:

Remark 3.5 Let us briefly discuss the consistency of Definition 3.4 with the con-
struction of the FKMM–invariant presented in [10]. In view of the isomorphisms
(3-1) to each U.2m/ principal Q–bundle .P; y‚/, one can associate a unique (up to
isomorphism) U.1/ principalR–bundle .det.P/; det.y‚//which is defined as the unique
(up to isomorphism) U.1/ principal R–bundle associated with the rank one R–bundle
.det.E/; det.‚//. Moreover, there is a one-to-one correspondence between sections of
a U.1/ principal R–bundle and sections of a rank one R–bundle of unit norm. Then,
the quantity �.P; y‚/ turns out to be determined by the equivalence class of the pair
.det.P/; sP/ where s

.P;y‚/
� s.E;‚/ is the canonical section associated to .E; ‚/. For

more details about the relation between the FKMM–invariant and the canonical section
we refer to [8, Section 3.2] or [10, Section 2.2].

3.2 “Quaternionic” connections and curvatures

Connections with “quaternionic” and “real” structures have been studied in Section 2.2
of [9]. We review here the basic definitions and the main properties of these objects.
For a reminder about the theory of connections we refer to the classic monographs
[33; 34]; see also [9, Appendix B].

We consider principal bundles in the smooth category � W P! X endowed with a
“real” or “quaternionic” structure y‚ W P! P over the involutive space .X; �/. The
structure group is U.m/ (m even in the “quaternionic” case) and u.m/ is the related
Lie algebra. The symbol ! 2�1.P; u.m// will be used for the connection 1–forms
associated to given horizontal distributions p 7! Hp of P. We observe that the Lie
algebra u.m/ has two natural involutions: a real involution u.m/ 3 � 7! N� 2 u.m/

and a quaternionic involution u.2m/ 3 � 7! �.�/ WD �Q � N� � Q 2 u.2m/. Here
� 2 u.m/ is any anti-Hermitian matrix of size m and the matrix Q was defined in (2-2).
Finally, given a k–form � 2�k.P;A/ with values in some structure A (module, ring,
algebra, group, etc) and a smooth map f W P! P, we denote by f �� WD � ı f� the
pullback of � with respect to the map f (and f� W TP! TP is the differential, or
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pushforward, of vector fields). Given a u.m/–valued k–form � 2 �k.P; u.m//, we
define the complex conjugate form N� pointwise, ie N�p.w1p; : : : ;w

k
p/ WD�p.w1p; : : : ;wkp/

for every k–tuple fw1p; : : : ;w
k
pg of tangent vectors at p 2P. It follows that f � N�Df ��

for every smooth map f W P! P. Similarly, if � 2 �k.P; u.2m//, we define �.�/
pointwise by �.�/p.w1p; : : : ;w

k
p/ WD �Q � �p.w1p; : : : ;wkp/ �Q. Hence, one has that

�.f ��/D f ��.�/.

Definition 3.6 (“real” and “quaternionic” equivariant connections) Let .X; �/ be
an involutive space that satisfies Assumption 3.1 and � W P! X a smooth principal
U.m/–bundle over X endowed with a “real” or a “quaternionic” structure y‚ WP!P

as in Definition 3.2. A connection 1–form ! 2�1.P; u.m// is said to be equivariant if
N!D y‚�! in the “real” case or �.!/D y‚�! in the “quaternionic” case. Equivariant con-
nections in the “real” case are called “real” connections (or R–connections). Similarly,
the “quaternionic” connections (or Q–connections) are the equivariant connections in
the “quaternionic” category.

Let AR.P/��1.P; u.m// be the space of R–connections on the principal R–bundle
.P; y‚/. Similarly, AQ.P/ ��1.P; u.2m// will denote the space of Q–connections
on the principal Q–bundle .P; y‚/. Let us introduce the sets of equivariant 1–forms

(3-2)
�1R.P; u.m// WD f! 2�

1.P; u.m// j N! D y‚�!g;

�1Q.P; u.2m// WD f! 2�
1.P; u.2m// j �.!/D y‚�!g:

A 1–form is called horizontal if it vanishes on vertical vectors. The set of u.m/–valued
1–forms on P which are horizontal and which transform according to the adjoint
representation of the structure group is denoted by�1hor.P; u.m/;Ad/. Let us introduce
the sets

V1R.P/ WD�
1
hor.P; u.m/;Ad/\�1R.P; u.m//;

V1Q.P/ WD�
1
hor.P; u.2m/;Ad/\�1Q.P; u.2m//:

Proposition 3.7 [9, Propositions 2.11 and 2.12] The sets AR.P/ and AQ.P/ are
nonempty and are closed under convex combinations with real coefficients. Moreover ,
they are affine spaces modeled on the vector spaces V1R.P/ and V1Q.P/, respectively.

Let F! be the curvature associated to the equivariant connection ! by the structural
equation

F! WD d!C 1
2
Œ! ^!�:
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According to [9, Proposition 2.22] one has that F! obeys the equivariant constraints

(3-3)
F ! D y‚

�F! (“real” case);

�.F!/D y‚
�F! (“quaternionic” case):

Let fF˛ 2 �2.U˛; g/g be the collection of local 2–forms which provides the local
description of the curvature F! — in the sense of [9, Theorem C.2]. When ! is
equivariant, it holds true that

(3-4)
F˛ D ��F˛ (“real” case);

�.F˛/D ��F˛ (“quaternionic” case):

3.3 Chern–Simons form and “quaternionic” structure

In this section we discuss some aspects of Chern–Simons theory defined over (compact)
manifolds without boundary in the presence of a Q–structure. For a comprehensive
introduction to Chern–Simons theory we refer to [15; 28].

Let � WP!X be a (smooth) principal U.m/–bundle and!2�1.P; u.m// a connection
1–form. The Chern–Simons 3–form CS.!/ 2�3.P/ associated to ! is defined by

(3-5) CS.!/ WD 1

8�2
Tr
�
! ^ d!C 2

3
! ^! ^!

�
;

where Tr is the usual trace on m � m matrices. The 3–form CS.!/ is sometimes
called Chern–Simons Lagrangian. A direct computation shows that the result of
applying the exterior differential to CS.!/ can be expressed in terms of the curvature
F! 2�

2.P; u.m// according to

(3-6) dCS.!/ WD 1

4�2
Tr.F! ^F!/ 2�4.P/:

The following result will be used several times in the continuation of this work.

Lemma 3.8 Assume that � W P ! X admits a (smooth ) section s W X ! P and
let g W X ! U.m/ be a (smooth ) map. Define a new section sg W X ! P using
the right action of U.m/, that is , sg.x/ WD s.x/ � g.x/. Then the two pullbacks
s�gCS.!/; s�CS.!/ 2�3.X/ are related by the equation

(3-7) s�gCS.!/D s
�CS.!/C 1

8�2
dTr.s�! ^ dg�1g/Cƒ.g/;

where ƒ.g/ 2�3.X/ is given by

(3-8) ƒ.g/ WD �
1

24�2
Tr..g�1dg/^3/:
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Proof The proof is essentially a computation which is based on the two relations
s�gCS.!/D CS.s�g!/ and s�g! D g

�1.s�!/gC g�1dg. Therefore, by exploiting the
cyclicity of the trace, one can check that

CS.g�1.s�!/gCg�1dg/

D CS.s�!/� 1

8�2
dTr.s�! ^g�1dg/� 1

24�2
Tr..g�1dg/^3/:

The identity 0D d.g�1g/D dg�1gCg�1dg concludes the computation.

Definition 3.9 (Chern–Simons invariant) LetX be a compact oriented 3–dimensional
manifold without boundary and � WP!X a principal U.m/–bundle equipped with a
connection !. Assume that there is a global section s WX ! P. Then the quantity

cs.!/ WD

Z
X

s�CS.!/ mod Z

is called the Chern–Simons invariant cs.!/ 2R=Z associated to !.

The following result shows that the Chern–Simons invariant is well defined.

Proposition 3.10 The Chern–Simons invariant does not dependent on the choice of a
particular global section s WX ! P, and depends only on the equivalence class of ! up
to gauge transformations.

Proof Two global sections of s1 and s2 of P are related by a unique map g WX!U.m/

such that s2.x/D s1.x/ � g.x/. Lemma 3.8, Stokes’ theorem and the fact that X has
no boundary implyZ

X

.s�1CS.!/� s
�
2CS.!//D

Z
X

ƒ.g/DWNg 2 Z;

where the integer Ng defines the “degree” of the map g. With a similar argument one
can show that cs.!/D cs.!0/ if ! and !0 are related by the transformation induced by
an element of the gauge group.

When a principal U.2m/–bundle � W P! X is endowed with a Q–structure y‚, it is
natural to use an equivariant Q–connection ! 2 AQ.P/ to define the Chern–Simons
3–form CS.!/. The Q–structure y‚ induces a symmetry of CS.!/.

Lemma 3.11 Let .P; y‚/ be a U.2m/ Q–bundle over the involutive manifold .X; �/
which satisfies Assumption 3.1. Let ! 2 AQ.P/ be an equivariant connection and
CS.!/ 2�3.P/ the associated Chern–Simons 3–form. Then

y‚�CS.!/D CS.!/:
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Proof The equivariance of ! means that y‚�! DQ N!Q�1D�Q.t!/Q�1, where we
used N! D�t! since the form ! takes value in the Lie algebra u.2m/. The cyclicity of
the trace provides

y‚�CS.!/D CS.y‚�!/D 1

8�2
Tr
�
t! ^ dt!C 2

3
t! ^ t! ^ t!

�
:

The identity t!1^t!2D .�1/q1q2 t .!2 ^!1/ is valid for each pair !12�q1.P; u.2m//
and !2 2�q2.P; u.2m// and the invariance of the trace under the operation of taking
the transpose imply

y‚�CS.!/D 1

8�2
Tr
�

d! ^!C 2
3
! ^! ^!

�
D CS.!/C 1

8�2
Tr.d! ^! �! ^ d!/

D CS.!/C 1

8�2
dTr.! ^!/:

To conclude the proof it is enough to observe that Tr .! ^!/D 0 due to the anticom-
mutation relation of 1–forms.

The invariance of CS.!/ expressed in Lemma 3.11 has an important implication on the
Chern–Simons invariant in low dimensions, provided that certain conditions are met.

Proposition 3.12 Let .P; y‚/ be a U.2m/ Q–bundle over the involutive manifold
.X; �/ which satisfies Assumption 3.1. Assume in addition that

(a) X has dimension d D 3 and � reverses the orientation of X ;

(b) there is a global section s WX ! P (not necessarily equivariant).

Then

(i) if ! 2 AQ.P/ is an equivariant connection then the associated Chern–Simons
invariant cs.!/ takes values in the set

˚
0; 1
2

	
;

(ii) cs.!/D cs.!0/ for each pair of equivariant connections !;!0 2 AQ.P/;

(iii) if .P; y‚/ admits a global equivariant section then cs.!/D 0 for any ! 2AQ.P/.

Proof (i) Let s WX!P be a global section. Since �‚.s/ WD y‚ısı� generally differs
from s, there is a (unique) map g WX !U.2m/ such that �‚.s/D s �g. Then

��.s�CS.!//D .s ı �/�CS.!/D .s �g/�.y‚�CS.!//D .s �g/�CS.!/;

Algebraic & Geometric Topology, Volume 23 (2023)



2956 Giuseppe De Nittis and Kiyonori Gomi

where in the last equality we used the result of Lemma 3.11. By exploiting the fact
that � reverses the orientation of X , one hasZ

X

s�CS.!/D�
Z
X

��.s�CS.!//D�
Z
X

.s �g/�CS.!/D�
Z
X

s�CS.!/CNg ;

where Ng WD
R
X ƒ.g/ 2 Z. This implies that 2cs.!/D 0, ie cs.!/ 2

˚
0; 1
2

	
.

(ii) Let !0 be a second equivariant connection and consider the map

Œ0; 1� 3 t 7! !t WD .1� t /!C t!
0
2 AQ.P/:

Clearly cs.!t / is a polynomial (hence continuous) function in t . On the other hand
cs.!t / 2

˚
0; 1
2

	
since !t is equivariant. This implies that cs.!t1/ D cs.!t2/ for all

t1; t2 2 Œ0; 1� and in particular cs.!/D cs.!0/.

(iii) If s is a global equivariant section, one has

��.s�CS.!//D ��.s�CS.!//D ��.s�.y‚�CS.!///D �‚.s/�CS.!/D s�CS.!/:

Hence, Z
X

s�CS.!/D
Z
X

��.s�CS.!//D�
Z
X

s�CS.!/;

which implies
R
X s
�CS.!/D 0.

Remark 3.13 Due to the low-dimensional assumption (a) in Proposition 3.12, the
assumption (b) about the existence of a global section is completely equivalent to the
condition of vanishing of the first Chern class of the principal bundle. This condition is
guaranteed by the stronger requirements: (1) H 2

Z2
.X;Z.1//D 0, or (2) H 2.X;Z/D 0.

The following definition is justified by item (ii) of Proposition 3.12.

Definition 3.14 (intrinsic Chern–Simons invariant) Let .P; y‚/ be a U.2m/ Q–
bundle over the involutive manifold .X; �/ such that X has dimension d D 3, �
reverses the orientation of X and P admits a global section. Then the quantity

cs.P; y‚/ WD cs.!/ for some ! 2 AQ.P/

does not depend on the choice of ! 2 AQ.P/ and defines an intrinsic (Chern–Simons)
invariant for .P; y‚/.
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Remark 3.15 (a formula for the Chern–Simons invariant) Let .X; �/ be a three-
dimensional involutive manifold satisfying the assumption H 2

Z2
.X;Z.1// D 0. As

a consequence of Lemma 2.14 and the isomorphism (3-1), any U.2m/ Q–bundle
.P; y‚/ over .X; �/ can be represented by a smooth map � W X ! U.2m/ such that
��� D �Q N��1Q. The average construction applied to the trivial connection on the
product bundle [9, Example 2.15] gives an equivariant connection !, whose pullback
under the trivial section s is s�! D 1

2
�.��1d�/. We then have s�CS.!/D 1

2
ƒ.�/, and

hence the formula
cs.P; y‚/D

1

2

Z
X

ƒ.�/ mod Z:

This formula can be compared with [16, Proposition 11.21].

3.4 Wess–Zumino term in absence of boundaries

In the last section we described the Chern–Simons invariant in the case of three-
dimensional base manifolds without boundary. In the case of manifolds with boundary
the Chern–Simons invariant itself depends on the choice of a section while the difference
of the values of the Chern–Simons invariants depends only on the topological infor-
mation on the boundary. This information is detected by the so-called Wess–Zumino
term. The latter is a topological quantity initially defined in the context of certain
two-dimensional conformal field theories known as Wess–Zumino–Witten models. An
excellent introduction to the theory of Wess–Zumino–Witten models is provided by
the lecture notes [20]. The presentation of the properties of the Wess–Zumino term
given here follows mainly [15].

Definition 3.16 (Wess–Zumino term) Let † be a compact oriented manifold of
dimension d D 2 without boundary. For any map � W†! SU.2/, the Wess–Zumino
term WZ†.�/ 2R=Z is defined by

WZ†.�/ WD
Z
X†

ƒ. Q�/ mod Z;

where

ƒ. Q�/ WD �
1

24�2
Tr. Q��1d Q�/3

according to the notation (3-8), X† is any compact three-dimensional oriented manifold
whose boundary coincides with †, ie @X† D†, and Q� WX†! SU.2/ is any extension
of � .
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Notice that the extended manifold X† and the extended section Q� in Definition 3.16
always exist. The existence of X† follows from the vanishing of the second bordism
group,1 �2 D 0 [40, Section 7]. The existence of Q� is due to �k.SU.2// D 0 for
k D 0; 1; 2 plus a standard application of the Oka’s (type) principle to pass from
continuous sections to smooth sections. Finally, the condition � W †! SU.2/ can
be relaxed by asking that the section � W †! U.2/ possesses a determinant section
det.�/ W†!U.1/ which is nullhomotopic.

The well-posedness of Definition 3.16 is justified in the following result.

Lemma 3.17 (Polyakov–Wiegmann formula) The Wess–Zumino term is indepen-
dent of the choice of the extensions X† and Q�. Moreover , for every pair of sections
�j W†! SU.2/, j D 1; 2, the Polyakov–Wiegmann formula

WZ†.�1�2/DWZ†.�1/CWZ†.�2/C
1

8�2

Z
†

Tr.��11 d�1 ^ d�2��12 /

holds in R=Z.

Proof Given † and � W † ! SU.2/ as in Definition 3.16, consider two extended
manifolds X† and X 0† such that @X† D†D @X 0†, and two extended sections Q� and Q� 0

such that Q�j†D �D Q� 0j†. By reversing the orientation ofX 0† and then gluing it withX†
along† one obtains a compact oriented three-dimensional manifoldX WD .�X 0†/tX†,
where the minus sign indicates the reversal of the orientation. Similarly, Q� and Q� 0 can
be glued together to define a section �X WD . Q� t Q� 0/ WX! SU.2/. It is well known thatZ

X

ƒ.�M /D�
1

24�2

Z
X

Tr
�
��1X d�X

�^3
2 Z:

On the other hand, one has thatZ
X

ƒ.�X /D

Z
X†

ƒ. Q�/�

Z
X 0†

ƒ. Q� 0/ 2 Z;

where the minus sign is justified by the inversion of the orientation. Thus, since
the Wess–Zumino term WZ†.�/ is defined modulo an integer, it can be computed
equivalently through the pair X†; Q� or the pair X 0†;

Q� 0. The Polyakov–Wiegmann
formula for WZ†.�1�2/ follows from an explicit computation. By taking extensions
of �1 and �2 one computes ƒ.�1�2/�ƒ.�1/�ƒ.�2/ directly. Then, integration over

1The existence of X† can be also justified by observing that closed oriented two-dimensional manifolds
are classified by the genus, and a genus g surface is always the boundary of a three-dimensional manifold.
For instance the sphere S2 is the boundary of the three-dimensional disk D3. Similarly the torus T2 is the
boundary of the manifold S1 �D2. The same occurs for higher genus surfaces.
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X† and an application of Stokes’ theorem to obtain the integral on the boundary †
provide the final result.

From formula (3-7) and Stokes’ theorem one immediately deduces the following result:

Lemma 3.18 Let X be a compact oriented manifold of dimension d D 3 with
nonempty boundary † WD @X . Let � W P! X be a principal U.2/–bundle equipped
with a connection ! and a global (smooth ) section s W X ! P. Let g W X ! U.2/ be
any (smooth ) map such that det.g/ WX !U.1/ is nullhomotopic. ThenZ
X

s�gCS.!/�
Z
X

s�CS.!/D� 1

8�2

Z
†

Tr.s�! ^ dg�1g/CWZ† .gj†/ mod Z:

3.5 Wess–Zumino term in presence of boundaries

In the rest of this work we will be interested in calculating the Wess–Zumino term
through “cutting and pasting”. To set up the machinery, we need to extend the defi-
nition of the Wess–Zumino term for two-dimensional manifolds with boundary. To
do that, let us observe that associated to a compact oriented one-dimensional man-
ifold S without boundary (a union of circles), there exists a Hermitian line bundle
� WLS!Map.S;SU.2//. The specific structure of this line bundle will be not used in
this work and for this reason the details of the construction of LS will be only sketched.
The interested reader can refer to [15, Appendix A] or to [35, Section 1.3] for a more
rigorous presentation.

Given S , consider a two-dimensional manifold DS (a disjoint union of disks) with
boundary @DS D S along with the space Map.DS ;SU.2//. Given an element Q in
Map.DS ;SU.2//, its restriction  WD Q jS defines an element in Map.S;SU.2//. Let
Q1; Q2 2Map.DS ;SU.2// be two maps which agree on the boundary S , namely such
that 1 D 2. Such two maps can be glued together to produce a map �.1;2/ WD Q1t Q2
on the two-dimensional manifold without boundary †S WD .�DS /tDS obtained by
gluing two copies of DS (with opposite orientation) along the common boundary. As
a consequence the quantity WZ†S .�.1;2// turns out to be well defined according to
Definition 3.16. Consider now the space

LS WD .Map.DS ;SU.2//�C/=�;

where the equivalence relation � is defined as follows: let Q1; Q2 2Map.DS ;SU.2//

and z1; z2 2C; then

. Q1; z1/� . Q2; z2/ () 1 D 2; z1 D z2ei2�WZ†S .�.1;2//:
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The space LS defined in this way turns out to be the total space of a complex line
bundle over Map.S;SU.2// with projection � W LS !Map.S;SU.2// given by

� W Œ Q; z� 7!  WD Q jS ;

where  WD Q jS is independent of the choice of the representative by construction.

Henceforth, only the following properties of the line bundle � WLS !Map.S;SU.2//

will be relevant [15, Proposition A.1]:

(i) For 1; 2 2Map.S;SU.2// let 12 2Map.S;SU.2// defined by pointwise
multiplication. Then, there is an isometry

(3-9) ��1.1/˝�
�1.2/! ��1.12/:

(ii) The product of fibers (3-9) defined by the isometry is associative.

(iii) If 0 2Map.S;SU.2// is the constant map, there is a trivialization ��1.0/'C

which respects (3-9).

All the ingredients are now available for extending Definition 3.16 to manifolds with
boundary.

Definition 3.19 (Wess–Zumino term with boundary) Let † be a compact oriented
manifold of dimension d D 2 with one-dimensional (compact and oriented) bound-
ary S WD @†. Let � W LS ! Map.S;SU.2// be the associated line bundle. Every
� W †! SU.2/ gives rise to a point �jS 2 Map.S;SU.2// and an associated fiber
��1.�jS / � LS . Let DS be a disjoint union of disks (contractible two-dimensional
manifolds) with boundary @DS D S D @†. Given any �DS WDS ! SU.2/ such that
�DS jS D �jS , let �t�DS be the map defined on the closed manifold†D WD†t.�DS /
by the gluing of the functions �DS and � along the common boundary S . The Wess–
Zumino term WZ†.�/ is then defined by the equation

ei2�WZ†.�/ WD Œ�DS ; e
i2�WZ†D .�t�DS /� 2 ��1.�jS /:

To introduce the next result it is worth mentioning that given a complex vector bundle
E! X , its conjugate E! X is the complex vector bundle whose underlying total
space agrees with E as a set, but with inverted complex structure with respect to the
multiplication by scalars z 2C. If E is endowed with a Hermitian metric, then so is E.
This allows the identification of E with the dual vector bundle E�.
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Proposition 3.20 (orientation) (i) Let S be a compact oriented one-dimensional
manifold without boundary, and �S the same manifold with reversed orientation.
Then there exists a natural isometric isomorphism

L�S ' LS :

(ii) Let † be a compact oriented two-dimensional manifold with boundary , and �†
the same manifold with reversed orientation. Then for any � W†! SU.2/,

WZ�†.�/D�WZ†.�/:

Property (i) of Proposition 3.20 is a direct consequence of the construction of the
space LS . Property (ii) follows from Definition 3.19 under the isometry described
in (i).

Remark 3.21 (central extension of the loop group) Definition 3.19 will be mainly
applied to two-dimensional manifolds † such that @† ' S1. In this case we will
write LS1 instead of L@†. The set Map.S1;SU.2// endowed with the pointwise
multiplication is known as the loop group of SU.2/ [43], and will be denoted here
by LoopSU.2/. The total space S.LS1/ of the principal U.1/–bundle (also known as
circle bundle) associated to LS1 inherits a group structure from the product of fibers
(3-9). This gives rise to a central extension of LoopSU.2/,

1!U.1/! S.LS1/! LoopSU.2/! 1:

Let �0 W†! SU.2/ be the constant map with value the identity matrix 1C2 2 SU.2/.
By definition of the product of fibers (3-9) one has that Œ�0; ei2�WZ†D .�0t�0/� acts
as the unit of the group S.LS1/. Therefore, by invoking Definition 3.19 one obtains
that ei2�WZ†.�0/ 2 LS1 provides the unit of the central extension S.LS1/. For a more
complete description of this central extension the reader is referred to [15; 35; 43].

The link between Definitions 3.16 and 3.19 is provided by the following result.

Proposition 3.22 (gluing property) Let † be a compact oriented two-dimensional
manifold without boundary. Assume that † can be cut along an embedded circle S1 to
get two compact oriented two-dimensional manifolds†1 and †2 such that @†1'�S1

and @†2 ' S1 in such a way that †D†1 t†2. Then for any � W†! SU.2/,

(3-10) ei2�WZ†.�/ D hei2�WZ†1 .�j†1 /I ei2�WZ†2 .�j†1 /i;

where h � I � i denotes the contraction between

ei2�WZ†1 .�j†1 / 2 LS1 and ei2�WZ†2 .�j†2 / 2 L�S1 :
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Equation (3-10) can be reformulated in the suggestive formula

WZ†.�/DWZ†1.�j†1/�WZ†2.�j†2/ mod Z:

A proof of a generalized version of Proposition 3.22 can be found in [35, Section 1.3].

Although simplified, the version of the gluing property described in Proposition 3.22
is sufficient for the purposes of this work. Indeed, the gluing property will be mainly
applied to the situation described below.

Remark 3.23 Let†1 and†2 be compact oriented two-dimensional manifolds without
boundary. Assume that an embedded disk D can be cut out from both the manifolds in
such a way that†1D†01tD and†2D†02tD where†01 and†02 are two-dimensional
manifolds with boundaries @†1 ' @†2 ' �@D ' �S1. Let �1 W †1 ! SU.2/ and
�2 W†2!SU.2/ be two maps such that �1jD D �2jD and both �1 and �2 have constant
value 1C2 on a neighborhood of †01 � †1 and †02 � †2, respectively. Under this
setting it holds that

(3-11) WZ†1.�1/DWZ†2.�2/ mod Z:

In fact both e
i2�WZ

†0
1
.�1j†0

1
/
2 L�

S1
and e

i2�WZ
†0
2
.�2j†0

2
/
2 L�

S1
describe the unit of

the central extension S.LS1/ as discussed in Remark 3.21. Therefore,

e
i2�WZ

†0
1
.�1j†0

1
/
D e

i2�WZ
†0
2
.�2j†0

2
/
; ei2�WZD.�1jD/ D ei2�WZD.�2jD/;

where the second equality follows from the assumption �1jD D �2jD . By applying the
gluing property (3-10) one gets ei2�WZ†1 .�1/ D ei2�WZ†2 .�2/ which justifies (3-11).

3.6 Classification via Wess–Zumino term in dimension two

In this section the description of rank 2 Q–bundles over an oriented two-dimensional
FKMM–manifold .†; �/ obtained in Sections 2.6 and 2.7 will be combined with the
theory of the Wess–Zumino term described in Sections 3.4 and 3.5 in order to prove
that the Wess–Zumino term completely classifies Vec2Q.†; �/.

The following three preliminary results are needed.

Lemma 3.24 Let .†; �/ be an oriented two-dimensional FKMM–manifold in the sense
of Definition 1.1. Let Map.†;SU.2//Z2 be the set of equivariant maps described by
(2-10) and Œ†;SU.2/�Z2 be the set of equivalence classes under the Z2–homotopy
equivalence. Then:
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(i) The exponentiated Wess–Zumino term of � 2Map.†;SU.2//Z2 takes values
in Z2, so one gets a map

ei2�WZ† WMap.†;SU.2//Z2 ! Z2:

(ii) The map above is invariant under Z2–homotopy, and hence induces a map

ei2�WZ† W Œ†;SU.2/�Z2 ! Z2:

Proof (i) For every � 2 Map.†;SU.2//Z2 the quantity WZ†.�/ 2 R=Z is de-
fined according to Definition 3.16. Since � satisfies ��� D ��1, the diffeo-invariance
(functoriality) of the Wess–Zumino term [15] implies

WZ†.�/DWZ†.���/DWZ†.��1/:

From the relation ��1d� D ��d��1, valid for generic maps with values in SU.2/,
it follows that Tr.��1d�/n D .�1/n Tr.�d��1/n. The application of this identity to
the Wess–Zumino term implies WZ†.��1/D�WZ†.�/. In conclusion, one obtains
that WZ†.�/ D �WZ†.�/ modulo Z, ie 2WZ†.�/ 2 f0; 1g. This proves that the
exponential map in (i) takes values in Z2.

(ii) If O� W†� Œ0; 1�! SU.2/ is a Z2–homotopy, then the map

Œ0; 1� 3 t 7!WZ†. O�j†�ftg/ 2R=Z

is continuous. Hence, the value of the exponential ei2�WZ†. O�j†�ftg/ must be constant
for all t in view of the discreteness of the target space. This concludes the proof.

Lemma 3.25 Let .†; �/ be an oriented two-dimensional FKMM–manifold in the sense
of Definition 1.1. For each � 2Map.†� ; f˙1g/ there exists �� 2Map.†;SU.2//Z2
such that ˆ�.��/D � and

ei2�WZ†.��/ D….�/;

where … is the product sign map defined by (2-7).

Proof The proof of Lemma 2.17 contains the recipe to construct a map

�� 2Map.†;SU.2//Z2

for each � 2Map.†� ; f˙1g/ such thatˆ�.��/D �. Let†� Dfx1; : : : ; xng be a labeling
for the fixed point set. Let �i 2Map.†� ; f˙1g/ be defined by �i .xj /D 1� 2ıij . Let
�i WD ��i be the element in Map.†;SU.2//Z2 such that ˆ�.�i / D �i . Note that �i
takes the value 1C2 outside the disk Di . It follows that �1; : : : ; �n commute pointwise,
and the pointwise product of the �i is in Map.†;SU.2//Z2 . Then, by construction,
each �� can be expressed as the pointwise product of a certain number of �i . Let us
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assume that �� D �i1 � � � �ik . Since the supports of the differential forms ��1i d�i are
pairwise disjoint, the Polyakov–Wiegmann formula (see Lemma 3.17) provides

WZ†.��/DWZ†.�i1/C � � �CWZ†.�ik / mod Z:

The next task is to evaluate the generic term WZ†.�i /. For that, the construction in
Remark 3.23 will be applied. Given xi 2†� , consider a small disk Di �† such that
�.Di /DDi and xi 2Di is the only fixed point. The restriction �i jDi has by construction
the following property: �i jDi .xi / D �1C2 and �i jDi .x/ D C1C2 if x 2 @Di . By an
equivariant diffeomorphism, Di can be identified with the closed unit disk D � C

endowed with the involution z 7! �z and the map �i jDi can be identified with the
map �D described in the proof of Lemma 2.17. By gluing two copies D and D0 of the
same disk along the common boundary S1 one obtains that DtD0 is identifiable with
the equivariant sphere S2 with involution .k0; k1; k2/ 7! .k0;�k1;�k2/ which fixes
only the two poles .˙1; 0; 0/. Consequently, given the constant map �0 WD0! 1C2 ,
one has that the map �D t �0 WD tD0! SU.2/ can be identified with the equivariant
map � W S2! SU.2/ such that �.˙1; 0; 0/D˙1C2 . Since the conditions described
in Remark 3.23 are met, one has that

WZ†.�i /DWZS2.�/ mod Z:

A possible realization for � is

(3-12) �.k0; k1; k2/D

�
k0 �k1C ik2

k1C ik2 k0

�
:

Recall that ŒS2;U.1/�Z2 'H
1
Z2
.S2;Z.1// [23, Proposition A.2] and

H 1
Z2
.S2;Z.1//'H 1

Z2
.�;Z.1//˚H�1Z2

.�;Z.1//'H 1
Z2
.�;Z.1//' Z2

by [7, Lemma 5.6]. Since H 1
Z2
.�;Z.1//' Œ�;U.1/�Z2 , it follows that ŒS2;U.1/�Z2 is

represented by constant maps. Then the bijection ŒS2;SU.2/�Z2=ŒS
2;U.1/�Z2 ' Z2

obtained from Proposition 2.18 assures that, up to a Z2–homotopy if necessary, one can
always choose the equivariant map � as given in (3-12). The computation of WZS2.�/

with � given by (3-12) is as follows: Consider the map Q� W S3! SU.2/ defined by

(3-13) Q�.k0; k1; k2; k3/D

�
k0C ik3 �k1C ik2
k1C ik2 k0� ik3

�
:

Let S3
C
WD fk 2S3 j k3 > 0g be the upper hemisphere. Then @S3

C
'S2 and Q�j@S3

C
D �.

Since S3
C

is just a half-sphere, one gets by a direct computation that

WZS2.�/D
�1

48�2

Z
S3
C

Tr. Q��1d Q�/3 D 1

2
:
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As a consequence, ei2�WZ†.�i / D ei2�WZS2 .�/ D�1 and

ei2�WZ†.��/ D
Y

xi1 ;:::;xik

.�1/D….�/:

Lemma 3.26 Let .†; �/ be an oriented two-dimensional FKMM–manifold in the
sense of Definition 1.1. The Wess–Zumino term induces a well-defined map

ei2�WZ† W Œ†;SU.2/�Z2=Œ†;U.1/�Z2 ! Z2:

Proof The claim is proved if one can show that for any � 2Map.†;SU.2//Z2 and
� 2Map.†;U.1//Z2 , it holds that ei2�WZ†.�/ D ei2�WZ†.�0/ where

� 0 D

�
��� 0

0 1

�
� � �

�
1 0

0 �

�
:

Let � WDˆ�.�/ and �0 WDˆ�.� 0/. Associated with the maps �; �02Map.†� ;Z2/ one can
construct the associated maps ��; ��0 2Map.†;SU.2//Z2 according to Lemma 3.25.
Lemma 2.17 assures that � and � 0 are Z2–homotopy equivalent to �� and ��0 , respectively.
Thus,

ei2�WZ†.�/ D ei2�WZ†.��/ D….�/D….ˆ�.�//

and similarly ei2�WZ†.�0/ D….ˆ�.�
0//. Since Proposition 2.18 assures that ˆ�.�/D

ˆ�.�
0/, it follows that ei2�WZ†.�/ D ei2�WZ†.�0/.

We are now in position to prove the first main result of this work.

Proof of Theorem 1.2 The case m D 1 will be treated first. In view of the bi-
jection proved in Theorem 2.13 and the resulting equality (2-18), it is enough to
show that ei2�WZ† D … ıˆ� maps from Œ†;SU.2/�Z2=Œ†;U.1/�Z2 into Z2. By
Proposition 2.18 and Theorem 2.11, … ıˆ� is a bijection. Thus, it is enough to prove
the equality ei2�WZ† D… ıˆ� on Map.†;SU.2//Z2 . However, this is clear from
Lemma 3.25. The generalization to the case of Q–bundles of rank 2m follows by using
the arguments in Remark 2.16.

3.7 Classification via Chern–Simons invariant in dimension three

The main aim of this section is to provide the proof of Theorem 1.3. This proof is
facilitated by a particular presentation of principal Q–bundles over .X; �/. Suppose
that X� Dfx1; : : : ; xng consists of n points. Thanks to the slice theorem [27, Chapter I,
Section 3], for each i D 1; : : : ; n one can find a closed �–invariant disk Di centered
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at xi such that Di \Dj D∅ for i ¤ j and each Di is equivariantly homotopic to the
standard unit disk in R3 with antipodal involution �.x/D�x. Define

XD WD
G

iD1;:::;n

Di ; X 0 WDXnInt.XD/;

so that X DX 0[XD . Given any map ' WX 0\XD!U.2/ one can glue together the
product bundles over X 0 and XD to form a principal U.2/–bundle over X ,

(3-14) P' WD .X
0
�U.2//t' .XD �U.2//:

Assume that ' 2Map.X 0\XD;U.2//Z2 ; namely, ' is equivariant with respect to the
involution ��'D�Q N'Q. Then the principal U.2/–bundle P' gives rise to a principal
Q–bundle.

Lemma 3.27 Assume that the hypotheses of Theorem 1.3 are met. Any principal
U.2/ Q–bundle .P; y‚/ over .X; �/ is isomorphic to a principal U.2/ Q–bundle P'
of the type (3-14) for a map ' 2Map.X 0\XD;U.2//Z2 which satisfies the following
property: Let 'i WD 'j@Di be the restriction of ' on the boundary @Di ' S2 of the disk
Di for every i D 1; : : : ; n. Then , either 'i is equivariantly homotopic to the equivariant
map '� W S2!U.2/ defined by

'�.x1; x2; x3/ WD i
�

x1 �x2C ix3
x2C ix3 x1

�
;

where S2 is a Z2–space with the antipodal involution , or 'i is the constant map at
1C2 2U.2/.

Proof Since each connected component Di of XD is equivariantly contractible, the
principal Q–bundle PjXD is trivial. By construction, the involution on X 0 is free; thus
PjX 0 is trivial as well. This fact follows from [10, Theorem 4.7(2)] along with the
assumption H 2

Z2
.X;Z.1//D 0 which implies the triviality of even rank Q–bundles

over spaces with free involutions. The passage from vector bundles to principal bundles
is then justified by the isomorphism (3-1). Let sXD and sX 0 be global sections (ie
trivializations) of PjXD and PjX 0 , respectively. From these sections one gets the map
' WX 0\XD!U.2/ defined by the restriction on X 0\XD of the (pointwise) product
s�1XDsX

0 . The map ' is equivariant by construction and defines the principal Q–bundle
P' as given in (3-14). The isomorphism P' P' is a manifestation of the fact that
P and P' have the same system of transition functions. By the homotopy property
of Q–bundles, the Q–isomorphism class of P' only depends on the Z2–homotopy
class of '. By [8, Corollary 4.1] one has ŒS2;U.2/�Z2 ' Z2, meaning that every
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equivariant map from the sphere S2 with the antipodal involution into the space U.2/

with involution g 7! �Q NgQ is Z2–homotopy equivalent to the constant map at 1C2

or to the map '�. Since X 0\XD is a disjoint union of antipodal spheres, the map '
restricted to each disconnected component can be equivariantly deformed to one of
these two maps.

Remark 3.28 Lemma 3.27 deserves two comments. First of all it is worth noticing
that the map ' constructed in the proof of the lemma can be always deformed to a
smooth map providing in this way a smooth principalQ–bundle P' which represents P

in the smooth category. This is a manifestation of the equivalence between continuous
and smooth category discussed in [9, Theorem 2.1]. The second observation refers
to the content of Remark 2.16. In fact in view of the stable rank condition described
in Theorem 2.5 one has that the representation (3-14) must be valid also for principal
U.2m/ Q–bundle. In the higher rank case the isomorphism reads

(3-15) P' P' WD .X
0
�U.2m//t'0 .XD �U.2m//;

where the equivariant map '0 WX 0\XD!U.2m/ factors as

'0 '

�
' 0

0 1C2.m�1/

�
and the map ' W X 0 \XD ! U.2/ in the upper-left corner satisfies the properties of
Lemma 3.27.

In view of the Lemma 3.27 one can assume that P has been of the form (3-14) since
the beginning. With this presentation in hand, the next task is to compute the FKMM–
invariant of P. As a preliminary fact, let us recall that the FKMM–invariant of a
principal Q–bundle .P; y‚/ is defined as the FKMM–invariant of the associated Q–
bundle .E; ‚/; see Definition 3.4. The FKMM–invariant measures the difference of
two trivializations of the sphere bundle of det.E/jX� . This is the same as measuring
the difference of two trivializations of det.E/jX� .

Lemma 3.29 Assume that the hypotheses of Theorem 1.3 are met. Let .P; y‚/ be
a principal U.2/ Q–bundle and ' 2 Map.X 0 \ XD;U.2//Z2 the equivariant map
which represents the principal Q–bundle according to Lemma 3.27. Then the FKMM–
invariant of .P; y‚/ is represented by the function � WD det.'/jX� . More precisely , one
has that

�.P; y‚/D Œ�� 2Map.X� ; f˙1g/=ŒX;U.1/�Z2 :
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Proof Starting from the representation (3-14), one has that

det.P/D .X 0 �U.1//tdet.'/ .XD �U.1//:

From this expression one infers that the canonical invariant section s
.P;y‚/

of det.P/jX�
is given by

s
.P;y‚/

D .x; 1/ 2X� �U.1/� det.P/;

while a global invariant section s of det.P/ is given by

s.x/D

�
.x; uX 0.x// if x 2X 0;
.x; uD.x// if x 2XD;

where uX 0 W X 0 ! U.1/ and uD W XD ! U.1/ are two equivariant maps satisfying
uX 0 D uD � det.'/ on X 0 \ XD . Accordingly, it follows from Lemma 3.27 that
det.'i / WX 0\Di !U.1/ is a constant map at 1 or �1, where 'i WD 'jDi . Therefore,
one can choose uX 0 to be the constant map at 1 and uD to be the locally constant map
such that uDjDi D˙1 if det.'i /D˙1. Then, it follows that the FKMM–invariant is
represented by uDjX� D det.'/jX� .

The next goal is to compute the Chern–Simons invariant of .P; y‚/. Let sX 0 and sXD
be the invariant sections of PjX 0 DX

0 �U.2/ and PjXD DXD �U.2/ defined by

(3-16)
sX 0.x/D .x; 1C2/ if x 2X 0;

sXD .x/D .x; 1C2/ if x 2XD;

respectively. Then, any section s of P is described as

(3-17) s.x/D

�
sX 0.x/ X 0.x/

�1 D .x;  X 0.x/
�1/ if x 2X 0;

sXD .x/ D.x/
�1 D .x;  D.x/

�1/ if x 2XD;

for a pair of maps  X 0 W X 0! U.2/ and  D W XD ! U.2/ such that  X 0 D  D' on
X 0\XD . The maps  X 0 and  D can be chosen smooth in such a way that the section
s is smooth as well. Moreover, the choice of  X 0 and  D can be further specified in
view of the following result:

Lemma 3.30 The smooth maps  X 0 and  D in (3-17) can be chosen such that
 D D 1C2 is the constant map.

Proof By construction,  X 0 D  D' on X 0 \ XD . Thus, the proof of the claim
reduces to the problem of extending ' W @X 0!U.2/ to a smooth map Q' WX 0!U.2/

such that Q'j@X 0 D '. Indeed, given such a Q', the proof can be completed by setting
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 D D 1C2 and  X 0 D Q'. To prove the existence of Q', notice that the three-manifold
X 0 admits a CW decomposition in which the dimension of each cell is at most 3.
The homotopy groups �i .U.2// are trivial for i D 0; 2. The map det WU.2/!U.1/

induces an isomorphism �1.U.2//' �1.U.1//' Z. Since det.'/ is nullhomotopic
by construction, one concludes that ' extends to a continuous map Q'0 W X 0! U.2/.
However, the isomorphism between continuous category and smooth category ensures
the existence of a smooth map Q' WX 0!U.2/, approximating the continuous map Q'0,
that satisfies Q'j@X 0 D '.

Given an invariant connection ! on .P; y‚/, one sets

!X 0 WD s
�
X 0!; !XD WD s

�
XD
!:

The two local expressions are related by

(3-18) !X 0 D '
�1!XD'C'

�1d':

The following result contains the key computation for the proof of Theorem 1.3.

Lemma 3.31 Assume that the hypotheses of Theorem 1.3 are met. Let .P; y‚/ be a
principal U.2/ Q–bundle and ' 2Map.X 0\XD;U.2//Z2 the equivariant map which
represents the principal Q–bundle according to Lemma 3.27. Then the Chern–Simons
invariant of .P; y‚/ is given by

cs.P; y‚/DWZ@XD .'/C
1

8�2

Z
@XD

Tr.!XD ^ d''
�1/ mod Z;

where !XD is defined by (3-18) from any invariant connection !.

Proof Let us start with an observation. By construction, ' D
F
iD1;:::;n 'i and each

det.'i / W@Di!U.1/ is constant at˙1. Hence, det.'/ is nullhomotopic and WZ@D.'/
makes sense. Now, the computation. Given the section described in (3-17), one has
that Z

X

s�CS.!/D
Z
X 0
s�CS.!/C

Z
XD

s�CS.!/

D

Z
X 0
.sX 0 

�1
X 0 /
�CS.!/C

Z
XD

.sXD 
�1
D /�CS.!/:

With the help of formula (3-7) one has that

.sX 0 
�1
X 0 /
�CS.!/

D s�X 0CS.!/C
1

8�2
dTr.s�X 0! ^ X 0d 

�1
X 0 /�

1

24�2
Tr.. X 0d �1X 0 /

^3/:
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Since Z
X 0
s�X 0CS.!/D

Z
X 0

CS.!X 0/D 0;

in view of Proposition 3.12(iii) one getsZ
X 0
.sX 0 

�1
X 0 /
�CS.!/D 1

8�2

Z
X 0

dTr.!X 0^d X 0 �1X 0 /CWZ@X 0. �1X 0 j@X 0/ mod Z;

where Definition 3.16 has been used. With a similar computation one gets alsoZ
XD

.sXD 
�1
D /�CS.!/

D
1

8�2

Z
XD

dTr.!XD ^ d D �1D /CWZ@XD . 
�1
D j@XD / mod Z

and, after putting all the pieces together, one obtainsZ
X

s�CS.!/D 1

8�2

Z
X 0

dTr.!X 0 ^ d X 0 �1X 0 /C
1

8�2

Z
XD

dTr.!XD ^ d D �1D /

CWZ@X 0. �1X 0 j@X 0/CWZ@XD . 
�1
D j@XD / mod Z:

Notice that the orientation on @X 0 D X 0 \XD induced from X is opposite to that
on @XD . Therefore, modulo Z, one gets the equality

WZ@X 0. �1X 0 j@X 0/
D�WZ@XD .. Dj@XD'/

�1/

D�WZ@XD .'
�1/�WZ@XD . Dj

�1
@XD

/�
1

8�2

Z
@XD

Tr.'d'�1 ^ d �1D  D/;

which is justified by the relation  X 0 D  D' on @X 0 D @XD and by the use of the
Polyakov–Wiegmann formula proved in Lemma 3.17. The local relation between  X 0
and  D also implies

Tr.!X 0 ^ d X 0 �1X 0 /D Tr.!XD ^ 
�1
D d DC!XD ^ d''�1C d''�1 ^ �1D d D/:

Summarizing, one finally getsZ
X

s�CS.!/D�WZ@XD .'
�1/C

1

8�2

Z
XD

dTr.!XD ^ d''�1/ mod Z:

The proof is completed by the general equality WZ@XD .'
�1/D�WZ@XD .'/ and the

use of Definition 3.14.

We are now in position to provide the proof of the second main result of this work.
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Proof of Theorem 1.3 Let us choose the maps  X 0 and  D as in Lemma 3.30. Then
!XD WD s�XD! D .s D/

�! D 0, since  D is constant. Thus, from the formula in
Lemma 3.31 and the definition of the map ', one gets

cs.P; y‚/DWZ@XD .'/D
nX
iD1

WZ@Di .'i / mod Z:

It holds that WZ@Di .'i /D 1 when 'i D 1C2 (obvious!) and WZ@Di .'i /D
1
2

when
'i is homotopic to the map '� in Lemma 3.27. The proof of the latter equality is
contained in the proof of Lemma 3.25. In fact the map '� coincides with the map
(3-12) and a possible extension Q'� on the upper hemisphere of S3 can be realized by
the prescription (3-13). In conclusion, one obtains that

ei2�cs.P;y‚/
D….det.'/jX� /:

The proof is finally completed by the result in Lemma 3.29.

Theorem 1.3 has a surprising consequence.

Corollary 3.32 Under the assumptions in Theorem 1.3, the homomorphism

… WMap.X� ; f˙1g/=ŒX;U.1/�Z2 ! Z2

induced by the product sign map (2-7) is well defined.

Proof One needs to shows that the homomorphism … WMap.X� ; f˙1g/! Z2 given
by the product sign map satisfies….� jX� /D….�/ for any map � WX�!Z2 and any
equivariant map  WX !U.1/. Consider the principal U.2/ Q–bundle P' generated
according to (3-14) where the map ' is related to � as follows: ' is the constant
map at 1C2 on the disk Di if �.xi /D 1 or ' agrees with '� on the boundary of Di
if �.xi /D �1. By construction the map � provides a representative of the FKMM–
invariant of P' ; see Lemma 3.27. In a similar way the map �0 WD � represents the
FKMM–invariant of an associated principal U.2/ Q–bundle P'0 . Since ' and '0 belong
to the same class in Map.X� ; f˙1g/=ŒX;U.1/�Z2 it follows that P' and P'0 have the
same FKMM–invariant. However, under the hypotheses of Theorem 1.3 the FKMM–
invariant is an isomorphism (Proposition 2.10); hence P' and P'0 are isomorphic. By
the naturality of the Chern–Simons invariant, cs.P' ; y‚'/D cs.P'0 ; y‚'0/. The proof
of the claim then follows in view of formula (1-6).
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Detecting isomorphisms in the homotopy category

KEVIN ARLIN

J DANIEL CHRISTENSEN

We show that no generalization of Whitehead’s theorem holds for unpointed spaces.
More precisely, we show that the homotopy category of unpointed spaces admits no
set of objects jointly reflecting isomorphisms. We give an explicit counterexample
involving infinite symmetric groups. In contrast, we prove that the spheres do jointly
reflect equivalences in the homotopy 2–category of spaces. We also show that
homotopy colimits of transfinite sequential diagrams of spaces are not generally weak
colimits in the homotopy category, and furthermore exhibit such a diagram with the
property that none of its weak colimits is privileged, which means, roughly, that
it sees the spheres as compact objects. The nonexistence of a set jointly reflecting
isomorphisms in the homotopy category was originally claimed by Heller, but our
results on weak colimits show that his argument had an inescapable gap, leading to
the need for the new proof given here.

18A30, 55P65, 55U35

1 Introduction

Let Hot denote the homotopy category of spaces, and let Hot�;c denote the homotopy
category of pointed, connected spaces. Whitehead’s theorem says that, in Hot�;c , the
set of spheres jointly reflects isomorphisms. One is naturally led to wonder whether
there is a set of spaces in Hot which jointly reflects isomorphisms.

Brown [1] proved that a functor Hotop
�;c! Set is representable if and only if it is half-

exact, in the sense that it sends coproducts and weak pushouts in Hot�;c to products
and weak pullbacks in Set. Heller [4] proved an abstract representability theorem: if
C is a category with coproducts and weak pushouts and C contains a “bounded” set G
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of objects that jointly reflects isomorphisms (see Definition 1.1 below), then a functor
C op!Set is representable if and only if it is half-exact. Heller also gave an example of
a half-exact functor Hotop

! Set which is not representable. He then claimed without
proof [4, Proposition 1.2] that every set of spaces in Hot is bounded, and concluded [4,
Corollary 2.3] that no set of spaces jointly reflects isomorphisms in Hot.

We show that it is not true that every set of spaces is bounded, reopening the question
of whether there is a set of spaces that jointly reflects isomorphisms in Hot. We thus
also give an independent proof that no set of spaces jointly reflects isomorphisms.

We now give the definitions needed in order to precisely state our results.

Definition 1.1 Let C be any category and let G � C be a set of objects.

(1) We say that G jointly reflects isomorphisms if a morphism f WX! Y in C is an
isomorphism whenever C .S; f / W C .S;X/! C .S; Y / is a bijection for every
S 2 G.1

(2) A weak colimit of a diagram D W I!C is a cocone through which every cocone
factors, not necessarily uniquely.

(3) A cocone W of D W I! C is G–privileged if the canonical map

colim
˛2I

C .S;D.˛//! C .S;W /

is a bijection for every S 2 G.

(4) For an ordinal ˇ, we say that G is ˇ–bounded if every diagram D W ˇ!C has a
G–privileged weak colimit.

(5) We say that G is left cardinally bounded, or just bounded, if it is ˇ–bounded for
each sufficiently large regular cardinal ˇ.

We use the word “set” to mean what is sometimes called a “small set”, i.e. an object of
the category Set. All of our ordinals and cardinals are “small”. We regard a cardinal as
an ordinal which is least in its cardinality class. The cofinality of an ordinal ˛ is the
smallest ordinal that is the order type of a cofinal subset of ˛. A cardinal is regular if
it is equal to its cofinality.

As mentioned above, Hot denotes the homotopy category of spaces, by which we
mean the localization of the category of spaces at the weak homotopy equivalences, or,
equivalently, the category whose objects are CW–complexes and whose morphisms are

1Other terminology is in use, such as “G is a set of (weak) generators” or “the functors C .S;�/ are jointly
conservative”. Heller says that “G is left adequate”.
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homotopy classes of continuous maps. It is well known that every small diagram in
Hot has a weak colimit, and that weak colimits are not unique.

We can now state our main results more precisely. First we give the result that shows
that [4, Proposition 1.2] is false:

Theorem 3.1 The set G D fSn j n� 0g of spheres in Hot is not �–bounded for any
ordinal � of uncountable cofinality. That is , for each such �, there exists a diagram
D W �!Hot that admits no G–privileged weak colimit.

Note that Theorem 3.1 applies to all uncountable regular cardinals, showing that the
set of spheres is not left cardinally bounded. By adding one more space to the set, we
can remove the uncountability assumption:

Corollary 3.2 Let T denote a countably infinite , discrete space. Then the set
fSn j n� 0g[ fT g is not �–bounded in Hot for any limit ordinal �.

The proof of Theorem 3.1 is somewhat involved and forms the bulk of the paper. We first
show that it is sufficient to find a counterexample in the homotopy category HoGpd of
groupoids. Then, given � as in the statement, we consider the diagram D W �!HoGpd
sending ˛ to the free group on 2C˛ generators. We make use of the theory of graphs
of groups (see Serre [7]) and the associated fundamental groupoid (see Higgins [5]) in
order to construct a sufficiently pathological cocone D!Z, which we use to show that
D admits no G0–privileged weak colimit, where G0 D fBZg. This involves a detailed
understanding of the morphisms in Z and how they are expressed as words in the given
generators. It follows that the diagram �!Hot sending ˛ to the wedge of ˛ circles
has no G–privileged weak colimit, where G is as in the statement of Theorem 3.1.

Heller’s argument for his claim [4, Proposition 1.2] that any set G of objects in Hot
is bounded was to take the cocone W to be the homotopy colimit, i.e. a generalized
telescope. Since such homotopy colimits are G–privileged, our result above implies that
they are not, in general, even weak colimits in Hot. This is in contrast to the situation
for telescopes of sequences indexed by !, and for other homotopy colimits of diagrams
indexed by freely generated categories. In the introduction to [2], Franke suggests using
a Bousfield–Kan spectral sequence to show that Heller’s claim is false, by comparing
weak colimits to homotopy colimits, but we were unable to find an example in which
we could prove that a certain differential was nonzero.

In the homotopy category of pointed, connected spaces, the set of spheres jointly
reflects isomorphisms — this is the classical form of Whitehead’s theorem. However,

Algebraic & Geometric Topology, Volume 23 (2023)
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we conjecture that the set of spheres is not bounded in Hot�;c . If this is true, it
means that Heller’s abstract representability theorem, as stated, does not imply Brown’s
representability theorem. That said, Heller’s argument only requires a set of objects that
jointly reflects isomorphisms and is ˇ–bounded for some regular cardinal ˇ. Thus, since
the set of spheres is @0–bounded, the proof of Heller’s theorem goes through in Hot�;c .

Next we state the result that shows that the statement of [4, Corollary 2.3] is nevertheless
correct:

Theorem 2.1 The category Hot contains no set G of spaces that jointly reflects
isomorphisms. That is , there exists no set G of spaces such that , if f WX ! Y is a map
of spaces and f� WHot.S;X/!Hot.S; Y / is a bijection for every S 2 G, then f is an
isomorphism in Hot.

This second result is easier to prove, and so we prove it first, in Section 2. Our method
is a generalization of Proposition 4.1 of Matumoto, Minami and Sugawara [6], which
gives a “phantom homotopy equivalence”, that is, a map in Hot which, while not
an isomorphism, is seen as one by all finite complexes. Our proof also shows that
there is no set of connected spaces that jointly reflects isomorphisms in the homotopy
category of connected spaces. Moreover, Theorem 2.1 implies similar results in other
settings. For example, since Hot is a reflective subcategory of the homotopy category
of .1; 1/–categories, it follows that there is no set of .1; 1/–categories that jointly
reflects isomorphisms in that category.

Since the .1; 1/–category S of spaces certainly contains a set of objects jointly re-
flecting equivalences — namely the set whose only element is the one-point space —
while its 1–categorical truncation Hot does not, one might ask which behaviours the
n–categorical truncations of S exhibit for larger values of n. In fact, we show in
Theorem 4.3 that, in the 2–category Hot of spaces, morphisms and homotopy classes
of homotopies between them, the set of spheres does jointly reflect equivalences,
which is the natural generalization of joint reflection of isomorphisms to 2–category
theory. Intuitively, the reason for the divergent behaviour of Hot and Hot is that the
2–morphisms of Hot retain the information about based homotopies that is lost in Hot.

Acknowledgments Arlin would like to thank George Raptis for suggesting an argu-
ment that the spheres should generate Hot, simpler than that originally given for the
tori. Both authors thank the referee for many valuable comments that helped to improve
the paper, including the citation to [6] that now does the bulk of the work in Section 4.
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2 Hot admits no set that jointly reflects isomorphisms

We make the following definitions. For an ordinal ˛, write †˛ for the group of all
bijections of the set ˛, ignoring order. When ˇ < ˛, there is a natural inclusion
†ˇ ,!†˛, and we define †c

˛ to be the union of the images of †ˇ for all ˇ < ˛. We
typically consider †c

˛ when ˛ is a cardinal, considered as the smallest ordinal with that
cardinality, and we call the elements of †c

˛ essentially constant permutations.

Theorem 2.1 The category Hot contains no set G of spaces that jointly reflects
isomorphisms. (See Definition 1.1.)

Proof Let G be a set of spaces and let ˛ be a regular cardinal larger than the cardinality
of �1.S; s0/ for each S 2 G and each s0 2 S. We must construct a map f W X ! Y

which is not a homotopy equivalence but which induces bijections on homotopy classes
of maps from spaces in G.

Our example will be Bs WB†c
˛!B†c

˛ , where s W†c
˛!†c

˛ is the shift homomorphism
given by

.s�/./D

�
�. 0/C 1 if  D  0C 1;
 if  is a limit ordinal,

for � 2†c
˛. (Here and in what follows, if  is a successor ordinal, we write  0 for its

predecessor.) We must check that s� 2†c
˛. First, it is essentially constant: if ˇ < ˛

and � fixes each  � ˇ, then, for  > ˇ, we have .s�/./D  if  is a limit ordinal,
and .s�/./ D �. 0/C 1 D  0C 1 D  if  is a successor. Next, we see that s is a
homomorphism: s.��/ and .s�/.s�/ both fix all limit ordinals, while for successors
we have

.s�/..s�/.//D �
�
Œ�. 0/C 1�0

�
C 1D ��. 0/C 1D s.��/./;

as desired. It follows that s� is a bijection, with inverse s.��1/.

Let H be a group with classifying space BH and let X be a connected space. If Gp
denotes the category of groups, recall that Hot.X;BH/ is isomorphic to Gp.�1.X/;H/
modulo conjugation by elements of H . (See for example [8, Corollary V.4.4].) In
particular, we have a natural isomorphism Hot.X;BH/ŠHot.B�1.X/; BH/. It also
follows that, for groups G and H, Hot.BG;BH/ is isomorphic to Gp.G;H/ modulo
conjugation by elements of H, and that an element of Hot.BG;BH/ is a homotopy
equivalence if and only if it is represented by an isomorphism.

Note that s is not surjective, since s� always preserves limit ordinals. Therefore,
Bs W B†c

˛ ! B†c
˛ is not a homotopy equivalence. However, we will show that it

Algebraic & Geometric Topology, Volume 23 (2023)
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induces an isomorphism on G. First observe that it suffices to prove this for connected
components of spaces in G. It follows that it is enough to prove this for spaces of the
form BG, where G is a group of cardinality less than ˛.

Any map BG! B†c
˛ arises from a homomorphism ' WG!†c

˛, well defined up to
conjugation. Since ˛ is regular, there is a limit ordinal ˇ < ˛ such that '.g/ 2†ˇ for
every g 2G. We claim that s ı' is conjugate to ' by an element � 2†c

˛ defined by

�./D

8̂̂̂<̂
ˆ̂:
 0 if  < ˇ is a successor ordinal;
ˇC  if  < ˇ is a limit ordinal;
 C 1 if ˇ �  < ˇCˇ;
 otherwise.

It is straightforward to check that � is a permutation, and it clearly fixes ordinals greater
than or equal to ˇCˇ, which is less than ˛. For g 2 G, let � D '.g/. Then, noting
that ��1./D  C 1 for any  < ˇ, we have

.��1��/./D

8̂̂̂<̂
ˆ̂:
��1.�. 0// if  < ˇ is a successor ordinal;
��1.�.ˇC // if  < ˇ is a limit ordinal;
��1.�. C 1// if ˇ �  < ˇCˇ;
��1.�.// otherwise;

D

8̂̂̂<̂
ˆ̂:
��1.�. 0// if  < ˇ is a successor ordinal,
��1.ˇC / if  < ˇ is a limit ordinal,
��1. C 1/ if ˇ �  < ˇCˇ;
��1./ otherwise;

D

8̂̂̂<̂
ˆ̂:
�. 0/C 1 if  < ˇ is a successor ordinal,
 if  < ˇ is a limit ordinal,
 if ˇ �  < ˇCˇ;
 otherwise;

D s.�/./:

We have used that, if  � ˇ, then �./D  , and the consequence that, if  < ˇ, then
�./ < ˇ.

In summary, we have shown that Bs induces the identity on Hot.S; B†c
˛/ for every

S 2 G, proving the claim.

Remark 2.2 Since the map Bs WB†c
˛!B†c

˛ used in the proof has connected domain
and codomain, it follows that there is no set of connected spaces that jointly reflects
isomorphisms in the homotopy category of connected spaces.
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We explain the origin of the maps s and � . Morally, s is conjugation by the successor
operation on ordinals, with limit ordinals handled specially. The map � implements
this by “making room” for the relevant limit ordinals in a range outside of the support
of a particular permutation � . In fact, if we denote the map � above by �ˇ , then s itself
is conjugation by �˛ in †c

 for a regular cardinal  > ˛.

Remark 2.3 The referee pointed out an alternative proof of Theorem 2.1, which
makes use of the techniques employed in [4, Lemma 2.2], namely the use of HNN
extensions. It also involves a map between classifying spaces, but is less explicit. In
addition, the referee and N Kuhn pointed out that the case when ˛ D ! was proved in
[6, Proposition 4.1], using an approach very similar to ours.

3 The lack of privileged weak colimits

In this section, we give an example showing that Heller’s privileged weak colimits do
not generally exist.

Theorem 3.1 The set G D fSn j n � 0g of spheres in Hot is not �–bounded for any
ordinal � of uncountable cofinality, e.g. for any uncountable regular cardinal. That is ,
for each such �, there exists a diagram D W �!Hot that admits no G–privileged weak
colimit.

In particular, D admits no G–privileged weak colimit for any set G containing the
spheres. Note that the set of spheres is @0–bounded, so we learn that boundedness for
one ordinal does not imply it for ordinals with larger cofinality.

Corollary 3.2 Let T denote a countably infinite , discrete space. Then the set
fSn j n� 0g[ fT g is not �–bounded in Hot for any limit ordinal �.

Proof Since � is a limit ordinal, it has infinite cofinality. If � has uncountable cofinality,
then Theorem 3.1 applies. If � has countable cofinality, then fT g is not �–bounded.

In Section 3.1, we reduce the problem to finding a counterexample in the homotopy
category of groupoids. In Section 3.2, we recall the theory of graphs of groups, and
prove some general results about the word problem in the fundamental groupoid of a
graph of groups. Finally, in Section 3.3, we give a counterexample in the homotopy
category of groupoids and complete the proof of Theorem 3.1.

Algebraic & Geometric Topology, Volume 23 (2023)
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3.1 Reducing from spaces to groupoids

To prove Theorem 3.1 we will work primarily in the homotopy category HoGpd of
groupoids, that is, the category of groupoids and isomorphism classes of functors. It is
well known that the geometric realization of groupoids induces a reflective embedding
B W HoGpd! Hot whose left adjoint is the fundamental groupoid functor …1 and
whose image consists of the 1–types, i.e. those spaces X such that �n.X; x/D 0 for
every n > 1 and every x 2 X . This follows from the adjunction between �1 and the
classifying space functor B that was used in the proof of Theorem 2.1.

Lemma 3.3 Suppose given a diagram D W J !HoGpd, a set G0 of groupoids and a
set G of spaces containing BG0 as well as Sn for all n. If D admits no G0–privileged
weak colimit in HoGpd, then B ıD W J !Hot admits no G–privileged weak colimit
in Hot.

Proof We prove the contrapositive. Let � WB ıD!X be a G–privileged weak colimit,
with X 2Hot. Then, since left adjoints preserve weak colimits, …1.�/ WD!…1X is
a weak colimit. We will show that it is G0–privileged.

First, since � is G–privileged, every map a W Sn!X factors through a 1–type BD.j /
for some j. Thus, when n > 1, a is freely homotopic to a constant, which implies
that �n.X; x/ is trivial for all x 2 X. We conclude that X is a 1–type itself, so that
X ' B.…1X/.

Since B is fully faithful, we see that …1.�/ WD!…1X is G0–privileged. Indeed, if
G 2 G0, then

HoGpd.G;…1X/ŠHot.BG;B.…1X//ŠHot.BG;X/

Š colim
j

Hot.BG;BD.j //Š colim
j

HoGpd.G;D.j //:

One can show that the composite isomorphism is induced by …1.�/.

Thus, it suffices to exhibit appropriately pathological diagrams in HoGpd, and then
to upgrade them to Hot. We aim to give a diagram in HoGpd admitting no weak
colimit privileged with respect to the set G0 D fBZg. Here BZ denotes the groupoid
freely generated by an automorphism, i.e. the groupoid with one object � whose
endomorphism group is the integers. Of course, B.BZ/ is homotopy equivalent to S1,
so G in Lemma 3.3 can be taken to be the set of spheres.

Algebraic & Geometric Topology, Volume 23 (2023)



Detecting isomorphisms in the homotopy category 2983

Remark 3.4 For any groupoid G, a functor f W BZ! G corresponds to an object
f .�/ of G and an automorphism f� W f .�/! f .�/. Furthermore, two such functors
f; g WBZ!G are naturally isomorphic if and only if the automorphisms f� and g�
are conjugate in G. In particular, a functor f WBZ!G factors through h WH !G in
HoGpd if and only if f� is conjugate to an automorphism in the image of h.

3.2 Graphs of groups

To construct our example, we recall the notion of a graph of groups and prove Corollaries
3.7 and 3.8, and Lemma 3.9, which will be used in the next section.

Definition 3.5 A graph of groups � is given by

� a graph, i.e. a set X of vertices, a set Y of oriented edges, functions s; t W Y �X,
and an involution .�/ W Y ! Y interchanging s and t ;

� groups Gx and Gy for x 2 X and y 2 Y equipped with monomorphisms
�y WGy!Gs.y/ such that Gy DG Ny .

For simplicity, we assume that the groups Gx are disjoint. For more on graphs of
groups, see [7, Section I.5; 3, Section 1.B].

Higgins [5] defined the fundamental groupoid …1� of a graph of groups. The groupoid
…1� is the groupoid on objects X with generating morphisms the elements of the
groups Gx , endowed with x as domain and codomain, together with the elements of Y
viewed as morphisms y W s.y/! t .y/. These generators are subject to the relations
holding in the groups Gx , as well as new relations

� Ny.a/D y�y.a/ Ny

for every y and every a 2Gy . Note in particular that Ny D y�1, and we shall use both
notations. It may aid the intuition to consider …1� as the fundamental groupoid of
the space built from

`
X BGx with cylinders BGy � I glued in for each set fy; Nyg of

elements of Y related by the involution.

By definition, the groupoid …1� is a quotient of the groupoid K with object set X and
with morphisms freely generated by

�`
Gx
�
qY, subject to the relations holding in

the groups Gx . A morphism x0! xn in K is given by a word .an; yn; : : : ; y1; a0/,
with yi 2 Y, s.y1/D x0, t .yn/D xn, and s.yiC1/D t .yi /DW xi for 1� i < n, while
ai 2Gxi for 0� i � n.
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The natural realization functor K !…1� will be denoted by j.an; yn; : : : ; y1; a0/j D
an ı yn ı � � � ı y1 ı a0. Higgins proved that every morphism of …1� is uniquely the
image under j � j of a so-called “normal” word. We will not recall this concept, as we
need only Higgins’ corollary regarding the less rigid irreducible words.

A morphism .an; yn; : : : ; y1; a0/ in K is called reducible if n > 1 and, for some i ,
yi�1 D Nyi and ai�1 2 �yi .Gyi /. Otherwise, the morphism is said to be irreducible.
Note that a reducible word can be shortened by the move

. : : : ; ai ; yi ; �yi . Oai�1/; Nyi ; ai�2; : : : / 7! . : : : ; ai� Nyi . Oai�1/ai�2; : : : /

to a word with the same realization. Therefore, every element of …1� is the realization
of an irreducible word. We will use a key result of [5]:

Proposition 3.6 [5, Corollary 5] Let w be an irreducible word in K. If jwj is an
identity morphism in …1� , then w D .e/, where e is an identity element of some Gx .

Define the length `.w/ of the word w D .an; yn; : : : ; y1; a0/ to be n. We deduce the
following:

Corollary 3.7 Let � be a graph of groups and consider a wordw in the groupoid K. If
`.w/ > 0 and jwj is equal to the realization of a zero-length word , then w is reducible.

Proof Suppose that w D .an; yn; : : : ; y1; a0/ for n > 0 and that jwj D j.a/j for some
a in some Gx . Let w0 D .an; yn; : : : ; y1; a0a�1/. Then jw0j is an identity morphism
in …1� , so, by Proposition 3.6, w0 is reducible. Since reduction occurs at interior
points, w must be reducible as well.

Corollary 3.8 Given a graph of groups � and a vertex x, the vertex group Gx embeds
in the automorphism group of x in the fundamental groupoid …1� .

Because of this, we regard elements of the vertex groups as elements of the fundamental
groupoid without explicitly naming the inclusion map.

Proof The map sends a 2Gx to the realization of the word .a/. Since the word .a/ is
irreducible, if the realization is an identity in …1� , Proposition 3.6 tells us that a is
the identity element of Gx . Therefore, this map is injective.

We next record some facts about free groups:
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Lemma 3.9 Let A�B be nonabelian free groups , with A free on generators faig and
B free on faig[ fbj g.

(1) If b 2 B and , for all a 2 A, we have bab�1 D a, then b is the identity.

(2) If b 2B satisfies bab�1 2A for some a2A, then either a is the identity or b 2A.

Proof Fix b 2B. For part (1), if we take aD ai then the assumption that baib�1D ai
shows that an irreducible word for b must have last letter ai or a�1i for every i , which
is absurd since there are at least two i ’s.

For part (2), we assume a is nontrivial and b … A. Factor b as b0b00, where b00 2 A
while b0 is represented by an irreducible word with rightmost letter some bj . Then
bab�1 D b0a0b0�1, where a0 WD b00ab00�1 is a nontrivial element of A. The conclusion
now follows from the observation that no reductions are possible in the concatenation
of the irreducible words for b0, a0 and b0�1, since concatenating those words gives no
letter adjacent to its inverse.

3.3 A counterexample in the homotopy category of groupoids

We now apply the generalities above to the problem of weak colimits in HoGpd.

We fix for the rest of the paper an ordinal � of uncountable cofinality, and introduce
the main characters in our counterexample. Note that Theorem 3.1 will follow if we
replace � D Œ0; �/ by the interval Œ2; �/, since the two categories are isomorphic. We
use the latter because it allows us to use simple indexing while ensuring that all of the
vertex groups below are nonabelian.

Definition 3.10 Define a graph of groups � with object set Œ2; �/, vertex group G˛
free on ˛ generators, edge set fyˇ˛ W ˇ! ˛ j ˛ ¤ ˇ 2 Œ2; �/g and involution yˇ˛ 7! y˛

ˇ
.

The edge group G
y
ˇ
˛

is just Gmin.ˇ;˛/. The edge morphism �
y
ˇ
˛
W Gmin.ˇ;˛/! Gˇ is

the natural inclusion. Let Z D…1� .

Next, define a diagram D W Œ2; �/! HoGpd by letting D.˛/ D G˛, with action on
morphisms the natural inclusions, denoted by Dˇ˛ WD.ˇ/!D.˛/. We have a cocone
A W D ! Z with A˛ W D.˛/! Z the natural inclusion of the vertex group. To see
that these maps do constitute a cocone, we note that yˇ˛ is the unique component of a
natural isomorphism Aˇ Š A˛ ıD

ˇ
˛ .
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We do not need this fact, but it may provide motivation to the reader to know that Z is
the “standard” weak colimit of the diagram D, defined as the homotopy coequalizer of
the natural diagram a

ˇ<˛

D.ˇ/�
a
ˇ

D.ˇ/:

Critically, we do not have the relations yˇ˛ y


ˇ
D y


˛ in Z which would allow us to lift

A into a cocone in the 2–category of groupoids. We now intend to show that D admits
no privileged weak colimit by, roughly, showing that this failure is unavoidable: no
choice of isomorphisms Aˇ Š A˛ ıD

ˇ
˛ can give A such a lift.

WriteZY for the subgroupoid ofZ generated by the edges of the graph. Any morphism
of ZY can be uniquely written as a reduced word in the generators yˇ˛ . We say that
such a morphism passes through a vertex ˛ if this unique word involves a generator
with source or target ˛. The identity id˛ is said to pass through ˛ and no other vertex.

Lemma 3.11 Let u W ˇ! ˛ in Z and let 2 �  � min.˛; ˇ/. Then u is in ZY and
does not pass through any vertex less than  if and only if u is the unique component of
a natural isomorphism Aˇ ıD



ˇ
Š A˛ ıD


˛ between functors D./!Z. Explicitly ,

for all a 2D./, we must have D˛ .a/D uD


ˇ
.a/u�1 in Z.

Proof Suppose that u is in ZY and does not pass through any vertex less than  . It
suffices to show that yˇ˛ conjugates D

ˇ
into D˛ when  � ˇ � ˛. In this case, �

y
ˇ
˛

is
an identity map, and so the claim follows from the defining relations of Z:

yˇ˛D


ˇ
.a/ Nyˇ˛ D y

ˇ
˛�yˇ˛

.D


ˇ
.a// Nyˇ˛ D � Nyˇ˛

.D


ˇ
.a//DDˇ˛ .D



ˇ
.a//DD˛ .a/:

For the converse, let u be the realization of an irreducible wordwD .an; yn; : : : ; y1; a0/.
We proceed by induction on n. If nD0, then ˛Dˇ and uDj.a0/j2Gˇ . The assumption
that D

ˇ
.a/D uD



ˇ
.a/u�1 shows that u centralizes a nonabelian subgroup of a free

group. By Lemma 3.9(1), we see that u is trivial, as desired. And clearly u does not
pass through a vertex less than  ; indeed, it passes through only ˇ, and ˇ �  .

For the inductive step, assume n > 0. Then s.y1/D ˇ and t .yn/D ˛. Let t .y1/D ı,
and note that ı ¤ ˇ. In terms of w, the assumption on u is that the word

w0 D .an; yn; : : : ; y1; a0D


ˇ
.a/a�10 ; y�11 ; a�11 ; : : : ; y�1n ; a�1n /

has realization D˛ .a/ for every a 2 G . Thus, by Corollary 3.7, w0 is reducible.
Since, by assumption, w is irreducible, any reduction must occur at the central entry.
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So, letting " WD min.ˇ; ı/, we must have a0D


ˇ
.a/a�10 2 �y1.G"/ D D"

ˇ
.G"/. In

particular, a0D"ˇ . Oa/a
�1
0 2D

"
ˇ
.G"/ for some nonidentity element Oa in Gmin.;"/. So,

by Lemma 3.9(2), we see that a0 2 D"ˇ .G"/ � Gˇ ; that is, a0 D D"ˇ . Oa0/ for some
Oa0 2 G". It then follows that D

ˇ
.a/ is in the image of D"

ˇ
for every a 2 G , which

means that  � ", since the inclusions of vertex groups are strict.

The reduction of w at its central entry is

.an; yn; : : : ; y2; a1D
"
ı. Oa0/D



ı
.a/D"ı.a0/

�1a�11 ; y�12 ; a�12 ; : : : ; a�1n /:

Thus, if we define u0 W ı! ˛ to be jw00j, where w00D .an; yn; : : : ; y2; a1D"ı. Oa0//, then
`.w00/ < n and u0 conjugates D

ı
to D˛ . By induction, u0 2ZY. Since

u0y1 D anyn � � �y2a1D
"
ı. Oa0/y1 D anyn � � �y2a1y1D

"
ˇ . Oa0/D u;

u is inZY as well. Finally, recall that we observed that  � "Dmin.ˇ; ı/. By induction,
u0 does not pass through any vertex less than  . So the same is true of uD u0y1.

Let ZX denote the subgroupoid of Z containing those morphisms in the image of Gx
for some x. By Corollary 3.8, ZX is isomorphic to the disjoint union of the groups Gx .

Lemma 3.12 Consider a morphism z W ˛! ˛ in Z. If there are morphisms u W ˛! ˇ

and v W ˛!  in Z such that uzu�1 is in ZX and vzv�1 is in ZY, then z D id˛.

Proof Let y D vzv�1. Note that the inclusion ZY !Z has a retraction r WZ!ZY

defined by sending the generators of each vertex group to identity elements. Since
uv�1yvu�1 is in ZX, we have that r.uv�1yvu�1/ D r.uv�1/yr.uv�1/�1 is an
identity, and so y is an identity. Since y D vzv�1 is an identity, we have that z is an
identity as well.

The following is the key technical result:

Lemma 3.13 Suppose given a family uˇ˛ W ˇ! ˛ of morphisms of ZY for all ˇ < ˛ 2
Œ2; �/ such that u˛ D u

ˇ
˛u



ˇ
for all triples  < ˇ < ˛. Then there exists a pair ˇ < ˛

such that uˇ˛ passes through some  with  < ˇ.

Proof Assume that this is not the case. Let ı0 D 2 and ı1 D 3. Inductively, for each
n 2 !, let ın be an ordinal exceeding every vertex that uın�2

ın�1
passes through. This is

possible because � is a limit ordinal.
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For each n, uın�1

ın
can be written uniquely as a reduced word in the free groupoid ZY.

Let yn be a letter in this word which is of the form y
ˇ
˛ with ˇ < ın � ˛. Such a letter

must exist since uın�1

ın
starts at a vertex less than ın and ends at ın. Note that yn cannot

occur in the reduced form of any uık�1

ık
with k ¤ n. For k < n, this holds by definition

of ın, and, for k > n, this holds by our assumption that each uˇ˛ only passes through 
with  � ˇ. In particular, the yn are distinct.

Using that � has uncountable cofinality, choose ı! < � to be an ordinal exceeding
every ın. Consider the decompositions

u
ı0
ı!
D u

ı1
ı!
u
ı0
ı1
D u

ı2
ı!
u
ı1
ı2
u
ı0
ı1
D u

ı3
ı!
u
ı2
ı3
u
ı1
ı2
u
ı0
ı1
D � � � :

In the expression uı1
ı!
u
ı0
ı1

, a y1 occurs in the reduced form of the right-hand factor,
and does not occur in the left-hand factor, so the reduced form of uı0

ı!
must contain

a y1. Similarly, the second decomposition involves a y2, which can’t be cancelled from
either side, so the reduced form of uı0

ı!
must contain a y2. Continuing, we see that the

reduced form of uı0
ı!

must contain countably many distinct letters, a contradiction.

Recall that � is an arbitrary ordinal of uncountable cofinality.

Proposition 3.14 There exists a diagram C W Œ2; �/!HoGpd valued in the homotopy
category of groupoids such that , for any weak colimit with cocone F W C !W, there
exists an automorphism in W which is not conjugate to any morphism in the image of
any leg F˛ W C.˛/!W of F.

Proof We claim that the diagram D (see Definition 3.10) is an example of such a C.

Towards a contradiction, suppose F W D ! W is a weakly colimiting cocone such
that every automorphism in W is conjugate to one in the image of some component
of F. Write F˛ for functors representing the maps D.˛/!W. Since F is a cocone in
HoGpd, for each ˇ < ˛ 2 Œ2; �/ we may choose a natural isomorphism

hˇ˛ W Fˇ Š F˛ ıD
ˇ
˛

between functors D.ˇ/!W in Gpd. Denote by Ohˇ˛ the unique component of hˇ˛ . As
usual we shall denote .hˇa /�1 by h˛

ˇ
, and similarly for Oh, as well as u below.

Recall the natural cocone A W D ! Z from Definition 3.10 and suppose given a
representative f WW !Z of a factorization of the cocone A through F. For each ˛,
pick a natural isomorphism k˛ WA˛Š f ıF˛ with unique component Ok˛ . For ˇ <˛, let
u
ˇ
˛ D
Ok�1˛ f . Oh

ˇ
˛ / Okˇ , the unique component of the natural transformationAˇ!A˛ıD

ˇ
˛
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defined by .k�1˛ �D
ˇ
˛ /ı .f �h

ˇ
˛ /ıkˇ , where � denotes whiskering.2 By Lemma 3.11,

we see that each uˇ˛ is in ZY, so the same holds for the morphism u˛ˇ W !  defined
as u˛u

ˇ
˛u



ˇ
for  < ˇ < ˛. Furthermore, the same lemma guarantees that no uˇ˛ passes

through a vertex less than min.ˇ; ˛/.

For each  < ˇ < ˛, denote by w˛ˇ 2 W the unique component of the composite
natural transformation

h˛ ı .h
ˇ
˛ �D



ˇ
/ ı h



ˇ
W F ! F :

We have w˛ˇ D Oh˛ Oh
ˇ
˛
Oh


ˇ
, so

Ok�1 f .w˛ˇ / Ok D Ok
�1
 f . Oh˛ /

Ok˛ Ok
�1
˛ f . Ohˇ˛ /

Okˇ Ok
�1
ˇ f . Oh



ˇ
/ Ok D u˛ˇ :

In particular, u˛ˇ is conjugate to f .w˛ˇ /.

On the other hand, by assumption on F, w˛ˇ is conjugate to a morphism in the
image of some F� W D.�/! W, say to F� .w0˛ˇ /. Composing with f, we see that
u˛ˇ is conjugate to f .F� .w0˛ˇ //. Finally, using Ok , we see u˛ˇ is conjugate to
A� .w

0
˛ˇ

/, so, in particular, to an element of ZX . Since we saw above that u˛ˇ is
in ZY , Lemma 3.12 shows that u˛ˇ D id .

Finally, Lemma 3.13 implies that at least one uˇ˛ passes through a vertex less than ˇ,
contradicting what we saw above.

Proof of Theorem 3.1 By Proposition 3.14 and Remark 3.4, the diagram D admits
no weak colimit privileged with respect to the set G0 D fBZg. Thus, by Lemma 3.3,
B ıD admits no weak colimit in Hot which is privileged with respect to the set of
spheres.

4 The spheres reflect equivalences in the 2–category of spaces

We saw in Theorem 2.1 that in the homotopy category of spaces there is no set of
objects that jointly reflects isomorphisms. In this section, we show that in the homotopy
2–category of spaces, the spheres do jointly reflect equivalences. We first define the
terms we are using.

Definition 4.1 By Hot, we mean the 2–category whose objects are spaces of the
homotopy type of a CW–complex and whose hom categories are the fundamental
groupoids of mapping spaces; that is, Hot.X; Y /D…1.Y X /.

2For instance, f � hˇ˛ W f ıFˇ Š f ıF˛ ıD
ˇ
˛ has unique component f . Ohˇ˛ /.
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Definition 4.2 A set G of objects in a 2–category K jointly reflects equivalences if,
whenever f WX! Y is a morphism in K such that, for every S 2 G, the induced functor
K.S; f / W K.S;X/! K.S; Y / is an equivalence of categories, f itself must be an
equivalence in K.

We shall show in Theorem 4.3 that the 2–category Hot admits a set G of objects that
jointly reflects equivalences, namely G D fSn j n� 0g. Note that a map f in Hot is an
equivalence if and only if it is a homotopy equivalence. This theorem is a corollary of
[6, Theorem 1], which shows that, for a map f WX! Y of (arcwise connected) spaces
which is surjective on all fundamental groups, bijectivity of f on higher homotopy
groups is equivalent to that on free homotopy classes of maps from spheres.

With this, we are prepared to show that the spheres satisfy the analogue of Whitehead’s
theorem for Hot:

Theorem 4.3 The set G D fSng of spheres jointly reflects equivalences in the 2–
category Hot of spaces.

Proof Let f W X ! Y be such that Hot.Sn; f / W Hot.Sn; X/! Hot.Sn; Y / is an
equivalence of groupoids for every n. Consider an inclusion of � into S0Š�t�. Since
this has a retraction, the functor Hot.�; X/!Hot.�; Y / is a retract of the equivalence
Hot.S0; X/! Hot.S0; Y / and is therefore also an equivalence. That is, f induces
an equivalence …1.X/ ! …1.Y / of fundamental groupoids. Thus, f induces an
isomorphism on �0 and on every �1.

Therefore, we can apply [6, Theorem 1], so that f will be a homotopy equivalence as
soon as it induces a bijection on free homotopy classes of maps from Sn. Now, the set
of free homotopy classes of maps Sn!X is simply the set of connected components in
the groupoid Hot.Sn; X/. Since f induces an equivalence Hot.Sn; X/!Hot.Sn; Y /,
a fortiori it induces an isomorphism on connected components, and the theorem is
proven.
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Mod 2 power operations revisited

DYLAN WILSON

In this mostly expository note we take advantage of homotopical and algebraic
advances to give a modern account of power operations on the mod 2 homology of
E1–ring spectra. The main advance is a quick proof of the Adem relations utilizing
the Tate-valued Frobenius as a homotopical incarnation of the total power operation.
We also give a streamlined derivation of the action of power operations on the dual
Steenrod algebra.
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Introduction

As someone who entered college at about the time that Netflix started automatically
playing the next episode of a series, I cannot imagine discovering or verifying the
Adem relations using the tools available to Adem [1].1 I even find it hard to remember
the Adem and Nishida relations.

1It was precisely while trying and failing multiple times to prove the Adem relations in equivariant
homotopy theory that, in an act of true laziness, I stumbled upon the technique explained in this note.
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License 4.0 (CC BY). Open Access made possible by subscribing institutions via Subscribe to Open.
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2994 Dylan Wilson

Luckily, there is a useful mnemonic device which utilizes the total power operation

Q.t/ WD
X
i2Z

Qi t i :

Here t is an indeterminate, and the operation Qi W A�! A�Ci acts on the homotopy
of any E1–F2–algebra A. The total power operation then produces a map

Q.t/ W A�! A�..t//:

We extend Q.t/ to a ring map

Q.t/ W A�..s//! A�Js; tKŒs�1; t�1�

by requiring that

Q.t/.s/D sC s2t�1:

With this convention, it is possible to restate the Adem relations, following Bullett and
Macdonald [5], Steiner [16], and Bisson and Joyal [3], as:

� Adem relations For any x 2 A�, Q.t/Q.s/x is symmetric in s and t .

The usual Adem relations are recovered using a trick with residues which we will
review in Section 4.3. Steiner’s proof that the above identity holds is to reduce it to one
of the expressions met in the proof of the Adem relations as in Steenrod [15, page 119]
and May [12, 4.7(e,g,i)].

In the case of Steenrod operations acting on the cohomology of a space X , there is
a more conceptual argument due to Segal [5, Section 4]. One can use the diagonal
map to produce a version of the total power operation taking values in H�.X �B†2/.
Indeed, this is one of the earlier constructions of Steenrod operations [15, Chapter VII].
The iterated total square then takes values in H�.X �B†2 �B†2/ D H�.X/Œs; t �
but factors through the total fourth power which takes values in H�.X �B†4/. The
automorphism swapping s and t arises as an inner automorphism of †4 so the formula
for the iterated square must be symmetric in s and t .

Our primary goal is to explain how the Tate diagonal (Section 2.3) on spectra allows for
a similar argument for general power operations. The reader could probably reconstruct
the argument themselves just from the observation that the total power operation is the
effect on homotopy of the (non–F2–linear) map of spectra

A �
�! .A˝F2

A/t†2 ! At†2 :

Algebraic & Geometric Topology, Volume 23 (2023)
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In fact, we take this as a definition and develop all the basic properties of power
operations efficiently from there. We hope that this note will give a mnemonic for the
proofs of the standard identities for power operations in much the same way that the
work of Steiner [16], Bisson and Joyal [3], and Baker [2] has provided mnemonics for
their statements.

Outline

In Sections 1 and 2 we review the facts we need about the Tate construction and the Tate
diagonal, following Nikolaus and Scholze [14]. In Section 3 we give three definitions
of the operations Qi : the classical one, one due to Lurie [10, Section 2.2], and one in
terms of the Tate-valued Frobenius. We then explain how to recover the first properties
of power operations.

In Section 4 we turn to the Adem relations. The key thing to prove is that having a
†4–equivariant map A˝4 ! A produces a lift of the iterated total power operation
through the Frobenius A! At†4 . This takes a little bit of work but the reader could
come up with the argument themselves if they remember to use the universal property
of the Tate diagonal amongst natural transformations of exact, lax symmetric monoidal
functors over and over again. Indeed, this proof is an excellent illustration of the
computational utility of establishing such universal properties in the first place.

Finally, in Section 5, we show how the Bisson–Joyal and Baker formulations of the
Nishida relations arise naturally from the perspective of the Tate-valued Frobenius. We
end by explaining how to recover Steinberger’s formulas [4, Section III.2] for the action
of power operations on the dual Steenrod algebra. This last step is mostly algebraic,
and essentially due to Bisson and Joyal, but we have included it for completeness.

Acknowledgements The author is grateful to Tom Bachmann for comments on an
earlier draft, and to the referee for careful reading and helpful suggestions.

1 The Tate construction

We review the Tate construction (Section 1.1) and its universal property (Section 1.3)
as well as the important Warwick duality (Section 1.2) of Greenlees [8] which allows
an alternative computation of the Tate construction. We end (Section 1.4) by spelling
out what happens in the case G D†2.

Algebraic & Geometric Topology, Volume 23 (2023)
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1.1 Definitions

Let G be a finite group and k an E1–ring, and denote by

ModhGk WD Psh.BGIModk/

the1–category of Borel G–modules. There is a fully faithful embedding

ModhGk !ModGk

from Borel G–modules to modules over k in genuine G–spectra whose essential image
consists of the Borel complete G–modules, ie those X such that X ! F.EGC; X/ is
an equivalence. Let F be a collection of subgroups closed under subconjugacy, and
EF the G–space characterized up to homotopy by the requirement

EFH D
�
� if H 2 F ;
¿ if H … F ;

and define fEF as the cofiber of EFC ! S0. Then the F–Tate spectrum of a Borel
G–spectrum can be computed as [7, page 443]

X tF D .fEF ^F.EGC; X//G ;
where the right-hand side is computed in genuine G–spectra.

It will be more convenient for us to think of the above as a computation and not a
definition. Instead, we opt to define the Tate construction by a universal property,
following [14].

To that end, let
.ModhGk /F�ind �ModhGk

be the smallest full, stable subcategory containing all objects which are left Kan
extended from diagrams BH ! Sp for some H 2 F .

Recall [14, Section I.3] that, associated to any exact functor F W ModhG
k
! E to a

presentable stable1–category E , there is a natural transformation

F ! LFF

which is initial amongst natural transformations to exact functors which annihilate the
subcategory .ModhG

k
/F�ind. Concretely, LFF is specified by the formula [14, I.3.3]

LFF.X/D .ModhGk /F�ind=XY colimF.cofib.Y !X//:

Algebraic & Geometric Topology, Volume 23 (2023)
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Definition 1.1.1 With notation as above, we define

.�/tF D LF ..�/
hG/ WModhGk !Modk :

More generally, if G �G0, we define

.�/tF D LF ..�/
hG/ WModhG

0

k !Mod
hWG0G

k

where WG0G DNG0G=G is the Weyl group of G in G0.

Example 1.1.2 When F consists only of the trivial subgroup, we denote X tF by X tG .
This can be computed as the cofiber of the trace map XhG!XhG .

Example 1.1.3 Suppose G � †n is a subgroup and let F D T be the family of
subgroups of G which do not act transitively on f1; : : : ; ng. When G D Cn this
coincides with the more commonly seen family of proper subgroups, and when GDCp
this coincides with the family consisting of only the trivial subgroup.

1.2 Warwick duality

We can dualize the construction in the previous section and define the opposite F–Tate
spectrum2 as

X t
opF
WD holim

..ModhG
k
/F�ind/X=3Y

fib.X ! Y /hG :

Greenlees proved [8, Section B] that this construction is not really new:

Theorem 1.2.1 (Warwick duality) There is a canonical equivalence

X t
opF
'†�1X tF :

In particular, we obtain extra functoriality: if F � F 0, then the original construction
produces a canonical map .�/tF

0

! .�/tF while the opposite construction, composed
with suspension, produces a map .�/tF ! .�/tF

0

.

1.3 Monoidal structure

We will make much use of the following excellent description of the lax symmetric
monoidal structure on the Tate construction.
2We stole this name from [6].

Algebraic & Geometric Topology, Volume 23 (2023)
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Proposition 1.3.1 There is a natural transformation of lax symmetric monoidal func-
tors

.�/hG! .�/tF

which is initial amongst natural transformations of lax symmetric monoidal functors
with target an exact functor that annihilates .ModhG

k
/F�ind.

This follows from the more general result [14, I.3.6] about the relationship between
Verdier quotients and lax symmetric monoidal structures.

1.4 An example

Let k be a field of characteristic 2. Then

��k
h†2 ' H��.B†2; k/D kJtK;

where t 2 ��1kh†2 is the Stiefel–Whitney class of the canonical line bundle. The Tate
construction has the effect of inverting t and we can compute

��k
t†2 D k..t//;

the algebra of Laurent series over k.

On the other side, the homotopy orbits kh†2
have a dual basis on homotopy

��kh†2
D kfe0; e1; : : :g;

where ei is the linear dual of t i . The trace map

kh†2
! kh†2

is zero on homotopy groups and so we have a short exact sequence

0! kJtK! k..t//! ��†kh†2
! 0

which identifies the last term as the quotient k..t//=kJtK. This provides another basis
for the homotopy of kh†2

, and the two are related by the correspondence

ei $ t�i�1:

Under this interpretation, the composite map

kt†2 !†kh†2
!†k

is given by sending a Laurent series g.t/D
P
ai t

i to the residue a�1.

Algebraic & Geometric Topology, Volume 23 (2023)
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Finally, Warwick duality in this context translates to the computation [9, 16.1]

†�1kt†2 D holim
n
.†�n�k/h†2

D holim
n

k ^ .RP1/�n� D holim
n

k ^RP1�n;

where � is the sign representation.

2 Tate powers

The source of power operations is the symmetry present on X˝n. In Section 2.1 we
review several constructions based on this symmetry. In Section 2.2 we explain how
the construction X 7! .X˝n/tT arises as a Goodwillie derivative; in particular this
construction is exact. In Section 2.3, following [14], we describe the spectral analog of
the diagonal map we will use when defining power operations.

2.1 Variants of extended powers

Let C be a symmetric monoidal1–category. Then there is a natural functor

C! Ch†n D Fun.B†n; C/
given as the composite

C ı
�! .C�n/h†n ! Ch†n

where the latter map is a choice of tensor product. In other words, for every X 2 C, the
object X˝n has a †n–action.

If C admits homotopy limits and colimits, we can form both a “symmetric” power of
an object and a “divided” power of an object. We do this more generally for a fixed
subgroup G �†n.

Definition 2.1.1 We define symmetric and divided power functors as

SymG.X/ WD .X˝n/hG ; �G.X/ WD .X˝n/hG :

Finally, if C DModk is the1–category of k–modules over an E1–ring k, then:

Definition 2.1.2 Let G �†n be a subgroup. We define the Tate power of X as

TG.X/ WD .X˝n/tT

where T is the family of nontransitive subgroups of G.

In each case we abbreviate G as n if G D†n.

Algebraic & Geometric Topology, Volume 23 (2023)
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2.2 Tate powers as a Goodwillie derivative

Let C and D be stable, presentable1–categories. Then the full subcategory

Funex.C;D/� Fun.C;D/

admits a left adjoint [11, 6.1.1.10], the 1–excisive approximation

P1 W Fun.C;D/! Funex.C;D/:

In the case where F.0/D 0, we may compute P1F as [11, 6.1.1.23 and 6.1.1.27]

P1F.X/D hocolim
n

�nDF.†
n
CX/:

I believe the following is well known but do not know a reference.

Proposition 2.2.1 With notation as in Section 2.1, there is an equivalence

P1�
G
' TG :

Proof Let V denote the standard representation of †n on Rn and V the reduced
standard representation. By the formula above,

P1�
G.X/D hocolim

j
�j�G.†jX/

' hocolim�j .†jVX˝n/h†n

' hocolim.†jVX˝n/h†n

' hocolim.SjV ^F.EGC; X˝n//G

' .S1V ^F.EGC; X˝n//G :

The last identification used that genuine fixed points commute with all homotopy limits
and colimits. Finally, observe that S1V is a model for fET .

The same argument computes the Goodwillie coderivative of SymG :

Proposition 2.2.2 The Goodwillie coderivative of SymG is ..�/˝n/t
opT D†�1TG .

This last observation motivates the excellent account of stable power operations given
by Glasman and Lawson [6].

2.3 The Tate diagonal

Recall the following result of Nikolaus [13, Corollary 6.9]:

Proposition 2.3.1 The forgetful functor U WModk! Sp is initial amongst exact , lax
symmetric monoidal functors to spectra.

Algebraic & Geometric Topology, Volume 23 (2023)
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In the previous section we identified TG as a Goodwillie derivative. In particular, TG
is exact. It also has a lax symmetric monoidal structure, being a composite of lax
symmetric monoidal functors. So we get the following:

Corollary 2.3.2 There is an essentially unique natural transformation of lax symmetric
monoidal functors U ! UTG .

We refer to this map �G WM ! TG.M/ as the Tate diagonal.

Remark 2.3.3 This is not the same as the Tate diagonal in [14] unless k D S0, since
we use the tensor product in Modk . Of course there is an evident relationship between
the two: the Tate diagonal above is just the composite

M ! .M^n/tT ! .M˝n/tT :

Warning 2.3.4 The Tate diagonal is not k–linear.

3 Power operations

We now fix a field k of characteristic 2 and let Modk be the1–category of k–module
(spectra). In Section 3.1 we serve up power operations three ways, and then verify they
agree in Section 3.5. In between we verify the first properties of power operations up
to the Cartan formula. We emphasize that this section does not show off the utility of
the approach via the Tate-valued Frobenius, but we have included the proofs since they
are still pleasant.

3.1 Three definitions of operations

First we specify the objects on which power operations will act.

Definition 3.1.1 We say that A 2Modk is equipped with a symmetric multiplication
if we have specified a map Sym2.A/! A of k–modules. Equivalently, if we have
specified a map A˝2! A in Mod

h†2

k
.

Remark 3.1.2 A k–module with a symmetric multiplication is the same as an object
of C.2;1/ in the notation of [12].

To give the classical construction of power operations we’ll need a computation.

Algebraic & Geometric Topology, Volume 23 (2023)
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Lemma 3.1.3 For any integer n there is a canonical equivalence

Sym2.†nk/'†2nkh†2
:

Proof The object .†nk/˝2D†nV k in Mod
h†2

k
corresponds to a map B†2!Mod

h†2

k

which is determined by a map

†2! Endk.†
2nk/' Endk.k; k/' k

of E1–monoids. The map factors through the units k�, but k has characteristic 2
and hence no nontrivial square roots of unity. So the action is trivial and the result
follows.

The following construction is the current standard definition of power operations.

Construction 3.1.4 (hands-on power operations) Let A be a k–module equipped
with a symmetric multiplication. Given x 2 �nA and i � n, define Qi .x/ 2 �nCiA as
the composite

SnCi
†2nei�n
�����!†2nkh†2

' Sym2.†nk/ Sym2.x/
�����! Sym2.A/! A:

This has the benefit of generalizing well to power operations for other cohomology
theories, but in the case of mod 2 cohomology there is a more uniform option. The
author learned this next approach from [10, Section 2.2] and has not found an earlier
reference, but a more recent and detailed account can be found in [6].

First we need a preliminary observation. Let T 02 WModk!Modk denote the left Kan
extension of the restriction of T2 to the full subcategory of compact objects. This
endomorphism commutes with all colimits and so — see [11, 7.1.2.4] — there is a
bimodule B and an equivalence T 02.M/'B˝M . By evaluating onM D k we deduce
that B D kt†2 as a left k–module. Notice, by construction, we have a natural map
B˝M ! T2.M/.

Construction 3.1.5 (stable power operations) Let A be a k–module equipped with a
symmetric multiplication. The element t�i�1 2 �iC1kt†2 extends to a right module
map †ik!†�1B . We now define Qi W†iA! A as the (non–k–linear!) composite

†iAD†ik˝A!†�1B˝A!†�1T2.A/! Sym2.A/! A:

This construction emphasizes the role of †�1kt†2 as acting on A, but we can also
record this information in a kind of coaction. For that we first need a computation.

Algebraic & Geometric Topology, Volume 23 (2023)
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Lemma 3.1.6 For any k–module M equipped with the trivial †2–action , there is a
canonical equivalence of ��kt†2–modules

��M
t†2 'M�..t//:

Proof It suffices to prove ��M h†2 'M�JtK. From the skeletal filtration on B†2,

M h†2 ' holimF.skjB†2; k/˝M

and ��F.skjB†2; k/˝M DM�Œt �=tjC1. The transition maps are surjective so there
is no lim1 term in the Milnor exact sequence and the result follows.

Construction 3.1.7 (Tate-valued Frobenius) Let A be a k–module equipped with a
symmetric multiplication. Define the total power operation as the composite

Q.t/ W A
�2
��! T2.A/D .A

˝2/t†2 ! At†2 :

We then define Qi W A!†�iA as the composite

A! At†2
t�i�1

���!†�i�1At†2 !†�iAh†2
!†�iA:

In Section 3.5 we will verify that the two definitions of the endomorphismQi W†iA!A

coincide and that each induce the operation Qi W �nA! �nCiA on homotopy. For now
we will assume this compatibility.

Remark 3.1.8 (naturality of Frobenius) The Tate-valued Frobenius can be defined
for any spectrum equipped with a symmetric multiplication, as the composite

A! .A^A/t†2 ! At†2 :

Since the k–module Tate diagonal factors through the spectrum Tate diagonal, we learn
that the Tate-valued Frobenius only depends on the underlying E1–ring. In particular,
the Tate-valued Frobenius is natural for maps A! B of E1–rings, independent of
any compatibility with k–module structures.

3.2 First properties

The first properties follow easily from the Tate-valued Frobenius description, with the
exception of the squaring property, which is most readily seen through the classical
definition.

Proposition 3.2.1 The operations Qi satisfy the following properties:

(i) Additivity Qi .xCy/DQi .x/CQi .y/.
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(ii) Suspension �Qi .x/DQi .�x/.

(iii) Squaring Qjxj.x/D x2.

(iv) Instability Qi .x/D 0 if i < jxj.

(v) Action on cohomology If A D F.X; k/, where X is a pointed space , then
Qi .x/D 0 for i > 0 and Q0.x/D x.

Proof (i) Additivity Since Qi is induced by a map of spectra, it is automatically
additive.

(ii) Suspension The Tate diagonal is a natural transformation of exact functors, so
�2;�A'��2. Exactness of T2 then ensures that�T2.A/!T2.�A/ is an equivalence,
and composing with the multiplication on �A identifies �Q.t/ with the total power
operation for �A, which was to be shown.

(iii) Squaring Using Construction 3.1.4, observe that Qjxj.x/ is the image of the
bottom class in Sym2.†nk/, which is the left vertical arrow in the diagram

†nk˝†nk

��

x˝x
// M ˝M

��

Sym2.†nk/ // Sym2.M/

The result follows by chasing the diagram clockwise.

(iv) Instability By (ii) we may replace A by �jxj�iA and thereby reduce to the case
that AD�B and i D jxj. By (iii), Qix D x2, but the multiplication on �B is always
trivial, since S1! S1 ^S1 is null.

(v) Action on cohomology By naturality we may replace X withK.k; n/ and x with
the fundamental class. The vanishing now follows for degree reasons. To check that
Q0.x/D x we may reduce, by naturality, to the case X D Sn and then, by stability, to
X D S0. The result now follows from the equivalence F.S0; k/D k.

3.3 Cartan formula

IfA andA0 are equipped with symmetric multiplications thenA˝A0 inherits a canonical
symmetric multiplication as well. In this case we have an external Cartan formula:

Proposition 3.3.1 (Cartan formula)

Q.t/.x˝y/DQ.t/.x/˝Q.t/.y/ 2 .A˝A0/..t//:

Algebraic & Geometric Topology, Volume 23 (2023)
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Proof The formula is equivalent to commutativity of the square

A˝A0 // T2.A/˝T2.A
0/ //

��

At†2 ˝ .A0/t†2

��

A˝A0 // T2.A˝A
0/ // .A˝A0/t†2

The left square commutes because the Tate diagonal is a transformation of lax symmetric
monoidal functors. The right-hand square commutes by naturality of the lax structure
map

.�/t†2 ˝ .�/t†2 ! .�˝�/t†2

applied to .A˝A0/˝2 ' A˝2˝A
0˝2! A˝A0.

Corollary 3.3.2 Qn.x˝y/D
X

iCjDn

Qi .x/˝Qj .y/.

As a corollary of the proof, we see:

Corollary 3.3.3 If A˝A! A is a map of objects equipped with symmetric multi-
plications , then Q.t/ W A! At†2 is also a map of objects equipped with symmetric
multiplications.

3.4 An example

We revisit our example kt†2 , but to avoid confusion we change the name of the
generator: kt†2

� D k..s//. From the equivalence kh†2 D F.B†2C; k/ together with
properties (iii), (iv), and (v), we see that

Q.t/.s/D sC s2t�1:

The Cartan formula now determines the behavior of Q.t/ in general:

Q.t/
X
i

ais
i
D

X
i

ai .sC s
2t�1/i :

3.5 Comparing the definitions

Let B denote the bimodule from Construction 3.1.5, which is equivalent to kt†2 as a
left k–module. Let k! B extend 1 2 �0kt†2 as a right module map.

Lemma 3.5.1 The composite

A! B˝A! T2.A/

above is equivalent to the Tate diagonal �2.

Algebraic & Geometric Topology, Volume 23 (2023)
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Proof Indeed, first observe that by the universal property of spectra [11, 1.4.2.23],

�1 W Funex.Modk; Sp/
'
�! Funlex.Modk; Spaces/:

Now let U WModk! Sp be the forgetful functor. Then �1U is corepresented by k,
so the Yoneda lemma applied to the previous observation implies that

MapFunex.Modk ;Sp/
.U; UT2/'�

1kt†2 :

Since the Tate diagonal is a transformation of lax symmetric monoidal functors, the
transformation U ! UT2 evaluates on k to the unit k! kt†2 . Combining this with
the previous observation we learn that the Tate diagonal is the unique transformation
U ! UT which corresponds to the element 1 2 �0kt†2 .

Thus the map
A! B˝A! T2.A/! At†2

coincides with the Tate-valued Frobenius. Now observe that the last three terms are left
modules over kt†2 , so multiplication by t�i�1 and naturality of .�/t†2 !†.�/h†2

gives a commutative diagram

A //

$$

B˝A //

��

T2.A/ //

��

At†2

��

†�i�1B˝A // †�i�1T2.A/ //

��

†�i�1At†2

��

†�iSym2.A/ // †�iA

Chasing the diagram around clockwise gives the definition of Qi in terms of the total
power operation. Chasing the diagram around counterclockwise gives the definition of
Qi in terms of Construction 3.1.5. So these two constructions agree.

Now we compare with the classical construction. The equivalence .†nk/˝2 '†2nk
in Mod

h†2

k
gives a commutative diagram

†�1T2.†
nk/ //

'

��

Sym2.†nk/

'

��

†2n�1kt†2 // †2nkh†2
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Since the bottom horizontal map is surjective on homotopy, so is the top, and we see that
†2nei�n on the lower right corresponds to t�i�1y on the top left, where y 2 �n†nk
is the generator. Now let x W Sn! A be a class and form the diagram

S iCn
t�i�1y

//

t�i�1x ((

†�1T2.†
nk/ // Sym2.†nk/

��

†�1T2.A/ // Sym2.A/

Traversing clockwise gives Qi .x/ as in Construction 3.1.4 and traversing counterclock-
wise gives the image of x under Qi as in Construction 3.1.5, and this completes the
argument.

4 Adem relations

The Adem relations arise from relating the iterated total power operation to a total fourth
power operation. In Section 4.1 we first explain how to lift the iterated total power
operation to an intermediate Tate spectrum. In Section 4.2 we show that the existence
of extra symmetry on iterated multiplication allows us to factor further through a total
fourth power operation. This implies a version of the Adem relations as an identity
between formal Laurent series in two variables, and in Section 4.3 we essentially
perform the maneuver from [5] to recover the usual Adem relations.

For notational ease we adopt the following convention in this section:

Convention 4.0.1 If G �†n is a subgroup, and T denotes the family of nontransitive
subgroups of G, then we denote .�/tT by .�/�G .

4.1 Iterated power operations

Suppose A is a k–module equipped with a symmetric multiplication. Iterating the
multiplication gives a map

A˝4! A

which need not admit an †4–equivariant structure. However, it can be made †2 o†2–
equivariant, so we may define a map

A! T†2o†2
.A/! A�†2o†2 :

Our first goal is to show that this lifts the iterated total power operation.
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Proposition 4.1.1 Let A be a k–module equipped with a symmetric multiplication.
Then there is a canonical commutative diagram

A�†2o†2

��

A
Q.t/ıQ.s/

//

77

.At†2/t†2

Proof First consider the diagram

T2.A/ //

��

T2.T2.A// //

��

..A˝4/t†2/t†2

��

At†2 // T2.A
t†2/ // .At†2/t†2

The first square commutes by naturality of the Tate diagonal applied to the map
T2.A/! A. The second square commutes by naturality of the lax structure map for
.�/t†2 .

It follows that Q.t/ ıQ.s/ can be written as the composite

A! T2.T2.A//! ..A˝4/t†2/t†2 ! .At†2/t†2 :

Now consider both .�/�†2o†2 and ..�/t†2/t†2 as exact functors Mod
h†4

k
! Modk .

We have a natural transformation

.�/h†2o†2 ! .�/h†2�†2 D ..�/h†2/h†2 ! ..�/t†2/t†2 ;

where the first map is induced by the inclusion

†2 �†2! .†2 �†2/Ì†2 D†2 o†2

given by the diagonal on the first factor. By the universal property of the Tate con-
struction (Section 1.1), we get a natural transformation .�/�†2o†2 ! ..�/t†2/t†2 . In
particular, applied to the multiplication map A˝4!A, we get a commutative diagram

T†2o†2
.A/ //

��

A�†2o†2

��

..A˝4/t†2/t†2 // .At†2/t†2

Finally, the composite

�†2o†2 ! �†2�†2 ' �2 ı�2! T2 ıT2

Algebraic & Geometric Topology, Volume 23 (2023)



Mod 2 power operations revisited 3009

yields a natural transformation T†2o†2
!T2ıT2 from the universal property of T†2o†2

as the Goodwillie derivative of �†2o†2 . The diagram

T†2o†2

�� ''

T2 ıT2 // ...�/˝4/t†2/t†2

commutes by the same universal property, and the result follows.

4.2 Adem objects

For the Adem relations to hold we need the symmetric multiplication to satisfy an extra
condition.

Definition 4.2.1 We say that a k–module A equipped with a symmetric multiplication
is an Adem object if there exists a map Sym4.A/! A such that the diagram

Sym2.Sym2.A//

��

// Sym2.A/

��

Sym4.A/ // A

commutes up to homotopy.

Proposition 4.2.2 If A is an Adem object , then we have a commutative diagram

A�†4

��

A�†2o†2

��

A
Q.t/ıQ.s/

//

77

>>

.At†2/t†2

Proof By Proposition 4.1.1, the bottom triangle commutes. Factor the top triangle as

T4.A/ //

��

A�†4

��

A //

;;

T†2o†2
.A/ // A�†2o†2
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The triangle commutes because each arrow is a transformation of exact, lax symmetric
monoidal functors, and U WModk! Sp is initial amongst such functors (Proposition
2.3.1). The square commutes by the definition of an Adem object, ie the structure of a
†4–equivariant map A˝4! A refining the given .†2 o†2/–equivariant structure.

Theorem 4.2.3 (Adem relations) If A is an Adem object and x 2 ��A is an element ,
then Q.t/.Q.s/x/ is symmetric in the variables s and t . Explicitly,X

i;j

.QiQjx/.sC s2t�1/j t i D
X
i;j

.QiQjx/.t C t2s�1/j si :

Proof By Proposition 4.2.2, the iterated total power operation factors through A�†4

and the operation which swaps s and t arises from an inner automorphism of †4 which
thus acts trivially on the Tate construction, whence the claim. The explicit formula
follows from the basic properties of power operations, the Cartan formula, and the
computation in Section 3.4.

4.3 Residues and relations

Now we recall how to recover the individual Adem relations using the power series
identity above.

Proposition 4.3.1 Let A be an Adem object and x 2 A� a homotopy class. Then

QiQj .x/D
X
`

�`�j�1
2`�i

�
QiCj�`Q`.x/:

Proof In the previous section we showedX
j

Q.t/.Qjx/.sC s2t�1/j D
X
k;j

.QkQjx/.t C t2s�1/j sk :

Let uD sC s2t�1 and observe that this is composition invertible as a power series in
s with coefficients in k..t//. Now,

Q.t/.Qjx/D
X
i

.QiQjx/t i

is the coefficient of uj on the left-hand side, so we would like to compute the coefficient
of uj on the right-hand side. It will be convenient to reindex the right-hand side, for
fixed j , as X

i;`

.QiCj�`Q`x/.t C t2s�1/`siCj�`:
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Observe that duD ds since 2D 0 in k, and hence

res.u�j�1.QiCj�`Q`x/.t C t2s�1/`siCj�`du/

D res.u�j�1.QiCj�`Q`x/.t C t2s�1/`siCj�`ds/:

Fixing i and ` and writing uD st�1.t C s/ and .t C t2s�1/D s�1t .t C s/, we have

u�j�1.t C t2s�1/`siCj�` D t`CjC1si�2`�1.t C s/`�j�1:

The coefficient of s�1 in the previous expression is then�`�j�1
2`�i

�
t i

and the result follows.

5 Relationship to the Steenrod algebra

In this section we restrict to the case k D F2 for ease of exposition. In Section 5.1 we
recall the Steenrod coaction on the Tate spectrum, then in Section 5.2 we use this to
give a succinct proof of the Nishida relations. Finally, in Section 5.3 we show how
this determines the action of Q.t/ on the dual Steenrod algebra, following an idea of
Bisson and Joyal.

5.1 Coaction on the Tate spectrum

The map k D S0 ^ k! k ^ k gives rise to a map kt†2 ! .k ^ k/t†2 if we equip the
source and target with trivial †2–action.

This induces a completed coaction

 R W k..t//!A�..t//:

More generally, for any spectrum X , the composite

k ^X 'X ^ k D S0 ^X ^ k! k ^X ^ k

gives a completed coaction  R WH�.X/..t//! .H�.X/˝A�/..t//. Now recall that
Milnor defined generators3 of the dual Steenrod algebra by the identity

 R.t/D
X

�i t
2i

:

3We are following Milnor’s convention and not the more recent trend of using �i to denote the conjugates
of Milnor’s generators.
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5.2 Nishida relations

The easier version of the Nishida relations in this context is in terms of the coaction.

Theorem 5.2.1 (Bisson–Joyal, Baker) Let X be a spectrum equipped with an equi-
variant symmetric multiplication X^2

h†2
!X . ThenX

i

 R.Q
ix/t i DQ. N�.t// R.x/ 2 .H�X ˝A�/..t//:

Proof The right coaction k ^X ! .k ^X/˝k .k ^ k/ is a map of spectra equipped
with symmetric multiplications (though it is not a map of k–modules equipped with
symmetric multiplications). By Remark 3.1.8 this yields a commutative diagram

k ^X
 R

//

��

.k ^X/˝k .k ^ k/

��

.k ^X/t†2

. R/
t†2

// ..k ^X/˝k .k ^ k//
t†2

The bottom map is the completed coaction defined in the previous subsection. Thus,

 R.Q.t/x/DQ.t/. R.x//:

Since  R is a ring map, and  R.t/D �.t/, this becomesX
 R.Q

ix/�.t/i DQ.t/. R.x//:

Now substitute the conjugate series N�.t/ for t and use the relation �. N�.t//D t .

5.3 Action on the dual Steenrod algebra

The following description of the action of the Qi on A� is essentially that of Bisson
and Joyal [3, Section 1, Proposition 6].

Theorem 5.3.1 (Bisson–Joyal) The total power operation on the Milnor generators
�i is determined implicitly by the identity

�.s/C �.s/2�.t/�1 D
X
i

.Q.t/�i /.s
2i

C s2
iC1

t�2
i

/;(1)

t2
n

Q.t/�n D

� X
i�nC1

�i t
2i

�
C �.t/�1

�X
i�n

�2i t
2iC1

�
:(2)
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Proof Write ��kh†2 D kJsK. Then

 R.Q.t/s/DQ.t/ R.s/:

Now use the identities Q.t/s D sC s2t�1 and  R.s/D �.s/. Comparing coefficients
for s2

n

gives a recursion for Q.t/�n starting with Q.t/�0 DQ.t/1D 1 and (2) solves
the recursion.

It is not difficult to extract the earlier results of Steinberger [4, Section III.2].

Corollary 5.3.2 (Steinberger) For i � 2, Q2
i�2�1 D N�i .

Proof From Theorem 5.3.1(2) above in the case nD 1,

Q.t/�1 D t
�1
C �1C �.t/

�1:

So, for i � 2, change of variables and a quick computation gives

Q2
i�2�1 D res.t�2

iC1�.t/�1dt/D res. N�.u/�2
iC1u�1du/D N�i :

Corollary 5.3.3 (Steinberger) We have Q2
i

�i D �iC1C �
2
i �1 and Q2

i N�i D N�iC1.

Proof The case i D 0 is evident, so assume i � 1. The coefficient of t0s2
iC1

on the
right-hand side of Theorem 5.3.1(1) is visibly Q2

i

�i CQ
0.�i /DQ

2i

�i . The constant
term of �.t/�1 is �1, so the coefficient of t0s2

iC1

on the left-hand side is �iC1C �2i �1.
The other identity follows from this one by induction and the defining relation for
conjugation.
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The Devinatz–Hopkins theorem via algebraic geometry

ROK GREGORIC

We show how a continuous action of the Morava stabilizer group Gn on the Lubin–
Tate spectrum En, satisfying the conclusion E

hGn
n ' LK.n/S of the Devinatz–

Hopkins theorem, may be obtained by monodromy on the stack of oriented de-
formations of formal groups in the context of formal spectral algebraic geometry.

14A30, 14D15, 55P43, 55T15

A classical and computationally invaluable result in chromatic homotopy theory, the
Morava change-of-rings theorem — see for instance Devinatz [5] — identifies the second
page of the K.n/–local Adams spectral sequence for the Lubin–Tate spectrum En as
continuous group cohomology,

E
s;t
2
' Hs

cont.GnI�t .En//) �t�s.LK.n/S/:

A conceptual spectrum-level explanation for this isomorphism is given by the Devinatz–
Hopkins theorem [6]. It asserts the existence of a (suitably interpreted) continuous
action of the Morava stabilizer group Gn on the Lubin–Tate spectrum En, such that its
continuous homotopy fixed points are

(1) EhGn
n 'LK.n/S:

The proof of the equivalence (1) has by now become largely standard, using nilpotence
technology applied to the K.n/–local Amitsur complex of En, and ultimately stemming
from the key observation of Hopkins and others that the Adams spectral sequence of
En possesses a horizontal vanishing line. The somewhat less straightforward part is
instead identifying said Amitsur complex with the simplicial bar resolution of a suitably
interpreted continuous action of Gn on En. That was accomplished in a somewhat
ad hoc manner in [6], and in various contexts of continuous group actions of spectra
such as Behrens and Davis [2] and Quick [21]; though these approaches ostensibly
amount to enriching the construction from [6]. A formalization using the condensed
set technology of [23] to tackle continuity has also been announced by Clausen and
Scholze.
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License 4.0 (CC BY). Open Access made possible by subscribing institutions via Subscribe to Open.
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In contrast, we propose to side-step the issue of continuous actions altogether. Instead,
we exhibit the action in an appropriate context of formal spectral algebraic geometry.
Our results may be summarized as follows.

Theorem The Morava stabilizer group Gn admits a canonical action on the formal
spectral stack Spf.En/. For continuous homotopy fixed points of this action defined as
E

hGn
n WDO.Spf.En/=Gn/, there is a canonical equivalence E

hGn
n 'LK.n/S . Further-

more , the three resulting spectral sequences coincide:

(1) The descent spectral sequence for the structure sheaf on Spf.En/=Gn,

E
s;t
2
D Hs.Spf.En/=GnI�t .O//) �t�s.LK.n/S/:

(2) The homotopy fixed point spectral sequence for the Gn–action on En,

E
s;t
2
D Hs.BGnI�t .En//) �t�s.LK.n/S/:

(3) The K.n/–local Adams spectral sequence for En,

E
s;t
2
D Exts;t

��.LK.n/.En˝En//
.��.En/; ��.En//) �t�s.LK.n/S/:

Our approach is based on a theorem of Lurie [17, Theorem 5.1.5], identifying Spf.En/

with the moduli stack of oriented deformation of a height n formal group. We show
that the Morava stabilizer group action arises as an instance of monodromy actions on
de Rham spaces. To establish the above version of the Devinatz–Hopkins theorem in
our setting, we employ similar arguments to the analogous considerations in classical
formal algebraic geometry from Goerss [8, Chapter 7].

The computational underpinning of the proof (somewhat obscured in our account) is
the fundamental observation from [6] that the K.n/–local Adams spectral sequence
for En possesses a horizontal vanishing line. Ours is in that sense analogous to all
of the currently known approaches to the Devinatz–Hopkins theorem, including, to
the best of the author’s understanding, the forthcoming work of Clausen and Scholze.
The latter construct the continuous (or in their setting, more precisely, condensed)
Morava stabilizer group action similarly to us, in that they employ results1 from [17].

1Though unlike our account, where the algebrogeometric aspect of the results in [17] are center-stage, the
approach of Clausen and Scholze only relies on the more flexible functoriality of Lubin–Tate theory (in
particular, that its base can be taken to be an arbitrary perfect Fp–algebra as base, as opposed to only a
perfect field) afforded by Lurie’s construction, as compared to the traditional one by Goerss, Hopkins and
Miller.
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In particular, we wish to make it clear that the majority of our proof of the Devinatz–
Hopkins theorem follows the same reasoning and insights as the original account
in [6].

In general, many of the results in this paper follow without much difficulty from the
existing literature. We nonetheless believe that a streamlined conceptual proof of the
Devinatz–Hopkins theorem, which this paper provides, is worthwhile. Other than in the
presentation, our primary contribution is a novel way to obtain the Morava stabilizer
group action by way of formal spectral algebraic geometry, building on Lurie’s work in
[15; 17]. Related applications of those results to topics in chromatic homotopy theory,
primarily concerning Gross–Hopkins duality, are considered by Devalapurkar [4].
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1 Background on formal spectral algebraic geometry

We begin by summarizing some notions and results from [15; 17] which are key for
the purpose of this note.

1.1 Adic E1–rings and formal SAG

From the functor of points perspective, formal spectral algebraic geometry, in the form
relevant to us and in [17] (but slightly differently from [15, Definition 8.1.1.5], where a
connectivity assumption is imposed throughout), concerns functors CAlgad

cpl! S.

Here CAlgad
cpl denotes the1–category of complete adic E1–rings in the sense of [17,

Definition 0.0.11]. That is, an object of CAlgad
cpl consists of an E1–ring A, together with

a topology on �0.A/ which admits a finitely generated ideal of definition I � �0.A/,
such that the topology on �0.A/ is equivalent to the I–adic topology, and finally such
that the E1–ring A is I–complete, in the sense of [14, Definition 7.2.3.22].
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Since the notion of completeness for E1–rings and modules over them features promi-
nently in this note, let us recall (an equivalent rephrasing of) the definition:

Definition 1.1 [15, Proposition 7.3.2.1, Corollary 7.3.3.3] Let A be an adic E1–ring
with an ideal of definition I � �0.A/. Then an A–module M is I–complete if for
every element a 2 I , the canonical map

M ! lim
 ��

n

M=an

is an equivalence of A–modules, where M=anDcofib.M an

�!M /. Let Modcplt
A
�ModA

denote the full subcategory spanned by I–complete A–modules. The adic E1–ring A

is complete if it is I–complete as a module over itself.

Given a complete adic E1–ring A in the sense discussed above, we define its formal
spectrum to be the corepresentable functor Spf.A/ W CAlgad

cpl! S given by

B 7!Mapcont
CAlg.A;B/ WDMapCAlg.A;B/�HomCAlg~ .�0.A/;�0.B// Homcont

CAlg~
.A;B/:

Of course, this (Yoneda) embedding .CAlgad
cpl/

op! Fun.CAlgad
cpl;S/ is fully faithful,

and its codomain is a convenient place to do formal spectral algebraic geometry.

1.2 Formal groups over E1–rings

As an instance of that motto, the theory of formal groups over E1–rings is developed
in [17, Chapter 1]. We give a slightly informal account, and refer to [loc. cit.] for a
precise and detailed account.

Definition 1.2 A formal group over an E1–ring A is an abelian group object in the
1–category of 1–dimensional fiber-smooth formal spectral A–schemes.

Remark 1.3 There are a number of caveats concerning the above definition:

(1) The notion of an abelian group object must be understood in the sense of Section 1.2
of [16]. That is to say, we must equip its Yoneda presheaf with a factorization through
the functor �1 WModcn

Z ! S, or equivalently, the forgetful functor T opAb! S. This
is a strictified version of the more familiar notion of a grouplike E1–algebra objects,
since the Yoneda presheaf is in the latter case asked to factor through �1 W Spcn! S,
or equivalently, the forgetful functor CMongp.S/! S.

(2) The requirement of fiber-smoothness on a formal A–scheme X is taken in the
sense of [15, Definition 11.2.3.1], and roughly amounts to asking for X to be étale-

Algebraic & Geometric Topology, Volume 23 (2023)



The Devinatz–Hopkins theorem via algebraic geometry 3019

locally isomorphic to the formal affine space yAn
A
D Spf.AŒŒt1; : : : ; tn��/ (since we are

working in the 1–dimensional case in Definition 1.2, it suffices to take n D 1). In
particular, this implies that X is a flat over A. This differs from the notion of differential
smoothness in the sense of [15, Definition 11.2.2.2], which imposes conditions on the
cotangent complex LX=A, but is incompatible with flatness unless A is a Q–algebra.
Since we want ordinary formal groups over commutative rings to be special cases
of Definition 1.2, and they are indeed flat, we therefore have no choice but to use
fiber-smoothness instead of differential smoothness.

(3) Definition 1.2 is really correct as stated when the E1–ring A is connective. For a
nonconnective E1–ring A, we should instead define formal groups over A to be formal
groups in the above sense over the connective cover ��0.A/— see [17, Variant 1.6.2].
However, certain constructions associated to a formal group yG , for instance the E1–
algebra of functions O yG of [17, Notation 1.5.12] and Remark 1.6, depend on whether
we are considering it as existing over A or over ��0.A/. See the thorough treatment in
[17, Section 1.2] for precise details.

Example 1.4 The following are the only classes of formal groups that we will be
concerned with in this note:

� Over a commutative ring A, viewed as a discrete E1–ring, Definition 1.2
reproduces the usual meaning of (as always, 1–dimensional smooth) formal
groups over A.

� Let A be a complex periodic E1–ring, ie complex orientable and �2.A/ is a
locally free �0.A/ module of rank 1. Then the Quillen formal group of A is

yG Q
A
WD Spf.C �.CP1IA//;

which indeed gives rise to a formal group over A by [17, Section 4.1.3].

Formal groups over A form an1–category MFG.A/, and this construction is functorial
in A by base change:

Definition 1.5 Let f WA! B be a map of E1–rings, and yG a formal group over A.
The pullback of formal spectral schemes along Spec.f / W Spec.B/! Spec.A/ gives
rise to a formal group over B, which we denote by f � yG .

There is also another slightly different form of functoriality afforded to formal groups.
Sending

yG 7! yG 0
WD Spf.�0.O yG //
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gives rise to a functor MFG.A/!MFG.�0.A//. Informally, this sends a spectral
formal group to its underlying ordinary formal group.

Remark 1.6 When the E1–ring A is connective, the preceding construction is a
special case of Definition 1.5. Indeed, in that case there exists a map of E1–rings
t W A! �0.A/, and yG 0 ' t� yG . For a nonconnective E1–ring A on the other hand,
the connection between A and �0.A/ is only through the span A ��0.A/! �0.A/,
and so yG 7! yG 0 is not merely an instance of base change. This is closely related to
the subtleties alluded to in item (3) of Remark 1.3.

1.3 Orientations and deformations of formal groups

The class of formal groups singled out by the following definition is of special impor-
tance in relation to chromatic homotopy theory. Here an E1–ring A is called complex
periodic [15, Definition 4.1.8] if it is both complex orientable and weakly 2–periodic.

Definition 1.7 [17, Proposition 4.3.23] A formal group yG over an E1–ring A is
oriented if and only if A is complex periodic and yG ' yG Q

A
is its Quillen formal group.

We denote by Mor
FG.A/�MFG.A/ the subspace of oriented formal groups over A.

Remark 1.8 Though the above form is the most practical for our purposes, we would
be remiss not to summarize an equivalent but better-motivated approach to defining
oriented formal groups [17, Definition 4.3.9]. To any formal group yG over an E1–ring
A we may by [17, Sections 5.2.1–5.2.3] associate an A–module ! yG , its dualizing line,
and the analogue of the module of invariant differentials on a classical formal group.
An orientation of yG then amounts to an A–linear equivalence ! yG '†

�2.A/. This is
in spirit a 2–shifted analogue of the various notions of orientation in classical geometric
contexts, where it usually means some kind of trivialization of a bundle of volume
forms.

The space of deformations of yG0 over A is defined as

Def yG0
.A/ WD lim

��!
I

HomCAlg~.�; �0.A/=I/�MFG.�0.A/=I /MFG.A/;

with the colimit ranging over all the ideals of definition I � �0.A/. Informally, this
consists of a ring homomorphism f W �! �0.A/=I , a formal group yG over the E1–
ring A, and an isomorphism f � yG0 ' q� yG 0 of formal groups over �0.A/=I , where
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q W �0.A/! �0.A/=I is the quotient projection. Oriented deformations are defined
analogously as

Def yG0
.A/ WD lim

��!
I

HomCAlg~.�; �0.A/=I/�MFG.�0.A/=I /M
or
FG.A/:

Both of these construction respect pullback along maps of adic E1–rings, and as such
give rise to functors Def yG0

;Def or
yG0

W CAlgad
cpl! S.

The following theorem of Lurie, a cousin of the Goerss–Hopkins–Miller theorem, may
be taken as the definition of Lubin–Tate spectra, and is the bedrock of this note.

Theorem 1.9 [17, Theorem 5.1.5, Remark 6.0.7] Let yG0 be a formal group of finite
height over a perfect field � of characteristic p > 0. Let E.�; yG / be the Lubin–Tate
spectrum of yG0, viewed as an adic E1–ring with respect to the nth Landweber ideal
In � �0.E.�; yG0//. There is a natural equivalence

Spf.E.�; yG0//' Def or
yG0

in the1–category Fun.CAlgad
cpl;S/.

Remark 1.10 Lurie formulates his result (which also works over more general perfect
base rings than a field) in terms of deformations of p–divisible groups instead of formal
groups. This has the advantage of being more general, applying for instance also to
étale p–divisible groups, and is crucial in the follow-up paper [18] on Hopkins–Kuhn–
Ravenel character theory and transchromatic ambidexterity. Alas, for our purposes,
since all the p–divisible groups in sight would be connected, the analogue of Tate’s
theorem in [17, Section 2.3], allows us to restrict to formal groups instead. Ultimately
however, this is nothing more than an aesthetic preference, and this note could well
have been written with the functor MBT everywhere in place of MFG.

2 Morava stabilizer group action and fixed points

2.1 Complete Noetherian local E1–rings

For the remainder of this note, � will be a perfect field of characteristic p > 0. We
find it convenient to restrict to a smaller subcategory of CAlgad

cpl, consisting roughly of
complete Noetherian local E1–rings with residue field �.

Definition 2.1 Let CAlgcN
=�
� CAlgad

cpl denote the subcategory spanned by complete
adic E1–rings A for which the commutative ring �0.A/ is a local Noetherian ring
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with maximal ideal m, topologized with respect to the m–adic topology, and such that
there exists an abstract (ie nonspecified) isomorphism �0.A/=m' �.

Remark 2.2 The notation CAlgcN
=�

is potentially misleading. Indeed, unlike what
it may seem to indicate, said 1–category is not equivalent to a subcategory of the
overcategory CAlg=� . That would hold if we restricted to connective object, but we
cannot do so, since our primary interest rests with the nonconnective complex periodic
E1–rings.

Remark 2.3 Similarly to the preceding remark, the connective objects in CAlgcN
=�

are
not the Noetherian E1–rings in the sense of [14, Definition 7.2.4.30]. We could not
have used that notion of Noetherianness in the above definition, since it again only
applies to connective E1–rings. It would be possible to imitate such a definition, by also
imposing finiteness assumptions on the homotopy groups �i.A/ in Definition 2.1 for
i ¤ 0. But since we can make do without, we choose to only impose the (unavoidable)
�0–level assumption. That is to say, the notion of a complete Noetherian local E1–ring
from Definition 2.1 is only guaranteed to be adequate for the purposes of this paper.
For most other purposes in spectral algebraic geometry where a Noetherian assumption
might be desirable, stronger finiteness assumptions would probably need to be imposed.

From here on, we will consider the 1–category Fun.CAlgcN
=�
;S/ as the setting for

formal spectral algebraic geometry. In particular, we will implicitly restrict the domain
of the functor Spf.A/ to the subcategory CAlgcN

=�
� CAlgad

cpl for any adic E1–ring A.

Remark 2.4 The restriction functor Fun.CAlgad
cpl;S/ ! Fun.CAlgcN

=�
;S/, induced

from the subcategory inclusion CAlgcN
=�
� CAlgad

cpl, preserves both limits and colimits.
The Yoneda embedding .CAlgad

cpl/
op! Fun.CAlgad

cpl;S/ also preserves limits, and the
coproduct in the1–category CAlgad

cpl is given by the completed smash product of [14,
Corollary 7.3.5.2]. It follows that we have for any pair of complete adic E1–rings A

and B a canonical equivalence

Spf.A/�Spf.B/' Spf.A y̋ B/

in Fun.CAlgcN
=�
;S/. That is to say, restriction to complete Noetherian local E1–rings

does not change the products of affine formal spectral schemes.

The functors of the ring of functions O W Fun.CAlgcN
=�
;S/op ! CAlgad

cpl and the 1–
category of quasicoherent sheaves QCoh W Fun.CAlgcN

=�
;S/op! Cat1 are defined by
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right Kan extension from the subcategory of affines CAlgcN
=�
,! Fun.CAlgcN

=�
;S/op (ie

representable functors) on which they are defined as

O.Spf.A// WDA; QCoh.Spf.A// WDModcpl
A
:

For a detailed treatment of such an approach to quasicoherent sheaves (in a slightly
different but closely related setting), see [15, Section 6.2.2].

Remark 2.5 Because we are not equipping CAlgcN
=�

with a Grothendieck topology,
questions of descent are beyond our reach. Fortunately, as explained for QCoh in [15,
Proposition 6.2.3.1] (in only a slightly different setting), both O and QCoh are agnostic
regarding sheafification, making their definition unambiguous.

Remark 2.6 In defining the functors O and QCoh by Kan extension, we are being
slightly imprecise regarding set-theoretical considerations. The issue is that the category
CAlgcN

=�
is not small. This may be circumvented by the usual trick of universe enlarge-

ment, at the cost of eg the1–category QCoh.X / being not necessarily small. For a
precise treatment along those lines in a closely related setting, see [15, Section 6.2]. On
the other hand, all functors which we will ultimately be interested in will all be given
in explicit ways as small colimits of representables. In principle, we could in each
individual such case redefine the functors O and QCoh by indexing them on appropriate
small indexing categories, and verify post factum that the choice didn’t matter. With this
understanding, we will ignore questions of smallness, and set-theoretical technicalities
alike, from now on.

Noting that we may have equivalently replaced the1–category Cat1 with PrL in the
definition of quasicoherent sheaves (with the caveat of Remark 2.6 in mind), we see
that any map of functors f WX ! Y induces adjoint functors

f � W QCoh.Y /� QCoh.X / Wf�;

the familiar pullback and pushforward functoriality. In particular, we call pushforward
along the terminal map p WX !� global sections and denote �.X IF/ WD p�.F/ for
any F2QCoh.X /. For the structure sheaf FDOX , global sections �.X IOX /'O.X /
recover the ring of functions.

Remark 2.7 The pushforward functor f� W QCoh.X /! QCoh.Y / is not necessarily
very well behaved without some additional assumptions on the morphism f WX ! Y

(such as being quasicompact and separated); eg the Beck–Chevalley push–pull formula
for base change, and the projection formula may both fail in general. In particular, this
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“functor-of-points” pushforward it might in that case not coincide with a “ringed space”
pushforward, if such exists. See also [15, Warning 6.3.4.2].

Remark 2.8 It follows from the definition of global sections that there is a chain of
homotopy equivalences

�.X IF/'MapSp.S;p�.F//'MapQCoh.X /.p
�.S/;F/'MapQCoh.X /.OX ;F/:

As consequence, we cannot expect the global sections functor F 7!�.X IF/ to preserve
filtered colimits unless the structure sheaf OX is a compact object of the1–category
QCoh.X /. Since �.X I �/ D p� is a pushforward along the terminal map, this ties
into the more general ill-behavedness of the pushforward discussed in Remark 2.7.
Fortunately, such issues will not arise in the (rather simplistic) applications we discuss
in this paper.

2.2 A short digression on monodromy

In the proof of Proposition 2.12 in the next subsection, we will need a certain result,
which becomes particularly simple and natural when viewed in a slightly more general
context than strictly necessary for our purposes.

Recall that monodromy is classically understood to be the action of the fundamental
group �1.X;x/ of a base space X on the fiber Lx of a local systems L on X , acting
through parallel transport around loops. The following is a simple incarnation of that
idea in the setting of an1–topos, but with the notion of a “point” being understood in
the generalized sense of algebraic geometry.

Lemma 2.9 Let x W P !X be a morphism in an1–topos X .

(i) The “based loop space” �x.X / WD P �X P admits a canonical group structure
in the overtopos X=P , exhibiting it as an object �x.X / 2 Grp.X=P /. There is a
canonical equivalence of simplicial objects

B��x.X /
.P;P /' LC�.P x

�!X /

between its bar construction in X=P and the Čech nerve of x in X .

(ii) For any object Y 2X =X , we define its “fiber over x” through the pullback square

(2)

x�.Y / //

��

Y

��

P
x
// X
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in X . This “fiber” x�.Y / 2 X =P admits a canonical �x.X /–action , whose bar
constriction in X =P is equivalent to the Čech nerve in X ,

B��x.X /
.P;x�.Y //' LC�.x�.Y /! Y /:

Proof Recall from [12, Section 6.1.2; 14, Proposition 2.4.2.5] that group objects and
group actions (or their common generalization, groupoid objects) in an1–topos are
completely and equivalently encoded by their bar constructions. Thus it is necessary
and sufficient to verify that the Čech complexes in question are of the appropriate forms
for a group object and group action respectively.

For (i), we rewrite the Čech complex of the morphism x as

LC�.x/' P �X � � � �X P„ ƒ‚ …
�C1

' .P �X P /�P � � � �P .P �X P /„ ƒ‚ …
�

'�x.X /�P � � � �P �x.X /„ ƒ‚ …
�

:

It follows clearly that it satisfies the Segal condition and exhibits �x.X / 2 Grp.X=P /.

For (ii), observe that we may compare the two Čech nerves in sight via (degreewise)
pullback of simplicial objects. Combining that with point (i), we get equivalences of
simplicial objects

LC�.x�.Y /! Y /' LC�.P !X /�X Y

' B��x.X /
.P;P /�X Y

' B��x.X /
.P;P �X Y /

' B��x.X /
.P;x�.Y //;

exhibiting the desired �x.X /–action on the fiber x�.Y /.

Remark 2.10 In the setting of Lemma 2.9, passage to geometric realizations from
(i) gives an equivalence B�x.X / ' X^x between the classifying space for �x.X /

(in the overtopos X=P ) and the so-called nilpotent completion of X at x, defined
as X^x D j

LC�.x/j. This is a not necessarily affine variant of the notion of nilpotent
completion of ring spectra, first introduced by Bousfield [3, Theorem 6.5]. When
x W P ! X is an effective epimorphism, we have X^x ' X . Then Lemma 2.9(ii)
shows that Y ' x�.Y /=�x.X /, generalizing the classical fact that a local system on a
connected base space is completely determined by its monodromy representation.

Remark 2.11 Let us take for X the presheaf1–topos Fun.CAlg;S/, the usual setting
for “functor of points” nonconnective spectral algebraic geometry (once again ignoring
questions of descent). An E1–ring A gives rise to the terminal map of nonconnective
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affines xA W Spec.A/ ! Spec.S/, which we may view as an A–point of Spec.S/.
It follows from Lemma 2.9(i) that the loop space �xA

.Spec.S// admits a group
structure over Spec.A/. That amounts to an appropriately interpreted (see [24] for a
thorough discussion of appropriate coalgebras in this setting) Hopf algebroid structure
on O.�xA

.Spec.S//'A˝A over A. Upon passage to homotopy groups, this recovers
the usual “generalized dual Steenrod algebra” Hopf algebroid

.��.A/; ��.A˝A//D .A�;A�A/:

Similarly, given any E1–ring A, the �xA
.Spec.S//–action on the fiber x�

A
.Spec.X //

described in Lemma 2.9(ii), gives rise on homotopy groups to the usual “generalized
Steenrod comodule” structure on ��.A˝X /DA�.X /. This hints at the relationship
between the monodromy construction of Lemma 2.9 and generalized Adams spectral
sequences, which we partly elucidate in Section 3.2, and in Remark 3.4 in a bit more
detail in the case of the Adams–Novikov spectral sequence.

2.3 Morava stabilizer group action on oriented deformations

Fix a formal group yG0 of finite height over � D Fp and let G.�; yG0/ be its (big, ie
extended) Morava stabilizer group, viewed as an algebraic group, and hence a functor
CAlgcN

=�
! S, as explained in [8, Remark 5.29] and reviewed in Remark 2.17.

Proposition 2.12 There exists a canonical action of the Morava stabilizer group
G.�; yG0/ on the oriented deformations Def or

yG0

in Fun.CAlgcN
=�
;S/, whose two-sided

bar construction is equivalent as a simplicial object in Fun.CAlgcN
=�
;S/,

LC�.Def or
yG0

!�/' B�
G.�; yG0/

.�;Def or
yG0

/;

to the Čech nerve of (the terminal map of ) Def or
yG0

.

Before embarking on the proof, let us outline its logical structure. We successively
reduce the statement to simpler ones, until we end up with an explicit verification.
The first reduction, from the oriented statement of Proposition 2.12 to a nonoriented
version, Lemma 2.13, is completely formal. The proof of Lemma 2.13 is where we
use the monodromy ideas from the previous subsection. Using them, or more precisely
Lemma 2.9, we are reduced to identifying the naturally occurring automorphism group
with the Morava stabilizer group. That is something of a classical observation, eg [13,
Lectrure 19] or [8, Theorem 7.18], and is the content of Lemma 2.16. Its proof, after
reducing from the 1–categorical to a classical 1–categorical setting, is an explicit
point-set-level comparison.
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Proof of Proposition 2.12 By the definition of oriented deformations,

(3) Def or
yG0

' Def yG0
�MFG Mor

FG:

The factor Mor
FG in this fibered product may be replaced with f yG Q

A
g when A is complex

oriented, and with ∅ when A is not. It follows from this observation that

LC�.Def or
yG0

!�/' LC�.Def yG0
!MFG/�MFG Mor

FG

as the base change of simplicial objects. Consequently, pulling back the equivalence of
simplicial objects from the next Lemma 2.13 along the inclusion Mor

FG!MFG gives
rise to a G.�; yG0/–action on Def or

yG0

with the desired bar construction.

Lemma 2.13 There exists a canonical action of the Morava stabilizer group G.�; yG0/

on the unoriented deformations Def yG0
in Fun.CAlgcN

=�
;S/, whose two-sided bar con-

struction is equivalent as a simplicial object in Fun.CAlgcN
=�
;S/,

LC�.Def yG0
!MFG/' B�

G.�; yG0/
.�;Def yG0

/;

to the Čech nerve of the map Def or
yG0

!MFG.

Proof Unlike oriented deformations, unoriented deformations of formal groups are as
a functor determined (as Kan extension) by its restriction to connective E1–rings by
[17, Proof of Theorem 3.4.1]. Therefore, let us implicitly restrict all functors to the
full subcategory .CAlgcN

=�
/cn � CAlgcN

=�
spanned by connective E1–rings for the rest

of this proof.

There, we have by [17, Proof of Proposition 3.4.3] a natural identification

Def yG0
' .Spec.�/=MFG/dR

with the relative de Rham space of the morphism Spec.�/!MFG classifying yG0.
Recall from [15, Definition 18.2.1.1] that the relative de Rham space of a map of
functors X ! Y is defined as the pullback

(4) .X=Y /dR 'XdR �YdR Y;

where the absolute de Rham space of a functor X is given by2 XdR.A/DX.�0.A/=m/.

2Restricting to the subcategory CAlgcN
=�
�CAlgad

cpl helps substantially here, as no colimiting over nilpotent

ideals of definition is necessary.
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Observe that we have at this point found ourselves in the setting of Lemma 2.9, with
the pullback square

Def yG0

//

��

MFG

��

Spec.�/dR // .MFG/dR

playing the role of (2). More precisely, we have

� an ambient1–topos Fun..CAlgcN
=�
/cn;S/,

� a “point” Spec.�/dR! .MFG/dR,

� an object MFG over the “base space” .MFG/dR,

� and its “fiber” Spec.�/dR �.MFG/dR MFG ' Def yG0
.

Lemma 2.9(i) thus exhibits the “based loop space”, which is the de Rham space
Aut. yG0/dR of

Spec.�/�MFG Spec.�/'� yG0
.MFG/' Aut. yG0/;

the automorphism group of the formal group yG0, as a group object in the overcategory
Fun..CAlgcN

=�
/cn;S/=Spec.�/dR . Thus Lemma 2.9(ii) equips the “fiber” Def yG0

with the
“monodromy” Aut. yG0/–action over Spec.�/dR, whose bar construction is

B�
Aut. yG0/dR

.Spec.�/dR;Def yG0
/' LC�.Def yG0

!MFG/:

In light of Lemma 2.16, this Aut. yG0/dR–action on the deformation (pre)stack Def yG0
in

the overcategory Fun..CAlgcN
=�
/cn;S/=Spec.�/dR is equivalent to a G.�; yG0/–action on it

in Fun..CAlgcN
=�
/cn;S/, exhibited on the level of bar constructions (see Remark 2.14)

by the equivalence

(5) B�
Aut. yG0/dR

.Spec.�/dR;Def yG0
/' B�

G.�; yG0/
.�;Def yG0

/:

Remark 2.14 We must clarify that the two bar constructions appearing on each side
of the equivalence (5) are formed in different1–categories. That is to say, the products
comprising the simplices on the left-hand side are all taken over Spec.�/dR, while on
the right-hand side, the products are absolute, ie taken over the terminal object �.

Remark 2.15 The de Rham space Spec.�/dR that we encountered above in the proof
of Lemma 2.13 is equivalent to the affine formal scheme Spf.W C.�//, where W C.�/

the E1–ring of spherical Witt vectors over �, as defined in [17, Example 5.2.7]. Indeed,
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in [17, Proof of Theorem 5.2.5] the spherical Witt vectors are defined to corepresent as
an affine formal scheme the relative de Rham space .Spec.�/=Spec.S//dR. But since
clearly Spec.S/ ' Spec.S/dR, it follows that .Spec.�/=Spec.S//dR ' Spec.�/dR, as
claimed. More concretely, the universal property of the spherical Witt vectors may be
written as

Mapcont
CAlg.W

C.�/;A/' lim
��!
I

HomCAlg~.�; �0.A/=I/

for any adic E1–ring A, and with the colimit ranging over all of the finitely generated
ideals of definition in �0.A/. Another characterization of it is that W C.�/ is a flat
p–complete E1–ring and �0.W

C.�//DW .�/ recovers the usual ring of (p–typical)
Witt vectors.

Lemma 2.16 There is a canonical equivalence Aut. yG0/dR'G.�; yG0/�Spf.W C.�//
of group objects in Fun..CAlgcN

=�
/cn;S/=Spf.W C.�//.

Proof By unwinding the definitions, we find for any connective A 2 CAlgcN
=�

that

Aut. yG0/dR.A/' Spec.�/.�0.A//=m/�MFG.�0.A/=m/ Spec.�/.�0.A/=m/

consists of a pair of maps f1; f2 W�!�0.A/=m and an isomorphism ' Wf �
1
yG0!f �

2
yG

of formal groups over �0.A/=m. In particular, it is a discrete space — indeed, this
follows from the fact that the ordinary moduli stack of formal groups,

MFGjCAlg~ W CAlg~! S;

is actually a 1–stack, ie a groupoid-valued functor CAlg~! ��1.S/ ,! S. Since the
functor Aut. yG0/dR amounts, as observed above, to passing to internal automorphisms
of this stack, and the essential image of the based loops functor � W ��1.S�/ ! S
belongs to the full subcategory of discrete spaces Set ' ��0.S/ ,! S, it is a set-
valued functor itself. In conclusion, the functor Aut. yG0/dR W .CAlgcN

=�
/cn! S factors

through Set ,! S in the target, and through �0 W .CAlgcN
=�
/cn ! .CAlgcN

=�
/~ in the

source. The same holds for G.�; yG0/ � Spec.�/dR by definition of the de Rham
space. Hence to prove the lemma, it suffices to exhibit an isomorphism between the
two functors Aut. yG0/dR and G.�; yG0/� Spec.�/dR as group objects in the ordinary
category Fun..CAlgcN

=�
/~;Set/=Spec.�/dR .

Let us therefore construct a natural transformation Aut. yG0/dR!G.�; yG0/�Spec.�/dR

as functors .CAlgcN
=�
/~! Set over Spf.W C.�// ' Spec.�/dR. Fix a complete Noe-

therian local commutative ring A with residue field �. Recall from the above discussion
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that elements of Aut. yG0/dR.A/ consist of triples .f1; f2; '/ as above, and the base
map Aut. yG0/dR.A/! Spec.�/dR.A/ is given by .f1; f2; '/ 7! f1. Thus fixing the
element f1 2 Spec.�/dR.A/ (since we wish to work over Spf.W C.�//' Spec.�/dR),
we obtain an element

.g;  / 2 Gal.�=Fp/ËAutFGrp.�/. yG0/DG.�; yG0/

as follows. Thanks to the hypothesis that A=m' �, the field map f1 may be abstractly
identified with a field endomorphism of � D Fp . Any such endomorphism must fix the
prime subfield Fp , and since the inclusion Fp � Fp is algebraic, this implies that it is
actually an automorphism. It follows that f1 W �!A=m is a field isomorphism, so we
can set g WD f �1

1
ıf2. We obtain the formal group isomorphism over � as

 W yG0
'
�! .f �1

1 /�f �2
yG0 ' g� yG0:

Sending .f1; f2; '/ 7! ..g; '/; f1/ gives the desired map of sets

Aut. yG0/dR.A/!G.�; yG0/�Spec.�/dR.A/:

It is clear from the description that this procedure is bijective, compatible with the
group structure, functorial in A, and compatible with the maps to Spec.�/dR; hence it
gives rise to an equivalence of functors as claimed.

Remark 2.17 The matter of viewing G.�; yG0/ as a profinite group scheme here comes
from the classical observation that topology coincides with the usual Zariski topology
on automorphisms. Indeed, as we noted in the proof, all the functors involved in
Lemma 2.16 factor through the functor �0 WCAlg!CAlg~, and are as such a matter of
classical algebraic geometry. In that context, see [8, Theorem 7.18], or [13, Lecture 19].

On the other hand, let us explain where the profinite structure on G.�; yG0/ is coming
from from the algebrogeometric perspective. Let us view the fixed formal group as a
functor yG0 W .CAlgArt

=�
/~! Set from Artinian local rings with residue field �; ie infini-

tesimal extensions of the point Spec.�/. Consider the subcategory Nil�n
=�
� .CAlgArt

=�
/~

of local Artinian rings with mnC1 D 0. Restriction and Kan extension back along this
inclusion produces a functor yG�n

0
W .CAlgArt

=�
/~! Set, which we may view as the nth

infinitesimal neighborhood; Goerss calls this the n–bud of the formal group yG0, see in
particular [8, Remark 3.24]. Since every ideal in an Artinian local ring is nilpotent, the
tower

Nil�0
=�
� Nil�1

=�
� Nil�2

=�
� Nil�3

=�
� � � � � .CAlgArt

=� /
~

Algebraic & Geometric Topology, Volume 23 (2023)



The Devinatz–Hopkins theorem via algebraic geometry 3031

is exhaustive and the canonical map lim
��!
yG�n

0
! yG0 is an equivalence. Furthermore,

any morphism of formal groups yG ! yG 0 induces a family of maps yG�n! yG 0�n for
all n� 0, which induces an isomorphism

G.�; yG0/D Aut. yG0/' lim
 ��

Aut. yG�n
0
/:

Each factor in this filtered limit is finite, recovering the usual profinite structure on the
Morava stabilizer group. In particular, this implies that the product

G.�; yG0/�Def or
yG0

' Spf
�
C �cont.G.�; yG0/IE.�; yG0//

�
is the formal spectrum of an incarnation of continuous E.�; yG0/–valued cochains on
the profinite group G.�; yG0/.

Remark 2.18 Let us indicate an alternative approach to proving Proposition 2.12.
Instead of using the identification (3), we can rather observe that we have for any
A 2 CAlgcN

=�
a natural equivalence

Def or
yG0

.A/' Def yG0
.�0.A//�MFG.�0.A//M

or
FG.A/:

In light of that, it suffices to establish an appropriate G.�; yG0/–action on unoriented
deformations, when all functors in sight are postcomposed with the functor A 7!�0.A/.
That involves only classical (ie nonspectral) algebraic geometry, and as such avoids
coherence issues. Therefore the desired bar construction claim follows inductively
from finding an appropriately equivariant equivalence

(6) Def yG0
�MFG Def yG0

'G.�; yG0/�Def yG0
;

with both sides restricted to the subcategory .CAlgcN
=�
/~ � CAlgcN

=�
of discrete objects.

Since any complete Noetherian local ring may be written as a filtered limit of Artinian
ones, and we are working in the “continuous” category, it further suffices to prove the
result upon the further restriction to local Artinian rings; see [8, Remark 7.3]. For that,
we can reference [8, Theorem 7.18].

There is one final small hitch: Goerss’s analogue of (6) takes the fiber product over a
moduli functor yH.n/D .MDn

FG =M
�n
FG /dR instead of over MFG. But since the forgetful

functor Def yG0
!MFG naturally factors through the substack inclusion yH.n/ ,!MFG,

this turns out not to effect the result. See [10, Section 3.5] for further discussion.
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2.4 The Devinatz–Hopkins theorem

As before, fix �DFp and let yG0 be of height n, (which specifies it up to isomorphism).
We denote by En and Gn the associated Lubin–Tate spectrum and Morava stabilizer
group, respectively. Proposition 2.12 equips Def or

yG0

'Spf.En/ with an action3 of Gn on
Def or

yG0

' Spf.En/ in the1–topos Fun.CAlgcN
=�
/. Let Spf.En/=Gn denote the quotient

of this action in this1–topos. We view its ring of functions

EhGn
n WDO.Spf.En/=Gn/

as the continuous homotopy fixed points of the corresponding action of Gn on the Lubin–
Tate spectrum En. See Remark 3.5 for some further justification of this terminology.

Theorem 2.19 (Devinatz–Hopkins) With continuous homotopy fixed points de-
fined as above , the initial map LK.n/S ! En in LK.n/ Sp induces an equivalence
E

hGn
n 'LK.n/S .

Proof By definition of the ring of functions, we have O.Spf.En//'En. Similarly,
for products we have O.Spf.En/

��/'E
y̋ �
n , where y̋ denotes the completed smash

product of [14, Corollary 7.3.5.2], ie the coproduct in the 1–category CAlgad
cpl of

complete adic E1–rings — see Remark 2.4. Therefore Proposition 2.12 implies that

EhGn
n 'O.Spf.En/

�.�C1//' Tot.E y̋ .�C1/
n /:

It follows from [17, Corollary 4.5.4] that completion in the1–category of En–modules
coincides with K.n/–localization, and so E

y̋ �
n 'LK.n/.E

˝�
n /. Thus it suffices to show

that LK.n/S !En induces an equivalence

(7) Tot.LK.n/.E
˝.�C1/
n //'LK.n/S:

That is a standard result, stemming from the nilpotence of LK.n/S in the1–category
LK.n/ ModEn

, and ultimately, the horizontal vanishing line in the K.n/–local Adams
spectral sequence for En; see for instance [6, Proposition AI.3]. But for completeness,
we sketch an argument anyway, following the account in [19].

The smashing product theorem of Hopkins and Ravenel [22, Theorem 7.5.6] asserts that
the Bousfield localization functor Ln WDLEn

is smashing, which, by Proposition 8.2.4

3Of course this is just the action of Gn on Spf.En/ induced by the identification of the Morava stabilizer
group as Gn ' Aut.En/ ' Aut.Spf.En//, as observed in [17, Remark 5.0.8]. But from our way of
obtaining it, its bar construction is more transparent.
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of [22], is equivalent to LnS being En–nilpotent. That is further equivalent, by
standard nilpotence technology, eg [13, Lectures 30 and 31], to the cosimplicial object
.E
˝.�C1/
n /, whose totalization is LnS , being pro-constant. Applying the functor LK.n/

to this cosimplicial object then gives the desired equivalence.

Remark 2.20 An explicit analysis of how the horizontal vanishing line in the K.n/–
local Adams spectral sequence for En gives rise to the equivalence (7) is given in [6,
Section 4 and Appendix I]. The argument that we gave, following [19], while phrased
slightly differently, is merely a repackaging of the same fundamental idea — indeed,
the proof of the Hopkins–Ravenel smashing product theorem is based on the existence
of a uniform vanishing line; see [20, Section 3.4] for a sketch and relationship to the
“standard nilpotence technology” referred to in the proof above.

Remark 2.21 The equivalence of Theorem 2.19 is a purely function-level state-
ment. Indeed, the quotient Spf.En/=Gn is not equivalent to the affine formal scheme
Spf.LK.n/S/. The value of Spf.En/=Gn on any noncomplex-periodic K.n/–local E1–
ring is the empty set, while the value of Spf.LK.n/S/ is contractible for all K.n/–local
E1–rings.

Despite the preceding remark, we may view quasicoherent sheaves on the quotient
Spf.En/=Gn, which are by definition a derived version of Morava modules, as a natural
incarnation in spectral formal algebraic geometry of the K.n/–local stable category.

Corollary 2.22 There is a canonical equivalence of symmetric monoidal1–categories

QCoh.Spf.En/=Gn/'LK.n/ Sp:

Proof It follows from the proof of Theorem 2.19 that

QCoh.Spf.En/=Gn/' Tot.Modcpl

E
y̋ .�C1/
n

/' Tot.LK.n/ Mod
LK.n/.E

˝.�C1/
n /

/;

which is equivalent to the K.n/–local stable1–category in [19, Proposition 10.10].

2.5 Analogue over a general base

At the cost of replacing the Morava stabilizer group with the more involved algebroge-
ometric group G WD Aut. yG0/dR, the contents of this section still hold after dropping
the assumption that � D Fp.
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Proposition 2.23 Let yG0 be a formal group of finite height over a perfect field
� of positive characteristic. Then there exists a canonical G–action on Def or

yG0

in
Fun.CAlgcN

=�
;S/=Spec.W C.�//, whose two-sided bar construction in said1–category is

equivalent as a simplicial object in the1–category Fun.CAlgcN
=�
;S/,

LC�.Def or
yG0

!�/' B�G
�
Spf.W C.�//;Def or

yG0

�
;

to the Čech nerve of (the terminal map of ) Def or
yG0

.

Proof The only step of the proof of Proposition 2.12 that employs the assumption
� D Fp is in the proof of Lemma 2.16. The rest of the argument, including the proof
of Lemma 2.13, goes through for any perfect field � of positive characteristic, giving
the stated result.

Proposition 2.23 equips Spf.E.�; yG // with a G–action, though this time we need to be
working in the relative setting over Spf.W C.�//. This may be viewed as an incarnation
of a G–action on the Lubin–Tate spectrum E.�; yG0/ in the1–category CAlgad

=W C.�/
.

Just as before, we obtain a workable definition of continuous homotopy fixed points by
setting

E.�; yG0/
hG
WDO

�
Spf.E.�; yG0//=G

�
;

and the analogue of the Devinatz–Hopkins theorem holds as follows.

Proposition 2.24 Let yG0 be a formal group of height n<1 over a perfect field � of
positive characteristic. With notation as above , the initial map LK.n/S !E.�; yG0/ in
LK.n/ Sp induces an equivalence of spectra E.�; yG0/

hG 'LK.n/S:

Proof The proof of Theorem 2.19 works just as well in this setting, provided we use
[11, Proposition 5.2.6] for the nilpotence claim.

Remark 2.25 As explained in [11, Notation 2.1.10], every Lubin–Tate spectrum
E.�; yG0/ gives rise to a Morava K–theory K.�; yG0/. It might seem like we should
have used the localization functor LK.�; yG0/ in Proposition 2.24, but alas this does
not matter, since even though the spectra K.�; yG0/ do depend on the base field and
formal group used to define them, the induced localization functor does not. By [11,
Remark 2.1.14], the Bousfield localization functor L

K.�; yG0/
'LK.n/ only depends on

the characteristic of the field � and the height n of the formal group yG0.

In particular, we obtain by the same proof as Corollary 2.22 a “derived Morava module”
presentation of the K.n/–local stable category for every height n formal group yG0 over
a perfect field � of positive characteristic.
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Corollary 2.26 Keeping all the notation from Proposition 2.24, there is a canonical
equivalence of symmetric monoidal1–categories ,

QCoh
�
Spf.E.�; yG0/=G/

�
'LK.n/ Sp:

3 Spectral sequences

The goal of this section is to prove a version of the Morava change-of-rings theorem,
identifying the K.n/–local Adams spectral sequence for En with the continuous fixed-
point spectral sequence for the Gn–action on En. The Devinatz–Hopkins Theorem 2.19
already guarantees that they converge to (filtrations on) the homotopy groups on the
same spectrum, but the actual comparison of the spectral sequences (and interpretation
of the second one) will take a little more work.

3.1 The descent spectral sequence

Unlike the fundamentally nonconnective Spf.En/ and its intimidating-looking quotient
Spf.En/=Gn, the classifying (pre)stack BGn D �=Gn is quite well behaved. In par-
ticular, it (or better, its sheafification; but since the difference between them does not
matter for quasicoherent sheaves or functions, we will freely switch between them) is
representable by a formal spectral stack which, while not quite Deligne–Mumford, is
nonetheless quite manageable.

For instance, QCoh.BGn/ admits an accessible t–structure by the (formal geometry
analogue of) [15, Proposition 6.2.5.8]. Similarly, the descent spectral sequence, a piece
of technology familiar from the theory of topological modular forms, applies to BGn.
The following proof is essentially a repetition of the one in [7, Chapter 5, Section 3],
but since the setting is slightly different, we have opted to spell it out.

Lemma 3.1 Let X W .CAlgcN
=�
/cn! S be a formal spectral fpqc stack4 that admits a

flat cover U !X , such that all the (nontrivial ) fiber products U �X � � ��X U are affine
formal spectral schemes. For any quasicoherent sheaf F on X , there exists a canonical
Adams-graded spectral sequence

E
s;t
2
D Hs.X I�t .F//) �t�s.�.X IF//;

called the descent spectral sequence.

4Here we are following [15], in that the absence of the adjective “nonconnective” automatically implies
connectivity.
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Proof Let U !X be a flat cover by an affine formal spectral scheme as postulated
in the statement of the lemma. It gives rise to a Čech nerve LC�.U ! X / and hence
a cosimplicial spectrum �. LC�.U !X /IFj LC �.U!X /

/ with totalization �.X IF/. We
claim that the Bousfield–Kan spectral sequence of this cosimplicial spectrum, see for
instance [14, Remark 1.2.4.4], is the desired spectral sequence.

It converges (albeit only conditionally) to the homotopy groups of the totalization of the
cosimplicial spectrum by (an opposite variant of) [14, Proposition 1.2.2.14]. Hence it re-
mains to show that the E2 page is of the desired form. If C � WFun.�;Ab/!Ch.Ab/�0

denotes the cochain complex associated to a cosimplicial abelian group5, then the second
page of the Bousfield–Kan spectral sequence of a cosimplicial spectrum M � may be
expressed as cochain complex cohomology,

E
s;t
2
D Hs.C �.�t .M

�///:

To apply this to the cosimplicial object in question, we must therefore determine the
homotopy groups

�t�. LC�.U !X /IFj LC �.U!X /
/' �t�.U �X � � � �X U If �.F//;

where f WU �X � � ��X U!X is the canonical map. Since U!X is flat by assumption,
the same holds for f , and so f � ı�t ' �t ıf

�— see [14, Proposition 7.2.2.13] for
the affine case, from which it follows for an arbitrary flat morphism by the yoga of [15,
Section 6.2.5]. Secondly, the fiber product U �X � � ��X U is affine by hypothesis, from
which it follows that its global sections functor is t–exact. Putting all that together, we
find that

�t�.U �X � � � �X U If �.F//' �
�
U �X � � � �X U If �.�t .F//

�
;

and so the E2 page of the spectral sequence in question is just the standard Čech coho-
mology procedure for computing the sth sheaf cohomology group of the quasicoherent
sheaf �t .F/ on X .

Remark 3.2 Though the approach using a cover that we sketched above will be the
most convenient for us in what follows, the descent spectral sequence does not depend
on that choice from the second page onwards. It may alternatively even be obtained
in an invariant way: the assumptions on the stack X ensure that QCoh.X / admits a
well-behaved t–structure. Then the spectral sequence associated to the filtered object

5This is the functor that participates in one direction of the Dold–Kan correspondence; see [14, Defini-
tion 1.2.3.8] for the opposite version.
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N.Z / 3 n 7! �.���n.X /IF/ 2 Sp by [14, Definition 1.2.2.9] again gives rise to the
descent spectral sequence after an appropriate reindexing; see [9, Construction 1.5.7]
for details.

3.2 The Adams spectral sequence

We wish to apply the descent spectral sequence on the quotient stack BGn, for which we
need a quasicoherent sheaf on it. Consider the map q W Spf.En/=Gn! BGn, induced
on quotients by the terminal projection p W Spf.En/ ! �. Using the pushforward
functionality of quasicoherent sheaves, we define the desired sheaf as

En WD q�.OSpf.En/=Gn
/ 2 QCoh.BGn/:

As we will need it in the subsequent proposition, let us identify the fiber of this
quasicoherent sheaf at the point i W �! �=Gn ' BGn. By invoking base change along
the pullback square

Spf.En/
p

//

��

�

i
��

Spf.En/=Gn
q
// BGn

we find this fiber to be

i�.En/' i�q�.OSpf.En/=Gn
/' p�.OSpf.En//'En:

Proposition 3.3 The descent spectral sequence for the quasicoherent sheaf En on
BGn is isomorphic to

E
s;t
2
D Exts;t

��.LK.n/.En˝En//
.��.En/; ��.En//) ��.LK.n/S/;

the K.n/–local Adams spectral sequence for En.

Proof Observe that both spectral sequences in question may be obtained as Bousfield–
Kan spectral sequences of certain cosimplicial spectra. Thus it suffices to exhibit an
equivalence between those.

For the descent spectral sequence, we choose the flat cover i W � ! BGn; indeed, this
is a cover by the usual yoga of classifying stacks, and it is flat thanks to the Morava
stabilizer group Gn being pro-étale and as such flat. Then the Čech nerve of i is
given by LC�.� ! BGn/' G��n ; and coincides with the bar construction of Gn. Let
p� WG��n !� denote the terminal map. Then it follows from the computation preceding
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the statement of the proposition that Fj LC�.�!BGn/
' p�

�
.En/; and so the cosimplicial

spectrum that gives rise to the relevant descent spectral sequence is �.G��Ip�
�
.En//;

with the cosimplicial structure inherited from the bar construction of Gn.

For the Adams spectral sequence, let us apply the functor O to the equivalence of
simplicial objects of Proposition 2.12. We obtain an equivalence of cosimplicial spectra

LK.n/.E
˝.�C1/
n /'O.G�n �Spf.En//:

The left-hand side (for recognizing which, we have made use of a calculation from the
proof of Theorem 2.19), gives rise to the K.n/–local Adams spectral sequence for En.
To tackle the left-hand side, consider the Cartesian diagram

G��n �Spf.En/
pr2
//

pr1

��

Spf.En/

p

��

G��n

p�
// �

Using base change along it, we have a series of equivalences

O.G��n �Spf.En//' �.G
��
n �Spf.En/IOG��n �Spf.En//

' �.G��n I .pr1/�pr�2.OSpf.En///

' �.G��n Ip
�
�
p�.OSpf.En///

' �.G��n Ip
�
�
.En//;

and because the cosimplicial structure comes at each step from the bar construction
on Gn, this is an equivalence of cosimplicial spectra. Since we already saw that the
thus-obtained cosimplicial spectrum gives rise to the descent spectral sequence for
BGn, we are done.

Remark 3.4 By working in a nonformal setting, we may argue similarly to the above
in order to obtain the Adams–Novikov spectral sequence as a special case of a descent
spectral sequence — this is also explained in [15, Remark 9.3.1.9]. Indeed, consider
the E1–ring MP, the periodic complex bordism spectrum. As we saw in Remark 2.11,
it gives rise to a “based loop space” �xMP.Spec.S// in nonconnective spectral stacks
over Spec.MP/. Let X denotes the classifying (pre)stack of this nonconnective spectral
group scheme. Its underlying ordinary stack is given by

X~ ' Spec.�0.MP//=Spec.�0.MP˝MP//'M~FG;
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which is identified with the ordinary stack of formal groups by a celebrated theorem of
Quillen. On the other hand, its (derived) E1–ring of functions is given by

O.X /' Tot.MP˝.�C1//D S^MP ' S;

which is by definition the MP–nilpotent completion of the sphere spectrum of [3], as
already discussed in Remark 2.10. This nilpotent completion is well-known to agree
with the sphere spectrum itself. Since the smash product MP˝MP is a flat MP–module
(see [17, Theorem 5.3.13]), a variant of Lemma 3.1 applies to the cover Spec.MP/!X .
The resulting descent spectral sequence converges to ��.S/, while by an argument
analogous to our proof of Proposition 3.3, its second page is

E
s;t
2
D Hs.M~FGI�t .OX //' Exts;t

��.MP˝MP/.��.MP/; ��.MP//;

viewable either as sheaf cohomology on the underlying ordinary stack, or as the Adams–
Novikov spectral sequence. See [9] (where the content of this remark is expanded upon
in [9, Section 2.6]) for a further development of these ideas.

3.3 Homotopy fixed-point spectral sequence

Let us say a few words about the interpretation of Proposition 3.3. We may view
QCoh.BGn/ as a version of continuous discrete representations of the Morava stabilizer
group over the sphere spectrum. From that perspective, the underlying spectrum of a
quasicoherent sheaf F on BGn is given by the fiber i�.F/DM (keeping the notation
i W � ! BGn from the previous subsection), and the sheaf structure on F witnesses the
Gn–action on M . The (continuous) fixed points of this action are incarnated as global
sections M hGn WD �.BGnIF/, and continuous group cohomology is given in terms of
sheaf cohomology as

Hi
cont.GnIM / WD Hi.BGnIF/' ��i.M

hGn/:

Under these identifications, the descent spectral sequence for BGn corresponds to the
fixed-point spectral sequence for Gn,

E
s;t
2
D Hs

cont.GnI�t .En//) �t�s.E
hGn
n /:

Remark 3.5 In line with the preceding discussion, the sheaf En on BGn encodes
a continuous Gn–action on the Lubin–Tate spectrum En. Its continuous homotopy
fixed-points, in the above sense, are given by

EhGn
n ' �.BGnIEn/' p�q�.OSpf.En/=Gn

/' �.Spf.En/=GnIOSpf.En/=Gn
/:
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That agrees with (and perhaps justifies) our definition in Section 2.4, and its use in the
Devinatz–Hopkins Theorem 2.19 in particular.

Remark 3.6 There exist a number of precise incarnations of the 1–category of
continuous Gn–spectra in the literature, eg of [2] or [21]. In each, the construction from
[6] is enhanced (relying heavily on Devinatz and Hopkins’s detailed study of finite
subgroup actions) to produce a version of En in the respective category. Instead, we
claim that QCoh.BGn/ should be viewed as an incarnation of continuous Gn–spectra,
sufficient for our purposes, but not intended to supplant the more sophisticated theories
mentioned above (a careful comparison with which we decline to carry out).

Remark 3.7 In spite of the preceding remark, let us observe that our model at least
gives rise to spectra with a Gn–action in the sense of [1, Definition 2.2], referred to there
as “a simple sense of continuity”. Indeed, in light of Remark 2.17, a Gn–action on M

in our sense gives rise to an augmented cosimplicial diagram M !C �cont.G
�.�C1/
n IM /.

In fact, our approach to continuous Gn–actions is, via the bar resolution BGn ' jG��n j,
essentially equivalent to the one of [1]. Their restriction to the K.n/–local setting is
mirrored in our setup by working in the setting of formal algebraic geometry, ie inside
the1–category Fun.CAlgcN

=�
;S/ instead of say Fun.CAlg;S/.

Remark 3.8 With M as in the previous remark, we find by unwinding the proof
of Proposition 3.3 that the descent spectral sequence for the corresponding sheaf on
BGn is obtained as the Bousfield–Kan spectral sequence of the cosimplicial object
C �cont.G

��
n IM /. That is also one traditional approach to defining the homotopy fixed-

point spectral sequence (for a compact Lie group, say), somewhat justifying our
identification of the two.

With all the notation in place, the following is a formal consequence of Proposition 3.3.

Corollary 3.9 (Morava’s change-of-rings isomorphism) The second page of the
K.n/–local Adams spectral sequence of the Lubin–Tate spectrum En may be expressed
as continuous group cohomology E

s;t
2
D Hs

cont.GnI�t .En//:

Remark 3.10 One difference between our approach and [6] is that they make use of
a form of Morava’s change-of-rings isomorphism from [5] to set up their theory. For
us, on the other hand, that result did not feed into the construction of E

hGn
n nor its

identification with LK.n/S , and we could instead derive it from our considerations.
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Of course, that is largely a cosmetic difference; Morava’s theorem, even if classically
phrased differently, ultimately boils down to algebrogeometric considerations regarding
the moduli of formal groups of the sort that we based our approach on.
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Neighboring mapping points theorem

ANDREI V MALYUTIN

OLEG R MUSIN

We introduce and study a new family of theorems extending the class of Borsuk–Ulam
and topological Radon type theorems. The defining idea for this new family is to
replace requirements of the form “the image of a subset that is large in some sense is
a singleton” with requirements of the milder form “the image of a subset that is large
in some sense is a subset that is small in some sense”. This approach covers the case
of mappings Sm!Rn with m< n and extends to wider classes of spaces.

An example of a statement from this new family is the following theorem. Let f
be a continuous map of the boundary @�n of the n–dimensional simplex �n to a
contractible metric space M. Then @�n contains a subset E such that E (is “large”
in the sense that it) intersects all facets of �n and the image f .E/ (is “small” in
the sense that it) is either a singleton or a subset of the boundary @B of a metric
ball B �M whose interior does not meet f .@�n/.

We generalize this theorem to noncontractible normal spaces via covers and deduce
a series of its corollaries. Several of these corollaries are similar to the topological
Radon theorem.

55M20, 55M25, 55P05

1 Introduction

We introduce and study a new family of theorems extending the class of Borsuk–Ulam-
and topological Radon-type theorems (though none of our theorems is a generalization
of the Borsuk–Ulam or topological Radon theorem itself). By the Borsuk–Ulam- and
topological Radon-type theorems we mean those stating that a continuous map takes a
“wide” set of some specific kind to a point. Let us list several of the most influential
examples:

� The Borsuk–Ulam theorem itself says that every continuous map of a Euclidean
n–sphere Sn into Euclidean n–space Rn identifies two antipodes.
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� The Hopf theorem states that, if X is a compact Riemannian n–manifold and
f W X ! Rn is a continuous map, then, for any ı > 0, there exists a geodesic
 W Œ0; ı�!X of length ı such that f . .0//D f . .ı//.

� The topological Radon theorem says that if P is a convex n–polytope, then any
continuous map @P !Rn�1 identifies two points from disjoint faces.

� The topological Tverberg theorem says that, if d � 1 is an integer, r is a prime
power and P is a convex .r�1/.dC1/–polytope, then any continuous map
@P !Rd identifies r points from r pairwise disjoint faces.

See eg Steinlein [35; 36], Matoušek [22], Karasev [17], Akopyan, Karasev and
Volovikov [3], Frick [11], Bárány, Blagojević and Ziegler [5], Skopenkov [33] and
Bárány and Soberón [6] for more examples, including various extensions and gener-
alizations for Zp–spaces, maps between manifolds, matroids and colored versions.
Another related family is Knaster’s conjecture-type theorems (see Matschke [23]).

All of these examples involve rigid dimensional restrictions. It is a natural question
whether the maps not satisfying these restrictions have any properties of the Borsuk–
Ulam kind. In particular, we are interested in whether the Borsuk–Ulam theorem has
any reasonable extensions to the case of mappings Sm! Rn with m < n (a related
idea appears in Adams, Bush and Frick [2]).

Extensions of this kind are found in a new class we study. This class emerges by
replacing conditions of the form “the image of a subset that is large in some sense is
a singleton” with conditions of the milder form “the image of a subset that is wide in
some sense is a subset that is restricted in some sense”. This approach covers the case
of mappings Sm!Rn with m< n and extends to wider classes of spaces.

Here is an example for the simplest nondegenerate case S1!R2:

Proposition 1 (Malyutin [20]) Let a, b and c be three closed arcs covering the
circle S1 such that no two of them cover S1, and let f W S1!R2 be a continuous map.
Then either f .a/\f .b/\f .c/¤∅ or each of f .a/, f .b/ and f .c/ touches a closed
Euclidean disk D2 �R2 whose interior does not meet f .S1/.

Proposition 1 works for plane curves and knot diagrams and has a corollary with
applications in knot theory (see [20]). We formulate this corollary here. Let  WS1!R2

be a regular smooth plane curve in general position (that is, its only singularities are
transversal double points). By an edge of  we mean the closure of a component of the
set  .S1/nV, where V is the set of double points of  . We say that two edges I and J

Algebraic & Geometric Topology, Volume 23 (2023)



Neighboring mapping points theorem 3045

D2

f .a/

f .b/

f .c/

a
b
c

Figure 1: For Proposition 1. The circle @D2 touches f .a/, f .b/ and f .c/

of  are neighboring edges or neighbors if there exists a component Q of R2 n  .S1/

such that the boundary @Q contains both I and J. We say that two edges I and J of 
are consecutive if the union I[J coincides with the image  .˛/ of a (connected) arc ˛
in S1. We denote by � the maximal metric on the set E. / of edges of  in the class
of metrics satisfying the condition “�.I;J / D 1 whenever I and J are consecutive
edges of  ”.

Proposition 2 [20] If the curve  has k double points , then  has a pair of neighbor-
ing edges I and J with �.I;J /� 2

3
k.

Proposition 1 readily implies Proposition 2 if we choose the arcs a, b and c appropriately.
Proposition 2 appears in [20] as an auxiliary lemma (Lemma 5.1) needed to obtain a
series of statements related to knot theory. In [20], this lemma is deduced from the
topological Helly theorem (see Bogatyı̆ [7] and Montejano [24]). The statement of
Proposition 2 was one of the starting points for our study.

Here, we generalize Proposition 1 to noncontractible normal spaces via covers. The
generalizations and their corollaries will be formulated in the next sections, after
definitions. Our method is based on obstruction theory and uses a variation of the
concept of non-nullhomotopic covers introduced by Musin [27; 28].

Acknowledgments The authors are grateful to Florian Frick, Sergei Ivanov, Roman
Karasev, Gaiane Panina and Arkadiy Skopenkov for helpful discussions and comments.
Also, the authors are grateful to the referees for helpful remarks and suggestions.
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2 Definitions and results

Throughout this paper we mainly consider normal topological spaces,1 all simplicial
complexes and covers will be finite, all manifolds will be both compact and PL, Sn will
denote the n–dimensional sphere, �n will denote the n–dimensional simplex and
skk.�

n/ will denote the k–skeleton of �n. We shall denote the set of homotopy classes
of continuous maps V !W by ŒV;W �. The nerve of a (finite) collection S of sets will
be denoted by N .S/. When this does not cause confusion we use the same notation
for an abstract simplicial complex and its underlying space (carrier).

The further exposition in this section is structured as follows: first we give a chain
of successively stronger generalizations of Proposition 1 (Theorem 4 is the weakest,
Theorem 36 is the strongest); then we present a family of corollaries (all but one of
which follow from Theorem 4).

2.1 Spherical f –neighbors

All of the following generalizations and corollaries replace the condition “the image is
a singleton” appearing in the Borsuk–Ulam-type theorems with the following milder
condition of “spherical neighboring”:

Definition 3 (spherical f –neighbors) Let X be a set, let Y be a metric space and let
f WX ! Y be a map. We say that a subset N �X is a set of spherical f –neighbors
if N contains at least two points and the image f .N / is either a point or a subset of
the boundary @B of a metric ball2 B � Y whose interior does not meet f .X /. If a
two-point set fp; qg is a set of spherical f –neighbors, we say that p and q are spherical
f –neighbors. (See Figure 2.)

The first extension generalizes Proposition 1 to the case of spheres of arbitrary dimension
and replaces Euclidean spaces with arbitrary contractible metric spaces. (Recall that
facets of a polytope of dimension n are its faces of dimension n� 1.)

1A topological space X is normal if any two disjoint closed sets of X are contained in disjoint open sets
of X ; see [32, page 446] for equivalent definitions via the Urysohn and shrinking lemmas.
2By a metric ball in a metric space .Y; d/with metric d we mean a subset of the form fy 2Y jd.y;x/�Rg

with x 2 Y and R� 0.
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B
f .p2/

f .p1/

f .p3/

f .X D S1/

Figure 2: The image of a set fp1;p2;p3g of spherical f –neighbors

Theorem 4 Let f be a continuous map of the boundary @�n of the n–dimensional
simplex �n to a contractible metric space M. Then a set of spherical f –neighbors
intersects all facets of �n.

Proof Let d denote the metric on M. If z is a point and N is a subset in M, we write

d.z;N / WD inf
p2N

d.z;p/:

Let �1; : : : ; �nC1 be the facets of �n. For each i 2 f1; : : : ; nC 1g, we set

Ei WD fz 2M j d.z; f .�i//D d.z; f .@�n//g:

Observe that Ei contains f .�i/ and is closed, so fE1; : : : ;EnC1g is a closed cover
of M. Since M is contractible, f extends to a continuous map F W �n!M. Then
fF�1.E1/; : : : ;F

�1.EnC1/g is a closed cover of �n extending the closed cover
f�1; : : : ; �nC1g of @�n. By the Knaster–Kuratowski–Mazurkiewicz (KKM) lemma,
the elements of fF�1.E1/; : : : ;F

�1.EnC1/g have a common point p. Then xDF.p/

lies in E1\ � � �\EnC1. Then either x 2 f .@�n/, so that x belongs to all of f .�i/ by
the definition of Ei ; or r D d.x; f .@�n// > 0 and the ball Br .x/ of radius r centered
at x touches all of f .�i/ while its interior does not meet f .@�n/.

We generalize Theorem 4 by replacing the set of facets with a more general class of
covers as in the KKM lemma.

Algebraic & Geometric Topology, Volume 23 (2023)
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2.2 KKM covers and spherical f –neighbors

Definition 5 (KKM covers) Let �nC1 be an .nC1/–dimensional simplex with ver-
tices labeled v1; : : : ; vnC2. A closed cover fC1; : : : ;CnC2g of the n–sphere Sn is called
a KKM cover if there exists a homeomorphism h W Sn! @�nC1 such that, for each
J � f1; : : : ; nC 2g, the convex hull of the vertices vj with j 2 J is covered by the
union

S
j2J h.Cj /.

The argument in the proof of Theorem 4 also proves the following theorem:

Theorem 6 Let C be a KKM cover of the n–sphere Sn, and let f W Sn !M be a
continuous map to a contractible metric space M. Then a set of spherical f –neighbors
intersects all elements of C.

The key role in Theorem 6 is played by the properties of the cover, and not by the fact
that the underlying space is a sphere. To move on to the next generalization, we define
non-nullhomotopic covers (we generalize the concept of non-nullhomotopic covers
given in [27; 28]).

2.3 Non-nullhomotopic covers and spherical f –neighbors

Let X be a normal topological space and let U D fU1; : : : ;Ung be an open cover of X.
Let N .U/ be the nerve of U . Let ˆD f'1; : : : ; 'ng be a partition of unity subordinate
to U . Let v1; : : : ; vn be the vertices of the .n�1/–dimensional unit simplex �n�1,
where

�n�1
WD fx 2Rn

j xi � 0; x1C � � �Cxn D 1g:

For each i , we identify the vertex of N .U/ corresponding to Ui with vi , so that N .U/
becomes a subcomplex of �n�1. We set

hU;ˆ.x/ WD

nX
iD1

'i.x/vi :

Then hU;ˆ is a continuous map from X to N .U/��n�1. Since the linear homotopy
‚.t/D .1� t/ˆC t‰ of two partitions of unity ˆ and ‰ subordinate to U induces a
homotopy between the corresponding maps, it follows that the homotopy class ŒhU;ˆ�

in ŒX;N .U/�, where by ŒV;W � we denote the set of homotopy classes of continuous
maps V ! W, does not depend on ˆ (see [27, Lemma 1.6]). We denote this class
in ŒX;N .U/� by ŒU �.
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The homotopy classes of covers are also well defined for closed sets. Indeed, in a normal
space, any finite closed cover has an open extension with the same nerve (see eg [25,
Theorem 1.3; 16, pages 31–33]). Furthermore, if C D fC1; : : : ;Cng is a closed cover of
a normal space X and S D fS1; : : : ;Sng and U D fU1; : : : ;Ung are two open covers
such that Si\Ui contains Ci for all i that have the same nerve N .S/DN .U/DN .C/,
then each partition of unity subordinate to the open cover

T WD fS1\U1; : : : ;Sn\Ung

is also subordinate to both S and U . This implies that ŒS�D ŒT �D ŒU � in ŒX;N .C/� due
to the independence of the choice of partition of unity mentioned above. Then we set

ŒC� WD ŒS�D ŒT �D ŒU �:

Definition 7 (non-nullhomotopic covers) We say that an open or closed cover C of
a normal topological space X is non-nullhomotopic if the corresponding homotopy
class ŒC� in ŒX;N .C/� contains no constant map.

Remark 8 Any non-nullhomotopic map X !K to a finite simplicial complex yields
non-nullhomotopic covers on X ; to obtain an example, take the inverse images of all
elements in one of the collections

� open stars of vertices of K,
� stars of vertices of K in its first barycentric subdivision,
� maximal simplexes of K.

Definition 9 (homotopy ranks of maps) Let X be a topological space, let K be a finite
simplicial complex and let h W X !K be a continuous map. Let �K be the simplex
spanned by the vertices of K, so K is a subcomplex of �K . We define the homotopy
rank rk.h/ of h to be the least nonnegative integer k such that h is nullhomotopic in
K[ skk.�K /, where skk stands for the k–skeleton.3 (Since �K is contractible, the
homotopy rank is well defined and does not exceed the dimension of �K .)

Remark 10 In terms of Definition 9, h is nullhomotopic if and only if rk.h/D 0.

Definition 11 (ranks of covers) We define the (homotopy) rank rk.C/ of a (closed or
open) finite cover C of a normal space X to be the homotopy rank of maps X !N .C/
in the class ŒC� determined by C.

Remark 12 A cover is non-nullhomotopic if and only if it is of nonzero rank.

3We say that K[ skk.�K / is the k–exoskeleton of K.

Algebraic & Geometric Topology, Volume 23 (2023)
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Remark 13 Since skm.�
m/ D �m is contractible, it follows that the rank of an

n–element cover does not exceed n� 1.

Definition 14 (principal covers) An n–element cover (n� 2) of rank n� 1 is said to
be principal.

Remark 15 Since any proper nonempty subcomplex of @�m is contractible in @�m,
it follows that a cover is principal if and only if it is non-nullhomotopic and its nerve is
the boundary of a simplex.

Remark 16 Remark 15 implies that no principal cover has a proper subcollection of
elements with empty intersection; in particular, no principal cover has disjoint elements.

Remark 17 Any non-nullhomotopic map X ! Sk to the k–sphere yields a principal
cover of X of rank kC 1 (see Remark 8 and [27, Theorem 1.5]). Thus, a space can
have principal covers of distinct ranks.

Remark 18 (conditions for cover non-nullhomotopicity) If the composition of con-
tinuous maps is non-nullhomotopic, then each of them is non-nullhomotopic.

� On the one hand, this implies that any refinement of a cover of rank k has
rank at least k. In particular, any refinement of a non-nullhomotopic cover is
non-nullhomotopic.

� On the other hand, this implies that, if f W X ! Y is a continuous map of
normal spaces and C D fC1; : : : ;Cng is a closed cover of Y such that the
dimension of the nerve N .C/ is less than the rank rk.zC/ of the induced cover
zC D ff �1.C1/; : : : ; f

�1.Cn/g, then rk.C/� rk.zC/. In particular, if the induced
cover is principal and

Tn
iD1 Ci D∅, then C is principal. (See Lemma 52.)

We now have all the definitions needed to replace spheres in Theorem 6 with general
“noncontractible” spaces.

Theorem 19 Let X be a compact normal space , let M be a contractible metric
space and let f W X !M be a continuous map. Then , for any non-nullhomotopic
cover C of X, a set of spherical f –neighbors intersects at least rk.C/C 1 elements
of C. In particular , for any principal cover , a set of spherical f –neighbors intersects all
elements of the cover.
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f .c0/

f .b0/
D2

f .a/

f .b/

f .c/

a
b; b0

c; c0

Figure 3: An example with disconnected X D S1[fb0; c0g.

Theorem 19 implies Theorem 6 because each KKM cover either is principal or all of
its elements have a common point; furthermore, the maps in the homotopy class ŒC�
corresponding to each principal KKM cover C are of degree one, so ŒC� contains a
homeomorphism (see [28, Corollaries 2.1–2.3]).

Remark 20 X in Theorem 19 is not assumed to be connected. Figure 3 shows an
example with X D S1[fb0; c0g (compare Figure 1).

Remark 21 Combining the idea that X in Theorem 19 is not necessarily connected
with switching attention to the image of the cover leads to generalizations of Helly’s
theorem and the KKM lemma. See also Lemma 52 below. We do not develop this line
here.

2.4 EP triples and ranks, and spherical f –neighbors

We are going to upgrade Theorem 19 to the more general Theorem 36, which covers
the case of maps to not necessarily contractible spaces. In order to state and prove
Theorem 36, we introduce concepts of Eilenberg–Pontryagin and Knaster–Kuratowski–
Mazurkiewicz ranks.

Definition 22 (Eilenberg–Pontryagin triples and ranks) Let Z be a topological space
with a subspace A, let K be a finite simplicial complex and let Œh� be a homotopy class
in ŒA;K�. We say that .Z;A; Œh�/ is an Eilenberg–Pontryagin triple if no map in Œh�
extends to a continuous map Z!K.
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We define the Eilenberg–Pontryagin rank (EP rank) rk.Z;A; Œh�/ of the triple .Z;A; Œh�/
to be the least nonnegative integer k such that there exists a continuous map H WZ!

K [ skk.�K / whose restriction H jA is homotopic in K [ skk.�K / to the maps
of Œh�, where �K is the simplex spanned by the vertices of K and containing K as
a subcomplex. (Since �K is contractible, the EP rank is well defined and does not
exceed the dimension of �K .)

Remark 23 In terms of Definition 22, a triple .Z;A; Œh�/ is Eilenberg–Pontryagin if
and only if it is of nonzero EP rank (because K[ sk0.�K /DK).

Remark 24 Since any constant map extends to any ambient space, it follows that in
terms of Definitions 9 and 22, for any Z, A, K and h,

rk.Z;A; Œh�/� rk.h/:

Furthermore, if A is contractible in Z, then

rk.Z;A; Œh�/D rk.h/:

In particular, if C is a finite closed cover of A and A is contractible in Z, then

rk.Z;A; ŒC�/D rk.C/:

Example 25

� If Z D�n, ADK D @�n and hD id, then rk.Z;A; Œh�/D rk.h/D n.

� If Z DK D�n, AD @�n, and hD id, then rk.Z;A; Œh�/D rk.h/D 0.

Example 26 We have rk.Z;A; Œh�/D 0 whenever A is a retract of Z.

Example 27 Let W be an orientable, compact PL m–manifold with connected
nonempty boundary @W, and let h W @W ! @�n be a continuous map. Then rk.h/ 2
f0; ng, rk.W; @W; Œh�/ 2 f0; ng and rk.W; @W; Œh�/� rk.h/.

� If m D n, then rk.W; @W; Œh�/ D rk.h/ (this follows from the Hopf degree
theorem; see the proof of Corollary 39 below).

� If W D �m, then rk.W; @W; Œh�/ D rk.h/ (because �m is contractible; see
Remark 24).

� Results of [29] imply however that, for any m and n with nontrivial �m�1.S
n�1/

and for any non-nullhomotopic h W Sm�1! @�n, there exists an m–manifold W

with @W D Sm�1 such that h extends to a continuous map W ! @�n, so
rk.W; @W; Œh�/D 0 and rk.h/D n.
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Definition 28 (Knaster–Kuratowski–Mazurkiewicz rank) Let Z be a topological
space and let S D fS1; : : : ;Sng be a collection of subsets in Z. We say that the
pair .Z;S/ is a Knaster–Kuratowski–Mazurkiewicz (KKM) system if no closed cover
fE1; : : : ;Eng of Z with Si �Ei for all i has the same nerve as S.

We define the KKM rank rk.Z;S/ of the pair .Z;S/ to be the least integer k such that
there exists a closed cover E D fE1; : : : ;Eng of Z with Si �Ei for all i such that the
dimension of N .E/ nN .S/ is k.

Remark 29 In terms of Definition 28, a pair .Z;S/ is a KKM system if and only if it
is of nonzero KKM rank.

Example 30 If Z D �m and S D fS1; : : : ;SmC1g is a KKM cover of @�m, then
rk.Z;S/Dm by the KKM lemma.

Example 31 We have rk.Z;S/D 0 whenever S is a closed cover of a retract of Z.

Example 32 We have rk.Z; fS1; : : : ;Sng/D 0 whenever
Tn

iD1 Si ¤∅.

Lemma 33 Let a normal space Z contain a normal space A as a subspace , let C be a
closed cover of A, and let ŒC� be the corresponding homotopy class in ŒA;N .C/�, where
N .C/ is the nerve. Then the EP rank of the triple .Z;A; ŒC�/ does not exceed the KKM
rank of the system .Z; C/:

rk.Z;A; ŒC�/� rk.Z; C/:

Furthermore , if A is closed in Z, then

rk.Z;A; ŒC�/D rk.Z; C/:

Lemma 33 is proved in the next section.

Example 34 (showing that the closedness requirement of A in the second part of
Lemma 33 is essential) If X is a compact normal space, C0DfC 0

1
; : : : ;C 0ng is a closed

cover of X with
Tn

iD1 Ci D ∅ and each C 0i nonempty, Z is the cone over X, z0 is
the top of Z, A D Z n fz0g, C 00i is the subcone in Z over C 0i , Ci D C 00i n fz0g, and
C D fC1; : : : ;Cng, then the KKM rank rk.Z; C/ is n� 1 and the EP rank rk.Z;A; ŒC�/
is one more than the dimension of the nerve N .C0/. (See Figure 4 with X D S1.) For
example, if n> 2 and the elements of C0 are pairwise disjoint, then

rk.Z;A; ŒC�/D 1< n� 1D rk.Z; C/:
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�z0

C1

C2

C3

C4

C5

Figure 4: A disk with rk.Z;A; ŒC�/D 2< 4D rk.Z; C/.

Remark 35 Lemma 33 implies (see Remark 24) that, given a compact normal space A

with a finite closed cover C, for any ambient normal space Z � A, rk.Z;A; ŒC�/ D
rk.Z; C/ � rk.C/, while rk.Z;A; ŒC�/ D rk.Z; C/ D rk.C/ if A is contractible in Z.
(This generalizes [27, Theorem 2.2].)

Theorem 36 Let A be a compact normal space , let C be a closed cover of A, and let
ŒC� be the corresponding homotopy class in ŒA;N .C/�, where N .C/ is the nerve. Let
Z be a normal space containing A as a subspace. If the triple .Z;A; ŒC�/ is Eilenberg–
Pontryagin , with EP rank rk.Z;A; ŒC�/ > 0, then , for any metric space M and any
continuous map f WA!M that extends to a continuous map Z!M, a set of spherical
f –neighbors intersects at least rk.Z;A; ŒC�/C 1 elements of C.

Theorem 36 is proved in the next section.

Proof of Theorem 19 We deduce Theorem 19 from Theorem 36. Let X, M, f
and C be as in Theorem 19. Set Cone.X / WD .X � Œ0; 1�/=.X � f0g/ and identify X

with X � f1g � Cone.X /. (The cone is normal because X is compact and normal; see
eg [30].) Definitions of ranks imply (see Remark 24) that

(���) rk.Cone.X /;X; ŒC�/D rk.C/:

In particular, the triple .Cone.X /;X; ŒC�/ is Eilenberg–Pontryagin since C is non-
nullhomotopic. Since M is contractible, it follows that f extends to a continuous
map F W Cone.X /!M. We apply Theorem 36 to the Eilenberg–Pontryagin triple
.Cone.X /;X; ŒC�/, with Z D Cone.X / and A D X in the notation of Theorem 36,
and see that a set of spherical f –neighbors intersects at least rk.Cone.X /;X; ŒC�/C 1

elements of C. Then Theorem 19 follows by (���).
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Remark 37 Theorem 36 has further refinements regarding the number of distinct sets
of spherical f –neighbors intersecting the prescribed number of cover elements, but we
do not develop this line here.

2.5 Corollaries

Next, we list several corollaries of Theorems 4, 6, 19 and 36. In fact, all of the following
corollaries, except for Corollary 39, follow from Theorem 4.

Definition 38 A continuous map f WA! Y of an orientable, connected, closed PL
manifold A to a space Y is said to be null-cobordant if there exists an orientable,
compact PL manifold W with @W DA and a continuous map F WW ! Y such that
F jA D f.

Corollary 39 (see [27, Theorem 2.6]) Let A be an orientable , connected , closed PL
n–manifold and let C be a non-nullhomotopic cover of A such that the nerve of C is
homeomorphic to the n–sphere. Then , for any metric space M and any null-cobordant
map f W A! M, a set of spherical f –neighbors intersects at least nC 2 elements
of C. In particular , if C is principal and contains precisely nC 2 elements , then a set of
spherical f –neighbors intersects all elements of C.

Proof If f W A ! M is null-cobordant, then there is an orientable, compact PL
.nC1/–manifold Z with @Z D A and a continuous map F WZ!M with F jA D f.
A homological argument shows that, for each continuous map H WZ!N .C/Š Sn,
the restriction H jA is of zero degree. Then the Hopf degree theorem implies that H jA

is nullhomotopic. This means that the triple .Z;A; ŒC�/ is Eilenberg–Pontryagin and
the statement follows by Theorem 36.

Remark 40 (the dimensional restriction in Corollary 39 is essential) It is shown
in [29] that any continuous map Sm! Sn is null-cobordant if m > n. Let m and n

be such that m > n and �m.Sn/ is nontrivial, and let h W Sm ! @�nC1 be a non-
nullhomotopic continuous map. Then there exists an orientable, compact PL .mC1/–
manifold W with @W DSm and a continuous map H WW !@�nC1 such that H j@W Dh.
Let C be the closed cover of @W composed of the inverse images of the facets of �nC1.
Then ŒC� D Œh� and C is principal. We embed W into a Euclidean ball BN of large
dimension and “tiny” diameter, then embed W into the product @�nC1�BN such that
the projection of this embedding to @�nC1 yields H, and take the induced metric on W.
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Now, let f W @W !W be the identity map. Then f is null-cobordant but no set of
spherical f –neighbors intersects all elements of C if the diameter of BN is sufficiently
small.

Corollary 41 Let M be a contractible metric space , let Sn be the Euclidean unit
n–sphere in Euclidean .nC1/–space RnC1 and let f W Sn!M be a continuous map.
Then there exists a pair fp; qg of spherical f –neighbors such that the Euclidean distance
kp� qk is at least

p
.nC 2/=n.

Corollary 41 is proved in the next section.

Remark 42 In [21] we show that, if M DRm with m>n, then the constant
p
.nC2/=n

in Corollary 41 (the Euclidean distance between the centers of adjacent .n�1/–simplices
of the regular triangulation of Sn) can be replaced with

p
2.nC 2/=.nC 1/ (the Eu-

clidean distance between vertices of the regular triangulation of Sn), which is the
best possible. Our proof for the Euclidean case M D Rm is based on the Delaunay
triangulations and we do not know whether it extends to all contractible M.

Corollary 43 Let M be a contractible metric space , let P be a convex n–polytope and
let f W @P !M be a continuous map. Then a set of spherical f –neighbors intersects
at least nC 1 facets of P.

Proof via Theorem 4 Corollary 43 is an “equivalent generalization” of Theorem 4
because the .n�2/–skeleton of any convex n–polytope contains the .n�2/–skeleton of
the n–simplex as a topological subspace (see [14]).

Proof via Theorem 19 Clearly, the cover C of @P composed of the facets of P is
non-nullhomotopic of rank n because C is a good cover (that is, any intersection of
elements in C is contractible), so the nerve of C has homotopy type of @P Š Sn�1 by
the nerve theorem, while the maps in the class ŒC� are homotopy equivalences. Then a
set of spherical f –neighbors intersects at least nC 1 facets of P by Theorem 19.

Since any collection of nC 1 facets of the n–cube contains a pair of antipodal facets,
Corollary 43 implies the following:

Corollary 44 Let M be a contractible metric space , let @Œ0; 1�m be the boundary of
the m–dimensional cube Œ0; 1�m and let f W @Œ0; 1�m!M be a continuous map. Then
there is a pair of spherical f –neighbors intersecting antipodal facets of Œ0; 1�m.
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There exists an example of continuous map S2!R3 showing that the statement of
Corollary 44 about spherical f –neighbors lying on antipodal facets holds for neither
regular octahedra nor regular dodecahedra nor regular icosahedra. A weaker version of
Corollary 44 where “antipodal” is replaced with “disjoint” holds for many polytopes.

2.6 Radon-type theorems

Definition 45 (weak Radon polytopes) We say that an n–polytope P is weakly Radon
if, for any continuous map f W @P !M into any contractible metric space M, there is
a pair of spherical f –neighbors intersecting two disjoint faces of P.

We recall some standard definitions. A flag polytope is a convex polytope such that every
collection of pairwise intersecting facets has a nonempty intersection. A (combinatorial)
fullerene is a simple 3–polytope with all facets pentagons and hexagons.

A “visual” simply checked sufficient condition for weakly Radon polytopes is provided
by the so-called belts. A k–belt (or a prismatic k–circuit) in a 3–polytope is a cyclic
sequence .F1; : : : ;Fk/ of k � 3 facets in which pairs of consecutive facets (including
fFk ;F1g) are adjacent, other pairs of facets do not intersect, and no three facets have a
common vertex.

Corollary 46 (1) If the .n�2/–skeleton of a convex n–polytope P contains the
.n�2/–skeleton of the n–cube as a topological subspace , then P is weakly Radon.

(2) Each convex 3–polytope having a k–belt with k � 4 is weakly Radon.

(3) Each flag 3–polytope is weakly Radon.

(4) Each fullerene is weakly Radon.

(5) The regular dodecahedron and the regular icosahedron are weakly Radon.

Proof Assertion (1) follows from Corollary 44 in an obvious way. Assertions (2)
and (5) directly follow from assertion (1). Assertion (3) follows from Corollary 51(2)
below. Assertion (4) is a particular case of assertion (3).

Definition 47 (weak Radon rank) If P is an n–polytope, Y is a metric space and
f W@P!M is a map, we say that two facets F1 and F2 of P are spherical f –neighbors
(or that the pair fF1;F2g is a pair of spherical f –neighbors) if there is a pair fp; qg
of spherical f –neighbors with p 2 F1 and q 2 F2. We say that f W @P ! M has
weak Radon rank m if there are exactly m distinct pairs of facets of P such that each
of these pairs is a pair of disjoint spherical f –neighbors. By the weak Radon rank
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of a polytope P we mean the least of the weak Radon ranks of continuous maps
f W @P !M into contractible metric spaces.

Corollary 44 allows us to obtain rough lower bounds on the weak Radon rank.

Definition 48 (cubic hemisphere) Let H be a subset of the boundary @P of a convex
n–polytope P. We say that H is a cubic hemisphere if there exists a homeomorphism
h W Œ0; 1�n ! P such that the restriction of h to the .n�2/–skeleton of Œ0; 1�n is a
topological embedding to the .n�2/–skeleton of P and H is the image of the union of
n facets of Œ0; 1�n that have a common vertex.

Definition 49 (lighthouse independence number) We say that a set Z of vertices
of an n–polytope is lighthouse independent if no two vertices in Z share a facet
(equivalently, the corresponding facets of the dual polytope are pairwise disjoint). The
lighthouse independence number lin.P / of an n–polytope P is the cardinality of a
largest lighthouse independent set of P.

Remark 50 The lighthouse independence number of an n–polytope equals the cardi-
nality of a largest set of pairwise disjoint facets of the dual polytope.

Corollary 51 (1) Let P be a convex n–polytope. If @P contains k cubic hemi-
spheres with pairwise disjoint interiors , then the weak Radon rank of P is at
least 1

2
k.

(2) Let P be a flag 3–polytope (eg a fullerene). Then the weak Radon rank of P is
at least half the lighthouse independence number of P.

(3) If P is a flag simple 3–polytope with  facets and g is the largest number of
edges in a facet of P, then the weak Radon rank of P is at least

1

2

j
2 �7

3g�8

k
;

where b � c stands for the floor function.

(4) If P is a fullerene with  facets , then the weak Radon rank of P is at least
1
2

�
1
5
. � 3/

˘
:

(5) The weak Radon rank of the regular dodecahedron is at least 2.

(6) The weak Radon rank of the regular icosahedron is at least 2.

(7) The weak Radon rank of the cube is 1.

Corollary 51 is proved in the next section.
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3 Proofs

Proof of Lemma 33 (1) We show that rk.Z;A; ŒC�/� rk.Z; C/.

Let C D fC1; : : : ;Cng, let �n�1 denote the simplex spanned by the vertices of the
nerve N .C/ of C, so N .C/ is a subcomplex of �n�1, and let r WD rk.Z; C/. By the
definition of the KKM rank, there exists a closed cover E D fE1; : : : ;Eng of Z with
Ci �Ei for all i such that the dimension of N .E/ nN .C/ is r . Therefore, the union
N .C/[ skr .�

n�1/ contains N .E/. Set

EA WD fE1\A; : : : ;En\Ag:

Since Ci �Ei for all i , it follows that the nerve N .EA/ contains N .C/. We have

N .C/�N .EA/�N .E/�N .C/[ skr .�
n�1/:

Let ŒE � be the homotopy class in ŒZ;N .E/� determined by E and let F WZ!N .E/ be
a map in ŒE �. Let ŒEA� be the homotopy class in ŒA;N .EA/� determined by EA and let
f 0 WA!N .EA/ be a map in ŒEA�. Let f WA!N .C/ be a map in ŒC� 2 ŒA;N .C/�.

Since Ei\A contains Ci for each i , the argument preceding Definition 7 shows that f
and f 0 are homotopic in N .EA/. By construction, F jA and f 0 are homotopic in N .E/.
Thus, F jA and f are homotopic in N .E/ and hence in N .C/[ skr .�

n�1/ as well. By
the definition of the EP rank this means that rk.Z;A; ŒC�/� r D rk.Z; C/.

(2) We show that rk.Z; C/� rk.Z;A; ŒC�/ whenever A is closed in Z.

We start by constructing a specific map A ! N .C/ from the class ŒC�. Let C D
fC1; : : : ;Cng and let N .C/ be a subcomplex in �n�1 (as in the first part of the proof).
Since A is normal, there exists an open cover U D fU1; : : : ;Ung of A such that
Ui contains Ci for each i and the nerve of U coincides with that of C (see eg [25,
Theorem 1.3; 16, pages 31–33]). The Urysohn lemma for normal spaces implies that,
for each i , there exists a continuous function fi W A ! Œ0; 1� with fi.Ci/ D 1 and
fi.AnUi/D 0. Then ˆDf'1; : : : ; 'ng, where 'i WD fi=

P
j fj , is a partition of unity

subordinate to U such that '�1
i Œ1=n; 1� contains Ci for all i . Let

hU;ˆ.x/ WD

nX
iD1

'i.x/vi

be the corresponding map A!N .C/ representing the class ŒC�D ŒU � (see the construc-
tion preceding Definition 7).
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Now, let p WD rk.Z;A; ŒC�/. Then, by the definition of the EP rank, there exists a
continuous map F WZ!N .C/[skp.�

n�1/ such that the restriction F jA is homotopic
to hU;ˆ in N .C/[ skp.�

n�1/. The generalizations of Borsuk’s homotopy extension
theorem obtained in [26; 34] imply that, since A is closed in Z, there exists a continuous
map G WZ!N .C/[ skp.�

n�1/ with GjA D hU;ˆ. Then the collection of subsets

G WD fG�1
1 Œ1=n; 1�; : : : ;G�1

n Œ1=n; 1�g;

where G1, : : :, Gn are the coordinate functions of G, is a closed cover of Z such that
G�1

i Œ1=n; 1� contains Ci for all i and the nerve N .G/ is contained in N .C/[skp.�
n�1/,

so the dimension of N .G/nN .C/ is at most p. By the definition of the KKM rank, this
means that rk.Z; ŒC�/� p D rk.Z;A; ŒC�/.

Now we state and prove Lemmas 52 and 54, and then deduce Theorem 36 from
Lemmas 33, 52 and 54.

Lemma 52 Let .Z; CDfC1; : : : ;Cng/ be a KKM system of rank r >0, let f WZ!Z0

be a continuous map to a topological space Z0, and let C0DfC 0
1
; : : : ;C 0ng be a family of

subsets in Z0 such that f .Ci/�C 0i for all i . Then either f1; : : : ; ng contains a subset J

of cardinality r C 1 such that
T

j2J Cj D∅ and
T

j2J C 0j ¤∅ or .Z0; C0/ is a KKM
system of rank at least r .

Remark 53 In Lemma 52, two key special cases are C 0i D f .Ci/ and f D id.

Proof If neither rk.Z0; C0/� r nor f1; : : : ; ng contains J with jJ j D r C 1 such thatT
j2J Cj D∅ and

T
j2J C 0j ¤∅, then

(i) there exists a closed cover E 0 D fE0
1
; : : : ;E0ng of Z0 with C 0i �E0i for all i such

that the dimension of N .E 0/ nN .C0/ is less than r (by definition), and

(ii) the dimension of N .C0/ nN .C/ is less than r .

Consequently, the dimension of N .E 0/ n N .C/ is less than r . The collection E D
fE1; : : : ;Eng with Ei WD f

�1.E0i/ is a closed cover of Z such that Ci �Ei for all i .
The nerve N .E 0/ contains N .E/. Therefore, the dimension of N .E/ nN .C/ is less
than r . This contradicts the assumption that r D rk.Z; C/.

Lemma 54 Let .Z; C D fC1; : : : ;Cng/ be a KKM system of rank r > 0 with metriz-
able Z and all Ci compact , and let d be a metric on Z. Then there exists a closed
metric ball

BR.x/ WD fz 2Z j d.z;x/�Rg; x 2Z; R> 0;
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whose interior intersects no element of C and whose boundary sphere touches at least
r C 1 elements of C.

Proof If z is a point and N is a subset in Z, we write

d.z;N / WD inf
p2N

d.z;p/:

Let A denote the union
Sn

iD1 Ci . For each i 2 f1; : : : ; ng, we set

Ei WD fz 2Z j d.z;Ci/D d.z;A/g:

Observe that Ei contains Ci and is closed, so fE1; : : : ;Eng is a closed cover of Z.
Since .Z; C/ is a KKM system of rank r > 0, it follows by the definition of KKM rank
that the set f1; : : : ; ng contains a subset J of cardinality rC1 such that

T
j2J Cj D∅

and
T

j2J Ej ¤∅. Let x be a point in
T

j2J Ej ¤∅. Then the ball Bd.x;A/.x/ of
radius d.x;A/ centered at x meets the requirements of the lemma (since each of Ci is
compact).

Proof of Theorem 36 Since .Z;A; ŒC�/ is an Eilenberg–Pontryagin triple, it follows
by Lemma 33 that .Z; C/ is a KKM system of rank rk.Z; C/D rk.Z;A; ŒC�/.

Let C D fC1; : : : ;Cng. Set F WD fF.C1/; : : : ;F.Cn/g. Then Lemma 52 implies that
we have two possibilities:

(1) The dimension of N .F/nN .C/ is at least rk.Z; C/, so f1; : : : ; ng contains a subset
J of cardinality rk.Z; C/C 1 such that

T
j2J Cj D∅ and

T
j2J F.Cj /¤∅.

(2) The pair .M;F/ is a KKM system of rank at least rk.Z; C/.

In case (1), for any point x 2
T

j2J F.Cj /, the set F�1.x/ is a set of spherical
F jA–neighbors that intersects all elements of fCj gj2J , which proves the theorem.

In case (2), the required statement follows by Lemma 54 applied to .M;F/.

Proof of Corollary 41 We use a spherical version of Theorem 4. Let T be a regular
triangulation of the unit sphere Sn and let z�1, : : :, z�nC2, be the n–simplices of T ; all
of z�i are regular spherical simplices with Euclidean distances between vertices

(1) dn;Eu D

r
2.nC2/

nC1

and angular edge length

(2) dn;A D 2 arcsin
�

1
2
dn;Eu

�
D 2 arcsin

r
nC2

2.nC1/
D arccos

�
�1

nC1

�
:
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We recall that the circumradius of a compact set Q in a metric space is defined as
the radius of a least metric ball containing Q. If Q is a compact subset of Sn we
denote by circA Q and diamA Q, respectively, the circumradius and diameter of Q with
respect to the angular metric, and diamEu Q will stand for the Euclidean diameter of Q

in RnC1 � Sn. Under this notation, Dekster’s extension [9] of the Jung theorem says
that, for any compact subset Q of Sn,

2 arcsin
�r

nC1

2n
sin.circA Q/

�
� diamA Q:

This immediately implies that, in the case where circA Q� �
2

,

(3)

r
2.nC1/

n
sin.circA Q/� diamEu Q:

Another auxiliary fact we need is that

(4) diamA z�i D
1
2
.� � dn;A/:

Indeed, observe that z�i is the intersection of a finite number of closed hemispheres and
hence its boundary is composed of fragments of great hyperspheres, which are geodesic
in Sn. Therefore, if a and b are two points in z�i such that neither a nor b is a vertex
of z�i , then diamAfa; bg< diamA z�i because z�i contains two geodesic arcs4 ˛ and ˇ
such that ˛ contains a in its relative interior and ˇ contains b in its relative interior. Since
z�i is contained in the interior of a hemisphere, so a and b are not antipodal, it follows
that there exist a0 2˛� z�i and b0 2ˇ� z�i with diamAfa; bg< diamAfa

0; b0g (imagine
the interposition of ˛, ˇ and the metric ball D�Sn of diameter diamAfa; bg containing
a and b). Thus, if a and b are two points in z�i such that diamAfa; bg D diamA z�i ,
then one of a and b is a vertex of z�i and we easily obtain (4) by considering the regular
triangulation of Sn dual (antipodal) to T.

Now, we pass to the proof of Corollary 41. If we have a continuous map f W Sn!M,
then Theorem 4 implies that a finite set P of spherical f –neighbors intersects all of z�i .
We need to prove that

(5) diamEu P �

r
nC2

n
:

Let B�Sn be a metric ball with angular radius circA P containing P , let C 2Sn be the
center of B, let A2Sn be the antipode of C, let z�k be a simplex of T containing A and

4By geodesic arcs in Sn we mean arcs of great circles.
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let B2�Sn be the metric ball centered at A of angular radius diamA z�k D
1
2
.��dn;A/

(see (4)). Then B2 contains z�k . Since P intersects z�k while P � B and z�k � B2,
it follows that B intersects B2. Therefore,

(6) circA P D circA B � � � circA B2 D
1
2
dn;A:

The situation splits into two cases:

(i) circA P > �
2

(ie no hemisphere contains P).

(ii) circA P � �
2

.

In case (i), we observe that, since no hemisphere contains P, it follows that no
Euclidean ball in Rn of radius less than 1 contains P. Then the Jung theorem5 says
that diamEu P � dn;Eu, which implies the required (5).

In case (ii), (3) is applicable and yields

diamEu P �

r
2.nC1/

n
� sin.circA P/ (by (3))

�

r
2.nC1/

n
� sin

�
1
2
dn;A

�
(by (6) and (ii))

D

r
2.nC1/

n
�

1
2
dn;Eu (by (2))

D

r
2.nC1/

n
�

r
nC2

2.nC1/
D

r
nC2

n
(by (1)).

Remark 55 It would be interesting to find a way to upgrade the above proof of
Corollary 41 by considering the family of all regular triangulations of the unit sphere Sn.

Proof of Corollary 51 (1) Corollary 44 implies that, if M is a contractible metric
space and f W @P!M is a continuous map, then each cubic hemisphere in @P contains
a facet that is a member of a pair of disjoint facets that are spherical f –neighbors. The
statement follows.

(2) Proposition 56 below implies that, if the lighthouse independence number of a
flag 3–polytope P is k, then @P contains k cubic hemispheres with pairwise disjoint
interiors. This implies the required assertion by assertion (1) of the corollary.

(3)–(4) These follow from assertion (2) and Proposition 57 below.

5For a discussion and materials concerning the Jung theorem and containment in hemispheres, see [39;
15; 8, pages 112, 113, 132–136, 38; 19; 4; 1, Proposition 2.4].

Algebraic & Geometric Topology, Volume 23 (2023)



3064 Andrei V Malyutin and Oleg R Musin

(5)–(6) These follow from (2) because a direct check shows that the lighthouse
independence number of the regular dodecahedron is 4 and the lighthouse independence
number of the regular icosahedron is 3.

(7) Corollary 44 shows that the weak Radon rank of the cube is at least 1 and an exam-
ple where @Œ0; 1�3 is mapped to an oblate spheroid in R3 shows that it is at most 1.

We say that a vertex v of a polytope is cubical if the union of the facets containing v is
a cubic hemisphere.

Proposition 56 All vertices of a flag 3–polytope are cubical.

Proof Let v be a vertex of a flag 3–polytope P. Observe that no facet of P is a triangle
(because any triangular facet together with the three adjacent ones form a collection of
four pairwise intersecting facets with no common point). Therefore, each facet of P

containing v has a vertex that is not adjacent to v. Let v1, v2 and v3 be three such
vertices lying on three distinct facets containing v. Let D denote the union of the facets
of P that do not contain v. Then D is a topological disk with the points v1, v2 and v3

on its boundary. Since P is flag, we see that

� no facet contained in D intersects three of the facets not contained in D,

� no facet of P splits D (in the sense that D nF is connected for each facet F ).

This implies that

� each of the vertices v1, v2 and v3 is incident to an edge of P whose second
endpoint is contained in the interior of D (in particular, the interior of D contains
at least one vertex of P ); and

� the subgraph GD in the 1–skeleton P1 of P induced by the vertices of P

contained in the interior of D is connected.

Thus, each of v1, v2 and v3 is adjacent to a vertex of the connected subgraph GD in P1.
This easily implies that P1 contains a Y –homeomorphic subgraph Y 0 that is contained
in D and intersects the boundary @D exactly in the set fv1; v2; v3g.

Furthermore, since v1, v2 and v3 belong to three distinct facets containing v, it follows
that there exists a triple of edges in P1 incident to v whose endpoints split @D into
three arcs each of which contains exactly one of v1, v2 and v3. Clearly, the union of
these edges with @D and Y 0 is a graph homeomorphic to the cube 1–skeleton. This
shows that v is cubical.
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Proposition 57 (1) Let P be a flag simple 3–polytope with  facets and let g be
the largest number of edges in a facet of P. Then the lighthouse independence
number of P is at least j

2 �7

3g�8

k
:

(2) If P is a fullerene with  facets , then the lighthouse independence number of P

is at least �
1
5
. � 3/

˘
:

Proof In the proof, if v is a vertex of P, we denote by L.v/ the union of facets of P

that contain v.

We construct a lighthouse independent set by the following algorithm. First we choose
a vertex v1 of P such that the number of vertices in L.v1/ is the least possible and set
W1 DL.v1/. The number of vertices in L.v1/ is at most 3g� 5.

At each next step, being given Wi � P such that a vertex of P is not in Wi , we take
a vertex viC1 of P in P nWi such that the number of vertices in L.viC1/ nWi is the
least possible and set WiC1 DWi [L.viC1/. Observe that, if a vertex v of P is not
in Wi and adjacent to a vertex in Wi , then L.v/ shares at least three vertices with Wi .
This implies that the number of vertices in L.viC1/ nWi is at most 3g� 8.

Therefore, if P has N vertices, this algorithm produces a lighthouse independent set
v1; v2; : : : with at least

1C

�
N � .3g� 5/

3g� 8

�
D

�
N � 3

3g� 8

�
elements. Since P is simple, Euler’s formula yields N D 2 � 4. This proves the
required estimate.

The case of fullerenes follows if we observe that, when v1 is a vertex of a pentagon,
the number of vertices in L.v1/ is at most 12.

4 Concluding remarks

Now we discuss several concepts and open questions.

(1) The Hopf theorem The trefoil curve in Figure 5 shows that there exists a
continuous map f W S1!R2 with no pair of spherical f –neighbors having distance
less than

p
3 between them. This means that the direct analog of the aforementioned

Hopf theorem for spherical f –neighbors does not hold for small distances. It would be
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Figure 5

interesting to find more properties of the set of distances between spherical f –neighbors
for a continuous map f of given metric spaces. For example:

Question Is it true that , for any continuous map f W Sn!RnCk , the set

�f WD fı 2R j ı D d.p; q/ for a pair fp; qg of spherical f –neighborsg

contains a nondegenerate interval? Is there a nonzero lower bound for the diameter
of �f ?

(2) Topological Tverberg theorems Projecting a Euclidean n–sphere Sn �RnC1

into a hyperplane in RnC1 shows that there exists a continuous map f W Sn ! Rn

with no set of spherical f –neighbors of cardinality exceeding 2. Consequently, each
convex n–polytope P has a map f W @P !Rn�1 with no set of spherical f –neighbors
intersecting three disjoint faces of P. This means that no direct analog of the topological
Tverberg theorems with three or more disjoint faces holds for spherical f –neighbors.
This correlates with the property (see Remark 16) that no principal cover has disjoint
elements. Nevertheless, we have some analogs of the topological Radon theorem,
which is the topological Tverberg theorem for two disjoint faces; see Corollaries 44,
46 and 51.

Problem Find extensions of topological Tverberg theorems for spherical f –neighbors
with additional restrictions.

(See also Van Kampen–Flores- and Conway–Gordon–Sachs-type results [33].)

(3) Weak Radon rank It would be interesting to:

Problem Describe the set of polyhedra that are not weakly Radon. Find the weak
Radon rank for fullerenes.

(4) Minimaxes, I Let .X; �/ and .M; d/ be metric spaces and let f WX !M be a
continuous map. Let Pf be the set of all pairs of spherical f –neighbors in X. We set

Df WD sup
fx;yg2Pf

�.x;y/; �.X;M / WD inf
f 2C.X ;M /

Df ;
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where C.X;M / stands for continuous maps. Suppose X DSn and M DRm. If m� n,
then �.Sn;Rm/D 2 by the Borsuk–Ulam theorem. For n<m, it is shown in [21] that

�.Sn;Rm/D

r
2.nC2/

nC1
:

Problem Find �.X;M / and its lower bounds in general and some special cases. In
particular , find Df and � for the case where M D Rn and X is an n–dimensional
Riemannian manifold.

(5) Minimaxes, II Let us fix ŒC� in ŒX;Sn�2� (see Definition 7), for instance ŒC�¤ 0

in �3.S
2/.

Question What is the min–max distance between the points of a set intersecting each
element of a cover of this class?

(6) Widths, distortion, filling radius, etc Similarly to �.X;M /, we consider in-
fima of Df over families of homotopic maps, over all continuous maps of a given
space to certain classes of spaces (eg contractible spaces), etc. This generates a
series of new metric “�–invariants” of maps and metric spaces. These �–invariants
are similar to such invariants as distortion, filling radius and various widths (see
[37; 12; 13; 10; 31; 18; 3]).

Problem Find and describe relations between �–invariants and classical ones.

(7) Topological and visual f –neighbors Let f WX ! Y be a map of topological
spaces. We say that two points a and b in X are topological f –neighbors if f .a/
and f .b/ belong to the boundary of the same connected component of the comple-
ment Y nf .X /. If Y is a geodesic metric space, we say that a and b in X are visual
f –neighbors if f .a/ and f .b/ are connected by a geodesic, in Y, whose interior does
not meet f .X /.

Problem Translate the above constructions and questions to these new types of f –
neighbors.

(8) Helly-type sufficient conditions for principal covers Remark 18 implies some
Helly-type sufficient conditions for principal covers. For example, if C D fC1; : : : ;Cng

is a closed cover of a normal space Y such that N .C/ D @�n�1 and, for each J �

f1; : : : ; ng with jJ j � n � 2, any continuous map Sn�2�jJ j !
T

j2J Cj is null-
homotopic, then there exists a map f W @�n�1 ! Y such that the image of each
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facet is contained in an element of C, so C is principal. (See the proofs of Theorems 5
and 6 in [7].)

Question Which of the other versions of topological Helly theorem (see eg [7; 24])
give sufficient conditions for principal and non-nullhomotopic covers?
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Stable cohomology of the universal
degree d hypersurface in P n

ISHAN BANERJEE

We consider the universal hypersurface of degree d in CP n and compute its stable
cohomology (with respect to d ). We describe the stable classes geometrically.

14F25, 14J70, 55R80

1 Introduction

Let Ud;n be the parameter space of smooth degree d hypersurfaces in Pn. There

is a natural inclusion Ud;n � P .
nCd

d / D P .Vd;n/, where Vd;n is the vector space of
homogenous degree d complex polynomials in nC 1 variables. Let

U �d;n WD f.f; p/ 2 Ud;n �Pn
j f .p/D 0g:

Let � W U �
d;n
! Ud;n be defined by �.f; p/ D f . The map � W U �

d;n
! Ud;n is the

universal family of smooth degree d hypersurfaces in Pn; it satisfies the following
property: given a family � WE!B of smooth degree d hypersurfaces in Pn, there is a
unique diagram

E U �
d;n

B Ud;n

9Š

9Š

In other words, any family of smooth degree d hypersurfaces is pulled back from this
one. Our main result is as follows:

Theorem 1.1 Let d; n� 1. Then there is an embedding of graded algebras ,

� W H�.PGLnC1.C/IQ/˝QŒx�=.xn/ ,! H�.U �d;nIQ/;

where jxj D 2. Here j � j denotes the cohomological degree. Let c1.E/ denote the first
Chern class of the line bundle E.
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(1) The element �.x/D c1.L/, where L is the fiberwise canonical bundle (defined
in Section 2).

(2) Suppose d � 4nC 1. Then � is surjective in degree less than .d � 1/=2.

Let Xd;n � Vd;n be the open subspace of polynomials defining a nonsingular hyper-
surface. The complement of Xd;n in Vd;n is known as the discriminant hypersurface;
it is the zero locus of the classical discriminant polynomial. It is known to be highly
singular.

A point of Xd;n determines a projective hypersurface up to a scalar. There is a natural
action of C� on Xd;n such that the quotient Xd;n=C

� is Ud;n. Let

X�d;n WD f.f; p/ j f 2Xd;n; p 2 Pn; f .p/D 0g:

There is a forgetful map � WX�
d;n
!Xd;n defined by �.f; p/D f . The fibres of � are

Z.f / WD ��1.f /D fp 2 Pn
j f .p/D 0g � Pn:

It is well known that the map � is a fibre bundle.

X�
d;n

also has several interesting quotients. The action of GLnC1 on Xd;n lifts to one
on X�

d;n
. We obtain U �

d;n
DX�

d;n
=C�. The map � WX�

d;n
!Xd;n is C�–equivariant

and descends to the map � W U �
d;n
! Ud;n.

We define Md;n WD Ud;n=PGLnC1.C/, the moduli space of degree d smooth hyper-
surfaces in Pn. We also define M �

d;n
DX�

d;n
=GLnC1.C/.

We can rewrite our result in terms of X�
d;n

and M �
d;n

as well. This is important to us
as our proof will mostly involve understanding the space X�

d;n
. The space M �

d;n
is

important conceptually.

Theorem 1.2 Let d; n� 1.

(1) There is an embedding of graded algebras ,

 W .H�.GLnC1.C/IQ/˝QŒx�=.xn// ,! H�.X�d;nIQ/;

where jxj D 2.

(2) There is an embedding of graded algebras ,

' WQŒx�=.xn/ ,! H�.M �d;nIQ/;

where jxj D 2.

Suppose that d � 4nC1. Then the maps  and ' are surjective in degree � .d �1/=2.
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Theorem 1.2 is equivalent to Theorem 1.1 after applying Theorem 2 of Peters and
Steenbrink [6].

Nature of stable cohomology Throughout the course of the proof of Theorem 1.2 we
also obtain the following description of the stable cohomology classes of X�

d;n
. The

stable classes are tautological in the following sense: There is a line bundle L on M �
d;n

defined by taking the canonical bundle fibrewise (we rigorously define L in Section 2).
We will show that c1.L/; : : : ; c1.L/

n�1 are nonzero in H�.M �
d;n
IQ/ and that stably

the entire cohomology ring of M �
d;n

is just the algebra generated by c1.L/. By [6],

H�.X�d;nIQ/Š H�.GLnC1.C/IQ/˝H�.M �d;nIQ/:

In this way we have some qualitative understanding of the stable cohomology of X�
d;n

.

Both the statement of Theorem 1.2 and our proof of it are heavily influenced by [8], in
which Tommasi proves analogous theorems for Xd;n. Our techniques and approach
are also similar to that of Das in [3], where he proves

H�.X�3;3IQ/Š H�.GL3.C/IQ/˝QŒx�=x3

with jxj D 2. We would also like to mention the paper by Tommasi [7] where
H�.X2;4IQ/ is computed.

In some sense, this paper shows that in a stable range, something similar to Das’s
theorem is true for marked hypersurfaces in general.

Some motivation and historical comments At this point we’d like to make some
remarks on historical motivations for computing and understanding stable cohomology
of moduli spaces of algebraic varieties.

The cohomology of moduli spaces are often interesting because they provide us with
invariants for families of varieties. However, in many interesting cases the entire
cohomology ring of the moduli space may be difficult to understand and compute. An
example of such a phenomenon is the moduli space of curves of genus g, Mg . In this
setting, H�.Mg IQ/ is a huge ring which is not fully understood. However, the spaces
Mg are known to satisfy homological stability and the stable cohomology ring can be
explicitly described. For a survey, see Cohen [2].

Another motivation for computing the stable cohomology of moduli spaces has to do
with arithmetic statistics. Let X be an algebraic variety over Z. Often one would like to
compute #X.Fp/ by studying the eigenvalues of Frobp on H�et .X IQl/. There are often
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comparison theorems which relate the étale cohomology with the singular cohomology
of X.C/ and computations ofH�.X.C/IQ/ can often imply bounds on #.X.Fp//. For
an introduction to this topic, see for instance Sections 1 and 2 of Church, Ellenberg
and Farb [1].

Method of proof One could attempt to prove Theorem 1.2 by applying the Serre
spectral sequence to the fibration � WX�

d;n
!Xd;n. To successfully do this however,

one would need to understand the groups Hp.Xd;nIHq.Z.f /IQ//. While we do a
priori understand what the groups Hp.Xd;nIQ/ are (this is the main theorem of [8]),
this is not sufficient for us to understand what the groups Hp.Xd;nIHq.Z.f /IQ// are,
since Hq.Z.f /IQ/ is a nontrivial local coefficient system. Instead we use an idea of
Das and compute H�.Xp

d;n
IQ/, where Xp

d;n
WD ff 2 Xd;n j f .p/D 0g to avoid any

computations with nontrivial coefficient systems. After we have proved Theorem 1.2
we can use it to deduce what these twisted cohomology groups are.

Corollary 1.3 Let d; n > 0. Suppose d � 4nC 1 and k < .d � 1/=2. Then

Hk.Xd;nIH
n�1.Z.f /IQ//D

�
Hk.Xd;nIQ/ if n is odd;
0 if n is even:

Acknowledgements I’d like to thank my advisor, Benson Farb, for his endless patience
and encouragement; Eduard Looijenga for help with Proposition 5.1; Nir Gadish and
Ronno Das for some comments on the paper; Burt Totaro for catching an error in a
previous version of the paper; and, finally, Gal Porat for his help in editing this paper.

2 A lower bound on Hk.X�

d;n
/

We begin by noting that there is an embedding of algebras

Hk.GLnC1.C//˝QŒx�=.xn/ ,! Hk.X�d /

in the stable range. More precisely, we have the following:

Proposition 2.1 Let n� 0 and d > nC 1. There is a natural embedding of algebras ,

i WH�.GLnC1.C/IQ/˝QŒx�=.xn/ ,!H�.X�d;nIQ/;

where jxj D 2.

Proof We first define the fiberwise canonical bundle L over M �
d;n

as

LD f.f; p; v/ j .f; p/ 2M �d ; v 2 ^
n�1T �p .Z.f //g:
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We can pull back L to a bundle on X�
d;n

, which we will also denote by L. By the same
argument as in Theorem 1 of [6],

H�.X�d;nIQ/Š H�.GLnC1.C/IQ/˝H�.M �d;n.C/IQ/:

Let f 2 Xd;n. Let i W GLnC1.C/! Xd;n be the orbit map defined by i.g/ D g � f.
More precisely, Theorem 1 of [6] states that the natural map

�� W H�.M �d;nIQ/! H�.X�d;nIQ/

makes H�.X�
d;n
IQ/ a free H�.M �

d;n
IQ/–module with a basis given by some set

f˛i } such that the pullbacks fi�.˛i /g give a basis of H�.GLnC1.C/IQ/. But since
H�.GLnC1.C/IQ/ is a free graded commutative algebra, this forces H�.X�

d;n
IQ/ to

be isomorphic to H�.GLnC1.C/IQ/˝H�.M �
d;n
.C/IQ/ as an algebra.

If we restrict L to a particular hypersurface Z, the bundle LjZ D OZ.d �n� 1/. The
Chern class of LjZ satisfies the equality

c1.OZ.d �n� 1//D .d �n� 1/c1.OZ.1//D d.d �n� 1/!Z ;

where !Z is the Kähler class of the variety Z. This implies that for d > nC 1, the
classes c1.L/jZ ; : : : ; c

n�1
1 .L/jZ are nonzero since !Z ; : : : ; !

n�1
Z are nonzero. Now

taking x D c1.L/, this implies that H�.M IQ/ contains a subalgebra isomorphic to
QŒx�=xn.

3 The space X
p

d
and the Vassiliev method

Given a space X , the nth ordered configuration space of X , denoted by PConfnX , is

PConfnX WD f.x1; : : : ; xn/ 2X
n
j xi ¤ xj for all i ¤ j g:

There is a natural action of the symmetric group on n letters Sn on X by permuting
the coordinates. The quotient PConfnX=Sn is called the nth unordered configuration
space and denoted by UConfnX . In order to understand Xd;n we will first look at the
cohomology of a related space. For a fixed point p 2 Pn, we set

X
p

d
D ff 2Xd;n j f .p/D 0g:

Then

X
p

d
� V

p

d
D ff 2 Vd j f .p/D 0g:
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The space V p

d
is a vector space. The complement of Xp

d
in V p

d
will be called †d;p.

We will compute its Borel–Moore homology and use Alexander duality to compute
H�.X

p

d
/.

Let p 2 Pn. By definition, p is a one-dimensional subspace p � CnC1. Choose a
complementary subspace W �CnC1 (it is not unique, but we will fix a particular one).
We define Gp WD GL.W /.

Let x1; : : : ; xn be local coordinates in a neighbourhood U containing p. Pick a local
trivialization s of the line bundle O.d/ in U . There is an induced map

f � W T �0 .O.d/p/! T �p .P
n/:

Let us use our local coordinates to identify T �0 .O.d/p/ with C and T �p .P
n/ with Cn.

Suppose f 2 Xp

d
. Then the map f � is nonzero because f has a regular zero locus.

This defines a map
� WX

p

d
! T �p .P

n/�f0g ŠCn
�f0g

given by �.f /D f �.1/.

Proposition 3.1 The map � WXp

d
!Cn�f0g is a fibration.

Proof The group Gp acts on Pn fixing p. Therefore it acts on both Xp

d
and Cn�f0g.

The map � is equivariant with respect to these actions. The map � is therefore the
pullback of a map � 0 from X

p

d
=Gp to Cn�f0g=Gp . But Cn�f0g=Gp is a point, and

since � 0 is surjective it is a fibration. Since pullbacks of fibrations are fibrations, � is a
fibration.

Let Xv WD �
�1.v/ and let

Vv WD ff 2 Vd j f
�.1/D vg:

Clearly, Xv � Vv. Let †v WD Vv �Xv. We will try to understand the Borel–Moore
homology of †v.

To accomplish this, the Vassiliev method [10] will be applied. The Vassiliev method to
compute Borel–Moore homology involves stratifying a space and using the associated
spectral sequence to compute its Borel–Moore homology. The space †v will be
stratified based on the points at which a section f is singular. The techniques used are
very similar to that in [8] which contains many of the technical details.
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We denote the k–simplex with vertex set fa0; : : : ; akg by �fa0;:::;akg
. We denote a

k–simplex by �k and an open k–simplex by �ı
k

We will now construct a cubical space C which will be involved in understanding †v.
Let N D .d � 1/=2. Let I be a subset of f1; : : : ; N � 1g. For k < N , let

CI WD f.f; p/ j f 2†v; p W I ! Pn; p.I /� singular zeroes of f g:

We define †�N
v D ff 2†v j f has at least N singular zeroesg. We define

CI[fN g WD f.f; p/ j f 2†v; p W I ! Pn; p.I /� singular zeroes of f; f 2†�N
g:

If I � J then we have a natural map from CJ ! CI defined by restricting p. This gives
C the structure of a cubical space over the set f1; : : : ; N g. We can take the geometric
realization of C, denoted by jCj. Then there is a map � W jCj ! †v, induced by the
forgetful maps CI !†v.

jCj is topologized in a nonstandard way so as to make � proper. We topologize it as
follows: in [8], a space jXj is constructed with a map � W jXj !†. Here, †D Vd �Xd .
The topology on jXj is chosen carefully so as to make � proper. The construction of
jXj as a set identical to that of jCj except we replace †v with †. There is a natural
inclusion jCj ! jXj. We give jCj the subspace topology along this map.

Proposition 3.2 The map � W jCj !†v is a proper homotopy equivalence.

Proof This proof is nearly identical to that of Lemma 15 in [8]. The properness of
� W jCj ! †v follows from the properness of � W jXj ! † and the properties of the
subspace topology. In our setting, having contractible fibres implies that the map � is a
homotopy equivalence; this follows by combining Theorems 1.1 and 1.2 of [5]. We
will now prove that the fibres are contractible. If f … †�N

v , let fp1; : : : ; pkg be the
singular zeroes of f . In this case the fibre ��1.f / is a simplex with vertices given by
the images of the points .f; xi / 2 Cf1g ��f1g. Now suppose f 2 †�N

v . In this case
the fibre ��1.f / is a cone over the point f 2 CN ��fN g.

Now as in any geometric realization, jCj is filtered by

Fn D im
� a
jI j�n

CI ��k

�
:

The Fn form an increasing filtration of jCj, ie F1 � F2 � � � � � Fn � FnC1 � � � � andS1
nD1 Fn D jCj.
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Proposition 3.3 Let d; n� 1 and N D .d � 1/=2. For k < N , the space Fk �Fk�1

is a �ı
k

–bundle , over a vector bundle Bk over UConfk.P
n�p/.

Proof The space Fk � Fk�1 consists of the interiors of k simplices, labelled by
ff; p0; : : : ; pkg. Let

Bk D f.f; fp0; : : : ; pkg/ 2†v �UConfk.P
n
�p/ j pi are singular zeroes of f g:

We have a map � W Fk �Fk�1! Bk , defined by

�..f; fp0; : : : ; pkg/; s0; : : : ; sk/D .f; fp0; : : : ; pkg/:

The map � expresses Fk �Fk�1 as a fibre bundle over Bk with �ı
k

fibres, ie we have
a diagram

�ı
k

Fk �Fk�1

Bk

We have a map Bk ! UConfk.P
n �p/ defined by ff; p0; : : : ; pkg 7! fp0; : : : ; pkg.

This is a vector bundle by Lemma 3.2 in [9].

We have a one-dimensional local coefficient system denoted by˙Q on UConfk.P
n�p/

defined in the following way: Let Sk be the symmetric group on k letters. We
have a homomorphism �1UConfk.P

n � p/! Sk associated to the covering space
PConfk.P

n � p/! UConfk.P
n � p/. Compose this homomorphism with the sign

representation Sk!˙1D GL1.Q/ to obtain our local system.

Proposition 3.4 Let d; n� 1 and ed D dimC.Vv/. For k < .d � 1/=2,

H�.Fk �Fk�1/ŠH��.kC2ed�2.nC1/.kC1//.UConfk.P
n
�p/;˙Q/:

Proof By Proposition 3.3 the space Fk � Fk�1 is a bundle over UConfk.P
n � p/.

This fact implies that

H�.Fk �Fk�1/ŠH��.kC2ed�2.nC1/.kC1//.UConfk.P
n
�p/;Q.�//:

Here Q.�/ is the local system obtained by the action of �1.UConfk.P
n�p// on the

fibresHk.�
ı
k
/, where in this case�ı

k
is the open k–simplex corresponding to the fibres

of the map Fk�Fk�1!Bk . But one observes that the action of �1.UConfk.P
n�p//

on this open simplex is by permutation of the vertices, which implies Q.�/D˙Q.
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As with any filtered space, we have a spectral sequence with

E
p;q
1 DHpCq.Fp �Fp�1IQ/

converging to H�.Y IQ/. Now for p < N , by Proposition 3.4,

E
p;q
1 DHq�.2ed�2.nC1/.pC1//.UConfp.Pn

�p/I˙Q/:

We would like to claim that EN;q
1 doesn’t matter in the stable range. To be more precise,

we have the following:

Lemma 3.5 Let d; n� 1, let N D .d � 1/=2, and let k > 2ed �N . Then

Hk.jCj �FN IQ/ŠHk.jCjIQ/:

Proof We first will try to bound the H�.FN IQ/ and then use the long exact sequence
of the pair. FN is the union of locally closed subspaces

�k D f.f; x1; : : : ; xk/; p j f 2†
�N ; xi are singular zeroes of f; p 2�kg:

We have a surjection � W�k!UConfk.P
n�p/. This map � is in fact a fibre bundle with

fibres �k �Ced�N.nC1/. The space UConfk.P
n�p/ is kn–dimensional. Therefore,

H�.�kIQ/D 0 if �> 2.ed � .nC 1/N /C kn < 2ed �N:

This implies that for all k,H�.�kIQ/D0 if �>2ed�N . This impliesH�.FN IQ/D0

if �> 2ed �N . By the long exact sequence in Borel–Moore homology associated to
the pair FN ,! Y , Hk.Y �FN IQ/ŠHk.Y IQ/ for k > 2ed �N .

4 Interlude

In [8], Tommasi proves the following result:

Theorem 4.1 [8] Let d; n� 1, let f 2Xd;n, and let  W GLnC1.C/!Xd;n be the
orbit map defined by  .g/D g �f . Then  � WHk.Xd;n;Q/!Hk.GLnC1.C/;Q/ is
an isomorphism for k < .d C 1/=2.

In this section we shall look at the proof of Theorem 4.1 in [8] and use it to prove an
identity used later on in this paper. One of the ingredients in the proof of Theorem 4.1
is a Vassiliev spectral sequence. We introduce a new convention, by letting h denote
the dimension of H . We also define Gr.p; n/ to be the Grassmannian of p–planes
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in Cn. In what follows we shall need a few basic facts about H�.Gr.p; n/IQ/ and
Schubert symbols. Let

0DE0 ¨E1 ¨ � � �¨En�1 ¨En DCn

be a complete flag. Given U 2 Gr.p; n/, we can associate to it a sequence of numbers,
ai D dimU \Ei . These ai satisfy the conditions

0� aiC1� ai � 1; a0 D 0 and an D p:

Such sequences are called Schubert symbols. Let a D .a0; : : : ; an/. We call a a
Schubert symbol if 0� aiC1�ai � 1, a0D 0 and anDp. Associated to each Schubert
symbol a we have a subvariety Wa � Gr.p;Cn/ defined as

Wa WD fU �Cn j dim.U \Ci /D aig:

The main result we will be using is the following.

Theorem 4.2 Let a be a Schubert symbol. The classes ŒWa� 2H�.Gr.p; n/IQ/ form
a basis.

For a proof of Theorem 4.2 see page 1071 of [4].

Proposition 4.3 Let n be a positive integer. ThenX
k;p

hk.Gr.p;Cn/IQ/D 2n:

Proof By Theorem 4.2,X
k;p

hk.Gr.p;Cn/IQ/D
X
p

#f.a0; : : : ; an/ j 0� aiC1� ai � 1; a0 D 0; an D pg

D #f.a0; : : : ; an/ j 0� aiC1� ai � 1; a0 D 0g

D #f.b1; : : : ; bn/ 2 f0; 1gg:

The last equality follows because if we are given a sequence of ai , we can uniquely
obtain a sequence of bi , by letting bi D ai � ai�1.

Our main aim of this section is to prove the following technical result.
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Theorem 4.4 The Vassiliev spectral sequence in [8] degenerates in the stable range: if
p < .d C 1/=2 and q > 0, then Ep;q

1 ŠE1p;q .

Equivalently, for k < .d C 1/=2,

(1)
X
p

h2.pC1/.nC1/�p�k�1.UConfp.Pn/IQ/D hk.GLnC1IQ/:

Remark 4.5 The statements are equivalent because the group Hk.GLnC1.C/IQ/ is a
subquotient of M

H2.pC1/.nC1/�p�k�1.UConfp.Pn/IQ/:

Proof We already know thatX
p

h2.pC1/.nC1/�p�k�1.UConfp.Pn/I˙Q/� hk.GLnC1IQ/

because the left hand side of (1) are the appropriate terms in a spectral sequence
converging to the right hand side of (1).

It suffices to prove thatX
k

X
p

h2.pC1/.nC1/�p�k�1.UConfp.Pn/I˙Q/D
X

k

hk.GLnC1IQ/D 2
nC1:

Lemma 2 in [10] states that

h2.pC1/.nC1/�p�k�1.UConfp.Pn/;˙Q/

D h2.pC1/.nC1/�p�k�1�p.p�1/.Gr.p;CnC1/IQ/:

ThereforeX
k

X
p

h2.pC1/.nC1/�p�k�1.UConfp.Pn/I˙Q/D
X

k

X
p

hk.Gr.p;CnC1/IQ/:

By Proposition 4.3, this is equal to 2nC1.

5 Computation

We would like to know what the groups H�.UConfkC1.P
n�p/I˙Q/ are. First note

that in [10] Vassiliev proves that:

Proposition 5.1 [10] Let k; n > 0. Then

H�.UConfk.P
n/I˙Q/ŠH��.k/.k�1/.Grk.C

nC1/IQ/:
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Also note that in light of Theorem 4.2 the homology of Grassmannians is well under-
stood in terms of Schubert cells.

Consider the long exact sequence in Borel–Moore homology associated to

UConfkC1.P
n
�p/� UConfkC1.P

n/ - UConfk.P
n
�p/:

The last inclusion is defined by the map � WUConfk.P
n�p/!UConfkC1.P

n/, where
�.fx1; : : : ; xng/D fx1; : : : ; xn; pg.

We consider the long exact sequence in Borel–Moore homology associated to the pair
.UConfkC1.P

n/;UConfkC1.P
n�p//. Here UConfkC1.P

n�p/ is an open subset of
UConfkC1.P

n/ with complement homeomorphic to UConfk.P
n�p/. A segment of

this exact sequence is

(2) H�.UConfk.P
n
�p/I˙Q/!H�.UConfkC1.P

n/I˙Q/

!H�.UConfkC1.P
n
�p/I˙Q/

Proposition 5.2 Let k; n > 0. Then there is a canonical decomposition

H�.UConfkC1.P
n/I˙Q/

ŠH�.UConfk.P
n
�p/I˙Q/˚H�.UConfk.P

n
�p/I˙Q/;

due to the fact that (2) splits.

Proof Lemma 2 of [10] implies that (2) decomposes into split short exact sequences,

H�.UConfkC1.P
n/I˙Q/

ŠH�.UConfk.P
n
�p/I˙Q/˚H�.UConfk.P

n
�p/I˙Q/:

Remark 5.3 In factH�.UConfk.P
n�p/I˙Q/ has a basis given by Schubert symbols

with a1 D 0.

Proposition 5.4 If the Vassiliev spectral sequence has no nonzero differentials and
k < .d � 1/=2, then Hk.Xv/ŠH

k.Gp/ as vector spaces.

Proof Now in our spectral sequence we had

E
p;q
1 DHq�.2ed�2.pC1/.nC1//.UConfpC1.P

n
�p/I˙Q/:
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First collect all terms in the main diagonal, ie

V WD
M

pCqDl

Hq�.2Dn�2.pC1/.nC1//.UConfpC1.P
n
�p/I˙Q/

It will suffice to prove that

(3) dimV D
X

p�2Dn�k

h2.pC1/.nC1/�p�k�1.UConfp.Pn
�pt/I˙Q/

D hk.GLnIQ/:

Theorem 4.4 implies

(4)
X
p

h2.pC1/.nC1/�p�k�1.UConfp.Pn/I˙Q/D hk.GLnC1IQ/:

Proposition 5.1 implies

h2.pC1/.nC1/�p�k�1.UConfp.Pn/I˙Q/D 0 if p > n:

So as long as n < 2.DnCnC 1/� k,X
p�2.DnCnC1/�k

h2.pC1/.nC1/�p�k�1.UConfp.Pn/I˙Q/

D

X
p

h2.pC1/.nC1/�p�k�1.UConfp.Pn/I˙Q/:

But the condition n < 2.DnCnC1/�k is equivalent to k < 2.DnC1/Cn, which is
true if k < N . We have another equality from Proposition 5.2,

hk.UConfp.Pn
�pt/I˙Q/Chk.UConfp�1.P

n
�pt/I˙Q/Dhk.UConfp.Pn/I˙Q/:

Plugging this into (4),

hk.GLnC1IQ/D
X

h2.pC1/.nC1/�p�k.UConfp.Pn/I˙Q/

D

X
h2.pC1/.nC1/�p�k�1.UConfp.Pn

�pt/I˙Q/

C h2.pC1/.nC1/�p�k�1.UConfp�1.P
n
�pt/I˙Q/:

We have the identity

hk.GLnIQ/C h
k�.2nC1/.GLnIQ/D h

k.GLnC1IQ/:

This implies

(5) hk.GLnIQ/C h
k�.2nC1/.GLnIQ/

D

X
p

h2.pC1/.nC1/�p�k�1.UConfp.Pn
�pt/I˙Q/

C h2.pC1/.nC1/�p�k�1.UConfp�1.P
n
�pt/I˙Q/:
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Now we will try to prove (3) by induction on k. For k D 0, (3) is trivial. By induction,

hk�.2nC1/.GLnIQ/D
X
p

h2.pC1/.nC1/�p�k�1.UConfp�1.P
n
�pt/I˙Q/:

Putting this into (5), we obtainX
p

h2.pC1/.nC1/�p�k�1.UConfp.Pn
�pt/I˙Q/D hk.GLnIQ/:

Now we can look at the Serre spectral sequence associated to the fibration

Xv ,!Xp!Cn
� 0:

We observe that if there are no nonzero differentials, then

H�.XpIQ/ŠH
�.XvIQ/˝QŒe2n�1�=e

2
2n�1:

This is because the Serre spectral sequence degenerates and since QŒe2n�1�=e
2
2n�1 is

a free graded commutative algebra the ring structure of the total space is forced to be
the tensor product.

Proposition 5.5 Let d > 0 and p 2 Pn. Then

H�.Xd;pIQ/ŠH
�.GpIQ/˝A;

where A is H�.Xp

d
=GpIQ/.

Proof This follows immediately from Theorem 2 in [6].

We will also need the following fact, which is a special case of Lemma 2.6 in [3].

Proposition 5.6 Let d > 0, let k < .d � 1/=2, and let U �
d
DX�

d
=C�. Then

H�.X�d IQ/ŠH
�.U �d IQ/˝QŒe1�=.e

2
1/;

where je1j D 1.

Proposition 5.6 implies if there are no nonzero differentials in both our Vassiliev spectral
sequence and in the Serre spectral sequence associated to the fibration Xp

d;n
!Cn� 0

then
H�.Ud;pIQ/ŠH

�.GpIQ/˝QŒe2n�1�=.e
2
2n�1/

for �< .d � 1/=2. In case there are nonzero differentials in either spectral sequence,
then H�.Ud;pIQ/ŠH

�.GpIQ/ for �< .d � 1/=2.
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6 Comparing fibre bundles

In this section we finish the proof of Theorem 1.2.

Proof of Theorem 1.2 We compare three related fibre bundles and their associated
spectral sequences. This is similar to the proof of Theorem 1.1 in [3].

Let PGp WD StabPGL.nC1/.p/:

(6)

PGp

%%

// Ud;p

%%

// Ud

##

PGLnC1.C/ //

��

U �
d

//

��

Ud �Pn

��

Pn Pn Pn

We denote the exterior algebra on generators a1; : : : ; an by

ƒha1; : : : ; ani:

By Proposition 5.4 and [6, Theorem 1], there are two possibilities for H�.Ud;pIQ/:
either

H�.Ud;pIQ/ŠH
�.PGpIQ/˝QŒe2n�1�=.e

2
2n�1/Šƒhu1; u3; : : : ; u2n�1; e2n�1i

or
H�.Ud;pIQ/ŠH

�.PGpIQ/Dƒhu1; u3; : : : ; u2n�1i:

Suppose for the sake of contradictionH�.Ud;p/Dƒhu3; : : : ; u2n�1i for �<.d�1/=2.
In this case,H�.Ud;pIQ/ŠH

�.PGpIQ/ for �<.d�1/=2. Then since the homology
of the base and the fibres are isomorphic, H�.U �

d
IQ/ Š H�.PGLnC1.C/IQ/ for

�< .d � 1/=2. However, by Proposition 2.1,

H�.PGLnC1.C/IQ/˝QŒx�=xn/�H�.U �d IQ/:

But H�.PGLnC1.C/IQ/ does not contain a subalgebra isomorphic to

H�.PGLnC1.C/IQ/˝QŒx�=xn/:

This is a contradiction. So we must be in the case where

H�.Ud;pIQ/ŠH
�.PGpIQ/˝QŒe2n�1�=.e

2
2n�1/:
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Consider the Serre spectral sequence associated to the fibration U �
d
! Pn. Its E2 page

has terms

E
p;q
2 DHp.Pn;H q.U

p

d
IQ//ŠHp.Pn

IQ/˝H q.U
p

d
IQ/:

Now
H q.U

p

d
IQ/ŠH q.PGpIQ/˝QŒe2n�1�=.e

2
2n�1/:

Consider the trivial fibre bundle Ud � Pn ! Pn. There is a natural inclusion of
fibre bundles as shown in (6). This induces a map of spectral sequences between the
associated Serre spectral sequences.

Note that any class ˛ 2H q.U
p

d
IQ/ that lies in the image of H q.Ud IQ/ is mapped to

zero under any differential thanks to the fact that all differentials are zero in the spectral
sequence associated to a trivial fibration. The only possible nonzero differential in
the E2 page of the Serre spectral sequence associated to the fibration U �

d
! Pn is

d.e2n�1/.

Suppose for contradiction that d.e2n�1/D 0. This implies that

Hk.U �d IQ/Š .H
�.Ud;pIQ/˝H

�.Pn
IQ//k D .H

�.PGpIQ/˝H
�.Pn;Q//k

for k < .d � 1/=2.

Let p.t/ be the Poincaré polynomial of U �
d

. We already know that

H�.U �d IQ/ŠH
�.PGLnC1.C/IQ/˝H

�.U �d =PGLnC1.C/IQ/:

So .1C t3/ � � � .1C t2nC1/ j p.t/. On the other hand, if de2n�1 D 0 then

p.t/D .1C t3/ � � � .1C t2n�1/.1C t2C t4C � � �C t2n/ mod t .d�1/=2:

If d � 4nC 1, then this implies that .1C t2nC1/−p.t/. This is a contradiction.

So we must have a differential killing the class in H 2n.Pn;H 0.Ud;p//IQ/. The
differential must come from e2n�1; ie d.e2n�1/D ax

n for some a 2Q�. This (along
with multiplicativity of differentials) determines all differentials and implies (1). By
Proposition 5.6, (1) implies (2). By Theorem 1 of [6],

H�.X�d;nIQ/ŠH
�.M �d;nIQ/˝ .H

�.GLnC1/.C/IQ/:

In light of this, (2) implies (3).

Having finished the proof of Theorem 1.2 we can prove Corollary 1.3.
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Proof of Corollary 1.3 Consider the fibration

Z.f / X�
d

Xd

and its associated Serre spectral sequence whose E2 page is of the form

Hp.Xd IH
q.Z.f /IQ//)H�.X�d IQ/:

By Theorem 4.1 for �< .d C 1/=2,

H�.Xd IQ/ŠH
�.GLnC1.C/IQ/:

By Theorem 1.2, we know that the classes in the E2 page corresponding to the group
Hp.GLnC1.C/I c1.L/

q/ survive until the E1 page, and in the stable range all other
terms are killed by differentials.

Now suppose n is even. Then the only other terms in the spectral sequence are of the
form Hp.Xd IH

n�1.Z.f /IQ//. However it is not possible for any such term to be in
the image or in the preimage of a nonzero differential. This is because all other terms
survive, so any possible nonzero differential must be from Hp1.Xd IH

n�1.Z.f /IQ//

to Hp2.Xd IH
n�1.Z.f /IQ// for some choice of p1 and p2. However no differential

is of bidegree .p2�p1; 0/. This implies that

Hp.Xd IH
n�1.Z.f /IQ//Š 0:

A similar argument shows that if n is odd, Hp.Xd IH
n�1.Z.f /IQ//ŠHp.Xd IQ/.

Essentially the only difference between the even case and the odd case is that in the odd
case we have a class c1.L/

.n�1/=22Hn�1.Z.f /IQ/. LetADQ–span.c1.L/
.n�1/=2/

By Theorem 1.2, we know thatHp.Xd;nIA/ survives until the E1 page. An argument
similar to that in the even case shows that

Hp.Xd IH
n�1.Z.f /IQ//ŠHp.Xd IA/:
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On the wheeled PROP of stable cohomology of Aut.Fn/

with bivariant coefficients

NARIYA KAWAZUMI

CHRISTINE VESPA

We show that the stable cohomology of automorphism groups of free groups with
coefficients obtained by applying Hom.�;�/ to tensor powers of the abelianization,
is equipped with the structure of a wheeled PROP H. We define another wheeled
PROP E by Ext–groups in the category of functors from the category of finitely
generated free groups to k–modules. The main result of this paper is the construction
of a morphism of wheeled PROPs ' W E ! H such that '.E/ is the wheeled PROP
generated by the cohomology class h1 constructed by the first author.

20F28; 18M85, 20J06

1 Introduction

This paper concerns the cohomology of automorphism groups of free groups Aut.Z�n/
for n 2N, with coefficients given by the k–modules

Bl;q.Z
�n;Z�n/ WD HomV..k

n/˝l ; .kn/˝q/;

where l; q 2N, k is a commutative ring and V is the category of k–modules, and where
the structure of Aut.Z�n/–module on Bl;q.Z�n;Z�n/ is given by the diagonal action.

In [8] — see also [9] — for n � 2, the first author introduced a nonzero cohomology
class

h1 2H
1.Aut.Z�n/;HomV.k

n; .kn/˝2//

and constructed, from h1, cohomology classes

hp 2H
p
�
Aut.Z�n/;HomV.k

n; .kn/˝pC1/
�

for p > 1 and Nhp 2Hp.Aut.Z�n/; .kn/˝p/ for p � 1, even in the unstable range. The
construction of these classes is inspired by previous works of Morita [19] and Morita
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License 4.0 (CC BY). Open Access made possible by subscribing institutions via Subscribe to Open.
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with the first author [10; 11] concerning cohomology classes of the mapping class
group with trivial coefficients Q; see Remark 7.3.

By a classical construction (see Section 4), there are group morphisms

H�.Aut.Z�nC1/IBl;q.Z
�nC1;Z�nC1//

˛n
�!H�.Aut.Z�n/IBl;q.Z

�n;Z�n//:

The stable cohomology of the automorphism groups of free groups with coefficients
given by Bl;q is defined by

H�st .Bl;q/ WD lim
n2N

H�.Aut.Z�n/IBl;q.Z
�n;Z�n//

where the limit is taken over the group morphisms ˛n.

By a result of Randal-Williams and Wahl [21], this cohomology stabilizes so that the
stable cohomology H i

st.Bl;q/ is isomorphic to H i .Aut.Z�n/IBl;q.Z�n;Z�n// for n
big enough. It follows from the stability that stable cohomology is equipped with a
cup product map

[WH�st .Bl1;q1/˝H
�
st .Bl2;q2/!H�st .Bl1;q1 ˝Bl2;q2/

for l1; q1; l2; q2 2N.

In Definition 6.1 we define the PROP H, where the morphisms are the graded .Sq;Sl/–
bimodules

H.q; l/DH�st .Bl;q/

where the action of symmetric group Sq (resp. Sl ) is given by place permutation on
the tensor product .�/˝q (resp. .�/˝l ) and where the horizontal composition is given
by the cup product map for stable cohomology and the vertical composition is induced
by the composition in V .

We show that this PROP is equipped with further structure:

Proposition 1 (Proposition 6.2) The PROP H is a wheeled PROP , ie it is equipped
with contraction maps

� ij WH.q; l/!H.q� 1; l � 1/

for 1� i � q and 1� j � l compatible with the structure of PROP.

Wheeled PROPs were introduced by Markl, Merkulov and Shadrin in [15] to treat
PROPs equipped with trace maps. The typical example of a wheeled PROP is the
PROP of endomorphism of a free finitely generated module where the contractions
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are given by partial trace maps; see Example 2.2. The wheeled PROP structure on the
PROP H should be viewed as a cohomological version of the wheeled endomorphism
PROP.

In the stable range, for p > 1, the cohomology classes hp are obtained from h1 using
the horizontal and vertical composition in the PROP H, and for p � 1, the classes Nhp
are obtained from hp using the contraction maps. We deduce that the classes hp and
Nhp are in the subwheeled PROP K of H generated by the class h1.

Understanding the stable cohomology of Aut.Z�n/ with coefficients given by Bl;q
is equivalent to giving a description of the wheeled PROP H in terms of generators
and relations. This is open; in particular, it is unknown whether the inclusion functor
K ,!H is strict.

By the results of Djament and the second author [1; 3], we know that the stable
cohomology of Aut.Z�n/ with nonconstant coefficients is closely related to Ext–groups
in the category F.grIk/ of functors from the category gr of finitely generated free
groups to the category V of k–modules. More precisely, the main result of [3], obtained
using functor homology methods, implies that H.0; l/D0 for l >0 and [1, Théorème 4]
gives, for kDQ, a natural isomorphism

(1-1) H.q; 0/'
M
j2N

Ext��jF.grIk/.ƒ
j a; a˝q/;

where a˝q is the qth tensor power of the abelianization functor and ƒj a is the j th

exterior power of the abelianization functor; see Section 3. The Ext–groups on the
right-hand side of the isomorphism (1-1) are computed in [22] (the result is recalled in
Proposition 10.1) giving the explicit computation of H.q; 0/.

Note that Randal-Williams obtained in [20] the computation of H.0; l/ and H.q; 0/
using geometric techniques independent of the approach in [1; 3].

Inspired by a conjecture given in [1] we define in Section 10, for kDQ, a PROP E
where the morphisms are the graded .Sq;Sl/–bimodules

E.q; l/D
M
j2N

Ext��jF.grIk/.a
˝l
˝ƒj a; a˝q/:

We give an explicit description of the PROP E (see Theorem 5) and deduce from it that
the PROP E inherits a structure of wheeled PROP.

The main result of this paper is the following:
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Theorem 2 (Theorem 11.1) There is a morphism of wheeled PROPs ,

' W E!H;
such that '.E/' K.

Djament’s conjecture can be rephrased in the following way:

Conjecture 3 The morphism ' is an isomorphism of wheeled PROPs.

This conjecture would imply that the inclusion functor K ,!H is an equivalence of
categories, ie the class h1 would generate the wheeled PROP H.

The sub-PROP E0 of E given by

E0.q; l/D Ext�F.grIk/.a
˝l ; a˝q/

has been studied by the second author; in particular, by [22, Proposition 3.5] the PROP
E0 is generated by its underlying operad P0. In Proposition 9.13 we give an explicit
description of this operad by generators and relations. A more conceptual description
of the operad P0 is the following:

Proposition 4 (Proposition 9.14) The operad P0 is the operadic suspension of the
operad Com of nonunital commutative algebras.

The previous results on E0 and P0 are also true for kD Z.

The forgetful functor from wheeled PROP to operads has a left adjoint. We denote
by CP˚

0
the wheeled PROP associated to the operad P0 by this functor. We obtain the

following result.

Theorem 5 (Theorem 10.11) There is an isomorphism of PROPs

� W CP˚
0

'
�! E :

In particular, E inherits a structure of wheeled PROP via this isomorphism. The
existence of a wheeled structure on the PROP E is quite surprising and is very specific
to the situation studied in this paper; see Remark 10.12. We deduce from Theorem 5 a
description of the wheeled PROP E by generators and relations.

Let Ew (resp. H0) be the sub-PROP of E (resp. H) keeping only the morphisms to 0
and the endomorphisms in degree 0 in E (resp. H). Djament’s result can be rephrased
in the following way:

Proposition 6 [1, Théorème 4] By restriction , ' induces an isomorphism of PROPs ,
'0 W Ew '

�!H0.
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Notation We denote by N D f0; 1; : : :g and by q the set f1; : : : ; qg.

Throughout the paper, k is a commutative ring which will be, most of the time, a field
of characteristic zero or Z. We denote by V the category of k–modules and Vf its full
subcategory of free finitely generated modules.

A homological Z–graded k–module is denoted by V� D
L
n Vn, and a morphism of

homological degree d , f W V�!W�, is a family of linear maps fn W Vn!WnCd for all
n 2 Z. To V� a homological Z–graded k–module, we associate a cohomological Z–
graded k–module V � by V n WDV�n. A morphism of homological degree d corresponds
to a morphism of cohomological degree �d .

Graded k–modules and morphisms of degree 0 form a category denoted by grV . For˝,
the tensor product of Z–graded k–modules, the category .grV;˝;k/ is equipped
with the symmetry given by the maps � W V ˝W !W ˝V defined by �.v˝w/ WD
.�1/pqw˝ v where v 2 Vp and w 2Wq .

For V a k–module we denote again by V the graded k–module concentrated in degree 0,
where it is equal to V .

Let ks be the graded k–module concentrated in degree one and such that .ks/1 is
spanned by s; the suspension of a graded k–module V is sV WD ks ˝ V , so that
.sV /i D Vi�1.

The duality functor, denoted by �� W .V/op! V is defined by HomV.�;k/.

Nonspecified tensor products are taken over k.

For objects C and C 0 of a category C, the set of morphisms from C to C 0 is denoted
by HomC.C; C

0/ or C.C; C 0/.
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Part I Recollections

2 Recollections on PROPs and operads

PROPs and operads arose in the work of Mac Lane [13]. Since then, they have turned
out to be very important algebraic structures, especially in algebraic topology.

In this section we recall some basic facts that we will use in the paper on PROPs
and operads, as well as their wheeled versions introduced more recently by Markl,
Merkulov and Shadrin [15].

2.1 Classical PROPs and operads

For PROPs, we refer the reader to [14] for further details. The notion of PROP is
closely related to the notion of operad. For operads, we refer the reader to [12].

A PROP is a symmetric monoidal category .C;˝; 1/ with objects the natural numbers
whose symmetric monoidal structure ˝ is given by the sum of integers on objects.

In this paper we will consider PROPs enriched over grV , called graded linear PROPs.
Such a PROP C is a collection fC.m; n/gm;n2N of graded .Sm;Sn/–bimodules (ie
graded left Sm˝.Sn/op–modules) together with two types of compositions: the hori-
zontal composition

C.m1; n1/˝ C.m2; n2/! C.m1Cm2; n1Cn2/

induced by the monoidal product, and the vertical composition

C.n; l/˝ C.m; n/! C.m; l/

given by the categorical composition.
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An operation of biarity .m; n/ in a PROP C is an element in C.m; n/.

In the rest of this paper all the operads and PROPs will be graded linear. To simplify
the terminology we will call them simply operads and PROPs.

An important example of a PROP is the endomorphism PROP of a graded k–module:

Example 2.1 To an object V of grV , we associate the PROP, denoted by EndV ,
defined by

EndV .m; n/D HomgrV.V
˝m; V ˝n/;

with the action of the symmetric groups given by the action on the tensor product by
place permutations. The horizontal composition is given by the tensor product of linear
maps and the vertical composition by the composition in V .

Every PROP C has an underlying operad PC given by PC.n/D HomC.n; 1/.

Conversely, every operad P0 generates a PROP CP0 where

CP0.q; l/D
M

f W q!l

lO
iD1

P0.f �1.i//:

For two PROPs, C and C0, a morphism of PROPs is a strict monoidal functor F W C! C0

which is the identity on the objects and graded linear (ie the maps between the Hom–sets
are morphisms of degree 0).

For a PROP C, a morphism in C.m; n/ can be represented by a directed .m; n/–graph,
ie a finite, not necessary connected, graph such that each edge is equipped with a
direction, there are no directed cycles and the set of legs is divided into the set of inputs
labeled by f1; : : : ; mg and outputs labeled by f1; : : : ; ng.

In our pictures the graphs are oriented from top to bottom.

Using the horizontal composition in C, each morphism in C is the disjoint union of
.m; n/–corollas which are (connected) graphs of the form

���

���

1 2 m�1 m

1 2 n�1 n

Algebraic & Geometric Topology, Volume 23 (2023)



3096 Nariya Kawazumi and Christine Vespa

For example, the following depicts a morphism in C.5; 4/:

1 2 3 4 5

1 2 3 4

2.2 Wheeled PROPs and wheeled operads

In this section we recall the wheeled versions of PROPs and operads, introduced by
Markl, Merkulov and Shadrin in [15], in order to encode algebras equipped with traces;
see Example 2.2. Note that wheeled PROPs are particular cases of traced monoidal
categories introduced by Joyal, Street and Verity in [7].

A wheeled PROP is a PROP equipped with contractions

� ij W C.m; n/! C.m� 1; n� 1/

for 1� i �m and 1� j � n. These contractions satisfy compatibility axioms.

For a wheeled PROP C, a morphism in C.m; n/ can be represented by a directed
.m; n/–graph having possibly wheels and loops.

The contraction � ij can be viewed as connecting the i th input and the j th output. For
example, for an .m; n/–corolla we have the following picture:

��� ���

��� ���

1 2 i m�1m

1 2 j n�1 n

In a wheeled PROP, vertical composition is determined by the horizontal composition
and the contractions by the formula

(2-1) C.n; l/˝ C.m; n/! C.nCm; l Cn/ .�
1
lC1

/n

����! C.m; l/I

see [15, (17)].
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A fundamental example of a wheeled PROP is the wheeled endomorphism PROP
associated with a free finitely generated k–module where the contractions are given by
the trace map:

Example 2.2 By classical linear algebra, for objects E and F in V , we have canonical
homomorphisms E� ˝ F ! HomV.E; F / and E� ˝ F � ! .E ˝ F /� which are
isomorphisms if E is a free finitely generated k–module.

For V an object of Vf , the previous observations give rive to the isomorphisms

�m;n W HomVf .V
˝m; V ˝n/ '�! .V �/˝m˝V ˝n:

By Example 2.1, EndV .m; n/D HomV.V
˝m; V ˝n/ defines a PROP. For 1 � i �m

and 1 � j � n, the contractions � ij W EndV .m; n/! EndV .m� 1; n� 1/ correspond
through the previous isomorphisms to the maps

'ij W .V
�/˝m˝V ˝n! .V �/˝m�1˝V ˝n�1

given by

'ij .f1˝ � � �˝fm˝ v1˝ � � �˝ vn/

D fi .vj /.f1˝� � �˝fi�1˝fiC1˝� � �˝fm˝v1˝� � �˝vj�1˝vjC1˝� � �˝vn/

where fi 2 V � and vi 2 V .

Note that '11 W V
�˝V ! k is the evaluation and '11 ı �1;1 W HomVf .V; V /! k is the

trace map Tr which associates to an endomorphism of V its trace.

A morphism of wheeled PROPs is a morphism of PROPs that is compatible with the
contractions.

The forgetful functor from the category of wheeled PROPs to the category of PROPs
has a left adjoint denoted by .�/˚. For C a PROP, C˚ is called the wheeled completion
of C; see [15, Definition 2.1.9].

Recall from [15, Definition 5.1.1], that a wheeled operad P D fP.n;m/gm;n, where
n 2N and m 2 f0; 1g, consists of

(1) an ordinary operad P0 WD fP.n; 1/gn�0;

(2) a right P0–module Pw WD fP.n; 0/gn�0;

(3) for 1 � i � n, contractions � i W P0.n/! Pw.n� 1/, satisfying compatibility
conditions with the structures given in (1) and (2).

The operad P0 is called the operadic part of P and Pw its wheeled part.

Recall that the operad P0 is itself a right P0–module.
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Every wheeled PROP C has an underlying wheeled operad PC where the operadic part
is PC

0 D fHomC.n; 1/g, the wheeled part is PC
w D fHomC.n; 0/g and the contractions

� i W PC
0 .n/! PC

w.n � 1/ are the contractions � i1 W HomC.n; 1/! HomC.n; 0/ of the
wheeled PROP.

Conversely, every wheeled operad P generates a wheeled PROP. Let CP be the free
wheeled PROP generated by the wheeled operad P . The following explicit description
of the wheeled PROP CP follows from the description of the free wheeled PROP
generated by a collection of .Sm;Sn/–bimodules given in [17, Section 2.1.6] — see
also [16, Section 2.3].

Proposition 2.3 The wheeled PROP CP associated to a wheeled operad P is given by
the .Sq;Sl/–bimodules

CP.q; l/D
M
J�q

� M
f W J�l

lO
iD1

P0.f �1.i//
�
˝

�M
k2N

� M
g W qnJ�k

kO
iD1

Pw.g�1.i//
�
Sk

�
where Sk acts on

L
g W qnJ�k

Nk
iD1Pw.g�1.i// by postcomposition on g WqnJ�k.

The symmetric group Sl acts by postcomposition on f W J ! l and Sq by precompo-
sition on f W J ! l and on g W q nJ� k.

Horizontal composition is induced by disjoint union of maps and partitions.

The contractions � ij W CP.q; l/! CP.q � 1; l � 1/ for 1 � i � q and 1 � j � l are
induced by

(i) the contractions � i W P0.n/! Pw.n� 1/,

(ii) the composition in the operad P0,

(iii) the right P0–module structure on Pw .

To illustrate the contractions defined in the previous proposition consider in CP.9; 2/
the summand corresponding to J D f1; 2; 3; 4; 5g, f W J ! 2 given by f .1/D f .2/D
f .3/D 1 and f .4/D f .5/D 2, g W f6; 7; 8; 9g ! 2 given by g.6/D g.7/D g.8/D 1
and g.9/D 2 and consider the element

X 2 P0.f1; 2; 3g/˝P0.f4; 5g/˝
�
Pw.f6; 7; 8g/˝Pw.f9g/

�
S2

given by the graph

X D
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Case (i) is illustrated by

�11 .X/D

Case (ii) is illustrated by

�12 .X/D

Case (iii) is illustrated by

�61 .X/D

Remark 2.4 Note that
CP.n; n/D

M
f 2Sn

.P0.1//˝n:

Considering the identity operation Id 2 P0.1/, we obtain a monomorphism of Sn–
bimodules

kŒSn�! CP.n; n/:

Remark 2.5 Recall that from (2-1) vertical composition in a wheeled PROP is induced
by horizontal composition and contractions.

The forgetful functor from the category of wheeled operads to the category of operads
has a left adjoint denoted by .�/˚. For P0 an operad, .P0/˚ is called the wheeled
completion of P0.

Remark 2.6 The wheeled PROP CP generated by a wheeled operad P has two
distinguished sub-PROPs:

(1) the sub-PROP CP0 generated by the operad P0, corresponding to forgetting the
wheeled part of P;

(2) the sub-PROP denoted by Cw such that, for all n 2N,

Cw.n; 0/D CP.n; 0/;

Cw.n; n/D kŒSn� for n� 1;

Cw.n;m/D 0 for m … f0; ng;

corresponding to forgetting the operadic part in the PROP CP .
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3 Recollections on the functor category F.grIk/

The purpose of this section is to review results on covariant and contravariant functors
from the category gr of finitely generated free groups to k–modules. We refer the
reader to [2; 3; 5] for more details.

We denote by Z�n the free group on n generators. The category gr has a skeleton with
objects Z�n for n2N. Consequently, gr is essentially small and we denote by F.grIk/
(resp. F.gropIk/) the category of covariant (resp. contravariant) functors from gr to V .

A fundamental example of functor in F.grIk/ is the abelianization functor a W gr! V
that sends a free group G to .G=ŒG;G�/˝Z k.

Composing a with the duality functor �� W V ! .V/op, we obtain a functor from gr
to Vop. The category of functors from gr to Vop is equivalent to .F.gropIk//op. We
will denote by a_ W grop! V the functor corresponding to �� ı a by this equivalence.

By the Yoneda lemma, the category F.grIk/ has enough projective objects and a set
of projective generators is given by the functors, for n 2N,

Pn WD kŒgr.Z�n;�/�

where kŒ�� is the linearization functor from the category of sets to V .

Each functor F W gr! V can be decomposed naturally as a direct sum F D F.0/˚F

whereF.0/ is the constant functor equal toF.0/ andF is a reduced functor, ieF .0/D0.
For simplicity we denote P WD P 1.

The notion of cross-effects and polynomial functors introduced by Eilenberg and
Mac Lane for categories of modules can be extended to functors on gr and on grop.
The d th cross-effect defines an exact functor crd W F.grIk/ ! F.gr�nIk/, where
F.gr�nIk/ is the category of functors from gr�n to V . A functor F W gr ! V is
polynomial of degree d if crdC1.F /D 0 and crd .F / 6D 0. Similarly, we can define
polynomial functors on grop.

The functors a and a_ are reduced polynomial functors of degree one.

The reduced functor P and the cross-effects are related by the following result:

Proposition 3.1 For d 2N and F 2 F.grIk/, there is a natural isomorphism

HomF.grIk/.P
˝d ; F /' crd .F /.Z; : : : ;Z/:

Algebraic & Geometric Topology, Volume 23 (2023)



On the wheeled PROP of stable cohomology of Aut.Fn/ with bivariant coefficients 3101

We deduce the following corollary:

Corollary 3.2 For d 2N and F 2 F.grIk/ a polynomial functor of degree < d ,

HomF.grIk/.P
˝d ; F /D 0:

Since the abelianization functor a takes its values in Vf, for F a functor from Vf to V ,
we can postcompose a with F to obtain a functor of F.grIk/. An important example
of functor from Vf to V is the d th tensor product functor T d W Vf ! V , for d 2 N,
defined on objects by V 7! V ˝d . The symmetric group Sd acts by place permutations
on T d . The functor a˝d WD T d ı a is a polynomial covariant functor of degree d and
.a_/˝d WD T d ı a_ is a polynomial contravariant functor of degree d . The notion of
exponential functors is a powerful tool for computation; see [4]. A graded exponential
functor is a monoidal functor from .Vf ;˚; 0/ to .grV;˝;k/.

If k is a field of characteristic 0, the d th exterior power functor is defined, on a
vector space V , by ƒd .V /D .T d .V /˝ sgnn/Sd where sgnn is the signature module
and Sd acts diagonally. The functor ƒd is a direct summand of T d . The functor
ƒda WDƒd ıa is a polynomial covariant functor of degree d . The exterior powers define
a graded exponential functor ƒ�. In particular, there are natural commutative products
ƒi ˝ƒj ! ƒiCj and cocommutative coproducts ƒiCj ! ƒi ˝ƒj , for i; j 2 N.
Composing with the abelianization functor, we obtain a natural transformation of
functors in F.gr;k/,

(3-1) ƒiCj a!ƒia˝ƒj a;

which will be used later.

For G;F 2 F.grIk/, the exterior tensor product of G and F is the functor

G�F W gr� gr! k–Mod
given on objects by

.G�F /.Z�n;Z�m/DG.Z�n/˝F.Z�m/:

Similarly, for G 2F.gropIk/ and F 2F.grIk/ we define G�F W grop�gr!k–Mod.

We denote by qd W gr�d ! gr the functor obtained by iteration of the free product
(which is the coproduct in gr) and ıd Wgr!gr�d the diagonal functor. The functor ıd is
right adjoint to the functorqd . It follows that the functor ı�

d
W F.gr�d Ik/! F.grIk/

given by precomposition is left adjoint of the functor ��
d
W F.grIk/! F.gr�d Ik/

given by precomposition.
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Tensor powers T � do not define an exponential functor but we have a similar property
using induction of symmetric groups; see [22, (3)]. In particular,

(3-2) ��2 .a
˝q/'

M
J�q

a˝jJ j� a˝jqnJ j:

Part II Stable cohomology of Aut.Z�n/ with coefficients given by
a bifunctor

4 Definition of stable homology of Aut.Z�n/

Let In W Aut.Z�n/! Aut.Z�nC1/ be the group monomorphism induced by ��Z. By
restriction along In we obtain a functor U In W Aut.Z�nC1/–Mod! Aut.Z�n/–Mod
where Aut.Z�n/–Mod is the category of modules over Aut.Z�n/.

For B W grop�gr!V a functor and n2N, B.Z�n;Z�n/ is an Aut.Z�n/op�Aut.Z�n/–
module. Let pn W Z�nC1! Z�n be the group epimorphism given by the projection on
the first n variables and in W Z�n! Z�nC1 be the group monomorphisms given by the
inclusion of the first n variables.

The previous data give rise to Aut.Z�n/–homomorphisms

U In.B.Z�nC1;Z�nC1//
B.in;pn/
�����! B.Z�n;Z�n/

where the structure of Aut.Z�n/–module onB.Z�n;Z�n/ andU In.B.Z�nC1;Z�nC1//
is given by the diagonal action.

This gives group morphisms

H�
�
Aut.Z�nC1/IB.Z�nC1;Z�nC1/

� ˛n
�!H�

�
Aut.Z�n/IB.Z�n;Z�n/

�
:

The stable cohomology of the automorphism groups of free groups with coefficients
given by B is then defined by

H�st .B/ WD lim
n2N

H�
�
Aut.Z�n/IB.Z�n;Z�n/

�
;

where the limit is taken over the group morphisms ˛n.

In this paper we consider the family of coefficients Bl;q D .a_/˝l � a˝q , where
l; q 2N and � is the exterior tensor product. By the usual canonical homomorphism
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E�˝F ! Hom.E; F / for two k–modules E and F , which is an isomorphism if E
is free finitely generated, we obtain isomorphisms

Bl;q.Z
�n;Z�m/D ..kn/�/˝l ˝ .km/˝q ' HomV..k

n/˝l ; .km/˝q/:

Based on this isomorphism, Bl;q will sometimes be denoted by HomV.a
˝l ; a˝q/.

5 Stability

Let G be the category having as objects the finitely generated free groups and where a
morphism from A to B is a pair .u;H/ where u WA ,!B is an injective homomorphism
and H is a subgroup of B such that B DH � u.A/. Recall from [3, Définition 4.2]
that there is a functor � W G ! grop � gr sending an object A to .A;A/ and a map
.u;H/ W A! B to .B DH �u.A/! u.A/ u

�1

��! A; u W A! B/.

The category G is homogeneous in the sense of [21, Definition 1.3] and the functor
Bl;qD .a

_/˝l�a˝q is the exterior product between a polynomial contravariant functor
of degree l and a polynomial covariant functor of degree q, so the composition B ı � is
a coefficient system of degree lCq. Hence, by [21, Theorem 5.4], for i 2N the group
morphism

(5-1) H i .Aut.Z�nC1/IBl;q.Z
�nC1;Z�nC1//

˛n
�!H i .Aut.Z�n/IBl;q.Z

�n;Z�n//

is an isomorphism for n�Nl;q;i where Nl;q;i D 2iC lCqC3. We deduce that, for n
big enough, we have an isomorphism

(5-2) H i
st..a

_/˝l ˝ a˝q/'H i .Aut.Z�n/IBl;q.Z
�n;Z�n//:

For l1; q1; l2; q2 in N, the cup product gives morphisms

H i .Aut.Z�n/IBl1;q1.Z
�n;Z�n//˝H j .Aut.Z�n/IBl2;q2.Z

�n;Z�n//

[

��

H iCj .Aut.Z�n/IBl1;q1.Z
�n;Z�n/˝Bl2;q2.Z

�n;Z�n//

For n > Max.Nl1;q1;i ; Nl2;q2;j /, the stability isomorphisms (5-2) give the following
cup product map on the stable cohomology:

(5-3) [WH i
st.Bl1;q1/˝H

j
st .Bl2;q2/!H

iCj
st .Bl1;q1 ˝Bl2;q2/:
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6 The wheeled PROP H of stable cohomology

The aim of this section is to prove that the stable cohomology of Aut.Z�n/ with
coefficients twisted by Bl;q D .a_/˝l � a˝q D HomV.a

˝l ; a˝q/ defines a wheeled
PROP. This should be viewed as a cohomological version of the wheeled endomorphism
PROP considered in Examples 2.1 and 2.2 using the stability isomorphism (5-2).

Definition 6.1 The PROP H is defined by the graded .Sq;Sl/–bimodules

H.q; l/DH�st .HomV.a
˝l ; a˝q//

where the action of the symmetric group Sq (resp. Sl ) is given by place permutations
of the copies of a (resp. .a_)).

The horizontal composition ˝WH.q1; l1/˝H.q2; l2/!H.q1C q2; l1C l2/ is given
by

H�st .HomV.a
˝l1 ; a˝q1//˝H�st .HomV.a

˝l2 ; a˝q2//

[
��

H�st .HomV.a
˝l1 ; a˝q1/˝HomV.a

˝l2 ; a˝q2//

�
��

H�st .HomV.a
˝l1Cl2 ; a˝q1Cq2//

where [ is the cup product map given in (5-3) and � is the map induced by the tensor
product of linear maps.

The vertical composition ıWH.l; m/˝H.q; l/!H.q;m/ is given by

H�st .HomV.a
˝m; a˝l//˝H�st .HomV.a

˝l ; a˝q//

[
��

H�st .HomV.a
˝m; a˝l/˝HomV.a

˝l ; a˝q//


��

H�st .HomV.a
˝m; a˝q//

where  is the map induced by the composition in V .

Proposition 6.2 The PROP H is a wheeled PROP for the contractions , for 1� i � q
and 1� j � l ,

� ij WH.q; l/!H.q� 1; l � 1/
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induced , for n�Nl;q;�, by the maps

H�.Aut.Z�n/; 'ij / WH
�
�
Aut.Z�n/; Bl;q.Z

�n;Z�n/
�

!H�
�
Aut.Z�n/; Bl�1;q�1.Z

�n;Z�n/
�
;

where 'ij are as defined in Example 2.2

Proof The maps 'ij are Aut.Z�n/–equivariant. For n�Nl;q;�, since

Nl;q;� >Nl�1;q�1;�;

H�.Aut.Z�n/; 'ij / induces a map � ij WH.q; l/!H.q� 1; l � 1/.

We verify that the contraction maps satisfy commutativity conditions and that they are
compatible with the horizontal composition.

The biequivariance condition for the contraction maps corresponds to the commutativity
of the diagram

H.q; l/
�i
j
//

.�1;�2/

��

H.q� 1; l � 1/

.�
.��1
1
.i//

1 ;�
.j/
2 /

��

H.q; l/
�
��1
1
.i/

�2.j/

// H.q� 1; l � 1/

where �1 2Sq and �2 2Sl , �
.j /
2 2Sl�1 is the permutation induced by �2 forgetting

j and �2.j / and reindexing, and � .�
�1
1 .i//

1 2Sq�1 is the permutation induced by �1
forgetting ��11 .i/ and i and reindexing.

Remark 6.3 For l > 0, .a_/˝l is a reduced contravariant functor which is polynomial
of degree l . It follows from the main result of [3] that H�st ..a

_/˝l/D 0, so H.0; l/D 0
for l > 0.

In order to relate our results to Djament’s result obtained in [1] we introduce the
following:

Definition 6.4 Let H0 be the sub-PROP of H such that, for n 2N

H0.n; 0/DH.n; 0/; H0.n; n/D kŒSn�; H0.n;m/D 0 if m … f0; ng:

Remark 6.5 Note that

H.n; n/0 DH 0
st .HomV.a

˝n; a˝n//' .HomV..k
m/˝n; .km/˝n//Aut.Z�m/
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where the last isomorphism is given by (5-2), for m big enough. Hence

H.n; n/0 ' kŒSn�

and the endomorphisms in the sub-PROP H0 correspond to the endomorphisms in H in
degree 0.

Remark 6.6 The wheeled PROP structure on H comes from the wheeled endomor-
phism PROP and does not depend on the family of groups considered. Consequently,
there are other families of groups for which we have a wheeled PROP structure on
the stable cohomology with coefficients given by Bl;q D HomV.a

˝l ; a˝q/. For ex-
ample, for the braid groups we have a wheeled PROP HB1 and the group morphism
Bn ! Aut.Z�n/ induces a morphism of wheeled PROP H! HB1 . Similarly, for
†g;1 a connected and oriented surface of genus g with 1 boundary component and
Mg;1 its mapping class group, we have a wheeled PROP HMCG1;1 and the group
morphism Mg;1! Aut.Z�2g/ gives a morphism of wheeled PROP H!HMCG1;1 .
The wheeled PROPs HB1 and HMCG1;1 have further structure. This will be developed
elsewhere. Similarly, for a symmetric monoidal category C and a dualizable object in C,
the cohomology of the automorphism groups in C with appropriate coefficients has a
wheeled PROP structure.

Remark 6.7 We have also wheeled PROP structures in the unstable ranges. More
precisely, for n2N, we can define a wheeled PROP Hn given by the graded .Sq;Sl/–
bimodules

Hn.q; l/DH�.Aut.Z�n/IHomV.a
˝l ; a˝q//;

the wheeled PROP structure being defined in a similar way as in Definition 6.1 and
Proposition 6.2. The stabilization morphism (5-1) gives a morphism of wheeled PROPs:
HnC1! Hn. The PROP H considered in Definition 6.1 is the limit of these PROP
morphisms. The PROPs Hn are, in general, more complicated than H since they can
contain nonstable cohomological classes.

7 Cohomological classes

In [8] — see also [9] — the first author introduced cohomology classes that give nonzero
morphisms in the PROP H. In this section we show that these classes are obtained
from the class h1, recalled below, using the wheeled PROP structure on H.
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The qth Johnson map induced by a Magnus expansion � is a map

��q W Aut.Z�n/! HomV.k
n; .kn/˝qC1/:

By [8, Lemma 2.1], ��1 is a 1–cocycle and the cohomology class

h1 D Œ�
�
1 � 2H

1.Aut.Z�n/;HomV.k
n; .kn/˝2//

does not depend on the choice of Magnus expansion � . For n big enough, h1 gives a
nonzero element in HomH.2; 1/ in cohomological degree 1. Using [8, (4.4)] and the
anticommutativity of the cup product we obtain that S2 acts on h1 by the signature.

By [8, (4.11)], we have the relation in HomH.3; 1/

(7-1) h1 ı .h1˝ 1/C h1 ı .1˝ h1/D 0

where˝ is the horizontal composition in the PROP H and ı is the vertical composition
in the PROP H.

Let K be the subwheeled PROP of H generated by the class h1.

Proposition 7.1 For p 2N, the classes hpC1 2 K.pC 2; 1/, defined inductively by

hpC1 D h1 ı .hp˝ 1/;

and Nhp 2 K.p; 0/, defined by
Nhp D �

1
1 .hp/;

are the cohomological classes introduced in [8], in the stable range.

Proof For p � 2, using the cup product we obtain classes

.h1/
[p
2Hp

�
Aut.Z�n/;HomV.k

n; .kn/˝2/˝p
�

'Hp
�
Aut.Z�n/;HomV..k

n/˝p; .kn/˝2p/
�

where the isomorphism is induced by the canonical homomorphism of k–modules given
by tensor product of linear maps which is an isomorphism for free finitely generated
modules.

In the stable range, we obtain .h1/[p 2H.2p; p/ and the previous construction corre-
sponds to the horizontal composition in the PROP H introduced in Definition 6.1.

Consider the maps

&p W ..k
n/�˝ .kn/˝2/˝p ' HomV.k

n; .kn/˝2/˝p

! HomV.k
n; .kn/˝pC1/' .kn/�˝ .kn/˝pC1
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given by

&p.u1˝u2˝� � �˝up/ WD .u1˝1.kn/˝p�1/ı.u2˝1.kn/˝p�2/ı� � �ı.up�1˝1kn/ıup

where ui 2 HomV.kn; .kn/˝2/ for 1� i � p; see [8, (4.8)].

The cohomological classes hp 2Hp.Aut.Z�n/;HomV.kn; .kn/˝pC1// are defined in
[8, Theorem 4.1] by

hp DH
p.Aut.Z�n/; &p/.h

[p
1 /:

Note that

&p.u1˝u2˝ � � �˝up/D .&p�1.u1˝u2˝ � � �˝up�1/˝ 1kn/ ıup

It follows that, for n big enough, the classes hp can be defined recursively by

hpC1 D h1 ı .hp˝ 1/ 2H.pC 2; 1/:
Consider the map

'11 W .k
n/�˝ .kn/˝pC1! .kn/˝p

introduced in Example 2.2. The reduced class Nhp 2Hp.Aut.Z�n/; .kn/˝p/ is defined,
in [8, (4.7)], from the class hp by

Nhp DH
p.Aut.Z�n/; '11/.hp/:

In the stable range, this corresponds to considering the contraction

�11 WH.pC 1; 1/!H.p; 0/

introduced in Proposition 6.2, so we have Nhp D �11 .hp/.

Remark 7.2 By the biequivariance condition for the contraction map,

�21 .h1/D�
Nh1:

Remark 7.3 The wheeled PROP HMCG1;1 evoked in Remark 6.6 is related to the
graph description of the (twisted) Mumford–Morita–Miller classes by Morita and the
first author [11; 19]. Morita [18] extended the first Johnson homomorphism of the
Torelli group Ig;1 to a twisted cohomology class Qk 2 H 1

�
Mg;1I

1
2
ƒ3a.�1.†g;1//

�
.

The class h1 restricts to Qk on the mapping class group Mg;1. Morita [19] constructed
cohomology classes of the mapping class group with trivial coefficients Q by con-
tracting a power of the class Qk in terms of trivalent graphs. More precisely, any
trivalent graph � with 2n vertices defines an Sp.a.�1.†g;1///–invariant linear map
˛� Wƒ

2n.ƒ3a.�1.†g;1//˝Q/!Q by using the intersection pairing on a.�1.†g;1//.
Then we obtain a cohomology class ˛��. Qk2n/ 2 H 2n.Mg;1IQ/. Morita and the
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first author proved all these classes are polynomials in the Mumford–Morita–Miller
classes [10], and generalized his construction to all finite graphs and twisted Mumford–
Morita–Miller classes [11]. Here any graph with n univalent vertices defines a coho-
mology class of Mg;1 with coefficients in ƒna.�1.†g;1//˝Q, which is proved to be
a polynomial of twisted Mumford–Morita–Miller classes.

Part III Functor cohomology in F.grIk/

The aim of this part is to introduce the wheeled PROP E given by Ext–groups in the
functor category F.gr/.

8 Projective resolution of the abelianization functor

The abelianization functor a has an explicit projective resolution in F.grIk/. This
resolution occurs in [6, Proposition 5.1] and plays a crucial rôle in [3] and [22]. In this
section we recall the construction of this projective resolution.

Recall (see Section 3) that for n 2 N, the functors Pn WD kŒgr.Z�n;�/� form a set
of projective generators of the category F.grIk/. Consider the simplicial object in
F.grIk/

(8-1) � � �
//

::: // PnC1
//

::: // Pn
//

::: // � � �
//
//
//// P2

//
//
// P1

//
// P0

where ıi W PnC1! Pn for 0� i � nC 1 are defined by

ı0Œg1; g2; : : : ; gn; gnC1�D Œg2; : : : ; gn; gnC1�;

ıi Œg1; g2; : : : ; gn; gnC1�D Œg1; : : : ; gigiC1; : : : ; gn; gnC1� for 1� i � n;

ınC1Œg1; g2; : : : ; gn; gnC1�D Œg1; g2; : : : ; gn�;

and "i W Pn! PnC1 for 1� i � nC 1 are defined by

"i Œg1; : : : ; gn�D Œg1; : : : ; gi�1; 1; gi ; : : : ; gn�:

We denote by C� the unnormalized chain complex associated to this simplicial object
and D� the complex defined by Di D CiC1 for i � 0 and Di D 0 for i < 0.

Since the homology of a free group is naturally isomorphic to its abelianization in
degree 1 and is zero in degree > 1, D� is a resolution of a and we obtain that the exact
sequence in F.gr/

� � � ! PnC1! Pn! � � � ! P2! P1

is a projective resolution of the abelianization functor a W gr! Ab.
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Considering the normalized version we obtain a variant of the previous resolution of
the form

(8-2) � � � ! P˝nC1
dn
�! P˝n

dn�1
��! � � �

d2
�! P˝2

d1
�! P

where P is the reduced part of P1 (see Section 3) and the map � W P ! a corresponds
to 1 2 Z via the isomorphism Hom.P ; a/' Z obtained using Proposition 3.1.

9 The PROP E0

The aim of this section is to describe the structure of the following graded PROP which
can be viewed as an Ext–version of the endomorphism PROP:

Definition 9.1 The graded linear PROP E0 is defined by the .Sq;Sl/–graded bimod-
ules

E0.q; l/D Ext�F.grIk/.a
˝l ; a˝q/

where the action of the symmetric group Sq (resp. Sl ) is given by the permutations of
the copies of a in the first (resp. second) variable.

The horizontal composition E0.q1; l1/˝E0.q2; l2/! E0.q1Cq2; l1C l2/ is given by
the exterior product and the vertical composition E0.q; l/˝ E0.l; m/! E0.q;m/ is
given by the Yoneda product.

Remark 9.2 We warn the reader that HomF.gr/.a
˝l ; a˝q/ should not be confused

with HomV.a
˝l ; a˝q/ introduced at the end of Section 4.

In [22], the second author obtained the following results:

Theorem 9.3 [22, Theorem 2.3] For l; q 2N, we have an isomorphism

Ext�F.grIk/.a
˝l ; a˝q/'

�
kŒSurj.q; l/� if � D q� l;
0 otherwise;

where Surj.q; l/ is the set of surjections from q to l .

Theorem 9.4 [22, Proposition 2.5] The symmetric groups Sq and Sl act on

Extq�lF.grIk/.a
˝l ; a˝q/' kŒSurj.q; l/�
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in the following way: for � 2 Sq , �a;b 2 Sl , the transposition of a and b where
a; b 2 f1; : : : ; lg, and f 2 Surj.q; l/

Œf �:� D
Y
1�i�l

".� j.f ı�/�1.i//Œf ı ��;

where � j.f ı�/�1.i/ W .f ı �/
�1.i/! �..f ı �/�1.i//, and

�a;b:Œf �D .�1/
.jf �1.a/j�1/.jf �1.b/j�1/Œ�a;b ıf �:

Proposition 9.5 [22, Proposition 3.1] The external product

e W Extm�lF.grIk/.a
˝l ; a˝m/˝Extn�pF.grIk/.a

˝p; a˝n/! ExtmCn�l�pF.grIk/ .a˝lCp; a˝mCn/

is induced by the disjoint union of sets via the isomorphism of Theorem 9.3.

For cm�l (resp. cn�p) a cocycle representing a generator of Extm�lF.grIk/.a
˝l ; a˝m/

(resp. Extn�pF.grIk/.a
˝p; a˝n//, we will denote e.Œcm�l �; Œcn�p�/ by Œcm�l �˝ Œcn�p�.

Note that in the description of the Yoneda product in terms of surjection given in [22,
Proposition 3.1] the signs are not correct. One of the aim of Sections 9.1 and 9.2 is to
give a corrigendum of this statement.

9.1 Explicit classes in Extn�1
F.grIk/

.a;a˝n/

The aim of this section is to construct explicit cocycles representing the generators in
Extn�1F.grIk/.a; a

˝n/ and to study their behavior via the Yoneda product

Y W Extn�1F.grIk/.a; a
˝n/˝Ext1F.grIk/.a

˝n; a˝nC1/! ExtnF.grIk/.a; a
˝nC1/

We begin by introducing explicit classes in Extn�1F.grIk/.a; a
˝n/' k.

Proposition 9.6 For n 2 N n f0g, the morphism �˝n W P˝n ! a˝n is a cocycle
representing a generator of Extn�1F.grIk/.a; a

˝n/' k.

Proof Using the normalized bar resolution (8-2), Extn�1F.grIk/.a; a
˝n/ is the homology

of the complex

� � � ! HomF.grIk/.P
˝n�1; a˝n/ d

�! HomF.grIk/.P
˝n; a˝n/

d
�! HomF.grIk/.P

˝nC1; a˝n/! � � � :

By Corollary 3.2, HomF.grIk/.P
˝nC1; a˝n/D 0 since a˝n is a polynomial functor of

degree n. It follows that d.�˝n/D 0.
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Moreover, the morphism �˝n represents ŒIdn� via the isomorphism

HomF.grIk/.P
˝n; a˝n/' crna˝n.Z; : : : ;Z/' kŒSn�

using the external product Hom.P ; a/˝ � � � ˝Hom.P ; a/! Hom.P˝n; a˝n/. We
deduce from the previous complex an exact sequence of Sn–modules

HomF.grIk/.P
˝n�1; a˝n/! kŒSn�! Extn�1F.grIk/.a; a

˝n/! 0:

It follows that ŒIdn� gives a generator of the Sn–module Extn�1F.grIk/.a; a
˝n/' k.

In the next proposition we introduce particular classes in Ext1F.grIk/.a
˝n; a˝nC1/. Let

Q�n! a˝n be a projective resolution of a˝n and consider the resolution

P˝�C1˝ a˝n�1! a˝n

obtained by tensoring the complex (8-2) with a˝n�1. By standard homological alge-
bra — see [23, Comparison Theorem 2.2.6] — there is a chain map

˛� WQ�n! P˝�C1˝ a˝n�1

lifting Ida˝n W a
˝n! a˝n which is unique up to chain homotopy equivalence.

Lemma 9.7 The map

.�˝2˝ Ida˝n�1/ ı˛
1
WQ1n! a˝nC1

represents the class of Ext1F.grIk/.a
˝n; a˝nC1/ corresponding to the exterior product

Œ�˝2�˝ ŒIda˝n�1 �.

Proof This is a direct consequence of the definition of the exterior product of classes.

Lemma 9.8 The functor Im.dn�1/ has projective resolution

(9-1) P˝�Cn W � � � ! P˝nC1
dn
�! P˝n

given by truncating (8-2). Moreover , the map �˝n W P˝n! a˝n factorizes through
Im.dn�1/, giving rise to a morphism N�˝n W Im.dn�1/! a˝n.

Proof By the projective resolution (9-1) we obtain the complex

� � �  Hom.P˝nC1; a˝n/ d�n � Hom.P˝n; a˝n/;

computing ExtiF.gr/.Im.dn�1/;a
˝n/. The map�˝nWP˝n!a˝n satisfies�˝nıdnD0;

so it represents a cocycle in HomF.gr/.Im.dn�1/; a˝n/. We deduce that �˝n factorizes
through Im.dn�1/, giving rise to a morphism N�˝n W Im.dn�1/! a˝n

Algebraic & Geometric Topology, Volume 23 (2023)



On the wheeled PROP of stable cohomology of Aut.Fn/ with bivariant coefficients 3113

Lemma 9.9 We have a morphism of exact chain complexes

� � � P˝kC1˝P˝n�1 � � � P˝2˝P˝n�1 P˝P˝n�1 Im.dn�1/ 0

� � � P˝kC1˝a˝n�1 � � � P˝2˝a˝n�1 P˝a˝n�1 a˝n 0

dnCk�1

Id˝�˝n�1

dn

Id˝�˝n�1 Id˝�˝n�1

dn�1

N�˝n

dk˝Id d1˝Id �˝Id

Proof The square on the right commutes since

N�˝n ı dn�1 D �
˝n
D .� ˝ Id/ ı .Id˝�˝n�1/:

For k 2 N, a direct computation using the differential in the reduced bar resolution
gives the commutativity of the diagram

P˝kC2˝P˝n�1
dnCk

//

Id˝�˝n�1
��

P˝kC1˝P˝n�1

Id˝�˝n�1
��

P˝kC2˝ a˝n�1
dkC1˝Id

// P˝kC1˝ a˝n�1

Remark 9.10 The reader’s attention is drawn to the fact that the following diagram is
only commutative up to a sign:

P˝n�1˝P˝kC2
dnCk

//

�˝n�1˝Id
��

P˝n�1˝P˝kC1

�˝n�1˝Id
��

a˝n�1˝P˝kC2
Id˝dk

// a˝n�1˝P˝kC1

Proposition 9.11 For n� 2

Y.Œ�˝n�; Œ�˝2�˝ ŒIda˝n�1 �/D Œ�
˝nC1�:

Proof By [23, Comparison Theorem 2.2.6] there is a chain map ˇ� lifting

N�˝n W Im.dn�1/! a˝n:

We obtain the commutative diagram

� � � //

��

P˝nC1
dn

//

ˇ1
��

P˝n

ˇ0
��

dn�1
// Im.dn�1/ //

N�˝n
��

0

� � � //

��

Q1n
//

˛1��

Q0n
//

˛0��

a˝n //

Id
��

0

� � � // P˝2˝ a˝n�1 // P˝1˝ a˝n�1 // a˝n // 0
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By the construction of the Yoneda product, .�˝2˝ Ida˝n�i / ı ˛
1 ı ˇ1 is a cocycle

representing Y.Œ�˝n�; Œ.�˝2˝ Ida˝n�i / ı˛
1�/.

Since the chain map lifting N�˝n W Im.dn�1/! a˝n is unique up to chain homotopy
equivalence, using Lemma 9.9 we have

Œ.�˝2˝ Ida˝n�i / ı˛
1
ıˇ1�D Œ.�˝2˝ Ida˝n�i / ı .Id˝�

˝n�1/�D Œ�˝nC1�:

9.2 The operad P0

In [22, Proposition 3.5] the second author proved that the graded PROP E0 is freely
generated by its underlying operad P0. Using Theorems 9.3 and 9.4, P0 is the graded
operad such that P0.0/ D 0 and for k > 0, P0.k/ is the sign representation of Sk
placed in cohomological degree k�1 and 0 in other degrees. The aim of this section is
to give an explicit description of this operad, in particular to describe the composition
which is induced by the Yoneda product.

Definition 9.12 The operad Q is the quadratic graded operad generated by one anti-
symmetric binary operation � in degree 1 subject to the quadratic relation

� ı1 �D�� ı2 �:

Pictorially, we have

D�

Proposition 9.13 The operad P0 is isomorphic to Q.

Proof We show that there is a morphism of operads f WQ!P0 given on the generator
� by f2.�/ D Œ�˝2� where Œ�˝2� is a generator, in degree 1, of E0.2; 1/ D P0.2/
defined in Proposition 9.6 which is antisymmetric by Theorem 9.4.

Before proving that Œ�˝2� satisfies the quadratic relation satisfied by �, note that the
partial composition operations in P0 are given by the restriction of the categorical
composition induced by the Yoneda product

Y W P0.n/˝Sn E
0.nC 1; n/! P0.nC 1/:
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More explicitly the partial composition ıi is obtained by restricting to the inclusion of
k–modules

�ni W P0.2/' P0.1/˝i�1˝P0.2/˝P0.1/˝n�i ,! E0.nC 1; n/

given by the external product.

For c2 2S2 and c3 2S3 the cyclic permutations given by i 7! i C 1, by Theorem 9.4
we have in Ext1F.grIk/.a

˝2; a˝3/,

c2:.ŒIda�˝ Œ�˝2�/:c3 D Œ�˝2�˝ ŒIda�;

so
Y.Œ�˝2�; Œ�˝2�˝ ŒIda�/D Y.Œ�˝2�; c2:.ŒIda�˝ Œ�˝2�/:c3/

D Y.Œ�˝2�:c2; .ŒIda�˝ Œ�˝2�//:c3
D Y.Œ�˝2�.�1/; .ŒIda�˝ Œ�˝2�//

D�Y.Œ�˝2�; .ŒIda�˝ Œ�˝2�//

using that P0.k/ is the sign representation in degree k � 1. We deduce that Œ�˝2�
satisfies the quadratic relation.

The fact that the operad P0 is binary follows from Proposition 9.11 and the fact that
P0.nC 1/ is k concentrated in degree n.

We deduce that the morphism of operads f WQ! P0 is an isomorphism.

In Proposition 9.14 we give a more conceptual description of the operad P0 using
the notion of operadic suspension, recalled in the next paragraphs following [12,
Section 7.2.2].

Let S be the underlying operad of the endomorphism PROP (see Example 2.1) as-
sociated with the graded vector space sk (ie the graded vector space concentrated
in homological degree one and such that .sk/1 D k). Explicitly, as a representation
of Sn, S.n/ D HomgrV..sk/˝n; sk/ is the signature representation concentrated in
homological degree �nC 1.

For P and Q two operads, the Hadamard tensor product P˝H Q is an operad such that

.P˝H Q/.n/D P.n/˝H Q.n/;

where the action of Sn is the diagonal action. The unit of the Hadamard product is the
operad uCom of unital commutative algebras. In particular we have uCom.0/D k.
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For P an operad, the operadic suspension of P is the operad S˝H P .

The operad P0 being defined using Ext–groups, it is naturally graded with cohomo-
logical degree. So P0.n/ is a graded k–module concentrated in cohomological degree
n� 1 and so in homological degree 1�n.

Let Com be the operad of nonunital commutative algebras (thus Com.0/D 0). In the
next proposition we consider P0 with its homological degree.

Proposition 9.14 The operad P0 is the operadic suspension of the operad Com. In
other words , we have an isomorphism of operads

P0 ' S˝H Com:

Proof Recall that P0.0/D 0 and for n > 0, P0.n/ is the sign representation of Sn
placed in homological degree 1�n and 0 in other degrees. The underlying Sn–modules
are isomorphic since Com.0/D 0 and for n� 1, P0.n/' S.n/.

By Proposition 9.13, P0 is a quadratic operad generated by� such that�ı1�D��ı2�.
Define P0.2/! S.2/ sending � to the generator � of S.2/. By a similar argument
as in the proof of Proposition 9.13 for the endomorphism PROP associated with the
graded vector space sk, one proves that � satisfies the relation � ı1 � D�� ı2 �. This
implies the isomorphism in the statement.

Remark 9.15 We denote by sni 2 Surj.n; n� 1/ the unique surjection preserving the
natural order and such that sni .i/D s

n
i .i C 1/D i . The Yoneda product gives, via the

isomorphism given in Theorem 9.3, a map

Y W kŒSurj.m; l/�˝kŒSurj.n;m/�! kŒSurj.n; l/�:

For mD 2, l D 1 and nD 3, the quadratic relation in the operad P0 corresponds to
Y.Œs21 �˝ Œs

3
2 �/D�Y.Œs

2
1 �˝ Œs

3
1 �/ showing that the signs given in [22, Proposition 3.1]

are not correct.

The following maps will be used in Proposition 10.7 in order to define the contraction
maps in the wheeled operad P .

Definition 9.16 For 1� i � n, let � i W P0.n/! P0.n� 1/ be the morphism of graded
vector spaces of degree �1 given by

� i .Œ�˝n�/D .�1/i Œ�˝n�1�:
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Proposition 9.17 For 1 � i � n, the contraction map � i W P0.n/ ! P0.n � 1/ is
equivariant ; ie for � 2Sn, the diagram

P0.n/
�i
//

�

��

P0.n� 1/

�.i/

��

P0.n/
��.i/
// P0.n� 1/

is commutative , where � .i/2Sn�1 is the permutation � Wnnfig!nnf�.i/g considered
as reindexed.

Proof Since Sn acts on P0.n/ by the signature, we need to prove that

".�/.�1/�.i/ D ".� .i//.�1/i :

Let ˛ 2Sn be the permutation given by

˛ D .1; 2/ ı .2; 3/ ı � � � ı .�.i/� 1; �.i// ı � ı .i � 1; i/ ı � � � ı .1; 2/

where .l; l C 1/ is the permutation exchanging l and l C 1. We have

".˛/D .�1/�.i/�1".�/.�1/i�1;

and for ˛.1/ the permutation ˛ W n n f1g ! n n f˛.1/D 1g considered as reindexed. We
have ˛.1/ D � .i/ and ˛ D Idf1g˚˛.1/. Hence

".� .i//D ".˛.1//D ".˛/D .�1/�.i/�1".�/.�1/i�1:

10 The PROP E

In the rest of the paper k is a field of characteristic zero. The previous condition
on k allows us to use the computation of Ext�F.gr/.ƒ

j a; a˝q/ given in [22] (see
Proposition 10.1 below) obtained by taking the coinvariants by the action of the
symmetric groups, twisted by the signature, in the result of Theorem 9.3.

The aim of this section is to describe the structure of the graded PROP E introduced
in Definition 10.2. We will prove in Theorem 10.11 that the PROP E is a wheeled
PROP. The PROP E extends the PROP E0 in the sense that E0 is a sub-PROP of E (see
Remark 10.3).

Since the exterior powers intervene in the PROP E we need the following result:
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Proposition 10.1 [22, Theorem 4.2] For k a field of characteristic 0 and n;m 2N,
we have isomorphisms

Ext�F.gr/.ƒ
j a; a˝q/'

�
kS.q;j / if � D q� j;
0 otherwise;

where S.q; j / denotes the number of ways to partition a set of q elements into j
nonempty subsets

Ext�F.gr/.ƒ
na; ƒma/'

�
k�.m;n/ if � Dm�n;
0 otherwise;

where �.m; n/ denotes the number of partitions of m into n parts.

Since HomF.gr/.ƒ
j a; ƒj a/' k, the external product gives a morphism

(10-1) Ext�F.gr/.a
˝m
˝ƒia; a˝l/ E

�! Ext�F.gr/.a
˝m
˝ƒia˝ƒj a; a˝l ˝ƒj a/:

Recall that for V � a cohomologically graded module, for i 2N the i th desuspension of
V � is the graded module s�iV � such that s�iV n D V n�i .

Definition 10.2 The PROP E is defined by the graded .Sq;Sl/–bimodules

E.q; l/D
M
j2N

s�j Ext�F.grIk/.a
˝l
˝ƒj a; a˝q/;

where the action of the symmetric group Sl (resp. Sq) is given by place permutation
of the copies of a in the first (resp. second) variable.

The horizontal composition˝WHomE.q1; l1/˝HomE.q2; l2/!HomE.q1Cq2; l1Cl2/

is given byL
j2N s

�j Ext�F.gr/.a
˝l1 ˝ƒj a; a˝q1/˝

L
i2N s

�i Ext�F.gr/.a
˝l2 ˝ƒia; a˝q2/

L
i;j2N s

�j�i Ext�F.gr/.a
˝l1 ˝ƒj a˝ a˝l2 ˝ƒia; a˝q1Cq2/

L
i;j2N s

�j�i Ext�F.gr/.a
˝l1Cl2 ˝ƒj a˝ƒia; a˝q1Cq2/

L
jCi2N s

�j�i Ext�F.gr/.a
˝l1Cl2 ˝ƒjCia; a˝q1Cq2/

ˇ

T

c

where ˇ is the exterior product, T is induced by the permutation of ƒia and a˝l2 and
c by the natural transformation ƒiCj a!ƒia˝ƒj a (see (3-1)).
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The vertical composition ıW HomE.q; l/˝HomE.l; m/! HomE.q;m/ is given byL
j2N s

�j Ext�F.gr/.a
˝l ˝ƒj a; a˝q/˝

L
i2N s

�i Ext�F.gr/.a
˝m˝ƒia; a˝l/

L
i;j2N s

�j Ext�F.gr/.a
˝l ˝ƒj a; a˝q/˝ s�i Ext�F.gr/.a

˝m˝ƒia; a˝l/

L
i;j2N s

�j Ext�.a˝l ˝ƒj a; a˝q/˝ s�i Ext�.a˝m˝ƒia˝ƒj a; a˝l ˝ƒj a/

L
i;j2N s

�i�j Ext�F.gr/.a
˝m˝ƒia˝ƒj a; a˝q/

L
iCj2N s

�i�j Ext�F.gr/.a
˝m˝ƒiCj a; a˝q/

'

Y

c

where the second morphism is induced by the map (10-1), the third by the Yoneda
product and the last one by the canonical natural transformation ƒiCj a!ƒia˝ƒj a

given in (3-1).

Remark 10.3 The PROP E0 (see Definition 9.1) is the sub-PROP of E having the
same objects and such that E0.q; l/ is the direct summand of E.q; l/ for j D 0.

10.1 Calculation of E.q; l/

The aim of this section is to prove the following result:

Proposition 10.4 For q; l 2N we have an isomorphism of graded .Sq;Sl/–bimodules

E.q; l/D
M
J�q

� M
f W J�l

lO
iD1

Ext�F.grIk/.a; a
˝jf �1.i/j/

�

˝

�M
j2N

� M
g W qnJ�j

jO
iD1

s�1 Ext�F.grIk/.a; a
˝jg�1.i/j/

�
Sj

�
:

The proof of this proposition relies on the following lemma:

Lemma 10.5 For q; l; j 2N, we have the following isomorphisms of graded .Sq;Sl/–
bimodules:

Ext�F.grIk/.a
˝l
˝ƒj a; a˝q/'

M
J�q

�
Ext�F.grIk/.a

˝l ; a˝jJ j/˝Ext�F.grIk/.ƒ
j a; a˝jqnJ j/

�
;
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Ext�F.grIk/.a
˝l ; a˝q/'

M
f W q�l

� lO
kD1

Ext�F.grIk/.a; a
˝jf �1.k/j/

�
;

Ext�F.grIk/.ƒ
j a; a˝q/'

� M
f W q�j

� jO
kD1

Ext�F.grIk/.a; a
˝jf �1.k/j/

��
Sj

;

where Sj acts on
L
f W q�j

�Nj

kD1
Ext�F.grIk/.a; a

˝jf �1.k/j/
�

by postcomposition on
f W q� j .

Proof For the first isomorphism,

Ext�F.grIk/.a
˝l
˝ƒj a; a˝q/' Ext�F.gr�grIk/.a

˝l �ƒj a; ��2 .a
˝q//

' Ext�F.gr�grIk/.a
˝l �ƒj a;

M
J�q

a˝jJ j� a˝jqnJ j/

'

M
J�q

Ext�F.gr�grIk/.a
˝l �ƒj a; a˝jJ j� a˝jqnJ j/;

where the first isomorphism is given by the adjunction between ı�2 and ��2 (see Section 3)
and the second by (3-2).

Using the resolution given in Section III, we obtain that a˝l and ƒj a have reso-
lutions by finitely generated projective functors. Moreover, the values of a˝n and
Ext�F.grIk/.a

˝l ; a˝jJ j/ (by Theorem 9.3) are torsion free. It follows, by the Künneth
formula, that the graded morphism

Ext�F.grIk/.a
˝l ; a˝jJ j/˝Ext�F.grIk/.ƒ

j a; a˝jqnJ j/

'
�! Ext�F.gr�grIk/.a

˝l �ƒj a; a˝jJ j� a˝jqnJ j/

is an isomorphism.

For the second and third isomorphisms, we refer the reader to the proof of [22, Theorems
2.3 and 4.2].

Remark 10.6 By Proposition 10.4,

E.n; n/'
M
�2Sn

� nO
iD1

Ext�F.grIk/.a; a/

�
' kŒSn�

where the last isomorphism is given by Theorem 9.3. Hence the graded bimodule
E.n; n/ is kŒSn� concentrated in degree 0.
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10.2 The wheeled PROP CP

The aim of this section is to give an isomorphism between the PROP E and the wheeled
PROP associated to the following wheeled operad P .

Proposition 10.7 The following data define a wheeled operad denoted by P:

(1) the operadic part of P is the operad P0 considered in Section 9.2;

(2) the wheeled part Pw is given by

Pw.n/D s�1 Ext�F.gr/.a; a
˝n/I

(3) for 1 � i � n, the contractions � i W P0.n/! Pw.n� 1/ are the degree 0 maps
induced by Definition 9.16.

Proof We have Pw ' s�1P0, so Pw is a right P0–module. The contraction maps
�i W P0.n/! Pw.n� 1/ are equivariant by Proposition 9.17.

Let Q˚ be the wheeled completion of the operad Q given in Definition 9.12. In the
following, we give an explicit description of Q˚.

Proposition 10.8 The wheeled operad Q˚ is given by the following data:

(1) The operadic part .Q˚/0 .Q˚/0.n/ is the graded vector space concentrated
in degree n� 1 and generated by �n defined inductively by �1 D Id, �2 D �
and for n� 2,

�nC1 D � ı1 �n:

(2) The wheeled part .Q˚/w .Q˚/w.n/ is the graded vector space concentrated
in degree n generated by

�1.�/ ı1 �n:

Proof We have .Q˚/0 D Q, so the description of the operadic part follows from
Definition 9.12.

The proof of the description of .Q˚/w.n/ is similar to that of .Com˚/w.n/ given in
[15, Example 5.2.5], replacing the commutativity property by the commutativity up to
signs and taking into account the fact that we have graded modules.

Proposition 10.9 The wheeled operad P is isomorphic to Q˚. In particular , P is
isomorphic to the wheeled completion of the quadratic operad P0, ie P ' P˚

0 .

Proof Recall that the wheelification .�/˚ is the left adjoint of the forgetful functor
F from wheeled operads to operads. Since P is a wheeled operad whose operadic
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part is P0, we have a morphism of operads P0 ! F.P/. The composition of the
isomorphism of operads f WQ! P0 constructed in the proof of Proposition 9.13, with
the morphism of operads defined above, gives a morphism of operads Q! F.P0/. By
adjunction, this morphism induces a morphism of wheeled operads

f ˚
WQ˚

! P:

By Proposition 9.13, the restriction of f ˚ to the operadic parts is an isomorphism of
operads given explicitly on the generators of .Q˚/0.n/ by

f ˚.�n/D Œ�
˝n�:

For the wheeled part, by Theorem 9.3, Pw.n/ D s�1Ext�F.gr/.a; a
˝n/ is the graded

vector space concentrated in degree n generated by Œ�˝n�. By Proposition 10.8 it
follows that Pw.n/ and .Q˚/w.n/ are isomorphic as graded vector spaces.

Since f ˚ is a morphism of wheeled operads, the compatibility with the contractions
gives:

f ˚.�1.�//D �1.f ˚.�//D �1.Œ�˝2�/D�Œ��

where the last equality is given by Definition 9.16. We deduce that

f ˚
W .Q˚/w.1/! Pw.1/

is an isomorphism. By Proposition 10.8, the generator of .Q˚/w.n/ is obtained by
composition of �1.�/ with �n. It follows from the compatibility of f ˚ with the
composition that, for all n� 1,

f ˚
W .Q˚/w.n/! Pw.n/

is an isomorphism.

Corollary 10.10 The PROP CP is isomorphic to the wheeled PROP generated by one
antisymmetric operation � of biarity .2; 1/ in degree 1 subject to the quadratic relation

�.�˝ 1/D��.1˝�/:

The following theorem relates the PROP CP to the PROP E of extension groups
introduced in Section 10.

Theorem 10.11 There is an isomorphism of PROPs

� W CP '
�! E :

In particular , E inherits a structure of wheeled PROP via this isomorphism.
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Proof Forgetting the wheeled structure on CP , the PROP CP is generated by one
antisymmetric operation � of biarity .2; 1/ in degree 1 subject to the quadratic relation

�.�˝ 1/D��.1˝�/

and one operation N�D �1.�/ of biarity .1; 0/ in degree 1.

The functor � is defined on these generators by

�.�/D Œ�˝2� and �. N�/D Œ�� 2 s�1 Ext�.ƒ1a; a/;

and Œ�˝2� satisfies the quadratic relation by Proposition 9.13. This defines an isomor-
phism of PROPs since

CP.n;m/' E.n;m/;

comparing the formulas given in Propositions 2.3 and 10.4.

Remark 10.12 The existence of a wheeled structure on the PROP E is quite surprising
since it is induced by a morphism (of degree 0)

Ext�F.grIk/.a; a
˝2/! s�1 Ext�F.grIk/.a; a/:

By Theorem 9.3, Ext1F.grIk/.a; a
˝2/' k, thus the Yoneda product with a generator in

Ext1F.grIk/.a; a
˝2/ gives a morphism

Ext�F.grIk/.a; a/! s1 Ext�F.grIk/.a; a
˝2/:

By Theorem 9.3, this morphism is an isomorphism and the wheeled structure on the
PROP E is given by the inverse on this morphism.

It follows that the existence of a wheeled structure is very specific to the situation
studied in this paper (ie Ext–groups in the category F.grIk/ between the tensor powers
of the functor a) and, in general, there is no such natural map.

Remark 10.13 Theorem 10.11 should be viewed as an extension, in the wheeled
world, of the isomorphism of PROPs

CP0 ' E0

given in [22, Proposition 3.5]. More precisely there is a commutative diagram

CP
'
// E

CP0
'
//

OO

E0

OO

where the vertical maps are the inclusion functors.
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Part IV Comparaison of the PROPs H and E

11 The morphism of wheeled PROPs 'W E!H

In this section we define a morphism from the wheeled PROP E to the wheeled PROP H
of stable cohomology considered in Section 6.

Theorem 11.1 Let � be the generator of the wheeled PROP E . There is a morphism
of wheeled PROPs ' W E!H given on generators by

'.�/D h1:

Proof By the isomorphism given in Theorem 10.11 the PROP E is generated by the
antisymmetric element � of biarity .2; 1/ in degree 1 subject to the quadratic relation

�.�˝ 1/D��.1˝�/

and one operation N�D �1.�/ of biarity .1; 0/ in degree 1. The functor ' is defined on
these generators by

'2;1.�/D h1 and '1;0. N�/D Nh1:

By Section 7, h1 is antisymmetric and satisfies the quadratic relation.

For i 2 f1; 2g, by Proposition 7.1 and Remark 7.2, we have � i1.h1/D .�1/
iC1 Nh1. It

follows that the diagram

E.2; 1/
'2;1

//

�i1
��

H.2; 1/

�i1
��

E.1; 0/
'1;0

// H.1; 0/

is commutative, giving the compatibility of the wheeled PROP structures.

Corollary 11.2 The subwheeled PROP K of H is equivalent to the wheeled PROP
associated to the wheeled completion of the operadic suspension of the operad Com.

Proof By Theorem 10.11 and Proposition 10.9, E is the wheeled PROP generated by
the wheeled completion of the operad P0, which is the suspension of the operad Com
by Proposition 9.14. By Section 7, '.E/' K.

The morphism of wheeled PROPs ' W E!H induces an explicit graded morphism on
Hom–sets,

(11-1) 'q;l W

q�lM
jD0

s�j Ext�F.grIk/.a
˝l
˝ƒj a; a˝q/!H�st .HomV.a

˝l ; a˝q//:
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We denote by Ew the sub-PROP of E corresponding to forgetting the operadic part
in the wheeled PROP E (see Remark 2.6). By restriction, the morphism ' W E ! H
induces a morphism '0 W Ew !H0, where H0 is defined in Definition 6.4.

One of the main and difficult results of Djament [1, Théorème 4] gives a graded
isomorphism M

j2N

s�j Ext�F.grIk/.ƒ
j a; a˝q/'H�st .a

˝q/:

By [1, Corollaire 3.7] this isomorphism is induced by the morphism

'q;0 W
M
j2N

s�j Ext�F.grIk/.ƒ
j a; a˝q/!H�st .a

˝q/:

We deduce the following result:

Theorem 11.3 [1, Théorème 4] The functor '0 W Ew ! H0 is an equivalence of
categories.

Note that [1, Proposition 3.5] corresponds to the compatibility of the isomorphisms 'q;0
with the horizontal composition in the PROPs Ew and H0. Theorem 11.3 gives also the
compatibility of the isomorphisms 'q;0 with the action of the symmetric groups Sq .

For stable cohomology with coefficients given by a bivariant functor, Djament gives
a conjecture in [1, Théorème 7.4]. In particular, Djament conjectures that there exist
graded isomorphisms

q�lM
jD0

s�j Ext�F.grIk/.a
˝l
˝ƒj a; a˝q/'H�st .HomV.a

˝l ; a˝q//:

Natural candidates for maps giving these isomorphisms are the maps 'q;l . By func-
toriality, these maps are compatible with horizontal and vertical compositions in the
PROPs and with the contractions.

Djament’s conjecture can be rephrased in the following way

Conjecture 11.4 The morphism ' is an isomorphism of wheeled PROPs.

Remark 11.5 Let �r D �r.Z�n/ for r � 1 be the lower central series of the free
group Z�n; �1 WD Z�n and �rC1 WD Œ�r ; �1� for r � 1. The Andreadakis filtration,
A.r/ for r � 0, of the automorphism group Aut.Z�n/ is defined to be the kernel of the
natural homomorphism Aut.Z�n/! Aut.�1=�rC1/. In particular, A.0/D Aut.Z�n/,
and A.1/, which is called the IA–automorphism group of the free group Z�n, is the
kernel of the abelianization homomorphism ˛ W A.0/! Aut.Z˚n/D GLn.Z/ induced
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by the abelianization �1=�2 Š Z˚n. For r � 1, we have a group homomorphism
�r W A.r/ ! Hom.kn; .kn/˝.rC1// called the r th Johnson homomorphism, which
induces a group embedding A.r/=A.r C 1/ ,! Hom.kn; .kn/˝.rC1//. Any linear
map kn !

LrC1
sD2.k

n/˝s defines an algebra automorphism of the truncated tensor
algebra T�rC1.kn/ WD

LrC1
sD0.k

n/˝s by extending the linear map multiplicatively.
This makes the direct sum

LrC1
sD1 Hom.kn; .kn/˝s/ a subgroup of the algebra auto-

morphism group of the algebra T�rC1.kn/. The group GLn.k/ acts on the subgroupLrC1
sD2 Hom.kn; .kn/˝s/ in an obvious way, so that we can take the semidirect product�LrC1
sD2 Hom.kn; .kn/˝s/

�
ÌGLn.k/. As was shown in [8, Theorem 3.1, page 13],

there exists a group homomorphism

.��1 ; : : : ; �
�
r ; ˛/ W A.0/!

� rC1M
sD2

Hom.kn; .kn/˝s/
�
ÌGLn.k/

such that ��s jA.s/ equals the sth Johnson homomorphism

�s W A.s/! Hom.kn; .kn/˝.sC1/ /

for each 1� s � r .

The multiplicativity of the group homomorphism implies that ��1 is a cocycle, and ��2
defines the same quadratic relation for ��1 as in (7-1). The cohomology class h1 equals
that of the cocycle ��1 . Hence the class h1 comes from A.0/=A.2/, and the quadratic
relation holds on A.0/=A.3/. This means the map 'q;l lifts to the cohomology group
of A.0/=A.3/,

H�
�
A.0/=A.3/; ..kn/�/˝q˝ .kn/˝l

�
��

E.q; l/
'q;l

//

44

H.q; l/

where the vertical arrow means the homomorphism induced by the quotient map
Aut.Z�n/D A.0/! A.0/=A.3/ and n is big enough.
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Anchored foams and annular homology

ROSTISLAV AKHMECHET

MIKHAIL KHOVANOV

We describe equivariant SL.2/ and SL.3/ homology for links in the thickened an-
nulus via foam evaluation. The thickened annulus is replaced by 3–space with a
distinguished line in it. Generators of state spaces for annular webs are represented
by foams with boundary that may intersect the distinguished line; intersection points,
called anchor points, contribute additional terms, reminiscent of square roots of the
Hessian, to the foam evaluation. Both oriented and unoriented SL.3/ foams are
treated.

57K18; 18N25, 57K16

1 Introduction

Asaeda–Przytycki–Sikora [2] homology of links in the thickened annulus has led to
a number of interesting developments — see the first author [1], Baldwin, Beliakova,
Grigsby, Licata, Putyra and Wehrli [3; 5; 11; 12; 13] and Roberts [35] — and extensions
of their work to SL.N / and GL.N / link homology in the thickened annulus — see
Queffelec, Rose, Sartori and Wedrich [30; 31; 32].

GL.N / and SL.N / link homology theories are closely related to foam evaluation. This
connection was made the most transparent by the work of Robert and Wagner [34], who
wrote down a combinatorial formula for GL.N / closed foam evaluation that allows to
build GL.N / link homology from the ground up, bypassing categorical approaches to
the latter. A variation of their formula was used by Robert and the second author [18]
to evaluate unoriented SL.3/ foams, giving a combinatorial approach to some of the
structures discovered by Kronheimer and Mrowka [23].

In this paper we extend foam evaluation framework to build equivariant SL.2/ and
SL.3/ state spaces for annular webs and, consequently, equivariant SL.2/ and SL.3/
homology for links in the thickened annulus. Our construction complements earlier
work [30; 32] on the subject. The same approach allows us to define state spaces for
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License 4.0 (CC BY). Open Access made possible by subscribing institutions via Subscribe to Open.
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3130 Rostislav Akhmechet and Mikhail Khovanov

unoriented SL.3/ annular webs, extending the construction in [18]. As in [18], the
unoriented SL.3/ theory yields state spaces and skein relations for planar webs but
does not extend to a link homology theory.

In the APS (Asaeda–Przytycki–Sikora) annular homology and its equivariant and
SL.N / generalizations, one first defines state spaces for annular SL.2/ and SL.N /

webs, where annular SL.2/ webs are just collections of embedded circles in an annulus.
See also Boerner [7; 8], where the APS theory is reformulated using embedded surfaces.

Our idea is to think of an open thickened annulus as the complement to a line L in R3,
chosen for convenience to be the z–axis. An annular SL.N / web � is then placed into
the xy–plane with .0; 0/ removed. To define its state space h�i, we consider SL.N /

foams F in the half-space R3
� bounded by the xy–plane such that � is the boundary

of F . These foams may intersect the z–axis, and we refer to the intersection points as
anchor points and to such foams as anchored foams. Anchor points additionally carry
a label from 1 to N , and we modify foam evaluation by adding a new type of factors
associated to anchor points.

We treat N D 2 and N D 3 cases, with modified evaluations given by formulas (2)
and (77), respectively; also see (35) for the unoriented SL.3/ anchored foam evaluation.

Anchored foam evaluation take values in the ring of polynomials rather than the ring
of symmetric polynomials. One starts with an admissible coloring c of facets of a
foam F , as usual. An anchor point labeled i lying on a facet of color j contributes
ıi;j

p
˙f 0.xi/ to the evaluation hF; ci, where, in the SL.3/ case as an example,

f .x/D .x�x1/.x�x2/.x�x3/

is the polynomial of degree three with roots x1, x2 and x3. The full evaluation hFi is
given by summing over hF; ci for all admissible colorings c. We check integrality of
these evaluations, with hFi a polynomial in x1, x2 and x3, in the SL.3/ case.

Given evaluations of anchored closed foams, one can form state spaces for annular webs.
We show that this modified evaluation, with anchor points contributing ıi;j

p
˙f 0.xi/,

perfectly matches the structure of state spaces of annular homology, in SL.2/ and
SL.3/ cases. The construction also allows us to define unoriented SL.3/ homology for
annular trivalent graphs, extending [18] to the annular framework.

With state spaces at hand, it is straightforward to define annular SL.2/ and SL.3/ link
homology, by analogy with [1; 2; 4; 14] in the SL.2/ setting, with [18] in the unoriented
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SL.3/ setting, and with [15; 28; 34] in the oriented SL.3/ setting. State spaces and
link homology carry additional gradings coming from intersection points of foams
with the z–axis. We show that the result matches equivariant SL.2/ homology [1]
of the first author. A simple modification of the construction (truncating the ground
ring by sending the xi to 0 upon evaluation) gives a foam approach to the original
APS homology. We expect that the nonequivariant variant of our SL.3/ construction
recovers the N D 3 case of the homology in [30]. It seems that the equivariant annular
SL.3/ homology, as described in the present paper, is new.

Section 2 describes SL.2/ homology via anchored foams. The evaluation is defined in
Section 2.1, which also contains the skein relations for anchored SL.2/ foams. The
state spaces are studied in Section 2.2. The state space of n circles in the annulus is a
free module of rank 2n over the ground ring R˛ of polynomials in two variables; see
Theorem 2.11. The numbers of contractible and essential circles control the bigraded
rank. This section also discusses categories of anchored and annular cobordisms.
Annular cobordisms between annular SL.2/ webs are disjoint from the z–axis, while
anchored cobordism may intersect it.

Theorem 2.20 identifies the annular cobordism functor with that constructed in [1].
Consequently, equivariant annular SL.2/ link homology [1] can be rederived via an-
chored foams. To obtain the original APS homology, one can use anchored foam
evaluation, combined with the homomorphism R˛! Z taking ˛1 and ˛2 to 0 to get
state spaces and cobordism maps in the APS theory.

Section 3 constructs the state spaces for the annular unoriented SL.3/ foam theory,
extending the construction of [18]. We start with the evaluation (Section 3.1), fol-
lowed by skein relations on annular foams (Section 3.2) and properties of state spaces
(Section 3.3). Section 3.4 describes similarities between anchor points contributions
and Lee’s theory, given by inverting the discriminant in the ground ring. Similar to the
planar case [18], we don’t know a way to describe the state space of an annular web
when regions of valency at most four, allowing an inductive simplification, are absent.

In Section 4 we describe annular equivariant SL.3/ link homology, based on anchored
(annular) oriented SL.3/ foams. This homology extends Mackaay–Vaz [28] equivariant
SL.3/ homology of links in R3; also see Clark [10], the second author [15], Morrison
and Nieh [29], and Robert [33] for the nonequivariant homology in R3. We start with
a review of oriented SL.3/ foams in Section 4.1 and then follow a similar route to that
of the earlier sections.
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3132 Rostislav Akhmechet and Mikhail Khovanov

Our constructions of annular equivariant link homology via foam evaluation requires
working with U.1/�N –equivariant homology rather than U.N / or GL.N /–equivariant
homology. In these G–equivariant theories homology of the empty link is HG.p;Z/,
the G–equivariant cohomology of a point. For U.1/�N that cohomology consists of
polynomials in N variables (denoted here by ˛1 and ˛2 for N D 2, and x1 x2 and x3

for N D 3), which is a larger ring than its subring of symmetric polynomials, which is
the corresponding equivariant cohomology of a point for U.N / and GL.N /. Having
a larger background ring gives additional freedom and allows a “symmetry breaking”
between these polynomial variables, necessary in our case as clear from the evaluation
(also see Remark 2.1 below).

Working with that larger ring and U.1/�N –equivariant cohomology is a recent phe-
nomenon. It was used by T Sano [37] in resolving the minus sign ambiguity in the
functorial extension of Khovanov homology to link cobordisms, bypassing earlier
constructions that required additional decorations of links and cobordisms (see [19]
for more references and a short discussion). We expect this symmetry breaking of the
ground ring generators to find more applications to link homology in the future.

A recent paper of R Lipshitz and S Sarkar [25] contains an application of annular
equivariant link homology. The authors use maps associated to moving a strand across
the puncture. These maps come for free from the anchored foam perspective of the
present paper; see [25, Remark 3.2].

Unoriented SL.3/ homology for planar graphs (webs) is closely related to the 4–color
theorem and Kronheimer–Mrowka instanton homology for 3–orbifolds [18; 23]. This
homology of webs remains a mysterious structure which has only been computed
for reducible webs (see Boozer [9] for a computational approach to homology of the
dodecahedron and other nonreducible webs). In the annular case, nonreducible webs
have fewer vertices, with the smallest such web shown in Figure 10, and annular
homology may shed light on and aid in understanding unoriented SL.3/ homology of
nonreducible webs and related structures.

We expect that our construction admits a generalization to SL.N / homology for all N

via an extension of the Robert–Wagner formula [34] to the anchored case.

Acknowledgments Khovanov was partially supported by NSF grant DMS-1807425
while working on the paper. Akhmechet was supported by the Jefferson Scholars
Foundation. He would like to thank his advisor Slava Krushkal for encouraging him to
pursue this project.
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2 SL.2/ anchored homology

2.1 Anchored surfaces and their evaluations

Consider the integral polynomial ring R˛ D ZŒ˛1; ˛2� in two variables ˛1; ˛2. Define
a grading on R˛ by setting

(1) deg.˛1/D deg.˛2/D 2:

Denote by � the nontrivial involution of f1; 2g. It is given by �.i/D 3� i for i 2 f1; 2g.
Also denote by � the induced involution of R˛ which permutes ˛1 and ˛2, so that
�.˛i/ D ˛�.i/ D ˛3�i . Let R be the �–invariant subring of R˛, which consists of
symmetric polynomials in ˛1 and ˛2. The subring R is itself a polynomial ring,
R D ZŒE1;E2�, where E1 and E2 are elementary symmetric polynomials in ˛1

and ˛2,
E1 D ˛1C˛2; E2 D ˛1˛2:

Degrees of E1 and E2 are 2 and 4, respectively.

Let L � R3 denote the z–axis, L D .0; 0/�R. Let S � R3 be a closed, smoothly
embedded surface which intersects L transversely. The surface S may be decorated
by dots, disjoint from L, that can otherwise float freely on components of S . The
intersection points S \L are called anchor points. Fix a labeling `, which is a map
from the set of anchor points to f1; 2g,

` W S \L! f1; 2g:

Order the anchor points by 1; : : : ; 2k, read from bottom to top, so that the labeling `
consists of a choice `.j / 2 f1; 2g for each 1� j � 2k. We will define an evaluation

hSi 2R˛

for S with the fixed labeling `, which is omitted from the notation.

Let Comp.S/ denote the set of connected components of S . A coloring of S is a
function c W Comp.S/! f1; 2g, and we denote by adm.S/ the set of colorings of S .
The surface S has 2jComp.S/j colorings. Fix a coloring c. For i D 1; 2, let di.c/ denote
the number of dots on components colored i . Let S2 denote the union of the 2–colored
components. For 1� j � 2k, let c.j / denote the color of the j th anchor point, induced
by c, which may in general be different from the fixed label `.j /. Define

(2) hS; ci D .�1/�.S2/=2
˛

d1.c/
1

˛
d2.c/
2

�Q2k
jD1.˛c.j/�˛`.j//

�1=2
.˛1�˛2/�.S/=2

:

Algebraic & Geometric Topology, Volume 23 (2023)
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Note that �.S2/ is even since S2 is a closed surface in R3. Let us explain the square
root in the above equation.

Each component S 0 of S can be made disjoint from L via a homotopy. Since the mod 2

intersection number is preserved under homotopy, it follows that S 0 intersects L at an
even number of points p1; : : : ;p2m, which can be ordered as encountered along L,
from bottom to top. Suppose S 0 is colored by c.S 0/D j , and moreover S 0 contains an
anchor point labeled j . Then the product

Q2m
jD1.˛c.j/�˛`.j//D 0, since it contains a

term j̨ � j̨ D 0, and the entire evaluation hS; ci D 0. Thus, the evaluation (2) is only
nonzero when the anchor points on a component S 0 colored j are all labeled by the
complementary color �.j /. In this case, each component contributes an even number
of factors of either ˛1 � ˛2 or ˛2 � ˛1 to the product

Q2m
jD1.˛c.j/ � ˛`.j//, and we

define the square root to be .˛1�˛2/
m or .˛2�˛1/

m, respectively. If S 0 has no anchor
points, this term is 1 and can be removed from the product.

Note that the evaluation is the product of evaluations of individual components,

(3) hS; ci D
Y

S 02Comp .S/

hS 0; c.S 0/i:

Thus, if S 0 is colored 1 by c0 D c.S 0/, has 2k anchor points all labeled 2 and carries d

dots, then

(4) hS 0; c0i D ˛d
1 .˛1�˛2/

k��.S 0/=2:

If S 0 is colored 2 by c0 D c.S 0/, has 2k anchor points all labeled 1 and carries d dots,
then

(5) hS 0; c0i D .�1/�.S
0/=2Ck˛d

2 .˛1�˛2/
k��.S 0/=2

D ˛d
2 .˛2�˛1/

k��.S 0/=2:

Otherwise, if one of the anchor points has the same label as the color of S 0, the
evaluation hS 0; c0i D 0 and hS; ci D 0.

Define the evaluation of S by

(6) hSi D
X

c

hS; ci;

where the sum is over all colorings of S . Note that if S \LD¿, then hSi agrees with
the evaluation in [19; 34]. Also note that hSi D 0 if a component of S has two anchor
points with different labels 1, 2.
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We have

(7) hSi D
Y

S 02Comp S

hS 0i;

that is, evaluation of S is the product of evaluations over connected components of S .

We can rewrite hSi as follows. First, suppose S is connected, carrying d dots, with
2k � 0 anchor points. For i D 1; 2, let ci denote the coloring of S by i . Define

hS; c1i D
˛d

1
..˛1�˛`.1// � � � .˛1�˛`.2k///

1=2

.˛1�˛2/�.S/=2
;(8)

hS; c2i D .�1/�.S/=2
˛d

2
..˛2�˛`.1// � � � .˛2�˛`.2k///

1=2

.˛1�˛2/�.S/=2
:(9)

Again, square roots in the above equations are taken in the natural way. If S has
oppositely labeled anchor points then both (8) and (9) are zero. If all anchor points are
labeled 1, then (8) is zero, whereas (9) is equal to

hS; c2i D .�1/�.S/=2
˛d

2
.˛2�˛1/

k

.˛1�˛2/�.S/=2
:

On the other hand, if all anchor points are labeled by 2 then (9) is zero and (8) equals

˛d
1
.˛1�˛2/

k

.˛1�˛2/�.S/=2
:

Then for connected S with anchor points,

hSi D hS; c1iC hS; c2i;

where at most one of the summands hS; cii is nonzero.

Clearly the evaluation is multiplicative under disjoint union. That is, if SDS1t� � �tSn,
then

hSi D hS1i � � � hSni:

Remark 2.1 Unlike closed foam evaluations appearing elsewhere [16; 18; 19; 34;
36], our evaluation does not in general produce a symmetric function. The following
examples illustrate this.

Example 2.2 Let S be a sphere intersecting L in two points with labels i and j and
carrying d dots. If i ¤ j , then each coloring c yields hS; ci D 0. If both anchor points
are labeled 1, then only coloring S by 2 contributes to the sum, and we have

hSi D hS; c2i D �
˛d

2
.˛2�˛1/

˛1�˛2

D ˛d
2 :
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On the other hand, if both anchor points are labeled 2, then

hSi D hS; c1i D ˛
d
1 :

This is summarized pictorially by

(10)

�d

�

�

i

j

D ıij�.˛i/
d .

Both signs are positive since kC�.S2/=2D 1C 1D 2 is even.

Note that these evaluations are not symmetric in ˛1 and ˛2.

Example 2.3 More generally, let S be a genus g surface with d dots and 2k anchor
points. If k D 0 (that is, if S is disjoint from L) then the evaluation is

hSi D
˛d

1
C .�1/g�1˛d

2

.˛1�˛2/1�g
:

On the other hand, if k > 0, then

(11) hSi D

8<:
˛d

2
.˛2�˛1/

kCg�1 if `.1/D � � � D `.2k/D 1;

˛d
1
.˛1�˛2/

kCg�1 if `.1/D � � � D `.2k/D 2;

0 otherwise:

Proposition 2.4 For any anchored surface S �R3 with d dots and 2k anchor points ,
its evaluation hSi is a homogeneous polynomial in ˛1 and ˛2 of degree

��.S/C 2d C 2k:

Proof If S does not intersect L, then this follows from Example 2.3. Suppose that S

intersects L. It suffices to verify the statement for connected surfaces. If S intersects L,
then the statement follows from (11), since k > 0.

We recall the following notation from [19]. For i D 1; 2, we allow surfaces to carry
decorations i consisting of i inscribed in a small circle. They must be disjoint from
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L and are allowed to float freely along the connected component on which they appear.
We call these shifted dots. Diagrammatically, a shifted dot i is the difference between
a dot and ˛i :

(12) i D �� ˛i

Lemma 2.5 Let S be an anchored foam and let S [ i denote the anchored foam
obtained by placing a shifted dot i on some component S 0 of S . Then

hS [ i i D

�
0 if S 0 has an anchor point labeled �.i/;
(� 1/i.˛1�˛2/hSi if all anchor points on S 0 are labeled i:

Proof This is clear from the definitions.

Lemma 2.5 is summarized diagrammatically by

(13)

1 �
2

2 �
1

D D 0

1 �
1

�
1

D .˛2�˛1/

2 �
2

�
2

D .˛1�˛2/

Alternatively, the skein relations (13) may written compactly as

(14) � �
i

�
i

D �.˛i/

Lemma 2.6 The following local relations hold :

� � D E1 �E2�(15)

Algebraic & Geometric Topology, Volume 23 (2023)
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�

�

D C �E1(16)

�

�

1

1

�

�

2

2
D C(17)

Proof The relation (15) is straightforward. Let us now verify (16), which is proved in
the same way as for nonanchored foams, see [19, Lemma 3.5]. Let S denote the surface
on the left, and let F denote the surface obtained by surgering S as shown on the right.
Denote by F t (resp. Fb) the surface obtained from F by placing an additional dot on
the top (resp. bottom) depicted disk. Note that anchor points, as well as their labels, are
the same for F t , Fb , and F . Colorings of F , F t , and Fb are in a canonical bijection.
There are four local models for a coloring of F , illustrated in Figure 1.

Let c be a coloring of F of the type shown in Figure 1(c), with the corresponding
coloring of F t and Fb still denoted by c. We have

hF t ; ci D ˛1hF; ci; hF
b; ci D ˛2hF; ci;

hence hF t ; ciC hFb; ci �E1hF; ci D 0. A similar calculation holds for a coloring c

of Figure 1(d) type.

There is a natural bijection between colorings of S and colorings of F of Figures 1(a)
and 1(b) types. Let c be a coloring of F of Figure 1(a) type, and continue to denote by

(a) (b) (c) (d)

Figure 1: Local models for colorings of F . Shaded indicates color 1 and
solid white indicates color 2.
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�

�

i

i

(a)

�

�

i

i

(b)

�

�

i

i

(c)

�

�

i

i

(d)

Figure 2: Local models for colorings of F i . Shaded indicates color 1 and
solid white indicates color 2.

c the corresponding coloring of S . Then

�.F /D �.S/C 2; �.F2.c//D �.S2.c//;

hF t ; ci D ˛1hF; ci; hFb; ci D ˛1hF; ci;

so we have

hF t ; ciC hFb; ci �E1hF; ci D .˛1�˛2/hF; ci D hS; ci:

Finally, if c is a coloring of F of the Figure 1(b) type, then

�.F /D �.S/C 2; hF t ; ci D ˛2hF; ci;

�.F2.c//D �.S2.c//C 2; hFb; ci D ˛2hF; ci;

which yields

hF t ; ciC hFb; ci �E1hF; ci D .˛2�˛1/hF; ci D �.˛2�˛1/
hS; ci

˛1�˛2

D hS; ci:

We now address (17), where anchor points are present. Let S denote the surface on the
left-hand side of the equality. Let F1 and F2 denote the two anchored foams obtained
by surgery on S in which the new anchor points are both labeled 1 or 2, respectively,
so that (17) reads hSi D hF1iC hF2i. For each i D 1; 2 there are four local models
for a coloring of F i , shown in Figure 2. Colorings c in Figures 2(c) and 2(d) evaluate
to zero for both i D 1; 2,

hF1; ci D hF2; ci D 0;

and they don’t correspond to any colorings of S . There is a natural bijection between
colorings of S and colorings of F i of the types in Figures 2(a) and 2(b).

Let c be a coloring of S in which the depicted region of S in (17) is colored 1, with
the corresponding colorings of F1 and F2 still denoted by c. We have immediately
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that hF1; ci D 0. On the other hand,

�.F2/D �.S/C 2; �.F2
2 .c//D �.S2.c//;

and F2 has two additional anchor points compared to S , both labeled 2 and their
regions colored 1. Therefore,

hF1; ciC hF2; ci D hF2; ci D .˛1�˛2/
hS; ci

˛1�˛2

D hS; ci:

Now let c be a coloring of S in which the depicted region of (17) is colored 2, and
continue to denote by c the corresponding colorings of F1 and F2. Then hF2; ci D 0.
Since

�.F1/D �.S/C 2; �.F1
2 .c//D �.S2.c//C 2;

and F1 contains two more anchor points labeled 1 and colored 2 than S does, we
obtain

hF1; ciC hF2; ci D hF1; ci D �.˛2�˛1/
hS; ci

˛1�˛2

D hS; ci:

Relation hSi D hF1iC hF2i in (17) follows.

Equation (16) can also be written using shifted dots:

(18)
1

2

2

1

D C D C

Corollary 2.7 The following local relation holds:

(19)
�

�

i

j

i

D ıij

Proof This can be seen by applying the neck-cutting relation (16) near the depicted
contractible circle and evaluating the resulting anchored sphere according to (10).
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2.2 State spaces

Following [6; 19], we can apply the universal construction to the evaluation described
above. Let P D R2 n .0; 0/ denote the punctured plane. Given a collection C of
disjoint simple closed curves in P , let Fr.C / denote the free R˛–module with a basis
consisting of properly embedded compact surfaces S �R2 � .�1; 0� with @S D C

and which are transverse to the ray L� WD .0; 0/� .�1; 0�. The intersection S \L�

is a 0–submanifold of L� and consists of finitely many points. Moreover, each such
surface S must carry a labeling, a map

`D `S W S \L�! f1; 2g

from the set of its intersection points with the ray L� (its anchor points) to f1; 2g.
For a basis element S 2 Fr.C /, let S � R2 � Œ0;1/ denote its reflection through
the plane R2. Labels of anchor points do not change upon reflection. For two basis
elements S;S 0 2 Fr.C /, denote by SS 0 the closed anchored surface obtained by gluing
S to S 0 along their common boundary C .

Define a bilinear form

(20) .�;�/ W Fr.C /�Fr.C /!R˛

by setting .S;S 0/D hSS 0i. A direct computation shows that the form is symmetric,
since for a closed surface T the evaluation satisfies hT i D hT i.

Define the state space of C , denoted by hC i, to be the quotient of Fr.C / by the kernel

fx 2 Fr.C / j .x;y/D 0 for all y 2 Fr.C /g

of this bilinear form. For a basis element S 2 Fr.C /, we will write ŒS � to denote its
equivalence class in hC i.

Equip the ground ring R˛ with a bigrading by placing ˛1 and ˛2 in bidegree .2; 0/. We
extend this bigrading .qdeg; adeg/ to Fr.C / as follows. For a basis element S 2 Fr.C /
with d dots and m anchor points, set the quantum grading qdeg.S/ 2 Z to be

(21) qdeg.S/D��.S/C 2d Cm:

Note that if S is a closed surface, then hSi 2 R˛ is a homogeneous polynomial of
degree qdeg.S/, following the degree convention (1).

Algebraic & Geometric Topology, Volume 23 (2023)



3142 Rostislav Akhmechet and Mikhail Khovanov

label 1 label 2

i odd 1 �1

i even �1 1

Table 1: The contribution of the i th anchor point on S to adeg.S/.

Next, let `.1/; : : : ; `.m/ denote the labels of the anchor points of S , ordered from
bottom to top, and define the annular grading adeg.S/ 2 Z by setting

(22) adeg.S/D
mX

iD1

.�1/iC`.i/:

In other words, if the i th anchor point pi is labeled 1, then it contributes 1 to adeg
if i is odd and �1 if i is even. Likewise, if pi has label 2 then it contributes �1 if i

is odd and 1 if i is even; see also Table 1. Multiplication by ˛1 or ˛2 increases the
.qdeg; adeg/–bidegree by .2; 0/.

Example 2.8 Let C consist of two noncontractible circles. The bidegree .qdeg; adeg/
of the four anchored surfaces in Fr.C / whose underlying surface consists of two disks
each intersecting L� once are recorded in Figure 3.

Lemma 2.9 Let S be an anchored surface. Then hSi D 0 or adeg.S/D 0.

Proof If some component of S has anchor points with different labels then hSi D 0.
Assume that all anchor points on any component of S are labeled identically. We also
assume that S intersects L, otherwise adeg.S/D 0 is immediate. As usual, order the
anchor points p1; : : : ;pm from bottom to top.

�

�

�

1

1

.0; 0/

�

�

�

2

1

.0;�2/

�

�

�

1

2

.0; 2/

�

�

�

2

2

.0; 0/

Figure 3: The .qdeg; adeg/–bidegrees of some anchored surfaces whose
boundary consists of two noncontractible circles.
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Take a generic half-plane P in R3 containing the anchor line L, so that P \S consists
of finitely many arcs (with boundary on L) and circles (disjoint from L). For any arc a

in P \S with boundary @aD fpi ;pj g, necessarily i and j have opposite parities. To
see this, any anchor point between pi and pj is one boundary point of an arc in P \S ,
and the other boundary point of this arc must also be between pi and pj , which shows
that the number of anchor points between pi and pj is even. Moreover, `.pi/D `.pj /

by assumption. Therefore the total contribution of the anchor points pi and pj to
adeg.S/ is zero. Summing over all arcs in P \S yields the statement of the lemma.

The subspace ker..�;�// � Fr.C / respects this bigrading on Fr.C /. Consequently,
the bigrading descends to the state space hC i.

Note that the relations (16) and (17) are bihomogeneous. Let S 2 Fr.C / be a basis
element of the form S D S1 tS2 where S1;S2 2 Fr.C / are anchored surfaces with
S2 closed. Then in hC i,

(23) ŒS �D hS2iŒS1�; hS2i 2R˛:

Moreover, the relation (23) is bihomogeneous. That it is homogeneous with respect
to qdeg follows from the fact that hS2i 2 R˛ is a polynomial of degree qdeg.S2/.
Lemma 2.9 ensures that adeg.S2/D adeg.hS2i/D 0, so adeg.S/D adeg.S1/.

Given a bigraded module M D
L
.i;j/2Z2 Mi;j over a commutative domain such that

each Mi;j has finite rank, define its graded rank to be

grank.M /D
X
i;j

rank.Mi;j /q
iaj :

Lemma 2.10 Let C � P be a single circle. Then the state space hC i is a free R˛–
module of rank 2. Moreover ,

grank.hC i/D
�

qC q�1 if C is contractible;
aC a�1 if C is noncontractible:

Proof We consider two cases. If C is contractible, then by applying the neck-cutting
relation (16) near C and evaluating closed anchored surfaces as in (23), we see that
hC i is spanned by the two elements S and S� shown in Figure 4. Bidegrees of S and
S� are .�1; 0/ and .1; 0/, respectively. Computing the matrix of the bilinear form (20)
for these elements yields �

SS SS�
S�S S�S�

�
D

�
0 1

1 E1

�
;

which is invertible; thus S and S� constitute a basis for hC i.
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�

S

�

�

S�

�

�
1

S1

�

�
2

S2

Figure 4: Basis elements for the state space of a single circle C . The first two
surfaces form a basis if C is contractible, and the last two form a basis if C

is noncontractible.

Now suppose C is noncontractible. Applying the neck-cutting relation (17) near C and
evaluating closed anchored surfaces shows that the two elements S1 and S2 depicted
in Figure 4 span hC i. Bidegrees of S1 and S2 are .0; 1/ and .0;�1/, respectively. The
matrix of the bilinear form is�

S1S1 S1S2

S2S1 S2S2

�
D

�
1 0

0 1

�
;

hence S1 and S2 are linearly independent and constitute a basis of hC i.

Theorem 2.11 Let C � P consist of n contractible circles and m noncontractible
circles. Then the state space hC i is a free R˛–module of rank 2nCm. Moreover ,

grank.hC i/D .qC q�1/n.aC a�1/m:

Proof Consider a 2nCm–element set B.C / of basis vectors of Fr.C / consisting of
surfaces S satisfying:

� Each component of S is a disk.

� Each disk in S with contractible boundary is disjoint from L� and carries either
zero or one dot.

� Each disk in S with noncontractible boundary intersects L� exactly once, and
its intersection point may be labeled by either 1 or 2.

That B.C / spans hSi follows from applying the two neck-cutting relations (16) and
(17) near the circles in C and evaluating closed anchored surfaces. Linear independence
of B.C / and the statement regarding graded rank follow from the computations in
Lemma 2.10.
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Elements of the basis B.C / constructed above are standard generators. For such a
† 2 B.C / with d dots and anchor points labeled `1; : : : ; `m, we have

(24) qdeg.†/D�nC 2d; adeg.†/D
mX

iD1

.�1/iC`.i/:

Let C0;C1 � P be two collections of disjoint circles in the punctured plane. An
anchored cobordism from C0 to C1 is a smoothly and properly embedded compact
surface S � R2 � Œ0; 1� with boundary @S D C0 t C1, such that Ci � R2 � fig for
i D 0; 1. Moreover, S is required to intersect the arc LŒ0;1� WD .0; 0/� Œ0; 1� transversely
and come equipped with a labeling of these intersection points (called anchor points),
which is a map

`D `S W S \LŒ0;1�! f1; 2g

from the set of its anchor points to f1; 2g. Anchored cobordisms are allowed to carry
dots which can float on components but cannot jump to a different component.

We compose anchored cobordisms in the usual manner. For anchored cobordisms
S1 W C0! C1 and S2 W C1! C2, let S2S1 W C0! C2 denote the anchored cobordism
obtained by gluing along the common boundary C1 and rescaling. Labels of anchor
points of S2S1 are inherited from labels of S1 and S2.

As above, if an anchored cobordism S from C0 to C1 has m anchor points and carries
d dots, define

qdeg.S/D��.S/C 2d Cm:

Let `.1/; : : : ; `.m/ denote the labels of anchor points of S , ordered from bottom to
top, and let n be the number of noncontractible circles in C0. Set

adeg.S/D .�1/n
mX

iD1

.�1/iC`.i/:

Remark 2.12 If C0 D ¿, then S is a basis element of Fr.C1/, and moreover the
two degrees qdeg.S/, adeg.S/ defined above for anchored cobordisms agree with the
definitions in (21) and (22) for elements of Fr.C1/.

An anchored cobordism S from C0 to C1 induces an R˛–linear map

S W Fr.C0/! Fr.C1/

defined on the basis by gluing along the common boundary C0. The definition of state
spaces via universal construction immediately implies that we have an induced map

(25) hSiW hC0i ! hC1i:
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type A type B type C type D

Figure 5: Elementary saddles involving noncontractible circles.

Lemma 2.13 Let S1 W C0! C1 and S2 W C1! C2 be anchored cobordisms. Then

qdeg.S2S1/D qdeg.S2/C qdeg.S1/; adeg.S2S1/D adeg.S2/C adeg.S1/:

In particular , hS1iW hC0i ! hC1i is a map of bidegree .qdeg.S1/; adeg.S1//.

Proof The first equality involving qdeg is straightforward. Let n and m denote the
number of noncontractible circles in C0 and C1 respectively, and let k denote the
number of anchor points of S1. We have

adeg.S2S1/D adeg.S1/C .�1/nCmCk adeg.S2/:

Note nCmC k is even, since it is equal to the number of anchor points of the closed
surface obtained by gluing disks to all boundary circles of S1.

The final statement concerning the bidegree of hS1i follows from interpreting generators
of hC0i as anchored cobordisms ¿! C0, as in Remark 2.12.

Definition 2.14 An annular cobordism is an anchored cobordism S � R2 � Œ0; 1�

which is disjoint from the arc LŒ0;1�D .0; 0/� Œ0; 1�. An elementary annular cobordism
is one with a single nondegenerate critical point with respect to the height function
R2 � Œ0; 1�! Œ0; 1�.

Elementary annular cobordisms consist of a union of a product cobordism with a
cup, cap, or saddle. Every annular cobordism may be obtained by composing finitely
many elementary ones. Cup and cap annular cobordisms always have contractible
boundary. There are four types of elementary annular saddles involving at least one
noncontractible circle, illustrated in Figure 5. In the next four examples we write down
the maps assigned to these four cobordisms in the standard bases of state spaces, as
defined in the proof of Theorem 2.11. We also use the notation of shifted dots from (12).
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Example 2.15 (Figure 5, type A map) The calculation for this map follows at once
from the skein relation (14):

�

�
1

�

�
1

7�!

�

�
1

�

�
1

� ˛27�!

�

�
2

�

�
2

7�!

�

�
2

�

�
2

� ˛17�!

Example 2.16 (Figure 5, type B map) This calculation follows easily from the skein
relation (19):

�

�

�

1

1

�

17�!

�

�

�

2

1

7�! 0

�

�

�

2

2

�

27�!

�

�

�

1

2

7�! 0

Example 2.17 (Figure 5, type C map) A convenient way to perform this calculation
is to use neck-cutting with shifted dots (18) near the contractible circle and then simplify
using the relations (13):

�

�
1

�

�
1

17�!

�

�
2

�

�
2

27�!

Example 2.18 (Figure 5, type D map) The neck-cutting relation (17) is helpful here.
For the dotted cup we also use (14) to simplify further:

� �

�

�

1

1

�

�

�

2

2

7�! C

�

�

�

�

�

1

1

�

�

�

2

2

7�! C˛2 ˛1
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Recall the involution � of R˛ that transposes ˛1 and ˛2, and extend it to an antilinear
involution, also denoted � , of the free R˛–module Fr.C / as follows. Involution �
on Fr.C / sends a surface S to the same surface with the labeling ` of anchor points
reversed and acts on linear combinations by

�

�X
i

�iSi

�
D

X
i

�.�i/�.Si/:

For a closed surface S we have, by direct computation, h�.S/i D �.hSi/, showing
compatibility of the two involutions. If S , in addition, carries shifted dots, involution �
reverses their labels, so that �. 1 /D 2 and �. 2 /D 1 . Involution � descends to an
involution, also denoted � , on hC i. Annular degree is negated under � : adeg.�.S//D
�adeg.S/ for an anchored cobordism S .

2.3 Annular link homology

Let ACob denote the category whose objects consist of collections of finitely many
disjoint simple closed curves in the punctured plane P . A morphism from C0 to C1

in ACob is an anchored cobordism from C0 to C1, up to ambient isotopy fixing the
boundary pointwise and mapping LŒ0;1� to itself. Let ACob0 denote the subcategory
of ACob with the same objects as ACob but whose morphisms are isotopy classes
of annular cobordisms, disjoint from the anchor line L. The composition of annular
cobordisms is again annular.

Let R˛–ggmod denote the category of bigraded R˛–modules and homogeneous maps
(of any bidegree) between them. We have a functor

h�iW ACob!R˛–ggmod;

which sends a collection of circles C �P to the state space hC i and sends an anchored
cobordism S from C0 to C1 to the map hSiW hC0i ! hC1i as in (25). By Lemma 2.13,
hSi is a map of bidegree .qdeg.S/; adeg.S//. We can restrict to the category of annular
cobordisms to get a functor

h�i
0
W ACob0!R˛–ggmod;

which assigns to an annular cobordism S a map hSi0 D hSi of bidegree .qdeg.S/; 0/.
The restriction h�i0 does not change the state space assigned to a collection of circles
C � P .
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On the other hand, a functor

G˛ W ACob0!R˛–ggmod

was introduced in [1]. We briefly recall G˛ below.

Consider the algebra

A˛ DR˛ ŒX �=..X �˛1/.X �˛2//:

It is a free R˛–module with basis f1;X g. The trace �˛ WA˛!R˛ given by 1 7! 0 and
X 7! 1 makes A˛ into a Frobenius algebra, which defines a .1C1/–dimensional TQFT,
a functor F˛ from the category of dotted cobordisms to the category of R˛–modules.
A dot on a cobordism is interpreted as multiplication by X 2 A˛. Define a grading
on A˛ by setting

(26) qdeg.1/D�1; qdeg.X /D 1:

With this grading, a cobordism S with d dots is assigned by F˛ a map of degree
��.S/ C 2d . Alternatively, the TQFT F˛ is the result of applying the universal
construction to the closed surface evaluation (6) when restricted to surfaces disjoint
from L and collections of contractible circles in P . See [19] for further details about
the Frobenius pair .R˛;A˛/.

Let C � P be a collection of n contractible and m noncontractible circles. Define the
bigraded R˛–module G˛.C / as follows. As an R˛–module, we set

G˛.C /D F˛.C /DA˝.nCm/
˛ :

Define the annular grading, denoted adeg, on F˛.C / as follows.

Every tensor factor A˛ corresponding to a contractible circle is concentrated in annular
degree zero. Order the noncontractible circles in C from outermost (furthest from the
puncture) to innermost. Introduce the notation

(27) v0 D 1; v1 DX �˛1; v00 D 1; v01 DX �˛2:

Both fv0; v1gD f1;X �˛1g and fv0
0
; v0

1
gD f1;X �˛2g constitute an R˛–basis for A˛ .

Set

(28) adeg.v0/D adeg.v00/D�1; adeg.v1/D adeg.v01/D 1:

The annular grading on noncontractible circle is defined by assigning the homogeneous
basis fv0; v1g or fv0

0
; v0

1
g to the corresponding tensor factor of A˛ in an alternating
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1 X v0 v1 v0
0

v0
1

qdeg0 �1 1 0 0 0 0

adeg 0 0 �1 1 �1 1

Table 2: The .qdeg0; adeg/–bidegrees of relevant elements, where f1;X g
is a basis for a contractible circle and fv0; v1g and fv00; v

0
1g are bases for

noncontractible circles.

manner with respect to nesting in P , with the convention that the outermost circle is
assigned fv0; v1g.

It is convenient to distinguish between the modules assigned to different types of circles
in P . Let V˛ and V 0˛ denote the R˛–modules A˛ with bases fv0; v1g and fv0

0
; v0

1
g,

respectively. The notation A˛ will be reserved for the module assigned to a contractible
circle, with basis f1;X g.

The R˛–module G˛.C / also carries a quantum grading qdeg inherited from (26). Define
a modified quantum grading qdeg0 on G˛.C / by

(29) qdeg0 D qdeg� adeg:

We will consider G˛.C / as a bigraded R˛–module with bigrading .qdeg0; adeg/. Bide-
grees are recorded in Table 2.

Remark 2.19 The modified quantum grading qdeg0 appears elsewhere in the literature
and is more natural in the context of annular link homology. In [12] this grading was
denoted j 0. Similarly, the annular link homology defined in [5] carries the modified
quantum grading.

We now define G˛ on annular cobordisms. For an annular cobordism S �R2 � Œ0; 1�,
if the boundary of S is contractible in P then G˛.S/D F˛.S/, where F˛ is the TQFT
corresponding to the Frobenius algebra A˛ as above. Formulas for the maps assigned by
G˛ to the four elementary cobordisms in Figure 5 are recorded below. If other essential
circles are present, then due to parity the formulas may be slightly different from those
below. To obtain the full set of formulas, one interchanges v0 $ v0

0
, v1 $ v0

1
, and

˛1$ ˛2:
V˛˝A˛

.A/
�! V˛;

v0˝ 1 7! v0; v1˝ 1 7! v1; v0˝X 7! ˛1v0; v1˝X 7! ˛2v1;
(30)
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V˛˝V 0˛
.B/
�!A˛;

v0˝ v
0
0 7! 0; v1˝ v

0
0 7!X �˛1; v0˝ v

0
1 7!X �˛2; v1˝ v

0
1 7! 0;

(31)

V˛
.C/
�! V˛˝A˛;

v0 7! v0˝ .X �˛2/; v1 7! v1˝ .X �˛1/;
(32)

A˛
.D/
�! V˛˝V 0˛;

1 7! v0˝ v
0
1C v1˝ v

0
0; X 7! ˛1v0˝ v

0
1C˛2v1˝ v

0
0:

(33)

Theorem 2.20 The functors h�i0 WACob0!R˛–ggmod and G˛ WACob0!R˛–ggmod
are naturally isomorphic via bidegree-preserving maps.

Proof Let C � P be a collection of circles. We will define an R˛–linear, bidegree
preserving isomorphism ˆC W hC i ! G˛.C / and show that it is natural with respect to
annular cobordisms.

Let n and m denote the number of contractible and noncontractible circles in C ,
respectively. Fix an ordering 1; : : : ; n of the contractible circles in C . The R˛–module
G˛.C / is free with basis given by elements of the form

y1˝ � � �˝yn˝ z1˝ � � �˝ zm;

where each yi is in f1;X g, specifying a basis element of the i th contractible circle, and
each zj is in either fv0; v1g or fv0

0
; v0

1
g, depending on nesting, specifying basis elements

of the noncontractible circles. The ordering of factors z1˝ � � �˝ zm corresponding to
noncontractible circles is from outermost to innermost as usual, so that the first factor
z1 labels the outermost noncontractible circle.

We now define the isomorphism ˆC W hC i ! G˛.C /. Recall the standard basis B D

B.C / for hC i defined in the proof of Theorem 2.11. For † 2 B with anchor points
labeled `1; : : : ; `m, read from bottom to top, set

ˆC .†/D y1˝ � � �˝yn˝ z1˝ � � �˝ zm;

where yi D 1 if the corresponding cup in† is undotted and yi DX if the corresponding
cup in † is dotted. The generators zj of noncontractible circles are determined using
the rule

zj D

8̂̂̂<̂
ˆ̂:
v1 if j is odd and j̀ D 1;

v0 if j is odd and j̀ D 2;

v0
0

if j is even and j̀ D 1;

v0
1

if j is even and j̀ D 2:
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1

1˝ v1˝ v
0
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1
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X ˝ v1˝ v
0
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�

�

2

1

1˝ v0˝ v
0
0

�

�

�

2

1

�

X ˝ v0˝ v
0
0

�

�

�

1

2

1˝ v1˝ v
0
1

�

�

�

1

2

�

X ˝ v1˝ v
0
1

�

�

�

2

2

1˝ v0˝ v
0
1

�

�

�

2

2

�

X ˝ v0˝ v
0
1

Figure 6: An example of the isomorphism ˆC when C consists of one
contractible circle and two noncontractible circles. Basis elements † of hC i
are drawn with the corresponding basis element ˆC .†/ 2 G˛.C / written
underneath.

See Figure 6 for an example of the assignment ˆC when n D 1 and m D 2. By
comparing the bidegree formula (24) for † with the bidegree of ˆC .†/ (see Table 2),
we see that ˆC is a bidegree-preserving isomorphism. Recall that we use the modified
quantum grading (29) for G˛.C /.

Now let S W C1! C2 be an annular cobordism. To complete the proof, we check that
the square

hC1i G˛.C1/

hC2i G˛.C2/

ˆC1

hSi G˛.S/
ˆC2

commutes. If all the boundary circles of S are contractible, then commutativity
of the square is straightforward. Otherwise, if S has at least one noncontractible
boundary circle, it suffices to consider the case where S is one of the elementary
annular cobordisms depicted in Figure 5. Formulas for these maps were recorded in
Examples 2.15–2.18. Comparing with the formulas (30)–(33) completes the proof.

Let A WD S1 � Œ0; 1� denote the annulus. For an oriented link L � A� Œ0; 1� in the
thickened annulus, a generic projection of L onto A� f0g yields a link diagram D in
the interior of A. Identifying the interior of A with the punctured plane P , we may
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form the cube of resolutions of D in the usual way, for instance as described in [4,
Section 2], with all smoothings drawn in P . The result is a commutative cube in the
category ACob0. Introducing signs to make the cube anticommutative, taking direct
sums along diagonals, adding homological and quantum grading shifts, and applying
the functor h�i0 WACob0!R˛–ggmod, one obtains a chain complex C.D/ of bigraded
R˛–modules. Diagrams representing isotopic annular links are related by Reidemeister
moves away from the puncture. By standard arguments [4; 14], the chain homotopy
class of C.D/ is an invariant of the annular link L. We write H.L/ to denote the
homology of C.D/, for any diagram D of L. Theorem 2.20 implies that the resulting
annular homology is isomorphic to that of [1].

Example 2.21 As an explicit example, let � denote the positive crossing generator of
the 2–strand braid group, and let Ln denote the annular link obtained as the annular
closure of ��n. Consider the complex C.n/:

@�1

fc0g

@�2

fc1g

@�3

fc2g� � �

@�n

fcng

The right-most term is in homological degree zero and the quantum grading shifts ci

are given by c0 D n and ci D nC 2i � 1 for 1� i � n. The right-most differential @�1

is the saddle cobordism, and for �n� i � �2 the differentials are

@i D

8̂̂̂̂
<̂
ˆ̂̂:
�
�

�
if i is even;

�
C

�
� E1 if i is odd:

The above schematic depiction of @i is interpreted as follows: each @i is an R˛–linear
combination of surfaces, each of which is given by the product cobordism on the
depicted planar tangle, with a dot on a component of the surface if the corresponding
tangle component is dotted. One can show that the chain complex C.Ln/ is chain
homotopy equivalent to the annular closure of C.n/.

Note that the annular closure of chain groups of C.n/ in negative homological degree
are each a contractible circle, contributing a free module with basis 1 and X (represented
by the surfaces S and S� in Figure 4). In homological degree zero the result is two
essential circles. We also see that, upon taking the annular closure, that @i D 0 for i

even, and that @i for i ��3 odd is given by @i.1/D 2X �E1 and @i.X /DE1X �2E2,
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Figure 7: Local model of a prefoam near singular points. Left, seam points
where three facets meet. Right, a seam vertex where six facets meet. The
singular graph s.F / is drawn bold.

which is injective. The differential @�1 is the map in Example 2.18, which is also
injective. Therefore, in homological degree i � 0,

H i.Ln/D

8̂̂<̂
:̂

0 if i is odd;
R˛fn� 2i � 2; 0g˚R˛fn� 2i; 0g

h.�E1; 2/; .�2E2;E1/i
if i < 0 and i is even;

R˛fn;�2g˚R˛fn; 2g˚ .R˛fn; 0g=h˛2�˛1i/ if i D 0;

where the curly brackets fj ; kg denote an upwards .qdeg; adeg/ shift of .j ; k/, and the
angled brackets denote the R˛–submodule generated by the enclosed elements.

3 Unoriented SL.3/ anchored homology of planar annular
webs

We recall definitions and notations from [18], including that of (unoriented) SL.3/
foams and refer the reader to [18, Section 2.1] for more details.

Definition 3.1 A (closed) SL.3/ prefoam is a compact 2–dimensional CW complex
equipped with a PL–structure such that each point has an open neighborhood that is
either an open disk, the product of a tripod and an open interval (Figure 7, left), or the
cone over the 1–skeleton of a tetrahedron (Figure 7, right). Points of the first type are
called regular, those of the second are called seam points, and those of the third are
called seam vertices. A (closed) SL.3/ foam is a closed SL.3/ prefoam together with a
PL embedding into R3.

We will simply write prefoam and foam in place of closed SL.3/ (pre)foam. For a
prefoam F , denote by v.F / the set of seam vertices and by s.F / the set of seam points
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12

3

Figure 8: The local model for a preadmissible coloring near a seam point.

and seam vertices. The subspace s.F / is a 4–valent graph which may contain closed
loops. Connected components of s.F / n v.F / are called seams.

The subspace F n s.F / is a (not necessarily compact) surface, and a connected compo-
nent of F n s.F / will be called a facet of F . The (finite) set of facets of F is denoted
by f .F /. Facets of prefoams may be decorated by a finite number of dots, which are
allowed to float freely on their facets but may not cross seams or enter seam vertices.

A coloring of a prefoam F is a map

c W f .F /! f1; 2; 3g:

That is, a coloring assigns 1, 2 or 3 to each facet of F . A coloring is called preadmissible
if the three facets meeting at each seam of F have distinct colors; see Figure 8. For a
preadmissible coloring c and 1� i; j � 3 with i ¤ j , let Fij .c/ denote the union of
facets colored i or j . The preadmissibility condition guarantees that each Fij .c/ is a
closed surface; see [18, Proposition 2.2].

A coloring c is called admissible if each Fij .c/ is orientable. For a foam F (that is, a
prefoam embedded in R3), every preadmissible coloring is admissible, since Fij .c/ is
a closed surface in R3.

3.1 Unoriented anchored SL.3/ foams and their evaluations

Fix a field k of characteristic 2. In this section the following commutative rings will be
used:

� R0x D kŒx1;x2;x3� is the ring of polynomials in three variables.

� Rx D kŒE1;E2;E3� the subring of R0x that consists of symmetric polynomials
in x1, x2 and x3, with generators Ei being elementary symmetric polynomials:

E1 D x1Cx2Cx3; E2 D x1x2Cx1x3Cx2x3; E3 D x1x2x3:

� R00x DR0x Œ.x1Cx2/
�1; .x2Cx3/

�1; .x1Cx3/
�1� is a localization of R0x given

by inverting xi Cxj , for 1� i < j � 3.
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� zR0x DkŒ
p

x1;
p

x2;
p

x3 � is the extension of R0x obtained by introducing square
roots of x1, x2 and x3.

� zR00x D kŒ
p

x1;
p

x2;
p

x3; .x1Cx2/
�1; .x2Cx3/

�1; .x1Cx3/
�1� is a localiza-

tion of zR0x given by inverting xi Cxj , for 1� i < j � 3.

All five of these rings are graded by setting deg.xi/D 2 for i D 1; 2; 3. Inclusions of
the above rings are summarized in the following diagram:

(34)
zR0x �

zR00x

[ [

Rx � R0x � R00x

We follow the notation established in [18] for these rings with the additional subscript
x to distinguish from the notation in Section 2.

Definition 3.2 An anchored SL.3/ foam F is an SL.3/ foam F 0 � R3 that may
intersect the line L at finitely many points away from the singular graph s.F 0/ of F 0.
Thus each intersection point belongs to some facet f of F 0, and intersection of facets
with L are required to be transverse. Denote by p.F /D F \L the set of intersection
points (anchor points) of F . Intersection points carry labels in f1; 2; 3g; that is, F

comes equipped with a fixed map

` W p.F /! f1; 2; 3g:

It is convenient to order anchor points p1; : : : ;pm from bottom to top, with labels
`i D `.pi/, i D 1; : : : ;m.

We now refine the notion of admissible coloring of a foam to that of admissible coloring
of an anchored foam F . Consider an anchored foam F with the underlying foam F 0. A
coloring c 2 adm.F 0/ induces a coloring of anchor points in F 0, by assigning to each
point the color of its facet. We say that c is admissible if that’s exactly the labeling
of anchor points of F , that is, `.p/D c.f / for each anchor point p in a facet f , and
then set c.p/D `.p/.

In this way, the set of admissible colorings of F 0 is in a bijection with the set of
admissible colorings of anchored foams F that become F 0 upon forgetting the labeling
of anchor points:

adm.F 0/Š
a
F

adm.F /:
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Various constructions with SL.3/ foams in [18] extend directly to anchored foams.
In particular, bicolored surfaces Fij .c/ are well defined, associated to an admissible
coloring c. We will also call an admissible coloring simply a coloring. We will use i ,
j and k to denote the three elements of f1; 2; 3g, not necessarily in that order.

We refine [18, Definition 2.9] for anchored foams.

Definition 3.3 Let F be an anchored foam, c 2 adm.F / be an admissible coloring,
and † a connected component of Fij .c/ which is disjoint from L. Define a coloring c0

of F which swaps the colors i and j on facets of †, and leaves all other facets colored
according to c. We say that c and c0 are related by an ij –Kempe move along †. Note
that since † has no anchor points, c0 is still an admissible coloring of F .

Kempe moves can be done on components † of Fij .c/ that intersect L as well, but
the resulting anchored foam F0 is different from F due to carrying different labels on
anchor points on †.

For k 2 f1; 2; 3g, denote by k 0 and k 00 its two complementary elements, so that
fk; k 0; k 00g D f1; 2; 3g. Let F be an anchored foam with labeling `. Let c 2 adm.F /
be an admissible coloring. For an anchor point p 2 p.F / lying on a facet f 2 f .F /,
we set c.p/D c.f /D `.p/; that is, c.p/ is the color of the facet, according to c, on
which p lies, which equals `.p/ since c is admissible. For 1� i � 3, let di.c/ denote
the number of dots on facets colored i . For 1� i ¤ j � 3, let Fij .c/ be the union of
facets of F colored i or j . The space Fij .c/ is a closed surface in R3 and hence has
even Euler characteristic. Set

(35) hF; ci D
P .F; c/

Q.F; c/
;

where

P .F; c/D

3Y
iD1

x
di .c/
i �

� Y
p2p.F /

.xc.p/Cx`.p/0/.xc.p/Cx`.p/00/

�1=2

;(36)

Q.F; c/D
Y

1�i<j�3

.xi Cxj /
�.Fij .c//=2:(37)

The product of the two terms under the square root, for a given anchor point p, is equal
to

.x1Cx2/.x1Cx3/ if c.p/D 1;

.x2Cx1/.x2Cx3/ if c.p/D 2;

.x3Cx1/.x3Cx2/ if c.p/D 3:
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Remark 3.4 This product is the inverse of the square decoration� in [18, Section 4.1].
The square decoration was used to study a separable version of the unoriented SL.3/
theory, with the discriminant DD .x1Cx2/.x1Cx3/.x2Cx3/ inverted, which is a
version of the Lee theory. Here, we use the defect line L rather than freely floating
square dots in [18, Section 4.1] in the opposite way, to add factors to the evaluation
rather than divide by terms in the discriminant.

Remark 3.5 If c is an admissible coloring of the underlying foam F 0 of F but not of
the anchored foam F , then the evaluation (35) is still defined and equal to zero;

(38) hF; ci D 0; c 2 adm F 0 n adm F:

This holds since, for some p 2 p.F /, its color c.p/ differs from its label `.p/, so that
xc.p/Cxc.p/ D 0 appears under the square root in (36) and P .F; c/D 0. Thus,

.xc.p/Cx`.p/0/.xc.p/Cx`.p/00/D

�
.x`.p/Cx`.p/0/.x`.p/Cx`.p/00/ if c.p/D `.p/;

0 otherwise:

Define the evaluation of F to be

(39) hFi D
X

c2adm.F /

hF; ci:

Alternatively, we can sum over the larger set of c 2 adm.F 0/, due to (38).

Let us explain the square root in (36). The equality
p

xCy D
p

xC
p

y holds in a
commutative ring of characteristic 2, so hF; ci is in the ring zR00x; see (34). We will
show in Proposition 3.11 that, in fact, no square roots appear, so that hF; ci 2 R00x .
Likewise, in Proposition 3.12 we show that hFi 2R0x .

The evaluation (39) is multiplicative with respect to disjoint union and does not depend
on a particular embedding of F into M D .R3;L/ as long as anchor points on F and
their labels are specified.

If an anchored foam F is a disjoint union of anchored foams F1 t � � � tFk , then

hFi D hF1i � � � hFki:

If F is disjoint from L, then hFi is equal to the evaluation in [18, Section 2.3].

Example 3.6 Let F be a 2–sphere S2 with two anchor points and d dots. Its evaluation
is zero unless both points have the same label i 2 f1; 2; 3g, in which case there is
only admissible coloring c which colors F by i . Let j ; k 2 f1; 2; 3g denote the
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complementary elements to i . The surfaces Fij .c/ and Fik.c/ are 2–spheres, while
Fjk.c/D¿. Then the evaluation is

hFi D
xd

i ..xi Cxj /
2.xi Cxk/

2/1=2

.xi Cxj /.xi Cxk/
D xd

i :

Example 3.7 More generally, let F be a genus g surface carrying d dots and 2n> 0

anchor points. It evaluates to zero unless all points are labeled by the same i 2 f1; 2; 3g.
In this case, letting j ; k 2 f1; 2; 3g be the complementary elements to i , the evaluation
is

hFi D
xd

i ..xi Cxj /.xi Cxk//
n

..xi Cxj /.xi Cxk//
1�g
D xd

i ..xi Cxj /.xi Cxk//
nCg�1:

Example 3.8 Consider the theta foam F whose facets each intersect L once, with
anchor points labeled i; j ; k 2 f1; 2; 3g and facets carrying d1, d2 and d3 dots,

�

�

�

d1

d2

d3

�

�

�

i

j

k

In an admissible coloring of the underlying foam, the three facets must have distinct
colors, so hFi D 0 if i , j and k are not distinct. If i , j and k are distinct, then there is
one admissible coloring c which colors the top, middle, and bottom facets, respectively,
by i , j and k. The surfaces Fij .c/;Fik.c/;Fjk.c/ are 2–spheres, and the evaluation is

hFi D x
d1

i x
d2

j x
d3

k
:

Remark 3.9 Note that the evaluation of an anchored foam is in general not a symmetric
function in x1, x2 and x3, whereas in [18] the evaluation is always an element of Rx .

Let us call a sequence ` 2 f1; 2; 3gm preadmissible if the following holds. Let u1, u2

and u3 be three nonzero elements of the abelian group Z=2 �Z=2. Sequence ` is
preadmissible if and only if

(40)
mX

iD1

u`.i/ D 0 2 Z=2�Z=2:
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Proposition 3.10 If an anchored foam F has an admissible coloring , the sequence `
of its anchor points is preadmissible.

Proof Consider a generic intersection of F with a half-plane in R3 bounding L. This
intersection is a trivalent graph � in the half-plane. Coloring c of F induces a coloring
c0 of edges of � such that around each trivalent vertex of � the colors of the three
edges are distinct (Tait coloring). On the boundary points (one-valent vertices) of �
the coloring is given by labeling `. The sum on the left hand side of (40) is zero since
it can alternatively be written as the sum of triples of vectors u1Cu2Cu3 D 0 over
all trivalent vertices of � . Each inner edge of � , that bounds two trivalent vertices,
contributes ui C ui D 0 to the sum, where i is the color of the edge. An edge with
one or both endpoints on the boundary contributes the sum of the ui over its boundary
points.

For an anchored foam F and 1� i � 3, let an.i/ denote the number of anchor points
of F with label i (the dependence on F is omitted).

Proposition 3.11 For an anchored foam F and an admissible coloring c, we have
hF; ci 2R00x .

Proof Recall the rings R00x and zR00x defined in (34). It’s clear that hF; ci belongs to
the larger ring zR00x .

The expression in (35) under the square root is equal to

.x1Cx2/
an.1/Can.2/.x2Cx3/

an.2/Can.3/.x1Cx3/
an.1/Can.3/:

For 1 � i < j � 3, the integer an.i/C an.j / is even since it is equal to the number
of intersection points of the closed surface Fij .c/ with L; see also Proposition 3.10.
Consequently, taking the square root produces integral exponent of xi Cxj , implying
that hF; ci is in R00x .

Using the above notation, the square root term in (36) is equal to

(41) zQ.F; c/ WD
Y

1�i<j�3

.xi Cxj /
.an.i/Can.j//=2;

so formula (35) can be rewritten as

(42) hF; ci D

3Y
iD1

x
di .c/
i

Y
1�i<j�3

.xi Cxj /
.an.i/Can.j/��.Fij .c///=2:

Algebraic & Geometric Topology, Volume 23 (2023)



Anchored foams and annular homology 3161

Proposition 3.12 For an anchored foam F , we have hFi 2R0x D kŒx1;x2;x3�.

Proof The proof of Theorem 2.17 in [18] extends with minor changes to this case.
Note that the evaluation is no longer a symmetric function. We must show that positive
powers of xi C xj for 1 � i < j � 3, do not appear in the denominator of hFi. Let
us specialize to i D 1 and j D 2. Denominators x1 C x2 in the evaluations hF; ci
may appear only from the components of F12.c/ that are 2–spheres. If a 2–sphere
does not intersect L, the proof in [18] works in this case as well. Suppose a 2–sphere
component† of F12.c/ intersects L in an.1/ points colored 1 and an.2/ points colored 2

(necessarily in the corresponding facets of F carrying those colors under c). These
points contribute

.x1Cx2/
an.1/Can.2/.x1Cx3/

an.1/.x2Cx3/
an.2/

to the expression under the square root, and an.1/C an.2/� 2, allowing to cancel the
denominator term x1Cx2 that † contributes. Summing over all admissible colorings
and otherwise following the arguments in [18, Theorem 2.17] implies the result.

Remark 3.13 Contributions of anchor points to the evaluation hF; ci can be interpreted
as follows. Consider polynomial f .x/D .x�x1/.x�x2/.x�x3/ 2R0x Œx�. Then

f 0.x/D .x�x2/.x�x3/C .x�x1/.x�x3/C .x�x1/.x�x2/

and
f 0.x1/D .x1�x2/.x1�x3/;

f 0.x2/D .x2�x1/.x2�x3/;

f 0.x3/D .x3�x1/.x3�x2/:

Contribution of an anchor point p with a label i D `.p/ to the evaluations hF; ci
and hFi is then

p
f 0.xi/, the square root of the derivative of f at the root xi of the

polynomial f . In characteristic two, signs do not matter, but this observation hints how
to extend the evaluation to characteristic 0.

Since the labels i1; : : : ; im of anchor points are fixed in a given F , these marked points
contribute the same term, p

f 0jL\F WD

� mY
rD1

f 0.xir
/

�1=2

;

and we have

(43) hF; ci D
p
f 0jL\F � hF

0; ci; hFi D
p
f 0jL\F � hF

0
i;
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where F 0 is the foam F viewed as a regular foam with anchored points and their labels
ignored. When coloring c of F is not compatible with labels of anchor points, though,
we should define

p
f 0jL\F D 0 to match the formula hF; ci D 0.

Also notice that, switching to characteristic 0 and from the matrix factorization view-
point [20], f .x/D w0.x/ is the derivative of the potential

w.x/D 1
4
x4
�

1
3
E1x3

C
1
2
E2x2

�E3x;

so the contributions of anchor points are given by square roots of the second derivativep
w00.xi/ at critical points of w, analogous to the square root of the Hessian factor that

appears, for example, in the steepest descent method formulas.

3.2 Skein relations

In this subsection we record several local relations satisfied by the evaluation of anchored
SL.3/ foams. We start with the following proposition concerning the relations in [18,
Section 2.5], which should be understood as occurring away from the anchor line L.

Proposition 3.14 The twelve local relations in [18, Propositions 2.22–2.33] hold.

Proof The arguments in [18] apply without modification.

We will use shifted dots in this section, as in (12). For 1� i � 3, we allow anchored
foams to carry decorations of the form i D �C xi on a facet. They are required to
be disjoint from L, float freely on their facets, but cannot move past seams or seam
vertices:

i D C xi�

For an anchored foam F carrying i on some facet f 2f .F /, any coloring c 2 adm.F /
which colors f by i evaluates to zero, hF; ci D 0. An anchor point labeled i has the
same effect as placing q

j k D

q
i 0 i 00

on the facet on which it lies (recall our conventions that f1; 2; 3gDfi; j ; kgDfi; i 0; i 00g).
See also (47) and the discussion in Section 3.4.

We also have relations involving the anchor line.
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Lemma 3.15 The following local relations hold :

�

�

1

1

�

�

2

2

�

�

3

3
D C C(44)

� �i �iD xi(45)

�

�

1

1

�

�

2

2

�

�

3

3

D C C(46)

�

�

i

i

j

k
D(47)

.xj Cxk/
�

i
�

�

k

j

�

�

j

k

D C(48)

In the last two equations, fi; j ; kg D f1; 2; 3g.

Proof Let us verify (44); the other four relations are easier to check and the proof is
left to the reader. Denote by F the anchored foam on the left-hand side, and by G1, G2

and G3 the three foams on the right-hand side, with the superscript corresponding to the
labels of the depicted anchor points. For 1� i � 3, let admi.F / be the set of admissible
colorings of F in which the depicted tube is colored by i . Admissible colorings of Gi

must color the two disks by i , so there is a natural bijection admi.F /Š adm.Gi/.

For c 2 admi.F /, let c0 2 adm.Gi/ denote the corresponding coloring. We will show
that

hF; ci D hGi ; c0i;

which completes the proof.
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The anchored foam Gi carries two more anchor points, both labeled i , than F does,
while the dot placement for Gi and F is the same, so

P .G; c0/D .xi Cxj /.xi Cxk/P .F; c/;

where fi; j ; kg D f1; 2; 3g. On the other hand,

�.Gi
ij .c
0//D�.Fij .c//C2; �.Gi

ik.c
0//D�.Fik.c//C2; �.Gi

jk.c
0//D�.Fjk.c//;

which yields
Q.G; c0/D .xi Cxj /.xi Cxk/Q.F; c/:

Thus hF; ci D hQ; c0i as desired. Summing over all admissible colorings of F we get

hFi D hG1
iC hG2

iC hG3
i;

completing the proof.

3.3 State spaces

We generalize the notion of webs and cobordisms between them from [18, Section 3.1]
in the presence of the anchor line L.

Definition 3.16 A web is a trivalent graph � which is PL–embedded into the punctured
plane P D R2 n f.0; 0/g. We allow webs to have closed loops with no vertices. A
anchored foam with boundary V is obtained by intersecting a closed anchored foam
F �R3 carrying no dots with a thickened plane R2� Œ0; 1� such that F \ .P �fig/ for
i D 0; 1 is a web (in particular, F is disjoint from the two points .0; 0; 0/ and .0; 0; 1/).
A connected component of the complement of singular points in F \ .R2 � Œ0; 1�/ is
called a facet. Each facet may be decorated by finitely many dots which can float freely
along the facet but cannot intersect the anchor line or cross singular points.

Foams with boundary are considered equivalent if there is an orientation-preserving
homeomorphism of R2 � Œ0; 1� taking one to the other which fixes the boundary of
R2 � Œ0; 1� pointwise and maps the line segment LŒ0;1� WD f.0; 0/g � Œ0; 1� to itself.

For a foam with boundary V , let

p.V /D V \LŒ0;1�

denote its intersection points with the anchor line, called anchor points. Each anchor
point is required to carry a label in f1; 2; 3g.
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We view V as a cobordism from the web @0V WD V \ .R2 � f0g/ to the web @1V WD

V \ .R2 � f1g/. A closed foam is then a cobordism from the empty web to itself. We
will often refer to foams with boundary simply as foams when the meaning is clear
from context. Composition W V of foams V and W with @1V D @0W is defined in
the natural way. We obtain a category AFoam of webs and anchored foams.

The category AFoam has a contravariant involution ! which is the identity on webs and
which sends a foam to its reflection about R2 �

˚
1
2

	
, preserving the labels of anchor

points. As for closed foams, denote by s.V / and v.V / the singular graph and singular
vertices, respectively, of a foam with boundary V . Define the degree of V to be

(49) deg.V /D 2
�
jd.V /jC jp.V /j ��.V /

�
��.s.V //;

where d.V / is the set of dots on V .

The definition of admissible colorings extends naturally to anchored foams with bound-
ary. An admissible coloring induces a Tait coloring on the boundary webs. If a foam
with boundary V has an admissible coloring c, then by [18, Remark 2.8],

(50) deg.V /D 2jd.V /jC 2jp.V /j �
�
�.V12.c//C�.V13.c//C�.V23.c//

�
:

It follows that for a closed foam F , its evaluation hFi 2R0x is a homogeneous polyno-
mial of degree deg.F /.

Lemma 3.17 For composable foams V and W ,

deg.W V /D deg.W /C deg.V /:

Proof This follows from [18, Proposition 3.1] and jp.W V /j D jp.W /jC jp.V /j.

We now define state spaces for webs via universal construction and the evaluation
formula (39). For a web � , let

Fr.�/

denote the free R0x–module generated by all anchored foams V from the empty web
to � . Define a bilinear form

.�;�/ W Fr.�/�Fr.�/!R0x

by .V;W /D h!.V /W i. This bilinear form is symmetric since hFi D h!.F /i for any
closed anchored foam F . Define the state space h�i WD Fr.�/=ker..�;�// to be the
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Š ¿f2g˚¿˚¿f�2g

a contractible circle

f1g f�1gŠ ˚

a bigon face

Š ˚

a square face

Š

a triangle face

Figure 9: Direct sum decompositions from [18, Section 3.3], where the
depicted regions do not contain the puncture.

quotient of Fr.�/ by the kernel

ker..�;�//D fx 2 Fr.�/ j .x;y/D 0 for all y 2 Fr.�/g

of the bilinear form. Note that .�;�/ is degree-preserving, so its kernel and the state
space h�i are graded R0x–modules.

An anchored foam V W �0! �1 naturally induces a map

hV iW h�0i ! h�1i

of degree deg.V /, defined by sending the equivalence class of a basis element U2Fr.�0/

to the class of the composition V U . This is functorial with respect to composition of
anchored foams, hW V i D hW ihV i for composable anchored foams with boundary V

and W .

Remark 3.18 For a web � and basis elements V1;V2 2 Fr.�/, an admissible coloring
of the closed foam !.V2/V1 induces a Tait coloring of � . Thus h�i D 0 if � has no
Tait colorings; see also [18, Proposition 3.16].

Proposition 3.19 The local1 isomorphisms in [18, Propositions 3.12–3.15], also
shown in Figure 9, hold.

Proof Proposition 3.14 guarantees that the explicit isomorphisms defined in [18] hold
in the anchored setting as well.
1Here local means that the webs involved in the isomorphisms are identical outside of a disk which is
disjoint from the puncture, and in this disk they are related as in the figures accompanying the statements
of the propositions.
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Proposition 3.20 Let � � P be a web with a noncontractible circle C which bounds
a disk in R2 n� , and let � 0 D � nC be the web obtained by removing C . Then there
is an isomorphism

h�i Š h� 0i˚ h� 0i˚ h� 0i

given by the maps

�

�

�

�

˚

˚

�

�
3

�

�
2

�

�
1

�

�
1

�

�
2

�

�
3

Proof This follows from Example 3.6 and the relation (44). Note that there are no
grading shifts in the three copies of h� 0i.

It is an interesting and nontrivial problem to identify the state spaces h�i. In the
construction in [18] without the anchor line, state spaces can be simplified using
the relations in [18, Section 3.3]; see Figure 9. In particular, bipartite webs always
contain a contractible circle, bigon, or square, so the state space in the bipartite case
is a free module of graded rank equal to the Kuperberg bracket [24], normalized as
in [15]; see also [18, Propositions 3.17 and 4.15]. The simplest web which cannot be
simplified using the relations in Figure 9 and for which the state space is unknown
is the dodecahedral graph, as explored in [9; 17], and, on the gauge theory side,
in [21; 22; 23].

One may also ask to identify state spaces in the presence of the anchor line and the
modified evaluation considered in this paper. Propositions 3.19 and 3.20 give some
ways to simplify state spaces. In general, we are not able to decompose the bigon,
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square, and triangle regions in Figure 9 if they contain the puncture. An extended
evaluation, obtained by introducing additional types of intersection points of L with
a foam, is discussed in Section 3.5. The following lemma addresses reducibility of
smallest webs.

Lemma 3.21 Let � � R2 be a connected , planar , trivalent graph with no edges
connecting a vertex to itself. 2

(1) If � is bipartite , then � has at least two bounded faces with at most four edges
each.

(2) If at most one of the bounded faces of � has fewer than five edges , then � has at
least eight vertices.

Proof Let v, e, and f denote the number of vertices, edges, and faces (including the
unbounded face) of � , respectively. Label the faces 1; : : : ; f , and for 1� i � f , let ri

denote the number of edges that form the boundary of the i th face. We have

(51)
fX

iD1

ri D 2e D 3v;

where the second equality holds since � is trivalent.

We first prove statement .1/. Since � is bipartite, each ri is even. Suppose for the sake
of contradiction that at most one bounded face of � has four or fewer edges. Then (51)
implies

fX
iD1

ri > 6.f � 2/;

so 12> 6f � 3v. On the other hand, an Euler characteristic computation gives

12D 6.f � eC v/D 6f � 3v;

which is a contradiction.

Let us now address statement .2/. From (51) we obtain

3v � 5.f � 2/C 4D 5f � 6

since, by assumption, there are f �2 faces with at least five edges each, and the remain-
ing two faces each have at least two edges. This together with an Euler characteristic
computation gives f � 6, and it follows that v � 8.

2A graph with such an edge has trivial state space; see Remark 3.18.
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�

Figure 10: The simplest nonreducible web in the punctured plane.

Corollary 3.22 Let � � P be a bipartite web. Then h�i is a free R0x–module of rank
equal to the number of Tait colorings of � .

Proof By statement (1) of Lemma 3.21, any such web has either an innermost
noncontractible circle or a region, not containing the puncture, which either bounds
a closed loop, or is a bigon or square face. Thus state space can be reduced using
Propositions 3.19 and 3.20. Since the resulting web remains bipartite we can continue
the procedure until the state space is reduced to a direct sum of empty webs, each
of which is free of rank 1. On the other hand, the number of Tait colorings can be
computed using the same relations.

It is natural to ask what is the simplest web for which the state space cannot be reduced
using Propositions 3.19 and 3.20. By statement (2) of Lemma 3.21, such a web has
at least eight vertices. The web shown in Figure 10 has precisely eight vertices and
cannot be simplified using our local relations. We have not identified the state space
of this web, but it can be approached via the 4–periodic (and, in general, nonexact)
complex described in [18, Section 4.3]. It can be applied along any of the four edges of
Figure 10 web near either the marked or the infinite point. One of the other three webs
in the complex contains a loop and has trivial homology, but additional computations
are needed to identify the state space due to nonexactness of the complex.

An annular graph � � P is called reducible if its state space can be reduced to a sum
of those for the empty annular graph by recursively applying the relations in Figure 9
and relation in Proposition 3.20. It may make sense to also allow reductions to annular
graphs without Tait colorings (including graphs with loops), since such graphs have
trivial state spaces.

A reducible annular graph allows an identification of its state space with a suitable free
graded Rx–module by recursively applying the above state sum decompositions. As a
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special case, we have the following decomposition formula for collections of simple
closed curves in an annulus.

Proposition 3.23 Let � � P consist of n contractible circles and m noncontractible
circles. Then the state space h�i is a free R0x–module of graded rank 3m.q2C1Cq�2/n.

In particular, for a reducible � , the graded rank of the free R0x–module h�i can be
computed recursively.

Anchored foams and state spaces carry an additional .Z=2�Z=2/–grading as follows.
Recall that u1, u2 and u3 denote the nonzero elements of Z=2�Z=2. For a foam V

with (possibly empty) boundary, define

adeg.V /D
X

p2p.V /

u`.p/:

We call adeg the annular degree. Clearly adeg is additive under disjoint union and
composition.

The annular degree extends to a .Z=2�Z=2/–grading on Fr.�/, for a web � � P , by
setting the ground ring R0x to be concentrated in annular degree zero. Proposition 3.10
implies that hFi D 0 or adeg.hFi/D 0 for any closed foam F . It follows that .�;�/
preserves annular degree, so adeg descends to a .Z=2�Z=2/–grading on the state
space h�i. The annular grading is the unoriented version of the grading on state spaces
of annular oriented webs by the integral weight lattice of sl3 — see Section 4.4 — even
though the action of the latter is lacking on the equivariant annular state spaces.

In [18, Section 4] the authors consider localization of the unoriented SL.3/ theory given
by inverting the discriminant D D .x1 C x2/.x1 C x3/.x2 C x3/. This localization
results in a significant simplification of the theory, making it separable, so to speak. In
particular, a suitable 4–term sequence of web state spaces in [18, Section 4.3] is exact.

This localization easily extends to the annular case. The corresponding 4–term se-
quence is exact in the annular case as well. The ground ring for that theory is
R0D WD kŒx1;x2;x3;D�1�, with k a characteristic two field. The analogue of [18,
Proposition 4.13] holds: the localized state space of an annular web � is a projective
R0D–module of rank equal to the number of Tait colorings of � . The latter is the number
of edge colorings of � into three colors such that at each vertex the colors are distinct.
Proof of this result in [18] easily adapts to the annular case, with the modification
that the region around the marked point can be inductively simplified, if necessary, by
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reducing to the other three terms in the exact sequence, until it has a single edge (a
loop around the marked point).

3.4 Remark on Lee’s theory

Recall the function

(52) f .x/D .xCx1/.xCx2/.xCx3/D x3
CE1x2

CE2xCE3

(in characteristic 2 signs do not matter) with coefficients in the ring Rx and roots in
R0x �Rx . One can form the quotient ring A WDR0x Œx�=.f .x//, naturally isomorphic
to the homology of a contractible circle in our theory. Let

(53) DD .x1Cx2/.x1Cx3/.x2Cx3/DE1E2CE3

be the discriminant. Consider the localization

(54) R0D WDR0x ŒD
�1�; AD WDR0D˝R0x

A:

Introduce idempotents e1; e2; e3 2AD,

(55) ei WD
.xCxj /.xCxk/

.xi Cxj /.xi Cxk/
; fi; j ; kg D f1; 2; 3g:

We have

(56) 1D e1C e2C e3; eiej D ıi;j ei :

These idempotents decompose the ring AD into the direct product

(57) AD ŠR0De1 �R0De2 �R0De3 ŠR0D �R0D �R0D:

An idempotent ei can be visualized as floating on a facet of a foam F , in the localized
theory. These idempotents allow us to decompose an evaluation of a foam F with n

facets into 3n terms by summing over all ways to place each of these three idempotents
onto facets of F . Each term is straightforward to compute and equals zero unless the
idempotents define a Tait coloring (an admissible coloring) of F .

Idempotent ei bears a close relation to an anchor point labeled i . The anchor point
p on a facet f contributes the term

p
f 0.xc.f //D

p
.xc.f /Cxj /.xc.f /Cxk/ to the

evaluation hF; ci. The square of this term is either 0 (if i ¤ c.f /) or the denominator
of ei , if i D c.f /, for any coloring c of F .
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Comparing ei and an anchor point p labeled i , when coloring c associates color c.f /¤ i

to the facet f carrying ei or p, both evaluations are zero. When c.f /D i , the idempo-
tented dot ei contributes 1 to the evaluation, while the anchor point contributes

p
f 0.xi/.

The denominator of ei is f 0.xi/.

One can try to unify ei and anchor points p by considering anchor lines and circles L

in R3 possibly intersecting a foam F . Intersection points (anchor points) carry labels
i 2 f1; 2; 3g and a circle anchor points labeled i is the idempotent ei . Then a “small”
circle intersecting a facet f at two points, both labeled i , can also be converted into ei .
Notice that once ei are allowed, integrality is lost and an evaluation of such a foam
may contain denominators which are products of xi Cxj .

For a different generalization, instead of a single line L�R3 consider a 1–manifold
L properly embedded in R3, say a finite union of lines and circles, possibly knotted.
All anchor points (intersection points with L) on a foam F carry labels, with the usual
contribution to the evaluation, as in formula (36). The integrality Theorem 4.15 still
holds for such generalized evaluation. In particular, given k points on a plane, one
can define various state spaces for webs � embedded in the plane and disjoint from
these marked points. Also note that for k � 2 punctures, bipartite graphs are in general
not reducible, which makes it harder to understand corresponding state spaces in the
oriented SL.3/ case.

Remark 3.24 A handle next to but disjoint from an anchor line can be written as a
sum of three lower genus terms intersecting the line — see (46) — which follows from
the formula

m ı�.1/D .x1Cx2/.x1Cx3/C .x1Cx2/.x2Cx3/C .x1Cx3/.x2Cx3/

D f 0.x1/Cf
0.x2/Cf

0.x3/:

3.5 Unlabeled anchor points and bigon decomposition

Direct sum decompositions for webs � containing a bigon, triangle, or square face
which do not contain the puncture are given in Proposition 3.19. On the other hand,
Proposition 3.20 describes how to simplify a web containing an innermost noncon-
tractible circle. In order to have direct sum decompositions for more general regions
containing the puncture, we introduce additional types of intersections of the anchor
line L with a foam and modify the evaluation h�i.

In addition to anchor points, which carry labels in f1; 2; 3g as in Definition 3.2, we
allow finitely many transverse intersections of L with a foam F away from the singular
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ı �i

Figure 11: Left, a type 1 anchor point marked ı and carrying no label. Right,
a type 2 anchor point marked � with label i 2 f1; 2; 3g.

graph s.F /, and we do not require labels. We will call the usual (labeled) anchor
points type 2, and the new (unlabeled) anchor points type 1. In the figures, we denote
type 2 anchor points by an asterisk � as usual, along with a label in f1; 2; 3g, and type
1 anchor points will be indicated by a small unshaded circle ı. Figure 11 illustrates the
convention. Let p1.F / and p2.F / denote the set of type 1 and type 2 anchor points,
respectively (using the notation in Section 3.1, p.F / D p2.F /). The definition of
admissible coloring remains the same.

We modify the evaluation in the presence of type 1 points as follows. Let c 2 adm.F /.
For p 2 p1.F / lying on some facet f 2 f .F /, let c.p/ WD c.f / denote the coloring
of the facet on which p lies. Also recall that for i 2 f1; 2; 3g, we write i 0; i 00 and j ; k

to denote the two complementary elements, so f1; 2; 3g D fi; j ; kg D fi; i 0; i 00g.

Define

zQı.F; c/D
Y

p2p1.F /

p
xc.p/0 Cxc.p/00 ;(58)

Pı.F; c/D P .F; c/ � zQı.F; c/;(59)

hF; ciı D
Pı.F; c/

Q.F; c/
;(60)

hFiı D
X

c2adm.F /

hF; ciı;(61)

where P .F; c/ and Q.F; c/ are as defined in (36) and (37). In other words, a type 1
point p on an i–colored facet contributes a factor of

p
xj Cxk to the evaluation hF; ciı.

Remark 3.25 Type 1 intersection points are related to the triangle decoration from
[18, Section 4.1]. Precisely, the contribution of a type 1 point p to the square root in
(58) equals the inverse of placing a triangle decoration on the facet where p lies. See
relation (62), as well as Remark 3.4 for a related discussion.
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Note that a type 1 intersection point contributes half the degree of a type 2 point to the
degree of the evaluation and, thus, to the degree of a cobordism represented by a foam
with boundary.

Example 3.26 Consider a 2–sphere F carrying d dots and intersecting L in two type 1
anchor points,

�d

ı

ı

For 1� i � 3, let ci 2 adm.F / color F by i . Then

hF; ciiı D
xd

i .xj Cxk/

.xi Cxj /.xi Cxk/
;

hFiı D hF; c1iıChF; c2iıChF; c3iı

D
xd

1
.x2Cx3/

2Cxd
2
.x1Cx3/

2Cxd
3
.x1Cx2/

2

.x1Cx2/.x1Cx3/.x2Cx3/

D
xd

1
.x2

2
Cx2

3
/Cxd

2
.x2

1
Cx2

3
/Cxd

3
.x2

1
Cx2

2
/

.x1Cx2/.x1Cx3/.x2Cx3/
:

Thus, hFiıD 0 if d D 0; 2, and hFiıD 1 if d D 1. For d � 3, the last expression above
equals the ratio of the antisymmetrizer with exponent .d; 2; 0/ and antisymmetrizer
with exponent .2; 1; 0/ (up to adding signs, which does not matter in characteristic 2).
Thus hFiı equals the Schur function s�.x1;x2;x3/ for the partition �D .d � 2; 1; 0/

when d � 3.

Example 3.27 Consider a 2–sphere F carrying d dots and intersecting L in one type 1
anchor point and one type 2 anchor point,

�d

�

ı

i
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Then F has one admissible coloring, and

hFiı D
xd

i

p
.xi Cxj /.xi Cxk/.xj Cxk/

.xi Cxj /.xi Cxk/
D

xd
i

p
xj Cxkp

.xi Cxj /.xi Cxk/
:

From Example 3.27 we see that the evaluation hFiı in general has denominators and
square roots, so we can only conclude that

hFiı 2 zRı WD kŒx1;x2;x3; .x1Cx2/
�1=2; .x2Cx3/

�1=2; .x1Cx3/
�1=2�:

Note that zRı is a subring of zR00x; see Section 3.1 and diagram (34).

We use zRı as the ground ring of the theory. Evaluations of closed anchored foams F

with two types of anchor points belong to this ring. We define the state space h�iı
of a trivalent graph � � P using this evaluation and following the general recipe
of Section 3.3. The state space is a graded zRı–module, but, due to the presence of
invertible elements .xi Cxj /

1=2 of degree 1, grading carries little information, and for
many purposes one can downsize and consider the degree zero part h�i0ı of the state
space, which is a module over the degree 0 subring zR0

ı of zRı.

This theory is functorial and foams with top and bottom boundary and anchor points of
those two different types induce maps between the corresponding state spaces. Various
direct sum decompositions that hold for the unoriented SL.3/ theory h�i hold for this
theory as well.

We also have local relations involving type 1 intersection points.

Lemma 3.28 The following local relations3 hold for the theory h�iı:

ı

ı

�D E1 C(62)

ı

ı

ı

ı

D C(63)

3To clarify relation (63): the first term on the right-hand side of the equality has a type 1 anchor point on
each of two front-facing half-bubbles, while the second term has a type 1 anchor point on each of the two
back-facing half-bubbles.

Algebraic & Geometric Topology, Volume 23 (2023)



3176 Rostislav Akhmechet and Mikhail Khovanov

D

ı

ı

(64)

ı

ı

D 0(65)

Proof Relation (62) is straightforward and left to the reader. Let us verify relation (63).
Denote by F the foam on the left-hand side of the equality, and denote by F1 and F2 the
two foams on the right-hand side. There is a natural identification adm.F1/D adm.F2/.

Let c 2 adm.F1/ be a coloring in which the front two half-bubble facets are differ-
ently colored, say the top front half-bubble is colored j , the bottom front half-bubble
is colored k, and the remaining “big” facet is colored i . Continue to denote by
c 2 adm.F2/ the corresponding coloring of F2. The top type 1 intersection point of
F1 contributes

p
xi Cxk to hF1; ci and the bottom type 1 intersection point of F1

contributes
p

xi Cxj , while the contributions of these points to hF2; ci are reversed.
Thus in characteristic two we have

hF1; ciC hF2; ci D 0:

Next, the admissible colorings of F are in natural bijection with the admissible colorings
of F1 (and of F2) in which the front half-bubbles of F1 are colored the same. Let
c 2 adm.F /, and let c0 2 adm.F1/ Š adm.F2/ denote the corresponding colorings.
Suppose that c0 colors the front half-bubbles of F1 by j , the “big” facet by i , and the
back half-bubbles by k. Then

hF1; c0i D
xi Cxk

xj Cxk

hF; ci and hF2; c0i D
xi Cxj

xj Cxk

hF; ci;

from which we obtain
hF; ci D hF1; c0iC hF2; c0i;

which completes the proof of relation (63).
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We now address the relation (64). Let G denote the foam on the left-hand side of the
equation, and let G0 denote the foam on the right-hand side. Let c 2 adm.G/, and
assume c colors the “big” facet of G by i , the front bubble by j , and the back bubble
by k. Let c0 2 adm.G/ denote the coloring which is identical to c except the front
and back bubbles are colored by k and j , respectively. Let c00 2 adm.G0/ denote the
coloring of G0 in which the depicted facet is colored i , and the remaining facets are
colored according to c (equivalently, c0). We claim that

hG; ciC hG; c0i D hG0; c00i;

which completes the proof. To verify the above equality, observe that

hG; ci D
xi Cxk

xj Cxk

hG0; c00i and hG; c0i D
xi Cxj

xj Cxk

hG0; c00i:

The proof of relation (65) is similar and left to the reader.

The previous lemma allows us to simplify the state space h�iı assigned to a web � �P
with a bigon region containing the puncture.

Proposition 3.29 The two maps shown in Figure 12 are mutually inverse isomorphisms
between state spaces of graphs in the theory h�iı.

Proof This follows from the relations in Lemma 3.28.

4 Oriented SL.3/ anchored homology

In this section we recall oriented SL.3/ foams, which were introduced in [15] in the
context of sl.3/ link homology. An equivariant analogue was defined in [28]; see
also [10; 26; 27; 29; 33] for various aspects of SL.3/ foams and link homology. In
Section 4.1 we define an evaluation of oriented SL.3/ foams via colorings in the style
of Robert and Wagner [34] and show in Theorem 4.26 that our evaluation agrees with
that of [28]. In Section 4.2 we deform the evaluation in the presence of the anchor
line L. In Theorem 4.15 we show that our evaluation is always a polynomial.

To avoid introducing new notation, in this section we will reuse the notation for various
rings from Section 3:

� R0x D ZŒx1;x2;x3� is the ring of polynomials in three variables.
� RxDZŒE1;E2;E3� is the subring of R0x that consists of symmetric polynomials

in x1, x2 and x3, with generators Ei being the elementary symmetric polynomials

E1 D x1Cx2Cx3; E2 D x1x2Cx1x3Cx2x3; E3 D x1x2x3:
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Figure 12: Isomorphisms which simplify a bigon region containing the punc-
ture, for the theory h�iı. In the top map, the top foam has a type 1 point on
the front half-bubble, and the bottom foam has a type 1 point on the back
half-bubble. In the bottom map, the first foam has a type 1 point on the front
half-bubble, and the second foam has a type 1 point on the back half-bubble.

� R00x DR0x Œ.x1�x2/
�1; .x2�x3/

�1; .x1�x3/
�1� is a localization of R0x given

by inverting xi �xj , for 1� i < j � 3.

� zR0x DR0x Œ
p

x1�x3;
p

x2�x3;
p

x1�x3 � is the extension of R0x obtained by
introducing square roots of pxi �xj , for 1� i < j � 3.

� zR00x D
zR0x Œ.x1 � x2/

�1; .x2 � x3/
�1; .x1 � x3/

�1� is a suitable localization of
the ring zR0x .

All five of these rings are graded by setting deg.x1/D deg.x2/D deg.x3/D 2. Inclu-
sions of the above rings are summarized in the following diagram:

(66)
zR0x �

zR00x

[ [

Rx � R0x � R00x
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4.1 Oriented SL.3/ foams and their evaluations

We begin by recalling the definition of oriented SL.3/ foams from [15, Section 3.2].

Definition 4.1 A (closed) oriented SL.3/ prefoam F consists of the following data:

� An orientable surface F 0 with connected components F1; : : : ;Fk and a partition
of the boundary components of F 0 into triples. The underlying CW structure
of F is obtained by identifying the three circles in each triple. The image of
the three circles in each triple becomes a single circle in F , called a singular
circle. The image of the surfaces Fi are called facets. Three facets meet at each
singular circle.

� For each singular circle Z, we fix a cyclic ordering of the three facets meeting
at Z. There are two possible choices of cyclic ordering for each Z.

� Each facet may carry some number of dots, which are allowed to float freely
along the facet but cannot cross singular circles.

A oriented SL.3/ foam is a prefoam as above equipped with an embedding into R3,
along with an orientation on each facet such that any two of the three facets meeting
at each singular circle are incompatibly oriented, as shown in Figure 13, left. Each
singular circle Z acquires an induced orientation; see Figure 13, middle. This induced
orientation on Z specifies a cyclic ordering of the three facets meeting at Z by following
the left-hand rule — Figure 13, right — and we require this to match the cyclic ordering
specified by the prefoam F .

Note that unlike unoriented foams considered in Section 3, the oriented SL.3/ prefoams
in the present section do not contain singular vertices. When there is no risk of confusion

Figure 13: Left: orientations of three facets meeting at a singular circle.
Middle: the induced orientation of a singular circle. Right: the induced cyclic
ordering.
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between the foams introduced in the Definition 4.1 and those of Section 3, in this
section we will simply write (pre)foam rather than oriented SL.3/ (pre)foam.

For a prefoam F , let ‚.F / denote the set of its singular circles and �.F /D j‚.F /j
the number of singular circles. Each Z 2‚.F / has a neighborhood homeomorphic to
the product of a circle S1 and a tripod. Let f .F / denote the set of facets of F . We
use the definitions of preadmissible and admissible colorings of prefoams and foams
from Section 3 in the present situation. For a prefoam F , adm.F / denotes the set of
admissible colorings of F . Note that if F is a foam, every preadmissible coloring is
also admissible.

Fix a prefoam F and an admissible coloring c 2 adm.F /. For 1� i ¤ j � 3, bicolored
surfaces Fij .c/ consist of all facets colored i or j ; each Fij .c/ is a closed, orientable
surface. For 1� i � 3, let Fi.c/ be the surface consisting of all facets of F which are
colored i by c; the surface Fi.c/ is orientable and has �.F / boundary components.
Denote by Fi.c/ the closed surface obtained by gluing disks along boundary components
of Fi.c/. We have

(67)
�.Fi.c//D �.Fi.c//C �.F /; 1� i � 3;

�.Fij .c//D �.Fi.c//C�.Fj .c//; 1� i < j � 3:

The three facets meeting at each singular circle are colored by i , j and k, whereas
before we used i , j and k to denote the three elements of f1; 2; 3g. We now define
quantities �˙.c/ and �˙ij .c/ associated with the set of singular circles ‚.F / and the
admissible coloring c.

Definition 4.2 Let F be a prefoam with admissible coloring c, and let 1� i < j � 3.
A singular circle Z 2‚.F / is positive with respect to .i; j / if the cyclic ordering of
the colors of the three facets meeting at Z is .i k j /. If F is a foam, then an equivalent
formulation is as follows: when looking along the orientation of Z with the facet
colored k, as in Figure 14, the i–colored facet is to the left of the j –colored facet.
Otherwise, we say Z is negative with respect to .i; j /. See Figure 14, left, for a pictorial
definition. Let �Cij .c/ (resp. ��ij .c/) denote the number of positive (resp. negative) circles
with respect to .i; j /. We have

�Cij .F; c/C �
�
ij .F; c/D �.F /:

We say that a singular circle Z is positive with respect to c if the colors of the three
facets meeting at Z are .1 2 3/ in the cyclic ordering, and otherwise Z is negative;
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i j

k

1 3

2

1 2

3

Figure 14: Left: a positive .i; j /–circle, where i < j . Middle: a positive
singular circle. Right: a negative singular circle.

see Figure 14, middle and right. Let �C.F; c/ (resp. ��.F; c/) denote the number of
positive (resp. negative) circles in F with respect to c. We have

(68) �C.F; c/C ��.F; c/D �.F /:

We will often omit F from the notation and simply write � , �˙ij .c/, and �˙.c/.

We now define the evaluations hF; ci and hFi. For a prefoam F , c 2 adm.F /, and
1� i � 3, let di.c/ denote the number of dots on facets colored i . Define

P .F; c/D

3Y
iD1

x
di .c/
i ;(69)

Q.F; c/D
Y

1�i<j�3

.xi �xj /
�.Fij .c//=2;(70)

s.F; c/D

3X
iD1

i�.Fi.c//=2C
X

1�i<j�3

�Cij .c/:(71)

Set

hF; ci D .�1/s.F;c/
P .F; c/

Q.F; c/
;(72)

hFi D
X

c2adm.F /

hF; ci:(73)

A priori, the evaluations hF; ci and hFi lie in the ring R00x; see diagram (66).

In what follows, we use the symbol � to mean equality modulo 2. Note that

(74)
3X

iD1

i�.Fi.c//=2�
�.F1.c//C�.F3.c//

2
;
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since �.F2.c// is even. Moreover, from (67) we obtain

(75)
3X

iD1

i�.Fi.c//=2� � C

3X
iD1

i�.Fi.c//=2:

Lemma 4.3 For a prefoam F and c 2 adm.F /,X
1�i<j�3

�Cij .c/� �
C.c/:

It follows that

(76) s.F; c/�

3X
iD1

i�.Fi.c//=2C �
�.c/:

Proof Let Z 2‚.F /. Observe that if Z is positive with respect to c, then it contributes
only to �C

13
.c/. Likewise, if Z is negative then it contributes to both �C

12
.c/ and �C

23
.c/

but not to �C
13
.c/, which verifies the first equality. The second equality follows from

(75) and (68).

Example 4.4 Let F be a 2–sphere S2 with d dots. For 1 � i � 3, let ci 2 adm.F /
color F by i . We have

hFi D hF; c1iC hF; c2iC hF; c3i

D �
xd

1

.x1�x2/.x1�x3/
C

xd
2

.x1�x2/.x2�x3/
�

xd
3

.x1�x3/.x2�x3/

D
�xd

1
.x2�x3/Cxd

2
.x1�x3/�xd

3
.x1�x2/

.x1�x2/.x2�x3/.x1�x3/

D�s.d�2;0;0/.x1;x2;x3/D�hd�2.x1;x2;x3/D�
X

iCjCkDd�2

xi
1x

j
2
xk

3 ;

where s.d�2;0;0/.x1;x2;x3/ is the Schur function of the partition .d � 2; 0; 0/, and
hd�2.x1;x2;x3/ is the complete symmetric function of degree d � 2. In particular
hFi D 0 if d D 0 or d D 1, and hFi D �1 if d D 2.

Example 4.5 Let F be the theta foam

�

�

�

d1

d2

d3
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Given any c 2 adm.F /, each capped-off surface Fi.c/ and each bicolored surface
Fij .c/ is a 2–sphere. In particular,

s.F; c/� �C.c/:

For � 2 S3, let c.�/ 2 adm.F / denote the coloring which colors the top facet by �.1/,
the middle facet by �.2/, and the bottom facet by �.3/. We have

hFi D
X
�2S3

hF; c.�/i D

P
�2S3

.�1/�
C.c.�//x

d1

�.1/
x

d2

�.2/
x

d3

�.3/

.x1�x2/.x1�x3/.x2�x3/
;

and moreover
�C.c.�//� j� j;

where j� j is the length of � .

Therefore if d1 � d2 � d3,

hFi D s.d1�2;d2�1;d3/.x1;x2;x3/;

the Schur function with partition .d1� 2; d2� 1; d3/. In particular, hFi D 0 if d1, d2

and d3 are not distinct. If d1, d2 and d3 are distinct and d1C d2C d3 � 3, then up to
cyclic permutation there are two choices:

� �

� D 1,

�

�� D�1.

The symmetric group S3 naturally acts on adm.F / and on the five rings in the dia-
gram (66). The following lemma is analogous to [34, Lemma 2.16].

Lemma 4.6 Let F be a prefoam , c 2 adm.F /, and � 2 S3. Then

�.hF; ci/D hF; �.c/i:

Proof We may assume that � is a transposition .i i C 1/ for i D 1; 2. We have

�.P .F; c//D P .F; �.c//; �.Q.F; c//D .�1/�.Fi.iC1/.c//=2Q.F; �.c//:

Let k 2 f1; 2; 3g n fi; i C 1g. Note that a singular circle Z is positive with respect to c

if and only if Z is negative with respect to �.c/, so

�C.c/C �C.�.c//D � D ��.c/C ��.�.c//:
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Moreover,

Fi.c/D FiC1.�.c//; FiC1.c/D Fi.�.c//; Fk.c/D Fk.�.c//:

Therefore

s.F; c/� s.F; �.c//D
�.FiC1.c//��.Fi.c//

2
C ��.c/� ��.�.c//

�
�.FiC1.c//��.Fi.c//

2
C �

�
�.FiC1.c//C�.Fi.c//

2

�
�.Fi.iC1/.c//

2
:

Corollary 4.7 The evaluation hFi is a symmetric rational function.

Later we will prove that hFi is in fact a polynomial; see Corollary 4.16.

Lemma 4.8 Let i 2 f1; 2g, let F be a prefoam , and let c 2 adm.F / be an admissible
coloring. Suppose c0 2 adm.F / is obtained from c by a .1; 2/–Kempe move along a
surface †� F12.c/. Then

s.F; c/� s.F; c0/C 1
2
�.†/:

Proof Note that this is analogous to [34, Lemma 2.19]. Letting �.†/ denote the
number of seam circles on †, we have

��.c/C ��.c0/� �.†/� �.F1.c/\†/:

Note also that
�.F1.c//��.F1.c

0//D �.F1.c/\†/��.F2.c/\†/;

�.F2.c//��.F2.c
0//D �.F2.c/\†/��.F1.c/\†/:

We compute

s.F; c/� s.F; c0/�
�.F1.c//��.F1.c

0//

2
C

2
�
�.F2.c//��.F2.c

0//
�

2
C �.†/

�
�.F2.c/\†/��.F1.c/\†/

2
C�.F1.c/\†/

�
1
2
�.†/:

4.2 Oriented anchored SL.3/ foams and their evaluations

Definition 4.9 An oriented anchored SL.3/ foam F is an oriented foam F 0 � R3

that may intersect the anchor line L at finitely many points away from the singular
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circles of F 0, so that each intersection point belongs to some facet of F 0, and moreover
these intersections are required to be transverse. Denote by p.F /D F 0\L the set of
intersection points (anchor points) of F . The anchor points carry labels in f1; 2; 3g;
that is, F comes equipped with a fixed map

` W p.F /! f1; 2; 3g:

Fix an anchored foam F and an admissible coloring c of the underlying foam F 0.
Each anchor point p 2 p.F / lying on a facet f inherits a color c.p/ WD c.f /. As
in Section 3, we say that c is an admissible coloring of the anchored foam F if for
each p 2 p.F /, the color of p equals the label of p, that is, c.p/D `.p/. Denote by
adm.F / the set of admissible colorings of F .

For i 2 f1; 2; 3g, let i 0 and i 00 denote the complementary elements, so that fi; i 0; i 00g D
f1; 2; 3g. Define the evaluations

hF; ci D .�1/s.F;c/
P .F; c/

Q.F; c/

� Y
p2p.F /

.�1/c.p/�1.xc.p/�x`.p/0/.xc.p/�x`.p/00/

�1=2

;(77)

hFi D
X

c2adm.F /

hF; ci;(78)

where P .F; c/, Q.F; c/ and s.F; c/ are as defined in (69), (70) and (71), respectively.

Let us explain the square root in (77). We have c.p/D `.p/ for every anchor point
p 2 p.F /. If p is labeled i , then it contributes

.�1/i�1.xi �xj /.xi �xk/

to the product under the square root. More concretely, the product of the two terms
under the square root, for a fixed anchor point p, is equal to

.x1�x2/.x1�x3/ if c.p/D 1;

.x1�x2/.x2�x3/ if c.p/D 2;

.x1�x3/.x2�x3/ if c.p/D 3:

Let an.i/ be the number of anchor points p with c.p/D i . Then for 1� i < j � 3 the
sum an.i/C an.j / is even, which follows from Proposition 3.10.

We define the square root as the product

(79) zQ.F; c/ WD
Y

1�i<j�3

.xi �xj /
.an.i/Can.j//=2
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and rewrite formula (77) as

hF; ci WD .�1/s.F;c/
P .F; c/ zQ.F; c/

Q.F; c/

D .�1/s.F;c/P .F; c/
Y

1�i<j�3

.xi �xj /
.an.i/Can.j/��.Fij .c///=2:

Note that zQ.F; c/ depends only on the labels of anchor points and not on the color-
ing c, as long as c respects labels of anchor points (otherwise, the evaluation is 0).
Consequently, it can also be denoted by zQ.F /. Alternatively, it may be useful to allow
more general colorings c, with zQ.F; c/ D 0 for c not compatible with the labels of
anchor points.

Recall diagram (66) and the surrounding discussion for notations of various rings. The
above formula implies the following proposition.

Proposition 4.10 The evaluation hF; ci is an element of R00x .

Remark 4.11 As discussed in Remark 3.5, if c is an admissible coloring of the
underlying foam F 0 but not of the anchored foam F , then the evaluation (77) is still
well-defined and equal to zero. Even if we don’t restrict the notion of admissible
colorings of an anchored foam to those which color anchor points according to their
labels, additional terms in the evaluation will each be 0, not contributing anything.

Example 4.12 Let F be a 2–sphere S2 carrying d dots and intersecting L twice. Then
hFi D 0 unless both anchor points are labeled by i 2 f1; 2; 3g. In this case, there is one
admissible coloring c which colors F by i . We see that s.F; c/� i , and the evaluation
is

hFi D .�1/ixd
i :

Example 4.13 Consider the theta foam F whose facets each intersect L exactly once,

�

�

�

d1

d2

d3

�

�

�

i

j

k
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There is one admissible coloring c, and we have

hFi D hF; ci D

(
x

d1

i x
d2

j x
d3

k
if .i; j ; k/D .1; 3; 2/ or a cyclic permutation;

�x
d1

i x
d2

j x
d3

k
if .i; j ; k/D .1; 2; 3/ or a cyclic permutation:

The symmetric group S3 acts on all five of the rings in diagram (66). Recall also that
S3 acts on the set of admissible colorings of an unanchored foam (ie those considered
in Section 4.1). However, for an anchored foam F , c 2 adm.F /, and � 2 S3, the
coloring �.c/ is in general not admissible for F .

Consider instead the anchored foam �.F / defined as follows. The underlying foam
of �.F / agrees with the underlying foam of F . If anchor points of F are labeled by
` W p.F /!f1; 2; 3g, then the anchor points of �.F / are labeled by �.l/ W p 7! �.`.p//.
Note that � provides a bijection adm.F /Š adm.�.F // via c 7! �.c/. The following
lemma says that the evaluations hFi and h�.F /i differ by a sign, and moreover the
sign depends only on � and on labels of anchor points of F .

Lemma 4.14 For an anchored foam F , c 2 adm.F /, and � 2 S3, we have

�.hF; ci/D .�1/".F;�/h�.F /; �.c/i;

where

(80) ".F; �/D
X

1�i<j�3
�.i/>�.j/

an.i/C an.j /
2

:

It follows that
�.hFi/D .�1/".F;�/h�.F /i:

Proof By Lemma 4.6,

�

�
.�1/s.F;c/

P .F; c/

Q.F; c/

�
D .�1/s.�.F /;�.c//

P .�.F /; �.c//

Q.�.F /; �.c//
:

It is clear that
�. zQ.F //D .�1/".F;�/ zQ.�.F //;

and the first equality follows. For the second equality, we have

�.hFi/D
X

c2adm.F /

�.hF; ci/

D .�1/".F;�/
X

c2adm.F /

h�.F /; �.c/i

D .�1/".F;�/h�.F /i:
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For 1� i ¤ j � 3, consider the ring

R00ij WDR0x Œ.xi �xk/
�1; .xj �xk/

�1�:

Each R00ij is a subring of R00x . A permutation � 2 S3 sends R00ij isomorphically onto
R00
�.i/�.j/

.

We are now ready for the main result of this section.

Theorem 4.15 The evaluation hFi of an anchored foam is an element of R0x , the
polynomial ring in variables x1, x2 and x3.

Proof The proof is similar to that of [18, Theorem 2.17] and [34, Proposition 2.18].
By Lemma 4.14, it suffices to show that hFi 2R00

12
for any anchored foam F . This is

because we may take a permutation � 2 S3 sending 1 to i and 2 to j , and consider the
anchored foam ��1.F /. Then h��1.F /i 2R00

12
implies that

˙hFi D ˙h�.��1.F //i D ˙�.h��1.F /i/ 2R00ij ;

where the first equality comes from Lemma 4.14. It follows that

hFi 2R0012\R0023\R0013 DR0x :

Let us show that hFi 2 R00
12

. Partition adm.F / into equivalence classes as follows.
For c 2 adm.F /, the class Cc containing c consists of colorings obtained from c by
performing a sequence of .1; 2/ Kempe moves along surfaces in F12.c/ which are
disjoint from L. If F12.c/ has n connected components, k � 0 of which are disjoint
from L, then Cc consists of 2k elements. We will show thatX

c02Cc

hF; c0i 2R0012;

which will conclude the proof.

Write † WD F12.c/ as a disjoint union

†D†0[†1[ � � � [†k ;

where each †a, for aD 1; : : : ; k, is connected and disjoint from L, and where each
component of †0 intersects L. For i D 1; 2 and a D 1; : : : ; k, let ti.a/ denote the
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number of dots on i–colored facets (according to c) of †a, and let t3 denote the number
of dots on 3–colored facets (according to c) of F . We claim that

(81)
X

c02Cc

hF; c0i D

x
t3
3
�
Qk

aD1

�
x

t1.a/

1
x

t2.a/

2
C.�1/�.†a/=2x

t1.a/

2
x

t2.a/

1
..x1�x3/=.x2�x3//

`†a .c/=2
�
� zQ.F /

.x1�x2/�.†/=2.x1�x3/�.F13.c//=2.x2�x3/�.F23.c//=2
;

where

� `†a
.c/ 2 2Z is an even integer such that

�.F13.c
0//D �.F13.c//� `†a

.c/; �.F23.c
0//D �.F23.c//C `†a

.c/

for the coloring c0 2 Cc which is obtained from c by a .1; 2/ Kempe move
along †a. See [18, Lemma 2.12(3)] for details regarding this integer.

� zQ.F / is the contribution from the anchor points of F ; see (79).

To verify the claimed equality, expand the product to obtain 2k terms, each of which
corresponds to one of the 2k colorings in Cc . That the sign is correct follows from
Lemma 4.8.

Finally, we argue that .x1�x2/
�.†/=2 divides the numerator of (81). Positive contri-

butions to �.†/ come from 2–sphere components of †. Each †a which is a 2–sphere
contributes one to the exponent �.†/=2. On the other hand, the corresponding factor
in the product in the numerator of (81) is divisible by x1�x2. The remaining positive
contributions to �.†/=2 come from 2–sphere components of †0. Such a component
†0 contains at least two anchor points, each labeled 1 or 2, so the contribution from
†0 can be canceled with terms in zQ.F /.

Corollary 4.16 If F is a prefoam or a foam which is disjoint from L, then hFi 2Rx ,
the ring of symmetric polynomials in x1, x2 and x3.

Proof This follows from Lemma 4.14 and Theorem 4.15.

4.3 Skein relations

In this section we record several local relations involving oriented anchored SL.3/
foams.

Lemma 4.17 The following local relations hold for anchored foams. Seam lines are
drawn in bold in relation (85) to clarify the picture:

� � � D E1 �E2 CE3� � �(82)
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� � �

� � �

C C

�

�

CD � C E1 � E2(83)

�

�

D �(84)

� D C(85)

Proof Proofs of these four relations are similar to Propositions 2.33, 2.22, 2.23 and
2.24 in [18], respectively, with the caveat that we must keep track of the sign (71).
Moreover, S3 symmetry is used in [18] to simplify the calculations. Anchor points
and their labels are the same for the foams depicted in each of these four relations, so
Lemma 4.14 implies that we may use S3 symmetry in a similar manner.

We verify relation (83) and leave the remaining three relations to the reader. Let F

denote the foam appearing on the left-hand side of the equality. The six foams on
the right-hand side are identical except for placement of dots. We denote them by
G1; : : : ;G6, so that the relation reads

hFi D �.hG1
iC hG2

iC hG3
i/CE1.hG

4
iC hG5

i/�E2hG
6
i:

Admissible colorings of G1; : : : ;G6 are in canonical bijection. For c 2 adm.G1/, let

hG; ci WD �.hG1; ciC hG2; ciC hG3; ci/CE1.hG
4; ciC hG5; ci/�E2hG

6; ci:

There are two types of colorings of G1: those which color the two depicted disks the
same, and those which color them differently. Those of the first type are in canonical
bijection with colorings of F .

Suppose c 2 adm.G1/ colors both disks the same color, say i , and denote by c 2

adm.G2/ Š � � � Š adm.G6/ and c0 2 adm.F / the corresponding colorings. We will
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show that hF; c0i D hG; ci. We may assume i D 1. Then

hG1; ci D hG2; ci D hG3; ci D x2
1hG

6; ci; hG4; ci D hG5; ci D x1hG
6; ci;

which yields

hG; ci D �3x2
1hG

6; ciC 2E1x1hG
6; ci �E2hG

6; ci D �.x1�x2/.x1�x3/hG
6; ci:

To compare this with hF; c0i, observe that

�.F1.c
0//C 2D �.G6

1.c//; �.F2.c
0//D �.G6

2.c//; �.F3.c
0//D �.G6

3.c//;

which implies s.F; c0/� s.G; c/C 1. Moreover,

�.F12.c
0//C2D�.G6

12.c//; �.F13.c
0//C2D�.G6

13.c//; �.F23.c
0//D�.G6

23.c//:

Therefore,
hG6; ci D �

hF; c0i

.x1�x2/.x1�x3/
;

which verifies hF; c0i D hG; ci.

To complete the proof, suppose that c colors the top depicted disk by i and the bottom
disk by j , with i ¤ j . We have

hG1; ci D x2
i hG

6; ci; hG2; ci D xixj hG
6; ci; hG3; ci D x2

j hG
3; ci;

hG4; ci D xihG
6; ci; hG5; ci D xj hG

6; ci:

Therefore hG; ci D 0, which concludes the proof.

Lemma 4.18 Let F be an anchored foam. Denote by Fn;m the anchored foam obtained
from F by adding a bubble (disjoint from L) to some facet in F , with the two new facets
carrying n and m dots respectively, such that the facet with n dots directly precedes the
facet with m dots in the cyclic ordering. Let Fn denote the foam obtained from F by
adding n dots to the same facet ,

� n

�m

�n

Fn Fn;m

Then

hFn;ni D 0; hF1;0i D �hF0;1i D hFi; hF2;0i D �hF0;2i DE1hFi � hF1i:
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Remark 4.19 The relations in Lemmas 4.17 and 4.18 also hold for prefoams.

Similar to the SL.2/ and unoriented SL.3/ setting, for oriented SL.3/ foams we allow
shifted dots i D ��xi (1� i � 3/ on a facet:

i D � xi�

They must be disjoint from L and are allowed to float freely on their facets but cannot
cross seam lines.

Lemma 4.20 The following local relations hold :

�

�

1

1
�

�

�

2

2

�

�

3

3
D C �(86)

�

�

i

i

j

kD .�1/i�1(87)

.xj �xk/
�

i
�

�

k

j

�

�

j

k

D C(88)

In the last equation we assume j < k.

Proof We verify (86) and leave the remaining relations to the reader. The argument
is similar to that of relation (44) in Lemma 3.15, so we will be brief. Let F denote
the foam on the left-hand side, and let G1, G2 and G3 denote the three foams on the
right-hand side, with superscript corresponding to labels of the anchor points. For
1� i � 3, let admi.F / consist of all admissible colorings of F which color the depicted
tube by i . There is a natural bijection admi.F /Š adm.Gi/.

Given c 2 admi.F /, let c0 2 adm.Gi/ denote the corresponding coloring. Arguing as
in the proof of Lemma 3.15, we obtain

hF; ci D ˙hGi ; c0i:
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Figure 15: The orientations at each trivalent vertex of an oriented SL.3/ web
must be either all outgoing or all incoming.

It remains to show that the above sign is equal to .�1/i . We have

�.Fj .c//D �.G
i
j .c
0//; �.Fk.c//D �.G

j

k
.c0//; �.Fi.c//D �.G

i
i .c
0//� 2;

�˙.F; c/D �˙.Gi ; c0/;

so s.F; c/� s.Gi ; c0/C i as needed.

4.4 State spaces

In this section we define state spaces associated to oriented SL.3/ webs. Much of this
is analogous to notions in Section 3.3.

Definition 4.21 An oriented SL.3/ web is a planar trivalent graph � � P in the
punctured plane, which may have closed loops with no vertices. Moreover, edges and
loops of � carry orientations such that each vertex is either a source or a sink, as shown
in Figure 15. In this section we will simply write web rather than oriented SL.3/ web.

The definition of an anchored foam with boundary in the oriented setting is analogous
to that of Definition 3.16. The singular graph of a foam with boundary V is a union of
finitely many arcs (with boundary in R2�f0; 1g) and circles (disjoint from R2�f0; 1g).
Intersection points of V with LŒ0;1� (anchor points) must be disjoint from the singular
graph and carry labels in f1; 2; 3g. Facets of V are required to carry orientations
satisfying the convention in Figure 13, left, near singular points. As usual, we will use
the left-hand rule to specify these orientations and cyclic orderings by orienting each
singular circle and arc, as shown in Figure 13, middle and right.

As in Section 3.3, let @iV WD V \ .R2 � f0g/ for i D 0; 1. The orientation of facets of
V induces an orientation on @0V and @1V via the convention in Figure 16. We view
V as a cobordism from the oriented web @0V to the oriented web @1V . Composition
W V of foams V and W with @1V D @0W is defined in the natural way.

Denote by p.V /D V \LŒ0;1� the set of anchor points of V and by jd.V /j the number
of dots. The degree of V is defined to be

(89) deg.V /D 2.jd.V /jC jp.V /j ��.V //C�.@V /:

Algebraic & Geometric Topology, Volume 23 (2023)



3194 Rostislav Akhmechet and Mikhail Khovanov

Figure 16: Our convention for the induced orientation on the webs @0V

(bottom) and @1V (top).

Degree is clearly additive under composition and is compatible with the grading on R0x ,
in the sense that if V is a closed foam, then deg.V /D deg.hV i/.

As in Definition 2.14, by an annular foam we mean a foam (with boundary) which is
disjoint from L. The composition of two annular foams is again annular.

There is an involution ! defined by reflecting a foam with boundary through R2�f1=2g.
We have @1V D @0.!.V // and @0V D @1.!.V // for any foam with boundary V . Given
a web � � P , let Fr.�/ denote the free R0x–module generated by foams with boundary
V from the empty web to � (that is, @0V D¿, @1V D �). Define a bilinear form

.�;�/ W Fr.�/�Fr.�/!R0x

by .V;W /D !.V /W . This bilinear form is symmetric since hFi D h!.F /i for any
closed foam F . The state space h�i is the quotient of Fr.�/ by the kernel

ker..�;�//D fx 2 Fr.�/ j .x;y/D 0 for all y 2 Fr.�/g

of the bilinear form,
h�i WD Fr.�/=ker..�;�//:

The state space h�i inherits the grading from Fr.�/ since .�;�/ is degree-preserving.
A foam with boundary V from �0 to �1 naturally induces a map

hV iW h�0i ! h�1i

of degree deg.V /, defined by sending the equivalence class of a basis element U2Fr.�0/

to the equivalence class of V U 2 Fr.�1/. This assignment is functorial with respect to
composition of foams, hW V i D hW ihV i for composable V and W .
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Š ¿f2g˚¿˚¿f�2g

(a) A contractible circle.

Š ˚

(b) A square face.

f1g f�1gŠ ˚

(c) A bigon face.

Figure 17: Local relations for state spaces of oriented SL.3/ webs, where the
depicted regions do not contain the puncture.

Lemma 4.22 The three local isomorphisms shown in Figure 17 hold.

Proof The arguments for relations (a), (b), and (c) of the figure are analogous to
Propositions 7, 9, and 8, respectively, of [15]. The relevant relations are Lemmas 4.17
and 4.18.

Proposition 4.23 Let � � P be a web with a noncontractible circle C which bounds a
disk in R2 n� , and let � 0 D � nC be the web obtained by removing C . Then there is
an isomorphism

h�i Š h� 0i˚ h� 0i˚ h� 0i

given by the following maps (orientation of the circle is omitted ):

�

�

�

�

˚

˚

�

�
3

�

�

�
2

�

�
1

�

�

�
1

�

�
2

�

�
3

Proof This follows from Example 4.12 and the neck-cutting relation (86).
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Theorem 4.24 For any web � � P , the state space h�i is a free graded R0x–module
of rank equal to the number of Tait colorings of � . Moreover , if � is contractible , then
the graded rank of h�i equals the Kuperberg polynomial [24] of � , normalized as in
[15, Section 2].

Proof Lemma 3.21(1) guarantees that we can reduce h�i to a direct sum of empty webs
by recursively applying the local isomorphisms in Lemma 4.22 and Proposition 4.23.
It is then clear that the rank equals the number of Tait colorings.

If � is contractible, h�i can be simplified using only the isomorphisms in Lemma 4.22.
Upon taking graded ranks, these isomorphisms recover the recursive relations for
computing the Kuperberg polynomial.

Theorem 4.24 does not address the graded rank of state spaces of noncontractible webs.
These may be computed recursively. As a special case, if � consists of n contractible
and m noncontractible circles, then h�i is free of graded rank 3m.q2C 1C q�2/n.

Given a web � � P , we can forget the puncture and the anchor line L and apply the
universal construction to the evaluation (73). Precisely, let Fr.�/forget denote the free
Rx–module generated by all foams with boundary � (forgetting the anchor line). By
Corollary 4.16, we can define the bilinear form .�;�/ W Fr.�/forget �Fr.�/forget!Rx

and the corresponding state space h�iforget in the usual way. Thus we obtain state
spaces for webs in R2, functorial with respect to foams in R2 � Œ0; 1�. These state
spaces and maps induced by foams are graded via (89), where jp.V /j D 0.

Proposition 4.25 For a contractible web � � P , there is a degree-preserving isomor-
phism

h�i Š h�iforget;

natural with respect to foams with contractible boundary and which are disjoint from L.

Proof This follows from Theorem 4.24.

On the other hand, Mackaay and Vaz [28] define an evaluation h�iMV for oriented
SL.3/ prefoams and use it to define an equivariant (also called universal) version of
the sl.3/ link homology introduced in [15]. They work over the ground ring ZŒa; b; c�

and associate a state space h�iMV to each web � �R2 via the universal construction
applied to their prefoam evaluation h�iMV. To compare with our situation, identify
ZŒa; b; c� with the ring Rx D ZŒE1;E2;E3� of symmetric functions in x1, x2 and x3

via a ring isomorphism ' defined by '.a/DE1, '.b/D�E2 and '.c/DE3.
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�i

s.p/D 1

�i

s.p/D�1

Figure 18: The oriented intersection number between a facet and L.

Theorem 4.26 For any closed prefoam F ,

hFi D '.hFiMV/:

It follows that there are isomorphisms h�iforget Š h�iMV ˝ZŒa;b;c� Rx for any web
� �R2, natural with respect to maps induced by foams with boundary.

Proof The evaluation h�iMV is defined by applying the local relations (3D), (CN),
(S), and .‚/ in [28, Section 2.1] to reduce any foam to an element of ZŒa; b; c�. Under
the change of variables a 7!E1, b 7! �E2 and c 7!E3, these four relations hold for
our evaluation h�i by relation (82), relation (83), Example 4.4, and Example 4.5. The
statement follows.

As in the SL.2/ and unoriented SL.3/ setting considered earlier in the paper, we can
define an additional grading on oriented SL.3/ foams and state spaces. Define the
abelian group

(90) ƒD Zw1˚Zw2˚Zw3=.w1Cw2Cw3/;

on three generators and one relation. ƒ is a free abelian group of rank two.

Orient the anchor line L from bottom to top. For an anchored foam V with boundary
and p 2 p.V / an anchor point lying on some facet f , let s.p/ 2 f˙1g denote the
oriented intersection number between f and L (s.p/ does not depend on the label
of p); see Figure 18 for the convention. Define the annular degree of V to be

(91) adeg.V /D
X

p2p.V /

s.p/w`.p/ 2ƒ:

Proposition 4.27 If F is a closed anchored foam with an admissible coloring c, then
adeg.F /D 0.

Proof The proof is similar to that of Proposition 3.10. The intersection of F with
a generic half-plane that bounds L is an oriented web � with boundary points on L.
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An admissible coloring c of F induces a Tait coloring of � . The boundary points
(one-valent vertices) of � are colored according to their label. The sum in (91) may be
rewritten as the sum of terms ˙.w1Cw2Cw3/D 0 over all trivalent vertices of � ,
where the sign isC1 if all edges are incoming and �1 if all edges are outgoing. Each i–
colored inner edge e of � bounds two trivalent vertices and contributes˙.wi�wi/D 0

since e is oriented towards one of its boundary vertices and away from the other. The
remaining edges, with one or both endpoints on L, contribute precisely adeg.F /.

Let � � P be an (annular oriented) SL.3/ web. An anchored foam F � R3
� with

@F D � has a well-defined degree adeg.F / 2ƒ via (91). Furthermore, we equip the
coefficient ring R0x with a ƒ–grading, with all elements of degree 0. This makes free
R0x–module Fr.�/ into a ƒ–graded module, and Proposition 4.27 implies that the
kernel of the bilinear form on Fr.�/ is ƒ–graded as well. Consequently, the grading
descends to a ƒ–grading on the state space h�i. A foam V with boundary induces
a map hV iW h�@0�i ! h@1�i which changes adeg by adeg.V /. If V has no anchor
points, it induces an annular degree 0 map between the state spaces of its boundaries.
The state space of a contractible web is concentrated in annular degree zero.

ƒ–grading on h�i is the analogue of grading on finite-dimensional SL.3/ representa-
tions by the weight lattice. In fact, in the nonequivariant version of our construction,
where all the xi are set to 0 upon closed foam evaluation (and state spaces are defined
accordingly, over a ground field rather than the ring R0x), the state space h�i is naturally
an sl3–representation. We also refer the reader to Queffelec and Rose [30] for the
construction of sutured annular sln–homology, with state spaces of annular webs
carrying an sln–action. In the equivariant case, it is not clear how to define an sl3–
action or what’s the substitute for it.

Denote by AFoamor the category whose objects consist of oriented SL.3/ webs in P
and whose morphisms are R0x–linear combinations of anchored cobordisms between
webs. Morphism spaces in this category are triply graded via .qdeg; adeg/. The state
space construction assembles into a functor

h�iW AFoamor!R0x–g3mod

landing in the category of triply graded R0x–modules.

This functor respects the trigradings on the hom spaces in the two categories. Restricting
to the subcategory of annular cobordisms and their linear combinations, the induced
maps have annular degree 0.
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1 0

0 1

Figure 19: The 0– and 1–smoothings used to define the SL.3/ chain complex.

4.5 Annular SL.3/–link homology

Let L � A� Œ0; 1� be a link in the thickened annulus. Projecting onto A� f0g D A

and identifying the interior of A with the punctured plane P , we obtain a link diagram
D � P . Following [15, Section 4; 28], form the cube of resolutions of D. Order
the crossings of D by 1; : : : ; n and use the rule in Figure 19 to decorate each vertex
u 2 f0; 1gn by the corresponding web Du � P .

Introducing signs to make the cube anticommute, collapsing the cube to a chain
complex, adding internal and homological degree shifts, and applying the functor
h�iW AFoamor ! R0x–g3mod yields a chain complex C.D/ of Z˚ƒ–graded R0x–
modules. In homological degree i , the complex is given by

C i.D/D
M

jujDiCnC

hDuif2.nC� n�/� ig;

where nC and n� are the number of positive and negative crossings of D. The Z–
grading is given by deg — see (89) — and the ƒ–grading given by adeg — see (91).
Degree shifts in the cube of resolutions are applied only to the Z–degree deg. Diagrams
in P representing isotopic annular links are related by Reidemeister moves away from
the puncture. Proofs of Reidemeister invariance in [28] are local, and all local relations
(away from the anchor line) on foams in [28] also hold for our evaluation h�i by (83),
Example 4.4, and Example 4.5. It follows that the chain homotopy class of C.D/ is
an invariant of the annular link L. We define equivariant annular SL.3/ homology as
cohomology groups H.C.D//.

Moreover, foams between webs appearing in the cube of resolutions are disjoint from L.
Thus the differential preserves annular degree throughout the complex. Consequently,
equivariant annular SL.3/ link homology carries a homological grading as well as
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an internal Z˚ƒ–grading .deg; adeg/. Cohomology groups H.C.D// are trigraded
R0x–modules.

Example 4.28 We conclude with an explicit calculation. Let � denote the positive
crossing generator of the 2–strand braid group, let Ln denote the annular link obtained
as the annular closure of �n, and let C.Ln/ denote the corresponding chain complex.
Consider the complex C.n/,

@�1

fc0g

@�2

fc1g

@�3

fc2g� � �fcng

@�n

The right-most term is in homological degree zero and the quantum grading shifts ci

are c0 D 2n and ci D 2nC 2i � 1 for 1� i � n. The right-most differential @�1 is the
unzip cobordism, and for �n� i � �2 the differentials are

@i D

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

�

�

�

if i is even;

�

�

�

if i is odd:

One can show that the chain complex C.Ln/ is chain homotopy equivalent to the
annular closure of C.n/.

Upon taking annular closures, the differential @i for even i is zero. Consider the
annular closure � of the web appearing in negative homological degree. The state space
h�i is a free R0x–module of rank six, and we choose a basis fu1; di ;u2; d2;u3; d3g

shown in (92). Bidegrees of ui and di are .�1;�wi/ and .1;�wi/, respectively (not
accounting for grading shifts):

(92)

�

�
i

ui

�

�
i

�

di

After taking the annular closure, the differential @i , for i � �3 odd, is given as the
difference of foams F �G, where F puts a dot on the right-most facet and G puts a
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dot on the middle facet of the depicted generators. We have

F.ui/D .xj Cxk/ui � di ; F.di/D xj xkui ;

G.ui/D di ; G.di/D .xj Cxk/di �xj xkui :

In particular, @i for i � �3 and i odd is injective.

Let us now compute the right-most differential, which is the annular closure of the
unzip cobordism. Let �0 denote the web consisting of two essential counterclockwise
oriented circles, which is the annular closure of the term in homological degree zero
in C.n/. For 1 � i; j � 3, let gij W¿! �0 be the foam consisting of two cups, each
intersecting the anchor line once, with the anchor point of the inner cup labeled i and
the anchor point of the outer cup labeled j . By Proposition 4.23, fgij g1�i;j�3 is a basis
for h�0i. After introducing the grading shift, the generator gij is in quantum degree 2n

and in annular degree wi Cwj D�wk . Let Z W �! �0 denote the unzip cobordism.
By applying the neck-cutting relation (86) near the two circles that constitute �0, we
write @�1.ui/ as a sum

@�1.ui/D
X

1�s;t�3

.�1/sCtgst t �st ;

where �st is a theta foam as in Example 4.13, with no dots, and anchor points labeled i ,
s and t read from bottom to top. These theta foams evaluate to zero unless fi; s; tg D
f1; 2; 3g, and otherwise they evaluate to ˙1. Moreover, h�st i D �h�tsi. Therefore,

@�1.ui/D˙.gjk �gkj /:

A similar procedure yields @�1.di/D˙.xj gjk �xkgkj /.

Thus, in homological degree s � 0 and annular degree �wi , the homology of Ln is
given by

H s;�wi .Ln/D

8̂̂<̂
:̂

0 if s is odd;
R0xf2n� 2s� 2g˚R0xf2n� 2sg

h.xj Cxk ;�2/; .2xj xk ;�.xj Cxk//i
if s < 0 and s is even;

.R0x=.xj �xk//f2ng if s D 0:
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On a problem of Hopf for circle bundles over
aspherical manifolds with hyperbolic fundamental groups

CHRISTOFOROS NEOFYTIDIS

We prove that a circle bundle over a closed oriented aspherical manifold with hy-
perbolic fundamental group admits a self-map of absolute degree greater than one
if and only if it is virtually trivial. This generalizes in every dimension the case
of circle bundles over hyperbolic surfaces, for which the result was known by the
work of Brooks and Goldman on the Seifert volume. As a consequence, we verify
the following strong version of a problem of Hopf for the above class of manifolds:
every self-map of nonzero degree of a circle bundle over a closed oriented aspherical
manifold with hyperbolic fundamental group is either homotopic to a homeomorphism
or homotopic to a nontrivial covering and the bundle is virtually trivial. As another
application, we derive the first examples of nonvanishing numerical invariants that
are monotone with respect to the mapping degree on nontrivial circle bundles over
aspherical manifolds with hyperbolic fundamental groups in any dimension.

55M25

1 Introduction

A long-standing question of Hopf (see Problem 5.26 in Kirby’s list [14]) asks:

Problem 1.1 (Hopf) For a closed oriented manifold M , is every self-map f WM!M

of degree˙1 a homotopy equivalence?

A complete solution to Hopf’s problem seems to be currently out of reach. Nevertheless,
some affirmative answers are known for certain classes of manifolds and dimensions,
most notably for simply connected manifolds (by Whitehead’s theorem), for manifolds
of dimension at most four with Hopfian fundamental groups (see Hausmann [13],
and recall that a group is called Hopfian if every surjective endomorphism is an
isomorphism), and for aspherical manifolds with hyperbolic fundamental groups (eg
negatively curved manifolds). These last groups are Hopfian (see Maltsev [19] and
Sela [27]), thus the asphericity assumption, together with the simple fact that any map
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of degree ˙1 is �1–surjective, affirmatively answer Problem 1.1 for closed aspherical
manifolds with hyperbolic fundamental groups.

In fact, the assumption about degree ˙1 is unnecessary in affirmatively answering
Problem 1.1 for aspherical manifolds with nonelementary hyperbolic fundamental
groups, because those manifolds cannot admit self-maps of degree other than ˙1 or
zero; see Bridson, Hinkkanen and Martin [5], Mineyev [20; 21] and Sela [26; 27], and
Section 3.1. Hence, every self-map of nonzero degree of a closed oriented aspherical
manifold with nonelementary hyperbolic fundamental group is a homotopy equivalence.
Of course, this statement does not hold for all (aspherical) manifolds because, for
example, the circle admits self-maps of any degree. Nevertheless, every self-map of
the circle of degree greater than one is homotopic to a (nontrivial) covering. The
same is true for every self-map of nilpotent manifolds (see Belegradek [3]) and for
certain solvable mapping tori of homeomorphisms of the n–dimensional torus; see
Neofytidis [23] and Wang [29]. In addition, every nonzero degree self-map of a 3–
manifold M is either a homotopy equivalence or homotopic to a covering map, unless
the fundamental group of each prime summand of M is finite or cyclic; see Wang [30].
The above results suggest the following question for aspherical manifolds:

Problem 1.2 (strong version of Hopf’s problem for aspherical manifolds) Is every
nonzero degree self-map of a closed oriented aspherical manifold either a homotopy
equivalence or homotopic to a nontrivial covering?

In dimension three, hyperbolic manifolds and manifolds containing a hyperbolic piece
in their JSJ decomposition do not admit any self-map of degree greater than one
(equivalently, of absolute degree greater than one, by taking f 2 whenever deg.f /<�1)
due to the positivity of the simplicial volume; see Gromov [11]. (Recall that the
simplicial volume k � k satisfies kM 0k � jdeg.f /j � kMk for every map f WM 0!M .)
The other classes of aspherical 3–manifolds which do not admit self-maps of degree
greater than one are �SL2–manifolds (see Brooks and Goldman [6]) and graph manifolds
(see Derbez and Wang [10]), since those manifolds have another (virtually) positive
invariant that is monotone with respect to mapping degrees, namely the Seifert volume
(introduced in [6] by Brooks and Goldman). In particular, nontrivial circle bundles over
closed hyperbolic surfaces (which are modeled on the �SL2 geometry) do not admit self-
maps of degree greater than one. On the other hand, it is clear that trivial circle bundles
over (hyperbolic) surfaces, ie products S1�†, admit self-maps of any degree (and those
maps are either homotopy equivalences or homotopic to nontrivial coverings [30]).

Algebraic & Geometric Topology, Volume 23 (2023)
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Recall that a circle bundle M �
�!N is classified by its Euler class e 2H 2.N IZ/. In

particular, M is virtually trivial if and only if e is torsion. For a circle bundle M over a
closed oriented surface †, its Euler class e 2H 2.†/DZ is either zero and the bundle
is trivial (ieM DS1�†), or e is not zero and nontorsion and the bundle is not virtually
trivial. Our main result is that the nonexistence of self-maps of degree greater than one
on nontrivial circle bundles over closed oriented hyperbolic surfaces (ie over closed
oriented aspherical 2–manifolds with hyperbolic fundamental groups) can be extended
to any dimension. In fact, we prove a stronger statement:

Theorem 1.3 An oriented circle bundle over a closed oriented aspherical manifold
with hyperbolic fundamental group admits a self-map of absolute degree greater than
one if and only if it is virtually trivial.

The “if” direction holds more generally without any assumption on the hyperbolicity
of the fundamental group of the base:

Example 1.4 Let M be a virtually trivial oriented circle bundle over a closed oriented
manifold N . Then its Euler class e 2 H 2.N / is k–torsion for some k. Since M is
fiberwise oriented, M is a principal U.1/–bundle and thus M can be viewed as the
(associated) complex line bundle whose first Chern class is the Euler class e. Consider
the tensor product M ˝ � � �˝M of kC 1 copies of M . Then the first Chern class of
M ˝ � � �˝M is

c1.M ˝ � � �˝M/D .kC 1/c1.M/D c1.M/;

and so M ˝ � � �˝M is isomorphic to M . Taking the kC 1 power of a section of M
gives us a fiberwise map

f WM !M ˝ � � �˝M;

which has degree kC1 on the fibers and degree one on the baseN . Thus deg.f /DkC1.

Outline of the proof of the main theorem

In view of Example 1.4, the proof of Theorem 1.3 amounts to showing that if an
oriented circle bundle M over a closed oriented aspherical manifold N with �1.N /
hyperbolic admits a self-map f of degree greater than one, then M must be virtually
trivial. We will show that such an f is in fact homotopic to a fiberwise nontrivial
self-covering of M , and thus the powers of f induce a purely decreasing sequence

(1) �1.M/© f�.�1.M//© � � �© f m� .�1.M//© f mC1� .�1.M//© � � � :

Algebraic & Geometric Topology, Volume 23 (2023)
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Using this sequence, we will obtain an infinite-index subgroup of �1.M/ given by

G WD
\
m

f m� .�1.M//:

The last part of the proof uses the concept of groups infinite-index presentable by
products (IIPP) and characterizations of groups fulfilling this condition [22]. More
precisely, we will see that the multiplication map

' W C.�1.M//�G! �1.M/

defines a presentation by products for �1.M/, where both G and the center C.�1.M//

have infinite index in �1.M/. This will lead us to the conclusion that �1.M/ has a
finite-index subgroup isomorphic to a product and M is virtually trivial.

Remark 1.5 In the proof of Theorem 1.3 we will use the fact that the base is an
aspherical manifold which does not admit self-maps of degree greater than one, and its
fundamental group is Hopfian with trivial center. Thus we can extend Theorem 1.3 (and
its consequences; see Section 2) to any circle bundle over a closed oriented manifold N
that fulfills the aforementioned properties. For instance, if N is an irreducible locally
symmetric space of noncompact type, then it is aspherical, it has positive simplicial
volume by Bucher-Karlsson [7] and Lafont and Schmidt [16] (and thus does not admit
self-maps of degree greater than one), and �1.N / is Hopfian (see Maltsev [19]) without
center; see Raghunathan [25].

Remark 1.6 A decreasing sequence (1) exists whenever an aspherical manifold M
admits a self-map f of degree greater than one and �1.M/ is Hopfian for every finite
cover M of M (which is conjectured to be true; see Section 2). This gives further
evidence towards an affirmative answer to Problem 1.2, since the existence of such
a sequence is a necessary condition for f to be homotopic to a nontrivial covering.
Now, every finite-index subgroup of the fundamental group of a circle bundle over a
closed aspherical manifold with hyperbolic fundamental group is indeed Hopfian, and
therefore this gives us an alternative way of obtaining sequence (1). We will discuss the
Hopf property for those circle bundles and Problem 1.2 more generally in Section 5.
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2 Applications of the main result

Before proceeding to the proof of Theorem 1.3, let us mention a few consequences of
Theorem 1.3, or of parts of its proof.

It is a long-standing question (motivated by Problem 1.1) whether the fundamental
group of every closed aspherical manifold is Hopfian (see [24] for a discussion). If
this is true, then every self-map of an aspherical manifold of degree ˙1 is a homotopy
equivalence. In the course of the proof of Theorem 1.3, we will see that every self-
map of a circle bundle over a closed oriented aspherical manifold with hyperbolic
fundamental group is homotopic to a fiberwise covering map, and this alone shows
that Problem 1.1 and, in most cases, Problem 1.2 indeed have affirmative answers for
self-maps of those manifolds. More interestingly, Theorem 1.3 implies the following
complete characterization with respect to Problem 1.2:

Corollary 2.1 A self-map of nonzero degree of an oriented circle bundle over a closed
oriented aspherical manifold with hyperbolic fundamental group either is a homotopy
equivalence or is homotopic to a fiberwise nontrivial covering (and to a nontrivial
covering in dimensions other than four and five) and the bundle is virtually trivial.

Remark 2.2 (the Borel conjecture: from homotopy equivalences to homeomorphisms)
In most cases, an even stronger conclusion holds for the homotopy equivalences of
Corollary 2.1. Recall that the Borel conjecture asserts that any homotopy equivalence
between two closed aspherical manifolds is homotopic to a homeomorphism. (Note
that the Borel conjecture does not hold in the smooth category or for nonaspherical
manifolds; see for example the survey paper [18] and the discussion in [28].) A
complete affirmative answer to the Borel conjecture is known in dimensions less than
four (see again [18] for a survey). Moreover, by [1; 2], the fundamental group of
a circle bundle M over a closed aspherical manifold N with �1.N / hyperbolic and
dim.N /¤ 3; 4 satisfies the Farrell–Jones conjecture, and therefore the Borel conjecture,
and so every homotopy equivalence of such a circle bundle is in fact homotopic to a
homeomorphism. (See also [5] for self-maps of the base N .)

Algebraic & Geometric Topology, Volume 23 (2023)
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Beyond the Seifert volume for nontrivial circle bundles over hyperbolic surfaces [6],
no other nonvanishing monotone invariant respecting the degree seems to have been
known on higher-dimensional circle bundles over aspherical manifolds with hyperbolic
fundamental groups (note that the simplicial volume vanishes as well [11]). A conse-
quence of Theorem 1.3 is that such a monotone invariant exists and is given by the
domination seminorm. Recall that the domination seminorm is defined by

�M .M
0/ WD supfjdeg.f /j j f WM 0!M g;

and it was introduced in [9]. Theorem 1.3 implies:

Corollary 2.3 If M is a not virtually trivial circle bundle over a closed oriented
aspherical manifold with hyperbolic fundamental group , then �M .M/D 1.

However, the domination seminorm is not finite in general, because M might admit
maps of infinitely many different degrees from another manifold M 0. Nevertheless,
Theorem 1.3 and the nonvanishing of the Seifert volume for nontrivial circle bundles
over hyperbolic surfaces suggest:

Conjecture 2.4 In every dimension n, there is a homotopy n–manifold numerical
invariant In satisfying In.M/ � jdeg.f /jIn.N / for each map f WM ! N which is
positive and finite on every not virtually trivial circle bundle over a closed aspherical
manifold with hyperbolic fundamental group.

3 Infinite sequences of coverings

In this section we reduce our discussion to self-coverings of a circle bundle over a
closed oriented aspherical manifold with hyperbolic fundamental group, and thus obtain
a purely decreasing sequence of finite-index subgroups of the fundamental group of
this bundle.

3.1 Self-maps of aspherical manifolds with hyperbolic fundamental groups

First, we observe that the hyperbolicity of the fundamental group of the base implies
strong restrictions on the possible degrees of its self-maps:

Proposition 3.1 [5] Every self-map of nonzero degree of a closed aspherical manifold
with nonelementary hyperbolic fundamental group is a homotopy equivalence.

Algebraic & Geometric Topology, Volume 23 (2023)
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Proof There are two ways to see this. The first (given in [5]) is purely algebraic, using
the co-Hopf property of torsion-free nonelementary hyperbolic groups [26; 27]. The
other way uses bounded cohomology and the simplicial volume; see [11; 20; 21].

Suppose N is a closed oriented aspherical manifold whose fundamental group is
nonelementary hyperbolic and f W N ! N is a map of nonzero degree. By [26; 27]
(see also [5, Lemma 4.2]), �1.N / is co-Hopfian (ie every injective endomorphism is
an isomorphism), and so by the asphericity of N it suffices to show that f� is injective.
Suppose the contrary, and let x be a nontrivial element in ker.f�/. Since f�.�1.N //
has finite index in �1.N /, there is some n 2N such that xn 2 f�.�1.N //, ie there is
some y 2�1.N / such that f�.y/D xn. Clearly xn¤ 1, because �1.N / is torsion-free,
and so y … ker.f�/. Now, f 2� .y/D f�.x

n/D 1, which means that y 2 ker.f 2� /. By
iterating this process, we obtain a purely increasing sequence

ker.f�/¨ ker.f 2� /¨ � � �¨ ker.f m� /¨ ker.f mC1� /¨ � � � :

But this sequence contradicts Sela’s result [26; 27] that, for every endomorphism  of
a torsion-free hyperbolic group, there exists m0 2N such that ker. k/D ker. m0/ for
all k �m0. We deduce that f� is injective, and therefore an isomorphism as required.

Alternatively to the above argument, since �1.M/ is nonelementary hyperbolic, the
comparison map from bounded cohomology to ordinary cohomology

 �1.M/ WH
n
b .�1.M/IR/!Hn.�1.M/IR/

is surjective; see [20; 21; 12]. Thus, by the duality of the simplicial `1–seminorm and
the bounded cohomology `1–seminorm (see [11]), we deduce that M has positive
simplicial volume. This implies that every nonzero degree map f W M ! M has
degree˙1. In particular, f is �1–surjective, and thus an isomorphism, because �1.M/

is Hopfian [19; 27].

3.2 Fundamental group and finite covers

Let M �
�! N be an oriented circle bundle, where N is a closed oriented aspherical

manifold with �1.N / hyperbolic. We may assume that dim.N /� 2, otherwise we deal
with the well-known case of T 2. The fundamental group of M fits into the central
extension (see [4; 8])

1! C.�1.M//! �1.M/ ����! �1.N /! 1;

Algebraic & Geometric Topology, Volume 23 (2023)
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where C.�1.M// D Z. (Note that C.�1.N // D 1 because �1.N / is torsion-free
nonelementary hyperbolic.)

It is easy to observe that every finite covering of M is of the same type. More precisely:

Lemma 3.2 [22, Lemma 4.6] Every finite coverM p
�!M is a circle bundleM �

�!N ,
where N Np

�!N is a finite covering.

In particular, p is a generalized bundle map covering Np and the (infinite cyclic) center
of �1.M/ is mapped under p� into the center of �1.M/.

3.3 Reduction to fiberwise covering maps

Now, let f WM !M be a map of nonzero degree. We observe that f is homotopic to
a fiberwise covering map:

Proposition 3.3 The map f is homotopic to a fiberwise covering where the induced
map fS1 W S

1! S1 has degree˙deg.f /.

Proof Consider the composite map � ıf WM !N and the induced homomorphism

.� ıf /� W �1.M/! �1.N /:

Since the center of �1.N / is trivial, we derive, after lifting f to a �1–surjective map
Nf WM !M (where M p

�!M corresponds to f�.�1.M//), that the center of �1.M/

is mapped under .� ı f /� to the trivial element of �1.N /; see Lemma 3.2 and the
lines above that. Thus f factors, up to homotopy, through a self-map g WN !N , ie
� ıf D g ı� (up to homotopy).

Clearly deg.g/ ¤ 0, otherwise f would factor through the degree-zero map from
the pullback bundle of g along � to M , which is impossible because deg.f / ¤ 0.
Now, Proposition 3.1 implies that g is a homotopy equivalence of N (in particular
deg.g/ D ˙1). Hence, the induced map fS1 on the S1 fiber is homotopic to a self-
covering of degree

deg.fS1/D˙deg.f /:

Since every map of degree ˙1 is �1–surjective, every self-map of M of degree ˙1
is a homotopy equivalence, thus answering Problem 1.1 in the affirmative. More
interestingly, the above proposition gives the following strong affirmative answer to
Problem 1.2 (see Remark 2.2):
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Corollary 3.4 Let M be an oriented circle bundle over a closed oriented aspherical
manifold N with hyperbolic fundamental group and dim.N /¤ 3; 4. Every self-map
of M of nonzero degree is either homotopic to a homeomorphism or homotopic to a
nontrivial covering.

Consider now the iterates

f m WM !M; m� 1:

By Proposition 3.3, each f m is homotopic to a fiberwise covering of degree

.deg.f //m D Œ�1.M/ Wf m� .�1.M//�:

That is, for each m, the homomorphism

f m� W �1.M/! �1.M/

maps every element x 2C.�1.M//DZD hzi to x˙deg.f m/ 2C.�1.M// and induces
an isomorphism on �1.N /D ��.�1.M//. In particular, when deg.f / > 1, we obtain:

Corollary 3.5 If f W M ! M has degree greater than one , then there is a purely
decreasing infinite sequence of subgroups of �1.M/ given by

(2) �1.M/© f�.�1.M//© � � �© f m� .�1.M//© f mC1� .�1.M//© � � � :

4 Distinguishing between trivial and nontrivial bundles

Now we show that the existence of sequence (2) implies that �1.M/ has a finite-index
subgroup which is isomorphic to a direct product, and thusM is virtually trivial. To this
end, we construct a presentation of �1.M/ by a product of two infinite-index subgroups.

4.1 Groups infinite-index presentable by products

An infinite group � is said to be infinite-index presentable by products or IIPP if
there exist two infinite subgroups �1; �2 � � that commute elementwise, such that
Œ� W�i �D1 for both �i and the multiplication homomorphism

�1 ��2! �

surjects onto a finite-index subgroup of � .

The notion of IIPP groups was introduced in [22] in the study of maps of nonzero degree
from direct products to aspherical manifolds with nontrivial center. The concept of
groups presentable by products (ie without the constraint on the index) was introduced
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in [15]. It is clear that when � is a reducible group, that is, virtually a product of
two infinite groups, then � is IIPP. Thus, a natural problem is to determine when
these two properties are equivalent. In general they are not equivalent, as shown in
[22, Section 8], however, equivalence is achieved under certain assumptions:

Theorem 4.1 [22, Theorem D] Suppose � fits into a central extension

1! C.�/! �! �=C.�/! 1;

where �=C.�/ is not presentable by products. Then � is IIPP if and only if it is
reducible.

The following theorem characterizes aspherical circle bundles when the fundamental
group of the base is not presentable by products:

Theorem 4.2 [22, Theorem C] Let M �
�!N be a circle bundle over a closed aspheri-

cal manifold N whose fundamental group �1.N / is not presentable by products. Then
the following are equivalent :

(i) M admits a map of nonzero degree from a direct product.

(ii) M is finitely covered by a product S1 �N for some finite cover N !N .

(iii) �1.M/ is reducible.

(iv) �1.M/ is IIPP.

Since nonelementary hyperbolic groups are not presentable by products [15], each
circle bundle M over a closed aspherical manifold N with �1.N / hyperbolic fulfills
the assumptions of Theorems 4.1 and 4.2. Using this, we will be able to deduce that
M is virtually trivial. Furthermore, our presentation by products for �1.M/ will have
trivial kernel; see Remark 4.3.

4.2 An infinite-index presentation by products

Under the assumption of the existence of f m WM!M with deg.f m/D .deg.f //m>1
for all m� 1, and thus of sequence (2), we consider the subgroup of �1.M/ defined by

G WD
\
m

f m� .�1.M//:

First, we observe the general fact (ie without using the specific forms of the f m� .�1.M//)
that G has infinite index in �1.M/. Suppose, to the contrary, that Œ�1.M/ WG� <1.
Then since

Œ�1.M/ Wf m� .�1.M//�� Œ�1.M/ WG�
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for allm, and �1.M/ contains only finitely many subgroups of a fixed index, we deduce
that there exists n such that f n� .�1.M//D f k� .�1.M// for all k � n. This is, however,
impossible by Corollary 3.5. Now we will show that �1.M/ admits a presentation by
the product C.�1.M//�G. Let

(3) ' W C.�1.M//�G! �1.M/

be the multiplication map. Since each element of C.�1.M// commutes with every
element of G, we deduce that ' is in fact a well-defined homomorphism.

We claim that ' surjects onto a finite-index subgroup of �1.M/, ie that C.�1.M//G

has finite index in �1.M/. To this end, we will use the specific description of f m and
f m� .�1.M//. In Section 3.3 we saw that, for every m, the composite f m is a fiberwise
covering of degree deg.f m/ on the fibers that induces an isomorphism on �1.N /, and
even more it induces a homotopy equivalence of N . In particular, for every m� 1, we
obtain a short exact sequence

1! hzdeg.f /m
i ! f m� .�1.M//! �1.Nm/! 1;

where �1.Nm/Š �1.N /. Hence, �1.M/=f m� .�1.M//ŠZ=deg.f /mZ for all m� 1,
and so �1.M/=G Š Z. Thus, we obtain a short exact sequence (induced by ��),

1! .C.�1.M//G/=G! �1.M/=G ����! �1.N /=��.G/! 1:

Since .C.�1.M//G/=G Š Z, we conclude that ��.G/ is a finite-index subgroup
of �1.N /.

Now let x 2�1.M/. If xD zs 2C.�1.M//Dhzi, then '.x; 1/Dx. If x …C.�1.M//,
then ��.x/ is not trivial in �1.N / and so there exists t � 0 such that ��.xt / 2 ��.G/,
that is ��.xt / D ��.g/ for some g 2 G. Thus xt D zag for some a 2 Z, and so
'.za; g/D xt . We conclude that '.C.�1.M//�G/D C.�1.M//G has finite index
in �1.M/.

Since moreover C.�1.M// and G have infinite index in �1.M/, we conclude that the
presentation given in (3) is an infinite-index presentation by products. Theorem 4.2
implies that �1.M/ is reducible and M is virtually a trivial circle bundle.

This finishes the proof of Theorem 1.3.

Remark 4.3 The kernel of ' must be trivial because it is isomorphic to C.�1.M//\G,
which is trivial. Thus C.�1.M//G is isomorphic to the fundamental group of a trivial
circle bundle that covers M . In particular, the property of �1.N / that is not presentable
by products was not necessary for our proof.
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An alternative way to see that C.�1.M//\G is trivial is to observe that

ŒC.�1.M// WC.�1.M//\G�D Œ�1.M/ WG�D1:

Together with the fact that C.�1.M//DZ, we conclude that C.�1.M//\G is trivial.

The proof of Corollary 2.1 is now straightforward:

Proof of Corollary 2.1 Let M be a circle bundle over a closed oriented aspherical
manifold N with �1.N / hyperbolic and f WM !M be a map of nonzero degree. As
we have seen in Section 3.3, if deg.f /D˙1 then f is a homotopy equivalence, and if
deg.f /¤˙1 then f is homotopic to a nontrivial fiberwise covering (and to a nontrivial
covering when dim.N /¤ 3; 4; see Remark 2.2). In the latter case, Theorem 1.3 implies
moreover that M is virtually S1 �N for some finite covering N !N .

Remark 4.4 WhenM has torsion Euler class e2H 2.N /, we have seen in Example 1.4
that M admits a self-map f of degree greater than one. Recall that a product finite
covering S1 �N !M is obtained by pulling back M �

�!N along the finite covering
N !N that corresponds to the finite-index subgroup

H WD ker.�1.N /
h
�!H1.N /

�T
��! TorH1.N //� �1.N /;

where h denotes the Hurewicz map and �T is the projection to the torsion of H1.N /.
(Note that e lies in TorH1.M/ by the universal coefficient theorem.) The groups H
and ��.G/ are commensurable in �1.N / because

Œ��.G/ W��.G/\H�� Œ�1.N / WH� <1

and
ŒH W��.G/\H�� Œ�1.N / W��.G/� <1:

5 The Hopf property and strong version of Hopf’s problem

In this section we discuss the Hopf property for circle bundles over aspherical manifolds
with hyperbolic fundamental groups and Problem 1.2 more generally.

5.1 The Hopf property

First, we show that the fundamental groups of circle bundles over aspherical manifolds
with hyperbolic fundamental groups are Hopfian:
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1 // C.�1.M//

�jC.�1.M//

��

// �1.M/

�

��

��
// �1.N /

�
��

// 1

1 // C.�1.M// // �1.M/
��
// �1.N / // 1

Figure 1: The Hopf property for �1.M/.

Proposition 5.1 If M is a circle bundle over a closed oriented aspherical manifold with
hyperbolic fundamental group , then every finite-index subgroup of �1.M/ is Hopfian.

Proof LetM �
�!N be a circle bundle whereN is a closed oriented aspherical manifold

with �1.N / hyperbolic. (As before, we can assume that �1.N / is not cyclic.) Since
every finite covering of M is of the same type (see Lemma 3.2), it suffices to show
that �1.M/ is Hopfian.

Let � W �1.M/ ! �1.M/ be a surjective homomorphism. Then �.C.�1.M/// �

C.�1.M//, and so the composite homomorphism �� ı � W �1.M/ ! �1.N / maps
C.�1.M// to the trivial element of �1.N /. In particular, there exists a surjective
homomorphism � W �1.N /! �1.N / such that � ı�� D �� ı �. Now, � is injective
as well (and so an isomorphism), because �1.N / is Hopfian, being hyperbolic and
torsion-free [19; 27]. Then, again using the surjectivity of �, we deduce that

�jC.�1.M// W C.�1.M//! C.�1.M//

is also surjective. Since C.�1.M//DZ is Hopfian, we conclude that �jC.�1.M// is in
fact an isomorphism. Then the five lemma for the commutative diagram in Figure 1
implies that � is an isomorphism as well.

In this way, we obtain also an alternative proof of the fact that every self-map of M of
degree ˙1 is a homotopy equivalence. Of course, the above group-theoretic argument
uses the same line of argument as the proof of Proposition 3.3, with the difference that
it starts with a stronger assumption, namely that � is surjective.

5.2 Infinite decreasing sequences and Problem 1.2

The fact that every finite-index subgroup of the fundamental group of a circle bundle
over an aspherical manifold N with hyperbolic �1.N / has the Hopf property is actually
conjectured to be true for all aspherical manifolds. Not only would this immediately
verify Problem 1.1 for every aspherical manifold, it also gives evidence for an affirmative
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answer to Problem 1.2. Namely, let f WM !M be a map of degree deg.f / > 1 and
suppose that every finite-index subgroup of �1.M/ is Hopfian. Then, as in the case of
nontrivial coverings, there is a purely decreasing infinite sequence

�1.M/© f�.�1.M//© � � �© f m� .�1.M//© f mC1� .�1.M//© � � � :

The proof of this claim can be found along the lines of the proof of Theorem 14.40
of [17], but let us give the details for completeness: Suppose to the contrary that there
is some n such that f n� .�1.M//D f k� .�1.M// for all k � n. Let Mn

pn
��!M be the

finite covering of M corresponding to f n� .�1.M// and denote by f n WM !Mn the
lift of f n, which induces a surjection on �1. Since f n� .�1.M//D f 2n� .�1.M//, we
deduce that the composite map f n ıpn WMn!Mn induces a surjection

.f n ıpn/� W �1.Mn/! �1.Mn/:

Since �1.Mn/ is Hopfian, we deduce that .f n ı pn/� is an isomorphism, and so a
homotopy equivalence, because Mn is aspherical. In particular,

deg.f n/; deg.pn/ 2 f˙1g;

which leads to the absurd conclusion that deg.f /D˙1.
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The mod 2 cohomology of the infinite families of
Coxeter groups of type B and D as almost-Hopf rings

LORENZO GUERRA

We describe a Hopf ring structure on the direct sum of the cohomology groupsL
n�0H

�.WBn IF2/ of the Coxeter groups of type WBn , and an almost-Hopf ring
structure on the direct sum of the cohomology groups

L
n�0H

�.WDn IF2/ of the
Coxeter groups of type WDn, with coefficients in the field with two elements F2.
We give presentations with generators and relations, determine additive bases and
compute the Steenrod algebra action. The generators are described both in terms of a
geometric construction by De Concini and Salvetti and their restriction to elementary
abelian 2–subgroups.

20F55, 20J06; 20J05

1 Introduction

The Coxeter groups of type WBn and WDn are two infinite families of finite reflection
groups. Coxeter groups are traditionally described via Coxeter diagrams, ie graphs
in which each edge e has a weight me � 3. Given such an object, the associated
Coxeter group has a generator sv for every vertex v, with relations of the form s2v D 1,
.svsw/

me D 1 for every edge eD .v; w/, and .svsw/2D 1 if v and w are not connected
by an edge. For an exhaustive introduction to the geometry and topology of these
groups we refer to Davis’s book [3]. The reflection groups of type WBn and WDn are
the finite Coxeter groups associated with the Coxeter diagrams in Figure 1.

The goal of this paper is to provide an effective description of the mod 2 cohomology
of these groups. Other authors have previously computed these cohomology groups.
Most notably, Swenson, in his thesis [18], adapted techniques used by Hu’ng [12] and
Feshbach [5], stemming from the analysis of the restriction maps to elementary abelian
2–subgroups, to compute generators and relations for the mod 2 cohomology algebra
of a finite reflection group. However, his presentation is involved and intrinsically
recursive. Borrowing ideas from Giusti, Salvatore and Sinha [7; 9], we exploit additional
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4

t0

t1

t2 t3 tn�2 tn�1 s0 s1 s2 sn�2 sn�1

Figure 1: Diagrams of type Dn (left) and Bn (right).

structures to provide a simpler description of the cup product. Our approach also has
the advantage of being more easily readable from the well-known chain-level geometric
and combinatorial description of a resolution for Coxeter groups by De Concini and
Salvetti [4].

The sequences of Coxeter groups of type B and D have standard embeddings

WBn �WBm !WBnCm ; WDn �WDm !WDnCm

that are, in a certain sense, compatible. The homomorphisms induced by these maps on
mod 2 cohomology define a coproduct �. The cohomology transfer maps associated
with them determine a productˇ. There is also a canonical embedding ofWDn intoWBn
as an index-2 subgroup, which induces an involution � WH�.WDn IF2/!H�.WDn IF2/.

In the B case, the resulting structure is modeled on that of the symmetric groups, the
Coxeter groups of type A, as described by Giusti, Salvatore and Sinha [7] (mod 2)
and by the author [10] (modulo odd primes). Together with the usual cup product � ,
these maps form a ring in the category of F2–coalgebras, ie a Hopf ring over F2. More
explicitly, given a ring R, a (graded) Hopf ring over R is a graded R–module with a
coproduct � and two products, ˇ and � , such that

� .A;�;ˇ/ is a Hopf algebra, with an antipode S ;

� .A;�; � / is a bialgebras over R;

� if x; y; z 2 A and �.x/D
P
i x
0
i ˝ x

00
i , then the distributivity formula

x � .yˇ z/D
X
i

.�1/deg.y/ deg.x00
i
/.x0i �y/ˇ .x

00
i � z/

holds.

In the D case, �, ˇ and � satisfy the last two axioms in the definition of a Hopf ring,
and � and � form a bialgebra. However, as we will explain later, � and ˇ do not form
a bialgebra. We call this weaker structure an almost-Hopf ring over F2. Due to this
fact, the study of the cohomology of WDn , with the cup product, the transfer product,
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and the coproduct, is more complicated. The reader will find similarities between the
cohomology of WDn and that of the alternating groups, as described by Giusti and
Sinha [9]. Such structures stem from the seminal work of Strickland and Turner [17],
in which the authors discovered a Hopf ring structure on the cohomology of symmetric
groups, even with generalized cohomology theories.

The main results of this paper are Theorems 5.9 and 5.15, stated in Section 5.2, con-
sisting of a presentation in terms of generators and relations of the mod 2 cohomology
of the Coxeter groups of type Bn as a Hopf ring and of type Dn as an almost-Hopf
ring respectively. We provide here self-contained statements for clarity and reference.

Theorem 5.9 (main theorem for type B) The Hopf ring
L
n�0H

�.WBn IF2/ over
F2 admits a presentation with two families of generators , k;n 2Hn.2k�1/.WB

n2k
IF2/

for k � 0 and n > 0, and ın 2Hn.WBn IF2/ for n > 0, and the following relations:

� �.k;m/D
P
iCjDm k;i ˝ k;j ;

� k;nˇ k;m D
�
nCm
n

�
k;nCm;

� �.ın/D
P
kClDn ık˝ ıl ;

� ınˇ ım D
�
nCm
n

�
ınCm;

� the cup product , � , of classes in different components is 0;
� 0;n is the �–unit of H�.WBn IF2/.

The generators are explicitly characterized, both combinatorially at the cochain level
(see Definition 5.1) and geometrically, as suitable Thom classes (see Proposition 5.3).
The classes k;n and the relations among them arise from the presentation of the mod 2
cohomology of the symmetric groups as a Hopf ring. The only new generators are ın
and their behavior is governed by the third and fourth relations above.

The almost-Hopf ring constructed from the cohomology rings of the Coxeter groups
of type D is more complicated. The relations are intricate, and the behavior of gen-
erators is more easily understood with the aid of a “polarized” basis BC t B� t B0

(see Proposition 5.22). For instance, the bialgebra axiom for ˇ and � is replaced
with a different compatibility identity involving the projection pC onto the addend
.Span.BC/˝A˝3D /˚ .Span.B0/˝Span.BC/˝A˝2D /:

�.xˇy/D .ˇ˝ˇ/�.pC/.�.x/˝�.y// for all x; y;

where � is the transposition of the second and third factors. Nevertheless, this surrogate
axiom can be expressed directly in terms of the generators, without explicit reference
to the additive basis (see Proposition 5.14).
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The main presentation theorem in this regard is the following.

Theorem 5.15 (main theorem for type D) The almost-Hopf ring structure over F2
of
L
n�0H

�.WDn IF2/ extends uniquely to a graded almost-Hopf ring structure with
components on the F2–vector space F21C˚F21�˚

L
n�1H

�.WDn IF2/ such that

� 1Cˇ _D id, 1�ˇ _D �, 1C � 1C D 1C, 1� � 1� D 1�, and 1C � 1� D 0;

� �.1˙/D 1C˝ 1˙C 1�˝ 1�;

� �.x/ D 1C ˝ x C 1� ˝ �.x/ C �.x/ C �.x/ ˝ 1� C x ˝ 1C for all x inL
n�1H

�.WDnIF2/, where� is the reduced coproduct in
L
n�0H

�.WDnIF2/.

This almost-Hopf ring admits a presentation with two families of generators ,

C
k;n
2Hn.2k�1/.WD

n2k
IF2/ for k; n > 0;

ı0nWm 2H
n.WDnCm IF2/ for n¤ 1 and m� 0;

together with 1�. The compatibility identity above and the following list of equalities
provide a complete set of relations , where 1C is theˇ–unit :

� 1�ˇ 1� D 1C, 1� � 1� D 1�, 1C � 1� D 0, and �.1�/D 1C˝ 1�C 1�˝ 1C;

� �.C
k;m
/D

Pm
lD0

�
C
k;l
˝ C

k;m�l
C .1�ˇ C

k;l
/˝ .1�ˇ C

k;m�l
/
�
;

� �.ı0nWm/D
Pn
iD0

Pm
jD0 ı

0
i Wj ˝ ı

0
n�i Wm�j ;

� C
k;a
ˇ C

k;b
D
�
aCb
a

�
C
k;aCb

and ı0nWmˇ 1
� D ı0nWm,

� bˇ b0 D 0 if b and b0 are cup products of generators of the form ı0nWm;

� C
k;n
� .1�ˇ C

h;m
/D 0 for all n;m; k � 1 and h� 2;

� C1;m � .1
�ˇ C1;m/D .

C
1;m�1/

2ˇ ı02W0 for all m� 1;

� the cup product , � , of generators belonging to different components is 0;

� ı00Wm is the �–product unit of the mth component ;

� ı0nWm � 
C

k;nCm
2k

D ı0nW0 � 
C

k; n
2k

ˇ C
k; m
2k

for all k > 0 and m; n� 0 with n¤ 1.

In this case, too, the generators are explicitly described (see Definitions 5.4 and 5.5).

The relations are spread out in a few lemmas to prove the identities concerning coproduct,
transfer product, and cup product separately. Building on these core theorems, we also
describe convenient additive bases for the cohomology of these groups, with a graphical
description via skyline diagrams similar to that obtained for the symmetric group in [7],
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and compute the Steenrod algebra action. Our formulation of the cohomology of WBn
and WDn yields without additional effort many features of these cohomology algebras.
For instance, Hepworth’s homological stability results [11] in these particular cases
follow directly.

We obtain our presentation via three technical tools. First, we exploit De Concini and
Salvetti’s geometric combinatorial model to realize such (almost) Hopf rings structures
at the cochain level. Specializing their construction to the families of groups of our
interest, we observe that a resolution forWBn is obtained from the symmetrized version
of the planar level trees used by Giusti and Sinha [9] for the symmetric groups. The
cohomology of WDn is governed by an oriented version of these objects. We describe
cochain representatives of the structural maps in detail. Our treatment follows the paper
cited above closely. However, we note that while the transfer product is realized very
similarly to the†n case, coproducts are more complicated and require the combinatorial
operation of “pruning” symmetric planar level trees. This cochain-level description
allows us to quickly retrieve some of our relations and give a more geometric flavor
to our generating classes. For instance, they can be interpreted as Thom classes in a
suitable sense.

Second, we use the existence of well-behaved maps betweenWBn ,WDn and†n. These
homomorphisms preserve parts of our structures. Therefore, we exploit them to build
our presentations on the known result for the cohomology of the symmetric groups.
We provide a cochain-level description of these morphisms, and we determine both
their action on generators and their relations to the coproduct and transfer product.

Third, we reconcile with Swenson’s approach, and we investigate restrictions to ele-
mentary abelian 2–subgroups. The mod 2 cohomology of finite reflection groups is
known to be detected by this family of subgroups. We effectively compute the action
of these restriction maps on our additive bases. The multiplicative structure on the
cohomology of (the invariant subalgebras of) such subgroups is known. Thus, these
calculations allow us to deduce cup product relations that would be otherwise difficult
to obtain.

We organize the paper as follows. After describing the structures on the cohomology
of WBn and WDn in Section 2, we devote the following two sections to developing
our geometric tools. In Section 3, we review De Concini and Salvetti’s construction,
and we specialize it to WBn and WDn . In Section 4, we investigate the combinatorics
of pruning operations, and we retrieve cochain-level representatives of our structural
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and connecting homomorphisms. Section 5 is devoted to our main theorems. We
define generators and we discuss relations between them. In this context, we also
deduce from our presentation additive bases, and we discuss the relations between
the cohomology of Coxeter groups of type A, B and C . We postpone the proofs of
the presentation theorem and some cup product relations. In Section 6, we turn our
attention to the restriction to elementary abelian 2–subgroups. We review relevant
results from Swenson’s thesis, compute restriction maps, and use them to complete the
proof of our cup-product relations. Section 7 is devoted to completing the proof of our
main theorems. In Section 8, we calculate the Steenrod algebra action.

Acknowledgements

Most of the contents of this paper are part of the author’s PhD thesis, written at Scuola
Normale Superiore in Pisa. The author acknowledges full support from this institution.
The author is indebted to his PhD advisor, Prof. Mario Salvetti, for his guidance, and
also thanks Prof. Dev Sinha for helpful comments.

2 (Almost) Hopf ring structures for the cohomology of WBn

and WDn

We begin this paper by describing in detail how the desired algebraic structures on the
cohomology of Coxeter groups of type B and D are obtained. Throughout this paper,
we use several combinatorial descriptions of the groups WBn and WDn . We refer to
[2, Chapter 8] for a thorough treatment, and we recall below what we need for our
purposes.

With reference to Figure 1, we recall that there is an inclusion jn W WDn ,! WBn
defined by t0 7! s0s1s0 and ti 7! si if i > 0. WBn can be seen as the group of signed
permutation on n numbers, that is, the group of bijective functions f from the set
f�n; : : : ;�1; 1; : : : ; ng into itself that satisfy f .�i/ D �f .i/ for every 1 � i � n.
Hence WBn is naturally a subgroup of †2n, the symmetric group on 2n objects. The
image of jn is WBn \ Alt.2n/, the intersection of WBn with the alternating group
Alt.2n/, the subgroup of even permutations in †2n. Note that †n can be identified
with the parabolic subgroup of WBn generated by s1; : : : ; sn�1, corresponding to the
signed permutations on f�n; : : : ; ng that preserve signs. There is also a standard
projection WBn !†n, of which the previous inclusion is a section, whose kernel is
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the normal subgroup generated by s0. We observe that this provides an isomorphism
between WBn and the wreath product F2 o†n, a semidirect product of Fn2 and †n.
Therefore, the inclusions †n �†m ! †nCm extend naturally to monomorphisms
WBn �WBm ! WBnCm . These inclusions are associative and commutative up to
conjugation.

Let AB D
L
n�0H

�.WBn IF2/. We define a coproduct � and two products, � and ˇ,
on AB in the following way:

� � is induced by the obvious monomorphisms WBn �WBm !WBnCm ;

� ˇ is induced by the cohomology transfer maps associated with these inclusions;

� � is the usual cup product.

Due to the associativity and the commutativity of the natural inclusions, these morphisms
define an almost-Hopf ring structure. This is a general fact, as noticed in [9]. In this
case, however, AB is a full Hopf ring.

Proposition 2.1 AB , with these structural morphisms , is a Hopf ring.

Proof The almost-Hopf ring axioms hold by [9, Theorem 2.3]. It remains only to
prove that .AB ; �;ˇ/ forms a bialgebra. This claim follows from the fact — compare
with [7, Section 3] — that this diagram is a pullback of finite coverings for all n;m2N,F

pCqDn
rCsDm

E.WBnCm/

WBp�WBq�WBr�WBs

F
�pC1;rCs

//

F
�pCr;qCs

��

E.WBnCm/

WBn�WBm

�n;m

��F
kClDnCm

E.WBnCm/

WBk�WBl
F
�k;l

//
E.WBnCm/

WBnCm

where � indicates the projections.

We remark that, since AB with � and ˇ is a conilpotent bialgebra, the existence of the
antipode comes for free. This antipodal morphism does not play a role in our treatment;
thus, we will not discuss it further.

Similarly, we can construct an additional almost-Hopf ring structure on the cohomology
of the Coxeter groups of typeDn. Indeed, on the direct sumADD

L
n�0H

�.WDn IF2/,
we can define a coproduct � and two productsˇ and � as done for AB . However, these
do not make AD a full Hopf ring because, as we will see later, .AD; �;ˇ/ fails to be
a bialgebra.

Algebraic & Geometric Topology, Volume 23 (2023)



3228 Lorenzo Guerra

With essentially the same proof used for AB , we can prove the following easy proposi-
tion, which follows again from [9, Theorem 2.3].

Proposition 2.2 AD , with the coproduct and the two products defined before , is an
almost-Hopf ring over F2.

As we remarked in the introduction, there is a similar result for the mod 2 cohomology
of the symmetric groups, obtained by Giusti, Salvatore and Sinha in [7]. We recall
their statement here because we will build our computations upon it.

Theorem 2.3 [7, Theorems 1.2 and 3.2] A† D
L
n�0H

�.†nIF2/, together with a
coproduct� WA†!A†˝A† induced by the obvious inclusions†n�†m!†nCm, a
product ˇWA†˝A†!A† given by the transfer maps associated with these inclusions ,
and a second product � W A†˝A†! A† defined as the usual cup product , is a Hopf
ring over F2.

A† is generated , as a Hopf ring , by classes k;n 2Hn.2k�1/.†n2k IF2/ for k � 0 and
n� 1. The coproduct of these classes is given by the formula

�.k;n/D

nX
lD0

k;l ˝ k;n�l ;

the cup product of generators belonging to different components is 0, and

k;nˇ k;m D
�nCm

n

�
k;nCm:

There are no more relations between these classes.

The unit of the algebra H�.†nIF2/ under the cup product is 0;n 2H 0.†nIF2/. For
this reason, we will often denote it with the symbol 1n throughout the paper.

3 Review of a geometric construction of De Concini and
Salvetti and Fox–Neuwirth type cell structures

3.1 De Concini and Salvetti resolution

In this section, we recall a geometric construction introduced by De Concini and
Salvetti in [4], which we will require to describe the generators of the Hopf ring under
consideration.
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Given a finite reflection group G � Gln.R/, there is a natural hyperplane arrangement
AG in Rn associated with G, whose hyperplanes are the fixed points sets of reflections
in G. The choice of a fundamental chamber C0 of AG gives rise to a Coxeter presenta-
tion .G; S/ for G, whose set of generators S is composed by reflections with respect
to hyperplanes that are supports of a face of C0. Every finite Coxeter group arises this
way.

For any F �Rn, we can define

AF D fH 2AG W F �H g:

AF gives rise to a stratification ˆ.AF / of Rn, in which the strata are the connected
components of sets of the form L n

S
H2AF ;H 6�LH , where L is the intersection of

some of the hyperplanes of AF . Let R1 be the direct limit of Rm under the inclusions
Rm ,!Rm�f0g �RmC1. For all m 2N[f1g, there is a stratification ˆm (different
from the product stratification) of the topological space,

Y
.m/
G DRn˝Rm n

[
H2AG

.H ˝Rm/D .Rn/m n
[

H2AG

Hm:

The strata inˆm are defined as sets of the form F1�� � ��Fk�� � � , with Fk 2ˆ.AFk�1/
for k � 1. Here we put, by convention, F0 D f0g. In what follows, if there is no
ambiguity, we will use the simpler notations Y .m/ and Y to indicate Y .m/G and Y .1/G

respectively.

De Concini and Salvetti construct a regular G–equivariant CW–complex X � Y that
is “dual” to the stratification ˆ1, in the sense that for every stratum F 2 ˆ1 of
codimension d , there exist a unique d–dimensional cell in X that intersects F , and
they intersect transversally in a single point. For m<1, the intersection X .m/ of X
with Y .m/ is a subcomplex of X whose cells are dual to strata in ˆm. This construction
is done equivariantly, in the sense that for every stratum F 2 ˆ1 and every g 2 G,
if ' W Dd ! X is the cell dual to F in X , then .g:_/ ı ' W Dd ! X is the cell dual
to g:F . The authors then show that X is a G–equivariant strong deformation retract
of Y . Since Y is contractible and G–free, the quotient X=G is a cellular model for the
classifying space B.G/ and the cellular chain complex CG� D C

CW
� .X/ is a ZŒG�–free

resolution of Z.

The strata of ˆ1 have a more compact combinatorial description in terms of the
Coxeter presentation. For every s 2 S generating reflection for G, we let Hs be the
hyperplane fixed by s. Hs divides the space Rn into two semispaces, HCs and H�s .
We let HCs be the semispace that contains the chosen fundamental chamber C0. To a
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flag � D .S � �1 � �2 � � � � � �k D¿/ of subsets of S we can associate a stratum F

of ˆ1 such that x D .x1; : : : ; xn/ 2 .R1/n belongs to F if and only if

..x1/r ; : : : ; .xn/r/ 2Hs if s 2 �r ;

..x1/r ; : : : ; .xn/r/ 2H
C
s if s 2 �r�1 n�r

is satisfied for every s 2 S and every r � 1. Thus, to a couple .�; g/, where � is a
flag as before and g 2G, we can associate the stratum g:F obtained from the above F
by applying g. This construction yields an algebraic-combinatorial description of the
cellular chain complex of X . The main theorem of De Concini and Salvetti’s paper is
the following.

Theorem 3.1 [4, Section 3] Let .G; S/ be a finite Coxeter group , and consider the
set

f.�; / j  2G; � D .�1 � �2 � � � � � �k � � � �/; �1 � S; �k D¿ for some kg:

The function described above is a bijection between this set and the set of strata in
ˆ1 (and thus , by duality , with the set of cells in X ). The codimension of the stratum
(and the dimension of the corresponding dual cell ) associated with .�; / is equal toP1
rD1 j�r j, and the action of an element g 2G on strata and cells corresponds to the

function .�; / 7! .�; g/.

Let c.�; / be the cell dual to the stratum corresponding to .�; /. The boundary
homomorphism in CCW

� .X/ is given by the formula

@c.�; /D
X
i�1

X
�2�i

X
ˇ2W

�inf�g

�i

ˇ�1�iC1ˇ��inf�g

.�1/˛.�;i;�;ˇ/c.� 0; ˇ/;

where ˛ is an integer number easily computed in terms of � , i , � , ˇ, � 0
k
D �k for

k < i , � 0i D �i n f�g and � 0
k
D ˇ�1�kˇ if k > i , and W T

T 0 , for T 0 � T � S is the set of
minimal length coset representatives for the parabolic subgroup WT 0 in WT .

We remark that in the case of Coxeter groups of type B or D, minimal coset repre-
sentatives are explicitly known. For a complete description, we refer, for instance,
to [14].

3.2 Alexander duality and Fox–Neuwirth complexes

We recall an alternative description of CG� . This description has been exposed in [8],
where it is investigated in much detail in the An case. As observed in that paper, for
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every 1 � m �1, the strata of ˆm are the interiors of cells in a G–equivariant cell
structure on the Alexandroff compactification .Y .m//C D Y .m/[f1g.

Denote its augmented (G–equivariant) cellular chain complex with the symbol fFNmG .
Its cells are the closures e.F / of strata F 2ˆm (together with the basepoint f�g) and,
from the construction of X .m/ as a CW–complex dual to ˆm — details in [4] — e.F /

is contained in the boundary of e.F 0/ if and only if the cell of X dual to F contains
the cell dual to F 0 in its boundary. This fact implies that the complex fFNmG is, up to
a shift of degrees, the dual of CCW

� .X .m//, at least modulo 2 (in general, there are
differences in some signs due to orientations). Explicitly, the closure in fFNmG of a
stratum of dimension d correspond to the dual of a chain in CCW

� .X .m// of dimension
nm� d . In the remaining sections of this paper, we will always implicitly assume this
shift, and we will grade fFNmG to match the corresponding dimension of the dual cell.

In particular, fFNmG calculates the cohomology of Y .m/ and is therefore acyclic up to
dimension nm� 2. Alternatively, we can see this, as explained in [8], by observing
that the Atiyah duality theorem implies that the Spanier dual of Y .m/ is .Y .m//C.

Passing to the limit for m!1, we obtain an acyclic F2–complex fFNG ˝F2, dual to
CCW
� .X/˝F2, for which a basis fe.S/gS2ˆ1 is parametrized by strata in ˆ1. The

degree of e.S/ as a cochain ofX is equal to the codimension of F . This is an equivariant
cochain model forE.G/. In particular, the quotient FNG˝F2DfFNG=G˝F2 calculates
zH�.GIF2/. In the following, when we need to stress the Coxeter group G involved,

we will use the heavier notation ˆ1;G instead of ˆ1.

This description of the cochain complex FNG calculating the cohomology of G fits
particularly well with a chain-level interpretation of duality via intersection theory that
we will occasionally use in proofs and that we briefly recall here. Given a manifold X
and an immersion i WW !X of a codimension d manifold in X , we say that a smooth
singular chain in X is transverse to i if, for every simplex � W�k!X of the chain, �
is transverse on every face of �k and subface, in the sense of manifolds with corners.
It can be proved that the subcomplex consisting of chains that are transverse to i is
chain equivalent to the full one. To every d–dimensional singular simplex � W�d !X

transverse to i we can associate the element �W .�/2 F2 given by the mod 2 cardinality
of ��1.W /. This procedure defines a cochain dual in the complex dual to the chain
complex of singular chains transverse to i . If i is a proper embedding, �W is a cocycle
and defines a cohomology class. The most important constructions in cohomology
can be understood geometrically using this model. In particular, if f W Y ! X is
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transverse to i , then f #.�W /D �f �1.W /. The reader will find a complete reference of
this approach to cohomology in [6].

In our particular context, each stratum S 2 ˆ1 defines such a cochain �S . We
understand the coboundary of �S as �@.S/, so we can identify fFN�G , at least modulo 2,
with the cochain complex spanned by �S for strata S 2ˆ1. Suppose W � Y .1/G is a
proper submanifold of codimension d obtained as a union of strata. In that case, its
associated cochain �W is the sum of �S for strata S �W of minimal codimension, and
ı.�W /D 0. If, in addition, the action of G preserves W , then, passing to the quotient,
its image W � Y .1/G =G defines a Thom class represented in FN�G by the sum of strata
contained in W . This construction is made precise in [7, Definition 4.6].

3.3 The special case of Coxeter groups of type B

We conclude this section by further investigating the cases of our interest G DWBn
and, in the following subsection, G DWDn . The strata of ˆm for the symmetric group
†n can be described in terms of leveled trees, as shown in [8] using ideas dating back
to Vassiliev [19]. A straightforward adaptation of these ideas shows that, in the case of
the Coxeter groups of type Bn, we can describe them in terms of symmetric leveled
trees. This interpretation encodes geometrically and combinatorially the structure of
WBn as a wreath product of †n with a cyclic group of order 2. Below we provide the
precise definitions.

First, we observe that, since WBn is generated by a set S D fs0; : : : ; sn�1g of n
fundamental reflections as described in Figure 1, the Fox–Neuwirth complex fFN�WBn
has a ZŒWBn �–basis fe.a/g indexed by n–tuples of nonnegative integer numbers
.a0; : : : ; an�1/.

The reflection hyperplane arrangement associated withWBn can be described as ABn D
fH˙i;j g1�i<j�n[fH

0
i g, where

H˙i;j D fx 2Rn j xi D˙xj g; H 0
i D fx 2Rn j xi D 0g:

Moreover, s0 can be identified with the reflection with respect toH 0
1 and, for every i >0,

si with the reflection with respect to HCi;iC1. Thus the basis element corresponding to
aD .a0; : : : ; an�1/ is described as the stratum

e.a/D
˚
.x1; : : : ; xn/ 2 .R

1/n j 81� i � n� 1;81� j � ai W .xi /j D .xiC1/j ;

.xi /aiC1 < .xiC1/aiC1;81� k � a0 W .x1/k D 0; .x1/a0C1 > 0
	
:
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Passing to the quotient by the action of WBn , we see that FN�WBn has a Z–basis
constituted by Œa0 W � � � W an�1�D Œe.a0; : : : ; an�1/�.

The differential on FN�WBn is complicated, but it is combinatorially accessible via a
description of its basis in terms of trees.

Definition 3.2 A signed depth-ordering is a sequence of labeled inequalities of the
form � D .0 <a0 i1 <a1 � � � <an�1 in/, where ik 2 f�n; : : : ;�1; 1; : : : ; ng for all
1� k � n, and these indices have pairwise different absolute values. By convention,
we let i0 D 0.

A planar level tree is a planarly embedded tree T satisfying the following conditions:

� it has a root vertex embedded in .0; 0/ and all the other vertices having their
second coordinate (the “height”) equal to a positive integer;

� two edges connected by an edge have heights whose difference is 1;

� the height along the unique minimal path from the root to every leaf is always
increasing.

A planar level tree with labels in I is a couple .T; �/ defined as follows: T is a planar
level tree, and � is a bijective labeling of the leaves of T with elements of I .

A symmetric planar level tree is a planar level tree invariant under the reflection r along
the y–axis and having an odd number of leaves.

An antisymmetric planar level tree with labels in f�n; : : : ; ng is a labeled planar level
tree .T; �/ with labels in f�n; : : : ; ng such that T is symmetric, and two leaves that
correspond to each other under the application of r have labels opposite to each other.

The antisymmetric planar level tree associated with a depth ordering � is the antisym-
metric planar level tree T� , unique up to isotopy, defined by the following properties:

� the labels of the leaves, from left to right, are �in; : : : ;�i1; 0; i1; : : : ; in;

� the leaves labeled ik�1; ik , for 1� k � n, are separated by a vertex of height ak
but not by vertices of height less than ak .

Let k � 0. The k–symmetrization Sk.T / (resp. zSk.T /) of a planar level tree T (with
labels in f1; : : : ; ng) is a symmetric planar level tree S (resp. antisymmetric planar
level tree with labels in f�n; : : : ; ng) obtained by the following procedure. Glue T
from the right to a vertical linear planar level tree lying into the y–axis up to height k.
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�1�1 10 �33 2 �2

Figure 2: An example of antisymmetric planar level tree with labels in Œ�3; 3�.

Then, add the mirror image of such tree under r to obtain a symmetric planar level
tree (choosing the unique antisymmetric labeling that extends the labeling of T in the
labeled case).

There is a free action of WBn on the set antisymmetric planar level trees with labels
in f�n; : : : ; ng given by interpreting elements of WBn as signed permutations and
permuting labels accordingly. We always assume that the edges of a level tree are
oriented so that there is a unique oriented path from the root vertex to each leaf.

Similarly to the symmetric group case, we have the following immediate proposition.

Proposition 3.3 The function � 7! T� is a bijection between the set of signed depth-
orderings with n labels and the set of isotopy classes of antisymmetric planar level
trees with labels in f�n; : : : ; ng. Furthermore , to � D .0 <a0 i1 <a1 � � � <an�1 in/ is
associated a stratum �e.a/ 2ˆ1;WBn , where �.k/D ik , aD .a0; : : : ; an�1/, and this
provides aWBn–equivariant additive basis of fFN�WBn labeled by signed depth-orderings
or , equivalently, by isotopy classes of antisymmetric planar level trees with labels in
f�n; : : : ; ng. WBn acts on this basis by permuting labels. Consequently, an additive
basis for FN�WBn is given by symmetric planar level trees with 2nC 1 leaves.

An example of an antisymmetric planar level tree .T; �/, with labels in Œ�3; 3�, is given
in Figure 2. The associated signed depth-ordering is � D .0 <1 �2 <0 �3 <1 1/ and
the corresponding stratum is �e.Œ1; 0; 1�/, where �.1/D�2, �.2/D�3 and �.3/D 1.

We observe that we can use Proposition 3.3 to reinterpret operations on (symmetric)
level trees in terms of n–tuples or (signed) depth-orderings. For instance, the k–
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symmetrization of trees provides a linear map Sk W FN�†n ! FN�WBn that we can
interpret as Œa1 W � � � W an�1� 7! Œk W a1 W � � � W an�1�.

We can now describe the differential in terms of this basis.

Definition 3.4 [8] Let .T; �/ be a planar level tree. Let v be an internal vertex. Let
E.v/ be the set of edges whose source vertex is v. The planar embedding of T induces
an order on E.v/, defined from left to right. A vertex permutation of .T; �/ at v is
another planar level tree that is isomorphic to .T; �/ as a labeled tree but with a different
planar embedding that differs from the original one only by the ordering on E.v/.

Given a planar level tree .T; �/ and an internal vertex v, let .e; f /, with e < f , be a
couple of adjacent edges in E.v/. Let ue and uf be the targets of e and f , respectively.
Let � be a shuffle of the two sets E.ue/ and E.uf /. Let de;f;� .T; �/ be the planar level
tree obtained by gluing together e and f , with common target Nu, and then applying the
vertex permutation that permutes the edges in E. Nu/ by � .

Recall that, in the An case, the differential in fFN� of the basis element corresponding
to a planar level tree with labels .T; �/ is given by the sum over .v; �/ as above of
dv;� .T; �/. Similarly, we have the following proposition, which essentially states that
a symmetrization of the previous construction gives the differential in the Bn case.

Proposition 3.5 With the correspondence provided by Proposition 3.3, the differential
of the cochain complex fFN�WBn ˝ F2 is given in terms of antisymmetric level trees
with labels d.T; �/D

P
.e;f;�/

P
.e0;f 0;�/ de;f;�de0;f 0;� .T; �/, where the sum is over

sextuples .e; f; �; e0; f 0; �/ such that de;f;�de0;f 0;� .T; �/ is again an antisymmetric
planar level tree. Equivalently , d.T; �/ is obtained by performing an operation de;f;�
starting from a couple of adjacent vertices .e; f / lying into the positive half-plane
f.x; y/ j x � 0g, and then perform the mirror operation on the mirror pair of adjacent
edges .e0; f 0/ in the negative half-plane. If we call such symmetric operation dS

e;f;�
,

we have that
d.T; �/D

X
.e;f /

X
�

dSe;f;� .T; �/;

where the sum is over couples .e; f / of adjacent edges in the positive half-plane and
shuffles � of the two sets of vertices incident to the target of e and f , respectively.

We can equivalently express this construction using planar level trees T with nC 1
leaves labeled by .�n; : : : ;�1; 0; 1; : : : ; n/, with labels having pairwise different ab-
solute values, such that the leftmost leaf has label 0. We recover the corresponding
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antisymmetric level tree as follows. We choose a representative of the isotopy class of
.T; �/ in which the entire oriented path from the root vertex to the label 0 lies on the
y–axis. Then we merge T with its mirror image along y with opposite labels. In this
case, the differential is given by contracting a couple of adjacent edges and shuffling.
When the result is a tree whose leftmost leaf is not labeled by 0, we replace the part of
the tree belonging to the negative half-plane f.x; y/ j x � 0g with its mirror image in
the positive half-plane, with opposite labels, and shuffle the corresponding edges in all
possible ways.

3.4 The special case of Coxeter groups of type D

We now turn to the description of the complex FN�WDn . Once again, since this Cox-
eter group has n fundamental reflections t0; : : : ; tn�1, a ZŒWDn �–basis for fFN�WDn is
indexed by n–tuples of nonnegative integers aD .a0; : : : ; an�1/.

The inclusion jn WWDn!WBn identifies the reflection arrangement associated to WDn
with the subarrangement of AWBn composed by the hyperplanesH˙i;j , for 1� i <j �n,
and ti D si for 1� i � n, while t0 is the reflection along H�1;2. Thus the basis element
of fFN�WDn corresponding to a is described as the stratum

e.a/D
˚
.x1; : : : ; xn/ 2 .R

1/n j 81� i � n� 1; 1� j � ai W .xi /j D .xiC1/j ;

.xi /aiC1 < .xiC1/aiC1;81� k � a0 W .x2/k D�.x1/k ; .x2/a0C1 > �.x1/a0C1
	
:

Passing to the quotient by the action of WDn , we see that FN�WDn has a Z–basis
constituted by Œa0 W � � � W an�1�D Œe.a0; : : : ; an�1/�.

The complex fFN�WBn=jn.WDn/ also calculates the cohomology of WDn . Therefore,
there is a cochain equivalence ' W FN�WDn !

fFN�WBn=jn.WDn/ between the two reso-
lutions. In the subsequent section, we compute an explicit formula for ' that we will
use to perform cochain-level computation in the following sections. For instance, we
will prove the relations for coproduct of transfer products of Hopf ring generators by
mapping them to fFN�WBn=jn.WDn/, where their expressions are closer to the Bn case.
As a notational convention, we denote this cochain complex by FN0�WDn .

First, we observe that ŒWBn W jn.WDn/� D 2; thus jn.WDn/ is a normal subgroup
of WBn . The two cosets of jn.WDn/ in WBn are represented by the identity and s0, the
only fundamental reflection of WBn that is not contained in jn.WDn/. Thus, given a
ZŒWBn �–basis B for fFN�WBn , the classes of x and s0:x, where x 2B, provide a Z–basis
for FN0�WDn . Let B be the basis defined above in terms of n–tuples or equivalently
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of symmetric planar level trees, parametrized by n–tuples of nonnegative integers
aD .a0; : : : ; an�1/. We denote by Œa0 W � � � W an�1�C and Œa0 W � � � W an�1�� the cochains
in FN0�WDn arising from the basis element corresponding to a and s0a.

The complex FN0�WDn also has a description in terms of trees.

Definition 3.6 Let T be a symmetric planar level tree with 2nC 1 leaves. An orien-
tation of T is the choice of an element of L=�, where L is the set of antisymmetric
labelings of T with labels in f�n; : : : ; ng, and � is the equivalence relation defined by

�� �0 () �0 D �� for some � 2 Alt.2nC 1/:

An oriented symmetric planar level tree is a couple .T;O/, where T is a symmetric
planar level tree and O is an orientation of T .

Note that if two antisymmetric labelings of a symmetric planar level tree T differ by
a permutation � 2 †f�n;:::;ng, then � must fix 0 and act as a signed permutation on
f�n; : : : ;�1; 1; : : : ; ng. Hence, an orientation of T is the choice of an antisymmetric
labeling up to the action of jn.WDn/. Since the index ŒWBn W jn.WDn/� is 2, there are
two possible orientations for a symmetric planar level tree T , determined by the parity
of the number of negative labels of leaves in the positive half-plane. In particular, we
can identify an orientation O with a sign C or �, corresponding to labelings with an
even or odd number of positively labeled leaves in the positive half-plane, respectively.

Moreover, from the fact that Alt.2nC 1/ is normal in †2nC1, it follows that if T is a
symmetric planar level tree, � is a labeling of T and �.T / is a vertex permutation of
T at a vertex v, then the orientation of the permuted labeled tree �.T; �/ only depends
on the orientation determined by �. Therefore, the rule for the differential in fFN�WBn
induces a formula for the differential in FN0�WDn in terms of trees. Hence, we have the
following description.

Proposition 3.7 FN0�WDn can be described as the cochain complex having additive
basis indexed by oriented symmetric planar level trees with 2n C 1 leaves , with
differential induced by the symmetric tree differential in fFN�WBn by keeping track of
orientations.

The reader is encouraged to compare this description with the notion of “charged”
configuration used in [9].

Algebraic & Geometric Topology, Volume 23 (2023)



3238 Lorenzo Guerra

4 Geometry and combinatorics: chain-level formulas

We devote this section to developing some formulas that will allow us to perform
calculations at the (co)chain level. These computations will be needed at points,
especially when retrieving relations. We first compute some connecting maps between
the Fox–Neuwirth complexes of Coxeter groups of type A, B and D. Then, we provide
cochain representatives of the structural maps of our almost-Hopf ring structures.

4.1 The connecting homomorphisms

As fFN�WDn and fFN0�WDn are both free resolutions of Z as a ZŒWDn �–module, they need
to be WDn–equivariantly cochain equivalent. We begin by providing a formula for an
explicit equivalence ' relating the two models FN�WDn and FN0�WDn .

Lemma 4.1 There is a cochain homotopy equivalence '� WFN�WDn!FN0�WDn defined
by the formula

'�Œa0 W � � � Wan�1�D

8<:
Œa0 Wa1 Wa2 W � � � Wan�1�

C if a0 < a1;
Œa0 Wa1 Wa2 W � � � Wan�1�

CC Œa1 Wa0 Wa2 W � � � Wan�1�
� if a0 D a1;

Œa1 Wa0 Wa2 W � � � Wan�1�
� if a0 > a1;

induced by the inclusion Y .1/WBn
� Y

.1/
WDn

and yielding the identity in cohomology.

Proof We observe that the inclusion

Y
.1/
WBn
� Y

.1/
WDn

is a WDn–equivariant homotopy equivalence. Moreover, the inverse image in Y .1/WBn
of

each stratum of ˆ1;WDn is a union of strata in ˆ1;WBn . Thus, passing to quotients,
this yields a map

' W
Y
.1/
WBn

WDn
!

Y
.1/
WDn

WDn

that induces a well-defined map between the cochain complexes '� WFN�WDn!FN0�WDn.

We now check that '� satisfies the given formulas. It is sufficient to consider the finite
approximations

'.d/ W
Y
.d/
WBn

WDn
!

Y
.d/
WDn

WDn
:
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For any given stratum S D e.a0; : : : ; an�1/ for WDn , since '.d/, being a 0–codimen-
sional immersion, is transverse to S , we have that .'.d//�.�S /D �.'.d//�1.S/. We now
distinguish three cases:

� if a0 < a1, then .'.d//�1.S/D e.a0; a1; a2; : : : ; an�1/;

� if a0 > a1, then .'.d//�1.S/D s0:e.a1; a0; a2; : : : ; an�1/;

� if a0Da1, then .'.d//�1.S/ is the union of e.a0; : : : ; an�1/, s0:e.a0; : : : ; an�1/
and strata of bigger codimension.

This implies that '� has the desired form.

We also consider the following group homomorphisms:

� the standard inclusion j W†n!WBn already considered in the previous section;

� the involution cs0 WWDn !WDn given by conjugation by s0, the unique gener-
ating reflection of WBn that does not belong to WDn , that fixes ti for 2� i < n
and switches t0 and t1;

� the two inclusions iC; i� W†n!WDn given, in terms of the Coxeter generators
t0; : : : ; tn of Figure 1, by i˙.i; iC1/D ti if i � 2, iC.1; 2/D t1 and i�.1; 2/D t0.

We denote by � W H�.WDn IF2/ ! H�.WDn IF2/ the morphism induced by cs0 on
cohomology.

We note that the two following properties hold by construction:

� �j D id†n ;

� � ıiCD� ıi�D id†n , where � WWDn!†n is the composition of the inclusion
j WWDn !WBn with the projection WBn !†n;

� cs0 ı iC D i�.

We compute cochain representatives of � in the following lemmas.

Lemma 4.2 � is induced by the cochain-level map �# W FN�WDn ! FN�WDn defined by

�#Œa0 W a1 W a2 W � � � W an�1�D Œa1 W a0 W a2 W � � � W an�1�:

Proof Since the image under cs0 of a fundamental reflection for W DWDn is again a
fundamental reflection, for every � 0 � � � ft0; : : : ; tn�1g, the set of minimal-length
coset representatives satisfies cs0.W

� 0

� /DW
cs0 .�

0/

cs0 .�/
. Thus,

e.�1 � � � � � �k � � � � / 7! e.cs0.�1/� � � � � cs0.�k/� � � � /
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defines a cs0–equivariant chain map CWDn� ! C
WDn
� . This yields, dually, the desired

cochain map FN�WDn ! FN�WDn .

We can also describe � in terms of FN0�WDn . The proof of the following lemma is
straightforward.

Lemma 4.3 � is induced by the cochain-level map �0# W FN0�WDn! FN0�WDn defined by

�0
#
Œa0 W � � � W an�1�

C
D Œa0 W � � � W an�1�

�; �0
#
Œa0 W � � � W an�1�

�
D Œa0 W � � � W an�1�

C:

In terms of oriented symmetric planar level trees , the map �0# acts on .T;O/ by replacing
O with the opposite orientation.

The following identity is also proved by direct inspection.

Lemma 4.4 The following diagram commutes:

FN�WDn
'�
//

�#

��

FN0�WDn

�0
#

��

FN�WDn '�
// FN0�WDn

The formulas for the other connecting maps follow from a general remark.

Lemma 4.5 Let G be a Coxeter group , with Coxeter generators S D fs0; : : : ; sng and
H � G be a parabolic subgroup , generated by a subset T D fsi0 ; : : : ; simg � S . The
inclusion H ,!G is represented at the chain level by the chain map CH� ! CG� given
by c.�; / 7! c.�; /, for flags � D .�0 � �1 � � � � � �k �¿/ with �0 � T � S and
elements  2H .

Dually , it is represented at the cochain level by the cochain map FN�G! FN�H given by

Œe.a0; : : : ; an/� 2 C
H
� 7!

�
Œe.ai0 ; : : : ; aim/� if aj D 0 for all j … fi0; : : : ; img;
0 otherwise:

Proof Since the inclusion of parabolic subgroups preserves minimal coset representa-
tives, the De Concini–Salvetti boundary formula of Theorem 3.1 implies that the given
linear morphism CH� ! CG� is an H–equivariant chain map. Dualizing this yields the
cochain formula between Fox–Neuwirth complexes.
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As particular cases of this lemma, we retrieve cochain formulas for our connecting
homomorphisms:

Corollary 4.6 The following statements are true.

(1) The linear morphism j # W FN�WBn ! FN�†n given by

Œa0; : : : ; an�1� 7!

�
Œa1; : : : ; an�1� if a0 D 0;
0 if a0 > 0;

represents j at the cochain level.

(2) The linear morphism i#
C
W FN�WDn ! FN�†n given by

Œa0; : : : ; an�1� 7!

�
Œa1; : : : ; an�1� if a0 D 0;
0 if a0 > 0;

represents iC at the cochain level.

(3) The linear morphism i#
� W FN�WDn ! FN�†n given by

Œa0; : : : ; an�1� 7!

�
Œa0; a2; : : : ; an�1� if a1 D 0;
0 if a1 > 0;

represents iC at the cochain level.

4.2 Structural morphisms: AB

We want to describe the almost-Hopf ring structures presented in Section 2 in our
geometric context. We begin with the coproduct map in AB . In contrast with the
symmetric group case, the cochain-level map inducing the coproduct is relatively
complicated. Its underlying combinatorics is built upon elementary steps that we,
mindful of the botanic analogy, suggestively call “prunings”.

Definition 4.7 Let T be a planar level tree. An elementary k–pruning of T is a planar
level tree T 0 obtained by the following procedure. Choose an internal vertex v of T
of height k, and consider on E.v/ the order induced by the planar embedding. Let
1 � l < jE.v/j, consider the l biggest elements e1; : : : ; el of E.v/ with respect to
this order, and let v0i be the target of ei . T 00 is the subtree of T spanned by v and all
vertices that can be reached from one of the v0i through an oriented path. T 0 is the
complementary subtree of T 00 in T . We call the planarly embedded subtree T 00 the
scrap of the elementary k–pruning. An elementary k–pruning is said to be minimal if
l D 1. A k–pruning is a couple .T 0; T 00/ constructed as follows:
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� T 0 is obtained from a sequence of elementary k–prunings

T ÝT 01ÝT 02Ý � � �ÝT 0j D T
0

performed on pairwise different vertices v1; : : : ; vj of T , with scraps T 001 ; : : : ; T
00
j ;

� T 00 is a planar level tree obtained by joining these scrap subtrees along a vertex
w of height k and performing a vertex permutation at w that shuffles the edges
of the scraps.

Let T be a symmetric planar level tree. An elementary symmetric k–pruning of T is
a tree T 0 obtained as follows. Apply to T an elementary (nonsymmetric) k–pruning
whose scrap T 00 does not contain the central leaf belonging to the y–axis. Then, remove
the image of the subtree of T 00 under the reflection r along the vertical axis. T 00 is called
the scrap of the elementary symmetric pruning. An elementary symmetric k–pruning is
said to be minimal if it is obtained from a minimal elementary k–pruning. A symmetric
k–pruning is a couple .T 0; T 00/, where

� T 0 is obtained from a sequence of elementary k–prunings

T ÝT 01ÝT 02Ý � � �ÝT 0j D T
0

performed on pairwise different vertices of T , with scraps T 001 ; : : : ; T
00
j ;

� T 00 is a nonsymmetric planar level tree obtained by joining the scrap subtrees to
a vertex w of height k and performing a vertex permutation at w that shuffles
the edges of the scraps.

We note that elementary k–prunings at different vertices commute, both in the symmetric
and nonsymmetric cases. Hence, a k–pruning or symmetric k–pruning is uniquely
determined by the set of elementary k–prunings that compose it, independently of the
order in which they are performed.

There is also an alternative way to define (symmetric) k–prunings in terms of minimal
k–prunings instead of elementary ones. A (symmetric) k–pruning is obtained by
performing a sequence of minimal elementary (symmetric) k–prunings, not necessarily
at pairwise different vertices, and then joining the scraps at a vertex of height k without
shuffling the edges.

We now consider three linear morphisms that we will need to define the cochain-level
coproduct map:
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� the k–pruning map

Pk W FN�WBn ˝F2!
M

aCbDn

FN�WBa ˝FN�WBb ˝F2

that maps a symmetric planar level tree T to the sum
P
T 0˝Sk.T

00/ over all
the possible symmetric k–prunings .T 0; T 00/ of T ;

� the minimal k–pruning map

Pmin
k W FN�WBn ˝F2!

M
aCbDn

FN�WBa ˝FN�WBb ˝F2

that maps a symmetric planar level tree T to the sum
P
T 0˝Sk.T

00/ over all
the possible minimal elementary symmetric k–prunings .T 0; T 00/ of T ;

� the concatenation map C W FN�WBn ˝ FN�WBm ˝ F2 ! FN�WBnCm
such that

C.Œa0 W � � � W an�1�˝ Œb0 W � � � W bm�1�/D Œa0 W � � � W an�1 W b0 W � � � W bm�1�.

The map Pk is exemplified in Figure 3. We understand C at the level of symmetric
planar level trees as the function given by the following procedure. Take a couple of
such objects .T; S/. Cut S along its central vertical axis. Finally, glue the right piece of
S onto the right side of T and the left part onto its left side to obtain a new symmetric
planar level tree. We remark that these linear morphisms are degree-preserving, but
they are not chain maps.

In theAn case, we can define a similar k–pruning mapP 0
k

by summing all nonsymmetric
k–prunings. For k D 0, P 00 is a chain map, and it is shown in [8] to induce the
coproduct in cohomology. This statement is not true in the Bn case because the
differential of an antisymmetric planar level tree with labels behaves badly near the
central “trunk” labeled 0. Nevertheless, at each level k, away from this central stem,
this is essentially true. For this intuitive reason, we must define our cochain-level
coproduct map differently: prune a symmetric planar level tree at every level and tensor
it with a symmetric planar level tree whose principal k–blocks, as defined below in
Definition 4.10, are the scraps of the performed prunings. To prove this statement, we
need some preliminary calculations.

Suppose that a symmetric planar level tree T corresponds to Œa0 W � � � W an�1� 2 FNWBn .
In that case, consider the set of couples of adjacent edges .e; f /, with e < f , in T
having the same source vertex and belonging to the positive half-plane f.x; y/ j x � 0g.
This set in bijective correspondence with f0; : : : ; n� 1g, and the height of the common
vertex of the couple .e; f / corresponding to i is ai . This bijection is explicitly given by
counting the leaves in the positive half-plane that lie on the left of e. For 0� i � n�1,
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7! ˝ C

˝ C ˝ C

˝ C ˝ C

˝ C ˝ C

˝

Figure 3: The map P1, defined as the sum of all possible symmetric 1–
pruning, on a given symmetric planar level tree.

we denote by di .T / or equivalently by de;f the sum of the addends dS
e;f;�

of the
differential d , as expressed in Proposition 3.5, in which a vertex shuffle constructed
from the couple .e; f / corresponding to i appear. Thus, d.T /D

Pn�1
iD0 di .T /.

Lemma 4.8 Let T be a symmetric planar level tree corresponding to Œa0 W � � � W an�1�.
Let mk be the smallest index such that amk D k. Let I be the trivial symmetric planar
level tree. Then the following statements are true:

(1) the pruning maps and the differential satisfy the equality

Pkd C dPkC .id˝ d0/.Pk � id˝ I /D .id˝ dmk�1/.id˝C/.Pk˝ id/Pmin
k�1I

(2) Pk.T /D T ˝ I if ai < k for all 0� i < n;

(3) for all aD Œa0 W � � � Wan�1� and bD Œb0 W � � � Wbm�1� with b0 <minfa0; : : : ; an�1g,

diC.a˝b/D

�
C.di ˝ id/.a˝b/ if 0� i < n;
C.id˝ di�n/.a˝b/ if n < i < nCm;

and the latter also holds for i D n if b0 <minfa0; : : : ; an�1g� 1;

(4) .id˝C/.Pmin
k
˝ id/Pk.T /D Pk.T /�T ˝ I ;

(5) C.C ˝ id/D C.id˝C/.

Algebraic & Geometric Topology, Volume 23 (2023)



The mod 2 cohomology of the infinite families of Coxeter groups of type B and D 3245

Proof The statements from (2) to (5) are easy. Regarding (2), if ai < k for all i , T
has no vertex of height k with more than one outgoing edge. Thus the only possible
symmetric k–pruning is the trivial one. Regarding (3), the bijection

' W f0; : : : ; n� 1g t f0; : : : ; m� 1g ! f0; : : : ; nCm� 1g

that shifts elements of f0; : : : ; m � 1g by n yields a bijection between pairs .e; f /
of adjacent edges of the symmetric planar level tree T corresponding to C.a˝ b/

and those of the symmetric planar level trees T 0 and T 00 corresponding to a and b

respectively. If b0 <minfa0; : : : ; an�1g, then for all i 2 f0; : : : ; nCm� 1g, with the
only possible exception of i D n, this bijection preserves E.vei / and E.vfi /, where
vei and vfi are the target vertices of the corresponding pair of edges .ei ; fi /. The
edges in E.vei / and E.vfi / of the corresponding pair come either both from T 0 or
both from T 00. Hence diC.a˝b/D d'�1.i/a˝b. If b0 <minfa0; : : : ; an�1g� 1 the
same is also true for the edges en and fn, so the equality is satisfied also in this case.
Statement (4) is immediate from the definition of k–prunings and the combinatorics of
shuffles, and (5) is obvious.

On the contrary, (1) is more complicated and requires a more detailed proof. As
a notational convention, let dh

l
D
P
i WaiDl

di , the sum of the contributions to the
differential coming from vertices at height k. We compare dh

l
Pk.T / with Pkdhl .T /.

We consider different cases depending on the difference between k and l .

� If l > k, dh
l

is computed by gluing together a pair .e; f / of adjacent edges of
height bigger than k (and its mirror pair) and performing a shuffle at the new target
vertex. These operations only change a connected subtree whose vertices all have
height bigger than k, and, by construction, k–prunings commute with such operations.
Hence dh

l
Pk D Pkd

h
l

.

� If lDk, then we can write dh
k
Pk.T /D

P
.T 0;T 00/

P
.e;f / de;f .T

0˝Sk.T
00//, where

the sum is over symmetric k–prunings .T 0; T 00/ of T and pairs of adjacent edges .e; f /
in the positive half-plane with a common source vertex of height k in T 0 or Sk.T 00/.
We also note that Sk.T 00/ has a unique vertex w of height k. There is an obvious
bijection G

v2V.T /
h.v/Dk

E.v/$
G

u2V.T 0/
h.v/Dk

E.u/t .E.w/ n fe0g/

that maps an edge to its image in T 0 (if it is not pruned away) or in Sk.T 00/ (if it is),
and that arises from the fact that, for elementary prunings, T D T 0[T 00[ r.T 00/. The
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edge e0 is the unique edge belonging to the central vertical stem whose source vertex
is w. Moreover, this bijection preserves the properties of belonging to the positive
and negative half-plane. Therefore, we can write the summation above expressing
dh
k
Pk.T / as the sum of three pieces:

� The first piece is the sum of the terms corresponding to .e; f / such that .e; f /
come from adjacent edges in T . These terms correspond to symmetric k–prunings
of dS

e;f;�
.T /, for shuffles � at the common vertex of e and f . Hence, their sum

yields Pkdhk .T /.

� The second piece is the sum of the terms corresponding to .e; f / in Sk.T 00/
such that e¤ e0 and .e; f / do not come from adjacent vertices of T . Under this
condition, the symmetric vertex permutation �.Sk.T 00// of Sk.T 00/ at w that
switched the positions of e and f still produces a shuffle of the scraps of the
elementary prunings involved in .T 0; T 00/. Every tree in d.e;f /.Sk.T 00// cancel
out with a tree in d.f;e/.�.Sk.T 00///. Hence, this second piece is 0.

� The third piece is given by the terms corresponding to .e; f / with eD e0. These
terms yield .id˝ d0/Pk.T /.

Finally, we deduce that dh
k
Pk.T /D .id˝ d0/Pk.T /CPkdhk .T /.

� If l D k�1, Pkdhk�1.T /D
P
.e;f /

P
.T 0;T 00/ T

0˝Sk.T
00/, where the sum is taken

over couples .e; f / of adjacent edges in T whose common source v has height k� 1,
and symmetric k–prunings .T 0; T 00/ of trees in d.e;f /.T /. Let ve and vf be the targets
of e and f , respectively. By construction, d.e;f /.T / glues ve and vf to a single
vertex Nv, such that E. Nv/ D E.ve/ t E.vf /, suitably shuffled. Let A be the set of
edges removed by the corresponding elementary symmetric prunings at Nv and at r. Nv/,
the mirror vertex of Nv (which might coincide). We retrieve symmetric k–prunings
for which E.ve/ 6� A and E.vf / 6� A from symmetric k–prunings .T 0; T 00/ of T by
applying d.e;f / to T 0. Now assume that v is not on the central stem of the tree. If
e ¤min.E.v//, it is the successor of an edge g 2E.v/, and the terms of Pkde;f .T /
for which E.ve/� A cancel out with the terms of Pkdg;e.T / for which E.ve/� A.
Similarly, all the terms for which E.vf / � A and f ¤ max.E.v// cancel out. The
only remaining terms are those in which we remove an entire subtree corresponding to
min.E.v//— which is the mirror image of max.E.r.v//. If v belongs to the central
axis, we must slightly modify the argument to take into account only edges in the
positive half-plane and shows that the surviving terms are those in which an entire
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subtree stemming from max.E.v// is removed. The sum of all these elements is exactly
equal to the correcting term .id˝ dmk�1/.id˝C/.Pk˝ id/Pmin

k�1
.T /. We deduce that

dhk�1Pk.T /D Pkd
h
k�1.T /C .id˝ dmk�1/.id˝C/.Pk˝ id/Pmin

k�1.T /:

� If l < k�1, since k–prunings only depend on the part of the tree above height k and
dh
l

does not change it, the same argument used for l > k shows that dh
l
Pk D Pkd

h
l

.

Combining the equalities obtained in these cases yields (1).

We are now ready to construct a cochain representative of the cohomological coproduct
map H�.WBn/!

Ln
iD0H

�.WBi /˝H
�.WBn�i /.

Proposition 4.9 Let �k W FN�WBn ˝F2!
Ln
iD0 FN�WBi

˝FN�WBn�i
˝F2 be the lin-

ear maps defined recursively by the formulas

� �0 D P0,

� for k > 0, �k D .id˝C/.Pk˝ id/�k�1.

Then

(1) the limit �D lim
��!

�k exists ,

(2) � is a cochain map ,

(3) � represents the cohomology coproduct map at the cochain level.

Proof (1) Let a 2 FN�WBn and let m D maxfa0; : : : ; an�1g. Statement (2) of
Lemma 4.8 guarantees that �k.a/ D �m.a/ for all k > m. Thus, the sequence
f�kg

1
kD0

stabilizes and consequently has a limit.

(2) We first observe that Lemma 4.8(4) and (5) imply that

.id˝C/.Pmin
k ˝ id/�k D�k ��k�1

for all k � 0, with the convention that ��1.T /D T ˝ I . Combining this remark with
Lemma 4.8(3) and (5), we obtain that, for all k � 1,

.id˝C/.id˝ dmk�1 ˝ id/.id˝C ˝ id/.Pk˝ id˝ id/.Pmin
k�1˝ id/�k�1

D .id˝ dmk�1/.id˝C/.id˝C ˝ id/.Pk˝ id˝ id/.Pmin
k�1˝ id/�k�1

D .id˝ dmk�1/.id˝C/.Pk˝C/.P
min
k�1˝ id/�k�1

D .id˝ dmk�1/.id˝C/.Pk˝ id/.�k�1��k�2/:
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We use this to prove by induction on k that �kd D d�kC .id˝d0/.�k��k�1/. For
k D 0 this identity is the content of the first statement of Lemma 4.8. For k > 0, we
deduce from the identity above and the previous lemma that

�kd D .id˝C/.Pk˝ id/�k�1d

D .id˝C/.Pk˝ id/d�k�1C.id˝C/.Pk˝d0/.�k�1��k�2/

D .id˝C/.Pk˝ id/d�k�1C.id˝C/d.Pk˝ id/.�k�1��k�2/

C.d �dmk�1/.id˝C/.Pk˝ id/.�k�1��k�2/

D .id˝C/d.Pk˝ id/�k�1C.id˝C/.id˝d0˝ id/Œ.Pk� id˝I /˝ id��k�1

C.id˝C/d.Pk˝ id/.�k�1��k�2/Cd.id˝C/.Pk˝ id/.�k�1��k�2/

D .id˝C/d.Pk˝ id/�k�2C.id˝d0/.id˝C/Œ.Pk� id˝I /˝ id��k�1

Cd�k�d.1˝C/.Pk˝ id/�k�2

D d�k�.id˝d0/.�k��k�1/C.id˝C/d.Pk˝ id/�k�2

�d.id˝C/.Pk˝ id/�k�2

D d�k�.id˝d0/.�k��k�1/:

To justify the last equality, we observe that .Pk˝id/�k�2 is a sum of terms of the form
c˝ a˝b with b0 <minfaig� 1, and we apply the stronger clause of Lemma 4.8(3).

Now the identity d�D�d follows by passing to the limit, and using that the sequence
f�kg

1
kD0

stabilizes.

(3) Consider the dg-module U over F2 with basis given by symmetric planar level
trees with antisymmetric labels in any finite subset I �N, not necessarily f�n; : : : ; ng,
with the symmetric tree differential. Note that

L
n�0

fFN�WBn ˝F2 embeds in U in
the obvious way. We observe that the linear maps Pk , Pmin

k
and C lift to linear maps

zPk; zP
min
k
WU !U˝U and zC WU˝U !U . zPk and zPmin

k
are still defined via prunings,

but we additionally keep track of the labels of the subtrees involved. We compute zC
on T 0˝T 00 by splitting T 00 symmetrically along the vertical axis, keeping labels, and
symmetrically attach the two parts to T 0 to obtain a new basis element of U . Lemma 4.8
still holds for this labeled version of the morphisms by the same proof. Consequently,
there is a labeled version z� W U ! U ˝ U of �, constructed recursively via finite
approximations z�k , that still commutes with the differential. Note that we can also
embed fFN�WBn ˝

fFN�WBm ˝F2
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into U ˝U by keeping the labels of trees in fFN�WBn and relabeling trees in fFN�WBm
via the bijection f0; : : : ; m � 1g ! fn; : : : ; n C m � 1g that raises numbers by n.
There is also a projection U � U ! fFN�WBn ˝

fFN�WBm ˝ F2 that maps every ba-
sis element of U ˝ U that does not belong to fFN�WBn ˝

fFN�WBm ˝F2 to 0. By
induction, we easily see that restricting each z�k for all k (and, consequently, z�)
to fFN�WBn ˝

fFN�WBm ˝ F2 and composing with this projection we obtain linear
maps

L
n�0

fFN�WBn˝F2!
L
n�0

fFN�WBn˝
L
n�0

fFN�WBn˝F2 that are equivariant
with respect to the monomorphisms WBn �WBm ! WBnCm and satisfy the same
formal relation with respect to the differential. By identifying FN�WBn with the invariant
subspace .fFN�WBn /

WBn , the limit map z� restricts to �, which is thus a cochain-level
realization of the coproduct map.

We now turn our attention to the transfer map. We need a preliminary definition.

Definition 4.10 (partially from [8]) Let aD Œa0 W � � � W an�1� 2 FN�WBn be as defined
above. In what follows, we assume, by convention, that a�1D anD 0. We say that the
chain Œai W � � � Waj � is a k–block of a if al >k for all i � l � j and maxfai�1; ajC1g � k.
We say that a k–block Œai W � � � W aj � of a is principal if, in addition, min0�r<i ar D k.
We denote by PBlk.a/ the tuple of the principal k–blocks of a, ordered from left to
right.

For example, the basis element a D Œ3 W 2 W 3 W 1 W 2 W 1 W 3 W 2 W 0 W 3� has four 1–blocks:
B1;1 D Œ3 W 2 W 3�, B1;2 D Œ2�, B1;3 D Œ3 W 2�, and B1;4 D Œ3�. PBl1.a/D .B1;2; B1;3/.

Note that a basis element a is uniquely determined by fPBlk.a/g1kD0, the collection
of its principal blocks. To retrieve a from these data, we can use the following
procedure. First, for all k � 0, add an entry equal to k before each principal k–block
and concatenate all such tuples to obtain ak . Then, we obtain a as the concatenation of
: : : ; ak; ak�1; : : : ; a0. This sequence is necessarily finite because for k >maxn�1iD0 ai ,
PBl.a/ is the empty 0–tuple. With this method, we can construct a basis element a

from an eventually empty collection of tuples fBkg, where the entries of Bk are tuples
of natural numbers strictly bigger than k.

We also observe that k–blocks can be retrieved from the corresponding symmetric level
tree T . They are given by the connected components of T \f.x; y/2R2 jx� 0; y >kg.
Interpreted this way, a k–block is principal if and only if it does not intersect the central
vertical axis but is contained in the .k�1/–block intersecting it.
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Proposition 4.11 Given a 2 FN�WBn , b 2 FN�WBm and k � 0, let na;k and nb;k be
the lengths of PBlk.a/ and PBlk.b/, respectively. Given a sequence � D f�kg1kD0
of permutations �k 2 †na;kCnb;k , define �.a;b/ as the unique basis elements of
FN�WBnCm such that , for all k � 0, PBlk.�.a;b// D �k.PBlk.a/;PBlk.b//, where
.PBlk.a/;PBlk.b// is the concatenated .na;kCnb;k/–tuple and �k acts on .na;kCnb;k/–
tuples by permuting the entries. LetˇW FN�WBn ˝FN�WBm ˝F2! FN�WBnCm

˝F2 be
the homomorphism that maps a˝b to the sum

P
� �.a;b/ over sequences of permu-

tations � D f�kg1kD0 such that �k is a .na;k; nb;k/–shuffle for all k � 0. Informally ,
aˇb is the sum of basis elements whose principal k–blocks are obtained by shuffling
the principal k–blocks of a and b. This defines a morphism of complexes that induces
the transfer product in cohomology.

Proof The reflection arrangement of WBn �WBm , with its product reflection action
on Rn �Rm, is ABn �ABm D fH �RmgH2ABn [ fR

n �H 0gH 02ABm . Being it a
subarrangement of ABnCm , we have a natural inclusion

Y
.1/
WBnCm

! Y
.1/
ABn�ABm

Š Y
.1/
WBn
�Y

.1/
WBm

:

We can explicitly obtain such inclusion by splitting a configuration of nCm points
into the two subconfigurations consisting of its first n points and its last m points,
respectively, and relabeling the indices of the second one. This map is a .WBn�WBm/–
equivariant homotopy equivalence.

Therefore, passing to quotients, this yields a map

� W
Y
.1/
WBnCm

WBn �WBm
!

Y
.1/
WBn

WBn
�

Y
.1/
WBm

WBm

that models the standard homotopy equivalence B.WBn�WBm/'B.WBn/�B.WBm/.
Moreover, the obvious quotient map

� 0 W
Y
.1/
WBnCm

WBn �WBm
!

Y
.1/
WBnCm

WBnCm

is a covering model for B.WBn �WBm/! B.WBnCm/.

Let x D Œa0 W � � � W an�1�˝ Œb0 W � � � W bm�1� be a basis element for the Fox–Neuwirth
complex FN�Bn ˝ FN�Bm ˝F2. Let � be a smooth singular simplex transverse to our
strata. By construction, the evaluation of Œa0 W � � � W an�1�ˇ Œb0 W � � � W bm�1� on � is the
sum of the evaluations of x on �. Q�/, as Q� varies among all liftings of � . A direct
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calculation shows that some �. Q�/ intersects the stratum corresponding to x if and only
if � intersects some stratum e.c/, where the k–principal blocks of c are obtained by
shuffling the k–principal blocks of a and b.

We conclude the treatment of the structural maps on the cohomology of WBn with
some potentially helpful remarks. Since we will not use these facts in this paper, we
will not provide complete statements nor proofs of these last claims. Nevertheless, it
should be straightforward, although notationally heavy, to fill in the details.

Remark 4.12 (1) The transfer and coproduct maps commute already at the cochain
level. To see this, you can observe that, by construction, �.a/ is a sum of tensors
a0 ˝ a00, where PBlk.a00/ is given by the leftovers of symmetric k–prunings of a,
suitably shuffled, and that the pruning map Pk itself commute with ˇ.

(2) The same constructions of the coproduct map in terms of prunings and the transfer
map in terms of principal block shuffles can be generalized to the cohomology with
integral coefficients. In these cases, additional signs that we can compute from those
appearing in Theorem 3.1 are required.

4.3 Structural morphisms: AD

The coproduct and the transfer product for WDn are described geometrically, similarly
to what we did for WBn . However, some complications arise. For example, we cannot
repeat the proof of Proposition 4.11 as it is for FN�WDn , because, in this case, a product
of strata S �S 0 � Y .1/WDn

�Y
.1/
WDm

is not necessarily the closure of a union of strata in
Y
.1/
WDnCm

. However, these ideas adapt well to the cochain complex FN0�WDn , which we
will use in the following as a cochain model. We can retrieve the identities we need in
FN�WDn by using the equivalence ' of Lemma 4.1.

We can now state the formulas parallel to Propositions 4.9 and 4.11 for WDn . First,
we consider the following oriented versions of the pruning and concatenation maps.
Given a symmetric k–pruning .T 0; T 00/ of a symmetric planar level tree T , let O and
O0 be orientations of T and T 0 respectively. Fix an antisymmetric labeling �0 of T 0

inducing O0, and an antisymmetric labeling � of T inducing O such that its restriction
to T 0, seen as a subtree of T , is �0. By keeping track of the labels of scraps, � induces
an antisymmetric labeling �00 on Sk.T 00/ and, consequently, an orientation O00. Unless
the k–pruning is trivial, it is always possible to find such labelings � and �0, and the
resulting orientation O00 only depends on O and O0.
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Definition 4.13 Let k 2N and let .T;O/ be an oriented symmetric planar level tree.
An oriented k–pruning of .T;O/ is a quadruple .T 0;O0; T 00;O00/ where

� .T 0; T 00/ is a k–pruning of T ,

� O0 is an orientation of T 0,

� O00 is the orientation of Sk.T 00/ determined from O and O0 via the procedure
above.

An oriented k–pruning of .T 0;O0; T 00;O00/ of T is called positive (resp. negative) if
O0 is the positive (resp. negative) orientation of T 0.

Given a nontrivial k–pruning .T 0; T 00/ of T , there are precisely two ways to extend it
to an oriented k–pruning .T 0;O; T 00;O00/, one positive and one negative.

We now mimic the construction we produced for WBn to describe the coproduct. We
thus consider the following maps:

� the positive and negative k–pruning maps

PC
k
; P�k W

M
n�0

FN0�WDn ˝F2!
M
n�0

FN0�WDn ˝
M
m�0

FN0�WDm ˝F2

given by the formula

P˙k .T /D
X

.T 0;O0;T 00;O00/

.T 0;O0/˝ .Sk.T 00/;O00/;

where the sum runs over all positive and negative oriented k–prunings of T , respectively;

� yC W FN0�WDn ˝ FN0�WDm ˝F2! FN0�WDnCm ˝F2, the oriented concatenation map,
given by the formulas

yC..a;C/˝ .b;C//D .C.a˝b/;C/; yC..a;C/˝ .b;�//D .C.a˝b/;�/;

yC..a;�/˝ .b;C//D .C.a˝b/;�/; yC..a;�/˝ .b;�//D .C.a˝b/;C/:

We can also define �C
k
; ��

k
W FN0�WDn ˝F2!

Ln
iD0 FN0�WDi ˝FN0�WDn�i ˝F2 by the

recursive formulas

� �˙0 D P
˙
0 ,

� �˙
k
D .id˝ yC/.P˙

k
˝ id/�˙

k�1
if k � 1.

Let � be the direct limit lim
��!k

.�C
k
C��

k
/.

Proposition 4.14 The oriented pruning coproduct � is a cochain map and induces the
coproduct � W AD! AD˝AD in cohomology.
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Proof It is enough to observe that, looking at the proof of Proposition 4.9, we can
obtain the map � W FN0�WDn ˝F2!

Ln
iD0 FN0�WDi ˝FN0�WDn�i ˝F2 from

z� W fFN�WBn ˝F2!
nM
iD0

fFN�WBi ˝
fFN�WBn�i ˝F2

by restricting to WDn–invariants.

Proposition 4.15 Let a˙ and b˙ be generic basis elements of FN0�WDn and FN0�WDm
respectively, where a (resp. b) is defined by an n–tuple a (resp. an m–tuple b) of
nonnegative integers. Let ˇW FN0�WDn ˝ FN0�Dm ˝ F2 ! FN0�WDnCm ˝ F2 be the
homomorphism that maps a˙˝b˙ to the sum of all elements c˙, such that the principal
k–blocks of c are obtained by shuffling the principal k–blocks of a and b for all k � 0,
and the sign of c is deduced from the signs of a and b by applying the multiplication
sign rule .C;C/ 7! C, .C;�/ 7! �, .�;C/ 7! �, and .�;�/ 7! C. This map is a
morphism of complexes and induces the transfer product in cohomology.

Proof The proof is essentially the same as that of Proposition 4.11.

5 The almost-Hopf ring presentations

This section contains the statements of the Hopf ring presentation for AB and the
almost-Hopf ring presentation for AD . We thus state our main theorems, whose proof
will be postponed until Section 7 because we still need to develop some necessary
algebraic machinery. In the first subsection, we construct our generators, providing
cochain representatives and a geometric interpretation. In the second one, we explain
our relations and state Theorems 5.9 and 5.15. We then apply these results to extract
combinatorially accessible additive bases for AB and AD in Section 5.2. Finally, the
last subsection is devoted to the link between all these almost-Hopf ring structures.

5.1 Generators

We define certain cohomology classes that we will later prove to generate our (almost)
Hopf rings. We begin with AB .

Definition 5.1 In FN�WBn , the following cochains are defined for k � 0, m> 0, and
n > 0:
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� k;m D Œ0 W 1 W 1 W � � � W 1„ ƒ‚ …
2k�1 times

W0 W 1 W 1 W � � � W 1„ ƒ‚ …
2k�1 times

W0 W � � � W 0 W 1 W 1 W � � � W 1„ ƒ‚ …
2k�1 times„ ƒ‚ …

m times

�,

� ın D Œ1 W 1 W � � � W 1„ ƒ‚ …
n times

�.

A direct calculation shows that both k;m and ın have trivial differential, and thus
define cohomology classes k;n 2Hm.2k�1/.WB

m2k
;F2/ and ın 2Hn.WBn IF2/, that

we still denote, with a slight abuse of notation, by the same symbols. While the proof
of this fact is entirely straightforward, we provide a proof for the sake of completeness.

Lemma 5.2 k;m and ın are cocycles in FN�WB
m2k

˝F2 and FN�WBn ˝ F2, respec-
tively.

Proof k;m is represented by the symmetric planar level tree in Figure 4. We prove
that di .k;m/D 0 for all 0� i < m2k by considering different cases:

� If i ¤ l2k for 0 � l < m, the addend di of the differential identifies two edges
adjacent in a vertex vj for 1� j �m, and performs a vertex shuffle at the new vertex.
Exactly two possible vertex shuffles yield the same tree. Hence di .k;m/D 0.

� If i D l2k for some 1� l < m, then di .k;m/ is obtained by gluing together vl and
vlC1 and shuffling the outgoing edges of these two vertices. Since all these shuffles
yield the same tree, and there is an even number of them — precisely

�
2kC1

2k

�
— we have

again that di .k;m/D 0.

� If i D 0, v1 and its mirror vertex are glued to the central axis of the tree, and the
corresponding outgoing edges are permuted with a symmetric shuffle. Again, there is
an even number of them (precisely 22

k

), and thus d0.k;m/D 0.

ın is represented by a symmetric planar level tree with 2nC 1 leaves and a single
internal vertex of height 1. The same proof used in the second case of k;m shows that
di .ın/D 0 for all 0� i < n.

Another possible point of confusion is that the symbol k;m is used in [8] to indicate a
class in Hm.2k�1/.†m2k IF2/. The class we define is the image of this cohomology
class of the symmetric group in Hm.2k�1/.WB

m2k
IF2/ via the map induced by the

projection � WWB
m2k
!†m2k , as we will prove later (Proposition 5.26).

We can interpret all the cohomology classes that we defined above geometrically.
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: : :
2k‚ …„ ƒ 2k‚ …„ ƒ2k‚ …„ ƒ2k‚ …„ ƒ : : :

m‚ …„ ƒm‚ …„ ƒ

v1 vm

v0

Figure 4: The planar symmetric level tree representing k;m.

Proposition 5.3 The following statements are true:

(1) Consider the proper submanifold �k;m of Y .1/WBm2k
=WB

m2k
consisting of 2m

points that can be partitioned into m sets of 2k points , where all the points in the
same subset share the first coordinate. Then k;m is the Thom class of �k;m in
Y
.1/
WBm2k

, in the sense of [7, Definition 4.6].

(2) Consider the vector bundle � W E.WBn/�WBn Rn! B.WBn/, where WBn acts
on Rn via its irreducible reflection representation. Then ın is the n–dimensional
Stiefel–Whitney class of � (the nonoriented version of the Euler class).

Proof The description of k;n is a direct consequence of the conclusions of the
geometric arguments of the previous section.

Regarding the second point, consider the vector bundle � WE.�/! B.�/ above, with
zero section �0 WB.�/!E.�/, and let T .�/2Hn.E.�/; E.�/n�0.B.�/// be its Thom
class. Define

zXn D f.x1; : : : ; xn/ 2 Y
.1/
Bn
j .x1/1 D � � � D .xn/1 D 0g:

We observe that zXn is a proper submanifold of Y .1/WBn
and that the Thom class of the

image Xn of zXn in Y .1/=WBn is ın. We observe that the normal bundle of Xn in
Y .1/=WBn is isomorphic to �jXn . Since restriction of vector bundles to subspaces
preserve Thom classes, we deduce that, if we take Y .1/=WBn as a model for B.WBn/,
then j �.l�/�1k�.T .�//D ın, where

� k W .E.�jXn/; E.�jXn/ n �0.Xn//! .E.�/; E.�/ n �0.B.�///,

� l W .E.�jXn/; E.�jXn/ n �0.Xn//! .B.WBn/; B.WBn/ nXn/ is a tubular neigh-
borhood of Xn in B.�/, and

� j W .B.WBn/;¿/! .B.WBn/; B.WBn/ nXn/.
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Note that the induced map l� in cohomology is invertible by excision.

Let ˆ WH�.B.�/IF2/!H�.E.�/; E.�/ n �0.B.�//IF2/ be the Thom isomorphism.
We recall that ˆ.˛/ D p�.˛/[ T .�/, where p W E.�/! B.�/ is the projection. We
know, for instance from Milnor and Stasheff’s book [13, page 91], that the Thom class
T .�/ and wn.�/ are linked by the formula

wn.�/Dˆ
�1.Sqn.T .�///Dˆ�1.T .�/2/:

Therefore, in order to prove that wn.�/D ın, it is sufficient to show that

i�.T .�//D p�j �.l�/�1k�.T .�//;

where i is the obvious inclusion map between pairs of spaces,

i W .E.�/;¿/!
�
E.�/; E.�/ n �0.B.�//

�
:

To prove this claim, we first observe that we can use a slightly different model for B.�/.
We recall that there is a tubular neighborhood zN of zXn in Y .1/WBn

determined by an
embedding of the total space of the normal bundle. Explicitly, we can define the
embedding by the formula

.x1; : : : ; xn/� .�1; : : : ; �n/ 2 zXn �Rn 7! .x1C�1e1; : : : ; xnC�ne1/;

where e1 is the first element of the canonical basis of R1. Hence

zN D
˚
.x1; : : : ; xn/ j .xi � .xi /1e1/¤˙.xj � .xj /1e1/ for all 1� i < j � n;

.xi � .xi /1e1/¤ 0 for all 1� i � n
	
:

Note that the action of WBn preserves zN , and zN is provided with a stratification
induced from that on Y .1/WBn

by restriction. Further, every stratum of N is obtained
from a stratum of Y .1/WBn

by removing an infinite-codimensional affine subspace. Thus,
zN ! Y

.1/
WBn

is a homotopy equivalence. zN is still contractible, and therefore we can
use its quotient N D zN=WBn as an alternative model for B.WBn/. In this model, the
inclusion l is an isomorphism. Thus we do not need to worry about excision maps, and
this simplifies the argument. The claim now follows by observing that i and kjp are
homotopic. An explicit homotopy is

..x1; : : : ;xn/;�; t/2 zN�WBnRn�Œ0;1�

7!
�
.x1�.1�t /.x1/1e1; : : : ;xn�.1�t /.xn/1e1/; ..1�t /�Ct ..x1/1; : : : ; .xn/1//

�
:

We now turn our attention to WDn . First, we give the following definition.
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Definition 5.4 Let n � 1 and m � 0. We define ı0nIm 2 H
n.WDnCm IF2/ as the

restriction of ınˇ 1m 2H�.WBnCm IF2/ to the cohomology of WDnCm . We also let
ı00Wm be the unique nonzero class in H 0.WDm IF2/ for all m� 0.

We will require some other generators that do not arise as restrictions of cohomology
classes of WBn .

Definition 5.5 Given k;m� 1, we define two cochains in FNm2
k

WDn
:

� C
k;m
D Œ0 W 1 W � � � W 1„ ƒ‚ …

2k�1 times

W0 W 1 W � � � W 1„ ƒ‚ …
2k�1 times

W0 W � � � W 1 W � � � W 1„ ƒ‚ …
2k�1 times„ ƒ‚ …

m times

�;

� �k;m D Œ1 W 0 W 1 W � � � W 1„ ƒ‚ …
2k�2 times

W0 W 1 W � � � W 1„ ƒ‚ …
2k�1 times

W0 W � � � W 1 W � � � W 1„ ƒ‚ …
2k�1 times„ ƒ‚ …

m times

�.

Lemma 5.6 C
k;m

and �
k;m

are cocycles.

Proof The cochain equivalence '� of Lemma 4.1 maps ˙
k;m

to

Œ0 W 1 W 1 W � � � W 1„ ƒ‚ …
2k�1 times

W0 W 1 W 1 W � � � W 1„ ƒ‚ …
2k�1 times

W0 W � � � W 0 W 1 W 1 W � � � W 1„ ƒ‚ …
2k�1 times„ ƒ‚ …

m times

�˙:

The same proof used for Lemma 5.2, with the additional requirement of keeping track
with orientations, shows that these cochains in FN0m2

k

WDn
are cocycles. As '� is injective,

˙
k;m

must also be a cocycle.

An alternative proof can be obtained by directly using the De Concini and Salvetti
description of the boundary in CWDn� and dualizing.

A consequence of the previous lemma is that C
k;m

and �
k;m

represent cohomology
classes, that, once again, we denote by the same symbols with a slight abuse of notation.

To adapt our notation to Giusti and Sinha’s for the alternating groups, we will refer to
C
k;m

(resp. �
k;m

) for some k and m as positively (resp. negatively) charged generators,
and to ı0nWm for some n and m as neutral generators.

5.2 Relations

This subsection is devoted to deriving algebraic relations between the generators defined
above. We will mainly obtain the relations as a consequence of the results in Section 4.
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We first focus on AB . We can retrieve in AB the same relations among the classes k;m
that appear in Giusti, Salvatore and Sinha’s Theorem 2.3.

Proposition 5.7 The following formulas hold in AB :

�.k;m/D
X

iCjDm

k;i ˝ k;j ; k;nˇ k;m D
�nCm

n

�
k;nCm:

Proof We use the chain-level formulas computed in Propositions 4.9 and 4.11.

To compute the coproduct, we represent k;m by the symmetric planar level tree
depicted in Figure 4. Note that Pl.k;m/ is trivial for l � 2 and that the 0–pruning
map gives P0.k;m/ D

P
iCjDm k;i ˝ k;j . Therefore it is enough to prove that

P1.k;n/D k;n˝I , where I is the trivial symmetric level tree, for all k� 0 and n> 0.
Consider a 1–pruning .T 0; T 00/ of k;m. Every vertex vi , for 1� i �m, as depicted in
Figure 4 corresponds to a vertex ui of height 1 in T 0. Let 2k � ni be the number of
outgoing edges of ui for some integer 0� ni <2k . We can obtain the pruning .T 0; T 00/
from k;m by applying a sequence of elementary 1–prunings at each vertex vi and their
mirror vertices r.vi / that prunes away ai outgoing edges from vi and ni �ai outgoing
edges from r.vi /, for some 0 � ai � ni . Therefore, summing over all the possible
shuffles of leftovers, whose number is�Pm

iD1 ni
�
ŠQm

iD1 ai Š
Qm
iD1.ni � ai /Š

;

we deduce that .T 0; S1.T 00// appears in P1.k;m/ with coefficientX
0�a1�n1;:::;0�am�nm

�Pm
iD1 ni

�
ŠQm

iD1 ai Š
Qm
iD1.ni � ai /Š

D

�Pm
iD1 ni

�
ŠQm

iD1 ni Š

mY
iD1

2ni :

This number is even unless ni D 0 for all 1� i �m, yielding the trivial 1–pruning.

The transfer product formula follows directly from the application of the cochain-level
map of Proposition 4.11, by observing that k;m has m principal 0–blocks all equal
to Œ1; : : : ; 1�, where the entry 1 is repeated 2k � 1 times, and that it has no principal
l–block for l � 1. Thus k;nˇk;m is given by a single basis element in FN�WB2k.nCm/
(representing k;nCm) counted as many times as the number of .n;m/–shuffles, that is
the binomial coefficient appearing in the equation.

We can obtain coproduct formulas for ın via the same geometric description. The
following is again a consequence of the formulas in Lemmas 4.9 and 4.11.
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Proposition 5.8 �.ın/D
X

kClDn

ık˝ ıl ; ınˇ ım D
�nCm

n

�
ınCm.

Proof Since all the entries of ın are equal to 1, the cochain-level coproduct map on ın
reduces to the 1–pruning map P1 and provides the desired formula. We compute the
transfer product as in Proposition 5.7, by observing that ın has no principal l–blocks
for l ¤ 1, and has n principal 1–blocks all empty.

These relations will suffice to describe AB completely. We restate here our main result,
which we will prove in Section 7.

Theorem 5.9 (main theorem for type B) The Hopf ring AB is generated by classes
k;n (with k � 0 and n > 0) and ın (with n > 0) with the relations described in
Propositions 5.7 and 5.8, together with the following additional relations:

� the product � of generators from different components is 0;

� 0;n is the �–product unit of the nth component.

We now turn our attention to AD . A trick borrowed from [9, page 9] can be used to
simplify the presentation of this almost-Hopf ring. We recall that there is an involution
� W AD ! AD . We can define A0D to be the bigraded F2–vector space defined by
.A0D/n;d D Hd .WDn IF2/ if .n; d/ ¤ .0; 0/ and .A0D/0;0 D F2f1C; 1�g. We can
embed AD as a vector space in A0D by identifying the nonzero class in H 0.WD0 IF2/

with 1CC 1�.

Lemma 5.10 The following statements are true in AD:

(1) �.xˇy/D �.x/ˇy D xˇ �.y/,

(2) .�˝ id/�.x/D .id˝ �/�.x/D��.x/,

(3) �.x �y/D �.x/ � �.y/.

Proof (1) ˇ is commutative, and the following diagram induces a pullback of finite
coverings at the level of classifying spaces:

WDn �WDm
//

cs0�id
��

WDnCm

cs0
��

WDn �WDm
// WDnCm
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(2) This follows from the cocommutativity of � and the commutativity of the diagram
above.

(3) It is the cohomological consequence of the diagonal map being equivariant with
respect to the conjugation cs0 .

Proposition 5.11 Write the coproduct of every element x 2 AD in AD as

x˝ 10C�.x/C 10˝ x;

so � is the reduced coproduct. By letting 1� � 1C D 0, 1� � 1� D 1�, 1C � 1C D 1C,
1�ˇ 1� D 1C and �.1˙/D 1C˝ 1˙C 1�˝ 1�, the almost-Hopf ring structure on
AD extends to an almost-Hopf ring structure on A0D such that 1�ˇxD �.x/, 1� �xD 0
and �.x/D 1C˝ xC 1�˝ �.x/C�.x/C x˝ 1CC �.x/˝ 1� for every x 2 A0D of
positive degree.

Proof Using the formulas in the statement of this proposition, we can extend ˇ and �
uniquely to two commutative products on A0D and � to a unique cocommutative
coproduct on A0D . The coassociativity of � follows from Lemma 5.10(3). The
associativity of � on A0D is obvious. The bialgebra structure of A0D with � and �
follows from the bialgebra structure on AD and (2) of the previous lemma. Moreover,
the fact that the transfer product with 1� is associative follows from (1). Hopf ring
distributivity with classes involving a transfer product with 1� follows again from (3)
of the result referenced above.

Instead of determining a presentation for AD , we calculate a presentation for A0D
because we can write it more concisely. For example, �

k;m
D 1�ˇ C

k;m
in A0D; thus

the formulas for �
k;m

arise as a direct consequence of the formulas for C
k;m

and the
almost-Hopf ring structure of A0D . The two approaches are equivalent.

Proposition 5.12 Let k;m � 1 and n � 0. The following coproduct formulas hold
in A0D , where �

k;m�l
D 1�ˇ C

k;m�l
:

�.C
k;m
/D

mX
lD0

C
k;l
˝ C

k;m�l
C �k;l ˝ 

�
k;m�l ;

�.ı0nWm/D

nX
iD0

mX
jD0

ı0i Wj ˝ ı
0
n�i Wm�j :
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Moreover , the transfer product in A0D satisfies the following formulas for every choice
of indexes:

C
k;a
ˇ C

k;b
D

�aCb
a

�
C
k;aCb

;

bˇ b0 D 0 if b and b0 are cup products of neutral generators (ie ı0nWm);

ı0nWmˇ 1
�
D ı0nWm:

Proof Note that �
k;m
D1�ˇ

C

k;m
D �.C

k;m
/ as a direct consequence of Lemma 4.2 and

the definition of the cochain representatives of these classes. The coproduct formulas
for C

k;m
follow from Lemma 4.1 and Proposition 4.14. More precisely, we observe

that mapping C
k;m

into FN0�WDm2k ˝F2 via '� yields a cohomology class represented
by the same symmetric planar level tree of Figure 4, with positive orientation. The
same proof of Proposition 5.7 holds in this case by keeping track of orientations.

The coproduct formula for ı0nWm is a consequence of Proposition 5.8, the Hopf ring
properties ofAB , and the fact that the restriction map � WAB!AD preserves coproducts.

Regarding transfer product, we prove the first identity using Proposition 4.15 precisely
in the same way as the second part of Proposition 5.7.

Let � W AB ! AD be the restriction map. For every x 2 H�.WBn IF2/ and y 2
H�.WBm IF2/, we can prove that �.x/ˇ �.y/D 0 in H�.WDnCm IF2/ with the same
argument used in [9, Proposition 3.14]. Essentially, it is sufficient to observe that
both the restriction H�.WBn �WBm IF2/! H�.WDn �WDm IF2/ and the transfer
H�.WDn � WDm IF2/ ! H�.WDnCm IF2/ factor through the cohomology of the
subgroup G DWDnCm \ .WBn �WBm/, and that the composition

H�.GIF2/
res
�!H�.WDn �WDm IF2/

tr
�!H�.GIF2/

is 0 for mod 2 coefficients because WDn �WDm has even index in G. In particular,
nontrivial transfer products of blocks obtained by cup-multiplying neutral generators
must be 0. The last relation also follows from the invariance of ı0nWm with respect to
the involution �.

After these coproduct and transfer product formulas, we will also need some cup
product relations. Since the Fox–Neuwirth type cell complex does not behave well
with cup products, we found that it is simpler to obtain these formulas via restriction to
elementary abelian subgroups. This approach is fruitful because of a detection theorem
for these subgroups. We postpone the proof of the following proposition to Section 6,
where we will explain this in detail.
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Proposition 5.13 Let �
k;m
D 1�ˇ C

k;m
as an element of A0D . Then the following

formulas hold in AD:

(1) C
k;n
� �
h;m
D 0 for all n;m; k � 1 and h� 2;

(2) C1;m
�
1;m D .

C
1;m�1/

2ˇ ı02W0 for all m� 1;

(3) the � product of generators belonging to different components is 0 and ı00Wm is
the �–product unit of the mth component

(4) ı01Wm D 0 for all m� 0;

(5) ı0nWm � 
C

k;nCm
2k

D ı0nW0 � 
C

k; n
2k

ˇ C
k; m
2k

for all k > 0 and m; n � 0, where we

understand that C
k;r
D 0 if r is not an integer.

The last relation we require involves the behavior of the coproduct with the transfer
product. We need a preliminary remark. Let b 2 A0D be an element obtained as a
cup-product of positively and neutrally charged generators (ie C

k;m
or ı0nWm), with at

least one positively charged generator. Note that, by Propositions 5.12 and 5.13, �.b/
can be written as a sum

P
i b
0
i ˝ b

00
i where b0i and b00i are elements obtained as iterated

transfer products of elements of the same form, or the images of such elements via the
involution �D 1�ˇ _. We let �0.b/ be that sum restricted only to addends b0i ˝ b

00
i in

which the involution is not performed to obtain b0i or b0i is fixed by � and the involution
is not performed to obtained b00i . As � is .�˝ �/–invariant, this intuitively amounts to
keeping half of the addends of the coproduct in A0D .

Proposition 5.14 (cf [9, Theorem 3.21]) Let � W˛˝ˇ2A0D˝A
0
D 7!ˇ˝˛2A0D˝A

0
D

be the map that exchanges the two factors. For all b 2A0D the cup-product of positively
and neutrally charged generators , with at least a positively charged generator appearing ,
and for all x 2 A0D , we have that

�.bˇ x/D .ˇ˝ˇ/ ı .id˝ � ˝ id/.�0.b/˝�.x//;

where �0 is the expression described above.

The proof of the analog of this proposition is done in [9] by a careful examination
of certain spectral sequences. It can be done this way also for AD . Still, we decide
to argue here using detection by elementary abelian subgroups that for finite Coxeter
groups comes for free and leads to a shorter proof. Therefore, we postpone the proof
of this proposition until the next section.

We restate our presentation theorem for A0D , whose proof we postpone.
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Theorem 5.15 (main theorem for type D) A0D is generated , as an almost-Hopf ring ,
by the classes ı0nWm for n � 0 and m � 0, C

k;m
for k;m � 1, and 1� defined above ,

under the relations described in Propositions 5.12, 5.13 and 5.14 and the relations
1�ˇ 1� D 1C, 1� � 1� D 1�, 1C � 1� D 0 and �.1�/D 1C˝ 1�C 1�˝ 1C coming
from Proposition 5.11.

5.3 Additive bases

We describe here additive bases for AB and AD . In this subsection, we assume that
the statements of Theorems 5.9 and 5.15 are true. They do not rely logically on the
existence of such bases in AB and AD . Thus this choice does not invalidate their proof.

We begin with AB .

Definition 5.16 (cf [7]) A gathered block in AB is an element of the form

b D ıt0m

nY
kD1


tk
k; m
2k

;

where m is a positive integer, 2n divides m, and n is the maximal index such that n; m
2n

appears in b with a nonzero exponent. The profile of b is the .nC1/–tuple .t0; : : : ; tn/.
We also allow nD 0: in this case, b D ıt0m for some t0 � 0.

A Hopf monomial is a transfer product of gathered blocks xD b1ˇ� � �ˇbr . We denote
by MB the set of Hopf monomials whose constituent gathered blocks have pairwise
different profiles.

Note that, given a possible profile .t0; : : : ; tn/, for all l � 1, there is a unique gathered
block b in the .l2n/th component having that profile. As a notational convention, we
denote it bl;t .

We can describe elements of MB graphically. We represent k;n as a rectangle of
width n2k and height 1 � 2�k and ın as a rectangle of width n and height 1. The
width of a box is the number of the component to which the class belongs. Its area
is its cohomological dimension. We understand the cup product of two generators as
stacking the corresponding boxes on top of the other. In contrast, their transfer product
corresponds graphically to placing them next to each other horizontally. The profile
of a gathered block is described by the height of the rectangles of the corresponding
column. Thus, we can represent every gathered block as a column made of boxes with
the same width. Hence, an element of MB is a diagram consisting of columns placed
next to each other, such that there are not two columns that consist of rectangles of the
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� D ˝ 1 C ˝ C 1 ˝

ı41;2 ı41;2 ı21;1 ı21;1 ı41;2

ˇ D

ı21;1ˇ ı2 ı41;2 ı61;3

� D C

ı2ˇ 12 ı1ˇ 1;1ˇ 11 ı21 ˇ 1;1ˇ ı1 ı1ˇ ı21;1ˇ 11

Figure 5: Computations via skyline diagrams.

same height. Following the notation of Giusti, Salvatore and Sinha [7], we call these
objects B–skyline diagrams or, more concisely, skyline diagrams where it is clear that
we are considering the Hopf ring AB .

As in [7], the coproduct and the two products in MB have a graphical description,
derived from our relations:

� We divide rectangles corresponding to ın or k;n in n equal parts via vertical dashed
lines. The coproduct is then given by dividing along all vertical lines (dashed or not)
of full height and then partitioning the new columns into two to make two new skyline
diagrams.

� The transfer product of two skyline diagrams is given by placing them next to each
other and merging every two columns with constituent boxes of the same heights, with
a coefficient of 0 if the widths of these columns share a 1 in their binary expansion.

� To compute the cup product of two diagrams, we consider all possible ways to
split each into columns, along vertical lines (dashed or not) of full height. We then
match columns of each in all possible ways up to automorphism and stack the resulting
matched columns to build a new diagram.

We depict some examples of calculations with skyline diagrams in Figure 5.

Proposition 5.17 (cf [7, Proposition 6.4]) MB is an additive basis for AB and �,
and ˇ and � of basis elements are computed graphically via the algorithmic procedures
described above.
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Proof We first prove the correctness of the graphical interpretation of the structural
morphisms. The coproduct of a gathered block bm;t with profile .t0; : : : ; tn/ is of the
form

�.bm;t /D
X

iCjDm

bi;t ˝ bj;t :

We prove this formula by induction on the number of cup-product generators constitut-
ing bi;t : for single generators ım or k; m

2k
the formula appears in the set of relations

for AB , and the induction step is a consequence of the bialgebra structure formed by �
and �. Thus, the graphical procedure for the calculation of the coproduct is correct on
single-column skyline diagrams. As a general skyline diagram represents the transfer
product of its columns, the general algorithm is justified because � and ˇ form a
bialgebra.

Regardingˇ, the transfer product of two Hopf monomials corresponds to the horizontal
juxtaposition of the corresponding skyline diagrams. Thus, we only need to justify the
merging of columns. In formulas, this reads as follows. Fix a profile t D .t0; : : : ; tn/,
with tk � 0 for 0� k < n and tn > 0. Then

bi;t ˇ bj;t D
� iCj

i

�
biCj;t :

Again, we prove this by induction on r D t0C � � � C tn. For r D 1, gathered blocks
with profile t are single generators, and the formula above is exactly our transfer
product relation among them. For r > 1, the induction step is proved by combining
the coproduct formula for l;.iCj /2n�l , Hopf ring distributivity, and the fact that cup
products of elements in different components is 0 to deduce that

l;.iCj /2n�l .bi;t ˇ bj;t /D .bi;t � l;i2n�l /ˇ .bj;t � l;j2n�l /;

or the analogous formula with ıiCj in place of n;.iCj /2n�l if nD 0.

The �–product algorithm above graphically encodes Hopf ring distributivity.

Finally, we prove that MB is an additive basis for AB . We consider the bigraded
vector space V over F2 with skyline diagrams or, equivalently, MB as a basis. Define
linear maps ˇ; � W V ˝V ! V and � W V ! V ˝V by computing their values on basis
elements via the algorithm above. Note that these maps define a Hopf ring structure
on V . There is a map V !AB that realizes every Hopf monomial as the corresponding
element of AB . Since the procedures to compute the structural morphisms on MB are
deduced from the Hopf ring structure of AB and the relations of Theorem 5.9, this
map is a morphism of Hopf rings. We also note that V is generated as a Hopf ring by
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single rectangles, corresponding to k;n and ın, and that the relations of Theorem 5.9
are satisfied in V . Since AB is presented by such generators and relations, it follows
that the map V ! AB is an isomorphism.

We now construct an additive basis for AD , assuming Theorem 5.15. The first step is
to identify the subalgebra of AD under the cup product generated by neutral generators.
Let zB0 be the set of Hopf monomials x 2AB of the form x D ı

a1
k1
ˇ� � �ˇ ı

ar
kr

, ordered
with a1 > � � � > ar and k1 � 2. These correspond to skyline diagrams in which only
boxes of height 1 appear and in which the highest column has width strictly bigger
than 1.

Lemma 5.18 Every element of zB0\H�.WBn IF2/ lies in the cup product subalgebra
generated by ın; ın�1ˇ 11; : : : ; ı1ˇ 1n�1. Moreover , the images in AD of elements
of zB0 are a vector space basis for the subalmost-Hopf ring generated by elements of
the form ı0nWm for n;m� 0.

Proof Let B0 be the set of Hopf monomials x 2 AB of the form x D ı
a1
k1
ˇ � � �ˇ ı

ar
kr

ordered with a1 > � � �> ar , without the condition k1 � 2. We can define an injective
function "n W B0\H�.WBn IF2/!Nn given by

"n.ı
a1
k1
ˇ � � �ˇ ı

ar
kr
/D .a1; : : : ; a1„ ƒ‚ …

k1 times

; a2; : : : ; ar�1; ar ; : : : ; ar„ ƒ‚ …
kr times

/

By identifying B0 \H�.WBn IF2/ with a subset of Nn this way, the lexicographic
ordering on Nn induces a total order on B0. We observe that

Qn
iD1.ıi ˇ 1n�i /

ai is a
linear combination of elements of B0. In this linear combination, the maximal nonzero
Hopf monomial corresponds to

�Pn
iD1 ai ;

Pn
iD2 ai ; : : : ; an�1C an; an

�
. Moreover,

this belongs to zB0 if and only if a1D 0, ie if and only if ı1ˇ1n�1 does not appear as a
factor. Since these are all different, ın; ın�1ˇ11; : : : ; ı1ˇ1n�1 generate, under the cup
product, a polynomial subalgebra with basis B0\H�.WBn IF2/. By Proposition 5.13,
the kernel of the restriction map to H�.WDn IF2/ on this subalgebra is the ideal
generated by ı1 ˇ 1n�1. Consequently, the images of elements of zB0 in A0D are a
basis for the cup product subalgebra generated by the elements ı0nWm. Since the transfer
products of these elements are trivial and this subalgebra is closed under coproduct by
Proposition 5.12, this is a subalmost-Hopf ring.

Definition 5.19 We call a neutral gathered block in AD an element b 2 A0D obtained
as the image in A0D of an element of the set zB0 considered in the previous lemma. A
positively charged gathered block, or simply positive gathered block, is an element of
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the form bD .ı02nmW0/
t0
Qn
iD1.

C

k;m2n�k
/tk , for some n;m�1, tk �0 for 0�k <n and

tn > 0. The profile of b is .t0; : : : ; tn/. A negatively charged gathered block, or simply
negative gathered block, is an element of the form b D .ı02nmW0/

t0
Qn
iD1.

C

k;m2n�k
/tk ,

for some n;m� 1, tk � 0 for 0� k < n and tn > 0. The profile of b is .t0; : : : ; tn/. A
Hopf monomial is a transfer product of gathered blocks.

Note that, given a possible profile t D .t0; : : : ; tn/, for all l � 1, there is a unique
positively (resp. negatively) charged gathered block in the .l2n/th component having
that profile. As a notational convention, we denote it by bC

l;t
(resp. b�

l;t
). Moreover,

we stress that we require that a positively charged generator and a negatively charged
one do not appear in the same gathered block. This is not a restriction since, due to
Proposition 5.13, a cup product of two such generators is 0, or we can write it as a
transfer product of gathered blocks. Therefore Hopf monomials generate A0D as an
F2–vector space.

We also define a filtration of A0D that we will use to extract an additive basis from this
set of (linear) generators.

Definition 5.20 Define the weight of a neutral gathered block b as w.b/D 0. Define
the weight of a positively or negatively charged gathered block b˙

l;t
, with profile

t D .t0; : : : ; tn/, n� 1, as w.b˙
l;t
/D l2n�1t1. Define the weight of a Hopf monomial

x D b1 ˇ � � � ˇ br as the sum w.x/ D w.b1/ C � � � C w.br/ of the weights of its
constituent gathered blocks. Define the weight filtration as the increasing filtration
F.A0D/DfFn.A

0
D/g
1
nD0 ofA0D such that Fn.A0D/ is the linear span of Hopf monomials

in A0D of weight at most n.

We first compute formulas for the coproduct and transfer product of gathered blocks
in A0D . These are essentially the charged versions of the corresponding identities in AB ,
except for gathered blocks involving the generators ˙1;n, for which this is true only in
the graded space grF .A

0
D/ associated with the weight filtration. Complete formulas in

A0D are complicated and can be retrieved recursively on the filtration F .

Lemma 5.21 Let n � 1. Let t D .t0; : : : ; tn/ with tk � 0 for all 0 � k < n and
tn > 0. In any almost-Hopf ring satisfying the relations of Theorem 5.15 the following
statements are true for all i; j > 0:

(1) 1�ˇ bCi;t D b
�
i;t and 1�ˇ b�i;t D b

C
i;t ;

(2) if n > 1, the coproduct satisfies �.bCm;t / D
P
iCjDn.b

C
i;t ˝ b

C
j;t C b

�
i;t ˝ b

�
j;t /

and �.b�m;t /D
P
iCjDn.b

C
i;t ˝ b

�
j;t C b

�
i;t ˝ b

C
j;t /;
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(3) if n > 1, ˇ satisfies bCi;t ˇ b
C
j;t D b

�
i;t ˇ b

�
j;t D

�
iCj
i

�
bCiCj;t and bCi;t ˇ b

�
j;t D

b�i;t ˇ b
C
j;t D

�
iCj
i

�
b�iCj;t ;

(4) for all neutral gathered block b0, bCi;t ˇ b
0 D b�i;t ˇ b

0;

(5) for all profiles u, possibly different from t , bCi;tˇb
C
j;uD b

�
i;tˇb

�
j;u, bCi;tˇb

�
j;uD

b�i;t ˇ b
C
j;u;

(6) if n > 1, for all profiles u, bCi;t � b
�
j;u D b

�
i;t � b

C
j;u D 0;

(7) for all neutral gathered block b0, b�i;t � b
0 D 1�ˇ .bCi;t � b

0/.

Moreover , (2), (3) and (6) are true in grF .A
0
D/ even if nD 1.

Proof (1) Recall that, by definition, �
k;m
D 1�ˇC

k;m
. Combining the link between

transfer product and coproduct provided by Proposition 5.14 with the coproduct formula
for 1� and C

k;m
, we deduce that

�.�k;m/D
X

iCjDm

.C
k;i
˝ �k;j C 

�
k;i ˝ 

C

k;j
/;

with the convention that ˙
k;0
D 1˙. Then, we can prove that 1� ˇ bCi;t D b�i;t by

induction on the number of cup-product factors of the involved gathered block. If bCi;t
is a single generator C

k;m
, the statement holds by definition. The induction step

.b�i;t � 
�

k; i2
n

2k

/D .1�ˇ bCi;t / � 
�

k; i2
n

2k

D 1�ˇ .bCi;t � 
C

k; i2
n

2k

/

is deduced from Hopf ring distributivity and the coproduct formula derived above for
�
k;m

, using that 1� � 1� D 1�, 1� � 1C D 0 and that the cup product of elements in
different components is zero. The statement for negatively charged gathered blocks is
obtained from its analog for positively charged ones by taking the transfer product of
both members of the identity with 1� and using the relation 1�ˇ 1� D 1C.

(2) We begin with the case of positively charged gathered blocks bCm;t . We proceed,
again, by induction on the number of � generators appearing in the expression of bCm;t .
If bCm;t is a single generator, then the statement holds by the coproduct identities of
Proposition 5.12. The induction step follows from the fact that � and� form a bialgebra,
and relations 1,2,3 of Proposition 5.13. For instance, for k � 2, we explicitly have

�.bCm;t �
C

k;m2
n

2k

/D . � ˝ � /.id˝�˝id/
� X
iCjDm

.bCi;t˝b
C
j;tCb

�
i;t˝b

�
j;t /

˝

X
rCsDm2

n

2k

.C
k;r
˝C

k;s
C�k;r˝

�
k;s/

�
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D

X
iCjDm

�
bCi;t �

C

k; i2
n

2k

˝bCj;t �
C

k; j2
n

2k

Cb�i;t �
�

k; i2
n

2k

˝b�j;t �
�

k; j2
n

2k

CbCi;t �
�

k; i2
n

2k

˝bCj;t �
�

k; j2
n

2k

Cb�i;t �
C

k; i2
n

2k

˝b�j;t �
C

k; j2
n

2k

�
D

X
iCjDm

�
bCi;t �

C

k; i2
n

2k

˝bCj;t �
C

k; j2
n

2k

Cb�i;t �
�

k; i2
n

2k

˝b�j;t �
�

k; j2
n

2k

�
:

We only need to be careful when k1 > 1 because C
1;l
�
1;l

is not necessarily 0. Note
that for k � 2 we have by Hopf ring distributivity

˙k;r
C

1;2k�1r
�
1;2k�1r

D ˙k;r..
C

1;2k�1r�1
/2ˇ ı02W0/D 0;

because the coproduct of ˙
k;r

does not have an addend x0˝x00 with the component of
x00 equal to 2. This observation guarantees that, if n>1, the mixed-charge terms vanish.
Even if nD 1, we obtain the additional terms by applying relation 2 of Proposition 5.13
to expressions of this form, and this procedure lowers weights. Thus, the desired
formula holds in grF .A

0
D/ in this case.

The formulas for negatively charged gathered blocks are, once again, obtained by
applying the transfer product with 1�.

(3) The formula is easily deduced from the coproduct formulas (2) by induction on
the number of �–product generators appearing in b˙i;t . In the case nD 1, we use the
obvious fact that ˇ preserves the weight filtration to deduce that the desired formula
holds in the graded space.

(4) This is a combination of (1) and the relations 1�ˇ ı0nWm D ı
0
nWm.

(5) This is a combination of (1) and the relations 1˙ˇ 1˙ D 1C and 1˙ˇ 1� D 1�.

(6) If n > 1, it follows directly from relation (1) of Proposition 5.13. If nD 1, assume
that bCi;t 2 Fa and b�j;u 2 Fb . Relation (2) of Proposition 5.13 provides a way to write
bCi;t � b

�
j;u as a product of the form ..C

1;l�1
/2ˇ ı02W0/ � b

C
i;t 0 � b

�
j;u0 for some l � 1, where

bCi;t 0 2 Fa�l and bi;u0 2 Fb�l . By relation (5) of the same proposition, these � products
preserve the weight filtration. Therefore the statement is true in grF .A

0
D/.

(7) We argue as we did for (1), combining the formula given in (1) with the relation
1�ˇınWmD ınWm, which implies that neutral gathered blocks are invariant by the action
of 1�ˇ _.

Using this lemma, we can use Hopf monomials in the additive basis for AB to construct
basis elements of AD by adding charges.
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Proposition 5.22 Let MB be the Hopf monomial basis forAB of Proposition 5.17. Let
zB0 �MB be as in Lemma 5.18. Let zBc be the subset of MB consisting of nontrivial
Hopf monomials in which every constituent gathered block has profile t D .t0; : : : ; tn/
with n� 1. Let MD D B0 tBC tB� � A0D , where

� BC D fxC D
Jk
iD1 b

C

li ;t i
g
xD

Jk
iD1 bli ;ti2

zBc [f1
Cg,

� B� D fx� D
Jk�1
iD1 b

C

li ;t i
ˇ b�

lk ;tk
g
xD

Jk
iD1 bli ;ti2

zBc [f1
�g,

� B0 D fx0 D �.y/ˇ zCgxDyˇz;y2zB0nf10g;z2zBc[f10g.

Then MD is an additive basis for A0D .

Before providing a proof of this statement, we make a remark that clarifies the cumber-
some identity of Proposition 5.14.

Remark 5.23 Proposition 5.22 provides a direct sum decomposition of A0D as an
F2–vector space with three addends, V C, V � and V 0, defined as the linear span of
BC, B� and B0, respectively. Note that the involution �D 1�ˇ_ switches V C and V �

and fixes all elements of V 0 by Lemma 5.21. We can consider the linear projection
� W V ! V C defined as the identity on V C and as 0 on V � and V 0. With this notation,
we can rewrite Proposition 5.14 as

�.bˇ x/D .ˇ˝ˇ/.� ˝ � ˝ id/.�˝�/.b˝ x/

for all x 2 A0D and b charged gathered block.

A further reduction can be performed. We can consider the free F4–module zV with basis
MD and define a Z–linear map z� WA0D˝A

0
D!

zV as follows. Given x; y 2MD , first
compute the expansions of the coproducts�.x/D

P
i x
0
i˝x

00
i and�.y/D

P
j y
0
j˝y

00
j

on the basis MD˝MD of A0D˝A
0
D . Then, let

z�.x˝y/D
X
i

X
j

.x0i ˇy
0
j /˝ .x

00
i ˇy

00
j /;

where, this time, the sum is computed in zV . Recall that both ˇ and � are .�˝�/–
invariant. Hence, each addend appears twice, except possibly the elements of the form
.x0i ˇy

0
j /˝ .x

00
i ˇy

00
j /, where x0i , x

00
i , y0j and y00j are all fixed by �. But this implies that

these classes belong to B0, and thus their transfer product is zero. Consequently, such
addends do not appear in the summation. This implies that z�.x˝y/ is killed by the
multiplication by 2, and thus z� extends linearly to a map as desired. The image of z�
is contained in the image of the embedding � W A0D ,! zV that maps every x 2MD to
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2x 2 zV . We can rephrase Proposition 5.14 by saying that

.�ˇ/ W x˝y 2 A0D˝A
0
D 7!�.xˇy/ 2 A0D

is the unique linear map satisfying � ı .�ˇ/ D z�. We immediately see that this
statement is equivalent to the formulation above when x or y is a charged gathered
block. If both x and y belong to B0, then z�.x˝y/D 0 because the transfer product
of two neutral gathered blocks is always zero. The general case follows by induction
on the number of ˇ–factors in the Hopf monomials involved.

Proof of Proposition 5.22 We can write every element in an almost-Hopf ring with
generators C

k;n
, 1� and ı0nWm satisfying the relations of Theorem 5.15 as a linear

combination of addends in MD due to Lemmas 5.18 and 5.21. Therefore MD is a set
of linear generators for A0D .

The fact that Hopf monomials in MD are linearly independent is a byproduct of the
proof of Theorem 5.15. It is nevertheless possible to provide a fully independent proof
that a basis for the almost-Hopf ring with the presentation of Theorem 5.15 has an
additive basis given by MD , but we will not provide it, as it would be uselessly long.

5.4 Comparison between A†, AB and AD

In this subsection, we compute the action of the connecting homomorphisms on the
elements of the additive bases determined in the previous subsection.

We first start with the link between A† and AB . We recall that there are a natural
injection j W†n!WBn and a natural projection � WWBn!†n, providing linear maps
linking AB and A†. We begin by analyzing the relationship between A† and AB .

Proposition 5.24 Let j W†n!WBn and � WWBn!†n be the natural homomorphisms.
The induced maps j � W AB ! A† and �� W A†! AB are Hopf-ring homomorphisms.

Proof It is obvious from the fact that the diagrams

ConfnCm..0;C1/1/
†n�†m

Y
.1/
WBnCm

WBn�WBm

E.F2/nCm�E.†nCm/
.F2 o†n/�.F2 o†m/

E.†nCm/

†n�†m

ConfnCm..0;C1/1/
†nCm

Y
.1/
WBnCm

WBnCm

E.F2/nCm�E.†nCm/
F2 o†nCm

E.†nCm/

†nCm

j

p
p

�

p p

j �

are pullbacks of finite coverings, where p indicates covering maps.
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The following proposition is a direct consequence of Corollary 4.6 and Proposition 5.24.

Proposition 5.25 With reference to the notation of Theorem 2.3, j �.k;n/D k;n and
j �.ın/D 0. More generally, given a B–skyline diagram x 2MB , j �.x/ is zero if x
contains a rectangle of height 1. Otherwise , it is obtained by interpreting x as a skyline
diagram in A†.

We can now use our algebraic description to compute the action of �� on generators.

Proposition 5.26 ��.k;n/D k;n. For a skyline diagram x 2 A†, ��.x/ is obtained
by interpreting x as a B–skyline diagram without rectangles of height 1.

Proof We proceed by induction on n. If n D 1, since � ı j D id, �� is injective.
Hence ��.k;1/ is a nonzero class in H 2k�1.WB

2k
IF2/. Thanks to Proposition 5.24,

��.k;1/ is primitive. From our description of AB in terms of skyline diagrams,
formalized with the statement of Proposition 5.17, we see that the only nontrivial
primitive of AB in the right component and cohomological degree is k;1. For n > 1,
Proposition 5.24 guarantees that �� preserves coproducts. Hence we inductively have
that ��.k;n/C k;n is primitive. However, there are no nonzero primitive in that
bidegree, thus ��.k;n/D k;n.

We now turn to AD . There is a restriction map � WAB!AD induced by the inclusions
WDn ,!WBn . Moreover, we recall that we have natural injections iC; i� W†n!WDn
determining maps AD!A† and an involution � WAD!AD induced onH�.WDn IF2/
by the conjugation with s0 2WBn . We analyzed these maps in Section 4.1.

First, we explain the relation between C
k;m

and �
k;m

and the natural maps between
WDn , WBn and †n.

Proposition 5.27 For all n; k � 1 and m� 0,

i�C.
C

k;n
/D k;n; i�C.

�
k;n/D 0;

i��.
�
k;n/D k;n; i��.

C

k;n
/D 0;

i�C.ı
0
nWm/D i

�
�.ı

0
nWm/D 0:

More generally , with reference to Proposition 5.22, i�
C

(resp. i��) is zero on all neutral
or negatively (resp. neutral or positively) charged Hopf monomials. We obtain the
value of positively (resp. negatively) charged Hopf monomials under i�

C
(resp. i��) by

forgetting the charge to get a Hopf monomial in MB and then applying j � as described
in Proposition 5.25.
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Proof The formulas involving ˙
k;n

are a direct consequence of Corollary 4.6 and the
form of the chain representative of k;n 2FN�†n˝F2 retrieved in [8, Definition 4.9]. To
deduce that i�

C
.ı0nWm/D 0, we recall that ı0nWm D �.ınˇ 1m/ and that the composition

†n
iC,�!WDn ,!WBn is equal to j . By Proposition 5.25 j �.ınˇ 1m/D 0; therefore

i�
C
.ı0nWm/D 0. The same is also true for i��.ı

0
nWm/ because i� is obtained by composing

iC with the conjugation with an element of WBn , whose action is trivial on elements
coming from AB .

Since we identify the involution � with the transfer product with 1�, the following
proposition is essentially a restatement of the description of the previous subsection.

Proposition 5.28 If x0 is a neutral Hopf monomial in MD , then �.x0/D x0. If x˙

is a charged Hopf monomial in MD , we get �.x˙/ by inverting the charge.

To complete the description of the homomorphisms connecting our structures, we need
to compute the restriction � W AB ! AD and transfer tr W AD! AB maps. To do this,
we need to establish preliminary identities.

Lemma 5.29 For all x; x0 2 AD and for all y 2 AB , the following identities are
satisfied :

(1) �.tr.x/ˇy/D xˇ �.y/,

(2) tr.x/ � tr.x0/D tr.x � x0C �.x/ � x0/,

(3) tr.x � �.y//D tr.x/ �y,

(4) tr.xˇ x0/D tr.x/ˇ tr.x0/.

Proof The first statement follows from the fact that this commutative diagram induces
a pullback of covering spaces at the level of classifying spaces:

WDn �WDm
//

��

WDn �WBm

��

WDnCm
// WBnCm

Regarding the second statement, since the conjugation by s0 is an endomorphism of
the covering B.WDn �WDn/! B.WD2n \ .WBn �WBn//,

tr
WD2n\.WBn�WBn /

WDn�WDn
c�s0 D c

�
s0

tr
WD2n\.WBn�WBn /

WDn�WDn
:
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Moreover, the classifying space functor applied to the following square produces a
diagram homotopy equivalent to a pullback of covering, where d and d 0 are diagonal
maps:

WDn
d

//

j

��

WDn �WDn

��

WBn
d 0
// WD2n \ .WBn �WBn/

Hence tr d� D d 0� tr
WD2n\.WBn�WBn /

WDn�WDn
. These facts imply that, denoting by d the

diagonal subgroups,

tr.x/ � tr.x0/

D �
WBn�WBn
d.WBn

tr
WBn�WBn
WDn�WDn

.x˝ x0/

D �
WD2n

\.WBn�WBn /

d.WBn /
�
WBn�WBn
WD2n

\.WBn�WBn /
tr
WBn�WBn
WD2n

\.WBn�WBn /
tr
WD2n

\.WBn�WBn /

WDn�WDn
.x˝ x0/

D d 0�.idC c�s0/ tr
WD2n

\.WBn�WBn /

WDn�WDn
.x˝ x0/

D d 0� tr
WD2n

\.WBn�WBn /

WDn�WDn
.idC c�s0/.x˝ x

0/

D tr d�.idC c�s0/.x˝ x
0/

D tr.x � x0C �.x/ � x0/:

Similarly, the last two statements follow from the diagrams below, where the vertical
maps of the first one are the diagonal morphisms:

WDn
//

��

WBn

��

WDn �WDm
//

��

WDnCm

��

WDn �WBn
// WBn �WBn WBn �WBm

// WBnCm

Proposition 5.30 The transfer map tr W AD ! AB is such that tr.˙
k;n
/ D k;n and

tr.ı0nWm/ D 0. More generally , if b˙
l;t

is a charged gathered block with profile t D
.t0; t1; : : : ; tn/, then tr.b˙

l;t
/ D bl;t if n � 2, while if n D 1 the transfer of gathered

blocks is computed inductively by the formula

bl;t D

bt1=2cX
aD0

tr.b˙l;.t0;t1�a/.
�

1;l
/a/:

The transfer of every neutral gathered block is 0, and we realize the transfer of a Hopf
monomial as the transfer product of the transfer of its constituent gathered blocks.
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Proof The statement for generators is a direct consequence of their definition at the
cochain level. The general claim for Hopf monomials in AD follows directly from
Lemma 5.29.

Proposition 5.31 �.k;n/D 
C

k;n
C �

k;n
for all n; k � 1. Moreover , �.ım/D ı0mW0 for

n� 2 and �.ı1/D 0. More generally, for every Hopf monomial x 2MB , �.x/ can be
computed as follows. If x D bl;t is a gathered block with profile t D .t0; : : : ; tn/, we
have that

�.x/D

8̂<̂
:
x0 if nD 0;Pt1
aD0

�
t1
a

�
bC
l;.t0;a/

.�
1;l
/t1�a if nD 1;

bC
l;t
C b�

l;t
if n� 2:

The restriction of a Hopf monomial x with a constituent gathered block in zB0 is x0.
We calculate the restriction of a Hopf monomial x 2 zBc as follows. First , replace every
constituent gathered block in x with the sum of the positively or neutrally charged
elements of its restriction. Then , write the resulting linear combination as a sum of
Hopf monomials in AD . Finally , add to that the negatively charged counterpart of every
positively charged Hopf monomials appearing in the sum.

Proof Using the cochain-level representative of k;n introduced in Definition 5.1,
we immediately see that its restriction is represented in FN0�WDn2k by the sum of
two elements obtained by providing this cochain with the two possible orientations.
These elements correspond to cochain representatives of C

k;n
and �

k;n
via the cochain

equivalence ' of Lemma 4.1. The formulas for ım are a consequence of the generators’
definition in AD and relation (4) of Proposition 5.13.

We conclude this section with a short description of the Gysin sequence of the double
cover WDn ! WBn . In [9], Giusti and Sinha adopt the analysis of a similar Gysin
exact sequence as the starting point to compute the cohomology of the alternating
groups as an almost-Hopf ring. While we retrieve that as a byproduct of our algebraic
description, we stress that Giusti and Sinha’s approach could be used in our framework
as an alternative method to deduce relations in A0D . Indeed, a direct consequence of
the following proposition is that MD D B0 tBC tB� is the polarized basis arising
from a Gysin decomposition in the sense of [9].

Proposition 5.32 (cf [9, Section 3]) The restriction � W AB ! A0D and the transfer
tr W A0D! AD fit into the Gysin sequence

� � �
@k�1
��!Hk.WBn IF2/

�k
�!Hk.WDn IF2/

trk
�!Hk.WBn IF2/

@k
�!HkC1.WBn IF2/

�kC1
��!� � � ;
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where @ is the multiplication with ı1ˇ 1n�1. It can be described on skyline diagrams
by the operation of replacing each column corresponding to ım

k
with the diagram

corresponding to ımC11 ˇ ım
k�1

.

Proof By a general fact, the connecting homomorphism @ is the multiplication with
the Euler class e of the double covering. In the case nD 1, this covering is isomorphic
to the universal double covering S1! P1.R/, and its Euler class is ı1. For bigger n,
the Euler class is ı1ˇ 1n�1 because it is the only class in the right degree that restricts
to ı1.

tr ı�D 0 because we are working modulo 2. Therefore the transfer of a neutral gathered
block is 0. If b D b˙

l;t
is a charged gathered block, then the restriction of tr.b/ must be

bC �.b/, and the multiplication with ı1ˇ 1n�1 must kill tr.b/. These two conditions
force tr.b/D bl;t . Since tr preserves the transfer product ˇ, the formula for a general
Hopf monomial follows.

6 Restriction to elementary abelian subgroups

We recall here some theorems from Swenson’s thesis [18], which constitute the formal
framework in which we will calculate the cohomology of WBn and WDn . We will then
exploit these theorems to determine the restriction of our generators in AB and AD to
elementary abelian 2–subgroups. This yields the restriction of all the cohomology of the
groups WBn and WDn to maximal elementary abelian subgroups, because the structural
morphisms of our almost-Hopf rings behave in a predictable way: cup products and
coproducts are preserved by such restriction, while the relation with transfer product
is determined via double cosets formulas, as stated in Adem and Milgram’s book [1,
Section II.6].

6.1 Quillen’s theorem for finite reflection groups

The relevance of these restriction maps is encompassed by a result of Quillen [15; 16],
which we state here. Let G be a finite group and F a family of subgroups. Let
�g WH

�.KIFp/!H�.gKg�1IFp/ be the conjugation homomorphism. Define

FnDfffKgK2F ; fK 2Hn.KIFp/ jg
�1Kg�K 0D)fKD�

�
g .fK0/jK for all K;K 0g:

Alternatively, we can consider F as a category in which

Hom.K;K 0/D fg j g�1Kg �K 0g:
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Then Fn is the inverse limit of the functor Hn from F into the category of Fp–vector
spaces. In other words, F� consists of collections of cohomology classes of groups in
F that are stable under restrictions and conjugation by elements of G. Observe that
F� D

L
n Fn has a natural ring structure.

Theorem 6.1 [15, Theorem 6.2, page 564] Let G be a finite group. Let F� be as
before. The map qG WH�.GIFp/! F� given by qG.f /D ff jKgK is a well-defined
ring homomorphism. Moreover , if F is the family of elementary abelian p–subgroups ,
then the kernel and cokernel of qG are nilpotent.

Hence elementary abelian p–subgroups give much information on the Fp–cohomology
of a group. In the case of a finite reflection group, an even stronger property holds.

Theorem 6.2 [18, Theorem 11, page 2] If G is a finite reflection group and F is the
family of elementary abelian p–subgroups of G, then qG is an isomorphism.

6.2 Restriction from AB

For the reasons explained in the previous subsection, Swenson has calculated the
elementary abelian 2–subgroups of WBn . Before stating his result, we need to recall
the structure of elementary abelian 2–groups of the symmetric group †n on n objects.
The relevant calculations are reviewed in [1]. †n admits a transitive elementary abelian
2–subgroup if and only if nD 2k . In this case, all these subgroups are conjugated in
†n to the image Vk of the homomorphism �k W F

k
2 ,!†2k given by the regular action

of Fk2 on itself. More generally, a maximal elementary abelian 2–subgroup of †n is
conjugated to a direct product

Vk1 � � � � �Vkr ,!†2k1 � � � � �†2kr ,!†2k1C���C2kr :

Hence, conjugacy classes of maximal elementary abelian 2–subgroups in †n are
parametrized by partitions � of n such that every element of � is an integral power of
2 and the multiplicity of 1D 20 in � is at most 1.

To further simplify notation, we borrow from Swenson’s thesis the following definition.

Definition 6.3 [18] Let n 2 N. We say that a partition � of n is admissible if it
consists only of parts that are integral powers of 2.

The main results about elementary abelian 2–subgroups in WBn is the following:
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Proposition 6.4 [18, page 22] Let A1; A2 �WBn be maximal elementary abelian
2–subgroups. Then

� zAi D Ai \†n � †n is conjugated to a subgroup of the form Vk1 � � � � � Vkr ,
with ki � 0 for all i ;

� A1 and A2 are conjugated inWBn if and only if zA1 and zA2 are conjugated in†n.

In particular , conjugacy classes of maximal elementary abelian 2–subgroups inWBn are
parametrized by admissible partitions � . Moreover , if we denote by A� the subgroup
corresponding to a partition � , we have that A.2k/ D Vk �Ck , where Ck Š F2 is the
center of WB

2k
and , more generally, if mi is the multiplicity of 2i in a partition � ,

then A� is isomorphic to the direct product
Q
i A

mi
.2i /

. Let d2i�1; : : : ; d2i�2i�1 be the
Dickson invariants in H�.Vi IF2/ ,!H�.A.2i /IF2/ and define

f2i D
Y

y2H1.Vi IF2/

.xCy/;

where x 2 H 1.A2i IF2/ is the linear dual to the nontrivial element in the Ci–factor
of A2i . There is a natural isomorphism

ŒH�.A� IF2/�
NWBn

.A� /
Š

O
i

.F2Œf2i ; d2i�1; : : : ; d2i�2i�1 �
˝mi /†mi :

We can calculate the restriction of our generating classes k;n and ın to these abelian
subgroups. The calculation for k;n has been essentially carried out by Giusti, Salvatore
and Sinha [7]. We state here the result.

Proposition 6.5 [7, Corollary 7.6, page 189] Let l; n � 1. Let � be a partition of
n2l consisting of powers of 2, � D .2k1 ; : : : ; 2kr /. Then

l;njA� D

�Nr
iD1 d2ki�2ki�l if ki � l for all 1� i � r;

0 otherwise:

Proposition 6.6 Let n � 0. Let � D .2k1 ; : : : ; 2kr / be an admissible partition. The
restriction of ın to the cohomology of the maximal elementary abelian 2–subgroup A�
is equal to

Nr
iD1 f2ki . Moreover , ın is the unique class in Hn.WBn IF2/ that has this

property for every � .

Proof We observe that the restrictions of a cohomology class toA� for all the partitions
� of n determine its restriction to every elementary abelian 2–subgroup (not necessarily
maximal). Hence, by Theorem 6.2, a class that satisfies the condition in the statement
for every � is necessarily unique.
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Let Un D Rn be the reflection representation of WBn . Recall that, if n D 2k and
� D .2k/, then A� D Vk �Ck , where Ck D hti is a cyclic group of order 2, the center
of WBn , and Vk D hv1; : : : ; vki � †2k is the subgroup defined above. H�.A� IF2/
is polynomial on degree 1 elements x; y1; : : : ; yk , the linear duals to t; v1; : : : ; vk ,
respectively. Given a 2 A� n f1g, let "a, sgna, and Rhai be the 1–dimensional trivial
representation, the signum representation, and the regular representation of hai Š F2,
respectively. We first observe that, since t acts on Un as the multiplication by �1,
UnjA� Š sgnt ˝UnjVk . Moreover, the inclusion of Vk in †2k is given by the regular
representation; hence

UnjVk Š

kO
iD1

Rhvi i Š
M

S�f1;:::;kg

kO
iD1

US;i ;

where US;i is equal to sgnvi if i 2 S , and to "vi if i … S . Thus, with the notation used
before in this document, the Stiefel–Whitney class of UnjA� isY

S�f1;:::;ng

�
1C xC

X
i2S

yi

�
:

Its n–dimensional part is exactly f2k . Hence, the thesis for � D .2k/ follows from the
naturality of the characteristic classes and Proposition 5.3

In the case of a general admissible partition � D .2k1 ; : : : ; 2kr /, the proposition follows
from the fact that A� Š

Qr
iD1A.2ki / and UnjA� Š

Lr
iD1 U2ki jA.2ki /

.

To complete the calculation of the restriction morphisms from AB to maximal ele-
mentary abelian 2–subgroups, we need to describe how such maps behave with the
structural morphisms of AB . Restrictions preserve cup products, and, regarding the
coproduct, there is nothing to say because every maximal elementary abelian subgroup
of WBn �WBm is itself a maximal elementary abelian subgroup of WBnCm . The only
nontrivial behavior occurs with the transfer product. We describe it in the following
proposition.

Proposition 6.7 Let x; y 2 AB be in positive components n and m respectively. Let
� D .2k1 ; : : : ; 2kr / be an admissible partition of nCm. For all I � f1; : : : ; rg, write
I D fi1; : : : ; isg with i1 < � � �< is and let �I D .2ki1 ; : : : ; 2kis /. Then

.xˇy/jA� D
X
I;J

�I;J .xjA�I ˝yjA�J /;

Algebraic & Geometric Topology, Volume 23 (2023)



3280 Lorenzo Guerra

where the sum runs over all partitions f1; : : : ; rg D I tJ of f1; : : : ; rg into two subsets
such that

P
i2I 2

ki D n (and , consequently,
P
j2J 2

kj Dm), and

�I;J WH
�.A�I IF2/˝H

�.A�J IF2/!H�.A� IF2/

is the obvious permutation of tensor factors.

Proof We begin by assuming that r D 1; thus � D .2k/ for some k and nCmD 2k .
Then, since A� acts transitively on f1; : : : ; 2kg, no conjugate of A� in WBnCm is
contained in WBn �WBm . Given that A� is abelian, the classically known property
stated in [1, Proposition 5.6, page 69] implies that the transfer map

H�.A� \ �.WBn �WBm/�
�1
IF2/!H�.A� IF2/

is identically zero. Eilenberg’s double coset formula then guarantees that the composi-
tion of the restriction with the transfer product

H�.WBn IF2/˝H
�.WBm IF2/

ˇ
�!H�.WBnCm IF2/!H�.A� IF2/

is zero. Thus .xˇy/jA
.2k/
D 0.

In the general case, the restriction of xˇy to this subgroup factors through the r–fold
coproduct. By the calculations above, addends in this coproduct for which a factor is
a nontrivial transfer product restrict to 0. Since ˇ and � form a bialgebra structure
on AB , the other addends have the desired form.

6.3 Restriction from AD and proof of relations

We can adapt the argument to calculate the restriction to elementary abelian subgroups
of generators also in the Dn case. First, we state the analog of Proposition 6.4. Recall
that a partition � of n is admissible if and only if it consists of parts that are powers
of 2.

Theorem 6.8 [18, Theorem 5.4.3, page 40] Let � be an admissible partition of n.
Let m1 and m2 be the multiplicities of 1 and 2 in � . We write � D .1/m1[ .2/m2[� 0.
Let A� �WBn the maximal elementary abelian 2–subgroup corresponding to � and let
yA� D A� \WDn . Then yA� is maximal as an elementary abelian subgroup of WDn if

and only if m1 ¤ 2. Moreover:

� If m1 > 0, then yA� D ker
�P
W Fm12 ! F2

�
� A.2/m2[� 0 . If e1; : : : ; em1 are the

elementary symmetric functions in H�.Fm12 IF2/DH
�.A.1/m1 IF2/, we define Nei D
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ei C e1ei�1 if 2 � i < m and Nem D e1em�1. There is an isomorphism between the
invariant subalgebra ŒH�. yA� IF2/�NWDn .

yA� / and

F2Œ Ne2; : : : ; Nem�˝ ŒH
�.A.2/m2[� 0 IF2/�

NWBn�m1
.A.2/m2[�0 /:

Moreover , the cohomological restriction from A.1/m to yA.1/m is given by e1 7! 0 and
ei 7! Nei if 2� i �m.

� If m1 D 0 and m2 > 0, then yA� D A� . Identifying H�.A.2/IF2/˝
m2 withNm2

iD1 F2Œxi ; yi �, we can define

hm2 D
X

S�f1;:::;m2g
jS jD2l

Y
i2S

.xi Cyi /
Y
j…S

xj :

Then ŒH�. yA� IF2/�
NWDn

. yA� / is the free ŒH�.A� IF2/�
NWBn

.A� /–module with basis
f1; hm2 ˝ 1H�.A�0 IF2/g.

� If m1 Dm2 D 0, then yA� D A� and NWDn .A�/DNWBn .A�/; hence

ŒH�. yA� IF2/�
NWDn

. yA� /
D ŒH�.A� IF2/�

NWBn
.A� /:

Moreover , if m1 ¤ 0 or m2 ¤ 0, then A� is WBn–conjugate to A0 if and only if
yA� is WDn–conjugate to A0 \WDn . Conversely, if m1 D m2 D 0, then the WBn–

conjugacy class of A� contains exactly two WDn–conjugacy classes of elementary
abelian 2–subgroups.

We now determine the restriction of our generators to the elementary abelian subgroups.

Proposition 6.9 Let nD 2km, for some k;m � 1. Let � be an admissible partition
of n. Let m1 and m2 be the multiplicities of 1 and 2 in � . Then

(1) for every k � 1, if m1 D m2 D 0, then C
k;m
jA� D k;mjA� , C

k;m
j
A
s0
�
D 0,

�
k;m
jA� D 0, and �

k;m
j
A
s0
�
D k;mjAs0�

;

(2) for every k � 2, if m1¤ 0 or m2¤ 0, or for kD 1 if m1¤ 0, then ˙
k;m
j yA�
D 0;

(3) if m1D 0 butm2¤ 0, ie �D .2/m2t� 0, then the restriction of C1;m (resp. �1;m)
to yA�DA.2/m2�A� 0 is hm2˝1;m�m2 jA�0 (resp. .d˝

m2

1 Chm2/˝1;m�m2 jA�0 );

(4) if � D .1/m1 t� 0, then the restriction of ı0
kWm

to yA� D yA.1/m1 �A� 0 is

1˝ .ıkˇ 1WBm�m1
/jA�0 C

kX
iD2

Nei ˝ .ık�i ˇ 1WBm�m1Ci
/jA�0 ;

with the convention that 1WBr D 0 when r < 0.
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Proof If � has more than 1 element and is different from .1; 1; : : : ; 1/, then the
restriction to yA� or yA s0� factors through the coproduct. Thus, by applying the coproduct
formulas of Proposition 5.12, we can inductively reduce to these two cases.

We begin by assuming that � D .2n/ has only one element, and we prove the first
statement. If k � 1 and n � 2, the restriction of ˙

k;2l
to A� (n D k C l) must

be NWD2n .A�/–invariant. Hence, for degree reasons, it can be 0 or d2n�2l . Since
i�
C
.C
k;2l

/D k;2l (resp. i�
C
.�
k;2l

/D 0) by Proposition 5.27, its restriction to A� \†2n
must be the Dickson invariant of degree 2n� 2l (resp. 0). This forces

C
k;2l
jA� D d2n�2l D k;2l jA�

(resp. �
k;2l
jA� D 0). By essentially the same argument, considering i� instead of iC,

we determine the restrictions to As0� , proving the first point.

Claim (2) is immediate from the fact that, if k � 1, there are no nonzero elements
in H�. yA

.1/2
kn IF2/

NWD
2kn

. yA
.1/2

kn
/ in the same degree of ˙

k;n
, and that if k � 2 the

coproduct of ˙
k;n

has no element in component 2.

To prove (3) when � D .2/, we notice that A.2/ D WD2 and C1;1 can be identified
with h1, while �1;1; with d1C h1.

By the coproduct formula for ı0
kWm

, we have ı0
kWm
jAkCm
.1/
D ek . Thus, the last statement

for � D .1; : : : ; 1/ follows directly by combining Proposition 6.6 and Theorem 6.8.

As in AB , the behavior of the restriction to maximal elementary abelian 2–subgroups
with the cup product and coproduct is straightforward. We describe the relation between
such restriction maps and the transfer product in the following proposition, which is
the counterpart of Proposition 6.7.

Proposition 6.10 Let x; y 2 AD be elements in positive component n and m re-
spectively. Let � D .2k1 ; : : : ; 2kr / be an admissible partition of n C m. For all
I � f1; : : : ; rg, write I D fi1; : : : ; isg with i1 < � � �< is and let �I D .2ki1 ; : : : ; 2kis /.
Then

.xˇy/j yA�
D

X
I;J

�I;J .xj yA�I
˝yj yA�J

C �.x/j yA�I
˝ �.y/j yA�J

/;

where the sum runs over all partitions f1; : : : ; rg D I t J of f1; : : : ; rg into two
subsets such that

P
i2I 2

ki D n (and , consequently,
P
j2J 2

kj Dm) and at least one
between I and J does not contains any l 2 f1; : : : ; rg such that kl D 0, and where
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�I;J W H
�. yA�I IF2/ ˝H

�. yA�J IF2/ ! H�. yA� IF2/ is the obvious permutation of
tensor factors. Moreover , if 1 … � and 2 … � ,

.xˇy/j yAs0�
D c�s0

X
I;J

�I;J .xj yA�I
˝ �.y/j yA�J

C �.x/j yA�I
˝yj yA�J

/;

where I; J; �I;J are as above , and c�s0 WH
�. yA� IF2/!H�. yA

s0
� IF2/ is induced by the

conjugation with s0.

Proof We cannot repeat the proof of Proposition 6.7 because in A0D the transfer
product and the coproduct do not form a bialgebra. Therefore, we argue by considering
Eilenberg’s double coset formula associated with the two subgroups WDn �WDm and
yA� of WDnCm . We preliminarily fix some notation. Let P� be the partition of the set
f1; : : : ; nCmg given by

P� D

�
f1; : : : ; 2k1g; f2k1 C 1; : : : ; 2k1 C 2k2g; : : : ;

�r�1X
lD1

2kl C 1; : : : ; nCm

��
:

Moreover, let Pj;� D
˚Pj�1

lD1
2kl C 1; : : : ;

Pj

lD1
2kl
	
.

Assume that 1 … � . A set of representatives for WDnCm=.WDn �WDm/ is the set
Sh.n;m/ � f1; tg, where Sh.n:m/ � †nCm ,! WDnCm is the set of .n;m/–shuffles,
and t D s0 � s0 2 WBn �WBm . Note that yA� � .� t"/.WDn �WDm/.� t

"/�1 if and
only if �.f1; : : : ; ng/ is a union of parts of P� . Since yA� is abelian, these provide
the only nonzero terms in the summation of the double coset formula. Moreover, by
inspecting the image of f1; : : : ; ng � f1; : : : ; nCmg under the signed permutation
action of WDnCm �WBnCm , we see that if �t" and � 0t"

0

are two coset representatives
satisfying this condition, then yA��t".WDn �WDm/D yA��

0t"
0

.WDn �WDm/ if and
only if � D � 0 and "D "0.

Consequently, the double coset formula allows us to rewrite �
WDnCm
yA�

.xˇ y/ as the
sum X

I�f1;:::;rgP
i2I 2

kiDn

.c��I �
WDn�WDm
yA�I �

yA�J
.x˝y/˝Cc��I .c

�
s0
˝ c�s0/�

WDn�WDm
yA
s0
�I
˝ yA

s0
�J

/;

where �I is the unique .n;m/–shuffle satisfying �.f1; : : : ; ng/D
S
i2I Pi;� and J D

f1; : : : ; rg n I . The statement follows by observing that c��I D �I;J and

c�s0�
WDl
yA
s0
�0

D �
WDl
yA�0

�

for all l � 1 and an � 0 admissible partition of l .
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The case of yA s0� where 1; 2 … � is done similarly. If 1 2 � , the same argument holds,
but if there exists i 2 I and j 2 J such that ki D kj D 0, then, interpreting the
elements of WDnCm as signed permutations, .pi ;�pi /.pj ;�pj / belongs to yA� but
not to .�I t"/.WDn �WDm/.�I t

"/�1, where Pi;� D fpig and Pj;� D fpj g. Thus, we
need to restrict the summation only to partitions f1; : : : ; rg D I t J in which all the
occurrences of 1 in � belong to the same part.

This result provides a way to detect the charge of a Hopf monomial via restriction to
maximal elementary abelian 2–subgroups. We first fix preliminary notation.

Definition 6.11 With the notation of Theorem 6.8, writeH�. yA.2/IF2/DF2Œx; y� and
let z D xCy. Let HCA.2/ (resp. H�A.2/) be the vector subspace generated by elements
of the form xazb where a > b (resp. b > a). If � is an admissible partition of n, write
� D .1/m1 [ .2/m2 [ � 0 where 1 … � 0 and 2 … � 0. For S � f1; : : : ; m2g, we define
Hi;S DH

C

A.2/
if i … S and H�A.2/ if i 2 S . Then we define

HC
yA�
D

�
0 if m1 > 0;L
S�f1;:::;m2g;jS jD2k

Nm2
iD1Hi;S ˝H

�.A� 0 IF2/ if m1 D 0;

H�
yA�
D

�
0 if m1 > 0;L
S�f1;:::;m2g;jS jD2kC1

Nm2
iD1Hi;S ˝H

�.A� 0 IF2/ if m1 D 0:

Moreover, if m1 Dm2 D 0, we define HC
A
s0
�

D 0 and H�
A
s0
�

DH�.A
s0
� IF2/.

Proposition 6.12 Referring to Definition 6.11, for every maximal elementary abelian
2–subgroupAD yA� orADAs0� of WDn , the restriction of a positively (resp. negatively)
charged Hopf monomial in MD \H

�.WDn IF2/ to the cohomology of A.�/ belongs
to HCA (resp. H�A ).

Proof Every positively charged gathered block b restricts to an element of HCA .
Nontrivial computations arise only if b D .ı02mW0/

r.C1;m/
s with r � 0 and s > 0 and

AD A.2/m . In this case, with the notation of Theorem 6.8, we observe that

h2
k

m D

X
S�f1;:::;mg
jS jD2l

Y
i2S

z2
k

i

Y
j…S

x2
k

j ;

where zi D xi C yi . Thus h2
k

m 2 H
C

.2/m
. Let 2k be the biggest power of 2 smaller

than s. Then hs�2
k

m is a sum of pure tensors of the form w1˝ � � �˝wm, where wi is a
monomial in xi and zi with total degree smaller than 2k . Therefore, hsm D h

2k

m h
s�2k

m
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still belongs toHC
.2/m

. The restriction of b to A.2/m is equal to
Nm
iD1.xizi /

rhsm, which
belongs to HC

.2/m
because multiplication by

Nm
iD1 xizi preserves HC

.2/m
.

We see the corresponding statement for negatively charged gathered blocks by noting
that conjugation with s0 exchanges HCA and H�

As0
.

In general, a positively (resp. negatively) charged Hopf monomial x is a transfer product
of gathered blocks, all positively charged (resp. all positively charged except one).
Consequently, Proposition 6.10 yields the statement for x.

We can finally complete our relations for A0D by providing the proofs of the two leftover
propositions of Section 5.2.

Proof of Proposition 5.14 Let b be a positively charged gathered block in AD
and x 2 AD . From Lemma 5.10 and the definition of �0 we deduce that �.b/ D
�0.b/C .�˝ �/�0.b/, and that �.�.b// D .id˝ �C �˝ id/�0.b/. During this proof,
we assume, by convention, that xjA� D 0 when x 2 H�.WDn IF2/ and � is not an
admissible partition of n. Let �D .2k1 ; : : : ; 2kr / and � 0D .2h1 ; : : : ; 2hs / be admissible
partitions of some integers. From Proposition 6.10, we deduce that

Œ.ˇ˝ˇ/.id˝�˝id/.�0˝�/.b˝x/�j yA�� yA�0

D

X
ItJDf1;:::;rg
I 0tJ 0Df1;:::;sg

�I;I 0;J;J 0
�
�0.b/˝�.x/C.id˝�/�0.b/˝.id˝�/�.x/

C.�˝id/�0.b/˝.�˝id/�.x/

C.�˝�/�0.b/˝.�˝�/�.x/
�
j yA�I �

yA
�0
I 0
� yA�J �

yA
�0
J 0

D

X
ItJDf1;:::;rg
I 0tJ 0Df1;:::;sg

�I;I 0;J;J 0
�
.idC�˝�/�0.b/˝�.x/

C.idC�˝�/�0.�.b//˝�.�.x//
�
j yA�I �

yA
�0
I 0
� yA�J �

yA
�0
J 0

D

X
ItJDf1;:::;rCsg

.b˝xC�.b/˝�.x//j yA.�t�0/
I
� yA.�t�0/

J

D Œ�.bˇx/�j yA�� yA�0
:

In these equalities we used the identities of Lemma 5.10 to perform the substitutions
.�˝ �/�.x/D�.x/ and .id˝ �/�.x/D .�˝ id/�.x/D�.�.x//; � t� 0 is assumed
to be .2k1 ; : : : ; 2kr ; 2h1 ; : : : ; 2hs /; I D I \ f1; : : : ; rg and J D J \ f1; : : : ; rg, while
I 0 and J 0 are I \fr C 1; : : : ; r C sg and J \fr C 1; : : : ; r C sg suitably shifted. The
sum should be over all I , J , I 0 and J 0 such that at least one between I and J does not
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contain an l such that kl D 0 and at least one between I 0 and J 0 does not contain an l
such that hl D 0. However, since the restriction of positively charged gathered blocks
is zero on elementary abelian 2–subgroups corresponding to admissible partitions
containing 1, we can restrict the sum only to the terms for which ki ¤ 0 for all i 2 I
and hi ¤ 0 for all i 0 2 I 0. This condition is equivalent to I not containing 1, and we
can, once again, restrict the last sum only to these terms and get the last equality.

Proof of Proposition 5.13 Using Proposition 6.9, the newly proved Proposition 5.14,
Proposition 6.10, and the fact that cup products commute with restrictions, we check that
the desired identity hold when restricted to maximal elementary abelian 2–subgroups.
Then Theorem 6.2 yields the relations in AD .

7 Proofs of the main theorems

We devote this section to the proofs of the presentation theorems for AB and AD .
They will be proved by comparing restrictions to elementary abelian 2–subgroups and
exploiting Theorem 6.2. We will separate two technical lemmas from the proofs for
the sake of clarity of exposition.

We first provide a proof for our structure theorem for AB .

Lemma 7.1 Let k > 0. The kernel of the restriction map

H�.A.2k/IF2/
NWB

2k
.A
.2k/

/
!H�.A.2k/\A.2k�1;2k�1/IF2/

is the ideal generated by d2k�1.

Proof From Swenson’s description of A� , stated as in Proposition 6.4, we can identify
A.2k/ with the image of the diagonal embedding id�d W†2�Vk�1!†2oVk�1!WB

2k
.

Its intersection with the product A.2k�1;2k�1/ D Vk�1 � Vk�1 is identified with the
subgroup Vk�1 �†2 �Vk�1, embedded diagonally in WB

2k
.

The restriction to this subgroup maps f2k to .f2k�1/
2, d2k�2l to .d2k�1�2l�1/

2 if l >0,
and d2k�1 to 0. This is known, but we sketch a proof for completeness. If we chose
bases fx; y1; : : : ; ykg of H 1.A.2k/IF2/ and fx; y1; : : : ; yk�1g of H 1.A.2k�1/IF2/ as
in Section 6.2, the restriction is given by x 7! x, yi 7! yi if 1� i < k and yk 7! 0. The
polynomial Fk.t/ D

Q
v2H1.Vk IF2/

.t C v/ in H�.VkIF2/Œt � restricts to .Fk�1.t//2.
Since f2k D Fk.x/, we deduce the formula for f2k . The identities for d2k�2l are
obtained from this by using the classical identity Fk.t/D

Pk
iD0 t

2id2k�2i .
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Proof of Theorem 5.9 Let A0B be the Hopf ring generated by k;m and ım with the
desired relations. Since the relations mentioned above hold in AB , there exists an
obvious morphism ' W A0B ! AB .

We need to fix a total ordering� on the set Pn of admissible partitions of n such that, for
all �; � 0 2 Pn, � 0 > � if � 0 is a refinement of � . In other words, � extends the partial
ordering given by refinement. Let b be a nontrivial gathered block in AB . There exist
unique nonnegative integers n and m such that b D

Qn
iD1 

ai
i;2n�im

ı
a0
2nm with an ¤ 0.

We consider the partition of 2nm �b D .2
n; : : : ; 2n/. Given x D b1ˇ � � �ˇ br 2MB ,

let �x D
Fr
iD1 �bi . As a consequence of Propositions 6.5, 6.6 and 6.7, xjA� ¤ 0

implies that �x > � . Explicitly, if b D
Qn
iD1 

ai
i;2n�im

ı
a0
2nm,

bjA�b D

�
f
a0
2n

nY
iD1

d
ai
2n�2n�i

�̋ m

:

For any xD b1ˇ� � �ˇbr 2MB , xjA�n is the symmetrization of
Nr
iD1 bi jA�bi

. Given
a partition � , let M� be the set of elements x 2M such that �x D � .

We first prove that ' is injective. We proceed by contradiction, and we assume that
there exists a nontrivial sum

P
i xi of elements of MB that is 0 when restricted to

every elementary abelian 2–subgroup. Let � be maximal among the set of partitions
f�xi gi . Since, by the explicit calculation above, the restrictions of the elements of M�

to A� are linearly independent, this gives a contradiction.

To prove surjectivity, it is sufficient, by Theorem 6.2, to prove that an element ˛ of the
Quillen group F�WBn can be written as the image via qWBn of a linear combination of
elements of MB . Note that such an ˛ is determined by its values ˛� on the maximal
abelian 2–subgroups A� . Let N�˛ Dmaxf� 2 Pn j ˛� ¤ 0g with respect to the chosen
linear ordering. We write N�˛ D .2k1 ; : : : ; 2kr /. We proceed by induction on N�˛.
˛ N�˛ must be invariant with respect to the action of the normalizer NWBn .A N�˛ /. By
Swenson’s description of these invariant subalgebras stated in Proposition 6.4, it is a
sum of elements

P
i ci;1˝ � � �˝ ci;r , with

ci;j D

kj�1Y
lD1

d
ai;j;l

2
kj�2

kj�l
f
ai;j;0

2
kj
2H�.A

.2
kj /
IF2/:

We must have ai;j;kj ¤ 0 for all i and j . Otherwise, we can define a partition � 0

obtained from N�˛ by substituting 2kj with two parts both equal to 2kj�1 and observe
that, by Lemma 7.1, we must have ˛ N�˛ jA N�˛\A�0 ¤ 0. Thus ˛� 0 ¤ 0 and this would
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contradict the maximality of N�˛ . By our calculations above, since ˛ N�˛ must be invariant
by permutations of tensor factors, this condition guarantees the existence of an element
x in the linear span of M N�˛ such that xjA N�˛ D ˛ N�˛ . This reduces the statement to
˛0 D ˛C qWBn .x/ for which, by construction, N�˛0 < N�˛ , and completes the induction
argument.

We now focus on the presentation of AD .

Lemma 7.2 Let M2 �MD be the set of Hopf monomials in A0D whose constituent
gathered blocks are all of the form .ı0

2kW0
/r.˙

1;k
/s with r � 0 and s > 0, or of the form

.ı02W0/
a with a � 0. Then , for all m � 0, M2 \H

�.WD2m IF2/ restricts to a linearly
independent set in H�. yA.2/m IF2/. Moreover , the image of M2 in the cohomology of
yA.2/m generates the kernel of the restriction

�2;1 WH
�. yA.2/m IF2/

NWD2m
. yA.2/m /

!H�. yA.1/4[.2/m�2 \ yA.2;2/IF2/:

Proof Note that, due to Theorem 6.8 and Proposition 6.9, the Hopf monomials
in M2 \ H

�.WD2 IF2/ restrict to linearly independent elements in H�. yA.2/IF2/.
Therefore, to prove the linear independence claim for m> 1, it is enough to check that
the restrictions of the elements of M2 \H

�.WD2m IF2/ to H�.W m
D2
IF2/ (which is

a component �.2/m of the coproduct) are linearly independent. Let F be the weight
filtration on A0D provided by Definition 5.20. It is enough to prove that this set is
linearly independent when working in the associated graded spaces grF .A

0
D/ and

grF .H
�.W m

D2
IF2//. In this setting, the image of a gathered block bC

l;t
2M2 (resp.

b�
l;t
2M2) under grF .�.2/m/ is

P
"1;:::;"l

Nm
iD1 b

"i
1;t , where the sum is over all l–tuples

."1; : : : ; "l/ with "i 2 fC;�g and the cardinality of the set fi W 1 � i � l; "i D �g is
even (resp. odd). Combining this with Proposition 5.14, we check the claim directly.

By Propositions 6.9 and 6.10, every element of M2 restricts to 0 on yA� whenever
1 2 � . Therefore, it is contained in the kernel of �2;1. We now prove the opposite
inclusion. With the notation of Theorem 6.8, we write

H�.A.2/m IF2/
NWD2m

.A.2/m /
D .F2Œf2; d1�

˝m/†mf1; hmg:

We note thatA.2/m\ yA.1/4[.2/m�2DA.2/m\A.1/4[.2/m�2 . Moreover, hmDC1;mjA.2/m
is 0 when restricted to A.2/m \ yA.1/4[.2/m�2 . Therefore, Lemma 7.1 implies that
ker.�2;1/ is the ideal generated by hm and d˝m1 D �2;1.

C
1;mC 

�
1;m/jA.2/m . Finally,

the generators belong to the image of M2, the linear subspace generated by M2 is a
�–subalgebra by our formulas in A0D , and restriction maps preserve cup products.
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Proof of Theorem 5.15 Let A00D be the almost Hopf ring generated by elements of the
form ı0nWm, ˙

k;m
, and 1� with the desired relations. Let ' W A00D! A0D be the obvious

morphism. We also consider the F2–vector space A000D with basis MD . By our relations
for A0D , MD generates A00D . Thus, there is a surjective linear map '0 W A000D ! A00D .
To prove that '0 is an isomorphism it is enough to prove that '00 D '0' is. Since in
component 0 this is obvious, we can consider only positive components and replace
A0D with AD . For technical reasons, we consider the set M0D , which differ from MD

by replacing neutral gathered blocks with elements of the form �
�Qn

iD2.ıi ˇ 1n�i /
ki
�

for k2; : : : ; kn � 0. As shown in Lemma 5.18, this corresponds, at the level of A000D , to
performing a change of basis. Hence, it does not affect the argument.

We adapt the argument used in the proof of Theorem 5.9. We define �x for x 2M0D as
we did for AB , with the only difference that gathered blocks of the form b D .ı02W0/

m

have �b D .2/, because .1; 1/ does not define a maximal elementary abelian subgroup
in WD2 . It is still true that xj yA� D 0 unless �x is a refinement of � . We extend
refinement of admissible partitions to a total ordering �, and we use the same argument
by induction on� adopted for AB . Our choice of the new basis M0D makes evident that
for all admissible partitions � the set M0� D fx 2M0D j �x D �g restricts to a linearly
independent set in the cohomology of yA� when 1 2 � , and Lemma 7.2 guarantees
that this is true if 1 … � and 2 2 � . Hence, the injectivity part works verbatim. We
need to adapt the surjectivity argument for admissible partitions � such that 1 … � and
2 2 � (in all other cases, nothing changes). In these cases, we use Lemma 7.2 instead
of Lemma 7.1 to carry on the proof.

8 Steenrod algebra action

This section is devoted to the calculation of the Steenrod algebra action on AB and AD .
We first observe that, since the coproducts and transfer products are induced by (stable)
maps, they satisfy a Cartan formula with respect to Steenrod squares. In other words,
AB and AD are almost-Hopf rings over the Steenrod algebra. Thus it is sufficient
to determine the action of the Steenrod squares on the generators ı2n , k;2n , ı0nWm
and ˙

k;2n
.

Definition 8.1 [7] We define the following notions:

� The height (ht) of a gathered block in AB or AD is the number of generators
that are cup-multiplied to obtain it, and the height of a Hopf monomial x D
b1ˇ � � �ˇ br is maxriD1 ht.bi /.
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� The effective scale (effsc) of a gathered block in the cohomology of WBn
(resp. WDn) is the least l such that n=2l is an integer and its restriction to
W
n=2l

B
2l

(resp. W n=2l

D
2l

) is nonzero, and the effective scale of a Hopf monomial
x D b1ˇ � � �ˇ br as minriD1 effsc.bi /.

� A full-width monomial is a Hopf monomial in AB (resp. AD) of which no
constituent block is of the form 1WBn (resp. 1WDn ).

Theorem 8.2 (cf [7, Theorem 8.3, page 191]) Let k; n� 1 and i � 0. Then , in AB ,
the following formulas hold :

� Sqi .k;2n/ is the sum of all the full-width monomials x 2 MB of degree
2nCk � 2n C i with ht.x/ � 2 and effsc.x/ � k in which generators of the
form ık do not appear.

� Sqi .ı2n/ is the sum of all the full-width monomials x 2MB of degree 2nC i
with ht.x/� 2 and effsc.x/� 1 such that a generator of the form ık appears in
every constituent gathered block of x.

Proof The calculation for Sqi .k;2n/ is an obvious consequence of [7, Theorem 8.3,
page 191]. Regarding Sqi .ı2n/, since ı2n is the top-dimensional Stiefel–Whitney class
of the reflection representation U2n by Proposition 5.3, by Wu’s formula Sqi .ı2n/D
wi .U2n/ı2n . Defining, by convention, k;0 D 1, let

ui D
X

j0;:::;jn�0;
Pn�1
rD1 2

rjrCjnCj0D2
nPn�1

rD1.2
r�1/jrCjnDi

n�1K
rD1

r;jr ˇ ırn ˇ 1WBj0
:

We computed the restriction of wi .U2n/ to the maximal elementary abelian subgroups
A� in the proof of Proposition 6.6. It coincides with the restriction of ui by our previous
calculations based on Proposition 6.5. Thus,

Sqi .ı2n/D wi .U2n/ı2n D uiı2n ;

and this class is exactly the sum of all the desired Hopf monomials x.

Regarding the calculation of the Steenrod squares on the generators of AD , We observe
that the calculation for Sqi .ınWm/ is implicit in Theorem 8.2 since ınWm D �.ınˇ 1m/
and � commute with Steenrod operations. Thus we only need to consider generators of
the form ˙

k;n
.
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Theorem 8.3 Let k; n� 1 and i � 0. Then , in AD , Sqi .C
k;n
/ (resp. Sqi .�

k;n
/) is the

sum of all the full-width monomials x 2 BC (resp. x 2 B�) of degree 2nCk � 2nC i
with ht.x/� 2 and effsc.x/� l in which generators of the form ınWm do not appear.

Proof We recall that Definition 6.11 provides, for all maximal elementary abelian
2–subgroup A � WD2n , subspaces HCA and H�A of the cohomology of A. A direct
calculation shows that Sqi .hn/ 2 HC.2/n . Since restrictions preserve the Steenrod
squares, Sqi .C1;n/ is mapped to an element of HCA for all maximal elementary abelian
2–subgroups A � WD2n and all choices of i and n. Similarly, the restriction of
Sqi .�1;n/ to every such subgroup A lies in H�A . Let xC (resp. x�) be the sum of all
the positively (resp. negatively) charged Hopf monomials considered in the statement.
By Proposition 6.12, the restriction of xC (resp. x�) belongs to HCA (resp. H�A ).

Moreover Sqi .C
k;n
/C Sqi .�

k;n
/D �.Sqi .k;n//. Consequently, Theorem 8.2 implies

that Sqi .C
k;n
/CSqi .�

k;n
/D xCC x�.

Since HCA \H
�
A D 0 for all A, the two facts above guarantee that Sqi .C

k;n
/D xC and

Sqi .�
k;n
/D x�.
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Operads in unstable global homotopy theory

MIGUEL BARRERO

We study operads in unstable global homotopy theory, which is the homotopy theory
of spaces with compatible actions by all compact Lie groups. We show that the
theory of these operads works remarkably well, as for example it is possible to give a
model structure for the category of algebras over any such operad. We define global
E1–operads, a good generalization of E1–operads to the global setting, and we
give a rectification result for algebras over them.
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1 Introduction

Operads were first introduced by May [17] to study infinite loop spaces. Since then
they have found uses in many areas of mathematics, including algebra, higher category
theory, geometry, and mathematical physics. In general, an operad codifies a collection
of operations of varying arity in a symmetric monoidal category.

An algebra over an operad O is a representation of the abstract operations that the
operad encodes as actual operations in some object. For example, an algebra over the
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3294 Miguel Barrero

commutative operad Comm is a commutative monoid in the given symmetric monoidal
category. Another important example is that of an E1–operad, which encodes a
binary operation that is unital, associative and commutative but only up to all higher
homotopies.

One area that has seen increased interest in the last decade is equivariant homotopy
theory. It is dedicated to studying the homotopy theory of spaces with an action by a
topological group G. One can construct operads in the category of G–spaces, and this
yields a theory that is remarkably different to the nonequivariant case. Unlike in the
nonequivariant case, where all E1–operads are equivalent, there are multiple possible
nonequivalent notions of what an E1–operad in G–spaces could be, all of which are
nonequivariantly E1–operads. For example, there is the naive one, an E1–operad in
spaces given the trivial G–action. This is however not the best choice when one wants
to study objects like equivariant infinite loop spaces or equivariant spectra with some
multiplicative structure.

Instead the better choice is to look at both the G–action and the †n–action on each
On at the same time. An E1–G–operad is an operad in G–spaces where each On

is a universal space for the family of graph subgroups of G � †n. Algebras over
an E1–G–operad have more structure than algebras over a naive E1–operad in
G–spaces.

In this paper we look at operads in the setting of unstable global equivariant homotopy
theory. This is the homotopy theory of spaces which have simultaneous and compatible
actions by all compact Lie groups. There are important equivariant constructions, like
equivariant K–theory spectra and equivariant Thom spectra, that can be understood as
a single globally equivariant object. We work with the model for unstable global homo-
topy theory based on orthogonal spaces, introduced by Schwede [22]. An orthogonal
space can be thought of as the unstable analog of an orthogonal spectrum. There are
some similarities between the theories of operads in the global equivariant setting and
the G–equivariant setting for a single group G, but operads in the global equivariant
setting are technically better behaved.

An orthogonal space has an underlying K–space for each compact Lie group K. We
study orthogonal spaces through these compatible K–actions for each K. A morphism
of orthogonal spaces is said to be a global equivalence if it is an equivalence of
underlying K–spaces for each compact Lie group K. There is a model structure in the
category of orthogonal spaces with these global equivalences as the weak equivalences,
called the global model structure.

Algebraic & Geometric Topology, Volume 23 (2023)
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A natural question to consider is whether one can construct a model structure on Alg.O/
the category of algebras over a given operad O in orthogonal spaces using the global
model structure on the underlying category.

Question Does the forgetful functor create the weak equivalences and fibrations of
some model structure on the category of algebras over a given operad O?

The first place where this question was examined for a general category was in
Spitzweck’s PhD thesis [25], which provided some conditions under which this is
true. The main technical point there was a factorization for pushout diagrams in the
category of algebras over an operad. A different approach was used by Berger and
Moerdijk [3]. Pavlov and Scholbach [19] studied this question most extensively with
full generality, and White and Yau [26] studied an analogous question for semimodel
structures. We use a different factorization for pushout diagrams given by Sagave and
Schlichtkrull [21], originally from Elmendorf and Mandell [7].

The first main result that we obtain is that the desired model structure exists for any
operad in orthogonal spaces.

Theorem 4.11 Let O be any operad in .Spc;�/ the category of orthogonal spaces ,
with the positive global model structure and the symmetric monoidal structure given
by the box product. Then there is a cofibrantly generated model category structure on
Alg.O/, the category of algebras over O, where the forgetful functor UAlg.O/ creates the
weak equivalences and fibrations , and sends cofibrations in Alg.O/ to h–cofibrations
in Spc.

This result is surprising, in that it holds for all operads. Such a result generally holds
for all operads if the category is nice enough, for example symmetric spectra based
on simplicial sets; see the work of Harper [12]. One relevant property there is that all
simplicial sets are cofibrant. Since not all orthogonal spaces are cofibrant, the approach
of [12] does not apply to the present case.

Instead we use that the box product of orthogonal spaces is fully homotopical. By
definition, this means that the box product of two global equivalences is a global
equivalence, without any cofibrancy assumptions. This in turn removes any cofibrancy
assumptions on the operad in Theorem 4.11.

Theorem 4.11 was proven by Schwede [22] for the specific case of the commutative
operad Comm. Algebras over Comm are the commutative monoids in orthogonal
spaces with respect to the box product, which are usually called ultracommutative
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monoids, and they have a very rich structure. We generalize the result in [22] to any
operad. To accomplish this we need to use several different technical results and tools.

Some of these technical results deal with the †n–objects in the category of orthogonal
spaces, and so we study them in detail. We consider more generally orthogonal spaces
which have an additional action by a fixed compact Lie group G, which we call
G–orthogonal spaces. Thus, the underlying K–space of a G–orthogonal space is a
.K�G/–space.

We define the notion of a G–global equivalence between G–orthogonal spaces, which
takes into account both the G–action, and the action by each compact Lie group K.
We also study various properties of these G–orthogonal spaces. In the appendix we
give a model structure for G–orthogonal spaces which has the G–global equivalences
as weak equivalences. Since G is any compact Lie group, the results of the appendix
are new in this generality.

This notion of “globally equivariant objects” with an additional action by a fixed
group G was studied extensively by Lenz in the context of algebraic K–theory [15].
There, various model structures were given for a discrete group G not necessarily finite.
Orthogonal spaces and orthogonal spectra with a G–action for a compact Lie group G

were also studied from the global point of view by Schwede [23]; however no model
structure was defined there.

Our second main result is a characterization of morphisms of operads in orthogonal
spaces that induce a Quillen equivalence between the respective categories of algebras.

Theorem 4.14 Let g WO! P be a morphism of operads in .Spc;�/, the category of
orthogonal spaces , with the positive global model structure and the symmetric monoidal
structure given by the box product. Then the extension and restriction adjunction
.g!;g

�/ is a Quillen equivalence between the respective categories of algebras if and
only if for each n� 0 the morphism gn WOn! Pn is a †n–global equivalence.

As was the case with Theorem 4.11, this result applies in full generality, to any morphism
between any two operads. For a morphism g between “nice” operads, it is enough
to require that the morphisms gn are weak equivalences in the underlying category
to obtain a Quillen equivalence, as shown by Spitzweck [25]. However, for arbitrary
operads in orthogonal spaces Theorem 4.14 does not hold if each gn is merely a global
equivalence, it additionally needs to be a †n–global equivalence. In particular, if O
is a topological E1–operad given the trivial global structure, Alg.O/ is not Quillen
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equivalent to the category of ultracommutative monoids. Thus, as in the G–equivariant
setting mentioned at the beginning, this naive global E1–operad is not the best one to
consider.

Instead, Theorem 4.14 suggest a good notion of what an E1–operad in the global
equivariant sense should be. We define a global E1–operad to be an operad O in
.Spc;�/ such that each On is †n–globally equivalent to �, the one-point orthogonal
space. Then the naive global E1–operads of the previous paragraph are not actually
global E1–operads. For any global E1–operad O, Theorem 4.14 implies that the
category of algebras over O is Quillen equivalent to the category of ultracommutative
monoids. Thus, any algebra over a global E1–operad can be rectified to an ultra-
commutative monoid, and so these algebras also encode the highest possible level of
commutativity.

In this article we provide several examples of global E1–operads. Some of these are
global analogs of classical operads in (equivariant) homotopy theory. These include a
global version of the little disks operad and the Steiner operad, which are constructed
in a similar way to the little disks and Steiner G–operads associated to a G–universe
for a compact Lie group G.

In the G–equivariant case, there is a whole hierarchy of nonequivalent operads between
a naive E1–operad in G–spaces and an E1–G–operad. These in-between operads
are called N1–operads, and were introduced by Blumberg and Hill [4]. They codify
various levels of commutativity, by imposing the existence of certain additive trans-
fers/multiplicative norms. In the global setting, there is also a hierarchy of operads
between the naive global E1–operads and the global E1–operads. These operads in
orthogonal spaces are the global analogs of N1–operads. We provide a classification
of them in [1].

Structure of this paper

In Section 2 we begin by recalling the basic properties of operads as defined in any
symmetric monoidal category. We then introduce unstable global homotopy theory,
to put in context the questions that we examine. We also give plenty of examples of
operads in orthogonal spaces, to build some intuition.

In Section 3, we study G–orthogonal spaces. We begin by defining the G–global
equivalences, and checking their basic properties. We then look at how G–global equiv-
alences interact with taking G–orbits and with the box product. Lastly we introduce
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the h–cofibrations of G–orthogonal spaces, which are used in the proofs of our main
results, Theorems 4.11 and 4.14, presented in Section 4.

In Section 5 we introduce global E1–operads, and check that several of the examples
of global operads given in Section 2 are global E1–operads.

There is a model structure on G–orthogonal spaces with the G–global equivalences as
the weak equivalences. For completeness, we present the construction of this model
structure in the appendix. We do not need this model structure to prove our main
theorems.

Notation and conventions

We introduce here various mathematical and notational conventions that are used
throughout this article.

Whenever we talk about a space we are referring to a compactly generated weak
Hausdorff topological space. We use Top to denote the category of such spaces. In
the rare cases where we refer to a general topological space, we do so explicitly. We
underline the names used for specific categories, like Set or Top, but not the variables
like C. In particular, G denotes the one-object groupoid associated to a group G.

We often use il to refer to the boundary map il W @D
l ! Dl in Top for each l � 0.

Similarly we use jl for the inclusion jl WD
l ŠDl � f0g !Dl � Œ0; 1� for l � 0.

We use � for the categorical product, � for the box product of orthogonal spaces
introduced in Remark 2.6, and˝ for the tensor product in a generic symmetric monoidal
category.

In this article we only consider compact Lie groups, and closed subgroups of them. By
default, an inner product space refers to a real inner product space, finite-dimensional
unless stated otherwise, and for a compact Lie group G, a G–representation means an
orthogonal G–representation in an inner product space, also finite-dimensional unless
stated otherwise.

A complete G–universe is a countably infinite-dimensional orthogonal G–representation
with nonzero fixed points, and such that for each finite-dimensional G–representation V ,
a countably infinite direct sum of copies of V embeds G–equivariantly into UG . We
denote a complete G–universe by UG .
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We write †n for the symmetric group on n elements. By default, group actions are left
group actions. Sometimes we turn a right action into a left action and vice versa by
acting via the inverse, without saying so explicitly.

Let G be a compact Lie group. For any set F of closed subgroups of G, we say that a
morphism f WX!Y of G–spaces is an F–equivalence (resp. an F–fibration) if for any
H 2F the restriction of f to the H–fixed points f H WX H !Y H is a weak homotopy
equivalence (resp. a Serre fibration). For each set F of closed subgroups of G there
is a cofibrantly generated model structure on GTop the category of G–spaces, with
the F–equivalences as weak equivalences and the F–fibrations as fibrations; see [22,
Proposition B.7]. We refer to the cofibrations of this model structure as F–cofibrations.
If the set F is the set of all closed subgroups of G, we instead use G–equivalences,
G–fibrations, and G–cofibrations to refer to these classes of morphisms.

Given two compact Lie groups K and G we refer often to the set of graph subgroups of
K�G, denoted by F.K;G/ and defined in Definition 3.1. We generally use � to denote
a graph subgroup. Whenever we also need to refer to the continuous homomorphism �

associated to the graph subgroup, we use �� to denote the graph subgroup.

Finally, when we talk about small objects in a category with respect to a class of
morphisms, we follow the conventions of [13, Section 2.1.1]. We use the letters I, J
and K to denote sets of generating (acyclic) cofibrations of various model categories.
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2 Background

2.1 Operads

Let C be a cocomplete symmetric monoidal category, where the tensor product preserves
all small colimits in both variables. We follow the exposition of [9] to define operads
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in C. Let †�–C denote the category of symmetric sequences in C, these are sequences
fX.n/gn2N of objects of C where each X.n/ has a right †n–action. So explicitly,
†�–C is the functor category Fun

�`
n2N †n;C

�
.

One can define a composition monoidal structure on †�–C, denoted by ı; see [9, 2.2.1
and 2.2.2]. Then an operad in C is just a monoid in .†�–C; ı/. An operad O in C

gives a monad F.O/ on C; see [9, 2.1.1 and 2.2.1]. An algebra over this operad is
defined as an algebra over the monad F.O/. We use Alg.O/ to denote the category
of algebras over O, and write FAlg.O/ and UAlg.O/ for the adjoint free and forgetful
functors between C and Alg.O/.

From now on, let C additionally be a cofibrantly generated model category. Given an
operad O in C we want to lift the model structure of C through the forgetful functor
UAlg.O/ W Alg.O/!C. That is, we want to consider the class of those morphisms which
UAlg.O/ sends to weak equivalences, and the class of those sent to fibrations, and ask
the question of whether these two classes determine a model structure on Alg.O/. If
they do, we say that the operad O is admissible.

The result [24, Lemma 2.3] gives conditions under which one can lift a model structure to
the category of algebras over a monad. Let I and J denote sets of generating cofibrations
and acyclic cofibrations of C, respectively. Set IODFAlg.O/.I/ and JODFAlg.O/.J/, and
let IO–reg and JO–reg denote the regular IO–cofibrations and regular JO–cofibrations
in Alg.O/. Those are the transfinite compositions of cobase changes in Alg.O/ of
morphisms in IO and JO. Applying [24, Lemma 2.3] to the monad F.O/ associated to an
operad O, and using that F.O/ always preserves filtered colimits [9, Proposition 2.4.1],
one obtains the following result.

Lemma 2.1 ([24, Lemma 2.3] applied to operads) Let O be an operad in C. Assume
that the sources of morphisms in IO and JO are small with respect to IO–reg and
JO–reg, respectively, and that every morphism in JO–reg is a weak equivalence in C.
Then Alg.O/ is a cofibrantly generated model category where UAlg.O/ creates the weak
equivalences and fibrations and IO and JO are generating sets of cofibrations and acyclic
cofibrations.

We have the following refinement of the result above, inspired by and similar to [9,
Proposition 11.1.14].

Theorem 2.2 Let C be a symmetric monoidal category which is also a cofibrantly
generated model category with sets of generating cofibrations and acyclic cofibrations I
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and J, respectively , and such that the monoidal product preserves all small colimits in
each variable. Let Hcof be a class of morphisms in C which satisfies the following:

(a) Hcof is closed under retracts and transfinite compositions.

(b) The sources of morphisms in I and J are small with respect to Hcof .

(c) A map which is a transfinite composition of morphisms that are both in Hcof and
are weak equivalences , is a weak equivalence.

Fix any operad O in C, and assume that for each pushout in Alg.O/ of the form

(1)
FAlg.O/.X / FAlg.O/.Y /

A B

FAlg.O/.i/

f p

the following hold :

(1) If i 2 I then UAlg.O/.f / is in Hcof .

(2) If i 2 J then UAlg.O/.f / is a weak equivalence.

Then the conditions of Lemma 2.1 are satisfied , so Alg.O/ is a cofibrantly generated
model category, where UAlg.O/ creates the weak equivalences and fibrations , and IO and
JO are generating sets of cofibrations and acyclic cofibrations of Alg.O/. Furthermore ,
UAlg.O/ sends cofibrations to morphisms in Hcof .

Note that in the conditions of Theorem 2.2 the class of morphisms Hcof is not required
to contain all the cofibrations of C. In our application of Theorem 2.2 in Section 4.1, we
take Hcof to be the class of h–cofibrations, the morphisms with the homotopy extension
property, hence the notation. In most settings, including the model of unstable global
homotopy theory we use, the class of h–cofibrations does contain all cofibrations, but
as mentioned this is not necessary.

Proof of Theorem 2.2 We have to check that the sources of morphisms in IO and JO

are small with respect to IO–reg and JO–reg, respectively, and that every morphism in
JO–reg is a weak equivalence in C. Then by Lemma 2.1 the claim follows.

By [5, Proposition 4.3.2], UAlg.O/ preserves filtered colimits. Morphisms in IO–reg are
transfinite compositions of cobase changes of morphisms with the form FAlg.O/.i/ for
i 2 I, as in diagram (1). Therefore, by our assumptions, UAlg.O/ sends morphisms in
IO–reg to Hcof .
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Let X be the source of a morphisms in I. By (b), X is �–small with respect to Hcof
for some cardinal �. Let � be a �–filtered ordinal, and V W �! Alg.O/ a �–sequence
which lands in IO–reg. Then

colim
�

HomAlg.O/.FAlg.O/.X /;V /Š colim
�

HomC.X;UAlg.O/ ıV /

Š HomC

�
X; colim

�
UAlg.O/ ıV

�
Š HomC

�
X;UAlg.O/

�
colim
�

V
��

Š HomAlg.O/
�
FAlg.O/.X /; colim

�
V
�

and FAlg.O/.X / is �–small with respect to IO–reg. In the second isomorphism we
are using that UAlg.O/ sends morphisms in IO–reg to Hcof and that X is �–small with
respect to Hcof .

Let T denote the class of morphisms with the right lifting property with respect to IO.
By adjointness these are precisely those morphisms which UAlg.O/ sends to acyclic
fibrations. By adjointness again JO has the left lifting property with respect to T , and
then so does JO–reg.

Let f be a morphism of Alg.O/ which has the left lifting property with respect to T .
Use the small object argument for IO on f to obtain that f is a retract of h 2 IO–reg,
and therefore UAlg.O/.f / is a retract of UAlg.O/.h/ 2 Hcof . Therefore UAlg.O/ sends
JO–reg to Hcof , and so we can repeat the previous argument to obtain that sources of
morphisms in JO are small with respect to JO–reg.

For the second condition, let f 2JO–reg be the transfinite composition of morphisms f˛ ,
such that each f˛ is a cobase change (in Alg.O/) of FAlg.O/.j˛/ for j˛ 2 J. The
morphism FAlg.O/.j˛/ has the left lifting property with respect to T , and then so does
each f˛. Then by the previous discussion UAlg.O/.f˛/ is in Hcof , and it is a weak
equivalence by the hypothesis of the theorem. Since UAlg.O/ preserves transfinite
compositions, UAlg.O/.f / is a transfinite composition of morphisms that are both in
Hcof and are weak equivalences, and so UAlg.O/.f / is a weak equivalence.

Remark 2.3 Usually in a category with both a model structure and a monoidal structure,
two compatibility conditions are required; see for example [24, Definition 3.1]. These
are the pushout product axiom, and the requirement that the unit is cofibrant. These
are not necessary to prove Theorem 2.2, but something similar to the pushout product
axiom is usually needed to actually check that condition (2) of Theorem 2.2 holds in
practice.
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Remark 2.4 The question of under which conditions on a category and on an operad
one can lift the model structure to the category of algebras over said operad has been
studied in a few different places and with diverse methods. As far as we can tell, the
first place where this was examined in generality was in Spitzweck’s PhD thesis [25].
It was proven there that a model structure can be lifted assuming that the category C

satisfies the monoid axiom and that the operad is cofibrant [25, Theorem 4].

The condition that an operad is cofibrant in the model structure on operads constructed
in [25] is quite restrictive. It is stronger than asking that each On is cofibrant, or even
†n–cofibrant. In addition in the setting of global homotopy theory, it is not enough to
look at the category of algebras over a cofibrant replacement of an operad (in the usual
sense), as this gives the wrong homotopy theory, which we show in Remark 4.16.

2.2 Unstable global homotopy theory

Unstable global homotopy theory is the homotopy theory of spaces which have simul-
taneous and compatible actions by all compact Lie groups. A model for this is the
category of orthogonal spaces, studied in detail in [22, Chapter 1].

Definition 2.5 [22, Definition 1.1.1] Let L be the Top–enriched category where the
objects are finite-dimensional real inner product spaces, and the morphisms are the
linear isometric embeddings between them.

An orthogonal space is a Top–enriched functor L! Top. We use Spc to denote the
Top–enriched category of orthogonal spaces. Note the similarity of this definition to
the definition of orthogonal spectra as enriched functors.

If we have a compact Lie group K, and V is a K–representation, then X.V / inherits a
K–action, where k 2K acts via X.k/. In this sense, orthogonal spaces have actions by
all compact Lie groups. For each compact Lie group K we fix a complete K–universe
UK for the rest of this article. Let s.UK / denote the poset of finite-dimensional
subrepresentations of UK . Then we can associate to any orthogonal space the K–space

X.UK /D colim
V 2s.UK /

X.V /;

which we call the underlying K–space. This yields a functor

.�/.UK / W Spc! KTop:

A global equivalence of orthogonal spaces is, roughly speaking, a morphism which for
each compact Lie group K, induces K–equivalences on suitable homotopy colimits of
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finite-dimensional K–representations and equivariant embeddings between them. The
precise definition can be found in [22, Definition 1.1.2]. It is also a special case of the
definition of a G–global equivalence that we give in Definition 3.2 of this article, with
G D e.

An orthogonal space X is said to be closed if for each linear isometric embedding  ,
the map X. / is a closed embedding. A morphism between closed orthogonal spaces
is a global equivalence if and only if for each compact Lie group K the induced
map on the underlying K–spaces is a K–equivalence; see [22, Proposition 1.1.17], or
Proposition 3.5 below for the analogous result for G–global equivalences.

Remark 2.6 There are two symmetric monoidal structures on Spc which are relevant
for us. The first one is the categorical product, denoted by �, which is computed
levelwise. The second is the box product, denoted by �. It is constructed as a Day
convolution product in [22, Section 1.3]. The unit of both is the terminal one-point
constant orthogonal space �.

The box product can also be defined via a universal property. For each X;Y 2 Spc,
consider the orthogonal spaces Z with a bimorphism .X;Y /! Z from X and Y .
Then the box product of X and Y is an orthogonal space X � Y and a bimorphism
i W .X;Y /! X � Y of orthogonal spaces which is initial among such bimorphisms
with source .X;Y /.

Remark 2.7 On Spc there are two cofibrantly generated model structures whose weak
equivalences are precisely the global equivalences: the global model structure [22,
Theorem 1.2.21] and the positive global model structure [22, Theorem 1.2.23]. In the
rest of this article we only consider the positive global model structure.

2.3 Examples of operads in unstable global homotopy theory

In this paper, we study operads in orthogonal spaces with respect to the box product.
This subsection is mostly devoted to showcasing several examples, which we study in
more detail in Section 5.

Remark 2.8 For orthogonal spaces X;Y 2 Spc, we can construct a bimorphism
.X;Y /!X �Y via

(2) X.V /�Y .W /
X .�1/�Y .�2/
�������!X.V ˚W /�Y .V ˚W /D .X �Y /.V ˚W /:
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This bimorphism yields a morphism of orthogonal spaces

�X ;Y WX �Y !X �Y

which is natural in X and Y . This means that the identity functor is a lax symmet-
ric monoidal functor from .Spc;�/ to .Spc;�/, or equivalently an oplax symmetric
monoidal functor from .Spc;�/ to .Spc;�/.

Therefore given an operad O in .Spc;�/, the natural transformation � gives an operad
in .Spc;�/, with the same On for all n� 0. We denote this resulting operad in .Spc;�/
by O�.

Example 2.9 (constant operads in Spc obtained from topological operads) For any
X 2 Top, we can consider the constant orthogonal space X , that is the constant functor
L! Top with value X . This means that for any group K the underlying K–space of
X is just X with the trivial K–action.

Any operad in spaces O induces a constant operad O in Spc, such that .O/n DOn.

Construction 2.10 (operad from a functor to topological operads) Given a continuous
functor F from L to the category of operads in spaces, OP–Top, we can obtain from
it an operad in .Spc;�/ by permuting the functoriality on L with the functoriality on`

n2N †n. Thus we obtain objects

OF;n D .�/n ıF 2†nSpc

The operadic structure on each F.V / gives rise to an operadic structure on these OF;n

with respect to the categorical product of orthogonal spaces. Then the natural morphism
� from � to � turns OF into an operad with respect to the box product, O�

F
.

If the functor F is constant, then OF is just the constant operad of Example 2.9.
However this process becomes interesting when the actions of the linear isometric
embeddings are nontrivial, as we discuss below.

Example 2.11 (little disks) For each inner product space V consider the topological
operad LD.V / of little disks in V . These assemble into a continuous functor

LD WL!OP–Top:

We understand an element of LD.V /n as a set of n center points vi 2 D.V / in the
open unit disk of V and n radii ri that parametrize a rectilinear embedding of n copies
of D.V / into itself. Then for a linear isometric embedding  W V ! W , the map
LD. / W LD.V /! LD.W / acts by sending each vi to  .vi/.
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By Construction 2.10 we obtain an operad LD� in .Spc;�/, and LD�, shortened to
LD, in .Spc;�/. The operad given by the underlying spaces of each LDn is precisely
the E1–operad of spaces obtained as the colimit of the little disks operads for Rm.
Similarly, for a compact Lie group K, the underlying K–space of LDn is exactly
LD.UK /n, the nth space of the K–equivariant little disks operad for the complete
K–universe UK , described for example in [4, Definition 3.11(ii)].

Analogously, there is a global version of the Steiner operad.

Example 2.12 (Steiner operad) For each inner product space V let R.V / be the
space of distance reducing topological embeddings f WV !V , where distance reducing
means that kf .x/�f .y/k � kx�yk. This is a continuous functor L! Top, where
for each linear isometric embedding  W V ! W and f 2 R.V /, the embedding
R. /.f / WW !W is given by

. ıf ı �1/˚ Im. /? W Im. /˚ Im. /?! Im. /˚ Im. /?:

A Steiner path for V is a map h W Œ0; 1�!R.V / such that h.1/D idV . Let K .V /n be
the space of tuples .h1; : : : ; hn/ of n Steiner paths such that the images of the hi.0/

are disjoint. These form K .V /, the Steiner operad for V , and these assemble into a
continuous functor F WL!OP–Top, which gives the Steiner operad K in .Spc;�/. As
in the case of the little disks, for a compact Lie group K the underlying K–space of K n

is exactly K .UK /n, the nth space of the K–equivariant Steiner operad for the complete
K–universe UK , described for example in [4, Definition 3.11(iv)]. The underlying
nonequivariant operad of K is an E1–operad in spaces.

Example 2.13 (endomorphism operads) The symmetric monoidal category .Spc;�/
is closed; see [22, Remark C.12]. Let Hom denote the internal Hom functor of Spc. For
each X 2 Spc we can consider the endomorphism operad End.X / in .Spc;�/, where
End.X /n D Hom.X�n;X /.

Example 2.14 For each compact Lie group K the underlying K–space functor

.�/.UK / W Spc! KTop

has a right adjoint RK , constructed in [22, Construction 1.2.25]. Being a right adjoint,
RK is strong monoidal with respect to the categorical products in KTop and Spc.
Therefore if O is any operad in .KTop;�/ then RK .O/ is an operad in .Spc;�/, and
by Remark 2.8 we also obtain an operad in .Spc;�/.
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3 G –orthogonal spaces

In order to talk about operads in Spc, we need to know more about the structure of
orthogonal spaces which have an action by the symmetric group †n. In this section we
study orthogonal spaces with an additional action by a general compact Lie group G.
We denote by GSpc the category of continuous functors from G to Spc, which we call
G–orthogonal spaces.

Definition 3.1 Let K and G be compact Lie groups. A closed subgroup � �K�G is
a graph subgroup if � \ .feK g�G/D feK�Gg. We denote the set of graph subgroups
of K�G by F.K;G/. They are called graph subgroups because for any � 2F.K;G/

there is a closed subgroup H �K and a continuous homomorphism � WH !G such
that � is precisely the graph of �.

Let il denote the boundary map il W @D
l ! Dl in Top, for each l � 0. We use this

notation throughout the paper. Given a G–orthogonal space X , a compact Lie group K,
and a K–representation V , X.V / has a .K�G/–action.

Definition 3.2 (G–global equivalence) For a compact Lie group G, a morphism f of
GSpc is a G–global equivalence if for each compact Lie group K, each graph subgroup
� 2 F.K;G/, each K–representation V and l � 0, the following statement holds. For
any lifting problem

@Dl X.V /�

Dl Y .V /�

˛

il f .V /�

ˇ

there is a K–equivariant linear isometric embedding WV !W into a K–representation
W such that there exists a morphism � WDl!X.W /� which satisfies that in the diagram

@Dl X.V /� X.W /�

Dl Y .V /� Y .W /�

˛

il

X . /�

f .W /��

ˇ

Y . /�

the upper left triangle commutes, and the lower right triangle commutes up to homotopy
relative to @Dl .

Note that for G D e this is just the definition of global equivalence from [22, Defini-
tion 1.1.2] mentioned in Section 2.2. As it was the case for global equivalences, this
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definition is meant to capture that for each compact Lie group K taking some suitable
homotopy colimit of K–representations yields an F.K;G/–equivalence. We can make
this more explicit with the following proposition, analogous to [22, Proposition 1.1.7].

Definition 3.3 For a compact Lie group K, we say that a nested sequence fVigi2N of
K–representations

V0 � V1 � � � � � Vi � � � �

is exhaustive if for each K–representation V there is an equivariant linear isometric
embedding of V into some Vi .

Proposition 3.4 A morphism f WX!Y in GSpc is a G–global equivalence if and only
if for each compact Lie group K and each exhaustive sequence of K–representations
fVigi2N , the map

teli f .Vi/ W teli X.Vi/! teli Y .Vi/

induced on the mapping telescopes of the sequences X.Vi/ and Y .Vi/ of .K�G/–
spaces and .K�G/–equivariant maps is an F.K;G/–equivalence.

Proof First we assume that for each compact Lie group K and each exhaustive
sequence of orthogonal K–representations, teli f .Vi/ is an F.K;G/–equivalence of
.K�G/–spaces. Any compact Lie group K has an exhaustive sequence of representa-
tions fVigi2N , so for any K–representation V , any graph subgroup � 2F.K;G/ and
any lifting problem .˛; ˇ/ for f .V /� , since fVigi2N is exhaustive, we can embed V

into some Vn, and so we assume that V D Vn.

Now we fix some notation. Let

cX ;n WX.Vn/! teli X.Vi/

be the canonical .K�G/–equivariant map. Let telŒ0;n�X.Vi/ denote the truncated
mapping telescope. Let

�X ;n W telŒ0;n�X.Vi/!X.Vn/

be the .K�G/–equivariant canonical projection. Slightly abusing notation we also use
cX ;n for the canonical map

cX ;n WX.Vn/! telŒ0;n�X.Vi/:

For n�m, let
cX ;n;m W telŒ0;n�X.Vi/! telŒ0;m�X.Vi/
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denote the inclusion of truncated mapping telescopes, and

cX ;n;1 W telŒ0;n�X.Vi/! teli X.Vi/

the canonical map.

Taking fixed points commutes with the construction of the mapping telescopes by [22,
Proposition B.1], so .teli X.Vi//

�Š teli X.Vi/
� for each graph subgroup � 2F.K;G/.

Since we assumed that teli f .Vi/
� is a weak homotopy equivalence, by [18, Lemma 9.6]

there is a map � associated to the lifting problem .c�
X ;n
ı˛; c�

Y;n
ıˇ/ such that the upper-

left triangle commutes and the lower-right one commutes up to homotopy relative @Dl ,
witnessed by a homotopy H :

@Dl X.Vn/
� teli X.Vi/

�

Dl Y .Vn/
� teli Y .Vi/

�

˛

il

c�
X;n

teli f .Vi /
�

ˇ

�

c�
Y;n

Both � and H have compact domains, and since the �–fixed points of the mapping
telescopes are colimits along the closed embeddings c�

X ;n;m
, both � and H factor

through some stage m� n with  W Vn! Vm, giving

�0 WDl
! telŒ0;m�X.Vi/

� and H 0 WDl
� Œ0; 1�! telŒ0;m� Y .Vi/

� :

Then ��
X ;m
ı�0 and ��

X ;m
ıH 0 satisfy the requirements for the lifting problem

.X. /� ı˛; X. /� ıˇ/;

so f is a G–global equivalence.

Now assume that f is a G–global equivalence. Fix a compact Lie group K, a graph
subgroup � 2 F.K;G/, and an exhaustive sequence of K–representations fVigi2N .
We have to check that teli f .Vi/

� is a weak homotopy equivalence.

For a lifting problem .˛; ˇ/ for teli f .Vi/
� , since @Dl and Dl are compact, ˛ and ˇ

factor through some stage n, as

˛0 W @Dl
! telŒ0;n�X.Vi/

� and ˇ0 WDl
! telŒ0;n� Y .Vi/

� :

For each n, there is a homotopy from the identity on telŒ0;n�X.Vi/ to cX ;nı�X ;n, which
is .K�G/–equivariant and natural in X , given by retracting the truncated mapping
telescope. By [22, Lemma 1.1.5] this means that if there is a solution of the lifting
problem

.c�X ;n ı�
�

X ;n ı˛
0; c�Y;n ı�

�
Y;n ıˇ

0/
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then there is a solution of the lifting problem .˛0; ˇ0/. In this proof we use the
terminology solution of a lifting problem1 in the sense of [22, Lemma 1.1.5] and
Definition 3.2, ie a map that makes the upper-left triangle commute and the lower-right
triangle commute up to homotopy relative @Dl :

@Dl telŒ0;n�X.Vi/
� X.Vn/

� telŒ0;n�X.Vi/
�

Dl telŒ0;n� Y .Vi/
� Y .Vn/

� telŒ0;n� Y .Vi/
�

˛0

il telŒ0;n� f .Vi /
�

��
X;n

c�
X;n

f .Vm/
� telŒ0;n� f .Vi /

�

ˇ0 ��
Y;n

c�
Y;n

The new lifting problem .��
X ;n
ı˛0; ��

Y;n
ıˇ0/ has as solution � after evaluating at some

larger m� n with embedding  W Vn! Vm, because f is a G–global equivalence and
fVigi2N is an exhaustive sequence of K–representations. Then c�

X ;m
ı� is a solution

of the lifting problem

.c�X ;m ıX. /� ı��X ;n ı˛
0; c�Y;m ıY . /� ı��Y;n ıˇ

0/;

and since ��
X ;m
ı c�

X ;n;m
DX. /� ı��

X ;n
, the map c�

X ;m
ı� is also a solution of

.c�X ;m ı�
�

X ;m ı c�X ;n;m ı˛
0; c�Y;m ı�

�
Y;m ı c�Y;n;m ıˇ

0/:

By [22, Lemma 1.1.5] and the previously mentioned homotopy from the identity
on telŒ0;m�X.Vi/ to cX ;m ı �X ;m, the lifting problem .c�

X ;n;m
ı ˛0; c�

Y;n;m
ı ˇ0/ has a

solution �0. Note that we did not obtain a solution of .˛0; ˇ0/, but since

c�X ;m;1 ı c�X ;n;m D c�X ;n;1;

the map c�
X ;m;1

ı�0 is a solution of the original lifting problem

.˛; ˇ/D .c�X ;m;1 ı c�X ;n;m ı˛
0; c�Y;m;1 ı c�Y;n;m ıˇ

0/:

Since any lifting problem for teli f .Vi/
� has a solution, by [18, Lemma 9.6] the map

teli f .Vi/
� is a weak homotopy equivalence.

Recall that an orthogonal space X is said to be closed if for each linear isometric
embedding  the map X. / is a closed embedding. We similarly define a closed G–
orthogonal space to be a G–orthogonal space X such that X. / is a closed embedding

1To avoid confusion with the more common meaning of the terminology solution of a lifting problem, we
do not use it outside of this proof.
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for each linear isometric embedding  . We have fixed a complete K–universe UK for
each compact Lie group K. The underlying .K�G/–space of a G–orthogonal space
X is the underlying K–space of X as an orthogonal space with the induced G–action.
This is precisely the colimit X.UK /D colimV 2s.UK /X.V / over the finite-dimensional
subrepresentations of UK . Therefore analogously to [22, Proposition 1.1.17] we have
the following simpler characterization of G–global equivalences.

Proposition 3.5 A morphism f W X ! Y in GSpc between closed G–orthogonal
spaces is a G–global equivalence if and only if for each compact Lie group K the map
induced on the underlying .K�G/–spaces

f .UK / WX.UK /! Y .UK /

is an F.K;G/–equivalence of .K�G/–spaces.

Proof The colimits that define X.UK / and Y .UK / can be written as sequential colimits

colim
V 2s.UK /

X.V /Š colim
i2N

X.Vi/;

for a nested sequence of finite-dimensional subrepresentations fVigi2N of UK which
cover all of UK . These are colimits of .K�G/–spaces along closed embeddings because
X and Y are closed. Then for each � 2F.K;G/, taking �–fixed points commutes with
this colimit along closed embeddings; see [22, Proposition B.1(ii)]. Since additionally
@Dl and Dl are compact, a lifting problem for .colimi2N f .Vi//

� factors through
some stage n of the sequential colimit. By [18, Lemma 9.6] we obtain that if f is a
G–global equivalence the map .colimi2N f .Vi//

� is a weak homotopy equivalence.

For the other implication, assume that f .UK /
� is a weak homotopy equivalence for

each compact Lie group K and each � 2F.K;G/. Let V be a K–representation. Then
V embeds into UK , so we may fix an embedding V ! UK and call it  . Given any
lifting problem

.˛ W @Dl
!X.V /� ; ˇ WDl

! Y .V /�/

for f .V /�, consider the lifting problem

.X. /� ı˛; Y . /� ıˇ/

for f .UK /
�. By [18, Lemma 9.6], since f .UK /

� is a weak homotopy equivalence
there exists some � WDl !X.UK /

� such that � ı il DX. /� ı˛ and f .UK /
� ı� is

homotopic relative @Dl to Y . /� ıˇ, and we denote this homotopy by H .
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Both � and H factor through some stage of the colimits as

�0 WDl
!X.Vj /

� and H 0 WDl
� Œ0; 1�! Y .Vj /

� :

We can choose j so that Vj contains the image of  since fVigi2N covers UK . Then
�0 and the homotopy H 0 witness that f is a G–global equivalence.

Remark 3.6 When defining G–global equivalences, we could have decided to look at
all subgroups instead of only the graph subgroups of K�G. This would give a strictly
smaller class of G–global equivalences.

We consider only the graph subgroups because between G–free orthogonal spaces, the
graph subgroups tell the whole story, since the fixed points of any nongraph subgroup
are empty. This means that looking at this bigger class of G–global equivalences is
enough for the proof of Theorem 4.11. It also leads to Theorem 4.14, which states
that a map f of operads in .Spc;�/ gives a Quillen equivalence if and only if each fn

is a †n–global equivalence in the sense of the graph subgroups, even if the operads
themselves are not †n–free.

The G–global equivalences are in fact a part of a model structure on GSpc, which we
call the G–global model structure. We include in this section the basic facts about
G–global equivalences, as well as the results about G–global equivalences that are
most relevant to the proofs of Section 4. We relegate the construction of this G–global
model structure to the appendix.

The characterization of G–global equivalences given by Proposition 3.4 makes it simple
to check the following general properties of G–global equivalences.

Lemma 3.7 For compact Lie groups G and H we have the following properties:

(i) 2-out-of-6 Consider three composable morphisms of G–orthogonal spaces f ,
g and h. If g ıf and hıg are G–global equivalences , then f , g, h and hıg ıf

are G–global equivalences.

(ii) A retract of a G–global equivalence is a G–global equivalence.

(iii) If f W X ! Y is a G–global equivalence and g is homotopic to f through
morphisms of G–orthogonal spaces , then g is a G–global equivalence.

(iv) For a G–orthogonal space X , and an H–global equivalence f W Y !Z between
H–orthogonal spaces , the morphism X �f is a .G�H /–global equivalence.

(v) For a G–global equivalence f WX!Y and an H–global equivalence f 0 WX 0!Y 0,
the morphism f �f 0 is a .G�H /–global equivalence.
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(vi) For a G–global equivalence f W X ! Y and a continuous homomorphism
� WH!G the restriction ��f is an H–global equivalence.

Proof Let K be a compact Lie group and fVigi2N an exhaustive sequence of K–
representations.

(i) By Proposition 3.4 the maps

teli.gıf /.Vi/D teli g.Vi/ı teli f .Vi/ and teli.hıg/.Vi/D teli h.Vi/ı teli g.Vi/

are F.K;G/–equivalences. Since the class of F.K;G/–equivalences satisfies the 2-
out-of-6 property, by Proposition 3.4 again we obtain that f , g, h and h ı g ı f are
G–global equivalences.

(ii) As before, if g is a retract of f then teli g.Vi/ is a retract of teli f .Vi/, and
F.K;G/–equivalences are closed under retracts.

(iii) If H W X � Œ0; 1� ! Y is a homotopy through morphisms of G–orthogonal
spaces then it induces a homotopy through .K�G/–equivariant maps on mapping
telescopes. Since a map .K�G/–homotopic to an F.K;G/–equivalence is an F.K;G/–
equivalence, we see that g is also a G–global equivalence.

(iv) The canonical map

teli.X �Y /.Vi/! teli X.Vi/� teli Y .Vi/

is a .K�G�H /–equivalence. Consider a graph subgroup �� 2F.K;G�H / associated
to a homomorphism �. Let �G WG�H!G and �H WG�H!H denote the respective
projections. Then

.teli X.Vi/� teli f .Vi//
�� Š teli X.Vi/

��Gı� � teli f .Vi/
��H ı�

where ��H ı� is the graph subgroup associated to �H ı �. Since teli f .Vi/ is an
F.K;H /–equivalence, teli X.Vi/� teli f .Vi/ is an F.K;G�H /–equivalence and by
the 2-out-of-6 property so is teli.X �f /.Vi/.

(v) We have f � f 0 D .Y � f 0/ ı .f �X 0/ and each of these is a .G�H /–global
equivalence by (iv).

(vi) Consider a graph subgroup �� 2 F.K;H / associated to a homomorphism �.
Then

.teli ��f .Vi//
�� D .��.teli f .Vi///

�� D .teli f .Vi//
��ı�

which is a weak homotopy equivalence.
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We now turn to the box product of G–orthogonal spaces, to check that it preserves
G–global equivalences. The box product of orthogonal spaces is fully homotopical with
respect to the global equivalences; that is, the box product of two global equivalences
is a global equivalence, and this does not require any cofibrancy assumptions on the
morphisms or the orthogonal spaces involved. Our goal is to check that the box product
is also fully homotopical with respect to the G–global equivalences.

Given compact Lie groups G and H , a G–orthogonal space X and an H–orthogonal
space Y , X � Y has a canonical action by G �H , and so does X � Y . The natural
morphism �X ;Y of Remark 2.8 is .G�H /–equivariant. By [22, Theorem 1.3.2(i)] this
�X ;Y is a global equivalence of underlying orthogonal spaces. We now adapt that proof
to show that it is additionally a .G�H /–global equivalence. We start with a technical
lemma.

Lemma 3.8 Given F W L! L a continuous endofunctor , a natural transformation
� W Id ) F , and a G–orthogonal space X , the morphism X ı � W X ! X ı F is a
G–global equivalence.

Proof We use the fact that for each compact Lie group K and each K–representation V ,
the two embeddings

F.�V /; �F.V / W F.V /! F.F.V //

are homotopic relative to �V W V ! F.V / through K–equivariant linear isometric
embeddings. This is shown in the proof of the equivalent result where X is just an
orthogonal space in [22, Theorem 1.1.10].

Given a compact Lie group K, a K–representation V , a graph subgroup � 2 F.K;G/

and a lifting problem .˛; ˇ/ as in the following diagram, the linear isometric embedding
�V and the map ˇ together witness that X ı � is a G–global equivalence:

@Dl X.V /� X.F.V //�

Dl X.F.V //� X.F.F.V ///�

˛

il X .�V /
�

X .�V /
�

X .�F.V //
�

ˇ

X .F.�V //
�

The upper left trapezoid commutes by construction. For the lower right triangle,
F.�V / and �F.V / are homotopic through K–equivariant linear isometric embeddings,
therefore X.F.�V // and X.�F.V // are homotopic through .K�G/–equivariant maps,
and X.F.�V //

� and X.�F.V //
� are homotopic. Since the original homotopy was
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relative to �V , and ˇıil DX.�V /
� ı˛, the obtained homotopy between X.F.�V //

� ıˇ

and X.�F.V //
� ıˇ is relative il . Thus X ı � is a G–global equivalence.

Proposition 3.9 Given a G–orthogonal space X and an H–orthogonal space Y , the
morphism of .G�H /–orthogonal spaces �X ;Y is a .G�H /–global equivalence.

Proof Consider the endofunctor sh W L! L that sends V to V ˚ V . We have two
natural transformations, �1; �2 W Id) sh, given by the embeddings into the first and
second factor respectively. We also denote by sh the functor of orthogonal spaces given
by precomposing with sh, sh.X /DX ı sh.

The universal bimorphism i that exhibits X �Y as the box product of X and Y gives
a morphism of orthogonal spaces � WX �Y ! sh.X �Y / through the maps

iV;V WX.V /�Y .V /! .X �Y /.V ˚V /D .sh.X �Y //.V /:

We need to check that � ı �X ;Y and sh.�X ;Y / ı� in the diagram

X �Y
�X;Y
��!X �Y

�
�! sh.X �Y /

sh.�X;Y /
�����! sh.X �Y /

are .G�H /–global equivalences, and then we can use Lemma 3.7(i), the 2-out-of-6
property, to obtain that �X ;Y is a .G�H /–global equivalence.

We have that sh.�X ;Y / ı� evaluated at V is the same as the map associated to �X ;Y

at level .V;V / given in (2) of Remark 2.8, by the constructions of � and �X ;Y . This
means that

sh.�X ;Y / ı�DX.�1/�Y .�2/;

where each morphism on the right is a G–global equivalence or an H–global equivalence
respectively by Lemma 3.8, and so their product is a .G�H /–global equivalence by
Lemma 3.7(v).

Next we use that � ı �X ;Y is homotopic through .G�H /–equivariant morphisms to
.X �Y /.�1/, since the homotopy between them given in the proof of [22, Theorem
1.3.2(i)] is through .G�H /–equivariant morphisms. Additionally .X � Y /.�1/ is a
.G�H /–global equivalence by Lemma 3.8, so by Lemma 3.7(iii) �ı�X ;Y is a .G�H /–
global equivalence.

Corollary 3.10 For a G–global equivalence f WX ! Y and an H–global equivalence
f 0 WX 0! Y 0, the morphism f � f 0 is a .G�H /–global equivalence. If H DG then
f � f 0 is a G–global equivalence. Therefore for any X 2 GSpc, the functor X ��
preserves G–global equivalences.

Algebraic & Geometric Topology, Volume 23 (2023)



3316 Miguel Barrero

Proof First,
�Y;Y 0 ı .f �f 0/D .f �f 0/ ı �X ;X 0 ;

and �Y;Y 0 and �X ;X 0 are .G�H /–global equivalences by Proposition 3.9. Since f �f 0

is also a .G�H /–global equivalence by Lemma 3.7(v), by the 2-out-of-6 property so
is f �f 0.

If H DG, by restricting along the diagonal homomorphism � WG!G �G and using
Lemma 3.7(vi), we obtain that f �f 0 is a G–global equivalence and therefore X ��
preserves G–global equivalences.

Now we proceed with a technical lemma which we use to prove the two subsequent
propositions. The first one discusses what happens to G–global equivalences between
G–free orthogonal spaces when taking orbits, if G is finite. The second one shows that
G–global equivalences are preserved by inducing from a finite subgroup.

Lemma 3.11 Let H be a finite group and K and G compact Lie groups. Assume
that we have equivariant maps of .K�G�H /–spaces f WX ! Y and g W Y !Z such
that Z is Hausdorff and H–free. Then the map on orbits f=H W X=H ! Y=H is an
F.K;G/–equivalence if and only if f is an F.K;G�H /–equivalence.

Proof First note that since Z is H–free, so are X and Y . For any graph subgroup
�� 2F.K;G/ given by a continuous homomorphism � WL!G, [22, Proposition B.17]
gives a natural homeomorphism for X , Y and Z,a

Œ �

X� =C. /! .X=H /�� :

The disjoint union on the left is indexed by the conjugacy classes of continuous
homomorphisms  W �� !H . Here C. / denotes the centralizer of the image of  
in H .

Fix a graph subgroup �� 2 F.K;G/. A homomorphism  W �� !H , as a subgroup
of K �G �H , has elements .k; �.k/;  .k; �.k// for k 2 L, so � 2 F.K;G �H /.
Conversely, for a graph subgroup � 2 F.K;G �H /, let � be the homomorphism
�G ı WL!G where �G WG�H!G is the projection. Then � is a graph subgroup
of �� �H , so that  can be seen as a homomorphism ��!H .

Therefore the map on orbits f=H is an F.K;G/–equivalence if and only if for each
� 2 F.K;G �H / the map f � =C. / is a weak homotopy equivalence.
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For each � 2 F.K;G �H /, the centralizer of the image of  , C. /�H , is finite.
Additionally, Z� is C. /–free and a subspace of Z, so Hausdorff. Therefore the
C. /–action on Z� is properly discontinuous, and since f � and g� are C. /–
equivariant, the C. /–actions on X� and Y � are also properly discontinuous.

This means that

X� !X� =C. / and Y � ! Y � =C. /

are covering maps, and since f � is C. /–equivariant, it induces a map of coverings.
Then we consider the long exact sequence of homotopy groups for these covering maps.
We obtain that f � =C. / is a weak homotopy equivalence if and only if f � is a
weak homotopy equivalence. For �n for n� 2 this can be seen by using the five lemma
and for �0 and �1 it can be checked explicitly.

Thus we finally obtain that f=H is an F.K;G/–equivalence if and only if f is an
F.K;G�H /–equivalence.

This next proposition is similar to [21, Lemma 8.1].

Proposition 3.12 Let H be a finite group and G a compact Lie group. Consider
two morphisms of .G�H /–orthogonal spaces f WX ! Y and g W Y !Z, where for
Z we know that for each inner product space V the space Z.V / is Hausdorff and
H–free. Then f=H W X=H ! Y=H is a G–global equivalence if and only if f is a
.G�H /–global equivalence.

Proof By Proposition 3.4 we know that f=H W X=H ! Y=H is a G–global equiv-
alence if and only if for each compact Lie group K and exhaustive sequence of
K–representations fVigi2N the map

teli f=H.Vi/ W teli X=H.Vi/! teli Y=H.Vi/

is an F.K;G/–equivalence.

Taking H–orbits commutes with colimits and product with Œ0; 1�, so it commutes with
taking mapping telescopes. Therefore teli f=H.Vi/ Š teli f .Vi/=H . Now f and g

induce .K�G�H /–equivariant maps on mapping telescopes

teli X.Vi/
teli f .Vi /
�����! teli Y .Vi/

teli g.Vi /
�����! teli Z.Vi/:

Since each Z.V / is Hausdorff and H–free, so is teli Z.Vi/. By Proposition 3.4 again f
is a .G�H /–global equivalence if and only if teli f .Vi/ is an F.K;G�H /–equivalence
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for each K and fVigi2N . By Lemma 3.11 teli f .Vi/=H is an F.K;G/–equivalence if
and only if teli f .Vi/ is an F.K;G�H /–equivalence, which yields the result.

Proposition 3.13 For a compact Lie group G, a finite subgroup H � G, and an
H–global equivalence f WX ! Y , the morphism G �H f is a G–global equivalence.

Proof We first need to check that G � f is a .G�H /–global equivalence, for the
action where G acts on the left on the G factor, and H acts both on the right on the G

factor and on the left on the f factor.

Consider a compact Lie group K and an exhaustive sequence of K–representations
fVigi2N . The functor G �� commutes with colimits and the functor �� Œ0; 1�, so
it commutes with taking mapping telescopes. Therefore it suffices to check that
G � teli f .Vi/ is an F.K;G�H /–equivalence.

For any graph subgroup �� 2 F.K;G �H /, the image of �� under the projection

�K�H WK �G �H !K �H

is the graph subgroup ��H ı� . Therefore

.teli f .Vi//
�� D .teli f .Vi//

��H ı� ;

and the latter is a weak homotopy equivalence since teli f .Vi/ is an F.K;H /–equiva-
lence. Then

.G � teli f .Vi//
�� DG�� � teli f .Vi/

��

is also a weak homotopy equivalence.

Lastly, the projection G�Y !G is a .G�H /–equivariant map, where again G acts on
G on the left and H acts on the right on G and on the left on Y . With this action G is
H–free and Hausdorff, so by Proposition 3.12, G �H f is a G–global equivalence.

In the appendix we further explore some more technical aspects of G–orthogonal
spaces. In particular, we construct the G–global model structure on GSpc. The G–flat
cofibrations are the cofibrations of this model structure. However for our admissibility
results on operads in Spc we need to work with a bigger class of morphisms than that
of the G–flat cofibrations. This is why we now introduce the class of G–h–cofibrations
of GSpc. In the appendix we also study the compatibility of G–global equivalences
and G–h–cofibrations.

The category GSpc is tensored over Top. Thus we can define what a homotopy of
morphisms of G–orthogonal spaces is in the usual way using the interval. We can also
similarly define what a G–homotopy equivalence of G–orthogonal spaces is.
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Definition 3.14 (G–h–cofibration) A morphism in GSpc is an h–cofibration if it has
the homotopy extension property. A morphism f WX ! Y has the homotopy extension
property if and only if there is a retraction in GSpc for the induced morphism

X � Œ0; 1�[X Y ! Y � Œ0; 1�:

We call these morphisms the G–h–cofibrations.

Lemma 3.15 The class of G–h–cofibrations is closed under coproducts , transfinite
compositions , cobase changes and retracts. Additionally each G–flat cofibration is a
G–h–cofibration.

Proof On a category tensored and cotensored over Top the h–cofibrations can be
equivalently defined as those morphisms that have the left lifting property with respect
to ev0 WX

Œ0;1�!X for all objects X ; see [22, Definition A.28]. This shows the first part.

The G–level model structure for GSpc that we construct in Theorem A.2 is topological,
and all objects are fibrant so by [22, Corollary A.30(iii)] each G–flat cofibration is a
G–h–cofibration.

Lemma 3.16 Let G be a compact Lie group.

(i) Consider a closed normal subgroup H � G. For a G–h–cofibration of G–
orthogonal spaces f WX ! Y , the morphism on orbits f=H WX=H ! Y=H is a
.G=H /–h–cofibration.

(ii) Consider a continuous homomorphism ˛ WH !G between compact Lie groups.
For a G–h–cofibration of G–orthogonal spaces f WX ! Y , the morphism

˛�f W ˛�.X /! ˛�.Y /

is an H–h–cofibration.

(iii) Consider a compact Lie group H and an H–orthogonal space Z. For a G–h–
cofibration of G–orthogonal spaces f WX!Y , the morphisms Z�f and Z�f

are .H�G/–h–cofibrations.

(iv) Consider a closed subgroup H �G. For an H–h–cofibration of H–orthogonal
spaces f W X ! Y , the morphism G �H f W G �H X ! G �H Y is a G–h–
cofibration.

Proof (i) Suppose that we have a retraction in GSpc

r W Y � Œ0; 1�!X � Œ0; 1�[X Y:

Taking orbits commutes with pushouts and the product with Œ0; 1�.
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Thus the morphism

r=H W Y=H � Œ0; 1�! .X � Œ0; 1�[X Y /=H ŠX=H � Œ0; 1�[X=H Y=H

is the retraction that witnesses that f=H is a G=H–h–cofibration.

(ii) As before, the functor ˛� commutes with pushouts and the product with Œ0; 1�, and
the morphism ˛�r is the retraction that witnesses that ˛�f is an H–h–cofibration.

(iii) The functors Z�� and Z �� commute with pushouts and the product with
Œ0; 1�. The .H�G/–equivariant morphisms Z� r and Z � r witness that Z� f and
Z �f are .H�G/–h–cofibrations respectively.

(iv) This follows from (i), (ii) and (iii).

4 Main results for operads in .Spc; �/

4.1 Lifting the positive global model structure to Alg.O/

In this subsection, our goal is to prove Theorem 4.11, that states that any operad in
.Spc;�/ is admissible. By this we mean that for any operad O in .Spc;�/, the positive
global model structure on Spc lifts through UAlg.O/ W Alg.O/! Spc to give a model
structure on Alg.O/.

The condition that we need to check to obtain that any operad is admissible is the
following.

Condition 4.1 For any Z 2 †nSpc and any generating cofibration i of Spc, the
morphism Z �†n

i�n is an h–cofibration. For any Z 2 †nSpc and any generating
acyclic cofibration j of Spc, the morphism Z�†n

j�n is an h–cofibration and a global
equivalence.

Note that the fact that we consider any possible Z here is crucial in removing any
cofibrancy assumptions on the operad. The symbol � denotes the pushout product of
two morphisms and i�n denotes the nth iterated pushout product of i with itself.

Remark 4.2 Condition 4.1 is strongly related to the property named symmetric h–
monoidality defined in [20, Definition 4.2.4]. Note that there are two different definitions
of h–cofibrations in the literature. The one used in [20] and [19] was first given in [2,
Definition 1.1], and it is weaker than the definition we used for Spc and GSpc.

The property of Spc being symmetric h–monoidal is not directly related to Condition 4.1;
however the spirit of it is the same. In [19, Theorem 5.11] it is proven that in a category
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which satisfies certain technical assumptions and is symmetric h–monoidal each operad
is admissible. Using Condition 4.1 instead of symmetric h–monoidality simplifies
some arguments in the case of orthogonal spaces. Most of this subsection is dedicated
to checking Condition 4.1.

First of all, in order to check Condition 4.1 we should give an explicit description
of the generating (acyclic) cofibrations of the positive global model structure on Spc.
They can also be obtained from the generating (acyclic) cofibrations of the G–global
model structure described in Theorem A.2 and Construction A.14 by setting G D e

and adding everywhere the requirement that V ¤ 0 (this V ¤ 0 requirement is the
difference between the positive global model structure and the global model structure).

Remark 4.3 (generating (acyclic) cofibrations of the positive global model structure)
In Spc we have a semifree orthogonal space for each compact Lie group G and each
G–representation V , given by LG;V D L.V;�/=G. This semifree orthogonal space
is the representing object for the functor .�/.V /G given by evaluating at V and then
taking G–fixed points.

Recall that il denotes the boundary map il W @D
l!Dl in Top, for each l � 0. Similarly,

let jl denote the inclusion jl W D
l Š Dl � f0g ! Dl � Œ0; 1� for l � 0. We use this

notation throughout the paper.

The morphisms in I, the generating cofibrations of the positive global model structure,
are of the form LG;V � il for a compact Lie group G, a faithful G–representation
V ¤ 0, and l � 0.

The generating acyclic cofibrations are J[K, where morphisms in J are of the form
LG;V � jl for a compact Lie group G, a faithful G–representation V ¤ 0, and
l � 0. Morphisms in K are of the form ��G;V;W

� il for a compact Lie group G,
a faithful G–representation V ¤ 0, a G–representation W , and l � 0. The morphism
�G;V;W W LG;V˚W ! LG;V is given by restriction to V , and ��G;V;W

is the mapping
cylinder inclusion of �G;V;W .

The generating acyclic cofibrations in the set K are more complex. Before checking
Condition 4.1 for them, we need to prove several auxiliary lemmas. We first deal with
the case of the morphisms in I and J.

Proposition 4.4 Let K be a compact Lie group , n � 1, and let Z be a .K�†n/–
orthogonal space. For a generating cofibration i 2 I, the morphism Z �†n

i�n is a
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K–h–cofibration. For a generating acyclic cofibration j in the set J, the morphism
Z�†n

j�n is a K–h–cofibration and a K–global equivalence.

Remark 4.5 This proposition is stated in more generality than Condition 4.1 so that
we can also use it later in the proof of Theorem 4.14.

Proof Let i DLG;V � il 2 I. Then

Z� i�n
DZ�L�n

G;V � i�n
l ;

which is a .K�†n/–h–cofibration because i�n
l

is a †n–h–cofibration of †n–spaces.
Then by Lemma 3.16(i) Z�†n

i�n is a K–h–cofibration.

Let j DLG;V � jl 2 J. By the same argument as before we obtain that Z�†n
j�n is

a K–h–cofibration. Since j�n
l

is a †n–homotopy equivalence of †n–spaces, we also
obtain that Z�L�n

G;V
�j�n

l
is a .K�†n/–homotopy equivalence of orthogonal spaces,

so Z�†n
j�n is a K–homotopy equivalence. Therefore it is a K–level equivalence,

and thus a K–global equivalence.

Proposition 4.6 Let f W X ! Y be a morphism of orthogonal spaces such that for
each n� 1 the morphism f �n is a†n–global equivalence , and such that for each n� 1

the morphism f �n is a †n–h–cofibration. Then for each n� 1 the morphism f �n is a
†n–global equivalence.

Proof We use strong induction. For the base case, f �1 D f �1 D f is a global
equivalence.

Assume that the result holds for each i < n. We decompose f �n by applying [21,
Lemma A.8] to the pushout diagram given by X DX ! Y , obtaining

X�n
DQn

0.f /!Qn
1.f /! � � � !Qn

n�1.f /
f�n

��!Qn
n.f /D Y�n:

Note that the last step of this decomposition is precisely f �n. In the rest of this
article we also use Qn

n�1
.f / to denote the source of the n–fold pushout product of f ,

following the notation of [21], originally introduced in [7, Section 12].

For each step 1� i < n there is a †n–equivariant pushout diagram of orthogonal spaces

†n �†n�i�†i
X�n�i �Qi

i�1
.f / †n �†n�i�†i

X�n�i �Y �i

Qn
i�1
.f / Qn

i .f /

†n�†n�i�†i
X �n�i�f�i

p
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By Corollary 3.10 and the induction hypothesis, X�n�i�f �i is a .†n�i�†i/–global
equivalence. Then by Proposition 3.13,

†n �†n�i�†i
X�n�i �f �i

is a †n–global equivalence. Additionally by Lemma 3.16 it is a †n–h–cofibration.

By Corollary A.9 this means that Qn
i�1
.f /!Qn

i .f / is a †n–global equivalence for
each 1� i < n. Since so is f �n, by the 2-out-of-6 property for†n–global equivalences
f �n is a †n–global equivalence.

Lemma 4.7 For f WX ! Y a homotopy equivalence between orthogonal spaces and
n � 1, the morphism f �n is a †n–homotopy equivalence of orthogonal spaces , and
therefore a †n–global equivalence.

Proof Let g W Y !X be a homotopy inverse to f and H a homotopy between f ıg

and IdX . Then for each n� 1,

H�n
ı .X�n

��/ WX�n
� Œ0; 1�! Y�n

is a †n–equivariant homotopy between .f ıg/�n and Id�n
X , where � W Œ0; 1�! Œ0; 1�n

is the diagonal. The same can be done for g ıf .

Then we obtain that f �n is a †n–homotopy equivalence. Therefore it is a †n–level
equivalence, and thus a †n–global equivalence.

Proposition 4.8 For each generating acyclic cofibration k 2 K, the morphism k�n

is a †n–h–cofibration. Concretely, let G be a compact Lie group , consider a faithful
G–representation V ¤ 0, a G–representation W , n� 1 and l � 0. Let ��G;V;W

be the
morphism given in Remark 4.3. Then k�n D .��G;V;W

� il/
�n is a †n–h–cofibration.

In particular , since ��G;V;W
� i0 D ��G;V;W

, we get that ��n
�G;V;W

is a †n–h–cofibration.

Proof Consider the decomposition of ��G;V;W
given by g ı iLG;V˚W

in the diagram

LG;V˚W LG;V˚W qLG;V M�G;V;W

LG;V˚W qLG;V˚W LG;V˚W � Œ0; 1�

iLG;V˚W g

x

LG;V˚W �i1

We use results from [10] that deal with the interaction between the pushout product
and operations on morphisms like composition and cobase change. The structure of
this proof is convoluted because in general we cannot prove that the pushout product
of two †n–h–cofibrations is a †n–h–cofibration. This forces us to carry the �� i�n

l

Algebraic & Geometric Topology, Volume 23 (2023)



3324 Miguel Barrero

term around. We also have to decompose .��G;V;W
� il/

�n into simpler morphisms
which we can prove to be †n–h–cofibrations, using cobase changes and compositions,
because these operations preserve the class of †n–h–cofibrations.

By [10, Lemma 15] we can decompose ��n
�G;V;W

into f0 ıf1 ı � � � ıfn. Here for each
0� j � n, the morphism fj is a †n–equivariant cobase change of

†n �†n�j�†j g�n�j � i
�j
LG;V˚W

:

By [10, Lemma 17] we can write ��n
�G;V;W

� i�n
l

as f 0
0
ıf 0

1
ı � � � ıf 0n, where each f 0j is

a cobase change of fj � i�n
l

.

We also have [10, Lemma 13], which states that for any h0 if a morphism h1 is a cobase
change of h2, then h1 � h0 is a cobase change of h2 � h0. By iterating this result,
and using the associativity of the pushout product, we obtain that g�n�j is a cobase
change of .LG;V˚W � i1/

�n�j . Similarly i
�j
LG;V˚W

is a cobase change of ∅!L
�j
G;V

.
Furthermore these cobase changes can be checked to be through equivariant maps.

Note that i
�n�j
1

Š in�j . For each 0� j � n we can apply [10, Lemma 13] again to
obtain that g�n�j � i

�j
LG;V˚W

is a .†n�j�†j /–equivariant cobase change of

.L
�n�j
G;V˚W

� i
�n�j
1

/� .∅!L
�j
G;V

/ŠL
�n�j
G;V˚W

�L
�j
G;V
� in�j :

We want to check that for each 0� j � n,

(3) .†n �†n�j�†j .L
�n�j
G;V˚W

�L
�j
G;V
� in�j //� i�n

l

is a †n–h–cofibration. As a morphism of .†n�†n/–orthogonal spaces, this is isomor-
phic to

†n �†n�j�†j ..L
�n�j
G;V˚W

�L
�j
G;V
� in�j /� i�n

l /:

The map in�j � i�n
l
Š in�jCln is a .†n�j�†n/–h–cofibration of spaces. Therefore

by Lemma 3.16,
L
�n�j
G;V˚W

�L
�j
G;V
� .in�j � i�n

l /

is a .†n�j�†j�†n/–h–cofibration and the morphism (3) is a †n–h–cofibration.

Recall that for each 0� j � n the morphism g�n�j � i
�j
LG;V˚W

is a cobase change of

L
�n�j
G;V˚W

�L
�j
G;V
� in�j :

Thus applying [10, Lemma 13] again we obtain that fj � i�n
l

is a cobase change of
(3) so it is also a †n–h–cofibration. We are using the fact that the induction functor
†n �†n�j�†j � preserves pushouts.
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Finally, each f 0j was a cobase change of fj � i�n
l

, so it is also a †n–h–cofibration.
Thus their composition

k�n
D .��G;V;W

� il/
�n
D ��n

�G;V;W
� i�n

l

is a †n–h–cofibration.

Proposition 4.9 For each generating acyclic cofibration k 2 K, the morphism k�n is a
†n–global equivalence.

Proof The generating acyclic cofibration k is of the form ��G;V;W
� il for a compact

Lie group G, a faithful G–representation V ¤ 0, a G–representation W , and l � 0.

We first check that
��n

G;V;W WL
�n
G;V˚W !L�n

G;V

is a †n–global equivalence. By [22, Example 1.3.3] the orthogonal space L�n
G;V

is
isomorphic to LGn;V n and thus closed. The .†n oG/–representation V n is faithful, so
for each compact Lie group K by [22, Proposition 1.1.26(ii)] the restriction map

�V n;W n.UK / WL.V
n
˚W n;UK /!L.V n;UK /

is a .K � .†n oG//–homotopy equivalence. Using that

L.V n;UK /Š colim
V 02s.UK /

L.V n;V 0/

and the fact that �=Gn preserves colimits, we can obtain that

��n
G;V;W .UK /Š �V n;W n.UK /=Gn

is a .K�†n/–homotopy equivalence. Therefore ��n
G;V;W

.UK / is an F.K; †n/–equiva-
lence, and so ��n

G;V;W
is a †n–global equivalence.

Now we use the mapping cylinder to decompose �G;V;W as ��G;V;W
ı ��G;V;W

. Since
��G;V;W

is a homotopy equivalence, by Lemma 4.7 ��n
�G;V;W

is a†n–global equivalence,
and then so is ��n

�G;V;W
.

We use Propositions 4.6 and 4.8 to obtain that for each n� 1 the morphism ��n
�G;V;W

is
a †n–global equivalence. Finally, by Corollary A.10 and Proposition 4.8 again, we get
that k�n D ��n

�G;V;W
� i�n

l
is a †n–global equivalence.

Proposition 4.10 Let n� 1 and let Z be a †n–orthogonal space. For each generating
acyclic cofibration k 2 K, the morphism Z�†n

k�n is an h–cofibration and a global
equivalence.
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Proof First,
Z� k�n

DZ� .��G;V;W
� il/

�n

is a †n–h–cofibration by Proposition 4.8, and a †n–global equivalence by Proposition
4.9 and Corollary 3.10.

Consider the †n–orthogonal space L�n
G;V
Š LGn;V n . For each inner product space

U the group Gn acts freely (since V is faithful), smoothly and properly (since Gn is
compact) on L.V n;U /, as long as jU j � jV jn. Therefore

LGn;V n.U /DL.V n;U /=Gn

is Hausdorff; and since V n is a faithful †n–representation, L�n
G;V

.U /ŠLGn;V n.U /

is also †n–free.

If jU j< jV jn then L.V n;U / is empty, so in particular LGn;V n.U / is still Hausdorff
and †n–free.

The morphism ��G;V;W
induces a †n–equivariant map of orthogonal spaces from the

target of Z�k�n to ��L�n
G;V
��, and so by Proposition 3.12 Z�†n

k�n is a global
equivalence. It is an h–cofibration by Lemma 3.16(i).

Note that the fact that L�n
G;V

.U / is †n–free in this last proof is important. It lets us
avoid the assumption that the components On of the operad O are †n–free in the
following theorem.

Theorem 4.11 Let O be any operad in .Spc;�/ the category of orthogonal spaces ,
with the positive global model structure and the symmetric monoidal structure given
by the box product. Then there is a cofibrantly generated model category structure on
Alg.O/, the category of algebras over O, where the forgetful functor UAlg.O/ creates the
weak equivalences and fibrations , and sends cofibrations in Alg.O/ to h–cofibrations
in Spc.

Proof Let Hcof be the class of h–cofibrations in Spc. It satisfies conditions (a), (b)
and (c) of Theorem 2.2 by Lemma 3.15, Lemma A.16, and Corollary A.12 respectively,
with G D e in all of them.

Consider a morphism i WX ! Y in Spc and a pushout in Alg.O/ of the form

FAlg.O/.X / FAlg.O/.Y /

A B

FAlg.O/.i/

f p
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We use the filtration of [21, Proposition A.16], originally introduced in the proof of
[7, Theorem 12.4], with k D 0, where U O

0
D UAlg.O/. We obtain a decomposition of

UAlg.O/.f / as the infinite composition of morphisms

fn W Pn�1UAlg.O/.B/! PnUAlg.O/.B/

for n � 1, with P0UAlg.O/.B/D UAlg.O/.A/. For each n � 1, [21, Proposition A.16]
gives the following pushout in Spc:

U O
n .A/�†n

Qn
n�1

.i/ U O
n .A/�†n

.Y /�n

Pn�1U O
0
.B/ PnU O

0
.B/

U O
n .A/�†n i�n

fn
p

Both the class Hcof , and the class of morphisms in Spc which are both h–cofibrations
and global equivalences, are closed under infinite composition and cobase change (see
the results of the appendix). Propositions 4.4 and 4.10 imply that if i is a generating
cofibration U O

n .A/�†n
i�n is an h–cofibration, and if i is a generating acyclic cofibra-

tion then U O
n .A/�†n

i�n is an h–cofibration and global equivalence. Therefore all the
conditions of Theorem 2.2 hold, and Alg.O/ is a cofibrantly generated model category
where UAlg.O/ creates the weak equivalences and fibrations. Furthermore UAlg.O/ sends
cofibrations in Alg.O/ to h–cofibrations in Spc.

4.2 Characterizing which morphisms of operads induce Quillen
equivalences

We study now morphisms of operads and the associated functors between their respective
categories of algebras, with the goal of classifying which morphisms of operads in
orthogonal spaces induce Quillen equivalences between the respective categories of
algebras.

Consider for now a general symmetric monoidal category .C;˝;�/, where the tensor
product preserves all colimits in both variables. Let g W O ! P be a morphism of
operads, understood as a morphism of monoids in .†�–C; ı/. The morphism g induces
an adjoint pair of functors

g! W Alg.O/ �*)� Alg.P/ Wg�;

called the extension functor and the restriction functor respectively. The specific details
can be found in [9, Section 3.3.5] for example.
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We use � W F.O/) F.P/ to denote the natural transformation induced by g between
the monads F.O/ and F.P/, associated to the operads O and P respectively. For X an
algebra over P , we use �X W F.P/.X /!X to denote its structure map. Then g�.X /

is just X with structure map �X ı �X . Additionally, since UAlg.O/ ıg� D UAlg.P/, we
have that g! ıFAlg.O/ is left adjoint to UAlg.P/, so it is naturally isomorphic to FAlg.P/.
This is the only information about the extension functor that we need.

For the proof of Theorem 4.14 we need to consider again the functors U O
k

for k � 0

from [21, Proposition 10.1], originally introduced in the proof of [7, Theorem 12.4].
The functor U O

k
goes from Alg.O/ to †kC, the category of †k–objects in C, and

U O
0
D UAlg.O/.

Construction 4.12 Let O and P be two operads, and let g be a morphism of operads
g W O! P . For a general O–algebra X , a P–algebra Y , and a map of O–algebras
 WX ! g�.Y /, we construct certain maps

gk; W U
O
k .X /! U P

k .Y /

in †kC for each k � 0, in a way that is natural in  and preserves filtered colimits. It is
important to note that the morphism gk; is not U O

k
. / unless k D 0. In fact, U O

k
ıg�

is not U P
k

for k ¤ 0, so gk; and U O
k
. / do not have the same target for k ¤ 0.

Consider the functors
O.�; k/ W C!†kC

constructed in [21, Section A.9], which for an operad O and k � 0 are given by

O.X; k/D
a
n2N

O.nC k/˝†n
X˝n:

Note that O.�; 0/DF.O/. The construction of the functors U O
k

in [21, Definition A.10]
is given by the coequalizer

O.O.X; 0/; k/
@0

@1

�!
�!O.X; k/! U O

k .X /:

The morphism of operads g and the map of O–algebras  together induce a †k–
equivariant morphism of coequalizer diagrams. The induced morphism between the
coequalizers U O

k
.X / and U P

k
.Y / is our desired gk; .

This construction preserves filtered colimits because tensor powers preserve them, and
thus so do the functors O.�; k/.
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Now we restrict ourselves to the case of operads in .Spc;�/, where we have the model
structures on Alg.O/ obtained in Theorem 4.11.

Proposition 4.13 For any morphism g WO! P of operads in .Spc;�/, the restriction
functor g� preserves and reflects fibrations and weak equivalences. Thus the pair
.g!;g

�/ is a Quillen adjunction.

Proof The functors UAlg.O/ and UAlg.P/ preserve and reflect fibrations and weak
equivalences, and UAlg.O/ ıg� D UAlg.P/.

Theorem 4.14 Let g WO! P be a morphism of operads in .Spc;�/, the category of
orthogonal spaces , with the positive global model structure and the symmetric monoidal
structure given by the box product. Then the induced adjunction .g!;g

�/ is a Quillen
equivalence between the respective categories of algebras if and only if for each n� 0

the morphism gn WOn! Pn is a †n–global equivalence.

Proof The right adjoint g� preserves and reflects weak equivalences. Therefore the
pair .g!;g

�/ is a Quillen equivalence if and only if for each cofibrant A 2 Alg.O/ the
unit �A WA! g�.g!.A// is a weak equivalence in Alg.O/, that is, a global equivalence
of underlying orthogonal spaces (see for example [8, Lemma 3.3] for a proof).

We first assume that each gn is a †n–global equivalence, and check that for each
cofibrant A 2 Alg.O/ the unit �A WA! g�.g!.A// is a global equivalence.

First assume that the cofibrant algebra A is the colimit of a �–sequence of morphisms
ffˇgˇ2� beginning at A0 D O0, for a limit ordinal �. Note that the initial object
of Alg.O/ is O0, since it is FAlg.O/.∅/. Assume that each fˇ is a cobase change of
a morphism of the form FAlg.O/.iˇ/, for iˇ 2 I iˇ W Xˇ ! Yˇ a generating positive
flat cofibration of orthogonal spaces. We want to check that UAlg.O/.�A/ is a global
equivalence.

By evaluating the unit of the adjunction � on the �–sequence that gives rise to A, we
obtain the diagram

A0 DO0 A1 � � � Aˇ � � �

g�.g!.A0// g�.g!.A1// � � � g�.g!.Aˇ// � � �

f0

�A0

f1

�A1

fˇ

�Aˇ

g�.g!.f0// g�.g!.f1/// g�.g!.fˇ//
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We apply UAlg.O/ to the whole diagram. By Theorem 4.11, UAlg.O/ sends cofibrations
to h–cofibrations, so UAlg.O/.fˇ/ is an h–cofibration. The morphism g!.fˇ/ is a
cofibration, so

UAlg.O/.g
�.g!.fˇ///D UAlg.P/.g!.fˇ//

is also an h–cofibration. Since UAlg.O/ preserves filtered colimits, UAlg.O/.�A/ is

colim
ˇ2�

UAlg.O/.�Aˇ /:

We have to check that each UAlg.O/.�Aˇ / is a global equivalence, and for this we follow
the proof of the similar statement in [21, Lemma 9.13]. We prove this by induction, but
we in fact need to work with a stronger property. For each ˇ and each k � 0, let gk;ˇ

be the morphism gk;�Aˇ
given in Construction 4.12. We check by transfinite induction

on ˇ that for each k � 0 the morphism

gk;ˇ W U
O
k .Aˇ/! U P

k .g!.Aˇ//

is a †k–global equivalence. For k D 0 this reduces to our desired result.

The base case concerns A0 D O0 D FAlg.O/.∅/. By [21, Lemma A.13] the †k–
orthogonal space U O

k
.FAlg.O/.∅// is isomorphic to O.∅; k/, and O.∅; k/ equals Ok .

Similarly g!.FAlg.O/.∅// is isomorphic to FAlg.P/.∅/, and then

U P
k .FAlg.P/.∅//Š P.∅; k/D Pk ;

and under these identifications, the morphism gk;0 corresponds to gk , which is a
†k–global equivalence by the condition of the theorem. Remarkably, this is the only
part of the proof where this condition is used.

Then we check the induction step for a successor ordinal ˇC1. For this we use the filtra-
tion of [21, Proposition A.16], originally introduced in the proof of [7, Theorem 12.4],
in the same way that it is used in the proof of [21, Lemma 9.13]:

(4)

U O
k
.Aˇ/D F0U O

k
.AˇC1/ F1U O

k
.AˇC1/ � � �

U P
k
.g!.Aˇ//D F0U P

k
.g!.AˇC1// F1U P

k
.g!.AˇC1// � � �

gk;ˇ

� � � colim
j2N

Fj U O
k
.AˇC1/D U O

k
.AˇC1/

� � � colim
j2N

Fj U P
k
.g!.AˇC1//D U P

k
.g!.AˇC1//

gk;ˇC1
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Assume that for each k � 0 the morphism gk;ˇ is a †k–global equivalence. Each
horizontal map is a cobase change of

U O
jCk.Aˇ/�†j i

�j

ˇ
or U P

jCk.g!.Aˇ//�†j i
�j

ˇ
;

which are †k–h–cofibrations by Proposition 4.4.

Each vertical map is obtained from the previous by the following morphism of pushout
diagrams:

Fj�1U O
k
.AˇC1/ Fj�1U P

k
.g!.AˇC1//

U O
jCk

.Aˇ/�†jQ
j
j�1

.iˇ/ U P
jCk

.g!.Aˇ//�†jQ
j
j�1

.iˇ/

U O
jCk

.Aˇ/�†j .Yˇ/�j U P
jCk

.g!.Aˇ//�†j .Yˇ/�j

U O
jCk

.Aˇ/�†j i
�j
ˇ

gjCk;ˇ�†j
Q
j

j�1
.iˇ/

U P
jCk

.g!.Aˇ//�†j i
�j
ˇ

gjCk;ˇ�†j
.Yˇ/

�j

By the induction hypothesis, the morphism

gjCk;ˇ W U
O

jCk.Aˇ/! U P
jCk.g!.Aˇ//

is a †jCk–global equivalence. Here Yˇ DLG;V � il , so we can project to L
�j
G;V

and
use Corollary 3.10 and Proposition 3.12 as in the proof of Proposition 4.10 to check
that the two rightmost vertical maps are †k–global equivalences.

Then we can use induction on j and the gluing lemma, Lemma A.8, to obtain that each
vertical map of (4) is also a †k–global equivalence. Finally, by Lemma A.11, gk;ˇC1

is a †k–global equivalence.

If ˇ is a limit ordinal, we just need to use Lemma A.11, and the fact that the construction
of gk;ˇ preserves filtered colimits.

We have proven that gk;ˇ is a †k–global equivalence for each k and ˇ. Setting k D 0

we have our original intended result that UAlg.O/.�Aˇ / is a global equivalence for each ˇ.
By Lemma A.11 with G D e the morphism UAlg.O/.�A/ is a global equivalence.

If A 2 Alg.O/ is cofibrant, then it is a retract of an algebra A0 of the kind we were
considering at the beginning of this proof, and the unit �A is a retract of �A0 . Since
retracts preserve weak equivalences, �A is a weak equivalence in Alg.O/. Therefore
.g!;g

�/ is a Quillen equivalence.

We prove the other implication now. Assume that .g!;g
�/ is a Quillen equivalence.

We want to prove that for each n � 0 the morphism gn is a †n–global equivalence.
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Consider the free orthogonal space LR D L.R;�/, which is positively flat. Then
FAlg.O/.LR/ is cofibrant in Alg.O/. Since .g!;g

�/ is a Quillen equivalence the unit

�FAlg.O/.LR/ W FAlg.O/.LR/! g�.g!.FAlg.O/.LR///

is a weak equivalence, so its underlying morphism of orthogonal spaces is a global
equivalence.

The P–algebra g!.FAlg.O/.LR// is naturally isomorphic to FAlg.P/.LR/. After post-
composing �FAlg.O/.LR/ with g� of this isomorphism, we obtain a morphism

FAlg.O/.LR/! g�.FAlg.P/.LR//;

whose underlying morphism of orthogonal spaces is precisely

�LR D

a
n2N

gn�†n
L�n

R :

Since �LR is a global equivalence, each gn�†n
L�n

R is a global equivalence. If nD 0,
we obtain that g0 is a global equivalence. For each n � 1, L�n

R Š LRn , and the
orthogonal space LRn is †n–free and Hausdorff at each inner product space V . Thus
by Proposition 3.12 the morphism gn�LRn is a †n–global equivalence for each n� 1.

The morphisms �On;LRn and �Pn;LRn are †n–global equivalences by Proposition 3.9
and Lemma 3.7(vi). By the 2-out-of-6 property of †n–global equivalences we obtain
that gn �LRn is a †n–global equivalence:

On�LRn Pn�LRn

On �LRn Pn �LRn

�On;LRn

gn�LRn

�Pn;LRn

gn�LRn

By Proposition 3.4, for each compact Lie group K and each exhaustive sequence of
K–representations fVigi2N , the map

teli.g.Vi/�LRn.Vi// W teli.On.Vi/�LRn.Vi//! teli.Pn.Vi/�LRn.Vi//

is an F.K; †n/–equivalence. The canonical map

teli.On.Vi/�LRn.Vi//! .teli On.Vi//� .telj LRn.Vj //

is also an F.K; †n/–equivalence, and the same holds for Pn. Therefore

.teli gn.Vi//� .telj LRn.Vj //

is an F.K; †n/–equivalence.
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For each �� 2 F.K; †n/, we can pull the †n–action on Rn through � W H ! †n to
get an H–action. Then the H–representation Rn embeds into some K–representation
(see [6, Theorem III.4.5]), which in turn embeds into some Vi , so .telj LRn.Vj //

��

is nonempty. Thus teli gn.Vi/ is an F.K; †n/–equivalence, and gn is a †n–global
equivalence for each n� 0.

Remark 4.15 The previous theorem generalizes, in the setting of algebras over operads
in .Spc;�/, the classical result that a morphism g between cofibrant operads induces
a Quillen equivalence if the underlying morphism of each gn is a weak equivalence
(see [9, 12.5.A] for example). For orthogonal spaces, and a morphism g between
operads which are not necessarily cofibrant, by the previous theorem we require the
stronger condition that each gn is not just a global equivalence, but also a †n–global
equivalence.

The question of which morphisms between more general operads induce Quillen
equivalences was also answered in [19, Theorem 7.5]. The key property there is
whether the morphisms gn are symmetric flat weak equivalences as defined in [19,
Definition 2.1(vii)]. However, †n–global equivalences are not necessarily symmetric
flat.

Remark 4.16 Given O, an operad in .Spc;�/, we could take a cofibrant replacement
of it in the J–semimodel category OP–Spc of operads in .Spc;�/, constructed in [25,
Theorem 3]. This would be a cofibrant operad O0 and a morphism of operads g WO0!O
such that each gn is a global equivalence. But as we just saw in Theorem 4.14, this
g does not induce a Quillen equivalence between the categories of algebras of O and
O0 unless each gn is additionally a †n–global equivalence. This means that simply
taking a cofibrant replacement O0 in OP–Spc of an operad O, and looking at the model
structure on Alg.O0/ does not give the correct homotopy theory of the algebras over O.

Additionally, we cannot have a functor F c WOP–Spc!OP–Spc, with a natural trans-
formation � W F c ) IdOP–Spc such that each �.O/n is a †n–global equivalence, and
F c.O/ is cofibrant in the J–semimodel structure of [25, Theorem 3]. Assume that we
had such a functor F c , then consider a morphism of operads g WO!O0 which satisfies
that each gn is a global equivalence, but does not satisfy that each gn is a †n–global
equivalence. An example of such a morphism is given by the unique morphism from
one of the naive global E1–operads of Remark 5.9 to the terminal operad Comm.

In that case each F c.g/n would be a global equivalence by the 2-out-of-6 property, so
F c.g/ induces a Quillen equivalence between Alg.F c.O// and Alg.F c.O0// because
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F c.O/ and F c.O0/ are cofibrant operads. The morphisms of operads �.O/ and �.O0/
would also induce Quillen equivalences by Theorem 4.14, But this would imply that g

induces a Quillen equivalence between the categories of algebras, which contradicts
the only if part of Theorem 4.14.

This means that in order to study the genuine homotopy theory of algebras over operads
in .Spc;�/, we cannot restrict ourselves to looking only at cofibrant operads.

5 Global E1–operads

Let Comm be the terminal operad in .Spc;�/, where each Commn is the constant one-
point orthogonal space. Algebras over Comm are precisely the commutative monoids
in Spc with respect to the box product, which are called commutative orthogonal
monoid spaces or ultracommutative monoids in [22, Definition 1.4.14]. The unit and
multiplication maps imply that a commutative monoid in .Spc;�/ is precisely a lax
symmetric monoidal functor .L;˚/! .Top;�/.

Definition 5.1 A global E1–operad in .Spc;�/ is an operad O in .Spc;�/ such that
each On is †n–globally equivalent to � with the trivial †n–action.

Remark 5.2 By Theorem 4.14, if O is a global E1–operad in .Spc;�/ and g is the
unique morphism of operads g W O ! Comm, then the induced Quillen adjunction
.g!;g

�/ is a Quillen equivalence between Alg.O/ and Alg.Comm/, the category of
ultracommutative monoids. This justifies why we gave the previous definition of a
global E1–operad.

Furthermore, the algebras over a global E1–operad are endowed with plenty of
additional structure, just like ultracommutative monoids. It is also relatively simple to
characterize when a given operad in Spc (like the ones constructed in Section 2.3) is a
global E1–operad.

Proposition 5.3 Let O be a global E1–operad in .Spc;�/, and let g WO! Comm be
the unique morphism of operads. There is a homotopical functor

R W Alg.O/! Alg.Comm/

and a zigzag of natural weak equivalences between g� ıR and the identity on Alg.O/.

For A 2 Alg.O/, R.A/ is an ultracommutative monoid , thus R is a functor that rectifies
algebras over global E1–operads into ultracommutative monoids.
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Proof Let C W Alg.O/! Alg.O/ be a cofibrant replacement functor in Alg.O/ con-
structed via the small object argument, and let ˛ WC) idAlg.O/ be the associated natural
weak equivalence. Then UAlg.O/.˛A/ is a global equivalence for each A 2 Alg.O/. Fur-
thermore, the adjunction unit for C.A/, the morphism �C.A/ W C.A/! g�.g!.C.A///,
is a global equivalence in Spc because the right adjoint g� preserves and reflects weak
equivalences; see [8, Lemma 3.3]. Then RD g! ıC is the desired functor, and ˛ and �
form the desired zigzag of natural weak equivalences.

Lemma 5.4 The operads LD and K constructed in Examples 2.11 and 2.12 respec-
tively are reduced (LD0 D K0 D �). For each n � 0, the orthogonal spaces LDn and
K n are closed , and for each V 2 L, the †n–spaces LDn.V / and K n.V / are †n–free
and Hausdorff.

Proof This follows from the properties of the little disks operads LD.V / and Steiner
operads K .V / for an inner product space V . By construction they are reduced, and
for each n� 0 they are †n–free and Hausdorff, so the same is true for LD and K . For
a linear isometric embedding  W V !W , the maps LDn. / and K n. / are closed
embeddings, so the operads LD and K are closed.

We now give several examples of global E1–operads. To check that LD and K are
global E1–operads we first need the following technical lemma.

Lemma 5.5 Let K be a compact Lie group , UK a K–universe (not necessarily com-
plete), L�K, and T an L–set. Let ConfL

T .UK / denote the space of L–equivariant T –
configurations in UK , that is , L–equivariant embeddings of T in UK . Then ConfL

T .UK /

is either empty or contractible.

Proof Decompose UK as

UK Š

M
�2ƒ

M
n2N

�Š
M
n2N

M
�2ƒ

�D
M
n2N

Un;

where ƒ is a set of finite-dimensional irreducible K–representations.

Let P be the linear isometric embeddingM
n2N

Un!

M
n2N

Un; .u0;u1; : : : / 7! .0;u0;u1; : : : /:

Then P is a K–equivariant nonsurjective linear isometric embedding.
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We give a homotopy H between the identity and

P ı�W ConfL
T .UK /! ConfL

T .UK /;

the map given by postcomposition with P . For each s 2 Œ0; 1�, f 2 ConfL
T .UK / and

t 2 T this homotopy H is given by

Hs.f /.t/D .1� s/.f .t//C s.P .f .t///:

It is easy to see that each Hs.f / is L–equivariant. If Hs.f /.t/DHs.f /.t
0/, arguing

coordinatewise we see that t D t 0.

Now assume that ConfL
T .UK / is nonempty, so that f0 2ConfL

T .UK /. There is an m� 0

such that the image of f0 is contained in
L

n�m Un. Then

H 0s.f /.t/D s.PımC1.f .t///C .1� s/.f0.t//

gives a homotopy between the constant map with value f0 and the map

PımC1
ı�W ConfL

T .UK /! ConfL
T .UK /:

We can easily see that H 0s.f / is L–equivariant, and we can check that it is an embedding
by looking at the projection to

L
n�m Un and to its orthogonal complement separately.

With H we can obtain a homotopy from the identity to PımC1 ı �, and combining
that homotopy with H 0 we obtain that ConfL

T .UK / is contractible.

Proposition 5.6 The operads LD and K in .Spc;�/ are global E1–operads.

Proof Both operads LD and K are closed by Lemma 5.4. For each compact Lie
group K and each K–representation V , the .K�†n/–spaces LD.V /n and K .V /n are
.K�†n/–homotopy equivalent to Confn.V /, the configuration space of n points in V ,
where K acts on V and †n acts by permuting the points. This is [11, Lemma 1.2] and
[11, Proposition 1.5] respectively.2

We have that
Confn.UK /Š colim

V 2s.UK /
Confn.V /:

Consider any graph subgroup �� 2 F.K; †n/, with � WH !†n and H �K. Let T�

be the set with n elements and an H–action given by �. Since taking fixed points

2In the proof of [11, Lemma 1.2], one has to add a small condition to ensure that the little disks are
contained in the unit disk and that the constructed maps are well defined.
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commutes with filtered colimits along closed embeddings, and the poset s.UK / has a
cofinal subsequence, LDn.UK /

�� and K n.UK /
�� are weakly homotopy equivalent to

Confn.UK /
�� Š ConfH

T�
.UK /;

where ConfH
T�
.UK / is the space of H–equivariant T�–configurations in UK , that is, H–

equivariant embeddings of T� in UK . Since UK is a complete universe, ConfH
T�
.UK /

is nonempty, so by Lemma 5.5 it is contractible. Thus LDn and K n are †n–globally
contractible, and LD and K are global E1–operads.

Recall that LV DL.V;�/ is the orthogonal space represented by V .

Proposition 5.7 For any V 2L with V ¤ 0, the endomorphism operad End.LV / in
.Spc;�/ is a global E1–operad.

Proof We have to check that Hom.L�n
V
;LV /!� is a †n–global equivalence.

Let UK be a complete K–universe for K a compact Lie group. Then the underlying
K–space of End.LV /n is

Hom.L�n
V ;LV /.UK /D colim

W 2s.UK /
Hom.L�n

V ;LV /.W /

Š colim
W 2s.UK /

Spc.LW ;Hom.L�n
V ;LV //

Š colim
W 2s.UK /

Spc.LW �LV n ;LV /

Š colim
W 2s.UK /

L.V;W ˚V n/

ŠL.V;UK ˚V n/:

The first three isomorphisms are induced by a chain of isomorphisms for each W ,
and we have to check that they are natural in W . For the second isomorphism this
holds by the naturality of the �–Hom adjunction, and for the first and third because of
the naturality of the enriched Yoneda lemma. By the same reason they are .K�†n/–
equivariant.

For any � 2 F.K; †n/ we consider the �–fixed points

Hom.L�n
V ;LV /.UK /

�
ŠL.V;UK ˚V n/� ŠL.V; .UK ˚V n/�/:

Since UK is a complete K–universe, .UK˚V n/K�†n is infinite-dimensional, and thus
so is .UK ˚V n/� , so

L.V; .UK ˚V n/�/ŠL.V;R1/' �:
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Remark 5.8 For any V 2L with V ¤ 0, the orthogonal space LV is an algebra over
the global E1–operad End.LV /. However, LV cannot be given the structure of a
commutative monoid over the box product (ultracommutative monoid). In particular,
LV .0/DL.V; 0/D∅, so there are no morphisms of orthogonal spaces from � to LV ,
and thus we cannot give it a unit.

Remark 5.9 Let O be an E1–operad in Top. This is an operad such that On is
†n–free and weakly contractible for each n � 0. Let O be the constant operad in
orthogonal spaces associated to O, which is closed. The space On.UK / is just On with
the trivial K–action, which means that for n�2 and a graph subgroup � 2F.K; †n/ not
contained in K�feg, we have that .On.UK //

� D∅. Therefore On is not †n–globally
equivalent to � for n� 2, and so the constant operad O is not a global E1–operad.

A similar situation occurs in the classical world of equivariant operads. A nonequivariant
E1–operad given the trivial G–action is not a good example of an E1–operad in
G–spaces. Instead one wants to look at E1–G–operads, the ones for which On is
F.G; †n/–equivalent to a point; first defined in [16, Definition VII.1.2].

Remark 5.10 In the G–equivariant setting, there is a hierarchy of nonequivalent
operads between a nonequivariant operad given the trivial G–action and an E1–G–
operad. These in-between operads are called N1–operads, and were introduced in [4].
They codify various levels of commutativity, by imposing the existence of certain
additive transfers/multiplicative norms, which exist for commutative monoids in G–
spaces and commutative G–ring spectra respectively.

In the global setting, there is also a hierarchy of operads between the naive global
E1–operads of Remark 5.9 and the global E1–operads. These operads in orthogonal
spaces are the global analogs of N1–operads. A classification of them will appear in a
separate article [1].

Appendix More about G –orthogonal spaces

We now construct the G–global model structure on the category of G–orthogonal
spaces, for G a compact Lie group. The process is the same as the one used in [22,
Section 1.2] to construct the global model structure on Spc, and most of the proofs are
almost identical. We first construct a level model structure on GSpc applying the results
from [22, Appendix C], and then we consider the left Bousfield localization with the
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G–global equivalences as the weak equivalences. We include here several technical
results needed to construct this G–global model structure, or used in the main part of
this paper.

In this appendix we assume the definitions and results of Section 3.

A.1 G –level model structure

For each compact Lie group G there is an isomorphism of Top–enriched categories

Fun.L�G;Top/Š Fun.G;Fun.L;Top//DG–Spc:

We have that DDL�G is a skeletally small Top–enriched category. On D we have a
dimension function on the objects j�j given by the dimension of the inner product space
of L. This function satisfies that if jV j > jW j then D.V;W /D ∅ and if jV j D jW j
then V and W are isomorphic in D. We need to choose for each m� 0 an object of D

of dimension m, and we pick Rm.

As input to obtain the G–level model structure, we have to consider for each m� 0 a
model structure on the category of spaces with an action by D.Rm;Rm/DO.m/�G.
We take the model structure given by the graph subgroups, the F.O.m/;G/–projective
model structure, where a morphism f of .O.m/�G/Top is a weak equivalence (resp. a
fibration) if and only if f � is a weak homotopy equivalence (resp. a Serre fibration)
for each � 2 F.O.m/;G/. Recall that F.O.m/;G/ is the set of graph subgroups of
O.m/�G, those � 2O.m/�G such that � \ .feO.m/g �G/D feO.m/�Gg

This F.O.m/;G/–projective model structure is proper, cofibrantly generated, and
topological. See for example [22, Proposition B.7] for the construction. We call the
weak equivalences of this model structure the F.O.m/;G/–equivalences, and we do
the same for the fibrations, acyclic fibrations, cofibrations and acyclic cofibrations. We
can use the results from [22, Appendix C] to construct a level model structure on GSpc
based on the graph subgroups. For this, the following consistency condition, described
in [22, Definition C.22], has to be satisfied.

Lemma A.1 (consistency condition) For each m; n � 0 and each F.O.m/;G/–
acyclic cofibration i , the morphism

.L.Rm;RmCn/�G/�O.m/�G i

is an F.O.mCn/;G/–acyclic cofibration.
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Proof The functor

.L.Rm;RmCn/�G/�O.m/�G �

is a left adjoint to the functor given by

Map.L.Rm;RmCn/�G;�/O.mCn/�G :

Therefore we only need to check that it sends the generating acyclic cofibrations to
acyclic cofibrations.

The generating acyclic cofibrations of the F.O.m/;G/–projective model structure are
of the form ..O.m/�G/=�/� jl , for � 2 F.O.m/;G/ and l � 0. Then the functor
mentioned at the beginning takes this generating acyclic cofibration to

..L.Rm;RmCn/�G/=�/� jl :

The left G–action on G is free, and because � is a graph subgroup and the O.m/–
action on L.Rm;RmCn/ is free, the left G–action on .L.Rm;RmCn/�G/=� is also
free. We consider now L.Rm;RmCn/ � G as an .O.mCn/�G�O.m/�G/–space,
where the component O.m C n/ � G acts on the left, and O.m/ � G originally
acts on the right so we precompose with .�/�1 to obtain a left action. The space
L.Rm;RmCn/ � G is a smooth .O.mCn/�G�O.m/�G/–manifold. Illman’s the-
orem [14, 7.2] provides an .O.mCn/�G�O.m/�G/–equivariant triangulation, so
L.Rm;RmCn/�G is cofibrant in the projective model structure with respect to all
subgroups of O.mC n/�G �O.m/�G.

By [22, B.14(i), (iii)], .L.Rm;RmCn/�G/=� is cofibrant in the projective model struc-
ture with respect to all subgroups of O.mCn/�G. This in particular means that it is a re-
tract of a generalized .O.mCn/�G/–CW–complex. Each cell .O.mCn/�G/=��Dl 0

for a subgroup � � O.mC n/�G and l 0 � 0 that appears in this equivariant CW–
structure induces a .O.mCn/�G/–equivariant map

f W .O.mC n/�G/=��Dl 0
! .L.Rm;RmCn/�G/=�:

Since the target of f is G–free, so is the source; thus � is a graph subgroup. As
only graph subgroups can appear in this CW–structure, .L.Rm;RmCn/ � G/=�

is also cofibrant in the F.O.mCn/;G/–projective model structure. Recall that the
F.O.mCn/;G/–projective model structure is topological. Therefore, the morphism
..L.Rm;RmCn/ � G/=�/ � jl is the product of a cofibrant object with an acyclic
cofibration of Top, so it is an acyclic cofibration.
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Theorem A.2 (G–level model structure) There is a topological cofibrantly generated
model structure on the category GSpc of G–orthogonal spaces , which we call the G–
level model structure. The weak equivalences (resp. the fibrations) are those morphisms
f such that for each m � 0 and each graph subgroup � 2 F.O.m/;G/, the map
f .Rm/� is a weak homotopy equivalence (resp. a Serre fibration). We call these
respectively the G–level equivalences and the G–level fibrations.

A set of generating cofibrations is

IG D f..L.R
m;�/�G/=�/� il jm; l � 0; � 2 F.O.m/;G/g:

A set of generating acyclic cofibrations is

JG D f..L.R
m;�/�G/=�/� jl jm; l � 0; � 2 F.O.m/;G/g:

We call the cofibrations of this model structure the G–flat cofibrations.

Proof Such a model structure exists by [22, Proposition C.23(i)]. It is cofibrantly
generated by [22, Proposition C.23(iii)] because each of the chosen model structures
on .O.m/�G/Top is cofibrantly generated.

The functor
.�/.Rm/ WGSpc! .O.m/�G/Top

given by evaluation at Rm has a left adjoint, which we denote by Fm, and it is given by

Fm.A/D .L.R
m;�/�G/�O.m/�G A:

The generating cofibrations obtained from [22, Proposition C.23(iii)] are those of the
form Fm.i/ where i is a generating cofibration of .O.m/�G/Top, which are of the
form ..O.m/�G/=�/� il for � 2 F.O.m/;G/ and l � 0. Similarly the generating
acyclic cofibrations are of the form Fm.j / for j a generating acyclic cofibration of
.O.m/�G/Top.

Each G–orthogonal space of the form .L.Rm;�/�G/=� is cofibrant in this G–level
model structure, because Fm...O.m/�G/=�/� i0/ is a generating cofibration. Using
[22, Proposition B.5] we obtain that this model structure is topological, taking G and Z
in the statement of that proposition to be

G D f.L.Rm;�/�G/=� jm� 0; � 2 F.O.m/;G/g and Z D∅:

Note that we should call this model structure on GSpc the “G–graph level model
structure” to distinguish it from other possible model structures on GSpc. In particular,
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there is at least the level model structure that we would obtain by considering all
subgroups of O.m/�G, and not just the graph subgroups. There is also a projective
model structure on Fun.G; Spc/. However since we never talk about these two other
model structures on GSpc, we omit the adjective “graph” everywhere.

Lemma A.3 If f WX ! Y is a G–level equivalence then for any compact Lie group
K and any faithful K–representation V , the map f .V / is an F.K;G/–equivalence. In
particular , f is also a G–global equivalence.

Proof As a finite-dimensional inner product space, V is isomorphic to Rl for some
l � 0. Let � 2 F.K;G/ be a graph subgroup. Then the image of � under the homo-
morphism K �G!O.Rl/�G induced by said isomorphism is a graph subgroup � 0.
Then X.V /� is naturally (on X ) homeomorphic to X.Rl/�

0

. Since f .Rl/�
0

is a weak
homotopy equivalence, so is f .V /� .

Remark A.4 For an inner product space V and a closed subgroup H �O.V /�G,
the G–orthogonal space

D.V;�/=H D .L.V;�/�G/=H;

which we denote by LH ;V IG , is special. It has a certain freeness condition, namely it
is the representing object for the functor .�/.V /H given by evaluating at V and then
taking H–fixed points. We refer to these as the semifree G–orthogonal spaces, since
they have the same property as the semifree orthogonal spaces LH ;V .

Explicitly the natural isomorphism between the functors

GSpc.LH ;V IG ;�/; .�/.V /
H
WGSpc! Top

is given by f 7! f .V /.ŒidV ; e�/. The inverse isomorphism is given on Y 2 GSpc by
sending a point y0 2 Y .V /H to the morphism of G–orthogonal spaces f given by

.L.V;W /�G/=H ! Y .W /; Œ ;g� 7! Y . /.gy0/:

Analogously to the case of the semifree orthogonal spaces, the box product of a semifree
G–orthogonal space and a semifree K–orthogonal space has a nice structure. As a
.G�K/–orthogonal space it is isomorphic to a semifree .G�K/–orthogonal space, and
this can be deduced from the result for orthogonal spaces. Note however that the box
product of two semifree G–orthogonal spaces with the G–action given by restriction
along the diagonal is not a semifree G–orthogonal space in general.
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Lemma A.5 For compact Lie groups G and K, inner product spaces V and V 0, and
closed subgroups H � O.V / � G and H 0 � O.V 0/ � K, LH ;V IG � LH 0;V 0IK is
isomorphic as a .G�K/–orthogonal space to LH�H 0;V˚V 0IG�K .

Proof Since the box product preserves colimits in both variables, we have that

.L.V;�/�G/=H�.L.V 0;�/�K/=H 0 Š ..L.V;�/�G/�.L.V 0;�/�K//=.H�H 0/

Š .L.V˚V 0;�/�G�K/=.H�H 0/:

Here we also used the isomorphism L.V;�/�L.V 0;�/ŠL.V ˚V 0;�/ from [22,
Example 1.3.3] and its naturality on V and V 0.

Lemma A.6 The pushout product of a G–flat cofibration (recall that these are the
cofibrations of the G–level model structure) and a K–flat cofibration is a .G�K/–flat
cofibration.

Proof Given a generating G–flat cofibration f DL�;RmIG�il and a generating K–flat
cofibration g DL� 0;RnIK � ik , their pushout product is by Lemma A.5 isomorphic to

L��� 0;RmCnIG�K � .il � ik/

as a morphism of .G�K/–orthogonal spaces. The subgroup

� �� 0 �O.m/�O.n/�G �K �O.mC n/�G �K

is a graph subgroup because both � and � 0 are graph subgroups. Additionally il � ik

is homeomorphic to ilCk , and so f � g is a generating .G�K/–flat cofibration.

Since the box product of orthogonal spaces is closed, [13, Lemma 4.2.4] implies that
the pushout product of a G–flat cofibration and a K–flat cofibration is a .G�K/–flat
cofibration.

Lemma A.7 The G–level model structure is proper.

Proof First we check right properness. Consider the pullback diagram

A X

B Y

g

f

h

y

where f is a G–level fibration and h is a G–level equivalence. Let m� 0. Evaluating
at Rm yields a diagram of .O.m/�G/–spaces, which is a pullback diagram because
limits of G–orthogonal spaces and .O.m/�G/–spaces are computed in Top. Then
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f .Rm/ is an F.O.m/;G/–fibration and h.Rm/ is an F.O.m/;G/–equivalence, and
since the F.O.m/;G/–projective model structure is right proper by [22, B.7], g.Rm/

is also an F.O.m/;G/–equivalence. Thus g is a G–level equivalence.

To check left properness one can use the dual argument. We additionally need to
use that if a morphism f of G–orthogonal spaces is a G–flat cofibration, then it is a
G–h–cofibration (see Lemma 3.15), which means that each f .Rm/ is an h–cofibration
of .O.m/�G/–spaces, and then we need to use the gluing lemma [22, B.6].

A.2 G –h–cofibrations and G –global equivalences

We now check that G–global equivalences are preserved by various constructions along
G–h–cofibrations. We use these results to finish the construction of the G–global model
structure, and in the main part of this paper.

Lemma A.8 (gluing lemma) Given a commutative diagram of G–orthogonal spaces

Y X Z

Y 0 X 0 Z0

ˇ

f g

˛ 

f 0 g0

where ˛, ˇ and  are G–global equivalences , and f and f 0 are G–h–cofibrations , the
morphism induced on the pushouts Y [X Z! Y 0[X 0 Z

0 is a G–global equivalence.

Proof Consider a compact Lie group K and an exhaustive sequence of K–representa-
tions fVigi2N . We have the following diagram of equivariant morphisms of .K�G/–
spaces:

teli Y .Vi/ teli X.Vi/ teli Z.Vi/

teli Y 0.Vi/ teli X 0.Vi/ teli Z0.Vi/

teli ˇ.Vi /

teli f .Vi / teli g.Vi /

teli ˛.Vi / teli .Vi /

teli f 0.Vi / teli g0.Vi /

Here by Proposition 3.4 teli ˛.Vi/, teli ˇ.Vi/ and teli  .Vi/ are F.K;G/–equivalences,
and the formation of mapping telescopes commutes with pushouts, retracts and��Œ0; 1�,
so teli f .Vi/ and teli f 0.Vi/ are h–cofibrations of .K�G/–spaces. Therefore by the
gluing lemma for F.K;G/–equivalences (see for example [22, Proposition B.6]) the
induced map on the pushouts of the mapping telescopes is also an F.K;G/–equivalence.
Since again taking mapping telescopes commutes with pushouts, this means that
Y [X Z! Y 0[X 0 Z

0 is a G–global equivalence.
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Corollary A.9 For a pushout diagram of G–orthogonal spaces

X Y

X 0 Y 0

f

g

f 0 p

where f is a G–global equivalence and either f or g is a G–h–cofibration , f 0 is a
G–global equivalence.

Proof Apply the previous lemma to the diagram

X X X 0

Y X X 0

f

g

f g

Corollary A.10 For morphisms of G–orthogonal spaces f WX1!Y1 and g WX2!Y2

such that f is a G–global equivalence and either f or g is a G–h–cofibration , their
pushout product f � g is a G–global equivalence.

Similarly, assume instead that f W X1 ! Y1 is a morphism of G–orthogonal spaces
and g WX2! Y2 is a map of G–spaces. If either f is a G–global equivalence or g is a
G–equivalence , and either f or g is a G–h–cofibration , their pushout product f � g

is a G–global equivalence.

Proof By Lemma 3.7(iv) f �X2 and f �Y2 are G–global equivalences. Depending
on the hypothesis, either f �X2 or X1�g is a G–h–cofibration, so by Corollary A.9
the morphism ˛ is a G–global equivalence, and by the 2-out-of-6 property so is f � g:

X1�X2 X1�Y2

Y1�X2 P

Y1�Y2

f�X2

X1�g

f�Y2
˛

Y1�g

f�g

p

The same is true if g is a map of G–spaces, since the product of an orthogonal space with
a space is the same as the box product with the associated constant orthogonal space.
A G–equivalence between constant orthogonal spaces is a G–global equivalence, and
similarly a G–h–cofibration of spaces is a G–h–cofibration between constant orthogonal
spaces.
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Lemma A.11 For a limit ordinal �, consider two �–sequences in GSpc, which are col-
imit preserving functors X W �!GSpc and Y W �!GSpc, and a natural transformation
f between them. If for each ˇ 2� the morphisms gˇ WXˇ!XˇC1 and hˇ WYˇ!YˇC1

are G–h–cofibrations and the morphism fˇ WXˇ! Yˇ is a G–global equivalence , the
morphism induced on the colimits ,

colim
ˇ2�

fˇ W colim
ˇ2�

Xˇ! colim
ˇ2�

Yˇ;

is a G–global equivalence.

Proof By Proposition 3.4 it is enough to check that for each compact Lie group K

and exhaustive sequence of K–representations fVigi2I , the map teli.colimˇ2� fˇ/.Vi/

is an F.K;G/–equivalence. The construction of the mapping telescopes commutes
with taking colimits, so this map is isomorphic to colimˇ2�.teli fˇ.Vi//.

For each ˇ2� the map teli fˇ.Vi/ is an F.K;G/–equivalence, and the maps teli gˇ.Vi/

and teli hˇ.Vi/ are h–cofibrations of .K�G/–spaces, and so in particular h–cofibrations
of underlying compactly generated weak Hausdorff spaces, and therefore closed em-
beddings.

For each � 2 F.K;G/ taking �–fixed points commutes with filtered colimits along
closed embeddings; see [22, Proposition B.1(ii)]. Colimits with the shape of a filtered
poset and built out of closed embeddings of compactly generated weak Hausdorff spaces
can be computed in the category of all topological spaces; see [22, Proposition A.14(ii)].
Weak Hausdorff spaces are T1, so by [13, Proposition 2.4.2] maps from compact spaces
(@Dl and Dl in this case) into the colimit of a �–sequence of closed embeddings (for
� a limit ordinal) factor through some stage ˇ 2 �. Therefore compact spaces are finite
in Top relative closed embeddings.

This implies that, for the �–sequences given by .teli gˇ.Vi//
� and .teli hˇ.Vi//

� ,
which consist of closed embeddings, and the natural transformation between them
given by the maps .teli fˇ.Vi//

� which are weak homotopy equivalences, the map
induced on the colimits

colim
ˇ2�

.teli fˇ.Vi//
�
Š
�
colim
ˇ2�

.teli fˇ.Vi//
��

is a weak homotopy equivalence. Therefore teli.colimˇ2� fˇ/.Vi/ is an F.K;G/–
equivalence.

Corollary A.12 A transfinite composition of morphisms in GSpc that are G–h–cofibra-
tions and G–global equivalences is a G–global equivalence.
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Proof We check this via transfinite induction on the ordinal �. Let Y W �!GSpc be a
�–sequence such that for each ˇ2� the morphism hˇ WYˇ!YˇC1 is a G–h–cofibration
and a G–global equivalence. The base case and the case where � is a successor ordinal
hold because composition of two G–global equivalences is a G–global equivalence.

If � is a limit ordinal, set X W �! GSpc as the constant functor Xˇ D Y0. Define a
natural transformation f WX ) Y by letting fˇ be the morphism Y0! Yˇ . This is the
transfinite composition of Y restricted to ˇC 1. Then by the induction hypothesis fˇ
is a G–global equivalence for each ˇ 2 �. Then we use Lemma A.11 to obtain that
colimˇ2� fˇ is a G–global equivalence, but this morphism is precisely the transfinite
composition of Y .

A.3 G –global model structure

We now go back to constructing the G–global model structure, starting with the
fibrations.

Definition A.13 (G–global fibration) A morphism of G–orthogonal spaces f WX!Y

is a G–global fibration if it is a G–level fibration, and for each compact Lie group K,
every graph subgroup � 2 F.K;G/, and every linear isometric embedding of K–
representations  W V !W with V faithful, the induced map

X.V /� ! Y .V /� �Y .W /� X.W /�

is a weak homotopy equivalence. Since f is a G–level fibration, and so f .V /� and
f .W /� are Serre fibrations, this is equivalent to the following square being homotopy
cartesian:

X.V /� X.W /�

Y .V /� Y .W /�

f .V /�

X . /�

f .W /�

Y . /�

Construction A.14 Fix a compact Lie group G. We now construct the set KG , where
JG [KG is a set of generating acyclic cofibrations for the G–global model structure
of Theorem A.20. Recall that JG is the set of generating acyclic cofibrations of the
G–level model structure given in Theorem A.2. Let K be a compact Lie group, let V

be a faithful K–representation, let W be a K–representation and let � 2F.K;G/ be a
graph subgroup. We consider the restriction morphism of G–orthogonal spaces,

��;V;W IG WL�;V˚W IG D .L.V ˚W;�/�G/=�! .L.V;�/�G/=� DL�;V IG :
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The morphism ��;V;W IG is a G–global equivalence because the semifree G–orthogonal
spaces are closed and given a compact Lie group L, the map

�V;W WL.V ˚W;UL/!L.V;UL/

is a .K�L/–homotopy equivalence by [22, 1.1.26(ii)] (recall that UL here is a complete
L–universe).

Now let � be a set of representatives of isomorphism classes of triples .K; �;V;W / con-
sisting of a compact Lie group K, a faithful K–representation V , a K–representation W ,
and a graph subgroup � 2 F.K;G/. Let KG be the set

KG D

[
.K ;�;V;W /2�

f���;V;W IG � il j l � 0g:

Recall that ���;V;W IG denotes the inclusion of the mapping cylinder

L�;V˚W IG!M��;V;W IG :

Note that here we allow V to be 0. For the generating acyclic cofibrations of the
positive global model structure on Spc, we do require that V ¤ 0. If we did that here,
in Definition A.13, and in Theorem A.2, we would obtain the positive G–global model
structure.

Lemma A.15 Any morphism in JG [ KG is a G–global equivalence and a G–flat
cofibration. Any morphism obtained from JG [ KG by transfinite composition and
cobase changes is also a G–global equivalence and a G–flat cofibration.

Proof Any morphism f 2 JG is an acyclic cofibration in the G–level model structure,
so it is a G–flat cofibration and by Lemma A.3 a G–global equivalence.

Fix a compact Lie group K, a faithful K–representation V , a K–representation W ,
a graph subgroup � 2 F.K;G/, and l � 0. Consider f D ���;V;W IG � il in KG . We
saw in Construction A.14 that ��;V;W IG is a G–global equivalence. The projection
M��;V;W IG!L�;V IG from the mapping cylinder of ��;V;W IG to its target is a homotopy
equivalence in GSpc. Therefore it is a G–level equivalence, and thus a G–global
equivalence. By the 2-out-of-6 property ���;V;W IG is also a G–global equivalence.

The G–orthogonal spaces L�;V˚W IG and L�;V IG are G–flat orthogonal spaces because
they are isomorphic to L� 0;RnCmIG and L� 00;RnIG respectively, for some n;m � 0,
� 0 2 F.O.nCm/;G/ and � 00 2 F.O.n/;G/. Then we obtain that

L�;V˚W IG!L�;V˚W IGqL�;V IG
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is a G–flat cofibration. Also since the G–level model structure of Theorem A.2 is
topological, L�;V˚W IG � i1 is a G–flat cofibration. Putting this together we obtain
that ���;V;W IG is a G–flat cofibration, and again because the G–level model structure is
topological so is f . By Corollary A.10, f D ���;V;W IG � il is a G–global equivalence.

Using the closure properties of Corollaries A.9 and A.12, we obtain the second part of
the lemma.

Lemma A.16 The sources of all morphisms in IG , JG and KG are finite (and thus
small ) with respect to the class of maps that are levelwise closed embeddings. Since
G–h–cofibrations are levelwise closed embeddings , they are also finite with respect to
the class of G–h–cofibrations.

Proof We first check that for any compact Lie group K, faithful K–representation V ,
graph subgroup�2F.K;G/, and compact space A, the G–orthogonal space L�;V IG�A

is finite with respect to morphisms which are levelwise closed embeddings.

We recalled in the proof of Lemma A.11 that compact spaces are finite in Top relative
closed embeddings. Taking �–fixed points commutes with filtered colimits along
closed embeddings. Consider a limit ordinal �, and a �–sequence X W �! GSpc of
levelwise closed embeddings. By the semifreeness property of L�;V IG �A, and since
colimits in GSpc are computed levelwise, we have that

GSpc
�
L�;V IG �A; colim

ˇ2�
Xˇ
�
Š Top

�
A;
�
colim
ˇ2�

Xˇ
�
.V /�

�
Š Top

�
A; colim

ˇ2�
.Xˇ.V /

�/
�

Š colim
ˇ2�

Top.A; .Xˇ.V /
�//

Š colim
ˇ2�

GSpc.L�;V IG �A;Xˇ/:

So for a generating cofibration i 2 IG , its source is of the form L�;RmIG � @D
l , so it

is finite relative levelwise closed embeddings. Similarly the source of a generating
acyclic cofibration j 2 JG is L�;RmIG �Dl , so it is also finite relative levelwise closed
embeddings.

For a generating acyclic cofibration k D ���;V;W IG � il in KG , its source is

L�;V˚W IG �Dl
[L�;V˚W IG�@Dl M��;V;W IG � @D

l :

The G–orthogonal space M��;V;W IG � @D
l is a finite colimit of objects of the form

L�;V IG �A. Therefore it is also finite relative levelwise closed embeddings, because
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in Set finite limits commute with filtered colimits. By the same argument, the source
of k is also finite relative levelwise closed embeddings.

G–h–cofibrations are levelwise h–cofibrations of spaces, which are closed embeddings
in the category of compactly generated weak Hausdorff spaces. Therefore G–h–
cofibrations are levelwise closed embeddings.

Lemma A.17 A morphism in GSpc is a G–global fibration if and only if it has the
right lifting property with respect to JG [KG .

Proof Every linear isometric embedding of K–representations is isomorphic to an
embedding of the form iV WV !V ˚W . Thus Definition A.13 can be altered slightly to
say that a morphism f is a G–global fibration if and only if it is a G–level fibration and
for each compact Lie group K, graph subgroup � 2 F.K;G/, and K–representations
V and W , the square

X.V /� X.V ˚W /�

Y .V /� Y .V ˚W /�

f .V /�

X .iV /
�

f .V˚W /�

Y .iV /
�

is homotopy cartesian. By Remark A.4, the morphism ��;V;W IG represents the natural
transformation

.�/.iV /
�
W .�/.V /�) .�/.V ˚W /� :

By applying [22, Proposition 1.2.16] to the G–level model structure we obtain that the
previous square is homotopy cartesian if and only if f has the right lifting property
with respect to ���;V;W IG � il for all l � 0. The set JG is a set of generating acyclic
cofibrations of the G–level model structure, so a morphism is a G–level fibration if
and only if it has the right lifting property with respect to JG . Therefore a morphism in
GSpc is a G–global fibration if and only if it has the right lifting property with respect
to JG [KG .

Lemma A.18 A pullback of a G–global equivalence along a G–level fibration is also
a G–global equivalence.

Proof Consider the pullback square

(5)
P X

Z Y

f

h

g

k

y
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where f is a G–global equivalence and h is a G–level fibration. Consider a compact
Lie group K, a K–representation V , a graph subgroup � 2 F.K;G/, and a lifting
problem given by ˛ W @Dl ! P .V /� and ˇ W Dl ! Z.V /� with g.V /� ı ˛ D ˇ ı il .
Since f is a G–global equivalence, there is a K–representation W , a K–equivariant
linear isometric embedding  W V !W , and a morphism � WDl !X.W /� such that

� ı il DX. /� ı k.V /� ı˛

and there is a @Dl–relative homotopy H from Y . /� ı h.V /� ı ˇ to f .W /� ı �

relative @Dl . Since h.W /� is a Serre fibration, there is a lift H 0 in the diagram

Dl � f0g[ @Dl � Œ0; 1� Z.W /�

Dl � Œ0; 1� Y .W /�
H

H 0
h.W /�

.Z. /�ıˇ/[..g.W /�ıP. /�ı˛/�Œ0;1�/

Since the square (5) is a pullback there is a unique �0 W Dl ! P .W /� such that
g.W /� ı �0 D H 0.�; 1/ and k.W /� ı �0 D �. Also by the universal property of the
pullback (5) we obtain that �0 ı il D P . /� ı˛. Since H 0 is a homotopy relative @Dl

between g.W /� ı�0 and Z. /� ıˇ, we obtain that g is a G–global equivalence.

Lemma A.19 If f WX ! Y is a G–global equivalence and a G–global fibration then
it is also a G–level equivalence.

Proof Consider m� 0, a graph subgroup � 2F.O.m/;G/ given by a homomorphism
H !G with H �O.m/, and a lifting problem of the form

@Dl X.Rm/�

Dl Y .Rm/�

˛

il f .Rm/�

ˇ

Since f is a G–global equivalence, there is an embedding of H–representations
 WRm! V and a map � WDl !X.V /� such that �ı il DX. /� ı˛ and f .V /� ı�
is homotopic relative @Dl to Y . /� ıˇ.

Since f is a G–level fibration, f .V /� is a Serre fibration. By lifting against

Dl
� f0g[ @Dl

� Œ0; 1�!Dl
� Œ0; 1�;

which is a cofibration of spaces, we can replace � with a �0 such that �0ıil DX. /� ı˛

and f .V /� ı�0 D Y . /� ıˇ.
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Since f is a G–global fibration,

.f .Rm/� ;X. /�/ WX.Rm/� ! Y .Rm/� �Y .V /� X.V /�

is a weak homotopy equivalence. This means that by [18, Lemma 9.6] there is a map �00

in the diagram

@Dl X.Rm/�

Dl Y .Rm/� �Y .V /� X.V /�

˛

il .f .Rm/� ;X . /�/

.ˇ;�0/

�00

such that the upper-left triangle commutes and the lower-right triangle commutes up to
homotopy relative @Dl . Thus by [18, Lemma 9.6] again f .Rm/� is a weak homotopy
equivalence, and so f is a G–level equivalence.

Theorem A.20 (G–global model structure) There is a proper topological cofibrantly
generated model structure on the category GSpc of G–orthogonal spaces , with the G–
global equivalences as the weak equivalences , the G–global fibrations as the fibrations ,
and the G–flat cofibrations of the G–level model structure as the cofibrations. We call
this model structure the G–global model structure.

IG is a set of generating cofibrations of this model structure. The set JG [KG is a set of
generating acyclic cofibrations. Recall that IG , JG and KG were given in Theorem A.2
and Construction A.14.

Proof GSpc is complete and cocomplete. The G–global equivalences satisfy the
2-out-of-6 property and are closed under retracts by Lemma 3.7(i) and (ii) respectively.
The G–global fibrations and G–flat cofibrations are closed under retracts because they
can be defined via lifting properties, see Lemma A.17 and Theorem A.2 respectively.
Now we have to check the lifting and factorization axioms.

Given a morphism in GSpc, we can use the G–level model structure of Theorem A.2
to decompose it into f ı i where i is a G–flat cofibration and f is a G–level fibration
and a G–level equivalence, so it is also a G–global equivalence by Lemma A.3. Given
 W V !W a linear isometric embedding of faithful K–representations, in the square

X.V /� X.W /�

Y .V /� Y .W /�

f .V /�

X . /�

f .W /�

Y . /�
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the two vertical morphisms are weak equivalences by Lemma A.3. Therefore this
square is homotopy cartesian and f is a G–global fibration. This gives one of the
factorization axioms.

For the second factorization axiom, we apply Quillen’s small object argument to the set
JG[KG , which we can do by Lemma A.16. This factors any morphism into f ıj , where
by Lemma A.15 we know that j is a G–flat cofibration and a G–global equivalence,
and f has the right lifting property with respect to JG [KG , so by Lemma A.17 it is a
G–global fibration. This gives the second factorization axiom. Note for later that this
j by construction has the left lifting property with respect to G–global fibrations.

One of the lifting axioms can be obtained from the G–level model structure. By
Lemma A.19, a morphism which is both a G–global fibration and a G–global equiva-
lence is a G–level equivalence, so it has the right lifting property with respect to the
G–flat cofibrations.

Lastly, consider a morphism g which is both a G–flat cofibration and a G–global
equivalence. We can use Quillen’s small object argument on the set JG [KG again
to decompose g into f ı j , where f is a G–global fibration and j is a G–global
equivalence which has the left lifting property with respect to G–global fibrations.
By the 2-out-of-6 property f is also a G–global equivalence. Then by the previously
proven lifting axiom g is a retract of j , so it also has the left lifting property with
respect to G–global fibrations.

This model structure is right proper by Lemma A.18 (G–global fibrations are G–level
fibrations) and left proper by Corollary A.9. Using [22, Proposition B.5] we obtain
that this model structure is topological, taking G and Z in that statement to be

G D fL�;RmIG jm� 0; � 2F.O.m/;G/g; ZD f���;V;W IG j .K; �;V;W / 2 �g:

Remark A.21 As mentioned in Remark 3.6, we can define a different class of G–
global equivalences by checking the condition from Definition 3.2 on all subgroups of
K �G instead of only on the graph subgroups. We can do the same for all the results
of this appendix, replacing F.K;G/ everywhere by the set of all closed subgroups
of K �G. We can take the G–level model structure given by all subgroups briefly
mentioned right after Theorem A.2, and localize it at this smaller class of G–global
equivalences. This gives us a model structure with this smaller class of G–global
equivalences as the weak equivalences, as well as fibrations and cofibrations that are
similarly defined by looking at all subgroups instead of just the graph subgroups.
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However, as shown by the various results of this article, the G–global model structure
constructed in this appendix is more relevant when looking at operads in Spc.
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In a previous article, we constructed a link invariant categorifying the Jones polyno-
mial at a 2pth root of unity, where p is an odd prime. This categorification utilized an
N D 2 specialization of a differential introduced by Cautis in an slN –link homology
theory. Here we give a family of link homologies where the Cautis differential is
specialized to a positive integer of the form N D kpC 2. When k is even, all these
link homologies categorify the Jones polynomial evaluated at a 2pth root of unity, but
they are distinct link invariants.
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1 Introduction

Given any link L, Khovanov and Rozansky [5] constructed a triply graded link homol-
ogy theory HHH.L/ whose graded Euler characteristic is the HOMFLYPT polynomial
of L using the theory of matrix factorizations. Khovanov reformulated this construction
using categories of Soergel bimodules [3]. The connection between Soergel bimodules
and link homology began with Rouquier’s categorification of the braid group [14]. He
also extended this categorification to a link homology [15].
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Link homology theories are important examples of categorification. In 1994, Crane and
Frenkel [2] introduced their categorification program with the purpose of constructing
.3C1/–dimensional TQFTs by lifting the .2C1/–dimensional TQFTs coming from
quantum groups. The .2C1/–dimensional TQFTs utilize quantum groups at roots of
unity. Motivated by this goal, Khovanov [4] introduced the subject of hopfological
algebra, which was further developed in [7]. The basic idea is to take a categorification
of a quantum group (for a generic quantum parameter) or its representations, defined
over a field of characteristic p and look for differentials @ such that @p D 0. Searching
for such p–differentials is equivalent to constructing an action of the Hopf algebra
H D kŒ@�=.@p/ (hence the word “hopfological”). We refer the reader to [10] for a
survey of some recent progress in this direction.

Cautis [1] defined an additional differential, depending upon a natural number N ,
on the chain groups for the triply graded theory, which produced a categorification
of the quantum slN –link invariant (also known as the symmetric glN homology).
Independently, Robert and Wagner [13] and Queffelec, Rose and Sartori [12] constructed
the same slN –link homology from different perspectives.

In a more recent work [6], Khovanov and Rozansky equipped the triply graded link
homology with an action of the positive half of the Witt algebra. One of the Witt
algebra generators (denoted by L1Dx2 @

@x
) in [6] acts as a p–differential over a field of

characteristic p on HHH.L/. For degree reasons, this is the only Witt algebra generator
that can play the role of a p–differential. In [11], we utilized this p–differential along
with the Cautis differential for N D 2, to construct a categorification of the Jones
polynomial evaluated at a 2pth root of unity. The Cautis differential has the effect of
applying L1 ^ . � / to HHH.L/. A key property that facilitated the construction in [11]
is that the two actions of L1, as the p–differential and the Cautis differential, commute
with each other.

In this work, we generalize the previous results by considering the Cautis differential
for N D kpC 2 where p is an odd prime — this condition could be removed but was
used in the braid group action in the prequel [11] — and k is a nonnegative integer.
The essential reason that this generalization works is that, in characteristic p, the
polynomial algebra generated by xp lies in the center of the Witt algebra. Therefore
the p–differential L1 still commutes with LkpC1 D xkpC2 @

@x
, the latter now serving

as the Cautis differential. Thus, for each N D kpC 2 and braid ˇ, we obtain a finite-
dimensional object pH.ˇ; kpC 2/ which is well defined in the homotopy category of
p–complexes. Our main result is the following.

Algebraic & Geometric Topology, Volume 23 (2023)
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Theorem 4.9 Let L be a link presented as the closure of a braid ˇ and p be an odd
prime. The object pH.ˇ; kpC 2/ is a finite-dimensional framed link invariant. When
k 2 2Z, its Euler characteristic is the Jones polynomial evaluated at a 2pth root of unity.

Varying the Cautis differential categorifies slN –link invariants for different ranks. But
when q is a 2pth root of unity, and k is even, qkpC2 D q2 so the slkpC2–link invariant
is just the Jones polynomial. While this is true on the decategorified level, we show
in Section 5 that on the level of homology, the invariant for the Hopf link depends
upon k. Thus we obtain a family of distinct link homologies categorifying the Jones
polynomial at 2pth roots of unity.

In a parallel direction [8], we show that the root of unity categorification of [11] can be
extended to the colored case. Combining the approach of [8] with the current work,
one can construct certain colored slN –link homologies, which we plan to explore.

Acknowledgements The authors would like to thank Louis-Hadrien Robert and Em-
manuel Wagner for helpful conversations.

While working on the project, Qi was partially supported by the NSF grant DMS-
1947532. Sussan is partially supported by the NSF grant DMS-1807161 and PSC
CUNY Award 63047-0051.

2 Background

In this section, we recall some background material from [11]. We assume the reader
has some familiarity with the constructions in [11].

2.1 p–DG algebras and their relative homotopy categories

Let k be a field of characteristic p > 2. For any graded or ungraded algebra B over k,
denote by d0 the zero superdifferential (d2

0
D 0) and by @0 the zero p–differential

(@p
0
D 0) on B, while letting B sit in homological degree zero. When B is graded, the

homological grading is independent of the internal grading of B. We will usually refer
to the internal grading as the q–degree in what follows.

We will let C.B; d0/ and C.B; @0/ stand for the homotopy categories and p–homotopy
categories of B respectively. For more details on hopfological algebra of p–homotopy
categories, see [4; 7].

Algebraic & Geometric Topology, Volume 23 (2023)
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For a graded module M over a graded algebra B, we let M fng denote the module M ,
where the internal grading has been shifted up by n. When convenient, we sometimes
call this shifted module qnM .

We will need the following functor introduced in [11, Section 2.1] which is called the
p–extension functor. Let B be a k–algebra. Given a chain complex of B–modules, we
repeat every term sitting in odd homological degrees .p� 1/ times while keeping even
degree terms unchanged. More explicitly, for a given complex

� � �
d2kC2
����!M2kC1

d2kC1
����!M2k

d2k
��!M2k�1

d2k�1
����!M2k�2

d2k�2
����! � � � ;

the p–extended complex looks like

� � �
d2kC2

// M2kC1 � � � M2kC1

d2kC1
//// M2k

d2k

// M2k�1 � � � M2k�1

d2k�1
// M2k�2

d2k�2
// � � �

Similarly, for chain maps of B–modules, the odd degree maps are repeated p�1 times
while the even ones are kept unchanged. In [9, Proposition 2.3], it is shown that this
construction leads to an exact functor between homotopy categories

(2-1) P W C.B; d0/! C.B; @0/:

The exactness of P means that it commutes with homological shifts, denoted by
Œ˙1�d and Œ˙1�@, respectively, on C.B; d0/ and C.B; @0/, and preserves the class of
distinguished triangles.

Suppose .A; @A/ is a p–DG algebra, ie a graded algebra equipped with a differential
@A of degree two, satisfying

(2-2) @
p
A
.a/� 0; @A.ab/D @A.a/bC a@A.b/

for all a; b 2 A. In other words, A is an algebra object in the module category of
the graded Hopf algebra Hq D kŒ@q �=.@

p
q /, where the primitive degree-two generator

@q 2Hq acts on A by the differential @A. Below we will usually take B to be a certain
smash product algebra associated with .A; @A/, which we next recall.

Given a p–DG algebra A, we may form the smash product algebra A # Hq in this case.
As a k–vector space, A#Hq is isomorphic to A˝Hq . The multiplication on the smash
product, given in pure tensor elements, is determined by

(2-3) .a˝ @q/.b˝ @q/D ab˝ @2
qC a@A.b/˝ @q:

Algebraic & Geometric Topology, Volume 23 (2023)
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Notice that, by construction, A˝ 1 and 1˝Hq sit in A # Hq as subalgebras.

For later use, let us record a family of balanced Hq–modules

(2-4) Vi WD
��i

k
�iC2

k � � �
i�2

k
i

k
�

for each q–degree i in f0; : : : ;p � 1g. Here the module sits in a single homological
degree, while the labels on top indicate the various q–degrees that the module lives in.
As graded modules over Hq , we have Vi Š q�iHq=.@

iC1
q /.

We will also need a relative version of certain homotopy categories that play an essential
role in [11]. There is an exact forgetful functor between the usual homotopy categories
of chain complexes of graded A#Hq–modules

Fd W C.A # Hq; d0/! C.A; d0/:

An object K� in C.A # Hq; d0/ lies inside the kernel of the functor if and only if,
when forgetting the Hq–module structure on each term of K�, the complex of graded
A–modules Fd .K�/ is nullhomotopic. The nullhomotopy map on Fd .K�/, though, is
not required to intertwine Hq–actions.

Likewise, there is an exact forgetful functor

F@ W C.A # Hq; @0/! C.A; @0/:

Similarly, an object K� in C.A # Hq; @0/ lies inside the kernel of the functor if and
only if, when forgetting the Hq–module structure on each term of K�, the p–complex
of A–modules F.K�/ is nullhomotopic. The nullhomotopy map on F.K�/, though, is
not required to intertwine Hq–actions.

Definition 2.1 Given a p–DG algebra .A; @A/, the relative homotopy category is the
Verdier quotient

C@q .A; d0/ WD
C.A # Hq; d0/

Ker.Fd /
:

Likewise, the relative p–homotopy category is the Verdier quotient

C@q .A; @0/ WD
C.A # Hq; @0/

Ker.F@/
:

The superscripts in the definitions are to remind the reader of the Hq–module structures
on the objects.

Algebraic & Geometric Topology, Volume 23 (2023)
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The categories C@q .A; d0/ and C@q .A; @0/ are triangulated. By construction, there are
factorizations of the forgetful functors

C.A # Hq; d0/ C.A; d0/

C@q .A; d0/

Fd C.A # Hq; @0/ C.A; @0/

C@q .A; @0/

F@

Proposition 2.2 [11, Proposition 2.13] The p–extension functor

P W C.A # Hq; d0/! C.A # Hq; @0/

descends to an exact functor , still denoted by P , between the relative homotopy cate-
gories ,

P W C@q .A; d0/! C@q .A; @0/:

2.2 p–DG bimodules over the polynomial algebra

The polynomial algebra Rn D kŒx1; : : : ;xn� has a natural graded algebra structure
by setting the degree of each xi to be two. We can equip Rn with a p–DG algebra
structure, where the generator @q 2Hq acts as a derivation determined by @q.xi/D x2

i

for i D 1; : : : ; n. As before, the internal grading on Rn will be referred to as the
q–degree. When n is clear from the context, we will abbreviate Rn by just R.

The differential is invariant under the permutation action of the symmetric group Sn

on the indices of the variables. Therefore let the subalgebra of polynomials symmetric
in variables xi and xiC1 with its inherited Hq–module structure be denoted by

Ri
n D kŒx1; : : : ;xi�1;xi CxiC1;xixiC1;xiC2; : : : ;xn�:

More generally, given a (Young) subgroup G�Sn, the invariant subalgebra RG
n inherits

an Hq–algebra structure from Rn (and is thus a p–DG algebra). In particular, we will
also use the Hq–subalgebra R

i;iC1
n WDR

S3
n , where S3 is identified with the subgroup

generated by permuting the indices i , i C 1 and i C 2.

The .R;R/–bimodule Bi D R˝Ri R has the structure of an Hq–module (and is
thus a p–DG bimodule) where the differential acts via the Leibniz rule: for any
h˝g 2R˝Ri R,

@q.h˝g/D @q.h/˝gC h˝ @q.g/:

Algebraic & Geometric Topology, Volume 23 (2023)



On some p–differential graded link homologies, II 3363

With respect to ˝R , the monoidal category of .R;R/–bimodules generated by the Bi

has an Hq–module structure, where the @q action is given by the Leibniz rule. We
denote this category by .R;R/#Hq–mod.

Let f D
Pn

iD1 aixi 2Fp Œx1; : : : ;xn��R be a linear function. We twist the Hq–action
on the bimodule Bi to obtain a bimodule B

f
i defined as follows. As an .R;R/–

bimodule, it is the same as Bi but the action of Hq is twisted by defining

(2-5a) @q.1˝ 1/D .1˝ 1/f:

Similarly, we define fBi where now

(2-5b) @q.1˝ 1/D f .1˝ 1/:

For Rn as a bimodule over itself, it is clear that fRn Š R
f
n as p–DG bimodules. It

follows that there are pn ways to put an Hq–module structure on a rank-one free module
over Rn. Each such Hq–module is quasi-isomorphic to a finite-dimensional p–complex.
Choose numbers bi 2 f2; : : : ;p;pC 1g such that bi � ai .mod p/, i D 1; : : : ; n, and
define the Hq–ideal of R,

(2-6) I D .x
pC1�b1

1
; : : : ;xpC1�bn

n /:

Then the natural quotient map

(2-7) � WRf �Rf =.I �Rf /

is readily seen to be a quasi-isomorphism. The right hand side of (2-7) computes the
slash homology (see [11, Section 2.1] for more details), denoted by H=

�
, of Rf .

Lemma 2.3 [11, Lemma 3.1] For each f D
P

i aixi , the rank-one p–DG module
Rf has slash homology

H=
�
.Rf /Š

nO
iD1

Vp�ai
fp� aig:

In particular , the slash homology is finite-dimensional , and vanishes if any ai of
f D

P
i aixi is equal to one.

Corollary 2.4 [11, Corollary 3.2] Let M be a p–DG module over R which is
equipped with a finite filtration , whose subquotients are isomorphic to Rf for various f .
Then M has finite-dimensional slash homology.

Algebraic & Geometric Topology, Volume 23 (2023)
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2.3 Relative p–Hochschild homology

In [11, Section 2.3], we introduced an absolute version of the p–Hochschild (co)homol-
ogy functor. In what follows, we will instead need a relative version of p–Hochshild
homology for a p–DG algebra, which we recall now. An important reason for introduc-
ing the relative homotopy category is that the relative p–Hochschild homology functor
descends to this category.

Let .A; @A/ be a p–DG algebra. Equip A with the zero differential d0 and zero
p–differential @0, and denote the resulting trivial (p–)DG algebras by .A0; d0/ and
.A0; @0/ respectively. Likewise, for a (p–)DG bimodule M over A, we temporarily
denote by M0 the A–bimodule equipped with zero (p–)differentials.

The usual Hochschild homology of M0 over .A0; d0/ in this case carries a natural
Hq–action, since the Hq–action commutes with all differentials in the usual simplicial
bar complex for A0.

Definition 2.5 The relative Hochschild homology of a p–DG bimodule .M; @M / over
.A; @A/ is the usual Hochschild homology of M0 over .A0; d0/ equipped with the
induced Hq–action from @M and @A, and denoted by

HH@q
�
.M / WD HH�.A0;M0/:

Replacing the usual simplicial bar complex by Mayer’s p–simplicial bar complex (see
[11, Definition 2.10]), we make the next definition (see [11, Section 2.3] for details).
Mayer’s p–simplicial bar complex is obtained by removing the alternating signs in
the usual simplicial bar complex of an algebra. In turn this results in a p–complex
bimodule resolution of an algebra.

Definition 2.6 The relative p–Hochschild homology of M is the p–complex

pHH@q
�
.M / WD H=

�
.A0˝

L
A0˝A

op
0

M0/D H=
�
.p.A0/˝A0˝A

op
0

M0/;

where the notation ˝L is the derived tensor functor. Here, the usual simplicial bar
resolution of M0 over A0 is replaced by Mayer’s p–simplicial bar complex p.A0/.

Similar to the usual Hochschild homology, the relative p–Hochschild homology is also
covariant functor: if f WM !N is a morphism of p–DG bimodules over A, it induces

pHH@q
�
.f / WD H=

�
.IdA0

˝f / W H=
�
.A0˝

L
A0˝A

op
0

M0/! H=
�
.A0˝

L
A0˝A

op
0

N0/:
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Proposition 2.7 [11, Proposition 2.20] The relative p–Hochschild homology de-
scends to a functor defined on the relative homotopy category C@q .A; @0/ of p–DG
bimodules over A.

We also have the trace-like property for relative p–Hochschild homology.

Proposition 2.8 [11, Proposition 2.21] Given two p–DG bimodules M and N

over A, there is an isomorphism of p–complexes of Hq–modules

pHH@q
�
.M ˝L

A N /Š pHH@q
�
.N ˝L

A M /:

We next recall a technical tool that allows us to use a simpler bimodule resolution to
compute the relative Hochschild homology than the usual simplicial bar resolution.

Theorem 2.9 [11, Theorem 2.22] Let M be a p–DG bimodule over A. Suppose
f WQ�!M is a p–complex resolution of M over .A0; @0/ which is Hq–equivariant ,
and each term of Q� is projective as an A0 ˝ A

op
0

–module. Then f induces an
isomorphism of Hq–modules

H=
�
.A0˝A0˝A

op
0

Q�/Š pHH@q
�
.M /:

2.4 Elementary braiding complexes

Here and below, for ease of notation, we will abbreviate tn D Œn�d for homological
shifts, where n 2 Z. Recall that in [11], we show that there are .R;R/#Hq–module
homomorphisms

(i) rbi WR! q�2B
�.xiCxiC1/

i , where 1 7! .xiC1˝ 1� 1˝xi/;

(ii) bri W Bi!R, where 1˝ 1 7! 1.

Thus we have complexes of .R;R/#Hq–modules

(2-8) Ti WD
�
tBi

bri
�!R

�
; T 0i WD

�
R

rbi
�! q�2t�1B

�.xiCxiC1/

i

�
:

In the coming sections we will, for presentation reasons, often omit the various shifts
built into the definitions of Ti and T 0i .

We associate respectively to the left and right crossings �i and � 0i between the i th and
.iC1/st strands in (2-9) the chain complexes of .R;R/#Hq–bimodules Ti and T 0i ,

(2-9) �i WD � � � � � � �
0

i
WD � � � � � �

Algebraic & Geometric Topology, Volume 23 (2023)
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More generally, if ˇ 2 Brn is a braid group element written as a product in the
elementary generators ��1

ii
� � � �

�k

ik
, where �i 2 f∅; 0g, we assign the chain complex of

.R;R/#Hq–bimodules

(2-10) Tˇ WD T
�1

i1
˝R � � � ˝R T

�k

ik
:

The complex is well defined in the relative homotopy category thanks to the following
result.

Theorem 2.10 The complexes of Ti and T 0i are mutually inverse complexes in the
relative homotopy category C@q .R;R; d0/. They satisfy the braid relations

� TiTj Š Tj Ti if ji � j j> 1,

� TiTiC1Ti Š TiC1TiTiC1 for all i D 1; : : : ; n� 1.

Consequently, given any braid group element ˇ 2 Brn, the chain complex of Tˇ associ-
ated to it is a well-defined element of the relative homotopy category C@q .R;R; d0/.

Proof This is proven in [11, Section 3].

3 Specialized HOMFLYPT theories

3.1 HOMFLYPT homologies

In this section we categorify the HOMFLYPT polynomial of any link using analogous
arguments from [1], [13] and [15] adapted to the p–DG setting.

For the first construction, we will allow complexes of Soergel bimodules to sit in
half-integer degrees in the Hochschild (a) and the homological, sometimes called the
topological, (t ) degrees when considering the usual complexes of vector spaces.

We modify the elementary braiding complexes of (2-8) to be

(3-1) Ti WD .at/�
1
2 q�2

�
tBi

bri
�!R

�
; T 0i WD .at/

1
2 q2

�
R

rbi
�! q�2t�1B

�.xiCxiC1/

i

�
:

Here we have extended the degree shift convention for q–degrees (see the beginning of
Section 2) to a– and t–degrees.

Let ˇ 2 Brn be a braid group element in n strands. By Theorem 2.10, there is a chain
complex of .Rn;Rn/#Hq–bimodules Tˇ, well defined up to homotopy, associated
with ˇ. Then set

(3-2) Tˇ D
�
� � �

d0
�! T iC1

ˇ

d0
�! T i

ˇ

d0
�! T i�1

ˇ

d0
�! � � �

�
:
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Definition 3.1 The untwisted Hq–HOMFLYPT homology of ˇ is the object

1HHH
@q
.ˇ/ WD a�

n
2 t

n
2 H�

�
� � �!HH@q

�
.T iC1
ˇ

/
dt
�!HH@q

�
.T i
ˇ/

dt
�!HH@q

�
.T i�1
ˇ /!� � �

�
in the category of triply graded Hq–modules, where dt WD HH@q

� .d0/ is the induced
map of d0 on relative Hochschild homology. Here, the relative Hochschild homology
is defined in Definition 2.5, and H� means the usual homology of a chain complex.

By construction, the space 1HHH@q .ˇ/ is triply graded by topological (t) degree,
Hochschild (a) degree as well as quantum (q) degree. When necessary to emphasize
each graded piece of the space, we will write 1HHH@q

i;j ;k
.ˇ/ to denote the homogeneous

component concentrated in t–degree i , a–degree j and q–degree k.

The following theorem is a particular case of the main result of [6], where we have only
kept track of the degree two p–nilpotent differential — which is denoted by L1 in [6] —
in finite characteristic p. The detailed verification given in Section 3.2, however, uses
the main ideas of [15] and differs from that of [6]. This proof serves as the model for
the other link homology theories in this paper.

Theorem 3.2 The untwisted Hq–HOMFLYPT homology of ˇ depends only on the
braid closure of ˇ as a framed link in R3.

As a convention for the framing number of braid closure, if a strand for a component
of link is altered as in the left of (3-3), then we say that the framing of the component
is increased by 1 (with respect to the blackboard framing). If a strand for a component
of link is altered as in the right of (3-3), then we say that the framing of the component
is decreased by 1.

(3-3)   

Denote by fi.L/ the framing number of the i th component of a link L. Then, under the
Reidemeister moves of (3-3), fi.L/ is increased or decreased by one when changing
from the corresponding left local picture to the right local picture.
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We next seek to define a triply graded analogue with a–, t– and q–degrees in the
homotopy category of p–complexes. Let us first discuss what degrees of freedom we
have in the constructions.

First, we may adapt (3-1) into

pTi WD autvqw Œn�a@ Œm�
t
@

�
Bi Œ1�

t
@

bri
�!R

�
;(3-4a)

pT 0i WD a�ut�vq�w Œ�n�a@ Œ�m�t@
�
R

rbi
�! q�2B

�xi�xiC1

i Œ�1�t@
�
:(3-4b)

Here, the superscripts in homological shifts indicate in which of the three gradings
they are occurring. See the discussion around (2-1) for the meaning of the subscripts in
the notation. We let u; v; w;m; n 2 Z denote possible grading shifts to be determined,
which will be made into the simplest possible form at the end of the next subsection.

Definition 3.3 Let ˇ 2 Brn be a braid group element written as a product in the
elementary generators ��1

ii
� � � �

�k

ik
, where �i 2 f∅; 0g. We assign to ˇ the p–chain

complex of .Rn;Rn/#Hq–bimodules

(3-5) pTˇ WD pT
�1

i1
˝R � � � ˝R pT

�k

ik
:

We will denote the boundary maps in the p–complex pTˇ by @0 (@p
0
D 0), in contrast

to the usual, also called the topological, differential d0 satisfying d2
0
D 0.

Definition 3.4 The untwisted Hq–HOMFLYPT p–homology of ˇ is the object

p1HHH
@q
.ˇ/

WD qf .n/H=
�

�
� � � ! pHH@q

�
.pT iC1

ˇ
/
@t
�! pHH@q

�
.pT i

ˇ/
@t
�! pHH@q

�
.pT i�1

ˇ /! � � �
�

in the homotopy category of bigraded Hq–modules, where f .n/ is a function on N

which is determined below in (3-16). Here @t stands for the induced map of the
topological differentials on p–Hochschild homology groups @t WD pHH@q

�
.@0/.

In the definition of the Hq–HOMFLYPT p–homology, we have applied the p–extensions
in both the topological and the Hochschild direction so that they can be collapsed into
a single degree. The reason will become clearer later when categorifying certain slN
polynomials at prime roots of unity. Therefore, in contrast to 1HHH.ˇ/, p1HHH.ˇ/ is
only doubly graded, and we will adopt the notation p1HHHi;j .ˇ/ as above to stand
for its homogeneous components in topological degree i and q–degree j . Further,
the overall grading shift in the definition will be utilized in the invariance under the
Markov II move below.
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Theorem 3.5 The untwisted Hq–HOMFLYPT p–homology of ˇ depends only on the
braid closure of ˇ as a framed link in R3.

The proof of Theorems 3.2 and 3.5 will occupy the next few subsections, after we
introduce the Hq–equivariant (p–)Koszul resolutions.

3.2 Examining Markov II invariance

In this subsection, let us examine the invariance under the Markov II move for p1HHH.

In order to satisfy the second Markov move, one needs to show that for a Soergel bimod-
ule M (or a complex of Soergel bimodules) over the polynomial p–DG algebra Rn,
that the Hq–HOMFLYPT (p–)homologies of the bimodules (3-6) are isomorphic (up
to grading shifts and twists in Hq actions),

(3-6) M

� � �

� � �

M

� � �

� � �

By definition, the one-variable p–extended Koszul complex is given by

(3-7) pC1 D q2kŒx�x˝kŒx�x Œ1�a@
x˝1�1˝x
������! kŒx�˝kŒx�:

Set pCnC1 WD pC˝nC1
1

. For the ease of notation, we will write pC 0
1

for the p–
extended Koszul complex pC1 in the variable xnC1. Using the isomorphism of p–DG
bimodules,

(3-8) pCnC1˝.RnC1;RnC1/ ..M ˝kŒxnC1�/˝RnC1
pTn/

D .pCn˝pC 01/˝.RnC1;RnC1/ ..M ˝kŒxnC1�/˝RnC1
pTn/

Š pCn˝.Rn;Rn/ .M ˝Rn
.pC 01˝.kŒxnC1�;kŒxnC1�/ pTn//;

we are reduced to analyzing the p–homology of the “square” pC 0
1
˝kŒxnC1�;kŒxnC1�pTn:

(3-9a)

autvqw.xnC1B
xnC1

i /ŒkC 1�a
@
ŒmC 1�t

@
//

��

autvqwR2xnC1 ŒkC 1�a
@
Œm�t

@

��

autvqwBnŒk�
a
@
ŒmC 1�t

@
// autvqwRŒk�a

@
Œm�t

@
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0

��

q4R
xnC3xnC1

nC1
Œ1�a
@
Œ1�t
@

�

%%

2.xnC1�xn/
//

��

q2R
2xnC1

nC1
Œ1�a
@

��
Id

��

WD pY1

��

0 // 0

q2.xnC1B
xnC1
n /Œ1�a

@
Œ1�t
@

br
//

xnC1˝1�1˝xnC1

��
zbr

$$

q2R
2xnC1

nC1 Œ1�a
@

0

��

D pC 01˝.kŒxnC1�;kŒxnC1�/
pTn

��

BnŒ1�
t
@

br
//

2Id

%%

RnC1

2Id

��

q2 zR
xnCxnC1

nC1
Œ1�t
@

//

.xnC1�xn/˝1�1˝.xnC1�xn/

��

0

��

WD pY2

��

BnŒ1�
t
@

br
// RnC1

0

Figure 1

and pC 0
1
˝kŒxnC1�;kŒxnC1� pT 0n:

(3-9b)

a�ut�vq2�wR2xnC1 Œ1� k�a
@
Œ�m�t

@
//

��

a�ut�vq2�w.xnC1B
�xn
n /Œ1� k�a

@
Œ�1�m�t

@

��

a�ut�vq�w Œ�k�a
@
Œ�m�t

@
// a�ut�vq�w�2B

�xi�xi�1
n Œ�k�a

@
Œ�1�m�t

@

Let us begin by studying the first p–complex square (3-9a). We will exhibit a sub–
p–complex pY1 of (3-9a), whose quotient will be denoted by pY2. Ignoring for the
moment the overall grading shift autvqw Œk�a

@
Œm�t

@
for simplicity, we have a filtration

of the square given by a short exact sequence of (p–complexes) of bimodules as in
Figure 1, where by definition the first square is pY1 and the third square is pY2. Here
� is the map that sends 1 to .xnC1�xn/˝ 1C 1˝ .xnC1�xn/.

It is not hard to show that pCn˝.Rn;Rn/ .M ˝Rn
pY2/ is annihilated by taking first

the vertical p–Hochschild homology and then the horizontal topological homology.
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0

��

q2R
2xnC1

nC1
Œ1�a
@

Id

��

Id
//

��

q2R
2xnC1

nC1
Œ1�a
@
Œ�1�t

@

��
rb

ww

WD pZ1

��

0 // 0

q2R
2xnC1

nC1 Œ1�a
@

rb
//

0

��

.xnC1B
�xn
n /Œ1�a

@
Œ�1�t

@

xnC1˝1�1˝xnC1

��
zbr

ww

D pC 01˝.kŒxnC1�;kŒxnC1�/
pT 0n

��

RnC1
rb

//

Id

��

q�2B
�.xnCxnC1/
n Œ�1�t

@

Id

xx

0 //

��

zRnC1Œ1�
a
@
Œ�1�t

@

xnC1˝1�1˝xnC1

��

WD pZ2

��

RnC1
rb

// q�2B
�.xnCxnC1/
n Œ�1�t

@

0

Figure 2

Further, the p–complex pY1 is quasi-isomorphic to q2R
2xn
n Œ1�a

@
. Putting back the

grading shifts ignored earlier, we obtain the isomorphism

(3-10) p bHHH
@q
..M ˝kŒxnC1�/˝RnC1

pTn/Š H=
�
.pHH@q ..M ˝Rn pY1//

Š p bHHH
@q
.autvqwC2M ŒkC 1�a@ Œm�

t
@/

2xn :

For the second square (3-9b), again there is a short exact sequence of bicomplexes of
.RnC1;RnC1/–bimodules. Ignoring the overall grading shift a�ut�vq�w Œ�k�a

@
Œ�m�t

@
,

it is as in Figure 2. Next, consider the morphism of bicomplexes

0 //

��

zRnC1Œ1�
a
@
Œ�1�t

@

xnC1˝1�1˝xnC1
��

0 //

��

0

��
pZ2 WD WD pZ02

RnC1
rb
//

Id

44B
�.xnCxnC1/
n Œ�1�t

@

br

22
RnC1

xnC1�xn
// R
�.xnCxnC1/

nC1
Œ�1�t

@
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whose kernel is isomorphic to the contractible p–complex

zRnC1Œ1�
a
@
Œ�1�t

@

Id
��

pZ00
2
WD

zRnC1Œ�1�t
@

Upon taking pHH, the contribution from pZ00
2

vanishes. Taking back into account the
overall grading shift, it follows that we have

(3-11) p bHHH
@q
..M ˝kŒxnC1�/˝RnC1

pT 0n/Š H=
�
.pHH@q ..M ˝Rn pZ02//

Š p bHHH
@q
.a�ut�vq�w�2M Œ�k�a@ Œ�m� 1�t@/

�2xn :

Now, let us observe that taking closure of the following diagram of p–DG bimodules

(3-12)

M

� � �

� � �

introduces a canceling pair of Markov II moves. By (3-10) and (3-11), we obtain that

(3-13) p1HHH
@q�
.M ˝kŒxnC1;xnC2�/˝RnC2

pTnC1˝RnC2
pT 0nC2

�
Š qf .nC2/H=

�
.pHH�.M Œ1�a@ Œ�1�t@//:

For the last term to be isomorphic to

(3-14) p1HHH
@q
.M /Š qf .n/H=

�
.pHH�.M //;

we need to require the functor isomorphism

(3-15) Œ1�a@ Œ�1�t@ D qf .n/�f .nC2/:

We are therefore forced to collapse the a grading onto the t grading such that aD qr t ,
where r D f .n/�f .nC 2/ 2 Z. For simplicity, let us assume that

(3-16) K D f .n/�f .nC 1/

is a constant independent of n. Then r D 2K 2 2Z, and we have aD q2K t such that
Œ1�a
@
D q2K Œ1�t

@
.
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Revisiting (3-4), we now set

pTi WD q�K�2Œ�1�t@
�
Bi Œ1�

t
@

bri
�!R

�
;(3-17a)

pT 0i WD qKC2Œ1�t@
�
R

rbi
�! q�2B

�xi�xiC1

i Œ�1�t@
�
;(3-17b)

and

p bHHH
@q
.ˇ;KC 1/

WD q�KnH=
�

�
� � � ! pHH@q

� .pT iC1
ˇ

/
@t
�! pHH@q

� .pT i
ˇ/

@t
�! pHH@q

� .pT i�1
ˇ /! � � �

�
:

Recall from Section 2.2 — see the discussion around (2-5a) and (2-5b) — that, for a
given linear polynomial f D

P
i aixi , ai 2 Fp, and a p–DG Rn–module M , we can

twist the Hq–module structure on M by f . The resulting p–DG module is denoted
by M f .

Theorem 3.6 Let ˇ1 and ˇ2 be two braids whose closures represent the same link L

of r components up to framing. Suppose the framing numbers of the closures Ǒ1 of ˇ1

and Ǒ2 of ˇ2 differ by fi. Ǒ1/� fi. Ǒ2/D ai , i D 1; : : : ; r . Then

1HHH
@q
.ˇ1/Š1HHH

@q
.ˇ2/

2
Pr

iD1 ai xi

and
p1HHH

@q
.ˇ1;KC 1/Š p1HHH

@q
.ˇ2;KC 1/2

Pr
iD1 ai xi

where the generator of the polynomial action for the i th component is denoted by
xi and 1HHH@q .ˇ2/

2
P

i ai xi means that we twist the Hq–module structure on the i th

component by 2aixi .

Proof The topological invariance follows from Theorem 2.10 and the proof above of
invariance under the Markov moves.

3.3 Unlinks and twistings

In this section, we compute 1HHH
@q

and p1HHH
@q

for the identity element of the braid
group Brn, and define an unframed link invariant in R3 by correcting the framing
factors appearing in Theorem 3.6.

For the unknot, the Koszul resolution C1 of kŒx� as bimodules is given by

q2akŒx�x˝kŒx�x x˝1�1˝x
������! kŒx�˝kŒx�:

Tensoring this complex with kŒx� as a bimodule yields

q2akŒx�2x 0
�! kŒx�:
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Thus the homology of the unknot (up to shift) is identified with the bigraded Hq–module

kŒx�˚ q2akŒx�2x :

More generally, via the Koszul complex Cn D C˝n
1

, we have that the homology of the
n–component unlink L0 is equal to

(3-18) 1HHH
@q
.L0/Š a�

n
2 t

n
2 HH�.Rn/Š a�

n
2 t

n
2

nO
iD1

.kŒxi �˚ q2akŒxi �
2xi /:

Alternatively, up to the grading shift a�
n
2 t

n
2 , we may identify 1HHH

@q
.L0/ with the

exterior algebra over Rn generated by the differential forms dxi of bidegree aq2 for
i D 1; : : : ; n, subject to the condition that each dxi accounts for a twisting of the
Hq–module structure by 2xi .

It follows that, as for the ordinary HOMFLYPT homology, given a framed link L of
` components arising as a braid closure Ǒ, its untwisted HOMFLYPT Hq–homology
1HHH@q .ˇ/ is a module over

1HHH
@q

0;0;�.L0/ŠR`;

and thus one may consider a twisting of the Hq–module structure on 1HHH
@q
.ˇ/ by the

functor R
f

`
˝R` . � /, where f is a linear polynomial in x1; : : : ;x`; see Section 2.2.

Definition 3.7 Let L be a framed link arising from the closure of an n–strand braid ˇ.
Label the components of L by 1 through `, and set the (linear) framing factor of ˇ to
be the linear polynomial

fˇ D�
X̀
iD1

2fixi :

(1) The Hq–HOMFLYPT homology of ˇ is the triply graded Hq–module

HHH@q .ˇ/ WD1HHH
@q
.ˇ/fˇ ŠR

fˇ
`
˝R`

1HHH
@q
.ˇ/:

(2) Likewise, the Hq–HOMFLYPT p–homology is the doubly graded Hq–module

pHHH@q .ˇ;KC1/ WD pHHH@q .ˇ;KC1/fˇ ŠR
fˇ
`
˝R` p1HHH

@q
.ˇ;KC1/:

Corollary 3.8 Given a braid ˇ, both HHH@q .ˇ/ and pHHH@q .ˇ/ are link invariants
that only depend on the closure of ˇ as a link in R3. Moreover , these invariants satisfy
the following properties:
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(i) The slash homologies of HHH@q .ˇ/ and pHHH@q .ˇ;KC 1/ are finite-dimen-
sional.

(ii) Furthermore , the Euler characteristic of HHH@q .ˇ/ is equal to the HOMFLYPT
polynomial of Ǒ in the formal variables q and a, while the Euler characteristic
of pHHH@q .ˇ;K C 1/ is equal to the slKC1–polynomial of Ǒ in a formal q–
variable.

(iii) The Euler characteristic of the slash homology of HHH@q .ˇ/ is equal to the
specialization of the HOMFLYPT polynomial of Ǒ at a root of unity q, while the
Euler characteristic of the slash homology of pHHH@q .ˇ;KC 1/ is the equal to
the specialization of the slKC1–polynomial of Ǒ at a root of unity q.

Proof For the first statement, we note that the twisting of the p–DG structure by the
framing factor takes care of the Markov II move.

Next, the finite-dimensionality of the homology theories follows, by construction, from
the fact that fi1B

gi1

i1
˝R � � � ˝R

fimB
gim

im
is an Hq–module with 2m–step filtration

whose subquotients are isomorphic to Rf as left R#Hq–modules; thus Corollary 2.4
applies.

Remark 3.9 The previous discussion in Section 3.2 forces us to make a specialization
aD qr t in the homotopy category of t and q–bigraded p–complexes to obtain a framed
Markov II invariance. In particular, when r DK D 0, this forces the relation, on the
Grothendieck group level, that aD tD�1. This specialization leads to a categorification
of the Alexander skein relation.

4 Specialized homology theories

4.1 A singly graded homology

Fix k 2N. Consider the Hq–Koszul complex in one-variable,

(4-1) C1 W 0! aq2kŒx�x˝kŒx�x
dC
�! kŒx�˝kŒx�! 0;

where dC is the map dC .f /D .x
kpC2˝1C1˝xkpC2/f and k 2N. We regard the

differential on the arrow as an endomorphsim of the Koszul complex, of .a; q/–bidegree
.�1; 2kpC 2/.

Lemma 4.1 The commutator of the endomorphisms dC and @q 2Hq is nullhomotopic
on the Koszul complex C1.
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Proof The commutator map � WD ŒdC ; @q � is given by

0 // kŒx�x˝kŒx�x
x˝1�1˝x

//

�
��

kŒx�˝kŒx� // 0

0 // kŒx�x˝kŒx�x
x˝1�1˝x

// kŒx�˝kŒx� // 0

where � maps the bimodule generator 1˝ 1 2 kŒx�x˝kŒx�x as follows:

�.1˝1/D dC .@q.1˝1//�@qdC .1˝1/

D dC .x˝1C1˝x/�@q.x
kpC2

˝1C1˝xkpC2/

D .x˝1C1˝x/.xkpC2
˝1C1˝xkpC2/�2.xkpC3

˝1C1˝xkpC3/

D�xkpC3
˝1CxkpC2

˝xCx˝xkpC2
�1˝xkpC3

D xkpC2
˝1.1˝x�x˝1/C.x˝1�1˝x/1˝xkpC2

D .x˝1�1˝x/.1˝xkpC2
�xkpC2

˝1/:

We may thus choose a nullhomotopy to be

0 // kŒx�x˝kŒx�x

h

tt

x˝1�1˝x
//

�
��

kŒx�˝kŒx� // 0

0 // kŒx�x˝kŒx�x
x˝1�1˝x

// kŒx�˝kŒx� // 0

where h is given by multiplication by the element 1˝xkpC2�xkpC2˝ 1, and acts
on the rest of the complex by zero.

The Koszul complex Cn inherits the endomorphism dC by forming the n–fold tensor
product from the one-variable case. It follows, that for a given p–DG bimodule M

over Rn, there is an induced differential, still denoted by dC , given via the identification

(4-2) HH@q
�
.M /Š H�.M ˝.Rn;Rn/ Cn/;

where the induced differential acts on the right hand side by IdM˝dC . By construction,
dC has Hochschild degree �1 and q–degree 2kpC 2.

Lemma 4.1 immediately implies the following.

Corollary 4.2 The induced differential dC on HH@q
� .M / commutes with the Hq–

action. �

Remark 4.3 The differential dC , first observed by Cautis [1], has the following more
algebrogeometric meaning. Identifying HH1.Rn/ as vector fields on Spec.Rn/DAn,
HH1.Rn/ acts as differential operators on HH�.M / for any .Rn;Rn/–bimodule M ,
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regarded as a coherent sheaf on An �An Š T �.An/. Under this identification dC is
given by, up to scaling by a nonzero number, contraction with the vector field

�C WD

nX
iD1

x
kpC2
i

@

@xi
:

On the other hand, @q is given by the polynomial derivation by the vector field

�q WD

nX
iD1

x2
i
@

@xi
:

Since these two vector fields satisfy

Œ�C ; �q �D
X
i;j

h
x

kpC2
i

@

@xi
;x2

j
@

@xj

i
D

X
i

�
2x

kpC3
i

@

@xi
� .kpC 2/x

kpC3
i

@

@xi

�
D 0;

the two actions naturally commute with each other on HH�.M / via the Gerstenhaber
module structure on HH�.M /.

In a more general context, Hochschild homology is a Gerstenhaber module over
Hochschild cohomology viewed as a Gerstenhaber algebra. We may view dC and @q

as commuting elements in Hochschild cohomology ring but the element dC acts on
homology via cap product �C \ . � / and the element @q acts via a Lie algebra action
L�q

. � /. The compatibility of these actions is given by the equation

�C \L�q
.x/D Œ�C ; �q �\xCL�q

.�C \x/:

Since Œ�C ; �q �D 0, these actions commute.

Now we are ready to introduce a further collapsed p–homology theory of a braid
closure. Let ˇ 2 Brn be an n–stranded braid. We have associated to ˇ a usual chain
complex of Hq–equivariant Soergel bimodules Tˇ as in (3-2), of which we take pHH@q

�

for each term:

(4-3)

:::
:::

:::

: : :
@t
// pHH@q

i .pT mC1
ˇ

/

@C

OO

@t
// pHH@q

i .pT m
ˇ
/

@C

OO

@t
// pHH@q

i .pT m�1
ˇ

/

@C

OO

@t
// : : :

: : :
@t
// pHH@q

iC1.pT mC1
ˇ

/
@t
//

@C

OO

pHH@q

iC1.pT m
ˇ
/

@C

OO

@t
// pHH@q

iC1.pT m�1
ˇ

/

@C

OO

@t
// : : :

:::

@C

OO

:::

@C

OO

:::

@C

OO
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Here, @C is a p–differential arising from dC as follows. By [11, Proposition 4.8], the
p–Hochschild homology groups in a column above are identified with the terms in

(4-4) � � �
dC
�! HH@q

2iC1
.pT m

ˇ /D � � �

� � � D HH@q

2iC1
.pT m

ˇ /
dC
�! HH@q

2i
.pT m

ˇ /
dC
�! HH@q

2i�1
.pT m

ˇ /D � � � ;

where each term in odd Hochschild degree is repeated p�1 times. Here the horizontal
differential is the p–Hochschild induced map of the topological differential, which
we have denoted by @t to indicate its origin. On the arrows connecting even and
odd Hochschild degree terms, we put the map dC while keeping the repeated terms
connected by identity maps. This defines a p–complex structure, denoted by @C , in
each column in diagram (4-3). The p–differential @C commutes with the Hq–action
on each term by Corollary 4.2. Denote the total p–differential by @T WD @t C @C C @q ,
which collapses the double grading into a single q–grading.

Remark 4.4 We would like to emphasize an important point about the vertical grading
collapse. In order to p–extend the Koszul complex (4-1) into a p–Koszul complex
with @C of degree two, we are forced to make the functor specialization from Œ1�a

d
D a

into q2kpC2Œ1�
q

@
, so that the p–extended complex looks like

(4-5) pC1 W 0! q2kpC4kŒx�x˝kŒx�x Œ1�q
@

dC
�! kŒx�˝kŒx�! 0:

Taking tensor products of pC1, this determines the correct vertical q–degree shifts in
each column of diagram (4-3) of the p–Hochschild homology groups.

Notice that, on the level of Grothendieck groups, this has the effect of specializing the
formal variable a into �q2kpC2.

When Œ1�t
@
D Œ1�

q

@
and aD q2kpC2Œ1�

q

@
, the braiding complexes (3-17) specialize to

(4-6)
pTi WD q�kp�3

�
Bi

bri
�!RŒ�1�

q

@

�
;

pT 0i WD qkpC3
�
RŒ1�

q

@

rbi
�! q�2B

�.xiCxiC1/

i

�
:

Comparing (3-17) with (4-6), this forces

(4-7) K D kpC 1:

This also explains the necessity of p–extension in the collapsed t and a direction in
pHHH in the previous section: the homological shift in that direction needs to be
p–extended to agree with the homological shift in the q–direction.

Furthermore, the bigrading in diagram (4-3) is now interpreted as a single grading,
with both @C and @t raising q–degree by two.
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Definition 4.5 Let ˇ be an n stranded braid. The untwisted slkpC2 p–homology of ˇ
is the slash homology group

pyH.ˇ; kpC 2/ WD q�n.kpC1/H=
�
.pHH@q

�
.pTˇ/; @T /;

viewed as an object in C.k; @q/. We will drop the kpC 2 decoration whenever k is
fixed and clear from context.

The homology group pyH.ˇ/ is only singly graded as an object in C.k; @q/. By construc-
tion, pyH.ˇ/ is the slash homology with respect to the @T action on

L
i;j pHH@q

i .pT
j

ˇ
/;

see diagram (4-4). The latter space is doubly graded by the topological degree and
q–degree with values in Z�Z (the Hochschild a degree is already forced to be collapsed
with the q degree to make the Cautis differential @C homogeneous). However, as in
Section 3.2, the Markov II invariance for the homology theory already requires one to
collapse the t–grading onto the a–grading, thus also onto the q–grading. We will use
pyHi.ˇ/ to stand for the homogeneous subspace sitting in some q–degree i .

Remark 4.6 This approach to a categorification of the Jones polynomial, at generic
values of q, was first developed by Cautis [1]. We follow the exposition of Robert and
Wagner from [13] and the closely related approach of Queffelec, Rose and Sartori [12].

4.2 Topological invariance

In this subsection, we establish the topological invariance of the untwisted homology
theory.

Theorem 4.7 The homology pyH.ˇ; kpC2/ is a finite-dimensional framed link invari-
ant depending only on the braid closure of ˇ.

Proof The proof of the theorem is similar to [11, Theorem 5.6]. It amounts to showing
that taking slash homology of pHH@

�
.ˇ/ with respect to @T satisfies the Markov II

move.

We start by discussing the normal Hq–equivariant Hochschild homology version. Let
L be a link in R3 obtained as a braid closure Ǒ, where ˇ 2 Brn is an n–stranded
braid. Recall that the homology groups HH@

�
.L/ are defined by tensoring a complex of

Soergel bimodules M determined by ˇ with the Koszul complex Cn and computing its
termwise vertical (Hochschild) homology. The differential dC is defined on the Koszul
complex Cn. To emphasize its dependence on n, we will write dC on Cn as dn in this
proof, and likewise write @n for the p–extended differential on pCn.
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Since
CnC1 D Cn˝C 01 D Cn˝kŒxnC1�˝ƒhdxnC1i˝kŒxnC1�;

the vertical differential may be inductively defined as

(4-8) dnC1 D dn˝ IdC Id˝ d 01:

Here we have set C 0
1
D kŒxnC1�˝ƒhdxnC1i ˝ kŒxnC1� equipped with part of the

Cautis differential

d 01 WD x
kpC2
nC1

˝ � @
@xnC1

˝ 1C 1˝ � @
@xnC1

˝x
kpC2
nC1

:

The notation � denotes the contraction of dxnC1 with @
@xnC1

. Under p–extension, write
@C for the p–extended Cautis differential and @0

1
as the p–extended differential of d 0

1
.

We start by reexamining the diagram in Figure 1 with the shifts in (4-6). It will
be helpful to keep the a and t gradings separate for the proof, with it understood
that Œ1�a

@
D q2kpC2Œ1�

q

@
and Œ1�t

@
D Œ1�

q

@
. Thus we have a short exact sequence as in

Figure 3. Further, the sequence splits as bimodules over .Rn;Rn/ (see the proof of
[11, Proposition 4.12] for an explicit splitting).

We claim that, as modules over kŒ@T �=.@
p
T
/, the p–homology groups

pHH@q
�
..M ˝kŒxnC1�/˝RnC1

Tn/

fit into a distinguished triangle

(4-9) H=
�
.pCn˝.Rn;Rn/.M˝Rn

pY2//! HH@q
�
..M˝kŒxnC1�/˝RnC1

pTn/

! H=
�
.pCn˝.Rn;Rn/.M˝Rn

pY1//
Œ1�
�!

after taking vertical slash (p–Hochschild) homology. Note that this p–complex triangle
is in reverse order of the filtration in Figure 3.

Indeed, since @C acts on the pY1 and pY2 tensor factors via @0
1
, it suffices to check that

@0
1

preserves the submodule arising from pY2 and presents the part arising from pY1

as a quotient. To do this, we reexamine the sequence in Figure 1 under vertical slash
(p–Hochschild) homology, with the auxiliary a and t–gradings. The part pY2, under
vertical homotopy equivalence, contributes to the horizontal (topological) complex

(4-10a) pY 02 WD
�
q�kp�3RnC1

@tDId
����! q�kp�3RnC1Œ�1�t@

�
sitting entirely in p–Hochschild degree 0. Likewise, the part pY1 contributes to the
horizontal

(4-10b) pY 01 WD
�
q�kpC1R

xnC3xnC1

nC1
Œ1�a@

@tD2.xnC1�xn/
����������! q�kp�1R

2xnC1

nC1
Œ1�a@ Œ�1�t@

�
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0

q�kpC1R
xnC3xnC1

nC1
Œ1�a
@

q�kp�1R
2xnC1

nC1
Œ1�a
@
Œ�1�t

@

WD pY1

0 0

q�kp�1.xnC1B
xnC1
n /Œ1�a

@
q�kp�1R

2xnC1

nC1 Œ1�a
@
Œ�1�t

@

DpC 0
1
˝.kŒxnC1�;kŒxnC1�/

pTn

q�kp�3Bn q�kp�3RnC1Œ�1�t
@

q�kp�1 zR
xnCxnC1

nC1 Œ1�a
@

0

WD pY2

q�kp�3Bn q�kp�3RnC1Œ�1�t
@

0

�

2.xnC1�xn/

Id

br

xnC1˝1�1˝xnC1

zbr

0

br

2Id 2Id

.xnC1�xn/˝1�1˝.xnC1�xn/

br

Figure 3

sitting entirely in p–Hochschild degrees 1; : : : ;p�1. Since @0
1

decreases the a–degree
by one (ie acting vertically downwards), pY 0

2
must be preserved under @0

1
, acting upon

it trivially, and pY 0
1

is equipped with the quotient action of @0
1
.

By the above discussion, @T D @t C @C C @q acts on the term containing pY 0
2

only
through @t C @q . Since this term is the cone of the identity map, it is nullhomotopic
and thus

H=
�
.pCn˝.Rn;Rn/ .M ˝Rn

pY2//Š 0:

Consequently, using that Œ1�a
@
D q2kpC2Œ1�t

@
, we have an isomorphism

H=
�
.pHH�..M ˝kŒxnC1�/˝RnC1

pTn/; @T /Š H=
�
.pHH�.M ˝Rn

pY 01/; @T /

Š qkpC1H=
�
.pHH�.M /; @T /

2xn :

The qkpC1 factor is canceled out in the overall shift of pyH. This finishes the first part
of Markov II move.
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The other case of the Markov II move is entirely similar, which we omit.

Finally, the finite-dimensionality of pyH.ˇ/ follows from Corollary 2.4.

To obtain a categorical link invariant, we need to introduce a p–differential twisting
to correct the framing factor occurring in Theorem 4.7, as done in [11, Section 5.3].
For a braid ˇ 2 Brn whose closure is a framed link with ` components, choose for
each framed component of Ǒ in ˇ a single strand in ˇ that lies in that component after
closure, say, the i th

r strand is chosen for the r th component. Then define the polynomial
ring kŒxi1

; : : : ;xi` � as a subring of kŒx1; : : : ;xn� generated by the chosen variables.
Set

(4-11) kŒxi1
; : : : ;xi` �

fˇ WD kŒxi1
; : : : ;xi` � � 1ˇ; @.1ˇ/ WD �

X̀
rD1

2fr xir
1ˇ:

Then we make the twisting of Hq–modules on the pHH�–level termwise on pHH�.pT i
ˇ
/,

(4-12) pHHfˇ
� .pTˇ/ WD pHH�.pTˇ/˝kŒxi1

;:::;xi`
� kŒxi1

; : : : ;xi` �
fˇ :

Definition 4.8 Given ˇ 2 Brn whose closure is a framed link with ` components, the
slkpC2 p–homology is the object

pH.ˇ; kpC 2/ WD q�n.kpC1/H=
�
.pHHfˇ

� .pTˇ/; @T /

in the homotopy category C.k; @q/.

As done for pHHH, we will often drop kpC 2 in the notation of the homology.

Theorem 4.9 The slkpC2 p–homology pH.ˇ; kp C 2/ is a singly graded , finite-
dimensional link invariant depending only on the braid closure of ˇ as a link in R3.
Furthermore , when k 2 2Z, its graded Euler characteristic

�.pH.L; kpC 2// WD
X

i

qi dimk.pHi.L; kpC 2//

is equal to the Jones polynomial evaluated at a 2pth root of unity.

Proof The above framing twisting compensates for the linear factors appearing in
Markov II moves, thus establishing the topological invariance of pH.ˇ/.

For the last statement, we will use the fact that the Euler characteristic does not
change before or after taking slash homology. This is because, as with the usual chain
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complexes, taking slash homology only gets rid of acyclic summands whose Euler
characteristics are zero.

Let us revisit diagram (4-4). Before collapsing the t and q–gradings, the diagram arises
by p–extending HH�.Tˇ/ in the vertical (t–)direction. Let Pˇ.v; t/ be the Poincaré
polynomial of the bigraded complex HH�.Tˇ/ where, for now, v and t are treated
as formal variables coming from q and t grading shifts. As shown by Cautis [1],
Pˇ.v;�1/ is the slkpC2 polynomial of the link Ǒ in the variable v.

The p–extension in the topological direction is equivalent to categorically specializing
Œ1�t

d
to Œ1�q

@
. It has the effect, on the Euler characteristic level, of specializing t D�1.

Thus we obtain that the Euler characteristic of pH.ˇ/ is equal to Pˇ.v D q; t D�1/.
This the evaluation of the slkpC2 polynomial evaluated at a 2pth root of unity q. When
k 2 2Z, we have qkpC2 D q2 in

Op WDK0.C.k; @q//Š
ZŒq�

.1C q2C � � �C q2.p�1//
;

so this evaluation is equal to the value of the Jones polynomial in Op.

5 Examples

In this section we compute the various homologies constructed earlier for .2; n/ torus
links T2;n. Note that there are no framing factors to incorporate in this family of
examples. The calculations are straightforward modifications of the computations made
in [6] and adjusted for p–DG notions in [11, Section 6]. We refer the reader to [11]
and just state the modified results here with minimal explanation.

Throughout the remainder of this subsection, let RD kŒx1;x2�, B D B1, and T D T1.

5.1 The HOMFLYPT homology of the .2 ; n/ torus link

First note that the homology of the n–component unlink L0 is

pHHH@q .L0;KC 1/Š

nO
iD1

q�K .kŒxi �˚ q2KC2Œ1�t@kŒxi �
2xi /:

The following simplification of T˝n is proved in the same way as [11, Lemma 6.1].
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Lemma 5.1 In C@q .R;R; @0/, one has T˝n Š .q�K�1Œ�1�t
@
/n�

q2.n�1/B.n�1/e1 Œn�t@
pn
�! q2.n�2/B.n�2/e1 Œn� 1�t@

pn�1
��! � � �

� � �
p3
�! q2Be1 Œ2�t@

p2
�! B Œ1�t@

br
�!R

�
;

where

p2i D 1˝ .x2�x1/� .x2�x1/˝ 1; p2iC1 D 1˝ .x2�x1/C .x2�x1/˝ 1:

The following result is proved in the same way as [11, Proposition 6.3]

Proposition 5.2 The bigraded Hq–HOMFLYPT p–homology of a .2; n/ torus knot ,
as an Hq–module depends on the parity of n.

(i) If n is odd , it is

q�nK�2n�2K Œ�n�t@.q
2KC2Œ1�t@kŒx�

2x
˚ q4KC4Œ2�t@kŒx�

4x/

˚

M
i2f2;4;:::;n�1g

q�nK�2n�2K Œi � n�t@

 
q2.i�1/kŒx�2.i�1/x

˚ q2K Œ1�t@

0@ q2ikŒx�
˚

q2iC2kŒx�

1A
˚ q2iC4C4K Œ2�t@kŒx�

2.iC1/x

!
with the Hq–structure on the middle object0@kŒx�

˚

kŒx�

1A
given by �

2ix 0
�2 (2i C 2/x

�
:

(ii) If n is even , it is

q�nK�2n�2K Œ�n�t@.q
2KC2Œ1�t@kŒx�

2x
˚ q4KC4Œ2�t@kŒx�

4x/

˚

M
i2f2;4;:::;n�2g

q�nK�2n�2K Œi � n�t@

0BBBBBBBBB@

q2.i�1/kŒx�2.i�1/x

˚

q2K Œ1�t
@

0@ q2ikŒx�
˚

q2iC2kŒx�

1A
˚

q2iC4C4K Œ2�t
@
kŒx�2.iC1/x

1CCCCCCCCCA
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˚ q�nK�2n�2K Œ�n�t@

0BBBBBBBBB@

q2.n�1/kŒx1;x2�
.n�1/.x1Cx2/

˚

q2K Œ1�t
@

0@ q2nkŒx1;x2�

˚

q2nC2kŒx1;x2�

1A
˚

q2nC4C4K Œ2�t
@
kŒx1;x2�

.nC2/.x1Cx2/

1CCCCCCCCCA
Œn�t@

with the Hq–structure on the middle object0@ q2ikŒx�
˚

q2iC2kŒx�

1A
given by �

2ix 0
�2 (2i C 2/x

�
and the Hq–structure on the middle object0@ q2nkŒx1;x2�

˚

q2nC2kŒx1;x2�

1A
given by �

(nC 1/x1C .n� 1/x2 0
�2 n.x1Cx2/C 2x2

�
:

Corollary 5.3 In the stable category of Hq–modules , the slash homology of the Hq–
HOMFLYPT p–homology of a .2; n/ torus link pHHH@q .T2;n;KC1/ depends on the
parity of n.

(i) If n is odd , it is

q�nK�2n�2K Œ�n�t@.q
pC2K V

q
p�2

Œ1�t@˚ qpC4K V
q

p�4
Œ2�t@/

˚

M
i2f2;4;:::;n�1g

q�nK�2n�2K Œ�n�t@

 
qpV

q

p�2.i�1/
˚

0B@ qpC2K V
q

p�2i

˚

qpC2K V
q

p�2i�2

1CA Œ1�t@
˚qpC2C4K V

q

p�2.iC1/
Œ2�t@

!
Œi �t@:
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(ii) If n is even , it is

q�nK�2n�2K Œ�n�t@.q
pC2K V

q
p�2

Œ1�t@˚ qpC4K V
q

p�4
Œ2�t@/

˚

M
i2f2;4;:::;n�2g

q�nK�2n�2K Œ�n�t@

 
qpV

q

p�2.i�1/

˚

0B@ qpC2K V
q

p�2i

˚

qpC2K V
q

p�2.iC1/

1CA Œ1�t@˚ qpC2C4K V
q

p�2.iC1/
Œ2�t@

!
Œi �t@

˚ q�nK�2n�2K Œ�n�t@

0BBBBBB@
q2pV

q

p�.n�1/
˝V

q

p�.n�1/

˚

(q2pC2K V
q

p�n�1
˝V

q
p�nC1

˚ q2pC2K V
q

p�n˝V
q

p�n�2
/Œ1�t

@

˚

q2pC4K V
q

p�.nC2/
˝V

q

p�.nC2/
Œ2�t
@

1CCCCCCA Œn�
t
@:

5.2 The slkpC2–homology of the .2 ; n/ torus link

To compute this homology, we will use the following tool. If

M� D
�
� � �

@t
�!MiC1

@t
�!Mi

@t
�!Mi�1

@t
�! � � �

�
;

we write T .M�/ to be the total complex whose p–differential is the sum @T WD @tC@q .

Proposition 5.4 [11, Proposition 6.6] Let M� be a contractible p–complex of
HqDkŒ@q �=.@

p
q /–modules. Then the complex .T .M�/; @T D @t C @q/ is acyclic.

We will be applying Proposition 5.4 in the following situation. Suppose N� is a p–
complex of Hq–modules whose boundary maps preserve the Hq–module structure.
Further, let M� be a sub–p–complex that is closed under the Hq–action, and there is
a map � on M� as in Proposition 5.4 that preserves the Hq–module structure. Then,
when totalizing the p–complexes, we have T .M�/� T .N�/ and the natural projection
map

T .N�/! T .N�/=T .M�/

is a quasi-isomorphism. Similarly, if M� is instead a quotient complex of N� that
satisfies the condition of Proposition 5.4, and K� is the kernel of the natural projection
map

0!K�!N�!M�! 0;

then the inclusion map of totalized complexes T .K�/! T .N�/ is a quasi-isomorphism.
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We modify the calculation in the previous section of the .2; n/ torus link to include the
Cautis p–differential @C . Recall that in this singly graded theory, aD q2kpC2Œ1�

q

@
and

t D Œ1�
q

@
.

The Hochschild homology pHH@q
� .R/ with the induced Cautis differential @C is given

by

(5-1)

R

q4R2x1 Œ1�a
@

x
kpC2

1

55

q4R2x2 Œ1�a
@

x
kpC2

2

ii

q8R2e1 Œ2�a
@

�x
kpC2

2

hh

x
kpC2

1

66

First we study pHH@q
� .br/ W pHH@q

� .B/Œ1�
q

@
! pHH@q

� .R/,

(5-2)

RŒ1�
q

@
R

q2kpC4RŒ2�
q

@
q2kpC6RŒ2�

q

@
q2kpC4R2x1 Œ1�

q

@
q2kpC4R2x2 Œ1�

q

@

q4kpC10R3e1 Œ3�
q

@
q4kpC8R2e1 Œ2�

q

@

1 7!1

x
kpC2
1

Cx
kpC2
2

x
kpC2
2

.x2�x1/

�
1
1

0
x2�x1

�
x

kpC2
1

x
kpC2
2

x
kpC2
2

.x1�x2/
x

kpC2
1

Cx
kpC2
2

1 7!.x2�x1/

�x
kpC2
2

x
kpC2
1

where the object q2kpC4RŒ2�
q

@
˚q2kpC6RŒ2�

q

@
in the left square is twisted by the matrix

(5-3)
�

2x1 0

2 x1C 3x2

�
:

Filtering the total complex (5-2) we obtain that it is quasi-isomorphic to

khxa
1xb

2 j0� a� kpC 2; 0� b � kpC 1iŒ1�
q

@
1
�! khxa

1xb
2 j0� a; b � kpC 1i;

which is quasi-isomorphic to

khxkpC2
1

;x
kpC2
1

x2; : : : ;x
kpC2
1

x
kpC1
2

iŒ1�
q

@
;

where
@.x

kpC2
1

x
j
2
/D .kpC 2C j /x

kpC2
1

x
jC1
2

:

This is quasi-isomorphic to q5V1Œ1�
q

@
if k D 0. If k > 0, it’s quasi-isomorphic to

.q3pC2Vp�2˚ q4kpC4V2/Œ1�
q

@
:
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Next we analyze

pHH@q
�
.p2iC1/ W pHH@q

�
.q4iB2ie1 Œ2i C 1�

q

@
/!HH@q

�
.q4i�2B.2i�1/e1 Œ2i �

q

@
/;

pHH@q
� .q

4iB2ie1 Œ2i C 1�
q

@
/D

q4iR2ie1 Œ2i C 1�
q

@

q4iC2kpC4RŒ2i C 1�
q

@
Œ1�

q

@

x
kpC2
1

Cx
kpC2
2

99

q4iC2kpC6RŒ2i C 1�
q

@
Œ1�

q

@

x
kpC2
2

.x2�x1/
ee

q4iC4kpC10R.2iC3/e1 Œ2i C 1�
q

@
Œ2�

q

@

x
kpC2
2

.x1�x2/

ee

x
kpC2
1

Cx
kpC2
2

99

pHH@q
� .q

4i�2B.2i�1/e1 Œ2i �
q

@
/D

q4i�2R.2i�1/e1 Œ2i �
q

@

q4iC2kpC2RŒ2i �
q

@
Œ1�

q

@

x
kpC2
1

Cx
kpC2
2

88

q4iC2kpC4RŒ2i �
q

@
Œ1�

q

@

x
kpC2
2

.x2�x1/
ff

q4iC4kpC8R.2iC2/e1 Œ2i �
q

@
Œ2�

q

@

x
kpC2
2

.x2�x1/

ff

x
kpC2
1

Cx
kpC2
2

88

where the differentials for both objects in the middle horizontal rows of the diagrams
above are twisted by (5-3) and pHH@q

�
.p2iC1/D 2.x2�x1/ (diagonal multiplication

by 2.x2�x1/). Filtering this total complex yields the total complex

(5-4)

q4ikhxa
1
xb

2
j0� a� kpC 2; 0� b � kpC 1iŒ2i C 1�

q

@

2.x2�x1/
��

q4i�2khxa
1
xb

2
j0� a� kpC 2; 0� b � kpC 1iŒ2i �

q

@

This is quasi-isomorphic to

q4ikhxkpC2
1

;x
kpC2
1

x2; : : : ;x
kpC2
1

x
kpC1
2

iŒ2iC1�
q

@
˚q4i�2kh1;x1; : : : ;x

kpC1
1

iŒ2i �
q

@

where the differential on the basis elements is given by

x
kpC2
1

kpC4iC2
��

x
kpC2
1

x2

kpC4iC3
��
:::

kpC4iCkpC2
��

x
kpC2
1

x
kpC1
2

˚

1

4i�2
��

x1

4i�1
��
:::

4i�2Ckp
��

x
kpC1
1
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Thus the total homology of this complex is isomorphic to Xi , which is defined by

(5-5)

8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
<̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂:

0BB@
q4i.q2.kpC2/Cj Vj ˚ q2.kpC2CjC1C.k�1/p/Cp�j Vp�j /Œ2i C 1�

q

@

˚

q4i�2.q
Nj V Nj ˚ q2..k�1/pC NjC1/Cp� Nj Vp� Nj /Œ2i �

q

@

1CCA if j ; Nj ¤ 0;

0BB@
q4i.q2.kpC2/V0˚ q2.kpC2CkpC1/V0/Œ2i C 1�

q

@

˚

q4i�2.q
Nj V Nj ˚ q2..k�1/pC NjC1/Cp� Nj Vp� Nj /Œ2i �

q

@

1CCA if j D 0; Nj ¤ 0;

0BB@
q4i.q2.kpC2/Cj Vj ˚ q2.kpC2CjC1C.k�1/p/Cp�j Vp�j /Œ2i C 1�

q

@

˚

q4i�2.V0˚ q2.kpC1/V0/Œ2i �
q

@

1CCA if j ¤ 0; Nj D 0;

where j 2 f0; : : : ;pg such that 4i C 2C j is divisible by p and Nj 2 f0; : : : ;pg such
that 4i � 2C Nj is divisible by p.

Once again when n is even, the leftmost term in T˝n maps by zero into the rest of the
complex so we have to understand the total homology of pHH�.q2.n�1/B.n�1/e1 Œn�

q

@
/.

Filtering
q2.n�1/R.n�1/e1 Œn�

q

@

q2.nC1/C2kpR.n�1/e1 Œn�
q

@
Œ1�

q

@
q2.nC2/C2kpR.n�1/e1 Œn�

q

@
Œ1�

q

@

q2.nC4/C4kpR.nC2/e1 Œn�
q

@
Œ2�

q

@

x
kpC2
1

Cx
kpC2
2

x
kpC2
2

.x2�x1/

x
kpC2
2

.x1�x2/ x
kpC2
1

Cx
kpC2
2

where the middle terms q2.nC1/C2kpR.n�1/e1 Œn�
q

@
Œ1�

q

@
˚q2.nC2/C2kpR.n�1/e1 Œn�

q

@
Œ1�

q

@

are further twisted by the matrix (5-3), yields that the diagram above is quasi-isomorphic
to

(5-6) Y n
2
D q2.n�1/khxa

1xb
2 j 0� a� kpC 2; 0� b � kpC 1iŒn�

q

@

with a differential inherited from the polynomial algebra and twisted by .n� 1/e1. All
of these computations together with an overall shift of q�.nC2/kp�3n�2Œ�n�

q

@
yields

the slash homology of the .2; n/ torus link for k > 0,

(5-7) pH.T2;n; kpC2/

Š

8<:q�.nC2/kp�3n�2Œ�n�
q

@

�
.q3pC2Vp�2˚q4kpC4V2/Œ1�

q

@
˚
Ln�1

2

iD1 Xi

�
if 2−n;

q�.nC2/kp�3n�2Œ�n�
q

@

�
.q3pC2Vp�2˚q4kpC4V2/Œ1�

q

@
˚
Ln�2

2

iD1 Xi˚H=�.Y n
2
/
�

if 2 jn;

where Xi is the p–complex in (5-5) and Y n
2

is the p–complex in (5-6).
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1 x2 x2
2

� � � x
p�1
2

x
p
2

x
pC1
2

x1 x1x2 x1x2
2

� � � x1x
p�1
2

x1x
p
2

x1x
pC1
2

:::
:::

:::
:::

:::
:::

:::

x
p�1
1 x

p�1
1 x2 x

p�1
1 x2

2 � � � x
p�1
1 x

p�1
2 x

p�1
1 x

p
2 x

p�1
1 x

pC1
2

x
p
1

x
p
1

x2 x
p
1

x2
2

� � � x
p
1

x
p�1
2

x
p
1

x
p
2

x
p
1

x
pC1
2

x
pC1
1 x

pC1
1 x2 x

pC1
1 x2

2 � � � x
pC1
1 x

p�1
2 x

pC1
1 x

p
2 x

pC1
1 x

pC1
2

x
pC2
1

x
pC2
1

x2 x
pC2
1

x2
2

� � � x
pC2
1

x
p�1
2

x
pC2
1

x
p
2

x
pC2
1

x
pC1
2

1

1

2

1

3

1

p�1 0

1

1

1

�2

1

1

2
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2

p�1 0

2

1

2

�2

2

p�1 p�1 p�1 p�1 p�1 p�1

1

0
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0
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0
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0

1

0

�2

0

1

1

2

1

3

1
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1

1
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�2

1

1

2

2

2

3

2

p�1 0

2

1

2

�2

2

4 5 6 pC2 pC3 pC4

Figure 4

Decategorifying the slash homology, for instance on the Hopf link (nD 2), we obtain
that the Euler characteristic of pH.T2;2; kpC 2/ is equal to

q�8.q2
C q4

C q6
C q8/:

Finding the homology of Y n
2

is nontrivial. In the example below we take nD 2 which
means we are computing part of the homology for the Hopf link. We also take k D 1

just for convenience of notation.

We thus need to compute the homology of Z1, given in Figure 4, where the arrows
labeled �2 mean that the differential acts by x

j
1
x

pC1
2
7! �2x

pC2
1

x
j
2

.

There is a large contractible summand Z2 in the upper-left corner. Then there is short
exact sequence of complexes

Z2!Z1!Z3

where Z3 is as in Figure 5. The second row from the bottom with the rightmost column,
along with the third row from the bottom and second column from the right give a
contractible summand Z4 of Z3:

Z4D khxpC1
1 Cx

pC1
2 ; : : : ;x

pC1
1 x

p�1
2 Cx

p�1
1 x

pC1
2 i˚khxp

1 Cx
p
2 ; : : : ;x

p
1 x

p�1
2 Cx

p�1
1 x

p
2 i:
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x
p
2

x
pC1
2

x1x
p
2

x1x
pC1
2

:::
:::

x
p�1
1 x

p
2 x

p�1
1 x

pC1
2

x
p
1

x
p
1

x2 x
p
1

x2
2

� � � x
p
1

x
p�1
2

x
p
1

x
p
2

x
p
1

x
pC1
2

x
pC1
1

x
pC1
1

x2 x
pC1
1

x2
2

� � � x
pC1
1

x
p�1
2

x
pC1
1

x
p
2

x
pC1
1

x
pC1
2

x
pC2
1

x
pC2
1

x2 x
pC2
1

x2
2

� � � x
pC2
1

x
p�1
2

x
pC2
1

x
p
2

x
pC2
1

x
pC1
2

1

1

�2

1

1

2

�2

2

p�1 p�1

1

0

�2

0

1

1

2

1

3

1

p�1 0

1

1

1

�2

1

1

2

2

2

3

2

p�1 0

2

1

2

�2

2
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Figure 5

Then there is a short exact sequence of complexes

Z4!Z3!Z5;

where Z5 is

x
p
1

x
p
1

x2 x
p
1

x2
2

� � � x
p
1

x
p�1
2

x
p
1

x
p
2

x
p
1

x
pC1
2

x
pC1
1

x
pC1
1

x2 x
pC1
1

x2
2

� � � x
pC1
1

x
p�1
2

x
pC1
1

x
p
2

x
pC1
1

x
pC1
2

x
pC2
1

x
pC2
1

x2 x
pC2
1

x2
2

� � � x
pC2
1

x
p�1
2

x
pC2
1

x
p
2

x
pC2
1

x
pC1
2

1

1

2

1

3

1

p�1 0

1

1

1

�2

1

1

2

2

2

3

2

p�1 0

2

1

2

�2

2

4 5 6 pC2 pC3 pC4

Now let Z6 be the contractible subcomplex of Z5 generated by x
pC1
1

. That is

Z6 D khxpC1
1

; 1!x
pC1
1

x2C a0x
pC1
2

; : : : ; .p� 1/!x
pC1
1

x
p�1
2
C ap�2x

pC2
1

x
p�2
2
i

for some coefficients a0; : : : ; ap�2. Then there is a short exact sequence of complexes

Z6!Z5!Z7
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where Z7 is

x
p
1

x
p
1

x2 x
p
1

x2
2

� � � x
p
1

x
p�1
2

x
p
1

x
p
2

x
p
1

x
pC1
2

x
pC1
1

x
p
2

x
pC1
1

x
pC1
2

x
pC2
1

x
pC2
1

x2 x
pC2
1

x2
2

� � � x
pC2
1

x
p�1
2

x
pC2
1

x
p
2

x
pC2
1

x
pC1
2

1 2 3 p�1 0 1

1

�2

1

1

2

�2

2

4 5 6 pC2 pC3 pC4

Consider the contractible summand

Z8 D khxp
1
; : : : ;x

p
1

x
p�1
2
i:

Then there is a short exact sequence

Z8!Z7!Z9;

where Z9 is

x
p
1

x
p
2

x
p
1

x
pC1
2

x
pC1
1 x

p
2

x
pC1
1 x

pC1
2

x
pC2
1 x

pC2
1 x2 x

pC2
1 x2

2 � � � x
pC2
1 x

p�1
2 x

pC2
1 x

p
2 x

pC2
1 x

pC1
2

1

1

�2

1

1

2

�2

2

4 5 6 pC2 pC3 pC4

We now easily decompose Z9 into a sum of complexes

Z09˚Z009 ˚Z0009 ˚Z00009 ;

where Z0
9

comes from the bottom row. More specifically,

Z09 D khxpC2
1

;x
pC2
1 x2; : : : ;x

pC2
1 x

p�4
2
i;

Z009 D khxpC2
1

x
p�3
2

;x
pC2
1

x
p�2
2

;x
pC2
1

x
p�1
2

;x
pC2
1

x
p
2
;x

pC2
1

x
pC1
2
i;

Z0009 D k
˝
x

p
1

x
p
2
�

1
2
x

pC2
1

x
p�2
2

;x
pC1
1

x
p
2
Cx

p
1

x
pC1
2
�x

pC2
1

x
p�1
2

;�x
pC2
1

x
p
2
C2x

pC1
1

x
pC1
2

˛
;

Z00009 D kh2x
pC2
1 x

p�1
2 �3x

pC1
1 x

p
2 C3x

p
1 x

pC1
2 i:

Thus for k D 1 and nD 2 we get

H=
�
.Y 2

2
/Š q2Œ2�

q

@
.q3pVp�4˚ q4pC1V3˚ q4pC2V2˚ q4pC2V0/:

Corollary 5.5 For distinct k 2N, pH. � ; kpC2/ are distinct as link homology theories.
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Proof If we repeat the above calculation for k D 2 and n D 2, everything would
proceed in the same way. Other than internal q–grading shifts, the homology H=

�
.Y 2

2
/

would be the same as above and contain objects Vp�4, V3, V2 and V0.

The homology of the Hopf link in [11] does not contain objects of the form Vp�4

or V3 (see [11, (6.17)], in particular) in this tail part of the calculation. For more
general k, these objects appear with different shifts; see (5-7). Thus we obtain here
new categorifications of the Jones polynomial at a 2pth root of unity different from the
original one constructed in [11].
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Leighton’s theorem and regular cube complexes

DANIEL J WOODHOUSE

Leighton’s graph covering theorem states that two finite graphs with common uni-
versal cover have a common finite cover. We generalize this to a large family of
nonpositively curved special cube complexes that form a natural generalization of
regular graphs. This family includes both hyperbolic and nonhyperbolic CAT(0) cube
complexes.

20F65, 20F67; 20E26, 20E42, 20F55

Leighton’s graph covering theorem states that two finite graphs with isomorphic univer-
sal covers have isomorphic finite covers. First conjectured by Angluin [2] and proven by
Leighton [16], whose background was in computer science and the study of networks,
the topic has been picked up by topologists and group theorists interested in producing
generalizations to graphs with extra structure, including colourings and line patterns;
see Bass and Kulkarni [3], Neumann [18], Shepherd [21], and the author [24]. Although
it is desirable to generalize such a theorem to higher dimensions, counterexamples are
known even when the universal cover is the product of two trees. Standard arithmetic
constructions were known to give irreducible lattices acting on the product of trees,
and in the 90s nonresidually finite and even simple examples were given; see Burger
and Mozes [6] and Wise [22].

A particularly exciting conjecture was made by Haglund in [11] that Leighton’s graph
covering theorem should generalize to special cube complexes. In the same paper
Haglund proved the conjecture for the class of right-angled Fuchsian buildings (com-
monly referred to as “Bourdon buildings”) and more generally for “type-preserving”
lattices in the automorphism group of a building associated to a finite graph product of
finite groups.

In this paper we will prove Haglund’s conjecture for a large family of CAT(0) cube
complexes which exhibit symmetry and homogeneity reminiscent of finite regular trees.
Let L be a finite simplicial flag complex. An L–cube-complex X is a cube complex
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such that every link is isomorphic to L. Given a flag complex, the Davis complex
D.L/ of the associated right-angled Coxeter group is a CAT(0) L–cube-complex. In
general, D.L/ is not the unique CAT(0) L–cube-complex, but in [15] Lazarovich
shows that D.L/ is unique if and only if L is superstar-transitive. Recall that the
star of simplex � in L, denoted by St.�/, is the subcomplex given by the union of all
simplices containing � . We say that flag complex L is superstar-transitive if for any
two simplices �; � 0 � L, any isomorphism St.�/! St.� 0/ sending � to � 0 extends to
an automorphism of L. Lazarovich also showed that in this case Aut.X/ is virtually
simple.

The principal set of examples of superstar transitive flag complexes presented by
Lazarovich are Kneser complexes. Let � be a finite set. The Kneser complex Kn.�/ is
the simplicial flag complex defined with vertex set the n–element subsets of �, and
edges joining disjoint n–element subsets. In the particular case that j�j D nd C 1,
the Kneser complex is superstar transitive and its automorphism group is precisely
the natural action of the permutation group Sym.�/; see Section 1.2. We prove the
following:

Theorem 0.1 Let n� 2, d � 1 and � be a finite set of cardinality nd C 1. Let L be
the Kneser complex Kn.�/. Suppose that X1 and X2 are compact , L–cube-complexes
such that all finite-index subgroups of the hyperplane subgroups are separable in �1X1
and �1X2, respectively. Then X1 and X2 have a common finite cover.

If the hyperplane subgroups of a compact nonpositively curved cube complex are
separable, then there is a finite cover such that the hyperplanes are 2–sided, embed,
and do not self-osculate. If no interosculations could be added to this list, then the
cube complex would be virtually special. Conversely, specialness implies separable
hyperplane subgroups, and it is conjectured that the converse holds as well.

Note that in the case d D 1 that L is the set of nC 1 disconnected points, so the
L–cube-complexes will be .nC1/–regular trees. If n D 2 and d D 2 then L is the
famous Petersen graph. In the case when L has no induced squares (as in the case
of the Petersen graph), the fundamental groups of X1 and X2 will be hyperbolic —
see Moussong [17] — and as a consequence of Agol’s proof of the virtual Haken
conjecture [1], X1 and X2 are virtually special. Thus we have:

Corollary 0.2 Let n� 2, d D 1; 2, j�j D nd C 1 and LD Kn.�/. If X1 and X2 are
compact L–cube complexes then X1 and X2 have common finite covers.
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Proof In the case d D 1 the cube complexes are graphs, so it suffices to show that
L is square free when d D 2. Let �D f1; : : : ; 2nC 1g. Suppose that v1, v2, v3 and
v4 are the vertices of an induced square in L. Then without loss of generality we can
assume that v1Df1; : : : ; ng and v2DfnC1; : : : ; 2ng since they are disjoint sets. Thus
we can further assume that v3 D f2; : : : ; n; 2nC 1g since it must be an n–element set
disjoint from v2. Then we have a contradiction since v4 must be an n–element subset
disjoint from v1[ v3 D f1; : : : ; n; 2nC 1g, so v2 D v4.

0.1 Strategy

The plan is to show (in Proposition 4.1) that each L–cube-complex has a finite cover
X admitting a finite orbicovering X !XL, where XL is the orbicomplex WLnD.L/.
We seek to construct this orbicovering by identifying the link of the 0–cube in XL with
Kn.�/ and finding a suitable map lk.x/! Kn.�/ for each 0–cube x in X such that
the orbicovering is defined. By associating a copy �x of � with each 0–cube in X we
identify lk.x/ with Kn.�x/. The orbicovering is then locally defined by a choice of
map qx W�x!�; see Lemma 1.3.

In order for the set of qx to define an orbicover we need to ensure that certain conditions
are satisfied. If e D .x; y/ is a 1–cube, then we need to ensure that e will be mapped
to the same half edge in XL by the maps induced by qx and qy . Given a square in X ,
we also need to ensure that it will be mapped to a quarter-square in XL.

In Section 3, we formulate the problem in the language of a �–category, which is a
choice of bijection �e W�x!�y for each edge eD .x; y/, satisfying certain conditions.
Most of the action in this paper concerns being able to (virtually) construct a�–category.
Once we have the �–category we obtain a holonomy

‰ W �1.X; x/! Sym.�x/

and the kernel of this holonomy will give a finite cover for which we can define
suitable qx; see Section 4.

0.2 Previous results and connections to QI–rigidity

A major motivation for proving Haglund’s conjecture is the potential applications to
Gromov’s program of understanding groups up to quasi-isometry [10]. In [11], Haglund
proved his conjecture for Bourdon buildings and his result can be combined with a
result of Bourdon and Pajot [4] which says that each quasi-isometry of such a building
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is finite distance from a unique automorphism. Thus we deduce that if G is a group
quasi-isometric to the graph product W associated to such a Bourdon building B , then
in fact it acts by isometries on B . By Agol’s result [1], G will be virtually special,
thus acting faithfully on B , and by Haglund G will be weakly commensurable with W .
Thus W is quasi-isometrically rigid.

This argument motivates the following problem:

Problem 0.3 Let LD Kn.�/, where j�j D nd C 1. Is every quasi-isometry of D.L/
finite distance from an automorphism?

A positive answer to Problem 0.3 in the hyperbolic case would immediately give
quasi-isometric rigidity for the associated groups W� by a similar argument to the case
of Bourdon buildings. That is to say that any group quasi-isometric to W� would be
weakly commensurable with W� . In the “higher rank” nonhyperbolic case one might
look to Huang’s results on the quasi-isometric rigidity of large families of right-angled
Artin groups [13]. In this case following would need to be considered:

Problem 0.4 Suppose that L is a Kneser complex as above , such that W� is not
hyperbolic. Are there groups acting geometrically on D.�/ that are not virtually
special?

Acknowledgements I would like to thank Daniel Groves and Kevin Whyte for men-
tioning the particularly interesting case of the Petersen graph, and Nir Lazarovich
and Jingyin Huang for discussions relating to these results. I would like to thank
Sam Shepherd for pointing out a mistake and suggesting the alternative separability
condition on the hyperplane subgroups. Thanks to the referee for their comments.

1 Preliminaries

1.1 Right-angled Coxeter groups

We refer to Davis [8] for classical background on Coxeter groups and their geometry
and to [7] for a recent survey of their large scale geometry.

Let L denote a finite simplicial flag complex. The right-angled Coxeter group WL
associated to L is given by the presentation:

WL D hv 2 L
.0/
j v2 D 1 and Œu; v�D 1 if .u; v/ 2 L.1/i:
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The Davis complex D.L/ is the CAT(0) cube complex obtained from the Cayley 2–
complex constructed from the above presentation, after collapsing each v2 bigon to a
single edge, and inserting higher dimensional cubes wherever their 2–skeleta appear.
The link of each vertex inD.L/ is isomorphic to L, which makes it an L–cube-complex.
The following theorem tells us when D.L/ is the unique CAT(0) L–cube-complex:

Theorem 1.1 [15, Theorem 1.2] The Davis complex D.L/ is the unique CAT (0)
cube complex with each link isomorphic to L if and only if L is superstar-transitive.

If we colour the edges in D.L/ according to the corresponding element of L, or
alternatively the conjugacy class of the associated generator, we can identify WL as
the subgroup of Aut.D.L// that preserves the colours. Sometimes this subgroup is
referred to as the type-preserving automorphisms. The quotient XL DWLnD.L/ has
the structure of an orbicomplex. Each face given by the intersection of k hyperplanes
has the associated group .Z=2/k with a factor corresponding to a hyperplane.

1.2 Kneser complexes

Let � be a finite set. The Kneser complex Kn.�/ is the flag complex with underlying
graph with vertex set given by n–elements subsets of �, and edges corresponding to
disjoint n–element subsets. There is a natural action of Sym.�/ on Kn.�/.

If K WD Kn.�/ is a Kneser complex, then we let sv D s.v/ � � denote the subset
associated to v 2 K.0/.

Example 1.2 If j�j D 5, then P WD K2.�/ is the Petersen graph. It is a simple
exercise to verify that P is triangle and square free; see Figure 1.

More generally, if j�j D nd C 1, then Kn.�/ is a .d�1/–dimensional flag simplicial
complex with a superstar-transitive automorphism group; see [15]. We also note the
following:

Lemma 1.3 [9, Corollary 7.8.2] If j�j ¤ 2n, then Aut.Kn.�// is equal to Sym.�/.

Given a subset †��, the inclusion induces an embedding Kn.†/� Kn.�/, where
the vertex in Kn.†/ corresponding to s�†�� is sent to the corresponding vertex
in Kn.�/. Indeed, an automorphism .�;†/ ! .�;†/ induces an automorphism
of Kn.�/ that restricts to an automorphism on Kn.†/. Conversely, by Lemma 1.3,
provided 2n is not equal to j�j or j†j, an automorphism of Kn.�/ that preserves
Kn.†/ gives a self-bijection of � that preserves †.
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Figure 1: The Petersen graph (courtesy of Tilman Piesk [19]).

Kneser complexes were presented by Lazarovich as a large and readily accessible set
of superstar transitive graphs.

Theorem 1.4 [15, Corollary 5.5] Let n � 2 and d � 1. Let j�j D nd C 1 and
L WD Kn.�/. Then Aut.D.L// is virtually simple.

We note that D.L/ is Gromov hyperbolic if and only if L does not contain any induced
squares [17]. Thus, it is an exercise to verify that D.L/ is hyperbolic only if d � 2.

Remark The most direct means that a result like Theorem 0.1 could be true is if
the automorphism group of D.L/ were to act properly. In which case any other
uniform lattice in Aut.D.L// would lie inside Aut.D.L// as a finite-index subgroup.
Common covers of the corresponding quotient spaces could be constructed by taking
the intersections of the associated lattices. In general the automorphism groups of
universal covers will be far too large for this argument to work. Theorem 1.4 is the most
extreme example of this: since WL is residually finite (and indeed virtually special), it
cannot lie inside a virtually simple group like Aut.D.L// as a finite-index subgroup.

2 Special cube complexes

We refer to [5; 12; 14; 20; 23] for more detailed background on nonpositive curvature,
cube complexes, and specialness. We outline here the terminology that we will use.
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An n–cube C is a metric space isometrically identified with Œ�1; 1�n. A 0–cube is a
singleton. A subcube S � C of dimension m in an n–cube is the m–cube obtained by
restricting .m�n/–many coordinates to 1 or �1. The i th midcubeM �C , for 1� i �n,
is the .n�1/–cube obtained by restricting the i th coordinate to 0.

The reflection of an n–cube over it’s i th midcube M � C is the map C ! C obtained
by multiplying the i th coordinate by �1. Note that all the reflections in a cube commute.
The antipodal map C ! C is obtained by reflection over all the midcubes in C .

The link lk.x/ of a 0–cube x in an n–cube C is the simplex � given by the �–sphere
of x in the `1–metric (where 1 > � > 0). Each subcube of C that contains x has a
link at x that gives a corresponding face in � . If x and y are 0–cubes in C , then x is
mapped to y by the composition R of all the reflections over midcubes separating x
and y. Thus R induces an isomorphism lk.x/! lk.y/.

By a cube complex X we will mean a topological space that decomposes into cubes
C.X/, such that every subcube of a cube in C.X/ is a cube in C.X/, and such that
the intersection of any two cubes C;C 0 2 C.X/ give subcubes of C and C 0, or the
intersection is empty. The link lk.x/ of a 0–cube x in X is the complex given by
the union of all the links of all the cubes containing x, with inclusion of simplices
induced by inclusion of subcubes. Alternatively, it can also be thought of as the �
neighbourhood of x inside X itself. A cube complex X is nonpositively curved if the
link of each vertex is a simplicial flag complex. Each n–simplex � in lk.x/ corresponds
to a unique .nC1/–cube C.�/ in X containing x. Conversely, each .nC1/–cube C
that contains x corresponds to a simplex �.C / in lk.x/.

Unless otherwise noted, our 1–cubes will be directed in the sense that eD .x; y/ comes
with an initial and terminal 0–cube, denoted by �e D x and �e D y. The reversed
1–cube with the opposite direction will be denoted by Ne D .y; x/. Let X be a compact
nonpositively curved cube complex. A hyperplane ƒ in X is an equivalence class of
directed 1–cubes generated by the relation e � e0 if they are opposite faces of a square
in X or Ne D e0. Associated to the equivalence class is the realization of ƒ. This is
a nonpositively curved cube complex, which we will also denote by ƒ, constructed
from the midcubes dual to the edges in the equivalence class that immerses by a local
isometry ƒ#X . Note that this immersion is only a cellular map when both ƒ and
X have been cubically subdivided. The hyperplane subgroup associated to ƒ is the
image of �1.ƒ/ in �1.X/ under the injective homomorphism given by the immersion.
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A hyperplane is embedded if no two edges in the equivalence class form the corner
of a square (that is to say a 2–cube) in X . Equivalently a hyperplane is embedded
if the immersion of the realization is an embedding. The carrier N.ƒ/ � X of a
hyperplane is the subcomplex obtained by taking all cubes that contain an edge in the
associated equivalence class. We say that a hyperplane is fully clean and 2–sided if
N.ƒ/Šƒ� Œ�1; 1�. That is to say that we can extend the embedding of the realization
to an embedding N.ƒ/Dƒ� Œ�1; 1� ,!X . If the hyperplane subgroups of �1.X/
are separable then there is a finite cover of X such that the hyperplanes are fully clean
and 2–sided. Indeed, fully clean follows from [12, Lemma 9.14], and with hyperplanes
embedded a standard cut-and-paste argument applied to a 1–sided hyperplane yields a
degree 2 cover with a two sided hyperplane; see also the proof of [12, Proposition 3.10].
Thus, we will now assume going forward that all hyperplanes satisfy this condition.
In terms of the definition of specialness, this is equivalent to the hyperplanes being
2–sided, embedded, and without self-osculations. Such a cube complex may fail to be
special since interosculations do not contradict this assumption (see Figure 2 for an
illustration of the hyperplane pathologies). In terms of the assumptions of Theorem 0.1,
if the finite-index subgroups of hyperplane subgroups are separable in �1X , then this
remains true of the hyperplane subgroups in a finite cover.

A 0–cube x is incident to ƒ if it is contained in N.ƒ/. An edge e D .x; y/ is parallel
to ƒ if it is contained in N.ƒ/ without being dual to ƒ. Under the assumption that the
hyperplane ƒ is fully clean and 2–sided, the immersion of the realization extends to an
embedding ƒ� Œ�1; 1� ,!X , where the realization is the 0 fiber. The edges parallel
to ƒ are contained in the �1 and 1 fibers. We will refer to the subcomplexes of X
given by the ˙1 fibers as the sides of the carrier.

2.1 The adjacency map

Let eD .x; y/ be an edge in X dual to ƒ and let v be the vertex in lk.x/ corresponding
to e, and u be the vertex in lk.y/ corresponding to e. The star Star.�/ of a simplex
� in a simplicial complex is the subcomplex spanned by the union of all simplices
containing � . We note that in [15] the star of a simplex is defined by Lazarovich to be
the combinatorial 1–neighbourhood. The two notions only coincide in the case when
the simplex is the singleton. This alternative notion, which we denote by St.�/ in the
introduction, applies to the definition of superstar transitive, but will not be otherwise
relevant to the content of this paper.
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Figure 2: An illustration of the standard hyperplane pathologies. The dotted
line depicts the topological realization of the hyperplane. The edges in the
equivalence classes are given arrows indicating the direction. The top left
depicts a self intersection. The top right depicts a 1–sided hyperplane, and
the edges with the arrows reversed also belong to the equivalence class. The
bottom left depicts a direct self-osculation. The bottom right depicts an
interosculation.

The adjacency map for e is the natural isomorphism

ade W Star.v/! Star.u/

such that if v 2 � then ade.�/ is the unique simplex such that C.ade.�//DC.�/. (This
is referred to as the transfer map in [15].)

More generally, let x and y be 0–cubes in X that belong to some n–cube. Let C be
the minimal such n–cube in X containing x and y. Let �x � lk.x/ and �y � lk.y/ be
the simplices corresponding to C . Then we have a natural adjacency map for C given
by the natural isomorphism

adC W Star.�x/! Star.�y/

such that if � is a simplex in lk.x/ containing �x , then adC on � is induced by the
composition of reflections in C.�/ over the midcubes separating x and y. Note that
C.adC .�//D C.�/.
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Furthermore, suppose that x, y and z are 0–cubes in C such that C is the minimal
cube containing x and z. If C1 and C2 are the minimal subcubes in C containing x, y
and y, z respectively, then adC D adC1

ı adC2
, where each adCi

is suitably restricted.

3 Constructing�–categories

This section will be devoted to constructing a �–category on a compact L–cube-
complex X such that all finite-index subgroups of the hyperplane subgroups are separa-
ble in �1X , where L is the Kneser graph as specified in the statement of Theorem 0.1.
We will assume, as stated in Section 2, that we have passed to a finite-index cover such
that the hyperplanes are fully clean and 2–sided.

3.1 A note on notation

In what follows we will be constructing a category over a cube complex. We will be
doing this by assigning objects to 0–cubes and assigning morphisms to each 1–cube.
For example we might denote the morphism associated to e by �e . In this case, given
an edge path  D .e1; : : : ; en/, we will let � denote the composition �en

ı � � � ı�e1
. If

all the edges are parallel to a given hyperplane ƒ, then we will call  a parallel path.

3.2 Our objects

Let n� 2, d � 1 and � be a finite set with j�j D ndC1. Let X be a compact, nonpos-
itively curved cube complex with 2–sided hyperplanes such that lk.x/ is isomorphic
to Kn.�/. To each 0–cube x in X let �x be a copy of �, and identify lk.x/ with the
associated Kneser complex Kn.�x/. Let ƒ be a hyperplane incident to x. Let e be
the 1–cube dual to ƒ with �e D x. Let v D �.e/ be the vertex in lk.x/ corresponding
to e. The identification of lk.x/ with K.�x/ allows us to define ƒx WD s.v/��x . We
will also let s.e/ WD s.v/ when it is clear which 0–cube link we are working with. This
is well defined since ƒ is fully clean, so the 1–cube e is the only 1–cube dual to ƒ
incident to x.

3.3 �–categories on X

Definition 3.1 A �–category on X is a collection of bijections

�e W�x!�y ;

one for each 1–cube e D .x; y/ in X , such that the following conditions are satisfied:
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e02 e2

e1

e01

x

y0

y

z

Figure 3: The square. The hyperplane ƒ1 is depicted as the vertical dotted
line with the arrows on e1 and e01 giving the direction. The hyperplane ƒ2 is
the horizontal dotted line with the arrows on e2 and e02 giving the direction.

(1) Invertibility If e is a directed one cube then � Ne D ��1e .

(2) Let e1 D .x; y/, e2 D .y; z/, e01 D .y
0; z/, e02 D .x; y

0/ be the edges bounding a
square S , and ƒi the hyperplane dual to ei and e0i (see Figure 3). Then:

(a) Commutativity �e2
ı�e1

D �e01
ı�e02

.

(b) Parallel transport �e1
.ƒ2x/Dƒ

2
y and �e02.ƒ

1
x/Dƒ

1
y0 .

Remark The parallel transport condition applied to all squares containing e allows us
to deduce that �e1

.ƒ1x/Dƒ
1
y .

Let f�eg be a �–category on X , and f W yX ! X a cover. By identifying each link
lk. Ox/ in yX with Kn.y� Ox/, where y� Ox is the copy of � assigned to Ox, by Lemma 1.3 the
induced isomorphism between the links

f Ox W lk. Ox/! lk.f . Ox//

induces an isomorphism
f Ox W y� Ox!�f . Ox/:

Thus we can lift the �–category f�eg on X to a unique �–category on yX such that the
following diagram commutes, for each 1–cube Oe D . Ox; Oy/ in yX mapping to e D .x; y/
in X :

y� Ox

f Ox
��

O� Oe
// y� Oy

f Oy

��

�x
�e
// �y

It is straightforward to verify that f O� Oeg satisfies the invertibility and commutativity
conditions, since f Ox is invertible, and since the squares inX lift to squares in yX . Parallel
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transport holds for f O� Oeg by tracing the correspondence of n–element subsets of y� Ox
to vertices in lk. Ox/, which then correspond to hyperplanes incident to Ox. Consider a
square in yX covering the square in Figure 3, labelled with the vertices Ox, Oy, Oy0 and Oz,
and bounded by edges Oe1, Oe2, Oe01 and Oe02. Then for the hyperplane yƒ2 covering ƒ2, we
deduce that

O� Oe1
.yƒ2
Ox
/D O� Oe1

ı f�1
Ox
.ƒ2x/D f�1

Oy
ı�e1

.ƒ2x/D f�1
Oy
.ƒ2y/D

yƒ2
Oy
:

The second equality follows from commutativity of the above square, and the third
from parallel transport for f�eg in X . The corresponding conclusion follows similarly
for yƒ1.

3.4 Constructing a�–category

We will construct our �–category in two stages. In the first stage we will define
functions ��e that will be defined on subsets of the domain �x . We note that in this
section we will be composing functions whose domain and ranges will be subsets of
larger sets. In this case the composition will be given by restricting to the intersection
of the corresponding domains and ranges.

Lemma 3.2 There exists a unique family of functions

f��e W .�x �ƒx/! .�y �ƒy/ jƒ is dual to e D .x; y/ 2X .1/g

such that :

(1) ��
Ne D .�

�
e /
�1.

(2) Let e1D .x; y/, e2D .y; z/, e01D .y
0; z/ and e02D .x; y

0/ be the edges bounding
a square S , and ƒi the hyperplane dual to ei and e0i (see Figure 3). Then

(a) after suitably restricting domains ,

��e2
ı��e1

D ��
e02
ı��

e01
W .�x �ƒ

1
x �ƒ

2
x/! .�z �ƒ

1
z �ƒ

2
z/;

(b) ��e1
.ƒ2x/Dƒ

2
y and ��

e02
.ƒ1x/Dƒ

1
y0 .

Proof Let e D .x; y/ be a directed 1–cube in X dual to ƒ. Let v be the vertex in
lk.x/ corresponding to Ne, and u be the vertex in lk.y/ corresponding to e. Then Star.v/
decomposes as the simplicial join v �Kn.�x �ƒx/ and similarly Star.u/ decomposes
as u�Kn.�y �ƒy/. Thus the adjacency map ade restricts to an isomorphism

Kn.�x �ƒx/! Kn.�y �ƒy/:
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Since j�x �ƒxj D j�y �ƒy j D n.d � 1/C 1, by Lemma 1.3 this isomorphism is
induced by the bijection

��e W .�x �ƒx/! .�y �ƒy/:

(This requires checking that n.d � 1/C 1¤ 2n for n� 2 and d � 1.)

In the case that d D 1 there are no squares in X , so conditions (2)(a)–(b) are satisfied
automatically. So we assume d � 2. Suppose that e1D .x; y/, e2D .y; z/, e01D .y

0; z/

and e02 D .x; y
0/ are the edges bounding a square S , and ƒi is the hyperplane dual to

ei and e0i (see Figure 3). We now check that conditions (2)(a)–(b) are satisfied.

Verifying (2)(b) follows from observing that ƒ2x ��x �ƒ
1
x corresponds to a vertex

u 2 lk.x/D Kn.�x/ and ƒ2y ��y�ƒ
1
y corresponds to a vertex v in lk.y/D Kn.�y/

such that ade1
.u/ D v. (Stare at Figure 3.) Thus ��e1

.ƒ2x/ D ƒ2y and similarly
��
e02
.ƒ1x/Dƒ

1
y0 .

We now consider (2)(a). Observe that (2)(b) implies

��e2
ı��e1

..�x �ƒ
2
x/�ƒ

1
x/D �

�
e2
..�y �ƒ

1
y/�ƒ

2
y/D�z �ƒ

1
z �ƒ

2
z :

Combined with the similar set of equalities for ��e02 ı�
�
e01

this verifies (2)(b) when d D 2
since there is only one possible map between singletons.

In the case that d > 2, let �x � lk.x/, �y � lk.y/, �y0 � lk.y0/ and �z � lk.z/ denote
the 1–simplices corresponding to the square S . We know that

adS D ade2
ı ade1

D ade01 ı ade02 W Star.�x/! Star.�z/:

We also have the decomposition

Star.�x/D �x �Kn.�x �ƒ1x �ƒ
2
x/

and similar decompositions for the stars of �y , �y0 and �z . The adjacency map adS
therefore restricts to an isomorphism

Kn.�x �ƒ
1
x �ƒ

2
x/! Kn.�z �ƒ

1
z �ƒ

2
z/

which, by Lemma 1.3, is induced by an isomorphism

.�x �ƒ
1
x �ƒ

2
x/! .�z �ƒ

1
z �ƒ

2
z/

that must coincide with the compositions ��e2
ı��e1

and ��
e01
ı��

e02
, as their restrictions

induce the same isomorphism. Thus ��e2
ı��e1

D ��
e01
ı��

e02
.
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Finally, we show uniqueness of the family f��e g. Note that j�x �ƒxj D .n� 1/d C 1.
Therefore, if n D 1 then uniqueness is trivial as the maps are between singletons.
Otherwise, for n > 1 each element of �x �ƒx is given by the intersection of the
n–element subsets ƒy that contain the given element and are disjoint from ƒx . Thus,
condition (2)(b) applied to each these ƒy allows us to deduce that ��e is uniquely
determined on the given element of �x �ƒx .

We will refer to the maps f��e g as the pre–�–category. Note that if f W yX ! X

is a cover, then we can lift the pre–�–category to yX and check that the conditions
are satisfied, in the same way we checked for the �–category. Alternatively, since
such pre–�–categories are unique, we could instead verify that the following square
commutes:

.y� Ox � yƒ Ox/

f Ox
��

O��
Oe
// .y� Oy � yƒ Oy/

f Oy

��

.�x �ƒx/
��e
// .�y �ƒy/

This would follow from the parallel transport conditions and the correspondence
between hyperplanes and the corresponding subsets of y� Ox , in a similar fashion to the
argument given for lifting �–categories.

3.5 The hyperplane parallel holonomy

As a consequence of Lemma 3.2 we deduce that if an edge e D .x; y/ is parallel to ƒ
then we have a bijection

 e Wƒx!ƒy

obtained by restricting ��e as given by Lemma 3.2. Indeed, if ƒ0 is the hyperplane
dual to e, then ƒx � �x �ƒ0x . We note that this is a category, with the n–element
set ƒx associated to each vertex x that ƒ is incident to, and there is a morphism  e

associated to each edge e parallel to ƒ. In fact, since ƒ is 2–sided, there is a category
corresponding to each side.

Thus if we fix a choice of side of ƒ and a 0–cube p in ƒ as a basepoint, we obtain a
parallel holonomy

‰p W �1.ƒ; p/! Sym.ƒx/:

If e0 is the edge dual to ƒ with midpoint p such that �e0D x lies on the given side, this
holonomy is given by identifying ƒ with the side of the hyperplane carrier containing
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the basepoint x, and letting the equivalence class of a parallel path Œ�D Œe1; : : : ; en�
based at x map to

‰p.Œ�/D   ;

where   denotes the composition  en
ı � � � ı  e1

. Conditions (1) and (2)(a) in
Lemma 3.2 ensure that this does not depend on the choice of representative.

We note that the triviality of the holonomy does not depend on the choice of basepoint p
(but may depend on the side of the carrier that is chosen). Indeed, given another 1–cube
e00 dual to ƒ, with �e00D y on the same side of ƒ, with midpoint p0, we can check the
following diagram commutes:

�1.ƒ; p/

��

‰p
// Sym.ƒx/

��

�1.ƒ; p
0/

‰p0
// Sym.ƒy/

We have chosen some path  connecting x to y in �.ƒ/. The left vertical map is given
by conjugating closed loops by Œ�, in the standard fashion, and the right vertical map
is given by conjugating by   .

The kernel of ‰p is a finite-index normal subgroup of �1.ƒ/, and by the assumptions
of Theorem 0.1 will be separable in �1X .

Lemma 3.3 There exists a finite cover yX !X such that the parallel holonomies in yX
are trivial.

Proof Let ‰ be a parallel holonomy for some hyperplane ƒ, and some choice of
side and basepoint. The kernel of ‰ is a finite-index normal subgroup of �1.ƒ/,
and therefore, by the assumption of Theorem 0.1, will be separable in �1X . Let
fid; g1; : : : ; g`g be a minimal set of representatives for the left cosets of ker.‰/ in
�1.ƒ/. As gi …ker.‰/, by separability there exists a finite-index subgroupNi 6�1.X/
such that ker.‰/ � Ni and gi … Ni . Thus ker.‰/ D

T`
iD1Ni \ �1.ƒ/, since we

know ker.‰/�
T`
iD1Ni and that if gih 2

T`
iD1Ni \�1.ƒ/, where h 2 ker.‰/, then

gi 2
T`
iD1Ni . The normal core, Core

�T`
iD1Ni

�
, is a finite-index normal subgroup of

�1X such that �1.ƒ/\Core
�T`

iD1Ni
�

is contained in ker.‰/.

By repeating this for each side of each hyperplane, and intersecting all the resulting
normal cores, we obtain a finite-index normal subgroup N 6 �1.X/ such that for each
hyperplane ƒ, the intersection N \ �1.ƒ/ is contained in the kernel of the parallel
holonomies on either side of ƒ. Then the desired finite cover f W yX!X is given by N .
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Let f O��
Oe
g denote the lift of the pre–�–category on X to yX . Then the following diagram

commutes, where hyperplane yƒ covers ƒ, and the bottom arrow is the isomorphism
induced by conjugation by f Ox:

�1.yƒ/

y‰ Op
��

f�
// �1.ƒ/

‰p

��

Sym.y� Ox/ // Sym.�x/

Indeed, if we take a combinatorial path Œ O� given by the edge sequence Oe1; : : : ; Oen that
traversed the vertices Ox D Ox0; Ox1; : : : ; Oxn�1, and let f .Œ O�/D Œ� with f . Oei /D ei and
f . Oxi /D xi , we deduce that

‰p ıf�.Œ O�/D‰p.Œ�/D   D  en
ı � � � ı e1

D f Ox0
ı O Oen

ı f�1
Oxn�1
ı f Oxn�1

ı � � � ı f Ox1
ı O Oe1

ı f�1
Ox0

D f Ox0
ı O Oen

ı � � � ı O Oe1
ı f�1
Ox0

D f Ox0
ı y‰ Op ı f

�1
Ox0
:

Thus the square commutes and the parallel holonomies in yX are trivial.

3.6 Extending the maps ��
e

By Lemma 3.3, we now assume that we have passed to a suitable finite cover such that
X has trivial parallel holonomies in its pre–�–category. Given an edge e dual to ƒ,
it remains to extend ��e , and this means making a choice of bijection ƒx!ƒy . We
can certainly make such choices so that the inversion condition (2)(a) is satisfied, and
condition (2)(b) holds as it holds for ��e . It therefore remains to ensure we can make
our choices so that the commutativity condition (2)(a) is satisfied.

For each hyperplane ƒ let eD .x; y/ be a choice of edge dual to ƒ. We make a choice
of map

�ıe Wƒx!ƒy

that extends ��e to �e.

Suppose that e0 is some other edge dual to ƒ such that �e0 lies on the same side of ƒ
as �e. Then let  D .e1; : : : ; ep/ be an edge path parallel to ƒ that connects �e to �e0.
We also let  0D .e01; : : : ; e

0
q/ be an edge path parallel to ƒ that connects �e to �e0. Then

we define
�ıe0 D  ep ı � � � ı e1

ı�ıe ı 
�1
e01
ı � � � ı �1

e0q
;
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where  ei
and  e0

i
are the parallel holonomies on either side of ƒ. Since the parallel

holonomies are trivial, �ıe0 will not depend on the choice of paths  and  0. We let
�ı
Ne D .�

ı
e /
�1 and recover that �ı

Ne0 D .�
ı
e0/
�1.

It remains to check that f�eg, as defined, satisfy our commutativity relations. Let
e1 D .x; y/, e2 D .y; z/, e01 D .y

0; z/ and e02 D .x; y
0/ be edges bounding a square,

and let ƒi be the hyperplane dual to ei and e0i (see Figure 3). Then we consider the
separate cases

�e2
ı�e1

D

8̂̂̂<̂
ˆ̂:
��e2
ı��e1

W .�x �ƒ
1
x �ƒ

2
x/! .�z �ƒ

1
z �ƒ

2
z/;

�ıe2
ı��e1

Wƒ2x!ƒ2z;

��e2
ı�ıe1

Wƒ1x!ƒ1z;

�ıe2
ı�ıe1

W∅!∅:

It follows from Lemma 3.2 that ��e2
ı ��e1

D ��e01
ı ��e02

. By considering the parallel
holonomies with respect to ƒ2 we can see that

�ıe2
ı��e1

D �ıe2
ı e1

D  e01
ı�ı

e02
D ��

e01
ı�ı

e02
:

A similar sequence of equalities gives that ��e2
ı�ıe1

D �ıe01
ı��e02

. Altogether this allows
us to conclude that �e2

ı�e1
D �e01

ı�e02
, and that f�eg is a �–category, and that we

have proven the following:

Proposition 3.4 Let n � 2, d � 1 and � be a finite set of cardinality nd C 1. Let
L be the Kneser complex Kn.�/. Suppose that X is an L–cube-complex such that
hyperplane subgroups have separable finite-index subgroups. Then there exists a finite
cover yX !X , such that there is a �–category over X .

4 The holonomy

Given a �–category f�eg for X we obtain a holonomy map

ˆx W �1.X; x/! Sym.�x/;

where the homotopy class Œ�D Œe1; : : : ; en� of the edge path based at x has image

ˆx.Œ�/D � :

The invertibility and commutativity conditions guarantee that this does not depend on
the choice of representative of the homotopy class. Note that if ˆx is trivial, then the
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holonomy is trivial with respect to any basepoint since the following diagram commutes:

�1.X; x/

��

ˆx
// Sym.�x/

��

�1.X; y/
ˆy
// Sym.�y/

If  is an edge path connecting x to y, then the vertical left arrow is the isomorphism
given by conjugating a homotopy class of based loops by Œ�, and the vertical right
arrow is the isomorphism given by conjugating by � .

The kernel of ˆx is a finite-index normal subgroup of �1X and corresponds to a
finite-sheeted, regular cover f W yX ! X . Lift the �–category on X to a �–category
f O� Oeg on yX . We can check that the following diagram commutes:

�1. yX; Ox/

f�
��

ŷ
Ox
// Sym.� Ox/

��

�1.X; x/
ˆx
// Sym.�x/

The 0–cube Ox is chosen so that f . Ox/Dx, and the right vertical arrow is the isomorphism
given by conjugation by f Ox . Thus we conclude that the holonomy ŷx on yX is trivial.
If the holonomy on X obtained from a �–category is trivial, then we say that the
�–category itself is flat.

4.1 Constructing the orbicover

Proposition 4.1 Let LD Kn.�/ where j�j D nd C 1. Let X be a compact L–cube-
complex that has a flat�–category on X . Then there is an orbicomplex cover X!XL,
where XL DWLnD.L/.

Proof Let f�eg be the flat �–category on X . For a basepoint x, fix an identification
qx W�x!�. For any other 0–cube y in X , let qy D qx ı � where  is an edge
path connecting y to x. Note that qy does not depend on the choice of  since the
�–category is flat.

We will prove the claim by producing an orbicomplex cover X !XL. First we map
all 0–cubes in X to the unique 0–cube in XL. We can extend X to the 1–skeleton of
X by mapping each 1–cube e D .x; y/ dual to ƒ to the half 1–cube corresponding to
q.ƒx/. This makes sense since we know that qx.ƒx/D qy ı�e.ƒx/D qy.ƒy/ by the
remark following Definition 3.1, so e and Ne are mapped to the same half edge.
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Now we want to extend X .1/! XL to the 2–skeleton. Let e1 D .x; y/, e2 D .y; z/,
e01 D .y

0; z/ and e02 D .x; y
0/ be the directed 1–cubes bounding a square S in X such

that ei and e0i are dual to the hyperplane ƒi (as in Figure 3). We want to show that
ei and e0i map to the same half edge, and the e1 and e02 map to half edges that bound
a quarter-square in XL. The first fact follows from the parallel transport property
since �e1

.ƒ2x/ D ƒ2y so qx.ƒ2x/ D qy ı �e1
.ƒ2x/ D qy.ƒ

2
y/. The second follows

from the fact that ƒ1x \ƒ
2
x D ∅ since e1 and e02 bound the corner of a square, so

qx.ƒ
1
x/\ qx.ƒ

2
x/D∅.

It is immediate that we can extend X .2/!XL to the entire skeleton since the higher
dimension cubes are entirely determined by the 1–skeleton. In this particular case, we
have an orbicovering since the induced maps on the vertex links are isomorphisms.
Thus we can lift this orbicovering to an isomorphism zX !D.L/ such that the deck
transformation group �1.X/ is a subgroup of WL.

Proof of Theorem 0.1 Let X1 and X2 be our L–cube-complexes. Finite-index
subgroups of the hyperplane subgroups are separable, so by Proposition 3.4 there is
a finite cover X 0i ! Xi such that there is a �–category over X 0i . By considering the
holonomy given by the �–category, we can pass to a further finite cover yXi ! X 0i
such that the induced �–category is flat. By Proposition 4.1, there are finite orbicovers
fi W yXi ! XL. The common cover is then obtained by taking the intersection of the
corresponding deck transformation groups inside of WL.
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