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We prove that smooth 1–dimensional topological field theories over a manifold are
equivalent to vector bundles with connection. The main novelty is our definition of
the smooth 1–dimensional bordism category, which encodes cutting laws rather than
gluing laws. We make this idea precise through a smooth version of Rezk’s complete
Segal spaces. With such a definition in hand, we analyze the category of field theories
using a combination of descent, a smooth version of the 1–dimensional cobordism
hypothesis, and standard differential-geometric arguments.
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1 Introduction

The goal of this paper is to give a definition of smooth 1–dimensional field theory that
plays well with the differential geometry of manifolds. A technical ingredient in our
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approach is the notion of smooth1–categories (developed in Section 2). A smooth
1–category is a smooth version of a complete Segal space. This framework can be
used to encode cutting axioms for the value of a field theory on a cobordism rather
than the usual gluing axioms. This perspective on cobordisms is implicit in the work of
Galatius, Madsen, Tillman and Weiss [12] and Lurie [20] in the settings of topological
and1–categories, respectively. Translating into the smooth setting yields field theories
that are determined by familiar differential-geometric objects.

Theorem A The space of smooth 1–dimensional oriented topological field theo-
ries over a smooth manifold X is equivalent to the nerve of the groupoid of (finite-
dimensional ) vector bundles with connection over X and connection-preserving vector
bundle isomorphisms. The equivalence is natural in X .

In our view, the above characterization of smooth 1–dimensional topological field
theories is the only admissible one. As such, the main contribution of this paper is a
precise definition of smooth field theory for which Theorem A holds. The definition
readily generalizes both to higher dimensions and nontopological smooth field theories,
as pursued by Grady and the second author [13, Section 4]. Through its connection
to familiar objects, Theorem A gives a concrete idea of what these more complicated
field theories seek to generalize. Our methods — particularly the role of descent in
Theorem C — are chosen with higher-dimensional generalizations in mind; see [13,
Theorem 1.0.1].

The intuition behind Theorem A goes back to Segal [24, Section 6]. The 1–dimensional
bordism category over X has objects compact 0–manifolds with a map to X and
morphisms compact 1–manifolds with boundary with a map to X . A 1–dimensional
topological field theory over X is a symmetric monoidal functor from the 1–dimensional
bordism category over X to the category of vector spaces. Hence, to each point in X

a topological field theory assigns a finite-dimensional vector space and to each path
the field theory assigns a linear map. A vector bundle with connection produces this
data using parallel transport. Conversely, given the data of parallel transport one may
assign values to arbitrary 1–dimensional bordisms in X by taking tensor products and
duals. This gives a functor from the groupoid of vector bundles with connection to
the groupoid of 1–dimensional topological field theories. To verify Theorem A, one
must show that this functor is an equivalence. This can be thought of as the following
smoothly parametrized variant of the 1–dimensional cobordism hypothesis of Baez and
Dolan [1]. We note that in dimension 1, orientations are equivalent to framings.
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Theorem B Let Vect˝ denote the symmetric monoidal smooth1–category of vector
spaces and Vect the underlying smooth1–category without monoidal structure. There
is an equivalence between 1–dimensional oriented topological field theories over X

valued in Vect˝ and C1–functors from the smooth path category of X to Vect.

Theorem A follows from Theorem B by identifying a functor from the path category
to Vect with a smooth vector bundle and connection (see Section 4). Such a relation-
ship between parallel transport and representations of path categories goes back to
Kobayashi [17], who introduced the group of smooth based loops modulo thin homotopy
and established that smooth homomorphisms from this group to a Lie group G are in
bijection with isomorphism classes of principal G–bundles with connection. Similar
results were proved by Freed [11], and Schreiber and Waldorf [22]. An analogous
result for gerbes with connections was established for two-dimensional thin homotopies
by Bunke, Turner and Willerton [7]. A statement explicitly relating field theories to
vector bundles with connection was loosely formulated by Segal in his early work on
geometric models for elliptic cohomology. A precise statement was given by Stolz and
Teichner in their language of field theories fibered over manifolds [26, Theorem 1.8],
though a proof has yet to appear. Below we draw inspiration from all of these authors;
the new ingredient is in our treatment of the smooth bordism category.

1.1 What makes a smooth cobordism category difficult to define?

Composition of cobordisms is more subtle than one might hope: given two d–manifolds
and a .d�1/–manifold along which one wishes to glue, one only obtains a glued
manifold up to diffeomorphism. The usual solution is to define morphisms in a cobor-
dism category as smooth d–manifolds up to diffeomorphism, thereby obliterating the
problem. However, if we wish to include extra structures on bordisms, two problems
arise: (1) gluings may fail to exist and (2) gluing isomorphism classes of geometric
structures is typically ill-defined. For example, isomorphism classes of metrics cannot
be glued, and gluing smooth maps to a target manifold X along a codimension 1
submanifold may not result in a smooth map to X . Although the focus in this paper is
on the topological bordism category over X , a guiding principle is to make definitions
for which various flavors of generalization pose no serious technical difficulties.

A reason for pursuing such generalizations comes from Stolz and Teichner’s work on a
geometric model for elliptic cohomology [25; 26], following Segal [24]. Their program
seeks to generalize the relationship between 1–dimensional field theories, vector bundles,
and K–theory to provide a model for elliptic cohomology with cocycles coming from
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(supersymmetric) 2–dimensional Euclidean field theories. They address the problem of
composition by equipping bordisms with germs of collars, so bordisms are composable
when collars match. This allows one to incorporate geometric structures on paths
by simply endowing the collars with geometric structures. However, it introduces
a new technical issue when relating 1–dimensional field theories to vector bundles:
isomorphism classes of objects in their 1–dimensional bordism category are points
of X together with the germ of a collar of a path. Such a large space of objects can be
rather unwieldy in computations (particularly in the presence of geometric structures
on the bordisms). The original motivation for this paper was to find a way around the
technical difficulties brought on by the introduction of collars, with an eye towards
studying supersymmetric Euclidean field theories. We note that since the writing of this
paper, an analog of Theorem A was proved by Ludewig and Stoffel [18] in a framework
that incorporates collared bordisms (we comment further on this work in Section 1.3).

One approach that avoids collars follows Kobayashi [17], Caetano and Picken [8], and
Schreiber and Waldorf [22] who study paths in a manifold modulo thin homotopy;
these are smooth paths modulo smooth homotopies whose rank is at most 1. Each
equivalence class has a representative given by a path with sitting instant, meaning a
path in X for which some neighborhood of the start and end point is mapped constantly
to X . These sitting instants allow concatenation of smooth paths in a straightforward
way, which simplifies many technical challenges (compare Lemma 5.0.1), and leads
to a version of a 1–dimensional bordism category over X . However, endowing an
equivalence class of a path with a geometric structure, eg a metric, is hopeless. If one
does not pass to equivalence classes but instead works with honest paths with sitting
instants, the resulting path category fails to restrict along open covers of X : restricted
paths may not have sitting instants. This destroys a type of locality that we find both
philosophically desirable and computationally essential (compare Theorem C), related
to Mayer–Vietoris sequences in Stolz and Teichner’s program; see [26, Conjecture 1.17].
In summary, techniques involving bordisms with sitting instants seem appropriate only
for a certain class of topological field theories.

Lurie [20] and Galatius, Madsen, Tillman and Weiss [12] take a different road, consider-
ing a topological category (or Segal space) of bordisms, wherein composition need only
be defined up to homotopy. This allows one to effectively add or discard the collars
with impunity since this data is contractible. Geometric structures can be incorporated
as stable tangential structures, ie maps from bordisms to certain classifying spaces.
This framework also leads to field theories that are relatively easy to work with: one
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can obtain a precise relationship between maps from X to BO.k/ and 1–dimensional
topological field theories over X . However, the price one pays is that such bundles
are not smooth, but merely topological. By this we mean a particular space of field
theories is homotopy equivalent to the space of maps from X (viewed as a topological
space, not a manifold) to the classifying space of vector bundles; in particular, from
this vantage the data of a connection is contractible. Our search for a smooth bordism
category is tantamount to asking for a differential refinement of this data. In the case
of line bundles, such a refinement is the jumping-off point for the subject of (ordinary)
differential cohomology, and one can view our undertaking as a close cousin.

1.2 Why model categories?

Our approach combines aspects of Stolz and Teichner’s definition of bordism categories
internal to smooth stacks [25; 26] and the Segal space version (in the world of model
categories) studied by Lurie. What we obtain is not a bordism category strictly speaking,
but rather bordisms in X comprise a collection of objects and morphisms with a
partially defined composition; this is the categorical translation of the geometric idea
to encode cutting laws rather than gluing laws. To make sense of functors out of this
bordism “category” we provide ourself with an ambient category of smooth categories
with partially defined composition. This is directly analogous to Rezk’s category of
complete Segal spaces as a model for1–categories. However, making the framework
precise requires a foray into the world of model categories. This sort of machinery
rarely turns up in standard differential geometry, so might seem a little misplaced
at first glance; however, in the setting of field theories some basic features of this
language seem unavoidable. For example, the bordism category over X ought to be
equivalent to the bordism category over an open cover fUi ! X g with appropriate
compatibility conditions on intersections; asking for these categories to be isomorphic is
too strong since, for example, they have different sets of objects. Hence, the appropriate
categorical setting for describing bordisms over X must have some native notion of
(weak) equivalence of bordism categories, and the language of model categories was
built precisely to facilitate computations in such situations.

Smooth1–categories are fibrant objects for a model category structure we place on
simplicial objects in smooth stacks. This model structure is chosen to satisfy three
properties: (1) nerves of categories fibered over manifolds determine fibrant objects,
eg the category of (smooth) vector spaces is fibrant; (2) all objects are cofibrant, and in
particular bordisms over X define a cofibrant object; and (3) there is a weak equivalence
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between 1–dimensional bordisms over X and 1–dimensional bordisms over an open
cover fUig of X with compatibility on overlaps. These three properties are the only
features of the model structure we actually use. It is important that bordisms over X

do not give a fibrant object: this is precisely the failure of composition to be defined in
general. However, to compute the (derived mapping) space of smooth functors from
bordisms to vector spaces, fibrant replacement of the source is unnecessary.

We refer the reader to Hirschhorn [15], Barwick [2], and Lurie [19, Appendix A] for
background on model categories relevant to this paper.

1.3 Subsequent work

Since the first version of this paper appeared in 2015, its basic ideas have been used
and expanded by several authors. Some of these developments were alluded to above;
we discuss this further presently.

Ludewig and Stoffel [18] constructed a bordism category using model-categorical
techniques, incorporating ideas similar to those in this paper. One important difference
is that their bordisms are equipped with the germ of a collar, following the ideas of
Stolz and Teichner [26]. Ludewig and Stoffel go on to prove a version of Theorem A;
see [18, Theorems 1.1 and 1.2]. This shows that incorporating collars in the context
of 1–dimensional topological field theories has no effect on the underlying geometric
objects of study. Another important result of Ludewig and Stoffel shows that a version
of Theorem A holds where the target category consists of (not necessarily locally
free) sheaves of vector spaces [18, Theorem 5.2]. These more general sheaves are
an important piece of Stolz and Teichner’s formalism; see [26, Remark 3.16]. As
in the formalism below, a crucial tool in Ludewig and Stoffel’s work is the descent
property for field theories. We also mention that the main results of Benini, Perin
and Schenkel [3] verify and utilize descent for a distinct (though related) category of
1–dimensional algebraic quantum field theories.

In [13], Grady and the second author generalize the 1–dimensional topological bordism
category defined in this paper to arbitrary d–dimensional bordism d–categories. Their
definitions also allow one to incorporate a wide class of geometric structures on d–
dimensional bordisms, expanding the ideas of Stolz and Teichner [26] to the fully
extended context. The categorical foundations of Grady–Pavlov involve a smooth
refinement of d–fold iterated Segal spaces, generalizing the definition of smooth
1–category developed below. The main result of Grady and Pavlov [13] is that fully
extended d–dimensional geometric field theories satisfy descent; their proof generalizes
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the ideas of Section 2. This descent statement leads to good behavior for groupoids
of field theories over a manifold. In particular, concordance classes of d–dimensional
geometric field theories are representable [13, Section 7.2]. This fits nicely with Stolz
and Teichner’s point of view: the main conjectures from [26, Section 1] together with
Brown representability require that concordance classes of 1j1– and 2j1–dimensional
Euclidean field theories be representable. Descent gives a conceptually satisfying
mechanism for representability of a wide class of geometric field theories.

Another important development is a proof — by Grady and the second author [14] —
of a geometric version of the cobordism hypothesis. The model categorical framework
is crucial, as freely adjoining duals to a smooth .1; d/–category can be realized by
Bousfield localization. The formalism and techniques of Section 2 continue to play a
central role: generalizations of cutting-and-gluing constructions decompose bordisms
into elementary handles that in turn generate the bordism categories of interest.

1.4 Notation and terminology

Definition 1.4.1 Let Cart denote the cartesian site whose objects are Rn for n2N, mor-
phisms are all smooth maps, and coverings are the usual open coverings,

`
Rn!Rn.

We will use the notation Œk� to denote the finite set f0; 1; : : : ; kg as an object of the
category � of simplices. The word “space” will often be used to refer to simplicial sets
(ie objects in the category sSetD Fun.�op; Set/), eg a simplicial space is a bisimplicial
set.

We will sometimes refer to objects in C1–Cat and C1–Cat˝ as categories even when
they are not, eg we will often refer to 1–Bordor.X / as the 1–dimensional oriented
bordism category over X .

1.5 Structure of the paper

We have attempted to keep the model-categorical discussion separate from the geometric
one, relegating the former to Section 2 and the latter to Sections 3–5.
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2 From 1–categories to smooth 1–categories

Complete Segal spaces provide a model for1–categories. A complete Segal space
is a simplicial space (ie a functor �op ! sSet) satisfying a Segal and completeness
condition reviewed below. As described by Rezk [21], the value of a Segal space on
Œk� 2� can be thought of as the classifying space for chains of morphisms of length k

in an ordinary category. This has an obvious smooth enhancement via simplicial objects
in smooth stacks�op! Stacks wherein the value on Œk� is a classifying stack for chains
of composable morphisms of length k. This is the approach we take leading to the
definition of a smooth1–category. By adjunction, one can also view these smooth
1–categories as sheaves of complete Segal spaces on the smooth site Cart.

For our applications to field theories, we will assemble 1–dimensional bordisms in M

into a functor�op!Stacks whose value on Œk�2� is the classifying stack of (smoothly)
composable chains of bordisms in M of length k. As we shall see, this functor does not
satisfy the Segal condition. The problem is geometric and unavoidable: arbitrary chains
of bordisms in M compose to a piecewise smooth bordism that need not be smooth. To
work with such an object, we require a larger category that includes simplicial objects
in stacks that do not satisfy the Segal condition.

A systematic method for dealing with this type of issue is to construct a model category
whose fibrant objects satisfy a Segal and completeness condition. This allows one to
work with nonfibrant objects precisely when their failure to be fibrant is not homotopi-
cally problematic. For example, mapping out of a nonfibrant object usually presents no
issues, whereas mapping into a nonfibrant object can be problematic. For complete
Segal spaces, such a model structure was constructed by Rezk as a localization of the
Reedy model structure on simplicial spaces. It is only a mild elaboration to extend
these ideas to simplicial objects in stacks, ie smooth1–categories.

2.1 Complete Segal spaces as fibrant objects in a model category

We overview the small part of Rezk’s theory of complete Segal spaces that we require;
see Rezk [21] for a more thorough treatment.

Definition 2.1.1 A Segal space is a functor C W �op ! sSet that satisfies the Segal
condition, meaning the Segal map

.2.1.2/ C.k/! C.1/�h
C.0/ � � � �

h
C.0/ C.1/; k � 1;

into the homotopy fibered product is a weak equivalence.
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When the spaces are Reedy fibrant, the homotopy fibered product can be computed as
the ordinary fibered product.

To obtain a category of Segal spaces into which the category of categories can be
naturally embedded, it is important to also enforce a completeness condition that we
recall presently. For any Segal space C , let hC denote the underlying homotopy
category. This is an ordinary category defined by Rezk [21, Section 5], whose objects
are 0–simplices of C.0/ and whose morphisms from x0 to x1 are the connected
components of the homotopy fiber of C.1/ over .x0;x1/ for the projection

d0 � d1 W C.1/! C.0/�C.0/:

For a Segal space C , let Cequiv � C.1/ be the subspace consisting of connected
components of the above fiber that correspond to isomorphisms in the homotopy
category. Rezk shows that the degeneracy map s0 W C.0/! C.1/ factors through the
subspace Cequiv.

Definition 2.1.3 A Segal space (Definition 2.1.1) is complete if the map

.2.1.4/ s0 W C.0/! Cequiv

is a weak equivalence.

Following Rezk [21, Section 7], we can define a model category1–Cat whose un-
derlying category is simplicial spaces and whose fibrant objects are complete Segal
spaces. We achieve this by localizing a given standard model structure, namely, the
Reedy model structure on simplicial spaces, which coincides with the injective model
structure; see, for example, Bergner and Rezk [5, Propositions 3.10 and 4.1]. For a
brief review of Reedy model structures, see Section 6. The first set of morphisms in
this localization come from the morphisms of simplicial presheaves on � for each
k 2N given by

.2.1.5/ 'k W Œ1�t
h
Œ0� Œ1�t

h
Œ0� � � � t

h
Œ0� Œ1�! Œk�;

where the source is a k–fold iterated homotopy pushout in the category of simplicial
presheaves on � (alias: simplicial spaces), and we have identified Œm� 2 � with its
associated (representable) presheaf. The maps Œ0�! Œ1� defining the homotopy pushout
Œ1� th

Œ0�
Œ1� are 0 7! 0 and 0 7! 1, and the higher pushouts iterate this basic version.

The homotopy colimit in (2.1.5) can be computed as the ordinary colimit because the
underlying diagram is cofibrant. If we map the source and target of 'k into a simplicial
space C and consider the map that 'k induces on these mapping spaces, we obtain the
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Segal map (2.1.2). (The resulting map 'k has a cofibrant domain and codomain, which
means that derived mapping spaces out of them can be computed as ordinary mapping
spaces.)

Let E denote the simplicial space associated to the simplicial set given by the nerve of
the groupoid with two objects x and y, and two nonidentity morphisms x! y and
y! x. Consider the canonical map

.2.1.6/ x WE! Œ0�;

where again we have identified Œ0� 2 � with its associated representable simplicial
presheaf. Rezk [21, Theorem 6.2] shows that Map.E;C /' Cequiv and the map

C.0/!Map.E;C /' Cequiv

induced by (2.1.6) is a weak equivalence if and only if C is complete. (In fact, this
map is weakly equivalent to the map (2.1.4) defined above.)

Definition 2.1.7 Endow the category Fun.�op; sSet/ of simplicial spaces with the
Reedy model structure, which coincides with the injective structure. Define the model
category of complete Segal spaces, denoted by1–Cat, as the left Bousfield localization
of this model structure along the maps 'k and x from (2.1.5) and (2.1.6).

Remark 2.1.8 It is immediate from the properties of the localized model structure
that fibrant objects in1–Cat are simplicial spaces that are fibrant in the Reedy model
structure and satisfy the Segal and completeness conditions; see Rezk [21, Theorem 7.2],
or compare the proof of Lemma 2.2.7 below. In particular, fibrant objects in1–Cat
coincide with Reedy fibrant complete Segal spaces in the sense of Definition 2.1.3.

2.2 Smooth 1–categories

As mentioned at the beginning of the section, we take smooth1–categories to be a
stack-valued version of Segal spaces. A (smooth) stack is a functor F W Cartop! sSet

satisfying descent for good open covers fUig of objects S 2Cart, meaning the canonical
map

.2.2.1/ F.S/! holim
�Y

F.Ui/�
Y

F.Uij /
!!!

Y
F.Uijk/

!!!!
� � �

�
is a weak equivalence. It will be useful later to observe this comes from mapping the
source and target of

.2.2.2/ S
p
 � hocolim

�a
i

Ui �
a
i;j

Ui \Uj
   

a
i;j ;k

Ui \Uj \Uk
    
� � �

�
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to F and considering the map induced by p between the resulting mapping spaces of
simplicial presheaves on Cart. In this description, the above is regarded as a morphism
of simplicial presheaves and (in particular) we have identified S and the Ui with their
representable presheaves and taken the homotopy colimit in simplicial presheaves.
The latter homotopy colimit can be computed as the Čech nerve of U in simplicial
presheaves (where Ui \Uj \Uk is placed in simplicial degree 2, and analogously for
other intersections) due to the Reedy cofibrancy of the underlying simplicial diagram.
The resulting morphism has a projectively cofibrant domain and codomain, which
allows us to compute derived mapping spaces out of them as ordinary mapping spaces
if the target is projectively fibrant, ie an objectwise Kan complex. We emphasize that
in (2.2.2) the coproduct

`
is taken in the category of presheaves (which is different

from the category of sheaves). The original reference for the model structure on stacks
is Jardine [16]. A description in terms of left Bousfield localizations can be found in
Dugger, Hollander and Isaksen [10].

Definition 2.2.3 The model category PreStacks is the projective model structure on
simplicial presheaves on the cartesian site Cart (Definition 1.4.1), ie Fun.Cartop; sSet/.
The model category Stacks is the left Bousfield localization of PreStacks along the
morphisms (2.2.2) for all good open covers fUigi2I of any S 2 Cart.

Remark 2.2.4 Fibrant objects in PreStacks (Definition 2.2.3) are precisely presheaves
valued in Kan complexes, whereas fibrant objects in Stacks are precisely those fibrant
objects in PreStacks that satisfy the homotopy descent condition (2.2.1).

We now consider the Reedy model structure on the category of simplicial prestacks, ie
functors �op! PreStacks. The existence and basic properties of this model structure
follows from Hirschhorn [15, Theorem 15.3.4], as we review briefly. Weak equivalences
are objectwise, meaning a map F !G of simplicial prestacks is an equivalence if we
get an equivalence of prestacks for each fixed Œn� 2�. Fibrations and cofibrations are
described in terms of relative matching and latching maps; see Section 6. By adjunction,
the Reedy model structure also gives a model structure on the presheaf category

�op
�Cartop! sSet:

In this description, fibrant objects C W�op�Cartop! sSet are precisely those presheaves
that define Reedy fibrant simplicial spaces C.�;S/ W�op! sSet for each S 2 Cart.

We wish to localize this Reedy model structure on simplicial prestacks along the
morphisms (2.1.5), (2.1.6) and (2.2.2), but to do so we need to promote these to
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morphisms in presheaves on � � Cart. We achieve this in the following way. For
each representable presheaf associated to an object Œn� 2� or S 2 Cart, we take the
morphisms of presheaves

.2.2.5/ idŒn� �p; 'k � idS ; x � idS ;

where 'k , x and p are as in (2.1.5), (2.1.6) and (2.2.2), and idŒn� or idS denotes the
identity morphism on the corresponding representable presheaf. Letting Œn� 2� and
S 2 Cart range over all possible objects, we obtain our localizing morphisms.

Definition 2.2.6 Define the model category of smooth 1–categories, denoted by
C1–Cat, as the left Bousfield localization of the Reedy model structure on

Fun.�op;PreStacks/

along the set of morphisms (2.2.5). A smooth functor is a morphism in C1–Cat.

Existence and basic properties of such a localization is shown by Barwick in [2,
Theorem 4.7], since the injective or projective model structure on the category of
simplicial presheaves is left proper and combinatorial; see, for example, Lurie [19,
Section A.2.7, Proposition A.2.8.2 and Remark A.2.8.4]. We summarize what we
require as follows.

Lemma 2.2.7 Fibrant objects C 2C1–Cat (Definition 2.2.6) are simplicial presheaves
on ��Cart such that

(1) for any S 2 Cart, the restriction C.�;S/ W�op! sSet is a fibrant complete Segal
space (Remark 2.1.8);

(2) for any Œn� 2�, the restriction C.Œn�;�/ W Cartop! sSet is a fibrant smooth stack
(Remark 2.2.4).

Proof By Barwick [2, Theorem 4.7], an object C is fibrant in the local model structure
if it is fibrant in the Reedy model structure (ie before localization) and has the additional
property that for all maps f WA! B in (2.2.5), the induced map of derived mapping
spaces

.2.2.8/ Map.B;C /!Map.A;C /

is a weak equivalence. As observed above, C being fibrant before localization reduces
to C.�;S/ being a Reedy fibrant simplicial space for any S 2Cart. We observe that the
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maps in (2.2.5) have cofibrant source and fibrant target, so the derived mapping spaces
in (2.2.8) can be computed as the usual mapping spaces. For the maps �k � idS and
x � idS , we see that C.�;S/ must be a complete Segal space. For the maps idŒn� �p

we see that C.Œn�;�/ must be a stack.

2.3 Symmetric monoidal smooth 1–categories

For our intended application to field theories, we also require a version of symmetric
monoidal smooth1–categories. Following ideas of Segal [23], we implement this via
the category � , the opposite category of finite pointed sets.

Just like for �, presheaves on � are first equipped with the Reedy model structure,
which is then localized with respect to appropriate maps. The category � has nontrivial
automorphisms, so the usual notion of a Reedy model structure must be generalized
to accommodate this new setting, resulting in the strict model structure of Bousfield
and Friedlander [6, Section 3]. This approach was generalized by Berger and Moerdijk
[4], resulting in the notion of a generalized Reedy category and the associated model
structure.

As explained in Segal [23], given a �–object X , we can think of Xhni D Xn as the
space of (formal) n–tuples of elements of some commutative monoid. Here “formal”
means that points of Xn are not actual n–tuples, but rather have certain structure that
makes them formally behave like ones. Specifically, given a map of finite pointed
sets f W hmi ! hni, the associated map Xf W Xhmi ! Xhni should be thought of as
multiplying the elements indexed by f �1fj g for each j 2 hni (the product of an empty
family is the identity element), and throwing away elements indexed by f �1f�g. Given
a �–object X , its nth latching map LnX !Xn can be thought of as the subobject of
Xn comprising those (formal) n–tuples where at least one element is the identity. Given
a �–object X , its nth matching map Xn!MnX can be thought of as sending a formal
n–tuples in Xn to the compatible family of formal tuples given by multiplying two or
more elements, or throwing away one or more elements. A �–object X is cofibrant in
the strict model structure if for all n 2 � , the latching map LnX !Xn is a projective
cofibration of objects equipped with an action of †n. A �–object X is fibrant in the
strict model structure if for all n 2 � , the matching map Xn!MnX is a fibration.

To define the Reedy model structure on presheaves on ��� , it suffices to observe that
generalized Reedy categories are closed under finite products by Berger and Moerdijk [4,
Section 1] and both �op and �op have generalized Reedy category structures by Berger
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and Moerdijk [4, Examples 1.9(a) and (b)]. Thus, we can consider the (generalized)
Reedy model structure on the category of functors

�op
��op

! PreStacks:

Next, we turn attention to the morphisms used to define a local model structure. As
above, we define these morphisms in their adjoint form in the category of functors

�op
��op

�Cartop! sSet:

Denote objects of � by hmi D f�; 1; : : : ;mg, where � is the basepoint. Then consider
the set of morphisms

u W∅! h0i; tm;n
W hmi th0i hni ! hmC ni;

where the maps tm;n are induced by a pair of maps of finite pointed sets (which yield
morphisms in � in the opposite direction) hmi  hmC ni and hni  hmC ni. The
first of these maps is the identity on the subset f1; : : : ;mg and sends mC1; : : : ;mCn

to �. The second of these maps uses the obvious bijection from fmC 1; : : : ;mCng to
f1; : : : ; ng and sends the remainder to �.

We then consider a set of localizing morphisms similar to (2.2.5), only now we have to
fix objects in a pair of the categories �, � and Cart. Explicitly, we take morphisms

.2.3.1/
idŒn� � idhmi �p; 'k � idhmi � idS ; x � idhmi � idS ;

idŒn� � tm;n
� idS ; idŒn� �u� idS ;

where Œn� 2�, hmi 2 � , and S 2 Cart vary over all possible objects.

Definition 2.3.2 Define the model category of symmetric monoidal smooth1–cate-
gories, denoted by C1–Cat˝, as the left Bousfield localization of the Reedy model
structure on the category of functors �op � �op ! PreStacks with respect to the
morphisms (2.3.1).

Again, existence of such a localization is shown by Barwick [2, Theorem 4.7], which
also proves that fibrant objects in the localized structure are precisely fibrant and local
objects in the original model structure.

Lemma 2.3.3 Fibrant objects C 2 C1–Cat˝ (Definition 2.3.2) are Reedy fibrant sim-
plicial presheaves C W�op��op�Cartop! sSet (meaning the adjoint map�op��op!

PreStacks is Reedy fibrant , where PreStacks is equipped with the projective model
structure of Definition 2.2.3) such that
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(1) for any S 2 Cart and hmi 2 � , the restriction C.�; hmi;S/ W �op ! sSet is a
complete Segal space (Remark 2.1.8);

(2) for any fixed Œn� 2� and hmi 2 � , the restriction C.Œn�; hmi;�/ W Cartop! sSet

is a smooth stack (Remark 2.2.4);

(3) for any fixed S 2 Cart and Œn� 2 �, the restriction C.Œn�;�;S/ W �op! sSet is
a special �–space (Segal [23, Definition 1.2] and Bousfield and Friedlander [6,
Section 4]).

Proof Fibrant objects in the local model structure are fibrant object in the Reedy
model structure (selected by the first condition) that additionally satisfy the locality
condition (2.2.8) with respect to the maps (2.3.1). For the maps �k � idhmi � idS and
x � idhmi � idS we see using the adjunction property that C.�; hmi;S/ must be a
complete Segal space. For the maps idŒn� � idhmi �p we see that C.Œn�; Œm�;�/ must
be a stack. For the maps idŒn�� tm;n� idS and idŒn��u� idS we see that C.Œn�;�;S/

must be a special �–space.

Definition 2.3.4 We have a functor

C1–Cat˝! C1–Cat

that restricts a simplicial presheaf on����Cart to��h1i�CartŠ��Cart. We call
this the forgetful functor from symmetric monoidal smooth1–categories to smooth
1–categories.

By virtue of Lemmas 2.2.7 and 2.3.3, the forgetful functor preserves fibrant objects
and weak equivalences between them, and in fact is a right Quillen functor, which can
be seen as follows. Hirschhorn [15, Theorem 15.5.2] shows that there is no difference
between the Reedy model structures on

Fun.�op;Fun.�op;PreStacks//;

Fun.�op;Fun.�op;PreStacks//;

Fun.�op
��op;PreStacks/;

using that �op ��op is a (generalized) Reedy category, with Hirschhorn’s proof still
working for generalized Reedy categories. In particular, the forgetful functor can be
presented as evaluation at h1i 2 � ,

Fun.�op;Fun.�op;PreStacks//! Fun.�op;PreStacks/;

hence it is a right Quillen functor because Reedy (acyclic) fibrations are projective
(acyclic) fibrations.
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2.4 Smooth 1–categories from sheaves of categories

The main example of a Segal space comes from a simplicial space-valued nerve of
an ordinary category; see Rezk [21, Section 3.3]. For small categories C and D, let
Iso.CD/ denote the category whose objects are functors D! C and whose morphisms
are natural isomorphisms of functors. Then define

.2.4.1/ N1 W Cat! Fun.�op; sSet/; C 7! .Œl � 7! N.Iso.CŒl�///:

Rezk [21, Proposition 6.1] proves that N1.C / is a complete Segal space; we sketch
the idea. The set of .k; l/–bisimplices of N1.C/ is the set of diagrams in C

.2.4.2/ Nervek.Iso.CŒl�//D

8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
:

c00
f10
��! c10

f20
��! � � �

fl0
��! cl0??y ??y ??y

c01
f11
��! c11

f21
��! � � �

fl1
��! cl1??y ??y ??y

:::
:::

:::??y ??y ??y
c0k

f1k
��! c1k

f2k
��! � � �

flk
��! clk

9>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>;

;

where cij 2 C are objects, the horizontal arrows fij are morphisms in C, and the vertical
arrows are isomorphisms in C. These diagrams stack horizontally, from which one
deduces that the resulting simplicial space satisfies the Segal condition. Furthermore, the
space we get from setting l D 0 consists of chains of invertible morphisms; unraveling
the definitions (and with a bit of work), this verifies that the Segal space is complete.

To generalize this construction for a nerve valued in smooth1–categories, we consider
diagrams like (2.4.2) with each cij an object in a category-valued presheaf on Cart.

Definition 2.4.3 Given a (strict) presheaf C W Cartop! Cat of categories, consider the
presheaf of groupoids C� W Cartop ��op! Grpd defined by the formula

.S; Œk�/ 7! Iso.C.S/Œk�/:

Define the nerve of a category-valued presheaf as NC1.C/ WD N.C�/.

Lemma 2.4.4 If C satisfies descent , then so does C� and therefore NC1.C/ is fibrant
in the model structure of Definition 2.2.6.
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Proof This follows immediately from Lemma 2.2.7. The part with fixed S is verified
by Rezk. The part with fixed Œk� is satisfied because .�/Œk� and Iso.�/ both preserve
homotopy limits of categories and therefore preserve the descent property for presheaves
of categories.

We will also need a symmetric monoidal version of the previous lemma. This is the
classical construction of a �–object from a symmetric monoidal object with a strict
monoidal structure.

Definition 2.4.5 Given a presheaf C W Cartop! SymCat of symmetric monoidal cat-
egories with a strict monoidal structure (and symmetric strict monoidal functors as
morphisms), consider the presheaf

C� W Cartop ��op
! Cat

defined by the formula
C�.S; hli/D C.S/l

with the naturality in S 2 Cart induced by C and naturality in hli 2 � induced by the
strict monoidal structure on C.S/ and its symmetric braiding. Define the nerve of a
symmetric monoidal category-valued presheaf by NC1

˝ .C/ WD N..C�/�/.

We say a presheaf of symmetric monoidal categories with strict monoidal structure on
Cart satisfies descent if its underlying presheaf of categories (forgetting the symmetric
monoidal structure) does. This construction continues to work when Cart is replaced by
any other site. In Lemma 2.4.6, we need to use the site Cart�� given by the product
of the site Cart and the category � equipped with the trivial Grothendieck topology.

Lemma 2.4.6 If C satisfies descent , then so does C� and therefore NC1
˝ .C/ is fibrant

in the model structure of Definition 2.3.2.

Proof The functor .�/l preserves homotopy limits and therefore preserves the descent
condition. Thus C� satisfies descent and we can invoke the previous lemma.

3 Bordisms, path categories, and field theories

In this section we present our definition of a smooth 1–dimensional topological field
theory over a manifold, as well as a closely related notion of a transport functor.
In Section 3.1, we apply the nerve construction of the previous section to the stack
of vector bundles on Cart to obtain the symmetric monoidal smooth1–category of
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smooth vector spaces, which is a fibrant object in C1–Cat˝. The 1–dimensional
oriented bordism “category” over X , denoted by 1–Bordor.X /, is defined in Section 3.2
and is a nonfibrant object of C1–Cat˝. Together, these define the main ingredients of
a smooth field theory.

The model categories C1–Cat and C1–Cat˝ are simplicial model categories, so they
are equipped with mapping simplicial set functors of the form

C op
�C ! sSet:

These functors are right Quillen bifunctors, and “derived mapping space” below refers
to their right derived functors.

Definition 3.0.1 A 1–dimensional smooth oriented topological field theory over X

is a point in the derived mapping space C1–Cat˝.1–Bordor.X /;Vect/, and the space
of 1–dimensional smooth oriented topological field theories over X is this derived
mapping space.

We will also define a closely related (nonfibrant) smooth1–category of smooth paths
in X , denoted by P.X /, which is a nonfibrant object of C1–Cat.

Definition 3.0.2 A transport functor on X is a point in the derived mapping space
C1–Cat.P.X /;Vect/, and the space of transport functors on X is the derived mapping
space C1–Cat.P.X /;Vect/.

There is a restriction functor

C1–Cat˝.1–Bordor.X /;Vect/! C1–Cat.P.X /;Vect/

from field theories to transport functors.

Before jumping into detailed definitions of the objects in C1–Cat, we overview some of
the ideas that go into in Lurie’s definition of the bordism category [20] as a Segal space;
see also Calaque and Scheimbauer [9]. The standard way of chopping up a manifold M

into k pieces is a Morse function on M with a choice of k nondegenerate critical values.
One can consider the group of diffeomorphisms of M that preserve the inverse images
of these critical values. The classifying space of this diffeomorphism group is roughly
the value of Lurie’s Segal space on Œk� 2�. This is rough because one also wants the
classifying space to allow for varying Morse functions and varying critical values. In
total, the result is a classifying space of the ways of cutting a manifold M along k
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codimension 1 submanifolds. In terms of the usual description of the bordism category,
this corresponds to a composable chain of bordisms of length k � 1. Forgetting a
codimension 1 submanifold or adding extra multiplicity gives maps between these
classifying spaces, producing the requisite simplicial maps. In the 1–dimensional
case, these classifying spaces are particularly easy owing to the simplicity of Morse
decompositions of 1–manifolds. Our approach to 1–Bordor.X / is the same idea, but
we replace the classifying space with a (smooth) classifying stack.

3.1 Smooth vector spaces

Define the sheaf of symmetric monoidal categories, V W Cartop! SymCat, as follows.
The objects of V.S/ are elements of N, corresponding to the dimension of a trivial
bundle on S ŠRm, and morphisms m! n are smooth maps S ! Hom.Rm;Rn/ into
the space of linear maps. The morphism of groupoids associated with maps S! S 0 of
objects in Cart is the identity map on objects, and on morphisms we precompose. The
strict monoidal structure is determined by multiplication in N and tensor products of
linear maps. The (nontrivial) braiding is induced by the obvious block matrix. This
satisfies descent because smooth functions do.

Definition 3.1.1 Let Vect 2 C1–Cat˝ (Definition 2.3.2) be the fibrant object obtained
by applying Lemma 2.4.6 to the sheaf of symmetric monoidal categories V defined
above.

To explain this a bit more concretely, the vertices of the simplicial set associated to
S 2 Cart, Œk� 2� and h1i 2 � are chains of length k of morphisms of vector bundles
over S ,

.3.1.2/ fV0
�1
�! V1

�2
�! � � �

�k
�! Vk j Vi! Sg;

where the dimensions of the Vi correspond to the natural numbers in the formal
definition. The 1–simplices of this simplicial set are commutative diagrams of vector
bundles,

.3.1.3/

8̂̂<̂
:̂

V0
�1
�! V1

�2
�! � � �

�k
�! Vk??y ??y ??y

V 0
0

�0
1
�! V 0

1

�0
2
�! � � �

�0
k
�! V 0

k

9>>=>>; ;
where the vertical arrows are vector bundle isomorphisms. These 0- and 1–simplices
vary with Œk�2� by composing horizontal morphisms of vector bundles or by inserting
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"

�

#

 �������������������������������!

Figure 1: A vertex (ie an object) in the simplicial set 1–Bordpt.pt/.2; 3/. The
bordism is drawn in solid black, the height function is given by the height
in the picture, and the cut functions are represented by the dotted horizontal
lines. The map to f0; 1; 2g 2 � maps the left of the vertical dotted line to 1
and the right of the vertical line to 2. The fiber over zero is empty. Regularity
at the cut values means that the intersections of the bordism with the dotted
lines are transverse. Restricting attention to the bordism confined within an
adjacent pair of horizontal dotted lines gives the three Segal �–maps and
similar restrictions corresponding to the vertical dotted line gives the two
Segal �–maps. The action by †2 interchanges the bordisms on the left and
right sides of the vertical dotted line.

a horizontal identity morphism of vector bundles. We can also pull this data back along
smooth maps S 0! S .

3.2 The definition of the 1–dimensional bordism category

Definition 3.2.1 (the 1–dimensional oriented bordism category over X ) Given
X 2 Fun.Cartop; Set/ (the most important example of X being the presheaf induced
by a smooth manifold), the nonfibrant smooth symmetric monoidal 1–category
1–Bordor.X / (Definition 2.3.2) is defined by taking the nerve of the following presheaf
of groupoids on �� Cart� �: send Œl � 2 � , Œk� 2 �, and S 2 Cart to the groupoid
whose objects are given by data

(1) M 1, an oriented 1–manifold that defines a trivial bundle M 1 �S ! S ,

(2) a map  WM 1 �S !X � f�; 1; : : : ; lg,
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(3) cut functions t0 � t1 � t2 � � � � � tk 2 C1.S/,

(4) a proper map h WM 1 �S !R�S over S called the height function such that
for each s 2 S the fiber of h over s 2 S has ti.s/ as a regular value for all i .

Isomorphisms in the groupoid are certain equivalence classes defined as follows. First
consider the set of smooth functions �0; �k ; �

0
0
; �0

k
WS! .0;1/ together with orientation-

preserving diffeomorphisms

� W h�1..t0� �0; tk C �k/�S/! .h0/�1..t 00� �
0
0; t
0
k C �

0
k/�S/

over S �X such that � restricts to a fiberwise diffeomorphism over S �X of the form

h�1.Œti ; tj ��S/! .h0/�1.Œt 0i ; t
0
j ��S/

for any 0 � i � j � k. Two such elements are equivalent if their restrictions to
h�1.Œt0; tk ��S/ coincide. The quotient sets admit a well-defined composition operation,
given by pointwise composition.

Functoriality in S is given by the composition of  , t , h, and � with the given map
S 0! S . Functoriality in � is given by postcomposing  with the given map of finite
sets f�; 1; : : : ; lg ! f�; 1; : : : ; l 0g. Functoriality in � with respect to a morphism of
simplices Œk 0�! Œk� is given by dropping those ti for which i is not in the image of Œk 0�
and duplicating those ti that are in the image of more than one element of Œk 0�, and
restricting � accordingly.

We observe that 1–Bordor.X / is covariant in X : a smooth map X ! Y induces a
smooth symmetric monoidal functor 1–Bordor.X /! 1–Bordor.Y /.

Remark 3.2.2 The properness assumption on 0–simplices in property (1) guarantees
that the 1–dimensional bordism “between” S � ft0g and S � ftkg is compact in each
fiber over S .

Remark 3.2.3 The second piece of data, M 1 �S !X � f�; 1; : : : ; lg, encodes both
the map from the bordism to X , and the partition of connected components of this
bordism associated with the monoidal structure. Our definition of 1–Bordor.X / does
not satisfy the Segal �–condition, but this failure of fibrancy is not a problem for
computing field theories.

Remark 3.2.4 Below, we will find it convenient to replace 1–Bordor.X / with a weakly
equivalent object 1–Bord0or.X /, which coincides with 1–Bordor.X / for all Œn� 2 �
except for nD 0, where we replace the �–object 1–Bordor.X /.0/ with the �–object
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hmi 7! .X t X /m, where hmi D f�; 1; : : : ;mg and X m denotes the representable
presheaf of the m–fold cartesian product of XtX , corresponding to the two orientations
of points. There are canonical homotopy equivalences 1–Bord0or.X /! 1–Bordor.X /

and 1–Bordor.X /! 1–Bord0or.X / that identify points in X with constant paths in X

equipped with the cut function t0 D 0. The advantage of this replacement is that
1–Bord0or.X /.0/.m/ is a representable presheaf for all hmi 2 � , hence a cofibrant
object in the projective model structure on Stacks.

3.3 The category of smooth paths in a smooth manifold

Similar to the intuition behind cutting bordisms, we can also consider an analogous
structure for paths in X . In this case a Morse function is afforded by the parametrization
of the path itself.

Definition 3.3.1 Given X 2 Fun.Cartop; Set/ (the most important example of X

being the presheaf induced by a smooth manifold), define the smooth path category
PX 2 C1–Cat (Definition 2.2.6) of X as the nerve of the presheaf of groupoids on
��Cart constructed as follows. A pair Œk� 2�, S 2 Cart is sent to the groupoid whose
objects consist of a map  W S �R!X and cut functions t0 � t1 � � � � � tk 2 C1.S/.

Isomorphisms in the groupoid are equivalence classes of a certain equivalence rela-
tion. Elements in the underlying set of this equivalence relation are smooth functions
�0; �k ; �

0
0
; �0

k
W S ! .0;1/ together with orientation-preserving diffeomorphisms

� W .t0� �0; tk C �k/�S ! .t 00� �
0
0; t
0
k C �

0
k/�S

over S �X such that � restricts to a fiberwise diffeomorphism over S �X of the form

Œti ; tj ��S ! Œt 0i ; t
0
j ��S

for any 0 � i � j � k. Two such elements are equivalent if their restrictions to
Œt0; tk �� S coincide. The quotient sets admit a well-defined composition operation,
given by pointwise composition.

Functoriality in S is given by the appropriate composition of  , t , and � with the given
map S 0! S . Functoriality in � with respect to a morphism of simplices Œk 0�! Œk� is
given by dropping those ti for which i is not in the image of Œk 0� and duplicating those
ti that are in the image of more than one element of Œk 0�, and restricting � accordingly.

We recall that a manifold X defines a presheaf (of sets) on Cart, and the fiber of PX

over Œ0� 2 � is homotopy equivalent to this presheaf via the map .; t0/ 7!  .t0/,
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with an inverse that sends a map f W S ! X to an S–family of constant paths,
S �R! S

f
�!X , with cut function the zero function. The fiber of PX over S 2Cart

and Œk�2� is the nerve of the groupoid of S–families of paths in X with kC1 marked
points and diffeomorphisms of these paths. The object PX is covariant in X , meaning
a smooth map X ! Y induces a smooth functor PX ! PY ; hence P is a functor
from Mfld to C1–Cat.

There is a smooth functor PX ! U.1–Bordor.X // in C1–Cat (where U denotes the
forgetful functor of Definition 2.3.4) we get by viewing a family of paths as the family
of bordisms S �M 1 D S �R and the height function h the projection to R. This has
an induced restriction map

C1–Cat˝.1–Bordor.X /;Vect/! C1–Cat.PX;Vect/

from 1–dimensional field theories over X to representations to the smooth path category
of X . Here C1–Cat˝.�;�/ and C1–Cat.�;�/ denote the corresponding derived
mapping simplicial sets.

Remark 3.3.2 In analogy to Remark 3.2.4, we will find it convenient to replace PX

with a weakly equivalent object P 0X , which coincides with PX for all Œn� 2� except
for n D 0, where we replace PX.0/ with X itself. There are canonical homotopy
equivalences X ! PX.0/ and PX.0/!X that identify X with constant paths in X

equipped with the cut function t0D 0. The advantage of this replacement is that P 0X.0/
is a representable presheaf, hence a cofibrant object in the projective model structure
on Stacks.

3.4 Descent for field theories and representations of paths

A key step to verifying the main theorem is that field theories over X and representations
of smooth paths in X can be computed locally in the following sense.

Theorem C Let fUig be an open cover of a smooth manifold X . The canonical maps

hocolimP.Uk/! P.X /; hocolim 1–Bordor.Uk/! 1–Bordor.X /

are equivalences of smooth1–categories and symmetric monoidal smooth1–cate-
gories , respectively. Here k runs over all finite tuples of elements in I and Uk denotes
the intersection of Ui for all i 2 k. This immediately implies that the assignments

X 7! C1–Cat.P.X /;Vect/; X 7! C1–Cat˝.1–Bordor.X /;Vect/

are stacks on the site of smooth manifolds.
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Proof See Grady and Pavlov [13, Theorem 1.0.1] for the case of bordism categories.
The case of path categories then follows formally. We remark that the most technical
part of the cited proof — Section 6.6 in [op. cit.] — becomes completely trivial in the
1–dimensional case, since the nerves of relevant categories are contractible for trivial
reasons.

We apply the above result to reduce our main theorems to the case X 2 Cart. In
particular, this simplifies the construction of a transport functor from a vector bundle
with connection, since the general case X 2 Mfld would require us to work with
arbitrary cocycles for vector bundles, bringing considerable technicalities, whereas for
X 2Cart all vector bundles over X are trivial, and the problem reduces to manipulating
connection 1–forms.

Definition 3.4.1 We define Vectr 2Stacks as follows. Given X 2Cart, we send it to the
nerve of groupoid whose objects are pairs .n; !/, where n� 0 specifies a finite-dimen-
sional vector space V DRn and ! 2�1.X;End.V //. Morphisms .n; !0/! .n; !1/

are smooth maps f 2 C1.X;GL.V // such that !1 D Adf �1!0Cf
�1df , where Ad

denotes the adjoint action.

The groupoid Vectr.X / is equivalent to the groupoid of trivial vector bundles with
connection over the cartesian space X .

Corollary 3.4.2 Consider the functors

C1–Cat.�;Vectr/;C1–Cat.P.�/;Vect/ W Fun.Cartop; Set/op! sSet

that send X 2 Fun.Cartop; Set/ to C1–Cat.X;Vectr/ and C1–Cat.PX;Vect/, respec-
tively. The space of natural weak equivalences

C1–Cat.�;Vectr/! C1–Cat.P.�/;Vect/

is weakly equivalent to the space of natural weak equivalences between the same
functors , restricted along the Yoneda embedding Cart! Fun.Cartop; Set/ to the cate-
gory Cart. In particular , any natural weak equivalence

Vectr ! C1–Cat.P.�/;Vect/

on Cart can be extended to a natural weak equivalence on Fun.Cartop; Set/ in a unique
way up to a contractible choice.

Proof Cart generates Fun.Cartop; Set/ under homotopy colimits. Both functors,

C1–Cat.�;Vectr/ and C1–Cat.P.�/;Vect/;
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send homotopy colimits in Fun.Cartop; Set/ to homotopy limits in sSet. For the former,
it boils down to the classical fact that vector bundles with connection satisfy descent,
whereas for the latter it follows from Theorem C.

In the next section, we construct a specific weak equivalence

Vectr ! C1–Cat.P.�/;Vect/

in PreStacks, which will prove that representations of the path category of any smooth
manifold X are precisely vector bundles with connection over X .

4 Representations of the smooth path category of a manifold

In this section we prove the following.

Proposition 4.0.1 Given X 2 Fun.Cartop; Set/, the derived mapping space

C1–Cat.PX;Vect/

is naturally weakly equivalent to Vectr.X / of Definition 3.4.1. (In particular , we can
take X 2Mfld.)

Proof By Corollary 3.4.2, it suffices to construct such a natural weak equivalence
for X 2 Cart. Replace PX with weakly equivalent P 0X from Remark 3.3.2. Recall
that Vect is fibrant in C1–Cat (Lemma 2.2.7). Furthermore, the stack of objects
.P 0X /Œ0� D P 0X.0/ D X is a representable (hence cofibrant) presheaf in PreStacks

and Vect and P 0X are constructed as objectwise nerves of groupoids. Hence, the
derived mapping space C1–Cat.P 0X;Vect/ can be computed using the nonderived
hom C1–Cat.P 0X;Vect/. The map

Vectr.X /! C1–Cat.P 0X;Vect/

is constructed in Definition 4.0.2 and is shown to be an isomorphism in Lemma 4.1.2
and Proposition 4.2.10.

The following construction codifies the parallel transport data of a connection on a
vector bundle as a functor.

Definition 4.0.2 Given X 2 Cart, we construct a map (natural in X )

Vectr.X /! C1–Cat.P 0X;Vect/
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as follows. A (trivial) vector bundle with connection .n; !/ defines a smooth functor
R W P 0X ! Vect via parallel transport: to f W S !X , an S–family of points in X , we
assign the object n over S , defining a functor X D P 0X.0/! Vect.0/. To a family of
oriented paths S �R!X , we apply the fiberwise parallel transport with respect to the
connection 1–form !, yielding a morphism of (trivial) vector bundles over S . These
maps are invariant under families of diffeomorphisms of 1–manifolds, so we obtain a
functor P 0

S
X.1/! VectS .1/, which is again natural in S so defines a fibered functor

P 0X.1/! Vect.1/ by extension from individual fibers in the usual fashion. We extend
in the obvious way to P 0X.k/! Vect.k/, where naturality with respect to maps in �
follows from compatibility of parallel transport with concatenation of paths. Hence,
we have constructed a functor from the path category of X to smooth vector spaces.
Lastly, we observe that an isomorphism of vector bundles with connection leads to a
natural isomorphism of functors of such functors, ie an edge in the simplicial mapping
space. An n–simplex comes from a composable n–tuple of isomorphisms of vector
bundles with connection.

4.1 Reduction to parallel transport data

In this section we whittle the proof of Proposition 4.0.1 down to a statement about
parallel transport data, by which we shall mean smooth endomorphism-valued functions
on paths that compose under concatenation of paths and are compatible with restrictions
to intersections of the cover. The next definition and lemma describe the precise manner
in which a representation of the path category determines a transport functor on X .

Definition 4.1.1 We define the stack Tran 2 PreStacks of transport data as follows.
Given X 2 Cart, we send it to the nerve of groupoid whose objects are pairs .n;F /,
where n� 0 determines a vector space V DRn and F is a morphism

F WR�Hom.R;X /! End.V /

in PreStacks such that the following three properties are satisfied: (1) for any p WR!X

and any L1;L2 2R the following functoriality property holds:

F.L2;p ıSL1
/ ıF.L1;p/D F.L1CL2;p/;

where SL1
.t/ D t � L1; (2) for any p W R ! X we have F.0;p/ D idV ; (3) F is

invariant under diffeomorphisms of paths: if g W R! R is an orientation-preserving
diffeomorphism such that g.0/D 0, then

F.L;p/D F.g�1.L/;p ıg/:

Algebraic & Geometric Topology, Volume 23 (2023)



Smooth one-dimensional topological field theories are vector bundles with connection 3733

(The first argument of F specifies the length L of a smooth path p in X . The path itself
is given by the second argument of F and is parametrized by Œ0;L��R.) Morphisms
F1! F2 are smooth maps h WX ! GL.V / such that

h.p.L// ıF1.L;p/D F2.L;p/ ı h.p.0//:

Lemma 4.1.2 There is an isomorphism in PreStacks,

C1–Cat.P 0.�/;Vect/! Tran:

(P 0X is constructed in Remark 3.3.2.)

Proof Fix some X 2 Cart; we need to define a morphism

C1–Cat.P 0X;Vect/! Tran.X /:

Both sides are nerves of groupoids, so we define the map first on objects, then on
morphisms. Pick a functor R W P 0X ! Vect. The presheaf of objects PX.0/ D X

maps via R to a fixed object of Vect given by some dimension n � 0. The data
of F is obtained by evaluating on Œ1� 2 � with cut function t0 D 0. On objects, we
map R 7! .n;F /. Property (1) boils down to functoriality with respect to the three
coface maps Œ1�! Œ2� in �, where the middle face map computes the composition.
Property (2) boils down to functoriality with respect to the codegeneracy map Œ1�! Œ0�

in �. Property (3) boils down to the fact that isomorphisms in PX.Œn�;S/ are endpoint-
preserving diffeomorphisms between n–chains of paths in X , whose individual .nC1/

vertices are identity maps (this holds for P 0X , not for PX ). Finally, a morphism
R ! R0 is given by a map h W X D P 0X.0/ ! GL.n/, which yields a morphism
h W .n;F /! .n0;F 0/ (where nD n0).

Conversely, the inverse map

Tran.X /! C1–Cat.P 0X;Vect/

sends .n;F / to the functor R W P 0X ! Vect that maps the presheaf of objects P 0X.0/
to n. The presheaf of k–simplices for k � 1 is mapped to the corresponding transport
maps between endpoints.

4.2 From parallel transport data to vector bundles with connection

From the above discussion, we have shown that a point in the (derived) mapping
space C1–Cat.PX;Vect/ for X 2 Cart defines a parallel transport data for a vector
bundle on X , ie an object of Tran.X /. In this section we explain how parallel trans-
port data defines a vector bundle with connection. More precisely, we construct an
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equivalence Tran.X /! Vectr.X /. Most of the ideas below are present in Freed [11]
and Schreiber and Waldorf [22], and we have adapted them to our situation with some
minor modifications.

Lemma 4.2.1 Given X 2 Cart and .n;F / 2 Tran.X /, the map F assigns the identity
map on V DRn to constant paths in X .

Proof Since a constant path  can be factored as the concatenation  �  , the value
of F on  must be a projection in V , denoted by P . Furthermore, there is a family of
constant paths parametrized by Œ0; t � coming from the restriction of  to Œ0; t 0�� Œ0; t �.
Over t 0 D 0, the constant path is the identity morphism in the path category and
therefore is assigned the identity linear map. Smoothness gives a family of projections
connecting P on V that is the identity projection at an endpoint. Since the rank of
the projection is discrete, it must be constant along this family. Therefore, P is the
identity.

Lemma 4.2.2 Given X 2Cart and .n;F /2Tran.X /, the map F lands in the invertible
morphisms , ie the morphism F. / for an family of paths  is an isomorphism on
V DRn.

Proof Since a path of length zero is assigned the identity linear map on V , by continuity
there is an � > 0 such that the restriction of any path  to Œ0; �� is assigned an invertible
morphism. Observe that this holds for any point on a given path (though possibly with
variable �). Choosing a finite subcover and factoring the value on a path into the value
on pieces of the path subordinate to the subcover, we see that the value on a path is a
composition of vector space isomorphisms, and therefore an isomorphism.

The remaining work is in the construction of an inverse to the map Vectr.X /!Tran.X /
(see Definition 4.0.2 and Lemma 4.1.2). For this we use the following two lemmas of
Schreiber and Waldorf [22, Lemmas 4.1 and 4.2], reproduced here for convenience.

Lemma 4.2.3 For a finite-dimensional vector space V , smooth functions

F WR�R! Aut.V /

satisfying the cocycle condition F.y; z/ �F.x;y/D F.x; z/ and F.x;x/D id are in
bijection with 1–forms , �1.RIEnd.V //.

Proof Given such a 1–form A, consider the initial value problem

.4.2.4/ .@t˛/.t/DAt .@t /.˛.t//; ˛.s/D id;
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where ˛ WR!Aut.V / and s 2R. We obtain a unique solution ˛.t/ depending on s, and
define F.s; t/D ˛.t/. The function F is smooth in s because the original coefficients
were smooth in s, and is globally defined because the equation is linear. To verify that
F.s; t/ satisfies the cocycle condition, we calculate

@t .F.y; t/F.x;y//D .@tF.y; t//F.x;y/DAt .@t /F.y; t/F.x;y/;

and since F.y;y/F.x;y/DF.x;y/, uniqueness dictates that F.y; t/F.x;y/DF.x; t/.
Conversely, for F WR�R! Aut.V /, let ˛.t/D F.s; t/ for some s 2R and let

At .@t /D .@t˛.t//˛.t/
�1:

When F satisfies the cocycle condition, At .@t / is independent of the choice of s:

F.s0; t/D F.s1; t/F.s0; s1/ D) .@tF.s0; t//F.s0; t/
�1
D .@tF.s1; t//F.s1; t/

�1:

This gives the desired bijection.

Lemma 4.2.5 Let A;A0 2�1.RIEnd.V // be endomorphism valued 1–forms on R

and g W R! Aut.V / be a smooth function. Let FA and FA0 be the smooth functions
corresponding to A and A0 by Lemma 4.2.3. Then

g.y/ �FA.x;y/D FA0.x;y/ �g.x/

if and only if A0 D Adg�1ACg�1dg.

Proof The function g.y/FA.x;y/g.x/
�1 solves the initial value problem (4.2.4)

for A0,

@y.g.y/F.x;y/g.x/
�1/D .@yg.y//F.x;y/g.x/�1

Cg.y/@yF.x;y/g.x/�1

D .@yg.y/g.y/�1/.g.y/F.x;y/g.x/�1/

C.g.y/Ay.@y/g.y/
�1/.g.y/F.x;y/g.x/�1/;

so by uniqueness we obtain the desired equality.

Now we construct a differential form from the parallel transport data that will give
rise to a connection. Throughout, .d;F / 2 Tran.X / is a transport data on X 2 Cart

with typical fiber V DRd . Let  WR!X be a path such that  .0/D p and P .0/D v;
restrictions of  to intervals (as a family over R2) will give a family of paths in PX ,
ie a 0–simplex. Define

F .x;y/D F. W Œx;y�!X /; F WR�R! End.V /:

By the above lemma, F gives us a 1–form A with values in End.V /. By varying  ,
we want to promote this to a 1–form on X whose value at .p; v/ is A .@t /.
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Definition 4.2.6 The morphism Tran! Vectr is defined as follows. Fix X 2 Cart

and .d;F / 2 Tran.X /; we need to produce A 2 �1.X;End.V //, where V D Rd .
Fix a point p 2 X and a tangent vector v 2 X ; we need to define Ap.v/ 2 End.V /.
We use the linear structure on X Š Rn to define Ap.v/ D .Atv/0.1/, where tv is
the path through p 2 X with velocity vector v 2 X , Atv is a 1–form on R, and
.Atv/0.1/ is the value of this 1–form at 0 evaluated at 1 2 T0R. This defines a functor
Tran.X /! Vectr.X / on objects, and on morphisms we send h WX !GL.V / to itself,
now viewed as a morphism in Vectr.X /.

Lemma 4.2.7 Definition 4.2.6 is well defined : objects in Tran are sent to smooth
differential 1–forms A 2�1.X;End.V //, and isomorphisms are sent to gauge trans-
formations A0 7! Adg�1ACg�1dg.

Proof The claim on isomorphisms follows from Lemma 4.2.5. To verify the claim
on objects, we first observe that A is smooth: choose families of affine paths in a
neighborhood of p and invoke smoothness of the representation. Furthermore, we
claim that A satisfies A.�v/D �A.v/ for all � > 0. To see this, define �.t/D  .�t/

for � > 0. We compute

A.�v/D @tF�
.0; t/jtD0 D @tF .0; �t/jtD0 D �A.v/:

Lemma 4.2.8 shows that this property implies A is linear.

Lemma 4.2.8 A smooth function A W V ! W between vector spaces that satisfies
A.�v/D �A.v/ for � > 0 is linear.

Proof It suffices to show that A is equal to its derivative at zero. From the assumptions
it follows that A.0/D 0. Smoothness of A implies that dA.0/ exists, and we compute
its value on v by the one-sided limit

.dA.0//.v/D lim
�!0C

A.�v/=�D lim
�!0C

�A.v/=�DA.v/;

completing the proof.

The next lemma shows that A determines the given representation. Our techniques are
in the spirit of D Freed’s [11, Appendix B], though benefited from K Waldorf pointing
out to us the utility of Hadamard’s lemma in this context.

Lemma 4.2.9 For X 2 Cart and .d;F / 2 Tran.X /, the value of F on a path  is the
path-ordered exponential associated to the End.V /–valued 1–form A constructed in
Definition 4.2.6, where V DRd .
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Proof Let X Š Rn and  W Œ0;T �! Rn be a path. Fix N a large integer, and let i

denote the restriction of  to ŒT .i � 1/=N;T i=N � for 1 � i � N . By definition of
Tran.X /,

F. /D F.N / ı � � � ıF.2/ ıF.1/:

Reparametrize i by Qi.t/ WD i.T .tCi�1/=N / and let `i W Œ0;T=N �!Rn denote the
affine path of length 1 starting at i.0/ with velocity Pi.0/D vi . By Hadamard’s lemma
there is a smooth function gi with i.s/�`i.s/D s2gi.s/. Define G W Œ0; 1�! End.V /
by G.t/ WD F. Qi jŒ0;t �/. Using that Qi.s/D `i.s.T=N //C s2.T 2=N 2/gi.s.T

2=N 2//

and applying Hadamard’s lemma to G we obtain

G.t/DG.0/C tG0.0/C t2G2.t/D idC t.T=N /A`i
.vi/CO.N�2/

for some function G2 W Œ0; 1�! End.V /. The O.N�2/ estimate comes from Taylor’s
formula and the fact that the original domain of definition Œ0;T � is compact, so a uniform
estimate can be given for the coefficient before .T=N /2. The claimed form of the deriv-
ative G0.0/ follows from Lemma 4.2.8 and an argument in Schreiber and Waldorf [22,
Lemma B.2] (reproduced in the next paragraph) to show that Ai

.vi/DA`i
.vi/.

First we consider the family of paths �.t; ˛/ WD `i.t/ C ˛gi.t/ depending on the
parameter ˛ for 0 � ˛ � 1. Define q W Œ0; 1�2 ! Œ0; 1�2 by .t; ˛/ 7! .t; t2˛/. The
composition

.� ı q/.t; ˛/D `i.t/C˛t2gi.t/

defines a smooth homotopy running from `i (when ˛ D 0) to i (when ˛ D 1). For
a fixed ˛, we evaluate F on the family of paths � ı q obtained from restriction to
Œ0; t �� f˛g � Œ0; 1�2 and differentiate with respect to t using the chain rule,

d

dt
F..� ı q/jŒ0;t ��f˛g/jtD0 D d.F.�//jq.0;˛/ ı

dq

dt

ˇ̌̌
tD0
D d.F.�//j.0;0/ ı .1; 0/:

The right-hand side is independent of ˛, whereas the left-hand side is A`i
.vi/ for ˛D 0

and Ai
.vi/ when ˛ D 1, so the claim follows.

Putting this together, we have F.i/ D idC .T=N /A`i
.vi/CO.N�2/; and taking

N !1,

F. /D lim
N!1

.idC.T=N /A`1
.v1//.idC.T=N /A`2

.v2// � � � .idC.T=N /A`N
.vN //

D lim
N!1

exp..T=N /A`1
.v1// exp..T=N /A`2

.v2// � � � exp..T=N /A`N
.vN //

D P exp.A. P //;

since the limit is the definition of the path-ordered exponential of A along  .
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Proposition 4.2.10 The morphism

Tran! Vectr

in PreStacks constructed in Definition 4.2.6 is an isomorphism.

Proof The inverse isomorphism is the composition

Vectr.X /! C1–Cat.P 0X;Vect/! Tran.X /;

where the two maps are constructed in Definition 4.0.2 and Lemma 4.1.2. As shown in
Lemma 4.2.9, for every X 2 Cart, the composition

Tran.X /! Vectr.X /! Tran.X /

is an isomorphism on objects. Morphisms in Tran.X / and Vectr.X / were defined as
smooth maps X !GL.V / satisfying certain respective properties, and we have shown
in Lemma 4.2.7 that these properties are preserved by these functors.

5 Smooth 1–dimensional field theories and the cobordism
hypothesis

We keep the notation of the previous section: X 2 Cart is a cartesian space, on which
we consider a field theory.

By construction, there is a map PX ! U.1–Bordor.X // (in the category C1–Cat of
Definition 2.2.6, where U is the forgetful functor of Definition 2.3.4) that views a path
as a bordism. This will allow us to apply arguments from the preceding section to the
bordism category.

Lemma 5.0.1 The value of a field theory — see Definition 3.0.1 — on a family of
bordisms  W S �M !X as a vertex in 1–Bordor

S
.X / is equal to the value on a bordism

sit W S �M !X that has the same image in X as  but has sitting instants , meaning
that the map sit WM !X is constant near t0 and t1.

Proof Using the �–structure, it suffices to prove the lemma for arcs in X , ie S–
families  W S � I ! X for I an interval. Choose b W R! R to be a smooth bump
function such that bj.�1;1=3� D 0, bjŒ2=3;1/ D 1, and bj.1=3;2=3/ � .0; 1/. Consider a
new .S�R/–family of 1–manifolds that, for t 2R, is given by sit WD  ı�.x; t/, where
�.x; t/D txC .1� t/b.x/ for x 2 I . To this family a field theory assigns a smooth
family of linear maps. We observe that for all t 2 .0; 1�, the fibers in this family are
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isomorphic as morphisms in the fiber of 1–Bordor.X / over S D pt 2 Cart. Therefore, a
field theory assigns the same linear maps for all t ¤ 0. By smoothness, we obtain the
same linear map at t D 0 and the resulting path has sitting instants around 0 and 1 by
construction.

We are now ready to prove Theorem B.

Theorem D Evaluating at h1i2� and restricting along PX!U.1–Bordor.X // yields
a weak equivalence of derived mapping simplicial sets , natural in X 2Mfld (and , more
generally, X 2 Fun.Cartop; Set/),

C1–Cat˝.1–Bordor.X /;Vect˝/! C1–Cat.PX;Vect/:

Thus , there is an equivalence between 1–dimensional oriented topological field theories
over X valued in Vect˝ and C1–functors from the smooth path category of X to Vect.

Proof Applying Theorem C, we reduce the problem to the case X 2 Cart. Apply-
ing Remark 3.2.4, we replace 1–Bordor.X / with 1–Bord0or.X /, for which we have
1–Bord0or.X /.Œ0�; h1i/DX tX , corresponding to two possible orientations of points
in X . These two copies of X a priori map to some d; d 0 2 N D Vect.X /.Œ0�; h1i/,
which uniquely determines the maps on 1–Bord0or.X /.Œ0�; hmi/ for m¤ 1. As shown
below, we necessarily have d D d 0, which corresponds to the dimension of the vector
bundle determined by the field theory.

To understand the value of a field theory on morphisms, since the target category
Vect˝ is fibrant (Lemma 2.3.3), in particular, satisfies the Segal �–condition, a functor
1–Bordor.X /! Vect is determined (up to a contractible choice) by its value over the
fiber Œ1� 2�. Furthermore, since any bordism can be expressed as a disjoint union of
connected bordisms, we can restrict attention to S–families of connected 1–manifolds
in 1–Bordor

S
.X /.1/.

In the case that cut functions satisfy t0 < t1, Morse theory of 1–manifolds cuts a given
connected bordism into elementary pieces that are of three types: (1) bordism from a
point to a point (all points of M 1 � fsg are regular values for h), (2) bordisms from
the empty set to a pair of points (0–handles), and (3) bordisms from a pair of points
to the empty set (1–handles). For a given bordism, ie 0–simplex of 1–Bordor.X /, this
reduction comes from a choice of (new) height function that is Morse with regular values
at the prescribed cut values, which defines a 1–simplex in 1–Bordor.X / connecting
the original bordism to one with a Morse height function. Then we can impose
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additional cut points using the Morse height function to reduce to the cases above. The
relations among these generators are precisely the familiar birth-death diagrams from
1–dimensional Morse theory.

When cut functions satisfy t0 D t1, since t0 is a regular value and the bordism is
connected, this bordism is in the image of the degeneracy map, ie is an identity path in
the bordism category. For S connected and t0 � t1 with t0 D t1 somewhere on S , then
this is necessarily a bordism of type (1) above.

In the case that the above types of generating bordisms are mapped constantly to X ,
meaning the map x WM 1 �S ! X factors through the projection to S , the standard
dualizable object argument shows that the value of the field theory on the .C/–point
must be a vector space .VC/x D Rd , and the value on the .�/–point is the dual
space, .V�/�x DRd 0 , which in our formulation amounts to showing d D d 0.

Now we need to show that the value on a generating bordism with an arbitrary map
to X is determined by the value of the field theory on the path category. For generating
bordisms of type (1) this is clear, since such a bordism can be identified with a morphism
in the path category.

For bordisms of type (2) and (3) we use Lemma 5.0.1 to identify the value of a field
theory on a 0– or 1–handle with the value on a handle that has a sitting instant at its
Morse critical point. Then we can factor the handle into 3 pieces: one given by a subset
of the sitting instant of the Morse critical points (ie a handle that is mapped constantly
to X ) and two paths given by the closure of the complement of this subset in the
original handle. Hence, the value of the original bordism is determined by previously
computed dualizing data at the sitting instant together with the value on paths between
points.

Proof of Theorem A The result follows from Theorem B and Proposition 4.0.1.

6 Reedy model structures

In this auxiliary section we review the necessary facts from the theory of Reedy model
structures.

Let C be a model category. Following Hirschhorn [15, Definition 15.3.3], we review
the Reedy model structure on the category of simplicial objects in C , ie the category
of functors �op! C .
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First, define the nth latching functor, Ln W Fun.�op;C /! C as

LnX D colim
Œm�!Œn�

Xm;

where the colimit is indexed by surjections of finite ordered sets Œm� Œn� that are not
isomorphisms (ie the union of degenerate simplices). Similarly, define the nth matching
functor Mn W Fun.�op;C /! C as

MnX D lim
Œm� Œn�

Xm;

where the limit is indexed by injections of finite ordered sets Œm�! Œn� that are not
isomorphisms (ie the defining data of a boundary of an n–simplex).

Now, in the Reedy model structure on simplicial objects in C , a map X ! Y is a
cofibration if

Xn tLnX LnY ! Yn

is a cofibration in C for any Œn� 2�. Similarly, a map X ! Y is a fibration if

Xn! Yn �MnY MnX

is a fibration for any Œn� 2�. In particular, an object X is cofibrant if the latching map
LnX !X is a cofibration in C for any Œn� and fibrant if the matching map X !MnX

is a fibration in C for any Œn� 2�.

By Hirschhorn [15, Theorem 15.6.27] the Reedy model is cofibrantly generated, with
generating (acyclic) cofibrations as in Hirschhorn [15, Definition 15.6.23]: if A! B

is a generating (acyclic) cofibration in C , then A˝ Œn�tA˝@Œn�B˝@Œn�!B˝ Œn� is a
generating (acyclic) cofibration of the Reedy model structure.
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