$\frac{A}{2} g$

ALgebraic é Geometric Topology

Volume 23 (2023)

Asymptotic dimension of graphs of groups and one-relator groups

Panagiotis Tselekidis

Asymptotic dimension of graphs of groups and one-relator groups

Panagiotis Tselekidis

We prove a new inequality for the asymptotic dimension of HNN-extensions. We deduce that the asymptotic dimension of every finitely generated one-relator group is at most two, confirming a conjecture of A Dranishnikov. As corollaries we calculate the exact asymptotic dimension of right-angled Artin groups and we give a new upper bound for the asymptotic dimension of fundamental groups of graphs of groups.

20E08, 20F65

1. Introduction 3587
2. Asymptotic dimension of HNN -extensions 3591
3. Asymptotic dimension of one-relator groups 3604
4. Graphs of groups 3610
References 3612

1 Introduction

In 1993, M Gromov introduced the notion of the asymptotic dimension of metric spaces (see [12]) as an invariant of finitely generated groups. It can be shown that if two metric spaces are quasi-isometric then they have the same asymptotic dimension. The asymptotic dimension asdim X of a metric space X is defined by: asdim $X \leq n$ if and only if, for every $R>0$, there exists a uniformly bounded covering \mathcal{U} of X such that the R-multiplicity of \mathcal{U} is smaller than or equal to $n+1$ (ie every R-ball in X intersects at most $n+1$ elements of \mathcal{U}). There are many equivalent ways to define the asymptotic dimension of a metric space. It turns out that the asymptotic dimension of an infinite tree is 1 and the asymptotic dimension of \mathbb{E}^{n} is n.

[^0]In 1998, the asymptotic dimension achieved particular prominence in geometric group theory after the publication of a paper of Guoliang Yu (see [24]) which proved the Novikov higher signature conjecture for manifolds whose fundamental group has finite asymptotic dimension. Unfortunately, not all finitely presented groups have finite asymptotic dimension. For example, Thompson's group F has infinite asymptotic dimension since it contains \mathbb{Z}^{n} for all n. However, we know for many classes of groups that they have finite asymptotic dimension. For instance, hyperbolic, relative hyperbolic, mapping class groups of surfaces and one-relator groups have finite asymptotic dimension (see G Bell and A Dranishnikov [3], Bestvina, Bromberg and Fujiwara [6], Osin [18] and D Matsnev [17]). The exact computation of the asymptotic dimension of groups or finding the optimal upper bound is more delicate. Another remarkable result is that of Buyalo and Lebedeva (see [7]), where in 2006 they established the equality, for hyperbolic groups,

$$
\operatorname{asdim} G=\operatorname{dim} \partial_{\infty} G+1
$$

The inequalities of Bell and Dranishnikov (see [2; 9]) play a key role in finding an upper bound for the asymptotic dimension of groups. However, in some cases the upper bounds that the inequalities of Bell and Dranishnikov provide us are quite far from being optimal. An example is the asymptotic dimension of one-relator groups.

We prove some new inequalities that can be a useful tool for the computation of the asymptotic dimension of groups. As an application we give the optimal upper bound for the asymptotic dimension of one-relator groups which was conjectured by Dranishnikov. As a further corollary we calculate the exact asymptotic dimension of any right-angled Artin group (Theorem 1.2) — this has been proven earlier by N Wright [23] by different methods.

The first inequality and one of the main results we prove is the following:
Theorem 1.1 Let $G *_{N}$ be an HNN-extension of the finitely generated group G over N. Then

$$
\operatorname{asdim} G *_{N} \leq \max \{\operatorname{asdim} G, \operatorname{asdim} N+1\}
$$

Next, we calculate the asymptotic dimension of the right-angled Artin groups. To be more precise, let Γ be a finite simplicial graph. We denote by $A(\Gamma)$ the right-angled Artin group (RAAG) associated to the graph Γ. We set
$\operatorname{Sim}(\Gamma)=\max \left\{n: \Gamma\right.$ contains the $1-$ skeleton of the standard $\left.(n-1)-\operatorname{simplex} \Delta^{n-1}\right\}$.
Then by applying Theorem 1.1 we obtain the following:

Theorem 1.2 Let Γ be a finite simplicial graph. Then

$$
\operatorname{asdim} A(\Gamma)=\operatorname{Sim}(\Gamma) .
$$

In 2005, Bell and Dranishnikov (see [4]) gave a proof that the asymptotic dimension of one-relator groups is finite and also gave an upper bound, namely the length of the relator plus one. Let $G=\langle S \mid r\rangle$ be a finitely generated one-relator group such that $|r|=n$. Then

$$
\operatorname{asdim} G \leq n+1 .
$$

To prove this upper bound, Bell and Dranishnikov used an inequality for the asymptotic dimension of HNN-extensions; see [2]. In particular, let G be a finitely generated group and let N be a subgroup of G. Then

$$
\operatorname{asdim} G *_{N} \leq \operatorname{asdim} G+1 .
$$

In 2006, Matsnev (see [17]) proved a sharper upper bound for the asymptotic dimension of one-relator groups: if $G=\langle S \mid r\rangle$ is a one-relator group, then

$$
\operatorname{asdim} G \leq\left\lceil\frac{1}{2} \text { length }(r)\right\rceil .
$$

Here by $\lceil a\rceil(a \in \mathbb{R})$ we denote the minimal integer greater than or equal to a.
Applying Theorem 1.1, we answer a conjecture of Dranishnikov (see [8]) giving the optimal upper bound for the asymptotic dimension of one-relator groups.

Theorem 1.3 Let G be a finitely generated one-relator group. Then

$$
\operatorname{asdim} G \leq 2 .
$$

We note that R C Lyndon (see [14]) has shown that the cohomological dimension of a torsion-free one-relator group is smaller than or equal to 2 . Our result can be seen as a large-scale analog of this. We note that the large-scale geometry of one-relator groups can be quite complicated; for example, one-relator groups can have very large isoperimetric functions; see eg Platonov [19].

It is worth noting that L Sledd showed that the Assouad-Nagata dimension of any finitely generated $C^{\prime}\left(\frac{1}{6}\right)$ group is at most two; see [20].
Theorem 1.3 combined with the results of M Kapovich and B Kleiner (see [13]) leads us to a description of the boundary of hyperbolic one-relator groups.
We determine also the one-relator groups that have asymptotic dimension exactly two. We prove that every infinite finitely generated one-relator group G that is not a free group or a free product of a free group and a finite cyclic group has asymptotic dimension equal to 2 (Proposition 3.5). We obtain the following:

Corollary Let G be finitely generated freely indecomposable one-relator group which is not cyclic. Then

$$
\operatorname{asdim} G=2
$$

Moreover, we describe the finitely generated one-relator groups:
Corollary Let G be a finitely generated one-relator group. Then one of the following is true:
(i) G is finite cyclic, and asdim $G=0$.
(ii) G is a nontrivial free group or a free product of a nontrivial free group and a finite cyclic group, and asdim $G=1$.
(iii) G is an infinite freely indecomposable not cyclic group or a free product of a nontrivial free group and an infinite freely indecomposable not cyclic group, and $\operatorname{asdim} G=2$.

Using Theorem 1.1 and an inequality of Dranishnikov about the asymptotic dimension of amalgamated products (see [9]) we obtain a more general theorem for the asymptotic dimension of fundamental groups of graphs of groups:

Theorem 1.4 Let (\mathbb{G}, Y) be a finite graph of groups with vertex groups $\left\{G_{v}: v \in Y^{0}\right\}$ and edge groups $\left\{G_{e}: e \in Y_{+}^{1}\right\}$. Then

$$
\operatorname{asdim} \pi_{1}(\mathbb{G}, Y, \mathbb{T}) \leq \max _{v \in Y^{0}, e \in Y_{+}^{1}}\left\{\operatorname{asdim} G_{v}, \operatorname{asdim} G_{e}+1\right\}
$$

Using the previous theorem, we can obtain, for example, that the asymptotic dimension of a graph of surface groups (with genus ≥ 2) with free edge groups is two. Theorem 1.4 says that the asymptotic dimension doesn't jump as long as there exists a vertex group with asymptotic dimension greater than the asymptotic dimension of any edge group.

The paper is organized as follows. In Section 2 we prove the inequality for the asymptotic dimension of HNN-extensions. In Section 2.1 we compute the asymptotic dimension of RAAGs. Next, in Section 3 we give the optimal upper bound for the asymptotic dimension of one-relator groups. In Section 3.1 we describe the one-relator groups with asymptotic dimension 0,1 and 2 . In Section 4 a new upper bound for the asymptotic dimension of graphs of groups is obtained.

Acknowledgments I would like to thank Panos Papasoglu for his valuable advice during the development of this research work. I owe my deepest gratitude to anonymous
referee(s) for their time spent reviewing this article. I would also like to offer my special thanks to Mark Hagen and Richard Wade for their very useful comments.

2 Asymptotic dimension of HNN-extensions

Let X be a metric space and \mathcal{U} a covering of X. We say that the covering \mathcal{U} is $d-$ bounded or d-uniformly bounded if $\sup _{U \in \mathcal{U}}\{\operatorname{diam} U\} \leq d$. The Lebesgue number $L(\mathcal{U})$ of the covering \mathcal{U} is
$L(\mathcal{U})=\sup \{\lambda:$ if $A \subseteq X$ with $\operatorname{diam} A \leq \lambda$ then there exists $U \in \mathcal{U}$ such that $A \subseteq U\}$. We recall that the order $\operatorname{ord}(\mathcal{U})$ of the cover \mathcal{U} is the smallest number n (if it exists) such that each point of the space belongs to at most n sets in the cover. For a metric space X, we say that $(r, d)-\operatorname{dim} X \leq n$ if, for $r>0$, there exists a d-bounded cover \mathcal{U} of X with $\operatorname{ord}(\mathcal{U}) \leq n+1$ and with Lebesgue number $L(\mathcal{U})>r$. We refer to such a cover as an (r, d)-cover of X. The following proposition is due to Bell and Dranishnikov (see [2]):

Proposition 2.1 For a metric space X, asdim $X \leq n$ if and only if there exists a function $d(r)$ such that $(r, d(r))-\operatorname{dim} X \leq n$ for all $r>0$.

We recall that the family X_{i} of subsets of X satisfies the inequality asdim $X_{i} \leq n$ uniformly if, for every $R>0$, there exists a D-bounded covering \mathcal{U}_{i} of X_{i} with $R-\operatorname{mult}\left(\mathcal{U}_{i}\right) \leq n+1$ for every i. For the proofs of Theorems 2.2 and 2.3 see [1].

Theorem 2.2 (infinite union theorem) Let $X=\bigcup_{a} X_{a}$ be a metric space where the family $\left\{X_{a}\right\}$ satisfies the inequality asdim $X_{a} \leq n$ uniformly. Suppose further that, for every $r>0$, there is a subset $Y_{r} \subseteq X$ with asdim $Y_{r} \leq n$, so that $d\left(X_{a} \backslash Y_{r}, X_{b} \backslash Y_{r}\right) \geq r$ whenever $X_{a} \neq X_{b}$. Then asdim $X \leq n$.

Theorem 2.3 (finite union theorem) For every metric space presented as a finite union $X=\bigcup_{i} X_{i}$,

$$
\operatorname{asdim} X=\max \left\{\operatorname{asdim} X_{i}\right\} .
$$

A partition of a metric space X is a presentation as a union $X=\bigcup_{i} W_{i}$ such that $\operatorname{Int}\left(W_{i}\right) \cap \operatorname{Int}\left(W_{j}\right)=\varnothing$ whenever $i \neq j$. We denote by ∂W_{i} the topological boundary of W_{i} and by $\operatorname{Int}\left(W_{i}\right)$ the topological interior. We have that $\partial W \cap \operatorname{Int}(W)=\varnothing$. The boundary can be written as

$$
\partial W_{i}=\left\{x \in X: d\left(x, W_{i}\right)=d\left(x, X \backslash W_{i}\right)=0\right\} .
$$

For the proof of the following theorem see [9]:

Theorem 2.4 (partition theorem) Let X be a geodesic metric space. Suppose that for every $R>0$ there is $d>0$ and a partition $X=\bigcup_{i} W_{i}$ with asdim $W_{i} \leq n$ uniformly in i and such that $(R, d)-\operatorname{dim}\left(\bigcup_{i} \partial W_{i}\right) \leq n-1$, where ∂W_{i} is taken with the metric restricted from X. Then asdim $X \leq n$.

Let G be a finitely generated group, N a subgroup of G and $\phi: N \rightarrow G$ a monomorphism. We set $\bar{G}=G *_{N}$, the HNN-extension of G over the subgroup N with respect to the monomorphism ϕ. We fix a finite generating set S for the group G. Then the set $\bar{S}=S \cup\left\{t, t^{-1}\right\}$ is a finite generating set for the group \bar{G} and we set $C(\bar{G})=\operatorname{Cay}(\bar{G}, \bar{S})$, its Cayley graph.

Normal forms for HNN-extensions There are two types of normal forms for HNNextensions: the right normal form and the left normal form. We use both.

Right normal form Let S_{N} and $S_{\phi(N)}$ be sets of representatives of right cosets of G / N and of $G / \phi(N)$, respectively. Then every $w \in \bar{G}$ has a unique normal form $w=g t^{\epsilon_{1}} s_{1} t^{\epsilon_{2}} s_{2} \cdots t^{\epsilon_{k}} s_{k}$ where $g \in G, \epsilon_{i} \in\{-1,1\}$, if $\epsilon_{i}=1$ then $s_{i} \in S_{N}$, if $\epsilon_{i}=-1$ then $s_{i} \in S_{\phi(N)}$, and if $s_{i}=1$ then $\epsilon_{i} \epsilon_{i+1}>0$. We say that the length of the right normal form of w is k.

Left normal form Let ${ }_{N} S$ and ${ }_{\phi(N)} S$ be sets of representatives of left cosets of G / N and of $G / \phi(N)$, respectively. Then every $w \in \bar{G}$ has a unique normal form $w=s_{1} t^{\epsilon_{1}} s_{2} t^{\epsilon_{2}} \cdots s_{k} t^{\epsilon_{k}} g$ where $g \in G, \epsilon_{i} \in\{-1,1\}$, if $\epsilon_{i}=1$ then $s_{i} \in_{\phi(N)} S$, if $\epsilon_{i}=-1$ then $s_{i} \in_{N} S$, and if $s_{i}=1$ then $\epsilon_{i-1} \epsilon_{i}>0$. We say that the length of the left normal form of w is k.

We observe that the lengths of the right and the left normal form of an element coincide, and denote this length by $l(w)$.

Convention When we write a normal form we mean the right normal form, unless otherwise stated.

The group $\bar{G}=G *_{N}$ acts on its Bass-Serre tree T. There is a natural projection $\pi: G *_{N} \rightarrow T$ defined by the action: $\pi(g)=g G$.

Lemma 2.5 The map $\pi: \bar{G} \rightarrow T$ extends to a simplicial map from the Cayley graph, $\pi: C(\bar{G}, S) \rightarrow T$, which is $1-L i p s c h i t z$.

Proof Let $g \in \bar{G}$ and $s \in \bar{S}$. Then the vertex g is mapped to the vertex $\pi(g)=$ $\pi(g s)=g G$. If $s \in S$, then the edge $[g, g s]$ is mapped to the vertex $\pi(g)=\pi(g s)=g G$.

Figure 1: An illustration of the projection $\pi: C(\bar{G}, S) \rightarrow T$.
If $s \in\left\{t, t^{-1}\right\}$, without loss of generality we may assume that $s=t$, and so the edge $[g, g s]$ is mapped to the edge $[\pi(g), \pi(g s)]=[g G, g t G]$ of T.

We observe that the simplicial map $\pi: C(\bar{G}) \rightarrow T$ is 1 -Lipschitz.
The base vertex G separates T into two parts, $T_{-} \backslash G$ and $T_{+} \backslash G$, where $\pi^{-1}\left(T_{+}\right)=\left\{w \in \bar{G}:\right.$ if $w=g t^{\epsilon_{1}} s_{1} t^{\epsilon_{2}} s_{2} \cdots t^{\epsilon_{k}} s_{k}$ is the normal form of w then $\left.\epsilon_{1}=1\right\}$ and similarly
$\pi^{-1}\left(T_{-}\right)$
$=\left\{w \in \bar{G}:\right.$ if $w=g t^{\epsilon_{1}} s_{1} t^{\epsilon_{2}} s_{2} \cdots t^{\epsilon_{k}} s_{k}$ is the normal form of w then $\left.\epsilon_{1}=-1\right\}$.
We note that both $T_{+} \backslash G$ and $T_{-} \backslash G$ are unions of connected components of T and $\pi^{-1}\left(T_{+}\right)$and $\pi^{-1}\left(T_{-}\right)$are unions of connected components of $C(\bar{G})$. See Figure 2 for an illustration of T_{-}and T_{+}.

Figure 2: An illustration of T_{+}and T_{-}.

Figure 3: Left: an illustration of T^{u}. Right: an illustration of B_{r}^{u}, where $r=2$.

We consider the Bass-Serre tree T as a metric space with the simplicial metric \bar{d}. If Y is a graph, we denote by Y^{0} or $V(Y)$ the vertices of Y. For $u \in T^{0}$ we denote by $|u|$ the distance to the vertex with label G. We note that the distance of the vertex $w G$ from G in the Bass-Serre tree T equals the length $l(w)$ of the normal form of $w,|w G|=l(w)$.

We recall that a full subgraph of a graph Γ is a subgraph formed from a subset of vertices V and from all of the edges that have both endpoints in the subset V. If A is a subgraph of Γ we define the edge closure $E(A)$ of A to be the full subgraph of Γ formed from $V(A)$. Obviously, $V(E(A))=V(A)$.

We fix some notation on the Bass-Serre tree T and on the Cayley graph.

In the tree \boldsymbol{T} We denote by B_{r}^{T} the r-ball in T centered at $G(r \in \mathbb{N})$. There is a partial order on vertices of T defined by setting $v \leq u$ if and only if v lies in the geodesic segment $\left[G, u\right.$] joining the base vertex G with u. For $u \in T^{0}$ of nonzero level (ie $u \neq G$) and $r>0$, we set

$$
T^{u}=E\left(\left\{v \in T^{0}: u \leq v\right\}\right), \quad B_{r}^{u}=E\left(\left\{v \in T^{u}:|v| \leq|u|+r\right\}\right)
$$

For every vertex $u \in T^{0}$ represented by a coset $g_{u} G$, we have $B_{r}^{u}=g_{u} B_{r}^{T} \cap T^{u}$. We also observe that $B_{r}^{u}=E\left(\left\{v \in T^{u}: \bar{d}(v, u) \leq r\right\}\right)$. See Figure 3 for an illustration of the sets T^{u} and B_{r}^{u}

In the Cayley graph For $R \in \mathbb{N}$, let

$$
M_{R}=\{g \in \bar{G}: \operatorname{dist}(g, N \cup \phi(N))=R\}
$$

Letting $u=g_{u} G$, we set $M_{R}^{u}=g_{u} M_{R} \cap \pi^{-1}\left(T^{u}\right)$. We observe that $\pi\left(M_{R}^{u}\right) \subseteq B_{R}^{u}$ since π is 1 -Lipschitz.

Figure 4: Left: an illustration of E_{R}. Right: an illustration of M_{R}.

Letting $u=g_{u} G$, we set $E_{R}=E\left(N_{R}(N \cup \phi(N))\right)$ and

$$
E_{R}^{u}=g_{u} E_{R} \cap \pi^{-1}\left(T^{u}\right)
$$

Obviously, $M_{R}^{u} \subseteq E_{R}^{u} \subseteq \pi^{-1}\left(B_{R}^{u}\right)$.

Convention We associate every $u \in T^{0}$ to an element $g_{u} \in \bar{G}$ such that
(i) $u=g_{u} G$, and
(ii) if the left normal form of g_{u} is $s_{1} t^{\epsilon_{1}} s_{2} t^{\epsilon_{2}} \cdots s_{k} t^{\epsilon_{k}} g$ then $g=1_{\bar{G}}$.

We see that in this way we may define a bijective map from T^{0} to the set \mathcal{G}_{T} which consists of the elements of \bar{G} such that conditions (i) and (ii) hold.

Proposition 2.6 If $4<4 R \leq r$ and the distinct vertices $u, u^{\prime} \in T^{0}$, satisfy $|u|,\left|u^{\prime}\right| \in$ $\{n r: n \in \mathbb{N}\}$, then

$$
d\left(M_{R}^{u}, M_{R}^{u^{\prime}}\right) \geq 2 R
$$

Proof We distinguish two cases. See the left and right parts of Figure 5 for cases 1 and 2, respectively.

Case $1\left(|u| \neq\left|u^{\prime}\right|\right)$ Recall that every path γ in $C(\bar{G})$ projects to a path $\pi(\gamma)$ in the tree T. Then, since

$$
M_{R}^{u}=g_{u} M_{R} \cap \pi^{-1}\left(T^{u}\right) \subseteq \pi^{-1}\left(B_{R}^{u}\right), \quad M_{R}^{u^{\prime}}=g_{u^{\prime}} M_{R} \cap \pi^{-1}\left(T^{u^{\prime}}\right) \subseteq \pi^{-1}\left(B_{R}^{u^{\prime}}\right)
$$

and π is 1 -Lipschitz,

$$
d\left(M_{R}^{u}, M_{R}^{u^{\prime}}\right) \geq \bar{d}\left(B_{R}^{u}, B_{R}^{u^{\prime}}\right) \geq r-R \geq 3 R
$$

Figure 5: Left: an illustration of Case 1 of Proposition 2.6, where $u^{\prime}=G$. Right: an illustration of Case 2 of Proposition 2.6.

Case $2\left(|u|=\left|u^{\prime}\right|\right.$ with $\left.u \neq u^{\prime}\right)$ Denote by ζ_{0} the last vertex of the common geodesic segment $\left[G, \zeta_{0}\right]$ of the geodesics $[G, u]$ and $\left[G, u^{\prime}\right]$. Observe that $\bar{d}\left(u, \zeta_{0}\right), \bar{d}\left(u^{\prime}, \zeta_{0}\right) \geq 1$. Let $x \in M_{R}^{u}, y \in M_{R}^{u^{\prime}}$ and let γ be a geodesic from x to y. Then the path $\pi(\gamma)$ passes

Figure 6: Left: an illustration of Q_{m}, for $m=2$ (Proposition 2.8). We note that $Q_{m}=V\left(\pi^{-1}\left(B_{r}\right)\right)$. Right: an illustration of $\pi^{-1}\left(B_{r}\right)$, where $r=2$.
through the vertices u, u^{\prime} and ζ_{0}, so the geodesic γ intersects both $g_{u}(N \cup \phi(N))$ and $g_{u^{\prime}}(N \cup \phi(N))$. Hence

$$
\begin{array}{r}
d(x, y) \geq \operatorname{dist}\left(x, g_{u}(N \cup \phi(N))\right)+\operatorname{dist}\left(y, g_{u^{\prime}}(N \cup \phi(N))\right)+\operatorname{length}\left(\left[\zeta_{0}, u^{\prime}\right]\right) \\
+\operatorname{length}\left(\left[\zeta_{0}, u\right]\right)
\end{array}
$$

$$
\geq R+R+2=2(R+1) .
$$

For $w \in G *_{N}$, we denote by $\|w\|$ the distance from w to $1_{\bar{G}}$ in the Cayley graph $\operatorname{Cay}(\bar{G}, \bar{S})$.

Lemma 2.7 Let $w=g t^{\epsilon_{1}} s_{1} t^{\epsilon_{2}} s_{2} \cdots t^{\epsilon_{k}} s_{k}$ be the normal form of w. Then

$$
\|w\| \geq d\left(s_{k}, N\right) \quad \text { if } \epsilon_{k}=1 \quad \text { and } \quad\|w\| \geq d\left(s_{k}, \phi(N)\right) \quad \text { if } \epsilon_{k}=-1
$$

Proof Without loss of generality we assume that $\epsilon_{k}=1$. Let

$$
w=\left(\prod_{i_{0}=1}^{m_{0}} s_{i_{0}}\right) t^{\epsilon_{1}}\left(\prod_{i_{1}=1}^{m_{1}} s_{i_{1}}\right) t^{\epsilon_{2}} \cdots t\left(\prod_{i_{k}=1}^{m_{k}} s_{i_{k}}\right)
$$

be a shortest presentation of w in the alphabet \bar{S} (we note that $s_{i_{j}} \notin\left\{t, t^{-1}\right\}$). We set $\prod_{i_{j}=1}^{m_{j}} s_{i_{j}}=g_{j}$ for every $j \in\{1, \ldots, k\}$. Then $w=g t^{\epsilon_{1}} g_{1} t^{\epsilon_{2}} s_{2} \cdots t g_{k}=w_{0} t g_{k}$. The first step when we rewrite w in normal form starting from the previous presentation is to write $g_{k}=n s_{k}$ (where $n \in N$). Then

$$
\|w\| \geq\left\|g_{k}\right\|=\left\|n s_{k}\right\|=d\left(n s_{k}, 1\right)=d\left(s_{k}, n^{-1}\right) \geq d\left(s_{k}, N\right) .
$$

We note that there exists an amalgamated product analog of the following proposition, proved by Dranishnikov in [9]:

Proposition 2.8 Suppose that asdim $G \leq n$. Let

$$
Q_{m}=\{w \in \bar{G}: l(w) \leq m\} .
$$

Then asdim $Q_{m} \leq n$, for every $m \in \mathbb{N}$.
Proof We set $P_{\lambda}=\{w \in \bar{G}: l(w)=\lambda\}$. It is enough to show that asdim $P_{\lambda} \leq n$, for every $\lambda \in \mathbb{N}$. Indeed, since

$$
Q_{m}=\bigcup_{i=0}^{m} P_{i},
$$

by the finite union theorem we obtain that asdim $Q_{m} \leq n$.
Claim For $\lambda \in \mathbb{N}$ we have asdim $P_{\lambda} \leq n$.

Proof We use induction on λ. We have $P_{0}=G$, so asdim $P_{0} \leq n$. We observe that $P_{\lambda} \subseteq P_{\lambda-1} t G \cup P_{\lambda-1} t^{-1} G$. Using the finite union theorem it suffices to show that $\operatorname{asdim}\left(P_{\lambda} \cap P_{\lambda-1} t G\right) \leq n$ and $\operatorname{asdim}\left(P_{\lambda} \cap P_{\lambda-1} t^{-1} G\right) \leq n$; we show the first.

To show that asdim $P_{\lambda} \cap P_{\lambda-1} t G \leq n$, we use the infinite union theorem. For $r>0$ we set $Y_{r}=P_{\lambda-1} t N_{r}(N)$. We claim that

$$
Y_{r} \subseteq N_{r+1}\left(P_{\lambda-1}\right)
$$

Indeed, if $z \in Y_{r}$ then $z=z_{0} t z_{1}$, where $z_{0} \in P_{\lambda-1}$ and $z_{1} \in N_{r}(N)$. Since $z_{1} \in N_{r}(N)$, there exists $n \in N$ with $d\left(n, z_{1}\right) \leq$ r. So $z=z_{0} t n n^{-1} z_{1}=z_{0} \phi(n) t n^{-1} z_{1}$, and

$$
d\left(z, P_{\lambda-1}\right) \leq d\left(z, z_{0} \phi(n)\right)=\left\|t n^{-1} z_{1}\right\| \leq\|t\|+\left\|t^{-1} z_{1}\right\| \leq 1+r
$$

Hence Y_{r} and $P_{\lambda-1}$ are quasi-isomorphic, so asdim $Y_{r} \leq n$.

We consider the family $x t G$ where $x \in P_{\lambda-1}$. For $x t G \neq y t G$, we have

$$
d\left(x t G \backslash Y_{r}, y t G \backslash Y_{r}\right)=d(x t g, y t h)=\left\|g^{-1} t^{-1} x^{-1} y t h\right\|
$$

where $g, h \in G \backslash N_{r}(N)$. The first step when we rewrite $g^{-1} t^{-1} x^{-1} y t h$ in normal form is to make the substitution $h=n s_{k}$, where $n \in N$ and $s_{k} \in S_{N}$, so $g^{-1} t^{-1} x^{-1} y t h=$ $g^{-1} t^{-1} x^{-1} y \phi(n) t s_{k}$. Since $h \in G \backslash N_{r}(N)$, we have $\left\|s_{k}\right\|=\left\|n^{-1} h\right\| \geq d(h, N) \geq r$. By Lemma 2.7 we obtain that $\left\|g^{-1} t^{-1} x^{-1} y \phi(n) t s_{k}\right\| \geq\left\|s_{k}\right\| \geq r$.

Finally, by observing that $x t G$ and G are isometric, we deduce that asdim $(x t G) \leq n$ uniformly. Since all the conditions of the infinite union theorem hold,

$$
\operatorname{asdim}\left(P_{\lambda} \cap P_{\lambda-1} t G\right) \leq n
$$

for every $\lambda \in \mathbb{N}$.

We observe that $E\left(Q_{m}\right)=\pi^{-1}\left(B_{m}^{T}\right)$ and $Q_{m}=\bar{G} \cap \pi^{-1}\left(B_{m}^{T}\right)$.
For $w \in \bar{G}$, we set $T^{w}=T^{\pi(w)}$, where $\pi(w)=w G$.
We note that there was an attempt to prove the following theorem in [16], however, there is a gap in that proof. We give a few details about this gap right after the proof of Theorem 2.9.

Theorem 2.9 Let $G *_{N}$ be an HNN-extension of the finitely generated group G over N. Then

$$
\operatorname{asdim} G *_{N} \leq \max \{\operatorname{asdim} G, \operatorname{asdim} N+1\}
$$

Figure 7: An illustration of V_{r}.
Proof Let $n=\max \{\operatorname{asdim} G, \operatorname{asdim} N+1\}$. We denote by $\pi: C(\bar{G}, S) \rightarrow T$ the map of Lemma 2.5. We recall that we denote by $l(g)$ the length of the normal form of g. We use the partition theorem (Theorem 2.4). Let $R, r \in \mathbb{N}$ be such that $R>1$ and $r>4 R$. We set

$$
U_{r}=E\left[\left(\pi^{-1}\left(B_{r-1}^{T}\right) \cap E(\{g \in \bar{G}: d(g, N \cup \phi(N)) \geq R\})\right) \cup\left(\bigcup_{u \in \partial B_{r}^{T}} E_{R}^{u}\right)\right]
$$

where $E_{R}^{u}=g_{u} E\left(N_{R}(N \cup \phi(N))\right) \cap \pi^{-1}\left(T^{u}\right)$. We recall that

$$
M_{R}=\{g \in \bar{G}: d(g, N \cup \phi(N))=R\}
$$

Let A_{R} be the collection of the edges between the elements of $M_{R} \subseteq U_{r}$. We have that $A_{R} \subseteq U_{r}$. We define V_{r} to be the set obtained by removing the interior of the edges of A_{R} from U_{r}. Formally,

$$
V_{r}=U_{r} \backslash\left\{\operatorname{interior}(e): e \in A_{R}\right\} .
$$

See Figure 7 for an illustration of V_{r}. We observe that U_{r} and V_{r} are subgraphs of $C(\bar{G}), \partial U_{r}=\partial V_{r}$ and $V_{r} \cap \bar{G}=U_{r} \cap \bar{G}$. Obviously, $\bigcup_{u \in \partial B_{r}^{T}} E_{R}^{u} \subseteq V_{r}$. We also have $V_{r} \cap \bar{G}=\left(\bar{G} \cap \pi^{-1}\left(B_{r-1}^{T}\right) \cap E(\{g \in \bar{G}: d(g, N \cup \phi(N)) \geq R\})\right) \cup\left(\bar{G} \cap \bigcup_{u \in \partial B_{r}^{T}} E_{R}^{u}\right)$.
To be more precise, $V_{r} \cap \bar{G}$ consists of those $w x \in \bar{G}$ such that $d(w, N \cup \phi(N)) \geq R$ and, if $w=g_{0} t^{\epsilon_{1}} g_{1} \cdots t^{\epsilon_{k}} g_{k}$ is the normal form of w, then either $k \leq r-1$, or $g_{k}=1$ and $k=r$, while, if $x \neq 1$, then $k=r, g_{k}=1$ and $d(x, N \cup \phi(N)) \leq R$.

For every vertex $u \in T^{0}$ satisfying $|u| \in\{n r: n \in \mathbb{N}\}$, we define

$$
V_{r}^{u}=g_{u} V_{r} \cap \pi^{-1}\left(T^{u}\right)
$$

Obviously, the sets V_{r}^{u} are subgraphs of $C(\bar{G})$ and $V_{r}^{u} \nsubseteq \bar{G}$. We observe that $V_{r} \subseteq$ $\pi^{-1}\left(B_{r+R}^{T}\right)$, so $V_{r}^{u} \subseteq \pi^{-1}\left(B_{r+R}^{u}\right)$. Obviously, for every h such that $h=g_{1} t^{\epsilon_{1}} g_{2} \cdots t^{\epsilon_{r}}$ is the left normal form of $h, u \leq g_{u} h G$ and $|u|+r=\left|g_{u} h G\right|$, we have that

$$
\left(g_{u} M_{R} \cap \pi^{-1}\left(T^{g_{u} G}\right)\right) \cup\left(g_{u} h M_{R} \cap \pi^{-1}\left(T^{g_{u} h G}\right)\right) \subseteq V_{r}^{u}
$$

We also observe that

$$
g_{u} M_{R} \cap \pi^{-1}\left(T^{g_{u} G}\right) \subseteq \partial V_{r}^{u}
$$

which can also be written as

$$
M_{R}^{u}=M_{R}^{g_{u} G} \subseteq \partial V_{r}^{u}
$$

We set $V_{r}^{G}=V_{r}$.
Consider the partition

$$
\begin{equation*}
C(\bar{G})=\pi^{-1}(T)=\left(\bigcup_{|u| \in\left\{n r: n \in \mathbb{N}_{+} \cup\{0\}\right\}} V_{r}^{u}\right) \cup E\left(N_{R}(N \cup \phi(N))\right) \tag{1}
\end{equation*}
$$

We set

$$
Z=\left(\bigcup_{|u| \in\left\{n r: n \in \mathbb{N}_{+}\right\} \cup\{0\}} \partial V_{r}^{u}\right) \cup \partial E\left(N_{R}(N \cup \phi(N))\right)
$$

Observe that if $V_{r}^{u} \cap V_{r}^{v} \neq \varnothing$, then either $u \leq v$ and $|u|+r=|v|$ or $u \geq v$ and $|v|+r=|u|$. If $V_{r}^{u} \cap V_{r}^{v} \neq \varnothing$ is such that $u \leq v$ and $|u|+r=|v|$, then

$$
V_{r}^{u} \cap V_{r}^{v}=M_{R}^{v}
$$

We deduce that

$$
Z=\left(\bigcup_{|u| \in\left\{n r: n \in \mathbb{N}_{+}\right\}} M_{R}^{u}\right) \cup M_{R}
$$

We will show that there exists $d>0$ such that $(R, d)-\operatorname{dim} Z \leq n-1$. Since M_{R} is quasi-isometric to $N_{R}(N \cup \phi(N))$, which is quasi-isometric to $N \cup \phi(N)$, we have that asdim $M_{R} \leq n-1$. Then for $R>0$ there exists an (R, d)-covering \mathcal{U} of M_{R} with $\operatorname{ord}(\mathcal{U}) \leq n$. In view of Proposition 2.6, the covering

$$
\mathcal{V}=\mathcal{U} \cup \bigcup_{|u| \in\left\{n r: n \in \mathbb{N}_{+}\right\}}\left(g_{u} \mathcal{U} \cap M_{R}^{u}\right)
$$

is an (R, d)-covering of Z with $\operatorname{ord}(\mathcal{V}) \leq n$. We conclude that $(R, d)-\operatorname{dim} Z \leq n-1$.

Next, we will show that asdim $V_{r}^{u} \leq n$ and asdim $N_{R}(N \cup \phi(N)) \leq n$ uniformly. This will complete our proof, since all the conditions of the partition theorem are satisfied. It suffices to show that asdim $V_{r}^{u} \leq n$ uniformly and

$$
\operatorname{asdim} N_{R}(N \cup \phi(N)) \leq n
$$

We observe that $V_{r} \subseteq \pi^{-1}\left(B_{r+R}^{T}\right) \subseteq N_{1}\left(Q_{r+R}\right)$, so by Proposition 2.8 we have that asdim $V_{r}^{u} \leq n$. Since there are at most two isometric classes for the sets V_{r}^{u} (for $u \neq G$) of our partition, we conclude that asdim $V_{r}^{u} \leq n$ uniformly. Finally, $\operatorname{asdim} N_{R}(N \cup \phi(N)) \leq n-1$ since $N_{R}(N \cup \phi(N))$ is quasi-isometric to $N \cup \phi(N)$. By the partition theorem (Theorem 2.4), asdim $C(\bar{G})=\operatorname{asdim} \pi^{-1}(T) \leq n$.

We now give a few details about the gap we found in [16]. We use the same notation as on pages 2276-2279 of [16]. We are not going to redefine all the symbols we use. We consider the HNN-extension $A *_{C}=\left\langle S_{A} \mid R_{A}, c t=t f(c)\right\rangle$ with respect to a monomorphism f. The idea was to construct a partition for $\pi^{-1}\left(K_{1}\right)$. The building block of this partition is the set $V_{r}=X_{+} \cap\left(\bigcap_{|u|=r} X_{-}^{u}\right)$, where $u=g_{u} C$ are vertices of K_{1}.

The problem is that the set V_{r} is empty when the index $[A: C$] is at least 2 . One can find two vertices u and v of K_{1} (where $|u|=|v|=r$) such that $X_{-}^{v} \cap X_{-}^{u}=\varnothing$. To see that, one must investigate how the dual graph K behaves under translations. For example, $K^{u}=g_{u} K_{1}$ when g_{u} (where u is a vertex of K_{1}) has a normal form ending with t, while $K^{u}=g_{u} K_{0}$ when g_{u} (where u is a vertex of K_{1}) has a normal form ending with t^{-1}.

2.1 Right-angled Artin groups

We use the following theorem of Bell, Dranishnikov and J Keesling; see [5].

Theorem 2.10 If A and B are finitely generated groups then

$$
\operatorname{asdim} A * B=\max \{\operatorname{asdim} A, \operatorname{asdim} B\}
$$

Let Γ be a finite simplicial graph with n vertices. The right-angled Artin group (RAAG) $A(\Gamma)$ associated to the graph Γ has the presentation

$$
A(\Gamma)=\left\langle\left\{s_{u}: u \in V(\Gamma)\right\} \mid\left\{\left[s_{u}, s_{v}\right]:[u, v] \in E(\Gamma)\right\}\right\rangle
$$

By $\left[s_{u}, s_{v}\right]=s_{u} s_{v} s_{u}^{-1} s_{v}^{-1}$ we mean the commutator. We set

$$
\operatorname{Val}(\Gamma)=\max \{\operatorname{valency}(u): u \in V(\Gamma)\}
$$

By valency (u) of a vertex u we denote the number of edges incident to the vertex u. Clearly $\operatorname{Val}(\Gamma) \leq \operatorname{rank}(A(\Gamma))-1$.

If Γ is a simplicial graph, we denote by $1-\operatorname{skel}(\Gamma)$ the $1-$ skeleton of Γ. Recall that a full subgraph of a graph Γ is a subgraph formed from a subset of vertices V and from all of the edges that have both endpoints in the subset V.

Conventions Let Γ be simplicial graph, $u \in V(\Gamma)$ and $e \in E(\Gamma)$. We denote by
(i) $\Gamma \backslash\{u\}$ the full subgraph of Γ formed from $V(\Gamma) \backslash\{u\}$,
(ii) $\Gamma \backslash e$ the subgraph of Γ such that $V(\Gamma \backslash e)=V(\Gamma)$ and $E(\Gamma \backslash e)=E(\Gamma) \backslash\{e\}$.

Lemma 2.11 Let Γ be a finite simplicial graph. Then

$$
\operatorname{asdim} A(\Gamma) \leq \operatorname{Val}(\Gamma)+1
$$

Proof By Theorem 2.10, it suffices to prove Lemma 2.11 for connected simplicial graphs, so assume Γ is a connected simplicial graph. We use induction on $\operatorname{rank}(A(\Gamma))$. For $\operatorname{rank}(A(\Gamma))=1$ we have that $A(\Gamma)$ is \mathbb{Z}, so the statement holds. We assume that the statement holds for every $k \leq n$ and we show that it holds for $n+1$ (for $n+1 \geq 2$). Let Γ be a simplicial graph with $n+1$ vertices. We remove a vertex u from the graph Γ such that $\operatorname{valency}(u)=\operatorname{Val}(\Gamma)=m \geq 1$. Let's denote by v_{i} (for $i \in\{1, \ldots, m\}$) the vertices of Γ which are adjacent to u. We set $\Gamma^{\prime}=\Gamma \backslash\{u\}$. Obviously, $\operatorname{Val}\left(\Gamma^{\prime}\right) \leq \operatorname{Val}(\Gamma)$. We denote by Y the full subgraph of Γ formed from $\left\{v_{1}, \ldots, v_{m}\right\}$.

We observe that the RAAG $A(\Gamma)$ is an HNN-extension of the RAAG $A\left(\Gamma^{\prime}\right)$. To be more precise, we have that

$$
A(\Gamma)=A\left(\Gamma^{\prime}\right) *_{A(Y)}
$$

By Theorem 2.9 we obtain that

$$
\operatorname{asdim} A(\Gamma) \leq \max \left\{\operatorname{asdim} A\left(\Gamma^{\prime}\right), \operatorname{asdim} A(Y)+1\right\}
$$

We observe that $\operatorname{Val}(Y) \leq \operatorname{Val}(\Gamma)-1$, so by the inductive hypothesis $(\operatorname{rank}(A(Y)) \leq n)$,

$$
\operatorname{asdim} A(Y) \leq \operatorname{Val}(Y)+1 \leq \operatorname{Val}(\Gamma)
$$

Since $\operatorname{rank} A\left(\Gamma^{\prime}\right)=n$, again by the inductive hypothesis, we deduce that

$$
\operatorname{asdim} A\left(\Gamma^{\prime}\right) \leq \operatorname{Val}\left(\Gamma^{\prime}\right)+1 \leq \operatorname{Val}(\Gamma)+1
$$

Combining the three previous inequalities, we obtain

$$
\operatorname{asdim} A(\Gamma) \leq \max \{\operatorname{Val}(\Gamma)+1, \operatorname{Val}(\Gamma)+1\}=\operatorname{Val}(\Gamma)+1
$$

Using the previous lemma we can compute the exact asymptotic dimension of $A(\Gamma)$. We note that this has already been computed by Wright [23] using different methods.

We set
$\operatorname{Sim}(\Gamma)=\max \left\{n: \Gamma\right.$ contains the $1-$ skeleton of the standard $(n-1)-$ simplex $\left.\Delta^{n-1}\right\}$. Obviously if $\Gamma^{\prime} \subseteq \Gamma$, then $\operatorname{Sim}\left(\Gamma^{\prime}\right) \leq \operatorname{Sim}(\Gamma)$.

Theorem 2.12 Let Γ be a finite simplicial graph. Then

$$
\operatorname{asdim} A(\Gamma)=\operatorname{Sim}(\Gamma) .
$$

Proof By Theorem 2.10, it suffices to prove Theorem 2.12 for connected simplicial graphs, so assume Γ is a connected simplicial graph.

Claim 1 $\operatorname{Sim}(\Gamma) \leq \operatorname{asdim} A(\Gamma)$.

Proof Let $\operatorname{Sim}(\Gamma)=n$. We observe that $\mathbb{Z}^{n}=A\left(S_{n-1}\right) \leq A(\Gamma)$. It follows that

$$
n=\operatorname{asdim} \mathbb{Z}^{n} \leq \operatorname{asdim} A(\Gamma) .
$$

Claim 2 $\operatorname{asdim} A(\Gamma) \leq \operatorname{Sim}(\Gamma)$.

Proof We use induction on $\operatorname{rank}(A(\Gamma))$. For $\operatorname{rank}(A(\Gamma))=1$ we have that $A(\Gamma)$ is \mathbb{Z}, so the statement holds. We assume that the statement holds for every $r \leq m$, and we show that holds for $m+1$ as well. Let Γ be a connected simplicial graph with $m+1$ vertices. Let $\operatorname{Sim}(\Gamma)=n$. Then Γ contains the 1 -skeleton of the standard $(n-1)$-simplex S_{n-1} (where $S_{n-1}=1-\operatorname{skel}\left(\Delta^{n-1}\right)$).

Case $1\left(\Gamma=S_{n-1}\right) \quad$ Then $m+1=n$, so by Lemma 2.11 we have asdim $A\left(S_{n-1}\right) \leq$ $\operatorname{Val}\left(S_{n-1}\right)+1$. By observing that $\operatorname{Val}\left(S_{n-1}\right)=n-1$, we obtain that

$$
\operatorname{asdim} A\left(S_{n-1}\right) \leq n=\operatorname{Sim}(\Gamma) .
$$

Case 2 ($S_{n-1} \varsubsetneqq \Gamma$) We will remove a vertex $u \in V\left(S_{n-1}\right)$. Let's denote by v_{i} (for $i \in\{1, \ldots, k\}$) the vertices of Γ which are adjacent to u. We set $\Gamma^{\prime}=\Gamma \backslash\{u\}$. Obviously $\operatorname{Sim}\left(\Gamma^{\prime}\right) \leq n$. We denote by Y the full subgraph of Γ formed from $\left\{v_{1}, \ldots, v_{k}\right\}$.

We observe that the RAAG $A(\Gamma)$ is an HNN-extension of the RAAG $A\left(\Gamma^{\prime}\right)$. To be more precise,

$$
A(\Gamma)=A\left(\Gamma^{\prime}\right) *_{A(Y)} .
$$

By Theorem 2.9 we obtain that

$$
\begin{equation*}
\operatorname{asdim} A(\Gamma) \leq \max \left\{\operatorname{asdim} A\left(\Gamma^{\prime}\right), \operatorname{asdim} A(Y)+1\right\} . \tag{2}
\end{equation*}
$$

Since $\operatorname{Sim}\left(\Gamma^{\prime}\right) \leq n$ and $\operatorname{rank}\left(\Gamma^{\prime}\right) \leq m$, by the inductive assumption

$$
\begin{equation*}
\operatorname{asdim} A\left(\Gamma^{\prime}\right) \leq \operatorname{Sim}\left(\Gamma^{\prime}\right) \leq n \tag{3}
\end{equation*}
$$

We observe that $\operatorname{Sim}(Y) \leq n-1$ and $\operatorname{rank}(Y) \leq m$. Then by the inductive hypothesis we obtain

$$
\begin{equation*}
\operatorname{asdim} A(Y)+1 \leq \operatorname{Sim}(Y)+1 \leq n \tag{4}
\end{equation*}
$$

by (2), (3) and (4) we conclude that

$$
\operatorname{asdim} A(\Gamma) \leq n=\operatorname{Sim}(\Gamma)
$$

3 Asymptotic dimension of one-relator groups

Theorem 3.1 Let G be a finitely generated one-relator group. Then

$$
\operatorname{asdim} G \leq 2
$$

Proof Let $G=\langle S \mid r\rangle$ be a presentation of G where S is finite and r is a cyclically reduced word in $S \cup S^{-1}$. To omit trivial cases, we assume that S contains at least two elements and $|r|>0$ (we denote by $|r|$ the length of the relator r in the free group $F(S)$). We may assume that every letter of S appears in r. Otherwise our group G is isomorphic to a free product $H * F$ of a finitely generated one-relator group H with relator r and generating set $S_{H} \subseteq S$ consisting of all letters which appear in r and a free group F with generating set the remaining letters of S. We recall that the asymptotic dimension of any finitely generated nonabelian free group is equal to one. Then $\operatorname{asdim} G=\max \{\operatorname{asdim} H, \operatorname{asdim} F\}=\max \{\operatorname{asdim} H, 1\}$; see [2].

We denote by $\epsilon_{r}(s)$ the exponent sum of a letter $s \in S$ in a word r, and by oc $c_{r}(s)$ the minimum number of the positions of appearance of the elements of the set

$$
\left\{s^{k} \text { for some } 0 \neq k \in \mathbb{Z}\right\}
$$

in a cyclically reduced word r. For example, if $r=a b c a b^{10} a^{-2} c^{-1}$, then $\mathrm{oc}_{r}(a)=3$, $\mathrm{oc}_{r}(b)=2, \mathrm{oc}_{r}(c)=2$ and $\epsilon_{r}(c)=0$.

We observe that, if there exists $b \in S$ such that $\mathrm{oc}_{r}(b)=1$, then the group G is free (see [15, Theorem 5.1, page 198]), so asdim $G=1$. From now on we assume that, for every $s \in S$, we have that $\mathrm{oc}_{r}(s) \geq 2$ (so $|r| \geq 4$).

The proof is by induction on the length of r. We observe that if $|r|=4$ then the statement of the theorem holds, since by the result of Matsnev [17] we have that
$\operatorname{asdim} G \leq \frac{1}{2}\lfloor|r|\rfloor=\frac{4}{2}=2$ (where $\lfloor *\rfloor$ is the floor function). We assume that the statement of the theorem holds for all one-relator groups with relator length smaller than or equal to $|r|-1$.

We follow the arguments from the book of Lyndon and Schupp (see [15, Theorem 5.1, page 198]) and the book of Wise (see [22, Construction 18.5]). We distinguish two cases.

Case 1 (there exists a letter $a \in S$ such that $\epsilon_{r}(a)=0$) We shall exhibit G as an HNN-extension of a one-relator group G_{1} whose defining relator has shorter length than r, over a finitely generated free subgroup F. Let $S=\left\{a=s_{1}, s_{2}, s_{3}, s_{4}, \ldots, s_{k}\right\}$. Set $s_{i}^{(j)}=a^{j} s_{i} a^{-j}$ for $j \in \mathbb{Z}$ and for $k \geq i \geq 2$. Rewrite r, scanning it from left to right and changing any occurrence of $a^{j} s_{i}$ to $s_{i}^{(j)} a^{j}$, collecting the powers of adjacent a-letters together and continuing with the leftmost occurrence of a or its inverse in the modified word. We denote by r^{\prime} the modified word in terms of $s_{i}^{(j)}$. We note that by doing this we make at least one cancellation of a and its inverse. The resulting word r^{\prime}, which represents r in terms of $s_{i}^{(j)}$ and their inverses, has length at most $|r|-2$. For example, if $r=a s_{2} s_{3} a s_{2}^{4} a^{-2} s_{3}$ then $r^{\prime}=s_{2}^{(1)} s_{3}^{(1)}\left(s_{2}^{(2)}\right)^{4} s_{3}^{(0)}$.
Let m and M be the minimal and the maximal superscripts, respectively, of all $s_{i}^{(j)}$ (for $i \geq 2$) occurring in r^{\prime}. To be more precise,

$$
m=\min \left\{j: s_{i}^{(j)} \text { occurs in } r^{\prime}\right\} \quad \text { and } \quad M=\max \left\{j: s_{i}^{(j)} \text { occurs in } r^{\prime}\right\} .
$$

Continuing our example, $m=0$ and $M=2$.
Claim 1.1 In Case 1 we have $M-m>0$ and $m \leq 0 \leq M$.
We may assume, replacing r with a suitable permutation if necessary, that r begins with a^{k} for some $k \neq 0$. Then we can write $r=a^{k} s w a^{n} t z$, where $k, n \neq 0, a \notin\{s, t\} \subseteq S$ and both a and a^{-1} do not appear in the word $z\left(\operatorname{oc}_{z}(a)=0\right)$. Then we observe that the letter s has as superscript k in the word r^{\prime} while t has as superscript 0 in the word r^{\prime}. Since $k \neq 0$, we have that $M-m>0$. This completes the proof of Claim 1.1.

Claim 1.2 The group G has a presentation
$\left\langle\left\{a, s_{i}^{(j)}: i=2, \ldots, k, j=m, \ldots, M\right\} \mid\left\{r^{\prime}, a s_{i}^{\left(j^{\prime}\right)} a^{-1}\left(s_{i}^{\left(j^{\prime}+1\right)}\right)^{-1}: j^{\prime}=m, \ldots, M-1\right\}\right\rangle$.
To verify the claim, let H be the group defined by the presentation given above. The map $\phi: G \rightarrow H$ defined by

$$
a \mapsto a, \quad s_{i} \mapsto s_{i}^{(0)}
$$

is a homomorphism since $\phi(r)=r^{\prime}$. On the other hand, the map $\psi: H \rightarrow G$ defined by

$$
a \mapsto a, \quad s_{i}^{(j)} \mapsto a^{j} s_{i} a^{-j}
$$

is also a homomorphism since all relators of H are sent to 1_{G}.
It is easy to verify that $\psi \circ \phi$ is the identity map of G. The homomorphism $\phi \circ \psi: H \rightarrow H$ maps $a \mapsto a, s_{i}^{(0)} \mapsto s_{i} \mapsto s_{i}^{(0)}$ and $s_{i}^{(j)} \mapsto a^{j} s_{i} a^{-j} \mapsto a^{j} s_{i}^{(0)} a^{-j}$. Now we show that $s_{i}^{(j)}=a^{j} s_{i}^{(0)} a^{-j}$. We have

$$
a^{1} s_{i}^{(0)} a^{-1}=s_{i}^{(1)}, \quad a^{1} s_{i}^{(1)} a^{-1}=s_{i}^{(2)}, \ldots \quad a^{1} s_{i}^{(j-1)} a^{-1}=s_{i}^{(j)}
$$

Combining these equations $s_{i}^{(j)}=a^{1} s_{i}^{(j-1)} a^{-1}=a^{2} s_{i}^{(j-2)} a^{-2}=\cdots=a^{j} s_{i}^{(0)} a^{-j}$, so $\phi \circ \psi=\mathrm{id}_{H}$.

Since $\phi \circ \psi$ and $\psi \circ \phi$ are the identity maps on H and G, respectively, we deduce that ϕ is an isomorphism. This completes the proof of Claim 1.2.

We set

$$
G_{1}=\left\langle\left\{s_{i}^{(j)}: i=2, \ldots, k, j=m, \ldots, M\right\} \mid r^{\prime}\right\rangle
$$

and note that there exists a letter $s_{i_{m}} \in S$ such that $s_{i_{m}}^{(m)}$ appears in r^{\prime} and a letter $s_{i_{M}} \in S$ such that $s_{i_{M}}^{(M)}$ appears in r^{\prime}.

Let F and Λ be the subgroups of G_{1} generated by

$$
X=\left\{s_{i}^{(j)}: i=2, \ldots, k, j=m, \ldots, M-1\right\}
$$

and

$$
Y=\left\{s_{i}^{(j)}: i=2, \ldots, k, j=m+1, \ldots, M\right\}
$$

respectively.
Claim 1.3 The groups F and Λ are free subgroups of G_{1}.
This claim follows by the Freiheitssatz (see [15, Theorem 5.1, page 198]); since X omits a generator of G_{1} occurring in r^{\prime} (this is the letter $s_{i_{M}}^{(M)}$) the subgroup F is free. The same holds for Λ, since Y omits the letter $s_{i_{m}}^{(m)}$.

Claim 1.4 We have that $G \simeq G_{1} *_{F}$.
In particular, the $\operatorname{map} s_{i}^{(j)} \mapsto s_{i}^{(j+1)}$ from X to Y extends to an isomorphism from F to Λ. Thus H is exhibited as the HNN-extension of G_{1} over the finitely generated free group F using a as a stable letter. Since $G \simeq H$ (Claim 1.2),

$$
G \simeq G_{1} * F
$$

By the fact that $\left|r^{\prime}\right|<|r|$ and the inductive assumption we have that asdim $G_{1} \leq 2$. To conclude, we apply the inequality for HNN-extensions (Theorem 2.9): asdim $G \leq$ $\max \left\{\operatorname{asdim} G_{1}, \operatorname{asdim} F+1\right\}=\max \left\{\operatorname{asdim} G_{1}, 2\right\}=2$.
Case $2\left(\left|\epsilon_{r}(s)\right| \geq 1\right.$ for every letter $\left.s \in S\right)$ Let $S=\left\{a=s_{1}, b=s_{2}, s_{3}, s_{4}, \ldots, s_{k}\right\}$ and $S_{1}=\left\{t, x, s_{i}: 3 \leq i \leq k\right\}$. We consider the homomorphism between the free group $F(S)$ and the free group $F\left(S_{1}\right)$

$$
\begin{equation*}
\phi: a \mapsto t^{-\epsilon_{r}(b)} x, \quad b \mapsto t^{\epsilon_{r}(a)}, \quad s_{i} \mapsto s_{i} \quad \text { for } 3 \leq i \leq k . \tag{5}
\end{equation*}
$$

We set

$$
\Gamma=\left\langle S_{1} \mid r\left(t, x, s_{3}, \ldots, s_{k}\right)\right\rangle
$$

where we denote by $r\left(t, x, s_{3}, \ldots, s_{k}\right)$ the modified word in terms of t, x and s_{i} for $3 \leq i \leq k$ which is obtained from r when we replace a generator s with $\phi(s)$. Then ϕ induces a homomorphism

$$
\phi: G \rightarrow \Gamma .
$$

The following claim shows that the homomorphism ϕ is actually a monomorphism into Γ, so we have an embedding of G into Γ via ϕ :

Claim 2.1 The homomorphism $\phi: G \rightarrow \Gamma$ is a monomorphism.
Proof We set $S_{2}=\left\{a, t, s_{i}: 3 \leq i \leq k\right\}$ and $S_{1}=\left\{x, t, s_{i}: 3 \leq i \leq k\right\}$. We define $g: F(S) \rightarrow F\left(S_{2}\right)$ and $f: F\left(S_{2}\right) \rightarrow F\left(S_{1}\right)$ by

$$
g: a \mapsto a, \quad b \mapsto t^{\epsilon_{r}(a)}, \quad s_{i} \mapsto s_{i} \quad \text { for } 3 \leq i \leq k,
$$

and

$$
f: a \mapsto t^{-\epsilon_{r}(b)} x, \quad t \mapsto t, \quad s_{i} \mapsto s_{i} \quad \text { for } 3 \leq i \leq k .
$$

We set $r_{2}=g(r), G_{2}=\left\langle S_{2} \mid r_{2}\right\rangle$ and $r_{1}=f \circ g(r)=r\left(t, x, s_{3}, \ldots, s_{k}\right)$, and we observe that $\Gamma=\left\langle S_{1} \mid r_{1}\right\rangle$. Then g induces a homomorphism $\bar{g}: G \mapsto G_{2}$ and f induces a homomorphism $\bar{f}: G_{2} \mapsto \Gamma$. Obviously, $\phi=\bar{f} \circ \bar{g}$.
We can easily see that \bar{f} is an isomorphism. Indeed, the homomorphism $\psi: \Gamma \rightarrow G_{2}$ given by

$$
x \mapsto t^{\epsilon_{r}(b)} a, \quad t \mapsto t, \quad s_{i} \mapsto s_{i} \quad \text { for } 3 \leq i \leq k
$$

is the inverse homomorphism of \bar{f}.
It is enough to prove that \bar{g} is a monomorphism. This follows by the fact that the group G_{2} is the amalgamated product $G *_{\mathbb{Z}}\langle t\rangle$, where $\mathbb{Z}=\langle\lambda\rangle$, and $\psi_{1}(\lambda)=b$ and $\psi_{2}(\lambda)=t^{\epsilon_{r}(a)}$ are the corresponding monomorphisms. We can see that \bar{g} is the inclusion of G into the amalgamated product, so \bar{g} is injective.

We denote by $r\left(t, x, s_{3}, \ldots, s_{k}\right)$ the modified word in terms of t, x and s_{i} for $3 \leq i \leq k$ which can be obtained from r when we replace a generator s with $\phi(s)$ and p with the cyclically reduced $r\left(t, x, s_{3}, \ldots, s_{k}\right)$. We observe that $\epsilon_{p}(t)=0$ and that x occurs in p.

If the letter t occurs in the word p, from Case 1 we have that Γ is an HNN-extension of some group H over a free subgroup F, namely $\Gamma=H *_{F}$. As in Case 1 , by assuming that p starts with t or t^{-1} we introduce new variables $s_{i}^{(j)}=t^{j} s_{i} t^{-j}$. Using these variables, we rewrite p as a word w, eliminating all occurrences of t and its inverse. Then we observe that $|w| \leq|r|-1$. By using the inductive assumption for w we obtain

$$
\operatorname{asdim} G \leq \operatorname{asdim} \Gamma \leq 2
$$

If the letter t does not occur in the word p, we observe that

$$
|p| \leq|r|-1
$$

Then

$$
\Gamma=\langle t\rangle * \Gamma^{\prime}
$$

where

$$
\Gamma^{\prime}=\left\langle\left\{x, s_{i}: i=3, \ldots, k\right\} \mid p\right\rangle .
$$

Since $\operatorname{asdim}\left(G_{1} * G_{2}\right)=\max \left\{\operatorname{asdim} G_{1}\right.$, asdim $\left.G_{2}\right\}$ holds (see [2]) we have that

$$
\operatorname{asdim} \Gamma=\max \left\{1, \operatorname{asdim} \Gamma^{\prime}\right\}
$$

Then, by the inductive assumption for p, asdim $\Gamma^{\prime} \leq 2$. Finally, we conclude that

$$
\operatorname{asdim} G \leq \operatorname{asdim} \Gamma \leq 2
$$

3.1 One-relator groups with asymptotic dimension two

We recall that a nontrivial group H is freely indecomposable if H cannot be expressed as a free product of two nontrivial groups.

A natural question derived from Theorem 3.1 is which one-relator groups have asymptotic dimension two. In this subsection, we will show that the asymptotic dimension of every finitely generated one-relator group that is not a free group or a free product of a free group and a finite cyclic group is exactly two.

We will use Propositions 3.2 and 3.3 from [10] and [21], respectively.
Proposition 3.2 Let G be an infinite finitely generated one-relator group with torsion. If G has more than one end, then G is a free product of a nontrivial free group and a freely indecomposable one-relator group.

Proposition 3.3 Let G be a torsion-free infinite finitely generated group. If G is virtually free, then it is free.

Lemma 3.4 Let G be an infinite finitely generated one-relator group that is not a free group or a free product of a nontrivial free group and a freely indecomposable one-relator group. Then G is not virtually free.

Proof If G has torsion, by Proposition $3.2 G$ has exactly one end, so G cannot be virtually free. If G is torsion free, by Proposition 3.3 we obtain that G is free and this is a contradiction by the assumption of the lemma.

We note that every finite one-relator group is cyclic. To see this, it is enough to observe that every one-relator group with at least two generators has infinite abelianization.

The following proposition is the main result of this subsection:

Proposition 3.5 Let G be a finitely generated one-relator group that is not a free group or a free product of a free group and a finite cyclic group. Then

$$
\operatorname{asdim} G=2
$$

Proof By Theorem 3.1, asdim $G \leq 2$. If G is finite then it is cyclic. If G is infinite, $1 \leq \operatorname{asdim} G$. By a theorem of T Gentimis [11], asdim $G=1$ if and only if G is virtually free. We assume that G is an infinite virtually free group. So, if G is torsion free, then by Proposition 3.3 we obtain that G is free. If G has torsion, then, by Lemma 3.4, G is a free product of a nontrivial free group and a freely indecomposable one-relator group G_{1}. Observe that, if G_{1} is an infinite noncyclic group, then by the same lemma G_{1} is not virtually free, so G is not virtually free either, which is a contradiction. We conclude that asdim $G=2$.

Corollary Let G be a finitely generated freely indecomposable one-relator group which is not cyclic. Then

$$
\operatorname{asdim} G=2
$$

Proposition 3.6 [15, Proposition 5.13, page 107] Let $G=\left\langle x_{1}, \ldots, x_{n} \mid r\right\rangle$ be a finitely generated one-relator group, where r is of minimal length under $\operatorname{Aut}\left(F\left(\left\{x_{1}, \ldots, x_{n}\right\}\right)\right)$ and contains exactly the generators x_{1}, \ldots, x_{k} for some k with $0 \leq k \leq n$. Then G is isomorphic to the free product $G_{1} * G_{2}$, where $G_{1}=\left\langle x_{1}, \ldots, x_{k} \mid r\right\rangle$ is freely indecomposable and G_{2} is free with basis $\left\{x_{k+1}, \ldots, x_{n}\right\}$.

The above results combine to give the following corollary, which describes the finitely generated one-relator groups:

Corollary Let G be a finitely generated one-relator group. Then one of the following is true:
(i) G is finite cyclic, and asdim $G=0$.
(ii) G is a nontrivial free group or a free product of a nontrivial free group and a finite cyclic group, and asdim $G=1$.
(iii) G is an infinite freely indecomposable not cyclic group or a free product of a nontrivial free group and an infinite freely indecomposable noncyclic group, and $\operatorname{asdim} G=2$.

We can further describe the boundaries of hyperbolic one-relator groups. We recall the following result of Buyalo and Lebedeva (see [7]) for hyperbolic groups:

$$
\operatorname{asdim} G=\operatorname{dim} \partial_{\infty} G+1
$$

Let G be an infinite finitely generated hyperbolic one-relator group that is not virtually free. By Gentimis [11] we obtain that asdim $G \neq 1$, so asdim $G=2$. Using the previous equality we obtain that G has one-dimensional boundary. Applying a theorem of Kapovich and Kleiner (see [13]) we can describe the boundaries of hyperbolic one-relator groups:

Proposition 3.7 Let G be a hyperbolic one-relator group. Then asdim $G=0$, 1 or 2 .
(i) If asdim $G=0$, then G is finite.
(ii) If asdim $G=1$, then G is virtually free and the boundary is a Cantor set.
(iii) If asdim $G=2$, providing that G does not split over a virtually cyclic subgroup, then one of the following holds:
(a) $\partial_{\infty} G$ is a Menger curve.
(b) $\partial_{\infty} G$ is a Sierpinski carpet.
(c) $\partial_{\infty} G$ is homeomorphic to S^{1}.

4 Graphs of groups

We will prove a general theorem for the asymptotic dimension of fundamental groups of finite graphs of groups.

Theorem 4.1 Let (\mathbb{G}, Y) be a finite graph of groups with vertex groups $\left\{G_{v}: v \in Y^{0}\right\}$ and edge groups $\left\{G_{e}: e \in Y_{+}^{1}\right\}$. Then

$$
\operatorname{asdim} \pi_{1}(\mathbb{G}, Y, \mathbb{T}) \leq \max _{v \in Y^{0}, e \in Y_{+}^{1}}\left\{\operatorname{asdim} G_{v}, \operatorname{asdim} G_{e}+1\right\} .
$$

Proof We use induction on the number $\# E(Y)$ of edges of the graph Y. For $\# E(Y)=1$ we distinguish two cases. The first case is when the fundamental group $\pi_{1}(\mathbb{G}, Y, \mathbb{T})$ is an amalgamated product. Here the theorem follows by the inequality of Dranishnikov (see [9])

$$
\operatorname{asdim} A *_{C} B \leq \max \{\operatorname{asdim} A, \operatorname{asdim} B, \operatorname{asdim} C+1\} .
$$

The second case is when the fundamental group $\pi_{1}(\mathbb{G}, Y, \mathbb{T})$ is an HNN-extension. Here the theorem follows by Theorem 2.9.

We assume that the theorem holds for $E(Y) \leq m$. Let (\mathbb{G}, Y) be a finite graph of groups with $\# E(Y)=m+1$. We denote by \mathbb{T} a maximal tree of Y.

We distinguish two cases:
Case $1(Y=\mathbb{T})$ We remove a terminal edge $e^{\prime}=[v, u]$ from the graph Y so that the full subgraph of Y, denoted by Γ and formed from the vertices $V(Y) \backslash\{u\}$, is connected. We observe that Γ is also a tree, which we denote by \mathbb{T}^{\prime}.

Then $\pi_{1}(\mathbb{G}, Y, \mathbb{T})=\pi_{1}\left(\mathbb{G}, \Gamma, \mathbb{T}^{\prime}\right) *_{G_{e^{\prime}}} G_{u}$, so by the inequality for amalgamated products of Dranishnikov (see [9]),

$$
\operatorname{asdim} \pi_{1}(\mathbb{G}, Y, \mathbb{T}) \leq \max \left\{\operatorname{asdim} \pi_{1}\left(\mathbb{G}, \Gamma, \mathbb{T}^{\prime}\right), \operatorname{asdim} G_{u}, \operatorname{asdim} G_{e^{\prime}}+1\right\} .
$$

Since $\# E(\Gamma)=m$, by the inductive assumption we obtain that

$$
\operatorname{asdim} \pi_{1}\left(\mathbb{G}, \Gamma, \mathbb{T}^{\prime}\right) \leq \max _{v \in Y^{0} \backslash\{u\}, e \in Y_{+}^{1} \backslash\left\{e^{\prime}\right\}}\left\{\operatorname{asdim} G_{v}, \text { asdim } G_{e}+1\right\},
$$

so

$$
\operatorname{asdim} \pi_{1}(\mathbb{G}, Y, \mathbb{T}) \leq \max _{v \in Y^{0}, e \in Y_{+}^{1}}\left\{\operatorname{asdim} G_{v}, \operatorname{asdim} G_{e}+1\right\} .
$$

Case $2\left(\mathbb{T} \varsubsetneqq Y\right.$) We remove from Y an edge $e^{\prime}=[v, u]$ which doesn’t belong to \mathbb{T}. Since the tree \mathbb{T} is a maximal tree of Y and $e^{\prime} \notin E(\mathbb{T})$, we have that the graph $\Gamma=Y \backslash e^{\prime}$ is connected and $\mathbb{T} \subseteq \Gamma$. Then $\pi_{1}(\mathbb{G}, Y, \mathbb{T})=\pi_{1}(\mathbb{G}, \Gamma, \mathbb{T}) * G_{e^{\prime}}$, so by the inequality for HNN-extensions (Theorem 2.9) we have

$$
\operatorname{asdim} \pi_{1}(\mathbb{G}, Y, \mathbb{T}) \leq \max \left\{\operatorname{asdim} \pi_{1}(\mathbb{G}, \Gamma, \mathbb{T}), \operatorname{asdim} G_{e^{\prime}}+1\right\} .
$$

Since $\# E(\Gamma)=m$, by the inductive assumption

$$
\operatorname{asdim} \pi_{1}(\mathbb{G}, \Gamma, \mathbb{T}) \leq \max _{v \in Y^{0}, e \in Y_{+}^{1} \backslash\left\{e^{\prime}\right\}}\left\{\operatorname{asdim} G_{v}, \operatorname{asdim} G_{e}+1\right\}
$$

so

$$
\operatorname{asdim} \pi_{1}(\mathbb{G}, Y, \mathbb{T}) \leq \max _{v \in Y^{0}, e \in Y_{+}^{1}}\left\{\operatorname{asdim} G_{v}, \operatorname{asdim} G_{e}+1\right\}
$$

We obtain as a corollary the following:

Proposition 4.2 Let (\mathbb{G}, Y) be a finite graph of groups with vertex groups $\left\{G_{v}: v \in Y^{0}\right\}$ and edge groups $\left\{G_{e}: e \in Y_{+}^{1}\right\}$. We assume that

$$
\max _{e \in Y_{+}^{1}}\left\{\operatorname{asdim} G_{e}\right\}<\max _{v \in Y^{0}}\left\{\operatorname{asdim} G_{v}\right\}=n
$$

Then $\operatorname{asdim} \pi_{1}(\mathbb{G}, Y, \mathbb{T})=n$.

As a corollary of Proposition 4.2, the asymptotic dimension of a graph of one-ended hyperbolic groups with n-dimensional boundary with free edge groups is $n+1$.

References

[1] G Bell, A Dranishnikov, On asymptotic dimension of groups, Algebr. Geom. Topol. 1 (2001) 57-71 MR Zbl
[2] G Bell, A Dranishnikov, On asymptotic dimension of groups acting on trees, Geom. Dedicata 103 (2004) 89-101 MR Zbl
[3] G Bell, A Dranishnikov, Asymptotic dimension, Topology Appl. 155 (2008) 1265-1296 MR Zbl
[4] G Bell, A Dranishnikov, Asymptotic dimension in Będlewo, Topology Proc. 38 (2011) 209-236 MR Zbl
[5] G C Bell, A N Dranishnikov, J E Keesling, On a formula for the asymptotic dimension of free products, Fund. Math. 183 (2004) 39-45 MR Zbl
[6] M Bestvina, K Bromberg, K Fujiwara, Constructing group actions on quasi-trees and applications to mapping class groups, Publ. Math. Inst. Hautes Études Sci. 122 (2015) 1-64 MR Zbl
[7] S V Buyalo, N D Lebedeva, Dimensions of locally and asymptotically self-similar spaces, Algebra i Analiz 19 (2007) 60-92 MR Zbl In Russian; translated in St. Petersburg Math. J. 19 (2008) 45-65
[8] A Dranishnikov, Asymptotic dimension, web resource, in "Problems in geometric group theory" Available at https://sites.google.com/a/scu.edu/rscott/pggt
[9] A Dranishnikov, On asymptotic dimension of amalgamated products and right-angled Coxeter groups, Algebr. Geom. Topol. 8 (2008) 1281-1293 MR Zbl
[10] J Fischer, A Karrass, D Solitar, On one-relator groups having elements of finite order, Proc. Amer. Math. Soc. 33 (1972) 297-301 MR Zbl
[11] T Gentimis, Asymptotic dimension of finitely presented groups, Proc. Amer. Math. Soc. 136 (2008) 4103-4110 MR Zbl
[12] M Gromov, Asymptotic invariants of infinite groups, from "Geometric group theory, II" (G A Niblo, M A Roller, editors), London Math. Soc. Lecture Note Ser. 182, Cambridge Univ. Press (1993) 1-295 MR Zbl
[13] M Kapovich, B Kleiner, Hyperbolic groups with low-dimensional boundary, Ann. Sci. École Norm. Sup. 33 (2000) 647-669 MR Zbl
[14] R C Lyndon, Cohomology theory of groups with a single defining relation, Ann. of Math. 52 (1950) 650-665 MR Zbl
[15] R C Lyndon, P E Schupp, Combinatorial group theory, Ergebnisse der Math. 89, Springer (1977) MR Zbl
[16] J M Mackay, A Sisto, Embedding relatively hyperbolic groups in products of trees, Algebr. Geom. Topol. 13 (2013) 2261-2282 MR Zbl
[17] D Matsnev, Asymptotic dimension of one relator groups, Colloq. Math. 111 (2008) 85-89 MR Zbl
[18] D Osin, Asymptotic dimension of relatively hyperbolic groups, Int. Math. Res. Not. 2005 (2005) 2143-2161 MR Zbl
[19] A N Platonov, An isoparametric function of the Baumslag-Gersten group, Vestnik Moskov. Univ. Ser. I Mat. Mekh. (2004) 12-17 MR Zbl In Russian; translated in Moscow Univ. Math. Bull. 59 (2004) 12-17
[20] L Sledd, Assouad-Nagata dimension of finitely generated $C^{\prime}(1 / 6)$ groups, Topology Appl. 299 (2021) art. id. 107634 MR Zbl
[21] J Stallings, Groups of dimension 1 are locally free, Bull. Amer. Math. Soc. 74 (1968) 361-364 MR Zbl
[22] D T Wise, The structure of groups with a quasiconvex hierarchy, Ann. of Math. Stud. 209, Princeton Univ. Press (2021) MR Zbl
[23] N Wright, Finite asymptotic dimension for CAT(0) cube complexes, Geom. Topol. 16 (2012) 527-554 MR Zbl
[24] G Yu, The Novikov conjecture for groups with finite asymptotic dimension, Ann. of Math. 147 (1998) 325-355 MR Zbl

Mathematical Institute, University of Oxford
Oxford, United Kingdom
panagiotis.tselekidis@queens.ox.ac.uk
Received: 3 June 2021 Revised: 11 April 2022

Algebraic \& Geometric Topology

msp.org/agt

EDITORS

John Etnyre etnyre@math.gatech.edu
Georgia Institute of Technology
Kathryn Hess
kathryn.hess@epfl.ch
École Polytechnique Fédérale de Lausanne

Principal Academic Editors

Board of Editors

Julie Bergner	University of Virginia jeb2md@eservices.virginia.edu	Robert Lipshitz	University of Oregon lipshitz@uoregon.edu
Steven Boyer	Université du Québec à Montréal cohf@math.rochester.edu	Norihiko Minami	Nagoya Institute of Technology nori@nitech.ac.jp
Tara E Brendle	University of Glasgow tara.brendle@glasgow.ac.uk	Andrés Navas	Universidad de Santiago de Chile andres.navas@usach.cl
Indira Chatterji	CNRS \& Univ. Côte d'Azur (Nice) indira.chatterji@math.cnrs.fr	Thomas Nikolaus	University of Münster nikolaus@uni-muenster.de
Alexander Dranishnikov	University of Florida dranish@math.ufl.edu	Robert Oliver	Université Paris 13 bobol@math.univ-paris13.fr
Tobias Ekholm	Uppsala University, Sweden tobias.ekholm@math.uu.se	Jessica S Purcell	Monash University jessica.purcell@monash.edu
Mario Eudave-Muñoz	Univ. Nacional Autónoma de México mario@matem.unam.mx	Birgit Richter	Universität Hamburg birgit.richter@uni-hamburg.de
David Futer	Temple University dfuter@temple.edu	Jérôme Scherer	École Polytech. Féd. de Lausanne jerome.scherer@epfl.ch
John Greenlees	University of Warwick john.greenlees@warwick.ac.uk	Vesna Stojanoska	Univ. of Illinois at Urbana-Champaign vesna@illinois.edu
Ian Hambleton	McMaster University ian@math.memaster.ca	Zoltán Szabó	Princeton University szabo@math.princeton.edu
Matthew Hedden	Michigan State University mhedden@math.msu.edu	Maggy Tomova	University of Iowa maggy-tomova@uiowa.edu
Hans-Werner Henn	Université Louis Pasteur henn@math.u-strasbg.fr	Nathalie Wahl	University of Copenhagen wahl@math.ku.dk
Daniel Isaksen	Wayne State University isaksen@math.wayne.edu	Chris Wendl	Humboldt-Universität zu Berlin wendl@math.hu-berlin.de
Thomas Koberda	University of Virginia thomas.koberda@virginia.edu	Daniel T Wise	McGill University, Canada daniel.wise@mcgill.ca
Christine Lescop	Université Joseph Fourier lescop@ujf-grenoble.fr		

See inside back cover or msp.org/agt for submission instructions.
The subscription price for 2023 is US $\$ 650 /$ year for the electronic version, and $\$ 940 /$ year ($+\$ 70$, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues and changes of subscriber address should be sent to MSP. Algebraic \& Geometric Topology is indexed by Mathematical Reviews, Zentralblatt MATH, Current Mathematical Publications and the Science Citation Index.

Algebraic \& Geometric Topology (ISSN 1472-2747 printed, 1472-2739 electronic) is published 9 times per year and continuously online, by Mathematical Sciences Publishers, c/o Department of Mathematics, University of California, 798 Evans Hall \#3840, Berkeley, CA 94720-3840. Periodical rate postage paid at Oakland, CA 94615-9651, and additional mailing offices. POSTMASTER: send address changes to Mathematical Sciences Publishers, c/o Department of Mathematics, University of California, 798 Evans Hall \#3840, Berkeley, CA 94720-3840.

AGT peer review and production are managed by EditFlow ${ }^{\circledR}$ from MSP.
PUBLISHED BY
mathematical sciences publishers
nonprofit scientific publishing
http://msp.org/
© 2023 Mathematical Sciences Publishers

Algebraic \& Geometric Topology

Volume 23 Issue 8 (pages 3417-3908) 2023Partial Torelli groups and homological stability3417Andrew Putman
On symplectic fillings of small Seifert 3-manifolds 3497
Hakho Choi and Jongil Park
Milnor-Witt motivic cohomology of complements of hyperplane arrangements 3531
Keyao Peng
Connective models for topological modular forms of level n 3553Lennart Meier
Asymptotic dimension of graphs of groups and one-relator groups 3587
Panagiotis Tselekidis
Pressure metrics for deformation spaces of quasifuchsian groups with parabolics 3615Harrison Bray, Richard Canary and Lien-Yung Kao
The $\mathrm{Sp}_{k, n}$-local stable homotopy category 3655Drew Heard
Smooth one-dimensional topological field theories are vector bundles with 3707 connection
Daniel Berwick-Evans and Dmitri Pavlov
Round fold maps on 3-manifolds 3745
Naoki Kitazawa and Osamu Saeki
The upsilon invariant at 1 of 3 -braid knots3763
Paula Truöl
Cusps and commensurability classes of hyperbolic 4-manifolds 3805
Connor Sell
The group of quasi-isometries of the real line cannot act effectively on the line3835
Shengkui Ye and Yanxin Zhao
Simplicial model structures on pro-categories3849

[^0]: © 2023 The Author, under license to MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution License 4.0 (CC BY). Open Access made possible by subscribing institutions via Subscribe to Open.

