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Chow–Witt rings of Grassmannians

MATTHIAS WENDT

We complement the previous computation of the Chow–Witt rings of classifying spaces of special linear
groups by an analogous computation for the general linear groups. This case involves discussion of
nontrivial dualities. The computation proceeds along the lines of the classical computation of the integral
cohomology of BO.n/ with local coefficients, as done by Čadek. The computations of Chow–Witt rings
of classifying spaces of GLn are then used to compute the Chow–Witt rings of the finite Grassmannians.
As before, the formulas are close parallels of the formulas describing integral cohomology rings of real
Grassmannians.
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1 Introduction

The computation of the Chow ring of Grassmannians is fundamental in algebraic geometry. The computa-
tion for finite Grassmannians provides the basis of Schubert calculus and its applications in enumerative
geometry, while the computation for the infinite Grassmannians (ie the classifying space BGLn of vector
bundles) describes the characteristic classes of vector bundles in terms of Chern classes. Given any
cohomology theory, one can ask for similar computations and how these computations provide information
on characteristic classes of vector bundles (in the case of infinite Grassmannians) or provide variations
of Schubert calculus with relevance for combinatorics and representation theory (in the case of finite
Grassmannians). Indeed, many such investigations have been done in recent years for algebraic versions
of complex-oriented cohomology theories. On the other hand, several cohomology theories have recently
been considered which detect aspects related to real algebraic geometry and the theory of quadratic forms;
for example the Chow–Witt rings fCH�.X/ introduced by Barge and Morel in [7] and studied in depth by
Fasel — see eg [12; 13]. Other strongly related examples are given by the cohomology H �.X;W / of
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2 Matthias Wendt

the sheaf of Witt rings W on the small (Zariski or Nisnevich) site of a smooth scheme X — appearing,
for example, in the study of the Gersten–Witt spectral sequence converging to Witt groups of X by
Balmer and Walter [6] — and the cohomology H �.X; I�/ of the sheaves In of powers of the fundamental
ideal in the Witt ring (which by work of Jacobson [18] is strongly related to singular cohomology of
the real realization). The goal of the present paper is to compute these cohomology theories for the
(finite and infinite) Grassmannians. As mentioned above, the case of infinite Grassmannians serves to
better understand the relevant characteristic classes of vector bundles which may be relevant for splitting
questions — as in the original work of Barge and Morel [7] on Euler class obstructions for splitting, or
more recently in the work of Asok and Fasel, eg [3; 4]. The case of finite Grassmannian allows to set up
a variant of Schubert calculus combining features from complex and real Grassmannians, see [28], which
could be useful for refined or A1–enumerative questions over general fields as considered recently by
Kass and Wickelgren in [19], Levine in [20], and others.

The present paper is a sequel to work with Hornbostel [16], which computed the Chow–Witt rings
of classifying spaces of the symplectic and special linear groups. We provide a similar computation
of the total Chow–Witt ring of BGLn, essentially by a combination and extension of the techniques
developed in [16] and Čadek’s computation of cohomology of BO.n/ with twisted coefficients in [26].
Once the characteristic classes for vector bundles and their relations are known, we are also able to
compute the Chow–Witt rings of the finite Grassmannians. It turns out that the formulas describing the
I–cohomology of Grassmannians are direct analogues of the classical formulas for integral cohomology
of real Grassmannians, so the Chow–Witt rings capture information from the singular cohomology of
both real and complex Grassmannians (via the I–cohomology and Chow ring components, respectively).

1.1 Chow–Witt rings of infinite Grassmannians

We first formulate the results for the infinite GrassmanniansBGLn. As these are not smooth schemes, there
are two choices for talking about their cohomology — either using finite-dimensional approximations by
smooth schemes (as in Totaro’s approach to Chow groups of classifying spaces [24]) or in the framework
of the motivic homotopy category of Morel and Voevodsky [22] (in which all the cohomology theories
considered here happen to be representable). Both approaches yield equivalent results, but we adopt the
former point of view for the present paper; see also the beginning of Section 3 for a slightly more detailed
discussion.

Before going into a detailed description of the Chow–Witt ring of BGLn, we need to introduce some
notation; see also the more detailed discussions around the relevant cohomology theories in Section 2. The
ultimate goal is the computation of the Chow–Witt ring fCH�.BGLn/ which is a graded algebra over the
Grothendieck–Witt ring GW.F / of quadratic forms over the base field F . The Chow–Witt ring combines
two pieces of information, via a cartesian square in point (1) of Theorem 1.1: one piece, described in
point (2) of the theorem, comes from the Chow ring and is related to complex Grassmannians; the other
piece, described in point (3), is the I–cohomology ring which is related to the real Grassmannian. Finally,

Algebraic & Geometric Topology, Volume 24 (2024)



Chow–Witt rings of Grassmannians 3

the two pieces are glued together by means of maps from both pieces to the mod 2 Chow ring Ch�.BGLn/
which are described in point (4) of the theorem.

The main new computations in this paper concern the I–cohomology ring as a graded algebra over the Witt
ringW.F / of quadratic forms (obtained from GW.F / as a quotient by the ideal generated by the hyperbolic
form). Both the Chow–Witt ring and the I–cohomology ring involve possible twists by line bundles.
These are related to orientability questions and are in some ways similar to the cohomology with local
coefficients for real manifolds. There is consequently an additional grading by the mod 2 Picard group for
the Chow–Witt and I–cohomology ring, since tensor squares of line bundles do not change isomorphism
classes of the cohomology groups. In the particular case of the Grassmannians (both finite and infinite),
there are essentially only two line bundles, or dualities, to consider: the trivial duality and the nontrivial
one given by the (dual of the) determinant det _n of the universal rank n bundle n. Thus, the Chow–Witt
and I–cohomology rings of BGLn are graded algebras with grading by Z˚Pic.BGLn/=2ŠZ˚Z=2Z.
They are in fact graded-commutative (in the sense that the correction factor for switching cup product
factors is determined by the cohomological degrees of the cohomology classes). For a detailed discussion
of subtleties in the graded-commutativity of total I–cohomology or Chow–Witt rings, see Remark 2.3.

As a last piece of notation, it turns out to be convenient for the description of the Chow–Witt rings to also
upgrade the (integral and mod 2) Chow ring to a Z˚Z=2Z algebra by defining a product on

CH�.BGLn/˚2 D f.˛;L/ j ˛ 2 CH�.BGLn/;L 2 Pic.BGLn/=2g

by .˛;L/ � .ˇ;L0/ WD .˛[ˇ;L˝L0/, ie by taking intersection products from the Chow ring combined
with the group structure of Pic.BGLn/=2. With this definition, the reduction map

� WH q.BGLn; Iq/˚H q.BGLn; Iq.det _n //! Chq.BGLn/˚2

becomes a map of Z˚Z=2Z–graded algebras. Since this map is compatible with the direct sum decom-
position, we will also denote the summands by � WH q.BGLn; Iq.L//! Chq.BGLn/.

With these preparations, the following result now describes the total Chow–Witt ring of BGLn; see
Theorems 3.24 and 3.27 and Proposition 3.26.

Theorem 1.1 Let F be a perfect field of characteristic¤ 2.

(1) The following square , induced from the pullback description of the Milnor–Witt K–theory sheaf , is a
cartesian square of Z˚Z=2Z–graded GW.F /–algebras:fCH�.BGLn;O˚ det _n / //

��

ker @O˚ ker @det_n

mod 2
��

� � // CH�.BGLn/˚2

H �Nis.BGLn; I�˚ I�.det _n // �
// Ch�.BGLn/˚2

In the upper-right corner of this diagram , we have the kernels of the (twisted ) integral Bockstein maps

@L W CH�.BGLn/! Ch�.BGLn/
ˇL
�!H �C1.BGLn; I�C1.L//:

Algebraic & Geometric Topology, Volume 24 (2024)



4 Matthias Wendt

(2) The kernels of the twisted integral Bockstein operations inside the Chow ring

CH�.BGLn/Š ZŒc1; : : : ; cn�

can be described as

ker @O D ZŒc2i ; c1c2i C c2iC1; c1cn; .2/�; ker @det_n D hc2iC1; cn; .2/iker @O
:

The first is a subring of CH�.BGLn/, the second is a sub–ker @O–module , and (2) denotes the ideal
generated by 2 in CH�.BGLn/.

(3) The cohomology ring H �Nis.BGLn; I� ˚ I�.det _n // is generated by the following characteristic
classes: the even Pontryagin classes p2i in degree .4i; 0/, the Euler class en in degree .n; 1/ and the
(twisted ) Bocksteins of products of Stiefel–Whitney classes. The latter classes are defined as

ˇJ D ˇO. Nc2j1 � � � Nc2jl / and �J D ˇdet_n . Nc2j1 � � � Nc2jl /;

with the index set J running through the (possibly empty) sets fj1; : : : ; jlg of positive natural numbers
such that 0 < j1 < � � � < jl �

�
1
2
.n� 1/

�
; in the special case of J D ∅, the corresponding classes are

ˇ∅DˇO.1/ and �∅Dˇdet_n .1/. For an index set J Dfj1; : : : ; jlg, the degree of ˇJ is
�
1C2

Pl
iD1 ji ; 0

�
and the degree of �J is

�
1C 2

Pl
iD1ji ; 1

�
. The I–cohomology ring can then be explicitly identified as

the Z˚Z=2Z–graded-commutative W.F /–algebra

W.F /Œp2; p4; : : : ; pŒ.n�1/=2�; en; fˇJ gJ ; f�J gJ ; �∅�

modulo the relations

(a) I.F /ˇJ D I.F /�J D I.F /�∅ D 0;

(b) if nD 2kC 1 is odd and k � 1, we have e2kC1 D �fkg, and for nD 1 we have e1 D �∅;

(c) for two index sets J and J 0, where J 0 can be empty,

ˇJ �ˇJ 0 D
X
k2J

ˇfkg �p.Jnfkg/\J 0 �ˇ�.Jnfkg;J 0/;

ˇJ � �J 0 D
X
k2J

ˇfkg �p.Jnfkg/\J 0 � ��.Jnfkg;J 0/;

�J �ˇJ 0 D ˇJ � �J 0 C �∅ �pJ\J 0 �ˇ�.J;J 0/;

�J � �J 0 D ˇJ �ˇJ 0 C �∅ �pJ\J 0 � ��.J;J 0/;

where we set pA D
Ql
iD1 pai for an index set AD fa1; : : : ; alg.

(4) The reduction morphism � is given by

p2i 7! Nc
2
2i ; en 7! Ncn; ˇL. Nc2j1 � � � Nc2jl / 7! Sq2L. Nc2j1 � � � Nc2jl /:

Under the homomorphism fCH�.BGLn;O/! CH�.BGLn/, the Chow–Witt-theoretic Pontryagin class is
mapped as

pi 7! .�1/ic2i C 2

i�1X
jDmaxf0;2i�ng

.�1/j cj c2i�j :

Algebraic & Geometric Topology, Volume 24 (2024)



Chow–Witt rings of Grassmannians 5

It can be shown that formulas similar to the above description of I�–cohomology are true for real-étale
cohomology, but as algebra overH 0

rKet.F;Z/Š colimnIn.F /. For F DR, the real cycle class map induces
an isomorphism

H �.BGLn; I�˚ I�.det _n //
Š
�!H �.BO.n/;Z˚Zt/;

where the target was computed in [26], and it sends algebraic characteristic classes to their topological
counterparts. For this result and a discussion of the required compatibilities, eg between localization
sequences and the real cycle class maps, see Hornbostel, Xie, Zibrowius and the author [17].

1.2 Chow–Witt rings of finite Grassmannians

The second point of the paper is to provide a computation of the Chow–Witt rings of the finite Grass-
mannians Gr.k; n/. The full description is even longer than the description of the Chow–Witt ring of
BGLn above, so we will only give pointers to the main results in the text. First, the Chow–Witt ring
is again given in terms of a cartesian square combining the kernels of integral Bockstein maps with
I�–cohomology; see Theorem 5.10. The I�–cohomology of Gr.k; n/ can be described as follows: the
characteristic classes of the tautological rank k subbundle Sk and the tautological rank n�k quotient
bundle Qn�k generate the I�–cohomology, except in the case where k.n� k/ is odd, in which we have
a new class R in degree n� 1. They naturally satisfy the relations in the I�–cohomology of BGLk
and BGLn�k , and they also satisfy the relations which are consequences of the Whitney sum formula for
the extension

0! Sk! O˚n! Qn�k! 0:

There are a few further relations involving the potential class R. All these statements are established in
Theorem 5.7. The reduction morphisms

H �.Gr.k; n/; I�.L//! Ch�.Gr.k; n//

are described in Proposition 5.8. Except for the new fact that R 7! Nck�1 Nc?n�k , the description of the
reduction morphisms follows directly from the ones for BGLk and BGLn�k . This also provides a
description of the kernel of the integral Bockstein maps; cf Theorem 5.10. Again, similar formulas would
be true in real-étale cohomology, and for F D R the above description recovers exactly the integral
cohomology of the real Grassmannians Grk.Rn/ (with local coefficients); see [17].

1.3 Decomposition of I–cohomology

The present paper is a significantly revised version of its predecessor. While the previous version
established the results mostly following the proof strategy of [16] fairly closely, the revised proofs follow
a different strategy. The key new insight arises from a decomposition of I–cohomology, described in
Section 2.4,

0! ImˇL.X/!H q.X; Iq.L//!H q.X;W .L//! 0:

Algebraic & Geometric Topology, Volume 24 (2024)



6 Matthias Wendt

This decomposition arises from the twisted Bär sequence, an algebraic analogue of the long exact Bockstein
sequence in topology, which is discussed in more detail in Section 2.1. The cohomology with coefficients
in the sheaf W of Witt rings is a theory in which � is invertible, and much more amenable to long exact
sequence calculations than I–cohomology; see work of Ananyevskiy [1]. Moreover, if W –cohomology
is free, the above sequence splits. In that case, the reduction morphism � WH q.X; Iq.L//! Chq.X/ is
injective on the image of ˇL; hence the torsion classes in ImˇL can be computed from the knowledge of
the Steenrod squares Sq2L on the mod 2 Chow ring. This way, the computation of I–cohomology splits
into two significantly easier parts, the computation of W –cohomology which can be done by the same
methods as calculations of rational cohomology of real Grassmannians — see Milnor and Stasheff [21]
and Sadykov [23] — and the computation of Imˇ which only requires knowledge of the mod 2 Chow
theory. The freeness of W –cohomology, which implies the above decomposition of I–cohomology,
can therefore be seen as the algebraic analogue of the statement that “all torsion in the cohomology of
real Grassmannians is 2–torsion”. This gets rid of problems as in Remark 2.2 or Remark 7.2 of [16].
Moreover, the proof of freeness of W –cohomology, and therefore the torsion statement, is significantly
easier than in topology (where it is not clear that integral cohomology modulo the image of the integral
Bockstein maps is even a cohomology theory). The Imˇ–W –decomposition of I–cohomology will be a
useful tool for a number of upcoming computations (where the real topological counterparts have only
2–torsion), such as classifying spaces of orthogonal groups and flag varieties.

The shorter, alternative way to describe the structure of the I–cohomology of BGLn or Gr.k; n/ (at least
additively) is then the following. The I–cohomology splits as a direct sum of the image of ˇL, which is a
2–torsion group with the same structure as in the integral cohomology of the real Grassmannians, and the
W –cohomology, which is a freeW.F /–algebra having the same presentation as the rational cohomology of
the real Grassmannians. The multiplication on the torsion part can be described completely by reduction to
mod 2 Chow theory where we have the classical formulas from Schubert calculus. Conceptual descriptions
for the multiplication can be found in Casian and Stanton [10] (with an interesting link to representation
theory of real Lie groups) and Casian and Kodama [9] (explicitly in terms of signed Young diagrams); see
also the discussion of checkerboard fillings for Young diagrams to compute Sq2L in [28]. The description
of Chow–Witt rings of finite Grassmannians is used in a sequel [28] to develop an oriented Schubert
calculus which allows us to establish arithmetic refinements of classical Schubert calculus.

Structure of the paper We provide a recollection on relevant statements from Chow–Witt theory,
in particular the twisted Steenrod squares, in Section 2. The relevant characteristic classes for vector
bundles are recalled in Section 3, where we also formulate the main structural results on the Chow–Witt
ring of BGLn. The inductive computation of the I�–cohomology is done in Section 4. The results on
Chow–Witt rings of finite Grassmannians are formulated in Section 5 and the proofs are given in Section 6.

Acknowledgements I would like to thank Jens Hornbostel and Kirsten Wickelgren for stimulating
discussions about this and related topics without which this paper wouldn’t exist. Various discussions with
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Chow–Witt rings of Grassmannians 7

Jens Hornbostel, Thomas Hudson, Lorenzo Mantovani, Toan Manh Nguyen and Konrad Voelkel clarified
that the use of the Imˇ–W –decomposition of I–cohomology could improve structural statements and
streamline proofs. I am grateful to Marc Levine and Ákos Matszangosz for various corrections and to an
anonymous referee at AGT for many and detailed comments that helped eliminate a number of mistakes
and greatly improve the presentation of the paper.

In some of the results describing kernels of Steenrod squares Sq2 and Bockstein maps ˇ, the obvious
and necessary generators in the image of the Steenrod square have been omitted: in Theorem 1.1(2),
Corollary 3.13, and Proposition 3.26, Steenrod squares of products of even Stiefel–Whitney classes
Sq2L. Nc2j1 � � � Nc2jl / have to be added to the list of generators. Formulations are correct for Corollary 3.14
and Theorem 5.10. This doesn’t affect either proofs or main results. I would like to thank Jan Hennig and
Marc Levine for pointing this out.

2 Recollection on Chow–Witt rings

Throughout this article, we consider a perfect base field F of characteristic char.F /¤ 2. All the relevant
cohomology groups will be Nisnevich cohomology groups, ie Ext-groups between Nisnevich sheaves on
the small site of a smooth scheme. Note, however, that for all the sheaves we consider, Nisnevich and
Zariski cohomology are isomorphic. The relevant sheaves will be denoted by boldface letters, such as the
sheaves KM

n and KMW
n of Milnor and Milnor–Witt K–groups, respectively, the sheaf W of Witt rings

and the sheaves In of powers of the fundamental ideal in W . Sections of these sheaves are mostly taken
over fields and are denoted by the more usual letters KM

n , KMW
n , W and In, respectively.

Since this is a sequel to [16], most of the general facts concerning Chow–Witt rings relevant for the
computation in the present paper can already be found in the discussion of [16, Section 2] (or, of course,
in the original literature; see [loc. cit.] for references). The same applies to the general discussion of
Chow–Witt rings of classifying spaces; all the statements relevant for the present paper can be found in
[16, Section 3]. We freely use the definitions, facts and notation from [16].

2.1 Twisted coefficients and cohomology operations

What has to be discussed in slightly more detail is the use of twisted coefficients in Chow–Witt groups
and I�–cohomology which were only mentioned in passing in [16]. If L is a line bundle on a smooth
scheme X , then there are twisted sheaves In.L/ and KMW

n .L/. For the construction as well as a
description of Gersten-type complexes computingHn

Nis.X; I
n.L// andHn

Nis.X;K
MW
n .L//Š fCHn.X;L/,

see [13, Section 10] and [4, Section 2]. In particular, Theorem 2.3.4 of [4] provides an identification of the
definition of twisted Chow–Witt groups in [13] with the Nisnevich cohomology of the twisted Milnor–Witt
K–theory sheaves. If L and N are two line bundles on X , then there are canonical isomorphismsfCH�.X;N/Š fCH�.X;L2˝N/:

Algebraic & Geometric Topology, Volume 24 (2024)



8 Matthias Wendt

The twisted versions of Chow–Witt groups and In–cohomology have functorial pullbacks, pushforwards
and a localization sequence (where the cohomology of the closed subscheme appears with twist by the
normal bundle of the inclusion). Formulations and references to the relevant literature can all be found in
[16, Section 2.1].

We also need to discuss twisted analogues of the facts on cohomology operations discussed in [16,
Section 2.3]. If X is a smooth scheme and L is a line bundle on X , we can twist the exact sequence of
fundamental ideals by L to get an exact sequence of strictly A1–invariant Nisnevich sheaves of abelian
groups

0! InC1.L/! In.L/!KM
n =2! 0:

This is analogous to the topological exact sequence 0! Zt! Zt! Z=2Z! 0 for a local system Zt

with fiber Z. Associated to the previous exact sequence of Nisnevich sheaves, we get a twisted analogue
of the Bär sequence used in [16],

� � � !Hn.X; InC1.L//
�
�!Hn.X; In.L//

�
�! Chn.X/ ˇL

�!HnC1.X; InC1.L//! � � � :

This is an analogue of the long exact Bockstein sequence in topology. The maps in this sequence are

(1) the connecting map ˇL, a Chow–Witt analogue of the Bockstein operation twisted by a local system
in classical algebraic topology,

(2) the map � induced by the inclusion InC1 ,! In and

(3) the reduction map � induced by the quotient map In!KM
n =2.

A discussion of the twisted Bockstein maps in the topological context of cohomology of BO.n/ can be
found in [26].

Remark 2.1 A funny side remark on some of the differences between Chn.X/ and mod 2 singular
cohomology: By the universal coefficient formula, mod 2 singular cohomology Hn in general contains
mod 2 reductions of integral classes in Hn as well as classes related to 2–torsion classes in Hn�1. This
is not true for Chn.X/, viewed as mod 2 reduction of CHn.X/— by definition all classes in Chn.X/ are
simply mod 2 reductions of CHn.X/. However, the Bär sequence encodes a behavior of Chn.X/ exactly
analogous to mod 2 singular cohomology: there are some classes which lift to integral cohomology
Hn.X; In/, and some classes which don’t (because they have nontrivial images under the Bockstein
operation).

For a line bundle L on a smooth scheme X , the twisted Bockstein map

ˇL W Chn.X/!HnC1.X; InC1.L//

can be used to define twisted versions of integral Stiefel–Whitney classes analogous to those defined
in [14]. The composition with the reduction morphism � WHnC1.X; InC1.L//! ChnC1.X/ has been
identified in [2, Theorem 3.4.1]. This is a twisted version of Totaro’s identification [25, Theorem 1.1] and
a Chow–Witt version of [26, Lemma 2].
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Proposition 2.2 Let X be a smooth scheme and L be a line bundle over X . Denote by

ˇL W Chi .X/!H iC1.X; I iC1.L//

the twisted Bockstein map. Then for all x 2 Chi .X/,

� ıˇL.x/D Nc1.L/ � xCSq2.x/DW Sq2L.x/:

2.2 Oriented intersection product and total Chow–Witt ring

The oriented intersection product for the Chow–Witt ring has the formfCHi .X;L1/� fCHj .X;L2/! fCHiCj .X;L1˝L2/I

there is a similar product on twisted I�–cohomology rings. With these products, the Chow–Witt ring is a
h�1i–graded commutative algebra over the Grothendieck–Witt ring GW.F /, and

L
nH

n.X; In/ is a
.�1/–graded commutative algebra over the Witt ring W.F /; see eg [16, Section 2.2].

The total Chow–Witt ring of a smooth scheme X is defined byM
L2Pic.X/=2

fCH�.X;L/I

see eg [12, Definition 6.10]. Strictly speaking, a total Chow–Witt ring doesn’t exist because identificationsfCH�.X;L/Š fCH�.X;N/ for isomorphic line bundles L and N depend on the choice of isomorphism
between the line bundles. However, the technical inaccuracy of neglecting such choices of isomorphisms
between different representatives of isomorphism classes of line bundles can be fixed by the methods
in [5]. The same goes for the total I–cohomology ringM

L2Pic.X/=2;q2N

H q.X; Iq.L//:

Note that Pic.BGLn/Š Z and Pic.Gr.k; n//Š Z; in particular, there are only two nontrivial dualities
to consider for the total Chow–Witt rings of BGLn and Gr.k; n/. For BGLn, the nontrivial element of
Pic.BGLn/=2 is given by det _n , the dual of the determinant of the universal rank n bundle. Note that this
corresponds precisely to the well-known topological fact that there are exactly two isomorphism classes
of local systems on BO.n/, the trivial one and the one for the sign representation of �1.BO.n//ŠZ=2Z

on the coefficient ring Z.

Remark 2.3 There is a serious subtlety concerning the graded commutativity of the total I–cohomology
ring which we want to discuss at this point. For the correct formulation of graded commutativity of twisted
Chow–Witt/I–cohomology/W –cohomology groups, one has to use graded line bundles, as explained,
for example, in [15]. Specializing to the I–cohomology situation, the correction factor for graded
commutativity of the cup product

H i .X; I i .L1; a1//�H
j .X; Ij .L2; a2//!H iCj .X; I iCj .L1˝L2; a1C a2//
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would be .�1/.a1Ci/.a2Cj /; see [15, Section 3.4].1 In particular, the degrees of the graded line bundles
play an important role. However, for the specific situation of the present paper, this problem is rather
invisible: for classifying spaces BGLn and Grassmannians Gr.k; n/, the correct graded line bundle
for the nontrivial twists would be .det V; rk V/ for V D n the universal rank n bundle on BGLn or
V D Sk;Qn�k the tautological subbundle and quotient bundle on the Grassmannian Gr.k; n/. Since
the classes in twisted I–cohomology of these spaces only appear as multiples of Euler classes of even
rank bundles, the contributions of the degrees of the twist bundles play no role in the correction term
.�1/.a1Ci/.a2Cj /. In particular, graded commutativity for the total I–cohomology ring in the present
paper always means that the correction factor is .�1/ij , ie it only depends on the cohomological degrees of
the cohomology classes involved. In fact, a posteriori, the I–cohomology ring turns out to be commutative
after all: all the nontorsion classes in the I–cohomology (Pontryagin classes and Euler classes) have even
degrees, and all torsion classes are in fact 2–torsion, so signs don’t matter.

2.3 The fundamental square

After having discussed all the relevant preliminaries, there are now twisted analogues of the key diagram
from [16], for any line bundle L on X :

CHn.X/

��

CHn.X/

2
��

Hn.X; InC1.L// // fCHn.X;L/ //

��

CHn.X/
@L
//

mod 2
��

HnC1.X; InC1.L//

Hn.X; InC1.L//
�
// Hn.X; In.L//

�
//

��

Chn.X/
ˇL
//

Sq2L ((��

HnC1.X; InC1.L//

�
��

0 // 0 ChnC1.X/

As already mentioned in [16], there is a twisted analogue of [16, Proposition 2.11], which states that for
F a perfect field of characteristic unequal to 2 and a smooth scheme X over F , the canonical map

c W fCH�.X;L/!H �.X; I�.L//�Ch�.X/ ker @L

induced from the above key square is always surjective, and is injective if CH�.X/ has no nontrivial
2–torsion. This way we can determine the additive structure of twisted Chow–Witt groups; if we consider
the total Chow–Witt ring (ie the direct sum of twisted Chow–Witt groups over Pic.X/=2), the fiber
square also describes the oriented intersection product. The result applies, in particular, to BGLn and the
Grassmannians Gr.k; n/ (or more generally flag varieties G=P for reductive groups) because these are

1The formulation in [15] is for Chow–Witt rings and consequently the correction factor there is h.�1/.a1Ci/.a2Cj /i. For
I–cohomology, this reduces to .�1/.a1Ci/.a2Cj /; see also the discussion of graded commutativity of the various cohomology
theories in [16, Definition 2.4 and Proposition 2.5].
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known to have 2–torsion-free Chow groups. This implies that we only need to determine the individual
terms of the fiber product to get a description of the Chow–Witt ring.

2.4 Decomposing I–cohomology intoW –cohomology and the image of ˇ

One of the features which is new and has not been used in either [16] or the previous version of the
present paper is the use of W –cohomology. For a smooth F –scheme X , we can consider the restriction
of the Nisnevich sheaf W of Witt groups to the small Nisnevich site of X , and then take its Nisnevich
cohomology H �.X;W /. This cohomology theory has been considered before, as it appears in the context
of the Gersten–Witt spectral sequence converging to the Witt groups of a smooth scheme X ; see [6].
Some of its properties discussed below make it also very suitable as a stepping stone in computations of
I–cohomology and Chow–Witt rings.

As before, if L is a line bundle on X , we can consider the twistedW –cohomology groups H �.X;W .L//.
The product structure on the Witt rings induces an intersection product

H i .X;W .L1//�H
j .X;W .L2//!H iCj .X;W .L1˝L2//;

and we can consider the total W –cohomology ring
L
q;L2Pic.X/=2H

q.X;W .L// (again using [5] to
make sense of this). Similar to the I–cohomology ring, the total W –cohomology ring is a .�1/–graded
commutative algebra over the Witt ring W.F /; see Remark 2.3.

There is a morphism .In/n2Z! .W /n2Z which in degree n is given by the natural inclusion In ,!W ,
with the usual convention of InDW for n� 0. This morphism induces a W.F /–algebra homomorphismM

q;L

H q.X; Iq.L//!
M
q;L

H q.X;W .L//

from the total I–cohomology ring to the total W –cohomology ring.

The relation with I–cohomology can be made more precise. The pieces

H i�1.X;KM
n�1=2/!H i .X; In.L//!H i .X; In�1.L//!H i .X;KM

n�1=2/

of the Bär sequence provide isomorphisms H i .X; In.L//!H i .X; In�1.L// for i > n, because the
outer terms vanish. This can be seen from the Gersten resolution for mod 2 Milnor K–theory together
with the fact that .KM

n�1=2/�c D 0 for c > n� 1. Moreover, from the Gersten resolution for In, we also
see that the natural morphisms H i .X; In.L//!H i .X;W .L// are isomorphisms for i > n. Now with
this reinterpretation, we can consider the piece of the Bär sequence for the boundary case i D n,

Chn�1.X/ŠHn�1.X;KM
n�1=2/

ˇL
�!Hn.X; In.L//!Hn.X;W .L//! 0:

In particular, I–cohomology is a combination of W –cohomology with the image of the Bockstein
morphism ˇ. We get a stronger splitting result if the W –cohomology is free:
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Lemma 2.4 Let X be a smooth scheme over a field F of characteristic¤ 2, and let L be a line bundle
on X . If Hn.X;W .L// is free as a W.F /–module , then we have a splitting

Hn.X; In.L//Š ImˇL˚H
n.X;W .L//:

In this case , the reduction morphism � WHn.X; In.L//! Chn.X/ is injective on the image of ˇL.

Proof The Bär sequence is a long exact sequence of W.F /–modules. The first claim follows from the
piece

Chn�1.X/ ˇL
�!Hn.X; In.L//!Hn.X;W .L//! 0:

If the last group is free as W.F /–module, then the sequence splits as claimed.

For the second claim, we first note that the existence of a splitting implies�
I.F / �Hn.X; In.L//

�
\ ImˇL D 0:

This follows since the splitting map Hn.X; In.L//! ImˇL is a W.F /–module map, and the W.F /–
module structure on Chn�1.X/ and hence ImˇL is a direct sum of copies of W.F /=I.F /. Thus the
splitting map necessarily sends every element in I.F / �Hn.X; In.L// to zero. But the splitting map is
the identity on ImˇL, which implies the claim concerning the intersection.

Now to prove the second claim of the lemma, we want to use the exact piece of the Bär sequence

Hn.X; InC1.L//
�
�!Hn.X; In.L//

�
�! Chn.X/:

If we can show ImˇL\ Im �D 0, then the injectivity claim of the lemma follows. Suppose we have a
nonzero element ˛ 2 ImˇL\ Im �. Then we can factor the inclusion of the corresponding W.F /=I.F /–
summand as

W.F /=I.F /!Hn.X; InC1.L//
�
�!Hn.X; In.L//:

This map is now the inclusion of a direct summand (as W.F /–modules), but it is also multiplication by �
from the factorization. Therefore, it is the zero map, contradicting the assumption 0¤ ˛ 2 ImˇL\ Im �,
which proves injectivity.

Corollary 2.5 Let X be a smooth scheme over a field F of characteristic¤ 2, and let L be a line bundle
on X . If the total W –cohomology ring is free as a W.F /–module , then the image of the maps ˇL for
L 2 Pic.X/=2 coincides exactly with the W.F /–torsion in I�–cohomology. In particular , the image of
the maps ˇL for L 2 Pic.X/=2 is an ideal in the total I�–cohomology ring.

Remark 2.6 The freeness of W –cohomology in this lemma will play an important role in our computa-
tions. It is an algebraic replacement of the classical statement that “all torsion in the cohomology of the
Grassmannians is 2–torsion”, as formulated in eg [8, Lemma 2.2]. Using the splitting in Lemma 2.4 is a
different strategy than the cumbersome proofs in [16] which were needed to establish that � is injective
on the image of ˇ; see Remark 7.2 and the discussion before Proposition 8.6 in [16].
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There are two reasons why the decomposition of I–cohomology as a direct sum of W –cohomology and
the image of ˇ is so effective as a computational tool. On the one hand, the image of ˇ is basically known
in the relevant cases — all it requires is knowledge of the Chow ring together with the action of Sq2.
On the other hand, computations in W –cohomology are simpler than for I–cohomology because the
localization sequence takes the following simplified form: Assume X is a smooth scheme, Z � X a
smooth closed subscheme of pure codimension c with open complement U D X nZ, and L is a line
bundle on X . Denote the inclusions by i WZ ,!X and j W U ,!X , and denote by N the determinant of
the normal bundle for Z in X . Then we have a localization sequence for W –cohomology,

� � �!H i .U;W .L// @
�!H i�cC1.Z;W .L˝NZ//

i�
�!H iC1.X;W .L//

j�
�!H iC1.U;W .L//!� � � :

This has the distinct advantage that there are no index shifts in the coefficients (such as what happens for
I–cohomology) and we really get an honest long exact sequence (as opposed to only a piece of a long
exact sequence containing the “geometric bidegrees”). This way, computations of W –cohomology can
follow their classical topology counterparts much more closely than is possible for I–cohomology.

Remark 2.7 One explanation of the simplified form of the localization sequence is that the W –
cohomology ring

L
nH

�.X;W / considered above is part of the �–inverted Witt group theory considered,
for example, in [1]. Essentially, it is the quotient of the �–inverted Witt ring of X modulo �� 1. Some of
the formulas for W –cohomology of Grassmannians we develop in this paper already appear in [loc. cit.].
On the other hand, some of the computations for W –cohomology in Section 6 could surely be done more
generally for other cohomology theories in which � is invertible.

3 Characteristic classes for vector bundles

The next two sections will provide a computation of the Chow–Witt ring of BGLn. The global structure
of the argument is similar to the computation of integral cohomology with local coefficients of BO.n/;
see [26]. Some of the relevant adaptations to the Chow–Witt setting have already been made in [16]. Ad-
ditionally, the decomposition of I–cohomology into the image of ˇ andW –cohomology will significantly
simplify the approach of [16], rendering the arguments even closer to their topological counterparts.

In this section, we begin by setting up the localization sequence and defining the relevant characteristic
classes for vector bundles. We formulate the main structure results concerning the Chow–Witt and
I�–cohomology ring of BGLn and establish the basic relations between the characteristic classes. The
inductive proof of the structure theorem will be done in the next section.

Before embarking on the computation of cohomology of BGLn, we need to briefly discuss the issues
arising from the classifying spaces not being smooth (in particular finite-dimensional) schemes; see
also similar discussions in [16]. The cohomology theories discussed in Section 2 are usually applied
to smooth schemes, and some techniques like Gersten-style complexes only work for smooth schemes.
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There are then two approaches to extend the definition and computational tools like localization sequences
to classifying spaces:

(i) One possibility is to use finite-dimensional approximations to the classifying space, built from
representations of the group in question, as in Totaro’s definition of Chow groups of classifying spaces [24].
In this approach, only finite-dimensional schemes are considered. Any particular such finite-dimensional
approximation of the classifying space only captures the cohomology in a limited range of degrees. On the
other hand, stabilization results imply that for any degree, one can always find a suitably high-dimensional
approximation which correctly computes cohomology in this degree. This hinges on the fact that the
cohomology theories we consider are based on cycles which implies that the degree q cohomology reflects
the structure of codimension q subvarieties in a smooth scheme (as opposed to what would happen for
algebraic or hermitian K–theory, for example).

(ii) The other possibility is to extend the cohomology theories discussed in Section 2 to all spaces in
the Morel–Voevodsky motivic homotopy category [22]. All these cohomology theories are representable
in motivic homotopy, because they satisfy Nisnevich descent and homotopy invariance. The classifying
spaces can be constructed as spaces in the motivic homotopy category. This provides a definition of
cohomology of classifying spaces which correctly computes all degrees at the same time.

For the present paper, we will work with the first viewpoint, using finite-dimensional approximations,
as discussed below. In particular, all cohomology groups will in fact be cohomology groups of smooth
schemes. Referring to H �.BGLn/ means that whenever we are interested in a particular cohomological
degree q, we are actually considering a suitably high-dimensional smooth scheme X and computeH q.X/.
All the discussions (in particular ones using localization sequences or intersection products) will always
only involve a finite number of degrees, so that this is indeed possible.

3.1 Setup of localization sequence

We begin by setting up the localization sequence for the inductive computation of the cohomology
of BGLn, following the procedure for SLn in [16, Section 5.1].

Let V be a finite-dimensional representation of GLn such that outside a closed GLn–stable subset Y
of codimension s, the action of GLn is free and the quotient X.V / WD .V n Y /=GLn is a GLn–torsor
(ie a GLn–principal bundle). For any s, there is a GLn–representation satisfying this requirement;
see the discussion [24, Section 1, Remark 1.4]. Then the Chow–Witt group fCHq.X.V /;L/ is up to
isomorphism independent of the choice of representation V for q � s� 2, ie computes fCH�.BGLn;L/
in degrees � s� 2. Moreover, a finite-dimensional model for the universal GLn–torsor is given by the
projection p W V nY !X.V /. The tautological GLn–representation on An gives rise to a vector bundle
V WEn.V /!X.V / associated to the GLn–torsor p W V nY !X.V /.

Denote by Sn.V / the complement of the zero-section of V WEn.V /!X.V /. As in the case of SLn, the
complement Sn.V / can be identified as an approximation of the classifying space BGLn�1. Moreover,
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the quotient map q W .V nY /=GLn�1!X.V / induces a morphismfCH�.X.V /;L/
�V
�! fCH�.Sn.V /; �V .L//Š fCH�..V nY /=GLn�1; q�.L//

which models the stabilization map fCH�.BGLn;L/! fCH�.BGLn�1; ��L/ for the standard inclusion
� W BGLn�1! BGLn. Consequently, we get the following localization sequence:

Proposition 3.1 There is a long exact sequence of Chow–Witt groups of classifying spaces

� � � ! fCHq�n.BGLn;L˝ det n/! fCHq.BGLn;L/! fCHq.BGLn�1; ��.L//

!H qC1�n.BGLn;KMW
q�n.L˝ det n//!H qC1.BGLn;KMW

q .L//! � � � :

The first map is the composition of the dévissage isomorphism with the forgetting of support — alterna-
tively “multiplication with the Euler class of the universal bundle n”. The second map is the restriction
along the stabilization inclusion � W GLn�1! GLn.

There are similar exact sequences for the other coefficients , I�.L/, KM
�

and W .L/, and the change-of-
coefficients maps induce commutative ladders of exact sequences. Notably , the localization sequence for
W –cohomology is

� � � !H q�n.BGLn;W .L˝ det n//
en
�!H q.BGLn;W .L//

��
�!H q.BGLn�1;W .��L// @

�!H q�nC1.BGLn;W .L˝ det n//! � � � :

The proof is the same line of argument as for the case SLn in [16, Proposition 5.1].

Remark 3.2 Note also that for LD det _n , with _n the dual of the universal rank n bundle on BGLn,
we have ��LŠ det _n�1. Multiplication with the Euler class changes the dualities.

3.2 Euler class

Recall from [16, Definition 5.9] how the Chow–Witt-theoretic Euler class of [4] gives rise to an Euler
class in fCH�.BGLn; det _n /. For a smooth scheme X , the Chow–Witt-theoretic Euler class of a vector
bundle p W E!X of rank n is defined via the formula

en.p W E!X/ WD .p�/�1s0�.1/ 2 fCHn.X; det.p/_/;

where s0 WX ! E is the zero section. Using smooth finite-dimensional approximations to the classifying
space BGLn provides a well-defined Euler class

en 2 fCHn.BGLn; det.n/_/:

In the localization sequence of Proposition 3.1, the Euler class corresponds under the dévissage isomor-
phism to the Thom class for the universal rank n vector bundle n on BGLn. This justifies calling the
compositionfCHq�n.BGLn;L˝ det n/Š fCHqBGLn

.En;L/! fCHq.En;L/Š fCHq.BGLn;L/
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“multiplication with the Euler class”. There are corresponding notions of Euler classes in I�–cohomology,
W –cohomology, as well as Chow theory; these are compatible with the change of coefficients. The Euler
classes are compatible with pullbacks of morphisms between smooth schemes; see [4, Proposition 3.1.1].

3.3 Chern classes

A direct consequence of the above localization sequence for Chow theory is the computation of the Chow
ring (with integral and mod 2 coefficients) of the classifying space BGLn. The formulas are the standard
ones found in any intersection theory handbook; see also [16, Proposition 5.2]. As in [loc. cit.], the Chern
classes are uniquely determined by their compatibility with stabilization and the identification of the top
Chern class with the Euler class of the universal bundle.

Proposition 3.3 There are unique classes ci .GLn/ 2 CHi .BGLn/ for 1 � i � n, such that the nat-
ural stabilization morphism � W BGLn�1 ! BGLn satisfies ��ci .GLn/ D ci .GLn�1/ for i < n and
cn.GLn/D en.GLn/. In particular , the Chow–Witt-theoretic Euler class reduces to the top Chern class in
the Chow theory. There is a natural isomorphism

CH�.BGLn/Š ZŒc1; c2; : : : ; cn�:

The restriction along the Whitney sum BGLm �BGLn�m! BGLn maps the Chern classes as

ci 7!

mX
jDiCm�n

cj � ci�j :

Remark 3.4 From the above computations of the Chow ring of BGLn we also see the standard fact that
Pic.BGLn/Š Z. Note that for any smooth scheme X and any two line bundles L and N over X such
that the class of L in Pic.X/ is divisible by 2,

fCH�.X;L˝N/Š fCH�.X;N/:

In particular, there are only two relevant dualities to consider for BGLn: the trivial duality corresponding
to the trivial line bundle on BGLn, and the nontrivial duality corresponding to the determinant of the
universal bundle. This closely resembles the classical situation where �1.BO.n//Š Z=2Z and so there
are only two isomorphism classes of local systems on BO.n/.

3.4 Pontryagin classes

Recall from [16, Definition 5.6] that the Pontryagin classes of vector bundles are defined as the images of
pi 2 fCH�.BSp2n/ of [16, Theorem 4.10] under the homomorphism fCH�.BSp2n/! fCH�.BGLn/, which
is induced from the symplectification morphism (ie the standard hyperbolic functor) BGLn! BSp2n.
Note that this means that the Pontryagin classes of vector bundles are elements in the Chow–Witt ring with

Algebraic & Geometric Topology, Volume 24 (2024)



Chow–Witt rings of Grassmannians 17

trivial duality (because they are induced from the symplectic group). As for the special linear groups —
see [16, Proposition 5.8] — the Pontryagin classes are compatible with stabilization in the sense that

��.pi .GLn//D pi .GLn�1/;

where i < n and �� W fCH�.BGLn/ ! fCH�.BGLn�1/ is induced from the natural stabilization map
GLn�1 ! GLn. There are corresponding definitions of Pontryagin classes for I�–cohomology and
W –cohomology, compatible with the natural change-of-coefficient mapsfCHq.X/!H q.X; Iq/!H q.X;W /:

Remark 3.5 (NB concerning odd Pontryagin classes) The above definition produces Pontryagin classes
p1; : : : ; pn for GLn; in particular, we get odd Pontryagin classes p2iC1. These classes turn out to be
torsion and are not included explicitly in the presentation of I–cohomology — see, for example, in
Theorem 3.24 — because they can be expressed as Bockstein classes; see Theorem 3.27. Note that
the indexing convention here differs from the one employed in topology, where only the even Chern
classes are used in the definition of Pontryagin classes of bundles — the Pontryagin classes in topology
correspond to the even Pontryagin classes in the present paper. The reason for this choice of indexing
here — and also in [16] — is the easier formulation of the Whitney sum formula for Pontryagin classes;
see Proposition 3.28 and Remark 3.29.

3.5 Stiefel–Whitney classes and their (twisted) Bocksteins

The localization sequence of Proposition 3.1 immediately implies a theory of Stiefel–Whitney classes
which are determined by the compatibility with stabilization and the identification of the top Stiefel–
Whitney class with the Euler class of the respective universal bundle; see [16, Proposition 5.4].

Proposition 3.6 There are unique classes Nci .GLn/ 2 Chi .BGLn/ for 1 � i � n, such that the nat-
ural stabilization morphism � W BGLn�1 ! BGLn satisfies �� Nci .GLn/ D Nci .GLn�1/ for i < n and
Ncn.GLn/D en.GLn/. These agree with the Stiefel–Whitney classes in [14, Definition 4.2]. There is a
natural isomorphism

Ch�.BGLn/Š Z=2ZŒ Nc1; : : : ; Ncn�:

Again, this is a very classical formula. We include it just for the following discussion of the (twisted)
Bockstein classes and the action of the respective (twisted) Steenrod squares on Ch�.BGLn/.

Recall from Section 2 that for a scheme X and a line bundle L, we have a Bockstein map

ˇL W Chn.X/!HnC1.X; InC1.L//:

For the specific case ofBGLn, there are two relevant line bundles to consider: O and det _n ; see Remark 3.4.
This leads to two types of Bockstein classes for vector bundles:
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Definition 3.7 For a (possibly empty) set J D fj1; : : : ; jlg of positive natural numbers

0 < j1 < � � �< jl �
�
1
2
.n� 1/

�
;

there are classes
ˇJ WD ˇO. Nc2j1 Nc2j2 � � � Nc2jl / 2H

dC1.BGLn; IdC1/;

�J WD ˇdet_n . Nc2j1 Nc2j2 � � � Nc2jl / 2H
dC1.BGLn; IdC1.det _n //;

where d D
Pl
aD1 2ja.

Remark 3.8 We discuss the special cases with J D ∅. The Bockstein class ˇ.∅/ is trivial; see [16,
Remark 5.12]. However, the class �.∅/ is nontrivial; more precisely,

�.�.∅//D Sq2det_n
.1/D Nc1:

As a matter of convention, whenever products c2j1 � � � c2jl of Chern classes (or their mod 2 reductions,
the Stiefel–Whitney classes) appear in the paper, the indices will be positive natural numbers with
0 < j1 < � � �< jl �

�
1
2
.n� 1/

�
.

Lemma 3.9 For a (possibly empty) set J D fj1; : : : ; jlg of positive natural numbers

0 < j1 < � � �< jl �
�
1
2
.n� 1/

�
;

we have
I.F /ˇO. Nc2j1 � � � Nc2jl /D 0 and I.F /ˇdet_n . Nc2j1 � � � Nc2jl /D 0

in H �.BGLn; I�/ and H �.BGLn; I�.det _n //, respectively.

Proof As in [16, Lemma 7.3], this is formal from the W.F /–linearity of the maps in the exact Bär
sequence.

Proposition 3.10 With the notation from Definition 3.7, if nD 2kC 1,

en D ˇdet_n . Ncn�1/D �fkg:

Proof This is proved in [14, Theorem 10.1], noting that our Stiefel–Whitney classes in Proposition 3.6
agree with those in [loc. cit.]; see also [16, Proposition 7.5].

Combining Lemma 3.9 and Proposition 3.10, we see that the Euler class en 2Hn.BGLn; In.det _n // is
I.F /–torsion if n is odd.

Remark 3.11 On BGLn, the Bockstein classes don’t contain more information than the Stiefel–Whitney
classes; it will follow from Proposition 4.5 combined with Lemma 2.4 that the reduction morphism

� WHm.BGLn; Im.L//! Chm.BGLn/

is injective on the image of ˇL. However, for a smooth scheme X , it is possible that the Bockstein class is
nontrivial while its reduction in the mod 2 Chow ring is trivial. Topologically, this happens if the integral
Stiefel–Whitney class is divisible by 2; divisibility results for the integral Stiefel–Whitney classes arise,
for example, in Massey’s discussion of the obstruction theory for existence of almost complex structures.
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3.6 The Wu formula for the Chow ring

We briefly discuss the action of the Steenrod squares Sq2L on Ch�.BGLn/. Essentially, this is described
by the Wu formula. It’s well known, and there are several ways to prove it, for instance deducing it from
the Wu formula in singular cohomology via the cycle class map. We give a sketch of argument relying
mostly on Fasel’s computations with integral Stiefel–Whitney classes in [14].

Proposition 3.12 The untwisted Steenrod square Sq2O is given by

Sq2O W Ch�.BGLn/! Ch�.BGLn/; Ncj 7! Nc1 Ncj C .j � 1/ NcjC1:

The twisted Steenrod square Sq2detn is given by

Sq2detn W Ch�.BGLn/! Ch�.BGLn/; Ncj 7! .j � 1/ NcjC1:

The (twisted ) Steenrod squares Sq2O and Sq2detn of other elements are determined by the above formulas ,
the derivation property of the Steenrod square Sq2O and the relation

Sq2det_n
.x/D Nc1 � xCSq2O.x/:

Proof The first and second statement are equivalent by Proposition 2.2 and noting that Nc1.det n/D Nc1.
So it suffices to prove the claims concerning Sq2detn .

The second statement about the twisted Steenrod square in case of even Stiefel–Whitney classes is proved
in [14, Proposition 10.3, Remark 10.5]. For odd Stiefel–Whitney classes, the vanishing of Sq2detn. Nc2nC1/

is a consequence of the following computation, applied to x D Nc2n and using Sq2detn. Nc2n/D Nc2nC1:

Sq2detn ıSq2detn.x/D Nc1 �Sq2detn.x/CSq2O ıSq2detn.x/

D Nc21 � xC Nc1 �Sq2O.x/CSq2O. Nc1 � x/CSq2O ıSq2O.x/

D Nc21 � xC Nc1 �Sq2O.x/C Nc1 �Sq2O.x/C x �Sq2O. Nc1/

D 0:

Corollary 3.13 The kernel of the untwisted Steenrod square Sq2O is given by the subring

Z=2ZŒ Nc2i ; Nc1 Nc2i C Nc2iC1; Nc1 Ncn�� Z=2ZŒ Nc1; : : : ; Ncn�D Ch�.BGLn/:

The kernel of the twisted Steenrod square Sq2detn is given by the submodule (over the kernel of Sq2O)

h Nc2iC1; Ncniker Sq2O
� Z=2ZŒ Nc1; : : : ; Ncn�D Ch�.BGLn/:

Proof The claims follow from the Wu formula in Proposition 3.12. The odd Chern classes are in the kernel
of the twisted Steenrod square, and Ncn is the image of the Euler class. Even though the twisted Steenrod
square for Chern classes is given essentially by the same formula as the Steenrod square in Ch�.BSLn/,
the formula differs from [16] since Sq2det_n

. Nc22i /D Nc1 Nc
2
2i . For the untwisted Steenrod square Sq2O, the

even classes Nc2i map to Nc1 Nc2i C Nc2iC1. Hence the latter classes are in the kernel of the Steenrod square;
similarly for Nc1 Ncn. The description of the kernels follow from that; see also [26, page 285].
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Corollary 3.14 Consider the mod 2 Chow ring Ch�.BGLn/. The images of the Steenrod square maps
Sq2L W Ch�.BGLn/! Ch�C1.BGLn/ for L D O; det _n are contained in the subring generated by the
classes Nc1 D Sq2detn.1/, Nc

2
2i , and Ncn as well as Sq2O. Nc2j1 � � � Nc2jl / and Sq2detn. Nc2j1 � � � Nc2jl / for (possibly

empty) sequences of positive natural numbers 0 < j1 < j2 < � � �< jl �
�
1
2
.n� 1/

�
.

Proof The Steenrod squares Sq2L are linear. To determine generators of the image, it thus suffices to
consider Steenrod squares of monomials in the Chern classes.

Since Sq2O is a derivation, Sq2O.x
2/D 2xSq2O.x/D 0 and Sq2O.x

2y/D x2Sq2O.y/. In particular, we can
always pull out squares. For even Stiefel–Whitney classes, these squares are explicitly included as
generators in the statement. For the odd Stiefel–Whitney classes,

Sq2O. Nc2i Nc2iC1/D Nc2iSq2O. Nc2iC1/C Nc2iC1Sq2O. Nc2i /D 2 Nc1 Nc2i Nc2iC1C Nc
2
2iC1:

It thus suffices to show that the Steenrod squares of all products Ncj1 � � � Ncjm with no repeating factors are
contained in the subring as claimed.

For the odd Stiefel–Whitney classes,

Sq2O. Nc2iC1x/D Nc2iC1Sq2.x/C Nc1 Nc2iC1x D Nc2iC1Sq2detn.x/:

Since Nc2iC1 D Sq2detn. Nc2i / with the special case Nc1 D Sq2detn.1/, the odd Stiefel–Whitney classes are
also among the generators of the subring listed in the claim. Therefore, we can also pull out all the
odd Stiefel–Whitney classes from the products Ncj1 � � � Ncjm . A similar calculation shows that we can also
pull out Ncn, which is also included explicitly among the generators. We have thus established the claim
for Sq2O.

To show the claim for Sq2detn , we first have Sq2detn.x
2/D Nc1x

2 and

Sq2detn.x
2y/D Nc1x

2yC x2Sq2O.y/D x
2Sq2detn.y/:

This tells us again that we can always pull out squares. For the odd Stiefel–Whitney classes,

Sq2detn. Nc2iC1x/D Nc1 Nc2iC1xC Nc2iC1Sq2detn.x/D Nc2iC1Sq2O.x/:

Therefore,we can also pull out odd Stiefel–Whitney classes (and by a similar computation also Ncn).

3.7 The candidate presentation

We define an appropriate graded ring Rn=In which we will prove to be isomorphic to

H �.BGLn; I�˚ I�.det _n //:

The ring will be graded by Z˚Z=2Z, where the degrees .n; 0/ are those with I�–coefficients, and the
degrees .n; 1/ are those with I�.det _n /–coefficients. The ring will in fact be graded-commutative; see
the discussion in Remark 2.3. Following [26], we use the notation �.J; J 0/D .J [J 0/n .J \J 0/ for the
symmetric difference of two subsets J and J 0 of a given set.
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Definition 3.15 Let F be a field of characteristic ¤ 2 and denote by W.F / the Witt ring of quadratic
forms over F with its fundamental ideal I.F /�W.F / of even-dimensional forms. For a natural number
n� 1, we define the Z˚Z=2Z–graded-commutative W.F /–algebra

Rn DW.F /ŒP1; : : : ; PŒ.n�1/=2�; Xn; BJ ; TJ ; T∅�:

The classes Pi have degree .4i; 0/ and the class Xn has degree .n; 1/. For the classes BJ and TJ ,
the index set J runs through the (possibly empty) sets fj1; : : : ; jlg of positive natural numbers with
0 < j1 < � � � < jl �

�
1
2
.n� 1/

�
, and the degrees of BJ and TJ are .d; 0/ and .d; 1/, respectively, with

d D 1C 2
Pl
aD1 ja. By convention B∅ D 0.

Let In �Rn be the ideal generated by the following relations:

(1) I.F /BJ D I.F /TJ D I.F /T∅ D 0.

(2) If nD 2kC 1 is odd and k � 1, then X2kC1 D Tfkg; for nD 1 we have X1 D T∅.

(3) For any two index sets J and J 0, where J 0 can be empty,

BJ �BJ 0 D
X
k2J

Bfkg �P.Jnfkg/\J 0 �B�.Jnfkg;J 0/;(3-1)

BJ �TJ 0 D
X
k2J

Bfkg �P.Jnfkg/\J 0 �T�.Jnfkg;J 0/;(3-2)

TJ �BJ 0 D BJ �TJ 0 CT∅ �PJ\J 0 �B�.J;J 0/;(3-3)

TJ �TJ 0 D BJ �BJ 0 CT∅ �PJ\J 0 �T�.J;J 0/:(3-4)

Here we set PA D
Ql
iD1 Pai for an index set A D fa1; : : : ; alg, with the usual convention that

P∅ D 1 (in the degree .0; 0/ component of Rn).

Example 3.16 We briefly discuss the edge case nD 1. In this case, no classes Pi appear, and there are
no classes BJ or TJ with J nonempty. The only relevant generators are X1 and T∅. From relation (2),
we get X1 D T∅. Relation (1) implies that this class is I.F /–torsion. From the relations in (3), only (3-4)
would be applicable, but that trivializes to T 2∅ D T

2
∅ . The resulting ring has W.F / in degree 0, generated

by 1, and has a W.F /=I.F /Š Z=2Z–summand generated by T i∅ in degree .i; i mod 2/ for each i � 1.

Remark 3.17 We will show in Theorem 3.24 that the ring Rn=In is isomorphic to the total I–cohomology
ring of BGLn. The classes Pi correspond to Pontryagin classes, and the class Xn to the Euler class. The
classes BJ and TJ for a (possibly empty) index set J D fj1; : : : ; jlg of positive natural numbers with
0 < j1 < � � �< jl �

�
1
2
.n� 1/

�
correspond to nontwisted and twisted Bockstein classes, respectively,

BJ 7! ˇO. Nc2j1 � � � Nc2jl /; TJ 7! ˇdet_n . Nc2j1 � � � Nc2jl /:

The special class T∅ corresponds to ˇdet_n .1/ whose reduction in Ch1.BGLn/ is the first Stiefel–Whitney
class Nc1 D Sq2det_n

.1/.
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Remark 3.18 There are slight differences in the indexing sets between the formulas in [8] and [26]. For
the Pontryagin classes, this difference is due to fact that the Euler class squares to the top Pontryagin class.
So in Čadek’s presentation, there is no need to introduce the top Pontryagin class; on the other hand,
Brown only computes cohomology with trivial coefficients and he has to introduce the top Pontryagin
class separately. The same thing is true for the Bockstein classes:

ˇO. Nc2j1 � � � Nc2jl /D ˇdet_n . Nc2j1 � � � Nc2jl�1/en�1 if jl D 1
2
.n� 1/;

and this relation cannot be expressed in cohomology with trivial coefficients. Moreover, the reason why
Brown’s additional Nc1–factors in the Bockstein classes can be omitted in Čadek’s presentation is given by
the formula

ˇO. Nc1 Nc2j1 � � � Nc2jl /D ˇdet_n . Nc2j1 � � � Nc2jl�1/ˇdet_n .1/:

Definition 3.19 Let n� 2 be a natural number. Define the W.F /–algebra homomorphism ˆn WRn!

Rn�1 by

(1) the element Pi maps to Pi if i < 1
2
.n� 1/ and maps to X2n�1 if i D 1

2
.n� 1/,

(2) the element Xn maps to 0,

(3) for any index set J D fj1; : : : ; jlg,

BJ 7!

�
BJ if jl < 1

2
.n� 1/;

TJ 0 �Xn�1 if jl D 1
2
.n� 1/; J D J 0 t fjlg;

TJ 7!

�
TJ if jl < 1

2
.n� 1/;

BJ 0 �Xn�1 if jl D 1
2
.n� 1/; J D J 0 t fjlg:

Remark 3.20 The above formulas model the restriction of classes from BGLn to BGLn�1. On the level
of mod 2 Chow rings,

Sq2L. Nc2j1 � � � Nc2jl /D Sq2L. Nc2j1 � � � Nc2jl�1/ Nc2jl C Nc1 Nc2j1 � � � Nc2jl D Sq2L˝det_n
. Nc2j1 � � � Nc2jl�1/en�1;

using Proposition 2.2. Note that the formulas for restriction on the bottom of page 283 in [26] contain
some typos, the classes having the wrong degrees.

Proposition 3.21 With the notation from Definitions 3.15 and 3.19,

ˆn.In/� In�1:

In particular , the map ˆn descends to a well-defined ring homomorphism

ˆn WRn=In!Rn�1=In�1:

Proof We first deal with the relations of type (1). Recall that the map ˆn is by definition W.F /–linear;
in particular, it will send I.F / to I.F /. Since ˆn sends BJ to either BJ or TJ 0 �Xn�1 (and similarly TJ
to either TJ or BJ 0 �Xn�1, with the special case B∅D 0) it is clear the relations of type (1) are preserved.

The relations of type (2) are also preserved since both X2kC1 and Tk are mapped to 0 by ˆn.
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It remains to deal with relations of type (3). These relations are trivially preserved if neither J nor J 0

contains the highest possible index jl D 1
2
.n� 1/. In this case, all the relevant BJ , TJ and PJ will exist

both in Rn and Rn�1, and the corresponding relation in Rn is just mapped to the same relation in Rn�1.
For the rest of the proof, we will use the numbering (3-1)–(3-4) specified in Definition 3.15.

For relations of type (3-1), assume that jl 2 J 0 and jl … J . On the left-hand side, BJ 0 restricts to
TJ 0nfjlg �Xn�1 and on the right-hand side, B�.Jnfkg;J 0/ restricts to B�.Jnfkg;J 0nfjlg/ �Xn�1. The result
is the product of a relation of type (3-2) with Xn�1. Conversely, if jl 2 J and jl … J 0, then the left-hand
side restricts to TJnfjlg �Xn�1 �BJ 0 . The right-hand side restricts toX

k2Jnfjlg

Bfkg �P.Jnfkg/\J 0 �T�.Jnfk;jlg;J 0/ �Xn�1CT∅ �Xn�1 �P.Jnfjlg/\J 0 �B�.Jnfjlg;J 0/:

But this is the product of a relation of type (3-3) and Xn�1. Finally, when jl 2 J \J 0, the left-hand side
restricts to TJnfjlg �TJ 0nfjlg �X

2
n�1. The right-hand side restricts toX

k2Jnfjlg

Bfkg �P.Jnfk;jlg/\J 0 �X
2
n�1 �B�.Jnfkg;J 0/CT∅ �P.Jnfjlg/\J 0 �T�.J;J 0/ �X

2
n�1:

This is a product of a relation of type (3-4) with X2n�1. The argument for restriction of relations of type
(3-2) is completely analogous.

For the restriction of relations of type (3-4), if jl 2 J and jl … J 0, the left-hand side restricts to
BJ �TJ 0 �Xn�1. The right-hand side restricts to TJ �BJ 0 �Xn�1CT∅ �PJ\J 0 �B�.Jnfjlg;J 0/ �Xn�1. This
is the product of a relation of type (3-3) with Xn�1, noting that all terms here are 2–torsion. All the other
cases are done similarly, and the argument for relations (3-3) is again analogous.

Since ˆn.In/� In�1, it follows that the restriction map descends to a W.F /–algebra map

ˆn WRn=In!Rn�1=In�1;

as claimed.

Lemma 3.22 If n is even , then we have an isomorphism

Rn=In ŠRn�1=In�1ŒXn�:

In particular , the restriction map ˆn WRn=In!Rn�1=In�1 is surjective.

Proof The index sets for the elements Pi are the same for n and n�1. In particular, i ¤ 1
2
.n�1/ which

means that the Pi in Rn are just mapped to the Pi in Rn�1. The same is true for the index sets for BJ
and TJ . Moreover, in Rn�1=In�1 we have Xn�1 D Tf.n�2/=2g. This proves the surjectivity of ˆn. The
claim about the polynomial ring follows since Xn doesn’t appear in any relation in Rn.

Lemma 3.23 If n is odd , then there is an exact sequence of graded W.F /–algebras

Rn=In
ˆn
�!Rn�1=In�1!W.F /ŒXn�1�=.X

2
n�1/! 0:
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Proof The elements Pi 2Rn with i < 1
2
.n�1/ are mapped underˆn to the elements with the same name

in Rn�1. The same holds for the elements BJ and TJ where the index set J doesn’t contain 1
2
.n� 1/.

In particular, the subalgebra of Rn�1=In�1 generated by all Pi , BJ and TJ is in the image. The only
elements in Rn we have not yet considered so far are the new P.n�1/=2 and the elements BJ and TJ
where J contains 1

2
.n� 1/. The element X2n�1 is in the image of P.n�1/=2, the elements B 0JXn�1 are in

the image of TJ and the elements T 0JXn�1 are in the image of BJ . However, the element Xn�1 itself is
not in the image since we noted in Lemma 3.22 that it is a polynomial variable in Rn�1. Consequently,
defining the morphism Rn�1=In�1!W.F /ŒXn�1�=.X

2
n�1/ by sending Xn�1 to itself and all the other

generators to 0 yields the desired exact sequence.

3.8 Statement of results

Now we are ready to state the main theorem describing the I�–cohomology and Chow–Witt ring of BGLn.
For the I�–cohomology, the result is very close to Čadek’s computation of the integral cohomology of
BO.n/ with twisted coefficients; see [26].

Theorem 3.24 Let n� 1 be a natural number.

(1) The ring homomorphism

�n WRn!

M
q

H q.BGLn; Iq˚ Iq.det _n //;

Pi 7! p2i ;

Xn 7! en;

BJ 7! ˇO. Nc2j1 � � � Nc2jl / for J D fj1; : : : ; jlg;

TJ 7! ˇdet_n . Nc2j1 � � � Nc2jl / for J D fj1; : : : ; jlg;

T∅ 7! ˇdet_n .1/;

induces a ring isomorphism N�n WRn=In
Š
�!H �Nis.BGLn; I�˚ I�.det _n //.

(2) For any line bundle L on BGLn, the reduction morphism

H �.BGLn; I�.L//! Ch�.BGLn/

induced from the projection In.L/!KM
n =2 is explicitly given by mapping

p2i 7! Nc
2
2i ; ˇL. Nc2j1 � � � Nc2jl / 7! Sq2L. Nc2j1 � � � Nc2jl /; en 7! Ncn:

(3) Any class x in the ideal of H �.BGLn; I�˚ I�.det _n // generated by ˇJ and �J is trivial if and
only if its reduction �.x/ 2 Ch�.BGLn/ is trivial.

Remark 3.25 This theorem is one of the key components of Theorem 1.1. More concretely, the theorem
together with Definition 3.15 provides a generators-and-relations description of the total I–cohomology
ring M

q

H q.BGLn; Iq˚ Iq.det _n //
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as a Z˚Z=2Z–graded algebra over the Witt ring W.F /. The generators are the Pontryagin classes
p1; : : : ; pŒ.n�1/=2�, the Euler class en and the (nontwisted and twisted) Bockstein classes

ˇJ D ˇO. Nc2j1 � � � Nc2jl / and �J D ˇdet_n . Nc2j1 � � � Nc2jl /

for an index set J D fj1; : : : ; jlg of natural numbers 0 < j1 < j2 < � � � < jl �
�
1
2
.n� 1/

�
, plus the

additional ˇdet_n .1/. Spelling out Definition 3.15, the relations between these classes are as follows:

(1) The Bockstein classes ˇO. Nc2j1 � � � Nc2jl /, ˇdet_n . Nc2j1 � � � Nc2jl / and ˇdet_n .1/ are I.F /–torsion.

(2) For nD 2kC 1, the Euler class is a twisted Bockstein class: en D ˇdet_n . Nc2k/.

(3) For any two index sets J and J 0, where J 0 can be empty, multiplication of Bockstein classes is
explicitly given by

ˇJ �ˇJ 0 D
X
k2J

ˇfkg �p.Jnfkg/\J 0 �ˇ�.Jnfkg;J 0/;

ˇJ � �J 0 D
X
k2J

ˇfkg �p.Jnfkg/\J 0 � ��.Jnfkg;J 0/;

�J �ˇJ 0 D ˇJ � �J 0 C �∅ �pJ\J 0 �ˇ�.J;J 0/;

�J � �J 0 D ˇJ �ˇJ 0 C �∅ �pJ\J 0 � ��.J;J 0/:

In the above, pA D
Ql
iD1 pai for an index set AD fa1; : : : ; alg with the special case p∅ D 1.

Compared to the known integral singular cohomology ring of BO.n/, the Bockstein classes generate what
is the 2–torsion part of the integral singular cohomology. This part of the I–cohomology ring is always
the same, independent of the base field F . The part generated by the Pontryagin classes (plus the Euler
class for even n) corresponds to the torsion-free part of integral singular cohomology. In I–cohomology,
it is a free W.F /–module. It depends on the base field via W.F /, but its rank as a W.F /–module is
again independent of the base field.

The proof will be given in Section 4. For now we draw some consequences concerning the structure of
the Chow–Witt ring of BGLn.

Proposition 3.26 (1) The kernel of the composition

@O W CH�.BGLn/! Ch�.BGLn/
ˇO
�!H �C1.BGLn; I�C1/

is the subring

ker @ODZ
�
fc2i g1�i�n; fc1c2kCc2kC1g1�k�Œ.n�1/=2�; c1cn; .2/

�
�ZŒc1; : : : ; cn�ŠCH�.BGLn/:

(2) The kernel of the composition

@det_n W CH�.BGLn/! Ch�.BGLn/
ˇdet_n
���!H �C1.BGLn; I�C1.det _n //

is the ker @O–submodule of ZŒc1; : : : ; cn�Š CH�.BGLn/,

ker @det_n D hfc2kC1g1�k�Œ.n�1/=2�; cn; .2/iker @O
� CH�.BGLn/:
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Proof By (3) of Theorem 3.24 and Proposition 2.2, the kernel of ˇL equals the kernel of Sq2L and the
latter is determined by the Wu formula; see Corollary 3.13. Then statements (1) and (2) for the Chow
ring follow directly from the corresponding statement for the mod 2 Chow ring in Corollary 3.13, adding
as additional generators the elements of the ideal .2/.

The following theorem now establishes the first item of Theorem 1.1. The structure of the Z˚Z=2Z–
graded algebra on Ch�.BGLn/˚2 is discussed before the statement of Theorem 1.1.

Theorem 3.27 There is a cartesian square of Z˚Z=2Z–graded GW.F /–algebras

fCH�.BGLn;O˚ det _n / //

��

ker @O˚ ker @det_n

mod 2
��

H �.BGLn; I�˚ I�.det _n // �
// Ch�.BGLn/˚2

The right vertical morphism is the natural reduction mod 2 restricted to the kernels of the two boundary
maps , and the lower horizontal morphism is the reduction morphism described in Theorem 3.24. The
Chow–Witt-theoretic Euler class satisfies eeCH

n D .eI
n ; cn/ with cn 2 ker @det_n .2 For the Chow–Witt-

theoretic Pontryagin classes ,

peCH
i D

�
pI
i ; .�1/

ic2i C 2

i�1X
jDmaxf0;2i�ng

.�1/j cj c2i�j

�
;

where the odd Pontryagin classes3 in I–cohomology are I.F /–torsion and satisfy

p2iC1 D .ˇO. Nc2i //
2
Cp2iˇO. Nc1/D ˇO. Nc2i Nc2iC1/:

The top Pontryagin class pn 2 fCH2n.BSp2n/ maps to e2n 2 fCH2n.BGLn;O/.

Proof The statement about the cartesian square follows directly from [16, Proposition 2.11]. The
claims about the reduction from the Chow–Witt ring to I–cohomology follows from the definition of
the characteristic classes. The statement about en and cn follows from Proposition 3.3. The statement
about the pi has been proved in [16, Theorem 6.10]. For the description of odd Pontryagin classes in
terms of Bockstein classes, we first note that the injectivity of restriction to BSLn as discussed at the
end of the proof of Proposition 4.5 combined with [16, Theorem 6.10 or Proposition 8.16] implies that
odd Pontryagin classes are I.F /–torsion. The alternative description follows using Theorem 3.24(3) by
showing the equality after reduction in Ch�.BGLn/, which is Proposition 4.10; see also [16, Remark 8.17].
The statement about the top Pontryagin class is proved in Proposition 4.5, or [16, Proposition 7.9].

2Here and in the formula for Pontryagin classes, upper indices have been added to clarify the relevant cohomology theory:
Chow–Witt on the left-hand side and I–cohomology on the right-hand side.
3For a remark on odd Pontryagin classes, see Remark 3.5.
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Proposition 3.28 The restriction along the Whitney sum map B.GLn �GLm/! BGLnCm maps the
Pontryagin classes as

pi 7!

minfi;ngX
jDmaxf0;i�mg

pj ˝pi�j ;

where the sum is over the indices j such that pj and pi�j are Pontryagin classes for GLn and GLm,
respectively.

Proof The Whitney sum formula follows directly from the Whitney sum formula for the Pontryagin
classes of symplectic bundles and the compatibility of Whitney sum and symplectification; see [16].

Remark 3.29 The Whitney sum formula above is exactly the classical one from [8]. It is easier to state
simply by our conventions — see [16, Remark 5.7] — concerning indexing of the Pontryagin classes.

Example 3.30 To clarify the relation between the cohomology of BGLn and BSLn — see [16, Example
6.12] — we conclude this section with a detailed description of the cartesian square for BGL3 with both
dualities.

For the trivial duality, we have the cartesian squarefCH�.BGL3;O/ //

��

ZŒc2i ; c1c2C c3; c1c3; .2/�

��

W.F /Œp2; ˇO. Nc1/; ˇO. Nc2/; ˇO. Nc1 Nc2/�=I3;O �
// Z=2ZŒ Nc1; Nc2; Nc3�

In the upper-right corner, we have the subring of the Chow ring (in particular containing 12CH0.BGL3/)
generated by everything 2–divisible, squares of Chern classes and the classes c1c2C c3 and c1c3.

The structure of the W.F /–algebra in the lower left can be made more explicit using the Imˇ–W –
decomposition: the W –cohomology is

H �.BGL3;W /ŠW.F /Œp2�:

This is a part that depends on the underlying field via W.F /, but the presentation as W.F /–algebra is
independent of the field — it is always a polynomial W.F /–algebra in p2.

The other summand of the I–cohomology in the lower-left corner is the image of ˇO, this part is
independent of the base, it is the same as the 2–torsion in the integral singular cohomology of BO.3/. As
generators, we have ˇO. Nc2/, the odd Pontryagin class p1 D ˇO. Nc1/D ˇdet_n .1/

2 and the class

ˇO. Nc3/D ˇO. Nc1 Nc2/D ˇdet_n .1/ˇdet_n . Nc2/:

Note that the class ˇO. Nc2/ is the generator ˇJ for J D f1g and is actually the only generator of this form
in this case. All the other classes written above are products of twisted Bockstein classes, as indicated.4

4See also the discussion of the relation between the presentations of Brown and Čadek in Remark 3.18.
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Using that � is injective on the image of ˇ, one can use an argument as in the proof of Corollary 3.14 to
show that any torsion class is contained in the subring generated by these classes together with p2. For
example, the third Pontryagin class can be expressed as

p3 D ˇO. Nc2 Nc3/D ˇO. Nc2/
2
Cp2ˇO. Nc1/:

The reductions of the Pontryagin classes are the squares of Chern classes, and the reductions of the other
two classes are

�.ˇO. Nc2//D Nc1 Nc2C Nc3; �.ˇO. Nc3//D Nc1 Nc3:

In particular, we recover exactly the generators of kerˇO � Ch�.BGL3/. As an example, the class
.ˇO. Nc2/; c1c2C c3/ is then a class in the Chow–Witt ring, because both classes have the same mod 2
reductions.

For the nontrivial duality, we have the squarefCH�.BGL3; det _n / //

��

hc1; c3; .2/iker @O

��

hˇdet_n .1/; ˇdet_n . Nc2/i
// Z=2ZŒ Nc1; Nc2; Nc3�

Here the upper-right corner is the sub–kerO–module of CH�.BGL3/ with the indicated generators. For
the lower-left corner, the twisted W –cohomology is trivial, since the W –cohomological Euler class
for odd-rank vector bundles is trivial. So the I–cohomology is I.F /–torsion. As a module overL
qH

q.BGL3; Iq/— the lower-left corner of the upper diagram for the nontwisted case — it is generated
by ˇdet_n .1/ and the Euler class e3 D ˇdet_n . Nc2/, which in the notation of Remark 3.25 are �∅ and �f1g,
respectively. The remaining torsion relations, in particular describing further multiplication rules, are not
completely spelled out for typesetting reasons.

4 The Chow–Witt ring of BGLn: proofs

The main goal of this section is to prove Theorem 3.24 which is a Chow–Witt analogue of Čadek’s
description of integral cohomology of BO.n/ with local coefficients. The arguments are based on the
decomposition into W –cohomology and the image of ˇ.

4.1 Projective spaces

As a first step we need to recall the computations of the I�–cohomology and Chow–Witt rings of projective
spaces Pn from [14]. Since Pic.Pn/Š Z, there are only two possible dualities to consider, given by the
line bundles OPn and OPn.1/.

It is a most classical computation that Ch�.Pn/Š Z=2ZŒ Nc1�=. Nc
nC1
1 /. The Steenrod squares are given

by Sq2O. Nc1/D Nc
2
1 and Sq2O.1/. Nc1/D 0. In particular, ker Sq2O D Z=2ZŒ Nc21 �, and the kernel of Sq2O.1/ is the

submodule of Ch�.Pn/ generated by odd powers of Nc1.
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The following is a direct reformulation of the computations in [14, Section 11].

Proposition 4.1 (1) If n is odd , thenM
q

H q.Pn; Iq˚ Iq.det _1 //ŠW.F /Œe1; R�=.I.F / � e1; e
nC1
1 ; e1R;R

2/:

Moreover , e1D ˇO.1/.1/ and R 2Hn.Pn; In/ is the fundamental class of Pn (which is orientable
in this case). The image of R under the reduction morphism � is Ncn 2 Ch�.BGLn/.

(2) If n is even , thenM
q

H q.Pn; Iq˚ Iq.det _1 //ŠW.F /Œe1; e
?
n �=.I.F / � e1; e

nC1
1 ; e1e

?
n ; .e

?
n /
2/:

Again , e1 D ˇO.1/.1/, and the class e?n 2 H
n.Pn; In.det _1 // is the Euler class of the rank n

hyperplane bundle on Pn Š .Pn/_.

Proof Note that [14] only establishes the additive structure statements, not quite the full presentation of
the ring structure as formulated. Nevertheless, the statements about the ring structure follow from this:
since we already know some characteristic classes of vector bundles, we obtain a ring homomorphism
from our claimed presentation to the cohomology ring of Pn. Additively, we also know that the Euler
class reduces to Nc1; in particular the nontriviality of the powers of the Euler class is then immediate and
this already deals with all the torsion classes. The statement for the nontorsion classes R and e?n follows
directly, since these cannot have nontrivial intersections with anything else for dimension reasons.

Remark 4.2 The classical presentations of the integral cohomology of real projective spaces are recovered
exactly for F DR. The algebraic Euler class maps to the topological Euler class under real realization,
so the real realization morphism also induces an isomorphism from I�–cohomology to the integral
cohomology of real projective space; see [17].

The following is the Chow–Witt version of [26, Lemma 1]. This is a consequence of the above restatement
of the computations in [14, Section 11], noting that BGL1 Š P1.

Proposition 4.3 The Euler class e1 2 H 1.P1; I1.det _1 // is nontrivial. Moreover , e1 D ˇdet_1
.1/.

There is an isomorphismM
q

H q.P1; Iq˚ Iq.det _1 //ŠW.F /Œe1�=.I.F / � e1/:

The reduction morphism H 1.P1; I1.det _1 //! Ch1.P1/ maps e1 to Sq2det_1
.1/D Nc1. In particular ,

Theorem 3.24 is true for nD 1.

Remark 4.4 Alternatively, we can formulate the description of the I–cohomology of projective space in
terms of the decomposition into W –cohomology and the image of ˇ. The W –cohomology of Pn
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is an exterior W.F /–algebra on one generator, which is e?n 2 H
n
�
Pn;W .O.1//

�
for n even and

RD Œpt�2Hn.Pn;W / for n odd. The image of ˇL is identified with the image of Sq2L and consists of the
appropriate powers of e1. Multiplication with torsion classes can be computed after reduction in Ch�.Pn/.

4.2 Computation ofW –cohomology

The next step is the computation of the W –cohomology of BGLn.

Proposition 4.5 The W –cohomology of BGLn is given by

H �.BGLn;W ˚W .det _n //Š
�
W.F /Œp2; p4; : : : ; pn�2; en� if n� 0 mod 2;
W.F /Œp2; p4; : : : ; pn�1� if n� 1 mod 2:

The morphisms H �.BGLn;W .L// ! H �.BGLn�1;W .L//, induced by the stabilization morphism
BGLn�1! BGLn, are compatible with Pontryagin classes. The restriction along BGL2nC1! BGL2n
maps p2n to e22n.

Proof We note that the compatibility of the Pontryagin classes with stabilization follows from their
definition; see [16, Proposition 5.8].

The result is proved by induction. The base case for the induction is given by BGL1 Š P1. In this case,
the claim is that

H q.P1;W .L//Š

�
W.F / if q D 0 and LD O;

0 otherwise:
This follows from Fasel’s computations; see Proposition 4.3.

For the inductive step, we use the localization sequence of Proposition 3.1,

� � � !H q�n.BGLn;W .L˝ det n//
en
�!H q.BGLn;W .L//

��
�!H q.BGLn�1;W .��L// @

�!H q�nC1.BGLn;W .L˝ det n//! � � � :

If n is even, then by the induction hypothesis H �.BGLn�1;W .L// is a polynomial W.F /–algebra
generated by the Pontryagin classes p2; : : : ; pn�2. Since the stabilization morphism �� is compatible with
the Pontryagin classes, it is surjective, hence @D 0. Thus, en is injective. Induction on the cohomological
degree proves the claim that en is a new polynomial generator; alternatively, we can use the splitting
principle of [16, Proposition 7.8] to show independence of en from the Pontryagin classes.

If n is odd, we know that en D 0 in W –cohomology, since by Proposition 3.10 it is in the image of ˇ.
Therefore, the boundary map

@ WHn�1.BGLn�1;W .det _n�1//!H 0.BGLn;W /

is surjective. The target is a cyclic W.F /–module generated by 1, and by the inductive assumption the
image is a cyclic W.F /–module generated by @en�1. In particular, @en�1 D 1, up to a unit in W.F /.
By the derivation property for @, the boundary map is trivial on H �.BGLn�1;W / and injective on
H �.BGLn�1;W .det _n�1//. This implies that the W –cohomology of BGLn is a polynomial W.F /–
algebra generated by the Pontryagin classes p2; : : : ; pn�1.
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Finally, to prove the claim concerning restriction of the top Pontryagin class, consider the morphism

o� WH �.BGL2n.C1/;W .det _n //!H �.BSL2n.C1/;W /

given by pullback to the orientation cover. This maps the Pontryagin classes and Euler class to their respec-
tive counterparts for BSL2n.C1/. From the present computation of the W –cohomology of BGL2n.C1/
and the computations in [16, Theorem 1.3] for BSl2n.C1/ we conclude that o� is injective. Moreover,
p2n� e

2
2n is mapped to 0 by [16, Theorem 1.3] which proves the claim.

Remark 4.6 For the case BSLn, the analogous formulas can be obtained from the general machinery
for �–inverted cohomology theories in [1].

4.3 Relations in the mod 2 Chow ring

In this subsection we show that the ideal In of relations between characteristic classes is annihilated by
the composition

Rn
�n
�!H �.BGLn; I�˚ I�.det _n //

�
�! Ch�.BGLn/˚2:

Lemma 4.7 Assume n is odd. With the above notation ,

�.en/D � ıˇdet_n . Ncn�1/D Ncn:

Proof This follows from [14, Proposition 10.3, Remark 10.5], the identification Sq2det_n
D � ıˇdet_n

from Proposition 2.2, and the identification of Stiefel–Whitney classes with reductions of Chern classes
in Proposition 3.6.

Proposition 4.8 For two index sets J and J 0, the elements

BJ �BJ 0 �
X
k2J

Bfkg �P.Jnfkg/\J 0 �B�.Jnfkg;J 0/;

BJ �TJ 0 �
X
k2J

Bfkg �P.Jnfkg/\J 0 �T�.Jnfkg;J 0/;

TJ �BJ 0 �BJ �TJ 0 CT∅ �PJ\J 0 �B�.J;J 0/;

TJ �TJ 0 �BJ �BJ 0 CT∅ �PJ\J 0 �T�.J;J 0/

have trivial images under the composition � ı �n WRn! Ch�.BGLn/.

Proof The first relation can be established as in [16, Proposition 7.13]. Note that �ı�n maps the elements
BJ and TJ to the elements Sq2O. Nc2j1 � � � Nc2jk / and Sq2det_n

. Nc2j1 � � � Nc2jk /, respectively; see Proposition 2.2.
The proofs of the other relations can be done by the same manipulations as detailed in [26, Lemma 4].

Corollary 4.9 The composition � ı �n WRn! Ch�.BGLn/˚2 factors through the quotient Rn=In.

Proof This follows directly from Lemma 4.7 and Proposition 4.8.
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Proposition 4.10 Let 2i C 1� n be an odd natural number.5 Then

�.p2iC1/D .Sq2O. Nc2i //
2
C �.p2i /Sq2O. Nc1/D Sq2O. Nc2i Nc2iC1/:

Proof The claim follows from the computations

�.p2iC1/.En/D Nc4iC2.En˚En/D Nc4iC2.E
˚2
n /D Nc2iC1.En/

2;

.Sq2O. Nc2i //
2
C �.p2i /Sq2O. Nc1/D . Nc2iC1C Nc1 Nc2i /

2
C Nc22i Nc

2
1 D Nc

2
2iC1;

Sq2O. Nc2i Nc2iC1/D Nc2iSq2O. Nc2iC1/C Nc2iC1Sq2O. Nc2i /D Nc
2
2iC1I

see [8, page 288].

4.4 Proof of Theorem 3.24

We first note that Proposition 4.5, in combination with Lemma 2.4, a priori implies a splitting of I–
cohomology into W –cohomology and the image of ˇ, and this is the key tool in the proof. This already
establishes part (3) of the theorem.

Part (2) of the theorem follows from Proposition 2.2 for the Bockstein classes and [16, Corollary 7.11]
for the Pontryagin and Euler classes.

To prove part (1) of the theorem, consider the ring homomorphism

�n WRn!

M
q;L

H q.BGLn; Iq.L//

defined in Theorem 3.24. The first step is to show that �n factors through the quotient Rn=In, ie that
�n.In/D 0. We consider the relations generating In given in Definition 3.15. Relations of type (1) hold
by Lemma 3.9, relations of type (2) by Proposition 3.10. Relations of type (3) are annihilated by the
composition � ı �n W Rn ! Ch�.BGLn/ by Proposition 4.8. By Proposition 4.5, the W –cohomology
of BGLn is free, hence Lemma 2.4 implies that the reduction � WH q.BGLn; Iq.L//! Chq.BGLn/ is
injective on the image of ˇL. Since all relations of type (3) are in the image of ˇL, those relations have
trivial image under �n. Therefore, we get a well-defined ring homomorphism

N�n WRn=In!
M
q;L

H q.BGLn; Iq.L//:

We now prove that the ring homomorphism N�n is surjective. First, we note that N�n surjects onto ImˇL if
and only if the composition

� ı N�n WRn=In!
M
q;L

H q.BGLn; Iq.L//! Ch�.BGLn/

surjects onto the image of Sq2L W Ch��1.BGLn/! Ch�.BGLn/. By Corollary 3.14, we know that the
image of Sq2L is contained in the subring generated by the classes Sq2L. Nc2j1 � � � Nc2jl /, Sq2detn.1/, Nc

2
2i

and Ncn. By part (2) of the theorem, all these classes are reductions of classes in the image of �n, proving

5Recall that the definition of Pontryagin classes includes a definition of odd Pontryagin classes; see Remark 3.5.
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that N�n surjects onto the image of ˇ. It then suffices to show that the composition

Rn=In
N�n
�!

M
q;L

H q.BGLn; Iq.L//!
M
q;L

H q.BGLn;W .L//

is surjective, where the second map is the projection onto W –cohomology. But this follows from
Proposition 4.5, finishing the surjectivity proof.

Finally, we prove that N�n is injective. First, we consider the W.F /–torsion-free part of Rn=In which is
generated, as a commutative graded W.F /–algebra, by the Pi , and X2n if applicable. The restriction
of N�n to that subalgebra is injective by Proposition 4.5. The injectivity on the torsion part, ie the ideal
generated by the classes BJ , TJ for J D fj1; : : : ; jlg and T∅ can be checked after composition with �,
by the decomposition of Lemma 2.4 (and Proposition 4.5) and the resulting fact that � is injective on
the image of ˇ. The direct translation (replacing wi by Nci and Sq1 by Sq2) of the argument on page 285
of [26] takes care of that; see also [16, Proposition 8.15].

5 Chow–Witt rings of finite Grassmannians: statement of results

In the following two sections, we compute the Chow–Witt rings of the finite Grassmannians Gr.k; n/.
The results are stated in the present section, and the proofs are deferred to the next section.

5.1 Generators from characteristic classes

The first step is to get enough classes in fCH�.Gr.k; n/;L/. We realize the Grassmannian Gr.k; n/ over
the field F as the variety of k–dimensional F –subspaces of V D F n. Recall that we have an exact
sequence of vector bundles on Gr.k; n/,

0! Sk! O˚nGr.k;n/! Qn�k! 0:

Here, Sk is the tautological subbundle, mapping a point ŒW � corresponding to a k–dimensional subspace
W � V to W , and Qn�k is the tautological quotient bundle, mapping a point ŒW � to the quotient space
V=W .

There is a vector bundle torsor f W GLn=.GLk �GLn�k/! Gr.k; n/ over the Grassmannian. This is an
A1–weak equivalence, and the above exact sequence of vector bundles splits over GLn=.GLk �GLn�k/.
Consequently, we obtain an A1–fiber sequence

GLn=.GLk �GLn�k/! BGLk �BGLn�k
˚
�! BGLn;

where the second map is the Whitney sum map and the first map classifies the pair .f �Sk; f
�Qn�k/. We

can also consider the map c W Gr.k; n/! BGLk �BGLn�k obtained by composing a homotopy inverse
of f with the inclusion of the homotopy fiber, and this map classifies the pair .Sk;Qn�k).

Note that there are two possible dualities on BGLk , corresponding to the line bundles O and det _
k

; and
similarly there are two possible dualities on BGLn�k corresponding to O and det _

n�k
. Consequently,
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there are four possible dualities on BGLk �BGLn�k , given by the four possible exterior products of the
above line bundles. For any choice of line bundles Lk and Ln�k on BGLk and BGLn�k , respectively,
the classifying map c above induces homomorphisms of Chow–Witt groupsfCH�.BGLk �BGLn�k;Lk � Ln�k/! fCH�.Gr.k; n/; c�.Lk � Ln�k//:

Note that the bundle c�.Lk � Ln�k/ is trivial (modulo squares of line bundles) if and only if Lk
and Ln�k are either both trivial or both nontrivial. This follows from the fact that the assignment
.Lk;Ln�k/ 7! c�.Lk � Ln�k/ can be computed by pulling back both line bundles to the Grassmannian
and then taking the tensor product; hence it induces the addition

Z=2Z˚2 Š Ch1.BGLk �BGLn�k/! Ch1.Gr.k; n//Š Z=2Z:

The induced homomorphisms assemble into a ring homomorphism of the total Chow–Witt rings (to the
extent that this makes sense; see the remarks on [5] in Section 2).

This means that the characteristic classes of the tautological bundles Sk and Qn�k provide classes in
the Chow–Witt ring of Gr.k; n/. For the definition of these classes and relations satisfied by them; see
Section 3 and in particular Theorem 3.24, or the main result Theorem 1.1. The characteristic classes for
the tautological subbundle Sk are

(1) the Pontryagin classes p1; p2; : : : ; pk�1,

(2) the Euler class ek ,

(3) the (twisted) Bockstein classes ˇO. Nc2j1 � � � Nc2jl / and ˇdet_
k
. Nc2j1 � � � Nc2jl /, and

(4) the Chern classes ci .

Similarly, for the tautological quotient bundle Qn�k , we have the same characteristic classes (with different
index sets); these will be denoted by an additional superscript .�/?.6 This provides a number of canonical
elements in fCH�.Gr.k; n/;L/. It turns out that in the cases where dim Gr.k; n/D k.n�k/ is even, these
classes generate the Chow–Witt ring; in the case where the dimension is odd, there is essentially one
additional class arising as lift of an Euler class.

Remark 5.1 We follow the convention of [16, Remark 5.7], including all Pontryagin classes without
added signs or reindexing. While the odd Pontryagin classes are I.F /–torsion and can be expressed in
terms of Bockstein classes, this convention makes the Whitney sum formula for Pontryagin classes easier
to state; see Proposition 3.28 and the subsequent remark.

5.2 Chow rings of Grassmannians

Before giving the statement concerning the structure of the Chow–Witt rings, we discuss the Chow rings of
the Grassmannians. This result is very well-known and can be found in the relevant books on intersection
theory, such as [11].

6The notation is suggestive that Qn�k is the complement of Sk in O˚n, after pulling back to GLn=.GLk �GLn�k/.
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Remark 5.2 The key relation in the Chow ring (with integral or mod 2 coefficients) is the Whitney sum
formula. For this, in the statements below, we will use the notation c D

Pk
iD0 ci and c? D

Pn�k
iD0 c

?
i for

the total Chern classes of the tautological subbundles and quotient bundles Sk and Qn�k , respectively.
Similarly, we will use the notation NcD

Pk
iD0 Nci and Nc?D

Pn�k
iD0 Nc

?
i for the total Stiefel–Whitney classes

of the tautological subbundles and quotient bundles, respectively. The Whitney sum formula for the
extension

0! Sk! O˚nGr.k;n/! Qn�k! 0

is then simply written as c � c? D 1.

Proposition 5.3 Let F be an arbitrary field. With the notation from Remark 5.2,

CH�.Gr.k; n//Š ZŒc1; : : : ; ck; c
?
1 ; : : : ; c

?
n�k�=.c � c

?
D 1/:

Proposition 5.4 Let F be an arbitrary field. With the notation from Remark 5.2,

(1) there is a canonical isomorphism

Ch�.Gr.k; n//Š Z=2ZŒ Nc1; : : : ; Nck; Nc
?
1 ; : : : ; Nc

?
n�k�=. Nc � Nc

?
D 1/I

(2) the Steenrod square is given by

Sq2O W Ch�.Gr.k; n//! Ch�.Gr.k; n//; Nc
.?/
j 7! Nc

.?/
1 Nc

.?/
j C .j � 1/ Nc

.?/
jC1I

(3) the twisted Steenrod square is given by

Sq2det S_
k

W Ch�.Gr.k; n//! Ch�.Gr.k; n//; Nc
.?/
j 7! .j � 1/ Nc

.?/
jC1:

The following consequence of the description of the Chow ring given in Proposition 5.4 will be relevant
later.

Proposition 5.5 Let 1� k < n and consider the ring

AD Z=2ZŒ Nc1; : : : ; Nck; Nc
?
1 ; : : : ; Nc

?
n�k�=. Nc � Nc

?
D 1/:

(1) The kernel of multiplication by Nc?
n�k

is the ideal h Ncki � A.

(2) The cokernel of multiplication by Nc?
n�k

is

A=h Nc?n�ki Š Z=2ZŒ Nc1; : : : ; Nck; Nc
?
1 ; : : : ; Nc

?
n�k�1�=. Nc � Nc

?
D 1/:

Proof Statement (2) about the cokernel being A=h Nc?
n�k
i is clear. The explicit description of the algebra

also follows directly.

For (1), clearly h Ncki � ker Nc?
n�k

since Nck Nc?n�k D 0 follows from the Whitney sum relation. The reverse
inclusion can be seen, for example, by a dimension count in the kernel-cokernel exact sequence for
multiplication by Nc?

n�k
.
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Remark 5.6 This is also the formula for the mod 2 cohomology of the real Grassmannians; see eg [21].
The notation for the classes Nci and Nc?i is due to the fact that these are the mod 2 reductions of the
Chern classes from the Chow ring. In the real realization these would go exactly to the corresponding
Stiefel–Whitney classes.

5.3 Statement of the main results

Now we are ready to state the main results describing the I�–cohomology of the finite Grassmannians.
The lengthy formulation boils down to: “the characteristic classes of the tautological bundle and its
complement generate the cohomology (except for a new class R in degree .n� 1; 0/ when k.n� k/ is
odd) and the only new relations come from the Whitney sum formula”.

As before in Remark 5.2, we will denote by pD 1Cp1C� � �Cpk and p?D 1Cp?1 C� � �Cp
?
n�k

for the
total Pontryagin classes of the tautological subbundles and quotient bundles Sk and Qn�k , respectively.

Theorem 5.7 Let F be a perfect field of characteristic ¤ 2, and let 1 � k < n. The cohomology ringL
qH

q.Gr.k; n/; Iq˚ Iq.det S_
k
// is isomorphic to the Z˚Z=2Z–graded W.F /–algebra generated by

(G1) the Pontryagin classes p1; p2; : : : ; pk of the tautological rank k subbundle and the Pontryagin
classes p?1 ; p

?
2 ; : : : ; p

?
n�k

of the tautological rank n�k quotient bundle , where the class p.?/i has
degree .2i; 0/;

(G2) the Euler classes ek and e?
n�k

, having degrees .k; 1/ and .n� k; 1/, respectively;

(G3) for every set J D fj1; : : : ; jlg of natural numbers 0 < j1 < � � �< jl �
�
1
2
.k� 1/

�
, possibly empty,

there are Bockstein classes ˇJ D ˇO. Nc2j1 � � � Nc2jl / and �J D ˇdet S_
k
. Nc2j1 � � � Nc2jl / in degrees .d; 0/

and .d; 1/, respectively, where d D 1C 2
Pl
iD1 ji ;

(G4) for every set J Dfj1; : : : ; jlg of natural numbers 0<j1< � � �<jl �
�
1
2
.n�k�1/

�
, possibly empty ,

there are Bockstein classes ˇ?J D ˇO. Nc
?
2j1
� � � Nc?2jl / and �?J D ˇdet S_

k
. Nc?2j1 � � � Nc

?
2jl
/ in degrees .d; 0/

and .d; 1/, respectively, where d D 1C 2
Pl
iD1 ji ;

(G5) if k.n� k/ is odd , there is a class R in degree .n� 1; 0/

subject to the relations

(R1) the classes pi , ek , ˇJ and �J satisfy the relations holding in the total I–cohomology ring of
BGLk , and the classes p?i , e?

n�k
, ˇ?J and �?J satisfy the relations in the total I–cohomology ring

of BGLn�k (see Theorem 3.24);7

(R2) p �p? D 1, ie the product of the total Pontryagin classes is 1;

(R3) ek � e
?
n�k
D 0;

(R4) ˇO. Nc � Nc
?/D 1 and ˇdet S_

k
. Nc � Nc?/D �∅ D �

?
∅ , ie applying the (twisted ) Bockstein to the product

of the total Stiefel–Whitney classes in Ch� is trivial ;

(R5) R2D0, and the product of R with an I.F /–torsion class ˛ is zero if and only if Nck�1 Nc?n�k�.˛/D0.

7In particular, the classes ˇ∅ D ˇ?∅ D 0.
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Proposition 5.8 Let F be a perfect field of characteristic ¤ 2, and let 1 � k < n. The reduction
homomorphism

� W
M
q

H q.Gr.k; n/; Iq˚ Iq.det Sk//! Chq.Gr.k; n//

is given by
p
.?/
2i 7! . Nc

.?/
2i /

2; ek 7! Nck; e?n�k 7! Nc
?
n�k;

ˇL. Nc
.?/
2j1
� � � Nc

.?/
2jl
/ 7! Sq2L. Nc

.?/
2j1
� � � Nc

.?/
2jl
/; R 7! Nck�1 Nc

?
n�k D Nck Nc

?
n�k�1:

The reduction homomorphism �L is injective on the image of the Bockstein map ˇL.

Remark 5.9 This presentation gives a complete description of the cup product. To multiply two torsion
classes, we first rewrite the complementary classes Nc?2i in terms of polynomials in the ordinary classes Nc2j .
(It follows directly from the well-known presentation of Ch�.Gr.k; n// that it is generated by the classes Nci
and the complementary classes Nc?j can be expressed in terms of these.) The product of classes of the form
ˇL. Nc2j1 � � � Nc2jl / is then given by the relation in H �.BGLk/. Note also that the product of R with an
even Pontryagin class is independent of the Pontryagin classes. The product of R with a torsion class is a
torsion class, and so it can be determined by computation in Ch�.Gr.k; n//. More detailed descriptions
of how to work out products can be found in [28].

Theorem 5.10 Let F be a perfect field of characteristic¤ 2, and let 1� k < n. Then there is a cartesian
square of Z˚Z=2Z–graded GW.F /–algebrasfCH�.Gr.k; n/;O˚ det S_

k
/ //

��

ker @O˚ ker @det S_
k

mod 2
��

H �.Gr.k; n/; I�˚ I�.det S_
k
//

�
// Ch�.Gr.k; n//˚2

Here det S_
k

is the determinant of the dual of the tautological rank k subbundle on Gr.k; n/, and

@L W CH�.Gr.k; n//! Ch�.Gr.k; n// ˇL
�!H �C1.Gr.k; n/; I�C1.L//

is the (twisted ) integral Bockstein map.

The kernel of the integral Bockstein map @L is the preimage under reduction mod 2 of the subalgebra of
Ch�.Gr.k; n// generated by .ci .?//2, ck , c?

n�k
, and ckc?n�k�1 together with the image of Sq2L.

Proof This follows from [16, Proposition 2.11] since the Chow ring of Gr.k; n/ is 2–torsion-free; see
Proposition 5.3. The description of I�–cohomology is given in Theorem 5.7, and the description of the
reduction morphism � is given in Proposition 5.8. The description of the kernel of the boundary map
follows directly from the definition and the Bär sequence, ie that the kernel of ˇL is exactly the image of
the reduction map �L.

Remark 5.11 We can determine the images of Euler classes and Pontryagin classes in Chow theory
using Theorem 3.27.
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5.4 Examples

The following are two examples describing the I�–cohomology of small Grassmannians. For alternative
descriptions of the I�–cohomology, using even Young diagrams for the W –part and checkerboard fillings
for Young diagrams for the image of ˇ; see [28].

Example 5.12 Let us work out the components of the cartesian square of Theorem 5.10 in the example
case Gr.2; 4/.

First, the mod 2 Chow ring Ch�.Gr.2; 4// is generated by the Stiefel–Whitney classes Nc.?/1 and Nc.?/2 of
the tautological bundles, and the relations from the Whitney formula for Stiefel–Whitney classes are

Nc1 D Nc
?
1 ; Nc2C Nc

2
1 C Nc

?
2 D 0; Nc1 Nc

?
2 C Nc2 Nc

?
1 D Nc

3
1 D 0; Nc22 C Nc2 Nc

2
1 D 0:

From these relations, the usual well-known description of the mod 2 Chow ring follows. The description
of the integral Chow ring CH�.Gr.2; 4// is completely analogous, just in terms of Chern classes.

With the relations between the Stiefel–Whitney classes, we can now compute the twisted and untwisted
Bocksteins of Stiefel–Whitney classes. This provides information both for the kernel of @O and @det S_2

in
CH�.Gr.2; 4//, and information on the torsion classes in I�–cohomology. The first relation of Stiefel–
Whitney classes above implies ˇO. Nci /D ˇO. Nc

?
i / for i D 1; 2. By the Wu formula, Sq2O. Nc2/D Nc1 Nc2 and

therefore ˇO. Nc1 Nc2/D 0. Since Bocksteins of squares are trivial by the derivation property, this means that
the only nontrivial untwisted Bockstein classes are ˇO. Nc1/D p1 and ˇO. Nc2/.

With twisted coefficients, we have the class ˇdet S_2
.1/. The other twisted Bockstein classes ˇdet S_2

. Nci /

are trivial: we can check on reduction mod 2, the case i D 1 follows directly from the Wu formula and the
case i D 2 follows from Nc3 D 0. The other potential 2–torsion classes are products of the form �∅ˇO. We
check on mod 2 reduction that �.�∅ˇO. Nc1//D Nc

3
1 D 0 but �.�∅ˇO. Nc2//D Nc

2
1 Nc2 D Nc

2
2 ¤ 0. So the torsion

classes with twisted coefficients are ˇdet S_2
.1/ in degree 1 and ˇdet S_2

.1/ˇO. Nc2/ in degree 4.

As a consequence of the above, we can now also determine the kernel of the boundary maps on the Chow
ring. The Chern classes c.?/1 and c.?/2 have nontrivial Bocksteins and hence do not lift to the Chow–Witt
ring. As noted above, the classes c21 , c1c2 and c22 have trivial Steenrod squares and therefore

ker @O D ZŒc1c2; c
2
1 ; c

2
2 ; .2/�:

On the other hand, ker @det S_2
is the submodule generated by .2/, c1 and c2.

Finally, we can turn to the description of I�–cohomology. We already determined the nontrivial Bockstein
classes above. In addition to these, the remaining characteristic classes for I�–cohomology are the
Pontryagin classes p0 D 1 2H 0.Gr.2; 4/; I0/,

p
.?/
1 D ˇO. Nc

.?/
1 / 2H 2.Gr.2; 4/; I2/ and p

.?/
2 2H 4.Gr.2; 4/; I4/

and the Euler classes e2; e?2 2H
2.Gr.2; 4/; I2.det E_2 //.
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The relations encoded in the Whitney sum formula p �p? D 1 are

ˇ. Nc1/D ˇ. Nc
?
1 /; p2Cˇ. Nc1/

2
Cp?2 D 0; p22 D 0:

There is also a relation 2p2ˇ. Nc1/ D 0 which is trivially satisfied. From Nc31 D 0 above we find that
Sq2. Nc1/2 D Nc41 D 0 and therefore ˇ. Nc1/2 D 0. In particular, p2 D �p?2 . Consequently, the only
nontorsion classes are p0 D 1, p2, e2 and e?2 , with e22 D .e

?
2 /
2 D p2.

A posteriori, we can now note that Gr.2; 4/ is an orientable variety, and a Poincaré duality pattern as in
singular cohomology is satisfied for the I�–cohomology.

Example 5.13 As another example, we work out the Steenrod squares for Gr.2; 5/. The relevant relations
arising from the Whitney sum formula are

Nc1 D Nc
?
1 ; Nc?2 D Nc2C Nc

2
1 ; Nc?3 D Nc

3
1 ; Nc22 C Nc

2
1 Nc2C Nc

4
1 D Nc2 Nc

3
1 D 0:

Now we go through the individual degrees in Ch�.Gr.2; 5//:

(1) Degree 1 has Nc1 and Sq2. Nc1/D Nc21 ; this class doesn’t lift to H 1.Gr.2; 5/; I1/.

(2) Degree 2 has Nc2 with Sq2. Nc2/D Nc1 Nc2 and Nc21 with trivial Sq2. So the latter class lifts to a torsion
class ˇ. Nc1/ 2H 2.Gr.2; 5/; I2/.

(3) Degree 3 has Nc31 with Sq2. Nc31/D Nc
4
1 and Nc1 Nc2 with trivial Sq2. So the latter class lifts to a torsion

class ˇ. Nc2/ 2H 3.Gr.2; 5/; I3/.

(4) Degree 4 has Nc41 and Nc21 Nc2, both with trivial Sq2. The class Nc22 D Nc
4
1 C Nc

2
1 Nc2 lifts to the Pontryagin

class, and Nc41 lifts to ˇ. Nc31/ 2H
4.Gr.2; 5/; I4/.

(5) Degree 5 has Nc51 with Sq2. Nc51/D Nc
6
1 and consequently this class doesn’t lift to I5–cohomology.

(6) Degree 6 has Nc61 with trivial Sq2, and this class lifts to the integral class ˇ. Nc51/ 2H
6.Gr.2; 5/; I6/.

This recovers exactly the pattern for integral cohomology as discussed in eg [9]. In addition to that, we
can use the formulas from Theorem 1.1 to determine the cup product of the torsion classes. Computations
as above could be done to determine the cohomology with twisted coefficients as well.

6 Chow–Witt rings of finite Grassmannians: proofs

In this section, we will now prove the claims about the structure of I�–cohomology of the Grassmannians
discussed in Section 4. The overall argument is again to use the decomposition of I–cohomology into the
image of ˇ and the W –cohomology. We compute the W –cohomology using a version of the inductive
procedure used by Sadykov to compute rational cohomology of the real Grassmannians; see [23]. The
base case k D 1 is the case of projective space which basically follows from [14]. The inductive step
compares the cohomology of the Grassmannians Gr.k� 1; n/ and Gr.k; n/ via a space which appears as
sphere bundle of the tautological quotient and subbundle over Gr.k � 1; n/ and Gr.k; n/, respectively.
The image of ˇ is detected on the mod 2 Chow ring, which determines the multiplication with torsion
classes.
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6.1 Localization sequence for inductive proof

As a preparation for the inductive computation of W –cohomology, we set up the relevant localization
sequences which allow to compare cohomology of different Grassmannians.

Proposition 6.1 (1) There are isomorphisms

Gr.k; n/Š Gr.n� k; n/:

(2) Denote by q W Sk! Gr.k; n/ and p W Qn�kC1! Gr.k� 1; n/ the respective tautological bundles ,
and by zq WGr.k; n/!Sk and zp WGr.k�1; n/!Qn�kC1 the respective zero-sections. Then there
is an A1–weak equivalence of associated sphere bundles

Sk n zq.Gr.k; n//' Qn�kC1 n zp.Gr.k� 1; n//:

Moreover , under this weak equivalence , we have a correspondence of pullbacks of tautological
vector bundles q�Sk Š p

�Sk�1˚O.

Proof (1) For a vector space V of dimension n, the natural bijection between k–dimensional subspaces
of V and .n�k/–dimensional subspaces of its dual V _ induces a natural isomorphism

Gr.k; V /Š Gr.n� k; V _/:

Choosing an isomorphism V ŠV _ induces an isomorphism Gr.n�k; V _/ŠGr.n�k; V /. This provides
the claimed isomorphisms. Note that these are not natural.

(2) Since we only want to establish an A1–weak equivalence, we can replace the Grassmannians Gr.k; n/
and Gr.k � 1; n/ by the quotients GLn=.GLk �GLn�k/ and GLn=.GLk�1 �GLn�kC1/, respectively.
The pullback of the vector bundle Sk over GLn=.GLk �GLn�k/ is the associated bundle for the Stiefel
variety GLn=GLn�k viewed as GLk–torsor and the natural GLk–representation on Ak . As in the setup
of the localization sequence before Proposition 3.1, the complement of the zero section is then, up to a
torsor under a unipotent group, GLn=.GLk�1 �GLn�k/ because GLk�1 is the stabilizer of a line in Ak .

A similar argument works for Gr.k� 1; n/. The vector bundle Qn�kC1 over GLn=.GLk�1 �GLn�kC1/
is the associated bundle for the Stiefel variety GLn=GLk�1 and the natural representation of GLn�kC1
on An�kC1. The complement of the zero section can then, up to a torsor under a unipotent group, be
identified with GLn=.GLk�1 �GLn�k/. This yields the required A1–weak equivalence. By an argument
similar to the one in the setup for the localization sequence before Proposition 3.1, the pullback of the
universal bundle Sk to Sk nGr.k; n/ will split off a direct summand, and the remainder is the tautological
rank k�1 bundle on GLn=.GLk�1 �GLn�k/. On the other hand, the pullback of the tautological rank
k�1 bundle on GLn=.GLk�1 �GLn�kC1/ to GLn=.GLk�1 �GLn�k/ will still be the tautological rank
k�1 bundle.
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Remark 6.2 In abuse of notation, we will denote the total spaces of both sphere bundles

Qn�kC1 n zp.Gr.k� 1; n// and Sk n zq.Gr.k; n//

by S.k; n/. This is justified by Proposition 6.1 because they are A1–equivalent and hence they will have
isomorphic W –cohomology.

We obtain two localization sequences, relating the Grassmannians Gr.k; n/ and Gr.k � 1; n/ to their
associated sphere bundles. This, combined with the equivalence between the sphere bundles, is the
relevant input for the induction step for the computation of the W –cohomology of the Grassmannians.

Proposition 6.3 (1) For any line bundle L on Gr.k�1; n/, there is a long exact localization sequence

� � �
e?
n�kC1
����!H �.Gr.k� 1; n/;W .L//

p�
�!H �.S.k; n/;W .L//

@
�!H ��nCk.Gr.k� 1; n/;W .L˝ det Qn�kC1//

e?
n�kC1
����!H �C1.Gr.k� 1; n/;W .L//! � � � :

(2) For any line bundle L on Gr.k; n/, there is a long exact localization sequence

� � �
ek
�!H �.Gr.k; n/;W .L//

q�
�!H �.S.k; n/;W .L//

@
�!H ��kC1.Gr.k; n/;W .L˝ det Sk//

ek
�!H �C1.Gr.k; n/;W .L//! � � � :

Similar localization sequences are true for the other cohomology theories considered in this paper, but we
will not need those.

6.2 Inductive computation ofW –cohomology

We now determine the structure of the total W –cohomology ring of Gr.k; n/. The argument completely
follows the computation of rational cohomology of Grk.Rn/ in [23]. Some formulas for oriented
Grassmannians related to the ones below can already be found in Ananyevskiy’s computation for �–
inverted theories; see [1].

Theorem 6.4 Let F be a perfect field of characteristic¤ 2 and let 1� k < n. The total W –cohomology
ring

L
i;LH

i .Gr.k; n/;W .L// has the following presentation , as a commutative Z˚Pic.Gr.k; n//=2–
graded W.F /–algebra:

(1) For k and n even , the total W –cohomology ring
L
j;LH

j .Gr.k; n/;W .L// is isomorphic to

W.F /Œp2; : : : ; pk; ek; p
?
2 ; : : : ; p

?
n�k

; e?
n�k

�

.p �p? D 1; ek � e
?
n�k
D 0; e2

k
D pk; .e

?
n�k

/2 D .p?
n�k

/2/
:

(2) If n is odd ,M
j;L

H j .Gr.k; n/;W .L//Š

8̂<̂
:
W.F /Œp2;:::;pk ;ek ;p

?
2 ;:::;p

?
n�k�1

�

.p�p?D1;e2
k
Dpk/

if k is even;
W.F /Œp2;:::;pk�1;p

?
2 ;:::;p

?
n�k

;e?
n�k

�

.p�p?D1;.e?
n�k

/2D.p?
n�k

/2/
if k is odd:
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(3) For k and n� k odd ,M
j;L

H j .Gr.k; n/;W .L//Š
W.F /Œp2; : : : ; pk�1; p

?
2 ; : : : ; p

?
n�k�1

�

.p �p? D 1/
˝
V
ŒR�:

Here the notation is the one of Theorem 5.7, ie the bidegrees of the even Pontryagin classes p2i are .4i; 0/,
the bidegrees of the Euler classes ek and e?

n�k
are .k; 1/ and .n� k; 1/, respectively , and the class R in

the last case has bidegree .n� 1; 0/.

Remark 6.5 The description of the I�–cohomology ring in Theorem 5.7 is compatible with the above
claims via the natural projection H j .Gr.k; n/; Ij .L//!H j .Gr.k; n/;W .L//. Moreover, Theorem 5.7
implies Theorem 6.4.

The following is an analogue of Proposition 5.5 for the above cohomology; it will be used in the inductive
proof of Theorem 6.4.

Proposition 6.6 Let 1� k < n. Consider the morphism

e?n�k WH
��nCk.Gr.k; n/;W .L//!H �.Gr.k; n/;W .L˝ det S_n�k//

given by multiplication with the Euler class.

(1) The cokernel is the quotient of the cohomology algebra modulo the ideal he?
n�k
i.

(2) If k � n� k � 0 mod 2, then the kernel of e?
n�k

is the ideal heki. The cokernel is generated by
the classes p2; : : : ; pk; ek; p?2 ; : : : ; p

?
n�k�2

modulo the relations p �p? D 1 and e2
k
D pk . The

classes in the kernel are products of ek with a class in the cokernel.

(3) If kC1� n�k� 0 mod 2, then the cokernel is generated by the Pontryagin classes p2; : : : ; pk�1,
p?2 ; : : : ; p

?
n�k�2

modulo the relation p �p? D 1. The kernel is the ideal hpk�1e?n�ki.

(4) If n�k� 1 mod 2, the multiplication map is 0. The kernel and cokernel are the whole cohomology
algebra.

Proof This follows directly from the explicit presentation of Theorem 6.4.

Proof of Theorem 6.4 Fix a natural number n. The claim for Gr.k; n/ is proved by induction on k.

The base case is the case Pn�1DGr.1; n/, in which case the claim follows directly from the computations
in [14] — realizing for instance H i .Pn;W .L//ŠH i .Pn; I i�1.L//. In both cases there are only two
nontrivial groups, one of them is H 0.Pn�1;W /ŠW.F /. If n is even, then Pn�1 is orientable, and the
other nontrivial cohomology groups is Hn�1.Pn�1;W /ŠW.F / (nontwisted coefficients), generated by
the orientation class R. If n is odd, the other nontrivial cohomology group is Hn�1.Pn�1;W .det S1//Š

W.F /, generated by e?n�1.8

8Note the similarity with the rational cohomology of the real projective space.
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For the inductive step, assume that Theorem 6.4 holds for Gr.k�1; n/. We have to make a case distinction
depending on parities of k and n.

If n�kC 1 and k� 1 are even Then the Euler classes ek�1 and e?
n�kC1

are nonzero. The kernel and
cokernel of e?

n�kC1
are described in parts (1) and (2) of Proposition 6.6. As an algebra over the image of

the cokernel of e?
n�kC1

, the cohomology of S.k; n/D Qn�kC1 n zp.Gr.k� 1; n// is an exterior algebra,
generated by 1 and the class R in degree .n� 1; 0/ which is a lift of ek�1 along @. This follows from the
localization sequence for the bundle Qn�kC1; see point (1) of Proposition 6.3.

For the second localization, for the bundle Sk , we first note that the Euler classes ek and e?
n�k

are zero.
We check what we can say about the map q�: We have the Pontryagin classes p2; : : : ; pk�1, and these are
mapped to their counterparts in the cohomology of Sk n zq.Gr.k; n//, by Proposition 6.1. By exactness,
all the classes in the image of the restriction morphism q� will have trivial image under the boundary
map @. Also, the class R from degree .n� 1; 0/ has image under @ in degree .n� k; 1/; in the case at
hand, n� k is odd, so there are no nontrivial elements in this degree and therefore @RD 0.

Now we need to determine which classes have nontrivial image under @. The class ek�1 from the cokernel
of e?

n�kC1
necessarily maps to 1 under @. By the derivation property, more generally a product p � ek�1

of the Euler class with a polynomial p in the Pontryagin classes p2; : : : ; pk�1 will map under @ to p,
viewed as an element of the cohomology of Gr.k; n/.

At this point, we see that the W –cohomology of Gr.k; n/ is indeed generated by the characteristic classes
listed in the theorem statement: the Pontryagin classes pi and p?i are mapped to their counterparts in
the cohomology of S.k; n/; and the same is true for the class R. The only missing generator of the
cohomology of S.k; n/ is the Euler class ek�1, but we saw above that this class has nontrivial boundary.
It follows similarly, that the only relation is given by the Whitney sum formula.

If both n�kC 1 and k� 1 are odd Then the Euler classes ek�1 and e?
n�kC1

are zero. In particular,
via the first localization sequence for the bundle Qn�kC1! Gr.k � 1; n/, the cohomology of S.k; n/

consists of two copies of the cohomology of Gr.k� 1; n/; one of the copies is obviously generated by 1
in degree .0; 0/, the other generated by a class in bidegree .n� k; 1/ which is a lift of 1 2H 0 along the
boundary map.

Now for the second bundle Sk ! Gr.k; n/, both Euler classes ek and e?
n�kC1

are nontrivial. We
check what we can say about the restriction map q� in the corresponding localization sequence. In
the cohomology of Gr.k; n/, we have the Pontryagin classes and these are mapped under q� to their
counterparts in the cohomology of S.k; n/. The class in bidegree .n� k; 1/ (which arose as lift of 1 in
the first localization sequence) lifts to the Euler class e?

n�k
.

The class R from the cohomology of S.k; n/ has nontrivial boundary; its degree is .n�1; 0/ and its image
under the boundary map has degree .n� k; 1/, so the class R is mapped exactly to the Euler class e?

n�k
.

Consequently, this establishes the claimed presentation of the W –cohomology ring.
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If n�kC1 is even and k�1 is odd Then the Euler class e?
n�kC1

is nontrivial. The kernel and cokernel
of e?

n�kC1
are described in Proposition 6.6. The cokernel is generated by the Pontryagin classes, and the

kernel is the ideal hpk�2e?n�kC1i. The class pk�2e?n�kC1 has degree .n� kC 3; 1/ and consequently
lifts along the boundary map @ to a class in degree .2n� 3; 0/.

Now for the second bundle Sk! Gr.k; n/, the Euler class ek is also nontrivial. We check what happens
in the associated localization sequence. For the moment, call the right-hand side of the isomorphism
in (2) of the statement the “candidate presentation”. The cokernel of the multiplication by ek on the
candidate presentation is generated by the Pontryagin classes which map to their counterparts in the
cohomology of S.k; n/. The kernel of the Euler class on the candidate presentation is the ideal generated
by ekp?n�k�1 in degree .2n� k� 2; 1/.

The Pontryagin classes in the cokernel all map to their counterparts under the restriction map q�. The class
in degree .2n�3; 0/ (which arose as a lift of pk�2e?n�kC1) maps to ekp?n�k�1 in degree .2n�k�2; 1/.

Consequently, we see that the description of the cohomology of Gr.k; n/, given in Theorem 6.4, is true if
and only if it is true for Gr.k� 1; n/. Therefore, this argument also settles the case where n� kC 1 is
odd and k� 1 is even.

6.3 Putting the pieces together

We are now in the position to prove the theorems about the structure of I–cohomology of the Grassman-
nians Gr.k; n/.

Proof of Proposition 5.8 For all characteristic classes except R the claims on their reductions follow
from Theorem 3.24(2). The injectivity of � on the image of ˇL follows from Theorem 6.4, in combination
with Lemma 2.4, via the splitting of I–cohomology as direct sum ofW –cohomology and the image of ˇL.

It remains to identify the reduction of R. This follows by tracing through the inductive proof of
Theorem 5.7, noting that R arises via boundary maps from Euler classes. The key point to note is
that the reduction of R in the mod 2 Chow ring must be divisible by both Nck and Nc?

n�k
, which implies the

claim. Alternatively, the identification can be deduced from [23, Remarks 4 and 5] using the real cycle
class map isomorphisms of [17].

Proof of Theorem 5.7 Again, we use the splitting of I–cohomology as direct sum of W –cohomology
and the image of ˇL which follows from Theorem 6.4, in combination with Lemma 2.4.

Relations (1)–(4) claimed in the theorem are satisfied because they are already satisfied on the level
of BGLn by Theorem 3.24 and the Whitney sum formulas in Propositions 3.3 and 3.28. Relation (5)
involving R has two components: the claim on multiplication with torsion classes follows from the
injectivity of � on the image of ˇ given by Proposition 5.8, and the claim R2 D 0 in W –cohomology
follows from Theorem 6.4. The image of R2 under the projection to Imˇ can be computed in mod 2
Chow theory, where we have �.R2/ D Nck�1 Nc?n�k Nck Nc

?
n�k�1

D 0. In particular, we get a well-defined
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map from the candidate presentation (with generators listed in (G1)–(G5) and relations (R1)–(R5) of
Theorem 5.7) to the total I–cohomology ring of Gr.k; n/.

To show that the generators listed in Theorem 5.7 generate the I–cohomology ring we again first show
that all the torsion classes in the image of ˇ are accounted for. Knowing the mod 2 Chow ring of the
Grassmannians — see Proposition 5.4 — this follows as in the proof of Theorem 3.24 by considering the
image of Sq2L. Then the surjectivity for W –cohomology follows from Theorem 6.4.

To show injectivity, ie that all relations in the cohomology ring are accounted for, we note that the
W.F /–torsionfree part generated by the Pontryagin classes, as well as Euler classes or R (whenever
applicable), has exactly the relations (2), (3) and (5), by Theorem 6.4. So it suffices to investigate relations
among classes in the image of ˇ. Since � is injective on the image of ˇL, it suffices to show that all
relations appearing in Ch�.Gr.k; n// arise from those for BGLn and the Whitney sum formulas. This
follows from the presentation of the mod 2 Chow rings in Proposition 5.4 and Theorem 3.24.

6.4 An example

We discuss the argument for nonorientable Grassmannians in the special case comparing P4 and Gr.2; 5/.
The following computation also indicates how one may go about establishing the formulas for I–
cohomology directly without the ˇ–W –decomposition. A complete version of this argument can be
found in the first version of the present paper on the arXiv [27].

First, we consider the localization sequence associated to the tautological rank 4 bundle on P4 which has
the form

� � � !H j .P4; Ij .L//!H j .T; Ij .L//!H j�3
�
P4; Ij�4.L.1//

� e?4
�! � � � ;

where T is the complement of the zero section of the rank 4 bundle on P4. From the shape of the
localization sequence, we see that there are isomorphisms

H j .P4; Ij .L//ŠH j .T; Ij .L// for j � 2;

H jC3.T; IjC3.L//ŠH j
�
P4; Ij�1.L.1//

�
for j � 2:

The complicated bit is given by two exact sequences. First,

0!H 3.P4; I3.L//!H 3.T; I3.L//!H 0
�
P4; I�1.L.1//

�
!H 4.P4; I3.L//:

In the case where L D O, then the first and third terms in the exact sequence are trivial and so is
H 3.T; I3/. In the case where L D O.1/, the third term is W.F / � 1 and the last term is W.F / � e?4 ,
so multiplication with the Euler class e?4 is an isomorphism. Consequently, we have an isomorphism
H 3.T; I3.1//ŠH 3.P4; I3.1//Š Z=2Z, generated by e31 .

The second exact sequence is

H 0
�
P4; I0.L.1//

�
!H 4.P4; I4.L//!H 4.T; I4.L//!H 1

�
P4; I0.L.1//

�
! 0:
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In the case where LDO, the first and last terms in the exact sequence are trivial and we get an isomorphism
H 4.T; I4/ŠH 4.P4; I4/Š Z=2Z, generated by e41 . In the case where LD O.1/, the first morphism
is multiplication by the Euler class which is an isomorphism. In particular, we get an isomorphism
H 4.T; I4.1//!H 1.P4; I0.1//Š 0.

Now we can consider the localization sequence for the tautological rank 2 bundle on Gr.2; 5/ which has
the form

� � �
e2
�!H j .Gr.2; 5/; Ij .L//!H j .T; Ij .L//!H j�1

�
Gr.2; 5/; Ij�2.L.1//

� e2
�! � � � :

Because of cohomology vanishing in negative degrees, H 0.Gr.2; 5/; I0.L//ŠH 0.T; I0.L//, and we
note that this is isomorphic to the respective cohomology of P4. Next, there is an exact sequence

0!H 1.Gr.2; 5/; I1.L//!H 1.T; I1.L//:

For LD O, the last group is trivial, implying triviality of H 1.Gr.2; 5/; I1.L//. For LD O.1/, the last
group is Z=2Z. The explicit generator ˇO.1/.1/ maps to a generator of the last group and this implies
that H 1.Gr.2; 5/; I1.L//Š Z=2Z.

For H 2, we have an exact sequence

H 0
�
Gr.2; 5/; I0.L.1//

�
!H 2.Gr.2; 5/; I0.L//!H 2.T; I2.L//!H 1

�
Gr.2; 5/; I0.L.1//

�
:

For LD O, the outer groups are both zero and hence H 2.Gr.2; 5/; I0.L//Š Z=2Z. For LD O.1/, the
first map is an isomorphism mapping 1 to e2. Note that only using the localization sequence at this point
would require knowledge of the restriction morphism H 1.Gr.2; 5/; I2.L//!H 1.T; I2.L// to show
that H 2

�
Gr.2; 5/; I2.O.1//

�
is isomorphic to W.F / and not a proper quotient.

The remaining cohomology groups can be computed similarly, producing exactly the results from
Example 5.13.

6.5 Remarks on oriented Grassmannians

We briefly formulate the analogous results for the Chow–Witt rings of the oriented Grassmannians. Recall
that the A1–fundamental group of the Grassmannians is �A1

1 .Gr.k; n// Š Gm, since up to A1–weak
equivalence the Grassmannians are GLn�k–quotients of the Stiefel varieties GLn=GLk which are highly
A1–connected. The oriented Grassmannians eGr.k; n/ are the A1–universal covers of the Grassmannians
Gr.k; n/. Explicitly, they are given as the complement of the zero section of the line bundle det Sk . For
the Chow–Witt rings of the oriented Grassmannians eGr.k; n/, we only have the trivial duality because
they are A1–simply connected.

We can formulate a result analogous to Theorem 5.7 for the oriented Grassmannians. The proof of
the result proceeds exactly along the lines of the proofs for Gr.k; n/. Some results concerning the
W –cohomology of the oriented Grassmannians can be deduced from the work of Ananyevskiy in [1].
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Theorem 6.7 Let F be a perfect field of characteristic¤ 2, and let 1� k < n.

(1) There is a cartesian square of Z–graded GW.F /–algebras ,

fCH�.eGr.k; n// //

��

ker @

mod 2
��

H �.eGr.k; n/; I�/
�
// Ch�.eGr.k; n//

(2) The cokernel of the Bockstein morphism

ˇ W CHj .eGr.k; n//!H jC1.eGr.k; n/; IjC1/

is described exactly as in Theorem 6.4, except that there is no additional Z=2Z–grading and the
Euler classes are elements of the cohomology with trivial duality.

(3) The reduction morphism

� WH jC1.eGr.k; n/; IjC1/! CHjC1.eGr.k; n//

is injective on the image of the Bockstein morphism ˇ. In particular , the image of Bockstein can be
determined from the Wu formula for the Steenrod squares on the mod 2 Chow ring of eGr.k; n/.

Remark 6.8 A result like the above should be true for all flag varieties (at least in type A). The cokernel
of the Bockstein should have the same presentation as the rational cohomology of the real realization (but
of course as a W.F /–algebra). The Bockstein classes should all be detected on the mod 2 Chow ring so
that the structure of the torsion can be determined just from the knowledge of the Steenrod squares.
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Higher chromatic Thom spectra via unstable homotopy theory
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We investigate implications of an old conjecture in unstable homotopy theory related to the Cohen–Moore–
Neisendorfer theorem and a conjecture about the E Œ2�–topological Hochschild cohomology of certain
Thom spectra (denoted by A, B and T .n/) related to Ravenel’s X.pn/. We show that these conjectures
imply that the orientations M Spin! bo and M String! tmf admit spectrum-level splittings. This is
shown by generalizing a theorem of Hopkins and Mahowald, which constructs HFp as a Thom spectrum,
to construct BPhn�1i, bo, and tmf as Thom spectra (albeit over T .n/, A, and B, respectively, and not over
the sphere). This interpretation of BPhn� 1i, bo, and tmf offers a new perspective on Wood equivalences
of the form bo^C�' bu: they are related to the existence of certain EHP sequences in unstable homotopy
theory. This construction of BPhn� 1i also provides a different lens on the nilpotence theorem. Finally,
we prove a C2–equivariant analogue of our construction, describing HZ as a Thom spectrum.
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1 Introduction

1.1 Statement of the main results

One of the goals of this article is to describe a program to prove the following old conjecture (studied, for
instance, by Laures and Schuster [60; 61], and discussed informally in many places, such as Section 7 of
Mahowald and Rezk [75]):
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Conjecture 1.1.1 The Ando–Hopkins–Rezk orientation (see [6]) MString! tmf admits a spectrum-level
splitting.

The key idea in our program is to provide a universal property for mapping out of the spectrum tmf. We
give a proof which is conditional on an old conjecture from unstable homotopy theory stemming from the
Cohen–Moore–Neisendorfer theorem and a conjecture about the E2–topological Hochschild cohomology
of certain Thom spectra (the latter of which simplifies the proof of the nilpotence theorem of Devinatz,
Hopkins and Smith [38]). This universal property exhibits tmf as a certain Thom spectrum, similarly to
the Hopkins–Mahowald construction of HZp and HFp as Thom spectra.

To illustrate the gist of our argument in a simpler case, recall Thom’s classical result from [92]: the
unoriented cobordism spectrum MO is a wedge of suspensions of HF2. The simplest way to do so is to
show that MO is an HF2–module, which in turn can be done by constructing an E2–map HF2!MO.
The construction of such a map is supplied by the following theorem of Hopkins and Mahowald:

Theorem (Hopkins and Mahowald; see Mahowald [67] and Mahowald, Ravenel and Shick [73,
Lemma 3.3]) Let � W �2S3 ! BO denote the real vector bundle over �2S3 induced by extending
the map S1! BO classifying the Möbius bundle. Then the Thom spectrum of � is equivalent to HF2

as an E2–algebra.

Remark 1.1.2 The Thomification of the E2–map � W�2S3!BO produces the desired E2–splitting
HF2!MO.

Our argument for Conjecture 1.1.1 takes this approach: we shall show that an old conjecture from unstable
homotopy theory and a conjecture about the E2–topological Hochschild cohomology of certain Thom
spectra provide a construction of tmf (as well as bo and BPhni) as a Thom spectrum, and utilize the
resulting universal property of tmf to construct an (unstructured) map tmf!MString.

Mahowald was the first to consider the question of constructing spectra like bo and tmf as Thom spectra
(see [71]). Later work by Rudyak [88] sharpened Mahowald’s results to show that bo and bu cannot
appear as the Thom spectra of a p–complete spherical fibration. Angeltveit, Hill and Lawson [10] gave an
alternative proof of this fact under the assumption that the p–complete spherical fibration is classified by
a map of E3–spaces. Recently, Chatham [27] has shown that tmf^2 cannot appear as the Thom spectrum
of a structured 2–complete spherical fibration over a loop space. Our goal is to argue that these issues are
alleviated if we replace “spherical fibrations” with “bundles of R–lines” for certain well-behaved spectra R.

The first hint of tmf being a generalized Thom spectrum comes from a conjecture of Hopkins and Hahn
regarding a construction of the truncated Brown–Peterson spectra BPhni as Thom spectra. To state this
conjecture, we need to recall some definitions. Recall (see [38]) that X.n/ denotes the Thom spectrum of
the map�SU.n/!�SU'BU. Upon completion at a prime p, the spectra X.k/ for pn� k �pnC1�1

split as a direct sum of suspensions of certain homotopy commutative ring spectra T .n/, which in turn filter
the gap between the p–complete sphere spectrum and BP (in the sense that T .0/D S and T .1/D BP).
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Conjecture 1.1.3 (Hahn and Hopkins, unpublished) There is a map f W�2S jvnjC3! BGL1.T .n//,
which detects an indecomposable element vn 2 �jvnjT .n/ on the bottom cell of the source , whose Thom
spectrum is a form of BPhn� 1i.

The primary obstruction to proving that a map f as in Conjecture 1.1.3 exists stems from the failure of
T .n/ to be an E3–ring (due to Lawson [62, Example 1.5.31]). If R is an E1– or E2–ring spectrum, let
Z3.R/ denote the E2–topological Hochschild cohomology of R (see Definition 3.3.2). Hahn suggested
that one way to get past the failure of T .n/ to be an E3–ring would be via the following conjecture:

Conjecture 1.1.4 (Hahn) There is an indecomposable element vn 2 �jvnjT .n/ which lifts to the
E2–topological Hochschild cohomology Z3.X.p

n// of X.pn/.

We do not know how to prove this conjecture (and have no opinion on whether or not it is true). We
shall instead show that Conjecture 1.1.3 is implied by the two conjectures alluded to above. We shall in a
moment state these conjectures precisely as Conjectures D and E; let us first state our main results.

We need to introduce some notation. Let y.n/ (resp. yZ.n/) denote the Mahowald–Ravenel–Shick
spectrum, constructed as a Thom spectrum over �Jpn�1.S

2/ (resp. �Jpn�1.S
2/h2i) introduced in [73]

to study the telescope conjecture (resp. by Angelini-Knoll and Quigley [8] as z.n/). Let A denote the
E1–quotient S==� of the sphere spectrum by � 2 �3.S/; its mod 2 homology is H�.A/Š F2Œ�

4
1
�. The

spectrum A has been intensely studied by Mahowald and his coauthors Davis and Unell in [67; 31; 69;
68; 70; 77], for instance, where it is often denoted by X5. (See Remark 2.1.8 for motivation for the term
“E1–quotient”.) Let B denote the E1–ring we introduced in [34, Construction 3.1]; it has been briefly
studied under the name X by Mahowald and Hopkins [72]. It may be constructed as the Thom spectrum
of a vector bundle over an E1–space N which sits in a fiber sequence �S9!N !�S13. The mod 2

homology of B is H�.B/Š F2Œ�
8
1
; �4

2
�.

We also need to recall some unstable homotopy theory. Cohen, Moore and Neisendorfer [29; 30; 81]
constructed a map �n W�

2S2nC1! S2n�1 whose composite with the double suspension E2 W S2n�1!

�2S2nC1 is the degree p map. (The E stands for “Einhängung”, which is German for “suspension”.)
Such a map was also constructed by Gray [44; 42]. In Section 4.1, we introduce the related notion of a
charming map (Definition 4.1.1), one example of which is the Cohen–Moore–Neisendorfer map.

Our main result is then:

Theorem A Suppose R is a base spectrum of height n as in the second line of Table 1. Let KnC1 denote
the fiber of a charming map �2S2pnC1C1! S2pnC1�1. Then Conjectures D and E imply that there is a
map � WKnC1!BGL1.R/ such that the mod p homology of the Thom spectrum K

�
nC1

is isomorphic to
the mod p homology of the associated designer chromatic spectrum ‚.R/ as a Steenrod comodule.1

1We elected to use the symbol ‚ because the first two letters of the English spelling of ‚ and of Thom’s name agree.
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height 0 1 2 n n n

base spectrum R S^p A B T .n/ y.n/ yZ.n/

designer chromatic spectrum ‚.R/ HZp bo tmf BPhni k.n/ kZ.n/

Table 1: To go from a base spectrum “of height n”, say R, in the second line to the third, one
takes the Thom spectrum of a bundle of R–lines over KnC1.

If R is any base spectrum other than B, the Thom spectrum K
�
nC1

is equivalent to ‚.R/ upon p–
completion for every prime p. If Conjecture F is true , then the same is true for B: the Thom spectrum
K
�
nC1

is equivalent to ‚.B/D tmf upon 2–completion.

Making sense of Theorem A relies on knowing that T .n/ admits the structure of an E1–ring; this is
proved by Beardsley and Lawson [21]; see also Remark 3.1.6. Note that the spectra A, B, y.n/ and yZ.n/

all admit E1–structures by construction. In Remark 5.4.7, we sketch how Theorem A relates to the proof
of the nilpotence theorem.

Although the form of Theorem A does not resemble Conjecture 1.1.3, we show that Theorem A implies
the following result:

Corollary B Conjectures D and E imply Conjecture 1.1.3.

In the case nD 0, Corollary B recovers the Hopkins–Mahowald theorem constructing HFp. Moreover,
Corollary B is true unconditionally when nD 0; 1.

Using the resulting universal property of tmf, we obtain a result pertaining to Conjecture 1.1.1.

Theorem C Assume that the composite Z3.B/! B ! MString is an E3–map. Then Conjectures
D, E and F imply that there is a spectrum-level unital splitting of the Ando–Hopkins–Rezk orientation
MString.2/! tmf.2/.

In particular, Conjecture 1.1.1 follows (at least after localizing at p D 2; a slight modification of our
arguments should work at any prime). We believe that the assumption that the composite Z3.B/! B!

MString is an E3–map is too strong: we believe that it can be removed using special properties of fibers
of charming maps, and we will return to this in future work.

We stress that these splittings are unstructured; it seems unlikely that they can be refined to structured
splittings. In [34], we showed (unconditionally) that the Ando–Hopkins–Rezk orientation MString! tmf
induces a surjection on homotopy, a result which is clearly implied by Theorem C.

We remark that the argument used to prove Theorem C shows that, if the composite Z3.A/!A!MSpin
is an E3–map, then Conjectures D and E imply that there is a spectrum-level unital splitting of the Atiyah–
Bott–Shapiro orientation MSpin! bo. This splitting was originally proved unconditionally (ie without
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assuming Conjecture D or Conjecture E) by Anderson, Brown and Peterson [4] via a calculation with the
Adams spectral sequence.

1.2 The statements of Conjectures D, E and F

We first state Conjecture D. The second part of this conjecture is a compilation of several old conjectures in
unstable homotopy theory originally made by Cohen, Moore and Neisendorfer [29; 30; 81], Gray [44; 42]
and Selick [89]. The statement we shall give differs slightly from the statements made in the literature;
for instance, in Conjecture D(b), we demand a Q1–space splitting (Notation 2.2.6), rather than merely an
H–space splitting.

Conjecture D The following statements are true:

(a) The homotopy fiber of any charming map (Definition 4.1.1) is equivalent as a loop space to the loop
space on an Anick space (Example 4.1.3).

(b) There exists a p–local charming map f W�2S2pnC1! S2pn�1 whose homotopy fiber admits a
Q1–space retraction off of �2.S2pn

=p/. There are also integrally defined maps �2S9! S7 and
�2S17! S15 whose composites with the double suspension on S7 and S15, respectively , are the
degree 2 maps. Moreover , their homotopy fibers K2 and K3 (respectively) admit deloopings , and
admit Q1–space retractions off of �2.S8=2/ and �2.S16=2/ (respectively).

Next, we turn to Conjecture E. This conjecture is concerned with the E2–topological Hochschild co-
homology of the Thom spectra X.pn� 1/.p/, A and B introduced above.

Conjecture E Let n� 0 be an integer. Let R denote X.pnC1� 1/.p/, A (in which case nD 1) or B (in
which case nD 2). Then the element �n 2 �jvnj�1R lifts to the E2–topological Hochschild cohomology
Z3.R/ of R, and is p–torsion in ��Z3.R/ if RDX.pnC1�1/.p/, and is 2–torsion in ��Z3.R/ if RDA

or B.

Finally, we state Conjecture F. It is inspired by Adams and Priddy [2] and Angeltveit and Lind [12]. We
believe this conjecture is the most approachable of the conjectures stated here.

Conjecture F Suppose X is a spectrum which is bounded below and whose homotopy groups are finitely
generated over Zp. If there is an isomorphism H�.X IFp/ŠH�.tmfIFp/ of Steenrod comodules , then
there is a homotopy equivalence X^p ! tmf^p of spectra.

After proving Theorems A and C, we explore relationships between the different spectra appearing on
the second line of Table 1 in the remainder of the article. In particular, we prove analogues of Wood’s
equivalence bo^C�' bu (see also Mathew [78]) for these spectra. We argue that these are related to
the existence of certain EHP sequences.

Finally, we describe a C2–equivariant analogue of Corollary B at nD 1 as Theorem 7.2.1, independently
of a C2–equivariant analogue of Conjectures D and E. This result constructs HZ as a Thom spectrum
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of an equivariant bundle of invertible T .1/R–modules over ��S2�C1, where T .1/R is the free E�–
algebra with a nullhomotopy of the equivariant Hopf map z� 2 �� .S/, and � and � are the regular and
sign representations of C2, respectively. This uses results of Behrens and Wilson [24] and Hahn and
Wilson [48]. We believe there is a similar result at odd primes, but we defer discussion of this. We discuss
why our methods do not work to yield BPhniR for n� 1 as in Corollary B.

Outline

Section 2 contains a review some of the theory of Thom spectra from the modern perspective, as well as
the proof of the classical Hopkins–Mahowald theorem. The content reviewed in this section will appear
in various guises throughout this project, hence its inclusion.

In Section 3, we study certain E1–rings; most of them appear as Thom spectra over the sphere. For
instance, we recall some facts about Ravenel’s X.n/ spectra, and then define and prove properties about the
E1–rings A and B used in the statement of Theorem A. We state Conjecture E, and discuss (Remark 5.4.7)
its relation to the nilpotence theorem.

In Section 4, we recall some unstable homotopy theory, such as the Cohen–Moore–Neisendorfer map and
the fiber of the double suspension. These concepts do not show up often in stable homotopy theory, so
we hope this section provides useful background to the reader. We state Conjecture D, and then explore
properties of Thom spectra of bundles defined over Anick spaces.

In Section 5, we state and prove Theorem A and Corollary B, and state several easy consequences of
Theorem A.

In Section 6, we study some applications of Theorem A. For instance, we use it to prove Theorem C,
which is concerned with the splitting of certain cobordism spectra. In a previous version of this article,
we had two subsections discussing Wood-like equivalences, and topological Hochschild homology of the
chromatic Thom spectra of Table 1. However, while making revisions to this article, we decided to split
these two sections off into separate articles [33; 36].

In Section 7, we prove an equivariant analogue of Corollary B at height 1. We construct equivariant
analogues of X.n/ and A, and describe why our methods fail to produce an equivariant analogue of
Corollary B at all heights, even granting an analogue of Conjectures D and E.

Finally, in Section 8, we suggest some directions for future research. There are also numerous interesting
questions arising from our work, which we have indicated in the body of the article.

Conventions

Unless indicated otherwise, or if it goes against conventional notational choices, a Latin letter with a
numerical subscript (such as x5) denotes an element of degree given by its subscript. If X is a space
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and R is an E1–ring spectrum, then X� will denote the Thom spectrum of some bundle of invertible
R–modules determined by a map � WX ! BGL1.R/. We shall often quietly localize or complete at an
implicit prime p. Although we have tried to be careful, all limits and colimits will be homotopy limits and
colimits; we apologize for any inconvenience this might cause.

We shall denote by Pk.p/ the mod p Moore space Sk�1[p ek with top cell in dimension k. The symbols
�i and �i will denote the conjugates of the Milnor generators (commonly written nowadays as �i and �i ,
although, as Haynes Miller pointed out to me, our notation for the conjugates was Milnor’s original
notation) in degrees 2.pi � 1/ and 2pi � 1 for p > 2 and 2i � 1 (for �i) at p D 2. Unfortunately, we will
use A to denote the E1–ring in appearing in Table 1, and write A� to denote the dual Steenrod algebra.
We hope this does not cause any confusion, since we will always denote the homotopy groups of A by
��A and not A�.

If O is an operad, we will simply write O–ring to denote an O–algebra object in spectra. A map of
O–rings respecting the O–algebra structure will often simply be called a O–map. Unless it is clear that
we mean otherwise, all modules over non-E1–algebras will be left modules.

Hood Chatham pointed out to me that S3h4i would be the correct notation for what we denote by
S3h3i D fib.S3!K.Z; 3//. Unfortunately, the literature seems to have chosen S3h3i as the preferred
notation, so we stick to that in this project.

When we write that Theorem A, Corollary B or Theorem C implies a statement P , we mean that
Conjectures D and E (and Conjecture F if the intended application is to tmf) imply P via Theorem A,
Corollary B or Theorem C.
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2 Background, and some classical positive and negative results

2.1 Background on Thom spectra

In this section, we will recall some facts about Thom spectra and their universal properties; the discussion
is motivated by [5].

Definition 2.1.1 Let A be an E1–ring and let � W X ! BGL1.A/ be a map of spaces. The Thom
A–module X� is defined as the homotopy pushout

†1CGL1.A/ //

��

†1C fib.�/

��

A // X�

Remark 2.1.2 Let A be an E1–ring and let � W X ! BGL1.A/ be a map of spaces. The Thom A–
module X� is the homotopy colimit of the functor X

�
�! BGL1.A/!Mod.A/, where we have abused

notation by identifying X with its associated Kan complex. If A is an E1–R–algebra, then the R–module
underlying X can be identified with the homotopy colimit of the composite functor

X
�
�! BGL1.A/! BAutR.A/!Mod.R/;

where we have identified X with its associated Kan complex. The space BAutR.A/ can be regarded as
the maximal subgroupoid of Mod.R/ spanned by the object A.

The following is immediate from the description of the Thom spectrum as a Kan extension:

Proposition 2.1.3 Let R and R0 be E1–rings with an E1–ring map R! R0 exhibiting R0 as a right
R–module. If f W X ! BGL1.R/ is a map of spaces , then the Thom spectrum of the composite
X !BGL1.R/!BGL1.R

0/ is the base change X f ^R R0 of the (left) R–module Thom spectrum X f.

Corollary 2.1.4 Let R and R0 be E1–rings with an E1–ring map R!R0 exhibiting R0 as a right R–
module. If f WX !BGL1.R/ is a map of spaces such that the composite X !BGL1.R/!BGL1.R

0/

is null , then there is an equivalence X f ^R R0 'R0 ^†1CX.

Moreover (see eg [15, Corollary 3.2]):

Proposition 2.1.5 Let X be a k–fold loop space and let R be an EkC1–ring. Then the Thom spectrum
of an Ek–map X ! BGL1.R/ is an Ek–R–algebra.

We will repeatedly use the following classical result, which is again a consequence of the observation that
Thom spectra are colimits, as well as the fact that total spaces of fibrations may be expressed as colimits;
see also [19, Theorem 1]:
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Proposition 2.1.6 Let X i
�! Y ! Z be a fiber sequence of k–fold loop spaces (where k � 1), and

let R be an Em–ring for m � k C 1. Suppose that � W Y ! BGL1.R/ is a map of k–fold loop spaces.
Then there is a k–fold loop map � W Z! BGL1.X

�ıi/ whose Thom spectrum is equivalent to Y � as
Ek�1–rings. Concisely, if arrows are labeled by their associated Thom spectra , then there is a diagram

X
i

//

X�ıi
$$

Y //

� Y �

��

Z

� Y �DZ�

��

BGL1.R/ // BGL1.X
�ıi/

The argument to prove Proposition 2.1.6 also goes through with slight modifications when k D 0, and
shows:

Proposition Let X i
�! Y ! Z be a fiber sequence of spaces with Z connected , and let R be an

Em–ring for m � 1. Suppose that � W Y ! BGL1.R/ is a map of Kan complexes. Then there is a
map � WZ! BAutR.X�ıi/ such that the homotopy colimit (ie “Thom spectrum” ) Z� of the following
composite is equivalent to Y � as an R–module:

(2-1) Z
�
�! BAutR.X�ıi/�ModR:

We will abusively refer to this result in the sequel also as Proposition 2.1.6.

Proof of the second form of Proposition 2.1.6 It will be convenient to use the model for Thom spectra
following [5]. Observe that a fibration X ! Y ! Z implies (eg by [5, Remark 2.4]) that there is a
functor Z! Top whose homotopy colimit is Y, and whose fiber over any vertex of z 2Z is X. Since X

is connected, we may write Y ' hocolimZ X. The map X ! Y is induced by the inclusion fzg ,!Z.
Since Y is a Kan complex, the Thom spectrum Y � can be identified (by [5, Definition 1.4]) with the
homotopy colimit of the composite Y

�
�! BGL1.R/ ' R–line � ModR (which we will temporarily

denote by � W Y ! ModR). We will write this as Y � ' hocolimY R. The left Kan extension of the
map Y !Z along the functor � W Y !ModR defines a functor � WZ!ModR, which sends z 2Z to
X�ıi ' hocolim.X ! Y

�
�!ModR/. Since Z is connected, this implies that Y � ' hocolimY R is the

homotopy colimit of the functor (2-1).

The following is a slight generalization of [15, Theorem 4.10]:

Theorem 2.1.7 Let R be an EkC1–ring for k � 0 and let ˛ W Y ! BGL1.R/ be a map from a pointed
space Y. For any 0 �m � k, let z̨ W�m†mY ! BGL1.R/ denote the extension of ˛. Then the Thom
spectrum .�m†mY /z̨ is the free Em–R–algebra A for which the composite Y !BGL1.R/!BGL1.A/

is null. More precisely, if A is any Em–R–algebra , then

MapAlgEm
R

..�m†mY /z̨;A/'

�
Map�.Y; �

1A/ if ˛ W Y ! BGL1.R/! BGL1.A/ is null;
∅ otherwise:
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Remark 2.1.8 Say Y D SnC1, so ˛ detects an element ˛ 2 �nR. Theorem 2.1.7 suggests interpreting
the Thom spectrum .�mSmCnC1/z̨ as an Em–quotient; to signify this, we will denote it by R==Em

˛. If
mD 1, then we will simply denote it by R==˛, while if mD 0, then the Em–quotient is simply the ordinary
quotient R=˛. See [15, Definition 4.3], where the quotient R==Em

˛ is called the versal R–algebra of
characteristic ˛.

2.2 The Hopkins–Mahowald theorem

The primary motivation for this project is the following miracle (see [67] for p D 2 and [73, Lemma 3.3]
for p > 2, as well as [15, Theorem 5.1] for a proof of the equivalence as one of E2–algebras):

Theorem 2.2.1 (Hopkins and Mahowald) Let S^p be the p–completion of the sphere at a prime p and
let f W S1! BGL1.S

^
p / detect the element 1�p 2 �1BGL1.S

^
p /' Z�p . Let � W�2S3! BGL1.S

^
p /

denote the E2–map extending by f ; then there is a p–complete equivalence .�2S3/�!HFp of E2–ring
spectra.

It is not too hard to deduce the following result from Theorem 2.2.1:

Corollary 2.2.2 Let S3h3i denote the 3–connected cover of S3. Then the Thom spectrum of the
composite �2S3h3i !�2S3 �

�! BGL1.S
^
p / is equivalent to HZp as an E2–ring.

Remark 2.2.3 Theorem 2.2.1 implies a restrictive version of the nilpotence theorem: if R is an E2–ring
spectrum, and x 2 ��R is a simple p–torsion element which has trivial HFp–Hurewicz image, then x is
nilpotent. This is explained in [79, Proposition 4.19]. Indeed, to show that x is nilpotent, it suffices to
show that the localization RŒ1=x� is contractible. Since px D 0, the localization RŒ1=x� is an E2–ring in
which pD 0, so the universal property of Theorem 2.1.7 implies that there is an E2–map HFp!RŒ1=x�.
It follows that the unit R!RŒ1=x� factors through the Hurewicz map R!R^HFp . In particular, the
multiplication-by-x map on RŒ1=x� factors as the indicated dotted map:

†jxjR

��

x
// R //

��

RŒ1=x�

HFp ^†
jxjR

x
// R^HFp

99

However, the bottom map is null (because x has trivial HFp–Hurewicz image), so x must be null in
��RŒ1=x�. This is possible if and only if RŒ1=x� is contractible, as desired. See Proposition 5.4.1 for the
analogous connection between Corollary 2.2.2 and nilpotence.

Since an argument similar to the proof of Theorem 2.2.1 will be necessary later in Step 2 of Section 5.2,
we will recall a proof of this theorem. The key nonformal input is the following result of Steinberger’s
from [26, Theorems III.2.2 and III.2.3]:
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Theorem 2.2.4 (Steinberger) Let �i denote the conjugate to the Milnor generators �i of the dual
Steenrod algebra , and similarly for �i at odd primes. Then

(2-2) Qpi

�i D �iC1; Qpj �j D �jC1

for i; j C 1> 0.

Proof of Theorem 2.2.1 By Theorem 2.1.7, the Thom spectrum .�2S3/� is the free E2–ring with
a nullhomotopy of p. Since HFp is an E2–ring with a nullhomotopy of p, we obtain an E2–map
.�2S3/�!HFp . To prove that this map is a p–complete equivalence, it suffices to prove that it induces
an isomorphism on mod p homology.

The mod p homology of .�2S3/� can be calculated directly via the Thom isomorphism HFp^.�
2S3/�'

HFp ^†
1
C�

2S3. Note that this is not an equivalence as HFp^HFp–comodules: the Thom twisting is
highly nontrivial.

For simplicity, we will now specialize to the case p D 2, although the same proof works at odd primes.
The homology of �2S3 is classical: it is a polynomial ring generated by applying E2–Dyer–Lashof
operations to a single generator x1 in degree 1. Theorem 2.2.4 implies that the same is true for the mod 2

Steenrod algebra: it, too, is a polynomial ring generated by applying E2–Dyer–Lashof operations to the
single generator �1 D �1 in degree 1. Since the map .�2S3/�!HF2 is an E2–ring map, it preserves
E2–Dyer–Lashof operations on mod p homology. By the above discussion, it suffices to show that the
generator x1 2H�.�

2S3/� ŠH�.�
2S3/ in degree 1 is mapped to �1 2H�HF2.

To prove this, note that x1 is the image of the generator in degree 1 in homology under the double
suspension S1! �2S3 and that �1 is the image of the generator in degree 1 in homology under the
canonical map S=p ! HFp. It therefore suffices to show that the Thom spectrum of the spherical
fibration S1! BGL1.S

^
p / detecting 1�p is simply S=p. This is an easy exercise.

Remark 2.2.5 When p D 2, one does not need to p–complete in Theorem 2.2.1: the map S1 !

BGL1.S
^
2
/ factors as S1! BO! BGL1.S/, where the first map detects the Möbius bundle over S1

and the second map is the J–homomorphism.

Notation 2.2.6 Let Q1 denote the (operadic nerve of the) cup-1 operad from [62, Example 1.3.6]: this is
the operad whose nth space is empty unless nD 2, in which case it is S1 with the antipodal action of †2.
We will need to slightly modify the definition of Q1 when localized at an odd prime p: in this case, it will
denote the operad whose nth space is a point if n< p, empty if n> p, and, when nD p, is the ordered
configuration space Confp.R2/ with the permutation action of †p. Any homotopy commutative ring
admits the structure of a Q1–algebra at pD 2, but at other primes it is slightly stronger to be a Q1–algebra
than to be a homotopy commutative ring. If k � 2, any Ek–algebra structure on a spectrum restricts to a
Q1–algebra structure.
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Remark 2.2.7 As stated in [62, Proposition 1.5.29], the operation Q1 already exists in the mod 2

homology of any Q1–ring R, where Q1 is the cup-1 operad from Notation 2.2.6 — the entire E2–structure is
not necessary. With our modification of Q1 at odd primes as in Notation 2.2.6, this is also true at odd primes.

Remark 2.2.8 We will again for the moment specialize to p D 2 for convenience. Steinberger’s
calculation in Theorem 2.2.4 can be rephrased as stating that Q1�i D �iC1, where Q1 is the lower-indexed
Dyer–Lashof operation. (See [26, page 59] for this notation.) As in Remark 2.2.7, the operation Q1

already exists in the mod p homology of any Q1–ring R. Since homotopy commutative rings are Q1–
algebras in spectra, this observation can be used to prove results of Würgler [95, Theorem 1.1] and
Pazhitnov and Rudyak [82, Theorem in Introduction].

Remark 2.2.9 The argument with Dyer–Lashof operations and Theorem 2.2.4 used in the proof of
Theorem 2.2.1 will be referred to as the Dyer–Lashof hopping argument. It will be used again (in the
same manner) in the proof of Theorem A.

Remark 2.2.10 Theorem 2.2.1 is equivalent to Steinberger’s calculation (Theorem 2.2.4), as well as
to Bökstedt’s calculation of THH.Fp/ (as a ring spectrum, and not just the calculation of its homotopy).
Let us sketch an argument. First, Theorem 2.2.4 implies Theorem 2.2.1 (by the proof above). The other
direction (ie the calculation (2-2)) can be argued by observing that the Thom isomorphism HFp^HFp '

HFp ^ †
1
C�

2S3 is an equivalence of E2–HFp–algebras, so that the Dyer–Lashof operations are
determined by the operations in H�.�

2S3IFp/. But the Dyer–Lashof operations are defined by classes
in H�.�

2S3IFp/, and Theorem 2.2.4 is a consequence of the fact that the iterates of Q1 on the generator
of H1.�

2S3IFp/ describe all the polynomial generators H�.�
2S3IFp/.

It remains to argue that Theorem 2.2.1 is equivalent to the calculation that THH.Fp/' Fp Œ�S3� as an
E1–Fp–algebra. This is shown in [58, Remark 1.5].

2.3 No-go theorems for higher chromatic heights

In light of Theorem 2.2.1 and Corollary 2.2.2, it is natural to wonder if appropriate higher chromatic
analogues of HFp and HZ, such as BPhni, bo or tmf, can be realized as Thom spectra of spherical
fibrations. The answer is known to be negative (see [71; 88; 27]) in many cases:

Theorem 2.3.1 (Mahowald, Rudyak and Chatham) There is no space X with a spherical fibration
� WX !BGL1.S/ (even after completion) such that X� is equivalent to BPh1i or bo. Moreover , there is
no 2–local loop space X 0 with a spherical fibration determined by an H–map � WX 0! BGL1.S

^
2
/ such

that X 0
� is equivalent to tmf^2 .

The proofs rely on calculations in the unstable homotopy groups of spheres.

Remark 2.3.2 Although not written down anywhere, a slight modification of the argument used by
Mahowald to show that bu is not the Thom spectrum of a spherical fibration over a loop space classified
by an H–map can be used to show that BPh2i at p D 2 (ie tmf1.3/) is not the Thom spectrum of a
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spherical fibration over a loop space classified by an H–map. We do not know a proof that BPhni is not
the Thom spectrum of a spherical fibration over a loop space classified by an H–map for all n� 1 and all
primes, but we strongly suspect this to be true.

Remark 2.3.3 A lesser-known no-go result, due to Priddy, appears in [64, Chapter 2.11], where it is
shown that BP cannot appear as the Thom spectrum of a double loop map �2X !BGL1.S/. In fact, the
argument shows that the same result is true with BP replaced by BPhni for n� 1; we had independently
come up with this argument for BPh1i before learning about Priddy’s argument. Since Lewis’s thesis is
not particularly easy to acquire, we give a sketch of Priddy’s argument. By the Thom isomorphism and
the calculation (see [63, Theorem 4.3] as well as [94, Proposition 1.7; 13, Proposition 5.3])

H�.BPhn� 1iIFp/Š

�
F2Œ�

2
1
; : : : ; �2

n�1
; �2

n ; �nC1; : : : � if p D 2;

Fp Œ�1; �2; : : : �˝ƒFp
.�n; �nC1; : : : / if p > 2;

we find that the mod p homology of �2X would be isomorphic as an algebra to a polynomial ring on
infinitely many generators, possibly tensored with an exterior algebra on infinitely many generators. The
Eilenberg–Moore spectral sequence then implies that the mod p cohomology of X is given by

H�.X IFp/Š

�
F2Œb1; : : : ; bn; cnC1; : : : � if p D 2;

Fp Œb1; b2; : : : �˝ƒFp
.cnC1; : : : / if p > 2;

where jbi j D 2pi and jci j D 2pi�1 C 1. If p is odd, then, since jb1j D 2p, we have Pp.b1/ D b
p
1

.
Liulevicius’s formula for P1 in terms of secondary cohomology operations [65, Theorem 1] allows us to
write Pp.b1/ as a sum c0R.b1/C

P
 c0;� .b1/, where R.b1/ is a coset in H 2pC4.p�1/.X IFp/ and

� is an operation of odd degree, so that � .b1/ is in odd degree. We will not need to know what exactly
the sum is indexed by, or what any of these operations are. Observe that � kills b1 because everything is
concentrated in even degrees in the relevant range, and R also kills b1 since jR.b1/j D 4.p� 1/C 2pi

is never a sum of numbers of the form 2pk when p > 2. Using this, one can conclude that b
p
1
D 0,

which is a contradiction. A similar calculation works at p D 2, using Adams’ study of secondary mod 2

cohomology operations in [1].

Remark 2.3.4 Using the calculations of THH.bo/ and THH.ku/ from [11], Angeltveit, Hill and Lawson
[10] show that neither bo nor ku can appear as the Thom spectrum of a double loop map�2X!BGL1.S/.

Our primary goal in this project is to argue that the issues in Theorem 2.3.1 are alleviated if we replace
BGL1.S/ with the delooping of the space of units of an appropriate replacement of S. In the next section,
we will construct these replacements of S.

3 Some Thom spectra

In this section, we introduce certain E1–rings; most of them appear as Thom spectra over the sphere.
Table 2 summarizes the spectra introduced in this section and gives references to their locations in the
text. The spectra A and B were introduced in [34].
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Thom spectrum definition “height” BP–homology

T .n/ Theorem 3.1.5 n Theorem 3.1.5
y.n/ and yZ.n/ Definition 3.2.2 n Proposition 3.2.3

A Definition 3.2.8 1 Proposition 3.2.13
B Definition 3.2.18 2 Proposition 3.2.21

Table 2: Certain Thom spectra and their homologies.

3.1 Ravenel’s X.n/ spectra

The proof of the nilpotence theorem in [38; 54] crucially relied upon certain Thom spectra arising from
Bott periodicity; these spectra first appeared in Ravenel’s seminal paper [84].

Definition 3.1.1 Let X.n/ denote the Thom spectrum of the E2–map �SU.n/ � BU J
�! BGL1.S/,

where the first map arises from Bott periodicity.

Example 3.1.2 The E2–ring X.1/ is the sphere spectrum, while X.1/ is MU. Since the map�SU.n/!
BU is an equivalence in dimensions � 2n � 2, the same is true for the map X.n/! MU ; the first
dimension in which X.n/ has an element in its homotopy which is not detected by MU is 2n� 1.

Remark 3.1.3 The E2–structure on X.n/ does not extend to an E3–structure (see [62, Example 1.5.31]).
If X.n/ admits such an E3–structure, then the induced map H�.X.n//!H�.HFp/ on mod p homology
would commute with E3–Dyer–Lashof operations. However, we know that the image of H�.X.n// in
H�.HFp/ is Fp Œ�

2
1
; : : : ; �2

n �; since Steinberger’s calculation (Theorem 2.2.4) implies that Q2.�
2
i /D �

2
iC1

via the relation Q2.x
2/DQ1.x/

2, we find that the image of H�.X.n// in H�.HFp/ cannot be closed
under the E3–Dyer–Lashof operation Q2.

Remark 3.1.4 The proof of the nilpotence theorem shows that each of the X.n/ detects nilpotence.
However, it is known (see [84, Theorem 3.1]) that hX.n/i> hX.nC 1/i.

After localizing at a prime p, the spectrum MU splits as a wedge of suspensions of BP; this splitting comes
from the Quillen idempotent on MU. The same is true of the X.n/ spectra, as explained in [85, Section 6.5]:
a multiplicative map X.n/.p/!X.n/.p/ is determined by a polynomial f .x/D

P
0�i�n�1 aix

iC1 with
a0 D 1 and ai 2 �2i.X.n/.p//. One can use this to define a truncated form of the Quillen idempotent �n

on X.n/.p/ (see [50, Proposition 1.3.7]), and thereby obtain a summand of X.n/.p/. We summarize the
necessary results in the following theorem:

Theorem 3.1.5 Let n be such that pn � k � pnC1� 1. Then X.k/.p/ splits as a wedge of suspensions
of the spectrum T .n/D �pn �X.pn/.p/.

� The map T .n/! BP is an equivalence in dimensions � jvnC1j � 2, so there is an indecomposable
element vi 2 ��T .n/ which maps to an indecomposable element in ��BP for 0� i � n.
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� This map induces the inclusion BP�T .n/ D BP�Œt1; : : : ; tn� � BP�.BP/ on BP–homology , and
the inclusions F2Œ�

2
1
; : : : ; �2

n � � F2Œ�
2
1
; �2

2
; : : : � and Fp Œ�1; : : : ; �n� � F2Œ�1; �2; : : : � on mod 2 and

mod p homology.

� T .n/ is a homotopy associative and Q1–algebra spectrum.

Remark 3.1.6 It is known that T .n/ admits the structure of an E1–ring (see [21, Section 7.5]). We will
interpret the phrase “Thom spectrum X� of a map � W X ! BGL1.T .n//” where � arises via a map
X

�0
�! BGL1.X.p

nC1� 1// to mean the base change X�0 ^X .pnC1�1/ T .n/.

It is believed that T .n/ in fact admits more structure (see [9, Section 6] for some discussion):

Conjecture 3.1.7 The Q1–ring structure on T .n/ extends to an E2–ring structure.

Remark 3.1.8 This is true at p D 2 and nD 1. Indeed, in this case T .1/DX.2/ is the Thom spectrum
of the bundle given by the 2–fold loop map �S3 D �2BSU.2/ ! BU, induced by the inclusion
BSU.2/! B3U D BSU.

Remark 3.1.9 Conjecture 3.1.7 is true at p D 2 and nD 2. The Stiefel manifold V2.H
2/ sits in a fiber

sequence
S3
! V2.H

2/! S7:

There is an equivalence V2.H
2/' Sp.2/, so �V2.H

2/ admits the structure of a double loop space. There
is an E2–map � W�V2.H

2/! BU, given by taking double loops of the composite

BSp.2/! BSU.4/! BSU' B3U:

The map � admits a description as the left vertical map in the map of fiber sequences

�V2.H
2/ //

�

��

�S7 //

��

S3

��

BU // � // B2U

Here, the map S3! B2U detects the generator of �2.BU / (which maps to � 2 �2.BGL1.S// under
the J–homomorphism). The Thom spectrum �V2.H

2/� is equivalent to T .2/, and it follows that T .2/

admits the structure of an E2–ring. We do not know whether T .n/ is the Thom spectrum of a p–complete
spherical fibration over some space for n� 3.

It is possible to construct X.nC 1/ as an X.n/–algebra (see also [20]):

Construction 3.1.10 There is a fiber sequence

�SU.n/!�SU.nC 1/!�S2nC1:

According to Proposition 2.1.6, the spectrum X.nC 1/ is the Thom spectrum of an E1–map �S2nC1!

BGL1.�SU.n//�DBGL1.X.n//. This E1–map is the extension of a map S2n!BGL1.X.n// which
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detects an element �n2�2n�1X.n/. This element is equivalently determined by the map†1C�
2S2nC1!

X.n/ given by the Thomification of the nullhomotopic composite

�2S2nC1
!�SU.n/!�SU.nC 1/!�SU' BU;

where the first two maps form a fiber sequence. By Proposition 2.1.6, X.nC 1/ is the free E1–X.n/–
algebra with a nullhomotopy of �n.

Remark 3.1.11 Another construction of the map �n 2 �2n�1X.n/ from Construction 3.1.10 is as
follows. There is a map i WCPn�1!�SU.n/ given by sending a line `�Cn to the loop S1! SU.n/D
Aut.Cn; h ; i/ defined as follows: � 2S1 is sent to the (appropriate rescaling of the) unitary transformation
of Cn sending a vector to its rotation around the line ` by the angle � . The map i Thomifies to a stable
map †�2CPn!X.n/. The map �n is then the composite

S2n�1
!†�2CPn

!X.n/;

where the first map is the desuspension of the generalized Hopf map S2nC1!CPn which attaches the
top cell of CPnC1. The fact that this map is indeed �n follows immediately from the commutativity of
the diagram

(3-1)

S2n�1 //

��

CPn�1 //

��

CPn

��

�2S2nC1 // �SU.n/ // �SU.nC 1/

where the top row is a cofiber sequence and the bottom row is a fiber sequence.

An easy consequence of the observation in Construction 3.1.10 is the following lemma:

Lemma 3.1.12 Let �n 2 �jvnC1j�1T .n/ denote the element �pnC1�1. Then the Thom spectrum of the
composite �S jvnC1jC1! BGL1.X.p

nC1� 1//! BGL1.T .n// is equivalent to T .nC 1/.

Example 3.1.13 The element �0 2 �jv1j�1T .0/D �2p�3S.p/ is ˛1.

Example 3.1.14 Let us specialize to pD 2. Theorem 3.1.5 implies that H�T .n/ŠF2Œ�
2
1
; : : : ; �2

n �. Using
this, one can observe that the 6–skeleton of T .1/ is the smash product C�^C�, and so �1 2�5.C�^C�/.
This element can be described very explicitly: the cell structure of C�^C� is shown in Figure 1, and the
element �1 shown corresponds to the map defined by the relation �� D 0.

Example 3.1.15 The element �n in the Adams–Novikov spectral sequence for T .n/ is represented by
the element ŒtnC1� in the cobar complex. See [86, Section 1], where �n�1 is denoted by ˛. Ov1=p/.

A calculation with the Adams–Novikov spectral sequence (as in [86, Theorem 3.17]) proves the following:
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� �

�1 D ��

�

Figure 1: C�^C� shown horizontally, with 0–cell on the left. The element �1 is given by the
map � on the 4–cell defined by a nullhomotopy of �� D 0 2 �4.S

0/, as indicated in (3-1).

Lemma 3.1.16 The class �n�1 is killed by p in �jvnj�1X.pn� 1/.

Proof The argument is essentially the same as the classical observation that ˛1 2 �2p�3.S
0/ is simple

p–torsion. As mentioned in Example 3.1.15, �n�1 D ˛. Ov1=p/ in the notation of [86]. If

�.nC 1/D BP�.BP/=.t1; : : : ; tn/

denotes the Hopf algebroid of [86] — so that ExtBP�BP
�
BP�;BP�.T .n//

�
ŠExt�.nC1/.BP�;BP�/— then

˛ is the connecting homomorphism in cohomology over �.nC 1/ for the short exact sequence

0! BP�! p�1BP�! p�1BP�=BP�! 0:

Since Ov1=p is of order p in p�1BP�=BP�, we see that ˛. Ov1=p/ is of order p in the E2–page of the
Adams–Novikov spectral sequence computing ��T .n/. The class ˛. Ov1=p/ survives to the E1–page;
one observes there are no possible additive extensions, so p�n�1 D 0 2 ��T .n/.

In particular, the element �n�1 D �pn�1 2 �jvnj�1X.pn � 1/ is p–torsion, and the following is a
consequence of Example 3.1.15:

Proposition 3.1.17 The class �n�1 2 �jvnj�1X.pn � 1/ is null in ��X.pn/, and the Toda bracket
hp; �n�1; 1X .pn/i in �jvnjX.p

n/ contains an indecomposable vn.

Corollary 3.1.18 The element �n�1 2 �jvnj�1X.pn � 1/ lifts to �jvnjC1.CP jvnj=2/ along the map
†�2CP jvnj=2!X.pn� 1/.

Proof By Remark 3.1.11, the map �n�1 W S jvnj�1 ! X.pn � 1/ is given by the composite of the
generalized Hopf map S jvnj�1!†�2CPpn�1 with the map †�2CPpn�1!X.pn�1/. Moreover, this
generalized Hopf map is the desuspension of the unstable generalized Hopf map S jvnjC1! CPpn�1,
and so �n�1 lifts to an element of the unstable homotopy group �jvnjC1.CP jvnj=2/.

3.2 Related Thom spectra

We now introduce several Thom spectra related to the E1–rings T .n/ described in the previous section;
some of these were introduced in [34]. (Relationships to T .n/ will be further discussed in Section 6.2.)
For the reader’s convenience, we have included a table of the spectra introduced below with internal
references to their definitions at the beginning of this section.
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Remark 3.2.1 Recall (eg from [85, Section 4.4]) that, under the map

BP�.BP/Š BP�Œt1; t2; : : : �!H�.BPIFp/Š

�
F2Œ�

2
1
; �2

2
; : : : � if p D 2;

Fp Œ�1; �2; : : : � if p > 2;

the class ti is sent to �2
i (resp. �i) modulo decomposables when pD 2 (resp. p > 2). Moreover, under the

map
H�.BPIFp/!H�.HFpIFp/Š

�
F2Œ�1; �2; : : : � if p D 2;

Fp Œ�1; �2; : : : �˝E.�0; �1; : : : / if p > 2;

the classes �iC1 (resp. �i) at pD 2 (resp. p> 2) detect a nullhomotopy of vi 2�2pi�2BP in HFp˝HFp .
This implies, for instance, that, if X is a spectrum such that BP�.X /' BP�=.p; : : : ; vj�1/Œt1; : : : ; tm�

with j �m, then

H�.X IFp/Š

�
Fp Œ�1; : : : ; �m�˝E.�1; : : : ; �j�1/ if p > 2;

F2Œ�
2
1
; : : : ; �2

j ; �jC1; : : : ; �m� if p D 2:

The following Thom spectrum was introduced in [73]:

Definition 3.2.2 Let y.n/ denote the Thom spectrum of the composite

�Jpn�1.S
2/!�2S3 1�p

��! BGL1.S
^
p /:

If Jpn�1.S
2/h2i denotes the 2–connected cover of Jpn�1.S

2/, then let yZ.n/ denote the Thom spectrum
of the composite

�Jpn�1.S
2/h2i !�2S3

h3i !�2S3 1�p
��! BGL1.S

^
p /;

so that both y.n/ and yZ.n/ admit the structure of E1–rings via [15, Corollary 3.2].

Proposition 3.2.3 As BP�BP–comodules , we have

BP�.y.n//Š BP�=InŒt1; : : : ; tn�; BP�.yZ.n//Š BP�=.v1; : : : ; vn�1/Œt1; : : : ; tn�;

where In denotes the invariant ideal .p; v1; : : : ; vn�1/.

Proof The claim for y.n/ is [73, equation 2.8]. There is an equivalence yZ.n/=p ' y.n/, so that
BP�.yZ.n//=p ' BP�.y.n//. The Bockstein spectral sequence collapses, and the extensions on the
E1–page simply place p in filtration 1. This implies the second equivalence.

One corollary is the following; this can be deduced from Proposition 3.2.3 using Remark 3.2.1. We also
refer to [8, Lemma 2.3] for a direct proof.

Corollary 3.2.4 As A�–comodules , we have

H�.y.n/IFp/Š

�
F2Œ�1; �2; : : : ; �n� if p D 2;

Fp Œ�1; �2; : : : ; �n�˝E.�0; : : : ; �n�1/ if p � 3;
and

H�.yZ.n/IFp/Š

�
F2Œ�

2
1
; �2; : : : ; �n� if p D 2;

Fp Œ�1; �2; : : : ; �n�˝E.�1; : : : ; �n�1/ if p � 3:
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We will now relate y.n/ and yZ.n/ to T .n/.

Construction 3.2.5 Let m � n, and let Im be the ideal generated by p; v1; : : : ; vm�1, where the vi

are some choices of indecomposables in �jvi j
.T .n// which form a regular sequence. Inductively define

T .n/=Im as the cofiber of the map

T .n/=Im�1
vm^1
����! T .n/^T .n/=Im�1! T .n/=Im�1:

The BP–homology of T .n/=Im is BP�=ImŒt1; : : : ; tn�. The spectrum T .n/=.v1; : : : ; vm�1/ is defined
similarly.

Proposition 3.2.6 Let p > 2. There is an equivalence between T .n/=In (resp. T .n/=.v1; : : : ; vn�1/)
and the spectrum y.n/ (resp. yZ.n/) of Definition 3.2.2.

Proof We will prove the result for y.n/; the analogous proof works for yZ.n/. By [43], the space
�Jpn�1.S

2/ is homotopy commutative (since p > 2). Moreover, the map �Jpn�1.S
2/!�2S3 is an

H–map, so y.n/ is a homotopy commutative E1–ring spectrum. It is known (see [85, Section 6.5]) that
homotopy commutative maps T .n/! y.n/ are equivalent to partial complex orientations of y.n/, ie
factorizations

S //

1
%%

†�2CPpn�1

n

��

y.n/

Such a n indeed exists by obstruction theory: Suppose k < pn�1 and we have a map †�2CPk! y.n/.
Since there is a cofiber sequence

S2k�1
!†�2CPk

!†�2CPkC1

of spectra, the obstruction to extending along †�2CPkC1 is an element of �2k�1y.n/. However, the
homotopy of y.n/ is concentrated in even degrees in the appropriate range, so a choice of n does indeed
exist. Moreover, this choice can be made such that they fit into a compatible family in the sense that there
is a commutative diagram

†�2CPpn�1 //

n

��

†�2CPpnC1�1

nC1

��

y.n/ // y.nC 1/

The formal group law over HFp has infinite height; this forces the elements p; v1; : : : ; vn�1 (defined for the
“.pn�1/–bud” on ��y.n/) to vanish in the homotopy of y.n/. It follows that the orientation T .n/!y.n/

constructed above factors through the quotient T .n/=In. The induced map T .n/=In! y.n/ can be seen
to be an isomorphism on homology (via, for instance, Definition 3.2.2 and Construction 3.2.5).
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Remark 3.2.7 Since y.n/ has a vn–self-map, we can form the spectrum y.n/=vn; its mod p homology
is

H�.y.n/=vnIFp/Š

�
F2Œ�1; : : : ; �n�˝ƒF2

.�nC1/ if p D 2;

Fp Œ�1; : : : ; �n�˝ƒFp
.�0; : : : ; �n�1; �n/ if p � 3:

It is in fact possible to give a construction of y.1/=v1 as a spherical Thom spectrum. We will work at
p D 2 for convenience. Define Q to be the fiber of the map 2� W S3 ! S2. There is a map of fiber
sequences

Q //

��

S3 2�
//

��

S2

��

BGL1.S/ // � // B2GL1.S/

By [31, Theorem 3.7], the Thom spectrum of the leftmost map is y.1/=v1.

We end this section by recalling the definition of two Thom spectra which, unlike y.n/ and yZ.n/, are
not indexed by integers (we will see that they are only defined at “heights 1 and 2”). These were both
studied in [34].

Definition 3.2.8 Let S4!BSpin denote the generator of �4BSpinŠZ, and let �S5!BSpin denote
the extension of this map, which classifies a real vector bundle of virtual dimension zero over �S5. Let
A denote the Thom spectrum of this bundle.

Remark 3.2.9 As mentioned in the introduction, the spectrum A has been intensely studied by Mahowald
and his coauthors in (for instance) [67; 31; 69; 68; 70; 77], where it is often denoted by X5.

Remark 3.2.10 The map �S5 ! BSpin is one of E1–spaces, so the Thom spectrum A admits the
structure of an E1–ring with an E1–map A!MSpin.

Remark 3.2.11 There are multiple equivalent ways to characterize this Thom spectrum. For instance,
the J–homomorphism BSpin! BGL1.S/ sends the generator of �4BSpin to � 2 �4BGL1.S/Š �3S.
The universal property of Thom spectra in Theorem 2.1.7 shows that A is the free E1–ring S==� with a
nullhomotopy of �. Note that A is defined integrally, and not just p–locally for some prime p.

Remark 3.2.12 There is a canonical map A ! T .1/ of E1–rings, constructed as follows. By the
universal property of A, it suffices to prove that the unit S! T .1/ extends along the inclusion S! C�,
ie that � D 0 2 �3T .1/ up to units. To see this, let us compute �3C� via the exact sequence

�3S1 �
�! �3S0

! �3C�! �2S0 �
�! �1S0:

This can be identified with

Z=2f�2
g
�
�! Z=8f�g ! �3C�! Z=2f�g

�
�! Z=2f�2

gI

the final map is an isomorphism and the first map sends �2 7! �3 D 4�. Therefore, �3C� Š Z=4f�g.
Now, since the class in H4.T .1/IF2/ is detected by a nontrivial Sq4, the attaching map of the 4–cell
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� 2� 3�

� �1

�

Figure 2: 15–skeleton of A at the prime 2 shown horizontally, with 0–cell on the left. The element
�1 given by the map � on the 4–cell, as indicated in the diagram above.

in T .1/ must be ˙�. Therefore, one of ˙� must be null in T .1/, which implies that there must be a map
C�! T .1/ (or C.��/! T .1/), as claimed.

The following result is [34, Proposition 2.7]; it is proved there at p D 2, but the argument clearly works
for p D 3 too:

Proposition 3.2.13 There is an isomorphism BP�.A/ Š BP�Œy2�, where jy2j D 4. There is a map
A.p/! BP. Under the induced map on BP–homology, y2 maps to t2

1
mod decomposables at p D 2, and

to t1 mod decomposables at p D 3.

Remark 3.2.14 For instance, when p D 2, we have BP�.A/Š BP�Œt2
1
C v1t1�.

One corollary (using Remark 3.2.1) is the following:

Corollary 3.2.15 As A�–comodules , we have

H�.AIFp/Š

8<:
F2Œ�

4
1
� if p D 2;

F3Œ�1� if p D 3;

Fp Œx4� if p � 5;

where x4 is a polynomial generator in degree 4.

Example 3.2.16 Let us work at p D 2 for convenience. Example 3.1.14 showed that �1 is the element
in �5.C�^ C�/ given by the lift of � to the 4–cell (which is attached to the bottom cell by �) via a
nullhomotopy of ��. In particular, �1 already lives in �5.C�/ and, as such, defines an element of S==�DA

(by viewing C� as the 4–skeleton of A); note that, by construction, this element is 2–torsion. The image
of �1 2 �5.A/ under the canonical map of Remark 3.2.12 is its namesake in �5.T .1//. See Figure 2.

Remark 3.2.17 The element �1 2�5.A.2// defined in Example 3.2.16 in fact lifts to an element of �5.A/,
because the relation �� D 0 is true integrally and not just 2–locally. An alternative construction of this
map is the following: The Hopf map �4 W S

5 ! S4 (which lives in the stable range) defines a map
S5! S4!�S5 whose composite to BSpin is null (since �5.BSpin/D 0). Upon Thomification of the
composite S5!�S5! BSpin, one therefore gets a map S5!A whose composite with A!MSpin
is null. The map S5!A is the element �1 2 �5.A/.

Finally, we have:
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Definition 3.2.18 Let BN be the space defined by the homotopy pullback

BN //

��

S13

f

��

BO.9/ // BO.10/

where the map f W S13! BO.10/ detects an element of �12O.10/Š Z=12. There is a fiber sequence

S9
! BO.9/! BO.10/;

and the image of f under the boundary map in the long exact sequence of homotopy detects 2� 2

�12.S
9/Š Z=24. In particular, there is a fiber sequence

S9
! BN ! S13:

If N is defined to be �BN, then there is a fiber sequence

N !�S13
! S9:

Define a map N ! BString via the map of fiber sequences

N //

��

�S13 //

��

S9

��

BString // � // B2String

where the map S9! B2String detects a generator of �8BString. Let B denote the Thom spectrum of
the induced bundle over N.

Remark 3.2.19 The map N ! BString is in fact one of E1–spaces, so B admits the structure of an
E1–ring. To prove this, it suffices to show that there is a map BN ! B2String. Recall that BStringD
��8�

1KO, so the desired map is the same as a class in KO1.BN /. Using the Serre spectral sequence
for the fiber sequence defining BN, one can calculate that there is a class in KO1.BN / which lifts the
generator of KO1.S9/Š �8KO Š Z.

We introduced the spectrum B and studied its Adams–Novikov spectral sequence in [34]. The Steenrod
module structure of the 20–skeleton of B is shown in [34, Figure 1], and is reproduced here as Figure 3.
As mentioned in the introduction, the spectrum B has been briefly studied under the name X in [72].

Remark 3.2.20 As with A, there are multiple different ways to characterize B. There is a fiber sequence

�S9
!N !�S13;

and the map �S9 ! N ! BString is an extension of the map S8 ! BString detecting a generator.
Under the J–homomorphism BString! BGL1.S/, this generator maps to � 2 �8BGL1.S/Š �7S, so
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�

�
� �2

Figure 3: Steenrod module structure of the 20–skeleton of B; the bottom cell (in dimension 0)
is on the left; straight lines are Sq4, and curved lines correspond to Sq8 and Sq16, in order of
increasing length. The bottom two attaching maps of B are labeled. The map �2 is shown.

the Thom spectrum of the bundle over �S9 determined by the map �S9! BString is the free E1–ring
S==� with a nullhomotopy of �. Proposition 2.1.6 now implies that N is the Thom spectrum of a map
�S13! BGL1.S==�/. While a direct definition of this map is not obvious, we note that the restriction
to the bottom cell S12 of the source detects an element z� of �12BGL1.S==�/Š �11S==� . This in turn
factors through the 11–skeleton of S==� , which is the same as the 8–skeleton of S==� (namely C�).
This element is precisely a lift of the map � W S11! S8 to C� determined by a nullhomotopy of ��
in ��S. Although z� 2 �11C� does not come from a class in �11S, its representative in the Adams
spectral sequence for C� is the image of h22 in the Adams spectral sequence for the sphere.

The following result is [34, Proposition 3.2]; it is proved there at p D 2, but the argument clearly works
for p � 3 too:

Proposition 3.2.21 The BP�–algebra BP�.B/ is isomorphic to a polynomial ring BP�Œb4;y6�, where
jb4j D 8 and jy6j D 12. There is a map B.p/! BP. On BP�–homology , the elements b4 and y6 map to
t4
1

and t2
2

mod decomposables at p D 2, and y6 maps to t3
1

mod decomposables at p D 3.

One corollary (using Remark 3.2.1) is the following:

Corollary 3.2.22 As A�–comodules , we have

H�.BIFp/Š

8̂̂̂<̂
ˆ̂:

F2Œ�
8
1
; �4

2
� if p D 2;

F3Œ�
3
1
; b4� if p D 3;

F5Œ�1;x12� if p D 5;

Fp Œx8;x12� if p � 7;

where x8 and x12 are polynomial generators in degrees 8 and 12, and b4 is an element in degree 8.

Example 3.2.23 For simplicity, let us work at p D 2. There is a canonical ring map B! T .2/, and
the element �2 2 �13T .2/ lifts to B. We can be explicit about this: the 12–skeleton of B is shown in
Figure 3, and �2 is the element of �13.B/ that exists thanks to the relation �� D 0 and the fact that the
Toda bracket h�; �; �i contains 0. This also shows that �2 2 �13.B/ is 2–torsion.
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Remark 3.2.24 The element �2 2 �13.B.2// defined in Example 3.2.23 in fact lifts to an element
of �13.B/, because the relations �� D 0, �� D 0 and 0 2 h�; �; �i are all true integrally and not
just 2–locally. An alternative construction of this map S13 ! B is the following: The Hopf map
�12 W S

13 ! S12 (which lives in the stable range) defines a map S13 ! S12 ! �S13. Moreover,
the composite S13 ! �S13 ! S9 is null, since it detects an element of �13.S

9/ D 0; choosing a
nullhomotopy of this composite defines a lift S13!N. (In fact, this comes from a map S14!BN.) The
composite S13!N !BString is null (since �13.BString/D 0). Upon Thomification, we obtain a map
S13! B whose composite with B!MString is null; the map S13! B is the element �2 2 �13.B/.

The following theorem packages some information contained in this section:

Theorem 3.2.25 Let R denote any of the spectra in Table 2, and let n denote its “height”. If RD T .n/,
y.n/ or yZ.n/, then there is a map T .n/ ! R and , if R D A (resp. B), then there is a map from
R to T .1/ (resp. T .2/). In the first three cases , there is an element �n 2 �jvnC1j�1R coming from
�n 2 �jvnC1j�1T .n/ and , in the cases R D A and B, there are elements �1 2 �5.A/ and �2 2 �13.B/

mapping to the corresponding elements in T .1/.2/ and T .2/.2/, respectively. Moreover , �n is p–torsion
in ��R; similarly, �1 and �2 are 2–torsion in ��A.2/ and ��B.2/.

Proof The existence statement for T .n/ is contained in Theorem 3.1.5, while the torsion statement is
the content of Lemma 3.1.16. The claims for y.n/ and yZ.n/ now follow from Proposition 3.2.6. The
existence and torsion statements for A and B are contained in Examples 3.2.16 and 3.2.23.

The elements in Theorem 3.2.25 can in fact be extended to infinite families; this is discussed in Section 5.4.

3.3 Centers of Thom spectra

In this section, we review some of the theory of Ek–centers and state Conjecture E. We begin with the
following important result, and refer to [40; 66, Section 5.5.4] for proofs:

Theorem 3.3.1 [66, Example 5.5.4.16; 40, Definition 2.5] Let C be a symmetric monoidal presentable
1–category and let A be an Ek–algebra in C. Then the category of Ek–A–modules is equivalent to the
category of left modules over the factorization homology U.A/D

R
Sk�1�R A (known as the enveloping

algebra of A), which is an E1–algebra in C.

Definition 3.3.2 The EkC1–center Z.A/ of an Ek–algebra A in C is the (EkC1–)Hochschild cohomology
EndU.A/.A/, where A is regarded as a left module over its enveloping algebra via Theorem 3.3.1.

Remark 3.3.3 We are using slightly different terminology than that used by Lurie [66, Section 5.3]: our
EkC1–center is his Ek–center. In other words, Lurie’s terminology expresses the structure on the input,
while our terminology expresses the structure on the output.
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The following proposition summarizes some results from [40; 66, Section 5.3]:

Proposition 3.3.4 [66, Theorem 5.3.2.5; 40, Theorem 1.1] The EkC1–center Z.A/ of an Ek–algebra
A in a symmetric monoidal presentable1–category C exists , and satisfies the following properties:

(a) Z.A/ is the universal Ek–algebra of C which fits into a commutative diagram

A // A˝Z.A/

��

A

in AlgEk
.C/.

(b) The Ek–algebra Z.A/ of C defined via this universal property in fact admits the structure of an
EkC1–algebra in C.

(c) There is a fiber sequence

GL1.Z.A//! GL1.A/!�k�1 EndAlgEk
.C/.A/

of k–fold loop spaces.

In the sequel, we will need a more general notion:

Definition 3.3.5 Let m�1. The EkCm–center ZkCm.A/ of an Ek–algebra A in a presentable symmetric
monoidal1–category C with all limits is defined inductively as the EkCm–center of the EkCm�1–center
ZkCm�1.A/. In other words, it is the universal EkCm–algebra of C which fits into a commutative diagram

ZkCm�1.A/ // ZkCm�1.A/˝ZkCm.A/

��

ZkCm�1.A/

in AlgEkCm�1
.C/.

Proposition 3.3.4 gives:

Corollary 3.3.6 Let m� 1. The EkCm�1–algebra ZkCm.A/ associated to an Ek–algebra object A of
C exists and , in fact , admits the structure of an EkCm–algebra in C.

We can now finally state Conjecture E:

Conjecture E Let n� 0 be an integer. Let R denote X.pnC1� 1/.p/, A (in which case nD 1) or B (in
which case nD 2). Then the element �n 2 �j�njR lifts to the E3–center Z3.R/ of R, and is p–torsion in
��Z3.R/ if RDX.pnC1� 1/.p/, and is 2–torsion in ��Z3.R/ if RDA or B.
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Remark 3.3.7 If R is A or B, then Z3.R/ is the E3–center of the E2–center of R. This is a rather
unwieldy object, so it would be quite useful to show that the E1–structure on A or B admits an extension
to an E2–structure; we do not know if such extensions exist. Since neither �S5 nor N admits the
structure of a double loop space, such an E2–structure would not arise from their structure as Thom
spectra. In any case, if such extensions do exist, then Z3.R/ in Conjecture E should be interpreted as the
E3–center of the E2–ring R. However, we showed in [35, Theorem 4.2] that .tmf^A/Œx2� admits an
E2–algebra structure, where jx2j D 2.

Remark 3.3.8 In the introduction, we stated Conjecture 1.1.4, which instead asked about whether
vn 2 �jvnjX.p

n/ lifts to ��Z3.X.p
n//. It is natural to ask about the connection between Conjectures E

and 1.1.4. Proposition 3.1.17 implies that, if Z3.X.p
n// admitted an X.pn�1/–orientation factoring the

canonical X.pn�1/–orientation X.pn� 1/!X.pn/, and �n�1 2 �jvnj�1X.pn� 1/ was killed by the
map X.pn� 1/! Z3.X.p

n//, then Conjecture E would imply Conjecture 1.1.4. However, we do not
believe that either of these statements are true.

Remark 3.3.9 One of the main results of [56] implies that the E3–center of X.n/— which, recall, is
the Thom spectrum of a bundle over �2BSU.n/— is HomSU.n/C.S;X.n//'X.n/hSU.n/, where SU.n/
acts on X.n/ by a Thomification of the conjugation action on �SU.n/.

Remark 3.3.10 The conjugation action of SU.n/ on X.n/ can be described very explicitly, via a
concrete model for �SU.n/. As explained in [83; 96], if G is a reductive linear algebraic group
over C, the loop space �G.C/ of its complex points (viewed as a complex Lie group) is equivalent to the
homogeneous space G.C..t///=G.CŒŒt ��/; this is also commonly studied as the complex points of the affine
Grassmannian GrG of G. The conjugation action of G.C/ on �G.C/ arises by restricting the descent (to
G.C..t///=G.CŒŒt ��/) of the translation action by G.CŒŒt ��/ on G.C..t/// to the subgroup G.C/�G.CŒŒt ��/.
Setting G D SLn gives a description of the conjugation action of SU.n/ on �SU.n/. In light of its
connections to geometric representation theory, we believe that there may be an algebrogeometric
approach to proving that �n is SU.n/–trivial in X.n/ and in �SU.n/.

Example 3.3.11 The element �2 2 �3X.2/ is central. To see this, note that ˛ 2 ��R (where R is an
Ek–ring) is in the EkC1–center of R if and only if ˛ is in the EkC1–center of R.p/ for all primes p � 0.
It therefore suffices to show that �2 is central after p–localizing for all p. First, note that �2 is torsion,
so it is nullhomotopic (and therefore central) after rationalization. Next, if p > 2, then X.2/.p/ splits as a
wedge of suspensions of spheres. If �2 is detected in �3 of a sphere living in dimension 3, then it could
not be torsion, so it must be detected in �3 of a sphere living in dimension 3� k for some 0 � k � 2.
If k D 1 or 2, then �3.S

3�k/ is either �1.S
0/ or �2.S

0/, but both of these groups vanish for p > 2.
Therefore, �2 must be detected in �3 of the sphere in dimension 0, ie in �3X.1/. This group vanishes
for p > 3, and when p D 3, it is isomorphic to Z=3 (generated by ˛1). Since X.1/D S0 is an E1–ring,
we conclude that �2 is central in X.2/.p/ for all p > 2.
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At pD 2, we know the cell structure of X.2/ in the bottom few dimensions (see Example 3.1.14; note that
�1 is not �2). In dimensions� 3, it is equivalent to C�, so �3X.2/Š�3C�. However, it is easy to see that
the canonical map �3S' Z=8f�g ! �3C� is surjective and exhibits an isomorphism �3C�Š Z=4f�g.
Therefore, �2 is in the image of the unit S! X.2/, and is therefore vacuously central. We conclude
from the above discussion that �2 is indeed central in X.2/.

4 Review of some unstable homotopy theory

4.1 Charming and Gray maps

A major milestone in unstable homotopy theory was Cohen, Moore and Neisendorfer’s result on the
p–exponent of unstable homotopy groups of spheres from [29; 30; 81]. They defined for all p > 2

and k � 1 a map �n W �
2S2nC1! S2n�1 (the integer k is assumed implicit) such that the composite

of �n with the double suspension E2 W S2n�1!�2S2nC1 is homotopic to the .pk/th power map. By
induction on n, they concluded via a result of Selick’s (see [89]) that pn kills the p–primary component
of the homotopy of S2nC1. Such maps will be important in the rest of this article, so we will isolate
their desired properties in the definition of a charming map, inspired by [90]. (Our choice of terminology
is nonstandard, and admittedly horrible, but it does not seem like the literature has chosen any naming
convention for the sort of maps we desire.)

Definition 4.1.1 A p–local map f W�2S2npC1! S2np�1 is called a Gray map if the composite of f
with the double suspension E2 is the degree p map, and the composite

�2S2nC1 �H
��!�2S2npC1 f

�! S2np�1

is nullhomotopic. Moreover, a p–local map f W�2S2npC1! S2np�1 is called a charming map if the
composite of f with the double suspension E2 is the degree p map, the fiber of f admits the structure
of a Q1–space, and there is a space BK which sits in a fiber sequence

S2np�1
! BK!�S2npC1

such that the boundary map �2S2npC1! S2np�1 is homotopic to f.

Remark 4.1.2 If f is a charming map, then the fiber of f is a loop space. Indeed, fib.f /'�BK.

Example 4.1.3 Let f denote the Cohen–Moore–Neisendorfer map with k D 1. Anick proved (see
[14; 45]) that the fiber of f admits a delooping, ie there is a space T 2npC1.p/ (now known as an Anick
space) which sits in a fiber sequence

S2np�1
! T 2npC1.p/!�S2npC1:

It follows that f is a charming map.
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Remark 4.1.4 We claim that T 2pC1.p/D�S3h3i, where S3h3i is the 3–connected cover of S3. To
prove this, we will construct a p–local fiber sequence

S2p�1
!�S3

h3i !�S2pC1:

This fiber sequence was originally constructed by Toda [93]. To construct this fiber sequence, we first
note that there is a p–local fiber sequence

S2p�1
! Jp�1.S

2/!CP1;

where the first map is the factorization of ˛1 W S
2p�1 ! �S3 through the 2.p�1/–skeleton of �S3,

and the second map is the composite Jp�1.S
2/! �S3 ! CP1. This fiber sequence is simply an

odd primary version of the Hopf fibration S3! S2!CP1; the identification of the fiber of the map
Jp�1.S

2/!CP1 is a simple exercise with the Serre spectral sequence. Next, we have the EHP sequence

Jp�1.S
2/!�S3

!�S2pC1:

Since �S3h3i is the fiber of the map �S3! CP1, the desired fiber sequence is obtained by taking
vertical fibers in the map of fiber sequences

Jp�1.S
2/ //

��

�S3 //

��

�S2pC1

��

CP1 CP1 // �

Example 4.1.5 Let Wn denote the fiber of the double suspension S2n�1!�2S2nC1. Gray [44; 42]
proved that Wn admits a delooping BWn, and that, after p–localization, there is a fiber sequence

BWn!�2S2npC1 f
�! S2np�1

for some map f. As suggested by the naming convention, f is a Gray map.

As proved in [90], Gray maps satisfy an important rigidity property:

Proposition 4.1.6 (Selick and Theriault) The fiber of any Gray map admits an H–space structure , and
is H–equivalent to BWn.

Remark 4.1.7 It has been conjectured by Cohen, Moore, Neisendorfer and Gray in the papers cited above
that there is an equivalence BWn '�T 2npC1.p/, and that �T 2npC1.p/ retracts off of �2P2npC1.p/

as an H–space, where Pk.p/ is the mod p Moore space Sk�1[p ek with top cell in dimension k. For our
purposes, we shall require something slightly stronger; namely, the retraction should be one of Q1–spaces.
The first part of this conjecture would follow from Proposition 4.1.6 if the Cohen–Moore–Neisendorfer
map were a Gray map. In [3], it is shown that the existence of p–primary elements of Kervaire invariant
one would imply equivalences of the form BWpn�1 '�T 2pnC1.p/.
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Motivated by Remark 4.1.7 and Proposition 4.1.6, we state the following conjecture; it is slightly weaker
than the conjecture mentioned in Remark 4.1.7, and is an amalgamation of slight modifications of
conjectures of Cohen, Moore, Neisendorfer, Gray and Mahowald in unstable homotopy theory, as well as
an analogue of Proposition 4.1.6. (For instance, we strengthen having an H–space retraction to having a
Q1–space retraction.)

Conjecture D The following statements are true:

(a) The homotopy fiber of any charming map is equivalent as a loop space to the loop space on an
Anick space.

(b) There exists a p–local charming map f W�2S2pnC1! S2pn�1 whose homotopy fiber admits a
Q1–space retraction off of �2P2pnC1.p/. There are also integrally defined maps �2S9! S7

and �2S17! S15 whose composite with the double suspension on S7 and S15, respectively, is
the degree 2 map , whose homotopy fibers K2 and K3 (respectively) admit deloopings , and which
admits a Q1–space retraction off of �2P9.2/ and �2P17.2/ (respectively).

Remark 4.1.8 Conjecture D is already not known when nD1. In this case, it asserts that�2S3h3i retracts
off of �2P2pC1.p/. A theorem of Selick’s states that �2S3h3i retracts off of �2S2pC1fpg for p odd,
where�2S2pC1fpg is the fiber of the degree p map on�2S2pC1. This implies that�2S3h3i retracts off
of�3P2pC2.p/. In [28, Observation 9.2], the question of whether�2S3h3i retracts off of�2P2pC1.p/

was shown to be equivalent to the question of whether there is a map †2�2S3h3i ! P2pC1.p/ which
is onto in homology. Some recent results regarding Conjecture D for nD 1 can be found in [23].

It follows that a retraction of �2S3h3i off of �2P2pC1.p/ will be compatible with the canonical map
�2S3h3i ! �2S3 in the following manner. The p–torsion element ˛1 2 �2p.S

3/ defines a map
P2p�1.p/!�2S3, which extends to an E2–map �2P2pC1.p/!�2S3. We will abusively denote
this extension by ˛1. The resulting composite

�2S3
h3i !�2P2pC1.p/

˛1
�!�2S3

is homotopic to the canonical map �2S3h3i !�2S3.

The element ˛1 2 �2p�3.S.p// defines a map S2p�2 ! BGL1.S.p// and, since it is p–torsion, ad-
mits an extension to a map P2p�1.p/ ! BGL1.S.p//. (This extension is in fact unique, because
�2p�1.BGL1.S.p///Š �2p�2.S.p// vanishes.) Since BGL1.S.p// is an infinite loop space, this map
further extends to a map �2P2pC1.p/!BGL1.S.p//. The discussion in the previous paragraph implies
that, if Conjecture D is true for nD 1, then the map � W�2S3h3i!BGL1.S.p// from Corollary 2.2.2 is
homotopic to the composite

�2S3
h3i !�2P2pC1.p/! BGL1.S.p//:
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4.2 Fibers of charming maps

We shall need the following proposition:

Proposition 4.2.1 Let f W�2S2pnC1! S2pn�1 be a charming map. Then there are isomorphisms of
coalgebras

H�.fib.f /IFp/Š

�
F2Œx

2
2nC1�1

�˝
N

k>1 F2Œx2nCk�1� if p D 2;N
k>0 Fp Œy2.pnCk�1/�˝

N
j>0ƒFp

Œx2pnCj�1� if p > 2:

Proof This is an easy consequence of the Serre spectral sequence coupled with the well-known coalgebra
isomorphisms

H�.�
2S2nC1

IFp/Š

�N
k>0 F2Œx2kn�1� if p D 2;N
k>0 Fp Œy2.npk�1/�˝

N
j�0ƒFp

Œx2npj�1� if p > 2;

where these classes are generated by the one in dimension 2n� 1 via the single Dyer–Lashof operation
(coming already from the cup-1 operad; see Remark 2.2.8).

Remark 4.2.2 The Anick spaces T 2npC1.p/ from Example 4.1.3 sit in fiber sequences

S2np�1
! T 2npC1.p/!�S2npC1

and are homotopy commutative H–spaces. A Serre spectral sequence calculation gives an identification
of coalgebras

H�.T
2npC1.p/IFp/Š Fp Œa2np �˝ƒFp

Œb2np�1�

with ˇ.a2np/D b2np�1, where ˇ is the Bockstein homomorphism. An argument with the bar spectral
sequence recovers the result of Proposition 4.2.1 in this particular case.

Remark 4.2.3 Suppose that X is a space which sits in a fiber sequence

S2np�1
!X !�S2npC1

such that the boundary map �2S2npC1! S2np�1 has degree pj on the bottom cell of the source. The
Serre spectral sequence then only has a differential on the E2np�1–page, and

Hi.BKIZ/Š

8<:
Z if i D 0;

Z=pj k if i D 2npk � 1;

0 otherwise:

We conclude this section by investigating Thom spectra of bundles defined over fibers of charming maps.
Let R be a p–local E1–ring and let � WK! BGL1.R/ denote a map from the fiber K of a charming
map f W�2S2npC1! S2np�1. There is a fiber sequence �S2np�1!K!�2S2npC1 of loop spaces,
so we obtain a map �S2np�1! BGL1.R/. Such a map gives an element ˛ 2 �2np�3R via the effect
on the bottom cell S2np�2.
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Theorem 2.1.7 implies that the Thom spectrum of the map �S2np�1! BGL1.R/ should be thought
of as the E1–quotient R==˛, although this may not make sense if R is not at least E2. However,
in many cases (such as the ones we are considering here), the Thom R–module R==˛ is in fact an
E1–ring such that the map R! R==˛ is an E1–map. By Proposition 2.1.6, there is an induced map
� W�2S2npC1! BGL1.R==˛/ whose Thom spectrum is equivalent as an E1–ring to K�. We would
like to determine the element2 of ��R==˛ detected by the restriction to the bottom cell S2np�1 of the
source of �. First, we note:

Lemma 4.2.4 The element ˛ 2 �2np�3R is p–torsion.

Proof Since f is a charming map, the composite S2np�1!�2S2np�1 f
�! S2np�1 is the degree p

map. Therefore, the element p˛ 2 �2np�3R is detected by the composite

S2np�2
!�S2np�1

!�3S2np�1 �f
�!�S2np�1

!K
�
�! BGL1.R/:

But there is a fiber sequence �2S2np�1 f
�! S2np�1! BK by the definition of a charming map, so the

composite detecting p˛ is null, as desired.

There is now a square
S2np�2=p //

��

S2np�1

��

K //

˛

��

�2S2npC1

��

BGL1.R/ // BGL1.R==˛/

and the following result is a consequence of the lemma and the definition of Toda brackets:

Lemma 4.2.5 The element in �2np�2.R==˛/ detected by the vertical map S2np�1 ! BGL1.R==˛/

lives in the Toda bracket hp; ˛; 1R==˛i.

The upshot of this discussion is the following:

Proposition 4.2.6 Let R be a p–local E1–ring and let � WK! BGL1.R/ denote a map from the fiber
K of a charming map f W �2S2npC1 ! S2np�1, providing an element ˛ 2 �2np�3R. Assume that
the Thom spectrum R==˛ of the map �S2np�1 ! BGL1.R/ is an E1–R–algebra. Then there is an
element v 2 hp; ˛; 1R==˛i such that K� is equivalent to the Thom spectrum of the map �2S2npC1 v

�!

BGL1.R==˛/.

2Technically, this is bad terminology: there are multiple possibilities for the map �, and each gives rise to a map S2np�1!

BGL1.R==˛/. The elements in �2np�2.R==˛/ determined in this way need not agree, but they are the same modulo the
indeterminacy of the Toda bracket hp; ˛; 1R==˛i.
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Remark 4.2.7 Let R be an E1–ring and let ˛ 2 �dR. Then ˛ defines a map SdC1! BGL1.R/, and
it is natural to ask when ˛ extends along SdC1 ! �SdC2, or at least along SdC1 ! Jk.S

dC1/ for
some k. This is automatic if R is an E2–ring, but not necessarily so if R is only an E1–ring. Recall that
there is a cofiber sequence

S .kC1/.dC1/�1
! Jk.S

dC1/! JkC1.S
dC1/;

where the first map is the .kC1/–fold iterated Whitehead product Œ�dC1; Œ : : : ; Œ�dC1; �dC1��; : : : �. In
particular, the map SdC1!BGL1.R/ extends along the map SdC1! Jk.S

dC1/ if and only if there are
compatible nullhomotopies of the n–fold iterated Whitehead products Œ˛; Œ : : : ; Œ˛; ˛��; : : : �2��BGL1.R/

for n � k. These amount to properties of Toda brackets in the homotopy of R. We note, for instance,
that the Whitehead bracket Œ˛; ˛� 2 �2dC1BGL1.R/ Š �2dR is the element 2˛2; therefore, the map
SdC1! BGL1.R/ extends to J2.S

dC1/ if and only if 2˛2 D 0.

Remark 4.2.8 Let R be a p–local E2–ring and let ˛ 2 �d .R/ with d even. Then ˛ defines an element
˛ 2 �dC2B2GL1.R/. The p–fold iterated Whitehead product Œ˛; : : : ; ˛� 2 �p.dC2/�.p�1/B

2GL1.R/Š

�pdC.p�1/R is given by p!Q1.˛/ modulo decomposables. This is in fact true more generally. Let R

be an En–ring and suppose ˛ 2 �d .R/. Let i < n, so ˛ defines an element ˛ 2 �dCiB
iGL1.R/. The

p–fold iterated Whitehead product Œ˛; : : : ; ˛� 2 �p.dCi/�.p�1/B
iGL1.R/Š �pdC.i�1/.p�1/R is given

by p!Qi�1.˛/ modulo decomposables.

We will describe this in detail in forthcoming work; the basic idea is to reduce to the universal example
of an En–ring, and relate Whitehead products on ��.Sn/ to the Ed –Browder bracket on �dSn

C (where
d � n). Recall the isomorphism �j Sn Š �j�d�

dSn. If ˛ 2 �iS
n and ˇ 2 �j Sn, then we will show

in future work that the stabilization of the Whitehead product Œ˛; ˇ� 2 �iCj�1Sn Š �iCj�d�
dSn is

closely related to the Ed –Browder bracket Œ˛; ˇ�Ed
.

5 Chromatic Thom spectra

5.1 Statement of the theorem

To state the main theorem of this section, we set some notation. Fix an integer n � 1 and work in the
p–complete stable category. For each Thom spectrum R of height n� 1 in Table 1, let �n�1 W S

j�n�1j!

BGL1.R/ denote a map detecting �n�12�j�n�1j
.R/ (which exists by Theorem 3.2.25). Let Kn denote the

fiber of a p–local charming map�2S2pnC1!S2pn�1 satisfying the hypotheses of Conjecture D, and let
K2 (resp. K3) denote the fiber of an integrally defined charming map �2S9! S7 (resp. �2S17! S15)
satisfying the hypotheses of Conjecture D.

Then:
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Theorem A Let R be a height n�1 spectrum as in the second line of Table 1. Then Conjectures D and E
imply that there is a map Kn! BGL1.R/ such that the mod p homology of the Thom spectrum K

�
n is

isomorphic to the mod p homology of the associated designer chromatic spectrum ‚.R/ as a Steenrod
comodule.

If R is any base spectrum other than B, the Thom spectrum K
�
n is equivalent to‚.R/ upon p–completion

for every prime p. If Conjecture F is true , then the same is true for B: the Thom spectrum K
�
n is

equivalent to ‚.B/D tmf upon 2–completion.

We emphasize again that naively making sense of Theorem A relies on knowing that T .n/ admits the
structure of an E1–ring; we shall interpret this phrase as in Remark 3.1.6.

Remark 5.1.1 Theorem A is proved independently of the nilpotence theorem. (In fact, it is even
independent of Quillen’s identification of ��MU with the Lazard ring provided one regards the existence
of designer chromatic spectra as being independent of Quillen’s identification.) We shall elaborate on
the connection between Theorem A and the nilpotence theorem in future work; a sketch is provided in
Remark 5.4.7.

Remark 5.1.2 Theorem A is true unconditionally when nD 1, since that case is simply Corollary 2.2.2.

Remark 5.1.3 Table 2 implies that the homology of each of the Thom spectra in Table 1 are given by the
Q0–Margolis homology of their associated designer chromatic spectra. In particular, the map R!‚.R/

is a rational equivalence.

Before we proceed with the proof of Theorem A, we observe some consequences.

Corollary B Conjectures D and E imply Conjecture 1.1.3.

Proof This follows from Theorem A and Propositions 4.2.6 and 3.1.17.

Remark 5.1.4 Corollary B is true unconditionally when nD 1, since Theorem A is true unconditionally
in that case by Remark 5.1.2. See also Remark 4.1.4.

Remark 5.1.5 We can attempt to apply Theorem A for RDA in conjunction with Proposition 4.2.6.
Theorem A states that Conjectures D and E imply that there is a map K2! BGL1.A/ whose Thom
spectrum is equivalent to bo. There is a fiber sequence

�S7
!K2!�2S9;

so we obtain a map � W�S7!K2!BGL1.A/. The proof of Theorem A shows that the bottom cell S6

of the source detects �1 2 �5.A/. A slight variation of the argument used to establish Proposition 4.2.6
supplies a map �2S9!BAut..�S7/�/ whose Thom spectrum is bo. The spectrum .�S7/� has mod 2

homology F2Œ�
4
1
; �2

2
�. However, unlike A, it does not naturally arise an E1–Thom spectrum over the

sphere spectrum; this makes it unamenable to study via techniques of unstable homotopy.
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More precisely, .�S7/� is not the Thom spectrum of an E1–map X ! BGL1.S/ from a loop space X

which sits in a fiber sequence
�S5

!X !�S7

of loop spaces. Indeed, BX would be a S5–bundle over S7, which, by [71, Lemma 4], implies that X is
then equivalent as a loop space to �S5 ��S7. The resulting E1–map �S7! BGL1.S/ is specified
by an element of �5.S/ Š 0, so .�S7/� must then be equivalent as an E1–ring to A^†1C�S7. In
particular, �1 2 �5.A/ would map nontrivially to .�S7/�, which is a contradiction.

The proof of Theorem A will also show:

Corollary 5.1.6 Let R be a height n�1 spectrum as in the second line of Table 1, and assume Conjecture F
if RD B. Let M be an E3–R–algebra. Conjectures D and E imply that if

(a) the composite Z3.R/!R!M is an E3–algebra map ,

(b) the element �n�1 in ��M is nullhomotopic , and

(c) the bracket hp; �n�1; 1M i contains zero ,

then there is a unital map ‚.R/!M.

5.2 The proof of Theorem A

This section is devoted to giving a proof of Theorem A, dependent on Conjectures D and E. The proof of
Theorem A will be broken down into multiple steps. The result for y.n/ and yZ.n/ follow from the result
for T .n/ by Proposition 3.2.6, so we shall restrict ourselves to the cases of R being T .n/, A and B.

Fix n � 1. If R is A or B, we will restrict to p D 2, and let K2 and K3 denote the integrally defined
spaces from Conjecture D. By Remarks 3.2.17 and 3.2.24, the elements �1 2 �5.A/ and �2 2 �13.B/

are defined integrally. We will write �n�1 to generically denote this element, and will write it as living
in degree j�n�1j. We shall also write R to denote X.pn� 1/ and not T .n/; this will be so that we can
apply Conjecture D. We apologize for the inconvenience, but hope that this is worth circumventing the
task of having to read through essentially the same proofs for these slightly different cases.

Step 1 We begin by constructing a map � WKn!BGL1.R/ as required by the statement of Theorem A;
the construction in the case nD 1 follows Remark 4.1.8. By Conjecture D, the space Kn splits off of
�2P j�n�1jC4.p/ (if RD T .n/, then j�n�1jC 4D jvnjC 3). We are therefore reduced to constructing a
map �2P j�n�1jC4.p/! BGL1.R/. Theorem 3.2.25 shows that the element �n�1 2 ��R is p–torsion,
so the map S j�n�1jC1! BGL1.R/ detecting �n�1 extends to a map

(5-1) S j�n�1jC1=p D P j�n�1jC2.p/! BGL1.R/:

Since �2P j�n�1jC4.p/ ' �2†2P j�n�1jC2.p/, we would obtain an extension z� of this map through
�2P j�n�1jC4.p/ if R admits an E3–structure.
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Unfortunately, this is not true; but this is where Conjecture E comes in: it says that the element �n�1 2

�j�n�1j
R lifts to the E3–center Z3.R/, where it has the same torsion order as in R. (Here, we are abusively

writing Z3.T .n� 1// to denote the E3–center of X.pn � 1/.p/.) The lifting of �n�1 to �j�n�1j
Z3.R/

provided by Conjecture E gives a factorization of the map from (5-1) as

S j�n�1jC1=p D P j�n�1jC2.p/! BGL1.Z3.R//! BGL1.R/:

Since Z3.R/ is an E3–ring, BGL1.Z3.R// admits the structure of an E2–space. In particular, the
map P j�n�1jC2.p/! BGL1.Z3.R// factors through �2P j�n�1jC4.p/, as desired. We let z� denote the
resulting composite

z� W�2P j�n�1jC4.p/! BGL1.Z3.R//! BGL1.R/:

Step 2 Theorem A asserts that there is an identification between the Thom spectrum of the induced
map � WKn! BGL1.R/ and the associated designer chromatic spectrum ‚.R/ via Table 1. We shall
identify the Steenrod comodule structure on the mod p homology of K

�
n , and show that it agrees with

the mod p homology of ‚.R/.

In Table 3, we have recorded the mod p homology of the designer chromatic spectra in Table 1 (see [63,
Theorem 4.3] for BPhn� 1i). It follows from Proposition 4.2.1 that there is an isomorphism

H�.K
�
n /Š

�
H�.R/˝F2Œx

2
2nC1�1

�˝
N

k>1 F2Œx2nCk�1� if p D 2;

H�.R/˝
N

k>0 Fp Œy2.pnCk�1/�˝
N

j>0ƒFp
Œx2pnCj�1� if p > 2:

Combining this isomorphism with Theorem 3.1.5 and Corollaries 3.2.4, 3.2.15 and 3.2.22, we find that
there is an abstract equivalence between the mod p homology of K

�
n and the mod p homology of ‚.R/.

We shall now work at p D 2 for the remainder of the proof; the same argument goes through with
slight modifications at odd primes. We now identify the Steenrod comodule structure on H�.K

�
n /.

Recall that z� is the map �2P j�n�1jC4.p/! BGL1.R/ from Step 1. By construction, there is a map
K
�
n ! �2P j�n�1jC4.p/z�. The map ˆ factors through a map ẑ W �2P j�n�1jC4.p/z� ! ‚.R/. The

Thom spectrum �2P j�n�1jC4.p/z� admits the structure of a Q1–ring. Indeed, it is the smash product
�2P j�n�1jC4.p/�^Z3.R/R, where � W�2P j�n�1jC4.p/!BGL1.Z3.R//; it therefore suffices to observe
that the Thom spectrum �2P j�n�1jC4.p/� admits the structure of an E1˝Q1–ring. (Here, E1 ˝ Q1

denotes the Boardman–Vogt tensor product of the E1– and Q1–operads.) Since there is a map Q1!E2

of 1–operads, this is a consequence of the fact that � is a double loop map, and hence an E1˝Q1–
algebra map. Moreover, the image of H�.K

�
n / in H�.�

2P j�n�1jC4.p/z�/ is generated under the single
Dyer–Lashof operation (arising from the cup-1 operad; see Remark 2.2.8) by the indecomposables in the
image of the map H�.R/!H�.�

2P j�n�1jC4.p/z�/.

The Postnikov truncation map �2P j�n�1jC4.p/z�!H�0.�
2P j�n�1jC4.p/z�/ is one of Q1–rings. Since

�2P j�n�1jC4.p/ is highly connected, �0.�
2P j�n�1jC4.p/z�/Š �0.R/. In particular, there is an E1–

map H�0.�
2P j�n�1jC4.p/z�/!HFp. The composite

�2P j�n�1jC4.p/z�!H�0.�
2P j�n�1jC4.p/z�/!HFp
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designer chromatic spectrum mod p homology

BPhn� 1i
p D 2 F2Œ�

2
1
; : : : ; �2

n�1
; �2

n ; �nC1; : : : �

p > 2 Fp Œ�1; �2; : : : �˝ƒFp .�n; �nC1; : : : /

k.n� 1/
p D 2 F2Œ�1; : : : ; �n�1; �

2
n ; �nC1; : : : �

p > 2 Fp Œ�1; �2; : : : �˝ƒFp .�0; : : : ; �n�2; �n; �nC1; : : : /

kZ.n� 1/
p D 2 F2Œ�

2
1
; �2; : : : ; �n�1; �

2
n ; �nC1; : : : �

p > 2 Fp Œ�1; �2; : : : �˝ƒFp .�1; : : : ; �n�2; �n; �nC1; : : : /

bo
p D 2 F2Œ�

4
1 ; �

2
2 ; �3; : : : �

p > 2 Fp Œx4�=v1˝Fp Œ�1; �2; : : : �˝ƒFp .�2; �3; : : : /

p D 2 F2Œ�
8
1 ; �

4
2 ; �

2
3 ; �4; : : : �

tmf p D 3 ƒF3
.b4/˝F3Œ�

3
1
; �2; : : : �˝ƒF3

.�3; �4; : : : /

p � 5 Fp Œc4; c6�=.v1; v2/˝Fp Œ�1; �2; : : : �˝ƒFp .�3; �4; : : : /

Table 3: The mod p homology of designer chromatic spectra. See [63, Theorem 4.3], as well as
[94, Proposition 1.7; 13, Proposition 5.3] for a proof of the statement for H�.BPhn� 1iIFp/; this
implies the calculations of H�.k.n�1/IFp/ and H�.kZ.n�1/IFp/. See [13, Proposition 6.1] for a
proof of the statements for H�.boIF2/ and H�.tmfIF2/, and [87, Theorem 21.5] for H�.tmfIFp/

for any p. For odd p, bo.p/ is a sum of shifts of BPh1i, which implies the statement about
H�.boIFp/.

is therefore a Q1–algebra map. Moreover, the composite

R!�2P j�n�1jC4.p/z�!H�0.�
2P j�n�1jC4.p/z�/!HFp

is simply the Postnikov truncation for R. It follows that the indecomposables in H�.�
2P j�n�1jC4.p/z�/

which come from the indecomposables in H�.R/ are sent to the indecomposables in H�.HFp/. Using
the discussion in the previous paragraph, Steinberger’s calculation (Theorem 2.2.4) and the Dyer–Lashof
hopping argument of Remark 2.2.9, we may conclude that the Steenrod comodule structure on H�.K

�
n /

(which, recall, is abstractly isomorphic to H�.‚.R//) agrees with the Steenrod comodule structure on
H�.‚.R//.

Step 3 By Step 2, the mod p homology of the Thom spectrum K
�
n is isomorphic to the mod p homology

of the associated designer chromatic spectrum ‚.R/ as a Steenrod comodule. The main results of
[12; 2, Theorem 1.1] now imply that, unless RDB, the Thom spectrum K

�
n is equivalent to ‚.R/ upon

p–completion for every prime p. Finally, if Conjecture F is true, then the same conclusion can be drawn
for B: the Thom spectrum K

�
n is equivalent to ‚.B/D tmf upon p–completion for every prime p.

This concludes the proof of Theorem A.
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5.3 Remark on the proof

Before proceeding, we note the following consequence of the proof of Theorem A:

Proposition 5.3.1 Let p be an odd prime. Assume Conjectures D and E. Then the composite

g2 W�
2S j�n�1jC3

!�2P j�n�1jC4.p/
z�
�! BGL1.X.p

n
� 1//! BGL1.BPhn� 1i/

is null.

Proof Let RDX.pn� 1/ and ‚.R/D BPhn� 1i. The map g2 is the composite of BGL1.Z3.R//!

BGL1.‚.R// with the extension of the map

�n�1 W S
j�n�1jC1

! BGL1.Z3.R//

along the double suspension S j�n�1jC1!�2S j�n�1jC3. Since �n�1 is null in ��‚.R/, we would be
done if g2 were homotopic to the dotted extension

S j�n�1jC1 �n�1
//

��

BGL1.‚.R//

�2S j�n�1jC3

g0
2

66

The potential failure of these maps to be homotopic stems from the fact that the composite Z3.R/!

R!‚.R/ need not be a map of E3–rings. It is, however, a map of E2–rings; therefore, the maps

g1 W�S j�n�1jC2
! BGL1.Z3.R//! BGL1.‚.R// and g01 W�S j�n�1jC2

! BGL1.‚.R//

obtained by extending along the suspension S j�n�1jC1!�S j�n�1jC2 are homotopic. We now utilize
the following result of Serre’s:

Proposition 5.3.2 (Serre [91, page 281]) Let p be an odd prime. Then the suspension S2n�1!�S2n

splits upon p–localization: there is a p–local equivalence

E ��Œ�2n; �2n� W S
2n�1

��S4n�1
!�S2n:

This implies that the suspension map �S j�n�1jC2!�2S j�n�1jC3 admits a splitting as loop spaces. In
particular, this implies that the map g2 is homotopic to the composite

�2S j�n�1jC3
!�S j�n�1jC2 g1

�! BGL1.Z3.R//! BGL1.‚.R//;

and similarly for g0
2
. Since g1 and g0

1
are homotopic and g0

1
(and hence g0

2
) is null, we find that g2 is

also null, as desired.

5.4 Infinite families and the nilpotence theorem

We now briefly discuss the relationship between Theorem A and the nilpotence theorem. We begin by
describing a special case of this connection. Recall from Remark 2.2.3 that Theorem 2.2.1 implies that, if
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R is an E2–ring spectrum and x 2 ��R is a simple p–torsion element which has trivial MU –Hurewicz
image, then x is nilpotent. A similar argument implies the following:

Proposition 5.4.1 Assume Conjecture D when nD 1. Then Corollary 2.2.2 (ie Theorem A when nD 1)
implies that , if R is a p–local E3–ring spectrum and x 2 ��R is a class with trivial HZp–Hurewicz
image such that

� ˛1x D 0 in ��R, and

� the Toda bracket hp; ˛1;xi contains zero ,

then x is nilpotent.

Proof We claim that the composite

(5-2) �2S3
h3i ! BGL1.S.p//! BGL1.RŒ1=x�/

is null. Remark 4.1.8 implies that Conjecture D for nD 1 reduces us to showing that the composite

�2P2pC1.p/
˛1
�! BGL1.S.p//! BGL1.RŒ1=x�/

is null. Since this composite is one of double loop spaces, it further suffices to show that the composite

(5-3) P2p�1.p/! BGL1.S.p//! BGL1.RŒ1=x�/

is null. The bottom cell S2p�2 of P2p�1.p/ maps trivially to BGL1.RŒ1=x�/, because the bottom cell
detects ˛1 (by Remark 4.1.8) and ˛1 is nullhomotopic in RŒ1=x�. Therefore, the map (5-3) factors through
the top cell S2p�1 of P2p�1.p/. The resulting map

S2p�1
! BGL1.S.p//! BGL1.RŒ1=x�/

detects an element of the Toda bracket hp; ˛1;xi, but this contains zero by hypothesis, so is nullhomotopic.

Since the map (5-2) is null, Corollary 2.2.2 and Theorem 2.1.7 imply that there is a ring map HZp!

RŒ1=x�. In particular, the composite of the map x W†jxjR!R with the unit R!RŒ1=x� factors as

†jxjR
x

//

��

R //

��

RŒ1=x�

HZp ^†
jxjR

x
// HZp ^R

99

The bottom map, however, is null, because x has zero HZp–Hurewicz image. Therefore, the element
x 2 ��RŒ1=x� is null, and hence RŒ1=x� is contractible.

Remark 5.4.2 One can prove by a different argument that Proposition 5.4.1 is true without the assumption
that Conjecture D holds when nD 1. At p D 2, this was shown by Astey [18, Theorem 1.1].
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To discuss the relationship between Theorem A for general n and the nilpotence theorem (which we will
expand upon in future work), we embark on a slight digression. The following proposition describes the
construction of some infinite families:

Proposition 5.4.3 Let R be a height n � 1 spectrum as in the second line of Table 2, and assume
Conjecture E if RDA or B. Then there is an infinite family �n�1;pk 2�pk jvnj�1.R/. Conjecture E implies
that �n�1;pk lifts to �pk jvnj�1.Z3.R//, where Z3.R/ abusively denotes the E3–center of X.pn � 1/ if
RD T .n� 1/.

Proof We construct this family by induction on k. The element �n�1;1 is just �n�1, so assume that
we have defined �n�1;pk . The element �n�1;pk 2 �pk jvnj�1R defines a map �n�1;pk W Spk jvnj !

BGL1.R/. When R D T .n� 1/, Lemma 3.1.12 (and the inductive hypothesis) implies that the map
defined by �n factors through the map BGL1.X.p

n � 1//! BGL1.T .n� 1//. When R D A or B,
Conjecture E (and the inductive hypothesis) implies that the map defined by �n factors through the map
BGL1.Z3.R// ! BGL1.R/. This implies that, for all R as in the second line of Table 2, the map
�n�1;pk W Spk jvnj! BGL1.R/ factors through an E1–space, which we shall just denote by ZR for the
purpose of this proof. If we assume Conjecture E, then we may take ZR D BGL1.Z3.R//.

Therefore, we get a map �n�1;pk W�Spk jvnjC1! BGL1.R/ via the composite

�Spk jvnjC1
! ZR! BGL1.R/:

Since ZR is an E1–space, the map �Spk jvnjC1! ZR is adjoint to a mapW
j�1 Sjpk jvnjC1

'†�Spk jvnjC1
! BZRI

the source splits as indicated via the James splitting. These splittings are given by Whitehead products;
in particular, the map SpkC1jvnjC1 D Sp.pk jvnjC1/�.p�1/! BZR is given by the p–fold Whitehead
product Œ�n�1;pk ; : : : ; �n�1;pk �. This is divisible by p, so it yields a map SpkC1jvnj! ZR, and hence
a map SpkC1jvnj ! BGL1.R/ given by composing with the map ZR ! BGL1.R/. This defines the
desired element �n�1;pkC1 2 �pkC1jvnj�1.R/. As the construction makes clear, assuming Conjecture E
and taking ZR D BGL1.Z3.R// implies that �n�1;pk lifts to �pk jvnj�1.Z3.R//.

Remark 5.4.4 This infinite family is detected in the 1–line of the ANSS for R by ı.vk
n /, where ı is the

boundary map induced by the map †�1R=p! R. This is a consequence of the geometric boundary
theorem (see [85, Theorem 2.3.4]) applied to the cofiber sequence R

p
�!R!R=p.

Remark 5.4.5 The element �n�1;1 2 �2pn�3.R/ is precisely �n�1.

Remark 5.4.6 When nD 1, the ring R is the (p–local) sphere spectrum. The infinite family �n�1;pk

is the Adams–Toda ˛–family; namely, p̨k 2 �2pk.p�1/�1.S/ maps to �0;pk 2 �2pk.p�1/�1X.p � 1/

under the unit map S!X.p� 1/.
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We now briefly sketch an argument relating Theorem A to the proof of the nilpotence theorem; we shall
elaborate on this discussion in forthcoming work.

Remark 5.4.7 The heart of the nilpotence theorem is what is called Step III in [38]; this step amounts
to showing that certain self-maps of T .n�1/–module skeleta (denoted by Gk in [38]) of T .n/ are
nilpotent. Let us assume that p > 2 for simplicity. Then these self-maps are given by multiplication
by the p–fold Toda bracket bn;k D h�n�1;pk ; : : : ; �n�1;pk i at an odd prime p; this lives in degree
pj�n�1;pk jCp� 2D 2pk.pn� 1/� 2. (When p D 2, the desired element �n�1;pk is denoted by h in
[51, Theorem 3].) It therefore suffices to establish the nilpotency of the bn;k .

This can be proven through Theorem A via induction on k; we shall assume Conjectures D and E for
the remainder of this discussion. The motivation for this approach stems from the observation that, if R

is any E3–F2–algebra and x 2 ��.R/, then there is a relation Q1.x/
2 DQ2.x

2/ (at odd primes, one
has a relation involving the p–fold Toda bracket hQ1.x/; : : : ;Q1.x/i). In our setting, Proposition 5.4.3
implies that the elements �n�1;k lift to ��Z3.X.p

n�1//. At pD 2, one can prove (in the same way that
the Cartan relation Q1.x/

2 DQ2.x
2/ is proven) that the construction of this infinite family implies that

�2
n�1;pkC1 can be described in terms of Q2.�

2
n�1;pk /. At odd primes, there is a similar relation involving

the p–fold Toda bracket defining bn;k . In particular, induction on k implies that the bn;k are all nilpotent
in ��Z3.X.p

n� 1// if bn;1 is nilpotent. Note that jbn;1j D 2pnC1� 2p� 2.

To argue that bn;1 is nilpotent, one first observes that �n�1b
p
n;1
D 0 in ��Z3.X.p

n � 1//; when nD 0,
this follows from the statement that ˛1ˇ

p
1
D 0 in the sphere. To show that bn;1 is nilpotent, it suffices

to establish that Z3.X.p
n� 1//Œ1=b

p
n;1
� is contractible; when nD 1, this follows from Proposition 5.4.1.

We give a very brief sketch of this nilpotence for general n, by arguing as in Proposition 5.4.1, and with a
generous lack of precision which will be remedied in forthcoming work.

For notational convenience, we now write dn;1 D b
p
n;1

, so that jdn;1j D 2pnC2� 2p2� 2p. It suffices to
show that the multiplication-by-dn;1 map

dn;1 W†
jdn;1jZ3.X.p

n
� 1//! Z3.X.p

n
� 1//Œ1=dn;1�

is nullhomotopic. Since �n�1 kills dn;1, we know that �n�1 is nullhomotopic in Z3.X.p
n� 1//Œ1=dn;1�.

Moreover, the bracket hp; �n�1; 1Z3.X .pn�1//Œ1=dn;1�i contains zero. By arguing as in Proposition 5.4.1,
we can conclude that the composite

Kn!�2P j�n�1jC4 �
�! BGL1

�
Z3.X.p

n
� 1//

�
! BGL1

�
Z3.X.p

n
� 1//Œ1=dn0

�
�

is nullhomotopic, where the map � is as constructed in Step 1 of the proof of Theorem A. (Recall that
the proof of Theorem A shows that the Thom spectrum .�2P j�n�1jC4/� is an E1˝Q1–Z3.X.p

n�1//–
algebra such that BPhn� 1i splits off its base change along the map Z3.X.p

n � 1//! T .n� 1/.) It
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follows from Theorem 2.1.7 that the multiplication-by-dn;1 map factors as

†jdn;1jZ3.X.p
n� 1//

dn;1 //

��

Z3.X.p
n� 1// //

��

Z3.X.p
n� 1//Œ1=dn;1�

†jdn;1j.�2P j�n�1jC4/�
dn;1 // .�2P j�n�1jC4/�

55

To show that the top composite is null, it therefore suffices to show that the self-map of K
�
n defined

by dn;1 is nullhomotopic. This essentially follows from the fact that .�2P j�n�1jC4/� is an E1˝Q1–
Z3.X.p

n�1//–algebra: multiplication by dn;1 is therefore null on K
�
n , because dn;1 is built from �n�1

(which is null in .�2P j�n�1jC4/�) via E1–power operations.

6 Applications

6.1 Splittings of cobordism spectra

The goal of this section is to prove the following:

Theorem C Assume that the composite Z3.B/!B!MString.2/ is an E3–map. Then Conjectures D,
E and F imply that there is a unital splitting of the Ando–Hopkins–Rezk orientation MString.2/! tmf.2/.

Remark 6.1.1 We believe that the assumption that the composite Z3.B/! B ! MString.2/ is an
E3–map is too strong: we believe that it can be removed using special properties of fibers of charming
maps, and we will return to this in future work.

We only construct unstructured splittings; it seems unlikely that they can be refined to structured splittings.
A slight modification of our arguments should work at any prime.

Remark 6.1.2 In fact, the same argument used to prove Theorem C shows that, if the composite Z3.A/!

A!MSpin.2/ is an E3–map, then Conjectures D and E imply that there are unital splittings of the
Atiyah–Bott–Shapiro orientation MSpin.2/! bo.2/. This splitting was originally proved unconditionally
(ie without assuming Conjecture D or Conjecture E) by Anderson, Brown and Peterson [4] via a calculation
with the Adams spectral sequence.

Remark 6.1.3 The inclusion of the cusp on Mell defines an E1–map c W tmf!bo as in [63, Theorem 1.2].
The resulting diagram

MString.2/ //

��

MSpin.2/

��

tmf.2/
c

// bo.2/
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commutes (see eg [34, Lemma 6.4]). The splitting s W tmf.2/ ! MString.2/ of Theorem C defines a
composite

tmf.2/
s
�!MString.2/!MSpin.2/! bo.2/

which agrees with c.

Remark 6.1.4 The Anderson–Brown–Peterson splitting implies that, if X is any compact space, then the
Atiyah–Bott–Shapiro yA–genus (ie the index of the Dirac operator in families) MSpin�.X /! bo�.X / is
surjective. Similarly, if the composite Z3.B/!B!MString is an E3–map, then Conjectures D, E and F
imply that the Ando–Hopkins–Rezk orientation (ie the Witten genus in families) MString�.X /! tmf�.X /
is also surjective.

Remark 6.1.5 In [34], we proved (unconditionally) that the map ��MString! ��tmf is surjective.
Our proof proceeds by showing that the map ��B! ��tmf is surjective via arguments with the Adams–
Novikov spectral sequence and by exploiting the E1–ring structure on B to lift the powers of � living
in ��tmf.

The discussion preceding [75, Remark 7.3] implies that, for a particular model of tmf0.3/, we have:

Corollary 6.1.6 Assume that the composite Z3.B/! B.2/!MString.2/ is an E3–map. Then Conjec-
tures D, E and F imply that †16tmf0.3/

^
2

is a summand of MString^2 .

We now turn to the proof of Theorem C.

Proof of Theorem C First, note that such a splitting exists after rationalization. Indeed, it suffices to
check that this is true on rational homotopy; since the orientations under considerations are E1–ring
maps, the induced map on homotopy is one of rings. It therefore suffices to lift the generators.

We now show that the generators of ��tmf˝QŠQŒc4; c6� lift to ��MString˝Q. Although one can
argue this by explicitly constructing manifold representatives (as is done for c4 in [34, Corollary 6.3]), it
is also possible to provide a more homotopy-theoretic proof: The elements c4 and c6 live in dimensions 8

and 12, respectively, and the map MString! tmf is known to be an equivalence in dimensions � 15 by
[49, Theorem 2.1]. It follows that the same is true rationally, so c4 and c6 indeed lift to ��MString˝Q,
as desired.

We will now construct a splitting after p–completion, where p D 2. By Corollary 5.1.6, we obtain a
unital map tmf'‚.B/!MString upon p–completion which splits the orientation MString!‚.B/

because

(a) the map Z3.B/! B!MString is an E3–ring map (by assumption),

(b) the element �2 vanishes in �13MString.2/ (because �13MString.2/ Š �13tmf.2/ Š 0), and

(c) the Toda bracket h2; �2; 1MString.2/i � ��MString.2/ contains zero because �14MString.2/ Š
�14tmf.2/, and the corresponding bracket h2; �2; 1MString.2/i � �14tmf.2/ detects v3, and hence
contains zero.
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To obtain a map tmf.p/!MString.p/, we need to show that the induced map tmf˝Q! tmf^p ˝Q!

MString^p ˝Q agrees with the rational splitting constructed in the previous paragraph. However, this
is immediate from the fact that the splittings tmf^p !MString^p are constructed to be equivalences in
dimensions � 15, and the fact that the map out of tmf˝Q is determined by its effect on the generators
c4 and c6.

Remark 6.1.7 The proof recalled in Remark 1.1.2 of Thom’s splitting of MO proceeded essentially
unstably: there is an E2–map �2S3! BO of spaces over BGL1.S/, whose Thomification yields the
desired E2–map HF2!MO. This argument also works for MSO: there is an E2–map�2S3h3i!BSO
of spaces over BGL1.S/, whose Thomification yields the desired E2–map HZ!MSO. One might
hope for the existence of a similar unstable map which would yield Theorem C. We do not know how to
construct such a map. To illustrate the difficulty, let us examine how such a proof would work; we will
specialize to the case of MString, but the discussion is the same for MSpin.

According to Theorem A, Conjectures D and E imply that there is a map K3! BGL1.B/ whose Thom
spectrum is equivalent to tmf. There is a map BN ! B2String, whose fiber we will denote by Q. Then
there is a fiber sequence

N ! BString!Q;

and so Proposition 2.1.6 implies that there is a map Q! BGL1.B/ whose Thom spectrum is MString.
Theorem C would follow if there was a map f WK3!Q of spaces over BGL1.B/, since Thomification
would produce a map tmf!MString.

Conjecture D reduces the construction of f to the construction of a map �2P17.2/! Q. This map
would in particular imply the existence of a map P15.2/!Q (and would be equivalent to the existence
of such a map if Q was a double loop space), which in turn stems from a 2–torsion element of �14.Q/.
The long exact sequence on homotopy runs

� � � ! �14.BString/! �14.Q/! �13.N /! �13.BString/! � � � :

Bott periodicity states that �13BStringŠ�14BStringŠ0, so we find that �14.Q/Š�13.N /. The desired
2–torsion element of �14.Q/ is precisely the element of �13.N / described in Remark 3.2.24. Choosing
a particular nullhomotopy of twice this 2–torsion element of �14.Q/ produces a map g W P15.2/!Q.
To extend this map over the double suspension P15.2/!�2P17.2/, it would suffice to show that there
is a double loop space zQ with a map zQ!Q such that g factors through zQ.

Unfortunately, we do not know how to prove such a result; this is the unstable analogue of Conjecture E.
In fact, such an unstable statement would bypass the need for Conjecture E in Theorem A. (One runs
into the same obstruction for MSpin, except with the fiber of the map S5! B2Spin.) These statements
are reminiscent of the conjecture (see Section 4.1) that the fiber Wn D fib.S2n�1!�2S2nC1/ of the
double suspension admits the structure of a double loop space.
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Remark 6.1.8 The following application of Theorem C was suggested by Mike Hopkins. In [53], the
Anderson–Brown–Peterson splitting is used to show that the Atiyah–Bott–Shapiro orientation MSpin!
KO induces an isomorphism

MSpin�.X /˝MSpin� KO�
Š�!KO�.X /

of KO�–modules for all spectra X. In future work, we shall show that Theorem C can be used to prove
the following height 2 analogue of this result: Conjectures D, E and F imply that the Ando–Hopkins–Rezk
orientation MString! Tmf induces an isomorphism

(6-1) MString�.X /˝MString� Tmf� Š�! Tmf�.X /

of Tmf�–modules for all spectra X. The K.1/–analogue of this isomorphism was obtained by Laures [60].

6.2 Wood equivalences

The Wood equivalence states that bo^C�' bu. There are generalizations of this equivalence to tmf
(see [78]); for instance, there is a 2–local 8–cell complex DA1 whose cohomology is isomorphic to the
double of A.1/ as an A.2/–module such that tmf.2/^DA1 ' tmf1.3/' BPh2i. Similarly, if X3 denotes
the 3–local 3–cell complex S0 [˛1

e4 [2˛1
e8, then tmf.3/ ^X3 ' tmf1.2/ ' BPh2i _†8BPh2i. We

will use the umbrella term “Wood equivalence” to refer to equivalences of this kind.

Our goal in this section is to revisit these Wood equivalences using the point of view stemming from
Theorem A. In particular, we propose that these equivalences are suggested by the existence of certain
EHP sequences; we will greatly expand on this in a forthcoming document. We find this to be a rather
beautiful connection between stable and unstable homotopy theory.

The first Wood-style result was proved in Proposition 3.2.6. The next result, originally proved in [67,
Section 2.5; 31, Theorem 3.7], is the simplest example of a Wood-style equivalence which is related to
the existence of certain EHP sequences.

Proposition 6.2.1 Let S==� D X.2/ (resp. S==2) denote the E1–quotient of S by � (resp. 2). If Y D

C�^S=2 and A1 is a spectrum whose cohomology is isomorphic to A.1/ as a module over the Steenrod
algebra , then there are equivalences

A^C�' S==�; A^Y ' S==2; A^A1 ' y.1/=v1

of A–modules.

Remark 6.2.2 Proposition 6.2.1 implies the Wood equivalence bo^C�' bu. Although this implication
is already true before 2–completion, we will work in the 2–complete category for convenience. Recall
that Theorem A states that Conjectures D and E imply that there is a map � WK2! BGL1.A/ whose
Thom spectrum is equivalent to bo (as left A–modules). Moreover, the Thom spectrum of the composite
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K2
�
�!BGL1.A/!BGL1.T .1// is equivalent to BPh1i. Since this Thom spectrum is the base change

K
�
2
^A T .1/, and Proposition 6.2.1 implies that T .1/DX.2/'A^C�, we find that

BPh1i 'K
�
2
^A .A^C�/'K

�
2
^C�' bo^C�;

as desired. Similarly, noting that S==2D y.1/, we find that Proposition 6.2.1 also proves the equivalence
bo^Y ' k.1/.

Remark 6.2.3 The argument of Remark 6.2.2 in fact proves that Theorem A for A implies Theorem A
for T .1/, yZ.1/ and y.1/.

Proof of Proposition 6.2.1 For the first two equivalences, it suffices to show that A^C�' S==� and
that S==�^S=2' S==2. We will prove the first statement; the proof of the second statement is exactly
the same. There is a map C�! S==� given by the inclusion of the 2–skeleton. There is also an E1–ring
map A! S==� given as follows. The multiplication on S==� defines a unital map C�^ C�! S==�.
But, since the Toda bracket h�; 2; �i contains �, there is a unital map C�! C�^C�. This supplies a
unital map C�! S==�, which, by the universal property of AD S==� (via Theorem 2.1.7), extends to an
E1–ring map A! S==�.

For the final equivalence, it suffices to construct a map A1 ! y.1/=v1 for which the induced map
A^A1! y.1/=v1 gives an isomorphism on mod 2 homology. Since A1 may be obtained as the cofiber
of a v1–self-map †2Y ! Y, it suffices to observe that the diagram

†2Y

v1

��

// †2y.1/

v1

��

Y // y.1/

commutes; our desired map is the induced map on vertical cofibers.

Remark 6.2.4 There are EHP sequences

S1
!�S2

!�S3; S2
!�S3

!�S5:

Recall that S=2, C�, S==2, S==� D X.2/ and A are Thom spectra over S1, S2, �S2, �S3 and �S5,
respectively. Proposition 2.1.6 therefore implies that there are maps f W�S3!BAut.S=2/ and g W�S5!

BAut.C�/ whose Thom spectra are equivalent to S==2 and S==�, respectively. The maps f and g define
local systems of spectra over �S3 and �S5 whose fibers are equivalent to S=2 and C� (respectively),
and one interpretation of Proposition 6.2.1 is that these local systems in fact factor as

�S3 �
�! BGL1.S/! BAut.S=2/; �S5 �

�! BGL1.S/! BAut.C�/:

Proposition 6.2.1 is an immediate consequence of these factorizations. We argue this for the first case in
Remark 6.2.5, and for the second in Remark 6.2.6, thereby giving an alternative EHP-based argument for
Proposition 6.2.1.
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Remark 6.2.5 The first EHP sequence in Remark 6.2.4 splits via the Hopf map S3! S2. The map
f W�S3! BAut.S=2/ in fact factors through the dotted map in the diagram

S2 // �S2

��

// �S3

��ww

BGL1.S/ // BAut.S=2/

Indeed, the composite �S3 ! �S2 ! BGL1.S/ is a loop map and, therefore, is determined by the
composite � WS3!S2!B2GL1.S/. Since the map S2!B2GL1.S/ detects the element �12�0.S/

�,
the map � does in fact determine a unit multiple of �. This implies the desired claim.

Remark 6.2.6 The map g W�S5! BAut.C�/ from Remark 6.2.4 factors through BGL1.S/. To see
this, let us begin with the following observation: View BU and BSU as H–spaces via the tensor product
of vector bundles. Then the map BSU�CP1!BU classifying V�L, with V the universal SU–bundle
over BSU and L the universal line bundle over BU, is an equivalence of H–spaces. In particular, there is
a fiber sequence

CP1! BU ! BSU:

The map �S3! BGL1.S/ defining T .1/ factors as

�S3
! BU J

�! BGL1.S/I

similarly, the map �S5! BGL1.S/ defining A factors as

�S5
! BSU J

�! BGL1.S/:

These factorizations make the following diagram of fiber sequences commute:

S2 //

��

�S3 //

��

�S5

��

CP1 // BU // BSU

The map �S5! BAut.C�/ was defined using Proposition 2.1.6. It then follows from the splitting of
the bottom fiber sequence in the above diagram that the dotted map exists in the diagram

S2 //

��

�S3 //

��

�S5

��

CP1 //

%%

BU //

J

��

BSU

��Jww

BGL1.S/ // BAut.C�/
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The composite
�S5

! BSU J
�! BGL1.S/! BAut.C�/

is g, giving our desired factorization.

Next, we have the following result at height 2:

Proposition 6.2.7 Let DA1 denote the double of A1 (see [78]). There are 2–complete equivalences

B ^DA1 ' T .2/; B ^Z ' y.2/; B ^A2 ' y.2/=v2;

where Z is the spectrum “1
2
A2” from [76; 25]3 and A2 is a spectrum whose cohomology is isomorphic to

A.2/ as a module over the Steenrod algebra.

Remark 6.2.8 Arguing as in Remark 6.2.2 shows that Proposition 6.2.7 and Theorem A imply the Wood
equivalences

tmf^DA1 ' tmf1.3/D BPh2i; tmf^Z ' k.2/; tmf^A2 'HF2:

Remark 6.2.9 Exactly as in Remark 6.2.3, the argument of Remark 6.2.8 in fact proves that Theorem A
for B implies Theorem A for T .2/, yZ.2/ and y.2/.

Remark 6.2.10 The telescope conjecture [84, Conjecture 10.5], which we interpret as stating that
Ln–localization is the same as L

f
n –localization, is known to be true at height 1. For odd primes, it was

proved by Miller [80], and at p D 2 it was proved by Mahowald [68; 70]. Mahowald’s approach was
to calculate the telescopic homotopy of the type 1 spectrum Y. In [73], Mahowald, Ravenel and Shick
proposed an approach to disproving the telescope conjecture at height 2: they suggest that, for n � 2,
the Ln–localization and the vn–telescopic localization of y.n/ have different homotopy groups. They
show, however, that the L1–localization and the v1–telescopic localization of y.1/ agree, so this approach
(thankfully) does not give a counterexample to the telescope conjecture at height 1.

Motivated by Mahowald’s approach to the telescope conjecture, Behrens, Beaudry, Bhattacharya, Culver
and Xu study the v2–telescopic homotopy of Z in [22], with inspiration from the Mahowald–Ravenel–
Shick approach. Propositions 6.2.1 and 6.2.7 can be used to relate these two (namely, the finite spectrum
and the Thom spectrum) approaches to the telescope conjecture. As in Section 6.1, we will let R denote
A or B. Moreover, let F denote Y or Z (depending on what R is) and let R0 denote y.1/ or y.2/ (again
depending on what R is), so that R^F DR0 by Propositions 6.2.1 and 6.2.7. Then:

Corollary 6.2.11 If the telescope conjecture is true for F (and hence any type 1 or 2 spectrum) or R,
then it is true for R0.
3In the former source, Z is denoted by M.
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Proof Since Ln– and L
f
n –localizations are smashing, we find that, if the telescope conjecture is true for

F or R, then Propositions 6.2.1 and 6.2.7 yield equivalences

Lfn R0 'R^Lfn F 'R^LnF 'LnR0:

Finally, we prove Proposition 6.2.7.

Proof of Proposition 6.2.7 We first construct maps B ! T .2/ and DA1 ! T .2/. The top cell of
DA1 is in dimension 12, and the map T .2/! BP is an equivalence in dimensions � 12. It follows that
constructing a map DA1! T .2/ is equivalent to constructing a map DA1! BP. However, both BP and
DA1 are concentrated in even degrees, so the Atiyah–Hirzebruch spectral sequence collapses, and we
find that BP�.DA1/ŠH�.DA1IBP�/. The generator in bidegree .0; 0/ produces a map DA1! T .2/;
its effect on homology is the additive inclusion F2Œ�

2
1
; �2

2
�=.�8

1
; �4

2
/! F2Œ�

2
1
; �2

2
�.

The map B! T .2/ may be defined via the universal property of Thom spectra from Section 2.1 and
Remark 3.2.20. Its effect on homology is the inclusion F2Œ�

8
1
; �4

2
� ! F2Œ�

2
1
; �2

2
�. We obtain a map

B ^DA1! T .2/ via the multiplication on T .2/, and this induces an isomorphism in mod 2 homology.

For the second equivalence, we argue similarly: The map B! T .2/ defines a map B! T .2/! y.2/.
Next, recall that Z is built through iterated cofiber sequences:

†2Y
v1
�! Y !A1; †5A1 ^C�

�1
�!A1 ^C�!Z:

As an aside, we note that the element �1 is intimately related to the element discussed in Example 3.1.14;
namely, it is given by the self-map of A1 ^C� given by smashing A1 with the diagram

†5C�

�1

++

// †5A
�1^id

// A^A // A

C�

OO

Using these cofiber sequences and Proposition 3.2.6, one obtains a map Z ! y.2/, which induces
the additive inclusion F2Œ�1; �2�=.�

8
1
; �4

2
/! F2Œ�1; �2� on mod 2 homology. The multiplication on y.2/

defines a map B ^Z! y.2/, which induces an isomorphism on mod 2 homology.

For the final equivalence, it suffices to construct a map A2 ! y.2/=v2 for which the induced map
B ^A2! y.2/=v2 gives an isomorphism on mod 2 homology. Since A2 may be obtained as the cofiber
of a v2–self-map †6Z!Z, it suffices to observe that the diagram

†6Z

v2

��

// †6y.2/

v2

��

Z // y.2/

commutes; our desired map is the induced map on vertical cofibers.
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Arguing exactly as in the proof of Proposition 6.2.7 shows the following result at the prime 3:

Proposition 6.2.12 Let X3 denote the 8–skeleton of T .1/D S==˛1. There are 3–complete equivalences

B ^X3 ' T .2/_†8T .2/; B ^X3 ^S=.3; v1/' y.2/_†8y.2/:

In forthcoming work, we will discuss the relation between Proposition 6.2.7 and EHP sequences, along
the lines of Remark 6.2.4.

7 C2–equivariant analogue of Corollary B

Our goal in this section is to study a C2–equivariant analogue of Corollary B at height 1. The odd primary
analogue of this result is deferred to the future; it is considerably more subtle.

7.1 C2–equivariant analogues of Ravenel’s spectra

In this section, we construct the C2–equivariant analogue of T .n/ for all n. We 2–localize everywhere until
mentioned otherwise. There is a C2–action on �SU.n/ given by complex conjugation, and the resulting
C2–space is denoted by �SU.n/R. Real Bott periodicity gives a C2–equivariant map �SU.n/R!BUR

whose Thom spectrum is the (genuine) C2–spectrum X.n/R. This admits the structure of an E�–ring,
since it is the Thom spectrum of an E�–map ��B�SU.n/R ! ��B�BUR ' ��BSUR. As in the
nonequivariant case, the equivariant Quillen idempotent on MUR restricts to one on X.m/R, and therefore
defines a summand T .n/R of X.m/R for 2n �m� 2nC1� 1. Again, this summand admits the structure
of an E1–ring.

Construction 7.1.1 There is an equivariant fiber sequence

�SU.n/R!�SU.nC 1/R!�Sn�C1;

where � is the regular representation of C2; the equivariant analogue of Proposition 2.1.6 then shows
that there is a map �Sn�C1! BGL1.X.n/R/ (detecting an element �n 2 �n��1X.n/R) whose Thom
spectrum is X.nC 1/R. Here, BGL1.X.n/R/ is the delooping of the E�–space GL1.X.n/R/, and the
C2–equivariant notion of Thom spectrum is taken in the sense of [46, Theorem 3.2]. (The constructions
from loc. cit. can be verified to go through for equivariant maps to BGL1.X.n/R/; for example, when
nD1, the idea of taking Thom spectra for an equivariant map to BGL1.MUR/ was already used in
[47, Section 3].)

If z�n denotes the image of the element �2nC1��1 in �.2nC1�1/��1T .n/R, then we have a C2–equivariant
analogue of Lemma 3.1.12:

Lemma 7.1.2 The Thom spectrum of the map

�S .2
nC1�1/�C1

! BGL1.X.2
nC1
� 1/R/

detecting z�n is a direct sum of shifts of T .nC 1/R.
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Example 7.1.3 For instance, T .1/R DX.2/R is the Thom spectrum of the map �S�C1!BUR; upon
composing with the equivariant J–homomorphism BUR! BGL1.S/, this detects the element z� 2 ��S,
and the extension of the map S�! BGL1.S/ to �S�C1 uses the E1–structure on BGL1.S/. The case
of X.2/R exhibits a curious property: S�C1 is the loop space ��HP1R , and there are equivalences (see
[48, Propositions 3.4 and 3.6])

�S�C1
'��C1HP1R '�

� .�HP1R /:

However, �HP1R ' S�C� , so �S�C1 D ��S�C� . The map ��S�C� ! BGL1.S/ still detects the
element z� 2 ��S on the bottom cell, but the extension of the map S�! BGL1.S/ to ��S�C� is now
defined via the E�–structure on BGL1.S/. The upshot of this discussion is that X.2/R is not only the
free E1–ring with a nullhomotopy of z�, but also the free E�–algebra with a nullhomotopy of z�.

Warning 7.1.4 Unlike the nonequivariant setting, the element z� 2 ��S is neither torsion nor nilpotent.
This is because its geometric fixed points is ˆC2z�D 22�0S; see [39, Proposition C.5], although note that
the orientations chosen there are the opposite of ours. Briefly, the map z� is obtained by �–desuspending
the unstable equivariant Hopf map S�C� D C2 � f0g ! CP1 D S�, whose homotopy fiber is S� . In
other words, there is a fiber sequence S� ! S�C�

z�
�! S�. On geometric fixed points, this produces the

fiber sequence S0 D C2! S1! S1, which forces the map ˆC2z� to have degree 2 (or �2, depending
on the choice of orientation).

Example 7.1.5 Consider the element z�1 2 �3��1T .1/R. The underlying nonequivariant element of
�5T .1/R is simply �1. To determine ˆC2z�1 2 �2ˆ

C2T .1/R, we first note that ˆC2T .1/R is the Thom
spectrum of the map ˆC2z� W ˆC2�S�C1! BGL1.S/. Since ˆC2�S�C1 D �S2 and ˆC2z� D 2, we
find that ˆC2T .1/R is the E1–quotient S==2. The element ˆC2z�1 2 �2S==2Š �2S=2 is simply a map
S2! S=2 which is � on the top cell. Such a map exists because 2�D 0.

As an aside, we mention that there is a C2–equivariant lift of the spectrum A:

Definition 7.1.6 Let AC2
denote the Thom spectrum of the map �S2�C1! BGL1.S/ defined by the

extension of the map S2�! BGL1.S/ which detects the equivariant Hopf map z� 2 �2��1S.

Remark 7.1.7 The underlying spectrum of AC2
is A. To determine the geometric fixed points of AC2

,
ˆC2AC2

is the Thom spectrum of the map ˆC2z� WˆC2�S2�C1! BGL1.S/. We claim that ẑC2z� D �;
indeed, the map z� is obtained by 2�–desuspending the unstable equivariant map S4��1 DH2�f0g !

HP1 D S2�. The homotopy fiber of this map is S2��1 D S�C� , so that there is an equivariant fiber
sequence S�C�!S4��1!S2�. On geometric fixed points, we obtain a fiber sequence S1!S3!S2,
which implies thatˆC2z� be identified with the Hopf fibration S3!S2. Now, sinceˆC2�S2�C1D�S3,
we find that ˆC2AC2

D T .1/. In particular, AC2
may be thought of as the free C2–equivariant E1–ring

with a nullhomotopy of z�.
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Example 7.1.8 The element z�1 lifts to �3��1AC2
. Indeed, Remark 3.2.17 works equivariantly too: the

equivariant Hopf map S3��1! S2� defines a composite S3��1! S2� ! �S2�C1. The composite
S3��1 ! �S2�C1 ! BSUR is null, since �3��1BSUR D 0. It follows that, upon Thomification,
the map S3��1 ! �S2�C1 defines an element z� 0

1
of �3��1AC2

. In order to show that this element
indeed deserves to be called z�1, we use Proposition 7.1.9. The map AC2

! T .1/R from the proposition
induces a map �3��1AC2

! �3��1T .1/R, and we need to show that the image of z� 0
1
2 �3��1AC2

is in
fact z�1. By Example 7.1.5, it suffices to observe that the underlying nonequivariant map corresponding to
z� 0

1
2 �3��1T .1/R is �1, and that the geometric fixed point ˆC2

z� 0
1
2 �2S==2 is the lift of � appearing in

Example 7.1.5.

We now prove the proposition used above.

Proposition 7.1.9 There is a genuine C2–equivariant E1–map AC2
! T .1/R.

Proof By Remark 7.1.7, it suffices to show that z� D 0 2 �3��1T .1/R. The underlying map is null,
because � D 0 2 �5T .1/. The geometric fixed points are also null, because ˆC2z� D � is null in
�2ˆ

C2T .1/R D �2S==2. Therefore, z� is null in �3��1T .1/R.

In fact, it is easy to prove the following analogue of Proposition 6.2.1:

Proposition 7.1.10 There is a C2–equivariant equivalence AC2
^C z�' T .1/R.

Proof There are maps AC2
! T .1/R and C z�! T .1/R, which define a map AC2

^C z�! T .1/R via
the multiplication on T .1/R. This map is an equivalence on underlying spaces by Proposition 6.2.1, and
on geometric fixed points induces the map T .1/^S=2! S==2. This was also proved in the course of
Proposition 6.2.1.

Remark 7.1.11 As in Remark 6.2.2, one might hope that this implies the C2–equivariant Wood equiva-
lence boC2

^C z�' buR via some equivariant analogue of Theorem A.

Remark 7.1.12 The equivariant analogue of Remark 6.2.4 remains true: the equivariant Wood equivalence
of Proposition 7.1.10 stems from the EHP sequence S�!�S�C1!�S2�C1. To prove the existence
of such a fiber sequence, we use [37, Construction 4.26] to get the Hopf map h W�S�C1!�S2�C1, as
well as a nullhomotopy of the composite S�!�S�C1!�S2�C1. In particular, if F D fib.h/, there is
an equivariant map S�! F. We claim that this map is an equivalence: it suffices to prove that S�! F

is an equivalence on underlying and on geometric fixed points, since these functors preserve homotopy
limits and colimits, and these functors are jointly conservative. The desired equivalence on underlying
spaces follows from the classical EHP sequence S2!�S3!�S5, and the equivalence on geometric
fixed points follows from the splitting �S2 ' S1 ��S3.
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7.2 The C2–equivariant analogue of Corollary B at n D 1

Recall (see [55]) that there are indecomposable classes Nvn 2 �.2n�1/�BPR; as in Theorem 3.1.5, these lift
to classes in �?T .m/R if m� n. The main result of this section is the following:

Theorem 7.2.1 There is a map ��S2�C1! BGL1.T .1/R/ detecting an indecomposable in ��T .1/R
on the bottom cell , whose Thom spectrum is HZ.

Note that, as with Corollary B at nD 1, this result is unconditional. The argument is exactly as in the
proof of Corollary B at n D 1, with practically no modifications. We need the following analogue of
Theorem 2.2.1, originally proved in [24; 48]:

Proposition 7.2.2 (Behrens and Wilson; Hahn and Wilson) Let p be any prime , and let � denote the 2–
dimensional standard representation of Cp on C. The Thom spectrum of the map��S�C1!BGL1.S

0/

extending the map 1�p WS1!BGL1.S
0/ is equivalent to HFp as an E�–ring. Moreover , if S�C1h�C1i

denotes the .�C1/–connected cover of S�C1 (ie the fiber of the map S�C1!�1†�C1HZ), then the
Thom spectrum of the induced map ��S�C1h�C 1i ! BGL1.S

0/ is equivalent to HZ as an E�–ring.

Proof of Theorem 7.2.1 In [48], the authors prove that there is an equivalence of C2–spaces between
��S�C1 and ��S�C1, and that HF2 is in fact the Thom spectrum of the induced map ��S�C1 !

BGL1.S
0/ detecting �1. Since both ��S�C1h�C 1i and ��S�C1h�C 1i are defined as fibers of maps

to S1 which are degree one on the bottom cell, Hahn and Wilson’s equivalence lifts to a C2–equivariant
equivalence ��S�C1h�C 1i '��S�C1h�C 1i, and we find that HZ is the Thom spectrum of the map
��S�C1h�C 1i ! BGL1.S

0/.

Since T .1/R is the Thom spectrum of the composite map �S�C1!��S�C1h�C 1i !BGL1.S
0/ de-

tecting z� on the bottom cell of the source, it follows from the C2–equivariant analogue of Proposition 2.1.6
and the above discussion that it is sufficient to define a fiber sequence

�S�C1
!��S�C1

h�C 1i !��S2�C1;

and check that the induced map ��S2�C1 ! BGL1.T .1/R/ detects an indecomposable element of
��T .1/R. See Remark 4.1.4 for the nonequivariant analogue of this fiber sequence.

Since there is an equivalence �S�C1 '��S�C� , it suffices to prove that there is a fiber sequence

(7-1) S�C� !�S�C1
h�C 1i !�S2�C1

I

taking �–loops produces the desired fiber sequence. The fiber sequence (7-1) can be obtained by taking
vertical fibers in the map of fiber sequences

S� //

��

�S�C1 //

��

�S2�C1

��

CP1R CP1R
// �
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Here, the top horizontal fiber sequence is the EHP fiber sequence

S�!�S�C1
!�S2�C1:

To identify the fibers, note that there is the Hopf fiber sequence

S�C�
z�
�! S�!CP1R :

The fiber of the middle vertical map is �S�C1h�C1i via the definition of S�C1h�C1i as the homotopy
fiber of the map S�C1! BCP1R .

It remains to show that the map ��S2�C1 ! BGL1.T .1/R/ detects an indecomposable element of
��T .1/R. Indecomposability in ��T .1/R Š ��BPR is the same as not being divisible by 2, so we just
need to show that the dotted map in the following diagram does not exist:

S�C1

E2

��

2

&&

��S2�C1 //

��

S�C1

xx

BGL1.T .1/R/

If this factorization existed, there would be an orientation HZ! T .1/R, which is absurd.

We now explain why we do not know how to prove the equivariant analogue of Corollary B at higher
heights. One could propose an equivariant analogue of Conjecture D, and such a conjecture would
obviously be closely tied with the existence of some equivariant analogue of the work of Cohen, Moore
and Neisendorfer. We do not know if any such result exists, but it would certainly be extremely interesting.

Suppose that one wanted to prove a result like Corollary B, stating that the equivariant analogues of
Conjectures D and E imply that there is a map��S2n�C1!BGL1.T .n/R/, detecting an indecomposable
in �.2n�1/�T .n/R on the bottom cell, whose Thom spectrum is BPhn� 1iR. One could then try to run
the same proof as in the nonequivariant case by constructing a map from the fiber of a charming map
��S2n�C1!S .2

n�1/�C1 to BGL1.T .n�1/R/, but the issue comes in replicating Step 1 of Section 5.2:
there is no analogue of Lemma 3.1.16, since the equivariant element z�n 2 �?T .n/ is neither torsion nor
nilpotent. See Warning 7.1.4. This is intimately tied with the failure of an analogue of the nilpotence
theorem in the equivariant setting. In future work, we shall describe a related project connecting the T .n/

spectra to the Andrews–Gheorghe–Miller wn–periodicity in C–motivic homotopy theory (see [7; 41; 57]).

However, since there is a map��S�C1h�C1i!BGL1.S/ as in Proposition 7.2.2, there may nevertheless
be a way to construct a suitable map from the fiber of a charming map ��S2n�C1 ! S .2

n�1/�C1 to
BGL1.T .n� 1/R/. Such a construction would presumably provide a more elegant construction of the
nonequivariant map used in the proof of Theorem A.
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8 Future directions

In this section, we suggest some directions for future investigation. This is certainly not an exhaustive list;
there are numerous questions we do not know how to address that are scattered throughout this document,
but we have tried to condense some of them into the list below. We have tried to order the questions in
order of our interest in them. We have partial progress on many of these questions.

(a) Some obvious avenues for future work are the conjectures studied in this article: Conjectures D, E, F
and 3.1.7. Can the E3–assumption in the statement of Theorem C be removed?

(b) One of the main goals of this project is to rephrase the proof of the nilpotence theorem from [38; 54].
As mentioned in Remark 2.2.3, the Hopkins–Mahowald theorem for HFp immediately implies the
nilpotence theorem for simple p–torsion classes in the homotopy of a homotopy commutative ring
spectrum (see also [50]). We will expand on the relation between the results of this article and the
nilpotence theorem in forthcoming work; see Remark 5.4.7 for a sketch.

From this point of view, Theorem A is very interesting: it connects torsion in the unstable homotopy
groups of spheres (via Cohen, Moore and Neisendorfer) to nilpotence in the stable homotopy groups of
spheres. We are not sure how to do so, but could the Cohen–Moore–Neisendorfer bound for the exponents
of unstable homotopy groups of spheres be used to obtain bounds for the nilpotence exponent of the
stable homotopy groups of spheres?

(c) It is extremely interesting to contemplate the interaction between unstable homotopy theory and
chromatic homotopy theory apparent in this article. Connections between unstable homotopy theory
and the chromatic picture have appeared elsewhere in the literature (eg in [17; 16; 70; 76]), but their
relationship to the content of this project is not clear to me. It would be interesting to have this clarified.
One naive hope is that such a connection could stem from a construction of a charming map (such as the
Cohen–Moore–Neisendorfer map) via Weiss calculus.

(d) Let R denote S or A. The map R!‚.R/ is an equivalence in dimensions < j�nj. Moreover, the
‚.R/–based Adams–Novikov spectral sequence has a vanishing line of slope 1=j�nj (see [68] for the
case RDA). Can another proof of this vanishing line be given using general arguments involving Thom
spectra? We have some results in this direction which we shall address in future work.

(e) The unit maps from each of the Thom spectra in the second line of Table 1 to the corresponding
designer spectrum on the third line are surjective on homotopy. In the case of tmf, this requires some
computational effort to prove, and has been completed in [34]. This behavior is rather unexpected: in
general, the unit map from a structured ring to some structured quotient will not be surjective on homotopy.
Is there a conceptual reason for this surjectivity?

(f) In [22], the tmf resolution of a certain type 2 spectrum Z is studied. Mahowald uses the Thom
spectrum A to study the bo resolution of the sphere in [68], so perhaps the spectrum B could be used to
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study the tmf resolution of Z. This is work in progress. See also Corollary 6.2.11 and the discussion
preceding it.

(g) Is there an equivariant analogue of Theorem A at higher heights and other primes? Currently, we
have such an analogue at height 1 and at p D 2; see Section 7.

(h) The Hopkins–Mahowald theorem may used to define Brown–Gitler spectra. Theorem A produces
“relative” Brown–Gitler spectra for BPhni, bo and tmf. In future work, we will study these spectra
and show how they relate to the Davis–Mahowald nonsplitting of tmf ^ tmf as a wedge of shifts of
bo–Brown–Gitler spectra smashed with tmf from [32].

(i) The story outlined in the introduction above could fit into a general framework of “fp Mahowaldean
spectra” (for “finitely presented Mahowaldean spectrum”, inspired by [74]), of which A, B, T .n/ and y.n/

would be examples. One might then hope for a generalization of Theorem A which relates fp Mahowaldean
spectra to fp spectra. It would also be interesting to prove an analogue of Mahowald–Rezk duality for fp
Mahowaldean spectra which recovers their duality for fp spectra upon taking Thom spectra as above.

(j) One potential approach to the question about surjectivity raised above is as follows. The surjectivity
claim at height 0 is the (trivial) statement that the unit map S! HZ is surjective on homotopy. The
Kahn–Priddy theorem, stating that the transfer � W†1RP1! S is surjective on ���1, can be interpreted
as stating that ��†1RP1 contains those elements of ��S which are not detected by HZ. One is then
led to wonder: for each of the Thom spectra R in the second line of Table 1, is there a spectrum P along
with a map �R W P ! R such that each x 2 ��R in the kernel of the map R! ‚.R/ lifts along �R

to ��P? (The map R!‚.R/ is an equivalence in dimensions < j�nj (if R is of height n), so P would
have bottom cell in dimension j�nj.)

Since †1RP1 ' †�1 Sym2.S/=S, the existence of such a result is very closely tied to an analogue
of the Whitehead conjecture (see [59]; the Whitehead conjecture implies the Kahn–Priddy theorem).
In particular, one might expect the answer to the question posed above to admit some interaction with
Goodwillie calculus.

(k) Let p � 5. Is there a p–primary analogue of B which would provide a Thom spectrum construction
(via Table 1) of the conjectural spectrum eop�1? Such a spectrum would be the Thom spectrum of a
p–complete spherical fibration over a p–local space built via p� 1 fiber sequences from the loop spaces
�S2k.p�1/C1 for 2� k � p.

(l) The spectra T .n/ and y.n/ have algebrogeometric interpretations: the stack MT .n/ (see [52]; this
stack is well defined since T .n/ is homotopy commutative) associated to T .n/ classifies p–typical formal
groups with a coordinate up to degree pnC1� 1, while y.n/ is the closed substack of MT .n/ defined by
the vanishing locus of p; v1; : : : ; vn�1. What are the moduli problems classified by A and B? We do not
know if this question even makes sense at p D 2, since A and B are a priori only E1–rings. Nonetheless,
in [35], we provide a description of tmf^A in terms of the Hodge filtration of the universal elliptic curve
(even at p D 2); we also showed that .tmf^A/Œx2� admits an E2–algebra structure, where jx2j D 2.
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(m) Theorem A shows that the Hopkins–Mahowald theorem for HZp can be generalized to describe
forms of BPhni; at least for small n, these spectra have associated algebrogeometric interpretations
(see [52]). What is the algebrogeometric interpretation of Theorem A?
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The deformation space of nonorientable hyperbolic 3–manifolds

JUAN LUIS DURÁN BATALLA

JOAN PORTI

We consider nonorientable hyperbolic 3–manifolds of finite volume M 3. When M 3 has an ideal
triangulation �, we compute the deformation space of the pair .M 3; �/ (its Neumann–Zagier parameter
space). We also determine the variety of representations of �1.M

3/ in Isom.H3/ in a neighborhood of
the holonomy. As a consequence, when some ends are nonorientable, there are deformations from the
variety of representations that cannot be realized as deformations of the pair .M 3; �/. We also discuss
the metric completion of these structures and we illustrate the results on the Gieseking manifold.

57K32; 57K35, 57Q99

1 Introduction

Let M 3 be a complete noncompact hyperbolic three-manifold of finite volume. Assume first that M 3

is orientable. Assume also that M 3 has a geometric ideal triangulation �, defined by Neumann and
Zagier [16]. Following Thurston’s construction for the figure eight knot exterior in [18], Neumann and
Zagier defined in [16] a deformation space of the pair .M 3; �/ by considering the set of parameters of
the ideal simplices of � subject to compatibility equations. We denote the Neumann–Zagier parameter
space by Def.M 3; �/. It is proved in [16] that it is homeomorphic to an open subset of Cl , where l is
the number of ends of M 3.

Another approach to deformations is based on R.�1.M
3/; Isom.H3//, the variety of conjugacy classes

of representations of �1.M
3/ in Isom.H3/. It is proved, for instance by Kapovich in [14], that a

neighborhood of the holonomy of M 3 is bianalytic to an open subset of Cl .

Both approaches to deformations can be used to prove the hyperbolic Dehn filling theorem (even if it is
still an open question whether an orientable M 3 admits a geometric ideal triangulation). Among other
things, one has to take into account that Def.M 3; �/ is a 2l to 1 branched covering of the neighborhood
in R.�1.M

3/; Isom.H3//. When M 3 is orientable, both approaches yield the same deformation space.

We investigate the nonorientable setting, that is, M 3 is a connected nonorientable hyperbolic 3–manifold
of finite volume. When it has an ideal triangulation �, we define a deformation space of the pair
Def.M 3; �/ à la Neumann and Zagier. Here is our main result (for simplicity, we assume that M 3 has
a single end, which is nonorientable):
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http://msp.org
http://dx.doi.org/10.2140/agt.2024.24.109
http://www.ams.org/mathscinet/search/mscdoc.html?code=57K32, 57K35, 57Q99
https://creativecommons.org/licenses/by/4.0/
https://msp.org/s2o/


110 Juan Luis Durán Batalla and Joan Porti

Theorem 1.1 Let M 3 be a complete nonorientable hyperbolic 3–manifold of finite volume with a single
end , which is nonorientable.

(a) If M 3 admits a geometric ideal triangulation�, then Def.M 3; �/Š .�1; 1/, where the parameters
˙t 2 .�1; 1/ correspond to the same structure.

(b) A neighborhood of the holonomy in R.�1.M
3/; Isom.H3// is homeomorphic to an interval .�1; 1/.

Furthermore , the holonomy map Def.M 3; �/!R.�1.M
3/; Isom.H3// folds the interval .�1; 1/ at 0

and its image is the half-open interval Œ0; 1/, where 0 corresponds to the complete structure.

The version of this theorem with several cusps is Theorem 3.11.

For M 3 as in the theorem, structures in the subinterval Œ0; 1/� .�1; 1/ in the variety of representations
are realized by Def.M 3; �/, but structures in .�1; 0/ are not. This corresponds to two different kinds
of representations of the Klein bottle, which we call type I when realized, and II when not. These are
described in Section 4.

Deformations of the complete structure are noncomplete, and therefore, for a deformation of the holonomy,
the hyperbolic structure is not unique. Deformations of type I can be realized by ideal triangulations.
Hence there is a natural choice of structure, and we prove in Theorem 5.15 that its metric completion
consist in adding a singular geodesic so that it is the core of a solid Klein bottle and it has a singularity
of cone angle in a neighborhood of zero. For deformations of type II, we prove that there is a natural
choice of structure (radial), and the metric completion consists in adding a singular interval, also in
Theorem 5.15. This singular interval is the soul of a twisted disc orbibundle over an interval with mirror
boundary. Topologically, a neighborhood of this interval is the disc sum of two cones on a projective
plane. Metrically, it is a conifold, with cone angle at the interior of the interval in a neighborhood of zero.

The paper is organized as follows. In Section 2 we describe Def.M 3; �/ and in Section 3 we describe
R.�1.M

3/; Isom.H3//. Section 4 is devoted to representations of the Klein bottle. Metric completions
are described in Section 5, and finally, in Section 6, we describe in detail the deformation space(s) of the
Gieseking manifold.

Acknowledgments We thank the referee for useful suggestions. Durán Batalla is supported by doctoral
grant BES-2016-079278. Both authors are partially supported by the Spanish State Research Agency
through grant PGC2018-095998-B-I00, as well as the Severo Ochoa and María de Maeztu Program for
Centers and Units of Excellence in R&D (CEX2020-001084-M).

2 Deformation space from ideal triangulations

Before discussing nonorientable manifolds, we recall first the orientable case. The first example was
constructed by Thurston in his notes [18, Chapter 4] for the figure eight knot exterior, and the general
case was constructed by Neumann and Zagier in [16]. We point the reader to these references for the
upcoming exposition.
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From the point of view of a triangulation, the deformation of the hyperbolic structure on a manifold
with a given geometric ideal triangulation is the space of parameters of ideal tetrahedra, subject to
compatibility equations.

A geometric ideal tetrahedron is a geodesic tetrahedron of H3 with all of its vertices in the ideal sphere
@1H3. We say that a hyperbolic 3–manifold admits a geometric ideal triangulation if it is the union of
such tetrahedra, along the geodesic faces. Though it has been established in many cases, it is still an
open problem to decide whether every orientable hyperbolic three-manifold of finite volume admits a
geometric ideal triangulation.

Given an ideal tetrahedron in H3, up to isometry, we may assume that its ideal vertices in @1H3ŠC[f1g

are 0, 1,1 and z 2 C. The idea of Thurston is to equip the (unoriented) edge between 0 and1 with
the complex number z, called the edge invariant. The edge invariant determines the isometry class
of the tetrahedron, and for different edges the corresponding invariants satisfy some relations, called
tetrahedron relations:

� Opposite edges have the same invariant.

� Given three edges with a common endpoint and invariants z1, z2 and z3, indexed following the
right-hand rule towards the common ideal vertex, they are related to z1 by z2 D 1=.1� z1/ and
z3 D .z1� 1/=z1.

Let M 3 be a possibly nonorientable complete hyperbolic 3–manifold of finite volume, which admits a
geometric ideal triangulation �D fA1; : : : ;Ang. As we have stated before, up to (oriented) isometry
the hyperbolic structure of each tetrahedron can be determined by a single edge invariant, thus the usual
parametrization of the triangulation goes as follows: fix an edge ei in each tetrahedron Ai , and consider
its edge invariant zi . Hence, the hyperbolic structure of M 3 can be parametrized by n parameters (one for
each tetrahedron) and we will denote the parameters of the complete triangulation by fz0

1
; : : : ; z0

ng. The
deformation space of M 3 with respect to �, Def.M 3; �/, is defined as the set of parameters fz1; : : : ; zng

in a small enough neighborhood of the complete structure for which the gluing bestows a hyperbolic
structure on M 3. However, we find that the equations defining the deformation space are easier to work
with if we use 3n parameters (one for each edge after taking into account the duplicity in opposite edges)
and ask them to satisfy the second tetrahedron relation too.

When M 3 is orientable, in order for the gluing to be geometric, it is necessary and sufficient that around
each edge cycle Œe�D fei1;j1

; : : : ; ein;jn
g the following two compatibility conditions are satisfied:

nY
lD1

z.eil ;jl
/D 1;(1)

nX
lD1

arg.z.eil ;jl
//D 2�:(2)

Algebraic & Geometric Topology, Volume 24 (2024)
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Geometrically, if we try to realize in H3 the tetrahedra around the edge cycle Œe�, (1) means that the
triangulation must “close up”, and (2) means that the angle around Œe� must be precisely 2� (instead of a
multiple). The parameters of the complete hyperbolic structure are denoted by fz0.e1;1/; : : : ; z

0.en;3/g.
In a small enough neighborhood of fz0.e1;1/; : : : ; z

0.en;3/g, fulfillment of (1) implies (2). We end the
overview of the orientable case with the theorem we want to extend to the nonorientable case:

Theorem 2.1 (Neumann and Zagier [16]) Let M 3 be connected oriented hyperbolic of finite volume
with l cusps. Then Def.M 3; �/ is biholomorphic to an open set of Cl .

When we deal with nonorientable manifolds, again the problem of the gluing being geometric lives within
a neighborhood of the edges. The compatibility equations in this case carry the same geometric meaning
as in (1) and (2), while accounting for the possible change of orientation of the tetrahedra.

Proposition 2.2 Let M 3 be a nonorientable manifold that is triangulated by a finite number of ideal
tetrahedra Ai , which bestows a hyperbolic structure around the edge cycle Œe�D fei1;j1

; : : : ; ein;jn
g if and

only if the following compatibility equations are satisfied :
nY

lD1

z.eil ;jl
/�l

z.eil ;jl
/1��l

D 1;(3)

nX
lD1

arg.z.eil ;jl
//D 2�:(4)

Here z.eil ;jl
/ is the edge invariant of eil ;jl

, and �l D 0; 1 in such a way that , in the gluing around the edge
cycle Œe�, a coherent orientation of the tetrahedra is obtained by gluing a copy of Ail

with its orientation
reversed if �l D 0 (or preserved if �l D 1), and with the initial condition that the orientation of the
tetrahedron Ai1

is kept as given.

Proof When we follow a cycle of side identifications around an edge, we can always reorient the
tetrahedra (maybe more than once) so that the gluing is done by orientable isometries. The compatibility
equations for the orientable case can be then applied and hence, for the neighborhood of the edge cycle to
inherit a hyperbolic structure, (1) must be satisfied, with the corresponding edge invariants.

Now, let us consider an edge ei;j 2 Ai with parameter z.eij /. To see how the edge invariant changes
under a nonorientable isometry, we can assume that Ai has vertices 0, 1, z.ei;j / and1 in the upper space
model, and consider the isometry c, the Poincaré extension of complex conjugation in @1H3ŠC[f1g.
Then, the edge invariant of c.ei;j / 2 c.Ai/ is 1=z.ei;j /.

Thus, the proposition follows with ease after changing the orientation of some tetrahedra.

Definition 2.3 Let M 3 be a connected complete nonorientable hyperbolic 3–manifold of finite volume.
Let � be an ideal triangulation of M 3. The deformation space of M 3 related to the triangulation� is the

Algebraic & Geometric Topology, Volume 24 (2024)
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set Def.M 3; �/ consisting of those .z1;1; : : : ; zn;3/ 2 U \C3n satisfying the compatibility equations (3)
and (4) and the tetrahedron relations, where U is a small enough neighborhood of the parameters .z0

i;j /

of the complete structure.

Let M 3
C be the orientation covering of M 3. The ideal triangulation on M 3, �, can be lifted to an

ideal triangulation �C on M 3
C. There is an orientation-reversing homeomorphism � acting on M 3

C such
that M 3 D M 3

C=� and �2 D Id. The triangulation on M 3
C is constructed in the usual way: for every

tetrahedron Ai we take another tetrahedron with the opposite orientation, �.Ai/, and glue them so that the
orientation is coherent. For every edge ei;j 2Ai , let z.ei;j / or zi;j denote its edge invariant. Analogously,
w.�.ei;j // or wi;j will denote the edge invariant of �.ei;j / 2 �.Ai/.

Remark 2.4 The compatibility equations (3) and (4) around Œe� 2M 3 are precisely the (orientable)
compatibility equations in any lift of Œe� to the orientation covering.

The orientation-reversing homeomorphism acts on Def.M 3
C; �C/ by pulling back (equivalently, pushing

forward) the associated hyperbolic metric on each tetrahedron. Combinatorially, the action is described in
the following lemma:

Lemma 2.5 Let M 3 DM 3
C=�, where � is an orientation-reversing homeomorphism. Let M 3 admit an

ideal triangulation �. Then � acts on Def.M 3
C; �C/ as

(5) ��..zi;j ; wi;j //D
�

1

xwi;j
;

1

Nzi;j

�
:

Proof The proof follows easily from the fact that � permutes the edges and, for ei;j 2Ai with invariant
z.ei;j /, the edge invariant of c.ei;j / 2 c.Ai/ is 1=z.ei;j /, where c is the Poincaré extension of complex
conjugation.

Remark 2.6 Metrics on tetrahedra are considered up to isotopy.

Corollary 2.7 The map defined by .zi;j / 2 Def.M 3; �/ 7! .zi;j ; 1=Nzi;j / 2 Def.M 3
C; �C/

� is a real
analytic isomorphism.

Proof This follows from Remark 2.4 and Lemma 2.5.

Our goal is to use Corollary 2.7 and Theorem 2.1 to identify the deformation space of M 3 with the fixed
points under an action on Ck . Let us suppose for the time being that M 3 has only one cusp which is
nonorientable. The section of this cusp must be a Klein bottle. In order to define the biholomorphism
through generalized Dehn filling coefficients, we must first fix a longitude–meridian pair in the peripheral
torus in the orientation covering M 3

C. As we will see, there is a canonical choice. Afterwards, following
Thurston, we will compute the derivative of the holonomy, hol0, and translate the action of � over there,
and finally to the generalized Dehn filling coefficients.

Algebraic & Geometric Topology, Volume 24 (2024)
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0 1 10

z

z

w�1

�w�1�

Figure 1: Change under the action of �.

Fixing a longitude–meridian pair Letting K2 be the Klein bottle, its fundamental group admits a
presentation

�1.K
2/D ha; b j aba�1

D b�1
i:

The elements a2 and b in the orientation covering T 2 are generators of �1.T
2/ and are represented by the

unique homotopy classes of loops in the orientation covering that are invariant by the deck transformation
(as unoriented curves). From now on, we will choose as longitude–meridian pair the elements:

l WD a2; m WD b:

Definition 2.8 The previous generators of �1.T
2/ are called distinguished elements.

Lemma 2.9 Let Œ˛� 2 �1.T /, and let � be the involution in the orientation covering M 3
C, that is ,

M 3 ŠM 3
C=�. We also denote by � the restriction of � to the peripheral torus T . If

(6) hol0.˛/D
Y
r2I

z.eir ;jr
/�r

Y
s2J

w.�.eis ;js
//�s ;

where �r ; �s 2 f˙1g, then

(7) hol0.�.˛//D
Y
r2I

w.�.eir ;jr
//��r

Y
s2J

z.eis ;js
/��s :

When we compute the derivative of the holonomy of an element, hol0. /, we assume that hol. / fixes1.

Proof We use Thurston’s method for computing the holonomy through the developing of triangles in C;
see [18]. Thus, the factor that each piece of path adds to the derivative of the holonomy changes, as in
Figure 1, under the action of �.

Proposition 2.10 For the chosen longitude–meridian pair , the action of � on Im.hol0/�C2 is

(8) ��.L;M /D .L;M�1/;

where LD hol0.l/, M D hol0.m/.
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Proof The action of � on the longitude–meridian pair is ��.l/D l and ��.m/Dm�1. Hence, the previous
lemma implies that the derivative holonomy of the longitude and the meridian has the following features:

hol0.m/D
Y
r2I

z.eir ;jr
/�r

Y
s2J

w.�.eis ;js
//�s D

Y
r2I

w.�.eir ;jr
//�r

Y
s2J

z.eis ;js
/�s ;

hol0.l/D
Y
r2I

.z.eir ;jr
/w.�.eir ;jr

//�1/�r :

Remark 2.11 Following the notation of Proposition 2.10, .L;M / 2 .C2/� if and only if L 2 R and
jM j D 1.

Let us denote by u WD log hol0.l/ and v WD log hol0.m/ the generalized Dehn coefficients. These are the
solutions in R2[f1g to Thurston’s equation

(9) puC qv D 2� i:

Indeed, Neumann and Zagier’s Theorem 2.1 (see also [18]) states that, for M 3 orientable, the map .zi;j /2

Def.M 3; �/ 7! .pk ; qk/ is a biholomorphism and the image is a neighborhood of .1; : : : ;1/ 2 xCl ,
where l is the number of cusps of M 3.

Proposition 2.12 The action of � on .p; q/ 2 U \R2 [ f1g, where .p; q/ are the generalized Dehn
coefficients , is

(10) ��.p; q/D .�p; q/:

Proof The action of � can be translated through the logarithm to .u; v/ from the action on the holonomy (8)
as ��.u; v/D . Nu;�Nv/. Then, to find the action on generalized Dehn coefficients, we have to solve Thurston’s
equation (9) with Nu and �Nv, that is,

(11) p0 Nu� q0 Nv D 2� i;

where ��.p; q/ D .p0; q0/ 2 R2 [ f1g. It is straightforward to check that .p0; q0/ D .�p; q/ is the
solution.

Corollary 2.13 The fixed points under �, which are in correspondence with Def.M 3; �/, are those
whose generalized Dehn filling coefficients are of type .0; q/.

Theorem 2.14 Let M 3 be a connected complete nonorientable hyperbolic 3–manifold of finite volume.
Let M 3 have k nonorientable cusps and l orientable ones , and let it admit an ideal triangulation �. Then
Def.M 3; �/ is real bianalytic to an open set of RkC2l .

Proof We have already proved the theorem for k D 1 and l D 0.

Let kD 0 and l D 1. Any peripheral torus on M 3 is lifted to two peripheral tori, T1 and T2, on M 3
C. Here

� acts by permutation. More precisely, we can fix any longitude–meridian pair in one, l1;m1 2 �1.T1/,

Algebraic & Geometric Topology, Volume 24 (2024)



116 Juan Luis Durán Batalla and Joan Porti

and choose the longitude–meridian pair in the second torus as l2 WD ��.l1/;m2 WD ��.m1/ 2 �1.T2/. The
same arguments as in Proposition 2.10 show that ��.p1; q1;p2; q2/D�.p2; q2;p1; q1/, and hence the
fixed points have generalized coefficients .p; q;�p;�q/, p; q 2R.

Finally, in general the action of � on Im.hol0/�CkC2l can be understood as a product of kC l actions
�1 � � � � � �l , the first k, �i for i D 1; : : : ; k, acting on C as in the case for a Klein bottle cusp, and the
subsequent l , �j for j D kC 1; : : : ; kC l , acting on C2 as in the case for a peripheral torus.

3 Varieties of representations

The group of isometries of hyperbolic space is denoted by G, and we will use the well-known isomorphisms

G D Isom.H3/Š PO.3; 1/Š PSL.2;C/Ì Z2

in order to identify elements of G with elements of PSL.2;C/Ì Z2. The group G has two connected
components, according to whether the isometries preserve or reverse the orientation.

For a finitely generated group � , the variety of representations of � in G is denoted by

hom.�;G/:

As G is algebraic, it has a natural structure of an algebraic set (see Johnson and Millson [13]), but we
consider only its topological structure. We are interested in the set of conjugacy classes of representations

R.�;G/D hom.�;G/=G:

When M 3 is hyperbolic, we write � D �1.M
3/. The holonomy of M 3

hol W �!G

is well defined up to conjugacy, and hence Œhol� 2R.�;G/. To understand deformations, we analyze a
neighborhood of the holonomy in R.�;G/. The main result of this section is:

Theorem 3.1 Let M 3 be a hyperbolic manifold of finite volume. Assume that it has k nonorientable
cusps and l orientable cusps. Then there exists a neighborhood of Œhol� in R.�;G/ homeomorphic
to RkC2l .

When M 3 is orientable this result is well known (see for instance Boileau and Porti [4] or Kapovich [14]),
and hence we assume that M 3 is nonorientable. We will prove a more precise result in Theorem 3.10,
as for our purposes it is relevant to describe local coordinates in terms of the geometry of holonomy
structures at the ends.

Before starting the proof, we need a lemma on varieties of representations. The projection to the quotient
� W hom.�;G/!R.�;G/ can have quite bad properties. For instance, even if hom.�;G/ is Hausdorff,
in general R.�;G/ is not. But, in a neighborhood of the holonomy:
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Lemma 3.2 There exists a neighborhood V �R.�;G/ of Œhol� such that :

(a) If Œ��D Œ�0� 2 V , then the matrix A 2G satisfying A�. /A�1 D �0. / for all  2 � is unique.

(b) V is Hausdorff and the projection � W ��1.V /! V is open.

(c) If Œ�� 2 V , then for all  2 � , �. / preserves the orientation of H3 if and only if  is represented
by a loop that preserves the orientation of M 3.

Assertions (a) and (b) are proved, for instance, by Johnson and Millson in [13]. They define the property
of good representation, that is, open in R.�;G/; it implies assertions (a) and (b), and it is satisfied by the
conjugacy class of the holonomy. Assertion (c) is clear by continuity and the decomposition of G into
two components, according to the orientation.

To describe the neighborhood of the holonomy in R.�;G/ we use the orientation covering.

3.1 Orientation covering and the involution on representations

As mentioned, we assume M 3 is nonorientable. Let

M 3
C!M 3

denote the orientation covering, with fundamental group �C D �1.M
3
C/. In particular, we have a short

exact sequence:
1! �C! �! Z2! 1:

Definition 3.3 For � 2 � n�C, define the group automorphism

�� W �C! �C;  7! � ��1:

The automorphism �� depends on the choice of � 2 � n�C: automorphisms corresponding to different
choices of � differ by composition (or precomposition) with an inner automorphism of �C. Furthermore,
�2
� is an inner automorphism because �2 2 �C. This automorphism �� is the map induced by the deck

transformation of the orientation covering M 3
C!M 3.

The map induced by �� in the variety of representations is denoted by

�� WR.�;G/!R.�;G/; Œ�� 7! Œ� ı ���;

and �� does not depend on the choice of � because �� is well defined up to inner automorphism.
Furthermore �� is an involution, .��/2 D Id.

Consider the restriction map
res WR.�;G/!R.�C;G/

that maps the conjugacy class of a representation of � to the conjugacy class of its restriction to �C.
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Lemma 3.4 There exist U �R.�;G/ a neighborhood of Œhol� and V �R.�C;G/ a neighborhood of
res.Œhol�/ such that

res W U Š
�! fŒ�� 2 V j ��.Œ��/D Œ��g

is a homeomorphism.

Proof We show first that res.R.�;G// � fŒ�� 2 R.�C;G/ j ��.Œ��/ D Œ��g. If �C D res.�/, then for
all  2 �C,

��.�C/. /D �C.��. //D �C.� �
�1/D �.�/�C. /�.�/

�1:

Hence ��.Œres.�/�/D Œres.�/�.

Next, given Œ�C� 2 R.�C;G/ satisfying ��.Œ�C�/ D Œ�C�, by construction there exists A 2 G that
conjugates �C and �C ı��. We chose the neighborhood V so that Lemma 3.2 applies, and hence such an
A 2G is unique. From uniqueness (of A and A2), it follows easily that, if � 2 � n�C is the element such
that �� is conjugation by �, then, by choosing �.�/DA, �C extends to � W �!G. Hence

res.R.�;G//D fŒ�� 2R.�C;G/ j ��.Œ��/D Œ��g:

Let U D res�1.V /. With this choice of U and V ,

res W U ! fŒ�� 2 V j ��.Œ��/D Œ��g

is a continuous bijection.

Finally we establish continuity of res�1 using a slice. The existence of a slice S �R.�C;G/ at res.hol/
is proved by Johnson and Millson in [13, Theorem 1.2], who point to Borel and Wallach [5, IX.5.3] for a
definition of slice. From the properties of the slice, and as the stabilizer of hol j�C is trivial, the natural
map G �S !R.�C;G/, that maps .g; s/ 2G �S to gsg�1, yields a homeomorphism between G �S

and a neighborhood of the orbit of res.hol/, and the projection induces a homeomorphism S Š V . It
follows from the product structure that the A 2G that conjugates �C and �C ı �� is continuous on �C,
so the extension of �C to a representation of the whole � is continuous on �C. Then continuity of res�1

follows by composing the homeomorphism V Š S (restricted to the fixed point set of ��) with the
extension from �C to � , and projecting to U �R.�;G/.

As �C preserves the orientation, next we use the complex structure of the identity component G0 D

IsomC.H3/Š PSL.2;C/.

3.2 Representations in PSL.2 ; C/

The holonomy of the orientation covering M 3
C is contained in PSL.2;C/, and it is well defined up to the

action of G D PSL.2;C/Ì Z2 by conjugation. If we furthermore choose an orientation on M 3
C, then

the holonomy is unique up to the action by conjugacy of G0 D IsomC.H3/Š PSL.2;C/, and complex
conjugation corresponds to changing the orientation. We call the conjugacy class in PSL.2;C/ of the
holonomy of M 3

C the oriented holonomy.
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We consider
R.�C;PSL.2;C//D hom.�C;PSL.2;C//=PSL.2;C/:

Its local structure is well known:

Theorem 3.5 A neighborhood of the oriented holonomy of M 3
C in R.�C;PSL.2;C// has a natural

structure of a C–analytic variety defined over R.

The fact that it is C–analytic follows, for instance, from [13] or [14]. In Theorem 3.9 we precisely
describe C–analytic coordinates; for the moment this is sufficient for our purposes.

Lemma 3.6 Let holC be the oriented holonomy of M 3
C. Then

ŒholC�¤ ŒholC� 2R.�C;PSL.2;C//:

Namely, the oriented holonomy and its complex conjugate are not conjugate by a matrix in PSL.2;C/.

Proof For contradiction, assume that holC and holC are conjugate by a matrix in PSL.2;C/, so there
exists an orientation-preserving isometry A 2 PSL.2;C/ such that

A holC. /A�1
D holC. / for all  2 �C:

Consider the orientation-reversing isometry BD cıA, where c is the isometry with Möbius transformation
complex conjugation, z 7! Nz. The previous equation is equivalent to

(12) B holC. /B�1
D holC. / for all  2 �C:

Brouwer’s fixed point theorem yields that the fixed point set of B in the ball compactification H3[@1H3

is nonempty:
Fix.B/D fx 2H3

[ @1H3
j B.x/D xg ¤∅:

By (12), holC.�C/ preserves Fix.B/. Thus, by minimality of the limit set of a Kleinian group, since
Fix.B/¤∅ is closed and holC.�C/–invariant, it contains the whole ideal boundary: @1H3 � Fix.B/.
Hence B is the identity, contradicting that B reverses the orientation.

From Lemma 3.6 and Theorem 3.5, we obtain:

Corollary 3.7 There exists a neighborhood W � R.�C;PSL.2;C// of the conjugacy class of the
oriented holonomy of MC that is disjoint from its complex conjugate:

W \W D∅:

By choosing the neighborhood W � R.�C;PSL.2;C// sufficiently small, we may assume that its
projection to R.�C;G/ is contained in V , as in Lemma 3.4. The neighborhood V can also be chosen
smaller, to be equal to the projection of W , as this map is open. Namely the neighborhoods can be chosen
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so that R.�C;PSL.2;C//! R.�C;G/ restricts to a homeomorphism between W (or W ) and V . In
particular, we can lift to W the restriction map from U to V :

W

Š

��

U
res

//

eres
77

V

Lemma 3.8 For U � R.�;G/ and W � R.�C;PSL.2;C// as above , the lift of the restriction map
yields a homeomorphism fres W U Š

�! fŒ�� 2W j Œ� ı ���D Œ N��g:

This lemma has same proof as Lemma 3.4, just taking into account that �.�/ 2G reverses the orientation,
for Œ�� 2 U and � 2 � n�C.

3.3 Local coordinates

Here we give the local coordinates of Theorem 3.5 and prove a stronger version of Theorem 3.1.

For  2 �C and Œ�� 2R.�C;PSL.2;C//, as defined by Culler and Shalen in [7],

(13) I .Œ��/D .trace.�. ///2� 4:

Thus I is a function from R.�C;PSL.2;C// to C, which plays a role in the generalization of Theorem 3.1.

Theorem 3.9 Let M 3
C be as above , and assume that it has n cusps. Chose 1; : : : ; n 2 �C a nontrivial

element for each peripheral subgroup. Then , for a neighborhood W �R.�C;PSL.2;C// of the oriented
holonomy,

.I1
; : : : ; In

/ WW !Cn

defines a bianalytic map between W and a neighborhood of the origin.

This theorem holds for any orientable hyperbolic manifold of finite volume, though we only use it for the
orientation covering. Again, see [4; 14] for a proof. As explained in these references, this is the algebraic
part of the proof of Thurston’s hyperbolic Dehn filling theorem using varieties of representations.

For a Klein bottle K2, in Definition 2.8 we considered the presentation of its fundamental group

�1.K
2/D ha; b j aba�1

D b�1
i:

The elements a2 and b are called distinguished elements. Recall that, in terms of paths, those are
represented by the unique homotopy classes of loops in the orientation covering that are invariant by the
deck transformation (as unoriented curves).

Here we prove the following generalization of Theorem 3.1:

Theorem 3.10 Let M 3 be a nonorientable manifold of finite volume with k nonorientable cusps
and l orientable cusps. For each horospherical Klein bottle K2

i , chose i 2 �1.K
2
i / distinguished for

i D 1; : : : ; k. For each horospherical torus T 2
j , chose a nontrivial �j 2 �1.T

2
j / for j D 1; : : : ; l .
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There exists a neighborhood U �R.�;G/ of the holonomy of M 3 such that the map

.I1
; : : : ; Ik

; I�1
; : : : ; I�l

/ ıfres W U !Rk
�Cl

defines a homeomorphism between U and a neighborhood of the origin in Rk �Cl .

Proof Let M 3
C !M 3 be the orientation covering. By construction, by the choice of distinguished

elements in the peripheral Klein bottles, i 2 �C. Furthermore, as the peripheral tori are orientable,
�j 2 �C. Hence

f1; : : : ; k ; �1; : : : ; �l ; ��.�1/; : : : ; ��.�l/g

gives a nontrivial element for each peripheral subgroup of �C, where �� is the group automorphism from
Definition 3.3. We apply Theorem 3.9, which gives that

I D .I1
; : : : ; Ik

; I�1
; : : : ; I�l

; I��.�1/; : : : ; I��.�l // WW !CkC2l

is a bianalytic map with a neighborhood of the origin. Furthermore, as ��.i/D 
˙1
i and .��/2 D Id,

I ı �� ı I�1.x1; : : : ;xk ;y1; : : : ;yl ; z1; : : : ; zl/D .x1; : : : ;xk ; z1; : : : ; zl ;y1; : : : ;yl/:

In addition, by construction I commutes with complex conjugation. Hence, by Lemma 3.8, the image
.I ıfres/.U / is the subset of a neighborhood of the origin in CkC2l defined by�

xi D Nxi for all i D 1; : : : ; k;

zj D Nyj for all j D 1; : : : ; l:

Finally, by combining Theorem 3.9 and Lemma 3.8, the map I ıfres is a homeomorphism between U and
its image.

We now state the generalization of Theorem 1.1 to several cusps. Here D.1/�C denotes a disk of radius 1.

Theorem 3.11 Let M 3 be a complete nonorientable hyperbolic 3–manifold of finite volume with k

nonorientable cusps and l orientable cusps.

(a) If M 3 admits a geometric ideal triangulation �, then Def.M 3; �/ Š .�1; 1/k �D.1/l . The
parameters .˙t1; : : : ;˙lk ;˙u1; : : : ;˙ul/ 2 .�1; 1/k �D.1/l correspond to the same structure.

(b) A neighborhood of the holonomy in R.�1.M
3/; Isom.H3// is homeomorphic to .�1; 1/k �D.1/l .

Furthermore , the holonomy map Def.M 3; �/!R.�1.M
3/; Isom.H3// is written , in coordinates , as

(� 1; 1/k �D.1/l ! .�1; 1/k �D.1/l ;

(t1; : : : ; tk ; v1; : : : ; vl/ 7! .t2
1 ; : : : ; tk

2; v1
2; : : : ; vl

2/:

Namely, each interval .�1; 1/ is folded along 0 and has image Œ0; 1/, and disks D.1/ are mapped to disks
by a 2 W 1 branched covering.

Proof Assertion (a) is Theorem 2.14, and assertion (b) is Theorem 3.10. To describe the holonomy
map in coordinates, for each cusp (orientable or not) choose an orientation-preserving peripheral element
m and let v be the logarithm of the holonomy of m, defined as in (9), in a neighborhood of the origin
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in C (with v 2 iR in the nonorientable case). In particular v is a component of the local coordinates of
Def.M 3; �/. Furthermore, the holonomy of m is conjugate to

˙

�
ev=2 1

0 e�v=2

�
:

So it has trace ˙2 cosh
�

1
2
v
�
, which is a component of the local coordinates of R.�1.M

3/; Isom.H3//.
Then the assertion follows from applying a suitable coordinate change.

4 Representations of the Klein bottle

Let �1.K
2/D ha; b j aba�1 D b�1i be a presentation of the fundamental group of the Klein bottle, and

G D Isom.H3/Š PSL.2;C/Ì Z2. The variety of representations hom.�1.K
2/;G/ is identified as

hom.�1.K
2/;G/Š fA;B 2G jABA�1

D B�1
g:

Topologically we can expect to have at least four (possibly empty) connected components according to
the orientable nature of A and B. We are interested in studying one of them.

Definition 4.1 A representation � 2 hom.�1.K
2/;G/ is said to preserve the orientation type if, for

every  2 �1.K
2/, �. / is an orientation-preserving isometry if and only if  is represented by an

orientation-preserving loop of K2. We denote this subspace of representations by

homC.�1.K
2/;G/:

Let T 2!K2 be the orientation covering. The restriction map on the varieties of representations (without
quotienting by conjugation) is

res W hom.�1.K
2/;G/! hom.�1.T

2/;PSL.2;C//:

Theorem 4.2 Let � 2 homC.�1.K
2/;G/ preserve the orientation type and let �.b/¤ Id. By writing

AD �.a/ and B D �.b/ as Möbius transformations , up to conjugation one of the following holds:

(a) A.z/D NzC 1 and B.z/D zC � i , with � 2R>0.

(a0) A.z/D Nz and B.z/D zC � i , with � 2R>0.

(b) A.z/D el Nz and B.z/D e˛iz, with l 2R�0 and ˛ 2 .0; ��.

(c) A.z/D e˛i=Nz and B.z/D elz, with l 2R>0 and ˛ 2 Œ0; ��.

Proof Let G0 D PSL.2;C/C G be the connected component of the identity. The variety of representa-
tions hom.�1.T

2/;G0/=G0 is well known. A representation Œ�0� in this variety is the class of a parabolic
representation with �0.l/.z/D zC 1, �0.m/.z/D zC � and � 2 C, a parabolic degenerated one with
�0.l/.z/D z, �0.m/.z/D zC� and � 2C, or a hyperbolic one with �0.l/.z/D �z, �0.m/.z/D�z and
�;� 2C, where �1.T

2/D hl;m j lmDmli.
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For �0 D res.�/, let AD �.a/ and B D �.b/, where a and b are generators of �1.K
2/, and LD �.l/

and M D �.m/. Then

.A2;B/D .L;M / (restriction of a representation to the torus);

ABA�1
D B�1 (Klein bottle relation):

In fact, in order for �0 to be a restriction, there must be A and B satisfying the previous conditions. We
prove the theorem using these equations.

If Œ�� is in the parabolic case, by hypothesis �¤0. Then the solution is unique, A.z/D NzC1, B.z/D zC� i

and � 2R n f0g, and hence L.z/D zC 2, M.z/D zC � i . Similarly, for the degenerated parabolic case,
A.z/D Nz, B.z/D zC � i and � 2R n f0g.

On the other hand, for Œ�� hyperbolic, either L corresponds to a real dilation and M to a rotation, or the
other way around. In the case L.z/D e2lz, M.z/D e˛iz, l 2R and ˛ 2 .��; ��, the representation can
be written as the restriction of several representations of the Klein bottle, but all of them are conjugated to
A.z/D el Nz and B.z/D e˛iz. A similar situation happens when L.z/D e2˛iz, M.z/D elz, l 2R and
˛ 2 .��; ��, obtaining A.z/D e˛i=Nz and B.z/D elz. However, in the last case we should note down
that, for every such representation Œ��, we get two nonconjugated representations Œ�1� and Œ�2� such that
Œ�0�D res.Œ�1�/D res.Œ�2�/, where they differ in that A1.z/D e˛i=Nz and A2.z/D e.˛C�/i=Nz D�e˛i=Nz.

Thus, we obtain a classification of representations in hom.�1.K
2/;G/=G0. To get the classification

quotienting by the whole group hom.�1.K
2/;G/=G, we only have to see how complex conjugation c

acts by conjugation on each representation. In (a) and .a0/, c maps zC� i to z�� i , in (b) e˛izo to e�˛iz,
and in (c) e˛i=Nz to e�˛i=Nz. The choice ˛ > 0; l > 0 in (b) and (c) is obtained by taking into account
that Œ��D Œ��1�.

Definition 4.3 According to the cases in Theorem 4.2, a representation � 2 homC.�1.K
2/;G/ is called

� parabolic nondegenerate in case (a) and parabolic degenerate in case .a0/,

� type I in case (b), and

� type II in case (c).

Further, types I and II are called nondegenerate if l ¤ 0 or ˛ ¤ 0, respectively, and degenerate otherwise.

Remark 4.4 The holonomy of a nonorientable cusp restricts to a representation of the Klein bottle that
preserves the orientation type and is parabolic nondegenerate.

Furthermore, deformations of this representation still preserve the orientation type and are nondegenerate
(possibly of type I or II), by continuity.

For  2 �1.T
2/C �1.K

2/, recall from (13) that

I W hom.�1.K
2/;G/!C; � 7! .tracePSL.2;C/.�. ///

2
� 4;

where tracePSL.2;C/ means the trace as a matrix in PSL.2;C/.
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Lemma 4.5 Let � 2 hom.�1.K
2/;G/ preserve the orientation type and �.b/¤ Id.

� If � is parabolic , then I .�/D 0 for all  2 �1.T
2/.

� If � is of type I , then Ia2.�/� 0 and Ib.�/ < 0.

� If � is of type II , then Ia2.�/� 0 and Ib.�/ > 0.

Proof This is a straightforward computation from Theorem 4.2.

Corollary 4.6 (a) The holonomy of a representation in Def.M; �/ is of type I.

(b) Representations in a neighborhood of Œhol� in R.M 3;G/ are of both type I and II.

(c) In particular , the holonomy map Def.M; �/!R.M 3;G/ is not surjective in a neighborhood of
the holonomy.

Proof Assertion (a) follows from Remark 2.11 and (b) from Theorem 3.10, both using Lemma 4.5.

5 Metric completion

As we deform noncompact manifolds, the deformations into noncomplete manifolds are not unique (eg
one can consider proper open subsets of a noncomplete manifold). We are not discussing the different
issues related to this nonuniqueness, just the existence of a deformation into a metric that can be complete
as a conifold (see below).

The main result of this section is Theorem 5.15. In the orientable case, the metric completion after
deforming an orientable cusp is a singular space with a singularity called of Dehn type (this includes
nonsingular manifolds); see Hodgson’s thesis [11] and Boileau and Porti [4, Appendix B]. In the
nonorientable case, the singularity is more specific, a so-called conifold.

5.1 Conifolds and cylindrical coordinates

A conifold is a metric length space locally isometric to the metric cone of constant curvature on a
spherical conifold of dimension one less; see for instance [3]. When, as topological space, a conifold
is homeomorphic to a manifold, it is called a cone manifold, but in general it is only a pseudomanifold.
In dimension two, conifolds are also cone manifolds, but in dimension three there may be points with a
neighborhood homeomorphic to the cone on a projective plane P2.

We are interested in three local models of singular spaces as conifolds:

� The first is the hyperbolic cone over a round sphere S2. This corresponds to a point with a
nonsingular hyperbolic metric.

� The second is the hyperbolic cone over S2.˛; ˛/, the sphere with two cone points of angle ˛, that is
the spherical suspension of a circle of perimeter ˛. This corresponds to a singular axis of angle ˛.
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Figure 2: Cylindrical coordinates.

� The third is the hyperbolic cone over P2.˛/, the projective plane with a cone point of angle ˛.
This is the quotient of the previous one by a metric involution, which is the antipodal map on each
concentric sphere.

Next we describe metrically those local models by using cylindrical coordinates in the hyperbolic space.
These coordinates are defined from a geodesic line g in H3, and we fix a point in the unit normal bundle
to g, ie a vector Eu of norm 1 and perpendicular to g. Cylindrical coordinates give a diffeomorphism

H3
ng Š�! .0;C1/�R=2�Z�R; p 7! .r; �; h/;

where r is the distance between g and p, � is the angle parameter (the angle between the parallel transport
of Eu and the tangent vector to the orthogonal geodesic from g to p) and h is the arc parameter of g, the
signed distance between the base point of Eu and the orthogonal projection from p to g; see Figure 2.

In the upper half-space model of H3, if g is the geodesic from 0 and1, then there exists a choice of
coordinates (a choice of Eu) such that the projection from g to the ideal boundary @1H3 maps a point
with cylindrical coordinates .r; �; h/ to ehCi� 2 C; see Figure 3. A different choice of Eu would yield
instead �ehCi� 2C for some � 2C n f0g.

The hyperbolic metric on H3 in these coordinates is

dr2
C sinh2.r/ d�2

C cosh2.r/ dh2:

More precisely, H3 is the metric completion of .0;C1/�R=2�Z�R with this metric.

0

1

z D ehCi�

.r; �; h/

C � @1H3

Figure 3: Orthogonal projection to @1H3 with g the geodesic with ideal endpoints 0 and1.
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Definition 5.1 For ˛ 2 .0; 2�/, H3.˛/ is the metric completion of .0;C1/�R=2�Z�R for the metric

ds2
D dr2

C

�
˛

2�

�2
sinh2.r/ d�2

C cosh2.r/ dh2:

The metric space H3.˛/ may be visualized by taking a sector in H3 of angle ˛ and identifying its sides
by a rotation. Alternatively, with the change of coordinates Q� D ˛=.2�/� , the metric completion of
.0;C1/�R=˛Z�R is H3.˛/, for the metric dr2C sinh2.r/ d Q�2C cosh2.r/ dh2.

Remark 5.2 The metric models are

� H3 for the nonsingular case (the cone on the round sphere),

� H3.˛/ for the singular axis (the cone on S2.˛; ˛/),

� the quotient
H3.˛/=.r; �; h/� .r;��;�h/

for the cone on P2.˛/.

5.2 Conifolds bounded by a Klein bottle

We keep the notation of Section 5.1, with cylindrical coordinates. Before discussing conifolds bounded
by a Klein bottle, we describe a cone manifold bounded by a torus.

Definition 5.3 A solid torus with singular soul is H3.˛/=�, where � is the relation induced by the
isometric action of Z generated by

.r; �; h/ 7! .r; � C �; hCL/

for � 2R=2�Z and L> 0.

The space H3.˛/=� is a solid torus of infinite radius with singular soul of cone angle ˛, length of the
singularity L > 0 and torsion parameter � 2 R=2�Z (the rotation angle induced by parallel transport
along the singular geodesic is ˛=.2�/� 2R=˛Z).

By considering the metric neighborhood of radius r0 > 0 on the singular soul, we get a compact solid
torus, bounded by a 2–torus. This compact solid torus depicts a tubular neighborhood of a component of
the singular locus of a cone manifold (compare Hodgson and Kerckhoff [12] and Hodgson’s thesis [11]).

We describe two conifolds bounded by a Klein bottle that are a quotient of this solid torus by an involution.

Definition 5.4 A solid Klein bottle with singular soul is H3.˛/=�, where � is the relation induced by
the isometric action of Z generated by

.r; �; h/ 7! .r;��; hCL/

for L> 0.
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Figure 4: A solid torus as two 3–balls joined by two 1–handles.

The space H3.˛/=� is a solid Klein bottle of infinite radius with singular soul of cone angle ˛, and
length of the singularity L> 0. We may consider a metric tubular neighborhood of radius r0, bounded
by a Klein bottle. Its orientation cover is a solid torus with singular soul, cone angle ˛, length of the
singularity 2L and torsion parameter � D 0.

Definition 5.5 The disc orbibundle with singular soul is H3.˛/=�, where � is the relation induced by
the isometric involutions

.r; �; h/ 7! .r; � C�;�h/ and .r; �; h/ 7! .r; � C�; 2L� h/

for L> 0.

To describe this space, it is useful first to look at the action on the preserved geodesic, corresponding to
r D 0. These involutions map h 2R to �h and to 2L�h, respectively. Thus it is the action of the infinite
dihedral group Z2 �Z2 on a line generated by two reflections. Its orientation-preserving subgroup is Z

acting by translations on R. Thus R=Z is a circle, and R=.Z2 �Z2/ is an orbifold. The solid torus is a
disc bundle over the circle, and our space is an orbifold-bundle over R=.Z2 �Z2/ with fiber a disc.

This space is the quotient of an involution on the solid torus. View the solid torus as two 3–balls joined by
two 1–handles; see Figure 4. On each 3–ball, apply the antipodal involution (on each concentric sphere
of given radius), and extend this involution by permuting the 1–handles. The quotient of each ball is the
(topological) cone on P2, and hence our space is the result of joining two cones on P2 by a 1–handle. Its
boundary is the connected sum P2 # P2 ŠK2.

The singular locus of the disc orbibundle H3.˛/=� is an interval (the underlying space of the orbifold
bundle) of length L. The interior points of the singular locus have cone angle ˛, and the boundary points
of the interval are precisely the points where it is not a topological manifold.

Again H3.˛/=� has radius 1, and the metric tubular neighborhood of radius r of the singularity is
bounded by a Klein bottle. It is the quotient of a solid torus of length 2L and torsion parameter � D 0 by an
isometric involution with two fixed points (thus, as an orbifold, its orientation orbicovering is a solid torus).

Remark 5.6 The boundaries of both the solid Klein bottle and the disc orbibundle are Klein bottles. In
both cases the holonomy preserves the orientation type, but the type of the presentation as in Definition 4.3
is different:

(a) The holonomy of the boundary of a solid Klein bottle with singular soul is a representation of type I.

(b) The holonomy of the boundary of a disc orbibundle over a singular interval is of type II.
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For a nonorientable cusp, the holonomy of the peripheral torus is either parabolic nondegenerate, of type I
or of type II, also nondegenerate (Remark 4.4). The aim of next section is to prove that the deformations
can be defined so that the metric completion is either a solid Klein bottle with singular soul or a disc
orbibundle with singular soul, according to the type. This is the content of Theorem 5.15, which we prove
at the end of the section.

5.3 The radial structure

Let M 3 be a noncompact hyperbolic 3–manifold of finite volume. We deform its holonomy representation
and accordingly we deform its hyperbolic metric. Nonetheless, incomplete metrics are not unique, so here
we give a statement about the existence of a maximal structure, which corresponds to the one completed
in Theorem 5.15.

Let Œ�� 2R.�1.M
3/;G/ be a deformation of its complete structure. There is some nuance in associating

to Œ�� a hyperbolic structure which is made explicit by Canary, Epstein and Green in [6]. Here, the
authors conclude that deformations with a given holonomy representation are related by an isotopy of
the inclusion of M 3 in some fixed thickening .M 3/�, where a thickening is just another hyperbolic
3–manifold containing ours.

We will start by making clear what we mean by a maximal structure.

Definition 5.7 Let M be a manifold with an analytic .G;X /–structure. We say that M � is an isotopic
thickening of M if it is a thickening and there is a isotopy i 0 of the inclusion i WM ,!M � such that
i 0.M /DM �.

Given two isotopic thickenings of M , we say that M �
1
�M �

2
if there is a .G;X / isomorphism from

M �
1

to some subset of M �
2

extending the identity on M . Hence, we say that an isotopic thickening is
maximal if it is maximal with respect the partial order relation we have just defined.

In general, it is not clear whether maximal isotopic thickenings exist, nor under which circumstances they
do exist. However, we will construct in our situation an explicit maximal thickening.

Lemma 5.8 Let injM 3.x/ denote the injectivity radius at a point x 2M 3. Then a necessary condition for
a nontrivial thickening of M 3 to exist is that there must exist a sequence fxng �M 3 with injM 3.xn/! 0.

Proof Let us suppose a thickening .M 3/� exists. Then take a point x 2 @..M 3/� nM 3/. Any sequence
fxng �M 3 such that xn! x satisfies injM 3.xn/! 0.

The purpose of Lemma 5.8 is twofold. First, it gives a condition for a thickening to be maximal (in the
sense of the partial order relation we just defined), and second, it shows where a manifold could possibly
be thickened. Taking into account a thick–thin decomposition of the manifold, the thickening can only be
done in the deformed cusps.
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Each cusp of M 3 is diffeomorphic to either T 2� Œ0;1/ or K2� Œ0;1/. Let us consider a proper product
compact subset K2� Œ0; �� or T 2� Œ0; �� of an end, for some �> 0, and let us denote by D� the developing
map of a structure with holonomy � in the equivalence class Œ�� 2R.�;G/.

Lemma 5.9 The image of the proper product subset under the developing map , D�. zK
2 � Œ0; ��/ or

D�. zT
2� Œ0; ��/, lies within two tubular neighborhoods of a geodesic  2M 3, that is , in N�2

. /nN�1
. /,

where N�. /D fx 2H3 j d.x;  / < �g. Moreover , for every geodesic ray exiting orthogonally from  ,
the intersection of the ray with D�. zK

2� Œ0; ��/ is nonempty and transverse to any section D�. zK
2�f�g/,

� 2 Œ0; ��, and analogously for an orientable end.

Proof We use a modified argument of Thurston (see his notes [18, Chapters 4 and 5]) to prove the
lemma for a nonorientable end (the same idea goes for an orientable one). The original argument of
Thurston shows that, in an ideal triangulated manifold, the image of the universal cover of the end under
the developing map is the whole tubular neighborhood except the geodesic. Let Œ�0� be the parabolic
representation corresponding to the complete structure. Then D�0

. zK2 � Œ0; ��/ is the region between two
horospheres centered at an ideal point p1 2 @1H3. Let K � zK2� Œ0; �� denote a fundamental domain of
K2� Œ0; ��. The domain K can be taken so that D�0

.K/ is a rectangular prism between two horospheres.

We want to deform D�0
.K/ as we deform �0 to �. We do that by deforming the horosphere centered

at p1 to surfaces equidistant to the geodesics � invariant by the holonomy of the peripheral subgroup
�.�1.K

2//. The deformation of the horosphere to equidistant surfaces is described in [18, Section 4.4]
in the half-space model of H3; see also Benedetti and Petronio [2, Section E.6.iv]. Alternatively, we can
view the deformation of the horosphere to the equidistant surfaces as follows. Considering Z2 < �1.K

2/

the orientation-preserving subgroup of index 2, �.Z2/ is contained in a unique one-complex parameter
subgroup U� � PSL.2;C/— ie U� is the exponential image of a C–line in the Lie algebra sl.2;C/.
This U� depends continuously on �, and given x 2H3 the orbit U�.x/D fg.x/ j g 2 U�g is a surface
containing x such that when � D �0, U�.x/ is a horosphere centered at p1 and when � ¤ �0, U�.x/

is a surface equidistant to the geodesic �. Using this construction, the image of the domain D�0
.K/

deforms to D�.K/ with the required properties by following the equidistant surfaces for the factor zK2

and the geodesics orthogonal to these surfaces for the factor Œ0; ��.

Definition 5.10 The geodesic of Lemma 5.9 is called the soul of the end.

Remark 5.11 The face of the section of the proper product subset of the cusp K2 � Œ0; �� or T 2 � Œ0; ��

that is glued to the thick part of the manifold is the section of the cusp which is further away from the
geodesic. Hence, we will only consider thickenings “towards” the soul.

Let x be a point in a cusp of the manifold and consider the image under the developing map y DD�. Qx/

of any lift Qx. There is only one geodesic segment in H3 such that  .0/ D y and that goes towards
the soul orthogonally. In cylindrical coordinates, if y D .r; �; h/, the image of the geodesic consists of
f.t; �; h/ j t 2 Œ0; r �g. Let us denote by x the corresponding geodesic in M 3.
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Theorem 5.12 There exists a maximal thickening M � of a half-open product M D K2 � Œ0; �/ or
T 2 � Œ0; �/. It is characterized by the following property: for every point x 2M , the geodesic x can be
extended in M � so that D�. Qx/ is the geodesic whose cylindrical coordinates with respect to the soul are
f.t; �; h/ j t 2 .0; r �g.

Proof Given a cusp section S WD K2 or T 2, a product subset of the end K WD S � Œ0; ��, a fixed
fundamental domain K0 of K and a small neighborhood N.K0/ of K0, the set

T WD ft 2 Deck. zK=K/ j tN.K0/\N.K0/¤∅g

is finite, where Deck. zK=K/ denotes the group of covering transformations of the universal cover. Hence,
we can suppose that D�j.T K 0/

is an embedding.

Let U be an open cover of K by simply connected charts. For each U , take a lift U0 2 zU such that
U0\K0¤∅ and consider D�.U0/. Given such a lift U0, the other possible lifts that could have nonempty
intersection with K0 are tU , for t 2 T . Furthermore, we can always assume that the chart U coincides
with the image of U0 under the developing map D�.U0/. Thus, we can identify

K Š

� [
U2U

D�.U0/

�.
�;

where the equivalence relation is by the action of hol.t/, for t 2 T .

Each U 2 U can be thickened by identifying U with D�.U0/ and considering, in cylindrical coordinates,
the set of rays R.U /D f.t; �; h/ 2H3 n fsoulg j there exists .t0; �; h/ 2U; t < t0g. Given two lifts of two
thickened charts R.U1/ and R.U2/ with nonempty intersection with K0, we glue them together at the
points corresponding to hol.t/.R.U1//\R.U2/, where t 2 T . This defines a thickening of the cusp K�.

We have yet to show that this is isotopic to the original (half-open) product subset. Let us consider the
section S � f0g of the cusp; the radial geodesics x for x 2 S � f0g define a foliation of K� of finite
length. Moreover, due to Lemma 5.9, the foliation is transversal to S � f0g. By reparametrizing the
foliation and considering its flow, we obtain a trivialization of the cusp, K� Š S � Œ0; �/. Similarly,
K� nK is also a product. This let us construct an isotopy from K� to K.

For this thickening, clearly x �K� can be extended so that D�. Qx/D f.t; �; h/ j t 2 .0; r �g. By taking
geodesics x to geodesics through the developing map, it is clear our thickening can be mapped into
every other thickening satisfying this property. Furthermore, if we consider the thickenings to be isotopic,
we obtain an embedding.

Regarding the maximality, we will differentiate between an orientable end and a nonorientable one. The
general idea will be the same: for another isotopic thickening .K/�� to include ours, the developing map
should map some open set V into a ball W around a point y0 in the soul, which will lead to a contradiction.

If K is nonorientable, let us denote the distinguishable generators of �1.K
2/ by a and b, with aba�1Db�1.

If Œ�� is type I, y0 is fixed by �.b/. Let y 2W nfsoulg and x 2 V be its preimage. W is invariant by �.b/
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Figure 5: The radial thickening.

and, in addition, both x and b �x belong to V . Now take the geodesic  W I 7! A.K/�� from x to x0 which
corresponds to the geodesic from y to y0. By equivariance and continuity, x0D lim  .t/D lim b .t/Dbx0.
This contradicts b being a covering transformation. If Œ�� is type II, the previous argument with a2 holds.

If K is orientable, we will follow the same arguments leading to the completion of the cusp (for more
details see, for instance, [2]). the deformation Œ�� is characterized in terms of its generalized Dehn filling
coefficients ˙.p; q/. The cases p D 0 or q D 0 are solved as in the nonorientable cusp, so we have the
two usual cases, p=q 2 Q or p=q 2 I. For p=q 2 Q, there exists k > 0 such that k.p; q/ 2 Q2 and
.kp/aC .kq/b is a trivial loop in the new thickening. If p=q 2 I, then y0 is dense in fsoulg\V , which
is a contradiction.

Definition 5.13 We call the previous thickening the radial thickening of the cusp.

Remark 5.14 If the manifold M 3 admits an ideal triangulation, the canonical structure coming from the
triangulation is precisely the radial thickening of the cusp.

Theorem 5.15 For a deformation of the holonomy M 3, the corresponding deformation of the metric can
be chosen so that on a nonorientable end :

� It is a cusp (a metrically complete end ) if the peripheral holonomy is parabolic.

� The metric completion is a solid Klein bottle with singular soul if the peripheral holonomy is of
type I.

� The metric completion is a disc orbibundle with singular soul if it is of type II.

Furthermore , the cone angle ˛ and the length L of the singular locus are described by the peripheral
boundary, so that those parameters start from ˛DLD 0 for the complete structure and grow continuously
when deforming in either direction.
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Proof The proof uses the orientation covering and equivariance. More precisely, the deformation is
constructed in the complete case for the orientation covering and it can be made equivariant. The holonomy
of a torus restricted from a Klein bottle is either parabolic or the holonomy of a solid torus with singular
soul (and � D 0). In particular, the holonomy of a Klein bottle is parabolic if and only if its restriction to
the orientable covering is parabolic. Furthermore, by using the description in cylindrical coordinates (and
using Figure 3) and as � D 0, the solid torus is equivariant by the action of �2.K

2/=�1.T
2/Š Z2.

6 Example: the Gieseking manifold

We use the Gieseking manifold to illustrate our results. In particular the difference between deformation
spaces obtained from ideal triangulations and from the variety of representations.

The Gieseking manifold M is a nonorientable hyperbolic 3–manifold with finite volume and one cusp,
with horospherical section a Klein bottle. It has an ideal triangulation with a single tetrahedron. The
orientation cover of the Gieseking manifold is the figure eight knot exterior, and the ideal triangulation
with one simplex lifts to Thurston’s ideal triangulation with two ideal simplices; see Thurston’s notes [18].

This manifold M was constructed by Gieseking in his thesis in 1912; here we follow the description of
Magnus in [15], using the notation of Alperin, Dicks and Porti [1]. Start with the regular ideal vertex �
in H3, with vertices

˚
0; 1;1; 1

2
.1� i

p
3/
	
; see Figure 6. The side identifications are the nonorientable

isometries defined by the Möbius transformations

U.z/D
1

1C 1
2
.1C i

p
3/Nz

and V .z/D�1
2
.1C i

p
3/NzC 1:

The identifications of the faces are defined by their action on vertices:

U W
�

1
2
.1� i

p
3/; 0;1

�
7!
�

1
2
.1� i

p
3/; 1; 0

�
and V W .1; 0;1/ 7!

�
1
2
.1� i

p
3/; 1;1

�
:

0

1

�!

1

a
b

B

A

A B

c

d

e

f

Figure 6: Gieseking manifold with labeled edges.
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By applying Poincaré’s fundamental theorem,

(14) �1.M /Š hU;V j V U D U 2V 2
i:

The relation V U D U 2V 2 corresponds to a cycle of length six around the edge.

6.1 The deformation space Def.M; �/

We compute the deformation space of the triangulation with a single tetrahedron, as in Section 2.

For any ideal tetrahedron in H3, we set its ideal vertices as 0, 1,1 and �!, where ! is in CC, the upper
half-space of C. The role played by �! will be that of 1

2
.1� i

p
3/ in the complete structure. For any

such ! it is possible to glue the faces of the tetrahedron in the same pattern as in the Gieseking manifold
via two orientation-reversing hyperbolic isometries, which we will likewise call U and V .

For the gluing to follow the same pattern, it must map

U W .�!; 0;1/! .�!; 1; 0/ and V W .1; 0;1/! .�!; 1;1/:

The orientation-reversing isometries U and V satisfying this are

U.z/D
1

..1C!/=j!j2/NzC 1
and V .z/D�.1C!/NzC 1:

Although it is always possible to glue the faces in the same pattern as in the Gieseking manifold, the
gluing will not always have a hyperbolic structure.

Let us label the edges as in Figure 6. For the topological manifold to be geometric, we only have to check
that the pairing is proper; see [17]. In this case, the only condition which we need to satisfy is that the
isometry that goes through the only edge cycle is the identity. This is given by

a V
�! c V

�! b U
�! d U

�! e V �1

���! f U�1

���! a;

and therefore we will have a hyperbolic structure if and only if U�1V �1U 2V 2 D Id. Doing this
computation, we obtain the equation

(15) j!.1C!/j D 1:

Let us show that this equation matches the one obtained from Definition 2.3. If we denote by z.a/ the
edge invariant of a and analogously for the rest of the edges, we have that the equation describing the
deformation space of the manifold in terms of this triangulation is

z.a/z.b/z.e/

z.c/z.d/z.f /
D 1:

Writing down all of the edge invariants in terms of z.a/ by means of the tetrahedron relations results in
the equation

(16)
z.a/2z.a/2

.1� z.a//.1� z.a//
D
jz.a/j4

j1� z.a/j2
D 1:
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1
2
.�1C

p
5/1

2
.�1�

p
5/

1
2
.�1C i

p
3/

1
2
.�1� i

p
3/

fw 2C j jw.wC 1/j D 1g

Figure 7: The set of solutions of the compatibility equations and Def.M; �/ (the top half).

If we substitute z.a/D�1=!, we obtain
1

!x!.!C 1/.x!C 1/
D 1;

which is equivalent to (15).

Remark 6.1 The set fw 2 C j jw.1Cw/j D 1g is homeomorphic to S1, and the deformation space
fw 2C j jw.1Cw/j D 1 and Im.w/ > 0g is homeomorphic to an open interval; see Figure 7.

We justify the remark and Figure 7. Firstly, to prove that the set of algebraic solutions is homeomorphic
to a circle, we write the defining equation jw.1Cw/j D 1 asˇ̌�

wC 1
2

�2
�

1
4

ˇ̌
D 1:

Thus
�
wC 1

2

�2 lies in the circle of center 1
4

and radius 1. As this circle separates 0 from1, the equation
defines a connected covering of degree two of the circle. Secondly, the set of algebraic solutions is
invariant by the involutions w 7! xw and w 7! �1�w, and hence symmetric with respect to the real line
and the line defined by the set of points with real part equal to �1

2
. Furthermore, it intersects the real line

at w D 1
2
.�1˙

p
5/ and the line with real part �1

2
at 1

2
.�1˙ i

p
3/.

Let us construct the link of the cusp. We denote the link of each cusp point as in Figure 8, left, and glue
them to obtain the link as in Figure 8, right, which is a Klein bottle.

Now we take two tetrahedra and construct the orientation covering of M (the figure eight knot exterior).
For the first tetrahedron, we will define z1 WD z.a/, and define z2 and z3 so that they follow the cyclic
order described in the tetrahedron relations. Afterwards, in the second tetrahedron, we denote by wi

the edge invariant of the corresponding edge after applying an orientation-reversing isometry to the
tetrahedron, that is, wi D 1=Nzi .

We consider the link of the orientation covering. The derivatives of the holonomy of the two loops in
the link of the orientation covering l1 and l2, depicted in Figure 9, left (which are free homotopic), are
w1=z1D1=jw1j

2 andw3=z3D1=jw3j
2. For the manifold to be complete we need hol0.li/D1 for iD1; 2,
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Figure 8: Left: Gieseking manifold with link. Right: link of the cusp point.

which happens if and only if z1 D
1
2
C

p
3

2
i . This corresponds to the regular ideal tetrahedron, which, as

expected, is the manifold originally given by Gieseking. Notice that the upper loop (the one going through
the side �) can be taken as a distinguished longitude. A suitable meridian is drawn in Figure 9, right.

Let us check that both the longitude and the meridian satisfy the conditions we stated for their holonomy
in Remark 2.11, that is, hol0.l/ 2 R and jhol0.m/j D 1. We have already shown it for the longitude.
Regarding the meridian,

hol0.m/D
z2z3w2w3

w2z1z2w1

D
z1

z3

w1

w3

D
z1

Nz1

Nz3

z3

;

therefore jhol0.m/j D 1. This leads to the result that the generalized Dehn filling coefficients of a lifted
structure have the form .0; q/, after an appropriate choice of longitude–meridian pair.

The last result could also have been obtained from Thurston’s triangulation. By rotating the tetrahedra,
our triangulation could be related with his, and the parameters identified. We can then check that, in his
choice of longitude and meridian, the holonomy has the same features if the structure is a lift from the
Gieseking manifold.

6.2 The Gieseking manifold as a punctured torus bundle

The Gieseking manifold M is fibered over the circle with fiber a punctured torus T 2 n f�g. We use this
structure to compute the variety of representations. The monodromy of the fibration is an automorphism

� W T 2
n f�g! T 2

n f�g:

The map � is the restriction of a map of the compact torus T 2ŠR2=Z2 that lifts to the linear map of R2

with matrix �
0 1

1 1

�
:
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Figure 9: Left: two free homotopic loops. Right: meridian in the link of the cover.

This matrix also describes the action on the first homology group H1.T
2 n f�g;Z/Š Z2. The map �

is orientation reversing (the matrix has determinant �1) and �2 is the monodromy of the orientation
covering of M , the figure eight knot exterior.

The fibration induces a presentation of the fundamental group of M

�1.M /Š hr; s; t j t r t�1
D �.r/; tst�1

D �.s/i;

where hr; s ji D �1.T
2 n f�g/Š F2, and

�� W F2! F2; r 7! s; s 7! rs;

is the algebraic monodromy, the map induced by � on the fundamental group.

The relationship with the presentation (14) of �1.M / from the triangulation is given by

r D U V; s D V U; t D U�1:

Furthermore, a peripheral group is given by hrsr�1s�1; ti, which is the group of the Klein bottle.

We use this fibered structure to compute the variety of conjugacy classes of representations. Set

G D Isom.H3/Š PO.3; 1/Š PSL.2;C/Ì Z2;

and let
homirr.�1.M /;G/

denote the space of irreducible representations (ie representations that have no invariant line in C2). As
we are interested in deformations, we restrict to representations � that preserve the orientation type: �. /
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is an orientation-preserving isometry if and only if  2 �1.M / is represented by a loop that preserves
the orientation of M for all  2 �1.M /. We denote the subspace of representations that preserve the
orientation type by

homirr
C.�1.M /;G/:

Let
homirr

C.�1.M /;G/=G

be their the space of their conjugacy classes.

Proposition 6.2 We have a homeomorphism , via the trace of �.s/,

homirr
C.�1.M /;G/=G! .fx 2C j jx� 1j D 1 and x ¤ 2g/=�; Œ�� 7! trace.�.s//;

where � is the relation given by complex conjugation.

In particular , homirr
C.�1.M /;G/=G is homeomorphic to a half-open interval.

Proof Let � W �1.M /! G be an irreducible representation. The fiber T 2 n f�g is orientable, so the
restriction of � to the free group hr; s ji Š F2 is contained in PSL.2;C/. Furthermore, as hr; s ji is the
commutator subgroup, we may assume that �.hr; s ji/� SL.2;C/; see Heusener–Porti [9].

We consider the variety of characters X.F2;SL.2;C// and the action of the algebraic monodromy �� on
the variety of characters:

�� WX.F2;SL.2;C//!X.F2;SL.2;C//; � 7! � ı��:

Lemma 6.3 The restriction of homirr
C.�1.M /;G/=G to X.F2;SL.2;C// is contained in

f� 2X.F2;SL.2;C// j ��.�/D N�g:

Proof Let �2 homirr.�1.M /;G/. If we write �.t/DAıc for A2PSL.2;C/ and c complex conjugation,
from the relation

t t�1
D ��. / for all  2 F2

we get
A�. /A�1

D �.��. // for all  2 F2:

Hence, if �0 denotes the restriction of � to F2, N�0 and �0 ı �� are conjugate, so they have the same
character and the lemma follows.

Lemma 6.3 motivates the following computation:

Lemma 6.4 We have a homeomorphism

f�� 2X.F2;SL.2;C// j ��.��/D N��g Š fx 2C j jx� 1j D 1g

by setting x D trace.�.s//D ��.s/.
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Proof First we describe coordinates for X.F2;SL.2;C//. Let �r , �s and �rs denote the trace functions,
ie �r .��/ D ��.r/ D trace.�.r//, and similarly for s and rs. The Fricke–Klein theorem yields an
isomorphism

.�r ; �s; �rs/ WX.F
2;SL.2;C//ŠC3

(see Goldman [8] for a proof). From the relations

��.r/D s; ��.s/D rs; ��.rs/D srs;

the equality ��.��/D N�� is equivalent to

N�r D �s; N�s D �rs; N�rs D �srs D �s�rs � �r :

In the expression for �srs we have used the relation tr.AB/D tr.A/ tr.B/�tr.AB�1/ for A;B 2SL.2;C/.
Taking x D �r D �rs and �s D Nx, the defining equation is xC Nx D x Nx. Namely, the circle jx� 1j D 1.

To prove Proposition 6.2, we need to know which conjugacy classes of representations of F2 are irreducible.
By Culler and Shalen [7], a character �� in X.F2;SL.2;C// is reducible if and only if ��.Œr; s�/ D
tr.�.Œr; s�// D 2, and a straightforward computation shows that this happens in the circle jx � 1j D 1

precisely when x D 2. Now, let � be a representation of F2 in SL.2;C/ whose character �� satisfies
��.��/D N��. Assume � is irreducible. Then �ı�� and N� are conjugate by a unique matrix A2PSL.2;C/,

Ac�. /cA�1
DA�. /A�1

D �.��. // for all  2 F2;

where c means complex conjugation. Thus, defining �.t/DAıc gives a unique way to extend � to �1.M /.

When �� is reducible, x D 2 and the character �� is trivial. Then either � is trivial or parabolic. In any
case, it is easy to check that all possible extensions to �1.M / yield reducible representations.

6.3 Comparing both ways of computing deformation spaces

We relate both ways of computing deformation spaces, via the ideal simplex and via the fibration:

Lemma 6.5 Given a triangulated structure with parameter w as in (15), the parameter x of its holonomy
as in Proposition 6.2 is

x D 1CwCjwj2

(or x D 1C xwCjwj2, because x is only defined up to complex conjugation).

Proof As r D U V , a straightforward computation yields

�.r/D

�
0 jwj2

�1=jwj2 1CwCjwj2

�
2 SL.2;C/:

Then the lemma follows from x D trace.�.r//.

The fact that not all deformations are obtained from triangulations (Corollary 4.6) is illustrated in the
following remark, whose proof is an elementary computation.
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21

jx� 1j D 1

1
2
.3C i

p
3/

1
2
.3� i

p
3/

x D 1CwCjwj2

Figure 10: The image of x D 1CwCjwj2 in the circle jx� 1j D 1.

Remark 6.6 The image of the map

fw 2C j jw.1Cw/j D 1g ! fx 2C j jx� 1j D 1g; w 7! x D 1CwCjwj2;

is fjx � 1j D 1g \
˚
Re.x/ � 3

2

	
, ie the arc of a circle bounded by the image of the holonomy structure

(and its complex conjugate); see Figure 10.

To be precise on the type of structures at the peripheral Klein bottle, we compute the trace of the peripheral
element Œr; s� for each method and apply Lemma 4.5:

� We compute it from the variety of representations, ie from x. Using the notation of the proof of
Proposition 6.2:

�Œr;s� D x2
1 Cx2

2 Cx2
3 �x1x2x3� 2D .xC Nx/2� 3.xC Nx/� 2D .xC Nx/..xC Nx/� 3/� 2:

The complete hyperbolic structure corresponds to xC Nx D 3; hence, by deforming x we may have
either �Œr;s� > �2 or �Œr;s� < �2.

� Next we compute it from the ideal triangulation, ie from w. As x D 1CwCjwj2, we get

�Œr;s� D 2 Re.wCw2/� �2

because jwCw2j D 1.

Remark 6.7 Finally, the path of deformations of the Gieseking manifold lifts to a path of deformations
of the figure eight knot exterior that is the same as the one considered by Hilden, Lozano and Montesinos
in [10] by deforming polyhedra. The transition from type I to type II of the Gieseking manifold corresponds
to the spontaneous surgery in [10].

References
[1] R C Alperin, W Dicks, J Porti, The boundary of the Gieseking tree in hyperbolic three-space, Topology

Appl. 93 (1999) 219–259 MR Zbl

[2] R Benedetti, C Petronio, Lectures on hyperbolic geometry, Springer (1992) MR Zbl

Algebraic & Geometric Topology, Volume 24 (2024)

http://dx.doi.org/10.1016/S0166-8641(97)00270-8
http://msp.org/idx/mr/1688476
http://msp.org/idx/zbl/0926.57008
http://dx.doi.org/10.1007/978-3-642-58158-8
http://msp.org/idx/mr/1219310
http://msp.org/idx/zbl/0768.51018


140 Juan Luis Durán Batalla and Joan Porti

[3] M Boileau, B Leeb, J Porti, Geometrization of 3–dimensional orbifolds, Ann. of Math. 162 (2005) 195–290
MR Zbl

[4] M Boileau, J Porti, Geometrization of 3–orbifolds of cyclic type, Astérisque 272, Soc. Math. France, Paris
(2001) MR Zbl

[5] A Borel, N Wallach, Continuous cohomology, discrete subgroups, and representations of reductive groups,
2nd edition, Mathematical Surveys and Monographs 67, Amer. Math. Soc., Providence, RI (2000) MR Zbl

[6] R D Canary, D B A Epstein, P Green, Notes on notes of Thurston, from “Analytical and geometric aspects
of hyperbolic space” (D B A Epstein, editor), London Math. Soc. Lecture Note Ser. 111, Cambridge Univ.
Press (1987) 3–92 MR Zbl

[7] M Culler, P B Shalen, Varieties of group representations and splittings of 3–manifolds, Ann. of Math. 117
(1983) 109–146 MR Zbl

[8] W M Goldman, Trace coordinates on Fricke spaces of some simple hyperbolic surfaces, from “Handbook
of Teichmüller theory, II” (A Papadopoulos, editor), IRMA Lect. Math. Theor. Phys. 13, Eur. Math. Soc.,
Zürich (2009) 611–684 MR Zbl

[9] M Heusener, J Porti, The variety of characters in PSL2.C/, Bol. Soc. Mat. Mexicana 10 (2004) 221–237
MR Zbl

[10] H Hilden, M T Lozano, J M Montesinos-Amilibia, On a remarkable polyhedron geometrizing the figure
eight knot cone manifolds, J. Math. Sci. Univ. Tokyo 2 (1995) 501–561 MR Zbl

[11] C D Hodgson, Degeneration and regeneration of geometric structures on 3–manifolds, PhD thesis, Princeton
University (1986) MR Available at https://www.proquest.com/docview/303436581

[12] C D Hodgson, S P Kerckhoff, Rigidity of hyperbolic cone-manifolds and hyperbolic Dehn surgery, J.
Differential Geom. 48 (1998) 1–59 MR Zbl

[13] D Johnson, J J Millson, Deformation spaces associated to compact hyperbolic manifolds, from “Discrete
groups in geometry and analysis” (R Howe, editor), Progr. Math. 67, Birkhäuser, Boston, MA (1987) 48–106
MR Zbl

[14] M Kapovich, Hyperbolic manifolds and discrete groups, Progr. Math. 183, Birkhäuser, Boston, MA (2001)
MR Zbl

[15] W Magnus, Noneuclidean tesselations and their groups, Pure and Applied Mathematics 61, Academic,
New York (1974) MR Zbl

[16] W D Neumann, D Zagier, Volumes of hyperbolic three-manifolds, Topology 24 (1985) 307–332 MR Zbl

[17] J G Ratcliffe, Foundations of hyperbolic manifolds, Graduate Texts in Math. 149, Springer (1994) MR Zbl

[18] W P Thurston, The geometry and topology of three-manifolds, lecture notes, Princeton University (1979)
Available at https://url.msp.org/gt3m

Departament de Matemàtiques, Universitat Autònoma de Barcelona
Barcelona, Spain
Departament de Matemàtiques, Universitat Autònoma de Barcelona, and Centre de Recerca Matemàtica
Barcelona, Spain

jduranba.mat@gmail.com, joan.porti@uab.cat

https://mat.uab.cat/~porti/

Received: 22 February 2021 Revised: 4 April 2022

Geometry & Topology Publications, an imprint of mathematical sciences publishers msp

http://dx.doi.org/10.4007/annals.2005.162.195
http://msp.org/idx/mr/2178962
http://msp.org/idx/zbl/1087.57009
http://www.numdam.org/issues/AST_2001__272_/
http://msp.org/idx/mr/1844891
http://msp.org/idx/zbl/0971.57004
http://dx.doi.org/10.1090/surv/067
http://msp.org/idx/mr/1721403
http://msp.org/idx/zbl/0980.22015
http://dx.doi.org/10.1017/CBO9781139106986
http://msp.org/idx/mr/903850
http://msp.org/idx/zbl/0612.57009
http://dx.doi.org/10.2307/2006973
http://msp.org/idx/mr/683804
http://msp.org/idx/zbl/0529.57005
http://dx.doi.org/10.4171/055-1/16
http://msp.org/idx/mr/2497777
http://msp.org/idx/zbl/1175.30043
http://msp.org/idx/mr/2199350
http://msp.org/idx/zbl/1100.57014
http://msp.org/idx/mr/1382519
http://msp.org/idx/zbl/0856.57007
http://msp.org/idx/mr/2635124
https://www.proquest.com/docview/303436581
http://projecteuclid.org/euclid.jdg/1214460606
http://msp.org/idx/mr/1622600
http://msp.org/idx/zbl/0919.57009
http://dx.doi.org/10.1007/978-1-4899-6664-3_3
http://msp.org/idx/mr/900823
http://msp.org/idx/zbl/0664.53023
http://dx.doi.org/10.1007/978-0-8176-4913-5
http://msp.org/idx/mr/1792613
http://msp.org/idx/zbl/0958.57001
http://msp.org/idx/mr/352287
http://msp.org/idx/zbl/0293.50002
http://dx.doi.org/10.1016/0040-9383(85)90004-7
http://msp.org/idx/mr/815482
http://msp.org/idx/zbl/0589.57015
http://dx.doi.org/10.1007/978-1-4757-4013-4
http://msp.org/idx/mr/1299730
http://msp.org/idx/zbl/0809.51001
https://url.msp.org/gt3m
mailto:jduranba.mat@gmail.com
mailto:joan.porti@uab.cat
https://mat.uab.cat/~porti/
http://msp.org
http://msp.org


msp
Algebraic & Geometric Topology 24:1 (2024) 141–157

DOI: 10.2140/agt.2024.24.141
Published: 18 March 2024

Realization of Lie algebras and classifying spaces of crossed modules

YVES FÉLIX

DANIEL TANRÉ

The category of complete differential graded Lie algebras provides nice algebraic models for the rational
homotopy types of nonsimply connected spaces. In particular, there is a realization functor, h�i, of any
complete differential graded Lie algebra as a simplicial set. In a previous article, we considered the
particular case of a complete graded Lie algebra, L0, concentrated in degree 0 and proved that hL0i is
isomorphic to the usual bar construction on the Maltsev group associated to L0.

Here we consider the case of a complete differential graded Lie algebra, LDL0˚L1, concentrated in
degrees 0 and 1. We establish that the category of such two-stage Lie algebras is equivalent to explicit
subcategories of crossed modules and Lie algebra crossed modules, extending the equivalence between
pronilpotent Lie algebras and Maltsev groups. In particular, there is a crossed module C.L/ associated
to L. We prove that C.L/ is isomorphic to the Whitehead crossed module associated to the simplicial
pair .hLi; hL0i/. Our main result is the identification of hLi with the classifying space of C.L/.

17B55, 55P62; 55U10

Introduction

In this text, we pursue the study of the rational homotopy type of spaces with models in the category cdgl
of complete differential graded Lie algebras, as developed by the authors with Buijs and Murillo [4]. We
emphasize that in this approach, there are no requirements concerning simple connectivity or nilpotency.
In particular, to any finite simplicial complex is associated a cdgl MX whose homology in degree 0 is the
Maltsev completion of �1.X / [4, Theorem 10.5].

One of the main tools in this theory is a cosimplicial cdgl L�D fLngn�0, where L0 is the free Lie algebra
on a Maurer–Cartan element in degree �1, and L1 is the Lawrence–Sullivan interval (see below for more
details). This cosimplicial cdgl plays a role similar to the simplicial algebra of PL–forms on��. It enables
us to construct a realization functor from the category of complete differential graded Lie algebras to the
category of simplicial sets, h�iW cdgl! Sset, defined by

hLi� WD Homcdgl.L�;L/:

If a Lie algebra L is concentrated in degree 0, we proved in [6, Theorem 0.1] that its realization hLi
is isomorphic to the usual bar construction on the group exp L, constructed on the set L with the
Baker–Campbell–Hausdorff product.

© 2024 MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution License 4.0 (CC BY).
Open Access made possible by subscribing institutions via Subscribe to Open.
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Here we consider the next step: L is a connected cdgl with nontrivial homology only in degrees 0 and 1.
Geometrically, this corresponds to the notion of homotopy 2–types and, by analogy, a connected cdgl
L such that H�L D H0L˚H1L is called a 2–type cdgl. First of all, if L D L�0 and H�2L D 0,
then the Lie subalgebra I D L�2˚ dL2 is an ideal because if a 2 L0 and b 2 L2, then da D 0 and
Œa; d.b/�D d Œa; b�. Moreover I is acyclic, and the quotient map is a quasi-isomorphism,

' W .L; d/ '�! .L=I; Nd/:

Since the realization functor h�i preserves quasi-isomorphisms of connected cdgls [4, Corollary 8.2 and
Remark 8.6], we get a weak homotopy equivalence

h'iW hL; di '�! hL=I; Ndi:

We have thus reduced the problem to considering only cdgls L of the form LDL0˚L1 and denote by
cdgl�1 the corresponding subcategory of cdgl. We associate to such L a natural crossed module C.L/

and denote by CrMod the category of crossed modules. Our main result, which extends [6, Theorem 0.1],
can be formulated as follows.

Theorem 1 If L is a complete differential graded Lie algebra such that LDL0˚L1, then its geometric
realization hLi is naturally isomorphic to the classifying simplicial set BC.L/; ie the diagram

cdgl�1

h�i
//

C
��

Sset

CrMod
B

66

commutes up to natural isomorphisms.

This theorem shows that the functor h�i generalizes many classical constructions.

Geometrically, crossed modules appear in the work of Whitehead [14]. If .X;A/ is a pair of topological
spaces, based in A, Whitehead proved that the boundary map d W �2.X;A/! �1.A/, together with the
action of �1.A/ on �2.X;A/, defines a crossed module. Then, in [11], Mac Lane and Whitehead showed
that the spaces X with �q.X /D 0, for q � 2, are determined by the crossed module of the pair .X;X1/,
where X1 is the 1–dimensional skeleton of X . For any cdgl LDL0˚L1, the geometric realization hLi
is determined by the crossed module associated to the pair .hLi; hL0i/. Our second main result identifies
this crossed module with C.L/.

Theorem 2 The Whitehead crossed module associated to the simplicial pair .hLi; hL0i/ is isomorphic
to the crossed module C.L/ introduced above.

In short, these two theorems unify the geometric realizations of complete differential graded Lie algebras of
the form LDL0˚L1 and of crossed modules. In the last section, we extend the correspondence between
Maltsev groups and pronilpotent Lie algebras to crossed modules. We introduce the categories of Maltsev
crossed modules and of pronilpotent Lie algebra crossed modules and prove an isomorphism of categories.
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Theorem 3 The following three categories are isomorphic:

(1) the category of pronilpotent differential graded Lie algebras of the form LDL0˚L1,

(2) the category of pronilpotent Lie algebra crossed modules ,

(3) the category of Maltsev crossed modules.

Moreover , the equivalence between (1) and (3) is given by the functor C.

As a next step for the future, we can consider a connected cdgl L such that H�nC1LD 0 for some n� 1.
Using the ideal J DL�nC1˚dLnC1, the same argument used above gives a weak homotopy equivalence

h'iW hL; di '�! hL=J; Ndi:

We conjecture that the differential d defines an n–cat-group structure on C.L/— in the sense of Loday
in [10] — and that the geometric realization hL=J; Ndi is isomorphic to the realization of this n–cat-group.

Our program is carried out in Sections 1–7 below, whose headings are self-explanatory.

Conventions and notation

In a graded Lie algebra L, the group of elements of degree i is denoted by Li . A Lie algebra differential
decreases the degree by 1, ie dLi �Li�1. If x 2L, we denote by adx the Lie derivation of L defined by
adx.y/D Œx;y�.

If there is no ambiguity, the product of two elements m and m0 of a group M is denoted by mm0.
Sometimes, if several laws are involved, we can use some specific notation, such as m?m0 or m�m0,
to avoid confusion. An action of a group N on a group M is always a left action and is denoted by
.n;m/ 7! nm. We denote then by M Ì N the semidirect product whose multiplication law is defined by

.m; n/.m0; n0/D .m nm0; nn0/:

Acknowledgements
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supported by the ANR-11-LABX-0007-01 “CEMPI”.

1 Background on Lie models

A complete differential graded Lie algebra (henceforth cdgl) is a differential graded Lie algebra L

equipped with a decreasing filtration of differential Lie ideals such that F1 DL, ŒFpL;FqL�� FpCqL

and
LD lim

 ��
n

L=FnL:

If no filtration is specified, it is understood that we consider the lower central series.
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Let V D
L

i2Z Vi be a rational graded vector space. We denote by L.V / the free graded Lie algebra
on V , and by L�n.V / the ideal of L.V / generated by the brackets of length greater than or equal to n.
The completion of L.V / is the inverse limit

yL.V /D lim
 ��

n

L.V /=L�n.V /:

This is a cdgl for the filtration given by the ideals GnDker.yL.V /!L.V /=L>n.V //. The correspondence
V !yL.V / gives a left adjoint to the forgetful functor to graded rational vector spaces [4, Proposition 3.10].
We call yL.V / the free complete graded Lie algebra on V .

If � is a derivation of degree 0 on a cgl L, the exponential map e� is a cgl automorphism of L defined by

e� D
X
i�0

� i

i !
:

In particular, for any x 2L0, eadx is a cgl automorphism of L. Therefore, in any cgl L, the Lie subalgebra
L0 admits a group structure whose multiplication law � is given by the Baker–Campbell–Hausdorff
product [1, Chapter II.6, Proposition 4; 13, Section 3.4] and characterized by

eadx�y D eadx ı eady :

Now we recall the first properties of the cosimplicial cdgl L� [4, Chapter 6]. Denote as usual by �n the
simplicial set in which�n

p is the set of .pC1/–tuples of integers .j0; : : : ; jp/ such that 0�j0�� � ��jp�n.
We also denote by �n the simplicial complex formed by the nonempty subsets of f0; : : : ; ng. The
subcomplex P�n of �n is the simplicial complex containing the proper nonempty subsets of f0; : : : ; ng.

Finally s�1C��
n denotes the desuspension of the simplicial chain complex on �n and s�1C��

n the
desuspension of the complex of simplicial chains on �n, which is isomorphic to s�1N��

n, the complex
of nondegenerate chains on �n. Then, as a graded Lie algebra (without differential), we set

Ln D
yL.s�1C��

n/:

In other words, Ln is the free complete graded Lie algebra on elements ai0:::ik
of degree jai0:::ik

j D k�1,
for all 0� i0 < � � �< ik � n. For instance, we have jai j D �1 and jai0i1

j D 0.

The family �� D f�ngn�0 is a cosimplicial object in the category of simplicial sets. It follows that
the family s�1N��

� is a cosimplicial object in the category of chain complexes. The identification
s�1C��

n Š s�1N��
n makes s�1C��

n a cosimplicial object in the category of chain complexes. The
extension of the cofaces and codegeneracies as morphisms of Lie algebras gives morphisms of complete
graded Lie algebras ıi W Ln! LnC1 and � i W Ln! Ln�1. More precisely,

ıi.aj0:::jp
/D ar0:::rp

with rk D

�
jk if jk < i;

jk C 1 if jk � i;

� i.aj0:::jp
/D ar0:::rp

with rk D

�
jk if jk � i;

jk � 1 if jk > i;

if r0 < � � �< rp. Otherwise, � i.aj0:::jp
/D 0.
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Proposition 1.1 [4, Theorem 6.1] Each Ln can be endowed with a differential d satisfying the following
properties.

(i) The linear part d1 of d is given by

d1ai0:::ip D

pX
jD0

.�1/j a
i0:::Oij :::p

:

(ii) The generators ai are Maurer–Cartan elements; ie dai D�1=2Œai ; ai �.

(iii) The cofaces ıi and the codegeneracies � i are cdgl morphisms.

(iv) For n� 2,
da0:::n D Œa0; a0:::n�Cˆ;

with ˆ 2 yL.s�1C� P�
n/.

Thus , in particular , the family L� is a cosimplicial cdgl.

Let us specify the cdgl Ln in low dimensions.

� L0 D .L.a0/; d/ is the free Lie algebra on a Maurer–Cartan element a0.

� L1 D .yL.a0; a1; a01/; d/ is the Lawrence–Sullivan interval — see [9] — with

da01 D Œa01; a1�C
ada01

eada01 � 1
.a1� a0/:

� L2D .yL.a0; a1; a2; a01; a02; a12; a012/; d/ is a model of the triangle — see [4, Proposition 5.14] —
with the differential

(1-1) d.a012/D a01 � a12 � a�1
02 � Œa0; a012�:

The cosimplicial cdgl L� leads naturally to the definition of cdgl models for any simplicial set and to a
geometric realization for any given cdgl; see [4, Chapter 7]. For our purpose, we only need the realization
of a cdgl L, defined as the simplicial set

hLi D Homcdgl.L�;L/;

which satisfies properties of the classical Quillen realization. For instance, for any n� 1, �nhLiDHn�1L,
where the group law of H0L is the BCH product; see [4, Section 4.2] or [1, Chapter II.6.4].

2 Crossed modules and cdgls

For general background on crossed modules, we refer the reader to the historical papers of Whitehead
[11; 14] or to more modern presentations, such as [2; 3; 10]. We recall only the basics we need.

Definition 2.1 A crossed module CD .d WM !N / is a morphism of groups d together with an action
of N on M , given by group automorphisms n 7! .m 7! nm/ satisfying two conditions:

(1) For all m 2M and n 2N , d.nm/D nd.m/n�1.

(2) For all m 2M , m0 2M , d.m/m0 Dmm0m�1.
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If the group N acts on itself by conjugation, the first property means that d is compatible with the N –
action. It also implies that the group d.M / is a normal subgroup of N and that ker d is an N –submodule
of M .

On the other hand, we remark that if d.m/D 1, the second property implies mm0 Dm0m which means
that ker d is included in the center of M . The same property shows that Im d acts trivially on ker d and
induces thus an action of coker d on ker d .

Now let LDL0˚L1 be a cdgl. In what follows L0 is always considered as a group equipped with the
BCH product denoted by �. We will prove that d WL1!L0 is a crossed module. The first step consists
in defining a group structure on L1. This construction was originally carried out in [4, Definition 6.14].

Proposition 2.2 For any cdgl .L; d/ such that LDL0˚L1, L1 admits a natural product ? for which
the differential d W .L1;?/! .L0;�/ is a group morphism. Moreover , a ? b D aC b if a and b are
cycles.

Proof The different possibilities for a definition of this law are described in [4, Section 6.5]. We recall
here the construction for the convenience of the reader, beginning with the “universal” example, the cdgl
L0 D yL.u1;u2; du1; du2/, with ui in degree 1. Since HL0 D 0 there is an element ! in L0

1
such that

(2-1) d! D du1 � du2:

Of course such an element is not unique. If !0 is another element satisfying (2-1), the difference ! �!0

is a boundary since H�1L0 D 0. This shows that the class of ! is well defined in the cdgl quotient
.L0=.L0

�2
˚ dL0

2
/; Nd/. We denote this class by u1 ? u2. By construction, it satisfies

Nd.u1 ? u2/D du1 � du2:

Among all the different possible choices for !, one starts with the Baker–Campbell–Hausdorff series for
du1�du2. Replacing in each term one and only one dui by ui , we get an element ! with d!Ddu1�du2.
This gives

(2-2) ! D u1Cu2C
1
2
Œu1; du2�C

1
12
Œdu1; Œdu1;u2���

1
12
Œdu2; Œdu1;u2��C � � � :

Now, let L be a cdgl with LDL0˚L1, e1; e2 2L1, and f WL0!L the unique cdgl map sending ui

to ei . Then the element e1 ? e2 WD f .u1 ? u2/ is a well-defined element in L1. By construction, if e1

and e2 are cycles, using the image of the formula (2-2) in L, we have e1 ? e2 D e1C e2.

For the associativity of ?, we consider L00 D yL.u1;u2;u3; du1; du2; du3/ and observe that in L00
1
=dL00

2

we have .u1 ? u2/? u3 D u1 ? .u2 ? u3/ because both have the same boundary. The same is thus true
in L1.

With this group structure on L1 we can now prove that LDL0˚L1 is a crossed module.

Proposition 2.3 Let .L;d/ be a connected complete differential graded Lie algebra such that LDL0˚L1.
Then d W .L1;?/! .L0;�/ is a crossed module.

Algebraic & Geometric Topology, Volume 24 (2024)



Realization of Lie algebras and classifying spaces of crossed modules 147

Proof Recall from [4, Definition 12.40] that the group L0 acts on L1 by
xz D eadx .z/; for all x 2L0; z 2L1:

From [4, Corollary 4.12] it follows that, for any x 2L0, y 2L0 and z 2L1,
.x�y/z D eadx�y .z/D eadx .eady z/D x.yz/:

To prove that the function y 7! xy is a group homomorphism, as in Proposition 2.2, we consider a
universal example. Let E D yL.x; z; t; dz; dt/ with x in degree 0, z and t in degree 1, and dx D 0. Since
the injection L.x/!E is a quasi-isomorphism, we have H�1.E/D 0. Observe that in E=.E�2˚dE2/,

d.x.z ? t//D eadx .d.z ? t//D eadx .dz � dt/

D x � dz � dt �x�1

D x � dz �x�1
�x � dt �x�1

D eadx .dz/� eadx .dt/D d.eadx z/� d.eadx t/D d.xz ? xt/:

Thus, in E1=dE2, we get
x.z ? t/D xz ? xt:

The same is therefore also true in L1.

As x is a cycle, by [4, Propositions 4.10 and 4.13],

d.xz/D eadx .dz/D x � dz �x�1;

and property (1) of Definition 2.1 is satisfied. For property (2), we use once again the universal example
L0 D yL.u1;u2; du1; du2/ already considered in the proof of Proposition 2.2. Since in L0

1
=dL0

2
we have

d.du1u2/D du1 � du2 � du�1
1 D d.u1 ? u2 ? u�1

1 /;

we deduce that
du1u2 D u1 ? u2 ? u�1

1 ;

and thus the same is true in L1.

Remark 2.4 By Proposition 2.2, under the hypotheses of Proposition 2.3, we deduce that the group
structures ? and C coincide on H1LD ker d .

We have thus defined a functor C W cdgl�1! CrMod.

3 The crossed module of a realization and Theorem 2

In this section, in the case LDL0˚L1, we establish the isomorphism between C.L/ and the Whitehead
crossed module of .hLi; hL0i/.

Proof of Theorem 2 The realization hLi D Homcdgl.L�;L/ of a cdgl LDL0˚L1 is a Kan complex
[4, Proposition 7.13]. We first compute �1.hL0i/ and �2.hLi; hL0i/, and for that we use the homotopy
relation introduced in [12, Section 3].
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Since L1 D .yL.a0; a1; a01/; d/, the map f 7! f .a01/ induces an isomorphism of sets

hL0i1 D Homcdgl.L1;L0/
Š�!L0:

Since @if D 0, for i D 0; 1, each element of L0 defines an element of �1.hL0i/. Now, two such
1–simplices, g and f , are homotopic in hL0i if there exists a map h W L2 ! L0 such that @1h D g,
@2hD f and @0hD 0. The simplex h is called a homotopy from f to g.

In the particular case g D 0, from the simplicial structure of the realization, we get h.a02/D h.a12/D 0

and h.a01/D f .a01/. Since h.a012/D 0, we have an equivalence

f � 0 () 0D dh.a012/D h.a01 � a12 � a�1
02 /D f .a01/:

Therefore �1hL0i DL0.

To compute the relative homotopy group �2.hLi; hL0i/, we consider the set

K D
˚
f 2 hLi2 D Homcdgl.L2;L/ j @if D 0 for i D 1; 2 and @0f 2 hL0i

	
:

If f 2K, we have @0f .a01/Df .ı
0.a01//Df .a12/Df .da012/Ddf .a012/ and thus the correspondence

K!L1 which maps f to f .a012/ is an isomorphism. By [12, Definitions 3.3 and 3.6], two simplices, f
and g, of K are homotopic rel hL0i if @0f � @0g in hL0i by a homotopy h, and there exists a 3–simplex
! W L3!L such that @0! D h, @2! D f , @3! D g and @1! D 0.

For getting an expression of these conditions at the level of cdgls, we recall [4, Proposition 6.16] the
differential d of L3, which uses the operation ? introduced in the proof of Proposition 2.2,

(3-1) d.a0123/D eada01 a123� .a012 ? a023 ? a�1
013/:

From L�2 D 0, we deduce !.a0123/D 0. By the definition of K, !.a123/D @0!.a012/D h.a012/D 0

since L0 has no element of degree 1. We also have

!.a012/D @3!.a012/D g.a012/; !.a013/D @2!.a012/D f .a012/; !.a023/D @1!.a012/D 0:

Thus, by applying ! to both sides of (3-1), we obtain

0D 0�g.a012/? 0? f .a012/
�1;

ie 0D g.a012/? f .a012/
�1. This implies 0D dg.a012/� df .a012/

�1 and df .a012/D dg.a012/.

It remains to describe g.a012/?f .a012/
�1. From the compatibility of the differential with Lie bracket and

the fact that L1 is an abelian Lie algebra, we get Œg.a012/; dg.a012/�D�
1
2
d Œg.a012/;g.a012/�D0. In the

BCH product df .a012/�dg.a012/, all terms except the linear ones contain a bracket Œdf .a012/; dg.a012/�

which becomes Œdf .a012/;g.a012/�D Œdg.a012/;g.a012/�D 0 in the formula (2-2). We thus obtain

g ? f �1
D g�f:
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We have proven �2.hLi; hL0i/ Š L1 and �1.hL0i/ Š L0. We also showed that the connecting map
@ W �2.hLi; hL0i/! �1.hL0i/, given by Œf � 7! Œ@0f �, corresponds to df .a012/ in the previous isomor-
phisms.

Consider now the action of �1.hL0i/ D L0 on �2.hLi; hL0i/ D L1. Let a 2 L0, b 2 L1 and ab the
element of L1 corresponding to this action. Recall [4, Lemma 4.23] that y D eadab is also an element
of L1 such that dy D a�db �a�1. Both constructions, ab and eadab, are natural, so to prove abD eadab,
we have only to prove it for the cdgl L00 quotient of L0 D yL.a;u; du/, with deg u D 1, by the ideal
L0
�2
˚dL0

2
. The required identification follows from d.au/Dd.eadau/ and the injectivity of d WL00

1
!L00

0
.

We have thus recovered the crossed module C.L/.

4 The classifying space of a crossed module

By definition, the classifying space of a crossed module C is the classifying space of the nerve of the
categorical group associated to C. Let us specify this association.

Recall that a categorical group is a group object in the category of groups (see [10, Section 1.1]),

G
s
//

t
// N;

where N is a subgroup of G, s and t are homomorphisms such that sjN D t jN D idN and Œker s; ker t �D 1.

In [10], J L Loday defines a categorical group associated to a crossed module CD .d W .M;?/! .N;�//

as follows:

� G DM Ì N is the product M �N with the semidirect product given by the action of N on M .
Thus, the product of .m0; n0/ and .m; n/ in G is

.m0; n0/ � .m; n/D .m0 ? n0m; n0 � n/:

� An element .m; n/ of G has for source and target, respectively,

s.m; n/D dm� n and t.m; n/D n:

Thus, the group N is interpreted as the group of objects viewed in G as f1g�N . The group G DM ÌN

is the group of arrows with the morphisms s and t giving the source and the target. Two elements .m0; n0/
and .m; n/ are composable if

n0 D t.m0; n0/D s.m; n/D dm� n:

In this case the composition is defined by

.m0; n0/ ı .m; n/D .m0 ?m; n/:
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We deduce easily from property (1) of Definition 2.1 that s and t are group homomorphisms. We also
verify that the source of a composite is the source of the first factor and the target is the target of the
second factor:

s.m0 ?m; n/D d.m0 ?m/�nD dm0 �dm�nD dm0 �n0 D s.m0; n0/; t.m0 ?m; n/D nD t.m; n/:

Finally, composition is a group homomorphism; see [10, Lemma 2.2].

The usual nerve of a category is a simplicial set. When the category is a categorical group, we obtain
naturally a simplicial group. Let us describe the nerve of the categorical group associated to a crossed
module CD .d W .M;?/! .N;�//. We have

Ner1 DM Ì N
d1
//

d0

// Ner0 DN

with d0.m; n/ D t.m; n/ D n, d1.m; n/ D s.m; n/ D dm � n and s0 W Ner0 ! Ner1 is the canonical
injection N !M Ì N .

An element of Nerk is a sequence .mi ; ni/1�i�k such that

ni D t.mi ; ni/D s.mi�1; ni�1/D dmi�1 � ni�1:

As the ni , for i � 2, are determined by n1 and the family .mi/1�i�k , the sequence .mi ; ni/i�k can be
identified with the sequence

.mk ;mk�1; : : : ;m1; n1/ 2M k
�N:

In particular,

(4-1) Nerk DM k
�N:

Each Nerk is a group, the multiplication being given component wise. With the identification (4-1), this
product is given by

..mi/1�i�k ; n/ � ..m
0
i/1�i�k ; n

0/D ..mi ?
d.?i�1

jD1
mj /�n m0i/1�i�k ; n� n0/:

The boundary and degeneracy maps of Ner� are morphisms of groups defined as usual by

d0.mk ; : : : ;m1; n/D .mk ; : : : ;m2; d.m1/� n/;

di.mk ; : : : ;m1; n/D .mk ; : : : ;miC1 ?mi ; : : : ;m1; n/; 0< i < k;

dk.mk ; : : : ;m1; n/D .mk�1; : : : ;m1; n/;

si.mk ; : : : ;m1; n/D .mk ; : : : ;mi ; 1;mi�1; : : : ;m1; n/; 0� i � k:

The identity ek 2 Nerk is the element .1; : : : ; 1; 1/.

Recall from [5, Definition 3.20] or [7, page 255] the classifying functor W which goes from the category
of simplicial groups to the category of reduced simplicial sets. The classifying space BC of the crossed
module C is the space obtained by composing Ner� with W ,

BCDW .Ner�/:
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By definition of W ,
.BC/k D f.hk�1; : : : ; h0/ j hi 2 Nerig:

The boundaries and degeneracies are given by

d0.hk�1; : : : ; h0/D .hk�2; : : : ; h0/;

di.hk�1; : : : ; h0/D .di�1hk�1; : : : ; d0hk�i � hk�i�1; hk�i�2; : : : ; h0/; 0< i < k;

dk.hk�1; : : : ; h0/D .dk�1hk�1; : : : ; d1h1/;

s0.hk�1; : : : ; h0/D .1; hk�1; : : : ; h0/;

si.hk�1; : : : ; h0/D .si�1hk�1; : : : ; s0hk�i ; 1; hk�i�1; : : : ; h0/; 0< i � k:

In particular, in low dimensions,

BC0 D 1; BC1 DN; BC2 D .M Ì N /�N; BC3 D .M
2 Ì N /� .M Ì N /�N:

5 The classifying space functor W and twisting functions

Let A� be a simplicial set. By [12, Corollary 27.2], there is a bijective correspondence between morphisms
of simplicial sets ' WA�!W ıNer� D BC and twisting functions

� D f�k WAk ! Nerk�1gk�1:

Recall [12, Definition 18.3] that a twisting function � is a family of maps �k WAk ! Nerk�1 satisfying,
for x 2Ak ,

d0�x D �d1x � .�d0x/�1;

di�x D �diC1x; i > 0;

si�x D �siC1x; i � 0;

�s0x D ek 2 Nerk :

The simplicial map 'k WAk ! .BC/k associated to the twisting function � is given by

(5-1) 'kx D .�x; �d0x; : : : ; �dk�1
0 x/:

Conversely [12, page 88], the twisting function � associated to a simplicial morphism ' WA�!W .Ner�/
is defined by

� D �.Ner�/ ı';

where �.Ner�/ is the twisting function associated to the identity on W .Ner�/,

�.Ner�/ WW .Ner�/k ! Nerk�1;

defined by
�.Ner�/.gn�1; : : : ;g0/D gn�1:
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6 Proof of Theorem 1

First we compute the simplicial set hLi� D Homcdgl.L�;L/ in the case LDL0˚L1. By L�2 D 0 and
[4, Corollary 6.5], we have isomorphisms

Homcdgl.Lk ;L/Š Homcdgl..yL..s
�1�k/�2/; d/;L/Š Homcdgl..yL..s

�1ƒk
0/�2/; d/;L/:

Since any morphism of codomain L vanishes on elements of negative degree, we can quotient by the
differential ideal generated by the generators of degree �1. This gives as free cgl

Lk D .yL.aij ; a0st /; d/ with 0� i < j � k and 0< s < t � k:

Finally, in view of the differential in L2, recalled in (1-1), the differential of Lk satisfies

daij D 0 and da0st D a0s � ast � a�1
0t :

In the rest of this text, we will use that, for all k, there exists an isomorphism

hLik D Homcdgl.Lk ;L/D Homcdgl.Lk ;L/:

Proposition 6.1 If LDL0˚L1, then the morphism

‰ W Homcdgl.Lk ;L/!Lk
0 �L

k.k�1/=2
1

given by ‰.f /D
�
.f .ar rC1//0�r<k ; .f .ar;rC1;s//rC1<s�k

�
is an isomorphism.

Proof For the sake of simplicity write for i < j , aji D a�1
ij , and for 0� i < j < r � k,

airj D a�1
ijr ;

arij D
ar i aij r D

a�1
ir aij r ;

ajir D
aj i airj D

a�1
ij a�1

ijr ;

ajri D
aj i aij r D

a�1
ij aij r ;

arji D
ar i airj D

a�1
ir a�1

ijr :

With this notation, when the integers i , j and r are all different from each other and between 0 and k,

daij r D aij � ajr � ari :

Suppose that the elements f .ar;rC1/ and f .ar;rC1;t /, with rC1< t , are defined. Then the other elements,
f .ar;rCs/ and f .ar;rCs;t / with r C s < t , can be derived by induction on s from the formulas

f .ar;rCsC1/D df .ar;rC1;rCsC1/
�1
�f .ar;rC1/�f .arC1;rCsC1/;

f .ar;rCsC1;t /D
f .ar;rC1/

�
f .arC1;r;rCsC1/? f .arC1;rCsC1;t /? f .arC1;t;r /

�
:

This shows that ‰ is injective. The same construction process shows that ‰ is also surjective.
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The isomorphism of our main theorem is based on a family � of maps

�k W Homcdgl.Lk ;L/! Nerk�1; k � 1;

defined by
�kf D .mk�1; : : : ;m1; n/ 2M k�1

�N;

with nD f .a01/, m1D .f .a012//
�1 and mi D .f .a01.iC1///

�1? f .a01i/, for i � 2. In low dimensions,
this gives

�1f D f .a01/ 2N;

�2f D .f .a012/
�1; f .a01// 2M �N;

�3f D .f .a013/
�1
? f .a012/; f .a012/

�1; f .a01// 2M 2
�N:

Proposition 6.2 The family � is a twisting function.

Proof Observe that miC1 ?mi D f .a01.iC2//
�1 ? f .a01i/. Thus, the index i C 1 disappears in the

expression of di�kf and we get di�kf D �k�1diC1f for 0< i < k � 1. A similar argument gives also
the result for dk�1. We have reduced the problem to proving the more subtle equality involving d0. We
use an induction, supposing the result is true for �j , with j < k, and considering �k . Due to the inductive
step, we can concentrate the computations on the left-hand factor. From the definitions,

�k�1d1f D .f .a02k//
�1
? f .a02.k�1//; : : : ; f .a02//;

�k�1d0f D ..f .a12k/
�1
? f .a12.k�1//; : : : ; f .a12//;

d0�kf D ..f .a01k/
�1
? f .a01.k�1//; : : : ; .df .a012//

�1
�f .a01//:

We determine the product of the two last terms,

d0�kf � �k�1d0f D .f .a01k/
�1
? f .a01.k�1//?

 .f .a12k/
�1
? f .a12.k�1///; : : :/;

where  D dmk�2 �dmk�1 � � � � �dm1 �nD f .a0.k�1//� .f .a1.k�1///
�1. To obtain the equality with

�k�1d1f , we consider the computation in Lk ,

d.a�1
01k ? a01.k�1/ ?

a0.k�1/�a
�1
1.k�1/.a�1

12k ? a12.k�1//D a0k � a�1
2k � a2.k�1/ � a�1

0.k�1/

D d.a�1
02k ? a02.k�1//:

Similar computations give the corresponding equalities for degeneracy maps.

Denote by ' the morphism of simplicial sets induced by the previous twisting function � ,

' W Homcdgl.L;L/! BC.L/:

The following result finishes the proof of the theorem.

Proposition 6.3 The morphism ' is an isomorphism of simplicial sets.
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Proof Recall from (5-1) that
'kf D .�f; �d0f; : : : ; �dk�1

0 f /:

Moreover, using d0f D f ı
0, we get �d0f D .m

0
k�2

; : : : ;m0
1
; n0/, with n0 D f .a12/, m0

1
D f .a123/

�1

and for i > 1, m0i D f .a12.iC2//
�1 ? f .a12.iC1//. By iteration from .d0/

`f D f .ı0/`, we deduce
that the image of 'k is the linear subspace generated by the elements f .ar;rC1/, for 0 � r < k, and
f .ar;rC1;s/, for r C 1< s � k. The result thus follows from Proposition 6.1.

7 Maltsev crossed modules and Theorem 3

In this section, we establish an isomorphism of categories between cdgl�1 and a subcategory of crossed
modules. We use the Lie algebra crossed modules introduced by Kassel and Loday in [8]. We begin with
a reminder of [8].

In Definition 2.1, the group action of N on M corresponds to a homomorphism from N in the group of
automorphisms of M . For Lie algebras, n and m, an action of n on m corresponds to a Lie morphism
v W n! Der.m/ in the Lie algebra of derivations of m. The action of n 2 n on m 2m is denoted v.n/:m.
We can now state [8, Définition A.1].

Definition 7.1 A Lie algebra crossed module is a morphism of Lie algebras, u Wm! n, together with an
action v W n! Der.m/, satisfying two conditions:

(1) For all m 2m and n 2 n, u.v.n/:m/D Œn; u.m/�.

(2) For all m 2m, m0 2m, v.u.m//:m0 D Œm;m0�.

We now introduce the “rational” versions of crossed modules. If G is a group, Gk D ŒG;Gk�1� denotes
the lower central series of G.

Definition 7.2 (1) A group G is a Maltsev group (or prounipotent rational group) if each Gk=GkC1

is a Q–vector space, dim G=G2 <1 and G D lim
 ��k

G=Gk .

(2) A crossed module d WM !N is a Maltsev crossed module if M and N are Maltsev groups and
the action of N on M satisfies .nm/m�1 2M kC1 for all m 2M k and n 2N .

If m is a Lie algebra, mk D Œm;mk�1� denotes the lower central series of m.

Definition 7.3 (1) A Lie algebra m is pronilpotent if dimm=m2 <1 and mD lim
 ��k

m=mk .

(2) A Lie algebra crossed module u Wm! n is pronilpotent if m and n are pronilpotent Lie algebras
and the action v W n! Der.m/ satisfies v.n/:mk �mkC1.
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Remark 7.4 The completion of a Lie algebra m satisfying dimm=m2 <1 is the Lie algebra

ymD lim
k

m=mk :

This is a pronilpotent Lie algebra since ymD limk ym=ym
k .

If a Lie algebra m acts on a vector space V , we denote by V k the sequence of subspaces V 0 D V ,
V k Dm:V k�1.

Definition 7.5 The action of m on V is pronilpotent if V D lim
 ��k

V k . In particular, a cdgl LDL0˚L1

is pronilpotent if the Lie algebra L0 is pronilpotent and if the adjoint action of L0 on L1 is pronilpotent.

Proof of Theorem 3 We only define the correspondences for objects, the extension to morphisms being
immediate.

To show that (1) implies (2), we start with a pronilpotent cdgl LDL0˚L1 and we construct a pronilpotent
Lie algebra crossed module u Wm! n with action v W n! Der.m/. We denote d the differential of L and
Œ�;�� its bracket.

We set nDL0, mDL1. The bracket on n is the bracket of L0 and the bracket on m is defined by

Œa; b�0 D Œda; b� for a; b 2L1:

We check that Œ�;��0 is an (ungraded) Lie bracket. Since Œa; b�D 0, the antisymmetry follows from

0D d Œa; b�D Œda; b�C Œdb; a�D Œa; b�0C Œb; a�0:

The proof is similar for the Jacobi identity. The morphism u Wm! n is the differential d ; this is a Lie
algebra morphism,

u.Œa; b�0/D d Œda; b�D Œda; db�D Œu.a/; u.b/� for all a; b 2m:

The action v W n! Der.m/ is given by the adjoint action, v.x/ D adx . The formulas (1) and (2) of
Definition 7.1 also follow immediately: letting a; b 2mDL1 and x 2 nDL0,

u.v.x/:a/D d.adx.a//D d Œx; a�D Œx; da�D Œx; u.a/�; v.u.a//:b D adda.b/D Œda; b�D Œa; b�0:

By definition, since L is pronilpotent the associated Lie algebra crossed module is also pronilpotent.

To show that (2) implies (1), we start with a pronilpotent Lie algebra crossed module u W m! n with
action v W n! Der.m/ and we construct a pronilpotent cdgl LDL0˚L1. We define L0 D n as a Lie
algebra and L1 D m as a vector space. For a 2 L1 and x 2 L0, we set Œx; a�D v.x/:a and d D u. We
check easily that d is a derivation and LDL0˚L1 is pronilpotent.

The associations (1) D) (2) and (2) D) (1) give the desired isomorphism of categories for the two first
points of the statement.
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To show that (2) implies (3), we start with a pronilpotent Lie algebra crossed module u W m! n with
action v W n!Der.m/ and we construct a Maltsev crossed module d WM !N . We define M and N to be
the vector spaces m and n respectively, with the group structure given by the Baker–Campbell–Hausdorff
product, and set d D u. The action v extends in an action by ev: for n 2N D n and m 2M Dm, we set

nmD ev.n/.m/:

As v is a morphism of Lie algebras, we have vŒn; n0� D Œv.n/; v.n0/� for all n; n0 2 N , and so the
Baker–Campbell–Hausdorff formula implies v.n� n0/D v.n/� v.n0/ and

.n�n0/mD ev.n�n
0/.m/D ev.n/.ev.n

0/.m//:

Thus, we have a group action. The two additional properties of Maltsev crossed modules are easily
deduced from the corresponding properties of Lie algebra crossed modules as well as the pronilpotency
conditions.

To show that (3) implies (2), as we do for the cases (1) and (2), the previous process are reversed.
We associate a pronilpotent Lie algebra to a Maltsev group, replacing the exponential by the functor
L 7! log.1CL/. The only significant point is the construction of the Lie algebra action v W n! Der.m/
from the group action � WN ! Aut.M /; this is done by

v.n/:mD log.1C �.n//.m/:

We end with the study of the composition (1) D) (2) D) (3). We start with LDL0˚L1 and in step (2)
we define a bracket on L1 by Œa; b�0 D Œda; b�. Then, in the second implication, we endow L1 with a
group law coming from the Baker–Campbell–Hausdorff formula, a�b D log.eaeb/. This formula can be
written as

a� b D aC bC 1
2
Œa; b�0C 1

12
Œa; Œa; b�0�0� 1

12
b; Œa; b�0�0C � � �

D aC bC 1
2
Œda; b�C 1

12
Œda; Œda; b��� 1

12
db; Œda; b��C � � � :

This is exactly the expression of a ? b given in the formula (2-2). We recover the group law on L1

in C.L/. The rest of the verification is straightforward.
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Knot Floer homology, link Floer homology and link detection

FRASER BINNS

GAGE MARTIN

We give new link detection results for knot and link Floer homology, inspired by recent work on
Khovanov homology. We show that knot Floer homology detects T .2; 4/, T .2; 6/, T .3; 3/, L7n1 and
the link T .2; 2n/ with the orientation of one component reversed. We show link Floer homology detects
T .2; 2n/ and T .n; n/, for all n. Additionally, we identify infinitely many pairs of links such that both
links in the pair are each detected by link Floer homology but have the same Khovanov homology and knot
Floer homology. Finally, we use some of our knot Floer detection results to give topological applications
of annular Khovanov homology.

57K10, 57K18

1 Introduction

Knot and link Floer homology are invariants of links in S3; see Ozsváth and Szabó [31; 32] and
Rasmussen [34]. There are a number of formal similarities between these Floer theoretic invariants and
the combinatorial Khovanov homology. Recently, Khovanov homology has been shown to detect a number
of simple links; see Baldwin, Dowlin, Levine, Lidman and Sazdanovic [2], Li, Xie and Zhang [23],
Martin [26] and Xie and Zhang [38; 40]. Some of these detection results have used knot and link Floer
homology without going so far as to determine whether knot or link Floer homology detects the relevant
link. Inspired by this work, we give such detection results for knot and link Floer homology. We remind
the reader that the knot Floer homology of a link L is computed using an associated knot, called the
knotification of L, in a connected sum of copies of S1 � S2, while the link Floer homology of L is
computed directly from the link L in S3.

Previously it was known that knot Floer homology detects the unknot (see Ozsváth and Szabó [30]), the
trefoil (see Ghiggini [7]), the figure eight knot [7], the Hopf link (see Ni [28] and [30]) and the unlink
(see Hedden and Watson [15] and Ni [29]). Link Floer homology was known to detect the trivial n–braid
together with its braid axis (see Baldwin and Grigsby [3]) and determine if a link is split; see Wang [37].
It was also known that a stronger version of link Floer homology, CFL1, detects the Borromean rings
and the Whitehead link; see Gorsky, Lidman, B Liu and Moore [11].

We prove the following knot Floer homology detection results:

Theorem 4.1 If bHFK.L/Š bHFK.T .2; 4//, then L is isotopic to T .2; 4/.

© 2024 MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution License 4.0 (CC BY).
Open Access made possible by subscribing institutions via Subscribe to Open.
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Throughout, we take the links T .2; 2n/ to be oriented as the closure of the 2–braids �2n
1

.

Theorem 5.1 If bHFK.L/Š bHFK.T .2; 6//, then L is isotopic to T .2; 6/.

Let Jn be the link obtained from T .2; 2n/ by reversing the orientation on one of the components. Then:

Theorem 3.1 If bHFK.L/Š bHFK.Jn/ for some n, then L is isotopic to Jn.

Theorem 7.1 If bHFK.L/Š bHFK.T .3; 3//, then L is isotopic to T .3; 3/.

Theorem 8.1 If bHFK.L/Š bHFK.L7n1/, then L is isotopic to L7n1.

We also prove the following link Floer homology detection results:

Theorem 3.2 If bHFL.L/Š bHFL.T .2; 2n// for some n, then L is isotopic to T .2; 2n/.

Theorem 6.1 If bHFL.L/Š bHFL.T .n; n//, then L is isotopic to T .n; n/.

Proposition 9.2 Suppose link Floer homology detects a link L, and that if permuting some collection of
Alexander gradings of bHFL.L/ induces an isomorphism on bHFL.L/ then there is a symmetry of L that
exchanges the corresponding components. Then link Floer homology detects L # H for each choice of
component of L to connect sum with.

Throughout, we view the Hopf link as T .2; 2/ and endow it with the associated orientation. A consequence
of these detection results is that every link currently known to be detected by Khovanov homology is also
detected by either knot or link Floer homology. This leads to the following natural question:

Question 1.1 Is there a link which Khovanov homology detects but which neither knot nor link Floer
homology detects?

On the other hand, we show that there are infinitely many links detected by link Floer homology but
which are detected by neither Khovanov homology nor knot Floer homology.

Theorem 9.4 There exist infinitely many pairs of links .L;L0/ such that link Floer homology detects L

and L0 but Kh.L/Š Kh.L0/ and bHFK.L/Š bHFK.L0/.

Finally, we use some of our torus link detection results to derive applications to annular Khovanov
homology. Annular Khovanov homology is an invariant of links in the thickened annulus A�I , sometimes
thought of as S3 nU where U is an unknot or the annular axis. To do this, we utilize a generalization
of the Ozsváth–Szabó spectral sequence, which relates annular Khovanov homology and knot Floer
homology of the lift of the annular axis zU in †.L/, the double branched cover of L; see Grigsby and
Wehrli [14] and Roberts [35].

Theorem 10.4 Let L�A� I � S3 be an annular link. If AKh.L;Z=2Z/Š AKh.b�1�2;Z=2Z/, then
L is isotopic to b�1�2 in A� I .
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Theorem 10.6 Let L�A�I � S3 be an annular link. If AKh.L;Z=2Z/ŠAKh.1�1�
�1
2
;Z=2Z/, then

L is isotopic to 1�1�
�1
2

in A� I .

Theorem 10.7 Let L � A� I � S3 be an annular link. If AKh.L;Z=2Z/ Š AKh.2�1�2�3;Z=2Z/,
then L is isotopic to 2�1�2�3 in A� I .

Theorem 10.8 Let L�A�I �S3 be an annular link. If AKh.L;Z=2Z/ŠAKh.5�1�2�3�4�5;Z=2Z/,
then L is isotopic to 5�1�2�3�4�5 in A� I .

Notice that b�1�2, 1�1�
�1
2

, 2�1�2�3 and 5�1�2�3�4�5 all represent the unknot when considered in S3, but
these braid closures are all nontrivial knots in A� I .

This paper is organized as follows. In Section 2 we briefly review knot and link Floer homology. In
Section 3 we prove that knot Floer homology detects Jn, and link Floer homology detects T .2; 2n/. In
Section 4 we prove that knot Floer homology detects T .2; 4/. In Section 5 we prove that knot Floer
homology detects T .2; 6/. In Section 6 we prove that link Floer homology detects T .n; n/. In Section 7
we prove that knot Floer homology detects T .3; 3/. In Section 8 we prove that knot Floer homology
detects L7n1. In Section 9 we prove that there are infinite families of links detected by link Floer
homology that also have the same Khovanov homology and knot Floer homology. Finally, in Section 10
we prove the annular Khovanov homology results using some of our knot Floer detection results.
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2 Knot Floer homology and link Floer homology

Knot Floer homology and link Floer homology are invariants of links in S3, defined using a version of
Lagrangian Floer homology [31; 32; 34]. They are categorifications of the single variable and multivariable
Alexander polynomials, respectively. Here we briefly highlight the key features of knot Floer homology
and link Floer homology that we use to obtain our detection results. We work with coefficients in Z=2Z.

Let L be an oriented link in S3, with components L1;L2; : : : ;Ln. The link Floer homology of L is a
multigraded vector space

bHFL.L/D
M

d;A1;:::An

bHFLd .LIA1; : : :An/:

The grading denoted by “d” above is called the Maslov or algebraic grading, while the Ai gradings are
called the Alexander gradings. Each Ai satisfies 2Ai C `k.Li ;L�Li/ 2 2Z.
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The knot Floer homology of L is a vector space bigraded by a Maslov grading and a single Alexander
grading. The knot Floer homology of L can be obtained by projecting the link Floer homology onto the
diagonal of the multi-Alexander gradings, which becomes the Alexander grading, and adding 1

2
.n� 1/ to

the Maslov grading.

We use a number of formal properties of knot and link Floer homology in proving our link detection
results. The first of these is that link Floer homology has a symmetry relating the component of the
homology supported in grading .m;A1; : : : ;An/ with the component of the homology supported in
grading

�
m� 2

Pn
iD1 Ai ;�A1; : : : ;�An

�
. Knot Floer homology enjoys the same symmetry property,

since it can be defined by projecting the multi-Alexander gradings onto the diagonal. There is also a
Künneth formula for computing the link Floer homology of a connected sum in terms of a tensor product
of link Floer homologies.

The main formal property we will use, however, is that the link Floer homology of L admits spectral
sequences to the link Floer homologies of its sublinks [3, Lemmas 2.4 and 2.5; 32]. In particular, when
Li is a sublink of L, there is a spectral sequence from bHFL.L/ to bHFL.L�Li/˝V jLi j shifting each
Alexander grading by 1

2
`k.L�Li ;Li/. It follows that there is also a spectral sequence from bHFL.L/ tocHF.S3/˝V n�1, or equivalently that there is a spectral sequence from bHFK.L/ to cHF

�
#n�1

.S1�S2/
�
.

Here V is the multigraded vector space F˚F with nonzero Maslov gradings 0 and�1 and multi-Alexander
grading .0; : : : ; 0/.

In addition to enjoying the above algebraic properties, bHFK.L/ and bHFL.L/ are known to reflect a
number of topological properties of L. For starters, there are a number of things we can say about the
number of components of L. Since bHFL.L/ admits a spectral sequence to V n�1, a link is a knot if and
only if rank.bHFK.L// is odd. Since the Maslov grading for bHFL.L/ is integer valued, while the Maslov
gradings of bHFK.L/ are ZC 1

2
.n� 1/ valued, it follows that if the Maslov gradings of bHFK.L/ are

contained in ZC 1
2

then L has an odd number of components, while if the Maslov gradings of bHFK.L/
are contained in grading Z then L has an even number of components. Finally, since bHFK.L/ admits a
spectral sequence to cHF

�
#n�1

.S1 �S2/
�

— which has a generator of Maslov grading 1
2
.n� 1/— we

have that n� 1C 2 maxfm W rank.bHFKm.L//¤ 0g.

Moreover, since knot Floer homology categorifies the Alexander–Conway polynomial, and the Alexander–
Conway polynomial detects the linking number of 2–component links by a result of Hoste [16], it follows
that knot Floer homology detects the linking number of 2–component links.

We will also make use of the fact that the link Floer homology of L yields information about the topology
of S3�L; in particular, that link Floer homology detects the Thurston norm of S3�L [33]. Finally, if
L is not a split link and has a component Li which is fibered, then the top Alexander grading associated
to Li determines if L�Li is a braid in the complement of Li . Specifically, this happens exactly when
the rank in maximal nonzero Alexander grading is 2n�1 [26, Proposition 1].
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3 Knot Floer homology detects Jn

Given that knot Floer homology detects the maximal Euler characteristic of oriented links, it is natural
to try and detect links with large Euler characteristic. The unique 1–component link of maximal Euler
characteristic is the unknot, which knot Floer homology is known to detect. Links with two components
that bound annuli, ie 2–cable links, have high Euler characteristic. The simplest of these are 2–cables of
unknots, ie the links T .2; 2n/ with the orientation of one component reversed. We call these links Jn. In
this section we show that knot Floer homology detects each Jn.

Theorem 3.1 If bHFK.L/Š bHFK.Jn/ for some n, then L is isotopic to Jn.

For reference, we note that, when n is positive, bHFK.Jn/Š Fn
3=2
Œ1�˚F2n

1=2
Œ0�˚Fn

�1=2
Œ�1�, where the

subscript denotes the Maslov grading of the generator, and Œi � denotes the Alexander grading of a summand.
When n is negative, bHFK.Jn/ can be computed from the above formula using an understanding of how
knot Floer homology is affected by mirroring.

A consequence of this detection result is that link Floer homology detects the links T .2; 2n/. This follows
from Theorem 3.1 by considering how link Floer homology changes under reversing the orientation of a
single component.

Theorem 3.2 If bHFL.L/Š bHFL.T .2; 2n// for some n, then L is isotopic to T .2; 2n/.

To prove Theorem 3.1, we will first prove that L is a 2–component link and that both of the components
of L are unknots. Then we will use the fact that knot Floer homology detects genus to show that Jn is
detected among 2–component links with unknotted components. The topological argument used here was
communicated to the authors by Eugene Gorsky (2020), and also appears in Liu’s classification of the
links T .2; 2n/ in terms of surgery to a Heegaard Floer L–space [25].

Lemma 3.3 If bHFK.L/ Š bHFK.Jn/ for some n, then L is a 2–component link , and both of the
components are unknots.

Proof First we show that L is a 2–component link. Notice that the parity of the rank of bHFK.L/ rules
out the case that L is a knot. If L is an n–component link, then there is a spectral sequence from bHFK.L/
to cHF

�
#n�1

.S1�S2/
�
. Because bHFK.L/ is only nonzero in Maslov gradings �1

2
; 1

2
and 3

2
, this spectral

sequence can only exist for nD 2.

To see that both components of L are unknotted, we consider the spectral sequences from bHFL.L/ to
bHFK.K/˝ V where K is a component of L. From this spectral sequence we see that bHFK.K/ is 0

in all Maslov gradings, except possibly 0 and 1. Considering how the Maslov grading changes under
the symmetry of the Alexander grading for knot Floer homology, we can see that bHFK.K/ can only be
supported in Alexander grading 0, so K is an unknot.

With Lemma 3.3 we can now prove Theorem 3.1. The key step is to deduce that Jn is a cable of the unknot.
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Proof of Theorem 3.1 Suppose bHFK.L/Š bHFK.T .2; 2n//. By Lemma 3.3, L is a 2–component link.
If nD 0 then the maximal Alexander grading of bHFK.L/ is 0, whence L bounds two disjoint disks and
L is the 2–component unlink, as desired.

We now consider the n¤ 0 case. Here the maximal Alexander grading of bHFK.L/ is 1, and we see that
the two components of L bound a surface of Euler characteristic 0. Note that the linking number of L,
which knot Floer homology detects, is nonzero, so L cannot bound the disjoint union of a disk and a
punctured torus. Thus L bounds an annulus, ie it is the twisted 2–cable of some knot. Each component of
L is isotopic to the knot that was cabled, and so L is a twisted 2–cable of the unknot by Lemma 3.3. This
means that L is Jm for some m. Finally, a simple computation of the respective ranks in each Maslov
grading shows that bHFK.Jm/Š bHFK.Jn/ if and only if mD n. Thus L is isotopic to Jn.

4 Knot Floer homology detects T.2 ; 4/

Here we will utilize the results of the previous section to obtain a detection result for the torus link T .2; 4/.
The link Floer homology of T .2; 4/ is shown in Table 1, for reference.

Theorem 4.1 If bHFK.L/Š bHFK.T .2; 4//, then L is isotopic to T .2; 4/.

To prove this, we show the following lemma:

Lemma 4.2 If bHFK.L/Š bHFK.T .2; 4// then L consists of two components , L1 and L2, such that each
bHFK.Li/ has a unique Maslov index 0 generator. Moreover , that generator is supported in Alexander

grading 0 in bHFK.Li/.

We then show that L has the same link Floer homology as T .2; 4/, using structural properties of link
Floer homology, and apply Theorem 3.2 to complete the proof.

The following lemma will be useful in proving Lemma 4.2:

Lemma 4.3 Suppose K is a component of a link L such that bHFL.L/ is supported in Maslov gradings
at most 0 with a unique Maslov grading 0 generator. Then there is a unique Maslov index grading 0

generator in bHFK.K/, and it is of nonnegative Alexander grading.

1 F�1 F0

0 F�3 F2
�2

F�1

�1 F�4 F�3

�1 0 1

Table 1: The link Floer homology of T .2; 4/. The coordinates give the multi-Alexander grading;
the subscript gives the Maslov grading.
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Proof The Maslov grading 0 generator must persist under the spectral sequence from bHFL.L/ to
bHFL.K/˝ V jLj�1, as else it cannot persist to cHF.S3/˝ V jLj�1. If this generator sat in a negative

Alexander grading then the symmetry properties of knot Floer homology would imply that there is a
positive Maslov index generator in bHFL.K/˝ V jLj�1. However there are no positive Maslov index
generators in bHFL.L/, and so there are none in bHFL.K/˝V jLj�1.

Proof of Lemma 4.2 Suppose L is an n–component link such that bHFK.L/Š bHFK.T .2; 4//. Then
n� 2 since bHFK.L/ admits a spectral sequence to cHF

�
#n�1

.S1 �S2/
�
. Indeed, since rank.bHFK.L//

is odd for knots, nD 2. Since knot Floer homology detects the linking number of 2–component links, it
follows that `k.L1;L2/D 2.

There is only one generator in Maslov grading 0 and it must survive in the spectral sequences from bHFL.L/
to bHFL.Li/˝V . We call this generator �0. The bi-Alexander grading for �0 is then

�
A1C

1
2
l;A2C

1
2
l
�
,

where Ai is the Alexander grading of the generator in Maslov grading 0 in bHFK.Li/ and l is the linking
number between the components. Since A1C

1
2
lCA2C

1
2
l D 2 and l D 2, it follows that A1CA2 D 0.

By Lemma 4.3, A1 DA2 D 0, as desired.

To complete our proof of Theorem 4.1 we show that if L has the same knot Floer homology as T .2; 4/

then L also has the same link Floer homology as T .2; 4/. This result, combined with Theorem 3.2, proves
Theorem 4.1.

Proof of Theorem 4.1 Suppose L is a link such that bHFK.L/Š bHFK.T .2; 4//. We seek to understand
bHFL.L/. From the argument in the proof of Lemma 4.2, the only Maslov grading 0 generator of bHFL.L/
sits in bi-Alexander grading .1; 1/.

Since there are spectral sequences from bHFL.L/ to bHFK.Ki/˝V for each i , there are also generators of
bHFL.L/ in .A1;A2/ gradings .1; 0/ and .0; 1/. The symmetry of bHFL.L/ gives generators at .�1;�1/,
.�1; 0/ and .0;�1/ as well. With these 6 generators determined, there are now 2 more generators to add
so that the link Floer homology has rank 8. To maintain an even rank in each Ai grading, they both must
be added at the same bigrading. The only way to do this and maintain symmetry is to add them at .0; 0/,
so that bHFL.L/Š bHFL.T .2; 4//, and Theorem 3.2 shows L is isotopic to T .2; 4/.

5 Knot Floer homology detects T.2 ; 6/

In the previous section we showed that knot Floer homology detects the torus link T .2; 4/. The torus link
T .2; 6/ is then a natural candidate for detection results. In this section we show that knot Floer homology
indeed detects T .2; 6/.

Theorem 5.1 If bHFK.L/Š bHFK.T .2; 6//, then L is isotopic to T .2; 6/.

Note that the maximal Maslov grading of bHFK.L/ is 1
2

, while cHF
�
#n�1

.S1�S2/
�

has a Maslov grading
1
2
.n� 1/ generator. Since bHFK.L/ admits a spectral sequence to cHF

�
#n�1

.S1 �S2/
�
, where n is the
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number of components of L, L has at most 2 components. Indeed, as rank.bHFK.L// is even, L has
exactly two components. Since knot Floer homology detects the linking number of 2–component links,
the linking number is 3.

From here, the proof of Theorem 5.1 amounts to an algebraic argument showing that bHFL.L/Š bHFK.L/,
and applying Theorem 3.2.

For reference, after renormalizing the Maslov gradings to agree with the link Floer homology, the knot
Floer homology of T .2; 6/ is: rank one in .M;A/ gradings .0; 3/ and .�6;�3/; rank two in .M;A/

gradings .�1; 2/, .�2; 1/, .�3; 0/, .�4;�1/ and .�5;�2/; and rank 0 in all other bigradings.

Proof of Theorem 5.1 Suppose that L has the same knot Floer homology as T .2; 6/. As in the proof
that knot Floer homology detects T .2; 4/, we have that A1CA2C `k.L1;L2/D 3, where each Ai is
the Alexander grading of the Maslov index 0 generator in bHFK.Li/. Thus A1CA2 D 0, and Lemma 4.3
implies that A1 DA2 D 0.

We now show that L has the same link Floer homology as T .2; 6/, so it follows from Theorem 3.2 that
L is isotopic to T .2; 6/.

Since the linking number is 3 and the Maslov index 0 generator sits in Alexander grading 0 in the
knot Floer homology of each component, it follows that, in bHFL.L/, the Maslov index 0 generator sits
in Alexander bigrading

�
3
2
; 3

2

�
. The Maslov index �1 generators in bHFK.L/ must be in bi-Alexander

gradings
�

1
2
; 3

2

�
and

�
3
2
; 1

2

�
. There is also a Maslov index �2 generator in Alexander grading

�
1
2
; 1

2

�
.

Consider the remaining Maslov index �2 generator. Suppose it sits in Alexander grading .y; 1� y/.
Observe that there must be Maslov index �3 generators sitting in Alexander gradings .y � 1; 1�y/ and
.y;�y/. The symmetry property of bHFK.L/ then implies that y D 1

2
. The symmetry properties of bHFL

then show that bHFL.L/Š bHFL.T .2; 6//, and so by Theorem 3.2 L is isotopic to T .2; 6/, as desired.

6 Link Floer homology detects T.n; n/

In the previous section we showed that link Floer homology detects the T .2; 2n/ torus links, motivated
by detection results for T .2; 2/, T .2; 4/ and T .2; 6/. The torus link T .2; 2/ can also be viewed as one of
the simplest links in the family of T .n; n/ torus links. In this section we show that link Floer homology
detects the links T .n; n/. We use a characterization of T .nC 1; nC 1/ as an n–braid for T .n; n/ union
the braid axis.

J Licata gave a computation of bHFL.T .n; n// without the Maslov gradings of certain generators [24].
The computation of the Maslov gradings of these generators was subsequently completed by Gorsky and
Hom [10]. We prove that link Floer homology detects T .n; n/ using only certain structural properties of
the link Floer homology. It follows from this that there are many graded vector spaces that do not arise as
the link Floer homology of any link. In particular, we will be interested in multigraded vector spaces Bn

exhibiting the following four properties:
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(1) There is a unique Maslov grading 0 generator.

(2) The multi-Alexander grading of the Maslov grading 0 generator is
�

1
2
.n�1/; 1

2
.n�1/; : : : ; 1

2
.n�1/

�
.

(3) Bn has support contained only in multi-Alexander gradings .A1;A2; : : : ;An/ satisfying Ai �

1
2
.n� 1/ for all i .

(4) Bn has rank 2n�1 in Ai grading 1
2
.n� 1/.

Note that bHFL.T .n; n// satisfies these properties. Observe that if L is any link whose link Floer homology
satisfies all of the above conditions, then L is not a split link, so each component Li of L is a braid axis
for L�Li .

Theorem 6.1 If bHFL.L/Š bHFL.T .n; n//, then L is isotopic to T .n; n/.

The main ingredient of this proof is a result stating that, under certain circumstances, if the link Floer
homology of a link has certain algebraic properties then the linking numbers of certain components with
the rest of the link are positive.

Lemma 6.2 Let L be a link with components Li for 1 � i � n. Suppose that bHFL.L/ has a unique
generator of Maslov index 0 with Ai grading x � 0. Suppose bHFL.L/ is supported in Ai gradings at
most x. Then `k.Li ;Lj /� 0 for all j .

Proof Let �0 denote the unique Maslov index 0 generator. The vector space cHF.S3/˝V n�1 is nonzero
in Maslov grading 0, so all other intermediate vector spaces with spectral sequences fitting between
bHFL.L/ and cHF.S3/˝ V n�1 must also be nonzero in this Maslov grading. Because �0 is the only
generator in this Maslov grading, it must survive in every such spectral sequence.

Consider the spectral sequence to bHFL.L�Lj /˝V obtained by forgetting the component Lj . The Ai

grading on bHFL.L�Lj /˝V will be shifted by 1
2
`k.Li ;Lj / for i ¤ j . We will show that this shift

must be nonnegative.

Because �0 survives this spectral sequence, bHFL.L � Lj / ˝ V will have top Ai grading 1
2
.n � 1/.

Considering the Ai grading on bHFL.L/, we see that bHFL.L�Lj /˝ V will have bottom Ai grading
no smaller than 1

2
.�nC 1/. Since the Ai grading on bHFL.L�Lj /˝ V must be symmetric about a

nonnegative number, the shift applied to the Alexander grading must be nonnegative, so `k.Li ;Lj /� 0.

With this result on the nonnegativity of linking numbers, we can proceed with the proof of Theorem 6.1.
We will proceed by induction, using the characterization of T .nC 1; nC 1/ as the link consisting of the
unique n–braid for T .n; n/ together with the braid axis.

Proof of Theorem 6.1 Suppose that bHFL.L/Š bHFL.T .n; n//. Lemma 6.2 tells us that `k.Li ;Lj /� 0

for every distinct i and j . Moreover, because L is not split and each component Li of L is a braid axis
for L�Li , we have `k.Li ;Lj /¤ 0.
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The top nonzero Ai grading is 1
2
.n� 1/. The relationship between the top nonzero Ai grading and the

Seifert genus of Li implies that
1
2
.n� 1/� g.Li/C

X
j¤i

1
2
`k.Li ;Lj /2:

However, because `k.Li ;Lj / > 0,

g.Li/C
X
j¤i

1
2
`k.Li ;Lj /2� g.Li/C

1
2
n� 1;

with equality when `k.Li ;Lj /D 1 for all j . Combining these inequalities gives that g.Li/D 0, and
`k.Li ;Lj /D 1 for all i; j .

We now know that L is an n–component link where each component is an unknot, each component is a
braid axis for the rest of the link, and the linking number between any two components is 1. The torus
link T .n; n/ is the only n–component link satisfying all of these conditions. This can be verified by
induction on n. Specifically, check explicitly that T .2; 2/ is the only such 2–component link, then view
L as a braid axis of some n–braid representing an n–component link satisfying the same properties.

7 Knot Floer homology detects T.3; 3/

In previous sections we showed that, for some of the first members of the family of T .2; 2n/ torus links,
the link Floer homology detection results can be strengthened to knot Floer homology detection results. In
this section we do the same for T .3; 3/, the third member of the T .n; n/ family. The knot Floer homology
of T .3; 3/ is given as follows:

bHFK.T .3; 3/; i/D

8̂̂̂̂
ˆ̂̂̂̂̂̂
<̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂:

F1 for i D 3;

F3
0

for i D 2;

F3
�1

for i D 1;

F�1˚F3
�2

for i D 0;

F3
�3

for i D�1;

F3
�4

for i D�2;

F�5 for i D�3;

0 otherwise.
See [24] for a discussion of this result.

Theorem 7.1 If bHFK.L/Š bHFK.T .3; 3//, then L is isotopic to T .3; 3/.

To prove this, we will use various spectral sequence arguments to show that L has the same link Floer
homology as T .3; 3/. The above theorem then follows immediately from Theorem 6.1.

Proof Suppose L is an n–component link such that bHFK.L/Š bHFK.T .3; 3//.

We first argue that nD 3. Note that the maximal Maslov grading of a generator of bHFK.L/ is 1. Thus
n� 3, as else bHFK.L/ would not admit a spectral sequence to cHF

�
#n�1

.S1 �S2/
�
. Also n¤ 2, since
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the Maslov gradings of bHFK.L/ are supported in integer gradings. Moreover L cannot be a knot, since
rank.bHFK/.L/ is even. Thus nD 3.

Let L1, L2 and L3 be the components of L. We now seek to determine the structure of bHFL.L/.

The symmetry of bHFL.L/ implies that the unique generator in Maslov grading�2 and Alexander grading 0

sits in multi-Alexander grading .0; 0; 0/. Similarly the symmetry implies that at least one of the Maslov
grading �3 generators also sits at multigrading .0; 0; 0/.

Since the Maslov grading 0 generator in knot Floer homology is of Alexander grading 3, the Maslov
grading 0 generator in link Floer homology sits in Alexander multigrading .x;y; 3�x�y/ for some pair
of integers .x;y/. In order that the link Floer homology admits the requisite spectral sequences, there are
Maslov grading �1 generators in multi-Alexander gradings .x;y; 2�x�y/, .x� 1;y; 3�x�y/ and
.x;y � 1; 3�x�y/.

Now, observe that each Maslov grading �1 generator has at least one distinct Alexander grading from the
unique Maslov grading 0 generator. In order to admit the requisite spectral sequences, there must be Maslov
grading �2 generators with .A1;A2/D .x;y�1/; .x�1;y/, .A1;A3/D .x�1; 3�x�y/; .x; 2�x�y/

and .A2;A3/D .y � 1; 3�x�y/; .y; 2�x�y/. A direct computation shows that at most one of these
corresponds to the generator in multigrading .0; 0; 0/. Thus there are Maslov index �2 generators in
Alexander gradings .x� 1;y � 1; 3�x�y/, .x;y � 1; 2�x�y/ and .x� 1;y; 2�x�y/.

By a similar argument, we can see that there is a Maslov index �3 generator in multi-Alexander grading
.x � 1;y � 1; 2 � x � y/. If .x;y/ ¤ .1; 1/ this determines the entire link Floer homology of L. If
x D y D 1 then the remaining Maslov index �3 generators must be of multi-Alexander grading .0; 0; 0/
to ensure that each .Ai ;Aj / grading is of even rank, so again the link Floer homology of L is determined.

Consider the Maslov index �3 generator in multi-Alexander grading .0; 0; 0/, ��3. Since ��3 does not
persist under the spectral sequence to bHFL.Li/˝V ˝2 for any i , there must be a Maslov index�2 generator
in nonzero Alexander grading with each Alexander grading at least 0, or a Maslov index �4 generator with
each Alexander grading at most 0. Observe that these two conditions are equivalent by the symmetry of the
link Floer homology of L. Thus x�1;y�1; 3�x�y�0, x;y�1; 2�x�y�0, or x�1;y�1; 2�x�y�0.
By permuting the components, we may take x� 1;y � 1; 3�x�y � 0. There are only three solutions:
.x;y/D .1; 1/, .x;y/D .2; 1/ or .x;y/D .1; 2/. If .x;y/D .1; 1/, then bHFL.L/Š bHFL.T .3; 3//.

We complete the proof by excluding the cases .x;y/ D .2; 1/ and .x;y/ D .1; 2/. After permuting
components, we may take x D 1 and y D 2 without loss of generality.

Since rank.bHFK.L//D 18, we have rank.bHFK.Li//�
9
2

. It follows that each component is an unknot or
a trefoil. Observe that if a component is a trefoil then it must be T .2; 3/, as there are no positive Maslov
index generators in bHFL.L/. Indeed there can be no T .2; 3/ component, as this would require there to
be an Alexander grading 2 less than an Alexander grading of the Maslov index 0 generator containing
a summand F�2˚ F2

�3
˚ F�4, which does not occur. Thus each component is an unknot. From here

we can compute the linking numbers from the Alexander gradings of the Maslov grading 0 generator.
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We find `k.L1;L3/D�1D� `k.L2;L3/, and `k.L1;L2/D 3. Since L is not a split link, L�L3 is a
2–braid in the complement of L3. Each of L1 and L2 are unknots and `k.L1;L2/D 3, so L�L3 is
T .2; 6/ as an unoriented link. However, rank.bHFK.T .2; 6/˝V //D 24, so T .2; 6/ cannot be a sublink
of L and .x;y/¤ .1; 2/.

8 Knot Floer homology detects L7n1

We have now shown that knot Floer homology detects a number of the low crossing number links that
Khovanov homology is known to detect. In this section we continue this task, showing that knot Floer
homology detects the link L7n1.

Theorem 8.1 If bHFK.L/Š bHFK.L7n1/, then L is isotopic to L7n1.

Our proof relies on the observation that L7n1 can be realized as a 2–braid representing T .2; 3/ together
with the braid axis.

Note that bHFK.L/ admits a spectral sequence to cHF
�
#n�1

.S1 � S2/
�

— where n is the number of
components of L — and that the knot Floer homology of a knot is of odd rank. It follows that L has two
components. Since knot Floer homology detects the linking number of 2–component knots, it follows
that the linking number of L is two. From here we break up the proof of Theorem 8.1 into the following
lemmas:

Lemma 8.2 Suppose L is a 2–component link such that bHFK.L7n1/ Š bHFK.L/. Then bHFL.L/ Š
bHFL.L7n1/.

Lemma 8.3 Suppose L satisfies bHFL.L/Š bHFL.L7n1/. Then L is isotopic to L7n1.

The combination of these lemmas immediately gives the proof of Theorem 8.1.

L7n1 has homology as computed in [32] and shown in Table 2.

Lemma 8.2 is proven by combining the symmetry and parity properties of link Floer homology.

Proof of Lemma 8.2 Since L has 2 components, bHFL.L/ has exactly 2 Alexander gradings.

2 F�1 F0

1 F�2 F�1

0 F�2˚F�3

�1 F�5 F�4

�2 F�6 F�5

�1 0 1

Table 2: The link Floer homology of L7n1.
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Let �0 be the Maslov grading 0 generator. This generator �0 has bi-Alexander grading
�

3
2
Cx; 3

2
�x

�
for

some x. Indeed, there must be generators sitting in gradings
�

1
2
Cx; 3

2
�x

�
and

�
3
2
Cx; 1

2
�x

�
, each of

Maslov index �1. Together with the symmetry properties of link Floer homology, this determines the
Alexander bigradings of 6 generators. The same symmetry properties also imply that the 2 generators
in Alexander grading 0 must have bi-Alexander grading .0; 0/. Thus, up to choice of x, we need only
specify the location of 1 more generator to determine the link Floer homology of L. Since each Alexander
grading needs to be of even rank, the remaining Maslov grading �2 element must be in bi-Alexander
grading

�
1
2
Cx; 1

2
�x

�
. Moreover, since the Maslov grading �3 component, ��3, cannot persist in the

spectral sequence to cHF.S3/˝V , it follows that x 2
˚

1
2
; 0;�1

2

	
, for the Alexander gradings obstruct the

existence of generators y with h@y; ��3i ¤ 0 and h@��3;yi ¤ 0 unless x is in this range. Indeed, x ¤ 0,
since otherwise we would have an element with Alexander grading in Z, and another with Alexander
grading in ZC 1

2
. If x D 1

2
then we have the link Floer homology of L7n1, while if x D �1

2
we can

switch the components and thereby obtain the link Floer homology of L7n1.

We complete the proof of Theorem 8.1 by showing that link Floer homology detects the link L7n1. We
use the fact that L7n1 is the closure of a braid for T .2; 3/ together with its braid axis.

Proof of Lemma 8.3 Suppose a link L, with components L1 and L2, satisfies bHFL.L/Š bHFL.L7n1/.
The rank in each of the maximal Ai gradings is 2, so L is either split or the L is exchangeably braided.
L cannot be split, as if it were, then at least 1 component of L would be an unknot, for reasons of rank.
But if this were the case, then bHFL.L/ would be supported in Ai grading 0 for at least one i , which is
not the case. Thus each component is a braid axis for the other, and in particular `k.L1;L2/¤ 0.

Observe that rank.bHFK.Li//� 5, with equality if and only if the spectral sequence corresponding to Li

collapses on the E1 page. If the spectral sequence collapses on the E1 page, then bHFK.Li/ would have
no shift applied to its Alexander grading as it is already symmetric around grading 0. Therefore, if
rank.bHFK.Li//D 5, then `k.L1;L2/D 0, a contradiction.

Thus rank.bHFK.Li// < 5, and the link has components that are either unknots or trefoils. Observe that
any trefoil component must be T .2; 3/, as there are no generators of positive Maslov grading.

Suppose L1 and L2 are both unknots. The shifts in Alexander grading coming from the spectral sequences
from bHFL.L/ to bHFL.Li/˝V would imply that `k.L1;L2/D 4 and `k.L2;L1/D 2, a contradiction.

Observe that L1 cannot be a trefoil, for there is no Maslov grading �2 generator in an A1 grading 2 less
than the A1 grading of the unique grading 0 element. Thus L2 is T .2; 3/ and `k.L2;L1/D 2. Since L2

is a 2–braid closure in the complement of L1 and L2 is T .2; 3/, the link L must be L7n1.

9 Connected sums with a Hopf link

In this section we deduce some properties of link Floer homology under the operation of taking a connected
sum with a Hopf link. We then explore some applications of these properties to the question of link
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detection. Our main application is to find two infinite families of links which are not detected by Khovanov
homology or knot Floer homology, but which are detected by link Floer homology. Throughout this
section we let H denote the Hopf link.

Proposition 9.1 A link L can be expressed as L0 # H if and only if there is an Alexander grading in
bHFL.L/ where the span of its nonzero grading levels is

˚
�1
2
; 1

2

	
.

Proof This observation follows directly from the connection between link Floer homology and the
Thurston norm. A component has a span of its nonzero grading levels

˚
�1
2
; 1

2

	
if and only if that

component bounds a disk which intersects the rest of the link in a single point. This is equivalent to
expressing L as L0 # H .

This observation has the following immediate consequence:

Proposition 9.2 Suppose link Floer homology detects a link L, and that if permuting some collection of
Alexander gradings of bHFL.L/ induces an isomorphism on bHFL.L/, then there is a symmetry of L that
exchanges the corresponding components. Then link Floer homology detects L # H for each choice of
component of L to connect sum with.

Proof Suppose L0 is a link such that bHFL.L0/ Š bHFL.L # H /. Consider the span of the Alexander
grading associated to the new unknotted component. Proposition 9.1 implies that L0 D L00 # H for
some link L00 and some choice of component of L00 to connect sum onto. It follows from the Künneth
formula that bHFL.L/Š bHFL.L00/, whence L00 is L by assumption. Indeed, we have also assumed that
if permuting some collection of Alexander gradings of bHFL.L/ induces an isomorphism of bHFL.L/,
then there is a symmetry of L that exchanges the corresponding components. Thus if different choices
of component on which to connect sum H give the same links with the same link Floer homology, the
resulting links are isotopic. It follows that link Floer homology detects L # H irrespective of which
component of L is used for the connected sum.

Remark 9.3 While Proposition 9.1 allows one to determine if a link L can be decomposed as a smaller
link L0 connect sum with a Hopf link, there is in general an issue with determining where the connected
sum is occurring. An instructive example is the case that L0 is the disjoint union of two different knots
with the same knot Floer homology. In this case the two choices of where to connect sum with a Hopf
link produce topologically distinct links which have the same link Floer homology. While in this example
link Floer homology does not detect L0, we cannot rule out the possibility that something similar could
occur for links detected by link Floer homology.

Combining Proposition 9.2 and previous knot Floer detection results immediately gives some new detection
results for link Floer homology.

We now provide two infinite families of links which are detected by link Floer homology but are not
detected by Khovanov homology or knot Floer homology.
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Theorem 9.4 There exist infinitely many pairs of links .L;L0/ such that link Floer homology detects L

and L0 but Kh.L/Š Kh.L0/ and bHFK.L/Š bHFK.L0/.

To prove Theorem 9.4 we introduce two families of links and show that every link in either of these
families is detected by link Floer homology. This is the content of Theorems 9.5 and 9.7. We then highlight
explicit examples within these families that neither Khovanov homology nor knot Floer homology can
distinguish.

Both families of links are trees of unknots. The first family consists of links Ln given by the tree
of unknots corresponding to the graph with n� 1 vertices, each connected to a fixed vertex. For the
second family, let L.a;b/ be the tree of unknots corresponding to the graph with aC b C 2 vertices
fx1;x2; : : :xa;x;y1;y2; : : :yb;y}. Each xi has a unique edge, connecting it to x. Each yi has a unique
edge, connecting it to y. Finally there is a unique edge connecting x and y.

Theorem 9.5 For each n� 2, if bHFL.L/Š bHFL.Ln/, then L is isotopic to the link Ln.

Remark 9.6 The links Ln can be viewed as the trivial .n�1/–braid together with its braid axis. So
Theorem 9.5 was already known, because link Floer homology detects braid closures [26, Proposition 1]
and detects the trivial braid amongst braid closures [3, Theorem 3.1]. However, we provide a different
proof of Theorem 9.5 because it is a simpler case of the ideas used in the proof of Theorem 9.7.

Proof of Theorem 9.5 Suppose L has the same link Floer homology as Ln. First notice that L cannot be
a split link because its Alexander polynomial is nonzero. By the observation that L is not split, we see that
each of these n� 1 components must bound a disk which only intersects the final component of L. Then
L must be built from a knot K by connect summing K with n�1 Hopf links. It follows from the Künneth
formula and the fact that knot Floer homology detects the unknot that L is isotopic to the link Ln.

Theorem 9.7 For every pair .a; b/ with a and b positive , if bHFL.L/Š bHFL.L.a;b//, then L is isotopic
to the link L.a;b/.

Proof First notice that link Floer homology detects the link L.0;b/ DLbC1. We will now proceed by
induction on a.

Suppose that L has the same link Floer homology as L.a;b/. First notice that L cannot be a split link
because its Alexander polynomial is nonzero. By the observation that L is not split, we see that each of
these aC b components must bound a disk which only intersects one of the final two components of L.
Call these final components X and Y , based on if their Alexander gradings agree with the Alexander
gradings associated to the component in the tree of unknots for the vertex x or y, respectively. Without
loss of generality, at least one component bounds a disk that intersects X in a single point. Then L can be
written as L0#H , where the connect sum is taken along the component X . A quick computation shows that
bHFL.L0/Š bHFL.L.a�1;b//. By induction, L0 is isotopic to L.a�1;b/, whence L is isotopic to L.a;b/.

With these detection results in place, we are now ready to prove Theorem 9.4.
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Proof of Theorem 9.4 Consider the links Ln and L.a;b/ with aC bC 1D n. These links are detected
by link Floer homology. We now check that Kh.Ln/Š Kh.L.a;b// and bHFK.Ln/Š bHFK.L.a;b//.

Both links can be constructed by starting with an unknot and connect summing a Hopf link n times in total.
A simple computation shows that Khovanov homology and knot Floer homology of L # H do not depend
on which component of L the Hopf link is connect summed onto. This shows Kh.Ln/ŠKh.L.a;b// and
bHFK.Ln/Š bHFK.L.a;b//.

10 Applications to annular Khovanov homology

Annular Khovanov homology was defined by Asaeda, Przytycki and Sikora [1] as a categorification of
the Kauffman bracket skein module of the thickened annulus. The resulting theory is an invariant of links
in the thickened annulus A� I , or alternatively the complement of an unknot in the 3–sphere S3 nU . In
particular, annular Khovanov homology is well suited to studying braid closures [3; 13; 17; 18].

In this section we apply some of our earlier knot Floer detection results to show that annular Khovanov
homology detects certain braid closures. The proofs will rely on the spectral sequence from annular
Khovanov homology of a link L to the knot Floer homology of the lift of the annular axis in†.L/ [13; 35].

Let ˇn WD �1�2 : : : �n�1. We use knot Floer detection results for T .2; 3/, T .2; 4/ and T .2; 6/ to show
that annular Khovanov homology detects the closure of the braids ˇ3, ˇ4 and ˇ6. The structure of each
proof is similar. First we use properties of annular Khovanov homology to deduce necessary topological
properties of the annular knot, like braidedness or unknottedness. Then we use a knot Floer detection
result to show that the lift of the annular axis is T .2; 3/, T .2; 4/ or T .2; 6/, respectively. Finally, we
translate this into information about the annular link. In this section we use the following result for
mapping class groups:

Proposition 10.1 Suppose  is an n–braid and ˇ is a periodic n–braid. If BH. / and BH.ˇ/ are
conjugate then so too are  and ˇ.

Remark 10.2 An alternative proof of this proposition was originally communicated to the authors by
Marissa Loving and Dan Margalit (2020).

Proof Let ˇ and  be as in the statement of the proposition. Note that both conjugation and the Birman–
Hilden correspondence preserve the Nielsen–Thurston classification, so we know that  is periodic as
well. That is, a power of  is some power of the full twist �2. Thus there are numbers N and M such
that ˇN D M .

Now we consider the fractional Dehn twist coefficients of ˇ and  . We know that FDTC.ˇ/ D k=m

for some fixed k and m. The Birman–Hilden correspondence either preserves the fractional Dehn twist
coefficient of n–braids or halves it, depending on the parity of n. The fractional Dehn twist coefficient
is preserved under conjugation by a combination of [20, Corollary 4.17] and [8, Proposition 5.3], so
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FDTC.BH.ˇ// D FDTC.BH. //. Thus FDTC.ˇ/ D FDTC. / D k=m. The fractional Dehn twist
coefficient is multiplicative under exponentiation, so FDTC.ˇN /D kN=m and FDTC.M /D kM=m,
but ˇN D M so we must have that M DN . Finally, N th roots are unique up to conjugation in the braid
group [9], so that ˇ and  are conjugate.

The spectral sequence from the annular Khovanov homology of an annular link L to the knot Floer
homology of the lift of the annular axis in †.L/ is defined with Z=2Z coefficients. At times, however, we
will work with annular Khovanov homology over C, because with these coefficients annular Khovanov
homology has the structure of an sl2.C/ representation [12, Proposition 3].

For the readers convenience we recall, from [12, Proposition 14], that

AKhi.ˇn;C/D

8<:
V.n/fn� 1g for i D 0;

V.n�2/fnC 1g for i D 1;

0 otherwise:

Here V.m/ is the .mC1/–dimensional irreducible representation of sl2.C/. We now study annular
Khovanov homology with Z=2 coefficients. Note that rank.AKh.ˇnIZ=2//� rank.AKh.ˇnIC//D 2n.
Now, T .2; n/ can be thought of as a 2–periodic knot with quotient ˇn. It follows from [36] that
rank.Kh.T .2; n/IZ=2//� rank.AKh.ˇnIZ=2//. Indeed, rank.Kh.T .2; n/IZ=2//D 2n by the universal
coefficient theorem and [21, Proposition 26], so in fact rank.AKh.ˇnIZ=2// D 2n, and the above
description of annular Khovanov homology is equally valid for Z=2 coefficients.

More is known about the knot Floer homology of genus-1 fibered knots, so we are able to prove a stronger
result for the closure of the 3–braid ˇ3 D �1�2 than ˇ4 and ˇ6. We are also able to use the classification
of 3–braids representing the unknot to show that annular Khovanov homology also detects the closure of
the 3–braid �1�

�1
2

.

Theorem 10.3 If L is a 3–braid closure and dim.AKh.L;Z=2Z//D 6, then L is isotopic to b�1�2 or
2��1
1
��1

2
in A� I .

Proof The lift zUL of the braid axis U in †.L/ is a genus-1 fibered knot.

The manifold†.L/n zUL is naturally a sutured manifold, where the sutures on S3n zUL are two distinct pairs
of meridional sutures lifted into the double branched cover from the product sutures on A� I . There is a
spectral sequence from AKh.L;Z=2Z/ to bSFH.�†.L/n zUL;Z=2Z/Š bHFK. zUL;�†.K/;Z=2Z/˝V ,
where V is a 2–dimensional vector space supported in bigradings .0; 0/ and .�1;�1/. Furthermore,
the k grading in AKh corresponds to the Alexander grading on bSFH or bHFK; see [14, Theorem 2.1;
35, Theorem 1.1 and Proposition 5.3].

From this spectral sequence we can see that bHFK. zUK ;�†.K/;Z=2Z/ has rank no larger than 3. Every
genus-1 fibered knot has knot Floer homology at least rank 3 and there are only four genus-1 fibered
knots with rank 3 knot Floer homologies. They are the left- and right-handed trefoils in S3 and two knots
in the Poincaré homology sphere [5, Corollary 1.6].
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The monodromies of fibered knots are unique up to conjugation. The monodromy of a fibered knot
in †.L/ is the image of a braid representing L in Mod.S1

1
/ under the Birman–Hilden correspondence.

Finally, because B3 Š Mod.S1
1
/, or by Proposition 10.1, conjugate monodromies must come from

conjugate braids, so L must be isotopic to the closure of one of the 4–braids on this list that corresponds
to one of these four possible fibered knots:

(1) �1�2,

(2) ��1
1
��1

2
,

(3) .�1�2/
�6�1�2,

(4) .�1�2/
6��1

1
��1

2
.

A computation shows that the ranks of the annular Khovanov homologies of the last two braid closures
are larger than 6 [19].

Therefore L is isotopic to b�1�2 or 2��1
1
��1

2
in A� I .

The detection result in Theorem 10.4 follows immediately from Theorem 10.3 and previous results about
annular Khovanov homology.

Theorem 10.4 Let L�A� I � S3 be an annular link. If AKh.L;Z=2Z/Š AKh.b�1�2;Z=2Z/, then
L is isotopic to b�1�2 in A� I .

Proof If AKh.L;Z=2Z/ŠAKh.b�1�2;Z=2Z/, then L is isotopic to a 3–braid closure [13, Corollary 1.2;
39, Corollary 8.4]. The careful reader may worry about coefficients because we are working over Z=2Z

while [39, Corollary 8.4] is stated for coefficients over C, but the corollary is also true over Z=2Z. This
is because the universal coefficient theorem ensures that, in each annular grading, the rank of annular
Khovanov homology over C is bounded above by the rank over Z=2Z and the ranks will have the same
parity. In particular, if the annular Khovanov homology in an annular grading is rank 1 over Z=2Z then
it is also rank 1 over C.

From Theorem 10.3 we have that L is isotopic to b�1�2 or 2��1
1
��1

2
. A simple computation shows that

AKh. 2��1
1
��1

2
;Z=2Z/© AKh.b�1�2;Z=2Z/, so L must be isotopic to b�1�2 in A� I .

One interpretation of Theorem 10.3 is that b�1�2 and 2��1
1
��1

2
are the simplest 3–braids from the point of

view of annular Khovanov homology.

Proposition 10.5 If L is isotopic to a 3–braid closure in A� I , then dim.AKh.L;Z=2Z//� 6.

Proof From the universal coefficient theorem it follows that dim.AKh.L;Z=2Z//� dim.AKh.L;C//,
so it suffices to show that dim.AKh.L;C// � 6. Because L is a 3–braid closure, AKh.L;C/ has
dimension one in grading k D 3. The sl2.C/ action on AKh.L;C/ and the fact that the k grading gives
the sl2.C/ weights implies that AKh.L;C/ contains an irreducible weight-3 representation of sl2.C/,
showing that dim.AKh.L;Z=2Z//� 4.
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The sl2.C/ action gives a symmetry in the k gradings. Since AKh.L;C/ is 0 in k D 0, the dimension of
AKh.L;C/ must be even. It thus only remains to rule out the case that dim.AKh.L;Z=2Z//D 4.

If dim.AKh.L;Z=2Z// D 4, then AKh.L;C/ consists only of an irreducible weight-3 representation
of sl2.C/ which must live in a single homological grading. Because AKh.L;C/ is supported in a
single homological grading, the spectral sequence from AKh.L;C/ to Kh.L;C/ collapses. The proof
of Theorem 3.1(a) in [3] shows that the only braid closures for which this spectral sequence collapses
immediately are closures of trivial braids. A computation shows that dim.AKh.O13;C// > 6, so there is
no 3–braid closure with dim.AKh.L;Z=2Z//D 4.

Because the 3–braid closures that are unknotted in S3 are completely classified, we are able to use the
previous results to show that annular Khovanov homology detects the closure of the 3–braid �1�

�1
2

in A�I .

Theorem 10.6 Let L�A�I � S3 be an annular link. If AKh.L;Z=2Z/ŠAKh.1�1�
�1
2
;Z=2Z/, then

L is isotopic to 1�1�
�1
2

in A� I .

Proof If AKh.L;Z=2Z/ŠAKh.1�1�
�1
2
;Z=2Z/ then L is isotopic to a 3–braid closure [13, Corollary 1.2;

39, Corollary 8.4]. Computing that the ungraded Euler characteristic of AKh.L;Z=2Z/ is 2 shows that L

is a knot, because the ungraded Euler characteristic is 2jLj, where jLj is the number of components of L.

Because the rank of AKh.L;Z=2Z/ is 10 and L is not the trivial braid, Kh.L;Z=2Z/ has rank strictly
smaller than 10. The only knots in S3 with the rank of Kh.L;Z=2Z/ strictly less than 10 are the unknot
and the trefoils [4; 22]. Also, AKh.L;Z=2Z/ is not nonzero in the correct bigradings for L to be one of
the trefoils, so L must be the unknot in S3.

Up to conjugation, the only 3–braids that represent the unknot are �1�2, ��1
1
��1

2
and �1�

�1
2

[27,
Theorem 12.1]. The annular Khovanov homology shows that L is not the closure of �1�2 or ��1

1
��1

2
, so

L is isotopic to 1�1�
�1
2

in A� I .

We now consider the annular Khovanov homology of the braids ˇn D �1�2 : : : �n�1 in A � I more
generally. We will first show that any braid closure with the same annular Khovanov homology as Ǒn
must represent an unknot in S3. We then show that the lift of the braid axis for ˇ2n has the same knot
Floer homology as T .2; 2n/.

The next two results then follow from the fact that knot Floer homology detects T .2; 4/ and T .2; 6/.

Theorem 10.7 Let L � A� I � S3 be an annular link. If AKh.L;Z=2Z/ Š AKh.2�1�2�3;Z=2Z/,
then L is isotopic to 2�1�2�3 in A� I .

Theorem 10.8 Let L�A�I �S3 be an annular link. If AKh.L;Z=2Z/ŠAKh.5�1�2�3�4�5;Z=2Z/,
then L is isotopic to 5�1�2�3�4�5 in A� I .

To prove these theorems we first prove two general lemmas.
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Lemma 10.9 Let L�A� I � S3 be an annular link. If AKh.L;Z=2Z/Š AKh. Ǒn;Z=2Z/, then L is
an unknot in S3.

Proof We first compute AKh.L;C/ from AKh.L;Z=2Z/. Throughout, we will use that the dimension
of annular Khovanov homology over C can be no larger than that over Z=2Z. Because L is an n–
braid closure, AKh.L;C/ must contain a weight-n irreducible sl2.C/ representation in grading i D 0,
of dimension n. Thus AKh.L;C/ must consist only of this representation in grading i D 0, because
AKh.L;Z=2Z/ has dimension n in homological grading 0. We therefore have that all of the generators
in grading i D 1 for AKh.L;Z=2Z/ must correspond to generators of AKh.L;C/. If not, they would
correspond to 2–torsion in AKh.L;Z/, but the torsion contributes dimension in two different homological
gradings by the universal coefficient theorem.

A simple computation of annular Khovanov homology verifies that L is not the trivial braid. Thus by
[3, Theorem 3.1], we know that the differential @� on AKh.L;C/ inducing the spectral sequence to
Kh.L/ must send the highest-weight generator in the grading i D 0 to something nonzero. The only
generator in the correct quantum grading is the highest-weight generator in the grading i D 1, so that must
be the image of the highest-weight generator in the grading i D 0 under @�. The action @� is part of the
action of sl2.^/ on AKh.L;C/ and commutes up to sign with the lowering operator f [12, Theorem 1].
This means that the image of @� is spanned by all generators in grading i D 1. Thus Kh.L/ is dimension 2,
and L is the unknot.

Lemma 10.10 Let L � A� I � S3 be an annular link. If AKh.L;Z=2Z/Š AKh. Ǒ2n;Z=2Z/, then
bHFK. zU ; †.L//Š bHFK.T .2; 2n//.

Proof For this computation, we will use the spectral sequence from AKh.L;Z=2Z/ to bHFK.� zU / and
compute the Maslov gradings of the generators of AKh.L;Z=2Z/.

From the construction of the spectral sequence from AKh.L;Z=2Z/ to bHFK.� zU / as an iterated mapping
cone, it follows that in each i grading on AKh.L;Z=2Z/ the relative Maslov grading of any two generators
agrees with half the difference of the quantum gradings of the generators. It remains to relate the relative
Maslov gradings for generators in i grading 0 and 1, and then upgrade this information to an absolute
Maslov grading.

The induced differential @� giving the spectral sequence from AKh.L;Z=2Z/ to Kh.L;Z=2Z/ is part
of the total differential on the iterated mapping cone induced by counting pseudoholomorphic polygons.
Thus @� lowers the Maslov grading by one. This implies that, for AKh.L;Z=2Z/, generators in the same
k grading live in the same relative Maslov grading. Since generators in the same k grading or 2A grading
also have the same Maslov grading, the spectral sequence to bHFK.� zU / collapses as all differentials
preserve the k grading or 2A grading and change the Maslov grading.

To upgrade the above to a statement about the absolute Maslov grading, notice that there are only two
generators which survive in the spectral sequence to Kh.L;Z=2Z/, namely the generators that sit in the
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k gradings �2n and 2� 2n. These generators must then be in Maslov gradings 0 and 1, respectively.
From here we can pin down the Maslov gradings of the remaining generators of AKh.L;Z=2Z/.

The claim bHFK. zU /Š bHFK.T .2; 2n// then follows from the fact that bHFK.� zU /Š .bHFK. zU //�, with
the appropriate change in gradings.

Proof of Theorem 10.7 Suppose L is as in the statement of the theorem. Lemma 10.10 implies that
bHFK. zU ; †.L//Š bHFK.T .2; 4//, whence zU is T .2; 4/ by Theorem 4.1, which is fibered of genus 2. Up

to isotopy, fibered link exteriors have unique fibrations by Seifert surfaces; for instance see [6, Chapter 1.4].
Note that the exterior of a link may fiber in different ways if one does not require the fibers to be Seifert
surfaces. The monodromies of fibered links are unique up to conjugation. The monodromy of a fibered
link in†.L/ is the image of a braid representing L in Mod.S2

2
/ under the Birman–Hilden correspondence.

Finally, by Proposition 10.1 conjugate monodromies must come from conjugate braids, so L must be
isotopic to ˇ4.

The proof of Theorem 10.8 is identical so we omit it.

Remark 10.11 Similar techniques could be applied to show that annular Khovanov homology detects
the closure of the braid �1 2 B2. However, the fact that annular Khovanov homology detects this braid
closure already follows from the fact that annular Khovanov homology detects braid closures and the braid
index [13, Corollary 1.2; 39, Corollary 8.4], combined with the computations of the annular Khovanov
homologies of all 2–braid closures [12, Proposition 15].
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Models for knot spaces and Atiyah duality

SYUNJI MORIYA

Let Emb.S1;M/ be the space of smooth embeddings from the circle to a closed manifold M . We
introduce a new spectral sequence converging to H�.Emb.S1;M// for a simply connected closed
manifold M of dimension 4 or more, which has an explicit E1–page and a computable E2–page. As
applications, we compute some part of the cohomology for M D Sk � S l with some conditions on
the dimensions k and l , and prove that the inclusion Emb.S1;M/! Imm.S1;M/ to the immersions
induces an isomorphism on �1 for some simply connected 4–manifolds. This gives a restriction on a
question posed by Arone and Szymik. The idea to construct the spectral sequence is to combine a version
of Sinha’s cosimplicial model for the knot space and a spectral sequence for a configuration space by
Bendersky and Gitler. The cosimplicial model consists of configuration spaces of points (with a tangent
vector) in M . We use Atiyah duality to transfer the structure maps on the configuration spaces to maps on
Thom spectra of the quotient of a direct product of M by the fat diagonal. This transferred structure is the
key to defining our spectral sequence, and is also used to show that Sinha’s model can be resolved into
simpler pieces in a stable category.
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1 Introduction

In [36; 37] Sinha constructed cosimplicial models of spaces of knots in a manifold of dimension� 4, based
on Goodwillie–Weiss embedding calculus; see Goodwillie and Klein [17], Goodwillie and Weiss [18],
and Weiss [41]. The model was crucially used in the affirmative solution to Vassiliev’s conjecture for a
spectral sequence for the space of long knots in Rd (with d � 4) for rational coefficient by Lambrechts,
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Turchin and Volić in [25] (see Boavida de Brito and Horel [5] for other coefficients). We study a version
of Sinha’s model in stable categories.

Let Emb.S1;M/ be the space of smooth embeddings from the circle S1 to a manifold M (without any
basepoint condition) endowed with the C1–topology. The space Emb.S1;M/ is studied by Arone and
Szymik [1] and Budney [8], and study of embedding spaces including the knot space is a motivation of
Campos and Willwacher [10] and Idrissi [22]

In the rest of the paper, M denotes a connected closed smooth manifold of dimension d . Our knot space
Emb.S1;M/ is slightly different from the one considered by Sinha, but we can construct a cosimplicial
model similar to Sinha’s, which is called Sinha’s cosimplicial model and denoted by C�.M/. Its nth space
is homotopy equivalent to the configuration space of nC1 ordered points in M with a unit tangent vector.

To state our first main theorem, we need some notation. Let SM be the tangent sphere bundle of M . Fix
an embedding e0 W SM!RK , and a tubular neighborhood � of the image e0.SM/ in RK . Let D be the
little interval operad. We use a notion of a D–comodule, which plays a role similar to a simplicial object
but is homotopically more flexible. We work with the category of symmetric spectra SP . For a manifold
N and an integer n� 1, N n denotes the direct product of n copies of N . The fat diagonal of M n is by
definition the union of all the diagonals of M n. We regard the product �n as a disk bundle over SMn via
the obvious identification .e0.SM//n D SMn. The following theorem gives a dual equivalence between
the configuration spaces and quotients by a fat diagonal, which preserves structure necessary to recover
(some part of) the knot space.

Theorem 1.1 (Theorem 4.4 and Lemma 4.7) Under the above notation , there exists a zigzag of weak
equivalences of left D–comodules of nonunital commutative symmetric ring spectra

.CM /_ ' TM ;

where .CM /_ is a comodule whose nth object is the Spanier–Whitehead dual of the configuration space of
n points with a tangent vector in M , and TM is a comodule whose nth object is a natural model of the
Thom spectrum

†�nK Th.�n/=Th.�njFDn/:

Here

� † denotes the suspension equivalence and Th.�/ denotes the associated Thom space ,

� FDn is the preimage of the fat diagonal by (the product of ) the projection SMn
!M n, and

� �njFDn denotes the restriction of the base to FDn.

See Section 2.1 and Definitions 2.10, 4.1, 4.3 and 4.5 for details of the notation. Theorem 1.1 is a
structured version of the Poincaré–Lefschetz duality

(1-1) H�.Cn�1.M//ŠH�.SMn;FDn/;
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deduced from a homotopy equivalence Cn�1.M/' SMn
�FDn. (We are loose on degrees.) If we do not

consider the (nonunital) commutative multiplications, an analogue of Theorem 1.1 holds in the category
of prespectra (in the sense of Mandell, May, Schwede and Shipley [28]), a more naive, nonsymmetric
monoidal category of spectra, and it is enough to prove Theorem 1.2, but the multiplications may be
useful for future study and our construction hardly becomes easier for prespectra.

To state the second main theorem, we need additional notation. For a positive integer n, let G.n/ be the set of
graphsG with set of vertices V.G/DnDf1; : : : ; ng and set of edgesE.G/�f.i; j / j i; j 2n with i < j g.
Let DG be the subspace of SMn consisting of elements whose image by the projection to M n has the
same i th and j th components if i and j are connected by an edge of G (i; j 2 n). The space FDn
in Theorem 1.1 is the union of the spaces DG whose graph G has at least one edge. DG is a rather
comprehensible space compared to the space Cn�1.M/. For example, its cohomology ring is computed
in Lemmas 6.5 and 6.6 under some assumptions. Throughout this paper, we fix a coefficient ring k

and suppose k is either of a subring of the rationals Q or the field Fp of p elements for a prime p. All
normalized singular (co)chains C � and C� and singular (co)homology H� and H� are supposed to have
coefficients in k, unless otherwise stated. As an application of Theorem 1.1, we introduce a new spectral
sequence converging to H�.Emb.S1;M//.

Theorem 1.2 (Theorems 5.16, 5.17 and 6.11) Suppose M is simply connected and of dimension d � 4.
There exists a second-quadrant spectral sequence f LEpqr gr converging to HpCq.Emb.S1;M// such that :

(1) Its E2–page is isomorphic to the total homology of the normalization of a simplicial commutative
differential bigraded algebra A?�

�
.M/ which is defined in terms of the cohomology ring H�.DG/

for various graphs G and maps between them ,

LEpq2 ŠH.NA?�
�
.M//)HpCq.Emb.S1;M//;

where the bidegree is given by � D p and ?�� D q.

(2) If H�.M/ is a free k–module , and the Euler number �.M/ is zero or invertible in k, the object
A?�
�
.M/ is determined by the ring H�.M/.

We call this spectral sequence the Čech spectral sequence, or in short, the Čech s.s. A feature of this
spectral sequence is that its E1 page and differential d1 are explicitly determined by the cohomology
ofM . As spectral sequences forH�.Emb.S1;M// we have the Bousfield–Kan type cohomology spectral
sequence converging to H�.Emb.S1;M//, see Definition 2.7, and Vassiliev’s spectral sequence [40]
converging to the relative cohomologyH�.�f .M/;Emb.S1;M//, where�f .M/ is the space of smooth
maps S1!M . But no small (ie degreewise finite-dimensional) page of these spectral sequences has been
computed in general. The E1–page of the Bousfield–Kan type s.s. is described by the cohomology of the
ordered configuration spaces of points with a vector in M , which is difficult to compute; Vassiliev’s first
term is also interesting but complicated. By this feature, we can compute examples; see Section 7. We
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obtain new computational results in the case of the product of two spheres. While we only do elementary
computation in the present paper, one of potential merits of Čech s.s. is that computation of higher
differentials will be relatively accessible since we deal with the fat diagonals and Čech complex instead
of configuration spaces. The other is that we will be able to enrich it with operations such as the cup
product and square, and relate them to those on H�.M/. We will deal with these subjects in future work.
Precisely speaking, we can also construct the Čech spectral sequence in the 3–dimensional or nonsimply
connected case, where it does not converge to H�.Emb.S1;M// but might have some information about
the knot space; see Remark 5.18.

Arone and Szymik studied Emb.S1;M/ for the case of dimension d D 4 in [1]. Let Imm.S1;M/ be the
space of smooth immersions S1!M with the C1–topology and iM W Emb.S1;M/! Imm.S1;M/ be
the inclusion. Among other results, they proved that iM is 1–connected, so in particular surjective on �1
in general. (They proved interesting results for the nonsimply connected case M D S1 �S3; see also
Budney and Gabai [9].) They asked whether there is a simply connected 4–manifold M such that iM has
nontrivial kernel on �1. Using Theorem 1.2, we give a restriction to this question:

Corollary 1.3 Suppose that M is simply connected , of dimension 4 and satisfies H2.M IZ/¤ 0, and
that the intersection form on H2.M IF2/ is represented by a matrix whose inverse has at least one nonzero
diagonal component. Let iM W Emb.S1;M/! Imm.S1;M/ be the inclusion to the space of immersions.
Then the map iM induces an isomorphism on �1. In particular , �1.Emb.S1;M//ŠH2.M IZ/.

The assumption does not depend on the choice of matrix. For example, M DCP2 # CP2, the connected
sum of complex projective planes, satisfies the assumption, while M D S2 �S2 does not. For the case
of H2.M/ D 0, by Proposition 5.2 of [1], Emb.S1;M/ is simply connected. We can also prove this
similarly to Corollary 1.3. The case of all of the diagonal components of the matrix being zero is unclear
by our method.

Remark 1.4 In the recent preprint [23], Kosanović gave a proof of a complete answer to the question,
which states that the inclusion iM induces an isomorphism of �d�1 if M is simply connected and of
dimension d � 4 by an independent method.

Sinha’s cosimplicial model can be considered as a resolution of Emb.S1;M/ into simpler spaces. We
resolve it into further simpler pieces in the category of chain complexes as an application of Theorems 1.1
and 1.2. To state the result, we need additional notation. We consider a category ‰ of planar rooted
trees and edge contractions. It is equipped with a functor G ıF W‰!�, where � is the category of the
standard simplices. We also use a category G.n/C. Roughly speaking, the objects of G.n/C are a symbol
� and the graphs in G.n/, and the morphisms are the inclusions (of edge sets) and formal arrows �!G

to the graphs having at least one edge. Let z‰ be the Grothendieck construction of a functor from ‰

sending a tree T to the category G.jvr j � 1/
C, where jvr j denotes the valence of the root vertex of T . So
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an object of z‰ is a pair .T;G/ of a tree T and a graph G with exactly jvr j � 1 vertices (or the symbol �).
Let � W z‰!‰ be the projection given by �.T;G/D T .

Theorem 1.5 (Theorem 8.4) Under the above notation , there exists a functor TM W z‰op! SP satisfying
the following conditions:

(1) Its value on .T;G/ 2 z‰ is a natural model of the Thom spectrum

†�mK Th.�mjDG / with mD jvr j � 1

if G is a graph , and the basepoint if G D �.

(2) There exists a zigzag of weak equivalences of functors

.G ıF/�.C�.M/_/' L�ŠTM W‰
op
! SP:

Here the dual of the cosimplicial model is regarded as a functor from �op and L�Š is the (derived )
left Kan extension along �.

(3) Suppose M is simply connected and of dimension d � 4. There exists a zigzag of quasi-
isomorphisms of chain complexes

C �.Emb.S1;M//' hocolim
z‰op

C� ıTM :

Here hocolim denotes the homotopy colimit , and C� on the right-hand side is a certain singular
chain functor from spectra to chain complexes.

See Section 2.1 and Definitions 5.1 and 8.1 for details of the notation. We give an intuitive explanation
for this theorem. We regard G.n/ as the full subcategory of G.n/C. Let ∅ denote the graph with
no edges. There is a standard quasi-isomorphism C�.FDn/ ' hocolimG2C1 C�.DG/, where C1 D
G.n/op � f∅g. Since the relative complex C�.SMn;FDn/ is the homotopy cofiber of the inclusion
C�.FDn/! C�.SMn/D C�.D∅/, we have quasi-isomorphisms

C �.Cn�1.M//' C�.SMn;FDn/' hocolim
G2C2

C�.DG/;

where we set C2 D .G.n/C/op and C�.DG/D 0 for G D �. We regard this presentation as a resolution
of C �.Cn�1.M//. A category of planar rooted trees is a lax analogue of the category of the standard
simplices. Actually, homotopy limits over these categories are weakly equivalent. So, intuitively speaking,
existence of the functor TM means potential compatibility of the resolution and the cosimplicial structure.

We shall explain why we use spectra, which also serves as an outline of our arguments. Our motivation is
to derive a new spectral sequence from Sinha’s cosimplicial model. The idea is to combine the cosimplicial
model and a procedure of constructing a spectral sequence for the cohomology of the configuration space
due to Bendersky and Gitler [3]. So we consider the above duality (1-1), and describe the chain complex
C�.SMn;FDn/ by an augmented Čech complex as follows. Consider

C�.D∅/
@
 �

M
G2G.n;1/

C�.DG/
@
 �

M
G2G.n;2/

C�.DG/
@
 �

M
G2G.n;3/

C�.DG/
@
 � � � � ;
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where G.n; p/� G.n/ denotes the subset of graphs with exactly p edges. We want to extend this to the
following commutative diagram of semisimplicial chain complexes by defining suitable face maps di :

(1-2)

C �.Cn.M//

.d i /�

��

C�.D∅/

di

��

PD
oo

L
G2G.nC1;1/ C�.DG/

oo

di
��

L
G2G.nC1;2/ C�.DG/

oo

di
��

� � �oo

C �.Cn�1.M// C�.D∅/
PD
oo

L
G2G.n;1/ C�.DG/

oo
L
G2G.n;2/ C�.DG/

oo � � �oo

Here d i is the coface map of C�.M/, and PD actually denotes the zigzag

C �.Cn.M//! C�.D∅;FDn/ C�.D∅/

of the cap product with the fundamental class and the quotient map. If we could construct a semisimplicial
double complex in the right-hand side of PD in (1-2), by taking the total complex, we would have a
certain triple complex C�?�, where � (resp. ?, �) denotes the cosimplicial (resp. Čech, singular) degree.
Then by filtering with ?C�, we would obtain a spectral sequence as in Theorem 1.2.

Unfortunately, it is difficult to define degeneracy maps di fitting into (1-2). This difficulty is essentially
analogous to the one in the construction of a certain chain-level intersection product on C�.M/. We shall
explain this point more precisely. The coface map d i W Cn.M/! CnC1.M/ is a deformed diagonal, and
the usual diagonal induces the intersection product on homology. So the maps di should be something
like a deformed intersection product. The simplicial identities for di are analogous to the associativity of
an intersection product. In addition, the map .d i /� on the cochain is analogous to the cup product. So
construction of di is analogous to construction of a chain-level intersection product which is associative
and compatible with the cup product through the duality. We could not find such a product in the literature.

A nice solution is found in a construction due to R Cohen and Jones [11; 12] in string topology. They
used spectra to give a homotopy theoretic realization of the loop product, which led to a proof of an
isomorphism between the loop product and a product on Hochschild cohomology (see Moriya [30]
for a detailed account). Their key notion is the Atiyah duality, which is an equivalence between the
Spanier–Whitehead dualM_ and the Thom spectrumM�TM D†�K Th.�/. To prove their isomorphism,
Cohen [11] introduced a model of M�TM in the category SP , and refined the duality to an equivalence
of (nonunital) commutative symmetric ring spectra. This equivalence can be regarded as a multiplicative
version of the Poincaré duality. In fact, the multiplication on the model of M�TM works as an analogue
of a chain level intersection product in their theory. So is efficient to construct necessary semisimplicial
objects and their equivalence in SP , then take chain complexes of them, and derive a spectral sequence.
This is why we use spectra.

Even if we use spectra, the (co)simplicial object is too rigid, and we use a laxer notion of a left comodule
over an A1–operad.

As we demonstrate, the duality is very useful to transfer structures on the configuration space to the
Thom spectrum of the quotient by the fat diagonal, which is homotopically more accessible, and may be
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applied in much research on configuration spaces. In future work, we will study collapse of Sinha’s (or
Vassiliev’s) spectral sequence for the space of long knots in Rd [36] using the duality.

The organization of the paper is as follows. In Section 2, we introduce basic notions. We define a version
of Sinha’s cosimplicial model and show that its homotopy limit is equivalent to the space Emb.S1;M/.
We define the notions of a (co)module and Hochschild complex of a comodule over the associahedral
operad. These notions are minor variations of ones given by others. Section 3 is the technical heart
of this paper. We introduce a version of Cohen’s model of Thom spectra and use it to construct the
comodule TM in Theorem 1.1. We take care about definitions of parameters such as the radius of tubular
neighborhoods to make structure maps of a comodule compatible with the diagonals. In Section 4, we
prove Theorem 1.1. In Sections 5 and 6, we prove Theorem 1.2. These two sections have a homotopical
and algebraic nature compared to the previous sections, where we give detailed space level constructions.
In Section 5, we define a chain functor for symmetric spectra and construct the spectral sequence filtering
Hochschild complex of the chains of a resolution of the comodule TM . We prove that the E1–page of
the Čech spectral sequence is quasi-isomorphic to the total complex of a simplicial differential bigraded
algebra, and prove the convergence of the Čech spectral sequence. In Sections 3–5 we mainly deal with
comodules, but we need the cosimplicial model in the proof of convergence since we deduce it from
a theorem of Bousfield. In Section 6, we compute the cohomology rings H�.DG/ and maps between
them, and give a description of the simplicial algebra in terms of the cohomology ring H�.M/ under
some assumptions. The computation is standard work based on Serre spectral sequences. In Section 7,
we compute examples and prove Corollary 1.3. In Section 8, we prove Theorem 1.5.
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2 Preliminaries

In this section, we fix notation and introduce basic notions. Nothing is essentially new.

2.1 Notation and terminology

� We denote by� the category of standard simplices. Its objects are the finite ordered sets Œn�Df0; : : : ; ng
for n� 0 and its morphisms are the weakly order-preserving maps. We denote by �n the full subcategory
of � that consists of the objects Œk� with k � n. We define a category (or poset) Pn as follows. The
objects are the nonempty subsets S of n, and there is a unique morphism S ! S 0 if and only if S � S 0.
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Gn WPnC1!�n denotes the functor given in [37, Definition 6.3]. It sends a set S to Œ#S�1� and an inclusion
S � S 0 to the composition Œ#S�1�Š S � S 0Š Œ#S 0�1�, whereŠ denotes the order-preserving bijection.

� For a category C, a morphism of C is also called a map of C. A symmetric sequence in C is a sequence
fXkgk�0 (or fX.k/gk�1) of objects in C equipped with an action of the kth symmetric group †k on Xk
(or X.k/) for each k. The group †k acts from the right throughout this paper.

� Let G.n/ be the set of graphs defined in Section 1. For a graph G 2 G.n/, we regard E.G/ as an
ordered set with the lexicographical order. To ease notation, we write .i; j / with i > j to denote the edge
.j; i/ of a graph in G.n/. For a map f W n!m of finite sets, we denote by the same symbol f the map
G.n/! G.m/ defined by

E.f .G//D f.f .i/; f .j // j .i; j / 2E.G/ with f .i/¤ f .j /g:

Also, f denotes the natural map �0.G/! �0.f .G// between the connected components.

� Our notion of a model category is that of [21]. Ho.M/ denotes the homotopy category of a model
category M.

� We will denote by CG the category of all compactly generated spaces and continuous maps (see
[21, Definition 2.4.21]), by CG� the category of pointed compactly generated spaces and pointed maps,
and by ^ the smash product of pointed spaces.

� For a category C, a cosimplicial object X� in C is a functor �! C. A map of cosimplicial objects is a
natural transformation. Xn denotes the object of C at Œn�. We define maps

d i W Œn�! ŒnC 1� for 0� i � nC 1 and si W Œn�! Œn� 1� for 0� i � n� 1

by

d i .k/D

�
k if k < i;
kC 1 if k � i;

and si .k/D

�
k if k � i;
k� 1 if k > i:

Here d i ; si W Xn ! Xn˙1 denote the maps corresponding to the same symbols. As is well known, a
cosimplicial object X� is identified with a sequence of objects X0; X1; : : : ; Xn; : : : equipped with a
family of maps fd i ; sig satisfying the cosimplicial identity; see [16]. We call a cosimplicial object in
CG a cosimplicial space. Similarly, a simplicial object X� in C is a functor �op ! C. We denote by
di ; si WXn˙1!Xn the maps corresponding to d i and si .

� Our notion of a symmetric spectrum is that of Mandell, May, Schwede and Shipley [28]. A symmetric
spectrum consists of a symmetric sequence fXkgk�0 in CG� and a map �X W S1 ^Xk!XkC1 for each
k � 0 which is subject to certain conditions. The category of symmetric spectra is denoted by SP . We
denote by ^D ^S the canonical symmetric monoidal product on SP given in [28], and by S the sphere
spectrum, the unit for ^. Henceforth the term “spectrum” means symmetric spectrum. For a spectrum,
we refer to the numbering of the underlying sequence as the level.
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� For K 2 CG and X 2 SP , we define a tensor K y̋ X 2 SP by .K y̋ X/k D .KC/^Xk , where KC is
K with disjoint basepoint. This tensor is extended to a functor CG � SP! SP in an obvious manner.
For K;L 2 CG and X; Y 2 SP , we call the natural isomorphisms

K y̋ .L y̋ X/Š .K �L/ y̋ X and K y̋ .X ^Y /Š .K y̋ X/^Y;

the associativity isomorphisms. A natural isomorphism .K �L/ y̋ .X ^ Y / Š .K y̋ X/^ .L y̋ Y / is
defined by successive compositions of the associativity isomorphisms and the symmetry one for ^. We
define a mapping object Map.K;X/ 2 SP by Map.K;X/k DMap�.KC; Xk/, where the right-hand side
is the usual internal hom object (mapping space) of CG�. This defines a functor .CG/op�SP! SP . The
functors K y̋ .�/ and Map.K;�/ form an adjoint pair. We set K_ DMap.K;S/ for K 2 CG.

� We use the stable model structure on SP; see [28]. This is only used in Section 5.1 and Section 8.
Weak equivalences in this model structure are called stable equivalences. Level equivalences and ��–
isomorphisms are more restricted classes of maps in SP; see [28]. The former are the levelwise weak
homotopy equivalences and the latter are the maps which induce an isomorphism between (naive)
homotopy groups defined as the colimit of the sequence of canonical maps �k W ��.Xk/! ��C1.XkC1/.

� We say a spectrum X is semistable if there exists a number ˛ > 1 such that, for any sufficiently large l ,
the map �l W�k.Xl/!�kC1.XlC1/ is an isomorphism for each k�˛l . Semistability in this sense implies
semistability in the sense of [34], so a stable equivalence between semistable spectra (in our sense) is a
��–isomorphism.

� A nonunital commutative symmetric ring spectrum (in short, NCRS ) is a spectrumAwith a commutative
associative multiplication A^A! A (but possibly without a unit). A map of NCRS is a map of spectra
preserving the multiplication.

� CHk denotes the category of (possibly unbounded) chain complexes over k and chain maps. Differentials
raise the degree (see the next item for our degree rule). We endow CHk with the model structure where
weak equivalences are quasi-isomorphisms and fibrations are surjections. We denote by ˝ D ˝k the
standard tensor product of complexes.

� We deal with modules with multiple degrees (or gradings). For modules having superscript(s) and/or
subscript(s), their total degree is given by the formula

.total degree/D .sum of superscripts/� .sum of subscripts/:

For example, singular chains inCp.M/ have degree�p, and the total degree of a triply graded moduleA?�
�

is �C?��. We denote by jaj the (bi)degree of a. We sometimes omit super- or subscripts if unnecessary.

� For a simplicial chain complexC �
�

(ie a functor�op!CHk), the normalized complex (or normalization)
NC �

�
is a double complex defined by taking the normalized complex of a simplicial k–module in each

chain degree.

� For a small category C and a cofibrantly generated model category M (in the sense of [21]), we denote
by Fun.C;M/ the category of functors C !M and natural transformations, which is endowed with
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the projective model structure; see [20]. The colimit functor colimC W Fun.C;M/!M is a left Quillen
functor. Its left derived functor is denoted by hocolimC and called the homotopy colimit over C .

� A commutative differential bigraded algebra (in short, CDBA) is a bigraded module A?� equipped
with a unital multiplication which is graded commutative for the total degree and preserves the bigrading,
and a differential @ WA?�!A?C1;� which satisfies the Leibniz rule for the total degree. A map of CDBA
is a map of differential graded algebras preserving bigrading.

2.2 Čech complex and homotopy colimit

Definition 2.1 Let M be a cofibrantly generated model category. We define a functor

LC W Fun.Pop
nC1;M/! Fun.�op;M/ by LCXŒk�D

G
f W Œk�!nC1

Xf .Œk�/;

where f runs through the weakly order-preserving maps. For an order-preserving ˛ W Œl �! Œk�2�, the map
LCXŒk�! LCXŒl� is the sum of the maps Xf .Œk�/!Xf ı˛.Œl�/ induced by the inclusion f ı˛.Œl�/� f .Œk�/.

Lemma 2.2 We use the notation of Definition 2.1. Let X 2 Fun.Pop
nC1;M/ be a functor.

(1) There exists an isomorphism hocolimPop
nC1

X Š hocolim�op LCX in Ho.M/ which is natural for X .

(2) X is cofibrant in Fun.Pop
nC1;M/ if the following canonical map is a cofibration in M for each

S 2 PnC1:
colim
S 0©S

XS 0 !XS :

Proof Let .in ıGn/� W Fun.�op;M/! Fun.Pop
nC1;M/ be the pullback by the composition of Gn and

the inclusion in W�n!�. Clearly the pair . LC; .in ı Gn/�/ is a Quillen adjoint pair, and it is also clear
that colimPop

nC1
X and colim�op LCX are naturally isomorphic. Part (1) follows from these observations.

Part (2) is a special case of [21, Theorem 5.1.3].

2.3 Goodwillie–Weiss embedding calculus and Sinha’s cosimplicial model

In this subsection, we give the definition of the cosimplicial space C�.M/ modeling Emb.S1;M/, and
state its property. This is a minor variation of the model given in [37]. In [37], models of a space of
embeddings from the interval Œ0; 1� to a manifold with some endpoint condition, while we consider
embeddings S1 ! M without any basepoint condition. The difference which needs care is that the
homotopy limit of our cosimplicial model on the subcategory�n need not to be weak homotopy equivalent
to the nth stage of the corresponding Taylor tower, while Sinha’s original one is. At the1–stage, they are
equivalent, which is sufficient for our purpose. We begin with an analogue of the punctured knot model
in [37, Definition 3.4], which is an intermediate object between Emb.S1;M/ and C�.M/.

Definition 2.3 � Let S1D Œ0; 1�=0�1 and Ji�S1 be the image of the interval .1�1=2i�1=10i;1�1=2i /
by the quotient map Œ0; 1�! S1.
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� We fix an embedding M !RNC1 for sufficiently large N . We endow M with the Riemannian metric
induced by the Euclidean metric on RNC1 via this embedding. Let SM denote the total space of the unit
tangent sphere bundle of M .

� For a subset S � nC 1, let ES .M/ be the space of embeddings S1�
S
i2S Ji!M of constant speed.

� Define a functor En.M/ W PnC1! CG by assigning to a subset S the space ES .M/, and set

Pn Emb.S1;M/ WD holim
PnC1

En.M/:

Let ˛n W Emb.S1;M/! Pn Emb.S1;M/ be the map induced by restriction of the domain. The category
Pn is regarded as a subcategory of PnC1 via the standard inclusion n! nC 1. By our choice of Ji , we
have a canonical restriction map rn W Pn Emb.S1;M/! Pn�1 Emb.S1;M/. The maps ˛n induce a map

˛1 W Emb.S1;M/! holim
n

Pn Emb.S1;M/;

where the right side is the homotopy limit of the tower � � � rnC1���!Pn Emb.S1;M/
rn
�!Pn Emb.S1;M/

rn�1
���!

� � �
r2
�! P1 Emb.S1;M/.

Remark 2.4 Our choice of Ji is different from [37], since we adopt the reverse labeling of coface and
codegeneracy maps of the cosimplicial model to [37], for the author’s preference. This does not cause
any new problem.

Lemma 2.5 Suppose d � 4. The map ˛n W Emb.S1;M/! Pn Emb.S1;M/ is .n�1/.d�3/–connected.
In particular , ˛1 is a weak homotopy equivalence.

Proof Let p W Emb.S1;M/! SM be the evaluation of value and tangent vector at 0 2 S1. As is well
known, p is a fibration. Let D be a closed subset on M diffeomorphic to a closed d–dimensional disk.
Let Emb.Œ0; 1�;M � Int.D// be the space of embeddings Œ0; 1�!M � Int.D/ whose value and tangent
vector at endpoints are a fixed value in @D and vector. If we take a point of SM, for some choice of
the disk D, fixed endpoints and embedded path between the points in D, we have the inclusion from
Emb.Œ0; 1�;M � Int.D// to the fiber of p at the point. This inclusion is a weak homotopy equivalence. Its
homotopy inverse is given by shrinking the disk D to the point. Thus, we have a homotopy fiber sequence

Emb.Œ0; 1�;M � Int.D//! Emb.S1;M/! SM:

Restricting the domain, we have a similar fiber sequence ES .M � Int.D//!ES .M/! SM, where the
left-hand side is the space defined in [37, Definition.3.1] with the obvious modification for Ji . (In [37], M
denotes a manifold with boundary, so we apply the definitions to M � Int.D/ instead of our closed M .)
Passing to homotopy limits, we have the diagram

Emb.Œ0; 1�;M � Int.D// //

��

Emb.S1;M/ //

˛n
��

SM

id
��

Pn Emb.Œ0; 1�;M � Int.D// // Pn Emb.S1;M/ // SM
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where both horizontal sequence are homotopy fiber sequences and the left bottom corner is the punctured
knot model in [37, Definition.3.4] (with the obvious modification for Ji ). As in [37, Theorem.3.5], by
theorems of Goodwillie, Klein, and Weiss, the left vertical arrow is .n�1/.d�3/–connected, and so is
the middle.

Remark 2.6 Let Tn Emb.S1;M/ be the nth stage of the Taylor tower (or polynomial approximation).
Restriction of the domain induces a map Pn Emb.S1;M/! Tn Emb.S1;M/ which is compatible with
canonical maps from Emb.S1;M/, but the author does not know whether this map is a weak homotopy
equivalence.

Our cosimplicial space is analogous to the well-known cosimplicial model of a free loop space, just like
Sinha’s original space is analogous to that of a based loop space. So the space Cn.M/ is related to a
configuration space of nC 1 points (not n points).

Definition 2.7 Let k�k denote the standard Euclidean norm in RNC1.

� Let Cn.M/Df.x0; : : : ; xn�1/2M
n j xk ¤ xl if k¤ lg be the ordered configuration space of n points

in M . Similarly, we set C2.Œn�/D f.k; l/ 2 Œn��2 j k ¤D lg.

� Let Cn.M/ be the closure of the image of the map

Cn.M/!M n
� .SN /�C2.Œn�1�/; .xk/k 7! .xk; ukl/kl ;

where ukl D .xl � xk/=kxl � xkk. Cn.M/ is the same as the space in Definition 4.1(6) of [37], though
our labeling of points begins with 0. Define a space Cn.M/ by the following pullback diagram:

Cn.M/ //

��

SMnC1

��

CnC1.M/ // M nC1

Here the right vertical arrow is the product of standard projection and the bottom horizontal one is the
composition of the canonical inclusion CnC1.M/!M�nC1 � .SN /�C2.Œn�/ and the projection.

� Let � W TxM !RNC1 be the linear monomorphism from the tangent space induced by the differential
of the embedding fixed in Definition 2.3 and the identification TxRNC1 ŠRNC1 by the standard basis.
Set A0nC1.M/ WDM�nC1 � .SN /�.Œn�

�2/. Let ˇ0nC1 W C
n.M/! A0nC1.M/ be the map given by

ˇ0nC1.xk; ukl ; yk/D .xk; u
0
kl/ and u0kl D

�
ukl if k ¤ l;
�.yk/ if k D l;

where yk is a unit tangent vector at xk . This is clearly a monomorphism. For an integer i with 0� i �nC1,
we define a map di W ŒnC 1�! Œn� by

di .k/D

�
k if k � i;
k� 1 if k > i;

for 0� i � n and dnC1 D d0 ı �;
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ui;iC1 D yi

d i

7�!
M

i
i C 1

xi

yi

Figure 1: Intuition of the coface map d i . Here yi is the vector at xi .

where � is the cyclic permutation �.k/D kC 1 .mod nC 2/. (This di is the same as si in Section 2.1,
but we use the different notation to avoid confusion.) We define a map d i W A0nC1.M/! A0nC2.M/ by

d i .xk; ukl/0�k;l�n D .xf .k/; uf .k/;f .l//0�k;l�nC1 with f D di :

This map restricts to the map d i W Cn.M/! CnC1.M/ via ˇ0nC1, ˇ0nC2. Similarly, we define a map
si W Cn.M/! Cn�1.M/ for 0� i � n� 1 as the pullback by the map

si W Œn� 1�! Œn�; si .k/D

�
k if k � i;
kC 1 if k > i:

The collection C�.M/D fCn.M/; d i ; sig forms a cosimplicial space. Well-definedness of this is verified
in Lemma 2.8.

� We call the Bousfield–Kan type cohomology spectral sequence associated to C�.M/ the Sinha spectral
sequence for M , in short, the Sinha s.s., and denote it by fErgr .

Intuitively, an element of Cn.M/ is a configuration of n points in M , some points of which are allowed to
collide, or in other words, to be infinitesimally close, and the direction of collision is recorded as the unit
vector ukl if the kth and l th points collide. An element of Cn.M/ is an element of CnC1.M/, each point
of which has a unit tangent vector. For 0 � i � n, the map d i replaces the i th point in a configuration
with the two points colliding at the point along its vector. These points are labeled by i and i C 1. Their
vectors are copies of the original vector (see Figure 1). The map dnC1 replaces the 0th points with two
points similarly, and labels them by nC 1 and 0 (and slides other labels). The map si forgets the .iC1/th

point and vector.

Lemma 2.8 (1) The map Cn.M/ ! M n � .SN /�C2.Œn�1�/ given in Definition 2.7 restricts to a
homotopy equivalence Cn.M/! Cn.M/.

(2) The cosimplicial space C�.M/ is well defined.

Proof Part (1) is proved in [35, Corollary 4.5 and Theorem. 5.10]. For (2), by [35, Proposition 6.6]
the image of d i and si is contained in Cn˙1.M/—C 0nhŒM �i in the proposition is the same as Cn�1.M/

in our notation. Confirmation of the cosimplicial identities is routine work. For example, to confirm
dnC2d i D d idnC1 W Cn.M/ ! CnC2.M/ for i < n C 2, it is enough to confirm the dual identity
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didnC2 D dnC1di W ŒnC 2�! Œn�. Both sides are equal to the map

k 7!

8<:
k if k � i;
k� 1 if i < k < nC 2;
0 if k D nC 2;

if i < nC 1; k 7!

�
k if k � n;
0 if k D nC 1; nC 2;

if i D nC 1:

Lemma 2.9 Let G�nC�.M/ be the composition functor PnC1
Gn
�!�n

C�.M/
����! CG.

(1) The homotopy limits of En.M/ and G�nC�.M/ are connected by a zigzag of weak homotopy
equivalences which are compatible with the inclusion n! nC 1.

(2) The homotopy limit of C�.M/ over �n and that of G�nC�.M/ over PnC1 are connected by a zigzag
of weak homotopy equivalences which are compatible with the inclusion n! nC 1.

(3) If d � 4, the homotopy limit of C�.M/ over � and Emb.S1;M/ are connected by a zigzag of
weak homotopy equivalences.

Proof The proof of (1) is completely analogous to the proof of [37, Lemma 5.19] so we omit details.
The idea of the proof is to consider the two space C#S�1.M/ and ES .M/ as subspaces of a common
space, where one can “shrink components of embeddings until they become tangent vectors”, as in
[37, Definition 5.14]. The space is a subspace of the space of compact subspaces of C#S�1.M/ with the
Hausdorff metric. This space and the inclusions can be chosen to be compatible with maps in PnC1. For
example, the restriction ES .M/! ES 0.M/ corresponding to the inclusion S D nC 1 � S 0 D nC 2
divides the component including the image of 0 2 S1 into two components, since the image of JnC2
is removed. At the limit of shrinking components, this is consistent with the coface map dnC1. These
inclusions to the common space give rise to a zigzag of natural transformations which is a weak homotopy
equivalence at each set S � nC 1. This induces the claimed zigzag. Part (2) follows from the fact that
the functor Gn is left cofinal; see Theorem 6.7 of [37]. Part (3) follows from (1), (2) and Lemma 2.5.

2.4 Operads, comodules and the Hochschild complex

The term operad means nonsymmetric (or non–†) operad; see [24; 31]. An operad OD fO.n/gn�1 in a
symmetric monoidal category .C;˝/ is a sequence of objects equipped with maps

.�ıi �/ WO.m/˝O.n/!O.mCn� 1/ for 1� i �m

in C, called partial compositions, which are subject to certain conditions. O.n/ is called the object at
arity n. More precisely, our notion of an operad is different from the one in [24; 31] only in that we do
not consider the object at arity 0, so conditions on partial compositions given in [24; 31] are imposed only
in the ranges of all involved arities being 1 or more. We mainly consider operads in CG (resp. in CHk),
which are called topological operads (resp. chain operads), where the monoidal product is the standard
cartesian product (resp. tensor product). Let O be a topological operad. C�.O/ denotes the chain operad
given by C�.O/.n/ D C�.O.n// with the induced structure. We equip the sequence fO.n/ y̋ Sgn of
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spectra with a structure of an operad in SP as follows. The i th partial composition is given by

.O.m/ y̋ S/^.O.n/ y̋ S/Š .O.m/�O.n// y̋ .S^S/Š .O.m/�O.n// y̋ S
.�ıi�/ y̋ id
�������!O.mCn�1/ y̋ S:

See Section 2.1 for the isomorphisms. The action of †n is the naturally induced action. We denote this
operad by the same symbol, O. We let A denote both of the (discrete) topological and k–linear versions
of the associative operad by abuse of notation. For the k–linear version, we fix a generator � 2 A.2/
throughout this paper. K denotes the Stasheff associahedral operad, and A1 the cellular chain operad
of K. Precisely speaking, A1 is generated by a set f�k 2A1.k/gk�2 with j�kj D �kC 2, with partial
compositions. The differential is given by the formula

d�k D
X
l;p;q

lCqDkC1

.�1/��l ıpC1 �q;

where � D �.l; p; q/D pC q.l �p� 1/.

In the following definition, we adopt the point–set description, as if a category C were the category of
sets, for simplicity.

Definition 2.10 � Let O be an operad over a symmetric monoidal category C. A (left) O–comodule in
C is a symmetric sequence X D fX.n/gn�1 in C equipped with maps

.�ıi �/ WO.m/˝X.mCn� 1/!X.n/ 2 C

for m� 1, n� 1 and 1� i � n, called partial compositions, which satisfy the following conditions:

(1) For a 2O.m/, b 2O.l/ and x 2X.l CmCn� 2/,

a ıi .b ıj x/D

8<:
b ıj .a ıiCl�1 x/ if j < i;
.a ıj�iC1 b/ ıi x if i � j � i Cm� 1;
b ıj�mC1 .a ıi x/ if i Cm� 1 < j:

(2) For the unit 1 2O.1/ and x 2X.n/, we have 1 ıi x D x.

(3) For a 2O.m/, x 2X.mCn� 1/ and � 2†n,

.a ıi x/
�
D a ı��1.i/ .x

�1/;

where �1 2†mCn�1 is the permutation induced by � , replacing the letter ��1.i/ with the m letters
��1.i/; : : : ; ��1.i/Cm� 1. In other words,

�1.k/D

8̂̂̂̂
<̂̂
ˆ̂̂̂:

�.k/ if k < ��1.i/ and �.k/ < i;
�.k/Cm� 1 if k < ��1.i/ and �.k/ > i;
i C k� ��1.i/ if ��1.i/� k � ��1.i/Cm� 1;
�.k�mC 1/ if k > ��1.i/Cm� 1 and �.k�mC 1/ < i;
�.k�mC 1/Cm� 1 if k > ��1.i/Cm� 1 and �.k�mC 1/ > i:

A map f W X1 ! X2 of O–comodules is a sequence of maps in C ffn W X1.n/ ! X2.n/gn which is
compatible with the actions of symmetric groups and the partial compositions.
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� A (right) O–module in C is a symmetric sequence Y D fY.n/gn�1 equipped with a set of partial
compositions Y.n/˝O.m/! Y.mCn� 1/ which satisfy the following conditions:

(1) For a 2O.m/, b 2O.l/ and y 2 y.n/,

.y ıj a/ ıi b D

8<:
.y ıi b/ ıjCl�1 a if i < j;
y ıj .a ıi�jC1 b/ if j � i � j Cm� 1;
.y ıiCm�1 b/ ıj a if i > j Cm� 1:

(2) For the unit 1 2O.1/ and y 2X.n/, we have y ıi 1D y.

(3) For a 2O.m/, y 2X.n/ and � 2†n,

y� ıi aD .y ı�.i/ a/
�2 ;

where �2 2 †mCn�1 is the permutation induced by � , replacing the letter i with the m letters
i; : : : ; i Cm� 1. In other words,

�2.k/D

8̂̂̂̂
<̂̂
ˆ̂̂̂:

�.k/ if k < i and �.k/ < �.i/;
�.k/Cm� 1 if k < i and �.k/ > �.i/;
�.i/C k� i if i � k � i Cm� 1;
�.k�mC 1/ if k > i Cm� 1 and �.k�mC 1/ < �.i/;
�.k�mC 1/Cm� 1 if k > i Cm� 1 and �.k�mC 1/ > �.i/:

A map of modules is defined similarly to that of comodules.

� For a topological operad O (regarded as an operad in SP), an O–comodule of NCRS is an O–comodule
X in SP such that each X.n/ is equipped with a structure of an NCRS and the action of †n on X.n/ and
the partial composition .a ıi �/ WX.nCm� 1/!X.n/ is a map of NCRS for each a 2O.m/. A map of
comodules of NCRS is a map of comodules which is also a map of NCRS at each arity.

� For a topological operad O and an O–module Y , we define an O–comodule Y _ of NCRS as follows:

(1) We set Y _.n/D Y.n/_ (see Section 2.1).

(2) For f 2 Y _.n/ and � 2†n, we define an action f � by f � .y/D f .y�
�1

/ for each y 2 Y.n/.

(3) For a2O.m/ and f 2Y _.mCn�1/, we define a partial composition aıif by aıif .y/Df .yıia/
for each y 2 Y.n/.

(4) We define a multiplication Y _.n/^ Y _.n/! Y _.n/ as the pushforward by the multiplication
of S. (This is actually unital.)

This construction is natural for maps of O–modules.

� An A–comodule X of CDBA is an A–comodule (in CHk) such that each X.n/ is a CDBA, and the
partial composition � ıi .�/ W X.n/! X.n� 1/— with the fixed generator � 2 A.2/— and action of
� 2†n preserve the differential, bigrading, multiplication and unit.

The axioms for the partial compositions of modules (Definition 2.10) are the standard ones, which are
naturally interpreted in terms of concatenation of trees. The action of � 2†n is interpreted as replacement
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of labels i on leaves with labels ��1.i/, and the axiom is the natural one with this interpretation. The
axioms for a comodule are simply dual to those for a module. The comodule in Example 2.14 may give
some intuition for it.

Remark 2.11 The notion of a right module in Definition 2.10 is similar to the one in [26]. A right
O–module is also essentially the same as a topological contravariant functor from the PROP of †O to
spaces (or spectra), and a left O–comodule is a covariant functor. Here †O is the standard symmetrization
of O, ie †O.n/DO.n/�†n; see [29].

Composing the unity and associativity isomorphisms, we get a natural isomorphismK y̋ X Š .K y̋ S/^X

in SP . Let O be a topological operad. Via this isomorphism, a structure of an O–comodule in SP on a
symmetric sequence X is equivalent to a set of maps

O.m/ y̋ X.mCn� 1/!X.n/

which satisfy conditions completely similar to those given in Definition 2.10. We also call these maps
partial compositions, and henceforth will define comodules in SP with these maps.

Remark 2.12 Precisely speaking, comodules in Definition 2.10 should be called contracomodules,
because our comodules are to modules as contramodules are to comodules in [32], but for simplicity we
adopt our terminology.

The following definition is essentially due to [16], though we adopt a different sign rule.

Definition 2.13 Let X� be an A1–comodule in CHk. We define a chain complex .CH�X�; Qd/, called
the Hochschild complex of X , as follows. Set CHnX� DX�.nC 1/. By our convention, the total degree
is ���. The differential Qd is given as a map

Qd D d � ı W
M
a�nDk

CHnXa!
M

a�nDkC1

CHnXa:

Here d is the internal (original) differential on Xa.nC 1/ and ı is given by

ı.x/D

nX
iD0

n�iC1X
kD2

.�1/��k ıiC1 xC

nX
sD1

nC1X
kDsC1

.�1/��k ı1 x
s

for x 2 Xa.nC 1/, where � D �.a; i; k/ D .aC i/.kC 1/, � D �.s; n; k; a/ D snC .kC 1/a and xs

denotes the image of x by the action of the permutation in †nC1 which transposes the first n� sC 1
letters and the last s letters.

The following example gives some intuition for the definitions of a comodule and the Hochschild complex,
but is not used later.

Example 2.14 Let C be the category of k–modules and A be a k–algebra. Let mn 2A.n/ be the element
defined by successive partial compositions of the generator � 2A.2/. Define an A–comodule XA by

XA.n/DA
˝n; mk ıi .x1˝� � �˝xkCn�1/D x1˝� � �˝xi�1˝.xi � � � xiCk�1/˝xiCk˝� � �˝xkCn�1;

Algebraic & Geometric Topology, Volume 24 (2024)



200 Syunji Moriya

where xi � � � xiCk�1 is the product in A. We regard XA as an A1–comodule via a map A1 ! A
of operads. The Hochschild complex of XA is the usual (unnormalized) Hochschild complex of the
associative algebra A.

Lemma 2.15 With the notation of Definition 2.13, . Qd/2 D 0.

Proof Roughly,

. Qd/2.x/D Qd.dx� ıx/D ddx� dıx� ıdx� ııx

D d.�k ıiC1 xC�k ı1 x
s/C .�k ıiC1 dxC�k ı1 dx

s/

��l ıjC1 .�k ıiC1 x/C�l ı .�k ı1 x
s/C�l ı1 .�k ıiC1 x/

t
C�l ı1 .�k ı1 x

s/t

D .d�k/ ıiC1 xC .d�k/ ı1 x
s

��l ıjC1 .�k ıiC1 x/C�l ı .�k ı1 x
s/C�l ı1 .�k ıiC1 x/

t
C�l ı1 .�k ı1 x

s/t :

(Here we already canceled the terms containing dx, since the cancellation of signs is obvious.) So we
have six types of terms. To see which terms cancel with each other, we divide these terms into the
following smaller classes:

(1) .d�k/ ıiC1 x, d�k D
P
�l ıpC1 �q ,

(2) .d�k/ ı1 x
s , d�k D

P
�l ıpC1 �q:

(a) s < pC 1,

(b) pC q � s,

(c) p D 0 and q > s,

(d) p > 0 and pC q > s � pC 1,

(3) �l ıjC1 .�k ıiC1 x/:

(a) i < j ,

(b) j C l � 1 < i ,

(c) j � i � j C l � 1,

(4) �l ıjC1 .�k ı1 x
s/:

(a) j D 0,

(b) j > 0,

(5) �l ı1 .�k ıiC1 x/
t :

(a) i C 1 < n� k� t C 3 and l < sC i C 1,

(b) i C 1 < n� k� t C 3 and l � sC i C 1,

(c) i C 1� n� k� t C 3,

(6) �l ı1 .�k ı1 x
s/t .
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Now we claim that the terms in (1) cancel with the terms in (3c), (2a) with (5b), (2b) with (5c), (2c) with
(4a), (2d) with (6), (3a) with (3b) and (4b) with (5a).

We shall verify the first and third parts of the claim. Other verification is similar and omitted. For the first
one, the coefficient of a term .�l ıpC1 �q/ ıiC1 x in (1) is .�1/˛1 , where

˛1 D �.l; p; q/C �.a; i; l C qC 1/C 1:

For a term in (3-c), by the rules of the partial composition, �l ıjC1 .�k ıiC1x/D .�l ıi�jC1�k/ıjC1x.
In order to match this term with a term in (1), we set q0 D k, p0C 1 D i � j C 1 and i 0C 1 D j C 1.
This change of subscripts implies �l ıjC1 .�k ıiC1 x/ D .�l ıp0C1 �q0/ ıi 0C1 x. Clearly j D i 0 and
i D p0C i 0. The coefficient of �l ıjC1 .�k ıiC1 x/ in (3-c) is .�1/˛2 , where

˛2 D �.a; i; k/C 1C �.aC k� 2; j; l/C 1D �.a; p
0
C i 0; q0/C �.a� q0C 2; i 0; l/C 2:

When we substitute q0 D q, p0 D p and i 0 D i in the last expression, elementary computation shows
˛1C˛2 � 1 .mod 2/. Thus the terms in (1) cancel with the terms in (3-c).

For the third part, the coefficient of a term .�l ıpC1 �q/ ı1 x
s in (2-b) is .�1/ˇ1 , where

ˇ1 D �.l; p; q/C �.s; n; l C q� 1; a/C 1:

For a term in (5-c), the condition i C 1� n� k� t C 3 implies that �k acts on a part of the last t letters.
By this, and the rule of the partial composition, we have

�l ı1 .�k ıiC1 x/
t
D �l ı1 .�k ıi�nCkCt�1 .x

tCk�1//D .�l ıi�nCkCt�1 �k/ ı1 x
tCk�1:

In order to match this term with a term in (2-b), we set p0C1D i�nCkCt�1, q0D k and s0D tCk�1.
This change of subscripts implies �l ı1 .�k ıiC1 x/t D .�l ıp0C1�q0/ı1 xs

0

. Clearly t D s0�q0C1 and
i D p0Cn� s0C 1. The coefficient of �l ı1 .�k ıiC1 x/t is .�1/ˇ2 , where

ˇ2 D �.a; i; k/C 1C �.t; a� kC 2; n� kC 1; l/C 1

D �.a; p0Cn� s0C 1; q0/C �.s0� q0C 1; n� q0C 1; a� q0C 2; l/C 2:

When we substitute q0 D q, p0 D p and s0 D s in the last expression, elementary computation shows
ˇ1Cˇ2 � 1 .mod 2/. Thus the terms in (2-b) cancel with the terms in (5-c).

3 The comodule TM

The purpose of this section is to define the comodule TM .

3.1 A model of a Thom spectrum

We introduce a model of a Thom spectrum in the category of symmetric spectra. This model is essentially
due to Cohen [11], and is slightly different from Cohen’s original nonunital model, mainly in that we use
expanding embeddings.
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Definition 3.1 Let N be a closed manifold. We fix a Riemannian metric on N and denote by dN .�;�/
the distance on N induced by the metric. The standard Euclidean norm on Rk is denoted by k�k. The
distance in Rk is induced by k�k.

� For a smooth embedding e WN ! L to a Riemannian manifold L, we set a number

r.e/D inf
�
dL.e.x/; e.y//

dN .x; y/

ˇ̌̌
x; y 2N with x ¤ y

�
:

It is easy to see r.e/ > 0. We say e is expanding if the inequality r.e/� 1 holds. Embex.N;L/ denotes
the space of all expanding embeddings from N to L with the topology induced by the C1–topology.

� For a smooth embedding e WN !Rk , we define a number jej by

jej D

kX
iD1

maxfjei .y/j j y 2N g;

where ei WN !R is the i th component of e and j � j is the absolute value.

� Let e W N ! Rk be a smooth embedding. For � > 0, we denote by ��.e/ the open subset of Rk

consisting of the points whose Euclidean distance from e.N / is smaller than �. Let L.e/ denote the
minimum of 1 and the least upper bound of � > 0 such that there exists a retraction �e W ��.e/! e.N /

satisfying the following conditions:

– For any u 2 ��.e/ and any y 2N we have k�e.u/�uk � ke.y/�uk, and equality holds if and
only if �e.u/D e.y/.

– For any y 2N we have ��1e .fe.y/g/DB�.e.y//\ .e.y/C .TyN/
?/. Here B�.e.y// is the open

ball with center e.y/ and radius �.

– The closure N��.e/ of ��.e/ is a smooth submanifold of Rk with boundary.

(Such a retraction exists for a sufficiently small � > 0 by a version of the tubular neighborhood theorem;
see [27].) The retraction �e satisfying the above conditions is unique. We regard the map �e W��.e/!e.N /

as a disk bundle over N , identifying N and e.N / via e.

� Let zN��
k

be the subspace of Embex.N;Rk/�R�Rk consisting of the triples .e; �; u/with 0<�<L.e/.
Define a subspace @ zN��

k
� zN��

k
by .e; �; u/ 2 @ zN��

k
if and only if u … ��.e/. We put

N��k D
zN��k =@ zN��k :

We define a structure of a symmetric spectrum on N�� as follows:

– We let †k act on Rk and Embex.N;Rk/ by the standard permutation on components. The action
of †k on N��

k
is given by Œe; �; u�� D Œe� ; �; u� �.

– The map S1 ^N��
k
! N��

kC1
is given by t ^ Œe; �; u� 7! Œ0� e; �; .t; u/�, where we regard S1 as

R[f1g, and 0� e WM !RkC1 is given by .0� e/.x/D .0; e.x//.
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� We shall define a structure of NCRS on N�� . An element of .N�� ^N�� /k is represented by data
hŒe1; �1; u1�; Œe2; �2; u2�I �i consisting of Œei ; �i ; ui � 2 N��ki for i D 1; 2 and k1C k2 D k, and � 2 †k .
We define a commutative associative multiplication � WN�� ^N�� !N�� by

�.hŒe1; �1; u1�; Œe2; �2; u2�I �i/D Œe12; �12; .u1; u2/�
� :

Here we set e12 D .e1 � e2/ ı�, where � WN !N �N is the diagonal map, and set

�12 Dmin
�
�1

8je2j
;
�2

8je1j
; L.e12/;

L.e01/

8je12j�je
0
1j
; : : : ;

L.e0m/

8je12j�je
0
mj

ˇ̌̌
m� 2; e01 WN !Rl1 ; : : : ; e0m WN !Rlm

�
;

where the finite sequence .e01; : : : ; e
0
m/ runs through the sequences of expanding embeddings satisfying

.e01 � � � � � e
0
m/ ı�

m D .e12/
� for a permutation � 2†k1Ck2 and the diagonal map �m WN !Nm.

Lemma 3.2 The structure of NCRS on N�� given in Definition 3.1 is well defined

Proof Most of the proof is the same as the proof of [11, Theorem 3]. We shall only verify the associativity
of the number �12. Let Œei ; �i ; ui � be an element of N��

ki
for i D 1; 2; 3. We denote by �.12/3 (resp. �1.23/)

the number in the second entry of the product of the three elements where the elements labeled by i D 1; 2
(resp. i D 2; 3) are multiplied at first. By definition,

�.12/3 Dmin
�
�12

8je3j
;
�3

8je12j
; L.e123/;

L.e01/

8je123j�je
0
1j
; : : : ;

L.e0m/

8je123j�je
0
mj

ˇ̌̌
m� 2; e01; : : : ; e

0
m

�
;

where e123 D .e1 � e2 � e3/ ı�3, and the finite sequence .e01; : : : ; e
0
m/ runs through the sequences of

expanding embeddings satisfying .e01 � � � � � e
0
m/ ı�

m D .e123/
� for some � 2 †k1Ck2Ck3 . By the

obvious equality je12j D je1jC je2j, we have

�.12/3Dmin
�

�1

8je2jCje3j
;

�2

8je1jCje3j
;

�3

8je1jCje2j
;L.e123/;

L.e01/

8je123j�je
0
1j
; : : : ;

L.e0m/

8je123j�je
0
mj

ˇ̌̌
m�2;e01; : : : ; e

0
m

�
;

where the finite sequence .e01; : : : ; e
0
m/ runs through the same set as above. The number �1.23/ is also

seen to be equal to the value of the right-hand side.

3.2 Construction of a comodule zTM

Definition 3.3 � For a closed interval c D Œa; b�, we set jcj D b�a, and call the point 1
2
.aCb/ 2 c the

center of c.

� We define a version of the little interval operad, denoted by D, as follows. For n� 1, let D.n/ be the
set of n–tuples .c1; c2; : : : ; cn/ of closed subintervals ci �

�
�
1
2
; 1
2

�
such that c1[ � � �[ cn D Œ�12 ;

1
2
� and

ci \ cj is a one-point set, or empty if i ¤ j , and the labeling of 1; : : : ; n is consistent with the usual
order of the real line R (so �1

2
2 c1 and 1

2
2 cn). D.1/ is understood as the one-point set consisting of

the interval
�
�
1
2
; 1
2

�
. We topologize D.n/ as a subspace of Rn by the inclusion sending each interval

to its center. The partial composition is given in a way that is completely analogous to the usual little
interval operad.
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c

c1 c2 c3
.x2; y2/

.x3; y3/

7!

.x1; y1/

.x; y/

M

�jdi j

Figure 2: The map �0. The geodesic segment is divided into the pieces of rate of length jc1j W jc2j W jc3j.

� We identify H0.D.2// with A.2/ by sending the generator represented by a topological point to the
generator �.

Recall that we fixed a Riemannian metric on M in Definition 2.3. Henceforth we equip the space SM
with the Sasaki metric, and the product SMn of n copies of SM with the product metric. We assume
the maximum of the distance between two points in SM is larger than 1. This is clearly possible by
modifying the embedding used in the definition of the metric on M . This assumption is used in the proof
Lemma 3.11(2). We fix a positive number � small enough that a geodesic of length � exists for any initial
value in M . After Lemma 3.7, we impose an additional assumption on �.

Definition 3.4 We define a map

�0 D�Œd; cI i � W SM! SMm

for each d D .d1; : : : ; dn/ 2 D.n/, c D .c1; : : : ; cm/ 2 D.m/ and 1 � i � n. Let .x; y/ denote a point
of SM with x 2 M and y 2 SxM , where SxM denotes the fiber of the sphere bundle over x. Let
s W
�
�
1
2
�; 1
2
�
�
!M denote the geodesic segment with length parameter such that s.0/D x and the tangent

vector of s at 0 is y. Let tj 2
�
�
1
2
; 1
2

�
be the center of cj , put xj D s.� � jdi j � tj / and set yj to be the

tangent vector of s at � � jdi j � tj . We set �0.x; y/D ..x1; y1/; : : : ; .xm; ym//; see Figure 2.

The following lemma is clear from the definition of �Œd; cI i �.

Lemma 3.5 For any configurations d, c1 and c2 and numbers i and j , the following equality holds:

�Œd; c1 ıj c2I i �D .1j�1 ��Œd ıi c1; c2I i C j � 1�� 1m�j / ı�Œd; c1I i �:

Here m is the arity of c1, and 1l is the identity on SMl .

Lemma 3.6 For any sufficiently small positive number �, the map�Œd; cI i � is expanding for any numbers
n� 1, m� 1 and i with 1� i � n, and elements d 2 D.n/ and c 2 D.m/.

Proof It is enough to prove the case of mD 2, since for m� 3, �0 is equal to a successive composition
of copies of �0 of arity 2 by Lemma 3.5. We set �0 D jdi j�. We shall consider the case that M is a
metric vector space V as a local model. Take points .x; y/; .v; w/ 2 yV D V �SV , where SV is the unit
sphere in V . Put cD .c1; c2/. Let �s and t be the centers of c1 and c2, respectively, with 0 < s; t < 1

2
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and sC t D 1
2

. By definition, �0.x; y/D Œ.x� �0sy; y/; .xC �0ty; y/�. When we set aD kx� vk and
b D ky �wk, we easily see

k�0.x; y/��0.v; w/k2 � 2a2� �0js� t jabC
˚
1
4
�20.s

2
C t2/C 2

	
b2

� 2a2� 1
2
�0js� t j.a

2
C b2/C

˚
1
4
�20.s

2
C t2/C 2

	
b2:

So

(3-1)
k�0.x; y/��0.v; w/k

k.x; y/� .v; w/k
�

p
7

2
for � < 1:

We shall consider the case of a general manifoldM . There exists a number r > 0 such that, for sufficiently
small �, for any point p 2M and any pair .x; y/; .v; w/ 2 TpM � STpM with kxk; kvk � r , we have
the inequality

(3-2)
d.�0M .exp x; exp0 y/;�0M .exp v; exp0w//

d.�0TpM .x; y/;�
0
TpM

.v; w//
> 1� 1

100
;

where exp is the exponential map at p and exp0 is its differential. Combining (3-1) and (3-2), for
.x; y/; .v; w/ 2 SM, we see dSM2.�

0.x; y/;�0.v; w// > dSM..x; y/; .v; w// if dM .x; v/ � r . For the
case of dM .x; v/ > r , if we take � sufficiently small relative to r , the following inequality holds:

d.�0.x; y/;�0.v; w//

d.�.x; y/;�.v;w//
> 1� 1

100
for .x; y/; .v; w/ 2 SM with d.x; v/ > r:

Here � W SM! SM�2 is the usual diagonal. Then, if dM .x; v/ > r , we have the inequality

d.�0.x; y/;�0.v; w// >
�
1� 1

100

�p
2 d..x; y/; .v; w//:

Thus, we have shown the lemma.

The following lemma is an exercise of Riemannian geometry:

Lemma 3.7 For any sufficiently small positive number �, the following condition holds. For any n� 2,
G 2 G.n/ and set of positive numbers f�ij j i < j for .i; j / 2E.G/g satisfying

P
.i;j /2E.G/ �ij < �, the

inclusion of subspaces of M n

f.x1; : : : ; xn/ j 8.i; j / 2E.G/; xi D xj g ! f.x1; : : : ; xn/ j 8.i; j / 2E.G/; d.xi ; xj /� �ij g

is a homotopy equivalence.

Assumption In the rest of paper, we fix the number � so that Lemmas 3.6 and 3.7 hold.

We define a D–comodule zTM of NCRS. We set

SM�� .n/D .SMn/�� I

see Definition 3.1. We first define a subspectrum zTM .c/� SM�� .n/ as follows:

zTM .c/k D
˚
Œe; �; u� 2 SM�� .n/k j � <

1
2
�minfjc1j; : : : ; jcnjg

	
:
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We define a subspectrum zTM .n/�Map.D.n/; SM�� .n// as follows:

� 2 zTM .n/k () �.c/ 2 zTM .c/k for all c 2 D.n/:

It is clear that the inclusion zTM .n/!Map.D.n/; SM�� .n// is a level-equivalence for any n � 1. We
denote the sequence fzTM .n/g by zTM .

We shall define an action of †n on zTM .n/, with which we regard zTM as a symmetric sequence. For
cD .c1; : : : ; cn/ 2 D.n/ and � 2†n, we define c� 2 D.n/ to be the configuration of the subintervals of
length jc�.1/j; jc�.2/j; : : : ; jc�.n/j placed from the side of �1

2
to the side of 1

2
. For Œe; �; u� 2 SM�� .n/k

and � 2 †n, we set Œe; �; u�� D Œe ı �; �; u� where � W SMn
! SMn is given by .z1; : : : ; zn/ 7!

.z��1.1/; : : : ; z��1.n//. (To distinguish the action of †k which is a part of the structure of the spectrum,
we use the subscript Œ��� .)

Definition 3.8 With the above notation, for �2 zTM .n/k and � 2†n we define an element �� 2 zTM .n/k by

�� .c/D f�.c�
�1

/g� :

Clearly � 7! �� gives a †n–action on zTM .n/.

In order to define a partial composition on zTM , we shall define a map

„D„Œd; cI i � W SM�� .nCm� 1/! SM�� .n/:

For an element Œe; �; u� 2 SM�� .nCm� 1/k , we put

� e0 D e ı .1i�1 ��
0 � 1n�i / W SMn

!Rk , where �0 D�Œd; cI i � and 1l is the identity on SMl , and

� �0D .1=8m�1/minf�; L.e; dıi c/g, whereL.e; c0/ is the minimum of the numbersL.eı�Œc1; c2I j �/
over all triples .c1; c2; j / satisfying c0 D .c1 ıj c2/ ıl c3 for some configuration c3 and number l .

By Lemma 3.6, e0 is expanding. We set„.Œe; �; u�/D Œe0; �0; u�. Clearly„ is a well-defined map of spectra.

Definition 3.9 Using the above notation:

� We define a partial composition

.�ıi �/ W D.m/ y̋ zTM .nCm� 1/! zTM .n/
on zTM by setting

.c ıi �/.d/D„.�.d ıi c// where „D„Œd; cI i �;

for elements � 2 zTM .nCm� 1/, c 2 D.m/ and d 2 D.n/.
� We define a multiplication Q� W zTM .n/^ zTM .n/! zTM .n/ by

Q�.h�1; �2I �i/.d/D �.h�1.d/; �2.d/I �i/;

where � denotes the multiplication given in Definition 3.1.

With these operations and the action of †n in Definition 3.8, we regard zTM as a D–comodule of NCRS.
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Lemma 3.10 The structure of a D–comodule of NCRS on zTM given in Definition 3.9 is well defined.

Proof By Lemma 3.5, we see the equality in Definition 2.10(1) holds. The equality in (2) in the same
definition is clear.

We shall prove the equality in (3). Take elements c 2 D.m/, d 2 D.n/, � 2 zTM .mCn� 1/ and � 2†n.
By definition,

.c ıi �/
� .d/D fc ıi �.d

��1/g� D f„1.�.d
��1
ıi /
�
g� ;

c ı��1.i/ .�
�1/.d/D„2f�..d ı��1.i/ c/

��11 /�1g;

where „1 D„Œd�
�1

; cI i � and „2 D„Œd; cI ��1.i/�. It is easy to check the equalities

d�
�1

ıi cD .d ı��1.i/ c/
��11 and f„1.x/g� D„2.x�1/:

These verify the desired equality. Compatibility of the multiplication with the partial composition
is obvious.

3.3 Construction of the comodule TM

Let p and q be two different integers with 1� p; q � n, and c 2 D.n/ be an element. We set a number
ıpq.c; �/ by

ıpq.c; �/D
1
2
�.jcpjC jcqj/� �

for a number �. We define a subspectrum Tpq.c/� zTM .c/ by the following equivalence. For each k � 0,

Œe; �; u� 2 Tpq.c/k () Œe; �; u�D � or dM .xp; xq/� ıpq.c; �/;

where xi 2 M is the image of the i th component of �e.u/ by the standard projection SM ! M for
i D p; q. On the right-hand side, ıpq.c; �/ is positive by the definition of zTM .c/. Define a subspectrum
Tpq.n/� zTM .n/ by

� 2 Tpq.n/k () �.c/ 2 Tpq.c/k for all c 2 D.n/:

Clearly we have Tpq.n/D Tqp.n/. The following lemma is the key to defining the comodule TM . Most
of the preceding technical definitions are necessary to make this lemma hold.

Lemma 3.11 (1) For any numbers n� 1 and m� 2 and element c 2D.m/, let c ıi Tpq.nCm� 1/�
zTM .n/ denote the image of Tpq.nCm� 1/ by the map c ıi .�/. We have the following inclusion
at each level k:

c ıi Tpq.nCm� 1/�

8̂̂̂̂
<̂̂
ˆ̂̂̂:

f�g if i � p < q � i Cm� 1;
Tpi .n/ if p < i � q � i Cm� 1;
Tp;q�mC1.n/ if p < i; i Cm� 1 < q;
Ti;q�mC1.n/ if i � p � i Cm� 1 < q;
Tp�mC1;q�mC1.n/ if i Cm� 1 < p < q:

More precisely, for example , the second inclusion means cıi Tpq.nCm�1/k � Tpi .n/k for each k.

(2) The image of Tpq.n/^ zTM .n/ by the multiplication Q� given in Definition 3.9 is contained in Tpq.n/.
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x0

y0

ıi;iC1.d ıi c; �/
1

4
� 1

4
�

2�0 2�0

x0

i
x0

iC1

1

2
�jdi j.jc1j C jc2j/

Figure 3: The first inclusion of Lemma 3.11(1) with nD 2. The bold line is a part of the geodesic
segment used to define �0, .x0; y0/ is the i th component of �e0.u/ 2 SMn, and xi and xiC1 exist
in the interior of the disks at x0i and x0iC1 if .c ıi �/.d/¤ �.

Proof We shall show (1). Let c 2 D.m/, d 2 D.n/ and � 2 Tpq.nCm� 1/k be elements. Let .e; �; u/
be a representative of �.d ıi c/. Write

�e.u/D ..x1; y1/; : : : ; .xnCm�1; ynCm�1//;

f.1i�1/��
0
� .1n�i /g.�e0.u//D ..x

0
1; y
0
1/; : : : ; .x

0
nCm�1; y

0
nCm�1//;

with xj ; x0j 2M , yj 2 SxjM and y0j 2 Sx0jM . Here we use the notation given in the paragraph above
Definition 3.9. We shall show the first inclusion, the case of i � p < q � i Cm� 1.

The situation of the case nD 2 is as in Figure 3 (so pD i and qD iC1). We first give a sketch of the proof
for nD 2. We suppose .c ıi �/.d/¤ � and will show a contradiction. Since the map �0 arranges points
along a geodesic and the length of the geodesic segment between x0i and x0iC1 is 1

2
�jdi j.jc1jC jc2j/, we

have dM .x0i ; x
0
iC1/ > ı.d ıi c; �/. As we have taken �0 in the definition of „ sufficiently small, xi and x0i

(resp. xiC1 and x0iC1) are sufficiently close. These observations imply dM .xi ; xiC1/ > ı.d ıi c; �/, or,
equivalently, �.d ıi c/ … Tpq.d ıi c/.

We shall give the formal proof. We assume .c ıi �/.d/¤ �. Since the image of e0 is contained in the
image of e and the map �e sends u to its closest point in e.M/DM , we have

ku� e.�e.u//k � ku� e
0.�e0.u//k< �

0:

So
ke0.�e0.u//� e.�e.u//k � ke

0.�e0.u//�ukCku� e.�e.u//k< 2�
0:

As e0 D e ı .1i�1/��0 � .1n�i / and e is expanding,

df..x01; y
0
1/; : : : ; .x

0
nCm�1; y

0
nCm�1//; ..x1; y1/; : : : ; .xnCm�1; ynCm�1//g< 2�

0;

where d denotes the distance in SMnCm�1. So

dM .xj ; x
0
j /� dSM..xj ; yj /; .x

0
j ; y
0
j // < 2�

0 for j D 1; : : : ; nCm� 1:
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By this inequality, and the definition of the map �0, we have the inequality

dM .xp; xq/� dM .x
0
p; x
0
q/� dM .xp; x

0
p/� dM .xq; x

0
q/� dM .x

0
p; x
0
q/� 4�

0

�
1
2
�jdi j.jcp�iC1jC jcq�iC1j/� 4�

0
D

1
2
�.j.d ıi c/pjC j.d ıi c/qj/� 4�

0

�
1
2
�.j.d ıi c/pjC j.d ıi c/qj/� �=2 > ıpq.d ıi c; �/:

This inequality implies �.d ıi c/ … Tpq.d ıi c/, which is a contradiction. So .c ıi �/.d/D �, and we have
proved the first inclusion.

We shall show the second inclusion, the case of p < i � q � i Cm� 1. Let .x0; y0/ 2 SM be the i th

component of �e0.u/. Clearly,

..x0i ; y
0
i /; : : : ; .x

0
iCm�1; y

0
iCm�1//D�

0.x0; y0/:

By an argument similar to the above, we have the inequality

dM .x
0
p; x
0/�dM .x

0
p; xp/CdM .xp; xq/CdM .xq; x

0
q/CdM .x

0
q; x
0/

�2�0Cıpq.dıi c; �/C2�
0
C
1
2
�jdi j.1�jcq�iC1j/

D
1
2
�.jdpjCjdi jjcq�iC1j/��C4�

0
C
1
2
�jdi j.1�jcq�iC1j/�

1
2
�.jdpjCjdi j/�

1
2
�<ıpq.d; �

0/:

This implies the second inclusion. The other cases are similar to the first and second cases. The proof
of (2) is similar in view of the assumption on the metric given in the paragraph after Definition 3.3, and
so is omitted.

Let Tfat.n/ be the subspectrum of zTM .n/ whose space at level k is given by

Tfat.n/k D
[

1�p<q�n

Tpq.n/k :

Since fTpq.n/g� D T��1.p/;��1.q/.n/, we have that Tfat.n/ is stable under the action of †n. By
Lemma 3.11, the sequence fTfat.n/gn�0 is stable under partial compositions and is an ideal for the
multiplication Q�. So the sequence fTfat.n/gn�0 inherits a structure of a comodule from zTM , and we can
define the quotient comodule as follows:

Definition 3.12 We define a spectrum TM .n/ by the quotient (collapsing to �)

TM .n/k D zTM .n/k=Tfat.n/k

for each k � 0 and n � 2, and by TM .1/ D zTM .1/. We regard the sequence TM D fTM .n/gn�1 as a
comodule of NCRS with the structure induced by that on zTM .

4 Atiyah duality for comodules

Definition 4.1 We define the following zigzag consisting of D–comodules of NCRS and maps between
them:

.CM /_
.i0/
_

 ��� . zFM /
_ .i1/

_

���! .FM /
_ q�
 � F 0M

p�
��! F

�
M

ˆ
 � TM :
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� Set CM .n/D Cn�1.M/. When we regard a configuration as an element of CM .n/, we label its points
by 1; : : : ; n instead of 0; : : : ; n�1. We give the sequence CM D fCM .n/gn�1 a structure of an A–module
as follows. For the unique element � 2A.2/ and an element x 2 CM .n/, we set x ıi �D d i�1.x/, where
d i�1 is the coface operator of C�.M/. The action of †n on CM .n/ is given by permutation of labels and
.CM /_ is the A–comodule of NCRS given in Definition 2.10. By pulling back the action by the unique
operad morphism D!A, we also regard .CM /_ as a D–comodule.

� Let FM .n/ be the subspace of D.n/ � SMn defined by the following condition. For an element
.cI .x1; y1/; : : : ; .xn; yn// 2 D.n/� SMn with xi 2M and yi 2 SxiM ,

.cI .x1; y1/; : : : ; .xn; yn//2FM .n/ () d.xi ; xj /�
1
2
�.jci jCjcj j/ for each pair .i; j / with i¤j;

where � is the number fixed in Section 3.2.

� The sequence fFM .n/g has a structure of a D–module. For c 2D.n/ and .dI z1; : : : ; zn/ 2 FM .n/, we
set .dI z1; : : : ; zn/ ıi cD .d ıi cI z1; : : : ; �0.zi /; : : : ; zn/, where �0 D�Œd; cI i � is given in Definition 3.4.
The symmetric group acts on FM .n/ by permutation of little intervals and components. The D–comodule
of NCRS .FM /_ is the one induced by FM .

� We shall define a symmetric sequence of spectra fSM .n/gn. Set zSM .n/k D zN��k for N D SMn (see
Definition 3.1). Define a subspace @.zSM .n//k � zSM .n/k by .e; �; v/ 2 @zSM .n/k if and only if kvk � �.
We put

SM .n/k D zSM .n/k=@zSM .n/k :

We regard SM .n/ as an NCRS by a multiplication defined similarly to that ofN�� , given in Definition 3.1.

� Set F �M .n/ WDMap.FM .n/;SM .n//. We give the sequence fF �M .n/gn a structure of a D–comodule
as follows. For c 2 D.n/ and f 2 F �M .nCm� 1/, set c ıi f to be the composition

FM .m/
.�ıi c/
����! FM .nCm� 1/

f
�! SM .nCm� 1/

˛
�! SM .n/:

Here ˛ is given by
˛.Œe; �; v�/D Œe0; �0; v�;

where e0 and �0 are as defined in the paragraph above Definition 3.9. Similarly to .CM /_, we define a
multiplication on F �M .n/ as the pushforward by the multiplication on SM .n/.

� We define a map ẑn W zTM .n/! F
�
M .n/ of spectra by

ẑ
n.�/..cI z1; : : : ; zn//D Œe; N�; u� e.z1; : : : ; zn/�:

Here we write �.c/ D Œe; �; u� and we set N� D 1
4
�. Lemma 4.2 proves that ẑn induces a morphism

ˆn W TM .n/! F
�
M .n/ which forms a morphism of comodules.

� We shall define a D–module zFM . Set

zFM;1.n/D Œ0; 1��D.n/� CM .n/=�;
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where the equivalence relation is generated by the relation .t; c; z/� .s; d; z0/ if and only if sD t D 0 and
zD z0. zFM .n/ is the subspace of zFM;1.n/ consisting of elements .t; c; z/ with zD .xk; ukl ; yk/ satisfying

t ¤ 0 D) z 2 Int.CM .n// and dM .xi ; xj /� t �
1
2
�.jci jC jcj j/:

Here Int.CM .n// is the subspace consisting of the elements .xk; ukl ; yk/ such that xk ¤ xl if k ¤ l , or
equivalently, .xk; ukl/ belongs to Cn.M/ via the canonical inclusion Cn.M/� Cn.M/. We endow the
sequence f zFM .n/gn with a structure of a D–module analogous to that of FM . The difference is that we
use the number t� instead of � in the definition of �0 for t > 0, and use the module structure on CM
for t D 0. The obvious inclusions i0 W CM .n/! zFM .n/ and i1 W FM .n/! zFM .n/ to t D 0; 1 give rise to
morphisms of D–modules i0 W CM ! zFM and i1 W FM ! zFM .

� To define F 0M , p� and q�, we shall define a symmetric sequence of spectra fS0M .n/gn. Let zS0M .n/ be
the subspace of Emb..SM/n;Rk/�R�Sk consisting of triples .e; �; v/ with 0 < � < L.e/. We put

S0M .n/k D zS
0
M .n/k=f.e; �;1/ j e; � arbitraryg;

where we regard Sk D Rk [ f1g. We regard S0M .n/ as a spectrum analogously to SM .n/. Let
p W S0M .n/! SM .n/ be the map induced by the collapsing map Sk!Rk=fv j kvk � �g and q W S0M ! S

be the map forgetting the data .e; �/. Set F 0M .n/ D Map.FM .n/;S0M .n//. We regard fF 0M .n/g as a
D–comodule of NCRS analogously to F �M . The pushforwards p� and q� are clearly morphisms of
comodules of NCRS.

Verification of well-definedness of the objects defined in Definition 4.1 is routine work. For example, the
associativity of the composition of CM follows from the cosimplicial identities of C�.M/, and that of FM
can be verified similarly to the associativity of little cubes operads. We omit details.

Remark Right modules similar to FM are used in [2; 6].

Lemma 4.2 The map ẑn uniquely factors through a map ˆn W TM .n/! F
�
M .n/, and the sequence fˆng

is a map of D–comodules of NCRS.

Proof We shall show that ẑn.�/D � for any element � 2 Tpq.n/. Suppose that there exists an element
.cI z1; : : : ; zn/ 2 FM .n/ such that ẑn.�/.cI z1; : : : ; zn/ ¤ � 2 SM .n/. If we put �.c/ D Œe; �; u�, the
inequality ku� e.z1; : : : ; zn/k< 1

4
� holds. So ku� e.�eu/k< 1

4
�. Thus,

ke.�eu/� e.z1; : : : ; zn/k � ke.�eu/�ukCku� e.z1; : : : ; zn/k<
1
2
�:

As e is expanding, we have d.�e.u/; .z1; : : : ; zn// < 1
2
� where d denotes the distance in SMn. If we

write zi D .xi ; yi / and �e.u/D .. Nx1; Ny1/; : : : ; . Nxn; Nyn// as pairs of a point of M and a tangent vector, it
follows that dM . Nxi ; xi / < 1

2
�, and

d. Nxp; Nxq/� d.xp; xq/� d.xp; Nxp/� d.xq; Nxq/ >
1
2
�.jcpjC jcqj/� � D ıpq.c; �/:

This inequality contradicts the assumption � 2 Tpq.n/. Thus we have proved ẑn.Tpq.n// D �. This
implies the former part of the lemma. The latter part is obvious.
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Definition 4.3 A D–comodule of NCRS is semistable if the spectrum X.n/ is semistable for each n.
A map f WX ! Y of D–comodules of NCRS is a ��–isomorphism if each map fn WX.n/! Y.n/ is a
��–isomorphism (see Section 2.1).

The notion of a ��–isomorphism in Definition 4.3 is what we call “weak equivalence” in Theorem 1.1.
Since a ��–isomorphism of spectra is a stable equivalence, a ��–isomorphism of D–comodules gives a
stable equivalence at each arity. The following is a version of Atiyah duality which respects our comodules.
We devote the rest of this section to its proof.

Theorem 4.4 As D–comodules of nonunital commutative symmetric ring spectra , .CM /_ and TM are
��–isomorphic. Precisely speaking , all the comodules in the zigzag in Definition 4.1 are semistable and
all the maps in the same zigzag are ��–isomorphisms.

Definition 4.5 � For G 2 G.n/ and c 2 D.n/, we define two subspectra TG.c/; Tfat.c/� zTM .c/ by

TG.c/D
�T

.p;q/2E.G/ Tpq.c/ if G ¤∅;
zTM .c/ if G D∅;

and Tfat.c/D
[

1�p<q�n

Tpq.c/:

Similarly, we define a subspectrum TG � zTM .n/ by

TG D
�T

.p;q/2E.G/ Tpq if G ¤∅;
zTM .n/ if G D∅:

Here the union and intersections are taken in the levelwise manner.

� We fix an expanding embedding e0 W SM! RK , a positive number �0 < L.e0/ and a configuration
c0 2 D.n/ such that �0 < 1

4
minfjc1j; : : : ; jcnjg. We set � D ��0.e0/. We impose an additional condition

on �0 in Definition 5.8, which is satisfied by any sufficiently small �0, and we will assume K is a multiple
of 4 in the proof of Theorem 5.16. (We may impose the assumption on K from the beginning, but for the
convenience of verification of signs we do not do so.)

� For a graph G 2G.n/, let M�0.G/ be the space of maps �0.G/!M with the product topology, where
�0.G/ is the set of connected components of G. Let DG be the pullback of the diagram

SMn projection
������!M n

 M�0.G/;

where the right arrow is the pullback by the quotient map n! �0.G/. DG is naturally regarded as
a subspace of SMn via the projection of the pullback. This subspace is the same as the one given in
Section 1. We define the subspace FDn � SMn as the unions of the spaces DG whose graph G has at
least one edge.

� Consider �n � RnK as a disk bundle over SMn and denote by �G be the preimage of DG by the
projection �n! SMn. Let �G W Th.�G/! TG.c0/nK be the map Œu� 7! Œ.e0/

n; �0; u�. Then �G induces
a morphism �G W†

nK Th.�G/! TG.c0/ in Ho.SP/, where † denotes the suspension.

Lemma 4.6 For a closed smooth manifold N and k� 1, the inclusion I WEmbex.N;Rk/!Emb.N;Rk/
is a homotopy equivalence.
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Proof Let f WR>0!R be a C1–function which satisfies the following inequalities:

f .x/ >
1

x
for x < 1; f .x/� 1 for x � 1:

We define a continuous map F W Emb.N;Rk/! Embex.N;Rk/ by e 7! f .r.e// � e, where r.e/ is the
number given in Definition 3.1, and � denotes componentwise scalar multiplication. A homotopy from
F ı I to id is given by .t; e/ 7! ftC .1� t /f .r.e//g � e, and a homotopy from I ıF to id is also given by
the same formula.

Lemma 4.7 We use the notation in Definition 4.5. For each n � 1 and G 2 G.n/, TM .n/ and TG are
semistable , and each map in the following zigzags in Ho.SP/ is an isomorphism.

†nK Th.�G/
�G
��! TG.c0/ TG ;

†nKfTh.�n/=Th.�njFDn/g
�G
��! T∅.c0/=fTfat.c0/g  TM .n/:

Here , see Section 1 for FDn, and the right maps are the evaluations at c0.

Proof For simplicity, we shall prove the claim for the maps in the first line for the case of G D∅. The
same proof works for general G thanks to the assumptions on � given in Section 3.2. Set N D .SM/n.
The evaluation at c0 and the inclusion T∅.c0/�N�� are clearly level equivalences. So all we have to
prove is that T∅ is semistable and that the composition of �G and the inclusion, which is also denoted by
�G W†

nK Th.�G/!N�� , is an isomorphism in Ho.SP/. We define a space Ek by

Ek D f.e; �/ j e 2 Embex.N;Rk/ and 0 < � < L.e/g:

By Lemma 4.6 and Whitney’s theorem, Ek is
�
1
2
k�n.2d�1/�1

�
–connected. Let P WN��

k
! Ek be the

fiber bundle obtained from the obvious projection zN��
k
! Ek by collapsing the complements of the ��.e/

in a fiberwise manner (see Definition 3.1). So each fiber of the map P is a Thom space homeomorphic to
Th.�G/. P has a section s W Ek!N��

k
to the basepoints, and there is an obvious homeomorphism

N��k =s.Ek/ŠN��k :

With this, by observing the Serre spectral sequence for P , we see that the composition

Sk�nK ^Th.�G/
�G
��! Sk�nK ^N��nK

action of S
������!N��k

is
�
3
2
k�2n.2d�1/�2

�
–connected. This implies N�� is semistable and �G is an isomorphism.

Proof of Theorem 4.4 Similarly to the proof of Lemma 4.7, it is easy to see SM and S0M are semistable,
which implies each comodule in the zigzag in Definition 4.1 is semistable, combined with the fact that the
spaces FM .n/, zFM .n/ and CM .n/ have homotopy types of finite CW complexes. It is clear that p and q
are ��–isomorphisms, and so are p� and q�. Then i0 and i1 are homotopy equivalences for each n, since
zFM .n/ is homotopy equivalent to the mapping cylinder of the inclusion Cn.M/� Cn.M/, which is also

a homotopy equivalence. So .i0/_ and .i1/_ are ��–isomorphisms. Finally ˆn is a ��–isomorphism
since it reduces to the equivalence of the original Atiyah duality in the (homotopy) category of classical
spectra via Lemma 4.7; see [7].
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5 Spectral sequences

5.1 A chain functor

Definition 5.1 � For a chain complex C�, C Œk�� is the chain complex given by C Œk�l D CkCl with the
same differential as C� (without extra sign).

� Fix a fundamental cycle wS1 2 C1.S
1/. Let C�.U / denote the reduced singular chain complex of

a pointed space U . We shall define a chain complex C�.X/ for a spectrum X . Define a chain map
iX
k
WC�.Xk/Œk�!C�.XkC1/ŒkC1� by iX

k
.x/D .�1/l��.wS1�x/ for x 2Cl.Xk/, where � WS1^Xk!

XkC1 is the structure map of X . We define C�.X/ as the colimit of the sequence fC�.Xk/Œk�I iXk gk�0.
Clearly the procedure X 7! C�.X/ is extended to a functor SP! CHk in an obvious manner.

� For a spectrum X , we denote by H�.X/ the homology group of C�.X/.

� Let f CW denote the full subcategory of CG spanned by finite CW complexes. We define a functor
C �S W .f CW/op! CHk by C qS .X/D C�q.X

_/.

The proofs of the following two lemmas are very standard, so we omit them.

Lemma 5.2 If f W X ! Y is a stable equivalence between semistable spectra , the induced map
f� W C�.X/! C�.Y / is a quasi-isomorphism.

Lemma 5.3 There exists a zigzag of natural transformations between C � and C �S W .f CW/op! CHk, in
which each natural transformation is an objectwise quasi-isomorphism.

Remark 5.4 The functor C� does not have any compatibility with symmetry isomorphisms of the
monoidal products ^ in SP and ˝k in CHk, so the multiplication on TM .n/ defined in Section 3 does
not straightforwardly induce a multiplication on C�.TM .n//. To enrich the Čech spectral sequence
with multiplicative operations, we will need some extra work as in [33], which is not dealt with here.
The E2–term of the spectral sequence has a multiplication induced by a simplicial CDBA given in
Definition 5.14, but its topological meaning is unclear at present.

The functor C� W SP! CHk has some compatibility with the tensor y̋ with a space.

Lemma 5.5 (1) For U 2 CG and X 2 SP , the collection of Eilenberg–Zilber shuffle maps

fEZ W C�.U /˝C�.Xk/Œk�! C�..UC/^Xk/Œk�gk

induces a quasi-isomorphism

C�.U /˝C�.X/! C�.U y̋ X/:
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(2) Let O be a topological operad and Y be an O–comodule in SP . A natural structure of a chain
C�.O/–comodule on the collection C�Y D fC�.Y.n//gn is defined as follows. The partial compo-
sition is given by the composition

C�.O.m//˝C�.Y.mCn� 1//! C�.O.m/ y̋ Y.mCn� 1//! C�.Y.n//;

where the left map is the one defined in (1) and the right map is induced by the partial composition
on Y . The action of †n on C�.Y /.n/ is the one induced naturally.

Proof The cross product wS1 � x is equal to EZ.wS1 ˝ x/ by definition, and the shuffle maps are
associative and compatible with the symmetry isomorphisms of monoidal products without any chain ho-
motopy for normalized singular chains, so the maps EZ are compatible with the maps iX

k
in Definition 5.1

(the sign commuting an element of C�.U / and wS1 is canceled with the sign attached in the definition
of iX

k
). This implies the first part. The second part follows from commutativity of the following diagram,

which is clear from the property of the shuffle map mentioned above:

C�.U /˝C�.V /˝C�.X/ //

��

C�.U /˝C�.V y̋ X/

��

C�.U �V /˝C�.X/ // C�..U �V / y̋ X/

Here U; V 2 CG, X 2 SP , the left vertical arrow is induced by the EZ shuffle map and other arrows are
given by (1).

5.2 Construction of the Čech spectral sequence

Definition 5.6 We define a C�.D/–comodule {TM?� of double complexes consisting of the following data:

� a sequence of double complexes f{TM?�.n/gn�1 with two differentials d and @ of degree .0; 1/ and
.1; 0/, respectively,

� an action of †n on {TM?�.n/ which preserves the bigrading, and

� a partial composition .�ıi �/ W Ck.D.m//˝ {TM?�.mCn� 1/! {TM?;�Ck.n/.

These satisfy the following compatibility conditions in addition to the conditions in Definition 2.10:

d@D @d; d.˛ ıi x/D d˛ ıi xC .�1/
j˛j˛ ıi dx; @.˛ ıi x/D ˛ ıi @x:

We define the double complex {TM?�.n/ by

{TMp�.n/D
M

G2G.n;p/

C�.TG/

for p � 0 and {TMp;�.n/D 0 for p < 0, where G.n; p/� G.n/ is the set of graphs with exactly p edges (see
Definition 4.5 for TG). The differential d is the original differential of C�.TG/. The other differential @
is given by the signed sum

@D

pX
tD1

.�1/tC1@t ;
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where @t is the standard pushforward by the inclusion TG ! TGt where the graph Gt is defined by
removing the t th edge from G (in the lexicographical order). The action of � on zTM .n/ restricts to a map
� WTG!T��1.G/; see Section 2.1 for ��1.G/. This map induces a chain map �� WC�.TG/!C�.T��1.G//
by the pushforward of chains. For G 2G.n; p/, let �G 2†p denote the composition

p ŠE.��1.G//!E.G/Š p;

whereŠ denotes the order-preserving bijection and the middle map is given by .i; j / 7! .�.i/; �.j //. We
define the action of � on {TM .n/ as sgn.�G/ ��� on each summand. We now define the partial composition.
Let fi WmCn� 1!n be the order-preserving surjection which satisfies fi .iCt /D i for t D 1; : : : ; m�1.
For elements ˛2C�.D.m// and x2C�.TG/withG2G.nCm�1/, if #E.fi .G//D#E.G/ then the partial
composition ˛ıix2C�.TfiG/ is defined similarly to Lemma 5.5 with the map .�ıi�/ WD.m/ y̋ TG!TfiG ,
and if #E.fi .G// < #E.G/ then ˛ ıi x is zero. This partial composition is well defined by Lemma 3.11.
The compatibility between d; @ and .�ıi �/ is obvious. We have completed the definition of {TM .

Let Tot {TM?�.n/ denote the total complex. Its differential is given by d C .�1/q@ on {TM?q.n/. We regard
the sequence Tot {TM?� D fTot {TM?�.n/gn as a chain C�.D/–comodule with the induced structure. We fix
an operad map f W A1! C�.D/, and regard Tot {TM as an A1–comodule by pulling back the partial
compositions by f . We consider the Hochschild complex CH�.Tot {TM?�/ associated to this A1–comodule;
see Definition 2.13. The total degree of elements of CH�.Tot {TM?�/ is ���?��. We define two filtrations
fF�pg and fF�pg on this complex as follows. F�p (resp. F�p) is generated by the homogeneous parts
whose degree satisfies ?C� � p (resp. �� p). We call the spectral sequence associated to fF�pg the
Čech spectral sequence, in short, Čech s.s., and denote it by f LE�p;qr gr . The spectral sequence associated
to fF�pg is denoted by fxE�p;qr gr .

Lemma 5.7 The spectral sequence xEr in Definition 5.6 and Sinha spectral sequence Er in Definition 2.7
are isomorphic after the E1–page.

Proof Put N0D #f.i; j / j i; j 2 n with i < j g and let X W PN0 D G.n/�f∅g! SP be the functor given
by XG D TG . By applying Lemma 2.2 to this functor, we see that the map Tot {TM?�.n/! C�.TM .n//
induced by the collapsing (quotient) map zTM .n/! TM .n/ is a quasi-isomorphism. Combining this with
Theorem 4.4 and Lemma 5.2, the two comodules C�.C_M / and Tot {T?� are quasi-isomorphic. Clearly
CH� C�.CM / is quasi-isomorphic to the normalized complex of C�.C�.M/_/, which is quasi-isomorphic
to the normalized total complex of C �.C�.M// by Lemma 5.3. Thus, CH� Tot {TM?� and the normalized
total complex of C �.C�.M// are connected by a zigzag of quasi-isomorphisms which preserve the
filtration. This zigzag induces a zigzag of morphisms of spectral sequences which are isomorphisms after
the E1–page because the homology of Tot {T?�.nC 1/ is isomorphic to H�.Cn.M// under the zigzag.

5.3 Convergence

In this subsection, we assume M is orientable. We shall prepare some notation and terminology which is
necessary to analyze the E1–page of the Čech s.s.
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Definition 5.8 � We fixed an embedding e0 W SM! RK and a number �0 in Definition 4.5. We also
fix an isotopy �t W SM! R2K with �0 D 0� e0 and �1 D�RK ı e0, where 0� e0 W SM! R2K is given
by .0� e0/.z/D .0; e0.z// and �RK is the diagonal map on RK . We impose the additional condition
that �0 is smaller than minfL.�t / j 0 � t � 1g. We also fix a 1–parameter family of bundle maps
�t W ��0.0� e0/! ��0.�t / with �0 D id.

� We fix the following classes:

yw 2H2d�1.SM/; !� 2H
2d�1.SM� SM; �.SM/c/; wSK 2HK.S

K/; !SK 2H
K.SK/;

!� 2H
K�2dC1.Th.�//; !.n/ 2Hn.K�2dC1/.Th.�n//;  2Hd .SM� SM; .SM�M SM/c/:

Here yw is a fundamental class of SM, �.SM/c is the complement of the tubular neighborhood of the
(standard, nondeformed) diagonal, !� is the diagonal class satisfying the equality

. yw� yw/\!� D��. yw/ 2H2d�1.SM2/;

wSK is the cross product .wS1/
�n of K copies of the class wS1 fixed in Definition 5.1, !SK is the class

such that wSK \!SK is the class represented by a point, and !� is the Thom class satisfying the equality

��1 .!� � .!� �!�//D !SK �!� :

Here !� �.!��!�/ is naturally regarded as a Thom class for the bundle ��0.�RK ıe0/. We set !.n/D!�n� .
The class  is a Thom class of a tubular neighborhood of SM�M SM in SM� SM.

� We call a graph in G.n/ which does not contain a cycle (a closed path) a tree. For a graph G 2 G.n/,
vertices i and j are said to be disconnected inG if i and j belong to different connected components ofG.

� For i < j , let �ij W SMn
! SM�2 be the projection given by �ij .z1; : : : ; zn/D .zi ; zj /. Set Dij DDG

for E.G/D f.i; j /g, and
ij D �

�
ij ./ 2H

d .SMn; .Dij /
c/:

For a tree G 2 G.n/, write E.G/ as f.i1; j1/ < � � �< .ir ; jr/g with it < jt for t D 1; : : : ; r . We put

wG D yw
�n
\ i1;j1 � � � ir ;jr 2Hn.2d�1/�rd .DG/:

Clearly wG is a fundamental class of DG .

� Let G 2 G.n; r/ be a tree. Suppose i and i C 1 are disconnected in G. Let di W n! n� 1 be the map
given by

di .j /D

�
j if j � i;
j � 1 if j � i C 1;

and set H D di .G/ 2 G.n� 1/. We define maps

�G WH�.Th.�G//!H��nK.TG/; �G WH�.TG/!H���dr.DG/;

�i WH�.TG/!H�.TH /; mi WH
�.DG/!H�.DH /:
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The map �G is the composition

H�.Th.�G//
.�G/�
����!H�.TG.c0/nK/!H��nK.TG.c0//!H��nK.TG/;

where �G is the map defined in Definition 4.5, the second map is the canonical one and the third
is the inverse of evaluation at c0. Clearly �G is an isomorphism. The map �G is the composition
.wG \�/

�1 ı .�\!.n// ı��1G consisting of

H�.TG/
��1G
���!H�CnK.Th.�G//

�\!.n/
�����!H�Cn.2d�1/.DG/

.wG\�/
�1

�������!H���dr.DG/:

The map �i is induced by the partial composition � ıi �, where � 2 H0.D.2// D A.2/ is the fixed
generator. The map mi is given by .�1/A��i , where AD �C dr Cn with r D #E.G/, and ��i denotes
the pullback by the restriction to DH of the diagonal

�i W SMn�1
! SMn; .z1; : : : ; zn�1/ 7! .z1; : : : ; zi ; zi ; : : : ; zn�1/:

� We denote by H {TM?�.n/ the bigraded chain complex obtained by taking the homology of {TM?�.n/ for
the differential d ; see Definition 5.6. Its differential is induced by the differential .�1/q@ on {TM?q.n/.
We regard the collection H {TM D fH {TM .n/g as an A–comodule with the structure induced by {TM . As
a k–module, H {TM .n/ is the direct sum

L
G2G.n/H�.TG/. We denote by aG the element of H {TM .n/

corresponding to a 2H�.TG/.

� The homology of the Hochschild complex CH�.H {TM?�/ has the bidegree .� ��?;��/. We denote the
homogeneous part of bidegree .p; q/ by H�p;�q.CH.H {TM //.

� For two graphs G;H 2 G.n/ with E.G/\E.H/D∅, the product GH 2 G.n/ denotes the graph with
E.GH/ D E.G/[E.H/. Let i; j; k 2 n be distinct vertices, and Œijk� 2 G.n/ denote the graph with
E.Œijk�/Df.i; j /; .j; k/g. For a graph G 2G.n/, the products GŒijk�, GŒjki� and GŒkij � have the same
connected component (if they are defined), so �GŒijk� D �GŒjki� D �GŒkij �. Using these equalities, and
the isomorphisms �G0 for G0 DGŒijk�; GŒjki� and GŒkij �, we identify the three groups H�.TGHŒijk�/,
H�.TGŒjki�/ and H�.TGŒkij �/ with one another. Under this identification, let I.n/ � H {TM .n/ be the
submodule generated by

– summands of graphs which are not trees, and

– elements of the form aGŒjki�C.�1/saGŒijk�C.�1/sCtaGŒkij � for .i; j /; .j; k/; .i; k/…E.G/,
where a 2H�.TGŒijk�/, sC 1 is the number of edges of G between .i; j / and .i; k/, and t C 1 is
the number of edges between .i; k/ and .j; k/.

� We say a graph G 2 G.n/ with an edge set E.G/D f.i1; j1/ < � � � < .ir ; jr/g is distinguished if the
following inequalities hold:

i1 < j1; : : : ; ir < jr ; i1 < � � �< ir :

We denote by G.n/dis � G.n/ the subset of the distinguished graphs.
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The following lemma is obvious by the definition of the Čech s.s.

Lemma 5.9 With the notation in Definition 5.8, the E2–page of Čech s.s. is isomorphic to the homology
of the Hochschild complex of H {TM?�. More precisely, there exists an isomorphism of k–modules

LEpq2 ŠH�p;�q.CH.H {TM // for each .p; q/:

Lemma 5.10 With the notation in Definition 5.8, I.n/ is acyclic , ie H@.I.n//D 0, and the sequence
fI.n/gn is closed under the partial compositions and symmetric group actions.

Proof Since G.n/dis is stable under removing edges, the submodule
L
G2G.n/dis H�.TG/ of H {TM .n/ is

a subcomplex. By an argument similar to (the dual of) [14], the inclusion

{T.G.n/dis/ WD
M

G2G.n/dis

H�.TG/�H {TM .n/

is a quasi-isomorphism. We easily see that the map {T.G.n/dis/! {T.n/=I.n/ induced by the inclusion is
an isomorphism (see the proof of Lemma 6.9).

Lemma 5.11 Let Net WSM!R2K be an isotopy with Ne0D0�e0 and Ne1De0�0, and Ft W��0. Ne0/!��0. Net /
be an isotopy which is also a bundle map covering Net satisfying F0 D id. Then

.F1/
�.!� �!SK /D .�1/

K!SK �!� :

Here !� �!SK is considered as a class of H 2K�2dC1.Th.��0. Ne1/// via the map collapsing the subset
��0.e/�RK � ��0. Ne1/, and !SK �!� is similarly understood.

Proof Since the only problem is the orientation, it is enough to see a variation of a basis via a local
model. Let e0 W R2d�1! RK be the inclusion to the subspace of elements with the last K � 2d C 1
coordinates being zero. A covering isotopy is given by Ft .u; v/ D ..1� t /u� tv; tuC .1� t /v/ for
u; v 2 RK . Since F1.u; v/ D .�v; u/, the derivative .F1/� maps a basis fa;bg of the tangent space
of R2K to fb;�ag, where a and b denote bases of TRK � 0 and 0�TRK , respectively. This implies
.F1/

�.!� �!SK /D .�1/
K.�1/K.K�2dC1/!SK �!� D .�1/

K!SK �!� .

Lemma 5.12 We use the notation in Definition 5.8. Let G 2 G.n; r/ be a tree whose vertices i and i C 1
are disconnected in G. Set H D di .G/ 2 G.n� 1/. Then the diagram

H�.TG/
�i

//

�G
��

H�.TH /

"1�H
��

H���dr.DG/
mi
// H���dr.DH /

is commutative , where "1 D .�1/B with B DK
�
�C 1C 1

2
.K � 1/

�
.
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Proof The claim follows from the commutativity of the following diagram:

(5-1)

H�.TG/
�i

// H�.TH /

H�CnK.Th.�G//
�0

//

�G

OO

!.n/

��

H�CnK.Th.�0//

�0H

OO

!0

��

H�C.n�1/K.Th.�H //

�H

jj

˛
oo

"1!.n�1/tt

H�Cn.2d�1/.DG/
�00
// H�C.n�1/.2d�1/.DH /

H���dr.DG/

wG

OO

mi
// H���dr.DH /

wH

OO

Here:

� �0 is the disk bundle over DH of fiber dimension nK � .n� 1/.2d � 1/ defined by

�0 D ��0.e
n
0 ı�i /jDH ;

where the restriction is taken as a disk bundle over SMn�1; see Definition 5.8 for �i .

� !0 2HnK�.n�1/.2d�1/.Th.�0// is given by

!0 D .�1/C .!�/
�i�1

�!� � .!� �!�/� .!�/
�n�i�1 with C D .nC i C 1/K:

� �0H is defined by using the following map �0H similarly to �H :

�0H W �
n
3 u 7! .en0 ı�i ; �0; u/ 2 T .c0/nK :

� �0 is the map collapsing the subset �G � �0, where �0 and �G are regarded as subsets in RnK .

� �00 is the composition

H�.DG/!H�.DG ; �i .DH /
c/!H��2dC1.�i .DH //ŠH��2dC1.DH /;

where the first map is the standard quotient map, the third is the inverse of the diagonal and the second is
the cap product with the class

.�1/iC1Cn1� � � � �!� � � � � � 1 with !� in the i th factor :

� ˛ is the composition .1� �1 � 1/� ıT ı ."2wSK ��/ of the maps

H�0.Th.�H //
"2wSK���������!H�0CK.S

K
^Th.�H //

T
�!H�0CK.Th.�00// .1��1�1/��������!H�0CK.Th.�0//;

where �00 is the disk bundle over DH of the same fiber dimension as �0 given by

�00 D ��0.e
00/jDH with e00 D e�i�10 � .0� e/� e�n�i0 W SMn�1

!RnK ;

T is the composition of the transposition of SK from the first to the i th component with the map induced
by the map collapsing the subset .��i�1 �RK � ��n�iC1/jDH � �

00,

"2 D .�1/
D; D DK

�
�
0
C
1
2
.K � 1/C i C 1

�
;
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and 1� �1 � 1 is induced by the restriction of the product map

1� �1 � 1 WR
.i�1/K

� ��0.0� e0/�R.n�i�1/K !R.i�1/K � ��0.�RK ı e0/�R.n�i�1/K

with �1 in the i th component.

� The arrows with a (co)homology class denote the map given by taking the cap product with the class.
For example, the right vertical arrow of the middle square denotes the map x 7! x\!0.

Our sign rules for graded products are the usual graded commutativity, except for the compatibility of
cross and cap products, for which we use the rule

.a� b/\ .x �y/D .�1/.jaj�jxj/jyj.a\ x/� .b\y/:

These are the rules based on the definitions in [19]. More precisely, we use the homology cross product
induced by the simplicial cross product in [19, page 277] (or equivalently, the Eilenberg–Zilber shuffle
map) and the cohomology cross product defined by a�bDp�1a[p

�
2b where pi is the projection to the i th

component of the product and the cup product is given in [19, page 215]. We also use the cap product given
in [19, page 239]. (This irregular sign rule is caused by absence of sign in the definition of cup product,
as is standard.) With these rules, the commutativity of the squares in (5-1) is clear since the map �0

defined in Section 3.2 is isotopic to the usual diagonal. We shall prove commutativity of the two triangles.
The commutativity of the upper triangle follows from the commutativity of the following diagram:

Hl.Th.�/H /
T ı."2wSK��/

//

.�G/�
��

HlCK.Th.�00//
.1��1�1/�

//

.�00H /�

**

HlCK.Th.�0//

.�0H /�
��

Hl.TH .c0/.n�1/K/
"2wSK�

// HlCK.TH .c0/nK/

Here �00H is given by u 7! .e�i�10 � .0� e0/� e
�n�i
0 ; �0; u/. Commutativity of the left trapezoid follows

from Lemma 5.11 (the sign "2 is the product of the sign in iX
k

in Definition 5.1 and the sign in Lemma 5.11),
and that of the right triangle follows from the homotopy between �0H ı �1 and �00H constructed from the
isotopy �t in Definition 5.6. We shall show that the lower triangle is commutative. We see

"1˛.x/\!
0
D f.�1/�T�.wSK � x/g\ .! � � � � �!�.! �!/� � � � �!/

D f.�1/�T�.wSK � x/g\ .! � � � � � .�
�1
1 /�.!SK �!/� � � � �!/

D .�1/�fT�.wSK � x/\ .! � � � � � .!SK �!/� � � � �!/g

D .�1/�T�f.wSK � x/\T
�.! � � � � � .!SK �!/� � � � �!/g

D .�1/�T�f.wSK � x/\!SK �! � � � � �!/g

D .wSK � x/\ .!SK �! � � � � �!/D x\!.n� 1/:

Here .�1/� is an abbreviation of .1� �1 � 1/� and ! of !� . All the capped classes are considered as
elements of the homology of the base space DH of involved disk bundles by projections. The second
equality follows from the definition of !� . As endomorphisms on the base space, T� and .1� �1 � 1/�
are the identity, and hence the sixth equality holds.
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The following lemma is easily verified and a proof is omitted.

Lemma 5.13 Let G 2 G.n; r/ be a tree and K 2 G.n; r � 1/ be the tree made by removing the t th edge
.i; j / from G. Under the notation in Definition 5.8, the diagram

H�.TG/

�G
��

// H�.TK/

�K
��

H���dr.DG/ // H���d.r�1/.DK/

is commutative , where the top horizontal arrow is induced by the inclusion and the bottom one is given by
.�1/.r�t/d�Šij with �Šij .x/D ij � x.

Definition 5.14 � In the following, for a module X with a decomposition X D
L
G2G.n/XG , we denote

by X tr �X the direct sum of the summands XG labeled by a tree G.

� We define an A–comodule A?�M of CDBA (see Definition 2.10). Put H�G D H
�.DG/. Let ^.gij /

be the free bigraded commutative algebra generated by elements gij for 1 � i < j � n, with bidegree
.�1; d/. For notational convenience, we set gij D .�1/dgj i for i > j and gi i D 0. For G 2 G.n/ with
E.G/D f.i1; j1/ < � � �< .ir ; jr/g, we set gG D gi1;j1 � � �gir ;jr . Put

zA?�M .n/D
M

G2G.n/

H�GgG :

Here H�GgG is a copy of H�G with degree shift. For G 2 G.n; r/ and a 2H l
G , the bidegree of the element

agG 2 zAM .n/ is .�r; l C dr/. We give a graded commutative multiplication on zAM .n/ as follows. For
a 2H l

G and b 2Hm
H , we set

.agG/ � .bgH /D

�
.�1/mr.d�1/Cs.a � b/gGH 2H

lCm
GH gGH if E.G/\E.H/D∅;

0 otherwise:

Here we set r D #E.G/, a is regarded as an element ofH�GH by pulling back by the map iG W�GH!DG

induced by the quotient map �0.G/!�0.GH/, and similarly for b, and the product a �b is taken inH�GH .
Also, s is the number determined by the equality gG �gH D .�1/sgGH for the product in ^.gij /.

Let J.n/� zAM .n/ be the ideal generated by the elements

a.gijgjkCgjkgki Cgkigij /gG and bgK ;

where G;K 2 G.n/, a 2H�
GŒijk�

and b 2H�K are elements such that .i; j /; .j; k/; .k; i/ …E.G/, and K
is not a tree. Here by definition, DG depends only on �0.G/, so �GŒijk� D �GŒjki� D �GŒkij �. With
these identities, we regard a as an element of HGŒjki� D HGŒkij �, and the first type of generators as
elements of

HGŒijk�gGŒijk�˚HGŒjki�gGŒjki�˚HGŒkij �gGŒkij �:

We define an algebra A?�M .n/ as the following quotient:

A?�M .n/D
zA?�M .n/=J.n/:
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Since the restriction of the quotient map zAM .n/tr! AM .n/ is surjective, we may define a differential, a
partial composition and an action of †n on the sequence AM D fAM .n/gn through zAM .n/tr. We define
a map Q@ W zAM .n/tr! zAM .n/

tr by

Q@.agG/D

rX
tD1

.�1/.lCt�1/.d�1/�Šit ;jt .a/gi1;j1 � � � Lgit ;jt � � �gir ;jr for G 2 G.n/ and a 2H l
G ;

where�Šij .a/D ij �a and Lgij means removing gij . It is easy to see Q@. zAM .n/tr\J.n//� zAM .n/tr\J.n/.
We define the differential @ on AM .n/ to be the map induced by Q@. For the generator � 2A.2/ fixed in
Definition 5.8 and an element agG 2 zAM .n/tr, we define the partial composition � ıi .agG/ by

� ıi .agG/D

�
��i .a/gH if i and i C 1 are disconnected in G,
0 otherwise;

where H D di .G/; see Definition 5.8. The action of � 2†n on zAM .n/tr is given by .agG/� D a� .gG/� ,
where a� is the pullback of a by .�G/�1 (see Definition 5.6) and .gG/� denotes g�.i1/�.j1/ � � �g�.ir /�.jr /
with � D ��1. The partial composition and the action of †n on f zAM .n/trgn are easily seen to preserve
the submodule fJ.n/\ zAM .n/trgn and induce a structure of an A–comodule on AM .

� Let si W n! nC 1 denote the order-preserving monomorphism skipping i C 1 for 1 � i � n. Then
si naturally induces a monomorphism si W �0.G/! �0.siG/ (see Section 2.1), which in turn induces
.si /
� WDsiG!DG . Let si also denote the induced map .s�i /

� WH�.DG/!H�.DsiG/. By further abuse
of notation, we also denote by si the map AM .n/! AM .nC 1/ given by si .agG/D si .a/gsiG .

� Define a simplicial CDBA A?�
�
.M/ (a functor from �op to the category of CDBAs) as follows. We set

A?�n .M/D A?�M .nC 1/:

If we consider an element of AM .nC1/ as an element of An.M/, we relabel its subscripts with 0; 1; : : : ; n
instead of 1; 2; : : : ; nC 1. For example, g01 2 An.M/ corresponds to g12 2 AM .nC 1/. The partial
compositions and the maps si (defined in the previous item) are also considered as beginning with .�ı0�/
and s0 (originally written as .�ı1�/ and s1). The face map di W An.M/! An�1.M/ for 0� i � n is
given by di D � ıi .�/ for i < n and dn D � ı0 .�/� , where � D .n; 0; 1; : : : ; n� 1/. The degeneracy
map si W An.M/! AnC1.M/ for 0� i � n is the map defined in the previous item.

Lemma 5.15 Let i , j and k be numbers with i < j < k. The equalities ij ik D ij jk D ikjk hold.

Proof The three classes are Thom classes in H�.SMn; �c
Œijk�

/. So to prove the equality, it is enough to
identify the corresponding orientations. This is easily done by observing the corresponding bases.

Theorem 5.16 Suppose M is orientable.

(1) The two A–comodulesH {TM?� and A?�M of differential bigraded k–modules are quasi-isomorphic in a
manner whereH {TM�p;�q and Ap;qM correspond for integers p and q. (ForH {TM , see Definition 5.8.)

(2) TheE2–page of the Čech s.s. in Definition 5.6 is isomorphic to the total homology of the normalized
complex NA?�

�
.M/. Under this isomorphism , the homogeneous part LEpq2 consists of the classes
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represented by a sum of elements in the complex , whose triple degree .��; ?;�/ satisfies pD ?��
and q D �.

The latter part of (2) of this theorem may need some care. It does not mean that the E2–page is generated
by the classes which are represented by elements of NA.M/ which are homogeneous for each of the
three degrees, since the differential of the E1–page of the Čech s.s. corresponds to the total differential of
NA.M/ and changes both of the degrees ? and �.

Proof For (1), we consider the composition

H��.TG/
�G
��!H��drG !H��drG gG :

The right map is given by a 7! "3agG with the sign

"3 D .�1/
E where E DE.�0; n; r/D �0.nC dr/C drnC 1

2
n.nC 1/C 1

2
dr.r C 1/

on H�
0

G . This composition defines an isomorphism as bigraded k–modules between H {TM .n/tr and
zAM .n/

tr. By Lemma 5.15, this isomorphism maps H {TM�?;��.n/
tr \ I.n/ into zA?�M .n/

tr \ J.n/ isomor-
phically. A quasi-isomorphism H {TM .n/! AM .n/ is defined by the composition

H {TM�?;��.n/!H {TM�?;��.n/=I.n/ŠH {T
M
�?;��.n/

tr=fH {TM�?;��.n/
tr
\ I.n/g

Š zA?�M .n/
tr=f zA?�M .n/

tr
\J.n/g Š A?�M .n/;

where the first map is the quotient map, which is a quasi-isomorphism by Lemma 5.10, the second and
fourth maps are induced by inclusions, and the third map is the isomorphism defined above. For the
above number E, we see

E.�0; n� 1; r/�E.�0; n; r/� �0C dr Cn and E.�0C d; n; r � 1/�E.�0; n; r/� .�0C 1/d

modulo 2. Now we may assume the integer K is a multiple of 4. With this assumption and the
above equalities for E, compatibility of the quasi-isomorphism with the partial composition follows
from Lemma 5.12 as "1 D 1. Compatibility with the (Čech) differentials follows from Lemma 5.13.
Compatibility with the actions of †n is clear. The sign sgn.�G/ in Definition 5.6, the sign occurring in
permutations of ij and the sign occurring in permutations of gij are canceled. Thus the isomorphism
is a morphism of A–comodules. For (2), by (1), the E2–page is isomorphic to the homology of the
Hochschild complex CH�.AM /, which is isomorphic to the unnormalized total complex of A�.M/, and
so is quasi-isomorphic to the normalized complex.

Sinha proved the convergence of his spectral sequences using the Cohen–Taylor spectral sequence. Here we
prove the convergence of the Čech and Sinha spectral sequences simultaneously by an independent method.

Theorem 5.17 If M is simply connected and of dimension d � 4, both the Čech s.s. and Sinha s.s. for
M converge to H�.Emb.S1;M//.

Proof We set a number sd by sd Dmin
˚
1
3
d; 2

	
. If d � 4, clearly sd > 1. Recall that f LErgr denotes the

Čech s.s. By Lemma 5.7, we identify the Sinha s.s. with the spectral sequence xEr . We shall first show the
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claim that LE�p;q2 D 0 if q=p < sd . If a graphG 2G.nC1/ has k discrete vertices, H�.DG/ is isomorphic
toH�.SM/˝k˝H�.DG0/˝ftorsionsg, where G0 2G.nC1�k/ is the graph made by removing discrete
vertices. With this observation, and simple connectivity of M , we see that generators of the normalization
NAn.M/ are presented as a1 � � � akbgG whereG is a graph in G.nC1/ with r edges and k discrete vertices
except for the vertex 0, at belongs to the t th discrete tensor factor H�2.SM/, and b 2 H�G0 . We may
ignore the torsion part in estimation of degree by the universal coefficient theorem. The bidegree .�p; q/
of this element satisfies p D nC r and q � 2kC rd . Clearly we have kC 2r � nC �, with � D 0 or 1
according to whether the vertex 0 has valence 0 in G. With this, if d � 5, we have the following estimate:

q

p
�
1
3
d �

6kC .3r �p/d

3.nC r/
�
.6� d/kC d�

3.nC r/
� 0:

If d � 6, we have the following estimate:

q

p
� 2D

2�C .d � 6/r

nC r
� 0:

We have shown the claim. Since the filtration fF�pg of the Čech s.s. is exhaustive, and the total homology
of each F�p is of finite type, the Čech s.s. f LErgr converges to the total homology H.NA�.M// of
the normalized complex. By the same reasoning, fxErg also converges to H.NA�.M//. We shall show
xE�p;qr D 0 if q=p < sd , for sufficiently large r . Suppose there exists a nonzero element x 2 xE�p;q1

with q=p < sd . We consider x as an element of .F�p=F�pC1/H.NA�.M//. Take a class x0 in
F�pH.NA�.M// representing x. Take the smallest p0 such that F�p

0

H.NA�.M// contains x0. Then
LE�p

0;qCp0�p
1 is not zero and p0 � p as F�p � F�p. In the coordinate plane of bidegree, x0 and x are

on the same line of the form �pC q D constant. This and p0 � p imply that the “slope” of x0 is smaller
than sd , which contradicts to the claim. This vanishing result on xEr and (the cohomology version of)
[4, Theorem 3.4] imply the convergence of xEr and LEr to H�.Emb.S1;M//.

Remark 5.18 If the dimension of the target manifold M is 3, or if M is not simply connected, the
Čech s.s. does not converge to the cohomology of the knot space but it does to the same target as the
Sinha s.s. (see the proof of Theorem 5.17). The diagonal of the Sinha s.s. for long knots converges to the
universal finite type invariants at least in the rational coefficient. So the Čech s.s. in dimension 3 may
contain some information about knot invariants.

6 Algebraic presentations of the E2–page of the Čech spectral sequence

In this section, we assume M is oriented and simply connected and H�.M/ is a free k–module.

Definition 6.1 � A Poincaré algebra of dimension d is a graded commutative algebra H� with a linear
isomorphism � WHd ! k such that the bilinear form defined as the composition

H�˝H� multiplication
��������!H� projection

������!Hd �
�! k

induces an isomorphism H� Š .Hd��/_. We call � the orientation of H.

Algebraic & Geometric Topology, Volume 24 (2024)



226 Syunji Moriya

� For a Poincaré algebra H�, we denote by �H the diagonal class for H� given byX
i

.�1/ja
�
i
jai ˝ a

�
i 2 .H˝H/d ;

where faig and fa�i g are two bases of H� such that �.ai � a�j /D ıij , the Kronecker delta. This definition
does not depend on a choice of a basis faig.

� Let H be a Poincaré algebra H of dimension d with H1 D 0. We set H�d�2 D
L
p�d�2Hp and

H�2 D
L
p�2Hp, and define a graded k–module H�2Œd � 1� by .H�2Œd � 1�/p D Xp�dC1 with

X� DH�2. We denote by Na the element in .H�2Œd � 1�/p corresponding to a 2Hp�dC1. We define a
Poincaré algebra SH of dimension 2d � 1 as follows. As a graded k–module, we set

SH� DH�d�2˚H�2Œd � 1�:

For a; b 2 H�d�2, the multiplication a � b in SH is the one in H except for the case jaj C jbj D d , in
which we set a � b D 0. We set a � Nb D Sab for a 2H�d�2 and b 2H�2, and Na � Nb D 0 for a; b 2H�2. We
give the same orientation on SH as the one on H via the identity SH2d�1 DHd .

� We regard HDH�.M/ as a Poincaré algebra with the orientation

Hd .M/
wM\
����!H0.M/Š k;

where wM is the fundamental class of M determined by the orientation on M , and the isomorphism
sends the class represented by a point to 1.

The following lemma is obvious:

Lemma 6.2 With the notation of Definition 6.1, let .bij /ij denote the inverse of the matrix .�.ai � aj //ij .
Then

�H D
X
i;j

.�1/jaj jbj iai ˝ aj :

Under some assumptions, SH is isomorphic to H�.SM/ (see the proof of Lemma 6.6), and the algebras
A�H;G and B�H;G defined as follows are isomorphic to H�.DG/.

Definition 6.3 For a Poincaré algebra H of dimension d and graphG2G.n/, define a graded commutative
algebra AH;G by

AH;G DH˝�0.G/˝
^
fy1; : : : ; yng; degyi D d � 1:

Here we regard �0.G/ as an ordered set by the minimum in each component, and the tensor product is
taken in this order. Furthermore, we also define a graded commutative algebra BH;G by

BH;G D SH˝n˝
^
fyij j 1� i; j � n and i �G j g=JG ; degyij D d � 1:
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Here i �G j means that the vertices i and j belong to the same connected component of G, and JG is
the ideal generated by the following relation:˚
ei .a/� ej .a/; ei . Na/� ej . Na/� ayij ; ei . Nb/� ej . Nb/; yi i ; yij Cyjk �yik

j a 2H�d�2; b 2Hd ; 1� i; j; k � n; i �G j �G k
	
:

Here ej . Na/ is regarded as 0 if a 2H0.

For i < j , let fij WH˝2!H˝n denote the map given by

fij .a˝ b/D 1˝ � � �˝ a˝ � � �˝ b˝ � � �˝ 1

(a is the i th factor, b is the j th factor and the other factors are 1). We set

�
ij
H D fij .�H/ 2H˝n:

We sometimes regard �ijH as an element of .SH/˝n via the projection and inclusion H!H�d�1 � SH.
We also regard it as an element ofAH;G for a graphG via the map H˝n!H˝�0.G/ given by multiplication
of factors in the same components with the standard commuting signs. We also set

�
ij
SH D f

0
ij .�SH/ 2 SH

˝n;

where�SH is the diagonal class for the Poincaré algebra SH and f 0ij WSH
˝2!SH˝n is the map defined

by the same formula as fij . We regard �ijH and �ijSH as elements of BH;G , similarly to the case of AH;G .

As a graded algebra, B�H;G is isomorphic to .SH/˝�0.G/
V
fyij j i �G j g=.yi i ; yij C yjk � yik/, but

we need the presentation to describe maps induced by identifying vertices and removing edges.

The proof of the following lemma is easy and omitted.

Lemma 6.4 Consider the Serre spectral sequence for a fibration

F !E! B

with the base simply connected and the cohomology groups of the fiber and base finitely generated in each
degree. If for each k there is at most a single p such that Ep;k�p1 ¤ 0, the quotient map F p!F p=F pC1

has a unique section which preserves cohomological degree. Gathering these sections for all p, one can
define an isomorphism of graded algebra E1!H�.E/, which we call the canonical isomorphism. The
canonical isomorphisms are natural for maps between fibrations satisfying the above assumption.

Henceforth we regard the Euler number �.M/ as an element of the base ring k via the ring map Z! k,
and k� � k denotes the subsets of the invertible elements.

Lemma 6.5 We use the notation di , �i , si and �Šij given in Definitions 5.8 and 5.14. Suppose
�.M/D 0 2 k. Set H� DH�.M/. There exists a family of isomorphisms of graded algebras

f'G W AH;G
Š
�!H�.DG/ j n� 1;G 2 G.n/g

which satisfies the following conditions:
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(1) Let G 2 G.n/ be a tree with i and i C 1 disconnected. Set H D di .G/. The following diagram
is commutative:

A�H;G
'G
//

�i
��

H�.DG/

��
i

��

A�H;H
'H
// H�.DH /

Here the algebra map �i is defined as follows. For a1˝ � � �˝ ap 2H˝�0.G/, we set

�i .a1˝ � � �˝ ap/D˙a1˝ � � �˝ as � at ˝ � � �˝ ap and �i .yj /D yj 0 with j 0 D di .j /:

Here s; t 2 �0.G/ are the connected components containing i and i C 1, respectively, and ˙ is the
standard sign in transposing graded elements.

(2) For a graph G 2 G.n/, set S D si .G/. The following diagram is commutative:

A�H;G
'G
//

Nsi

��

H�.DG/

si

��

A�H;S
'S
// H�.DS /

Here Nsi is given by inserting the unit 1 as the factor of H˝�0.G/ which corresponds to the component
containing i C 1, and by skipping the subscript i C 1, ie by the equality Nsi .yj /D ysi .j /.

(3) For a graph G 2 G.n/ and a permutation � 2†n, the following diagram is commutative:

A�H;G
'G

//

N�

��

H�.DG/

�

��

A�H;�.G/
'�.G/

// H�.D�.G//

Here � D ��1, the right vertical arrow is induced by the natural permutation of factors of the product
D�.G/!DG and the left vertical arrow N� is the algebra map given by the permutation of tensor factors
and subscripts.

(4) For an edge .i; j / of a tree G 2 G.n/ with i < j , we define K 2 G.n/ by E.K/DE.G/�f.i; j /g.
The following diagram is commutative:

A�H;G
'G

//

�ij
��

H�.DG/

�Š
ij

��

A�CdH;K
'K
// H�Cd .DK/

Here�ij is the right A�H;K–module homomorphism determined by�ij .1/D�
ij
H , and A�H;G is considered

as an A�H;K–module via the natural algebra map A�H;K ! A�H;G .
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Proof In this proof we fix a generator y of Hd�1.Sd�1/, and we denote by yi (or Nyi ) the image of y
by the inclusion to the i th factor, Hd�1.Sd�1/!Hd�1.Sd�1/˝n. We consider Serre spectral sequence
for the fibration

.Sd�1/n!DG!M�0.G/;

where the projection is the restriction of that of the tangent sphere bundle. The first possibly nontrivial
differential is dd WHd�1..Sd�1/n/DE

0;d�1
d

!E
d;0
d
DHd .M/, where d in the super- and subscripts

is the dimension of M . This differential takes yi to the generator of Hd .M/ multiplied by �.M/. As
�.M/ D 0, we have dd D 0. Since the this differential on yi is zero for degree reasons, yi survives
eternally, which implies E2 ŠE1. Clearly E1 satisfies the assumption of Lemma 6.4. We define 'G as
the composition

AH;G!E2 DE1!H�.DG/;

where the left map is the isomorphism given by identifying yi in both of the sides and H˝�0.G/ with
H�.M��0.G// by the Künneth isomorphism, and the right map is the canonical isomorphism defined in
Lemma 6.4. Parts (1), (2) and (3) obviously follow from naturality of the canonical isomorphisms. For (4),
H�.DG/ is regarded as aH�.DK/–module via the pullback��ij WH

�.DK/!H�.DG/ by the inclusion
DG!�K . This module structure is compatible with the A�H;K–module structure on A�H;G via 'G and
'K by naturality of the canonical isomorphism. By a general property of a shriek map, the map �Šij is a
H�.DK/–module homomorphism. So to prove the compatibility, we have only to check the image of 1.
For simplicity, we may assume nD 2 and .i; j /D .1; 2/. We may write DG as SM�M SM. The diagram

Hd��.M/
PD

//

��
��

H�.M/
proj�

//

�Š
��

H�.SM�M SM/

�Š12
��

Hd��.M �M/
PD
// H�Cd .M �M/

proj�
// H�Cd .SM� SM/

is commutative, where PD denotes the cap product with the fundamental class. By the commutativity
of the left square, we see that �Š.1/ is the Poincaré dual class in H�.M �M/ of the diagonal �.M/,
which corresponds to �H by the Künneth isomorphism. By the commutativity of the right square, we
see that �Š12.1/ corresponds to fij�H. This completes the proof.

Lemma 6.6 We use the notation di ,�i , si and �Šij given in Definitions 5.8 and 5.14. Suppose �.M/2k�.
Set HDH�.M/. There exists a family of isomorphisms of graded algebras

f'G W BH;G
Š
�!H�.DG/ j n� 1;G 2 G.n/g

which satisfies the following conditions:

(1) Let G and H be trees given in Lemma 5.12(1). The following diagram is commutative:

BH;G
'G
//

�i
��

H�.DG/

��
i

��

BH;H
'H
// H�.DH /
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Here �i is defined by

�i .ej .x//D ej 0.x/ for x 2 SH and �i .yjk/D yj 0k0 ;

where we set j 0 D di .j / and k0 D di .k/.

(2) For a graph G 2 G.n/, set S D si .G/. The following diagram is commutative:

B�H;G
'G
//

Nsi
��

H�.DG/

si

��

B�H;S
'S
// H�.DS /

Here Nsi is given by inserting 1 in the .iC1/th factor of SH˝n and skipping the subscript i C 1.

(3) For a graph G 2 G.n/ and a permutation � 2†n, the following diagram is commutative:

B�H;G
'G

//

N�

��

H�.DG/

�

��

B�H;�.G/
'�.G/

// H�.D�.G//

Here � and the right vertical arrow are defined as in Lemma 6.5, and N� is the algebra homomorphism
defined by the permutation of the tensors and subscripts.

(4) For an edge .i; j /2E.G/ of a treeG 2G.n/with i <j , defineK 2G.n/ byE.K/DE.G/�f.i; j /g.
The following square is commutative:

B�H;G
'G

//

�ij
��

H�.DG/

�Š
ij

��

B�CdH;K
'K
// H�Cd .DK/

Here �ij is the right B�H;K–module homomorphism determined by �ij .1/D�
ij
H and �ij .yij /D�

ij
SH,

and B�H;G is considered as a B�H;K–module via the algebra map f GK W B
�
H;K ! B�H;G given by

f GK .ek.x//D ek.x/ for x 2 SH and f GK .ykl/D

�
0 if .k; l/D .i; j /;
ykl if otherwise:

Proof As in the proof of Lemma 6.5, we fix a generator y 2 Hd�1.Sd�1/. Note that d is even as
�.M/ ¤ 0. We first show an isomorphism of algebras SH� Š H�.SM/. Consider the Serre spectral
sequence for the tangent sphere fibration

Sd�1! SM!M:

The only nontrivial differential is dd W E0;d�1 D Hd�1.Sd�1/ ! Hd .M/. As �.M/ is invertible,
dd is an isomorphism. Since all other differentials vanish by degree reasons, E1 Š EdC1 Š SH,
where the second isomorphism is given by Ep;0

dC1
D Hp.M/ � H�d�2 � SH for p � d � 2 and

Ep;d�1 DHd�1.Sd�1/˝Hp.M/ 3 y˝ a 7! Na 2 SH for p � 2. Since H 1.M/D 0 and H�.M/ is
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free, Hd�1.M/D 0, which implies the fibration satisfies the conditions of Lemma 6.4. Composing this
isomorphism with the canonical isomorphism E1!H�.SM/, we have an isomorphism

(6-1) SH� ŠH�.SM/:

If necessary, we modify y so that the composition SH2d�1!H 2d�1.SM/! k of (6-1) and the cap
product with the fundamental class yw in Definition 5.8 coincides with the orientation given in Definition 6.1
by multiplying by a scalar.

We shall define the isomorphism 'G . We may assume that G 2 G.n/ is connected, as in the disconnected
case everything involved is a tensor product of the objects corresponding to connected subgraphs. Consider
the Serre spectral sequence for the fibration

.Sd�1/n�1!DG! SM

given by projection to the first component. AsEd;02 DSH
dD0, elements inE0;d�12 ŠHd�1.Sd�1/˝n�1

survive eternally. As in the proof of Lemma 6.5, yj denotes the copy of y living in the j th factor of
H�.Sd�1/˝n�1, which is also regarded as a generator of E0;d�12 . We construct an isomorphism
 G W SH� ˝

V
.y1; : : : ; yn�1/ Š E1 Š H�.DG/ using (6-1) similarly to the construction of (6-1).

Consider the Serre spectral sequence fEp;qr g for the fibration

.Sd�1/n!DG!M

given by the projection of the sphere bundle. Let Nyj be the copy of y in the j th factor of E0;d�12 Š

.H�.Sd�1/˝n/�Dd�1. For any i and j , since dd . Nyi /D dd . Nyj /D (a multiple of)�.M/wM , the element
Nyi � Nyj survives eternally by degree reasons. Clearly E1 satisfies the assumption of Lemma 6.4, so we
can take the canonical isomorphism E

�;�
1 !H�.DG/. We define an algebra map

'0G W .SH/
˝n
˝

^
fyij j 1� i; j � ng !E�;�1

by ei .a/ 7! a 2 E
�;0
1 for a 2H�d�2, ei . Nb/ 7! b Nyi 2 E

�;d�1
1 for b 2H�2, and yij 7! Nyi � Nyj . We see

'0G.JG/D 0, where JG is the ideal in Definition 6.3. For example, since dd . Nyi Nyj /D �.M/. Nyj � Nyi /wM

(up to k�) and �.M/ is invertible, . Nyi � Nyj /wM D 0 in Ed;d�1
dC1

, which implies '0G.ei .
Nb/� ej . Nb//D 0

for b 2Hd . Annihilation of other elements in JG is obvious. We define 'G to be the unique map which
makes the following diagram commutative:

.SH/˝n˝
V
fyij g //

'0G
��

.SH/˝n˝
V
fyij g=JG B�H;G

'G

��

E
�;�
1

canonical isomorphism
// H�.DG/

Since G is connected, e1 W SH! SH˝n induces an isomorphism ˛G W SH˝
V
fy12; : : : ; y1ng Š B

�
H;G .

It is easy to see that the composition

SH˝
^
fy12; : : : ; y1ng

˛G
Š B�H;G

'G
��!H�.DG/

 �1G
Š SH˝

^
fy1; : : : ; yng
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identifies the subalgebra SH in both sides and the sub-k–module khy12; : : : ; y1ni with khy1; : : : ; yni

(since these are both isomorphic to Hd�1.DG/), which implies the composition is an isomorphism and
we conclude that 'G is an isomorphism.

Parts (1), (2) and (3) obviously follow from naturality of the canonical isomorphism. We shall show (4).
Since 'G is an isomorphism, we may define �ij to be the map which makes the square in (4) commute.
As in the proof of Lemma 6.5, �ij is a B�H;K–module homomorphism and we have �ij .1/D fij .�H/.
We shall show the equality �ij .yij /D fij .�SH/. We may assume nD 2 and G D .1; 2/. In this case,
clearly DG D SM�M SM. We consider the commutative diagram

H 0.Sd�1/

�Š1
��

H 0.SM/ PD
//oo

�Š2
��

H2d�1.SM/

.�2/�

��

Hd�1.Sd�1 �Sd�1/ Hd�1.SM�M SM/

�Š12
��

PD
//oo H2d�1.SM�M SM/

.�12/�

��

H 2d�1.SM� SM/ PD
// H2d�1.SM� SM/

where the left horizontal arrows are induced by the fiber restriction, the right ones are capping with the
fixed fundamental classes, and �Š1 and �Š2 are the shriek maps induced by the diagonals. As d is even,
�Š1.1/D Ny1� Ny2. As Ny1� Ny2 coincides with the image of 'G.y12/ by the fiber restriction which induces
an isomorphism in degree d � 1, we have �Š2.1/D 'G.y12/. So �Š12.'G.y12//D .�12 ı�2/

Š.1/. By
the commutativity of the right-hand square, .�12 ı�2/Š.1/ is the diagonal class for SM. Thanks to the
modification of y after the definition of (6-1), the diagonal class corresponds to �SH by 'G . This implies
�12.y12/D�SH.

Definition 6.7 Let H be a Poincaré algebra of dimension d .

� We define a CDBA A?�H .n/ by the equality

A?�H .n/DH˝n˝
^
fyi ; gij j 1� i; j � ng=I:

Here, for the bidegrees, we set jaj D .0; l/ for a 2 .H˝n/�Dl , jyi j D .0; d �1/ and jgij j D .�1; d/. The
ideal I is generated by the elements

gij�.�1/
dgj i ; .gij /

2; gi i ; .ei .a/�ej .a//gij ; gijgjkCgjkgkiCgkigij for 1� i; j; k�n and a2H:

We call the last relation the 3–term relation for gij . The differential is given by @.a/D 0 for a 2H˝n

and @.gij /D�
ij
H ; see Definition 6.3.

� Suppose d is even. We define a CDBA B?�H .n/ by the equality

B?�H .n/D .SH/˝n˝
^
fgij ; hij j 1� i; j � ng=J
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Here, for the bidegrees, we set jaj D .0; l/ for a 2 .H˝n/�Dl , jgij j D .�1; d/ and jhij j D .�1; 2d � 1/.
The ideal J is generated by the elements

gij �gj i ; .gij /
2; gi i ; hij C hj i ; .hij /

2; hi i ; eij .a/gij ; eij .a/hij ; eij . Nb/gij � ei .b/hij ; eij . Nb/hij ;

gijgjkCgjkgki Cgkigij ; hijhjkC hjkhki C hkihij ; .hij C hki /gjk � .hij C hjk/gki

for 1 � i; j; k � n, a 2H�d�2 and b 2H�2, where we regard ei .b/ as 0 for b 2Hd , and eij W SH!
.SH/˝n is the map given by eij D ei � ej . The differential is given by @.x/ D 0 for x 2 SH˝n,
@.gij /D�

ij
H and @.hij /D�

ij
SH; see Definition 6.3.

� We equip the sequences AH D fAH.n/gn and BH D fBH.n/gn with the structures of A–comodules of
CDBA as follows. For BH, we define a partial composition and an action of †n by the equalities

� ıi ej .x/D ej 0.x/; � ıi .hjk/D hj 0k0 ; � ıi .gjk/D gj 0k0 ; ej .x/
�
D e�.j /.x/;

h�jk D h�.j /;�.k/; g�jk D g�.j /;�.k/; for x 2 SH and � 2†n;

where j 0 and k0 are the numbers given by j 0 D di .j / and k0 D di .k/, and we set � D ��1 (see
Definition 5.8 for di and �). The definition of AH is similar.

� We define simplicial CDBAs A?�
�
.H/ and B?�

�
.H/ as follows. For B?�

�
.H/, we set

B?�n .H/D B?�H .nC 1/:

As in Definition 5.14, we relabel the involved subscripts with 0; : : : ; n. The face map di W B?�n .H/!
B?�n�1.H/ is given by di D � ıi .�/ for i < n and dn D � ı0 .�/� where � D .n; 0; 1; : : : ; n� 1/. The
degeneracy map si W B?�n .H/! B?�nC1.H/ is given by inserting 1 as the .iC1/th factor of SH˝nC1 and
skipping the subscript i C 1. A?�

�
.H/ is defined similarly using A?�H .

Remark 6.8 An algebra similar to the algebras A?�H .n/ and B?�H .n/ has already appeared as the E2–page
of Totaro’s spectral sequence defined in [39].

In the rest of this section, we prove that AH and BH are isomorphic to AM as A–comodules of CDBA
under different assumptions, and also prove similar statements for the simplicial CDBAs. We mainly deal
with the case of BH. The case of AH is similar.

Lemma 6.9 The map M
G2G.n/dis

H�GgG! AM

defined by the composition of the inclusion and quotient map is an isomorphism of k–modules (see
Definition 5.8 for G.n/dis).

Proof Let … be the set of partitions of n. The ideal J.n/ in Definition 5.14 has a decomposition
J.n/D

L
�2… J.n/� such that J.n/� �

L
�0.G/D�

HG , since generators of J.n/ are sums of monomials
which have the same connected components. If �0.G/D �0.H/D � , clearly H�G DH

�
H . We denote this

module byH�� . We have
L
�0.G/D�

HGgG DH�˝.
L
�0.G/D�

kgG/. Similarly J.n/� DH�˝J.n/0�
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where J.n/0� is the sub-k–module of
L
�0.G/D�

kgG generated by multiples of 3–term relations, g2ij and
gij � .�1/

dgj i . We have

A�M D
M
�2…

�� M
�0.G/D�

HGgG

�
=J.n/�

�
D

M
�2…

H� ˝

�� M
�0.G/D�

kgG

�
=J.n/0�

�
:

Note that
L
�2…f.

L
�0.G/D�

kgG/=J.n/
0
�g is isomorphic to the cohomology group of the configuration

space H�.Cn.Rd //, whose basis is fgG j G 2 G.n/disg. So then .
L
�0.G/D�

kgG/=J.n/
0
� has a basis

fgG jG 2 G.n/
dis; �0.G/D �g, which implies the lemma.

Under the assumptions and notation of Lemma 6.6, we identify H�G with BH;G by the isomorphism 'G ,
so A�M .n/ is regarded as a quotient of

L
G2G.n/B

�
H;GgG . With this identification, we set Nhij D yijgij 2

AM .n/. AM .n/ contains SH˝n as the subalgebra H∅g∅, the summand corresponding to the graph
∅ 2 G.n/. We regard AM .n/ as a left SH˝n–module via the multiplication by H∅g∅. In the following
lemma and its proof, hG , NhG and yG are defined similarly to gG . For example, hG D hi1;j1 � � � hir ;jr for
E.G/D f.i1; j1/ < � � �< .ir ; jr/g.

Lemma 6.10 Under the assumptions of Lemma 6.6 and the above notation , as an SH˝n–module ,
AM .n/ is generated by the set S D fgG NhH j G;H 2 G.n/; E.G/\E.H/ D ∅; GH 2 G.n/disg, and
BH.n/ is generated by the set S 0 D fgGhH jG;H 2 G.n/; E.G/\E.H/D∅; GH 2 G.n/disg.

Proof AM .n/ is generated by the elements yHgG , for graphs G and H , such that each connected
component of H is contained in some connected component of G. We can express gG as a sum of
monomials gG1 withG12G.n/dis and �0.G/D�0.G1/ using the 3–term relation and the relation gij Dgj i
(this is standard procedure in the computation ofH�.Cn.Rd /). So we may assumeG is distinguished. For
a sequence of edges .i; k1/; .k1; k2/; : : : ; .ks; j / in G, we have yij D yi;k1 C � � �C yks ;j . By successive
application of this equality, yH is expressed as a sum of monomials yH1 with H1 being a subgraph
of G. Thus any element of AM .n/ is expressed as a SH˝n–linear combination of monomials yHgG
with G 2 G.n/dis and E.H/� E.G/. Clearly yHgG D˙gG�H NhH . Thus the set S generates AM .n/.
A proof for the assertion for BH.n/ is similar when one use 3–term relations for gij and hij , and the last
relation for gij and hij in the ideal J in Definition 6.7.

To prove that BH.n/ and AM .n/ are isomorphic, we define a structure of a BH;G–module on BH.n/ as
follows. We first define two graded algebras zBH;G and zBH.n/. For a graph G 2 G.n/, we set

zBH;G D SH˝n˝T fyij j i < j and i �G j g and zBH.n/D SH˝n˝
^
fgij ; hij j 1� i < j � ng;

where T fyij g denotes the tensor algebra generated by the yij . For convenience, we set yij D �yj i ,
gij D gj i and hij D�hj i for i > j . The degrees are the same as the elements of the same symbols in
BH;G and BH.n/. We shall define a map of graded k–modules

.� ��/ W zBH;G ˝k
zBH.n/! BH.n/:
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We define yij � xgGhH for x 2 SH˝n and G;H 2 G.n/ as follows. If E.G/ \ E.H/ ¤ ∅, we set
yij � xgGhH D 0. Suppose E.G/\E.H/D∅. If .i; j / 2E.G/ is the t th edge (in the lexicographical
order), we set yij � xgGhH D .�1/tC1CjxjhijxgKhH with E.K/D E.G/� f.i; j /g. If .i; j / 2 E.H/
is an edge, we set yij � xgGhH D 0. If i �GH j , we take a sequence of edges .k0; k1/; : : : ; .ks; ksC1/
of GH with k0 D i and ksC1 D j and set yij � xgGhH D

Ps
lD0 ykl ;klC1 � xgGhH . This does not

depend on the choice of the sequence, because gGhH D 0 if GH is not a tree, which is proved by
using the last three relations in the definition of J in Definition 6.7. If i and j are disconnected
in GH , we set yij � xgGhH D 0. For z 2 SH˝n, we set z � xgGhH D zxgGhH , the multiplication
in BH.n/. We shall show that the map .� � �/ annihilates the elements of J (we regard J as an
ideal in zBH.n/). Direct computation shows that the generators of J are annihilated by any elements
of zBH;G . For example, yij � .gijgjk C gjkgki C gkigij / D .hij C hik/gjk � .hij C hjk/gki D 0

and yjk � f.hij C hki /gjk � .hij C hjk/gkig D hijhjk C hjkhki C hkihij D 0. We also easily see
yij �xgGhH D˙.yij �xgG0hH 0/gG�G0hH�H 0 for subgraphs G0 �G and H 0 �H such that i �G0H 0 j .
These observations imply the assertion, and we see that .���/ factors through zBH;G˝kBH.n/!BH.n/,
which is also denoted by .� ��/. Clearly the map .� ��/ annihilates JG in the definition of BH;G . It
also annihilates the commutativity relation yijykl Cyklyij . If two paths connecting i and j or k and l
have a common edge, both of the actions of yijykl and yklyij are zero, and otherwise the commutativity
in BH.n/ implies the annihilation. Annihilation of these relations implies that the map .� ��/ factors
through a map .� ��/ W BH;G ˝BH.n/! BH.n/, which defines a structure of BH;G–module on BH.n/.

Theorem 6.11 Suppose M is simply connected and oriented , and H�.M/ is a free k–module. Set
HDH�.M/.

(1) Suppose �.M/ D 0 2 k. The two A–comodules of CDBA A?�M and A?�H are isomorphic , and
the two simplicial CDBAs A?�

�
.M/ and A?�

�
.H/ are isomorphic. In particular , the E2–page of

the Čech s.s. is isomorphic to the total homology of the normalization NA?�
�
.H/ as a bigraded

k–module. The bigrading is given by .?� �;�/.

(2) Suppose �.M/ 2 k�. The two A–comodules of CDBA A?�M and B?�H are isomorphic , and the two
simplicial CDBAsA?�

�
.M/ and B?�

�
.H/ are isomorphic. In particular , theE2–page of the Čech s.s.

is isomorphic to the total homology of the normalization NB?�
�
.H/ as a bigraded k–module. The

bigrading is given by .?� �;�/.

Proof Part (1) obviously follows from Theorem 5.16 and Lemma 6.5. We shall prove (2). We define a
map ˆn W BH.n/! AM .n/ of algebras by identifying the subalgebra SH˝n and elements gij in both
sides, and taking hij to Nhij (see the paragraph above Lemma 6.10). We easily verify that ˆn is well
defined. Then ˆn fits into the following commutative diagram:L

G2G.n/dis HGgG

((��

BH.n/
ˆn

// AM .n/
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Here the vertical arrow is induced by the inclusion of a submodule HGgG DBH;GgG �BH.n/ given by
the isomorphism 'G in Lemma 6.6 and the module structure defined above, and the slanting arrow is
given in Lemma 6.9. The vertical arrow and ˆn are epimorphisms by Lemma 6.10, and the slanting arrow
is an isomorphism by Lemma 6.9, so ˆn is an isomorphism. By the definition of ˆn and Lemma 6.6, the
collection fˆngn commutes with the structures of an A–comodule and degeneracy maps. The assertion
for the E2–page immediately follows from the isomorphism of simplicial objects.

Remark 6.12 The Euler number �.M/ can be recovered from the Poincaré algebra H� DH�.M/. It is
the image of �H by the composition

.H˝2/�Dd multiplication
��������!Hd �

�! k:

So under the assumptions of Theorem 6.11, the E2–page of the Čech s.s. is determined by the cohomology
algebra H�.M/. (Different orientations give apparently different presentations, but they are isomorphic.)

7 Examples

In this section, we compute some of the E2–page of Čech s.s. for the spheres and products of two spheres
Sk �S l with .k; l/D .odd; even/ or .even; even/, and deduce some results on cohomology groups for
the products of spheres. We also prove Corollary 1.3. Our computation is restricted to low degrees and
consists of only elementary linear algebra on differentials and degree argument based on Theorem 6.11.
We briefly state the results for the cases of spheres since, in these cases, the Čech s.s. only gives less
information than the combination of Vassiliev’s (or Sinha’s) spectral sequence for long knots and the
Serre spectral sequence for a fibration Emb.S1; Sd /! STSd (see the proof of Proposition 7.2), at least
in the degrees where we have computed. We give concrete descriptions of the differentials in the case of
M DSk�S l with k odd and l even. In the rest of this section, we set HDH�.M/ for a fixed orientation.

7.1 The case of M D S d with d odd

In this case A?�
�
.H/ is described as

A?�n .H/D
^
fxi ; yi ; gij j 0� i; j � ng=I;

where jxi j D .0; d/, jyi j D .0; d � 1/, jgij j D .�1; d/ and I is the ideal generated by

.xi /
2; .yi /

2; .gij /
2; gi i ; gij Cgj i ; .xi � xj /gij and the 3–term relation for gij :

The diagonal class is given by �H D x0� x1 2H˝H.

Proposition 7.1 Consider the Čech s.s. LEpqr for the sphere Sd with odd d � 5. We abbreviate LEpq2 as
.p; q/. The following equalities hold :

.�3; d/D khg12i; .�1; d � 1/D khy1i; .0; d � 1/D khy0i; .0; d/D khx0i;
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.�6; 2d/D khg13g24;�g12g34Cg14g23i; .�4; 2d � 1/D khy1g23�y2g13Cy3g12i;

.�5; 2d/D khg01g23Cg02g13Cg13g23i; .�3; 2d � 1/D khy0g12i;

.�3; 2d/D khx0g12i; .�1; 2d � 1/D khx0y1; x1y0; x1y1i; .0; 2d � 1/D khx0y0i:

For other .p; q/ with pC q � 2d � 1, we have .p; q/D 0.

Proposition 7.2 Let d be an odd number with d � 5.

(1) Emb.S1; Sd / is .d�2/–connected.

(2) The Čech s.s. for Sd does not collapse at the E2–page in any coefficient ring.

Proof For (1), consider the fiber sequence

Embc.R;Rd /! Emb.S1; Sd /! STSd ;

where STSd is the tangent sphere bundle of Sd , the left map is given by taking the tangent vector at a
fixed point, and the right space is the space of long knots. As is well known, STSd is .d�2/–connected
and Embc.R;Rd / is .2d�7/–connected. As d � 5, we have the claim. Part (2) follows from (1) and
Proposition 7.1. (There are nonzero elements in the total degrees d � 3 and d � 2.)

Remark 7.3 The reader may find inconsistency between [8, Proposition 3.9(3)] and Proposition 7.2(1).
This is just a typo; n� j � 2 should be replaced with n� j � 1 (and n� j � 1 with n� j ) in the former
proposition (see its proof).

7.2 The case of M D S d with d even

In this subsection, we assume 2 2 k�. B?�
�
.H/ is described as

B?�n .H/D
^
fzi ; gij ; hij j 0� i; j � ng=J ;

where jzi j D .0; 2d � 1/, jgij j D .�1; d/, jhij j D .�1; 2d � 1/ and J is the ideal generated by

.zi /
2; .gij /

2; .hij /
2;gi i ;hi i ;gij�gj i ;hijChj i ; .zi�zj /gij ; .zi�zj /hij ; .hijChki /gjk�.hijChjk/gki ;

and the 3–term relation for gij and hij . The diagonal classes are given by �H D 0 2 SH˝ SH and
�SH D z0� z1 2 SH˝SH.

Proposition 7.4 Suppose 2 2 k�. Consider the Čech s.s. LEpqr for Sd with even d � 4. We abbreviate
LEpq2 as .p; q/. The following equalities hold :

(� 6; 2d/D khg13g24i; .�5; 2d/D khg01g23C 3g02g13Cg03g12i;

(� 3; 2d � 1/D khh12i; .0; 2d � 1/D khz0i:

For other .p; q/ with pC q � 2d � 1, we have .p; q/D 0.

For the case of kD F2, the same statement as in Proposition 7.1 holds, except that “odd d � 5” is replaced
with “even d � 4”.
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7.3 The case of M D S k �S l with k odd and l even

We fix generators a 2Hk.Sk/ and b 2H l.S l/. H is presented as ^fa; bg. We fix an orientation � on H
by �.ab/D 1. We write ai for ei .a/ and bi for ei .b/, and An.H/ is presented as

An.H/D
^
fai ; bi ; yi ; gij j 0� i; j � ng=I;

where jyi j D .0; kC l � 1/, jgij j D .�1; kC l/ and I is the ideal generated by

.ai /
2; .bi /

2; .yi /
2; .gij /

2; gi i ; gij Cgj i ; .ai � aj /gij ; .bi � bj /gij and the 3–term relation for gij :

The diagonal class is given by �H D a0b0 � a1b0 C a0b1 � a1b1 2 H˝H. The module NAn.H/ is
generated by the monomials of the form ap1 � � � apsbq1 � � � bqtgi1j1 � � �girjr such that the set of subscripts
fp1; : : : ; ps; q1; : : : ; qt ; i1; : : : ; ir ; j1; : : : ; jrg contains the set f1; : : : ; ng.

We shall present the total differential Qd on

LEpq1 D
M
?��Dp

NA?;q
�
.H/

up to pCq �maxf2kC l; kC2lg. For .p; q/D .�1; k/, .�1; l/, .�1; kC l �1/, .�1; kC l/, .�1; 2k/,
.�1; 2l/, .�1; 2kC l/, .�1; kC 2l/, .�1; 2kC l � 1/, .�1; kC 2l � 1/, .�2; 2k/, .�2; 2l/, .�2; 3k/ or
.�2; 3l/, Qd is zero.

For .p; q/D .�3; kC l/, Qd is presented by the following matrix

g12

g01 0

a1b2 1

a2b1 �1

This is read as Qd.g12/D a1b2� a2b1. For .p; q/D .�2; kC l/,

g01 a1b2 a2b1

a0b1 1 1 1

a1b0 �1 1 1

a1b1 �1 �1 �1

For .p; q/D .�4; 2kC l/,
a1g23 a2g13 a3g12

a0g12 1 0 �1

a1g02 1 1 0

a1g12 �1 0 1

a2g01 0 1 1

a1a2b3 �1 1 0

a1a3b2 1 0 1

a2a3b1 0 1 �1
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For .p; q/D .�3; 2kC l/,

a0g12 a1g02 a1g12 a2g01 a1a2b3 a1a3b2 a2a3b1

a0g01 0 0 0 0 0 0 0

a0a1b2 �1 1 0 0 �1 �1 0

a0a2b1 1 0 0 1 0 �1 �1

a1a2b0 0 1 0 �1 1 0 �1

a1a2b1 0 0 1 �1 0 1 1

a1a2b2 0 1 1 0 �1 �1 0

For .p; q/D .�2; 2kC l/,

a0g01 a0a1b2 a0a2b1 a1a2b0 a1a2b1 a1a2b2

a0a1b0 1 �1 �1 0 �1 1

a0a1b1 1 1 1 0 1 �1

For .p; q/D .�2; 2kC l � 1/,
a1y2 a2y1

a0y1 1 1

a1y0 1 1

a1y1 �1 �1

For .p; q/D .�4; kC 2l/,
b1g23 b2g13 b3g12

b0g12 �1 0 1

b1g02 �1 �1 0

b1g12 1 0 �1

b2g01 0 �1 �1

a1b2b3 0 1 1

a2b1b3 1 0 �1

a3b1b2 �1 �1 0

For .p; q/D .�3; kC 2l/,

b0g12 b1g02 b1g12 b2g01 a1b2b3 a2b1b3 a3b1b2

b0g01 0 0 0 0 0 0 0

a0b1b2 0 1 0 1 1 0 �1

a1b0b2 1 0 0 �1 �1 1 0

a1b1b2 0 0 1 �1 �1 �1 0

a2b0b1 �1 �1 0 0 0 �1 1

a2b1b2 0 �1 �1 0 0 1 1

For .p; q/D .�2; kC 2l/,

b0g01 a0b1b2 a1b0b2 a1b1b2 a2b0b1 a2b1b2

a0b0b1 1 2 1 1 1 1

a1b0b1 �1 0 �1 1 �1 1
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For .p; q/D .�2; kC 2l � 1/,
b1y2 b2y1

b0y1 �1 �1

b1y0 1 1

b1y1 1 1

By direct computation based on the above presentation we obtain the following result. Let k2 (resp. k2)
denote the module k=2k (resp. k˚ k).

Proposition 7.5 Suppose k is either of Z or Fp where p is prime. Let k be an odd number and l be an
even numbers with kC 5� l � 2k � 4 and j3k � 2l j � 2, or l C 7� k � 2l � 7 and j3l � 2kj � 2. We
abbreviate LEpq2 for Sk �S l as .p; q/. We have the following isomorphisms:

(0; k/D .�1; k/D .0; l/D .�1; l/D .�1; 2k/D .�2; 2k/D .�1; 2l/D .�2; 2l/D k

(� 2; 3k/D .�3; 3k/D .�2; 3l/D .�3; 3l/D .0; kC l � 1/D .�1; kC l � 1/D k;

(0; kC l/D k; .�1; kC l/D k˚ k2 or k2; .�2; kC l/D 0 or k;

(0; 2kC l � 1/D k; .�1; 2kC l � 1/D k2; .�2; 2kC l � 1/D k;

(� 1; 2kC l/D k2 or k; .�2; 2kC l/D k2 or k2; .�3; 2kC l/D k2 or k2;

(� 4; 2kC l/D 0 or k; .0; kC 2l � 1/D k; .�1; kC 2l � 1/D k2;

(� 2; kC 2l � 1/D k; .�1; kC 2l/D k2 or k; .�2; kC 2l/D k or k2;

(� 3; kC 2l/D k2; .�4; kC 2l/D k:

Here “.p; q/DA or B” means .p; q/DA if kDZ or Fp with p¤ 2 and .p; q/DB if kD F2. For other
.p; q/ with pC q �maxfkC 2l; 2kC lg we have .p; q/D 0.

The isomorphisms of Proposition 7.5 hold under milder conditions on k and l . It suffices to ensure the
bidegrees presented above are pairwise distinct. By degree argument, we obtain the following corollary:

Corollary 7.6 Suppose k is either Z or Fp where p is a prime. Let k be an odd number and l be an even
number with kC 5 � l � 2k � 4 and j3k � 2l j � 2, or l C 7 � k � 2l � 7 and j3l � 2kj � 2. We set
H� DH�.Emb.S1; Sk �S l//.

(1) We have isomorphisms

H i
D k for i D k� 1; k; 2k� 2; 2k� 1; l � 1; l; 2l � 2; 2l � 1; kC l:

(2) If kD Fp with p¤ 2, we have isomorphisms

H i
D

8<:
k if i D kC l � 2; 2kC l � 3; 2kC l � 1;
k2 if i D kC l � 1; 2kC l � 2;
0 if i D 2kC l � 4:
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(3) If kD Z, we have isomorphisms

H i
D

8̂̂̂<̂
ˆ̂:
k if i D kC l � 2;
k2˚ k2 if i D kC l � 1; 2kC l � 2;
k˚ k2 if i D 2kC l � 3;
0 if i D 2kC l � 4:

(4) We have H i D 0 for an integer i that satisfies i �maxfkC 2l; 2kC lg and is different from any of
the following integers:

k� 1; k; l � 1; l; 2k� 2; 2k� 1; 2l � 2; 2l � 1; 3k� 3; 3k� 2; 3l � 3; 3l � 2; kC l � 2; kC l � 1;

kC l; 2kC l �4; 2kC l �3; 2kC l �2; 2kC l �1; kC2l �4; kC2l �3; kC2l �2; kC2l �1:

Proof By an argument similar to the proof of Theorem 5.17, LE�p;q2 D 0 if q=p< 1
3
.kCl/. We shall show

that any differential dr W LE
.�p�r;qCr�1/
r ! LE�p;qr going into the term contained in the cohomology of the

claim is zero. It is enough to show this for the case of .�p; q/D .0; 2kC l�1/ and qCr�1� kC2l�1
since other cases are obvious, or follow from this case. We see

qC r � 1

pC r
D
q� 1

r
C 1�

2kC l � 2

l � kC 1
C 1D

kC 2l � 1

l � kC 1
< 1
3
.kC l/:

So E.�p�r;qCr�1/r D 0 and dr D 0.

7.4 The case of M D S k �S l with k; l even

We fix generators a 2Hk.Sk/ and b 2H l.S l/. H is presented as ^fa; bg. We fix an orientation � on H
by �.ab/D 1. We set c D Na 2 SH and d D Nb 2 SH. We write ai for ei .a/, bi for ei .b/, etc, and Bn.H/
is presented as

Bn.H/D
^
fai ; bi ; ci ; di ; gij ; hij j 0� i; j � ng=J

where jgij j D .�1; kC l/, jhij j D .�1; 2.kC l/� 1/ and J is the ideal generated by

.ai /
2; .bi /

2; .ci /
2; .di /

2; aibi ; aici ; bidi ; cidi ; aidi � bici .gij /
2; .hij /

2; gi i ; hi i ; gij �gj i ; hij C hj i ;

.ai�aj /gij ; .bi�bj /gij ; .ci�cj /gij�aihij ; .di�dj /gij�bihij ; .ai�aj /hij ; .bi�bj /hij ; .ci�cj /hij ;

.di � dj /hij ; .hij C hik/gjk � .hij C hjk/gki and the 3–term relations for gij and hij :

The diagonal classes are given by

�H D a0b1C a1b0 2 SH˝SH and �SH D a0d0C a1d0C b1c0� b0c1� a0d1� a1d1:

By an argument similar to the proof of Corollary 7.6, we obtain the following corollary:

Corollary 7.7 Suppose 2 2 k�. Let k and l be two even numbers with k C 2 � l � 2k � 2 and
j3k� 2l j � 2. We set H� DH�.Emb.S1; Sk �S l//. We have isomorphisms

H i
D k for i D k� 1; k; l � 1; l; kC l � 3; kC l � 2; kC l � 1; 3k:

For any other degree i � 2kC l , we have H i D 0.
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7.5 The case of 4–dimensional manifolds

In this subsection, we prove Corollary 1.3. We assume that M is a simply connected 4–dimensional
manifold. So, as is easily observed, H is a free k–module for any k.

Definition 7.8 Set �D �.M/. We define a map ˛ W .H2/˝2˚ kg01! .H2/˝2˚H4=�H4 by

˛.a˝ b/D .�a˝ b� b˝ a/C ab; ˛.g01/D pr1.�H/:

Here g01 is a formal free generator (which will correspond to the element of the same symbol in LE�2;41 )
and pr1 is the projection

.H˝2/�D4! .H2/˝2˚ .1˝H4/! .H2/˝2˚H4=�H4:

The next proposition follows from direct computation and degree argument based on Theorem 6.11.

Lemma 7.9 We use the notation in Definition 7.8. Suppose k is a field and H2 is not zero.

(1) When pC q D 1, LEp;qr is stationary after E2. In particular , LEp;q2 Š LEp;q1 . We have isomorphisms

LEp;q2 Š

�
H2 if .p; q/D .�1; 2/;
0 otherwise:

(2) There exists an isomorphism

LE�2;42 Š Ker.˛/=k.pr2.�H/C 2g01/:

Here pr2 is the projection .H˝2/�D4! .H2/˝2. The differential dr coming into this term is zero
for r � 2.

Remark 7.10 Actually, Lemma 7.9 holds even when k is a not a field since torsion in the Künneth
theorem does not affect the range.

Proof of Corollary 1.3 In this proof, we suppose k is a field. Set HZ
2 D H2.M IZ/. As is well

known, there is a weak homotopy equivalence between Imm.S1;M/ and the free loop space LSM,
and there is an isomorphism �1.LSM/ Š �1.SM/˚ �2.SM/. As M is simply connected, we have
�1 Imm.S1;M/Š �2.SM/Š �2.M/ŠHZ

2 .

By the Goodwillie–Weiss convergence theorem, connectivity of the standard projection holim� C�.M/!

holim�n C�.M/ increases as n increases. Since �n is a compact category in the sense of [13] and Cn.M/

is simply connected for any n, by [13, Theorem 2.2] we see that Emb.S1;M/ is Z–complete. In particular,
�1.Emb.S1;M// is a pro-nilpotent group. So, by a theorem of Stallings [38], we only have to prove that
the composition

Emb.S1;M/
iM
��! Imm.S1;M/ '�! LSM cl1

��!K.HZ
2 ; 1/

induces an isomorphism on H1.�IZ/ and a surjection on H2.�IZ/. Here the rightmost map cl1 is the
classifying map; see [15].
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Consider the spectral sequence Ep;qr associated to the Hochschild complex of C�.zTM /. This spectral
sequence is isomorphic to the Bousfield–Kan type cohomology spectral sequence associated to the
well-known cosimplicial model for LSM given by Œn� 7! SMnC1. The quotient map zTM ! TM induces
a map fr W E

pq
r !

LEpqr of spectral sequences. For r D1, this map is identified with the map on the
associated graded induced by the inclusion iM . For pC q D 1, by Lemma 7.9 (and similar computation
for Epqr ), f2 is an isomorphism for any field k. Since �1.Emb.S1;M// is the same as �1 of a finite
stage of Taylor tower which is the finite homotopy limit of a simply connected finite cell complex, it
is finitely generated, and so is H1. By the universal coefficient theorem, iM induces an isomorphism
on H1.�IZ/. For the part of pC q D 2, we see Epq2 D 0 for p < �2 and E�2;4 Š Ker.˛/\ .H2/˝2.
Consider the zigzag

LSM L.cl2/
����! LK.HZ

2 ; 2/
iK
 ��K.HZ

2 ; 2/;

where the left map is induced by the classifying map cl2 W SM ! K.HZ
2 ; 2/ and the right one is the

inclusion from the based loop space. Clearly the composition cl1 ı iK W�K.HZ
2 ; 2/! K.HZ

2 ; 1/ is a
weak homotopy equivalence. Observe spectral sequences associated to the standard cosimplicial models
of the above three spaces. Since the maps L.cl2/ and iK are induced by cosimplicial maps, they induce
maps on spectral sequences. In the part of total degree 2, we see that the filtration level F�2 for each of
the three spectral sequences is the entire cohomology group, and the filtration level F�1 for the one for
�K.HZ

2 ; 2/ is zero. With these observations, we see that the image of H 2.K.HZ
2 ; 1// in H 2.LSM/ by

the map cl1 is sent to a subspace V of F�2=F�1 ŠE�2;41 �E
�2;4
2 isomorphically, and a basis of V is

given by fai ˝ aj � aj ˝ ai j i < j g as elements of E�2;42 , where faigi denotes a basis of H2. (We also
see that these elements must be stationary.) If k¤ F2, or if kD F2 and the inverse of the intersection
matrix has at least one nonzero diagonal component, the restriction of f2 to V is a monomorphism by
Lemmas 6.2 and 7.9. (Otherwise, the elements of the basis of V have the relation pr0.�H/D 0.) This
implies iM induces a surjection on H2 for any field k under the assumption of the theorem. By the
universal coefficient theorem, we obtain the desired assertion on H2.�IZ/.

Remark 7.11 If all of the diagonal components of the inverse of the intersection matrix on H2.M IF2/
are zero, the map f2 W V ! LE

�2;4
2 in the proof is not a monomorphism for k D F2, but this does not

necessarily imply the original (nonassociated graded) map is not a monomorphism. So in this case, it is
still unclear whether iM is an isomorphism on �1.

8 Precise statement and proof of Theorem 1.5

Definition 8.1 � Fix a coordinate plane with coordinates .x; y/. A planar rooted n–tree .T; e/ consists
of a 1–dimensional finite cell complex T and a continuous monomorphism e from its realization jT j to
the half plane y � 0 such that:

– T is connected and �1.T / is trivial.
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– The intersection of the image of e and the x–axis consists of the image of n univalent vertices
called leaves. These vertices are labeled by 1; : : : ; n in the manner consistent with the standard
order on the axis.

– T has a unique distinguished vertex, called the root, which is at least bivalent.

– Any vertex except for the leaves and root is at least trivalent.

An isotopy between n–trees .T1; e1/! .T2; e2/ is an isotopy of the half plane onto itself which maps
e1.jT1j/ onto e2.jT2j/ and the root to the root. (So an isotopy preserves the leaves, including the labels.)
We will denote an isotopy class of planar rooted n–trees simply by T . The root vertex of a tree is usually
denoted by vr . For a vertex v of a tree, jvj denotes the number which is the valence minus 1 if v ¤ vr ,
and equal to the valence if v D vr (jvj is the number of the “out-going edges”).

� Let ‰n be a category defined as follows. An object of ‰n is an isotopy class of planar rooted n–trees.
There is a unique morphism T ! T 0 if T 0 is obtained from T by successive contractions of internal edges
(ie edges not adjacent to leaves).

� Let Cat be the category of small categories and functors. Let in W ‰n ! ‰nC1 be a functor which
sends T to the tree made from T by attaching two edges to the nth leaf of T and labeling the new leaves
with n and nC 1. We define a category ‰ as the colimit of the sequence ‰1

i1
�!‰2

i2
�! � � � taken in Cat.

Fn W‰nC1! Pn denotes the functor given in [37, Definition 4.14], which sends a tree T 2‰nC1 to the
set of numbers i such that the shortest paths from i and i C 1 to the root in T intersect only at the root.
For the functor Gn W PnC1!�n, see Section 2.1. The square

‰nC2

in
��

GnC1ıFn
// �n

in
��

‰nC3
GnC2ıFnC1

// �nC1

is clearly commutative, where the right vertical arrow is the natural inclusion, so we have the induced
functor G ıF W‰!�.

� Henceforth, for a symmetric sequence X and a vertex v of a tree in ‰, we denote X.jvj/, X.jvj � 1/
and jvj � 1 by X.v/, X.v� 1/ and v� 1, respectively.

� For a K–comodule X in SP , we shall define a functor FnX W‰op
nC2! SP . The definition is similar to

(a dual of) the construction of DnŒM � in [37, Definition 5.6]. For a tree T 2‰nC2, define a space Knr
T by

Knr
T D

Y
v

K.v/:

Here v runs through all the nonroot and nonleaf vertices of T . This is denoted by Knr
T in [37]. We set

FnX.T /DMap.Knr
T ; X.vr � 1//:

For a morphism T ! T 0 given by the contraction of a nonroot edge e (an edge not adjacent to the root),
the map e� W FnX.T 0/! FnX.T / is the pullback by the inclusion Knr

T ! Knr
T 0 to a face corresponding to
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the edge contraction (see [37, Definition 4.26]). For the i th root edge e, the corresponding map is given
by the following composition:

Map
� Y
v2T 0

K.v/; X.v0r�1/
�
DMap

� Y
v2T
v¤vt

K.v/; X.v0r�1/
�
!Map

� Y
v2T
v¤vt

K.v/;Map.K.vt /; X.vr�1//
�

ŠMap
�� Y

v2T
v¤vt

K.v/
�
�K.vt /; X.vr�1/

�
DMap

� Y
v2T

K.v/; X.vr�1/
�
:

Here vt is the vertex of e which is not the root. For 1� i � jvr j � 1, the arrow is the pushforward by the
adjoint of the partial composition .�ıi �/ W K.vt / y̋ X.v0r � 1/! X.vr � 1/, and for i D jvr j it is the
pushforward by the adjoint of the composition

K.vt / y̋ X.v0r � 1/
id˝.�/�
������! K.vt / y̋ X.v0r � 1/

.�ı1�/
�����!X.vr � 1/;

where � is the transposition of the first jv0r j�jvt j and last jvt j�1 letters. The functors fFngn are compatible
with the inclusions in W ‰nC2 ! ‰nC3. Precisely speaking, there exists an obviously defined natural
isomorphism jn W F

nX Š FnC1X j‰nC2 because the inclusion does not change jvr j. We define a functor
FX W‰! SP by FX.T / being the colimit of the sequence FnX.T /

Š
�! FnC1X.T /

Š
�! FnC2X.T /

Š
�! � � � .

� We define a category G.n/C for an integer n� 1 as follows. Its objects are a symbol � and the graphs
G with set of vertices V.G/D n and set of edges E.G/� f.i; j / j i; j 2 n with i � j g. There is a unique
morphism G!H if and only if either both of G and H are graphs and E.G/�E.H/, or G D � and
H ¤ ∅, where ∅ denotes the graph with no edges. As in the definition, we allow graphs in G.n/C to
have loops, ie edges of the form .i; i/ for i 2 n.

� We define a functor ! W‰op
nC2!Cat by !.T /DG.jvr j�1/

C. For the contraction T !T 0 of an edge e,
we define a map e� W v0r � 1! vr � 1 as follows. If e is a nonroot edge, e� is the identity. If e is the i th

root edge for 1� i � jvr j�1, e� is the order-preserving surjection with e�.j /D i for i � j � iCjvt j�1.
For i D jvr j, e� is the composition

v0r � 1
.�/�
���! v0r � 1

.e0/�
���! vr � 1; where .e0/�.j /D

�
1 if 1� j � jvt j;
j � jvt jC 1 if jvt jC 1� j � jv0r j � 1;

and � is the permutation given in the previous item. For G 2 G.jv0r j � 1/
C, we define an object

e�.G/ 2 G.jvr j � 1/
C by

e�.G/D

�
� if G D �;

the graph with the edge set f.e�.s/; e�.t// j .s; t/ 2E.G/g otherwise.

� We define a category z‰nC2 as the Grothendieck construction for the (nonlax) functor !

z‰nC2 D

Z
‰nC2

!:
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An object of z‰nC2 is a pair .T;G/ with T 2 ‰nC2 and G 2 !.T /. A map .T;G/! .T 0; G0/ is a pair
of maps e W T ! T 0 2‰nC2 and G! e�.G0/ 2 !.T /. The functor in W‰nC2!‰nC3 and the identity
!.T / D !.in.T // naturally induce a functor in W z‰nC2 ! z‰nC3. We denote by z‰ the colimit of the
sequence f z‰nC2I ing.

� We fix a map K! D of operads and regard zTM as a K–comodule via this map.

� We shall define a functor TnM W z‰
op
nC2! SP . We set

TnM .T;G/D

�
� if G has at least one loop or G D �;

Map.Knr
T ; TG/ otherwise:

For a map .T;G/! .T 0; G0/, we set

Map
� Y
v2T 0

K.v/; TG0
�
!Map

� Y
v2T
v¤vt

K.v/;Map.K.vt /; TG/
�
ŠMap

�� Y
v2T
v¤vt

K.v/
�
�K.vt /; TG

�

DMap
� Y
v2T

K.v/; TG
�
:

Here the arrow is the adjoint of the map K.vt / y̋ TG0 ! TG which is the composition of the map
K.vt / y̋ TG0 ! Te�.G0/ defined in view of Lemma 3.11 and the inclusion Te�G0 � TG coming from
G � e�.G0/. The collection fTnM gn naturally induces a functor TM W z‰! SP with natural isomorphism
TM jz‰nC2 Š TnM .

� Let M be a model category. Let � W z‰!‰ be the functor given by the projection �.T;G/D T . Let
�Š W Fun.z‰op;M/! Fun.‰op;M/ be the left Kan extension along �, ie

.�ŠX/.T /D colim
!.T /

XT

for X 2 Fun.z‰op;M/. Here abusing notation, for T 2 ‰ we denote by !.T / the full subcategory
f.T;G/ jG2!.T /g of z‰, and byXT the restriction ofX to!.T /. Let �� WFun.‰op;M/!Fun.z‰op;M/

be the pullback, ie ��.Y /D Y ı �.

Remark 8.2 The category ‰n is equivalent to the category ‰on given in [37, Definition 4.12].

Notation Henceforth we omit .�/op under .ho/colim. For example, hocolim‰ denotes hocolim‰op .

In the rest of this section, as before, all functor categories are endowed with the projective model structure
(see Section 2.1).

Lemma 8.3 Let M be a cofibrantly generated model category.

(1) The pair .�Š; ��/ is a Quillen adjoint pair.

(2) The restriction
Fun.z‰op;M/! Fun.!.T /op;M/; X 7!XT ;
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preserves weak equivalences and cofibrations. In particular , the natural map hocolim!.T /XT !
L�ŠX.T / 2Ho.M/ is an isomorphism.

(3) For any functor X 2 Fun.z‰op;M/, there is a natural isomorphism in Ho.M/

hocolim
‰

L�ŠX Š hocolim
z‰

X:

Proof Part (1) is straightforward. We shall prove (2). Let I be a set of generating cofibrations of M. Let
C be a category. For objects a 2 C and A 2M, the functor sending b 2 C to the coproduct of copies of
A labeled by morphisms from b to a is denoted by F a

A 2 Fun.C op;M/. A set of generating cofibrations
of Fun.C;M/ is given by

IC D fF
a
f W F

a
A ! F a

B j a 2 C and f W A! B 2 I g:

See [20, Theorem 11.6.1] for details. Since !.T / is a full subcategory of z‰, the restriction functor sends
Iz‰ into I!.T /. Since the restriction preserves colimits, it preserves relative cell objects with respect to
these generating sets. As any cofibration is a retract of a relative cell object, we have proved (2). Part (3)
follows from (2) and a standard property of colimits.

Theorem 8.4 (1) There exists an isomorphism in Ho.Fun.‰op;SP//

.G ıF/�.C�.M/_/Š L�ŠTM :

(2) If M is simply connected and of dimension � 4, there exists an isomorphism in Ho.CHk/

C �.Emb.S1;M//Š hocolim
z‰

C� ıTM :

Proof Let T 2 ‰ be an object and set m D jvr j � 1, where vr is the root vertex of T . By definition
TM .m/D colimG2!.T / TG . We shall show that the natural map

hocolim
G2!.T /

TG! colim
G2!.T /

TG D TM .m/ 2Ho.SP/

is an isomorphism. Put N1 D #f.i; j / j i; j 2 m with i � j g. By abuse of notation, we denote by
PN1 the subcategory of !.T / consisting of nonempty graphs, which is actually isomorphic to PN1 .
The functor Pop

N1
3 G 7! TG 2 SP satisfies the assumption of Lemma 2.2(2), so the natural map

hocolimPN1 TG! colimPN1 TG is an isomorphism. More precisely, for each k, Pop
N1
3G 7! .TG/k 2 CG�

satisfies the assumption for MD CG�. Since a trivial fibration in SP is a level equivalence and a finite
homotopy colimit is obtained by successive applications of a homotopy pushout, the finite homotopy
colimit of a diagram of semistable connective spectra is ��–isomorphic to the levelwise homotopy
colimit. As TM .m/ is a cofiber of the natural map colimPN1 TG ! zTM , which is also a (levelwise)
homotopy cofiber, we have the assertion. We define a natural transformation TM ! �� ı F.TM / by
the pushforward by the constant map TG ! f�g � TM .m/ for G ¤ ∅ 2 !.T /, and by the quotient
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map T∅! TM .m/ for G D ∅. By the assertion and Lemma 8.3(2), the derived adjoint of the natural
transformation L�ŠTM ! FTM is an isomorphism in Ho.Fun.‰op;SP//. It is clear that F preserves
weak equivalences, so by Theorem 4.4 we have isomorphisms in Ho.Fun.‰op;SP//

F.C_M /Š FTM Š L�ŠTM :

We define a natural transformation .G ıF/�.C�.M/_/! F.C_M / by the inclusion Cm�1.M/D CM .m/�
Map.Knr

T ; CM .m// onto constant maps. This is clearly a weak equivalence, so we have proved (1).

For (2), since the functor C� W SP! CHk preserves homotopy colimits (of semistable spectra), by (1),
Lemma 8.3(3) and Lemma 5.3, we have isomorphisms in Ho.CHk/

hocolim
‰

.G ıF/�C�.C�.M/_/Š hocolim
‰

L�ŠC� ıTM Š hocolim
z‰

C� ıTM :

By Lemma 5.3, Theorem 5.17 and the fact that G ı F W ‰op ! �op is (homotopy) right cofinal (see
Proposition 4.15 and Theorem 6.7 of [37]), we have isomorphisms in Ho.CHk/

C �.Emb.S1;M//Š hocolim
�

C �.C�.M//Š hocolim
�

C�.C�.M/_/Š hocolim
‰

.G ıF/�C�.C�.M/_/:

Thus, we have an isomorphism C �.Emb.S1;M//Š hocolimz‰ C� ıTM .

References
[1] G Arone, M Szymik, Spaces of knotted circles and exotic smooth structures, Canad. J. Math. 74 (2022)

1–23 MR Zbl

[2] G Arone, V Turchin, On the rational homology of high-dimensional analogues of spaces of long knots,
Geom. Topol. 18 (2014) 1261–1322 MR Zbl

[3] M Bendersky, S Gitler, The cohomology of certain function spaces, Trans. Amer. Math. Soc. 326 (1991)
423–440 MR Zbl

[4] A K Bousfield, On the homology spectral sequence of a cosimplicial space, Amer. J. Math. 109 (1987)
361–394 MR Zbl

[5] P Boavida de Brito, G Horel, Galois symmetries of knot spaces, Compos. Math. 157 (2021) 997–1021
MR Zbl

[6] P Boavida de Brito, M Weiss, Manifold calculus and homotopy sheaves, Homology Homotopy Appl. 15
(2013) 361–383 MR Zbl

[7] W Browder, Surgery on simply-connected manifolds, Ergebnisse der Math. 65, Springer (1972) MR Zbl

[8] R Budney, A family of embedding spaces, from “Groups, homotopy and configuration spaces” (N Iwase, T
Kohno, R Levi, D Tamaki, J Wu, editors), Geom. Topol. Monogr. 13, Geom. Topol. Publ., Coventry (2008)
41–83 MR Zbl

[9] R Budney, D Gabai, Knotted 3–balls in S4, preprint (2019) arXiv 1912.09029

[10] R Campos, T Willwacher, A model for configuration spaces of points, Algebr. Geom. Topol. 23 (2023)
2029–2106 MR Zbl

Algebraic & Geometric Topology, Volume 24 (2024)

http://dx.doi.org/10.4153/S0008414X2000067X
http://msp.org/idx/mr/4379395
http://msp.org/idx/zbl/1483.57019
http://dx.doi.org/10.2140/gt.2014.18.1261
http://msp.org/idx/mr/3228453
http://msp.org/idx/zbl/1312.57034
http://dx.doi.org/10.2307/2001871
http://msp.org/idx/mr/1010881
http://msp.org/idx/zbl/0738.54007
http://dx.doi.org/10.2307/2374579
http://msp.org/idx/mr/882428
http://msp.org/idx/zbl/0623.55009
http://dx.doi.org/10.1112/S0010437X21007041
http://msp.org/idx/mr/4251607
http://msp.org/idx/zbl/1467.57001
http://dx.doi.org/10.4310/HHA.2013.v15.n2.a20
http://msp.org/idx/mr/3138384
http://msp.org/idx/zbl/1291.18025
http://dx.doi.org/10.1007/978-3-642-50020-6
http://msp.org/idx/mr/358813
http://msp.org/idx/zbl/0239.57016
http://dx.doi.org/10.2140/gtm.2008.13.41
http://msp.org/idx/mr/2508201
http://msp.org/idx/zbl/1158.57035
http://msp.org/idx/arx/1912.09029
http://dx.doi.org/10.2140/agt.2023.23.2029
http://msp.org/idx/mr/4621424
http://msp.org/idx/zbl/07723338


Models for knot spaces and Atiyah duality 249

[11] R L Cohen, Multiplicative properties of Atiyah duality, Homology Homotopy Appl. 6 (2004) 269–281 MR
Zbl

[12] R L Cohen, J D S Jones, A homotopy theoretic realization of string topology, Math. Ann. 324 (2002)
773–798 MR Zbl

[13] E D Farjoun, Bousfield–Kan completion of homotopy limits, Topology 42 (2003) 1083–1099 MR Zbl

[14] Y Felix, J-C Thomas, Configuration spaces and Massey products, Int. Math. Res. Not. 2004 (2004)
1685–1702 MR Zbl

[15] S M Gersten, The Whitehead theorem for nilpotent spaces, Proc. Amer. Math. Soc. 47 (1975) 259–260 MR
Zbl

[16] E Getzler, J D S Jones, A1–algebras and the cyclic bar complex, Illinois J. Math. 34 (1990) 256–283 MR
Zbl

[17] T G Goodwillie, J R Klein, Multiple disjunction for spaces of smooth embeddings, J. Topol. 8 (2015)
651–674 MR Zbl

[18] T G Goodwillie, M Weiss, Embeddings from the point of view of immersion theory, II, Geom. Topol. 3
(1999) 103–118 MR Zbl

[19] A Hatcher, Algebraic topology, Cambridge Univ. Press (2002) MR Zbl

[20] P S Hirschhorn, Model categories and their localizations, Mathematical Surveys and Monographs 99,
Amer. Math. Soc., Providence, RI (2003) MR Zbl

[21] M Hovey, Model categories, Mathematical Surveys and Monographs 63, Amer. Math. Soc., Providence, RI
(1999) MR Zbl

[22] N Idrissi, The Lambrechts–Stanley model of configuration spaces, Invent. Math. 216 (2019) 1–68 MR Zbl
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Automorphismes du groupe des automorphismes
d’un groupe de Coxeter universel

YASSINE GUERCH

À l’aide de l’outre-espace de Guirardel et Levitt d’un produit libre, nous démontrons que le groupe des
automorphismes extérieurs du groupe des automorphismes extérieurs du groupe de Coxeter universel de
rang n� 5 est trivial, et qu’il s’agit d’un groupe cyclique d’ordre 2 si nD 4. Nous démontrons aussi que
le groupe des automorphismes extérieurs du groupe des automorphismes du groupe de Coxeter universel
de rang n� 4 est trivial.

Using the Guirardel–Levitt outer space of a free product, we prove that the outer automorphism group of
the outer automorphism group of the universal Coxeter group of rank n� 5 is trivial, and that it is a cyclic
group of order 2 if nD 4. In addition we prove that the outer automorphism group of the automorphism
group of the universal Coxeter group of rank n� 4 is trivial.

20E08, 20E36, 20F28, 20F55

1 Introduction

Soit n un entier plus grand que 2. On note F D Z=2Z un groupe cyclique d’ordre 2 et Wn D �n F

un groupe de Coxeter universel de rang n, produit libre de n copies de F. Si G est un groupe, on note
Out.G/D Aut.G/=Int.G/ son groupe d’automorphismes extérieurs. Nous démontrons dans cet article
les résultats suivants.

Théorème 1.1 Si n � 5, alors Out.Out.Wn// D f1g. Si n D 4, alors Out.Out.Wn// est isomorphe
à Z=2Z.

Théorème 1.2 Si n� 4, alors Out.Aut.Wn//D f1g.

De tels résultats sont déjà connus dans le cas où nD 2 (voir par exemple [Thomas 2020, Lemmas 1.4.2
and 1.4.3]) où tous les automorphismes de Out.W2/ sont intérieurs et où le groupe Out.Aut.W2// est un
groupe cyclique d’ordre 2. Dans le cas où nD 3, les groupes Aut.W3/ et Out.W3/ sont isomorphes à
Aut.F2/ et PGL.2;Z/ respectivement, avec F2 un groupe libre de rang 2 (voir par exemple [Varghese
2021, Lemma 2.3]). Nous obtenons donc une description de Out.Out.Wn// pour tout entier n.

De telles questions de rigidité algébrique ont déjà été résolues dans des cas similaires. En effet, Mostow
[1973] a démontré que le groupe des automorphismes extérieurs de réseaux irréductibles uniformes de
groupes de Lie réels, connexes, semi-simples et non localement isomorphes à SL2.R/ est fini. De même,
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Ivanov [1997, Theorem 2] a démontré un résultat similaire dans le cas du groupe modulaire d’une surface
compacte, connexe, orientable de genre g � 2. Enfin, Bridson et Vogtmann [2000] ont démontré que tout
automorphisme du groupe des automorphismes extérieurs d’un groupe libre de rang N (avec N � 3)
est une conjugaison. Ce dernier cas a motivé l’étude de la rigidité algébrique de Out.Wn/, d’une part
à cause de la propriété d’universalité pour les groupes engendrés par des éléments d’ordre 2 de Wn,
d’autre part car, si n� 3, le groupe Aut.Wn/ s’injecte dans Aut.Fn�1/ (voir par exemple [Mühlherr 1997,
Theorem A]). Néanmoins, cette injection ne donne aucune piste de déduction des théorèmes 1.1 et 1.2
à partir du théorème de Bridson et Vogtmann. Peu de choses sont connues pour Aut.Wn/. Une partie
génératrice finie a été construite par Mühlherr [1997, Theorem B], et une présentation a été donnée par
Gilbert [1987] dans le contexte plus général du groupe des automorphismes d’un produit libre, suivant
[Fouxe-Rabinovitch 1941]. Plus récemment, Varghese [2021, Theorem C] a démontré que le groupe
Aut.Wn/ n’a pas la propriété .T/ de Kazhdan. Dans tous les cas, les techniques d’étude de Aut.Wn/ sont
principalement combinatoires et géométriques. Mentionnons enfin que l’étude du groupe Aut.Wn/ est en
lien avec l’étude du groupe des automorphismes symétriques d’un produit libre étudié par McCullough et
Miller [1996] (mais celle-ci ne donne aucune piste de déduction des théorèmes 1.1 et 1.2) et qu’il serait
intéressant de connaître des résultats similaires dans ce contexte plus général.

Pour démontrer les théorèmes 1.1 et 1.2, nous étudions l’action de Out.Wn/ sur un complexe simplicial de
drapeaux introduit par Guirardel et Levitt. Plus précisément, nous cherchons à comprendre les stabilisateurs
de certains sommets de ce complexe. En effet, les stabilisateurs de ces sommets formant une partie
génératrice de Aut.Wn/ et Out.Wn/, comprendre l’image de ces stabilisateurs par des automorphismes de
Aut.Wn/ et Out.Wn/ nous permettra de faciliter l’étude de ces derniers. L’étude de l’action de Out.Wn/

sur un complexe simplicial se justifie également par la démonstration des théorèmes similaires dans les cas
des réseaux des groupes de Lie semi-simples, du groupe modulaire d’une surface de type fini et du groupe
des automorphismes d’un groupe libre qui passait également par l’étude de l’action du groupe étudié sur
un espace géométrique adapté. En particulier, dans le cas du groupe des automorphismes extérieurs d’un
groupe libre de rang N, cet objet géométrique était l’outre-espace de Culler et Vogtmann CVN [1986].

Dans le cas de Wn, Guirardel et Levitt [2007b] ont introduit un espace topologique analogue à l’outre-
espace de Culler et Vogtmann, appelé l’outre-espace d’un produit libre. Dans le cas d’un produit libre
de copies de F, cet espace sera noté PO.Wn/. Ce dernier est défini comme un ensemble de classes
d’homothétie de graphes métriques marqués de groupes, dont le groupe fondamental est isomorphe à Wn.
Muni de la topologie dite faible, l’espace PO.Wn/ se rétracte par déformation forte sur un complexe
simplicial de drapeaux, appelé l’épine de PO.Wn/. Le groupe Out.Wn/ agit naturellement sur PO.Wn/

et sur son épine par précomposition du marquage. Le groupe Aut.Wn/ agit quant à lui sur l’autre-espace
de Wn, noté PA.Wn/. Nous renvoyons à la section 2 pour des précisions.

La démonstration du théorème 1.1 est inspirée de celle de [Bridson et Vogtmann 2000] dans le cas d’un
groupe libre, mais des complications structurelles apparaissent, nécessitant de nouvelles idées et méthodes.
Nous présentons la démonstration dans le cas de Out.Wn/, le cas de Aut.Wn/ étant similaire et présenté
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FIGURE 1: Exemples de graphes de groupes dont les classes d’équivalence sont respectivement
une f0g–étoile et une F–étoile (cas nD6). Les arêtes ont des groupes associés triviaux. L’ensemble
fx1; : : : ;x6g est une partie génératrice standard de W6.

dans des remarques suivant les démonstrations dans le cas de Out.Wn/. Son plan, très simplifié, est
le suivant. L’épine de l’outre-espace PO.Wn/ contient deux types de sommets distingués, à savoir les
f0g–étoiles et les F–étoiles, voir la section 2 et la figure 1. Ceci diffère de l’épine de l’outre-espace de
Culler et Vogtmann pour lequel il existe un unique type de sommets distingués, à savoir les roses.

Nous étudions tout d’abord les stabilisateurs des f0g–étoiles et des F–étoiles sous l’action de Out.Wn/.
Le stabilisateur d’une f0g–étoile est isomorphe à Sn. Il correspond à la permutation des feuilles de la
f0g–étoile. Le stabilisateur d’une F–étoile est isomorphe à Fn�2 ÌSn�1. Il correspond à la permutation
des feuilles de la F–étoile ainsi qu’à l’application de conjugaisons partielles dont le conjuguant est contenu
dans le groupe associé au centre de la F–étoile. Nous montrons dans la section 3 les caractérisations
suivantes des stabilisateurs de f0g–étoiles et de F–étoiles (voir les propositions 3.1, 3.6 et 3.9).

Proposition 1.3 Soit n� 5.

(1) Tout sous-groupe de Out.Wn/ isomorphe à Sn fixe un unique point de l’épine de PO.Wn/ ; et ce
point est une f0g–étoile.

(2) Tout sous-groupe de Out.Wn/ isomorphe à Fn�2 Ì Sn�1 fixe un unique point de l’épine de
PO.Wn/ ; et ce point est une F–étoile.

(3) Les stabilisateurs des F–étoiles sont les sous-groupes finis d’ordre maximaux de Out.Wn/.

La proposition 1.3 caractérise de ce fait les stabilisateurs de f0g–étoiles et de F–étoiles, qui sont les sous-
groupes de Out.Wn/ isomorphes à Sn et Fn�2 ÌSn�1, respectivement. Ces caractérisations représentent
une situation nouvelle en comparaison de la preuve de [Bridson et Vogtmann 2000] dans le cas d’un groupe
libre. Notons par ailleurs que le stabilisateur d’une f0g–étoile correspond au groupe des permutations d’une
partie génératrice de Wn et que ce groupe remarquable intervenait déjà dans l’étude faite en [Varghese
2021] de l’action de Aut.Wn/ sur des espaces CAT.0/.

La proposition 1.3 implique alors que tout automorphisme ˛ de Out.Wn/ préserve l’ensemble des
stabilisateurs de f0g–étoiles et l’ensemble des stabilisateurs de F–étoiles. Fixons ˛ 2 Aut.Out.Wn//.
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Le groupe Out.Wn/ agissant transitivement sur l’ensemble des f0g–étoiles, nous pouvons supposer que
˛ induit un automorphisme du stabilisateur d’une f0g–étoile X. Les stabilisateurs de f0g–étoiles étant
isomorphes à Sn, si n� 5 et n¤ 6, nous pouvons supposer que la restriction de ˛ au stabilisateur de X

est égale à l’identité. Nous montrons alors qu’un tel ˛ préserve le stabilisateur d’une F–étoile Y adjacente
à X, et que la restriction de ˛ au stabilisateur de Y est en fait l’identité. Le groupe Out.Wn/ étant engendré
par l’union des stabilisateurs d’une f0g–étoile et d’une F–étoile adjacente, ceci conclut la démonstration
si n� 5. Le cas nD 4, qui présente un automorphisme extérieur exceptionnel, est traité dans la section 4.

Remarquons enfin qu’une extension du théorème 1.1 à des produits libres de copies d’un groupe fini n’est
pas immédiate, ni même aux produits libres de copies d’un groupe fini cyclique. En effet, même si la
proposition 1.3 s’étend aux produits libres de groupes finis cycliques, il convient dès lors d’étudier le
groupe des automorphismes du stabilisateur d’une f0g–étoile dans ce contexte, qui n’est cette fois plus
trivial, ce qui nous semble nécessiter une nouvelle approche pour toute extension des théorèmes 1.1 et 1.2.

Remerciements Je remercie chaleureusement mes directeurs de thèse, Camille Horbez et Frédéric Paulin,
pour leurs précieux conseils et pour leur lecture attentive des différentes versions du présent article.

2 Préliminaires

Nous rappelons tout d’abord la définition de l’outre-espace PO.Wn/ introduit dans [Guirardel et Levitt
2007b]. Un point de PO.Wn/ est une classe d’homothétie de graphes métriques X de groupes, dont
le groupe fondamental est Wn et qui sont munis d’un isomorphisme de groupes appelé marquage
� WWn! �1.X / (pour un choix indifférent de point base) vérifiant :

(1) Le graphe sous-jacent à X est un arbre fini, nous le noterons X tout au long de l’article.

(2) Tous les groupes d’arêtes sont triviaux.

(3) Il y a exactement n sommets de groupes associés isomorphes à F.

(4) Tous les autres sommets ont un groupe associé trivial.

(5) Toute feuille de l’arbre sous-jacent a un groupe associé non trivial.

(6) Si v est un sommet de groupe associé trivial, alors deg.v/� 3.

Deux graphes métriques marqués .X; �/ et .X 0; �0/ sont dans la même classe d’homothétie s’il existe une
homothétie f WX !X 0 (ie un homéomorphisme multipliant toutes les longueurs des arêtes par un même
scalaire strictement positif) telle que f� ı�D �0. On note ŒX; �� la classe d’homothétie d’un tel graphe de
groupes métrique marqué .X; �/. Si le marquage est sous-entendu, on notera X la classe d’homothétie. Le
groupe Aut.Wn/ agit par précomposition du marquage. Par ailleurs, pour tout ˛ 2 Int.Wn/, et pour tout
X 2 PO.Wn/, nous avons ˛.X/D X. En effet, un automorphisme intérieur ˛ de Wn agit par translation
sur l’arbre de Bass–Serre associé à un graphe de groupes marqué X, ce qui implique que ˛ préserve la

Algebraic & Geometric Topology, Volume 24 (2024)



Automorphismes du groupe des automorphismes d’un groupe de Coxeter universel 255

classe d’équivalence de X. De ce fait, l’action de Aut.Wn/ sur PO.Wn/ induit une action de Out.Wn/

sur PO.Wn/.

La définition de l’autre-espace de Wn, noté PA.Wn/, est identique à celle de PO.Wn/ à ceci près que
chaque graphe de groupes métrique considéré est muni d’un point base v. Le marquage est alors un
isomorphisme de groupes � WWn! �1.X; v/. Les homothéties considérées préservent les points bases.
Le groupe Aut.Wn/ agit par précomposition du marquage.

Les ensembles PO.Wn/ et PA.Wn/ sont munis d’une topologie. Pour tout élément ŒX; �� 2 PO.Wn/,
soit .X; �/ un représentant de cette classe d’équivalence tel que la somme des longueurs des arêtes du
graphe X soit égale à 1. Le graphe de groupes .X; �/ définit alors un simplexe ouvert obtenu en faisant
varier les longueurs des arêtes du graphe X, de manière à ce que la somme des longueurs des arêtes
soit toujours égale à 1. Une classe d’équivalence ŒX 0; �0� 2 PO.Wn/ définit une face de codimension 1

du simplexe associé à .X; �/ si l’on peut obtenir .X 0; �0/ à partir de .X; �/ en écrasant une arête de X.
La topologie faible sur PO.Wn/ est alors définie de la manière suivante : un ensemble est ouvert si et
seulement si son intersection avec chaque simplexe ouvert est ouverte.

Nous rappelons à présent la définition d’un rétract par déformation forte Out.Wn/–équivariant de PO.Wn/,
appelé l’épine de l’outre-espace. Rappelons qu’un complexe simplicial C est de drapeaux si, pour tout
entier k, tout ensemble de k sommets deux à deux distincts et deux à deux adjacents de C forme l’ensemble
des sommets d’un simplexe de C de dimension k � 1. L’épine de PO.Wn/ est le complexe simplicial de
drapeaux dont les sommets sont les simplexes ouverts associés à chaque classe d’équivalence ŒX; ��, et
où deux sommets correspondant à des classes d’équivalence de graphes de groupes marqués ŒX; �� et
ŒX 0; �0� sont reliés par une arête si ŒX; �� définit une face du simplexe associé à ŒX 0; �0� ou réciproquement.
L’épine de PA.Wn/ est définie de manière similaire. Il existe un plongement de l’épine de PO.Wn/ dans
PO.Wn/ ayant pour image l’épine barycentrique de PO.Wn/. Par la suite, nous identifierons l’épine de
PO.Wn/ avec son image par ce plongement. De même, il existe un plongement de l’épine de PA.Wn/

dans PA.Wn/ ayant pour image l’épine barycentrique de PA.Wn/.

Si X est un graphe de groupes, on note Autgr.X / le groupe des automorphismes du graphe X. Si X est
un graphe de groupes pointé, la notation Autgr.X / désigne le groupe des automorphismes du graphe
pointé sous-jacent à X. Nous appellerons f0g–étoile la classe d’équivalence dans PO.Wn/ d’un graphe de
groupes marqué dont le graphe sous-jacent est un arbre ayant n feuilles et nC 1 sommets et de longueur
d’arêtes constante. Nous appellerons F–étoile la classe d’équivalence dans PO.Wn/ d’un graphe de
groupes marqué dont le graphe sous-jacent est un arbre ayant n� 1 feuilles et n sommets et de longueur
d’arêtes constante. Les sommets correspondants dans l’épine de PO.Wn/ sont encore appelés f0g–étoiles
et F–étoiles. Dans le cas de PA.Wn/, les définitions des f0g–étoiles et des F–étoiles sont identiques à
ceci près que l’on suppose également que le point base est le centre (l’unique sommet qui n’est pas une
feuille) du graphe.

On fixe désormais une partie génératrice standard fx1; : : : ;xng de Wn.
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Le groupe Aut.Wn/ (et donc Out.Wn/) est de type fini. Nous décrivons maintenant une partie génératrice
finie. Pour tout i 2 f1; : : : ; n� 1g, on note �i WWn!Wn l’automorphisme envoyant xi sur xiC1, xiC1

sur xi et qui fixe tous les autres générateurs. Pour tous les i; j 2 f1; : : : ; ng tels que i ¤ j, on note
�i;j W Wn! Wn l’automorphisme qui envoie xi sur xj xixj et qui fixe tous les autres générateurs. La
proposition suivante est due à Mühlherr (voir également [Fouxe-Rabinovitch 1941; Gilbert 1987]).

Proposition 2.1 [Mühlherr 1997, Theorem B] Le groupe Aut.Wn/ est engendré par �1; : : : ; �n�1 et
par �1;2.

Si ˛ est un élément de Aut.Wn/, sa classe d’automorphismes extérieurs sera notée Œ˛�. Soit p WAut.Wn/!

Out.Wn/ la projection canonique. On note zAn D h�1; : : : ; �n�1i et An D p. zAn/. Les groupes zAn et An

sont isomorphes au groupe symétrique Sn. On note zUnDh�1; : : : ; �n�2; �1;ni et UnDp. zUn/. On voit que
zUn est isomorphe au produit semi-direct Fn�1 ÌSn�1, alors que Un est isomorphe au produit semi-direct
Fn�2 ÌSn�1, où Sn�1 agit dans les deux cas par permutation des facteurs, en considérant Fn�2 comme
le quotient de Fn�1 par le sous-groupe F diagonal. Soient zBn D h�1; : : : ; �n�2i et Bn D p. zBn/. Les
groupes zBn et Bn sont isomorphes à Sn�1.

Nous traitons à présent le cas où nD 3. Soit � WW3!Z=2Z le morphisme envoyant, pour tout i 2 f1; 2; 3g,
l’élément xi sur 1. Mühlherr [1997, Theorem A] a montré que ker.�/ est un sous-groupe caractéristique
de W3. De plus, ker.�/ est un groupe libre à deux générateurs, librement engendré par x1x2 et x2x3.
Ceci induit un morphisme � W Aut.W3/! Aut.F2/, qui est en fait un isomorphisme (cf [Varghese 2021,
Lemma 2.3]).

Proposition 2.2 Le morphisme � W Aut.W3/ ! Aut.F2/ induit un isomorphisme entre Out.W3/ et
PGL.2;Z/.

Démonstration Soient a et b les générateurs de F2. On remarque tout d’abord que Int.F2/� �.Int.W3//.
Donc le noyau du morphisme surjectif Aut.W3/!Out.F2/ est inclus dans Int.W3/. Pour tout i 2f1; 2; 3g,
soit adxi

2Aut.W3/ la conjugaison globale par xi . Un calcul immédiat montre que, pour tout i 2 f1; 2; 3g,
�.adxi

/ est dans la classe d’automorphisme extérieur du morphisme � W F2! F2 envoyant a sur a�1 et b

sur b�1. De ce fait, puisque le sous-groupe hŒ��i est distingué dans Out.F2/, le morphisme � induit un
isomorphisme entre Out.W3/ et Out.F2/=hŒ��i. Comme � est envoyé par le morphisme d’abélianisation
sur �Id 2 GL.2;Z/, on voit que Out.W3/ est isomorphe à PGL.2;Z/.

Nous allons démontrer les théorèmes 1.1 et 1.2 en étudiant les stabilisateurs des f0g–étoiles et des
F–étoiles sous l’action de Out.Wn/ et Aut.Wn/. Pour cela, nous utiliserons les résultats suivants, dus
respectivement à Hensel et Kielak et à Guirardel et Levitt, qui donnent des informations sur les points
fixes de sous-groupes de Out.Wn/.

Proposition 2.3 [Hensel et Kielak 2018, Corollary 6.1] Soient n� 1 un entier et H un sous-groupe fini
de Out.Wn/. Alors H fixe un point de PO.Wn/.
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Corollaire 2.4 Soient n � 1 un entier et H un sous-groupe fini de Aut.Wn/. Alors H fixe un point
de PA.Wn/.

Démonstration Soit p W Aut.Wn/! Out.Wn/ la projection canonique. Alors p.H / est un sous-groupe
fini de Out.Wn/, donc par la proposition 2.3, p.H / fixe un point X de l’outre-espace. Soit X un représentant
de X. Comme tout automorphisme intérieur agit sur X, et que p.H / agit également sur X, on en déduit
que H agit sur X. Étant donné que H est fini et que X est un arbre, on voit que H fixe un point v de X .
Donc la classe d’homothétie du graphe de groupes métrique marqué pointé .X; v/ est fixée par H.

Proposition 2.5 [Guirardel et Levitt 2007a, Theorem 8.3] Soit n� 2 un entier. Si H est un sous-groupe
de type fini de Out.Wn/ (resp. Aut.Wn/) fixant un point de PO.Wn/ (resp. PA.Wn/), alors l’ensemble
des points fixes de H est contractile pour la topologie faible.

On note FixPO.Wn/.G/ l’ensemble des points fixes d’un sous-groupe G de Out.Wn/ dans PO.Wn/ (ou
Fix.G/ s’il n’y a pas d’ambiguïté). On note de plus FixKn

.G/ l’ensemble des points fixes de G contenus
dans l’épine de PO.Wn/. Puisque l’épine de PO.Wn/ est un rétract par déformation forte Out.Wn/–
équivariant de PO.Wn/, nous déduisons de la proposition 2.5 le résultat suivant.

Corollaire 2.6 Soit n� 2 un entier. Si H est un sous-groupe de type fini de Out.Wn/ fixant un point de
l’épine de PO.Wn/, alors l’ensemble Fix.H / des points fixes de H dans l’épine de PO.Wn/ est connexe
pour la topologie faible.

Soit X un point de l’épine de PO.Wn/. On note X un représentant de X et T l’arbre de Bass–Serre associé
à X. Nous définissons à présent un morphisme de groupes

ˆ W StabOut.Wn/.X/! Autgr.X /:

Soient Œ˛�2StabOut.Wn/.X/ et ˛2Aut.Wn/ un représentant de Œ˛�. Il existe un automorphisme zH˛2Aut.T /
tel que ˛.g/ zH˛.x/ D zH˛.gx/ pour tout x 2 T et pour tout g 2 Wn. L’automorphisme zH˛ induit un
automorphisme H˛ 2 Autgr.X /, et l’application ˛ 7!H˛ passe au quotient pour donner un morphisme

ˆ W StabOut.Wn/.X/! Autgr.X /:

Nous pouvons à présent démontrer un résultat identique au corollaire 2.6 dans le cas de PA.Wn/.

Corollaire 2.7 Soit n� 2 un entier. Si H est un sous-groupe fini de Aut.Wn/ fixant un point de l’épine
de PA.Wn/, alors l’ensemble Fix.H / des points fixes de H dans l’épine de PA.Wn/ est connexe pour la
topologie faible.

Démonstration Soient X et Y deux points de l’épine de PA.Wn/ fixés par H. Soit p1 W PA.Wn/!

PO.Wn/ le morphisme canonique d’oubli du point base. On rappelle que p W Aut.Wn/! Out.Wn/ est
la projection canonique. Alors p.H / fixe p1.X/ et p1.Y/, donc par le corollaire 2.6 il existe dans
FixKn

.p.H // un chemin continu P de p1.X/ vers p1.Y/. Soient X1; : : : ;Xn les sommets de Kn consé-
cutifs dans P (on suppose p1.X/DX1 et XnD p1.Y/) tels que, pour tout i 2 f1; : : : ; n�1g, Xi et XiC1
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sont reliés par une arête dans Kn. Soit X1 un représentant de X1 et pour tout i 2 f2; : : : ; ng, soit Xi un
représentant de Xi obtenu en écrasant ou en éclatant une forêt de Xi�1. Pour tout i 2 f1; : : : ; ng, comme
tout automorphisme intérieur agit trivialement sur Xi , et puisque p.H / agit également sur Xi , on en
déduit que H agit sur Xi . De plus, étant donné que H est fini et que le graphe Xi est un arbre, on voit
que H fixe un point vi de Xi . Pour tout i , soit zXi la classe d’équivalence du graphe métrique marqué
pointé .Xi ; vi/ (on suppose que zX1 D X et zXn D Y). Alors zXi est fixé par H.

Nous construisons à présent pour tout i 2 f1; : : : ; n� 1g un chemin continu inclus dans l’ensemble des
points fixes de H dans l’épine de PA.Wn/ entre zXi et zXiC1, ce qui conclura. La construction étant
symétrique, nous pouvons supposer, quitte à changer les représentants Xi et XiC1, que XiC1 est obtenu
à partir de Xi en écrasant une forêt F. Soient � le simplexe ouvert dans PA.Wn/ associé à .Xi ; vi/ et
e l’arête de l’épine barycentrique de PA.Wn/ reliant zXi et zXiC1. Pour toute arête f de F, soit f̀ la
longueur de f. Pour tout t 2 Œ0; 1�, soient X t

i le graphe de groupes métrique obtenu à partir de Xi en
donnant à toute arête f 2 F la longueur .1� t/ f̀ , et prt WXi !X t

i la projection canonique. On observe
que X 0

i DXi et que X 1
i DXiC1.

Puisque H stabilise Xi et XiC1, on voit que H stabilise la forêt F. Donc, pour tout t 2 Œ0; 1�, le groupe H

stabilise X t
i . Puisque H fixe le sommet vi de Xi , il fixe également, pour tout t 2 Œ0; 1�, le sommet

prt .xi/. Ceci induit un chemin continu de zXi vers la classe d’équivalence dans Kn de .XiC1; pr1.vi//. Si
pr1.vi/¤ viC1, alors, puisque le graphe XiC1 est un arbre, H fixe l’unique arc dans XiC1 reliant pr1.vi/

et viC1. Ceci induit alors un chemin continu contenu dans l’ensemble des points fixes de H dans l’épine
de PA.Wn/ entre la classe d’équivalence dans Kn de .XiC1; pr1.vi// et zXiC1, ce qui conclut.

Soient X un point de l’épine de PO.Wn/ et X un représentant de X. On noteˆ WStabOut.Wn/.X/!Autgr.X /

le morphisme naturel. Donnons maintenant une description de ker.ˆ/. Soit ŒX; �� un point de l’épine
de PO.Wn/. On note .X; �/ un représentant de ŒX; ��. Soit e une arête de X reliant le sommet v D o.e/

au sommet w D t.e/. Soit z 2Gv un élément du groupe associé au sommet v, et Nz son antécédent par �.
Nous définissons à présent le twist par z autour de e. Soit Gu le groupe associé à un sommet u. Le twist
par z autour de e, noté Dz , est l’automorphisme de Wn, bien défini modulo conjugaison, qui est égal à
l’identité sur ��1.Gu/ si u est dans la même composante connexe de X privé de l’intérieur de e que v, et
qui à x 2 ��1.Gu/ associe Nzx Nz�1 si u n’est pas dans la même composante connexe que v. Nous avons le
résultat suivant, dû à Levitt.

Proposition 2.8 [Levitt 2005, Propositions 2.2 and 3.1] Soit n � 2 un entier. Soient X un point de
l’épine de l’outre-espace PO.Wn/ et X un représentant de X. Soient v1; : : : ; vn les sommets du graphe
X de groupe associé isomorphe à F et soit ni le degré de vi pour i D 1; : : : ; n. Le noyau du morphisme
ˆ W StabOut.Wn/.X/! Autgr.X / (noté Out0.Wn/ dans [Levitt 2005]) est isomorphe à

Qn
iD1 Fni�1, et

il est engendré par les twists autour des arêtes dont l’origine appartient à fv1; : : : ; vng et n’est pas une
feuille.
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Remarque 2.9 Dans le cas où X 2 PA.Wn/, le noyau est engendré par les twists autour des arêtes e

dont l’origine o.e/ appartient à fv1; : : : ; vng et n’est pas une feuille, et telles que, si o.e/ est distinct du
point base v�, ces arêtes ne soient pas contenues dans l’unique chemin reliant o.e/ à v�. En particulier, si
le groupe associé à v� est trivial et si ni est le degré de vi pour i D 1; : : : ; n, alors le noyau est isomorphe
à
Qn

iD1 Fni�1. Si le groupe associé à v� est non trivial, et si on suppose v� D vn, alors le noyau est
isomorphe à

�Qn�1
iD1 Fni�1

�
�Fnn .

3 Stabilisateurs des f0g–étoiles et des F –étoiles

Dans cette section nous donnons une caractérisation des stabilisateurs de f0g–étoiles et de F–étoiles. Nous
présentons les démonstrations dans le cas de Out.Wn/, les différences avec Aut.Wn/ étant présentées
dans des remarques suivant les démonstrations pour Out.Wn/.

3.1 Stabilisateurs des f0g–étoiles

Nous étudions tout d’abord les stabilisateurs des f0g–étoiles. Nous démontrons dans cette section la
proposition suivante.

Proposition 3.1 Soient n� 5 un entier et G un sous-groupe de Out.Wn/ isomorphe à Sn. Alors G est
le stabilisateur dans l’épine de PO.Wn/ d’une unique f0g–étoile.

Afin de démontrer la proposition 3.1, nous avons besoin d’une étude des stabilisateurs de sommets de
l’épine de PO.Wn/ dont les graphes sous-jacents possèdent exactement n feuilles.

Lemme 3.2 Soit n � 4 un entier. Soient G un sous-groupe fini de Out.Wn/ isomorphe à Sn, et X un
point de l’épine de PO.Wn/ fixé par G. On note X un représentant de X. Si le nombre de feuilles de X

est n, alors X est une f0g–étoile.

Démonstration Soit v un sommet de X qui n’est pas une feuille et qui soit à distance maximale du
centre 1 de X.

Affirmation Si mD deg.v/, alors v est adjacent à au moins m� 1 feuilles de X.

Démonstration L’hypothèse de maximalité sur v implique qu’il y a au plus un sommet adjacent à v qui
n’est pas une feuille, car sinon nous pourrions trouver un sommet w adjacent à v qui ne serait pas une
feuille et qui serait à distance strictement plus grande du centre que v. G

Maintenant, le groupe associé à v est trivial car X possède exactement n sommets de groupes associés
non triviaux, et ces sommets sont tous des feuilles car X possède n feuilles. De ce fait, deg.v/� 3 et v
est adjacent à au moins deux feuilles, notées v1 et v2.

1Rappelons que le centre d’un arbre métrique compact non vide est l’unique milieu d’un segment de longueur maximale.
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Soient L l’ensemble des feuilles de X et w une feuille de X distincte de v1 et v2. Puisque les seuls
sommets de X dont les groupes associés sont non triviaux sont des feuilles, la proposition 2.8 montre que
le morphisme naturel G!Autgr.X / est injectif. Ainsi, étant donné que le groupe G est isomorphe à Sn,
et que X possède n feuilles, le morphisme naturel Autgr.X / ,! Bij.L/ est un isomorphisme. Il existe
donc un automorphisme de X envoyant v1 sur w et fixant v2. De ce fait, w est adjacent à v. Ainsi, v est
adjacent à toutes les feuilles de X. Puisque le groupe Autgr.X / est isomorphe à Bij.L/, toutes les arêtes
de X ont même longueur. On conclut que X est une f0g–étoile.

Remarque 3.3 Le résultat est identique dans le cas de PA.Wn/. En effet, soit G un sous-groupe fini de
Aut.Wn/ isomorphe à Sn, et X un point de l’épine de PA.Wn/ fixé par G. On note X un représentant
de X. Supposons que X possède n feuilles. Alors la remarque 2.9 donne que le noyau du morphisme
G! Autgr.X / est un sous-groupe distingué de G d’ordre au plus 2. Comme G est isomorphe à Sn et
que n � 4, le morphisme est injectif. La même démonstration que le lemme 3.2 montre alors que X

possède n feuilles et nC 1 sommets. Il reste à montrer que le point base est le centre de X. Mais ceci
provient du fait que le groupe G est isomorphe à Autgr.X / qui lui-même est isomorphe à Bij.L/. Ainsi,
nécessairement, le point base est le centre de X. Donc X est une f0g–étoile.

Démonstration de la proposition 3.1 Puisque G est fini, d’après la proposition 2.3, il existe un point X

de l’épine de l’outre-espace qui est fixé par G. Soit X un représentant de X. D’après la proposition 2.8, il
existe un entier k tel que le noyau de l’application naturelle G! Autgr.X / soit isomorphe à Fk \G.

Or Fk\G est un 2–sous-groupe distingué de G'Sn. Donc, comme n� 5, un tel sous-groupe est trivial.
De ce fait, G s’injecte dans Autgr.X /. Or tout automorphisme d’un arbre est entièrement déterminé par
la permutation qu’il induit sur l’ensemble des feuilles. Ainsi, si L est l’ensemble des feuilles de X,

G ,! Autgr.X / ,! Bij.L/:

Or, les représentants des éléments de PO.Wn/ possèdent au plus n sommets de groupes non triviaux et
toutes les feuilles possèdent des groupes associés non triviaux. Donc jLj � n. Donc, comme G s’injecte
dans Bij.L/ et que G est isomorphe à Sn, on voit que G est isomorphe à Autgr.X / et que Autgr.X / est
isomorphe à Bij.L/. De ce fait, X possède n feuilles. Par le lemme 3.2, X est une f0g–étoile.

Montrons maintenant l’unicité. Puisque l’ensemble des f0g–étoiles est discret dans l’épine de PO.Wn/,
par le corollaire 2.6, on conclut que G fixe une unique f0g–étoile dans l’épine de PO.Wn/.

Remarque 3.4 Dans le cas de PA.Wn/, le résultat de la proposition 3.1 est vrai pour n� 4. En effet,
dans le cas où n� 5, la démonstration est identique à celle de la proposition 3.1 en utilisant cette fois la
remarque 3.3.

Dans le cas où nD 4, soit X 2 PA.W4/ un point fixé par un sous-groupe G de Aut.Wn/ isomorphe à Sn.
On note X un représentant de X et v� le point base de X. Soit H le noyau du morphisme G!Autgr.X /.
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Supposons par l’absurde que H ne soit pas trivial. Alors, par la remarque 2.9, le groupe H est un 2–groupe.
Comme le seul 2–sous-groupe distingué de S4 est le groupe de Klein, le groupe H est isomorphe à F2.
Nous distinguons différents cas, selon le fait que le groupe associé à v� soit trivial ou non et selon le
nombre de sommets qui ne sont pas des feuilles et qui ont un groupe associé non trivial. On remarque
immédiatement que, puisque tout arbre possède au moins deux feuilles, le nombre de sommets qui ne
sont pas des feuilles et de groupes associés non triviaux est au plus 2.

Supposons que X contienne deux sommets qui ne soient pas des feuilles et dont les groupes associés
sont isomorphes à F et que le groupe associé à v� soit trivial.

L’hypothèse sur v� implique que deg.v�/� 3. Comme chaque composante connexe de X �fv�g contient
au moins une feuille, X contiendrait cinq sommets de groupes associés non triviaux. Ceci contredit le fait
qu’il y a exactement quatre sommets dans le graphe de groupes associés non triviaux.

Supposons que X contienne deux sommets qui ne sont pas des feuilles et dont les groupes associés sont
isomorphes à F et que le groupe associé à v� ne soit pas trivial.

Alors la description du noyau du morphisme G! Autgr.X / donné dans la remarque 2.9 donne que le
cardinal du noyau est au moins 8, ce qui contredit le fait que H est de cardinal 4.

Supposons que X contienne un seul sommet, noté w, de groupe associé non trivial et qui ne soit pas une
feuille et que le groupe associé à v� soit trivial. Alors deg.v�/� 3. Comme chaque composante connexe
de X �fv�g contient au moins une feuille, et qu’il existe un sommet de groupe associé non trivial et qui
ne soit pas une feuille, deg.v�/D 3. De plus, puisqu’il y a exactement quatre sommets dans le graphe de
groupes associés non triviaux, chaque composante connexe de X �fv�g contient exactement une feuille.
Donc v� est relié à exactement deux feuilles et w est relié à une seule feuille et à v�. Or le cardinal du
groupe des automorphismes d’un tel graphe est égal à 2. Comme le noyau du morphisme G! Autgr.X /

est de cardinal 4, ceci contredit le fait que G est isomorphe à S4.

Supposons que X contienne un seul sommet, noté w, de groupe associé non trivial et qui ne soit pas une
feuille. Si v� est une feuille, alors le graphe possède exactement trois feuilles, dont l’une est le point
base. De ce fait, comme tout automorphisme de X est induit par son action sur les feuilles, le groupe des
automorphismes d’un tel graphe pointé est de cardinal 2. Comme le noyau du morphisme G!Autgr.X /

est de cardinal 4, ceci contredit le fait que G est isomorphe à S4.

Supposons alors que le point base v� ne soit pas une feuille. Par les cas précédents, v� D w. Comme le
nombre de sommets de groupe associé non trivial est exactement 4, et que tout sommet de groupe associé
trivial est de degré au moins 3, le graphe X contient au plus un sommet de groupe associé trivial. Le cas
où le nombre de sommets de groupe associé trivial est égal à 1 n’est pas possible car alors le cardinal du
groupe des automorphismes d’un tel graphe est égal à 2, contredisant le fait que le noyau du morphisme
G! Autgr.X / est de cardinal 4 et que G est isomorphe à S4.
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Dans le cas où le nombre de sommets de groupe associé trivial est nul, on voit que X est une F–étoile.
Or, par la remarque 2.9, le cardinal du noyau du morphisme G ! Autgr.X / est égal à 8, d’où une
contradiction.

En conclusion, le morphisme G!Autgr.X / est également injectif dans le cas où X appartient à PA.W4/

et nD 4. La suite de la démonstration est alors identique à la proposition 3.1.

Remarque 3.5 La proposition 3.1 reste vraie si l’on remplace F par un groupe fini, dès lors que le
groupe des automorphismes de ce groupe fini ne contient pas de sous-groupe isomorphe au groupe alterné.

3.2 Stabilisateurs des F –étoiles

Nous démontrons à présent une caractérisation des stabilisateurs de F–étoiles.

Proposition 3.6 Soit n� 5. Soit G un sous-groupe de Out.Wn/ isomorphe à Fn�2 ÌSn�1. Alors G est
le stabilisateur d’une unique F–étoile.

Le démonstration de la proposition 3.6 passe par l’étude des sous-groupes d’ordre maximaux de Out.Wn/.
Pour cela, nous avons besoin du lemme suivant.

Lemme 3.7 Soient n� 4 un entier et X un point de l’épine de PO.Wn/. On note X un représentant de X.
Soit k l’entier tel que le noyau du morphisme naturel

StabOut.Wn/.X/! Autgr.X /

soit isomorphe à Fk . Alors k � n� 2. Par ailleurs , k D n� 2 si et seulement si l’ensemble V X des
sommets de X est de cardinal n.

Démonstration Supposons que jV X j> n. Soient v un sommet de groupe associé trivial et e une arête
de X reliant v à un sommet w. Une telle arête existe car X est connexe et le nombre de sommets de X

de groupe non trivial est égal à n.

Affirmation Soient Y le graphe de groupes marqué obtenu à partir de X en contractant l’arête e et Y sa
classe d’équivalence dans l’épine de PO.Wn/. Alors le noyau du morphisme naturel StabOut.Wn/.Y/!

Autgr.Y / est isomorphe à F l , avec l D k si le groupe associé à w est trivial , et l � kC 1 sinon.

Démonstration Si le groupe associé à w est trivial, alors contracter l’arête e ne modifie pas le degré des
sommets dont le groupe associé est non trivial. Donc, dans ce cas, k D l . Supposons maintenant que le
groupe associé à w ne soit pas trivial. Notons vw le sommet obtenu en contractant e. Le groupe associé à
vw est non trivial. Alors, puisque, par hypothèse, deg.v/� 3, nous avons

deg.vw/D deg.v/C deg.w/� 2� deg.w/C 1:

Ainsi, dans ce cas, l � kC 1. G
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De ce fait, si jV X j> n, il existe une arête reliant un sommet de groupe associé trivial et un sommet de
groupe associé non trivial. Par l’affirmation précédente, l’entier k associé au morphisme StabOut.Wn/.X/!

Autgr.X / n’est pas maximal.

Ainsi, pour calculer la borne maximale de k, nous pouvons supposer que X possède n sommets, tous de
groupe associé non trivial. Donc, X

v2V X

deg.v/D 2jEX j D 2n� 2;

la dernière égalité provenant du fait que X soit un arbre. Ainsi,

k D
X
v2V X

.deg.v/� 1/D
X
v2V X

deg.v/� nD 2n� 2� nD n� 2:

Donc, k � n� 2, et si jV X j D n, alors k D n� 2.

Supposons maintenant que k D n� 2. Par l’affirmation précédente, la procédure de contraction présentée
fait croître strictement k lorsque l’on contracte une arête reliant un sommet de groupe associé trivial et un
sommet de groupe associé non trivial. Donc X ne peut pas contenir de sommets ayant un groupe associé
trivial. On conclut que le cardinal de V X est égal à n.

Remarque 3.8 Dans le cas de PA.Wn/, soit X un point de l’épine de PA.Wn/. On note X un représentant
de X. Soit k l’entier tel que le noyau du morphisme naturel StabAut.Wn/.X/! Autgr.X / soit isomorphe
à Fk . Alors une démonstration identique au lemme 3.7 montre que k � n�1 avec égalité si et seulement
si jV X j D n.

Nous pouvons maintenant montrer le résultat suivant concernant les stabilisateurs de F–étoiles dans
Out.Wn/.

Proposition 3.9 (1) Soit n� 4 un entier. Le cardinal maximal d’un sous-groupe fini de Out.Wn/ est
2n�2.n� 1/!.

(2) Supposons n� 5. Soient G un sous-groupe de Out.Wn/, et X un point de l’épine de PO.Wn/ fixé
par G. On note X un représentant de X. Si X possède n feuilles , alors jGj< 2n�2.n� 1/!.

(3) Supposons n� 4. Soient G un sous-groupe de Out.Wn/ isomorphe à Fn�2 ÌSn�1 et X un point
de l’épine de PO.Wn/ fixé par G. On note X un représentant de X. Si le nombre de feuilles de X

est n� 1, alors X est une F–étoile.

Démonstration Si X est un élément de l’épine de PO.Wn/, nous noterons X un représentant de X. Nous
noterons également L l’ensemble des feuilles de X. Puisque X est un arbre, tout automorphisme de X

est entièrement déterminé par son action sur les feuilles. Donc le morphisme de restriction de Autgr.X /

dans Bij.L/ est injectif.
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Montrons l’assertion .1/. Puisque tout sous-groupe fini de Out.Wn/ fixe un point de l’épine de PO.Wn/ par
la proposition 2.3, il suffit de montrer que, pour X un point de l’épine de l’outre-espace, jStabOut.Wn/.X/j�

2n�2.n� 1/!. D’après la proposition 2.8, il existe un entier k tel que le noyau du morphisme naturel
StabOut.Wn/.X/! Autgr.X / soit isomorphe à Fk . De ce fait, jStabOut.Wn/.X/j � 2k jAutgr.X /j.

Nous distinguons deux cas, selon le cardinal de L.

� Supposons que jLj � n�1. Alors Autgr.X /, qui s’injecte dans Bij.L/, s’injecte dans Sn�1. Ainsi,

jStabOut.Wn/.X/j � 2k
jAutgr.X /j � 2k.n� 1/!� 2n�2.n� 1/!;

où la dernière inégalité découle du lemme 3.7.

� Supposons que jLj D n. Alors tous les sommets ayant des groupes associés non triviaux sont des
feuilles. Ainsi, k D 0 par la proposition 2.8. Puisque Bij.L/ est isomorphe à Sn, nous avons

jStabOut.Wn/.X/j � jAutgr.X /j � n!:

Or puisque n� 4, nous avons n� 2n�2, donc n!� 2n�2.n� 1/!, ce qui conclut.

Donc, pour tout sous-groupe fini G de Out.Wn/, l’ordre de G est au plus 2n�2.n� 1/!. Cette borne est
atteinte par le groupe UnDhŒ�1�; : : : ; Œ�n�2�; Œ�1;n�i, qui est isomorphe au produit semi-direct Fn�2ÌSn�1.

Soient n � 5 et G, X et X comme dans l’énoncé de l’assertion .2/. Par la proposition 2.8, il existe
un entier k tel que le noyau du morphisme naturel G ! Autgr.X / soit isomorphe à Fk \G. Puisque
X possède n feuilles, par la proposition 2.8, l’entier k est nul. De ce fait, le groupe G s’injecte dans
Autgr.X /, qui s’injecte dans Bij.L/. Donc jGj � n!. Or 2n�2.n� 1/! � n! implique que n � 4. D’où
jGj< 2n�2.n� 1/!.

Soient n � 4 et G, X et X comme dans l’énoncé de .3/. Comme G est de cardinal maximal parmi les
sous-groupes finis de Out.Wn/, nous avons G D StabOut.Wn/.X/. Donc, par la proposition 2.8, il existe
un entier k tel que le noyau du morphisme naturel G! Autgr.X / soit isomorphe à Fk . Ainsi, puisque
Autgr.X / s’injecte dans Bij.L/ et que ce dernier est isomorphe à Sn�1, on voit que jGj � 2k.n� 1/!.
Comme k � n� 2 par le lemme 3.7, et puisque jGj D 2n�2.n� 1/!, on a nécessairement k D n� 2. Le
lemme 3.7 donne alors que X possède exactement n sommets. De ce fait, X possède n� 1 feuilles et n

sommets. Par ailleurs, on voit également que Autgr.X / est isomorphe à Bij.L/. Ainsi, toutes les arêtes
de X ont la même longueur. Donc X est une F–étoile.

Démonstration de la proposition 3.6 Supposons que n� 5 et que G soit un sous-groupe de Out.Wn/

isomorphe à Fn�2 Ì Sn�1. Par la proposition 2.3, le groupe G fixe un point X de l’épine de l’outre-
espace. Comme G est de cardinal maximal parmi les sous-groupes finis de Out.Wn/, nous avons G D

StabOut.Wn/.X/. Donc, par la proposition 2.8, il existe un entier k tel que le noyau du morphisme naturel
G! Autgr.X / soit isomorphe à Fk .
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Affirmation L’arbre X possède exactement n� 1 feuilles.

Démonstration L’assertion .2/ de la proposition 3.9 dit que X possède au plus n� 1 feuilles. Nous
avons

jGj D 2n�2.n� 1/!� 2k
jAutgr.X /j � 2n�2

jAutgr.X /j

où la dernière égalité provient du lemme 3.7. Donc jAutgr.X /j � .n� 1/!. Ainsi, puisque X possède
au plus n� 1 feuilles, le groupe Bij.L/ dans lequel s’injecte Autgr.X / est isomorphe à Sn�1. Donc le
cardinal de L est n� 1. G

De ce fait, X possède n� 1 feuilles. Par l’assertion .3/ de la proposition 3.9, X est une F–étoile dans
l’épine de PO.Wn/. Par le corollaire 2.6, l’ensemble des points fixes de G est connexe. Puisque l’ensemble
des F–étoiles est discret dans l’épine de PO.Wn/, on conclut que G fixe une unique F–étoile dans l’épine
de PO.Wn/.

Remarque 3.10 Dans le cas de Aut.Wn/, soient G un sous groupe fini de Aut.Wn/ et X un point de
l’épine de PA.Wn/ fixé par G. On note X un représentant de X.

.1/ Si n� 4, le cardinal de G est plus petit que 2n�1.n� 1/!.

La démonstration pour le cas où le nombre de feuilles de X est plus petit que n�1 est identique à celle de
la proposition 3.9(1) en utilisant cette fois la remarque 3.8. Dans le cas où le nombre de feuilles est égal
à n, le noyau du morphisme naturel G! Autgr.X / est de cardinal plus petit que 2 par la remarque 2.9,
donc jGj � 2n!� 2n�1.n� 1/! car n� 4.

.2/ Si n� 5 et si X possède n feuilles , alors jGj< 2n�1.n� 1/!.

En effet, par la remarque 2.9, le cardinal du noyau du morphisme G! Autgr.X / est plus petit que 2,
donc jGj � 2n!< 2n�1.n� 1/! car n� 5.

.3/ Si n� 4, si G est isomorphe à Fn�1 ÌSn�1 et si X possède au plus n� 1 feuilles , alors X est une
F–étoile.

En effet, une démonstration identique à celle de la proposition 3.9(3) montre que X possède n�1 feuilles
et n sommets. Montrons alors que le point base est le centre de X. Ceci découle du fait que le groupe des
automorphismes de X est isomorphe à Sn�1, car le noyau du morphisme G! Autgr.X / est isomorphe
à Fn�1 et que G est isomorphe à Fn�1 ÌSn�1.

.4/ Si n� 4 et si G est isomorphe à Fn�1 ÌSn�1, tout point de l’épine de PA.Wn/ fixé par G est une
F–étoile.

En effet, l’existence d’une F–étoile fixée par G lorsque n� 5 se déduit des faits précédents.

Dans le cas où nD 4, soit X un point de l’épine de l’outre-espace fixé par G, et soit X un représentant
de X. On note L l’ensemble des feuilles de X. Si X possède au plus n� 1 feuilles, alors, par le fait
précédent, X est une F–étoile. Supposons que X possède exactement n feuilles. Alors la remarque 2.9
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montre que le noyau du morphisme naturel G! Autgr.X / est de cardinal au plus 2. Il ne peut pas être
injectif, car le cardinal de G est égal à 48 alors que le groupe Autgr.X / s’injecte dans Bij.L/ de cardinal
égal à 24. Donc le noyau du morphisme G!Autgr.X / est de cardinal égal à 2. Ainsi, le point base de X

est une feuille. Or, puisque Autgr.X / s’injecte dans Bij.L/ et que l’image du morphisme G! Autgr.X /

est de cardinal égal à 24, on voit que Autgr.X / est isomorphe à Bij.L/. Ceci contredit le fait que le point
base de X est une feuille. En conclusion, X possède au plus n� 1 feuilles. Donc X est une F–étoile. La
démonstration de l’unicité de la F–étoile fixée par G est alors identique à celle de la démonstration de la
proposition 3.9(4).

Remarque 3.11 La proposition 3.6 reste vraie si l’on remplace F par un groupe cyclique fini.

3.3 Intersection des stabilisateurs d’une f0g–étoile et d’une F –étoile

Nous étudions dans cette section l’intersection d’un stabilisateur d’une f0g–étoile et d’un stabilisateur
d’une F–étoile. Le résultat central de cette section (proposition 3.13) montre que l’intersection des
stabilisateurs d’une f0g–étoile et d’une F–étoile fixe une unique classe d’équivalence de f0g–étoiles et
une unique classe d’équivalence de F–étoiles.

Lemme 3.12 Soit n un entier.

(1) Supposons que n� 5. Soit G un sous-groupe de Sn isomorphe à Sn�1. Il existe un automorphisme
de Sn envoyant G sur ff 2 Bij.f1; : : : ; ng/ W f .n/D ng.

(2) Si n� 4 et n¤ 6 et si G est un sous-groupe de Bij.f1; : : : ; ng/ isomorphe à Sn�1, alors il existe
un entier i 2 f1; : : : ; ng tel que G D ff 2 Bij.f1; : : : ; ng/ W f .i/D ig.

Démonstration (1) L’action de Sn sur Sn=G par multiplication à gauche est un morphisme de
groupes � WSn! Bij.Sn=G/. Le noyau de ce morphisme est un sous-groupe distingué de Sn inclus
dans G. Or, G est d’indice n. Donc, étant donné que n� 5, le noyau de ce morphisme est trivial. Donc,
puisque les groupes Sn et Bij.Sn=G/ ont même cardinal fini, le morphisme � est un isomorphisme.
Soit z WSn=G! f1; : : : ; ng une bijection envoyant fGg sur n, et  W Bij.Sn=G/!Sn l’isomorphisme
induit par z . Alors  ı� est un automorphisme de Sn envoyant G sur le sous-groupe de Sn fixant n.

(2) Nous commençons par traiter le cas où nD 4. Il découle d’une inspection des sous-groupes de S4

isomorphes à S3. En effet, S4 possède exactement quatre sous-groupes isomorphes à S3. Donc, il existe
un entier i 2 f1; 2; 3; 4g tel que G D ff 2 Bij.f1; : : : ; ng/ W f .i/D ig.

Supposons maintenant que n� 5 et que n¤ 6. Par le premier point du lemme, il existe un automorphisme
� de Sn envoyant G sur ff 2 Bij.f1; : : : ; ng/ W f .n/D ng. Or, si n¤ 6, tout automorphisme de Sn est
intérieur. Comme les automorphismes intérieurs préservent le fait d’être le stabilisateur d’un entier, il
existe un entier i 2 f1; : : : ; ng tel que G D ff 2 Bij.f1; : : : ; ng/ W f .i/D ig.
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Étudions les points fixes du groupe Bn dans l’épine de l’outre-espace de Wn.

Proposition 3.13 Soient n� 4 et Bn D hŒ�1�; : : : ; Œ�n�2�i.

(1) Les seuls sommets fixés par Bn dans l’épine de l’outre-espace de Wn sont des f0g–étoiles et des
F–étoiles.

(2) Le groupe Bn fixe une unique F–étoile et une unique f0g–étoile.

Remarque La proposition 3.13 diffère des propositions 3.1 et 3.6 car elle porte uniquement sur un
sous-groupe particulier de Out.Wn/. Nous ne savons pas si le résultat reste vrai pour un sous-groupe
de Out.Wn/ isomorphe à Sn�1 quelconque.

Démonstration (1) Soient X un sommet de l’épine de PO.Wn/ fixé par Bn et X un représentant de X.
Soient L l’ensemble des feuilles de X et v1; : : : ; vn les sommets de X dont les groupes associés sont non
triviaux. Par la proposition 2.8, il existe un entier k tel que le noyau du morphisme naturel Bn!Autgr.X /

soit isomorphe à Fk \Bn. Or, ce noyau est un sous-groupe de Fk , et ce dernier est engendré par des
twists. Pour tout i 2 f1; : : : ; ng, soit yi l’antécédent par le marquage de X du générateur du groupe
associé à vi . Les compositions de twists contenues dans Fk \Bn préservent la classe de conjugaison
dans Wn de yi alors que les permutations du groupe engendré par fŒ�1�; : : : ; Œ�n�2�g ne préservent pas ces
dernières. De ce fait, nous avons Fk \Bn D f1g.

Le groupe Autgr.X / s’injecte dans Bij.L/. Par ailleurs, étant donné que le morphisme � WBn!Autgr.X /

est injectif, et que Bn est isomorphe à Sn�1, nous avons jLj � n� 1. De plus, chaque feuille ayant un
groupe associé non trivial, nous avons jLj � n. Donc jLj 2 fn� 1; ng. Examinons les deux cas possibles.

Si jLj D n� 1, alors Autgr.X / est isomorphe à Bij.L/. Montrons que X est une F–étoile. Soit v un
sommet qui n’est pas une feuille à distance maximale du centre de X. L’hypothèse de maximalité sur v
implique qu’il y a au plus un sommet adjacent à v qui n’est pas une feuille, car sinon nous pourrions
trouver un sommet w adjacent à v qui ne serait pas une feuille et qui serait à distance strictement plus
grande du centre que v. De ce fait, v est adjacent à au moins deg.v/� 1 feuilles.

Si le groupe associé à v est non trivial, alors v est fixé par Bn car c’est le seul sommet de X qui soit de
groupe associé non trivial et qui ne soit pas une feuille. Donc, puisque Bn est isomorphe à Autgr.X /,
le sommet v est fixé par Autgr.X /. Enfin, puisque tout élément de Bij.L/ est induit par un élément
de Autgr.X /, le sommet v est adjacent à toutes les feuilles et X est une F–étoile.

Si v est un sommet de groupe trivial, alors, par hypothèse, deg.v/ � 3. De ce fait, v est adjacent à au
moins deux feuilles, notées v1 et v2. Soit w une feuille de X distincte de v1 et v2. Puisqu’il existe un
automorphisme de X envoyant v1 sur w et fixant v2, alors w est nécessairement adjacent à v. Donc v est
adjacent à toutes les feuilles. Ceci n’est pas possible, car alors X contiendrait uniquement n� 1 sommets
de groupe associé non trivial. Donc v est nécessairement un sommet de groupe associé non trivial et X

est une F–étoile.
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Supposons que jLj D n. Montrons alors que X est une f0g–étoile. Le groupe Autgr.X / s’injecte dans
Bij.L/ qui est isomorphe à Sn. Par ailleurs, puisque Bn s’injecte dans Autgr.X /, l’image de Autgr.X /

dans Bij.L/ contient un sous-groupe de Bij.L/ isomorphe à Sn�1.

Soit H l’image de Bn dans Autgr.X /. Par le lemme 3.12(2), si n¤ 6, il existe une feuille v1 de X telle
que l’image de H dans Bij.L/ soit égale à StabBij.L/.v1/. Soit v le sommet adjacent à v1. Puisque v
n’est pas une feuille, deg.v/� 3. Ou bien v est adjacent à une autre feuille distincte de v1, ou bien v est
adjacent à une unique feuille.

Si v est adjacent à une unique feuille, il existe dans X des feuilles de L� fv1g à distance au moins 4.
Soient w1 et w2 deux telles feuilles distinctes de v1, telles que w1 soit à distance maximale du centre et
que w2 soit une feuille distincte de v1 à distance maximale de w1. Puisque la valence de tout sommet
de groupe associé trivial est au moins 3, il existe une feuille w3 à distance 2 de w2. Or l’image de H

dans Bij.L/ est égale à StabBij.L/.v1/. Il existe donc un automorphisme de X fixant w3 et envoyant w2

sur w1, ce qui n’est pas possible par hypothèse sur w1 et w2.

Donc v est adjacent à une feuille distincte de v1, que l’on note v2. Soit w une feuille de X distincte de
v1 et v2. Étant donne qu’il existe un automorphisme de X envoyant v2 sur w et fixant v1, le sommet w
est à distance 2 de v2. En particulier, X est une f0g–étoile.

Traitons maintenant le cas où nD 6. On numérote de 1 à 6 les feuilles. Une construction explicite d’un
représentant de l’unique automorphisme extérieur non trivial de S6 (voir par exemple [Miller 1958])
donne que l’unique (à conjugaison près) sous-groupe de Bij.L/ isomorphe à S5 et qui ne soit pas un
stabilisateur de feuille est le groupe

H D h.1 2/.3 4/.5 6/; .1 6/.2 4/.3 5/; .1 4/.2 3/.5 6/; .1 6/.2 5/.3 4/i:

Supposons alors que H soit inclus dans l’image de Autgr.X / dans Bij.L/. Le groupe H agit transitivement
sur les feuilles de X. De ce fait, tous les sommets reliés à des feuilles sont adjacents à un même nombre k

de feuilles. Les seules valeurs possibles pour k sont k 2 f1; 2; 3; 6g. Le cas où k D 1 n’est pas possible car
tout sommet qui n’est pas une feuille est de degré au moins 3 (tous les sommets dont les groupes associés
sont non triviaux sont des feuilles). De plus, k ¤ 3 car le groupe des automorphismes d’un tel graphe
ne pourrait contenir simultanément les permutations .1 2/.3 4/.5 6/, .1 6/.2 4/.3 5/ et .1 4/.2 3/.5 6/.
Enfin, k ¤ 2 car alors X posséderait trois sommets adjacents à deux feuilles. Cependant le groupe des
automorphismes d’un tel graphe ne pourrait contenir simultanément les permutations .1 2/.3 4/.5 6/,
.1 6/.2 4/.3 5/ et .1 6/.2 5/.3 4/. Donc k D 6 et X est une f0g–étoile.

Ainsi, Bn fixe uniquement des f0g–étoiles et des F–étoiles.

(2) Montrons maintenant que Bn fixe une unique F–étoile. Soit X le graphe de groupes marqué pour
lequel X possède n sommets, notés v1; : : : ; vn, dont les feuilles sont v1; : : : ; vn�1, et tel que pour tout
i 2 f1; : : : ; ng, l’image réciproque par le marquage du générateur du groupe associé à vi soit xi . Soit X la
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classe d’équivalence de X. Alors X est une F–étoile et le stabilisateur de X est Un. Puisque Bn � Un,
ceci montre l’existence.

Montrons maintenant l’unicité. Soit Y une autre F–étoile fixée par Bn. On note Y un représentant de Y.
Par le corollaire 2.6, il existe dans FixKn

.Bn/ un chemin continu de X vers Y. Puisque deux F–étoiles
distinctes ne sont pas reliées par une arête dans l’épine de PO.Wn/, et puisque tout sommet de FixKn

.Bn/

est une f0g–étoile ou une F–étoile, ce chemin passe par une f0g–étoile adjacente à X.

Affirmation Soient Z une f0g–étoile adjacente à X et Z un représentant de Z. On note v1; : : : ; vn les
sommets de Z dont les groupes associés sont non triviaux. Alors l’image réciproque par le marquage
de Z des générateurs des groupes associés aux sommets v1; : : : ; vn est , à conjugaison près ,

fx˛1
n x1x˛1

n ; : : : ;x˛n�1
n xn�1x˛n�1

n ;xng;

avec ˛i 2 f0; 1g pour tout i 2 f1; : : : ; n� 1g.

Démonstration Pour tout i 2 f1; : : : ; ng, soit yi le générateur du groupe associé à vi . Puisque Z est
adjacente à X, il existe une arête e de Z telle que le graphe de groupes marqué Z0 dont le graphe Z0 est
obtenu à partir de Z en contractant e soit dans la classe X. Quitte à renuméroter, on peut supposer que
l’un des sommets de e est vn. Soient TX et TZ 0 les arbres de Bass–Serre associés à X et Z0. Les graphes
de groupes X et Z0 étant équivalents, il existe un homéomorphisme Wn–équivariant f W TX ! TZ 0 . Soit
v le sommet de TX de stabilisateur hxni. Alors f .v/ a pour stabilisateur hxni. Par ailleurs, étant donné
que les sommets adjacents à v ont pour stabilisateurs hx1i; : : : ; hxn�1i; hxnx1xni; : : : ; hxnxn�1xni, les
sommets adjacents à f .v/ ont pour stabilisateurs hx1i; : : : ; hxn�1i; hxnx1xni; : : : ; hxnxn�1xni. Donc,
tout sous-graphe fini et connexe de TZ 0 ayant n sommets et n�1 feuilles et de centre f .v/ est tel que les
stabilisateurs des feuilles sont

hx˛1
n x1x˛1

n i; : : : ; hx
˛n�1
n xn�1x˛n�1

n i;

avec ˛i 2 f0; 1g pour tout i 2 f1; : : : ; n � 1g. Ainsi, l’image réciproque par le marquage de Z des
générateurs des groupes associés aux sommets v1; : : : ; vn est, à conjugaison près,

hx˛1
n x1x˛1

n i; : : : ; hx
˛n�1
n xn�1x˛n�1

n i;

avec ˛i 2 f0; 1g pour tout i 2 f1; : : : ; n� 1g. G

Ainsi, au vu de la description des f0g–étoiles adjacentes à X, le groupe Bn fixe une unique f0g–étoile
adjacente à X : la f0g–étoile Z telle que les antécédents par le marquage des générateurs des groupes de
sommets non triviaux soient, à conjugaison près, x1; : : : ;xn. On note Z la classe d’équivalence de Z.

Soit Y0 une F–étoile adjacente à Z. Notons Y 0 un représentant de Y0. Il existe une arête e de Z telle que
le graphe de groupes Z0 obtenu en contractant e soit dans Y0. Les antécédents par le marquage de Y 0 des
générateurs des groupes de sommets sont donc, à conjugaison près, x1; : : : ;xn.
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Ainsi, puisque Bn permute les sommets de tout point de l’épine de PO.Wn/ dont l’image réciproque par
le marquage des groupes associés sont hx1i; : : : ; hxn�1i, on voit que l’unique F–étoile adjacente à Z

fixée par Bn est X. Donc, Bn fixe une unique F–étoile dans l’épine de PO.Wn/.

Montrons enfin que Bn fixe une unique f0g–étoile. Soit Z le graphe de groupes marqué dont le graphe
sous-jacent possède nC 1 sommets, n feuilles, notées w1; : : : ; wn, et tel que pour tout i 2 f1; : : : ; ng,
l’image réciproque par le marquage du générateur du groupe associé à wi soit xi . Soit Z la classe
d’équivalence de Z. Alors Z est une f0g–étoile et le stabilisateur de Z est An. Puisque Bn � An, ceci
montre l’existence.

Montrons l’unicité. Soit Y une autre f0g–étoile fixée par Bn. Par le corollaire 2.6, il existe un chemin
continu dans FixKn

.Bn/ de Z vers Y. Au vu de l’assertion .1/ de la proposition, ce chemin passe
uniquement par des f0g–étoiles et des F–étoiles. Or, Bn fixe une unique F–étoile X, et par la dernière
affirmation, l’unique f0g–étoile adjacente à X et fixée par Bn est Z. Donc Bn fixe une unique f0g–étoile
dans l’épine de PO.Wn/.

Remarque 3.14 Soit n� 4. Dans le cas de Aut.Wn/, soit zBnDh�1; : : : ; �n�2i, qui est encore isomorphe
à Sn�1. Soit X un point de l’épine de PA.Wn/ fixé par zBn. On note X un représentant de X.

.1/ Soit X est une F–étoile , soit X possède n feuilles et nC 1 sommets.

En effet, une démonstration identique à celle de la proposition 3.13(1) montre que le morphisme zBn!

Autgr.X / est injectif, et que le nombre de feuilles de X est soit égal à n� 1, soit égal à n. S’il est égal
à n�1, une démonstration identique à celle de la proposition 3.13(1) montre que X possède n sommets et
n� 1 feuilles. Comme le groupe Autgr.X / contient un sous-groupe isomorphe à Sn�1 et que X possède
n� 1 feuilles, on voit que, nécessairement, le point base de X est son centre. Donc X est une F–étoile.
Si le nombre de feuilles de X est égal à n, une démonstration identique à celle de la proposition 3.13(1)
montre que X possède nC 1 sommets et n feuilles.

.2/ Le groupe zBn fixe une unique F–étoile.

En effet, il fixe une F–étoile car zBn est un sous-groupe de zUn D h�1; : : : ; �n�2; �1;ni et ce dernier est
isomorphe à Fn�1 Ì Sn�1. De ce fait, la remarque 3.10(4) permet de conclure. Nous appellerons X

l’unique F–étoile fixée par zUn.

Pour l’unicité, soit Y une autre F–étoile fixée par zBn. Puisque l’ensemble des F–étoiles dans l’épine de
PA.Wn/ n’est pas connexe, tout chemin continu entre X et Y et contenu dans l’ensemble des points fixes
de zBn pour l’action de Aut.Wn/ sur l’épine de PA.Wn/ passe par un point Z ayant un représentant Z

de graphe sous-jacent possédant n feuilles et nC 1 sommets. Soient v1; : : : ; vn les feuilles de Z. Une
démonstration identique à celle de la première affirmation de la démonstration de la proposition 3.13(2)
montre que l’image réciproque par le marquage de Z des générateurs des groupes associés aux sommets
v1; : : : ; vn est respectivement ou bien x1; : : : ;xn�1;xn ou bien xnx1xn; : : : ;xnxn�1xn;xn. De plus, la
description de zBn montre que le point base de Z est contenu dans l’arête reliant le centre de Z et vn.
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Soit maintenant Z0 un sommet de l’épine de PA.Wn/ fixé par zBn, adjacent à Z et qui n’est pas une
F–étoile. Puisque Z0 possède n feuilles et nC 1 sommets par le premier point de la remarque, un
représentant Z0 de Z0 est obtenu à partir de Z en déplaçant le point base dans l’arête reliant le centre
de Z et vn. De ce fait, les images réciproques par le marquage des générateurs des groupes associés aux
feuilles de Z0 sont les mêmes que pour Z.

Donc, pour conclure sur l’unicité de la F–étoile fixée par zBn, il suffit d’étudier les F–étoiles fixées
par zBn qui sont adjacentes à Z. Soit Y0 une F–étoile adjacente à Z. Notons Y 0 un représentant de Y0.
Il existe une arête e de Z telle que le graphe de groupes Z0 obtenu en contractant e soit dans Y0. Les
antécédents par le marquage de Y 0 des générateurs des groupes de sommets sont donc, à conjugaison près,
x1; : : : ;xn. Ainsi, puisque zBn permute transitivement les sommets de tout point de l’épine de PA.Wn/

dont les images réciproques par le marquage des groupes associés sont hx1i; : : : ; hxn�1i, on voit que
l’unique F–étoile adjacente à Z fixée par zBn est X. Donc, zBn fixe une unique F–étoile dans l’épine
de PA.Wn/.

Remarque 3.15 La proposition 3.13 reste vraie lorsqu’on remplace F par un groupe cyclique fini.

4 Rigidité des automorphismes extérieurs d’un groupe de Coxeter universel

Le but de cette section est de démontrer le théorème 1.1. Nous distinguons différents cas, selon la valeur
de n. Soit ˛ 2 Aut.Out.Wn//.

4.1 Démonstration dans le cas n� 5 et n¤ 6

Soit X1 la f0g–étoile fixée par le sous-groupe fini An de Out.Wn/ (l’unicité provient de la proposition 3.1).
Alors, d’après la proposition 3.1, ˛.An/ est le stabilisateur d’une unique f0g–étoile X2. Or Out.Wn/ agit
transitivement sur l’ensemble des f0g–étoiles, donc il existe  2 Out.Wn/ tel que  .X1/D X2. Posons
˛0 D ad. / ı˛, alors ˛0.An/D ad. / ı˛.An/DAn.

Puisque ˛0jAn
est un automorphisme de An, que An est isomorphe à Sn et que, pour n¤ 6, le groupe

Out.Sn/ est trivial, quitte à changer ˛0 dans sa classe d’automorphismes extérieurs, on peut supposer
que ˛0jAn

D idAn
.

Maintenant, étant donné que Bn�Un, nous avons ˛0.Bn/DBn� ˛0.Un/. Or, par la proposition 3.13(2),
Bn fixe une unique F–étoile. Par ailleurs, le stabilisateur de cette F–étoile est Un. Donc, puisque ˛0.Un/

est également le stabilisateur d’une unique F–étoile par la proposition 3.6, on obtient que ˛0.Un/D Un.

Or, Un est isomorphe au produit semi-direct Fn�2 Ì Bn, et Bn agit sur Fn�2 (vu comme le quotient
de Fn�1 par son sous-groupe diagonal F ) par permutation des facteurs. Soit � 2 Bn. On note fix.�/
l’ensemble des points fixes de � agissant par conjugaison dans Fn�2. Puisque ˛0.�/D� pour tout � 2Bn,
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on voit que ˛0.�g��1/D �˛0.g/�
�1 pour tout � 2 f0gÌBn et pour tout g 2Fn�2 Ìf1g ; en particulier,

si g 2 fix.�/, alors ˛0.g/ 2 fix.�/.

Soit maintenant � D .2 : : : n� 1/ 2 Bn. Alors fix.�/D f0; Œ�1;n�g. Donc, puisque ˛0.Œ�1;n�/ 2 fix.�/, on
a ˛0.Œ�1;n�/D Œ�1;n�. De même, pour tout i 2 f1; : : : ; n�1g, ˛0.Œ�i;n�/D Œ�i;n�. Ainsi, ˛0jF n�2 D idF n�2 .
Puisque, par ailleurs, ˛0 est l’identité sur Bn, on voit que ˛0jUn

D idUn
. De ce fait, étant donné que

˛0jAn
D idAn

et que An et Un engendrent Out.Wn/ par la proposition 2.1, on voit que ˛0 D id et le
résultat s’en déduit.

4.2 Démonstration dans le cas nD 6

Dans le cas où n D 6, la proposition 3.1 s’appliquant encore, soit ˛0 un représentant de la classe
d’automorphismes extérieurs de ˛ tel que ˛0.An/ D An. Supposons que la classe d’automorphismes
extérieurs de ˛0jAn

soit non triviale. Alors une description explicite d’un automorphisme engendrant
l’unique classe d’automorphismes extérieurs de S6 (cf [Miller 1958]) donne, en identifiant An et S6 par
l’unique isomorphisme envoyant �i sur la permutation .i iC1/ pour 1� i � 5, que

˛0.Bn/D hŒ.1 2/.3 4/.5 6/�; Œ.1 6/.2 4/.3 5/�; Œ.1 4/.2 3/.5 6/�; Œ.1 6/.2 5/.3 4/�i:

Ainsi, ˛0.Bn/ agit transitivement sur les classes de conjugaison de fx1; : : : ;xng. Alors, puisque ˛0.Bn/�

˛0.Un/, par la proposition 3.6, ˛0.Bn/ fixe une F–étoile X. Soit X un représentant de X. Par la
proposition 2.8, le noyau du morphisme ˛0.Bn/! Autgr.X / est isomorphe à Fn�2\˛0.Bn/.

Or Fn�2\ ˛0.Bn/ est un 2–sous-groupe distingué de ˛0.Bn/. Comme ˛0.Bn/ est isomorphe à Sn�1

et que nD 6, nous avons Fn�2\˛0.Bn/D f1g. Donc ˛0.Bn/ est isomorphe à Autgr.X / car Autgr.X /

est isomorphe à Sn�1. Soient maintenant v1; : : : ; vn�1 les feuilles de X et vn le centre de X. Pour
j 2 f1; : : : ; ng, soit hyj i l’image réciproque par le marquage du groupe associé à vj . Le groupe Autgr.X /,
et donc ˛0.Bn/, s’identifie à l’ensemble des bijections de fv1; : : : ; vng fixant vn. Or, par la proposition 2.1,
il existe � 2 Bij.fx1; : : : ;xng/ telle que pour tout i 2 f1; : : : ; ng, il existe zi 2Wn vérifiant

yi D zix�.i/z
�1
i :

Ceci contredit le fait que ˛0.Bn/ s’identifie à l’ensemble des bijections de fv1; : : : ; vng fixant vn, car le
groupe ˛0.Bn/ agit transitivement sur l’ensemble des classes de conjugaison de fx1; : : : ;xng. Donc la
classe d’automorphismes extérieurs de ˛0jAn

est triviale et on conclut comme dans la section 4.1.

4.3 Démonstration dans le cas nD 4

Dans le cas où n D 4, les propositions 3.1 et 3.6 ne sont plus valables, car alors tout sous-groupe
de Out.Wn/ isomorphe à S4 est isomorphe au produit semi-direct V ÌS3, où V est le groupe de Klein.
Nous avons cependant la proposition suivante.
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Proposition 4.1 Soient n D 4 et G un sous-groupe de Out.Wn/ isomorphe au produit semi-direct
Fn�2 ÌSn�1. Alors G est soit le stabilisateur d’une unique F–étoile , soit le stabilisateur d’une unique
f0g–étoile. Les deux cas sont mutuellement exclusifs.

Démonstration Soient X un point de l’épine de PO.Wn/ fixé par G (qui existe par la proposition 2.3), et
X un représentant de X. Soit L l’ensemble des feuilles de X. La proposition 4.1 se démontre de manière
identique à la proposition 3.9(3), à ceci près que l’on ne peut pas exclure le cas où X possède n feuilles. Il
faut alors distinguer le cas où jLj D n� 1 et jLj D n. Si X possède n feuilles, le lemme 3.2 donne que X

est une f0g–étoile. Si X possède n� 1 feuilles, alors la proposition 3.9(3) donne que X est une F–étoile.

Montrons maintenant que G ne peut fixer à la fois une f0g–étoile et une F–étoile. Par la proposition 3.9(1),
G est le stabilisateur de tout point fixé par G.

Supposons que G soit le stabilisateur d’une f0g–étoile X. Soit X un représentant de X. Soient v1; : : : ; vn

les sommets de X dont les groupes associés sont non triviaux et, pour tout i 2 f1; : : : ; ng, soit yi l’image
réciproque par le marquage du générateur du groupe associé à vi . Alors le groupe G est le groupe engendré
par les permutations de fy1; : : : ;yng.

Soit Y une F–étoile dans l’épine de PO.Wn/ fixée par G. Par le corollaire 2.6, FixKn
.G/ est connexe. Il

existe donc un chemin continu dans FixKn
.G/ de X vers Y. Les sommets par lesquels passe ce chemin sont

uniquement des f0g–étoiles et des F–étoiles au vu des points stabilisés par G. Or, le groupe engendré par
les permutations de fy1; : : : ;yng ne fixe aucune F–étoile adjacente à X. En effet, le groupe G contiendrait
un élément permutant le centre de la F–étoile avec une feuille, ce qui n’est pas possible. Donc G ne fixe
aucune F–étoile.

Enfin, l’unicité du point fixe provient du fait que l’ensemble des f0g–étoiles et l’ensemble des F–étoiles
sont discrets dans l’épine de PO.Wn/ alors que l’ensemble des points fixes de G est connexe par le
corollaire 2.6.

Nous pouvons maintenant montrer le théorème 1.1 dans le cas nD 4.

Soit ˛ 2 Aut.Out.Wn//. Soit X1 la f0g–étoile fixée par le sous-groupe fini An 'S4 de Out.Wn/. Par la
proposition 4.1, ˛.An/ fixe soit une f0g–étoile, soit une F–étoile.

Si ˛.An/ fixe une f0g–étoile, alors la même démonstration que pour le cas où n¤ 6 dans la section 4.1
montre que quitte à changer ˛ dans sa classe d’automorphismes extérieurs, nous avons ˛jAn

D idAn
.

Par la proposition 4.1, le groupe Un ' F2 ÌS3 fixe soit une f0g–étoile, soit une F–étoile. Étant donné
que Bn � Un fixe une unique f0g–étoile � et une unique F–étoile �0 et que ˛jBn

D idBn
, on voit que

˛.Un/ est soit le stabilisateur de �, soit le stabilisateur de �0. Cependant, puisque le stabilisateur de �
est An et que ˛jAn

D idAn
, on voit que ˛.Un/ est le stabilisateur de �0. Donc ˛.Un/D Un. Le reste de la

démonstration est alors identique à celle du cas où n¤ 6 dans la section 4.1.
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Supposons que ˛.An/ fixe une unique F–étoile. Construisons à présent un représentant de la classe
d’automorphismes extérieurs de ˛. Puisque Out.Wn/ agit transitivement sur les F–étoiles, quitte à changer
˛ dans sa classe d’automorphismes extérieurs, on peut supposer que ˛.An/D Un. Soit V le groupe de
Klein contenu dans An. Alors ˛.V / est l’unique 2–sous-groupe distingué non trivial de Un. Donc

˛.V /D hŒ�1;4�; Œ�2;4�; Œ�3;4�i:

Ainsi, puisque Bn \V D fidg, on voit que ˛.Bn/\ ˛.V /D fidg. Par ailleurs, An D BnV, donc Un D

˛.Bn/˛.V /. De ce fait, ˛.Bn/ est un sous-groupe de Un d’ordre 6. Or, il existe une unique classe de
conjugaison de sous-groupes d’ordre 6 dans Un. Donc, quitte à changer ˛ dans sa classe d’automorphismes
extérieurs, on peut supposer que ˛.Bn/DBn. De même, puisque Bn est isomorphe à S3, quitte à changer
˛ dans sa classe d’automorphismes extérieurs, on peut supposer que ˛jBn

D idBn
.

Déterminons à présent l’image de Œ�3� et Œ�3;4� par ˛. Puisque Œ�1�Œ�3� 2 V, on voit que ˛.Œ�1�Œ�3�/ 2

fŒ�1;4�; Œ�2;4�; Œ�3;4�g. Or, Œ�1� commute avec Œ�1�Œ�3�, donc ˛.Œ�1�Œ�3�/ doit également commuter avec Œ�1�.
De ce fait, ˛.Œ�1�Œ�3�/D Œ�3;4� et ˛.Œ�3�/D Œ�1�Œ�3;4�.

Déterminons l’image de Œ�3;4� par ˛. Puisque ˛.Bn/ D Bn, le groupe ˛.Un/ est le stabilisateur d’un
point fixe de Bn. Par la proposition 3.13, Bn fixe uniquement deux sommets de l’épine de PO.Wn/ : la
f0g–étoile stabilisée par An et la F–étoile stabilisée par Un. Comme ˛.An/D Un, on a nécessairement
˛.Un/DAn. Donc ˛.Œ�3;4�/ 2 V. Puisque Œ�3;4� commute avec Œ�1�, on obtient que ˛.Œ�3;4�/D Œ�1�Œ�3�.

Donc ˛ se restreint en l’identité sur Bn, envoie Œ�3� sur Œ�1�Œ�3;4� et Œ�3;4� sur Œ�1�Œ�3�. Comme Bn, Œ�3�

et Œ�3;4� engendrent Out.W4/, ceci montre qu’un tel automorphisme ˛, s’il existe, est unique modulo
automorphisme intérieur.

Réciproquement, montrons que l’application ˛ de Bn[fŒ�3�; Œ�3;4�g dans Out.W4/ définie par ˛jBn
D idBn

,
˛.Œ�3�/ D Œ�1�Œ�3;4� et ˛.Œ�3;4�/ D Œ�1�Œ�3� s’étend de manière unique en un morphisme de groupes de
Out.W4/. Comme Œ�1� commute avec Œ�3� et Œ�3;4�, ceci montre que ˛ est involutif, donc un automorphisme
de Out.W4/. Sa classe dans Out.Out.W4// est non triviale (car son action sur l’épine de PO.W4/ est non
triviale), ce qui montre le théorème 1.1 lorsque nD 4.

Pour simplifier les notations, nous notons Œi j � la classe d’automorphismes extérieurs de la transposition
permutant xi et xj . Notons

S D fŒi j � W 1� i; j � 4g[ fŒ�i;j � W 1� i ¤ j � 4g;

qui est une partie génératrice de Out.W4/ par la proposition 2.1. Un petit calcul élémentaire montre que,
si i D 1; 2, alors

Œi 4�D Œi 3�Œ3 4�Œi 3�; ˛.Œi 3�/˛.Œ3 4�/˛.Œi 3�/D Œj k�Œ�i;4�;

Œ�i;4�D Œi 3�Œ�3;4�Œi 3�; ˛.Œi 3�/˛.Œ�3;4�/˛.Œi 3�/D Œj k�Œi 4�;

où fj ; kg D f1; 2; 3g � fig. Considérons l’application z̨ de S dans Out.W4/ étendant ˛ sur S \ .Bn [

fŒ3 4�; Œ�3;4�g/ et telle que, si i D 1; 2,

z̨.Œi 4�/D Œj k�Œ�i;4� et z̨.Œ�i;4�/D Œj k�Œi 4�;
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où fj ; kg D f1; 2; 3g � fig. Des calculs élémentaires pour lesquels nous renvoyons à [Guerch 2022]
montrent que cette application préserve, quand nD 4, la présentation de Out.Wn/ donnée par Gilbert
[1987, Theorem 2.20], ce qui conclut.

4.4 Démonstration de la rigidité de Aut.Wn/

Nous démontrons à présent le théorème 1.2. Soient n�4 et ˛2Aut.Aut.Wn//. Soient zAnDh�1; : : : ; �n�1i,
zBn D h�1; : : : ; �n�2i et zUn D h�1; : : : ; �n�2; �1;ni. En utilisant les remarques 3.4, 3.10(4) et 3.14(2), et
en effectuant une démonstration identique à celle du théorème 1.1 dans les cas où n � 5, on voit que,
quitte à changer ˛ dans sa classe d’automorphismes extérieurs, ˛j zAn

D id zAn
et ˛. zUn/D zUn.

Or zUn est isomorphe à Fn�1 Ì zBn. Soit � 2 zBn. On note fix.�/ l’ensemble des points fixes de � agissant
par conjugaison dans Fn�1. On voit que ˛.�g��1/D �˛.g/��1 pour tout � 2 f0gÌ zBn et pour tout
g 2 Fn�1 Ì f1g ; en particulier, si g 2 fix.�/, alors ˛.g/ 2 fix.�/.

Soit maintenant � D .2 : : : n�1/2Bn. Alors fix.�/D
˚
0; �1;n;

Q
i¤1;n �i;n;

Qn�1
iD1 �i;n

	
. Donc ˛.�1;n/2˚

�1;n;
Q

i¤1;n �i;n;
Qn�1

iD1 �i;n

	
. Comme

Qn�1
iD1 �i;n est l’unique élément non trivial dans le centre de zUn,

on voit que ˛.�1;n/¤
Qn�1

iD1 �i;n.

Supposons par l’absurde que ˛.�1;n/D
Q

i¤1;n �i;n. Pour j 2 f1; : : : ; n�1g, notons .1 j / la transposition
de zBn permutant x1 et xj . Alors, on voit que ˛.�j ;n/ D ˛..1 j /�1;n.1 j // D

Q
i¤j ;n �i;n pour tout

j 2 f1; : : : ; n� 1g.

Un calcul immédiat montre alors que, pour tout j ¤ k; n, et k < n,

˛.�k;j /D ˛..j n/�k;n.j n//D
Y

i¤j ;k

�i;j :

Or �1;2�3;4 D �3;4�1;2, alors que

˛.�1;2/˛.�3;4/.x1/D
Y

i¤1;2

�i;2

Y
i¤3;4

�i;4.x1/D x2x4x2x1x2x4x2;

˛.�3;4/˛.�1;2/.x1/D
Y

i¤3;4

�i;4

Y
i¤1;2

�i;2.x1/D x4x1x4:

Donc ˛.�1;2/˛.�3;4/¤ ˛.�3;4/˛.�1;2/. Ceci contredit le fait que ˛ est un morphisme de groupes. Ainsi,
˛.�1;n/D �1;n. Par la proposition 2.1, nous avons ˛D id. Ceci conclut la démonstration du théorème 1.2.
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The RO.C4/ cohomology of the infinite real projective space

NICK GEORGAKOPOULOS

Following the Hu–Kriz method of computing the C2 genuine dual Steenrod algebra �?.HF2 ^HF2/
C2 ,

we calculate the C4–equivariant Bredon cohomology of the classifying space RP1� D BC4
†2 as an

RO.C4/ graded Green-functor. We prove that as a module over the homology of a point (which we also
compute), this cohomology is not flat. As a result, it can’t be used as a test module for obtaining generators
in �?.HF2^HF2/

C4 as Hu and Kriz use it in the C2 case. Their argument for the Borel equivariant dual
Steenrod algebra does generalize, however, and we give a complete description of �?.HF2 ^HF2/

hC2n

for any n� 2.
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1 Introduction

Historically, computations in stable equivariant homotopy theory have been much more difficult than
their nonequivariant counterparts, even when the groups involved are as simple as possible (ie cyclic). In
recent years, there has been a resurgence in such calculations for power-2 cyclic groups C2n , owing to
the crucial involvement of C8–equivariant homology in the solution of the Kervaire invariant problem;
see Hill, Hopkins and Ravenel [8].
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The case of G D C2 is the simplest and most studied one, partially due to its connections to motivic
homotopy theory over R by means of realization functors; see Heller and Ormsby [6]. It all starts with
the RO.C2/ homology of a point, which was initially described in Lewis [12]. The types of modules over
it that can arise as the equivariant homology of spaces were described in May [14], and this description
was subsequently used in the computation of the RO.C2/ homology of C2–surfaces in Hazel [5]. The
C2–equivariant dual Steenrod algebra (in characteristic 2) was computed in Hu and Kriz [10] and gives
rise to a C2–equivariant Adams spectral sequence that has been more recently leveraged in Isaksen, Wang
and Xu [11]. Another application of the Hu–Kriz computation is the definition of equivariant Dyer–Lashof
operations by Wilson [17] in the F2–homology of C2–spectra with symmetric multiplication. Many of
these results rely on the homology of certain spaces being free as modules over the homology of a point,
and there is a robust theory of such free spectra, described in Hill [7].

The case of G D C4 has been much less explored and is indeed considerably more complicated. This can
already be seen in the homology of a point in integer coefficients (see Zeng [18] and Georgakopoulos [2])
and the case of F2 coefficients is not much better (compare Sections 3.1 and 3.2 for the C2 and C4 cases,
respectively). The greater complexity in the ground ring (or to be more precise, ground Green functor),
means that modules over it can also be more complicated and indeed, certain freeness results that are easy
to obtain in the C2 case no longer hold when generalized to C4 (compare Section 4.1 with Sections 6–8).

The computation of the dual Steenrod algebra relies on the construction of Milnor generators. Nonequiv-
ariantly, the Milnor generators �i of the mod 2 dual Steenrod algebra can be defined through the
completed coaction of the dual Steenrod algebra on the cohomology of B†2 D RP1: one has that
H�.BC2CIF2/D F2Œx� and the completed coaction F2Œx�! .HF2/�.HF2/ŒŒx�� is

x 7!
X

i

x2i

˝ �i :

In the C2–equivariant case, the space replacing B†2 is the equivariant classifying space BC2
†2. This is

still RP1 but now equipped with a nontrivial C2 action (described in Section 4.1). Over the homology of
a point, we no longer have a polynomial algebra on a single generator x, but rather a polynomial algebra
on two generators c and b, modulo the relation

c2
D a�cCu�b;

where a� and u� are the C2–Euler and orientation classes respectively (defined in Section 2). As a
module, this is still free over the homology of a point, and the completed coaction is

c 7! c˝ 1C
X

i

b2i

˝ �i ; b 7!
X

i

b2i

˝ �i :

The �i and �i are the C2–equivariant analogues of the Milnor generators, and Hu and Kriz show that they
span the genuine dual Steenrod algebra.
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For C4, the cohomology of BC4
†2 is significantly more complicated (see Section 6) and most importantly

is not a free module over the homology of a point. In fact, it’s not even flat (Proposition 5.3), bringing
into question whether we even have a coaction by the dual Steenrod algebra in this case.

There is another related reason to consider the space BC4
†2. In [17], Wilson describes a framework for

equivariant total power operations over an HF2–module A equipped with a symmetric multiplication.
The total power operation is induced from a map of spectra

A!At†Œ2� ;

where .�/t†Œ2� is a variant Tate construction defined in [17].

In the nonequivariant case, A!At†Œ2� induces a map A�!A�..x// and the Dyer–Lashof operations Qi

can be obtained as the components of this map:

Q.x/D
X

i

Qi.x/xi :

In the C2–equivariant case, we have a map AF ! AFŒc; b
˙�=.c2 D a�c C u�b/ and we get power

operations
Q.x/D

X
i

Qi�.x/bi
C

X
i

Qi�C� .x/cbi :

When ADHF2, AFŒc; b
˙�=.c2 D a�cCu�b/ is the cohomology of BC2

†2 localized away from the
class b.

For C4 we would have to use the cohomology of BC4
†2 (localized at a certain class) but that is no

longer free, meaning that the resulting power operations would have extra relations between them, further
complicating the other arguments in [17].

The computation of H F.BC4
†2CIF2/ also serves as a test case of RO.G/ homology computations

for equivariant classifying spaces where G is not of prime order. We refer the reader to Shulman [16],
Chonoles [1], Wilson [17], and Sankar and Wilson [15] for such computations in the G D Cp case.

As for the organization of this paper, Section 2 describes the conventions and notation that we shall be
using throughout this document, as well as the Tate diagram for a group G and a G–equivariant spectrum.

Sections 3.1 and 3.3 describe the Tate diagram for C2 and C4, respectively, using coefficients in the
constant Mackey functor F2.

In Section 4 we define equivariant classifying spaces BGH and briefly explain the elementary computation
of the cohomology of BC2

†2 (this argument also appears in [17]).

In Section 5 we present the result of the computation of H F.BC4
†2CIF2/ and prove that it’s not flat

as a Mackey functor module over .HF2/F. Sections 6–8 contain the proofs of the computation of the
cohomology of BC4

†2.
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We have included three appendices in the end. Appendix A contains pictures of the spectral sequence
converging to H F.BC4

†2CIF2/ while Appendix B contains a detailed description of H F.S0IF2/,
which is the ground Green functor over which all our Mackey functors are modules.

Appendix C contains the description of the G–equivariant Borel dual Steenrod algebra .HF2 ^HF2/
hG
F

where G D C2n and n � 1. This is independent of the rest of the paper and is related to our work in
the following way: In [10], the Borel dual Steenrod algebra is a key ingredient in the computation of
the genuine dual Steenrod algebra over the group G D C2; the other key ingredient is the computation
of H F.BC2

†2CIF2/. For G D C2n , n� 2, the Borel equivariant description admits a straightforward
generalization as we show in Appendix C.

To aid in the creation of the first two appendices, we extensively used the computer program of [2] available
here. In fact, we have introduced new functionality in the software that computes the RO.G/–graded
homology of spaces such as BC4

†2 given an explicit equivariant CW decomposition (such as we discuss
in Section 6.1). This assisted in the discovery of a nontrivial d2 differential in the spectral sequence of
BC4

†2 (see Remark 7.8), although the provided proof is independent of the computer computation.

Acknowledgements We would like to thank Dylan Wilson for answering our questions regarding his
paper [17] as well as [10]. We would also like to thank Peter May for his numerous editing sugges-
tions, which vastly improved the readability of this paper. Finally, we are indebted to the referee for
carefully reviewing an earlier version of this paper and suggesting a multitude of useful corrections and
improvements.

2 Conventions and notations

We will use the letter k to denote the field F2, the constant Mackey functor k D F2 and the corresponding
Eilenberg–Mac Lane spectrum Hk. The meaning should always be clear from the context.

All our homology and cohomology will be in k coefficients.

The data of a C4 Mackey functor M can be represented by a diagram displaying the values of M on
orbits, its restriction and transfer maps and the actions of the Weyl groups. We shall refer to M.C4=C4/,
M.C4=C2/ and M.C4=e/ as the top, middle and bottom levels of the Mackey functor M , respectively.
The Mackey functor diagram takes the form

M D

M.C4=C4/

M.C4=C2/

M.C4=e/

Res4
2

Tr4
2

Res2
1

C4=C2

Tr2
1

C4
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If X is a G–spectrum then XF denotes the RO.G/–graded G–Mackey functor, defined on orbits as

XF.G=H /DX H
F D �

H .S�F
^X / D ŒSF;X �H :

The indexF will always be an element of the real representation ring RO.G/.

RO.C4/ is spanned by the irreducible representations 1, � and �, where � is the 1–dimensional sign
representation and � is the 2–dimensional representation given by rotation by �=2.

For V D� or V D�, denote by aV 2k
C4

�V
the Euler class induced by the inclusion of north and south poles

S0 ,! SV ; also denote by uV 2 k
C4

jV j�V
the orientation class generating the Mackey functor kjV j�V D k.

We will use the notation xaV ; xuV to denote the restrictions of aV ;uV to middle level, and uV to denote
the restriction of uV to bottom level. This notation is consistent with its use in [9].

We also write a�2
2 k

C2
��2

and u�2
2 k

C2

1��2
for the C2 Euler and orientation classes, where �2 is the sign

representation of C2.

The Gold relation [8] in k coefficients takes the form

a2
�u� D 0:

Let EG be a contractible free G–space and zEG be the cofiber of the collapse map EGC! S0. We use
the notation

Xh DEGC ^X; zX D zEG ^X; X h
D F.EGC;X / and X t

D zX h:

The Tate diagram [4] then takes the form

Xh X zX

Xh X h X t

'

The square on the right is a homotopy pullback diagram and is called the Tate square.

Applying �G
F

on the Tate diagram gives

XhGF X G
F

zX G
F

XhGF X hG
F

X tG
F

'

3 The Tate diagram for C2 and C4

3.1 The Tate diagram for C2

For X D k and G D C2 the corners of the Tate square are

k
C2

F
DkŒa�2

;u�2
�˚k

�
��2

ai
�2

u
j
�2

�
i;j�0

; zk
C2

F
DkŒa˙�2

;u�2
�; k

hC2

F
DkŒa�2

;u˙�2
�; k

tC2

F
DkŒa˙�2

;u˙�2
�;
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where ��2
D Tr2

1.xu
�2
�2
/. The map kh! k in the Tate diagram induces

khC2F D†
�1k

tC2

F
=k

hC2

F
! k

C2

F
; a�i

�2
u�j
�2
7!

��2

ai
�2

u
j�1
�2

:

3.2 The RO.C4/ homology of a point

The RO.C4/ homology of a point (in k coefficients) is significantly more complicated than the RO.C2/

one; see [2] for the integer coefficient case. Appendix B contains a very detailed description of it, and the
goal in this subsection is to provide a more compact version. We have also included a summary table at
the end of the subsection.

The top level is

(1) k
C4

F

:
Dk

�
a� ;u� ; a�;u�;

u�

u1Ci
�

;
a2
�

a1Ci
�

�
˚kŒa˙� �

�
�

ai
�u

j
�

�
˚k

�
.�=a�/a

1C�
�

ui
�a

j

�

�
˚kŒu˙� �

�
.�=a�/a

1C�
�

a
j

�
u1Cm
�

�
;

where the indices i; j ;m range in 0; 1; 2; : : : and � ranges in 0; 1.

The use of :D as opposed to D is meant to signify some subtlety present in (1) that needs to be clarified
before the equality can be used. This subtlety has to do with how quotients are defined (cf [2]) and how
elements multiply (the multiplicative relations). For example, the first summand in (1) is not actually a
polynomial algebra, but rather a quotient of one, owing to the families of relations

u�

ui
�

�
a2
�

a
j

�

D 0; u� �
u�

u1Ci
�

D
u�

ui
�

; a� �
a2
�

a1Ci
�

D
a2
�

ai
�

;

where i; j � 0 (and u�=u
0
� D u� and a2

�=a
0
�
D a2

� ).

We begin this process of carefully interpreting (1) by first noting that the middle level xu� and bottom
level u� ;u� are invertible. The element � is then defined as

� D Tr4
2.xu
�2
� /:

We further introduce the elements

xn;m D Tr4
1.u
�n
� u�m

� / for n� 0;m� 1:

Observe that
xn;m D

x0;1

un
�um�1
�

:

The relation between x0;1 D Tr4
1.u
�1
�
/ and � is

x0;1 D a2
�

�

a�
D �

a2
�

a�
:

With this notation, the second curly bracket in (1) contains elements of the form
xn;1

ai
�

and
xn;1

a�ai
�

;
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and the third contains
xn;m

ai
�

and
xn;m

a�ai
�

for m> 1:

The behavior of the xn;m depends crucially on whether mD 1 or not: xn;1u� D 0 but xn;mu� ¤ 0 for
m> 1; the xn;1 are infinitely a� divisible, since

xn;1

a2
�

D
�

un
�a�

;

while the xn;m for m> 1 can only be divided by a� once. That’s why we separate them into two distinct
summands in (1).

The third curly bracket in (1) for � D 0 consists of quotients of

s WD
.�=a�/a�

u�
u� D

x0;2u�

a�
;

which is the mod 2 reduction of the element s from [2]. Note that su� D sa� D 0.

The quotients in the RHS of (1) are all chosen coherently (cf [2]), that is, we always have the cancellation
property

z �
y

xz
D

y

x
:

We also have that
x

y
�

z

w
D

xz

yw

as long as xz ¤ 0 — this condition is necessary: .�=a�/a� ¤ 0 is not .�a� /=a�, as �a� D 0.

To compute any product of two elements in the RHS of (1) we follow the following procedure:

� If both elements involve � then the product is automatically 0.

� If neither element involves � , perform all possible cancellations and use the relation

u�

ui
�

�
a2
�

a
j

�

D 0;

where i; j range in 0; 1; 2; : : : .

� If only one element involves � , perform all possible cancellations and use
x

y
�

z

w
D

xz

yw

as long as xz appears in (1). If the resulting element appears in (1) then that’s the product; if not,
then the product is 0.

These are all the remarks needed to properly interpret the formula in (1) for the top level k
C4

F
.

The middle level is

(2) k
C2

F

:
D kŒxa�; xu�;

p
xa�xu�; xu

˙
� �˚ kŒxu˙� �

�
v

xai
�
xu

j

�

p
xa�xu�

�

�
:
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element also known as degree in kF restriction is transfer of

� - 2� � 2 0 xu�2
�

s .x0;2u� /=a� 2�� 3 v=
p
xa�xu� -

a2
�=a� - �� 2� vxu2

� -
x0;1 .a2

�=a�/� �� 2 0 v

x0;2 x0;1=u� 2�� 4 0 v=xu�

.a�u�/=u� - 1�� 0
p
xa�xu�

v ��2
�� 2 0 u�1

�

Table 1

Here,
p
xa�xu� is the (unique) element whose square is xa�xu�, and v is defined by v D Tr2

1.u
�1
�
/. Further,

Tr4
2.
p
xa�xu�/D

a�u�

u�
; Tr4

2.v/D x0;1; xs WD Res4
2.s/D

v
p
xa�xu�

; Res4
2

�
a2
�

a�

�
D vxu2

� :

The interpretation of (2) is complete. We note that the restriction Res4
2 W k

C4

F
! k

C2

F
makes k

C2

F
into a

k
C4

F
–module,

k
C2

F
D

k
C4

F
Œu�1
� �

a�
f1;
p
xa�xu�g:

In terms of the notation of the C2 generators,

xa� D a2
�2
; xu� D u2

�2
;

p
xa�xu� D a�2

u�2
; v D ��2

:

Finally, the bottom level is very simple:

ke
F D kŒu˙� ;u

˙
� �:

We conclude with Table 1 giving the interesting/important elements of k
C4

F
(outside of a� ;u� ; a�;u�).

For more details, consult Appendix B.

3.3 The Tate diagram for C4

Using the notation of the previous subsection, the corners of the Tate square are

k
C4

F

:
D k

�
a� ;u� ; a�;u�;

u�

u1Ci
�

;
a2
�

a1Ci
�

�
˚ kŒa˙� �

�
�

ai
�u

j
�

�
˚ k

�
.�=a�/a

1C�
�

ui
�a

j

�

�
˚ kŒu˙� �

�
.�=a�/a

1C�
�

a
j

�
u1Cm
�

�
;

zk
C4

F
D a�1

� k
C4

F

:
D k

�
a� ;u� ; a

˙
� ;u�;

u�

u1Ci
�

�
˚ kŒa˙� �

�
�

ai
�u

j
�

�
;

k
hC4

F
D kŒa� ;u

˙
� ; a�;u

˙
� �=a

2
� ; k

tC4

F
D kŒa� ;u

˙
� ; a

˙
� ;u

˙
� �=a

2
� :

The map kh! k in the Tate diagram induces

khC4F D†
�1k

tC4

F
=k

hC4

F
! k

C4

F
; u�i

� a
�j

�
u�m
� 7!

.�=a�/a�

ui�1
� a

j�1

�
um
�

:
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An important distinction between the Tate diagram of C4 and of C2 is that, for the group C2, the operation
zEC2 ^� amounts to taking geometric fixed points: ˆC2k D zEC2 ^ k D zk. This is not the case for C4,

and indeed
.ˆC4k/F D a�1

�
zk

C4

F
D kŒa˙� ;u� ; a

˙
� �:

4 Equivariant classifying spaces

For groups G and K, denote by EGK any G �K space that is K–free and for which .EGK/� is
contractible for any subgroup � � G �K with � \ .f1g �K/ D f1g (a graph subgroup). The spaces
EG†n are those appearing in a G–E1–operad.

We define the equivariant classifying space

BGK DEGK=K:

4.1 The case of C2

For G D C2, the spaces BC2
†2 are used in the computation of the C2 dual Steenrod algebra by Hu

and Kriz [10] and for the construction of the total C2–Dyer–Lashof operations in [17]. Both use the
computation

(3) kF

C2
.BC2

†2C/D kF

C2
Œc; b�=.c2

D a�2
cCu�2

b/;

where c and b are classes in cohomological degrees �2 and 1C �2, respectively. Let us note here that
BC2

†2 is RP1 with a nontrivial C2 action; the restrictions of c; b are the generators of degree 1; 2 of
k�.RP1/.

We shall now summarize this computation, since part of it will be needed for the analogous computation
when G D C4, which takes place in Sections 5–8.

Let �; � be the sign representations of C2; †2 respectively, and let �D1C� . Then EC2
†2DS.1.�˝�//;

here S.V / denotes the unit G–sphere inside a G–representation V . The graph subgroups of C2 �†2 are
C2 and �, and their orbits correspond to the cells

C2 �†2

C2

D S.1˝ �/ and
C2 �†2

�
D S.� ˝ �/:

Wilson [17] defines a filtration on EC2
†2 given by

S.1˝ �/� S.�˝ �/� S..�C 1/˝ �/� S.2�˝ �/� � � � ;

whose quotients (after adjoining disjoint basepoints) are

gr2jC1 EC2
†2C D

C2 �†2

� C
^S .jC1/�C2

�1; gr2j EC2
†2CD†2C ^Sj�C2 :

Taking the quotient by †2 gives a filtration for BC2
†2C with

gr2jC1 BC2
†2C D S .jC1/�C2

�1; gr2j BC2
†2C D Sj�C2 :
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Applying kF yields a spectral sequence

E1
D kF

fej�; ej�C�
g) kF.BC2

†2C/

of modules over the Green functor kF. The fact that the differentials are module maps gives E1 DE2

for degree reasons. Furthermore, the vanishing of the RO.C2/ homology of a point in a certain range
gives E2 DE1. The E1 page is free as a module over the Green functor kF, hence there can’t be any
extension problems, and we get the module structure

kF.BC2
†2C/D kF

fej�; ej�C�
g:

It’s easier to prove (using the homotopy fixed point spectral sequence) that

khF.BC2
†2C/D khFŒw�;

where w has cohomological degree 1. The map k! kh from Section 2 induces

kF.BC2
†2C/! khF.BC2

†2C/;

which is the localization which inverts u�2
. Thus we can see that c D e� maps to u�2

w (or a�2
Cu�2

w),
b D e� maps to a�2

wCu�2
w2 and conclude that

kF

C2
.BC2

†2C/D kF

C2
Œc; b�=.c2

D a�2
cCu�2

b/:

BC2
†2 is a C2–H–space so kF

C2
.BC2

†2C/ is a Hopf algebra (since it is flat over kF

C2
). For degree

reasons, we can see that

�.c/D c˝ 1C 1˝ c; �.b/D b˝ 1C 1˝ b; �.c/D �.b/D 0:

(We can add a�2
to c to force �.c/D 0.) The primitive elements are spanned by c; b2i

.

5 The cohomology of BC4
†2

In the next section we shall construct a cellular decomposition of BC4
†2 giving rise to a spectral sequence

computing kF.BC4
†2C/. Here’s the result of the computation, describing kF.BC4

†2C/ as a Green
functor algebra over kF.

Proposition 5.1 There exist elements

ea
2 k�C�

C4
.BC4

†2C/; eu
2 k�C��2

C4
.BC4

†2C/; e� 2 k�C4
.BC4

†2C/; e�2 k
�
C4
.BC4

†2C/

such that

kF

C4
.BC4

†2C/D

kF

C4

�
ea;

eu

ui
�

;
e�

ui
�

; e�
�

i�0

S
:

The relation set S consists of two types of relations (we use indices i; j � 0):
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� Module relations

8̂̂̂̂
<̂
ˆ̂̂:

a2
�

a
j

�

eu

ui
�

D 0;

.�=a�/a�

ui�2
� a

j�1

�

ea
C

s

ui�1
� a

j�2

�

eu
D

a2
�

a
j

�

e�

ui
�

:

� Multiplicative relations

8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
:̂

eu

ui
�

eu

u
j
�

D
u�

u
iCj�2
�

e�;

e�

ui
�

eu

u
j
�

D
u�

u
iCj
�

ea
C a�

eu

u
iCj
�

;

ea eu

ui
�

D
u�

ui�1
�

e�C a�
u�

ui
�

ea;

e�

ui
�

e�

u
j
�

D
u�

u
iCjC1
�

e�C a�
u�

u
iCjC2
�

ea
C a�

e�

u
iCj
�

;

ea e�

ui
�

D
eu

uiC1
�

e�C a�
u�

uiC1
�

e�;

(ea/2 D u�e�e�C a�
eu

u�
e�Cu�a�e�C a�a�ea:

The middle level of kF.BC4
†2C/ is generated by the restrictions of ea; eu; e�; e�, which we denote by

xea; xeu; xe�; xe�, respectively, and two fractional elements:

kF

C2
.BC4

†2C/D

kF

C2

�
xea; xeu; xe�; xe�;

p
xa�xu�xe

u

xu�
;
xa�xu
�1
� xe

uC
p
xa�xu�xe

�

xu�

�
Res4

2.S/
:

Here , Res4
2.S/ denotes the relation set obtained by applying the ring homomorphism Res4

2 on each
relation of S . That is , we have the module relations

v

xai
�

xeu
D

v

xai
�

xe� D 0 for any i � 0;

and the multiplicative relations

(xeu/2 D xu2
� xu�xe

�; xe�xeu
D xu�xe

a
Cxa�xe

u; xea
xeu
D xu�xu�xe

�;

(xe�/2 D xu�xu
�1
� xe

�
Cxa�xe

�; xea
xe� D xu�1

� xe
u
xe�; .xea/2 D xu�xe

�
xe�C xu�xa�xe

�:

As for the Mackey functor structure , the Weyl group C4=C2 action on the generators is trivial and we have

� Mackey functor relations

8̂̂̂<̂
ˆ̂:

Tr4
2

�
xu�i
�

p
xa�xu�xe

u

xu�

�
D a�

eu

uiC1
�

;

Tr4
2

�
xu�i
�

xa�xu
�1
� xe

uC
p
xa�xu�xe

�

xu�

�
D a�

e�

uiC1
�

:
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Finally, the bottom level is
kF

e .BC4
†2C/D kF

e ŒRes4
1.e

u/�

with trivial Weyl group C4 action and Mackey functor relations obtained by applying Res4
1 to the

multiplicative relations of S :

Res4
1 e� D u�2

� u�1
� Res4

1.e
u/2; Res4

1 ea
D u�2

� u�2
� Res4

1.e
u/3; Res4

1 e� D u�3
� u�3

� Res4
1.e

u/4:

Note: for every quotient y=x there is a defining relation x � .y=x/D y. We have omitted these implicit
module relations from the description above.

The best description of the middle level is in terms of the generators c; b of

k9C2
.BC2

†2C/D
k9

C2
Œc; b�

c2 D a�2
cCu�2

b
:

Here, 9 ranges in RO.C2/, and to get kF

C2
.BC4

†2C/ for F in RO.C4/, we have to restrict to RO.C2/

representations of the form nC 2m�2. In this way,

kF

C2
.BC4

†2C/D k9C2
.BC2

†2C/Œxu
˙
� �;

where9 needs to be restricted to oriented C2 representations: FD nCm�Ck� in RO.C4/ corresponds
to9D nCmC 2k�2 in RO.C2/. The correspondence of generators is

xea
D xu� .a�2

bC bc/; xeu
D xu�u�2

c; xe� D c2; xe� D xu�b2:

We can also express the map to homotopy fixed points in terms of our generators:

Proposition 5.2 There is a choice of the degree-1 element w in

khC4F.BC4
†2C/D khC4FŒw�

such that the localization map kF

C4
.BC4

†2C/! khC4F.BC4
†2C/ induced by k! kh and inverting u�

and u� is

eu
7! u�u�w; e� 7! u�w

2;

ea
7! u�u�w

3
Cu�a�w; e� 7! u�u�w

4
C a�u�w

3
Cu�a�w

2
C a�a�w:

Proposition 5.3 The module kF.BC4
†2C/ is not flat over kF.

Proof Let RD kF and M D kF.BC4
†2C/. Consider the map of RO.C4/–graded Mackey functors

f WR!†2���R given on top level by multiplication with a2
�=a�, and determined on the lower levels

by restricting (so it’s multiplication with vxu2
� on the middle level and 0 on the bottom level). If M is a

flat R–module then we have an exact sequence

0!M �R Ker.f /!M
f
�!†2���M:

Here,� is the box product of Mackey functors and�R is the corresponding box product over R–modules.
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The restriction functor Res4
2 from R–modules to Res4

2 R–modules is exact and symmetric monoidal, so
we replace M , R and Ker.f / by Res4

2 M , Res4
2 R and Res4

2 Ker.f /, respectively, and have an exact
sequence of C2 Mackey functors. Using the notation involving the C2 generators c and b, and writing
aD a�2

and uD u�2
, we have

M D
M
i�0

Rfb2i ; cb2iC1
g˚

M
i�0

Rfab2iC1;ub2iC1; acb2i ;ucb2i
g=�:

The map f maps each summand to itself, so we may replace M by Rfc; ab;ub; acb;ucbg=� and
continue to have the same exact sequence as above. The top level then is

0! .M �R Ker.f //.C2=C2/!M.C2=C2/
vxu2
���!M.C2=C2/

and v acts trivially on ab, ub, ac, uc, ie on M.C2=C2/, so we get

.M �R Ker.f //.C2=C2/DM.C2=C2/:

We compute from definition that .M �R Ker.f //.C2=C2/ is isomorphic to M.C2=C2/˝R.C2=C2/ I ,
where I WD Ker.R v

�!R/. But M.C2=C2/˝R.C2=C2/ I !M.C2=C2/ has image IM.C2=C2/ hence

IM.C2=C2/DM.C2=C2/:

This contradicts the fact that ab D e0�C1 is not divisible by any element of the ideal I (since e0�C1 is
only divisible by xu˙i

� 2R, which are not in I ).

This proof does not depend on the explicit computation of kF

C4
.BC4

†2C/ but rather on the fact that, while
k9

C2
.BC2

†2C/ is free over k9
C2

, where 9 2 RO.C2/, this is no longer the case when restricting 9 to
range over the image of RO.C4/! RO.C2/.

6 A cellular decomposition of BC4
†2

We denote the generators of C4 and †2 by g and h, respectively; let also � be the sign representation
of †2, and �D 1C � C� the regular representation of C4.

The graph subgroups of C4 �†2 are C4 D hgi, C2 D hg
2i, �D hghi, �0 D hg2hi and e.

Since �˝ � contains a trivial representation when restricted to any of these graph subgroups, we have a
model for the universal space

EC4
†2 D S.1.�˝ �//;

and BC4
†2 is RP1 with nontrivial C4 action

g.x1;x2;x3;x4; : : : /D .x1;�x2;�x4;x3; : : : /:
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S.1.�˝ �// is the space

S.1/D

�
.xn/ W finitely supported and

X
i

x2
i D 1

�
with C4 �†2 action

g.x1;x2;x3;x4;x5; : : : /D .x1;�x2;�x4;x3;x5; : : : /; h.x1;x2; : : : /D .�x1;�x2; : : : /:

We shall use the notation .x1; : : : ;xn/ for the point .x1; : : : ;xn; 0; 0; : : : / 2 S.1/. Moreover, the
subspace of S.1/C where only x1; : : : ;xn are allowed to be nonzero shall be denoted by f.x1; : : : ;xn/g.

We now describe a cellular decomposition of EC4
†2C where the orbits are C4 �†2C=H ^SV , where

V is a C4 representation.

� Start with f.x1/g the union of two points .1/; .�1/ and the basepoint. This is C4 �†2=C4C.

� f.x1/g includes in f.x1;x2/g D S.1C �/C. The cofiber is the wedge of two circles, corresponding to
x2 being positive or negative, and the action is

g.x1;C/D .x1;�/; h.x1;C/D .�x1;�/:

After applying the self-equivalence given by f .x1;C/D .x1;C/ and f .x1;�/D .�x1;�/, the action
becomes

g.x1;C/D .�x1;�/; h.x1;C/D .x1;�/:

This is exactly C4 �†2=�C ^S� .

� f.x1;x2/g includes in f.x1;x2;x3; 0/; .x1;x2; 0;x4/g. The cofiber is the wedge of four spheres
corresponding to the sign of the nonzero coordinate among the last two coordinates. If we number the
spheres from 1 to 4 and use .x;y/i coordinates to denote them for i D 1; 2; 3; 4 then

g.x;y/i D .x;�y/iC1; h.x;y/i D .�x;�y/iC2:

Applying the self-equivalence

f .x;y/1 D .x;y/1; f .x;y/2 D .�y;x/2; f .x;y/3 D .�x;�y/3; f .x;y/4 D .y;�x/4;

the action becomes g.x;y/i D .�y;x/iC1 and h.x;y/i D .x;y/iC2, ie we have C4 �†2=�
0
C ^S�.

� f.x1;x2;x3; 0/; .x1;x2; 0;x4/g includes in f.x1;x2;x3;x4/gDS.�˝�/ and the cofiber is the wedge
of four S3’s corresponding to the signs of x3;x4. Analogously to the item above, we get the space
C4 �†2=�

0
C ^S1C�.

� The process now repeats: f.x1;x2;x3;x4/g includes in f.x1;x2;x3;x4;x5/g and the cofiber is the
wedge of two S4’s corresponding to the sign of x5 and we get C4 �†2=C4C ^S1C�C�. And so on.

We get the decomposition of BC4
†2C where the associated graded is

gr4j D Sj�; gr4jC1 D Sj�C� ; gr4jC2 D†
j�C�C4=C2C; gr4jC3 D†

j�C1C�C4=C2C:

This filtration gives a spectral sequence of kF–modules converging to kF.BC4
†2C/, which we shall

analyze in the next section.
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6.1 A decomposition using trivial spheres

The cellular decomposition of BC4
†2 we just established consists of one cell in every dimension, where

by “cell” we mean a space of the form .C4=H /C ^SV for H a subgroup of C4 and V a real nonvirtual
C4–representation; let us call this a “type I” decomposition. It is also possible to obtain a decomposition
using only “trivial spheres”, namely with cells of the form .C4=H /C ^Sn; we shall refer to this as a
“type II” decomposition. A type I decomposition can be used to produce a type II decomposition by
replacing each type I cell .C4=H /C^SV with its type II decomposition. This is useful for computer-based
calculations, since type II decompositions lead to chain complexes as opposed to spectral sequences —
k�..C4=H /C^SV / is concentrated in a single degree if and only if V is trivial. Equipped with a type II
decomposition, the computer program of [2] can calculate the additive structure of kF.BC4

†2C/ in a
finite range (this can be helpful with our spectral sequence calculations: see Remark 7.8).

We note however that a minimal type I decomposition may expand to a nonminimal type II decomposition;
this is the case for BC4

†2, where the minimal type II decomposition uses 2dC3 cells in each dimension
d � 1, while the one obtained by expanding the type I decomposition uses 3dC3 cells in each dimension
d � 1. It is the minimal decomposition that we have used as input for the computer program of [2].

7 The spectral sequence for BC4
†2

Applying kF on the filtration of BC4
†2C gives a spectral sequence

E
V;s
1
D kV grs) kV BC4

†2C:

The differential dr has .V; s/ bidegree .1; r/ so it goes 1 unit to the right and r units up in .V; s/
coordinates.

Before we can write down the E1 page, we will need some notation. For a G–Mackey functor M

and subgroup H � G, let MG=H denote the G–Mackey functor defined on orbits as MG=H .G=K/ D

M.G=H �G=K/; the restriction, transfer and Weyl group action in MG=H are induced from those in M .
Equivalently, MG=H can be thought of as restricting M to an H Mackey functor and then inducing up to
a G–Mackey functor.

For G D C4 and H D C2, the bottom level of MC4=C2
is

MC4=C2
.C4=e/DM.C4=e�C4=C2/DM.C4=e/˚M.C4=e/DM.C4=e/fx;yg;

where x and y are used to distinguish the two copies of M.C4=e/, ie so that any element of MC4=C2
.C4=e/

can be uniquely written as mxCm0y for m;m0 2M.C4=e/. The Weyl group WC4
e D C4 acts as

g.mxCm0y/D .gm/.gx/C .gm0/.gy/D .gm/yC .gm0/x;

ie y D gx for a fixed generator g 2 C4.
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We can then describe MC4=C2
in terms of M and the computation of the restriction and transfer on x,

which are shown in the diagram

MC4=C2
D

M.C4=C2/fxCgxg

M.C4=C2/fx;gxg

M.C4=e/fx;gxg

m.xCgx/7!m.xCgx/ mx 7!m.xCgx/

mx 7!Res.m/x

C4=C2

mx 7!Tr.m/x

C4

where in each map, m is any element of the appropriate level M.C4=H /, with H � C4.

If M DR is a Green functor, then RC4=C2
is an R–module. Its top level, namely R.C4=C2/fxCgxg, is

an R.C4=C4/–module via extension of scalars along the restriction map Res4
2 WR.C4=C4/!R.C4=C2/.

7.1 The E1 page

The rows in the E1 page are

E
F;4j
1

D kF�j�; E
F;4jC1
1

D kF�j��� ;

E
F;4jC2
1

D .kF�j���/C4=C2
; E

F;4jC3
1

D .kF�j����1/C4=C2
:

We will write ej�, ej�C� , ej�C� and ej�C�C1 for the unit elements corresponding to the E1 terms above,
living in degrees V D j�; j�C �; j�C �; j�C �C 1 and filtrations s D 4j ; 4j C 1; 4j C 2; 4j C 3,
respectively. We also write xeV ; eV for their restrictions to the middle and bottom levels respectively. In
this way,

E
F;�
1
D kF

fej�; ej�C�
g˚ .kF/C4=C2

fej�C�; ej�C�C1
g;

and the three levels of the Mackey functor E
F;�
1

, from top to bottom, are

kF

C4
fej�; ej�C�

g˚ kF

C2
fej�C�.xCgx/; ej�C�C1.xCgx/g;

kF

C2
fxej�; xej�C�

g˚ kF

C2
fxej�C�x; xej�C�gx; xej�C�C1x; xej�C�C1gxg;

kF
e fe

j�; xe
j�C�
g˚ kF

e fxe
j�C�

x; ej�C�gx; xe
j�C�C1

x; ej�C�C1gxg:

For the top level, kF

C2
is a kF

C4
–module through the restriction Res4

2 W k
F

C4
! kF

C2
:

kF

C2
D

kF

C4
Œu�1
� �

a�
f1;
p
xa�xu�g:

It’s important to note that this is not a cyclic k
C4

F
–module.

At this point, the reader may want to look over pictures of the E1 page that we have included in Appendix A.
We will reference them in the following subsections.
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7.2 The d1 differentials

In this subsection, we explain how the d1 differentials on each level are computed. We shall need this
crucial remark.

Remark 7.1 The restriction of the C4 action on BC4
†2 to C2 � C4 results in a C2 space equivalent

to BC2
†2. The equivariant cohomology of this space is known from Section 4.1 and we shall use this

result to compute the middle level spectral sequence for BC4
†2. Further restricting to the trivial group

e � C4, we get the nonequivariant space RP1 and this will be used to compute the bottom level spectral
sequence.

Proposition 7.2 The nontrivial d1 differentials are generated by

d1.xej�C� /D vxu�xe
j�C�.xCgx/;

d1.ej�C� /D vxu�ej�C�.xCgx/;

d1.xej�C�x/D xej�C�C1.xCgx/:

Proof First of all, the bottom level spectral sequence is concentrated on the diagonal and the nontrivial
d1 differentials are kfx;gxg ! kfx;gxg, x 7! x C gx, since k�.RP1/ is k in every nonnegative
degree. See Figures 1, 2, 3, 4 and 5.

The d1 differentials on middle and top level are computed from the fact that they are kF–module maps,
hence determined on

ej�; ej�C� ; xu�i
�

p
xa�xu�

�
ej�C�C�0.xCgx/

for the top level (�; �0 D 0; 1), and on

xej�; xej�C� ; xej�C�x; xej�C�C1x

for the middle level. We remark that because kF

C2
is not a cyclic kF

C4
–module, it does not suffice to

compute the top level d1 on ej�; ej�C� ; ej�C�; ej�C�C1.

The d1 differentials from row 4j to row 4j C 1 are all determined by d1 W kej�! k1��ej�C� . Note
that k1�� is generated by 0 j xu�1

� j u
�1
� — this notation was defined in [2] and expresses the generators

of all three levels from top to bottom, separated by vertical columns. The d1 is trivial on bottom level,
and using the fact that it commutes with restriction we can see that it’s trivial in all levels. See Figure 1
and degrees V D 0; 1.

Similarly, the d1 differentials from row 4j C 1 to row 4j C 2 are all determined by d1 W kej�C� !

.k���C1/C4=C2
ej�C�. Note that .k���C1/C4=C2

is generated by

vxu� .xCgx/ j vxu� .x;gx/ j u�u�1
� .x;gx/:
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The differential is trivial on bottom level, but on middle level the C2 computation gives k�
C2
.BC4

†2C/D 0

forcing the differential to be nontrivial (the only other way to kill E
���C1;4jC2
1

.C4=C2/D k2 is for the
d1 differential from row 4j C2 to 4j C3 to be the identity k2! k2 on middle level, which can’t happen
as we show in the next paragraph). Thus

d1.xej�C� /D vxu�xe
j�C�.xCgx/ and d1.ej�C� /D vxu�ej�C�.xCgx/:

See Figure 2 and degrees V D �; � C 1.

The d1 differentials from row 4j C 2 to row 4j C 3 are determined by

d1
W kC4=C2

xu�i
� ej�C�

! kC4=C2
xu�i
� ej�C�C1;

d1
W kC4=C2

xu�i
�

p
xa�xu�ej�C�

! kC4=C2
xu�i
�

p
xa�xu�ej�C�C1:

On bottom level, these d1’s all are x 7! xCgx and the commutation with restriction and transfer gives

d1.xej�C�x/Dxej�C�C1.xCgx/; d1.xu�i
� ej�C�.xCgx//D 0; d1.xu�i

�

p
xa�xu�ej�C�.xCgx//D 0:

See Figure 3 and degrees V D �; �C 1.

Finally, the d1 differentials from row 4j C 3 to row 4j C 4 are determined by

d1
W kC4=C2

xu�i
� ej�C�C1

! k1��ej�C�; d1
W kC4=C2

xu�i
�

p
xa�xu�ej�C�C1

! k2��C�ej�C�:

These are trivial on the bottom level and by the commutation with restriction and transfer we can see that
they are trivial on all levels. See Figure 4 and degrees V D �� 1; �.

This settles the E1 page computation.

7.3 Bottom level computation

We can immediately conclude that the bottom level spectral sequence collapses in E2, giving a single k

in every RO.C4/ degree. Thus there are no extension problems and the C4 (Weyl group) action is trivial.

7.4 Middle level computation

By Remark 7.1 and comparing the description of the middle level E2 with that of kF

C2
.BC2

†2C/ of
Section 4.1 we can see that the middle level spectral sequence collapses on E2 DE1.

To go from E1 to kF

C4
.BC2

†2C/ we need to be able to choose unique lifts for the permanent cycles
when they are multiple candidates. To be consistent in our choices, we use the following rules.

7.4.1 Choosing unique lifts If we have a middle level element ˛ 2E
s;V
1 and the group E

t;V
1 vanishes

for t > s, then ˛ lifts uniquely to kF

C2
.BC4

†2C/. If on the other hand E
t;V
1 ¤ 0 for some t > s, then there

are multiple lifts of ˛. In that case, we pick the lift for which there are no exotic restrictions (if possible).
For example, if Res2

1.˛/D 0 in E1 and there is a unique lift ˇ of ˛ such that Res2
1.ˇ/D 0, then we use

ˇ as our lift of ˛.
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For the purposes of the following proposition let us temporarily write a b where b is the notation for
unique lift for a.

Proposition 7.3 There are unique lifts

xej� xej�; xu�xe
j�C�  xej ;u; xa�xe

j�C�  zej ;a;p
xa�xu�xe

j�C�  ej ;au; xej�C�.xCgx/ xej�C�; xej�C�C1x D xej�C�C1gx e0j�C�C1:

These lifts generate kF

C2
.BC4

†2C/ as a kF

C2
–module , and we have the relation

vxej�C�
D 0:

Proof We shall only explain a few of these, as most are immediate from Section 7.4.1 and the description
of the E2 page. The elements xui

�xe
j�C� don’t survive, but every other multiple of xej�C� does (since v

annihilates them). These multiples are generated (as a kF

C2
–module) by

xa�xe
j�C� ;

p
xa�xu�xe

j�C� ; xu�xe
j�C� :

Note that we don’t need to include elements involving vxej�C� , since
v

xai
�

p
xa�xu�

�
uk
�

xej�C�
D

v

xai
�

p
xa�xu�

�
ukC1
�

xu�xe
j�C� ;

where i; k � 0 and � D 0; 1.

For each j � 0, the element xa�xej�C� has two distinct lifts. On E1 we have that Res2
1.xa�xe

j�C� /D 0,
and on kF

C2
.BC4

†2C/ only one of the two lifts has trivial restriction.

Similarly, the elements
p
xa�xu�xe

j�C� have trivial restriction on E1 and unique lifts with trivial restriction
on kF

C2
.BC4

†2C/.

Remark 7.4 We should explain the notation used for the generators above. First, the elements xej ;u

and xej�C� will turn out to be the restrictions of top level elements ej ;u and ej�C� respectively, both
in E1 and in kF

C4
.BC4

†2C/, hence their notation. Second, the elements ej ;au and e0j�C�C1 are never
restrictions, neither in E1 nor in kF

C4
.BC4

†2C/, so their notation is rather ad hoc: the au in ej ;au serves
as a reminder of the

p
xa�xu� in ej ;auD

p
xa�xu�xe

j�C� , while the prime 0 in e0j�C�C1 is used to distinguish
them from the top level generators ej�C�C1 that the e0j�C�C1 transfer to. Finally, the elements zej ;a are
restrictions of top level elements ej ;a in E1, but not in kF

C4
.BC4

†2C/ due to nontrivial Mackey functor
extensions (exotic restrictions). That’s why we denote them by zej ;a as opposed to xej ;a; the xej ;a are
reserved for Res4

2.e
j ;a/D zej ;aC xu�e0j�C�C1; see Lemma 8.4.

For convenience, when j D 0 we write zea, eau and xeu in place of ze0;a, e0;au and xe0;u, respectively.

Now recall that kF

C2
.BC2

†2C/ is freely generated over kF

C2
under the elements ej�2 and ej�2C�2 ; see

Section 4.1. We shall write our middle level C4 generators in terms of the C2 generators.
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Proposition 7.5 We have

xej�
D xuj

�e2j�2 ; xej ;u
D xujC1

� u�2
e2j�2C�2 ;

ej ;au
D xujC1

� a�2
e2j�2C�2 ; zej ;a

D xujC1
� a�2

e.2jC1/�2 ;

xej�C�
D xuj

�a�2
e2j�2C�2 C xuj

�u�2
e.2jC1/�2 ; e0j�C�C1

D xuj
�e.2jC1/�2C�2 :

Proof The map f W EC4
†2 ! EC2

†2, f .x1;x2;x3;x4; : : : / D .x1;x3;x2;x4; : : : / is a C2�†2–
equivariant homeomorphism and induces a map on filtrations

S.1/ S.1C �/ X S.�/ � � �

S.1/ S.�2/ S.1C �2/ S.2�2/ � � �

(The downwards arrows are f while the arrows in the opposite direction are f �1.) To keep the notation
tidy, we verify the correspondence of generators for j D 0.

In the C4 spectral sequence, we have zeaxu�1
� and e0�C1 in degree �C1 and filtrations 1 and 3, respectively.

In the C2 spectral sequence, we have a�2
e�2C1 and e2�2C1 in the same degree and filtrations 2 and 3,

respectively. The correspondence of filtrations gives

e0�C1
D e2�2C1 and zea

xu�1
� D a�2

e�2C1
C �e2�2C1;

where �D 0; 1. Applying restriction on the second equation reveals that �D 0 and thus zeaxu�1
� Da�2

e�2C1.
The correspondence of filtrations in degrees �� 1 and � gives

xeu
xu�1
� D �1a�2

u�2
Cu�2

e�2 ; eau
xu�1
� D �2a�2

e�2 C �3u�2
e�2C1; xe� D �4a�2

e�2 C �5u�2
e�2C1;

where �i D 0; 1. Applying restriction shows that

�3 D 0 and �5 D 1;

which further forces �2 D 1. Looking at degree 2�C � � 2 in the C4 spectral sequence, we see that we
have a relation

xa�xe
u
D xu�ze

a
C �6

p
xa�xu�xu�xe

�
C �7xu� xu�e0�C1;

where again �i D 0; 1. Combining the equations above we conclude that

xa�xe
u
D xu�ze

a
C
p
xa�xu�xu�xe

�;

and

xeu
xu�1
� D u�2

e�2 ; eau
xu�1
� D a�2

e�2 ; xe� D a�2
e�2 Cu�2

e�2C1:

To compute the �i we used the freeness of kF

C2
.BC2

†2C/ over kF

C2
.
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As a corollary we obtain the relations

xu�ze
j ;a
D xa�xe

j ;u
C
p
xa�xu�xu�xe

j�C�;

xu�ej ;au
D
p
xa�xu�xe

j ;u;p
xa�xu�ej ;au

D xa�xe
j ;u;

xa�ej ;au
D
p
xa�xu�ze

j ;a
Cxa�xu�xe

j�C�;

v

xai
�

xej�C�
D 0:

Thus, kF

C2
.BC4

†2C/ is spanned as a kF

C2
–module by xej�, zej ;a, ej ;au, xej ;u, xej�C� and e0j�C�C1 under the

relations above. The bottom level kF
e .BC4

†2C/ is free on the restrictions of xej�, xej ;u, xej�C� and
e0j�C�C1.

The C4=C2 (Weyl group) action is trivial: the only extensions that may arise are gzej ;aDzej ;aC�e0j�C�C1

and gej ;au D ej ;auC �0xej�C� where �; �0 D 0; 1; applying restriction shows that � D �0 D 0.

The cup product structure can be understood in terms of the C2 generators c and b of Section 4.1. As an
algebra, kF

C2
.BC4

†2C/ is generated by zea, eau, xeu, xe�, e0�C1 and xe� under multiplicative relations that
are implied by the correspondence of generators:

e� D xu�b2; zea
D xu�a�2

b; eau
D xu�a�2

c;

xeu
D xu�u�2

c; xe� D c2
D a�2

cCu�2
b; e0�C1

D cb:

Remark 7.6 The reader may notice that this description of the middle level kF

C2
.BC4

†2C/ is rather
different from the one given in Proposition 5.1. Let us now explain this discrepancy. First, the relation

xu�eau
D
p
xa�xu�xe

u

allows us to replace eau by the quotient p
xa�xu�xe

u

xu�
;

which is why eau does not appear in Proposition 5.1 but .
p
xa�xu�xe

u/=xu� does. Second, in Lemma 8.4,
we shall see that zeaC xu�e0�C1 is the restriction of a top level generator ea, which we denote by xea. We
can replace the generator zea by the element xea and get the relation

xu� xu�e0�C1
D xu�xe

a
Cxa�xe

u
C
p
xa�xu�xu�xe

�:

Thus we can replace the generator e0�C1 by the quotient

xu�1
� xa�xe

uC
p
xa�xu�xe

�

xu�
;

which is what we do in the description of the middle level kF

C2
.BC4

†2C/ found in Proposition 5.1.
For our convenience, we shall continue to use the generators zej ;a, ej ;au and e0j�C�C1 in the following
subsections, instead of their replacements.
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7.5 Top level differentials

In this subsection, we compute the top level of the E1 page.

From Section 7.2, we know that (the top level of) the E2 page is generated by

ej�; ˛ej�C� ; xu�i
�

p
xa�xu�

�
ej�C�C�0 ;

where i; j � 0, �; �0 D 0; 1 and ˛ 2 Ker.kC4

F

Res4
2

���! k
C2

F

v
�! k

C2

F
/. We also have the relation

vej�C�
D 0:

For degree reasons, the elements ej� survive the spectral sequence.

The elements xu�i
� ej�C�C1 and xu�i

�

p
xa�xu�ej�C�C1 are transfers, hence also survive (by the middle level

computation of Section 7.4).

If ˛ 2 k
C4

F
is a transfer then so are the elements ˛ej�C� and thus they survive. The elements ˛ 2

kF

C4
n fum

� , m� 0g that are not transfers can be broken into three categories:

� multiples of a�,

� multiples of u�=u
i
� ,

� a�ui
� .

Proposition 7.7 The elements a�ej�C� survive the spectral sequence , while the elements a�ui
�ej�C�

support nontrivial differentials

d2.a�ui
�ej�C� /D vxuiC2

� ej�C�C1 for i; j � 0:

Proof The elements a�ej�C� can only support d3.a�ej�C� /D e.jC1/� and applying restriction shows
that this cannot happen.

Fix j � 0. For degree reasons, the only differential a�ej�C� can support is d2.a�ej�C� /D vxu2
�ej�C�C1.

If a�ej�C� survives then it lifts to a unique element ˛ of k
j�C2�
C4

.BC4
†2C/, while a�ej�C� has two

possible lifts to k
j�C2�
C4

.BC4
†2C/ that differ by Tr4

2.u�e0j�C�C1/. Both lifts have the same restriction,
which by Lemma 8.4 is computed to be zej ;aC xu�e0j�C�C1 (the proof of the lemma works regardless of
the survival of a�ej�C� ). Now one of those lifts, that we shall call ˇ, satisfies

a2
�

a�
ˇ D a�˛

in k
j�C3�
C4

.BC4
†2C/. Applying Res4

2 gives that

Res4
2

�
a2
�

a�

�
Res4

2.ˇ/D 0D) vxu2
� .ze

j ;a
C xu�e0j�C�C1/D 0D) vxu3

�e0j�C�C1
D 0;

which contradicts the computation of the module structure of the middle level.

This differential is depicted by a dashed arrow in Figure 5, top. It does not appear in Figure 5 center and
bottom.
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Remark 7.8 The nonsurvival of a�e� is consistent with the computation that k2�
C4

has dimension 1

(spanned by a2
�e0) by the computer program of [2].

All the other elements of E2 survive the spectral sequence:

Proposition 7.9 The elements .u�=ui
� /e

j�C� , xu�i
� ej�C� and xu�i

�

p
xa�xu�ej�C� survive the spectral

sequence for i; j � 0.

Proof We work page by page. On E2 we have

d2.xu�i
� ej�C�/D �1

�

a�ui�2
�

e.jC1/�; d2.xu�i
�

p
xa�xu�ej�C�/D �2

�

a2
�ui�3
�

a�e.jC1/�
C�3

u�

uiC1
�

e.jC1/�;

where �i D 0; 1. Multiplying by a� and using that a� xu
�i
� ej�C� D 0 and that a� xu

�i
�

p
xa�xu�ej�C�

D 0

shows that �1 D �2 D �3 D 0.

On E3 we have
d3.xu�i

� ej�C�/D �1

�

a2
�ui�2
�

e.jC1/�C� ;

d3.xu�i
�

p
xa�xu�ej�C�/D �2

�

a3
�ui�3
�

a�e.jC1/�C� ;

d3

�
u�

ui
�

ej�C�

�
D �3

�

a2
�ui�4
�

e.jC1/�;

where again �i D 0; 1. We see that �1 D �2 D 0 by multiplication with a� , while �3 D 0 can be seen by
multiplying with a2

� .

The pattern of higher differentials is the same as in E2 and E3, and the same arguments show that there
are no higher differentials.

In conclusion:

Corollary 7.10 The E1 page is generated as a kF

C4
–module by

ej�; a�ej�C� ; .u�=u
i
� /e

j�C� ; xu�i
�

p
xa�xu�

�
ej�C�C�0 ;

where i; j � 0 and �; �0 D 0; 1. We have relations

vxu�ej�C�
D vxu2

�ej�C�C1
D 0:

8 Lifts and extension problems

8.1 Coherent lifts

If we have a top level element ˛2E
s;V
1 and E

t;V
1 vanishes for t > s, then ˛ lifts uniquely to kF

C4
.BC4

†2C/.
If on the other hand E

t;V
1 does not vanish for some t > s, then there are multiple choices of lifts of ˛.
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When it comes to fractions y=x, we should make sure our choices of lifts are “coherent”. Let us explain
what that means with an example. The element u�e� has a unique lift x0, while .u�=ui

� /e
� has multiple

distinct lifts if i � 5. If we choose xi to lift .u�=ui
� /e

� then it will always be true that ui
�xi D x0;

however, we shouldn’t write xi D x0=u
i
� unless we can also guarantee that

u�xi D xi�1:

This expresses the coherence of fractions (also discussed in Section 3.2 and Appendix B) which is the
cancellation property,

u�
u�

ui
�

e� D
u�

ui�1
�

e� :

This holds on E1, and we also want it to hold on kF

C4
.BC4

†2C/.

One more property enjoyed by the .u�=ui
� /e

� is that a2
� .u�=u

i
� /e

� D 0; it turns out that there are unique
lifts xi of .u�=ui

� /e
� such that a2

�xi D 0, and those lifts also satisfy the coherence property u�xi D xi�1:

Proposition 8.1 For i; j �0, there are unique lifts ej ;u=ui
� and ej�C�=ui

� of the elements .u�=ui
� /e

j�C�

and xu�i
� ej�C�, respectively, that satisfy

a2
�

ej ;u

ui
�

D 0 and a2
�

ej�C�

ui
�

D 0:

These lifts are also coherent.

Proof Fix i; j � 0. We first deal with lifts of .u�=ui
� /e

j�C� .

� Existence FixF to be the RO.C4/ degree of .u�=ui
� /e

j�C� and write F s for the decreasing filtration
on kF

C4
.BC4

†2C/ defining the spectral sequence, namely

Es;F
1 D F s=F sC1:

We start with any random lift ˛0 2 F4jC1 of .u�=ui
� /e

j�C� ; if a2
�˛0 D 0 then we are done. Otherwise

take s0 maximal with a2
�˛0 2F s0 ; since a2

� .u�=u
i
� /e

j�C� D 0 we have s0 > 4j C1. In fact s0 > 4j C2

since E4jC2;F D 0.

We now prove that s0 > 4j C 3: E4jC3;F is spanned by xu3�i
� ej�C�C1 so we need to investigate the

possibility a2
�˛ D xu

3�i
� ej�C�C1 on E4jC3;F. Multiplying by ui

� reduces us to the case i D 0, where
ui
�˛ is the unique lift of u�ej�C� . But we can see directly that .a2

�=a�/u
i
�˛ D 0 for degree reasons,

hence a2
�ui
�˛ D 0 as well.

As s0 > 4j C 3, we can see directly that F s0=F s0C1 D E
s0;F
1 is generated by an element ˇeV where

ˇ 2kF�V
C4

is divisible by a2
� . If ˛0 2F s0 is a lift of .ˇ=a2

� /e
V then ˛1D˛0C˛

0 is a lift of .u�=ui
� /e

j�C� .
If a2

�˛1 D 0 then we are done, otherwise a2
�˛1 2 F s1 for s1 > s0 so we get ˛2 by the same argument as

above. Since F s D 0 for large enough s, this inductive process will eventually end with the desired lift.
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� Uniqueness If ˛ and ˛0 are two lifts of .u�=ui
� /e

j�C� , then their difference is a finite sum p of
elements ˇ0eV , where each ˇ0 2 kF

C4
is a fraction with a2

� in its denominator. If a2
�˛ D a2

�˛
0 D 0 then

a2
�p D 0D) a2

�ˇ
0 D 0D) ˇ0 D 0D) p D 0.

� Coherence Unfix i and let xi be the lift of .u�=ui
� /e

j�C� with a2
�xi D 0. Then u�xi is a lift of

.u�=u
i�1
� /ej�C� and a2

� .u�xi/D 0, hence by uniqueness,

u�xi D xi�1:

The case of xu�i
� ej�C� is near identical to what we did above for .u�=ui

� /e
j�C� . The changes are as

follows. First, s0 > 4j C 2 (instead of s0 > 4j C 1). Next, we can see that s0 > 4j C 4 if i > 1, and
multiplying by u� also proves the i D 0; 1 cases (this replaces the argument that showed s0 > 4j C 3).
The rest of the arguments are identical.

8.2 Top-level generators

The elements ej� have unique lifts to kF

C4
.BC4

†2C/, which we continue to denote by ej�.

On the other hand, for each j � 0 there are two possible lifts of a�ej�C� . There is no good way to make
a unique choice at this point, so we shall write ej ;a for either.

In this subsection we shall prove:

Proposition 8.2 The kF

C4
–module kF

C4
.BC4

†2C/ is generated by

ej�; ej ;a;
ej ;u

ui
�

;
ej�C�

ui
�

; where i; j � 0:

By Corollary 7.10 it suffices to prove that the kF

C4
–module generated by the elements ej�, ej ;a, ej ;u=ui

�

and ej�C�=ui
� contains lifts of the elements

xu�i
� ej�C�C1;

p
xa�xu�xu

�i
� ej�C�;

p
xa�xu�xu

�i
� ej�C�C1

2E1:

Lemma 8.3 The elements
ej�C�C1

ui
�

WD Tr4
2.xu
�i
� e0j�C�C1/

are coherent lifts of xu�i
� ej�C�C1 2E1. Furthermore ,

a�
ej�C�

ui
�

D
ej�C�C1

ui�1
�

:

Proof We see directly that Tr4
2.xu
�i
� e0j�C�C1/ lift xu�i

� ej�C�C1 and coherence follows from the Frobenius
relations.

Algebraic & Geometric Topology, Volume 24 (2024)



302 Nick Georgakopoulos

Next, we see directly from the E1 page that ej�C� is not in the image of the transfer Tr4
2. Since

Ker.a� /D Im.Tr4
2/ in kF

C4
.BC4

†2C/, we must have a module extension of the form

a�ej�C�
D u�ej�C�C1:

By Proposition 8.1, a2
�ej�C�=ui

� D 0, hence a�ej�C�=ui
� is a transfer. The equation above shows

that a�ej�C�=ui
� ¤ 0, and the only way a�ej�C�=ui

� can be a nonzero transfer is for a�ej�C�=ui
� D

Tr4
2.xu
�iC1
� e0j�C�C1/.

Before we can lift the rest of the E1 generators, we will need the following exotic restriction:

Lemma 8.4 Both choices of ej ;a have the same (exotic) restriction

Res4
2.e

j ;a/D zej ;a
C xu�e0j�C�C1:

Proof The two choices of ej ;a differ by u�ej�C�C1DTr4
2.xu�e0j�C�C1/ hence have the same restriction.

From the E1 page,
Res4

2.e
j ;a/D zej ;a

C �xu�e0j�C�C1;

where � D 0; 1. Transferring this gives

Tr4
2.ze

j ;a/D �u�ej�C�C1:

Now transferring the middle level relation

xu�ze
j ;a
D xa�xe

j ;u
C
p
xa�xu�xu�xe

j�C�

shows that
u� Tr4

2.ze
j ;a/D a�u�ej�C�

and thus Tr4
2.ze

j ;a/¤ 0, which proves � D 1.

Lemma 8.5 The elements
e

j�C�
p

ui
�

WD
u�

uiC1
�

ej ;a
C a�

ej ;u

uiC1
�

are coherent lifts of xu�i
�

p
xa�xu�ej�C� 2E1.

Proof Fix i; j � 0 and fixF to be the degree of the element

u�

ui
�

ej ;a
C a�

ej ;u

ui
�

:

This element is by definition in filtration 4j C 1, however its projection to E
4jC1;F
1 is

u�

ui
�

a�ej�C�
C a�

u�

ui
�

ej�C�
D 0;
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so it is actually in filtration 4j C 2. But observe that E
4jC2;F
1 is generated by xu�iC1

�

p
xa�xu�ej�C�, so it

suffices to check that
u�

ui
�

ej ;a
C a�

ej ;u

ui
�

is not 0 when projected to E
4jC2;F
1 . Multiplying by ui

� reduces us to the case i D 0, and then

Res4
2.u�ej ;a

C a�ej ;u/D xu�ze
j ;a
C xu� xu�e0j�C�C1

Cxa�xe
j ;u

D xu�
p
xa�xu�xe

j�C�
C xu� xu�e0j�C�C1

using Lemma 8.4 and the middle level computation of Section 7.4. Projecting this restriction to E
4jC2;F
1

returns
xu�
p
xa�xu�xe

j�C�
¤ 0;

as desired.

Coherence of e
j�C�
p =ui

� follows from the coherence of u�=u
i
� and ej ;u=ui

� .

Lemma 8.6 The elements

e
j�C�C1
p

ui
�

WD Tr4
2.xu
�i
�

p
xa�xu�e0j�C�C1/

are coherent lifts of xu�i
�

p
xa�xu�ej�C�C1

2E1. Furthermore ,

a�
e

j�C�
p

ui
�

D
e

j�C�C1
p

ui�1
�

:

Proof The fact that these transfers are lifts follows from the E1 page; coherence follows from the
Frobenius relations. We check the equality directly:

a�
e

j�C�
p

ui
�

D
a�u�

uiC1
�

ej ;a
C a�

a�ej ;u

uiC1
�

D Tr4
2.xu
�i
�

p
xa�xu�/e

j ;a
C a� Tr4

2.e
j ;au
xu�i
� /

D Tr4
2.xu
�i
�

p
xa�xu�ze

j ;a
C
p
xa�xu�xu

�iC1
� e0j�C�C1

Cxa�ej ;au
xu�i
� /

D Tr4
2.xa�xu

�iC1
� xej�C�

C
p
xa�xu�xu

�iC1
� e0j�C�C1/

D Tr4
2.
p
xa�xu�xu

�iC1
� e0j�C�C1/

D
e

j�C�C1
p

ui�1
�

:

We used the middle level relation xa�ej ;au D
p
xa�xu�ze

j ;aCxa�xu�xe
j�C� and the fact that xu�i

� xe
j�C� is the

restriction of ej�C�=ui
� , which follows from the same fact on E1.

Lemmas 8.3, 8.5 and 8.6 combined with Corollary 7.10 prove Proposition 8.2.
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8.3 Mackey functor structure

Proposition 8.7 The Mackey functor structure of kF.BC4
†2C/ is determined by

Res4
2.e

j�/D xej�; Res4
2

�
ej ;u

ui
�

�
D xej ;u

xu�i
� ; Res4

2

�
ej�C�

ui
�

�
D xej�C�

xu�i
� ;

Tr4
2.e

j ;au
xu�i
� /D a�

ej ;u

uiC1
�

; Tr4
2.e
0j�C�C1

xu�i
� /D a�

ej�C�

uiC1
�

; Res4
2.e

j ;a/D zej ;a
C xu�e0j�C�C1;

where i; j � 0.

Proof We can see directly that there are no Mackey functor extensions for ej�, ej ;u=ui
� and ej�C�=ui

� .
The rest were established in the previous two subsections, apart from

Tr4
2.e

j ;au
xu�i
� /D a�

ej ;u

uiC1
�

:

To see this, recall that a2
� .e

j ;u=ui
� /D 0, hence a� .e

j ;u=ui
� / is a transfer. Moreover, a� .e

j ;u=ui
� /¤ 0,

which is seen on the E1 page, and the only way that a� .e
j ;u=ui

� / can be a nonzero transfer is for
a� .e

j ;u=ui
� /D Tr4

2.e
j ;auxu�i

� /.

We did not list Tr4
2.ze

j ;a/D a�ej�C� as this immediately follows by applying Tr4
2 on

Res4
2.e

j ;a/D zej ;a
C xu�e0j�C�C1:

8.4 Top level module relations

With the exception of relations expressing coherence (ie u� .e
j ;u=ui

� /D ej ;u=ui�1
� and u� .e

j�C�=ui
� /D

ej�C�=ui�1
� ), the rest of the module relations are given as follows.

Proposition 8.8 The kF

C4
–module kF

C4
.BC4

†2C/ is generated by

ej�; ej ;a;
ej ;u

ui
�

;
ej�C�

ui
�

;

under the relations

a2
�

am
�

ej ;u

ui
�

D 0 and
.�=a�/a�

ui�2
� am�1

�

ej ;a
C

s

ui�1
� am�2

�

ej ;u
D

a2
�

am
�

ej�C�

ui
�

for i; j ;m� 0.

Proof For m> 0, we have the possible extensions

a2
�

am
�

ej ;u

ui
�

D

X
�

��
�

a��u��a�
�

e��C�;
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where each � denotes a nonnegative index (with different instances of � being possibly different indices)
and each �� D 0; 1. Thus, multiplication by a� is an isomorphism for both sides — recall that a� acts
invertibly on elements of the form �=.a��u�� / and a2

� — which reduces us to mD 1. For mD 1 and i > 0

there are no extensions as there are no elements of the degree of .a2
�=a�/.e

j ;u=ui
� / in the right-hand side;

in other words, �� D 0 for all �. This establishes

a2
�

am
�

ej ;u

ui
�

D 0:

Similarly, if m> 0, we have the possible extensions

a2
�

am
�

ej�C�

ui
�

D
s

ui�2
� am�1

�

e
j�C�
p C

X
�

��
�

a��u��a�
�

e��C�;

and multiplying with am
�

reduces us to

a2
�

ej�C�

ui
�

D

X
�

��
�

a��u��a��m
�

e��C�:

But
a2
�

ej�C�

ui
�

D a�
ej�C�C1

ui�1
�

D a� Tr4
2.e
0j�C�C1

xu�iC1
� /D 0;

hence �� D 0 for all �. Thus
a2
�

am
�

ej�C�

ui
�

D
s

ui�2
� am�1

�

e
j�C�
p ;

and substituting
e

j�C�
p D

u�

u�
ej ;a
C a�

ej ;u

u�

gives the desired relation. For i DmD 1 we get .a2
�=a�/.e

j�C�C1=u� /D 0.

As special cases, for i; j ;m� 0 we get the relations

a2
�

ej�C�

ui
�

D 0;
a2
�

a�

ej�C�

u�
D 0;

�
a�

a�

ui
�

ej ;a
D

a2
�

a�

ej�C�

uiC2
�

;
s

am
�

ej ;u
D

a2
�

amC2
�

ej�C�

u�
:

8.5 Top level cup products

Proposition 8.9 As a kF

C4
algebra , kF

C4
.BC4

†2C/ is generated by ea, eu=ui
� , e�=ui

� and e�.

Proof First of all, ej� D .e�/j since there are no extensions in degree j� (to see that .e�/j ¤ 0, apply
restriction). Let A be the algebra span of ea, eu=ui

� , e�=ui
� and e�. To see that ej ;a 2A observe

ej�ea
D �a�a�ej�

C ej ;a
C �0u�ej�C�C1;

and since
ej�C�C1

D Tr4
2.e
0j�C�C1/D Tr4

2.e
j�e0�C1/D ej�e�C1;

we get that ej ;a 2A regardless of the status of � and �0.
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Now suppose by induction that all elements in filtration � 4j are in A. We have that

ej� eu

ui
�

D � � �C
ej ;u

ui
�

C

X
��

�

a��u��a�
�

e��C
X

�0�
�

a��u��a�
�

e�;a;

where � � � are in filtration < 4j C 1, hence in A. Since e��; e�;a 2A for any � � 0, we get ej ;u=ui
� 2A.

This establishes that everything in filtration � 4j C 1 is in A.

Finally,
ej� e�

ui
�

D � � �C
ej�C�

ui
�

C

X
��

�

a��u��a�
�

e��C
X

�0�
�

a��u��a�
�

e�;a;

where � � � are in filtration < 4j C 2, so by the same argument ej�C�=ui
� 2A as well. This completes the

induction step.

Inverting u� and u� gives
khC4FŒe�; ea; eu; e��

modulo relations, which is isomorphic to

khC4F.BC4
†2C/D kŒa� ; a�;u

˙
� ;u

˙
� ; w�=a

2
� ; where jwj D 1:

There are two possible choices for w, differing by a�u�1
� , but both work equally well for the following

arguments.

Proposition 8.10 After potentially replacing the generators ea, eu=ui
� and e�=ui

� with algebra generators
in the same degrees of kF

C4
.BC4

†2C/ and satisfying the same already established relations , the localization
map

kF

C4
.BC4

†2C/! khC4F.BC4
†2C/

is given by

eu
7! u�u�w; e� 7! u�w

2;

ea
7! u�u�w

3
Cu�a�w; e� 7! u�u�w

4
C a�u�w

3
Cu�a�w

2
C a�a�w:

Proof Using the C2 result (see Section 4.1), we have the correspondence on the middle level generators:

� xeu 7! xu� xu�w,

� e� 7! xu�w
2,

� Res4
2.e

a/ 7! xu� .xu�w
3Cxa�w/,

� xe� 7! xu� .xa�w
2C xu�w

4/,

from which we can deduce that the correspondence on top level is

� eu 7! u�u�wC �1a�u�,

� e� 7! u�w
2C �2a�u�1

� u�w,

� ea 7! u�u�w
3C �3a�u�w

2Cu�a�w,

� e� 7! u�u�w
4C �4a�u�w

3Cu�a�w
2C �5a�a�w,

where the �i range in 0; 1.
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We may add �1a�u�=u
i
� to eu=ui

� to force �1 D 0; we may add �2a�eu=uiC2
� to e�=ui

� to force �2 D 0,
and we may add �3a�e� to ea to force �3 D 0.

It remains to prove that �4 D �5 D 1. This is a computation based on the Bockstein homomorphism
ˇ W kF

C4
.X /! kFC1

C4
.X /. For X D S0 we have

ˇ.a� /D ˇ.a�/D ˇ.u�/D 0 and ˇ.u� /D a� :

For X DBC4
†2C, we see that ˇ.e�/D 0 for degree reasons (k�C1

C4
.BC4

†2C/D 0) and in the homotopy
fixed points, ˇ.w/Dw2 and ˇ.w3/Dw4. Thus, applying ˇ on e� 7!u�u�w

4C�4a�u�w
3Cu�a�w

2C

�5a�a�w shows that �4 D �5 D 1.

Proposition 8.11 In kF

C4
.BC4

†2C/ we have the multiplicative relations

eu

ui
�

eu

u
j
�

D
u�

u
iCj�2
�

e�;
e�

ui
�

eu

u
j
�

D
u�

u
iCj
�

ea
C a�

eu

u
iCj
�

;

ea eu

ui
�

D
u�

ui�1
�

e�C a�
u�

ui
�

ea;
e�

ui
�

e�

u
j
�

D
u�

u
iCjC1
�

e�C a�
u�

u
iCjC2
�

ea
C a�

e�

u
iCj
�

;

ea e�

ui
�

D
eu

uiC1
�

e�C a�
u�

uiC1
�

e�; .ea/2 D u�e�e�C a�
eu

u�
e�Cu�a�e�C a�a�ea:

Proof First,
eu

ui
�

eu

u
j
�

D �0a�
u�

u
iCj�2
�

C �1a�
u�

u
iCj
�

eu
C �2

u�

u
iCj�2
�

e�C � � � ;

where �i D 0; 1 and � � � is the sum of elements mapping to 0 in homotopy fixed points, but all having
denominator a2

� . Mapping to homotopy fixed points shows �0 D �1 D 0 and �2 D 1, while multiplying by
a2
� trivializes the LHS (by a2

� .e
u=ui

� /D 0) and thus shows that � � � D 0.

The same argument applied to

e�

ui
�

eu

u
j
�

D �0

�a2
�

a�u
iCj�2
�

C �1a�a�
u�

u
iCj
�

C �2a�
eu

u
iCj
�

C �3

u�

u
iCj
�

ea
C �4a�

u�

u
iCj
�

e�C � � �

shows that
e�

ui
�

eu

u
j
�

D �0

�a2
�

a�u
iCj�2
�

C a�
eu

u
iCj
�

C
u�

u
iCj
�

ea:

There are two ways to show that �0D 0: the first is to multiply with a�u
iCj�2
� and compute a�e�.eu=u2

� /

using a�e� D Tr4
2.e
0�C1/ together with the Frobenius relation and our knowledge of the multiplicative

structure of the middle level from Section 7.4. The alternative is to observe that in the spectral sequence,
if a and b live in filtrations � n then so does ab. Before the modifications to the generators done in the
proof of Proposition 8.10, eu=ui

� ; e
a were in filtration � 1 and e�=ui

� were in filtration � 2. Thus, with
the original generators, the extension for e�eu=u2

� does not involve the filtration 0 term a2
�
�=a� . This

is true even after performing the modifications prescribed in the proof of Proposition 8.10, since said
modifications never involve terms with � . Thus �0 D 0.
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Similarly we have

ea eu

ui
�

D �0

�a2
�

ui�4
�

C �1

�a�

a�ui�3
�

ea
C �2a�a�

eu

ui
�

C �3a�
u�

ui
�

ea
C �4a�

e�

ui�2
�

C �5

u�

ui�1
�

e�C � � �

for i � 3, and mapping to homotopy fixed points and multiplying by a2
� shows that

ea eu

ui
�

D �0

�a2
�

ui�4
�

C �1

�a�

a�ui�3
�

ea
C a�

u�

ui
�

ea
C

u�

ui�1
�

e�:

Multiplying by a� and using that a� .e
u=ui

� /D Tr4
2.e

auxu�i
� / shows that �1 D 0. To show �0 D 0, we use

the filtration argument above.

These arguments also work with

e�

ui
�

e�

u
j
�

D �0

�a2
�

u
iCj�2
�

C �1

�a�

a�u
iCj�2
�

ea
C �2a�a�

eu

u
iCj�2
�

C �3a�
u�

u
iCjC2
�

ea
C �4a�

e�

u
iCj
�

C �5

u�

u
iCjC1
�

e�C � � � ;

ea e�

ui
�

D �6

�a�

a�ui�2
�

ea
C �7a�a�

e�

ui�1
�

C �8

a�u�

uiC1
�

e�C �9

�a

a�a�ui�3
�

e�C �10

u�

uiC1
�

e�eu
C � � � ;

.ea/2 D �11a2
�a2
�C �12a�a�ea

C �13u�a�e�C �14a�
eu

u�
e�C �16u�e�e�;

to complete the proof.

We also have the nontrivial Bockstein
ˇ.eu=u� /D e�:

Appendix A Pictures of the spectral sequence

In this appendix, we have included 15 pictures of the E1 page of the spectral sequence from Section 7.
On each page, the three levels of the spectral sequence are drawn in three separate figures from top to
bottom, using .V; s/ coordinates. For notational simplicity and due to limited space, we suppress the eV ’s
and x;gx’s from the generators. The eV ’s can be recovered by looking at the filtration s (e.g. in filtration
s D 4j we get ej�) and to denote the presence of 2–dimensional vector spaces kfx;gxg we write k2

next to each generator. This k2 is actually a kŒC4=C2� when considering the C4 action; we only write k2

in the diagrams as it is shorter, which helps with alignment.

For example, in Figure 1, top, there is an element x0;1=u
2
� in coordinates .5; 5/. This represents the fact

that the top level of E
5;5
1

is generated by .x0;1=u
2
� /e

�C� . In Figure 1, center, we have vxu�2
� in the same
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0 1 2 3 4 5 6

0

1

2

3

4

5

6

1

0

v

v

x0;1

a�

x0;1

u�

�

a�

x0;1

a�u�

x0;1

u2
�

v

xa�
xu�1
� xsxu�1

�

v

xu�
xu�1
�

0 1 2 3 4 5 6

0

1

2

3

4

5

6

1

xu�1
�

vk2

vk2

vxu�1
�

vxu�2
�

v

xa�
xu�1
� k2

xsxu�1
� k2

v

xu�
xu�1
� k2

0 1 2 3 4 5 6

0

1

2

3

4

5

6

1

u�1
�

u�1
�

k2

u�1
�

k2

u�1
� u�2

�

u�2
� u�1

�

u�1
� u�2

�
k2

Figure 1: Top: E
�;s
1 .C4=C4/, � 2 Z. Center: E

�;s
1 .C4=C2/, � 2 Z. Bottom: E

�;s
1 .C4=e/, � 2 Z.
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� � 1 � � C 1 � C 2 � C 3 � C 4 � C 5

0

1

2

3

4

5

6

u� a�

1

vxu�

vxu�

x0;1

x0;1

a�

x0;1

u�

v

xa�
xs

v

xu�

� � 1 � � C 1 � C 2 � C 3 � C 4 � C 5

0

1

2

3

4

5

6

xu�

1

vxu�k2

vxu�k2

v

vxu�1
�

v

xa�
k2

xsk2
v

xu�
k2

� � 1 � � C 1 � C 2 � C 3 � C 4 � C 5

0

1

2

3

4

5

6

u�

1

u�u�1
�

k2

u�u�1
�

k2

u�1
�

u�1
� u�1

�

u�2
�

k2

Figure 2: Top: E
�C�;s
1

.C4=C4/, �2Z. Center: E
�C�;s
1

.C4=C2/, �2Z. Bottom: E
�C�;s
1

.C4=e/,
� 2 Z.
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�� 2 �� 1 � �C 1 �C 2 �C 3 �C 4

0

1

2

3

4

5

6

u�
a�u�

u�
a�

u�

u�

a�u�

u2
�

1

1

0

�

vxu�1
�

�� 2 �� 1 � �C 1 �C 2 �C 3 �C 4

0

1

2

3

4

5

6

xu�
p
xa�xu� xa�

xu�xu
�1
�

p
xa�xu�xu

�1
� xa�xu

�1
�

1k2

1k2

xu�1
�

xu�2
�

vxu�1
� k2

�� 2 �� 1 � �C 1 �C 2 �C 3 �C 4

0

1

2

3

4

5

6

u�

u�u�1
�

1k2

1k2

u�1
�

u�2
�

u�1
� u�1

�
k2

Figure 3: Top: E
�C�;s
1

.C4=C4/, �2Z. Center: E
�C�;s
1

.C4=C2/, �2Z. Bottom: E
�C�;s
1

.C4=e/,
� 2 Z.
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�� 4 �� 3 �� 2 �� 1 � �C 1 �C 2

0

1

2

3

4

5

6

u�u� a�u� u�a� a�a�

u�
a�u�

u�
a�

xu�

xu�

1

0

v

�� 4 �� 3 �� 2 �� 1 � �C 1 �C 2

0

1

2

3

4

5

6

xu� xu� xu�
p
xa�xu� xu�xa�

xu�
p
xa�xu� xa�

xu�k2

xu�k2

1

xu�1
�

vk2

�� 4 �� 3 �� 2 �� 1 � �C 1 �C 2

0

1

2

3

4

5

6

u�u�

u�

u�k2

u�k2

1

u�1
�

u�1
�

k2

Figure 4: Top: E
�C�;s
1 .C4=C4/, � 2Z. Center: E

�C�;s
1 .C4=C2/, � 2Z. Bottom: E

�C�;s
1 .C4=e/,

� 2 Z.
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2� � 2 2� � 1 2� 2� C 1 2� C 2 2� C 3 2� C 4

0

1

2

3

4

5

6

u2
�

a�u� a2
�

u� a�

vxu2
�

vxu2
�

0

x0;1

vxu�

xa�

vxu�p
xa�xu�

vxu�

xu�

2� � 2 2� � 1 2� 2� C 1 2� C 2 2� C 3 2� C 4

0

1

2

3

4

5

6

xu2
�

xu�

vxu2
�k2

vxu2
�k2

vxu�

v

vxu�

xa�
k2

vxu�p
xa�xu�

k2 vxu�

xu�
k2

2� � 2 2� � 1 2� 2� C 1 2� C 2 2� C 3 2� C 4

0

1

2

3

4

5

6

u2
�

u�

u2
�u�1
�

k2

u2
�u�1
�

k2

u�u�1
�

u�1
�

u�u�2
�

k2

Figure 5: Top: E
2�C�;s
1 .C4=C4/, �2Z. Center: E

2�C�;s
1 .C4=C2/, �2Z. Bottom: E

2�C�;s
1 .C4=e/,

� 2 Z.
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coordinates, meaning that the middle level of E
5;5
1

is generated by .vxu�2
� /xe�C� . We have

Tr4
2.vxu

�2
� xe

�C� /D
x0;1

u2
�

e�C�

In the top, middle and bottom graphs of Figure 1, if we look at coordinates .2; 2/ we see v, vk2 and
u�1
�

k2, respectively. This represents the fact that the three levels of E
2;2
1

are generated by ve�.xCgx/

for the top, vxe�x; vxe�gx for the middle, and u�1
�
xe�x;u�1

�
e�gx for the bottom level. We have:

Tr4
2.vxe

�x/D ve�.xCgx/

These pictures are all obtained automatically by the computer program of [2], available on the author’s
GitHub page.

Appendix B The RO.C4/ homology of a point in F2 coefficients

In this appendix, we write down the detailed computation of kF for F 2 RO.C4/. We use the following
notation for Mackey functors (compare with [2]):

k D

k

k

k

1 0

1 0

k� D

0

k

k

1 0

hki D

k

0

0

hki D

0

k

0

LD

k

k

k

0 1

0 1

p�LD

k

k

k

0 1

1 0

QD

k

k

0

0 1

Q]
D

k

k

0

1 0

L] D

k

k

k

1 0

0 1

k[� D

0

0k

k

0 1

Our notation corresponds to that used in [9] according to Table 2 below. Note that [9] is concerned with
the integral homology of a point, while we are working over the characteristic 2. As a result, in this table,
the Mackey functors of [9] are levelwise tensored with k D F2, an operation we denote by �˝ k. We
also note that L is dual to k and k[� is dual to k�.

Henceforth n;m � 0. We employ the notation a j b j c to denote the generators of all three levels of a
Mackey functor, from top to bottom, used in [2].
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notation in [9] notation in [2]

�˝ k k

�˝ k k�
�˝ k hki

�˝ k hki

◪˝ k D P⬕˝ k L

⬕˝ k D P�˝ k p�L

H˝ k Q

ı˝ k DN˝ k Q]

⬒˝ k L]

⬕˝ k k[�

Table 2

B.1 k�S
n�Cm�

We have

k�.S
n�Cm�/D

8̂̂̂<̂
ˆ̂:

k if � D nC 2m;

Q] if n� �< nC 2m and ��n is even;
Q if nC 1� �< nC 2m and ��n is odd;
hki if 0� �< n:

Moreover,

� un
�um
�
j xun
� xu

m
�
j xxun
�
xxum
�

generates knC2m D k,

� un
�am�i
�

ui
�
j xun
�xa

m�i
�
xui
�
j 0 generates knC2i DQ] for 0� i <m,

� a�un�1
� am�i

�
ui
�
j xun
�xa

m�i
�
xui�1
�

p
xa�xu� j 0 generates knC2i�1 DQ for 1� i �m, n> 0,

�
a�am�i

�
ui
�

u�

ˇ̌̌
xam�i
�
xui�1
�

p
xa�xu� j 0 generates k2i�1 DQ for 1� i �m, nD 0,

� an�i
� ui

�am
�
j 0 j 0 generates ki D hZ=2i for 0� i < n.

B.2 k�S
�n��m�

If n and m are not both 0:

k�.S
�n��m�/D

8̂̂̂̂
ˆ̂̂̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂:

L if � D �n� 2m and m¤ 0;

p�L if � D �n� 2m and n> 1;mD 0;

k� if � D �1 and nD 1;mD 0;

Q] if � n� 2m< �< �n� 1 and �Cn is odd,
Q if � n� 2m< �< �n� 1 and �Cn is even,
hki if � n� 1� �< �1 and m¤ 0;

hki if � nC 1� �< �1 and mD 0:
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Moreover,

� Tr4
1

�
1

xxun
�
xxum
�

� ˇ̌̌
Tr2

1

�
1

xxun
�
xxum
�

� ˇ̌̌ 1

xxun
�
xxum
�

generates k�n�2m DL for m¤ 0,

�
�

un�2
�

ˇ̌̌
xu�n
� j
xxu�n
� generates k�n D p�L for mD 0; n� 2,

� 0 j xu�1
� j
xxu�1
� generates k�1 D k� for nD 1, mD 0,

�
s

un
�ai�2
�

um�i
�

ˇ̌̌
xs

xun
�xa

i�2
�
xum�i
�

ˇ̌̌
0 generates k�n�2mC2i�3 DQ] for 2� i �m,

�
x0;1

un
�am�i
�

ui�1
�

ˇ̌̌ v

xun
�xa

m�i
�
xui�1
�

ˇ̌̌
0 generates k�n�2i DQ for 1� i <m,

�
x0;1

an�i
� ui

�am�1
�

ˇ̌̌
0 j 0 generates k�i�2 D hki for 0� i � n� 1, m¤ 0,

�
�

an�i
� un�2

�

ˇ̌̌
0 j 0 generates k�i D hki for 2� i < n, mD 0.

B.3 k�S
m��n�

If n;m are both nonzero,

k�.S
m��n� /D

8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂:

hki if 2m� n< � � �2;

k if � D 2m� n� �1;

hki˚ k if � D 2m� n� �2;

Q if � 1� �< 2m� n and �Cn is odd;
Q] if � 1� �< 2m� n and �Cn is even;
hki˚Q if � nC 1� �< 2m� n and �Cn is odd, and � � �2;

hki˚Q] if � nC 2� �< 2m� n and �Cn is even, and � � �2;

Q if � D �n and n� 2;

hki if � D �1 and nD 1:
Moreover,

�
um
�

un
�

ˇ̌̌ xum
�

xun
�

ˇ̌̌ xxum
�

xxun
�

generates the k in k2m�n,

�
ai
�
um�i
�

un
�

ˇ̌̌ xai
�
xum�i
�

xun
�

ˇ̌̌
0 generates the Q] in k2m�n�2i for 0< i <m,

�
a�ai

�
um�i
�

unC1
�

ˇ̌̌ pxa�xu�xai
�
xum�i�1
�

xun
�

ˇ̌̌
0 generates the Q in k2m�n�2i�1 for 0� i <m,

�
�am
�

an�i
� ui�2

�

ˇ̌̌
0 j 0 generates the hki in k�i for 2� i < n,
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�
�am
�

un�2
�

ˇ̌̌
xam
�
xu�n
� j 0 generates k�n DQ for n� 2,

� 0 j xu�1
� xa

m
�
j 0 generates k�1 D hki for nD 1.

B.4 k�S
n��m�

If n;m are both nonzero,

k�.S
n��m�/D

8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
<̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂:

Q] if � D n� 2 and n;m� 2;

hki if � D �1 and nD 1;m� 2;

hki˚Q if n� 2m< �< n� 2 and �Cn is even, and � � 0;

hki˚Q] if n� 2m< �< n� 2 and �Cn is odd, and � � 0;

Q if n� 2m< �< n� 2 and �Cn is even, and �< 0;

Q] if n� 2m< �< n� 2 and �Cn is odd, and �< 0;

L˚hki if � D n� 2m and n� 2m� 0 and m� 2;

L if � D n� 2m and n� 2m< 0 and m� 2;

L] if � D n� 2 and n> 1 and mD 1;

k[� if � D �1 and nD 1 and mD 1;

hki if 0� �< n� 2m:

Moreover,

�
a2
�un�2
�

am
�

ˇ̌̌ vxun
�

xam�1
�

ˇ̌̌
0 generates kn�2 DQ] for n;m� 2,

� 0
ˇ̌̌ vxu�
xam�1
�

ˇ̌̌
0 generates kn�2 D hki for nD 1;m� 2,

�
x0;2un

�

ai�1
�

um�i�1
�

ˇ̌̌ vxun
�

xai�1
�
xum�i
�

ˇ̌̌
0 generates the Q in kn�2mC2i�2 for 2� i �m� 1,

�
sun
�

ai�2
�

um�i
�

ˇ̌̌
xsxun
�

xai�2
�
xum�i
�

ˇ̌̌
0 generates the Q] in kn�2mC2i�3 for 2� i �m,

�
x0;2un

�

um�2
�

ˇ̌̌ vxun
�

xum�1
�

ˇ̌̌
xxun
�
xxu�m
�

generates the L in kn�2m for m� 2,

�
a2
�un�2
�

a�

ˇ̌̌
vxun
� j
xxun
�
xxu�1
�

generates kn�2 DL] for n> 1;mD 1,

� 0 j vxu� j xxu� xxu
�1
�

generates k�1 D k[� for nDmD 1,

�
ai
�un�i
�

am
�

ˇ̌̌
0 j 0 generates the hki in kn�i for 2< i � n.

Algebraic & Geometric Topology, Volume 24 (2024)



318 Nick Georgakopoulos

B.5 Subtleties about quotients

In this subsection, we investigate the subtleties regarding quotients y=x, similar to what we did in [2] for
the integer coefficient case.

The crux of the matter is as follows: If we have ax D y in k
C4

F
then we can immediately conclude that

aD y=x as long as a is the unique element in its RO.C4/ degree satisfying ax D y. Unfortunately, as
we can see from the detailed description of k

C4

F
, there are degreesF for which k

C4

F
is a two-dimensional

vector space, generated by elements a and b both satisfying ax D bx D y; in this case a and b are both
candidates for y=x and we need to distinguish them somehow. This is done by looking at the products of
a and b with other Euler/orientation classes.

For a concrete example, take k
C4

�2C4���
, which is k2 with generators a and b such that

u�aD u�b D
u�

u3
�

;

so both a and b are candidates for u�=u
4
� (for degree reasons, there is a unique choice for u�=u

3
� ). To

distinguish a and b, we use multiplication by a2
� : for one generator, say a, we have a2

�aD 0, while for
the other generator we get a2

�b D �a�. So now

a2
� .aC b/D a2

�b D �a�;

and both aC b and b are candidates for .�a�/=a
2
� . However, �=a2

� is defined uniquely and we insist
x

z

y

w
D

xy

zw

whenever xy ¤ 0, thus .�a�/=a
2
� is uniquely defined from

�a�

a2
�

D
�

a2
�

a�:

Multiplying with u� returns 0 and as u�b ¤ 0, we conclude that

aC b D
�a�

a2
�

:

Since a2
�aD 0 and a2

�b D �a�, we conclude that

aD
u�

u4
�

and b D
u�

u4
�

C
�a�

a2
�

:

More generally, we can use u� and a� multiplication to distinguish

a�
�
u�>0
�

u��
;

�a�>0
�

a��2
� u��

and
a�
�
u�>0
�

u��
C
�a�>0
�

a��2
� u��

:

Here, � � 0 is a generic index, ie the 12 total instances of � can all be different; the important thing is
that the � indices are chosen so that these three elements are in the same RO.C4/–degree.
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We can also distinguish between

a�a�
�
u�>0
�

u��
;

�a�>0
�

a��2
� u��

and
a�a�

�
u�>0
�

u��
C
�a�>0
�

a��2
� u��

by u� and a� multiplication, although it’s easier to use that only the first of the three elements is a transfer.

We distinguish
a��2
� u��
a�
�

;
x0;2u��
a�
�
u�
�

and
a��2
� u��
a�
�

C
x0;2u��
a�
�
u�
�

by ai
�

multiplication (which for large enough i annihilates only the second term) and a� multiplication
(which annihilates only the first term). We similarly distinguish

a��2
� u��
a�
�

;
su��
a�
�
u�
�

and
a��2
� u��
a�
�

C
su��
a�
�
u�
�

by ai
�

and a2
� multiplication.

Appendix C The C2n Borel equivariant dual Steenrod algebra

In this appendix we compute the Borel dual Steenrod algebra .k ^ k/hG
F

for the groups G D C2n as
an RO.G/–graded Hopf algebroid over the Borel homology of a point khG

F
, where k DHF2. We also

compare our result with the description of the Borel Steenrod algebra given in [3], which is dual to our
calculation. Henceforth, G D C2n , with n� 1.

C.1 The Borel homology of a point

The real representation ring RO.G/ is spanned by the irreducible representations 1, � and �s;k , where � is
the 1–dimensional sign representation and �s;m is the 2–dimensional representation given by rotation by
2�s.m=2n/ degrees for 1�m dividing 2n�2 and odd 1� s < 2n=m. Note that 2–locally, S�s;m ' S�1;m

as C2n–equivariant spaces, by the s–power map. Therefore, to compute kF.X / for F 2 RO.C2n/ it
suffices to only considerF in the span of 1, � and �k WD �1;2k for 0� k � n�2 (�n�1D 2� and �nD 2).

For V D � or V D �m, denote by aV 2 k
C2n

�V
the Euler class induced by the inclusion of north and

south poles S0 ,! SV ; also denote by uV 2 k
C2n

jV j�V
the orientation class generating the Mackey functor

kjV j�V D k; see [8]. The orientation classes uV W k ^S jV j! k ^SV are nonequivariant equivalences
hence they act invertibly on khGF; k

hG
F

and ktG
F

.

Proposition C.1 For G D C2n and n> 1,

khG
F D kŒa� ; a�0

;u˙� ;u
˙
�0
; : : : ;u˙�n�2

�=a2
� ; ktG

F D kŒa� ; a
˙
�0
;u˙� ;u

˙
�0
; : : : ;u˙�n�2

�=a2
� ;

while for nD 1,
k

hC2

F
D kŒa� ;u

˙
� �; k

tC2

F
D kŒa˙� ;u

˙
� �:

In all cases , khGF D †
�1ktG

F
=khG

F
(forgetting the ring structure) and the norm map khGF! khG

F
is

trivial.
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Proof The homotopy fixed-point spectral sequence becomes

H�.GI k/Œu˙� ;u
˙
�0
; : : : ;u˙�n�2

�) khG
F :

We have H�.GI k/ D k�BG D kŒa�=a2 ˝ kŒb�, where jaj D 1 and jbj D 2. The spectral sequence
collapses with no extensions and we can identify aD a�u�1

� and b D a�0
u�1
�0

. Finally, zEG D S1�0 D

colim.S�0
a�0
��! S�0

a�0
��! � � � / so to get ktG

F
we are additionally inverting a�0

.

C.2 The Borel dual Steenrod algebra

We now compute the G–Borel dual Steenrod algebra

.k ^ k/hG
F

as a Hopf algebroid over khG
F

, for G D C2n .

We will implicitly be completing it at the ideal generated by a� for G D C2, and at the ideal generated
by a�0

for G D C2n with n > 1; see [10, page 373] for more details in the case of G D C2. With this
convention, Hu and Kriz computed the C2–Borel dual Steenrod algebra to be

.k ^ k/
hC2

F
D k

hC2

F
Œ�i �

for j�i j D 2i � 1 (with �0 D 1). The generators �i restrict to the Milnor generators in the nonequivariant
dual Steenrod algebra and

�.�i/D
X

jCkDi

�2k

j ˝�k ; �.�i/D 0 for i � 1; �R.a� /D a� ; �R.u� /
�1
D

1X
iD0

a2i�1
� u�2i

� �i :

Proposition C.2 For G D C2n , with n> 1,

.k ^ k/hG
F D khG

F Œ�i �

for j�i j D 2i � 1 restricting to the C2n�1 generators �i , with

�.�i/D
X

jCkDi

�2k

j ˝ �k ; �.�i/D 0 for i � 1;

�R.a� /D a� ; �R.a�0
/D a�0

; �R.u� /D u� C a��1; �R.u�m
/D u�m

for m> 0;

�R.u�0
/�1
D

X
i

a2i�1
�0

u�2i

�0
�2

i :

Proof The computation of .k^k/hG
� D .k^k/�.BG/ follows from the computation of khG

� Dk�.BG/D

kŒa�=a2˝kŒb� and the fact that nonequivariantly, k^k is a free k–module. To see that the homotopy fixed
point spectral sequence for k^k converges strongly, let F iBG be the skeletal filtration on the Lens space
BGDS1=C2n ; we can then compute directly that lim1

i .k^k/�.F iBG/D lim1
i .kŒa�=a

2˝kŒb�=bi/D 0.
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Thus we get .k ^ k/hG
F
D khG

F
Œ�i �, and the diagonal � and augmentation � are the same as in the

nonequivariant case. The Euler classes a� and a�0
are maps of spheres so they are preserved under �R.

The action of �R on u� and u�0
can be computed through the right coaction on khG

F
: the (completed)

coaction of the nonequivariant dual Steenrod algebra on k�.BG/D kŒa�=a2˝ kŒb� is

a 7! a˝ 1; b 7!
X

i

b2i

˝ �2
i :

To verify the formula for the coaction on b we need to check that Sq1.b/D0 (the alternative is Sq1.b/Dab).
From the long exact sequence associated to 0! Z=2! Z=4! Z=2! 0, we can see that the vanishing
of the Bockstein on b follows from H 2.C2n IZ=4/D Z=4 for n> 1.

After identifying aD a�u�1
� and b D a�0

u�1
�0

we get the formula for �R.u�0
/, and also that

�R.u� /D u� C �a��1;

where � is either 0 or 1. This is equivalent to

�R.u
�1
� /D u�1

� C �a�u�2
� �1;

and to see that �D 1 we use the map khC2 D kh.C2n=C
2n�1 /! khC2n that sends a� and u� to a� and u� ,

respectively. Finally, to compute �R.u�m
/ for m> 0 note that

khC2n�m
D khC2n=C2m

! khC2n

sends a�0
and u�0

to a�m
D 0 and u�m

, respectively.

C.3 Comparison with Greenlees’s description

We now compare with the dual description given in [3].

In our notation, the G–spectrum b of [3] is b D kh and bV .X / corresponds to .kh/
jV j
G
.X /; to get

.kh/V
G
.X / we need to multiply with the invertible element uV 2 khG

jV j�V
. The Borel Steenrod algebra is

bF

G
b D .kh/F

G
.kh/ and the Borel dual Steenrod algebra is bG

F
b D .kh/G

F
.kh/D .k ^ k/hG

F
.

Greenlees proves that the Borel Steenrod algebra is given by the Massey–Peterson twisted tensor product
(see [13]) of the nonequivariant Steenrod algebra k�k and the Borel cohomology of a point .kh/F

G
D khG
�F

.
The twisting has to do with the fact that the action of the Borel Steenrod algebra on x 2 .kh/F

G
.X / is

given by
.� ˝ a/.x/D �.ax/;

where � 2 k�k and a 2 khG
F

. The product of elements � ˝ a and � 0˝ a0 in the Borel Steenrod algebra is
not �� 0˝ aa0, since � does not commute with cup products, but rather satisfies the Cartan formula

�.ab/D
X

i

� 0i.a/�
00
i .b/; �� D

X
i

� 0i ˝ �
00
i :
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Therefore,
.� ˝ a/.� 0˝ a0/.x/D �.a� 0.a0x//D

X
i

� 0i.a/.�
00
i �
0/.a0x/;

so

(4) .� ˝ a/.� 0˝ a0/D
X

i

� 0i.a/.�
00
i �
0
˝ a0/

(we have ignored signs as we are working in characteristic 2).

So the Borel Steenrod algebra is k�k˝ khG
F

with twisted algebra structured defined by (4).

Moreover, Greenlees expresses the action of k�k on .kh/F
G
.X / in terms of the action of k�k on the

orientation classes uV and the usual (nonequivariant) action of k�k on .kh/�
G
.X /D k�.X ^G EGC/.

This is done through the Cartan formula: if x 2 .kh/V
G
.X /, then u�1

V
x 2 .kh/jV j

G
.X / and

�.x/D �.uV u�1
V x/D

X
i

� 0i.uV /�
00
i .u
�1
V x/:

What remains to compute is � 0i.uV /, namely the action of k�k on orientation classes.

In our case, for G D C2n , we can see that:

Proposition C.3 The action of k�k on orientation classes is determined by

Sqi.u� /D

8<:
u� if i D 0;

a� if i D 1;

0 otherwise;
Sqi.u�m

/D

8<:
u�m

if i D 0;

a�0
if i D 2;mD 0;

0 otherwise.

Proof Compare with the proof of Proposition C.2.

The twisting in the case of the Borel dual Steenrod algebra corresponds to the fact that .k^k/hG
F

is a Hopf
algebroid and not a Hopf algebra; computationally this amounts to the formula for �R of Proposition C.2.
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Annular Khovanov homology and augmented links

HONGJIAN YANG

Given an annular link L, there is a corresponding augmented link zL in S3 obtained by adding a meridian
unknot component to L. We construct a spectral sequence with the second page isomorphic to the annular
Khovanov homology of L that converges to the reduced Khovanov homology of zL. As an application, we
classify all the links with the minimal rank of annular Khovanov homology. We also give a proof that
annular Khovanov homology detects unlinks.

57K18

1 Introduction

Khovanov [9] defined an invariant for links which assigns a bigraded abelian group Kh.L/ to each link
L� S3. It is a categorification of the Jones polynomial in the sense that it replaces terms in the Jones
polynomial by graded abelian groups. Since then, many related invariants have been studied, including
Lee’s deformation invariant [13] and Rasmussen’s s–invariant [15], Khovanov’s reduced version [10], the
tangle invariant of Bar-Natan [5] and Khovanov–Rozansky homology [11].

Several spectral sequences that reveal the relationship between Khovanov homology theories and Floer
theories have been established. The first one is due to Ozsváth and Szabó [14], which builds a connection
between the reduced Khovanov homology of the mirror of a link L and the Heegaard Floer homology of
the branched double cover of S3 over L. Kronheimer and Mrowka [12] constructed a spectral sequence
with the E1 term isomorphic to Khovanov homology and converging to a version of singular instanton
Floer homology.

Asaeda, Przytycki and Sikora [2] constructed Khovanov-type invariants for links in †� I, where † is
a surface. When †D A is an annulus (sometimes it is convenient to view A as a punctured disk), the
resulting invariant is called the annular Khovanov homology. Roberts [16] constructed a spectral sequence
from annular Khovanov homology to Heegaard Floer homology. Grigsby, Licata and Wehrli [7] studied
the analogue of Rasmussen’s s–invariant in the annular setting. Xie [18] introduced annular instanton
Floer homology for annular links as an analogue of the annular Khovanov homology, and they are also
related by a spectral sequence, which can be used to distinguish braids from other tangles; see [18] and
Xie and Zhang [19].

© 2024 MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution License 4.0 (CC BY).
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326 Hongjian Yang

Figure 1: An annular link and its augmentation.

The relationship between annular Khovanov homology and the original Khovanov homology has been
previously studied. There is a natural spectral sequence between them given by ignoring the punctured
point [16, Lemma 2.3]. Stoffregen and Zhang [17] established a spectral sequence relating the (annular)
Khovanov homologies of periodic knots and their quotients.

Considering the augmentation of links is an alternative approach to preserve the information about the
punctured point.

Definition 1.1 Let L� A� I be an annular link. The augmentation of L is a pointed link .zL;p/�R3

obtained as follows. We view the thickened annulus A� I as a solid torus in R3, and zL is given by the
union of L and a meridian circle of A� I (sometimes we call it an augmenting circle). The basepoint p
is chosen on the augmenting circle.

Under this convention, Xie [18, Section 4.3] showed that the annular instanton Floer homology AHI.L/
is isomorphic to I\.zL/, the reduced singular instanton Floer homology of the augmented link. We will
prove the following theorem as an analogue of Xie’s result on the Khovanov side. To avoid sign issues,
all the coefficient rings will be Z=2Z unless otherwise specified.

Theorem 1.2 Let L�A�I be an annular link and let .zL;p/� S3 be the corresponding augmented link
of L. Then there is a spectral sequence with the E2 term isomorphic to the annular Khovanov homology
AKh.L/ and it converges to the reduced Khovanov homology Khr.zL;p/.

We immediately obtain the following rank inequality:

Corollary 1.3 Given an annular link L and its augmentation zL, we have

rankZ=2Z AKh.L/� rankZ=2Z Khr.zL;p/:

Question 1.4 For what links L is AKh.L/ isomorphic to Khr.zL;p/?

Theorem 1.2 provides an alternative way to prove some detection results by referring to the parallel
consequences in reduced Khovanov homology. For a link L with n components, it is well known that
rankZ=2Z Khr.L; p/� 2n�1. Hence, by the previous corollary, for an annular link L, we have

rankZ=2Z AKh.L/� rankZ=2Z Khr.zL;p/� 2n:
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On the other hand, links of minimal rank in A�I can be classified following Xie and Zhang [20]. Before
stating the result, we first explain the notation. Recall that a forest is a graph (not necessarily connected)
without cycles. Given a forest G, its corresponding link LG is defined by assigning to each vertex of G
an unknot component and linking two unknots in the way of Hopf links whenever their corresponding
vertices are adjacent. For annular links, we need to assign which vertex corresponds to a nontrivial circle.
We say such vertices are annular for convenience.

Theorem 1.5 Let L be an n–component annular link. Then rankZ=2Z AKh.L/D 2n if and only if L is a
forest of unknots such that each connected component of the corresponding graph of L contains at most
one annular vertex.

We say an annular link U is an unlink if it has a link diagram D without any crossing. Notice that
our definition given here is slightly different to [18]. The following corollary is a generalization of
Theorem 3.1 of Baldwin and Grigsby [3] and Corollary 1.4 of Xie and Zhang [19], where the unlinks are
required to have all the components trivial or nontrivial:

Corollary 1.6 Let L be an annular link with n components and let U be an annular unlink with n
components (which might be trivial or nontrivial ). Assume that

AKh.L/Š AKh.U /

as bigraded (by homological and annular gradings) abelian groups. Then L is isotopic to U.

The paper is organized as follows. In Section 2 we review the construction and properties of Khovanov
homology. After some preparation in Section 3, we prove Theorem 1.2 in the last section and discuss its
applications.
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2 Review of Khovanov homology theories

In this section, we review the construction and properties of the reduced version and the annular version
of Khovanov homology.

2.1 Reduced Khovanov homology

The reduced version of Khovanov homology is defined in [10] as a categorification of the (normalized)
Jones polynomial. We first recall the definition of the original Khovanov homology.
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a crossing0–smoothing 1–smoothing

Figure 2: Two types of smoothings.

For a link diagram D with n crossings, denote the number of right-handed (resp. left-handed) crossings
of D by nC (resp. n�). For a crossing of D, we can use the 0–smoothing or 1–smoothing to resolve it, as
shown in Figure 2. Fix an order of crossings; we can then use vectors v 2 f0; 1gn to encode resolutions
of D. Denote the resolution indicated by v by Dv, and let jvj be the number of 1–smoothings in Dv. Two
resolutions that only differ on one smoothing of crossings are related by a cobordism. The resolutions
of D are disjoint unions of circles, and the cobordisms are the merging or splitting of circles.

In original Khovanov homology, we apply a .1C1/D TQFT to the resolution cube to obtain a chain
complex by assigning to each circle a graded free abelian group V WD Z=2ZfvC; v�g. The resulting
complex has two gradings: the homological one and the quantum one, and the latter is specified by
q deg v˙ D˙1. Following [4], we denote the shifts on these two gradings by Œ�� and f�g, respectively.
We then take a shift on the quantum grading of chain groups by jvj to ensure the differential preserves
the quantum grading and a global shift Œ�n��fnC�2n�g to ensure invariance under Reidemeister moves.
We finally take cohomology on the chain complex .CKh.L/; d/ to obtain Kh.L/.

Remark 2.1 The gradings of Khovanov homology can be read as follows [8]. For a diagram D and
a state S associated to a fixed resolution, let w.D/ D nC � n� be the writhe number of D, �.S/ be
the difference between the numbers of 1–resolutions and 0–resolutions of S, and �.S/ be the difference
between the numbers of vC and v� appearing in S. Then the homological grading and the quantum
grading of an element are given by

h degD 1
2
.�.S/Cw.D//; q degD 1

2
.�.S/C 2�.S/C 3w.D//;

respectively.

To define the reduced version of Khovanov homology, as in other reduced theories, we need to choose a
basepoint p on the link L. Every resolution of L has exactly one circle containing p, and the generators
that take v� (with the q–grading omitted) on this pointed circle span a subcomplex CKhr.L; p/�CKh.L/.
The reduced Khovanov homology Khr.L; p/ is then defined by the cohomology of CKhr.L; p/. The
basepoint is sometime omitted in the notation if it is clear from the context (eg when we are considering
an augmented link). As an example, for the Hopf link H with a positive linking number, we have

Khr.H; p/D .Z=2Z/.0;1/˚ .Z=2Z/.2;5/:

In general, the following proposition describes the effect on Khovanov homology of making a connected
sum with a Hopf link. Here our statement is slightly different to the original description because of the
different grading conventions. See [1, Remark 1.6] and Remark 2.1.
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S
˛�

S
vC

L S
ˇ�

S
v�

Figure 3: The maps ˛� and ˇ�.

Proposition 2.2 [1, Theorem 6.1] Let L be a pointed link and let H be the Hopf link with a positive
linking number. Then we have a short exact sequence

0! Khri�1;j�2.L/ ˛��! KhriC1;jC3.L #H/ ˇ��! KhriC1;jC2.L/! 0:

Here ˛� and ˇ� are given on a state S as in Figure 3.

2.2 Annular Khovanov homology

The annular version of Khovanov homology can be viewed as a special case of the link homology for links
in thickened surfaces defined in [2]. Let A be an annulus. The annular Khovanov homology assigns a
triply graded abelian group AKh.L/ for each annular link L�A� I. We follow the process and notation
of [18].

Let D be a link diagram of L and define n; n˙; v;Dv; V as in the previous subsection. In the annular
case, there might be two types of circles in a resolution: circles that bound disks and circles with
nontrivial homologies. We call the first type of circles trivial and the second ones nontrivial. To obtain
the chain groups, we assign V to trivial circles and assign W WD Z=2ZfwC; w�g to nontrivial circles.
The differentials are specified by the map corresponding to the merging or splitting of circles, as follows:

� Two trivial circles merge into a trivial circle, or one trivial circle splits into two trivial circles. In
these cases, the maps are given the same as in Khovanov’s original TQFT.

� One trivial circle and one nontrivial circle merge into a nontrivial circle. In this case, the maps are
given by

vC˝w˙ 7! w˙; v�˝w˙ 7! 0:

� One nontrivial circle splits into a trivial circle and a nontrivial circle. In this case, the maps are
given by

w˙ 7! v�˝w˙:

� Two nontrivial circles merge into a trivial circle. In this case, the maps are given by

w˙˝w˙ 7! 0; w˙˝w� 7! v�:

� One trivial circle splits into two nontrivial circles. In this case, the maps are given by

vC 7! wC˝w�Cw�˝wC; v� 7! 0:

The homological and quantum grading are given the same as the original case with the additional request
that q degw˙ D˙1. After appropriate shifts, the differential is still filtered of degree .1; 0/.
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There is the third grading on the chain complex, the so-called annular grading or f –grading, which is
specified by f deg v˙ D 0 and f degw˙ D˙1. The differential preserves the f –grading and hence it
descends onto the cohomology groups AKh.L/, the annular Khovanov homology.

Theorem 2.3 [2] The annular Khovanov homology AKh.L/ is an invariant of annular links in the sense
that it is independent of the choice of link diagrams and the order of crossings.

We conclude this section with some additional remarks.

Remark 2.4 Sometimes we write AKh.L;m/ to indicate the f –degree m summand of AKh.L/. If L
is contained in a ball B3 � A� I, then AKh.L/ is supported on f D 0 and AKh.L/ Š Kh.L/. Both
the reduced Khovanov homology and the annular Khovanov homology are functorial [8]. That is, a link
cobordism � W L1! L2 between links (resp. annular links) induces a (filtered) map between Khovanov
homology groups

Khr.�/ W Khr.L1/! Khr.L2/ .resp. AKh.�/ W AKh.L1/! AKh.L2//:

3 The unlink case

In this section, we construct an isomorphism between the annular Khovanov homology of an annular
unlink and the reduced Khovanov homology of its augmentation. We show that such an isomorphism is
compatible with the group homomorphisms induced by the cobordism maps.

3.1 Homology groups

Denote the annular unlink with n nontrivial unknot components by Un and let zUn be its augmentation,
which corresponds to the graph shown in Figure 4 in the language of [20], as described before Theorem 1.5.

The obvious diagram of Un contains n disjoint nontrivial circles. In this section, we will use this diagram
to calculate homology groups. We assign the numbers 1 to n from the innermost nontrivial circle to
the outermost one. Applying Proposition 2.2 inductively on unknot components, we can calculate the
Poincaré polynomial of Khr. zUn/ as

P. zUn/D .tq
3/n.tq2C t�1q�2/n:

Here the homological and quantum gradings are indicated by t and q, respectively.

: : : : : :

Figure 4: The tree corresponding to zUn.
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Figure 5: The symmetric resolution .10/ of zU2.

Each original component of zUn has two crossings with the meridian circle. There are 2n resolutions such
that every pair of crossings is resolved by the same smoothing. We say such resolutions are symmetric and
encode them by 0–1 sequences of length n, as illustrated in Figure 5. Notice that a symmetric resolution
always has n (unpointed) components. We denote the cobordism of changing one crossing (on the kth

strand) from 0–smoothing to 1–smoothing by . � � � � � � � / (here the mark � is on the kth digit).

We can now describe the generators of Khr. zUn/ explicitly.

Proposition 3.1 For each symmetric resolution v 2 f0; 1gn, we can choose an element ev lying in
the chain group corresponding to this resolution. The collection of the ev descends to a generating set
of Khr. zUn/.

Proof We prove the proposition by induction. There is nothing to say for nD 0. For nD 1, one can
easily check that e.1/ D vC and e.0/ D v� gives a generating set of Khr. zU1/. In general, by applying
Proposition 2.2 to LD zUn�1 and L #H D zUn, we obtain a short exact sequence

.3.2/ 0! Khri�1;j�2. zUn�1/
˛�
�! KhriC1;jC3. zUn/

ˇ�
�! KhriC1;jC2. zUn�1/! 0:

Here ˛� and ˇ� come from the corresponding maps on the chain level.

Let v D .v1; v2; : : : ; vn/ 2 f0; 1g
n and let v0 D .v1; : : : ; vn�1/. The sequence v0 corresponds to a

symmetric resolution R0v0 of zUn�1. If vn D 1, we just need to take

ev D ˛�.ev0/D ev0 ˝ vC:

If vn D 0 and ev0 D A˝ vCCB˝ v�, where v˙ are associated to the .n�1/st circle, we take

ev D ev0 ˝ v�CA˝ v�˝ vC:

It remains to show that ev is a cycle. Assuming this, then we have ˇ�.ev/ D ev0 , and the conclusion
follows from the short exact sequence (3.2) and the inductive hypothesis. Notice that the cobordism
.v0; �/ always corresponds to a merging (rather than a splitting) of circles, and the construction ensures
that Khr..v0; �//.ev/D 0. We show that other cobordisms also vanish by discussing the value of vn�1
(see Figure 6).

Notice that the cobordism map vanishes on A and B if the change is on the i th strand (1 � i � n� 2).
Hence, if vn�1 D 1, then there is no possibly nonvanishing cobordism map. Now assume that vn�1 D 0
and let v00 D .v1; : : : ; vn�2/,

ev00 D A1˝ vCCB1˝ v�:
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vn�1 D 1

: : :: : :

vn�1 D 0

: : :: : :

Figure 6: Possible resolutions with vn D 0.

Then

ev0 D .A1˝ vCCB1˝ v�/˝ v�CA1˝ v�˝ vC;

ev D ..A1˝ vCCB1˝ v�/˝ v�CA1˝ v�˝ vC/˝ v�CA1˝ v�˝ v�˝ vC;

and hence Khr..v00; �; 1//.ev/D 0.

We now construct an explicit identification between AKh.Un/ and Khr. zUn/. On the level of homology,
this is quite easy: The Poincaré polynomial of AKh.Un/ is given by

P.Un/D .f qCf
�1q�1/n:

Here the f –grading is indicated by f. The substitution f 7! tq gives an isomorphism between AKh.Un/
and Khr. zUn/ (up to shifting). More concretely, the generator

w D w
.1/
˙
˝w

.2/
˙
˝ � � �˝w

.n/
˙
2 AKh.Un/

is identified with the generator corresponding to the symmetric resolution of label .v1; v2; : : : ; vn/, where
vi D 1 if and only if w.i/

C
appears in w (i D 1; 2; : : : ; n), as in Proposition 3.1.

The effect of adding a trivial unknot component to Un is just taking two copies of the original homology
groups with generators tensoring with v˙, respectively, by the Künneth formula.

Now we discuss the grading shifts. Let U be an annular unlink with m trivial unknot components and n
nontrivial unknot components. Let

w D v
.1/
˙
˝ � � �˝ v

.m/
˙
˝w

.1/
˙
˝w

.2/
˙
˝ � � �˝w

.n/
˙

be a generator of AKhi;j;k.U / and ˆU .w/ 2 Khri
0;j 0. zU/ be the generator corresponding to w. Assume

that wC (resp. w�) appears tC (resp. t�) times in w. Then kD tC� t� and nD tCC t�. The homological
grading i 0 increases by 2tC D kCn, and the quantum grading j 0 increases by 2nC 2tC D kC 3n.

We summarize the consequence of this subsection in the following form:

Theorem 3.3 Let U be an annular unlink with n nontrivial unknot components , and let zU be its
augmentation. Then there is an isomorphism ˆU between the annular Khovanov homology of U and the
reduced Khovanov homology of zU. More precisely, we have an isomorphism

ˆU W AKhi;j;k.U /! KhriCkCn;jCkC3n. zU/:

The correspondence of generators is as given above.
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ˆL1

ˆL2

AKh
� �

Khr
� �

AKh
� �

Khr
� �

v�˝wC

0

v�˝ vC

0

Figure 7: Case (a).

3.2 Functoriality

A cobordism between annular links naturally induces a cobordism between their augmentations. In this
subsection, we show that the isomorphism ˆL defined in Theorem 3.3 is compatible with cobordisms.
For our purpose (see the next section), we don’t need to deal with the Reidemeister moves on the diagram
of L, and we concentrate on Morse moves, ie the merging and splitting of circles. We first verify the
compatibility with only related circles and then consider the effect of adding other unlink components.
There are four cases we need to discuss:

(a) one trivial circle and one nontrivial circle merge into a nontrivial circle;

(b) one nontrivial circle splits into a trivial circle and a nontrivial circle;

(c) two nontrivial circles merge into a trivial circle;

(d) one trivial circle splits into two nontrivial circles.

Since the homomorphisms induced by cobordisms are well defined [8], we may choose specific link
diagrams to calculate them. Cases (a) and (b) are simple diagram chasing. Figure 7 illustrates this process.

In cases (c) and (d), we need to check the diagrams in Figure 8 commute.

Denote the upper and the lower links in the leftmost column of Figure 8 by L3 and L4, respectively. We
have

Khr.zL3/Š .Z=2Z/.0;2/˚ ..Z=2Z/.2;6//˚2˚ .Z=2Z/.4;10/;

Khr.zL4/Š .Z=2Z/.0;1/˚ .Z=2Z/.0;�1/:

We first check case (c). Notice that w.D/, �.S/ and �.S/ decrease by 4, 0 and 1 from zL3 to zL4,
respectively. Hence, the cobordism map Khr.zL3/! Khr.zL4/ is of degree .�2;�7/ by Remark 2.1, and

ˆL3

ˆL4

AKh
� �

Khr
� �

AKh
� �

Khr
� �

ˆL4

ˆL3

AKh
� �

Khr
� �

AKh
� �

Khr
� �

Figure 8: Cases (c) and (d).
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1 2

3 4

Figure 9: The labeling of crossings on zL4.

the only possibly nontrivial map is

..Z=2Z/.2;6//˚2! .Z=2Z/.0;�1/;

which corresponds to the merging map in the leftmost column of Figure 8,

wC˝w�; w�˝wC 7! v�:

By the algorithm given in Theorem 3.3, w�˝wC and wC˝w� correspond to v�˝ vC (associated
to the symmetric resolution .01/) and vC ˝ v� C v� ˝ vC (associated to the symmetric resolution
.10/), respectively. Their images are v�˝ vC˝ v� and v�, respectively. It suffices to show they are
nonvanishing and cohomologous.

To write down the differentials

d .�1;�1/ W CKhr.�1;�1/.zL4/! CKhr.0;�1/.zL4/ and d .0;�1/ W CKhr.0;�1/.zL4/! CKhr.1;�1/.zL4/

in matrix form, we need to fix orders of bases of the chain groups as follows. Assign the crossing numbers
1 to 4 as in Figure 9. We first take the lexicographical order on the resolutions (ie take the states associated
to the resolution .1100/ first, then .1010/, etc). Most resolutions correspond to exactly one state in these
chain groups, except resolutions .0100/, .0001/ and .0101/. For them, we give the order by where the
unique vC appears (from top to bottom). Under this convention, we denote the bases of chain groups
CKhr.�1;�1/.zL4/, CKhr.0;�1/.zL4/ by ei (1� i � 6) and fj (1� j � 8), respectively. We have

d .�1;�1/ D

0BBBBBBBBBBB@

1 1 0 0 0 0

1 0 0 1 0 0

1 0 0 0 1 0

0 0 1 1 0 0

0 1 0 0 1 0

0 0 1 0 1 0

0 0 1 0 0 1

0 0 0 1 0 1

1CCCCCCCCCCCA
and d .0;�1/ D

�
1 0 1 0 1 0 0 0

0 0 0 1 0 0 1 1

�
:

The elements v� and v�˝ vC˝ v� correspond to the vectors f2 and f6, respectively. It is easy to see
that f2�f6 D d .�1;�1/.e1C e2C e5/ and f2 … Im d .�1;�1/. This finishes the verification in case (c).

The verification in case (d) is essentially the same. The only possibly nontrivial map in the rightmost
column of Figure 8 is

.Z=2Z/.0;1/! ..Z=2Z/.2;6//˚2;

which corresponds to the splitting map

vC 7! wC˝w�Cw�˝wC

Algebraic & Geometric Topology, Volume 24 (2024)



Annular Khovanov homology and augmented links 335

in the third column of Figure 8. We give orders for the bases of CKhr.�1;1/.zL4/, CKhr.0;1/.zL4/,
CKhr.1;6/.zL3/ and CKhr.2;6/.zL3/ as in case (c). The only exception is that, for the resolution .0101/ in
CKhr.0;1/.zL4/, we give the order according to the position of the unique v� (from top to bottom). Under
this convention, we have

d .0;1/ D

0BBBBBBB@

1 1 0 1 0 0 0 0

0 1 1 0 0 0 0 1

1 0 1 0 0 1 0 0

1 0 0 0 0 0 1 0

0 0 0 1 0 1 0 1

0 0 0 0 1 0 0 1

1CCCCCCCA
and d .�1;1/ D

�
1 0 0 1 0 1 1 0

0 0 1 0 1 1 0 1

�T
:

The generator of Khr.0;1/.zL4/ can be represented by v.0;1/ D .1; 1; 0; 0; 1; 1; 1; 1/T, and we have

Khr.zL4/! Khr.zL3/ W v.0;1/ 7! .1; 0; 1; 0; 0; 1; 0; 1/T :

The boundary subgroup of degree .2; 6/ is spanned by the image of

d .1;6/ D

0BBBBBBBBBBB@

1 1 0 0

1 0 1 0

0 0 0 0

1 0 0 1

0 1 1 0

0 1 0 1

0 1 0 1

0 0 1 1

1CCCCCCCCCCCA
:

Therefore, under the map Khr.zL4/! Khr.zL3/, we have

v.0;1/ 7!ˆL3
.wC˝w�Cw�˝wC/C d

.1;6/.1; 0; 0; 1/T :

This completes the verification in case (d).

It remains to consider the effect of adding a new unlink component to the cobordism. The case of adding
a trivial unknot component is trivial and we assume that the additional unknot component is nontrivial.
Let L1 and L2 be two annular unlinks and let � W L1! L2 be a cobordism obtained by a Morse move.
We have

AKh.�q id/D AKh.�/˝ idU I

here U D U1 is the nontrivial annular unknot. Take S 2 AKh.L1/ and let T D AKh.�/.S/. By
Proposition 2.2 and Theorem 3.3, the following diagram commutes:

S ˝wC ˆL1
.S/˝ vC

T ˝wC ˆL2
.S/˝ vC

ˆL1

AKh.�/ Khr.�0/

ˆL2
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Assume that ˆL1
.S/D A˝ vCCB ˝ v� and ˆL2

.T /D C ˝ vCCD˝ v�. By Proposition 2.2 and
Theorem 3.3, the diagram

S ˝w� ˆL1
.S/˝ v�CA˝ v�˝ vC

T ˝w� ˆL2
.T /˝ v�CC ˝ v�˝ vC

ˆL1

AKh.�/ Khr.z�/

ˆL2

commutes, which completes the proof.

In summary, we have shown the following theorem. Roughly speaking, it gives a natural isomorphism
between two cohomology theories on annular unlinks.

Theorem 3.4 Let L1 and L2 be two annular unlinks and let � W L1! L2 be a cobordism obtained by
composition of Morse moves. The cobordism � induces a cobordism z� between the augmentations zL1
and zL2. Let ˆL1

and ˆL2
be the isomorphisms given in Theorem 3.3. Then the following diagram

commutes:

AKh.L1/ Khr.zL1/

AKh.L2/ Khr.zL2/

ˆL1

AKh.�/ Khr.z�/

ˆL2

4 The spectral sequence

In this section, we prove Theorem 1.2 and discuss some examples and applications. To prove Theorem 1.2,
we choose a link diagram as shown in Figure 10. For convenience, we call the strands appearing in the
right of the left diagram the annular strands.

Proof of Theorem 1.2 Fix a link diagram D as in Figure 10. Crossings of zL can be classified into two
types: crossings of the augmenting circle and the annular strands, and the original crossings of L. We
encode the resolutions of the first type of crossings by 0–1 sequences w1 and the second type by w2. Then
the chain complex CKhr.zL/ can be encoded by the concatenation vD .w1;w2/. Every summand of the

L

n

L

n

Figure 10: A standard link diagram and its augmentation.
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differential comes from exactly one change of the smoothing, and the differential splits as d D d1C d2,
where di corresponds to the changes of smoothing on type i crossings. Denote the partial resolution
of zL on w2 by zLw2

, which is also the augmentation of the annular unlink Lw2
and hence there is no

ambiguity.

The chain complex CKhr.zL/ is bigraded by .jw1j; jw2j/, and the differentials d1 and d2 have degrees
.1; 0/ and .0; 1/, respectively. The spectral sequence of double complexes [6, Section III.7, Proposition 10]
applies. The E1 term is given by the cohomology of .CKhr.zL/; d1/, which is a chain complex with chain
groups Khr.zLw2

/ and differentials given by cobordisms. Since the link diagram is fixed, such cobordisms
correspond to Morse moves. By Theorem 3.4, the E1 term is isomorphic to the chain complex that
calculates AKh.L/, and hence the E2 term is isomorphic to AKh.L/. The spectral sequence converges
to the cohomology of .CKhr.zL/; d/, ie Khr.zL/.

A Reidemeister move induces an isomorphism between the converging terms that is compatible with the
filtration, and an isomorphism between the E2 terms. The comparison theorem then applies and hence
the spectral sequence is independent of the choice of the link diagram.

Example 4.1 Consider the annular link L shown in Figure 1. The augmentation zL is isotopic to the link
L5a1 and rankZ=2Z AKh.L/D 8D rankZ=2Z Khr.zL/. Hence, the spectral sequence collapses at the E2
term. This illustrates that the spectral sequence can collapse for links not isotopic to braid closures.

We can derive a finer rank inequality from Theorem 1.2.

Corollary 4.2 Let L and zL be as in Theorem 1.2. Let n0 be the number of annular strands and n0� be
the number of left-handed crossings on the augmenting circle. Then

rankZ=2Z Khrn.zL/�
X

naCfaCn0�n0�Dn

rankZ=2Z AKhna.L; fa/:

Proof Denote the gradings of AKh.L/ by .na; qa; fa/. Let Qn� be the number of left-handed crossings
of zL . Then Qn�D n�Cn0� and naD jw2j�n�. Let n00 be the number of nontrivial unknot components of
a specific partial resolution. Let .n00/C (resp. .n00/�) be the number of 1–smoothings (resp. 0–smoothings).
Then, by Theorem 3.4, we have

fa D .n
0
0/C�n

0
0 D

1
2
..n00/C� .n

0
0/�/D jw1j �n0

on the E1 term. On the E1 term, we have n D jw1j C jw2j � Qn�. Therefore, from Theorem 1.2, we
obtain

rankZ=2Z Khrn.zL/D
X

jw1jCjw2j�Qn�Dn

rankZ=2ZE
jw1j;jw2j
1

�

X
jw1jCjw2j�Qn�Dn

rankZ=2ZE
jw1j;jw2j

2

D

X
naCfaCn0�n0�Dn

rankZ=2Z AKhna.L; fa/:
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We now prove Theorem 1.5 and Corollary 1.6. The following simple observation is useful:

Lemma 4.3 Let L be an annular link with a link diagram such that there is only one annular strand. View
L as a link in S3 and let p be a basepoint on this annular strand. Then AKh.L/ is supported on f D˙1,
and

AKh.L;˙1/Š Khr.L; p/:

Proof There is exactly one nontrivial circle in each resolution of L, which is the circle containing p.
Hence, the chain complex is supported on f D˙1. Furthermore, the subcomplexes of f –grading ˙1
are isomorphic to CKhr.L/ by replacing the generators w˙ of the nontrivial circle by v�, respectively.

Proof of Theorem 1.5 Let G be a forest such that each connected component contains at most one
annular vertex. Then LG is a disjoint union of links with at most one annular strand. Then Lemma 4.3
applies and we have rankZ=2Z AKh.LG/D 2n by the Künneth formula.

Conversely, let L be an annular link with n components and

rankZ=2Z AKh.L/D 2n:

Then Corollary 1.3 gives rankZ=2Z Khr.zL/D 2n. By [20, Theorem 1.2], zL is a forest of unknots in S3.
Therefore, L is a forest of unknots in A� I. Denote their corresponding forests by zG and G, respectively.
Notice that zG is constructed from G by adding a vertex adjacent to all the annular vertices. Two annular
vertices cannot lie in the same connected component of G since otherwise a cycle would occur in zG,
which is absurd since zG is a forest.

Proof of Corollary 1.6 By Theorem 1.5, L is a forest of unknots in A� I. Denote the corresponding
forest by G. If G had an edge, then AKh.L/ would not be supported on t D 0 as AKh.U / is (see the
discussion in Section 3.1), which is a contradiction. Hence, every vertex is an independent connected
component of G, ie L is an annular unlink. The number of nontrivial unknot components in L can be
read from the Poincaré polynomial of L. Therefore, L is isotopic to U.
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Smith ideals of operadic algebras in monoidal model categories
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Building upon Hovey’s work on Smith ideals for monoids, we develop a homotopy theory of Smith ideals
for general operads in a symmetric monoidal category. For a sufficiently nice stable monoidal model
category and an operad satisfying a cofibrancy condition, we show that there is a Quillen equivalence
between a model structure on Smith ideals and a model structure on algebra morphisms induced by the
cokernel and the kernel. For symmetric spectra, this applies to the commutative operad and all†–cofibrant
operads. For chain complexes over a field of characteristic zero and the stable module category, this
Quillen equivalence holds for all operads. We end with a comparison between the semi-model category
approach and the1–category approach to encoding the homotopy theory of algebras over †–cofibrant
operads that are not necessarily admissible.
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1 Introduction

A major part of stable homotopy theory is the study of structured ring spectra. These include strict ring
spectra, commutative ring spectra, A1–ring spectra, E1–ring spectra, En–ring spectra, and so forth.
Based on an unpublished talk by Jeff Smith, Hovey [2014] developed a homotopy theory of Smith ideals
for ring spectra and monoids in more general symmetric monoidal model categories.

Let us briefly recall Hovey’s work. For a symmetric monoidal closed category M, its arrow category
!

M is
the category whose objects are morphisms in M and whose morphisms are commutative squares in M. It
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has two symmetric monoidal closed structures, namely the tensor product monoidal structure
!

M˝ and the
pushout product monoidal structure

!

M�. A monoid in
!

M� is a Smith ideal, and a monoid in
!

M˝ is a
monoid morphism. If M is a model category, then

!

M˝ has the injective model structure
!

M˝, where weak
equivalences and cofibrations are defined entrywise, and the category of monoid morphisms inherits a
model structure from

!

M˝. Likewise,
!

M� has the projective model structure
!

M�, where weak equivalences
and fibrations are defined entrywise, and the category of Smith ideals inherits a model structure from

!

M�.
Surprisingly, when M is pointed (resp. stable), the cokernel and the kernel form a Quillen adjunction
(resp. Quillen equivalence) between

!

M� and
!

M˝ and also between Smith ideals and monoid morphisms.

Since monoids are algebras over the associative operad, a natural question is whether there is a satisfactory
theory of Smith ideals for algebras over other operads. For the commutative operad, White [2017] showed
that commutative Smith ideals in symmetric spectra, equipped with either the positive flat (stable) or the
positive (stable) model structure, inherit a model structure. The purpose of this paper is to generalize
Hovey’s work to Smith ideals for general operads in monoidal model categories. For an operad O, we
define a Smith O–ideal as an algebra over an associated operad

!

O� in the arrow category
!

M�. We will
prove a precise version of the following result in Theorem 4.4.1:

Theorem A Suppose M is a sufficiently nice stable monoidal model category, and O is a C–colored
operad in M such that cofibrant Smith O–ideals are also entrywise cofibrant in the arrow category of M

with the projective model structure. Then there is a Quillen equivalence

fSmith O–idealsg
coker

//
fO–algebra mapsg

ker
oo

induced by the cokernel and the kernel.

For example, this theorem holds in the following situations:

(1) O is an arbitrary C–colored operad, and M is the category Ch.R/ of bounded or unbounded chain
complexes over a semisimple ring containing Q (Corollary 5.2.4); the stable module category of
kŒG�–modules for some field k and finite group G (Corollary 6.2.5); or the category of classical,
equivariant or motivic symmetric spectra with the positive or positive flat stable model structure
(Example 4.4.2).

(2) O is the commutative operad, and M is any of the examples above or equivariant orthogonal spectra,
Hausmann’s G–symmetric spectra [2017], or Schwede’s global equivariant spectra [2018] with
positive flat model structures (Section 5.1).

(3) O is †C–cofibrant (eg the associative operad, A1–operads, E1–operads, and En–operads), and
M is any of the examples above, or Ch.R/ for a commutative ring R; StMod.kŒG�/, where k
is a principal ideal domain; an injective or projective model structure on spectra; S–modules
[Elmendorf et al. 1997]; Mandell’s equivariant symmetric spectra [2004]; or a Lydakis-style model
structure on enriched functors (Corollary 5.2.3 and Examples 5.2.5 and 5.2.6).
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The rest of this paper is organized as follows. In Section 2 we recall some basic facts about model
categories and arrow categories. In Section 3 we define Smith ideals for an operad and prove that, when
M is pointed, there is an adjunction between Smith O–ideals and O–algebra morphisms given by the
cokernel and the kernel. In Section 4 we define the model structures on Smith O–ideals and O–algebra
morphisms and prove the theorem above. We also include a discussion of what happens when there
are only semi-model structures on Smith O–ideals and O–algebra morphisms. In Section 5 we apply
the theorem to the commutative operad and †C–cofibrant operads. In Section 6 we apply the theorem
to entrywise cofibrant operads. In Section 7 we include a comparison between various approaches to
encoding the homotopy theory of operad algebras, including model categories, semi-model categories and
1–categories. This discussion holds in general, beyond the situation of Smith O–ideals and O–algebra
morphisms.

Acknowledgments
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for suggesting to White to figure out the homotopy theory of commutative Smith ideals, and for all the
guidance he has given to the community on matters related to model categories. Furthermore, we thank
Bob Bruner, Dan Isaksen and Andrew Salch for encouraging us to think about Smith ideals operadically;
we thank Adeel Khan, Tyler Lawson and Denis Nardin for an email exchange about this project; and we
thank Rune Haugseng for an extremely helpful discussion related to Section 7, and for encouraging us to
write this section. Lastly, we thank the referee for many helpful comments that improved the exposition.

2 Model structures on the arrow category

In this section we recall a few facts about monoidal model categories and arrow categories. Our main
references for model categories are [Hirschhorn 2003; Hovey 1999; Schwede and Shipley 2000]. In
this paper, .M;˝; 1;Hom/ will usually be a bicomplete symmetric monoidal closed category [Mac Lane
1998, VII.7] with monoidal unit 1, internal hom Hom, initial object ¿ and terminal object �. Since M is
closed, ¿˝X D¿ for any X.

2.1 Monoidal model categories

A model category is cofibrantly generated if there are sets I of cofibrations and J of trivial cofibrations
(that is, morphisms that are both cofibrations and weak equivalences) that permit the small object argument
(with respect to some cardinal �), and a morphism is a fibration (resp. trivial fibration) if and only if it
satisfies the right lifting property with respect to all morphisms in J (resp. I ).

Let I–cell denote the class of transfinite compositions of pushouts of morphisms in I, and let I–cof
denote retracts of such [Hovey 1999, 2.1.9]. In order to run the small object argument, we will assume the
domains K of the morphisms in I (and J ) are �–small relative to I–cell (resp. J –cell). In other words,
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given a regular cardinal �� � and any �–sequence X0!X1! � � � formed of morphisms Xˇ !XˇC1

in I–cell, the map of sets
colim
ˇ<�

M.K;Xˇ /!M
�
K; colim

ˇ<�
Xˇ
�

is a bijection. An object is small if there is some � for which it is �–small. We will say that a model
category is strongly cofibrantly generated if the domains and codomains of I and J are small with respect
to the entire category.

In Section 4, we will produce homotopy theories for operad algebras valued in arrow categories equipped
with some model structure. Depending on the colored operad and properties of M, sometimes we will
only have a semi-model structure on a category of algebras. However, as shown in Section 7, it still
encodes the correct1–category. A semi-model category satisfies axioms similar to those of a model
category, but one only knows that morphisms with cofibrant domain admit a factorization into a trivial
cofibration followed by a fibration, and one only knows that trivial cofibrations with cofibrant domain lift
against fibrations. To the authors’ knowledge, every result about model categories has a corresponding
result for semi-model categories, often obtained by first cofibrantly replacing everything in sight (see for
example [Batanin and White 2024]).

Definition 2.1.1 [Batanin and White 2024, Definition 2.1] A semi-model structure on a category M

consists of classes of weak equivalences W, fibrations F and cofibrations Q satisfying the following
axioms:

(M1) Fibrations are closed under pullback.

(M2) The class W is closed under the two-out-of-three property.

(M3) W, F and Q are all closed under retracts.

(M4) (i) Cofibrations have the left lifting property with respect to trivial fibrations.

(ii) Trivial cofibrations whose domain is cofibrant have the left lifting property with respect to
fibrations.

(M5) (i) Every morphism in M can be functorially factored into a cofibration followed by a trivial
fibration.

(ii) Every morphism whose domain is cofibrant can be functorially factored into a trivial cofibration
followed by a fibration.

If, in addition, M is bicomplete, then we call M a semi-model category. M is said to be cofibrantly
generated if there are sets of morphisms I and J in M such that the class of fibrations (resp. trivial
fibrations) is characterized by the right lifting property with respect to J (resp. I ), the domains of I are
small relative to I–cell, and the domains of J are small relative to morphisms in J –cell whose domain is
cofibrant.

An adjunction with left adjoint L and right adjoint R is denoted by L aR.
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Definition 2.1.2 Suppose L WM� N WR is an adjunction between (semi-)model categories.

(1) We call L aR a Quillen adjunction if the right adjoint R preserves fibrations and trivial fibrations.
In this case, we call L a left Quillen functor and R a right Quillen functor.

(2) We call a Quillen adjunction L aR a Quillen equivalence if, for each morphism f W LX ! Y 2 N

with X cofibrant in M and Y fibrant in N, f is a weak equivalence in N if and only if its adjoint
f # WX !RY is a weak equivalence in M.

Definition 2.1.3 Suppose M is a category with pushouts and pullbacks.

(1) Given a solid-arrow commutative diagram

A

B �D C C

B D

fng

g

f

in M in which the square is a pullback, the unique dotted induced morphism is denoted by f ng

and called the pullback corner morphism of f and g.

(2) Given a solid-arrow commutative diagram

A

��

// C

��
g

��

B //

f
00

BqA C

f~g
''
D

in M in which the square is a pushout, the unique dotted induced morphism is denoted by f ~g
and called the pushout corner morphism of f and g.

In the next definition, we follow simplicial notation 0! 1 so the reader can distinguish source and target
at a glance.

Definition 2.1.4 Suppose .M;˝; 1/ is a monoidal category with pushouts. Suppose f WX0!X1 and
g W Y0! Y1 are morphisms in M. The pushout corner morphism

X0˝Y0 X1˝Y0

X0˝Y1 .X0˝Y1/qX0˝Y0 .X1˝Y0/

X1˝Y1

1˝g

f˝1

1˝g

f˝1

f�g

of f ˝ 1 and 1˝g is denoted by f �g and called the pushout product of f and g.
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Definition 2.1.5 A symmetric monoidal closed category M equipped with a model structure is called a
monoidal model category if it satisfies the following pushout product axiom [Schwede and Shipley 2000,
Definition 3.1]:

� Given any cofibrations f WX0!X1 and g W Y0! Y1, the pushout product morphism

.X0˝Y1/qX0˝Y0 .X1˝Y0/
f�g
���!X1˝Y1

is a cofibration. If, in addition, either f or g is a weak equivalence, then f � g is a trivial
cofibration.

Additionally, in order to guarantee that the unit 1 descends to the unit in the homotopy category, it is
sometimes convenient to assume the unit axiom [Hovey 1999, 4.2.6]: ifQ1! 1 is a cofibrant replacement,
then, for any cofibrant object X, the induced morphism Q1˝X ! 1˝X ŠX is a weak equivalence.
Since .�/˝X is a left Quillen functor, if the unit axiom holds for one cofibrant replacement of 1, then it
holds for any cofibrant replacement of 1.

2.2 Arrow categories

Definition 2.2.1 A lax monoidal functor F W M! N between two monoidal categories is a functor
equipped with structure morphisms

FX ˝FY
F 2X;Y
���! F.X ˝Y /; 1N F 0

�! F 1M

for X and Y in M that are associative and unital in a suitable sense, as discussed in [Mac Lane 1998, XI.2],
where this notion is referred to simply as a monoidal functor. If, furthermore, M and N are symmetric
monoidal categories and F 2 is compatible with the symmetry isomorphisms, then F is called a lax
symmetric monoidal functor. If the structure morphisms F 2 and F 0 are isomorphisms (resp. identity
morphisms), then F is called a strong monoidal functor (resp. strict monoidal functor).

We now recall the two monoidal structures on the arrow category from [Hovey 2014].

Definition 2.2.2 Suppose .M;˝; 1/ is a symmetric monoidal category with pushouts.

(1) The arrow category
!

M is the category whose objects are morphisms in M, in which a morphism
˛ W f ! g is a commutative square

.2.2.3/

X0
˛0

//

f
��

Y0

g

��

X1
˛1

// Y1

in M. We will also write Ev0 f DX0, Ev1 f DX1, Ev0 ˛ D ˛0 and Ev1 ˛ D ˛1. The definition
of
!

M does not require a monoidal structure on M.

(2) The tensor product monoidal structure on
!

M is given by the monoidal product

X0˝Y0
f˝g
���!X1˝Y1
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for f W X0! X1 and g W Y0! Y1. The arrow category equipped with this monoidal structure is
denoted by

!

M˝. The monoidal unit is Id W 1! 1.

(3) The pushout product monoidal structure on
!

M is given by the pushout product

.X0˝Y1/qX0˝Y0 .X1˝Y0/
f�g
���!X1˝Y1

for f W X0! X1 and g W Y0! Y1. The arrow category equipped with this monoidal structure is
denoted by

!

M�. The monoidal unit is ¿! 1.

(4) Defining L0.X/D .Id WX !X/ and L1.X/D .¿!X/ for X 2M, there are adjunctions

.2.2.4/ M
L0
// !M˝;

Ev0
oo M

L1
// !M�

Ev1
oo

with left adjoints on top and all functors strict symmetric monoidal.

2.3 Injective model structure

Theorem 2.3.1 [Hovey 2014, 2.1 and 2.2] Suppose M is a model category.

(1) There is a model structure on
!

M, called the injective model structure , in which a morphism
˛ W f ! g as in (2.2.3) is a weak equivalence (resp. cofibration) if and only if ˛0 and ˛1 are weak
equivalences (resp. cofibrations) in M. A morphism ˛ is a (trivial ) fibration if and only if ˛1 and
the pullback corner morphism

X0
˛1ng
����!X1 �Y1 Y0

are (trivial ) fibrations in M. Note that this implies that ˛0 is also a (trivial ) fibration. The arrow
category equipped with the injective model structure is denoted by

!

M.

(2) If M is cofibrantly generated , then so is
!

M.

(3) If M is a monoidal model category , then
!

M˝ equipped with the injective model structure is a
monoidal model category, denoted by

!

M˝.

(4) If M satisfies the unit axiom , then so does
!

M˝.

Proof This model structure is a special case of the injective model structure on a diagram category
[Barwick 2010, 2.16]. Since the indexing category �! � is so simple, we can directly write down the
generating (trivial) cofibrations and hence avoid the need to assume M is combinatorial, as in [White
2017, 5.5.1]. The generating cofibrations are of the form L1i (where i 2 I ) and unit morphisms
˛i W i ! U1 Ev1 i , where U1 is the right adjoint of Ev1 given by U1.X/ D 1X . The generating trivial
cofibrations are analogous, with j 2 J instead of i 2 I. A morphism ˇ W f ! g has the right lifting
property with respect to L1i if and only if Ev1 ˇ has the right lifting property with respect to i , and ˇ
has the right lifting property with respect to ˛i if and only if Ev0 f ! Ev1 f �Ev1 g Ev0 g has the right
lifting property with respect to i . Thus, these sets generate the injective model structure. The pushout
product axiom and the unit axiom on

!

M˝inj follows from the same on M [Barwick 2010, 4.51].
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2.4 Projective model structure

Theorem 2.4.1 [Hovey 2014, 3.1] Suppose M is a model category.

(1) There is a model structure on
!

M, called the projective model structure , in which a morphism
˛ W f ! g as in (2.2.3) is a weak equivalence (resp. fibration) if and only if ˛0 and ˛1 are weak
equivalences (resp. fibrations) in M. A morphism ˛ is a (trivial ) cofibration if and only if ˛0 and
the pushout corner morphism

X1qX0 Y0
˛1~g
����! Y1

are (trivial ) cofibrations in M. Note that this implies that ˛1 is also a (trivial ) cofibration. The arrow
category equipped with the projective model structure is denoted by

!

M.

(2) If M is cofibrantly generated , then so is
!

M.

(3) If M is a monoidal model category , then
!

M� equipped with the projective model structure is a
monoidal model category, denoted by

!

M�.

(4) If M satisfies the unit axiom , then so does
!

M�.

Proof (1) and (2) follow from [Hirschhorn 2003, 11.6.1]. For (3), Hovey [2014, 3.1] had the additional
assumption that M be cofibrantly generated. However, White and Yau [2019a] proved that, if M is a
monoidal model category, then so is

!

M�. Lastly, for (4), note that a cofibrant replacement for the unit
¿! 1 is L1.Q1/ W ¿!Q1. If f is cofibrant in

!

M�proj (equivalently, a cofibration between cofibrant
objects), then L1.Q1/�f ! f is the same as Q1˝f ! f. Thus, the unit axiom on

!

M� follows from
the unit axiom on M.

For a category M with all small limits and colimits, recall from [Hovey 1999, Sections 1.1 and 6.1] that M
is pointed if the unique morphism ¿!� is an isomorphism. In such a category, we define the cokernel
of a morphism f WX0!X1 to be the morphism cokerf WX1!Z defined by the pushout:

X0
f
//

��

X1

cokerf
��

� // Z

Dually, the kernel of f WX0!X1 is the morphism kerf W A!X0 defined by the pullback:

A //

kerf
��

�

��

X0
f
// X1

For the left adjoints L0 and L1 in (2.2.4), we note the equalities, for each object X,

.2.4.2/
ker.L0.X//D ker.Id WX !X/D .¿!X/D L1.X/;

coker.L1.X//D coker.¿!X/D .Id WX !X/D L0.X/:
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Most of the observations in Proposition 2.4.3 are from [Hovey 2014, 1.4, 4.1 and 4.3]. We provide proofs
here for completeness.

Proposition 2.4.3 Suppose M is a pointed symmetric monoidal category with all small limits and colimits.

(1) The cokernel is a strictly unital strong symmetric monoidal functor from
!

M� to
!

M˝ whose right
adjoint is the kernel.

(2) The strong symmetric monoidality of the cokernel induces a strictly unital lax symmetric monoidal
structure on the kernel such that the adjunction .coker; ker/ is monoidal.

(3) If M is also a model category, then .coker; ker/ is a Quillen adjunction.

(4) If M is a stable model category [Hovey 1999, Chapter 7], then .coker; ker/ is a Quillen equivalence.

Proof For (1), first note that coker preserves the units since the cokernel of ¿! 1 is Id1. Next, it is
strong monoidal because, given f WX0!X1 and g W Y0! Y1 we can form the commutative diagram:

X1˝Y1 X0˝Y1 //oo �

X1˝Y0

OO

X0˝Y0

OO

��

//oo �

X1˝Y0 X1˝Y0 // �

Vertical pushouts yield a span whose pushout is coker.f �g/. Horizontal pushouts yield a span whose
pushout is cokerf ˝ cokerg. Since pushouts commute, we obtain the natural isomorphism

.2.4.4/ .cokerf /˝ .cokerg/ coker.f �g/:
coker2

f;g

Š

We take this isomorphism as the .f; g/ component of the monoidal constraint for coker. Using similar
reasoning and the universal property of pushouts, one can show that the symmetric monoidal coherence
diagrams commute.

For the statement that coker is left adjoint to ker, note that a morphism ˛ from cokerf to g is given by
the diagram:

X0
f
//

��

X1
˛0
//

cokerf
��

Y0

g

��

� // Z
˛1
// Y1

These data are equivalent to a morphism from f to kerg, since A is a pullback and Z is a pushout:

X0 //

f

��

A //

kerg
��

�

��

X1 ˛0
// Y0 g

// Y1
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For (2), first note that ker W
!

M˝!
!

M� preserves the monoidal units because the kernel of Id W 1! 1 is
¿! 1. The monoidal constraint of the kernel at a pair of morphisms f and g,

ker2f;g W .kerf /� .kerg/! ker.f ˝g/;

is adjoint to the following composite, with coker2 the monoidal constraint in (2.4.4) and " W cokerıker! Id
the counit of the adjunction:

.2.4.5/

coker..kerf /�.kerg//

coker.kerf /˝coker.kerg/ f ˝g

Š.coker2/�1

"f˝"g

The lax symmetric monoidal axioms for the kernel follow from those for the cokernel and the adjunction.

The assertion that the adjunction .coker; ker/ is monoidal means that its unit and counit are monoidal
natural transformations [Mac Lane 1998, XI.2]. To prove this, first note that, by the above description
of the adjunction, its unit and counit are the identity morphisms of the monoidal units in

!

M� and
!

M˝,
respectively.

To prove that the unit � W Id! ker ı coker is a monoidal natural transformation, it remains to show that
the following diagram commutes for each pair of morphisms f and g:

f �g ker.coker.f �g//

ker.cokerf /� ker.cokerg/ ker.cokerf ˝ cokerg/

�f��g

�f�g

ker2
ker.Š/

This diagram commutes because the adjoint of each composite is the identity morphism of coker.f �g/.
For the long composite, this uses the naturality of .coker2/�1 and one of the triangle identities for the
adjunction .coker; ker/ [ibid., IV.1, Theorem 1].

To prove that the counit " W coker ı ker! Id is a monoidal natural transformation, it remains to show that
the following diagram commutes:

coker.kerf /˝ coker.kerg/ f ˝g

coker.kerf � kerg/ coker.ker.f ˝g//

Šcoker2

"f˝"g

coker.ker2
f;g
/

"f˝g

This diagram commutes because, starting from the lower left corner to f ˝g, each composite is adjoint
to ker2f;g .

For (3), let ˛ be a (trivial) cofibration and note that coker˛ is the colimit of a morphism of pushout
diagrams. That morphism of pushout diagrams is a Reedy (trivial) cofibration. The colimit functor is left
Quillen as a functor from the Reedy model structure to the underlying category [Hovey 1999, Section 5.2].
Hence, coker˛ is again a (trivial) cofibration, so coker is a left Quillen functor. See Lemma 6.1.8 for an
analogous proof.
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For (4), we must prove that, if f is cofibrant in
!

M� (so a cofibration of cofibrant objects) and g is fibrant
in
!

M˝ (so a fibration of fibrant objects), then ˛ W cokerf ! g is a weak equivalence if and only if its
adjoint ˇ W f ! kerg is a weak equivalence [ibid., 1.3.12]. We display both morphisms:

X1
cokerf

//

˛0
��

Z

˛1
��

Y0 g
// Y1

X0
f
//

ˇ0
��

X1

ˇ1D˛0
��

A
kerg

// Y0

In the homotopy category, these data give rise to fiber and cofiber sequences. Since M is stable, every
fiber sequence is canonically isomorphic to a cofiber sequence [ibid., Chapter 7]. We can extend to the
right and realize ˛ and ˇ as giving a morphism of cofiber sequences in the homotopy category:

X0
f
//

ˇ0
��

X1
cokerf

//

ˇ1D˛0
��

Z //

˛1
��

†X0

†ˇ0
��

A
kerg

// Y0 g
// Y1 // †A

If either ˛ or ˇ is a weak equivalence, then so is the other, by the two-out-of-three property. Hence, coker
and ker form a Quillen equivalence.

Proposition 2.4.6 Suppose M is a cofibrantly generated model category in which the domains and the
codomains of all the generating cofibrations and the generating trivial cofibrations are small in M. Then
!

Minj and
!

Mproj are both strongly cofibrantly generated model categories.

Proof The generating (trivial) cofibrations in
!

Minj are the morphisms L1i and the morphisms

A

i
��

i
// B

B B

for i 2 I (resp. i 2 J ) [Hovey 2014, 2.2]. The generating (trivial) cofibrations in
!

Mproj are the morphisms
L0I [L1I (resp. L0J [L1J ). So the smallness of the domains and codomains of the generating (trivial)
cofibrations in

!

Minj and
!

Mproj follows from our assumption on the domains and the codomains in I and J,
since a morphism in the arrow category from f into a transfinite composition is determined by morphisms
from Ev0 f and Ev1 f into transfinite compositions in M.

3 Smith ideals for operads

Suppose .M;˝; 1/ is a cocomplete symmetric monoidal category in which the monoidal product commutes
with colimits on both sides, which is automatically true if M is a closed symmetric monoidal category.
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In this section we define Smith ideals for an arbitrary colored operad O in M. When M is pointed, we
observe in Theorem 3.4.2 that the cokernel and the kernel induce an adjunction between the categories of
Smith O–ideals and of O–algebra morphisms. This will set the stage for the study of the homotopy theory
of Smith O–ideals in the next several sections.

3.1 Operads, algebras and bimodules

The following material on profiles and colored symmetric sequences is from [Yau and Johnson 2015].
For colored operads our references are [Yau 2016; White and Yau 2018a].

Definition 3.1.1 Suppose C is a set, whose elements will be called colors.

(1) A C–profile is a finite, possibly empty sequence c D .c1; : : : ; cn/ with each ci 2 C.

(2) When permutations act on C–profiles from the left (resp. right), the resulting groupoid is denoted
by †C (resp. †op

C ).

(3) The category of C–colored symmetric sequences in M is the diagram category M†
op
C �C. For a C–

colored symmetric sequence X, we think of †op
C (resp. C) as parametrizing the inputs (resp. outputs). For

.cI d/ 2†
op
C �C, the corresponding entry of a C–colored symmetric sequence X is denoted by X

�
d
c

�
.

(4) A C–colored operad .O; ; 1/ in M consists of

� a C–colored symmetric sequence O in M;

� a structure morphism  W O ıO! O, where ı is the circle product of O in [White and Yau 2018a,
Definition 3.2.3], explicitly

O
�d
c

�
˝

nO
iD1

O
� ci
bi

�

�! O

�d
b

�
in M for all d 2 C, c D .c1; : : : ; cn/ 2†C and bi 2†C for 1 � i � n, where b D .b1; : : : ; bn/ is
the concatenation of the bi ; and

� colored units 1c W 1! O
�
c
c

�
for c 2 C.

These data are required to satisfy the associativity, unity and equivariant conditions in [Yau 2016, Definition
11.2.1].

(5) For a C–colored operad O in M, an O–algebra .A; �/ consists of

� objects Ac 2M for c 2 C, and

� structure morphisms O ıA! A, explicitly

O
�d
c

�
˝Ac1 ˝ � � �˝Acn

�
�! Ad

in M for all d 2 C and c D .c1; : : : ; cn/ 2†C.
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These data are required to satisfy the associativity, unity and equivariant conditions in [ibid., Definition
13.2.3]. Morphisms of O–algebras are required to preserve the structure morphisms as in [ibid., Definition
13.2.8]. The category of O–algebras in M is denoted by Alg.OIM/. The forgetful functor is denoted by
U W Alg.OIM/!MC.

(6) Suppose .A; �/ is an O–algebra for some C–colored operad O in M. AnA–bimodule .X; �/ consists of

� objects Xc 2M for c 2 C, and

� structure morphisms

O
�d
c

�
˝Ac1 ˝ � � �˝Aci�1 ˝Xci ˝AciC1 ˝ � � �˝Acn

�
�!Xd

in M for all 1� i � n with n� 1, d 2 C and c D .c1; : : : ; cn/ 2†C.

These data are required to satisfy associativity, unity and equivariant conditions similar to those of an
O–algebra but with one input entry A and the output entry replaced by X. A morphism of A–bimodules
is required to preserve the structure morphisms.

(7) For a C–colored operad O in M, we write

.3.1.2/
!

O˝ D L0O and
!

O� D L1O

for the C–colored operads in
!

M˝ and
!

M�, respectively, where L0 WM!
!

M˝ and L1 WM!
!

M� are the
strict monoidal functors in (2.2.4).

As a consequence of (2.4.2) and (3.1.2), we have

.3.1.3/ ker
!

O˝ D ker.L0O/D L1OD
!

O�; coker
!

O� D coker.L1O/D L0OD
!

O˝:

Definition 3.1.4 Suppose, moreover, that M is a cofibrantly generated model category. We say that M is
operadically cofibrantly generated if the domains and codomains of I (resp. J ) are small with respect
to a class of morphisms containing U.OıI /–cell (resp. U.OıJ /–cell) for each C and each C–colored
operad O. More explicitly, O ı�WMC! Alg.OIM/ is a left adjoint of the forgetful functor U [White and
Yau 2018a, 4.1.11]. To form O ı I and O ıJ, we first embed M into the c–colored entry of MC for some
c 2 C, with 1¿ in all other entries, and then apply O ı� to the images of I and J in MC. The condition
for operadically cofibrantly generated is assumed to hold for each c 2 C.

Example 3.1.5 Every strongly cofibrantly generated model category is operadically cofibrantly generated.
The category of compactly generated topological spaces is not strongly cofibrantly generated. However,
it is operadically cofibrantly generated. Indeed, the domains and codomains of I [J are small relative
to inclusions [Hovey 1999, 2.4.1], and the morphisms in U.OıI /–cell and U.OıJ /–cell are inclusions
[White and Yau 2020, 5.10].
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3.2 Arrow category of operadic algebras

Definition 3.2.1 For each C–colored operad O in M, the arrow category, in the sense of Definition 2.2.2,
of the category Alg.OIM/ is denoted by

������!
Alg.OIM/.

Explicitly, an object in
������!
Alg.OIM/ is an O–algebra morphism. A morphism in

������!
Alg.OIM/ is a commutative

square in Alg.OIM/ as in (2.2.3), with each arrow an O–algebra morphism.

Proposition 3.2.2 Suppose O is a C–colored operad in M. Then Alg.
!

O˝I
!

M˝/ is canonically isomorphic
to
������!
Alg.OIM/.

Proof An
!

O˝–algebra f D ffc W Xc ! Ycg consists of morphisms fc 2 M for c 2 C and structure
morphisms

!

O˝
�d
c

�
˝

nO
iD1

fci
�
�! fd

in
!

M˝ for all d 2 C and cD .c1; : : : ; cn/ 2†C. This structure morphism is equivalent to the commutative
square

O
�
d
c

�
˝
Nn
iD1Xci

�0
//

Id˝
N
fci
��

Xd

fd

��

O
�
d
c

�
˝
Nn
iD1 Yci

�1
// Yd

in M. The associativity, unity, and equivariance of � translate into those of �0 and �1, making .X; �0/ and
.Y; �1/ into O–algebras in M. The commutativity of the previous square means that f W .X; �0/! .Y; �1/

is a morphism of O–algebras. The identification of morphisms in Alg.
!

O˝I
!

M˝/ and
������!
Alg.OIM/ is similar.

Remark 3.2.3 For the associative operad As, whose algebras are monoids, the identification of
�!
As˝–

algebras (that is, monoids in
!

M˝) with monoid morphisms in M is [Hovey 2014, 1.5].

3.3 Operadic Smith ideals

Definition 3.3.1 Suppose O is a C–colored operad in M. The category of Smith O–ideals in M is defined
as the category Alg.

!

O�I
!

M�/.

Propositions 3.3.3 and 3.3.11 below unpack Definition 3.3.1. They should be compared with Proposition
3.2.2. For objects or morphisms Acs ; : : : ; Act with s � t , we use the abbreviation

.3.3.2/ Acs;t D

tO
kDs

Ack :
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Proposition 3.3.3 Suppose O is a C–colored operad in M. A Smith O–ideal in M consists of precisely

� an O–algebra .A; �1/ in M,

� an A–bimodule .X; �0/ in M, and

� an A–bimodule morphism f W .X; �0/! .A; �1/

such that , for 1� i < j � n, the diagram

.3.3.4/

O
�
d
c

�
˝Ac1;i�1˝Xci˝AciC1;j�1˝Xcj˝AcjC1;n

Id˝fci˝Id

��

Id˝fcj˝Id
// O
�
d
c

�
˝Ac1;i�1˝Xci˝AciC1;n

��

�i0

��

O
�
d
c

�
˝Ac1;j�1˝Xcj˝AcjC1;n

�
j
0

// Xd

in M is commutative.

Proof An
!

O�–algebra .f; �/ in
!

M� consists of

� morphisms fc WXc! Ac in M for c 2 C, and

� structure morphisms
!

O�
�d
c

�
�fc1 � � � ��fcn

�
�! fd

in
!

M� for all d 2 C and c D .c1; : : : ; cn/ 2†C

that are associative, unital and equivariant. Since
!

O�
�
d
c

�
is the morphism ¿! O

�
d
c

�
, when nD 0, the

structure morphism � is simply the morphism �1 W O
�
d
¿

�
! Ad in M for d 2 C. For n� 1, the structure

morphism � is equivalent to the commutative diagram

.3.3.5/

O
�
d
c

�
˝ dom.fc1 � � � ��fcn/ Xd

O
�
d
c

�
˝Ac1 ˝ � � �˝Acn Ad

Id˝f�

�0

fd

�1

in M, where f� is induced by the morphisms fc . The bottom horizontal morphism �1 in (3.3.5) together
with the morphisms �1 W O

�
d
¿

�
! Ad for d 2 C give A the structure of an O–algebra.

The domain of the iterated pushout product fc1 � � � ��fcn is the colimit

.3.3.6/ dom.fc1 � � � ��fcn/D colim
.�1;:::;�n/

f�1 ˝ � � �˝f�n

in which .�1; : : : ; �n/ 2 f0; 1gn n f.1; : : : ; 1/g and f�i D Xci (resp. Aci ) if �i D 0 (resp. �i D 1). The
morphisms that define the colimit are given by the fci . For each n–tuple of indices � D .�1; : : : ; �n/ 2
f0; 1gn n f.1; : : : ; 1/g, we denote by

.3.3.7/ f�1 ˝ � � �˝f�n
��
�! dom.fc1 � � � ��fcn/
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the morphism that comes with the colimit. For each i 2 f1; : : : ; ng, we denote by

�i D .1; : : : ; 0; : : : ; 1/ 2 f0; 1gn

the n–tuple with 0 in the i th entry and 1 in every other entry.

The top horizontal morphism �0 in (3.3.5) precomposed with Id˝ ��i , as in

.3.3.8/

O
�
d
c

�
˝Ac1;i�1 ˝Xci ˝AciC1;n

O
�
d
c

�
˝ dom.fc1 � � � ��fcn/ Xd

Id˝�
�i

��
i

0

�0

for 1� i � n, gives X the structure of an A–bimodule. The commutative diagram (3.3.5), precomposed
with Id˝ ��i as in (3.3.8), implies that f W .X; �0/! .A; �1/ is an A–bimodule morphism. The morphism
�i0 in (3.3.4) is ��

i

0 in (3.3.8).

The diagram (3.3.4) is the boundary of the following diagram, where D D dom.fc1 � � � ��fcn/:

.3.3.9/

O
�
d
c

�
˝Ac1;i�1˝Xci˝AciC1;j�1˝Xcj˝AcjC1;n O

�
d
c

�
˝Ac1;i�1˝Xci˝AciC1;n

O
�
d
c

�
˝D

O
�
d
c

�
˝Ac1;j�1˝Xcj˝AcjC1;n Xd

Id˝fci˝Id

Id˝fcj˝Id

��
i

0

Id˝�
�i

�0
Id˝�

�j

��
j

0

The upper left quadrilateral is commutative because D is the colimit in (3.3.6). The other two triangles
are commutative by the definition of ��

i

0 and ��
j

0 in (3.3.8).

The argument above can be reversed. In particular, to see that the commutative diagram (3.3.4), which is
the boundary of (3.3.9), yields the top horizontal morphism �0 in (3.3.5), observe that the full subcategory
of the punctured n–cube f0; 1gn n f.1; : : : ; 1/g consisting of .�1; : : : ; �n/ with at most two 0’s is a final
subcategory [Mac Lane 1998, IX.3]. Thus, the diagram (3.3.9) ensures that �0 exists.

Remark 3.3.10 The special case of Proposition 3.3.3 for OD As is [Hovey 2014, 1.7].

Proposition 3.3.11 In the context of Proposition 3.3.3, a morphism of Smith O–ideals

..X; �0/
f
�! .A; �1//

h
�! ..X 0; �00/

f 0
�! .A0; �01//

consists of precisely

� a morphism h1 W A! A0 of O–algebras , and

� a morphism h0 WX !X 0 of A–bimodules , where X 0 becomes an A–bimodule via the restriction
along h1,
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such that the square

.3.3.12/

Xc X 0c

Ac A0c

fc

h0c

f 0c

h1c

is commutative for each c 2 C.

Proof Following the proof of Proposition 3.3.3, we unravel the given morphism h W .f; �/! .f 0; �0/ of
!

O�–algebras. The underlying datum of h is a morphism f ! f 0 in
!

MC. Thus, h consists of, for each
c 2 C, morphisms

.3.3.13/ h0c WXc!X 0c and h1c W Ac! A0c

in M such that the square (3.3.12) commutes.

The compatibility of h with the
!

O�–algebra structure means the following diagram commutes in
!

M for
all d; c1; : : : ; cn 2 C:

.3.3.14/

!

O�
�
d
c

�
�fc1 � � � ��fcn fd

!

O�
�
d
c

�
�f 0c1 � � � ��f

0
cn

f 0
d

�

Id�hc1�����hcn hd

�0

If nD 0, then (3.3.14) is the commutative diagram:

.3.3.15/

O
�
d
¿

�
Ad

O
�
d
¿

�
A0
d

�1

h1
d

�01

For n� 1, using the abbreviation

D D dom.fc1 � � � ��fcn/ and D0 D dom.f 0c1 � � � ��f
0
cn
/;

the diagram (3.3.14) becomes the commutative cube:

.3.3.16/

O
�
d
c

�
˝D Xd

O
�
d
c

�
˝D0 X 0

d

O
�
d
c

�
˝Ac1;n Ad

O
�
d
c

�
˝A0c1;n A0

d

Id˝f�

Id˝h�

�0

fd

h0
d

�00

f 0
d

Id˝h1�

�1

h1
dId˝f 0�

�01
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The six commutative faces of (3.3.16) are as follows:

(1) The back face is (3.3.5) for .f; �/, expressing the
!

O�–algebra structure � on f.

(2) The front face is (3.3.5) for .f 0; �0/, expressing the
!

O�–algebra structure �0 on f 0.

(3) The right face is the square (3.3.12) for d 2 C.

(4) The bottom face and the nD 0 case (3.3.15) together express the fact that h1 W .A; �1/! .A0; �01/

is an O–algebra morphism.

(5) The left face imposes no extra condition because D is the colimit in (3.3.6) and similarly for D0.
In more detail, for each n–tuple .�1; : : : ; �n/ 2 f0; 1gn n f.1; : : : ; 1/g, the square

.3.3.17/

f�1 ˝ � � �˝f�n f 0�1 ˝ � � �˝f
0
�n

Ac1 ˝ � � �˝Acn A0c1 ˝ � � �˝A
0
cn

f�

h�

f 0�

h1�

is commutative because it is a tensor product of n commutative squares corresponding to the n
tensor factors of the upper left corner.

� For a tensor factor with �i D 0, by definition f�i DXci and f 0�i DX
0
ci

. In this case, we have
the commutative square (3.3.12) for ci 2 C.

� For a tensor factor with �i D 1, by definition f�i D Aci and f 0�i D A
0
ci

. Both f� and f 0� are
given by the identity in the respective tensor factors, while both h� and h1� are given by h1ci .

Precomposing the top face of the commutative cube (3.3.16) with the morphism Id˝ ��i in (3.3.8) yields
the commutative diagram:

.3.3.18/

O
�
d
c

�
˝Ac1;i�1 ˝Xci ˝AciC1;n Xd

O
�
d
c

�
˝Ac1;i�1 ˝X

0
ci
˝AciC1;n

O
�
d
c

�
˝A0c1;i�1 ˝X

0
ci
˝A0ciC1;n X 0

d

��
i

0

Id˝h0ci˝Id

h0
d

Id˝h1c1;i�1˝Id˝h1ciC1;n
.�00/

�i

This commutative diagram expresses the fact that h0 WX !X 0 is a morphism of A–bimodules, where X 0

becomes an A–bimodule via the restriction along h1.

Finally, we observe that the top face of the cube (3.3.16) is actually equivalent to the commutative diagram
(3.3.18). To see this, consider an n–tuple � D .�1; : : : ; �n/ 2 f0; 1gn with at least two entries equal to 0.
Then the morphism �� in (3.3.7) factors as follows for each index i 2 f1; : : : ; ng with �i D 0, and similarly
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for f 0:

f�1 ˝ � � �˝f�n D

Ac1;i�1 ˝Xci ˝AciC1;n

f�

��

�
�i

Thus, precomposing the top face of (3.3.16) with the morphism Id˝ �� yields a diagram that factors
into two subdiagrams, one of which is (3.3.18). The other subdiagram commutes and imposes no extra
condition by the same argument above for (3.3.17).

The description of Smith O–ideals and their morphisms in Propositions 3.3.3 and 3.3.11 imply the
following result:

Proposition 3.3.19 Suppose O is a C–colored operad in M. Then there exists a .CtC/–colored operad Os

in M such that there is a canonical isomorphism of categories

Alg.
!

O�I
!

M�/Š Alg.OsIM/:

Proof Denote the first and the second copies of C in CtC by C0 and C1, respectively. For an element
c 2 C, we write c� 2 C� for the same element for � 2 f0; 1g. The entries of Os are defined as, for
d; c1; : : : ; cn 2 C and �1; : : : ; �n 2 f0; 1g,

Os
� d1

c
�1
1 ; : : : ; c

�n
n

�
D O

�d
c

�
; Os

� d0

c
�1
1 ; : : : ; c

�n
n

�
D

�
O
�
d
c

�
if at least one �i D 0;

¿ otherwise.

The operad structure morphisms of Os are either those of O or the unique morphism from the initial
object ¿.

An Os–algebra in M consists of, first of all, a .C0tC1/–colored object in M, that is, a C0–colored object
X D fXcgc2C0 and a C1–colored object AD fAcgc2C1 .

� The Os–algebra structure morphism

.3.3.20/ Os
� d1

c11 ; : : : ; c
1
n

�
˝Ac1 ˝ � � �˝Acn

�
�! Ad

corresponds to the O–algebra structure morphism �1 on A in (3.3.5).

� The Os–algebra structure morphism

.3.3.21/ Os
� d0

c11 ; : : : ; c
1
i�1; c

0
i ; c

1
iC1; : : : ; c

1
n

�
˝Ac1;i�1 ˝Xci ˝AciC1;n

�
�!Xd

corresponds to the A–bimodule structure morphism ��
i

0 on X in (3.3.8).
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� The composite

.3.3.22/

Xd

Š

��

Ad

1˝Xd
1d˝Id

// O
�
d
d

�
˝Xd D Os

�
d1

d0

�
˝Xd

�

OO

corresponds to the morphism fd in (3.3.5).

The identification of Os–algebra morphisms and Smith O–ideal morphisms follows similarly from
Proposition 3.3.11. More explicitly, a morphism h of Os–algebras consists of a .C0tC1/–colored morphism
in M. So h consists of component morphisms h0c WXc!X 0c and h1c W Ac! A0c as in (3.3.13). To see that
these component morphisms make the diagram (3.3.12) commute, we use the fact that the components
of f are the composites in (3.3.22) and similarly for f 0. The desired diagram (3.3.12) is the boundary of
the diagram:

Xc 1˝Xc Os
�
c1

c0

�
˝Xc Ac

X 0c 1˝X 0c Os
�
c1

c0

�
˝X 0c A0c

h0c

Š

Id˝h0c

1c˝Id

Id˝h0c

�

h1c

Š 1c˝Id �0

� The left square commutes by the naturality of the left unit isomorphism in the monoidal category M.

� The middle square commutes by the functoriality of ˝.

� The right square commutes because h respects Os–algebra structures.

This shows that the diagram (3.3.12) is commutative.

The other two conditions in Proposition 3.3.11 are the following:

(i) h1 W A! A0 is an O–algebra morphism.

(ii) h0 WX !X 0 is an A–bimodule morphism.

Condition (i) consists of the nD0 case (3.3.15) and the bottom face of the cube (3.3.16). These are obtained
from the compatibility of h with the Os–algebra structure morphism (3.3.20). Condition (ii) is the diagram
(3.3.18). This is obtained from the compatibility of h with the Os–algebra structure morphism (3.3.21).

The colored operad Os is somewhat similar to the two-colored operad for monoid morphisms in [Yau
2016, Section 14.3].

3.4 Operadic Smith ideals and morphisms of operadic algebras

In Proposition 2.4.3 we observe that, if M is a pointed symmetric monoidal category with all small limits
and colimits, then there is an adjunction

.3.4.1/
!

M�
coker

// !
M˝

ker
oo
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with cokernel as the left adjoint and kernel as the right adjoint. Since cokernel is a strictly unital strong
symmetric monoidal functor, the kernel is a strictly unital lax symmetric monoidal functor, and the
adjunction is monoidal. If M is a pointed model category, then .coker; ker/ is a Quillen adjunction. If M
is a stable model category, then .coker; ker/ is a Quillen equivalence.

Theorem 3.4.2 Suppose M is a complete and cocomplete symmetric monoidal pointed category in which
the monoidal product commutes with colimits on both sides. Suppose O is a C–colored operad in M. Then
the adjunction (3.4.1) induces an adjunction

.3.4.3/ Alg.
!

O�I
!

M�/
coker

//
Alg.

!

O˝I
!

M˝/
ker
oo

in which the left adjoint , the right adjoint , the unit and the counit are defined entrywise.

Proof To simplify the notation, in this proof we write CD coker and KD ker. First we lift the functors
C and K. Then we lift the unit and the counit for the adjunction.

Step 1: lifting the kernel and the cokernel to algebra categories The functors in (3.4.1) lifts entrywise
to the functors in (3.4.3) for the following reasons:

� The functor
Alg.

!

O�I
!

M�/ K
 � Alg.

!

O˝I
!

M˝/

exists because K W
!

M˝!
!

M� is a lax symmetric monoidal functor and K
!

O˝ D
!

O� by (3.1.3).

� The functor
Alg.

!

O�I
!

M�/ C
�! Alg.

!

O˝I
!

M˝/

exists because C W
!

M�!
!

M˝ is a strong symmetric monoidal functor and C
!

O� D
!

O˝ by (3.1.3).

More explicitly, suppose .f; �/ is an
!

O�–algebra as in Proposition 3.3.3. Then Cf becomes an
!

O˝–
algebra with structure morphism �# given by the following composite for all d; c1; : : : ; cn 2 C, with
C2 D coker2 the monoidal constraint of the cokernel in (2.4.4):

.3.4.4/

!

O˝
�
d
c

�
˝
Nn
iD1 Cfci Cfd

C
!

O�
�
d
c

�
˝
Nn
iD1 Cfci C.

!

O�
�
d
c

�
�fc1 � � � ��fcn/

�#

C2

C�

The
!

O˝–algebra axioms for .Cf; �#/ follow from the
!

O�–algebra axiom for .f; �/ and the symmetric
monoidal axioms for the cokernel. The same reasoning also applies to the kernel.

Thus, there is a diagram of functors

.3.4.5/

Alg.
!

O�I
!

M�/ Alg.
!

O˝I
!

M˝/

.
!

M�/C .
!

M˝/C

U

C

K

U

C

K
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with both U forgetful functors and
UKD KU:

To see that this equality holds, suppose .f; �/ is an
!

O˝–algebra as in the proof of Proposition 3.2.2. As
in (3.4.4), the

!

O�–algebra K.f; �/ is given by .Kf; �0/, where the
!

O�–algebra structure morphism �0 is
constructed from the monoidal constraint K2 and K�. Since each U forgets the operad algebra structure
morphism, we obtain the equalities

UK.f; �/D U.Kf; �0/D Kf D KU.f; �/:

The equality UKD KU holds on
!

O˝–algebra morphisms because both K apply entrywise to morphisms,
and both U do not change the morphisms.

Next we show that the unit and the counit,

� W Id! KC and " W CK! Id;

of the bottom adjunction C a K in (3.4.5) lift to the top between algebra categories.

Step 2: lifting the unit To show that � defines a natural transformation for the top functors in (3.4.5),
first we need to show that, for each

!

O�–algebra .f; �/, the unit component morphism �f W f ! KCf

in
!

MC is an
!

O�–algebra morphism. So we must show that the diagram

.3.4.6/

!

O�
�
d
c

�
��n

iD1 fci fd

K
!

O˝
�
d
c

�
��n

iD1 KCfci

K
�!

O˝
�
d
c

�
˝
Nn
iD1 Cfci

�
KCfd

Id��i �i

�

�fd

K2

K�#

in
!

M is commutative for d; c1; : : : ; cn 2 C, with �# as in (3.4.4), �i D �fci ,
!

O� D K
!

O˝ by (3.1.3), and
K2 D ker2 the monoidal constraint defined in (2.4.5).

To see that (3.4.6) is commutative, we consider the adjoint of each composite, which yields the boundary
of the following diagram in

!

M:

.3.4.7/

C
�!

O�
�
d
c

�
��n

iD1 fci
�

C.fd /

C
!

O�
�
d
c

�
˝
Nn
iD1 Cfci

!

O˝
�
d
c

�
˝
Nn
iD1 Cfci

C
�
K
!

O˝
�
d
c

�
��n

iD1 KCfci
�

CK
!

O˝
�
d
c

�
˝
Nn
iD1 CKCfci

C.Id��i �i /

.C2/�1

C�

Id˝
N
i C�i

�#

.C2/�1

"�
O˝.dc/

˝
N
i "Cfci
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The three subregions in (3.4.7) are commutative for the following reasons:

� The left triangle is commutative by naturality of the monoidal constraint C2D coker2 of the cokernel.

� The upper right region is commutative by the definition of �# in (3.4.4).

� To see that the lower right triangle is commutative, first note that the counit component morphism

.3.4.8/ "�
O˝.dc/

W CK
!

O˝
�d
c

�
!
!

O˝
�d
c

�
is the identity, since

CK
!

O˝ D C
!

O� D
!

O˝;

by (3.1.3). For each of the other n tensor factors in the lower right triangle, the composite "Cfci ıC�i
is the identity morphism by one of the triangle identities for the adjunction C a K [Mac Lane 1998,
IV.1, Theorem 1].

This proves that �f W f ! KCf is an
!

O�–algebra morphism. Moreover, � is natural with respect to
!

O�–algebra morphisms because a diagram in Alg.
!

O�I
!

M�/ is commutative if and only if its underlying
diagram in

!

MC is commutative. Thus, the unit � W Id!KC is a natural transformation for the top horizontal
functors in (3.4.5) between algebra categories.

Step 3: lifting the counit Next we show that the counit " W CK! Id of the bottom adjunction C a K

in (3.4.5) lifts to the top between algebra categories. First we need to show that, for each
!

O˝–algebra
.g; �/, the counit component morphism "g W CKg! g in

!

MC is an
!

O˝–algebra morphism. Denote by

.Kg; x�/D K.g; �/

the
!

O�–algebra obtained by applying the top functor K in (3.4.5). The
!

O�–algebra structure morphism x�
is the analogue of (3.4.4) for the kernel. In other words, it is the composite

.3.4.9/ x�D .K�/ ıK2

with K2 D ker2 the monoidal constraint (2.4.5).

As noted in (3.4.8), each component "�O˝.dc/ is the identity. With .�/# as in (3.4.4), "g is an
!

O˝–algebra
morphism if and only if the boundary of the diagram

.3.4.10/

!

O˝
�
d
c

�
˝
Nn
iD1 CKgci CKgd

C
�!

O�
�
d
c

�
��n

iD1 Kgci
�

CK
�!

O˝
�
d
c

�
˝
Nn
iD1 gci

�
!

O˝
�
d
c

�
˝
Nn
iD1 gci gd

Id˝
N
i "i

C2

x�#

"gd
C.K2/

Cx�

"

CK�

�

in
!

M commutes for d; c1; : : : ; cn 2 C, with "i D "gci ,
!

O˝ D C
!

O� and
!

O� D K
!

O˝ by (3.1.3).
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The four subregions in (3.4.10) are commutative for the following reasons:

� The top triangle is commutative by the definition of .�/# in (3.4.4).

� The triangle to its lower right is commutative by the definition of x� in (3.4.9) and the functoriality
of C.

� The lower right quadrilateral is commutative by the naturality of the counit " W CK! Id.

Using the inverse of C2 D coker2, the left triangle in (3.4.10) is equivalent to the diagram:

.3.4.11/

C
�
K
!

O˝
�
d
c

�
��n

iD1 Kgci
�

CK
�!

O˝
�
d
c

�
˝
Nn
iD1 gci

�

CK
!

O˝
�
d
c

�
˝
Nn
iD1 CKgci

!

O˝
�
d
c

�
˝
Nn
iD1 gci

.C2/�1

C.K2/

"

"˝
N
i "i

The diagram (3.4.11) is commutative because the adjoint of each composite is K2D ker2 defined in (2.4.5).
This shows that (3.4.10) is commutative, and "g is an

!

O˝–algebra morphism.

Moreover, " is natural with respect to
!

O˝–algebra morphisms because a diagram in Alg.
!

O˝I
!

M˝/ is
commutative if and only if its underlying diagram in

!

MC is commutative. Thus, the counit " W CK! Id is
a natural transformation for the top horizontal functors in (3.4.5) between algebra categories.

Finally, the lifted natural transformations � and " satisfy the triangle identities for an adjunction [Mac Lane
1998, IV.1, Theorem 1] because diagrams in Alg.

!

O�I
!

M�/ and Alg.
!

O˝I
!

M˝/ are commutative if and
only if their underlying diagrams in

!

MC are commutative. This proves that the top horizontal functors
.C;K/ in (3.4.5) form an adjunction with the lifted unit and counit.

4 Homotopy theory of Smith ideals for operads

In this section, we study the homotopy theory of Smith ideals for an operad O. Under suitable conditions
on the underlying monoidal model category M, in Definition 4.2.3 we define model structures on the
categories of Smith O–ideals and of O–algebra morphisms. When M is pointed, the cokernel and the
kernel yield a Quillen adjunction between these model categories. Furthermore, in Theorem 4.4.1 we
show that if M is stable and if cofibrant Smith O–ideals are entrywise cofibrant in

!

M�, then the cokernel
and the kernel yield a Quillen equivalence between the categories of Smith O–ideals and of O–algebra
morphisms.

Definition 4.0.1 We say that a C–colored operad O is admissible if Alg.OIM/ admits a transferred model
structure, with weak equivalences and fibrations defined entrywise in MC.

4.1 Admissibility of operads

Theorem 4.1.1 [White and Yau 2018a, 6.1.1 and 6.1.3] Suppose M is an operadically cofibrantly
generated (Definition 3.1.4) monoidal model category satisfying the following condition:
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(♤) For each n� 1 and for each object X 2M†
op
n , the function

X ˝†n .�/
�n
WM!M

takes trivial cofibrations into some subclass of weak equivalences that is closed under transfinite
composition and pushout.

Then each C–colored operad O in M is admissible in the sense of Definition 4.0.1.

Example 4.1.2 Strongly cofibrantly generated monoidal model categories that satisfy .♤/ include

(1) pointed or unpointed simplicial sets [Quillen 1967] and all of their left Bousfield localizations
[Hirschhorn 2003];

(2) bounded or unbounded chain complexes over a commutative ring containing the rationals Q

[Quillen 1967];

(3) symmetric spectra built on either simplicial sets or compactly generated topological spaces, motivic
symmetric spectra, and G–equivariant symmetric spectra with either the positive stable model
structure or the positive flat stable model structure [Pavlov and Scholbach 2018];

(4) the category of small categories with the folk model structure [Rezk 2000];

(5) simplicial modules over a field of characteristic zero [Quillen 1967];

(6) the stable module category of kŒG�–modules [Hovey 1999, 2.2], where k is a field and G is a finite
group (we recall that the homotopy category of this example is trivial unless the characteristic of k
divides the order of Gs, the setting for modular representation theory).

The condition .♤/ for (1)–(2) is proved in [White and Yau 2018a, Section 8], which also handles symmetric
spectra built on simplicial sets, and (4)–(5) can be proved using similar arguments. The condition .♤/ for
the stable module category is proved by the argument in [White and Yau 2020, 12.2]. For symmetric
spectra built on topological spaces, motivic symmetric spectra and equivariant symmetric spectra, we refer
to [Pavlov and Scholbach 2018, Section 2], starting with CD Top, sSetG, TopG, and the A1–localization
of simplicial presheaves with the injective model structure.

In each of these examples except those built from Top, the domains and the codomains of the generating
(trivial) cofibrations are small with respect to the entire category. So Proposition 2.4.6 applies to show
that, in each case, the arrow category with either the injective or the projective model structure is strongly
cofibrantly generated. The category of (equivariant) symmetric spectra built on topological spaces is
operadically cofibrantly generated by an argument analogous to that of Example 3.1.5, as are the arrow
categories, by the remark below.

Remark 4.1.3 In [White and Yau 2018a, 6.1.1 and 6.1.3], M is assumed to be strongly cofibrantly
generated, but actually operadically cofibrantly generated suffices for the proof. The smallness hypothesis
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is required in order to run the small object argument, and O ı I (resp. O ıJ ) are the generating (trivial)
cofibrations. We have previously pointed out that operadically cofibrantly generated is a sufficient
smallness hypothesis in [White and Yau 2020, 5.7]. The proof of Proposition 2.4.6 also proves that, if M
is operadically cofibrantly generated, then so are

!

M� and
!

M˝.

Even if .♤/ is not satisfied, sometimes the classes of morphisms defined in Theorem 4.1.1 in Alg.OIM/

define a semi-model structure [White and Yau 2018a, 6.2.3 and 6.3.1]. We therefore phrase our arguments
in this section to only rely on the semi-model category axioms in categories of algebras. In Section 7, we
include a comparison to the1–categorical approach to encoding the homotopy theory of operad algebras.

4.2 Admissibility of operads in the arrow category

Recall the injective model structure on the arrow category, which is a monoidal model category if M is,
by Theorem 2.3.1.

Theorem 4.2.1 If M is a monoidal model category satisfying .♤/, then so is
!

M˝. Therefore , if M is also
cofibrantly generated in which the domains and the codomains of all the generating (trivial ) cofibrations
are small in M, then every C–colored operad on

!

M˝inj is admissible.

Proof Suppose M satisfies .♤/ with respect to a subclass C of weak equivalences that is closed under
transfinite composition and pushout. We write C0 for the subclass of weak equivalences ˇ in

!

M˝inj such
that ˇ0; ˇ1 2 C. Then C0 is closed under transfinite composition and pushout.

Suppose fX WX0!X1 is an object in .
!

M˝/†
op
n and ˛ W fV ! fW ,

.4.2.2/

V0

fV
��

˛0
// W0

fW
��

V1
˛1

// W

is a trivial cofibration in
!

M˝. We will show that fX ˝†n ˛
�n belongs to C0. The morphism fX ˝†n ˛

�n

in
!

M˝ is the commutative square

X0˝†n dom.˛�n0 /

fX˝†nf�

��

X0˝†n˛
�n
0
// X0˝†n W

˝n
0

fX˝†nf
˝n
W

��

X1˝†n dom.˛�n1 /
X1˝†n˛

�n
1
// X1˝†n W

˝n
1

in M, where f� is induced by fV and fW . Since ˛0 and ˛1 are trivial cofibrations in M and since
X0; X1 2M

†
op
n , the condition .♤/ in M implies that the two horizontal morphisms in the previous diagram

are both in C. This shows that
!

M˝inj satisfies .♤/ with respect to the subclass C0 of weak equivalences.

The second assertion is now a consequence of Proposition 2.4.6, Example 3.1.5 and Theorem 4.1.1.
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Definition 4.2.3 Suppose M is a cofibrantly generated monoidal model category satisfying .♤/ in which
the domains and the codomains of the generating (trivial) cofibrations are small with respect to the entire
category. Suppose O is a C–colored operad in M.

(1) Equip the category of Smith O–ideals Alg.
!

O�I
!

M�/ with the model structure given by Proposition
3.3.19 and Theorem 4.1.1. In other words, a morphism ˛ of Smith O–ideals is a weak equivalence
(resp. fibration) if and only if ˛0 and ˛1 are colorwise weak equivalences (resp. fibrations) in M.

(2) Equip the category Alg.
!

O˝I
!

M˝/ with the model structure given by Theorem 4.2.1. In other words,
a morphism ˛ in Alg.

!

O˝I
!

M˝/ is a weak equivalence (resp. fibration) if and only if ˛c (D the
c–colored entry of ˛) is a weak equivalence (resp. fibration) in

!

M˝inj for each c 2 C.

When .♤/ is not satisfied but the classes of morphisms above still define semi-model structures (eg
Remark 5.1.6, Corollary 5.2.3 and Theorem 6.2.1), we still denote those semi-model structures by
Alg.

!

O�I
!

M�/ and Alg.
!

O˝I
!

M˝/.

Remark 4.2.4 Recall diagram (3.4.5). In Definition 4.2.3 the (semi-)model structure on Smith O–
ideals is induced by the forgetful functor to MCtC, so its weak equivalences and fibrations are defined
entrywise in M, or equivalently in

!

M�. On the other hand, the model structure on O–algebra morphisms
Alg.

!

O˝I
!

M˝/ is induced by the forgetful functor to .
!

M˝inj/
C. The (trivial) fibrations in Alg.

!

O˝I
!

M˝/ are,
in particular, entrywise (trivial) fibrations in M. However, they are not defined entrywise in M, since
(trivial) fibrations in

!

M˝inj are not defined entrywise in M, as explained in Theorem 2.3.1.

Suppose K �M is a subclass of morphisms in a category M with a chosen initial object and C is a set
with c 2 C. We denote by

Kc �MC

the subclass of morphisms in which the morphisms in K are concentrated in the c–entry with all other
entries the initial object. The following observation will be used in the proof of Theorem 6.2.1 below:

Proposition 4.2.5 In the context of Definition 4.2.3, the (semi-)model structure on Smith O–ideals is
cofibrantly generated with generating cofibrations

!

O� ı .L0I [L1I /c and generating trivial cofibrations
!

O� ı .L0J [L1J /c for c 2 C, where I and J are the sets of generating cofibrations and generating trivial
cofibrations in M.

Proof The category Alg.
!

O�I
!

M�/ already has a (semi-)model structure, namely the one in Definition
4.2.3(1), with weak equivalences and fibrations defined via the forgetful functor U in the free–forgetful
adjunction

.
!

M�proj/
C

�
O �ı�

// Alg.
!

O�I
!

M�/;
U

oo

since the weak equivalences and fibrations in
!

Mproj are defined in M. To see that Alg.
!

O�I
!

M�/ has a
cofibrantly generated model structure with weak equivalences and fibrations defined entrywise in

!

Mproj

Algebraic & Geometric Topology, Volume 24 (2024)



368 David White and Donald Yau

and with generating (trivial) cofibrations as stated above, we refer to the computations of [Johnson and
Yau 2009, Lemma 3.3], which produces the sets I and J, proves the requisite smallness, and proves that
fibrations and trivial fibrations are characterized by lifting with respect to I and J. Hence, this proof
works just as well for semi-model categories. Since a (semi-)model structure is uniquely determined by
the classes of weak equivalences and fibrations, this second model structure on Alg.

!

O�I
!

M�/ must be
the same as the one in Definition 4.2.3(1).

4.3 Quillen adjunction between operadic Smith ideals and algebra morphisms

Proposition 4.3.1 Suppose M is a pointed cofibrantly generated monoidal model category, in which
the domains and the codomains of the generating (trivial ) cofibrations are small with respect to the
entire category. Suppose O is a C–colored operad in M such that Alg.

!

O�I
!

M�/ and Alg.
!

O˝I
!

M˝/ admit
transferred semi-model structures as in Definition 4.2.3. Then the adjunction

.4.3.2/ Alg.
!

O�I
!

M�/
coker

//
Alg.

!

O˝I
!

M˝/
ker
oo

in (3.4.3) is a Quillen adjunction.

Proof Suppose ˛ is a (trivial) fibration in Alg.
!

O˝I
!

M˝/. We must show that ker˛ is a (trivial) fibration
in Alg.

!

O�I
!

M�/, that is, an entrywise (trivial) fibration in M. Since (trivial) fibrations in
!

M�proj are defined

entrywise in M, it suffices to show that U ker˛ is a (trivial) fibration in .
!

M�proj/
C. Since there is an

equality — see (3.4.5) —
U ker˛ D kerU˛

and since ker W .
!

M˝inj/
C! .

!

M�proj/
C is a right Quillen functor by Proposition 2.4.3(3), we finish the proof by

observing that U˛ 2 .
!

M˝inj/
C is a (trivial) fibration.

Recall that a pointed (semi-)model category is stable if its homotopy category is a triangulated category
[Hovey 1999, 7.1.1].

Proposition 4.3.3 In the setting of Proposition 4.3.1, suppose M is also a stable (semi-)model category.
Then the right Quillen functor ker in (4.3.2) reflects weak equivalences between fibrant objects.

Proof Suppose ˛ is a morphism in Alg.
!

O˝I
!

M˝/ between fibrant objects such that ker˛ 2Alg.
!

O�I
!

M�/

is a weak equivalence. So ker˛ is entrywise a weak equivalence in M, or equivalently U ker˛ 2 .
!

M�proj/
C

is a weak equivalence. We must show that ˛ is a weak equivalence, that is, that U˛ 2 .
!

M˝inj/
C is a weak

equivalence. The morphism U˛ is still a morphism between fibrant objects, and

kerU˛ D U ker˛

is a weak equivalence in .
!

M�proj/
C. Since ker W .

!

M˝inj/
C ! .

!

M�proj/
C is a right Quillen equivalence by

Proposition 2.4.3(4), it reflects weak equivalences between fibrant objects by [Hovey 1999, 1.3.16]. So
U˛ is a weak equivalence.
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4.4 Quillen equivalence between operadic Smith ideals and algebra morphisms

The following result says that, under suitable conditions, Smith O–ideals and O–algebra morphisms have
equivalent homotopy theories:

Theorem 4.4.1 Suppose M is a cofibrantly generated stable monoidal model category , and Alg.
!

O�I
!

M�/

and Alg.
!

O˝I
!

M˝/ admit transferred (semi-)model structures as in Definition 4.2.3. Suppose O is a C–
colored operad in M such that cofibrant

!

O�–algebras are also underlying cofibrant in .
!

M�proj/
C. Then the

Quillen adjunction

Alg.
!

O�I
!

M�/
coker

//
Alg.

!

O˝I
!

M˝/
ker
oo

is a Quillen equivalence.

Proof Using Proposition 4.3.3 and [Hovey 1999, 1.3.16] (or [White 2017, Remark 4.3] for the semi-
model category case), it remains to show that for each cofibrant object fX 2 Alg.

!

O�I
!

M�/, the derived
unit

fX
�
�! kerRO cokerfX

is a weak equivalence in Alg.
!

O�I
!

M�/, where RO is a fibrant replacement functor in Alg.
!

O˝I
!

M˝/. In
other words, we must show that U� is a weak equivalence in the model category .

!

M�proj/
C.

Suppose R is a fibrant replacement functor in .
!

M˝inj/
C. Consider the solid-arrow commutative diagram

U cokerfX
��

�

��

�
// URO cokerfX

����

RU cokerfX // //

˛

77

0

in .
!

M˝inj/
C. Here the left vertical morphism is a trivial cofibration and is a fibrant replacement ofU cokerfX .

The top horizontal morphism is a weak equivalence and is U applied to a fibrant replacement of cokerfX .
The other two morphisms are fibrations. So there is a dotted morphism ˛ that makes the whole diagram
commutative. By the two-out-of-three property, ˛ is a weak equivalence between fibrant objects in .

!

M˝inj/
C.

Since ker W .
!

M˝inj/
C! .

!

M�proj/
C is a right Quillen functor, by Ken Brown’s lemma [Hovey 1999, 1.1.12]

ker˛ is a weak equivalence in .
!

M�proj/
C.

We now have a commutative diagram

UfX

"

��

U�
// U kerRO cokerfX

kerR cokerUfX kerRU cokerfX
ker˛
�

// kerURO cokerfX

in .
!

M�proj/
C, where " is the derived unit of UfX . To show that U� is a weak equivalence, it suffices to show

that " is a weak equivalence. By assumption UfX is a cofibrant object in .
!

M�proj/
C. Since .coker; ker/
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is a Quillen equivalence between .
!

M�proj/
C and .

!

M˝inj/
C, the derived unit " is a weak equivalence by

[ibid., 1.3.16].

Example 4.4.2 Among the model categories in Example 4.1.2,

(1) the categories of bounded or unbounded chain complexes over a semisimple ring that contains the
rational numbers,

(2) the stable module category of kŒG�–modules,

(3) the categories of symmetric spectra, G–equivariant symmetric spectra built on simplicial sets for a
finite group G and motivic symmetric spectra, with either the positive or the positive flat stable
model structure

satisfy the conclusion of Theorem 4.4.1 for every operad O. Admissibility is proven in [White and Yau
2018a, 6.1.1; 2020, 5.15]. Stability is discussed in [Hovey 1999, Chapter 7; White and Yau 2018a,
8.3; Pavlov and Scholbach 2018, Section 2]. All are strongly cofibrantly generated because they are
combinatorial model categories [White and Yau 2020, Sections 11 and 12; Pavlov and Scholbach 2018,
Section 2]. So all satisfy the conditions of Theorem 4.4.1 except that the condition about cofibrant Smith
O–ideals being colorwise cofibrant in

!

M�proj is more subtle. We will consider this issue in the next two
sections, proving this condition for (1) in Corollary 5.2.4 and for (2) in Corollary 6.2.5.

For classical, equivariant or motivic symmetric spectra, we must tweak the proof of Theorem 4.4.1. Let
.
!

M�proj/
C refer to the projective model structure on the arrow category where M is the injective stable model

structure on the relevant category of symmetric spectra. Since the weak equivalences of the injective
stable model structure coincide with those of the positive (flat) stable model structure, in the last paragraph
of the proof, it is enough to prove that � is a weak equivalence with respect to the injective stable model
structure on spectra. Hence, it suffices for UfX to be a cofibrant object in .

!

M�proj/
C, which follows from

the proof of [White and Yau 2018a, 8.3.3], using our filtrations and the fact that the cofibrations of the
injective stable model structure are the monomorphisms.

We note that we cannot add the injective stable model structure on symmetric spectra to the list in
Example 4.4.2 because it is not true that every operad is admissible. A famous obstruction due to Gaunce
Lewis prevents the Com operad from being admissible, for example.

5 Smith ideals for commutative and †–cofibrant operads

In this section we apply Theorem 4.4.1 and consider Smith ideals for the commutative operad and
†C–cofibrant operads (Definition 5.2.1). In particular, in Corollary 5.2.3 we will show that Theorem 4.4.1
is applicable to all †C–cofibrant operads. On the other hand, the commutative operad is usually not
†–cofibrant. However, as we will see in Example 5.1.3, Theorem 4.4.1 is applicable to the commutative
operad in symmetric spectra with the positive flat stable model structure.

Algebraic & Geometric Topology, Volume 24 (2024)



Smith ideals of operadic algebras in monoidal model categories 371

5.1 Commutative Smith ideals

For the commutative operad, which is entrywise the monoidal unit and whose algebras are commutative
monoids, we use the following definition from [White 2017, 3.4]. The notation ‹=†n means taking the
†n–coinvariants.

Definition 5.1.1 A monoidal model category M is said to satisfy the strong commutative monoid axiom
if, whenever f WK! L is a (trivial) cofibration, then so is f �n=†n, where f �n is the n–fold pushout
product (which can be viewed as the unique morphism from the colimit Qn of a punctured n–dimensional
cube to L˝n), and the †n–action is given by permuting the vertices of the cube.

The following result says that, under suitable conditions, commutative Smith ideals and commutative
monoid morphisms have equivalent homotopy theories:

Corollary 5.1.2 Suppose M is a cofibrantly generated stable monoidal model category that satisfies the
strong commutative monoid axiom , the monoid axiom , and in which cofibrant

��!
Com�–algebras are also

underlying cofibrant in
!

M�proj (this occurs , for example , if the monoidal unit is cofibrant). Then there is a
Quillen equivalence

Alg.
��!
Com�I

!

M�/
coker

// Alg.
��!
Com˝I

!

M˝/
ker
oo

in which Com is the commutative operad in M.

Proof First, [White 2017, 5.12 and 5.14] ensures that
!

M˝ and
!

M� satisfy the strong commutative
monoid axiom, and [Hovey 2014, 2.2 and 3.2] (also Theorems 2.3.1 and 2.4.1) ensures that they satisfy
the monoid axiom. Hence, by [White 2017, 3.2], Alg.

��!
Com�I

!

M�/ and Alg.
��!
Com˝I

!

M˝/ carry transferred
model structures.

For the commutative operad, it is proved in [ibid., 3.6 and 5.14] that, with the strong commutative monoid
axiom and a cofibrant monoidal unit, cofibrant

��!
Com�–algebras are also underlying cofibrant in

!

M�. So
Theorem 4.4.1 applies.

Example 5.1.3 (commutative Smith ideals in symmetric spectra) Example 4.4.2 shows that the category
of symmetric spectra with the positive flat stable model structure satisfies the hypotheses in Theorem 4.4.1.
It also satisfies the strong commutative monoid axiom [ibid., 5.7] and the monoid axiom [Schwede and
Shipley 2000]. While the monoidal unit is not cofibrant, nevertheless, White [2017, 5.15] shows that
cofibrant commutative Smith ideals forget to cofibrant objects of

!

M�. Therefore, Corollary 5.1.2 applies
to the commutative operad Com in symmetric spectra with the positive flat stable model structure.

Example 5.1.4 (commutative Smith ideals in algebraic settings) LetR be a commutative ring containing
the ring of rational numbers Q. Corollary 5.2.4 shows that the category of (bounded or unbounded)
chain complexes of R–modules satisfies the conditions of Theorem 4.4.1. They also satisfy the strong
commutative monoid axiom and the monoid axiom [ibid., Lemma 5.1]. Hence, Corollary 5.1.2 applies, to

Algebraic & Geometric Topology, Volume 24 (2024)



372 David White and Donald Yau

give a homotopy theory of ideals of CDGAs. The same is true of the stable module category of RD kŒG�,
where k is a field and G is a finite group, using Corollary 6.2.5. The result is a homotopy theory of ideals
of commutative R–algebras.

Example 5.1.5 (commutative Smith ideals in (equivariant) orthogonal/symmetric spectra) Let G be a
compact Lie group. The positive flat stable model structure on G–equivariant orthogonal spectra satisfies
the strong commutative monoid axiom [ibid., 5.10], the monoid axiom [White 2022, Section 5.8] and the
property that cofibrant commutative Smith ideals forget to cofibrant objects of

!

M� [White 2017, 5.15].
The same is true for Hausmann’s G–symmetric spectra built on either simplicial sets or topological spaces
for a finite group G by [Hausmann 2017, 6.4, 6.16 and 6.22], and for Schwede’s positive flat model
structure for global equivariant homotopy theory (where commutative monoids are ultracommutative ring
spectra) [Schwede 2018, 4.3.28, 5.4.1 and 5.4.3]. Hence, Corollary 5.1.2 applies in all three settings.

Of course, taking G trivial in Example 5.1.5, one obtains that Corollary 5.1.2 applies to orthogonal spectra
with the positive flat stable model structure [White 2022, Section 5.8].

Remark 5.1.6 If, in Corollary 5.1.2, M fails to satisfy the monoid axiom, then we still have semi-model
structures on Alg.

��!
Com�I

!

M�/ and Alg.
��!
Com˝I

!

M˝/ by [White 2017, 3.8]. In this case, Theorem 4.4.1
still applies, as long as cofibrant

��!
Com�–algebras are also underlying cofibrant in

!

M�proj (eg if the monoidal
unit is cofibrant, by [ibid., 3.6]).

5.2 Smith ideals for †–cofibrant operads

For a cofibrantly generated model category M and a small category D, recall that the diagram category MD

inherits a projective model structure with weak equivalences and fibrations defined entrywise in M

[Hirschhorn 2003, 11.6.1]. We use this below when DD†
op
C �C is the groupoid in Definition 3.1.1. In

this case, the category MD is the category of C–colored symmetric sequences.

Definition 5.2.1 For a cofibrantly generated model category M, a C–colored operad in M is said to be
†C–cofibrant if its underlying C–colored symmetric sequence is cofibrant. If C is the one-point set, then
we say †–cofibrant instead of †f�g–cofibrant

Proposition 5.2.2 Suppose M is a cofibrantly generated model category and D is a small category. If
X 2 MD is cofibrant , then L1X 2 .

!

M�proj/
D and L0X 2 .

!

M˝inj/
D are cofibrant. In particular , if O is a

†C–cofibrant C–colored operad in M, then
!

O� D L1O is a †C–cofibrant C–colored operad in
!

M�proj and
!

O˝ is a †C–cofibrant C–colored operad in
!

M˝.

Proof The Quillen adjunction L1 WM�
!

M�proj WEv1 lifts to a Quillen adjunction of D–diagram categories

MD
L1
// .
!

M�proj/
D

Ev1
oo

by [ibid., 11.6.5(1)], and similarly for .L0;Ev0/. If X 2MD is cofibrant, then L1X and L0X are cofibrant
since L1 and L0 are left Quillen functors.

Algebraic & Geometric Topology, Volume 24 (2024)



Smith ideals of operadic algebras in monoidal model categories 373

The following result says that, under suitable conditions, for a †C–cofibrant C–colored operad O, Smith
O–ideals and O–algebra morphisms have equivalent homotopy theories:

Corollary 5.2.3 Suppose M is as in Theorem 4.4.1 and O is a†C–cofibrant C–colored operad in M. Then
Alg.

!

O�I
!

M�/ and Alg.
!

O˝I
!

M˝/ have transferred semi-model structures , where cofibrant
!

O�–algebras
are also underlying cofibrant in .

!

M�proj/
C. Hence , there is a Quillen equivalence

Alg.
!

O�I
!

M�/
coker

//
Alg.

!

O˝I
!

M˝/:
ker
oo

Proof The arrow categories
!

M�proj and
!

M˝inj are cofibrantly generated monoidal model categories by
Theorems 2.3.1 and 2.4.1. By Proposition 5.2.2, the C–colored operads

!

O� in
!

M�proj and
!

O˝ in
!

M˝inj

are †C–cofibrant. Theorem 6.3.1 in [White and Yau 2018a], applied to
!

M�proj and
!

M˝, now gives the
transferred semi-model structures and says that every cofibrant

!

O�–algebra is underlying cofibrant in
(
!

M�proj/
C. So Theorem 4.4.1 applies.

The following provides one source of applications of Corollary 5.2.3, and answers a question Pavel
Safranov asked the first author. This result generalizes [White 2017, Lemma 5.1; White and Yau 2018a,
8.1], as it applies in particular to fields of characteristic zero.

Corollary 5.2.4 Suppose R is a commutative ring with unit and M is the category of bounded or
unbounded chain complexes of R–modules , with the projective model structure. The following are
equivalent :

(1) R is a semisimple ring containing the rational numbers Q.

(2) Every symmetric sequence is projectively cofibrant.

In particular , for such rings R, every C–colored operad in M is †C–cofibrant , so Corollary 5.2.3 is
applicable for all colored operads in M. If R contains Q (but is not necessarily semisimple), then every
entrywise cofibrant C–colored operad in M is †C–cofibrant and admissible.

Proof Assume (1). Maschke’s theorem [Polcino Milies and Sehgal 2002, 3.4.7] guarantees that each
group ring RŒ†n� is semisimple (since 1=nŠ exists in R, making nŠ invertible). This means every module
M over RŒ†n� is projective. In particular, M is a direct summand of a module induced from the trivial
subgroup, and has a free †n–action. Hence, (2) follows.

Conversely, if (2) is true, then it implies that, for every n, every module in RŒ†n� is projective. This means
each RŒ†n� is a semisimple ring. By [loc. cit.], this implies that R is semisimple and nŠ is invertible in R
for every n. It follows that Q is contained in R.

For such R, the projective model structure on (bounded or unbounded) chain complexes ofR–modules has
every object cofibrant (so, automatically, cofibrant operad algebras forget to cofibrant chain complexes).
Hence, any C–colored operad is entrywise cofibrant and hence †C–cofibrant. Furthermore, Theorem 4.1.1
implies that all operads are admissible, since every X 2M†

op
n is †n–projectively cofibrant.
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If R contains Q but is not semisimple, then there can be nonprojective R–modules, but the argument
of [loc. cit.] shows that an RŒ†n�–module that is projective as an R–module is projective as an RŒ†n�–
module. It follows that Corollary 5.2.3 holds for entrywise cofibrant operads, including the operad Com.
Indeed, all operads are admissible thanks to Theorem 4.1.1, since, for any trivial cofibration f and any
X 2M†

op
n , maps of the form X ˝†n f

�n are trivial h–cofibrations and this class of morphisms is closed
under pushout and transfinite composition [White 2022, Section 5.8].

Example 5.2.5 Suppose M is as in Theorem 4.4.1, that is, cofibrantly generated, stable, monoidal and
with (co)domains of I [J small. Many examples of such M are provided in Examples 4.4.2 and 5.2.6
and in [White 2017; 2022; White and Yau 2018a; 2018b; 2019a; 2019b; 2020; Gutiérrez and White 2018;
Hovey and White 2020]. Here are some examples of †–cofibrant operads, for which Corollary 5.2.3 is
applicable:

Smith ideals The associative operad As, which has As.n/ D
`
†n

1 as the nth entry and which has
monoids as algebras, is †–cofibrant. In this case, Corollary 5.2.3 is [Hovey 2014, Corollary 4.4(1)].

Smith A1–ideals Any A1–operad, defined as a †–cofibrant resolution of As, is †–cofibrant. In this
case, Corollary 5.2.3 says that Smith A1–ideals and A1–algebra morphisms have equivalent homotopy
theories. For instance, one can take the standard differential graded A1–operad [Markl 1996] and, for
symmetric spectra, the Stasheff associahedra operad [1963a; 1963b].

Smith E1–ideals Any E1–operad, defined as a †–cofibrant resolution of the commutative operad
Com, is †–cofibrant. In this case, Corollary 5.2.3 says that Smith E1–ideals and E1–algebra morphisms
have equivalent homotopy theories. For example, for symmetric spectra, one can take the Barratt–Eccles
E1–operad E†� [1974]. An elementary discussion of the Barratt–Eccles operad is in [Johnson and Yau
2021, Section 11.4].

Smith En–ideals For each n� 1, the little n–cubes operad Cn [Boardman and Vogt 1973; May 1972]
is †–cofibrant and is an En–operad by definition [Fresse 2017, 4.1.13]. In this case, with M being
symmetric spectra with the positive (flat) stable model structure, Corollary 5.2.3 says that Smith Cn–ideals
and Cn–algebra morphisms have equivalent homotopy theories. One may also use other †–cofibrant
En–operads [Fiedorowicz 1998], such as the Fulton–MacPherson operad [Getzler and Jones 1994; Fresse
2017, 4.3], which is actually a cofibrant En–operad. An elementary discussion of a categorical En–operad
is in [Johnson and Yau 2021, Chapter 13].

Example 5.2.6 The power of restricting attention to the class of †C–cofibrant colored operads is that
Theorem 4.4.1 holds for a larger class of model categories. In particular, the following model categories
satisfy the conditions of Theorem 4.4.1 for the class of †C–cofibrant colored operads, as do all examples
listed in Section 5.1:

(1) S–modules with the model structure from [Elmendorf et al. 1997].
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(2) The projective, injective, positive or positive flat stable model structures [White 2022, 5.59 and 5.61]
on symmetric spectra, G–equivariant orthogonal spectra (for a compact Lie group G) and motivic
symmetric spectra.

(3) Mandell’s model structure onG–equivariant symmetric spectra built on simplicial sets or topological
spaces, where G is a finite group in the former case and a compact Lie group in the latter case
[Mandell 2004].

(4) Model structures for (equivariant) stable homotopy theory based on Lydakis’s theory of enriched
functors [Dundas et al. 2003]. For example, this includes the model category of G–enriched
functors from finite G–simplicial sets to G–simplicial sets, where G is a finite group, from [ibid.,
Theorem 2].

(5) Any model structure M on symmetric spectra built on (C; G/ where C is a model category and G
is an endofunctor, as long as M is an operadically cofibrantly generated, monoidal, stable model
structure. For example, taking C to be the canonical model structure on small categories, and using
the suspension discussed in [White and Yau 2020, Section 13], one obtains by [Hovey 2001, 7.3]
a combinatorial, stable, monoidal model structure on symmetric spectra of small categories with
applications to Goodwillie calculus. Using [Pavlov and Scholbach 2018, Section 2], one may obtain
positive and positive flat variants. Another example is taking C to be the I–spaces or J –spaces of
Sagave and Schlichtkrull, and building projective, positive or positive flat spectra on them as in
[loc. cit.].

(6) The projective model structure on bounded or unbounded chain complexes over a commutative
ring R [White and Yau 2020, Section 11].

(7) The stable module category of kŒG�, where G is a finite group and k is a principal ideal domain
[ibid., Section 12].

All of these examples are stable monoidal model categories, so Corollary 5.2.3 applies, once the requisite
smallness hypothesis for the generating (trivial) cofibrations is checked. Symmetric spectra, motivic
symmetric spectra, examples (6) and (7), and Mandell’s model (3) of G–equivariant symmetric spectra
built on simplicial sets are all combinatorial, as is the model structure on enriched functors (4) in simplicial
contexts. Symmetric spectra as in (5) are combinatorial if C is combinatorial. S–modules, G–equivariant
orthogonal spectra, Mandell’s model (3) in topological contexts, and symmetric spectra built on topological
spaces (another example of (5)) are operadically cofibrantly generated just as in Example 3.1.5, since
they are built from compactly generated spaces. We recall that spaces are small relative to inclusions, and
the morphisms in .Oı.I[J //–cell are inclusions [ibid., 5.10].

6 Smith ideals for entrywise cofibrant operads

In this section we apply Theorem 4.4.1 to operads that are not necessarily †C–cofibrant. To do that, we
need to redistribute some of the cofibrancy assumptions — that cofibrant Smith O–ideals are underlying
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cofibrant in the arrow category — from the colored operad to the underlying category. We will show
in Theorem 6.2.1 that Theorem 4.4.1 is applicable to all entrywise cofibrant operads provided that M
satisfies the cofibrancy condition .~/ below. This implies that, over the stable module category [Hovey
1999, 2.2], Theorem 4.4.1 is always applicable.

6.1 Cofibrancy assumptions

Definition 6.1.1 Suppose M is a cofibrantly generated monoidal model category. Define the following
conditions in M:

.~/ For each n� 1 and each morphism f 2M†
op
n that is an underlying cofibration between cofibrant

objects in M, the function
f �†n .�/ WM

†n !M

takes each morphism in M†n that is an underlying cofibration in M to a cofibration in M. More
explicitly, this condition asks that, for each morphism g 2M†n that is an underlying cofibration
in M, the morphism

f �†n g D .f �g/=†n
is a cofibration in M.

.♧/cof For each n� 1 and each object X 2M†
op
n that is underlying cofibrant in M, the function

X ˝†n .�/
�n
WM!M

preserves cofibrations.

.♧/t:cof For each n� 1 and each object X 2M†
op
n that is underlying cofibrant in M, the function

X ˝†n .�/
�n
WM!M

preserves trivial cofibrations.

Remark 6.1.2 The condition .~/ implies .♧/cof, since .¿!X/�.�/DX˝.�/. The condition .♧/cof

was introduced in [White and Yau 2018a, 6.2.1], where the authors proved that, if M satisfies .♧/cof

and .♧/t:cof, then there exist transferred semi-model structures on algebras over entrywise cofibrant (but
not necessarily †C–cofibrant) colored operads. It is, therefore, no surprise that we consider .♧/cof and
its variant .~/ here in order to use Theorem 4.4.1 for operads that are not necessarily †C–cofibrant. Of
course, .♤/ implies .♧/t:cof, so .♧/t:cof holds in all the model categories in Example 4.1.2.

Proposition 6.1.3 The condition .~/ holds in the categories of

(1) simplicial sets with either the Quillen model structure or the Joyal model structure [Lurie 2009],
where cofibrations are the monomorphisms;

(2) bounded or unbounded chain complexes over a field k of characteristic zero , where cofibrations
are degreewise monomorphisms [Hovey 1999, 2.3.9] since every monomorphism of k–modules
splits and every chain complex is cofibrant (see Corollary 5.2.4);
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(3) small categories with the folk model structure where cofibrations are injective on objects [Rezk
2000];

(4) the stable module category of kŒG�–modules with the characteristic of k dividing the order of G,
where cofibrations are injections [Hovey 1999, 2.2.12]; and

(5) the injective model structure on symmetric spectra , G–equivariant symmetric spectra and motivic
symmetric spectra , where the cofibrations are the monomorphisms [Hovey 2001].

Proof For simplicial sets with either model structure, a cofibration is precisely an injection, and the
pushout product of two injections is again an injection. Dividing an injection by a †n–action is still an
injection. The other cases are proved similarly.

Proposition 6.1.4 If .~/ holds in M, then it also holds in any left Bousfield localization of M.

Proof The condition .~/ only refers to cofibrations, which remain the same in any left Bousfield
localization.

The next observation is the key that connects the cofibrancy condition .~/ in M to the arrow category.

Theorem 6.1.5 Suppose M is a cofibrantly generated monoidal model category satisfying .~/. Then the
arrow category

!

M�proj satisfies .♧/cof.

Proof Suppose fX WX0!X1 is an object in .
!

M�proj/
†

op
n that is underlying cofibrant in

!

M�. This means
that fX is a morphism in M†

op
n that is an underlying cofibration between cofibrant objects in M. The

condition .♧/cof for
!

M�proj asks that the function

fX �†n .�/
�2n W

!

M�proj!
!

M�proj

preserve cofibrations, where � and �2 are the pushout products in M and
!

M�, respectively. When nD 1
the condition .♧/cof for

!

M�proj is a special case of the pushout product axiom in
!

M�, which is true by
[White and Yau 2019a, Theorem A].

Next suppose n � 2 and ˛ W fV ! fW is a morphism in
!

M as in (4.2.2). The iterated pushout product
˛�2n 2 .

!

M�/†n is the commutative square

.6.1.6/

Z

�0

��

�1
// Y1

f�n
W
��

Y0
˛�n
1

// W ˝n1

in M†n for some object Z with �1 D Ev0.˛�2n/. Note that �1 is not an iterated pushout product because
Ev0 and �2 do not commute. Applying fX �†n .�/, the morphism fX �†n ˛�2n is the commutative
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square

.6.1.7/

Œ.X1˝Z/qX0˝Z .X0˝Y0/�†n

fX�†n�0

��

'
// Œ.X1˝Y1/qX0˝Y1 .X0˝W

˝n
1 /�†n

fX�†nf
�n
W

��

.X1˝Y0/†n
.X1˝˛

�n
1 /†n

// .X1˝W
˝n
1 /†n

in M. Suppose ˛ is a cofibration in
!

M�. This means that the morphism ˛0 W V0!W0 and the pushout
corner morphism ˛1~fW W V1qV0 W0!W1 are cofibrations in M. We must show that fX �†n ˛�2n

is a cofibration in
!

M�. In other words, we must show that, in (6.1.7):

(1) ' D Ev0.fX �†n ˛�2n/ is a cofibration in M.

(2) The pushout corner morphism of fX �†n ˛�2n is a cofibration in M.

We will prove (1) and (2) in Lemmas 6.1.8 and 6.1.10, respectively.

Lemma 6.1.8 The morphism ' in (6.1.7) is a cofibration in M.

Proof Taking †n–coinvariants and taking pushouts commute by the commutation of colimits. So '
is also the induced morphism from the pushout of the top row to the pushout of the bottom row in the
commutative diagram

.6.1.9/

.X1˝Z/†n

.X1˝�1/†n

��

.X0˝Z/†n
.fX˝Z/†n
oo

.X0˝�1/†n

��

.X0˝�0/†n
// .X0˝Y0/†n

.X0˝˛
�n
1 /†n

��

.X1˝Y1/†n .X0˝Y1/†n
.fX˝Y1/†n

oo

.X0˝f
�n
W /†n

// .X0˝W
˝n
1 /†n

in M. Here the left square is commutative by definition, and the right square is X0˝†n .�/ applied to
˛�2n in (6.1.6).

We consider the Reedy category D with three objects f�1; 0; 1g, a morphism 0!�1 that lowers the
degree, a morphism 0! 1 that raises the degree, and no other nonidentity morphisms. Using the Quillen
adjunction [Hovey 1999, proof of 5.2.6],

MD
colim

// M;
constant
oo

to show that ' is a cofibration in M, it is enough to show that (6.1.9) is a Reedy cofibration in MD. So we
must show that, in (6.1.9):

(1) The left and the middle vertical arrows are cofibrations in M.

(2) The pushout corner morphism of the right square is a cofibration in M.

The objects X0 and X1 in M†
op
n are cofibrant in M. The morphism �1 D Ev0.˛�2n/ 2 M†n is an

underlying cofibration in M. Indeed, since ˛ 2
!

M�proj is a cofibration, so is the iterated pushout product
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˛�2n by the pushout product axiom [White and Yau 2019a]. In particular, Ev0.˛�2n/ is a cofibration
in M. The condition .~/ in M (for the morphism ¿! Xi ) now implies that the left and the middle
vertical morphisms Xi ˝†n �1 in (6.1.9) are cofibrations in M.

Finally, since X0 2M†
op
n is cofibrant in M and since the pushout corner morphism of ˛�2n 2 .

!

M�proj/
†n is

a cofibration in M, the condition .~/ in M again implies the pushout corner morphism of the right square
X0˝†n ˛

�2n in (6.1.9) is a cofibration in M.

Lemma 6.1.10 The pushout corner morphism of fX �†n ˛�2n in (6.1.7) is a cofibration in M.

Proof The pushout corner morphism of fX �†n ˛�2n is the morphism fX �†n .˛�n1 ~ f
�n
W /. This is

taking the †n–coinvariants of the pushout product in the diagram

X0˝ .Y0qZ Y1/

pushoutfX˝Id
��

Id˝.˛�n
1 ~f

�n
W /

// X0˝W
˝n
1

��

fX˝Id

��

X1˝ .Y0qZ Y1/ //

Id˝.˛�n
1 ~f

�n
W /

00

ŒX1˝ .Y0qZ Y1/�qŒX0˝.Y0qZY1/� .X0˝W
˝n
1 /

fX�.˛
�n
1 ~f

�n
W /

++

X1˝W
˝n
1

in M†n with ˛�n1 ~f
�n
W the pushout corner morphism of ˛�2n 2 .

!

M�proj/
†n in (6.1.6). Since ˛�2n is a

cofibration in
!

M�, its pushout corner morphism ˛�n1 ~f
�n
W is a cofibration in M. So the condition .~/

in M implies that fX �†n .˛�n1 ~f
�n
W / is a cofibration in M.

6.2 Underlying cofibrancy of cofibrant Smith ideals for entrywise cofibrant operads

Theorem 6.2.1 Suppose M is a cofibrantly generated monoidal model category satisfying .~/ and .♧/t:cof,
in which the domains and the codomains of the generating (trivial ) cofibrations are small with respect
to the entire category. Suppose O is an entrywise cofibrant C–colored operad in M. Then Alg.

!

O�I
!

M�/

and Alg.
!

O˝I
!

M˝/ admit transferred semi-model structures , and cofibrant Smith O–ideals are underlying
cofibrant in .

!

M�proj/
C. In particular , if M is also stable , then there is a Quillen equivalence

Alg.
!

O�I
!

M�/
coker

//
Alg.

!

O˝I
!

M˝/:
ker
oo

Proof If O is entrywise cofibrant in M, then
!

O� DL1O is entrywise cofibrant in
!

M�, and
!

O˝ DL0O is
entrywise cofibrant in

!

M˝inj by Proposition 5.2.2. Furthermore, because M satisfies .♧/t:cof, so does
!

M˝,
by the exact same proof as in Theorem 4.2.1 (but now X0 and X1 are cofibrant in M, and we appeal to
.♧/t:cof in M instead of .♤/). Thus, we have transferred semi-model structures

� Alg.
!

O˝I
!

M˝/ by [White and Yau 2018a, 6.2.3] applied to
!

M˝inj, and

� Alg.
!

O�I
!

M�/ by [loc. cit.] applied to the colored operad Os in M in Proposition 3.3.19.
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Using Theorem 4.4.1, it is enough to prove the assertion that cofibrant Smith O–ideals are underlying
cofibrant in .

!

M�proj/
C. Writing ¿

�
O �

for the initial
!

O�–algebra, first we claim that ¿
�
O �

is underlying
cofibrant in .

!

M�proj/
C. Indeed, for each color d 2 C, the d–colored entry of the initial

!

O�–algebra is the
object

¿
�
O �

d D
!

O�
� d
¿
�
D

�
¿M
! O

� d
¿
��

in
!

M�, where ¿M is the initial object in M and the symbol ¿ in
�
d
¿

�
is the empty C–profile. Since O

is assumed entrywise cofibrant, it follows that each entry of the initial
!

O�–algebra ¿
�
O �

is underlying
cofibrant in

!

M�. Indeed, the pushout corner morphism of

¿M ¿M

¿M O
�
d
¿

�
is the cofibration ¿M! O

�
d
¿

�
in M, so, by Theorem 2.4.1(1), ¿

�
O �

d
is cofibrant in

!

M�.

By Proposition 4.2.5, the semi-model structure on Alg.
!

O�I
!

M�/ is right-induced by the forgetful functor
U to .

!

M�proj/
C and is cofibrantly generated by

!

O� ı .L0I [L1I /c and
!

O� ı .L0J [L1J /c for c 2 C,
where I and J are the generating (trivial) cofibrations in M. Suppose A is a cofibrant

!

O�–algebra.
We must show that A is underlying cofibrant in .

!

M�proj/
C. By [Hirschhorn 2003, 11.2.2], the cofibrant

!

O�–algebra A is the retract of the colimit of a transfinite composition, starting with ¿
�
O �

, of pushouts of
morphisms in

!

O� ı .L0I [L1I /c for c 2 C. Since ¿
�
O �

is underlying cofibrant in
!

M�proj and since the
class of cofibrations in a model category, such as .

!

M�proj/
C, is closed under transfinite compositions [ibid.,

10.3.4], the following lemma will finish the proof.

The proof of Lemma 6.2.3 below uses the next definition, from [White and Yau 2018a, 4.3.5]:

Definition 6.2.2 (OA for O–algebras) For a C–colored operad O in M and A 2 Alg.OIM/, define the
C–colored symmetric sequence OA as follows. For d 2 C and orbit Œc� 2†C, define the component

OA

� d
Œc�

�
2M

†
op
Œc�
�fdg

as the reflexive coequalizer of the diagram, in M
†

op
Œc�
�fdg,

a
Œa�2†C

O
� d

Œa�; Œc�

�
˝†Œa� .O ıA/Œa�

a
Œa�2†C

O
� d

Œa�; Œc�

�
˝†Œa� AŒa�:

d1

d0

s

The three arrows in this diagram are as follows:

� d0 is induced by the composition of O.

� d1 is induced by the O–algebra structure on A.

� The common section s is induced by the unit A! O ıA.
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Lemma 6.2.3 Under the hypotheses of Theorem 6.2.1, suppose ˛ Wf !g is a morphism in .L0I[L1I /c
for some color c 2 C, and

!

O� ıf //

�
O �ı˛

��

B0

j

��
!

O� ıg // B1

is a pushout in Alg.
!

O�I
!

M�/ with B0 cofibrant and UB0 2 .
!

M�proj/
C cofibrant. Then Uj is a cofibration

in .
!

M�proj/
C. In particular , B1 is also cofibrant and UB1 2 .

!

M�proj/
C is cofibrant.

Proof By the filtration in [White and Yau 2018a, 4.3.16] and the fact that cofibrations are closed under
pushouts, to show that Uj 2 .

!

M�proj/
C is a cofibration, it is enough to show that, for each n� 1 and each

color d 2 C, the morphism

.6.2.4/
!

O�B0

� d
nc

�
�†n ˛

�2n

in
!

M�proj is a cofibration, where nc D .c; : : : ; c/ is the C–profile with n copies of the color c. The
object

!

O�B0 is as in Definition 6.2.2 for
!

O� and B0, and ˛�2n is the n–fold pushout product of ˛. Recall
that

!

M�proj satisfies .♧/cof by Theorem 6.1.5 and that
!

O� is entrywise cofibrant in
!

M�proj because O is
entrywise cofibrant in M. The cofibrancy of B0 2 Alg.

!

O�I
!

M�/ and [ibid., 6.2.4] applied to
!

O� now
imply that

!

O�B0 is entrywise cofibrant in
!

M�. By the condition .♧/cof in
!

M�proj once again, we can conclude
that the morphism (6.2.4) is a cofibration because ˛ is a cofibration in

!

M�.

Corollary 6.2.5 Suppose M is the stable module category of kŒG�–modules for some field k whose
characteristic divides the order of G. Then , for each C–colored operad O in M, there is a Quillen
equivalence

Alg.
!

O�I
!

M�/
coker

//
Alg.

!

O˝I
!

M˝/:
ker
oo

Proof The stable module category is a stable model category that satisfies the hypotheses of Theorem 6.2.1
in which every object is cofibrant [Hovey 1999, 2.2.12; White and Yau 2020, Section 12].

There are several more examples where Theorem 4.4.1 likely applies to all entrywise cofibrant operads,
but where .~/ has not been checked. For example, the positive flat stable model structure on symmetric
spectra built on compactly generated spaces have the property that, for any entrywise cofibrant colored
operad O, cofibrant O–algebras forget to cofibrant spectra [Pavlov and Scholbach 2018, Section 2], but
the authors do not know a reference proving the same for

!

M�.

Conjecture 6.2.6 The positive flat stable model structure on symmetric spectra built on compactly
generated spaces satisfies the conclusion of Theorem 6.2.1.

Similarly, by analogy with the positive flat model structure on symmetric spectra, one would expect the
positive flat model structure on G–equivariant orthogonal spectra to satisfy this property.
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Conjecture 6.2.7 If MDGSpO is the positive flat stable model structure on G–equivariant orthogonal
spectra, then it satisfies the property that, if O is an entrywise cofibrant C–colored operad and A is a
cofibrant O–algebra, then UA is cofibrant in MC. Furthermore, M satisfies the conclusion of Theorem 6.2.1
for any compact Lie group G.

Recent work of Hill, Hopkins and Ravenel has illustrated that the positive (flat) model structure on GSpO

is not quite right. One also needs an equifibrancy condition, also known as completeness. There is a
positive complete model structure on GSpO , and it satisfies the commutative monoid axiom [Gutiérrez
and White 2018, Section 5]. However, the authors do not know if a positive, complete, flat variant has
been worked out.

Problem 6.2.8 Let G be a compact Lie group.

(1) Work out a positive complete flat stable model structure on GSpO .

(2) Prove that it satisfies the condition that all colored operads are admissible.

(3) Prove that cofibrant operad algebras forget to cofibrant underlying objects.

(4) Prove that this model structure satisfies the conclusion of Theorem 6.2.1.

In a related vein, we have the following problem:

Problem 6.2.9 Let Ms (resp. MCs ) denote Schwede’s global positive (flat) model structure [2018] and let
Mh (resp. MC

h
) denote Hausmann’s positive (flat) model structure for G–symmetric spectra [2017].

(1) Prove that all colored operads are admissible in Ms , MCs , Mh and MC
h

.

(2) Prove that, if O is entrywise cofibrant, then cofibrant O–algebras forget to underlying cofibrant
objects in MCs and MC

h
in each color.

(3) Prove that MCs and MC
h

satisfy the conclusion of Theorem 6.2.1.

Lastly, injective model structures on various categories of spectra have the property that all objects are
cofibrant, so the condition about the forgetful functor preserving cofibrancy is trivial. However, not all
operads are admissible. A likely remedy is to develop positive injective model structures (by requiring
cofibrations to be isomorphisms in level zero), which would automatically be Quillen equivalent to
existing stable model structures on spectra, but the authors do not know a reference where this is done.

Problem 6.2.10 Let M denote the category of symmetric spectra.

(1) Prove that the positive injective stable model structure MCi is a monoidal model category.

(2) Prove that all operads are admissible in MCi . If so, then automatically cofibrant O–algebras forget
to cofibrant underlying objects.

(3) Prove that MCi satisfies the conclusion of Theorem 6.2.1.

(4) Do the same for symmetric spectra valued in a general base model category C, where stabilization
is with respect to an endofunctor G.
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(5) Do the same for orthogonal spectra and equivariant orthogonal spectra, possibly restricting to
�–generated spaces, as is done in [White 2022, Section 5.8].

(6) Produce a model structure on the category of S–modules, Quillen equivalent to the one in [Elmendorf
et al. 1997], with the property that cofibrant commutative ring spectra are underlying cofibrant.
Do the same for general entrywise cofibrant colored operads, and prove that the conclusion of
Theorem 6.2.1 holds in this setting.

7 Semi-model categories and 1–categories for operad algebras

In this paper, we often transferred model structures, using .♤/, or semi-model structures, using Definition
6.1.1 or using †C–cofibrant operads O, to categories of O–algebras. The language of1–categories could
also be used to study the homotopy theory of O–algebras. We work in the model of quasicategories, ie
everywhere we write1–category we mean quasicategory. The main results of this section, Theorems 7.3.1
and 7.3.3, show that the two approaches — namely, semi-model categories and 1–categories — are
equivalent in a suitable sense for †C–cofibrant C–colored operads that are not necessarily admissible.

7.1 Preliminaries on 1–operads

As detailed in [Lurie 2017, 4.5.4.7 and 4.5.4.12], the crucial property needed to compare a model structure
on O–algebras with the corresponding1–category structure is that the forgetful functor

U W Alg.OIM/!MC

preserves and reflects homotopy sifted colimits, that is, N.C/–indexed homotopy colimits, where C is a
small category such that the nerve N.C/ is sifted [Lurie 2009, 5.5.8.1].

Lurie [2017, 4.5.4.12] proves this property for the Com–operad and a restrictive class of model categories M,
namely combinatorial and freely powered (4.5.4.2) monoidal model categories. Lurie then deduces [ibid.,
4.5.4.7] that the underlying1–category N.CAlg.M/c/ŒW �1Com� of the model category CAlg.M/— where
.�/c refers to taking cofibrant objects and WCom is the class of weak equivalences of Com–algebras —
is equivalent as an 1–category to CAlg.N.Mc/ŒW �1�/, obtained as the 1–category of commutative
monoids valued in the symmetric monoidal1–category N.Mc/ŒW �1� associated to M. Here N.Mc/
denotes the homotopy coherent nerve of the simplicial category Mc , and the notation .�/ŒW �1� refers
to the1–categorical meaning of inverting the class W [ibid., 1.3.4.1]. To be precise, the1–category
N.Mc/ŒW �1� can be constructed via a fibrant replacement of the pair .Mc ; W / in the category of marked
simplicial sets [loc. cit.].

Following the model of Lurie’s proof, it is possible to prove that, whenever M is a simplicial monoidal
model category and O is an admissible †C–cofibrant simplicial colored operad (Theorems 4.1.1 and 5.2.1),
then the forgetful functor preserves and reflects homotopy sifted colimits, and the1–category obtained
from the model category of O–algebras is equivalent as an1–category to the1–category obtained from
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N˝O–algebras in the1–category associated to M [Pavlov and Scholbach 2018, 7.9 and 7.11]. Here
N˝O is the operadic nerve of O [Lurie 2017, 2.1.1.23], ie Lurie’s model for the1–operad associated to
the simplicial colored operad O. Consequently, for admissible †C–cofibrant colored simplicial operads,
the homotopy theory obtained via the model category route matches the homotopy theory obtained via
the1–category route.

We extend this result in two ways. First, we will show that it holds when O is only semiadmissible instead
of admissible (ie Alg.OIM/ has a transferred semi-model structure). Second, we will show the same
thing for the setting of enriched1–operads. For the latter, we work in a monoidal model category M

(not necessarily simplicial) and consider a colored operad O valued in M. Note that, if M is a V–model
category for some monoidal model category V and O is a colored operad valued in V, then there is a
colored operad O0 valued in M with the same algebras (obtained by tensoring the levels of O with the
unit of M), so we focus on the case when O is valued in M. In this case, there is an associated enriched
1–operad [Chu and Haugseng 2020] as we now describe. First, we must restate [Haugseng 2019, 4.1]:

Definition 7.1.1 Let M be a monoidal model category. A subcategory of flat objects is a full symmetric
monoidal subcategory M[ (which implies the unit is flat) that satisfies the following two conditions:

(1) All cofibrant objects are flat (that is, are in M[).

(2) If X is flat and f is a weak equivalence in M[, then X ˝f is a weak equivalence.

If the unit of M is cofibrant, then the subcategory of cofibrant objects is a subcategory of flat objects
[Haugseng 2019, 4.2], by Ken Brown’s lemma. We note that, if the unit of M is cofibrant, then the same
is true for both

!

M�proj and
!

M˝. The purpose of the definition above is to avoid assuming the monoidal
unit is cofibrant, as this would rule out positive (flat) model structures on spectra (which do admit a
subcategory of flat objects, namely the cofibrant objects of the flat model structure, by [ibid., 4.11]). White
[2017; 2022] gives many examples of model categories with a subcategory of flat objects (namely, the
subcategory of cofibrant objects), including spaces, simplicial sets, chain complexes, diagram categories,
simplicial presheaves and various categories of spectra.

With Definition 7.1.1 in hand, we are ready to describe the enriched1–operad associated to a colored
operad O valued in M, following [Haugseng 2019, Section 4]. First, the inclusions Mc ,!M[ ,!M induce
equivalences of localizations when all three are localized with respect to their subcategories of weak
equivalences. Next, the symmetric monoidal localization M[!M[ŒW �1�'MŒW �1� of [Lurie 2017,
4.1.7.4] gives a functor from1–operads enriched in M[ to1–operads enriched in MŒW �1�. But, because
M[ is a 1–category, the former are simply strict colored operads in M[. The following is a combination of
[Chu and Haugseng 2020, 1.1.3; Haugseng 2019, 4.4]:

Proposition 7.1.2 Let M be a symmetric monoidal model category and M[ a subcategory of flat objects.
Then the1–category of 1–operads enriched in MŒW �1� is equivalent to the1–category of enriched
colored operads in M[, with the Dwyer–Kan equivalences inverted.
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With these preliminary results and definitions in hand, we are ready to prove the main results of the section.

7.2 Homotopy sifted colimits

Following the model of [Lurie 2017, 4.5.4.7 and 4.5.4.12], we must first prove that the forgetful functor

U W Alg.OIM/!MC

preserves and reflects homotopy sifted colimits, even when Alg.OIM/ is only a semi-model category. It
suffices to prove this in the case where O is a colored operad in M, as the case where O is a simplicial
colored operad and M is a simplicial model category follows from our discussion above regarding V–model
categories.

It is known that, for every cofibrantly generated monoidal model category M, every †C–cofibrant colored
operad O in M is semiadmissible. In other words, there is a transferred semi-model structure on O–algebras
[White and Yau 2018a, 6.3.1]. An alternative approach assumes M satisfies .♧/ and appeals to [ibid.,
6.2.3] for such a semi-model structure. It is also known that there are †C–cofibrant colored operads O

whose category of O–algebras do not admit a full model structure [Batanin and White 2021, 2.9]. Hence,
the results in this section really do apply to previously unknown examples, and complete the study of
semi-model structures on operad algebras set out in [White and Yau 2018a; 2019b; 2020; 2023]. For
completeness, we handle the case of both symmetric and nonsymmetric colored operads [Muro 2011],
noting that, for the nonsymmetric case, being †C–cofibrant is the same as being entrywise cofibrant.

Proposition 7.2.1 Suppose M is a cofibrantly generated monoidal model category and O is a†C–cofibrant
(symmetric) C–colored operad valued in M. Then the forgetful functor U W Alg.OIM/!MC preserves and
reflects homotopy sifted colimits.

Proof We follow the proof from [Pavlov and Scholbach 2018, 7.9], which is itself based on the proof
of [Lurie 2017, 4.5.4.12]. First, as pointed out in [Lurie 2017], the reflection property is implied by the
preservation property, and it is sufficient to prove that U preserves homotopy colimits indexed by a small
category D such that the nerve N.D/ is homotopy sifted.

Consider the projective model structure .MC/D, the projective semi-model structure Alg.OIM/D guaranteed
by [Barwick 2010, 3.4] and the forgetful functor

UD
W Alg.OIM/D! .MC/D:

Let
F W .MC/D!MC and FAlg.O/ W Alg.OIM/

D
! Alg.OIM/

denote the colimit functors with respect to D. The proof in [Lurie 2017, 4.5.4.12] reduces us to proving
that the canonical isomorphism of functors

˛ W F ıUD
Š U ıFAlg.O/ W Alg.OIM/

D
!MC

persists after everything is derived.
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Let LF and LFAlg.O/ denote the left derived functors of F and FAlg.O/, obtained via cofibrant replacement
in .MC/D and Alg.OIM/D, respectively. Since U and UD preserve weak equivalences, as in [loc. cit.],
we are reduced to proving that the induced natural transformation x̨ W LF ıUD ! U ıLFAlg.O/ is an
isomorphism in the homotopy category. This means that, for every cofibrant A in Alg.OIM/D, we must
show that

x̨ W LF.UDA/! U.LFAlg.O/.A//

is a weak equivalence.

The right-hand side is canonically weakly equivalent to U.FAlg.O/.A// because A is projectively cofibrant,
and this is weakly equivalent to F.UDA/ via ˛. At this point, the proof in [loc. cit.] requires a detailed
analysis of so-called “good” objects and morphisms in .MC/D. However, when O is †C–cofibrant, the
situation is much simpler, because U takes cofibrant algebras to cofibrant objects of MC [White and Yau
2018a, 6.3.1] (and [Muro 2011, 9.5] for the nonsymmetric case).

Furthermore, the D–constant operad OD, taking value O at every a 2 D, is †C–cofibrant in Alg.OIM/D.
This can be seen directly, as †C–cofibrancy for an operad P valued in MD is the condition that, for
each a 2 D and each .cI d/ 2†op

C �C, the object Pa
�
d
c

� �
D O

�
d
c

�
in our case

�
is projectively cofibrant

in M†
op
C �C. Hence, by [White and Yau 2018a, 6.3.1] (and [Muro 2011, 9.5] for the nonsymmetric case),

the functor UD also preserves cofibrancy, since the projective semi-model structure transferred from the
semi-model structure on Alg.OIM/ is the same as the transferred semi-model structure on OD–algebras in
the projective model structure .MC/D. Hence, UDA is cofibrant in .MC/D, and so LF.UDA/' F.UDA/,
as required.

Remark 7.2.2 Following the model of [Lurie 2017] (or [Pavlov and Scholbach 2018]), after establishing
Proposition 7.2.1, the next step should be to prove that the semi-model category Alg.OIM/ describes
the1–category of N˝O–algebras in the1–category associated to M, as discussed above. However,
when Alg.OIM/ is only a semi-model structure, an additional step is needed. We need to know that
homotopy colimits (given by colimits of projectively cofibrant objects in Alg.OIM/D) agree with 1–
categorical colimits. In the case of full model structures, one knows that the projective model structure on
Alg.OIM/D describes the1–category of functors, and that a Quillen adjunction gives rise to an adjunction
of1–categories. For the case of semi-model categories, we invoke [Monaco 2021, A.10] for the latter.

Remark 7.2.3 We conjecture that Proposition 7.2.1 remains true for entrywise cofibrant colored operads O

if M satisfies .♧/ and we replace appeals to [White and Yau 2018a, 6.3.1] above by appeals to [ibid.,
6.2.3]. However, the proof of this would require a detailed analysis of “good” objects and would take us
too far afield.

7.3 Semi-model categories and 1–categories of operad algebras

With the previous proposition in hand, we are ready for the main result of this section. The slogan for
this result is that, for any †C–free (symmetric) colored operad O and any reasonable monoidal model
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category M, the semi-model category of O–algebras in M describes the corresponding1–category of
O–algebras in the symmetric monoidal1–category described by M. This is true of both

(1) the unenriched case, where M is a simplicial monoidal model category, O is a simplicial colored
operad and the1–operad associated to O is the operadic nerve N˝O of O [Lurie 2017, 2.1.1.23];

(2) the enriched case, where M is a monoidal model category, O is a colored operad valued in M and
we use the theory of enriched1–operads to define the1–category of O–algebras (as recalled in
Section 7.1 and spelled out in [Chu and Haugseng 2020; Haugseng 2019]).

For both cases, we handle the cases where O is a symmetric colored operad and where O is a nonsymmetric
colored operad simultaneously. We handle the enriched case first.

Theorem 7.3.1 Suppose M is a cofibrantly generated monoidal model category that admits a subcategory
of flat objects M[ and O is a †C–cofibrant (symmetric) C–colored operad valued in M[.

� Let Alg.OIM/cŒW �1O � be the1–category obtained from the semi-model category Alg.OIM/ by first
passing to the subcategory of cofibrant objects , and then inverting the weak equivalences between
O–algebras.

� Let Alg.OIMŒW �1�/ be the 1–category obtained by first passing from M to the (symmetric)
monoidal category MŒW �1� and then passing to O–algebras , where O is viewed as a colored operad
in MŒW �1�'M[ŒW �1�.

Then the natural comparison functor

Alg.OIM/cŒW �1O �! Alg.OIMŒW �1�/

is an equivalence of 1–categories.

Proof The proof of [Haugseng 2019, 4.10] goes through directly by replacing the appeal to [Pavlov and
Scholbach 2018, 7.8] with an appeal to Proposition 7.2.1. That is, we consider the forgetful functors
from both categories to the 1–category associated to MC, and appeal to the Barr–Beck theorem for
1–categories [Lurie 2017, 4.7.3.16] to see that these forgetful functors are monadic right adjoints (this is
where Proposition 7.2.1 is needed). We appeal to [Haugseng 2019, 3.8], which occurs entirely on the
1–category level, for the usual formula for free O–algebras and the observation that the two associated
monads on MC have equivalent underlying endofunctors. This proof works for both symmetric and
nonsymmetric colored operads O, as both are known to inherit transferred semi-model structures from MC,
and as Proposition 7.2.1 applies in both settings.

Remark 7.3.2 The proof of [ibid., 4.10] relies on the observation that a Quillen adjunction F WM�N WG

induces an adjunction between the underlying1–categories. We appeal to [Monaco 2021, A.10] for the
semi-model category analogue of this fact.
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We turn now to the unenriched case.

Theorem 7.3.3 Suppose M is a cofibrantly generated simplicial monoidal model category and O is a
†C–cofibrant (symmetric) simplicial C–colored operad.

� Let N.Alg.OIM/c/ŒW �1
Alg.O/

� be the1–category obtained from the semi-model category Alg.OIM/

by first passing to the subcategory of cofibrant objects , then taking the nerve and then inverting the
weak equivalences.

� Let Alg.N˝OIN.Mc/ŒW �1�/ be the 1–category of N˝O–algebras valued in the 1–category
N.Mc/ŒW �1� associated to M.

Then the natural comparison functor

N.Alg.OIM/c/ŒW �1Alg.O/�! Alg.N˝OIN.Mc/ŒW �1�/

is an equivalence of1–categories.

Proof We deliberately phrased the proof of Theorem 7.3.1 so that word for word it proves this result
as well (again with the critical step hinging on an appeal to Proposition 7.2.1). We only stated the two
theorems separately to highlight the difference between enriched and unenriched1–operads, and the
connection to where the colored operad O is valued.

Remark 7.3.4 One can show that Theorems 7.3.1 and 7.3.3 are false in general in the symmetric case if
the†C–cofibrancy of O is dropped. Well-known counterexamples include the operad Com and MDCh.Fp/.
However, every C–colored operad O admits a †C–cofibrant replacement QO. If O is semiadmissible and
admits rectification with QO (meaning there is a Quillen equivalence of semi-model categories between
Alg.OIM/ and Alg.QOIM/), then Theorems 7.3.1 and 7.3.3 do apply to O, since the weak equivalence
QO! O induces an equivalence N˝QO!N˝O, and hence we can use the two-out-of-three property
to deduce the statement for O from the statement for QO. Conditions on M under which rectification
hold are provided in [White 2017] (for Com rectifying to E1) and [White and Yau 2019b] (for general
colored operads), among other places.

Remark 7.3.5 Theorem 7.3.1 answers positively the question raised in [Haugseng 2019, 4.13] about
extending [ibid., 4.10] to †–cofibrant operads and semi-model category structure on Alg.OIM/. As
pointed out by Haugseng, the assumptions on M and O are much weaker than those required to get
a full model structure on O–algebras. In particular, Theorem 7.3.1 applies not only to the examples
listed by Haugseng — namely, spaces, simplicial sets, chain complexes and symmetric spectra — but
also to equivariant spaces, equivariant orthogonal spectra, motivic symmetric spectra, the stable module
category, chain complexes over a field of nonzero characteristic, simplicial presheaves, the projective
model structure on small functors [Chorny and White 2018], the folk model structure on the category of
small categories (or groupoids), various abelian model structures arising from the theory of cotorsion
pairs, and left Bousfield localizations of these categories.
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These examples are detailed in [White 2017; 2022; White and Yau 2018a; 2020]. In several of these
examples (eg chain complexes over a field of nonzero characteristic, examples arising from cotorsion
pairs, and algebras over left Bousfield localizations LCM), categories of algebras are known to have
transferred semi-model structures but are not known to have transferred model structures. For chain
complexes over F2, there is even an explicit example of a category of O–algebras that has a transferred
semi-model structure that is not a model structure [Batanin and White 2021, 2.9]. For algebras over a
left Bousfield localization LCM, many examples are discussed in [White and Batanin 2015; Batanin and
White 2022; 2024; White 2021].

In most of the examples listed above, the unit is cofibrant and cofibrant objects are flat, so the category of
cofibrant objects is our M[ (note that left Bousfield localization does not change the class of cofibrant
objects). For the positive (flat) model structure on equivariant orthogonal spectra (resp. motivic symmetric
spectra), one can use the cofibrant objects of the flat model structure, just as Haugseng [2019] does for
symmetric spectra, as discussed in [Hovey and White 2020] (resp. [Pavlov and Scholbach 2018], building
on work of Hornbostel).

We conclude with a specialization of Theorem 7.3.1 to the main examples of interest in the present paper.

Lemma 7.3.6 Suppose M is a monoidal model category that admits a subcategory of flat objects , M[.
Then

!

M˝inj also admits a subcategory of flat objects.

Proof In
!

M˝, we take the full subcategory consisting of arrows f W X1! X2, where X1 and X2 are
in M[. This is a symmetric monoidal subcategory of

!

M˝, as the monoidal unit Id W 1! 1 is flat and the
tensor product of two flat arrows is flat. Condition (1) of Definition 7.1.1 holds because cofibrations are
entrywise, and (2) holds because the tensor product and weak equivalences are entrywise.

Corollary 7.3.7 Suppose M is a cofibrantly generated monoidal model category that admits a subcategory
of flat objects M[. Suppose O is a †C–cofibrant C–colored operad valued in M[. Then the transferred
semi-model structures of Corollary 5.2.3 on Alg.

!

O˝I
!

M˝/ and Alg.
!

O�I
!

M�/ describe the corresponding
1–categories , in the sense of Theorem 7.3.1. If , in addition , M is stable , then the Quillen equivalence of
Corollary 5.2.3 yields an equivalence of1–categories.

Proof This follows from Theorem 7.3.1, applied to

�
!

M˝inj and the colored operad
!

O˝, appealing to Lemma 7.3.6 for the subcategory of flat objects and
to Proposition 5.2.2 for the †C–cofibrancy; and

� M and the colored operad Os , with the assumed subcategory of flat objects on M— as Proposition
3.3.19 shows, Os is †CtC–cofibrant, and the transferred semi-model structure on Os–algebras
coincides with the transferred semi-model structure on Alg.

!

O�I
!

M�/.

The statement about Quillen equivalences follows from [Monaco 2021, A.11].

Algebraic & Geometric Topology, Volume 24 (2024)



390 David White and Donald Yau

We note that, in the examples mentioned after Definition 7.1.1, we could take M[ to be the subcategory of
cofibrant objects of M. In these examples, every †C–cofibrant C–colored operad is already entrywise
cofibrant. Hence, it is no loss of generality to assume O is valued in M[ instead of in M for these examples.
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A metric thickening of a given metric space X is any metric space admitting an isometric embedding of X .
Thickenings have found use in applications of topology to data analysis, where one may approximate the
shape of a dataset via the persistent homology of an increasing sequence of spaces. We introduce two new
families of metric thickenings, the p–Vietoris–Rips and p–Čech metric thickenings for all 1� p �1,
which include all probability measures on X whose p–diameter or p–radius is bounded from above,
equipped with an optimal transport metric. The p–diameter (resp. p–radius) of a measure is a certain
p̀ relaxation of the usual notion of diameter (resp. radius) of a subset of a metric space. These families

recover the previously studied Vietoris–Rips and Čech metric thickenings when p D1. As our main
contribution, we prove a stability theorem for the persistent homology of p–Vietoris–Rips and p–Čech
metric thickenings, which is novel even in the case p D 1. In the specific case p D 2, we prove a
Hausmann-type theorem for thickenings of manifolds, and we derive the complete list of homotopy types
of the 2–Vietoris–Rips thickenings of the n–sphere as the scale increases.
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1 Introduction

Geometric simplicial complexes, such as Vietoris–Rips or Čech complexes, are one of the cornerstones of
topological data analysis. One can approximate the shape of a dataset X by building a growing sequence
of Vietoris–Rips complexes with X as the underlying set, and then computing persistent homology. The
shape of the data, as measured by persistence, is reflective of important patterns within; see Carlsson [25].

The popularity of Vietoris–Rips complexes relies on at least three facts. First, Vietoris–Rips filtrations and
their persistent homology signatures are computable; see Bauer [12]. Second, Vietoris–Rips persistent
homology is stable (see Chazal, Cohen-Steiner, Guibas, Mémoli and Oudot [27] and Chazal, de Silva and
Oudot [30]), meaning that the topological data analysis pipeline is robust to certain types of noise. Third,
Vietoris–Rips complexes are topologically faithful at low scale parameters: one can use them to recover
the homotopy types (see Latschev [50]) or homology groups (see Chazal and Oudot [28]) of an unknown
underlying space, when given only a finite noisy sampling.

At higher scale parameters, we mostly do not know how Vietoris–Rips complexes behave. This is despite
the fact that one of the key insights of persistent homology is to allow the scale parameter to vary from
small to large, tracking the lifetimes of features as the scale increases. Our practice is ahead of our theory
in this regard: data science practitioners are building Vietoris–Rips complexes with scale parameters
larger than those for which the reconstruction results of [28; 50] apply.

Stability implies that, as more and more data points are sampled from some “true” underlying space M ,
the Vietoris–Rips persistent homology of the datasetX converges to the Vietoris–Rips persistent homology
of M . The simplest possible case is when the dataset X is sampled from a manifold M , and so we
cannot fully understand the Vietoris–Rips persistent homology of data without also understanding the
Vietoris–Rips persistent homology of manifolds. However, not much is known about Vietoris–Rips
complexes of manifolds, except at small scales; see Hausmann [42]. Even the Vietoris–Rips persistent
homology of the n–sphere Sn is almost entirely unknown.

Two potential obstacles for understanding the homotopy types of Vietoris–Rips complexes of a manifold
M are that

(i) the natural inclusion M ,! VR.M I r/ is not continuous, and

(ii) we do not yet have a full Morse theory for Vietoris–Rips complexes of manifolds.

There are by now several strategies for handling these two obstacles. One strategy is to remain in the
setting of Vietoris–Rips simplicial complexes. Obstacle (i) is then unavoidable. Regarding obstacle (ii),
Bestvina–Brady Morse theory has only been successfully applied at low scale parameters, allowing
Zaremsky [75] to prove that VR.SnI r/ recovers the homotopy type of Sn for r small enough, but not to
derive new homotopy types that appear as r increases. Simplicial techniques have been considered for
a long time, but even successes such as an understanding of the homotopy types of the Vietoris–Rips
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complexes of the circle at all scales (See Adamaszek and Adams [1]) are not accompanied by a broader
Morse theory (though some techniques feel Morse-theoretic).

A second strategy is very recent. Lim, Mémoli and Okutan [52] and Okutan [62] show that the Vietoris–
Rips simplicial complex filtration is equivalent to thickenings of the Kuratowski embedding into L1.M/

or any other injective metric space. In particular, the two filtrations have the same persistent homology.
This overcomes obstacle (i): the inclusion of a metric space into a thickening of its Kuratowski embedding
is continuous, and indeed an isometry onto its image. This connection has created new opportunities,
such as the Morse theoretic techniques employed by Katz [45; 46; 47; 48]. This Morse theory allows one
to prove the first new homotopy types that occur for Vietoris–Rips simplicial complexes of the circle and
2–sphere, but have not yet inspired progress for larger scales, or for spheres above dimension two.

A third strategy is to consider Vietoris–Rips metric thickenings, which rely on optimal transport and
Wasserstein distances; see Adamaszek, Adams and Frick [2]. We refer to these spaces as the1–metric
thickenings, for reasons that will become clear in the following paragraph. Such thickenings were invented
in order to enable Morse-theoretic proofs of the homotopy types of Vietoris–Rips type spaces. The first
new homotopy type of the1–Vietoris–Rips metric thickening of the n–sphere is known [2], but only for
a single (nonpersistent) scale parameter. It was previously only conjectured that the1–Vietoris–Rips
metric thickenings have the same persistent homology as the more classical Vietoris–Rips simplicial
complexes [2, Conjecture 6.12]; one of our contributions is to answer this conjecture in the affirmative.
Mirth [61] considers a Morse theory in Wasserstein space, which is inspired in part by applications to1–
Vietoris–Rips metric thickenings, but which does not apply as-is to these thickenings as the1–diameter
functional is not “�–convex”; see Santambrogio [69].

We introduce a generalization: the p–Vietoris–Rips metric thickening for any 1 � p �1. Let X be
an arbitrary metric space. For 1 � p �1, the p–Vietoris–Rips metric thickening at scale parameter
r > 0 contains all probability measures on X whose p–diameter is less than r . The p–Vietoris–Rips
metric thickening will be equipped with the topology induced from the weak topology on PX . When X
is bounded, the weak topology is generated by an optimal transport based metric; see Corollary A.2. For
p finite, the p–diameter of a probability measure ˛ on the metric space X is defined as

diamp.˛/ WD
�“

X�X

d
p
X .x; x

0/ ˛.dx/ ˛.dx0/

�1
p

;

and diam1.˛/ is defined to be the diameter of the support of ˛.

The p–Vietoris–Rips metric thickenings at scale r form a metric bifiltration of X that is covariant in r
and contravariant in p. Indeed, we have an inclusion map VRp.X I r/ ,! VRp0.X I r 0/ for r � r 0 and
p � p0; see Table 1:

VRp0.X I r/ VRp0.X I r 0/

VRp.X I r/ VRp.X I r 0/
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r
1:50 1:60 1:70 1:80

1:75

p

2:00

2:25

2:50

Table 1: The p–Vietoris–Rips bifiltration VRp.X I r/ for X a metric space of three points in R2,
with PX visualized as the convex hull of X in R2. Note that VRp.X I r/�VRp0.X I r 0/ for r � r 0

and p � p0.

As one of our main contributions, we prove that the p–Vietoris–Rips metric thickening is stable. This
means that if two totally bounded metric spaces X and Y are close in the Gromov–Hausdorff distance,
then their filtrations VRp.X I � / and VRp.Y I � / are close in the homotopy type distance. This was
previously unknown even in the case p D 1 (see [2, Conjecture 6.14]); we prove stability for all
1 � p � 1. As a consequence, it follows that the (undecorated) persistent homology diagrams for
the Vietoris–Rips simplicial complexes VR.X I r/ and for the p D1 Vietoris–Rips metric thickenings
VR1.X I � / are identical. In other words, the persistent homology barcodes for VR.X; � / and VR1.X I � /
are identical, up to replacing closed interval endpoints with open endpoints, or vice versa. This answers
[2, Conjecture 6.12] in the affirmative. Another consequence of stability is that the p–metric thickenings
give the same persistence diagrams whether one considers all Radon probability measures, or instead the
restricted setting of only measures with finite support.

The proof of stability for metric thickenings is more intricate than the proof of stability for the correspond-
ing simplicial complexes (see for instance Chazal, Cohen-Steiner, Guibas, Mémoli and Oudot [27], Chazal,
de Silva and Oudot [30] and Mémoli [57]). Whereas simplicial complexes can be compared via simplicial
maps, the direct analogues of simplicial maps on metric thickenings are not necessarily continuous. Thus,
new techniques are required to construct continuous maps between metric thickenings. Our technique,
relying on partitions of unity, allows us to continuously approximate measures on one metric space X
by measures on another metric space Y (where this approximation depends on the Gromov–Hausdorff
distance between X and Y ), thereby allowing us to construct the desired interleavings.

We furthermore introduce the p–Čech metric thickenings, again for 1� p �1, and prove analogues of
all of the above results. The p–Čech metric thickening at scale parameter r > 0 contains all probability
measures supported on X whose p–radius is less than r ; see Table 2.
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r
1:50 1:60 1:70 1:80

1:75

p

2:00

2:25

2:50

Table 2: The p–C̆ech bifiltration LCp.X I r/ for X a metric space of three points in R2, with PX
visualized as the convex hull of X in R2. Note that LCp.X I r/� LCp0.X I r 0/ for r � r 0 and p � p0.

We also deduce the complete spectrum of homotopy types of 2–Vietoris–Rips and 2–Čech metric
thickenings of the n–sphere, equipped with the Euclidean metric `2: VR2..Sn; `2/I r/ first attains the
homotopy type of Sn for scales r�

p
2, and then for all scales r >

p
2 the space is contractible. By contrast,

the Vietoris–Rips simplicial complexes or the1–Vietoris–Rips metric thickenings of the n–sphere (with
either the Euclidean or the geodesic metric) are only known for a bounded range of scales, including only
a single change in homotopy type (see Adamaszek, Adams and Frick [2, Section 5]), even though infinitely
many changes in homotopy type are conjectured (see Adams, Bush and Frick [4, Question 8.1]). See
however Lim, Mémoli and Okutan [52, Corollary 7.18] for results for round spheres with the `1 metric.

One of our main motivations for introducing the p–Vietoris–Rips and p–Čech metric thickenings is to
enable effective Morse theories on these types of spaces. The p–variance for Čech metric thickenings
is a minimum of linear functionals, and therefore fits in the framework of Morse theory for min-type
functions; see Baryshnikov, Bubenik and Kahle [8], Bryzgalova [21], Gershkovich and Rubinstein [38]
and Matov [54]. On the Vietoris–Rips side, we remark that gradient flows of functionals on Wasserstein
space can be defined when the functional is “�–convex”; see Mirth [61] and Santambrogio [69]. Though
the1–diameter is not �–convex, we hope that the p–diameter functional for p <1 may be �–convex
in certain settings.

Organization In Section 2 we describe background material and set notation. We define the p–Vietoris–
Rips and p–Čech metric thickenings in Section 3, and consider their basic properties in Section 4. In
Section 5 we prove stability. We consider Hausmann-type theorems in Section 6, and deduce the 2–
Vietoris–Rips metric thickenings of Euclidean spheres in Section 7. In Section 8 we bound the length of
intervals in p–Vietoris–Rips and p–Čech metric thickenings using a generalization of the spread of a
metric space, called the p–spread.
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We conclude the paper by providing some discussion in Section 9.

In Section A.1 we explain how the q–Wasserstein distance metrizes the weak topology for 1� q <1.
We describe connections to min-type Morse theories in Section A.2. In Section A.3 we show that p–Čech
thickenings of finite metric spaces are homotopy equivalent to simplicial complexes. We prove the
persistent homology diagrams of the p–Vietoris–Rips and p–Čech metric thickenings of a family of
discrete metric spaces in Section A.4, and we describe the 0–dimensional persistent homology of the
p–Vietoris–Rips and p–Čech metric thickenings of an arbitrary metric space in Section A.5. We consider
crushings in Section A.6. In Section A.7, we show that the main properties we prove for the (intrinsic)
p–Čech metric thickening also hold for the ambient p–Čech metric thickening.
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2 Background

This section introduces background material and notation.

Metric spaces and the Gromov–Hausdorff distance Let .X; dX / be a metric space. For any x 2X ,
we let B.xI r/ WD fy 2X j dX .x; y/ < rg denote the open ball centered at x of radius r .

Given a metric space .X; dX /, the diameter of a nonempty subsetA�X is diam.A/ WDsupa;a02A dX .a; a
0/,

whereas its radius is rad.A/ WD infx2X supa2A dX .x; a/. Note that, in general,

1
2

diam.A/� rad.A/� diam.A/:

Definition 2.1 (uniform discrete metric space) For any natural number n, we use Zn to denote the
metric space consisting of n points with all interpoint distances equal to 1.

Definition 2.2 ("–net) Let X be a metric space. A subset U � X is called an "–net of X if, for any
point x 2X , there is a point u 2 U with dX .x; u/ < ".

Let X and Y be metric spaces. The distortion of an arbitrary function ' WX ! Y is

dis.'/ WD sup
x;x02X

jdX .x; x
0/� dY .'.x/; '.x

0//j:

The codistortion of a pair of arbitrary functions ' WX ! Y and  W Y !X is

codis.';  / WD sup
x2X;y2Y

jdX .x;  .y//� dY .'.x/; y/j:
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We will use the following expression for the Gromov–Hausdorff distance between X and Y [43]:

(1) dGH.X; Y /D
1
2

inf
'; 

max.dis.'/; dis. /; codis.';  //:

Remark 2.3 If codis.';  / < �, then for all .x; y/ 2X �Y ,

jdX .x;  .y//� dY .'.x/; y/j< �:

In particular, by letting y D '.x/ above, this means that

dX .x;  ı'.x// < � for all x 2X:

See [23, Chapter 7] for more details about the Gromov–Hausdorff distance.

Simplicial complexes Two of the most commonly used methods for producing filtrations in applied
topology are the Vietoris–Rips and Čech simplicial complexes, defined as follows. Let X be a metric
space, and let r � 0. The Vietoris–Rips simplicial complex VR.X I r/ has X as its vertex set, and contains
a finite subset Œx0; : : : ; xk� as a simplex when diam.Œx0; : : : ; xk�/ WDmaxi;j dX .xi ; xj / < r . The Čech
simplicial complex LC.X I r/ has X as its vertex set, and contains a finite subset Œx0; : : : ; xk� as a simplex
when

Tk
iD0B.xi I r/¤∅.

Probability measures and Wasserstein distances Our main reference for measure theory elements
is [15] (albeit we use slightly different notation). Given a metric space .X; dX /, by PX we denote
the set of all Radon probability measures on X . We equip PX with the weak topology: a sequence
˛1; ˛2; ˛3; : : : 2 PX is said to converge weakly to ˛ 2 PX if, for all bounded, continuous functions
' W X ! R, we have limn!1

R
X'.x/ ˛n.dx/ D

R
X'.x/ ˛.dx/. The support supp.˛/ of a probability

measure ˛ 2PX is the largest closed set C such that every open set which has nonempty intersection with
C has positive measure. If supp.˛/ consists of a finite set of points, then ˛ is called finitely supported and
can be written as ˛D

P
i2I ai ıxi , where I is finite, ai � 0 for all i ,

P
i2I ai D 1, and each ıxi is a Dirac

delta measure at xi . Let Pfin
X denote the set of all finitely supported Radon probability measures on X .

Given another metric space Y and a measurable map f WX ! Y , the pushforward map f] W PX ! PY
induced by f is defined by f].˛/.B/D ˛.f �1.B// for every Borel set B � Y . In the case of finitely
supported probability measures, we have the explicit formula f]

�P
i2I ai ıxi

�
D
P
i2I ai ıf .xi /, so f]

restricts to a function Pfin
X ! Pfin

Y . If f is a continuous map, then f] is a continuous map between PX
and PY in the weak topology; see Chapter 5 in [15]. In the finitely supported case, the restriction of f] is
a continuous map from Pfin

X to Pfin
Y .

Given ˛; ˇ 2 PX , a coupling between them is any probability measure � on X �X with marginals ˛
and ˇ, meaning that .�1/]�D ˛ and .�2/]�D ˇ, where �i WX �X !X is the projection map defined
by �i .x1; x2/D xi for i D 1; 2. By Cpl.˛; ˇ/ we denote the set of all couplings between ˛ and ˇ. Notice
that Cpl.˛; ˇ/ is always nonempty as the product measure ˛˝ˇ is in Cpl.˛; ˇ/.
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Given q 2 Œ1;1/, let Pq;X be the subset of PX consisting of Radon probability measures with finite
moments of order q, that is, measures ˛ with

R
Xd

q
X .x; x0/ ˛.dx/ <1 for some, and thus any, x0 2X .

Note that when X is a bounded metric space, Pq;X D PX . We can equip Pq;X with the q–Wasserstein
distance (or Kantorovich q–metric). In this setting, the q–Wasserstein distance is given by

(2) dXW;q.˛; ˇ/ WD inf
�2Cpl.˛;ˇ/

�“
X�X

d
q
X .x; x

0/ �.dx � dx0/

�1
q

;

and it can be shown that dXW;q defines a metric on Pq;X ; see Chapter 3.3 in [15]. If q D1, then again for
any metric space .X; dX / we define the1–Wasserstein distance

(3) dXW;1.˛; ˇ/ WD inf
�2Cpl.˛;ˇ/

sup
.x;x0/2supp.�/

dX .x; x
0/

for ˛; ˇ 2P1;X , the set of measures with bounded support. The1–Wasserstein distance dXW;1 is clearly
symmetric, and the triangle inequality comes from a similar gluing trick as in Chapter 3.3 of [15]. Thus
dXW;1 is a pseudometric that is bounded below by a metric — for example dXW;1. Therefore dXW;1 is also
a metric. For general q � q0, it follows from Hölder’s inequality that dXW;q � d

X
W;q0 .

It is known that on a bounded metric space, for any q 2 Œ1;1/, the q–Wasserstein metric generates the
weak topology. For a summary of the result, see Section A.1. On the other hand, the1–Wasserstein
metric dXW;1 generates a finer topology than the weak topology in general.

Let f; g WX!R be measurable functions over the metric space X , and let p 2 Œ1;1/. We will frequently
use the Minkowski inequality, which states that�Z

X

jf .x/Cg.x/jp ˛.dx/

�1
p

�

�Z
X

jf jp.x/ ˛.dx/

�1
p

C

�Z
X

jgjp.x/ ˛.dx/

�1
p

:

The following proposition shows that we may construct linear homotopies in spaces of probability
measures, analogous to linear homotopies in Euclidean spaces. Linear homotopies will play an important
role in Section 5.

Proposition 2.4 Let Z be a metric space (or more generally a first-countable space), let X be a metric
space , and let f; g W Z! PX be continuous. Then the linear homotopy H W Z � Œ0; 1�! PX given by
H.z; t/D .1� t /f .z/C tg.z/ is continuous.

Proof It suffices to show sequential continuity, because Z � I is metrizable (or more generally first-
countable) and the weak topology on the set PX is also metrizable; see [15, Theorem 3.1.4] and also
Section A.1. If f.zn; tn/gn converges to .z; t/ in Z � I , then to show weak convergence of the image
in PX , let  WX !R be any bounded, continuous function. We have

lim
n!1

Z
X

.x/H.zn; tn/.dx/D lim
n!1

�
.1� tn/

Z
X

.x/f .zn/.dx/C tn

Z
X

.x/g.zn/.dx/

�
D .1� t /

Z
X

.x/f .z/.dx/C t

Z
X

.x/g.z/.dx/D

Z
X

.x/H.z; t/.dx/;

Algebraic & Geometric Topology, Volume 24 (2024)



The persistent topology of optimal transport based metric thickenings 401

where the second equality uses the fact that f .zn/ and g.zn/ are weakly convergent, since f and g are
continuous. Therefore H.zn; tn/ converges weakly to H.z; t/, so H is continuous.

Fréchet means For each p 2 Œ1;1�, let the p–Fréchet function of ˛ 2PX , namely F˛;p WX!R[f1g,
be defined by

F˛;p.x/ WD

��R
Xd

p
X .z; x/ ˛.dz/

�1=p for p <1;
supz2supp.˛/ dX .x; z/ for p D1:

Note that F˛;p.x/D dXW;p.ıx; ˛/. A point x 2X that minimizes F˛;p.x/ is called a Fréchet mean of ˛;
in general, Fréchet means need not be unique. See [44] for some of the basic properties of Fréchet means.

Metric thickenings with pD1 Let X be a bounded metric space. The Vietoris–Rips and Čech metric
thickenings were introduced in [2] with the notation VRm.X I r/ and LCm.X I r/, where the superscript
m denoted “metric.” We instead denote these spaces by VRfin

1.X I r/ and LCfin
1.X I r/, since one of our

main contributions will be to introduce the generalizations VRp.X I r/ and LCp.X I r/— and their finitely
supported variants VRfin

p .X I r/ and LCfin
p .X I r/— for any 1� p �1.

The Vietoris–Rips metric thickening VRfin
1.X I r/ is the space of all finitely supported probability measures

of the form
Pk
iD0 aiıxi such that diam.fx0; : : : ; xkg/ < r , equipped with the q–Wasserstein metric for

some 1�q <1. The choice of q 2 Œ1;1/ does not affect the homeomorphism type by Corollary A.2. The
Čech metric thickening LCfin

1.X I r/ is the space of all finite probability measures of the form
Pk
iD0 aiıxi

such that
Tk
iD0B.xi I r/¤∅, equipped with the q–Wasserstein metric for some 1� q <1.

Comparisons We give a brief survey of the various advantages and disadvantages of using simplicial
complexes and p D1 metric thickenings.

The Vietoris–Rips and Čech simplicial complexes were developed first, and they enjoy the benefits of
simplicial and combinatorial techniques. For this reason, these complexes (and related complexes) have
been used in (co)homology theories for metric spaces, and in discrete versions of homotopy theories;
see [7; 13; 19; 20; 26; 32; 33; 59; 64; 66; 67; 71]. The persistent homology of Vietoris–Rips complexes
on top of finite metric spaces can be efficiently computed [12]. Even when built on top of infinite
metric spaces, much is known about the theory of Vietoris–Rips simplicial complexes using Hausmann’s
theorem [42], Latschev’s theorem [50], the stability of Vietoris–Rips persistent homology [27; 30; 31],
Bestvina–Brady Morse theory [75] and the Vietoris–Rips complexes of the circle [1].

Despite this rich array of simplicial techniques, there are some key disadvantages to Vietoris–Rips
simplicial complexes. If X is not a discrete metric space, then the inclusion from X into VR.X I r/ for
any r � 0 is not continuous, since the vertex set of a simplicial complex is equipped with the discrete
topology. Another disadvantage is that even though we start with a metric space X , the Vietoris–Rips
simplicial complex VR.X I r/ may not be metrizable. Indeed, a simplicial complex is metrizable if and
only if it is locally finite [68, Proposition 4.2.16(2)], that is, if and only if each vertex is contained in only
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a finite number of simplices. So when X is infinite, VR.X I r/ is often not metrizable, ie its topology
cannot be induced by any metric. Though Vietoris–Rips complexes accept metric spaces as input, they do
not remain in this same category, and may produce as output topological spaces that cannot be equipped
with any metric structure.

By contrast, the metric thickening VRfin
1.X I r/ is always a metric space that admits an isometric embedding

X ,! VRfin
1.X I r/ [2]. Furthermore, metric thickenings allow for nicer proofs of Hausmann’s theorem.

For M a Riemannian manifold and r > 0 sufficiently small depending on the curvature of M , Hausmann
produces a map T W VR.M I r/!M from the simplicial complex to the manifold that is not canonical
in the sense that it depends on a total order of all points in the manifold. Also, the inclusion map
M ,! VR.M I r/ is not continuous, and therefore cannot be a homotopy inverse for T . Nevertheless,
Hausmann is able to prove T is a homotopy equivalence without constructing an explicit inverse. By
contrast, in the context of metric thickenings, one can produce a canonical map VRfin

1.M I r/!M by
mapping a measure to its Fréchet mean (whenever r is small enough that measures of diameter less than r
have unique Fréchet means). The (now continuous) inclusion M ,! VRfin

1.M I r/ can be shown to be a
homotopy inverse via linear homotopies [2, Theorem 4.2].

One of our main contributions is showing how these various spaces relate to each other, especially when
it comes to persistent homology. This allows one to work either simplicially, geometrically, or with
measures — whichever perspective is most convenient for the task at hand.

Homology and persistent homology For each integer k � 0, let Hk denote the singular homology
functor from the category Top of topological spaces to the category Vec of vector spaces and linear
transformations. We use coefficients in a fixed field, so that homology groups are furthermore vector
spaces. For background on persistent homology, we refer the reader to [34; 35; 76].

In applications of topology, such as topological data analysis [25], one often models a dataset not as
a single space X , but instead as an increasing sequence of spaces. We refer to an increasing sequence
of spaces, that is, a functor from the poset .R;�/ to Top, as a filtration. If X is a metric space, then a
common filtration is the Vietoris–Rips simplicial complex filtration VR.X; � /. We will introduce relaxed
versions, the p–Vietoris–Rips metric thickening filtrations VRp.X I � /; see Section 3.

By applying homology (with coefficients in a field) to a filtration, we obtain a functor from the poset .R;�/
to Vec, ie a persistence module. We will use symbols like V , W and so on to denote persistence modules.
Following [29], a persistence module is Q–tame if, for any s < t , the structure map V.s/! V.t/ is of
finite rank. In [29], it is shown that a Q–tame persistence module V can be converted into a persistence
diagram,1 dgm.V /, which is a multiset in the extended open half-plane consisting of pairs pD .b; d/ for
�1� b < d �C1. The persistence diagrams can be compared via the bottleneck distance dB, which
is defined as follows. Given persistence diagrams D1 and D2, a subset M �D1 �D2 is said to be a
partial matching between D1 and D2 if:

1Specifically, we consider undecorated persistence diagrams, as described in [29].
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� For every point p in D1, there is at most one point q in D2 such that .p; q/ 2M . (If there is no
such q, we then say p is unmatched.)

� For every point q in D2, there is at most one point p in D1 such that .p; q/ 2M . (If there is no
such p, we then say q is unmatched.)

The bottleneck distance dB between two persistence diagrams D1 and D2 is

dB.D1;D2/ WD inf
M

max
�

sup
.p;q/2M

kp� qk1; sup
s2D1tD2 unmatched

ˇ̌
1
2
.sb � sd /

ˇ̌�
;

where s is an element in D1 or D2, sb is the birth time of s, sd is the death time of s, and M varies
among all possible partial matchings.

Interleavings Let C be a category. We call any functor from the poset .R;�/ to C an R–space. Such
a functor gives a structure map X.s/!X.t/ for any s � t . For X an R–space, the ı–shift of X is the
functor Xı W R! C with Xı.t/D X.t C ı/ for all t 2 R. We have a natural transformation idıX from
X to Xı which maps X.t/ to Xı.t/ using the structure maps from X . For two R–spaces X and Y , we
say they are ı–interleaved if there are natural transformations F W X ! Y ı and G W Y ! Xı such that
F ıG D id2ıX and G ıF D id2ıY . Now we define a pseudodistance between R–spaces, which we call the
interleaving distance d C

I , as follows:

d C
I .X; Y / WD inffı jX and Y are ı–interleavedg:

We note that dVec
I is the interleaving distance for persistence modules. The isometry theorem of [29; 51]

states that dVec
I .V;W /D dB.dgm.V /; dgm.W // for Q–tame persistence modules V and W .

We will use the following lemma in our proofs in Section 5 on stability:

Lemma 2.5 If a persistence module P can be approximated arbitrarily well in the interleaving distance
by Q–tame persistence modules , then P is also Q–tame.

Proof For any s < t , let "D t � s, so there is a Q–tame persistence module P" such that dI.P; P"/ <
1
3
".

Then using the maps of an 1
3
"–interleaving between P and P", the structure map P.s/! P.t/ can be

factored as follows:

P.s/ P.t/

P"
�
sC 1

3
"
�

P"
�
sC 2

3
"
�

As P" is a Q–tame module, the rank of P"
�
sC 1

3
"
�
! P"

�
sC 2

3
"
�

is finite, and hence so is the rank of
P.s/! P.t/. Since s and t are arbitrary, we get the Q–tameness of P .

The homotopy type distance We next recall the definition of the homotopy type distance dHT from [37].
The following is a small generalization of [37, Definition 2.2] in that we do not require the maps 'X and
'Y to be continuous.

Algebraic & Geometric Topology, Volume 24 (2024)



404 Henry Adams, Facundo Mémoli, Michael Moy and Qingsong Wang

Definition 2.6 Let .X; 'X / and .Y; 'Y / be two topological spaces with real-valued functions on them.
For any ı � 0, a ı–map between .X; 'X / and .Y; 'Y / is a continuous map ˆ W X ! Y such that
'Y ıˆ.x/� 'X .x/Cı for any x 2X . For any two ı–maps ˆ0 WX! Y and ˆ1 WX! Y , a ı–homotopy
between ˆ0 and ˆ1 with respect to the pair .'X ; 'Y / is a continuous map H WX � Œ0; 1�! Y such that

(i) ˆ0 �H. � ; 0/,

(ii) ˆ1 �H. � ; 1/,

(iii) H. � ; t / is a ı–map with respect to the pair .'X ; 'Y / for every t 2 Œ0; 1�.

Definition 2.7 [37, Definitions 2.5 and 2.6] For every ı � 0 and for any two pairs .X; 'X / and .Y; 'Y /,
we say .X; 'X / and .Y; 'Y / are ı–homotopy equivalent if there exist ı–maps ˆ WX! Y and ‰ W Y !X ,
with respect to .'X ; 'Y / and .'Y ; 'X /, respectively, such that

� the map ‰ ıˆ WX !X is 2ı–homotopic to idX with respect to .'X ; 'X /, and

� the map ˆ ı‰ W Y ! Y is 2ı–homotopic to idY with respect to .'Y ; 'Y /.

The dHT–distance between .X; 'X / and .Y; 'Y / is

dHT..X; 'X /; .Y; 'Y // WD inffı � 0 j .X; 'X / and .Y; 'Y / are ı–homotopy equivalentg:

If .X; 'X / and .Y; 'Y / are not ı–homotopy equivalent for any ı, then we declare

dHT..X; 'X /; .Y; 'Y //D1:

Proposition 2.8 [37, Proposition 2.10] The dHT distance is an extended pseudometric on the set of pairs
of topological spaces and real-valued functions.

A pair .X; 'X /, where X is a topological space and 'X W X ! R is a real-valued function, induces an
R–space ŒX; 'X I � � given by the sublevel set filtration, and defined by

ŒX; 'X I r� WD '
�1
X ..�1; r// for r 2R

and

ŒX; 'X I � � WD f'
�1
X ..�1; r//� '�1X ..�1; r 0//gr�r 0 :

The following theorem shows that the interleaving distance of the persistent homology of the sublevel set
filtrations is bounded by the dHT distance of the respective pairs. The theorem is a slight generalization of
[37, Lemma 3.1] in which we do not require the continuity of 'X and 'Y ; we omit its (identical) proof.

Lemma 2.9 [37, Lemma 3.1] Let .X; 'X / and .Y; 'Y / be two pairs. Then for any integer k � 0,

dVec
I .Hk ı ŒX; 'X I � �;Hk ı ŒY; 'Y I � �/� dHT..X; 'X /; .Y; 'Y //:

Algebraic & Geometric Topology, Volume 24 (2024)



The persistent topology of optimal transport based metric thickenings 405

3 The p–relaxation of metric thickenings

We now describe the construction of the p–relaxations of metric thickenings.

3.1 The relaxed diameter and radius functionals

Throughout this section, .X; dX / will denote a bounded metric space. Recall that PX is the set of all Radon
probability measures on X , equipped with the weak topology. We now introduce, for each p 2 Œ1;1�, the
p–diameter of a measure ˛ in PX , where the1–diameter of ˛ is precisely the diameter of its support
supp .˛/ (as a subset of X). Consider, for each p 2 Œ1;1�, the p–diameter map diamp W PX ! R�0
given by

diamp.˛/D
��’

X�Xd
p
X .x; x

0/ ˛.dx/ ˛.dx0/
�1=p for p <1;

diam.supp.˛// for p D1.

We remark that the p–diameter has been studied and critiqued as a measure of diversity in population
biology [63; 65], and it has also been considered in relation to the Gromov–Wasserstein distance [55].
Similarly, define the p–radius map radp W PX !R�0 via

radp.˛/D
�

infx2X
�R
Xd

p
X .x; x

0/ ˛.dx0/
�1=p for p <1;

rad.supp.˛// for p D1:

Note that the p–radius of a measure is simply the pth root of its p–variance.

We observe that

diamp.˛/D
�Z
X
F p˛;p.x/ ˛.dx/

�1
p
D

�Z
X
.dXW;p.˛; ıx//

p ˛.dx/
�1
p

and

radp.˛/D inf
x2X

F˛;p.x/D inf
x2X

dXW;p.ıx; ˛/:

Proposition 3.1 The functions diamp; radp W PX !R satisfy

radp.˛/� diamp.˛/� 2 radp.˛/:

Proof To see that radp.˛/� diamp.˛/, note that

diamp.˛/D
�ZZ

X�X
.dX .x; x

0//p ˛.dx/ ˛.dx0/
�1
p
D

�Z
X

�Z
X
d
p
X .x; x

0/ ˛.dx/
�
˛.dx0/

�1
p

�

�
inf
x02X

�Z
X
d
p
X .x; x

0/ ˛.dx/
��1
p
D inf
x02X

�Z
X
d
p
X .x; x

0/ ˛.dx/
�1
p
D radp.˛/:

To see that diamp.˛/� 2 radp.˛/, for any " > 0 there is a point z 2X with�Z
X
d
p
X .x; z/ ˛.dx/

�1
p
� radp.˛/C ":
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Then we have

diamp.˛/D
�ZZ

X�X
.dX .x; x

0//p ˛.dx/ ˛.dx0/
�1
p
�

�ZZ
X�X

.dX .x; z/CdX .z; x
0//p ˛.dx/ ˛.dx0/

�1
p

�

�ZZ
X�X

.dX .x; z//
p ˛.dx/ ˛.dx0/

�1
p
C

�ZZ
X�X

.dX .z; x
0//p ˛.dx/ ˛.dx0/

�1
p

�2 radp.˛/C2":

Since " > 0 was arbitrary, this shows diamp.˛/� 2 radp.˛/.

Remark 3.2 The tightness of the bound radp.˛/� diamp.˛/ can be seen from the calculation for the
uniform measure on Zn, the metric space on a set of size n with all interpoint distances equal to 1.
To see the (asymptotic) tightness of diamp.˛/ � 2 radp.˛/, we consider the metric space Zn [ fOg,
where the newly introduced “center” O has distance 1

2
to every other point. Then for the measure

˛ WD
P
z2Zn

.1=n/ız , we have radp.˛/ D 1
2

and diamp.˛/ D ..n� 1/=n/1=p. We obtain asymptotic
tightness by letting n go to infinity.

3.2 The relaxed Vietoris–Rips and Čech metric thickenings

Definition 3.3 (p–Vietoris–Rips filtration) For each r > 0 and p 2 Œ1;1�, let the p–Vietoris–Rips
metric thickening at scale r be

VRp.X I r/ WD f˛ 2 PX j diamp.˛/ < rg:

We regard VRp.X I r/ as a topological space by endowing it with the subspace topology from PX (ie the
weak topology). By convention, when r � 0, we will let VRp.X I r/D¿. By

VRp.X I � / WD fVRp.X I r/
�X
r;r0,��! VRp.X I r 0/gr�r 0

we will denote the filtration thus induced.

We use VRfin
p .X I r/ and VRfin

p .X I � / to denote the finitely supported variants obtained by replacing PX in
the above definition with Pfin

X .

Note that in the specific case p D1, the1–diameter of a measure is simply the diameter of its support.
For a bounded metric space X , the weak topology is generated by the 1–Wasserstein metric, so the
definition of VRfin

p .X I r/ generalizes [2, Definition 3.1], which is the specific case p D1.

Remark 3.4 (VRp.X I � / as a softening of VR1.X; � /) The definition of VRp.X I � / can be extended
to the whole range p 2 Œ0;1� as follows. First note that diamp.˛/ can still be defined as above for
p 2 .0; 1/, and by diam0.˛/D 0 when p D 0. Furthermore, if ˛ D

P
i2I aiıxi , then

lim
p#0

diamp.˛/D
Y
i;j2I

.dX .xi ; xj //
aiaj ;

which equals 0 since the product contains terms with i D j .
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At any rate, by the standard generalized means inequality [22], we have diamp0.˛/� diamp.˛/ for any
p0 � p in the range Œ0;1�. So, for fixed r > 0, not only does VRp.X I r/ become larger and larger as p
decreases, but also for p D 0, VR0.X I r/ contains all Radon probability measures on X and thus has
trivial reduced homology.

Definition 3.5 (p–Čech filtration) For each r > 0 and p 2 Œ1;1�, let the p–Čech metric thickening at
scale r be

LCp.X I r/ WD f˛ 2 PX j radp.˛/ < rg:

We regard LCp.r IX/ as a topological space by endowing it with the subspace topology from PX (ie the
weak topology). By convention, when r � 0, we will let LCp.X I r/D¿. By

LCp.X I � / WD f LCp.X I r/
�X
r;r0,��! LCp.X I r 0/gr�r 0

we will denote the filtration thus induced.2

Remark 3.6 Let ˛ be a measure in PX . As radp.˛/D infx2X dXW;p.ıx; ˛/, we have radp.˛/ < r if and
only if there is some x 2 X such that dXW;p.ıx; ˛/ < r . Therefore LCp.X I r/ is exactly the union over
all x 2 X of the balls B.ıxI r/, with respect to the p–Wasserstein metric, centered at points ıx in the
isometric image of X in PX .

We use LCfin
p .X I r/ and LCfin

p .X I � / to denote the finitely supported variants, obtained by replacing PX in
the above definition with Pfin

X .

Note that in the specific case p D1, the1–radius of a measure is simply the radius of its support. For
a bounded metric space X , the weak topology is generated by the 1–Wasserstein metric, so the definition
of LCfin

p .X I r/ generalizes [2], which considers the specific case p D1.

Though the above definitions are given with the < convention, we remark that they instead could have
been given with the � convention, namely diamp.˛/� r or radp.˛/� r . We restrict attention to the <
convention, even though many of the statements we give are also true with the � convention.

The next proposition shows that p–Vietoris–Rips and p–Čech metric thickenings are nested in the same
way that Vietoris–Rips and Čech simplicial complexes are.

Proposition 3.7 Let X be a bounded metric space. Then , for any r > 0,

VRp.X I r/� LCp.X I r/� VRp.X I 2r/:

Proof This follows immediately from Proposition 3.1, which implies that, for any ˛ 2 PX ,

diamp.˛/� radp.˛/� 1
2

diamp.˛/:

2We will use �X
r;r 0

to denote the inclusion maps in both Čech and Vietoris–Rips thickenings; this will not lead to confusion in
this paper.
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If X and Z are metric spaces with X � Z, and if the metric on Z is an extension of that on X , then
following Gromov [41, Section 1.B] we say that Z is an r–metric thickening of X if, for all z 2Z, there
is some x 2X with dZ.x; z/� r .

Proposition 3.8 Let X be a bounded metric space. When equipped with the q–Wasserstein metric for
1� q � p, we have that LCp.X I r/ and VRp.X I r/ are each r–metric thickenings of X for all r > 0.

Proof We use the isometric embedding X ! LCp.X I r/ given by x 7! ıx . Let ˛ 2 LCp.X I r/. Hence
there exists some x 2X with r > dXW;p.ıx; ˛/� d

X
W;q.ıx; ˛/, which shows that LCp.X I r/, equipped with

the q–Wasserstein metric, is an r–metric thickening of X .

The Vietoris–Rips case follows immediately since VRp.X I r/� LCp.X I r/ by Proposition 3.7.

The next remark follows the perspective introduced in [52], which shows that the filling radius is related
to the persistent homology of the Vietoris–Rips simplicial complex filtration VR.X; � /.

Remark 3.9 Let X be a closed connected n–dimensional manifold so that the fundamental class of X is
well defined. Let Z be an r–metric thickening of X for some r > 0. It is shown in [40, Page 8, Another
Corollary] that the map

Hn.X/ ,!Hn.Z/

induced from the inclusion � WX !Z is an injection whenever r is less than a scalar geometric invariant
FillRad.X/, called the filling radius of X . Hence Proposition 3.8 implies that, for all p 2 Œ1;1�, the
persistence diagram in dimension n of either the filtration VRp.X I � / or LCp.X I � / contains an interval
with left endpoint equal to zero and length at least FillRad.X/. As proved in [45], the filling radius of the
n–sphere (with its geodesic metric) is FillRad.Sn/D 1

2
arccos.�1=.nC 1//. Therefore, when X D Sn,

the n–dimensional persistence diagram of either VRp.SnI � / or LCp.SnI � / contains an interval starting at
zero which is no shorter than 1

2
arccos.�1=.nC 1//.

Lemma 3.10 For all r > 0 and all p; p0 2 Œ1;1� with p � p0, one has

VRp.X I r/� VRp0.X I r/ and LCp.X I r/� LCp0.X I r/:

Proof This comes from applying the Hölder inequality on diamp and radp.

Example 3.11 We recall that ZnC1 is the metric space consisting of nC 1 points with all interpoint
distances equal to 1. For any natural number n, the Vietoris–Rips or Čech simplicial complex filtrations
of ZnC1 do not produce any nondiagonal point in their persistence diagram, except in homological
dimension zero. However, for any 1 < p <1, both the p–Vietoris–Rips and p–Čech filtrations of ZnC1
will contain nondiagonal points in their persistence diagrams for homological degrees from zero to n� 1.
More specifically, both the p–Vietoris–Rips and p–Čech filtrations are homotopy equivalent to a filtration
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�n
� � �

�
.2/
n

�
.1/
n

�
.0/
n

0 �
1
2

�1=p �
2
3

�1=p �
3
4

�1=p
� � �

�
n
nC1

�1=p
Figure 1: Homotopy types of both VRp.ZnC1I � / and LCp.ZnC1I � /.

of an n–simplex �n by its k–skeleta, �.k/n . We prove the following result in Section A.4. For r in the
interval ..k=.kC 1//1=p; ..kC 1/=.kC 2//1=p� with 0� k � n� 1, we have

VRp.ZnC1I r/' LCp.ZnC1I r/'�.k/n ;

and when r > .n=.nC 1//1=p , both VRp.ZnC1I r/ and LCp.ZnC1I r/ become the n–simplex �n, which
is contractible.

From this we get the persistence diagrams

dgmVR
k;p.ZnC1/Ddgm LCk;p.ZnC1/D

8̂<̂
:

�
0;
�
1
2

�1=p�˝n
˚.0;1/ if k D 0;

..k=.kC1//1=p; ..kC1/=.kC2//1=p/˝.
n
kC1/ if 1� k � n�1;

∅ if k � n:

Note that, from the definition of VR1.ZnC1I � /, we have dgmVR
k;1
D∅ for k � 1, and furthermore that

limp"1 dgmVR
k;p
.ZnC1/D dgmVR

k;1
.ZnC1/ for each k � 0. An analogous result holds for LCp.ZnC1I � /.

3.3 A more general setting: controlled invariants

We now generalize the relaxed p–Vietoris–Rips and p–Čech filtrations.

Definition 3.12 (controlled invariants on PX ) Let i be a functional that associates to each bounded
metric space X a function iX W PX !R. We say, for some L> 0, that i is an L–controlled invariant if
the following conditions are satisfied:

(i) Stability under pushforward For any map f between finite metric spaces X and Y and any ˛
in PX ,

iY .f].˛//� iX .˛/CL dis.f /:

(ii) Stability with respect to dX
W;1 For any bounded metric space X and any ˛ and ˇ in PX ,

jiX .˛/� iX .ˇ/j � 2LdXW;1.˛; ˇ/:

In the next section, we will prove that both diamp and radp induce controlled invariants.
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For any controlled invariant i, we will use the notation ŒPX ; iX I � � to denote the sublevel set filtration
induced by the pair .PX ; iX /. That is,

ŒPX ; iX I r�D .iX /�1..�1; r// for r 2R

and
ŒPX ; iX I � �D f.iX /�1..�1; r//� .iX /�1..�1; r 0//gr�r 0 :

This construction generalizes both the definition of VRp.X I � / and that of LCp.X I � /.

Similarly, any controlled invariant i W Pfin
X ! R induces an analogous sublevel set filtration ŒPfin

X ; i
X I � �

of Pfin
X . This construction generalizes both the definition of VRfin

p .X I � / D ŒPX ; diamXp I � � and that of
LCfin
p .X I � /D ŒPX ; radXp I � �.

We’ll see later on in Corollary 5.3 that the filtrations ŒPX ; iX I � � and ŒPfin
X ; i

X I � � yield persistence modules
which are 0–interleaved.

4 Basic properties

We prove some basic properties. These include the convexity of the Wasserstein distance, the fact that
diamp and radp are 1–controlled and the fact that, for X finite, the pD1 metric thickenings VR1.X I r/
and LC1.X I r/ are homeomorphic to the simplicial complexes VR.X I r/ and LC.X I r/, respectively. We
begin with the property that nearby measures have nearby integrals. Throughout this section, X is a
bounded metric space.

Lemma 4.1 Let ' be an L–Lipschitz function on X . Then , for any ˛ and ˇ in PX and any q 2 Œ1;1�,ˇ̌̌�Z
X
j'.x/jq ˛.dx/

�1
q
�

�Z
X
j'.x/jq ˇ.dx/

�1
q
ˇ̌̌
� LdXW;q.˛; ˇ/:

Proof Let � 2 Cpl.˛; ˇ/ be any coupling. Thenˇ̌̌�Z
X
j'.x/jq ˛.dx/

�1
q
�

�Z
X
j'.x/jq ˇ.dx/

�1
q
ˇ̌̌

D

ˇ̌̌�ZZ
X�X
j'.x/jq �.dx � dx0/

�1
q
�

�ZZ
X�X
j'.x0/jq �.dx � dx0/

�1
q
ˇ̌̌

�

�ZZ
X�X
j'.x/�'.x0/jq �.dx � dx0/

�1
q
� L

�ZZ
X�X

d
q
X .x; x

0/ �.dx � dx0/
�1
q
:

We obtain the claim by taking the infimum of the right-hand side with respect to the coupling �.

We will often use the following convexity result of the Wasserstein distance; for a more general result,
see [72, Theorem 4.8].

Algebraic & Geometric Topology, Volume 24 (2024)



The persistent topology of optimal transport based metric thickenings 411

Lemma 4.2 Suppose that c1; : : : ; cn are nonnegative real numbers satisfying
Pn
kD1 ck D 1 and that

˛1; : : : ; ˛n; ˛
0
1; : : : ; ˛

0
n 2 PX . Then for all q 2 Œ1;1/, we have

dXW;q

� nX
kD1

ck˛k;

nX
kD1

ck˛
0
k

�
�

� nX
kD1

ck

�
dXW;q.˛k; ˛

0
k/

�q�1q
and

dXW;1

� nX
kD1

ck˛k;

nX
kD1

ck˛
0
k

�
�max

k
dXW;1.˛k; ˛

0
k/:

Proof Let " > 0 and q 2 Œ1;1/. For each k, suppose �k is a coupling between ˛k and ˛0
k

such that“
X�X

d
q
X .x; x

0/ �k.dx � dx
0/ < .dXW;q.˛k; ˛

0
k/C "/

q:

Then it can be checked that
Pn
kD1 ck�k is a coupling between

Pn
kD1 ck˛k and

Pn
kD1 ck˛

0
k

. We have

dXW;q

� nX
kD1

ck˛k;

nX
kD1

ck˛
0
k

�
�

�“
X�X

d
q
X .x; x

0/

nX
kD1

ck �k.dx � dx
0/

�1
q

<

� nX
kD1

ck.d
X
W;q.˛k; ˛

0
k/C "/

q

�1
q

�

� nX
kD1

ck.d
X
W;q.˛k; ˛

0
k//

q

�1
q

C ":

Since this holds for all " > 0, the claimed inequality holds. The case for qD1 can be checked separately
using the same matching.

We define an invariant generalizing diamp, and then prove that it is 1–controlled.

Definition 4.3 (iXq;p invariant) Let X be a bounded metric space. For any p; q 2 Œ1;1�, we define the
iq;p invariant, which associates to each bounded metric space X a function iXq;p W PX !R, by

iXq;p.˛/D

�Z
X

.dXW;q.˛; ıx//
p ˛.dx/

�1
p

:

Note that iXq;p recovers diamXp when p D q.

Remark 4.4 In the construction of iXq;p, one can get other interesting filtration functions by replacing
the Wasserstein distance with other distances between measures. These include, for example, the Lévy–
Prokhorov metric, the Fortet–Mourier metric and variants of the Kantorovich–Rubinstein metric. For
definitions of these metrics, see [15, Section 3].

Lemma 4.5 Let X and Y be bounded metric spaces , and let f WX! Y be a map. Then , for any element
˛ 2 PX and p 2 Œ1;1�,

iYq;p.f].˛//� iXq;p.˛/C dis.f /:
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Proof We compute

iYq;p.f].˛//D
�Z
Y

�
dYW;q.f].˛/; ıy/

�p
f].˛/.dy/

�1
p
D

�Z
X

�
dYW;q.f].˛/; ıf .x//

�p
˛.dx/

�1
p

D

�Z
X

�Z
Y
d
q
Y .y; f .x//f].˛/.dy/

�p
q
˛.dx/

�1
p

D

�Z
X

�Z
X
d
q
Y .f .x

0/; f .x// ˛.dx0/
�p
q
˛.dx/

�1
p

�

�Z
X

�Z
X
.dX .x

0; x/C dis.f //q ˛.dx0/
�p
q
˛.dx/

�1
p
� iXq;p.˛/C dis.f /:

Lemma 4.6 Let X be a bounded metric space. Then , for any ˛; ˇ in PX ,

jiXq;p.˛/� iXq;p.ˇ/j � d
X
W;q.˛; ˇ/C d

X
W;p.˛; ˇ/:

In particular , jiXq;p.˛/� iXq;p.ˇ/j � 2d
X
W;1.˛; ˇ/.

Proof We first note that

iXq;p.˛/D
�Z
X
.dXW;q.˛; ıx//

p ˛.dx/
�1
p
�

�Z
X
.dXW;q.ˇ; ıx/C d

X
W;q.˛; ˇ//

p ˛.dx/
�1
p

�

�Z
X
.dXW;q.ˇ; ıx//

p ˛.dx/
�1
p
C dXW;q.˛; ˇ/:

We also haveˇ̌̌�Z
X
.dXW;q.ˇ; ıx//

p ˛.dx/
�1
p
� iq;p.ˇ/

ˇ̌̌
D

ˇ̌̌�Z
X
.dXW;q.ˇ; ıx//

p ˛.dx/
�1
p
�

�Z
X
.dXW;q.ˇ; ıx//

p ˇ.dx/
�1
p
ˇ̌̌

� dXW;p.˛; ˇ/;

where the last line follows from Lemma 4.1 since dXW;q.ˇ; ıx/ is a 1–Lipschitz function in x. Therefore,

iq;p.˛/� iq;p.ˇ/C d
X
W;q.˛; ˇ/C d

X
W;p.˛; ˇ/:

We then get the result by swapping the roles of ˛ and ˇ.

Remark 4.7 This establishes the continuity of iq;p for q; p 2 Œ1;1/. If p or q equals infinity, then iq;p is
not necessarily continuous in the weak topology since dXW;1 does not necessarily induce the same topology
on PX as dXW;p does for p<1. Indeed, ifXD Œ0; 1� is the unit interval, then ..n�1/=n/ı0C.1=n/ı1! ı0

in PX as n!1, even though diam1...n� 1/=n/ı0C .1=n/ı1/ is equal to 1 for all n � 1, and hence
does not converge to 0D diam.ı0/.

The above two lemmas imply that iq;p (and hence diamp D ip:p) is a 1–controlled invariant. We next
consider the analogous properties for radp.

Algebraic & Geometric Topology, Volume 24 (2024)



The persistent topology of optimal transport based metric thickenings 413

Lemma 4.8 (radp under a map with bounded distortion) Let X and Y be bounded metric spaces , and
let f WX ! Y be a map. Then , for any ˛ 2 PX and p 2 Œ1;1�,

radp.f].˛//� radp.˛/C dis.f /:

Proof We only give the proof for the case p <1; the case p D1 is similar. We have

radp.f].˛//D inf
y2Y

�Z
Y
d
p
Y .y; y

0/f].˛/.dy
0/
�1
p
� inf
y2f .X/

�Z
Y
d
p
Y .y; y

0/f].˛/.dy
0/
�1
p

D inf
x2X

�Z
Y
d
p
Y .f .x/; y

0/f].˛/.dy
0/
�1
p
D inf
x2X

�Z
X
d
p
Y .f .x/; f .x

0// ˛.dx0/
�1
p

� inf
x2X

�Z
X
.dX .x; x

0/C dis.f //p ˛.dx0/
�1
p
� inf
x2X

�Z
X
d
p
X .x; x

0/ ˛.dx0/
�1
p
C dis.f /

D radp.˛/C dis.f /:

Lemma 4.9 (stability of radp) Let X be a bounded metric space. For any two probability measures
˛; ˇ 2 PX and for every p 2 Œ1;1�,

jradp.˛/� radp.ˇ/j � dXW;p.˛; ˇ/:

Proof We compute

radp.˛/D inf
x2X

dXW;p.˛; ıx/� inf
x2X

.dXW;p.ˇ; ıx/C d
X
W;p.ˇ; ˛//D inf

x2X
dXW;p.ˇ; ıx/C d

X
W;p.ˇ; ˛/

D radp.ˇ/C dXW;p.ˇ; ˛/:

Remark 4.10 Lemma 4.9 establishes the continuity of radp for p 2 Œ1;1/, as these functions are
1–Lipschitz. Similarly to diam1, we note that rad1 is not necessarily continuous because the metric
topology given by dXW;1 is not necessarily equal to the weak topology.

The above two lemmas imply that radp is a 1–controlled invariant.

We end this section of basic properties by showing that PX is homeomorphic to a simplex when X is
finite. Hence for X finite, the p D1 metric thickenings VR1.X I r/ and LC1.X I r/ are homeomorphic
to the simplicial complexes VR.X I r/ and LC.X I r/, respectively; see also [2, Corollary 6.4].

Lemma 4.11 If X is a finite metric space with n points , then PX is homeomorphic to the standard
.n�1/–simplex.

Proof Let X D fx1; : : : ; xng. The space PX of probability measures is in bijection with the standard
.n�1/–simplex �n�1 D f.y1; : : : ; yn/ 2 Rn j

Pn
iD1 yi D 1 with yi � 0 for all ig via the function

f W PX ! �n�1 defined by f
�Pn

iD1 aiıxi
�
D .a1; : : : ; an/. Suppose we have a sequence f˛kg in PX

given by ˛k D
Pn
iD1 ak;iıxi . By the definition of weak convergence, f˛kg converges to ˛D

Pn
iD1 aiıxi

in PX if and only if
R
X�.x/ ˛k.dx/ converges to

R
X�.x/ ˛.dx/ for all bounded and continuous functions

� W X ! R. These integrals are equal to
Pn
iD1 ak;i�.xi / and

Pn
iD1 ai�.xi /, respectively, so f˛kg
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converges to ˛ if and only if limk!1 ak;i D ai for each i . Therefore f˛kg converges to ˛ in PX if and
only if ff .˛k/g converges to f .˛/ in �n�1.

In general, the p D1 metric thickenings VR1.X I r/ and LC1.X I r/ of a finite metric space X are in
bijection, as sets, with the geometric realizations of the usual Vietoris–Rips and Čech simplicial complexes
on X , via the natural bijection

Pn
iD1 aiıxi 7!

Pn
iD1 aixi , where

Pn
iD1 aixi denotes the formal sum in

the geometric realization. Therefore Lemma 4.11 implies the following; see also [2, Proposition 6.6].

Lemma 4.12 For a finite metric space X and any r > 0, we have homeomorphisms VR1.X I r/ Š
VR.X I r/ and LC1.X I r/Š LC.X I r/.

5 Stability

In this section we establish the stability of all the filtrations we have introduced, under reasonable
assumptions on the metric spaces. The proof requires new techniques in order to construct maps
that adequately compare two filtrations of metric thickenings. In the proof of stability for simplicial
complexes [30], simplicial maps are used to construct maps between filtrations of simplicial complexes,
and the shift in parameter can be bounded using the Gromov–Hausdorff distance. A naive attempt to apply
this technique to filtrations of metric thickenings fails because there is no analogue of simplicial maps
for metric thickenings. Indeed, if X and Y are metric spaces that are close in the Gromov–Hausdorff
distance, then we get a map f WX ! Y that need not be continuous, but which is of bounded distortion.
This induces a continuous map VR.X I r/! VR.Y I r 0/ between simplicial complexes, as long as r 0

is chosen to be large enough, and from there one can obtain interleavings. However, the analogous
map VRp.X I r/! VRp.Y I r 0/ between metric thickenings cannot be continuous if f W X ! Y is not
continuous, since there are natural isometric embeddings of X and Y into VRp.X I r/ and VRp.Y I r 0/;
see Proposition 3.8. In essence, the fact that metric thickenings have a more well-behaved topology means
that it is more difficult to construct interleavings between them.

To overcome this difficulty, we instead construct continuous functions between metric thickenings by
distributing mass according to finite partitions of unity, subordinate to open coverings by ı–balls. This
ensures that these maps distort distances in a controlled way, allowing for a controlled change in the
invariants defining the filtration and thus providing an interleaving. Creating these maps and checking
their properties will require many of the ideas from the previous sections.

In Section 5.1 we state our main results: Theorem A and its immediate consequence, Theorem B. We give
two applications of stability. First, Section 5.2 applies the stability theorem in order to show that various
persistence modules of interest are Q–tame, and therefore have persistence diagrams. Next, in Section 5.3
we apply stability to show the close relationship between1–metric thickenings and simplicial complexes,
generalizing and answering in the affirmative [2, Conjecture 6.12], which states that these filtrations have
identical persistence diagrams. We give the proof of the stability theorem, Theorem A, in Section 5.4.
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5.1 Statement of the stability theorem

Let X and Y be totally bounded metric spaces, let p 2 Œ1;1� and let k � 0. We will see, for example,
that we have the following stability bound:

(4) dI.Hk ıVRp.X I � /;Hk ıVRp.Y I � //� 2dGH.X; Y /:

This implies that if two metric spaces are close in the Gromov–Hausdorff distance, then their resulting
filtrations and persistence modules are also close.

Example 5.1 Consider the metric spaceZnC1 from Example 3.11, which has nC1 points all at interpoint
distance 1 apart. Let �p;k be the interleaving distance between persistent homology modules

�p;k WD dI.Hk ıVRp.ZnC1I � /;Hk ıVRp.ZmC1I � // for n¤m:

Notice that, from Example 3.11, when n¤m and p is finite,

�p;0 D
1
2

�
1
2

�1=p and �p;1 D
1
2

��
2
3

�1=p
�
�
1
2

�1=p�
:

However, when p D1, we have �1;0 D 1
2

and �1;k D 0 for all k � 1.

From these calculations we can make the following observations:

(i) For p infinite, the only value of k for which �1;k ¤ 0 is k D 0.

(ii) For p finite, �p;1 > 0.

(iii) For p finite, supk �1;k D
1
2
> 1
2

�
1
2

�1=p
D supk �p;k .

From items (i) and (ii) we can see that, whereas persistence diagrams for k � 1 of p D1 thickenings do
not contain discriminative information for the Zn spaces, in contrast, the analogous quantities for p finite
do absorb useful information.

Since it is known (see [56, Example 4.1]) that dGH.ZnC1; ZmC1/D
1
2

whenever n¤m, item (iii) suggests
that the lower bound for Gromov–Hausdorff given by (4) may not be tight for p finite. This phenomenon
can actually be explained by the more general theorem below, which identifies a certain pseudometric
between filtrations which mediates between the two terms appearing in (4).

Theorem A Let i be an L–controlled invariant. Then , for any two totally bounded metric spaces X and
Y and any integer k � 0,

dI.Hk ı ŒPX ; iX I � �;Hk ı ŒPY ; iY I � �/� dHT..PX ; iX /; .PY ; iY //� 2LdGH.X; Y /;

dI.Hk ı ŒPfin
X ; i

X
I � �;Hk ı ŒPfin

Y ; i
Y
I � �/� dHT..Pfin

X ; i
X /; .Pfin

Y ; i
Y //� 2LdGH.X; Y /:

Note that there are instances when the quantity in the middle vanishes, yet the spaces X and Y are
nonisometric; see Section A.6 for results about this in terms of the notion of crushing considered by
Hausmann [42] and [2; 58].
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Corollary 5.2 For any two totally bounded metric spaces X and Y , for any q; p 2 Œ1;1�, and for any
integer k � 0, we have

dI.Hk ı ŒPX ; iXq;pI � �;Hk ı ŒPY ; i
Y
q;pI � �/� dHT..PX ; iXq;p/; .PY ; i

Y
q;p//� 2dGH.X; Y /;

dI.Hk ı ŒPfin
X ; i

X
q;pI � �;Hk ı ŒP

fin
Y ; i

Y
q;pI � �/� dHT..Pfin

X ; i
X
q;p/; .P

fin
Y ; i

Y
q;p//� 2dGH.X; Y /:

Proof From Lemmas 4.5 and 4.6 we know iq;p is a 1–controlled invariant; we then apply Theorem A.

Theorem B Let X and Y be totally bounded metric spaces , let p 2 Œ1;1� and let k � 0 be an integer.
Then the kth persistent homology of VRp.X I � / and VRp.Y I � / are "–interleaved for any "� dGH.X; Y /,
and similarly for LCp.X I � / and LCp.Y I � /:

dI.Hk ıVRp.X I � /;Hk ıVRp.Y I � //� dHT..PX ; diamXp /; .PY ; diamYp //� 2dGH.X; Y /;

dI.Hk ıVRfin
p .X I � /;Hk ıVRfin

p .Y I � //� dHT..Pfin
X ; diamXp /; .P

fin
Y ; diamYp //� 2dGH.X; Y /;

dI.Hk ı LCp.X I � /;Hk ı LCp.Y I � //� dHT..PX ; radXp /; .PY ; radYp //� 2dGH.X; Y /;

dI.Hk ı LC
fin
p .X I � /;Hk ı

LCfin
p .Y I � //� dHT..Pfin

X ; radXp /; .P
fin
Y ; radYp //� 2dGH.X; Y /:

Proof The p–Vietoris–Rips case follows from Corollary 5.2 by letting qDp, in which case iXp;pDdiamXp
(see Definition 4.3). The p–Čech case follows from Theorem A since radp is a 1–controlled invariant by
Lemmas 4.8 and 4.9.

In the corollary below, we use Theorem A to show that a controlled invariant on all Radon probability
measures produces a filtration at interleaving distance zero from that same invariant restricted to only
finitely supported measures.

Corollary 5.3 Let X be a totally bounded metric space , let k � 0 be an integer and let i be an L–
controlled invariant. Then

dI.Hk ı ŒPX ; iX I � �;Hk ı ŒPfin
X ; i

X
I � �/D dHT..PX ; iX /; .Pfin

X ; i
X //D 0:

Proof For any " > 0, let U be an "–net in X . Then the stability theorem, Theorem A, shows

dHT..PX ; iX /; .PU ; iU //� 2LdGH.X;U /� 2L"; dHT..Pfin
X ; i

X /; .Pfin
U ; i

U //� 2LdGH.X;U /� 2L":

Note, .PU ; iU /D .Pfin
U ; i

U / since U is finite. Since dHT satisfies the triangle inequality (Proposition 2.8),

dHT..PX ; iX /; .Pfin
X ; i

X //� 4L":

By letting " go to zero, we see dHT..PX ; iX /; .Pfin
X ; i

X // D 0. It then follows from Lemma 2.9 that
dI.Hk ı ŒPX ; iX I � �;Hk ı ŒPfin

X ; i
X I � �/D 0.

5.2 Consequence of stability: tameness

We next determine conditions under which a persistence module Hk ı ŒPX ; iX I � � associated with a
controlled invariant i will be Q–tame. In particular, we apply the results to the Vietoris–Rips and Čech
metric thickenings.
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Corollary 5.4 Let i be a controlled invariant and let k � 0 be an integer. Suppose the persistence module
Hk ı ŒPV ; iV I � � (resp. Hk ı ŒPfin

V ; i
V I � �) is Q–tame for any finite metric space V . Then , for any totally

bounded metric space X , the persistence module Hk ı ŒPX ; iX I � � (resp. Hk ı ŒPfin
X ; i

X I � �) is Q–tame.

Proof Since X is totally bounded, Theorem A implies that the persistence module Hk ı ŒPX ; iX I � � can
be approximated arbitrarily well in the interleaving distance by the Q–tame persistence modules on finite
"–nets V" as " goes to zero. Then the result follows from Lemma 2.5.

Now, we give a sufficient condition for the Q–tameness of the persistence module Hk ı ŒPV ; iV I � � over a
finite metric space V .

Corollary 5.5 Suppose i is a controlled invariant such that , for any finite metric space V , iV is a
continuous function on PV . Then , for any totally bounded metric space X , the persistence modules
Hk ı ŒPX ; iX I � � and Hk ı ŒPfin

X ; i
X I � � are Q–tame for any integer k � 0.

Proof According to Corollary 5.4, it suffices to check Q–tameness over finite metric spaces. If V is a
finite metric space, we may identify PV with a simplex by Lemma 4.11. Then ŒPV ; iV I � � is a sublevel set
filtration on a simplex, and since iV is continuous, [29, Theorem 2.22] showsHkıŒPV ; iV I � � isQ–tame.

Here we summarize the Q–tameness results related to relaxed Vietoris–Rips and Čech metric thickenings.

Corollary 5.6 Let X be a totally bounded metric space , let p 2 Œ1;1� and let k � 0 be an integer. The
persistence modules Hk ıVRp.X I � /, Hk ıVRfin

p .X I � /, Hk ı LCp.X I � / and Hk ı LCfin
p .X I � / are Q–tame.

Proof For Hk ıVRp.X I � /, when p is finite, Lemma 4.6 implies diamp is a continuous function over
any PX where X is a bounded metric space. Then we get the result by applying Corollary 5.5. When
pD1, Lemma 4.12 shows the persistent homology associated with diam1 is Q–tame over finite metric
spaces. We then get the result by applying Corollary 5.4.

We obtain the case of Hk ıVRfin
p .X I � / from Hk ıVRp.X I � / by using the interleaving distance result in

Corollary 5.3 along with the Q–tame approximation result in Lemma 2.5.

For Hk ı LCp.X I � /, when p is finite, Lemma 4.9 implies radp is a continuous function over any PX where
X is a bounded metric space. The rest is similar to the Vietoris–Rips case.

Remark 5.7 The proof that Hk ı LCp.X I � / is Q–tame can be made more direct at one step. For U
finite, to see that Hk ı LCp.U I � / is Q–tame, one could appeal to Theorem F in Section A.3 instead of
Theorem 2.22 of [29].

The Q–tame persistence modules given by this theorem allow us to discuss persistence diagrams, using
the results of [29].

Corollary 5.8 Let X be a totally bounded metric space , let p 2 Œ1;1� and let k � 0 be an integer.
Then Hk ıVRp.X I � / and Hk ıVRfin

p .X I � / have the same persistence diagram , dgmVR
k;p
.X/. Similarly ,

Hk ı LCp.X I � / and Hk ı LCfin
p .X I � / have the same persistence diagram , dgm LC

k;p
.X/.
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Proof Persistence diagrams are well defined for Q–tame persistence modules, so for any totally bounded
metric space X , any p 2 Œ1;1� and any k � 0, by Corollary 5.6 we have persistence diagrams associated
to Hk ıVRp.X I � / and Hk ıVRfin

p .X I � /. From Corollary 5.3 we know that the interleaving distance
between Hk ıVRp.X I � / and Hk ıVRfin

p .X I � / is zero, and so the isometry theorem [29, Theorem 4.11]
implies that these persistence modules have the same (undecorated) persistence diagram, denoted by
dgmVR

k;p
.X/. The same proof also works for Čech metric thickenings.

Combining the isometry theorem [29, Theorem 4.11] with Theorem B and Corollary 5.6, we obtain the
following:

Corollary 5.9 If X and Y are totally bounded metric spaces , then for any p 2 Œ1;1� and integer k � 0,

dB.dgmVR
k;p.X/; dgmVR

k;p.Y //� 2dGH.X; Y / and dB.dgm LCk;p.X/; dgm LCk;p.Y //� 2dGH.X; Y /:

5.3 Consequence of stability: connecting1–metric thickenings and simplicial complexes

We show how the1–Vietoris–Rips and1–Čech metric thickenings recover the persistent homology of
the Vietoris–Rips and Čech simplicial complexes. Our Corollary 5.10 answers [2, Conjecture 6.12] in the
affirmative.

We recall that VRp.X I r/ denotes the p–Vietoris–Rips metric thickening, that VRfin
p .X I r/ denotes the

p–Vietoris–Rips metric thickening for measures of finite support, and that VR.X I r/ denotes the Vietoris–
Rips simplicial complex. Theorem B shows, for any p 2 Œ1;1�, any ı > 0 and any finite ı–net Uı of a
totally bounded metric space X , that

dI.Hk ıVRfin
p .X I � /;Hk ıVRfin

p .Uı I � //� 2ı:

For p D1, by Lemma 4.12, Hk ıVR1.Uı I � /ŠHk ıVR.Uı ; � /, so from the above we have

dI.Hk ıVRfin
1.X I � /;Hk ıVR.Uı ; � //� 2ı:

Now, by the triangle inequality for the interleaving distance, by the inequality above and by the Gromov–
Hausdorff stability of X 7!Hk ıVR.X; � / [30; 27],

dI.Hk ıVRfin
1.X I � /;Hk ıVR.X; � //

� dI.Hk ıVRfin
1.X I � /;Hk ıVR.Uı ; � //C dI.Hk ıVR.Uı ; � /;Hk ıVR.X; � //

� 4ı:

Since this holds for any ı > 0, we find dI.Hk ı VRfin
1.X I � /;Hk ı VR.X; � // D 0. This implies that

the bottleneck distance between persistence diagrams is 0, and the (undecorated) diagrams are in fact
equal (see for instance [29, Theorem 4.20]). We can apply Corollary 5.3 to get the same result for
VR1.X I � / (measures with infinite support), and the same proof works in the Čech case. We state this as
the following theorem:
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Corollary 5.10 For any totally bounded metric space X and any integer k � 0,

dI.Hk ıVRfin
1.X I � /;Hk ıVR.X; � //D 0; dI.Hk ıVR1.X I � /;Hk ıVR.X; � //D 0;

dgmVR
k;1.X/D dgmVR

k .X/;

dI.Hk ı LC
fin
1.X I � /;Hk ı

LC.X I � //D 0; dI.Hk ı LC1.X I � /;Hk ı LC.X I � //D 0;

dgm LCk;1.X/D dgm LCk.X/:

Remark 5.11 Whereas the1–metric thickenings VR1.X I � / and the simplicial complexes VR.X; � /
yield persistence modules with an interleaving distance of 0, we are in the interesting landscape where
the metric thickenings VRp.X I � / may yield something new and different for p <1. For example,
in Section 7 we explore the new persistence modules that arise for p–metric thickenings of Euclidean
spheres .Sn; `2/ in the case p D 2.

Example 5.12 Let X D S1 be the circle. The persistent homology diagrams of the simplicial complex
filtrations VR.S1; � / and LC.S1I � / are known from [1], and therefore Corollary 5.10 gives the persistent
homology diagrams of VR1.S1I � / and LC1.S1I � /. However, although VR.S1I r/ and LC.S1I r/ are
known to obtain the homotopy types of all odd-dimensional spheres as r increases, the homotopy types
of VR1.S1I r/ and LC1.S1I r/ are still not proven.

Question 5.13 Is the simplicial complex VR.X I r/ always homotopy equivalent to VRfin
1.X I r/ or

VR1.X I r/? Compare with [2, Remark 3.3].

Question 5.14 Theorem 5.2 of [52] states that, for X compact, bars in the persistent homology of the
simplicial complex filtration VR.X; � / are of the form .a; b� or .a;1/. Is the same true for VR1.X I � /?
Note that we are using the < convention, ie a simplex is included in VR.X I r/ when its diameter is strictly
less than r , and a measure is included in VR1.X I r/ when the diameter of its support is strictly less than r .

5.4 The proof of stability

As mentioned above, the construction of interleaving maps between filtrations of metric thickenings is
more intricate than in the case of simplicial complexes. A main idea behind the proof of our stability
result, Theorem A, is to approximate the metric space X by a finite subspace (a net) U . The advantage is
that it is easier to construct a continuous map with domain PU than one with domain PX . The crucial next
step is the construction of a continuous map from PX to PU by using a partition of unity subordinate to an
open covering by ı–balls. This map distorts distances by a controlled amount, allowing us to approximate
measures of PX in PU .

We begin with some necessary lemmas.

Lemma 5.15 Let U be a finite ı–net of a bounded metric space X , and let f�Uu gu2U be a continuous
partition of unity subordinate to the open covering

S
u2U B.uI ı/ of X .
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We have the continuous map ˆU W PX ! PU defined by

˛ 7!
X
u2U

Z
X

�Uu .x/ ˛.dx/ ıu:

For any q 2 Œ1;1�, we have dXW;q.˛;ˆU .˛// < ı.

Proof The map ˆU is well-defined, asX
u2U

Z
X

�Uu .x/ ˛.dx/D

Z
X

X
u2U

�Uu .x/ ˛.dx/D

Z
X

˛.dx/D 1:

For the continuity, since the weak topology on PX and PU can be metrized, it suffices to show, for a
weakly convergent sequence ˛n 2 PX , that the image ˆU .˛n/ is also weakly convergent. As U is a finite
metric space, it suffices to show that, for any fixed u0 2U , the sequence of real numbers .ˆU .˛n/.fu0g//n
is itself convergent. Note that

ˆU .˛n/.fu0g/D

Z
X

�Uu0.x/ ˛n.dx/:

Since �Uu0 is a bounded continuous function on X , we obtain the desired convergence through the weak
convergence of ˛n.

Lastly, we must show that dXW;q.˛;ˆU .˛//<ı. For any u2U , we use the notationw˛u WD
R
X�

U
u .x/ ˛.dx/,

so that ˆU .˛/D
P
u2U w

˛
u ıu andX

u2U

w˛u D
X
u2U

Z
X

�Uu .x/ ˛.dx/D

Z
X

X
u

�Uu .x/ ˛.dx/D

Z
X

˛.dx/D 1:

Let �Uu ˛ denote the measure such that �Uu ˛.B/D
R
B�

U
u .x/ ˛.dx/ for any measurable setB�X . We have

˛ D
X
u2U

�Uu ˛ D
X
u2U;
w˛u¤0

w˛u

�
1

w˛u
�Uu ˛

�
:

From this we get

dXW;q.˛;ˆU .˛//Dd
X
W;q

� X
u2U;
w˛u¤0

w˛u

�
1

w˛u
�Uu ˛

�
;
X
u2U;
w˛u¤0

w˛u ıu

�
�

� X
u2U;
w˛u¤0

w˛u

�
dXW;q

�
1

w˛u
�Uu ˛;ıu

��q�1q
<ı:

The first inequality is by Lemma 4.2. The last one comes from the fact that each .1=w˛u/�
U
u ˛ is a

probability measure supported in B.uI ı/, and thus dXW;q..1=w
˛
u/�

U
u ˛; ıu/ < ı.

For any two totally bounded metric spaces X and Y , through partitions of unity we can build continuous
maps between PX and PY , as follows. Let X and Y be two totally bounded metric spaces, let � >
2dGH.X; Y / and let ı > 0. We fix finite ı–nets U �X of X and V � Y of Y . By the triangle inequality,
dGH.U; V / <

1
2
�C 2ı. So there exist maps ' W U ! V and  W V ! U with

max.dis.'/; dis. /; codis.';  //� �C 4ı:
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We then define the maps ŷ W PX ! PY and y‰ W PY ! PX to be

ŷ WD �V ı'] ıˆU and y‰ WD �U ı ] ıˆV ;

where �U W PU ,! PX and �V W PV ,! PY are inclusions and ˆU and ˆV are the maps defined in
Lemma 5.15:

PX PY

PU PV

ŷ

ˆU

']

�V

PY PX

PV PU

y‰

ˆV

 ]

�U

Then both ŷ and y‰ are continuous maps by Lemma 5.15 and by the continuity of pushforwards of
continuous maps.

The use of the finite ı–nets U and V is important, because they can be compared by continuous maps '
and  , which yield continuous maps '] and  ]. The following lemma shows that ŷ and y‰ are homotopy
equivalences.

Lemma 5.16 With the above notation , we have homotopy equivalences y‰ ı ŷ ' idPX and ŷ ı y‰' idPY
via the linear families HX

t W PX � Œ0; 1�! PX and HY
t W PY � Œ0; 1�! PY given by

HX
t .˛/ WD .1� t /

y‰ ı ŷ .˛/C t˛ and HY
t .ˇ/ WD .1� t /

ŷ ı y‰.ˇ/C tˇ:

Moreover , dXW;q.H
X
t .˛/; ˛/ < �C6ı and dYW;q.H

Y
t .ˇ/; ˇ/ < �C6ı for any q 2 Œ1;1� and any t 2 Œ0; 1�.

Proof The homotopies HX
t and HY

t are continuous by Proposition 2.4 since ŷ and y‰ are continuous.
We will only present the estimate dXW;q.H

X
t .˛/; ˛/ < �C 6ı, as the other inequality can be proved in a

similar way. We first calculate the expression for y‰ ı ŷ .˛/, obtaining

y‰ ı ŷ .˛/D  ].ˆV .'].ˆU .˛////D  ]

�
ˆV

�
']

� P
u2U

Z
X
�Uu .x/ ˛.dx/ ıu

���
D  ]

�
ˆV

� P
u2U

Z
X
�Uu .x/ ˛.dx/ ı'.u/

��
D  ]

� P
v2V

Z
Y
�Vv .y/

� P
u2U

Z
X
�Uu .x/ ˛.dx/ ı'.u/

�
.dy/ ıv

�
D  ]

� P
v2V

� P
u2U

Z
X
�Uu .x/ ˛.dx/

Z
Y
�Vv .y/ ı'.u/.dy/

�
ıv

�
D  ]

� P
v2V

� P
u2U

Z
X
�Uu .x/ ˛.dx/�

V
v .'.u//

�
ıv

�
D
P
v2V

� P
u2U

Z
X
�Uu .x/ ˛.dx/�

V
v .'.u//

�
ı .v/ D

P
v2V

� P
u2U

w˛u�
V
v .'.u//

�
ı .v/;

where we again use the notation w˛u WD
R
X�

U
u .x/ ˛.dx/. We have

HX
t .˛/D .1� t /

P
v2V

P
u2U

�
w˛u�

V
v .'.u//

�
ı .v/C t˛:
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Now we show that HX
t .˛/ is a convex combination of probability measures in PX and hence itself lies

in PX . That is, the sum of coefficients in front of all ı .v/ and ˛ in the above formula for HX
t is 1:

.1� t /
P
v2V

P
u2U

�
w˛u�

V
v .'.u//

�
C t D .1� t /

P
u2U

w˛u C t D 1:

Next, we will bound the q–Wasserstein distance dXW;q.H
X
t .˛/; ˛/. For this, we first rewrite ˛ as

˛ D .1� t /
P
u2U

�Uu ˛C t˛ D .1� t /
P
v2V

P
u2U

�Vv .'.u//.�
U
u ˛/C t˛

D .1� t /
P
v2V

P
u2U;
w˛u¤0

�
w˛u�

V
v .'.u//

�� 1

w˛u
�Uu ˛

�
C t˛:

Based on these observations, we then apply the inequality from Lemma 4.2 to obtain

dXW;q.H
X
t .˛/; ˛/

D dXW;q

�
.1�t /

P
v2V

P
u2U;
w˛u¤0

�
w˛u�

V
v .'.u//

�
ı .v/Ct˛; .1�t /

P
v2V

P
u2U;
w˛u¤0

�
w˛u�

V
v .'.u//

�� 1

w˛u
�Uu ˛

�
Ct˛

�

�

�
.1�t /

P
v2V

P
u2U;
w˛u¤0

�
w˛u�

V
v .'.u//

��
dXW;q

�
ı .v/;

1

w˛u
�Uu ˛

��p�1p

�

�
.1�t /

P
v2V

P
u2U;
w˛u¤0

�
w˛u�

V
v .'.u//

��
dXW;q.ı .v/; ıu/Cd

X
W;q

�
ıu;

1

w˛u
�Uu ˛

��p�1p
:

For each nonzero term in the summand of the last expression we have dY .v; '.u// < ı, which implies
dX . .v/; u/ < 5ı C � via the codistortion assumption. Therefore dXW;q.ı .v/; ıu/ < 5ı C � as well.
Moreover, since .1=w˛u/�

U
u ˛ is a probability measure supported in the ı–ball centered at the point u, we

have dXW;q.ıu; .1=w
˛
u/�

U
u ˛/ < ı. Therefore dXW;q.H

X
t .˛/; ˛/ < 6ıC �.

Remark 5.17 The above lemma still holds if we replace PX by Pfin
X and PY by Pfin

Y , as all related maps
naturally restrict to the set of finitely supported measures, Pfin

X .

We are now ready to prove our main result, Theorem A.

Proof of Theorem A For i an L–controlled invariant, for totally bounded metric spaces X and Y , and
for any integer k � 0, we must show

dI.Hk ı ŒPX ; iX I � �;Hk ı ŒPY ; iY I � �/� dHT..PX ; iX /; .PY ; iY //� 2LdGH.X; Y /;

dI.Hk ı ŒPfin
X ; i

X
I � �;Hk ı ŒPfin

Y ; i
Y
I � �/� dHT..Pfin

X ; i
X /; .Pfin

Y ; i
Y //� 2LdGH.X; Y /:

We prove only the first line above, as the finitely supported case in the second line has a nearly identical
proof. The inequality involving dI and dHT follows from Lemma 2.9. Hence it suffices to prove the
inequality dHT..PX ; iX /; .PY ; iY //� 2LdGH.X; Y / involving dHT and dGH.
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Following the construction in Lemma 5.16, let � > 2dGH.X; Y / and ı > 0. We fix finite ı–nets U �X of
X and V � Y of Y . By the triangle inequality, dGH.U; V / <

1
2
�C2ı, and so there exist maps ' WU ! V

and  W V ! U with
max.dis.'/; dis. /; codis.';  //� �C 4ı:

For any ı > 0, we will show that .PX ; iX / and .PY ; iY / are .�C6ı/L–homotopy equivalent. By the
definition of a ı–homotopy (Definition 2.6), it suffices to show that

� ŷ is an .�C6ı/L–map from .PX ; iX / to .PY ; iY /,
� y‰ is an .�C6ı/L–map from .PY ; iY / to .PX ; iX /,
� y‰ ı ŷ W PX ! PX is .2�C12ı/L–homotopic to idPX with respect to .iX ; iX /,

� ŷ ı y‰ W PX ! PX is .2�C12ı/L–homotopic to idPY with respect to .iY ; iY /.

We will only present the proof for the first and third items; the other two can be proved similarly. We have

iY . ŷ .˛//D iY .'] ıˆU .˛//� iX .ˆU .˛//C .�C 4ı/L� iX .˛/C .�C 6ı/L;

where the first inequality is from the stability of the invariant i under pushforward and from the bound on
the distortion of ', and where the second inequality is from the stability of the invariant with respect to
Wasserstein distance and from the bound dXW;q.˛;ˆU .˛// < ı in Lemma 5.15. This proves the first item.

For the third item, we use the homotopy HX
t in Lemma 5.16. Then it suffices to show, for any fixed

t 2 Œ0; 1�, that the map HX
t is a .2�C12ı/L–map from .PX ; iX / to .PX ; iX /, that is,

iX .HX
t .˛//� iX .˛/C .2�C 12ı/L:

This comes from the inequality dXW;1.H
X
t .˛/; ˛/ < �C 6ı from Lemma 5.16, and from the stability

assumption of i with respect to Wasserstein distance.

Now, since .PX ; iX / and .PY ; iY / are .�C 6ı/L–homotopy equivalent for any � > 2dGH.X; Y / and
ı > 0, it follows from the definition of the dHT distance (Definition 2.7) that dHT..PX ; iX /; .PY ; iY //�
2LdGH.X; Y /. This completes the proof.

6 A Hausmann type theorem for 2–Vietoris–Rips and 2–Čech thickenings
of Euclidean submanifolds

Hausmann’s theorem [42] states that if X is a Riemannian manifold and if the scale r > 0 is sufficiently
small (depending on the curvature X ), then the Vietoris–Rips simplicial complex VR.X I r/ is homotopy
equivalent to X . A short proof using an advanced version of the nerve lemma is given in [73]. Versions
of Hausmann’s theorem have been proven for1–metric thickenings in [2], where X is equipped with the
Riemannian metric, and in [6], where X is equipped with a Euclidean metric. In this section we prove a
Hausmann type theorem for the 2–Vietoris–Rips and 2–Čech metric thickenings. Our result is closest to
that in [6] (now with p D 2 instead of p D1): we work with any Euclidean subset X of positive reach.
This includes (for example) any embedded C k submanifold of Rn for k�2, with or without boundary [70].
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We begin with a definition and some lemmas that will be needed in the proof.

Let ˛ be a measure in P1.Rn/, the collection of all Radon measures with finite first moment. For any
coordinate function xi , where 1� i � n, we haveZ

Rn
jxi j˛.dx/�

Z
Rn
kxk˛.dx/ <1:

Therefore the Euclidean mean map m W P1.Rn/!Rn given by the following vector-valued integral is
well-defined:

m.˛/ WD
Z

Rn
x ˛.dx/:

Lemma 6.1 Let X be a metric space and let f WX !Rn be a bounded continuous function. Then the
induced map m ıf] W PX !Rn is continuous.

Proof For a sequence ˛n that weakly converges to ˛, we have the vector-valued integral

m ıf].˛n/D
Z

Rn
xf].˛n/.dx/D

Z
X
f .x/ ˛n.dx/:

As f is bounded and continuous, the above limit converges to m ıf].˛/ as ˛n converges to ˛. Therefore
the map m ıf] is continuous.

Lemma 6.2 Let ˛ be a probability measure in P1.Rn/. Then , for p 2 Œ1;1�, there is some z 2 supp.˛/
with

km.˛/� zk � diamp.˛/:

Proof As diam1.˛/ � diamp.˛/ for all p 2 Œ1;1�, it suffices to show km.˛/� zk � diam1.˛/. We
consider the formulaZ

Rn
km.˛/� zk˛.dz/D

Z
Rn

Z
Rn
.x� z/ ˛.dx/

˛.dz/� Z
Rn

Z
Rn
k.x� z/k˛.dx/ ˛.dz/D diam1.˛/:

So there must be some z 2 supp.˛/ with km.˛/� zk � diam1.˛/.

Lemma 6.3 For any probability measure ˛ 2 P1.Rn/ and for any x 2Rn, we can write the associated
squared 2–Fréchet function F 2˛;2.x/ as

F 2˛;2.x/D kx�m.˛/k
2
CF 2˛;2.m.˛//:

Proof By the linearity of the inner product,

F 2˛;2.x/ WD
Z

Rn
kx�yk2 ˛.dy/D

Z
Rn
.kxk2� 2hx; yiC kyk2/ ˛.dy/

D

Z
Rn
.kxk2� 2hx; yiC km.˛/k2�km.˛/k2Ckyk2/ ˛.dy/

D kxk2� 2hx;m.˛/iC km.˛/k2C
Z

Rn
.�km.˛/k2Ckyk2/ ˛.dy/

D kx�m.˛/k2C
Z

Rn
.km.˛/k2� 2hm.˛/; yiC kyk2/ ˛.dy/

D kx�m.˛/k2C
Z

Rn
km.˛/�yk˛.dy/D kx�m.˛/k2CF 2˛;2.m.˛//:
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Recall the medial axis of X is defined as the closure

med.X/D fy 2Rn j there exist x1 ¤ x2 2Xwith ky � x1k D ky � x2k D inf
x2X
ky � xkg:

The reach � of X is the closest distance � WD infx2X;y2med.X/kx�yk between points in X and med.X/.
Let U� .X/ be the �–neighborhood of X in Rn, that is, the set of points y 2Rn such that there is some
x 2X with ky � xk< � . The definition of reach implies that, for any point y in the open neighborhood
U� .X/, there is a unique closest point x 2X . The associated nearest projection map � W U� .X/!X is
continuous; see [36, Theorem 4.8(8)] or [6, Lemma 3.7].

Lemma 6.4 Let X be a bounded subset of Rn with reach �.X/ > 0. Let ˛ 2 PX have its Euclidean
mean m.˛/ in the neighborhood U� .X/. Then along the linear interpolation family

˛t WD .1� t /˛C tı�.˛/;

where � is the composition � ım W PX !X , both diam2 and rad2 obtain their maximum at t D 0.

Proof According to Lemma 6.3, for any x 2X ,

F 2˛;2.x/D kx�m.˛/k
2
CF 2˛;2.m.˛//:

As m.˛/ is inside U� .X/, the first term kx�m.˛/k is minimized over x 2X at x D �.˛/, and hence so
is F˛;2.x/. Therefore rad2.˛/D infx2X F˛;2.x/D F˛;2.�.˛//. So for rad2.˛t /,

.rad2.˛t //2 � F 2˛t ;2.�.˛//D
Z

Rn
kx��.˛/k2 ˛t .dx/

D .1� t /
Z

Rn
kx��.˛/k2 ˛.dx/C t

Z
Rn
kx��.˛/k2ı�.˛/.dx/

D .1� t /
Z

Rn
kx��.˛/k2 ˛.dx/D .1� t /F 2˛;2.�.˛//� .rad2.˛//2:

We now consider diam2. Recall that F˛;2.�.˛// � F˛;2.x/ for all x 2 X . From this, we have
.diam2.˛//2 D

R
XF

2
˛;2.x/ ˛.dx/� F

2
˛;2.�.˛//. Therefore

.diam2.˛t //2 D
ZZ

Rn�Rn
kx�yk2 ˛t .dx/ ˛t .dy/

D .1�t /2
ZZ

Rn�Rn
kx�yk2 ˛.dx/ ˛.dy/C2t.1�t /

ZZ
Rn�Rn

kx�yk2 ˛.dx/ ı�.˛/.dy/

Ct2
ZZ

Rn�Rn
kx�yk2 ı�.˛/.dx/ ı�.˛/.dy/

D .1�t /2.diam2.˛//2C2t.1�t /F 2˛;2.�.˛//� .1�t /
2.diam2.˛//2C2t.1�t /.diam2.˛//2

D .1�t2/.diam2.˛//2 � .diam2.˛//2:

Theorem C Let X be a bounded subset of Rn with positive reach � . Then for all 0 < r � � , the
isometric embeddings X ,! VR2.X I r/, X ,! VRfin

2 .X I r/, X ,! LC2.X I r/ and X ,! LCfin
2 .X I r/ are

homotopy equivalences.
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Proof We begin with the 2–Vietoris–Rips metric thickening. Let ˛ be a measure in VR2.X I r/.
Lemma 6.2 shows that there exists some x 2X with km.˛/�xk � diam2.˛/ < r � � . Hence m.˛/ is in
the neighborhood U� .X/, and � WD � ım is well defined on VR2.X I r/. As both � and m are continuous,
so is their composition �. Let i be the isometric embedding of X into VR2.X I r/. Clearly we have
� ı i D idX . Then it suffices to show the homotopy equivalence i ı� ' idVR2.X Ir/.

For this, we use the linear family .˛t /t2Œ0;1�, where ˛t WD .1� t /˛C tı�.˛/. According to Lemma 6.4,
we know this family is inside VR2.X I r/, and therefore ˛t is well defined. By Proposition 2.4, this is a
continuous family as the map � is continuous. Therefore the linear family indeed provides a homotopy
i ı� ' idVR2.X Ir/.

If ˛ is a finitely supported measure, then the above construction resides inside finitely supported measures
as well and therefore we get the result for VRfin

2 .X I r/.

For the Čech case, we again map LC2.X I r/ onto X using the map ˛ 7! �.˛/ WD �.m.˛//. To see this is
well defined, note that as ˛ 2 LC2.X I r/, there is some z 2X with F˛.z/Dkz�m.˛/k2CF˛.m.˛// < r2.
This implies kz �m.˛/k < r � � and so m.˛/ lies inside U� .X/. We then get the result by the same
homotopy construction as before. The finitely supported Čech case holds similarly.

7 The 2–Vietoris–Rips and 2–Čech thickenings of spheres with Euclidean
metric

Let Sn be the n–dimensional sphere Sn D fx 2RnC1 j kxk D 1g, and let .Sn; `2/ denote the unit sphere
equipped with the Euclidean metric. In this section we determine the successive homotopy types of the
2–Vietoris–Rips and 2–Čech metric thickening filtrations VR2..Sn; `2/I � / and LC2..Sn; `2/I � /. We begin
with a lemma.

Lemma 7.1 For any measure ˛ 2 P.Sn;`2/, we have

diam2.˛/D .2� 2km.˛/k2/1=2 �
p
2 and rad2.˛/D .2� 2km.˛/k/1=2 �

p
2:

Note that since km.˛/k� 1, we have that indeed rad2.˛/� diam2.˛/, and by the same token diam2.˛/�
2 rad2.˛/, in agreement with Proposition 3.1.

Proof of Lemma 7.1 We can calculate diam2.˛/ as follows:

diam2.˛/D
�Z

Sn

Z
Sn
kx�yk2 ˛.dx/ ˛.dy/

�1
2
D

�Z
Sn

Z
Sn
2� 2hx; yi˛.dx/ ˛.dy/

�1
2

D

�
2� 2

DZ
Sn
x ˛.dx/;

Z
Sn
y ˛.dy/

E�1
2
D .2� 2km.˛/k2/

1
2 �
p
2:
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The calculation for rad2.˛/ gives

rad2.˛/D inf
x2Sn

�Z
Sn
kx�yk2 ˛.dy/

�1
2
D inf
x2Sn

�
2� 2

Z
Sn
hx; yi˛.dy/

�1
2

D inf
x2Sn

.2� 2hx;m.˛/i/1=2 D

�
2� 2

�
m.˛/

km.˛/k
; m.˛/

��1
2
D .2� 2km.˛/k/1=2 �

p
2:

We now see that, for spheres with euclidean metric, both the 2–Vietoris–Rips and the 2–Čech metric
thickenings attain only two homotopy types:

Theorem D The isometric embeddings Sn ,!VR2..Sn; `2/I r/ and Sn ,! LC2..Sn; `2/I r/ are homotopy
equivalences for any r �

p
2. When r >

p
2, the spaces VR2..Sn; `2/I r/ and LC2..Sn; `2/I r/ are

contractible. By restricting to finitely supported measures , we get the same result for VRfin
2 ..S

n; `2/I r/

and LCfin
2 ..S

n; `2/I r/.

Remark 7.2 A similar phenomenon is found for the Vietoris–Rips filtration of .Sn; `1/, where
VR..Sn; `1/I r/ has the homotopy type of Sn when r � 2=

p
nC 1 and becomes contractible when

r > 2=
p
nC 1; see [52, Section 7.3]. In contrast, the homotopy types of the Vietoris–Rips and Čech

filtrations of geodesic circles include all possible odd-dimensional spheres [1]. The first new homotopy
type of the1–Vietoris–Rips metric thickening of the n–sphere (with either the geodesic or the Euclidean
metric) is known [2, Theorem 5.4], but so far only for a single (nonpersistent) scale parameter, and only
when using the convention diam1.˛/� r instead of diam1.˛/ < r .

We note that Theorem C only implies that VR2..Sn; `2/I r/'Sn for r � �.Sn/D 1, whereas Theorem D
extends this range to r �

p
2.

Proof of Theorem D From Lemma 7.1 we know that
p
2 is the maximal possible 2–diameter on P.Sn;`2/.

Therefore, when r >
p
2, the spaces VR2..Sn; `2/I r/D P.Sn;`2/ and VRfin

2 ..S
n; `2/I r/D Pfin

.Sn;`2/
are

both convex and hence contractible.

When 0 < r �
p
2, by Lemma 7.1 we get that m.˛/ is not the origin for any ˛ 2P.Sn;`2/ (since otherwise

we would have diam2.˛/D
p
2, which is too large). Therefore m.˛/ is inside the tubular neighborhood

U1..Sn; `2//. Let i be the inclusion map .Sn; `2/ ,!VR2..Sn; `2/I r/ mapping points to delta measures,
and let � be the composition � ım W VR2..Sn; `2/I r/! .Sn; `2/, which is well defined as m.˛/ is
not the origin. Then we naturally have � ı i D id.Sn;`2/. By applying Lemma 6.4, the linear family
˛t D .1� t /˛C t ı�.˛/ lies inside VR2..Sn; `2/I r/ and therefore provides the desired homotopy between
i ı� and idVR2..Sn;`2/Ir/. By restricting to the set of finitely supported measures, we get the result for
VRfin

2 ..S
n; `2/I r/.

The proof is identical for the Čech case.
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Remark 7.3 The above calculation gives, for any two positive integers n¤m, that

dB.dgmVR
n;2.S

n; `2/; dgmVR
n;2.S

m; `2//D
p
2
2

and dB.dgm LCn;2.S
n; `2/; dgm LCn;2.S

m; `2//D
p
2
2
:

The stability theorem, Theorem B, gives

(5) dGH..S
n; `2/; .S

m; `2//�
p
2
4
:

Remark 7.4 In a more detailed analysis, Proposition 9.13 of [53] provides the lower bound 1
2

for
dGH..Sn; `2/; .Sm; `2// when n¤m, which is larger than the lower bound

p
2
4

given in (5). As for the
geodesic distance case, one can use [53, Corollary 9.8(1)] to obtain dGH.Sn;Sm/� arcsin

�p
2
4

�
from (5),

where dGH.Sn;Sm/ is the Gromov–Hausdorff distance between spheres endowed with their geodesic
distances for any 0 < m < n. A better lower bound is found in [53]:

dGH.S
n;Sm/� 1

2
arccos

�
�1

mC1

�
�
�
4
;

which arises from considerations other than stability. The lower bound given by the quantity in the middle
is shown to coincide with the exact Gromov–Hausdorff distance between S1 and S2, between S1 and S3,
and also between S2 and S3.

8 Bounding barcode length via spread

The spread of a metric space is defined by Katz [45], and used in [52, Section 9] to bound the length of
intervals in Vietoris–Rips simplicial complex persistence diagrams. In this section we identify a measure
theoretic version of the notion of spread, and we use it to bound the length of intervals in p–Vietoris–Rips
and p–Čech metric thickening persistence diagrams.

Definition 8.1 The p–spread of a bounded metric space X is defined as

spreadp.X/ WD inf
˛�2Pfin

X

sup
˛2PX

dXW;p.˛�; ˛/:

Note that, for any 1� p � q �1,

spread1.X/� spreadp.X/� spreadq.X/� spread1.X/� rad.X/:

Remark 8.2 When p 2 Œ1;1/, the space Pfin
X is dense in Pp;X , the set of Radon measures with finite

moment of order p; see [15, Corollary 3.3.5]. Therefore, for a bounded metric space, the p–spread is just
the radius of the metric space .PX ; dXW;p/.

Proposition 8.3 Let X be a bounded metric space and let i be an L–controlled invariant. For any
r > 0 and any � > spread1.X/, the space ŒPX ; iX I r� can be contracted inside of ŒPX ; iX I r C 2L��. In
particular , any homology class of ŒPX ; iX I r� will vanish in ŒPX ; iX I r C 2L��.
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Proof As � > spread1.X/, there is some ˛� 2 Pfin
X such that, for all ˛ 2 PX , we have dXW;1.˛� ; ˛/ < � .

Consider the linear homotopy

ht W Œ0; 1�� ŒPX ; iX I r�! ŒPX ; iX I r C 2L��
defined by

.t; ˛/ 7! .1� t /˛C t˛� :

This gives a homotopy between the inclusion from ŒPX ; iX I r� to ŒPX ; iX I r C 2L�� and a constant map,
and therefore implies our conclusion so long as the homotopy is well defined. It then suffices to show
iX .ht .˛// < rC2L� . This comes from the stability condition of the invariant with respect to Wasserstein
distances and from Lemma 4.2:

iX .ht .˛//� iX .˛/C 2LdXW;1.ht .˛/; ˛/� iX .˛/C 2LdXW;1.˛� ; ˛/ < r C 2L�:

Remark 8.4 It is not difficult to see that for the iq;p invariants we can improve the bound � > spread1.X/
to � >maxfspreadp.X/; spreadq.X/g.

We also have the following stronger contractibility conclusion for VRp.X I � / and LCp.X I � /:

Theorem E Let X be a bounded metric space. For any p 2 Œ1;1� and any r > spreadp.X/, both
VRp.X I r/ and LCp.X I r/ are contractible.

Proof As r > spreadp.X/, there is some ˛r 2Pfin
X such that, for all ˛ 2PX , we have dXW;p.˛r ; ˛/ < r . In

particular, this implies diamp.˛r/D .
R
XF

p
˛r ;p.x/ ˛r.dx//

1=p < r and radp.˛r/D infx2X F˛r ;p.x/ < r .
Now let i be either diamp or radp. Consider the linear homotopy

ht W Œ0; 1�� ŒPX ; iX I r�! ŒPX ; iX I r�
defined by

.t; ˛/ 7! .1� t /˛C t˛r :

It then suffices to show, for all t 2 Œ0; 1�, that diamp.ht .˛// < r and radp.ht .˛// < r , so that this linear
homotopy from the identity map on ŒPX ; iX I r� to the constant map to ˛r is well-defined.

In the diamp case, we have

diampp .ht .˛//D.1� t /
2
ZZ
X�X

d
p
X .x; x

0/ ˛.dx/ ˛.dx0/C 2t.1� t /
ZZ
X�X

d
p
X .x; x

0/ ˛r.dx/ ˛.dx
0/

C t2
ZZ
X�X

d
p
X .x; x

0/ ˛r.dx/ ˛r.dx
0/

D.1�t /2 diampp .˛/C2t.1�t /
Z
X
.dXW;p.˛r ; ıx0//

p ˛.dx0/Ct2
Z
X
.dXW;p.˛r ; ıx0//

p ˛r.dx
0/

<.1� t /2rpC 2t.1� t /rpC t2rpDrp:

In the radp case, as radp.˛/ < r , there exists a point y 2X such that dXW;p.ıy ; ˛/ < r . Thus

radpp .ht .˛//D
�

inf
x2X

dXW;p.ıx; ht .˛//
�p
�
�
dXW;p.ıy ; ht .˛//

�p
D .1� t /.dXW;p.ıy ; ˛//

p
C t .dXW;p.ıy ; ˛r//

p < .1� t /rpC t rp D rp:
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The upper bound for the lifetime of the persistent homology features in ŒPX ; iX I � � for L–controlled
invariants is also related to the metric spread defined in [45].

Definition 8.5 The metric spread of a metric space X is defined to be

spread.X/ WD inf
U�X;jU j<1

max.dH.U;X/; diam.U //;

where dH is the Hausdorff distance.

Let i be an L–controlled invariant and let max.iX / be the maximum of the function iX on PX , for X
a bounded metric space. For any r > max.iX / we have ŒPX ; iX I r� D PX , and therefore ŒPX ; iX I r� is
contractible. Inspired by the definition of the spread, we have the following result:

Lemma 8.6 Let X be a metric space , let i be an L–controlled invariant and let U be a finite subset
of X . Then , for any � > max.dH.U;X/; .max.iU /� r/=.2L//, the space ŒPX ; iX I r� is contractible in
ŒPX ; iX I r C 2L��. In particular , any homology class of ŒPX ; iX I r� will vanish in ŒPX ; iX I r C 2L��.

Proof As � > dH.U;X/, the balls fB.uI �/gu2U form a open covering of X . We choose a partition of
unity subordinate to the covering and build the map ˆU W ŒPX ; iX I r�! PU as in Lemma 5.15. Since
r C 2L� >max.iU /, we know PU D ŒPU ; iU I r C 2L��. Since the inclusion map �U W U !X is of zero
distortion, iX ..�U /].ˇ//� iU .ˇ/�max.iU / for all ˇ 2 PU . This implies that the contractible set PU is
inside ŒPX ; iX I r C 2L��, and so we have the following diagram:

ŒPX ; iX I r� ŒPX ; iX I r C 2L��

PU
ˆU

�X
r;rC2L�

�U

As the image of �U ı ˆU maps ŒPX ; iX I r� into a contractible subset PU � ŒPX ; iX I r C 2L��, it is
homotopy equivalent to a constant map. To obtain this conclusion, it thus suffices to show that �U ıˆU is
homotopy equivalent to the inclusion given by the structure map �X

r;rC2L�
. Consider the linear homotopy

ht W Œ0; 1�� ŒPX ; iX I r�! ŒPX ; iX I r C 2L��
defined by

.t; ˛/ 7! .1� t /˛C tˆU .˛/:

From the stability property of i, Lemma 4.2 and the estimate in Lemma 5.15, we have

iX .ht .˛//� iX .˛/C 2LdXW;1.˛; ht .˛//� iX .˛/C 2LdXW;1.˛;ˆU .˛//� iX .˛/C 2L� < r C 2L�:

This shows that the homotopy ht from �U ıˆU to �X
r;rC2L�

is well defined.

Remark 8.7 For the 1–controlled iq;p invariant on a bounded metric space X , the maximum of iXq;p is
bounded by diam.X/. Therefore, for any finite subset U ,

max.dH.U;X/; diam.U //�max
�
dH.U;X/;

1
2
.max.iUq;p/� r/

�
:

Algebraic & Geometric Topology, Volume 24 (2024)



The persistent topology of optimal transport based metric thickenings 431

Hence, the previous lemma implies that the lifetime of features in ŒPX ; iXq;pI � � is bounded by 2 spread.X/.
In the diamp case the factor 2 can be removed, as we show next, and therefore matches [52, Proposition 9.6]
for Vietoris–Rips simplicial complexes.

Proposition 8.8 For any r > 0, p 2 Œ1;1� and � > spread.X/, the space VRp.X I r/ is contractible in
VRp.X I r C �/. In particular , any homology class on VRp.X I r/ will vanish in VRp.X I r C �/.

Proof As � > spread.X/, there exists some U �X such that diam.U / < � and dH.U;X/ < �. As the
maximum of diamUp on PU is bounded by diam.U /, the contractible subset PU lies inside VRp.X I rC�/,
and therefore �U ıˆU is homotopy equivalent to a constant map. Let ht be the linear homotopy used
in Lemma 8.6. What is left to get a homotopy equivalence between �U ıˆU and �X

r;rC�
is to show

diamp.ht .˛// < r C � . This comes from the following calculation:

diampp .ht .˛//D .1�t /
2
ZZ
X�X

dp.x; x0/ ˛.dx/ ˛.dx0/C2t.1�t /
ZZ
X�X

dp.x; x0/ ˛.dx/ˆU .˛/.dx
0/

C t2
ZZ
X�X

dp.x; x0/ˆU .˛/.dx/ˆU .˛/.dx
0/

D .1� t /2 diampp .˛/C 2t.1� t /
Z
X
.dXW;p.˛; ıx0//

p ˆU .˛/.dx
0/C t2 diampp .ˆU .˛//

� .1� t /2 diampp .˛/C2t.1� t /
Z
X

�
dXW;p.˛;ˆU .˛//Cd

X
W;p.ˆU .˛/; ıx0/

�p
ˆU .˛/.dx

0/

C t2 diampp .ˆU .˛//

� .1� t /2 diampp .˛/C 2t.1� t /
�
�C diamp.ˆU .˛//

�p
C t2 diampp .ˆU .˛//

< .1� t /2rpC 2t.1� t /.r C �/pC t2�p < .r C �/p:

The following result shows the lifetime of features of LCp.X I � / is also bounded by the metric spread
of X , spread.X/.

Proposition 8.9 For any r > 0, p 2 Œ1;1� and � > spread.X/, the space LCp.X I r/ is contractible in
LCp.X I r C �/. In particular , any homology class on LCp.X I r/ will vanish in LCp.X I r C �/.

Proof As � > spread.X/, there exists some U � X such that diam.U / < � and dH.U;X/ < �. The
maximum of radUp on PU is bounded by diam.U /, and the contractible subset PU lies inside LCp.X I rC�/.
This shows �U ıˆU is homotopy equivalent to a constant map. Let ht D .1� t /˛C tˆU .˛/ be the linear
homotopy used in Lemma 8.6. What is left is to show is radp.ht .˛// < r C �. By Lemmas 4.2 and 4.9,

radp.ht .˛//� radp.˛/C dXW;p.˛; ht .˛//� r C t
1=pdXW;p.˛;ˆU .˛//� r C �:

9 Conclusion

Filtrations, ie increasing sequences of spaces, play a foundational role in applied and computational
topology, as they are the input to persistent homology. To produce a filtration from a metric space X , one
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often considers a Vietoris–Rips or Čech simplicial complex, withX as its vertex set, as the scale parameter
increases. Since a point in the geometric realization of a simplicial complex is a convex combination of
the vertices of the simplex Œx0; x1; : : : ; xk� in which it lies, each such point can alternatively be identified
with a probability measure: a convex combination of Dirac delta masses ıx0 , ıx1 , . . . , ıxk . We can
therefore reinterpret the Vietoris–Rips and Čech simplicial complex filtrations instead as filtrations in the
space of probability measures, which are referred to as the Vietoris–Rips and Čech metric thickenings.
In [2] it is argued that the metric thickenings have nicer properties for some purposes. For example, the
inclusion from metric space X into the metric thickening is always an isometry onto its image, whereas
an inclusion from metric space X into the vertex set of a simplicial complex is not even continuous
unless X is discrete. We prove that these two perspectives are compatible: the1–Vietoris–Rips (resp.
Čech) metric thickening filtration has the same persistent homology as the Vietoris–Rips (resp. Čech)
simplicial complex filtration when X is totally bounded. Therefore, when analyzing these filtrations,
one can choose to apply either simplicial techniques (simplicial homology, simplicial collapses, discrete
Morse theory) or measure-theoretic techniques (optimal transport, Karcher or Fréchet means), whichever
is more convenient for the task at hand.

The measure-theoretic perspective motivates new filtrations to build on top of a metric space X . Though
the Vietoris–Rips simplicial complex filtration is closely related (at interleaving distance zero) to the
metric thickening filtration obtained by looking at sublevel sets in the space of probability measures of
the1–diameter functional, one can instead consider sublevel sets of the p–diameter functional for any
1� p �1. The same is true upon replacing Vietoris–Rips with Čech and replacing p–diameter with
p–radius. These relaxed p–Vietoris–Rips and p–Čech metric thickenings enjoy the same stability results
underlying the use of persistent homology: nearby metric spaces produce nearby persistence modules.
The generalization to p <1 is a useful one: though determining the homotopy types of1–Vietoris–Rips
thickenings of n–spheres is a hard open problem, we give a complete description of the homotopy types of
2–Vietoris–Rips thickenings of n–spheres for all n. We also prove a Hausmann-type theorem in the case
pD 2, and ask if the p <1 metric thickenings may be amenable to study using tools from Morse theory.

More generally, one can consider sublevel sets of any L–controlled function on the space of probability
measures on X . We prove stability in this much more general context. This allows one to consider metric
thickenings that are tuned to a particular task, perhaps incorporating other geometric notions besides just
proximity, such as curvature, centrality, eccentricity, etc. One can design an L–controlled functional to
highlight specific features that may be useful for a particular data science task.

We hope these contributions inspire more work on metric thickenings and their relaxations. We end with
some open questions.

(i) For X totally bounded, is the p D1 metric thickening VR1.X I r/ homotopy equivalent to the
simplicial complex VR.X I r/, and similarly is LC1.X I r/ homotopy equivalent to LC.X I r/? Note,
we are using the < convention.
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(ii) For X totally bounded, is VRp.X I r/ homotopy equivalent to VRfin
p .X I r/, is LCp.X I r/ homotopy

equivalent to LCfin
p .X I r/ and, for i a controlled invariant, is ŒPX ; iX I r� homotopy equivalent to

ŒPfin
X ; i

X I r�?

(iii) Is there an analogue to the Hausmann-type Theorem C which holds for p 2 .2;1/? The case
p D1 was tackled in [6]. In a similar spirit, it seems interesting to explore whether analogous
theorems hold when the ambient space is a more general Hadamard space instead of Rd .

(iv) Can one prove Latschev-type theorems [50] for p–metric thickenings?

(v) For p ¤ 2, what are the homotopy types of p–Vietoris–Rips and p–Čech thickenings of spheres
at all scales? Is the homotopy connectivity a nondecreasing function of the scale, and if so, how
quickly does the homotopy connectivity increase?

(vi) What are the homotopy types of p–Vietoris–Rips and p–Čech metric thickenings of other manifolds,
such as ellipses (see [3]), ellipsoids, tori and projective spaces [5; 45; 49]?

(vii) What versions of Morse theory [60] can be developed in order to analyze the homotopy types of
p–metric thickenings of manifolds as the scale increases? See Section A.2 for some initial ideas in
the case of p–Čech thickenings. For homogeneous spaces such as spheres, versions of Morse–Bott
theory [16; 17; 18] may be needed.

(viii) For X finite, is VRp.X I r/ always homotopy equivalent to a subcomplex of the complete simplex
on the vertex set X? See Section A.3 for a proof of the Čech case.

(ix) For X finite with nC 1 points, the space PX is an n–simplex in RnC1 where coordinates are the
weights of a measure at each point. In this case, diamp is a quadratic polynomial on RnC1 and
radp is the minimum of nC 1 linear equations. Therefore, both VRp.X I r/ and LCp.X I r/ are
semialgebraic sets in RnC1. Can one use linear programming along with the results of Section A.3 to
calculate the homology groups of LC.X I r/, and the work on quadratic semialgebraic sets [9; 11; 24]
to calculate the homology groups of VRp.X I r/? See also the recent paper [10], which provides
a singly exponential complexity algorithm for computing the sublevel set persistent homology
induced by a polynomial on a semialgebraic set up to some fixed homological dimension.

Appendix

The appendix contains results which are related to but not central to the main thread of the paper. In
Section A.1 we explain how the q–Wasserstein distance metrizes the weak topology for 1 � q <1.
We describe connections to min-type Morse theories in Section A.2, and ask what can be gained from
these connections. In Section A.3 we show that p–Čech thickenings of finite metric spaces are homotopy
equivalent to simplicial complexes with one vertex for each point in the metric space. We derive the
persistent homology diagrams of the p–Vietoris–Rips and p–Čech metric thickenings of a family of
discrete metric spaces in Section A.4, and we describe the 0–dimensional persistent homology of the
p–Vietoris–Rips and p–Čech metric thickenings of an arbitrary metric space in Section A.5. We consider
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crushings in Section A.6. In Section A.7, we show that the main properties we prove for the (intrinsic)
p–Čech metric thickening also hold for the ambient p–Čech metric thickening.

A.1 Metrization of the weak topology

For 1�q<1 the q–Wasserstein distance metrizes the weak topology, as we explain here for completeness.

Definition A.1 Let X be a metric space. The Lévy–Prokhorov metric on PX is given by the formula

dLP.˛; ˇ/ WD inff" > 0 j ˛.E/� ˇ.E"/C "; ˇ.E/� ˛.E"/C " for all E 2B.X/g:

Here E" D
S
x2E B".x/ is the open "–neighborhood of E in PX , and B.X/ is the Borel �–algebra.

We state two theorems that we will use:3

Theorem [15, Theorem 3.1.4] The weak topology on the set PX is generated by the Lévy–Prokhorov
metric.4

Theorem [39, Theorem 2] On a metric space X , for any ˛ and ˇ in PX , one has

.dLP/
2
� dXW;1 � .diam.X/C 1/dLP:

Corollary A.2 On a bounded metric space X , for any q 2 Œ1;1/, the q–Wasserstein metric generates
the weak topology on PX .

Proof From [39, Theorem 2; 15, Theorem 3.1.4], we know dXW;1 generates the weak topology. For other
values of q, notice that, for any coupling � between ˛ and ˇ,�Z

X

d
q
X .x; x

0/ �.dx � dx0/

�1
q

� .diam.X//.q�1/=q
�Z
X

dX .x; x
0/ �.dx � dx0/

�1
q

:

This implies dXW;q � .diam.X//.q�1/=q.dXW;1/
1=q . Along with dXW;1 � d

X
W;q , this implies that, on a

bounded metric space, all q–Wasserstein metrics with q finite are equivalent and generate the weak
topology on PX .

A.2 Min-type Morse theory

The paper [8] by Baryshnikov, Bubenik, and Kahle studies a Morse theory for min-type functions; see
also [21; 38; 54]. The following notation is from [8, Section 3.1]. Let X be a compact metric space
(called the parameter space), let M be a compact smooth manifold perhaps with boundary, and let
f W X �M ! R be a continuous function. For each x 2 X , define fx WM ! R by fx.m/D f .x;m/.
Let rfx WM ! R be the gradient of fx with respect to m. We furthermore assume that the function

3The first statement is from [15]. We emphasize that we use PX to denote the set of all Radon probability measures on X
whereas the author instead uses Pr .X/.
4Theorem 3.1.4 in [15] proves a stronger result, namely that the claim is true within the set of �–additive probability measures.
The restricted version we use follows from the fact that every Radon measure is �–additive; see [14, Proposition 7.2.2(i)].
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X �M ! R defined by .x;m/ 7! rfx.m/ is continuous. There is then an analogue of Morse theory,
called “min-type Morse theory”, for the min-type function � WM !R defined by �.m/Dminx2X fx.m/.

Whereas [8] uses min-type Morse theory to study configurations of hard spheres, we instead propose
the use of min-type Morse theory to study p–Čech metric thickenings, as follows. Let X be a finite
metric space with nC 1 points. Define M D�n to be the n–simplex on nC 1 vertices; a point m 2�n
is given in barycentric coordinates as mD .m0; : : : ; mn/ with mi � 0 and

P
i mi D 1. For x 2 X , let

fx W �n ! R be defined by fx.m/ D
P
i mid

p
X .x; xi /; note that this is equal to the pth power of the

p–Fréchet function, namely to F p˛;p.x/D
P
i mid

p
X .x; xi /, when ˛ is the measure ˛ D

P
i miıxi . So

f WX ��n!R is defined by f .x;m/D fx.m/. Note that each gradient rfx W�n!R is linear, and
hence continuous, and so the joint function X ��n!R given by .x;m/ 7! rfx.m/ is continuous since
X is discrete. The function � W�n!R is then defined by �.m/Dminx2X fx.m/; note that this is equal
to radpp .˛/ D infx2X F

p
˛;p.x/ for ˛ D

P
i miıxi . By Lemma 4.11 and its proof, we have not only a

homeomorphism PX Š�n, but also a homeomorphism

LCp.X I r/D rad�1p ..�1; r//Š ��1..�1; rp//;

meaning that the p–Čech metric thickenings are homeomorphic to the sublevel sets of the min-type
function � . In this setting, we have the additional convenience that each function fx is affine.

Question A.3 Can the machinery from [8] be used to prove new results about p–Čech metric thickenings,
such as homotopy types? A first step in this direction might be to use their balanced criterion (which derives
from Farkas’ lemma) to help identify which points are topological regular points or critical points of � .

Question A.4 We have restricted to X finite (with nC 1 points) so that M D �n will be a manifold
with boundary. Can one build up towards letting X be a manifold, such as a circle or n–sphere?

A.3 Finite p–Čech metric thickenings are homotopy equivalent to simplicial complexes

The p–Vietoris–Rips and p–Čech metric thickenings we consider are based on the corresponding simplicial
complexes and are closely related to them. The most direct relationship is given by Lemma 4.12 in
the case of finite metric spaces and p D1. Further similarities in the case of totally bounded metric
spaces and p D1 are observed in the persistence diagrams, as shown in Corollary 5.10. For p <1,
the metric thickenings are not as directly related to the corresponding simplicial complexes. However,
in Section A.3, we establish that all p–Čech metric thickenings on finite metric spaces are homotopy
equivalent to simplicial complexes (although generally not the corresponding Čech simplicial complexes).

Theorem F Let .X; dX / be a finite metric space with nC 1 points. For any p 2 Œ1;1� and any r > 0,
LCp.X I r/ is homotopy equivalent to a simplicial complex on nC 1 vertices , consisting of the simplices
contained in the homeomorphic image of LCp.X I r/ in the standard n–simplex.

Proof The result holds for the case p D1 by Lemma 4.12, so we will suppose p 2 Œ1;1/. We begin
with some background notation and observations. Let � be a simplex in a Euclidean space, let z0 2 � and
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let �z0 be the union of the closed faces of � not containing z0 (we always have �z0 � @� , and �z0 D @�
if z0 is in the interior of � ). Then there is a continuous function P W � n fz0g! �z0 defined by projecting
radially from z0. Furthermore, if C � � is convex and contains z0, then for any z 2 � nC the line segment
connecting z and P.z/ is contained in � nC , since this lies in the line segment connecting z0 and P.z/.
Therefore a linear homotopy shows that P j�nC W � nC ! �z0 nC is a strong deformation retraction. We
will apply such retractions successively to a simplex and its faces as described below.

Let X D fx0; : : : ; xng. If ˛ D
P
i aiıxi , then using the notation for the Fréchet function from Section 2,

F
p
˛;p.xj /D

P
i aid

p
X .xi ; xj /. Thus ˛ 2 LCp.X I r/ if and only if

P
i aid

p
X .xi ; xj / < r

p for some j . Let
�D f.y0; : : : ; yn/ 2 RnC1 j

P
i yi D 1 with yi � 0 for all ig be the standard n–simplex in RnC1. By

Lemma 4.11, LCp.X I r/ is homeomorphic to

Y D

�
.y0; : : : ; yn/ 2�

ˇ̌̌X
i

yid
p
X .xi ; xj / < r

p for some j
�
:

Equivalently, Y is a sublevel set of the function � W�!R given by

�.y0; : : : ; yn/Dmin
j

�X
i

yid
p
X .xi ; xj /

�
:

We note that Y contains the vertices of � by the assumption that r > 0. If Y D�, then LCp.X I r/Š�,
and � is homeomorphic to a simplex with vertex set X , as required. If not, then � nY is convex as it is
the intersection of half-spaces and �, so we may project radially from any point z0 2� nY , as above.
This shows Y ' Y \�z0 , where �z0 is the union of the closed faces of � not containing z0.

Since Y \�z0 is contained in the boundary of �, we will next verify that we can define retractions
within the .n�1/–dimensional faces of � contained in �z0 that contain a point not in Y . More generally,
we will repeat, for successively lower dimensional faces, inductively obtaining a sequence of strong
deformation retractions Yn! Yn�1! � � � ! Y0, where Yn D Y . Each Yk will consist of all closed faces
of � contained in Y , along with some subset of the remaining k–dimensional closed faces intersected
with Y . Thus Y0 will be a simplicial complex consisting of the closed faces of � contained in Y and will
be homotopy equivalent to LCp.X I r/, as required.

We will use induction, so suppose Yk meets the description above. Let �1; : : : ; �m be those remaining
k–dimensional faces of � whose intersections with Y are contained in Yk and that contain a point in their

Figure 2: The sequence of deformation retractions used in the proof of Theorem F collapses
a subset of a simplex to a simplicial complex on its vertices. In this example n D 2, and the
sequence of deformation retractions is Y2! Y1! Y0.
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interior that is not in Yk . Let �1; : : : ; �m0 be the remaining k–dimensional faces whose intersections with
Y are contained in Yk and that have only some boundary point not in Yk . On each �l , we may choose an
interior point not in Yk and project radially from this point as above. The homotopy is constant on the
boundary, so we may define a homotopy on Yk that simultaneously retracts each �l \Yk to @�l \Yk and
is constant on all points not in any �l . Thus Yk deformation retracts onto a subset Y 0

k
consisting of faces

of � that are contained in Y , along with �l \Yk for all l .

Next, choose any point y 2 @�1 nY 0k . Note that projecting radially from y as above affects any simplex in
@�1 that contains y, so we must extend this to a homotopy H on Y 0

k
in a way that is consistent on the

simplices containing y. For any �l containing y, let H be defined on �l \ Y 0k by the radial projection
from y, as above. For any two �l and �l 0 containing y, the two definitions of H on �l \ �l 0 \ Y are
consistent, as they are both linear homotopies. We also let H be constant on any point in a face of
� not containing y. This includes all faces of � contained in Y and all �l \ Y such that y … �l . The
definitions are consistent on their overlap, since if �l contains y, then radial projection from y is constant
on the faces of �l that do not contain y. Therefore H is a well-defined homotopy, which shows that Y 0

k

deformation retracts onto the subset that excludes the interiors of all �l containing y. We can repeat this
for the remaining set of �l until all have been retracted. Composing these deformation retractions, we
have shown that Yk deformation retracts onto a subset Yk�1 consisting of faces of � contained in Y
along with the intersections of Y with a subset of the remaining .k�1/–dimensional faces of � (subsets
of the boundaries of those k–dimensional simplices that were collapsed). This completes the inductive
step, so we obtain the sequence Yn! Yn�1! � � �! Y0 of strong deformation retractions, as required.

Corollary A.5 Let .X; dX / be a finite metric space , let p 2 Œ1;1� and , for any r > 0, let S.X I r/ be the
simplicial complex from Theorem F that is homotopy equivalent to LCp.X I r/. These simplicial complexes
form a filtration S.X I � /, and for any integer k � 0, Hk ı LCp.X I � / and Hk ı S.X I � / are isomorphic
persistence modules.

Proof The p D 1 case again holds by Lemma 4.12, so let p 2 Œ1;1/. We will identify LCp.X I r/
with its homeomorphic image in the standard simplex. By Theorem F, S.X I r/ consists of the simplices
contained in LCp.X I r/. So if r1 � r2, the fact that LCp.X I r1/� LCp.X I r2/ implies S.X I r1/� S.X I r2/,
and thus S.X I � / is a filtration of simplicial complexes.

Since in the proof of the theorem we constructed a deformation retraction LCp.X I r/! S.X I r/, the
inclusion S.X I r/ ,! LCp.X I r/ is a homotopy equivalence for each r . Therefore the induced maps on
homology give isomorphisms Hk.S.X I r// Š Hk. LCp.X I r// for each r . Furthermore, the following
diagram commutes for all r1 < r2, since all maps are inclusions:

LCp.X I r1/ LCp.X I r2/

S.X I r1/ S.X I r2/
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This shows that the induced maps on homology commute, giving a morphism of persistence modules.
Since each vertical map is an isomorphism, this is an isomorphism of persistence modules.

These results show that p–Čech persistent homology can be computed, at least in principle. The complex
S.X I r/ in Corollary A.5 consists of all simplices contained in the rp–sublevel set of the function � in
the proof of Theorem F. So finding the filtration S.X I � / would require finding the maximum of � on
each face. Calculating persistent homology would involve finding the maximum of � on each face of the
necessary dimensions.

A.4 Persistence diagrams of VRp.ZnC1I � / and LCp.ZnC1I � /

In this section, we will calculate the persistence diagrams of the p–Vietoris–Rips and p–Čech metric
thickenings of the metric space ZnC1, consisting of nC 1 points with all interpoint distances equal to 1.
Let �n be the n–dimensional simplex on nC 1 points, and let �.k/n denote its k–skeleton.

Proposition A.6 Let ZnC1 be the metric space consisting of nC 1 points with all interpoint distances
equal to 1. For .k=.kC 1//1=p < r � ..kC 1/=.kC 2//1=p with 0� k � n� 1, we have

VRp.ZnC1I r/' LCp.ZnC1I r/'�.k/n ;

and when r > .n=.nC 1//1=p, both VRp.ZnC1I r/ and LCp.ZnC1I r/ become the n–simplex PZnC1 ,
which is contractible.

Proof We will use the following observation, for which we omit the proof. Let ˛ be a measure in PZmC1 ,
where mC1 is any positive integer. Then both diamp and radp will obtain the maximum .m=.mC1//1=p

only at the uniform measure supported on the mC 1 points of the metric space ZmC1, ie the barycenter
of the m–simplex PZmC1 .

Let k be an integer where 0�k�n�1. For any r in ..k=.kC1//1=p; ..kC1/=.kC2//1=p�, we will show
both VRp.ZnC1I r/ and LCp.ZnC1I r/ can be deformation retracted to the k–skeleton of the n–simplex
PZnC1 , denoted by�.k/n . Since .k=.kC1//1=p <r � ..kC1/=.kC2//1=p , we know both VRp.ZnC1I r/
and LCp.ZnC1I r/ contain the k–skeleton of �n, but not any higher-dimensional skeleta. We can then
use the radial projection as in Corollary A.5 to work out the retraction. From the above observation, the
barycenter of any simplex in �n with dimension higher than k is not in VRp.ZnC1I r/ and LCp.ZnC1I r/.
We can use these barycenters as the basepoint for radial projection. We start from �n: if the radial
projection based at its barycenter can be restricted to VRp.ZnC1I r/ or LCp.ZnC1I r/, then it will retract
them onto their intersections with the .n�1/–skeleton .�n/.n�1/. From the proof of Corollary A.5, we
know the restriction is well defined for LCp.ZnC1I r/. Here, it is also well defined for VRp.ZnC1I r/,
because our basepoint for the radial projection is an interior maximum of the quadratic function diampp ,
and diampp will be concave along any line that passes through the basepoint. This in turn shows that
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the line segment connecting two points outside of VRp.ZnC1I r/ is also outside of VRp.ZnC1I r/. We
can continue the retraction process inductively on VRp.ZnC1I r/\�

.l/
n and LCp.ZnC1I r/\�

.l/
n , where

k < l �n�1, with radial projections based at barycenters of l–simplices of�n. This results in a retraction
onto VRp.ZnC1I r/\�

.l�1/
n and LCp.ZnC1I r/\�

.l�1/
n , respectively. Eventually, we will deformation

retract onto VRp.ZnC1I r/\�
.k/
n and LCp.ZnC1I r/\�

.k/
n , which are both equal to �.k/n .

Corollary A.7 Let n be a positive integer and let ZnC1 be the metric space consisting of nC 1 points
with interpoint distance equal to 1. The persistence diagrams of VRp.ZnC1I � / and LCp.ZnC1I � / are the
same and are of the form

dgmVR
k;p.ZnC1/D dgm LCk;p.ZnC1/D

8̂<̂
:

�
0;
�
1
2

�1=p�˝n
˚.0;1/ if k D 0;��

k=.kC1/
�1=p

;
�
.kC1/=.kC2/

�1=p�˝. n
kC1/ if 0 < k � n�1;

∅ if k > n�1:

The superscripts denote the multiplicity of a point in the persistence diagram.

Proof For any integer k with 0 < k < n� 1, we know the homology of the k–skeleton of an n–simplex
�n is given by

Hl.�
.k/
n ;Z/D

8<:
Z if l D 0;

Z.
n
kC1/ if l D k;

∅ otherwise:

We get the result by combining this with the previous result on the homotopy types of VRp.ZnC1I � /
and LCp.ZnC1I � /.

A.5 Zero-dimensional persistent homology of VRp.X I � / and LCp.X I � /

For a finite metric space X , we will show that the 0–dimensional persistent homology of VRp.X I � / and
LCp.X I � / are the same, and that they both recover the single-linkage clustering up to a constant factor
related to p.

Lemma A.8 For X a finite metric space , the birth time for all intervals in the 0–dimensional barcodes of
VRp.X I r/ and LCp.X I r/ is zero.

Proof Since all delta measures ıx have diamp and radp equal to zero, it suffices to show, for any measure
˛ in VRp.X I r/ (or LCp.X I r/), that there is a path in VRp.X I r/ (or LCp.X I r/) that connects ˛ with
some delta measure.

For ˛ a measure in VRp.X I r/,Z
X

.dXW;p.˛; ıx//
p ˛.dx/D .diamp.˛//p < rp:
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So there is some x0 2 supp.˛/ such that dXW;p.˛; ıx0/ < r
p . We then pick the path ˛t D .1� t /˛C tıx0

for t 2 Œ0; 1�. Now consider

diamp.˛t /D
�Z
X
.dXW;p.˛t ; ıx//

p ˛t .dx/
�1
p
D

�Z
X

�
.1�t /dXW;p.˛; ıx/Ctd

X
W;p.ıx0 ; ıx/

�p
˛t .dx/

�1
p

� .1�t /
�Z
X
.dXW;p.˛; ıx//

p ˛t .dx/
�1
p
Ct
�Z
X
.dXW;p.ıx0 ; ıx//

p ˛t .dx/
�1
p

� .1�t /
�
.1�t / diampp .˛/Ct .d

X
W;p.˛; ıx0//

p
�1=p
Ct
�
.1�t /.dXW;p.˛; ıx0//

p
�1=p

< .1�t /rCt .1�t /1=pr < r:

This shows ˛t 2 VRp.X I r/, and the path is continuous by Proposition 2.4.

For ˛ a measure in LCp.X I r/, there is some x0 with dXW;p.˛; ıx0/ < r . Then dXW;p..1� t /˛C tıx0 ; ıx0/D
.1� t /dXW;p.˛; ıx0/ < r . This shows ˛t is a continuous path in LCp.X I r/.

Proposition A.9 Let .X; dX / be a finite metric space. Then the 0–dimensional persistence modules of
VRp.X I � / and LCp.X I � / are both equal to the 0–dimensional persistence module of the Vietoris–Rips
simplicial complex filtration of the rescaled metric space

�
X;
�
1
2

�p
dX
�
.

Proof From Lemma A.8, we know that all the bars for the 0–dimensional persistence module are born
at 0. Let x be a point in .X; d/, and let x0 be a closest point to x in the finite metric space X . Then it
suffices to show that ıx and ıx0 will only be in the same connected component of VRp..X; d/I r/ or
LCp..X; d/I r/ for any r >

�
1
2

�p
dX .x; x

0/.

Since the path t D .1� t /ıx C tıx0 has maximal diamp and radp given by
�
1
2

�p
dX .x; x

0/, we know
ıx and ıx0 will be in the same connected component of VRp..X; d/I r/ or LCp..X; d/I r/ for any r >�
1
2

�p
dX .x; x

0/.

On the other hand, let .Y; dY / be the metric space .fx; x0g; dX jfx;x0g/. Then the map gx;x0 W .X; d/!
.Y; dY / sending x to x and all other points to x0 is a 1–Lipschitz map. Also, gx;x0 induces a continuous
mapGx;x0 WVRp.X I r/!VRp.Y I r/ for any r >0 via pushforward. Note that, for any r�

�
1
2

�p
dX .x; x

0/,
the images of ıx and ıx0 are not in the same connected component of VRp.Y I r/. By the continuity
of Gx;x0 , the delta masses ıx and ıx0 cannot be in the same connected component of VRp.X I r/ either.
A similar argument works for LCp.X I r/.

A.6 Crushings and the homotopy type distance

A crushing is a particular type of deformation retraction that doesn’t increase distances. In this section
we consider the effects of a crushing applied to the metric space underlying a metric thickening.

Let X be a metric space and A � X a subspace. Following [42], a crushing from X to A is defined
as a distance-nonincreasing strong deformation retraction from X to A, that is, a continuous map
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H WX � Œ0; 1�!X satisfying

(i) H.x; 1/D x, H.x; 0/ 2 A and H.a; t/D a if a 2 A,

(ii) dX .H.x; t
0/;H.y; t 0//� dX .H.x; t/;H.y; t// whenever t 0 � t .

When this happens, we say that X can be crushed onto A.

In [42, Proposition 2.2], Hausmann proves that, if X can be crushed onto A, then inclusion VR.AI r/ ,!
VR.X I r/ of Vietoris–Rips simplicial complexes is a homotopy equivalence. A similar result is proven
for Vietoris–Rips and Čech metric thickenings with p D1 in [2, Appendix B]. We study how more
general metric thickenings behave with respect to crushings. We begin with some preliminaries:

Lemma A.10 Let X be a complete separable metric space and let � be an L–Lipschitz function that is
absolutely bounded by a constant C > 0. Then , for any ˛; ˇ 2 PX ,ˇ̌̌Z

X
�.x/ ˛.dx/�

Z
X
�.x/ ˇ.dx/

ˇ̌̌
� .LC 2C /dLP.˛; ˇ/:

Proof Let "D dLP.˛; ˇ/. Then by the expression of the Lévy–Prokhorov metric in [15, Theorem 3.1.5],
there is a coupling between ˛ and ˇ by � 2 PX�X such that

�.f.x; x0/ 2X �X j dX .x; x
0/ > "g/� ":

Let E be the set f.x; x0/ 2X �X j dX .x; x0/ > "g. Thenˇ̌̌Z
X
�.x/ ˛.dx/�

Z
X
�.x/ ˇ.dx/

ˇ̌̌
D

ˇ̌̌ZZ
X�X

�.x/��.x0/ �.dx�dx0/
ˇ̌̌

�

ZZ
E
j�.x/��.x0/j�.dx�dx0/C

ZZ
Ec
j�.x/��.x0/j�.dx�dx0/

� 2C"CL
ZZ
Ec
dX .x; x

0/ �.dx�dx0/D .LC2C /dLP.˛; ˇ/:

Proposition A.11 Let X be a complete separable metric space such that there is a crushing from X onto
a subset A�X . Then there is an induced deformation retraction from PX onto PA.

Proof Let H be a crushing from X to A, so H is a continuous map from X � Œ0; 1� to X . We use the
notation ft .x/ to denote the map H.x; t/ W X ! X for any fixed t in Œ0; 1�. Then we can define a map
zH W PX � Œ0; 1�! PX via

zH.˛; t/D .ft /].˛/:

For continuity, let .˛n; tn/ be a sequence that converges to .˛1; t1/. Then, for any bounded continuous
function .x/ on X , we haveZ

X
.x/.ftn/].˛n/.dx/D

Z
X
 ıftn.x/ ˛n.dx/:

Without loss of generality, we may assume  is 1–Lipschitz and absolutely bounded by C > 0. Therefore,
every  ı ftn.x/ is 1–Lipschitz and bounded by C for any n. We use the notation Ii;j to denoteR
X ıfti .x/ j̨ .dx/. Then jIi;j j is uniformly bounded by C . Lemma A.10 then shows that, for any i ,

jIi;j � Ii;1j � .1C 2C /dLP. j̨ ; ˛1/:

Algebraic & Geometric Topology, Volume 24 (2024)



442 Henry Adams, Facundo Mémoli, Michael Moy and Qingsong Wang

The uniform bound on jIi;1j implies that Ii;1 converges to I1;1. For any " > 0, we can find an N such
that, for any n > N , jIn;1� I1;1j � 1

2
" and

dLP.˛n; ˛1/�
"

2.1C2C /
:

Then
jIn;n� I1;1j � jIn;n� In;1jC jIn;1� I1;1j � ":

This shows that Ii;i converges to I1;1, and therefore zH is continuous. As H satisfies H.x; 1/ D x,
H.x; 0/D f0.x/ 2A and H.a; t/D ft .a/D a if a 2A, we get zH.˛; 1/D .idPX /].˛/D ˛, zH.˛; 0/D
.f0/].˛/2PA for any ˛ 2PX , and zH.ˇ; t/Dˇ for ˇ 2PA. Therefore zH is a indeed a strong deformation
retraction from PX to PA.

In the spirit of [2, Lemma B.1], we can apply the above deformation retraction to the sublevel set filtrations
of a set of invariants that includes iq;p and radp.

Theorem G Let i be an invariant such that , for any metric spaces X and Y and any 1–Lipschitz map
f WX! Y , the induced map on PX does not increase the values of i. More precisely, for any ˛ 2 PX , we
require iY .f].˛//� iX .˛/. Then , for any complete separable metric space X and any subset A such that
X can crushed onto A, we have

dHT..PX ; iX /; .PA; iA//D 0:

Proof Let H be the crushing from X onto A and let f be H.x; 0/. Then as both f and the inclusion
� W A!X are 1–Lipschitz maps, the above condition on the invariant i implies

� f] is a 0–map from .X; iX / to .A; iA/, and

� �] is a 0–map from .A; iA/ to .X; iX /.

Note that f] ı �] is the identify map on PA and �] ı f] is 0–homotopic to idPX with respect to .iX ; iX /.
Therefore dHT..PX ; iX /; .PA; iA//D 0.

Remark A.12 The crushing result could be leveraged to analyze the persistent homology of a space
using the persistent homology of embedded submanifolds; see [74].

A.7 Ambient filtrations from Lipschitz invariants

We now show that the main properties for intrinsic p–Čech metric thickenings also hold for ambient
p–Čech metric thickenings.

Let M be a metric space and let X be a subset of M . Then any function iM naturally restricts to PX and
induces a filtration. We have the following stability result, given that iM is C–Lipschitz with respect to
dMW;1 for some C > 0.

Theorem H Let M be a metric space and let iM be a C–Lipschitz function on PX with respect to dMW;1.
Then , for any two totally bounded subsets X and Y in M ,

dHT..PX ; iM /; .PY ;M //� CdMH .X; Y / and dHT..Pfin
X ; i

M /; .Pfin
Y ;

M //� CdMH .X; Y /:
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Here dMH is the Hausdorff distance in M .

Proof Overall, the proof follows a construction similar to that in Lemma 5.16 in the setting of Hausdorff
distance. For �>2dMH .X; Y / and ı >0, we fix finite ı–nets U �X ofX and V �Y of Y . By the triangle
inequality, dH.U; V / <

1
2
�C 2ı. For any point u 2 U there is a point v in V with dM .u; v/ < 1

2
�C 2ı.

Through this construction, there are maps ' W U ! V and  W V ! U with

� dM .u; '.u// <
1
2
�C 2ı for any u 2 U ,

� dM .v;  .v// <
1
2
�C 2ı for any v 2 V ,

� max.dis.'/; dis. /; codis.';  //� �C 4ı.

We use the notations ŷ , y‰, HX
t and HY

t as in Lemma 5.16. Let ˛ be a measure in PX and ˇ a measure
in PY . The last item implies that the following bound from Lemma 5.16 still holds here: we have
dMW;1.H

X
t .˛/; ˛/ < �C 6ı and dMW;1.H

Y
t .ˇ/; ˇ/ < �C 6ı. Similar to the proof of Theorem A, it

suffices to show that

� ŷ W PX ! PY is a
�
1
2
�C3ı

�
C–map from .PX ; iM / to .PY ; iM /,

� y‰ W PY ! PX is a
�
1
2
�C3ı

�
C–map from .PY ; iM / to .PX ; iM /,

� y‰ ı ŷ W PX ! PX is .�C6ı/C–homotopic to idPX with respect to .iM ; iM /,

� ŷ ı y‰ W PX ! PX is .�C6ı/C–homotopic to idPY with respect to .iM ; iM /.

We will only show the first and the third items; the rest can be proved similarly. For the first item, using
the fact that iM is C–Lipschitz with respect to dMW;1 and the estimate in Lemma 5.15, we get

iM . ŷ /.˛/D iM .'].ˆU .˛///� iM .ˆU .˛//C d
M
W;1

�
'].ˆU .˛//; ˆU .˛/

�
C

� iM .ˆU .˛//C
�
1
2
�C 2ı

�
C

� iM .˛/C dMW;1.˛;ˆU .˛//C C
�
1
2
�C 2ı

�
C

� iM .˛/C
�
1
2
�C 3ı

�
C:

For the third item, by the inequality dMW;1.H
X
t .˛/; ˛/ < �C 6ı, we have

iM .HX
t .˛//� iM .˛/C .�C 6ı/C:

An interesting case is the ambient p–radius, which leads to p–ambient Čech filtrations. Let X be a
bounded subset in a metric space M . For any ˛ 2 PX , we define the p–ambient radius of ˛ to be

radMp .˛/ WD inf
m2M

F˛;p.m/D inf
m2M

dXW;p.ım; ˛/:

Definition A.13 (p–ambient Čech filtration) Let X � M be metric spaces. For each r > 0 and
p 2 Œ1;1�, let the p–ambient Čech metric thickening at scale r be

LCp.X;M I r/ WD f˛ 2 PX j radMp .˛/ < rg:

Similarly, the p–ambient Čech metric thickening at scale r with finite support is defined as

LCfin
p .X;M I r/ WD f˛ 2 P

fin
X j radMp .˛/ < rg:
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Therefore, as a special instance of Theorem H:

Theorem I Let X and Y be two totally bounded spaces sitting inside a metric space M . Then

dI.Hk ı LCp.X;M I � /;Hk ı LCp.Y;M I � //� dHT..PX ; radMp /; .PY ;
M //� dMH .X; Y /;

dI.Hk ı LC
fin
p .X;M I � /;Hk ı

LCfin
p .Y;M I � //� dHT..Pfin

X ; radMp /; .P
fin
Y ;

M //� dMH .X; Y /:

Proof According to Lemma 4.9, radMp is 1–Lipschitz with respect to dMW;1. We apply Theorem H to get
the inequality on the right. The inequality on the left follows from Lemma 2.9.
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A generalization of moment-angle manifolds with
noncontractible orbit spaces

LI YU

We generalize the notion of moment-angle manifold over a simple convex polytope to an arbitrary nice
manifold with corners. For a nice manifold with corners Q, we first compute the stable decomposition
of the moment-angle manifold ZQ via a construction called rim-cubicalization of Q. From this, we
derive a formula to compute the integral cohomology group of ZQ via the strata of Q. This generalizes
the Hochster’s formula for the moment-angle manifold over a simple convex polytope. Moreover, we
obtain a description of the integral cohomology ring of ZQ using the idea of partial diagonal maps. In
addition, we define the notion of polyhedral product of a sequence of based CW–complexes over Q
and obtain similar results for these spaces as we do for ZQ. Using this general construction, we can
compute the equivariant cohomology ring of ZQ with respect to its canonical torus action from the
Davis–Januszkiewicz space of Q. The result leads to the definition of a new notion called the topological
face ring of Q, which generalizes the notion of face ring of a simple polytope. Moreover, the topological
face ring of Q computes the equivariant cohomology of all locally standard torus actions with Q as the
orbit space when the corresponding principal torus bundle over Q is trivial. Meanwhile, we obtain some
parallel results for the real moment-angle manifold RZQ over Q as well.

57S12; 57N65, 57S17, 57S25

1 Introduction

The construction of a moment-angle manifold over a simple polytope is first introduced by Davis and
Januszkiewicz in [17]. Suppose P is a simple (convex) polytope with m facets (codimension-one faces).
A convex polytope in a Euclidean space is called simple if every codimension-k face is the intersection of
exactly k facets of the polytope. The moment-angle manifold ZP over P is a closed connected manifold
with an effective action by the compact torus Tm D .S1/m whose orbit space is P . It is shown in [17]
that many important topological invariants of ZP can be computed easily from the combinatorial structure
of P . These manifolds play an important role in the research of toric topology. The reader is referred
to Buchstaber and Panov [9; 10] for more discussions on the topological and geometrical aspects of
moment-angle manifolds.

The notion of moment-angle manifold over a simple convex polytope has been generalized in many
different ways. For example, Davis and Januszkiewicz [17] define a class of topological spaces now
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called moment-angle complexes — named by Buchstaber and Panov in [8] — where the simple polytope
is replaced by a simple polyhedral complex. Later, Lü and Panov [26] defined the notion of moment-
angle complex of a simplicial poset. In addition, Ayzenberg and Buchstaber [1] defined the notion of
moment-angle spaces over arbitrary convex polytopes (not necessarily simple). Note that in all these
generalizations, the orbit spaces of the canonical torus actions are all contractible. Yet an even wider class
of spaces called generalized moment-angle complexes or polyhedral products over simplicial complexes
were introduced by Bahri, Bendersky, Cohen and Gitler in [3], which has become the major subject in the
homotopy-theoretic study of toric topology.

In this paper, we generalize the construction of moment-angle manifolds by replacing the simple polytope
P by a nice manifold with corners Q which is not necessarily contractible. Such a generalization has
been considered by Poddar and Sarkar [29] for polytopes with simple holes.

A motive for the study of this generalized construction is to compute the equivariant cohomology ring of
locally standard torus actions. Recall that an action of a compact torus T n on a smooth compact manifold
M of dimension 2n is called locally standard if it is locally modeled on the standard representation of
T n on Cn. Then the orbit space Q DM=T n is a manifold with corners. Conversely, every manifold
with a locally standard T n–action and with Q as the orbit space is equivariantly homeomorphic to the
quotient construction Y=�, where Y is a principal T n–bundle over Q and � is an equivalence relation
determined by the characteristic function on Q; see Yoshida [35]. Generally speaking, it is difficult
to compute the equivariant cohomology ring of M from the corresponding principal bundle Y and the
characteristic function on Q. But we will see in Corollary 5.5 that when Y is the trivial T n–bundle
over Q, the equivariant cohomology ring of M can be computed from the strata of Q directly. Examples
of such kind include many toric origami manifolds — see Ayzenberg, Masuda, Park and Zeng [2], Cannas
da Silva, Guillemin and Pires [12] and Holm and Pires [22] — with coorientable folding hypersurface
where the faces of the orbit spaces may be nonacyclic.

Recall that an n–dimensional manifold with corners Q is a Hausdorff space with a maximal atlas of
local charts onto open subsets of Rn

�0 such that the transitional functions are homeomorphisms which
preserve the codimension of each point. Here the codimension c.x/ of a point x D .x1; : : : ; xn/ in Rn

�0

is the number of xi which are 0. So we have a well-defined map c W Q ! Z�0, where c.q/ is the
codimension of a point q 2Q. In particular, the interior Qı of Q consists of points of codimension 0,
ie Qı D c�1.0/.

SupposeQ is an n–dimensional manifold with corners with @Q¤¿. An open face ofQ of codimension k
is a connected component of c�1.k/. A (closed) face is the closure of an open face. A face of codimension
one is called a facet of Q. Note that a face of codimension zero in Q is just a connected component of Q.

A manifold with corners Q is said to be nice if either its boundary @Q is empty or @Q is nonempty and
any codimension-k face of Q is a component of the intersection of k different facets in Q.

Algebraic & Geometric Topology, Volume 24 (2024)
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Let Q be a nice n–manifold with corners. Let F.Q/D fF1; : : : ; Fmg be the set of facets of Q. For any
subset J � Œm�D f1; : : : ; mg, let

FJ D
[
j2J

Fj ; F¿ D¿; F\J D
\
j2J

Fj ; F\¿ DQ:

It is clear that, for all J � J 0 � Œm�,

FJ � FJ 0 ; F\J 0 � F\J ; F\J � FJ :

Let � W F.Q/! Zm be a map such that f�.F1/; : : : ; �.Fm/g is a unimodular basis of Zm �Rm. Since
S1 D fz 2 C j kzk D 1g, we can identify the m–torus .S1/m D Rm=Zm. The moment-angle manifold
over Q is defined by

(1) ZQ DQ� .S
1/m=�;

where .x; g/ � .x0; g0/ if and only if x D x0 and g�1g0 2 T�
x where T�

x is the subtorus of .S1/m

determined by the linear subspace of Rm spanned by the set f�.Fj / j x 2 Fj g. There is a canonical action
of .S1/m on ZQ defined by

(2) g0 � Œ.x; g/�D Œ.x; g0g/� for x 2Q and g; g0 2 .S1/m:

Since the manifold with corners Q is nice and � is unimodular, it is easy to see from the above definition
that ZQ is a manifold.

Convention In the rest of this paper, we assume that any nice manifold with corners Q can be equipped
with a CW–complex structure such that every face of Q is a subcomplex. In addition, we assume that Q
has only finitely many faces. Note that a compact smooth nice manifold with corners always satisfies
these two conditions since it is triangulable; see Johnson [25]. But in general we do not require Q to be
compact or smooth. We do not assume Q to be connected either.

Similarly to the stable decomposition of (generalized) moment-angle complexes obtained in [3], we have
the following stable decomposition of ZQ.

Theorem 1.1 Let Q be a nice manifold with corners with facets F1; : : : ; Fm. There is a homotopy
equivalence

(3) †.ZQ/'
_
J�Œm�

†jJ jC1.Q=FJ /;

where
W

denotes the wedge sum and † denotes the reduced suspension.

Here we will not explicitly write down the basepoints for our spaces unless it is necessary to do so.

Corollary 1.2 Let Q be a nice manifold with corners with facets F1; : : : ; Fm. The integral (reduced )
cohomology group of ZQ is given by

(4) Hp.ZQ/Š
M
J�Œm�

Hp�jJ j.Q; FJ /; zHp.ZQ/Š
M
J�Œm�

zHp�jJ j.Q=FJ / for all p 2 Z:

Algebraic & Geometric Topology, Volume 24 (2024)
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Note that when J D¿, H�.Q; F¿/DH�.Q;¿/DH�.Q/Š zH�.Q/˚Z.

The term “cohomology” of a spaceX , denoted byH�.X/, in this paper always means singular cohomology
with integral coefficients if not specified otherwise.

When Q is acyclic (ie zH�.Q/D 0), we have Hp.Q; FJ /Š zH
p�1.FJ / by a cohomology long exact

sequence for the pair .Q; FJ /. So, in this case,

Hp.ZQ/Š
M
J�Œm�

zHp�jJ j�1.FJ / for all p 2 Z:

This recovers Hochster’s formula for the moment-angle manifold over a simple polytope in [10, Theorem
3.2.9]; see also [10, Proposition 3.2.11].

Remark 1.3 There is an analogue of ZQ by replacing the group .S1/m by .Z2/m. The counterpart in the
.Z2/m construction, denoted by RZQ, is a special case of the basic construction of Davis [16, Chapter 5]
for a mirror space along with a Coxeter system. A formula parallel to Corollary 1.2 for computing the
integral cohomology group of RZQ is contained in Davis [15, Theorem A]; see also [16, Chapter 8]. We
call RZQ the real moment-angle manifold over Q.

Given a nice manifold with corners Q with facets F1; : : : ; Fm, define

(5) R�Q WD
M
J�Œm�

H�.Q; FJ /:

There is a graded ring structure d on R�Q defined as follows:

� If J \J 0 ¤¿, then H�.Q; FJ /˝H�.Q; FJ 0/
d
�!H�.Q; FJ[J 0/ is trivial.

� If J \J 0 D¿, then H�.Q; FJ /˝H�.Q; FJ 0/
d
�!H�.Q; FJ[J 0/ is the relative cup product [;

see Hatcher [20, page 209].

We can prove the following theorem via the above stable decomposition of ZQ.

Theorem 1.4 Let Q be a nice manifold with corners with m facets F1; : : : ; Fm. There exists a ring
isomorphism (up to a sign) from .R�Q;d/ to the integral cohomology ring of ZQ. Moreover , we can
make this ring isomorphism degree-preserving by shifting the degrees of all the elements in H�.Q; FJ /
up by jJ j for every J � Œm�.

It is indicated in [10, Exercise 3.2.14] that Theorem 1.4 holds for any simple polytope. Moreover,
we can generalize Theorem 1.4 to describe the cohomology ring of the polyhedral product of any
.D;S/D f.DnjC1; Snj ; aj /g

m
jD1 over Q (see Theorem 4.8). In particular, we have the following result

for RZQ.

Theorem 1.5 (Corollary 4.10) Let Q be a nice manifold with corners with facets F1; : : : ; Fm. Then

†.RZQ/'
_
J�Œm�

†.Q=FJ /; Hp.RZQ/Š
M
J�Œm�

Hp.Q; FJ /; for all p 2 Z:
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Moreover , the integral cohomology ring of RZQ is isomorphic as a graded ring to the ring .R�Q;[/
where [ is the relative cup product

H�.Q; FJ /˝H
�.Q; FJ 0/

[
�!H�.Q; FJ[J 0/ for all J; J 0 � Œm�:

We can describe the equivariant cohomology ring of ZQ with respect to the canonical action of .S1/m as
follows.

Let k denote a commutative ring with a unit. For any J � Œm�, let RJ
k

be the subring of the polynomial
ring kŒx1; : : : ; xm� defined by

(6) RJk WD

�
spankfx

n1

j1
� � � x

ns

js
j n1 > 0; : : : ; ns > 0g if J D fj1; : : : ; jsg ¤¿;

k if J D¿:

We can multiply f .x/2RJ
k

and f 0.x/2RJ
0

k
in kŒx1; : : : ; xm� and obtain an element f .x/f 0.x/2RJ[J

0

k
.

Definition 1.6 (topological face ring) Let Q be a nice manifold with corners with m facets F1; : : : ; Fm.
For any coefficient ring k, the topological face ring of Q over k is defined to be

(7) khQi WD
M
J�Œm�

H�.F\J Ik/˝R
J
k :

Here if F\J D¿, we use the convention H�.¿Ik/D f0g.

For any J; J 0 � Œm�, the product ? on khQi,

.H�.F\J Ik/˝R
J
k /˝ .H

�.F\J 0 Ik/˝R
J 0

k /
?
�! .H�.F\.J[J 0/Ik/˝R

J[J 0

k /

is defined, for � 2H�.F\J Ik/, f .x/ 2RJk , �0 2H�.F\J 0 Ik/ and f 0.x/ 2RJ
0

k
, by

(8) .�˝f .x// ? .�0˝f 0.x// WD .��J[J 0;J .�/[ �
�
J[J 0;J 0.�

0//˝f .x/f 0.x/;

where �I 0;I WF\I 0!F\I is the inclusion map for any I �I 0� Œm� and ��I 0;I WH
�.F\I Ik/!H�.F\I 0 Ik/

is the induced homomorphism on cohomology.

In addition, we can consider khQi as a graded ring if we choose a degree for every indeterminate xj in
kŒx1; : : : ; xm� and define

deg.�˝ .xn1

j1
� � � x

ns

js
//D deg.�/Cn1 deg.xj1

/C � � �Cns deg.xjs
/:

Theorem 1.7 Let Q be a nice manifold with corners with facets F1; : : : ; Fm. Then the equivariant
cohomology ring of ZQ (or RZQ) with Z–coefficients (or Z2–coefficients) with respect to the canonical
.S1/m–action (or .Z2/m–action) is isomorphic as a graded ring to the topological face ring ZhQi (or
Z2hQi) of Q by choosing deg.xj /D 2 (or deg.xj /D 1) for all 1� j �m.

Moreover, the naturalH�.BTm/–module structure on the integral equivariant cohomology ringH�Tm.ZQ/

is described in (52) where Tm D .S1/m.
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Remark 1.8 A calculation of the equivariant cohomology group of ZQ with Z–coefficients was an-
nounced earlier by T Januszkiewicz in a talk in 2020 [24]. The formula given in Januszkiewicz’s talk is
equivalent to our ZhQi. But the ring structure of the equivariant cohomology of ZQ was not described
in [24].

For a nice manifold with corners Q, there are two other notions which reflect the stratification of Q. One
is the face poset of Q which is the set of all faces of Q ordered by inclusion, denoted by SQ (note that
each connected component of Q is also a face). The other one is the nerve simplicial complex of the
covering of @Q by its facets, denoted by KQ. The face ring (or Stanley–Reisner ring) of a simplicial
complex is an important tool to study combinatorial objects in algebraic combinatorics and combinatorial
commutative algebra; see [28; 30].

When Q is a simple polytope, all faces of Q, including Q itself, and all their intersections are acyclic.
Then it is easy to see that the topological face ring of Q is isomorphic to the face ring of KQ (see
Example 5.2). But in general, the topological face ring of Q encodes more topological information of Q
than the face ring of KQ.

There is another way to think of the topological face ring khQi. Let

R�
\Q;k WD

M
J�Œm�

H�.F\J Ik/;

where product � on R�
\Q;k

is defined, for any � 2H�.F\J Ik/ and �0 2H�.F\J 0 Ik/, by

� ��0 WD ��J[J 0;J .�/[ �
�
J[J 0;J 0.�

0/ 2H�.F\.J[J 0/Ik/:

Moreover,
kŒx1; : : : ; xm�D

M
J�Œm�

RJk ;

so we can think of both R�
\Q;k

and kŒx1; : : : ; xm� as 2Œm�–graded rings where 2Œm� D fJ � Œm�g is the
power set of Œm�. Then the topological face ring khQi can be thought of as the Segre product of R�

\Q;k

and kŒx1; : : : ; xm� with respect to their 2Œm�–gradings. By definition, the Segre product of two rings R
and S graded by a common semigroup A — using the notation of Hoa [21] — is

R˝S D
M
a2A

Ra˝Sa:

So R˝ S is a subring of the tensor product of R and S (as graded rings). The Segre product of two
graded rings (or modules) is studied in algebraic geometry and commutative algebra; see Chow [13] and
Fröberg and Hoa [19; 21], for example.

Here we can think of 2Œm� as a semigroup where the product of two subsets of Œm� is just their union.
Then by this notation, we can write

khQi DR�
\Q;k˝kŒx1; : : : ; xm�:

From this form, we see that khQi is essentially determined by R�
\Q;k

.
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The paper is organized as follows. In Section 2, we first construct an embedding of Q into Q� Œ0; 1�m

which is analogous to the embedding of a simple polytope into a cube. This induces an embedding of ZQ

into Q� .D2/m, from which we can do the stable decomposition of ZQ and give a proof of Theorem 1.1.
Our argument proceeds along the same line as the argument given in [3, Section 6] but with some extra
ingredients. In fact, we will not do the stable decomposition of ZQ directly, but the stable decomposition
of the disjoint union of ZQ with a point. In Section 3, we obtain a description of the product structure of
the cohomology of ZQ using the stable decomposition of ZQ and the partial diagonal map introduced
in [4]. From this we give a proof of Theorem 1.4. In Section 4, we define the notion of polyhedral product
of a sequence of based CW–complexes over a nice manifold with corners Q and obtain some results
parallel to ZQ for these spaces. In particular, we obtain a description of the integral cohomology ring
of real moment-angle manifold RZQ (see Corollary 4.10). In Section 5, we compute the equivariant
cohomology ring of ZQ and prove Theorem 1.7. In Section 6, we discuss more generalizations of the
construction of ZQ and extend our main theorems to some wider settings.

2 Stable decomposition of ZQ

Let Q be a nice manifold with corners with m facets. To obtain the stable decomposition of ZQ, we first
construct a special embedding ofQ intoQ� Œ0; 1�m, called the rim-cubicalization ofQ. This construction
can be thought of as a generalization of the embedding of a simple polytope with m facets into Œ0; 1�m

defined in [9, Chapter 4].

2.1 Rim-cubicalization of Q in Q � Œ0; 1�m

Let F1; : : : ; Fm be all the facets of Q. For a face f of Q, let If be the subset of Œm� called the strata
index of f ,

If D fi 2 Œm� j f � Fig � Œm�:

Then we define a subset Of of Q� Œ0; 1�m associated to f as follows. We write

Œ0; 1�m D
Y
j2Œm�

Œ0; 1�.j /

and define
Of D f �

Y
j2If

Œ0; 1�.j / �
Y

j2Œm�nIf

1.j /:

In particular,
yFi D Fi � Œ0; 1�.i/ �

Y
j2Œm�nfig

1.j /; 1� i �m:

Let SQ be the face poset of Q and define

(9) yQD
[

f 2SQ

Of �Q� Œ0; 1�m:
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Q

F2 F1
f

�

Figure 1: Rim-cubicalization of Q in Q� Œ0; 1�m.

It is easy to see that yQ is a nice manifold with corners whose facets are yF1; : : : ; yFm. If we identify Q
with the subspace Q�

Q
j2Œm� 1.j / �

yQ, then we can think of yQ as inductively gluing the product of all
codimension-k strata of Q with a k–cube to @Q (see Figure 1),

Q
glue
 �� Fj � Œ0; 1�

glue
 �� � � �

glue
 �� f � Œ0; 1�jIf j

glue
 �� � � � :

Due to this viewpoint, we call yQ the rim-cubicalization of Q in Q� Œ0; 1�m.

Lemma 2.1 yQ is homeomorphic to Q as a manifold with corners.

Proof For any face f of Q and 0� t � 1, let

Of .t/D f �
Y
j2If

Œt; 1�.j / �
Y

j2Œm�nIf

1.j /; yQ.t/D
[

f 2SQ

Of .t/�Q� Œt; 1�m:

Then yQ.t/ determines an isotopy (see Figure 1) from yQ.0/D yQ to

yQ.1/D
[

f 2SQ

�
f �

Y
j2Œm�

1.j /

�
DQ�

Y
j2Œm�

1.j / ŠQ:

Around a codimension-k stratum of Q, the isotopy yQ.t/ is locally equivalent to the standard isotopy
from C n

k
.�1/ to C n

k
.0/ defined in Example 2.2.

Clearly, the isotopy yQ.t/ sends each face Of of yQ to f �
Q
j2Œm� 1.j /. So, under the identification of

Q�
Q
j2Œm� 1.j / with Q, yQ is homeomorphic to Q as a manifold with corners.

Example 2.2 Let C n
k
.0/ and C n

k
.�1/ be two subspaces of Rn defined by

C nk .0/ WD f.x1; : : : ; xn/ 2Rn j 0� x1; : : : ; xk < 1;�1 < xkC1; : : : ; xn < 1g;

C nk .�1/ WD f.x1; : : : ; xn/ 2Rn j �1� x1; : : : ; xk < 1;�1 < xkC1; : : : ; xn < 1g:
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Figure 2: Isotopy from C n
k
.�1/ to C n

k
.0/.

There is a strong deformation retraction from C n
k
.�1/ to C n

k
.0/ defined by

H.x1; : : : ; xn; t /D .ıx1
.t/ � x1; : : : ; ıxk

.t/ � xk; xkC1; : : : ; xn/

for any .x1; : : : ; xn/ 2 C nk .�1/ and t 2 Œ0; 1�, where

ıx.t/D

�
1� t if x < 0;
1 if x � 0:

It is easy to see that for any t 2 Œ0; 1�, the image of H. � ; t / is

C nk .t � 1/D f.x1; : : : ; xn/ j t � 1� x1; : : : ; xk < 1;�1 < xkC1; : : : ; xn < 1g:

So H actually defines an isotopy from C n
k
.�1/ to C n

k
.0/ (see Figure 2).

2.2 Embedding ZQ into Q � .D2/m

Using the above rim-cubicalization of Q in Q� Œ0; 1�m, we can embed the manifold ZQ into Q� .D2/m,
where D2 D fz 2C j kzk � 1g is the unit disk.

In the following, we consider Œ0; 1� as a subset of D2 and the cube Œ0; 1�m as a subset of .D2/m �Cm.
For any j 2 Œm�, let S1

.j /
and D2

.j /
denote the corresponding spaces indexed by j .

There is a canonical action of .S1/m on Q� .D2/m defined by

.g1; : : : ; gm/ � .x; z1; : : : ; zm/D .x; g1z1; : : : ; gmzm/;

where x 2Q, gj 2 S1.j / and zj 2D2.j / for 1 � j �m. The orbit space of this action can be identified
with Q� Œ0; 1�m. We denote the quotient map by

p WQ� .D2/m!Q� Œ0; 1�m:

For any face f of Q, we define

.D2; S1/f WD p�1. Of /D f �
Y
j2If

D2.j / �
Y

j2Œm�nIf

S1.j / �Q� .D
2/m;(10)

.D2; S1/Q WD
[

f 2SQ

.D2; S1/f D
[

f 2SQ

�
f �

Y
j2If

D2.j / �
Y

j2Œm�nIf

S1.j /

�
:(11)

There is a canonical action of .S1/m on .D2; S1/Q induced by the canonical action of .S1/m on
Q� .D2/m.
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Lemma 2.3 .D2; S1/Q is equivariantly homeomorphic to ZQ.

Proof By Lemma 2.1, it is equivalent to show that .D2; S1/Q is equivariantly homeomorphic to Z yQ.
We consider Œ0; 1/m as a nice manifold with corners whose facets are F�1 ; : : : ; F

�
m , where

F�i D 0.i/ �
Y

j2Œm�nfig

Œ0; 1/.j /; 1� i �m:

It is clear that ZŒ0;1/m D Œ0; 1/m � .S1/m=� is homeomorphic to .D2nS1/m. The quotient map
Œ0; 1/m � .S1/m! ZŒ0;1/m D .D

2nS1/m extends to a map � W Œ0; 1�m � .S1/m! .D2/m which can be
written explicitly as

(12) � W Œ0; 1�m � .S1/m! .D2/m; ..t1; : : : ; tm/; .g1; : : : gm// 7! .g1t1; : : : ; gmtm/:

Define
�Q D idQ �� WQ� Œ0; 1�m � .S1/m!Q� .D2/m:

Notice that the facets of yQ are the intersections of yQ with Q�F�1 ; : : : ;Q�F
�
m ,

yFi D yQ\ .Q�F
�
i /; 1� i �m:

We can easily check that the restriction of �Q to yQ� .S1/m gives exactly Z yQ, ie

Z yQ D �Q.
yQ� .S1/m/:

Moreover, for any face f of Q,

�Q. Of � .S
1/m/D �Q

�
f �

Y
j2If

.Œ0; 1�.j / �S
1
.j //�

Y
j2Œm�nIf

S1.j /

�
D f �

Y
j2If

D2.j / �
Y

j2Œm�nIf

S1.j / D .D
2; S1/f :

So we have a homeomorphism

Z yQ Š �Q.
yQ� .S1/m/D

[
f 2SQ

�Q. Of � .S
1/m/D

[
f 2SQ

.D2; S1/f D .D2; S1/Q:

Clearly, the above homeomorphism is equivariant with respect to the canonical actions of .S1/m on Z yQ
and .D2; S1/Q.

2.3 Viewing ZQ as a colimit of CW–complexes

By Lemma 2.3, studying the stable decomposition of ZQ is equivalent to studying that for .D2; S1/Q.
To do the stable decomposition as in [3], we want to first think of .D2; S1/Q as the colimit of a diagram
of CW–complexes over a finite poset (partially ordered set). The following are some basic definitions;
see [38].

� Let CW be the category of CW–complexes and continuous maps.
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� Let CW� be the category of based CW–complexes and based continuous maps.

� A diagram D of CW–complexes or based CW–complexes over a finite poset P is a functor

D W P! CW or CW�

such that for every p � p0 in P, there is a map dpp0 W D.p0/! D.p/ with

dpp D idD.p/; dpp0dp0p00 D dpp00 for all p � p0 � p00:

� The colimit of D is the space

colim.D/ WD
�a
p2P

D.p/

�.
�

where� denotes the equivalence relation generated by requiring that for each x2D.p0/, x�dpp0.x/
for every p < p0.

To think of .D2; S1/Q as a colimit of CW–complexes, we need to introduce a finer decomposition of
.D2; S1/Q as follows. By the notations in Section 2.1, for any face f of Q and any subset L� If � Œm�,
let

(13) .D2; S1/.f;L/ WD f �
Y

j2If nL

D2.j / �
Y

j2Œm�n.If nL/

S1.j /:

Clearly, .D2; S1/.f;L/ � .D2; S1/.f;L
0/ if and only if L� L0. So we have

(14)

.D2; S1/f D .D2; S1/.f;¿/ D
[
L�If

.D2; S1/.f;L/;

.D2; S1/Q D
[

f 2SQ

.D2; S1/f D
[

f 2SQ

[
L�If

.D2; S1/.f;L/:

Corresponding to this decomposition, we define a poset associated to Q by

(15) PQ D f.f; L/ j f 2 SQ; L� If � Œm�g;

where .f; L/� .f 0; L0/ if and only if f � f 0 and If nL� If 0nL0. It follows from the definition (13) that

.f; L/� .f 0; L0/ () .D2; S1/.f
0;L0/
� .D2; S1/.f;L/:

Note that PQ is a finite poset since by our convention Q only has finitely many faces.

Definition 2.4 Let D W PQ! CW be a diagram of CW–complexes where

D..f; L//D .D2; S1/.f;L/ for all .f; L/ 2 PQ:

For any .f; L/� .f 0; L0/ 2 PQ, d.f;L/;.f 0;L0/ WD..f 0; L0//!D..f; L// is the natural inclusion.

Clearly, .D2; S1/Q is the colimit of the diagram D. So we have

(16) ZQ Š .D
2; S1/Q D colim.D/D

[
.f;L/2PQ

.D2; S1/.f;L/:
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Remark 2.5 Here we do not write .D2; S1/Q as the colimit of a diagram of based CW–complexes.
This is because in general it is not possible to choose a basepoint in each .D2; S1/.f;L/ to adapt to the
colimit construction of a diagram in CW�.

2.4 Stable decomposition of ZQ

First of all, let us recall a well-known theorem — see [23; 34] — which allows us to decompose the
Cartesian product of a collection of based CW–complexes into a wedge of spaces after doing a suspension.

Let .Xi ; xi / for 1� i �m be based CW–complexes. For I Dfi1; : : : ; ikg� Œm� with 1� i1< � � �<ik �m,
define

yXI DXi1 ^ � � � ^Xik ;

which is the quotient space of XI DXi1 � � � � �Xik by the subspace given by

FW.XI /D f.yi1 ; : : : ; yik / 2X
I
j yij is the basepoint xij 2Xij for at least one ij g:

Theorem 2.6 Let .Xi ; xi / for 1� i �m be based connected CW–complexes. There is a based , natural
homotopy equivalence

h W†.X1 � � � � �Xm/!†

� _
¿¤I�Œm�

yXI
�
;

where I runs over all the nonempty subsets of Œm�. Furthermore , the map h commutes with colimits.

In our proof later, we need a slightly generalized version of Theorem 2.6. Before that, let us first prove
three simple lemmas.

Lemma 2.7 If .X; x0/ and .Y; y0/ are based CW–complexes with X contractible , then X ^Y is also
contractible.

Proof The deformation retraction from X to x0 naturally induces a deformation retraction from

X ^Y DX �Y=.fx0g �Y /[ .X � fy0g/

to its canonical basepoint Œ.x0; y0/�D Œ.fx0g �Y /[ .X � fy0g/�.

Lemma 2.8 Suppose a CW–complex X has N connected components X1; : : : ; XN . Then there is a
homotopy equivalence

†.X/'†.X1/_ � � � _†.XN /_
_
N�1

S1:

where
W
N�1 S

1 is the wedge sum of N � 1 copies of S1.

Proof This follows easily from the definition of reduced suspension.
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Lemma 2.9 Let X1 D X 01 [ fx1g where X 01 is a connected based CW–complex and x1 … X 01 is the
basepoint of X1.

(a) For any connected based CW–complex X2, there is a homotopy equivalence

†.X1 ^X2/'†.X2/_†.X 01 ^X2/:

(b) If X2 D X 02 [ fx2g, where X 02 is a connected based CW–complex and x2 … X 02 is the basepoint
of X2, then X1 ^X2 is the disjoint union of X 01 ^X

0
2 and a point represented by fx1g � fx2g.

Proof (a) By the definition of smash product, we have a homeomorphism

X1 ^X2 D .X
0
1[fx1g/�X2=.fx1g �X2[X

0
1 � fx2g/ŠX

0
1 �X2=X

0
1 � fx2g:

Then we have

†.X1 ^X2/D†.X 01 �X2=X
0
1 � fx2g/

'†.X 01 �X2/=†.X
0
1 � fx2g/

'
�
†.X 01/_†.X2/_†.X 01 ^X2/

�
=†.X 01/ (by Theorem 2.6)

'†.X2/_†.X 01 ^X2/:

(b) This follows directly from the definition of smash product.

We can generalize Theorem 2.6 to the following form.

Theorem 2.10 Let .Xi ; xi / for 1� i �m, be based CW–complexes. Assume that for some 1� n�m,

� Xi D Yi [fxig for 1� i � n, where Yi is a connected CW–complex and xi … Yi .

� Xi , for nC 1� i �m, is a connected CW–complex.

There is a based , natural homotopy equivalence which commutes with colimits ,

h W†.X1 � � � � �Xm/!†

� _
¿¤I�Œm�

yXI
�
:

Proof For brevity, let Œn1; n2�D fn1; : : : ; n2g for any integer n1 � n2. Let

xI D fxi1g � � � � � fxikg; Y I D Yi1 � � � � �Yik ; I D fi1; : : : ; ikg; i1 < � � �< ik :

There are 2n connected components in X Œm� DX1 � � � � �Xm, which are

fxŒn�nI �Y I �X ŒnC1;m� j I � Œ1; n�g:

We choose a basepoint for each Yi with 1� i � n. So, by Lemma 2.8,

†.X1 � � � � �Xm/'
_

I�Œ1;n�

†.Y I �X ŒnC1;m�/_
_
2n�1

S1:
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Since Y1; : : : ; Yn; XnC1; : : : ; Xm are all connected based CW–complexes, we can apply Theorem 2.6 to
each Y I �X ŒnC1;m� and obtain

(17) †.X1 � � � � �Xm/'
_

I�Œ1;n�

_
L[J¤¿;L�I
J�ŒnC1;m�

†. yY L ^ yXJ /_
_
2n�1

S1:

On the other hand, for any I D fi1; : : : ; ikg � Œ1; n� and J � ŒnC 1;m�,

yXI ^ yXJ DXi1 ^ � � � ^Xik ^
yXJ D .Yi1 [fxi1g/^ � � � ^ .Yik [fxikg/^

yXJ :

If J ¤¿, yXI ^ yXJ is a connected CW–complex. Then by iteratively using Lemma 2.9(a), we obtain

†. yXI ^ yXJ /'
_
L�I

†. yY L ^ yXJ /:

Alternatively, if J D ¿ and I ¤ ¿, by iteratively using Lemma 2.9(b), we can deduce that yXI is the
disjoint union of yY I and a point represented by xI . So, by Lemma 2.8, †. yXI /'†. yY I /_S1.

So we have_
H�Œm�
H¤¿

†. yXH /D
_

I[J¤¿;I�Œ1;n�
J�ŒnC1;m�

†. yXI ^ yXJ /

D

� _
I�Œ1;n�

¿¤J�ŒnC1;m�

†. yXI ^ yXJ /

�
_

� _
¿¤I�Œ1;n�

†. yXI /

�

'

� _
I�Œ1;n�

_
L�I

¿¤J�ŒnC1;m�

†. yY L ^ yXJ /

�
_

� _
¿¤I�Œ1;n�

.†. yY I /_S1/

�
:

By comparing the above expression with (17), we prove the theorem.

Remark 2.11 By Theorem 2.10, it is not hard to see that all the main theorems in [3] also hold for based
CW–complex pairs f.Xi ; Ai ; ai /gmiD1 where each of Xi and Ai is either connected or is a disjoint union
of a connected CW–complex with its basepoint. In particular, [3, Corollary 2.24] also holds for .D1; S0/.

Remark 2.12 It is possible to extend Theorem 2.10 further to deal with spaces which are a disjoint
union of a connected CW–complex with finitely many points. But since Theorem 2.10 is already enough
for our discussion in this paper, we leave the more generalized statement to the reader.

Definition 2.13 For any based CW–complexes .X; x0/ and .Y; y0/, let

X ÌY WDX �Y
ı
x0 �Y; X ËY WDX �Y=X �y0:
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If each of X and Y is either connected or is a disjoint union of a connected CW–complex with its
basepoint, there is a homotopy equivalence by Theorem 2.10,

†.X ÌY /'†.X �Y /=†.x0 �Y /'†.X/_†.X ^Y /;(18)

†.X ËY /'†.X �Y /=†.X �y0/'†.Y /_†.X ^Y /:(19)

We can further generalize Theorem 2.6 to the following form. We will use the following convention in
the rest of the paper:

Convention For any based space Y , define Y ^ yXI WD Y when I D¿.

Theorem 2.14 Let .Xi ; xi / for 1� i �m and .B; b0/ be a collection of based CW–complexes where
each of Xi and B is either connected or is a disjoint union of a connected CW–complex with its basepoint.
Then there is a based , natural homotopy equivalence which commutes with colimits ,

h W†.B Ì .X1 � � � � �Xm//!†

� _
I�Œm�

B ^ yXI
�
:

Proof By definition,

†.B ^ .X1 � � � � �Xm//D†.B � .X1 � � � � �Xm/=B _ .X1 � � � � �Xm//

'†.B �X1 � � � � �Xm/=†.B/_†.X1 � � � � �Xm/

'

_
¿¤I�Œm�

†.B ^ yXI / (by Theorem 2.10):

Then, by (18),
†.B Ì .X1 � � � � �Xm//D†.B/_†.B ^ .X1 � � � � �Xm//

'†.B/_
_

¿¤I�Œm�

†.B ^ yXI /

'†

� _
I�Œm�

B ^ yXI
�
:

To apply the above stable decomposition lemmas to .D2; S1/Q, we need to choose a basepoint for each
.D2; S1/.f;L/ in the first place. But by Remark 2.5, there is no good way to choose a basepoint inside
each .D2; S1/.f;L/ to adapt to the colimit construction of .D2; S1/Q. So, in the following, we add an
auxiliary point to all .D2; S1/.f;L/ as their common basepoint:

� Let 1.j / be the basepoint of S1
.j /

and D2
.j /

for every j 2 Œm�.

� Let QC DQ[ q0 where q0 …Q is the basepoint of QC.

� For any face f of Q, let fC D f [ q0 with basepoint q0.

� For any .f; L/ 2 PQ, define .D2; S1/.f;L/
C

WD .D2; S1/.f;L/[ Oq0, where Oq0 D q0 �
Q
j2Œm� 1.j /

is the basepoint.

� Let .D2; S1/Q
C
D .D2; S1/Q [ Oq0 with basepoint Oq0.
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Let DC W PQ! CW� be a diagram of based CW–complexes, where

DC..f; L//D .D
2; S1/

.f;L/
C

for all .f; L/ 2 PQ;

and .dC/.f;L/;.f 0;L0/ WDC..f 0; L0//!DC..f; L// is the natural inclusion for any .f; L/� .f 0; L0/2PQ.
Then it is clear that

(20) .D2; S1/
Q
C
D .D2; S1/Q [ Oq0 D colim.D/[ Oq0 D colim.DC/:

Next, we analyze the reduced suspension †.colim.DC// from the colimit point of view. Since all the
.D2; S1/

.f;L/
C

share the same basepoint Oq0,

†.colim.DC//D†

� [
.f;L/2PQ

.D2; S1/
.f;L/
C

�
D

[
.f;L/2PQ

†..D2; S1/
.f;L/
C

/:

Lemma 2.15 For any .f; L/ 2 PQ, there is a natural homeomorphism which commutes with taking the
colimit ,

.D2; S1/
.f;L/
C

Š fC Ì
� Y
j2If nL

D2.j / �
Y

j2Œm�n.If nL/

S1.j /

�
:

Proof By our definitions,

fC Ì
Y

j2If nL

D2.j / �
Y

j2Œm�n.If nL/

S1.j /

D .f [ q0/�
Y

j2If nL

D2.j / �
Y

j2Œm�n.If nL/

S1.j /

.
q0 �

Y
j2If nL

D2.j / �
Y

j2Œm�n.If nL/

S1.j /

Š

�
f �

Y
j2If nL

D2.j / �
Y

j2Œm�n.If nL/

S1.j /

�
[ Oq0 D .D

2; S1/
.f;L/
C

:

The above homeomorphism “Š” is induced by the global homeomorphism

QC Ì
Y
j2Œm�

D2.j /!

�
Q�

Y
j2Œm�

D2.j /

�
[ Oq0

which identifies q0 �
Q
j2Œm�D

2
.j /

ı
q0 �

Q
j2Œm�D

2
.j /

with Oq0.

Since we assume that each face f of Q is a CW–complex in our convention, we can deduce from
Theorem 2.14 and Lemma 2.15 that

(21) †..D2; S1/
.f;L/
C

/Š†

�
fC Ì

� Y
j2If nL

D2.j / �
Y

j2Œm�n.If nL/

S1.j /

��

'

_
J�Œm�

†

�
fC ^

^
j2J\.If nL/

D2.j / ^
^

j2Jn.If nL/

S1.j /

�
:
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According to (21), we define a family of diagrams of based CW–complexes

yDJ
C W PQ! CW�; J � Œm�;

yDJ
C..f; L// WD fC ^

^
j2J\.If nL/

D2.j / ^
^

j2Jn.If nL/

S1.j / �QC ^
^
j2J

D2.j /;(22)

where . OdJ
C
/.f;L/;.f 0;L0/ W yD

J
C
..f 0; L0//! yDJ

C
..f; L// is the natural inclusion for .f; L/� .f 0; L0/2PQ.

The basepoint of yDJ
C
..f; L// is

Œ OqJ0 � WD

�
q0 �

Y
j2J

1.j /

�
:

Since here the reduced suspension commutes with colimits up to homotopy equivalence [3, Theorem 4.3],
we obtain a homotopy equivalence

(23) †.colim.DC//' colim.†.DC//'
_
J�Œm�

†.colim. yDJ
C//:

The following theorem from [3] will be useful in our proof of Theorem 1.1. It is a modification of the
“homotopy lemma” given in [31; 33; 38].

Theorem 2.16 [3, Corollary 4.5] LetD andE be two diagrams over a finite poset P with values in CW�
for which the maps colimq>pD.q/ ,!D.p/ and colimq>p E.q/ ,!E.p/ are all closed cofibrations. If
f is a map of diagrams over P such that for every p 2 P, fp WD.p/!E.p/ is a homotopy equivalence ,
then f induces a homotopy equivalence f W colim.D.P //! colim.E.P //.

Now we are ready to give a proof of Theorem 1.1.

Proof of Theorem 1.1 By (20) and (23), we obtain a homotopy equivalence

(24) †..D2; S1/
Q
C
/'

_
J�Œm�

†.colim. yDJ
C//:

Notice that when J \ .If nL/¤¿, yDJ
C
..f; L// is contractible by Lemma 2.7. So, for any J � Œm�, we

define another diagram of based CW–complexes

yEJ
C W PQ! CW�;

yEJ
C..f; L// WD

�
yDJ
C
..f; L//D fC ^

V
j2J S

1
.j /

if J \ .If nL/D¿;
Œ OqJ0 � if J \ .If nL/¤¿:

(25)

For .f; L/� .f 0; L0/2PQ, . OeJ
C
/.f;L/;.f 0;L0/ W yE

J
C
..f 0; L0//! yEJ

C
..f; L// is either the natural inclusion

or the constant map cŒ OqJ
0 �

(mapping all points to Œ OqJ0 �). The basepoint of yEJ
C
..f; L// is Œ OqJ0 �.

Moreover, let ˆJ W yDJ
C
! yEJ

C
be a map of diagrams over PQ defined by

ˆJ.f;L/ W
yDJ
C..f; L//!

yEJ
C..f; L//; ˆJ.f;L/ D

(
id yDJ
C
..f;L//

if J \ .If nL/D¿;

cŒ OqJ
0 �

if J \ .If nL/¤¿:
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Then by Theorem 2.16, there exists a homotopy equivalence

colim. yDJ
C/' colim. yEJ

C/:

Note that we always have yDJ
C
..f; If // � yD

J
C
..f; L// for any L ¨ If ¤ ¿. So we can ignore the

terms f yDJ
C
..f; If // j If ¤ ¿; f 2 SQg when computing colim. yDJ

C
/. If If D ¿, then f � Qı and

yDJ
C
..f; L//D yDJ

C
..f;¿//D fC ^

V
j2J S

1
.j /

.

To understand colim. yEJ
C
/, we need to figure out in (25) what are those faces f of Q with some L¨ If

such that J \ .If nL/¤¿.

� There exists L ¨ If with J \ .If nL/ ¤ ¿ if and only if J \ If ¤ ¿, which is equivalent to
f � FJ . Conversely,

FJ D
[

f 2SQ

f \FJ D
[

f 2SQ

[
j2J

f \Fj D
[

f 2SQ

[
j2J\If

f \Fj �
[

f 2SQ

[
J\If¤¿

f:

This implies

(26)
[

f 2SQ

[
9L¨If

J\.If nL/¤¿

f D FJ :

� There exists L¨ If with J \ .If nL/D¿ if and only if f � FŒm�nJ . So

(27)
[

f 2SQ

[
9L¨If

J\.If nL/D¿

f D FŒm�nJ :

The above discussion implies

(28)
[

f 2SQ

[
9L;L0¨If

J\.If nL/D¿

J\.If nL
0/¤¿

f D FŒm�nJ \FJ :

By the definition of yEJ
C

, if we have a face f of Q and two subsets L;L0 ¨ If such that J \ .If nL/D¿
while J \ .If nL0/¤¿, then J \ .If n.L[L0//D¿ and J \ .If n.L\L0//¤¿. So, in this case,

� . OeJ
C
/.f;L0/;.f;L[L0/ W yE

J
C
..f; L[L0//! yEJ

C
..f; L0// is the constant map cŒ OqJ

0 �
,

fC ^
^
j2J

S1.j / 7! Œ OqJ0 �I

� . OeJ
C
/.f;L/;.f;L[L0/ W yE

J
C
..f; L[L0//! yEJ

C
..f; L// is identity map,

fC ^
^
j2J

S1.j / 7! fC ^
^
j2J

S1.j /:

Then in colim. yEJ
C
/, the image of any of such fC^

V
j2J S

1
.j /

is equivalent to the point Œ OqJ0 �. So we can
deduce that:
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� For J ¤¿,

colim. yEJ
C/Š

�
Qı[

[
9L¨If

J\.If nL/D¿

fC

�
^

^
j2J

S1.j /

.� [
9L;L0¨If

J\.If nL/D¿

J\.If nL
0/¤¿

fC

�
^

^
j2J

S1.j /

Š
�
..Qı[FŒm�nJ /[ q0/

ı
..FŒm�nJ \FJ /[ q0/

�
^

^
j2J

S1.j / (by (27) and (28))

Š .Q=FJ /^
^
j2J

S1.j / Š†jJ j.Q=FJ /:

� For J D¿, colim. yE¿
C
/ŠQı[FŒm�[ q0 DQ[ q0 DQC.

Combining all the above arguments, we obtain homotopy equivalences

†..D2; S1/
Q
C
/'

_
J�Œm�

†.colim. yDJ
C//

'

_
J�Œm�

†.colim. yEJ
C//

'†.QC/_
_

¿¤J�Œm�

†jJ jC1.Q=FJ /

' S1 _†.Q/_
_

¿¤J�Œm�

†jJ jC1.Q=FJ /

' S1 _
_
J�Œm�

†jJ jC1.Q=FJ /:

On the other hand,

†..D2; S1/
Q
C
/D†..D2; S1/Q [ Oq0/' S

1
_†..D2; S1/Q/Š S1 _†.ZQ/:

3 Cohomology ring structure of ZQ

The cohomology ring of the moment-angle complex over a simplicial complex K was computed by
Franz [18] and Baskakov, Buchstaber and Panov [7]. The cohomology rings of a much wider class of
spaces called generalized moment-angle complexes or polyhedral products were computed by Bahri,
Bendersky, Cohen and Gitler [4] via partial diagonal maps and by Bahri, Bendersky, Cohen and Gitler [5]
by a spectral sequence under certain freeness conditions (coefficients in a field for example). The study in
this direction is further extended in [6]. A computation using different methods was carried out by Wang
and Zheng [32] and Zheng [37].

It was shown by Bahri, Bendersky, Cohen and Gitler [4] that the product structure on the cohomology of
a polyhedral product over a simplicial complex can be formulated in terms of the stable decomposition
and partial diagonal maps of the polyhedral product. For a nice manifold with corners Q, since we also
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have the stable decomposition of ZQ, we should be able to describe the cohomology ring of ZQ in a
similar way.

Let us first recall the definition of partial diagonal in product spaces from [4]. Let X1; : : : ; Xm be a
collection of based CW–complexes. Using the notations in Section 2.4, for any I � Œm�, there are natural
projections X Œm�! yXI obtained as the composition

y…I WX
Œm� …I
�!XI

�I
�! yXI ;

where …I WX Œm�!XI is the natural projection and �I is the quotient map in the definition of the smash
product yXI . In addition, let

W
J;J 0

I WD

^
jJ jCjJ 0j

Wi ; J [J 0 D I;

where
Wi D

�
Xi if i 2 In.J \J 0/;
Xi ^Xi if i 2 J \J 0:

Note that if J [J 0 D I and J \J 0 D¿, W J;J 0

I D yXI .

Define  J;J
0

I W yXI !W
J;J 0

I as  J;J
0

I D
V
i2I  i , where  i WXi !Wi is defined by

 i D

�
id if i 2 In.J \J 0/;
�i WXi !Xi ^Xi if i 2 J \J 0;

where �i WXi !Xi �Xi !Xi ^Xi is the reduced diagonal of Xi .

Note that the smash products W J;J 0

I and yXJ ^ yXJ
0

have the same factors, but in a different order arising
from the natural shuffles. Let

(29) ‚
J;J 0

I WW
J;J 0

I ! yXJ ^ yXJ
0

; J [J 0 D I;

be the natural homeomorphism given by a shuffle. Define the partial diagonal

(30) y�
J;J 0

I W yXI
 

J;J 0

I
���!W

J;J 0

I

‚
J;J 0

I
���! yXJ ^ yXJ

0

be the composition of ‚J;J
0

I and  J;J
0

I . There is a commutative diagram

X
Œm�

y…I

X Œm� ^X Œm�

yXI yXJ ^ yXJ
0

�X
Œm�

y…J^y…J 0

y�
J;J 0

I

where �X
Œm�

is the reduced diagonal map of X Œm�.

Let k denote a commutative ring with a unit. For any J � Œm�, there is a homomorphism of rings given
by the reduced cross product � (see [20, page 223]),O

j2J

zH�.Xj Ik/
�
�! zH�. yXJ Ik/:
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In particular, this ring homomorphism becomes a ring isomorphism if all (possibly except one) zH�.Xj Ik/
are free k–modules; see [20, Theorem 3.21].

Lemma 3.1 For any �j 2 zH�.Xj Ik/ with j 2 J and any �0j 2 zH
�.Xj Ik/ with j 2 J 0,

(y�J;J
0

I /� WH�. yXJ ^ yXJ
0

Ik/!H�. yXI Ik/; I D J [J 0;

(y�J;J
0

I /�
��
�
j2J

�j

�
�

�
�
j2J 0

�0j

��
D

�
�

j2JnJ 0
�j

�
�

�
�

j2J 0nJ

�0j

�
�

�
�

j2J\J 0
��j .�j ��

0
j /
�
:

Proof The above formula follows easily from the definition of y�J;J
0

I . Note that the shuffle ‚J;J
0

I

(see (29)) sorts all the cohomology classes f�j gj2J and f�0j gj2J 0 in order without introducing any˙ sign.
This is because for any space X and Y ,

T WX ^Y ! Y ^X; Œ.x; y/� 7! Œ.y; x/�;

induces a group isomorphism T � WH�.Y ^X Ik/!H�.X ^Y Ik/ such that

T �.�Y ��X /D �X ��Y ; �X 2H
�.X Ik/; �Y 2H

�.Y Ik/:

So, when ‚J;J
0

I transposes the space factors, the cohomology classes in the reduced cross product are
transposed accordingly.

The following lemma will be useful for our proof of Theorem 1.4 later.

Lemma 3.2 Let X be a CW–complex and A and B be two subcomplexes of X . The relative cup product
H�.X;A/˝H�.X;B/

[
�!H�.X;A[B/ induces a product

zH�.X=A/˝ zH�.X=B/
z[
�! zH�.X=.A[B//;

which can be factored as

� z[�0 D��X .� ��
0/; � 2 zH�.X=A/; �0 2 zH�.X=B/

where �X WX !X �X is the diagonal map and � ��0 is the reduced cross product of � and �0.

Proof This can be verified directly from the following diagram when A and B are nonempty:

H�.X;A/˝H�.X;B/ H�.X�X; .A�X/[.X�B// H�.X;A[B/

H�.X=A;A=A/˝H�.X=B;B=B/ H�
�
X=A�X=B; .A=A�X=B/[.X=A�B=B/

�
H�

�
X=.A[B/;A[B=A[B

�
zH�.X=A/˝ zH�.X=B/ zH�.X=A^X=B/ zH�.X=.A[B//

�

relative cross product

��
X

Š

�

Š

Š

Š

Š

Š

where the lower ��! is the reduced cross product on zH�.X=A/˝ zH�.X=B/.

IfA orB is empty, we should replace zH�.X=A/ or zH�.X=B/ byH�.X/ in the above diagram. Moreover,
since H�.X/Š zH�.X/˚Z, the z[ on zH�.X/ is just the restriction of [ from H�.X/.
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Another useful fact is when Xi is the suspension of some space, the reduced diagonal �i WXi !Xi ^Xi

is nullhomotopic; see [4]. So we have the following lemma.

Lemma 3.3 If for some j 2 J \J 0, Xj is a suspension space , then the partial diagonal

y�
J;J 0

I W yXI ! yXJ ^ yXJ
0

is nullhomotopic , where I D J [J 0.

Now we are ready to give a proof of Theorem 1.4. Our argument is parallel to the argument used in the
proof of [4, Theorem 1.4].

Proof of Theorem 1.4 For brevity, we will use the following notation in the proof:

QC � .D
2/Œm� WDQC �

Y
j2Œm�

D2.j /; QC ^ . yD
2/J WDQC ^

^
j2J

D2.j /:

Considering the partial diagonals (30) for QC � .D2/Œm�, we obtain a map

y�
J;J 0

J[J 0;QC
WQC ^ . yD

2/J[J
0

! .QC ^ . yD
2/J /^ .QC ^ . yD

2/J
0

/

for any J; J 0 � Œm� and a commutative diagram

(31)

QC � .D
2/Œm� .QC � .D

2/Œm�/^ .QC � .D
2/Œm�/

QC ^ . yD
2/J[J

0

.QC ^ . yD
2/J /^ .QC ^ . yD

2/J
0

/

y…J[J 0

�
QC;D2

Œm�

y…J^y…J 0

y�
J;J 0

J[J 0;QC

where �QC;D
2

Œm�
is the reduced diagonal map of QC � .D2/Œm�. By restricting the above diagram to

colim.DC/, we obtain a commutative diagram for all J; J 0 � Œm�,

(32)

colim.DC/ colim.DC/^ colim.DC/

colim. yDJ[J 0

C
/ colim. yDJ

C
/^ colim. yDJ 0

C
/

�
QC;D2

Œm�

y…J[J 0
y…J^y…J 0

y�
J;J 0

J[J 0;QC

Given cohomology classes u 2 zH�.colim. yDJ
C
// and v 2 zH�.colim. yDJ 0

C
//, let

(33) u~ v D .y�
J;J 0

J[J 0;QC
/�.u� v/ 2 zH�.colim. yDJ[J 0

C //;

where u� v 2 zH�.colim. yDJ
C
/^ colim. yDJ 0

C
// is the reduced cross product of u and v. This defines a

ring structure on
L
J�Œm�

zH�.colim. yDJ
C
//.

The commutativity of diagram (32) implies

y…�J[J 0.u~ v/D y…�J .u/[
y…�J 0.v/;

where [ is the cup product for colim.DC/.

Algebraic & Geometric Topology, Volume 24 (2024)



A generalization of moment-angle manifolds with noncontractible orbit spaces 471

By (23), the direct sum of y…�J induces an additive isomorphism

(34)
M
J�Œm�

y…�J W
M
J�Œm�

zH�.colim. yDJ
C//!

zH�.colim.DC//D zH�..D2; S1/
Q
C
/:

Then since y…�J W zH
�.colim. yDJ

C
//! zH�.colim.DC// is a ring homomorphism for every J � Œm�, we

can assert that
L
J�Œm�

y…�J is a ring isomorphism. Then by the proof of Theorem 1.1, this induces a ring
isomorphism

(35)
M
J�Œm�

y…�J W

� M
J�Œm�

zH�.Q=FJ ^
^
j2J

S1.j //;~
�
! zH�..D2; S1/Q/:

Finally, let us define a ring isomorphism from .R�Q;d/ to the cohomology ring H�..D2; S1/Q/ viaL
J�Œm�

y…�J .

For any 1� j �m, let �1
.j /

denote a generator of zH 1.S1
.j /
/. Then for any subset J D fj1; : : : ; jsg � Œm�

with j1 < � � �< js , we have a generator

�J D �1.j1/
� � � � � �1.js/

2 zH jJ j
� ^
j2J

S1.j /

�
:

For each J � Œm�, there is a canonical linear isomorphism (see [20, page 223]),

zH�.Q=FJ /
Š
�! zH�

�
Q=FJ ^

^
j2J

S1.j /

�
Š zH�.†jJ j.Q=FJ //; � 7! � � �J :

Let
zR�Q WD

M
J�Œm�

zH�.Q=FJ /:

Then R�QD
zR�Q˚Z. By Lemma 3.2, there is natural ring structure on zR�Q, denoted by zd, that is induced

from the product d on R�Q (see (5)). We have a commutative diagram

(36)

H�.Q; FJ /˝H
�.Q; FJ 0/ H�.Q; FJ[J 0/

zH�.Q=FJ /˝ zH
�.Q=FJ 0/ zH�.Q=FJ[J 0/

d

zd

such that for any J; J 0 � Œm� with J \ J 0 ¤ ¿, zd is trivial; and for any J; J 0 � Œm� with J \ J D ¿,
zdD z[ is induced from the relative cup product [ on H�.Q; FJ /˝H�.Q; FJ 0/ (see Lemma 3.2).

It is clear that .R�Q;d/ and .zR�Q; zd/ determine each other.

� When J \ J 0 ¤ ¿, since .D2; S1/ Š .†D1; †S0/ is a pair of suspension spaces, Lemma 3.3
implies that

y�
J;J 0

J[J 0;QC
W colim. yDJ[J 0

C /! colim. yDJ
C/^ colim. yDJ 0

C /

is nullhomotopic. So, by (33), ~ is trivial in this case which corresponds to the definition of zd
on zR�Q.
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� When J \J 0 D¿, suppose in (35), we have elements

uD � � �J 2 zH�
�
Q=FJ ^

^
j2J

S1.j /

�
D zH�.†jJ j.Q=FJ //;

v D �0 � �J
0

2 zH�
�
Q=FJ 0 ^

^
j2J 0

S1.j /

�
D zH�.†jJ

0j.Q=FJ 0//:

Then Lemmas 3.1 and 3.2 imply that

u~ v D .y�
J;J 0

J[J 0;QC
/�..� � �J /� .�0 � �J

0

//D .�1/jJ jj�
0j.� z[�0/� �J[J

0

:

So we have a commutative diagram

(37)

zH�.Q=FJ /˝ zH
�.Q=FJ 0/ zH�.Q=FJ[J 0/

zH�.†jJ j.Q=FJ //˝ zH
�.†jJ

0j.Q=FJ 0// zH�.†jJ[J
0j.Q=FJ[J 0//

��J˝��J
0

zd

��J[J 0

~

which implies that the product zd on zR�Q corresponds to the product ~ in (35) in this case.

Combining the above arguments, we obtain isomorphisms of rings,

.zR�Q; zd/
Š
�!

� M
J�Œm�

zH�.Q=FJ ^
^
j2J

S1.j //;~
� L

J�Œm�
y…�J

�������! zH�..D2; S1/Q/D zH�.ZQ/:

It follows that there is a ring isomorphism (up to a sign) from .R�Q;d/ to H�.ZQ/.

Note that the above ring isomorphism is not degree-preserving. But by the diagram in (37), we can make
this ring isomorphism degree-preserving by shifting the degrees of all the elements in H�.Q; FJ / up by
jJ j for every J � Œm�.

4 Polyhedral product over a nice manifold with corners

Let Q be a nice manifold with corners whose facets are F1; : : : ; Fm. Let .X;A/D f.Xj ; Aj ; aj /gmjD1,
where Xj and Aj are CW–complexes with a basepoint aj 2 Aj �Xj .

For any face f of Q, define

.X;A/f WD f �
Y
j2If

Xj �
Y

j2Œm�nIf

Aj ; .X;A/Q WD
[

f 2SQ

.X;A/f �Q�
Y
j2Œm�

Xj :

If .X;A/D f.Xj ; Aj ; aj /D .X;A; a0/gmjD1, we also denote .X;A/Q by .X;A/Q.

We call .X;A/Q the polyhedral product of .X;A/ over Q. Note that in general, the homeomorphism
type of .X;A/Q depends on the ordering of the facets of Q and the ordering of the Xj . We consider
.X;A/Q as an analogue of polyhedral products over a simplicial complex; see [8].
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In the rest of this section, we assume that each of Xj and Aj in .X;A/ is either connected or is a disjoint
union of a connected CW–complex with its basepoint. Then we can study the stable decomposition and
cohomology ring of .X;A/Q in the same way as we do for ZQ.

� Let QC DQ[ q0 where q0 …Q is the basepoint of QC.

� For any face f of Q, let fC D f [ q0 with basepoint q0.

� For any .f; L/ 2 PQ, define

(38) .X;A/.f;L/ WD f �
Y

j2If nL

Xj �
Y

j2Œm�n.If nL/

Aj ; .X;A/.f;L/
C

WD .X;A/.f;L/[ Oq.X;A/0 ;

where Oq.X;A/0 is the basepoint defined by Oq.X;A/0 WD q0 �
Q
j2Œm� aj .

� Let .X;A/Q
C
D .X;A/Q [ Oq.X;A/0 with basepoint Oq.X;A/0 .

Let D.X;A/C W PQ! CW� be the diagram of based CW–complexes, where

D.X;A/C..f; L// WD .X;A/
.f;L/
C

for all .f; L/ 2 PQ;

and let .d.X;A/C/.f;L/;.f 0;L0/ WD.X;A/C..f
0; L0//!D.X;A/C..f; L// be the natural inclusion for any

.f; L/� .f 0; L0/ 2 PQ. Then

(39) .X;A/Q
C
D colim.D.X;A/C/D

[
.f;L/2PQ

.X;A/.f;L/
C

:

By Theorem 2.10, we can prove the following lemma parallel to Lemma 2.15.

Lemma 4.1 For any .f; L/ 2PQ, there is a natural homeomorphism which commutes with taking the
colimit

.X;A/.f;L/
C

Š fC Ì
� Y
j2If nL

Xj �
Y

j2Œm�n.If nL/

Aj

�
:

So, by Theorem 2.14,

(40) †..X;A/.f;L/
C

/Š†

�
fC Ì

� Y
j2If nL

Xj �
Y

j2Œm�n.If nL/

Aj

��

'

_
J�Œm�

†

�
fC ^

^
j2J\.If nL/

Xj ^
^

j2Jn.If nL/

Aj

�
:

Accordingly, we define a family of diagrams of based CW–complexes,

yDJ
.X;A/C W PQ! CW�; J � Œm�;

yDJ
.X;A/C..f; L// WD fC ^

^
j2J\.If nL/

Xj ^
^

j2Jn.If nL/

Aj for all .f; L/ 2 PQ:
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Define . OdJ
.X;A/C/.f;L/;.f 0;L0/ W

yDJ
.X;A/C..f

0; L0//! yDJ
.X;A/C..f; L// to be the natural inclusion for any

.f; L/� .f 0; L0/ 2PQ. The basepoint of yDJ
.X;A/C..f; L// is

�
q0�

Q
j2J aj

�
. So we have the following

theorem by [3, Theorem 4.3].

Theorem 4.2 Let .X;A/D f.Xj ; Aj ; aj /gmjD1 where each Xj and Aj is either connected or is a disjoint
union of a connected CW–complex with its basepoint. Then there are homotopy equivalences

S1 _†..X;A/Q/'†..X;A/Q
C
/D†.colim.D.X;A/C//'

_
J�Œm�

†.colim. yDJ
.X;A/C//:

This implies

H�..X;A/Q/Š zH�.colim.D.X;A/C//Š
M
J�Œm�

zH�.colim. yDJ
.X;A/C//:

Moreover, using the partial diagonal map for QC�
Q
j2Œm�Xj as in the proof of Theorem 1.4, we have a

diagram parallel to diagram (32) for any J; J 0 � Œm�,

(41)

colim.D.X;A/C/ colim.D.X;A/C/^ colim.D.X;A/C/

colim. yDJ[J 0

.X;A/C/ colim. yDJ
.X;A/C/^ colim. yDJ 0

.X;A/C/

y…J[J 0

�
QC;X

Œm�

y…J^y…J 0

y�
J;J 0

J[J 0;QC

Similarly, we can obtain the following theorem parallel to Theorem 1.4.

Theorem 4.3 Let .X;A/D f.Xj ; Aj ; aj /gmjD1 where each Xj and Aj is either connected or is a disjoint
union of a connected CW–complex with its basepoint. Then there is a ring isomorphismM

J�Œm�

y…�J W
M
J�Œm�

zH�.colim. yDJ
.X;A/C//!

zH�.colim.D.X;A/C//ŠH
�..X;A/Q/;

where the product ~ on
L
J�Œm�

zH�.colim. yDJ
.X;A/C// is defined by

zH�.colim. yDJ
.X;A/C//˝

zH�.colim. yDJ 0

.X;A/C//
~
�! zH�.colim. yDJ[J 0

.X;A/C//;(42)

u~ v WD .y�
J;J 0

J[J 0;QC
/�.u� v/:

In the following two subsections, we will study the stable decomposition and cohomology ring of .X;A/Q

under some special conditions on .X;A/.

4.1 The case of .X; A/Q with each Xj contractible

Observe that in the proof of Theorem 1.1, the only properties of .D2; S1/ that we actually use are that

(i) D2 is contractible;

(ii) X ^S1 is homeomorphic to †.X/ for any based CW–complex X .
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So, if we assume that every Xj in .X;A/ is contractible, we can obtain the following theorem parallel to
Theorem 1.1.

Theorem 4.4 Let Q be a nice manifold with corners with facets F1; : : : ; Fm. Let

.X;A/D f.Xj ; Aj ; aj /g
m
jD1;

where each Xj is contractible and each Aj is either connected or is a disjoint union of a connected
CW–complex with its basepoint. Then there is a homotopy equivalence

†..X;A/Q/'
_
J�Œm�

†

�
Q=FJ ^

^
j2J

Aj

�
:

So the reduced cohomology group

zH�..X;A/Q/Š
M
J�Œm�

zH�
�
Q=FJ ^

^
j2J

Aj

�
:

Proof We can easily extend the argument in the proof of Theorem 1.1 to show

colim. yDJ
.X;A/C/'

�
Q=FJ ^

V
j2J Aj if J ¤¿;

QC if J D¿:

Then the statements of the theorem follow from Theorem 4.2 and the fact that †.QC/' S
1 _†.Q/.

Moreover, we have the following theorem which is parallel to [4, Theorem 1.4].

Theorem 4.5 Under the condition in Theorem 4.4, there is a ring isomorphism� M
J�Œm�

zH�
�
Q=FJ ^

^
j2J

Aj

�
;~
�
! zH�..X;A/Q/ induced by

M
J�Œm�

y…�J :

Remark 4.6 If any combination of Q=FJ and Aj ’s satisfies the strong smash form of the Künneth
formula as defined in [3, page 1647] over a coefficient ring k, ie the natural map

zH�.Q=FJ Ik/˝
O
j2I

zH�.Aj Ik/! zH�
�
Q=FJ ^

^
j2I

Aj Ik

�
is an isomorphism for any I; J � Œm�, then we can write the cohomology ring structure of .X;A/Q with
k–coefficients more explicitly via the formula in Lemma 3.1.

In the following, we demonstrate the product ~ for .D;S/Q where

.D;S/D f.DnjC1; Snj ; aj /g
m
jD1:

Here DnC1 is the unit ball in RnC1 and Sn D @DnC1.

In particular, if .D;S/D f.DnjC1; Snj ; aj /D .D
nC1; Sn; a0/g

m
jD1, we also write

.D;S/Q D .DnC1; Sn/Q:
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Example 4.7 ZQ Š .D
2; S1/Q and RZQ Š .D

1; S0/Q (see Remark 1.3).

We define a graded ring structure d.D;S/ on R�Q according to .D;S/ as follows.

� If J \J 0 D¿ or J \J 0 ¤¿ but nj D 0 for all j 2 J \J 0, then

H�.Q; FJ /˝H
�.Q; FJ 0/

d.D;S/

���!H�.Q; FJ[J 0/

is the relative cup product [.

� If J \J 0 ¤¿ and there exists nj � 1 for some j 2 J \J 0, then

H�.Q; FJ /˝H
�.Q; FJ 0/

d.D;S/

���!H�.Q; FJ[J 0/

is trivial.

By Lemma 3.2, the product d.D;S/ on R�Q induces a product zd.D;S/ on zR�Q.

� If J \J 0 D¿ or J \J 0 ¤¿ but nj D 0 for all j 2 J \J 0, then

zH�.Q=FJ /˝ zH
�.Q=FJ 0/

zd
.D;S/

���! zH�.Q=FJ[J 0/

is the product z[ induced by the relative cup productH�.Q; FJ /˝H�.Q; FJ 0/
[
�!H�.Q; FJ[J 0/.

� If J \J 0 ¤¿ and there exists nj � 1 for some j 2 J \J 0, then

zH�.Q=FJ /˝ zH
�.Q=FJ 0/

zd
.D;S/

���! zH�.Q=FJ[J 0/

is trivial.

We have the following theorem which generalizes Theorems 1.1 and 1.4.

Theorem 4.8 Let Q be a nice manifold with corners with facets F1; : : : ; Fm. Then for any

.D;S/D f.DnjC1; Snj ; aj /g
m
jD1;

(a) there is a homotopy equivalence

†..D;S/Q/'
_
J�Œm�

†

�
Q=FJ ^

^
j2J

Snj

�
Š

_
J�Œm�

†1C
P

j2J nj .Q=FJ /;

which implies

Hp..D;S/Q/Š
M
J�Œm�

Hp�
P

j2J nj .Q; FJ / for all p 2 ZI

(b) there is a ring isomorphism (up to a sign) from .R�Q;d
.D;S// to the integral cohomology ring of

.D;S/Q; moreover , we can make this ring isomorphism degree-preserving by shifting the degrees
of the elements in H�.Q; FJ / for every J � Œm�.
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Proof For brevity, we use the notation

NJ D
X
j2J

nj ; J � Œm�:

Statement (a) follows from Theorem 4.4 and the simple fact that

Q=FJ ^
^
j2J

Snj ŠQ=FJ ^S
NJ Š†NJ .Q=FJ /:

For statement (b), note that, by Theorem 4.5, we have a ring isomorphism

(43)
M
J�Œm�

y…�J W

� M
J�Œm�

zH�
�
Q=FJ ^

^
j2J

Snj

�
;~
�
! zH�..D;S/Q/:

For any 1� j �m, let �nj denote a generator of zHnj .Snj /. Let

�J.D;S/ D�
j2J

�nj 2 zHNJ

� ^
j2J

Snj

�
be a generator.

(i) Assume J \J 0 ¤¿ and there exists nj � 1 for some j 2 J \J 0. Then since Snj is a suspension
space, the map y�J;J

0

J[J 0;QC
in (41) is nullhomotopic. This implies that the product ~ in (43) is trivial

which corresponds to the definition of zd.D;S/ on zR�Q in this case.

(ii) Assume J \J 0 ¤¿ but nj D 0 for all j 2 J \J 0. Let

J0 D fj 2 Œm� j nj D 0g � Œm�:

So the condition on J and J 0 is equivalent to J \J 0 � J0 which implies

(44) .J nJ0/\ .J
0
nJ0/D¿:

Since X ^S0 ŠX for any based space X , we have for any J � Œm�,

Q=FJ ^
^
j2J

Snj ŠQ=FJ ^
^

j2JnJ0

Snj Š†NJnJ0 .Q=FJ /:

By Lemmas 3.1 and 3.2, we can derive an explicit formula for the product ~ in (43) as follows. For any
elements

uD � � �
JnJ0

.D;S/ 2
zH�
�
Q=FJ ^

^
j2JnJ0

Snj

�
D zH�.†NJnJ0 .Q=FJ //;

v D �0 � �
J 0nJ0

.D;S/ 2
zH�
�
Q=FJ 0 ^

^
j2J 0nJ0

Snj

�
D zH�.†NJ 0nJ0 .Q=FJ 0//;

we have

u~ v D .y�
JnJ0;J

0nJ0

.J[J 0/nJ0;QC
/�
�
.� � �

JnJ0

.D;S//� .�
0
� �
J 0nJ0

.D;S/ /
�
D .�1/NJnJ0

j�0j.� z[�0/� �
.J[J 0/nJ0

.D;S/
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by (44). So we have a commutative diagram parallel to diagram (37),

zH�.Q=FJ /˝ zH
�.Q=FJ 0/ zH�.Q=FJ[J 0/

zH�.†NJnJ0 .Q=FJ //˝ zH
�.†NJ 0nJ0 .Q=FJ 0// zH�.†N.J[J 0/nJ0 .Q=FJ[J 0//

zd
.D;S/

��
JnJ0
.D;S/

˝��
J 0nJ0
.D;S/

��
.J[J 0/nJ0
.D;S/

~

This implies that the product zd.D;S/ on zR�Q corresponds to the product ~ in (43) in this case.

(iii) When J \ J 0 D ¿, the proof of the correspondence between the product zd.D;S/ on zR�Q and the
product ~ in (43) is the same as case (ii).

The above discussion implies that there is an isomorphism of rings

.zR�Q; zd
.D;S/

/!

� M
J�Œm�

zH�.Q=FJ ^
^
j2J

Snj /;~
� L

J�Œm�
y…�J

�������! zH�..D;S/Q/:

This implies that .R�Q;d
.D;S// is isomorphic (up to a sign) to the integral cohomology ringH�..D;S/Q/.

Moreover, according to the above diagram, we can make the ring isomorphism between .R�Q;d
.D;S//

and H�..D;S/Q/ degree-preserving by shifting the degrees of all the elements in H�.Q; FJ / up by
NJnJ0

for every J � Œm�.

Remark 4.9 S0 is not a suspension of any space and the reduced diagonal map

�S0 D idS0 W S0! S0 ^S0 Š S0

is not nullhomotopic. This is the essential reason why for a general .D;S/, the cohomology ring of
.D;S/Q is more subtle than that of ZQ.

A very special case of Theorem 4.8 is .D1; S0/Q DRZQ where the product d.D1;S0/ on R�Q is exactly
the relative cup product for all J; J 0 � Œm�.

Corollary 4.10 Let Q be a nice manifold with corners with facets F1; : : : ; Fm. Then

†.RZQ/'
_
J�Œm�

†.Q=FJ /; H
p.RZQ/Š

M
J�Œm�

Hp.Q; FJ / for all p 2 Z:

Moreover , the integral cohomology ring of RZQ is isomorphic as a graded ring to the ring .R�Q;[/
where [ is the relative cup product

H�.Q; FJ /˝H
�.Q; FJ 0/

[
�!H�.Q; FJ[J 0/ for all J; J 0 � Œm�:

Note that in the case of RZQ, the sign factor of the isomorphism between .R�Q;[/ and H�.RZQ/ is
trivial because the degree of �J

.D1;S0/
is always zero.

Remark 4.11 When Q is a simple polytope, the ring structure of the integral cohomology of RZQ was
studied in [11] via a different method.
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4.2 The case of .X; A/Q with each Aj contractible

If in .X;A/ D f.Xj ; Aj ; aj /gmjD1, each Aj is contractible, we can derive the stable decomposition of
.X;A/Q from Theorem 4.2 as follows.

Theorem 4.12 Let Q be a nice manifold with corners with facets F1; : : : ; Fm. Let

.X;A/D f.Xj ; Aj ; aj /g
m
jD1;

where each Aj is contractible and each Xj is either connected or is a disjoint union of a connected
CW–complex with its basepoint. Then there is a homotopy equivalence

S1 _†..X;A/Q/'†..X;A/Q
C
/'

_
J�Œm�

†

�
.F\J [ q0/^

^
j2J

Xj

�
:

So we have †..X;A/Q/'
W
J�Œm�†

�
F\J Ë

V
j2J Xj

�
and

H�..X;A/Q/Š
M
J�Œm�

zH�
�
.F\J [ q0/^

^
j2J

Xj

�
:

Proof By Lemma 2.7 and our assumption on Aj , when J n.If nL/¤¿,

yDJ
.X;A/C..f; L//D fC ^

^
j2J\.If nL/

Xj ^
^

j2Jn.If nL/

Aj

is contractible. So, for any J � Œm�, we define a diagram of based CW–complexes

yGJ
.X;A/C W PQ! CW�

yGJ
.X;A/C..f; L// WD

�
yDJ
.X;A/C..f; L//D fC ^

V
j2J Xj if J n.If nL/D¿;

Œ OqJ0 � if J n.If nL/¤¿;
(45)

where . OgJ
.X;A/C/.f;L/;.f 0;L0/ W

yGJ
.X;A/C..f

0; L0//! yGJ
.X;A/C..f; L// is either the natural inclusion or

the constant map cŒ OqJ
0 �

for any .f; L/� .f 0; L0/ 2 PQ. The basepoint of yGJ
.X;A/C..f; L// is Œ OqJ0 �.

Let ‰J
.X;A/C W

yDJ
.X;A/C!

yGJ
.X;A/C be a map of diagrams over PQ defined by

.‰J.X;A/C/.f;L/ W
yDJ
.X;A/C..f; L//!

yGJ
.X;A/C..f; L//;

.‰J.X;A/C/.f;L/ D

(
id yDJ

.X;A/C
..f;L//

if J n.If nL/D¿;

cŒ OqJ
0 �

if J n.If nL/¤¿:

Then by Theorem 2.16, there exists a homotopy equivalence

colim. yDJ
.X;A/C/' colim. yGJ

.X;A/C/; J � Œm�:

To understand colim. yGJ
.X;A/C/, we need to figure out in (45) what are those faces f of Q with some

L� If such that J n.If nL/D¿.
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� There exists L� If such that J n.If nL/D¿ if and only if J � If . So

(46)
[

f 2SQ

[
9L�If

Jn.If nL/D¿

f D
[

f 2SQ

[
J�If

f D F\J :

� There exists L� If such that J n.If nL/¤¿ if and only if J ¤¿.

Then for any ¿¤ J � Œm�,

colim. yGJ
.X;A/C/Š

[
9L�If

Jn.If nL/D¿

�
fC ^

^
j2J

Xj

�. [
9L�If

Jn.If nL/¤¿

�
fC ^

^
j2If nL

Xj ^
^

j2Jn.If nL/

Aj

�

'

�� [
J�If

fC

�
^

^
j2J

Xj

�. [
f 2SQ;L�If
Jn.If nL/¤¿

�
fC ^

^
j2If nL

Xj ^
^

j2Jn.If nL/

aj

�
(47)

Š

� [
J�If

fC

�
^

^
j2J

Xj

.
Œ OqJ0 �D .F\J [ q0/^

^
j2J

Xj (by (46));(48)

where the “'” in (47) is because each Aj is contractible, so Aj deformation retracts to its basepoint aj ,
and the “Š” in (48) is because fC �

Q
j2If nL

Xj �
Q
j2Jn.If nL/

aj is equivalent to the basepoint Œ OqJ0 �
in fC ^

V
j2J Xj since aj is the basepoint of Xj .

When J D¿,

colim. yGJ
.X;A/C/D

[
f 2SQ

fC DQ[ q0 D F\¿[ q0:

So, by Theorem 4.2, we have homotopy equivalences

†..X;A/Q
C
/D†.colim.D.X;A/C//'

_
J�Œm�

†.colim. yDJ
.X;A/C//

'

_
J�Œm�

†.colim. yGJ
.X;A/C//'

_
J�Œm�

†

�
.F\J [ q0/^

^
j2J

Xj

�
:

By Definition 2.13,

.F\J [ q0/^
^
j2J

Xj Š

�
F\J Ë

V
j2J Xj if J ¤¿;

Q[ q0 if J D¿:

Then since †.Q[ q0/' S
1 _†.Q/, the theorem is proved.

The cohomology ring structure of .X;A/Q can be computed by Theorem 4.3. In particular, if any
combination of F\J and Xj ’s satisfies the strong smash form of the Künneth formula over a coefficient
ring k, we can give an explicit description of the cohomology ring of .X;A/Q with k–coefficients. Indeed,
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by Theorems 4.3 and 4.12 we obtain an isomorphism of rings

(49)
M
J�Œm�

y…�J W
M
J�Œm�

�
H�.F\J Ik/˝

O
j2J

zH�.Xj Ik/

�
!H�..X;A/QIk/;

where the product ~ on the left-hand side is defined by (42) via the partial diagonal maps. We will do
some computation of this kind in the next section to describe the equivariant cohomology ring of the
moment-angle manifold ZQ.

5 Equivariant cohomology ring of ZQ and RZQ

Let Q be a nice manifold with corners whose facets are F1; : : : ; Fm. Since there is a canonical action of
.S1/m on ZQ (see (2)), it is a natural problem to compute the equivariant cohomology ring of ZQ with
respect to this action.

For a simple polytope P , it is shown in Davis and Januszkiewicz [17] that the equivariant cohomology
of ZP with integral coefficients is isomorphic to the face ring (or Stanley–Reisner ring) ZŒP � of P defined
by

ZŒP �D ZŒx1; : : : ; xm�=IP ;

where IP is the ideal generated by all square-free monomials xi1xi2 � � � xis such that Fi1 \ � � � \Fis D¿
in P . A liner basis of ZŒP � is given by

(50) f1g[ fx
n1

i1
� � � x

ns

is
j Fi1 \ � � � \Fis ¤¿; n1 > 0; : : : ; ns > 0g:

We can also think of ZŒP � as the face ring of @P � where P � is the dual simplicial polytope of P ; see [9,
Chapter 3].

For brevity, let Tm D .S1/m. By definition, the equivariant cohomology of ZQ, denoted by H�Tm.ZQ/,
is the cohomology of the Borel construction

ETm �Tm ZQ DET
m
�ZQ=�;

where .e; x/� .eg; g�1x/ for any e 2ETm, x 2 ZQ and g 2 Tm. Here we let

ETm D .ES1/m D .S1/m:

Associated to the Borel construction, there is a canonical fiber bundle

(51) ZQ!ETm �Tm ZQ! BTm;

where BTm D .BS1/m D .S1=S1/m D .CP1/m is the classifying space of Tm.

By Lemma 2.3, ZQ is equivariantly homeomorphic to .D2; S1/Q. So computing the equivariant coho-
mology of ZQ is equivalent to computing that for .D2; S1/Q.
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By the colimit construction of .D2; S1/Q in (16) and our notation for polyhedral products (38), the Borel
construction

ETm �Tm .D2; S1/Q D
[

.f;L/2PQ

ETm �Tm .D2; S1/.f;L/

D

[
.f;L/2PQ

.S1 �S1 D2; S1 �S1 S1/.f;L/

D .S1 �S1 D2; S1 �S1 S1/Q:

Then, by the homotopy equivalence of the pairs

.S1 �S1 D2; S1 �S1 S1/! .CP1;�/;

we can derive from Theorem 2.16 that there is a homotopy equivalence

.S1 �S1 D2; S1 �S1 S1/Q ' .CP1;�/Q:

We call .CP1;�/Q the Davis–Januszkiewicz space of Q, denoted by DJ.Q/. So the equivariant
cohomology ring of ZQ is isomorphic to the ordinary cohomology ring of DJ.Q/.

Similarly, we can prove that the Borel construction of RZQ with respect to the canonical .Z2/m–action
is .RP1;�/Q.

Proof of Theorem 1.7 By the proof of Theorem 4.12 and the fact that H�.CP1/ is torsion free, we
can deduce from (48) that

zH�. yDJ
.CP1;�/C/Š

zH�. yGJ
.CP1;�/C/ŠH

�.F\J /˝
O
j2J

zH�.CP1.j // for all J � Œm�;

where .CP1/m D
Q
j2Œm�CP

1
.j /

. Then we obtain a ring isomorphism from (49),M
J�Œm�

y…�J W
M
J�Œm�

�
H�.F\J /˝

O
j2J

zH�.CP1.j //

�
!H�..CP1;�/Q/ŠH�Tm.ZQ/;

where the product ~ on the left-hand side is defined by (42) via the partial diagonal maps

colim. yDJ[J 0

.CP1;�/C/
y�

J;J 0

J[J 0;QC
�������! colim. yDJ

.CP1;�/C/^ colim. yDJ 0

.CP1;�/C/:

Example 5.1 If QD Œ0; 1/, the moment-angle manifold ZŒ0;1/ DD
2nS1, whose Borel construction is

homotopy equivalent to CP1. Then

H�
S1.ZŒ0;1//ŠH

�.CP1/Š ZŒx�; deg.x/D 2:

The above ring isomorphism implies that the homomorphism ��CP1 induced by the reduced diagonal
map �CP1 WCP

1!CP1 ^CP1 on the integral cohomology is given by

��CP1 W
zH�.CP1 ^CP1/Š zH�.CP1/˝ zH�.CP1/! zH�.CP1/; � ˝ � 0! � [ � 0:
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Then, by Lemma 3.1 and the above example, for any elements

uD �˝
O
j2J

�j ; � 2H�.F\J /; �j 2 zH
�.CP1.j //;

v D �0˝
O
j2J 0

� 0j ; �0 2H�.F\J 0/; �
0
j 2
zH�.CP1.j //;

we have

u~ v D .��J[J 0;J .�/[ �
�
J[J 0;J 0.�

0//˝
O
JnJ 0

�j ˝
O
J 0nJ

� 0j ˝
O

j2J\J 0

.�j [ �
0
j /;

where �I 0;I W F\I 0 ! F\I is the inclusion map for any subsets I � I 0 � Œm�.

Finally, since there is a graded ring isomorphism

H�..CP1/m/Š ZŒx1; : : : ; xm�; deg.x1/D � � � D deg.xm/D 2;

it is easy to check that
L
J�Œm�

�
H�.F\J /˝

N
j2J

zH�.CP1
.j /
/
�

with the product ~ is isomorphic to the
topological face ring ZhQi D

L
J�Œm�H

�.F\J /˝R
J
Z, where

N
j2J

zH�.CP1
.j /
/ corresponds to RJZ;

see (6).

By replacing .D2; S1/ with .D1; S0/, .S1/m with .Z2/m and CP1 with RP1 in the above argument,
and by the fact H�.RP1IZ2/Š Z2Œx�, deg.x/D 1, we obtain the parallel result for RZQ.

From the canonical fiber bundle associated to the Borel construction in (51), we have a naturalH�.BTm/–
module structure on H�Tm.ZQ/. By the identification

H�.BTm/D ZŒx1; : : : ; xm�;

we can write the H�.BTm/–module structure on H�Tm.ZQ/ as, for each 1� i �m,

(52) xi � .�˝f .x//D .1˝ xi / ? .�˝f .x//D �
�
J[fig;J .�/˝ xif .x/ (by (8));

where � 2H�.F\J / and f .x/ 2RJZ, J � Œm�.

Example 5.2 Let P be a simple polytope with facets F1; : : : ; Fm. For a subset J � Œm�, F\J is either
empty or a face of P and hence acyclic. So we can write the topological face ring of P as

ZhP i Š

� M
F\J¤¿

J�Œm�

RJZ; ?

�
;

where for any f .x/ 2RJZ and f 0.x/ 2RJ
0

Z with F\J ¤¿ and F\J 0 ¤¿,

f .x/ ? f 0.x/D

�
f .x/f 0.x/ if F\.J[J 0/ ¤¿;
0 otherwise:

According to the linear basis of the face ring ZŒP � in (50), we can easily check that ZhP i is isomorphic
to ZŒP �.
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Theorem 5.3 Let Q be a nice manifold with corners with m facets. If a subtorus H � Tm D .S1/m acts
freely on ZQ through the canonical action , the equivariant cohomology ring with Z–coefficients of the
quotient space ZQ=H with respect to the induced action of Tm=H is isomorphic to the topological face
ring ZhQi of Q.

Proof Suppose Tm=H Š T k . Since H acts freely on ZQ, the Borel constructions of ZQ=H and ZQ

are homotopy equivalent by

(53) ETm �Tm ZQ ŠEH � .E.T
m=H/�Tm=H .ZQ=H//'ET

k
�T k ZQ=H:

So the equivariant cohomology ring of ZQ=H is isomorphic to the equivariant cohomology ring of ZQ.
Then the theorem follows from Theorem 1.7.

In Theorem 5.3, the group homomorphism Tm! Tm=H Š T k induces a commutative diagram

ETm E.Tm=H/

BTm B.Tm=H/

which, along with the maps in (53), induces the diagram

(54)

ETm �Tm ZQ E.Tm=H/�Tm=H .ZQ=H/

BTm B.Tm=H/

'

We can describe the natural H�.B.Tm=H//–module structure of the integral equivariant cohomology
ring of ZQ=H as follows. The inclusion H ,! Tm induces a monomorphism 'H W Zm�k! Zm whose
image is a direct summand in Zm. This determines an integer m� .m�k/ matrix S D .sij / if we choose
a basis for each of Zm�k and Zm. Then since the image of 'H is a direct summand in Zm, there is
an integer k �m matrix R D .rij / of rank k such that R � S D 0 which defines the homomorphism
Tm! Tm=H .

If we write H�.B.Tm=H// D H�.BT k/ D ZŒy1; : : : ; yk�, it follows from the diagram (54) that the
natural H�.B.Tm=H//–module structure of the integral equivariant cohomology ring of ZQ=H is
determined by the formula in (52) along with the map H�.B.Tm=H//!H�.BTm/ given by

ZŒy1; : : : ; yk�! ZŒx1; : : : ; xm�; yi 7! ri1x1C � � �C rimxm:

The above formula is parallel to the formula given in [9, Theorem 7.37] (where Q is a simple polytope).

Remark 5.4 If a subtorus H � Tm of dimension m� dim.Q/ acts freely on ZQ through the canonical
action, the quotient space ZQ=H with the induced action of Tm=H Š T dim.Q/ can be considered as a
generalization of quasitoric manifold over a simple polytope defined by Davis and Januszkiewicz [17].
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The following is an application of Theorem 5.3 to locally standard torus actions on closed manifolds.
Recall that an action of T n on a closed 2n–manifoldM 2n is called locally standard — see [17, Section 1] —
if every point in M 2n has a T n–invariant neighborhood that is weakly equivariantly diffeomorphic an
open subset of Cn invariant under the standard T n–action,

.g1; : : : ; gn/ � .z1; : : : ; zn/D .g1z1; : : : ; gnzn/; gi 2 S
1; zi 2C; 1� i � n:

Corollary 5.5 Let M 2n be a closed smooth 2n–manifold with a smooth locally standard T n–action
and the free part of the action is a trivial T n–bundle. Then the integral equivariant cohomology ring
H�T n.M

2n/ of M 2n is isomorphic to the topological face ring ZhM 2n=T ni.

Proof The orbit space Q DM 2n=T n is a smooth nice manifold with corners since the T n–action is
locally standard and smooth. Then Q is triangulable — by [25] — and hence all our theorems can be
applied to Q. In addition, using the characteristic function argument in Davis and Januszkiewicz [17] —
see also [27, Section 4.2] or [35] — we can prove that M 2n is a free quotient space of ZQ by a canonical
action of some torus. Then this corollary follows from Theorem 5.3.

Remark 5.6 The equivariant cohomology ring H�T n.M
2n/ in the above corollary was also computed by

Ayzenberg, Masuda, Park and Zeng [2, Proposition 5.2] under an extra assumption that all the proper
faces of M 2n=T n are acyclic. We leave it as an exercise for the reader to check that the formula for
H�T n.M

2n/ given in [2] is isomorphic to ZhM 2n=T ni.

6 Generalizations

Let Q be a nice manifold with corners with facets F.Q/D fF1; : : : ; Fmg. Observe that neither in the
construction of ZQ nor in the proof of Theorems 1.1 and 1.4 do we really use the connectedness of each
facet Fj . So we have the following generalization of ZQ.

Let J D fJ1; : : : ; Jkg be a partition of Œm� D f1; : : : ; mg, ie the Ji are disjoint subsets of Œm� with
J1[ � � � [Jk D Œm�. So @QD FJ1

[ � � � [FJk
. Moreover, we require J to satisfy

(55) for any 1� i � k, if j; j 0 2 Ji , then Fj \Fj 0 D¿.

From Q and the partition J, we can construct the following manifold.

Let fe1; : : : ; ekg be a unimodular basis of Zk . Let � W F.Q/! Zk be the map which sends all the facets
in FJi

to ei for every 1� i � k. Define

ZQ;J WDQ� .S
1/k=�;
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where .x; g/� .x0; g0/ if and only if xDx0 and g�1g0 2T�
x where T�

x is the subtorus of .S1/kDRk=Zk

determined by the linear subspace of Rk spanned by the set f�.Fj / j x 2 Fj g. There is a canonical action
of .S1/k on ZQ;J defined by

(56) g0 � Œ.x; g/�D Œ.x; g0g/�; x 2Q; g; g0 2 .S1/k :

If J0 D ff1g; : : : ; fmgg is the trivial partition of Œm�, then ZQ;J0
D ZQ.

Note that here fFJi
g play the role of facets fFj g in the definition of ZQ, but FJi

may not be connected.
Using the term defined in Davis [14], the decomposition of @Q into fFJi

g is called a panel structure
on Q and each FJi

is called a panel.

Remark 6.1 For a general partition J of Œm�, it is possible that Fj \ Fj 0 ¤ ¿ for some j; j 0 2 Ji .
Although the definition of ZQ;J still makes sense in the general setting, the orbit space of the .S1/k–
action on ZQ;J may not be Q (as a manifold with corners). It would be Q with some corners smoothed.
But for a general partition of Œm�, one can always reduce to the case where the condition (55) is satisfied
by smoothing the corners of the orbit space.

For any subset ! � Œk�D f1; : : : ; kg, let

F! D
[
i2!

FJi
; F¿ D¿; F\! D

\
i2!

FJi
; F\¿ DQ:

Theorem 6.2 Let Q be a nice manifold with corners with facets F1; : : : ; Fm. For any partition
JD fJ1; : : : ; Jkg of Œm�D f1; : : : ; mg,

†.ZQ;J/'
_
!�Œk�

†j!jC1.Q=F!/; Hp.ZQ;J/Š
M
!�Œk�

Hp�j!j.Q; F!/ for all p 2 Z:

Proof We can generalize the rim-cubicalization of Q in Section 2.1 as follows. For any face f of Q, let

I
J
f
D fi 2 Œk� j f � FJi

g � Œk�:

Then define

Of J
D f �

Y
i2I

J
f

Œ0; 1�.i/ �
Y

i2Œk�nI
J

f

1.i/; yQJ
D

[
f 2SQ

Of J
�Q� Œ0; 1�k :

By the same argument as in the proof of Lemma 2.1, we can show that yQJ with faces Of J is homeomorphic
to Q as a manifold with corners. The partition J of the facets of Q naturally induces a partition of the
corresponding facets of yQJ, also denoted by J. So we have Z yQJ;J

Š ZQ;J.

For any face f of Q, let

.D2; S1/
f
J WD f �

Y
i2I

J
f

D2.i/ �
Y

i2Œk�nI
J

f

S1.i/; .D2; S1/
Q
J WD

[
f 2SQ

.D2; S1/
f
J �Q� .D

2/k :
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There is a canonical .S1/k–action on .D2; S1/QJ induced from the canonical .S1/k–action onQ�.D2/k .
And parallel to Lemma 2.3, we can prove that there is an equivariant homeomorphism from .D2; S1/

Q
J

to Z yQJ;J
Š ZQ;J.

For any subset L� IJ
f

, let

.D2; S1/
.f;L/
J WD f �

Y
i2I

J
f
nL

D2.i/ �
Y

i2Œk�n.I
J

f
nL/

S1.i/:

We can translate the proof of Theorem 1.1 to obtain the desired stable decomposition of ZQ;JŠ .D
2; S1/

Q
J

by the following correspondence of symbols:

Theorem 1.1 �! Theorem 6.2

J � Œm� �! ! � Œk�

FJ �! F!

If � Œm� �! I
J
f
� Œk�

D2.j /; S
1
.j /; j 2 Œm� �! D2.i/; S

1
.i/; i 2 Œk�

.D2; S1/.f;L/ �! .D2; S1/
.f;L/
J

Remark 6.3 Theorem 6.2 is an analogue of [36, Theorem 1.3].

To describe the cohomology ring of ZQ;J, let

(57) R�Q;J WD
M
!�Œk�

H�.Q; F!/:

There is a graded ring structure dJ on R�Q;J defined as follows:

� If ! \!0 ¤¿, then H�.Q; F!/˝H�.Q; F!0/
dJ
�!H�.Q; F![!0/ is trivial.

� If !\!0 D¿, then H�.Q; F!/˝H�.Q; F!0/
dJ
�!H�.Q; F![!0/ is the relative cup product [.

To describe the equivariant cohomology ring of ZQ;J, let

kJ
hQi WD

M
!�Œk�

H�.F\! Ik/˝R
!
k ;

where the product on kJhQi is defined in the same way as khQi in Definition 1.6.

The following theorem generalizes Theorems 1.4 and 1.7. The proof is omitted since it is completely
parallel to the proof of these two theorems.

Theorem 6.4 LetQ be a nice manifold with corners with m facets F1; : : : ; Fm and let JD fJ1; : : : ; Jkg

be a partition of Œm�.
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� There is a ring isomorphism (up to a sign) from .R�Q;J;dJ/ to the integral cohomology ring
of ZQ;J. Moreover , we can make this ring isomorphism degree-preserving by shifting the degrees
of all the elements in H�.Q; F!/ up by j!j for every ! � Œk�.

� There is a graded ring isomorphism from the equivariant cohomology ring of ZQ;J with integral
coefficients to ZJhQi by choosing deg.xi /D 2 for all 1� i � k.

By combining the constructions in Theorems 4.4 and 6.2, we have the following definitions which provide
the most general setting for our study.

Let JD fJ1; : : : ; Jkg be a partition of Œm�D f1; : : : ; mg and let

.X;A/D f.Xi ; Ai ; ai /g
k
iD1;

where Xi and Ai are CW–complexes with a basepoint ai 2 Ai �Xi .

For any face f of Q, let

.X;A/fJ WD f �
Y
i2I

J
f

Xi �
Y

i2Œk�nI
J

f

Ai ; .X;A/QJ WD
[

f 2SQ

.X;A/fJ �Q�
Y
i2Œk�

Xi :

The following theorem generalizes Theorems 4.4 and 4.5.

Theorem 6.5 Let Q be a nice manifold with corners with facets F1; : : : ; Fm. Let

.X;A/D f.Xi ; Ai ; ai /g
k
iD1;

where each Xi is contractible and each Ai is either connected or is a disjoint union of a connected
CW–complex with its basepoint. Then for any partition JD fJ1; : : : ; Jkg of Œm�, there is a homotopy
equivalence

†..X;A/QJ /'
_
!�Œk�

†

�
Q=F! ^

^
i2!

Ai

�
:

In addition , there is a ring isomorphism� M
!�Œk�

zH�
�
Q=F! ^

^
i2!

Ai

�
;~
�
! zH�..X;A/QJ /;

where ~ is defined in the same way as in (42).

In particular, for .D;S/ D f.DniC1; Sni ; ai /g
k
iD1, we can describe the integral cohomology ring of

.D;S/QJ explicitly as follows. Define a graded ring structure d.D;S/J on R�Q;J according to .D;S/ by:

� If ! \!0 D¿ or ! \!0 ¤¿ but ni D 0 for all i 2 ! \!0, then

H�.Q; F!/˝H
�.Q; F!0/

d
.D;S/
J
���!H�.Q; F![!0/

is the relative cup product.
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� If ! \!0 ¤¿ and there exists ni � 1 for some i 2 ! \!0, then

H�.Q; F!/˝H
�.Q; F!0/

d
.D;S/
J
���!H�.Q; F![!0/

is trivial.

Theorem 6.6 Let Q be a nice manifold with corners with facets F1; : : : ; Fm. For any partition
JD fJ1; : : : ; Jkg of Œm� and .D;S/D f.DniC1; Sni ; ai /g

k
iD1, there is a homotopy equivalence

†..D;S/QJ /'
_
!�Œk�

†1C
P

i2! ni .Q=F!/;

and there is a ring isomorphism (up to a sign) from .R�Q;J;d
.D;S/
J / to the integral cohomology ring of

.D;S/QJ . Moreover , we can make this ring isomorphism degree-preserving by shifting the degrees of the
elements in H�.Q; F!/ for every ! � Œk�.

When .D;S/ D f.D1; S0; a0/gkiD1, we denote .D;S/QJ also by RZQ;J, which is the real analogue
of ZQ;J. Then we have the following corollary which generalizes Corollary 4.10 and Theorem 1.7.

Corollary 6.7 Let Q be a nice manifold with corners with facets F1; : : : ; Fm. Then for any partition
JD fJ1; : : : ; Jkg of Œm�,

†.RZQ;J/'
_
!�Œk�

†.Q=F!/; Hp.RZQ;J/Š
M
!�Œk�

Hp.Q; F!/ for all p 2 Z:

Furthermore , the integral cohomology ring of RZQ;J is isomorphic as a graded ring to the ring .R�Q;J;[/,
where [ is the relative cup product

H�.Q; F!/˝H
�.Q; F!0/

[
�!H�.Q; F![!0/ for all !;!0 � Œk�;

and there is a graded ring isomorphism from the equivariant Z2–cohomology ring of RZQ;J to ZJ
2hQi

by choosing deg.xi /D 1 for all 1� i � k.

The proofs of Theorems 6.5 and 6.6 and Corollary 6.7 are almost the same as their counterparts in
Sections 4 and 5, hence omitted.

For any partition JD fJ1; : : : ; Jkg of Œm�,

� we can think of ZQ;J as the quotient space of ZQ by the canonical action of an .m�k/–dimensional
subtorus T J of .S1/m determined by (see (1))

f�.Fj /��.Fj 0/ j j; j
0 belong to the same Ji for some 1� i � kg � ZmI

� similarly, we can think of RZQ;J as the quotient space of RZQ by the canonical action of a
subgroup of rank m� k in .Z2/m.
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Note that the canonical action of T J on ZQ may not be free. But when the action is free, the integral
equivariant cohomology ring of ZQ=T J D ZQ;J is isomorphic to ZhQi by Theorem 5.3. So, by
Theorem 6.4, ZJhQi is isomorphic as a ring to ZhQi in this case. But this ring isomorphism is not
obvious from the algebraic definition of ZJhQi and ZhQi.

Remark 6.8 For any partition JD fJ1; : : : ; Jkg of Œm� with k D dim.Q/, the ZQ;J and RZQ;J can be
considered as a generalization of the pull-back from the linear model — see [17, Example 1.15] — in the
study of quasitoric manifolds and small covers.
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Equivariant Seiberg–Witten–Floer cohomology

DAVID BARAGLIA

PEDRAM HEKMATI

We develop an equivariant version of Seiberg–Witten–Floer cohomology for finite group actions on
rational homology 3–spheres. Our construction is based on an equivariant version of the Seiberg–Witten–
Floer stable homotopy type, as constructed by Manolescu. We use these equivariant cohomology groups
to define a series of d–invariants dG;c.Y; s/ which are indexed by the group cohomology of G. These
invariants satisfy a Frøyshov-type inequality under equivariant cobordisms. Lastly, we consider a variety
of applications of these d–invariants: concordance invariants of knots via branched covers, obstructions
to extending group actions over bounding 4–manifolds, Nielsen realisation problems for 4–manifolds
with boundary and obstructions to equivariant embeddings of 3–manifolds in 4–manifolds.

57K31; 57K10, 57K41

1 Introduction

In this paper we develop an equivariant version of Seiberg–Witten–Floer cohomology for rational homology
3–spheres equipped with the action of a finite group. Our approach is modelled on the construction of a
Seiberg–Witten–Floer stable homotopy type due to Manolescu [49], which we now briefly recall. Let Y be
a rational homology 3–sphere and s a spinc–structure on Y . Given a metric g on Y , the construction of [49]
yields an S1–equivariant stable homotopy type SWF.Y; s; g/. The Seiberg–Witten–Floer cohomology of
.Y; s/ is then given (up to a degree shift) by the S1–equivariant cohomology of SWF.Y; s; g/:

HSW �.Y; s/D zH
�C2n.Y;s;g/

S1
.SWF.Y; s; g//;

where n.Y; s; g/ is a rational number given by a certain combination of eta invariants.

The stable homotopy type SWF.Y; s; g/ depends on the choice of metric, but only up to a suspension.
Given two metrics, g0 and g1, one obtains a canonical homotopy equivalence

(1-1) SWF.Y; s; g1/Š†
SF .fDsg/CSWF.Y; s; g0/;

where SF.fDsg/ denotes the spectral flow for the family of Dirac operators fDsg determined by a path
of metrics fgsg from g0 to g1. The rational numbers n.Y; s; g/ are defined in such a way that they split
the spectral flow in the sense that

(1-2) SF.fDsg/D n.Y; s; g1/�n.Y; s; g0/:

© 2024 MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution License 4.0 (CC BY).
Open Access made possible by subscribing institutions via Subscribe to Open.
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Hence we obtain a canonical isomorphism

zH
�C2n.Y;s;g1/

S1
.SWF.Y; s; g1//Š zH

�C2n.Y;s;g0/

S1
.SWF.Y; s; g0//:

This shows that the Seiberg–Witten–Floer cohomology HSW �.Y; s/ does not depend on the choice of
metric g.

By working in an appropriately defined S1–equivariant Spanier–Whitehead category in which suspension
by fractional amounts of C is allowed, Manolescu defined the Seiberg–Witten–Floer homotopy type of
.Y; s/ to be

SW.Y; s/D†�n.Y;s;g/CSWF.Y; s; g/:

This is independent of the choice of g by (1-1) and (1-2).

Now suppose that a finite group G acts on Y by orientation-preserving diffeomorphisms which preserve
the isomorphism class of s. Let g be a G–invariant metric on Y . Lifting the action of G to the associated
spinor bundle determines an S1 extension

1! S1!Gs!G! 1:

Manolescu’s construction of the stable homotopy type SWF.Y; s; g/ can be carried out Gs–equivariantly,
so that SWF.Y; s; g/may be promoted to aGs–equivariant stable homotopy type. This is analogous to the
construction in [50] of the Pin.2/–equivariant Seiberg–Witten–Floer stable homotopy type of .Y; s/ where
s is a spin–structure on Y . The main difference is that in our construction, the additional symmetries that
comprise the group Gs come from symmetries of Y rather than internal symmetries of the Seiberg–Witten
equations.

We define the G–equivariant Seiberg–Witten–Floer cohomology of .Y; s/ to be

HSW �G.Y; s/D
zH
�C2n.Y;s;g/
Gs

.SWF.Y; s; g//:

The right-hand side is independent of the choice of metric g by much the same argument as in the
S1–equivariant case.

We make some remarks concerning this construction.

(1) Throughout this paper we have chosen to work with cohomology instead of homology. This is simply
a matter of preference and we could just as well work with Seiberg–Witten–Floer homology groups.

(2) Instead of Borel equivariant cohomology, we could take co-Borel cohomology or Tate cohomology,
which correspond to the different versions of Heegaard Floer cohomology; see Lidman and Manolescu [45,
Corollary 1.2.4].

(3) In a similar fashion we can also define the G–equivariant Seiberg–Witten–Floer K–theory

KSW �G.Y; s/D
zK
�C2n.Y;s;g/
Gs

.SWF.Y; s; g//:

More generally we could use any generalised equivariant cohomology theory in which the Thom isomor-
phism holds.

Algebraic & Geometric Topology, Volume 24 (2024)
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(4) We have not attempted to construct a metric independent Gs–equivariant stable homotopy type. To
do this one would need to split the equivariant spectral flow SFGs.fDsg/ in the same way that n.Y; s; g/
splits the nonequivariant spectral flow, as in (1-2).

1.1 Main results

Throughout we work with cohomology with coefficients in a field F . To avoid the necessity of local
systems we assume that either F DZ=2Z, or that the order of G is odd (see Section 3.1). We now outline
the main properties of equivariant Seiberg–Witten–Floer cohomology.

Module structure HSW �G.Y; s/ is a graded module over H�Gs
(where for a group K we write H�K for

H�K.pt/). In particular if Gs is the trivial extension then HSW �G.Y; s/ is a graded module over H�G ŒU �,
where deg.U /D 2.

Theorem 1.1 (spectral sequence) There is a spectral sequence Ep;qr abutting to HSW �G.Y; s/ whose
second page is given by

E
p;q
2 DHp.BGIHSW q.Y; s//:

Theorem 1.2 (localisation) Suppose the extension Gs is trivial and choose a trivialisation Gs Š S
1�G.

Then H�Gs
Š H�G ŒU � and the localisation U�1HSW �G.Y; s/ of HSW �G.Y; s/ with respect to U is a free

H�G ŒU; U
�1�–module of rank 1.

L–spaces We say that Y is an L–space with respect to s and F if HSW �.Y; s/ is isomorphic to a free
F ŒU �–module of rank 1.

Theorem 1.3 Suppose that Gs is a split extension. If Y is an L–space with respect to s and F , then the
spectral sequence given in Theorem 1.1 degenerates at E2. Moreover ,

HSW �G.Y; s/ŠHSW
�.Y; s/˝F H

�
G :

Correction terms Suppose that Gs is a split extension. For each nonzero c 2H�G we obtain an invariant

dG;c.Y; s/ 2Q

which may be thought of as a generalisation to the equivariant setting of the d–invariant d.Y; s/. We also
set dG;0.Y; s/D�1.

Theorem 1.4 The equivariant d–invariants satisfy the following properties:

(1) dG;1.Y; s/� d.Y; s/, where 1 is the generator of H 0
G.pt/;

(2) dG;c1Cc2.Y; s/�maxfdG;c1.Y; s/; dG;c2.Y; s/g;

(3) dG;c1c2.Y; s/�minfdG;c1.Y; s/; dG;c2.Y; s/g;

(4) dG;c1.Y; s/C dG;c2.Y ; s/� 0 whenever c1c2 ¤ 0;

Algebraic & Geometric Topology, Volume 24 (2024)
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(5) if Y is an L–space with respect to s and F , then dG;c.Y; s/D d.Y; s/ for all c ¤ 0;

(6) dG;c.Y; s/ is invariant under equivariant rational homology cobordism.

We find it convenient to also define corresponding equivariant ı–invariants by setting

ıG;c.Y; s/D
1
2
dG;c.Y; s/:

Our primary motivation for considering the equivariant d–invariants is that they are necessary for the
formulation of our equivariant generalisation of Frøyshov’s inequality described below.

Cobordism maps Suppose that .W; s/ is a G–equivariant cobordism from .Y1; s1/ to .Y2; s2/ (see
Section 4.3 for the precise statement). Then W induces a morphism of graded H�Gs

–modules

SWG.W; s/ WHSW
�
G.Y2; s2/!HSW

�CbC.W /�2ı.W;s/
G .Y1; s1/

where ı.W; s/D 1
8
.c1.s/

2� �.W //.

Theorem 1.5 (equivariant Frøyshov inequality) Let W be a smooth , compact , oriented 4–manifold
with boundary and with b1.W /D 0. Suppose that G acts smoothly on W preserving the orientation and
a spinc–structure s. Suppose that the extension Gs is trivial. Suppose each component of @W is a rational
homology 3–sphere and that G sends each component of @W to itself. Let e 2H bC.W /

G be the image in
H�G.ptIF/ of the Euler class of any G–invariant maximal positive definite subspace of H 2.W IR/. Let
c 2H�G and suppose that ce ¤ 0.

(1) If @W D Y is connected , then

ı.W; s/� ıG;c.Y; sjY / and ıG;ce.Y ; sjY /� ı.W ; s/:

(2) If @W D Y1[Y2 has two connected components , then

ıG;ce.Y1; sjY1/C ı.W; s/� ıG;c.Y2; sjY2/:

Knot concordance invariants Let K be a knot in S3 and let Y D†2.K/ be the double cover of S3

branched over K. Then Y has an action of G D Z2 generated by the covering involution. Further, Y has
a spinc–structure t0 uniquely determined by the condition that it arises from a spin–structure. Set F DZ2.
Then H�G Š F ŒQ�, where deg.Q/D 1. For each j � 0, we define an invariant ıj .K/ 2 Z by setting

ıj .K/D 4ıZ2;Qj .†2.K/; t0/:

Let �.K/ and g4.K/ denote the signature and smooth 4–genus of K.

Theorem 1.6 The invariants ıj .K/ have the following properties:

(1) ıj .K/ is a knot concordance invariant ;

(2) ı0.K/� ı.K/, where ı.K/ is the Manolescu–Owens invariant [51];

(3) ıjC1.K/� ıj .K/ for all j � 0;
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(4) ıj .K/� �
1
2
�.K/ for all j � 0 and ıj .K/D�12�.K/ for j � g4.K/� 1

2
�.K/;

(5) ıj .�K/�
1
2
�.K/ for all j � 0 and ıj .�K/D 1

2
�.K/ for j � g4.K/C 1

2
�.K/;

(6) if †2.K/ is an L–space , then ıj .K/D ı.K/D�12�.K/ and ıj .�K/D ı.�K/D 1
2
�.K/ for all

j � 0.

In particular, if K is quasialternating, then †2.K/ is an L–space; see Ozsváth and Szabó [57]. So we
recover the main result of Lisca and Owens [47] that ı.K/D�1

2
�.K/ for quasialternating knots.

The concordance invariants ıj .K/ can also be used to strengthen the inequality g4.K/� 1
2
j�.K/j; see

Murasugi [52].

Theorem 1.7 For a knot K, let jC.K/ be the smallest positive integer such that ıj .K/D�12�.K/ and
j�.K/ the smallest positive integer such that ıj .�K/D 1

2
�.K/. Then

g4.K/�max
˚
�
1
2
�.K/C j�.K/;

1
2
�.K/C jC.K/

	
:

Corollary 1.8 If ı.K/ > �1
2
�.K/ and �.K/� 0, then

g4.K/�
1
2
j�.K/jC 1

Proof If ı.K/ > �1
2
�.K/, then ı0.K/� ı.K/ > �12�.K/, and thus jC.K/� 1. Hence

g4.K/�
1
2
�.K/C 1D 1

2
j�.K/jC 1:

One can obtain even more knot concordance invariants by considering higher order cyclic branched
covers; see Remark 6.7.

1.2 Applications

We outline here some of the applications of equivariant Seiberg–Witten–Floer cohomology. These are
considered in more detail in Section 7.

1.2.1 Nonextendable actions (Section 7.2) Let Y be a rational homology 3–sphere equipped with an
orientation-preserving action of G and let W be a smooth 4–manifold which bounds Y . The equivariant
d–invariants give obstructions to extending the action of G over W .

Example 1.9 The Brieskorn homology sphere Y D†.p; q; r/ where p, q and r are pairwise coprime is
the branched cyclic p–fold cover of the torus knot Tq;r . Let � W Y ! Y be a generator of the Zp–action
determined by this covering. For certain values of p, q and r it can be shown that Y bounds a contractible
4–manifold. For example, †.2; 3; 13/ bounds a contractible 4–manifold; see Akbulut and Kirby [2]. It
can be shown that � is smoothly isotopic to the identity; hence it follows that � can be extended as a
diffeomorphism over any 4–manifold bounded by Y . On the other hand we show in Proposition 7.2
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that if p is prime then ıZp;1.Y; s/D��.Y / is minus the Casson invariant of Y (where s is the unique
spinc–structure on Y ), which is nonzero. We further show that the nonvanishing of ıZp;1.Y; s/ implies
that � cannot be extended as a smooth Zp–action to any contractible 4–manifold bounded by Y . This
partially recovers the nonextendability results of Anvari and Hambleton [6; 7] for Brieskorn homology
3–spheres bounded by contractible 4–manifolds.

On the other hand, our nonextendability result also holds in situations not covered by Anvari and
Hambleton. Suppose now that Y D †.p; q; r/ bounds a rational homology 4–ball W . For example,
Fintushel and Stern showed that †.2; 3; 7/ bounds a rational homology 4–ball, although it does not bound
an integral homology 4–ball [26]. More examples can be found in Akbulut and Larson [4] and Şavk [21].
We show in Section 7.2 that the nonvanishing of ıZp;1.†.p; q; r//, where p is prime, implies that the
Zp–action cannot be extended to any rational homology 4–ball W bounded by Y , provided that p does
not divide the order of H 2.W IZ/.

1.2.2 Realisation problems (Section 7.3) Let W be a smooth 4–manifold with boundary an integral
homology sphere Y . Suppose that a finite groupG acts onH 2.W IZ/ preserving the intersection form. We
say that the action of G on H 2.W IZ/ can be realised by diffeomorphisms if there is a smooth orientation-
preserving action of G on W inducing the given action on H 2.W IZ/. The equivariant d–invariants give
obstructions to realising such actions by diffeomorphism. This extends the nonrealisation results of the
first author [10; 11] for closed 4–manifolds to the case of 4–manifolds with nonempty boundary.

Example 1.10 Suppose that b1.W /D 0 and that H 2.W IZ/ has no 2–torsion and even intersection form.
Suppose that Y is an L–space. Suppose that an action of G D Zp on H 2.W IZ/ is given, where p is
prime and that the subspace of H 2.W IR/ fixed by G is negative definite. If 1

8
�.W / < �ı.Y; s/ (where

s is the unique spinc–structure on Y ) then the action of Zp on H 2.W IZ/ is not realisable by a smooth
Zp–action on W . Note that we are not making any assumptions about the action of Zp on the boundary.

1.2.3 Equivariant embeddings of 3–manifolds in 4–manifolds (Section 7.4) Let Y be a rational
homology 3–sphere equipped with an orientation-preserving action of G. By an equivariant embedding of
Y into a 4–manifold X , we mean an embedding Y !X such that the action of G on Y extends over X .

Example 1.11 Let Y D†.2; 2s� 1; 2sC 1/ where s is odd, equipped with the involution � obtained
from viewing Y as the branched double cover †2.T2s�1;2sC1/. Then Y embeds in S4; see Budney
and Burton [13, Theorem 2.13]. On the other hand, ıj .Y; s/ ¤ 0 for some j . We will show that the
nonvanishing of this invariant implies that Y cannot be equivariantly embedded in S4.

It is known that every 3–manifold Y embeds in the connected sum #n.S2 �S2/ of n copies of S2 �S2

for some sufficiently large n [1, Theorem 2.1]. Aceto, Golla and Larson define the embedding number
".Y / of Y to be the smallest n for which Y embeds in #n.S2 �S2/. Here we consider an equivariant
version of the embedding number. To obtain interesting results we need to make an assumption on the
kinds of group actions allowed.
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Definition 1.12 Let G D Zp D h�i where p is a prime number. We say that a smooth, orientation-
preserving action of G on X D #n.S2 �S2/ is admissible if H 2.X IZ/� D 0, where

H 2.X IZ/� D fx 2H 2.X IZ/ j �.x/D xg:

We define the equivariant embedding number ".Y; �/ of .Y; �/ to be the smallest n for which Y embeds
equivariantly in #n.S2 �S2/ for some admissible Zp–action on #n.S2 �S2/, if such an embedding
exists. We set ".Y; �/D1 if there is no such embedding.

Example 1.13 Let Y D †.2; 3; 6nC 1/D †2.T3;6nC1/ and equip Y with the covering involution � .
We show that

2n� ".†.2; 3; 6nC 1/; �/� 12n:

Suppose that n is odd. Then from [1, Proposition 3.5], the (nonequivariant) embedding number of
†.2; 3; 6nC 1/ is 10. In particular, we see that ".†.2; 3; 6nC 1/; �/ > ".†.2; 3; 6nC 1// for all odd
n > 5. We also show that

".†.2; 3; 7/; �/D 12;

whereas ".†.2; 3; 7//D 10.

1.3 Comparison with other works

In [30], Hendricks, Lipshitz and Sarkar introduce equivariant versions of several types of Floer homology,
mostly focusing on the case that the group is Z2. In particular they define a Z2–equivariant version
ofHF�, which is a module overH�

S1�Z2
.ptIZ2/DZ2ŒU;Q�. This construction shares many similarities

with the equivariant Seiberg–Witten–Floer cohomology constructed in this paper, such as a localisation
isomorphism and a spectral sequence relating the equivariant and ordinary Floer homologies. In fact, it
seems reasonable to conjecture that our constructions are isomorphic.

In [5], Alfieri, Kang and Stipsicz consider a Z2–equivariant Heegaard Floer homology HFB�.K/ for a
branched double cover Y D†2.K/ of a knot K, constructed in a manner similar to involutive Heegaard
Floer homology — see Hendricks and Manolescu [31] — except that the involution arises from the covering
involution on Y . These groups are modules over the ring Z2ŒU;Q�=.Q2/. From this group they obtain
knot concordance invariants Nı.K/; ı.K/. A similar approach was taken by Dai, Hedden and Mallick [22]
to obtain �–complexes — see Hendricks, Manolescu and Zemke [32, Definition 8.1] — associated to
involutions on Y . Since Z2ŒU;Q�=.Q2/DH�S1�Z

.pt IZ2/, we suspect that the group HFB�.K/ may
be isomorphic to the Z–equivariant Seiberg–Witten–Floer homology of †2.K/.

In [46, Remark 3.1], Lidman and Manolescu define equivariant Seiberg–Witten–Floer homology in the
special case that G acts freely on Y . Their construction coincides with ours in such cases.

1.4 Structure of the paper

In Section 2 we recall the construction of Seiberg–Witten–Floer spectra using finite-dimensional approx-
imation and the Conley index. In Section 3 we extend this construction to the G–equivariant setting,
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arriving at the construction of the G–equivariant Seiberg–Witten–Floer cohomology in Section 3.4. In
the remainder of Section 3 we introduce the equivariant d–invariants and establish their basic properties.
Section 4 is concerned with the behaviour of equivariant Seiberg–Witten–Floer cohomology and the
d–invariants under equivariant cobordism. In Section 5 we specialise to the case that G is a cyclic
group of prime order. In Section 6 we consider the case of branched double covers of knots with their
natural involution to obtain knot concordance invariants. Finally in Section 7 we carry out some explicit
computations of d–invariants and consider various applications.

2 Seiberg–Witten–Floer spectra

2.1 Seiberg–Witten trajectories

Throughout we let Y be a rational homology 3–sphere, ie Y is a compact, oriented, smooth 3–manifold
with b1.Y /D 0. References for the material in this section are [45; 49].

Let g be a Riemannian metric on Y and let s be a spinc–structure with associated spinor bundle S . Let
� W T Y ! End.S/ denote Clifford multiplication, satisfying �.v/�.w/C �.w/�.v/ D �2g.v;w/. The
spinor bundle S is equipped with a Hermitian metric h � ; � i which we take to be antilinear in the first
variable. Let su.S/ be the Lie algebra bundle of trace-free skew-adjoint endomorphisms of S and sl.S/

the Lie algebra bundle of trace-free endomorphisms of S . Then � induces an isomorphism � WT Y ! su.S/

which extends by complexification to an isomorphism � W T YC! sl.S/ satisfying �. Nv/D��.v/�. Using
the metric g to identify T Y and T �Y we will also view � as a map � W T �Y ! su.S/. We extend � to
2–forms by the rule �.v^w/D 1

2
Œ�.v/; �.w/�. It follows that �.�/D��.��/ for any 2–form �. Define

a Hermitian inner product on su.S/ by ha; bi D 1
2

tr.a�b/. Then for any tangent vectors u and v, we
have h�.u/; �.v/i D g. Nu; v/. Define a map

� W S �S ! T �YC

by setting
�.�;  /D ��1.�˝ �/0;

where .�˝ �/0 is the trace-free part of �˝ �. That is, if � is any spinor, then

.�˝ �/.�/D �h ; �i � 1
2
h ; �i�:

Then it follows that
�. ; �/D��.�;  /; �.a ; b�/D a Nb�. ; �/:

In particular, �.�; �/ is imaginary and �.c�; c�/D jcj2�.�; �/. We also have the identity

h�.�; �/; vi D 1
2
h�; �.v/�i

for all spinors � and vectors v.
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Let LD det.S/ be the determinant line bundle of S . Let �.L/ denote the space of U.1/–connections
on L, which is an affine space over i�1.Y /. We will write such a connection as 2A. Then 2A determines
a spinc.3/–connection on S whose u.1/ part is A and whose spin.3/ part is the Levi-Civita connection.
Abusing terminology, we will refer to A as a spinc–connection.

Given a spinc–connection A, we let DA denote the associated Dirac operator on S . Fix a reference
spinc–connection A0. Then we may write AD A0C a for some a 2 i�1.Y /. It follows that

DA. /DDA0Ca. /DDA0. /C �.a/ :

Since b1.Y / D 0, it follows that L admits a flat connection. We will assume that A0 defines a flat
connection on L.

We define the configuration space of Y to be

C.Y /D �.L/��.S/:

C.Y / depends on g and s but we omit this from the notation. C.Y / is an affine space modelled on
i�1.Y /˚�.S/. In particular, the tangent space T.A;�/C.Y / to any point .A; �/ 2 C.Y / can naturally
be identified with i�1.Y /˚�.S/. There is a natural metric on i�1.Y /˚�.S/, the L2–metric

h.a1; �1/; .a2; �2/iL2 D�

Z
Y

a1 ^�a2C

Z
Y

Reh�1; �2i dvolY :

This defines a (constant) Riemannian metric on C.Y /. We will need to work with Sobolev completions.
Given a flat reference spinc–connection A0, Sobolev norms are defined using A0 and g. Fix an integer
k � 4. Later we will work with the L2

kC1
–completion of C.Y / and L2

kC2
–gauge transformations.

Having fixed a reference connection A0, we identify C.Y / with i�1.Y /˚ �.S/. Thus an element
.A; �/ 2C.Y / will be identified with .a; �/ 2 i�1.Y /˚�.S/, where ADA0Ca. To simplify notation,
we will write Da in place of DA0Ca.

The Chern–Simons–Dirac functional L W C.Y /!R (with respect to A0) is defined as

L.a; �/D
1

2

�Z
Y

h�;Da�i dvolY �
Z
Y

a^ da

�
:

The gauge group GD C1.Y; S1/ acts on C.Y / by

u � .a; �/D .a�u�1du; u ��/:

Observe that Da�u�1du.u�/D uDa�, so

hu�;Da�u�1du.u�/i D hu�; uDa�i D h�;Da�i:

It follows that L is gauge invariant and we can regard L as a function on the quotient space C.Y /=G. The
goal of Seiberg–Witten–Floer theory is to construct some sensible notion of Morse homology of L on
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C.Y /=G. Consider the formal L2–gradient of L; that is, the function grad.L/ W C.Y /! i�1.Y /˚�.S/

such that
hgrad.L/.a; �/; .a0; �0/iL2 D

d

dt

ˇ̌̌
tD0

�
L.a; �/C t .a0; �0/

�
for all .a; �/ 2 C.Y / and all .a0; �0/ 2 i�1.Y /˚�.S/. A short calculation gives

grad.L/D .�daC �.�; �/;Da�/:

A critical point of L is a point where grad.L/ vanishes. So .a; �/ is a critical point if and only if it
satisfies

�daC �.�; �/D 0; Da� D 0:

These are the 3–dimensional Seiberg–Witten equations.

A trajectory for the downwards gradient flow is a differentiable map x WR! L2
kC1

.C.Y // such that

d

dt
x.t/D�grad.L/.x.t//:

If x.t/D .a.t/; �.t// 2 L2
kC1

.Y; iT �Y ˚S/, then

d

dt
a.t/D��da.t/� �.�.t/; �.t//;

d

dt
�.t/D�Da.t/�.t/:

A key observation is that such trajectories can be reinterpreted as solutions of the 4–dimensional Seiberg–
Witten equations on the cylinder X DR�Y .

Definition 2.1 A Seiberg–Witten trajectory x.t/D .a.t/; �.t// is said to be of finite type if both L.x.t//

and k�.t/kC0 are bounded functions of t .

2.2 Restriction to the global Coulomb slice

Define the global Coulomb slice (with respect to A0) to be the subspace

V D Ker.d�/˚�.S/� C.Y /:

Given .a; �/ 2 C.Y /, there exists an element of V which is gauge equivalent to .a; �/, namely

.a� df; ef �/

where d�.a� df / D 0, so �f D d�.a/. If we impose the condition
R
Y f dvolY D 0, then there is a

unique solution to these equations given by f DGd�a, where G is the Green’s operator for the Laplacian
�D dd� on functions.

We have a globally defined map … W C.Y /! V , called the global Coulomb projection,

….a; �/D .a� df; ef �/

where �f D d�.a/ and
R
Y f dvolD 0.
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Restricting to the global Coulomb slice V uses up all of the gauge symmetry except for the S1 subgroup
of constant gauge transformations. Instead of working on C.Y / with full gauge symmetry, we work on V
with S1 symmetry.

As b1.Y / D 0, every map u W Y ! S1 can be written as u D ef for some f W Y ! iR. Moreover,
f is unique up to addition of an integer multiple of 2�i . We define G0 to be the subgroup of gauge
transformations of the form u D ef for some f W Y ! iR with

R
Y f dvol D 0. It is easy to see that

GD G0 �S
1.

We have that G0 acts freely on C.Y / and the quotient space can be identified with V . This determines a
metric Qg on V as follows. Take the restriction of the L2–metric on C.Y / to the subbundle of the tangent
bundle orthogonal to the gauge orbits. This construction is G0–invariant and descends to a metric Qg on V .

The Chern–Simons–Dirac functional L is gauge invariant; hence the gradient grad.L/ is orthogonal to
the gauge orbits. It follows that the projection of grad.L/ to V coincides with taking the gradient of LjV

with respect to Qg. So the trajectories of grad.L/ on C.Y / project to the trajectories of LjV , where the
gradient of LjV is taken using the metric Qg. Thus the trajectories on V have the form

d

dt
.a.t/; �.t//D .�� da� �.�; �/;�Da�/� .�df; f �/

for a function f W Y ! iR. The function f is uniquely determined by the conditions that
R
Y f dvolY D 0

and that �daC �.�; �/� df is in the kernel of d�. Hence df D .1��/�.�; �/, where � denotes the
L2 orthogonal projection to Ker.d�/. We have that

d

dt
.a.t/; �.t//D .�� da���.�; �/;�Da� �f �/D�.l C c/.a; �/;

where
l.a; �/D .�da;D�/

is the linear part and
c.a; �/D .��.�; �/; �.a/�Cf �/

is given by the nonlinear terms.

Let � denote the gradient of LjV with respect to Qg. Then �D l C c extends to a map

�D l C c W VkC1! Vk;

where Vk denotes the L2
k

–Sobolev completion of V . The map l is a linear Fredholm operator. Using
Sobolev multiplication and an estimate on the unique solution to df D .1��/�.�; �/,

R
Y f dvolY D 0,

it follows that c viewed as a map VkC1! VkC1 is continuous. Hence c W VkC1! Vk is compact. The
flow lines of � on V will be called Seiberg–Witten trajectories in the Coulomb gauge. We say that such
a trajectory x.t/D .a.t/; �.t// is of finite type if L.x.t// and k�.t/kC0 are bounded independent of t .
Clearly the finite type Seiberg–Witten trajectories in the Coulomb gauge are precisely the projection to V
of the Seiberg–Witten trajectories in C.Y / of finite type.
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2.3 Finite-dimensional approximation

Let V �
�

denote the direct sum of all eigenspaces of l in the range .�; �� and let Qp�
�

be the L2–orthogonal
projection from V to V �

�
. Note that V �

�
is a finite-dimensional subspace of V . For technical reasons we

replace the projections Qp�
�

with smoothed out versions

p
�

�
D

Z 1

0

�.�/ Qp
���

�C�
d�

where � W R! R is smooth, nonnegative, nonzero precisely on .0; 1/ and
R

R �.�/d� D 1. This is to
make p�

�
vary continuously with � and �. The reason for doing this is to show that the Conley index is

independent of the choices of � and �, up to a suspension. This is achieved by continuously increasing
or decreasing � and � to get a continuous family of flows and using homotopy invariance of the Conley
index under continuous deformation of the flow.

Consider the gradient flow equation

d

dt
x.t/D�.l Cp

�

�
c/x.t/;

where x WR! V
�

�
. We call this an approximate Seiberg–Witten trajectory.

Let B.R/ denote the open ball of radius R in L2
kC1

.V /. Using the a priori estimates for the Seiberg–
Witten equations, it can be shown that there exists an R>0 such that all the finite type trajectories of lCc
are in B.R/ [49, Proposition 1]. This boundedness property does not necessarily hold for approximate
trajectories, since the crucial estimates that hold for the Seiberg–Witten equations do not apply to the
approximate trajectories. However, we have the following result which acts as a kind of substitute:

Proposition 2.2 [49, Proposition 3] For any �� and � sufficiently large , if an approximate trajectory
x WR! L2

kC1
.V

�

�
/ satisfies x.t/ 2 B.2R/ for all t , then in fact x.t/ 2 B.R/ for all t .

This result will allow us to construct the Seiberg–Witten–Floer homotopy type of .Y; s/ using Conley
indices.

2.4 The Conley index

Suppose we have a 1–parameter group f'tg of diffeomorphisms of an n–dimensional manifold M (not
necessarily compact). The example to keep in mind is the gradient flow of a Morse function. Given a
compact subset N �M , the invariant set of N is

Inv.N; '/D fx 2N j 't .x/ 2N for all t 2Rg:

A compact subsetN �M is called an isolating neighbourhood if Inv.N; '/� intN . An isolated invariant
set is a subset S �M such that S D Inv.N; '/ for some isolating neighbourhood. Note that S must be
compact since it is a closed subset of N and N is required to be compact.
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Definition 2.3 Let S be an isolated invariant set. An index pair .N;L/ for S is a pair of compact sets
L�N �M such that

� Inv.N �L; '/D S � int.N �L/;

� L is an exit set for N , that is, for all x 2N , if there exists t > 0 such that 't .x/ is not in N , then
there exists � with 0� � < t with '� .x/ 2 L;

� L is positively invariant in N , that is, if x 2L and t > 0 and such that 's.x/ 2N for all 0� s � t ,
then 's.x/ 2 L for all 0� s � t .

Any isolated invariant set S admits an index pair .N;L/. The Conley index of S is the based homotopy
type

I.S/D .N=L; ŒL�/:

The Conley index is independent of the choice of index pair .N;L/ in a strong way. Namely for any
two pairs .N1; L1/ and .N2; L2/, there is a canonical homotopy equivalence N1=L1 Š N2=L2. The
composition of two such canonical homotopy equivalences N1=L1 Š N2=L2 and N2=L2 Š N3=L3
coincides up to homotopy with the canonical homotopy equivalence N1=L1 ŠN3=L3 (one says that the
collection of Conley indices N=L forms a connected simple system). By abuse of terminology, if .N;L/
is an index pair for S we say that I DN=L is “the” Conley index of S .

Example 2.4 Consider a Morse function with critical point of index p, say

f .x1; : : : ; xn/D
1
2
.�x21 � � � � � x

2
p C x

2
pC1C � � �C x

2
n/:

The negative gradient of f using the Euclidean metric is

�grad.f /.x/D .x1; : : : ; xp;�xpC1; : : : ;�xn/:

It follows that the downwards gradient flow is given by

't .x/D .e
tx1; : : : ; e

txp; e
�txpC1; : : : ; e

�txn/:

Let S D f0g be the critical point. This is an isolated invariant set. In fact, the only invariant point of ' is
the origin, so we could take N DDp �Dn�p as an isolating neighbourhood (where Dj is the closed
j–dimensional unit disc). Then L D Sp�1 �Dn�p is an exit set for N . It is easy to see that .N;L/
satisfies the condition for an index pair for S . The Conley index is I.S/DDp�Dn�p=.Sp�1�Dn�p/,
which is homotopy equivalent to Sp, a p–dimensional sphere.

Example 2.5 If M is a compact manifold and ' is a Morse–Smale gradient flow on M , then the set S
of all critical points and all flow lines between them is an isolated invariant set. The reduced homology of
I.S/ is known to be isomorphic to the homology of M .

On the other hand, if M is noncompact, then we cannot take S to be all critical points of M and all flow
lines starting or terminating at a critical point, because there could be flow lines going off to �1 or
coming in from C1 and then S would not be compact.
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We also need the equivariant Conley index. Let G be a compact Lie group acting smoothly on M ,
preserving a flow ' and an isolated invariant set S . It turns out that one can find a G–invariant index
pair .N;L/ for S and one can define the G–equivariant Conley index to be the pointed G–equivariant
homotopy type

IG.S/D .N=L; ŒL�/:

It can be shown that this is well defined, up to G–equivariant homotopy equivalence. Moreover IG.S/
has the based homotopy type of a finite G–CW complex.

Example 2.6 Consider again the example of the Morse function on Rn given by

f .x1; : : : ; xn/D
1
2
.�x21 � � � � � x

2
p C x

2
pC1C � � �C x

2
n/:

Now suppose that G is a compact Lie group which acts linearly on Rn preserving f . Note that f defines
an O.n�p; p/–structure on Rn and the fact that G preserves f just means that the action of G on Rn

factors through a homomorphism G!O.n�p; p/. As G is compact, we may as well assume (after a
linear change of coordinates) that G maps to the maximal compact subgroup O.n�p/�O.p/. So we
can decompose Rn as

Rn D VC˚V�;

where VC and V� are real orthogonal representations of G of dimensions n�p and p respectively. Once
again, take S D f0g as our isolated invariant set. As our Conley index, we can take N DD.V�/�D.VC/
and LD S.V�/�D.VC/; hence

IG.S/DD.V�/�D.VC/=S.V�/�D.VC/ŠD.V�/=S.V�/Š .V�/
C;

where .V�/C is the one-point compactification of V�. We see that the action of G on the Conley index is
determined by the representation of G on the subspace of the tangent space at the critical point in the
direction of the negative eigenvalues of the Hessian of f .

Let G and H be compact Lie groups and suppose that G�H acts smoothly on M . Suppose that f'tg is a
G�H–invariant flow. Then G acts smoothly on the submanifold MH and the restriction of f'tg defines
a G–invariant flow on MH . In such a situation we can consider the relation between G�H–equivariant
Conley indices for the flow on M and G–equivariant Conley indices for the restriction of the flow to MH .

Proposition 2.7 Let G �H act smoothly on M , preserving a flow f'tg, and let .N;L/ be a G�H–
equivariant index pair for an isolated invariant set S D Inv.A/. Then .NH ; LH / is a G–equivariant index
pair for the isolated invariant set SH D Inv.AH /. Moreover , .N=L/H ŠNH=LH .

Proof First note that AH is compact because A is compact. Moreover,

Inv.AH /D fa 2 AH j 't .a/ 2 AH for all tg D Inv.A/\AH D S \AH D SH :
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Let M be a topological space and let P;Q �M be subspaces. Give Q the induced topology. Then

intM .P /\QD
� [
U�P open inM

U

�
\QD

[
U�P open inM

.U \Q/� intQ.P \Q/:

Applying this to P D A and QDMH , we get

intM .A/\MH
� intMH .AH /:

Then since S � intM .A/ by the assumption that A is an isolating neighbourhood, it follows that

SH � intM .A/\MH
� intMH .AH /:

So AH is an isolating neighbourhood in MH for SH .

Now let .N;L/ be an index pair for S . So N and L are compact and L�N . This implies that NH and
LH are compact and LH �NH . Next, since

Inv.N �L/D S � intM .N �L/;

it follows that

Inv.NH
�LH /D SH D S \MH

� intM .N �L/\MH

� intMH ..N �L/\MH /D intMH .NH
�LH /:

We verify that LH is an exit set for NH . Let x 2NH and suppose 't .x/ …NH for some t > 0. Then
it follows that 't .x/ … N , for if 't .x/ 2 N , then it would imply that 't .x/ 2 N \MH D NH , since
't preserves MH . But L is an exit set for N , so there exists � 2 Œ0; t/ with '� .x/ 2 L. It follows that
'� .x/ 2 L\M

H D LH . Hence LH is an exit set for NH .

We check that LH is positively invariant in NH . Suppose x 2 LH and there exists a t > 0 for which
's.x/ 2N

H for all s 2 Œ0; t �. Then since L is positively invariant in N , it follows that 's.x/ 2 L for all
s 2 Œ0; t �. Hence 's.x/ 2 L\MH D LH for all s 2 Œ0; t �.

We have verified that .NH ; LH / is an index pair for SH . Moreover it is straightforward to check that
.N=L/H DNH=LH .

2.5 Equivariant Spanier–Whitehead category

In this section we recall the construction of the category C from [49], which is an S1–equivariant version
of the Spanier–Whitehead category. In Section 3.3 we will modify this construction to accommodate a
finite group action on Y .

We work with pointed topological spaces with a basepoint-preserving action of S1. The objects of C are
triples .X;m; n/, where X is a pointed topological space with S1–action, and m; n 2 Z.1 We further

1In [49] n is allowed to take on rational values. This is needed to construct a Seiberg–Witten–Floer spectrum which does not
depend on the choice of metric. For our purposes it suffices to consider only integral values of n.
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require that X has the S1–homotopy type of an S1–CW complex, which holds for Conley indices on
manifolds. The set of morphisms between two objects .X;m; n/ to .X 0; m0; n0/ will be denoted by
f.X;m; n/; .X 0; m0; n0/gS1 and is defined to be

f.X;m; n/; .X 0; m0; n0/gS1 D colimŒ.Rk˚Cl/C ^X; .RkCm�m
0

˚ClCn�n0/C ^X 0�S1 ;

where Œ � ; � �S1 denotes the set of S1–equivariant homotopy classes and the colimit is taken over all k and
l such that k �m0�m and l � n0�n. The maps that define the colimit are given by suspensions where
we smash on the left and for any topological space Z, we let ZC denote the one-point compactification
with its obvious basepoint.

Any pointed space X with S1–action defines an object of C, namely .X; 0; 0/. We often simply write
this as X . For any finite-dimensional representation E of S1, we let †E denote the reduced suspension
operation

†EX DEC ^X:

This operation extends to C by taking †E .X;m; n/D .†EX;m; n/. We are mainly interested in the case
that E is a real vector space with trivial S1–action, or E is a complex vector space with S1 acting by
scalar multiplication. If E is a real vector space with trivial action, then one finds that

†E .X;m; n/Š .X;m� dimR.E/; n/:

The isomorphism depends on a choice of isomorphism E ŠRdimR.E/. Up to homotopy there are two
choices since GL.E;R/ has two components. If E is a complex vector space and S1 acts by scalar
multiplication, then

†E .X;m; n/Š .X;m; n� dimC.E//:

The isomorphism is unique up to homotopy as GL.E;C/ is connected. We can define desuspension by a
real vector space E with trivial S1–action as

†�E .X;m; n/D ..E/C ^X;mC 2 dimR.E/; n/:

Then†�E†EZŠZ by an isomorphism which is canonical up to homotopy. We can define desuspension
by a complex vector space E with S1 acting by scalar multiplication by

†�E .X;m; n/D .X;m; nC dimC.E//:

Then †�E†EZ ŠZ by an isomorphism which is canonical up to homotopy.

For Z D .X;m; n/ 2 C, we define the reduced equivariant cohomology of Z to be

zH
j

S1
.Z/D zH

jCmC2n

S1
.X/:

The cohomology is well defined as a consequence of the Thom isomorphism.
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2.6 Seiberg–Witten–Floer cohomology

Consider as before a rational homology 3–sphere Y and a spinc–structure s. Let R > 0, � and � be as
in Proposition 2.2. We want to take the Conley index of the set of all critical points in B.R/ and flow
lines between them which lie in B.R/ for all time for the approximate Seiberg–Witten flow l C p

�

�
c.

The problem is that there could be trajectories that go to infinity in a finite amount of time. Hence we
do not have a flow f'tg in the sense of a 1–parameter group of diffeomorphisms. To get around this
issue, let u�

�
be a compactly supported smooth cutoff function which is identically 1 on B.3R/. For

consistency purposes we assume that u�
�
D u

�0

�0
jV �
�

for �0 � � and �0 � �. One way of doing this is to
take u�

�
.v/D �.kvk/, where � is smooth, compactly supported and �.t/D 1 for t < 3.

For each � and �, the vector field u�
�
.l Cp

�

�
c/ is compactly supported, so it generates a well-defined

flow '
�

�;t
on V �

�
. Since u�

�
D 1 on B.2R/, Proposition 2.2 still applies to the trajectories of u�

�
.lCp

�

�
c/.

It follows that

Inv.V �
�
\B.2R//D S

�

�
;

where S�
�

is the set of critical points and flow lines between critical points for the approximate Seiberg–
Witten flow lCp

�

�
c which lie in B.R/. Therefore S�

�
is an isolated invariant set. Moreover, S1 preserves

the approximate flow; hence we may take the S1–equivariant Conley index

I
�

�
D IS1.S

�

�
/:

This is an S1–equivariant homotopy type. However it is not quite an invariant of .Y; s/ because it depends
on the choice of metric g as well as the values of �, � and R. Note that it is independent of the choice of
u
�

�
because of the assumption that u�

�
D 1 on B.3R/. To get a genuine invariant we must understand

how I
�

�
changes as we vary these parameters.

Let �� and �� satisfy Proposition 2.2. Suppose that �0 � �� �� and �0 � �� ��. We wish to compare
the Conley indices I�

�
, I�

0

�
and I�

�0
. In other words, what happens if we increase either � or ��, staying

in the range where � and �� are sufficiently large.

We use the following invariance property of the Conley index: Suppose we have a family f't .s/g of flows
depending continuously on s 2 Œ0; 1�. Suppose that a fixed compact set A is an isolating neighbourhood
for all s 2 Œ0; 1� and let S.s/D Inv.A; 't .s//. Then I.S0; 't .0//Š I.S1; 't .1// by a canonical homotopy
equivalence.

Consider increasing � to �0. The finite energy trajectories of l Cp�
�
cp
�

�
in V �

0

�
must actually lie in V �

�
.

Therefore AD B.2R/\V �
0

�
is an isolating neighbourhood for S�

�
in V �

0

�
. Let �.s/D .1� s/�C s�0

for s 2 Œ0; 1� and let z'�.s/
�

denote the flow of u�.s/
�

.l Cp�.s/
�

cp�.s/
�

/ on V �
0

�
. Then for each s 2 Œ0; 1�,

A is an isolating neighbourhood for S�.s/
�

in V �
0

�
with respect to the flow z'�.s/

�
. Hence

Inv.z'�
�
; A/Š Inv.z'�

0

�
; A/D I

�0

�
:
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But z'� is easily seen to be homotopic to the product of the flow of u�
�
.lCp

�

�
c/ on V �

�
with a linear flow

on W generated by l jW , where W is the orthogonal complement of V �
�

in V �
0

�
. The Conley index of a

product of flows is just the smash product of Conley indices. Combined with Example 2.6, we see that

Inv.z'�
�
; A/Š I

�

�
^W C� ;

where W� is the part of W spanned by negative eigenvalues of l . But W is contained in the positive
eigenvalues of l , so W� D 0 and hence

I
�0

�
Š I

�

�
:

Now consider decreasing � to �0. An identical argument to the one above gives

I
�

�0
Š I

�

�
^W C� ;

where W is the orthogonal complement of V �
�

in V �
�0

. In this case W is spanned by negative eigenspaces
of l , so W� DW D V ��0 and

I
�

�0
Š I

�

�
^ .V ��0/

C:

This implies that
†�V

0
� I

�

�

does not depend on the values of � and � (provided � and �� are sufficiently large).

Definition 2.8 Given .Y; s/ and a metric g, we set

SWF.Y; s; g/D†�V
0
�
.g/I

�

�
.g/

for suitably chosen �, � and R.

We have established that the homotopy type of SWF.Y; s; g/ does not depend on the choices of � and �,
or more precisely, any two choices of � and � are related by a canonical homotopy equivalence. One
also checks that it does not depend on the choice of R. So up to homotopy, SWF.Y; s; g/ depends only
on Y , s and g.

Next we consider varying the metric g. Consider a smooth homotopy gs for s 2 Œ0; 1� joining two metrics
g0 and g1, which is constant near s D 0. Assuming that the gs are all sufficiently close to each other in a
suitable topology, we can arrange that there exists R, �� and �� such that Proposition 2.2 is true for all
s 2 Œ0; 1� and all � and � with �� �� and �� ��. This suffices, as compactness of Œ0; 1� implies that
any smooth path gs can be broken up into finitely many subpaths over which this assumption holds.

We assume that there exists some � < �� and � > �� such that � and � are not eigenvalues of ls for
any s 2 Œ0; 1�. This property will hold for all sufficiently small paths. The spaces .V �

�
/s then form a

smooth vector bundle over Œ0; 1�. We can trivialise this vector bundle and identify all these spaces with a
single V �

�
. Further, we assume that B.R/s1 �B.2R/s2 for each s1; s2 2 Œ0; 1�. Here we think of the balls

as subsets of the same space V �
�

. Once again, this property will hold for all small enough paths. Then\
s2Œ0;1�

B.2R/s
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is a compact isolating neighbourhood for S�
�

in any metric gs with the flow .'
�

�
/s . The Conley index

will be independent of s and hence
.I
�

�
/0 Š .I

�

�
/1:

However, we do not have that †�.V
0
�
/0.I

�

�
/0 equals †�.V

0
�
/1.I

�

�
/1. The reason is that some eigenvalues

in .�; �/ may change sign. On the other hand, any eigenvalue greater than � or less than � cannot
change sign, by our assumption that � and � are not eigenvalues of ls for any s 2 Œ0; 1�. Hence the
difference between .V 0

�
/0 and .V 0

�
/1 is given in terms of the spectral flow of the family of operators flsg

for s 2 Œ0; 1�.

The operator l can be split into real and complex components. The real part has no spectral flow, so we
only need to consider the complex part, which is the Dirac operatorDs . The spectral flow can be expressed
using the Atiyah–Patodi–Singer (APS) index theorem on the cylinder X D Œ0; 1�� Y ; see [8; 9]. Let
Og be the metric on X given by gs in the vertical direction and .ds/2 in the horizontal direction. Let
Ss denote the spinor bundle associated to .s; gs/. The bundles Ss can all be identified with S D S0,
but with varying Clifford multiplication. The spinc–structure s lifts to a spinc–structure on X . Let S˙

denote the spinor bundles of this spinc–structure. Then S˙ can be identified with the pullback of S to X .
Suppose for each s we have chosen a flat reference connection As . Since we have identified Ss with S
for all s, we get an induced identification of Ls D det.Ss/ with LD L0. Then As D A0C i˛s for some
closed real 1–form ˛s . The path of spinc–connections fAsg fit together to form a spinc–connection yA
on the determinant line L pulled back to X . Let yD be the Dirac operator determined by Og and yA. Then
yD. /D @s CDs . After a possible reparametrisation we can assume that .gs; As/ is constant near

the boundary. Applying the APS index theorem to the Dirac operator yD on the cylinder Œ0; 1��Y , one
can write the spectral flow SF.fDsg/ as

SF.fDsg/D
1
2
.�.D1/� k.D1//�

1
2
.�.D0/� k.D0//C

Z
Œ0;1��Y

�
�
1
24
p1. Og/C

1
8
c1. yA/

2
�
;

where �.D/ is the eta invariant of D, k.D/D dimC.Ker.D//, p1. Og/ is the first Pontryagin form of Og,
and c1. yA/ is the Chern form .i=2�/F

2 yA
, where F

2 yA
is the curvature of the induced connection 2 yA on L.

Now since ˛s is closed for each s, we get F
2 yA
D ds ^ 2i@s˛s and hence c1. yA/2 D 0. So

(2-1) SF.fDsg/D
1
2
.�.D1/� k.D1//�

1
2
.�.D0/� k.D0//�

1

24

Z
Œ0;1��Y

p1. Og/:

Let �sign.gs/ denote the eta invariant of the signature operator on Y defined by gs . Then from the APS
index theorem for the signature operator together with the fact that the signature operator has no spectral
flow, we find

(2-2) �sign.g1/� �sign.g0/D
1

3

Z
Œ0;1��Y

p1. Og/:

Combining (2-1) and (2-2), we see that

SF.fDsg/D
1
2
.�.D1/� k.D1//�

1
2
.�.D0/� k.D0//�

1
8
.�sign.g1/� �sign.g0//;
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and hence
SF.fDsg/D n.Y; s; g0/�n.Y; s; g1/;

where we have defined
n.Y; s; g/D 1

2
�.D/� 1

2
k.D/� 1

8
�sign.g/:

We will show that n.Y; s; g/ is a rational number. Let .W; sW / be a spinc 4–manifold bounding .Y; s/.
This always exists because �spinc

3 D 0. Extend the Dirac operator D on Y to a Dirac operator yD in
the same way as we did for the cylinder Œ0; 1��Y . The APS index theorem for the Dirac operator and
signature operator on W combined give

indAPS. yD/D
1
8
.c1.sW /

2
� �.W //C 1

2
.�dir� k/�

1
8
�sign

and thus

(2-3) n.Y; s; g/D indAPS. yD/� ı.W; s/;

where we set
ı.W; s/D 1

8
.c1.sW /

2
� �.W //:

This shows that n.Y; s; g/ is a rational number since indAPS. yD/ is an integer and ı.W; s/ is a rational
number.

Definition 2.9 The Seiberg–Witten–Floer cohomology of .Y; s; g/ is defined as

HSW j .Y; s/D zH
jC2n.Y;s;g/

S1
.SWF.Y; s; g//;

where j 2Q and as usual the coefficient group F has been omitted from the notation.

Below we will show that HSW �.Y; s/ is independent of the choice of metric g (and other auxiliary
choices); hence it is a well defined topological invariant of the pair .Y; s/.

Notice that because of the grading shift by 2n.Y; s; g/ the cohomology groups HSW �.Y; s/ are concen-
trated in rational degrees. It was shown by Lidman and Manolescu [45] that HSW �.Y; s/ is isomorphic
to the Seiberg–Witten monopole Floer cohomology as defined by Kronheimer and Mrowka [39]. Together
with the equivalence of monopole Floer homology and Heegaard Floer homology due to the work of
Kutluhan, Lee and Taubes [40; 41; 42; 43; 44], Colin, Ghiggini and Honda [16; 17; 15] and Taubes [60;
61; 62; 63; 64], we have isomorphisms

HSW �.Y; s/ŠHF���.Y ; s/ŠHF
�
C.Y; s/;

where HF�� denotes the minus version of Heegaard Floer homology and HF �
C

denotes the plus version
of Heegaard Floer cohomology (taken with respect to the same coefficient group F). Here we use a
grading convention for HF� such that HF�.S3/ starts in degree 0. Through the work of [20; 33; 58],
the isomorphism is known to preserve the absolute gradings. Using co-Borel, Tate or nonequivariant
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cohomologies gives similar isomorphisms to the other versions of Heegaard Floer homology; see [45,
Corollary 1.2.4] for the precise statement.

If we have two metrics g0 and g1, then the spectral flow of a path joining them satisfies

SF.fDsg/D n.Y; s; g1/�n.Y; s; g0/:

On the other hand, from the definition of spectral flow,

SF.fDsg/D dim.V 0� .g0//� dim.V 0� .g1//:

It follows that

SWF.Y; s; g1/Š†
SF .fDsg/SWF.Y; s; g0/;

and hence
zH
jC2SF .fDsg/

S1
.SWF.Y; s; g1//Š zH

j

S1
.SWF.Y; s; g0//

by the Thom isomorphism. Replacing j by j C 2n.Y; s; g0/, we have

zH
jC2n.Y;s;g1/

S1
.SWF.Y; s; g1//Š zH

jC2n.Y;s;g0/

S1
.SWF.Y; s; g0//:

Hence the Seiberg–Witten–Floer cohomology zH jC2n.Y;s;g/

S1
.SWF.Y; s; g// is independent of the metric.

The above isomorphism is canonical in the sense that it does not depend on the choice of path from g0

to g1. This follows from the fact that the space of all metrics on Y is contractible, so any two paths with
the same endpoints are homotopic.

2.7 Duality

Definition 2.10 Let V be a finite-dimensional representation of a compact Lie group G. Two pointed,
finite G–CW complexes X and X 0 are equivariantly V –dual if there exists a G–map

" WX ^X 0! V C

such that for any subgroup H �G, the fixed-point map

"H WXH ^ .X 0/H ! .V H /C

induces a nonequivariant duality between XH and .X 0/H , in the sense of nonequivariant Spanier–
Whitehead duality.

Consider the Conley index I�
�

associated to .Y; s; g/ for suitably chosen R, � and �. One finds that
reversing orientation of Y has the effect of reversing the Chern–Simons–Dirac flow. From [19], it follows
that I�

�
.Y / and I��.Y / are V �

�
–dual, so there exists a duality map

" W I
�

�
.Y /^ I��.Y /! .V

�

�
/C:
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Notice that dim.V 0
�
.Y //C dim.V 0��.Y //� 2k.D/D dim.V �

�
.Y //, where k.D/ is the dimension of the

kernel of D. Desuspending, we obtain a duality map

" W SWF.Y; s; g/^SWF.Y ; s; g/! S�k.D/C:

We also have

(2-4) n.Y; s; g/Cn.Y ; s; g/D�k.D/:

2.8 Fixed points

Definition 2.11 Let s � 0 be an integer. We say that a finite pointed S1–CW complex X is of type SWF
at level s if

� the S1–fixed-point set XS
1

is homotopy equivalent to the sphere .Rs/C;

� the action of S1 is free on the complement X �XS
1

.

Proposition 2.12 Given .Y; s; g/, let R, � and � be as in Proposition 2.2. Then B.2R/ \ V �
�

is an
isolating neighbourhood for S�

�
D Inv.B.2R/\V �

�
/. Let I�

�
D IS1.S

�

�
/ be the Conley index. Then I�

�

is of type SWF at level s D dim.V 0
�
.R//, where V 0

�
.R/ denotes the S1–invariant part of V 0

�
.

Proof Let .N;L/ be an index pair for S�
�

so that I�
�
DN=L. Then by Proposition 2.7, .I�

�
/S
1

DN S1=LS
1

is the Conley index of .S�
�
/S
1

. Further, we have that B.2R/\V �
�
.R/ is an isolating neighbourhood for

.S
�

�
/S
1

, where V �
�
.R/ denotes the S1–invariant part of V �

�
. It is easy to see that c D 0 on V �

�
.R/, where

c is the nonlinear part of the Seiberg–Witten flow. Thus the restriction of the approximate Seiberg–Witten
flow u

�

�
.l Cp

�

�
c/ to V �

�
.R/ is the flow u

�

�
l . Restricted to B.3R/ this is just the linear flow associated

to l . The real part of l has zero kernel, because b1.Y /D 0. It follows that the Conley index of .S�
�
/S
1

is the Conley index of f0g in V �
�
.R/ with respect to the linear flow of l . This is .V 0

�
.R//C. Thus we

have shown that the S1–fixed-point set of I�
�

is homotopy equivalent to .V 0
�
.R//C. Furthermore, S1

acts freely on V �
�
�V

�

�
.R/; hence S1 acts freely on N �N S1 and therefore also on .I�

�
/� .I

�

�
/S
1

.

Using the identities

(2-5) .RC ^X/S
1

DRC ^XS
1

; .CC ^X/S
1

DXS
1

;

we see that

� if X is of type SWF at level s, then RC ^X is of type SWF at level sC 1;

� if X is of type SWF at level s, then CC ^X is of type SWF at level s.

Now let ZD .X;m; n/ belong to the equivariant Spanier–Whitehead category C. We say that Z is of type
SWF at level s if X is of type SWF of level sCm. The above remarks shows that this is a well-defined
notion.
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We have shown that the Conley index I�
�

is of type SWF at level s D dim.V 0
�
.R//, where

V 0� D V
0
� .R/˚V

0
� .C/

denotes the decomposition of V 0
�

into copies of R and C. Now we recall that

SWF.Y; s; g/D†�V
0
� I

�

�
:

It follows that SWF.Y; s; g/ is of type SWF at level 0.

Let X be a space of type SWF at level s. Let � W XS
1

! X denote the inclusion of the fixed-point set.
Using the localisation theorem in equivariant cohomology [23, III (3.8)], it follows that the pullback map
�� W zH�

S1
.X/! zH�

S1
.XS

1

/ is not identically zero. Therefore, we may define the d–invariant d.X/ of X
by

d.X/Dminfj j x 2 Im.��/ for some x 2 zH j

S1
.XS

1

/ with x ¤ 0g:

Note that d.X/ could potentially depend on the choice of coefficient group, so we may write the invariant
as d.X IF/ if we wish to indicate the dependence on F .

We also define the ı–invariant of X by ı.X/D 1
2
d.X/. Using (2-5) and the Thom isomorphism, one

finds
d.RC ^X/D d.X/C 1; d.CC ^X/D d.X/C 2:

Now if Z D .X;m; n/ is of type SWF, we define the d–invariant d.Z/ of Z to be

d.Z/D d.X/�m� 2n 2 Z:

From [45, Corollary 1.2.3], it follows that the d–invariant d.Y; s/ as defined by Heegaard Floer homology
(with coefficient group F ) is given in terms of SWF.Y; s; g/ by

d.Y; s/D d.SWF.Y; s; g//� 2n.Y; s; g/:

For notational convenience we also define ı.Y; s/D 1
2
d.Y; s/.

3 Equivariant Seiberg–Witten–Floer cohomology

3.1 Assumption on G and F

Throughout this paper we will assume that one of the two following conditions hold:

(1) G is an arbitrary finite group and F D Z=2Z, or

(2) F is an arbitrary field and the order of G is odd.

Condition (1) ensures that we do not need to concern ourselves with questions of orientability. Condition (2)
ensures that any S1–central extension zG acts orientation-preservingly on all of its finite-dimensional
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representations. Hence under either condition, the Thom isomorphism holds without requiring local
coefficients,

zH�
zG
.X/Š zH

�CdimR.V /

zG
.V C ^X/:

Here X is any zG–space and V is any finite-dimensional representation of zG.

3.2 Lifting G–actions

Recall that Y denotes a rational homology 3–sphere. Suppose that a finite groupG acts on Y by orientation-
preserving diffeomorphisms and suppose G preserves the isomorphism class of a spinc–structure s. We
will construct a G–equivariant version of the Seiberg–Witten–Floer cohomology of .Y; s/.

Choose a G–invariant metric g on Y and a reference spinc–connection A0 such that the connection on
the determinant line L is flat. Let g 2G and choose a lift Og W S ! S of g to the spinor bundle S , which
is possible since G preserves the isomorphism class of s. Then Og�1A0 OgDA0Ca for some a 2 i�1.Y /.
Since A0 and Og�1A0 Og are flat, we must have da D 0. Moreover, b1.Y / D 0 implies that a D df for
some f W Y ! iR. Setting Qg D e�f Og, it follows that Qg is a lift of g which preserves A0. Any other lift
of g that preserves A0 is of the form c Qg with c 2 U.1/ a constant. Let Gs denote the set of all possible
lifts of elements of G which preserve A0. Then Gs is a group and we have a central extension

1! S1!Gs!G! 1:

Now we carry out the construction of the Conley index of a finite-dimensional approximation of the
Chern–Simons–Dirac flow Gs–equivariantly, instead of just S1–equivariantly.

3.3 Gs–equivariant Spanier–Whitehead category

In this section zG denotes any S1 central extension of G. We will construct a category C. zG/, the
zG–equivariant version of C.

Recall from Section 2.5 that the category C was constructed so that there exists a desuspension functor†�V

for any real vector space V with trivial S1–action or any complex vector space where S1 acts by scalar
multiplication. We now construct a category C. zG/ in which we can desuspend by real representations
of zG, where S1 acts trivially, and by complex representations, where S1 acts by scalar multiplication.
We are lead to consider the following two types of finite-dimensional representations of zG:

Type (1) V is a real representation of zG and S1 acts trivially.

Type (2) V is a complex representation zG and S1 acts on V by scalar multiplication.

Type (1) representations correspond canonically to real representations of G.

Type (2) representations correspond to projective unitary representations of G such that the pullback
to G of the central extension S1! U.n/! PU.n/ gives an extension isomorphic to zG. If zG is split,
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then type (2) representations are in bijection with complex representations of G. However, the bijection
depends on a choice of splitting of zG.

To define stable homotopy groups, we need to consider suspensions with explicitly chosen representations.
In other words, we need to work at the level of representations and not just isomorphism classes. Let
V1; : : : ; Vp be a complete set of irreducible representations of type (1), and W1; : : : ; Wq a complete set of
irreducible representations of type (2). Any representation of type (1) is isomorphic to a direct sum of
copies of V1; : : : ; Vp and likewise any representation of type (2) is a direct sum of copies of W1; : : : ; Wq .

IfmD .m1; : : : ; mp/;m0D .m01; : : : ; m
0
p/2Zp , we saym�m0 ifmi �m0i for each i . Ifm2Zp satisfies

m� 0, then we set
V.m/D V

˚m1
1 ˚ � � �˚V

˚mp
p :

Similarly, if nD .n1; : : : ; nq/ 2 Zq satisfies n� 0, then we set

W.n/DW
˚n1
1 ˚ � � �˚W

˚nq
q :

The category C. zG/ has as objects triples .X;m; n/, where

� X is a pointed topological space with a basepoint-preserving zG–action and the homotopy type of a
zG–CW complex;

� m 2 Zp;

� n 2 Zq .

Let .X;m; n/ and .X 0; m0; n0/ be two objects of C. zG/. The set of morphisms from .X;m; n/ to .X 0; m0; n0/,
denoted by f.X;m; n/; .X 0; m0; n0/g zG , is defined to be

colim
k;l

�
.V .k//C ^ .W.l//C ^X; .V .kCm�m0//C ^ .W.l Cn�n0//C ^X 0

� zG
:

The colimit is taken over all k 2 Np and l 2 Nq such that k � m0 �m and l � n0 � n. The maps that
define the colimit are given by suspensions where we smash on the left.

Let Y be any pointed zG–space. We obtain a functor Y^W C. zG/! C. zG/ which is defined on objects
by Y ^ .X;m; n/ D .Y ^ X;m; n/ and on morphisms in the evident way. In particular, if V is any
finite-dimensional representation of zG, we define the reduced suspension

†VZ D V C ^Z:

We define desuspension by a representation V of type (1) as

†�V .X;m; n/D ..V /C ^X;mC 2ŒV �; n/;

where ŒV � D .v1; : : : ; vp/ and vi is the multiplicity of Vi in V . Then †�V†VZ Š Z, where the
isomorphism is canonical up to homotopy. For any representation W of type (2) we define

†�W .X;m; n/D .X;m; nC ŒW �/;
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where ŒW �D .w1; : : : ; wq/ and wi is the multiplicity of Wi in W . We have that †�W†WZ ŠZ by an
isomorphism which is canonical up to homotopy. In fact, such an isomorphism is induced by a choice
of isomorphism W Š W.ŒW �/. But for any pair of isomorphic complex representations, the space of
isomorphism is connected (by Schur’s lemma it is a torsor for a product of complex general linear groups).
Therefore the isomorphism W ŠW.ŒW �/ is unique up to homotopy.

For Z D .X;m; n/ 2 C. zG/, we define the reduced equivariant cohomology of Z to be

zH
j

zG
.Z/D zH

jCjmjC2jnj

zG
.X/;

where jmj and jnj are defined as

jmj D

pX
iD1

mi dimR.Vi / for mD .m1; : : : ; mp/; jnj D

qX
iD1

ni dimC.Wi / for nD .n1; : : : ; nq/:

The cohomology is well defined as a consequence of the Thom isomorphism.

3.4 G–equivariant Seiberg–Witten–Floer cohomology

Let Y be a rational homology 3–sphere and G a finite group acting on Y preserving the isomorphism
class of a spinc–structure s. Let Gs be the S1–central extension of G obtained by lifting G to the spinor
bundle corresponding to s. We repeat the construction of the Conley index I�

�
.g/ from Section 2.6,

except that now we carry out the construction Gs–equivariantly. Restricting to the subgroup S1 � Gs,
I
�

�
.g/ agrees with the S1–equivariant Conley index as previously constructed.

We need to understand how I
�

�
.g/ depends on �, �, the choice of G–invariant metric g, and the

constant R. As in the S1 case, first consider variations of � and �. Carrying out a similar argument but
Gs–equivariantly, we see that I�

�
.g/ simply changes by suspension. Analogous to the nonequivariant

case we define
SWF.Y; s; g/D†�V

0
�
.g/I

�

�
.g/ 2 C.Gs/;

where V 0
�
.g/ is defined as before, but now carries a Gs–action. Note that V 0� .g/ is the sum of a

representation of type (1) and a representation of type (2), so the desuspension †�V
0
�
.g/ is defined. Then

up to canonical isomorphisms SWF.Y; s; g/ depends only on the triple .Y; s; g/.

We consider the dependence of SWF.Y; s; g/ on the metric g. The argument is much the same as before
except done Gs–equivariantly. Let g0 and g1 be two G–invariant metrics. The space of such metrics
is contractible, so we may choose a path fgsg from g0 to g1. Then as in the nonequivariant case, the
signature operator has no spectral flow and we have

SWF.Y; s; g1/D†
SFGs .fDsg/SWF.Y; s; g0/;

where now SFGs.fDsg/ is the equivariant spectral flow of fDsg. Thus SFGs.fDsg/ is to be understood as
a virtual representation of Gs [25, Section 2]. Since the S1 subgroup of Gs acts by scalar multiplication
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on spinors, it follows that SFGs.fDsg/ is a type (2) virtual representation. From the Thom isomorphism
and the fact that the underlying rank of SFGs.fDsg/ is SF.fDsg/D n.Y; s; g1/�n.Y; s; g0/, we obtain
a canonical isomorphism

zH
jC2n.Y;s;g1/
Gs

.SWF.Y; s; g1//Š zH
jC2n.Y;s;g0/
Gs

.SWF.Y; s; g0//:

This motivates the following definition:

Definition 3.1 The G–equivariant Seiberg–Witten–Floer cohomology of .Y; s; g/ is defined as

HSW
j
G .Y; s/D

zH
jC2n.Y;s;g/
Gs

.SWF.Y; s; g//:

By the argument above, the HSW �G.Y; s/ depends only on .Y; s/ and the G–action.

For a group K we write H�K for H�K.pt/. Since HSW �.Y; s/ is defined using equivariant cohomology, it
is a graded module over the ring H�

S1
D F ŒU �, where deg.U /D 2. Similarly HSW �G.Y; s/ is a graded

module over H�Gs
. Restricting from Gs to S1, we obtain forgetful maps

HSW �G.Y; s/!HSW �.Y; s/; H�Gs
!H�

S1

compatible with the module structures.

Observe that since S1 is the identity component of Gs, the action of Gs on HSW �.Y; s/ descends to an
action of G. So we may regard HSW �.Y; s/ as a G–module.

Theorem 3.2 There is a spectral sequence Ep;qr abutting to HSW �G.Y; s/ whose second page is given by

E
p;q
2 DHp.BGIHSW q.Y; s//:

Proof For a Gs–space M , let MGs denote the Borel model for the Gs–action and MS1 the Borel model
for the S1–action obtained by restriction. The composition MGs ! BGs ! BG is a fibration with
fibre MS1 . Applying the Leray–Serre spectral sequence, we get a spectral sequence which abuts to
zH�Gs

.M/ and has Ep;q2 D Hp.BGI zH
q

S1
.M//. More generally if M is the formal desuspension of a

Gs–space, then via an application of the Thom isomorphism a similar spectral sequence exists. Applying
this to HSW �G.Y; s/ gives the theorem.

Definition 3.3 Let Y be a rational homology 3–sphere and s a spinc–structure. We say that Y is an L–
space (with respect to s and F ) if the action of U on HSW �.Y; s/ is injective. Equivalently HSW �.Y; s/
is a free F ŒU �–module of rank 1.

Remark 3.4 The usual definition of an L–space is that HFCred.Y; s/ D 0 for all spinc–structures and
where the coefficient group is Z. From the universal coefficient theorem it follows that an L–space in
this sense is an L–space with respect to any spinc–structure s and any coefficient group F .

Suppose that the extension Gs is split. A choice of splitting induces an isomorphism Gs Š S
1 �G and

an isomorphism H�Gs
ŠH�G ŒU �. We stress that these isomorphisms depend on the choice of splitting.
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Theorem 3.5 Suppose that Gs is a split extension. If Y is an L–space (with respect to s and F ), then
the spectral sequence given in Theorem 3.2 degenerates at E2. Moreover ,

HSW �G.Y; s/ŠHSW
�.Y; s/˝F H

�
G ŠH

�
G ŒU ��;

where � has degree d.Y; s/.

Proof If Y is an L–space (with respect to s and F ) then

HSW �.Y; s/Š F ŒU ��;

where � has degree d.Y; s/. We claim that G acts trivially on HSW �.Y; s/. This can be seen as follows.
First, since HSW �.Y; s/ is up to a degree shift the S1–equivariant cohomology of the Conley index
I D I

�

�
, it suffices to prove the result for I . Let � W IS

1

! I be the inclusion of the S1 fixed-point set.
Since Y is an L–space, U acts injectively on HSW �.Y; s/. Together with the localisation theorem in
equivariant cohomology, this implies that �� is injective. Hence it suffices to show that G acts trivially on
zH�
S1
.IS

1

/. But IS
1

has the homotopy type of a sphere, so if � is a generator of zH�
S1
.IS

1

/ and g 2G,
then g�.�/D˙� according to whether or not g acts orientation-preservingly. Our assumptions on G
and F (see Section 3.1) ensures that g�.�/D � for all g 2G. This proves the claim.

Letting Ep;qr denote the spectral sequence for HSW �G.Y; s/, it follows easily that

E
p;q
2 ŠH�.BGIF ŒU ��/ŠH�G ŒU �� ŠHSW

�.Y; s/˝F H
�
G :

It remains to show that the differentials d2; d3; : : : are all zero. In fact since � has the lowest q–degree of
any term in Ep;q2 , it follows that dj .�/D 0 for all j � 2. Then since the differentials commute with the
H�Gs
ŠH�G ŒU �–module structure, it follows that d2; d3; : : : all vanish.

3.5 Spaces of type G–SWF

We introduce a G–equivariant analogue of spaces of type SWF. We then define a G–equivariant analogue
of the d–invariant.

Let zG be an extension of G by S1. If zG acts on a space X , then we get an induced action of G D zG=S1

on the fixed-point set XS
1

. We write G D S1 �G for the trivial extension of G.

Definition 3.6 Let s � 0 be an integer. We say that a finite pointed zG–CW complex X is of type G–SWF
at level s if

� the S1–fixed-point set XS
1

is G–homotopy equivalent to a sphere .V /C, where V is a real
representation of G of dimension s;

� the action of S1 is free on the complement X �XS
1

.

More generally, let V be a finite-dimensional representation which is the direct sum of representations of
type (1) and (2). An equivariant spectrum Z D†�VX 2 C. zG/ is said to be of type G–SWF at level s if
X is G–SWF at level sC dim.V S

1

/.
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Assume that zG is split and choose a splitting zG ŠG. Let X be a space of type G–SWF at level s. Let
� W XS

1

! X denote the inclusion of the fixed-point set. Recall that H�
S1
Š F ŒU �, where deg.U /D 2.

Similarly H�
G
ŠH�G ŒU �. The localisation theorem in equivariant cohomology implies that

�� W U�1 zH�
G
.X/! U�1 zH�

G
.XS

1

/

is an isomorphism. Note XS
1

Š .V /C, where V is s–dimensional, so

zH�
G
.XS

1

/ŠH�G ŒU ��;

where deg.�/D s. Therefore it also follows that

U�1 zH�
G
.XS

1

/ŠH�G ŒU; U
�1��:

Then for each c 2 H�G , it follows that there exists an x 2 zH�
G
.X/ for which ��.x/ D cU k� , for some

k � 0. Set ƒG.X/ D zH�
G
.XS

1

/. Then ƒG.X/ is a free H�G ŒU �–module of rank 1 and � W XS
1

! X

induces a map
�� W zH�

G
.X/!ƒG.X/

of H�G ŒU �–modules. Introduce a filtration

ƒG.X/D F0 � F1 � F2 � � � �

on ƒG.X/ by setting
Fj DH

��j
G ƒG.X/;

where H��jG D
L
k�j H

k
G . This is the filtration induced by the fibration

XS
1

�G BG! BG:

Let � denote the generator of ƒG.X/. Then for j � 0 we have obvious identifications

Fj =FjC1 ŠH
j
G ŒU ��:

Now let c be a nonzero element in H�G of degree jcj D deg.c/. By the discussion above we know that
cU k� is in the image of �� for some k � 0. Hence we may define:

Definition 3.7 Let c be a nonzero element in H�G of degree jcj D deg.c/. We define dG;c.X/ 2 Z by

dG;c.X/Dminf2kC s j ��.x/ 2 Fjcj and ��.x/D cU k� mod FjcjC1 for some x 2 zH sC2kCjcj

G
.X/g:

For convenience we set dG;0.X/D�1. Then if c is an element of H�G , we write c D c0C c1C� � �C cr ,
where ci 2H i

G and set
dG;c.X/DmaxfdG;c0.X/; : : : ; dG;cr .X/g:

Note that dG;ac.X/D dG;c.X/ for any a 2 F�.
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In concrete terms, the condition that ��.x/ 2 Fjcj and ��.x/D cU k� mod FjcjC1 means that ��.x/ is of
the form

��.x/D cU k� C c1U
k�1� C � � �C crU

k�r�

for some r � 0 and some c1; : : : cr 2H
��.jcjC1/
G .

Remark 3.8 Let X be a space of type G–SWF. The definition of dG;c.X/ does not depend on a
choice of splitting of S1 ! zG ! G. Indeed, two splittings differ by a homomorphism � W G ! S1.
Let ˛ D ��.U / 2 H 2

G . The change of splitting acts on H�G ŒU � by sending U to U C ˛. Then since
.U C ˛/k D U k C � � � , where � � � denotes terms involving lower powers of U , it follows that dG;c.X/
does not depend on the choice of splitting of zG.

Proposition 3.9 Let X be a space of type G–SWF for the trivial extension. Then for all c1; c2 2H�G ,

dG;c1Cc2.X/�maxfdG;c1.X/; dG;c2.X/g; dG;c1c2.X/�minfdG;c1.X/; dG;c2.X/g:

Proof Let s be the level of X . First consider the case that c1 and c2 are homogeneous, that is, c1 2H
jc1j
G

and c2 2H
jc2j
G for some jc1j and jc2j. Then by Definition 3.7, there exist x1 2 zHdG;c1 .X/Cjc1j

G
.X/ and

x2 2 zH
dG;c2 .X/Cjc2j

G
.X/ such that

��.x1/D c1U
k1� C � � � ; ��.x2/D c2U

k2� C � � � ;

where � � � denotes terms that are in the next stage of the filtration and ki D 1
2
.dG;ci .X/� s/ for i D 1; 2.

Note that if c1 or c2 are zero then we take x1 or x2 to be zero.

If jc1j ¤ jc2j, then by Definition 3.7, we have dG;c1Cc2.X/DmaxfdG;c1.X/; dG;c2.X/g. Now suppose
that jc1j D jc2j. Let k Dmaxfk1; k2g and set x D U k�k1x1CU k�k2x2 2 zH

2kCsCjc1j

G
.X/. Then

��.x/D .c1C c2/U
k� C � � �

and hence, from the definition of dG;c1Cc2.X/,

dG;c1Cc2.X/� 2kC s Dmaxf2k1C s; 2k2C sg DmaxfdG;c1.X/; dG;c2.X/g:

Next we observe that c2x1 2 zH
dG;c1 .X/Cjc1jCjc2j

G
.X/ and

��.c2x1/D .c1c2/U
k1�;

and so it follows that dG;c1c2.X/ � dG;c1.X/. Exchanging the roles of x1; x2 and c1; c2, we similarly
find that dG;c1c2.X/� dG;c1.X/; hence

dG;c1c2.X/�minfdG;c1.X/; dG;c2.X/g:

Now suppose that c1 and c2 are not necessarily homogeneous. We may write c1 D a0C a1C � � �C ar
and c2 D b0C b1C � � �C br , for some r � 0, where ai ; bi 2H i

G . By Definition 3.7,

dG;c1.X/Dmax
i
fdG;ai .X/g; dG;c2.X/Dmax

i
fdG;bi .X/g:

Algebraic & Geometric Topology, Volume 24 (2024)



Equivariant Seiberg–Witten–Floer cohomology 523

Then since c1C c2 D .a0C b0/C .a1C b1/C � � �C .ar C br/,

dG;c1Cc2.X/Dmax
i
fdG;aiCbi .X/g

�max
i

˚
maxfdG;ai .X/; dG;bi .X/g

	
Dmax

˚
max
i
fdG;ai .X/g;max

i
fdG;bi .X/g

	
DmaxfdG;c1.X/; dG;c2.X/g:

Next, we have c1c2 D
P
i;j aibj and hence

dG;c1c2.X/�max
i;j
fdG;aibj .X/g �max

i;j
fdG;ai .X/g Dmax

i
fdG;ai .X/g D dG;c1.X/;

where we used dG;aibj .X/� dG;ai .X/. Similarly we get dG;c1c2.X/� dG;c2.X/, and hence

dG;c1c2.X/�minfdG;c1.X/; dG;c2.X/g:

Recall that the ordinary (nonequivariant) d–invariant of X , d.X/, is defined by

d.X/Dminfj j ��.x/¤ 0 for some x 2 zH j

S1
.X/g:

It is not hard to see that d.X/D dfeg;1.X/, where feg denotes the trivial group and 1 is the generator
of H 0.pt/.

Proposition 3.10 Let X be a space of type G–SWF for the trivial extension. Then

dG;1.X/� d.X/:

Proof By the definition of dG;1.X/, there exists x 2 zHdG;1.X/

G
.X/ such that ��.x/D U k� C� � � , where

k D 1
2
.dG;1.X/� s/ and s is the level of X . Let y 2 zHdG;1.X/

S1
.X/ be the image of x under the map

induced by S1!G. Then it follows that ��.y/D U k� 2 zHdG;1.X/

S1
.XS

1

/. In particular, ��.y/¤ 0, and
hence dG;1.X/� d.X/ by the definition of d.X/.

Let S1 act trivially on R and act by scalar multiplication on C. Let V be a real representation of G. Then
VR DR˝R V and VC DC˝R V may be regarded as representations of G D S1�G, where S1 acts on
the first factor and G on the second.

Proposition 3.11 Let X be a space of type G–SWF for the trivial extension and let V be a finite-
dimensional representation of G of type (1) or (2), as in Section 3.3. Then for any c 2H�G ,

dG;c.V
C
^X/D dG;c.X/C dimR.V /:

Proof This result follows easily from the Thom isomorphism, together with the fact that in the type (2)
case, the G–equivariant Euler class of V has the form

eG.V /D U
dim.V /

C cG;1.V /U
dim.V /�1

C � � �C cG;dim.V /.V /;

where cG;j .V / 2H
2j
G denotes the j th G–equivariant Chern class of V .
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If Z D†�VX 2 C.G/ is an equivariant spectrum of type G–SWF, we define the dG;c–invariant dG;c.Z/
of Z to be

dG;c.Z/D dG;c.X/� dimR.V /:

This is well defined by Proposition 3.11. We also define a corresponding ı–invariant by setting
ıG;c.Z/D

1
2
dG;c.Z/.

Definition 3.12 Let X and Y be spaces of type G–SWF for the trivial extension of G, where X has
level s and Y has level t . Let f WX ! Y be an S1�G–equivariant map. Consider the restriction

f S
1

WXS
1

! Y S
1

of f to the fixed-point set. Note that zH�G.X
S1/ is a freeH�G–module starting in degree s. Let �

XS
1 denote

a generator. Then �
XS

1 is unique up to an element of F�. Similarly zH�G.Y
S1/ is a free H�G–module

starting in degree t and we let �
Y S

1 denote a generator. Then there exists a uniquely determined �2H t�s
G

such that
.f S

1

/�.�
Y S

1 /D ��
XS

1 :

We call �D deg.f S
1

/ the degree of f S
1

. If we choose different generators for zH�G.X
S1/ or zH�G.Y

S1/,
then deg.f S

1

/ changes by an element of F�; hence deg.f S
1

/ is well defined up to multiplication by
elements of F�. If t < s, then deg.f S

1

/D 0.

Note that suspension does not change the degree of f S
1

. Hence we can more generally speak of the
degree of f S

1

when f is a stable map between spectra of type G–SWF.

Proposition 3.13 Let f W X ! Y be a G–equivariant map of spaces of type G–SWF for the trivial
extension , where X has level s and Y has level t . Let �D deg.f S

1

/ 2H t�s
G be the degree of f S

1

. Then
for any nonzero c 2H�G ,

dG;c�.X/� s � dG;c.Y /� t:

Proof We prove the result when c 2H jcjG is homogeneous. The general case follows easily from this.
The inclusion of the fixed-point sets gives a commutative diagram

X
f

// Y

XS
1

�

OO

f S
1

// Y S
1

�

OO

Consider the induced commutative diagram in equivariant cohomology

zH�
G
.Y /

��

��

f �
// zH�

G
.X/

��

��

zH�
G
.Y S

1

/
.f S

1
/�
// zH�

G
.XS

1

/
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From the definition of dG;c.Y /, there exists some x 2 zHdG;c.Y /Cjcj

G
.Y / such that

��.x/D cU k�
Y S

1 C � � � ;

where k D 1
2
.dG;c.Y /� t /. Then by commutativity of the diagram,

��.f �.x//D .f S
1

/�.��.x//D .f S
1

/�.cU k�
Y S

1 C � � � /D c�U k�
XS

1 C � � � :

It follows that

dG;c�.X/� dG;c.Y /Cjcj � jc�j D dG;c.Y /� j�j D dG;c.Y /� t C s:

Hence

dG;c�.X/� s � dG;c.Y /� t:

3.6 Alternative characterisation of dG;c

In this section we will give an alternative characterisation of dG;c which does not directly refer to �� and
is sometimes more convenient for computations.

Let X be a space of type G–SWF for the trivial extension G. Set ƒ�G D zH
�

G
.XS

1

/. The inclusion

of the fixed points � W XS
1

! X induces a map �� W zH�
G
.X/! ƒ�G . Recall that ƒ�G is a free H�G ŒU �

module of rank 1. Let � denote a generator of ƒ�G , so ƒ�G ŠH
�
G ŒU �� . Recall that we have a filtration

Fj on ƒ�G given by Fj DH
��j
G ƒ�G . Similarly, there is a filtration on zH�

G
.X/ which comes from the

spectral sequence for equivariant cohomology. We will denote this filtration by Fj . Then ��.Fj /� Fj
because the inclusion � induces a map between spectral sequences.

Let c 2H�G be a nonzero element of degree jcj. Recall that the invariant dG;c.X/ is defined by

dG;c.X/Dminfi j ��.x/D cU k� mod FjcjC1 for some x 2 zH i

G
.X/ and k � 0g� jcj:

The localisation theorem in equivariant cohomology implies that upon localising with respect to U , ��

becomes an isomorphism

�� W U�1 zH�
G
.X/! U�1ƒG ŠH

�
G ŒU; U

�1��:

In particular, there exists an element � 2 zH 2kCdeg.�/
G

.X/ such that ��.�/D U l� for some l � 0. Fix a
choice of such a � . The localisation isomorphism implies that ��.x/D 0 if and only if U kx D 0 for some
k � 0.

Proposition 3.14 Let c 2H�G be a nonzero element of degree jcj. Then

dG;c.X/Dminfi j U nx D cU k� mod FjcjC1 for some x 2 zH i

G
.X/ and n; k � 0g� jcj:
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Proof Let

aG;c.X/Dminfi j U nx D cU k� mod FjcjC1 for some x 2 zH i

G
.X/ and n; k � 0g� jcj:

Then we need to show that dG;c.X/D aG;c.X/. Suppose x 2 zHaG;c.X/Cjcj

G
.X/ satisfies U nx D cU k�

mod FjcjC1 for some n; k � 0. Then

U n��.x/D cU k��.�/D cU kCl� mod FjcjC1:

Since U is injective on ƒG we must have kC l � n and we can cancel U n from both sides to get

��.x/D cU kCl�n� mod FjcjC1:

Hence dG;c.X/� deg.x/� jcj D aG;c.X/. Conversely, let x 2 zHdG;c.X/Cjcj

G
.X/ satisfy ��.x/D cU k�

mod FjcjC1 for some k � 0. Then

��.x/D cU k� C c1U
k�1� C c2U

k�2� C � � �C ck�;

where ci 2H
jcjC2i
G . Since ��.�/D U l� , it follows that

��.U lx/D ��.cU k� C c1U
k�1� C � � �C ck�/:

Next recall that �� is an isomorphism after localising with respect to U . Hence if ��.y1/D ��.y2/, then
U ny1 D U

ny2 for some n� 0 and we have

U nClx D cU nCk� C c1U
nCk�1� C � � �C ckU

n� D cU nCk� mod FjcjC1:

From the definition of aG;c.X/, it follows that aG;c.X/ � deg.x/� jcj D dG;c.X/. We have shown
dG;c.X/� aG;c.X/ and aG;c.X/� dG;c.X/; hence dG;c.X/D aG;c.X/.

3.7 Equivariant d–invariants for rational homology 3–spheres

We return to the setting that Y is a rational homology 3–sphere, G is a finite group acting on Y preserving
the isomorphism class of a spinc–structure s. Choose a G–invariant metric g and let Gs be the S1–central
extension of G obtained by lifting G to the spinor bundle corresponding to s. Now suppose that Gs is a
trivial extension; hence Gs ŠG. From the construction of the Conley index, one finds that SWF.Y; s; g/
is of type G–SWF at level 0.

Definition 3.15 LetG act on Y and let s be aG–invariant spinc–structure. Suppose that the corresponding
S1–extension Gs is trivial and choose an isomorphism of extensions Gs ŠG. For any c 2H�G we define
the invariant dG;c.Y; s/ by

dG;c.Y; s/D dG;c.SWF.Y; s; g//� 2n.Y; s; g/:

We also set ıG;c.Y; s/D 1
2
dG;c.Y; s/.
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The definition of dG;c.Y; s/ does not depend on the choice of isomorphism Gs ŠG by Remark 3.8. The
definition also does not depend on the choice of metric g as a consequence of the relation

SWF.Y; s; g1/D†
SFGs .fDsg/SWF.Y; s; g0/

and the Thom isomorphism.

We only define the invariants dG;c.Y; s/ in the case that Gs is a trivial extension. This is because the
definition of dG;c.Y; s/ uses localisation by U , but U 2H�

S1
does not necessarily extend to a class inH�Gs

,
unless Gs is a trivial extension.

The inclusion � W .V 0
�
.R//C ! I

�

�
of the S1–fixed points of the Conley index desuspends to a map

� W†�V
0
�
.C/S0! SWF.Y; s; g/; hence we get a homomorphism

�� WHSW �G.Y; s/!ƒ�G.Y; s/;

where we have set ƒ�G.Y; s/D zH
�C2n.Y;s;g/

G
.†�V

0
�
.C/S0/. This is a free H�G ŒU �–module and we let �

denote a generator. As in Section 3.5 we filterƒ�G.Y; s/ by setting Fj DH
��j
G ƒ�G.Y; s/. The construction

of �� and ƒ�G.Y; s/ depend on the choice of metric g, but the construction for any two metrics are related
by a canonical homomorphism. The d–invariants of .Y; s/ are given by

dG;c.Y; s/Dminf2kCj j ��.x/2Fjcj and ��.x/DcU k� mod FjcjC1 for some x2SWF jC2kCjcjG .Y; s/g:

Recall that d.Y ; s/ D �d.Y; s/. On the other hand, the behaviour of the invariants dG;c.Y; s/ under
orientation reversal is not so straightforward. For example, it follows from Proposition 3.10 that

(3-1) �dG;1.Y ; s/� d.Y; s/� dG;1.Y; s/:

In particular, dG;1.Y ; s/D�dG;1.Y; s/ can only occur if dG;1.Y; s/D d.Y; s/ and dG;1.Y ; s/D d.Y ; s/.
From (3-1), we also get that

dG;1.Y; s/C dG;1.Y ; s/� 0:

We will show in Theorem 4.4 that the invariants dG;c satisfy a stronger positivity condition.

Proposition 3.16 Let G act on Y and let s be a G–invariant spinc–structure. Suppose that the corre-
sponding extension Gs is trivial. If Y is an L–space (with respect to s and F/, then for all nonzero
c 2H�G ,

dG;c.Y; s/D d.Y; s/:

Proof If Y is an L–space (with respect to s and F ) then

HSW �.Y; s/Š F ŒU ��;

where � has degree d.Y; s/. From Theorem 3.5, there exists a class O� 2HSW �G.Y; s/ which maps to �
under the forgetful map HSW �G.Y; s/!HSW �.Y; s/ and we have that HSW �G.Y; s/ is a free H�G ŒU �–
module generated by O� . We must also have that ��. O�/ D U k� mod F1 for some k � 0, where � is a
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generator of ƒG.Y; s/. This holds because F1 is the kernel of the forgetful map ƒG.Y; s/!ƒf1g.Y; s/.
So for any nonzero c 2H j

G we have that ��.c O�/D c��. O�/D cU k� mod F1Cjcj; hence

dG;c.Y; s/� deg.c O�/� j D deg. O�/D d.Y; s/:

That is, dG;c.Y; s/� d.Y; s/ for all nonzero homogeneous c. On the other hand it is clear that there is
no class of lower degree in HSW �G.Y; s/ which maps under �� to a class of the form cU k

0

� mod F1Cjcj.
Hence dG;c.Y; s/D d.Y; s/ for all nonzero homogeneous c. Clearly the result extends to all nonzero c.

4 Behaviour under cobordisms

We show that equivariant cobordisms of rational homology 3–spheres induce maps on equivariant Seiberg–
Witten–Floer cohomology. We follow the construction of Manolescu [49], incorporating the corrections
due to Khandhawit [37]. Since our construction is a straightforward extension of that of Manolescu and
Khandhawit, differing only in the replacement of S1 by the larger group Gs, we will be brief.

4.1 Finite-dimensional approximation

Let W be a compact, oriented smooth 4–manifold with boundary Y D @W a disjoint union of rational
homology spheres Y D

S
j Yj . Assume further that b1.W / D 0 and that W is connected. If s is a

spinc–structure on W , then the restriction of s to Y determines a spinc–structure sjY on Y . Since the
boundary of W is a union of rational homology 3–spheres, we have H 2.W; @W IR/ŠH 2.W IR/ and by
Poincaré–Lefschetz duality we obtain a nondegenerate intersection form on H 2.W IR/. Given a metric
g on W which is isometric to a product metric in a collar neighbourhood of @W , we let HC.W / denote
the space of self-dual L2–harmonic 2–forms on the cylindrical end manifold yW obtained from W by
attaching half-infinite cylinders Œ0;1/�Y to W . It follows from [8, Proposition 4.9] that the natural map
HC.W /!H 2.W IR/ is injective and identifies HC.W / with a maximal positive definite subspace of
H 2.W IR/.

Suppose now that G acts smoothly and orientation-preservingly on W and that this action sends each
connected component of @W to itself. Hence by restriction G acts on each Yi by orientation-preserving
diffeomorphisms. Assume further that G preserves the isomorphism class of a spinc–structure s on W .
Set si D sjYi . Then the action of G on Yi preserves si . Similar to Section 3.2 we obtain an S1–extension
Gs of G. Restricting to Yi , we obtain an isomorphism of extensions GsŠGsi . Hence if Gs is split, then it
follows that each of the extensions Gsi is also split. Moreover a splitting of Gs determines corresponding
splittings of each Gsi .

Choose a G–invariant metric g on W which is isometric to a product .��; 0�� Y in some equivariant
collar neighbourhood of Y (see [34, Theorem 3.5] for existence of equivariant collar neighbourhoods).
To see that such a metric exists, first choose a G–invariant metric gY on Y . Then choose an arbitrary
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metric g0 on W which equals .dt/2CgY in some equivariant collar neighbourhood .��; 0��Y . Then
let g be obtained from g0 by averaging over G. Let S˙ denote the spinor bundles on W corresponding
to s. We note here that under these assumptions G preserves the subspace HC.W / of H 2.W IR/ defined
by g. Let �1g.W / denote the space of 1–forms on W in double Coulomb gauge with respect to Y [37,
Definition 1]. This space is easily seen to be preserved by the action of G on 1–forms. The double
Coulomb gauge condition ensures that if a 2�1g.W / and � 2 �.SC/, then .a; �/jYj lies in the global
Coulomb slice corresponding to Yj . Let us temporarily assume that Y D @W is connected. Let yA be a
spinc–connection on W such that in a collar neighbourhood of Y it equals the pullback of A0. Using the
same argument as in Section 3.2, we can assume that yA is Gs–invariant. Then using yA as a reference
connection, we obtain a map which may be thought of as the Seiberg–Witten equations on W together
with boundary conditions,

SW �
W i�1g.W /˚�.S

C/! i�2C.W /˚�.S
�/˚V ��1;

.a; �/ 7! .FC
yACa
� �.�; �/;D yACa.�/; p

�.a; �/jY /;

where p� is the orthogonal projection from V to V ��1. Taking a finite-dimensional approximation as
described in [37; 49], one obtains a map

‰�;�;U;U 0 W .U
0/C! .UC/^ I

�

�
;

where U 0� i�1g.W /˚�.S
C/ and U � i�2

C
.W /˚�.S�/ are finite-dimensional G–invariant subspaces

which satisfy

(4-1) U ˚V 0� ˚Ker.L0/Š U 0˚Coker.L0/

and L0 is a Fredholm linear operator defined in [49, Section 9]. Since SWF.Y; s; g/D†�V
0
� I

�

�
, we can

rewrite the map ‰�;�;U;U 0 as

‰�;�;U;U 0 W .U
0/C! .U /C ^ .V 0� /

C
^SWF.Y; s; g/:

Taking the smash product with Ker.L0/ and using (4-1), we see that ‰�;�;U;U 0 is stably equivalent to a
map

f W Ker.L0/C! Coker.L0/C ^SWF.Y; s; g/:

The real part of L0 has zero kernel and cokernel isomorphic to HC.W /. The complex part of L0 can be
identified with the Dirac operator D yA with Atiyah–Patodi–Singer (APS) boundary conditions. Thus

Ker.L0/Š KerAPS.D
C

yA
/; Coker.L0/ŠHC.W /˚CokerAPS.D

C

yA
/;

where KerAPS.D
C

yA
/ and CokerAPS.D

C

yA
/ denote the kernel and cokernel of DC

yA
with APS boundary

conditions. Hence we obtain a Gs–equivariant map

f W KerAPS.D
C

yA
/C! .HC.W //C ^CokerAPS.D

C

yA
/C ^SWF.Y; s; g/:

Note that f is only a map in the stable sense; that is, f is a morphism in the category C.Gs/.
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Recall that the S1–fixed-point set of I�
�

is V 0
�
.R/C. The inclusion .V 0

�
.R//! I

�

�
of the S1–fixed points

desuspends to a map � W S0! SWF.Y; s; g/. By restricting to S1–fixed points we obtain a commutative
diagram

KerAPS.D
C

yA
/C

f
// .HC.W //C ^CokerAPS.D

C

yA
/C ^SWF.Y; s; g/

S0

OO

f S
1

// .HC.W //C

OO

Using that the Seiberg–Witten equations reduce to linear equations on the S1–fixed-point set, one finds
that f S

1

W S0! .HC.W //C is the obvious map given by the one-point compactification of the inclusion
f0g !HC.W /. Thus according to Definition 3.12, f S

1

has degree equal to e.HC.W //, the image of
the equivariant Euler class of HC.W / in H�G.ptIF/. For instance, if F D Z=2Z then e.HC.W // is the
bC.W /

th equivariant Stiefel–Whitney class. We will refer to e.HC.W // as the F–Euler class ofHC.W /.

So far we have restricted to the case that the boundary @W is connected. More generally, if @W D
S
j Yj

is a union of rational homology 3–spheres then much the same construction applies. The Conley index
I
�

�
is now given by the smash product of the Conley indices of each component; hence f is now a map

of the form

f W KerAPS.D
C

yA
/C! .HC.W //C ^CokerAPS.D

C

yA
/C ^

^
j

SWF.Yj ; sj ; gj /:

We still have that the degree of f S
1

is e.HC.W //.

4.2 Equivariant Frøyshov inequality

In this section we prove an equivariant generalisation of Frøyshov’s inequality [28].

Theorem 4.1 Let W be a smooth , compact , oriented 4–manifold with boundary and with b1.W /D 0.
Suppose that G acts smoothly on W preserving the orientation and a spinc–structure s. Suppose that
the extension Gs is trivial. Suppose each component of @W is a rational homology 3–sphere and that G
sends each component of @W to itself. Let e 2H bC.W /

G be the F–Euler class of any G–invariant maximal
positive definite subspace of H 2.W IR/. Let c 2H�G and suppose that ce ¤ 0.

(1) If @W D Y is connected , then

ı.W; s/� ıG;c.Y; sjY / and ıG;ce.Y ; sjY /� ı.W ; s/;

where we have defined
ı.W; s/D 1

8
.c1.s/

2
� �.W //:

(2) If @W D Y1[Y2 has two connected components , then

ıG;ce.Y1; sjY1/C ı.W; s/� ıG;c.Y2; sjY2/:
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Proof We will give the proof in the case that W is connected. The general case follows easily from this
by applying the theorem to each component of W . To simplify notation we will write s instead of sjY
and write g instead of gjY . In case (1), @W D Y is connected.

As in Section 4.1, choosing suitable metrics and reference connections we obtain a stable map

f W KerAPS.D
C

yA
/C! .HC.W //C ^CokerAPS.D

C

yA
/C ^SWF.Y; s; g/

such that the degree of f S
1

is e. Applying Proposition 3.13 to f , we obtain

2 dimC.KerAPS.D
C

yA
//C bC.W /� bC.W /C 2 dimC.CokerAPS.D

C

yA
//C dc.Y; s/C 2n.Y; s; g/

which simplifies to

indAPS.D
C

yA
/� 1

2
dc.Y; s/Cn.Y; s; g/D ıc.Y; s/Cn.Y; s; g/:

Combined with (2-3) we get ı.W; s/� ıc.Y; s/.

Next recall from Section 2.7 the duality map

" W SWF.Y; s; g/^SWF.Y ; s; g/! S�k.D/C

where k.D/D dimC.Ker.D//. By the definition of equivariant duality,

"S
1

W SWF.Y; s; g/S
1

^SWF.Y ; s; g/S
1

! S0

is a nonequivariant duality. It follows that "S
1

has degree 1. Taking the map f , suspending by
SWF.Y ; s; g/ and composing with ", we obtain a stable map

h W KerAPS.D
C

yA
/C ^SWF.Y ; s; g/! .HC.W //C ^CokerAPS.D

C

yA
/C ^S�k.D/C

such that the degree of hS
1

is e. Applying Proposition 3.13 to h, we obtain

2 dimC.KerAPS.D
C

yA
/C dG;ce.Y ; s; g/C 2n.Y ; s; g/C bC.W /

� bC.W /C 2 dimC.CokerAPS.D
C

yA
/� 2k.D/

which simplifies to
indAPS.D

C

yA
/C ıG;ce.Y ; s; g/Cn.Y ; s; g/� �k.D/:

Using (2-3) and (2-4), we obtain ı.W; s/� �ıG;ce.Y ; s/, or equivalently ıG;ce.Y ; sjY /� ı.W ; s/.

The proof of case (2) is similar. We start with the map

f W KerAPS.D
C

yA
/C! .HC.W //C ^CokerAPS.D

C

yA
/C ^SWF.Y1; s; g/^SWF.Y2; s; g/:

Suspending by SWF.Y1; s; g/ and applying the duality map corresponding to Y1 we obtain a map

h W KerAPS.D
C

yA
/C ^SWF.Y1; s; g/! .HC.W //C ^CokerAPS.D

C

yA
/C ^SWF.Y2; s; g/^S

�k.D1/C;

where k.D1/ is the dimension of the kernel of the Dirac operator on Y1. Applying Proposition 3.13 to
this map and simplifying, we obtain the inequality ıG;ce.Y1; sjY1/C ı.W; s/� ıG;c.Y2; sjY2/.
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Definition 4.2 Let .Y1; s1/ and .Y2; s2/ be rational homology 3–spheres equipped with spinc–structures.
Suppose that G acts orientation-preservingly on Y1 and Y2 and preserves the spinc–structures s1 and s2.
A G–equivariant rational homology cobordism from .Y1; s1/ to .Y2; s2/ is a rational homology cobordism
W from Y1 to Y2 such that the G–action and spinc–structure s1[ s2 on @W extend over W . We say that
.Y1; s1/ and .Y2; s2/ are G–equivariantly rational homology cobordant if there exists a G–equivariant
rational homology cobordism from .Y1; s1/ to .Y2; s2/.

Similarly we define the notion of a G–equivariant integral homology cobordism and say that two integral
homology 3–spheres Y1 and Y2 on which G acts are G–equivariantly integral homology cobordant if
there is a G–equivariant integral homology cobordism from Y1 to Y2. Note that since Y1 and Y2 are
integral homology 3–spheres, they have unique spinc–structures which are automatically G–invariant
and any G–equivariant integral homology cobordism from Y1 to Y2 has a unique spinc–structure which
restricts on the boundary to the unique spinc–structures on Y1 and Y2.

Corollary 4.3 The G–equivariant ı–invariants ıG;c.Y; s/ are invariant under G–equivariant rational
homology cobordism; that is , if .W; s/ is a G–equivariant rational homology cobordism from .Y1; s1/ to
.Y2; s2/ and if the extensions Gs1 and Gs2 are trivial , then ıG;c.Y1; s1/D ıG;c.Y2; s2/ for all c 2H�G .

Proof Since W is a rational homology cobordism, we have H 2.W IR/ D 0. So ı.W; s/ D 0 and
e D e.HC.W //D 1. Therefore Theorem 4.1 gives

ıG;c.Y1; s1/� ıG;c.Y2; s2/:

Similarly, viewing W as a G–equivariant rational homology cobordism from Y2 to Y1, we get

ıG;c.Y2; s2/� ıG;c.Y1; s1/:

Hence ıG;c.Y1; s1/D ıG;c.Y2; s2/.

Theorem 4.4 Let Y be a rational homology 3–sphere ,G a finite group acting on Y preserving orientation
and the isomorphism class of a spinc–structure s and suppose that Gs is a trivial extension. Then for any
c1; c2 2H

�
G with c1c2 ¤ 0,

ıc1.Y /C ıc2.Y /� 0:

Proof The proof is similar to that of Theorem 4.1. Let W D Œ0; 1��Y be the trivial cobordism from Y

to itself. Choosing suitable metrics and reference connections we obtain a stable map

f W KerAPS.D
C

yA
/C! CokerAPS.D

C

yA
/C ^SWF.Y ; s; g/^SWF.Y; s; g/:

Note that HC.W /D f0g and hence e.HC.W //D 1. Applying Proposition 3.13 to this map we see that
for any c1; c2 2H�G with c1c2 ¤ 0,

indAPS.D
C

yA
/� ıG;c1c2.SWF.Y ; s; g/^SWF.Y; s; g//:
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From the definition of the ı–invariant it is clear that

ıG;c1c2.SWF.Y ; s; g/^SWF.Y; s; g//� ıG;c1.SWF.Y ; s; g//C ıG;c2.SWF.Y; s; g//;

and hence
indAPS.D

C

yA
/� ıG;c1.Y ; s/C ıG;c2.Y; s/Cn.Y ; s; g/Cn.Y; s; g/:

On the other hand, for W D Œ0; 1��Y , equation (2-3) reduces to

indAPS.D
C

yA
/D n.Y ; s; g/Cn.Y; s; g/:

Hence we obtain 0� ıG;c1.Y ; s/C ıG;c2.Y; s/.

4.3 Induced cobordism maps

In this section we show that equivariant cobordisms induce maps on equivariant Seiberg–Witten–Floer
cohomology.

Theorem 4.5 Let W be a smooth , compact , oriented 4–manifold with boundary and with b1.W /D 0.
Suppose that G acts smoothly on W preserving the orientation and a spinc–structure s. Suppose that
@W D Y1[Y2 where Y1 and Y2 are rational homology 3–spheres and set si D sjYi . Suppose G sends Yi
to itself. Then there is a morphism of graded H�Gs

–modules

SWG.W; s/ WHSW
�
G.Y2; s2/!HSW

�CbC.W /�2ı.W;s/
G .Y1; s1/

such that the diagram

HSW �G.Y2; s2/
SWG.W;s/

//

��

HSW
�CbC.W /�2ı.W;s/
G .Y1; s1/

��

HSW �.Y2; s2/
SW.W;s/

// HSW �CbC.W /�2ı.W;s/.Y1; s1/

commutes , where the vertical arrows are the forgetful maps to nonequivariant Seiberg–Witten–Floer
cohomology and SW.W; s/ is the morphism of Seiberg–Witten–Floer cohomology groups induced
by .W; s/.

Proof We give the proof in the case W is connected. The general case follows by a similar argument. As
in the proof of Theorem 4.1, choosing suitable metrics and reference connections, we obtain a stable map

h W S
indAPS.D

C

yA
/
^SWF.Y1; s1; g1/! .HC.W //C ^SWF.Y2; s2; g2/^S

�k.D1/C;

where k.D1/ is the dimension of the kernel of the Dirac operator on Y1. The induced map in equivariant
cohomology takes the form

h� W zH
j
Gs
..HC.W //C ^SWF.Y2; s2; g2/^S

�k.D1/C/! zH
j
Gs
.S

indAPS.D
C

yA
/
^SWF.Y1; s1; g1//:
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Using the Thom isomorphism, this is equivalent to

h� W zH
j�bC.W /C2k.D1/

Gs
.SWF.Y2; s2; g2//! zH

j�2indAPS.D
C

yA
/

Gs
.SWF.Y1; s1; g1//:

By (2-3), indAPS D ı.W; s/Cn.Y2; s2; g2/Cn.Y1; s1; g1/ and by (2-4), n.Y1; s1; g1/Cn.Y1; s1; g1/D
�k.D1/. Replacing j by j C bC.W /� 2k.D1/C 2n.Y2; s2; g2/, we see that h� takes the form

h� W zH
jC2n.Y2;s2;g2/
Gs

.SWF.Y2; s2; g2//! zH
jCbC.W /�2ı.W;s/C2n.Y1;s1;g1/
Gs

.SWF.Y1; s1; g1//:

Then since HSW �G.Yi ; si /D zH
�C2n.Yi ;si ;gi /
Gs

.SWF.Yi ; si ; gi //, we see that h� is equivalent to a map

SWG.W; s/ WHSW
�
G.Y2; s2/!HSW

�CbC.W /�2ı.W;s/
G .Y1; s1/:

Since this is a map of equivariant cohomologies induced by an equivariant map of spaces, it follows that
SWG.W; s/ is a morphism of graded H�Gs

–modules. Restricting to the subgroup S1!Gs, we obtain the
commutative diagram in the statement of the theorem.

5 The case G D Zp

In this section we specialise to the case G D Zp and F D Zp, where p is a prime number. Then
for p D 2 we have H�G Š F ŒQ�, where deg.Q/ D 1, and if p is odd we have H�G Š F ŒR; S�=.R2/,
where deg.R/D 1 and deg.S/D 2. Suppose G D h�i acts smoothly and orientation-preservingly on a
rational homology 3–sphere Y , preserving a spinc–structure s. The action of G is equivalent to giving an
orientation-preserving diffeomorphism � W Y ! Y such that �p D id and ��.s/D s. Choose a lift � 0 2Gs

of � . Then .� 0/p D � for some � 2 S1. Replacing � 0 by Q� D ��1=p� 0, where �1=p is a pth root of �, we
see that Q�p D id. Hence Gs is a trivial extension.

5.1 ı–invariants

Definition 5.1 If p D 2, then for any integer j � 0, we define dj .Y; s; �; 2/ D dZ2;Qj .Y; s/. If p is
odd, then for any integer j � 0, we define dj .Y; s; �; p/ D dZp;Sj .Y; s/. We also set ıj .Y; s; �; p/ D
1
2
dj .Y; s; �; p/. When p and � are understood we will omit them from the notation and simply write
dj .Y; s/ and ıj .Y; s/.

In the case p is odd, one may also consider the invariants dZp;RSj .Y; s/. For simplicity we will not
consider these invariants.

Theorem 5.2 We have the following properties:

(1) ı0.Y; s/� ı.Y; s/;

(2) ıjC1.Y; s/� ıj .Y; s/ for all j � 0;

(3) the sequence fıj .Y; s/gj�0 is eventually constant ;
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(4) ıj .Y; s/C ıj .Y ; s/� 0 for all j � 0;

(5) if Y is an L–space , then ıj .Y; s/D ı.Y; s/ for all j � 0.

Proof Item (1) is a restatement of Proposition 3.10. Item (2) follows from Proposition 3.9, taking
c1 D Q

j and c2 D Q in the case p D 2, and c1 D Sj and c2 D S in the case p is odd. Item (4) is
a special case of Theorem 4.4. For (3), first note that the difference ıj .Y; s/ � ıjC1.Y; s/ is always
an integer because ıG;c.Y; s/C n.Y; s; g/ 2 Z for any metric g. From (2) and (4) and the fact that
n.Y; s; g/Cn.Y ; s; g/ 2Z, it follows that ıj .Y; s/Cıj .Y ; s/ is a nonnegative, decreasing, integer-valued
function. Hence the value of ıj .Y; s/C ıj .Y ; s/ must eventually be constant. Using (2) again, it follows
that ıj .Y; s/ and ıj .Y ; s/ are eventually constant. Item (5) is a restatement of Proposition 3.16.

Next, we specialise Theorem 4.1 to the case G D Zp.

Theorem 5.3 Let W be a smooth , compact , oriented 4–manifold with boundary and with b1.W /D 0.
Suppose that � WW !W is an orientation-preserving diffeomorphism of order p and s is a spinc–structure
preserved by � . Suppose each component of @W is a rational homology 3–sphere and that � sends each
component of @W to itself. Suppose that the subspace of H 2.W IR/ fixed by � is negative definite. Then
for all j � 0:

(1) If @W D Y is connected , then

ı.W; s/� ıj .Y; sjY / and ı.W ; s/�

�
ıjCbC.W /.Y ; sjY / if p D 2;
ıjCbC.W /=2.Y ; sjY / if p is odd:

(2) If @W D Y1[Y2 has two connected components , then

ıj .Y2; sjY2/�

�
ıjCbC.W /.Y1; sjY1/C ı.W; s/ if p D 2;
ıjCbC.W /=2.Y1; sjY1/C ı.W; s/ if p is odd:

Proof LetHC.W / denote a �–invariant maximal positive definite subspace ofH 2.W IR/ (which always
exists because G D h�i is finite) and let e denote the image of the Euler class of HC.W / in H�Zp . To
deduce the result from Theorem 4.1, we just need to check that eQj ¤ 0 for all j � 0 if p D 2, and
eSj ¤ 0 for all j � 0 if p is odd.

In the case p D 2, e is the top Stiefel–Whitney class of HC.W /, which is easily seen to be QbC.W /

because our assumption that the subspace of H 2.W IR/ fixed by � is negative definite implies that � acts
as �1 on HC.W /. Then clearly eQj ¤ 0 for all j � 0.

Now suppose p is odd. Let Li be the complex 1–dimensional representation on which � acts as
multiplication by �i , � D e2�i=p. Any finite-dimensional real representation of G is the direct sum of a
trivial representation and copies of the underlying real representations of the Li for 1� i � p� 1. The
hypothesis that the subspace of H 2.W IR/ fixed by � is negative definite means that as a representation
of G, HC.W / contains no trivial summand. Hence HC.W / admits a complex structure such that
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HC.W /Š
Lp�1
iD1 L

mi
i for some integers mi � 0. The Euler class of HC.W / is equal to its top Chern

class. Under the map H 2.ZpIZ/!H 2.ZpIZp/ one finds that c1.Li / gets sent to iS . Hence

e D

p�1Y
iD1

.iS/mi ;

from which it is clear that eSj ¤ 0 for all j � 0.

Remark 5.4 Suppose that p is odd. Then as in the proof of Theorem 5.3, HC.V / admits a complex
structure. So if p is odd and the assumptions of Theorem 5.3 hold, then bC.W / must be even.

To keep notation simple, we will henceforth set b0
˙
.W /D b˙.W / if p D 2 and b0

˙
.W /D 1

2
b˙.W / if p

is odd. Then (1) and (2) of Theorem 5.3 can be written more uniformly as

ı.W; s/� ıj .Y; sjY / and ıjCb0
C
.W /.Y ; sjY /� ı.W ; s/;

and
ıjCb0

C
.W /.Y1; sjY1/C ı.W; s/� ıj .Y2; sjY2/:

Corollary 5.5 Let W be a smooth , compact , oriented 4–manifold with boundary and with b1.W /D 0.
Suppose that � WW !W is an orientation-preserving diffeomorphism of order p and s is a spinc–structure
preserved by � . Suppose that Y D @W is a rational homology 3–sphere. Suppose that the subspace of
H 2.W IR/ fixed by � is zero. Then

(1) ıj .Y; sjY /� �
1
8
�.W / for all j � 0 and ıj .Y; sjY /D�18�.W / for j � b0�.W /;

(2) ıj .Y ; sjY /�
1
8
�.W / for all j � 0 and ıj .Y ; sjY /D 1

8
�.W / for j � b0

C
.W /.

Proof It suffices to prove (1) since (2) follows by reversing orientation onW and Y . Since Zp preserves s,
it follows that the image of c1.s/ in real cohomology lies in the subspace of H 2.W IR/ fixed by Zp.
By assumption this space is zero; hence c1.s/ D 0 in real cohomology and hence c1.s/2 D 0. So
ı.W; s/D �1

8
�.W /. Then from Theorem 5.3(1), we get ıj .Y; s/ � �18�.W / for all j � 0. Reversing

orientation on W and Y an applying Theorem 5.3(1), we also get that ıjCb0�.W /.Y; s/ � �
1
8
�.W / for

all j � 0, or equivalently, ıj .Y; s/� �18�.W / for all j � b0�.W /. Combining inequalities, we see that
ıj .Y; s/D�

1
8
�.W / for j � b0�.W /.

5.2 Some algebraic results

In this section we collect some algebraic results which will be useful for computing ı invariants.

Let Y be a rational homology 3–sphere, � W Y ! Y an orientation-preserving diffeomorphism of prime
order p and s a spinc–structure preserved by � . Take G D Zp D h�i and F D Zp. Let fEp;qr ; drgr�2

denote the spectral sequence relating equivariant and nonequivariant Seiberg–Witten–Floer cohomologies.
Then

E
p;q
2 DHp.Zp;HSW

q.Y; s//;
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where Zp acts on HSW q.Y; s/ via the action induced by � . To simplify notation we will write H q

for HSW q.Y; s/ and d for d.Y; s/. So Ep;q2 DHp.Zp;H q/. For fixed q, H q is a finite-dimensional
representation of Zp over F . Moreover, for all sufficiently large k,

(5-1) HdC2k
D F ; HdC2kC1

D 0:

Recall that H�G is isomorphic to F ŒQ� for p D 2 and to F ŒR; S�=.R2/ for odd p. In the case p D 2 we
will set S DQ2, so in all cases S 2H 2

G .

Lemma 5.6 If V is a finite-dimensional representation of Zp over F D Zp, then

S WH i .ZpIV /!H iC1.ZpIV /

is surjective for all i � 0 and an isomorphism for all i � 1. Furthermore , dimF .H
i .ZpIV //� dimF .V /.

Proof Since Zp acts freely on S1, it follows from [12, page 114] that there is an element � 2H 2.ZpIZ/

(independent of V ) such that the cup product � W H i .ZpIV /! H iC2.ZpIV / is an isomorphism for
i > 0 and surjective for i D 0. Since V is a representation of Zp over F , the same statement holds if
we replace � by its image in H 2.ZpIF/, which must have the form aS for some a 2 F . Moreover,
a¤ 0 follows by considering the case that V D Zp is the trivial representation. Hence the cup product
S WH i .ZpIV /!H iC2.ZpIV / is an isomorphism for i >0 and surjective for iD0. We have by induction
that dimF .H

i .ZpIV //� dimF .H
0.ZpIV // if i is even and dimF .H

i .ZpIV //� dimF .H
1.ZpIV // if

i is odd. Then since H 0.ZpIV / and H 1.ZpIV / can both be expressed as certain subquotients of V , it
follows that dimF .H

i .ZpIV //� dimF .V / for all i .

Lemma 5.7 For each r � 2, the map S WEp;qr !E
pC2;q
r is surjective for all p � 0 and an isomorphism

for all p � r � 1.

Proof Recall that Ep;q2 D Hp.Zp;H q/. Hence S W Ep;q2 ! E
pC2;q
2 is surjective for all p and an

isomorphism for all p � 1, by Lemma 5.6. This proves the case r D 2. Now we proceed by induction. Let
r > 2 and suppose that S WEp;qr�1!E

pC2;q
r�1 is surjective for all p� 0 and an isomorphism for all p� r�1.

Let x 2 EpC2;qr . Then x D Œy� for some y 2 EpC2;qr�1 with dr�1.y/D 0. By the inductive hypothesis
y D Sz for some z 2 Ep;qr�1. Then Sdr�1.z/ D dr�1.Sz/ D dr�1.y/ D 0. That is, Sdr�1.z/ D 0.
However, dr�1.z/ 2 E

pCr�1;qC2�r
r�1 and pC r � 1 � r � 2, so S W EpCr�1;qC2�rr�1 ! E

pCrC1;qC2�r
r�1

is an isomorphism by the inductive hypothesis. Hence Sdr�1.z/ D 0 implies that dr�1.z/ D 0. So z
defines a class w D Œz� 2Ep;qr . Then Sw D ŒSz�D Œy�D x. Hence S WEp;qr !E

pC2;q
r is surjective for

all p � 0.

Now suppose that p � r �1 and consider x 2Ep;qr satisfying Sx D 0. Write x D Œy� for some y 2Ep;qr�1
satisfying dr�1.y/D 0. Then 0DSxDSŒy�D ŒSy�. Hence SyD dr�1.z/ for some z 2Ep�rC3;qCr�2r�1 .
By the inductive hypothesis and since p� r C 3� .r � 1/� r C 3D 2, we have that z D Sw for some
w 2 E

p�rC1;qCr�2
r�1 . Hence Sy D dr�1.z/ D dr�1.Sw/ D Sdr�1.w/. By the inductive hypothesis,
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S WE
p;q
r�1!E

pC2;q
r�1 is injective; hence yDdr�1.w/ and xD Œy�D Œdr�1.w/�D0. So S WEp;qr !E

pC2;q
r

is injective for p � r � 1.

From the above lemma, we see that Ep;qr does not depend on p, provided p� r�1. Let M q
r denote Ep;qr

for p� r�1. Moreover, since the differentials fdrg for the spectral sequence Ep;qr commute with S , they
induce differentials dr WM

q
r !M

qC1�r
r for which MrC1 is the cohomology of dr WMr !Mr . Thus

MrC1 is a subquotient of Mr .

For any module V over F ŒU �, we define

Vred D fx 2 V j U
kx D 0 for some k � 0g and V1 D V=Vred:

Lemma 5.8 For each r � 2, the image of the differential dr is contained in .E�;�r /red.

Proof By (5-1) there exists a k0 such that HdC2k D F and HdC2kC1 D 0 for all k � k0. Hence the
action of � is trivial in these degrees and we have

E
p;dC2k
2 D F ; E

p;dC2kC1
2 D 0

for all k � k0. Since SWF.Y; s; g/ is a space of type Zp–SWF, the localisation theorem in equivariant
cohomology implies that there exists a k1 � k0 such that the generator x 2 E0;dC2k12 D F satisfies
dr.x/D 0 for all r � 2. Then if y 2Ep;q2 with q � d C 2k1, it follows that y is of the form y D cU ax

for some a � 0, where c 2Hp
G . Hence dr.y/D 0 for all r � 2. Now let y 2 Ep;qr where p and q are

arbitrary. Then there exists some a � 0 such that qC 2a � d C 2k1; hence U adr.y/D dr.U ay/D 0.
Therefore dr.y/ 2 .E

�;�
r /red.

Recall that H1 is a free F ŒU �–module of rank 1 with generator in degree d . Hence we may write
H1 D F ŒU �� where deg.�/D d . Next, observe that E0;�2 is the �–invariant part of H�, hence may be
regarded as an F ŒU �–submodule of H�. Similarly, since E0;�rC1 is the kernel of dr restricted to E0;�r , it
follows that E0;�rC1 can be identified with an F ŒU �–submodule of E0;�r . Hence fE0;�r g may be regarded as
a decreasing sequence of F ŒU �–submodules of H�. Let Sr denote the image of E0;�r under the quotient
map H�!H1 DH�=Hred. The localisation theorem in equivariant cohomology implies that Sr is
nonzero and that the sequence Sr eventually stabilises. Then since Sr is a nonzero graded submodule
of H1 D F ŒU �� , it follows that Sr D F ŒU �Umr� for some nonnegative integer mr . Note also that the
sequence fmrg is increasing and is eventually constant.

Lemma 5.9 For each r � 2,

mrC1�mr � dimF ..Mr/red/� dimF ..MrC1/red/:

Proof The classes U jCmr� with 0 � j < mrC1 � mr form a basis for Sr=SrC1. Choose a lift
xr 2 E

0;dC2mr
r of Umr� 2 Sr . Then dr.U jxr/¤ 0 for 0 � j < mrC1 �mr , for if dr.U jxr/D 0 for
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some 0 � j < mrC1 �mr , then we would have U jCmr� 2 SrC1. Observe that dr.U jxr/ 2 E
r;�
r . By

Lemma 5.7 and the definition of Mr , we see that dr.U jxr/ can be identified with a nonzero element
of Mr . Moreover, dr.U jxr/ 2 .Mr/red, by Lemma 5.8. Now since the dr.U jxr/ are nonzero and have
distinct degrees, they span a subspace of .Mr/red of dimension mrC1�mr . Furthermore, this subspace
lies in the image of dr ; hence mrC1�mr � dimF ..Mr/red/� dimF ..MrC1/red/.

Proposition 5.10 Suppose that � acts trivially on HSW �.Y; s/. Then

ı1.Y; s/� ı.Y; s/� dimF .HSWred.Y; s//:

Proof Recall that d D d.Y; s/. Hence ı.Y; s/ D 1
2
d . From the definition of the invariant ı1.Y; s/, it

follows that for all sufficiently large r ,

ı1.Y; s/Dmr C ı.Y; s/:

By Lemma 5.9, for each r � 2,

mrC1�mr � dimF ..Mr/red/� dimF ..MrC1/red/;

and summing from 2 to r � 1, we get

mr �m2 � dimF ..M2/red/:

However since � acts trivially on HSW �.Y; s/, we have that Ep;�2 DHSW �.Y; s/ for all p � 0. Hence
m2 D 0, M2 DHSW

�.Y; s/ and .M2/red DHSWred.Y; s/. Taking r sufficiently large,

ı1.Y; s/� ı.Y; s/Dmr Dmr �m2 � dimF .HSWred/:

6 Branched double covers of knots

6.1 Concordance invariants

Let K � S3 be a knot in S3. Let Y D†2.K/ be the branched double cover of S3, branched over K. Let
� W Y ! S3 denote the covering map. One finds that b1.Y /D 0. Manolescu and Owens [51] define a
knot invariant

ı.K/D 2d.†2.K/; t0/D 4ı.†2.K/; t0/;

where t0 is the spinc–structure induced from the unique spin–structure on †2.K/ (see [51, Section 2] for
an explanation of this). It is shown in [51] that ı.K/ is always integer-valued and descends to a surjective
group homomorphism ı W C! Z, where C is the smooth concordance group of knots in S3.

The covering involution on Y determines an action of G D Z2 on Y preserving t0 (by uniqueness of the
underlying spin–structure). Hence, for each j � 0, we may define the knot invariant

ıj .K/D 2dj .†2.K/; t0/D 4ıj .†2.K/; t0/:
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Since dj .†2.K/; t0/ � d.†2.K/; t0/ 2 2Z, it follows that ıj .K/ � ı.K/ 2 4Z. Then, since ı.K/ is
integer-valued, it follows that the ıj .K/ are also integer-valued and moreover ıj .K/D ı.K/ mod 4.

Proposition 6.1 For each j � 0, ıj .K/ depends only on the concordance class of K; hence ıj descends
to a concordance invariant ıj W C! Z.

Proof For an oriented knot K, recall that �K denotes the knot obtained by reversing orientation on
S3 and K. It follows that †2.�K/D†2.K/. A concordance of oriented knots K1 and K2 is a smooth
embedding of † D Œ0; 1�� S1 in Œ0; 1�� S3 having boundary �K1 [K2. Taking the double cover of
Œ0; 1��S3 branched along † gives a Z2–equivariant cobordism W from †2.K1/ to †.K2/. From the
calculations in [36, Section 3], one sees that W is a rational homology cobordism. We claim that W is
spin. To see this, choose a smoothly embedded surface † in D4 whose boundary is K1. Let W 0 be the
double cover of D4[ Œ0; 1��S3 ŠD4 branched over †[ Œ0; 1��S1. From [35] we see that W 0 is spin.
Since W is embedded in W 0, it follows that W 0 is spin as well. Any spin–structure t on W will restrict
on each component of the boundary to the unique spin–structure on the branched double cover †2.Ki /.
The result now follows by applying Corollary 4.3 to .W; t/.

We note that the ıj are not group homomorphisms.

Let �.K/ denote the signature of K and g4.K/ the smooth 4–genus. Set � 0.K/D �1
2
�.K/. We also

define bC.K/D g4.K/� � 0.K/ and b�.K/D g4.K/C � 0.K/.

Proposition 6.2 The knot concordance invariants ıj have the properties

(1) ı0.K/� ı.K/;

(2) ıjC1.K/� ıj .K/ for all j � 0;

(3) ıj .K/� �
0.K/ for all j � 0 and ıj .K/D � 0.K/ for j � b�.K/;

(4) ıj .�K/� ��
0.K/ for all j � 0 and ıj .�K/D�� 0.K/ for j � bC.K/;

(5) if †2.K/ is an L–space , then ıj .K/D ı.K/ and ıj .�K/D ı.�K/ for all j � 0.

Proof Items (1), (2) and (5) follow from (1), (2) and (5) of Theorem 5.2. For (3) and (4), choose a
smooth embedded surface †�D4 in the 4–ball of genus g4.K/ which bounds K. Let W be the double
cover of D4 branched along †. From [35] it follows that W is spin. Let t be any spin–structure on W .
Then tj†2.K/ D t0 by uniqueness of t0. Next, observe that H 2.W IR/Z2 DH 2.D4IR/D 0. Then (3)
and (4) follow by applying Corollary 5.5 to .W; t/.

Corollary 6.3 If K is a knot such that †2.K/ is an L–space , then ı.K/D � 0.K/.

Proof This follows by (3) and (5) of Proposition 6.2

Remark 6.4 In particular, if K is quasialternating, then †2.K/ is an L–space [57]. This recovers the
main result of [47] that ı.K/D � 0.K/ for quasialternating knots.
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Theorem 6.5 For a knot K, let jC.K/ be the smallest positive integer such that ıj .K/ D � 0.K/ and
j�.K/ the smallest positive integer such that ıj .�K/D�� 0.K/. Then

g4.K/�maxf� 0.K/C j�.K/;�� 0.K/C jC.K/g:

Remark 6.6 Observe that the right-hand side of this inequality is at least 1
2
j�.K/j. Hence we have

obtained a strengthening of the well-known inequality g4.K/� 1
2
j�.K/j [52].

Proof From Proposition 6.2 we have that ıj .K/D� 0.K/ for j �g4.K/C� 0.K/ and ıj .�K/D�� 0.K/
for j � g4.K/� � 0.K/. Hence jC.K/� g4.K/C � 0.K/ and j�.K/� g4.K/� � 0.K/.

Remark 6.7 In this section we have used branched double covers †2.K/ of knots equipped with their
natural Z2–action to obtain a sequence of concordance invariants. Similarly, for any odd prime p we may
consider the cyclic branched cover †p.K/ with its natural Zp–action. Once again there is a canonical
spinc–structure t0 [29] and so we may define a sequence of invariants

ı.p/;j .K/D 2dZp;Sj .†p.K/; t0/

depending on a prime p and an integer j � 0. By similar arguments to the p D 2 case one finds that
these are integer-valued knot concordance invariants of K.

7 Computations and applications

7.1 Brieskorn homology spheres

Let p, q and r be pairwise coprime positive integers and let Y D†.p; q; r/ be the corresponding Brieskorn
integral homology 3–sphere. Then Y has a unique spinc–structure and so when speaking of the Floer
homology of Y we omit the mention of the spinc–structure.

Recall that †.p; q; r/ can be realised as the p–fold cyclic cover of S3 branched along the torus knot Tq;r .
In particular, this construction defines an action of Zp on Y . Let � W Y ! Y denote the generator of this
action. Recall that †.p; q; r/ is obtained by taking the link of the singularity

f.x; y; z/ 2C3
j xpCyqC zr D 0g:

Then � is given by .x; y; z/ 7! .e2�i=px; y; z/. This map is isotopic to the identity through the homo-
topy .x; y; z/ 7! .e2�iqrtx; e2�iprty; e2�ipqtz/ for t 2 Œ0; .qr/��, where 0 < .qr/� < p denotes the
multiplicative inverse of qr mod p. It follows that � acts trivially on HFC.Y /.

Henceforth we will assume that p is a prime number. Set F D Zp and recall that H�Zp Š F ŒQ�

where deg.Q/ D 1 if p D 2, and H�Zp Š F ŒR; S�=.R2/ where deg.R/ D 1 and deg.S/ D 2 if p
is odd. Let s denote the unique spinc–structure on Y . As in Section 5, we let ıj .Y; s; �; p/ denote
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ıZp;Qp .Y; s/ for p D 2 or ıZp;Sp .Y; s/ for odd p. We will further abbreviate this to ıj .Y; �/. When
pD2, ıj .Y; �/D 1

4
ıj .Tq;r/, where ıj .K/ denotes the knot concordance invariant introduced in Section 6.1.

More generally, ıj .Y; �/D 1
4
ı.p/;j .Tq;r/, where ı.p/;j .K/ is the knot concordance invariant defined in

Remark 6.7.

Example 7.1 Let .p; q; r/D .2; 3; 5/. Then Y D†.2; 3; 5/ is the Poincaré homology 3–sphere. Since
†.2; 3; 5/ has spherical geometry, it is an L–space [56, Proposition 2.3]. Therefore

ıj .T3;5/D ı.T3;5/D �
0.T3;5/D 4 for all j � 0:

The property of being an L–space does not depend on the choice of orientation, so we also have

ıj .�T3;5/D ı.�T3;5/D�4 for all j � 0:

The same argument applied to p D 3 or 5 gives

ı.3/;j .T2;5/D ı.5/;j .T2;3/D 4 for all j � 0

and
ı.3/;j .�T2;5/D ı.5/;j .�T2;3/D�4 for all j � 0:

Proposition 7.2 Let p, q and r be positive , pairwise coprime integers and assume that p is prime.
Then ıj .†.p; q; r/; �/ D ��.†.p; q; r// for all j � 0, where �.†.p; q; r// is the Casson invariant of
†.p; q; r/. Furthermore ,

ı.p/;j .Tq;r/D�
1

2

p�1X
jD1

�j=p.Tq;r/ for all j � 0;

where �˛.K/ is the Tristram–Levine signature of K.

Proof Recall that Y D†.p; q; r/ is the boundary of a negative definite plumbing [53] whose plumbing
graph has only one bad vertex in the terminology of [55]. Then it follows from [55, Corollary 1.4] that
HFC.Y / is concentrated in even degrees. Consequently, HFCred.Y / is concentrated in odd degrees. (Note
that [55] uses Z coefficients, but it is shown there that HFCred.Y IZ/ has no torsion and hence by the
universal coefficient theorem, [55, Corollary 1.4] also holds for Zp coefficients.) Therefore,

(7-1) �.HFCred.Y //D dimF .HF
C
red;even.Y //� dimF .HF

C
red;odd.Y //D� dimF .HF

C
red.Y //:

By [54, Theorem 1.3], �.HFCred.Y // is related to the Casson invariant �.Y / via the formula

(7-2) �.HFCred.Y //D �.Y /C ı.Y /:

Hence

(7-3) dimF .HF
C
red.Y //D��.Y /� ı.Y /:
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Moreover, from [18; 27],

�.†.p; q; r//D
1

8

p�1X
jD1

�j=p.Tq;r/D
1
8
�.M.p; q; r//;

where M.p; q; r/ is the Milnor fibre

M.p; q; r/D f.x; y; z/ 2C3
j xpCyqC zr D ıg\D6

(where ı is a sufficiently small nonzero complex number). Recall that M.p; q; r/ is a compact smooth
4–manifold with boundary diffeomorphic to †.p; q; r/. Moreover, M.p; q; r/ has the homotopy type of a
wedge of 2–spheres, so b1.M.p; q; r//D 0. Further, M.p; q; r/ is a p–fold cyclic cover of D4 branched
along a surface bounding Tq;r . Hence the action of Zp D h�i on Y extends to M.p; q; r/. From [29,
Lemma 2.1] it follows that there is a Zp invariant spin–structure t0 on M.p; q; r/. Since M.p; q; r/ is a
cyclic p–fold cover of D4, it follows that the subspace of H 2.M.p; q; r/IR/ fixed by � is zero. Hence
Corollary 5.5 may be applied, giving

ıj .Y; �/� �
1
8
�.M.p; q; r//D��.Y / for all j � 0:

Since � acts trivially on HFC.Y /, Proposition 5.10 implies that

ı0.Y; �/� ı.Y /� dimF .HF
C
red.Y //D��.Y /� ı.Y /:

Hence ı0.Y; �/ � ��.Y /. On the other hand, ı0.Y; �/ � ıj .Y; �/ � ��.Y / for any j � 0. Hence
ıj .Y; �/D��.Y / for all j � 0. Therefore we also have

ı.p/;j .Tq;r/D 4ıj .Y; �/D�4�.Y /D�
1

2

p�1X
jD1

�j=p.Tq;r/

for all j � 0.

The above result shows that the values of ı.p/;j .Tq;r/ do not depend on j . In contrast, the values of
ı.p/;j .�Tq;r/ usually do depend on j , as the following propositions illustrate.

Proposition 7.3 Let .a; b/D .3; 6n� 1/ for n� 1. Then

ı.�T3;6n�1/D�4; � 0.�T3;6n�1/D�4n

and
ıj .�T3;6n�1/D

�
�4
��
1
2
j
˘
C 1

�
if 0� j � 2n� 3;

�4n if j � 2n� 2:

Proof The case nD 1 is already covered in Example 7.1, so we assume n� 2. Set Ya;b D†2.Ta;b/D
†.2; a; b/ and let � be the covering involution. Then ıj .�T3;6n�1/ D 4ıj .Y3;6n�1/. From the com-
putations in [54, Section 8] we find that d.Y3;6n�1/ D �2, SWF �red.Y3;6n�1/ D .F�2/

n�1, where the
subscript indicates degree. To simplify notation we let V D SWF �red.Y3;6n�1/D .F�2/

n�1. Then

E
�;�
2 Š F ŒU;Q�� ˚V ŒQ�;
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where the bidegree is given as follows: � and all elements of V have bidegree .0;�2/, U has bidegree
.0; 2/ and Q has bidegree .1; 0/. Then Ep;q2 D 0 for q < �2. It follows that all the differentials in the
spectral sequence are zero on � and on V , since dr sends Ep;�2r to EpCr;�1�rr and �1� r < �2 for
r � 2. Hence dr is zero on all of Er and E�;�1 ŠE

�;�
2 . Let Fj denote the filtration on HSW �Z2.Y3;6n�1/

corresponding to the spectral sequence, so Fj =FjC1ŠE
j;�
1 . In particular, F1=F2ŠF ŒU ��˚V . Choose

lifts of � and V to F1. We lift U j � by taking the lift of � and applying U j . Hence we obtain a short
exact sequence of F ŒU;Q�–modules

0! F ŒU �˚V !HSW �Z2.Y3;6n�1/! F2! 0:

Next, for each j � 0, Q induces an isomorphism Q W Fj =FjC1! FjC1=FjC2; hence by applying Q
repeatedly to F ŒU �� ˚V , we obtain a splitting of the filtration fFj g as F ŒQ�–modules. The splittings
give an isomorphism of F ŒQ�–modules

HSW �Z2.Y3;6n�1/Š F ŒU;Q�� ˚V ŒQ�:

However, this is not necessarily an isomorphism of F ŒU;Q�–modules. Under this isomorphism, U
corresponds to an endomorphism of the form

yU D U2CQU1CQ
2U0CQ

3U�1C � � � ;

where Uj WHSW �.Y3;6n�1/!HSW �Cj .Y3;6n�1/ and U2DU . SinceHSW �.Y3;6n�1/ is concentrated
in even degrees, Uj D 0 for odd j . Moreover, our construction is such that Uj � D 0 for j ¤ 2. It follows
that Uj D 0 for j < 0, as V is concentrated in a single degree. So we get

yU D U CQ2U0

for some U0 W V !HSW 0.Y3;6n�1/.

To simplify notation set dj Ddj .Y3;6n�1/. Using Proposition 3.14 we obtain the following characterisation
of dj :

dj Dmin
˚
i j yU rx D UmQj � modQjC1 for some x 2HSW i

Z2
.Y3;6n�1/ and r;m� 0

	
� j:

Recall that ıj .�T3;6n�1/D� 0.�T3;6n�1/D�4n for sufficiently large j . Hence dj D�2n for sufficiently
large j . Choose such a j . From the above characterisation of j there exists x 2HSW j�2n

Z2
.Y3;6n�1/

such that yU rx D UmQj � C � � � where � � � denotes terms of higher order in Q. We have that x DQay
for some a � j . Then yU rQay D UmQj � C � � � . Since Q is injective we may cancel, giving yU ry D
UmQj�a�C� � � . If aD j , then yU ry DUm�C� � � . But yU DU CQ2U0, so yU ry DU ryC� � � ; hence
U ryDUm�C� � � . From the definition of the usual d–invariant we must have deg.y/�d.Y3;6n�1/D�2.
Hence j � 2n D deg.x/ D aC deg.y/ D j � 2, which is a contradiction since we have assumed that
n > 1. It follows that a < j . We must have y 2 V for if y D U b� mod V , then we would have
yU rx D U rCbQa� C � � � , which contradicts yU rx D UmQj � C � � � as a < j . Therefore y 2 V . In
particular deg.y/D�2 and j � 2nD deg.x/D a� 2.
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Let b be the smallest positive integer such that U b0 y … V . Such a b exists since

yU ry D .U CQ2U0/
ry D UmQj�a� C � � �

and U is zero on V . Then it follows that r � b and

yU ry D .U CQ2U0/
ry D U r�bQ2b.U b0 y/C � � � D U

mQj�a� C � � � :

Hence 2b D j �a. So we have shown that j D aC 2b and j � 2nD a� 2. Hence b D n� 1. But since
dimF .V /D n� 1D b, it follows that there exists a v 2 V such that v; U0v; U 20 v; : : : ; U

n�2
0 v is a basis

for V and U n�10 v D � mod V . Now it is straightforward to see that the sequence fdj g must have the
form �2;�2;�4;�4;�6;�6; : : : ; for j � 2n� 3 and dj D�2n for j � 2n� 2.

Proposition 7.4 Let .a; b/D .3; 6nC 1/ for n� 1. Then

ı.�T3;6nC1/D 0; � 0.�T3;6nC1/D�4n

and
ıj .�T3;6nC1/D

�
�4
�
1
2
j
˘

if 0� j � 2n� 1;
�4n if j � 2n:

Proof By [54, Section 8], d.Y3;6nC1/D 0, SWF �red.Y3;6nC1/D .F0/
n and � 0.�T3;6nC1/D 4n. From

here essentially the same argument as in Proposition 7.3 gives the result.

Remark 7.5 We can use Theorem 6.5 and the computations in Propositions 7.3 and 7.4 to obtain a lower
bound for the 4–genus. From Proposition 7.3, we see that � 0.T3;6n�1/D 4n and j�.T3;6n�1/D 2n� 2;
hence g4.T3;6n�1/� 2n� 2C 4nD 6n� 2. On the other hand, from the positive solution to the Milnor
conjecture [38], we know that g4.Ta;b/D 1

2
.a� 1/.b� 1/. In particular, g4.T3;6n�1/D 6n� 2. Hence

the above estimate for g4.T3;6n�1/ is actually sharp.

Similarly, by Proposition 7.4, � 0.T3;6nC1/ D 4n and j�.T3;6nC1/ D 2n. So we obtain an estimate
g4.T3;6nC1/� 6n. Once again, this estimate is sharp since g4.T3;6nC1/D 1

2
.3� 1/.6nC 1� 1/D 6n.

7.2 Nonextendable actions

Let Y be a rational homology 3–sphere equipped with an orientation-preserving action of G. Let W be
a smooth 4–manifold with boundary Y . In this section we are concerned with the question of whether
the G–action can be extended to W . In particular we are interested in finding obstructions to such an
extension.

Proposition 7.6 Let Y be an integral homology 3–sphere and s the unique spinc–structure on Y . Let G
act orientation-preservingly on Y and suppose the extension Gs is trivial. Suppose that Y is the boundary
of a contractible 4–manifold W . If the action of G extends over W then ıG;c.Y; s/D ıG;c.Y ; s/D 0 for
every nonzero c 2H�G .
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Proof Suppose that theG–action extends toW . SinceW is contractible, there is a unique spinc–structure
t onW . By uniqueness it isG–invariant and tjY D s. Theorem 4.1 gives ıG;c.Y; s/� 0 and ıG;c.Y; s/� 0;
hence ıG;c.Y; s/D 0. Reversing orientations, we also find that ıG;c.Y s/D 0.

Example 7.7 Akbulut–Kirby constructed examples of contractible 4–manifolds bounding integral ho-
mology spheres, in particular †.2; 5; 7/, †.3; 4; 5/ and †.2; 3; 13/ bound contractible 4–manifolds [2,
Theorem 2]. Further examples were given by Casson and Harer, in particular †.2; 2s � 1; 2sC 1/ for
odd s bounds a contractible 4–manifold [14].

Now let Y D†.2; 3; 13/ and let � be the involution obtained by viewing Y as the branched double cover
†2.T3;13/. Then ı2.Y /D�1 by Proposition 7.4. Then it follows from Proposition 7.6 that � does not
extend to an involution on any contractible 4–manifold W bounded by Y . On the other hand, since � is
isotopic to the identity, � does extend to a diffeomorphism on W .

Similarly if we let Y D†.2; 2s�1; 2sC1/D†2.T2s�1;2sC1/, where s is odd, and let � be the covering
involution, then Y bounds a contractible 4–manifold W but � does not extend to an involution on W
because ıj .Y /D�18�.T2s�1;2sC1/D

1
2
.s2� 1/¤ 0 for all j � 0.

More generally, let Y D†.p; q; r/ where p, q and r are pairwise coprime positive integers. Assume that
p is prime and let Zp D h�i act on Y by realising Y as the p–fold cyclic branched cover †p.Tq;r/. Then
ı0.Y; �/D��.†.p; q; r//. From [59, Chapter 19], it can be seen that �.†.p; q; r// < 0 and hence the
Zp–action on Y D†.p; q; r/ is nonextendable over contractible 4–manifolds bounded by Y . We have
thus recovered a special case of the nonextendability results of Anvari and Hambleton [6; 7].

If we relax the condition that W is contractible to being a rational homology 4–ball, then we get a similar
result, except that we have to make an assumption on the order of H 2.W IZ/.

Proposition 7.8 Let Y be an integral homology 3–sphere and s the unique spinc–structure on Y .
Let G D Zp for a prime p act orientation-preservingly on Y , and suppose that the extension Gs is
trivial. Suppose that Y is the boundary of a compact , oriented , smooth rational homology 4–ball W
and assume that p does not divide the order of H 2.W IZ/. If the action of G extends over W then
ıG;c.Y; s/D ıG;c.Y ; s/D 0 for every nonzero c 2H�G .

Proof The set of spinc–structures on W has cardinality jH 2.W IZ/j and G D Zp acts on this set. By
assumption, p does not divide this number and hence there must exist a spinc–structure t whose stabiliser
group is not trivial. Since p is prime, this means t is fixed by all of G. From here, the rest of the proof is
the same as for Proposition 7.6.

Example 7.9 Let Y D†.p; q; r/ where p, q and r are relatively prime and assume that p is prime. Let
Zp act on Y as described in Section 7.1. Recall from Proposition 7.2 that ıZp;1.Y; s/D��.†.p; q; r//.
As in Example 7.7, �.†.p; q; r// < 0 and hence ıZp;1.Y; s/ > 0.
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Therefore, by Proposition 7.8, if W is a compact, oriented, smooth rational homology 4–ball bounded by
Y and if p does not divide the order of H 2.W IZ/, then the action of G does not extend over W . Thus
we have obtained a partial extension of the results of Anvari–Hambleton to the case of rational homology
4–balls.

Fintushel and Stern [26] showed that †.2; 3; 7/ bounds a rational homology 4–ball, although it does not
bound an integral 4–ball. Akbulut and Larson [4] showed that, for n odd, †.2; 4nC 1; 12nC 5/ and
†.3; 3nC1; 12nC5/ bound rational 4–balls but not integral 4–balls. More examples,†.2; 4nC3; 12nC7/
and †.3; 3nC 2; 12nC 7/ for even n, were constructed by Şavk [21]. Taking p D 2 or 3, the above
Brieskorn spheres admit Zp–actions with nonzero delta invariants, as in Example 7.7. Hence the Zp–
action does not extend to any oriented rational homology 4–ball W with boundary Y , provided the order
of H 2.W IZ/ is coprime to p. However, it does not seem straightforward to determine whether the above
examples are bounded by rational 4–balls satisfying this coprimality condition.

Proposition 7.10 Let Y be an integral homology 3–sphere and s the unique spinc–structure on Y . Let
G act orientation-preservingly on Y and suppose that the extension Gs is trivial. Suppose that Y is the
boundary of a smooth , compact , oriented 4–manifold with b1.W /D 0 and suppose that H 2.W IZ/ has
no 2–torsion.

� If H 2.W IR/ is positive definite and ıG;1.Y; s/ > 0, then the G–action on Y cannot be extended to
a smooth G–action on W acting trivially on H 2.W IZ/.

� If H 2.W IR/ is negative definite and ıG;c.Y; s/ < 0 for some c 2 H�G , then the G–action on Y
cannot be extended to a smooth G–action on W acting trivially on H 2.W IZ/.

Proof Suppose the G–action on Y extends to a smooth G–action on W acting trivially on H 2.W IZ/.
Since H 2.W IZ/ has no 2–torsion, a spinc–structure t on W is determined uniquely by c1.t/. Since G
acts trivially on H 2.W IZ/, it follows that G preserves every spinc–structure. Furthermore, tjY D s for
any spinc–structure on W by uniqueness of t.

If H 2.W IR/ is negative definite, then Theorem 4.1 may be applied to any spinc–structure t on W , giving

ı.W; t/� ıG;c.Y; s/

for all t and all c 2 H�G . Since Y is an integral homology sphere, the intersection form on the
H 2.W IZ/=torsion is unimodular. By the main theorem of [24], there exists a spinc–structure t such that
ı.W; t/� 0. Hence ıG;c.Y; s/� 0. The proof in the case that H 2.W IR/ is positive definite is similarly
obtained.

Example 7.11 Consider again Y D†.p; q; r/ with the same Zp–action. Recall from Proposition 7.2
that ıZp;1.Y; s/D��.†.p; q; r//. As in Example 7.9, ıZp;1.Y; s/> 0. So by Proposition 7.10, the action
of Zp on Y cannot be extended to any smooth, compact, oriented 4–manifold W such that b1.W /D 0,
H 2.W IZ/ has no 2–torsion and with Zp acting trivially on H 2.W IZ/.
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7.3 Realisation problems

In this section we are concerned with the following realisation problem. Let W be a smooth 4–manifold
with boundary an integral homology sphere Y . Suppose that a finite groupG acts onH 2.W IZ/ preserving
the intersection form. We say that the action of G on H 2.W IZ/ can be realised by diffeomorphisms if
there is a smooth orientation-preserving action of G on W inducing the given action on H 2.W IZ/.

For simplicity we will assume that G D Zp for a prime p so that all extensions Gs are trivial.

Proposition 7.12 Let W be a smooth , compact , oriented 4–manifold with b1.W /D 0 and with boundary
Y D @W an L–space integral homology sphere. Suppose that an action of GDZp onH 2.W IZ/ is given
and suppose that H 2.W IZ/ has no 2–torsion. Suppose that the subspace of H 2.W IR/ fixed by G is
negative definite. If the action of G on H 2.W IZ/ can be realised by diffeomorphisms , then

ı.W; s/� ı.Y; sjY /

for every spinc–structure s on W for which c1.s/ is invariant.

Proof This is essentially a special case of Theorem 5.3. Note that since H 2.W IZ/ is assumed to have
no 2–torsion, any spinc–structure s for which c1.s/ is invariant is preserved by G. So if G is realisable
by diffeomorphisms, then Theorem 5.3 gives ı.W; s/� ıG;1.Y; sjY /. But we have assumed that Y is an
L–space, so ıG;1.Y; sjY /D ı.Y; sjY /.

Example 7.13 We consider a specialisation of Proposition 7.12 as follows. Take G D Zp. Assume
Y is an L–space integral homology 3–sphere and let s be the unique spinc–structure. Suppose that W
is a smooth, compact, oriented 4–manifold with b1.W / D 0 and with boundary Y . Suppose that the
intersection form on H 2.W IZ/ is even and that H 2.W IZ/ has no 2–torsion. Then W is spin and it has
a unique spin–structure t. By uniqueness, the restriction of t to the boundary equals s. Suppose that an
action of G D Zp on H 2.W IZ/ is given and that the subspace of H 2.W IR/ fixed by G is negative
definite. Then applying Proposition 7.12 to .W; t/, we find that ı.W; t/D�1

8
�.W /� ı.Y; s/. Therefore,

if 1
8
�.W / <�ı.Y; s/ then the action of Zp on H 2.W IZ/ is not realisable by a smooth Zp–action on W .

For example, if W D K3 #W0 is the connected sum of a K3 surface with W0, the negative definite
plumbing of the E8 graph, then @W D Y D†.2; 3; 5/ is the Poincaré homology 3–sphere which is an
L–space. Then W satisfies all the above conditions and 1

8
�.W /D �3 < ı.Y; s/D �1. Hence for any

prime p, any Zp–action on H 2.W IZ/ such that the invariant subspace of H 2.W IR/ is negative definite
cannot be realised by a smooth Zp–action on W .

Corollary 7.14 Let W be a smooth , compact , oriented 4–manifold with b1.W /D 0 and with boundary
Y D @W an L–space integral homology sphere. Suppose that W is spin and that H 2.W IZ/ has no
2–torsion. If there is a smooth involution on W which acts as �1 onH 2.W IR/, then ı.Y; s/D�1

8
�.W /.

Proof Since W is spin, there is a spinc–structure s for which c1.s/D 0. Proposition 7.12 then implies
that �1

8
�.W /� ı.Y; s/. The same argument applied to W gives 1

8
�.W /� ı.Y; s/.
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7.4 Equivariant embeddings of 3–manifolds in 4–manifolds

Let Y be a rational homology 3–sphere equipped with an orientation-preserving action of G. By an
equivariant embedding of Y into a 4–manifold X , we mean an embedding Y !X such that the action of
G on Y extends over X . We consider some existence and nonexistence results for equivariant embeddings.

Proposition 7.15 Suppose that Y is an integral homology 3–sphere. Let s be the unique spinc–structure
on Y and assume that Gs is a trivial extension. If Y can be equivariantly embedded in S4, then
ıG;c.Y; s/D ıG;c.Y ; s/D 0 for every nonzero c 2H�G .

Proof If Y embeds equivariantly in S4, then we obtain an equivariant decomposition S4 DWC[Y W�.
Mayer–Vietoris and Poincaré–Lefschetz imply that W˙ are integral homology 4–balls, hence are con-
tractible by Whitehead’s theorem. The result now follows from Proposition 7.6.

Example 7.16 Let Y D †.2; 3; 13/, equipped with the involution � obtained from viewing Y as the
branched double cover †2.T3;13/. Then Y embeds in S4 [13, Theorem 2.13]. On the other hand,
ı2.Y ; s/D�1 by Proposition 7.4. Hence Y cannot be equivariantly embedded in S4.

It is known that every 3–manifold Y embeds in the connected sum #n.S2 �S2/ of n copies of S2 �S2

for some sufficiently large n [1, Theorem 2.1]. Aceto, Golla and Larson define the embedding number
".Y / of Y to be the smallest n for which Y embeds in #n.S2 �S2/. Here we consider an equivariant
version of the embedding number. To obtain interesting results we need to make an assumption on the
kinds of group actions allowed.

Definition 7.17 Let G D Zp D h�i, where p is a prime number. We say that a smooth, orientation-
preserving action of G on X D #n.S2 �S2/ is admissible if H 2.X IZ/� D 0, where

H 2.X IZ/� D fx 2H 2.X IZ/ j �.x/D xg:

One way of constructing admissible actions is as follows. LetX be the p–fold cyclic cover of S4, branched
over an unknotted embedded surface †� S4 of genus g. Then X is diffeomorphic to #g.p�1/.S2�S2/
[3, Corollary 4.3] and the action of Zp on X as a cyclic branched cover is admissible — as can be seen
from the proof of Theorem 9.3 in [11].

Let Zp D h�i act on a rational homology 3–sphere Y . We define the equivariant embedding number
".Y; �/ of .Y; �/ to be the smallest n for which Y embeds equivariantly in #n.S2 � S2/ for some
admissible Zp–action on #n.S2 �S2/, if such an embedding exists. We set ".Y; �/D1 if there is no
such embedding.

Recall that the double slice genus [48, Section 5] gds.K/ of a knot K in S3 is defined as the minimal
genus of an unknotted compact oriented surface S embedded in S4 whose intersection with the equator
S3 is K. From the definition, it follows that 2g4.K/� gds.K/� 2g3.K/, where g3.K/ is the 3–genus
of K.
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Proposition 7.18 Let Y D†2.K/ be the branched double cover of a knot K and let � be the covering
involution on Y . Then ".Y; �/� gds.K/.

Proof Let S be an unknotted embedded surface in S4 of genus gds.K/ intersecting the equator in K.
Let W be the double cover of S4 branched along S . Then by [3, Corollary 4.3], W is diffeomorphic
to #gds.K/.S2 �S2/. The covering involution on W is admissible since W is a branched double cover
of S4. Clearly Y D†2.K/D @W embeds equivariantly in W and so ".Y; �/� gds.K/.

Proposition 7.19 Let Zp D h�i act orientation-preservingly on an integral homology 3–sphere Y . Let
j.Y; �/ be the smallest positive integer such that ıj .Y; s; �; p/C ıj .Y ; s; �; p/ D 0, or j.Y; �/ D 1
if no such j exists. Here s is the unique spinc–structure on Y . Then ".Y; �/ � j.Y; �/ if p D 2 and
".Y; �/� 2j.Y; �/ if p is odd.

Proof To simplify notation we write ıj .Y / for ıj .Y; s; �; p/. Suppose that Y embeds equivariantly in
X D #n.S2�S2/, for an admissible action of � . Then we obtain an equivariant splitting X DXC[Y X�.
Let t be the unique spin–structure on X . By uniqueness, t is �–invariant and tjY D s. Corollary 5.5
applied to XC gives ıj .Y /D �18�.XC/ for j � b0�.XC/ and ıj .Y /D 1

8
�.XC/ for j � b0

C
.XC/. Let

n0 D n if p D 2 or 1
2
n if p is odd. Since b0

˙
.XC/ � b

0
˙
.X/ D n0, we see that ıj .Y /C ıj .Y / D 0 for

j � n0. Hence j.Y; �/� n0. Therefore ".Y; �/� j.Y; �/ if p D 2 and ".Y; �/� 2j.Y; �/ if p is odd.

Example 7.20 Let Y D †.2; 3; 6nC 1/D †2.T3;6nC1/ and equip Y with the covering involution � .
Then g3.T3;6nC1/ D 6n; hence ".Y; �/ � 12n, by Proposition 7.18. By Proposition 7.4, we see that
j.Y; �/D 2n and so ".Y; �/� 2n. So we have an estimate on the equivariant embedding number of the
form

2n� ".†.2; 3; 6nC 1/; �/� 12n:

Suppose that n is odd. Then by [1, Proposition 3.5], the (nonequivariant) embedding number of
†.2; 3; 6nC1/ is given by ".†.2; 3; 6nC1//D10. In particular, ".†.2; 3; 6nC1/; �/>".†.2; 3; 6nC1//
for all odd n > 5. Also, since we obviously have ".Y; �/� ".Y /, we see that

10� ".†.2; 3; 7/; �/� 12:

In fact, we will now prove that ".†.2; 3; 7/; �/D 12. Suppose that Y D†.2; 3; 7/ embeds equivariantly
in X D #n.S2 � S2/ for some admissible involution, where n � 12. Then we obtain an equivariant
splitting X D XC [Y X�. Since Y is an integral homology sphere, the intersection forms on X˙ are
unimodular. They are also even, since X is spin. Moreover the Rochlin invariant of Y is 1. So the
intersection forms of X˙ must contain at least one E8 or �E8 summand. Proposition 7.2 implies that
ıj .Y /D 1 for all j � 0 and Proposition 7.4 implies that ıj .Y /D 0 for j D 0; 1 and ıj .Y /D�1 for j � 2.
Since n� 12, Corollary 5.5 applied to X˙ then implies that the intersection form of XC must be of the
form ˛H ˚ .�E8/ for some ˛ � 2 (where H is the hyperbolic lattice) and similarly the intersection form
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of X� must be of the form ˛0H˚.E8/ for some ˛0� 2. The intersection form of X is then .˛C˛0C8/H
and so nD ˛C˛0C 8� 2C 2C 8D 12. This proves that

".†.2; 3; 7/; �/D 12:

Example 7.21 Let Y D †.2; 3; 5/ D †2.T3;5/ and equip Y with the covering involution � . Then
g3.T3;5/D 4; hence ".Y; �/� 8, by Proposition 7.18. On the other hand, ".Y; �/� ".Y / and ".Y /D 8
by [1, Proposition 3.4], so ".†.2; 3; 5/; �/D 8.
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Constructions stemming from nonseparating planar graphs
and their Colin de Verdière invariant

ANDREI PAVELESCU

ELENA PAVELESCU

A planar graph G is said to be nonseparating if there exists an embedding of G in R2 such that, for
any cycle C � G, all vertices of G nC are within the same connected component of R2 nC. Dehkordi
and Farr classified the nonseparating planar graphs as either outerplanar graphs, subgraphs of wheel
graphs, or subgraphs of elongated triangular prisms. We use maximal nonseparating planar graphs to
construct examples of maximal linkless graphs and maximal knotless graphs. We show that, for a maximal
nonseparating planar graph G with n� 7 vertices, the complement cG is .n�7/–apex. This implies that
the Colin de Verdière invariant of the complement cG satisfies �.cG/ � n� 4. We show this to be an
equality. As a consequence, the conjecture of Kotlov, Lovász and Vempala that, for a simple graph G,
�.G/C�.cG/� n� 2 is true for 2–apex graphs G for which G �fu; vg is planar nonseparating. It also
follows that complements of nonseparating planar graphs of order at least nine are intrinsically linked. We
prove that the complements of nonseparating planar graphs G of order at least ten are intrinsically knotted.

57M15; 05C10

1 Introduction

All graphs in this paper are finite and simple. A graph is intrinsically linked (IL) if every embedding
of it in R3 (or S3) contains a nontrivial 2–component link. A graph is linklessly embeddable if it
is not intrinsically linked (nIL). A graph is intrinsically knotted (IK) if every embedding of it in R3

(or S3) contains a nontrivial knot. The combined work of Conway and Gordon [1983], Sachs [1984] and
Robertson, Seymour and Thomas [Robertson et al. 1993] fully characterize IL graphs: a graph is IL if
and only if it contains a graph in the Petersen family as a minor. The Petersen family consists of seven
graphs obtained from the complete graph K6 by rY moves and Yr moves, as described in Figure 1.

rY

Yr

Figure 1: rY and Yr moves.
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The rY move and the Yr move preserve the IL property. While K7 and K3;3;1;1 together with many
other minor minimal IK graphs have been found [Goldberg et al. 2014; Conway and Gordon 1983; Foisy
2002], a characterization of IK graphs is not fully known. While the rY move preserves the IK property
[Motwani et al. 1988], the Yr move doesn’t preserve it [Flapan and Naimi 2008]. A graph is said to
be k–apex if it can be made planar by removing k vertices. If G and H denote two simple graphs with
vertex sets V.G/ and V.H/ and edge sets E.G/ and E.H/, respectively, then the sum GCH denotes
the simple graph with vertex set V.G/tV.H/ and edge set E.G/tE.H/tL, where L denotes the set
of all edges with one endpoint in V.G/ and the other in V.H/.

A planar graph G is nonseparating if there exists an embedding of G in R2 such that, for any cycle
C�G, all vertices of G nC are within the same connected component of R2 nC. By [Dehkordi and Farr
2021], a nonseparating planar graph is one of three types:

(1) an outerplanar graph,

(2) a subgraph of a wheel,

(3) a subgraph of an elongated triangular prism.

In Section 2, we consider sums between maximal nonseparating planar graphs and small empty graphs,
complete graphs or paths to construct maximal linklessly embeddable graphs and maximal knotlessly
embeddable graphs. A simple graph G is called maximal linklessly embeddable (maxnIL) if it is not
a proper subgraph of a nIL graph of the same order. A simple graph G is called maximal knotlessly
embeddable (maxnIK) if it is not a proper subgraph of a nIK graph of the same order. Constructions and
properties of maxnIL graphs can also be found in [Aires 2021; Naimi et al. 2023], and for maxnIK graphs
in [Eakins et al. 2023].

Colin de Verdière [1990] introduced the graph invariant �, which is based on spectral properties of
matrices associated with the graph G. He showed that � is monotone under taking minors and that
planarity is characterized by the inequality �� 3. By [Lovász and Schrijver 1998; Robertson et al. 1993],
it is known that linkless embeddability is characterized by the inequality � � 4. By reformulating the
definition of � in terms of vector labelings, Kotlov, Lovász and Vempala [Kotlov et al. 1997] related the
topological properties of a graph to the � invariant of its complement: for G a simple graph on n vertices,

(1) if G is planar, then �.cG/� n� 5;

(2) if G is outerplanar, then �.cG/� n� 4;

(3) if G is a disjoint union of paths, then �.cG/� n� 3.

For G a graph with n vertices v1; v2; : : : vn, cG denotes the complement of G in the complete graph Kn.
The graph cG has the same set of vertices as G and E.cG/D fvivj j vivj …E.G/g.

By [Battle et al. 1962], the complement of a planar graph with nine vertices is not planar. This is also
implied by the inequality �.cG/� n� 5. Here we show a stronger inequality for maximal nonseparating
planar graphs. In Section 3, we prove two theorems.

Algebraic & Geometric Topology, Volume 24 (2024)
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Theorem 1 If G is a maximal nonseparating planar graph with n� 7 vertices , then cG is .n�7/–apex.

Theorem 1 establishes the upper bound �.cG/ � n� 4 for G a maximal nonseparating planar graph,
since � � 3 for planar graphs and adding one vertex increases the value of � by at most one [van der
Holst et al. 1999]. We prove this is an equality.

Theorem 2 For G a maximal nonseparating planar graph with n� 7 vertices , �.cG/D n� 4.

Kotlov et al. [1997] conjectured that, for a simple graph G, �.G/C�.cG/� n� 2. We revisit results
about� to show the conjecture is true for planar graphs and 1–apex graphs. As a consequence of Theorem 2,
the conjecture holds for 2–apex graphs G for which G � fu; vg is planar nonseparating. Theorem 2
also implies that, for G a maximal nonseparating planar graph with nine vertices, �.cG/D 5 > 4, and
thus cG is intrinsically linked. While the relationship between the � invariant and intrinsic linkness is
well understood, the same is not true for intrinsic knottedness. The inequality �.cG/� n� 5 for planar
graphs G implies that complements of planar graphs with ten vertices are intrinsically linked. Theorem 2
establishes that, for G a maximal nonseparating planar graph with ten vertices, �.cG/ D 6, but this
does not imply that cG is intrinsically knotted. There are known IK graphs with � D 5 [Foisy 2003;
Mattman et al. 2021], as well as nIK graphs with �D 6 [Flapan and Naimi 2008]. In Section 4, we do a
case-by-case analysis to prove the following theorem:

Theorem 3 If G is a nonseparating planar graph on ten vertices , then cG is intrinsically knotted.

Since the complement of a nonseparating planar graph contains the complement of a maximal non-
separating planar graph of the same order as a subgraph, it suffices to prove Theorem 3 for maximal
nonseparating planar graphs, namely

(1) maximal outerplanar graphs,

(2) the wheel graph,

(3) elongated triangular prisms.

A similar approach to that presented in Section 4 works to prove that:

(a) If G is a nonseparating planar graph on seven vertices, then cG is not outerplanar.

(b) If G is a nonseparating planar graph on eight vertices, then cG is nonplanar.

(c) If G is a nonseparating planar graph on nine vertices, then cG is intrinsically linked.

For outerplanar graphs G with at most nine vertices, these results can also be obtained using the graph
invariant �, since, for such graphs G, �.cG/� n� 4 [Kotlov et al. 1997].

2 MaxnIL and maxnIK graphs

In this section, we use maximal nonseparating planar graphs to build examples of maxnIL and maxnIK
graphs. Jørgensen [1989] and Dehkordi and Farr [2021] considered the class of graphs of the typeHCE2,

Algebraic & Geometric Topology, Volume 24 (2024)
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where E2 denotes the graph with two vertices and no edges and H is an elongated prism. Jørgensen
proved that these graphs are maximal with no K6 minors. Dehkordi and Farr proved that these graphs are
maxnIL. Here we add to this type of example by taking the sum of maximal nonseparating planar graphs
with small empty graphs, complete graphs and paths. Sachs [1984] proved that 1–apex graphs are nIL
and 2–apex graphs are nIK. A theorem of Mader [1968] shows that a graph G with n vertices and 4n� 9
edges, with n� 6, contains a K6 minor, and a graph G with n vertices and 5n� 14 edges, with n� 7,
contains a K7 minor. We combine these results into the following useful lemma:

Lemma 4 A maximal 1–apex graph is maxnIL. A maximal 2–apex graph is maxnIK.

A vertex of a graph H which is incident to all the other vertices of H is a cone. We also say that v cones
over the subgraph induced by all the vertices of H minus v. Let Wn denote the wheel graph of order
n � 4. Let P2 be the graph with vertex set V.P2/D fu; v;wg and edge set E.P2/D ffu;wg; fv;wgg.
Let K3 denote the complete graph on vertices fu; v;wg. Using Lemma 4, we derive the following result:

Theorem 5 (1) The graph G 'WnCE2 is maxnIL.

(2) If H is a maximal outerplanar graph of order n� 4, then G 'H CK2 is a maxnIL graph.

(3) The graph G 'WnCP2 is maxnIK.

(4) If H is a maximal outerplanar graph of order n� 4, then G 'H CK3 is a maxnIK graph.

Proof For the first two cases, the graph G is maximal 1–apex, and thus maxnIL. For the last two cases,
the graph G is maximal 2–apex, and thus maxnIK.

For the elongated prism case, we distinguish two cases, according to the number of nontriangular edges
of the triangular prism which are subdivided.

Theorem 6 Let H denote an elongated prism of order n � 6 obtained by repeated subdivisions of at
most two of three nontriangular edges of the prism graph. Then G 'H CP2 is a maxnIK graph.

t1 t2 � � � tkv1 v2

v3 v4

v5 v6s1 s2 � � � sl

t1 t2 � � � tkv1 v2

v3
v

v4

v5 v6s1 s2 � � � sl

u

Figure 2: An elongated prism with only two edges subdivided (left) and a planar graph obtained
by deleting the vertices t and w of H CP2 (right).
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v1
a v2

v3
b

v4

v5

c
v6

C1

C2

C3

C4

Figure 3: The graph P 0 obtained by subdividing once each nontriangular edge of the prism graph
(left) and the graph D4 (right).

Proof Assume that H is isomorphic to the graph depicted in Figure 2, left, in which the edge fv3; v4g

is not subdivided. Perform a rY move on the triangle induced by the vertices fv3; v4; ug by deleting the
edges fv3; v4g, fv3; ug and fv4; ug and adding a new vertex t incident to all of fv3; v4; ug to obtain a new
graphG0. This graph is 2–apex, since deleting the vertices t and w gives the planar graph of Figure 2, right.
Thus, G0 is nIK, and so must be G, as the rY move preserves the IK property [Motwani et al. 1988].

To show that G is maximal nIK, one notices that G is isomorphic to a cone w over H CE2. Since
H CE2 is maxnIL by [Dehkordi and Farr 2021], adding any edge to G produces a structure of a cone
over an IL graph. This structure will contain a minor isomorphic to a graph in either the K7 family or the
K3;3;1;1 family, and will therefore be IK.

Theorem 7 Let H denote an elongated prism of order n � 9 obtained by repeated subdivisions of all
three nontriangular edges of the prism graph. Then G 'H CP2 is an IK graph.

Proof By repeated edge contractions applied to G, one obtains the minor S ' P 0CP2, where P 0 is the
graph depicted in Figure 3, left.

Foisy [2002] proved that, if a graph contains a doubly linked D4 minor in every embedding, the graph
must be IK. This result was also proved independently by Taniyama and Yasuhara [2001]. The graph D4

is depicted in Figure 3, right. An embedding of the graph D4 is doubly linked if the linking numbers
lk.C1; C3/ and lk.C2; C4/ are both nonzero mod 2. We used a Mathematica program written by Naimi
to show that S has a doubly linked D4 minor in every embedding.

3 The � invariant

In this section we determine the value of the � invariant for complements of maximal nonseparating
planar graphs. By [van der Holst et al. 1999], if G is planar with n vertices, then �.cG/� n�5. We first
show the inequality �.cG/� n�4 for graphs G which are maximal nonseparating planar. In Theorem 2,
we show this is in fact an equality.

Kotlov et al. [1997] conjectured that, for a simple graph G, �.G/C�.cG/� n� 2. We review that the
conjecture holds for planar graphs and 1–apex graphs. We show that, as a consequence of Theorem 2, the
conjecture holds for 2–apex graphs G for which G �fu; vg is planar nonseparating.

Algebraic & Geometric Topology, Volume 24 (2024)
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v1

v2 v3

v4

v5

v6

v7

v1

v2

v3

v4

v5v6

v7

v8

vn�1

vn

v1 v4

v3 v6

v5 v2

vn

Figure 4: A maximal outerplanar graph with seven vertices (left), the graph G, a wheel with n
vertices (center), and cG n fv7; v8; : : : ; vn�1g (right).

Theorem 1 If G is a maximal nonseparating planar graph with n� 7 vertices , then cG is .n�7/–apex.

Proof We treat the three types in turn:

Outerplanar case Any maximal outerplanar graphH of order n� 3 can be represented by a triangulated
n–cycle in the plane (with the unbounded face containing all vertices). The n–cycle contains at least
one 2–chord, an edge which forms a triangle with two adjacent edges along the cycle. We say that the
2–chord isolates the vertex which is part of the triangle but is not incident to the 2–chord. For example, in
Figure 4, left, the 2–chord v1v6 isolates the vertex v7 and the 2–chord v1v5 of H �fv7g isolates v6. The
complement of the unique maximal outerplanar graph with five vertices is P3, a path with three edges,
together with an isolated vertex. It follows that the complement of any maximal outerplanar graph with
seven vertices is planar, since the deletion of two vertices gives a path with three edges and an isolated
vertex. For example, after the deleting the vertices v7 and v6, the complement of the graph in Figure 4,
left, is the path v1v3v5v2 together with the isolated vertex v4. Starting with a maximal outerplanar graph
with n� 7 vertices, one can recursively delete n� 7 isolated vertices and obtain a maximal outerplanar
graph of order 7. The same sequence of n� 7 vertex deletions gives a planar subgraph of cG. Thus,
cG is .n�7/–apex.

Wheel case Let G be the wheel on n vertices. Then cG ' .Kn�1 nCn�1/[K1. Let fv1; v2; : : : ; vn�1g

be the vertices of Cn�1 in consecutive order, as in Figure 4, center. Then cG n fv7; v8; : : : ; vn�1g is
a planar graph (the triangular prism added one edge, together with an isolated vertex) and thus cG is
.n�7/–apex. See Figure 4, right.

Elongated prism case Let G be an elongated prism with n � 7 vertices. Without loss of generality,
let v1v3v5 be one of two induced triangles of G. Let a; b and c denote their respective neighbors in
V.G/ n fv1; v3; v5g, as in Figure 5, left. Deleting all vertices but fv1; v3; v5; a; b; cg in cG gives the
subgraph of the outerplanar graph with six vertices in Figure 5, right. Deleting any n� 7 vertices of cG
none of which is in the set fv1; v3; v5; a; b; cg yields a planar graph, and thus cG is .n�7/–apex.

Corollary 8 For G a maximal nonseparating planar graph with n� 7 vertices , �.cG/� n� 4.

Algebraic & Geometric Topology, Volume 24 (2024)
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v1 a

v3
b

v5
c

v1 c

v3

av5

b

Figure 5: An elongated prism (left) and the subgraph induced by fv1; v3; v5; a; b; cg in cG (right).

Proof By Theorem 1, cG is .n�7/–apex. Let H be the planar subgraph of cG obtained by deleting
n� 7 vertices. Then �.H/ � 3 and �.cG/ � 3C .n� 7/D n� 4, since adding one vertex to a graph
increases the value of � by at most one (see [van der Holst et al. 1999, Theorem 2.7]).

Corollary 8 establishes an upper bound of n � 4 for the values of � of complements of maximal
nonseparating planar graphs on n vertices. We show that n� 4 is the actual value of �. We use [van der
Holst et al. 1999, Theorem 5.5], whice says that, for H a graph on n vertices and �.H/ WD n��.cH/�1,
the inequality �.H/� 2 holds if and only if H does not contain as a subgraph any of the five graphs in
Figure 6. We also use that, for a graph G with at least one edge, �.GCK1/D �.G/C 1 by [van der
Holst et al. 1999, Theorem 2.7].

Theorem 2 For G a maximal nonseparating planar graph with n� 7 vertices , �.cG/D n� 4.

Proof Corollary 8 established the inequality �.cG/ � n� 4. Here we show that �.cG/ � n� 4. If
G is outerplanar, then �.cG/ � n � 4 [Kotlov et al. 1997]. If G is the wheel graph on n vertices,
cG D cCn�1[K1. By [van der Holst et al. 1999, Theorem 5.5], �.Cn�1/� 2 and we have

�.cG/D �.cCn�1/D n� 1� �.Cn�1/� 1� n� 4:

For elongated prisms, we distinguish two cases, according to the number of nontriangular edges of the
prism which are being subdivided:

Case 1 Consider G the elongated prism in Figure 7, left, with exactly one nontriangular edge of the
prism graph subdivided, v1v2, If at least two vertices are added along v1v2, as in Figure 7, left, consider

Figure 6: Five graphs.
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v1 v2

v3 v4

v5 v6

v1 v2

v3 v4

v5 v6

v1 v4

v5

v2v3

v6

Figure 7: An elongated prism with one nontriangular edge subdivided by more than one vertex
(left), an elongated prism with one nontriangular edge subdivided by exactly one vertex (center)
and the complement of that graph (right).

the graph H DG �fv1; v2g. Then �.cH/D .n� 2/� �.H/� 1� n� 5, by [van der Holst et al. 1999,
Theorem 5.5]. Since in cG the set of adjacent vertices fv1; v2g cones over cH, �.cG/� n�4 by [van der
Holst et al. 1999, Theorem 2.7]. If only one vertex is added along the one edge, as in Figure 7, center,
the set of adjacent vertices fv1; v2g no longer cones over cH. However, in this case, cG contains a K4

minor, and thus �.cG/� 3. See Figure 7, right.

Case 2 Assume G is obtained from the triangular prism by subdividing edges v1v2 and v5v6 along the
way, as in Figure 8, left. The graphH DG�fv1; v6g is a path with n�2 vertices, so�.cH/�n�5 [Kotlov
et al. 1997]. In cG, the set of adjacent vertices fv1; v6g cones over cH, yielding�.cG/��.cH/C1�n�4
by [van der Holst et al. 1999, Theorem 2.7].

We briefly discuss the state of a conjecture of [Kotlov et al. 1997], that, for a simple graph G on n vertices,
�.G/C�.cG/� n� 2. By [Kotlov et al. 1997; Colin de Verdière 1990; van der Holst et al. 1999], the
conjecture holds if either one of G or cG is planar. We note that the conjecture holds if �.G/� n� 6
or �.cG/ � n� 6. Assume �.G/ � n� 6. If �.cG/ � 4, then �.G/C�.cG/ � n� 2; if �.cG/ < 4,
�.G/ is planar, and the conjecture holds.

Proposition 9 The conjecture holds for 1–apex graphs.

Proof LetG be a 1–apex graphs with n vertices andH DG�fvg planar. Then�.cH/� .n�1/�5Dn�6
[Kotlov et al. 1997]. We have that cH, the complement ofH inKn�1, is a subgraph of cG, the complement
of G in Kn, since cG may have additional edges incident to v, and so n� 6� �.cH/� �.cG/. Thus,
the conjecture holds for G.

v1 v2

v3 v4

v5 v6

v2

v3 v4

v5

Figure 8: An elongated prism G with two subdivided edges (left) and H DG �fv1; v6g (right).

Algebraic & Geometric Topology, Volume 24 (2024)



Constructions stemming from nonseparating planar graphs and their Colin de Verdière invariant 563

Corollary 10 Let G be a 2–apex graph with n vertices with H DG�fu; vg planar nonseparating. Then
�.G/C�.cG/� n� 2.

Proof Since H is planar nonseparating, by Theorem 2, �.cH/� .n� 2/� 4D n� 6, with equality if
H is maximal. We have that cH, the complement of H in Kn�2, is a subgraph of cG, the complement
of G in Kn, since cG may have additional edges incident to u and v, and so �.cG/� �.cH/� n� 6.
Thus, the conjecture holds for G.

4 Graphs of order ten

The relationship between the � invariant and the property of being intrinsic knotted is not well under-
stood. While Theorem 2 establishes that, for G a maximal nonseparating planar graph with ten vertices,
�.cG/D 6, this information has no bearing on whether cG is intrinsically knotted. Flapan and Naimi
[2008] prove that the IK property is not preserved by the Yr move by showing a graph in the K7 family
which is not intrinsically knotted. Since �.K7/D 6 and both the rY move and the Yr move preserve �
for � � 4 [van der Holst et al. 1999], this nIK graph has �D 6. On the other hand, Foisy [2003] and
Mattman et al. [2021] provide examples of IK graphs with �D 5. In this section, we do a case-by-case
analysis to prove that, for G a maximal nonseparating planar graph with ten vertices, cG is intrinsically
knotted. We recall that the rY move preserves the IK property. In some cases, graphs are shown to be
IK because they are obtained through one or more rY moves from IK graphs such as K7 or K3;3;1;1.
In other cases, graphs G are shown to be IK because the graphs obtained from G by one or more Yr
moves contain K7 or K3;3;1;1 minors.

Lemma 11 If G is a maximal outerplanar graph with ten vertices , then cG is intrinsically knotted.

Proof We label the vertices of G by v1; v2; : : : ; v9; v10 in clockwise order around the cycle C bordering
the outer face of a planar embedding. See Figure 9. We organize the proof according to the longest chord
of C. The length of a chord is defined as the length of the shortest path in C between the endpoints of the
chord. In each case we show the complement cG contains an intrinsically knotted graph as a minor. We
remark that, within any triangulation of the disk bounded by C, out of a total of seven chords, at most six
have length 2 or 3. Thus there exist chords of length 4 or 5.

Case (a) If the cycle C has a chord of length 5, we may assume without loss of generality that
v1v6 2 E.G/. Consider the cycles C1 WD v1v6v7v8v9v10 and C2 WD v1v2v3v4v5v6. We note that C

necessarily contains a 3–chord or a 4–chord with one endpoint at v1 or v6 and the other endpoint among
the vertices of Ci for i D 1; 2. We distinguish six cases, according to whether there are any 4–chords at
all and whether these chords share one of their ends:

(a1) Assume there exists a 4–chord incident to v1 or v6, say v1v5 2E.G/.

(i) If v1v7 2E.G/ (see Figure 9, far left), then the complement cG contains as a subgraph the graph
obtained through two rY moves from K7 with vertex set fv2; v3; v4; v8; v9; v10; v6g: one rY
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Figure 9: Outerplanar graphs with ten vertices.

move over the triangle v2v3v4 with new vertex v7 and one rY move over the triangle v8v9v10

with new vertex v5.

(ii) If v1v7 …E.G/ and v1v8 2E.G/ (see Figure 9, center left), then, in cG, delete any edges incident
to v5 except v5v8, v5v9 and v5v10, then perform a Yr move at v5 to create a graph containing
the triangle v8v9v10. This graph contains a K3;3;1;1 minor with partition fv2; v3; v4g, fv6; v7; v8g,
fv9g; fv10g.

(iii) If v6v10 2E.G/ (see Figure 9, center right), then, in cG, delete any edges incident to v1 except
v1v7, v1v8 and v1v9, then perform a Yr move at v1 to create a graph containing the triangle
v7v8v9. Further, delete any edges incident to v6 except v2v6, v3v6 and v4v6, then perform a Yr
move at v6 to create a graph containing the triangle v2v3v4. Within this new graph, contract v5v10

to a new vertex t to obtain a K7 minor with vertices fv2; v3; v4; v7; v8; v9; tg.

(iv) If v6v10 …E.G/ and v6v9 2E.G/ (see Figure 9, far right), then, in cG, delete any edges incident
to v6 except v6v2, v6v3 and v6v4, then perform a Yr move at v6 to create a graph containing the
triangle v2v3v4. Within this new graph, contract the edge v5v9 to a vertex t , and contract the edge
v1v7 to a vertex t7 to obtain a K7 minor with vertices fv2; v3; v4; t7; v8; v10; tg.

(a2) Assume there is no 4–chord of C incident to v1 or v6. There are two 3–chords of C incident to v1

or v6 and endpoints in each C1 and C2. Assume v1v4 2E.G/.

(i) If v1v8 2E.G/ (see Figure 10, far left), for any choice of edges which triangulate the quadrilaterals
v1v2v3v4 and v8v9v10v1, the complement cG contains as a subgraph the graph Cousin 12 of

v1 v2

v3

v4

v5

v6v7

v8

v9

v10

v1 v2
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v4

v5

v6v7

v8

v9

v10

v1 v2

v3

v4

v5

v6v7

v8

v9
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v1 v2

v3

v4

v5

v6v7

v8

v9

v10

Figure 10: Outerplanar graphs with ten vertices.
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Figure 11: A wheel graph with ten vertices (left) and the complement of E9C e in K10 (right)

.
K3;3;1;1 described in [Goldberg et al. 2014]. This is a minor minimal IK graph with nine vertices
obtained from K3;3;1;1 by two rY moves followed by a Yr move.

(ii) If v6v9 2 E.G/ (see Figure 10, center left), obtain a K7 minor of cG by contracting the edges
v1v8, v2v6 and v4v9.

Case (b) Assume the cycle C has no chord of length 5. Then it has at least a chord of length 4. Assume
v1v7 2E.G/. Up to symmetry, we recognize two cases.

(b1) If v1v5 2 E.G/ (see Figure 10, center right), then the complement cG contains the graph obtained
through two rY moves from K7 with vertex set fv2; v3; v4; v6; v8; v9; v10g: one rY move over the
triangle v2v3v4 with new vertex v7 and one rY move over the triangle v8v9v10 with new vertex v5.

(b2) If v1v4; v4v7 2 E.G/ (see Figure 10, far right), then, in cG, delete any edge incident to v4

except v4v8, v4v9 and v4v10, then perform a Yr move at v4 to create a graph containing the triangle
v8v9v10. Within this graph, contract the edges v1v5 to t5 and v2v7 to t2 obtain a K7 with vertex set
ft2; v3; t5; v6; v8; v9; v10g.

Lemma 12 If G is a wheel with ten vertices , then cG is intrinsically knotted.

Proof The graph E9C e is a minor minimal intrinsically knotted graph with nine vertices described in
[Goldberg et al. 2014]. The complement of E9C e in K10 contains the 10–wheel as a subgraph. See
Figure 11. Thus, the complement cG contains E9 C e as a subgraph and therefore it is intrinsically
knotted.

Lemma 13 If G is an elongated triangular prism with ten vertices , then cG is intrinsically knotted.

Proof An elongated prism with ten vertices is obtained by subdividing the three nontriangular edges of
the prism with four vertices. These four vertices can be added in four different ways:

(a) on three different edges,

(b) on two edges with a 2-2 partition,
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Figure 12: Elongated prisms with ten vertices. Dashed edges are edges of the complement graph.

(c) on two edges with a 3-1 partition,

(d) all on one edge.

See Figure 12. In each case, we show that cG contains a K3;3;1;1 minor.

Case (a) The four vertices are added on three different edges of the elongated prism, as in Figure 12, far
left. Within cG, contract the edge ac to the vertex t and bd to u to obtain a K3;3;1;1 minor of cG given
by the partition fv1; v3; v5g, fv2; v4; v6g, ftg, fug.

Case (b) The four vertices are added to two edges of the elongated prism with a 2-2 partition, as in
Figure 12, center left. Within cG, contract dv5 to t5 and av6 to t6 to obtain a K3;3;1;1 minor of cG given
by the partition fv1; v3; cg, fv2; v4; bg, ft5g, ft6g.

Case (c) The four vertices are added to two edges of the elongated prism with a 3-1 partition, as in
Figure 12, center right. Within cG, contract av5 to t5 and cd to t to obtain a K3;3;1;1 minor of cG given
by the partition fv1; v3; t5g, fv2; v4; v6g, fbg, ftg.

Case (d) The four vertices are added all on one edge of the elongated prism, as in Figure 12, far right.
Within cG, contract bv5 to t5 and cv4 to t4 to obtain a K3;3;1;1 minor of cG given by the partition
fv1; v3; ag, fv2; v6; dg, ft4g, ft5g.

Since cG � cH for H a subgraph of G of the same order, Lemmas 11, 12 and 13 give the following
theorem:

Theorem 3 If G is a nonseparating planar graph on ten vertices , then cG is intrinsically knotted.

Corollary 14 For n� 10, the complement of a nonseparating planar graph on n vertices is IK.

Remark 15 The bound n� 10 in Corollary 14 is the best possible. If G is the 9–wheel, then cG n v D
K8 nC8. Here v is the isolated point within the complement of the wheel. Since it has 20 edges, K8 nC8

is 2–apex and it is therefore knotlessly embeddable [Mattman 2011]. As cG is isomorphic to K8 nC8

with the isolated vertex v added, it is also 2–apex, and thus nIK.

Note that, in the proof of Theorem 3, we’ve showed that the complements of nonseparating planar graphs
of order 10 all have minor minimal intrinsically knotted minors of smaller order. From this it follows that
there are no minor minimal intrinsically knotted (MMIK) graphs of order ten or more with nonseparating
planar complements. On the other hand, by the combined work of [Blain et al. 2007; Conway and Gordon
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1983; Campbell et al. 2008; Foisy 2002; Goldberg et al. 2014; Kohara and Suzuki 1992; Mattman et al.
2017], the eleven MMIK graphs of order at most 9 are known. Considering their complements, there are
just four MMIK graphs with nonseparating planar complements.

Corollary 16 There are exactly four minor minimal intrinsically knotted graphs whose complements are
nonseparating planar: K7, K3;3;1;1, Kr7 (the graph obtained by performing a single rY –move on K7)
and G9;28 (the complement of a 7–cycle and an independent edge inside K9).

Proof By inspection, the complements of the four graphs are nonseparating. The complements of the
remaining seven order 9 graphs are planar, but none of them are nonseparating as:

� They cannot be subgraphs of an elongated prism of order 9 (size 12), since their size (14–15) is too
big.

� They all have at least two vertices of degree bigger than 3; thus, they cannot be subgraphs of a
wheel graph.

� They all have a K4 minor; thus, they cannot be outerplanar.

Acknowledgments The authors would like to thank Hooman Dehkordi, Graham Farr and Ramin Naimi
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Census L–space knots are braid positive, except for one that is not

KENNETH L BAKER

MARC KEGEL

We exhibit braid positive presentations for all L–space knots in the SnapPy census except one, which is
not braid positive. The normalized HOMFLY polynomial of o9_30634, when suitably normalized, is not
positive, failing a condition of Ito for braid positive knots.

We generalize this knot to a 1–parameter family of hyperbolic L–space knots that may not be braid positive.
Nevertheless, as pointed out by Teragaito, this family yields the first examples of hyperbolic L–space
knots whose formal semigroups are actual semigroups, answering a question of Wang. Further, the roots
of the Alexander polynomials of these knots are all roots of unity, disproving a conjecture of Li and Ni.

57K10; 57M12, 57R65

1 Introduction

Based on observation, most L–space knots are braid positive. Here L–space knots are knots in S3 with
a positive Dehn surgery to an L–space (see Ozsváth and Szabó [26]), and a knot that is the closure of
a positive braid is braid positive. The L–space torus knots are the positive torus knots, and hence they
are braid positive. Notably however, the .2; 3/–cable of the .2; 3/–torus knot is an L–space knot (see
Hedden [16]) that is not braid positive; see eg Dunfield [12, Table 8] and Anderson, Baker, Gao, Kegel, Le,
Miller, Onaran, Sangston, Tripp, Wood, and Wright [1, Example 1]. It stands to reason that there probably
are other cable L–space knots which are not braid positive. Nevertheless, it was questioned if every
hyperbolic L–space knot is braid positive; see eg Hom, Lipschitz, and Ruberman [19, Problem 31(2)].

Dunfield showed that there are exactly 1267 complements of knots in S3 in the SnapPy census of 1–cusped
hyperbolic manifolds that can be triangulated with at most nine ideal tetrahedra [11]. He further determined
that (up to mirroring) 635 are not L–space knots, 630 are L–space knots, and left two as undetermined [12].
These last two have been shown to have quasialternating surgeries (see Baker, Kegel, and McCoy [3]) and
hence they are L–space knots as well. Thus there are exactly 632 L–space knots in the SnapPy census.

Theorem 1.1 Every L–space knot in the SnapPy census of up to nine tetrahedra is braid positive except
for o9_30634, which is not.

The knot o9_30634 is nearly braid positive in the sense that it has a braid presentation that is braid
positive except for one strongly quasipositive crossing that jumps over only one strand. We do not know
if o9_30634 admits a positive diagram.
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570 Kenneth L Baker and Marc Kegel

Question 1.2 Is every hyperbolic L–space knot nearly braid positive?

Proof of Theorem 1.1 In [3] we obtained braid words for every census L–space knot by automating the
process from [1]. (An alternative approach is taken by Dunfield, Obeidin, and Rudd [13].) Here, utilizing
the braid and simplification methods in SnapPy [10] and Sage [27], we managed to cajole braid positive
presentations for all of the knots except for one, o9_30634. The L–space census knots and positive braids
with them as closures are detailed in the online supplement and verified in [2].

As one may check, the knot K D o9_30634 is the closure of the 4–braid

ˇ D Œ2; 1; 3; 2; 2; 1; 3; 2; 2; 1; 3; 2;�1; 2; 1; 1; 2�:

Here the list of nonzero integers represents a braid word by letting the integer k stand for the standard
generator �k or its inverse ��1

k
, depending on whether k is positive or negative.

Ito gives new constraints on a suitably normalized version of the HOMFLY polynomial for positive
braids [20]. The Ito-normalized HOMFLY polynomial zPK .˛; z/D

P
hij˛

iz2j of K D Ǒ is represented
by the matrix H D .hij / of coefficients

H D

0BB@
13 69 133 121 55 12 1

17 66 83 45 11 1 0

4 10 6 1 0 0 0

�1 �1 0 0 0 0 0

1CCA ;
where the indexing starts at 00, so that h00 D 13. One may calculate this with Sage (or the knot theory
package [21] for Mathematica) from the braid word, using the built-in HOMFLY polynomial and adjusting
it to achieve Ito’s normalization. The computations can be found at [2].

According to [20, Theorem 2], if a link K is braid positive then the Ito-normalized HOMFLY polynomial
should only have nonnegative coefficients. As one observes, the coefficients h30 and h31 are negative.
Hence o9_30634 is not braid positive.

In Section 2, we generalize the knot o9_30634 to an infinite family of hyperbolic L–space knots that
are nearly braid positive but for which Ito’s constraints fail to obstruct braid positivity, at least for the
examples we managed to calculate. In Section 3, we further extend this family to a doubly infinite family
of knots Kn;m in hopes of providing more potential examples. While that doesn’t quite work out, we
highlight several properties of these knots in Proposition 3.1. Notably, we

� show that all but K�1;m and six other exceptional cases of these knots are hyperbolic,

� identify a small Seifert fibered space surgery for each,

� determine that when n� 0 they are L–space knots if and only if m� 0,

� compute their Alexander polynomials, and

� examine their structures as positive braids and strongly quasipositive braids.
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Census L–space knots are braid positive, except for one that is not 571

Lastly, in Section 4 we observe that our infinite family of hyperbolic L–space knots of Section 2 have
Alexander polynomials that

� induce formal semigroups that are actually semigroups (which Teragaito pointed out to us), and

� have all their roots on the unit circle, disproving Li and Ni’s Conjecture 1.3 in [22].

2 A family of hyperbolic L–space knots that might not be braid positive

Let fKng be the family of knots that are the closures of the braids

ˇn D Œ.2; 1; 3; 2/
2nC1;�1; 2; 1; 1; 2�

and includes our knot o9_30634 as K1; see Figure 1, bottom right. Observe that ˇn gives a strongly
quasipositive braid presentation for these knots that is almost braid positive — it is braid positive except
for one negative crossing.

Proposition 2.1 For n� 1, the knots Kn are hyperbolic L–space knots.

Proof This follows from Lemmas 2.2 and 2.3.

Lemma 2.2 For n� 1, the knots Kn are L–space knots. In particular , the .8nC6/–surgery on Kn gives
the Seifert fibered L–space M

�
�1I 1

2
; .2nC 1/=.4nC 4/; 2=.4nC 5/

�
.

Proof Figure 2 shows how a strongly invertible surgery description of the knot Kn along with its .8nC6/–
surgery may be obtained. Figure 3 demonstrates how one may take the quotient and perform rational tangle
replacements associated to the surgeries to produce a link whose double branched cover is .8nC6/–surgery

ˇ

2nC 1

ˇn

Figure 1: Top left: the braid ˇ is positive except for one strongly quasipositive crossing. Its closure
Ǒ is the hyperbolic L–space knot o9_30634, which we show is not braid positive. Bottom left:

dragging the base of the strongly quasipositive band of ˇ into the position shown exhibits Ǒ as a
positive Hopf basket. Top right: this braid has the .2; 3/–cable of the .2; 3/–torus knot as its closure.
Bottom right: the closures of the braids ˇn are L–space knots that may also fail to be braid positive.
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1
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1
nC1

1
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1
2nC3

�1
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1
2nC3

�1
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Figure 2: Top left: the braid ˇn with a surgery coefficient of 8nC 6 for its closure knot Kn.
Bottom left and top right: twists in the braid are expressed and collected into surgeries on unknots.
The surgery coefficient on the closure knot is adjusted accordingly. Bottom right: after closure
and isotopy, we obtain a surgery description for .8nC6/–surgery on Kn.

on Kn. We observe this link to be the Montesinos link M
�
2=.4nC 5/; 1

2
;�.2nC 3/=.4nC 4/

�
. Hence

its double branched cover is the Seifert fibered space Mn

�
0I 2=.4nC 5/; 1

2
;�.2nC 3/=.4nC 4/

�
. Here

we use the notation of Lisca and Stipsicz [24] where the Seifert fibered space M.e0I r1; r2; : : : ; rk/ is
obtained by e0–surgery on an unknot with k meridians having .�1=ri/–surgery on the i th one.

These Seifert fibered spaces are determined to be L–spaces via [24, Theorem 1]. More specifically,
Lisca and Stipsicz [24, Theorem 1] show that the Seifert fibered space M DM.e0I r1; r2; r3/— with
1� r1 � r2 � r3 � 0 — is an L–space if and only if either M or �M does not carry a positive transverse
contact structure. Then by Lisca and Matić [23], such a Seifert fibered space M carries no positive
transverse contact structure if and only if either e0 � 0 or e0 D�1 and there exists no coprime integers a

and m such that mr1 < a<m.1� r2/ and mr3 < 1.

Rewriting to apply [24, Theorem 1], we obtain that Mn DM
�
�1I 1

2
; .2nC 1/=.4nC 4/; 2=.4nC 5/

�
.

Then, since 1� r2 D .2nC 3/=.4nC 4/, we assume for contradiction that there are coprime integers a

and m such that m1
2
< a<m.2nC 3/=.4nC 4/ and m2=.4nC 5/ < 1. The first gives

0< 2a�m<
m

2nC2
:

The second implies m< 2nC 2C 1
2

, so that m� 2nC 2 and

m

2nC2
� 1:

Together they yield 0< 2a�m< 1. However, since 2a�m is an integer, there are no pairs of integers
.a;m/ that satisfy this equation. This is a contradiction.

Algebraic & Geometric Topology, Volume 24 (2024)
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1
2nC3

�1
nC1

0
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(e)
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Figure 3: (a) The surgery description from Figure 2, bottom right, is strongly invertible. (b)–(c) The
quotient of the surgery description followed by some isotopy to straighten the arcs. (d) Rational
tangle replacements along the arcs produce a link whose double branched cover is .8nC4/–
surgery on Kn. (e)–(h) A sequence of isotopies shows that this link is the Montesinos link
M.Œ0;�2n� 3;�2�; Œ0;�2�; Œ0; 1;�1; nC 1; 2�/DM

�
2=.4nC 5/; 1

2
;�.2nC 3/=.4nC 4/

�
.

Therefore Mn does not carry a positive transverse contact structure, and thus it is an L–space. Hence Kn

is an L–space knot for each n� 1.

Lemma 2.3 For n� 1, the knots Kn are hyperbolic.

Proof We check that L12n1739.1; 2nC 2/.0; 0/.�1; nC 1/ has the same exterior as Kn. Via SnapPy
we verify that L12n1739 is hyperbolic and compute its short slopes of length less than 2� as

Œ.1; 0/; .�2; 1/; .�1; 1/; .0; 1/; .1; 1/; .�1; 2/; .1; 2/; .�1; 3/�;

Œ.1; 0/; .�5; 1/; .�4; 1/; .�3; 1/; .�2; 1/; .�1; 1/; .0; 1/; .1; 1/; .�5; 2/; .�3; 2/�;

Œ.1; 0/; .�2; 1/; .�1; 1/; .0; 1/; .1; 1/; .2; 1/; .�1; 2/; .1; 2/�:

Algebraic & Geometric Topology, Volume 24 (2024)
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Thus for n > 1 we fill with slopes longer than 2� and therefore directly get hyperbolic manifolds by
Gromov and Thurston’s 2� theorem; see for example [7, Theorem 9].

Teragaito (personal communication, 2022) suggested an alternative approach to this lemma that does not
use SnapPy or any computer calculation. The referee also proposed a similar approach. Since it is more
“hands-on”, we include a proof along the lines of their suggestions here:

Another proof of Lemma 2.3 As knots in S3 are either torus knots, satellite knots, or hyperbolic knots
by [29], we must show that Kn is neither a torus knot nor a satellite knot.

In the proof of Theorem 4.4 the Alexander polynomial of Kn DKn;0 is presented as

�Kn;0

:
D
.t4nC5C 1/.t4nC2C 1/

.t C 1/.t2C 1/
:

As this is not equivalent to the Alexander polynomial of a torus knot, Kn cannot be a torus knot. (Also,
the formal semigroup of Kn has rank 3 as noted in Remark 4.3, whereas the formal semigroup of a torus
knot has rank 2.)

So now suppose Kn is a satellite knot. Observe that an unknotting tunnel put at the unique negative
crossing for Kn D

Ǒ
n in Figure 1, bottom right, shows that Kn has tunnel number 1. Since the bridge

index of Kn is at most 4, Morimoto and Sakuma’s classification of tunnel number 1 satellite knots [25]
tells us that Kn has the 2–bridge torus knot T .2; q/ as a companion knot for some odd q and a pattern of
wrapping number 2. As Kn is an L–space knot by Lemma 2.2, this pattern must be a braided pattern by
[4, Lemma 1.17]. Hence the pattern must be a 2–cable. Thus if Kn is a satellite knot, then it is a 2–cable
knot of T .2; q/. Indeed, the Alexander polynomial of Kn shown above implies that Kn must be the
.2; 4nC5/–cable of the T .2; 2nC1/ torus knot. However, the distance of the cabling slope 8nC 10 and
the slope 8nC 6 of the Seifert fibered surgery on Kn is �.8nC 10; 8nC 6/D 4> 1. Thus the cabling
torus remains incompressible after surgery; see eg [15, Lemma 7.2]. This contradicts that .8nC6/–surgery
on Kn produces a small Seifert fibered space. Thus Kn cannot be a satellite knot.

However, the constraints of Ito on HOMFLY polynomials appear to not obstruct Kn from being braid
positive when n � 2. Using Sage for computations, we see that Ito’s constraints on the HOMFLY
polynomials of Kn for nD 2; : : : ; 10 do not obstruct braid positivity for these knots. Furthermore, we
have been unsuccessful in finding a braid positive presentation for these knots.

Question 2.4 Are the knots Kn for n� 2 braid positive?

3 A doubly infinite family of knots

From our description of the family of knots Kn in Figure 2, one finds a natural 2–parameter family
generalization. While one may initially hope this family yields further examples of hyperbolic L–space
knots that fail to be braid positive, we show this is not the case.

Algebraic & Geometric Topology, Volume 24 (2024)
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2nC 1 2mC 1
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(a) �4mC 8nC 6
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�4mC 8nC 6
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1
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�1
nC1

2

(d)
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Figure 4: (a) The braid ˇn;m with a surgery coefficient of �4mC8nC6 for its closure knot Kn;m.
(b)–(d) Twists in the braid are expressed and collected into surgeries on unknots. The surgery
coefficient on the closure knot is adjusted accordingly. (e) After closure and isotopy, we obtain a
surgery description for .�4mC8nC6/–surgery on Kn;m.

Proposition 3.1 Let ˇn;m be the braid indicated in Figure 4(a), and let Kn;m D
Ǒ
n;m be its closure.

(1) Kn;m is a hyperbolic knot for all .n;m/ 2 Z2, except for the pairs

.n;m/ 2 f.�1; k/ j k 2 Zg[ f.0; 0/; .0;�1/; .0;�2/; .�2; 1/; .�2; 0/; .�2;�1/g:

For each of these pairs , Kn;m is a torus knot.

(2) .8nC6�4m/–surgery on Kn;m gives the Seifert fibered space

M
�
�1I

1

2
;
2nC1

4nC4
;

2

4nC5C2m

�
:

(3) The Alexander polynomial of Kn;m is�
tm�1

nX
iD0

.t�4i�1
� t�4i/

�
C

�
.�1/m

mX
jD�m

.�t/j
�
C

�
t1�m

nX
kD0

.t4kC1
� t4k/

�
:

(4) Assume n� 0. Then Kn;m is an L–space knot if and only if m� 0.

(5) If n � 0 and m < 0, then ˇn;m is a positive braid and Kn;m is a braid positive knot of genus
jmjC 4nC 3

(6) If 2nC 1�m� 0, then ˇn;m is conjugate to a strongly quasipositive braid and Kn;m is a strongly
quasipositive knot of genus 4n�mC 2.
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(a) If 2n � m � 0, then Kn;m is a fibered strongly quasipositive knot. Moreover it is a Hopf
plumbing basket.

(b) If 2nC 1Dm> 0, then Kn;m is a nonfibered strongly quasipositive knot.

Proof (1) Since the surgery description of Kn;m given in Figure 4(e) is on a hyperbolic link, using the
2� theorem a couple of times yields a finite list of pairs .n;m/ for which Kn;m might not be hyperbolic.
A further check in SnapPy confirms that all but five of them are hyperbolic. These remaining five are
readily confirmed to be torus knots. The computations are displayed at [2].

(2) Figure 4 shows how to obtain a surgery description on a 3–component link for .�4mC8nC6/–
surgery on Kn;m. Figure 5 uses the Montesinos trick to exhibit the result of this surgery description as

1
mC2nC3

�1
nC1

2(a)

1
mC2nC3

�1
nC1 0(b)

�1
nC1

1
mC2nC3

(c)

�m�2n�3

nC1
(d)

�m�2n�3

nC1
(e)

�m�2n�3

nC1

(f)

�m�2n�3

nC1

(g)

�m�2n�3 nC1

(h)

Figure 5: (a) The surgery description from Figure 4(e) is strongly invertible. (b)–(c) The quotient
of the surgery description followed by some isotopy to straighten the arcs. (d) Rational tangle
replacements along the arcs produce a link whose double branched cover is .�4mC8nC4/–
surgery on Kn;m. (e)–(h) A sequence of isotopies shows this link is the Montesinos link
M.Œ0;�m�2n�3;�2�; Œ0;�2�; Œ0; 1;�1; nC1; 2�/DM

�
2=.2mC4nC5/; 1

2
;�.2nC3/=.4nC4/

�
.
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m2nC 1�m

D

m2n�m

Figure 6: The proof of Proposition 3.1(6).

the double branched cover of the Montesinos link M.Œ0;�2;�m� 2n� 3�; Œ0;�2�; Œ0; 1;�1; nC 1; 2�/.
This double branched cover is the Seifert fibered space M

�
1
2
;�.2nC 3/=.4nC 4/; 2=.4nC 5C 2m/

�
,

which is equivalent to M
�
�1I 1

2
; .2nC 1/=.4nC 4/; 2=.4nC 5C 2m/

�
.

(5) When n � 0 and m < 0, the braid ˇn;m as described in Figure 4(a) is expressly a positive braid.
One counts that it is a braid of index 4 and 4.2nC 1/C .1� 2m/C 4 crossings. Hence �.Kn;m/ D

�.2jmjC 8nC 5/ and g.Kn;m/D jmjC 4nC 3.

(6) When 0�m� 2nC 1, through braid isotopy and braid conjugacy, we may isotope in pairs 2m of
the 2mC 1 negative crossings over to m of the 2nC 1 copies of the “2–cabled” positive crossing that
appear in ˇn;m so that they appear as in the left-hand side of Figure 6, top. Hence by a further braid
isotopy as indicated by Figure 6, each of these 2m negative crossings contributes to an SQP band. The
final negative crossing also contributes to an SQP band towards the end of the braid, ultimately giving us
the strongly quasipositive braid, shown in Figure 6, middle, to which ˇn;m is conjugate. One counts that
the braid index is 4 and there are 2mC 1 SQP bands and 4.2nC 1�m/C 2 regular crossings. Hence
�.Kn;m/D�.8n� 2mC 3/ and g.Kn;m/D 4n�mC 2.

Furthermore, when 0�m� 2n so that 2n�m� 0, we may instead perform braid isotopy and conjugation
to arrive at the strongly quasipositive braid shown in Figure 6, bottom. This braid however contains the
“dual Garside element” ı D �3�2�1. Hence, as Banfield points out [5], the closure of such an SQP braid
is fibered and a Hopf basket.
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When mD 2nC 1, the braid ˇn;2nC1 is conjugate to an SQP braid but its closure Kn;2nC1 might not be
fibered. Indeed, we find that the Alexander polynomial of Kn;2nC1 is not monic, so the closure is not
fibered. Explicitly, from our computations of �Kn;m

for (3) below, we have

�Kn;2nC1
.t/D

t � 1

.t4� 1/.t2� 1/
t.t2
� 1/.2� t C t2

C t4nC3
� t4nC4

C 2t4nC5/

D t
.2t4nC6� 2t2/� .3t4nC5� 3t/C .2t4nC4� 2/� .t4nC3� t3/

t4� 1

:
D
.2� 3t C 2t2/.t4.nC1/� 1/� t3.t4n� 1/

t4� 1

D
.2� 3t C 2t2/.t4.nC1/� t4nC t4n� 1/� t3.t4n� 1/

t4� 1

D .2� 3t C 2t2/t4n
C .2� 3t C 2t2

� t3/
t4n� 1

t4� 1
;

which has leading coefficient 2.

(3) View the surgery description for Kn;m as the link LDK[ c[ c0 where we do .�1=.nC1//–surgery
on c and .1=.mC2nC3//–surgery on c0. Observe that c[ c0 is the trivial 2–component link, and we may
orient the link so that lk.K; c/D 4 and lk.K; c0/D 2.

Let E be the exterior of LDK [ c [ c0. Then H1.E/D hŒ�K �; Œ�c �; Œ�c0 �i Š Z3 where �K , �c , and
�c0 are oriented meridians of K, c, and c0. Let �K , �c , and �c0 be their preferred longitudes. Observe
that Œ�c �D 4Œ�K � and Œ�c0 �D 2Œ�K � in H1.E/.

Now consider the family of links Ln;m DKn;m[ cn[ c0m with exterior En;m obtained from K and the
core curves of .�1=.nC1//–surgery on c and .1=.mC2nC3//–surgery on c0. Thus En;m ŠE where

�Kn;m
D �K ; �cn

D��c C .nC 1/�c and �c0m
D �c0 C .mC 2nC 3/�c0 :

Now letting

(3-1) x D Œ�K �; y D Œ�c �; z D Œ�c0 �; xn;m D Œ�Kn;m
�; yn D Œ�cn

� and zm D Œ�c0m
�

in the group rings ZŒH1.E/� and ZŒH1.En;m/�, we have

(3-2) xn;m D x; yn D y�1x4.nC1/ and zm D zx2.mC2nC3/

and hence
x D xn;m; y D y�1

n x4.nC1/
n;m and z D zmx�2.mC2nC3/

n;m :

Therefore

(3-3) �Ln;m
.xn;m;yn; zm/D�L.xn;m;y

�1
n x4.nC1/

n;m ; zmx�2.mC2nC3/
n;m /:

Using the Torres formulae [30], one obtains that

(3-4) �Kn;m
.xn;m/D

xn;m� 1

x4
n;m� 1

�Kn;m[cn
.xn;m; 1/D

xn;m� 1

.x4
n;m� 1/.x2

n;m� 1/
�Kn;m[cn[c0m

.xn;m; 1; 1/:
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Hence, using (3-3) and (3-4) where we set xn;m D t , yn D 1, and zm D 1, we obtain

�Kn;m
.t/D

t � 1

.t4� 1/.t2� 1/
�L.t; t

4.nC1/; t�2.mC2nC3//:

We calculate that

�L.x;y; z/D .x
2
� 1/.x3y2zCx2y3z�x2y2zCx2yCxy2z�xyCxCy/:

Then

�Kn;m
.t/D

t�1

.t4�1/.t2�1/
�L.t; t

4.nC1/; t�2.mC2nC3//

D t4nC3�m .t�1/.tm�4n�2C t�m� t1�mC t2�mC tmC1� tmC2C tmC3C t�mC4nC5/

.t4�1/

:
D
.t�1/..tm�4n�2� tmC2/C.t�mC t2�mC tmC1C tmC3/C.t4nC5�m� t1�m//

.t4�1/

D
tmC2.t�1/.t�4n�4�1/

t4�1
C
.t�1/.t�mC t2�mC tmC1C tmC3/

t4�1
C

t1�m.t�1/.t4nC4�1/

t4�1

D

�
tm�1

nX
iD0

t�4i.t�1
�1/

�
C

�
tmC1� tmC t�m� t�m�1

t� t�1

�
C

�
t1�m

nX
jD0

t4j .t�1/

�

D

�
tm�1

nX
iD0

.t�4i�1
� t�4i/

�
C

�
.�1/m

mX
jD�m

.�t/j
�
C

�
t1�m

nX
kD0

.t4kC1
� t4k/

�
;

where the :
D indicates that we have divided out the unit t4nC3�m.

(4) Using our Alexander polynomial calculations provides obstructions to the knots Kn;m for n > 0

being L–space knots when m> 0. As an example, taking n> 0 and mD 1 gives

�Kn;1
.t/D

t � 1

.t4� 1/.t2� 1/
�L.t; t

4.nC1/; t�2.2nC4//

:
D

� nX
iD0

.t4i�1
� t4i/

�
C .t�1

� 1C t/C

� nX
kD0

.t4kC1
� t4k/

�
:

One may observe that the constant coefficient is �3. Hence the knots Kn;1 cannot be L–space knots.
Indeed, one may further observe that, when n> 0 and m> 0, the central terms will have overlap with
the end terms to give coefficients ˙2 or ˙3 for terms with degree of small magnitude. Thus none of the
knots Kn;m with n> 0 and m> 0 are L–space knots.

In the other direction, where n> 0 and m� 0, we may observe via [23; 24], as in Lemma 2.2, that the
Seifert fibered space M resulting from .8nC6�4m/–surgery on Kn;m is an L–space. For that we need
to distinguish several cases. We continue with the notation of Lisca and Stipsicz [24] as in Lemma 2.2.

Since n> 0,
1> 1

2
>

2nC1

4nC4
> 0:
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So we must reckon with the coefficient
2

2mC4nC5
D

2

2.2nCmC1/C3
:

If 2nCmC 1� 1,
1> 1

2
>

2nC1

4nC4
>

2

2mC4nC5
> 0:

If we now assume that there exist coprime integers a and b such that

1
2
b < a<

2nC3

4nC4
b and 2

4nC2mC5
b < 1;

we conclude from the first inequality that 0< 2a�b < b=.2nC2/ and the second inequality implies that
b � 2nC 2Cm� 2nC 2. Putting both together yields the contradiction

0< 2a� b <
b

2nC2
� 1:

Thus M carries no positive transverse contact structure and is therefore an L–space.

If 2nCmC 1D 0 we get the Seifert fibered space M
�
�1I 2

3
; 1

2
; .2nC 1/=.4nC 4/

�
. We assume that

there exist coprime integers a and b such that 2
3
b < a< 1

2
b and ..2nC 1/=.4nC 4//b < 1, from which

we conclude 4b < 6a< 3b and b < 2C 2=.2nC 1/� 4, which is a contradiction. Therefore M does not
carry a positive transverse contact structure and is thus an L–space.

If 2nCmC 1D�1 we get the Seifert fibered space

M
�
�1I

1

2
;
2nC1

4nC4
; 2
�
DM

�
1I

1

2
;
2nC1

4nC4

�
;

which is a lens space and hence an L–space.

If 2nCmC 1D�2 we get the Seifert fibered space

M
�
�1I

1

2
;
2nC1

4nC4
;�2

�
DM

�
�3I

1

2
;
2nC1

4nC4

�
;

which is a lens space and hence an L–space.

If 2nCmC 1� �3 we see that
2

2mC4nC5
D

2

2.2nCmC1/C3
2 Œ�1; 0�;

and thus the correctly normalized Seifert fibered space is

M
�
�2I

1

2
;
2nC1

4nC4
;
4nC2mC7

4nC2mC5

�
;

which admits a positive contact structure. Next, we consider

�M DM
�
2I �

1

2
;�

2nC1

4nC4
;�

4nC2mC7

4nC2mC5

�
DM

�
�1I

1

2
;
2nC3

4nC4
;�

2

4nC2mC5

�
:

If 2nCmC1D�3, then the correct ordering of the Seifert invariants is M
�
�1I 2

3
; .2nC3/=.4nC4/; 1

2

�
.

We readily see that there exist no coprime integers a and b such that 2
3
b < a < ..2nC 1/=.4nC 4//b

and 1
2
b < 1. Thus M carries no positive transverse contact structure and is therefore an L–space. If
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2nCmC1��4 the Seifert invariants are ordered as M
�
�1I .2nC3/=.4nC4/; 1

2
;�2=.4nC2mC5/

�
.

We assume that there exist coprime integers a and b such that

2nC3

4nC4
b < a< 1

2
b and �

2

4nC2mC5
b < 1:

But putting them together yields the contradiction

0< a�
2nC3

4nC4
b < �

1

4nC4
b < 0:

Thus M does not admit a positive transverse contact structure and is therefore an L–space.

Remark 3.2 In the cases of the above proof when 2nCmC 1D�1 or �2, the knots Kn;m have lens
space surgeries. These knots can be seen to be Berge knots as follows. With �m� 2n� 3 D 1 or 0,
Figure 5(d) can be seen to divide along a horizontal line into two rational tangles. A vertical arc in the
middle would be the arc dual to the rational tangle replacement on the 0–framed arc from Figure 5(c).
In the double branched cover, this vertical arc will lift to a knot in the lens space with an S3–surgery.
Furthermore, one may observe that this arc lifts to a .1; 1/–knot in the lens space. Hence the knot Kn;m

must be a Berge knot [6].

4 Curiosities about the Alexander polynomial of o9_30634 and its
generalizations

Like the failure of braid positivity, the hyperbolic L–space knot o9_30634 exhibits two more curious
properties that had previously only been observed for L–space knots among iterated cables of torus knots.
The first, regarding formal semigroups, Teragaito communicated to us near the completion of the initial
preprint. The second, regarding the roots of its Alexander polynomial, came after that. Both actually
generalize to the infinite family fKngn�1 as well.

4.1 An infinite family of hyperbolic L–space knots whose formal semigroups are
semigroups

Teragaito informed us about the work of Wang [31] on formal semigroups of L–space knots, and that there
are only two L–space knots in the SnapPy census whose formal semigroups were actual semigroups. He
had also observed that one of these knots appeared to fail to be braid positive. It turns out that this is the
knot o9_30634, which we had confirmed to not be braid positive. Upon seeing an early draft of this article,
Teragaito further showed that all of our hyperbolic L–space knots Kn have formal semigroups that are
semigroups. Below we overview the formal semigroup and then record Teragaito’s results in Theorem 4.1.

An algebraic link is defined to be the link of an isolated singularity of a complex curve in C2. Algebraic
knots are known to be iterated cables of torus knots [14] and they are all L–space knots; see [17]. Moreover,
one can assign to any algebraic knot K an additive semigroup SK <N0 which determines the Heegaard
Floer chain complex and is computable from the Alexander polynomial of K; see [8].
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In [31] Wang has generalized this definition, but now SK is not necessarily a semigroup anymore. Let K

be an L–space knot with (symmetrized) Alexander polynomial �K . Then the formal semigroup SK �N0

is defined by
tg.K /�K .t/

1� t
D

X
s2SK

t s;

where g.K/ denotes the genus of K. (Note that tg.K /�K .t/ is now an ordinary polynomial of degree
2g.K/.) The set SK still determines the Heegaard Floer chain complex of K but is not necessarily a
semigroup. This is used by Wang to construct an infinite family of L–space knots which are iterated cables
of torus knots but not algebraic [31]. On the other hand, it remained open if there exists an L–space knot
which is not an iterated cable of torus knots but whose formal semigroup is a semigroup [31, Question 2.8].

Theorem 4.1 (Teragaito, personal communication, 2022) There exists an infinite family of hyperbolic
L–space knots whose formal semigroups are semigroups. More concretely:

(1) o9_30634 and t09847 are hyperbolic L–space knots whose formal semigroups are semigroups. The
formal semigroup of every other L–space knot in the SnapPy census is not a semigroup.

(2) The formal semigroups SKn
of the infinite family of hyperbolic L–space knots fKng from Section 2

are all semigroups.

Consequently, the knots fKng provide an infinite family of knots answering [31, Question 2.8] negatively.

Proof (1) The formal semigroup SK of an L–space knot is computable from the Alexander polynomial
of K; in particular, SK always contains all natural numbers larger than g.K/ and the finitely many other
elements of SK can be read off from the Alexander polynomial. In [2] we present code that computes the
formal semigroups of all SnapPy census L–space knots and determines that o9_30634 and t09847 are
the only ones whose formal semigroups are semigroups.

(2) In Proposition 3.1(3) we have computed the Alexander polynomials of Kn, from which we read off
the formal semigroup SKn

to be

f4nC4; 4nC5; 4nC6; 4nC8; 4nC9; 4nC10; 4nC12; 4nC13; 4nC14; : : : ; 8n; 8nC1; 8nC2; 8nC4g

[ f0; 4; 8; : : : ; 4ng[ f4nC 2g[N>8nC4;

which is a semigroup for any n.

Remark 4.2 (Teragaito, personal communication, 2022) A braid word of t09847 is given by

Œ.2; 1; 3; 2/3; 1; 2; 1; 1; 2�;

which is very close to our braid word for o9_30634. One can similarly show that t09847 fits into an
infinite family of hyperbolic L–space knots with braid words

Œ.2; 1; 3; 2/2nC1; 1; 2; 1; 1; 2�

whose formal semigroups are semigroups.

Algebraic & Geometric Topology, Volume 24 (2024)



Census L–space knots are braid positive, except for one that is not 583

Remark 4.3 The semigroups from Theorem 4.1 and the preceding remark all have rank 3, ie the minimal
number of a generating set is 3. On the other hand, Teragaito constructs in [28] an infinite family of
hyperbolic L–space knots whose formal semigroups are semigroups of rank 5.

4.2 Two infinite families of hyperbolic L–space knots whose Alexander polynomial roots
are all roots of unity

The Alexander polynomial of o9_30634DK1 DK1;0 can be written as

�o9_30634.t/
:
D
.t6C 1/.t9C 1/

.t C 1/.t2C 1/
:

From this one may observe that all of its roots are roots of unity. Since o9_30634 is a hyperbolic
L–space knot, it provides a counterexample to [22, Conjecture 1.3]; see also the discussion surrounding
its reference as [18, Conjecture 6.10]. Indeed, we have infinite families of hyperbolic L–space knots that
are counterexamples to this conjecture:

Theorem 4.4 The two infinite families of hyperbolic L–space knots fKngn�1 and fKn;�1gn�1 consist
of knots whose Alexander polynomials have all of their roots on the unit circle.

Proof Proposition 3.1(1) and (4) show that the knots of fKngn�1 and fKn;�1gn�1 are hyperbolic L–space
knots. Proposition 3.1(3) gives a general formula for �Kn;m

.t/. In the course of that proof, we obtained
the first equality below. Dividing out the unit t and rearranging gives the second:

�Kn;m
.t/D t4nC3�m .t � 1/.tm�4n�2C t�m� t1�mC t2�mC tmC1� tmC2C tmC3C t�mC4nC5/

.t4� 1/

:
D
.t8nC7C t4nC4� t4nC3C t4nC2/t�2mC .t4nC3� t4nC4C t4nC5C 1/

.t C 1/.t2C 1/
:

Setting mD 0 yields

�Kn;0
.t/

:
D
.t8nC7C t4nC4� t4nC3C t4nC2/C .t4nC3� t4nC4C t4nC5C 1/

.t C 1/.t2C 1/

D
t8nC7C t4nC5C t4nC2C 1

.t C 1/.t2C 1/
D
.t4nC5C 1/.t4nC2C 1/

.t C 1/.t2C 1/
;

while setting mD�1 yields

�Kn;�1
.t/

:
D
.t8nC9C t4nC6� t4nC5C t4nC4/C .t4nC3� t4nC4C t4nC5C 1/

.t C 1/.t2C 1/

D
t8nC9C t4nC6C t4nC3C 1

.t C 1/.t2C 1/
D
.t4nC6C 1/.t4nC3C 1/

.t C 1/.t2C 1/
:

From these presentations of their Alexander polynomials, one sees that all of their roots are roots of unity.

Remark 4.5 (1) While we do not yet know if any of the knots in fKngn�1 are braid positive, all of
the knots fKn;�1gn�1 are braid positive by Proposition 3.1(5).
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(2) As one may check, the hyperbolic L–space knots fKn;�2gn�1 have Alexander polynomials with
roots that are not roots of unity.

Remark 4.6 In light of Theorem 4.4 and [9, Corollary 1.2], one may hope that at least one of the
hyperbolic L–space knots among fKngn�1 and fKn;�1gn�1 has a double branched cover that is an
L–space. This would answer a question of Moore in the negative; see [9, Question 1.3]. However, as one
may check, these knots are not definite. Indeed, j�.Kn/j D g.Kn/C 2 < 2g.Kn/ while j�.Kn;�1/j D

g.Kn;�1/C 3< 2g.Kn;�1/.
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Branched covers and rational homology balls

CHARLES LIVINGSTON

The concordance group of knots in S3 contains a subgroup isomorphic to .Z2/
1, each element of which

is represented by a knot K with the property that, for every n> 0, the n–fold cyclic cover of S3 branched
over K bounds a rational homology ball. This implies that the kernel of the canonical homomorphism
from the knot concordance group to the infinite direct sum of rational homology cobordism groups
(defined via prime-power branched covers) contains an infinitely generated two-torsion subgroup.

57K10, 57M12

1 Introduction

There is a homomorphism
' W C!

Y
q2Q

‚3
Q;

where C is the smooth concordance group of knots in S3, Q is the set of prime power integers, and ‚3
Q

is the rational homology cobordism group. For a knot K and q 2 Q, the q–component of '.K/ is the
class of Mq.K/, the q–fold cyclic cover of S3 branched over K.

In [1], Aceto, Meier, A Miller, M Miller, Park, and Stipsicz proved that ker' contains a subgroup
isomorphic to .Z2/

5. Here we will prove that ker' contains a subgroup isomorphic to .Z2/
1. Our

examples are of the form K#�Kr , where�K denotes the concordance inverse of K (the mirror image of K

with string orientation reversed), and Kr is formed from K by reversing its string orientation. Such knots
are easily seen to be in the kernel of '; the more difficult work is to find nontrivial examples of order two.

The first known example of a nontrivial element in ker' was represented by the knot K1 D 817 #�8r
17

,
which is of order two in C. That K1 is of order at most two is elementary; that K1 is nontrivial in C is
one of the main results of Kirk and Livingston in [9], proved using twisted Alexander polynomials.

The results of Kim and Livingston [7] provide an infinitely generated free subgroup of ker'. Conjecturally,
C Š Z1˚ .Z2/

1; if true, then ker' Š Z1˚ .Z2/
1.

1.1 Main result

Figure 1 illustrates a knot Pn in a solid torus, where Jn represents the braid illustrated on the right in the
case of nD 5; n will always be odd. We let Kn denote the satellite of 817 built from Pn. In standard
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Pn

Jn Jn J�n

Figure 1: The knot Pn � S1 �B2, Jn, and J�n .

notation, Kn D Pn.817/. For future reference, we illustrate the braid J�n formed by rotating Jn around
the vertical axis.

Theorem 1 Let Kn D Pn.817/. For all odd n, the knot Ln D Kn #�Kr
n satisfies 2Ln D 0 2 C and

Ln 2 ker'. There is an infinite set of prime integers P for which L˛ ¤ Lˇ 2 C for all ˛ ¤ ˇ in P . In
particular , the set of knots fLngn2P generates a subgroup of ker' that is isomorphic to .Z2/

1.

The rest of the paper presents a proof of this theorem. The first two claims are easily dealt with in Sections 2
and 3. The more difficult step of the proof calls on an analysis of twisted Alexander polynomials and their
relevance to knot slicing; a review of twisted polynomials is included in Section 4. The proof of Theorem 1
is completed in Section 5, with the exception of a number-theoretic result that is described Appendix A.

Acknowledgements Thanks to Darrell Haile for assisting me in the proof of the number-theoretic result
in Appendix A. Allison Miller provided valuable feedback about an early draft of this paper. This work
was supported by a grant from the National Science Foundation, NSF-DMS-1505586.

2 Proof that 2Ln D 0 2 C

Let P�n � S1 �B2 denote the knot formed using the braid J�n in Figure 2. For any knot K, let P�n .K/

denote the satellite of K built using P�n . It should be clear that Pn and P�n are orientation-preserving
isotopic, and thus for all knots K, Pn.K/D P�n .K/.

Figure 2 illustrates, for an arbitrary knot K, the connected sum Pn.K/# P�n .K/DPn.K/# Pn.K/ in the
case of nD 5. Performing n� 1 band moves in the evident way yields the .0; n/–cable of K # K. Thus,
if K # K D 0 2 C, then the n components of this link can be capped off with parallel copies of the slice
disk for K # K, implying that Pn.K/ # Pn.K/D 0 2 C. In particular, 2Kn D 0 2 C and 2Kr

n D 0 2 C.

K K

Figure 2: P5.K/ # P5.K/.

Algebraic & Geometric Topology, Volume 24 (2024)



Branched covers and rational homology balls 589

3 Proof that Ln 2 ker '

We prove a stronger statement: for all odd n, and for all positive integers q, Mq.Ln/ is a rational
homology sphere that represents 0 2‚3

Q.

The q–fold cyclic cover of S3 branched over Kn #�Kr
n is the same space as the q–fold cyclic cover

of S3 branched over Kn #�Kn. A slice disk for Kn #�Kn is built from .S3�I;Kn�I/ by removing a
copy of B3�I . Taking the q–fold branched cover shows that the q–fold cyclic cover of B4 branched over
that slice disk is diffeomorphic to Mq.Kn/

�� I , where Mq.Kn/
� denotes a punctured copy of Mq.Kn/.

It remains to show that Mq.Kn/ is a rational homology 3–sphere.

A formula of Fox [5] and Goeritz [6] states that the order of the first homology of Mq.Kn/ is given by the
product of values �Kn

.!i
q/, where �Kn

.t/ denotes the Alexander polynomial, !q is a primitive q–root
of unity, and i runs from 1 to q� 1.

A result of Seifert [11] shows that �Kn
.t/ D �817

.tn/�Pn.U /, where U is the unknot. We have that
Pn.U /D U . The Alexander polynomial for 817 is

�817
.t/D 1� 4t C 8t2

� 11t3
C 8t4

� 4t5
C t6:

A numeric computation confirms that this polynomial does not have roots on the unit complex circle, and
hence �817

.tn/ has no roots on the unit complex circle. From this is follows that �Kn
.!i

q/¤ 0 for all i ;
thus the order of the homology of Mq.Kn/ is finite.

4 Review of twisted polynomials and 817

In this section we review twisted Alexander polynomials and their application in [8; 9] showing that
817 #�8r

17
¤ 0 2 C.

Let .X;B/! .S3;K/ be the q–fold cyclic branched cover of a knot K with q a prime power. In particular,
X is a rational homology sphere. There is a canonical surjection � W H1.X �B/! Z. Suppose that
� WH1.X /! Zp is a homomorphism for some prime p. Then there is an associated twisted polynomial
�K ;�;�.t/ 2 Q.!p/Œt �. It is well-defined, up to factors of the form atk , where a ¤ 0 2 Q.!p/. These
polynomials are discriminants of Casson–Gordon invariants, first defined in [3].

In the case of KD 817 and qD 3, we have H1.X /ŠZ13˚Z13, and as a Z13–vector space this splits as
a direct sum of a 3–eigenspace and a 9–eigenspace under the order three action of the deck transformation.
Both eigenspaces are 1–dimensional. We denote this splitting by E3˚E9. There are corresponding
characters �3 and �9 of H1.X / onto Z13; these are defined as the quotient maps onto H1.X /=E3 and
onto H1.X /=E9. We let �0 denote the trivial Z13–valued character.

The values of �817;�;�i
.t/ are given in [9], duplicated here in Appendix B. For i D 0 it is polynomial

in QŒt �. For i D 3 and i D 9 it is in Q.!13/Œt � and is not in QŒt �. An essential observation is that, for 8r
17

,

Algebraic & Geometric Topology, Volume 24 (2024)



590 Charles Livingston

the roles of �3 and �9 are reversed. All three of the polynomials are irreducible in their respective
polynomial rings, once any factors of .1� t/ and t are removed.

In [9] the proof that 817 #�8r
17

is not slice comes down to the observation that no product of the form

�ı.�817;�;�3
.t//� .�817;�;�i

.t// or �ı.�817;�;�9
.t//� .�817;�;�j .t//

is of the form af .t/f .t�1/.1�t/j for some f .t/2Q.!13/Œt �. (That is, these products are not norms in the
polynomial ring Q.!13/Œt; t

�1�, modulo powers of .1� t/ and t .) Here i D 0 or i D 9, and j D 0 or j D 3.
The number a is in Q.!/ and the �� are Galois automorphisms of Q.!p/ (which acts by sending !p to !�p ).

Showing that the product of the polynomials does not factor in this way is elementary once it is established
that �817;�;�3

.t/ and �817;�;�9
.t/ are irreducible and not Galois conjugate.

5 Main proof

Using the fact that �Pn.817/
r D Pn.817/

r , the knot L˛ # Lˇ can be expanded as

P˛.817/ # P˛.817/
r # Pˇ.817/ # Pˇ.817/

r :

We begin by analyzing the 3–fold cover of S3 branched over Pn.817/, and assume that 3 does not divide n.
This cover is M3.Pn.817// and we denote the branch set in the cover by zB.

There is the obvious separating torus T in S3 nPn.817/. Since 3 does not divide n, T has a connected
separating lift zT �M3.Pn.817//. One sees that zT splits M3.Pn.817// into two components: X , the
3–fold cyclic cover of S3 n 817, and Y , the 3–fold cyclic branched cover of S1 �B2, branched over Pn.
A simple exercise shows that, since Pn.U / is unknotted, Y is the complement of some knot QJn � S3.

A Mayer–Vietoris argument shows that H1.M3.Pn.817///ŠZ13˚Z13 and the two canonical represen-
tations �3 and �9 that are defined on X extend trivially on Y , and so to M3.Pn.817//. We denote these
extension by �0

3
and �0

9
. Let �0 be the canonical surjective homomorphism �0 WH1.M3.Pn.817///n zB/!Z.

Restricted to X we have �0.x/D �.nx/, where � was the canonical representation to Z defined for the
cover of S3 n 817.

In [8, Theorem 3.7] there is a discussion of twisted Alexander polynomials of satellite knots in S3,
working in the greater generality of homomorphisms to the unitary group U.m/. (A map to Zp can be
viewed as a representation to U.1/.) The proof of that theorem, which relies on the multiplicativity of
Reidemeister torsion, applies in the current setting, yielding the following lemma:

Lemma 2 �Pn.817/;�0;�0
3
.t/D�817;�;�3

.tn/� QJn
.t/.

Similar results hold for the knot Pn.817/
r and for the character �9.

Algebraic & Geometric Topology, Volume 24 (2024)
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As described in [8; 9], Casson–Gordon theory implies that, if L˛#Lˇ is slice, then for some 3–eigenvector
or for some 9–eigenvector the corresponding twisted Alexander polynomial is a norm; that is, it factors as
atkf .t/f .t�1/, modulo multiples of .1�t/. If it is a 3–eigenvector, the relevant polynomial is of the form

(1) �.t/

D �a.�817;�;�3
.t˛//x�b.�817;�;�9

.t˛//y�c.�817;�;�3
.tˇ//z�d .�817;�;�9

.tˇ//w.� QJ˛
.t/� QJˇ

.t//2;

where one of x, y, z, or w is equal to 1, and each of the others are either 1 or 0.

The four Q.!13/Œt �–polynomials that appear here,

�817;�;�3
.t˛/; �817;�;�9

.t˛/; �817;�;�3
.tˇ/; and �817;�;�9

.tˇ/;

and all their Galois conjugates are easily seen to be distinct for any pair ˛ ¤ ˇ. The following number-
theoretic result implies that there is an infinite set of primes P such that, if ˛ 2 P and ˇ 2 P , then no
product as given in (1) can be a norm in Q.!13/Œt �, proving that the connected sum L˛ # Lˇ is not slice.
We will present a proof in Appendix A.

Lemma 3 Let f .t/ 2 Z.!p/Œt � be an irreducible monic polynomial. If there exists � 2 C such that
f .�/D 0 and �n ¤ 1 for all n> 0, then the set of primes p for which f .tp/ is reducible is finite.

Proof of Theorem 1 The last factor in (1) involving the QJn is a norm, so it can be ignored in determining
if the product is a norm.

A numeric computation shows that the twisted polynomials �817;�;�i
.t/ for i D 3 and i D 9 do not have

roots on the unit circle, so Lemma 3 can be applied with F DQ.!13/. Let P be the infinite set of primes
with the property that if p 2 P , then �817;�;�3

.tp/ and �817;�;�9
.tp/ are irreducible. Consider the case

of x D 1 in (1). Then, assuming that ˛ 2 P and ˇ 2 P , the term �a.�817;�;�3
/.t˛/ that appears in (1) is

relatively prime to the remaining factors, and all the factors are irreducible, modulo powers of t and 1� t .
Hence, the product cannot be of the form tk.1� t/jf .t/f .t�1/ for any f .t/ 2Q.!13/Œt �. The cases of
y; z, or w D 1 are the same.

Appendix A Factoring f .tp/

In this appendix we prove Lemma 3, stated in somewhat more generality as Lemma 4 below. We first
summarize some background material. Further details can be found in any graduate textbook on algebraic
number theory.

� A � C denotes the ring of algebraic integers. This is the ring consisting of all roots of monic
polynomials in ZŒt �.

� For an extension field F=Q, the ring of algebraic integers in F is defined by OF D F \A.

� The property of transitivity states that, if f .t/ 2OF Œt � is monic and f .�/D 0, then � 2A.

Algebraic & Geometric Topology, Volume 24 (2024)



592 Charles Livingston

� O�F is defined to be the set of units in OF .

� The norm of an element x 2 OF is defined as N.x/D
Q

xi 2 Z, where the xi are the complex
Galois conjugates of x. This map satisfies N.xy/D N.x/N.y/ for all x;y 2 OF . An element
x 2OF is in O�F if and only if N.x/D˙1.

� The Dirichlet unit theorem states that, for a finite extension F=Q, the abelian group O�F is finitely
generated and isomorphic to G˚ZrCs�1, where G is finite cyclic, r is the number of embeddings
of F in R, and 2s is the number of nonreal embeddings of F in C.

Lemma 4 Let F be a finite extension of Q, and let f .t/ 2OF Œt � be an irreducible monic polynomial. If
there exists � 2C such that f .�/D 0 and �n ¤ 1 for all n> 0, then the set of primes p for which f .tp/

is reducible is finite.

Proof Step 1 If f .�/D 0, then � 2OF.�/.

This follows immediately from the assumption that f .t/ is monic.

Step 2 Suppose that f .t/ 2 F Œt � is irreducible and f .�/D 0. If , for some prime p, f .tp/ is reducible
over F , then � D �p for some � 2OF.�/.

Let � 2 C satisfy �p D �. Since f .t/ is irreducible of degree n and f .tp/ is reducible, we have the
degrees of extensions satisfying ŒF.�/ W F �D n and ŒF.�/ W F � < np. It follows from the multiplicity of
degrees of extensions that ŒF.�/ W F.�/� < p.

The polynomial tp � � 2 F.�/Œt � has � as a root. For all i , !i
p� is also a root, so tp � � factors completely

in CŒt � as
tp
� � D .t � �/.t �!p�/ � � � .t �!

p�1
p �/:

By the degree calculation just given, tp � � has an irreducible factor g.t/ 2 F.�/Œt � of degree l < p. We
can write g.t/D

Q
.t�!i

p�/, where the product is over some proper subset of f0; : : : ;p�1g. Multiplying
this out, one finds that the constant term is of the form !

j
p �

l 2 F.�/ for some j and l < p. Since l and p

are relatively prime, there are integers u and v such that ul C vp D 1. Thus, .!j
p �

l/u.�p/v D !s
p� for

some s. In particular, for some s, we have !s
p� 2 F.�/. We let �D !s

p� and find that �p D .!s
p/

p�p D �.
Finally, � satisfies the monic polynomial f .tp/ and thus is in OF.�/.

Step 3 The set of primes p such that � D �p for some � 2OF.�/ is finite.

If � D �p , then N.�/DN.�/p . If N.�/¤˙1, then the set of p for which N.�/D ap for some integer
a is finite.

If N.�/D˙1, then � 2O�F.�/. Hence � represents a nontorsion element in a finitely generated abelian
group, and thus it has a finite number of roots.

Algebraic & Geometric Topology, Volume 24 (2024)
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Comments The argument just given is based on a summary of the proof for the case F DQ presented
on MathOverflow by Dimitrov [4]. Step 2 is a special case of the Vahlen–Capelli theorem, proved in the
case of F D Q by Vahlen and for fields of characteristic 0 by Capelli [2]. A proof for fields of finite
characteristic is given by Rédei [10].

Appendix B Twisted polynomials of 817

Here are the three needed polynomials. We write ! for !13.

�817;�;�0
.t/D 1�t�34t2

�101t3
�34t4

�t5
Ct6;

�817;�;�3
.t/=.1�t/

D 1Ct.2!C2!2
C2!3

C4!4
C2!5

C2!6
C!7
C!8
C2!9

C4!10
C!11

C4!12/

Ct2.�15!�10!2
�15!3

�15!4
�10!5

�10!6
�10!7

�10!8
�15!9

�15!10
�10!11

�15!12/

Ct3.4!C!2
C4!3

C2!4
C!5
C!6
C2!7

C2!8
C4!9

C2!10
C2!11

C2!12/Ct4;

�817;�;�9
.t/=.1�t/

D 1Ct.6!C5!2
C6!3

C6!4
C5!5

C5!6
C5!7

C5!8
C6!9

C6!10
C5!11

C6!12/

Ct2.�13!�12!2
�13!3

�13!4
�12!5

�12!6
�12!7

�12!8
�13!9

�13!10
�12!11

�13!12/

Ct3.6!C5!2
C6!3

C6!4
C5!5

C5!6
C5!7

C5!8
C6!9

C6!10
C5!11

C6!12/Ct4:
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