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Cohomological and geometric invariants of simple complexes of groups

NANSEN PETROSYAN

TOMASZ PRYTUŁA

We investigate cohomological properties of fundamental groups of strictly developable simple complexes
of groups X . We obtain a polyhedral complex equivariantly homotopy equivalent to X of the lowest
possible dimension. As applications, we obtain a simple formula for proper cohomological dimension of
CAT.0/ groups whose actions admit a strict fundamental domain; for any building of type .W; S/ that
admits a chamber transitive action by a discrete group, we give a realisation of the building of the lowest
possible dimension equal to the virtual cohomological dimension of W ; under general assumptions, we
confirm a folklore conjecture on the equality of Bredon geometric and cohomological dimensions in
dimension one; finally, we give a new family of counterexamples to the strong form of Brown’s conjecture
on the equality of virtual cohomological dimension and Bredon cohomological dimension for proper
actions.

05E18, 05E45, 20F65; 20E08, 20J06

1 Introduction

Overview

For a finitely generated Coxeter system .W; S/, the Davis complex †W is a CAT.0/ polyhedral complex
on which the Coxeter group W acts properly, cocompactly and by reflections. The complex †W is
very useful in understanding properties of W , or more generally of buildings of type .W; S/ where it
appears as an apartment. However, the Davis complex †W does not in general produce the realisation of
these buildings of the lowest possible dimension. There is an associated contractible polyhedral complex
B.W; S/ of dimension equal to the virtual cohomological dimension vcdW of the Coxeter group W
(except possibly when vcdW D2) introduced by Bestvina in [4]. The groupW acts by reflections properly
and cocompactly on B.W; S/. The Bestvina complex B.W; S/ is equivariantly homotopy equivalent to
the Davis complex †W ; see the authors’ [26]. Therefore by replacing the apartments with B.W; S/ one
obtains a realisation of the building of type .W; S/ of the lowest possible dimension. In [26], we derived
analogous results in the more general setting of strictly developable thin simple complexes of finite groups.
In doing so we relied on compactly supported cohomology as a convenient tool for computations. This
is certainly the norm, as compactly supported cohomology can be very useful in computations of the
cohomology of a G–CW–complex with group ring coefficients; see Bestvina [4], Brown [6], Davis [9],
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1122 Nansen Petrosyan and Tomasz Prytuła

Degrijse and Martínez-Pérez [12], and Harlander and Meinert [20]. A major drawback of this approach
however is that it restricts one to only complexes that are locally finite.

To resolve this difficulty, in this paper we introduce a new approach that bypasses compactly supported
cohomology and thus allows us to study nonproper actions admitting a strict fundamental domain, or
equivalently, simple complexes of groups whose local groups need not be finite. Given a simple complex
of groups G.Q/, we first extend the definition of the Bestvina complex to G.Q/. Our methods then
directly link Bredon cohomology of the Bestvina complex associated to G.Q/ with certain coefficients,
and the relative integral cohomology of the panel complexes over the poset Q. This enables us to compute
the cohomology of the fundamental group of G.Q/, determine its cohomological dimension, and identify
it with the dimension of the generalisation of Bestvina complex in this context.

Our approach also leads to cohomological computations on more naturally occurring simple complexes
of groups without the thinness assumption. This is a standing assumption in both [12] and [26]. It states
that the cellular structure of a complex is in a sense minimal with respect to the group action, and it is
fairly restrictive. In particular, removing this assumption allows us to investigate group actions on CAT.0/
polyhedral complexes that admit a strict fundamental domain.

Besides aforementioned applications, another important motivation to study the generalised Bestvina
complex comes from the Baum–Connes and Farrell–Jones conjectures (see eg Baum, Connes and
Higson [3], and Lück [23]), where it is always desirable to have models for the classifying space of G
for the family of stabilisers F of minimal dimension and cell structure (see eg Fuentes [17] for a direct
application of the Bestvina complex).

Statement of results

A simple complex of groups G.Q/ over a finite poset Q consists of a collection of groups fPJ gJ2Q and a
collection of monomorphisms fPJ ! PT gJ6T2Q satisfying the obvious compatibility conditions. We
say that G.Q/ is thin if the monomorphism PJ ! PT is an isomorphism if and only if J D T . The
fundamental group G of G.Q/ is defined as the direct limit of the system fPJ gJ2Q. We say that G.Q/ is
strictly developable if for every group PJ the canonical map to the limit G is a monomorphism; in this
case, we identify PJ with its image in G and call it a local subgroup of G.

A family of subgroups of a discrete group G is a collection of subgroups that is closed under conjugation
and taking subgroups. Given a collection of subgroups fPJ gJ2Q of G, the family generated by the
collection fPJ gJ2Q is the smallest family F of subgroups of G that contains all elements of fPJ gJ2Q.

Suppose G.Q/ is strictly developable with fundamental group G. We say that G.Q/ is rigid, if for any
J 2 Q no G–conjugate of PJ is properly contained in PJ . Define a block C � Q as an equivalence
class of elements of Q under the relation � generated by J 0 � J if J 0 6 J and PJ 0 ! PJ is an
isomorphism. For a fixed J 2 Q and g 2 G, let �gJ be the subset of Q that consists of all U 2 Q for
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Cohomological and geometric invariants of simple complexes of groups 1123

which PU D g�1PJg (seen as subgroups of G). We denote by C gJ ��
g
J a block in �gJ . Let IJ be a

complete set of representatives of

fg 2G j g�1PJg D PU for some U 2Qg=PJ ;

where PJ acts by left multiplication.

Let K D jQj denote the geometric realisation of the poset Q. For a subset ��Q such that PU D PU 0
for all U;U 0 2�, define subcomplexes K� and K>� of K as

K� D
ˇ̌
fV 2Q j V > J for some J 2�g

ˇ̌
;

K>� D
ˇ̌
fV 2Q j V > J for some J 2� and PV � PJ g

ˇ̌
:

The complex K D jQj is an example of a panel complex over the poset Q. For a panel complex Y over Q,
the Basic Construction is a G–space D.Y;G.Q// obtained by gluing copies of Y indexed by elements
of G, according to the combinatorial information in Y and G.Q/.

We denote by H�F .X IM/ the Bredon cohomology groups of a G–CW–complex X with respect to the
family of subgroups F of G with coefficients a contravariant functor M from the orbit category OFG

to Z–Mod. In what follows, we will restrict to coefficients AH D ZŒhomG.�; G=H/� for a subgroup
H 2 F , and a certain refinement of AH which we denote by BH . Let cdF G (resp. gdF G) denote the
Bredon cohomological (resp. geometric) dimension of G with respect to the family F and let EFG denote
the universal G–CW–complex with stabilisers in F . If F is the family of all finite subgroups of G, then
the respective notions are denoted by cdG, gdG, and EG.

Theorem 1.1 (Theorem 6.1) Let G.Q/ be a strictly developable simple complex of groups with
fundamental group G, and let F be the family generated by local groups. Let X DD.K;G.Q// be the
associated Basic Construction. For J 2Q,

(1-1) H�F .X IBPJ /Š
M
g2IJ

M
C
g
J��

g
J

H�.KCgJ
; K>CgJ

/:

If G.Q/ is rigid and X is a model for EFG, then

(1-2) cdF G Dmaxfn 2N jHn.KC ; K>C /¤ 0 for some block C �Qg:

The rigidity assumption holds for example when the local groups are co-Hopfian, and hence in particular
when they are finite. We should also remark that the rigidity assumption on local groups in Theorem 1.1
is not superfluous.

Recall that an action of a group on cellular complex is admissible, if the setwise stabiliser of each cell is
also its pointwise stabiliser. If a group G acts admissibly on a simply connected cellular complex with a
strict fundamental domain Y then it is isomorphic to the fundamental group of a simple complex of groups
formed by cells of Y and their stabilisers (see Theorem 3.8). The following corollary of Theorem 1.1 is
straightforward.
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Corollary 1.2 Suppose a group G acts properly and admissibly on a CAT.0/ polyhedral complex X
with a strict fundamental domain Y . Let Q denote the poset of cells of Y ordered by reverse inclusion
(note that we have jQj DK D Y 0). Then

cdG Dmaxfn 2N jHn.KC ; K>C /¤ 0 for some block C �Qg:

This corollary is a generalisation of [12, Theorem 1.2] to nonthin complexes of groups. We remark that
nonthinness of a complex of groups resulting from the G–action on X is generic, eg in many cases in
order to obtain an admissible action one takes the barycentric subdivision which results in a nonthin
complex.

To obtain formula (1-2) of Theorem 1.1, we prove the following general result.

Theorem 1.3 (Theorem 2.5) Let G be a group and F be a family of subgroups. Suppose that X is a
cocompact model for EFG. Then

cdF G Dmaxfk 2N jHk
F .X;AH /¤ 0 for some cell stabiliser H g:

Moreover , if Hn
F .GIAL/¤ 0 for nD cdF G and L 2 F , then there exists a cell stabiliser H 6 L such

that Hn
F .GIAH /¤ 0.

Note that, under the assumptions of the theorem, there are only finitely many conjugacy classes of
stabilisers. Thus the theorem reduces the computation of the Bredon cohomological dimension of a
given group into a computation of finitely many cohomology groups. Theorem 1.3 together with [12,
Theorem 2.4] give us the following strengthening of [12, Theorem 1.1].

Corollary 1.4 (Corollary 2.7) Let X be a G–CW–complex that is a cocompact model for EG. Then

cdG Dmaxfk 2N jHk
c .X

H ; XHsing/¤ 0 for some cell stabiliser H g;

where XHsing �X
H consists of all points whose stabiliser strictly contains H .

Another application of Theorem 1.1 is the construction of new counterexamples to the strong form of
Brown’s conjecture via the notion of reflection-like actions. Here the removal of the thinness assumption
is the key to obtaining a systematic approach to constructing such examples. Reflection-like actions are
generalisations of groups acting by reflections on Euclidean spaces. The precise definition and examples
can be found in Section 9.

Theorem 1.5 (Theorem 9.8) Let F be a finite group admitting a reflection-like action on a compact ,
connected , flag simplicial complex L of dimension n > 1. Let WL be the right-angled Coxeter group
associated to L and G DWL ÌF be the associated semidirect product. Suppose that Hn.L/D 0. Then

vcdG 6 n and cdG D nC 1:

We refer the reader to Examples 9.14 and 9.16 for a specific construction of complexes L satisfying the
hypothesis of Theorem 1.5 via products of dihedral group actions on 2–dimensional Moore spaces.

Algebraic & Geometric Topology, Volume 24 (2024)



Cohomological and geometric invariants of simple complexes of groups 1125

Observe that as long as the complex of groups G.Q/ is thin, Theorem 1.1 implies that the Bredon
cohomological dimension of G depends only on the poset structure of Q. We show that for a strictly
developable thin simple complex of groups, there is a model for EFG of the smallest possible dimension
and a simple cell structure. The model is given as the Basic Construction where one replaces panel
complex K with the so-called Bestvina complex B .

Theorem 1.6 LetG.Q/ be a strictly developable thin complex of groups over a poset Q with fundamental
group G and let F be the family generated by the local groups. Then

(i) the standard development D.K;G.Q// and the Bestvina complex D.B;G.Q// are G–homotopy
equivalent , and

H�F
�
D.K;G.Q//IBPJ

�
Š

M
g2IJ

M
U2�

g
J

zH��1.K>U /I

(ii) if D.K;G.Q// is a model for EFG, then D.B;G.Q// is a cocompact model for EFG satisfying

dim
�
D
�
B;G.Q/

��
D

�
cdF G if cdF G ¤ 2;

2 or 3 if cdF G D 2;
and

(1-3) cdF G Dmaxfn 2N j zHn�1.K>J /¤ 0 for some J 2Qg:

Since buildings are CAT(0) and chamber transitive actions on them are thin (see Lemma 8.2), they are
ideally suited for applying Theorem 1.6.

Corollary 1.7 Let G be a group acting chamber transitively on a building of type .W; S/. Let G.Q/
be the associated simple complex of groups and let F be the family generated by the stabilisers. Then
D.B;G.Q// is a realisation of the building (and thus a cocompact model for EFG) of dimension

dim
�
D.B;G.Q//

�
D

�
vcdW if vcdW ¤ 2;
2 or 3 if vcdW D 2:

Moreover ,
H�F .GIBPJ /Š

M
g2IJ

M
U2�

g
J

zH��1.K>U /

and
cdF G D vcdW Dmaxfn 2N j zHn�1.K>J /¤ 0 for some J 2Qg:

The formula for Bredon cohomological dimension in Corollary 1.7 extends [12, Corollary 1.4] from
finite to arbitrary stabilisers. As a consequence of Corollary 1.7, we obtain one of the main results of
Harlander [19].

Corollary 1.8 (Corollary 8.4) Let G be a virtually torsion-free group acting chamber transitively on a
building of type .W; S/. Then

vcdG 6 vcdW CmaxfvcdP j P is a special parabolic subgroup of Gg:
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We point out that in [19, Theorem 2.8] it is proven that, under the assumptions of Theorem 1.6, the
dimension of Bestvina complex is minimal among G–complexes which admit a strict fundamental domain
with all acyclic panels. Theorem 1.6(ii) is stronger, as it states that the dimension of the Bestvina complex
is minimal among all possible models for EFG (except the case where cdF G D 2).

The next corollary lists equivalent conditions for fundamental groups of strictly developable thin simple
complexes of groups to act on trees with the prescribed family of stabilisers.

Corollary 1.9 (Theorem 7.1) Let G.Q/ be a strictly developable thin simple complex of groups over a
poset Q with the fundamental group G and let F be the family generated by local groups. Suppose that
D.K;G.Q// is a model for EFG. Then the following are equivalent :

(i) D.B;G.Q// is a tree and an equivariant deformation retract of D.K;G.Q//.

(ii) cdF G 6 1.

(iii) Hn.K>J /D 0 for all J 2Q and n> 1.

The following corollary is immediate.

Corollary 1.10 LetG be a group acting chamber transitively on a building of type .W; S/. The geometric
realisation of the building equivariantly deformation retracts onto a tree if and only if vcdW 6 1.

Corollary 1.9 is a generalisation of [9, Proposition 8.8.5] which deals with the case when G DW is a
Coxeter group acting on the Davis complex. It is a special case of the following folklore conjecture.

Conjecture 1.11 Let G be a group and F be a family of subgroups. Then cdF G 6 1 if and only if G
acts on a tree with stabilisers generating F .

This conjecture is wide open in general. When F is the trivial family, it reduces to the classical theorem
of Stallings and Swan. For the family of finite subgroups F , it follows from Dunwoody’s accessibility
result [16]. Recently, in [11], Degrijse verified the conjecture when F is the family of virtually cyclic
subgroups. Note that Corollary 1.9 confirms the conjecture when G admits a model for EFG with a strict
fundamental domain such that the associated complex of groups is thin.

Organisation

Sections 2 and 3 have a preparatory character. In Section 2, we give a background on classifying spaces
for families of subgroups and Bredon cohomology, and we prove Theorem 1.3. In Section 3, we define
simple complexes of groups, the Basic Construction and Bestvina complex. We describe the procedure of
thinning, and we use it to compute upper bounds for the geometric dimension of the fundamental group
of a simple complex of groups.
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The next three sections form the technical core of the paper. In Section 4, we prove Proposition 4.1 which
allows us to compute the Bredon cohomological dimension of a fundamental group of a thin complex of
groups. In Section 5, we prove an analogous Proposition 5.1 for an arbitrary complex of groups. Section 6
contains generalised statements and proofs of Theorems 1.1 and 1.6.

In the remaining sections we discuss applications and consequences of the main theorems. In Section 7,
we briefly discuss the case when cdF G D 1 and we give a proof of Corollary 1.9. In Section 8, we
discuss applications of our theory to chamber transitive automorphism groups of buildings and we prove
Corollary 1.7 as well as other applications and examples. In Section 9, we define reflection-like actions,
establish their basic properties and prove Theorem 1.5. We then give some examples of reflection-like
actions. Finally, in Section 10 we pose and discuss some open questions.
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2 Classifying spaces and Bredon cohomology

2.1 Classifying spaces for families of subgroups

Let G be a countable discrete group. A family F of subgroups of G is a collection of subgroups that is
closed under conjugation and taking subgroups. Given a collection of subgroups P of G, the family of
subgroups generated by P is the smallest family of subgroups F of G containing all subgroups of P .

Definition 2.1 A collection of subgroups P of G is rigid if for every H 2 P no G–conjugate of H is
properly contained in H .

Recall that a polyhedron (or a polyhedral complex) is a CW–complex whose attaching maps are piecewise
linear. We say that the action of a group G on a polyhedral (CW, simplicial) complex X is admissible
if for any cell e � X its pointwise stabiliser is equal to its setwise stabiliser. In such case we call X a
G–polyhedral (G–CW, G–simplicial) complex. A G–CW–complex X is cocompact (or the G–action on
X is cocompact) if X=G is compact, ie it has finitely many cells.

Definition 2.2 (classifying space EFG) Given a group G and a family of its subgroups F , a model for
the classifying space of G for the family F denoted by EFG is a G–CW–complex X such that

� for any cell e �X the stabiliser Ge belongs to the family F ,

� for any H 2 F the fixed point set XH is contractible.
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The classifying space EFG is a terminal object in the homotopy category of G–CW–complexes with
stabilisers in F , ie if X is a G–CW–complex with stabilisers in F then there exists a G–map X ! EFG

which is unique up to G–homotopy. In particular, any two models for EFG are G–homotopy equivalent.
The minimal dimension of a model for EFG is called the Bredon geometric dimension of G for the
family F and it is denoted by gdF G.

Remark 2.3 If F contains only the trivial subgroup, the classifying space EFG is the universal space
for free actions, commonly denoted by EG. If F consists of all finite subgroups of G, the classifying
space EFG is called the classifying space for proper actions and it is denoted by EG.

2.2 Bredon cohomology

The orbit category OFG is a category defined as follows: the objects are the left coset spaces G=H for
all H 2 F and the morphisms are all G–equivariant maps between the objects. Note that every morphism
' WG=H !G=P is completely determined by '.H/, since '.xH/D x'.H/ for all x 2G. Moreover,
there exists a morphism

G=H !G=P WH 7! xP if and only if x�1Hx 6 P:

We denote the morphism ' WG=H !G=P WH 7! xP by G=H x
�!G=P and note that it is determined

by the inclusion x�1Hx 6 P . Given H;P 2 F , we denote by homG.G=H;G=P / the set of morphisms
from G=H to G=P .

An OFG–module is a contravariant functor M W OFG ! Z–Mod. The category of OFG–modules,
denoted by Mod-OFG, is the category whose objects are OFG–modules and whose morphisms are
natural transformations between these objects. The set of morphisms between M;N 2 Mod-OFG is
denoted by HomF .M;N /.

A sequence
0!M 0!M !M 00! 0

in Mod-OFG is called exact if it is exact after evaluating in G=H for each H 2 F . For any P 2 F , the
OFG–module AP DZŒhomG.�; G=P /� is a free object in Mod-OFG. A module F 2Mod-OFG is free
if and only if F Š

L
˛2I AP˛ for some collection I of not necessarily distinct subgroups P˛ 2 F . We

will say that F is based at the elements P˛ 2 F for ˛ 2 I .

The nth Bredon cohomology group of G with coefficients M 2Mod-OFG is by definition

HnF .G;M/D ExtnOFG
.Z;M/;

where Z is the functor that maps all objects to Z and all morphisms to the identity map. The Bredon
cohomological dimension of G is defined to be

cdF G D supfn 2N j HnF .G;M/¤ 0 for some M 2Mod-OFGg:
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Given a G–CW–complex X , an OFG–module

CF
n .X/.�/ WOFG! Z–Mod

is defined as
CF
n .X/.G=H/D Cn.X

H /;

where C�.�/ denotes the cellular chains. Note that, in this way, the augmented cellular chain complex
of any model for EFG yields a free resolution of Z which can then be used to compute H�F .G;�/. It
follows that cdF G 6 gdF G.

We now consider the situation when G admits a cocompact model for EFG. In this case, Bredon
cohomology commutes with arbitrary direct sums of coefficient modules (see eg [25, Proposition 5.2])
and one obtains the following proposition, which is standard (see eg [12, equation 2]).

Proposition 2.4 Suppose that X is a cocompact model for EFG. Then

cdF G D supfk 2N jHk
F .X;AH /¤ 0 for some H 2 Fg:

Below we derive a strengthening of Proposition 2.4, which is a key ingredient in the proof of Theorem 1.1.

Theorem 2.5 Suppose that X is a cocompact model for EFG. Then

cdF G Dmaxfk 2N jHk
F .X;AH /¤ 0 for some cell stabiliser H g:

Moreover , if Hn
F .GIAL/¤ 0 for nD cdF G and L 2 F , then there exists a cell stabiliser H 6 L such

that Hn
F .GIAH /¤ 0.

Proof The chain complex CF
i .X/ forms a resolution of Z of finite length by finitely generated free

OFG–modules. Let P D kerfCF
n�1.X/! CF

n�2.X/g. Then P is projective and

0! P ! CF
n�1.X/! � � � ! CF

0 .X/! Z! 0

is exact. By applying the Bredon analogue of Schanuel’s lemma [7, VIII.4.4] to the above two resolutions,
it follows that there is a finitely generated free OFG–module F based at stabilisers of the action of G
on X such that P ˚F is a finitely generated free OFG–module again based at stabilisers of the action
of G on X . We can define the resolution .DF

� ; @F / of Z by finitely generated free OFG–modules

DF
i D

8̂̂̂<̂
ˆ̂:
CF
i .X/ if i 6 n� 2;
CF
n�1.X/˚F if i D n� 1;
P ˚F if i D n;
0 if i > n:

Since X is cocompact, by Proposition 2.4 there exists L 2 F such that Hn
F .X;AL/ ¤ 0. Then

Hn
F .D

F
� ;AL/¤ 0, which means that the coboundary map

ıLF W HomF .D
F
n�1;AL/! HomF .D

F
n ;AL/

Algebraic & Geometric Topology, Volume 24 (2024)



1130 Nansen Petrosyan and Tomasz Prytuła

is not onto. Rewriting this more explicitly using the Yoneda lemma,

ıLF W

kX
iD1

ZŒhomG.G=G�i ; G=L/�!
lX

jD1

ZŒhomG.G=G�j ; G=L/�

is not onto. This implies that there exists a stabiliser G� of some cell � such that the generator
.G=G�

x
�! G=L/ of the nth cochain group is not in the image of ıLF . Let H D x�1G�x 6 L. This

inclusion induces an OFG–module map AH !AL which in turn induces a map of cochain complexes

�� W HomF .D
F
� ;AH /! HomF .D

F
� ;AL/

such that
�n.G=G�

x
�!G=H/D .G=G�

x
�!G=L/:

By the commutativity ıLF ı�n�1D�n ı ı
H
F , we obtain that .G=G�

x
�!G=H/ is not in the image of ıHF .

Therefore,
ıHF W HomF .D

F
n�1;AH /! HomF .D

F
n ;AH /

is not onto, which shows that Hn
F .X;AH /DH

n
F .D

F
� ;AH /¤ 0.

Define a subset isomG.G=L;G=S/� homG.G=L;G=S/ by

isomG.G=L;G=S/D f' WG=L!G=S W L 7! xS j x�1Lx D Sg:

Define an OFG–module BS by

BS .G=L/D
�

ZŒisomG.G=L;G=S/� if LDG S;
0 if L¤G S;

where LDG S means that L and S are conjugate in G. For each

.' WG=L x
�!G=S/ 2 isomG.G=L;G=S/;

we set
BS .� WG=H

y
�!G=L/.'/D

�
.' ı � WG=H

yx
�!G=S/ if y�1Hy D L;

0 if y�1Hy ¤ L;

which is an element in BS .G=H/. It is not difficult to check that BS is well defined.

Corollary 2.6 Suppose that X is a cocompact model for EFG and that the collection of cell stabilisers is
rigid. Then

cdF G Dmaxfk 2N jHk
F .X;BP /¤ 0 for some cell stabiliser P g:

Proof First, note that the cocompactness of X implies that the set of conjugacy classes of cell stabilisers
is finite. By Theorem 2.5, there exists P 2 F that is a stabiliser of a cell in X such that Hn

F .X;AP /¤ 0
where cdF G D n. By the rigidity of stabilisers and iteration of Theorem 2.5, we can assume that P
does not contain a proper subgroup S such that Hn

F .X;AS /¤ 0. Observe that also by the rigidity for
H DG P ,

homG.G=H;G=P /D isomG.G=H;G=P /:

Algebraic & Geometric Topology, Volume 24 (2024)



Cohomological and geometric invariants of simple complexes of groups 1131

Again using rigidity, we can define an OFG–submodule CP of AP by

CP .G=H/D
�
0 if H DG P;
ZŒhomG.G=H;G=P /� if H ¤G P:

Considering the long exact sequence of the resulting short exact sequence

0! CP !AP ! BP ! 0;

we either haveHn
F .X; CP /¤0 orHn

F .X;BP /¤0. Considering a module that is a free cover of CP consist-
ing of free modules based at proper subgroups of P shows that if Hn

F .X; CP /¤ 0, then Hn
F .X;AS /¤ 0

for some S Œ P , which violates the minimality assumption on P ; hence Hn
F .X;BP /¤ 0.

The Bredon cohomological and geometric dimensions for proper actions are denoted respectively by cdG
and gdG.

Corollary 2.7 Let X be a G–CW–complex that is a cocompact model for EG. Then

cdG Dmaxfk 2N jHk
c .X

H ; XHsing/¤ 0 for some cell stabiliser H g;

where XHsing �X
H consists of all points whose stabiliser strictly contains H .

Proof The claim follows immediately from combining Corollary 2.6 and [12, Theorem 2.4].

3 Simple complexes of groups

3.1 Simple complexes of groups and the Basic Construction

Throughout, let Q be a finite poset. We denote by jQj the geometric realisation of Q, ie a simplicial
complex whose simplices are chains of elements of Q.

Definition 3.1 (simple complex of groups) A simple complex of groups G.Q/ over Q consists of the
following data:

� for any J 2Q there is a group PJ called a local group at J ,

� for any two elements J 6 T in Q there is a monomorphism

�TJ W PJ ! PT

such that if J 6 T 6 U then
�UT ı�TJ D �UJ :

Definition 3.2 (simple morphism) Let G.Q/ be a simple complex of groups and let G be a group. A
simple morphism  WG.Q/!G is a collection of maps  J W PJ !G satisfying

 T ı�TJ D  J

for all pairs J 6 T in Q. We say that  WG.Q/!G is injective on local groups if for every J 2Q the
map  J W PJ !G is injective.
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Given a simple complex of groups G.Q/, the fundamental group 1G.Q/ of G.Q/ is the direct limit of the
resulting direct system of groups

1G.Q/D lim
��!
J2Q

PJ :

Note that by the universal property of 1G.Q/ there exists a canonical simple morphism � WG.Q/!1G.Q/
such that for every J 2Q the map �J W PJ !G.Q/ is the canonical map to the limit.

Definition 3.3 (strict developability) We say that a simple complex of groups G.Q/ is strictly devel-
opable if the canonical simple morphism � WG.Q/!1G.Q/ is injective on local groups.

Note that the strict developability is equivalent to the existence of a simple morphism  WG.Q/!G that
is injective on local groups, where G is some group.

Convention 3.4 If  WG.Q/!G is a simple morphism that is injective on local groups then for any
J 2Q we identify the group PJ with its image  .PJ /6G.

Definition 3.5 (panel complex) A panel complex .X; fXJ gJ2Q/ over Q is a compact polyhedron X
together with family of subpolyhedra fXJ gJ2Q called panels such that

� X is the union of all the panels,

� XT �XJ if and only if J 6 T ,

� for any two panels their intersection is either a union of panels or empty.

Definition 3.6 (standard panel complex) Define the panel complex K over Q as follows. Let K D jQj
and for J 2 Q let KJ D jQ>J j where Q>J denotes the subposet of Q consisting of all the elements
greater than or equal to J .

Definition 3.7 (Basic Construction) Suppose that

� G.Q/ is a strictly developable complex of groups,

� X is a panel complex over Q,

�  WG.Q/!G is a simple morphism to a group G that is injective on local groups (thus for any
J 2Q we identify PJ with  .PJ /).

For a point x2X let J.x/2Q be such that the panelXJ.x/ is the intersection of all the panels containing x.
Define the Basic Construction D.X;G.Q/;  / as

D.X;G.Q/;  /DG �X=�;

where .g1; x1/� .g2; x2/ if and only if x1 D x2 and g�11 g2 2 PJ.x1/. Let Œg; x� denote the equivalence
class of .g; x/.
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The group G acts on D.X;G.Q/;  / by g � Œg0; x�D Œgg0; x�. It is easy to see that D.X;G.Q/;  / has
the structure of a polyhedral complex and that the G–action preserves that structure. The stabilisers of
this action are the conjugates of local groups PJ and the quotient is homeomorphic to

X Š Œe; X��D.X;G.Q/;  /:

Moreover, X Š Œe; X� is a so-called strict fundamental domain for the G–action in the sense that it is a
closed subset of D.X;G.Q// intersecting every orbit in precisely one point.

In fact, any admissible action with a strict fundamental domain arises in the way described above.

Theorem 3.8 [5, Proposition II.12.20] Suppose a group G acts admissibly on a connected polyhedral
complex X with a strict fundamental domain Y �X .

Then there is a strictly developable simple complex of groups G.Q/, where Q is the poset of cells
of Y (ordered by the reverse inclusion) and where the local group at cell e � Y is its G–stabiliser.
The inclusion of cell stabilisers into G defines a simple morphism  W G.Q/! G such that X is G–
equivariantly homeomorphic to the Basic Construction D.K;G.Q/;  /, where K is the standard panel
complex associated to Q. Moreover , if X is simply connected then G is isomorphic to the fundamental
group of G.Q/.

Convention 3.9 In the case when G is isomorphic to the fundamental group of G.Q/ and the simple
morphism G.Q/!G is the canonical simple morphism �, we will omit the morphism from the notation
and simply writeD.X;G.Q// for the associated Basic Construction (where X is a panel complex over Q).

3.2 Thinning procedure

Definition 3.10 We say that a simple complex of groups G.Q/ is thin if for any pair J 6 T in Q, the
monomorphism �TJ W PJ ! PT is an isomorphism if and only if J D T .

Remark 3.11 In [12; 26], the assumption that a simple complex of groups is thin is a part of its definition.

Below we describe a procedure of thinning, which, given a strictly developable simple complex of
groups G.Q/, results in a thin complex G.R/ together with a morphism of simple complexes of groups
G.Q/!G.R/ inducing an isomorphism of fundamental groups.

Definition 3.12 (block poset) Given a simple complex of groups G.Q/ with the collection of local
groups fPJ gJ2Q, let � be an equivalence relation on Q generated by

J � J 0 if J 6 J 0 and �J 0J W PJ ! PJ 0 is an isomorphism:

An equivalence class C of elements of Q under relation � is called a block. There is a partial order on
the set of blocks given by

C 6 C 0 if and only if there exist J 2 C and J 0 2 C 0 with J 6 J 0:

Denote the associated poset by R and call it the block poset.
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Note that there is a surjection of posets � WQ!R given by J 2 C 7! C .

Definition 3.13 (thinning of a simple complex of groups) Let G.Q/ be a strictly developable simple
complex of groups with the collection of local groups fPJ gJ2Q and the fundamental group G. Let R be
the block poset associated to G.Q/.

Define a simple complex of groups G.R/D .fSC gC2R; f C 0C gC 06C2R/ as follows. For a block C 2R,
let J 2Q be any element in the preimage ��1.C / and set SC D PJ . Observe that SC is well defined,
since for all J 0 2 ��1.C / groups PJ 0 are identified as a single subgroup of G. Now given two blocks
C 6 C 0 define the map

 C 0C W SC ! SC 0

as the inclusion of the corresponding groups PJ 6 PJ 0 seen as subgroups of G. Note that G.R/ is thin
by construction.

One easily verifies that G.R/ is strictly developable with fundamental group isomorphic to G. Moreover,
the surjection � WQ!R induces a morphism of simple complexes of groups G.Q/!G.R/ which in
turn induces an isomorphism on the fundamental groups (see [5, Chapter II.12] for a background on
morphisms of simple complexes of groups). Finally, if G.Q/ is thin, then by definition R is isomorphic
to Q, and the morphism G.Q/!G.R/ is an isomorphism.

3.3 Bestvina complex

Definition 3.14 Let .X; fXJ gJ2Q/ be a panel complex over a poset Q. For an element J 2Q define
the subcomplex X>J of X by

X>J D
[
J<J 0

XJ 0 :

Remark 3.15 In the case where X DK is the standard panel complex over Q,

K>J D
ˇ̌
fJ 0 2Q j J 0 > J g

ˇ̌
:

Observe that Theorem 3.8 may be seen as evidence that the standard panel complex and the associated
Basic Construction occur naturally. However, for computational purposes, a better suited panel complex
is the following.

Definition 3.16 (Bestvina complex) The Bestvina panel complex .B; fBJ gJ2Q/ is defined as follows.
For every maximal element J 2Q, define BJ to be a point. Now given an element J 2Q assume that
for all J 0 with J < J 0 the panel BJ 0 has already been defined. Define BJ to be the compact contractible
polyhedron containing B>J D

S
J<J 0 BJ 0 of the smallest possible dimension.

We define BZ in the same way as B except that we replace “contractible” by “acyclic” polyhedra.
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Q and G.Q/

A A A

B

A A

A AAA

A

A

A A

C

E

D

R and G.R/

AA

C

E

D

B

Bestvina complex for R

A CB

Figure 1: Complex of groups G.Q/ together with its thinning G.R/ and the Bestvina complex
associated to R. Elements of a block ŒA�1 � Q with the local group A are connected by green
lines. The geometric realisation jQ>ŒA�1

j is in yellow.

Remark 3.17 The panel complex B was introduced by Bestvina in [4] for the poset of special subgroups
of a finitely generated Coxeter group. It was extended to graph products of finite groups by Harlander
and Meinert in [20] and more generally to buildings that admit a chamber transitive action of a discrete
group by Harlander in [19].

Example 3.18 Consider finite groups A, B , and C with two inclusions A6B and A6C . Consider two
subgroups E and D of C , both containing the image of A6 C . All inclusions are assumed to be proper.
Figure 1 depicts a complex of groups G.Q/ (where all the structure maps are the respective inclusions),
its thinning G.R/ and the Bestvina complex associated to R. The fundamental group of G.Q/ (and hence
of G.R/) is isomorphic to the amalgamated product B �AC . Observe that poset R has significantly fewer
elements than Q. A further simplification is given by the Bestvina complex, whose dimension is lower
than the dimension of jQj and jRj. The Basic Construction D.B;G.R// is isomorphic to the Bass–Serre
tree of B �A C .

The proof of the following proposition follows directly from [26, Lemmas 2.4 and 2.5].

Proposition 3.19 Let G.Q/ be a strictly developable simple complex of groups and let  WG.Q/!G

be a simple morphism that is injective on local groups. Assume that G.Q/ is thin. Then:
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(1) The standard development D.K;G.Q/;  / and the Bestvina complex D.B;G.Q/;  / are G–
homotopy equivalent.

(2) The Bredon chain complexes CF
�

�
D.K;G.Q/;  /

�
and CF

�

�
D.BZ; G.Q/;  /

�
are chain homo-

topy equivalent.

Definition 3.20 (local cohomological dimension) For a poset Q, define its local cohomological dimen-
sion lcdQ as

lcdQDmaxfn 2N j zHn�1.K>J /¤ 0 for some J 2Qg:

Proposition 3.21 We have the equalities

lcdQDmaxfn 2N jHn.KJ ; K>J /¤ 0 for some J 2Qg

Dmaxfn 2N j zHn�1.K>J /¤ 0 for some J 2Qg

Dmaxfn 2N j zHn�1.B>J /¤ 0 for some J 2Qg

D dim.BZ/

Dmaxfn 2N jHn.BZ
J ; B

Z
>J /¤ 0 for some J 2Qg:

Moreover ,
dim.B/D

�
lcdQ if d ¤ 2;
2 or 3 if d D 2:

Proof The proof is essentially the same as the proof of [26, Proposition 3.4].

Lemma 3.22 Let G.Q/ be a strictly developable simple complex of groups with fundamental group G
and let F be the family generated by local groups. Suppose D.K;G.Q// is a model for EFG. Let R be
the corresponding block poset. Then cdF G 6 lcdR. In particular , if G.Q/ is thin then cdF G 6 lcdQ.

Proof Consider the composition of chain maps

CF
�

�
D.K;G.Q//

�
! CF

�

�
D.T;G.R//

�
! CF

�

�
D.BZ; G.R//

�
;

where K D jQj, T D jRj, and the complex BZ is taken over the poset R.

The first map is induced by the map of Basic Constructions D.K;G.Q// ! D.T;G.R//, which is
in turn induced by a morphism of simple complexes of groups G.Q/! G.R/. The second map is
constructed in [26, Theorem A.1] (it is straightforward to check that both the statement and the proof of
[26, Theorem A.1] carry through for infinite local groups).

Since D.K;G.Q// is a model for EFG, there is also a classifying G–map that gives a chain map

CF
�

�
D.BZ; G.R//

�
! CF

�

�
D.K;G.Q//

�
and the composition of both is chain homotopic to the identity on CF

�

�
D.K;G.Q//

�
. This shows that

cdF G 6 dim
�
D.BZ; G.R//

�
D dim.BZ/ and Proposition 3.21 finishes the proof.
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4 Thin complexes of groups

In this section, we will assume that the simple complex of groups G.Q/ is thin. We will show that the
Bredon cohomological dimension of the fundamental group of G.Q/ is equal to the local cohomological
dimension of the poset Q.

Proposition 4.1 Let G.Q/ be a thin simple complex of groups , let G be a group , and let  WG.Q/!G

be a simple morphism which is injective on local groups. Suppose .Y; fYJ gJ2Q/ is a simplicial panel
complex over Q, and let X DD.Y;G.Q/;  / be the associated Basic Construction. Then for any J 2Q,
there is an epimorphism of cochain complexes

‰ W .C �F .X IAPJ /; ıF /� .C �.YJ ; Y>J /; ıJ /;

where PJ is a local group at J 2Q, seen as a subgroup of G.

Proof Fix a dimension i and identify Y with a subcomplex of X . Let �j � Y , j D 1; : : : ; k be the
i–simplices of Y and denote by G�j 2 F the stabiliser of �j . Then by the Yoneda lemma, we obtain a
natural equivalence

C iF .X IAPJ /D HomF

� kM
jD1

AG�j ;APJ

�
Š

kM
jD1

ZŒhomG.G=G�j ; G=PJ /�:

Given an i–simplex � � Y and a morphism ' WG=G�
x
�!G=PJ WG� 7! xPJ in the summand indexed

by � , we define

‰.'/D

�
c� if � � YJ ; G� D PJ and x 2 PJ ;
0 otherwise;

(type I)
(type II)

where c� 2 C i .YJ ; Y>J / equals to 1 on � and vanishes everywhere else.

We claim that ‰ is surjective. To see this, it is enough to note that if � �YJ is an i–simplex with stabiliser
G� � PJ , then by the definition of Basic Construction � � Y>J .

It is left to check that ‰ commutes with the coboundary map. First, suppose ' is of type II. Then
ıJ .‰.'//D 0. On the other hand, ıF .'/ is a chain based at morphisms which are precomposed with '
and hence of type II. To see this, suppose

� WG=G�
y�1
��!G=G�

x
�!G=PJ

is such a composition and it is of type I where � � Y is an .iC1/–simplex such that y� contains � as a
face. Since Y is a strict fundamental domain, observe that y 2G� .

Since � is of type I, we must have G� D PJ and y�1x 2 PJ , which implies that G� D PJ . Since now
x 2 PJ , this shows that ' is of type I, which is a contradiction. Therefore, ‰.ıF .'//D 0.
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Now, suppose ' is of type I, ie ' D '� WG=PJ
1
�!G=PJ with PJ the stabiliser of � . Then

(4-1) ıJ .‰.'� //D ıJ .c
� /D

lX
tD1

.�1/sgn.�t /c�t ;

where �t � YJ contains � as a face. On the other hand,

(4-2) ‰.ıF .'� //D

rX
sD1

.�1/sgn.ys�s/‰.'ys�s /

where ys 2G, �s � Y , ys�s is an .iC1/–simplex containing � as a face, and 'ys�s WG=G�s
y�1s��!G=PJ .

Since Y is a strict fundamental domain, y�1s � D � and hence ys 2 PJ . Note that if ‰.'ys�s /¤ 0, then
by definition of ‰, we have ys�s � YJ and G�s D PJ . Therefore, �s D ys�s � YJ and 'ys�s D '�s . In
this case, ‰.'�s /D c

�s . The claim now follows from equating (4-1) and (4-2).

Proposition 4.2 If D.K;G.Q/;  / is a model for EFG, then cdF G D lcdQ.

Proof Note that by the assumption D.K;G.Q/;  / is simply connected, and thus by Theorem 3.8, G
is necessarily isomorphic to the fundamental group of G.Q/. Consider the panel complex BZ given in
Definition 3.16. By passing to a barycentric subdivision we can assume that BZ is a simplicial panel
complex. Let X D D.BZ; G.Q/;  /. By Proposition 3.19(2), CF

�

�
D.K;G.Q/;  /

�
and CF

� .X/ are
chain homotopy equivalent and thus the latter can be used to compute HnF .G;�/.

Now Proposition 3.21 implies that there exists J 2Q such that

H lcdQ.BZ
J ; B

Z
>J /¤ 0:

Since C iF .X IAPJ /D 0 for i > lcdQ, by Proposition 4.1, ‰ induces an epimorphism

‰� WH lcdQ
F .X IAPJ /!H lcdQ.BZ

J ; B
Z
>J /:

This shows that H lcdQ
F .X IAPJ /¤ 0 and hence, by Lemma 3.22, we obtain cdF G D lcdQ.

5 Cohomology of simple complexes of groups

Let G.Q/ be a simple complex of groups and let  WG.Q/!G be a simple morphism which is injective
on local groups. Recall that by Convention 3.4, for any J 2Q we identify PJ with  .PJ /6G.

For J 2Q let IJ be a complete set of representatives of the set

fg 2G j g�1PJg D PU for some U 2Qg=PJ ;

where PJ acts by left multiplication.

Suppose ��Q is a subset such that PU D PU 0 for all U;U 0 2�. Define subcomplexes K� and K>�
of K to be

K�D
ˇ̌
fV 2Q jV >U for some U 2�g

ˇ̌
; K>�D

ˇ̌
fV 2Q jV >U for some U 2� and PV �PU g

ˇ̌
:
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For J 2Q and g 2G define
�
g
J D fU 2Q j PU D g

�1PJgg:

Proposition 5.1 Suppose that G.Q/ is a strictly developable simple complex of groups. Let  WG.Q/!G

be a simple morphism which is injective on local groups and let X DD.K;G.Q/;  / be the associated
Basic Construction. Then for any J 2Q, there is an isomorphism of cochain complexes

ˆ W .C �F .X IBPJ /; ıF /!
M
g2IJ

.C �.K�gJ
; K>�gJ

/; ı/:

Proof We define ˆD
L
g2IJ ‰g with each

‰g W C
�
F .X IBPJ /! C �.K�gJ

; K>�gJ
/

constructed analogously to the map ‰ of Proposition 4.1 where one replaces an arbitrary simplicial panel
complex Y with K. Namely, we identify

C iF .X IBPJ /D HomF

� M
��K.i/

AG� ;BPJ

�
Š

M
��K.i/

BPJ .G� /Š
kM

jD1

ZŒisomG.G=G�j ; G=PJ /�;

where the �j are all the i–simplices of K such that G�j DG PJ .

Now, fix g 2 IJ and suppose � is an i–simplex with stabiliser g�1PJg D P
g
J . Given an (iso)morphism

.' WG=G�
x
�!G=PJ WG� 7! xPJ / 2 C

i
F .X IBPJ /;

we define

‰g.'/D

�
c� if G� D P

g
J and x 2 g�1PJ ;

0 otherwise;

where c� 2 C i .K�gJ ; K>�
g
J
/ equals to 1 on � � K�gJ and vanishes everywhere else. The proof that

‰g commutes with the coboundary maps is analogous to the corresponding argument in the proof of
Proposition 4.1 and hence it is omitted. (Alternatively, it also follows from the commutativity of the
coboundary maps with sections �g defined below.)

To show that ˆ is an isomorphism, we first define a section

�g W C
�.K�gJ

; K>�gJ
/! C �F .X IBPJ / W c

�
7! .'� WG=P

g
J

g�1
��!G=PJ /

to each ‰g . We need to show that it commutes with the coboundary maps. We have

(5-1) ıF .�g.c
� //D ıF .'� /D

rX
sD1

.�1/sgn.ys�s/'ys�s

where �s � K contains � as a face and 'ys�s W G=G�s
y�1s
��! G=P

g
J

g�1
��! G=PJ with ysG�sy

�1
s 6 P

g
J

and ys 2 P
g
J . Note that if 0¤ 'ys�s 2 C

�
F .X IBPJ /, then by definition of BPJ , the subgroup G�s must

be conjugate to PJ and G�s D P
g
J . Therefore, �s D ys�s �K and 'ys�s D '�s 2 Im�g .
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On the other hand,

(5-2) �g.ıJ .c
� //D

lX
tD1

.�1/sgn.�t /�g.c
�t /D

lX
tD1

.�1/sgn.�t /'�t

where �t � K�gJ contains � as a face. The claim now follows from equating (5-1) and (5-2). It is
straightforward to check that ˆ and �D

L
g2IJ �g are inverses of each other.

Remark 5.2 Proposition 5.1 can be generalised to hold for an arbitrary simplicial panel complex
.X; fXJ gJ2Q/, where one defines

X� D
[
J2�

XJ ; X>� D
[

fU2QjU�J for some J2� and PU�PJ g

XU ;

though this is not necessary for our purposes.

6 Main theorems

In this section we state and prove slightly more general versions of Theorems 1.1 and 1.6 from the
introduction. The generalisation concerns the computation of Bredon cohomology of the Basic Construc-
tion D.K;G.Q/;  /. In the statements below, we allow  WG.Q/!G to be a simple morphism to an
arbitrary group G, not necessarily the fundamental group of G.Q/.

Theorem 6.1 Let G.Q/ be a strictly developable simple complex of groups and let  WG.Q/!G be a
simple morphism that is injective on local groups. Let F be the family of subgroups of G generated by
local groups. Let X DD.K;G.Q/;  / be the associated Basic Construction. For J 2Q we then have

(6-1) H�F .X IBPJ /Š
M
g2IJ

M
C
g
J��

g
J

H�.KCgJ
; K>CgJ

/;

where C gJ ��
g
J denotes a block in �gJ .

If G.Q/ is rigid and X is a model for EFG, then

(6-2) cdF G Dmaxfn 2N jHn.KC ; K>C /¤ 0 for some block C �Qg:

Proof First we prove (6-1). To do this we show that for every J 2Q, g 2 IJ and for any integer n> 0,

(6-3) Hn.K�gJ
; K>�gJ

/Š
M

C
g
J��

g
J

Hn.KCgJ
; K>CgJ

/:

To show (6-3), we proceed by induction on the number of blocks C � �gJ . If �gJ contains only one
block then (6-3) is clearly satisfied. Assume now that �gJ contains more than one block. Let C ��gJ ,
let RD�gJ XC and write the pair .K�gJ ; K>�

g
J
/ as

.K�gJ
; K>�gJ

/D .KR [KC ; K>R [K>C /:
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Consider the relative Mayer–Vietoris sequence for the above pair,

Hn�1.KC \KR; K>C \K>R/!Hn.K�gJ
; K>�gJ

/!Hn.KC ; K>C /˚H
n.KR; K>R/

!Hn.KC \KR; K>C \K>R/:

Claim KC \KR DK>C \K>R.

To prove the claim consider an element V 2KC \KR (ie we view V 2Q as a vertex of K). Thus U 6 V
and U 0 6 V for some U 2 C and U 0 2R. If V …K>C \K>R, then PV D PU or PV D PU 0 . In either
case we get PV D g�1PJg, which implies that V 2 C and V 2R. This is a contradiction and the claim
follows.

The claim implies that Hn.KC \KR; K>C \K>R/D 0 for every n> 0 and therefore the map

Hn.K�gJ
; K>�gJ

/!Hn.KC ; K>C /˚H
n.KR; K>R/

is an isomorphism. Since by the inductive assumption we have

Hn.KR; K>R/Š
M
C 0�R

Hn.KC 0 ; K>C 0/;

the formula (6-3) is established.

Formula (6-1) follows now easily from Proposition 5.1 and formula (6-3).

We now prove (6-2). Note that here by the assumption X is a cocompact model for EFG and thus G is
isomorphic to the fundamental group of G.Q/ (see Theorem 3.8). By Corollary 2.6,

cdF G Dmaxfn 2N jHn
F .X;BPJ /¤ 0 for some J 2Qg:

By Proposition 5.1,

maxfn 2N jHn
F .X;BPJ /¤ 0 for some J 2Qg

Dmaxfn 2N jHn.K�gJ
; K>�gJ

/¤ 0 for some J 2Q; g 2 IJ g

Dmaxfn 2N jHn.K�1U
; K>�1U

/¤ 0 for some U 2Qg

Dmaxfn 2N jHn.KC ; K>C /¤ 0 for some block C �Qg:

Proof of Theorem 1.6 We first prove part (i). By Proposition 3.19(1), complexes D.K;G.Q// and
D.B;G.Q// are G–homotopy equivalent.

The formula for cohomology of D.K;G.Q// follows from formula (6-1) of Theorem 6.1 in the following
way (note that in (6-1) one does not assume rigidity). Since by assumption the complex G.Q/ is thin, we
have that blocks are equal to elements of Q. Moreover, for a single element U 2Q we have that KU is
contractible, and thus we obtain

H�.KU ; K>U /Š zH
��1.K>U /:
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Now we prove part (ii). Since D.K;G.Q// is a model for EFG, it is in particular simply connected, and
thus by Theorem 3.8 we get that G is isomorphic to the fundamental group of G.Q/. Since D.K;G.Q//
and D.B;G.Q// are G–homotopy equivalent, we conclude that D.B;G.Q// is a model for EFG as
well. Clearly D.B;G.Q// is cocompact.

The formula for the dimension of D.B;G.Q// and formula (1-3) for cdF G follow now easily from
combining Propositions 3.21 and 4.2.

Remark 6.2 Theorem 6.1 holds true if we replace the complex K by any other panel complex over Q
whose all panels are contractible (cf Remark 5.2). In particular, one can use the Bestvina complex B .
Unlike in Theorem 1.6, here the dimension of the resulting Basic Construction D.B;G.Q/;  / may
not be optimal; nonetheless, since Bestvina complex in general has a smaller cell structure than the
complex K, its use may simplify cohomological computations.

7 Deformation retractions and actions on trees

In this section we show that if the Bestvina complex for G.Q/ is a tree then it can be realised as an
equivariant deformation retract of the standard development. This can be seen as a generalisation of results
of Davis [9, Proposition 8.5.5] and the authors [26] to the case of infinite local groups. The key ingredient
in the proof is the cohomological formula of Theorem 1.6. We remark that our approach relies neither on
Dunwoody’s accessibility theory [16] nor on Dicks and Dunwoody’s almost stability theorem [14, III.8.5].

Theorem 7.1 Let G.Q/ be a strictly developable thin simple complex of groups over a poset Q with
fundamental group G and let F be the family generated by local groups. Suppose that D.K;G.Q// is
a model for EFG. Then cdF G 6 1 if and only if D.B;G.Q// is a tree and an equivariant deformation
retract of D.K;G.Q//.

Proof The proof is a verbatim translation of the proof of Theorem 4.8 of [26], which treats the case of
finite local groups. The only place where that proof uses the fact that local groups are finite is the use
of [26, Proposition 3.6], which gives a formula for the cohomological dimension of G for the family
of finite subgroups. In Theorem 1.6 we prove that the same formula holds for a family F generated by
arbitrary local groups,

cdF G Dmaxfn 2N j zHn�1.K>J /¤ 0 for some J 2Qg:

Note that cdF G 6 1 implies that for any J 2Q we have zHn.K>J /D 0 for all n > 0, and thus any K>J
is a disjoint union of contractible spaces. This is the crucial piece of geometric information which is used
in [26, Theorem 4.8] to build the Bestvina complex as an equivariant deformation retract of the standard
development.

In some cases the condition ensuring that cdF G 6 1 can be read from the global structure of the poset Q.
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Example 7.2 Suppose Q is a poset of simplices of a finite flag simplicial complex L. Then lcdQ6 1 if
and only if the one skeleton L.1/ of L is a chordal graph, ie for any cycle in L.1/ of length at least four
there is an edge connecting two nonconsecutive vertices of the cycle (a chord).

8 Applications and examples

8.1 Bredon cohomological dimension for finite subgroups

Proposition 8.1 Let G.Q/ be a strictly developable simple complex of groups with collection of local
groups fPJ gJ2Q and fundamental group G. Let R be the associated block poset. Suppose D.K;G.Q//
is a model for EFG where F is the family generated by local groups and assume that F contains all finite
subgroups of G. Then

cdG 6 lcdRCmaxfcdPJ j J 2Qg:

In particular , if G.Q/ is thin then

cdG 6 lcdQCmaxfcdPJ j J 2Qg:

If G is virtually torsion-free then both inequalities remain true if one replaces “cd” by “vcd”.

Proof For any discrete group G and for any family of subgroups F which contains all finite subgroups
of G we have cdG 6 cdF GCmaxfcdF j F 2 Fg [13, Corollary 4.2]. Since every subgroup in F is
subconjugate to a subgroup in fPJ gJ2Q, we get that maxfcdF j F 2 Fg DmaxfcdPJ j PJ 2Qg. Both
claims now follow from Lemma 3.22.

For the virtually torsion-free case, one first replaces G with a torsion-free finite-index subgroup G0 and
then one performs the same argument as above applied to ordinary cohomological dimension instead of
the proper cohomological dimension.

8.2 Cohomology of buildings and their automorphisms

Groups acting chamber transitively on buildings form a large class of examples of actions on nonpositively
curved complexes with a strict fundamental domain.

We recall some terminology. Let .W; S/ be a Coxeter system with the set S finite. A subset J � S is
called spherical if the elements of S generate a finite subgroup of W (we assume that the empty set
∅ � S generates the trivial subgroup and thus it is spherical). Let Q be the poset of spherical subsets
of S ordered by inclusion.

Now suppose that � is a building of type .W; S/ and that a group G acts chamber transitively on � (see
[8, Section I.3]). Such an action gives rise to a strictly developable simple complex of groups G.Q/ with
fundamental group isomorphic to G. The standard geometric realisation of � is by definition the Basic
Construction D.K;G.Q// (by replacing K with another panel complex over Q one obtains a variety of
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geometric realisations of �). By [8, Theorem 11.1] there is a complete CAT.0/ metric on D.K;G.Q//
such that G acts by isometries. Thus D.K;G.Q// is a cocompact model for EFG, where F is the family
generated by the local groups. Let PJ denote the local group (ie the special parabolic subgroup) at the
element J 2Q.

Lemma 8.2 In the above setting , if J 6T then PJ 6PT is a proper inclusion. In particular , the complex
of groups G.Q/ is thin.

Proof The proof is verbatim the proof of [22, Lemma 5.1], since the assumption that G acts properly
on � was not used there.

We remark that in the case where G DW , the standard geometric realisation D.K;G.Q// of � is by
definition the Davis complex of the system .W; S/ and it is denoted by †W .

We are now ready to prove the main result of this section, which is Corollary 1.7

Proof of Corollary 1.7 By definition D.B;G.Q// is a realisation of �. Since by Lemma 8.2 the
complex G.Q/ is thin, Proposition 3.19(1) implies that D.B;G.Q// and D.K;G.Q// are G–homotopy
equivalent. Thus D.B;G.Q// is a model for EFG, since D.K;G.Q// is a model. Since D.B;G.Q// is
clearly cocompact, this establishes the first claim of the theorem.

The remaining claims follow directly from Theorem 1.6 as the formula for vcdW (see [15, Theorem 2]
or [12, Theorem 5.4]) is identical to formula (1-3) for cdF G.

Remark 8.3 D.B;G.Q// can also be constructed by first constructing D.B;W.Q// for the correspond-
ing Coxeter group W and then realising the building with apartments modelled on D.B;W.Q//.

We obtain the following corollary, first proven in [19, Theorem 4.1(ii)].

Corollary 8.4 Let G be a virtually torsion-free group acting chamber transitively on a building of type
.W; S/. Then

vcdG 6 vcdW CmaxfvcdP j P is a special parabolic subgroup of Gg:

Proof The corollary follows easily from combining Corollary 1.7 with Proposition 8.1, and the facts
that lcdQD vcdW and that local groups of G.Q/ are precisely the special parabolic subgroups of G.

8.3 Graph products of groups

An example of a group acting chamber transitively on a building is a graph product of groups, such as for
example the right-angled Artin group or the right-angled Coxeter group.
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Definition 8.5 Consider a finite flag simplicial complex L on the vertex set S with groups Ps for every
s 2 S . The graph product GL is defined as the quotient of the free product of groups Ps for s 2 S by the
relations

fŒPs; Pt � j Œs; t � is an edge of Lg:

In other words, elements of subgroups Ps and Pt commute if and only if there is an edge Œs; t � in L.

If we set Ps Š Z=2 for every s 2 S , the corresponding graph product is called the right-angled Coxeter
group and it is denoted by WL.

If we set Ps Š Z for every s 2 S , the corresponding graph product is called the right-angled Artin group
and it is denoted by AL.

Theorem 8.6 [8, Theorem 5.1] The group GL acts chamber transitively on a building of type .WL; S/,
where WL is the right-angled Coxeter group corresponding to L.

Thus GL is the fundamental group of a simple complex of groups G.Q/, where Q is the poset of spherical
subsets of S . Note that Q can be identified with the poset of simplices of L ordered by inclusion, together
with the smallest element corresponding to the empty set. Consequently, the geometric realisation of Q is
isomorphic to the cone over the barycentric subdivision of L. Moreover, the local group at simplex �
of L is the direct product

Q
s2� Ps and the local group at ∅ is the trivial group.

Theorem 8.6 implies that Corollaries 1.7, 1.8, 1.9 and 1.10 apply to GL.

8.4 Examples

Example 8.7 (barycentric subdivision and thinning) The first example shows that the thinning procedure
may be intuitively seen as an inverse to the barycentric subdivision.

LetX be aG–simplicial complex with a strict fundamental domain Y , letG.Q/ be the associated complex
of groups and let F be the family generated by the stabiliser subgroups. Thus Q is the poset of simplices
of Y (ordered by the reverse inclusion). Assume that G.Q/ is thin.

Now let X 0 denote the barycentric subdivision of X , and consider the induced action of G on X 0. The
fundamental domain for this action is clearly Y 0. Let G.Q0/ be the associated simple complex of groups,
where Q0 is the poset of simplices of Y 0. Observe that G.Q0/ is not thin.

One easily sees that the fundamental groups of G.Q/ and G.Q0/ are isomorphic, and so are the families
generated by local groups. However,

lcdQ0 D dim.X 0/D dim.X/;

while in general lcdQ is strictly less than dim.X/.
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Proposition 8.8 Let G.Q/ and G.Q0/ be as above. Let R denote the block poset associated to G.Q0/
and let G.R/ be the thinning of G.Q0/. Then Q and R are isomorphic , and simple complexes of groups
G.Q/ and G.R/ are simply isomorphic.

Proof Given a simplex � � Y , all simplices of Y 0 of the form f�0 � �1 � � � � � �g have the same
local group equal to P� , where P� is the local group of G.Q/ at � . Thus blocks of Q0 are of the form
C� D

S
kf�0 � �1 � � � � � �k j �k D �g and one can define a morphism Q! R by � 7! C� . It is

straightforward to check that it is an isomorphism and that so is the induced morphism G.Q/!G.R/.

9 Reflection-like actions

In this section we introduce reflection-like actions, which generalise the actions of reflection groups on
Euclidean spaces. Our main application is the construction of new counterexamples to the strong form of
Brown’s conjecture regarding the equality between vcdG and gdG (see [6, Chapter 2] or [7, VIII.11]):

Brown’s conjecture Let G be a virtually torsion-free group with vcdG <1.

(i) Weak form There is a contractible proper G–CW–complex of dimension vcdG.

(ii) Strong form gdG D vcdG.

Our counterexamples are similar to those of [22], where the desired group G is a semidirect product of
WL and F , where WL is a right-angled Coxeter group associated to a flag complex L and F is a finite
group acting on L. However our method of producing these counterexamples is different. In our case, we
require the action of F on L to be reflection-like and rely on an application of Theorem 6.1.

To the best of our knowledge, the only known example of a reflection-like action that serves as a
counterexample to the strong form of Brown’s conjecture is the action of A5 on the 2–skeleton of the
Poincaré homology sphere (see [22, Example 1]). In Example 9.13 we generalise this example. The
reader may also look at the treatment of this example in [26], where the action is implicitly proven to be
reflection-like.

Definition 9.1 (reflection-like action) Let F be a group acting admissibly on a connected, flag simplicial
complex L of dimension n > 1, and let Y � L be a strict fundamental domain for this action. We say
that such an F –action is reflection-like if

(i) the fundamental domain Y is homeomorphic to the ball Bn;

(ii) every interior point of Y has the same stabiliser, which we denote by F0;

(iii) F0 is a proper subgroup of the stabiliser of any point in @Bn.

Note that, in particular, part (iii) implies that both the group F and its action on L are nontrivial.
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Remark 9.2 In the above definition, the assumptions on the action and on the complex L are not very
restrictive. Indeed, given an action of F on a polyhedral complex L, by taking barycentric subdivision of
L one obtains an admissible action on a flag simplicial complex.

Lemma 9.3 Consider a reflection-like action of F on L with a strict fundamental domain Y � L. Let
Q denote the poset of simplices of Y ordered by reverse inclusion and let F.Q/ be the associated simple
complex of groups (see Theorem 3.8). Then , the poset Q contains a block C with local group F0 such that

(1) KC DK Š Y Š B
n,

(2) K>C Š @.Y /Š S
n�1.

Proof The statement follows directly from the definition of a reflection-like action. Indeed, by
Definition 9.1(ii) the local group at any (open) simplex which does not lie on the boundary of Y ŠBn, is
necessarily equal to F0. On the other hand, by Definition 9.1(iii) the local group at any simplex on the
boundary strictly contains F0.

Definition 9.4 Let F be a finite group with a reflection-like action on a connected, compact, n–
dimensional flag simplicial complex L with a strict fundamental domain Y � L. Let WL be the
right-angled Coxeter group associated to L. Then the F –action of L induces an F –action on WL.
Let G DWL ÌF be the associated semidirect product.

In what follows, unless stated otherwise, let F , L, Y and G be as in Definition 9.4.

Proposition 9.5 The group G acts on Davis complex †WL with strict fundamental domain and this
action is proper and reflection-like.

Proof The group G acts properly on the Davis complex †WL with a strict fundamental domain [22,
Lemma 3.5]. One easily verifies that the fundamental domain is equal to C.Y 0/, the cone over the
barycentric subdivision of Y . Since Y ŠBn, we get that C.Y 0/ŠBnC1 and thus part (i) of Definition 9.1
is satisfied. For parts (ii) and (iii) we need to identify G–stabilisers of the points in C.Y 0/. Recall that

C.Y 0/D Y 0 � Œ0; 1�
ı
.x; 1/� .x0; 1/

and let Œx; t � denote the equivalence class of a point .x; t/ 2 Y 0 � Œ0; 1�.

(1) For the points in the interior of C.Y 0/, ie points Œx; t � where x 2 int.Y 0/ and t 2 .0; 1/, we have
StabG Œx; t �D F0 (where F0 is the stabiliser of points in int.Y / with respect to the F –action on L).
This establishes part (ii) of Definition 9.1.

(2) We have three types of points on the boundary of C.Y 0/:

(a) For the points Œx; 0� where x 2 Y 0, the stabiliser StabG Œx; t � is the Cartesian product of at least
one generator of WL and the stabiliser of x 2 Y with respect to the F –action on L.
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(b) For the points .x; t/ where x 2 @.Y 0/ and t 2 .0; 1/, the stabiliser StabG Œx; t � is equal to the
stabiliser x 2 @.Y / with respect to the F –action on L.

(c) The stabiliser of the point Œx; 1� is equal to the entire F .

Note that in each of the above cases, the stabiliser of Œx; t � strictly contains F0. In case (a) this
follows from the fact that there is at least one generator of WL in the stabiliser, and in cases (b)
and (c) this follows from the definition of a reflection-like action. Thus part (iii) of Definition 9.1
is satisfied, and therefore the G–action on †WL is reflection-like.

Lemma 9.6 Let G.Q/ be a simple complex of groups associated to the G–action on †WL . Then G is
isomorphic to the fundamental group of G.Q/ and

dimD.B;G.Q//D dimD.K;G.Q//D gdG D cdG D nC 1:

Proof Since †WL is simply connected, by Theorem 3.8 we conclude that G is isomorphic to the
fundamental group of G.Q/. The G–action on †WL is proper and cocompact, and since †WL is CAT.0/,
it follows that †WL is a cocompact G–CW–model for EG. Note that G.Q/ is rigid, since all of its local
groups are finite.

Thus the assumptions of Theorem 6.1 are satisfied and we can use it to compute the Bredon dimension
of G. First note that since dim.†WL/D nC 1, we get that cdG 6 nC 1. Thus it suffices to show that
cdG > nC 1. By Proposition 9.5 the G–action on †WL is reflection-like and thus by Lemma 9.3 the
poset Q contains a block C such that

(1) KC Š C.Y
0/Š BnC1,

(2) K>C Š @.C.Y
0//Š Sn.

Since HnC1.BnC1; Sn/Š Z¤ 0, by Theorem 6.1 we have that cdG > nC 1.

Lemma 9.7 If Hn.L/D 0 then vcdG 6 n.

Proof Since G is a finite extension of WL, we have that vcdG D vcdWL. To prove that vcdWL 6 n, by
[15, Theorem 2] it suffices to show that Hn.Lk.�; L//D 0 for every simplex � of L. For any nonempty
simplex � , the link Lk.�; L/ is at most .n�1/–dimensional, and thus Hn.Lk.�; L//D 0. If � is empty,
Lk.�; L/Š L and by the assumption we have Hn.L/D 0.

The following theorem can be used to construct new cocompact counterexamples to the strong form of
Brown’s conjecture.

Theorem 9.8 Let F be a finite group admitting a reflection-like action on a compact , connected , flag
simplicial complex L of dimension n> 1. Let WL be the right-angled Coxeter group associated to L and
G DWL ÌF be the associated semidirect product. Suppose that Hn.L/D 0. Then

vcdG 6 n and cdG D nC 1:

Proof The statement follows immediately from combining Lemmas 9.6 and 9.7.
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9.1 Examples of reflection-like actions

It remains to produce examples of groups satisfying the assumptions of Theorem 9.8. In every example
discussed below, the underlying space admits an invariant polyhedral structure, which we will not specify
(cf Remark 9.2).

We begin with the following two preparatory lemmas.

Lemma 9.9 Suppose we have reflection-like actions of F1 on an m–dimensional complex L1 and of F2
on an n–dimensional complex L2. Then:

(1) The induced action of F1 �F2 on L1 �L2 is reflection-like. The fundamental domain is equal to
the product of the respective fundamental domains and it is homeomorphic to BmCn.

(2) The induced action of F1 �F2 on the join L1 �L2 is reflection-like. The fundamental domain is
equal to the join of the respective fundamental domains and it is homeomorphic to BmCnC1.

The proof is straightforward and follows at once from the definition of a reflection-like action.

Lemma 9.10 Let L1 be an m–dimensional finite complex and L2 be an n–dimensional finite complex.
Assume that either

(1) Hm.L1/D 0, or

(2) Hm.L1/D 0, Hn.L2/D 0 and Tor.Hm�1.L1/;Hn�1.L2//D 0.

Then HmCn.L1 �L2/D 0 and HmCnC1.L1 �L2/D 0.

Note that the assumption Tor.Hm�1.L1/;Hn�1.L2//D0 is equivalent to torsion subgroups ofHm�1.L1/
and Hn�1.L2/ having coprime orders.

Proof The claim follows easily from the Künneth formula, the universal coefficients theorem and the
Mayer–Vietoris sequence for the join and the product.

Note that Lemma 9.9 gives an easy way of producing new examples of reflection-like actions out of old
ones, and Lemma 9.10 can be used to ensure that top-dimensional cohomology of the product/join will
vanish. In order to construct genuinely new examples with vanishing top-dimensional cohomology, we
first construct examples that do have nonzero top-dimensional cohomology, and then combine them into
products or joins and use Lemma 9.10 to ensure that the top-dimensional cohomology vanishes.

The summary of the constructed examples is presented in Table 1.

Example 9.11 (finite reflection group) Let F 6 O.n/ be a finite subgroup generated by orthogonal
reflections across hyperplanes in Rn (see [9, Chapter 6]). Then the induced action of F on the unit sphere
Sn�1 �Rn is reflection-like.
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example F L dim.L/ H dim.L/.L/D 0?

9.11 F 6O.nC 1/, F finite Sn n no

9.12 .Z=2/n RP n n no

9.13 PGL2.q/, q D 2a, a > 2 Lq 2 no, unless q D 4

9.14 Dk Mk 2 no

9.15 .Z=2/n �PGL2.q/, n even RP n �Lq nC 2 yes
RP n �Lq nC 3 yes

9.16 Dk �Dl , k and l coprime Mk �Ml 4 yes
Mk �Ml 5 yes

9.17 .Z=2/n �Dk , n even, k odd RP n �Mk nC 2 yes
RP n �Mk nC 3 yes

Table 1: Examples of reflection-like actions, together with an indication whether they satisfy the
assumptions of Theorem 9.8.

Example 9.12 Consider the action of Z=2 on R given by x 7! �x and consider the product action
of .Z=2/n on Rn. Factoring out the action of the antipodal map � 2 .Z=2/n, we obtain an action of
.Z=2/n=h�i Š .Z=2/n�1 on the real projective space RP n�1. One easily verifies that this action is
reflection-like, with the quotient being an .n�1/–simplex.

The above example is a special case of the so-called small cover of Davis and Januszkiewicz [10], which is
an n–dimensional manifold together with a reflection-like action of .Z=2/n whose quotient is isomorphic
to an n–dimensional simple polytope.

Example 9.13 (Aschbacher–Segev) We outline a construction of a reflection-like action of the group
F D PGL2.q/ for q D 2a with a > 2 on a flag 2–complex LD Lq in order to illustrate the underlying
simple complex of finite groups F.Q/. For more details we refer to [1, Section 9].

For the 1–skeleton L.1/q take the barycentric subdivision of the complete graph on the projective line of
qC 1 points v1; : : : ; vqC1 with the natural action of F . Fix a single conjugacy class C of cycles of order
qC 1 in F . Every cycle of order qC 1 is conjugate to its inverse. Therefore, there are 1

2
q.q� 1/ pairs

of .qC1/–cycles .�i ; ��1i / in C. Define Lq by attaching that many .qC1/–gons using the cycles �i to
describe the attaching maps. Each 2–cell becomes a cone on its subdivided .qC1/–gonal boundary where
�i acts by fixing the cone point. The 2–simplices of Lq are q.q2� 1/ right-angled triangles on which F
acts simply transitively. Each one is a strict fundamental domain. Let Y be such a fundamental domain
that contains a vertex vj whose stabiliser is the Borel subgroup B of upper triangular matrices in F .

Figure 2, left, shows the fundamental domain Y together with local groups at cells. Figure 2, right, shows
the fundamental domain C.Y 0/ for the associated action of WL ÌF on †WL together with local groups
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feg

DqC1 C2 Dq�1

Cq�1

B

C 02

Y Š F=L C.Y 0/Š†WL=WL ÌF

F D PGL2.q/

DqC1 � hs1i C2 � hs1; s2i Dq�1 � hs2i

Cq�1 � hs2; s3i

B � hs3i

hs1; s2; s3i

C 02 � hs1; s3i

Figure 2: Fundamental domains Y , left, and C.Y 0/, right, together with stabilisers of cells and
vertices respectively.

at vertices. Local groups at cells are given by the respective intersections of local groups at vertices. The
generators of WL corresponding to vertices of Y are denoted by s1, s2 and s3.

.�/ For small values of q, the complex Lq is known to be Q–acyclic, with first homology either trivial or
elementary abelian of order rq�1, where r is an odd prime. For q D 4, the complex Lq is homeomorphic
to the Poincaré dodecahedron, and hence it is acyclic.

Example 9.14 (dihedral group acting on a Moore space) For a natural number k > 2, let Mk denote the
Moore space M.Z=k; 1/, ie a space obtained by attaching a disk to a circle along the map of degree k.
Thus we have zH1.Mk/Š Z=k and zHi .Mk/D 0 for all i ¤ 1. We will describe a reflection-like action
of the dihedral group Dk on Mk . Recall that Dk is generated by two reflections s and t and their product
st is a rotation of order k.

Consider the standard action of Dk on a k–gon and the reflection action of Dk=hsti Š Z=2 on a circle,
both shown in Figure 3, left, (note that both actions reverse the orientation of the edges). The attaching map
of the boundary of the k–gon is equivariant with respect to the homomorphism Dk!Dk=hsti Š Z=2,
and thus we get a well-defined action of Dk on Mk . One easily checks that this action has a strict
fundamental domain, which is a triangle. The fundamental domain together with its cell stabilisers is
shown in Figure 3, right. By analysing the stabilisers, we conclude that the action of Dk on Mk is
reflection-like.

We remark that in this setting Mk is homeomorphic to the Basic Construction D.jQj; G.Q/;  /, where
G.Q/ is a simple complex of groups associated to the Dk–action on Mk , and  WG.Q/!Dk is a simple
morphism induced by sending all three vertex groups Dk into Dk via the identity map.

Finally, observe that for kD 2 in the above construction,D2ŠZ=2�Z=2 is an isometry group of a 2–gon
and Mk is equivariantly homeomorphic to the real projective plane RP 2 appearing in Example 9.12.
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Figure 3: Left: reflection like action ofDk on a Moore spaceMk . Right: the fundamental domain
together with local groups at cells.

We are ready now to construct new counterexamples to the strong form of Brown’s conjecture.

Example 9.15 Let Lq be a complex as in Example 9.13 satisfying .�/. For an even integer n, consider
the induced reflection-like actions of the product .Z=2/n �PGL2.q/ on the product RP n �Lq and on
the join RP n �Lq .

Since Hn.RP n/ D 0, Hn�1.RP n/ D Z=2, H2.Lq/ D 0 and H1.Lq/ is either trivial or elementary
abelian of order being a power of an odd prime, by Lemma 9.10 we conclude that HnC2.RP n�Lq/D 0

and HnC3.RP n �Lq/D 0.

Example 9.16 Consider Mk and Ml such that k and l are coprime. By Lemma 9.10 we get that
H 4.Mk �Ml/D 0 and H 5.Mk �Ml/D 0 (in fact Mk �Ml is contractible).

Example 9.17 For an even integer n and an odd integer k consider the action of .Z=2/n on the
real projective space RP n, and the action of Dk on the Moore space Mk . By Lemma 9.10 we have
HnC2.RP n �Mk/D 0 and HnC3.RP n �Mk/D 0.

Remark 9.18 In contrast to Example 9.13 (and Example 9.15), Examples 9.16 and 9.17 are particularly
simple in terms of algebraic structure of groups and cellular structure of complexes. The smallest group
appearing in these examples is the product D2 �D3 Š .Z=2/2 �S3.

10 Final remarks and open questions

Let X be a G–CW–complex. We say that a G–CW–subcomplex Y is a spine of X if it is an equivariant
deformation retract of X . When X is a model for EFG, then so is Y and dim.Y / > gdF G. Spines of
minimal dimension (so equal to gdF G) have been constructed, for example, for the actions of certain
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arithmetic groups such as SL.n;Z/ on the symmetric space [2], the actions of the outer automorphism
groups of free groups on the outer space [27], and the actions of the mapping class groups of punctured
surfaces on the Teichmüller space [18].

Question 10.1 Suppose a group G acts on a CAT.0/ polyhedral complex X with a strict fundamental
domain. Denote by F the family generated by the stabilisers. Suppose the associated complex of groups
G.Q/ is thin. Can D.B;G.Q// be constructed as a spine of X of the lowest possible dimension equal
to gdF G?

Theorem 7.1 tells us that the answer is yes if cdF G 6 1. Also by Theorem 1.6, we know that
dimD.B;G.Q// D gdF G and D.B;G.Q// is G–homotopy equivalent to X . The question whether
D.B;G.Q// can be constructed as an equivariant deformation retract of X is open in general. In [26],
we isolate a condition on a finite polyhedra which we call subconical. It is open whether every finite
polyhedron is subconical. If this is the case, then a generalisation of [26, Proposition 4.7] to thin simple
complexes of groups gives an affirmative answer to this question.

Question 10.2 Does D.B;G.Q// attain the CAT (0) dimension of the group G?

In many cases of interest, such as Coxeter groups or groups acting on buildings, the associated standard
development D.K;G.Q// supports a G–invariant CAT.0/ metric. Therefore it is natural to ask whether
the Bestvina complex supports such a metric as well, or whether the dimension of Bestvina complex
is equal to the CAT.0/ dimension of the group for the family F . The latter is defined as the minimal
dimension of a model for EFG that supports a G–invariant CAT.0/ metric.

There are simple complexes of groups where the corresponding Bestvina complex does not admit any
G–invariant piecewise linear CAT.0/ metric (this will be shown in a forthcoming work of the second
author). Moreover, we suspect that these examples also have CAT.0/ dimension strictly larger than the
Bredon cohomological dimension. The above examples are the right-angled Coxeter groups (or graph
products) associated to certain 2–dimensional contractible but noncollapsible complexes. Consequently,
the methods used to show the lack of CAT.0/ metric do not carry through to higher dimensions, and to
the best of our knowledge the question is open in all dimensions greater than 2.

The question is especially interesting when F is the family of all finite subgroups. In this case, the metric
structure of EG can be used to study numerous features of G, eg by considering the visual boundary
of EG. Note that the positive answer to that question, combined with Example 9.16 (or 9.17), would
result in a group of CAT.0/ dimension four, whose finite-index overgroup has CAT.0/ dimension equal
to five.

Question 10.3 Are the groups G constructed in Examples 9.16 or 9.17 also counterexamples to the weak
form of Brown’s conjecture?
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The weak form of Brown’s conjecture is open in all dimensions except when vcdG D 2 [22]. A natural
place to look for counterexamples are the groups that disprove the strong form of Brown’s conjecture.
Yet, most such groups G are known to act properly on a contractible complex of dimension vcdG.
Take for example G DWL ÌF . If L is contractible (see [22, Section 5] for examples), then there is a
contractible subcomplex Y of †WL of dimension vcdG on which G acts properly. The subcomplex Y
can be obtained by applying the Basic Construction to L0 instead of CL0. Similarly, the finite extensions
of Bestvina–Brady groups constructed in [21] or [24, 3.6] cannot be counterexamples to the weak form of
the conjecture, because they act properly on the level sets of the Morse function which in these examples
are contractible.
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