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Constructions stemming from nonseparating planar graphs
and their Colin de Verdière invariant

ANDREI PAVELESCU

ELENA PAVELESCU

A planar graph G is said to be nonseparating if there exists an embedding of G in R2 such that, for
any cycle C � G, all vertices of G nC are within the same connected component of R2 nC. Dehkordi
and Farr classified the nonseparating planar graphs as either outerplanar graphs, subgraphs of wheel
graphs, or subgraphs of elongated triangular prisms. We use maximal nonseparating planar graphs to
construct examples of maximal linkless graphs and maximal knotless graphs. We show that, for a maximal
nonseparating planar graph G with n� 7 vertices, the complement cG is .n�7/–apex. This implies that
the Colin de Verdière invariant of the complement cG satisfies �.cG/ � n� 4. We show this to be an
equality. As a consequence, the conjecture of Kotlov, Lovász and Vempala that, for a simple graph G,
�.G/C�.cG/� n� 2 is true for 2–apex graphs G for which G �fu; vg is planar nonseparating. It also
follows that complements of nonseparating planar graphs of order at least nine are intrinsically linked. We
prove that the complements of nonseparating planar graphs G of order at least ten are intrinsically knotted.

57M15; 05C10

1 Introduction

All graphs in this paper are finite and simple. A graph is intrinsically linked (IL) if every embedding
of it in R3 (or S3) contains a nontrivial 2–component link. A graph is linklessly embeddable if it
is not intrinsically linked (nIL). A graph is intrinsically knotted (IK) if every embedding of it in R3

(or S3) contains a nontrivial knot. The combined work of Conway and Gordon [1983], Sachs [1984] and
Robertson, Seymour and Thomas [Robertson et al. 1993] fully characterize IL graphs: a graph is IL if
and only if it contains a graph in the Petersen family as a minor. The Petersen family consists of seven
graphs obtained from the complete graph K6 by rY moves and Yr moves, as described in Figure 1.

rY

Yr

Figure 1: rY and Yr moves.
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The rY move and the Yr move preserve the IL property. While K7 and K3;3;1;1 together with many
other minor minimal IK graphs have been found [Goldberg et al. 2014; Conway and Gordon 1983; Foisy
2002], a characterization of IK graphs is not fully known. While the rY move preserves the IK property
[Motwani et al. 1988], the Yr move doesn’t preserve it [Flapan and Naimi 2008]. A graph is said to
be k–apex if it can be made planar by removing k vertices. If G and H denote two simple graphs with
vertex sets V.G/ and V.H/ and edge sets E.G/ and E.H/, respectively, then the sum GCH denotes
the simple graph with vertex set V.G/tV.H/ and edge set E.G/tE.H/tL, where L denotes the set
of all edges with one endpoint in V.G/ and the other in V.H/.

A planar graph G is nonseparating if there exists an embedding of G in R2 such that, for any cycle
C�G, all vertices of G nC are within the same connected component of R2 nC. By [Dehkordi and Farr
2021], a nonseparating planar graph is one of three types:

(1) an outerplanar graph,

(2) a subgraph of a wheel,

(3) a subgraph of an elongated triangular prism.

In Section 2, we consider sums between maximal nonseparating planar graphs and small empty graphs,
complete graphs or paths to construct maximal linklessly embeddable graphs and maximal knotlessly
embeddable graphs. A simple graph G is called maximal linklessly embeddable (maxnIL) if it is not
a proper subgraph of a nIL graph of the same order. A simple graph G is called maximal knotlessly
embeddable (maxnIK) if it is not a proper subgraph of a nIK graph of the same order. Constructions and
properties of maxnIL graphs can also be found in [Aires 2021; Naimi et al. 2023], and for maxnIK graphs
in [Eakins et al. 2023].

Colin de Verdière [1990] introduced the graph invariant �, which is based on spectral properties of
matrices associated with the graph G. He showed that � is monotone under taking minors and that
planarity is characterized by the inequality �� 3. By [Lovász and Schrijver 1998; Robertson et al. 1993],
it is known that linkless embeddability is characterized by the inequality � � 4. By reformulating the
definition of � in terms of vector labelings, Kotlov, Lovász and Vempala [Kotlov et al. 1997] related the
topological properties of a graph to the � invariant of its complement: for G a simple graph on n vertices,

(1) if G is planar, then �.cG/� n� 5;

(2) if G is outerplanar, then �.cG/� n� 4;

(3) if G is a disjoint union of paths, then �.cG/� n� 3.

For G a graph with n vertices v1; v2; : : : vn, cG denotes the complement of G in the complete graph Kn.
The graph cG has the same set of vertices as G and E.cG/D fvivj j vivj …E.G/g.

By [Battle et al. 1962], the complement of a planar graph with nine vertices is not planar. This is also
implied by the inequality �.cG/� n� 5. Here we show a stronger inequality for maximal nonseparating
planar graphs. In Section 3, we prove two theorems.
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Theorem 1 If G is a maximal nonseparating planar graph with n� 7 vertices , then cG is .n�7/–apex.

Theorem 1 establishes the upper bound �.cG/ � n� 4 for G a maximal nonseparating planar graph,
since � � 3 for planar graphs and adding one vertex increases the value of � by at most one [van der
Holst et al. 1999]. We prove this is an equality.

Theorem 2 For G a maximal nonseparating planar graph with n� 7 vertices , �.cG/D n� 4.

Kotlov et al. [1997] conjectured that, for a simple graph G, �.G/C�.cG/� n� 2. We revisit results
about� to show the conjecture is true for planar graphs and 1–apex graphs. As a consequence of Theorem 2,
the conjecture holds for 2–apex graphs G for which G � fu; vg is planar nonseparating. Theorem 2
also implies that, for G a maximal nonseparating planar graph with nine vertices, �.cG/D 5 > 4, and
thus cG is intrinsically linked. While the relationship between the � invariant and intrinsic linkness is
well understood, the same is not true for intrinsic knottedness. The inequality �.cG/� n� 5 for planar
graphs G implies that complements of planar graphs with ten vertices are intrinsically linked. Theorem 2
establishes that, for G a maximal nonseparating planar graph with ten vertices, �.cG/ D 6, but this
does not imply that cG is intrinsically knotted. There are known IK graphs with � D 5 [Foisy 2003;
Mattman et al. 2021], as well as nIK graphs with �D 6 [Flapan and Naimi 2008]. In Section 4, we do a
case-by-case analysis to prove the following theorem:

Theorem 3 If G is a nonseparating planar graph on ten vertices , then cG is intrinsically knotted.

Since the complement of a nonseparating planar graph contains the complement of a maximal non-
separating planar graph of the same order as a subgraph, it suffices to prove Theorem 3 for maximal
nonseparating planar graphs, namely

(1) maximal outerplanar graphs,

(2) the wheel graph,

(3) elongated triangular prisms.

A similar approach to that presented in Section 4 works to prove that:

(a) If G is a nonseparating planar graph on seven vertices, then cG is not outerplanar.

(b) If G is a nonseparating planar graph on eight vertices, then cG is nonplanar.

(c) If G is a nonseparating planar graph on nine vertices, then cG is intrinsically linked.

For outerplanar graphs G with at most nine vertices, these results can also be obtained using the graph
invariant �, since, for such graphs G, �.cG/� n� 4 [Kotlov et al. 1997].

2 MaxnIL and maxnIK graphs

In this section, we use maximal nonseparating planar graphs to build examples of maxnIL and maxnIK
graphs. Jørgensen [1989] and Dehkordi and Farr [2021] considered the class of graphs of the typeHCE2,
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where E2 denotes the graph with two vertices and no edges and H is an elongated prism. Jørgensen
proved that these graphs are maximal with no K6 minors. Dehkordi and Farr proved that these graphs are
maxnIL. Here we add to this type of example by taking the sum of maximal nonseparating planar graphs
with small empty graphs, complete graphs and paths. Sachs [1984] proved that 1–apex graphs are nIL
and 2–apex graphs are nIK. A theorem of Mader [1968] shows that a graph G with n vertices and 4n� 9
edges, with n� 6, contains a K6 minor, and a graph G with n vertices and 5n� 14 edges, with n� 7,
contains a K7 minor. We combine these results into the following useful lemma:

Lemma 4 A maximal 1–apex graph is maxnIL. A maximal 2–apex graph is maxnIK.

A vertex of a graph H which is incident to all the other vertices of H is a cone. We also say that v cones
over the subgraph induced by all the vertices of H minus v. Let Wn denote the wheel graph of order
n � 4. Let P2 be the graph with vertex set V.P2/D fu; v;wg and edge set E.P2/D ffu;wg; fv;wgg.
Let K3 denote the complete graph on vertices fu; v;wg. Using Lemma 4, we derive the following result:

Theorem 5 (1) The graph G 'WnCE2 is maxnIL.

(2) If H is a maximal outerplanar graph of order n� 4, then G 'H CK2 is a maxnIL graph.

(3) The graph G 'WnCP2 is maxnIK.

(4) If H is a maximal outerplanar graph of order n� 4, then G 'H CK3 is a maxnIK graph.

Proof For the first two cases, the graph G is maximal 1–apex, and thus maxnIL. For the last two cases,
the graph G is maximal 2–apex, and thus maxnIK.

For the elongated prism case, we distinguish two cases, according to the number of nontriangular edges
of the triangular prism which are subdivided.

Theorem 6 Let H denote an elongated prism of order n � 6 obtained by repeated subdivisions of at
most two of three nontriangular edges of the prism graph. Then G 'H CP2 is a maxnIK graph.

t1 t2 � � � tkv1 v2

v3 v4

v5 v6s1 s2 � � � sl

t1 t2 � � � tkv1 v2

v3
v

v4

v5 v6s1 s2 � � � sl

u

Figure 2: An elongated prism with only two edges subdivided (left) and a planar graph obtained
by deleting the vertices t and w of H CP2 (right).
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v1
a v2

v3
b

v4

v5

c
v6

C1

C2

C3

C4

Figure 3: The graph P 0 obtained by subdividing once each nontriangular edge of the prism graph
(left) and the graph D4 (right).

Proof Assume that H is isomorphic to the graph depicted in Figure 2, left, in which the edge fv3; v4g

is not subdivided. Perform a rY move on the triangle induced by the vertices fv3; v4; ug by deleting the
edges fv3; v4g, fv3; ug and fv4; ug and adding a new vertex t incident to all of fv3; v4; ug to obtain a new
graphG0. This graph is 2–apex, since deleting the vertices t and w gives the planar graph of Figure 2, right.
Thus, G0 is nIK, and so must be G, as the rY move preserves the IK property [Motwani et al. 1988].

To show that G is maximal nIK, one notices that G is isomorphic to a cone w over H CE2. Since
H CE2 is maxnIL by [Dehkordi and Farr 2021], adding any edge to G produces a structure of a cone
over an IL graph. This structure will contain a minor isomorphic to a graph in either the K7 family or the
K3;3;1;1 family, and will therefore be IK.

Theorem 7 Let H denote an elongated prism of order n � 9 obtained by repeated subdivisions of all
three nontriangular edges of the prism graph. Then G 'H CP2 is an IK graph.

Proof By repeated edge contractions applied to G, one obtains the minor S ' P 0CP2, where P 0 is the
graph depicted in Figure 3, left.

Foisy [2002] proved that, if a graph contains a doubly linked D4 minor in every embedding, the graph
must be IK. This result was also proved independently by Taniyama and Yasuhara [2001]. The graph D4

is depicted in Figure 3, right. An embedding of the graph D4 is doubly linked if the linking numbers
lk.C1; C3/ and lk.C2; C4/ are both nonzero mod 2. We used a Mathematica program written by Naimi
to show that S has a doubly linked D4 minor in every embedding.

3 The � invariant

In this section we determine the value of the � invariant for complements of maximal nonseparating
planar graphs. By [van der Holst et al. 1999], if G is planar with n vertices, then �.cG/� n�5. We first
show the inequality �.cG/� n�4 for graphs G which are maximal nonseparating planar. In Theorem 2,
we show this is in fact an equality.

Kotlov et al. [1997] conjectured that, for a simple graph G, �.G/C�.cG/� n� 2. We review that the
conjecture holds for planar graphs and 1–apex graphs. We show that, as a consequence of Theorem 2, the
conjecture holds for 2–apex graphs G for which G �fu; vg is planar nonseparating.

Algebraic & Geometric Topology, Volume 24 (2024)
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v2 v3

v4

v5
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v2

v3

v4

v5v6

v7

v8

vn�1

vn

v1 v4

v3 v6

v5 v2

vn

Figure 4: A maximal outerplanar graph with seven vertices (left), the graph G, a wheel with n
vertices (center), and cG n fv7; v8; : : : ; vn�1g (right).

Theorem 1 If G is a maximal nonseparating planar graph with n� 7 vertices , then cG is .n�7/–apex.

Proof We treat the three types in turn:

Outerplanar case Any maximal outerplanar graphH of order n� 3 can be represented by a triangulated
n–cycle in the plane (with the unbounded face containing all vertices). The n–cycle contains at least
one 2–chord, an edge which forms a triangle with two adjacent edges along the cycle. We say that the
2–chord isolates the vertex which is part of the triangle but is not incident to the 2–chord. For example, in
Figure 4, left, the 2–chord v1v6 isolates the vertex v7 and the 2–chord v1v5 of H �fv7g isolates v6. The
complement of the unique maximal outerplanar graph with five vertices is P3, a path with three edges,
together with an isolated vertex. It follows that the complement of any maximal outerplanar graph with
seven vertices is planar, since the deletion of two vertices gives a path with three edges and an isolated
vertex. For example, after the deleting the vertices v7 and v6, the complement of the graph in Figure 4,
left, is the path v1v3v5v2 together with the isolated vertex v4. Starting with a maximal outerplanar graph
with n� 7 vertices, one can recursively delete n� 7 isolated vertices and obtain a maximal outerplanar
graph of order 7. The same sequence of n� 7 vertex deletions gives a planar subgraph of cG. Thus,
cG is .n�7/–apex.

Wheel case Let G be the wheel on n vertices. Then cG ' .Kn�1 nCn�1/[K1. Let fv1; v2; : : : ; vn�1g

be the vertices of Cn�1 in consecutive order, as in Figure 4, center. Then cG n fv7; v8; : : : ; vn�1g is
a planar graph (the triangular prism added one edge, together with an isolated vertex) and thus cG is
.n�7/–apex. See Figure 4, right.

Elongated prism case Let G be an elongated prism with n � 7 vertices. Without loss of generality,
let v1v3v5 be one of two induced triangles of G. Let a; b and c denote their respective neighbors in
V.G/ n fv1; v3; v5g, as in Figure 5, left. Deleting all vertices but fv1; v3; v5; a; b; cg in cG gives the
subgraph of the outerplanar graph with six vertices in Figure 5, right. Deleting any n� 7 vertices of cG
none of which is in the set fv1; v3; v5; a; b; cg yields a planar graph, and thus cG is .n�7/–apex.

Corollary 8 For G a maximal nonseparating planar graph with n� 7 vertices , �.cG/� n� 4.

Algebraic & Geometric Topology, Volume 24 (2024)



Constructions stemming from nonseparating planar graphs and their Colin de Verdière invariant 561

v1 a

v3
b

v5
c

v1 c

v3

av5

b

Figure 5: An elongated prism (left) and the subgraph induced by fv1; v3; v5; a; b; cg in cG (right).

Proof By Theorem 1, cG is .n�7/–apex. Let H be the planar subgraph of cG obtained by deleting
n� 7 vertices. Then �.H/ � 3 and �.cG/ � 3C .n� 7/D n� 4, since adding one vertex to a graph
increases the value of � by at most one (see [van der Holst et al. 1999, Theorem 2.7]).

Corollary 8 establishes an upper bound of n � 4 for the values of � of complements of maximal
nonseparating planar graphs on n vertices. We show that n� 4 is the actual value of �. We use [van der
Holst et al. 1999, Theorem 5.5], whice says that, for H a graph on n vertices and �.H/ WD n��.cH/�1,
the inequality �.H/� 2 holds if and only if H does not contain as a subgraph any of the five graphs in
Figure 6. We also use that, for a graph G with at least one edge, �.GCK1/D �.G/C 1 by [van der
Holst et al. 1999, Theorem 2.7].

Theorem 2 For G a maximal nonseparating planar graph with n� 7 vertices , �.cG/D n� 4.

Proof Corollary 8 established the inequality �.cG/ � n� 4. Here we show that �.cG/ � n� 4. If
G is outerplanar, then �.cG/ � n � 4 [Kotlov et al. 1997]. If G is the wheel graph on n vertices,
cG D cCn�1[K1. By [van der Holst et al. 1999, Theorem 5.5], �.Cn�1/� 2 and we have

�.cG/D �.cCn�1/D n� 1� �.Cn�1/� 1� n� 4:

For elongated prisms, we distinguish two cases, according to the number of nontriangular edges of the
prism which are being subdivided:

Case 1 Consider G the elongated prism in Figure 7, left, with exactly one nontriangular edge of the
prism graph subdivided, v1v2, If at least two vertices are added along v1v2, as in Figure 7, left, consider

Figure 6: Five graphs.

Algebraic & Geometric Topology, Volume 24 (2024)
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v1 v2

v3 v4

v5 v6

v1 v2

v3 v4

v5 v6

v1 v4

v5

v2v3

v6

Figure 7: An elongated prism with one nontriangular edge subdivided by more than one vertex
(left), an elongated prism with one nontriangular edge subdivided by exactly one vertex (center)
and the complement of that graph (right).

the graph H DG �fv1; v2g. Then �.cH/D .n� 2/� �.H/� 1� n� 5, by [van der Holst et al. 1999,
Theorem 5.5]. Since in cG the set of adjacent vertices fv1; v2g cones over cH, �.cG/� n�4 by [van der
Holst et al. 1999, Theorem 2.7]. If only one vertex is added along the one edge, as in Figure 7, center,
the set of adjacent vertices fv1; v2g no longer cones over cH. However, in this case, cG contains a K4

minor, and thus �.cG/� 3. See Figure 7, right.

Case 2 Assume G is obtained from the triangular prism by subdividing edges v1v2 and v5v6 along the
way, as in Figure 8, left. The graphH DG�fv1; v6g is a path with n�2 vertices, so�.cH/�n�5 [Kotlov
et al. 1997]. In cG, the set of adjacent vertices fv1; v6g cones over cH, yielding�.cG/��.cH/C1�n�4
by [van der Holst et al. 1999, Theorem 2.7].

We briefly discuss the state of a conjecture of [Kotlov et al. 1997], that, for a simple graph G on n vertices,
�.G/C�.cG/� n� 2. By [Kotlov et al. 1997; Colin de Verdière 1990; van der Holst et al. 1999], the
conjecture holds if either one of G or cG is planar. We note that the conjecture holds if �.G/� n� 6
or �.cG/ � n� 6. Assume �.G/ � n� 6. If �.cG/ � 4, then �.G/C�.cG/ � n� 2; if �.cG/ < 4,
�.G/ is planar, and the conjecture holds.

Proposition 9 The conjecture holds for 1–apex graphs.

Proof LetG be a 1–apex graphs with n vertices andH DG�fvg planar. Then�.cH/� .n�1/�5Dn�6
[Kotlov et al. 1997]. We have that cH, the complement ofH inKn�1, is a subgraph of cG, the complement
of G in Kn, since cG may have additional edges incident to v, and so n� 6� �.cH/� �.cG/. Thus,
the conjecture holds for G.

v1 v2

v3 v4

v5 v6

v2

v3 v4

v5

Figure 8: An elongated prism G with two subdivided edges (left) and H DG �fv1; v6g (right).

Algebraic & Geometric Topology, Volume 24 (2024)



Constructions stemming from nonseparating planar graphs and their Colin de Verdière invariant 563

Corollary 10 Let G be a 2–apex graph with n vertices with H DG�fu; vg planar nonseparating. Then
�.G/C�.cG/� n� 2.

Proof Since H is planar nonseparating, by Theorem 2, �.cH/� .n� 2/� 4D n� 6, with equality if
H is maximal. We have that cH, the complement of H in Kn�2, is a subgraph of cG, the complement
of G in Kn, since cG may have additional edges incident to u and v, and so �.cG/� �.cH/� n� 6.
Thus, the conjecture holds for G.

4 Graphs of order ten

The relationship between the � invariant and the property of being intrinsic knotted is not well under-
stood. While Theorem 2 establishes that, for G a maximal nonseparating planar graph with ten vertices,
�.cG/D 6, this information has no bearing on whether cG is intrinsically knotted. Flapan and Naimi
[2008] prove that the IK property is not preserved by the Yr move by showing a graph in the K7 family
which is not intrinsically knotted. Since �.K7/D 6 and both the rY move and the Yr move preserve �
for � � 4 [van der Holst et al. 1999], this nIK graph has �D 6. On the other hand, Foisy [2003] and
Mattman et al. [2021] provide examples of IK graphs with �D 5. In this section, we do a case-by-case
analysis to prove that, for G a maximal nonseparating planar graph with ten vertices, cG is intrinsically
knotted. We recall that the rY move preserves the IK property. In some cases, graphs are shown to be
IK because they are obtained through one or more rY moves from IK graphs such as K7 or K3;3;1;1.
In other cases, graphs G are shown to be IK because the graphs obtained from G by one or more Yr
moves contain K7 or K3;3;1;1 minors.

Lemma 11 If G is a maximal outerplanar graph with ten vertices , then cG is intrinsically knotted.

Proof We label the vertices of G by v1; v2; : : : ; v9; v10 in clockwise order around the cycle C bordering
the outer face of a planar embedding. See Figure 9. We organize the proof according to the longest chord
of C. The length of a chord is defined as the length of the shortest path in C between the endpoints of the
chord. In each case we show the complement cG contains an intrinsically knotted graph as a minor. We
remark that, within any triangulation of the disk bounded by C, out of a total of seven chords, at most six
have length 2 or 3. Thus there exist chords of length 4 or 5.

Case (a) If the cycle C has a chord of length 5, we may assume without loss of generality that
v1v6 2 E.G/. Consider the cycles C1 WD v1v6v7v8v9v10 and C2 WD v1v2v3v4v5v6. We note that C

necessarily contains a 3–chord or a 4–chord with one endpoint at v1 or v6 and the other endpoint among
the vertices of Ci for i D 1; 2. We distinguish six cases, according to whether there are any 4–chords at
all and whether these chords share one of their ends:

(a1) Assume there exists a 4–chord incident to v1 or v6, say v1v5 2E.G/.

(i) If v1v7 2E.G/ (see Figure 9, far left), then the complement cG contains as a subgraph the graph
obtained through two rY moves from K7 with vertex set fv2; v3; v4; v8; v9; v10; v6g: one rY

Algebraic & Geometric Topology, Volume 24 (2024)
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v1 v2

v3

v4

v5

v6v7
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v1 v2
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v4

v5

v6v7

v8

v9

v10

v1 v2

v3

v4

v5

v6v7

v8

v9

v10

v1 v2

v3

v4

v5

v6v7

v8

v9

v10

Figure 9: Outerplanar graphs with ten vertices.

move over the triangle v2v3v4 with new vertex v7 and one rY move over the triangle v8v9v10

with new vertex v5.

(ii) If v1v7 …E.G/ and v1v8 2E.G/ (see Figure 9, center left), then, in cG, delete any edges incident
to v5 except v5v8, v5v9 and v5v10, then perform a Yr move at v5 to create a graph containing
the triangle v8v9v10. This graph contains a K3;3;1;1 minor with partition fv2; v3; v4g, fv6; v7; v8g,
fv9g; fv10g.

(iii) If v6v10 2E.G/ (see Figure 9, center right), then, in cG, delete any edges incident to v1 except
v1v7, v1v8 and v1v9, then perform a Yr move at v1 to create a graph containing the triangle
v7v8v9. Further, delete any edges incident to v6 except v2v6, v3v6 and v4v6, then perform a Yr
move at v6 to create a graph containing the triangle v2v3v4. Within this new graph, contract v5v10

to a new vertex t to obtain a K7 minor with vertices fv2; v3; v4; v7; v8; v9; tg.

(iv) If v6v10 …E.G/ and v6v9 2E.G/ (see Figure 9, far right), then, in cG, delete any edges incident
to v6 except v6v2, v6v3 and v6v4, then perform a Yr move at v6 to create a graph containing the
triangle v2v3v4. Within this new graph, contract the edge v5v9 to a vertex t , and contract the edge
v1v7 to a vertex t7 to obtain a K7 minor with vertices fv2; v3; v4; t7; v8; v10; tg.

(a2) Assume there is no 4–chord of C incident to v1 or v6. There are two 3–chords of C incident to v1

or v6 and endpoints in each C1 and C2. Assume v1v4 2E.G/.

(i) If v1v8 2E.G/ (see Figure 10, far left), for any choice of edges which triangulate the quadrilaterals
v1v2v3v4 and v8v9v10v1, the complement cG contains as a subgraph the graph Cousin 12 of
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Figure 10: Outerplanar graphs with ten vertices.
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Figure 11: A wheel graph with ten vertices (left) and the complement of E9C e in K10 (right)

.
K3;3;1;1 described in [Goldberg et al. 2014]. This is a minor minimal IK graph with nine vertices
obtained from K3;3;1;1 by two rY moves followed by a Yr move.

(ii) If v6v9 2 E.G/ (see Figure 10, center left), obtain a K7 minor of cG by contracting the edges
v1v8, v2v6 and v4v9.

Case (b) Assume the cycle C has no chord of length 5. Then it has at least a chord of length 4. Assume
v1v7 2E.G/. Up to symmetry, we recognize two cases.

(b1) If v1v5 2 E.G/ (see Figure 10, center right), then the complement cG contains the graph obtained
through two rY moves from K7 with vertex set fv2; v3; v4; v6; v8; v9; v10g: one rY move over the
triangle v2v3v4 with new vertex v7 and one rY move over the triangle v8v9v10 with new vertex v5.

(b2) If v1v4; v4v7 2 E.G/ (see Figure 10, far right), then, in cG, delete any edge incident to v4

except v4v8, v4v9 and v4v10, then perform a Yr move at v4 to create a graph containing the triangle
v8v9v10. Within this graph, contract the edges v1v5 to t5 and v2v7 to t2 obtain a K7 with vertex set
ft2; v3; t5; v6; v8; v9; v10g.

Lemma 12 If G is a wheel with ten vertices , then cG is intrinsically knotted.

Proof The graph E9C e is a minor minimal intrinsically knotted graph with nine vertices described in
[Goldberg et al. 2014]. The complement of E9C e in K10 contains the 10–wheel as a subgraph. See
Figure 11. Thus, the complement cG contains E9 C e as a subgraph and therefore it is intrinsically
knotted.

Lemma 13 If G is an elongated triangular prism with ten vertices , then cG is intrinsically knotted.

Proof An elongated prism with ten vertices is obtained by subdividing the three nontriangular edges of
the prism with four vertices. These four vertices can be added in four different ways:

(a) on three different edges,

(b) on two edges with a 2-2 partition,
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Figure 12: Elongated prisms with ten vertices. Dashed edges are edges of the complement graph.

(c) on two edges with a 3-1 partition,

(d) all on one edge.

See Figure 12. In each case, we show that cG contains a K3;3;1;1 minor.

Case (a) The four vertices are added on three different edges of the elongated prism, as in Figure 12, far
left. Within cG, contract the edge ac to the vertex t and bd to u to obtain a K3;3;1;1 minor of cG given
by the partition fv1; v3; v5g, fv2; v4; v6g, ftg, fug.

Case (b) The four vertices are added to two edges of the elongated prism with a 2-2 partition, as in
Figure 12, center left. Within cG, contract dv5 to t5 and av6 to t6 to obtain a K3;3;1;1 minor of cG given
by the partition fv1; v3; cg, fv2; v4; bg, ft5g, ft6g.

Case (c) The four vertices are added to two edges of the elongated prism with a 3-1 partition, as in
Figure 12, center right. Within cG, contract av5 to t5 and cd to t to obtain a K3;3;1;1 minor of cG given
by the partition fv1; v3; t5g, fv2; v4; v6g, fbg, ftg.

Case (d) The four vertices are added all on one edge of the elongated prism, as in Figure 12, far right.
Within cG, contract bv5 to t5 and cv4 to t4 to obtain a K3;3;1;1 minor of cG given by the partition
fv1; v3; ag, fv2; v6; dg, ft4g, ft5g.

Since cG � cH for H a subgraph of G of the same order, Lemmas 11, 12 and 13 give the following
theorem:

Theorem 3 If G is a nonseparating planar graph on ten vertices , then cG is intrinsically knotted.

Corollary 14 For n� 10, the complement of a nonseparating planar graph on n vertices is IK.

Remark 15 The bound n� 10 in Corollary 14 is the best possible. If G is the 9–wheel, then cG n v D
K8 nC8. Here v is the isolated point within the complement of the wheel. Since it has 20 edges, K8 nC8

is 2–apex and it is therefore knotlessly embeddable [Mattman 2011]. As cG is isomorphic to K8 nC8

with the isolated vertex v added, it is also 2–apex, and thus nIK.

Note that, in the proof of Theorem 3, we’ve showed that the complements of nonseparating planar graphs
of order 10 all have minor minimal intrinsically knotted minors of smaller order. From this it follows that
there are no minor minimal intrinsically knotted (MMIK) graphs of order ten or more with nonseparating
planar complements. On the other hand, by the combined work of [Blain et al. 2007; Conway and Gordon
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1983; Campbell et al. 2008; Foisy 2002; Goldberg et al. 2014; Kohara and Suzuki 1992; Mattman et al.
2017], the eleven MMIK graphs of order at most 9 are known. Considering their complements, there are
just four MMIK graphs with nonseparating planar complements.

Corollary 16 There are exactly four minor minimal intrinsically knotted graphs whose complements are
nonseparating planar: K7, K3;3;1;1, Kr7 (the graph obtained by performing a single rY –move on K7)
and G9;28 (the complement of a 7–cycle and an independent edge inside K9).

Proof By inspection, the complements of the four graphs are nonseparating. The complements of the
remaining seven order 9 graphs are planar, but none of them are nonseparating as:

� They cannot be subgraphs of an elongated prism of order 9 (size 12), since their size (14–15) is too
big.

� They all have at least two vertices of degree bigger than 3; thus, they cannot be subgraphs of a
wheel graph.

� They all have a K4 minor; thus, they cannot be outerplanar.
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