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Branched covers and rational homology balls

CHARLES LIVINGSTON

The concordance group of knots in S3 contains a subgroup isomorphic to .Z2/
1, each element of which

is represented by a knot K with the property that, for every n> 0, the n–fold cyclic cover of S3 branched
over K bounds a rational homology ball. This implies that the kernel of the canonical homomorphism
from the knot concordance group to the infinite direct sum of rational homology cobordism groups
(defined via prime-power branched covers) contains an infinitely generated two-torsion subgroup.

57K10, 57M12

1 Introduction

There is a homomorphism
' W C!

Y
q2Q

‚3
Q;

where C is the smooth concordance group of knots in S3, Q is the set of prime power integers, and ‚3
Q

is the rational homology cobordism group. For a knot K and q 2 Q, the q–component of '.K/ is the
class of Mq.K/, the q–fold cyclic cover of S3 branched over K.

In [1], Aceto, Meier, A Miller, M Miller, Park, and Stipsicz proved that ker' contains a subgroup
isomorphic to .Z2/

5. Here we will prove that ker' contains a subgroup isomorphic to .Z2/
1. Our

examples are of the form K#�Kr , where�K denotes the concordance inverse of K (the mirror image of K

with string orientation reversed), and Kr is formed from K by reversing its string orientation. Such knots
are easily seen to be in the kernel of '; the more difficult work is to find nontrivial examples of order two.

The first known example of a nontrivial element in ker' was represented by the knot K1 D 817 #�8r
17

,
which is of order two in C. That K1 is of order at most two is elementary; that K1 is nontrivial in C is
one of the main results of Kirk and Livingston in [9], proved using twisted Alexander polynomials.

The results of Kim and Livingston [7] provide an infinitely generated free subgroup of ker'. Conjecturally,
C Š Z1˚ .Z2/

1; if true, then ker' Š Z1˚ .Z2/
1.

1.1 Main result

Figure 1 illustrates a knot Pn in a solid torus, where Jn represents the braid illustrated on the right in the
case of nD 5; n will always be odd. We let Kn denote the satellite of 817 built from Pn. In standard
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588 Charles Livingston

Pn

Jn Jn J�n

Figure 1: The knot Pn � S1 �B2, Jn, and J�n .

notation, Kn D Pn.817/. For future reference, we illustrate the braid J�n formed by rotating Jn around
the vertical axis.

Theorem 1 Let Kn D Pn.817/. For all odd n, the knot Ln D Kn #�Kr
n satisfies 2Ln D 0 2 C and

Ln 2 ker'. There is an infinite set of prime integers P for which L˛ ¤ Lˇ 2 C for all ˛ ¤ ˇ in P . In
particular , the set of knots fLngn2P generates a subgroup of ker' that is isomorphic to .Z2/

1.

The rest of the paper presents a proof of this theorem. The first two claims are easily dealt with in Sections 2
and 3. The more difficult step of the proof calls on an analysis of twisted Alexander polynomials and their
relevance to knot slicing; a review of twisted polynomials is included in Section 4. The proof of Theorem 1
is completed in Section 5, with the exception of a number-theoretic result that is described Appendix A.

Acknowledgements Thanks to Darrell Haile for assisting me in the proof of the number-theoretic result
in Appendix A. Allison Miller provided valuable feedback about an early draft of this paper. This work
was supported by a grant from the National Science Foundation, NSF-DMS-1505586.

2 Proof that 2Ln D 0 2 C

Let P�n � S1 �B2 denote the knot formed using the braid J�n in Figure 2. For any knot K, let P�n .K/

denote the satellite of K built using P�n . It should be clear that Pn and P�n are orientation-preserving
isotopic, and thus for all knots K, Pn.K/D P�n .K/.

Figure 2 illustrates, for an arbitrary knot K, the connected sum Pn.K/# P�n .K/DPn.K/# Pn.K/ in the
case of nD 5. Performing n� 1 band moves in the evident way yields the .0; n/–cable of K # K. Thus,
if K # K D 0 2 C, then the n components of this link can be capped off with parallel copies of the slice
disk for K # K, implying that Pn.K/ # Pn.K/D 0 2 C. In particular, 2Kn D 0 2 C and 2Kr

n D 0 2 C.

K K

Figure 2: P5.K/ # P5.K/.
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3 Proof that Ln 2 ker '

We prove a stronger statement: for all odd n, and for all positive integers q, Mq.Ln/ is a rational
homology sphere that represents 0 2‚3

Q.

The q–fold cyclic cover of S3 branched over Kn #�Kr
n is the same space as the q–fold cyclic cover

of S3 branched over Kn #�Kn. A slice disk for Kn #�Kn is built from .S3�I;Kn�I/ by removing a
copy of B3�I . Taking the q–fold branched cover shows that the q–fold cyclic cover of B4 branched over
that slice disk is diffeomorphic to Mq.Kn/

�� I , where Mq.Kn/
� denotes a punctured copy of Mq.Kn/.

It remains to show that Mq.Kn/ is a rational homology 3–sphere.

A formula of Fox [5] and Goeritz [6] states that the order of the first homology of Mq.Kn/ is given by the
product of values �Kn

.!i
q/, where �Kn

.t/ denotes the Alexander polynomial, !q is a primitive q–root
of unity, and i runs from 1 to q� 1.

A result of Seifert [11] shows that �Kn
.t/ D �817

.tn/�Pn.U /, where U is the unknot. We have that
Pn.U /D U . The Alexander polynomial for 817 is

�817
.t/D 1� 4t C 8t2

� 11t3
C 8t4

� 4t5
C t6:

A numeric computation confirms that this polynomial does not have roots on the unit complex circle, and
hence �817

.tn/ has no roots on the unit complex circle. From this is follows that �Kn
.!i

q/¤ 0 for all i ;
thus the order of the homology of Mq.Kn/ is finite.

4 Review of twisted polynomials and 817

In this section we review twisted Alexander polynomials and their application in [8; 9] showing that
817 #�8r

17
¤ 0 2 C.

Let .X;B/! .S3;K/ be the q–fold cyclic branched cover of a knot K with q a prime power. In particular,
X is a rational homology sphere. There is a canonical surjection � W H1.X �B/! Z. Suppose that
� WH1.X /! Zp is a homomorphism for some prime p. Then there is an associated twisted polynomial
�K ;�;�.t/ 2 Q.!p/Œt �. It is well-defined, up to factors of the form atk , where a ¤ 0 2 Q.!p/. These
polynomials are discriminants of Casson–Gordon invariants, first defined in [3].

In the case of KD 817 and qD 3, we have H1.X /ŠZ13˚Z13, and as a Z13–vector space this splits as
a direct sum of a 3–eigenspace and a 9–eigenspace under the order three action of the deck transformation.
Both eigenspaces are 1–dimensional. We denote this splitting by E3˚E9. There are corresponding
characters �3 and �9 of H1.X / onto Z13; these are defined as the quotient maps onto H1.X /=E3 and
onto H1.X /=E9. We let �0 denote the trivial Z13–valued character.

The values of �817;�;�i
.t/ are given in [9], duplicated here in Appendix B. For i D 0 it is polynomial

in QŒt �. For i D 3 and i D 9 it is in Q.!13/Œt � and is not in QŒt �. An essential observation is that, for 8r
17

,
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590 Charles Livingston

the roles of �3 and �9 are reversed. All three of the polynomials are irreducible in their respective
polynomial rings, once any factors of .1� t/ and t are removed.

In [9] the proof that 817 #�8r
17

is not slice comes down to the observation that no product of the form

�ı.�817;�;�3
.t//� .�817;�;�i

.t// or �ı.�817;�;�9
.t//� .�817;�;�j .t//

is of the form af .t/f .t�1/.1�t/j for some f .t/2Q.!13/Œt �. (That is, these products are not norms in the
polynomial ring Q.!13/Œt; t

�1�, modulo powers of .1� t/ and t .) Here i D 0 or i D 9, and j D 0 or j D 3.
The number a is in Q.!/ and the �� are Galois automorphisms of Q.!p/ (which acts by sending !p to !�p ).

Showing that the product of the polynomials does not factor in this way is elementary once it is established
that �817;�;�3

.t/ and �817;�;�9
.t/ are irreducible and not Galois conjugate.

5 Main proof

Using the fact that �Pn.817/
r D Pn.817/

r , the knot L˛ # Lˇ can be expanded as

P˛.817/ # P˛.817/
r # Pˇ.817/ # Pˇ.817/

r :

We begin by analyzing the 3–fold cover of S3 branched over Pn.817/, and assume that 3 does not divide n.
This cover is M3.Pn.817// and we denote the branch set in the cover by zB.

There is the obvious separating torus T in S3 nPn.817/. Since 3 does not divide n, T has a connected
separating lift zT �M3.Pn.817//. One sees that zT splits M3.Pn.817// into two components: X , the
3–fold cyclic cover of S3 n 817, and Y , the 3–fold cyclic branched cover of S1 �B2, branched over Pn.
A simple exercise shows that, since Pn.U / is unknotted, Y is the complement of some knot QJn � S3.

A Mayer–Vietoris argument shows that H1.M3.Pn.817///ŠZ13˚Z13 and the two canonical represen-
tations �3 and �9 that are defined on X extend trivially on Y , and so to M3.Pn.817//. We denote these
extension by �0

3
and �0

9
. Let �0 be the canonical surjective homomorphism �0 WH1.M3.Pn.817///n zB/!Z.

Restricted to X we have �0.x/D �.nx/, where � was the canonical representation to Z defined for the
cover of S3 n 817.

In [8, Theorem 3.7] there is a discussion of twisted Alexander polynomials of satellite knots in S3,
working in the greater generality of homomorphisms to the unitary group U.m/. (A map to Zp can be
viewed as a representation to U.1/.) The proof of that theorem, which relies on the multiplicativity of
Reidemeister torsion, applies in the current setting, yielding the following lemma:

Lemma 2 �Pn.817/;�0;�0
3
.t/D�817;�;�3

.tn/� QJn
.t/.

Similar results hold for the knot Pn.817/
r and for the character �9.

Algebraic & Geometric Topology, Volume 24 (2024)



Branched covers and rational homology balls 591

As described in [8; 9], Casson–Gordon theory implies that, if L˛#Lˇ is slice, then for some 3–eigenvector
or for some 9–eigenvector the corresponding twisted Alexander polynomial is a norm; that is, it factors as
atkf .t/f .t�1/, modulo multiples of .1�t/. If it is a 3–eigenvector, the relevant polynomial is of the form

(1) �.t/

D �a.�817;�;�3
.t˛//x�b.�817;�;�9

.t˛//y�c.�817;�;�3
.tˇ//z�d .�817;�;�9

.tˇ//w.� QJ˛
.t/� QJˇ

.t//2;

where one of x, y, z, or w is equal to 1, and each of the others are either 1 or 0.

The four Q.!13/Œt �–polynomials that appear here,

�817;�;�3
.t˛/; �817;�;�9

.t˛/; �817;�;�3
.tˇ/; and �817;�;�9

.tˇ/;

and all their Galois conjugates are easily seen to be distinct for any pair ˛ ¤ ˇ. The following number-
theoretic result implies that there is an infinite set of primes P such that, if ˛ 2 P and ˇ 2 P , then no
product as given in (1) can be a norm in Q.!13/Œt �, proving that the connected sum L˛ # Lˇ is not slice.
We will present a proof in Appendix A.

Lemma 3 Let f .t/ 2 Z.!p/Œt � be an irreducible monic polynomial. If there exists � 2 C such that
f .�/D 0 and �n ¤ 1 for all n> 0, then the set of primes p for which f .tp/ is reducible is finite.

Proof of Theorem 1 The last factor in (1) involving the QJn is a norm, so it can be ignored in determining
if the product is a norm.

A numeric computation shows that the twisted polynomials �817;�;�i
.t/ for i D 3 and i D 9 do not have

roots on the unit circle, so Lemma 3 can be applied with F DQ.!13/. Let P be the infinite set of primes
with the property that if p 2 P , then �817;�;�3

.tp/ and �817;�;�9
.tp/ are irreducible. Consider the case

of x D 1 in (1). Then, assuming that ˛ 2 P and ˇ 2 P , the term �a.�817;�;�3
/.t˛/ that appears in (1) is

relatively prime to the remaining factors, and all the factors are irreducible, modulo powers of t and 1� t .
Hence, the product cannot be of the form tk.1� t/jf .t/f .t�1/ for any f .t/ 2Q.!13/Œt �. The cases of
y; z, or w D 1 are the same.

Appendix A Factoring f .tp/

In this appendix we prove Lemma 3, stated in somewhat more generality as Lemma 4 below. We first
summarize some background material. Further details can be found in any graduate textbook on algebraic
number theory.

� A � C denotes the ring of algebraic integers. This is the ring consisting of all roots of monic
polynomials in ZŒt �.

� For an extension field F=Q, the ring of algebraic integers in F is defined by OF D F \A.

� The property of transitivity states that, if f .t/ 2OF Œt � is monic and f .�/D 0, then � 2A.

Algebraic & Geometric Topology, Volume 24 (2024)



592 Charles Livingston

� O�F is defined to be the set of units in OF .

� The norm of an element x 2 OF is defined as N.x/D
Q

xi 2 Z, where the xi are the complex
Galois conjugates of x. This map satisfies N.xy/D N.x/N.y/ for all x;y 2 OF . An element
x 2OF is in O�F if and only if N.x/D˙1.

� The Dirichlet unit theorem states that, for a finite extension F=Q, the abelian group O�F is finitely
generated and isomorphic to G˚ZrCs�1, where G is finite cyclic, r is the number of embeddings
of F in R, and 2s is the number of nonreal embeddings of F in C.

Lemma 4 Let F be a finite extension of Q, and let f .t/ 2OF Œt � be an irreducible monic polynomial. If
there exists � 2C such that f .�/D 0 and �n ¤ 1 for all n> 0, then the set of primes p for which f .tp/

is reducible is finite.

Proof Step 1 If f .�/D 0, then � 2OF.�/.

This follows immediately from the assumption that f .t/ is monic.

Step 2 Suppose that f .t/ 2 F Œt � is irreducible and f .�/D 0. If , for some prime p, f .tp/ is reducible
over F , then � D �p for some � 2OF.�/.

Let � 2 C satisfy �p D �. Since f .t/ is irreducible of degree n and f .tp/ is reducible, we have the
degrees of extensions satisfying ŒF.�/ W F �D n and ŒF.�/ W F � < np. It follows from the multiplicity of
degrees of extensions that ŒF.�/ W F.�/� < p.

The polynomial tp � � 2 F.�/Œt � has � as a root. For all i , !i
p� is also a root, so tp � � factors completely

in CŒt � as
tp
� � D .t � �/.t �!p�/ � � � .t �!

p�1
p �/:

By the degree calculation just given, tp � � has an irreducible factor g.t/ 2 F.�/Œt � of degree l < p. We
can write g.t/D

Q
.t�!i

p�/, where the product is over some proper subset of f0; : : : ;p�1g. Multiplying
this out, one finds that the constant term is of the form !

j
p �

l 2 F.�/ for some j and l < p. Since l and p

are relatively prime, there are integers u and v such that ul C vp D 1. Thus, .!j
p �

l/u.�p/v D !s
p� for

some s. In particular, for some s, we have !s
p� 2 F.�/. We let �D !s

p� and find that �p D .!s
p/

p�p D �.
Finally, � satisfies the monic polynomial f .tp/ and thus is in OF.�/.

Step 3 The set of primes p such that � D �p for some � 2OF.�/ is finite.

If � D �p , then N.�/DN.�/p . If N.�/¤˙1, then the set of p for which N.�/D ap for some integer
a is finite.

If N.�/D˙1, then � 2O�F.�/. Hence � represents a nontorsion element in a finitely generated abelian
group, and thus it has a finite number of roots.
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Branched covers and rational homology balls 593

Comments The argument just given is based on a summary of the proof for the case F DQ presented
on MathOverflow by Dimitrov [4]. Step 2 is a special case of the Vahlen–Capelli theorem, proved in the
case of F D Q by Vahlen and for fields of characteristic 0 by Capelli [2]. A proof for fields of finite
characteristic is given by Rédei [10].

Appendix B Twisted polynomials of 817

Here are the three needed polynomials. We write ! for !13.

�817;�;�0
.t/D 1�t�34t2

�101t3
�34t4

�t5
Ct6;

�817;�;�3
.t/=.1�t/

D 1Ct.2!C2!2
C2!3

C4!4
C2!5

C2!6
C!7
C!8
C2!9

C4!10
C!11

C4!12/

Ct2.�15!�10!2
�15!3

�15!4
�10!5

�10!6
�10!7

�10!8
�15!9

�15!10
�10!11

�15!12/

Ct3.4!C!2
C4!3

C2!4
C!5
C!6
C2!7

C2!8
C4!9

C2!10
C2!11

C2!12/Ct4;

�817;�;�9
.t/=.1�t/

D 1Ct.6!C5!2
C6!3

C6!4
C5!5

C5!6
C5!7

C5!8
C6!9

C6!10
C5!11

C6!12/

Ct2.�13!�12!2
�13!3

�13!4
�12!5

�12!6
�12!7

�12!8
�13!9

�13!10
�12!11

�13!12/

Ct3.6!C5!2
C6!3

C6!4
C5!5

C5!6
C5!7

C5!8
C6!9

C6!10
C5!11

C6!12/Ct4:
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