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Milnor–Witt motivic cohomology of
complements of hyperplane arrangements

KEYAO PENG

We compute the (total) Milnor–Witt motivic cohomology of the complement of a
hyperplane arrangement in an affine space as an algebra with given generators and
relations. We also obtain some corollaries by realization to classical cohomology.

14C25, 14F42, 19E15

1 Introduction

Let K be a perfect field of characteristic different from 2, and let U � ANK be the
complement of a finite union of hyperplanes. For K D R, the cohomology ring
H�sing.U.R/;Z/ is just the direct sum of Z corresponding to each regions (connected
components), and those regions form a poset. In the special case when the hyperplanes
arise from a root system, the resulting poset is the corresponding Weyl group with
the weak Bruhat order. In general, the poset of regions is ranked by the number of
separating hyperplanes and its Möbius function has been computed; see Edelman [8].

For any essentially smooth scheme X over K and any integers p; q 2 Z, one can
define the Milnor–Witt (MW) motivic cohomology groups Hp;q

MW.X;Z/ introduced
by Bachmann, Calmès, Déglise, Fasel and Østvær [1]. There are homomorphisms
(functorial in X ), for any p; q 2 Z,

H
p;q
MW.X;Z/!H

p;q
M .X;Z/;

where the right-hand side denotes the ordinary motivic cohomology of Voevodsky.

As illustrated by the list of properties in the following section, the Milnor–Witt motivic
cohomology groups behave in a fashion similar to ordinary motivic cohomology groups,
but there are crucial differences (for instance, there are no reasonable Chern classes).
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In this paper, we compute the total Milnor–Witt cohomology ring of the complement
of a hyperplane arrangement in affine spaces HMW.U / using methods very similar to
Chatzistamatiou [4], with some necessary modifications. To state our main result, we
first recall a few facts.

Let R be a commutative ring. The Milnor–Witt K–theory of R is defined to be the
graded algebra freely generated by elements of degree 1 of the form Œa� with a 2R�

and an element � in degree �1, subject to the relations

(1) Œa�Œ1� a�D 0 for any a such that a; 1� a 2R� n f1g;

(2) Œab�D Œa�C Œb�C �Œa�Œb� for any a; b 2R�;

(3) �Œa�D Œa�� for any a 2R�;

(4) �.2C �Œ�1�/D 0.

It defines a presheaf on the category of schemes over a perfect field K via X 7!
KMW
� .O.X//. On the other hand, one can also consider the Milnor–Witt motivic

cohomology (bigraded) presheaf

X 7!HMW.X/ WD
M
p;q

H
p;q
MW.X;Z/:

By Déglise and Fasel [7, Theorem 4.2.2], there is a morphism of presheaves

s W
M
n2Z

KMW
n .�/!

M
n2Z

H
n;n
MW.�;Z/�HMW.X/;

which specializes to the above isomorphism if X D Spec.F /, where F is a finitely
generated field extension of K; see Calmès and Fasel [3].

Theorem 1.1 LetK be a perfect field of characteristic different from 2 and let U �ANK
be the complement of a finite union of hyperplanes. There is an isomorphism of
HMW.K/–algebras

HMW.K/fGm.U /g=JU ŠHMW.U /

defined by mapping .f / 2Gm.U / to the class Œf � in H 1;1
MW.U;Z/ corresponding to f

under s. Here , HMW.K/fGm.U /g is the free (associative) graded HMW.K/–algebra
generated by Gm.U / in degree .1; 1/ and JU is the ideal generated by the elements

(1) .f /� Œf � if f 2K� �Gm.U /;

(2) .f /C .g/C �.f /.g/� .fg/ if f; g 2Gm.U /;

(3) .f1/.f2/ � � � .ft / for any f1; : : : ; ft 2Gm.U / such that
Pt
iD1 fi D 1;

(4) .f /2� Œ�1�.f / if f 2Gm.U /.
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As indicated above, this theorem and its proof are inspired by the computation of the
(ordinary) motivic cohomology of U in [4]. We can recover the main theorem [4,
Theorem 3.5] of the motivic cohomology case by taking � D 0. As a corollary, we
obtain the following result:

Corollary 1.2 Let U �ANK be the complement of a finite union of hyperplanes. The
isomorphism of Theorem 1.1 induces an isomorphismM

n2Z

KMW
n .K/fGm.U /g=JU !

M
n2Z

H
n;n
MW.U;Z/:

We do not know if the left-hand side coincides with KMW
� .U /. To conclude, we spend

a few lines on the real realization homomorphism

HMW.U;Z/!H�sing.U.R/;Z/

when U is over K D R. We prove in particular that both sides have essentially the
same generators, and that the map is surjective.

Conventions The base field K is assumed to be perfect and of characteristic not 2.
For a scheme X over K, we write HMW.X/ for the total MW motivic cohomology
ring

L
p;q2ZH

p;q
MW.X;Z/.

For each f 2Gm.U /, we use .f / to indicate the corresponding generator in the corre-
sponding free algebra (eg KMW

n .K/fGm.U /g) and Œf � to indicate the corresponding
element in the cohomology group (eg H 1;1

MW.U;Z/).

2 Milnor–Witt motivic cohomology

In this section, we define Milnor–Witt motivic cohomology and state some properties
that will be used in the proof of Theorem 1.1. We start with the (big) category of
motives eDM.K/ WDeDMNis.K;Z/ defined in [7, Definition 3.3.2] and the functor�M W Sm=K!eDM.K/:

The category eDM.K/ is symmetric monoidal [7, Proposition 3.3.4] with unit 1 D�M.Spec.K//. For any integers p; q 2 Z, we obtain MW motivic cohomology groups

H
p;q
MW.X;Z/ WD HomfDM.K/.

�M.X/;1.q/Œp�/:

By [7, Proposition 4.1.2], motivic cohomology groups can be computed as the Zariski
hypercohomology groups of explicit complexes of sheaves.
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We will make use of the following property of eDM.K/. First, we note that eDM.K/ is
also a triangulated category.

Proposition 2.1 (Gysin triangle) Let X be a smooth K–scheme , let Z � X be a
smooth closed subscheme of codimension c and let U D X nZ. Suppose that the
normal cone NXZ admits a trivialization � W NXZ Š Z �Ac . Then there is a Gysin
triangle �M.U /! �M.X/! �M.Z/.c/Œ2c� C1�!;

where the last two arrows depend on the choice of �.

Proof We have an adjunction of triangulated categories

SH.K/� eDM.K/

obtained by combining the adjunction of [6, Section 4.1] and the classical Dold–Kan
correspondence (eg [5, 5.3.35]). Here, SH.K/ is the stable homotopy category of
smooth schemes over K. The functor SH.K/!eDM.K/ being exact, the statement
follows for instance from [13, Chapter 3, Theorem 2.23].

Furthermore, the Milnor–Witt motivic cohomology groups satisfy most of the formal
properties of ordinary motivic cohomology and were computed in a few situations:

(1) If q � 1, there are canonical isomorphisms

H
p;q
MW.X;Z/ŠH

p�q
Nis .X;K MW

q /ŠH
p�q
Zar .X;K MW

q /

where K MW
q is the unramified Milnor–Witt K–theory sheaf (in weight q) introduced

in [12].

(2) IfL=K is a finitely generated field extension there are isomorphismsHn;n
MW.L;Z/Š

KMW
n .L/ fitting in a commutative diagram, for any n 2 Z,

H
n;n
MW.L;Z/

� //

��

KMW
n .L/

��

H
n;n
M .L;Z/ � // KMn .L/

where KMn .L/ is the (nth) Milnor K–theory group of L, the bottom horizontal map
is the isomorphism of Suslin, Nesterenko and Totaro, and the right-hand vertical map
is the natural homomorphism from Milnor–Witt K–theory to Milnor K–theory. This

Algebraic & Geometric Topology, Volume 23 (2023)
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result has the following consequence: the Milnor–Witt motivic cohomology groups are
computed via an explicit complex of Nisnevich sheaves zZ.q/ for any integer q 2 Z.
The above result shows that there is a morphism of complexes of sheaves

zZ.q/!KMW
q Œ�q�;

where the right-hand side is the complex whose only nontrivial sheaf is KMW
q in

degree �q. For any essentially smooth scheme X over K, this yields group homomor-
phisms

H
p;q
MW.X;Z/!Hp�q.X;K MW

q /;

which are compatible with the ring structure on both sides. In the particular case pD 2n
and q D n for some n 2 Z, we obtain isomorphisms (functorial in X )

H
2n;n
MW .X;Z/ ��! fCHn.X/;

where the right-hand term is the nth Chow–Witt group of X (defined in [2; 9]). Again,
these isomorphisms fit into commutative diagrams

H
2n;n
MW .X;Z/ � //

��

fCHn.X/

��

H
2n;n
M .X;Z/ � // CHn.X/

where the right-hand vertical homomorphism is the natural map from Chow–Witt
groups to Chow groups.

(3) The total Milnor–Witt motivic cohomology has Borel classes for symplectic
bundles [15] but in general the projective bundle theorem fails [14].

(4) If X is a smooth scheme over R, there are two interesting realization maps. On
the one hand, one may consider the composite

H
p;q
MW.X;Z/!H

p;q
M .X;Z/!H

p
sing.X.C/;Z/;

where the right-hand map is the complex realization map. On the other hand, one may
also consider the composite

H
p;q
MW.X;Z/!Hp�q.X;K MW

q /!Hp�q.X; Iq/!H
p�q
sing .X.R/;Z/;

where Iq is the unramified sheaf associated to the qth power of the fundamental
ideal in the Witt ring, K MW

q ! Iq is the canonical projection and Hp�q.X; Iq/!

H
p�q
sing .X.R/;Z/ is Jacobson’s signature map [11].
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We note here that these two realization maps show that Milnor–Witt motivic cohomology
is in some sense the analogue of both the singular cohomology of the complex and the
real points of X.

3 Basic structure of the cohomology ring

Let V be an affine space, ie V ŠANK for some N 2N. We consider finite families I
of hyperplanes in V (which we suppose are distinct). We denote by jI j the cardinality
of I and set U VI WD V n

�S
Y2I Y

�
, and simply write UNI when V D ANK . For any

hyperplane Y, we put IY WD fYi \Y j Yi 2 I; Yi ¤ Y g.

Proposition 3.1 Let V and I be as above. We have�M.U VI /Š
M
j2J

1.nj /Œnj �

for some set J and integers nj � 0.

Proof We proceed by induction on the dimension N of V and jI j. If jI j D 0, then�M.U VI /D
�M.V /Š 1 and we are done. So let jI j � 1 and Y 2 I. The Gysin triangle

reads as

(3-1) �M.U VI /!
�M.U VInfY g/

�
�! �M.U YIY

/.1/Œ2� C1�!:

If � D 0, then the triangle is split and consequently we obtain an isomorphism

(3-2) �M.U VI /Š
�M.U VInfY g/˚

�M.U YIY
/.1/Œ1�:

Since jI n fY gj < jI j and dim.Y /D dim.V /� 1, we conclude by induction that the
right-hand side has the correct form. We are then reduced to showing that � D 0.

By induction,

� 2 HomfDM.K/.
�M.U VInfY g/;

�M.U YIY
/.1/Œ2�/

Š

M
j;k

HomfDM.K/.1.nj /Œnj �;1.mk/ŒmkC 1�/

for some integers nj ;mk�0, so it suffices to prove that HomfDM.K/.1;1.m/ŒmC1�/D0
for any m 2 Z to conclude. Now,

HomfDM.K/.1; 1.m/ŒmC 1�/DH
mC1;m
MW .K;Z/

and the latter is trivial by [7, Proposition 4.1.2 and proof of Theorem 4.2.4].

Algebraic & Geometric Topology, Volume 23 (2023)



Milnor–Witt motivic cohomology of complements of hyperplane arrangements 3537

As an immediate corollary, we obtain the following result:

Corollary 3.2 The motivic cohomology HMW.U
V
I / is a finitely generated , free

HMW.K/–module.

To obtain more precise results, we now study the Gysin (split) triangle (3-1) in more
detail. We can rewrite it as

�M.U YIY
/.1/Œ1�

ˇY

�! �M.U VI /
˛Y

�! �M.U VInfY g/
0
�!

and therefore we obtain the short (split) exact sequence, in which the morphisms are
induced by the first two morphisms in the triangle,

(3-3) 0!
M
p;q

H
p;q
MW.U

V
InfY g;Z/

˛Y
��!

M
p;q

H
p;q
MW.U

V
I ;Z/

ˇY
��!

M
p;q

H
p�1;q�1
MW .U YIY

;Z/! 0:

The inclusion Y � V yields a morphism U YIY
! U V

InfY g
and therefore a morphism

� W �M.U YIY
/! �M.U V

InfY g
/. The global section f of V corresponding to the equation

of Y becomes invertible inU VI and therefore yields a morphism Œf � W �M.U VI /!1.1/Œ1�
corresponding to the class Œf � 2H 1;1

MW.U
V
I ;Z/ given by the morphism

s W
M
n2Z

KMW
n .�/!

M
n2Z

H
n;n
MW.�;Z/:

Lemma 3.3 The following diagram commutes:

�M.U YIY
/.1/Œ1�

ˇY

��

�.1/Œ1�
// �M.U V

InfY g
/.1/Œ1�

�M.U VI / �
// �M.U VI /˝

�M.U VI /

˛Y˝Œf �

OO

Proof The commutative diagram of schemes

U VI
//

��

U V
InfY g

.Id;f /
��

U V
InfY g

�Gm
// U V
InfY g

�A1K

Algebraic & Geometric Topology, Volume 23 (2023)
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yields a morphism of Gysin triangles and thus a commutative diagram

�M.U YIY
/.1/Œ1�

ˇY

//

�.1/Œ1�

��

�M.U VI /
˛Y

//

��

�M.U V
InfY g

/ //

��

� � �

�M.U V
InfY g

/.1/Œ1� // �M.U V
InfY g

�Gm/ //

��

�M.U V
InfY g

�A1K/
// � � �

�M.U V
InfY g

/.1/Œ1�

in which the map �M.U V
InfY g

�Gm/! �M.U V
InfY g

/.1/Œ1� is just the projection. We
conclude by observing that the middle vertical composite is just .˛Y ˝ Œf �/ ı�.

We may now prove the main result of this section.

Proposition 3.4 The cohomology ring HMW.U / is generated by the classes of units
in U as an HMW.K/–algebra. In particular , the homomorphism

s W
M
n2Z

KMW
n .U /!

M
n2Z

H
n;n
MW.U;Z/

is surjective.

Proof We again prove the result by induction on jI j and the dimension of V, the case
jI j D 0 being obvious. Suppose then that the result holds for U YIY

and U V
InfY g

and
consider the split sequence (3-3). For any x 2HMW.U /DHMW.U

V
I /, we have that

ˇY� .x/ 2 HMW.U
Y
IY
/ is in the subalgebra generated by fŒf � j f 2 Gm.U

Y
IY
/g and �.

For any f1; : : : ; fn 2Gm.U
V
InfY g

/, Lemma 3.3 yields

ˇY�
�
Œ.f1/jUV

I
� � � � Œ.fn/jUV

I
� � Œt �

�
D Œ.f1/jUY

IY

� � � � Œ.fn/jUY
IY

�:

The map Gm.U
V
InfY g

/!Gm.U
Y
IY
/ being surjective, it follows that there exists x0 2

HMW.U
V
I / in the subalgebra generated by units such that ˇY� .x � x

0/ D 0. Thus,
x� x0 D ˛�.y/ for some y 2HMW.U

V
InfY g

/ and the result follows from the fact that
˛� is just induced by the inclusion U VI � U

V
InfY g

.

4 Relations in the cohomology ring

The purpose of this section is to prove that the relations of Theorem 1.1 hold in
HMW.U /. The first two relations are obviously satisfied since the homomorphism is

Algebraic & Geometric Topology, Volume 23 (2023)



Milnor–Witt motivic cohomology of complements of hyperplane arrangements 3539

induced by the ring homomorphism

s W
M
n2Z

KMW
n .U /!

M
n2Z

H
n;n
MW.U;Z/:

Recall now that the last two relations are

(3) Œf1�Œf2� � � � Œft � if fi 2Gm.U / for any i and
Pt
iD1 fi D 1;

(4) Œf �2� Œ�1�Œf � if f 2Gm.U /.

We will prove that they are equal to 0 in HMW.U /. Actually, it will be more convenient
to work with the following relations, where � WD �h�1i D �1� �Œ�1�:

(30) R.f0; : : : ; ft /, defined by

tX
iD0

�tCi Œf0� � � �bŒfi � � � � Œft �

C

X
0�i0<���<ik�t

.�1/kŒ�1�kŒf0� � � �bŒfi0 � � � � bŒfik � � � � Œft �

for fi 2Gm.U / such that
Pt
iD0 fi D 0.

(40) Anticommutativity Œf �Œg�� �Œg�Œf �.

Lemma 4.1 The two groups of relations are equivalent in HMW.U /.

Proof We first assume that (3) and (4) are satisfied. Since (1) and (2) are satisfied, we
have Œ�f �D Œ�1�Ch�1iŒf �. As (4) is satisfied and Œ�1�D �Œ�1� in KMW

� .K/,

Œ�f �Œf �D Œ�1�Œf �Ch�1iŒf �2 D �.Œ�1�Œf �� Œf �2/D 0

and then Œfg�Œ�fg� D Œf �Œg� C �Œg�Œf � for any g; f 2 Gm.U / by [12, proof of
Lemma 3.7]. Suppose next that

Pt
iD0 fi D 0, so that

Pt
iD1 fi=.�f0/D 1. Combining

(3) and the anticommutativity law, we obtain

0D Œ1�D Œf �1j �Chf �1j iŒfj � (by (2)),(4-1) �
�fi

fj

�
D hf �1j iŒ�fi �C Œf

�1
j �(4-2)

D hf �1j i.Œ�fi �� Œfj �/ (by (4-1))

D hf �1j i.h�1iŒfi �C Œ�1�� Œfj �/;

Algebraic & Geometric Topology, Volume 23 (2023)



3540 Keyao Peng

.Œf0�� Œ�1�/
k
D

kX
iD0

�k
i

�
Œ�1�k�i Œf0�

i(4-3)

D

� k�1X
iD0

�k
i

��
Œ�1�k�1Œf0�C .�1/

kŒ�1�k (by (4))

D .�1/k�1Œ�1�k�1Œf0�C .�1/
kŒ�1�k

and

0 D .�hf0i/
t

�
�f1

f0

��
�f2

f0

�
� � �

�
�ft

f0

�
(by (3))

D
�
Œf0�� Œ�1�� h�1iŒf1�

�
� � �
�
Œf0�� Œ�1�� h�1iŒft �

�
(by (4-2))

D �tbŒf0�Œf1� � � � Œft �C
tX
iD1

�t�1Œf1� � � �bŒfi �.Œf0�� Œ�1�/ � � � Œft �

C

X
i<j

.Œf0�� Œ�1�/
2Œf1� � � �bŒfi � � � �bŒfj � � � � Œft �C � � �

D

tX
iD0

�tCi Œf0� � � �bŒfi � � � � Œft �

C

X
0�i0<���<ik�t

.�1/kŒ�1�kŒf0� � � �bŒfi0 � � � � bŒfik � � � � Œft � (by (4-3))

DR.f0; : : : ; ft /:

Conversely, suppose that (30) and (40) hold. A direct calculation shows that

R.�1; f1; : : : ; ft /D .�h�1i/
t Œf1� � � � Œft �D �

t Œf1� � � � Œft �;

and consequently that (3) also holds. For every field K ¤ F2, we have 1C aC b D 0
for some a; b ¤ 0 and it follows from Œ�a�Œ�b�D 0 in KMW

� .K/ that

R.f; af; bf /DR.f; af; bf /� Œ�a�Œ�b�DR.f; af; bf /�
h
�
af

f

ih
�
bf

f

i
DR.f; af; bf /� .h�1iŒaf �C Œ�1�� Œf �/.h�1iŒbf �C Œ�1�� Œf �/

D�Œ�1�Œf �C Œ�1�2� .Œf �� Œ�1�/2 D Œ�1�Œf �� Œf �2:

Remark 4.2 The following properties of the relations R and anticommutativity hold:

(1) For any a; b 2Gm.U /, we have Œa=b�D�hb�1iR.b;�a/.
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(2) For any f0; : : : ; ft 2Gm.U /, by direct computation, we have

R.f0; : : : ; ft /� �
i Œfi �R.f0; : : : ; Ofi ; : : : ; ft /D P.f0; : : : ; Ofi ; : : : ; ft /

for some polynomial P. This uses the anticommutativity and the fact that
Œ�1�D �j Œ�1� for any j � 0 in the computation.

(3) For any f0; : : : ; ft 2 K� such that
Pt
iD0 fi D 0, we have R.f0; : : : ; ft /D 0

in KMW
� .K/.

The following lemma will prove useful in the proof of the main theorem:

Lemma 4.3 Any morphism � W �M.U VI /! T in eDM.K/ such that

�M.U YIY
/.1/Œ1�

ˇY

�! �M.U VI /
�
�! T

is trivial for every Y 2 I factors through �M.K/, ie there is a morphism  W �M.K/! T

such that the diagram �M.U VI /

��

�
// T

�M.K/

 

<<

is commutative.

Proof We prove as usual the result by induction on jI j, the result being trivial if
jI j D 0, ie if U VI ŠANK . By assumption, � factors through �M.U V

InfY g
/, ie we have a

commutative diagram �M.U VI /
˛Y
//

�
&&

�M.U V
InfY g

/

�0

��

T

For H 2 I 0 D I n fY g, we have an associated Gysin morphism ˇH W �M.UHIH
/.1/Œ1�!�M.U VI / which induces a commutative diagram

�M.UHIH
/.1/Œ1�

˛Y .1/Œ1�

��

ˇH

// �M.U VI /

˛Y

��

�
// T

�M.UH
I 0H
/.1/Œ1�

ˇH

// �M.U VI 0 /

�0

==

Algebraic & Geometric Topology, Volume 23 (2023)
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in which the morphism ˛Y .1/Œ1� on the left is split surjective. It follows that

�0 ıˇ
H
ı˛Y .1/Œ1�D � ıˇH D 0

implies �0 ıˇH D 0. We conclude by induction.

Proposition 4.4 Let S be an essentially smooth K–scheme and let fi 2 Gm.S/ be
such that

Pt
iD0 fi D 0. Then

R.f0; : : : ; ft /D 0 in HMW.S/:

Proof The global sections f0; : : : ; ft yield a morphism j D .f0; : : : ; ft / W S!AtC1K

which restricts to a morphism j W S!UHI , where H �AtC1K is given by
Pt
iD0 xi D 0

and I D ffx1D 0g; : : : ; fxt D 0gg. Since R.f0; : : : ; ft /D j �.R.x0; : : : ; xt //, we can
reduce the proposition to the case S D UHI .

For any xj , we set Yj WD fxj D 0g �H and we obtain a Gysin morphism

ǰ W �M.U
Yj

IYj

/.1/Œ1�! �M.UHI /

and a composite

�M.U
Yj

IYj

/.1/Œ1� ǰ
�! �M.UHI /

R.x0;:::;xt /
��������! 1.t/Œt �:

By Remark 4.2 and Lemma 3.3,

R.x0; : : : ; xt / ı ǰ

D .�j Œxj �R.x0; : : : ; Oxj ; : : : ; xt /CP.x0; : : : ; Oxj ; : : : ; xt // ı ǰ

D �j .Œxj �R.x0; : : : ; Oxj ; : : : ; xt // ı ǰ CP.x0; : : : ; Oxj ; : : : ; xt / ı j̨ ı ǰ

D �jR.x0j
U

Yj
IYj

; : : : ; Oxj ; : : : ; xt j
U

Yj
IYj

/:

As R.f;�f / D 0 for f 2 Gm.S/ by Remark 4.2, we obtain by induction that
R.x0; : : : ; xt / ı ǰ D 0 for any j D 0; : : : ; t . Applying Lemma 4.3, we obtain a
commutative diagram

�M.UHI /

��

R.x0;:::;xt /
// 1.t/Œt �

�M.K/

 

66
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As char.K/ ¤ 2, UHI has a K–rational point .�0; : : : ; �t / 2 AtC1K , and we obtain a
diagram �M.K/

u
��

R.�0;:::;�t /

))�M.UHI /

��

R.x0;:::;xt /
// 1.t/Œt �

�M.K/

 

55

The vertical composite being the identity,  DR.�0; : : : ; �t /, and the latter is trivial
by the relations in Milnor–Witt K–theory.

Applying Lemma 4.1, we obtain the following corollary:

Corollary 4.5 Let S be an essentially smooth K–scheme.

(1) For any f1; : : : ; ft 2Gm.S/ such that
Pt
iD1 fi D 1, we have

Œf1�Œf2� � � � Œft �D 0 2HMW.S/:

(2) For any f 2Gm.S/, we have Œf �2� Œ�1�Œf �D 0 in HMW.S/.

5 Proof of the main theorem

In this section, we prove Theorem 1.1. We denote by JU � HMW.K/fGm.U /g the
ideal generated by the relations

(1) .f /� Œf � for f 2K� �Gm.U /;

(2) .f /C .g/C �.f /.g/� .fg/ for f; g 2Gm.U /;

(3) .f1/.f2/ � � � .ft / for any f1; : : : ; ft 2Gm.U / such that
Pt
iD1 fi D 1;

(4) .f /2� Œ�1�.f / for f 2Gm.U /.

By Lemma 4.1, JU �HMW.K/fGm.U /g is in fact generated by

(1) .f /� Œf � for f 2K� �Gm.U /;

(2) .f /C .g/C �.f /.g/� .fg/ for f; g 2Gm.U /;

(30) Anticommutativity .f /.g/� �.g/.f / for any f; g 2Gm.U /;
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(40) R.f0; : : : ; ft /, given by
tX
iD0

�tCi .f0/ � � �b.fi / � � � .ft /

C

X
0�i0<���<ik�t

.�1/kŒ�1�k.f0/ � � � b.fi0/ � � � b.fik / � � � .ft /

for any f0; : : : ; ft 2Gm.U / such that
Pt
iD0 fi D 0.

In view of Corollary 4.5, the morphism HMW.K/fGm.U /g ! HMW.U / defined by
.f / 7! Œf � induces a morphism of HMW.K/–algebras

� WHMW.K/fGm.U /g=JU !HMW.U /:

Now, choose linear polynomials �1; : : : ; �s that define the hyperplanes Yi 2 I and let
J 0U �HMW.K/fGm.U /g be the ideal generated by the relations (1), (2), (30) and (40)
for elements of the form fj D �j�ij or fj D �j for �j 2K� and �ij 2 f�1; : : : ; �sg.
We have a string of surjective morphisms of HMW.K/–algebras

HMW.K/fGm.U /g=J
0
U !HMW.K/fGm.U /g=JU

�
�!HMW.U /;

whose composite we denote by �0.

Theorem 5.1 The morphism of HMW.K/–algebras

HMW.K/fGm.U /g=JU
�
�!HMW.U /

is an isomorphism.

Proof It suffices to prove that �0 is an isomorphism. To see this, we work again by
induction on jI j. If jI j D 0, then U ŠANK for some N 2N. By homotopy invariance,
we have to prove that the map

�0 WHMW.K/fGm.K/g=J
0
K !HMW.K/

is an isomorphism. Now, the morphism of HMW.K/–algebras

HMW.K/!HMW.K/fGm.K/g=J
0
K

is surjective by relation (1). Its composite with �0 is the identity and we conclude in
that case.

Assume now that Y 2 I is defined by �1 D 0 and that we have isomorphisms

HMW.K/fGm.U
V
I 0 /g=J

0

UV
I 0

��!HMW.U
V
I 0 /;

HMW.K/fGm.U
Y
IY
/g=J 0

UY
IY

��!HMW.U
Y
IY
/:
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The morphism U VI ! U VI 0 induces a morphism Gm.U
V
I 0 / ! Gm.U

V
I / and then a

commutative diagram

HMW.K/fGm.U
V
I 0 /g=J

0

UV
I 0

z̨
��

Š
oo

HMW.K/fGm.U
V
I /g=J

0

UV
I

�0
oo

ž

��

HMW.K/fGm.U
Y
IY
/g=J 0

UY
IY

Š
oo

0

��

HMW.U
V
I 0 /

˛Y
�
��

HMW.U
V
I /

ˇY
�
��

HMW.U
Y
IY
/

��

0

in which ž is the unique lift of ˇY� ı� and the right column is exact. We are thus reduced
to proving that the left vertical sequence is short exact to conclude. It is straightforward
to check that z̨ is injective and ž is surjective. Moreover, the commutativity of the
diagram and the fact that ˇY� ı ˛

Y
� D 0 imply that ž ı z̨ D 0, so we are left to prove

exactness in the middle.

Let x 2HMW.K/fGm.U
V
I /g=J

0
UV

I
. The group Gm.U

V
I / being generated by Gm.U

V
I 0 /

and �1, we may use relations (2) and (4) to see that x D .�1/z̨.x1/ C z̨.x0/ in
HMW.K/fGm.U

V
I /g=J

0
UV

I
. By Lemma 3.3, we get ž.x/D Q�.x1/, where Q� is induced

by the restriction Gm.U
V
I 0 / ! Gm.U

Y
IY
/. Consequently, we need to prove that, if

Q�.x1/D 0, then .�1/z̨.x1/ is in the image of z̨. With this in mind, we now prove that
the kernel of Q� is generated by elements of the form

R.f0; : : : ; ft /;

where fj D ��ij with ij > 1 or fj D � and
Pt
iD0 fi jUY

IY
D 0. Denote by L0 the ideal

of HMW.K/fGm.U
V
I 0 /g generated by such elements. By construction, the restriction

induces a homomorphism
L0CJ 0

UV
I 0
! J 0

UY
IY

;

which is surjective. Indeed, relations (1), (2) and (30) can be lifted using the fact that
the map Gm.U

V
I 0 /!Gm.U

Y
IY
/ is surjective, while an element satisfying relation (4)

with every fj of the form fj D �j�ij or fj D �j for �j 2K� (with ij ¤ 1) lifts to an
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element in L0. As in [4, proof of Theorem 3.5], we see that the kernel of the group
homomorphism Gm.U

V
I 0 /!Gm.U

Y
IY
/ is generated by elements of the form

(1) ��i=�j with i and j such that Y1\Yi D Y1\Yj and �D .�j /jY1
=.�i /jY1

;

(2) ��i , where i is such that Y1\Yi D∅ and �D 1=.�i /jY1
.

Remark 4.2 yields �
� ��i

�j

�
D�h��1j iR.�j ;�� ��i /� L

0;

while Œ��i �D�R.�1; ���i /�L0 showing that ker.Gm.U
V
I 0 /!Gm.U

Y
IY
//�L0CJ 0UV

I 0
.

We deduce that ker.Q�/D L0.

We now conclude. If Q�.x1/ D 0, then x1 2 L0 and we may suppose that x1 D
R.f0; : : : ; ft / for f0; : : : ; ft such that

Pt
iD0 fi jUY

IY
D 0. It follows that

Pt
iD0 fi D

���1 for�2K. If�D0, there is nothing to do. Otherwise, useR.��1;f0; : : : ;ft /D0
and Remark 4.2 to get

.�1/z̨.x1/D .��1/z̨.x1/� h�1i.�/z̨.x1/

D .��1/z̨.x1/CR.��1; f0; : : : ; ft /� h�1i.�/z̨.x1/

D z̨.P.f0; : : : ; ft //� z̨.h�1i.�/x1/ 2 image.z̨/:

Corollary 5.2 The graded ring isomorphism of Theorem 5.1 induces an isomorphismM
n2Z

KMW
n .K/fGm.U /g=JU !

M
n2Z

H
n;n
MW.U;Z/:

Proof Notice that the ideal JU of Theorem 5.1 is homogeneous, and it follows thatL
n2ZH

n;n
MW.U;Z/ can be computed as H�;�MW.K/fGm.U /g=JU , where H�;�MW.K/ is

the diagonal of HMW.K/.

6 Combinatorial description

In this section, we fix an affine space V D ANK , a family of hyperplanes I and we
set U WD UNI . We let Q.U / be the cokernel of the group homomorphism Gm.K/!

Gm.U /, and we observe that the divisor map

Gm.U /
div
�!

M
Yi2I

Z �Yi

in ANK induces an isomorphism Q.U / Š
L
Yi2I

Z � Yi . We consider the exterior
algebra ƒZQ.U / and write ƒZŒ��=2�Q.U / WD ZŒ��=2�˝Z ƒZQ.U /. The abelian
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group Q.U / being free, the ZŒ��=2�–module ƒZŒ��=2�Q.U / is also free, with usual
basis. To provide a combinatorial description of HMW.U /, we will have to slightly
modify the definition of the divisor map above, in order to incorporate the action of �.
We then define a map

Gm.U /
ediv
�!ƒZŒ��=2�Q.U /

as follows:

(1) If f D �� or f D �, where � 2Gm.K/ and � is a linear polynomial as above,
then fdiv.f /D div.f /.

(2) If f; g 2Gm.U /, then fdiv.fg/Dfdiv.f /Cfdiv.g/C � �fdiv.f /^fdiv.g/.

Lemma 6.1 The map fdiv is well defined.

Proof We first notice that fdiv.fg/Dfdiv.gf /, sincefdiv.fg/�fdiv.gf /D ��fdiv.f /^fdiv.g/���fdiv.g/^fdiv.f /D 2��fdiv.f /^fdiv.g/D 0:

Let f1; f2; g1; g2 2 Gm.U / be such that f1g1 D f2g2. Let Y 2 I be such that
fi D Y

ni �f 0i with divY .f 0i /D 0 and gi D Y mi �g0i with divY .g0i /D 0 for i D 1; 2 and
mi ; ni 2 Z. We getfdiv.f1g1/D .m1Cn1/ �Y Cfdiv.f 01g

0
1/C .m1Cn1/�.Y ^

fdiv.f 01g
0
1//;fdiv.f2g2/D .m2Cn2/ �Y Cfdiv.f 02g

0
2/C .m2Cn2/�.Y ^

fdiv.f 02g
0
2//:

As ƒZŒ��=2�Q.U / is free with usual basis, we deduce that fdiv.f 02g
0
2/ D

fdiv.f 01g
0
1/,

which allows us to conclude by induction on the number of nontrivial factors in the
decomposition of f1g1.

Now let LU �ƒZŒ��=2�Q.U / be the ideal generated by the elements

(1) Y1 ^ � � � ^Ys for Yi 2 I such that Y1\ � � � \Ys D∅;

(2)
Ps
jD1.�1/

kY1 ^ � � � ^ yYj ^ � � � ^Ys for Yi 2 I such that Y1\ � � � \Ys ¤∅ and
codim.Y1\ � � � \Ys/ < s.

As a consequence of Lemma 6.1, the map fdiv induces a morphism of ZŒ��=2�–algebras

 W .ZŒ��=2�/fGm.U /g !ƒZŒ��=2�Q.U /=LU :

It is now time to introduce the ring

A0.U / WDK
MW
� .K/fGm.U /g=

�
JU CK

�
�KMW
� .K/fGm.U /g

�
:

As � D �1 � Œ�1�� � �1 in A0.U /, it follows that A0.U / is an exterior algebra.
Moreover, the coefficient ringKMW

� .K/ can be reduced toKMW
� .K/=.K��KMW

� .K//Š

ZŒ��=2�.
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Proposition 6.2 The morphism of ZŒ��=2�–algebras

 W ZŒ��=2�fGm.U /g !ƒZŒ��=2�Q.U /=LU

induces an isomorphism

‰ W A0.U /!ƒZŒ��=2�Q.U /=LU :

Proof We first prove that ‰ is well defined, which amounts to showing that the image
of JU is contained in LU . For f 2K�, we have Œf � 2K� �KMW

� .K/fGm.U /g andfdiv.f /D 0, showing that the first relation is satisfied. The second relation is satisfied by
definition of fdiv, while relation (30) is satisfied as ƒZŒ��=2�Q.U /=LU is an exterior al-
gebra. As in the proof of Theorem 5.1, we are then left with elements of J 0U , ie elements
of the form R.f0; : : : ; ft / for

Pt
iD0 fi D 0, where fj D �j�j or fj D �j . Modulo

K� �KMW
� .K/fGm.U /g, we have R.f0; : : : ; ft / �

Pt
iD0.�1/

tCi Œf0� � � �bŒfi � � � � Œft �
and we just need to prove that

˛ WD .�1/t .R.f0; : : : ; ft //D

tX
iD0

.�1/ifdiv.f0/^ � � � ^
2fdiv.fi /^ � � � ^fdiv.ft /

is an element of LU . Note that, if there are more than two constant functions among
the fj , ˛ would be trivial. Suppose that f0D�0 is the only constant, and let fj D�j�j
with kernel Yj 2 I, so that ˛ D Y1 ^ � � � ^ Yt . Since

Pt
jD1 �j�j D��0 ¤ 0, we can

easily get that Y1\� � �\Yt D∅ and ˛D Y1^� � �^Yt 2LU . In the case where none of
the fj is constant, ˛ D

Pt
iD0.�1/

iY0 ^ � � � ^ yYi ^ � � � ^Yt . And, for every i , we havePt
jD0;j¤i �j�j D��i�i , which means Yi � Y0\ � � � \ yYi \ � � � \Yt D Y0\ � � � \Yt .

If Y0\ � � � \Yt D∅, so is Y0\ � � � \ yYi \ � � � \Yt , thus Y0 ^ � � � ^ yYi ^ � � � ^Yt 2 LU ;
otherwise, codim.Y0\ � � � \Yt /D codim.Y0\ � � � \ yYi \ � � � \Yt /� t < t C 1, which
just fits the condition (2) of LU . This proves that ‰ is well defined.

To prove that ‰ is an isomorphism, we construct the inverse map by

ˆ WƒZŒ��=2�Q.U /=LU ! A0.U /; Yi 7! .�i /

and prove that it is well defined. As above, we just need to discuss elements of LU .
If Y1 \ � � � \ Ys D ∅, then we can find �i 2 K� such that

P
i �i�i D 1, and thus

.�1/ � � � .�s/� .�1�1/ � � � .�s�s/D 0 in A0.U /. In the case codim.Y1\ � � � \Ys/ < s,
we have

P
i �i�i D 0 for some �i 2 K�. Then

Ps
iD1.�1/

i .�1/ � � �b.�i / � � � .�s/ �
.�1/s�1R.�1�1; : : : ; �s�s/ D 0 in A0.U /. This shows that the inverse map is well
defined.
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The following corollary shows that the rank of the free HMW.K/–module HMW.U / is
exactly the same as the rank of the freeHM .K/–moduleHM .U / [4, Proposition 3.11]:

Corollary 6.3 The rank of the free HMW.K/–module HMW.U / is equal to the rank
of the free module ƒZQ.U /=LU .

Proof It is clear that rkZŒ��=2�.ƒZŒ��=2�Q.U /=LU /D rkZ.ƒZQ.U /=LU /. As all
generators in HMW.U / are from H

p;p
MW .U;Z/, we have

rkHMW.K/.HMW.U //D rkKMW
� .K/

�M
n2Z

H
n;n
MW.U;Z/

�
D rkZŒ��=2�.A0.U //:

7 I–cohomology and singular cohomology

In ordinary motivic cohomology theory, we have a realization functor to the topological
cohomology of complex points. This yields the following comparative result:

Proposition 7.1 [4, Proposition 3.9] In the case K DC, there is an isomorphism of
ringsM

n

H
n;n
M .U;Q/˝HM .K/K

M
� .K/=K

�
�KM� .K/

Š�!

M
n

Hn
sing.U.C/;Q/:

In this section, we provide an analogue for the singular cohomology of the real points
of the complement of a hyperplane arrangement defined over R. We start with some
results about the I–cohomology [9].

As recalled in Section 2, we have natural homomorphisms from Milnor–Witt motivic
cohomology to I�–cohomology

H
p;q
MW.X;Z/!Hp�q.X;K MW

q /!Hp�q.X; Iq/

which induce a ring homomorphism HMW.X/ !
L
r;qH

r.X; Iq/ (where Iq D

K MW
q D W for q < 0). In case X D Spec.K/, we obtain in particular a ring ho-

momorphism HMW.K/!
L
r;qH

r.K; Iq/D
L
q2Z I

q.K/.

Proposition 7.2 The morphism of
L
q2Z I

q.K/–algebras

j WHMW.U /˝HMW.K/

�M
q2Z

I q.K/

�
!

M
r;q

H r.U; Iq/

is an isomorphism. Moreover , H r.U; Iq/D 0 for r ¤ 0.
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Proof We write HMW.U /˝ I for the graded ring HMW.U /˝HMW.K/

�L
q I

q.K/
�
.

We follow the same induction process as in the proof of the main theorem. When
jI j D 0, we only need to consider Spec.K/ by homotopy invariance, and the result is
trivial.

Assume now that Y 2 I and that we have isomorphisms for U VI 0 and U YIY
. Notice that,

for I–cohomology, we still have a Gysin long exact sequence [9, remarque 9.3.5]. The
proof of the main theorem yields the commutative diagram

0

��

HMW.U
V
I 0 /˝ I

��

Š
oo

HMW.U
V
I /˝ I

��

j
oo

HMW.U
Y
IY
/˝ I

��

Š
oo

0

L
qH
�1.U YIY

; Iq�1/

��L
qH

0.U VI 0 ; I
q/

��L
qH

0.U VI ; I
q/

��L
qH

0.U YIY
; Iq�1/

��L
qH

1.U VI 0 ; I
q/

By our assumption, H�1.U YIY
; Iq�1/ and H 1.U VI 0 ; I

q/ are both 0, so the right column
is also short exact. We conclude that j is an isomorphism as well. The same argument
implies that H r.U VI ; I

q/D 0 for r ¤ 0.

The analogue of Corollary 3.2 in this setting then reads as follows:

Corollary 7.3 There is a finite set J and integers nj � 0 for any j 2 J such that

H 0.U VI ; I
q/Š

M
j2J

I q�nj .K/bj

as a free
L
q I

q.K/–module with basis elements bj 2H 0.U VI ; I
nj /.

Proof Every step is the same as in Proposition 3.1, except the splitting, which comes
from the identification with HMW.U

V
I /˝ I.

As in [11; 10], we can compute the cohomology of the real spectrum using I–
cohomology.
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Proposition 7.4 [10, Proposition 3.6] The signature map induces an isomorphism

H r
�
X;Colim

q�0
Iq
� sign1
����!H r

sing.Sper.X/;Z/;

where Sper.X/ is the real spectrum. In particular ,

Colim
q�0

I q.K/ŠH 0
sing.Sper.K/;Z/:

In our case, since U is always noetherian and Colimq�0 is filtered, we have a canonical
isomorphism

(7-1) H r
�
U;Colim

q�0
Iq
�
Š Colim

q�0
H r.U; Iq/:

Combining with Corollary 7.3, we obtain the following proposition:

Proposition 7.5 There exists an integer N > 0 such that

H 0.U VI ; I
N /˝L

q�0 I
q.K/H

0
sing.Sper.K/;Z/ 2

�N sign
�����!H 0

sing.Sper.U VI /;Z/

is an isomorphism. Moreover , H r
sing.Sper.U VI /;Z/D 0 for r ¤ 0.

Proof By (7-1), we can rewrite the right-hand side as Colimq�0H 0.U VI ; I
q/. Ap-

plying Corollary 7.3, we get

Colim
q�0

�M
j2J

I q�nj .K/bj

�
Š

M
j2J

�
Colim
q�0

I q�nj .K/bj
�
Š

M
j2J

H 0
sing.Sper.K/;Z/bj :

Let N 2N be such that N � nj for all j 2 J. Using again Corollary 7.3,

H 0.U VI ; I
N /Š

M
j2J

IN�nj .K/bj ;

which impliesM
j2J

IN�nj .K/bj ˝
L

q�0 I
q.K/H

0
sing.Sper.K/;Z/Š

M
j2J

H 0
sing.Sper.K/;Z/bj

since, for every j, we have N � nj � 0. That proves the first part, while the second
part is trivial.

Taking K D R, we have H 0
sing.R;Z/ D Z and we recover the classical result for

complements of hyperplane arrangements

H 0.U VI ; I
N /

2�N sign
�����!
Š

H 0
sing.U

V
I .R/;Z/Š

M
Ri2 connected components

ZfRig:
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