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Right-angled Artin subgroups of right-angled Coxeter and Artin groups

PALLAVI DANI

IVAN LEVCOVITZ

We determine when certain natural classes of subgroups of right-angled Coxeter groups (RACGs) and
right-angled Artin groups (RAAGs) are themselves RAAGs. We characterize finite-index visual RAAG
subgroups of 2–dimensional RACGs. As an application, we show that any 2–dimensional, one-ended
RACG with planar defining graph is quasi-isometric to a RAAG if and only if it is commensurable to
a RAAG. Additionally, we give new examples of RACGs with nonplanar defining graphs which are
commensurable to RAAGs.

Finally, we give a new proof of a result of Dyer: every subgroup generated by conjugates of RAAG
generators is itself a RAAG.

20F55, 20F65

1 Introduction

Let � be a finite simplicial graph with vertex set V.�/ and edge set E.�/. The right-angled Artin group
(RAAG for short) associated to � is the group A� given by the presentation

A� D hV.�/ j st D ts for all .s; t/ 2E.�/i:

This article is concerned with the following question. Given a finite set S of elements in a group, when
is the group generated by S isomorphic to a RAAG in the “obvious” way (ie with S as the “standard”
RAAG generating set)? To make this precise, we define the notion of RAAG system.

Definition 1.1 (RAAG system) Let G be any group with generating set S . Let � be the graph whose
vertex set is in bijection with S and which has an edge between distinct s; t 2 S � V.�/ if and only if s
and t commute. We call � the commuting graph associated to S . There is a canonical homomorphism
� W A� ! G extending the bijection V.�/ ! S . We say that .G; S/ is a RAAG system if � is an
isomorphism. In particular, .A� ; V .�// is a RAAG system for any RAAG A� .

The right-angled Coxeter group (RACG for short) associated to the finite simplicial graph � is the group
W� given by the presentation

W� D hV.�/ j s
2
D 1 for all s 2 V.�/; st D ts for all .s; t/ 2E.�/i:
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In this article we study subgroups G generated by particular natural subsets S of right-angled Coxeter
and Artin groups, and we give characterizations for when .G; S/ is a RAAG system or a finite-index
RAAG system.

A theorem of Davis and Januszkiewicz [2000] states that every RAAG is commensurable to some RACG.
This leads to the following question addressing the converse:

Question 1.2 Which RACGs are commensurable to RAAGs?

A RACG that is commensurable to a RAAG is, in particular, quasi-isometric to a RAAG. By considering
different quasi-isometry invariants, one sees that the converse to the Davis–Januszkiewicz theorem above
is far from being true. For instance, there are many RACGs that are one-ended hyperbolic (such as virtual
hyperbolic surface groups), while no RAAG is both one-ended and hyperbolic. Furthermore, RAAGs
have linear, quadratic or infinite divergence [Behrstock and Charney 2012], whereas the divergence of a
RACG can be a polynomial of any degree [Dani and Thomas 2015]. Restricting to RACGs of at most
quadratic divergence is still not enough to guarantee they are quasi-isometric to RAAGs. For instance, the
Morse boundary of a RAAG with quadratic divergence is always totally disconnected [Charney and Sultan
2015; Cordes and Hume 2017], while the Morse boundary of a RACG of quadratic divergence can have
nontrivial connected components [Behrstock 2019]. The above examples show that there are numerous
families of RACGS which are not quasi-isometric and, hence, not commensurable to any RAAG. Within
the subclass of one-ended RACGs with planar, triangle-free defining graphs, Nguyen and Tran [2019]
characterize those quasi-isometric to RAAGs. Theorem B below answers Question 1.2 in this setting.

We note that every RACG (indeed, every Coxeter group) is virtually special, and therefore has a finite-
index subgroup which is a subgroup of a RAAG [Haglund and Wise 2010]. However, this subgroup is
not of finite index in the RAAG, which would be required for establishing commensurability.

One approach to proving that a RACG is commensurable to a RAAG is to look for finite-index subgroups
that are isomorphic to RAAGs. We focus on a class of subgroups of RACGs, introduced by LaForge [2017]
in his PhD thesis, that are logical candidates for being RAAGs. Given a RACG defined by a graph �
and two nonadjacent vertices s; t 2 V.�/, it follows that st is an infinite-order element of W� . There
is then a correspondence between edges of the complement graph �c with such infinite-order elements
of � . Given a subgraph ƒ of �c , let G be the subgroup generated by E.ƒ/ (thought of as infinite-order
elements of W� ). As G is generated by the edges of ƒ, we may as well assume that ƒ has no isolated
vertices. A natural question is:

Question 1.3 When is .G;E.ƒ// a finite-index RAAG system?

If .G;E.ƒ// is indeed a RAAG system, then G is called a visual RAAG subgroup of W� . LaForge
obtained some necessary conditions for such subgroups to be visual RAAGs.
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We say that W� is 2–dimensional if � is triangle-free. Our first main theorem gives an exact characteriza-
tion of the finite-index visual RAAG subgroups of 2–dimensional RACGs in terms of graph-theoretic
conditions:

Theorem A Let W� be a 2–dimensional RACG. Let ƒ be a subgraph of �c with no isolated vertices ,
and let G be the subgroup generated by E.ƒ/. Then the following are equivalent.

(1) .G;E.ƒ// is a RAAG system and G is finite index in W� .

(2) .G;E.ƒ// is a RAAG system and G has index either two or four in W� (and exactly four if W� is
not virtually free).

(3) ƒ has at most two components and satisfies conditions R1–R4, F1 and F2.

The conditions R1–R4, F1 and F2 in the above theorem are algorithmically checkable graph-theoretic
conditions on � and ƒ. See Section 3 for precise definitions of these conditions.

In Section 5 we provide several applications to concrete families of RACGs. In particular we prove:

Theorem B Let W� be a 2–dimensional , one-ended RACG with planar defining graph. Then W� is
quasi-isometric to a RAAG if and only if it contains an index 4 subgroup isomorphic to a RAAG.

A complete description of which RACGs considered in Theorem B are quasi-isometric to RAAGs is given
by Nguyen and Tran [2019, Theorem 1.2]. Theorem B shows these are actually commensurable to RAAGs.

We also give two families of RACGs defined by nonplanar graphs which contain finite-index RAAG
subgroups (see Corollaries 5.1 and 5.2). These cannot be obtained by applying the Davis–Januszkiewicz
constructions to the defining graphs of the RAAGs they are commensurable to. For the family in
Corollary 5.1, we use work of Bestvina, Kleiner and Sageev on RAAGs [Bestvina et al. 2008], to conclude
the RACGs are quasi-isometrically distinct. We believe that the methods from this article may be used to
further study commensurability of RACGs.

The proof of Theorem A consists of two main parts. One part involves obtaining an understanding of
when G is of finite index, leading to conditions F1 and F2. To obtain these, we use completions of
subgroups, introduced in [Dani and Levcovitz 2021]. The other aspect consists of obtaining criteria to
recognize when .G;E.ƒ// is a RAAG system. To do so, we prove the following theorem by careful
analysis of disk diagrams:

Theorem C Let W� be a RACG. Let ƒ be a subgraph of �c with no isolated vertices and at most two
components. Then the subgroup .G;E.ƒ// < W� is a RAAG system if and only if R1–R4 are satisfied.

Conditions R1, R2, and a condition more or less equivalent to R3 were known to be necessary for
.G;E.ƒ// to be a RAAG system by work of LaForge [2017]. We show in Example 3.13 that they are
not sufficient. We introduce a fourth graph-theoretic condition R4 to obtain a complete characterization
of all visual RAAG subgroups defined by subgraphs of �c with at most two components. The bulk of the
proof of Theorem C consists of showing that the conditions R1–R4 are sufficient.
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Note that, unlike in Theorem A, there is no assumption on the dimension of the RACGs in Theorem C.
On the other hand, there is an additional assumption in Theorem C, namely that the subgraph ƒ of � can
have at most two components.

When ƒ contains more than two components, the situation becomes much more complex. We show
that additional graph-theoretic conditions are necessary to generalize the Theorem C to this setting (see
Lemmas 3.32 and 3.34). Remarkably, a consequence of these conditions is that if � is triangle-free and
.G;E.ƒ// is a finite-index RAAG system, then ƒ can have at most two components. This fact is crucial
to the proof of Theorem A, which does not have any assumption on the number of components of ƒ.
Additionally, we are aware that even more conditions are necessary than those in this article, but we do
not have a complete conjectural list of conditions that would be sufficient to characterize visual RAAGs.

We next turn our attention to RAAG subgroups of RAAGs. A classical theorem on Coxeter groups,
proven independently by Deodhar [1989] and Dyer [1990], states that reflection subgroups of Coxeter
groups (ie those generated by conjugates of generators) are themselves Coxeter groups. In fact, Dyer
proves an analogous result for the class of groups defined by reflection systems (see [Dyer 1990] for the
definition), which includes Coxeter groups as well as RAAGs. Specifically, he shows that subgroups
generated by conjugates of standard generators are themselves in this class. As RAAGs are the only
torsion-free groups in this class, one obtains the following result. Here, we define a generalized RAAG
reflection to be an element of a RAAG A� that is conjugate to a generator in V.�/.

Theorem D [Dyer 1990] Let T be a finite set of generalized RAAG reflections in the RAAG A� . Then
the subgroup G <A� generated by T is a RAAG.

We thank Luis Paris for informing us that this result is contained in [Dyer 1990], and the explanation in
the preceding paragraph. We include our proof of Theorem D, as our geometric approach is very different
from that of Dyer, which is algebraic and uses cocycles. Our proof uses a characterization of RAAG
systems in terms of the deletion condition, given by Basarab [2002]. We use disk diagrams to show that
subgroups generated by generalized RAAG reflections satisfy the criteria in Basarab’s characterization.

We note that, although G (from Theorem D) is a RAAG, .G;T/ is not necessarily a RAAG system and
in general G is not isomorphic to the RAAG A� where � is the commuting graph corresponding to T.
Kim and Koberda [2013] show that there exists a subgroup of G (generated by sufficiently high powers
of the elements of T) which is isomorphic to A�.

Genevois, as well as an anonymous referee, pointed out to us that a proof of Theorem D may be possible
using [Genevois 2017, Theorem 10.54] (see also [Genevois 2019, Theorem 3.24]).
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2 Background

2.1 Basic terminology and notation

Let G be a group with generating set S . We say that w D s1 � � � sn, with si 2 .S [S�1/ for 1 � i � n,
is a word over S or a word in G. If the words w and w0 represent the same element of G, then we say
that w0 is an expression for w and write w0 l w. We say the word w D s1 � � � sn is reduced (or reduced
over S for emphasis) if given w0 D t1 � � � tm l w, it follows that n�m.

2.2 Right-angled Coxeter and Artin groups

Coxeter groups can be characterized as those groups which are generated by involutions and which satisfy
the deletion condition; see Definition 2.1 below (for a proof of this fact, see [Davis 2015, Theorem 3.3.4]).
By work of Basarab [2002], RAAGs can be characterized in a similar manner (see Theorem 2.2 below).
This characterization will be utilized in Section 6.

Definition 2.1 (deletion condition) Let G be a group generated by S . We say that .G; S/ satisfies
the deletion condition if, given any word w over S , either w is reduced or w D s1 � � � sk and there exist
1� i < j � k such that s1 � � � Osi � � � Osj � � � sk is an expression for w.

The result below directly follows from a result of Basarab.

Theorem 2.2 [Basarab 2002] Let G be a group generated by S such that S \ S�1 D ∅ and 1 … S .
Then .G; S/ is a RAAG system if and only if

(1) every s in S has infinite order , and

(2) .G; S/ satisfies the deletion condition.

Proof If .G; S/ is a RAAG system, then G is torsion-free [Charney 2007], so (1) holds. Furthermore,
.G; S/ satisfies (2) by [Basarab 2002, Corollary 1.4.2] (see also [Bahls 2005, page 31, Exercise 17] for
a simpler proof in this setting). The converse also follows from a direct application of [Basarab 2002,
Corollary 1.4.2].

We now define certain moves which can be performed on a word that produce another expression for it.
These moves provide a solution to the word problem for RAAGs and RACGs (see Theorem 2.4 below).
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Definition 2.3 (Tits moves) Let G be a group generated by S . Let w D s1 � � � sn be a word over S .
If si and siC1 commute for some 1� i < n, then the word s1 � � � si�1siC1sisiC2 � � � sn is an expression
for w obtained by a swap operation performed on w, which swaps si and siC1. If si D s�1

iC1 for some
1� i < n, then s1 � � � si�1siC2 � � � sn is an expression for w is obtained by a deletion operation performed
on w. A Tits move is either a swap operation or a deletion operation. We say a word is Tits reduced if no
sequence of Tits moves can be performed on the word to obtain an expression with fewer generators.

Theorem 2.4 below shows that RAAGs and RACGs admit a nice solution to the word problem. This
solution to the word problem for RACGs is a well-known result of Tits [1969], a version of which holds
more generally for all Coxeter groups. The result below in the setting of RAAGs follows from a theorem
of Basarab [2002, Theorem 1.4.1] which generalizes Tits’ result (see also [Green 1990, Theorem 3.9]).

Theorem 2.4 [Tits 1969; Basarab 2002] Let A� be either a RAAG or a RACG. Then:

(1) If w1 and w2 are reduced words over V.�/ representing the same element of G, then w2 can be
obtained from w1 by Tits swap moves.

(2) Given any word w over V.�/, a reduced expression for w can be obtained by applying Tits moves
to w.

We will often not refer directly to the above theorem, and we will instead simply say that a given RAAG
or RACG admits a Tits solution to the word problem.

The next two lemmas are well known and will often be implicitly assumed.

Lemma 2.5 Let A� either be a RAAG or RACG. Then s; t 2 V.�/ commute as elements of A� if and
only if .s; t/ is an edge of � .

Proof One direction of the claim follows from the definitions of a RAAG and a RACG. If A� is a
RACG, then the other direction follows from [Björner and Brenti 2005, Proposition 4.1.2].

Now suppose that A� is a RAAG, and let s; t 2V.�/ be nonadjacent vertices. Suppose, for a contradiction,
that w D sts�1t�1 l 1. Let D be a disk diagram with boundary w (see Section 2.3 for a reference for
disk diagrams). This disk diagram contains exactly two intersecting hyperplanes: one labeled by s and
one labeled by t . However, this is a contradiction as a pair of hyperplanes whose labels are nonadjacent
vertices of � cannot intersect.

Lemma 2.6 Let W� be a RACG , and let s; t; q; r 2 V.�/ be such that s and t do not commute , and r
and q do not commute. Then .st/.qr/l .qr/.st/ if and only if

(1) there is a square in � formed by s, q, t , and r ;

(2) t D q and s D r ; or

(3) t D r and s D q.
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Proof Clearly each of (1), (2) and (3) implies that .st/.qr/l .qr/.st/.

To prove the converse, suppose that .st/.qr/ l .qr/.st/. Suppose first that t D q, and consequently
stqr l sr . As s and t do not commute and q and r do not commute, this is only possible if r D t . Thus,
(2) holds.

If s D q, as qrts l tsqr , we apply the same argument to conclude that t D r , showing (3) holds. By
similar arguments, if s D r then t D q, and if t D r then s D q. Thus, we may assume that s, t , q and r
are all distinct vertices of � . In this case we again conclude by Tits’ solution to the word problem, that if
stqr l qrst then s, q, t and r form a square in � .

2.3 Disk diagrams

We give a brief background on disk diagrams as they are used in our setting, and we refer the reader to
[Sageev 1995; Wise 2021] for the general theory of disk diagrams over cube complexes. We then give
some preliminary lemmas that are needed in later sections.

Let A� be a RAAG, and let w D s1 � � � sn, with si 2 V.�/, be a word equal in A� to the identity, ie
wl 1. There exists a Van Kampen diagram D with boundary label w, and we call this planar 2–complex
a disk diagram in A� with boundary label w. We now describe some additional properties of D in our
setting. The edges of D are oriented and labeled by generators in V.�/. A path in D is a path 
 in the
1–skeleton of D, traversing edges e1; : : : ; em, and the label of 
 is the word a1 � � � am where, for each
1 � i � m, ai is the label of ei if ei is traversed along its orientation, and a�1

i is the label of ei if ei

is traversed opposite to its orientation. Every cell in D is a square that has a boundary path with label
aba�1b�1 for some commuting generators a and b in V.�/[V.�/�1.

There is a base vertex p 2 @D and an orientation onD, such that the smallest closed path ı which traverses
the boundary of D in the clockwise orientation starting at p and traversing every edge outside the interior
of D has label w. We call ı the boundary path of D. Note that if D contains an edge e not contained in
a square, then necessarily ı traverses e exactly twice.

If W� is a RACG and w is a word over V.�/ equal in W� to the identity, then we define a disk diagram
D in W� with boundary w similarly. However, as each generator in V.�/ is an involution, we do not
need to orient the edges of D.

Let D be a disk diagram and q D Œ0; 1�� Œ0; 1� be a square in D. The subset
˚

1
2

	
� Œ0; 1�� q (similarly,

Œ0; 1��
˚

1
2

	
� q) is a midcube. The midpoint of an edge inD is also defined to be a midcube. A hyperplane

in D is a minimal nonempty collection H of midcubes in D with the property that given any midcube
m 2H and a midcube m0 in D such that m\m0 is contained in an edge of D, it follows that m0 2H .
We say that H is dual to an edge e if the midpoint of e is in H .

Since opposite edges in every square in D have the same label, it follows that every edge intersecting a
fixed hyperplane H has the same label. We call this the label of the hyperplane. Since adjacent sides
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s1

s2

s3

s4

s5
s3

s2

s1

s6

s5
s4s6p

Figure 1: A disk diagram in a RACG with boundary the word s2s3s4s5s3s2s1s6s5s4s6s1 and base
vertex p. Two hyperplanes are shown in red. As these hyperplanes intersect, it must be that s4
commutes with s2.

of a square have distinct labels which commute, it follows that no hyperplane self-intersects, and if two
hyperplanes intersect, then their labels correspond to distinct, commuting generators. (See Figure 1 for
an example of a disk diagram and some of its hyperplanes.)

Definition 2.7 (maps preserving boundary combinatorics) Let D and D0 be disk diagrams, and let ı
and ı0 respectively be their boundary paths. Let E D fe1; : : : ; emg (resp. E 0 D fe01; : : : ; e

0
ng) be the edges

traversed by ı (resp. ı0). More precisely, ei (resp. e0i ) is the i th edge traversed by ı (resp. ı0) for each i .
Observe that every hyperplane of D is dual to two edges ej ; ek �E for some j ¤ k. (It could be that
ej D ek , thought of as edges of D.) A similar statement holds for D0.

Let F � E and F 0 � E 0, and let  W F ! F 0 be a bijection. We say that  preserves boundary
combinatorics if for every pair of edges e; f 2 F which are dual to the same hyperplane of D, their
images  .e/ and  .f / are dual to the same hyperplane of D0.

Note that if ‰ preserves boundary combinatorics, then ‰�1 does as well.

A pair of hyperplanes H and H 0 in a disk diagram D form a bigon if they intersect in at least two distinct
points. The following lemma, first proven in [Sageev 1995, Theorem 4.3], guarantees that we can always
choose a disk diagram without bigons. The boundary combinatorics statement below is guaranteed by the
proof of this fact in [Wise 2021, Lemma 2.3, Corollary 2.4].

Lemma 2.8 [Sageev 1995; Wise 2021] Given a disk diagram D with boundary label w, there exists a
disk diagram D0 also with boundary label w such that D0 does not contain any bigons. Moreover , the
natural bijection between the edges traversed by the boundary paths of D and D0 induced by the label w
preserves boundary combinatorics.

Remark 2.9 In light of Lemma 2.8, for the rest of this paper we will always assume that any disk
diagrams we consider do not have bigons.

Remark 2.10 Let ˛ be a path with label s1 � � � sn in some disk diagram. The “edge of ˛ with label si ” is
understood to be the i th edge ˛ traverses (even though there may be several edges of ˛ with the same
label as this edge. A similar statement holds when we refer to subpaths of ˛.
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Given a disk diagram with boundary label w, we will often want to produce a new disk diagram with
boundary label w0, where w0 is obtained from w by a Tits move, and such that boundary combinatorics
are preserved on appropriate subsets of the boundary paths. The following lemma exactly describes how
we can perform these operations.

Lemma 2.11 Let D be a disk diagram over the group W , where W is either a RACG or a RAAG.
Suppose the boundary path of D traverses the edges e1; : : : en and has label w D s1 � � � sn.

(1) If sr and srC1 (taken modulo n) are distinct and commute for some 1� r � n, then there is a disk
diagram D0 whose boundary path traverses the edges e01; : : : ; e

0
n and has label s1 � � � siC1si � � � sn.

Furthermore , the map  preserves boundary combinatorics , where  is defined by  .er/D e
0
rC1,

�.erC1/D e
0
r , and  .ej /D e0j for j ¤ r; r C 1.

(2) If sr D s�1
rC1 (taken modulo n) for some 1� r � n, then there is a disk diagram D0 with boundary

label s1 � � � sr�1srC2 � � � sn. Moreover , the natural map from edges traversed by the boundary path
of D0 to edges traversed by the boundary path of D preserves boundary combinatorics.

(3) Given any generator (or inverse of a generator) s and any r , with 1 � r � n, it follows that there
exists a disk diagram D0 with boundary label s1 � � � sr.ss�1/srC1 � � � sn. Moreover , the natural map
from edges traversed by the boundary path of D to the edges traversed by the boundary path of D0

preserves boundary combinatorics.

Proof We first prove (1). Let q be a square whose edges are labeled consecutively by sr , srC1, s�1
r

and s�1
rC1. We form the disk diagram D0 by identifying consecutive edges of q labeled by sr and srC1 to

the edges of @D labeled by sr and srC1 (these edges must be distinct as sr ¤ srC1). The claim is readily
checked.

We next prove (2). Let e and f be the edges of @D labeled respectively by sr and srC1. Suppose first that
e and f are distinct. In this case, form the disk diagram D0 by identifying e and f , ie “fold” these edges
together. On the other hand, if e D f , then as D has boundary label w, it must follow that e is a spur, ie
an edge attached to D that is not contained in any square and which contains a vertex of valence 1. In
this case we can remove the edge e from D to obtain D0. In either case, the claim is readily checked.

To show (3), form D0 by inserting a spur edge with label s to the vertex traversed by the boundary path
of D between sr and srC1.

3 Visual RAAG subgroups of right-angled Coxeter groups

In this and the next section we study visual RAAG subgroups of RACGs, as described in the introduction.
We begin by describing some notation that will be used throughout these sections.

Let � be a graph, and let W� be the corresponding RACG. Let �c denote the complement of � , that is,
the graph with the same vertex set as � , which has an edge between two (distinct) vertices if and only if
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the corresponding vertices are not adjacent in � . Let ƒ be a subgraph of �c with no isolated vertices, ie
one in which every vertex of ƒ is contained in some edge.

We form a new graph ‚D‚.�;ƒ/ which we think of as a graph containing the edges of both � and ƒ.
More formally, V.‚/D V.�/ and E.‚/DE.�/[E.ƒ/. Note that as E.ƒ/� �c , it follows that ‚ is
simplicial. We refer to edges of ‚ that correspond to edges of � (resp. ƒ) as �–edges (resp. ƒ–edges).

A ƒ–edge between vertices a and b corresponds to an inverse pair of infinite-order elements of W� ,
namely ab and ba. By a slight abuse of terminology, we will use the term ƒ–edge to refer to one of
these elements and vice versa. We identify E.ƒ/ with a subset of W� by arbitrarily choosing one of the
two infinite-order elements corresponding to each ƒ–edge, and we define G‚ to be the subgroup of W�

generated by E.ƒ/. As we are dealing with subgroups generated by E.ƒ/, there is no loss in generality
in assuming that ƒ has no isolated vertices. The goal of this section is to study when .G‚; E.ƒ// is a
RAAG system.

Let � be the commuting graph corresponding to E.ƒ) (as defined in the introduction), and let A� be the
corresponding RAAG. Recall that, by definition, .G‚; E.ƒ// is a RAAG system if and only if the natural
homomorphism � WA�!G‚ extending the bijection between V.�/ and E.ƒ/ is an isomorphism. As �
is always surjective, we would like to understand when � is injective.

For the remainder of this section, we fix � , ƒ, ‚, A�, and � as above. Furthermore, we will use the
following terminology. The path 
 in ‚ visiting vertices x1; x2; : : : ; xn is defined to be the path which
starts at x1, passes through the remaining vertices in the order listed, and ends at xn. We say that 
 is
simple if xi ¤ xj for i ¤ j , and that 
 is a loop if x1 D xn. Finally, 
 is a cycle if it is a loop with n� 3,
such that xi ¤ xj unless fi; j g D f1; ng. We call a path (resp. cycle) in ‚ consisting only of �–edges a
�–path (resp. �–cycle). We define ƒ–paths and ƒ–cycles similarly.

We begin by describing some graph-theoretic conditions on ‚ which are consequences of either G‚

being a RAAG or of .G‚; E.ƒ// being a RAAG system.

Conditions R1 and R2, defined below, when combined, are equivalent to LaForge’s star-cycle condition.
LaForge [2017, Lemma 8.2.1] proves that R1 and R2 are necessary conditions for .G‚; E.ƒ// to be a
RAAG system. We include proofs here for completeness.

Definition 3.1 (condition R1) We say that ‚ satisfies condition R1 if it does not contain a ƒ–cycle.

Lemma 3.2 [LaForge 2017] If .G‚; E.ƒ// is a RAAG system , then ‚ satisfies R1.

Proof Suppose ‚ does not satisfy R1. Then it contains a ƒ–cycle, say with vertices a1; : : : ; ak , where
k � 3, such that for each i (mod k), ai is connected to aiC1 by a ƒ–edge. Let gi be the generator of
A� (or its inverse) corresponding to the (oriented) ƒ–edge aiaiC1. As the ai ’s are along a cycle, no
ƒ–edge is repeated, and we have that gi ¤ g

�1
j for all i ¤ j . This, together with the fact that RAAGs
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u v

x y z

Figure 2

satisfy the deletion condition (see Theorem 2.2), implies that g D g1g2 � � �gk is a nontrivial element
of A�. Moreover, �.g/D .a1a2/.a2a3/ � � � .aka1/D 1, so g is in the kernel of �, and therefore � is not
injective.

Definition 3.3 (condition R2) We say that ‚ satisfies condition R2 if each component of ƒ�‚ (with
the natural inclusion) is an induced subgraph of ‚.

Lemma 3.4 [LaForge 2017] If G‚ is a RAAG , then ‚ satisfies R2.

Proof Suppose‚ does not satisfy R2, and let u and v be a pair of vertices in a component ofƒ, such that
u and v are adjacent in ‚. It follows that u and v are connected by a �–edge, and therefore they commute.
Since u and v are in the same component of ƒ, there is a simple ƒ–path from u to v whose vertices (in
order) are uD a1; : : : ; ak D v. Note that k � 3, since ‚ is a simplicial graph. For 1� i � k� 1, let gi

be the generator of A� (or its inverse) corresponding to the ƒ–edge aiaiC1, and let g D g1g2 � � �gk�1.
The element g is a nontrivial element of A�, as RAAGs satisfy the deletion condition by Theorem 2.2.

We now have that �.g/2D
�
.a1a2/.a2a3/ � � � .ak�1ak/

�2
D .a1ak/

2D .uv/2D1, since u and v commute.
This implies that G‚ has torsion. Thus, G‚ cannot be a RAAG as RAAGs are torsion-free [Charney
2007].

Our next condition, R3, is motivated by the following example.

Example 3.5 Let ‚ be the graph in Figure 2, where the � edges are black and the ƒ edges are colored.
Since u and v each commute with x and z, the commutator Œuv; xz� represents the trivial element in W� .
Now observe that Œuv; xz�l .uv/.xy/.yz/.vu/.zy/.yz/, which is a product of ƒ–edges, and therefore
represents an element g of G‚. Now we can see that .G‚; E.ƒ// is not a RAAG system: if it were,
then it would be possible to show that g is trivial in G‚ using only swap and deletion moves involving
RAAG generators. However, since y does not commute with u and v, no such moves are possible (see
Lemma 2.6). On the other hand, if there had been � edges, from y to both u and v, then there would be
no contradiction.

A ƒ–edge word similar to the one in the above example can be constructed whenever � has a square
whose vertices alternate between two components of ƒ. The example suggests that for such a ƒ to define
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c1 c2

d1 d2

ƒc

ƒd

Tc‚ …„ ƒ

„ ƒ‚ …
Td

Figure 3: In the figure, the colored parts consist of ƒ–edges, and the black parts consist of
�–edges. The condition R3 says that if ‚ contains a black square as shown, then every vertex of
Tc is joined by a �–edge to every vertex of Td .

a RAAG, the “intermediate” vertices inƒ between the endpoints of the square must all mutually commute.
This is made precise in the definition of R3 (Definition 3.8) and Lemma 3.11 below. Before stating these,
we introduce some terminology, which will be used throughout this section.

Definition 3.6 (2–component paths and cycles) We say the �–path 
 in ‚ is a 2–component path
if 
 visits vertices (in order) c1; d1; c2; d2; : : : ; cn; dn for some n � 1 (where dn could be omitted if
n > 1) such that the ci ’s all lie in a single component ƒc of ƒ, and the di ’s all lie in a single component
ƒd ¤ƒc of ƒ. If it is important to emphasize the components visited by 
 , we will call it a ƒcƒd –path.

A 2–component loop is a 2–component path visiting c1; d1; : : : ; cn; dn; cnC1 such that c1 D cnC1. A
2–component cycle is a 2–component loop which is a �–cycle. A 2–component cycle of length four will
be called a 2–component square.

Definition 3.7 (ƒ–convex hull) We define the ƒ–convex hull of a set X � V.‚/ to be the convex hull
of X in ƒ.

Definition 3.8 (condition R3) We say that ‚ satisfies condition R3 if the following holds for every
2–component square in‚. Consider a 2–component square in‚ visiting vertices c1, d1, c2 and d2, where
c1; c2 2ƒc , d1; d2 2ƒd , and ƒc and ƒd are distinct components of ƒ. Then the graph � contains the
join of V.Tc/ and V.Td /, where Tc and Td are the ƒ–convex hulls of fc1; c2g and fd1; d2g respectively.
(See Figure 3.)

We will often need to utilize an expression for a word in W� which is the product of ƒ–edges. This
construction is the content of the following definition.

Definition 3.9 (ƒ–edge words) Suppose ‚ satisfies condition R1, and let w be a word in W� such that
w D .a1a

0
1/.a2a

0
2/ � � � .ana

0
n/, where ai and a0i are in the same ƒ–component of ‚ for each 1 � i � n.

As ‚ satisfies R1, there is a unique simple ƒ–path from ai to a0i . Let ai D a
i
1; : : : ; a

i
mi
D a0i be the

vertices visited by this path. Form the word

w0 D
�
.a1

1a
1
2/.a

1
2a

1
3/ � � � .a

1
.m1�1/a

1
m1
/
�
� � �
�
.an

1a
n
2/.a

n
2a

n
3/ � � � .a

n
.mn�1/a

n
mn
/
�
:
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We call w0 the ƒ–edge word associated to w. Note that w0 is well-defined, as long as ‚ satisfies R1.
In particular if .G‚; E.ƒ// is a RAAG system, then w0 is well-defined by Lemma 3.2. Also note that
w l w0 and w0 is a product of ƒ–edges.

Remark 3.10 Suppose that ‚ satisfies R1 and that a; a0 2‚ are two vertices in the same ƒ–component.
Let w0 D .a1a2/.a2a3/ � � � .an�1an/ be the ƒ–edge word associated to w D aa0 (in particular a D
a1; a2; : : : ; an D a

0 is the unique simple ƒ–path from a to a0). We remark that given a ƒ–edge xy of ‚,
there is at most one occurrence of one of xy or yx in w0. This fact will be relevant in the proofs of the
next two lemmas.

Before diving into the next lemma, we briefly discuss some of the ideas used in its proof, and the proof
of Lemma 3.16. In each case, we will have a word w over the RACG W� representing the identity
element. We then find a ƒ–edge word w0 associated to w as in Definition 3.9. The word w0 has a
natural decomposition into ƒ–edges, w0D .s1s01/ � � � .sns

0
n/. Moreover, there is a RAAG generator gi 2�

associated to each sis0i D �.gi /. By a slight abuse of notation, we also think of w0 D g1 � � �gn as a word
over the RAAG A�. Doing so, we consider a disk diagram D in the RAAG A� with boundary g1 � � �gn.
The edges of D are labeled by the gi ’s. To simplify things, by another abuse of notation we also think
of these edges as labeled by the ƒ–edges sis0i . We use the intersection patterns of hyperplanes in D to
deduce commuting relations between the generators of the RAAG. Consequently, this gives us commuting
relations between the ƒ–edges and for generators in the RACG W� .

Lemma 3.11 If .G‚; E.ƒ// is a RAAG system , then ‚ satisfies R3.

Remark 3.12 (comparison of Lemma 3.11 with Laforge’s chain–chord condition) LaForge [2017,
Lemma 8.2.3] introduced a necessary condition, called the chain–chord condition, which, if interpreted in
the language of joins and 2–component cycles, is close to our condition R3. We note that there are errors
in the statement and proof of [LaForge 2017, Lemma 8.2.3].

Proof of Lemma 3.11 Suppose there is a 2–component square 
 in ‚ visiting vertices c1, d1, c2 and d2

as in condition R3. Let ƒc and ƒd be the components of ƒ respectively containing fc1; c2g and fd1; d2g.
Let Tc and Td be the ƒ convex hulls respectively of fc1; c2g and fd1; d2g. By Lemma 3.2, there is a
unique simple ƒ–path from c1 to c2 (resp. d1 to d2) and this path is equal to Tc (resp. Td ).

Let w denote the commutator Œc1c2; d1d2�. The existence of 
 tells us that c1 and c2 both commute with
d1 and d2, so w represents the identity in W� .

Let w1, w2 and w0 be the ƒ–edge words associated to respectively c1c2, d1d2 and w. As � is injective,
w0 represents the trivial element of A�, and there is a disk diagram D over A� with boundary label w0.
We warn that the edges of D are labeled by ƒ–edges, ie generators of A�. We will analyze hyperplanes
of this diagram.
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c1
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d1

d2

d3

x y
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d1

d2

d3

x y

Figure 4: The graph on the left concerns Example 3.13 and the graph of the right concerns Example 3.14.

Let pw1
, pw2

, pw�1
1

and pw�1
2

be the paths in @D with labels w1, w2, w�1
1 and w�1

2 respectively. For
i 2 f1; 2g, the word wi (thought of as a word over V.�/DE.ƒ/) does not contain any repeated letters (or
their inverses) in V.�/ by Remark 3.10. Consequently, a hyperplane is dual to at most one edge of pw1

(resp. pw2
, pw�1

1
and pw�1

2
). Furthermore, w1 and w2 are words over E.Tc/ and E.Td / respectively.

As ƒc and ƒd are distinct components of ƒ, a hyperplane dual to an edge of pw1
must be dual to an

edge of pw�1
1

and vice versa. A similar statement holds for hyperplanes dual to pw2
and pw�1

2
.

It follows that every hyperplane dual to pw1
intersects every hyperplane dual to pw2

. Consequently, every
ƒ–edge in the word w1 commutes with every ƒ–edge in the word w2. Since � is a homomorphism, the
Coxeter group elements corresponding to these ƒ–edges must commute as well. By Lemma 2.6 each
vertex of Tc commutes with each vertex of Td .

The next example shows that the conditions obtained so far are not sufficient for .G‚; E.ƒ// to be a
RAAG system.

Example 3.13 Let � be a hexagon, and let ƒ be the graph with two components shown on the left side
in Figure 4. It is clear that R1;R2, and R3 are satisfied. However, by considering the word

w D .c1c2/.d1d2/.c2c3/.d2d3/.c3c1/.d3d1/

we can see that .G‚; E.ƒ// is not a RAAG system. Specifically, the commutation relations specified
by �–edges show that w l 1 in W� . Moreover w can be expressed as a product of ƒ–edges using the
ƒ–edge words corresponding to each parenthetical element. However, it is not possible to reduce this
word to the empty word using just swap and deletion moves involving the ƒ–edges, and as a result,
.G‚; E.ƒ// cannot be a RAAG system. A rigorous proof of this fact follows from Lemma 3.16 below.

Example 3.13 shows that at least one additional condition is needed in order to obtain a characterization
of visual RAAGs, and suggests that this condition may be a generalization of R3 involving longer
2–component cycles instead of squares. It is tempting to conjecture that, given any ƒcƒd –cycle with
corresponding ƒ–convex hulls Tc and Td , the graph � contains the join of V.Tc/ and V.Td / (as is the
case when the cycle has length four, by Lemma 3.11 above). However, the following example shows this
is not necessarily true for longer cycles.
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c1
c2 c3

c4

d1 d2d3d4

Figure 5: This figure illustrates condition R4. The green subgraph is Tc and the blue subgraph
is Td . The condition says that any edge in the 2–component cycle (shown in solid black edges) is
part of a square of � with two vertices in Tc and two in Td . This is illustrated for the edge from
d3 to c4. The dotted lines are �–edges which are not necessarily in the 2–component cycle.

Example 3.14 In Figure 4, let ‚ be the graph on the right where �–edges are black and ƒ edges are
colored. Observe that ƒ has two components, colored red and blue. Consider the 2–component cycle
visiting vertices c1, d1, c2, d2, c3, d3 and c1. Then Tc is the entire red tree and Td is the entire blue
tree. However, � does not contain the join of V.Tc/ and V.Td /. (For example, there is no edge in �
connecting c1 and d2.) On the other hand, .G‚; E.ƒ// is a RAAG system in this case. (See Corollary 5.1
for a proof.)

Despite the fact that R3 does not generalize to a necessary condition on longer cycles in the obvious way,
the following weaker statement does turn out to be necessary to guarantee that .G‚; E.ƒ// is a RAAG
system and is missing from [LaForge 2017].

Definition 3.15 (condition R4) We say that ‚ satisfies condition R4 if the following holds. Let 
 be
any ƒcƒd –cycle in ‚ visiting vertices c1; d1; c2; d2; : : : ; cn; dn; c1 for some n � 2. Let Tc and Td be
the ƒ–convex hulls of fc1; : : : ; cng and fd1; : : : ; dng respectively. Then every edge of 
 is contained in a
2–component square of ‚ with two vertices in Tc and two vertices in Td . (See Figure 5.)

The next lemma shows R4 is necessary for .G‚; E.ƒ// to be a RAAG system.

Lemma 3.16 If .G‚; E.ƒ// is a RAAG system , then ‚ satisfies R4.

Proof Let 
 be a ƒcƒd –cycle visiting vertices c1; d1; : : : ; cn; dn; c1, and let Tc and Td be as in
Definition 3.15. Let w be the word

(1) w D .c1c2/.d1d2/.c2c3/.d2d3/ � � � .dn�1dn/.cnc1/.dnd1/:

Then w l 1 in W� . To see this, note that for each i , we know that ci commutes with di�1 and di (where
i is taken mod n). Using this we can cancel the ci for i > 1 in pairs to get

w l c1d1d2d2d3 � � � dn�1dnc1dnd1 l c1d1c1d1 l 1:

Let w0 be the ƒ–edge word associated to w. Let D be a disk diagram over A� with boundary label w0.
As in the proof of Lemma 3.11, edges of D are labeled by ƒ–edges, which are thought of as generators
of A�.

Algebraic & Geometric Topology, Volume 24 (2024)



770 Pallavi Dani and Ivan Levcovitz

Color the part of the boundary of D and the hyperplanes coming out of it green if they correspond to
ƒ–edges from ƒc and blue if they correspond to ƒ–edges from ƒd . Now we see from the structure of
w0 that @D alternates between green and blue stretches, and a stretch of a given color corresponds to a
simple path in the corresponding component of ƒ. It follows from Remark 3.10 that a hyperplane of a
given color must start and end in different stretches of that color.

Let LD jE.Tc/j denote the number of ƒ–edges in Tc . We will prove that condition R4 holds for 
 by
induction on .n; L/. The conclusion of the lemma is obvious for 
 corresponding to .2; L/ for any L,
since the cycle itself is a square. This includes the base case, when nD 2 (ie 
 is a square) and Tc is an
edge. Now let n > 2, and assume the claim is true for all .n0; L0/ such that either n0 < n or n0 D n and
L0 <L.

By Lemma 3.2, Tc and Td are trees. Now suppose cj is a leaf of Tc , and let xcj be the ƒ–edge incident
to cj in Tc . Since ci ¤ cj for all i ¤ j (by the definition of a 2–component cycle), we know that xcj
occurs exactly once in w0 (as part of the subword of w0 representing cj�1cj ) and cjx occurs exactly once
in w0 (as part of the subword representing cj cjC1). It follows there is a unique hyperplane H labeled
xcj which is dual to both the path whose label is an expression for cj cjC1 and the path whose label is
an expression for cj�1cj . Moreover, the subword w00 of w0 between these two subwords is the product
of ƒ–edges which is an expression for dj�1dj . It follows that every hyperplane dual to the path in @D
labeled w00 must intersect the hyperplane H . By Lemma 2.6, both x and cj commute (in W� ) with each
letter of V.�/ used in the word w00. In particular, dj�1 and dj each commute with x.

Now there are two possibilities. Suppose first that x D ct for some t ¤ j . Since t ¤ j and n > 2 (which
implies that 
 has more than four edges), it follows that either ctdj�1 or ctdj is a diagonal of 
 . We can
use this diagonal to cut 
 into two 2–component cycles 
1 and 
2 as follows. Assume ctdj is a diagonal
ı of 
 (the other case is analogous), and let ˇ1 and ˇ2 be the two components of 
 obtained by removing
the vertices labeled ct and dj . Set 
1 D ˇ1[ ı and 
2 D ˇ2[ ı. Note 
1 and 
2 each have strictly fewer
vertices than 
 . For i D 1; 2 let T i

c and T i
d

be the components of the ƒ–convex hull of 
i contained
respectively in ƒc and ƒd . By the induction hypothesis, we see that every edge in 
i is part of a square
in � with two vertices in T i

c � Tc and two in T i
d
� Td . Since each edge of 
 is either an edge of 
1 or

of 
2, the claim follows for this case.

On the other hand, suppose that x ¤ ci for any 1 � i � n. Consider the new 2–component cycle 
 0

obtained from 
 by replacing the edges dj�1cj and cjdj with dj�1x and xdj . As x¤ ci for any 1� i �n,
this does not violate the requirement that 2–component cycles do not repeat vertices. Let T 0c and T 0

d

be the components of the ƒ–convex hull of 
 0 contained respectively in ƒc and ƒd . Since cj is a leaf
of Tc , it follows that jE.T 0c/j < jE.Tc/j, and we also have that jV.
 0/j D jV.
/j D n. We now apply
the induction hypothesis to conclude that each edge of 
 0 is part of a square of � with two vertices in
T 0

d
D Td and two vertices in T 0c � Tc . This means that this property holds automatically for all edges

of 
 , except possibly dj�1cj and cjdj . However, these edges are part of the square in Tc with vertices x,
cj , dj�1 and dj . Thus, the claim follows for this case as well.
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The following proposition summarizes Lemmas 3.2, 3.4, 3.11 and 3.16.

Proposition 3.17 If .G‚; E.ƒ// is a RAAG system , then ‚ satisfies R1–R4.

Ifƒ has at most two components, then it turns out that there are no additional obstructions to .G‚; E.ƒ//

being a RAAG system. More precisely:

Theorem 3.18 Suppose ƒ has at most two components. Then .G‚; E.ƒ// is a RAAG system if and
only if R1–R4 are satisfied.

Proof outline Proposition 3.17 constitutes one direction of the theorem. The following strategy will be
used to prove that R1–R4 imply that .G‚; E.ƒ// is a RAAG system. We wish to show that the image of
every nontrivial element of A� under � is nontrivial in W� .

Towards a contradiction, we assume that there exists some nontrivial g 2 A� such that �.g/D 1. Then
there is a disk diagram D whose boundary label is a word in ƒ–edges which represents �.g/. We will
put this word in a certain normal form which will be defined in terms of the configuration of hyperplanes
in D.

To define the normal form, we first show that the set of all hyperplanes can be partitioned into subsets that
we call “closed chains of hyperplanes” (see Definition 3.20 and Figure 6). Properties of hyperplanes and
closed chains can be translated into information about the graph ‚ and vice versa (see Observations 3.19,
3.23 and 3.24). Next, we prove in Lemma 3.25 that we can fix a particular closed chain H which is
“maximally nested” in a certain sense. Specifically, H has a distinguished hyperplane H0 such that every
other closed chain either intersects H0 or is separated from the rest of H by H0 (see Figure 8).

Our normal form is defined in terms of the fixed closed chain H. We first choose a basepoint p on @D
which is the endpoint of an edge of @D dual to H0. (This has the effect of possibly replacing our original
element g 2 A� with a conjugate.) Let w be the label of @D read clockwise starting at p. We show in
Claim 3.26 that w, D and H may be replaced by an equivalent word zw and corresponding disk diagram zD
and maximally nested closed chain zH, with the property that the ƒ–edges in zw coming from zH are “as
far right as possible”, ie it is not possible to swap one of these ƒ–edges with a ƒ–edge to its right by a
commutation relation. We consider zw to be a word in normal form representing �.g/.

Finally, to complete the proof of Theorem 3.18, we will show (by analyzing interactions between closed
chains in zD) that if R1–R4 are satisfied, then the normal form is violated.

Before we embark on the proof, we need to develop some preliminaries on disk diagrams, and on
transferring information from the disk diagram D to the graph ‚. In what follows, we assume that D is
a disk diagram whose boundary is a word w in the RACG W� . Unlike in the proofs of Lemmas 3.11
and 3.16, we are now working in W� rather than A�, so the edges and hyperplanes of D are labeled by
generators of W� rather than elements of A� corresponding to ƒ–edges. As the words w we consider
are the images of elements of A� under �, they have a natural decomposition into ƒ–edges.
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Figure 6: The figure on the left shows a disk diagram D such that the label of @D has a natural
decomposition intoƒ–edges, delineated by large black dots. The green hyperplanes form a closed
chain of hyperplanes H, as defined in Definition 3.20 (here we can take � D @D). Two other
closed chains of hyperplanes are shown in gray. The figure on the right shows an impossible
configuration pertaining to the proof of Lemma 3.21. The path � from the lemma is colored blue.

We associate a color (red and green) to each component of ƒ. Each hyperplane of D then inherits the
color corresponding to the component of ƒ in which its label lies. Thus, two edges of @D contained in
the same ƒ–edge are dual to hyperplanes of the same color.

Observation 3.19 If ‚ satisfies R2, then no two hyperplanes of the same color intersect. This is because
if two hyperplanes intersect , then their labels are distinct and commute , and so are connected by a �–edge.
Thus they cannot be in the same component of ƒ, since each component of ƒ is an induced subgraph
of ‚, by R2.

The hyperplanes ofD can be partitioned into “closed chains of hyperplanes”, as described in Definition 3.20
below. Although the proof of Theorem 3.18 only uses disk diagrams whose boundary labels are words in
ƒ–edges, the definition below applies to slightly more general disk diagrams, as this will be needed in
Section 6.

Definition 3.20 (chains of hyperplanes) Let D be a disk diagram whose boundary @D contains a
connected subpath � (possibly all of @D), such that the label of � is a word in ƒ–edges. Let H0; : : : ;Hn

be a sequence of distinct hyperplanes in D. Let ei and fi be the edges on @D that are dual to Hi . (See
Figure 6 for an illustration when nD 3.) We say that fH0; : : : ;Hng is a chain in D, if for all 0� i < n,
the edges fi and eiC1 are contained in � and are dual to the same ƒ–edge of �. Note that e0 and fn can
be dual to edges not contained in �.

Additionally, if e0 and fn are contained in the same ƒ–edge of �, we say that fH0; : : : ;Hng is a closed
chain. (Figure 6 shows three closed chains.)

Since the two hyperplanes dual to a ƒ–edge have the same color, each chain also inherits a well-defined
color.
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Lemma 3.21 If the label of @D is a word in ƒ–edges , then every hyperplane of D is contained in a
unique closed chain. Thus , there is a partition of the hyperplanes of a given color into closed chains.

Proof Let H0 be a hyperplane of D dual to edges e0 and f0 of @D. Assume H0 is green. Let f and
e1 be edges of @D which pair with e0 and f0 respectively to form ƒ–edges. We claim that f and e1

are in the same component of D nH0. If not, there would be an odd number of edges in a part � of
@D between e0 and f0 (see the right side of Figure 6). Since the hyperplanes dual to the two edges of a
ƒ–edge have the same color, an odd number of these edges would be dual to green hyperplanes. This is a
contradiction, since no green hyperplanes can cross H0 by Observation 3.19, so there must be an even
number of edges in � dual to green hyperplanes.

The hyperplane H1 dual to e1 is green, and cannot cross H0. Let f1 be the other edge dual to H1. If
f1 D f we have a closed chain. Otherwise, there is an edge e2 which pairs with f1 to form a ƒ–edge.
By the same argument as before, e2 is in the same component of D nH1 as f0 and there is a green
hyperplane H2 dual e2 and another edge f2, such that H2 does not cross H0 or H1 (see the left side of
Figure 6). Continuing this process we obtain a sequence of hyperplanes as in Definition 3.20. Since the
number of possibilities for fi reduces each time, eventually the process stops, with fn D f for some n,
and H0; : : : ;Hn form a closed chain.

We say that a chain K intersects a hyperplane H if some K 2K intersects H . We say that chains H and
K intersect if K intersects some H 2H. We will need the following observation:

Observation 3.22 If a hyperplane H intersects a closed chain K, then it intersects K in exactly two
distinct hyperplanes. To see this , note that given a hyperplane K 2K, the hyperplanes in Kn fKg all lie in
a single component of D nK. It follows that if H intersects K more than twice , it must intersect some
hyperplane of K twice. This contradicts the fact that D has no bigons (see Remark 2.9).

The following two observations enable us to transfer information from the disk diagram D to the graph ‚.

Observation 3.23 (chains in D give ƒ–paths in ‚) Let KD fK0; : : : ; Klg be a chain in D, and for
0� i � l , let ki be the label of Ki . Then by the definition of a chain , Ki and KiC1 are dual to the same
ƒ–edge in @D for each i , so there is an edge inƒ between ki and kiC1. It follows that K naturally defines
a ƒ–path in ‚ visiting vertices k0; k1; : : : ; kl . Moreover , if K is a closed chain , then the corresponding
ƒ–path is a loop. See Figure 7.

Observation 3.24 (pairs of intersecting closed chains give 2–component loops in ‚) Consider two
closed chains which intersect , say a red chain H and a green chain H. Let H1 2 H and K1 2 K be
intersecting hyperplanes. By Observation 3.22, the hyperplane K1 intersects H in a second hyperplane
H2 ¤H1. Similarly , H2 intersects K in a second hyperplane K2. Proceeding in this way , we obtain a
polygon with at least four sides , with sides alternating between red and green hyperplanes. See the left
side of Figure 7.
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Figure 7: The figure illustrates Observations 3.23 and 3.24. On the left is a disk diagram D with
red and green closed chains called H and K respectively. The graph on the right is a part of ‚.
The labels of the hyperplanes in D correspond to vertices of ‚ (in particular of ƒ). Starting at the
basepoint p and going around @D clockwise, the closed chain H defines a ƒ–loop in ‚ visiting
vertices x, y, z, y and x, and the closed chain K defines a ƒ–loop visiting vertices a, b, c, b
and a. The polygon coming from the intersection of H and K defines a 2–component loop in ‚
visiting vertices a, x, b, z, b, y and a. Observe that this 2–component loop is not a cycle.

Since an intersecting pair of hyperplanes corresponds to an edge of � , a 2–colored polygon of the type
we just constructed defines a 2–component loop in ‚ (where each edge of the 2–component loop comes
from a corner of the 2–colored polygon). See Figure 7. We warn that the 2–component loop obtained
from a 2–colored polygon in D may not be a 2–component cycle. (Note that a 2–component cycle is
a 2–component loop in which all of the vertices are distinct , and there are at least two vertices in each
component.)

In order to define a normal form for the word u from the proof outline, we will need to choose a closed
chain in D with some special properties:

Lemma 3.25 Let u and D be as in the proof outline. There exists a closed chain H of D, containing a
distinguished hyperplane H0, such that given any closed chain K¤H, either

(1) K and H n fH0g lie in different components of D nH0, or

(2) K intersects H0.

Proof We iteratively construct a sequence of closed chains H1;H2; : : : with distinguished hyperplanes
H 1

0 ;H
2
0 ; : : : such that for all i > 1,

(i) Hi and Hi�1 n fH i�1
0 g lie in the same component of D nH i�1

0 , and

(ii) H i�1
0 and Hi n fH i

0g lie in different components of D nH i
0.

Let H1 and H 1
0 be arbitrary. Now for any j , if Hj and H j

0 do not satisfy the conclusion of the lemma,
then there must exist another closed chain HjC1 which lies entirely in Cj , where Cj is the component
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H1

H2

H3

H 1
0

H 2
0

H 3
0

Figure 8: The figure illustrates the procedure for finding H and H0 in Lemma 3.25. Each closed
chain in the sequence is labeled in its interior. The hyperplanes H i

0 are shown in bold. In this
example HDH3 has the desired property.

of D nH j
0 containing H n fH

j
0 g. (Figure 8 illustrates this for j D 1; 2.) There is a unique hyperplane

in HjC1 satisfying condition (ii) above with i D j C 1, and we set this equal to H jC1
0 . Thus, we can

produce a longer sequence of closed chains with properties (i) and (ii).

By construction, there is a nesting of components C1 � C2 � C3 � � � � , and it follows that H 1
0 ;H

2
0 ; : : :

are distinct hyperplanes in D. As D has finitely many hyperplanes, this process can only be repeated
finitely many times. Thus, Hj satisfies the claim for some j .

We are now ready to prove the theorem.

Proof of Theorem 3.18 As discussed, we need to show that if R1–R4 are satisfied, then the map
� W A�!G‚ is injective. Let g 2 A� be a nontrivial element. Let v D v1v2 � � � vn be a reduced word
over the set of the generators of A�, which represents g. By the definition of A�, we have that �.vi /

is a ƒ–edge of ‚, for 1� i � n. Then uD �.v1/�.v2/ � � ��.vn/ is a concatenation of ƒ–edges which
represents �.g/. Towards a contradiction, we assume that u represents the identity element of W� . Then
there is a disk diagram D whose boundary label (read clockwise starting from some basepoint) is u. By
Lemma 2.8 we may assume that D has no bigons.

An element has trivial image under � if and if every element of its conjugacy class does. Thus, we may
assume that g is of minimal length in its conjugacy class, where the length of an element is defined to be
the minimal length of a word representing it.

We partition the hyperplanes of D into closed chains. (See Lemma 3.21.) By Lemma 3.25, we can
choose a chain H, with distinguished hyperplane H0, such that given any other chain K, either H0

separates K from H n fH0g, or K intersects H0. Let a0; a1; : : : ; as be the labels of the hyperplanes of H,
starting from H0, and proceeding in order in the clockwise direction around @D. Then the ƒ–edges
a0a1; a1a2; : : : ; as�1as; asa0 appear in @D in that order, possibly interspersed with some other ƒ–edges.
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a1

b0
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H

K

p
a0
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Figure 9: This example illustrates the proof of Theorem 3.18. The chain H satisfying Claim 3.26 is
shown in thick red lines. In particular, noƒ–edge from H (except possibly the last one) commutes
with the ƒ–edge appearing after it in @D. The chain K, which contributes the first ƒ–edge not in
H (after a0a1), is shown in thick green lines. The polygon formed by the intersection of H and K

induces a 2–component loop which visits (in this example) c0; b0; c1; b1; c2; b2; c3; b3; c4; b4; c0.
The blue subpaths of @D are the subpaths defined in Claim 3.28, with i D 4.

Let p denote the vertex on @D which is the endpoint of the ƒ–edge from H labeled asa0, read clockwise.
(See Figure 9.) Let w be the word labeling @D clockwise, starting from p. Then w is a cyclic conjugate
of u. Let x be the corresponding cyclic conjugate of v. Since v was chosen to be reduced, and since
g (the element of A� represented by v) is of minimal length in its conjugacy class by assumption, it
follows that x is reduced.

We now show that we can modify D in such a way that the resultant boundary label is a word representing
w D �.x/ which is in a certain normal form:

Claim 3.26 There exists a disk diagram zD such that the following hold.

(1) There is a closed chain zH in zD which has a distinguished hyperplane zH0 satisfying the criterion in
Lemma 3.25. The labels of the hyperplanes of zH starting from zH0 and proceeding clockwise , are
a0; : : : ; as (ie they are the same labels as the labels of the hyperplanes in H).

(2) Let Qp be the endpoint of the ƒ–edge asa0 from zH, and let zw be the word labeling @ zD in the
clockwise direction starting from Qp. Then zw D �. Qx/, where Qx is a reduced word in A� obtained
from x by Tits swap moves.

(3) The ƒ–edges from zH appear as far right as possible in zw. More formally , the word zw has no
subword of the form aiaiC1bb

0 such that aiaiC1 is one of the ƒ–edges coming from zH with
0� i � s (with indices mod s), aiaiC1 ¤ bb

0, and aiaiC1 commutes with bb0.

Proof We construct zD iteratively, starting with D. If H, p, w and x are as defined above, then the first
two conditions in the claim are satisfied. If (3) is not satisfied, then w has a subword aiaiC1bb

0 as in (3).
Since asa0 is the last ƒ–edge of w, we conclude that aiaiC1 ¤ asa0.
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Note that aiaiC1 ¤ bb
0 (by condition (3)) and aiaiC1 ¤ .bb

0/�1 (since x is reduced and w D �.x/).
Then it follows from Lemma 2.6, that each of ai and aiC1 commutes with each of b and b0. By applying
Lemma 2.11(1) four times, we obtain a new disk diagram D0 such that the label of @D0 is obtained from
the label of @D by swapping the ƒ–edges aiaiC1 and bb0. Moreover, the natural map  from the edges
of @D to the edges of @D0 (defined in Lemma 2.11(1)) preserves boundary combinatorics. By applying
Lemma 2.8 if necessary, we may assume that D0 has no bigons, so hyperplanes in D0 intersect at most
once.

Since boundary combinatorics are preserved,  induces a bijection between the hyperplanes dual to @D
and those dual to @D0. Since the transition from D to D0 involves swapping a pair of ƒ–edges, the label
of @D0 is still a product of ƒ–edges, and so the hyperplanes of D0 can be partitioned into closed chains
of hyperplanes. Moreover,  induces a bijection between the closed chains of hyperplanes in D and D0.

If H0 and H 00 denote the images of H and H0 respectively under  , it is clear that the labels of the
hyperplanes of H0, starting from H 00 and proceeding clockwise, are a0; : : : ; as . We now prove that H0

together with H 00 still satisfies the criterion in Lemma 3.25 required in (1).

Let K0 be a closed chain in D0, and let K be its preimage in D. Our choice of H implies that either
H0 separates K from H n fH0g, or K intersects H0. In the former case, H 00 still separates K0 from
H0 n fH 00g. This is because the swap performed does not involve any hyperplanes from chains which do
not intersect H0, since (as noted above) aiaiC1 ¤ asa0.

On the other hand, suppose that K intersects H0. By Observation 3.22, there are exactly two hyperplanes
K1 and K2 in K which intersect H0. If Kj , for j D 1; 2, is not dual to the ƒ–edge labeled by bb0, then
the image of Kj intersects H 00. Moreover, if i ¤ 0, then it follows that the images of K1 and K2 in D0

intersect the hyperplane H 00. Thus, we only need to consider the case where the ƒ–edge a0a1 is swapped,
and (up to relabeling) K1 is dual to b and K2 is dual to b0. In this case, K1 and K2 are dual to the same
ƒ–edge. It follows that no hyperplane in K n fK1; K2g is contained in the same component of D nH0 as
Hn fH0g. Thus, in D0, no hyperplane of K0 is contained in the same component of D0 nH 00 as H0 n fH 00g.
We have shown that H0, with distinguished hyperplane H 00, satisfies the conclusion of Lemma 3.25.

Let p0 be the vertex on @D0 which is the endpoint of the ƒ–edge from H0 labeled asa0. Since the swap
performed did not involve asa0, the label w0 of @D0, read clockwise from p0, is obtained from w by
swapping a single pair of ƒ–edges, and its preimage in x0 in A� is obtained from x by swapping one
pair of generators. This shows (2).

We have established that D0, together with H0, satisfies (1) and (2) of Claim 3.26. If (3) still fails, we may
repeat the process above. Since each individual iteration involves moving one ƒ–edge from the image of
H to the right, this process eventually stops. After finitely many iterations, we arrive at a disk diagram zD
such that all three conditions hold.
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For the rest of the proof we assume, without loss of generality, thatD, H, p, w and x satisfy the conclusion
of Claim 3.26.

We now analyze closed chains which intersect H. First consider the case that there are no such chains.
This includes the case when ƒ has a single component. Since H is a closed chain, it defines a loop in ƒ.
(See Observation 3.23.) On the other hand, since no chains intersect H, the union of the edges of @D
dual to the hyperplanes of H is a continuous subpath (with label .a0a1/.a1a2/ � � � .asa0/). Applying the
following claim to this subpath, we conclude that the ƒ–loop defined by H is a cycle. This contradicts R1.
(The claim will be used again later in this proof.)

Claim 3.27 Let � be a subpath of @D labeled by a product of ƒ–edges. Suppose there exists a
closed chain X, such that each edge of � is dual to a hyperplane in X. It follows that the label of �
is .x1x2/ � � � .xn�1xn/, where x1; x2; : : : ; xn are the labels of the hyperplanes of X dual to �, in order.
Furthermore , the ƒ–path through vertices x1; : : : ; xn is simple.

Proof The claim about the label of � is immediate. If the path through vertices x1; : : : ; xn is not simple,
then there is a ƒ–loop through vertices xi ; xiC1; : : : ; xiCj D xi for some i and j . By R1, the image
of this loop in ƒ is a tree. Let xr be a leaf of this tree, with i < r < j . It follows that xr�1 D xrC1.
Consequently, the label of � (and therefore of the word w) has a subword .xr�1xr/.xrxr�1/. This is a
contradiction, as it implies that the preimage x of w in A� is not reduced.

Thus, we may assume that there is at least one chain intersecting H. In particular, ƒ has two components:
say a red component ƒa which contains the labels of H, and a green component ƒb . By Claim 3.26,
each chain intersecting H intersects H0. Let K be the “first” such chain, in the sense that the first ƒ–edge
from a chain other than H appearing in w to the right of a0a1 is from K. (See Figure 9.) By R2 and
Observation 3.19, we conclude that K is green. Let b0; : : : ; bs0 be the labels of the hyperplanes of K,
where b0b1 is the label of the first ƒ–edge from K appearing in w to the right of a0a1.

Now consider the 2–colored polygon in D whose sides alternate between hyperplanes in H and K, as
described in Observation 3.24. Let c0; d0; : : : ; ck; dk be the labels of these sides, where c0D a0, d0D b0,
and c0; : : : ; ck (resp. d0; : : : ; dk) is a subsequence of a0; : : : ; as (resp. of b0; : : : ; bs0). (See Figure 9.)

The following technical claim about the hyperplanes dual to certain subpaths of @D associated to this
2–colored polygon will be needed in what follows:

Claim 3.28 For 0 � i � k, let ei and fi (resp. e0i and f 0i ) be the edges dual to the hyperplane of H

labeled ci (resp. the hyperplane of K labeled di ), where ei (resp. e0i ) appears before fi (resp. f 0i ) reading
clockwise from p.

For i > 0, let �i be the subpath of @D from (and including) fi�1 to (and including) ei , and let �i be the
subpath of @D from the endpoint of �i to (and including) e0i . (See Figure 10.) Then every edge of �i

(resp. �i ) is dual to a hyperplane in H (resp. K).
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Figure 10: The paths �i and �i from Claim 3.28 are shown in bold, delineated by dots. We remark
that if i D k, then there could be additional hyperplanes not in K or H between the endpoint of
�k and the start of the edge fi .

Proof Suppose there is some hyperplaneL dual to an edge e of �i such that the closed chain L containing
L is not equal to H. From the definition of �i , we conclude that e is on the same side of H0 as H n fH0g

in D, and by our choice of H (and Lemma 3.25), it follows that L intersects H0. Therefore, L is green
by Observation 3.19.

Let K denote the hyperplane of K labeled di�1. Then K separates e from K n fKg, so L … K, ie L¤ K.
If di�1 D b0, ie if K does intersect H0, then our choice of K implies that K is the first hyperplane not
in H dual to @D after the ƒ–edge a0a1, so such an L cannot exist. On the other hand, if K does not
intersect H0, then K separates e from H0. So, in order to intersect H0, the chain L must also intersect K,
which is a contradiction, since L and K are both green.

Now suppose L 2 L¤ K is dual to an edge e of �i . Since �i is only defined for i > 0, it is on the same
side of H0 as Hn fH0g, and consequently, the same holds for e. Therefore, we conclude as before that L
is green.

Additionally, we conclude as before that the hyperplane K 2 K labeled di�1 does not intersect H0. Now
consider the subchain of K0 of K consisting of the hyperplanes dual to all but the last edge e0i of �i . Since
K does not intersect H0, it follows that e is separated from H0 by some hyperplane in K0. Thus, in order
to intersect H0, L must intersect K, which is again a contradiction.

The 2–colored polygon obtained above gives a 2–component loop in ‚, as described in Observation 3.24.
A priori this loop may not be a 2–component cycle, ie it is possible that ci D cj or di D dj for some i
and j . However, we now show that it contains a cycle. We will then be able to apply R4 to this cycle to
make progress towards obtaining a contradiction to the normal form in Claim 3.26.

Claim 3.29 Consider the 2–component loop in ‚ visiting c0; d0; : : : ; ck; dk; ckC1 D c0 defined above.
There exist 0� l � k� 1 and m� 2, such that one of the two following subsequences of vertices (with
indices taken mod kC 1) defines a 2–component cycle in ‚:

(1) cl ; dl ; clC1; : : : ; dlCm�1; clCm D cl ;

(2) dl ; clC1; dlC1; : : : ; clCm; dlCm D dl .
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Proof Observe that since ckC1 D c0, the following set is nonempty:

fj j ci D ciCj or di D diCj for some 0� i < k� 1 and 1� j � kC 1g:

Let m denote its minimum value. We first show that m� 2, or equivalently that, for each 0� i � k� 1,
both ci ¤ ciC1 and di ¤ diC1 are true. Suppose ci D ciC1 for some i . Consider the path �iC1 from
Claim 3.28. It is labeled by ƒ–edges, and every edge in it is dual to a hyperplane from H. Then by
Claim 3.27, it follows that �iC1 defines a simple ƒ–path from the vertex ci to the vertex ciC1. However,
this contradicts the assumption that ci D ciC1. This proves that for all 0� i � k� 1, we have ci ¤ ciC1.
The proof that di ¤ diC1 is similar.

Now if l is such that cl D clCm (the case when dl D dlCm is similar), then it readily follows from the
minimality of m that the vertices cl ; dl ; clC1; : : : ; clCm�1; dlCm�1 are distinct, and therefore define the
desired cycle.

Continuing the proof of the theorem, we can now assume ‚ has a 2–component cycle 
 as in (1) from
Claim 3.29. (The case in which ‚ has a 2–component cycle as in (2) is similar.) Let Tc and Td be the
ƒ–convex hulls of fcl ; : : : ; clCm�1g and fdl ; : : : ; dlCm�1g respectively. Then Tc and Td are trees by R1.
Let cj be a leaf of Tc with cj ¤ c0. Then cj labels a hyperplane Ht 2 H for some t ¤ 0, so at D cj .
Similarly, cj�1 labels a hyperplane Ht�r of H, while dj�1 and dj label hyperplanes Kt 0 and Kt 0Cr 0

respectively of K, where dj�1 D bt 0 and dj D bt 0Cr 0

Consider the paths �j and �j defined in Claim 3.28. The last ƒ–edge of �j is at�1at . By Claim 3.28, the
first edge of �j is dual to a hyperplane in K. It follows that this must be Kt 0 , with label bt 0 , for otherwise
Kt 0 would separate this edge from KnKt 0 . It follows that the first ƒ–edge of �j is bt 0bt 0C1, and that the
word w has a subword at�1atbt 0bt 0C1.

To complete the proof, we will show that the presence of this subword violates the normal form established
in Claim 3.26(3). Since the labels of H and K are from different components of ƒ, it is immediate that
at�1at ¤ bt 0bt 0C1. We now show that at�1at and bt 0bt 0C1 commute.

The 2–component cycle 
 in ‚ contains an edge with endpoints at and bt 0 . Applying R4 to this edge,
we conclude that there is a 2–component square visiting at , bt 0 , a and b, where a 2 Tc and b 2 Td . Next,
applying R3 to this 2–component square, we see that bt 0 commutes with the vertices of the ƒ–convex
hull of fat ; ag. Claims 3.27 and 3.28 together imply that the path �j induces a simple ƒ–path visiting
vertices at�r ; at�rC1; : : : ; at . Consequently, the vertices along this path, and in particular at�1, are in Tc .
Moreover, at�1 is the unique vertex of Tc adjacent to at , since at D cj is a leaf of Tc . It follows that
at�1 is contained in the ƒ–convex hull (which is the same as the Tc–convex hull) of fat ; ag. Thus, at�1

and bt 0 commute. The same reasoning, applied to the edge of 
 with endpoints at and btCr 0 , implies that
at�1 and btCr 0 commute.

Using the �–edges whose existence is implied by these two additional commutation relations, we obtain
a 2–component square visiting at , bt 0 , at�1 and bt 0Cr 0 . Applying R3 to this square, we conclude that at
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Figure 11: This figure illustrates condition R5. The red, blue and green segments are respectively
Tc , Td and Ta. Condition R5 states that any ƒ–edge contained in the green segment must either
commute with every ƒ–edge in the red segment or must commute with every ƒ–edge in the blue
segment.

and at�1 commute with each vertex in the ƒ–convex hull of fbt 0 ; bt 0Cr 0g. By Claim 3.27, we see that the
path �j from Claim 3.28 defines a simple ƒ–path visiting bt 0 ; bt 0C1; : : : ; bt 0Cr 0 . It follows that bt 0C1 is
in the convex hull of fbt 0 ; bt 0Cr 0g, and consequently, at and at�1 commute with bt 0C1.

Putting together the commutation relations established in the previous paragraphs, we conclude that
at�1at commutes with bt 0bt 0C1. This contradicts the fact that we have chosen D so that it satisfies (3)
of Claim 3.26.

3.1 Three or more ƒ–components

In the case that ƒ contains at most two components, Theorem 3.18 shows that R1–R4 are necessary and
sufficient conditions that guarantee .G‚; E.ƒ// is a RAAG system. In this subsection, we do not place
any restriction on the number of components of ƒ. We give an additional necessary condition R5 for
.G‚; E.ƒ// to be a RAAG system, and Example 3.31 shows this condition is independent of conditions
R1–R4. The authors are aware that even more conditions are required in order to generalize Theorem 3.18
to this setting. These extra conditions are not included here, as they are complicated and the authors do not
believe to yet possess the complete list of the necessary and sufficient conditions for this generalization.

We further show in this subsection that if ‚ contains certain subgraphs and .G‚; E.ƒ// is a RAAG
system, then � must necessarily contain a triangle. These results are needed in the next section.

Definition 3.30 (condition R5) We say that ‚ satisfies condition R5 if the following holds. Let ƒa, ƒc

and ƒd be distinct components of ƒ. Suppose we have vertices a; a0 2ƒa, c; c0 2ƒc and d; d 0 2ƒd ,
such that ‚ contains a 2–component square visiting c, d , c0 and d 0. Furthermore, suppose that c and c0

are each adjacent to a in � and that d and d 0 are each adjacent to a0 in � . (See Figure 11.) Let Ta, Tc

and Td be the ƒ–convex hulls of fa; a0g, fc; c0g and fd; d 0g respectively. Then given any ƒ–edge xx0

of Ta, the graph � contains either the join of fx; x0g with V.Tc/ or the join of fx; x0g with V.Td /.

The following is a concrete example showing that when ƒ has more than two components, the conditions
R1–R4 are not sufficient to guarantee that .G‚; E.ƒ// is a RAAG system.
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Example 3.31 Let � be the graph whose vertex set is fa; a0; c; c0; d; d 0g and whose edge set is the set
of black edges in Figure 11. Let ƒ � �c consist of exactly three ƒ–edges: aa0, cc0 and dd 0. Then
‚ D ‚.�;ƒ/ satisfies conditions R1–R4 and does not satisfy condition R5. By Lemma 3.32 below,
.G‚; E.ƒ// is not a RAAG system.

We now show that condition R5 is necessary.

Lemma 3.32 If .G‚; E.ƒ// is a RAAG system , then ‚ satisfies condition R5.

Proof By Theorem 3.18, we may assume that‚ satisfies conditions R1–R4. Let a; a02ƒa, c; c02ƒc and
d; d 0 2ƒd be as in Definition 3.30. Define the words zaDa

0a, zcD cc
0, zd Ddd

0 and zD Œzazcz
�1
a ; zd �.

By the commuting relations imposed in Definition 3.30, it follows that z l 1 in W� . Let wa, wc , wd and
w be the ƒ–edge words corresponding respectively to za, zc , zd and z. Let D be a disk diagram over
A� with boundary label w.

Let 
c , �c , 
d and �d be the paths in @D labeled respectively by wc , w�1
c , wd and w�1

d
. Note that no

hyperplane is dual to two distinct edges of 
c (resp. �c , 
d and �d ). This follows as zc is a word in unique
ƒ–edges. Thus, every hyperplane dual to 
c (resp. 
d ) is also dual to �c (resp. 
d ).

Let ˛ be a path in @D between 
c and 
d (which is labeled by wa). Again, no hyperplane is dual to
two distinct edges of ˛. Let xx0 be a ƒ–edge of Ta, and let H be the unique hyperplane dual to ˛ with
label xx0. Note that either H intersects every hyperplane dual to 
c or H intersects every hyperplane dual
to 
d . Furthermore, every ƒ–edge of Tc (resp. Td ) is the label of a hyperplane dual to 
c (resp. 
d ). The
claim now follows from Lemma 2.6, and the fact that intersecting hyperplanes correspond to commuting
generators of A�.

The following corollary shows that if‚ contains a configuration like that in the hypothesis of condition R5,
then � must contain a triangle. This corollary is a warm-up to the more complicated Lemma 3.34.

Corollary 3.33 Suppose .G‚; E.ƒ// is a RAAG system and ‚ contains a set of vertices fa; a0; b; b0; c; c0g
satisfying the hypothesis of R5. Then � contains a triangle.

Proof Let P D fa; a0; c; c0; d; d 0g be a subset of vertices of ‚ satisfying the hypothesis of R5. We call
such a P a configuration in ‚. Keeping the same notation as in Definition 3.30, we call the number of
vertices of Ta the complexity of P , and we prove the claim by induction on complexity. Note that aD a0

is possible in the hypothesis of R5, so the lowest possible complexity is N D 1. The corollary follows in
this case, as � then contains a triangle spanned by the vertices aD a0, c and d .

Now let N > 1 and suppose the claim is true for all configurations P of smaller complexity. As N > 1,
there is a vertex y such that ay is a ƒ–edge of Ta. By Lemma 3.32, either y is adjacent in � to both c
and c0, or y is adjacent in � to both d and d 0. In either case, we see that ‚ contains a configuration of
smaller complexity.
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c1

a1

a2

c2c3

d1

a01

d2

a02

d3

a03

d4

Figure 12: This figure illustrates the configuration described in Lemma 3.34 in the case nD 3
and mD 4. The black edges are edges of � . The red, green and blue parts consist of ƒ–edges,
and are all contained in ƒ. The different colors indicate that they are in three distinct components
of ƒ.

The next lemma shows that if ‚ contains certain subgraphs which generalize the configurations in the
hypothesis of R5, then � must contain a triangle.

Lemma 3.34 Let ƒa, ƒc and ƒd be distinct components of ƒ. Suppose ‚ has a ƒaƒc–path visiting
c1; a1; c2; : : : ; an�1; cn, and a ƒaƒd –path visiting d1; a

0
1; d2; : : : ; a

0
m�1; dm, where ci 2 ƒc , di 2 ƒd

and ai ; a
0
i 2ƒa for all appropriate i . Further suppose that ‚ contains a 2–component square visiting c1,

d1, cn and dn. (See Figure 12.) If .G‚; E.ƒ// is a RAAG system , then � has a triangle.

Proof By Theorem 3.18 and Lemma 3.32, we may assume that ‚ satisfies conditions R1–R5. Let
AD fa1; : : : ; an�1; a

0
1; : : : ; a

0
m�1g, C D fc1; : : : ; cng and D D fd1; : : : ; dmg be vertices of ‚ as in the

statement of the lemma. We call such a triple .A;B; C / a configuration of ‚. Let Ta, Tc and Td be the
ƒ–convex hulls of A, C and D respectively. We define the complexity of .A; C;D/ to be the integer
N D jC jC jDjC jTajE CjTcjE CjTd jE , where jX jE denotes the number of edges in a graph X . The
proof will be by induction on complexity of configurations.

By hypothesis, we have that n;m� 2 and jTcjE ; jTd jE � 1. If nDmD 2 then � contains a triangle by
Corollary 3.33. In particular, the base case follows.

We now fix a configuration AD fa1; : : : ; an�1; a
0
1; : : : ; a

0
m�1g, C D fc1; : : : ; cng and DD fd1; : : : ; dmg

as above of complexity N , and we assume that the result holds for configurations of smaller complexity.
By the previous paragraph, we may also assume (up to relabeling) that n > 2. We prove the lemma by
showing that either � contains a triangle or ‚ contains a configuration of smaller complexity.

Define ˛ac and ˛ad to respectively be the hypothesized ƒaƒc–path and ƒaƒd –path. We may assume
that ˛ac and ˛ad are simple paths, for if not, we would be able to excise a loop to obtain a configuration
of smaller complexity.

We claim that for all 1 < i < n, we may assume that ci does not lie on the simple path in ƒc from c1

to cn. For suppose there exists such a vertex ci . By R3, it follows that ci commutes with both d1 and dm.
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There then exists a ƒaƒc path visiting c1; a1; : : : ; ai�1; ci , and it follows that ‚ contains a configuration
of smaller complexity (obtained by replacing ˛ac with this new path). Thus we may make this assumption
without loss of generality. Furthermore, as n� 3, there exists an integer j such that cj is a leaf vertex
of Tc and such that 1 < j < m. We fix such a vertex cj .

Define the word zc to be

zc D .a
0
1a1/.c1c2/.a1a2/.c2c3/.a2a3/ � � � .an�2an�1/.cn�1cn/.an�1a

0
1/

and define the word zd , depending on the value of m, to be

zd D

�
d1d2 if mD 2;
.d1d2/.a

0
1a
0
2/.d2d3/.a

0
2a
0
3/ � � � .a

0
m�2a

0
m�1/.dm�1dm/.a

0
m�1a

0
1/ if m> 2:

In W� we have that zc l a01c1cna
0
1 and zd l a01d1dma

0
1. Let z D Œzc ; zd �. Note that as c1 and cn

commute with d1 and dm in W� ,

z l Œa01c1cna
0
1; a
0
1d1dma

0
1�l a01Œc1cn; d1dm�a

0
1 l 1:

Let wc , wd and w be the ƒ–edge words associated to zc , zd and z respectively. Let D be a disk diagram
over A� with boundary label w. Let 
c , �c , 
d and �d be the subpaths of @D labeled respectively by wc ,
w�1

c , wd and w�1
d

.

Let ycj be the ƒ–edge of Tc incident to cj . Since ˛ac does not repeat vertices and since cj is a leaf of Tc ,
it follows that wc contains exactly two occurrences of the letter y contained in the subword labeled by
.ycj /.aj�1x1/.x1x2/ � � � .xlaj /.cjy/, where the xi ’s are vertices in ƒa. In particular, there are exactly
four edges of @D (two on 
c and two on �c) labeled by either ycj or cjy. Correspondingly, there are
exactly two hyperplanes, H and H 0 in D labeled ycj .

We claim that we may assume that H is dual to both 
c and �c , and the same is true for H 0. For suppose
otherwise, and suppose that H is dual to two edges of 
c . (The case of H 0 is similar.) It follows that
any hyperplane dual to the subpath of 
c labeled by .aj�1x1/.x1x2/ � � � .xlaj / (which lies between the
endpoints of H ) must intersect H . Thus, in particular, .aj�1x1/ and .xlaj / commute with ycj , and
applying Lemma 2.6, we conclude that y commutes with both aj�1 and aj . We now show that we can
replace ˛ac with a new ƒaƒc–path from c1 to cn such that jTajE is reduced, and thus ‚ contains a
smaller complexity configuration. If y is not equal to any ck for any 1� k �m, then we obtain this path
by simply replacing cj with y in ˛ac . On the other hand, if y D ck for some k, then we replace ˛ac

with the ƒaƒc path visiting c1; a1; : : : ; ck; aj ; cjC1; ajC1; : : : ; an�1; cn if k < j and perform a similar
replacement if k > j . In either case, we have produced a configuration of smaller complexity. Thus, we
now assume that each of H and H 0 is dual to both 
c and �c .

Let Q and Q0 be the hyperplanes in D dual to the edges of 
c labeled by aj�1x1 and xlaj respectively.
If both Q and Q0 intersect H [H 0, then we can conclude, as above, that y commutes with both aj�1

and aj . We can then find a smaller complexity configuration as in the previous paragraph. Thus, we can
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assume that either Q or Q0 is dual to both 
c and �c . We assume that Q has this property (the case of Q0

is similar).

We now examine hyperplanes dual to 
d and �d . If m D 2, then the unique hyperplane whose label
contains d1 is dual to both 
d and �d , and this hyperplane intersects both H and Q. Thus, d1 commutes
with both cj and aj�1. Since cj commutes with aj�1, it follows that � contains a triangle. On the other
hand, if m > 2 by the same reasoning as before, we can assume there is a leaf vertex dj 0 of Td and a
hyperplane with label y0dj 0 that intersects both 
d and �d . This then implies that dj 0 commutes with
both cj and aj�1 and consequently, � contains a triangle.

4 Finite-index visual RAAGs

As in the previous section, given a simplicial graph � and a subgraph ƒ of �c with no isolated vertices,
we set ‚D‚.�;ƒ/, and let G‚ be the subgroup generated by E.ƒ/. Our goal is to characterize graphs
ƒ� �c such that .G‚; E.ƒ// is a RAAG system and G‚ has finite index in W� .

Suppose the graph � contains a vertex s which is �–adjacent to every other vertex of � . We say that s is
a cone vertex. In this case, it easily follows that W�ns has index 2 in W� and that s cannot be contained
in any ƒ–edge.

We now recall a construction from [Dani and Levcovitz 2021] which will help us compute the index
of G‚. The construction is general, but for simplicity, and as it is all that we use, we choose to only
describe it in the context where � is triangle-free. We refer the reader to [Dani and Levcovitz 2021] for
full details.

Let � be a triangle-free graph. We say a cell complex is �–labeled if every edge of the complex is labeled
by a vertex of � . Let X be a �–labeled complex. Suppose two edges of X have the same label and a
common endpoint. A fold operation produces a new complex from X by naturally identifying these two
edges.

Suppose now that f1 and f2 are edges ofX which share a common vertex u and whose labels s1; s22V.�/
have an edge between them in � . Let c be a 2–cube with edges c1, c2, c3 and c4 such that ci \ ciC1 is a
vertex of c for each i mod 4. We label c1 and c3 by s1, and c2 and c4 by s2. A square attachment operation
produces a new complex from X by attaching c to X by identifying c1 to f1 and c2 to f2. Note that,
unlike in [Dani and Levcovitz 2021], we do not need to define cube attachments for higher-dimensional
cubes, as we are in the case that � is triangle-free.

Finally, given a collection of 2–cubes in X with common boundary, we can produce a new complex
from X by naturally identifying every 2–cube in this collection to a single 2–cube. In this case, we say a
cube identification operation was performed to X .
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We define a �–labeled complex �0 associated to G‚ as follows. First, we enumerate the ƒ–edges as
s1t1; : : : ; sntn, where si and ti are the two endpoints of the i th ƒ–edge. We set �0 to be a bouquet of n
circles, each of which is subdivided into two edges, such that the i th circle has label si ti .

Next, we describe a series of complexes built iteratively from �0. These are

�0!�1!�2! � � � :

For each i > 0, the complex �i is obtained by either a fold, square attachment or square identification
operation performed to �i�1. Furthermore, we assume that the order of operations is as follows: first all
possible fold and square identifications are performed, then all possible square attachment operations are
applied to the resulting complex, and these processes are alternated (see [Dani and Levcovitz 2021] for
details).

Let � be the direct limit of such a sequence. We call � a completion of G‚. In [Dani and Levcovitz
2021] we show that properties of � reflect those of the subgroup G‚.

The index of G‚ can be determined by properties of �. We say that a vertex u of a �–labeled complex
has full valence if for any vertex s 2 � , there is an edge incident to u with label s. Below we present a
version of [Dani and Levcovitz 2021, Theorem 6.9] together with [Dani and Levcovitz 2021, Lemma 6.8]
under the hypotheses which we will need:

Theorem 4.1 Let � be a triangle-free graph with no cone vertex. A subgroup G <W� has finite index
in W� if and only if � is finite and every vertex of � has full valence. Furthermore , if G is indeed of
finite index, then its index is exactly the number of vertices of �.

We introduce two new properties below which will help us characterize when G‚ has finite index in W� .

Definition 4.2 (conditions F1 and F2) We say that ‚D‚.�;ƒ/ satisfies condition F1 if given any
s 2 V.‚/ which is not a cone vertex of � , it follows that s is the endpoint of some ƒ–edge. We say that
‚ satisfies condition F2 if given any distinct components ƒs and ƒt of ƒ, and vertices s of ƒs and t
of ƒt , there is a ƒsƒt –path in ‚ from s to t .

Remark 4.3 Suppose � is connected,ƒ contains exactly two components and that‚D‚.�;ƒ/ satisfies
R2 and F1. Then ‚ satisfies F2. For given any two vertices contained in different components of ƒ, as
� is connected, there is a �–path between them. Furthermore, this has to be a 2–component path as ‚
satisfies R2, and the two ƒ–components this path visits have to be the ones containing the chosen vertices
(as there are only two ƒ components). This remark will prove to be useful when verifying whether certain
graphs satisfy F2.

Remark 4.4 Suppose ‚D‚.�;ƒ/ satisfies F2, and let ƒ1 and ƒ2 be distinct ƒ–components. Then
there exists an ƒ1ƒ2–path between any two distinct vertices of ƒ1. To see this, let s and s0 be distinct
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vertices of ƒ1, and let t be vertex of ƒ2. By F2 there is a ƒ1ƒ2–path from s to t , and similarly there is
a ƒ1ƒ2–path from t to s0. Combining these two paths gives a ƒ1ƒ2–path form s to s0.

Lemma 4.5 Let � be a triangle-free graph with no cone vertex, and let ƒ be a subgraph of �c with no
isolated vertices , such that .G‚; E.ƒ// is a RAAG system. If ƒ has at most k � 2 components and ‚
satisfies F1 and F2, then G‚ is of index 2k in W� .

We remark that this proof readily generalizes to the case of arbitrary k. However, we only need the case
k � 2.

Proof Let �0 be the �–labeled complex defined above, and let �0 be the complex obtained from �0 by
all possible fold operations.

Suppose first that ƒ has one component. As ƒ is connected, it is easily seen that �0 consists of two
vertices with an edge labeled by s between them for s 2 V.ƒ/. As ƒ satisfies R2 by Proposition 3.17, no
two vertices of ƒ have an edge between them in � . Thus, no square attachments can be performed to �0,
and it follows that �D�0. Hence, � is finite and has exactly two vertices.

Note that by the description of �D�0 above, every vertex of � is adjacent to every edge of �. Also
note that by condition F1, for every vertex s 2 � there is some edge in � labeled by s. From these two
facts we deduce that every vertex of � has full valence. Thus, G‚ has index 2 in W� by Theorem 4.1.

Now suppose that ƒ has two components ƒ1 and ƒ2. In this case, �0 is readily seen to be a complex
consisting of three vertices, u, v1 and v2, with an edge from u to vi labeled s corresponding to each
vertex s of ƒi , for i D 1; 2. By condition F1, the vertex u has full valence. Furthermore, by R2, for each
i 2 f1; 2g, no two edges of �0 that are each adjacent to both vi and u have labels which are adjacent in � .

Let �00 be the complex obtained from �0 by performing all possible square attachment operations to �0,
and let �000 be the complex obtained from �00 by all possible fold and square identification operations. In
particular, �00D�l and �000D�k for some 0� l � k. Let s and s0 be distinct vertices of ƒ1, and let t be
any vertex of ƒ2. By condition F2, there is a ƒ1ƒ2–path whose vertices are s; t1; s1; t2; s2; : : : ; tm; sm; t
where si 2 ƒ1 and ti 2 ƒ2 for all 1 � i � m. Similarly, there is a ƒ1ƒ2–path whose vertices are
s0; t 01; s

0
1; t
0
2; s
0
2; : : : ; t

0
n; s
0
n; t where s0i 2ƒ1 and t 0i 2ƒ2 for all 1� i � n. Thus, �00 must contain length

two paths, which do not intersect u, from v1 to v2 with each of the labels

t1s; t1s1; t2s1; t2s2; : : : ; tmsm�1; tmsm; tsm;

and similarly length two paths, which do not intersect u, from v1 to v2 with each of the labels

t 01s
0; t 01s

0
1; t
0
2s
0
1; t
0
2s
0
2; : : : ; t

0
ns
0
m�1; t

0
ms
0
m; t
0sm:

It follows that the middle vertices of all these paths get folded to a single vertex v3 in �000. This analysis
can be done for any s; s0 2ƒ1. Similar paths can also be produced for any t; t 0 2ƒ2. It then follows that
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�000 consists of exactly 4 vertices: u, v1, v2 and v3. Furthermore, there is an edge with label s between
v1 and v3 for each s 2ƒ1, and there is an edge with label t between v2 and v3 for each t 2ƒ2. Thus,
every vertex of �000 can be seen to have full valence. Additionally, by condition R2, no additional square
attachment operations can be performed to �000. Hence, �D�000. It follows that G‚ has index exactly
four in W� .

The next lemma shows that F1 and F2 are necessary conditions for G‚ to have finite index.

Lemma 4.6 Let � be a triangle-free graph with no cone vertex, and let ƒ be a subgraph of �c with no
isolated vertices , such that .G‚; E.ƒ// is a RAAG system. If G DG‚ is of finite index in W� , then ‚
satisfies F1 and F2.

Proof We first check that condition F1 holds. Let � be a completion of G WDG‚ as described in the
beginning of this section. Theorem 4.1 implies in particular that given any vertex s 2 � there is an edge
of � with label s. This implies the vertex s is contained in some ƒ–edge. Thus, F1 must hold.

We now check condition F2. Let s 2ƒs and t 2ƒt be as in the definition of condition F2 (Definition 4.2).
If s commutes with t , then there is an edge in � between s and t , and we are done. So we may assume
that s and t do not commute.

As G is of finite index, it follows that there exist g1; : : : ; gn 2W� such thatW� DGg1tGg2t� � �tGgn.
Let w1; : : : ; wn be reduced words representing g1; : : : ; gn, and let K D maxfjw1j; : : : ; jwnjg. Define
the word hD s1t1s2t2 � � � sKC4tKC4 where si D s and ti D t for all 1 � i � K C 4. It readily follows
from Tits’ solution to the word problem (see Theorem 2.4) that h is reduced. Furthermore, we can write
hl ww0, where w and w0 are words in W� such that w0 D wi for some 1 � i � n and w is a product
of ƒ–edges representing an element of G. We can form a disk diagram in W� with boundary label
hw0�1w�1. Let ˛h, ˛w and ˛w 0 respectively be the corresponding paths along the boundary of D with
labels respectively h, w and w�1.

Note that as h is reduced, no hyperplane intersects ˛h twice. Also note that any pair of hyperplanes
emanating from ˛h cannot intersect as s and t do not commute. As jhj > jw0j C 4, it follows that
the hyperplanes Hs1

, Ht1
, Hs2

and Ht2
, dual respectively to the first four edges of ˛h (namely those

labeled by s1, t1, s2 and t2), must each intersect ˛w . It must now be the case that there exists a
chain of hyperplanes (see Definition 3.20) Hs1

DH0;H1; : : : ;Hm DHs2
and another chain of hyper-

planes Ht1
DH 00;H

0
1; : : : ;H

0
n DHt1

. These two chains intersect, and by reasoning similar to that in
Observation 3.24, it follows that there is a ƒsƒt –path from s to t .

Lemma 4.7 Let � be a triangle-free graph. Let ƒ be a subgraph of �c with no isolated vertices , such
that .G‚; E.ƒ// is a RAAG system and G‚ has finite index in W� . If � contains a cone vertex, then ƒ
contains exactly one component. If W� is not virtually free , then ƒ contains exactly two components.
Otherwise , ƒ contains at most two components.
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Proof Suppose first that � contains a cone vertex s 2 � . We may assume that � does not consist of a
single edge, as ƒ would be empty in that case. As � is triangle-free in addition, there can be at most one
cone vertex. Since � is triangle-free, it follows that � 0 D � n s is a graph with no edges and is therefore
virtually free. Furthermore, every ƒ–edge is contained in � 0, and G‚ is a finite-index subgroup of W� 0 .
By Lemma 4.6, we conclude that ‚0 D‚.� 0; ƒ/ satisfies condition F2. In particular, there is a � 0–edge
between any two ƒ components. As � 0 does not have any edges, ƒ has exactly one component and the
claim follows in this case.

We now assume that � does not contain a cone vertex. Furthermore, by Lemma 4.6 we may assume that
‚D‚.�;ƒ/ satisfies F1 and F2, and that ‚ satisfies R1–R4 by Proposition 3.17.

Suppose now that no two distinct ƒ–edges commute. It follows that G‚ is isomorphic to a free group,
and since G‚ is of finite index, W� is virtually free. Suppose, for a contradiction, that ƒ has three distinct
components ƒ1, ƒ2 and ƒ3. Let s and t be distinct vertices of ƒ1. By Remark 4.4 there is a ƒ1ƒ2–path
˛1 from s to t which we can assume does not repeat vertices. Similarly, there is a ƒ1ƒ3–path ˛2 from s

to t which does not repeat vertices. Observe that s; t 2 ˛1\˛2. Starting at s and traveling along ˛1, let
x be the first vertex after s such that x 2 ˛1\˛2. Then the subpath ˛01 of ˛ between s and x contains
exactly two vertices of ˛1\˛2. Let ˛02 be the subpath of ˛2 between s and x. Note that j˛01j; j˛

0
2j � 2, as

every other vertex of ˛1 is in ƒ2 and ˛2\ƒ2 D∅. It follows that c D ˛01[˛
0
2 is a cycle in � . Let c0

be a subcycle of c which is an induced subgraph of � . If c0 has three vertices, then this contradicts �
being triangle-free. On the other hand, if c0 has more than three vertices, then this contradicts W� being
virtually free. Thus, ƒ can have at most two components and the claim follows in this case.

Suppose now there existƒ–edges a1a2 and b1b2 which commute, with a1a2¤ .b1b2/
˙1. Theseƒ–edges

must be in different components of ƒ by condition R2 and Lemma 2.6. In this case, W� is not virtually
free as it contains a subgroup isomorphic to Z2. Suppose, for a contradiction, that ƒ contains at least
three distinct ƒ–edge components ƒ1, ƒ2 and ƒ3. Without loss of generality, we may assume that
a1b1 2ƒ1 and that a2b2 2ƒ2. We will obtain a contradiction by showing that � must contain a triangle.

By Lemma 2.6, a1, a2, b1 and b2 form a square in � . By Remark 4.4, there is a ƒ1ƒ3–path from a1

to a2. Similarly, there is a ƒ2ƒ3–path from b1 to b2. Thus, � contains the configuration described in the
statement of Lemma 3.34. That lemma then implies that � contains a triangle, a contradiction.

Theorem 4.8 Let W� be a 2–dimensional RACG. Let ƒ be a subgraph of �c with no isolated vertices ,
and let G‚ be the subgroup of W� generated by the ƒ–edges. Then the following are equivalent :

(1) .G‚; E.ƒ// is a RAAG system and G‚ has finite index in W� .

(2) .G‚; E.ƒ// is a RAAG system and G‚ has index either two or four in W� (and exactly four if
W� is not virtually free).

(3) ƒ has at most two components and ‚ satisfies conditions R1–R4, F1 and F2.
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Proof Clearly (2) implies (1). To see the remaining implications, suppose first that � contains a cone
vertex s. Then � 0 D � n s is a graph with no edges, and W� 0 is an index two subgroup of � . Suppose
that (1) holds. By Lemma 4.7, ƒ has exactly one component. By Theorem 3.18 and Lemma 4.6,
‚0 D‚.� 0; ƒ/ satisfies conditions R1–R4, F1 and F2. Consequently, ‚ satisfies these conditions as
well. Thus (3) holds. By Lemma 4.5, we know that (G‚0 ; E.ƒ// is a RAAG system of index 2 in W� 0 ,
and thus (G‚; E.ƒ// is a RAAG system of index four in W� . Therefore (2) holds. Finally, if (3) holds
then (1) holds by Theorem 3.18 and Lemma 4.5.

Now suppose that � does not have a cone vertex. If (1) holds, then by Lemma 4.7, ƒ has exactly
two components if W� is not virtually free and at most two components otherwise. Thus (2) holds
by Lemma 4.5. By Theorem 3.18 and Lemma 4.6, (3) holds. Finally if (3) holds, then (1) follows by
Theorem 3.18 and Lemma 4.5.

Corollary 4.9 Let W� be a 2–dimensional RACG. Let ƒ be a subgraph of �c with no isolated vertices
such that the subgroup .G;E.ƒ// is a finite-index RAAG system. Then either:

(1) The graph � does not contain any edges and E.ƒ/ is a spanning tree in �c . In particular , W� is
virtually free.

(2) The groupW� is not virtually free. Furthermore , the vertices of � can be 2–colored by red and blue
(ie each edge of � connects a red vertex and a blue vertex) and G is isomorphic to the kernel of
the homomorphism ‰ WW� !Z2�Z2 D hr; b j r

2 D b2 D 1i which maps red and blue generators
of V.�/ to r and b respectively.

Proof By Theorem 4.8, ƒ has at most two components. Suppose first that ƒ contains exactly one
component. Again by Theorem 4.8, the graph ‚ satisfies R1, R2, and F1. From these conditions, it
follows that � cannot contain any edges and that E.ƒ/ is a spanning tree in �c . As � does not contain
any edges, W� is virtually free.

Suppose now that ƒ has exactly two components. We color the vertices of one component red and the
vertices of the other component blue. By R2, each edge of � connects a red vertex and a blue vertex,
ie we have a 2–coloring of � . Furthermore, by the definition of ‰, every ƒ–edge (thought of as an
element of G) is in the kernel of ‰. As G is generated by such elements, it follows that G < ker.‰/. By
Theorem 4.8, G has index 4 in W� . As ker.‰/ has index 4 as well, it follows that G is isomorphic to
ker.‰/.

5 Applications

In this section we give concrete families of RACGs containing finite-index RAAG subgroups. These
cannot be obtained by applying the Davis–Januszkiewicz constructions to the defining graphs of the
RAAGs they are commensurable to.
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Figure 13: The figure illustrates the graphs �n defined in Corollary 5.1 for nD 3; 4; 5.

5.1 Nonplanar RACGs commensurable to RAAGs

In this subsection, we construct two families of RACGs with nonplanar defining graphs containing
finite-index RAAG subgroups. These will serve as a warm-up for Theorem 5.5.

We begin by constructing a family of quasi-isometrically distinct RACGs defined by the sequence of
graphs �n (shown in Figure 13) which are commensurable to RAAGs whose defining graphs are cycles.

Corollary 5.1 (to Theorem 4.8) For n � 3, let �n be the graph obtained by starting with a 2n–gon
whose vertices (in cycle order) are c1; d1; c2; d2; : : : ; cn; dn and adding two vertices x and y, such that y
is adjacent to ci for each i , x is adjacent to di for each i , and x is adjacent to y (see Figure 13). Then

(1) the RACG W�n
has a subgroup of index four that is isomorphic to (and hence is commensurable

to) the RAAG AC2n
, where C2n is a cycle of length 2n;

(2) W�n
is not quasi-isometric to W�m

for m¤ n.

Proof Fix n� 3, and let � denote �n. We define a graph ƒ� �c as follows. Let ƒx be the star graph
consisting of the union of the edges of �c from x to ci for each i . Let ƒy be the star graph consisting of
the edges of �c from y to di for each i . Let ƒDƒx [ƒy . (See Figure 4 for an illustration of ƒ in the
case nD 3.)

We show below that ‚D‚.�;ƒ/ satisfies R1–R4, F1 and F2. Then it will follow from Theorem 4.8,
that .G‚; E.ƒ// is a RAAG system, and thatG‚ has index four inW� . Moreover, it is easily checked that
the commuting graph � associated to ƒ (as defined in Section 2.2) is isomorphic to C2n. Consequently,
G‚ is isomorphic to AC2n

. Thus, this will show (1).

It is easy to verify F1, R1, and R2. Then by Remark 4.3, it follows that F2 holds as well. We now
check R3. First note that there are exactly three squares in � containing the edge c1d1, and each of these
satisfies the property in R3. Now the fact that every square contains an edge of the 2n–gon, together with
the symmetry of the diagram, implies that R3 holds.

To check R4, let 
 be a ƒxƒy–cycle and let e be an edge of 
 . By symmetry, we can assume that e is
either c1d1, c1y or xy. Suppose first that e D c1d1. Then 
 contains either dnc1 or yc1. In both cases,
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�3 �4 �n
a1 a1 a1

a0 a0 a0

b1 b1 b1b2 b3 b2 b3 bnb2 b3 b4

a2 a2a2 a3 a4a3 a3 an

Figure 14: The figure defines the family of graphs �n, for n� 3, used in Corollary 5.2.

the ƒ–convex hull of the vertices of 
 contains y. Similarly, 
 contains either d1x or d1c2, and in both
cases the ƒ–convex hull of 
 contains x. As c1d1 is contained in the square c1d1xy, and x and y are in
the appropriate convex hulls, it follows that R4 holds for the �–cycle 
 and edge e.

Suppose now that e D c1y. It follows that 
 contains either yx or yci for some i > 1. In each case, x is
in the ƒ–convex hull of 
 . Furthermore, 
 contains either c1d1 or c1dn. In the former case, the square
c1d1xy contains e and has vertices in the ƒ–convex hull of the vertices in 
 . In the latter case the same
argument applies to the square c1dnxy.

Finally, suppose that e D xy. By symmetry, we may assume that 
 contains yc1. Furthermore, yc1 must
be followed by either c1d2 or c1dn in 
 . Then, as in the previous paragraph, either the square c1d1xy

or the square c1dnxy contains e and has vertices in the ƒ–convex hull of 
 . Thus R4 is satisfied in all
cases.

We have thus established that (1) holds, by showing that ‚ satisfies R1–R4, F1 and F2. Consequently,
for each n, we know that W�n

is commensurable, and in particular quasi-isometric, to AC2n
. Claim (2)

then follows from [Bestvina et al. 2008].

Next, we give a family of RACGs whose defining graphs are not planar and are commensurable to RAAGs
which are not atomic (as defined in [Bestvina et al. 2008]).

Corollary 5.2 Given n� 3 and k � 1, let �nk be the graph obtained by taking k copies of �n (defined
in Figure 14), and identifying them all along the subgraph induced by V.�n/nfa0g. Thus�nk has vertices
a1; a2; : : : ; an; b1; : : : ; bn and also a01; : : : ; a0k . (The left side of Figure 15 shows �42.) Then W�nk

contains an index four subgroup isomorphic to a RAAG.

Proof Fix n� 3; k � 1 and let �D�nk . We define ƒ, a subgraph of �c consisting of two components.
The first component ƒa is the union of the edges of �c of the form a1ai , where 2� i � n and a1a0j for
1 � j � k. The second component ƒb is the path in �c visiting b1; b2; : : : ; bn. (See the right side of
Figure 15 for an illustration of the case nD 4 and k D 2).

Let‚D‚.�;ƒ/ be as in the previous sections. We verify the properties R1–R4, F1 and F2. It will then
follow from Theorem 4.8 that the subgroup generated by E.ƒ/ is an index four visual RAAG subgroup.
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Figure 15: The figure shows �42 on the left, and the two components of ƒ for the graph �42 on
the right. The component ƒa is shown in red and the component ƒb is shown in blue.

The conditions R1, R2 and F1 are immediate. Condition F2 holds by Remark 4.3. We now check R3.
Each square in � is of one of the following forms:

(1) biaiC1biC1a1 for 1� i � n� 1;

(2) biaiC1biC1a0j for 1� i � n� 1 and 1� j � k;

(3) bia1bi 0a0j for 1� i < i 0 � n and 1� j � k;

(4) bia0j bi 0a0j 0 for 1� i < i 0 � n and 1� j � k.

Condition R3 follows immediately for the first type of square, as the appropriate ƒ–convex hulls do not
contain any additional vertices not included in the vertex set of the square. For the second type of square,
the convex hull in ƒb does not contain any additional vertices, but the convex hull in ƒa contains the
additional vertex a1, as this vertex lies on the ƒa–path between aiC1 and a0j . Since a1 is adjacent to
bi and biC1, the condition R3 is verified for this type of 2–component square. For the third type, the
ƒ–convex hull of fa1; a0j g does not contain any additional vertices of ƒ, and the ƒ–convex hull of
fbi ; bi 0g contains the additional vertices biC1; : : : ; bi 0�1. Since a1 and a0j are adjacent to each of these,
R3 is verified for this type of 2–component square as well. Finally, for the last type, the ƒ–convex hull
of fa0j ; a0j 0g contains the additional vertex a1, and the ƒ–convex hull of fbi ; bi 0g contains the additional
vertices biC1; : : : ; bi 0�1. Once again, it is easily verified that a0; a1j ; a1j 0 are each adjacent to each of
bi ; : : : ; bi 0 . Thus R3 is verified.

Finally, we check R4. Let 
 be a ƒaƒb–cycle and let e be an edge of 
 . First suppose e is of the form
aibi for 2� i � n. In this case, 
 necessarily passes through bi�1 and some a, where either aD a1 or
a D a0j , for some 1 � j � k. Thus the ƒaƒb–square bi�1aibia satisfies the criterion in R4, since it
contains e, and the two vertices a and bi�1 are contained in the ƒ–convex hull of the vertices of 
 . The
case where e is of the form aibi�1 for 2� i � n is similar.

Now suppose e is of the form a1bi for some 1� i � n. Then 
 necessarily passes through an edge of
one of the following forms: bia0j for some 1 � j � k, biai or biaiC1. In the first of these cases, 
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necessarily also passes through a vertex bi 0 for some i 0 ¤ i , and a1bia0j bi 0 is the desired square. If the
edge is of the form biai (resp. biaiC1) then 
 must also pass through bi�1 (resp. biC1), and the desired
square is a1biaibi�1 (resp. a1biaiC1biC1). The case where e is of the form a0j bi for some 1� i � n
and 1� j � k is similar. This completes the verification of R4, and the corollary follows.

Remark 5.3 The RAAGs obtained in the above corollary do not have a tree for defining graph when
k � 2 and n� 3. This is easy to check by computing the associated commuting graph.

5.2 2–Dimensional RACGs with planar defining graph

Nguyen and Tran [2019] characterized exactly which one-ended, 2–dimensional RACGs defined by planar
nonjoin, CFS graphs are quasi-isometric to RAAGs. In this subsection, we use their work in conjunction
with Theorem 4.8 to prove Theorem B from the introduction. Note that CFS is a graph-theoretic condition
introduced in [Dani and Thomas 2015] to characterize RACGs with at most quadratic divergence. We
omit the definition, as it is not needed here.

Remark 5.4 Any one-ended, 2–dimensional RACG that is quasi-isometric to a RAAG must have CFS
defining graph. This follows as one-ended RAAGs have either linear or quadratic divergence [Behrstock
and Charney 2012], and the defining graph of a 2–dimensional RACG with linear or quadratic divergence
is CFS [Dani and Thomas 2015].

Recall that a graph † is a suspension if † decomposes as a join †D fa1; a2g?B where a1 and a2 are
nonadjacent vertices. We also say that † is the suspension of the graph B . We use the notation †k.a; b/

to denote the suspension graph fa1; a2g ? fb1; : : : ; bkg, and we say that a1 and a2 are the suspension
vertices.

Let � be a graph which is connected, triangle-free, CFS and planar. Suppose that a planar embedding
from � into the sphere S2 is fixed. Nguyen and Tran [2019] constructed a tree T (this is the visual
decomposition tree of Section 3 of that paper) associated to � with the following properties. The vertices
of T are in bijection with maximal suspension subgraphs of � . As � is triangle-free, every maximal
suspension of � is of the form †k.a; b/, where both fa1; a2g and fb1; : : : ; bkg are each sets of disjoint
vertices of � , and k � 3 if T contains at least two vertices. Moreover, every vertex of � is contained
in some suspension corresponding to a vertex of T . Two vertices of T corresponding to suspensions
†D †k.a; b/ and †0 D †l.c; d/ are connected by an edge if †\†0 is a 4–cycle C which separates
S2 into two nontrivial components B1 and B2, such that †1 nC � B1 and †2 nC � B2. Moreover, it
must follow (by the maximality of the suspensions) that C D fa1; c1; a2; c2g, ie C contains exactly the
suspension vertices of † and †0.

If � (with the above assumptions) is a join, then it readily follows that � is quasi-isometric to a RAAG
whose defining graph is a tree of diameter at most 2. Nguyen and Tran [2019, Theorem 1.2] showed that

Algebraic & Geometric Topology, Volume 24 (2024)



Right-angled Artin subgroups of right-angled Coxeter and Artin groups 795

if � is not a join, then W� is quasi-isometric to a RAAG if and only if every vertex v 2 T has valence
strictly less than k, where †k.a; b/ is the maximal suspension in � corresponding to v. Moreover, they
showed that such RAAGs have defining graph a tree of diameter at least 3. Below, we prove such RACGs
are in fact commensurable to RAAGs.

Theorem 5.5 Let W� be a 2–dimensional , one-ended RACG with planar defining graph � . Then W� is
quasi-isometric to a RAAG if and only if it contains an index 4 subgroup isomorphic to a RAAG.

Proof One direction of the theorem is obvious. Thus, we prove that if W� satisfies these hypotheses and
is quasi-isometric to a RAAG, then W� contains an index 4 subgroup isomorphic to a RAAG. We do this
by constructing a subgraph ƒ� �c with two components and satisfying the hypotheses of Theorem 4.8.

Fix a planar embedding of � into the sphere S2. Note that by Remark 5.4 and the hypotheses of the
theorem, it follows that � is triangle-free, CFS and planar. Thus, there exists a visual decomposition
tree T associated to � as described above. Furthermore, as W� is quasi-isometric to a RAAG, it follows
from [Nguyen and Tran 2019, Theorem 1.2] that the valence of a vertex of T corresponding to the
maximal suspension †k.a; b/ is less than k.

Henceforth, to simplify notation, the word suspension will always refer to a maximal suspension, and
will consequently correspond to a vertex of T . Given a suspension †k.a; b/D fa1; a2g?B we say that a
labeling fb1; : : : ; bkg of the vertices of B is cyclic if the following holds. If C is a 4–cycle spanning the
vertices fa1; bi ; a2; biC1g for some 1� i � k or spanning the vertices fa1; b1; a2; bkg, then every vertex
of † nC is contained in a common component of S2 nC . Observe that if E is a cycle corresponding to
an edge of T incident to the vertex of T given by †k.a; b/, then the planarity of � implies that E is one
of the cycles C mentioned in the previous sentence.

Let N be the number of vertices of T . Let T1� � � � � TN D T be a nested sequence of subtrees of T such
that T1 consists of a single vertex of T and Ti has exactly i vertices. Such choices are clearly possible.
For each 1� i � n, let �i be the subgraph of � spanned by every suspension that corresponds to a vertex
of Ti . Note that �i � �iC1 for all 1� i < N and that �N D � . We define a nested sequence of graphs
ƒ1 � � � � �ƒN such that for each 1� i �N , ƒi � �

c
i and the following hold:

(1) Let C be a 4–cycle corresponding to an edge of T that is incident to Ti . Then each pair of
nonadjacent vertices in C is contained in a common edge of ƒi .

(2) The graph ƒi contains exactly two components, and ‚i D‚.�i ; ƒi / satisfies conditions R1–R4,
F1 and F2.

The theorem clearly follows from this claim by using the graph ƒDƒN � �
c .

We first define ƒ1 corresponding to the vertex T1 D fvg. Let †D†k.a; b/D fa1; a2g? fb1; : : : ; bkg be
the suspension corresponding to v, and assume that fb1; : : : ; bkg is cyclic. As the valence of v in T is
less than k, by possibly relabeling, we can assume that the 4–cycle fa1; b1; a2; bkg does not correspond
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to an edge of T . We define one component of ƒ1 to be the edge .a1; a2/, and the other component of
ƒ1 to consist of the edges .b1; b2/; .b2; b3/; : : : ; .bk�1; bk/. By the observation above and our choice of
labeling, any 4–cycle C corresponding to an edge of T incident to v is of the form fa1; bi ; a2; biC1g for
some 1� i � k� 1. Thus condition (1) follows. Condition (2) is readily verified.

Suppose now that we have defined the graph ƒn�1 corresponding to the tree Tn�1 satisfying conditions
(1) and (2). We now define ƒn.

Let u be the unique vertex in Tn nTn�1, and let u0 be the unique vertex of Tn�1 that is adjacent to u. Let
†D†k.a; b/D fa1; a2g? fb1; : : : ; bkg and †0 D†l.c; d/D fc1; c2g? fd1; : : : ; dlg be the suspension
graphs corresponding to u and u0 respectively. Furthermore, suppose these labelings are cyclic. It follows
that E D fa1; c1; a2; c2g is the 4–cycle corresponding to the edge in T between u and u0. By possibly
relabeling, we can assume that c1 D b1, c2 D bk , a1 D d1 and a2 D dl . As ƒn�1 satisfies (1) above,
.a1; a2/ and .c1; c2/ are edges of ƒn�1.

As the valence of u is less than k, there exist some 1 � j < k such that the 4–cycle fbj ; a1; bjC1; a2g

does not correspond to an edge of T . We define ƒn � �
c
n to contain every edge of ƒn�1 � �

c
n�1 � �

c
n

and additionally the edges

.b1; b2/; .b2; b3/; : : : ; .bj�1; bj /; .bjC1; bjC2/; : : : ; .bk�1; bk/:

This corresponds to adding one or two line segments each to a distinct vertex of ƒn�1. As ƒn�1 contains
two components (by (2)) and does not contain any cycles (by R1), it follows that ƒn contains two
components and satisfies R1 as well. Furthermore, (1) and condition F1 (for ‚n) follow from directly
from our choices. Condition F2 then follows from Remark 4.3.

We now check R2. Let x; y 2ƒn be vertices contained in the same component of ƒn. If x and y are both
contained in ƒn�1, then the claim follows as ƒn�1 satisfies R2 and no new edges are added between
vertices of �n�1 in forming �n. If x and y are both contained in †, then by construction, they must lie in
the same factor of the join † and there is no edge between them. The only case left to check is that x and
y lie in different components of S2 nE. However, in this case there is no edge between x and y as E
separates x from y in the planar embedding.

We now check that R3 holds. Let C be a 2–component square in ƒn. As E separates every vertex of
† nE from every vertex in .�n�1 nE/� �n, it follows that either C lies in �n�1 � �n or C lies in †. In
the first case the claim follows as ‚n�1 satisfies R3 (and noting that the convex hull of C in ƒn lies in
ƒn�1). In the latter case, the claim is easily verified.

We now check R4. Let P be a 2–component cycle in �n. If P lies entirely in �n�1 then every edge of P
satisfies condition R4 as ‚n�1 satisfies R4. If P lies entirely in †, then R4 is easily verified. Thus, we
may assume that P decomposes into two subpaths P1 and P2 such that P1 � �n�1 and P2 �† nE. As
P does not repeat vertices, it follows that P2 consists of just two edges .a1; bq/ and .a2; bq/ for some
2� q � k. As the valence of u0 is less than l , there exists some 1� q0 < l and corresponding 4–cycle
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fc1; dq0 ; c2; dq0C1g such that every vertex of �n is contained in a common component of S2 nC . From
this, we see that a1 and a2 are in different components of �n�1 n fc1; c2g. Thus, P1 must either contain
c1 or c2. Suppose that P1 contains c1 (the other case is similar). The path P1 does not contain both the
edge .a1; c1/ and the edge .a2; c1/, for if it did, then P would either the equal 4–cycle fa1; c1; a2; bqg or
contain it as a subcycle. In the former case P �†, a case we have already ruled out, and in the latter case,
P necessarily repeats a vertex (which is not allowed). We now define a cycle P 0 depending on which
edges P1 contains. We set P 0D .P1n.a1; c1//[.a2; c1/ if .a1; c1/�P1, P 0D .P1n.a2; c1//[.a1; c1/

if .a2; c1/� P1, and P 0 D P1[ .a1; c1/[ .a2; c1/ if P1 does not contain either of .a1; c1/ and .a2; c1/.
In each case, it follows that P 0 is a cycle in �n�1 containing every edge of P1, except possibly .a1; c1/

and .a2; c1/. Additionally, every vertex of P 0 is a vertex of P , so the ƒ–convex hull of P 0 is contained
in the ƒ–convex hull of P . From this and as �n�1 satisfies R4, it follows that every edge of P that is
contained in P1 satisfies R4 as well. Finally, every edge of P nP1 can been seen to satisfy R4 by using
the 4–cycle fa1; bq; a2; c1g.

6 Generalized reflection subgroups of RAAGs

Let A� be a RAAG. A generalized RAAG reflection is a conjugate of an element of V.�/, ie wsw�1 for
some s 2 V.�/[V.�/�1 and w a word in A� . Let T be a set of reduced generalized RAAG reflections.
We say that T is trimmed if T\T�1 D∅, and if given any two distinct generalized RAAG reflections
wsw�1 and w0s0w0�1 in T, no expression for w0 has prefix ws�1 or prefix ws. The following lemma
follows from a straightforward adaptation of the proof of [Dani and Levcovitz 2021, Lemma 10.1] to the
setting of RAAGs.

Lemma 6.1 Let T be a set of generalized RAAG reflections in the RAAG A� , and let G be the subgroup
generated by T. Then G is generated by a trimmed set of generalized RAAG reflections which can be
algorithmically obtained from T.

In this section, we give a new proof of a result of Dyer:

Theorem 6.2 [Dyer 1990] Let T be a finite set of generalized RAAG reflections in A� . Then the
subgroup G <A� generated by T is a RAAG. Moreover , if T is trimmed then .G;T/ is a RAAG system.

We will use the characterization of RAAGs in Theorem 2.2 to show that G is a RAAG. We first prove a
series of lemmas about disk diagrams of a special type, namely, ones whose boundary labels are words
over a trimmed set of generalized RAAG reflections.

The setup for these lemmas is as follows and will be fixed for the rest of this section. We fix a trimmed
set T of reduced generalized RAAG reflections in A� . Let z D r1 � � � rn be an expression for the identity
element where ri D wisiw

�1
i 2 T for each 1� i � n. Let D be a disk diagram whose boundary @D is

labeled by z. For 1� i � n, let pri
be the subpath of @D which is labeled by ri . Furthermore let pwi

and
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pw�1
i

denote the subpaths of @D labeled wi and w�1
i respectively, and let ei denote the edge labeled si .

Let Hi be the hyperplane dual to ei , and let HD fHig
n
iD1 be the collection of all such hyperplanes. Note

that as ri is a reduced word, no hyperplane is dual to two edges of pri
for any i .

In all of the following lemmas, arithmetic is taken modulo n.

Lemma 6.3 For each 1 � i � n, the hyperplane Hi does not intersect a hyperplane dual to pwi
or a

hyperplane dual to pw�1
i

Proof Suppose Hi intersects a hyperplane K that is dual to an edge f of pwi
. Without loss of generality,

we may assume that f is the edge closest to ei out of all possible choices for K. As no hyperplane is
dual to two edges of pri

, it follows that every hyperplane dual to an edge of pwi
which lies between

ei and f must intersect K. Thus, wi has suffix the word t1 � � � tm, where t1 is the label of K and t1
commutes with si , as well as with tj for 2 � j �m. This readily implies that ri is not reduced, for in
ri Dwisiw

�1
i , an occurrence of the RAAG generator t1 in wi can be canceled with an occurrence of t�1

1

in w�1
i . However, this is a contradiction as ri is reduced by assumption. The argument for hyperplanes

dual to pw�1
i

is analogous.

Lemma 6.4 For each 1� i � n, the hyperplane Hi is not dual to pwiC1
, pw�1

iC1
, pw�1

i�1
or pwi�1

.

Proof For a contradiction, suppose Hi is dual to an edge f of pwiC1
. By Lemma 6.3, every hyperplane

dual to an edge of pw�1
i

must also be dual to pwiC1
. Write siw�1

i D t1 � � � tm and wiC1D k1 � � � kl where
tj 2 V.�/ for 1� j �m and kj 2 V.�/ for 1� j � l . The structure of the hyperplanes in D implies that
wiC1 has an expression which begins with t�1

m � � � t
�1
1 D wis

�1
i . This is a contradiction as T is trimmed.

A similar argument shows that Hi is not dual to pw�1
i�1

.

Suppose now that Hi is dual to pwi�1
. By Lemma 6.3, it follows that Hi�1 is dual to pwi

. However,
this is not possible by the same argument as above. Similarly, Hi cannot be dual to pw�1

iC1
.

The proof of the following lemma is similar to that of the previous one.

Lemma 6.5 If Hi DHiC1 for some 1� i � n then ri l r�1
iC1.

Lemma 6.6 If Hi intersects HiC1, then ri and riC1 commute. Furthermore , there is a disk diagram
D0 with boundary label r1 � � � ri�1riC1ririC2 � � � rn, such that the natural bijection , from ei , eiC1 and the
edges traversed by the subpath of the boundary path of D labeled by riC2 � � � rnr1 � � � ri�1 to the edges
traversed by the corresponding subpaths of the boundary path of D0 with the same labels , preserves
boundary combinatorics.

Proof Suppose Hi intersects HiC1. By Lemma 6.3, every hyperplane dual to pw�1
i

is either dual
to pwiC1

or intersects HiC1. Similarly, every hyperplane dual to pwiC1
is either dual to pw�1

i
or

intersects Hi . It then readily follows that wi has a reduced expression ba1 and wiC1 has a reduced
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expression ba2, where a1, a2 and b are words, such that the generators in the word a1si are all distinct
from and commute with the generators in the word a2siC1. Consequently, ri commutes with riC1.

We now construct the disk diagram D0. By Tits’ solution to the word problem, the expression ba1

(resp. ba2) can be obtained from wi (resp. wiC1) by sequentially permuting adjacent letters. Thus, by
repeatedly applying Lemma 2.11(1), we obtain a disk diagram with boundary label

r1 � � � ri�1.ba1sia
�1
1 b�1/.ba2siC1a

�1
2 b�1/riC2 � � � rn:

By repeatedly applying Lemma 2.11(2), we can “cancel” b�1b and obtain a disk diagram with boundary
label

r1 � � � ri�1.ba1sia
�1
1 /.a2siC1a

�1
2 b�1/riC2 � � � rn:

Then, by repeatedly applying Lemma 2.11(1), we obtain a disk diagram with label

r1 � � � ri�1.ba2siC1a
�1
2 /.a1sia

�1
1 b�1/riC2 � � � rn:

By Lemma 2.11(3), we obtain a disk diagram with boundary label

r1 � � � ri�1.ba2siC1a
�1
2 b�1/.ba1sia

�1
1 b�1/riC2 � � � rn:

Finally, by repeatedly applying Lemma 2.11(1), we obtain a disk diagram D0 with boundary label

r1 � � � ri�1riC1ririC2 � � � rn:

Note that in each of these steps, the desired boundary combinatorics are preserved.

Lemma 6.7 For every 1� i � n, there exists some j ¤ i such that Hi DHj .

Proof Suppose we have a disk diagram with boundary label z D r1 � � � rn such that, for some 1� i � n,
the hyperplane Hi is dual to an edge f of @D where f ¤ ej for all 1� j � n. We call any disk diagram
which has such an Hi a pathological diagram with pathology caused by Hi . Given such a diagram, we
define p to be a path along @D between ei and f , which does not include ei and f . We also let H0

denote the set of Hj such that ej is contained in p.

Given a pathological disk diagram D we may choose a hyperplane Hi causing the pathology together
with a path p such that the set H0 is minimal among all possible choices of Hi and p. After such a choice,
we call jH0j the complexity of D. We will prove that pathological diagrams are not possible by induction
on the complexity c of such a diagram. The base case, when c D 0, already follows from Lemma 6.4.

Now suppose we are given a pathological disk diagram D with pathology caused by Hi such that its
complexity is c D jH0j> 0, and suppose by induction there do not exist pathological disk diagrams of
complexity smaller than c.

The edge f ¤ ei of @D that is dual to Hi lies in a path pri0
in @D labeled by wi 0si 0w

�1
i 0 for some

1� i 0 � n where i ¤ i 0. Let Q denote the hyperplane Hi 0 . Note that Q may or may not be in H0. We
prove our claim by considering two cases:
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Case 1 Every hyperplane in H0 intersects Hi .

We first observe that H0 is nonempty (since the complexity of D is positive) and does not consist of
Q alone (by Lemma 6.4). Therefore, we may choose K 2 H0 nQ such that no hyperplane in H0 nQ

intersects Hi between K\Hi and Hi \ei . Let 1� l � n be such that K is dual to el �prl
�p. Then for

each j with i < j < l , the hyperplane Hj intersects K DHl . Thus, by repeatedly applying Lemma 6.6,
we can produce a new disk diagram with boundary label r1 � � � rlri � � � rl�1rlC1 � � � rn. Furthermore, this
new disk diagram is still pathological and has complexity smaller than D. However, this is not possible
by our induction hypothesis.

Case 2 Some hyperplane K 2H0 does not intersect Hi .

We can choose such a hyperplane K to be innermost, ie choose K 2H0 such that K does not intersect Hi

and such that any hyperplane of H0 dual to the subpath of p between the edges dual toK intersectsK. Since
Hi and p were chosen to attain the complexity of D, it follows that K does not cause a pathology, and is
dual to distinct edges el and el 0 in p, where 1� l; l 0�n. By relabeling the rj ’s if necessary, we may assume
that l < l 0, and that the subpath of @D from el to el 0 is contained in p. By repeatedly applying Lemma 6.6,
we can produce a new pathological disk diagram D0 with label r1 � � � rl�1rlC1 � � � rl 0�1rlrl 0 � � � rn and
where some hyperplane, which we still denote by K, is dual to both the edge labeled by el and the
one labeled by el 0 . By Lemma 6.5, rl l r�1

l 0
. Furthermore, by repeatedly applying Lemma 2.11(1) if

necessary, we may assume that rl D r�1
l 0

is the label of @D0.

We now produce a new disk diagram D00 by identifying the consecutive paths in @D0 labeled by rl and rl 0 ,
ie we fold these two paths together. If K ¤Q, then we have produced a new pathological disk diagram
with complexity c � 2, contradicting the induction hypothesis. On the other hand, if K DQ, note that
the image of Hi in D00 must intersect the path labeled by ri � � � rl�1rlC1 � � � rl 0�1 in @D00. Moreover we
claim that it cannot be dual to an edge labeled by ej for i < j � l 0 � 1. Suppose it is dual to an edge
labeled ej . It follows that the hyperplane Hj in D is dual to an edge f 0 in p, such that f 0¤ ek for any k,
and such that the images of f and f 0 are identified in D00. This is a contradiction, as it implies that Hj

causes a pathology of lower complexity than Hi . Thus, the image of Hi in D00 causes a pathology of
complexity at most c � 2, which is again a contradiction.

Proof of Theorem 6.2 As G can be generated by a trimmed set of generalized RAAG reflections (by
Lemma 6.1), we assume without loss of generality that T is trimmed. We will show that .G;T/ is a
RAAG system by applying Theorem 2.2. Note that T\T�1 D ∅ as T is trimmed. We check each
condition of that theorem, by proving the corresponding two claims:

(i) Every r 2 T has infinite order.

By definition, r is equal to a reduced word wsw�1 with s 2 V.�/ [ V.�/�1 and w a word in W� .
It follows that wsnw�1 is an expression for rn. Moreover, as r is reduced, it readily follows from
Theorem 2.4 that wsnw�1 is reduced as well. Hence, r has infinite order.
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(ii) Given any word w D a1 � � � am, with ai 2T, either w is reduced over T or there is an expression
for w of the form a1 � � � Oai � � � Oaj � � � am.

Suppose wD a1 � � � am is not reduced over T. Let w0D b1 � � � bk , with bi 2T and k <m, be an expression
for w which is reduced over T. Form a disk diagram D with boundary label ww0�1.

We relabel the generalized reflections in the word ww0�1 by setting ri D ai for 1 � i � m, and
rmCi D b

�1
k�iC1

(the i th generalized RAAG reflection in w0�1) for 1 � i � k. By Lemma 6.7, every
H 2H is only dual to edges of @D labeled by si for some i , where ri Dwisiw

�1
i . As m>k, there exists

some hyperplane H 2H that is dual to two edges of the subpath p of @D labeled by w. Furthermore, we
may choose an innermost such H 2H, in the sense that every hyperplane in H nH intersects p at most
once.

Let el and el 0 be the edges dual to H where l < l 0 �m. By repeatedly applying Lemma 6.6, we produce
a disk diagram whose boundary label is

r1 � � � Orl � � � rl 0�1rlrl 0 � � � rn;

such that a hyperplane of H is still dual to the images of the edges el and el 0 under the natural map
between the boundaries of the disk diagrams. By Lemma 6.5, rl D r�1

l 0
. Thus, r1 � � � Orl � � � Orl 0 � � � rn is

an expression for ww0�1. Consequently, r1 � � � Orl � � � Orl 0 � � � rm D a1 � � � Oal � � � Oal 0 � � � am is an expression
for w.
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