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Comparing combinatorial models of moduli space
and their compactifications

DANIELA EGAS SANTANDER

ALEXANDER KUPERS

We compare two combinatorial models for the moduli space of two-dimensional cobordisms (namely
Bödigheimer’s radial slit configurations and Godin’s admissible fat graphs), using a “critical graph” map
to produce an explicit homotopy equivalence. We also discuss natural compactifications of these two
models, the unilevel harmonic compactification and Sullivan diagrams, respectively, and prove that the
homotopy equivalence induces a cellular homeomorphism between these compactifications.
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1 Introduction

In this paper we compare two combinatorial models of the moduli space of cobordisms. We start with
an introduction to moduli space, giving a conformal description of it. After that, we describe various
combinatorial models and how they relate to each other, which includes our main result, Theorem 1.1.
Finally we describe two applications.

1.1 The moduli space of cobordisms

The study of families of surfaces, known as “moduli theory”, goes back to the nineteenth century. One
of the main points of this theory is the construction of a moduli space; informally, this is a space of all
surfaces isomorphic to a given one, characterized by the property that equivalence classes of maps into it
correspond to equivalence classes of families of surfaces. For applications to field theories, the surfaces

© 2024 The Authors, under license to MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons
Attribution License 4.0 (CC BY). Open Access made possible by subscribing institutions via Subscribe to Open.
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596 Daniela Egas Santander and Alexander Kupers

of interest are two-dimensional oriented cobordisms, an oriented surface S with parametrized boundary
divided into an incoming and an outgoing part. More precisely, there is a pair of maps �inW

Fn
iD1 S

1! @S

and �outW
Fm
jD1 S

1! @S such that �in t �out is a diffeomorphism onto @S .

We will now give a conformal definition of the moduli space of these cobordisms, following work of
Bödigheimer [3, Section 2] and Hamenstädt [24]. Let S be an isomorphism class of connected two-
dimensional oriented cobordisms with nonempty incoming and outgoing boundary. As we will later
endow S with a metric, a parametrization of its boundary is given by a point in each boundary component.
So S D Sg;nCm is a connected oriented surface of genus g with nCm boundary components, each
containing a single point pi for 1 � i � nCm. The marked points are ordered and divided into an
incoming set (which contains the first n� 1 marked points) and an outgoing set (which contains the last
m� 1 marked points).

To define the moduli space, we start by considering the set of metrics g on S . Two metrics are said to be
conformally equivalent if they are equal, up to a pointwise rescaling by a continuous function. This is
equivalent to having the same notion of angle. A diffeomorphism f WS1! S2 between two-dimensional
manifolds .S1; Œg�1/ and .S2; Œg�2/ with conformal classes of metrics such that f �Œg�2 D Œg�1 is said to
be a conformal diffeomorphism. This is equivalent to each of its differentials Dpf for p 2 S1 being a
linear map that preserves angles.

We will restrict our attention to those conformal classes of metrics on S such that each incoming boundary
component has a neighborhood that is conformally diffeomorphic to a neighborhood of the boundary
of fz 2 C j kzk � 1g, and each outgoing boundary component has a neighborhood that is conformally
diffeomorphic to a neighborhood of the boundary of fz 2 C j kzk � 1g. We say that these conformal
classes have good boundary.

The moduli space Mg.n;m/ will have as underlying set the conformal classes of metrics on S with
good boundary, modulo the equivalence relation of conformal diffeomorphism fixing the points pi . To
topologize it, we introduce the Teichmüller metric. With respect to this metric, two equivalence classes of
metrics on S are close if they are related by a homeomorphism that — away from a finite set — is not
only differentiable, but also conformal up to a small error. To make this precise, note that a linear map
DWR2!R2 is conformal if and only if max.kDvk=kvk/Dmin.kDvk=kvk/, with both the maximum
and minimum taken over nonzero vectors. Hence we can quantify the deviation of a linear map from
being conformal by its eccentricity

Ecc.D/ WD
max.kDvk=kvk/
min.kDvk=kvk/

:

If f W .S; Œg�1/! .S; Œg�2/ is a homeomorphism that is continuously differentiable outside a finite set of
points †� S , then its quasiconformal constant Kf is defined to be

Kf WD sup
p2Sn†

Ecc.Dpf /;

Algebraic & Geometric Topology, Volume 24 (2024)



Comparing combinatorial models of moduli space and their compactifications 597

and f is said to be quasiconformal if Kf is finite. If QC.Œg�1; Œg�2/ denotes the set of all quasiconformal
homeomorphisms between .S; Œg�1/ and .S; Œg�2/ fixing the points pi , then we can define the Teichmüller
distance between Œg�1 and Œg�2 as follows:

dT ..S; Œg�1/; .S; Œg�2// WD log inffKf j f 2QC.Œg�1; Œg�2/g:

The moduli space of two-dimensional oriented cobordisms isomorphic to S is then defined to be the
metric space

Mg.n;m/ WD

�
conformal classes of metrics on S with good boundary

conformal diffeomorphisms fixing the points pi
; dT

�
:

For S that are not connected, we take the product of these spaces over all components. An alternative
definition of these spaces is as the quotient of Teichmüller space (the space of quasiconformal maps
modulo conformal equivalence) by the action of the mapping class group Mod.S; @S/, ie the group of
components of the diffeomorphism group Diff.S; @S/. This is a free proper action on a contractible space,
and hence Mg.n;m/' B Mod.S; @S/. All connected components of Diff.S; @S/ are contractible, and
we can thus conclude that

Mg.n;m/' B Mod.S; @S/' BDiff.S; @S/:

This explains why Mg.n;m/ is a model for the moduli space of two-dimensional oriented cobordisms;
any bundle of cobordisms over a paracompact space B with transition functions given by diffeomorphisms
can be obtained up to isomorphism by pulling back a universal bundle over Mg.n;m/ along a map
B !Mg.n;m/. This universal bundle is the quotient of the space consisting of pairs .Œg�; x/ of a
conformal class of metrics and a point x 2 S , by conformal diffeomorphisms acting diagonally.

1.2 Combinatorial models of moduli space

We discuss several combinatorial models of Mg.n;m/, as well as certain compactifications. The following
diagram spells out the relations between them (we fix g, n and m and drop them from the notation):

M

RAD jFat ad j jFat j

Rad Rad� MFat ad MFat

Rad

URad SD

Š

' '

'

'

compactification

Section 4:2
' '

Section 4:5

quotient by slides

'

'

Š

Section 5

Algebraic & Geometric Topology, Volume 24 (2024)



598 Daniela Egas Santander and Alexander Kupers

Each arrow is a continuous map; if decorated by ' it is a homotopy equivalence, if it is double-headed it
is a surjection, and if decorated by Š it is a homeomorphism. The objects that appear in this diagram are
summarized below:

The moduli space M is the archetypical “space of cobordisms”, a conformal model of which was
discussed in Section 1.1. It consists of conformal classes of metrics modulo conformal diffeomorphisms,
with the Teichmüller metric.

The radial slit configurations The model RAD, due to Bödigheimer, consists of gluing data to construct
a conformal class of metrics by gluing together annuli in C. The main theorem of [3] is that there
is a homeomorphism M Š RAD. There is a deformation retraction of RAD onto Rad by fixing the
radii of the annuli. This and related models will be discussed in Section 2, and Rad will be defined in
Definition 2.15.

The fat graphs Fat graphs are graphs with the additional structure of a cyclic ordering of the edges
going into each vertex and data encoding the parametrization of its “boundary components”. Taking as
morphisms maps of fat graphs that collapse a disjoint union of trees defines a category of fat graphs,
denoted by Fat . The space jFat j is the geometric realization of this category. This and related models
will be discussed in Section 3, and Fat will be defined in Definition 3.7.

The admissible fat graphs A fat graph is said to be admissible if its incoming boundary graph embeds
in it, and the category of admissible fat graphs is denoted by Fat ad . The space jFat ad j is the geometric
realization of the full subcategory on the admissible fat graphs. It is defined in Definition 3.7.

The metric fat graphs Closely related to Fat is the space of metric fat graphs, denoted by MFat . This
is the space of fat graphs with the additional data of lengths of their edges. The topology is described in
terms of these lengths, and it contains the realization of Fat as a deformation retract.

The admissible metric fat graphs Just like Fat ad is the subcategory of Fat consisting of fat graphs that
are admissible, MFat ad is the subspace of MFat consisting of metric fat graphs that are admissible. It is
defined in Definition 3.11.

The fattening of the radial slit configurations To discuss the relation between Rad and MFat , we
introduce Rad� as a thicker version of Rad by including resolutions of the critical graph for nongeneric
radial slit configurations. This is done in Section 4.2.

The harmonic compactification Naturally Rad arises as an open subspace of a compact space Rad. In
this compactification we allow identifications of points on the outgoing boundary, and allow handles to
degenerate to intervals. It is defined in Definition 2.15.

The unilevel harmonic compactification The space URad is a deformation retract of Rad obtained by
making all slits equal length. It is defined in Definition 2.21.

The Sullivan diagrams The space of Sullivan diagrams, denoted by SD, is the quotient of MFat ad by
the equivalence relation of slides away from the admissible boundary. It is defined in Definition 3.16.

Algebraic & Geometric Topology, Volume 24 (2024)



Comparing combinatorial models of moduli space and their compactifications 599

We will focus on the bottom square, that is, the relations between radial slit configurations, admissible
metric fat graphs and their compactifications. Our main result is:

Theorem 1.1 The space Rad� and maps given in Corollaries 4.42 and 4.51, Proposition 5.1 and
Lemma 2.22 form a commutative square

Rad Rad� MFat ad

Rad

URad SD

'

Corollary 4:42 Corollary 4:51
'

'Lemma 2:22

Š

Proposition 5:1

Furthermore , all maps that are decorated by' are homotopy equivalences and the map decorated byŠ is
a cellular homeomorphism.

There exist other combinatorial models related to the moduli space of cobordisms which are not discussed
here. We will describe six such models in the following remarks.

Remark 1.2 To describe an action of the chains of the moduli space of surfaces on the Hochschild
homology of A1–Frobenius algebras, Costello constructed a chain complex that models the homology
of the moduli space [9; 10]. In [43], Wahl and Westerland described this chain complex in terms of fat
graphs with two types of vertices, which they called black and white fat graphs. There is an equivalence
relation of black and white graphs given by slides away from the white vertices. The quotient chain
complex is the cellular chain complex of SD. Furthermore, Egas Santander [14] showed that MFat ad has
a quasicell structure with black and white fat graphs as its cellular complex and where the quotient map
to SD respects this cell structure.

Remark 1.3 In [8], Cohen and Godin defined Sullivan chord diagrams of genus g with p incoming and
q outgoing boundary components, which were also used by Félix and Thomas [16]. These are fat graphs
obtained from gluing trees to circles and comprise a space CF.gIp; q/, which is a subspace of MFat ad .
They are not the same as Sullivan diagrams as in Definition 3.16, though they do admit a map to SD. The
space of metric chord diagrams is not homotopy equivalent to moduli space; see Godin [21, Remark 3].

Remark 1.4 In [38], Poirier defined a space SD.g; k; l/=� of string diagrams modulo slide equivalence
of genus g with k incoming and l outgoing boundary components, and more generally she defined string
diagrams with many levels modulo slide equivalence, LD.g; k; l/=�. Proposition 2.3 of [38] says that
SD.g; k; l/=�' LD.g; k; l/=�. She also defined a subspace SD.g; k; l/ of SD.g; k; l/. Both SD.g; k; l/
and SD.g; k; l/ are subspaces of MFat ad , and by counting components one can see that these inclusions
cannot be homotopy equivalences. However, there is an induced map SD.g; k; l/=�! SD which is a
homeomorphism.

Algebraic & Geometric Topology, Volume 24 (2024)



600 Daniela Egas Santander and Alexander Kupers

Remark 1.5 In [11], Drummond-Cole, Poirier and Rounds defined a space of string diagrams SD which
generalized the spaces of chord diagrams constructed in [38]. They conjectured that this space is homotopy
equivalent to the moduli space of Riemann surfaces. There is an embedding SD ,!MFat ad , but it is not
clear this is a homotopy equivalence. Furthermore, there is an equivalence relation � on SD, which is
not discussed in their paper, and they conjectured that SD=� is homotopy equivalent to the harmonic
compactification.

Remark 1.6 Following the ideas of Wahl, Klamt constructed a chain complex of looped diagrams,
denoted by lD in [31]. This complex gives operations on the Hochschild homology of commutative
Frobenius algebras. Moreover, she gave a chain map from the cellular complex of the space of Sullivan
diagrams to looped diagrams. However, a geometric interpretation of a space underlying the complex lD
and its possible relation to moduli space are still unknown.

Remark 1.7 In [30], Kaufman described a space of open–closed Sullivan diagrams Sullc=o1 in terms of
arcs embedded in a surface. The closed part, Sullc1, is a space whose points correspond to weighted families
of embedded arcs in the surface that flow from the incoming boundary to the outgoing boundary. This
space has a natural cell structure, and there is a cellular homeomorphism Sullc1

Š
�! SD [43, Remark 2.12]

.

1.3 Applications of these models

We will next explain two of the applications of combinatorial models for moduli spaces.

1.3.1 Explicit computations of the homology of moduli spaces Combinatorial models provide cell
decompositions for moduli spaces, allowing for explicit computations of the (co)homology groups of
moduli spaces using cellular (co)homology. Instead of studying Mg.n;m/, it is more convenient to study
the closely related moduli space M1;n

g of surfaces of genus g with one parametrized boundary component
and n permutable punctures. There are variations of Rad and MFat ad that are models for M1;n

g .

Much is known about the homology of M1;n
g and much is unknown about it. Harer stability tells us

that H�.M1;n
g / stabilizes as g!1; see Harer [25] and Wahl [41]. As a consequence of homological

stability for configuration spaces, it also stabilizes as n!1. The Madsen–Weiss theorem gives the
stable homology; see Galatius [19] and Madsen and Weiss [34]. (See Bödigheimer and Tillmann [5] for
increasing the number of punctures.) Less is known outside of the stable range; explicit computations of
H�.M1;n

g / for low g and n can help inform and test conjectures about the homology of moduli spaces.

The computation of the homology of moduli spaces using radial slit configurations, or the closely related
parallel slit configurations, is a long-term project of Bödigheimer and his students. The first example of
this is Ehrenfried’s thesis [15], where he computes M1;0

2 . See Abhau, Bödigheimer and Ehrenfried [1]
for computations of the integral homology of M1;n

g for 2gCn� 5 using parallel slits. An example of an
explicit computation using fat graphs is [22], in which Godin computes the integral homology of M1;0

g

for g D 1; 2 and M2;0
g for g D 1.

Algebraic & Geometric Topology, Volume 24 (2024)



Comparing combinatorial models of moduli space and their compactifications 601

1.3.2 Two-dimensional field theories, in particular string topology Combinatorial models of moduli
spaces have been an important tool in the study of two-dimensional field theories. Two applications are
Kontsevich’s proof of the Witten conjecture [32], and Costello’s classification of topological conformal
field theories [10]. More concretely, combinatorial models for the moduli space of cobordisms play a
role in the construction of string operations; these are operations H�.Mg.n;m/IL˝d /˝H�.LM/˝n!

H�.LM/˝m for compact oriented manifoldsM . Chas and Sullivan thought of the pair of pants cobordism
as a figure-eight graph [7], and many of the constructions of string operations since have used graphs.
An important example is Godin’s work [21], which uses Fat ad . Using Costello’s model for moduli
space together with a Hochschild homology model for H�.LM/, Wahl and Westerland [42; 43] not
only constructed string operations, but showed that these factor through SD. One can also use radial slit
configurations to construct string operations.

A problem in string topology is that there are many constructions but few comparisons between them.
The critical graph equivalence of Section 4 may help to compare constructions involving fat graphs and
Sullivan diagrams to those involving radial slit configurations and the harmonic compactification.

Outline of paper

In Sections 2 and 3 we define radial slit configurations, fat graphs and their compactifications in detail.
In Section 4 we use the critical graph of a radial slit configuration to construct a zigzag of homotopy
equivalences between Rad and MFat ad . In Section 5 we show that this descends to a homeomorphism
between URad and SD.
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2 Radial slit configurations and the harmonic compactification

2.1 The definition

In this subsection we introduce Bödigheimer’s radial slit configuration model for the moduli space of
two-dimensional cobordisms with nonempty incoming and outgoing boundary. All material in this
subsection is due to Bödigheimer, and references include [1; 2; 3; 12] and particularly [4] as it describes,
in a related setting, an elegant alternative to the construction below, using subspaces of bar complexes
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602 Daniela Egas Santander and Alexander Kupers

associated to symmetric groups. It leads, however, to a different compactification of moduli space than
the harmonic compactification, so we use [3].

2.1.1 Spaces of radial slit configurations Before giving a definition of the radial slit configuration
space Rad, we explain how to arrive at it from the perspective of building cobordisms by gluing annuli
along cuts. The reader may prefer to skip this motivation and go directly to Definition 2.1.

The simplest cobordism with nonempty incoming and outgoing boundary is the cylinder, with one
incoming and one outgoing boundary component. Using the theory of harmonic functions, one sees that
each annulus is conformally equivalent to one of the following annuli forR2

�
1
2�
;1

�
[24, Corollary 2.13]:

AR WD
n
z 2C

ˇ̌ 1
2�
� jzj �R

o
:

The reason for the choice of 1
2�

is to facilitate comparison with fat graphs later on. We take these as our
basic building blocks. Each of them has an inner boundary @inAR D

˚
z 2 C j jzj D 1

2�

	
and an outer

boundary @outARDfz 2C j jzjDRg. They come with a canonical metric, as subsets of the complex plane.

To construct a cobordism with n incoming boundary components, we start with an ordered disjoint union
of n annuli A.i/Ri

, whose inner boundaries will be the incoming boundary of our cobordism. Next we make
cuts radially inward from the outer boundaries of the annuli. Such cuts are uniquely specified by points
� 2

Fn
iD1A.i/Ri

, which we will call slits. They need not be distinct. As will become clear, the number
of slits must always be an even number 2h, and we thus number them �1; : : : ; �2h. For a total genus g
cobordism with n incoming and m outgoing boundary components we need 2hD 2.2g�2CnCm/ slits.

We want to glue the different sides of the cuts back together. To get a metric on the surface from the metric
on the cut annuli, the two cuts that we glue together must be of the same length. To get an orientation on
the surface from the orientations on the cut annuli, we must glue a side clockwise from a cut to a side
counterclockwise from a cut. To avoid singularities, if one side of the cut corresponding to �i is glued
to a side of the cut corresponding to �j , the same must be true for the other two sides. Thus our gluing
procedure is described by a pairing on f1; : : : ; 2hg, encoded by a permutation

�W f1; : : : ; 2hg ! f1; : : : ; 2hg

consisting of h cycles of length 2. We should demand that if �i lies on the annulus A.j /Rj
and ��.i/ lies on

the annulus A.j
0/

Rj 0
, then Rj � j�i j DRj 0 � j��.i/j. See Figure 1 for an example.

However, several problematic situations could occur. Firstly, if two slits �i and �j lie on the same radial
segment, by definition a subset of the annulus A.j /Rj

of the form

fz 2A.j /Rj
j arg.z/D �g for some �;

then our cutting and gluing procedure is not well defined. We need to keep track of whether �i lies
clockwise or counterclockwise from �j . To do this, we include the data of a successor permutation

!W f1; : : : ; 2hg ! f1; : : : ; 2hg:

Algebraic & Geometric Topology, Volume 24 (2024)



Comparing combinatorial models of moduli space and their compactifications 603

1

1

2

outgoing boundary

incoming boundary

1

1

2

1

1

2

Figure 1: An example of constructing a cobordism by cutting and gluing slits in annuli. We start
with the annulus on the left, cut along the blue lines to obtain the middle figure, and finally glue
both the gray sides and the white sides of the cuts to get the cobordism on the right. In this simple
example, the pairing � and the successor permutation ! are uniquely determined.

This has n cycles, corresponding to the n annuli, and we should demand that each cycle contains the
numbers of the slits in one of the annuli and is compatible with the weak cyclic ordering on these coming
from the argument of the slits. The successor permutation keeps track of the fact that when two slits
coincide, one actually lies “infinitesimally counterclockwise” from the other; see Figure 2.

This is not enough, because if all slits on an annulus lie on the same radial segment we can only deduce
the ordering of the slits up to a cyclic permutation. To amend this, we add additional data: the angular
distance ri 2 Œ0; 2�� counterclockwise from �i to �!.i/. In almost all cases one can deduce this from the

1

1

�4

�3

�2�1

! D .1234/

! D .2134/

1

1

1

1

Figure 2: An example of a radial slit preconfiguration with two slits on the same radial segment;
�1 is the shorter blue slit and �2 is the longer red slit. The successor permutation ! allows us to
think of �1 as either infinitesimally clockwise or counterclockwise from �2.
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locations of the �i and !, but in the case where all slits on an annulus lie on the same radial segment, one
of them will have to be ri D 2� , while the others will have to be rj D 0. This allows one to determine
the ordering of the slits, since the slit �i with ri D 2� should be first in the clockwise direction from the
angular gap between the slits.

We have almost described enough data to construct a cobordism. We can build a possibly degenerate
surface, which has among its boundary components the inner boundaries of the annuli. Since we wanted
m outgoing boundary components, we restrict to the subset of data that gives us m boundary components
in addition to these inner boundaries of annuli. The inner boundaries of the annuli come with a canonical
parametrization, but the outer ones do not. Because they already have a canonical orientation coming
from the orientation of the outer boundary of the annuli, it suffices to add one point Pi in each of them, m
in total. Thus we need to include these new parametrization points in ! and the ri . To do this, we write
�i D �i for 1� i � 2h and �2hCi D Pi for 1� i �m, and expand our definition of ! to a permutation
x! 2S2hCm and add additional r2hCi 2 Œ0; 2�� for 1� i �m. It is also convenient to extend the definition
of � to a permutation N� 2S2hCm by setting N�.2hC i/D 2hC i for 1� i �m.

Now we can state the definition of a radial slit configuration by collecting all the above data, identifying
those configurations yielding the same conformal surface, and discarding those configurations yielding
degenerate surfaces. Actually, it is only necessary to consider configurations with a fixed outer radius; we
will say more on this towards the end of the section. Therefore, from now on we take ERD .R;R; : : : ; R/
and R D 1

2�
C

1
2

unless stated otherwise. This choice of outer radius is arbitrary, but it makes the
connection with metric fat graphs cleanest.

Definition 2.1 The space of possibly degenerate radial slit preconfigurations, denoted by PRadh.n;m/,
is the subspace of

LD .E�; N�; x!; Er/ 2

� nG
jD1

C

�2hCm
�S2hCm �S2hCm � Œ0; 2��

2hCm

with the following properties. For notation, let �i WD �i for 1� i � 2h and Pi WD �2hCi for 1� i �m. Then

� E� 2
�Fn

jD1C
�2h are the endpoints of the slits,

� EP 2
�Fn

jD1C
�m are the parametrization points,

� N� 2S2hCm is the extended slit pairing,

� x! 2S2hCm is the extended successor permutation,

� Er 2 Œ0; 2��2hCm are the angular distances.

These are subject to six conditions:

(i) Each slit �i lies in
Fn
jD1A.j /R �

Fn
jD1C and each parametrization point Pi lies in

Fn
jD1 @outA

.j /
R .

(ii) The extended slit pairing N� consists of h 2–cycles and m 1–cycles. The latter are given by 2hC i for
1� i �m. We demand that j�i j D j� N�.i/j for all 1� i � 2h.
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1

1

2

�1�2

successor permutation !D .12/
angular distances r1 D r2 D �

parametrization points in each
outgoing boundary component

labeled incoming boundary

outer boundary of annulus divided into
two outgoing boundary components
(here solid and dashed)

radial slits with pairing .12/

Figure 3: The configuration of Figure 1 with all its data pointed out.

(iii) The successor permutation x! consists of a disjoint union of n cycles, and these cycles consist exactly
of the indices of the �i lying on each of the annuli. We demand that the permutation action of x! on
these �i preserves the weakly cyclic ordering which comes from the argument (as usual taken in the
counterclockwise direction).

(iv) The boundary component permutation N� ı x! consists of m cycles. We will see that its cycles
correspond to the outgoing boundary components.

(v) We demand that Pi lies in the subset Oi of
Fn
jD1 @outA

.j /
R which we will now define. The m cycles

of N� ı x! allow one to write the outer boundaries of the annuli as a union of m subsets, overlapping only
in isolated points. We demand that each of these contains exactly one Pi , and denote that subset by Oi .
To be precise, each Oi is the union of the parts in the outer boundary between the radial segments �j and
�x!.j / in the counterclockwise direction for all j in a cycle of N� ı x!.

(vi) The angular distances ri must be compatible with the location of the �i and the successor permutation
x! in the following sense. If �i does not lie on an annulus with all slits and parametrization points coinciding,
then ri is equal to the angular distance in counterclockwise direction from �i to �x!.i/. If �i lies on an
annulus with all slits and parametrization points coinciding, then ri is equal to either 0 or 2� and exactly
one �j on that annulus has rj D 2� .

In terms of the previous notation, ! and � are obtained from x! and N� by deleting the elements 2hC i for
1� i �m from the cycles.

We now give a construction of a possibly degenerate cobordism S.L/ for a preconfiguration L. To do so,
we first define the sector space †.L/, the pieces used in the gluing construction. We slightly depart from
our informal discussion by making cuts from the outer boundary to the inner boundary of the annuli and
regluing these later. See Figure 4 for examples of the different types of sectors.

Definition 2.2 Let l be the number of annuli containing no elements of E� . Then†.L/will have 2hCmCl
components Fi for 1� i � 2hCmC l . These come in four types:
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˛�

ˇ�

˛C

ˇC

ordinary

˛C

ˇC ˛�

ˇ�

thin

entire

˛�
ˇ�

˛C
ˇC

full

Figure 4: Examples of the different types of radial sectors with subsets ˛˙ and ˇ˙.

Ordinary sectors If arg.�i /¤ arg.�x!.i// and �i lies on the j th annulus A.j /R , then we set

Fi D fz 2A.j /R j arg.�i /� arg.z/� arg.�x!.i//g:

Thin sectors If arg.�i /D arg.�x!.i//, ri D 0 and �i lies on the j th annulus A.j /R , then we set

Fi D fz 2A.j /R j arg.�i /D arg.z/g:

Full sectors If arg.�i /D arg.�x!.i//, ri D 2� and �i lies on the j th annulus A.j /R , then we set Fi to be
the annulus A.j /R cut open along the segment arg.z/D arg.�i /, with that segment doubled so that it is
homeomorphic to a closed rectangle.

Entire sectors If the j th annulus A.j /R does not contain any elements of E� and is j 0th in the induced
ordering on the r annuli that do not contain any slits, we set F2hCmCj 0 DA.j /R .

The surface †.L/ underlying the cobordism S.L/ will be obtained as a quotient space of the sector space
by an equivalence relation that makes identifications on the boundary of the sectors. We next define the
subsets involved in those identifications.

Definition 2.3 If Fi is an ordinary or thin sector corresponding to the element �i on the j th annulus A.j /R ,
then we define the following subspaces of Fi :

˛Ci WD fz 2A.j /R j arg.z/D arg.�x!.i// and jzj � j�x!.i/jg;

˛�i WD fz 2A.j /R j arg.z/D arg.�i / and jzj � j�i jg;

ˇCi WD fz 2A.j /R j arg.z/D arg.�x!.i// and jzj � j�x!.i/jg;

ˇ�i WD fz 2A.j /R j arg.z/D arg.�i / and jzj � j�i jg:
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If Fi is a full sector, then our definitions are different, because the two radial segments in the boundary have
the same argument. Let SCi be the radial segment bounding Fi in the counterclockwise direction and S�i
be the radial segment bounding it in the clockwise direction. Then we define the following subspaces of Fi :

˛Ci WD fz 2 S
C
i j jzj � j�x!.i/jg; ˛�i WD fz 2 S

�
i j jzj � j�i jg;

ˇCi WD fz 2 S
C
i j jzj � j�x!.i/jg; ˇ�i WD fz 2 S

�
i j jzj � j�x!i jg:

These subspaces are empty for entire sectors.

Definition 2.4 The equivalence relation �L on †.L/ is the one generated by identifying

(i) z 2 ˛Ci with z 2 ˛�
x!.i/

, and

(ii) z 2 ˇCi with z 2 ˇ�
N�.i/

.

We define the surface †.L/ to be †.L/=�L.

Definition 2.5 The cobordism S.L/ has underlying surface †.L/. It has a map from each inner
boundary @inA.j /R

�inj WS
1
Š @inA.j /R !†.L/;

and these are inclusions of subspaces if none of the slits lie on the inner boundary of an annulus. One can
define the outgoing boundary components as a subspace of †.L/ by considering the intersection of the
outer boundary of the annuli with the sectors. For each cycle in �ı! these intersections form a circle with
canonical orientation and starting point Pk . This yields, for the cycle � ı! corresponding to Pk , a map

�out
k WS

1
!†.L/;

and these are inclusions of subspaces if none of the slits lie on the outer boundary of an annulus.

As mentioned before, this definition may result in a degenerate cobordism for some L. Moreover, two
different preconfigurations might give the same conformal classes of cobordism. In fact, each conformal
class of cobordisms occurs at least .2h/Š times, because the labeling on the slits does not matter. To see
that degenerate surfaces can occur, consider the example in Figure 5. Now we explain how to resolve
both issues.

We have already explained that one should identify configurations obtained by permuting the labels on
the slits. We only need to make two additional identifications. For the first, instead of doing all the

1

1

� �

Figure 5: An example of a radial slit preconfiguration leading to a degenerate surface. The black
arc connecting two points on the surface on the right was the line segment between the two red slits.

Algebraic & Geometric Topology, Volume 24 (2024)



608 Daniela Egas Santander and Alexander Kupers

1

1

�
1

1

Figure 6: A jump of a slit. The pairing � is given by the colors, but is uniquely determined by the configuration.

cutting and gluing simultaneously, do it in order of increasing modulus of the slits. This results in the
same cobordism, but doing so makes clear it that if �i lies on the same radial segment as �j and satisfies
j�i j � j�j j, it might as well be on the other side of ��.j /. That is, it might as well have “jumped” over
the slit �j to ��.j /. For the second, note that if a parametrization point similarly “jumps” over a slit, this
does not change the parametrization of the outgoing boundary. These will turn out to be all required
identifications, and we now use them to define equivalence relations on PRadh.n;m/.

Definition 2.6 Let �0 be the equivalence relation on PRadh.n;m/ generated by:

Relabeling of the slits We identify two preconfigurations if they can be obtained from each other
by relabeling the slits. More precisely, for every permutation � 2 S2h extended by the identity to a
permutation N� 2S2hCm and LD .E�; N�; x!; Er/ 2 PRadh.n;m/, we say that L�0 �.L/ with

�.L/D ..E�/ N� ; . N�/ N� ; .x!/ N� ; .Er/ N� /;

where

� .E�/ N� is given by .�/ N�i D � N�.i/,

� . N�/ N� D N� ı N� ı N��1,

� .x!/ N� D N� ı x! ı N��1,

� .Er/ N� is given by .r/ N�i D r N�.i/.

Let � be the equivalence relation on PRadh.n;m/ generated by relabeling of the slits (as above) and the
following two identifications:

Slit jumps We say L� L0 if L0 can be obtained from L by a slit jump; see Figure 6. More precisely, if
we are given a preconfiguration L and two indices i and j such that j D!.i/, ri D 0 and j�i j � j�j j, then
we can obtain a new preconfiguration L0 as follows. We replace �i by the point �0i D .j�i j=j��.j /j/��.j /
and keep all the other slits the same. We then put i after �.j / in x! to obtain x!0, and set r 0i D r�.j / and
r 0
�.j /
D 0. The rest of the data remains the same.

Parametrization point jumps We sayL�L0 ifL0 can be obtained fromL by a jump of a parametrization
point; see Figure 7. More precisely, if we are given a preconfiguration L in which there is a Pi such that
j D x!.i C 2h/ for some j and riC2h D 0, then we can obtain a new preconfiguration L0 by keeping
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1
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3

�
1

1
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3

Figure 7: A jump of a parametrization point.

all the data the same, except replacing Pi with P 0i lying at the radial segment through ��.j / and setting
r 0
iC2h

D r�.j / and r 0
�.j /
D 0.

Definition 2.7 We now define certain quotient spaces using these equivalence relations:

� the space QRadh.n;m/ of unlabeled possibly degenerate radial slit preconfigurations, the quotient
of PRadh.n;m/ by �0,

� the space Radh.n;m/ of possibly degenerate radial slit configurations, the quotient of QRadh.n;m/
by �.

We will denote by ŒL� the radial slit configuration represented by a preconfiguration L. We are left to deal
with the problem that certain preconfigurations give cobordisms whose underlying surface is degenerate.
We call such preconfigurations degenerate. In [3], Bödigheimer gave a necessary and sufficient criterion
for a (pre)configuration to lead to a degenerate surface:

Proposition 2.8 The surface underlying the cobordism †.L/ constructed out of a preconfiguration L
is degenerate if and only if it is equivalent under � to a preconfiguration satisfying at least one of the
following three conditions:

� Slit hitting inner boundary There is a slit �i with j�i j D 1
2�

.

� Slit hitting outer boundary There is a slit �i on an annulus A.j /R with j�i j DRj .

� Slits are “squeezed” There is a pair .i; j / such that j D �.i/, �i and �j lie on the same annulus ,
�i D �j and , for all k between i and j in the cyclic ordering coming from !, we have that
j�kj � j�i j D j�j j; see Figure 5 for an example. If all slits on the annulus containing �i and �j lie at
the same point , we additionally require that rk D 0 for all of the k between i and j .

Definition 2.9 A radial slit preconfiguration is said to be generic if it is not equivalent to any other by
slit or parametrization point jumps, ie all the slits are disjoint.

Definition 2.10 We define the following spaces:

� The space PRadh.n;m/ of labeled radial slit preconfigurations is the subspace of PRadh.n;m/
consisting of nondegenerate preconfigurations.
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� The space QRadh.n;m/ of unlabeled radial slit preconfigurations is the subspace of QRadh.n;m/
consisting of equivalence classes with nondegenerate representatives.

� The space Radh.n;m/ of radial slit configurations is the subspace of Radh.n;m/ consisting of
equivalence classes with nondegenerate representatives.

2.1.2 Cell complexes of radial slit configurations Next we give CW–complexes Rad and Rad

homeomorphic to the spaces of radial slit configurations given before. On Rad this is the CW–structure
given in [3, Section 8.2], and on the subspace Rad it coincides with the radial analogue of [4]. The cells
will be indexed by so-called combinatorial types, which we define first.

Definition 2.11 Fix an L in PRadh.n;m/.

� The radial segments of the slits, the parametrization points and the positive real lines divide the
annuli of the preconfiguration L radially into different pieces, which we will call radial chambers;
see Figure 8.

� Each slit �i in L defines a circle of radius j�i j on all of the n annuli. These circles divide the n
annuli into different pieces, which we will call annular chambers; see Figure 8.

Remark 2.12 The orientation of the complex plane endows the radial chambers on each annulus with a
natural ordering, and similarly the modulus endows the annular chambers with a natural ordering; see
Figure 8.

Each of the annular chambers is homeomorphic to a disjoint union of n annuli, while each of the radial
chambers is homeomorphic to a rectangle.

Definition 2.13 Two preconfigurations L and L0 in PRadh.n;m/ are said to have the same combinatorial
data if L0 can be obtained from L by continuously moving the slits and parametrization points in each
complex plane without collapsing any chamber. This defines an equivalence relation on PRadh.n;m/.

A combinatorial type of preconfigurations L is an equivalence class of preconfigurations under this
relation. Informally, a combinatorial type is the data carried over by the picture of a preconfiguration
without remembering the precise placement of the slits. Notice that this equivalence relation is also well
defined on the sets of radial slit configurations ŒL�. Thus one can similarly define a combinatorial type of
configurations ŒL� to be an equivalence class of configurations under this relation. We make a similar
definition for the case of unlabeled radial slit configurations.

We will use ‡ to denote the set of all combinatorial types of configurations.

Remark 2.14 If L is a degenerate (or nondegenerate) preconfiguration, then so is any preconfiguration of
the same combinatorial type. Thus, we can talk about a degenerate or nondegenerate combinatorial type.
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Figure 8: Top left: a configuration L and its radial and annular chambers divided by dotted lines.
The radial chambers are numbered in blue (there are 6 radial chambers on the left annulus and 4
on the right annulus) and the annular chambers are numbered in red (there are 3 annular chambers
consisting of a pair small annuli, one on each of the annuli). This combinatorial type gives an
11–cell in Rad given by �5 ��3 ��3. Top right and bottom: parts of the boundary of L and
their chambers. The modified parts are marked in light yellow.

Now we give definitions of cell complexes of (pre)configurations and their compactifications. Note that
the meaning of p and q is different from their meaning in [3].

Definition 2.15 The multidegree of a combinatorial type ŒL� on n annuli is the .nC1/–tuple of integers
.q1; : : : ; qn; p/, where qiC1 is the number of radial chambers in the i th annulus and pC1 is the number
of annular chambers. For 0� j � qi and 0� i � n, we denote by d ij .ŒL�/ the combinatorial type obtained
by collapsing the j th radial chamber on the i th annulus; see Figure 8. For 0 � j � p, we denote by
dnC1j .ŒL�/ the combinatorial type obtained by collapsing the j th annular chamber; see Figure 8.

The cell complex of possibly degenerate radial slit configurations Radh.n;m/ is the realization of the
multisimplicial set with

� .q1; : : : ; qn; p/–simplices given by

feŒL� j ŒL� is a combinatorial type of multidegree .q1; : : : ; qn; p/g;

� the faces of eŒL� given by d ij .�ŒL�/ WD �d i
j
.ŒL�/.
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Figure 9: A second example of a cell and parts of its boundary. Here all slits have the same length.

That is, Radh.n;m/ is a CW–complex with cells indexed by combinatorial types of radial slits configura-
tions as follows. Let eŒL� WD�q1 � � � � ��qn ��p. Then

Radh.n;m/ WD

F
ŒL�2‡ eŒL�

�
;

where the equivalence relation is generated by

.eŒL�; .Et1; : : : ; ı
j .Eti /; : : : ; EtnC1//� .ed i

j
.ŒL�/; .Et1; : : : ; Eti ; : : : ; EtnC1//:

Here ıj is the map �qi�1!�qi including 0 as the .jC1/st coordinate, and ‡ is the set of combinatorial
types of radial slit configurations.

The cell complexes of possibly degenerate radial slit preconfigurations PRadh.n;m/ and unlabeled
preconfigurations QRadh.n;m/ are defined in similar ways.

Definition 2.16 If a combinatorial type ŒL� is degenerate, then d ij .ŒL�/ is also degenerate. Thus, we define
the cell complex of degenerate radial slit configurations as the subcomplex Radh.n;m/

0 �Radh.n;m/

obtained as the realization of the degenerate simplices. Finally, Radh.n;m/ is the complement. That is,

Radh.n;m/ WDRadh.n;m/ nRadh.n;m/
0:

The spaces PRadh.n;m/ and QRadh.n;m/ are defined in a similar way.

We introduce notation for the image of eŒL� in Rad:

Definition 2.17 Letting ŒL� be a combinatorial type, we define the subspace RadŒL� as the image
of the interior of eŒL�. We also let RadŒL� be the closure of RadŒL� in Rad, and define @RadŒL� D

Rad\ .RadŒL� nRadŒL�/.

Algebraic & Geometric Topology, Volume 24 (2024)



Comparing combinatorial models of moduli space and their compactifications 613

2.1.3 Relationships Our final goal for this section is to explain the relationship between the spaces and
cell complexes of radial slit configurations and the moduli space of cobordisms. The first relationship is
straightforward, as there are continuous bijections

Radh.n;m/!Radh.n;m/; Radh.n;m/!Radh.n;m/;

QRadh.n;m/!QRadh.n;m/; QRadh.n;m/!QRadh.n;m/;

PRadh.n;m/!PRadh.n;m/; PRadh.n;m/!PRadh.n;m/;

compatible with the quotient maps and inclusions. These are given by sending a point to its combinatorial
type and the simplicial coordinates obtained by rescaling the angles of the slits (for the first n coordinates)
and their radii (for the last coordinate). The next lemma follows from [3], and we sketch a proof below.

Lemma 2.18 These maps are homeomorphisms.

Proof We start by noting that PRadh.n;m/ and PRadh.n;m/ are both compact Hausdorff spaces;
the former is a closed subset of a compact Hausdorff space and the latter is a finite CW–complex. A
continuous bijection between compact Hausdorff spaces is a homeomorphism. Next note that the maps
Radh.n;m/!Radh.n;m/ and QRadh.n;m/!QRadh.n;m/ are induced by passing to quotients, as
are their inverses, so they are also homeomorphisms.

Thus the maps on the right are homeomorphisms and the maps on the left are obtained by restricting
these homeomorphisms to open subsets and replacing their codomain with their image. Hence they are
also homeomorphisms.

The relationship to moduli space is less straightforward. In [3, Section 9], Bödigheimer defined a space
RADh.n;m/ of all radial slit configurations with varying inner radii but fixed outer radii, and a subspace
RADh.n;m/ of all nondegenerate radial slit configurations. He also proved a version of the previous
lemma.

Lemma 2.19 There are homotopy equivalences

RADh.n;m/' Radh.n;m/ and RADh.n;m/' Radh.n;m/:

Sketch of proof To explain the existence of these homotopy equivalences, we note that Bödigheimer’s
RAD and RAD differ from Rad and Rad only in the following two ways:

(i) In RAD and RAD the inner radii are allowed to vary in .0; R0/ for some choice of R0 > 0, while
in Rad and Rad they are fixed to 1

2�
.

(ii) In RAD and RAD an exceptional set � is used to remove ambiguity when all slits on an annulus
lie on two segments, while in Rad and Rad this role is played by the angular distances Er .

The second of these encodes equivalent data; given the rest of the data of a radial slit configuration, �
can be reconstructed from Er and vice versa. The first says that the difference between the two spaces
is in the choices of radii. More precisely, there is an inclusion Rad ,! RAD with homotopy inverse
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given by decreasing all radii to min.Ri / and changing the radial coordinates of all the data by an affine
transformation that sends min.Ri / to 1

2�
and fixes 1. This homotopy equivalence restricts to one between

RAD and Rad.

Bödigheimer proved in [3, Section 7.5], with additional details in [12], that a version of RADh.n;m/
without parametrization points on the outgoing boundary is a model for the moduli space of cobordisms
without parametrization of the outgoing boundary. This uses that †.L/ comes with a canonical conformal
structure, being obtained by gluing subsets of C. Adding in the parametrizations for the outer boundary,
this result implies:

Theorem 2.20 (Bödigheimer) The map that assigns to each ŒL� 2 RADh.n;m/ the conformal class of
the cobordism S.L/ gives a homeomorphism

RADh.n;m/Š
G

Mg.n;m/;

where the disjoint union is over triples .g; n;m/ satisfying hD 2g� 2CnCm.

By the remarks above,
Radh.n;m/'

G
Œ†�

BDiff.†; @†/;

where the disjoint union is over two-dimensional cobordisms with n� 1 incoming boundary components,
m� 1 outgoing boundary components and total genus g � 0.

Bödigheimer proved Theorem 2.20 for connected cobordisms with no parametrization of the outgoing
boundary, but this version of the theorem is an easy consequence of his. His proof amounts to checking
that RADh.n;m/ is a manifold of dimension 3hCmCn (see also [13] for remarks on the real-analytic
structure). It sits as a dense open subset in RADh.n;m/. In this way we can think of RADh.n;m/ as
a “compactification” of RADh.n;m/. Informally it is the compactification where handles or boundary
components can degenerate to radius zero, as long as there is always a path from each incoming boundary
component to an outgoing boundary component that does not pass through any degenerate handles or
boundary components. Colloquially, “the water must always be able to leave the tap”. Bödigheimer calls
this the harmonic compactification of moduli space. We now describe a deformation retract of it:

Definition 2.21 The unilevel harmonic compactification URadh.n;m/ is the subspace of Radh.n;m/

given by cells corresponding to configurations satisfying j�i j DR for all i 2 f1; : : : ; 2hg, ie all slits lie on
the outer radius.

In addition to the inclusion �WURadh.n;m/ ,!Radh.n;m/, there is also a projection pWRadh.n;m/!

URadh.n;m/ which makes all slits have modulus R.

Lemma 2.22 The maps � and p are mutually inverse , up to homotopy.
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Proof The map p ı � is equal to the identity on URad. For � ı p, a homotopy from the identity on
Rad to � ı p is given at time t 2 Œ0; 1� by sending each slit �i to

�
..1� t /j�i j CRt/=j�i j

�
�i under the

homeomorphism with Rad.

The spaces constructed in this section fit together in the diagram

PRadh.n;m/ PRadh.n;m/

QRadh.n;m/ QRadh.n;m/

Radh.n;m/ Radh.n;m/ URadh.n;m/

compactification

compactification

compactification '

where all the horizontal maps within the squares are inclusions.

Remark 2.23 One can make sense of gluing of cobordisms on the level of radial slits; see [3]. This
construction gives RADh.n;m/ the structure of a PROP in topological spaces. One of the advantages of
the radial slit configurations over fat graphs is the ease with which one can describe the PROP structure.

2.2 The universal surface bundle

In the previous section, we motivated radial slit configurations by explaining that a preconfiguration
consists of data to construct a cobordism S.L/. The topology on the collection of radial slit configurations
was guided by the idea that this construction produces a conformal family of cobordisms. In this section
we make this precise by defining a universal surface bundle over Rad via its homeomorphism with Rad.

The equivalence relation � on PRadh.n;m/ is such that there is a canonical isomorphism of cobordisms
with conformal structure between S.L/ and S.L0/ if L� L0. Thus we can make sense of the cobordism
S.ŒL�/ for an equivalence class ŒL�. The idea for constructing the universal surface bundle over Radh.n;m/
is to make the construction of S.ŒL�/ continuous in ŒL�. The result is a space over Radh.n;m/, and we
check it is a universal bundle by comparing it to the definition of the universal bundle in the conformal
construction of moduli space.

We first make sense of the radial sectors †.L/ as a space over PRadh.n;m/. This seems obvious; we
think of the sectors as a subspace of a disjoint union of annuli for each L, so one is tempted to just state
that z†.L/ is the relevant subspace of

PRadh.n;m/�
� nG
jD1

A.j /R

�
:

Two minor problems arise:

(i) the full sectors are not actually subspaces of annuli, and

(ii) the number of entire sectors is not constant over PRadh.n;m/.
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Both are relatively harmless. Problem (ii) is solved by noting that the number of entire sectors is locally
constant, so one can work separately over each of the subspaces of components with a fixed number of
entire sectors. Problem (i) is solved by considering a version of PRadh.n;m/ where the preconfigurations
L are endowed with lifts of the slits to elements of

Fn
iD1
QAR, the disjoint union of the universal covers

of the annuli, under the condition that the distances between them are still equal to the angular distances.
Over this version, one has a space with fibers given by

Fn
iD1
QAR, which does contain the full sectors.

One then notes that there is a canonical homeomorphism between the sectors over the same configurations
with different choices of lifts. In the end, we conclude there exists a space QA over PRadh.n;m/ whose
fibers consist of a disjoint union of annuli, and there is a subspace PSh.n;m/� QA whose fiber over L
can be canonically identified with the sector space z†.L/.

Recall that �L is the equivalence relation on †.L/ used when gluing the sectors together to obtain a
surface. Using it fiberwise defines an equivalence relation �:

Definition 2.24 Let � be the equivalence relation on PSh.n;m/ generated by .L; z/� .L0; z0/, where
L;L0 2 PRadh.n;m/, z 2†.L/� PSh.n;m/ and z0 2†.L0/� PSh.n;m/, if LD L0 and z �L z0.

As mentioned before, there is a canonical isomorphism �L;L0 between †.L/ and †.L0/ if L�L0. Using
this, we can define a version of � for PSh.n;m/:

Definition 2.25 Let Š be the equivalence relation on PSh.n;m/ generated by � and by saying that
.L; z/ and .L0; z0/ are equivalent if L� L0 and z0 D �L;L0.z/.

We can now define the surface bundle.

Definition 2.26 We define PSh.n;m/ to be the restriction of PSh.n;m/ to PRadh.n;m/. We then define
Sh.n;m/ as PSh.n;m/=Š, which is a space over Radh.n;m/.

A priori this is a space over Radh.n;m/ with fibers having the structure of cobordisms, but it is in fact a
universal surface bundle. This is implicit in [3], but not explicitly stated there. We explain the reasoning
below:

Proposition 2.27 The space Sh.n;m/ over Radh.n;m/ is a universal surface bundle.

Sketch of proof Varying radii allows one to extend Sh.n;m/ to RADh.n;m/. Theorem 2.20 tells us
that the assignment ŒL� 7! ŒS.ŒL�/� gives a homeomorphism RADh.n;m/!Mg.n;m/. Pulling back
the universal bundle over Mg.n;m/ defined at the end of Section 1.1 exactly gives Sh.n;m/.

There is a universal Mod.Sg;nCm/–bundle over Radh.n;m/ given by the bundle with fiber over ŒL�
the isotopy classes of diffeomorphisms of †.L/ fixing the boundary. We give an alternative explicit
construction of this bundle in Definition 4.46.
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3 Admissible fat graphs and string diagrams

3.1 The definition

Following Strebel [39], Penner, Bowditch and Epstein gave a triangulation of Teichmüller space of surfaces
with decorations, which is equivariant under the action of its corresponding mapping class group [6; 37].
In this triangulation, simplices correspond to equivalence classes of marked fat graphs and the quotient of
this triangulation gives a combinatorial model of the moduli space of surfaces with decorations. These
ideas were studied by Harer for surfaces with punctures and boundary components [26] and used by Igusa
to construct a category of fat graphs that models the mapping class groups of punctured surfaces [29].
Godin extended Igusa’s construction to surfaces with boundary and open–closed cobordisms [21; 22].

In this section we define a category of fat graphs, as well as specific subcategories of it, in the spirit of
Godin. We also define the space of metric fat graphs in the spirit of Harer and Penner, as well as specific
subspaces of these spaces, and show that these are the classifying spaces of these categories. Finally, we
define the space of Sullivan diagrams as a quotient of a certain subspace of the space of metric fat graphs.
It plays the role of a compactification.

3.1.1 Fat graphs We start with precise definitions of graphs and fat graphs:

Definition 3.1 A combinatorial graph G is a tuple G D .V;H; s; i/ with a finite set of vertices V , a
finite set of half-edges H , a source map s WH ! V and an edge pairing involution i WH !H without
fixed points.

The source map s ties each half-edge to its source vertex, and the edge pairing involution i attaches
half-edges together. The set E of edges of the graph is the set of orbits of i . The valence of a vertex
v 2 V is the cardinality of the set s�1.v/. A leaf of a graph is a univalent vertex and an inner vertex is a
vertex that is not a leaf. The geometric realization of a combinatorial graph G is the CW–complex jGj
with one 0–cell for each vertex, one 1–cell for each edge and attaching maps given by s and s ı i . A tree
is a graph whose geometric realization is a contractible space and a forest is a disjoint union of trees.

Definition 3.2 A fat graph � D .G; �/ is a combinatorial graph together with a cyclic ordering �v of the
half-edges incident at each vertex v. The fat structure of the graph is given by the data � D .�v/, which
is a permutation of the half-edges.

	

Figure 10: Two different fat graphs — the fat structure is given by the orientation of the plane,
here denoted by the circular arrow — with the same underlying combinatorial graph.
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� � 51
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Figure 11: An example of a closed fat graph which is not admissible. The incoming and outgoing
leaves are marked by incoming or outgoing arrows.

From a fat graph � D .G; �/ one can construct a surface with boundary †� by thickening the edges and
the vertices. More explicitly, one can construct this surface by replacing each edge with a strip and gluing
these strips to a disk at each vertex according to the fat structure. The cyclic ordering exactly gives the
data required to do this. Notice that there is a strong deformation retraction of †� onto jGj, so one can
think of jGj as the skeleton of the surface.

Definition 3.3 The boundary cycles of a fat graph are the cycles of the permutation of half-edges given
by ! D � ı i . Each cycle � of ! gives a list of edges of the graph � and thus determines a subgraph
�� � � , which we call the boundary graph corresponding to � .

Remark 3.4 The fat structure of � is completely determined by !. Moreover, one can show that the
boundary cycles of a fat graph � D .G; !/ correspond to the boundary components of †� ; see [22].
Therefore the surface †� is completely determined up to topological type by the combinatorial graph and
its fat structure.

A fat graph gives one a surface, but not yet a cobordism. The difference is that it does not distinguish
between incoming and outgoing boundary components, nor do these come with canonical parametrizations.
Note that after deciding whether a boundary component is incoming or outgoing, a parametrization is
uniquely determined once we pick a marked point and edge lengths. Thus it suffices to add to each
boundary component a leaf labeled either “incoming” or “outgoing”.

Definition 3.5 A closed fat graph � D .�;Lin; Lout/ is a fat graph with an ordered set of leaves and a
partition of this set of leaves into two sets Lin and Lout such that:

(i) All inner vertices are at least trivalent.

(ii) There is exactly one leaf on each boundary cycle. Given a leaf li we denote its corresponding
boundary graph by �li � � .

Leaves in Lin or in Lout, are called incoming or outgoing respectively.

Note that the previous definition also removed unnecessary bivalent and univalent vertices. It turns out
that one can consider an even more restricted type of fat graph, which reflects that (like in radial slits) we
can decide to arrange the incoming boundary in a special way.
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Figure 12: Two examples of admissible fat graphs. The first graph has the topological type of the
pair of pants, and second graph that of a surface of genus 1 with 5 boundary components.

Definition 3.6 Let � be a closed fat graph. Let li denote a leaf of � and �li � � be its corresponding
boundary graph. � is called admissible if the subgraphs �li � li for all incoming leaves li are disjoint
embedded circles in � . We refer to these boundary cycles as admissible cycles (see Figure 12).

We organize fat graphs into a category. The idea is that when we use fat graphs to construct surfaces, we
should be able to pick different lengths for the edges to obtain different conformal classes. Furthermore,
if the length of an edge goes to zero, we expect the two disks corresponding to the vertices to be glued
together. This makes sense as long as the edge is not a loop. The morphisms in the category of fat graphs
encode this relationship between graphs. Recall that a tree is a graph whose geometric realization is
contractible, and a forest is a disjoint union of trees.

Definition 3.7 We define two categories:

� The category of closed fat graphs Fat is the category with objects isomorphism classes of closed
fat graphs and morphisms Œ��! Œ�=F � given by collapsing to a point in each tree in a subforest
of � that does not contain any leaves.

� The category of admissible fat graphs Fat ad is the full subcategory of Fat with objects isomorphism
classes of admissible fat graphs.

The compositions in Fat and Fat ad , and hence the categories themselves, are well defined. The category
Fat was introduced by Godin in [22], and Fat ad is a slight variation, introduced by the same author in [21].

Note that the collapse of a subforest which does not contain any leaves induces a surjective homotopy
equivalence upon geometric realizations and does not change the number of boundary components.
Therefore, if there is a morphism 'W Œ��! Œz�� between isomorphism classes of fat graphs, then the
surfaces †Œ�� and †

Œz��
are homeomorphic.
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From a closed fat graph we can construct a two-dimensional cobordism. The underlying surface of the
cobordism is the oriented surface †� . This gives an orientation of the incoming and outgoing boundary
component, so it is enough to give a labeled marked point in each boundary component. Note that each
of the boundary components corresponds to exactly one leaf in the graph, which gives a marked point in
the boundary component. We label this according to the labeling of its leaf. This gives a cobordism, well
defined up to isomorphism.

3.1.2 Metric fat graphs We motivated the morphisms in the category of fat graphs by thinking about
lengths of edges. This is made more concrete in the space of metric fat graphs, which we describe now.
This space has a deformation retraction onto the classifying space of the category of fat graphs, but we
feel metric fat graphs are more intuitive and hence discuss them first. Several equivalent versions of this
space and its dual concept (using weighted arc systems instead of fat graphs) have been studied by Harer,
Penner, Igusa and Godin [20; 27; 29; 37].

The idea is simple: a metric fat graph is a fat graph with lengths assigned to its edges. We need a bit
more care to make this interact well with the additional data and properties of admissible fat graphs.

Definition 3.8 A metric admissible fat graph is a pair .�; �/ where � is an admissible fat graph and � is
a length function, ie a function �WE� ! Œ0; 1� where E� is the set of edges of � and � satisfies:

(i) �.e/D 1 if e is a leaf.

(ii) ��1.0/ is a forest in � and �=��1.0/ is admissible.

(iii) For any admissible cycle C in � , we have
P
e2C �.e/D 1.

We will call the value of � on e the length of the edge e in � .

Definition 3.9 Suppose � is an admissible fat graph with p admissible cycles. Let .n1; n2; : : : ; np/ be
the number of edges on each admissible cycle and set n WD

P
i ni . The space of length functions on � is

given as a set by
M .�/ WD f�WE� ! Œ0; 1� j � is a length functiong:

There is a natural inclusion

M .�/ ,!�n1�1 ��n2�1 � � � � ��np�1 � .Œ0; 1�/#E��n:

We give M .�/ the subspace topology via this inclusion.

Definition 3.10 Two metric admissible fat graphs .�; �/ and .z�; Q�/ are called isomorphic if there is an
isomorphism of admissible fat graphs ' W �! z� such that �D Q� ı'�, where '� is the map induced by '
on E� .

Definition 3.11 The space of metric admissible fat graphs is defined as

MFat ad
WD

F
� M .�/

�
;
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where � runs over all admissible fat graphs and the equivalence relation � is given by

.�; �/� .z�; Q�/ () .�=��1.0/; �jE����1.0//Š .z�=
Q��1.0/; Q�j

Ez��
Q��1.0/

/:

In other words, we identify isomorphic admissible fat graphs with the same metric, and we identify a
metric admissible fat graph with some edges of length 0 with the metric fat graph in which these edges
are collapsed and all other edge lengths remain unchanged.

Lemma 3.12 There is a deformation retraction of the space of metric admissible fat graphs MFat ad onto
the geometric realization of the nerve of Fat ad .

Proof We will first give a continuous map �W jFat ad j !MFat ad . A point x 2 jFat ad j is represented by
xD .Œ�0�! Œ�1�!� � �! Œ�k�; s0; s1; : : : ; sk/2NkFat ad ��k , where Nk denotes the set of k–simplices
of the nerve. Choose representatives �i for 0 � i � k, and for each i let C ij denote the j th admissible
cycle of �i , nij denote the number of edges in C ij and mi denote the number of edges that do not belong
to the admissible cycles. Each graph �i naturally defines a metric admissible fat graph .�0; �i / where �i
is given as follows:

�i WE�0
! Œ0; 1�; e 7!

8<:
0 if e is collapsed in �i ;
1=nij if e 2 C ij ;
1=mi otherwise.

Then define �.x/ WD .�0;
Pk
iD0 si�i /. It is easy to show that this assignment is well defined and respects

the simplicial relations of the geometric realization, and thus defines a continuous map. Moreover, it is an
injective map between Hausdorff spaces with compact image, and so is a homeomorphism onto its image.
Note that the image of � is the subspace of metric graphs where the sum of the lengths of the edges that
do not belong to the admissible cycles is 1.

We now construct a continuous map r WMFat ad
� Œ0; 1�!MFat ad which is a strong deformation retraction

of MFat ad onto the image of �, by rescaling. Since all the graphs we are considering are finite, we can
define a continuous function g by

gWMFat ad
!R>0; .�; �/ 7!

X
e2 zE�

�.e/;

where zE� is the set of edges that do not belong to the admissible cycles. We then define r by linear
interpolation as r..�; �/; t/ WD .�; .1� t /�C t�g/, where �g is the rescaled length function given by

�g WE� !R�0; e 7!

�
�.e/ if e belongs to an admissible cycle,
�.e/=g.�; �/ if e does not belong to an admissible cycle.

Remark 3.13 The space MFat ad and the category Fat ad split into components indexed by the topological
type of the graphs as two-dimensional cobordisms. That is,

MFat ad
Š

G
g;n;m

MFat ad
g;nCm and Fat ad

Š

G
g;n;m

Fat ad
g;nCm;
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Figure 13: Three equivalent metric admissible fat graphs. On the last two graphs the lengths of
the edges of the admissible cycle have been left out; they equal those of the first graph.

where MFat ad
g;nCm and Fat ad

g;nCm are the connected components corresponding to admissible fat graphs
with n admissible cycles which are homotopy equivalent to a surface of total genus g with nCm boundary
components.

3.1.3 Sullivan diagrams We now define a quotient space SD of MFat ad , which we will see in Section 5
is the analogue of the harmonic compactification for admissible fat graphs. To define it, we first describe
an equivalence relation �SD on metric admissible fat graphs.

Definition 3.14 We say �1 �SD �2 if �2 can be obtained from �1 by

� slides, ie sliding vertices along edges that do not belong to the admissible cycles, and

� forgetting lengths of nonadmissible edges, ie changing the lengths of the edges that do not belong
to the admissible cycles.

Definition 3.15 A metric Sullivan diagram is an equivalence class of metric admissible fat graphs under
the relation �SD.

We can informally think of a Sullivan diagram as an admissible fat graph where the edges not belonging
to the admissible cycles are of length zero.

Definition 3.16 The space of Sullivan diagrams SD is the quotient space SDDMFat ad =�SD.
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Remark 3.17 A path in SD is given by continuously moving the vertices on the admissible cycles. This
space splits into connected components given by topological type.

Remark 3.18 In Section 5 we show that SD has a canonical CW–complex structure. Its cellular chain
complex is the complex of (cyclic) Sullivan chord diagrams introduced by Tradler and Zeinalian. They,
and later Wahl and Westerland, used it to construct operations on the Hochschild chains of symmetric
Frobenius algebras [40; 43].

3.2 The universal mapping class group bundle

In this section we describe the universal mapping class group bundles over Fat ad and MFat ad . Recall that
from an admissible fat graph we can construct a cobordism which contains the graph as a deformation
retract, though this depends on some choices. The idea for the construction of the universal mapping
class group bundle is that its fiber over an admissible fat graph � consists of all ways that � can sit in a
fixed standard cobordism.

For each topological type of cobordism fix a representative surface Sg;nCm of total genus g with n
incoming boundary components and m outgoing boundary components. Fix a marked point xk in the kth

incoming boundary for 1� k � n and a marked point xkCn in the kth outgoing boundary for 1� k �m.

Definition 3.19 Suppose � is an admissible fat graph of topological type Sg;nCm. Let vin;k denote
the kth incoming leaf and vout;k denote the kth outgoing leaf. A marking of � is an isotopy class of
embeddings H W j�j ,! Sg;nCm such that H.vin;k/D xk , H.vout;k/D xkCn and the fat structure of �
coincides with the one induced by the orientation of the surface. We will call a pair .�; ŒH�/ a marked fat
graph and denote by Mark.�/ the set of markings of � .

Lemma 3.20 Any marking H W j�j ,! Sg;nCm is a homotopy equivalence , and the map on �1 induced
by H sends the i th boundary cycle of � to the i th boundary component of Sg;nCm.

Proof Since the fat structure of � coincides with the one induced by the orientation of the surface, we
can thicken � inside Sg;nCm to a subsurface S� of the same topological type as Sg;nCm. Moreover, by
the definition of a marking, each boundary component of S� meets a boundary component of Sg;nCm.
Thus, there is a deformation retraction of Sg;nCm onto this subsurface and onto � .

Lemma 3.21 Let � be an admissible fat graph and F be a forest in � which does not contain any leaves
of � . Then there is a bijection Mark.�/!Mark.�=F / denoted by ŒH � 7! ŒHF �.

This identification depends on the map connecting both graphs , ie given ŒH � a marking of � , if z� D
�=F1 D �=F2 then ŒHF1

� and ŒHF2
� can be different markings of z� . Figure 14 gives an example of this

in the case of the cylinder.

Proof Let H be a representative of a marking ŒH � of � . The image of H jF (the restriction of H to jF j)
is contained in a disjoint union of disks away from the boundary. Therefore the marking H induces a
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z� D �=e1 D �=e2
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� � 1��2

He2

� � 1��2

Figure 14: Two different embeddings of z� in the cylinder differing by a Dehn twist and
corresponding to the same marking of � .

marking HF W j�=F j ,! Sg;nCm given by collapsing each of the trees of F to a point of the disk in which
their image is contained. Note that HF is well defined up to isotopy and it makes the following diagram
commute up to homotopy:

j�j j�=F j

Sg;nCm

H
HF

In fact, up to isotopy, there is a unique embedding of a tree with a fat structure into a disk, in which the
fat structure of the tree coincides with the one induced by the orientation of the disk and the endpoints
are fixed points on the boundary. This can proven by induction. Start with the case where F is a single
edge. Up to homotopy, there is a unique embedding of an arc in a disk where the endpoints of the arc
are fixed points on the boundary. Then by [17], there is also a unique embedding up to isotopy. For the
induction step, let ˛ be an arc embedded in the disk with its endpoints at the boundary and let a and b be
fixed points in the boundary of a connected component of D n˛. Then we have a map

Emba;b.I;D n˛/! Emba;b.I;D/;

where Emba;b.I;D n ˛/ is the space of embeddings of a path in D n ˛ which start at a and end at b,
with the C1–topology, and similarly for Emba;b.I;D/. By [23], this map induces injective maps in all
homotopy groups, in particular in �0, which gives the induction step.

It then follows that, given ŒHF � a marking of �=F , there is a unique marking ŒH � of � such that the
above diagram commutes up to homotopy.
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Definition 3.22 Define the category EFat ad to be the category with objects isomorphism classes of
marked admissible fat graphs .Œ��; ŒH �/ (where two marked admissible fat graphs are isomorphic if
their underlying fat graphs are isomorphic and they have the same marking) and morphisms given by
morphisms in Fat ad where the map acts on the marking as stated in the previous lemma. We denote
by EFat ad

g;nCm the full subcategory with objects marked admissible fat graphs whose thickening give a
cobordism of topological type Sg;nCm.

Definition 3.23 The space of marked metric admissible fat graphs EMFat ad is defined to be

EMFat ad
WD

F
� M .�/�Mark.�/

�E
;

where � runs over all admissible fat graphs, and the equivalence relation is given by

.�; �; ŒH�/�E .z�; Q�; Œ zH�/ () .�; �/Š .z�; Q�/ and ŒH��D Œ zHQ��:

Here Š denotes isomorphism of metric fat graphs, H� is the induced marking H� W j�=F�j ,! Sg;nCm

where F� is the subforest of � of edges of length zero ie F� D ��1.0/ and HQ� is defined analogously.

The following result is proven in [14], in fact in more generality, for a category modeling open–closed
cobordism and not only closed cobordisms.

Theorem 3.24 The projection jEFat ad
g;nCmj ! jFat ad

g;nCmj is a universal Mod.Sg;nCm/–bundle.

The proof follows the original ideas of Igusa [29] and Godin [22]. Since all spaces involved are CW–
complexes, one first shows that jEFat ad

g;nCmj is contractible, which follows from contractibility of the arc
complex [28]. Second, one proves that the action of the mapping class group Mod.Sg;nCm/ on EFat ad

g;nCm

is free and transitive. That is, for any two markings ŒH1� and ŒH2�, there is a unique Œ'� 2Mod.Sg;nCm/
such that Œ' ıH1� D ŒH2�. This proof in particular gives rise to an abstract homotopy equivalence
M' Fat ad .

By Lemma 3.21, as a set EMFat ad is given by f.Œ�; ��; ŒH �/ j Œ�; �� 2MFat ad and ŒH � 2Mark.Œ��/g. As
before, let EMFat ad

g;nCm denote the subspace of marked metric admissible fat graphs whose thickenings
give an open–closed cobordism of topological type Sg;nCm. Then Mod.Sg;nCm/ acts on EMFat ad

g;nCm

by composition with the marking, and it follows that:

Corollary 3.25 The projection EMFat ad
g;nCm!MFat ad

g;nCm is a universal Mod.Sg;nCm/–bundle.

Proof This is clear since we have a pullback diagram

EMFat ad
g;nCm jEFat ad

g;nCmj

MFat ad
g;nCm jFat ad

g;nCmj

'

r.�;1/�id

'

r.�;1/

The horizontal maps are the homotopy equivalences given by r , the map constructed in Lemma 3.12.
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4 The critical graph equivalence

In this section we construct the space Rad� as well as the maps in Corollaries 4.42 and 4.51, and prove
these are homotopy equivalences.

4.1 Lacher’s theorem

The idea for proving that certain maps f WX! Y are homotopy equivalences is to show that they are nice
enough maps between nice enough spaces with contractible fibers. This is made precise by [33, Theorem,
page 510].

Definition 4.1 (i) A subspace X of a space Y is a neighborhood retract if there exists an open subset
U of Y containing X and a retraction r WU !X .

(ii) A space X is an ANR if, whenever X is a closed subspace of a metric space Y , X is a neighborhood
retract of Y .

Definition 4.2 (i) A subset A of a manifold M is cellular if it is the intersection
T
nEn of a nested

sequence E1 �E2 � � � � of n–cells Ei in M , ie subsets homeomorphic to Dn.

(ii) A space X is cell-like if there is an embedding (ie a continuous map that is a homomorphism onto
its image) �WX !M of X into a manifold M such that �.X/ is cellular.

(iii) A map f WX ! Y is cell-like if for all y 2 Y the point inverse f �1.fyg/ is cell-like.

Theorem 4.3 (Lacher) A proper map f WX ! Y between locally compact ANRs is cell-like if and
only if , for all open U � Y , the restriction f jf �1.U /Wf

�1.U /! U is a proper homotopy equivalence.

The conditions in the above definitions are difficult to verify, so we will provide criteria which imply
them. Our main reference are [35] for ANRs, [18, Chapter 3] for polyhedra and [33] for cell-like spaces.

Proposition 4.4 The following are properties of ANRs:

(i) For all n� 0, the closed n–disk Dn is an ANR.

(ii) An open subset of an ANR is an ANR.

(iii) If X is a space with an open cover by ANRs , then X is an ANR.

(iv) If X and Y are compact ANRs , A � X is a compact ANR and f WA! Y is continuous , then
X [f Y is an ANR.

(v) Any locally finite CW–complex is an ANR.

(vi) Any locally finite polyhedron is an ANR.

(vii) A product of finitely many ANRs is an ANR.

(viii) A compact ANR is cell-like if and only if it is contractible.

Proof Properties (i), (ii), (iii) and (iv) follow from Corollary 5.4.6 and Theorems 5.4.1, 5.4.5 and 5.6.1
of [35], respectively. These combine to prove (v) by noting that by (ii) and (iii) one can reduce to the case
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of finite CW–complexes, and since by definition these can be obtained by gluing closed n–disks together,
(i) and (iv) prove that finite CW–complexes are ANRs. Property (vi) follows from (v), but is also [35,
Theorem 3.6.11]. Property (vii) is [35, Proposition 1.5.7]. Finally, (viii) follows from Theorem 4.3 by
considering the map to a point.

4.2 The fattening of the radial slit configurations and the critical graph map

There is a natural admissible metric fat graph associated to a radial slit configuration: the unstable critical
graph obtained by taking the inner boundaries of the annuli and the complements of the slit segments,
and gluing these together according to the combinatorial data. The inner boundaries of the annuli give
the admissible cycles of the graph and the incoming leaves are placed at the positive real line of each
annulus. The outgoing leaves are obtained from marked points on the outgoing boundary components.
This graph gets a canonical fat graph structure as a subspace of the surface S.L/.

We now make this definition precise. Because we fixed the outer radii of the annuli, we shorten A.i/Ri

to Ai . Recall the subsets ˛˙i and ˇ˙i in the sector Fi , from Definition 2.3. These lie in a pair of distinct
radial segments of Fi , unless it is a thin sector in which case they lie in a single radial segment. To a
radial slit configuration L 2QRad we associate a space EL, defined as follows:

Definition 4.5 The space EL is given by

EL WD

� G
1�j�n

@inAj

�
t

� G
1�j�2hCm

Ej

�
t

� G
1�j�n

Ij

�
;

where each of the terms is defined as follows:

� Admissible boundaries For each annulus Aj we take the inner boundary @inAj .

� Radial segments for slits and outgoing leaves For 1 � j � 2hCm with �j 2 Ak we take
Ej D fz 2Ak j arg.z/D arg.�j / or arg.z/D arg.�x!.j //g.

� Incoming leaves For each annulus Aj we take Ij D
˚
z 2Cj j arg.z/D 0 and 0� jzj � 1

2�

	
.

The equivalence relation �L on EL is that generated by:

� Attaching incoming leaves We set
�
1
2�
2 Ij

�
�L

�
1
2�
2 @inAj

�
for j D 1; 2; : : : ; n.

� Attaching radial segments For r 2 @inAk and e 2Ej , we set r �L e if r D e.

� Identifying coinciding segments Defining subsets ˛˙i and ˇ˙i of Ei as in Definition 2.3, we let
�L identify z 2 ˛Ci with z 2 ˛�

x!.i/
and z 2 ˇCi with z 2 ˇ�

N�.i/
.

Note that each of the terms in EL can be considered as a subspace of †.L/; recalling Definition 2.4, one
observes that �L identifies those points on EL that are identified by �L on †.L/. As a consequence, the
quotient space EL=�L is invariant under the slit jump relation. Thus for a configuration ŒL� 2Rad, we
obtain a well-defined graph �ŒL� if we demand it has no bivalent vertices. Some of its leaves are labeled
by the incoming or outgoing boundary components; the remaining ones we will remove.
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Figure 15: Critical graphs for different configurations. Edge lengths of the critical graphs are not to scale.

Definition 4.6 For L 2QRad, the corresponding critical graph �L is the graph obtained from EL=�L

by removing those leaves that do not correspond to incoming or outgoing boundary cycles; see Figure 15.

By construction, this graph comes embedded in the surface†ŒL� and thus inherits a fat structure. Moreover,
it inherits a metric �ŒL� from the standard metric in C. In it, the incoming leaves have fixed length 1

2�
and

the outgoing leaves have strictly positive length. Because, for our purposes, the lengths of the outgoing
leaves are superfluous information, we set �ŒL�.e/ to be given by the standard metric in C if e is not a
leaf and �ŒL�.e/D 1 if e is a leaf. This makes .�ŒL�; �ŒL�/ a metric admissible fat graph.

Notation 4.7 We will just write �L when it is clear from context that we consider it as a metric admissible
fat graph.

The construction of the critical graph gives a function

Rad!MFat ad ; ŒL� 7! .�ŒL�; �ŒL�/:

However, this function is not continuous at nongeneric configurations. For an example, consider the path
in Rad given by continuously varying the argument of a slit as in Figure 16; when the moving slit reaches
a neighboring one, the associated metric graph jumps.

To solve this problem we enlarge Rad at nongeneric configurations by a contractible space, by “opening
up” the edges EL. To do this, we first need to introduce some notation. We can think of the thin sector

Fi D fz 2Aj j arg.�i /D arg.z/g

as being obtained by identifying two copies of Fi , which we will denote by ECi and E�i , along the
equivalence relation that identifies z 2ECi with z 2E�i . Let us extend this notation to ordinary and full
sectors: if Fi is ordinary then

ECi WD fz 2 Fi j arg.z/D arg.�x!.i//g and E�i WD fz 2 Fi j arg.z/D arg.�!.i//g;
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Figure 16: An example of a path in Rad which leads to a path in MFat ad that is not continuous.
Labelings have been left out for the sake of clarity.

and if Fi is full then ECi D S
C
i and E�i D S

�
i . Let us also generalize Definition 2.3 to this section by

taking ˛Ci ; ˇ
C
i �E

C
i and ˛�i ; ˇ

�
i �E

C
i . Then we can also write EL=�L as E 0L=�

0
L with

E 0L WD

� G
1�j�n

@inAj

�
t

� G
1�j�2hCm

ECj tE
�
j

�
t

� G
1�j�n

Ij

�
and �0L the equivalence relation on E 0L generated by replacing Ej with E˙j in the three operations
generating �L and adding a fourth one:

� Identifying thin sectors If Fi is thin, we let �0L identify z 2ECi with z 2E�i .

The idea is now to vary the extent to which we identify ECi with E�i in the last of these:

Definition 4.8 Let thin.L/ be the set of thin sectors of L and let t W thin.L/! Œ0; 1� be a function. The
equivalence relation �0t on the space

E 0L D

� G
1�j�n

@inAj

�
t

� G
1�j�2hCm

ECj tE
�
j

�
t

� G
1�j�n

Ij

�
is the one generated by:

� Attaching incoming leaves We set
�
1
2�
2 Ij

�
�0t

�
1
2�
2 @inAj

�
for j D 1; 2; : : : ; n.

� Attaching radial segments For r 2 @inAk and e 2E˙j , we set r �0t e if r D e.

� Identifying coinciding segments With ˛˙i and ˇ˙i of the E˙j as above, we let�0t identify z 2˛Ci
with ˛�

x!.i/
and z 2 ˇCi with z 2 ˇ�

N�.i/
.

� Partially identifying thin sectors If Fi is thin, we let �0t identify z 2ECi with z 2E�i as long
as jzj � t .Fi /C 1

2�
.

Definition 4.9 We define �L;t to be obtained from E 0L=�
0
t by removing those leaves that do not

correspond to incoming or outgoing boundary cycles.
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l

s

r

2l
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t D .0; 0/

l

l

s
s� l

2r � s

t D .a; b/, a � l , b � s

2l � a

b
a� b

2s� a

2r � b

t D .a; b/, a � b, a � l , b � s

2l � a

a

2s� b

b� a

2r � b

t D .a; b/, b � a, a � l , b � s

Figure 17: A configuration ŒL� on the top and several graphs obtained from it using different
functions t W thin.ŒL�/ ! Œ0; 1�, here written as a pair of real numbers. The leaves have been
omitted to make the graphs more readable, but they are all located along the admissible cycles
according to the positions of the marked points in ŒL�. The edges are not to scale.

Example 4.10 When t is a constant function equal to 1, �L;t is the critical graph �L, which is invariant
under slit and parametrization points jumps. However, for most other t , the graph �L;t is not invariant
under slit jumps.

Notation 4.11 If t is constant equal to 0, we will call this the unfolded graph of L and denote it by �L;0;
see Figure 17.

Just like the critical graph, the graph �L;t has a natural metric making .�L;t ; �L;t / an admissible metric
fat graph. Figure 17 shows examples of unfolded and partially unfolded metric admissible fat graphs.

Remark 4.12 Two preconfigurations with the same combinatorial type have the same underlying
admissible fat graphs, but with different metric. Thus it makes sense to talk about �L;t as an admissible
fat graph. Similarly, it makes sense to talk about the critical graph of a combinatorial type, which we
denote by �ŒL�.
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Definition 4.13 Letting ŒL� 2Rad, we define a subspace of MFat ad

G.ŒL�/ WD fŒ�Li ;t ; �Li ;t � j ŒL�D ŒLi � and t W thin.Li /! Œ0; 1�g:

We define the fattening of Rad to be the space

Rad� D f.ŒL�; Œ�; ��/ 2Rad�MFat ad
j Œ�; �� 2 G.ŒL�/g:

For simplicity, we will just write �Li ;t or � when it is clear from the context that we are talking about
metric graphs.

We will see that Rad� is constructed by replacing the point ŒL� 2Rad by a contractible space G.ŒL�/,
which is a space of graphs which interpolate between the critical graph of ŒL� and the unfolded graphs of
the different representatives L1; L2; : : : ; Lk of ŒL� in QRad.

The fattening of Rad splits into connected components given by the topological type of the cobordism
they describe:

Rad� WD
G
h;n;m

Rad�h .n;m/:

Moreover, it comes with two natural maps

Rad
�1��Rad�

�2
�!MFat ad :

We call �1 the projection map and �2 the critical graph map. The goal of the remaining subsections is
to prove that these are homotopy equivalences. The next section is the main input for proving �1 is a
homotopy equivalence.

4.3 The space G.ŒL�/ is contractible

Proposition 4.14 G.ŒL�/ is contractible for any radial slit configuration ŒL�.

We prove this inductively by removing parametrization points or slits. In particular, we allow radial slit
configurations without parametrization points; all relevant definitions may be extended to this case in a
straightforward manner.

Notation 4.15 For a radial slit configuration L1, we denote by L the radial slit configuration obtained
from L1 by removing all parametrization points.

If L is not empty, then it has m� 1 shortest pairs of slits of L. That is, L has pairs of slits .�ij , ��.ij //
for 1� j �m, which are all of the same length and are the shortest in the sense that

� j�ij j D j��.ij /j D j�il j D j��.il /j for all 1� j; l �m, and

� j�ij j> j�sj for any s … fij ; �.ij / j 1� j �mg.

We denote by L the configuration obtained from L by forgetting the shortest slit pair(s).

Note that if L1 is not degenerate, then L and L are also not degenerate. The induction step in the proof
of Proposition 4.14 is provided by:
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Lemma 4.16 There are homotopy equivalences

�1LWG.ŒL
1�/! G.ŒL�/ and �LWG.ŒL�/! G.ŒL�/:

Informally, the map �1L removes the leaves of �1 2 G.ŒL1�/ corresponding to the outgoing boundary
components. Similarly, the map �L removes the edges of � 2 G.ŒL�/ corresponding to the shortest pair(s)
of slits in ŒL�. Assuming Lemma 4.16, we now prove Proposition 4.14.

Proof of Proposition 4.14 By the first part of Lemma 4.16, it is enough to show that G.ŒL�/ is contractible,
where ŒL� a radial slit configuration without parametrization points. We will prove this by induction on h,
the number of pairs of slits of ŒL�. If hD 0, then G.ŒL�/ is a point and therefore contractible. Assume
that G.ŒL�/ is contractible when h < k for some fixed k. Now let hD k and consider the map

�LWG.ŒL�/! G.ŒL�/:

Given that ŒL� has Nh < k pairs of slits, it is contractible by the induction hypothesis. Thus by the second
part of Lemma 4.16, G.ŒL�/ is also contractible.

4.3.1 Proof of Lemma 4.16 To prove Lemma 4.16 we will show that the spaces involved are compact
ANRs and the maps involved are cell-like, and invoke Theorem 4.3. We start by considering the domain
and target of the maps.

Lemma 4.17 For all configurations ŒL�, with or without parametrization points , the space G.ŒL�/ is a
compact polyhedron and thus a compact ANR.

Proof We give the proof only when ŒL� has parametrization points; the other case is similar.

The space G.ŒL�/ is a subspace of MFat ad
g;nCm. The latter is contained in the larger compact polyhedron

given by
Pg;nCm WD

F
� �

n1�1 ��n2�1 � � � � ��np�1 � .Œ0; 1�/#E��n

�
;

with � indexed by the objects of Fat ad
g;nCm and the equivalence relation � given by Definition 3.7. This

is compact because Fat ad
g;nCm has finitely many objects.

The subspace G.ŒL�/ can be characterized as the union of the images of maps from the cubes Œ0; 1�thin.Li /

to MFat ad
g;nCm for all representatives Li of ŒL�. Each map is piecewise linear between polyhedra, which

implies that their image is a subpolyhedron. This is true because a piecewise linear map by definition can
be made simplicial with respect to some triangulation, and the images of simplicial maps are polyhedra.
Note that there are only finitely many representatives for ŒL�, so G.ŒL�/ is a union of finitely many compact
polyhedra, which implies it is a polyhedron by [18, Corollary 3.1.27]. The last claim then follows from
Proposition 4.4(vi).

We now define the maps �1L and �L. We start with the former, which “removes leaves corresponding to
the parametrization points”.
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Definition 4.18 Let ŒL1� be a radial slit configuration and let ŒL� be the configuration obtained from
ŒL1� by removing the parametrization points. We define the function

�1LWG.ŒL
1�/! G.ŒL�/

by sending � to the metric fat graph obtained from � by

(1) removing all leaves corresponding to outgoing boundary components,

(2) removing all bivalent vertices, ie if there is a bivalent vertex we replace the two edges attached to
it by a single edge whose length is the sum of the lengths of both.

Let ŒL� be a radial slit configuration without parametrization points and assume it is nonempty, that is, ŒL�
has at least one pair of slits. We now define the function �L, which “removes the edges corresponding to
the longest slit pair(s) of ŒL�”.

Definition 4.19 For any � 2 G.ŒL�/, the continuous function dadW� ! R�0 is defined by sending a
point x in a leaf of � to 0 and any other point x 2 � to its path distance to the admissible cycles. By the
extreme value theorem it attains a maximum dmax. We denote by � 0 the fat graph with unlabeled leaves
obtained by removing from � the preimage of dmax. That is, we set � 0 WD ��d�1ad .dmax/� � . We define
the function

�LWG.ŒL�/! G.ŒL�/

by sending � to the metric fat graph � obtained from � 0 by recursively

(1) removing all unlabeled leaves of � 0,

(2) removing all bivalent vertices from to obtain a fat graph � 00,

(3) repeating if � 00 has unlabeled leaves.

Note that the only leaves of �L.�/ are the ones corresponding to the admissible cycles.

We will focus on �L first, leaving �1L to the end of this subsection. We start with some properties of �L:

Lemma 4.20 (i) �L is well defined.

(ii) �L is continuous.

(iii) The fibers of �L are compact ANRs.

Proof Let � 2 G.ŒL�/, so that there is a representative L and function t W thin.L/! Œ0; 1� such that
� D �L;t . Let L be the configuration obtained from L by removing the shortest pair(s) of slits. To prove
that �L.�/ is well defined, we exhibit a function Nt W thin.L/! Œ0; 1� such that �L.�/D �L.�L;t /D �L;Nt .
Note that any thin sector F of L is of one of two kinds:

(1) The sector F corresponds uniquely to a sector in L. In this case we define Qt .F / WD t .F /.
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(2) The sector F corresponds to several thin sectors F1; F2; : : : ; Fs in L. This happens when, in
between the slits defining the sector F in L, there are one or more slits in L which have been
removed. In this case, we define

Nt .F / WDminft .F1/; t.F2/; : : : ; t .Fs/g:

Then �L.�/D �L;Nt . This completes the proof of (i).

For (ii), it suffices to prove �L is continuous on each of the finitely many closed subsets of the form
fŒ�Li ;t ; �Li ;t � j t W thin.Li /! Œ0; 1�g, that is, fixing the representative Li of ŒL�. This is clear from the
construction of Nt , and hence of �L;Nt .

As in the proof of Lemma 4.17, for (iii) it suffices to prove the fibers are compact polyhedra by proving
each fiber is the union of the images of finitely many piecewise linear maps with compact domain. But
this follows once more from the construction of Nt , and hence of �L;Nt .

We now state the main ingredient for the proof of Lemma 4.16:

Lemma 4.21 For � 2 G.ŒL�/, the preimage ��1L .�/� G.ŒL�/ is contractible.

By construction, any � 2 ��1L .�/ can be built from � by attaching to it a graph. We will show that the
space of graphs that can be attached to � is contractible, and that there is a contractible space of ways to
attach each of these. Before doing so, we give two illustrative examples:

Example 4.22 (single pair of shortest slits) Consider the configurations L and L obtained by deleting
the shortest pair of slits shown in Figure 18, top left. The other representatives L0 of ŒL� are given by
letting the purple or green slit on the right jump; for any such representative, deleting its shortest pairs of
slits also yields a representative of L.

Figure 18, bottom left, shows two different graphs in G.ŒL�/: �1, the unfolded graph of L, and �2, a
partially folded graph of L. The map �LWG.ŒL�/! G.ŒL�/ is given by removing the point marked by an
� in the green arc — which in the case of �1 is the midpoint of the green arc — and deleting the resulting
leaves. In particular, �L.�i /D �i for i D 1; 2, where the graphs �i are shown in Figure 18, top right.
Note that �1 is the unfolded graph of L, and �2 is the critical graph of L. Therefore, in either case
��1L .�i / is not empty.

The entire preimage ��1L .�i / is given by the locations for attaching a chord to �i . This may be done
along the dashed green segments for one end of the chord and the fixed point marked in green for the
other, as in Figure 18, top right. Thus the preimages are homeomorphic to intervals. In either case, the
endpoints of the interval correspond to the unfolded graphs of L and the radial slit configuration obtained
from L by letting the shortest segment jump. In fact, the preimages ��1L .�/ are homeomorphic to an
interval for all � 2 G.ŒL�/.

The reason the second end of the chord could only be attached to a single point is because its corresponding
slit is isolated, ie it is the only slit on its radial segment. If this were not the case, then the other end of
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Figure 18: Top left: a configuration L and the configuration L obtained from it by deleting the
shortest pair of slits (that is, those where dmax is attained). Top right: graphs in G.ŒL�/; �1 is the
unfolded graph of L and �2 is the critical graph of L. The green dotted lines trace the boundary
interval defined by the open chord corresponding to the deleted green slit, and thus describe the
places where one endpoint of the new chord can be attached. Bottom left: graphs in G.ŒL�/ such
that �L.�i /D �i . In both cases �i is the maximally unfolded graph of L relative to �i . The points
marked with an � denote the points in � at which the maximum of dad is attained. Bottom right:
the open graphs of the maximally unfolded graphs relative to � given in the bottom left.

this chord could also be attached to an interval. The intervals at which both endpoints of the chord can
be attached must be disjoint, otherwise there would be a sequence of jumps that would bring both slits
together and thus L would be degenerate. So in this more generic case, ��1L .�/ is homeomorphic to a
square. Finally, there is another simple generalization of this case: there are several pairs of shortest slits
in L, but the intervals describing the endpoints where their corresponding chords can be attached are all
disjoint. In this case, the preimage is homeomorphic to a higher-dimensional cube.

In the previous example we considered the case where there is exactly one pair of slits which is the
shortest pair, as well as some simple generalizations. On the other end of the spectrum there is the case
where all slits are of equal size:

Example 4.23 (all slits of equal size) In the following radial slit configuration L, the configuration L
obtained by deleting all shortest slit pairs is empty:

LD 1
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The configuration ŒL� has three representatives, and G.ŒL�/, which is the preimage over the unique point
in GŒL�, is homeomorphic to the cone on three points. These three points are represented by the unfolded
graphs of the three representatives, and the cone point by the critical graph.

The general case is an amalgamation of these two cases. More precisely, in the first case — where there
is exactly one pair of slits which is the shortest — the preimage is homeomorphic to an interval or to
a cube arising from the choices of where to attach the endpoints of the attached chord. In the second
case — where all slits are of the same length — the preimage is a cone on three points corresponding
to the unfolded representatives. In general, the preimage is homeomorphic to a product of “cones on
cubes”. We will show this by going through an intermediary subspace of metric fat graphs corresponding
to attaching trees on chords.

Definition 4.24 Let � 2 G.ŒL�/. By definition, there is a representative L and a function Nt such that
� D �L;Nt .

Let L1; L2; : : : ; Lr be all the radial slit configurations that can obtained from L by adding slits such that
each Li is equivalent to L by slit jumps. For any i , there is at least one function t W thin.Li /! Œ0; 1� such
that �L.�Li ;ti /D � . Let ti be the minimal one among such functions, ie the one that takes the smallest
possible values for every element of thin.Li /.

� The maximally unfolded graph of Li relative to � is the fat graph �i WD �Li ;ti .

� The open graph of Li relative to � is the fat graph with unlabeled leaves � 0i WD �i � d
�1
ad .dmax/,

where dmax is the maximum of the distance from any point in �i to the admissible cycles.

Examples of maximally unfolded graphs relative to some graph can be seen in Figure 18, bottom left.
Their corresponding open graphs are given in Figure 18, bottom right.

Remark 4.25 Any maximally unfolded graph relative to � , say �i , is obtained from � by attaching
a chord for each pair of slits deleted in Li . In particular, if � is an unfolded graph then each �i is an
unfolded graph as well. Furthermore, the preimage d�1ad .dmax/ consists of exactly one point in each of
these chords: that point at which the half-edges corresponding to each slit pair are glued to each other.
Therefore, each leaf in the open graph of Li relative to � corresponds precisely to a slit deleted from Li .

Moreover, for any graph � 2 G.ŒL�/, there is at least one Li and a function t W thin.Li /! Œ0; 1� such
that � D �Li ;t and t � ti . Thus any graph in G.ŒL�/ can be thought of as a “folding” of a maximally
unfolded graph relative to � , say �i , where we only “fold” the chords that have been attached to � in the
construction of �i . In particular, this shows that any such � can be obtained from � by attaching to it a
forest along its leaves.

A special example of this is the case of the critical graph �crit 2 G.ŒL�/. It can be constructed from �

by attaching corollas to � . This graph can be obtained by “completely folding” any of the maximally
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unfolded graphs relative to � . Furthermore, the preimage d�1ad .dmax/ consist exactly of the central vertices
of the corollas attached.

Informally, one can think of ��1L .�/ as a space of graphs that interpolates the maximally unfolded graphs
relative to � with the critical graph. At one extreme we attach chords, at the other we attach corollas, and
in between we attach forests that arise as all possible foldings of these chords on their way to the corollas.

We now show that these forests can be attached to boundary intervals (possibly of length 0, so points)
in the outgoing boundary of the metric fat graph � . Those boundary intervals that are not points are
described combinatorially as follows:

Definition 4.26 Let � be a metric (admissible) fat graph and let � be a boundary cycle of � . We can
think of � as a set of half-edges of � together with a cyclic order. A boundary interval in � , denoted by B,
is a proper subset of the half-edges of � which can be written as

B D fh1; h2 D �.h1/; h3 D �2.h1/; : : : ; hn D �n�1.h1/g

for some half-edge h1 in � . In particular, B is an ordered set.

A boundary interval determines an ordered list of edges in � in which an edge can appear at most twice.
Consecutive edges in this list share a vertex and thus define a path in � between s.h1/ and s.�.hn//,
where s and � are the source and involution maps in the definition of the graph � . Up to scaling there is a
canonical map from the unit interval to � which traces this path and sends 0 to s.h1/ and 1 to s.�.hn//.
By scaling the unit interval, we can construct a canonical map which is an isometry when restricted to the
edges of the path. We do this below.

Definition 4.27 Let B be a boundary interval in a boundary cycle � . We denote by IB an oriented interval
whose length is the length of the path in � determined by B. More precisely, IB can be subdivided into
consecutive subintervals Ii for 1 � i � jBj. The length of the i th subinterval Ii is the length of the i th

edge ei D fhi ; �.hi /g on the path determined by B. We denote by x�i and xCi the boundary points of Ii ,
using its orientation.

The parametrization map of B is the unique map

fBW IB! �

given by x�1 7! s.h1/ and xCn 7! s.�.hn// that, for all i , restricts to an isometry fBjW Ii! ei WD fhi ; �.hi /g

that sends x�i to s.hi /.

The map fB is a parametrization of an interval in the boundary component corresponding to � . Thus a
point in x 2 IB uniquely determines a way in which a leaf can be attached to � such that the leaf is in the
boundary interval defined by B.

We now describe the boundary intervals that will arise, given � 2 G.ŒL�/.
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Definition 4.28 Let � 0i denote the open graph of Li relative to � for 1� i � r . Let l be an unlabeled
leaf of � 0i . This leaf defines a boundary cycle �l in � 0i . We define Bl to be the subset of the half-edges of
�l given by

Bl WD f�
j

l
.l/ j j 2 Z; j ¤ 0 and �j

l
.l/ is not part of an edge in an admissible cycleg:

Note in particular that Bl could be empty, and this indeed happens when l is attached to a vertex v which
is essentially trivalent in the sense that it has valence four if it is also attached to an admissible leaf but
trivalent otherwise.

An example of this construction can be seen in Figure 18, top right, where the dotted lines in �i for
i D 1; 2 correspond precisely to the boundary intervals defined by the leaves of the open graph. The sets
Bl have the following properties:

Lemma 4.29 For 1 � i � r , let � 0i denote the open graphs of Li relative to � 2 Im.�L/, as in
Definition 4.24. Recall that each unlabeled leaf of �i , say l , corresponds precisely to a shortest slit of Li ,
and thus it has a “pair” leaf which we denote by �.l/. Then:

(i) For any unlabeled leaf l of � 0i , the set Bl is either empty or it is a boundary interval in � .

(ii) For any unlabeled leaf l of � 0i , the sets Bl and B�.l/ are disjoint.

(iii) For any pair of unlabeled leaves l1 and l2 in � 0i such that Bl1 ¤∅¤ Bl2 , either

Bl1 \Bl2 D∅ or Bl1 D Bl2 :

(iv) For any open graphs relative to � , say � 0i and � 0j , the set of boundary intervals defined by their
unlabeled leaves coincide.

Proof We first show (i) holds. Let �l denote the slit corresponding to the unlabeled leaf l in � 0i . Then Bl
is the section of the outgoing boundary along which the leaf l can move around, given by slit jumps of �l .
In particular, if �l is isolated, that is, it is the only slit on its radial segment, then this is a single point
and Bl is empty. If Bl is not empty, it is enough to show that Bl is not the entire boundary cycle that
corresponds to l . Assume, for contradiction, that Bl is the entire boundary cycle. Then there must be a
set of slits f�1; �.�1/; �2; �.�2/; : : : ; �s; �.�s/g in Li for some s � 1 such that the following hold:

(1) The slit �l lies between �1 and �.�s/. More precisely, �.�s/, �l and �1 all lie in the same radial
segment, !.�1/D �l and !.�l/D �.�s/.

(2) For each 1� i < s, the slits �.�i / and �iC1 lie in the same radial segment and !.�iC1/D �.�i /.

Let �� be a slit in f�1; : : : ; �sg of largest modulus, ie a shortest slit in that set. Then �� and �.��/ can
jump along the other slits. In particular, Li is equivalent via slit jumps to a configuration L� where �.��/,
�� and �l lie in the same radial segment and

!.��/D �l ; !.�l/D �.��/ and j�l j � j��j:

So L� and Li are degenerate configurations, which is not possible.
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��

��

��

��

Figure 19: Two of the eight configurations of chords for k D 4. The green line segments are the
intervals, the vertices are the marked points in these intervals and the red arcs are the chords.

Statement (ii) follows in a similar way. More precisely, if Bl and B�.l/ are not disjoint, then Li is
equivalent via slit jumps to a configuration where �l and �.�l/ lie next to each other, and thus Li is
degenerate.

Statements (iii) and (iv) follow by construction.

Definition 4.30 (attaching intervals) Let � 2 G.L/. We define IL;� to be the set of oriented metric
intervals (possibly of length zero) corresponding to the parametrization of the boundary intervals and
isolated points in � along which a graph can be attached to obtain an element in its preimage.

That is, IL;� is given by those IBl
such that l is an unlabeled leaf of � 0, an open graph relative to � , as

in Definition 4.24. This interval is of length zero if its corresponding boundary interval is empty. Recall
that this happens precisely when there is a leaf in � corresponding to an isolated slit, ie a slit that is the
only one in its radial segment. Note in particular that, by Lemma 4.29(iv), this definition does not depend
on the choice of � 0 but only on the class ŒL� and the metric fat graph � .

Any point in the preimage can be obtained by attaching a forest to � along the parametrization intervals
in IL;� . To make this precise, we define certain spaces of forests attached to intervals, which will use the
following combinatorial definition:

Definition 4.31 Let I WD I1 t I2 t � � � t Ik denote a disjoint union of k compact intervals of a given
length. We allow intervals to have length zero. Let D denote a family of piecewise linear functions
D WD fdi W Ii !R>0 j 1� i � kg whose derivative is ˙1 outside a finite set. Then we define maxD WD
max1�i�kfmaxxi2Ii

di .xi /g.

Notation 4.32 (configurations of chords) We will consider the set of all possible configurations of
k� 1 chords attached by their endpoints to the intervals in I such that the resulting graph is connected,
planar and has no loops; we denote this set by ConfI . See Figure 19 for examples of configuration of
chords. We will construct a space of metric planar forests attached to these intervals and we will use
the configurations above to restrict which metrics are allowed. For this, we will use the path distance
function in a metric graph, which we denote by dpath.

Definition 4.33 Let I and D be as in the previous definition and d 2R>0 such that 2d >maxD. Denote
by FI;D;d those metric graphs obtained by attaching a metric forest F with at most 2.k�1/ leaves to the
intervals I such that:
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� The graph obtained, denoted by G, is planar, connected and has no loops.

� There is a configuration C 2 ConfI such that, for any pair of intervals Ii and Ij connected by a
chord in C , the path distance in G from xi to xj (two attaching points of leaves of the forest F ) is

dpath.xi ; xj /D 2d � di .xi /� dj .xj /:

Note that FI;D;d is a subset of the space of metric fat graphs. We consider it as a space using the subspace
topology.

Lemma 4.34 The topological space FI;D;d is contractible.

Proof Fix a marked point �i 2 Ii for all 1 � i � k such that �i is a local maximum for di . Let
FI;D;d;� � FI;D;d be the subspace where the forest is attached to the marked points in the intervals I.
We will construct a deformation retraction onto a point in two steps.

Step 1 We will construct a deformation retraction of FI;D;d onto FI;D;d;�. Intuitively, we slide the
endpoints along I towards the marked points, but some care is require to make sure the conditions on the
metric remain satisfied. By definition, each Ii can be subdivided into finitely many intervals on which di
is linear. Let Ni be the number of these in a uniquely minimal such subdivision. Our argument will be by
induction over N DN1C � � �CNk .

In the initial case N D 0 there is nothing to prove. For the induction step, let I 0 � Ij be an interval in the
aforementioned minimal subdivision such that Ij D I 0[ I 0j where I 0\ I 0j is a point and �j 2 I 0j . Let I 0

be obtained from I by replacing Ij with I 0j and let D0 be obtained by replacing dj by d 0j WD dj jI 0j . We
will show that FI;D;d deformation retracts onto a space homeomorphic to FI0;D0;d . There are two cases:

(A) The point I 0 \ I 0
j

is a local minimum of dj In this case we “open” along the edge I 0 towards I 0j :

I 0

I 0j

I 0

I 0j

I 0

I 0j

t D 0 t D 1

The precise construction is as follows. If I 0 has length `, we linearly identify the interval I 0 with Œ0; `�,
with I 0 \ I 0j corresponding to `. Suppose that s 2 Œ0; `� is the unique smallest value at which an edge
is attached to I 0 Š Œ0; `�. Then on a metric graph G, the deformation retraction at time t 2 Œ0; 1� is the
identity for t` < s, and for t`� s replaces I 0 Š Œ0; `� with Œ0; `�[t` Œs`; t`�; note that we may identify
Œt`; `�[t` Œs`; t`�� Œ0; `�[t` Œs`; t`� with Œs`; t`�. We attach the edges originally attached to Œs`; t`�� I 0

to this new interval. The result has a canonical metric.
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(B) The point I 0 \ I 0
j

is a local maximum on dj In this case we “fold” along the edge I 0 towards I 0j :

I 0
I 0j

I 0
I 0j

I 0
I 0j

t D 0 t D 1

The precise construction is as follows. Let us linearly identify the interval I 0 with Œ0; `�, as in (A). Then
consider the subtree of G given by points that are distance t` from 0 2 I 0 2 Œ0; `�. We identify this
subtree with the interval Œ0; t`� by identifying all points with distance s to s 2 Œ0; t`�. The result has a
canonical metric.

Step 2 We will prove that FI;D;d;� is contractible by a variation of the Alexander trick. To do so, we
replace the metric tree .T; dT / attached to the marked points by .T; .1� t /dT / and add edges of length
t .d �di .�i // connecting �i to the endpoint in this scaled tree originally attached to �i (the circles contain
the rescaled graphs):

��

��

��

��

��

��

t D 0 t D 1

The resulting metric graphs are still planar, connected, without loops and satisfy the metric condition. At
t D 1 we obtain the k–valent corolla attached to all intervals, with the edge between the vertex of the
corolla and �i given by d � di .�i /.

Lemma 4.35 Let � 2 G.ŒL�/. There is a positive real number d 2R>0 and a finite collection of sets of
intervals I and sets of functions D such that there is a homeomorphism

(4-1) ��1L .�/Š FI;D;d � � � � �FI0;D0;d :

The intuition behind this homeomorphism is as follows. In the simplest scenario, there is only one term in
the product of the right-hand side of (4-1). On the one hand, the critical graph corresponds to the unique
point in FI;D;d given by a single corolla. On the other hand, the maximally unfolded graphs relative to �
correspond to elements in ConfI , that is, to arrangements of k� 1 chords attached to the intervals (where
k�1 is the number of pairs of shortest slits of L). Finally, an arbitrary point in FI;D;d is a “folding” of a
configuration in ConfI , and an arbitrary point in ��1L .�/ is a “folding” of a maximally unfolded graph
relative to � .
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Proof Given ŒL� and � , the set of intervals will be IDIL;� ; see Definition 4.30. Recall that there is a map

f W IL;� ! �;

which is an isometry when restricted to edges of � that are in the image. Moreover, we have a canonical
embedding � ,! � for which � �� D F is a forest and such that � is obtained from � by attaching
the leaves of F to IL;� ; see Remark 4.25.

For a choice of � in the preimage, we denote by G� the subgraph of � that is given by the union of
the forest F and the boundary intervals in IL;� along which F is attached. The number of components
of G� is independent from the choice of � in the preimage of � , and it corresponds to the number of
elements in the product of the right-hand side of (4-1). An intuitive way to think about this is that the
slits which are deleted from L to obtain L come in clusters, collections of slits which map to the same
point in the glued surface †.ŒL�/, and each of these clusters contributes a single term in the product.

We will assume for the sake of simplicity that there is a single component in G� or a single cluster of
slits, thought the argument easily generalizes to the case of several components. The functions di 2D are
induced by the modulus in C. That is, they are determined by the path distance to the admissible cycles
of � . More precisely, for any x 2 Ii 2 IL;� we set di .x/D dad.x/. This yields a well-defined piecewise-
linear function on each Ii . The real number d is the common modulus of all slits which are deleted from
L to obtain L. Then there is a continuous map FI;D;d ! ��1L .L/ given by gluing the forest F into �
according to the intervals Ii . This has an inverse given by the continuous map that sends � to G� .

Putting together these results, we prove that the preimages of �L are contractible.

Proof of Lemma 4.21 Let � 2 G.ŒL�/. By Lemma 4.35, ��1L .�/ is homeomorphic to a product of
spaces of forests attached at intervals. These are contractible by Lemma 4.34.

The proofs given above for �L can be adapted to the simpler case of �1L, and we will spare the reader the
technical details. The result is:

Lemma 4.36 (i) �L is well defined.

(ii) �L is continuous.

(iii) The fibers of �L are compact contractible ANRs.

We now finish the proof of Lemma 4.16, which said �L and �1L are homotopy equivalences:

Proof of Lemma 4.16 We apply Theorem 4.3. By Lemma 4.17, the domain and targets of the maps �L
and �1L are compact ANRs, so it suffices to prove the fibers of both maps are cell-like. This follows by
combining Proposition 4.4(viii) with Lemmas 4.20, 4.21 and 4.36.
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4.4 The projection map is a homotopy equivalence

Our next goal is to check that the spaces Rad and Rad� are ANRs, and that the map �1WRad�!Rad

is proper and cell-like. For the remainder of this section we fix g, n and m.

Proposition 4.37 The space Rad is a locally compact ANR.

Proof The space Rad is a smooth manifold, so it is locally compact and has an open cover by copies
of Rn. These are ANRs by Proposition 4.4(v), so Rad is an ANR by Proposition 4.4(iii). (Alternatively,
one can argue that Rad is an open subspace of the finite CW–complex Rad and use properties (ii) and (v)
of Proposition 4.4.)

To prove that Rad� is an ANR and that �1 is a proper cell-like map, we will write Rad� as an open
subspace of a space .Rad/� obtained by gluing together finitely many compact ANRs. By Definition 2.16,
Rad nRad D Rad0 is a CW–complex, and in fact a subcomplex of Rad. Then .Rad/� is defined by
adding a boundary to the blowup Rad� in the most naive way. In the proof of Lemma 4.17, we saw that
MFat ad

g;nCm is a subspace of a compact polyhedron Pg;nCm, which we abbreviate to P here.

Definition 4.38 The space .Rad/� is the subspace of Rad�P consisting of all .ŒL�; �; �/ such that either

(i) ŒL� 2Rad and .�; �/ 2 G.L/, or

(ii) ŒL� 2Rad nRad and .�; �/ 2 P .

Lemma 4.39 The topological space .Rad/� is a compact ANR.

Proof Fix a representative ŒL� for each combinatorial type ŒL�, and note that, if ŒL� and ŒL0� have the
same combinatorial type, there is a canonical homeomorphism G.ŒL�/Š G.ŒL0�/. The space G.ŒL�/ is
then by definition G.ŒL�/ for the representative ŒL� of ŒL�. We remark that .Rad/� is obtained by gluing
together .Rad nRad/�P and RadŒL� �G.ŒL�/ for all combinatorial types ŒL� along @RadŒL� �G.ŒL�/.

Note that .Rad nRad/�P is the product of a subcomplex of the finite complex Rad with a compact
polyhedron. Thus parts (v) and (vii) of Proposition 4.4 say it is a compact ANR. Similarly, by Lemma 4.17
RadŒL� � G.ŒL�/ and @RadŒL� � G.ŒL�/ are each a product of a finite CW–complex with a compact
polyhedron, and thus compact ANRs by parts (v), (vi) and (vii) of Proposition 4.4. Attaching cells RadŒL�
one at a time in order of dimension and repeatedly applying Proposition 4.4(iv), one proves inductively
over k that

..Rad nRad/�P /[

� [
dimRadŒL��k

RadŒL� �G.ŒL�/
�

is a compact ANR. This uses that Rad has finitely many cells after fixing g, n and m. In particular this
process has to end at some k � 0, and hence .Rad/� is also a compact ANR.

Proposition 4.40 The topological space Rad� is an ANR.

Proof Rad� is an open subspace of .Rad/�, so by Proposition 4.4(ii) we conclude it is an ANR.
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Proposition 4.41 The map �1WRad�!Rad is proper and cell-like.

Proof Observe that �1 extends to a continuous map �1W .Rad/� ! Rad. If K � Rad is compact,
then it is also compact considered as a subset of Rad, and thus closed. By continuity ��11 .K/ is closed
in .Rad/�, and since the latter is a compact space it must be compact. But ��11 .K/ � Rad� and
��11 .K/\Rad� D ��11 .K/, so �1 is proper.

That �1 is cell-like is a consequence of Lemmas 4.14 and 4.17, which say that the point inverses of �1
are contractible compact polyhedra, and Proposition 4.4(viii), which implies that contractible compact
polyhedra are cell-like.

Corollary 4.42 The projection �1WRad�!Rad is a homotopy equivalence.

Proof We may fix g, n andm. Then we can simply apply Theorem 4.3 to Propositions 4.37, 4.40 and 4.41.
The domain is locally compact because it is an open subspace of a compact space by Lemma 4.39, and
the target is locally compact by Proposition 4.37.

4.5 The critical graph map is a homotopy equivalence

We now show that the critical graph map Rad�!MFat ad is a homotopy equivalence using the relation
between the universal bundles over Rad and MFat ad . We start by recalling some well-known results
regarding universal bundles:

Proposition 4.43 Given a two-dimensional cobordism Sg;nCm and a paracompact base space B , there
are bijections natural in B between

(i) isomorphism classes of smooth Sg;nCm–bundles over B , that is , the transition functions lie in
Diff.Sg;nCm/,

(ii) isomorphism classes of principal Diff.Sg;nCm/–bundles over B , and

(iii) isomorphism classes of principal Mod.Sg;nCm/–bundles over B .

Sketch of proof For one direction of the first bijection, for a principal Diff.Sg;nCm/–bundle pWW !B ,
its corresponding Sg;nCm–bundle is given by taking Sg;nCm �Diff.Sg;nCm/W .

For the other direction of the first bijection, suppose that � WE! B is a smooth Sg;nCm–bundle. Each
fiber Eb WD��1.b/ is a Riemann surface with boundary with a marked point in each boundary component.
These marked points are ordered and labeled as incoming or outgoing. Let xb

k
denote the marked point

in the kth incoming boundary component for 1 � k � n and xb
kCn

denote the marked point in the kth

outgoing boundary for 1� k �m. Its corresponding Diff.Sg;nCm/–bundle is given by taking fiberwise
orientation-preserving diffeomorphisms, ie it is the bundle pWW ! B whose fibers are given by

Wb WD p
�1.b/D f'WSg;nCm!Eb j ' is a diffeomorphism and '.xi /D xbi g:

These constructions are mutually inverse.
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Because each connected component of Diff.Sg;nCm/ is contractible, taking �0 gives a homotopy equiva-
lence Diff.Sg;nCm/!Mod.Sg;nCm/. Thus there is a bijection between principal Diff.Sg;nCm/–bundles
and principal Mod.Sg;nCm/–bundles, where one can obtain the Mod.Sg;nCm/–bundle corresponding to
pWW ! B by taking �0 fiberwise.

We now construct a space ERad that maps to Rad and use the previous proposition to show that
ERad! Rad is a universal Mod.Sg;nCm/–bundle. To construct this space we use the ideas of the
construction of EMFat ad in Definition 3.23. That is, as a set we define

ERad WD f.ŒL�; ŒH �/ j ŒL� 2Rad and ŒH � is a marking of �ŒL�g:

We will topologize ERad so that the map ERad!Rad is a covering map. Then a path in ERad will
be given by a path  W t! ŒL.t/� in Rad together with a marking H0W�ŒL.0/� ,! Sg;nCm. Hence we must
describe how H0 and the path  uniquely determine a sequence of markings Ht W�ŒL.t/� ,! Sg;nCm. To
make this precise, we will give a procedure to obtain a well-defined marking of �ŒzL� from a combinatorial
type ŒL�, a marking of �ŒL� and a configuration ŒzL� 2 @RadŒL�, where ŒzL� is the combinatorial type
of ŒzL�. To describe this procedure, notice that if ŒL� and ŒzL� are related in this manner, then ŒzL� must be
obtained from ŒL� by collapsing radial and annular chambers. Hence we will start by analyzing these
cases separately.

Definition 4.44 (annular chamber collapse map) Let ŒL� and ŒL0� be two nondegenerate combinatorial
types such that ŒL0� can be obtained from ŒL� by collapsing the annular chambers Ai1 ; Ai2 ; : : : ; Aik and
let A WD

S
i Ai . We will define a map in Fat ad ,

�W�ŒL�! �ŒL0�;

which we will call the annular chamber collapse map; see Figure 20.

Choose a representative ŒL� of ŒL�. Then, following the construction of �ŒL�, we can define a subgraph FA
which is given by the intersection of EL and A. The subgraph FA must be a forest inside �ŒL�. To see this,
assume there is a loop in FA. Then there must be a loop in �ŒL�, and hence there are two paired slits �i and
��.i/ which lie on the same radial segment. Since ŒL� is nondegenerate there must be slits �i1 ; �i2 ; : : : ; �ij
such that ij � 1 and j�il j < j�i j for all il . Finally, since the loop is in FA, A must contain the radial
segment between �i and �il for some il . But then collapsing A will give a degenerate configuration, and
we assumed ŒL0� is nondegenerate. Therefore FA is a forest in �ŒL�, and since �ŒL� D �ŒL� this description
gives a well-defined subforest of �ŒL�, giving with a well-defined map on Fat ad .

Definition 4.45 (radial chamber collapse zigzag) Let ŒL� and ŒL00� be two nondegenerate combinatorial
types such that ŒL00� can be obtained from ŒL� by collapsing radial chambers. We will define an admissible
fat graph �.ŒL�; ŒL00�/ together with a zigzag in Fat ad

�ŒL�
�1
�! �.ŒL�; ŒL00�/ �2

 � �ŒL0�;

which we will call the radial chamber collapse zigzag; see Figure 21.
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�L
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�L0

Figure 20: An example of the annular chamber collapse map. The leaves have been omitted
from the graphs to make them more readable. The annular chambers are marked with dotted
lines. The yellow radial sector is collapsed in L and the annular chamber collapse map is given by
contracting the edge shown in red.

Choose a representative L 2QRad of combinatorial type ŒL� and let L00 2QRad be the preconfiguration
of combinatorial type ŒL00� obtained by collapsing radial chambers. We will call the radial segments

1

1

2

3

L

radial chamber collapse

�L

1

1

2

3L00

�L00

edge collapse

edge collapse

�.L;L00/

Figure 21: An example of the radial chamber collapse zigzag. The radial chambers are marked
with dotted lines. The yellow radial chamber is collapsed in L and the radial chamber collapse
zigzag is given by collapsing the edges shown in orange.
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onto which the radial chambers have been collapsed the special radial segments. Notice that L00 is well
defined up to a choice of L, and slit jumps and parametrization point jumps away from the special radial
segments. Thus the idea is to define �.ŒL�; ŒL00�/ as a partially unfolded graph of L00 which is unfolded at
the special radial slit segments and folded everywhere else. This gives a well-defined isomorphism class
of admissible fat graphs.

To make this precise, let Sk1
; Sk2

; : : : ; Skr
denote the special radial segments of L00. We define

�.ŒL�; ŒL00�/D �L00;t where t 2 Œ0; 1�d.L
00/ is defined as follows:

t˛ WD

�
0 if ˛ D ki C j for 1� i � r and 1� j � ski

� 1;

1 otherwise:

This is a well-defined isomorphism class of admissible fat graphs, since the graph is folded in all radial
segments in which jumps are allowed. Let FL be the subgraph of �L obtained by the intersection of EL
with the collapsing chambers. Then �1W�ŒL�D�L!�L=FLD�.ŒL�; ŒL00�/ is a well-defined map in Fat ad .
Similarly, let FL00 be the subgraph of �L00 obtained from the intersection of EL00 and the special radial
segments. Then �2W�ŒL00� D �L00 ! �L00=FL00 D �.ŒL�; ŒL00�/ is a well-defined map in Fat ad .

For the general case, consider any ŒzL� 2 @RadŒL�\RadŒzL�. Then ŒzL� is obtained from ŒL� by collapsing
chambers. If we let ŒL0� be the configuration obtained from collapsing only the annular chambers, then
the previous construction gives a well-defined zigzag in Fat ad :

(4-2) �ŒL�
�
�! �ŒL0�

�1
�! �.ŒL0�; ŒL�/ �2

 � �ŒL0�:

Note that if ŒzL� is obtained by only collapsing annular chambers then �1 D idD �2, and if ŒzL� is obtained
by only collapsing radial chambers then �D id.

Definition 4.46 We define the space ERad by

ERad WD

F
ŒL�RadŒL� �Mark.�ŒL�/

�
;

where the disjoint union runs over all nondegenerate combinatorial types ŒL� and the equivalence relation
� is generated by saying that .ŒzL�; ŒH�/� .ŒzL�; Œ zH�/ if, given ŒzL�2 @RadŒL�\RadŒzL�, ŒH �2Mark.�ŒL�/
and Œ zH� 2Mark.�ŒzL�/, we have that Œ zH� D .�2�/�1 ı .�1�/ ı ��.ŒH�/. Here �, �1 and �2 are given as
in (4-2), and the induced maps are the ones constructed in Lemma 3.21.

Proposition 4.47 The projection ERad!Rad is a universal Mod.Sg;nCm/–bundle over Rad.

Proof It is enough to show that ERad ! Rad is the Mod.Sg;nCm/–bundle corresponding to the
universal surface bundle pWSh.n;m/! RadŠRad. Recall that the universal surface bundle has fibers
pŒL� D S.ŒL�/, a surface with boundary with a marked point in each boundary component. These marked
points are ordered, and labeled as incoming or outgoing.

Let xL
k

denote the marked point in the kth incoming boundary component for 1� k � n and xL
kCn

denote
the marked point in the kth outgoing boundary component for 1� k �m. Following the description in
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the beginning of this subsection, the Diff.Sg;nCm/–bundle W ! Rad corresponding to the universal
surface bundle is given by taking fiberwise orientation-preserving diffeomorphisms. That is, we have

WŒL� WD f'WSg;nCm! S.ŒL�/ j ' is an orientation-preserving diffeomorphism with '.xi /D xLi g:

Furthermore, its corresponding Mod.Sg;nCm/–bundle Q!Rad, has fibers QŒL� WDWŒL�=isotopy. This
amounts to passing to connected components of the group of diffeomorphisms.

Note that QŒL� is discrete, and thus by the description of ERad it is enough to show that there is a
bijection between Mark.�ŒL�/ and QŒL�. We define inverse maps

ˆWQŒL� � Mark.�ŒL�/ W‰

By construction there is a canonical embedding HŒL�W�ŒL� ,! S.ŒL�/, and this embedding is a marking
of �ŒL� in S.ŒL�/. Given Œ'� 2QŒL� we define ˆ.Œ'�/ WD Œ'�1 ıHŒL��; this is a well-defined map.

To go back, let ŒH � 2Mark.�ŒL�/ and choose a representative H W�ŒL� ,! Sg;nCm. We will construct an
orientation-preserving homeomorphism f WSg;nCm! S.ŒL�/ such that Œf ıH�D ŒHŒL��, which we can
approximate by a diffeomorphism ' using Nielsen’s approximation theorem [36]. To do so, we use that
the complements of the markings are disks: we construct the homeomorphism first on markings, and then
extend it to the disks.

By Lemma 3.20, the complement Sg;nCm nH.� n leaves of �/ is a disjoint union of nCm cylinders.
For all 1� i � nCm, one of the boundary components of the i th cylinder consists of the i th boundary of
Sg;nCm. The other boundary component consists of the image of the i th boundary cycles of � under H .
The leaf corresponding to the i th boundary component is embedded in the cylinder and connects both
boundary components. We conclude that Sg;nCm nH.�ŒL�/Š

FnCm
iD1 Di , where each Di is a disk.

Let xi denote the marked point of the i th boundary component of Sg;nCm. The boundary of Di has
two copies of xi . Connecting these on one side is the i th boundary component of Sg;nCm and on the
other side is the embedded image of the i th boundary cycle of �ŒL�. The orientation of the i th boundary
component of Sg;nCm allows us to order the two copies of xi and label them as xi;1 and xi;2. Similarly,
S.ŒL�/ nHŒL�.�ŒL�/Š

FnCm
iD1

zDi where each zDi is a disk. Let xLi;j for j D 1; 2 denote the two copies
of the marked point on the i th boundary component of S.ŒL�/ that lie on the boundary of zDi . Take
fi j@Di

W @Di! @ zDi to be an orientation-preserving homeomorphism satisfying f .xi;j /DxLi;j for j D 1; 2.
Let fi be an extension of fi j@Di

to the entire disk. One can choose the maps fi j@Di
consistently so

that they glue together to a homeomorphism f WSg;nCm! S.ŒL�/. Since the maps fi are unique up to
homotopy, f is also unique up to homotopy.

We define ‰.ŒH�/D Œ'�, where ' is a diffeomorphism approximating f . The map ‰ is well defined and
by construction it is inverse to ˆ.

We now extend this to Rad� by defining a fattening of ERad as follows:
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Definition 4.48 The fattening ERad� is defined as

ERad� WD f..ŒL�; ŒH �/; Œ�; �; zH�/ j Œ�; �� 2 G.ŒL�/g �ERad�EMFat ad ;

where G.ŒL�/ is the space given in Definition 4.13.

Recall that ERad consists of pairs .ŒL�; ŒH �/ of a radial slit configuration and a marking, and that
EMFat ad consists of isomorphism classes of triples Œ�; �;H� of an admissible fat graph, a metric and a
marking.

Corollary 4.49 The projection ERad�!Rad� is a universal Mod.Sg;nCm/–bundle over Rad�.

Proof Consider the diagram below, in which �1 is a homotopy equivalence by Corollary 4.42:

ERad� ERad

Rad� Rad

�1�id

'

�1

It suffices to prove this is a pullback diagram. To do so, observe that the path from Œ�; �� 2 G.ŒL�/ to the
critical graph Œ�ŒL�� described in Proposition 4.14 determines a zigzag in jFat ad j under the composite

G.ŒL�/ �
,!MFat ad r.�;1/

����! jFat ad
j;

where � is the inclusion and r is the map given in Lemma 3.12. Moreover, since G.ŒL�/ is contractible, � is
an inclusion and r.�; 1/ is a homotopy equivalence, there is a contractible choice of zigzags representing
paths from Œ�; �� to Œ�ŒL�� in G.ŒL�/. Therefore, by Lemma 3.21, a marking of Œ�ŒL�� uniquely determines
a marking of Œ�� and vice versa. Thus, for Œ�; �� 2 G.ŒL�/, giving a tuple ..ŒL�; ŒH �/; Œ�; �; zH�/ 2
ERad�EMFat ad is equivalent to giving either a triple ..ŒL�; ŒH �/; Œ�; ��/ or a triple .ŒL�; Œ�; �; zH�/.

We now describe a general result on universal bundles, which we use to conclude that �2 is a homotopy
equivalence.

Proposition 4.50 Let E!B and E 0!B 0 be universal principal G–bundles with B and B 0 paracompact
spaces. Let f WB!B 0 be a continuous map. If f �.E 0/ is isomorphic to E as a bundle over B , then f is
a homotopy equivalence.

Proof For any paracompact space X , there is a diagram

ŒX; B� fprincipal G–bundles over Xg

ŒX; B 0�

f ı�

Š

Š

which commutes since f �.E 0/ŠE. ForXDB 0, one finds there is a Œg�2 ŒB 0; B� such that Œf ıg�D ŒidB 0 �.
Then g�.E/Š g�.f �.E 0//DE 0, so we can repeat the argument and obtain that there is an h 2 ŒB; B 0�
such that Œg ı h�D ŒidB �. Finally, since Œh�D Œf ıg ı h�D Œf �, f and g are mutually inverse homotopy
equivalences.
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Corollary 4.51 The projection �2WRad�!MFat ad is a homotopy equivalence.

Proof This follows from Proposition 4.50, as there is a pullback diagram

ERad� EMFat ad

Rad� MFat ad

�2�id

�2

5 Sullivan diagrams and the harmonic compactification

We now compare the harmonic compactification of radial slit configurations Rad and the space of Sullivan
diagrams SD, as in Definitions 2.15 and 3.16, respectively. To do this, we observe that URad is the
subcomplex of Rad consisting of cells indexed by the subset ‡U of ‡ made up of all combinatorial types
of unilevel radial slit configurations. As a consequence, the projection pWRad! URad is cellular.

Proposition 5.1 The space SD is homotopy equivalent to Rad. In fact , there is a cellular homeomorphism
between URad and SD.

Proof It is enough to show this for connected cobordisms. Recall that the harmonic compactification
of the space of radial slit configurations Rad is homotopy equivalent to the space of unilevel radial slit
configurations URad by Lemma 2.22, so it suffices to prove the second stronger statement.

Since in URad all annuli have the same outer and inner radius and all slits sit in the outer boundary, the
annular chambers are superfluous information. Thus, the combinatorial type of a unilevel configuration is
determined only by its radial chamber configuration. More precisely, two univalent configurations ŒL�
and ŒL0� have the same combinatorial type if and only if they differ from each other only by the size of
the radial chambers. Finally, the orientations of the complex plane and the positive real line induce a total
ordering of the radial chambers on each annulus.

Similarly, on a Sullivan diagram the leaves of the boundary cycles and the fat structure at the vertices
where they are attached give a total ordering of the edges on the admissible cycles. We say two Sullivan
diagrams Œ�� and Œ� 0� have the same combinatorial data if they differ from each other only on the lengths
of the edges on the admissible cycles. A (nonmetric) Sullivan diagram G is an equivalence class of
Sullivan diagrams under this relation. We will first show that a radial slit configuration and a Sullivan
diagram are given by the same combinatorial data. That is, that there is a bijection

‡U WDfcombinatorial types of unilevel radial slit configurationsg$ƒWDfnonmetric Sullivan diagramsg:

We define a map f W‡U ! ƒ by ŒL� 7! GŒL�;0, where GŒL�;0 is the underlying (nonmetric) Sullivan
diagram of a unfolded graph of ŒL�. This map is well defined, since a slit or a parametrization point
jumping along another slit corresponds to a slide of a vertex along an edge not belonging to the admissible
cycle. For example, the configurations in Figure 9 are mapped to the graphs in Figure 22.
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1 21
0

1

2

3
4

0

1
ŒG�

1 21
01

2 3

0

1
d01 ŒG�

1 21
01

2 3

0

1

d23 ŒG�

Figure 22: The top depicts a 5–cell which is a product �1 ��4 of simplices in SD, and the
bottom two parts of its boundary. The edges are numbered in gray.

We next construct the inverse map gWƒ ! ‡U. Notice that any nonmetric Sullivan diagram has a
canonically associated metric Sullivan diagram by assigning all the edges in an admissible cycle the
same length. Moreover, any Sullivan diagram has a fat graph representative with all its vertices on the
admissible cycles. A representative of a metric Sullivan diagram with all its vertices on the admissible
cycles is given by the following data:

(i) C1; C2; : : : ; Cn are parametrized circles which are disjoint, ordered and of length 1.

(ii) l1; l2; : : : ; ls are a finite number of chords, where a chord is a graph which consists of two vertices
connected by an edge. Let V denote the set of vertices of such chords.

(iii) zV � V is a subset such that zV contains at least one vertex of each chord and jV n zV j Dm.

(iv) ˛W zV !
F
i Ci is an assignment which will indicate how to attach the chords onto the n circles. Two

or more chords may be attached on the same circle and even on the same point. The assignment ˛
should attach at least one chord on each circle.

(v) For each x in the image of ˛, we have an ordering of the subset of chords attached to x, that is, an
ordering of the set ˛�1.x/.

From this data one can construct a metric fat graph with inner vertices of valence greater or equal to 3.
The chords are attached onto the n circles using ˛. This gives the circles the structure of a graph by
considering the attaching points as vertices and the intervals between them as edges. It just remains to
give a fat structure at the attaching points. To do this, let x be in the image of ˛. The parametrization
of the circles gives a notion of incoming and outgoing half-edges on x, say e�x and eCx , respectively.
Moreover, there is an ordering of the chords attached on x, say .lx;1; lx;2; : : : ; lx;s/. The cyclic ordering
at x is given by .e�x ; lx;1; lx;2; : : : ; lx;s; e

C
x / as is shown in Figure 23. Informally, all chords are attached

on the outside of the circles according to the order given by the data. The chords that are attached only at
one vertex give the leaves of the Sullivan diagram.
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�x

eCx

e�x

lx;1
lx;2

lx;3

lx;s

Figure 23: The fat structure induced at vertex x where the cyclic ordering is given by the
orientation on the plane.

From this it is clear what the inverse map g should be. Given a Sullivan diagram G, its associated metric
Sullivan diagram gives the data (i)–(v) listed above. Then g.G/D .�; �; Q!; Er; EP / where � is given by ˛
on the chords attached at both ends, � is given by those chords (ie �.i/D k if and only if there is a chord
attached on both ends connecting i and k), EP is given by ˛ on the chords attached only at one vertex,
and Q! and Er are completely determined by the ordering of the chords at each attaching point. This map is
well defined since slides along chords correspond to jumps along slits, and it is an inverse to f .

We will show that URad and SD have homeomorphic CW–structures, where the cells are indexed by
‡U Šƒ, by giving cellular homeomorphisms

URad
'
 �

F
ŒL�2‡U

eŒL�

�

 
�! SD:

We already saw the map ' in Definition 2.15. To construct the map  , one first observes that any Sullivan
diagram Œ�� in SD is uniquely determined by its nonmetric underlying Sullivan diagram G and a tuple
.Et1; : : : ; Etnp

/, where tij is the length of the j th edge of the i th admissible cycle. Using this we can define

 .eŒL�; .Et1; : : : ; Etnp
//D Œ��D .f .ŒL�/; .Et1; : : : ; Etnp

//:

It is easy to show that the map  is continuous, and by construction the homeomorphism ' ı �1 is
cellular with respect to the CW–structures on URad and SD.
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Towards a higher-dimensional construction of
stable/unstable Lagrangian laminations

SANGJIN LEE

We generalize some properties of surface automorphisms of pseudo-Anosov type. First, we generalize the
Penner construction of a pseudo-Anosov homeomorphism, and show that if a symplectic automorphism is
constructed by our generalized Penner construction, then it has an invariant Lagrangian branched subman-
ifold and an invariant Lagrangian lamination. These invariants are higher-dimensional generalizations of
a train track and a geodesic lamination in the surface case. As an application, we compute the Lagrangian
Floer homology of some Lagrangians on plumbings of cotangent bundles of spheres.

53D05, 53D40, 57R17

1 Introduction

By the Nielsen–Thurston classification of surface diffeomorphisms, an automorphism  W S ��! S of
a compact oriented surface S is of one of three types: periodic, reducible, or pseudo-Anosov. We
recommend Casson and Bleiler [2] or Thurston [14]. Maher [7] shows that, for a suitable notion of
randomness, a random element of the mapping class group is pseudo-Anosov.

Let us assume that  is of pseudo-Anosov type. For any closed curve C � S , it is known that there is a
sequence fLmgm2N of closed geodesics such that Lm is isotopic to  m.C / for all m2N, and fLmgm2N

converges to a closed subset L with respect to the Hausdorff metric on closed subsets. Moreover, L is a
geodesic lamination. The definitions of a lamination, a geodesic lamination, and a Lagrangian lamination
are the following:

Definition 1.1 (1) A k–dimensional lamination on an n–dimensional manifold M is a decomposition
of a closed subset of M into k–dimensional submanifolds called leaves such that the closed subset
is covered by charts of the form I k � In�k where a leaf passing through a chart is a slice of the
form I k � fptg.

(2) An 1–dimensional lamination L on a Riemannian 2–manifold .S; g/ is a geodesic lamination if
every leaf of L is geodesic.

(3) An n–dimensional lamination L on a symplectic manifold .M 2n; !/ is a Lagrangian lamination if
every leaf of L is a Lagrangian submanifold.

For more details, we refer the reader to Farb and Margalit [5, Chapter 15].

© 2024 MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution License 4.0 (CC BY).
Open Access made possible by subscribing institutions via Subscribe to Open.
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In [3], Dimitrov, Haiden, Katzarkov and Kontsevich defined the notion of a pseudo-Anosov functor of
a triangulated category, and they gave examples of it on the Fukaya categories: a pseudo-Anosov map
 on a compact oriented surface S induces a functor, also called  , on the derived Fukaya category
D� Fuk.S; !/, where ! is an area form of S . In [3], the authors showed that  is a pseudo-Anosov
functor.

In [3, Section 4], the authors listed a number of open questions. One of them is to find a symplectic
automorphism  on a symplectic manifold M of dimension greater than 2 which has invariant transversal
stable/unstable Lagrangian measured foliations. A slightly weaker version of the question is to define a
symplectic automorphism  with invariant stable/unstable Lagrangian laminations.

The goal of the present paper is to answer the latter question. First, we define symplectic automorphisms
of generalized Penner type.

Definition 1.2 Let M be a symplectic manifold. A symplectic automorphism  W M ��! M is of
generalized Penner type if there are two collectionsADf˛1; : : : ; ˛mg andBDfˇ1; : : : ; ˇlg of Lagrangian
spheres satisfying

� ˛i \ j̨ D¿, and ˇi \ ǰ D¿ for all i ¤ j ,

� ˛i t ǰ for all i and j , and

� for each ˛i 2 A (resp. ǰ 2 B), there is at least one ǰ 2 B (resp. ˛i 2 A) such that ˛i \ ǰ ¤¿,

so that  is a product of positive powers of Dehn twists �i along ˛i and negative powers of Dehn twists
�j along ǰ , subject to the condition that every sphere appear in the product.

We will define a Dehn twist along a Lagrangian sphere in Section 2.2, partly to establish notation.

Then, we will define the notion of Lagrangian branched submanifold and carried by. These are higher-
dimensional generalizations of the notion of train tracks and “carried by a train track” in surface theory.
Roughly, in the surface theory, if a curve C is carried by a train track � , then it is possible to encode C on
� with the extra data called “weights”. We refer the reader to Farb and Margalit [5] for detail. Motivated
by this, we will give the higher-dimensional generalizations of train tracks and the notion of “carried by”
in Sections 3.1 and 3.3. Then, we prove Theorem 1.3 at the end of Section 3.

Theorem 1.3 Let M be a symplectic manifold and let  WM ��!M be a symplectic automorphism
of generalized Penner type. Then there exists a Lagrangian branched submanifold B such that if L
is a Lagrangian submanifold which is carried (resp. weakly carried ) by B , then  m.L/ is carried
(resp. weakly carried ) by B for all m 2N.

Remark 1.4 Theorem 1.3 cares about symplectic automorphisms of generalized Penner type. However,
there should be a generalized version of Theorem 1.3 for arbitrary symplectic automorphisms, which we
do not prove in the current paper.
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In Section 4, we will prove that if a Lagrangian L is carried by a Lagrangian branched submanifold B,
one can encode L on B with extra data called braids. The definition of braids will appear in Section 4.3.
In Sections 5 and 6, by using the notion of braids, we prove our main theorem, ie Theorem 1.5.

Theorem 1.5 Let M be a symplectic manifold , and let  WM ��!M be a symplectic automorphism
of generalized Penner type. Then there is a Lagrangian lamination L such that if L is a Lagrangian
submanifold of M which is carried by B , then there is a sequence of Lagrangian submanifolds Lm
satisfying

� Lm is Hamiltonian isotopic to  m.L/, and

� Lm converges to L as m!1.

Also, in Section 6.4, we will see how this generalizes to symplectic automorphisms which are not of
generalized Penner type.

Finally, we will talk about Lagrangian Floer theory related to Theorems 1.3 and 1.5. The results will be
written in Section 7.

Structure of the paper

This paper consists of 7 sections. In Section 2, we review plumbing spaces and generalized Dehn twists.
We will prove Theorem 1.3 in Section 3 and Theorem 1.5 in Sections 4–6. In Section 7, we will discuss
the relation of Theorems 1.3 and 1.5 to Lagrangian Floer theory and give a related calculation of Floer
cohomology (Theorem 7.3).
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feedback. We are also indebted to a referee of the paper for providing helpful comments.
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2 Preliminaries

In this section, we will review plumbings of cotangent bundles and generalized Dehn twists, partly to
establish notation.

2.1 Plumbing spaces

Let ˛ and ˇ be oriented spheres Sn. We describe how to plumb T �˛ and T �ˇ at p 2 ˛ and q 2 ˇ. Let
U � ˛ and V � ˇ be small disk neighborhoods of p and q. Then, we identify T �U and T �V so that the
base U (resp. V ) of T �U (resp. T �V ) is identified with a fiber of T �V (resp. T �U ).
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To do this rigorously, we fix coordinate charts  1 W U ! Rn and  2 W V ! Rn. Then we obtain a
compositions of symplectomorphisms

T �U
. �1 /

�1

����! T �Rn 'R2n
f
�!R2n ' T �Rn

 �2
�! T �V;

where f .x1; : : : ; xn; y1; : : : ; yn/D .y1; : : : ; yn;�x1; : : : ;�xn/.

A plumbing space P.˛; ˇ/ of T �˛ and T �ˇ is defined by T �˛tT �ˇ=�, where x� . �2 ıf ı 
��1
1 /.x/

for all x 2T �U . Since  �2 ıf ı 
��1
1 is a symplectomorphism, P.˛; ˇ/ has a natural symplectic structure

induced by the standard symplectic structures of cotangent bundles.

Since the plumbing procedure is a local procedure, we can plumb a finite collection of cotangent bundles
of the same dimension at finitely many points. For convenience, we plumb cotangent bundles of oriented
manifolds.

Note that we can replace f by

g.x1; : : : ; xn; y1; : : : ; yn/D .�y1; y2; : : : ; yn; x1;�x2; : : : ;�xn/:

If we plumb T �˛ and T �ˇ at one point using g, this plumbing space is symplectomorphic to the previous
plumbing space P.˛; ˇ/, which is plumbed using f . However, if we plumb at more than one point, then
by replacing f with g at a plumbing point, the plumbing space will change.

Definition 2.1 Let ˛1; : : : ; ˛m be oriented manifolds of dimension n.

(1) A plumbing datum is a collection of pairs of nonnegative integers .ai;j ; bi;j / for all 1� i � j �m
and collections of distinct points

fp
i;j

k
2 ˛i j 1� i � j �m; 1� k � ai;j C bi;j g;

fq
i;j

k
2 j̨ j 1� i � j �m; 1� k � ai;j C bi;j g:

(2) A plumbing space P.˛1; : : : ; ˛m/, with the given plumbing datum, is given by

P.˛1; : : : ; ˛m/D T
�˛1 t � � � tT

�˛m=�;

where the equivalence relation � is defined as follows: first, choose small disk neighborhoods
U
i;j

k
� ˛i of pi;j

k
and V i;j

k
� j̨ of qi;j

k
such that U i1;j1

k1
\U

i2;j2
k2
D¿ if .i1; j1; k1/¤ .i2; j2; k2/

and orientation-preserving coordinate charts  i;j
k
W U

i;j

k
��!Rn and �i;j

k
W V

i;j

k
��!Rn; then for

all x 2 T �U i;j
k

,

x �

�
.�
i;j�

k
ıf ı . 

i;j�

k
/�1/.x/ if 1� k � ai;j ;

.�
i;j�

k
ıg ı . 

i;j�

k
/�1/.x/ if ai;j C 1� k � ai;j C bi;j :

(3) A plumbing point is an identified point pi;j
k
� q

i;j

k
2 P.˛1; : : : ; ˛m/.

Figure 1 shows some examples of plumbing spaces.

If ˛i is of dimension n � 2, then specific choices of plumbing points do not change the symplectic
topology of P.˛1; : : : ; ˛m/.
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ˇ ˇ

˛ ˛

˛ ˛

Figure 1: P.˛ ' S1; ˇ ' S1/ with plumbing datum .2; 0/ (left) and .1; 1/ (right).

2.2 Generalized Dehn twist

Let
T �Sn D f.u; v/ 2RnC1 �RnC1 j kuk D 1; hu; vi D 0g;

Sn D f.u; 0nC1/ 2 T
�Sng;

where .u; v/ 2RnC1 �RnC1 and hu; vi is the standard inner product of u and v in RnC1. Moreover, let
0k be the origin in Rk .

We fix a Hamiltonian function �.u; v/Dkvk on T �SnnSn. Then � induces a circle action on T �SnnSn

given by
�.eit /.u; v/D

��
cos.t/uC sin.t/ v

kvk

�
; .cos.t/v� sin.t/kvku/

�
:

Let r W Œ0;1/! R be a smooth decreasing function such that r.0/D � and r.t/D 0 for all t � � for
a small positive number �. If !0 is the standard symplectic form of T �Sn, we define a symplectic
automorphism � W .T �Sn; !0/

��! .T �Sn; !0/ by

(2-1) �.u; v/D

�
�.eir.�.u;v///.u; v/ if v ¤ 0nC1;
.�u; 0nC1/ if v D 0nC1:

Let .M 2n; !/ be a symplectic manifold and let L' Sn be a Lagrangian sphere in M . By the Lagrangian
neighborhood theorem — see Weinstein [16] — there is a neighborhood N.L/ � L and a symplecto-
morphism � W T �Sn ��!N.L/. We define a generalized Dehn twist �L along L by

(2-2) �L.x/D

�
.� ı � ı��1/.x/ if x 2N.L/;
x if x …N.L/:

Note that the support of �L is contained in N.L/. From now on, a generalized Dehn twist will just be
called a Dehn twist.

Algebraic & Geometric Topology, Volume 24 (2024)
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Remark 2.2 We will use two specific Dehn twists �; Q� W T �Sn ��! T �Sn which are defined by (2-1) and
two functions r; Qr W Œ0;1/!R. The function r (resp. Qr) defining � (resp. Q� ) satisfies the above conditions
in addition to r.t/D � for all t � �

2
(resp. Qr 0.0/ < 0/. The two Dehn twists � and Q� are equivalent in the

sense that � ı Q��1 is a Hamiltonian isotopy.

Dehn twists have been studied extensively by Seidel. For example, Seidel [12] proved the following
theorem.

Theorem 2.3 Let ˛ be a Lagrangian sphere and ˇ be a Lagrangian submanifold of a symplectic
manifold M . If ˛ and ˇ intersect transversally at only one point , ˇ #˛ is Lagrangian isotopic to �˛.ˇ/,
where ˇ #˛ is a Lagrangian surgery of ˇ and ˛.

We prove Theorem 2.3 in the special case that ˇ is also a sphere and M D P.˛; ˇ/, as an illustration of
the “spinning” procedure.

To define “spinning”, we use the following notation. Let y 2 Sn�1 �Rn. Then

 y W T
�S1 ' S1 �R! T �Sn;

..cos �; sin �/; t/ 7!
�
.cos �.0n; 1/C sin �.y; 0//; .t cos �.y; 0/� t sin �.0n; 1//

�
is a symplectic embedding. Let Wy be the embedded symplectic surface  y.T �S1/. We would like to
note that Wy DW�y .

Definition 2.4 Given a curve C in T �S1, its spun image S.C / is
S
y2Sn�1  y.C /.

Remark 2.5 A spun image S.C / of a curve C � T �S1 is not an embedded submanifold of T �Sn for
all C . However, for some C , S.C / is an embedded submanifold. For example, if C is invariant under
the action .�; t/ 7! .��;�t / on T �S1, then S.C / is an embedded submanifold. Moreover, if S.C / is a
submanifold, then it is easy to prove that S.C / is Lagrangian.

Proof of Theorem 2.3 We use T �˛ and T �ˇ to indicate neighborhoods of ˛ and ˇ inside M DP.˛; ˇ/.
Let p be the intersection point of ˛ and ˇ. Then, T �p ˛ D ˇ \ T

�˛. The closure of T �p ˛ is denoted
by D�p ; we use D to indicate that this is a disk and the subscript p means that p is the center of D�p . The
meaning of the negative sign in D�p will be explained in the next section. Since �˛ is supported on T �˛,

�˛.ˇ/D �˛.ˇ\T
�˛/[ �˛.ˇ nT

�˛/D �˛.D
�
p /[ .ˇ nT

�˛/:

There exists � WT �Sn ��!T �˛ such that �˛D�ı�ı��1. Without loss of generality, �..0n; 1/; 0nC1/Dp
and

D�p D �
�
f.0n; 1; ty; 0/ j t 2R; y 2 Sn�1 �Rng

�
:

Then
.� ı �˛ ı�

�1/.D�p /D .� ı �/
�
f.0n; 1; ty; 0/ j t 2R; y 2 Sn�1 �Rng

�
D

[
y2Sn�1

�
�
f�.0n; 1; ty; 0/ j t 2Rg

�
:
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D T �S1

C

p

C � T �S1

D T �S1

C 0

p

C 0 � T �S1

U

Figure 2: Curves C and C 0 in T �S1.

Since there is a curve C in T �S1 such that  y.C /Df�.0n; 1; ty; 0/ j t 2Rg, �˛.D�p / is given by spinning
with respect to p and �.

Figure 2 represents C � T �S1. By Remark 2.5, it is easy to check that �˛.D�p / is Lagrangian.

One possible construction of ˇ #˛ is as follows. The Lagrangian surgery ˇ #˛ agrees with ˛[ˇ outside
of a small neighborhood U of p. On U , there is a Darboux chart � satisfying

�.U /DCn; �.˛/DRn; �.ˇ/D .iR/n;

�.ˇ #˛/D
��
x1; : : : ; xn;�

�x1
p
x21 C � � �C x

2
n

; : : : ;�
�xn

p
x21 C � � �C x

2
n

� ˇ̌̌
xi 2R

�
:

We refer the reader to Auroux [1]. Based on this construction, one could say that ˇ #˛ can be obtained
by spinning a curve C 0 � T �S1 at p. Figure 2, bottom, represents C 0 � T �S1.

Similarly, we can construct a Lagrangian isotopy connecting �˛.ˇ/ and ˇ #˛ by spinning.

3 Lagrangian branched submanifolds

In Section 3.1, we will define Lagrangian branched submanifolds. In Section 3.2, we will introduce a
construction of a fibered neighborhood of a Lagrangian branched submanifold. In Section 3.3, we will
defined the notion of “carried by” by using a fibered neighborhood. In Section 3.4, we will introduce the
generalized Penner construction. Finally, we will give a proof of Theorem 1.3 in Section 3.5.
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3.1 Lagrangian branched submanifolds

Thurston [15] used train tracks, which are 1–dimensional branched submanifolds of surfaces, and defined
the notion of “carried by a train track”. In this subsection, we generalize train tracks.

The generalization of a train track is an n–dimensional branched submanifold of a 2n–dimensional
manifold. We define the n–dimensional branched submanifolds with local models, as Floyd and Oertel
defined a branched surface in a 3–dimensional manifold in [6; 9]. For our definition, we need a smooth
function s WR!R such that s.t/D 0 if t � 0 and s.t/ > 0 if t > 0.

Definition 3.1 Let M 2n be a smooth manifold.

(1) A subset B �M is an n–dimensional branched submanifold if for every p 2 B, there exists a
chart �p W Up ��!R2n about p such that �p.p/D 0 and �p.B\Up/ is a union of submanifolds
L0; L1; : : : ; Lk for some k 2 f0; : : : ; ng, where

(3-1) Li WD f.x1; : : : ; xn; s.x1/; s.x2/; : : : ; s.xi /; 0; : : : ; 0/ 2R2n j xj 2Rg:

(2) A sector of B is a connected component of the set of all points in B that are locally modeled by L0,
ie k D 0.

(3) The branch locus Locus.B/ of B is the complement of all the sectors.

(4) Let .M 2n; !/ be a symplectic manifold. A subset B�M is a Lagrangian branched submanifold
if for every p 2B, there exists a Darboux chart �p W .Up; !jUp /

��! .R2n; !0/ about p, satisfying
that �p.B\Up/ is a union of submanifolds L0; L1; : : : ; Lk for some k 2 f0; : : : ; ng where Li is
defined in (3-1).

Remark 3.2 (1) At every point p of a branched submanifold B, the tangent plane TpB is well defined.
Moreover, if B is Lagrangian, then TpB is a Lagrangian subspace of TpM .

(2) A point on the branch locus is (a smooth version of) an arboreal singularity in the sense of Nadler [8].

Example 3.3 (1) Every Lagrangian submanifold L is a Lagrangian branched submanifold. The
branch locus Locus.L/ is empty.

(2) Every train track of a surface equipped with an area form is a Lagrangian branched submanifold.

(3) Let .M;!/ be a symplectic manifold and let L1 and L2 be two Lagrangian submanifold of M
such that

L1 t L2 D L1\L2 D fpg:

The Lagrangian surgery of L1 and L2 at p will be denoted by L2 #p L1. Then, L2 #p L1 [L1
and L2 #p L1[L2 are examples of Lagrangian branched submanifolds.

In Section 3.3, we will define the notion of “carried by” which appears in Theorems 1.3 and 6.6. In order
to define the notion of carried by, we will construct a fibered neighborhood first in Section 3.2.
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3.2 Construction of fibered neighborhoods

Let B be a Lagrangian branched submanifold. A fibered neighborhood N.B/ of B is, roughly speaking, a
codimension zero compact submanifold with boundary and corners of M , which is foliated by Lagrangian
closed disks which are called fibers.

Definition 3.4 A fibered neighborhood of B is a union
S
p2B Fp, where fFp j p 2 Bg is a family of

Lagrangian disks which are called fibers satisfying

(1) for any p 2B, Fp t B,

(2) for any p; q 2B, either Fp D Fq or Fp \Fq D¿,

(3) there exists a closed neighborhood U �B of Locus.B/, such that fFp j p 2U g is a smooth family
over each local sheet Li \U ,

(4) for each sector S of B, fFp j p 2 S nU g is a smooth family,

(5) if p 2 S \ @U where S is a sector of B, then, for any sequence fqn 2 S nU gn2N , limn!1 Fqn is
a Lagrangian disk such that limn!1 Fqn � F

ı
p D Fp n @Fp.

Example 3.5 Let M be a symplectic manifold and let L be a Lagrangian submanifold of M . Then L
is a Lagrangian branched submanifold of M . By the Lagrangian neighborhood theorem [16], for any
Lagrangian submanifold L ofM , there exists a small neighborhood N.L/ of the zero section of T �L such
that a symplectic embedding iL WN.L/ ,!M is defined on N.L/. Without loss of generality, we assume
that N.L/ is a closed neighborhood. Then N.L/ is foliated by closed Lagrangian disks N.L/\ T �p L.
Thus, N.L/ is a fibered neighborhood of L.

We will now give a specific construction of a fibered neighborhood N.B/. The rough sketch of the
construction is as follows. If p 2B lies on a sector S of B, by Example 3.5, there is a natural embedding
iS W N.S/ ,!M . Then is.N.S/\ T �pS/ t B. Thus, it is natural to set Fp WD is.N.S/\ T �pS/ t B.
However, if one sets as above, the odds are that there are p; q 2B nLocus.B/ near Locus.B/ such that
Fp \Fq ¤¿, but Fp ¤ Fq . See Figure 3 representing the case of dimM D 2.

To handle this issue, we classify p 2B into three cases: “near the branch locus”, “far from the branch
locus”, and “between the other two”. Then, we construct a fiber Fp for p in each case.

Fibrations over near the branch locus First, we will construct fibers near the branch locus. For
each connected component ` of Locus.B/, we choose a small closed Lagrangian neighborhood L` of `
satisfying the following. Fix a Riemannian metric g or an almost complex structure J compatible with !.
Then, one can define a normal bundle for every Lagrangian submanifold. We choose any Lagrangian L`
containing ` such that for any x 2 `, .Tx��1x .Li //

? t TxL` for all i . Note that �x and Li appeared in
Definition 3.1.
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B

`

Fp

Fq

p

q

Figure 3: Black curves are part of a Lagrangian branched submanifold B, the black point is a
connected component ` of Locus.B/, the red and blue points are p; q 2B, and the red and blue
lines are Fp and Fq .

Then, by Example 3.5, there exists a symplectic embedding

iL` W N.L`/ ,!M:

Let U.`/D iL`.N.L`//.

Without loss of generality, we can choose a sufficiently small L` such that

iL`.N.L`/\T
�
x L`/\B¤¿ for all x 2 L`;

iL`.N.L`/\T
�
x L`/ t B for all x 2 L`;

U.`/\U.`0/D¿ if `¤ `0:

If p 2 B is “close” to the branch locus, ie there is a connected component ` of Locus.B/ such that
p 2B\U.`/, then there exists x 2L` such that p 2 iL`.N.L`/\T

�
x L`/. Let Fp WD iL`.N.L`/\T

�
x L`/.

Then Fp is a closed Lagrangian disk containing p.

By choosing a sufficiently small L`, for every p 2B\U.`/,

(3-2) Fp t B and @Fp \BD¿:

After possibly renaming U.`/, from now we assume that

U.`/D
[
p2L`

Fp:

If p 2B\U.`/, then there is a unique q 2 L` such that p 2 Fq . We define Fp WD Fq . Thus, for p 2B

which is close to Locus.B/, ie p 2 U.`/ for some connected component ` of Locus.B/, we can define a
fiber Fp at p.

Fibrations far from the branch locus If p 2B n
S
` U.`/, then there is a sector S of B containing p.

Since S is Lagrangian, there is an embedding iS WN.S/ ,!M . We can assume N.S/ is small enough that

Fq \ iS .N.S//� Fq
ı
D Fq n @Fq for any q 2B\U.`/;�

iS .N.S// n[U.`/
�
\
�
iS 0.N.S

0// n[U.`/
�
D¿ if S ¤ S 0:

Figure 4, bottom right, represents examples of N.S/.
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`

Fp

L.`/

U.`/ Fp is not transversal to B

.Fp nF
ı
p /\B¤¿ example of N.S/

Figure 4: Black curves are part of a Lagrangian branched submanifold and the black marked
points denote a connected component ` of Locus.B/. In the top left, L` is in red, and the fibers
Fp , for p 2B\U.`/, are in blue; the top right and bottom left are not allowed by (3-2); and in
the bottom right, the red and green boxes are examples of N.S/ and the dotted box is an example
of U.`/.

For any sector S , S n
S
` IntU.`/ is a Lagrangian submanifold with boundary. The boundary of

S n
S
` IntU.`/ is a union of S.`/ WD S \ @.U.`//. We fix a tubular neighborhood of S.`/, which

is contained in S n
S
` IntU.`/, and identify the tubular neighborhood with S.`/� Œ0; 1/. For convenience,

we will pretend that S.`/� Œ0; 1�� S and S.`/� f0g D S.`/.

If p 2 S n
S
` IntU.`/ does not lie in any S.`/� .0; 1/, then we set Fp WD iS .N.S/\T �p S/. See Figure 5,

top right.

Interpolation on S.`/� Œ0; 1� Let p 2 S.`/. Then F.p;0/ and F.p;1/ are already constructed. We will
construct F.p;t/ from F.p;0/ and F.p;1/. The idea is to understand F.p;0/ as a deformed F.p;1/. In order
to measure how much deformed F.p;0/ is from F.p;1/, we will construct a family of Lagrangian discs
B.p;t/ for all t 2 Œ0; 1�, which are parallel to F.p;1/. The family B.p;t/ is defined by setting

B.p;t/ WD iS .N.S/\T
�
.p;t/S/:

We note that B.p;t/ is parallel to B.p;1/ D F.p;1/ so that there is a natural bijection map between B.p;t/
and B.p;1/.
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U.`/

`

Fp for p … S.`/� .0; 1�

`

Fp for p 2 S.`/� .0; 1�

`

Figure 5: Black curves are part of a Lagrangian branched submanifold and marked points denote `;
in the top left, U.`/ is shaded blue, the vertical line segments are fibers. in the top right, the fiber
Fp for p … S.`/� .0; 1� is in green; and in the bottom, the fiber Fp for p 2 S.`/� .0; 1� is in red.

By applying the Lagrangian neighborhood theorem [16] to B.p;0/,

F.p;0/\ iS .N.S//D iB.p;0/.the graph of a closed section in T �B.p;0//:

Every closed section of T �B.p;0/ is an exact section because B.p;0/ is a disk. Thus, there is a function
f.p;0/ W B.p;0/!R such that

F.p;0/\ iS .N.S//D iB.p;0/.the graph of df.p;0//:

In other words, F.p;0/ is obtained by deformingB.p;0/. The deformation can be understood by using f.p;0/.

Similarly, we will construct F.p;t/ by deforming B.p;t/. In order to deform, we define a function
f.p;t/ W B.p;t/!R as

f.p;t/ W B.p;t/
��! B.p;0/

.1�t/f.p;0/
�������!R:

The first arrow comes from the bijection between them. Then we set

F.p;t/ WD iB.p;t/.the graph of df.p;t//:

A fibered neighborhood N.B/ is given by the union of fibers, ie N.B/ D
S
p2B Fp. Note that the

construction of N.B/ is not unique.
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3.3 Associated branched manifolds and the notion of “carried by”

We constructed a fibered neighborhood N.B/. In order to define what it means for a Lagrangian to be
carried by B, we introduce a projection map from N.B/ to an associated branched manifold B�.

Definition 3.6 Let B be a Lagrangian branched submanifold of M and let N.B/ be a fibered neighbor-
hood of B. Then, the associated branched submanifold B� is defined by setting

B� WDN.B/=�; x � y if there exists an Fp such that x; y 2 Fp:

Let � WN.B/!B� denote the quotient map. We would like to remark that �jB is not bijective, but B

and B� are equivalent as branched manifolds. We explain this with more detail in Remark 3.8.

We note that B� is not contained in M . However, since B� is a branched manifold, we can define the
branch locus and sectors of B� as follows:

Definition 3.7 (1) A sector of B� is a connected component of

fp 2B� j p has a neighborhood which is homeomorphic to Rng:

(2) A branch locus of B� is the complement of all the sectors.

Remark 3.8 (1) Fibered neighborhoods N.B/ of B are not unique. However, if N.B/ is small enough,
then B and B� are equivalent as branched manifolds. For the equivalence between branched manifolds,
we refer to Williams [17]. One can easily check their equivalence by using the Darboux chart that
appeared in Definition 3.1. Thus, B� is unique as a branched manifold under the assumption that N.B/
is small enough.

In the rest of this paper, when it comes to a Lagrangian branched submanifold B, we will consider a triple
.B; N.B/;B�/ with an arbitrary choice of N.B/. Moreover, for any triple .B; N.B/;B�/, the projection
map is denoted by � for convenience.

(2) A fibered neighborhood N.B/ is a union of fibers, ie N.B/D
S
p2B Fp. In the equation, B is an

index set. However, there is a possibility of having two distinct points p; q 2B such that Fp D Fq . From
now on, we will use B� as an index set and, by abuse of notation, Fx denotes ��1.x/ for all x 2B�.

(3) Let x be a branch point of B�. Then there are sectors S0; S1; : : : ; Sl of B� for some l � 2 such that

x 2 S i for every i D 0; 1; : : : ; l;

Fx \��1.S0/D Fx and Fx \��1.Si /� F ıx D Fx n @Fx for every i D 1; 2; : : : ; l:

Figure 6, right, represents this.

If a Lagrangian submanifold L (resp. Lagrangian branched submanifold L) is contained in N.B/, there
is a restriction of � to L (resp. L). For convenience, we will simply use � instead of �jL W L! B�

(resp. �jL W L!B�).
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N.B/

x

S0

S2

S1

B�

� #

� WN.B/!B� Fx

��1.S2/\Fx

��1.S1/\Fx

Fx

Figure 6: The left represents � W N.B/ ! B�. In N.B/, the blue, red, and green represent
��1.S0/, ��1.S1/, and ��1.S2/, where Si is the corresponding sector of B�. The right represents
Fx where x is in the branch locus of B� to the left.

Definition 3.9 Let L be a Lagrangian submanifold (resp. L be a Lagrangian branched submanifold)
of N.B/.

(1) A point x of L (resp. L) is a regular point of � if L t F�.x/ (resp. L t F�.x/) at x.

(2) A point x of L (resp. L) is a singular point of � if x is not regular point of � . Moreover, y 2B�

is a singular value of � if there is a singular point x of � such that �.x/D y.

(3) L is minimally singular with respect to B if � W L!B� has no singular value on the branch locus
of B� and jFx \Lj D jFy \Lj, for any nonsingular value x and y which lie in the same sector
of B�, where j � j means the cardinality of a set.

We recall that by definition, branched manifolds have tangent spaces even along the branch locus, so
Definition 3.9 makes sense.

Definition 3.10 Let B and L be branched Lagrangian submanifolds.

(1) L is strongly carried by B if L (resp. L) is Hamiltonian isotopic to L0 such that L0 �N.B/ and
� W L0!B� has no singular value.
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(2) L is weakly carried by B if L is Hamiltonian isotopic to L0 such that L0 �N.B/, L0 is minimally
singular, and � W L0!B� has countably many singular values.

We would like to remark that Lagrangian submanifolds are branched Lagrangian submanifold with empty
branch locus. In the rest of this paper, if L is weakly carried by B, then we will assume that L�N.B/
and L is minimally singular with respect to B.

Note that the notion of “carried by” used by Thurston in [14] is our notion of “strongly carried by”. For
the case of surfaces, singularities of � can be easily resolved. However, for the case of higher-dimensional
symplectic manifolds, there exists singularities which cannot be resolved. Thus, we defined the notion of
“weakly carried by”. We will give more detail in Section 3.4 with examples.

Thurston showed that for a pseudo-Anosov surface automorphism  W S ��! S , there is a 1–dimensional
branched submanifold � which is called a train track such that  .�/ is strongly carried by � . Our higher-
dimensional generalization is slightly weaker, ie for some symplectic automorphism W .M;!/ ��! .M;!/,
we construct a Lagrangian branched submanifold B such that  .B / is weakly carried by B . In
other words, we allow nontransversality at countably many point p 2 B . However, we allow only
one type of nontransversality. In the rest of the present subsection, we will describe the unique type of
nontransversality.

Definition 3.11 Let L be weakly carried by B. A singular component V of � W L!B is a connected
component of the set of all singular points of � .

Example 3.12 Let M be the symplectic manifold T �Rn 'R2n equipped with the canonical symplectic
form. The zero section Z WD Rn � 0 � R2n is a Lagrangian branched submanifold. The fibered
neighborhood N.Z/ is M with fibers Fp WD T �p Rn for all p 2Rn D Z. Then, a Lagrangian submanifold

L� WD f.tx; x/ 2Rn �Rn j t 2R; x 2 Sn�1 �Rng

is weakly carried by Z, and �� has only one singular component

V� WD f.0; x/ j x 2 S
n�1
g;

where �� is the projection map.

In order to understand the singularity, we would like to restrict �� on L�. By definition L� is R�Sn�1,
and the restriction is the map described as follows. First, the map collapses the center sphere f0g �Sn�1

to a point and get two cones of Sn�1 glued at the vertex. Then, second, the map projects each cone of
Sn�1 to a disk Dn. Figure 7 describes the case of nD 2.

Definition 3.13 A singular component V of � W L!B is of real blow-up type if there exists an open
neighborhood U of V and a symplectomorphism � W U ��!R2n such that �.U \B/D Z; �.V /D V�,
and ��1 ı�� ı� D � , where Z, V�, and �� are defined in Example 3.12.
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L�

V�

��

Figure 7: In the upper left, the Lagrangian L� is shaded in black and the set of singular points V�
is shaded in red; the vertical arrow means the projection map ��. In the lower left, the disk is a
target of ��; the red marked point is the singular value. In the middle right, the picture describes
two cones glued at the vertex(red marked point), which is obtained by collapsing V�.

Definition 3.14 A Lagrangian submanifold L (resp. Lagrangian branched submanifold L) is carried by a
Lagrangian branched submanifold B if L (resp. L) is weakly carried by B and every singular component
of � is a singular component of real blow-up type.

3.4 Examples of “weakly carried by”

In Section 3.4, we will give three examples of Lagrangians which are weakly carried by Lagrangian
branched submanifolds. The first example is the lowest dimensional example, ie a 1–dimensional
Lagrangian in a 2–dimensional symplectic manifold. The second example is a Lagrangian torus in T �S2.
We will introduce these two examples in order to help the reader’s understanding on the notion of “weakly
carried by”. The third example is a Lagrangian sphere in an A3–surface singularity. With the example, we
will explain why singular components occur naturally by iterating Dehn twists, which we will consider in
the present paper.

Algebraic & Geometric Topology, Volume 24 (2024)



Towards a higher-dimensional construction of stable/unstable Lagrangian laminations 671

T �S1

Z

B

Figure 8: T �S1 together with the zero section B (black) and a Lagrangian Z (red) Hamiltonian
isotopic to B.

An example in T �S 1 We consider the cotangent bundle of S1. Let B denote the zero section of T �S1.
Figure 8 describes T �S1 and B. Let Z denote the red curve in Figure 8. Then Z is a Lagrangian which
is Hamiltonian isotopic to B.

By restricting a cotangent bundle map � on Z, Z is weakly carried by B. However, by Hamiltonian
isotoping Z, one obtains B and one can resolve the singularities of � W Z! B. In other words, Z is
strongly carried by B.

In [14], Thurston proved that on a surface, if a Lagrangian L is carried by a branched submanifold B,
then by isotoping L, one can resolve the singularities. Thus, Thurston used the notion of “carried by”
without defining the notion of “weakly carried by” and his notion of “carried by” is the same to the notion
of “strongly carried by”.

Remark 3.15 Thurston resolved the singularities by isotoping, not Hamiltonian isotoping. Thus, for a
1–dimensional Lagrangian L which is weakly carried by a branched submanifold B, it is possible that
one cannot resolve the singularities of � W L!B, ie L is not strongly carried by. However, we do not
discuss the existence of such examples in the current paper.

A torus in T �S 2 We will introduce an example of a torus T in T �S2 such that T is weakly carried by,
but not strongly carried by, the zero section B. In order to describe the example, let assume that

T �S2 D

�
.x1; x2; x3; y1; y2; y3/ 2R6

ˇ̌̌ 3X
iD1

x2i D 1;

3X
iD1

xiyi D 0

�
�R6 ' T �R3:

Then it is easy to check that !jT �S2 is a symplectic form on T �S2, where ! D
P3
iD1 dxi ^ dyi .

Let T be given by

T D
˚�

cos �.0; 0; 1/C sin �.cos�; sin�; 0/;�sin �.0; 0; 1/C cos �.cos�; sin�; 0/
�
j �; � 2R

	
:
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Then it is easy to check that T is a Lagrangian submanifold of T �S2. By restricting the cotangent bundle
map � on T , T is weakly carried by B. However, L cannot be strongly carried by B. If L is strongly
carried by B, then L should be a covering space of B. However, since B is S2, a torus T cannot be a
covering space.

This example shows the reason why we need to define the notion of “weakly carried by” in a symplectic
manifold of dimension greater than or equal to 4.

Singularity arising from iterating a Dehn twist We will give an exact Lagrangian sphere in A3–surface
singularity. By definition, A3–surface singularity M is symplectically identified with

M WD f.x; y; z/ j x2Cy2C z4 D 1g � .C3; !std/:

We will use well-known properties of M without proof. For details, we refer the reader to Wu [18].

The first property is that M is symplectically equivalent to the plumbing of two copies of T �S2 at one
point, ie

M ' P.˛; ˇ/:

We defined P.˛; ˇ/ in Section 2.1. The second property of M is that M is equipped with a Weinstein
Lefschetz fibration f .x; y; z/D z. The Lefschetz fibration has three singular points. Fibers at regular
points are T �S1.

The Lagrangian sphere which we will consider is �2.ˇ/, where � is a Dehn twist along ˛. We will
encode �2.ˇ/ on the base of the Lefschetz fibration. Figure 9 describes the base of the Lefschetz fibration
f WM !C. Then ˛ (resp. ˇ) is a union of vanishing cycles over a curve connecting two singular points
on the base, which is shaded red (resp. blue) in Figure 9, top. Similarly, �2.ˇ/ is a union of vanishing
cycles over a curve shaded green in Figure 9, top.

Let B be the union of vanishing cycles over a curve shaded red in Figure 9, bottom. Then �2.ˇ/ is carried
by B. The projection map from �2.ˇ/ to B could be drawn as arrows on the base of f ; see Figure 9,
bottom.

One can observe that, in Figure 9, bottom, there is a arrow from a regular point x to a singular point y.
On �2.ˇ/, the point x corresponds to the vanishing cycle on f �1.x/. The vanishing cycle is projected to
a point on f �1.y/ by � W �2.ˇ/!B. Moreover, one can observe that the singular component is of real
blow-up type. Thus, �2.ˇ/ is carried by B.

Remark 3.16 The last example shows that a singular component could occur when we iterate a Dehn
twist. We will consider the natural occurrence in later sections.

3.5 The generalized Penner construction

In this subsection, we give a higher-dimensional generalization of Penner construction [10] of pseudo-
Anosov surface automorphisms. The generalization replaces Dehn twists by generalized Dehn twists
along Lagrangian spheres.
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base of the Lefschetz fibration

f .B/

Figure 9: Top: base of the Lefschetz fibration f ; the red, blue and green curves are images of ˛,
ˇ and �2.ˇ/. Bottom: the red curves are the image of B under f and the arrows are describing
the projection maps from �2.ˇ/ to B.

Generalized Penner construction Let M be a symplectic manifold. A symplectic automorphism
 WM ��!M is of generalized Penner type if there are two collections,

AD f˛1; : : : ; ˛mg; B D fˇ1; : : : ; ˇlg;

of Lagrangian spheres satisfying

˛i \ j̨ D¿; ˇi \ ǰ D¿ for all i ¤ j;

˛i t ǰ for all i; j

such that  is a product of positive powers of Dehn twists �i along ˛i and negative powers of Dehn twists
�j along ǰ , subject to the condition that every sphere appear in the product.

A Lagrangian sphere ˛i (resp. ǰ ) is called a positive (resp. negative) sphere since only positive powers
of �i (resp. negative powers of �j ) appear in  .

Remark 3.17 (1) In Theorems 1.3 and 1.5, we can assume that the symplectic manifold M is a
plumbing space. Every �i (resp. �j ) is supported on a neighborhood of ˛i (resp. ǰ ), which is denoted
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˛

ˇ ˇ

˛
p p

DCp D�p

.ˇ #p ˛/[˛ .ˇ #p ˛/[ˇ

Figure 10: The blue curves represent DCp in the left-hand picture and D�p in the right-hand
picture; the red curves represent Np in both.

by T �˛i (resp. T � ǰ ). Thus,  is supported on the union of T �˛i and T � ǰ . By the transversality
condition ˛i t ǰ , we can identify the union with a plumbing space

P D P.˛1; : : : ; ˛m; ˇ1; : : : ; ˇl/:

Thus, it suffices to prove Theorems 1.3 and 1.5 on the plumbing space P , which we take to be connected.

(2) In [10], the Penner construction required that A and B fill the surface S ; ie the complement of
A[B is a union of disks and annuli, one of whose boundary components is a component of @S . In
the current paper, we do not require the analogue of the filling condition since we only construct an
invariant Lagrangian branched submanifold and an invariant Lagrangian lamination, not an invariant
singular foliation on all of M .

In the rest of this subsection, we define a set of Lagrangian branched submanifolds in a plumbing space
P.˛1; : : : ; ˛m; ˇ1; : : : ; ˇl/. We start from the simplest plumbing space, having one positive and one
negative sphere intersecting at only one point.

Example 3.18 Let ˛ and ˇ be n–dimensional spheres and letM be a plumbing P.˛; ˇ/which is plumbed
at only one point p. Let ˇ#p˛ be the Lagrangian surgery of ˛ and ˇ at p such that ˇ#p˛'�˛.ˇ/'��1ˇ .˛/.
See Figure 10, which represents the case nD 1. The cross-shape is the plumbing space P.˛; ˇ/, where ˛
is the horizontal line and ˇ is the vertical line.

The neck Np at p connecting ˛ and ˇ is the closure of .ˇ #p ˛/� .˛[ˇ/. In Figure 10, Np is drawn in
red. The positive disk DCp at p is the closure of ˛� .ˇ #p ˛/ and the negative disk D�p at p is the closure
of ˇ� .ˇ #p ˛/. The disks D˙p are drawn in blue in Figure 10. Then, by attaching DCp or D�p to ˇ #p ˛,
we obtain Lagrangian branched submanifolds .ˇ #p ˛/[˛ and .ˇ #p ˛/[ˇ.

On a general plumbing space M D P.˛1; : : : ; ˛m; ˇ1; : : : ; ˇl/ with positive spheres ˛i and negative
spheres ǰ , we similarly construct Lagrangian branched submanifolds. More precisely, given a plumbing
point p, Np , DCp and D�p are the closures of . ǰ #p ˛i /� .˛i [ ǰ /, ˛i � . ǰ #p ˛i / and ǰ � . ǰ #p ˛i /,
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respectively. In order to construct a Lagrangian branched submanifold B, let Dp.B/ be either DCp or D�p .
In other words, to construct B, one choose either DCp or D�p for each plumbing points p. Then we
construct a Lagrangian branched submanifold B by setting

(3-3) B WD
[
i

�
˛i �

[
p2˛i

DCp

�
[

[
j

�
ǰ �

[
p2 ǰ

D�p

�
[

[
p

Np [
[
p

Dp.B/:

There are 2N possible choices of B, where N is the number of plumbing points. Let B be the set of all
2N Lagrangian branched submanifolds constructed above.

3.6 Proof of Theorem 1.3

In this subsection, letM DP.˛1; : : : ; ˛m; ˇ1; : : : ; ˇl/, let �i (resp. �j ) be a Dehn twist along ˛i (resp. ǰ ),
and let  be of generalized Penner type.

In the rest of the paper, we assume that every Dehn twist, �i and �j , satisfies that

(1) �i (resp. �j ) is supported on a small neighborhood T �˛i (resp. T � ǰ ) of ˛i (resp. ǰ );

(2) �i (resp. �j ) agrees with the antipodal map on ˛i (resp. ǰ ).

We define

(3-4)

Ap WD �i .D
C
p /; Bp WD �

�1
j .D�p / if p 2 ˛i \ ǰ ;

˛0i WD ˛i �
[
p2˛i

.DCp [Ap/; ˇ0j WD ǰ �

[
p2 ǰ

.D�p [Bp/:

In words, Ap (resp. Bp) is a neighborhood of an antipodal point of p in ˛i (resp. ǰ ). We are assuming
that D˙p , Ap and Bp are sufficiently small that they are disjoint to each other.

Recall that B is the set of Lagrangian branched submanifolds defined in Section 3.5; see the last sentence
of that subsection.

Lemma 3.19 For all k, there exists a function F�k W B! B such that �k.B/ is carried by F�k .B/ for all
B 2 B. Similarly, there is a function F��1

j
W B! B for all j such that ��1j .B/ is carried by F��1

j
.B/.

Proof In this proof, �k is given by (2-2) and Q� WT �Sn ��!T �Sn defined in Section 2.2; ie �kD�ı Q�ı��1

in a neighborhood of ˛k , where � is an identification of T �Sn and a neighborhood of ˛k .

Given B 2 B, B admits the decomposition

(3-5) BD
[
i

˛0i [
[
j

ˇ0j [
[
p

Np [
[
p

Ap [
[
p

Bp [
[
p

Dp.B/;

where Dp.B/ is either DCp or D�p . This follows from (3-3) and (3-4).

We prove the first statement for �k; the proof for ��1j is analogous. Our strategy is to apply �k to ˛0i , ˇ
0
j ,

Np, Ap, Bp, and D˙p . We claim:

(i) �k.˛
0
i /D ˛

0
i and �k.ˇ0j /D ˇ

0
j , and they are strongly carried by ˛0i and ˇ0j .
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(ii) If p … ˛k , then �k.Np/ D Np, �k.D˙p / D D
˙
p , �k.Ap/ D Ap and �k.Bp/ D Bp, and they are

strongly carried by Np, D˙p , Ap and Bp.

(iii) If p 2 ˛k , then �k.DCp /D Ap , �k.Ap/DDCp and �k.Bp/D Bp , and they are strongly carried by
Ap, DCp and Bp.

(iv) If p 2 ˛k , then �k.D�p / and �k.Np/ are obtained by spinning with respect to p. Moreover, �k.D�p /
is strongly carried by Np [ .˛k �DCp / and �k.Np/ is carried by Np [ .˛k �DCp /.

By (3-5) and (i)–(iv), �k.B/ is carried by B0 such that

(3-6) B0 D
[
i

˛0i [
[
j

ˇ0j [
[
p

Np [
[
p

Ap [
[
p

Bp [
[
p

Dp.B
0/;

where DP .B0/ is Dp.B/ if p … ˛k and DCp if p 2 ˛k . Then F�k W B! B is defined by F�k .B/DB0.

For (i), since �k agrees with the antipodal map on ˛k , �k.˛0k/D ˛
0
k

and �k.˛0k/ is strongly carried by ˛0
k

.
Moreover, since �k is supported on T �˛k , ˛0i does not intersect the support of �k for all i ¤ k. Thus,
�k.˛

0
i / agrees with ˛0i and �k.˛0i / is strongly carried by itself. The same proof applies to �k.ˇ0j /.

Statements (ii) and (iii) are proved in the same way.

For (iv), we compute �k.D�p / and �k.Np/ by spinning with respect to p and �. We assume

�
�
..1; 0n/; 0nC1/

�
D p

without loss of generality. Using the notation from Section 2,D�p andNp are contained in
S
y2Sn�1 �.Wy/.

Thus,

�k.D
�
p /D

[
y2Sn�1

.� ı Q� ı��1/.D�p \�.Wy//(3-7)

D

[
y2Sn�1

�
�
�
Q� jWy .�

�1.D�p /\Wy/
��
D

[
y2Sn�1

�k.D
�
p /\�.Wy/;

�k.Np/D
[

y2Sn�1

.� ı Q� ı��1/.Np \�.Wy//(3-8)

D

[
y2Sn�1

�
�
Q� jWy .�

�1.Np/\Wy/
�
D

[
y2Sn�1

�k.Np/\�.Wy/:

The restriction Q� jWy is a Dehn twist on Wy ' T �S1 along the zero section. Thus, we obtain Figure 11
which represents intersections �.Wy/ \D�p , �.Wy/ \ Np, �.Wy/ \ �k.D�p /, and �.Wy/ \ �k.Np/.
Equation (3-8) and Figure 11 imply that �k.Np/ is carried by Np[.˛k�DCp / This is because in eachWy ,
the vertical projection has no critical values. Thus, if there is a singular value, then the singular value is
created when one takes the union in (3-8). One can easily check that �k.p/ is the only singular value
when one takes the union. Similarly, �k.D�p / is strongly carried by Np [ .˛k �DCp /.

Then (i)–(iv) and (3-5) prove that �k.B/ is carried by F�k .B/.
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�k.p/

Np(red), D�p (blue)

p
�k.p/

p p
�k.p/

�k.Np/ �k.D
�
p /

Figure 11: In the left picture, the blue curve represents D�p and the red curve represents Np;
in the middle picture, the red curve represents �k.Np/; and in the right picture, the blue curve
represents �k.D�p /.

Lemma 3.20 If L is a Lagrangian submanifold which is carried (resp. weakly carried ) by B 2 B, then
�k.L/ is carried (resp. weakly carried ) by F�k .B/. The case of ��1j is analogous.

Proof We can assume that L is contained in an arbitrary small neighborhood of B. Then we apply a Dehn
twist �k as we did in the proof of Lemma 3.19. The details are similar to the proof of Lemma 3.19.

Proof of Theorem 1.3 Let  WM ��!M be a symplectic automorphism of generalized Penner type.
Then we can write  D ı1 ı� � �ııl , where ık is a Dehn twist �i or ��1j . By Lemma 3.19, we have specific
functions F�i and F��1

j
acting on B. We then define F D Fı1 ı � � � ıFıl W B! B.

We claim that F is a constant map, ie there is a unique B 2 B such that F .B/DB for all B 2 B,
which we define as follows: in (3-3), for p 2 ˛i \ ǰ , we set Dp.B /DD

C
p if the last �i in  appears

later than the last ��1j , and Dp.B /DD
�
p otherwise. Note that every Dehn twist �i and ��1j appears

in  ; thus B is well defined. By (3-6), F .B/DB for all B2B. Lemma 3.20 completes the proof.

Remark 3.21 (1) A singular value of � W  m.L/!B� can be moved by isotoping  m.L/.

(2) Every singular value of � W  m.B /!B� lies near �.p/, �.�i .p//, or �.��1j .p// by isotoping,
where p is a plumbing point.

4 Encoding a Lagrangian on a Lagrangian branched submanifold

In the previous section, we generalized the notion of “carried by” for higher-dimensional symplectic
manifolds. It is well known that on a surface, if a curve is carried by a train track, then one can encode
the isotopy class of curve on the train track with an extra data. The extra data is called weight. We briefly
review the notion of weight in Section 4.1, then generalize this for higher-dimensional case in Section 4.

4.1 Weights on a train track

We will briefly review the notion of weights on a train track with a simple example, and how one
can construct a stable lamination of a surface automorphism of generalized Penner type from them in
Section 4.1. We will introduce some well-known facts without proofs. For more detail, we refer the
reader to Penner and Harer [11], or Farb and Margalit [5].
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4 4

2

2

2

Figure 12: Top left: the cross shape is a surface S , the black graph is a Lagrangian branched
submanifold B , and the red curves are carried by B . Top right: the numbers are the weights
corresponding to the red curve in the diagram to the left. Bottom: the red curves are parallel
copies of each edges and the blue dotted curves are the unique way to connecting the parallel
copies.

At the end of Section 4.1, we will explain why the construction on surfaces does not work on the cases of
a higher-dimensional symplectic manifold. Then, we will give a detailed organization of Section 4.

The notion of weights Let S be a surface obtained by plumbing two copies of T �S1 at one point.
Two zero sections of each copies of T �S1 will be denoted by ˛ and ˇ as we did in previous sections.
Similarly, let � and � denote Dehn twists along ˛ and ˇ respectively. We will fix a surface automorphism
 WD � ı ��1. Then, by Section 3, there is a branched submanifold B such that if a curve C � S is
carried by B , then  .C/ is also carried by B . Moreover, as mentioned in Section 3.4, one can assume
that there is no singular value of � W C !B by isotoping. Figure 12, top left, describes the surface S
and B together with an example of a curve C which is carried by B .

Weights on a train track are collection of nonnegative numbers assigned on each edges of the train track. If
a curve C is carried by a train track B, then C gives weights on B by assigning the number of connected
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components of ��1.e/ for each edge e of B . Figure 12, top right, is an example of weights, which are
induced from the curve C drawn in Figure 12, top left.

Conversely, one can recover the isotopy class of a curve C from a train track B which carries C and
the weights induced from C . In order to recover, one can considers parallel copies of each edges. The
numbers of copies are the weights on each edges. Then, it is known that there is a unique way to connect
each copies to construct an isotopy class of the curve C . Figure 12, bottom, is the example of the
recovering process.

Linear algebra on weights By Theorem 1.3, for a surface automorphism  of generalized Penner type,
if a curve C is carried by a train track B , then  .C/ is carried by B . Since C and  .C/ are carried
by B , they induce weights on B . Moreover, it is well known that the weights for  .C/ is obtained
from the weights for C by doing linear algebra. We will review this with the example which we used
above, ie S is the plumbing of T �˛ and T �ˇ and  D � ı ��1.

Let C be a curve carried by B such that the induced weights on B are a, b and c, as drawn in Figure 13,
top left. For simplicity, we write the weight for C in a vector

EwC D

0@ab
c

1A :
Figure 13, top right and bottom left, are �.B / and  .B /. One can observe that  .B / is carried by
B and induces weights 3bC 2c, 2bC c and a on B . Thus, the weights for C and  .C/ satisfy

(4-1) Ew .C/ D

0@0 3 20 2 1

1 0 0

1A � EwC :
Remark 4.1 In (4-1), a 3� 3 matrix appears. One can replace this matrix with a 2� 2 matrix. Since the
weight assigned on the blue edge in Figure 13 should be the same to the sum of weights assigned on the
red and black edges in Figure 13. This condition is called the switch condition. For the detail, see Farb
and Margalit [5].

Stable lamination of  For a surface automorphism  of generalized Penner type, it is well known
that the stable lamination of  is easily constructed from B and the linear algebra which we did above.
For a rigorous treatment, we should define the notion of measured lamination and should explain how a
measured lamination L can be encoded onto a pair .B; EwL/ of a train track B and weights EwL. However,
for simplicity, we skip this excepts that the weight vector EwL is an eigenvector of A corresponding to
an eigenvalue � > 1, where A is the matrix appearing in (4-1).

For more details including the notion of measured laminations and the existence of an eigenvalue � > 1
of A , we refer the reader to Farb and Margalit [5].
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a

c

b

b

a c

2bC c

3bC 2c a

Figure 13: Top left: the Lagrangian branched submanifold B has three edges shaded blue, red
and black, and a, b and c are weights on the edges, respectively. Top right describes ��1.B /;
blue, red and black edges are assigned the same weights a, b and c. Bottom left describes
�.��1.B // D  .B /; blue, red and black edges are assigned the same weights a, b and c.
Bottom right describes the projection of  .B / onto B , and one finds new weights on each
edge of B .

A difficulty on higher-dimensional symplectic manifolds For a surface automorphism  of generalized
Penner type, one can construct the stable lamination of  by doing some linear algebra on weights on a
train track B . This is because, in the case of a surface, the notion of carried by is the notion of strongly
carried by, ie there is no singular component. However, in the case of a higher-dimensional symplectic
manifold, the construction of laminations on surfaces does not work, because of singularities.

In Section 4.2, we will decompose B� into a union of disks. The disks are of two types, one with
singularities and one without singularities. Then, in Section 4.3, we will generalize the notion of weights.
Since the generalization should have information on singularities, it will be defined by using the disks
with singularities. In Section 5.1, we will generalize the linear algebra on weights. In Section 6.2, we
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will construct a stable Lagrangian lamination on a disc with singularities, and in Section 6.3, we will
construct on a disc without singularities.

4.2 Singular and regular disks

As mentioned in the previous subsection, the construction of laminations on surfaces does not work
because of singularities. In Section 4.2, for a symplectic automorphism  of generalized Penner type,
we decompose B into a union of disks. The disks are classified into two types, with and without
singularities.

Definition 4.2 Let assume that there is a pair . WM ��!M;B / of a symplectic automorphism  and
a Lagrangian branched submanifold B such that  n.B / is carried by B for all n 2N. Let B� be the
associated branched manifold of B . Then the triple . ;B ;B

�
 / admits a decomposition into singular

and regular discs if B� can be decomposed into the union of a finite number of disks Si 'Dn, which
are called singular disks, and Rj 'Dn, which are called regular disks, ie

(4-2) B� D
[
i

Si [
[
j

Rj

such that

(1) each singular disk Si is a closed disk contained in a closure of a sector of B�;

(2) Si \Sj D¿ for any i ¤ j ;

(3) every singular value of � W m.B /!B after weakly fibered isotopy lies in
S
i S
ı
i for allm2N,

where Sıi is the interior of Si ;

(4) each regular disk Rj is a closed disk contained in a closure of a sector minus
S
i S
ı
i ;

(5) Si and Rj (resp. Ri and Rj for i ¤ j ) meet only along their boundaries.

For convenience, we simply say that B� , instead of a triple . ;B ;B
�
 /, admits a decomposition into

singular and regular discs.

Definition 4.3 Let a triple . ;B ;B
�
 / admit a decomposition into singular and regular discs. A

Lagrangian L which is carried by B is compatible with the decomposition if L is Hamiltonian isotopic
to L0 such that every singular value of � W L0!B lies on a singular disc.

Remark 4.4 In Section 3, we used a decomposition of B with notation D˙p , Ap , Bp and so on. However,
the decomposition introduced in Definition 4.3 is a decomposition of the associated branched manifold B�,
not B.

In the rest of Section 4.2, we will introduce and use a specific decomposition of B� for  of generalized
Penner type. Since the specific decomposition of B� , together with the decomposition of B in (3-5), is
likely to confuse the reader, we remark that here.
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If B� admits a decomposition into singular and regular discs, then one obtains a decomposition ofN.B /

as
N.B /D

[
i

��1.Si /[
[
j

��1.Rj /:

Remark 4.5 In Section 4.3 (resp. Section 6.3), we will construct a Lagrangian lamination on ��1.Sıi /
(resp. ��1.Rıj /) which is the closure of ��1.Sıi /, not on ��1.Si / (resp. � ��1.Rj /). This is because
��1.Si / (resp. ��1.Rj /) is not a (closed) submanifold of M if Si (resp. Rj ) intersects the branch locus
of B�.

Figure 6 is an example. If S1 in Figure 6 is a singular disk, then ��1.S1/ is the union of the red box in
Figure 6, left, and Fx .

Decomposition of B�
 

for of generalized Penner type Let us assume that a symplectic automorphism
 WM ��!M is of generalized Penner type. Then, in Section 3, we constructed a Lagrangian branched
submanifold B . We will now give a specific decomposition of B� into singular and regular discs, which
we will call the standard decomposition of B� .

By Remark 3.21, after weakly fiber isotoping, every singular value of � W  m.B /! B� lies in the
interior of Sp.B / or S˙p , where Sp.B / WD �.Dp.B //, SCp WD �.Ap/ and S�p WD �.BP /. We note
that as the notation suggests, Sp.B/ depends on B, but S˙p does not. In the specific decomposition,
Sp.B / and S˙p are singular disks of B� and there is no other singular discs.

Remark 4.6 As mentioned in Remark 4.4, Sp.B / and S˙p are subsets of B� , not B . However, in
the rest of the current paper, if there is no chance of misunderstanding, we will abuse notation and will
identify the singular disks with Dp.B /, Ap and Bp. This is for notational convenience.

We will divide the complement of singular disks from B� , ie

(4-3) B� n

�[
p

Sp.B /t
[
p

SCp t
[
p

S�p

�
;

into regular disks. In order to do this, we cut out a symplectic submanifold W 2n�2 �M 2n, which is
defined as follows: for each ˛i (resp. ǰ ), there is an equator C˛i (resp. C

ǰ
) ' Sn�1 such that

(1) for any plumbing point p 2 ˛i (resp. ǰ ), p lies on C˛i (resp. C
ǰ

);

(2) if p 2 ˛i \ ǰ , then T �C˛i � T
�C

ǰ
near p.

Note that the equators on Lagrangian spheres ˛i and ǰ are defined using identifications �˛i W ˛i
��! Sn

and �
ǰ
W ǰ

��! Sn. Thus, by choosing proper identification �˛i and �
ǰ

, we can assume the existence
of C˛i and C

ǰ
. Then

W WD
[
i

T �C˛i [
[
j

T �C
ǰ

is a .2n�2/–dimensional symplectic submanifold of M .
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B W

C˛

Cˇ

C˛

Cˇ

Figure 14: Left: the black curves represent B and the red dotted circles are C˛ (left) and Cˇ
(right). The blue shaded regions are singular disks. Right: W as a symplectic submanifold, black
curves are W \B , red dotted lines are C˛ (horizontal) and Cˇ (vertical), blue shaded regions
are intersections of W and singular disks.

We cut (4-3) along �.W /. The components of the complement ofW are the regular discsRj in the specific
decomposition of B . Each Rk is a manifold with corners, where the corners are at Rk \�.W /\Sl .
Then the proof of Theorem 1.3 shows that this decomposition of B� is a decomposition into singular and
regular discs. More precisely, there are two types of singularities of � W  m.B /! B , one coming
from a singularity of  m�1.B / and the other occurring when one applies  . The proof of Theorem 1.3
shows two things; first,  sends a singular value of  m�1.B / onto a singular disk, and second, a new
born singular value lies on a singular disk.

Remark 4.7 (1) If B 1 DB 2 , then it is easy to check that the standard decomposition with respect
to  i are the same.

(2) In Section 3.5, we defined a set B of Lagrangian branched submanifolds in M . For all B 2 B, one
can find a symplectic automorphism  such that BDB . Together with the above argument, for
all B 2 B, B� admits the standard decomposition.

Example 4.8 LetM be the plumbing of T �˛ and T �ˇ at one point p, where ˛; ˇ'S2. Let  D � ı��1

where � (resp. ˇ) is a Dehn twist along ˛ (resp. ˇ). Then B D .ˇ #p ˛/[˛ and . ;B ;B
�
 / admits

the standard decomposition.

Figure 14, left, is a schematic picture of B . The regions shaded blue are singular disks of the standard
decomposition. The red dotted circles are C˛ and Cˇ . Figure 14, right, is the symplectic submanifold W
of codimension 2.

Remark 4.9 For a given symplectic manifold M and a given triple . ;B ;B
�
 /, it is natural to ask

which Lagrangians L are compatible with the standard decomposition of B� . One can easily check that
if L is one of zero sections ˛i or ǰ , or if L is obtained by applying a series of Dehn twist to one of zero
sections, then L is compatible with the standard decomposition. See Remark 3.17 for the notation ˛i
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and ǰ and see the proof of Lemma 5.1. Also we note that by Wu [18], if M is an An–surface singularity,
then every exact Lagrangian L is compatible with the standard decomposition of B� if L is carried
by B . In the current paper, we simply assume that a Lagrangian M is compatible with the standard
decomposition for convenience.

4.3 Braids

In Section 4.3, we will generalize the notion of weights on higher-dimensional symplectic manifolds. We
will assume that a given triple . ;B ;B

�
 / admits a decomposition into singular and regular disks.

Let S be a singular disk in B� and let Sı be the interior of S . Then ��1.Sı/D
S
p2Sı Fp is symplec-

tomorphic to DT �.Dn/ı. Thus, the closure ��1.Sı/ is symplectomorphic to DT �Dn and there is a
natural symplectomorphism between them. The boundary @��1.Sı/ is a Dn–bundle over @S ' Sn�1

and the natural symplectomorphism induces ' W @��1.Sı/ ��! Sn�1 �Dn.

Definition 4.10 D.S/ (resp. D.@S/) is the Dn–bundle ��1.Sı/ (resp. @��1.Sı/) over Si (resp. @S ).

Definition 4.10 is for notational convenience.

Remark 4.11 Since D.S/ is symplectomorphic to a disk cotangent bundle of Dn, coordinate charts on
the base will induce a natural identification between D.S/ and Dn �Dn. By restricting the identification
on the boundary, D.@S/ is identified with Sn�1 �Dn.

If L is a Lagrangian submanifold which is carried by B and if L is compatible with the decomposition
of B� , then, for all p 2 @S , '.L\Fp/ is a finite collection of isolated points in Fp ' Dn; recall that
� W L ! B� has no singular value on @S . Thus, '.L \D.@S// can be identified with a map from
@S ' Sn�1 to the configuration space Confl.Dn/ of l points on Dn where l D l.L; S/, ie a braid. Since
L is Lagrangian, .'�1/�! vanishes on �.L\D.@S//.

From now on, we will define the braids on the boundary of a singular disk S . Let f W Sn�1!Confl.Dn/
for some l . In other words, there are maps

f1; : : : ; fl W S
n�1
!Dn

such that f .p/D ff1.p/; : : : ; fl.p/g with fi .p/¤ fj .p/ for all i ¤ j . We define

(4-4)
B.f / WD f.p; fi .p// 2 S

n�1
�Dn j p 2 Sn�1; i 2 f1; : : : ; `gg;eBr@S WD f'

�1.B.f // jf W Sn�1! Confl.D
n/ such that .'�1/�.!/ is zero onB.f / for some lg:

Note that eBr@S is a set of closed subsets of D.@S/ and independent of '.

We define an equivalence relation on eBr@S as follows: b0 � b1 for bi 2 eBr@S if there exists a smooth
1–parameter family bt 2 eBr@S connecting b0 and b1. Let Br@S WD eBr@S=�.
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Definition 4.12 Let . ;B ;B
�
 / admit a decomposition into singular and regular discs. If L is a

Lagrangian submanifold which is carried by B and is compatible with the decomposition of B� , then the
braid b.L; S/ of L on a singular disk S is the braid isotopy class of Br@S which is given by

b.L; S/D ŒL\D.@S/� 2 Br@S :

Remark 4.13 The word “braid” comes from the case of 1
2

dimM D nD 2. If nD 2, then f in (4-4) is
an element of �1.Confl.D2//, ie a braid. For a general n, we consider an element of �n.Confl.Dn//.

The notion of braid is defined as an equivalence class in Definition 4.12. However, in the rest of the
present paper, if it is not likely to be misunderstood, then we use the word “braid b.L; S/” to indicate a
representative of the class. This is for the notational convenience. By considering a representative of a
braid, we can consider b.L; S/ as a subset in D.@S/. For the case of 1

2
dimM D nD 2 (resp. general n),

a braid b.L; S/ is a union of circles (resp. Sn�1) embedded in D.@S/.

Definition 4.14 A strand of a braid b.L; S/ is a connected component of b.L; S/�D.@S/.

As similar to Remark 4.13, the word “strand” comes from the case of 1
2

dimM D nD 2.

5 Action of a symplectomorphism

In Section 5.1, we briefly review how one can keep track of the action of a surface automorphism changing
the isotopy classes of curves. The action can be written as a linear map acting on the set of weights. Also,
we generalized the notion of weights in Section 5.

In Section 5, we generalize the “linear algebra on weights” for higher-dimensional cases.

5.1 Linear algebra on braids

We would like to generalize the linear algebra on weights, which we reviewed in Section 4.1. More
precisely, we claim the following:

Claim (?) If L is carried by B and L is compatible with the standard decomposition of B� for a
symplectic automorphism  of generalized Penner type , then there is a systematic way to obtain

fb. .L/; S/ j S is a singular disk of the standard decomposition of B� g

from
fb.L; S/ j S is a singular disk of the standard decomposition of B� g:

Moreover , the systematic way depends only on  , independent of L, as one has a matrix A for  of
generalized Penner type as in Section 4.1.
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Instead of proving (?), we will prove Lemma 5.1, which considers Dehn twists �k and ��1j instead of  .
Recall Remark 3.17 saying that the symplectic manifold M is a plumbing space of copies of T �Sn and �i
(resp. �j ) is a Dehn twist along one of the zero sections of T �Sn. We also recall Lemma 3.20 saying
the following: there exists a set B of Lagrangian branched submanifolds and functions F�k W B! B

(resp. F��1
j
W B! B), such that if L is carried by B 2 B, then �k.L/ (resp. ��1j .L/) is carried by F�k .B/

(resp. F��1
j
.B/).

Lemma 5.1 LetL be a Lagrangian submanifold of M such thatL is carried by B2B andL is compatible
with the standard decomposition of B�. Then �k.L/ is compatible with the standard decomposition of
F�k .B/. Moreover , there exists a systematic way to obtain

fb.�k.L/; S/ j S is a singular disk of the standard decomposition of F�k .B/
�
g

from

fb.L; S/ j S is a singular disk of the standard decomposition of B�g:

The case of ��1j is analogous.

Remark 5.2 Since a symplectic automorphism  of generalized Penner type is a product of Dehn twists
�k and ��1j , Lemma 5.1 is enough to prove (?).

We will prove Lemma 5.1 in Sections 5.2 and 5.3. The proof will be given for an example case. In the
rest of Section 5.1, we will introduce the main idea of the proof. Also, we will introduce the example
case which we will consider in Sections 5.2 and 5.3.

The main idea The main idea is to consider �k.N.B// instead of �k.L/. More precisely, for a given
singular disk S 0 of F�k .B/DB0, we consider �k.N.B//\D.@S 0/. One can check that every connected
component of �k.N.B//\D.@S 0/ is homeomorphic to Sn�1 �Dn. For an arbitrary component, there
is a map fS!S 0;i W D.@S/! D.@S 0/, where S is a singular disk of B� and a natural number i , such
that the image of fS!S 0;i is the connected component. In other words, every connected component of
�k.N.B//\D.@S

0/ is given as the image of a function defined on D.@S/ where S is a singular disk
of B.

The subscription .S!S 0; i/ of fS!S 0;i means that it is a function explaining the contribution of b.L; S/
on b.�k.L/; S 0/. Since it is possible that there are multiple connected components of �k.N.B//\D.@S 0/,
which are induced from the same singular disk S , one needs multiple functions, which are labeled by
natural numbers i in the subscription.

Since L is carried by B, L�N.B/. Thus, �k.L/� �k.N.B//. By definition,

b.�k.L/; S
0/D �k.L/\D.@S

0/� �k.N.B//\D.@S
0/:
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We consider the intersection of b.�k.L/; S 0/ with each connected components of �k.N.B//\D.@S 0/.
In the connected component, which is the image of FS!S 0;i , b.�k.L/; S 0/ is given by

fS!S 0;i .b.L; S//:

Thus, the set ffS!S 0;ig of functions gives the systematic way to construct

fb.�k.L/; S/ j S is a singular disk of the standard decomposition of F�k .B/
�
g

from

fb.L; S/ j S is a singular disk of the standard decomposition of B�g:

The example case The symplectic manifold we consider is M D P.˛; ˇ1; ˇ2/, where ˛ and ǰ are
spheres such that ˛\ˇ1 D fpg and ˛\ˇ2 D fqg, ie M is a plumbing space of three copies of T �Sn.
Let �0 and �j be Dehn twists along ˛ and ǰ , and  D �0 ı ��11 ı �

�1
2 . Then Theorem 1.3 gives a

Lagrangian branched submanifold B . For the case of dimM D 2nD 2, Figure 15 describes the example
symplectic manifold M . In the example, we will consider the effects of ��12 on B in Section 5.2 and
�0 in Section 5.3.

For convenience, we establish notation here. The standard decomposition of B has 6 singular disks
which are centered at p, �0.p/, ��11 .p/, q, �0.q/ and ��12 .q/. As mentioned in Remark 4.6, we are
abusing notation and pretending that the singular disks are in B , not in B� . We also note that �0.p/
and �0.q/ are antipodal points of p and q on ˛. Similarly, ��11 .p/ (resp. ��12 .q/) is the antipodal point
of p (resp. q) on ˇ1 (resp. ˇ2). Let S1; : : : ; S6 denote the singular disks centered at p, �0.p/, ��11 .p/, q,
�0.q/ and ��12 .q/ respectively. Moreover, let bi denote b.L; Si / for i D 1; : : : ; 6.

Similarly, the Lagrangian branched submanifolds B0 WDF��12
.B/ and B00 WDF�0.B/ each have 6 singular

disks. By definition of the standard decomposition, those singular disks are also centered at p, �0.p/,
��11 .p/, q, �0.q/ and ��12 .q/. As we did for B, let S 01; : : : ; S

0
6 (resp. S 001 ; : : : ; S

00
6 ) denote the singular

disks of B0 (resp. B00) centered at p, �0.p/, ��11 .p/, q, �0.q/ and ��12 .q/. Moreover, we label

bi D b.L; Si /; b0i D b.�
�1
2 .L/; S 0i /; b00i D b.�0.L/; S

00
i /:

In the rest of this paper, we make specific choices of �0 and �j , given by (2-2) and � W T �Sn ��! T �Sn,
which is defined in Remark 2.2. In other words, �0 D �˛ ı � ı ��1˛ and �j D � ǰ

ı � ı ��1
ǰ

, where �˛
(resp. �

ǰ
) is a symplectomorphism from T �Sn to a neighborhood of ˛ (resp. ǰ ). The neighborhood

of ˛ (resp. ǰ ) will be denoted by T �˛ (resp. T � ǰ ).

Remark 5.3 Recall that � is a Dehn twist on T �Sn which agrees with the antipodal map

T �Sn ��! T �Sn; .u; v/ 7! .�u;�v/;

on a neighborhood of the zero section Sn.
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p q

ˇ1 ˇ2

˛ �.p/ �.q/

��11 .p/ ��12 .q/

Lagrangian branched submanifold B (blue)

p q �.p/ �.q/

��11 .p/ ��12 .q/

singular disks Si (red)

S1

S3

S4

S6

S2 S5

N.B / (black) and D.@Si / (blue)

D.@S1/

D.@S3/

D.@S4/

D.@S6/

D.@S2/ D.@S5/

Figure 15: Top: the black curves represent ˛, ˇ1 and ˇ2 inM DP.˛; ˇ1; ˇ2/, and the blue curve
is B . Middle: the red curves are singular disks Si . Bottom: the fibered neighborhood N.B /

and a disk bundle D.@Si /'D1 �S0, ie two intervals attached at @Si .

Remark 5.4 In the next sections, we will consider the example which we specified in the present
subsection. Moreover, for convenience, we will assume that the dimension 2n of the symplectic manifold
M is 4. For the case of nD 2, we specify identifications 'i , '0i and '00i fromD.@Si /, D.@S 0i / andD.@S 00i /
to S1 �D2. We would like to point out that there is no reason to choose these specific identifications,
this is only for the notational convenience.
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In order to construct '1 WD.@S1/ ��! S1 �D2, we remark that

D.@S1/D @��1.S
ı
1 /; D.S1/D ��1.S

ı
1 /

by definition. Thus, in order to specify '1, it is enough to identify D.S1/ and D2 �D2. We remark that
D.S1/ is a disk bundle over S1 'D2.

By abuse of notation, let’s assume that S1 � B , not B0 . Then S1 is a Lagrangian disk in M . Thus,
D.S1/ is a small neighborhood of a Lagrangian disk S1. By the Lagrangian neighborhood theorem [16],
it is enough to choose coordinate charts on S1. Similarly, it is enough to choose coordinate charts for Si ,
S 0i and S 00i .

In order to choose specific coordinate charts, we use the symplectic submanifold W �M defined in
Section 4.2.

Let .x1; x2/ be a coordinate chart on S1 � ˛ such that the x1–axis agrees with W \S1. There are two
choices for the positive x1–direction corresponding to the two orientations of W \S1, or equivalently
orientations of C˛ . We can choose either of them. Then, let .y1; y2/ be an oriented chart on S2 such that
the y1–axis agrees with W \ˇ1 and !.@x1 ; @y1/ > 0. The positive y1–direction determines an orientation
of Cˇ1 . On S3, there exists an oriented chart .x1; x2/ such that the positive x1–direction agrees with the
orientation of C˛ . For the other singular disks, we obtain oriented coordinate charts from the orientations
of C˛, Cˇi , ˛ and ˇi in the same way.

5.2 Effect of ��1
2

In Section 5.2, we discuss how fb0i j i D 1; : : : ; 6g are obtained from fbi j i D 1; : : : ; 6g. Since ��12 is
supported on T �ˇ2, a small neighborhood of ˇ2, bi and b0i are the same braid in Br@Si for i D 1; 2; 3
and 5. We will explain how b06 is constructed.

We can obtain ��12 .B / by spinning with respect to q in T �ˇ2, ie ��12 .B / is the union of curves in
a 2–dimensional submanifold �ˇ2.Wy/ over y 2 Sn�1. Recall that the spinning and Wy are defined in
Section 2.2.

Figure 16 represents a support of ��12 in M , ie a small neighborhood of ˇ2�M where M is a symplectic
manifold of dimension 2 given in Figure 15. Similarly, in Section 5.2, the rectangles in Figures 15–19 are
the support of ��12 .

By spinning blue, red, and green points in Figure 16, we obtain ��12 .B /\D.@S
0
6/. Let B , R and G be

obtained by spinning constant curves drawn blue, red and green points in Figure 16, respectively.

SinceN.B /�B , ��12 .N.B //\D.@S
0
6/ is a neighborhood of ��12 .B /\D.@S

0
6/. By assuming that

N.B / is a sufficiently small neighborhood of B , ��12 .N.B //\D.@S
0
6/ consists of three connected

components, which are neighborhoods of B , R and G. Each connected component will be called N.B/,
N.R/ and N.G/.
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D�q
�2.q/

q

DCq

B ��12 .B /

��1
2
���!

q

Figure 16: The left picture represents B \�ˇ2.Wy/ and the right picture represents ��12 .B /\�ˇ2.Wy/.

Since b06 D ��12 .L/ \D.@S 06/ � N.B/ t N.R/ t N.G/, b
0
6 is divided into three groups, which are

contained in N.B/, N.R/ and N.G/ respectively. We argue the group which is contained in N.B/ first.

Let assume that ��12 .S4/ D S
0
6. Then ��12 .@S4/ D @S

0
6. Moreover, if ��12 .D.@S4/// � D.@S

0
6/, then

N.B/ D ��12 .D.@S4// � D.@S
0
6/. Also, one concludes that ��12 jD.@S4/ W D.@S4/

��! N.B/. If one
can assume that b4 is a subset of D.@S4/ by definition of braids, the set of braids of b06 inside N.B/ is
��14 .b4/.

However, ��12 .S4/ is not s06. Thus, we will construct a Hamiltonian isotopy ˆt so that there exists a
slightly smaller disk DB is S4 satisfying

.ˆ1 ı �
�1
2 /.DB/D S

0
6:

Note that “slightly smaller” means that there is no singular value on S4 nDB . Then

.ˆ1 ı �
�1
2 /.D.@DB//DN.B/;

where D.@DB/ is defined as similar to Definition 4.10. The strands of b06 in N.B/ will be given by
.ˆ1ı�

�1
2 /.D.@DB/\L/. Moreover, D.@DB/ (resp.D.@DB/\L) andD.@S4/ (resp. b4DD.@S4/\L)

are naturally isotopic. Under the isotopic relation, there is a function f1 WD.@S4/!D.@S 06/ such that
the strands of b06 in N.B/ are f1.b4/.

From now on, we will construct a specific ˆt . For notational simplicity, we assume that dim.M/D 4,
but the construction of ˆt is easily generalized for the case of higher dimensions.
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��12 .q/

B ��12 .B / ˆ1.�
�1
2 .B //

��1
2
���!

ˆ1
��!

��12 .DB/
ˆ1.�

�1
2 .DB//

ND�q

DB

DCq

q q q

Figure 17: The blue curves represent zDB \�ˇ2.Wy/ in the left picture, ��12 . zDB/\�ˇ2.Wy/ in
the middle picture, and ˆ1.��12 . zDB//\�ˇ2.Wy/ in the right picture.

We choose a neighborhoodU �ˇ2 of ��12 .q/ and a Darboux chart �q WT �U ��!R4 such that �q.��12 .q//

is the origin. We remark that T �ˇ2 denotes a neighborhood of ˇ2 in M , which is symplectomorphic to
the cotangent bundle of ˇ2. Thus, for a subset U of ˇ2, one can assume that T �U is a subset of M .

For convenience, let �q.x/D .x1; x2/ where xi 2R2. Then there is a Hamiltonian isotopy

(5-1) ˆt .x/D

�
.��1q ıHtı.c1kx1kCc2kx2k/ ı�q/.x/ if x 2 T �U;
x if x … T �U;

where ci is a positive constant, k � k is the standard norm on R2, and Ht and ı are defined as follows: let
Ht WR4!R4 be a Hamiltonian isotopy given by

Ht D

0BB@
cos t 0 –sin t 0

0 cos t 0 –sin t
sin t 0 cos t 0

0 sin t 0 cos t

1CCA ;
and let ı W Œ0;1/!R be a smooth decreasing function such that ı.x/D �

2
for all x < 1 and ı.x/D 0 for

all x > 2.

Figure 17 represents the case of dimM D 2. We note that the rectangles in Figure 17 represent a support
of ��12 . By choosing proper constants ci , we obtain a small disk DB � S4 such that

.ˆ1 ı �
�1
2 /.D.@DB//�D.@S

0
6/:
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ˆ1ı�
�1
2

�����!
p

��12 .p/

D.@S4/

B \T
�ˇ2 �M .ˆ1 ı �

�1
2 /.B /\T

�ˇ2 �M

D.@S 06/

Figure 18: Left: the whole rectangle is a neighborhood of ˇ2 in M ; thick black curves are parts
of B and the dashed black curves are N.B /; the red thick curves represent D.@S4/. Right:
thick black curves are .ˆ1 ı��12 /.B /, dashed black curves are .ˆ1 ı��12 /.N.B //, blue curves
are D.@S 06/, and thick red curves represent the part of D.@S 06/ where D.@S4/ contributes.

On a small neighborhood of DB , ��12 agrees with the antipodal map of �ˇ2.T
�ˇ2/ ' T

�S2, as we
mentioned in Remark 5.3. Then we obtain a map

f1 W S
1
� .D2/

ı
' ��1.@DB/

ˆ1ı�
�1
2

����!D.@S 06/' S
1
�D2; .�; x; y/ 7! .� C�;�r1x;�r1y/:

The first and the last identifications are the natural identifications mentioned in Remark 4.11. The reason
we consider the natural identification is for notational convenience, ie in order to write f1 as a map on
.�; x; y/ 2 S1 �D2. Then, the strands of b06 in N.B/ is given by f1.b4/.

Figure 18 is a picture summarizing the whole process obtaining strands of b06 in the first group, or
equivalently, the picture explains how b4 contributes on the construction of b06, in the case dimM D2nD2.

In order to study the construction of strands of b06 in N.R/ and N.G/, one should consider

zD.@S4/ WD
[

p2Locus.B0/\@S4

Fp:

It is easy to check that zD.@S4/ is a Dn–bundle over @S4 and D.@S4/� zD.@S4/.

Together with zD.@S4/, we observe how b6 contributes on the construction of b06. First, one can observe
that b6 and L\ . zD.@S4/ nD.@S4// are isotopic to each other. The isotopy connecting them is along the
fibers on some regular disks such that the union of regular disks has @S4 and @S6 as their boundaries.
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ˆ1ı�
�1
2

�����!
p

��12 .p/

zD.@S4/

B \T
�ˇ2 �M .ˆ1 ı �

�1
2 /.B /\T

�ˇ2 �M

D.@S 06/

Figure 19: Left: the whole rectangle is a neighborhood of ˇ2 in M , thick black curves are parts
of B and the dashed black curves are N.B /, and the red thick curves represent zD.@S4/. Right:
thick black curves are .ˆ1 ı��12 /.B /, dashed black curves are .ˆ1 ı��12 /.N.B //, blue curves
are D.@S 06/, and thick red curves represent the part of D.@S 06/ where D.@S4/ contributes.

More precisely, the union of regular disks (resp. fibers on them) is homeomorphic to Sn�1� Œ0; 1� (resp. a
disk bundle over Sn�1 � Œ0; 1�). The boundary of Sn�1 � Œ0; 1� corresponds to @S4 and @S6.

Similarly, one can observe that L\ . zD.@S4/ nD.@S4// and b6 are isotopic to each other. The isotopy
connecting them is the intersection of L and the fibers on the regular disks.

Second, one can describe the contribution of L\ . zD.@S4/ nD.@S4// on the contribution of b06. The
contributions are given as two functions as the contribution of b4 is described by the function f1. For the
case of nD 2 and under the identification defined in Remark 5.4, the two functions denoted by f2 and f3
are

f2 W S
1
�D2! S1 �D2; .�; x; y/ 7! .�; r0 cos � C r2x; r0 sin � C r2y/;

and
f3 W S

1
�D2! S1 �D2;

.�; x; y/ 7! .�;�r0 cos � C r2.x cos 2� �y sin 2�/;�r0 sin � C r2.x sin 2� Cy cos 2�//;

Similar to Figure 18, Figure 19 summarizes the whole process obtaining strands of b06 in the second and
third groups, or equivalently, the picture explains how zD.@S4/ contributes on the construction of b06, for
the case of dimM D 2nD 2.
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Remark 5.5 (1) The constant r1 is determined by the choice of an identification �ˇ2 WT
�S2 ��!T �ˇ2,

the fixed Dehn twist � in Remark 2.2, and so on. However, r1 has to be smaller than 1. This is
because Im.f1/, Im.f2/ and Im.f3/ are mutually disjoint, since they correspond to N.B/, N.R/
and N.G/, respectively. Moreover, r0 and r2 are also positive numbers smaller than 1.

(2) Note that r0 and r2 are positive constants which are determined by specific choices. However, r0
and r2 have to satisfy r1C r2 < r0, since Im.f1/, Im.f2/ and Im.f3/ are mutually disjoint.

(3) To obtain f1, we used a Hamiltonian isotopy ˆt . Similarly, to obtain f2 and f3, we need a
Hamiltonian isotopy.

The situation for b04 is analogous. We obtain three maps g1, g2 and g3 in the same way. At the end, b04 is
represented by g1.b6/tg2.b6/tg3.b6/. This proves Lemma 5.1 for the case of ��12 .

Note that maps fi and gj are given by specific maps acting on S1 �D2, but we would like to consider
them as maps on eBr@Sk for some k. We summarize the effect of ��12 as the matrix

†2;B D

0BBBBBBB@

id 0 0 0 0 0

0 id 0 0 0 0

0 0 id 0 0 0

0 0 0 0 0 g1Cg2Cg3
0 0 0 0 id 0

0 0 0 f1 0 f2Cf3

1CCCCCCCA
:

Thus, 0BBBBBBB@

b01
b02
b03
b04
b05
b06

1CCCCCCCA
D†2;B 

0BBBBBBB@

b1
b2
b3
b4
b5
b6

1CCCCCCCA
D

0BBBBBBB@

b1
b2
b3

g1.b6/tg2.b6/tg3.b6/

b5
f1.b4/tf2.b6/tf3.b6/

1CCCCCCCA
:

Remark 5.6 In surface theory, we can do linear algebra on weights, but in a higher-dimensional case, we
cannot do linear algebra with the matrix †2;B because there is no module structure on eBr@Si . In other
words, the matrix †2;B and sums of functions, for example g1Cg2Cg3, are for notational convenience.
Thus, the title of Section 5.1 is an abuse of terminologies.

5.3 Effect of �0

The situation for �0 is similar to that for ��12 . For example, by observing how �0 acts on D.@S1/, we
obtain

h1 W S
1
�D2! S1 �D2;
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explaining the contribution of b1 on the construction of b003 . Then, h1 is given by a translation on S1 and
a scaling on D2, as f1 is. Similarly, we obtain h2 and h3, which explain the contributions of b3 on the
construction of b003 . The maps h2 and h3 are of the same type as f2 and f3, respectively, ie

h2.�; x; y/D .� or � C�;˙r1 cos � C r2x;˙r1 sin � C r2y/;

h3.�; x; y/D
�
� or � C�;˙r1 cos � C r2.x cos 2� �y sin 2�/;˙r1 sin � C r2.x sin 2� Cy cos 2�/

�
;

where r1 and r2 are constants.

We say that a map is of scaling type if a map is of the same type as f1, in other words, if the map is given
by a translation on S1 and a scaling on D2. This is because the formula defining the map is given by a
scaling on fibers. The maps of scaling type explain how the braids along the singular disk centered at p
or antipodes of p, b.L; Sp.B // or b.L; S˙p /, contribute on the braid along the singular points centered
at the same points, b

�
ı.L/; Sp.Fı.B //

�
or b.ı.L/; S˙p /, when one applies a Dehn twist ı.

We say that a map is of the first (resp. second) singular type if a map is of the same type as f2 (resp. f3).
This is because they are related to a creation of new singular component. The maps of the first and
second singular types explain how the braid b.L; SCp / contributes on the construction of the braid
b
�
ı.L/; Sp.Fı.B //

�
.

To summarize, if bi contributes the construction of b0j and if the center of a singular disk corresponding
to bi is either the same point or the antipodal point of the center of the singular disk corresponding to b0j ,
maps of these three types explain the contribution of bi on the construction of b0j . Note that the center of
a singular disk is defined in Remark 3.21.

The maps of these three types explain the effects of ��12 on B. However, to explain the effects of �0
on B , we need maps of one more type. The reason is given in Figure 20, roughly. We note that the
rectangles in Figure 20 are the support of �0 in M where M is given in Figure 15, ie a neighborhood of
˛ �M .

More precise reasoning is as follows. We note that ˛ has two plumbing points, unlike ˇi which has only
one plumbing point. Thus, when we apply �0, bi can contribute to b00j even if the centers of singular disks
corresponding to bi and b00j are neither the same nor antipodes of each other. For example,L\��1.�.Np//
is stretched by �0. The stretched part �0

�
L\��1.�.Np//

�
has intersection with D.@S 004 / and D.@S 005 / as

one can see in Figure 20. Thus, b004 has some strands corresponding to �0
�
L\��1.�.Np//

�
\D.@S4/.

These strands are the contribution of b3 on the construction of b004 . Similarly, b3 contributes to the
construction of b005 , and b6 contributes to the constructions of b001 and b002 .

To describe the contribution of b3 on b004 , without loss of generality, we assume that there is no singular
value for

�0
�
L\��1.�.Np//

�
\D.S4/

�
�! S4;

by Remark 3.21. Thus, �0
�
L\��1.�.Np//

�
\D.S4/ is a union of disjoint Lagrangian disks on D.S4/.

We note that D.S4/ is a disk bundle over .S 04/
ı which is an open disk. Thus, on the boundary D.@S 04/,
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p q �.p/ �.q/

D.@S 004 / D.@S 005 /

B in a neighborhood of ˛ �M

�0.B /

Figure 20: Top: the thick black and blue curves are B in a neighborhood of ˛�M ; in particular,
the blue curves areNp and the red parts are a fibered neighborhood ofNp , ie ��1.�.Np//. Bottom:
the thick curves are �0.B /, the red parts are extended neighborhood of Np by applying �0, and
blue dashed lines are D.@S 004/ and D.@S 005 /.

b3 contributes to b004 by adding strands near �0.Np/\D.@S4/ which are not braided to each other. The
number of the added strands is the same as the number of strands of b3. In the same way, b3 contributes
to the construction of b005 .

Remark 5.7 In the above argument, we said that the added strands are not braided to each other. To be
more rigorous, we should specify the meaning of “not braided”. We remark that D.@S 004 / is identified
with Sn�1 �Dn by the specific identification given in Remark 5.4. The added strands are not braided in
Sn�1 �Dn after the identification.

As we did before, we would like to describe the added strands as an image of a function defined on
D.@S/D Sn�1�Dn. In Section 5.3, we consider the case of dim.M/D 4 as we did in Section 5.2 under
the identifications given in Remark 5.4.

Let ht be the function defined on S1 �D2. As we explained in Section 5.2, we expect that ht .b3/ can
explain the contribution of b3. However, for this case, ht .b3/ cannot do that. This is because the important
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factor is the number of strands of b3, not that b3 is braided. Thus, we define a trivial braid bt3 such that
bt3 and b3 have the same number of strands as

bt3 WD '
�1
3 .f.�; x0; y0/ 2 S

1
�D2 j .0; x0; y0/ 2 '3.b3/g/�D.@S3/:

Then, one obtains

ht W S
1
�D2

'1
�! ��1.@S1/

ˆ1ı�0
����! ��1.@S4/

'04
' S1 �D2; .�; x; y/ 7! .�; r0xC c1; r0yC c2/;

where r0 is a positive constant number less than 1 and ˆ1 is a Hamiltonian isotopy. We note that
in Section 5.2, we needed a Hamiltonian isotopy. In a similar way, we can construct a Hamiltonian
isotopy ˆ1. Then ht . Nbı1/ represents the added strands in b04, which correspond to �0

�
L\��1.�.Np//

�
.

Similarly, if bi contributes the construction of b00j and if the center of a singular disk corresponding to bi
is neither the same point nor the antipodal point of the center of the singular disk corresponding to b00j ,
then the contribution of bi on b00j can be described by a map like ht . A map is of trivial type if a map is of
the same type with ht , because a map of trivial type adds strands which are not braided with each other.

Then, we can describe the effect of �0 on B as a matrix

T0;B D

0BBBBBBB@

0 i 0 0 0 ht
h1 0 h2C h3 0 0 it
0 0 id 0 0 0

0 0 ht 0 i 0

0 0 it h1 0 h2C h3
0 0 0 0 0 id

1CCCCCCCA
:

Among the entries, h1, i and id are of scaling type, h2 and h3 are of the first and second singular types,
and ht and it are of trivial type.

Remark 5.8 A  of generalized Penner type is a product of Dehn twists. In the general case, when we
apply  , each Dehn twist is followed by a Hamiltonian isotopy as ��12 is followed by ˆt in step two. Let
 H D .ˆ1;1 ı ı1/ ı � � � ı .ˆl;1 ı ıl/, where  D ı1 ı � � � ı ıl , ıi is a Dehn twist, and ˆi;t is a Hamiltonian
isotopy which follows ıi .

After applying the Hamiltonian isotopy, the effect of a Dehn twist �i (resp. ��1j ) on B 2 B is described
by a matrix Ti;B (resp. †j;B), whose entries are sums of maps of four types.

6 Proof of Theorem 1.5

In Sections 4 and 5, we generalized the notion of weights and linear algebra on weights. In this section,
we prove our main theorem, ie Theorem 1.5, by using those generalizations.
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6.1 Limit of a sequence of braids

By Lemma 5.1, one obtains braid sequences fb. m.L/; Si /gm2N , where L is carried by B , and Si is a
singular disk of B� . In the present subsection, we construct a limit of fb. m.L/; Si /gm2N as m!1.

We argue with the above example, ie

M D P.˛; ˇ1; ˇ2/;  D �0 ı �
�1
1 ı �

�1
2 ; dimM D 4

For convenience, let
B WDB ; B0 WD F��12

.B/; B00 WD F��11
.B0/;

and let Si , S 0i and S 00i denote singular disks of B, B0 and B00. Using notation from Sections 5.2 and 5.3, we
have matrices T0;B00 ,†1;B0 and†2;B. Then we obtain‰DT0;B00 �†1;B0 �†2;B by defining a multiplication
of maps as the composition of them. Note that a product of two arbitrary matrices is not defined since a
composition of two arbitrary functions is not defined. For example, an input of †2;B and an output of
T0;B00 are tuples of braids on singular disks of B�. Thus, †2;B �T0;B00 is defined. However, T0;B00 �†2;B
is not defined since an input of T0;B00 is a tuple of braids on singular disks of B�, but an output of †2;B
is a tuple of braids on singular disks of B0�.

Let bi;m D b. m.L/; Si /. Then 0BBBBBBB@

b1;m
b2;m
b3;m
b4;m
b5;m
b6;m

1CCCCCCCA
WD‰m

0BBBBBBB@

b1
b2
b3
b4
b5
b6

1CCCCCCCA
:

Thus, in order to keep track of braid sequences fbi;mgm2N , it is enough to keep track of ‰m.

Every entry of ‰m is a sum of compositions of 3m maps. The image of a composition of 3m maps is a
solid torus. By Remark 5.5, the radius of each solid torus appearing in ‰m decreases exponentially and
converges to zero as m!1.

In order to be more precise, we consider  H which is defined in Remark 5.8. One observes

bi;m �  
m
H .N.B //\D.@Si /

for all m 2N and i D 1; : : : ; 6. Let

Bi;m WD  
m
H .N.B //\D.@Si /:

Then Bi;m is the disjoint union of solid tori. Each solid torus in Bi;m is the image of a composition of
3m maps, appearing in ‰m. Conversely, for each composition of 3m maps appearing in ‰m, the image
is a solid torus contained in Bi;m. The radii of solid tori in Bi;m are decreasing exponentially and are
converging to zero as m!1.
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Since BiC1;m � Bi;m for all m 2N, there is a limit

Bi;1 WD lim
m!1

Bi;m D
\
m2N

Bi;m:

Thus, Bi;1 is the union of infinite strands as a subset of D.@Si / and

lim
m!1

bi;m D Bi;1

as a sequence of closed sets in D.@Si /.

Remark 6.1 (1) We have constructed a sequence of specific representatives fbi;mgm2N such that

lim
m!1

bi;m D Bi;1:

For the purposes of extending the lamination to the singular and regular disks in Sections 6.2
and 6.3, we assume that the limit Bi;1 is a specific closed subset in D.@Si /.

(2) Each strand of Bi;1 corresponds to an infinite sequence ffmgm2N such that f1 ı � � � ıf3m appears
in ˆm for all m 2N.

6.2 Lagrangian lamination on a singular disk

Let  be of generalized Penner type and let L be a Lagrangian submanifold which is carried by B .
In the previous sections, on each singular disk Si , we gave an inductive description of a sequence
fbi;m WD b. 

m.L/; Si /gm2N . There is a limit Bi;1 of the sequence, which is independent of L. In this
present subsection, we will construct a Lagrangian lamination Li � �

�1.Si / from Bi;1.

Lemma 6.2 Let  be of generalized Penner type. For each singular disk Si of B , there is a Lagrangian
lamination Li �D.Si /, such that if L is a Lagrangian submanifold of M which is carried by B , then
for every m 2 N, there is a Lagrangian submanifold Lm which is Hamiltonian isotopic to  m.L/ and
Lm\D.Si / converges to Li as a sequence of closed subsets.

Proof Let  be of generalized Penner type, ie  D ı1 ı � � � ı ıl , where ık is a Dehn twist �i or ��1j . We
will use similar notation as the previous subsections; for example, Si denotes a singular disk of B , ‰
denotes a matrix corresponding to  , 'i WD.@Si / ��! Sn�1�Dn denotes the identification induced from
the fixed coordinate chart on Si , and so on.

We will assume that Lm in Lemma 6.2 is  mH .L/ where  H is defined in Remark 5.8. Then Li is the limit
of mH .L/\D.Si / asm!1. Thus, Li\D.@Si / is the limit of mH .L/\D.@Si /, ie Li\D.@Si /DDi;1.
We will construct a Lagrangian lamination Li when Bi;1 is given. Then we will prove that Lemma 6.2
holds with the constructed Li .

Construction of Li As we mentioned in Remark 6.1, each strand of Bi;1 is identified with an infinite
sequence ffmgm2N such that f1 ı � � � ı flk appears in ‰k for all k 2 N. For each strand ffmgm2N

of Bi;1, we will construct a Lagrangian submanifold of D.Si / whose boundary agrees with the strand
ffmgm2N in the construction part.
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First, for a given strand ffmgm2N , let f1 be of trivial type. Then the strand is identified with a sphere

f.�; x1; : : : ; xn/ j � 2 S
n�1
g � Sn�1 �Dn

'i
'D.@Si /;

where xi is a constant. A subsequence ffmgm�2 determines constants xi . Let

D WD f.p; x1; : : : ; xn/ j p 2 Sig �Dn �Dn
'i
'D.Si /:

Then 'i .D/ is a Lagrangian disk in D.Si /, whose boundary agrees with the strands ffmgm2N .

Second, let f1 be not of trivial type, but there exists m2N such that fm is of trivial type. Let k > 1 be the
smallest number such that fk is of trivial type appearing in ffmgm2N . Then Q Dık0ı� � �ıılıı1ı� � �ıık0�1,
where k0 Š k (mod l), is of generalized Penner type satisfying the following: B Q has a singular disk
zSj such that zBj;1, the limit of the braid sequence corresponding to Q and zSj , has a strand identified
with ffmgm�k . Thus, there is a Lagrangian disk in D. zSj / whose boundary agrees with ffmgm�k . Let D
denote the Lagrangian disk in D. zSj /. Then there is a connected component of�

.ˆ1;1 ı ı1/ ı � � � ı .ˆk0;1 ı ık/
�
.D/\D.Si /

whose boundary is ffmgm2N , where ˆi;t is a Hamiltonian isotopy mentioned in Remark 5.8.

To summarize, if there is at least one map of trivial type in ffmgm2N , then we have a Lagrangian
submanifold inD.Si /, whose boundary agrees with ffmgm2N . Let Li;1 be the union of those Lagrangian
submanifolds.

Finally, suppose that fm is not of trivial type for any m 2N. Then, for all k 2N, we will construct a
sequence ff kmgm2N for each k 2N, satisfying

(1) ff kmgm2N is a strand of Bi;1;

(2) if m� kl , then f km D fm;

(3) there exists a constant Nk 2N such that f k
klCNk

is of trivial type.

To prove the existence of these sequences ff kmgm2N for all k 2N, we use the fact that the limits Bi;1
depend only on  and are independent of L. Let k be a fixed positive integer. Then f1 ı � � � ıfkl explains
an impact of bi;0 D b.L; Si / on bj;k D b. k.L/; Sj / for some i and j .

Let consider Qbi;m D b
�
 m. N .L//; Si

�
D bi;mCN for a sufficiently large integer N . Then Qbi;0 is given

by a union of images of g1 ı � � � ıgNl which appears in the i th row of ‰N . If we assume that there is at
least one compact case having two or more plumbing points, then for a sufficiently large N , there exists
a sequence of functions g1; : : : ; gNl such that g1 ı � � � ıgNl appears in the i th row of ‰N and gt is of
trivial type for some t 2 Œ1; N l�. The reason is as follows: First, when we apply a Dehn twist along the
compact core with two or more plumbing points, a function gt of trivial type appears. The function gt
appears in a specific row. By applying  sufficiently many times, ie N times, one can guarantee that gt
appears in i th row. This is because every Dehn twist along each compact core appears in  .
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In Qbi;kl D bi;klCNl , there is a strand satisfying the last two conditions, and thus it guarantees the existence
of ff kmgm2N for all k 2N, assuming at least one compact core has two or more plumbing points. We note
that the assumption excludes only one case, the plumbing of one positive and one negative sphere plumbed
at only one point. The excluded case can be easily handled directly. For more detail, see Remark 6.3

Without loss of generality, there is a strand ff kmgk2N of Bi;1 for each k 2N. These strands converge to
ffmgm2N as k!1. Moreover, by definition of Li;1, the boundary of Li;1 contains strands ff kmgm2N

for all k 2 N. Thus, the strand ffmgm2N is contained in the boundary of Li WD Li;1, ie the closure
of Li;1.

Remark 6.3 If there is no sphere with two or more plumbing points, then every sphere is plumbed at
only one point. Thus, there is exactly one positive sphere and one negative sphere plumbed at one point.
In this case, we can construct a Lagrangian lamination L on M by spinning. This is because only two
spheres are plumbed, thus there is a plenty of symmetry, which comes from the symmetry of spheres.
Then, Li WD L\D.Si / is a Lagrangian lamination which we want to construct in Lemma 6.2.

Convergence to Li Let Lm WD  mH .L/. We defined  H in the fourth step of the proof of Lemma 5.1.
We will prove that Lm\D.Si / converges to Li .

First, we will show that

(6-1) lim
m!1

.Lm\D.Si //D lim
m!1

�
 mH .N.B //\D.Si /

�
:

Since  H .N.B //�N.B /,

 mC1H .N.B //\D.Si /�  
m
H .N.B //\D.Si / for all m 2N:

Thus, we have the limit

lim
m!1

�
 mH .N.B //\D.Si /

�
D

\
m

�
 mH .N.B //\D.Si /

�
:

If we equipM with a Riemannian metric g, then dH
�
 mH .B /;  

m
H .N.B //

�
, where dH is the Hausdorff

metric induced by g, converges to zero asm!1 for the same reason thatBi;m WD mH .N.B //\D.@Si /

converges to an infinite braid Bi;1 in the last part of Section 6.1.

Since for a large integer N0, LN0 intersects D.Sj / for any singular disk Sj , and LmCN0 \D.Sj /
intersects every connected component of  mH .N.B //\D.Si /. Thus,

0� lim
m!1

dH .LmCN0 \D.Si /;  
m
H .N.B //\D.Si //

� lim
m!1

ŒdH .LmCN0 \D.Si /;  
m
H .B /\D.Si //C dH . 

m
H .B /\D.Si /;  

m.N.B //\D.Si //�

� lim
m!1

2dH . 
m
H .B /\D.Si /;  

m
H .N.B //\D.Si //

D 0:

This proves (6-1). Let Li be the limit in (6-1).
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Second, we show that Li is Li . By the construction of Li , we know that

Li �  
m
H .N.B //\D.Si / for every m 2N:

It implies that Li � Li . Moreover,

Li \�
�1.@Si /D Li D Bi;1\D.Si /:

Because every connected component of Li has a boundary on @Si , this shows Li D Li .

6.3 Lagrangian lamination on a regular disk

In the previous subsection, we constructed Lagrangian laminations on singular disks, when boundary data
for singular disks were given. In the present subsection, first, we will define boundary data for a regular
disk. Second, we will construct Lagrangian laminations on regular disks from the given data. Finally, we
will prove Theorem 1.5 as a corollary of Lemmas 6.2 and 6.5.

Before defining the boundary data, we remark that, ��1.Rıi / is symplectomorphic to DT �Dn, where
Dn is a disk, by Remark 4.5. Similar to Definition 4.10, let D.Rj / (resp. D.@Rj /) denote the Dn–bundle
��1.Rıi / (resp. @��1.Rıi /) over Rj (resp. @Rj ).

We define a data cj;m on the boundary of a regular disk Rj for  m.L/, by setting

cj;m WD Lm\D.@Rj /:

We defined Lm WD  mH .L/ in the proof of Lemma 6.2. Note that cj;m is a closed subset, not a class of a
closed subset.

To obtain a limit of cj;m, we consider

Cj;m WD  
m
H .N.B //\D.@Rj /;

as we did in Section 6.1. Since  mH .N.B //�N.B /, Cj;mC1 � Cj;m. Moreover, Cj;m is the union of
solid tori in D.@Rj / when nD 2, or the union of Sn�1�Dn for general n. If a symplectic manifold M is
equipped with a Riemannian metric g, we can measure the radii of solid tori in Cj;m. The radii decrease
exponentially and converge to zero as m!1, for the same reason that radii of solid tori comprising
Bi;m decrease exponentially and converge to zero as m!1 in Section 6.1. The limit of cj;m is given by

Cj;1 D lim
m!1

Cj;m D
\
m

Cj;m:

The next step is to smooth Rj . A regular disk Rj has corners. We will replace Rj with a smooth disk R0j .
This is because, at the end, a Lagrangian lamination will be given as graphs of closed sections. By
smoothing Rj , it will be easier to handle closed sections.

To smooth Rj , we subtract a tubular neighborhood N.@Rj /�Rj from Rj . Let R0j WDRj nN.@Rj /. Then
R0j is a smooth disk. We replace Rj with R0j . To finish smoothing, we need to obtain boundary data for
R0j from cj;m.
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Each connected component of cj;m can be identified with a section of a bundle D.@Rj / over @Rj . We can
extend this section to a closed section of a bundle ��1.N.@Rj // over N.@Rj / by computations. Then
the graph of the extended section is a Lagrangian submanifold of ��1.N.@Rj //. The boundary of the
Lagrangian submanifold on @R0j makes up the boundary data for R0j .

From now, we assume that a regular disk Rj is a smoothed disk. Lemma 6.4 claims that for a given data
cj;m on a smoothed regular disk Rj , we can construct a Lagrangian submanifold Nj;m �D.Ri / such
that @Nj;m D cj;m\D.Ri /.

Lemma 6.4 Let Q be a closed subset of @T �Dn such that there exists a disjoint union L of Lagrangian
disks in T �Dn, which are transversal to fibers , such that L\ @T �Dn D Q. Then we can construct a
Lagrangian submanifold L uniquely up to Hamiltonian isotopy through Lagrangians transverse to the
fibers.

Proof To prove Lemma 6.4, we consider a identification ' W @T �Dn ��! Sn�1 �Dn which is defined
as follows. If there is a global coordinate charts of the zero section Dn of T �Dn, then it induces an
identification between Dn �Dn and T �Dn. By restricting the identification on @T �Dn, one obtains
' W @T �Dn ��! Sn�1 �Dn. With the fixed identification ', '.Q/ D '.@L/ is isotopic to a union of
spheres

fSn�1 �p1; : : : ; S
n�1
�pm j pi 2Dn; m is the number of component of Lg:

This is because '.L/ is a union of Lagrangian disks in Dn �Dn
'
' T �Dn.

The proof of Lemma 6.4 consists of two parts: the construction of L and the uniqueness of L.

Construction We start the proof with the simplest case, ie Q consists of only one strand.

By fixing coordinate charts on Dn, we can write down Q as a section of a disk bundle @T �Dn over @Dn,
ie

Q WD ff1.x1; : : : ; xn/dx1C � � �Cfn.x1; : : : ; xn/dxn j x
2
1 C � � �C x

2
n D 1g:

Then, the simplest case is proved by determining a function � WDn!R such that d�Df1dx1C� � �Cfndxn
on @Dn. The graph of d� is a Lagrangian submanifold which we would like to find. Note that there
are infinitely many � satisfying the conditions, but the Hamiltonian isotopy class of the graph of d� is
unique through Lagrangians transverse to the fibers.

If Q has two or more connected components li , then we can write li as a section over @Dn. For each i ,
we need to determine functions �i WDn!R such that d�i agrees with li on @Dn. Moreover, to avoid
self-intersection, they should not be equal, ie d�i ¤ d�j for all i ¤ j . Then, the union of graphs of d�i
on T �Dn is a Lagrangian submanifold L which we want to construct.

We discuss with the simplest nontrivial case, ie Q has two connected components l0 and l1, and the
dimension 2nD 4. Without loss of generality, we assume that l0 is the zero section. Furthermore, we can
assume that �0 � 0. We only need to determine �1 such that d�1 does not vanish everywhere.
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r0

m� n�
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m1 m2 m4 m3n2 n1 n3 n4
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�

Figure 21: Example of a collection C on Œr0; 1��S1.

We assume that there exists �1 satisfying the conditions. Then we will collect combinatorial data from �1,
and we will construct a function Q�1 satisfying conditions given by the combinatorial data. Through this,
we will see what combinatorial data we need. We will end the construction by explaining how to obtain
the combinatorial data from the given Q.

For convenience, we will use the polar coordinates instead of .x; y/–coordinates on D2. Let r0 be a small
positive number. We restrict the function �1 on Œr0; 1��S1. On f1g�S1D @D2, d�1 agrees with l1. On
fr0g �S

1, d�1 is approximately a constant section

adxC bdy D a.cos � dr � r0 sin � d�/C b.sin � dr C r0 cos � d�/;

where d�1.0; 0/D adxC bdy and .x; y/ are the standard coordinate charts of D2.

We remark that on fr0g � S1, the pair of graphs of d�i jfr0g�S1 represents the trivial braid under the
identification induced from the .x; y/–coordinates. Similarly, on Œr0; 1��S1, the pair .d�0 � 0; d�1/
implies an isotopy between two representatives of the trivial braid.

For every r� 2 Œr0; 1�, we can find all local maxima and minima of a function

� 7! �1.r�; �/:

We mark .r�; ��/ as a red (resp. blue) point if the above function has a local maxima (resp. minima) at ��.
If r� D 1, there are same number of red/blue marked points on f1g �S1, and there is only one red/blue
marked point on fr0g �S1. On Œr0; 1��S1, we have a collection C of curves shaded red and blue. If a
curve in C is not a circle, then the curve has two end points on the boundary of Œr0; 1��S1. There are
exactly two curves connecting both boundary components of Œr0; 1��S1, and those two curves have end
points of the same color.

If we write d�1 D f d� C g dr , then f is zero on curves in C. Since d�1 does not vanish, g cannot
be zero on the curves. Thus, we can assign the sign of g for each curve. Figure 21 is an example of a
collection C.

Algebraic & Geometric Topology, Volume 24 (2024)



Towards a higher-dimensional construction of stable/unstable Lagrangian laminations 705

Conversely, if we have a collection C of curves such that each curve is shaded red and blue and is equipped
with a sign, then we can draw a graph of Q�1 roughly. This is because the collection C determines the
sign of horizontal directional derivative of Q�1, ie d Q�1.@� / on every point of Œr0; 1�� S1, and vertical
directional derivative of Q�1, ie d Q�1.@r/ on the curves. From these, one obtains a (rough) graph of Q�1.
Thus, in order to determine a function �1, it is enough to determine a collection C of curves in Œr0; 1��S1

from the given Q.

From now on, we will construct a collection C from the given Q. For the given Q, we assume that a
connected component l0 of Q is the zero section, without loss of generality. For the other connected
component l1, one has f1; g1 W S1!R such that l1 is the graph of f1 d� C g1 dr on f1g �S1 D @D2.
We know that Q represents the trivial braid with respect to the standard .x; y/–coordinates of D2. Thus,
there is an isotopy � W Œr0; 1��S1!D2 such that

�.1; �/D .f .�/; g.�//; �.r0; �/D .Ar0 cos �; A sin �/;

�.t; �/¤ .0; 0/ for all .t; �/ 2 Œr0; 1��S1;
where A is a constant.

For every r 2 Œr0; 1�, let r.�/D �.r; �/. Then, r is a closed curve in D2, for all r . Moreover, � is a
path connecting 1 and r0 in the loop space of .D2/ı without touching the origin.

We mark .r; �/ on Œr0; 1�� S1 as a red (resp. blue) point if r.�/ intersects dr–axis from right to left
(resp. from left to right). These marked points comprise curves in Œr0; 1��S1, and we have a collection
C of curves, shaded red and blue, in Œr0; 1��S1. We know that 1 has intersection points. The number
of intersection points is an even number. When r decreases, there is a series of creations/removals of
intersection points, which are given by finger moves along the dr–axis. Each finger move does not touch
the origin. Thus, for a curve in C, every intersection point composing the curve lies on either the positive
dr–axis or the negative dr–axis. Then, we can assign a sign for each curve in C.

Figure 22 is an example of � , corresponding to the case described by Figure 21.

The upper left of Figure 22 is 1 and the upper right is r0 . Through the first arrow, we observe a finger
move removing two intersection points. Those two intersection points correspond to m2, a local maxima
shaded red, and n2, a local minima shaded blue. Thus, we obtain a curve connectingm2 and n2 in Figure 21.
Moreover, the intersection points lie in the negative part of the dr–axis. Thus, we assign a negative sign
to the curve. Similarly, we observe there are finger moves removing intersection points. We obtain curves
connecting mi and ni for i D 1; 2; 3 in Figure 21. After the finger moves, there are only two intersection
points corresponding to m� and n�, and we obtain curves connecting m4 (resp. n4) and m� (resp. n�).

We have constructed a collection C of curves on Œr0; 1�� S1 from an isotopy � . Thus, we can obtain
a function �1 W Œr0; 1��S1!R. In order to complete the proof, we need to extend �1 into a small disk
with radius r0. To extend �1, we assume that

�1.x; y/D Ar sin � D Ay
on the small disk.
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dr dr

dr dr

d� d�

d� d�

1.n2/

1.m2/
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r0.n�/

#

�!

"

Figure 22: Creation of a collection C.

The situation for the general case is analogous. If Q has more connected components li for i D 0; : : : ; k,
then we have to determine �i WD2!R such that d�i D li on @D2, and d�i ¤ d�j for all i ¤ j . We fix an
isotopy � , and obtain a collection C of curves on Œr0; 1��S1 from � . Each curve in C encodes restrictions
on d�i�d�j for some i and j . More precisely, .�i��j / has a local maxima (resp. minima) in the horizon-
tal direction, only at a point of a curve shaded red (resp. blue), and .d�i �d�j /.@r/ has the sign assigned
on the curve. For the case of general dimension 2n, we obtain combinatorial data from Q, ie a collection
of curves on Œr0; 1��Sn�1 assigned a sign, and construct functions on Dn from the combinatorial data.

Uniqueness Recall that the construction consists of three steps. First, we choose an isotopy � connecting
Q and the trivial representative of the trivial braid. Then, we obtained a collection C of curves from � ,
such that each curve encodes restrictions on d�i � d�j . The last step is to construct a set of functions
f�i WDn!Rg.
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The construction depends on choices in the first and last steps. More precisely, for the first step, the choice
of isotopy � is not unique. If we choose an isotopy � , then there is a unique collection C. However, a set
f�ig of functions, which is constructed from the collection C, is not unique. We will show that the Hamil-
tonian isotopy class of L, through Lagrangians transverse to the fibers, is independent of those choices.

First, we discuss the choice in the third step. Let us assume that we have a collection C of curves in
Œr0; 1��S

n�1 and two sets of functions f�igi and f�igi satisfying the restrictions encoded by C. Then,
by setting �i;t WD .1� t /�i C t�i , we obtain a family of sets of functions such that every member of the
family satisfies the restrictions encoded by C.

Let Lt be the Lagrangian submanifold corresponding to f�i;tg for a fixed t . Then Lt is a Lagrangian
isotopy connecting L0, corresponding to f�ig, and L1, corresponding to f�ig. Since Lt is a disjoint union
of Lagrangian disks in T �Dn, L0 and L1 are Hamiltonian isotopic. Thus, the Hamiltonian class of L
through Lagrangians transverse to the fibers is independent of the choice of functions for the third step
of the construction.

Before discussing the choice of the first step, note that a continuous change on a collection C does not
make a change on the Hamiltonian isotopy class. More precisely, let C0 D f1; : : : ; N g be a collection
of curves and let f�ig be a set of functions corresponding to C0. If fk;tg is a continuous family of curves
with respect to t such that k;0Dk for all k, then we can obtain a continuous family f�1;t ; : : : ; �N;tg such
that �i;0 D �i and f�1;t ; : : : ; �N;tg corresponds to Ct WD f1;t ; : : : ; N;tg. Then, it is easy to check that
the Hamiltonian isotopy class of the union of graphs of d�i;t in T �Dn, through Lagrangians transverse
to the fibers, is independent of t .

Finally, we will discuss the choice of � . Let �0 and �1 be two isotopies obtained from the given Q in the
first step. Then we can understand �0 and �1 as paths on the loop space of the configuration space of .Dn/ı.
Since the loop space is simply connected, there is a continuous family f�tgt2Œ0;1� connecting 0 and 1.

Let Ct be the collection of curves obtained from �t and let f�ig be a set of functions constructed from C0.
There is f�i;tg corresponding to Ct such that �i;0 D �i . Then, if Lt is the union of graphs of d�i;t , then
the Hamiltonian class of Lt is independent of t . This shows the uniqueness of L, up to Hamiltonian
isotopy, through Lagrangians transverse to the fibers.

For a smoothed regular disk Rj , there is a sequence of data cj;m for each m 2N. Then, we can construct
a sequence of Lagrangian submanifolds Nj;m �D.Rj / such that Nj;m\ @D.Rj /D cj;m. The following
lemma, Lemma 6.5, claims that we can construct Nj;m wisely, so that Nj;m converges to a Lagrangian
lamination Nj as m goes to1.

Lemma 6.5 It is possible to constructNj;m�D.Rj / so that the sequenceNj;m converges to a Lagrangian
lamination Nj �D.Rj / as m!1.
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Proof Let the boundary condition cj;m be the set fl1;m; : : : ; lNm;mg, where li;m is a connected component
of cj;m, or equivalently, li;m is a strand of the braid represented by cj;m. Note that Cj;m is a disjoint union
of solid tori in D.@Rj /, which is defined at the beginning of the present subsection. Then we can divide
cj;m into a partition such that li;m and lj;m are in the same subset if and only if li;m and lj;m are in the
same solid torus (or Sn�1 �Dn, for a higher-dimensional case) in Cj;m. After that, we randomly choose
a connected component ls;m from each subset of the partition.

By Lemma 6.4, there is �s;m WRj !R such that d�s;m D ls;m on @Rj . Then �.d�s;m/ is a Lagrangian
disk in D.Rj /, where �.d�s;m/ is the graph of d�s;m. We can choose a neighborhood N.�.�s;m// of
�.d�s;m/ in D.Rj /, such that N.�.d�s;m//' T �Dn and N.�.d�s;m//\D.@Rj / is the torus in Cj;m
containing ls;m. Moreover, we can assume that

dH .N.�s;m/; �.d�s;m// < 2r
m;

where dH is the Hausdorff metric induced by a fixed Riemannian metric and r < 1 is a small positive
number.

We apply Lemma 6.4 to flt;mC1 2 cj;mC1 j lt;mC1 � N.�.d�s;m//g in N.�.d�s;m// ' T �Dn. Then
we can construct �t;mC1 W Rj ! R such that d�i;mC1 D lt;mC1 on @Rj and �.d�s;m/ is contained in
N.�s;mC1/. We repeat this procedure inductively on m 2N.

Let l be a strand of Cj;1. Then there is a sequence lim;m 2 cj;m such that lim;m converges to l . If we
construct �i;m by repeating the above procedure, we know that

dH .�.d�im;m/; �.d�in;n// < 4r
max.m;n/:

Thus, d�im;m converges. Moreover, by assuming that �i;m.p/D 0 for every i and m, where p is a center
of Rj , �im;m converges to a function �. Then �.d�/ is a Lagrangian disk in D.Rj / whose boundary is l ,
the stand of Cj;1. The union of �.d�/ is the Lagrangian lamination Nj which Nj;m converges to.

Proof of Theorem 1.5 By Lemma 6.2, there is a Lagrangian lamination Li in D.Si /, and by Lemma 6.5,
there is a Lagrangian lamination Nj in D.Rj /. Moreover, every Lagrangian lamination agrees with each
other along boundaries. Thus, we can glue them. Then we obtain a Lagrangian lamination L in M .

6.4 A generalization

In the previous sections, we assumed that  is of generalized Penner type. In the present subsection, we
discuss a symplectic automorphism  W .M;!/! .M;!/, not necessarily to be of generalized Penner
type, with some assumptions. In other words, we prove the following theorem.

Theorem 6.6 Let  WM ��!M be a symplectic automorphism and let B be a Lagrangian branched
submanifold such that  .B / is carried by B . If the associated branched manifold B admits a
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decomposition into singular and regular disks , then there is a Lagrangian lamination L such that if L is a
Lagrangian submanifold of M which is carried by B and if L is compatible with the decomposition
of B� , then there is a Lagrangian submanifold Lm for all m 2 N, which is Hamiltonian isotopic to
 m.L/ and converges to L as closed sets as m!1.

First, we assume that there is a Lagrangian branched submanifold B such that  .B / is (weakly)
carried by B . Then if a Lagrangian submanifold L is (weakly) carried by B , then  .L/ is carried
by B . This is because the proof of Lemma 3.19 carries over with no change.

As mentioned in Section 4.2, we assume that B� admits a decomposition into a union of finite number
of singular disks Si 'Dn and regular disks Rj 'Dn.

Proof of Theorem 6.6 First, we define data on the boundary of each singular and regular disk, in the
same way we did for the case of  of generalized Penner type. Then, on a regular disk Rj , the proofs of
Lemma 6.4 and Lemma 6.5 carry over with no change. Thus, we can construct a Lagrangian lamination
on D.Rj /.

On a singular disk Si , we define the boundary data in the same way. In other words, the boundary data is
defined by the isotopy class of  m.L/\D.@Si /. We also can obtain a matrix ‰, which explains how the
sequences of braids are constructed inductively. However, the rest of the proof of Lemma 6.2 does not
carry over. This is because in the proof of Lemma 6.2, functions of trivial type have a key role. To use the
same proof, we need to show that there are enough functions of trivial type. However, the assumptions
cannot imply the existence of enough functions of trivial type.

For a singular disk Si , let ffmgm2N be a strand of the limit braid on Si . We note that each strand can
be identified to an infinite sequence of functions. We forget specific functions fm, but remember their
types. Then, we obtain a sequence of types. The sequence of types determines the “shape” of strand, for
example, how many times the strand is rotated.

We can construct a symplectomorphism � which is of generalized Penner type such that B� has a
singular disk S such that the limit braid assigned on S has a strand of the same shape. In Section 4.3, we
constructed a Lagrangian submanifold L0 �D.S/ such that @L0 is the strand. Since D.S/'D.Si /, we
assume that L0 is a Lagrangian submanifold in D.Si /. By scaling and translating L0 inside D.Si /, we
obtain a Lagrangian submanifold whose boundary agrees with the strand.

The rest of the proof is the same as the proof of Theorem 1.5.

7 Application to Lagrangian Floer homology

One natural question following the construction of stable/unstable Lagrangian lamination is: how can
we understand those constructed Lagrangian laminations in terms of Fukaya category? The purpose of
Section 7 is to introduce one possible view-point of answering the question. More precisely, we expect
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that a symplectic automorphism of Penner type will induce a pseudo-Anosov autoequivalence in terms of
Fan, Filip, Haiden, Katzarkov and Liu [4].

Remark 7.1 There are two different definitions of pseudo-Anosov autoequivalence. One is defined by
Dimitrov, Haiden, Katzarkov and Kontsevich in [3] and the other is defined in [4].

Roughly, we expect that, for a given � of Penner type, by counting intersection numbers of a Lagrangian
submanifold L and the stable/unstable Lagrangian laminations, we can define a mass function for �.
Then, � will induce a pseudo-Anosov autoequivalence with respect to that mass function.

We do not prove the above claim in the current paper. However, we prove Theorem 7.3 which relates the
intersection numbers with Lagrangian Floer theory.

In Section 7.1, we state Theorem 7.3. In Section 7.2, we will give a proof of Theorem 7.3. Moreover, we
will prove Lemmas 7.7 and 7.8, in order to weaken the difficulties of applying Theorem 7.3 together with
Example 7.9.

Remark 7.2 (1) In order to do Lagrangian Floer theory, we should choose a suitable almost complex
structure J . We will discuss our choice of almost complex structure in Section 7.1; see Remark 7.6.

(2) If M is a surface, ie a 2–dimensional symplectic manifold, then zLi D Li , and Theorem 7.3 is
claiming that the rank of Lagrangian Floer homology of L1 and L2 is the same to the intersection
number of L1 and L2. This is already proven in [3, Lemma 2.18].

7.1 Setting

First, we state Theorem 7.3. Then, we will define the terms in Theorem 7.3.

Theorem 7.3 Let M be a plumbing space of Penner type , and let � W M ��! M be the involution
associated to M . Assume that a transversal pair L1; L2 �M of Lagrangian submanifolds satisfies

(1) �.Li /D Li for i D 0; 1;

(2) if zLi DLi \Mi , then zLi is a Lagrangian submanifold of zM such that zL0 and zL1 are not isotopic
to each other;

(3) L0\L1 D zL0\ zL1;

(4) L0 and L1 are not isotopic to each other.

Then

(7-1) dimHF 0.L1; L2/C dimHF 1.L1; L2/D i.zL1; zL2/;

where HF k.L1; L2/ denotes Z=2–graded Lagrangian Floer homology over the Novikov ring of charac-
teristic 2 and i.zL1; zL2/ denotes the geometric intersection number of zL1 and zL2 in the fixed surface zM .
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In Section 7, we assume that our symplectic manifold M is a plumbing space

M D P.˛1; : : : ; ˛m; ˇ1; : : : ; ˇl/

of Penner type defined as follows.

Definition 7.4 A plumbing space M D P.˛1; : : : ; ˛m; ˇ1; : : : ; ˇl/ is of Penner type if ˛i and ǰ satisfy

(1) ˛1; : : : ; ˛m and ˇ1; : : : ; ˇl are n–dimensional spheres,

(2) ˛i \ j̨ D¿ and ˇi \ ǰ D¿ for all i ¤ j .

Note that P.˛1; : : : ; ˛m; ˇ1; : : : ; ˇl/ is defined in Section 2.1.

From now on, we will define an involution � WM ��!M , which is associated to M .

Involution �0 on T �Sn First, we will define an involution �0 on T �Sn. Let

Sn D fx 2RnC1 j jxj D 1g;

T �Sn D f.x; y/ 2 Sn �RnC1 j x 2 Sn; hx; yi D 0g:

Then we define �0 W T �Sn ��! T �Sn by

�0.x1; : : : ; xnC1; y1; : : : ; ynC1/D .x1; x2;�x3; : : : ;�xnC1; y1; y2;�y3; : : : ;�ynC1/:

Let
W0 D f.cos �; sin �; 0; : : : ; 0/ j � 2 Œ0; 2��g � Sn;

T �S D f.cos �; sin �; 0; : : : ; 0;�r sin �; r cos �; 0; : : : ; 0/ j � 2 Œ0; 2��; r 2Rg � T �Sn:

Then it is easy to check that T �W0 is the set of fixed points of �0, ie �fixed
0 D T �W0.

Involution � associated toM First, we will construct an involution �˛i and �
ǰ

on T �˛i and T � ǰ for
every i and j . Note that T �˛i ; T � ǰ �M .

For each ˛i , we will choose a great circle W˛i � ˛i such that W˛i contains every plumbing point of ˛i .
Then there is a symplectic isomorphism �˛i WT

�Sn ��!T �˛i such that �˛i .S
n/D˛i and �˛i .W0/DW˛i .

One obtains an involution �˛i W T
�˛i

��! T �˛i by setting

�˛i WD �˛i ı �0 ı .�˛i /
�1:

Similarly, one obtains an involution �
ǰ
W T � ǰ

��! T � ǰ .

Without loss of generality, one can assume that �˛i .x/D � ǰ
.x/ for every x 2 T �˛i \ T � ǰ . Finally,

the involution � WM ��!M is defined by

�.x/ WD

�
�˛i .x/ if x 2 T �˛i ;
�
ǰ
.x/ if x 2 T � ǰ :

Let zM be the set of fixed points of �, ie zM D fx 2 M j �.x/ D xg. It is easy to check that zM is a
2–dimensional symplectic submanifold of M . Moreover, zM is symplectomorphic to a plumbing space
P.S˛1 ; : : : ; S˛m ; Sˇ1 ; : : : ; Sˇl / of Penner type. Note that S˛i and S

ǰ
are embedded circles in ˛i and ǰ .
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Definition 7.5 (1) The above � is called the involution associated to M .

(2) The above zM is called the fixed surface of M .

Remark 7.6 It is easy to check that our setting is a special case of Seidel and Smith [13]. More precisely,
[13] considers Lagrangian Floer cohomology on a symplectic manifold carrying a symplectic involution.
Under various topological hypothesis, the authors proved a localization theorem, and the theorem implies
a Smith-type inequality which is closely related to (7-1).

As a basic setup of Lagrangian Floer homology, [13] contains some analytic background; for example, the
choice of almost complex structures. We follow their settings in order to do Lagrangian Floer homology.
We refer the reader to [13, Section 3].

7.2 Proof of Theorem 7.3

LetM be a plumbing space of Penner type, � the associated involution ofM , and L0 and L1 a transversal
pair of Lagrangian submanifolds such that

(1) �.Li /D Li ;

(2) zLi D Li \ zM is a Lagrangian submanifold of zM ;

(3) L0\L1 D zL0\ zL1;

(4) L0 and L1 are not isotopic to each other.

We will compute Z=2–graded Lagrangian Floer homology HF �.L0; L1/ over the Novikov field ƒ of
characteristic 2. To do this, we will prove that chain complexes CF �.L0; L1/ and CF �.zL0; zL1/ have
the same generators and the same differential maps.

First, it is easy to show that CF �.L0; L1/ and CF �.zL0; zL1/ have the same generators since L0 and L1
satisfy that L0\L1 D zL0\ zL1. Thus, CF �.L0; L1/D CF �.zL0; zL1/ as vector spaces.

Second, let @ (resp. Q@) denote the differential map on CF �.L0; L1/ (resp. CF �.zL0; zL1/). Then

@.p/D
X

q2L0\L1
Œu�Wind.Œu�/D1

.#M.p; qI Œu�; J //T !.Œu�/q;

where J is an almost complex structure on M , u is a holomorphic strip connecting p and q, and
M.p; qI Œu�; J / is the moduli space of holomorphic strips. We skip the foundational details of the
definition of @.

One can easily check that � ı u is also a holomorphic strip connecting p and q. Assume that for a
holomorphic strip u, the image of u is not contained in zM . Then u and � ıu will be canceled together
in @.p/, since the Novikov field ƒ is of characteristic 2. Thus, in order to define the differential map @, it
is enough to count holomorphic strips u such that the image of u is contained in zM .

On the other hand, in order to define Q@ W CF �.zL0; zL1/! CF �.zL0; zL1/, one needs to count the holomor-
phic strips on zM . Thus, @.p/D Q@.p/ for all p 2 L0\L1 D zL0\ zL1.
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Under the assumptions, HF �.L0; L1/DHF �.zL0; zL1/. Note that the former is defined on M 2n, but
the latter is defined on a surface zM . Thus, it is enough to check that

dimHF 0.zL1; zL2/C dimHF 1.zL1; zL2/D i.zL1; zL2/:

By Remark 7.2, [3, Lemma 2.18] completes the proof.

7.3 Example 7.9

In the present subsection, we will prove Lemmas 7.7 and 7.8 in order to slightly weaken the difficulty of
applying Theorem 7.3. Then, we will give Example 7.9.

The difficulty of applying Theorem 7.3 is that there are too many conditions which L0 and L1 should
satisfy. Lemmas 7.8 and 7.7 will give us plenty of Lagrangians satisfying the conditions after Hamiltonian
isotopies.

Before giving the statement of Lemmas 7.7 and 7.8, we will establish notation. Since

M D P.˛1; : : : ; ˛m; ˇ1; : : : ; ˇl/

is a plumbing space of Penner type, we can construct a set B of Lagrangian branched submanifolds of M
as we did in Section 3.4. Every Lagrangian branched submanifold B2B is a union of (parts of) ˛i and ǰ

and Lagrangian connected sums ˛i and ǰ . However, there are two possible Lagrangian connected sums
of ˛i and ǰ at each plumbing point p 2 ˛i \ ǰ . They are ˛i #p ǰ and ǰ #p ˛i . By assuming that ˛i is
a positive sphere and ǰ is a negative sphere, one considers the Lagrangian connected sum ǰ #p ˛i , not
˛i #p ǰ . Similarly, by assuming that ˛i is negative and ǰ is positive, one can construct another set Bop

of Lagrangian branched submanifolds.

Lemma 7.7 Let B1;B2 2 B[Bop. Then there is a Hamiltonian isotopy ˆt WM !M such that

(1) ˆt ı �D � ıˆt ,

(2) B0 tˆ1.B1/,

(3) for every q 2B0\ˆ1.B1/, q is not a plumbing point or the antipodal point of a plumbing point.

Proof Since B1 is a union of (parts of) compact cores and their Lagrangian connected sums, we will
construct Hamiltonian isotopies perturbing each compact core ˛i and ǰ . Then, one obtains a perturbation
of B1 as a union of (parts of) perturbations of ˛i , ǰ and Lagrangian connected sums of perturbed ˛i
and ǰ .

First, we choose a smooth function fi W ˛i !R with isolated critical points such that

(1) for every plumbing point p 2 ˛i , fi .p/D fi .�p/D 0, where �p is the antipodal point of p on ˛i ;

(2) every critical point q of fi lies on S˛i and q ¤ p;�p for any plumbing point p 2 ˛i ;

(3) jdfi .x/j< � for all x 2 ˛i and for a sufficiently small fixed positive number �;

(4) fi ı �˛i D fi , where �˛i is the involution on T �˛i defined in Section 7.1.
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We remark that

T �˛i
�˛i
' T �Sn D f.x; y/ 2RnC1 �RnC1 j jxj D 1; hx; yi D 0g;

where �˛i W T
�Sn ��! T �˛i is the identification which we used in Section 7.1. Also, we remark that

in (3), jdfi .x/j is given by the standard metric on R2nC2.

Then, we can extend fi to Qfi W T �˛i !R as follows. Let ı W Œ0;1/!R be a smooth decreasing function
such that

ı.Œ0; ��/D 1; ı.Œ2�;1//D 0:

We set
Qfi W T

�˛i !R; Qfi .x; y/D ı.jyj/fi .x/:

We get Qgj W T � ǰ !R in the same way.

These Hamiltonian functions Qfi and Qgj induce Hamiltonian isotopies on T �˛i and T � ǰ . Moreover,
these Hamiltonian isotopies could be extended on the plumbing space M since the Hamiltonian isotopies
have compact supports on T �˛i and T � ǰ .

Let ˆ˛i ;t WM
��!M be the (extended) Hamiltonian isotopy associated to Qfi . It is easy to check that

ˆ˛i ;t ı �D � ıˆ˛i ;t ;

ˆ˛i ;t .˛k/D ˛k if k ¤ i;

ˆ˛i ;t . ǰ /D ǰ for all j;

ˆ˛i ;1.˛i /D �.dfi /;

where �.dfi / is the graph of dfi in T �˛i � M . Similarly, one can obtain a Hamiltonian isotopy
ˆ

ǰ ;t WM
��!M for each ǰ .

Let
ˆt D

Y
ǰ

ˆ
ǰ ;t ı

Y
˛i

ˆ˛i ;t :

It is easy to check that ˆt satisfies the first condition of Lemma 7.7. Moreover, one can assume that
ˆ1.B1/ is constructed from ˆ1.˛i / and ˆ1. ǰ /. Thus, it is easy to prove that B0 and ˆ1.B1/ satisfy
the second and the last conditions of Lemma 7.7.

We will now explain how Lemma 7.7 weakens a difficulty of applying Theorem 7.3. The difficulty we
will consider is the last condition of Theorem 7.3, ie L0\L1 D zL0\ zL1. The other conditions can be
weakened by a similar way.

Assume that L0 (resp. L1) is a Lagrangian submanifold which is carried by B0 (resp. B1) in B[Bop.
Note that ˆ1.L1/ is carried by ˆ1.B1/, where ˆ1 is the Hamiltonian isotopy constructed in Lemma 7.7.
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We will count the numbers of intersections L0 \ˆ1.L1/ and zL0 \ˆ1.zL1/. If these numbers are the
same, then L0\ˆ1.L1/D zL0\ˆ1.zL1/.

First, we remark that zL0 (resp. ˆ1.zL1/) is a curve carried by a train track B0\ zM (resp. ˆ1.B1/\ zM ).
Then, zL0 (resp. ˆ1.zL1/) has weights on the train track B0 \ zM (resp. ˆ1.B1/\ zM ). Moreover, the
number of zL0\ˆ1.zL1/ isX

x2B0\ˆ1.B1/

.the weight of zL0 at x/ � .the weight of ˆ1.zL1/ at x/:

To count the number of L0\ˆ1.L1/, we can assume that L0\ˆ1.L1/ is contained in a small neigh-
borhood of B0 \ˆ1.B1/. Since L0 is carried by B0, not strongly carried by, L0 can have singular
points. However, the singular points are “close” to one of plumbing points or the antipodes of plumbing
points. Since the intersection points of B0 and ˆ1.B1/ are not plumbing points or their antipodes, every
x 2 L0 \ˆ1.L1/ is a regular point of L0 (resp. ˆ1.L1/). It means that the number jL0 \ˆ1.L1/j is
also given by X

x2B0\ˆ1.B1/

.the weight of zL0 at x/ � .the weight of ˆ1.zL1/ at x/:

Thus, jL0\ˆ1.L1/j D jzL0\ˆ1.zL1/j.

Lemma 7.8 Let L0 and L1 be carried by B0;B1 2 B[Bop. Then there is a Hamiltonian isotopy ˆt
such that

L0\ˆ1.L1/D zL0\ˆ1.zL1/:

Thus, if L0 and L1 are carried by B0;B1 2 B[Bop, and if L0 and L1 satisfy conditions (1), (2) and (4)
of Theorem 7.3, then one can apply Theorem 7.3 for L0 and ˆ1.L1/.

Example 7.9 Let  0 and  1 be symplectomorphisms of Penner type, ie  0 and  1 are products of
positive (resp. negative) powers of �i and negative (resp. positive) powers of �j , where �i and �j are
Dehn twists along ˛i and ǰ respectively. Assume that L0 (resp. L1) is a Lagrangian submanifold of M ,
which is generated from one of compact cores by applying  0 (resp.  1), ie

L0 D  0.˛k/ or  0. ǰ /; L1 D  1.˛k/ or  1. ǰ /:

Then �.Li /D Li since

�.˛i /D ˛i ; �. ǰ /D ǰ ; � ı �i D �i ı �; � ı �j D �j ı � for all i; j:

Moreover, zLi D  i . Q̨k/ or  i . Q̌j /. Thus, zLi is a Lagrangian submanifold of zM . Finally, Li is carried
by B i .

Thus, if L0 and L1 are not isotopic to each other, then one can apply Theorem 7.3.
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A strong Haken theorem

MARTIN SCHARLEMANN

SupposeM DA[T B is a Heegaard split compact orientable 3–manifold and S �M is a reducing sphere
for M . Haken (1968) showed that there is then also a reducing sphere S� for the Heegaard splitting.
Casson and Gordon (1987) extended the result to @–reducing disks in M and noted that in both cases S�

is obtained from S by a sequence of operations called 1–surgeries. Here we show that in fact one may
take S� D S .

57K35

It is a foundational theorem of Haken [4] that any Heegaard splitting M DA[T B of a closed orientable
reducible 3–manifold M is reducible; that is, there is an essential sphere in the manifold that intersects
T in a single circle. Casson and Gordon [1, Lemma 1.1] refined and generalized the theorem, showing
that it applies also to essential disks, when M has boundary. More specifically, if S is a disjoint union
of essential disks and 2–spheres in M then there is a similar family S�, obtained from S by ambient
1–surgery and isotopy, such that each component of S� intersects T in a single circle. In particular, if M
is irreducible, so S consists entirely of disks, S� is isotopic to S .

There is of course a more natural statement, in which S does not have to be replaced by S�. I became
interested in whether the natural statement is true because it would be the first step in a program to
characterize generators of the Goeritz group of S3; see Freedman and the author [3; 8]. Inquiring of
experts, I learned that this more natural statement had been pursued by some, but not successfully. Here
we present such a proof. A reader who would like to get the main idea in a short amount of time could
start with the example in Section 11. Recently, Hensel and Schultens [6] have proposed an alternative
proof that applies when M is closed and S consists entirely of spheres.

Here is an outline of the paper: Sections 1 and 2 are mostly a review of what is known; particularly the
use of verticality in classical compression bodies, those which have no spheres in their boundary. We
wish to allow sphere components in the boundary, and Section 3 explains how to recover the classical
results in this context. Section 4 shows how to use these results to inductively reduce the proof of the
main theorem to the case when S is connected. The proof when S is connected (the core of the proof)
then occupies Sections 6 through 10.

© 2024 MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution License 4.0 (CC BY).
Open Access made possible by subscribing institutions via Subscribe to Open.
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1 Introduction and review

All manifolds considered will be orientable and, unless otherwise described, also compact. For M a
3–manifold, a closed surface T �M is a Heegaard surface inM if the closed complementary components
A and B are each compression bodies, defined below. This structure is called a Heegaard splitting and is
typically written M D A[T B . See, for example, [7] for an overview of the general theory of Heegaard
surfaces. Among the foundational theorems of the subject is the following [1].

Suppose T is a Heegaard surface in a Heegaard split 3–manifold M D A[T B and D is a @ reducing
disk for M , with @D � @�B � @M .

Theorem 1.1 (Haken, Casson–Gordon) There is a @–reducing disk E for M such that

� @E D @D,

� E intersects T in a single essential circle (ie E @–reduces T ).

Note that D and E are isotopic if M is irreducible; but if M is reducible then there is no claim that D
and E are isotopic.

There is a similar foundational theorem, by Haken alone [4], that if M is reducible, there is a reducing
sphere for M that intersects T in a single circle (ie it is a reducing sphere for T ). But Haken made no
claim that the reducing sphere for T is isotopic to a given reducing sphere for M .

The intention of this paper is to fill this gap in our understanding. We begin by retreating to a more general
setting. For our purposes, a compression body C is a connected 3–manifold obtained from a (typically
disconnected) closed surface @�C by attaching 1–handles to one end of a collar of @�C . The closed
connected surface @C � @�C is denoted @CC . This differs from what may be the standard notion in that
we allow @�C to contain spheres, so C may be reducible. Put another way, we take the standard notion,
but then allow the compression body to be punctured finitely many times. In particular, the compact
3–manifolds whose Heegaard splittings we study may have spheres as boundary components.

Suppose then that M D A[T B is a Heegaard splitting, with A and B compression bodies as above. A
disk/sphere set .S; @S/� .M; @M/ is a properly embedded surface in M such that each component of S
is either a disk or a sphere. A sphere in M is called inessential if it either bounds a ball or is parallel to
a boundary component of M ; a disk is inessential if it is parallel to a disk in @M . S may contain such
inessential components, but these are easily dismissed, as we will see.

Definition 1.2 The Heegaard splitting T is aligned with S (or vice versa) if each component of S
intersects T in at most one circle.

For example, a reducing sphere or @–reducing disk for T , typically defined as a sphere or disk that
intersects T in a single essential circle, are each important examples of an aligned disk/sphere. This new
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terminology is introduced in part because, in the mathematical context of this paper, the word “reduce” is
used in multiple ways that can be confusing. More importantly, once we generalize compression bodies
as above, so that some boundary components may be spheres, there are essential spheres and disks in M
that may miss T entirely and others that may intersect T only in curves that are inessential in T . We
need to take these disks and spheres into account.

Theorem 1.3 Suppose that .S; @S/� .M; @M/ is a disk/sphere set in M . Then there is an isotopy of T
such that afterwards T is aligned with S .

Moreover , such an isotopy can be found so that , after the alignment , the annular components S \A, if
any, form a vertical family of spanning annuli in the compression body A, and similarly for S \B .

The terminology “vertical family of spanning annuli” is defined in Section 2.

Note that a disk/sphere set S may contain inessential disks or spheres, or essential disks whose boundaries
are inessential in @M . Each of these are examples in which the disk or sphere could lie entirely in one of
the compression bodies and so be disjoint from T . In the classical setting, Theorem 1.3 has this immediate
corollary:

Corollary 1.4 (strong Haken) Suppose @M contains no sphere components. Suppose S �M (resp.
.S; @S/� .M; @M// is a reducing sphere (resp. @–reducing disk ) in M . Then S is isotopic to a reducing
sphere (resp. @–reducing disk ) for T .

The assumption in Corollary 1.4 that there are no sphere components in @M puts us in the classical setting,
where any reducing sphere S for M must intersect T .

2 Verticality in aspherical compression bodies

We first briefly review some classic facts and terminology for an aspherical compression body C , by
which we mean that @�C contains no sphere components. Later, sphere components will add a small
but interesting amount of complexity to this standard theory. See [7] for a fuller account of the classical
theory. Unstated in that account (and others) is the following elementary observation, which further
supports the use of the term “aspherical”:

Proposition 2.1 An aspherical compression body C is irreducible.

Proof Let � be the cocores of the 1–handles used in the construction of C from the collar @�C � I . If
C contained a reducing sphere S , that is a sphere that does not bound a ball, a standard innermost disk
argument on S \� would show that there is a reducing sphere in the collar @�C � I . But since C is
assumed to be aspherical, @�C contains no spheres, and it is classical that a collar of a closed orientable
surface that is not a sphere is irreducible. (For example, its universal cover is a collar of R2; the interior
of this collar is R3; and R3 is known to be irreducible by the Schoenflies theorem [10].)
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Figure 1: 2–handles and dual spine in a compression body.

Definition 2.2 A properly embedded family .�; @�/ � .C; @C / of disks is a complete collection of
meridian disks for C if C � �.�/ consists of a collar of @�C and some 3–balls.

That there is such a family of disks follows from the definition of a compression body: take � to be the
cocores of the 1–handles used in the construction. Given two complete collections � and �0 of meridian
disks in an aspherical compression body, it is possible to make them disjoint by a sequence of 2–handle
slides, viewing the disks as cocores of 2–handles. (The slides are often more easily viewed dually, as
slides of 1–handles.) The argument in brief is this: If � and �0 are two complete collections of meridians,
an innermost disk argument (which relies on asphericity) can be used to remove all circles of intersection.
A disk cut off from �0 by an outermost arc  of �0\� in �0 determines a way of sliding the 2–handle
in � containing  over some other members of � to eliminate  without creating more intersection arcs.
Continue until all arcs are gone. (A bit more detail is contained in Phase 2 of the proof of Proposition 3.4.)

Visually, one can think of the cores of the balls and 1–handles as a properly embedded graph in C ,
with some valence 1 vertices on @�C , so that the union † of the graph and @�C has C as its regular
neighborhood. † is called a spine of the compression body. As already noted, a spine for C is far from
unique, but one can move from any spine to any other spine by sliding ends of edges in the graph over
other edges, or over components of @�C , dual to the 2–handle slides described above. (See [9] or [7].)
For most arguments it is sufficient and also simplifying to disregard any valence-one vertex that is not
on @�C and the “canceling” edge to which it is attached (but these do briefly appear in the proof of
Corollary 5.5); to disregard all valence-two vertices by amalgamating the incident edges into a single
edge; and, via a slight perturbation, to require all vertices not on @�C to be of valence three. We can, by
edge slides, ensure that only a single edge of the spine is incident to each component of @�C ; this choice
of spine is also sometimes useful.

The spine can be defined as above even when @�C contains spheres. Figure 1 shows a schematic picture
of a (nonaspherical) compression body, viewed first with its (aqua) two-handle structure and then its dual
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1–handle (spinal) structure. @�C is the union of a torus and 3 spheres; the genus two @CC appears in the
spinal diagram only as an imagined boundary of a regular neighborhood of the spine.

Definition 2.3 A properly embedded arc ˛ in a compression body C is spanning if one end of ˛ lies on
each of @�C and @CC . Similarly, a properly embedded annulus in C is spanning if one end lies in each
of @�C and @CC . (Hence, each spanning arc in a spanning annulus is also spanning in the compression
body.)

A disjoint collection of spanning arcs ˛ in a compression body is a vertical family of arcs if there is a
complete collection � of meridian disks for C such that

� ˛\�D∅ and

� for N , the components of C �� that are a collar of @�C , there is a homeomorphism

h W @�C � .I; f0g/! .N; @�C/

such that h.p� I /D ˛, where p is a collection of points in @�C .

A word of caution: We will show in Proposition 2.8 that any two vertical arcs with endpoints on the same
component F � @�C are properly isotopic in C . This is obvious if the two constitute a vertical family. If
they are each vertical, but not as a vertical family, proof is required because the collection of meridian
disks referred to in Definition 2.3 may differ for the two arcs.

There is a relatively simple but quite useful way of characterizing a vertical family of arcs. To that end,
let ˛ be a family of spanning arcs in C and Op D ˛ \ @�C be their endpoints in @�C . An embedded
family c of simple closed curves in @�C is a circle family associated to ˛ if Op � c.

Lemma 2.4 Suppose ˛ is a family of spanning arcs in an aspherical compression body C .

� Suppose ˛ is vertical and c is an associated circle family. Then there is a family A of disjoint
spanning annuli in C such that A contains ˛ and A\ @�C D c.

� Suppose , on the other hand , there is a collection A of disjoint spanning annuli in C that contains ˛.
Suppose further that in the family of circles A \ @�C associated to ˛, each circle is essential
in @�C . Then ˛ is a vertical family.

Proof One direction is clear: suppose ˛ is a vertical family and h W @�C � .I; f0g/! .N; @�C/ is the
homeomorphism from Definition 2.3; then h.c � I / is the required family of spanning annuli (after the
technical adjustment, from general position, of moving the circles h.c�f1g/ off the disks in h.@�C �f1g/
coming from the family � of meridian disks for C ).

For the second claim, let � be any complete collection of meridians for C and consider the collection
of curves �\A. If �\A D ∅ then A is a family of incompressible spanning annuli in the collar
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pA

˛\A

˛0

�\A

�\A

Figure 2: The spanning arc ˛0 avoids �\A.

@�C � I and, by standard arguments, any family of incompressible spanning annuli in a collar is vertical.
Furthermore, any family of spanning arcs in a vertical annulus can visibly be isotoped rel one end of the
annulus to be a family of vertical arcs. So we are left with the case �\A¤∅.

Suppose �\A contains a simple closed curve, necessarily inessential in �. If that curve were essential
in a component A 2A, then the end A\ @�C � c would be nullhomotopic in C . Since the hypothesis is
that each such circle is essential in @�C , this would contradict the injectivity of �1.@�C/! �1.C /.

We conclude that each component of �\A is either an inessential circle in A or an arc in A with both
ends on @CC , since @�� @CC . Such arcs are inessential in A.

Consider what this means in a component A2A; let cADA\@�C 2 c be the end of A in @�C . It is easy
to find spanning arcs ˛0 in A with ends at the points pAD Op\cA, chosen so that ˛0 avoids all components
of �\A. See Figure 2. But, as spanning arcs, ˛\A and ˛0 are isotopic in A rel cA (or, if one prefers,
one can picture this as an isotopy near A that moves the curves �\A off of ˛\A). After such an isotopy
in each annulus, � and ˛ are disjoint. Now apply classic innermost disk, outermost arc arguments to
alter � until it becomes a complete collection of meridians disjoint from A, the case we have already
considered. More details of this classic argument appear in Phase 2 of the proof of Proposition 3.4.

Lemma 2.4 suggests the following definition.

Definition 2.5 Suppose A is a family of disjoint spanning annuli in C and ˛ is a collection of disjoint
spanning arcs in A, with at least one arc of ˛ in each annulus of A. A is a vertical family of annuli if and
only if ˛ is a vertical family of arcs.

Note that for A to be vertical we do not require that A be incompressible in C . This adds some complexity
to our later arguments, particularly the proof of Proposition 3.8.
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Proposition 2.6 Suppose A is a vertical family of annuli in an aspherical compression body C . Then
there is a complete collection of meridian disks for C that is disjoint from A.

Proof Let ˛ �A be a vertical family of spanning arcs as given in Definition 2.5. Since ˛ is a vertical
family of arcs, there is a complete collection � of meridian disks for C that is disjoint from ˛, so �
intersects A only in inessential circles, and arcs with both ends incident to the end of @A at @CC . As
noted in the proof of Lemma 2.4, a standard innermost disk, outermost arc argument can be used to alter
� to be disjoint from A.

Corollary 2.7 Suppose .D; @D/ � .C; @CC/ is an embedded family of disks that is disjoint from an
embedded family of vertical annuli A in an aspherical compression body C . Then there is a complete
collection of meridian disks for C that is disjoint from A[D.

Proof Proposition 2.6 shows that there is a complete collection disjoint from A. But the same proof
(which exploits asphericity through its use of Lemma 2.4) works here, if we also augment the curves
�\A with the circles �\D.

Proposition 2.8 Suppose F is a component of @�C and ˛ and ˇ are vertical arcs in C with endpoints
p; q 2 F . Then ˛ and ˇ are properly isotopic in C .

Notice that the proposition does not claim that ˛ and ˇ are parallel, so in particular they do not necessarily
constitute a vertical family. Indeed the isotopy from ˛ to ˇ that we will describe may involve crossings
between ˛ and ˇ.

Proof Since C is aspherical, genus.F /� 1 and there are simple closed curves c˛; cˇ � F such that

� p 2 c˛ and q 2 cˇ ,

� c˛ and cˇ intersect in a single point.

Since ˛ and ˇ are each vertical, it follows from Lemma 2.4 that there are spanning annuli A˛ and Aˇ
in C that contain ˛ and ˇ, respectively, and whose ends on F are c˛ and cˇ , respectively. Since c˛
and cˇ intersect in a single point, this means that among the curves in A˛\Aˇ there is a single arc  that
spans each annulus, and no other arcs are incident to F . The annulus A˛ then provides a proper isotopy
from the spanning arc ˛ to  and the annulus Aˇ provides a proper isotopy from  to ˇ. Hence, ˛ and ˇ
are properly isotopic in C . See Figure 3.

We now embark on a technical lemma that uses these ideas, which we will need later. Begin with a closed
connected surface F that is not a sphere, and say that circles ˛ and ˇ essentially intersect if they are not
isotopic to disjoint circles and have been isotoped so that j˛ \ˇj is minimized. Suppose Oa � F is an
embedded family of simple closed curves, not necessarily essential, and p1 and p2 are a pair of points
disjoint from Oa. (We only will need the case of two points; the argument below extends to any finite
number, with some loss of clarity in statement and proof.)

Algebraic & Geometric Topology, Volume 24 (2024)



724 Martin Scharlemann

q
ˇ

˛

 

p

c˛ cˇ

A˛

Aˇ

A˛ \Aˇ

A˛ \Aˇ

Figure 3: Arcs ˛ and ˇ both properly isotopic to  .

Let b0 � F be a nonseparating simple closed curve in F that is not parallel to any a 2 Oa. For example, if
all curves in Oa are separating, b0 could be any nonseparating curve; if some curve a 2 Oa is nonseparating,
take b0 to be a circle that intersects a once. Isotope b0 in F so that it contains p1 and p2, and intersects Oa
transversally if at all; call the result b � F . (Note that, following these requirements, Oa may not intersect
b essentially, for example if an innermost disk in F cut off by an inessential a 2 Oa contains pi .) If b
intersects Oa, let qi be points in b\ Oa such that the subintervals �i � b between pi and qi have interiors
disjoint from Oa and are also disjoint from each other. Informally, we could say that qi is the closest point
in Oa to pi along b, and �i is the path in b between pi and qi .

Since b is nonseparating there is a simple closed curve x � F that intersects b exactly twice, with the
same orientation (so the intersection is essential). Isotope x along b until the two points of intersection
are exactly q1 and q2. See Figure 4.

a

a
�

x

b

q
p

Figure 4: Preamble to Lemma 2.9.
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Figure 5: Concluding the proof of Lemma 2.9.

Lemma 2.9 Let .D; @D/� .C; @CC/ and A� C be as in Corollary 2.7. Suppose Ǒ D fˇig for i D 1; 2
is a vertical family of arcs in C whose endpoints pi 2 @�C are disjoint from the family of circles
OaDA\ @�C in @�C . Then Ǒ can be properly isotoped rel fpig so that it is disjoint from A[D.

Proof We suppose that both components of Ǒ are incident to the same component F of @�C . The proof
is essentially the same (indeed easier) if they are incident to different components of @�C . Let � be a
complete family of meridian disks as given in Corollary 2.7, so A lies entirely in a collar of @�C . Per
Lemma 2.4, let B � C be a spanning annulus that contains the vertical pair Ǒ and has the curve b (from
the preamble to this lemma) as its end B \F on F .

Suppose first that b is disjoint from Oa and consider B\.�[D[A/. If there were a circle c of intersection
that is essential in B , then it could not be in �[D, since b does not compress in C . The circle c could
not be essential in A, since b was chosen so that it is not isotopic to any element of Oa, and it can’t be
inessential there either again since b does not compress in C . We deduce that there can be no essential
circle of intersection, so any circles in B\ .�[D[A/ are inessential in B . Also, any arc of intersection
must have both ends on @CC since b is disjoint from Oa. It follows that the spanning arcs Ǒ of B can be
properly isotoped in B to arcs that avoid �[D[A. So, note, they are in the collar of @�C as well as
being disjoint from A[D as required.

Now suppose that b is not disjoint from Oa and let the points qi , the subarcs �i of b and the simple closed
curve x � F be as described in the preamble to this lemma. By construction, each qi is in the end of an
annulus Ai �A; let ˛i � Ai be a spanning arc of Ai with an end on qi . Since A is a vertical family of
annuli, ˛1 and ˛2 are a vertical pair of spanning arcs. Per Lemma 2.4, there is a spanning annulus X
that contains the ˛i and has the curve x as its end X \F on F . Since x essentially intersects b in these
two points, B \X contains exactly two spanning arcs i , for i D 1; 2, each with one endpoint on the
respective qi .
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In B the spanning arcs ˇi can be properly isotoped rel pi so that they are each very near the concatenation
of �i and i ; in X the arcs i can be properly isotoped rel qi to ˛i . See Figure 5. (One could also think of
this as giving an ambient isotopy of the annulus B so that afterwards i D ˛i .) The combination of these
isotopies then leaves ˇi parallel to the arc �i [ ˛i . A slight push-off away from Ai leaves ˇi disjoint
from A[D, as required.

3 Verticality in compression bodies

We no longer will assume that compression bodies are aspherical. That is, @�C may contain spheres. We
will denote by yC the aspherical compression body obtained by attaching a 3–ball to each such sphere.

Figure 1 shows a particularly useful type of meridian disk to consider when @�C contains spheres.

Definition 3.1 A complete collection � of meridian disks in a compression body C is a snug collection
if, for each sphere F � @�C , the associated collar of F in C �� is incident to exactly one disk DF 2�.

The use of the word “snug” is motivated by a simple construction. Suppose � is a snug collection
of meridian disks for C and F � @�C is a sphere. Then the associated disk DF � � is completely
determined by a spanning arc ˛F in the collar of F in C ��, and vice versa: the arc ˛F is uniquely
determined by DF , by the light-bulb trick, and once ˛F is given, DF is recovered simply by taking a
regular neighborhood of ˛F [F ; this regular neighborhood is a collar of F , and the end of the collar
away from F itself is the boundary union of a disk in @CC and a copy of DF . With that description, we
picture DF as sitting “snugly” around ˛F [F . See Figure 6.

Following immediately from Definition 3.1 is:

Lemma 3.2 Suppose C is a compression body and y� is a collection of meridian disks for C that is a
complete collection for the aspherical compression body yC . Then y� is contained in a snug collection
for C .

Proof For each sphere component F of @�C , let ˛F be a properly embedded arc in C � y� from F

to @�C and construct a corresponding meridian disk DF as just described. Then the union of y� with all
these new meridian disks is a snug collection for C .

DF

˛F
@CC

F

Figure 6: DF snuggles down around ˛F [F .
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Following Definition 2.2 we noted that for an aspherical compression body, two complete collections of
meridian disks can be handle-slid and isotoped to be disjoint. As a useful warm-up we will show that this
is also true for snug collections, in case @�C contains spheres. This is the key lemma:

Lemma 3.3 Suppose C is a compression-body with p; q 2 @CC and r 2 int.C /. Suppose ˛ and ˇ are
arcs from p and q, respectively, to r in C . Then there is a proper isotopy of ˇ to ˛ in C , fixing r .

Proof Let † be a spine for the compression-body C . By general position, we may take † to be disjoint
from the path ˛[ˇ. Since �1.@CC/! �1.C / is surjective there is a path  in @C such that the closed
curve ˛ [ ˇ [  is nullhomotopic in C . See Figure 7. Slide the end of ˇ at q along  to p so that ˇ
becomes an arc ˇ0 (parallel to the concatenation of  and ˇ) also from p to r , one that is homotopic to ˛
rel endpoints. A sophisticated version of the light-bulb trick [5, Proposition 4] then shows that ˛ and ˇ0

are isotopic rel endpoints. (Early versions of this paper appealed to the far more complex [2, Theorem 0]
to provide such an isotopy.)

Proposition 3.4 Suppose � and �0 are snug collections of meridian disks for C . Then � can be made
disjoint from �0 by a sequence of handle slides and proper isotopies.

Proof Let F D fFig for 1 � i � n be the collection of spherical boundary components of C . Since
� (resp. �0) is snug, to each Fi there corresponds a properly embedded arc ˛i (resp. ˛0i ) in C from
Fi to @CC and this arc determines the meridian disk in Di � � (resp. D0i � �

0) associated to Fi as
described after Definition 3.1. The proof in the aspherical case (as outlined following Definition 2.2; see
also [7]) was achieved by isotopies and slides reducing j�\�0j. In the general case the proof proceeds
in two phases.

Phase 1 We will properly isotope the arcs f˛ig to f˛0ig for 1� i � n. The associated ambient isotopy
of � in C may increase j�\�0j but in this first phase we don’t care. Once each ˛i D ˛0i , each snug
disk Di can be made parallel to D0i by construction.

Pick a sphere component Fi with associated arcs ˛i and ˛0i . Isotope the end of ˛i on Fi to the end r
of ˛0i at Fi . Temporarily attach a ball B to Fi and apply Lemma 3.3 to the arcs ˛ and ˛0, after which ˛
and ˛0 coincide. By general position, we can assume the isotopy misses the center b of B and by the
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light-bulb trick that it never passes through the radius of B between b and r . Now use radial projection
from b to push the isotopy entirely out of B and thus back into C .

Having established how to do the isotopy for a single ˛i , observe that we can perform such an isotopy
simultaneously on all ˛i for 1� i � n. Indeed, anytime the isotopy of ˛i is to cross j̨ with i ¤ j we
can avoid the crossing by pushing it along j̨ , over the sphere Fj , and then back along j̨ ; in short, use
the light-bulb trick.

Phase 2 We eliminate �\�0 by reducing j�\�0j, as in the aspherical case. After Phase 1, the disks
fDig for 1� i � n are parallel to the disks fD0ig for 1� i � n; until the end of this phase we take them
to coincide and also to be fixed, neither isotoped nor slid. Denote the complement in � (resp. �0) of this
collection of disks fDig by y� (resp. y�0), since they constitute a complete collection of meridians in yC .
Moreover, the component of C �fDig containing y� and y�0 is homeomorphic to yC , so that is how we
will designate that component.

Motivated by that last observation, we now complete the proof by isotoping and sliding y�, much as in
the aspherical case, to reduce j y�\ y�0j. Suppose first there are circles of intersection and let E 0 � y�0

be a disk with interior disjoint from y� cut off by an innermost such circle of intersection in y�0. Then
@E 0 also bounds a disk E � y� (which may further intersect y�0). Although C is no longer aspherical, the
sphere E [E 0 lies entirely in yC , which is aspherical, so E [E 0 bounds a ball in yC , through which we
can isotope E past E 0, reducing j y�\ y�0j by at least one.

Once all the circles of intersection are eliminated as described, we consider arcs in y�\ y�0. An outermost
such arc in y�0 cuts off a disk E 0 from y�0 that is disjoint from y�; the same arc cuts off a disk E from y�
(which may further intersect y�0). The properly embedded disk E[E 0 � yC has boundary on @C yC and its
interior is disjoint from �. The latter fact means that its boundary lies on one end of the collar yC � �.�/
of a nonspherical component F of @�C . But in a collar of F any properly embedded disk is @–parallel.
Use the disk in the end of the collar (the other end from F itself) to which E [E 0 is parallel to slide E
past E 0 (possibly sliding it over other disks in �, including those in fDig), thereby reducing j y�\ y�0j by
at least one.

Once y� and y�0 are disjoint, slightly push the disks fDig off the presently coinciding disks fD0ig so that
� and �0 are disjoint.

Energized by these observations we will now show that all the results of Section 2 remain true (in an
appropriate form) in compression bodies that are not aspherical; that is, even when there are sphere
components of @�C . Here are the analogous results, with edits on statement in boldface, and proofs
annotated as appropriate:

Lemma 3.5 (cf Lemma 2.4) Suppose Ǫ is a family of spanning arcs in compression body C .

� Suppose Ǫ is vertical and c is an associated circle family. Then there is a family A of disjoint
spanning annuli in C such that A contains Ǫ and A\ @�C D c.
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� Suppose , on the other hand , there is a collection A of disjoint spanning annuli in C that contains Ǫ .
Suppose further that

– at most one arc in Ǫ is incident to each sphere component of @�C , and

– in the family of circles A\ @�C associated to Ǫ , each circle lying in a nonspherical compo-
nent of @�C is essential.

Then ˛ is a vertical family.

Proof The proof of the first statement is unchanged.

For the second, observe that by Lemma 2.4 there is a collection y� of meridian disks in yC such that y� is
disjoint from each arc ˛ 2 Ǫ that is incident to a nonspherical component of @�C . By general position,
y� can be taken to be disjoint from the balls C � yC and so lie in C .

Now consider an arc ˛0 2 Ǫ that is incident to a sphere F in @�C . It may be that y� intersects ˛0. In this
case, push a neighborhood of each point of intersection along ˛0 and then over F . Note that this last
operation is not an isotopy of y� in C , since it pops across F , but that’s unimportant — afterwards the
(new) y� is completely disjoint from ˛0. Repeat the operation for every component of Ǫ that is incident to
a sphere in @�C , so that y� is disjoint from all of Ǫ . Now apply the proof of Lemma 3.2, expanding y� by
adding a snug meridian disk for each sphere in @�C , using the corresponding arc in Ǫ to define the snug
meridian disk for spheres that are incident to Ǫ .

Proposition 3.6 (cf Corollary 2.7) Suppose .D; @D/� .C; @CC/ is an embedded family of disks that
is disjoint from an embedded family of vertical annuli A in C . Then there is a complete collection of
meridian disks for C that is disjoint from A[D.

Proof Let ˛ � A be a vertical family of spanning arcs as given in Definition 2.5. This means there
is a complete collection � of meridian disks for C that is disjoint from ˛, so � intersects A only in
inessential circles, and in arcs with both ends incident to the end of A at @CC .

Let C 0 be the compression body obtained by attaching a ball to each sphere component of @�C that is
not incident to A. Because � is a complete collection in C , it is also a complete collection in C 0, since
attaching a ball to a collar of a sphere just creates a ball. Consider the curves �\ .A[D/, and proceed
as usual, much as in Phase 2 of the proof of Proposition 3.4:

If there are circles of intersection, an innermost one in � cuts off a disk E �� and a disk E 0 � .A[D/

which together form a sphere whose interior is disjoint from A and so bounds a ball in C 0. In C 0, E 0 can
be isotoped across E, reducing j�\ .A[D/j. On the other hand, if there are no circles of intersection,
then an arc of intersection  outermost in A[D cuts off a disk E 0 � .A[D/ and a disk E �� which
together form a properly embedded disk E 00 in C 0 �� whose boundary lies on @CC . Since E 00 lies
in C 0 ��, it lies in a collar of @�C 0 and so is parallel to a disk in the other end of the collar. (If the
relevant component of @�C 0 is a sphere, we may have to reset E to be the other half of the disk in � in
which  lies to accomplish this.) The disk allows us to slide E past E 0 and so reduce j�\ .A[D/j.
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The upshot is that eventually, with slides and isotopies, � can be made disjoint from �\ .A[D/ in C 0.
The isotopies themselves can’t be done in C , since sphere boundary components disjoint from A may get
in the way, but the result of the isotopy shows how to alter � (not necessarily by isotopy) to a family of
disks �0 disjoint from A[D that is complete in C 0. Now apply the argument of Lemma 3.2, adding a
snug disk to �0 for each sphere component of @�C that was not incident to A and so bounded a ball
in C 0. These additional snug disks, when added to �0, create a complete collection of meridian disks
for C that is disjoint from A[D, as required.

Proposition 3.7 (cf Proposition 2.8) Suppose ˛ and ˇ are vertical arcs in C with endpoints p and q in
a component F � @�C . Then ˛ and ˇ are properly isotopic in C .

Proof If F is not a sphere, apply the argument of Proposition 2.8. If F is a sphere, apply Lemma 3.3.

Proposition 3.8 (cf Lemma 2.9) Suppose .D; @D/� .C; @CC/ is an embedded family of disks that is
disjoint from an embedded family of vertical annuli A in C . Suppose Ǒ D fˇig for i D 1; 2 is a vertical
family of arcs in C whose endpoints pi 2 @�C are disjoint from the family of circles Oa D A\ @�C

in @�C . Then ˇ can be properly isotoped rel fpig so that it is disjoint from A[D.

Proof The proof, like the statement, is essentially identical to that of Lemma 2.9, with this alteration
when F � @C� is a sphere: Use Lemma 3.3 to isotope the vertical (hence parallel) pair Ǒ rel pi until the
arcs are parallel to the vertical family of spanning arcs of A that are incident to F . In particular, we can
then take Ǒ to lie in the same collar F � I as A does, and to be parallel to A in that collar. It is then a
simple matter, as in the proof of Lemma 2.9, to isotope each arc in Ǒ rel pi very near to the concatenation
of arcs �i disjoint from A and arcs ˛i in A and, once so positioned, to push Ǒ off of A[D.

Let us now return to the world and language of Heegaard splittings with a lemma on verticality, closely
related to @–reduction of Heegaard splittings.

Suppose M D A[T B is a Heegaard splitting of a compact orientable 3–manifold M and .E; @E/ �
.M; @�B/ is a properly embedded disk, intersecting T in a single circle, so that the annulus E \B is
vertical in B and the disk E \A is essential in A. Since E \B is vertical, there is a complete collection
of meridian disks � in the compression body B such that a component N of B �� is a collar of @�B in
which E \B is a vertical annulus. Parametrize E as a unit disk with center b 2E \A and E \B the set
of points in E with radius 1

2
� r � 1. Let � be a vertical radius of E, with �A the half in the disk E \A

and �B the half in the annulus E \B .

Let E � Œ�1; 1� be a collar of the disk E in M and consider the manifold M0 DM � .E � .��; �//, the
complement of a thinner collar of E. It has a natural Heegaard splitting, obtained by moving the solid
cylinders .E \A/� .�1;��� and .E \A/� Œ�;�1/ from A to B . Classically, this operation (when E is
essential) is called @–reducing T along E [7, Definition 3.5]. We denote this splitting byM0DA0[T0

B0,
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recognizing that if E is separating, it describes a Heegaard splitting of each component. Denote the
spanning arcs b � Œ�1;��� and b � Œ�; 1� in B0 by ˇ� and ˇC, respectively. See the top two panes of
Figure 8, with a schematic rendering below.

Lemma 3.9 The spanning arcs ˇ˙ are a vertical family of arcs in B0.

Proof The complete collection of meridian disks � for B is disjoint from the annulus E\B , so remains
in B0. Viewed in the collar component N Š .F � I / in the complement of � to which E \B belongs,
the operation described cuts the component F � @�B by @E � F , then caps off the boundary circles
by disks to get a new surface F0 and extends the collar structure to F � I . The rectangles �� Œ�; 1� and
�� Œ�1;��� provide isotopies in M0 from ˇ˙ to the vertical arcs �B � f˙1g, illustrating that ˇ˙ is a
vertical family.

4 Reducing Theorem 1.3 to the case S is connected

To begin the proof of Theorem 1.3 note that (unsurprisingly) we may as well assume each component
of S is essential; that is no sphere in S bounds a ball and no sphere or disk in S is @–parallel. This can
be accomplished simply by isotoping all inessential components well away from T . So henceforth we
will assume all components of S are essential, including perhaps disks whose boundaries are inessential
in @M but which are not @–parallel in M .

Assign a simple notion of complexity .g; s/ to the pair .M; T /, with g the genus of T and s the number
of spherical boundary components of M . We will induct on this pair, noting that there is nothing to prove
if g D 0 and s � 2.
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Suppose then that we are given a disk/sphere set .S; @S/� .M; @M/ in which all components are essential.
We begin with:

Assumption 4.1 (inductive assumption) Theorem 1.3 is true for Heegaard splittings of manifolds that
have lower complexity than that of .M; T /.

With this inductive assumption we have:

Proposition 4.2 It suffices to prove Theorem 1.3 for a single component S0 of S .

Proof Let M DA[T B be a Heegaard splitting, S �M be a disk/sphere set, in which each component
is essential in M , and let S0 be a component of S that is aligned with T . The goal is to isotope the other
components of S so that they are also aligned, using the inductive Assumption 4.1.

Case 1 S0 is a sphere and S0\T D∅ or an inessential curve in T .

If S0 is disjoint from T , say S0 � B , then it cuts off from M a punctured ball. This follows from
Proposition 2.1, which shows that S0 bounds a ball in the aspherical compression body yB and so a
punctured 3–ball in B itself. Any component of S �S0 lying in the punctured 3–ball is automatically
aligned, since it is disjoint from T . Removing the punctured 3–ball from B leaves a compression body B0
with still at least one spherical boundary component, namely S0. The Heegaard split M0 D A[T B0 is
unchanged, except there are fewer boundary spheres in B0 than in B because S0 is essential. Now align
all remaining components of S �S0 using the inductive assumption, completing the construction.

Suppose next that S0 intersects T in a single circle that bounds a disk DT in T , and S0 can’t be isotoped
off of T . Then S0 again bounds a punctured ball in M with m� 1 spheres of @M lying in A and n� 1
spheres of @M lying in B . S0 itself is cut by T into hemispheres DA D S0 \A and DB D S0 \B . A
useful picture can be obtained by regarding DA (say) as the cocore of a thin 1–handle in A connecting a
copy AC of A with m fewer punctures to a boundary component T� DDT [DA of an m–punctured ball
in A. In this picture, S0 and T� are parallel in yB; the interior of the collar between them has n punctures
in B itself. See Figure 9.

Let ˇ be the core of the 1–handle, divided by S0 into a subarc ˇC incident to TCD @AC and ˇ� incident
to the sphere T�. Now cut M along S0, dividing it into two pieces. One is a copy MC D AC[TC

BC

ofM , but withm fewer punctures in AC and n�1 fewer in BC (a copy of S0 is now a spherical boundary
component of BC). The other is an mCnC 1 punctured 3–sphere M�, Heegaard split by the sphere T�.
(Neither of the spanning arcs ˇC nor ˇ� play a role in these splittings yet.)

Now apply the inductive assumption to align TC and T� with the disk/sphere set S �S0 (not shown in
Figure 9). Afterwards, reattach MC to M� along the copies of S0 in each. The result is again M , and S
is aligned with the two parts T� and TC in T . But to recover T itself, while ensuring that S remains
aligned, we need to ensure that ˇ can be properly isotoped rel S0 so that it is disjoint from S �S0. Such
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Figure 9: Clockwise through the inductive step in Case 1.

a proper isotopy of ˇ will determine an isotopy of T by viewing ˇ as the core of a tube (the remaining
part of T ) connecting TC to T�. But once S �S0 is aligned, the proper isotopy of ˇ can be found by first
applying Proposition 3.8 to ˇC and the family S \B0 of disks and annuli in the compression body BC
and then proceeding similarly with the arc ˇ� in M�.

Case 2 S0 is a sphere that intersects T in an essential curve.

As in Case 1, S0 is cut by T into hemispheres DA D S0\A and DB D S0\B and we can consider DA
(say) as the cocore of a thin 1–handle in A. Continuing as in Case 1, denote the arc core of the 1–handle
by ˇ; S0 again divides the arc ˇ into two arcs which we label ˇ˙.

If S0 separates, then it divides M into two manifolds, say M˙ containing, respectively, ˇ˙. Apply the
same argument in each that was applied in Case 1 to the manifold MC.

If S0 is a nonseparating sphere then we can regard S � S0 as a disk sphere set in the manifold
M0 D M � �.S0/. Since S0 is two-sided, two copies S˙ of S0 appear as spheres in @M0. Choose
the labeling such that each arc ˇ˙ has one end in the corresponding S˙. M0 has lower complexity (the
genus is lower) so the inductive assumption applies, and the spheres in S �S0 can be aligned with T0.
Apply Proposition 3.8 to the arcs ˇ˙ and then reconstruct .M; T /, now with T aligned with S , as in Case 1.

Case 3 S0 is a separating disk.

Suppose, with no loss of generality, that @S0 � @�B , so S0 intersects A in a separating disk DA and B
in a separating vertical spanning annulus. As in the previous cases, let M˙ be the manifolds obtained
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from M by cutting along S0, ˇ the core of the 1–handle in A whose cocore is DA, and ˇ˙ its two subarcs
in M˙, respectively.

The compression body A� �.DA/ consists of two compression bodies, A˙ in M˙, respectively. As
described in the preamble to Lemma 3.9, the complement B˙ of A˙ in M˙ is a compression body, in
which ˇ˙ is a vertical spanning arc. So the surfaces T˙ obtained from T by compressing along DA are
Heegaard splitting surfaces for M˙, and the pairs .M˙; T˙/ have lower complexity than .M; T /.

Now apply the inductive hypothesis: Isotope each of T˙ in M˙ so that they align with the components
of S �S0 lying in M˙. As in Case 1, apply Proposition 3.8 to each of ˇ˙ and then reattach MC to M�
along disks in @M˙ centered on the points ˇ˙ \ @M˙ and simultaneously reattach ˇC to ˇ� at those
points. The result is an arc isotopic to ˇ which is disjoint from S �S0. Moreover, the original Heegaard
surface T can be recovered from T˙ by tubing them together along ˇ and, since ˇ is now disjoint
from S �S0, all of T is aligned with S .

Case 4 S0 is a nonseparating disk.

Near S0 the argument is the same as in Case 3. Now, however, the manifold M0 obtained by cutting
along S0 is connected. The construction of its Heegaard splitting M0 DA0[T0

B0 and vertical spanning
arcs ˇ˙ proceeds as in Case 3, and, since genus.T0/D genus.T /� 1, we can again apply the inductive
hypothesis to align S �S0 with T0.

If @S0 separates the component F of @�B � @M in which it lies, say into surfaces F˙, the argument
concludes just as in Case 3. If @S0 is nonseparating in F , then we encounter the technical point that
Proposition 3.8 requires that ˇ be a vertical family of arcs. But this follows from Lemma 3.9.

5 Breaking symmetry: stem swaps

Applications of Lemma 3.3 extend beyond Propositions 2.8 and 3.8. But the arguments will require
breaking symmetry: given a Heegaard splitting M D A[T B of a compact orientable 3–manifold M
and † a spine for B , we can, and typically will, regard B as a thin regular neighborhood of †, with T
as the boundary of that thin regular neighborhood. This allows general position to be invoked as if B
were a graph embedded in M . Edge slides of † can be viewed as isotopies of T in M and therefore
typically are of little consequence. We have encountered this idea in the previous section: the boundary
of a tubular neighborhood of an arc ˇ there represented an annulus in T ; a proper isotopy of ˇ was there
interpreted as an isotopy of T . We can then regard A as the closure of M � �.†/; a properly embedded
arc in A then appears as an arc whose interior lies in M �† and whose endpoints may be incident to †.
We describe such an arc as a properly embedded arc in A whose endpoints lie on †. This point of view is
crucial to what follows; without it many of the statements might appear to be nonsense.

Let R be a sphere component of @�B . Let † be a spine for B for which a single edge � is incident to R.
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Figure 10: A stem swap for the case p; q … @�B �†.

Definition 5.1 The complex � [R is called a flower, with � the stem and R the blossom. The point
� \R is the base of the blossom, and the other end of � is the base of both the stem and the flower.

Now suppose � 0 is a properly embedded arc in A from the base of the blossom R to a point p in †� � .
See Figure 10 for an example when p and q lie on edges of the spine.

Proposition 5.2 (stem swapping) The complex †0 obtained from † by replacing the arc � with the
arc � 0 is , up to isotopy , also a spine for B . That is , T is isotopic in M to the boundary of a regular
neighborhood of †0.

Proof Given the spine † as described, there is a natural alternative Heegaard splitting for M in which R
is regarded as lying in @�A instead of @�B . It is obtained by deleting the flower � [R from †, leaving
R as an additional component of @�A. Call the resulting spine †� and let AC be the complementary
compression body (so M D AC [T 0 �.†�/). Apply the argument of Lemma 3.3 to AC, with ˇ D � ,
˛ D � 0 and r DR. (See Phase 1 of the proof of Proposition 3.4 for how we can regard the sphere R as
the point r .) Let  be the path in @CAC D @.�.†�// given by Lemma 3.3. Note that in Figure 10 some
edges in the spine †� are shown, but we do not claim that the path  from Lemma 3.3 is a subgraph
of †�. Rather, the path is on the boundary of a regular neighborhood of †� and does not necessarily
project to an embedded path in †� itself. Note further that after the stem swap the edge in † that contains
p in its interior (if p is on an edge and not on @�B) becomes two edges in †0 and, dually, when q is not
on @�B �†, it is natural to concatenate the two edges of † that are incident to q into a single edge of †0.

Returning to the original splitting, sliding an end of � along  does not change the fact that † is a spine
for B and, viewing T as the boundary of a regular neighborhood of †, the slide defines an isotopy of T
in M . After the slide, according to Lemma 3.3, � and � 0 have the same endpoints at R and p; then � can
be isotoped to � 0 rel its endpoints, completing the proof. (Note that passing � through � 0, as must be
allowed to invoke Lemma 3.3, has no significance in this context.)

Definition 5.3 The operation of Proposition 5.2 in which we replace the stem � with � 0 is called a stem
swap. If the base of the stem � 0 is the same as that of � , it is called a local stem swap.
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Definition 5.4 Suppose M DA[T B , and † is a spine for B . A sphere Re that intersects † in a single
point in the interior of an edge e is an edge-reducing sphere for † and the associated edge e is called a
reducing edge in †.

There is a broader context in which we will consider stem swaps: Let R be an embedded collection of
edge-reducing spheres for †, chosen so that no edge of † intersects more than one sphere in R. (The
latter condition, that each edge of † intersect at most one sphere in R, is discussed at the beginning of
Section 8.) Let MR be a component of M �R and R0 �R be the collection incident to MR. (Note that
a nonseparating sphere in R may be incident to MR on both its sides. We will be working with each side
independently, so this makes very little difference in the argument.)

For a sphere Re 2R0, and e 2† the corresponding edge, the segment (or segments) e\MR can each be
regarded as a stem in MR, with blossom (one side of) Re . A stem swap on this flower can be defined for
an arc � 0 �MR with interior disjoint from † that runs from the point e\Re to a point in †\MR. Such
a swap can be viewed in M as a way of replacing e with another reducing edge e0 for Re that differs
from e inside of MR, leaving the other segment (if any) of e inside MR alone.

Corollary 5.5 If � and � 0 both lie in MR, then the isotopy of T described in Proposition 5.2 can be
assumed to take place entirely in MR.

Proof The manifold MR has a natural Heegaard splitting MR D AR[T0
BR induced by that of M , in

which each boundary sphere R 2R0 is assigned to @�BR. We describe this construction:

Recall the setting: † is a spine for B and B itself is a thin regular neighborhood of †. Thus an edge-
reducing sphere R 2R intersects B in a tiny disk, centered at the point R\†. This disk is a meridian of
the tubular neighborhood of the reducing edge that contains the point R\†. The rest of R, all but this
tiny disk, is a disk lying in A. So R is a reducing sphere for the Heegaard splitting of M .

In the classical theory of Heegaard splittings — see eg [7] — such a reducing sphere naturally induces
a Heegaard splitting for the manifold M obtained by reducing M along R; that is, M is obtained by
removing an open collar �.R/ of the sphere R and attaching 3–balls to the two copies R˙ of R at the
ends of the collar. The classical argument then gives a natural Heegaard splitting on each component
of M : replace the annulus T \�.R/ by equatorial disks in the two balls attached to R˙. Translated to our
setting, the original spine † thereby induces a natural spine on each component of M : the reducing edge
is broken in two when �.R/ is removed, and at each side of the break, a valence-one vertex is attached,
corresponding to the attached ball.

For understandingMR, we don’t care aboutM and the unconventional (because of the valence one vertex)
spine just described. We care about the manifold M ��.R/, in which there are two new sphere boundary
components created, but no balls are attached. But the classical construction suggests how to construct
a natural Heegaard splitting for the manifold M � �.R/ and a natural spine for it: simply regard both
spheres R˙ as new components of @�B and attach them at the breaks in the reducing edge where, above,
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Figure 11: Blossoms Rf and R0
f
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we had added a valence 1 vertex. This Heegaard splitting for M � �.R/ is topologically equivalent to
taking the classical construction of the splitting on M and removing two balls from the compression
body B .

When applied to all spheres in R simultaneously, the result of this construction is a natural Heegaard
splitting on each component of M ��.R/. On MR it gives the splitting AR[T0

BR which was promised
above, and also a natural spine†R for BR. The required isotopy then follows, by applying Proposition 5.2
to the Heegaard splitting MR D AR[T0

BR, with BR a thin regular neighborhood of the spine †R.

Suppose, in a stem swap, that � 0 intersects an edge-reducing sphere Rf , with associated edge f ¤ � .
See the first panel of Figure 11. (Note that f is an edge in † but if p 2 f then f becomes two edges
in †0.) Although Rf is no longer an edge-reducing sphere for †0, there is a natural way to construct a
corresponding edge-reducing sphere R0

f
for †0, one that intersects f in the same point, but now intersects

� instead of � 0. At the closest point in which � 0 intersects Rf , tube a tiny neighborhood in Rf of the
intersection point to its end at R and then around R. Repeat until the resulting sphere is disjoint from � 0,
as shown in the second panel of Figure 11. One way to visualize the process is to imagine ambiently
isotoping R0

f
, in a neighborhood of � 0, to the position of Rf , as shown in the third panel of Figure 11. The

effect of the ambient isotopy is as if R is a bead sitting on the embedded arc �[� 0 and the ambient isotopy
moves the bead along this arc and through Rf . We will call R0

f
the swap-mate of Rf (and vice versa).

Here is an application.

Suppose R0 is a reducing sphere for a reducing edge e0 2† and � � e0 is one of the two segments into
which R0 divides e0. Let � 0 � A�R0 be an arc whose ends are the same as those of � but is otherwise
disjoint from � . Let e00 be the arc obtained from e by replacing � with � 0. Let �.R0/ be the interior of a
collar neighborhood of R0 on the side away from � .

Viewing � [R0 as a flower in the manifold M � �.R0/, and the substitution of � 0 for � as a local stem
swap, it follows from the proof of Proposition 5.2 that the 1–complex †0 obtained from † by replacing
e0 with e00 is also a spine for B . That is, T is isotopic in M to the boundary of a regular neighborhood
of †0. Moreover, e00 remains a reducing edge in †0 with edge-reducing sphere R0.
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Figure 12: Spines † and †0.

With this as context, we have:

Lemma 5.6 Suppose E is a collection of edges in †, with e0 2 E, and let Er � E be the set of reducing
edges for † that lie in E. Similarly, suppose E0 is a collection of edges in †0 containing the edge e00
constructed above , and E0r � E0 is the set of reducing edges for †0 that lie in E0. If E0� e00 � E� e0 then
E0r � e

0
0 � Er � e0.

Proof Let f be an edge in E0r other than e00, and R0
f

be a corresponding edge-reducing sphere for †0.
Then R0

f
is disjoint from e00, so, although it may intersect e0, any intersection points lie in � � e0. The

swap-mate Rf of R0
f

then may intersect � 0 but by construction it will not intersect � . Hence, Rf is
disjoint from e0 (as well as all edges of † other than f ). Hence, Rf is an edge-reducing sphere for †
and f 2 Er .

Consider as usual a Heegaard splitting M D A[T B , where B is viewed as a thin regular neighborhood
of a spine †. Suppose E is a collection of edges in † and Er � E is the set of reducing edges for † that
lie in E. (For example, E might be the set of edges that intersects a specific essential sphere S in M , as
in the discussion that will follow Corollary 5.5. This motivates the appearance of the red parallelograms
in Figure 12.) Suppose R is an embedded collection of edge-reducing spheres for †, one associated to
each edge in Er . Let MR be a component of M �R and consider a sphere R0 2R0 � @MR. Then, as
just described before Lemma 5.6, a segment of the associated reducing edge e0 that lies in MR can be
regarded inMR as a stem � with blossom R0. (The rest of e0 is shown as a dotted extension in Figure 12.)
Let � 0 be another arc properly embedded in MR which has the same ends as � but is otherwise disjoint
from †, and let †0 be the spine for B constructed as above for the local stem swap of � to � 0. Notice
that because int.MR/ is disjoint from the spheres R, int.� 0/� int.MR/ is also disjoint from R.

Proposition 5.7 Suppose E0 is a subcollection of the edges E� e0, together possibly with the edge e00,
and denote by E0r � E0 the set of reducing edges for †0 in E0. There is a collection of edge-reducing
spheres R0 for †0, one associated to each edge in E0r , such that R0 �R.
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Proof From Lemma 5.6 we know that E0r � e
0
0 � Er � e0. Since � 0 is in MR, it is disjoint from R, so

for each edge f in E0r � e
0
0 we can just use the corresponding edge reducing sphere for f in †. In the

same vein, since R0 is disjoint from � 0, R0 is an edge-reducing sphere for e00 in †0.

There is an analogous result for more general stem swaps, but it is more difficult to formulate and prove.
To that end, suppose � 0 �MR has one end at the base of R0 and the other at a point p 2†. Here p is
not a vertex of †, nor a point in R, and int.� 0/ is disjoint from †. If p lies on an edge of †, the edge is
not one that is also incident to the base point q of � .

Consider the stem swap as described in Proposition 5.2. After the stem swap, one difference between the
two spines † and †0 (other than the obvious switch from � to � 0) is that if p lies on an edge e �† then
e becomes two edges e˙ in †0 and if the base point q of � lies on an edge e0 �†0 then e0 began as two
edges e0

˙
in †. See Figure 12.

Definition 5.8 A collection of edges E0 in †0 is consistent with the swap of � to � 0 (or swap-consistent)
if, when p and/or q lie on edges as just described, E0 has these properties:

� E0�fe˙; e
0; � 0g � E.

� If either e˙ is in E0 then e 2 E.

� If both e0
˙
… E0 then e0 … E0. Or, equivalently, if e0 2 E0 then at least one of e0

˙
2 E.

� Suppose e is a reducing edge in E with Re the corresponding edge-reducing sphere in R. Then
the segment eC or e� not incident to Re is not in E0. There must be such a segment since by
hypothesis p …R.

(In the case that p and/or q lie on @�B �†, so the edges e and/or e0 are not defined, statements about
these edges are deleted.)

Lemma 5.9 Suppose E0 is consistent with the swap described above. Then there is collection of
edge-reducing spheres R0 for †0, one associated to each reducing edge in E0, such that R0 �R.

Proof Consider any reducing edge f 2 E0. If f D � 0 use R0 for the corresponding sphere in R0. In any
other case, since f is a reducing edge for an edge in †0, a corresponding edge-reducing sphere R0

f
is

automatically disjoint from int.� 0/ since R0
f

only intersects †0 in a single point. Its swap-mate Rf is
then an edge-reducing sphere for †, because it is disjoint from int.�/. We do not know that Rf 2R and
in fact it can’t be if int.� 0/ intersects Rf , since � 0 was chosen, following Proposition 5.7, to be in MR.
With this in mind, consider the possibilities:

If f … fe˙; e0; � 0g then f 2 E, since E0 is consistent with the swap. Then Rf is an edge-reducing sphere
for f in †, so f is a reducing edge in E. As originally defined prior to Proposition 5.7, Er is the set
of reducing edges in E, so f 2 Er . Since R contains an edge-reducing sphere for each edge in Er ,
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R contains an edge-reducing sphere for f . By construction this sphere is disjoint from both int.�/ and
int.� 0/, the latter by choice of � 0. Include this as the sphere in R0 that corresponds to f .

As noted at the start, if f D � 0, use R0.

If f D e0 then one of e0
˙

, say e0
C

, is in E, since E0 is consistent with the swap. R0
f

may as well be taken
to pass through e0

C
� e0. Then Rf is an edge-reducing sphere for † that passes through e0

C
. Hence, e0

C
is

a reducing edge in E. The edge-reducing sphere in R corresponding to e0
C

is again disjoint from both
int.�/ and int.� 0/. Include this as the sphere in R0 that corresponds to f .

If f is one of the edges e˙, say eC, then e 2 E, since E0 is consistent with the swap. As before, the
sphere Rf shows that e is a reducing edge for † and so has a corresponding edge-reducing sphere R
in R. Include it in R0 to correspond to f D eC. The last condition in Definition 5.8 ensures that e� … E0,
so no corresponding edge-reducing sphere is included in R0. In simple terms, R appears only once in R0.
The condition also ensures that f is the subedge of e in †0 that is incident to R.

6 When @S � @�B � @M : early considerations

We will begin the proof of Theorem 1.3 in the case that S is connected. In conjunction with Proposition 4.2,
this will complete the proof of Theorem 1.3.

6.1 Preliminary remarks

What will be most important for our purposes is not that S is connected, but that S is entirely disjoint
either from all of @�A or all of @�B , as is naturally the case when S is connected. So we henceforth
assume with no loss of generality that @S � @�B . Following that assumption, the compression bodies
A and B play very different roles in the proof. We will be studying spines of B and will take for A
the complement in M of a regular neighborhood �.†/ of such a spine †. In particular, each sphere
component R of @�B is part of †. As noted in the discussion of spines following Definition 2.2, we can
choose † so that each sphere component R is incident to exactly one edge of †; in that case we are in a
position to apply the key idea of stem swapping to alter †, as in Proposition 5.2.

In contrast, the sphere components of @�A play almost no role in the proof, other than requiring a small
change in language. Since in Theorem 1.3 the isotopy class of S remains fixed (indeed, that is the point
of the theorem), we must be careful not to pass any part of S through a sphere component of @�A, but
the constructions we make use of will avoid this. For example, underlying a stem swap in † is the slide
and isotopy of an edge of †. (See Proposition 5.2.) But these can be made to avoid sphere components
of @�A, essentially by general position. More explicitly, let yM be the 3–manifold obtained from M by
attaching a ball to each sphere component of @�A. A slide or isotopy of an edge of † can avoid the
centers of these balls by general position, and then be radially moved outside the entire balls and back
into A.
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A more subtle problem arises when, for example, we want to use a classical innermost disk (or outermost
arc) argument to move a surface F in A so that it is disjoint from S . In the classical setting we find a
circle c in F \ S that bounds a disk ES � S �F and a disk EF � F and argue that one can isotope
EF past ES , reducing the number of intersections, via a ball whose boundary is the sphere EF [ES .
But the existence of such a ball requires A to be irreducible, an assumption that fails when @�A contains
spheres. It will turn out that this fraught situation can always be avoided here by redefining F to be the
surface obtained by a simple disk-exchange, replacing EF � F with a push-off of ES � S .

A useful way to visualize and describe this process of redefining F is to imagine, both in the argument
and in the figures, a host of bubbles floating around in A, corresponding to sphere components of @�A.
These bubbles cannot pass through S (or †), but typically each bubble can pass “through” other surfaces
we construct, in the sense that, when needed, the constructed surface F can be redefined to pass on the
other side of the bubble. As shorthand for this process (which we have already seen in Phase 2 of the
proof of Proposition 3.4) we will describe the process as a porous isotopy of F (equivalent to an actual
isotopy in yM ), since the bubbles appear to pass through F .

6.2 The argument begins

Let † denote a spine of B and, as usual, take B to be a thin regular neighborhood of †.

Let .�; @�/ � .A; T / be a collection of meridian disks for A that constitute a complete collection of
meridian disks for yA, the compression body obtained from A by capping off all spherical boundary
components by balls. Let BC D B [ �.�/; since � is complete for yA, the complement of BC is the
union of punctured balls and a punctured collar of @�A � @M . The deformation retraction of B to †
will carry � to disks in M �†; continue to denote these by �.

Suppose an edge e of † is disjoint from �. A point on e corresponds to a meridian of B whose boundary
lies on @BC. If it is inessential in @BC then it bounds a disk in A, so such a meridian can be completed
to a sphere intersecting e in a single point. In other words, e is a reducing edge of †.

The other possibility is that the boundary of the meridian disk for e is essential on @BC, so it, together
with an essential curve in @�A, bounds an essential spanning annulus ae � A. Together, the meridian
disk of e and the annulus ae comprise a boundary reducing disk for M , in fact one that also @–reduces
the splitting surface T . (In particular, the disk is aligned with T .) We will eliminate from consideration
this possibility by a straightforward trick, which we now describe.

Lemma 6.1 There is a collection C� @�A of disjoint essential simple closed curves with the property
that C intersects any essential simple closed curve in @�A that bounds a disk in M .

Proof Suppose A0 is a genus g � 1 component of @�A. By standard duality arguments, the collection
K � A0 of simple closed curves that compress in M can generate at most a g–dimensional subspace
of H1.A0;R/ŠR2g . More specifically, one can find a nonseparating collection c1; : : : ; cg of disjoint
simple closed curves in A0 such that C� D

Sg
iD1 ci generates a complementary g–dimensional subspace
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of H1.A0;R/, and therefore essentially intersects any nonseparating curve in K. It is easy to add to C� a
further disjoint collection of 2g� 3 simple closed curves, each nonseparating, so that the result C0 � A0

has complement a collection of 2g� 2 pairs of pants. Any curve in A0 that is disjoint from C0 is parallel
to a curve in C0 and so must be nonseparating. Since it is disjoint from C� � C0 it cannot be in K.

Do the same in each component of @�A; the result is the required collection C .

Following Lemma 6.1 add to the collection of disks � the disjoint collection of annuli

C� I � @�A� I �M �BC;

and continue to call the complete collection of meridional disks and these spanning annuli �. Then a
meridian of an edge e of † that is disjoint from the (newly augmented) � cannot be part of a @–reducing
disk for T and so must be part of a reducing sphere. Since the collection S of reducing spheres and
@–reducing disks we are considering have no contact with @�A, arcs of S \� are nowhere incident
to @�A. Additionally, no circle in S \� can be essential in an annulus in C� I , since no circle in C

bounds a disk in M . Hence, the annuli which we have added to � intersect S much as a disk would:
each circle of intersection bounds a disk in the annulus and each arc of intersection cuts off a disk from
the same end of the annulus. As a result, the arguments cited below, usually applied to disk components
of �, apply also to the newly added annuli components C� I .

7 Reducing edges and S

Lemma 7.1 Suppose a spine † for B and a collection � of meridians and annuli , as just described , have
been chosen to minimize the pair .j†\S j; j@�\S j/ (lexicographically ordered , with †, S and � all in
general position). Then † intersects int.S/ only in reducing edges.

Notes:

� We do not care about the number of circles in �\S .

� If S is a disk and intersects † transversally only in @S � @�B , then S is aligned with T D @.�.†//
and intersects B in a vertical annulus, completing the proof of Theorem 1.3 in this case. In addition,
S is a @–reducing disk for T if @S is essential in @�B .

� If S is a sphere and intersects † transversally only in a single point, then S is aligned with T ,
completing the proof of Theorem 1.3 in this case. Moreover, if the circle S \T is essential in T ,
S is a reducing sphere for T .

Proof Recall from a standard proof of Haken’s theorem — see eg [7; 9, Proposition 2.2] — that .†[�/\S
(ignoring circles of intersection) can be viewed as a graph � in S in which points of †\S are the vertices
and �\S are the edges. As discussed in [9] in the preamble to Proposition 2.2 there, this is accomplished

Algebraic & Geometric Topology, Volume 24 (2024)



A strong Haken theorem 743

by extending the disks and annuli � via a retraction B!† so that it becomes a collection of disks and
annuli whose embedded interior is disjoint from † and whose singular boundary lies on †. When S
is a disk we will, with slight abuse of notation, also regard @S as a vertex in the graph, since it lies in
@�B �†. (This can be made sensible by imagining capping off @S by an imaginary disk outside of M .)

Borrowing further from the preamble to [9, Proposition 2.2], an edge in � is a loop if both ends lie on
the same vertex, called the base vertex for the loop. A loop is inessential if it bounds a disk in S whose
interior is disjoint from †, otherwise it is essential. A vertex in � is isolated if it is incident to no edge
in � .

It is shown in [9] that if † and � are chosen to minimize the pair .j†\S j; j@�\S j/ then

� there are no inessential loops,

� any innermost loop in the graph � bounds a disk in S that contains only isolated vertices, and

� if there are no loops in � then every vertex is isolated.

It follows that either S is disjoint from † (so it is aligned and we are done) or there is at least one isolated
vertex. An isolated vertex represents a point p in an edge e of † which is incident to no element of �.
The point p defines a meridional disk DB of B D �.†/, and the fact that the curve @DB � @CA is disjoint
from � ensures that @DB is parallel to a curve in @�A that is inessential. Thus @DB also bounds a disk
DA in A. Then DA[DB is a reducing sphere, so e is a reducing edge in †. This establishes the original
Haken theorem and, if there are no loops at all, also Lemma 7.1. That there are no loops is what we now
show.

Consider an innermost loop, consisting of a vertex p 2†\S and an edge lying in a component D of �.
Together, they define a circle c in S that bounds a disk E � S whose interior, by the argument of [9,
Proposition 2.2], contains only isolated vertices and so intersects † only in reducing edges. Remembering
that we are taking ADM � �.†/, the 3–manifold A� D A� �.D/ can be viewed as M � �.D[†/, so
c is parallel in E to a circle c0 in @A� bounding a subdisk E� of E. E� is the complement in E of the
collar in E between c and c0. Since E� intersects † only in reducing edges, it follows immediately that
c0 is nullhomotopic in A� and then by Dehn’s lemma that it bounds an embedded disk E 0 entirely in A�.

By standard innermost disk arguments we can find an E 0 such that its interior is disjoint from �. Now
split D in two by compressing the loop to the vertex along E 0 and replace D in � by these two pieces,
creating a new complete (for yA) collection of disks and annuli�0, with j@�0\S j � j@�\S j�2. Since we
have introduced no new vertices, this contradicts our assumption that .j†\S j; j@�\S j/ is minimal.

Note that the new �0 may intersect S in many more circles than � did, but we don’t care.

8 Edge-reducing spheres for †

Recall from Section 5 that, given a reducing edge e in †, an associated edge-reducing sphere Re is a
sphere in M that passes once through e. Any other edge-reducing sphere R0e passing once through e is
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porously isotopic to Re in M (ie isotopic in yM ) via edge-reducing spheres. Indeed, the segment of e
between the points of intersection with † provides an isotopy from the meridian disk Re \B to R0e \B;
this can be extended to a porous isotopy of Re\A to R0e\A since yA is irreducible. So Re is well-defined
up to porous isotopy.

Let † be a spine for B in general position with respect to the disk/sphere S , and suppose E is a collection
of edges in †. Let R be a corresponding embedded collection of edge-reducing spheres transverse to S ,
one for each reducing edge in E. Let jR\S j denote the number of components of intersection.

Definition 8.1 The weight w.R/ of R is jR\S j. Porously isotope R via edge-reducing spheres so that
its weight is minimized, and call the result R.E/. Then the weight w.E/ of E is w.R.E//.

Consider the stem swap as defined in Proposition 5.2 and Corollary 5.5 and suppose E0 is a collection of
edges in † that is swap-consistent with E.

Lemma 8.2 There is a collection R0 of edge-reducing spheres for †0, one for each reducing edge in E0

such that w.R0/� w.R/.

Proof This is immediate from Lemma 5.9.

Corollary 8.3 Suppose in Lemma 8.2 that R is R.E/. Then w.E0/� w.E/.

Proof Let R0 be the collection of spheres given in Lemma 8.2. By definition w.E0/ � w.R0/ so, by
Lemma 8.2,

w.E0/� w.R0/� w.R/D w.R.E//D w.E/:

Here is a motivating example: For † a spine of B in general position with respect to S , let E be the set
of edges that intersect S , with the set of edge-reducing spheres RDR.E/ corresponding to the reducing
edges of E. As usual, let MR be a component of M �R and R0 be the collection of spheres in @MR

that comes from R. Suppose R0 is a sphere in R0 with stem � , and suppose � 0 is an arc in MR from
the base of R0 to a point p in an edge e of †, very near an end vertex of e, so that the subinterval of e
between p and the end vertex does not intersect S .

Perform an edge swap and choose E0 to be the set of edges in †0 that intersect S .

Proposition 8.4 E0 is swap-consistent with E.

Proof All but the last property of Definition 5.8 is immediate, because S will intersect an edge if and
only if it intersects some subedge. The last property of Definition 5.8 follows from our construction:
since � 0 lies in a component MR of M �R, the point p lies between the sphere in R corresponding to e
and an end vertex v of e, and the segment of e between p and v is disjoint from S by construction and
therefore not in E0.
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Define the weight w.†/ of † to be w.E/, and similarly w.†0/D w.E0/.

Corollary 8.5 Given a stem swap as described in Propositions 5.2 or 5.7 for R.E/, w.†0/� w.†/.

Proof This follows immediately from Proposition 8.4 and Corollary 8.3.

We will need a modest variant of Corollary 8.5 that is similar in proof but a bit more complicated. As
before, let E be the set of edges in a spine † that intersect S , with the set of edge-reducing spheres
RDR.E/ corresponding to the reducing edges of E. Suppose e0 2 E with corresponding edge-reducing
sphere R0 2R. Then, by definition,

w.†/D w.E/D w.R/D w.R�R0/Cw.R0/D w.R�R0/CjR0\S j:

Let R� D R�R0, E� D E� e0 and MR� be the component of M �R� that contains R0. Perform
an edge swap in MR� as in the motivating example: replace the stem � of a sphere a in R� with � 0,
an arc in MR� from the base of a to a point p in an edge e of †, very near an end vertex of e, so that
the subinterval of e between p and the end vertex does not intersect S . Notice that, in this set-up, R0
is essentially invisible: the new stem � 0 is allowed to pass through R0. The swap-mate R00 of R0 is an
edge-reducing sphere for e0 in †0 that is disjoint from R� DR�R0

As in the motivating example, let E0 be the set of edges in †0 that intersects S and further define
E0� D E0� e0.

Proposition 8.6 w.†0/� w.†/� jR0\S jC jR
0
0\S j.

Proof As in the motivating example, E0� is consistent with the swap, so by Lemma 5.9 there is a
collection R0� �R� DR�R0 of edge-reducing spheres associated to the edge-reducing spheres of E0�.
Then R0�[R

0
0 is a collection of edge-reducing spheres for E0. Thus,

w.†0/D w.E0/� w.R0�/Cw.R
0
0/� w.R�/Cw.R

0
0/D w.R/�w.R0/Cw.R

0
0/

D w.†/�w.R0/Cw.R
0
0/:

9 Minimizing w.R/D jR\S j

Following Lemma 7.1, consider all spines that intersect S only in reducing edges, and define E for each
such spine to be as in the motivating example from Section 8: the collection of edges that intersect S . Let
† be a spine for which w.†/D w.E/ is minimized and let R.†/ denote the corresponding collection of
edge-reducing spheres for †. In other words, among all such spines and collections of edge-reducing
spheres, choose that which minimizes the number jR\S j of (circle) components of intersection.

Proposition 9.1 R.†/ is disjoint from S .

Note that for this proposition we don’t care about how often the reducing edges of the spine† intersects S .
We revert to the notation R for R.†/.
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Proof Suppose, contrary to the conclusion, R\S ¤∅. Among the components of R\S , pick c to
be one that is innermost in S . Let E � S be the disk that c bounds in S and let MR be the component
of M �R in which E lies. Let R0 2 R be the edge-reducing sphere on which c lies, e0 � † the
corresponding edge, p be the base e0\R0 of R0, and D �R0 be the disk c bounds in R0�p. Finally,
as in Proposition 8.6 let R� DR�R0 and MR� �MR be the component of M �R� that contains R0.

Claim 1 After local stem swaps as in Proposition 5.7 we can take e0 to be disjoint from E.

Let v˙ be the vertices at the ends of e0, with e˙ the incident components of e0 � p. In a bicollar
neighborhood of R0, denote the side of R0 incident to e˙ by, respectively, R˙, with the convention that
a neighborhood of @E is incident to RC. It is straightforward to find a point p0 2 R0 and arcs e0

˙
in

MR�E, each with one end at the respective vertex v˙ and other end incident to p0 via the respective
side R˙.

It is not quite correct that replacing each of e˙ with e0
˙

is a local stem swap, since the arcs are incident to
R0 at different points. But this can be easily fixed: Let  be an arc from p0 to p in R0 and ˙ be slight
push-offs into R˙. Then replacing each e˙ with, respectively, e0

˙
[ ˙ is a local stem swap. Attach the

two arcs at p 2 R0 to get a new reducing edge e00 for R0, and then use the arc  to isotope e00 back to
the reducing edge e0

C
[ e0�, which is disjoint from E, as required. See Figure 13. Revert to e0, p, etc as

notation for e0
C
[ e0�, now disjoint from E.

Claim 2 After local stem swaps we can assume that each stem that intersects E, intersects it always with
the same orientation.

Figure 14 shows how to use a local stem swap to cancel adjacent intersections with opposite orientations,
proving the claim.

Notice that if E is nonseparating in MR we could do a local stem swap so that each stem intersects E
algebraically zero times. Following Claim 2, this implies that we could make all stems disjoint from E.
Once E intersects no stems, replace the subdisk D of R0 that does not contain p with a copy of E. The
result R00 is still an edge-reducing sphere for e0, but the circle c (and perhaps more circles) of intersection
with S has been removed. That is,

w.R00/D jR
0
0\S j � jR0\S j � 1D w.R0/� 1:

Hence, w.†0/ < w.R/D w.†/, contradicting our hypothesis that w.†/ is minimal.

So we henceforth proceed under the assumption that E is separating, but hoping for the same conclusion:
that we can arrange for all stems to be disjoint from E, so that R00 as defined above leads to the same
contradiction. Since E is separating, a stem that always passes through E with the same orientation can
pass through at most once. So we henceforth assume that each stem that intersects E intersects it exactly
once.
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R0

p0
vC

p

v�



E � S

eC
e0C

e0�

RCR�

e0C[ C e0C[ e
0
�

Figure 13: Making e0 disjoint from E by local stem swaps.

In a bicollar neighborhood of the disk E, let EC be the side of E on which vC lies, and E� be the other
side of E. Consider a stem � of a boundary sphere a of MR�. If � intersects E, the subsegment of
� �E that is incident to the blossom a passes through one of E˙. Let O�˙ be the collection of those stems
intersecting E for which this subsegment passes through, respectively, E˙. If � 2 O�C, it is straightforward
to find an alternative stem � 0 from a to a point very near vC so that � 0 misses E. A stem swap to � 0 is as
in Proposition 5.2, and so by Corollary 8.5 does not increase weight. Hence, we have proven:

Claim 3 After stem swaps , we may assume that each stem that intersects E is in O��.

Following Claim 3, we move to swap those stems in O�� for ones that are disjoint from E. Let � be
the stem of a boundary sphere a of MR�, and assume that � 2 O��. Then it is straightforward to find
an alternative stem � 0 for a that is disjoint from E and ends in a point very near v�, for example by
concatenating an arc in E� with an arc in R� and an arc parallel to e�. See Figure 15. A problem is, that
such an arc intersects the disk D �R0, so, after such a swap, R0 is no longer an edge-reducing sphere

S

Figure 14: A local stem swap.
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� 0

�

vC

v�

E

p

D

R0

Figure 15

for the new spine. However, if such swaps are performed simultaneously on all stems in O��, we have
seen that the swap-mate of R0 is an edge-reducing sphere for the new spine †0, as required. But observe
in Figure 15 that the swap-mate is exactly R00! So we can now appeal to Proposition 8.6:

w.†0/� w.†/� jR0\S jC jR
0
0\S j � w.†/� 1:

The contradiction proves Proposition 9.1.

10 Conclusion

Proposition 10.1 Suppose † intersects S only in reducing edges , and the associated set R of edge-
reducing spheres is disjoint from S . Then T can be isotoped (via edge slides of †) so that S is aligned
with T .

Proof We will proceed by stem swaps, chosen so that they do not affect the hypothesis that R\S D∅.
Let MR be the component of M �R that contains S , and R0� @MR the collection of sphere components
that come from R. In MR each a 2 R0 is the blossom of a flower whose stem typically intersects S .
(A nonseparating sphere in R may appear twice in R0, with one or both stems intersecting S .) Denote
by O� the collection of all stems of R0 that intersect S . The proof will be by induction on j O� \ S j. If
j O� \S j D 0 then either S is a sphere disjoint from † and therefore aligned, or S is a disk. In the latter
case our convention of which compression body to call B has @S � @�B �†, so T \S is a single circle
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S

�a

a


pa � 0

Figure 16: Swap lowering j O� \S j, for S a disk.

parallel to @S in S . Again this means that S is aligned. Suppose then that j O� \S j> 0 and inductively
assume that the proposition is known to be true for lower values of j O� \S j. Consider the possibilities:

Case 1 S is a disk.

Since j O� \S j> 0 there is a blossom a 2R0 with stem � 2 O� . Let �a � � be the segment of � �S whose
interior is disjoint from S and whose endpoints are the blossom a and a point pa in S . Let  be an arc in
S that runs from pa to @S that avoids all other points of O�\S . Push the arc [�a off of S in the direction
of �a so that it becomes a stem � 0 for a. Do a stem swap from � to � 0, and let †0 be the result. See
Figure 16. Since � 0 is disjoint from S , � is thereby removed from O� , lowering j O�\S j by at least one. The
stem swap does not affect other reducing edges or their edge-reducing spheres, so the latter remain disjoint
from S . By Proposition 5.2 †0 is still a spine of B , so T is isotopic in M to a regular neighborhood of †0.
The inductive hypothesis implies that then T can be isotoped so that S is aligned with T , as required.

Case 2 S is a sphere.

Although S could be nonseparating in M , it cannot be nonseparating in MR. Here is the argument:
Suppose S �MR is nonseparating. If O� were disjoint from S then S would have no intersections with
the Heegaard surface T at all and so S � A. But in a compression body such as A, all spheres separate,
a contradiction. We will inductively reach the same contradiction by showing that if O� does intersect S
there is a local stem swap that lowers j O� \S j: Since S is nonseparating there is a circle c in MR �†

that intersects S in a single point p. Let  be a path in S from p to a point in � \S , where � 2 O� and
 is chosen so that its interior is disjoint from O� . Band sum � to  along a band perpendicular to S , with
 as its core. The result is an edge � 0 that is obtained from � by a local stem swap and intersects S in
one fewer point than � does, as required. See Figure 17.

So S is separating in MR. This implies that no stem can intersect S more than once algebraically and
so, following local stem swaps as in Claim 2 of Proposition 9.1 (see Figure 14), no more than once
geometrically. If no stem intersects S at all, then S � A and so S is aligned, finishing the proof.
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S

c



p

� 0

Figure 17: Swap lowering j O� \S j, for S a nonseparating sphere.

Suppose, on the other hand, there is at least one stem �Š that intersects S exactly once. Repeat the argument
of Case 1 for all stems other than �Š, using the point pŠD �i\S in place of @S in the argument. The result
is that, after a sequence of stem swaps, all stems other than �Š are disjoint from S . This means that S \†
consists of the single point pŠ. In other words, T intersects S in a single circle, and so S is aligned.

The sequence of Proposition 4.2, Lemma 7.1, and Propositions 9.1 and 10.1 establishes Theorem 1.3.

11 The Zupan example

Some time ago, Alex Zupan proposed a simple example for which the strong Haken theorem seemed
unlikely (personal communication, 2019). The initial setting is of a Heegaard split 3–manifoldM DA[TB
that is the connected sum of compact manifolds M1, M2 and M3, as shown in Figure 18. The blue
indicates the spine † of B , say and, following our convention throughout the proof, B is to be thought
of as a thin regular neighborhood of †. The spine is not shown inside of the punctured summands M1

and M2 because those parts are irrelevant to the argument; psychologically it’s best to think of these as
spherical boundary components of M lying in @�B , so M1 and M2 are balls.

M1 M2

M3

Figure 18: The initial setting.
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Figure 19: One blue edge now teal.

In the figure, M3 is a solid torus and what we see is the punctured M3, lying in M as a summand. We
will continue the argument for this special case, in which M3 is a solid torus and M1 and M2 are balls,
but the argument works in general. An important role is played by the complement A of † outside M1

and M2. This is a solid torus: indeed, the region in the figure between the torus and the cyan balls is a
twice punctured solid torus; A is obtained by removing both a collar of the torus boundary component
and the blue arcs, all part of †. Removing the collar does not change the topology, but removing the blue
arcs changes the twice-punctured solid torus into an unpunctured solid torus A.

Zupan proposed the following sort of reducing sphere S for M : the tube sum of the reducing spheres for
M1 and M2 along a tube in M3 which can be arbitrarily complicated. The outside of the tube is shown in
red in Figure 18. The reducing sphere S is not aligned with T because it intersects † in two points, one
near each of M1 and M2. The goal is then to isotope T through M so that it will be aligned with S . This
is done by modifying † by what is ultimately a stem swap, and we will describe how the stem swap is
obtained by an edge-slide of †. The edge-slide induces an isotopy of T in M because T is the boundary
of a regular neighborhood of †. Note that in such an edge slide, passing one of the blue arcs through the
red tube is perfectly legitimate.

Figure 20: Teal edge now homotopic to red tube.
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Figure 21: Teal edge isotoped into red tube.

Figure 19 is the same, but we have distinguished part of † (the rightmost edge) by turning it teal and
beginning to slide it on the rest of the spine.

Now we invoke the viewpoint and notation of Proposition 5.2: There is a related Heegaard splitting of M
available to us, in which the sphere boundary component at M2 is not viewed as part of @�B but as part
of @�A, and the teal arc is also added to A. This changes A into a punctured solid torus AC and the
spine of its complement into †�, obtained by deleting from † both the teal edge and the sphere boundary
component at M2.

And so we apply Lemma 3.3, with AC playing the role of compression-body C ; the boundary sphere
at M2 playing the role of the point r ; the other end of the teal arc playing the role of q; the teal arc
playing the role of ˇ; and the union of the core of the red tube and the two dotted arcs in Figure 20
playing the role of ˛. Specifically, as the proof of Lemma 3.3 describes, because �1.@AC/! �1.AC/ is
surjective, and the slides take place in @AC, one can slide the end of the teal arc around on the rest of †�
(technically on the boundary of a thin regular neighborhood of †�) until it is homotopic rel endpoints to
the path that is the union of the core of the tube of S and the two dotted red arcs shown in Figure 20.
Hass and Thompson [5, Proposition 4] then shows that ˛ and ˇ are isotopic rel endpoints.

The result of the isotopy is shown in Figure 21; the teal edge now goes right through the tube, never
intersecting S . Thus S now intersects † in only a single point, near the boundary sphere at M1. In other
words, S is aligned with T .
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Right-angled Artin subgroups of right-angled Coxeter and Artin groups

PALLAVI DANI

IVAN LEVCOVITZ

We determine when certain natural classes of subgroups of right-angled Coxeter groups (RACGs) and
right-angled Artin groups (RAAGs) are themselves RAAGs. We characterize finite-index visual RAAG
subgroups of 2–dimensional RACGs. As an application, we show that any 2–dimensional, one-ended
RACG with planar defining graph is quasi-isometric to a RAAG if and only if it is commensurable to
a RAAG. Additionally, we give new examples of RACGs with nonplanar defining graphs which are
commensurable to RAAGs.

Finally, we give a new proof of a result of Dyer: every subgroup generated by conjugates of RAAG
generators is itself a RAAG.

20F55, 20F65

1 Introduction

Let � be a finite simplicial graph with vertex set V.�/ and edge set E.�/. The right-angled Artin group
(RAAG for short) associated to � is the group A� given by the presentation

A� D hV.�/ j st D ts for all .s; t/ 2E.�/i:

This article is concerned with the following question. Given a finite set S of elements in a group, when
is the group generated by S isomorphic to a RAAG in the “obvious” way (ie with S as the “standard”
RAAG generating set)? To make this precise, we define the notion of RAAG system.

Definition 1.1 (RAAG system) Let G be any group with generating set S . Let � be the graph whose
vertex set is in bijection with S and which has an edge between distinct s; t 2 S � V.�/ if and only if s
and t commute. We call � the commuting graph associated to S . There is a canonical homomorphism
� W A� ! G extending the bijection V.�/ ! S . We say that .G; S/ is a RAAG system if � is an
isomorphism. In particular, .A� ; V .�// is a RAAG system for any RAAG A� .

The right-angled Coxeter group (RACG for short) associated to the finite simplicial graph � is the group
W� given by the presentation

W� D hV.�/ j s
2
D 1 for all s 2 V.�/; st D ts for all .s; t/ 2E.�/i:
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In this article we study subgroups G generated by particular natural subsets S of right-angled Coxeter
and Artin groups, and we give characterizations for when .G; S/ is a RAAG system or a finite-index
RAAG system.

A theorem of Davis and Januszkiewicz [2000] states that every RAAG is commensurable to some RACG.
This leads to the following question addressing the converse:

Question 1.2 Which RACGs are commensurable to RAAGs?

A RACG that is commensurable to a RAAG is, in particular, quasi-isometric to a RAAG. By considering
different quasi-isometry invariants, one sees that the converse to the Davis–Januszkiewicz theorem above
is far from being true. For instance, there are many RACGs that are one-ended hyperbolic (such as virtual
hyperbolic surface groups), while no RAAG is both one-ended and hyperbolic. Furthermore, RAAGs
have linear, quadratic or infinite divergence [Behrstock and Charney 2012], whereas the divergence of a
RACG can be a polynomial of any degree [Dani and Thomas 2015]. Restricting to RACGs of at most
quadratic divergence is still not enough to guarantee they are quasi-isometric to RAAGs. For instance, the
Morse boundary of a RAAG with quadratic divergence is always totally disconnected [Charney and Sultan
2015; Cordes and Hume 2017], while the Morse boundary of a RACG of quadratic divergence can have
nontrivial connected components [Behrstock 2019]. The above examples show that there are numerous
families of RACGS which are not quasi-isometric and, hence, not commensurable to any RAAG. Within
the subclass of one-ended RACGs with planar, triangle-free defining graphs, Nguyen and Tran [2019]
characterize those quasi-isometric to RAAGs. Theorem B below answers Question 1.2 in this setting.

We note that every RACG (indeed, every Coxeter group) is virtually special, and therefore has a finite-
index subgroup which is a subgroup of a RAAG [Haglund and Wise 2010]. However, this subgroup is
not of finite index in the RAAG, which would be required for establishing commensurability.

One approach to proving that a RACG is commensurable to a RAAG is to look for finite-index subgroups
that are isomorphic to RAAGs. We focus on a class of subgroups of RACGs, introduced by LaForge [2017]
in his PhD thesis, that are logical candidates for being RAAGs. Given a RACG defined by a graph �
and two nonadjacent vertices s; t 2 V.�/, it follows that st is an infinite-order element of W� . There
is then a correspondence between edges of the complement graph �c with such infinite-order elements
of � . Given a subgraph ƒ of �c , let G be the subgroup generated by E.ƒ/ (thought of as infinite-order
elements of W� ). As G is generated by the edges of ƒ, we may as well assume that ƒ has no isolated
vertices. A natural question is:

Question 1.3 When is .G;E.ƒ// a finite-index RAAG system?

If .G;E.ƒ// is indeed a RAAG system, then G is called a visual RAAG subgroup of W� . LaForge
obtained some necessary conditions for such subgroups to be visual RAAGs.
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We say that W� is 2–dimensional if � is triangle-free. Our first main theorem gives an exact characteriza-
tion of the finite-index visual RAAG subgroups of 2–dimensional RACGs in terms of graph-theoretic
conditions:

Theorem A Let W� be a 2–dimensional RACG. Let ƒ be a subgraph of �c with no isolated vertices ,
and let G be the subgroup generated by E.ƒ/. Then the following are equivalent.

(1) .G;E.ƒ// is a RAAG system and G is finite index in W� .

(2) .G;E.ƒ// is a RAAG system and G has index either two or four in W� (and exactly four if W� is
not virtually free).

(3) ƒ has at most two components and satisfies conditions R1–R4, F1 and F2.

The conditions R1–R4, F1 and F2 in the above theorem are algorithmically checkable graph-theoretic
conditions on � and ƒ. See Section 3 for precise definitions of these conditions.

In Section 5 we provide several applications to concrete families of RACGs. In particular we prove:

Theorem B Let W� be a 2–dimensional , one-ended RACG with planar defining graph. Then W� is
quasi-isometric to a RAAG if and only if it contains an index 4 subgroup isomorphic to a RAAG.

A complete description of which RACGs considered in Theorem B are quasi-isometric to RAAGs is given
by Nguyen and Tran [2019, Theorem 1.2]. Theorem B shows these are actually commensurable to RAAGs.

We also give two families of RACGs defined by nonplanar graphs which contain finite-index RAAG
subgroups (see Corollaries 5.1 and 5.2). These cannot be obtained by applying the Davis–Januszkiewicz
constructions to the defining graphs of the RAAGs they are commensurable to. For the family in
Corollary 5.1, we use work of Bestvina, Kleiner and Sageev on RAAGs [Bestvina et al. 2008], to conclude
the RACGs are quasi-isometrically distinct. We believe that the methods from this article may be used to
further study commensurability of RACGs.

The proof of Theorem A consists of two main parts. One part involves obtaining an understanding of
when G is of finite index, leading to conditions F1 and F2. To obtain these, we use completions of
subgroups, introduced in [Dani and Levcovitz 2021]. The other aspect consists of obtaining criteria to
recognize when .G;E.ƒ// is a RAAG system. To do so, we prove the following theorem by careful
analysis of disk diagrams:

Theorem C Let W� be a RACG. Let ƒ be a subgraph of �c with no isolated vertices and at most two
components. Then the subgroup .G;E.ƒ// < W� is a RAAG system if and only if R1–R4 are satisfied.

Conditions R1, R2, and a condition more or less equivalent to R3 were known to be necessary for
.G;E.ƒ// to be a RAAG system by work of LaForge [2017]. We show in Example 3.13 that they are
not sufficient. We introduce a fourth graph-theoretic condition R4 to obtain a complete characterization
of all visual RAAG subgroups defined by subgraphs of �c with at most two components. The bulk of the
proof of Theorem C consists of showing that the conditions R1–R4 are sufficient.
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Note that, unlike in Theorem A, there is no assumption on the dimension of the RACGs in Theorem C.
On the other hand, there is an additional assumption in Theorem C, namely that the subgraph ƒ of � can
have at most two components.

When ƒ contains more than two components, the situation becomes much more complex. We show
that additional graph-theoretic conditions are necessary to generalize the Theorem C to this setting (see
Lemmas 3.32 and 3.34). Remarkably, a consequence of these conditions is that if � is triangle-free and
.G;E.ƒ// is a finite-index RAAG system, then ƒ can have at most two components. This fact is crucial
to the proof of Theorem A, which does not have any assumption on the number of components of ƒ.
Additionally, we are aware that even more conditions are necessary than those in this article, but we do
not have a complete conjectural list of conditions that would be sufficient to characterize visual RAAGs.

We next turn our attention to RAAG subgroups of RAAGs. A classical theorem on Coxeter groups,
proven independently by Deodhar [1989] and Dyer [1990], states that reflection subgroups of Coxeter
groups (ie those generated by conjugates of generators) are themselves Coxeter groups. In fact, Dyer
proves an analogous result for the class of groups defined by reflection systems (see [Dyer 1990] for the
definition), which includes Coxeter groups as well as RAAGs. Specifically, he shows that subgroups
generated by conjugates of standard generators are themselves in this class. As RAAGs are the only
torsion-free groups in this class, one obtains the following result. Here, we define a generalized RAAG
reflection to be an element of a RAAG A� that is conjugate to a generator in V.�/.

Theorem D [Dyer 1990] Let T be a finite set of generalized RAAG reflections in the RAAG A� . Then
the subgroup G <A� generated by T is a RAAG.

We thank Luis Paris for informing us that this result is contained in [Dyer 1990], and the explanation in
the preceding paragraph. We include our proof of Theorem D, as our geometric approach is very different
from that of Dyer, which is algebraic and uses cocycles. Our proof uses a characterization of RAAG
systems in terms of the deletion condition, given by Basarab [2002]. We use disk diagrams to show that
subgroups generated by generalized RAAG reflections satisfy the criteria in Basarab’s characterization.

We note that, although G (from Theorem D) is a RAAG, .G;T/ is not necessarily a RAAG system and
in general G is not isomorphic to the RAAG A� where � is the commuting graph corresponding to T.
Kim and Koberda [2013] show that there exists a subgroup of G (generated by sufficiently high powers
of the elements of T) which is isomorphic to A�.

Genevois, as well as an anonymous referee, pointed out to us that a proof of Theorem D may be possible
using [Genevois 2017, Theorem 10.54] (see also [Genevois 2019, Theorem 3.24]).
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2 Background

2.1 Basic terminology and notation

Let G be a group with generating set S . We say that w D s1 � � � sn, with si 2 .S [S�1/ for 1 � i � n,
is a word over S or a word in G. If the words w and w0 represent the same element of G, then we say
that w0 is an expression for w and write w0 l w. We say the word w D s1 � � � sn is reduced (or reduced
over S for emphasis) if given w0 D t1 � � � tm l w, it follows that n�m.

2.2 Right-angled Coxeter and Artin groups

Coxeter groups can be characterized as those groups which are generated by involutions and which satisfy
the deletion condition; see Definition 2.1 below (for a proof of this fact, see [Davis 2015, Theorem 3.3.4]).
By work of Basarab [2002], RAAGs can be characterized in a similar manner (see Theorem 2.2 below).
This characterization will be utilized in Section 6.

Definition 2.1 (deletion condition) Let G be a group generated by S . We say that .G; S/ satisfies
the deletion condition if, given any word w over S , either w is reduced or w D s1 � � � sk and there exist
1� i < j � k such that s1 � � � Osi � � � Osj � � � sk is an expression for w.

The result below directly follows from a result of Basarab.

Theorem 2.2 [Basarab 2002] Let G be a group generated by S such that S \ S�1 D ∅ and 1 … S .
Then .G; S/ is a RAAG system if and only if

(1) every s in S has infinite order , and

(2) .G; S/ satisfies the deletion condition.

Proof If .G; S/ is a RAAG system, then G is torsion-free [Charney 2007], so (1) holds. Furthermore,
.G; S/ satisfies (2) by [Basarab 2002, Corollary 1.4.2] (see also [Bahls 2005, page 31, Exercise 17] for
a simpler proof in this setting). The converse also follows from a direct application of [Basarab 2002,
Corollary 1.4.2].

We now define certain moves which can be performed on a word that produce another expression for it.
These moves provide a solution to the word problem for RAAGs and RACGs (see Theorem 2.4 below).
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Definition 2.3 (Tits moves) Let G be a group generated by S . Let w D s1 � � � sn be a word over S .
If si and siC1 commute for some 1� i < n, then the word s1 � � � si�1siC1sisiC2 � � � sn is an expression
for w obtained by a swap operation performed on w, which swaps si and siC1. If si D s�1

iC1 for some
1� i < n, then s1 � � � si�1siC2 � � � sn is an expression for w is obtained by a deletion operation performed
on w. A Tits move is either a swap operation or a deletion operation. We say a word is Tits reduced if no
sequence of Tits moves can be performed on the word to obtain an expression with fewer generators.

Theorem 2.4 below shows that RAAGs and RACGs admit a nice solution to the word problem. This
solution to the word problem for RACGs is a well-known result of Tits [1969], a version of which holds
more generally for all Coxeter groups. The result below in the setting of RAAGs follows from a theorem
of Basarab [2002, Theorem 1.4.1] which generalizes Tits’ result (see also [Green 1990, Theorem 3.9]).

Theorem 2.4 [Tits 1969; Basarab 2002] Let A� be either a RAAG or a RACG. Then:

(1) If w1 and w2 are reduced words over V.�/ representing the same element of G, then w2 can be
obtained from w1 by Tits swap moves.

(2) Given any word w over V.�/, a reduced expression for w can be obtained by applying Tits moves
to w.

We will often not refer directly to the above theorem, and we will instead simply say that a given RAAG
or RACG admits a Tits solution to the word problem.

The next two lemmas are well known and will often be implicitly assumed.

Lemma 2.5 Let A� either be a RAAG or RACG. Then s; t 2 V.�/ commute as elements of A� if and
only if .s; t/ is an edge of � .

Proof One direction of the claim follows from the definitions of a RAAG and a RACG. If A� is a
RACG, then the other direction follows from [Björner and Brenti 2005, Proposition 4.1.2].

Now suppose that A� is a RAAG, and let s; t 2V.�/ be nonadjacent vertices. Suppose, for a contradiction,
that w D sts�1t�1 l 1. Let D be a disk diagram with boundary w (see Section 2.3 for a reference for
disk diagrams). This disk diagram contains exactly two intersecting hyperplanes: one labeled by s and
one labeled by t . However, this is a contradiction as a pair of hyperplanes whose labels are nonadjacent
vertices of � cannot intersect.

Lemma 2.6 Let W� be a RACG , and let s; t; q; r 2 V.�/ be such that s and t do not commute , and r
and q do not commute. Then .st/.qr/l .qr/.st/ if and only if

(1) there is a square in � formed by s, q, t , and r ;

(2) t D q and s D r ; or

(3) t D r and s D q.
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Proof Clearly each of (1), (2) and (3) implies that .st/.qr/l .qr/.st/.

To prove the converse, suppose that .st/.qr/ l .qr/.st/. Suppose first that t D q, and consequently
stqr l sr . As s and t do not commute and q and r do not commute, this is only possible if r D t . Thus,
(2) holds.

If s D q, as qrts l tsqr , we apply the same argument to conclude that t D r , showing (3) holds. By
similar arguments, if s D r then t D q, and if t D r then s D q. Thus, we may assume that s, t , q and r
are all distinct vertices of � . In this case we again conclude by Tits’ solution to the word problem, that if
stqr l qrst then s, q, t and r form a square in � .

2.3 Disk diagrams

We give a brief background on disk diagrams as they are used in our setting, and we refer the reader to
[Sageev 1995; Wise 2021] for the general theory of disk diagrams over cube complexes. We then give
some preliminary lemmas that are needed in later sections.

Let A� be a RAAG, and let w D s1 � � � sn, with si 2 V.�/, be a word equal in A� to the identity, ie
wl 1. There exists a Van Kampen diagram D with boundary label w, and we call this planar 2–complex
a disk diagram in A� with boundary label w. We now describe some additional properties of D in our
setting. The edges of D are oriented and labeled by generators in V.�/. A path in D is a path  in the
1–skeleton of D, traversing edges e1; : : : ; em, and the label of  is the word a1 � � � am where, for each
1 � i � m, ai is the label of ei if ei is traversed along its orientation, and a�1

i is the label of ei if ei

is traversed opposite to its orientation. Every cell in D is a square that has a boundary path with label
aba�1b�1 for some commuting generators a and b in V.�/[V.�/�1.

There is a base vertex p 2 @D and an orientation onD, such that the smallest closed path ı which traverses
the boundary of D in the clockwise orientation starting at p and traversing every edge outside the interior
of D has label w. We call ı the boundary path of D. Note that if D contains an edge e not contained in
a square, then necessarily ı traverses e exactly twice.

If W� is a RACG and w is a word over V.�/ equal in W� to the identity, then we define a disk diagram
D in W� with boundary w similarly. However, as each generator in V.�/ is an involution, we do not
need to orient the edges of D.

Let D be a disk diagram and q D Œ0; 1�� Œ0; 1� be a square in D. The subset
˚

1
2

	
� Œ0; 1�� q (similarly,

Œ0; 1��
˚

1
2

	
� q) is a midcube. The midpoint of an edge inD is also defined to be a midcube. A hyperplane

in D is a minimal nonempty collection H of midcubes in D with the property that given any midcube
m 2H and a midcube m0 in D such that m\m0 is contained in an edge of D, it follows that m0 2H .
We say that H is dual to an edge e if the midpoint of e is in H .

Since opposite edges in every square in D have the same label, it follows that every edge intersecting a
fixed hyperplane H has the same label. We call this the label of the hyperplane. Since adjacent sides
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s1

s2

s3

s4

s5
s3

s2

s1

s6

s5
s4s6p

Figure 1: A disk diagram in a RACG with boundary the word s2s3s4s5s3s2s1s6s5s4s6s1 and base
vertex p. Two hyperplanes are shown in red. As these hyperplanes intersect, it must be that s4
commutes with s2.

of a square have distinct labels which commute, it follows that no hyperplane self-intersects, and if two
hyperplanes intersect, then their labels correspond to distinct, commuting generators. (See Figure 1 for
an example of a disk diagram and some of its hyperplanes.)

Definition 2.7 (maps preserving boundary combinatorics) Let D and D0 be disk diagrams, and let ı
and ı0 respectively be their boundary paths. Let E D fe1; : : : ; emg (resp. E 0 D fe01; : : : ; e

0
ng) be the edges

traversed by ı (resp. ı0). More precisely, ei (resp. e0i ) is the i th edge traversed by ı (resp. ı0) for each i .
Observe that every hyperplane of D is dual to two edges ej ; ek �E for some j ¤ k. (It could be that
ej D ek , thought of as edges of D.) A similar statement holds for D0.

Let F � E and F 0 � E 0, and let  W F ! F 0 be a bijection. We say that  preserves boundary
combinatorics if for every pair of edges e; f 2 F which are dual to the same hyperplane of D, their
images  .e/ and  .f / are dual to the same hyperplane of D0.

Note that if ‰ preserves boundary combinatorics, then ‰�1 does as well.

A pair of hyperplanes H and H 0 in a disk diagram D form a bigon if they intersect in at least two distinct
points. The following lemma, first proven in [Sageev 1995, Theorem 4.3], guarantees that we can always
choose a disk diagram without bigons. The boundary combinatorics statement below is guaranteed by the
proof of this fact in [Wise 2021, Lemma 2.3, Corollary 2.4].

Lemma 2.8 [Sageev 1995; Wise 2021] Given a disk diagram D with boundary label w, there exists a
disk diagram D0 also with boundary label w such that D0 does not contain any bigons. Moreover , the
natural bijection between the edges traversed by the boundary paths of D and D0 induced by the label w
preserves boundary combinatorics.

Remark 2.9 In light of Lemma 2.8, for the rest of this paper we will always assume that any disk
diagrams we consider do not have bigons.

Remark 2.10 Let ˛ be a path with label s1 � � � sn in some disk diagram. The “edge of ˛ with label si ” is
understood to be the i th edge ˛ traverses (even though there may be several edges of ˛ with the same
label as this edge. A similar statement holds when we refer to subpaths of ˛.
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Given a disk diagram with boundary label w, we will often want to produce a new disk diagram with
boundary label w0, where w0 is obtained from w by a Tits move, and such that boundary combinatorics
are preserved on appropriate subsets of the boundary paths. The following lemma exactly describes how
we can perform these operations.

Lemma 2.11 Let D be a disk diagram over the group W , where W is either a RACG or a RAAG.
Suppose the boundary path of D traverses the edges e1; : : : en and has label w D s1 � � � sn.

(1) If sr and srC1 (taken modulo n) are distinct and commute for some 1� r � n, then there is a disk
diagram D0 whose boundary path traverses the edges e01; : : : ; e

0
n and has label s1 � � � siC1si � � � sn.

Furthermore , the map  preserves boundary combinatorics , where  is defined by  .er/D e
0
rC1,

�.erC1/D e
0
r , and  .ej /D e0j for j ¤ r; r C 1.

(2) If sr D s�1
rC1 (taken modulo n) for some 1� r � n, then there is a disk diagram D0 with boundary

label s1 � � � sr�1srC2 � � � sn. Moreover , the natural map from edges traversed by the boundary path
of D0 to edges traversed by the boundary path of D preserves boundary combinatorics.

(3) Given any generator (or inverse of a generator) s and any r , with 1 � r � n, it follows that there
exists a disk diagram D0 with boundary label s1 � � � sr.ss�1/srC1 � � � sn. Moreover , the natural map
from edges traversed by the boundary path of D to the edges traversed by the boundary path of D0

preserves boundary combinatorics.

Proof We first prove (1). Let q be a square whose edges are labeled consecutively by sr , srC1, s�1
r

and s�1
rC1. We form the disk diagram D0 by identifying consecutive edges of q labeled by sr and srC1 to

the edges of @D labeled by sr and srC1 (these edges must be distinct as sr ¤ srC1). The claim is readily
checked.

We next prove (2). Let e and f be the edges of @D labeled respectively by sr and srC1. Suppose first that
e and f are distinct. In this case, form the disk diagram D0 by identifying e and f , ie “fold” these edges
together. On the other hand, if e D f , then as D has boundary label w, it must follow that e is a spur, ie
an edge attached to D that is not contained in any square and which contains a vertex of valence 1. In
this case we can remove the edge e from D to obtain D0. In either case, the claim is readily checked.

To show (3), form D0 by inserting a spur edge with label s to the vertex traversed by the boundary path
of D between sr and srC1.

3 Visual RAAG subgroups of right-angled Coxeter groups

In this and the next section we study visual RAAG subgroups of RACGs, as described in the introduction.
We begin by describing some notation that will be used throughout these sections.

Let � be a graph, and let W� be the corresponding RACG. Let �c denote the complement of � , that is,
the graph with the same vertex set as � , which has an edge between two (distinct) vertices if and only if
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the corresponding vertices are not adjacent in � . Let ƒ be a subgraph of �c with no isolated vertices, ie
one in which every vertex of ƒ is contained in some edge.

We form a new graph ‚D‚.�;ƒ/ which we think of as a graph containing the edges of both � and ƒ.
More formally, V.‚/D V.�/ and E.‚/DE.�/[E.ƒ/. Note that as E.ƒ/� �c , it follows that ‚ is
simplicial. We refer to edges of ‚ that correspond to edges of � (resp. ƒ) as �–edges (resp. ƒ–edges).

A ƒ–edge between vertices a and b corresponds to an inverse pair of infinite-order elements of W� ,
namely ab and ba. By a slight abuse of terminology, we will use the term ƒ–edge to refer to one of
these elements and vice versa. We identify E.ƒ/ with a subset of W� by arbitrarily choosing one of the
two infinite-order elements corresponding to each ƒ–edge, and we define G‚ to be the subgroup of W�

generated by E.ƒ/. As we are dealing with subgroups generated by E.ƒ/, there is no loss in generality
in assuming that ƒ has no isolated vertices. The goal of this section is to study when .G‚; E.ƒ// is a
RAAG system.

Let � be the commuting graph corresponding to E.ƒ) (as defined in the introduction), and let A� be the
corresponding RAAG. Recall that, by definition, .G‚; E.ƒ// is a RAAG system if and only if the natural
homomorphism � WA�!G‚ extending the bijection between V.�/ and E.ƒ/ is an isomorphism. As �
is always surjective, we would like to understand when � is injective.

For the remainder of this section, we fix � , ƒ, ‚, A�, and � as above. Furthermore, we will use the
following terminology. The path  in ‚ visiting vertices x1; x2; : : : ; xn is defined to be the path which
starts at x1, passes through the remaining vertices in the order listed, and ends at xn. We say that  is
simple if xi ¤ xj for i ¤ j , and that  is a loop if x1 D xn. Finally,  is a cycle if it is a loop with n� 3,
such that xi ¤ xj unless fi; j g D f1; ng. We call a path (resp. cycle) in ‚ consisting only of �–edges a
�–path (resp. �–cycle). We define ƒ–paths and ƒ–cycles similarly.

We begin by describing some graph-theoretic conditions on ‚ which are consequences of either G‚

being a RAAG or of .G‚; E.ƒ// being a RAAG system.

Conditions R1 and R2, defined below, when combined, are equivalent to LaForge’s star-cycle condition.
LaForge [2017, Lemma 8.2.1] proves that R1 and R2 are necessary conditions for .G‚; E.ƒ// to be a
RAAG system. We include proofs here for completeness.

Definition 3.1 (condition R1) We say that ‚ satisfies condition R1 if it does not contain a ƒ–cycle.

Lemma 3.2 [LaForge 2017] If .G‚; E.ƒ// is a RAAG system , then ‚ satisfies R1.

Proof Suppose ‚ does not satisfy R1. Then it contains a ƒ–cycle, say with vertices a1; : : : ; ak , where
k � 3, such that for each i (mod k), ai is connected to aiC1 by a ƒ–edge. Let gi be the generator of
A� (or its inverse) corresponding to the (oriented) ƒ–edge aiaiC1. As the ai ’s are along a cycle, no
ƒ–edge is repeated, and we have that gi ¤ g

�1
j for all i ¤ j . This, together with the fact that RAAGs
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u v

x y z

Figure 2

satisfy the deletion condition (see Theorem 2.2), implies that g D g1g2 � � �gk is a nontrivial element
of A�. Moreover, �.g/D .a1a2/.a2a3/ � � � .aka1/D 1, so g is in the kernel of �, and therefore � is not
injective.

Definition 3.3 (condition R2) We say that ‚ satisfies condition R2 if each component of ƒ�‚ (with
the natural inclusion) is an induced subgraph of ‚.

Lemma 3.4 [LaForge 2017] If G‚ is a RAAG , then ‚ satisfies R2.

Proof Suppose‚ does not satisfy R2, and let u and v be a pair of vertices in a component ofƒ, such that
u and v are adjacent in ‚. It follows that u and v are connected by a �–edge, and therefore they commute.
Since u and v are in the same component of ƒ, there is a simple ƒ–path from u to v whose vertices (in
order) are uD a1; : : : ; ak D v. Note that k � 3, since ‚ is a simplicial graph. For 1� i � k� 1, let gi

be the generator of A� (or its inverse) corresponding to the ƒ–edge aiaiC1, and let g D g1g2 � � �gk�1.
The element g is a nontrivial element of A�, as RAAGs satisfy the deletion condition by Theorem 2.2.

We now have that �.g/2D
�
.a1a2/.a2a3/ � � � .ak�1ak/

�2
D .a1ak/

2D .uv/2D1, since u and v commute.
This implies that G‚ has torsion. Thus, G‚ cannot be a RAAG as RAAGs are torsion-free [Charney
2007].

Our next condition, R3, is motivated by the following example.

Example 3.5 Let ‚ be the graph in Figure 2, where the � edges are black and the ƒ edges are colored.
Since u and v each commute with x and z, the commutator Œuv; xz� represents the trivial element in W� .
Now observe that Œuv; xz�l .uv/.xy/.yz/.vu/.zy/.yz/, which is a product of ƒ–edges, and therefore
represents an element g of G‚. Now we can see that .G‚; E.ƒ// is not a RAAG system: if it were,
then it would be possible to show that g is trivial in G‚ using only swap and deletion moves involving
RAAG generators. However, since y does not commute with u and v, no such moves are possible (see
Lemma 2.6). On the other hand, if there had been � edges, from y to both u and v, then there would be
no contradiction.

A ƒ–edge word similar to the one in the above example can be constructed whenever � has a square
whose vertices alternate between two components of ƒ. The example suggests that for such a ƒ to define
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c1 c2

d1 d2

ƒc

ƒd

Tc‚ …„ ƒ

„ ƒ‚ …
Td

Figure 3: In the figure, the colored parts consist of ƒ–edges, and the black parts consist of
�–edges. The condition R3 says that if ‚ contains a black square as shown, then every vertex of
Tc is joined by a �–edge to every vertex of Td .

a RAAG, the “intermediate” vertices inƒ between the endpoints of the square must all mutually commute.
This is made precise in the definition of R3 (Definition 3.8) and Lemma 3.11 below. Before stating these,
we introduce some terminology, which will be used throughout this section.

Definition 3.6 (2–component paths and cycles) We say the �–path  in ‚ is a 2–component path
if  visits vertices (in order) c1; d1; c2; d2; : : : ; cn; dn for some n � 1 (where dn could be omitted if
n > 1) such that the ci ’s all lie in a single component ƒc of ƒ, and the di ’s all lie in a single component
ƒd ¤ƒc of ƒ. If it is important to emphasize the components visited by  , we will call it a ƒcƒd –path.

A 2–component loop is a 2–component path visiting c1; d1; : : : ; cn; dn; cnC1 such that c1 D cnC1. A
2–component cycle is a 2–component loop which is a �–cycle. A 2–component cycle of length four will
be called a 2–component square.

Definition 3.7 (ƒ–convex hull) We define the ƒ–convex hull of a set X � V.‚/ to be the convex hull
of X in ƒ.

Definition 3.8 (condition R3) We say that ‚ satisfies condition R3 if the following holds for every
2–component square in‚. Consider a 2–component square in‚ visiting vertices c1, d1, c2 and d2, where
c1; c2 2ƒc , d1; d2 2ƒd , and ƒc and ƒd are distinct components of ƒ. Then the graph � contains the
join of V.Tc/ and V.Td /, where Tc and Td are the ƒ–convex hulls of fc1; c2g and fd1; d2g respectively.
(See Figure 3.)

We will often need to utilize an expression for a word in W� which is the product of ƒ–edges. This
construction is the content of the following definition.

Definition 3.9 (ƒ–edge words) Suppose ‚ satisfies condition R1, and let w be a word in W� such that
w D .a1a

0
1/.a2a

0
2/ � � � .ana

0
n/, where ai and a0i are in the same ƒ–component of ‚ for each 1 � i � n.

As ‚ satisfies R1, there is a unique simple ƒ–path from ai to a0i . Let ai D a
i
1; : : : ; a

i
mi
D a0i be the

vertices visited by this path. Form the word

w0 D
�
.a1

1a
1
2/.a

1
2a

1
3/ � � � .a

1
.m1�1/a

1
m1
/
�
� � �
�
.an

1a
n
2/.a

n
2a

n
3/ � � � .a

n
.mn�1/a

n
mn
/
�
:
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We call w0 the ƒ–edge word associated to w. Note that w0 is well-defined, as long as ‚ satisfies R1.
In particular if .G‚; E.ƒ// is a RAAG system, then w0 is well-defined by Lemma 3.2. Also note that
w l w0 and w0 is a product of ƒ–edges.

Remark 3.10 Suppose that ‚ satisfies R1 and that a; a0 2‚ are two vertices in the same ƒ–component.
Let w0 D .a1a2/.a2a3/ � � � .an�1an/ be the ƒ–edge word associated to w D aa0 (in particular a D
a1; a2; : : : ; an D a

0 is the unique simple ƒ–path from a to a0). We remark that given a ƒ–edge xy of ‚,
there is at most one occurrence of one of xy or yx in w0. This fact will be relevant in the proofs of the
next two lemmas.

Before diving into the next lemma, we briefly discuss some of the ideas used in its proof, and the proof
of Lemma 3.16. In each case, we will have a word w over the RACG W� representing the identity
element. We then find a ƒ–edge word w0 associated to w as in Definition 3.9. The word w0 has a
natural decomposition into ƒ–edges, w0D .s1s01/ � � � .sns

0
n/. Moreover, there is a RAAG generator gi 2�

associated to each sis0i D �.gi /. By a slight abuse of notation, we also think of w0 D g1 � � �gn as a word
over the RAAG A�. Doing so, we consider a disk diagram D in the RAAG A� with boundary g1 � � �gn.
The edges of D are labeled by the gi ’s. To simplify things, by another abuse of notation we also think
of these edges as labeled by the ƒ–edges sis0i . We use the intersection patterns of hyperplanes in D to
deduce commuting relations between the generators of the RAAG. Consequently, this gives us commuting
relations between the ƒ–edges and for generators in the RACG W� .

Lemma 3.11 If .G‚; E.ƒ// is a RAAG system , then ‚ satisfies R3.

Remark 3.12 (comparison of Lemma 3.11 with Laforge’s chain–chord condition) LaForge [2017,
Lemma 8.2.3] introduced a necessary condition, called the chain–chord condition, which, if interpreted in
the language of joins and 2–component cycles, is close to our condition R3. We note that there are errors
in the statement and proof of [LaForge 2017, Lemma 8.2.3].

Proof of Lemma 3.11 Suppose there is a 2–component square  in ‚ visiting vertices c1, d1, c2 and d2

as in condition R3. Let ƒc and ƒd be the components of ƒ respectively containing fc1; c2g and fd1; d2g.
Let Tc and Td be the ƒ convex hulls respectively of fc1; c2g and fd1; d2g. By Lemma 3.2, there is a
unique simple ƒ–path from c1 to c2 (resp. d1 to d2) and this path is equal to Tc (resp. Td ).

Let w denote the commutator Œc1c2; d1d2�. The existence of  tells us that c1 and c2 both commute with
d1 and d2, so w represents the identity in W� .

Let w1, w2 and w0 be the ƒ–edge words associated to respectively c1c2, d1d2 and w. As � is injective,
w0 represents the trivial element of A�, and there is a disk diagram D over A� with boundary label w0.
We warn that the edges of D are labeled by ƒ–edges, ie generators of A�. We will analyze hyperplanes
of this diagram.
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c1

c2c3

d1

d2

d3

x y

c1

c2c3

d1

d2

d3

x y

Figure 4: The graph on the left concerns Example 3.13 and the graph of the right concerns Example 3.14.

Let pw1
, pw2

, pw�1
1

and pw�1
2

be the paths in @D with labels w1, w2, w�1
1 and w�1

2 respectively. For
i 2 f1; 2g, the word wi (thought of as a word over V.�/DE.ƒ/) does not contain any repeated letters (or
their inverses) in V.�/ by Remark 3.10. Consequently, a hyperplane is dual to at most one edge of pw1

(resp. pw2
, pw�1

1
and pw�1

2
). Furthermore, w1 and w2 are words over E.Tc/ and E.Td / respectively.

As ƒc and ƒd are distinct components of ƒ, a hyperplane dual to an edge of pw1
must be dual to an

edge of pw�1
1

and vice versa. A similar statement holds for hyperplanes dual to pw2
and pw�1

2
.

It follows that every hyperplane dual to pw1
intersects every hyperplane dual to pw2

. Consequently, every
ƒ–edge in the word w1 commutes with every ƒ–edge in the word w2. Since � is a homomorphism, the
Coxeter group elements corresponding to these ƒ–edges must commute as well. By Lemma 2.6 each
vertex of Tc commutes with each vertex of Td .

The next example shows that the conditions obtained so far are not sufficient for .G‚; E.ƒ// to be a
RAAG system.

Example 3.13 Let � be a hexagon, and let ƒ be the graph with two components shown on the left side
in Figure 4. It is clear that R1;R2, and R3 are satisfied. However, by considering the word

w D .c1c2/.d1d2/.c2c3/.d2d3/.c3c1/.d3d1/

we can see that .G‚; E.ƒ// is not a RAAG system. Specifically, the commutation relations specified
by �–edges show that w l 1 in W� . Moreover w can be expressed as a product of ƒ–edges using the
ƒ–edge words corresponding to each parenthetical element. However, it is not possible to reduce this
word to the empty word using just swap and deletion moves involving the ƒ–edges, and as a result,
.G‚; E.ƒ// cannot be a RAAG system. A rigorous proof of this fact follows from Lemma 3.16 below.

Example 3.13 shows that at least one additional condition is needed in order to obtain a characterization
of visual RAAGs, and suggests that this condition may be a generalization of R3 involving longer
2–component cycles instead of squares. It is tempting to conjecture that, given any ƒcƒd –cycle with
corresponding ƒ–convex hulls Tc and Td , the graph � contains the join of V.Tc/ and V.Td / (as is the
case when the cycle has length four, by Lemma 3.11 above). However, the following example shows this
is not necessarily true for longer cycles.
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c1
c2 c3

c4

d1 d2d3d4

Figure 5: This figure illustrates condition R4. The green subgraph is Tc and the blue subgraph
is Td . The condition says that any edge in the 2–component cycle (shown in solid black edges) is
part of a square of � with two vertices in Tc and two in Td . This is illustrated for the edge from
d3 to c4. The dotted lines are �–edges which are not necessarily in the 2–component cycle.

Example 3.14 In Figure 4, let ‚ be the graph on the right where �–edges are black and ƒ edges are
colored. Observe that ƒ has two components, colored red and blue. Consider the 2–component cycle
visiting vertices c1, d1, c2, d2, c3, d3 and c1. Then Tc is the entire red tree and Td is the entire blue
tree. However, � does not contain the join of V.Tc/ and V.Td /. (For example, there is no edge in �
connecting c1 and d2.) On the other hand, .G‚; E.ƒ// is a RAAG system in this case. (See Corollary 5.1
for a proof.)

Despite the fact that R3 does not generalize to a necessary condition on longer cycles in the obvious way,
the following weaker statement does turn out to be necessary to guarantee that .G‚; E.ƒ// is a RAAG
system and is missing from [LaForge 2017].

Definition 3.15 (condition R4) We say that ‚ satisfies condition R4 if the following holds. Let  be
any ƒcƒd –cycle in ‚ visiting vertices c1; d1; c2; d2; : : : ; cn; dn; c1 for some n � 2. Let Tc and Td be
the ƒ–convex hulls of fc1; : : : ; cng and fd1; : : : ; dng respectively. Then every edge of  is contained in a
2–component square of ‚ with two vertices in Tc and two vertices in Td . (See Figure 5.)

The next lemma shows R4 is necessary for .G‚; E.ƒ// to be a RAAG system.

Lemma 3.16 If .G‚; E.ƒ// is a RAAG system , then ‚ satisfies R4.

Proof Let  be a ƒcƒd –cycle visiting vertices c1; d1; : : : ; cn; dn; c1, and let Tc and Td be as in
Definition 3.15. Let w be the word

(1) w D .c1c2/.d1d2/.c2c3/.d2d3/ � � � .dn�1dn/.cnc1/.dnd1/:

Then w l 1 in W� . To see this, note that for each i , we know that ci commutes with di�1 and di (where
i is taken mod n). Using this we can cancel the ci for i > 1 in pairs to get

w l c1d1d2d2d3 � � � dn�1dnc1dnd1 l c1d1c1d1 l 1:

Let w0 be the ƒ–edge word associated to w. Let D be a disk diagram over A� with boundary label w0.
As in the proof of Lemma 3.11, edges of D are labeled by ƒ–edges, which are thought of as generators
of A�.
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Color the part of the boundary of D and the hyperplanes coming out of it green if they correspond to
ƒ–edges from ƒc and blue if they correspond to ƒ–edges from ƒd . Now we see from the structure of
w0 that @D alternates between green and blue stretches, and a stretch of a given color corresponds to a
simple path in the corresponding component of ƒ. It follows from Remark 3.10 that a hyperplane of a
given color must start and end in different stretches of that color.

Let LD jE.Tc/j denote the number of ƒ–edges in Tc . We will prove that condition R4 holds for  by
induction on .n; L/. The conclusion of the lemma is obvious for  corresponding to .2; L/ for any L,
since the cycle itself is a square. This includes the base case, when nD 2 (ie  is a square) and Tc is an
edge. Now let n > 2, and assume the claim is true for all .n0; L0/ such that either n0 < n or n0 D n and
L0 <L.

By Lemma 3.2, Tc and Td are trees. Now suppose cj is a leaf of Tc , and let xcj be the ƒ–edge incident
to cj in Tc . Since ci ¤ cj for all i ¤ j (by the definition of a 2–component cycle), we know that xcj
occurs exactly once in w0 (as part of the subword of w0 representing cj�1cj ) and cjx occurs exactly once
in w0 (as part of the subword representing cj cjC1). It follows there is a unique hyperplane H labeled
xcj which is dual to both the path whose label is an expression for cj cjC1 and the path whose label is
an expression for cj�1cj . Moreover, the subword w00 of w0 between these two subwords is the product
of ƒ–edges which is an expression for dj�1dj . It follows that every hyperplane dual to the path in @D
labeled w00 must intersect the hyperplane H . By Lemma 2.6, both x and cj commute (in W� ) with each
letter of V.�/ used in the word w00. In particular, dj�1 and dj each commute with x.

Now there are two possibilities. Suppose first that x D ct for some t ¤ j . Since t ¤ j and n > 2 (which
implies that  has more than four edges), it follows that either ctdj�1 or ctdj is a diagonal of  . We can
use this diagonal to cut  into two 2–component cycles 1 and 2 as follows. Assume ctdj is a diagonal
ı of  (the other case is analogous), and let ˇ1 and ˇ2 be the two components of  obtained by removing
the vertices labeled ct and dj . Set 1 D ˇ1[ ı and 2 D ˇ2[ ı. Note 1 and 2 each have strictly fewer
vertices than  . For i D 1; 2 let T i

c and T i
d

be the components of the ƒ–convex hull of i contained
respectively in ƒc and ƒd . By the induction hypothesis, we see that every edge in i is part of a square
in � with two vertices in T i

c � Tc and two in T i
d
� Td . Since each edge of  is either an edge of 1 or

of 2, the claim follows for this case.

On the other hand, suppose that x ¤ ci for any 1 � i � n. Consider the new 2–component cycle  0

obtained from  by replacing the edges dj�1cj and cjdj with dj�1x and xdj . As x¤ ci for any 1� i �n,
this does not violate the requirement that 2–component cycles do not repeat vertices. Let T 0c and T 0

d

be the components of the ƒ–convex hull of  0 contained respectively in ƒc and ƒd . Since cj is a leaf
of Tc , it follows that jE.T 0c/j < jE.Tc/j, and we also have that jV. 0/j D jV./j D n. We now apply
the induction hypothesis to conclude that each edge of  0 is part of a square of � with two vertices in
T 0

d
D Td and two vertices in T 0c � Tc . This means that this property holds automatically for all edges

of  , except possibly dj�1cj and cjdj . However, these edges are part of the square in Tc with vertices x,
cj , dj�1 and dj . Thus, the claim follows for this case as well.
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The following proposition summarizes Lemmas 3.2, 3.4, 3.11 and 3.16.

Proposition 3.17 If .G‚; E.ƒ// is a RAAG system , then ‚ satisfies R1–R4.

Ifƒ has at most two components, then it turns out that there are no additional obstructions to .G‚; E.ƒ//

being a RAAG system. More precisely:

Theorem 3.18 Suppose ƒ has at most two components. Then .G‚; E.ƒ// is a RAAG system if and
only if R1–R4 are satisfied.

Proof outline Proposition 3.17 constitutes one direction of the theorem. The following strategy will be
used to prove that R1–R4 imply that .G‚; E.ƒ// is a RAAG system. We wish to show that the image of
every nontrivial element of A� under � is nontrivial in W� .

Towards a contradiction, we assume that there exists some nontrivial g 2 A� such that �.g/D 1. Then
there is a disk diagram D whose boundary label is a word in ƒ–edges which represents �.g/. We will
put this word in a certain normal form which will be defined in terms of the configuration of hyperplanes
in D.

To define the normal form, we first show that the set of all hyperplanes can be partitioned into subsets that
we call “closed chains of hyperplanes” (see Definition 3.20 and Figure 6). Properties of hyperplanes and
closed chains can be translated into information about the graph ‚ and vice versa (see Observations 3.19,
3.23 and 3.24). Next, we prove in Lemma 3.25 that we can fix a particular closed chain H which is
“maximally nested” in a certain sense. Specifically, H has a distinguished hyperplane H0 such that every
other closed chain either intersects H0 or is separated from the rest of H by H0 (see Figure 8).

Our normal form is defined in terms of the fixed closed chain H. We first choose a basepoint p on @D
which is the endpoint of an edge of @D dual to H0. (This has the effect of possibly replacing our original
element g 2 A� with a conjugate.) Let w be the label of @D read clockwise starting at p. We show in
Claim 3.26 that w, D and H may be replaced by an equivalent word zw and corresponding disk diagram zD
and maximally nested closed chain zH, with the property that the ƒ–edges in zw coming from zH are “as
far right as possible”, ie it is not possible to swap one of these ƒ–edges with a ƒ–edge to its right by a
commutation relation. We consider zw to be a word in normal form representing �.g/.

Finally, to complete the proof of Theorem 3.18, we will show (by analyzing interactions between closed
chains in zD) that if R1–R4 are satisfied, then the normal form is violated.

Before we embark on the proof, we need to develop some preliminaries on disk diagrams, and on
transferring information from the disk diagram D to the graph ‚. In what follows, we assume that D is
a disk diagram whose boundary is a word w in the RACG W� . Unlike in the proofs of Lemmas 3.11
and 3.16, we are now working in W� rather than A�, so the edges and hyperplanes of D are labeled by
generators of W� rather than elements of A� corresponding to ƒ–edges. As the words w we consider
are the images of elements of A� under �, they have a natural decomposition into ƒ–edges.
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H
H0

H1

H2H3e0

f0

e1

f1

e2

f2e3

f3

H0

e0

f0

e1

f

�

Figure 6: The figure on the left shows a disk diagram D such that the label of @D has a natural
decomposition intoƒ–edges, delineated by large black dots. The green hyperplanes form a closed
chain of hyperplanes H, as defined in Definition 3.20 (here we can take � D @D). Two other
closed chains of hyperplanes are shown in gray. The figure on the right shows an impossible
configuration pertaining to the proof of Lemma 3.21. The path � from the lemma is colored blue.

We associate a color (red and green) to each component of ƒ. Each hyperplane of D then inherits the
color corresponding to the component of ƒ in which its label lies. Thus, two edges of @D contained in
the same ƒ–edge are dual to hyperplanes of the same color.

Observation 3.19 If ‚ satisfies R2, then no two hyperplanes of the same color intersect. This is because
if two hyperplanes intersect , then their labels are distinct and commute , and so are connected by a �–edge.
Thus they cannot be in the same component of ƒ, since each component of ƒ is an induced subgraph
of ‚, by R2.

The hyperplanes ofD can be partitioned into “closed chains of hyperplanes”, as described in Definition 3.20
below. Although the proof of Theorem 3.18 only uses disk diagrams whose boundary labels are words in
ƒ–edges, the definition below applies to slightly more general disk diagrams, as this will be needed in
Section 6.

Definition 3.20 (chains of hyperplanes) Let D be a disk diagram whose boundary @D contains a
connected subpath � (possibly all of @D), such that the label of � is a word in ƒ–edges. Let H0; : : : ;Hn

be a sequence of distinct hyperplanes in D. Let ei and fi be the edges on @D that are dual to Hi . (See
Figure 6 for an illustration when nD 3.) We say that fH0; : : : ;Hng is a chain in D, if for all 0� i < n,
the edges fi and eiC1 are contained in � and are dual to the same ƒ–edge of �. Note that e0 and fn can
be dual to edges not contained in �.

Additionally, if e0 and fn are contained in the same ƒ–edge of �, we say that fH0; : : : ;Hng is a closed
chain. (Figure 6 shows three closed chains.)

Since the two hyperplanes dual to a ƒ–edge have the same color, each chain also inherits a well-defined
color.
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Lemma 3.21 If the label of @D is a word in ƒ–edges , then every hyperplane of D is contained in a
unique closed chain. Thus , there is a partition of the hyperplanes of a given color into closed chains.

Proof Let H0 be a hyperplane of D dual to edges e0 and f0 of @D. Assume H0 is green. Let f and
e1 be edges of @D which pair with e0 and f0 respectively to form ƒ–edges. We claim that f and e1

are in the same component of D nH0. If not, there would be an odd number of edges in a part � of
@D between e0 and f0 (see the right side of Figure 6). Since the hyperplanes dual to the two edges of a
ƒ–edge have the same color, an odd number of these edges would be dual to green hyperplanes. This is a
contradiction, since no green hyperplanes can cross H0 by Observation 3.19, so there must be an even
number of edges in � dual to green hyperplanes.

The hyperplane H1 dual to e1 is green, and cannot cross H0. Let f1 be the other edge dual to H1. If
f1 D f we have a closed chain. Otherwise, there is an edge e2 which pairs with f1 to form a ƒ–edge.
By the same argument as before, e2 is in the same component of D nH1 as f0 and there is a green
hyperplane H2 dual e2 and another edge f2, such that H2 does not cross H0 or H1 (see the left side of
Figure 6). Continuing this process we obtain a sequence of hyperplanes as in Definition 3.20. Since the
number of possibilities for fi reduces each time, eventually the process stops, with fn D f for some n,
and H0; : : : ;Hn form a closed chain.

We say that a chain K intersects a hyperplane H if some K 2K intersects H . We say that chains H and
K intersect if K intersects some H 2H. We will need the following observation:

Observation 3.22 If a hyperplane H intersects a closed chain K, then it intersects K in exactly two
distinct hyperplanes. To see this , note that given a hyperplane K 2K, the hyperplanes in Kn fKg all lie in
a single component of D nK. It follows that if H intersects K more than twice , it must intersect some
hyperplane of K twice. This contradicts the fact that D has no bigons (see Remark 2.9).

The following two observations enable us to transfer information from the disk diagram D to the graph ‚.

Observation 3.23 (chains in D give ƒ–paths in ‚) Let KD fK0; : : : ; Klg be a chain in D, and for
0� i � l , let ki be the label of Ki . Then by the definition of a chain , Ki and KiC1 are dual to the same
ƒ–edge in @D for each i , so there is an edge inƒ between ki and kiC1. It follows that K naturally defines
a ƒ–path in ‚ visiting vertices k0; k1; : : : ; kl . Moreover , if K is a closed chain , then the corresponding
ƒ–path is a loop. See Figure 7.

Observation 3.24 (pairs of intersecting closed chains give 2–component loops in ‚) Consider two
closed chains which intersect , say a red chain H and a green chain H. Let H1 2 H and K1 2 K be
intersecting hyperplanes. By Observation 3.22, the hyperplane K1 intersects H in a second hyperplane
H2 ¤H1. Similarly , H2 intersects K in a second hyperplane K2. Proceeding in this way , we obtain a
polygon with at least four sides , with sides alternating between red and green hyperplanes. See the left
side of Figure 7.
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Figure 7: The figure illustrates Observations 3.23 and 3.24. On the left is a disk diagram D with
red and green closed chains called H and K respectively. The graph on the right is a part of ‚.
The labels of the hyperplanes in D correspond to vertices of ‚ (in particular of ƒ). Starting at the
basepoint p and going around @D clockwise, the closed chain H defines a ƒ–loop in ‚ visiting
vertices x, y, z, y and x, and the closed chain K defines a ƒ–loop visiting vertices a, b, c, b
and a. The polygon coming from the intersection of H and K defines a 2–component loop in ‚
visiting vertices a, x, b, z, b, y and a. Observe that this 2–component loop is not a cycle.

Since an intersecting pair of hyperplanes corresponds to an edge of � , a 2–colored polygon of the type
we just constructed defines a 2–component loop in ‚ (where each edge of the 2–component loop comes
from a corner of the 2–colored polygon). See Figure 7. We warn that the 2–component loop obtained
from a 2–colored polygon in D may not be a 2–component cycle. (Note that a 2–component cycle is
a 2–component loop in which all of the vertices are distinct , and there are at least two vertices in each
component.)

In order to define a normal form for the word u from the proof outline, we will need to choose a closed
chain in D with some special properties:

Lemma 3.25 Let u and D be as in the proof outline. There exists a closed chain H of D, containing a
distinguished hyperplane H0, such that given any closed chain K¤H, either

(1) K and H n fH0g lie in different components of D nH0, or

(2) K intersects H0.

Proof We iteratively construct a sequence of closed chains H1;H2; : : : with distinguished hyperplanes
H 1

0 ;H
2
0 ; : : : such that for all i > 1,

(i) Hi and Hi�1 n fH i�1
0 g lie in the same component of D nH i�1

0 , and

(ii) H i�1
0 and Hi n fH i

0g lie in different components of D nH i
0.

Let H1 and H 1
0 be arbitrary. Now for any j , if Hj and H j

0 do not satisfy the conclusion of the lemma,
then there must exist another closed chain HjC1 which lies entirely in Cj , where Cj is the component
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H1

H2

H3

H 1
0

H 2
0

H 3
0

Figure 8: The figure illustrates the procedure for finding H and H0 in Lemma 3.25. Each closed
chain in the sequence is labeled in its interior. The hyperplanes H i

0 are shown in bold. In this
example HDH3 has the desired property.

of D nH j
0 containing H n fH

j
0 g. (Figure 8 illustrates this for j D 1; 2.) There is a unique hyperplane

in HjC1 satisfying condition (ii) above with i D j C 1, and we set this equal to H jC1
0 . Thus, we can

produce a longer sequence of closed chains with properties (i) and (ii).

By construction, there is a nesting of components C1 � C2 � C3 � � � � , and it follows that H 1
0 ;H

2
0 ; : : :

are distinct hyperplanes in D. As D has finitely many hyperplanes, this process can only be repeated
finitely many times. Thus, Hj satisfies the claim for some j .

We are now ready to prove the theorem.

Proof of Theorem 3.18 As discussed, we need to show that if R1–R4 are satisfied, then the map
� W A�!G‚ is injective. Let g 2 A� be a nontrivial element. Let v D v1v2 � � � vn be a reduced word
over the set of the generators of A�, which represents g. By the definition of A�, we have that �.vi /

is a ƒ–edge of ‚, for 1� i � n. Then uD �.v1/�.v2/ � � ��.vn/ is a concatenation of ƒ–edges which
represents �.g/. Towards a contradiction, we assume that u represents the identity element of W� . Then
there is a disk diagram D whose boundary label (read clockwise starting from some basepoint) is u. By
Lemma 2.8 we may assume that D has no bigons.

An element has trivial image under � if and if every element of its conjugacy class does. Thus, we may
assume that g is of minimal length in its conjugacy class, where the length of an element is defined to be
the minimal length of a word representing it.

We partition the hyperplanes of D into closed chains. (See Lemma 3.21.) By Lemma 3.25, we can
choose a chain H, with distinguished hyperplane H0, such that given any other chain K, either H0

separates K from H n fH0g, or K intersects H0. Let a0; a1; : : : ; as be the labels of the hyperplanes of H,
starting from H0, and proceeding in order in the clockwise direction around @D. Then the ƒ–edges
a0a1; a1a2; : : : ; as�1as; asa0 appear in @D in that order, possibly interspersed with some other ƒ–edges.

Algebraic & Geometric Topology, Volume 24 (2024)



776 Pallavi Dani and Ivan Levcovitz

c0

c1

c2

c3

c4

b0

b1

b2 b3

b4

a0

a1

b0

b1

H

K

p
a0

as

w

Figure 9: This example illustrates the proof of Theorem 3.18. The chain H satisfying Claim 3.26 is
shown in thick red lines. In particular, noƒ–edge from H (except possibly the last one) commutes
with the ƒ–edge appearing after it in @D. The chain K, which contributes the first ƒ–edge not in
H (after a0a1), is shown in thick green lines. The polygon formed by the intersection of H and K

induces a 2–component loop which visits (in this example) c0; b0; c1; b1; c2; b2; c3; b3; c4; b4; c0.
The blue subpaths of @D are the subpaths defined in Claim 3.28, with i D 4.

Let p denote the vertex on @D which is the endpoint of the ƒ–edge from H labeled asa0, read clockwise.
(See Figure 9.) Let w be the word labeling @D clockwise, starting from p. Then w is a cyclic conjugate
of u. Let x be the corresponding cyclic conjugate of v. Since v was chosen to be reduced, and since
g (the element of A� represented by v) is of minimal length in its conjugacy class by assumption, it
follows that x is reduced.

We now show that we can modify D in such a way that the resultant boundary label is a word representing
w D �.x/ which is in a certain normal form:

Claim 3.26 There exists a disk diagram zD such that the following hold.

(1) There is a closed chain zH in zD which has a distinguished hyperplane zH0 satisfying the criterion in
Lemma 3.25. The labels of the hyperplanes of zH starting from zH0 and proceeding clockwise , are
a0; : : : ; as (ie they are the same labels as the labels of the hyperplanes in H).

(2) Let Qp be the endpoint of the ƒ–edge asa0 from zH, and let zw be the word labeling @ zD in the
clockwise direction starting from Qp. Then zw D �. Qx/, where Qx is a reduced word in A� obtained
from x by Tits swap moves.

(3) The ƒ–edges from zH appear as far right as possible in zw. More formally , the word zw has no
subword of the form aiaiC1bb

0 such that aiaiC1 is one of the ƒ–edges coming from zH with
0� i � s (with indices mod s), aiaiC1 ¤ bb

0, and aiaiC1 commutes with bb0.

Proof We construct zD iteratively, starting with D. If H, p, w and x are as defined above, then the first
two conditions in the claim are satisfied. If (3) is not satisfied, then w has a subword aiaiC1bb

0 as in (3).
Since asa0 is the last ƒ–edge of w, we conclude that aiaiC1 ¤ asa0.
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Note that aiaiC1 ¤ bb
0 (by condition (3)) and aiaiC1 ¤ .bb

0/�1 (since x is reduced and w D �.x/).
Then it follows from Lemma 2.6, that each of ai and aiC1 commutes with each of b and b0. By applying
Lemma 2.11(1) four times, we obtain a new disk diagram D0 such that the label of @D0 is obtained from
the label of @D by swapping the ƒ–edges aiaiC1 and bb0. Moreover, the natural map  from the edges
of @D to the edges of @D0 (defined in Lemma 2.11(1)) preserves boundary combinatorics. By applying
Lemma 2.8 if necessary, we may assume that D0 has no bigons, so hyperplanes in D0 intersect at most
once.

Since boundary combinatorics are preserved,  induces a bijection between the hyperplanes dual to @D
and those dual to @D0. Since the transition from D to D0 involves swapping a pair of ƒ–edges, the label
of @D0 is still a product of ƒ–edges, and so the hyperplanes of D0 can be partitioned into closed chains
of hyperplanes. Moreover,  induces a bijection between the closed chains of hyperplanes in D and D0.

If H0 and H 00 denote the images of H and H0 respectively under  , it is clear that the labels of the
hyperplanes of H0, starting from H 00 and proceeding clockwise, are a0; : : : ; as . We now prove that H0

together with H 00 still satisfies the criterion in Lemma 3.25 required in (1).

Let K0 be a closed chain in D0, and let K be its preimage in D. Our choice of H implies that either
H0 separates K from H n fH0g, or K intersects H0. In the former case, H 00 still separates K0 from
H0 n fH 00g. This is because the swap performed does not involve any hyperplanes from chains which do
not intersect H0, since (as noted above) aiaiC1 ¤ asa0.

On the other hand, suppose that K intersects H0. By Observation 3.22, there are exactly two hyperplanes
K1 and K2 in K which intersect H0. If Kj , for j D 1; 2, is not dual to the ƒ–edge labeled by bb0, then
the image of Kj intersects H 00. Moreover, if i ¤ 0, then it follows that the images of K1 and K2 in D0

intersect the hyperplane H 00. Thus, we only need to consider the case where the ƒ–edge a0a1 is swapped,
and (up to relabeling) K1 is dual to b and K2 is dual to b0. In this case, K1 and K2 are dual to the same
ƒ–edge. It follows that no hyperplane in K n fK1; K2g is contained in the same component of D nH0 as
Hn fH0g. Thus, in D0, no hyperplane of K0 is contained in the same component of D0 nH 00 as H0 n fH 00g.
We have shown that H0, with distinguished hyperplane H 00, satisfies the conclusion of Lemma 3.25.

Let p0 be the vertex on @D0 which is the endpoint of the ƒ–edge from H0 labeled asa0. Since the swap
performed did not involve asa0, the label w0 of @D0, read clockwise from p0, is obtained from w by
swapping a single pair of ƒ–edges, and its preimage in x0 in A� is obtained from x by swapping one
pair of generators. This shows (2).

We have established that D0, together with H0, satisfies (1) and (2) of Claim 3.26. If (3) still fails, we may
repeat the process above. Since each individual iteration involves moving one ƒ–edge from the image of
H to the right, this process eventually stops. After finitely many iterations, we arrive at a disk diagram zD
such that all three conditions hold.
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For the rest of the proof we assume, without loss of generality, thatD, H, p, w and x satisfy the conclusion
of Claim 3.26.

We now analyze closed chains which intersect H. First consider the case that there are no such chains.
This includes the case when ƒ has a single component. Since H is a closed chain, it defines a loop in ƒ.
(See Observation 3.23.) On the other hand, since no chains intersect H, the union of the edges of @D
dual to the hyperplanes of H is a continuous subpath (with label .a0a1/.a1a2/ � � � .asa0/). Applying the
following claim to this subpath, we conclude that the ƒ–loop defined by H is a cycle. This contradicts R1.
(The claim will be used again later in this proof.)

Claim 3.27 Let � be a subpath of @D labeled by a product of ƒ–edges. Suppose there exists a
closed chain X, such that each edge of � is dual to a hyperplane in X. It follows that the label of �
is .x1x2/ � � � .xn�1xn/, where x1; x2; : : : ; xn are the labels of the hyperplanes of X dual to �, in order.
Furthermore , the ƒ–path through vertices x1; : : : ; xn is simple.

Proof The claim about the label of � is immediate. If the path through vertices x1; : : : ; xn is not simple,
then there is a ƒ–loop through vertices xi ; xiC1; : : : ; xiCj D xi for some i and j . By R1, the image
of this loop in ƒ is a tree. Let xr be a leaf of this tree, with i < r < j . It follows that xr�1 D xrC1.
Consequently, the label of � (and therefore of the word w) has a subword .xr�1xr/.xrxr�1/. This is a
contradiction, as it implies that the preimage x of w in A� is not reduced.

Thus, we may assume that there is at least one chain intersecting H. In particular, ƒ has two components:
say a red component ƒa which contains the labels of H, and a green component ƒb . By Claim 3.26,
each chain intersecting H intersects H0. Let K be the “first” such chain, in the sense that the first ƒ–edge
from a chain other than H appearing in w to the right of a0a1 is from K. (See Figure 9.) By R2 and
Observation 3.19, we conclude that K is green. Let b0; : : : ; bs0 be the labels of the hyperplanes of K,
where b0b1 is the label of the first ƒ–edge from K appearing in w to the right of a0a1.

Now consider the 2–colored polygon in D whose sides alternate between hyperplanes in H and K, as
described in Observation 3.24. Let c0; d0; : : : ; ck; dk be the labels of these sides, where c0D a0, d0D b0,
and c0; : : : ; ck (resp. d0; : : : ; dk) is a subsequence of a0; : : : ; as (resp. of b0; : : : ; bs0). (See Figure 9.)

The following technical claim about the hyperplanes dual to certain subpaths of @D associated to this
2–colored polygon will be needed in what follows:

Claim 3.28 For 0 � i � k, let ei and fi (resp. e0i and f 0i ) be the edges dual to the hyperplane of H

labeled ci (resp. the hyperplane of K labeled di ), where ei (resp. e0i ) appears before fi (resp. f 0i ) reading
clockwise from p.

For i > 0, let �i be the subpath of @D from (and including) fi�1 to (and including) ei , and let �i be the
subpath of @D from the endpoint of �i to (and including) e0i . (See Figure 10.) Then every edge of �i

(resp. �i ) is dual to a hyperplane in H (resp. K).
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�i

�i

ci�1

di�1
ci

di

ei

fi
fi�1

e0i�1

f 0i�1

e0i

Figure 10: The paths �i and �i from Claim 3.28 are shown in bold, delineated by dots. We remark
that if i D k, then there could be additional hyperplanes not in K or H between the endpoint of
�k and the start of the edge fi .

Proof Suppose there is some hyperplaneL dual to an edge e of �i such that the closed chain L containing
L is not equal to H. From the definition of �i , we conclude that e is on the same side of H0 as H n fH0g

in D, and by our choice of H (and Lemma 3.25), it follows that L intersects H0. Therefore, L is green
by Observation 3.19.

Let K denote the hyperplane of K labeled di�1. Then K separates e from K n fKg, so L … K, ie L¤ K.
If di�1 D b0, ie if K does intersect H0, then our choice of K implies that K is the first hyperplane not
in H dual to @D after the ƒ–edge a0a1, so such an L cannot exist. On the other hand, if K does not
intersect H0, then K separates e from H0. So, in order to intersect H0, the chain L must also intersect K,
which is a contradiction, since L and K are both green.

Now suppose L 2 L¤ K is dual to an edge e of �i . Since �i is only defined for i > 0, it is on the same
side of H0 as Hn fH0g, and consequently, the same holds for e. Therefore, we conclude as before that L
is green.

Additionally, we conclude as before that the hyperplane K 2 K labeled di�1 does not intersect H0. Now
consider the subchain of K0 of K consisting of the hyperplanes dual to all but the last edge e0i of �i . Since
K does not intersect H0, it follows that e is separated from H0 by some hyperplane in K0. Thus, in order
to intersect H0, L must intersect K, which is again a contradiction.

The 2–colored polygon obtained above gives a 2–component loop in ‚, as described in Observation 3.24.
A priori this loop may not be a 2–component cycle, ie it is possible that ci D cj or di D dj for some i
and j . However, we now show that it contains a cycle. We will then be able to apply R4 to this cycle to
make progress towards obtaining a contradiction to the normal form in Claim 3.26.

Claim 3.29 Consider the 2–component loop in ‚ visiting c0; d0; : : : ; ck; dk; ckC1 D c0 defined above.
There exist 0� l � k� 1 and m� 2, such that one of the two following subsequences of vertices (with
indices taken mod kC 1) defines a 2–component cycle in ‚:

(1) cl ; dl ; clC1; : : : ; dlCm�1; clCm D cl ;

(2) dl ; clC1; dlC1; : : : ; clCm; dlCm D dl .
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Proof Observe that since ckC1 D c0, the following set is nonempty:

fj j ci D ciCj or di D diCj for some 0� i < k� 1 and 1� j � kC 1g:

Let m denote its minimum value. We first show that m� 2, or equivalently that, for each 0� i � k� 1,
both ci ¤ ciC1 and di ¤ diC1 are true. Suppose ci D ciC1 for some i . Consider the path �iC1 from
Claim 3.28. It is labeled by ƒ–edges, and every edge in it is dual to a hyperplane from H. Then by
Claim 3.27, it follows that �iC1 defines a simple ƒ–path from the vertex ci to the vertex ciC1. However,
this contradicts the assumption that ci D ciC1. This proves that for all 0� i � k� 1, we have ci ¤ ciC1.
The proof that di ¤ diC1 is similar.

Now if l is such that cl D clCm (the case when dl D dlCm is similar), then it readily follows from the
minimality of m that the vertices cl ; dl ; clC1; : : : ; clCm�1; dlCm�1 are distinct, and therefore define the
desired cycle.

Continuing the proof of the theorem, we can now assume ‚ has a 2–component cycle  as in (1) from
Claim 3.29. (The case in which ‚ has a 2–component cycle as in (2) is similar.) Let Tc and Td be the
ƒ–convex hulls of fcl ; : : : ; clCm�1g and fdl ; : : : ; dlCm�1g respectively. Then Tc and Td are trees by R1.
Let cj be a leaf of Tc with cj ¤ c0. Then cj labels a hyperplane Ht 2 H for some t ¤ 0, so at D cj .
Similarly, cj�1 labels a hyperplane Ht�r of H, while dj�1 and dj label hyperplanes Kt 0 and Kt 0Cr 0

respectively of K, where dj�1 D bt 0 and dj D bt 0Cr 0

Consider the paths �j and �j defined in Claim 3.28. The last ƒ–edge of �j is at�1at . By Claim 3.28, the
first edge of �j is dual to a hyperplane in K. It follows that this must be Kt 0 , with label bt 0 , for otherwise
Kt 0 would separate this edge from KnKt 0 . It follows that the first ƒ–edge of �j is bt 0bt 0C1, and that the
word w has a subword at�1atbt 0bt 0C1.

To complete the proof, we will show that the presence of this subword violates the normal form established
in Claim 3.26(3). Since the labels of H and K are from different components of ƒ, it is immediate that
at�1at ¤ bt 0bt 0C1. We now show that at�1at and bt 0bt 0C1 commute.

The 2–component cycle  in ‚ contains an edge with endpoints at and bt 0 . Applying R4 to this edge,
we conclude that there is a 2–component square visiting at , bt 0 , a and b, where a 2 Tc and b 2 Td . Next,
applying R3 to this 2–component square, we see that bt 0 commutes with the vertices of the ƒ–convex
hull of fat ; ag. Claims 3.27 and 3.28 together imply that the path �j induces a simple ƒ–path visiting
vertices at�r ; at�rC1; : : : ; at . Consequently, the vertices along this path, and in particular at�1, are in Tc .
Moreover, at�1 is the unique vertex of Tc adjacent to at , since at D cj is a leaf of Tc . It follows that
at�1 is contained in the ƒ–convex hull (which is the same as the Tc–convex hull) of fat ; ag. Thus, at�1

and bt 0 commute. The same reasoning, applied to the edge of  with endpoints at and btCr 0 , implies that
at�1 and btCr 0 commute.

Using the �–edges whose existence is implied by these two additional commutation relations, we obtain
a 2–component square visiting at , bt 0 , at�1 and bt 0Cr 0 . Applying R3 to this square, we conclude that at
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Figure 11: This figure illustrates condition R5. The red, blue and green segments are respectively
Tc , Td and Ta. Condition R5 states that any ƒ–edge contained in the green segment must either
commute with every ƒ–edge in the red segment or must commute with every ƒ–edge in the blue
segment.

and at�1 commute with each vertex in the ƒ–convex hull of fbt 0 ; bt 0Cr 0g. By Claim 3.27, we see that the
path �j from Claim 3.28 defines a simple ƒ–path visiting bt 0 ; bt 0C1; : : : ; bt 0Cr 0 . It follows that bt 0C1 is
in the convex hull of fbt 0 ; bt 0Cr 0g, and consequently, at and at�1 commute with bt 0C1.

Putting together the commutation relations established in the previous paragraphs, we conclude that
at�1at commutes with bt 0bt 0C1. This contradicts the fact that we have chosen D so that it satisfies (3)
of Claim 3.26.

3.1 Three or more ƒ–components

In the case that ƒ contains at most two components, Theorem 3.18 shows that R1–R4 are necessary and
sufficient conditions that guarantee .G‚; E.ƒ// is a RAAG system. In this subsection, we do not place
any restriction on the number of components of ƒ. We give an additional necessary condition R5 for
.G‚; E.ƒ// to be a RAAG system, and Example 3.31 shows this condition is independent of conditions
R1–R4. The authors are aware that even more conditions are required in order to generalize Theorem 3.18
to this setting. These extra conditions are not included here, as they are complicated and the authors do not
believe to yet possess the complete list of the necessary and sufficient conditions for this generalization.

We further show in this subsection that if ‚ contains certain subgraphs and .G‚; E.ƒ// is a RAAG
system, then � must necessarily contain a triangle. These results are needed in the next section.

Definition 3.30 (condition R5) We say that ‚ satisfies condition R5 if the following holds. Let ƒa, ƒc

and ƒd be distinct components of ƒ. Suppose we have vertices a; a0 2ƒa, c; c0 2ƒc and d; d 0 2ƒd ,
such that ‚ contains a 2–component square visiting c, d , c0 and d 0. Furthermore, suppose that c and c0

are each adjacent to a in � and that d and d 0 are each adjacent to a0 in � . (See Figure 11.) Let Ta, Tc

and Td be the ƒ–convex hulls of fa; a0g, fc; c0g and fd; d 0g respectively. Then given any ƒ–edge xx0

of Ta, the graph � contains either the join of fx; x0g with V.Tc/ or the join of fx; x0g with V.Td /.

The following is a concrete example showing that when ƒ has more than two components, the conditions
R1–R4 are not sufficient to guarantee that .G‚; E.ƒ// is a RAAG system.
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Example 3.31 Let � be the graph whose vertex set is fa; a0; c; c0; d; d 0g and whose edge set is the set
of black edges in Figure 11. Let ƒ � �c consist of exactly three ƒ–edges: aa0, cc0 and dd 0. Then
‚ D ‚.�;ƒ/ satisfies conditions R1–R4 and does not satisfy condition R5. By Lemma 3.32 below,
.G‚; E.ƒ// is not a RAAG system.

We now show that condition R5 is necessary.

Lemma 3.32 If .G‚; E.ƒ// is a RAAG system , then ‚ satisfies condition R5.

Proof By Theorem 3.18, we may assume that‚ satisfies conditions R1–R4. Let a; a02ƒa, c; c02ƒc and
d; d 0 2ƒd be as in Definition 3.30. Define the words zaDa

0a, zcD cc
0, zd Ddd

0 and zD Œzazcz
�1
a ; zd �.

By the commuting relations imposed in Definition 3.30, it follows that z l 1 in W� . Let wa, wc , wd and
w be the ƒ–edge words corresponding respectively to za, zc , zd and z. Let D be a disk diagram over
A� with boundary label w.

Let c , �c , d and �d be the paths in @D labeled respectively by wc , w�1
c , wd and w�1

d
. Note that no

hyperplane is dual to two distinct edges of c (resp. �c , d and �d ). This follows as zc is a word in unique
ƒ–edges. Thus, every hyperplane dual to c (resp. d ) is also dual to �c (resp. d ).

Let ˛ be a path in @D between c and d (which is labeled by wa). Again, no hyperplane is dual to
two distinct edges of ˛. Let xx0 be a ƒ–edge of Ta, and let H be the unique hyperplane dual to ˛ with
label xx0. Note that either H intersects every hyperplane dual to c or H intersects every hyperplane dual
to d . Furthermore, every ƒ–edge of Tc (resp. Td ) is the label of a hyperplane dual to c (resp. d ). The
claim now follows from Lemma 2.6, and the fact that intersecting hyperplanes correspond to commuting
generators of A�.

The following corollary shows that if‚ contains a configuration like that in the hypothesis of condition R5,
then � must contain a triangle. This corollary is a warm-up to the more complicated Lemma 3.34.

Corollary 3.33 Suppose .G‚; E.ƒ// is a RAAG system and ‚ contains a set of vertices fa; a0; b; b0; c; c0g
satisfying the hypothesis of R5. Then � contains a triangle.

Proof Let P D fa; a0; c; c0; d; d 0g be a subset of vertices of ‚ satisfying the hypothesis of R5. We call
such a P a configuration in ‚. Keeping the same notation as in Definition 3.30, we call the number of
vertices of Ta the complexity of P , and we prove the claim by induction on complexity. Note that aD a0

is possible in the hypothesis of R5, so the lowest possible complexity is N D 1. The corollary follows in
this case, as � then contains a triangle spanned by the vertices aD a0, c and d .

Now let N > 1 and suppose the claim is true for all configurations P of smaller complexity. As N > 1,
there is a vertex y such that ay is a ƒ–edge of Ta. By Lemma 3.32, either y is adjacent in � to both c
and c0, or y is adjacent in � to both d and d 0. In either case, we see that ‚ contains a configuration of
smaller complexity.
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Figure 12: This figure illustrates the configuration described in Lemma 3.34 in the case nD 3
and mD 4. The black edges are edges of � . The red, green and blue parts consist of ƒ–edges,
and are all contained in ƒ. The different colors indicate that they are in three distinct components
of ƒ.

The next lemma shows that if ‚ contains certain subgraphs which generalize the configurations in the
hypothesis of R5, then � must contain a triangle.

Lemma 3.34 Let ƒa, ƒc and ƒd be distinct components of ƒ. Suppose ‚ has a ƒaƒc–path visiting
c1; a1; c2; : : : ; an�1; cn, and a ƒaƒd –path visiting d1; a

0
1; d2; : : : ; a

0
m�1; dm, where ci 2 ƒc , di 2 ƒd

and ai ; a
0
i 2ƒa for all appropriate i . Further suppose that ‚ contains a 2–component square visiting c1,

d1, cn and dn. (See Figure 12.) If .G‚; E.ƒ// is a RAAG system , then � has a triangle.

Proof By Theorem 3.18 and Lemma 3.32, we may assume that ‚ satisfies conditions R1–R5. Let
AD fa1; : : : ; an�1; a

0
1; : : : ; a

0
m�1g, C D fc1; : : : ; cng and D D fd1; : : : ; dmg be vertices of ‚ as in the

statement of the lemma. We call such a triple .A;B; C / a configuration of ‚. Let Ta, Tc and Td be the
ƒ–convex hulls of A, C and D respectively. We define the complexity of .A; C;D/ to be the integer
N D jC jC jDjC jTajE CjTcjE CjTd jE , where jX jE denotes the number of edges in a graph X . The
proof will be by induction on complexity of configurations.

By hypothesis, we have that n;m� 2 and jTcjE ; jTd jE � 1. If nDmD 2 then � contains a triangle by
Corollary 3.33. In particular, the base case follows.

We now fix a configuration AD fa1; : : : ; an�1; a
0
1; : : : ; a

0
m�1g, C D fc1; : : : ; cng and DD fd1; : : : ; dmg

as above of complexity N , and we assume that the result holds for configurations of smaller complexity.
By the previous paragraph, we may also assume (up to relabeling) that n > 2. We prove the lemma by
showing that either � contains a triangle or ‚ contains a configuration of smaller complexity.

Define ˛ac and ˛ad to respectively be the hypothesized ƒaƒc–path and ƒaƒd –path. We may assume
that ˛ac and ˛ad are simple paths, for if not, we would be able to excise a loop to obtain a configuration
of smaller complexity.

We claim that for all 1 < i < n, we may assume that ci does not lie on the simple path in ƒc from c1

to cn. For suppose there exists such a vertex ci . By R3, it follows that ci commutes with both d1 and dm.
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There then exists a ƒaƒc path visiting c1; a1; : : : ; ai�1; ci , and it follows that ‚ contains a configuration
of smaller complexity (obtained by replacing ˛ac with this new path). Thus we may make this assumption
without loss of generality. Furthermore, as n� 3, there exists an integer j such that cj is a leaf vertex
of Tc and such that 1 < j < m. We fix such a vertex cj .

Define the word zc to be

zc D .a
0
1a1/.c1c2/.a1a2/.c2c3/.a2a3/ � � � .an�2an�1/.cn�1cn/.an�1a

0
1/

and define the word zd , depending on the value of m, to be

zd D

�
d1d2 if mD 2;
.d1d2/.a

0
1a
0
2/.d2d3/.a

0
2a
0
3/ � � � .a

0
m�2a

0
m�1/.dm�1dm/.a

0
m�1a

0
1/ if m> 2:

In W� we have that zc l a01c1cna
0
1 and zd l a01d1dma

0
1. Let z D Œzc ; zd �. Note that as c1 and cn

commute with d1 and dm in W� ,

z l Œa01c1cna
0
1; a
0
1d1dma

0
1�l a01Œc1cn; d1dm�a

0
1 l 1:

Let wc , wd and w be the ƒ–edge words associated to zc , zd and z respectively. Let D be a disk diagram
over A� with boundary label w. Let c , �c , d and �d be the subpaths of @D labeled respectively by wc ,
w�1

c , wd and w�1
d

.

Let ycj be the ƒ–edge of Tc incident to cj . Since ˛ac does not repeat vertices and since cj is a leaf of Tc ,
it follows that wc contains exactly two occurrences of the letter y contained in the subword labeled by
.ycj /.aj�1x1/.x1x2/ � � � .xlaj /.cjy/, where the xi ’s are vertices in ƒa. In particular, there are exactly
four edges of @D (two on c and two on �c) labeled by either ycj or cjy. Correspondingly, there are
exactly two hyperplanes, H and H 0 in D labeled ycj .

We claim that we may assume that H is dual to both c and �c , and the same is true for H 0. For suppose
otherwise, and suppose that H is dual to two edges of c . (The case of H 0 is similar.) It follows that
any hyperplane dual to the subpath of c labeled by .aj�1x1/.x1x2/ � � � .xlaj / (which lies between the
endpoints of H ) must intersect H . Thus, in particular, .aj�1x1/ and .xlaj / commute with ycj , and
applying Lemma 2.6, we conclude that y commutes with both aj�1 and aj . We now show that we can
replace ˛ac with a new ƒaƒc–path from c1 to cn such that jTajE is reduced, and thus ‚ contains a
smaller complexity configuration. If y is not equal to any ck for any 1� k �m, then we obtain this path
by simply replacing cj with y in ˛ac . On the other hand, if y D ck for some k, then we replace ˛ac

with the ƒaƒc path visiting c1; a1; : : : ; ck; aj ; cjC1; ajC1; : : : ; an�1; cn if k < j and perform a similar
replacement if k > j . In either case, we have produced a configuration of smaller complexity. Thus, we
now assume that each of H and H 0 is dual to both c and �c .

Let Q and Q0 be the hyperplanes in D dual to the edges of c labeled by aj�1x1 and xlaj respectively.
If both Q and Q0 intersect H [H 0, then we can conclude, as above, that y commutes with both aj�1

and aj . We can then find a smaller complexity configuration as in the previous paragraph. Thus, we can
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assume that either Q or Q0 is dual to both c and �c . We assume that Q has this property (the case of Q0

is similar).

We now examine hyperplanes dual to d and �d . If m D 2, then the unique hyperplane whose label
contains d1 is dual to both d and �d , and this hyperplane intersects both H and Q. Thus, d1 commutes
with both cj and aj�1. Since cj commutes with aj�1, it follows that � contains a triangle. On the other
hand, if m > 2 by the same reasoning as before, we can assume there is a leaf vertex dj 0 of Td and a
hyperplane with label y0dj 0 that intersects both d and �d . This then implies that dj 0 commutes with
both cj and aj�1 and consequently, � contains a triangle.

4 Finite-index visual RAAGs

As in the previous section, given a simplicial graph � and a subgraph ƒ of �c with no isolated vertices,
we set ‚D‚.�;ƒ/, and let G‚ be the subgroup generated by E.ƒ/. Our goal is to characterize graphs
ƒ� �c such that .G‚; E.ƒ// is a RAAG system and G‚ has finite index in W� .

Suppose the graph � contains a vertex s which is �–adjacent to every other vertex of � . We say that s is
a cone vertex. In this case, it easily follows that W�ns has index 2 in W� and that s cannot be contained
in any ƒ–edge.

We now recall a construction from [Dani and Levcovitz 2021] which will help us compute the index
of G‚. The construction is general, but for simplicity, and as it is all that we use, we choose to only
describe it in the context where � is triangle-free. We refer the reader to [Dani and Levcovitz 2021] for
full details.

Let � be a triangle-free graph. We say a cell complex is �–labeled if every edge of the complex is labeled
by a vertex of � . Let X be a �–labeled complex. Suppose two edges of X have the same label and a
common endpoint. A fold operation produces a new complex from X by naturally identifying these two
edges.

Suppose now that f1 and f2 are edges ofX which share a common vertex u and whose labels s1; s22V.�/
have an edge between them in � . Let c be a 2–cube with edges c1, c2, c3 and c4 such that ci \ ciC1 is a
vertex of c for each i mod 4. We label c1 and c3 by s1, and c2 and c4 by s2. A square attachment operation
produces a new complex from X by attaching c to X by identifying c1 to f1 and c2 to f2. Note that,
unlike in [Dani and Levcovitz 2021], we do not need to define cube attachments for higher-dimensional
cubes, as we are in the case that � is triangle-free.

Finally, given a collection of 2–cubes in X with common boundary, we can produce a new complex
from X by naturally identifying every 2–cube in this collection to a single 2–cube. In this case, we say a
cube identification operation was performed to X .
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We define a �–labeled complex �0 associated to G‚ as follows. First, we enumerate the ƒ–edges as
s1t1; : : : ; sntn, where si and ti are the two endpoints of the i th ƒ–edge. We set �0 to be a bouquet of n
circles, each of which is subdivided into two edges, such that the i th circle has label si ti .

Next, we describe a series of complexes built iteratively from �0. These are

�0!�1!�2! � � � :

For each i > 0, the complex �i is obtained by either a fold, square attachment or square identification
operation performed to �i�1. Furthermore, we assume that the order of operations is as follows: first all
possible fold and square identifications are performed, then all possible square attachment operations are
applied to the resulting complex, and these processes are alternated (see [Dani and Levcovitz 2021] for
details).

Let � be the direct limit of such a sequence. We call � a completion of G‚. In [Dani and Levcovitz
2021] we show that properties of � reflect those of the subgroup G‚.

The index of G‚ can be determined by properties of �. We say that a vertex u of a �–labeled complex
has full valence if for any vertex s 2 � , there is an edge incident to u with label s. Below we present a
version of [Dani and Levcovitz 2021, Theorem 6.9] together with [Dani and Levcovitz 2021, Lemma 6.8]
under the hypotheses which we will need:

Theorem 4.1 Let � be a triangle-free graph with no cone vertex. A subgroup G <W� has finite index
in W� if and only if � is finite and every vertex of � has full valence. Furthermore , if G is indeed of
finite index, then its index is exactly the number of vertices of �.

We introduce two new properties below which will help us characterize when G‚ has finite index in W� .

Definition 4.2 (conditions F1 and F2) We say that ‚D‚.�;ƒ/ satisfies condition F1 if given any
s 2 V.‚/ which is not a cone vertex of � , it follows that s is the endpoint of some ƒ–edge. We say that
‚ satisfies condition F2 if given any distinct components ƒs and ƒt of ƒ, and vertices s of ƒs and t
of ƒt , there is a ƒsƒt –path in ‚ from s to t .

Remark 4.3 Suppose � is connected,ƒ contains exactly two components and that‚D‚.�;ƒ/ satisfies
R2 and F1. Then ‚ satisfies F2. For given any two vertices contained in different components of ƒ, as
� is connected, there is a �–path between them. Furthermore, this has to be a 2–component path as ‚
satisfies R2, and the two ƒ–components this path visits have to be the ones containing the chosen vertices
(as there are only two ƒ components). This remark will prove to be useful when verifying whether certain
graphs satisfy F2.

Remark 4.4 Suppose ‚D‚.�;ƒ/ satisfies F2, and let ƒ1 and ƒ2 be distinct ƒ–components. Then
there exists an ƒ1ƒ2–path between any two distinct vertices of ƒ1. To see this, let s and s0 be distinct
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vertices of ƒ1, and let t be vertex of ƒ2. By F2 there is a ƒ1ƒ2–path from s to t , and similarly there is
a ƒ1ƒ2–path from t to s0. Combining these two paths gives a ƒ1ƒ2–path form s to s0.

Lemma 4.5 Let � be a triangle-free graph with no cone vertex, and let ƒ be a subgraph of �c with no
isolated vertices , such that .G‚; E.ƒ// is a RAAG system. If ƒ has at most k � 2 components and ‚
satisfies F1 and F2, then G‚ is of index 2k in W� .

We remark that this proof readily generalizes to the case of arbitrary k. However, we only need the case
k � 2.

Proof Let �0 be the �–labeled complex defined above, and let �0 be the complex obtained from �0 by
all possible fold operations.

Suppose first that ƒ has one component. As ƒ is connected, it is easily seen that �0 consists of two
vertices with an edge labeled by s between them for s 2 V.ƒ/. As ƒ satisfies R2 by Proposition 3.17, no
two vertices of ƒ have an edge between them in � . Thus, no square attachments can be performed to �0,
and it follows that �D�0. Hence, � is finite and has exactly two vertices.

Note that by the description of �D�0 above, every vertex of � is adjacent to every edge of �. Also
note that by condition F1, for every vertex s 2 � there is some edge in � labeled by s. From these two
facts we deduce that every vertex of � has full valence. Thus, G‚ has index 2 in W� by Theorem 4.1.

Now suppose that ƒ has two components ƒ1 and ƒ2. In this case, �0 is readily seen to be a complex
consisting of three vertices, u, v1 and v2, with an edge from u to vi labeled s corresponding to each
vertex s of ƒi , for i D 1; 2. By condition F1, the vertex u has full valence. Furthermore, by R2, for each
i 2 f1; 2g, no two edges of �0 that are each adjacent to both vi and u have labels which are adjacent in � .

Let �00 be the complex obtained from �0 by performing all possible square attachment operations to �0,
and let �000 be the complex obtained from �00 by all possible fold and square identification operations. In
particular, �00D�l and �000D�k for some 0� l � k. Let s and s0 be distinct vertices of ƒ1, and let t be
any vertex of ƒ2. By condition F2, there is a ƒ1ƒ2–path whose vertices are s; t1; s1; t2; s2; : : : ; tm; sm; t
where si 2 ƒ1 and ti 2 ƒ2 for all 1 � i � m. Similarly, there is a ƒ1ƒ2–path whose vertices are
s0; t 01; s

0
1; t
0
2; s
0
2; : : : ; t

0
n; s
0
n; t where s0i 2ƒ1 and t 0i 2ƒ2 for all 1� i � n. Thus, �00 must contain length

two paths, which do not intersect u, from v1 to v2 with each of the labels

t1s; t1s1; t2s1; t2s2; : : : ; tmsm�1; tmsm; tsm;

and similarly length two paths, which do not intersect u, from v1 to v2 with each of the labels

t 01s
0; t 01s

0
1; t
0
2s
0
1; t
0
2s
0
2; : : : ; t

0
ns
0
m�1; t

0
ms
0
m; t
0sm:

It follows that the middle vertices of all these paths get folded to a single vertex v3 in �000. This analysis
can be done for any s; s0 2ƒ1. Similar paths can also be produced for any t; t 0 2ƒ2. It then follows that
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�000 consists of exactly 4 vertices: u, v1, v2 and v3. Furthermore, there is an edge with label s between
v1 and v3 for each s 2ƒ1, and there is an edge with label t between v2 and v3 for each t 2ƒ2. Thus,
every vertex of �000 can be seen to have full valence. Additionally, by condition R2, no additional square
attachment operations can be performed to �000. Hence, �D�000. It follows that G‚ has index exactly
four in W� .

The next lemma shows that F1 and F2 are necessary conditions for G‚ to have finite index.

Lemma 4.6 Let � be a triangle-free graph with no cone vertex, and let ƒ be a subgraph of �c with no
isolated vertices , such that .G‚; E.ƒ// is a RAAG system. If G DG‚ is of finite index in W� , then ‚
satisfies F1 and F2.

Proof We first check that condition F1 holds. Let � be a completion of G WDG‚ as described in the
beginning of this section. Theorem 4.1 implies in particular that given any vertex s 2 � there is an edge
of � with label s. This implies the vertex s is contained in some ƒ–edge. Thus, F1 must hold.

We now check condition F2. Let s 2ƒs and t 2ƒt be as in the definition of condition F2 (Definition 4.2).
If s commutes with t , then there is an edge in � between s and t , and we are done. So we may assume
that s and t do not commute.

As G is of finite index, it follows that there exist g1; : : : ; gn 2W� such thatW� DGg1tGg2t� � �tGgn.
Let w1; : : : ; wn be reduced words representing g1; : : : ; gn, and let K D maxfjw1j; : : : ; jwnjg. Define
the word hD s1t1s2t2 � � � sKC4tKC4 where si D s and ti D t for all 1 � i � K C 4. It readily follows
from Tits’ solution to the word problem (see Theorem 2.4) that h is reduced. Furthermore, we can write
hl ww0, where w and w0 are words in W� such that w0 D wi for some 1 � i � n and w is a product
of ƒ–edges representing an element of G. We can form a disk diagram in W� with boundary label
hw0�1w�1. Let ˛h, ˛w and ˛w 0 respectively be the corresponding paths along the boundary of D with
labels respectively h, w and w�1.

Note that as h is reduced, no hyperplane intersects ˛h twice. Also note that any pair of hyperplanes
emanating from ˛h cannot intersect as s and t do not commute. As jhj > jw0j C 4, it follows that
the hyperplanes Hs1

, Ht1
, Hs2

and Ht2
, dual respectively to the first four edges of ˛h (namely those

labeled by s1, t1, s2 and t2), must each intersect ˛w . It must now be the case that there exists a
chain of hyperplanes (see Definition 3.20) Hs1

DH0;H1; : : : ;Hm DHs2
and another chain of hyper-

planes Ht1
DH 00;H

0
1; : : : ;H

0
n DHt1

. These two chains intersect, and by reasoning similar to that in
Observation 3.24, it follows that there is a ƒsƒt –path from s to t .

Lemma 4.7 Let � be a triangle-free graph. Let ƒ be a subgraph of �c with no isolated vertices , such
that .G‚; E.ƒ// is a RAAG system and G‚ has finite index in W� . If � contains a cone vertex, then ƒ
contains exactly one component. If W� is not virtually free , then ƒ contains exactly two components.
Otherwise , ƒ contains at most two components.
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Proof Suppose first that � contains a cone vertex s 2 � . We may assume that � does not consist of a
single edge, as ƒ would be empty in that case. As � is triangle-free in addition, there can be at most one
cone vertex. Since � is triangle-free, it follows that � 0 D � n s is a graph with no edges and is therefore
virtually free. Furthermore, every ƒ–edge is contained in � 0, and G‚ is a finite-index subgroup of W� 0 .
By Lemma 4.6, we conclude that ‚0 D‚.� 0; ƒ/ satisfies condition F2. In particular, there is a � 0–edge
between any two ƒ components. As � 0 does not have any edges, ƒ has exactly one component and the
claim follows in this case.

We now assume that � does not contain a cone vertex. Furthermore, by Lemma 4.6 we may assume that
‚D‚.�;ƒ/ satisfies F1 and F2, and that ‚ satisfies R1–R4 by Proposition 3.17.

Suppose now that no two distinct ƒ–edges commute. It follows that G‚ is isomorphic to a free group,
and since G‚ is of finite index, W� is virtually free. Suppose, for a contradiction, that ƒ has three distinct
components ƒ1, ƒ2 and ƒ3. Let s and t be distinct vertices of ƒ1. By Remark 4.4 there is a ƒ1ƒ2–path
˛1 from s to t which we can assume does not repeat vertices. Similarly, there is a ƒ1ƒ3–path ˛2 from s

to t which does not repeat vertices. Observe that s; t 2 ˛1\˛2. Starting at s and traveling along ˛1, let
x be the first vertex after s such that x 2 ˛1\˛2. Then the subpath ˛01 of ˛ between s and x contains
exactly two vertices of ˛1\˛2. Let ˛02 be the subpath of ˛2 between s and x. Note that j˛01j; j˛

0
2j � 2, as

every other vertex of ˛1 is in ƒ2 and ˛2\ƒ2 D∅. It follows that c D ˛01[˛
0
2 is a cycle in � . Let c0

be a subcycle of c which is an induced subgraph of � . If c0 has three vertices, then this contradicts �
being triangle-free. On the other hand, if c0 has more than three vertices, then this contradicts W� being
virtually free. Thus, ƒ can have at most two components and the claim follows in this case.

Suppose now there existƒ–edges a1a2 and b1b2 which commute, with a1a2¤ .b1b2/
˙1. Theseƒ–edges

must be in different components of ƒ by condition R2 and Lemma 2.6. In this case, W� is not virtually
free as it contains a subgroup isomorphic to Z2. Suppose, for a contradiction, that ƒ contains at least
three distinct ƒ–edge components ƒ1, ƒ2 and ƒ3. Without loss of generality, we may assume that
a1b1 2ƒ1 and that a2b2 2ƒ2. We will obtain a contradiction by showing that � must contain a triangle.

By Lemma 2.6, a1, a2, b1 and b2 form a square in � . By Remark 4.4, there is a ƒ1ƒ3–path from a1

to a2. Similarly, there is a ƒ2ƒ3–path from b1 to b2. Thus, � contains the configuration described in the
statement of Lemma 3.34. That lemma then implies that � contains a triangle, a contradiction.

Theorem 4.8 Let W� be a 2–dimensional RACG. Let ƒ be a subgraph of �c with no isolated vertices ,
and let G‚ be the subgroup of W� generated by the ƒ–edges. Then the following are equivalent :

(1) .G‚; E.ƒ// is a RAAG system and G‚ has finite index in W� .

(2) .G‚; E.ƒ// is a RAAG system and G‚ has index either two or four in W� (and exactly four if
W� is not virtually free).

(3) ƒ has at most two components and ‚ satisfies conditions R1–R4, F1 and F2.
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Proof Clearly (2) implies (1). To see the remaining implications, suppose first that � contains a cone
vertex s. Then � 0 D � n s is a graph with no edges, and W� 0 is an index two subgroup of � . Suppose
that (1) holds. By Lemma 4.7, ƒ has exactly one component. By Theorem 3.18 and Lemma 4.6,
‚0 D‚.� 0; ƒ/ satisfies conditions R1–R4, F1 and F2. Consequently, ‚ satisfies these conditions as
well. Thus (3) holds. By Lemma 4.5, we know that (G‚0 ; E.ƒ// is a RAAG system of index 2 in W� 0 ,
and thus (G‚; E.ƒ// is a RAAG system of index four in W� . Therefore (2) holds. Finally, if (3) holds
then (1) holds by Theorem 3.18 and Lemma 4.5.

Now suppose that � does not have a cone vertex. If (1) holds, then by Lemma 4.7, ƒ has exactly
two components if W� is not virtually free and at most two components otherwise. Thus (2) holds
by Lemma 4.5. By Theorem 3.18 and Lemma 4.6, (3) holds. Finally if (3) holds, then (1) follows by
Theorem 3.18 and Lemma 4.5.

Corollary 4.9 Let W� be a 2–dimensional RACG. Let ƒ be a subgraph of �c with no isolated vertices
such that the subgroup .G;E.ƒ// is a finite-index RAAG system. Then either:

(1) The graph � does not contain any edges and E.ƒ/ is a spanning tree in �c . In particular , W� is
virtually free.

(2) The groupW� is not virtually free. Furthermore , the vertices of � can be 2–colored by red and blue
(ie each edge of � connects a red vertex and a blue vertex) and G is isomorphic to the kernel of
the homomorphism ‰ WW� !Z2�Z2 D hr; b j r

2 D b2 D 1i which maps red and blue generators
of V.�/ to r and b respectively.

Proof By Theorem 4.8, ƒ has at most two components. Suppose first that ƒ contains exactly one
component. Again by Theorem 4.8, the graph ‚ satisfies R1, R2, and F1. From these conditions, it
follows that � cannot contain any edges and that E.ƒ/ is a spanning tree in �c . As � does not contain
any edges, W� is virtually free.

Suppose now that ƒ has exactly two components. We color the vertices of one component red and the
vertices of the other component blue. By R2, each edge of � connects a red vertex and a blue vertex,
ie we have a 2–coloring of � . Furthermore, by the definition of ‰, every ƒ–edge (thought of as an
element of G) is in the kernel of ‰. As G is generated by such elements, it follows that G < ker.‰/. By
Theorem 4.8, G has index 4 in W� . As ker.‰/ has index 4 as well, it follows that G is isomorphic to
ker.‰/.

5 Applications

In this section we give concrete families of RACGs containing finite-index RAAG subgroups. These
cannot be obtained by applying the Davis–Januszkiewicz constructions to the defining graphs of the
RAAGs they are commensurable to.
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Figure 13: The figure illustrates the graphs �n defined in Corollary 5.1 for nD 3; 4; 5.

5.1 Nonplanar RACGs commensurable to RAAGs

In this subsection, we construct two families of RACGs with nonplanar defining graphs containing
finite-index RAAG subgroups. These will serve as a warm-up for Theorem 5.5.

We begin by constructing a family of quasi-isometrically distinct RACGs defined by the sequence of
graphs �n (shown in Figure 13) which are commensurable to RAAGs whose defining graphs are cycles.

Corollary 5.1 (to Theorem 4.8) For n � 3, let �n be the graph obtained by starting with a 2n–gon
whose vertices (in cycle order) are c1; d1; c2; d2; : : : ; cn; dn and adding two vertices x and y, such that y
is adjacent to ci for each i , x is adjacent to di for each i , and x is adjacent to y (see Figure 13). Then

(1) the RACG W�n
has a subgroup of index four that is isomorphic to (and hence is commensurable

to) the RAAG AC2n
, where C2n is a cycle of length 2n;

(2) W�n
is not quasi-isometric to W�m

for m¤ n.

Proof Fix n� 3, and let � denote �n. We define a graph ƒ� �c as follows. Let ƒx be the star graph
consisting of the union of the edges of �c from x to ci for each i . Let ƒy be the star graph consisting of
the edges of �c from y to di for each i . Let ƒDƒx [ƒy . (See Figure 4 for an illustration of ƒ in the
case nD 3.)

We show below that ‚D‚.�;ƒ/ satisfies R1–R4, F1 and F2. Then it will follow from Theorem 4.8,
that .G‚; E.ƒ// is a RAAG system, and thatG‚ has index four inW� . Moreover, it is easily checked that
the commuting graph � associated to ƒ (as defined in Section 2.2) is isomorphic to C2n. Consequently,
G‚ is isomorphic to AC2n

. Thus, this will show (1).

It is easy to verify F1, R1, and R2. Then by Remark 4.3, it follows that F2 holds as well. We now
check R3. First note that there are exactly three squares in � containing the edge c1d1, and each of these
satisfies the property in R3. Now the fact that every square contains an edge of the 2n–gon, together with
the symmetry of the diagram, implies that R3 holds.

To check R4, let  be a ƒxƒy–cycle and let e be an edge of  . By symmetry, we can assume that e is
either c1d1, c1y or xy. Suppose first that e D c1d1. Then  contains either dnc1 or yc1. In both cases,

Algebraic & Geometric Topology, Volume 24 (2024)



792 Pallavi Dani and Ivan Levcovitz

�3 �4 �n
a1 a1 a1

a0 a0 a0

b1 b1 b1b2 b3 b2 b3 bnb2 b3 b4

a2 a2a2 a3 a4a3 a3 an

Figure 14: The figure defines the family of graphs �n, for n� 3, used in Corollary 5.2.

the ƒ–convex hull of the vertices of  contains y. Similarly,  contains either d1x or d1c2, and in both
cases the ƒ–convex hull of  contains x. As c1d1 is contained in the square c1d1xy, and x and y are in
the appropriate convex hulls, it follows that R4 holds for the �–cycle  and edge e.

Suppose now that e D c1y. It follows that  contains either yx or yci for some i > 1. In each case, x is
in the ƒ–convex hull of  . Furthermore,  contains either c1d1 or c1dn. In the former case, the square
c1d1xy contains e and has vertices in the ƒ–convex hull of the vertices in  . In the latter case the same
argument applies to the square c1dnxy.

Finally, suppose that e D xy. By symmetry, we may assume that  contains yc1. Furthermore, yc1 must
be followed by either c1d2 or c1dn in  . Then, as in the previous paragraph, either the square c1d1xy

or the square c1dnxy contains e and has vertices in the ƒ–convex hull of  . Thus R4 is satisfied in all
cases.

We have thus established that (1) holds, by showing that ‚ satisfies R1–R4, F1 and F2. Consequently,
for each n, we know that W�n

is commensurable, and in particular quasi-isometric, to AC2n
. Claim (2)

then follows from [Bestvina et al. 2008].

Next, we give a family of RACGs whose defining graphs are not planar and are commensurable to RAAGs
which are not atomic (as defined in [Bestvina et al. 2008]).

Corollary 5.2 Given n� 3 and k � 1, let �nk be the graph obtained by taking k copies of �n (defined
in Figure 14), and identifying them all along the subgraph induced by V.�n/nfa0g. Thus�nk has vertices
a1; a2; : : : ; an; b1; : : : ; bn and also a01; : : : ; a0k . (The left side of Figure 15 shows �42.) Then W�nk

contains an index four subgroup isomorphic to a RAAG.

Proof Fix n� 3; k � 1 and let �D�nk . We define ƒ, a subgraph of �c consisting of two components.
The first component ƒa is the union of the edges of �c of the form a1ai , where 2� i � n and a1a0j for
1 � j � k. The second component ƒb is the path in �c visiting b1; b2; : : : ; bn. (See the right side of
Figure 15 for an illustration of the case nD 4 and k D 2).

Let‚D‚.�;ƒ/ be as in the previous sections. We verify the properties R1–R4, F1 and F2. It will then
follow from Theorem 4.8 that the subgroup generated by E.ƒ/ is an index four visual RAAG subgroup.

Algebraic & Geometric Topology, Volume 24 (2024)



Right-angled Artin subgroups of right-angled Coxeter and Artin groups 793

b1 b2
b3 b4

a1

a02

a01

a2 a3 a4

b1
b2

b3
b4

a1

a02

a01

a2 a3 a4

Figure 15: The figure shows �42 on the left, and the two components of ƒ for the graph �42 on
the right. The component ƒa is shown in red and the component ƒb is shown in blue.

The conditions R1, R2 and F1 are immediate. Condition F2 holds by Remark 4.3. We now check R3.
Each square in � is of one of the following forms:

(1) biaiC1biC1a1 for 1� i � n� 1;

(2) biaiC1biC1a0j for 1� i � n� 1 and 1� j � k;

(3) bia1bi 0a0j for 1� i < i 0 � n and 1� j � k;

(4) bia0j bi 0a0j 0 for 1� i < i 0 � n and 1� j � k.

Condition R3 follows immediately for the first type of square, as the appropriate ƒ–convex hulls do not
contain any additional vertices not included in the vertex set of the square. For the second type of square,
the convex hull in ƒb does not contain any additional vertices, but the convex hull in ƒa contains the
additional vertex a1, as this vertex lies on the ƒa–path between aiC1 and a0j . Since a1 is adjacent to
bi and biC1, the condition R3 is verified for this type of 2–component square. For the third type, the
ƒ–convex hull of fa1; a0j g does not contain any additional vertices of ƒ, and the ƒ–convex hull of
fbi ; bi 0g contains the additional vertices biC1; : : : ; bi 0�1. Since a1 and a0j are adjacent to each of these,
R3 is verified for this type of 2–component square as well. Finally, for the last type, the ƒ–convex hull
of fa0j ; a0j 0g contains the additional vertex a1, and the ƒ–convex hull of fbi ; bi 0g contains the additional
vertices biC1; : : : ; bi 0�1. Once again, it is easily verified that a0; a1j ; a1j 0 are each adjacent to each of
bi ; : : : ; bi 0 . Thus R3 is verified.

Finally, we check R4. Let  be a ƒaƒb–cycle and let e be an edge of  . First suppose e is of the form
aibi for 2� i � n. In this case,  necessarily passes through bi�1 and some a, where either aD a1 or
a D a0j , for some 1 � j � k. Thus the ƒaƒb–square bi�1aibia satisfies the criterion in R4, since it
contains e, and the two vertices a and bi�1 are contained in the ƒ–convex hull of the vertices of  . The
case where e is of the form aibi�1 for 2� i � n is similar.

Now suppose e is of the form a1bi for some 1� i � n. Then  necessarily passes through an edge of
one of the following forms: bia0j for some 1 � j � k, biai or biaiC1. In the first of these cases, 
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necessarily also passes through a vertex bi 0 for some i 0 ¤ i , and a1bia0j bi 0 is the desired square. If the
edge is of the form biai (resp. biaiC1) then  must also pass through bi�1 (resp. biC1), and the desired
square is a1biaibi�1 (resp. a1biaiC1biC1). The case where e is of the form a0j bi for some 1� i � n
and 1� j � k is similar. This completes the verification of R4, and the corollary follows.

Remark 5.3 The RAAGs obtained in the above corollary do not have a tree for defining graph when
k � 2 and n� 3. This is easy to check by computing the associated commuting graph.

5.2 2–Dimensional RACGs with planar defining graph

Nguyen and Tran [2019] characterized exactly which one-ended, 2–dimensional RACGs defined by planar
nonjoin, CFS graphs are quasi-isometric to RAAGs. In this subsection, we use their work in conjunction
with Theorem 4.8 to prove Theorem B from the introduction. Note that CFS is a graph-theoretic condition
introduced in [Dani and Thomas 2015] to characterize RACGs with at most quadratic divergence. We
omit the definition, as it is not needed here.

Remark 5.4 Any one-ended, 2–dimensional RACG that is quasi-isometric to a RAAG must have CFS
defining graph. This follows as one-ended RAAGs have either linear or quadratic divergence [Behrstock
and Charney 2012], and the defining graph of a 2–dimensional RACG with linear or quadratic divergence
is CFS [Dani and Thomas 2015].

Recall that a graph † is a suspension if † decomposes as a join †D fa1; a2g?B where a1 and a2 are
nonadjacent vertices. We also say that † is the suspension of the graph B . We use the notation †k.a; b/

to denote the suspension graph fa1; a2g ? fb1; : : : ; bkg, and we say that a1 and a2 are the suspension
vertices.

Let � be a graph which is connected, triangle-free, CFS and planar. Suppose that a planar embedding
from � into the sphere S2 is fixed. Nguyen and Tran [2019] constructed a tree T (this is the visual
decomposition tree of Section 3 of that paper) associated to � with the following properties. The vertices
of T are in bijection with maximal suspension subgraphs of � . As � is triangle-free, every maximal
suspension of � is of the form †k.a; b/, where both fa1; a2g and fb1; : : : ; bkg are each sets of disjoint
vertices of � , and k � 3 if T contains at least two vertices. Moreover, every vertex of � is contained
in some suspension corresponding to a vertex of T . Two vertices of T corresponding to suspensions
†D †k.a; b/ and †0 D †l.c; d/ are connected by an edge if †\†0 is a 4–cycle C which separates
S2 into two nontrivial components B1 and B2, such that †1 nC � B1 and †2 nC � B2. Moreover, it
must follow (by the maximality of the suspensions) that C D fa1; c1; a2; c2g, ie C contains exactly the
suspension vertices of † and †0.

If � (with the above assumptions) is a join, then it readily follows that � is quasi-isometric to a RAAG
whose defining graph is a tree of diameter at most 2. Nguyen and Tran [2019, Theorem 1.2] showed that
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if � is not a join, then W� is quasi-isometric to a RAAG if and only if every vertex v 2 T has valence
strictly less than k, where †k.a; b/ is the maximal suspension in � corresponding to v. Moreover, they
showed that such RAAGs have defining graph a tree of diameter at least 3. Below, we prove such RACGs
are in fact commensurable to RAAGs.

Theorem 5.5 Let W� be a 2–dimensional , one-ended RACG with planar defining graph � . Then W� is
quasi-isometric to a RAAG if and only if it contains an index 4 subgroup isomorphic to a RAAG.

Proof One direction of the theorem is obvious. Thus, we prove that if W� satisfies these hypotheses and
is quasi-isometric to a RAAG, then W� contains an index 4 subgroup isomorphic to a RAAG. We do this
by constructing a subgraph ƒ� �c with two components and satisfying the hypotheses of Theorem 4.8.

Fix a planar embedding of � into the sphere S2. Note that by Remark 5.4 and the hypotheses of the
theorem, it follows that � is triangle-free, CFS and planar. Thus, there exists a visual decomposition
tree T associated to � as described above. Furthermore, as W� is quasi-isometric to a RAAG, it follows
from [Nguyen and Tran 2019, Theorem 1.2] that the valence of a vertex of T corresponding to the
maximal suspension †k.a; b/ is less than k.

Henceforth, to simplify notation, the word suspension will always refer to a maximal suspension, and
will consequently correspond to a vertex of T . Given a suspension †k.a; b/D fa1; a2g?B we say that a
labeling fb1; : : : ; bkg of the vertices of B is cyclic if the following holds. If C is a 4–cycle spanning the
vertices fa1; bi ; a2; biC1g for some 1� i � k or spanning the vertices fa1; b1; a2; bkg, then every vertex
of † nC is contained in a common component of S2 nC . Observe that if E is a cycle corresponding to
an edge of T incident to the vertex of T given by †k.a; b/, then the planarity of � implies that E is one
of the cycles C mentioned in the previous sentence.

Let N be the number of vertices of T . Let T1� � � � � TN D T be a nested sequence of subtrees of T such
that T1 consists of a single vertex of T and Ti has exactly i vertices. Such choices are clearly possible.
For each 1� i � n, let �i be the subgraph of � spanned by every suspension that corresponds to a vertex
of Ti . Note that �i � �iC1 for all 1� i < N and that �N D � . We define a nested sequence of graphs
ƒ1 � � � � �ƒN such that for each 1� i �N , ƒi � �

c
i and the following hold:

(1) Let C be a 4–cycle corresponding to an edge of T that is incident to Ti . Then each pair of
nonadjacent vertices in C is contained in a common edge of ƒi .

(2) The graph ƒi contains exactly two components, and ‚i D‚.�i ; ƒi / satisfies conditions R1–R4,
F1 and F2.

The theorem clearly follows from this claim by using the graph ƒDƒN � �
c .

We first define ƒ1 corresponding to the vertex T1 D fvg. Let †D†k.a; b/D fa1; a2g? fb1; : : : ; bkg be
the suspension corresponding to v, and assume that fb1; : : : ; bkg is cyclic. As the valence of v in T is
less than k, by possibly relabeling, we can assume that the 4–cycle fa1; b1; a2; bkg does not correspond
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to an edge of T . We define one component of ƒ1 to be the edge .a1; a2/, and the other component of
ƒ1 to consist of the edges .b1; b2/; .b2; b3/; : : : ; .bk�1; bk/. By the observation above and our choice of
labeling, any 4–cycle C corresponding to an edge of T incident to v is of the form fa1; bi ; a2; biC1g for
some 1� i � k� 1. Thus condition (1) follows. Condition (2) is readily verified.

Suppose now that we have defined the graph ƒn�1 corresponding to the tree Tn�1 satisfying conditions
(1) and (2). We now define ƒn.

Let u be the unique vertex in Tn nTn�1, and let u0 be the unique vertex of Tn�1 that is adjacent to u. Let
†D†k.a; b/D fa1; a2g? fb1; : : : ; bkg and †0 D†l.c; d/D fc1; c2g? fd1; : : : ; dlg be the suspension
graphs corresponding to u and u0 respectively. Furthermore, suppose these labelings are cyclic. It follows
that E D fa1; c1; a2; c2g is the 4–cycle corresponding to the edge in T between u and u0. By possibly
relabeling, we can assume that c1 D b1, c2 D bk , a1 D d1 and a2 D dl . As ƒn�1 satisfies (1) above,
.a1; a2/ and .c1; c2/ are edges of ƒn�1.

As the valence of u is less than k, there exist some 1 � j < k such that the 4–cycle fbj ; a1; bjC1; a2g

does not correspond to an edge of T . We define ƒn � �
c
n to contain every edge of ƒn�1 � �

c
n�1 � �

c
n

and additionally the edges

.b1; b2/; .b2; b3/; : : : ; .bj�1; bj /; .bjC1; bjC2/; : : : ; .bk�1; bk/:

This corresponds to adding one or two line segments each to a distinct vertex of ƒn�1. As ƒn�1 contains
two components (by (2)) and does not contain any cycles (by R1), it follows that ƒn contains two
components and satisfies R1 as well. Furthermore, (1) and condition F1 (for ‚n) follow from directly
from our choices. Condition F2 then follows from Remark 4.3.

We now check R2. Let x; y 2ƒn be vertices contained in the same component of ƒn. If x and y are both
contained in ƒn�1, then the claim follows as ƒn�1 satisfies R2 and no new edges are added between
vertices of �n�1 in forming �n. If x and y are both contained in †, then by construction, they must lie in
the same factor of the join † and there is no edge between them. The only case left to check is that x and
y lie in different components of S2 nE. However, in this case there is no edge between x and y as E
separates x from y in the planar embedding.

We now check that R3 holds. Let C be a 2–component square in ƒn. As E separates every vertex of
† nE from every vertex in .�n�1 nE/� �n, it follows that either C lies in �n�1 � �n or C lies in †. In
the first case the claim follows as ‚n�1 satisfies R3 (and noting that the convex hull of C in ƒn lies in
ƒn�1). In the latter case, the claim is easily verified.

We now check R4. Let P be a 2–component cycle in �n. If P lies entirely in �n�1 then every edge of P
satisfies condition R4 as ‚n�1 satisfies R4. If P lies entirely in †, then R4 is easily verified. Thus, we
may assume that P decomposes into two subpaths P1 and P2 such that P1 � �n�1 and P2 �† nE. As
P does not repeat vertices, it follows that P2 consists of just two edges .a1; bq/ and .a2; bq/ for some
2� q � k. As the valence of u0 is less than l , there exists some 1� q0 < l and corresponding 4–cycle
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fc1; dq0 ; c2; dq0C1g such that every vertex of �n is contained in a common component of S2 nC . From
this, we see that a1 and a2 are in different components of �n�1 n fc1; c2g. Thus, P1 must either contain
c1 or c2. Suppose that P1 contains c1 (the other case is similar). The path P1 does not contain both the
edge .a1; c1/ and the edge .a2; c1/, for if it did, then P would either the equal 4–cycle fa1; c1; a2; bqg or
contain it as a subcycle. In the former case P �†, a case we have already ruled out, and in the latter case,
P necessarily repeats a vertex (which is not allowed). We now define a cycle P 0 depending on which
edges P1 contains. We set P 0D .P1n.a1; c1//[.a2; c1/ if .a1; c1/�P1, P 0D .P1n.a2; c1//[.a1; c1/

if .a2; c1/� P1, and P 0 D P1[ .a1; c1/[ .a2; c1/ if P1 does not contain either of .a1; c1/ and .a2; c1/.
In each case, it follows that P 0 is a cycle in �n�1 containing every edge of P1, except possibly .a1; c1/

and .a2; c1/. Additionally, every vertex of P 0 is a vertex of P , so the ƒ–convex hull of P 0 is contained
in the ƒ–convex hull of P . From this and as �n�1 satisfies R4, it follows that every edge of P that is
contained in P1 satisfies R4 as well. Finally, every edge of P nP1 can been seen to satisfy R4 by using
the 4–cycle fa1; bq; a2; c1g.

6 Generalized reflection subgroups of RAAGs

Let A� be a RAAG. A generalized RAAG reflection is a conjugate of an element of V.�/, ie wsw�1 for
some s 2 V.�/[V.�/�1 and w a word in A� . Let T be a set of reduced generalized RAAG reflections.
We say that T is trimmed if T\T�1 D∅, and if given any two distinct generalized RAAG reflections
wsw�1 and w0s0w0�1 in T, no expression for w0 has prefix ws�1 or prefix ws. The following lemma
follows from a straightforward adaptation of the proof of [Dani and Levcovitz 2021, Lemma 10.1] to the
setting of RAAGs.

Lemma 6.1 Let T be a set of generalized RAAG reflections in the RAAG A� , and let G be the subgroup
generated by T. Then G is generated by a trimmed set of generalized RAAG reflections which can be
algorithmically obtained from T.

In this section, we give a new proof of a result of Dyer:

Theorem 6.2 [Dyer 1990] Let T be a finite set of generalized RAAG reflections in A� . Then the
subgroup G <A� generated by T is a RAAG. Moreover , if T is trimmed then .G;T/ is a RAAG system.

We will use the characterization of RAAGs in Theorem 2.2 to show that G is a RAAG. We first prove a
series of lemmas about disk diagrams of a special type, namely, ones whose boundary labels are words
over a trimmed set of generalized RAAG reflections.

The setup for these lemmas is as follows and will be fixed for the rest of this section. We fix a trimmed
set T of reduced generalized RAAG reflections in A� . Let z D r1 � � � rn be an expression for the identity
element where ri D wisiw

�1
i 2 T for each 1� i � n. Let D be a disk diagram whose boundary @D is

labeled by z. For 1� i � n, let pri
be the subpath of @D which is labeled by ri . Furthermore let pwi

and
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pw�1
i

denote the subpaths of @D labeled wi and w�1
i respectively, and let ei denote the edge labeled si .

Let Hi be the hyperplane dual to ei , and let HD fHig
n
iD1 be the collection of all such hyperplanes. Note

that as ri is a reduced word, no hyperplane is dual to two edges of pri
for any i .

In all of the following lemmas, arithmetic is taken modulo n.

Lemma 6.3 For each 1 � i � n, the hyperplane Hi does not intersect a hyperplane dual to pwi
or a

hyperplane dual to pw�1
i

Proof Suppose Hi intersects a hyperplane K that is dual to an edge f of pwi
. Without loss of generality,

we may assume that f is the edge closest to ei out of all possible choices for K. As no hyperplane is
dual to two edges of pri

, it follows that every hyperplane dual to an edge of pwi
which lies between

ei and f must intersect K. Thus, wi has suffix the word t1 � � � tm, where t1 is the label of K and t1
commutes with si , as well as with tj for 2 � j �m. This readily implies that ri is not reduced, for in
ri Dwisiw

�1
i , an occurrence of the RAAG generator t1 in wi can be canceled with an occurrence of t�1

1

in w�1
i . However, this is a contradiction as ri is reduced by assumption. The argument for hyperplanes

dual to pw�1
i

is analogous.

Lemma 6.4 For each 1� i � n, the hyperplane Hi is not dual to pwiC1
, pw�1

iC1
, pw�1

i�1
or pwi�1

.

Proof For a contradiction, suppose Hi is dual to an edge f of pwiC1
. By Lemma 6.3, every hyperplane

dual to an edge of pw�1
i

must also be dual to pwiC1
. Write siw�1

i D t1 � � � tm and wiC1D k1 � � � kl where
tj 2 V.�/ for 1� j �m and kj 2 V.�/ for 1� j � l . The structure of the hyperplanes in D implies that
wiC1 has an expression which begins with t�1

m � � � t
�1
1 D wis

�1
i . This is a contradiction as T is trimmed.

A similar argument shows that Hi is not dual to pw�1
i�1

.

Suppose now that Hi is dual to pwi�1
. By Lemma 6.3, it follows that Hi�1 is dual to pwi

. However,
this is not possible by the same argument as above. Similarly, Hi cannot be dual to pw�1

iC1
.

The proof of the following lemma is similar to that of the previous one.

Lemma 6.5 If Hi DHiC1 for some 1� i � n then ri l r�1
iC1.

Lemma 6.6 If Hi intersects HiC1, then ri and riC1 commute. Furthermore , there is a disk diagram
D0 with boundary label r1 � � � ri�1riC1ririC2 � � � rn, such that the natural bijection , from ei , eiC1 and the
edges traversed by the subpath of the boundary path of D labeled by riC2 � � � rnr1 � � � ri�1 to the edges
traversed by the corresponding subpaths of the boundary path of D0 with the same labels , preserves
boundary combinatorics.

Proof Suppose Hi intersects HiC1. By Lemma 6.3, every hyperplane dual to pw�1
i

is either dual
to pwiC1

or intersects HiC1. Similarly, every hyperplane dual to pwiC1
is either dual to pw�1

i
or

intersects Hi . It then readily follows that wi has a reduced expression ba1 and wiC1 has a reduced
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expression ba2, where a1, a2 and b are words, such that the generators in the word a1si are all distinct
from and commute with the generators in the word a2siC1. Consequently, ri commutes with riC1.

We now construct the disk diagram D0. By Tits’ solution to the word problem, the expression ba1

(resp. ba2) can be obtained from wi (resp. wiC1) by sequentially permuting adjacent letters. Thus, by
repeatedly applying Lemma 2.11(1), we obtain a disk diagram with boundary label

r1 � � � ri�1.ba1sia
�1
1 b�1/.ba2siC1a

�1
2 b�1/riC2 � � � rn:

By repeatedly applying Lemma 2.11(2), we can “cancel” b�1b and obtain a disk diagram with boundary
label

r1 � � � ri�1.ba1sia
�1
1 /.a2siC1a

�1
2 b�1/riC2 � � � rn:

Then, by repeatedly applying Lemma 2.11(1), we obtain a disk diagram with label

r1 � � � ri�1.ba2siC1a
�1
2 /.a1sia

�1
1 b�1/riC2 � � � rn:

By Lemma 2.11(3), we obtain a disk diagram with boundary label

r1 � � � ri�1.ba2siC1a
�1
2 b�1/.ba1sia

�1
1 b�1/riC2 � � � rn:

Finally, by repeatedly applying Lemma 2.11(1), we obtain a disk diagram D0 with boundary label

r1 � � � ri�1riC1ririC2 � � � rn:

Note that in each of these steps, the desired boundary combinatorics are preserved.

Lemma 6.7 For every 1� i � n, there exists some j ¤ i such that Hi DHj .

Proof Suppose we have a disk diagram with boundary label z D r1 � � � rn such that, for some 1� i � n,
the hyperplane Hi is dual to an edge f of @D where f ¤ ej for all 1� j � n. We call any disk diagram
which has such an Hi a pathological diagram with pathology caused by Hi . Given such a diagram, we
define p to be a path along @D between ei and f , which does not include ei and f . We also let H0

denote the set of Hj such that ej is contained in p.

Given a pathological disk diagram D we may choose a hyperplane Hi causing the pathology together
with a path p such that the set H0 is minimal among all possible choices of Hi and p. After such a choice,
we call jH0j the complexity of D. We will prove that pathological diagrams are not possible by induction
on the complexity c of such a diagram. The base case, when c D 0, already follows from Lemma 6.4.

Now suppose we are given a pathological disk diagram D with pathology caused by Hi such that its
complexity is c D jH0j> 0, and suppose by induction there do not exist pathological disk diagrams of
complexity smaller than c.

The edge f ¤ ei of @D that is dual to Hi lies in a path pri0
in @D labeled by wi 0si 0w

�1
i 0 for some

1� i 0 � n where i ¤ i 0. Let Q denote the hyperplane Hi 0 . Note that Q may or may not be in H0. We
prove our claim by considering two cases:
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Case 1 Every hyperplane in H0 intersects Hi .

We first observe that H0 is nonempty (since the complexity of D is positive) and does not consist of
Q alone (by Lemma 6.4). Therefore, we may choose K 2 H0 nQ such that no hyperplane in H0 nQ

intersects Hi between K\Hi and Hi \ei . Let 1� l � n be such that K is dual to el �prl
�p. Then for

each j with i < j < l , the hyperplane Hj intersects K DHl . Thus, by repeatedly applying Lemma 6.6,
we can produce a new disk diagram with boundary label r1 � � � rlri � � � rl�1rlC1 � � � rn. Furthermore, this
new disk diagram is still pathological and has complexity smaller than D. However, this is not possible
by our induction hypothesis.

Case 2 Some hyperplane K 2H0 does not intersect Hi .

We can choose such a hyperplane K to be innermost, ie choose K 2H0 such that K does not intersect Hi

and such that any hyperplane of H0 dual to the subpath of p between the edges dual toK intersectsK. Since
Hi and p were chosen to attain the complexity of D, it follows that K does not cause a pathology, and is
dual to distinct edges el and el 0 in p, where 1� l; l 0�n. By relabeling the rj ’s if necessary, we may assume
that l < l 0, and that the subpath of @D from el to el 0 is contained in p. By repeatedly applying Lemma 6.6,
we can produce a new pathological disk diagram D0 with label r1 � � � rl�1rlC1 � � � rl 0�1rlrl 0 � � � rn and
where some hyperplane, which we still denote by K, is dual to both the edge labeled by el and the
one labeled by el 0 . By Lemma 6.5, rl l r�1

l 0
. Furthermore, by repeatedly applying Lemma 2.11(1) if

necessary, we may assume that rl D r�1
l 0

is the label of @D0.

We now produce a new disk diagram D00 by identifying the consecutive paths in @D0 labeled by rl and rl 0 ,
ie we fold these two paths together. If K ¤Q, then we have produced a new pathological disk diagram
with complexity c � 2, contradicting the induction hypothesis. On the other hand, if K DQ, note that
the image of Hi in D00 must intersect the path labeled by ri � � � rl�1rlC1 � � � rl 0�1 in @D00. Moreover we
claim that it cannot be dual to an edge labeled by ej for i < j � l 0 � 1. Suppose it is dual to an edge
labeled ej . It follows that the hyperplane Hj in D is dual to an edge f 0 in p, such that f 0¤ ek for any k,
and such that the images of f and f 0 are identified in D00. This is a contradiction, as it implies that Hj

causes a pathology of lower complexity than Hi . Thus, the image of Hi in D00 causes a pathology of
complexity at most c � 2, which is again a contradiction.

Proof of Theorem 6.2 As G can be generated by a trimmed set of generalized RAAG reflections (by
Lemma 6.1), we assume without loss of generality that T is trimmed. We will show that .G;T/ is a
RAAG system by applying Theorem 2.2. Note that T\T�1 D ∅ as T is trimmed. We check each
condition of that theorem, by proving the corresponding two claims:

(i) Every r 2 T has infinite order.

By definition, r is equal to a reduced word wsw�1 with s 2 V.�/ [ V.�/�1 and w a word in W� .
It follows that wsnw�1 is an expression for rn. Moreover, as r is reduced, it readily follows from
Theorem 2.4 that wsnw�1 is reduced as well. Hence, r has infinite order.
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(ii) Given any word w D a1 � � � am, with ai 2T, either w is reduced over T or there is an expression
for w of the form a1 � � � Oai � � � Oaj � � � am.

Suppose wD a1 � � � am is not reduced over T. Let w0D b1 � � � bk , with bi 2T and k <m, be an expression
for w which is reduced over T. Form a disk diagram D with boundary label ww0�1.

We relabel the generalized reflections in the word ww0�1 by setting ri D ai for 1 � i � m, and
rmCi D b

�1
k�iC1

(the i th generalized RAAG reflection in w0�1) for 1 � i � k. By Lemma 6.7, every
H 2H is only dual to edges of @D labeled by si for some i , where ri Dwisiw

�1
i . As m>k, there exists

some hyperplane H 2H that is dual to two edges of the subpath p of @D labeled by w. Furthermore, we
may choose an innermost such H 2H, in the sense that every hyperplane in H nH intersects p at most
once.

Let el and el 0 be the edges dual to H where l < l 0 �m. By repeatedly applying Lemma 6.6, we produce
a disk diagram whose boundary label is

r1 � � � Orl � � � rl 0�1rlrl 0 � � � rn;

such that a hyperplane of H is still dual to the images of the edges el and el 0 under the natural map
between the boundaries of the disk diagrams. By Lemma 6.5, rl D r�1

l 0
. Thus, r1 � � � Orl � � � Orl 0 � � � rn is

an expression for ww0�1. Consequently, r1 � � � Orl � � � Orl 0 � � � rm D a1 � � � Oal � � � Oal 0 � � � am is an expression
for w.
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Filling braided links with trisected surfaces

JEFFREY MEIER

We introduce the concept of a bridge trisection of a neatly embedded surface in a compact four-manifold,
generalizing previous work with Alexander Zupan in the setting of closed surfaces in closed four-manifolds.
Our main result states that any neatly embedded surface F in a compact four-manifold X can be isotoped
to lie in bridge trisected position with respect to any trisection T of X . A bridge trisection of F induces a
braiding of the link @F with respect to the open-book decomposition of @X induced by T , and we show
that the bridge trisection of F can be assumed to induce any such braiding.

We work in the general setting in which @X may be disconnected, and we describe how to encode bridge
trisected surface diagrammatically using shadow diagrams. We use shadow diagrams to show how bridge
trisected surfaces can be glued along portions of their boundary, and we explain how the data of the
braiding of the boundary link can be recovered from a shadow diagram. Throughout, numerous examples
and illustrations are given. We give a set of moves that we conjecture suffice to relate any two shadow
diagrams corresponding to a given surface.

We devote extra attention to the setting of surfaces in B4, where we give an independent proof of the
existence of bridge trisections and develop a second diagrammatic approach using tri-plane diagrams. We
characterize bridge trisections of ribbon surfaces in terms of their complexity parameters. The process of
passing between bridge trisections and band presentations for surfaces in B4 is addressed in detail and
presented with many examples.

57K10, 57K40, 57K45

1 Introduction

The philosophy underlying the theory of trisections is that four-dimensional objects can be decomposed
into three simple pieces whose intersections are well-enough controlled that all of the four-dimensional
data can be encoded on the two-dimensional intersection of the three pieces, leading to new diagrammatic
approaches to four-manifold topology. Trisections were first introduced for four-manifolds by Gay
and Kirby in 2016 [10]. A few years later, the theory was adapted to the setting of closed surfaces in
four-manifolds by the author and Zupan [27; 28]. The present article extends the theory to the general
setting of neatly embedded surfaces in compact four-manifolds, yielding two diagrammatic approaches to
the study of these objects: one that applies in general and one that applies when we restrict attention to
surfaces in B4.
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1.1 Bridge trisections of surfaces in B4

To introduce bridge trisections of surfaces in B4, we must establish some terminology. First, let H be a
three-ball D2�I , equipped with a critical-point-free Morse function D2�I ! I . Let T�H be a neatly
embedded one-manifold such that the restriction of the Morse function to each component of T has either
one critical point (a maximum) or none. If there are b components with one critical point and v with none,
we call .H;T/ a .b; v/–tangle. Next, let Z be a four-ball B3 � I , equipped with a critical-point-free
Morse function B3�I ! I . Let D�Z be a collection of neatly embedded disks such that the restriction
of the Morse function to each component of D has either one critical point (a minimum) or none. If there
are c components with one critical point and v with none, we call .Z;D/ a .c; v/–disk-tangle. Finally, let
T0 denote the standard trisection of B4 — ie the decomposition B4 DZ1[Z2[Z3 in which, for each
i 2Z3, the Zi are four-balls, the pairwise intersections Hi DZi�1\Zi are three-balls, and the common
intersection †DZ1\Z2\Z3 is a disk.

A neatly embedded surface F� B4 is in .b; c; v/–bridge position with respect to T0 if, for each i 2 Z3,

(1) F\Zi is a .ci ; v/–disk-tangle, where c D .c1; c2; c3/, and

(2) F\Hi is a .b; v/–tangle.

A definition very similar to this one was introduced independently in [2].

The trisection T0 induces the open-book decomposition of S3 D @B4 whose pages are the disks S3\Hi
and whose binding is @†. Let LD @F, and let ˇi D S3\Di . Then LD ˇ1[ˇ2[ˇ3 is braided about
@† with index v. Having outlined the requisite structures, we can state our existence result for bridge
trisections of surfaces in the four-ball.

Theorem 3.17 Let T0 be the standard trisection of B4, and let F� B4 be a neatly embedded surface
with L D @F. Fix an index v braiding Ǒ of L. Suppose F has a handle decomposition with c1 cups ,
n bands , and c3 caps. Then , for some b 2N0, F can be isotoped to be in .b; cI v/–bridge trisected position
with respect to T0, such that @FD Ǒ, where c2 D b�n.

Explicit in the above statement is a connection between the complexity parameters of a bridge trisected
surface and the numbers of each type of handle in a Morse decomposition of the surface. An immediate
consequence of this correspondence is the fact that a ribbon surface admits a bridge trisection where
c3 D 0. It turns out that this observation can be strengthened to give the following characterization of
ribbon surfaces in B4. Again, c D .c1; c2; c3/, and we set c D c1C c2C c3.

Theorem 3.21 Let T0 be the standard trisection of B4, and let F� B4 be a neatly embedded surface
with LD @F. Let Ǒ be an index v braiding L. Then the following are equivalent :

(1) F is ribbon.

(2) F admits a .b; cI v/–bridge trisection filling Ǒ with ci D 0 for some i .

(3) F admits a .b; 0I vCc/–bridge trisection filling a Markov perturbation ǑC of Ǒ.

Algebraic & Geometric Topology, Volume 24 (2024)
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A bridge trisection turns out to be determined by its spine — ie the union .H1;T1/[.H2;T2/[.H3;T3/,
and each tangle .Hi ;Ti / can be faithfully encoded by a planar diagram. It follows that any surface in B4

can be encoded by a triple of planar diagrams whose pairwise unions are planar diagrams for split unions
of geometric braids and unlinks. We call such triples tri-plane diagrams.

Corollary 4.2 Every neatly embedded surface in B4 can be described by a tri-plane diagram.

In Section 4, we show how to read off the data of the braiding of L induced by a bridge trisection from a
tri-plane for the bridge trisection, and we describe a collection of moves that suffice to relate any two
tri-plane diagrams corresponding to a given bridge trisection. The reader concerned mainly with surfaces
in B4 can focus their attention on Sections 3 and 4, referring to the more general development of the
preliminary material given in Section 2 when needed.

1.2 Bridge trisections of surfaces in compact four-manifolds

Having summarized the results of the paper that pertain to the setting of B4, we now describe the more
general setting in which X is a compact four-manifold with (possibly disconnected) boundary and F�X

is a neatly embedded surface. To account for this added generality, we must expand the definitions given
earlier for the basic building blocks of a bridge trisection. For ease of exposition, we will not record the
complexity parameters, which are numerous in this setting; Section 2 contains compete details.

Let H be a compression body .† � I /[ .3–dimensional 2–handles/, where † D @CH is connected
and may have nonempty boundary, while P D @�H is allowed to be disconnected but cannot contain
two-sphere components. We work relative to the induced Morse function. Let T � H be a neatly
embedded one-manifold such that the restriction of the Morse function to each component of T has either
one critical point (a maxima) or none. We call .H;T/ a trivial tangle. Let Z be a four-dimensional
compression body .P � I � I /[ .4–dimensional 1–handles/, where P is as above. We work relative to
the obvious Morse function on Z. Let D � Z be a collection of neatly embedded disks such that the
restriction of the Morse function to each component of D has either one critical point (a minima) or none.
We call .Z;D/ a trivial disk-tangle.

Let X be a compact four-manifold, and let F�X be a neatly embedded surface. A bridge trisection of
.X;F/ is a decomposition

.X;F/D .Z1;D1/[ .Z2;D2/[ .Z3;D3/

such that, for each i 2 Z3,

(1) .Zi ;Di / is a trivial disk-tangle, and

(2) .Hi ;Ti /D .Zi�1;Di�1/\ .Zi ;Di / is a trivial tangle.

Algebraic & Geometric Topology, Volume 24 (2024)
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We let .†;x/ D @C.Hi ;Ti /. The underlying trisection X D Z1 [ Z2 [ Z3 induces an open-book
decomposition on each component of Y D @X , and we find that the bridge trisection of F induces a
braiding of L D @F with respect to these open-book decompositions. Given this set-up, our general
existence result can now be stated.

Theorem 8.1 Let T be a trisection of a four-manifold X with @X D Y , and let .B; �/ denote the
open-book decomposition of Y induced by T . Let F be a neatly embedded surface in X ; let LD @F; and
fix a braiding Ǒ of L about .B; �/. Then F can be isotoped to be in bridge trisected position with respect
to T such that @FD Ǒ. If L already coincides with the braiding ˇ, then this isotopy can be assumed to
restrict to the identity on Y .

If H is not a three-ball, then .H;T/ cannot be encoded as a planar diagram, as before. However, H is
determined by a collection of curves ˛�†n�.x/, and T is determined by a collection of arcs T� and the
points x in †, where the arcs of T� connect pairs of points of x. We call the data .†; ˛;T�;x/, which
determine the trivial tangle .H;T/, a tangle shadow. A triple of tangle shadows that satisfies certain
pairwise-standardness conditions is called a shadow diagram. Because bridge trisections are determined
by their spines, we obtain the following corollary.

Corollary 5.5 Let X be a smooth , orientable , compact , connected four-manifold , and let F be a neatly
embedded surface in X . Then .X;F/ can be described by a shadow diagram.

A detailed development of shadow diagrams is given in Section 5, where it is described how to read off
the data of the braiding of L induced by a bridge trisection from a shadow diagram corresponding to the
bridge trisection. Moves relating shadow diagrams corresponding to a fixed bridge trisection are given.
Section 6 discusses how to glue two bridge trisected surfaces so that the result is bridge trisected, as well
as how these gluings can be carried out with shadow diagrams.

Section 7 gives some basic classification results, as well as a handful of examples to add to the many
examples included throughout Sections 3–6. The proof of the main existence result, Theorem 8.1, is
delayed until Section 8, though it requires only the content of Section 2 to be accessible. In Section 9, we
discuss stabilization and perturbation operations that we conjecture are sufficient to relate any two bridge
trisections of a fixed surface. A positive resolution of this conjecture would give complete diagrammatic
calculi for studying surfaces via tri-plane diagrams and shadow diagrams.
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2 Preliminaries

In this section, we give a detailed development of the ingredients required throughout the paper, establishing
notation conventions as we go. This section should probably be considered as prerequisite for all the
following sections, save for Sections 3 and 4, which pertain to the consideration of surfaces in the four-ball.
The reader interested only in this setting may be able to skip ahead, referring back to this section only as
needed.

2.1 Some conventions

Unless otherwise noted, all manifolds and maps between manifolds are assumed to be smooth, and
manifolds are compact. The central objects of study here all have the form of a manifold pair .M;N /, by
which we mean that N is neatly embedded in M in the sense that @N � @M and N t @M [15]. When N
is compact (as it will always be here), N is properly embedded when it is neatly embedded and @N � @M
when N is properly embedded; the transversality condition on neat embeddings is not generally enjoyed
by proper embeddings. Throughout, N will usually have codimension two in M . In any event, we let
�.N / denote the interior of a tubular neighborhood of N in M . If M is oriented, we let .M;N / denote
the pair .M;N / with the opposite orientation and we call it the mirror of .M;N /. We use the symbol
t to denote either the disjoint union or the split union, depending on the context. For example, writing
.M1; N1/t .M2; N2/ indicates M1\M2 D∅. On the other hand, .M;N1 tN2/ indicates that N1 and
N2 are split in M , by which we usually mean there are disjoint, codimension zero balls B1 and B2 in M
(not necessarily neatly embedded) such that Ni � IntBi for each i 2 f1; 2g.

2.2 Lensed cobordisms

Given compact manifold pairs .M1; N1/ and .M2; N2/ with @.M1; N1/ Š @.M2; N2/ nonempty, we
normally think of a cobordism from .M1; N1/ to .M2; N2/ as a manifold pair .W;Z/, where

@.W;Z/D ..M1; N1/t .M2; N2//[ .@.M1; N1/� I /:

Thus, there is a cylindrical portion of the boundary. Consider the quotient space .W 0; Z0/ of .W;Z/
obtained via the identification .x; t/ � .x; t 0/ for all x 2 @M1 and t; t 0 2 I . The space .W 0; Z0/ is
diffeomorphic to .W;Z/, but

@.W 0; Z0/D .M1; N1/[@.M1;N1/ .M2; N2/:

We refer to .W 0; Z0/ as a lensed cobordism. An example of a lensed cobordism is the submanifold W 0

cobounded by two Seifert surfaces for a knotK in S3 that are disjoint in their interior. IfW DM1�I , then
we call W 0 a product lensed cobordism. An example of a product lensed cobordism is the submanifold
W 0 cobounded by two pages of an open-book decomposition on an ambient manifold X . See Figure 1
for examples of lensed cobordisms between surfaces that contain 1–dimensional cobordisms as neat
submanifolds.
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We offer the following two important remarks regarding our use of lensed cobordisms.

Remark 2.1 Throughout this article, we will be interested in cobordisms between manifolds with
boundary. For this reason, lensed cobordisms are naturally well-suited for our purposes. However, at
times we will be discussing cobordisms between closed manifolds (eg null-cobordisms). In this case,
lensed cobordisms do not make sense. We request that the reader remember to drop the adjective “lensed”
upon consideration of such cases. For example, if .M;N / is any manifold pair with N � Int.M/ closed,
then for the product lensed cobordism .M;N /� I , we have that M � I is lensed, but N � I is not.

Remark 2.2 Lensed cobordisms do not admit Morse functions where .M1; N1/ and .M2; N2/ represent
distinct level sets, since .M1; N1/\ .M2; N2/¤∅. However, the manifold pair

.W 00; Z00/D .W 0; Z0/ n �.@.M1; N1//

does admit such a function and is trivially diffeomorphic to .W 0; Z0/: We think of .W 00; Z00/ as being
formed by “indenting” .W 0; Z0/ by removing �.@.M1; N1//. Note that there is a natural identification
of .W 00; Z00/ with the original (ordinary) cobordism .W;Z/. Since a generic Morse function on the
cobordism W 00 will not have critical points on its boundary, there is no loss of information here. We
will have this modification in mind when we consider Morse functions on lensed cobordisms .W 0; Z0/,
which we will do throughout the paper. This subtlety illustrates that lensed cobordisms are unnatural in a
Morse-theoretic approach to manifold theory, but we believe they are more natural in a trisection-theoretic
approach.

2.3 Compression bodies

Given a surface † and a collection ˛ of pairwise disjoint, simple closed curves on †, let †˛ denote
the surface obtained by surgering † along ˛. Let H denote the three-manifold obtained by attaching a
collection h˛ of three-dimensional 2–handles to †� Œ�1; 1� along ˛� f1g, before filling in any resulting
sphere components with balls. As discussed in Remark 2.1, in the case that † has nonempty boundary, we
quotient out by the vertical portion of the boundary and view H as a lensed cobordism from @CH D†

to @�H D†˛. Considering H as an oriented manifold yields the decomposition

@H D @CH [@.@CH/ @�H:

The manifold H is called a (lensed) compression body. A collection D of disjoint, neatly embedded disks
in a compression body H is called a cut system for H if H n �.D/ Š .@�H/� I or H n �.D/ Š B3,
according with whether @.@CH/D @.@�H/ is nonempty or empty, respectively. A collection of essential,
simple closed curves on @CH is called a defining set of curves for H if it is the boundary of a cut system
for H .

In order to efficiently discuss compression bodies H for which @�H is disconnected, we will introduce
the following terminology.
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.H2;0;1;T2;3/ .H2;1;1;T0;3/ .H0;.0;0/;.1;1/;T3;.1;3//

Figure 1: Three examples of trivial tangles inside lensed compression bodies.

Definition 2.3 Given m 2 N0, an ordered partition of m is a sequence m D .m1; : : : ; mn/ such that
mj 2N0 and

P
mj Dm. We say that such an ordered partition is of type .m; n/. If mj > 0 for all j ,

then the ordered partition is called positive and is said to be of type .m; n/C. If mj Dm0 for all j , then
the ordered partition is called balanced.

Let †g denote the closed surface of genus g, and let †g;f denote the result of removing f disjoint, open
disks from †g . A surface † with n > 1 connected components is called ordered if there is an ordered
partition p D .p1; : : : ; pn/ of p 2N0 and a positive ordered partition f D .f1; : : : ; fn/ of f 2N such
that

†Š†p1;f1 t � � � t†pn;fn :

We denote such an ordered surface by†p;f , and we consider each†pj ;fj �†p;f to come equipped with
an ordering of its fj boundary components, when necessary. Note that we are requiring each component
of the disconnected surface †p;f to have boundary.

Let Hg;p;f denote the lensed compression body satisfying

(1) @CHg;p;f D†g;f , and

(2) @�Hg;p;f D†p;f .

If ˛ is a defining set for such a compression body, then ˛ consists of .n�1/ separating curves and .g�p/
nonseparating curves. See Figure 1 for three examples of lensed compression bodies, ignoring for now
the submanifolds. Let Hpj ;fj denote the product lensed cobordism from †pj ;fj to itself, and let

Hp;f D

1G
jD1

Hpj ;fj :

We refer to Hp;f as a spread.

A lensed compression bodyH admits a Morse functionˆ WH! Œ�1; 3�, which, as discussed in Remark 2.2,
is defined on H n �.@.@CH//, such that ˆ.@CH/ D �1, ˆ.@�H/ D 3, and ˆ has .n� 1/C .g � p/
critical points, all of index two, and all lying in ˆ�1.2/. We call such a ˆ a standard Morse function
for H . Every compression body admits a standard Morse function, even if it were built by capping off
two-sphere components with 3–handles. These 3–handles can be assumed to cancel with 2–handles.
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If 3–handles were required after 2–handles were attached to † along ˛, then some curves of ˛ were
unnecessary.

For a positive natural number I , we let xI �†g;f denote a fixed collection of I marked points.

2.4 Heegaard splittings and Heegaard-page splittings

Let M be an orientable three-manifold. A Heegaard splitting of M is a decomposition

M DH1[†H2;

where †�M is a neatly embedded surface †g;f , and each Hi is a lensed compression body Hg;p;f
with @CHi D†. It follows that

@M D @�H1[@† @�H2:

We denote the Heegaard splitting by .†IH1;H2/, and we call it a .gIp;f /–splitting, in reference to
the relevant parameters. Note that our notion of Heegaard splitting restricts to the usual notion when M
is closed, but is different from the usual notion when M has boundary. Our Heegaard splittings are a
special type of sutured manifold decomposition. Since each of the Hi is determined by a defining set of
curves ˛i on †, the Heegaard splitting, including M itself, is determined by the triple .†I˛1; ˛2/, which
is called a Heegaard diagram for M .

Remark 2.4 We have defined Heegaard splittings so that the two compression bodies are homeomorphic,
since this is the only case we will be interested in. Implicit in the set-up are matching orderings of
the components of the @�Hi in the case that j@�Hi j > 1. This will be important when we derive a
Heegaard-page structure from a Heegaard splitting below. See also Remark 2.11.

A Heegaard splitting .†IH1;H2/ with Hi ŠHg;p;f is called .m; n/–standard if there are cut systems
Di D fD

l
i g
n�1Cg�p

lD1
for the Hi such that

(1) For 1� l � n� 1, we have @Dl1 D @D
l
2, and this curve is separating;

(2) For n� l �mCn� 1, we have @Dl1 D @D
l
2, and this curve is nonseparating; and

(3) For mCn� l; l 0 � g�p, we have j@Dl1\@D
l 0

2 j given by the Kronecker delta ıl;l 0 , and the curves
@Dl1 and @Dl2 are nonseparating.

A Heegaard diagram .†I˛1; ˛2/ is called .m; n/–standard if ˛i D @Di for cut systems Di satisfying
these three properties. See Figure 2, left, for an example. In a sense, a standard Heegaard splitting is a
“stabilized double”. The following lemma makes this precise.

Lemma 2.5 Let .†IH1;H2/ be a .m; n/–standard Heegaard splitting with Hi ŠHg;p;f . Then

.†IH1;H2/D
� n

#
jD1

..†0/j I .H 01/
j ; .H 02/

j /
�

# .†00IH 001 ;H
00
2 /;

where .H 01/
j Š .H 02/

j ŠHpj ;fj for each j D 1; : : : ; n, and .†00IH 001 ;H
00
2 / is the standard genus g�p

Heegaard surface for #m.S1 �S2/.
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Proof Consider the n regions of † cut out by the n�1 separating curves that bound in each compression
body. After a sequence of handleslides, we can assume that all of the nonseparating curves of the ˛i are
contained in one of these regions. Once this is arranged, there is a separating curve ı in†n�.˛1[˛2/ that
cuts off a subsurface †00 such that †00 has only one boundary component (the curve ı) and g.†00/D g�p.
Since ı bounds in each of H1 and H2, we have that .†IH1;H2/D .†0IH 01;H

0
2/#ı .†00IH 001 ;H

00
2 /, such

that the latter summand is the standard splitting of #m.S1 �S2/, as claimed. The fact that the regions of
†0 cut out by the separating curves that bound in both handlebodies contain no other curves of the ˛i
means that these curves give the connected sum decomposition

.†0IH 01;H
0
2/D

� n

#
jD1

..†0/j I .H 01/
j ; .H 02/

j /
�

that is claimed.

Let H1 and H2 be two copies of Hg;p;f , and let h W @CH1! @CH2 be a diffeomorphism. Let Y be
the closed three-manifold obtained as the union of H1 and H2 along their boundaries such that @CH1
and @CH2 are identified via h and @�H1 and @�H2 are identified via the identity on @�Hg;p;f . The
manifold Y is called a Heegaard double of Hg;p;f along h, and was introduced by Gompf, Scharlemann,
and Thompson [13, Definition 4.4]. We say that a Heegaard double Y is .m; n/–standard if the Heegaard
splitting .†IH1;H2/ is .m; n/–standard. Let Yg;p;f denote the Heegaard double of a standard Heegaard
splitting whose compression bodies are Hg;p;f . The uniqueness of Yg;p;f is justified by the following
lemma, which is proved with slightly different terminology than that of [6, Corollary 14].

Lemma 2.6 Let M DH1[†H2 be a standard Heegaard splitting with Hi ŠHg;p;f . Then there is a
unique (up to isotopy rel-@) diffeomorphism Id.M;†/ W @�H1! @�H2 such that the identification space
M=x�Id.M;†/.x/, where x 2 @�H1, is diffeomorphic to the standard Heegaard double Yg;p;f .

We now identify the total space of a standard Heegaard double. Let Idpj ;fj W †pj ;fj ! †pj ;fj be
the identity map, and let MIdpj ;fj

be the total space of the abstract open-book .†pj ;fj ; Idpj ;fj /. See
Section 2.8, especially Example 2.16, for definitions and details regarding open-book decompositions.

Lemma 2.7 There is a decomposition

Yg;p;f D
� n

#
jD1

MIdpj ;fj

�
# .#m.S1 �S2//;

such that † restricts to a page in each of the first n summands and to a Heegaard surface in the last
summand. Moreover ,

MIdpj ;fj
Š #2pjCfj�1.S1 �S2/;

so Yg;p;f Š #k.S1 �S2/, with k D 2pCf �nCm.
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Figure 2: Left: a .1; 2/–standard Heegaard diagram for the standard Heegaard double Y4;.1;0/;.2;1/.
Right: a schematic showing the standard Heegaard double Y2;1;1, containing a .3; 4/–bridge
splitting for an unlink; the unlink has no flat components and four vertical components.

Proof Consider the abstract open-book .†pj ;fj ; Idpj ;fj /, and let MIdpj ;fj
denote the total space of

this abstract open-book. Pick two pages, P1 and P2, of the open-book decomposition of MIdpj ;fj
, and

consider the two lensed cobordisms cobounded thereby. Each of these pieces is a handlebody of genus
2pj C fj � 1, since it is diffeomorphic to Hpj ;fj . A collection of arcs decomposing the page into a disk
gives rise to a cut system for either handlebody, but these cut systems have the same boundary. The object
described is a genus 2pj Cfj � 1 (symmetric) Heegaard splitting for #2pjCfj�1.S1 �S2/. The rest of
the proof follows from Lemma 2.5.

Let Y be a standard Heegaard double. We consider the lensed compression bodies H1 and H2 as
embedded submanifolds of Y in the following way, which is a slight deviation from the way they naturally
embed in the Heegaard double. For i D 1; 2, let P ji denote the result of a slight isotopy of @�H

j
i into

Hi along the product structure induced locally by the lensed cobordism structure of Hi . Let Y j1 denote
the lensed product cobordism cobounded by P j1 and P j2 . In this way, we think of the Heegaard double
Y as divided into three regions: H1, H2, and

F
j Y

j
1 , each of whose connected components is a lensed

compression body. The union of H1 and H2 along their common boundary, which we denote by † is a
standard Heegaard splitting, and each Y j1 is the product lensed cobordism Hpj ;fj . See Figure 2, right, as
well as Figure 5, for a schematic illustration of this structure. We call this decomposition a (standard)
Heegaard-page structure and note that it is determined by the Heegaard splitting data .†;H1;H2/, by
Lemma 2.6.

2.5 Trivial tangles

A tangle is a pair .H;T/, where H is a compression body and T is a collection of neatly embedded
arcs in H , called strands. Let ˆ be a standard Morse function for H . After an ambient isotopy of T

rel-@, we can assume that ˆ restricts to T to give a Morse function ˆjT WT! Œ�1; 3� such that each local
maximum of T maps to 1 2 Œ�1; 3� and each local minimum maps to 0 2 Œ�1; 3�. We have arranged that
ˆ be self-indexing on H and when restricted to T.
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A strand � � T is called vertical if � has no local minimum or maximum with respect to ˆjT, and is
called flat if � has a single local extremum, which is a maximum. Note that vertical strands have one
boundary point in each of @CH and @�H , while flat strands have both boundary points in @CH . A tangle
T is called trivial if it is isotopic rel-@ to a tangle all of whose strands are vertical or flat. Such a tangle
with b flat strands and v vertical strands is called an .b; v/–tangle, with the condition that it be trivial
implicit in the terminology. More precisely, if H ŠHg;p;f , then we have an ordered partition of the
vertical strands determined by which component †pj ;bj of @�H Š†p;f contains the top-most endpoint
of each vertical strand, and we can more meticulously describe T as an .b; v/–tangle. See Figure 1 for
three examples of trivial tangles in lensed compression bodies.

Remark 2.8 In this paper, any tangle .H;T/ with @CH disconnected will not contain flat strands.
Moreover, such an H will always be a spread .Yi ; ˇi /Š .†p;f ;y/� I , with ˇi a geometric braid; see
below. Therefore, we will never partition the flat strands of T.

There is an obvious model tangle .Hg;p;f ;Tb;v/ that is a lensed cobordism from .†g;f ;x2bCv/ to
.†p;f ;yv/ in which the first 2b points of x2bCv are connected by slight push-ins of arcs in †g;f ,
and the final v rise vertically to †p;f , as prescribed by the standard height function on Hg;p;f and
the ordered partitions. The points x2bCv are called bridge points. A pair .H;T/ is determined up to
diffeomorphism by the parameters g, b, p, f , and v, and we refer to any tangle with these parameters as
a .g; bIp;f ; v/–tangle. Note that this diffeomorphism can be assumed to be supported near @CH and
can be understood as a braiding of the bridge points x2bCv. For this reason, we consider trivial tangles
up to isotopy rel-@, and we think of each such tangle as having a fixed identification of the subsurface
.†g;b;x2bCv/ of its boundary.

Let � be a strand of a trivial tangle .H;T/. Suppose first that � is flat. A bridge semidisk for � is an
embedded disk D� � H satisfying @D� D � [ ��, where �� is an arc in @CH with @�� D @� , and
D� \TD � . The arc �� is called a shadow for � . Now suppose that � is vertical. A bridge triangle for
� is an embedded disk D� �H satisfying @D� D � [ �� [ ��, where �� (resp. ��) is an arc in @CH
(resp. @�H ) with one endpoint coinciding with an endpoint of � and the other endpoint on @.@CH/,
coinciding with the other endpoint of �� (resp. ��), and D� \TD � .

Remark 2.9 The existence of a bridge triangle for a vertical strand � requires that @�H have boundary;
there is no notion of a bridge triangle for a vertical strand in a compression body cobounded by closed
surfaces. In this paper, if @CH is ever closed, H will be a handlebody and will not contain vertical
strands, so bridge semidisks and triangles will always exist for trivial tangles that we consider.

Given a trivial tangle .H;T/, a bridge disk system for T is a collection � of disjoint disks in H , each
component of which is a bridge semidisk or triangle for a strand of T, such that � contains precisely one
bridge semidisk or triangle for each strand of T.
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Lemma 2.10 Let .H;T/ be a trivial tangle such that either @CH has nonempty boundary or T contains
no vertical strands. Then there is a bridge disk system � for T.

Proof There is a diffeomorphism from .H;T/ to .Hg;p;f ;Tb;v/, as discussed above. This latter tangle
has an obvious bridge disk system: the “slight push-in” of each flat strand sweeps out a disjoint collection
of bridge semidisks for these strands, while the points x 2 x2bCv corresponding to vertical strands can
be connected to @†g;f via disjoint arcs, the vertical traces of which are disjoint bridge triangles for the
vertical strands. Pulling back this bridge system to .H;T/ using the inverse diffeomorphism completes
the proof.

We will refer to a .0; v/–tangle as a vertical v–tangle and to a .b; 0/–tangle as a flat b–tangle. In the
case that T is a vertical tangle in a spread H ŠHp;f , we call T a v–thread and call the pair .H;T/ a
.p;f ; v/–spread. Note that a .p; f; v/–spread is simply a lensed geometric (surface) braid; in particular,
a .0; 1; v/–spread is a lensed geometric braid .D2 � I; ˇ/.

2.6 Bridge splittings

Let K be a neatly embedded one-manifold in a three-manifold M . A bridge splitting of K is a decompo-
sition

.M;K/D .H1;T1/[.†;x/ .H2;T2/;

where .†IH1;H2/ is a Heegaard splitting for M and Ti �Hi is a trivial tangle. If T1 is a trivial .b; v/–
tangle, then we require that T2 be a trivial .b; v/–tangle, and we call the decomposition a .g;p;f I b; v/–
bridge splitting. A one-manifold K �M is in .b; v/–bridge position with respect to a Heegaard splitting
of M if K intersects the compression bodies Hi as a .b; v/–tangle.

Remark 2.11 As we have assumed a correspondence between the components of the @�Hi (see
Remark 2.4), we can require that the partitions of the vertical strands of the Ti respect this correspondence.
This is the sense in which both Ti are .b; v/–tangles. This will be important when we turn a bridge
splitting into a bridge-braid decomposition below.

More generally, we say that a bridge splitting is standard if the underlying Heegaard splitting

M DH1[†H2

is standard (as defined in Section 2.4 above) and there are collections of bridge semidisks �i for the
flat strands of the tangles Ti whose corresponding shadows T�i have the property that T�1 [x T�2 is an
embedded collection of polygonal arcs and curves. As a consequence, if .M;K/ admits a standard bridge
splitting, then K is the split union of an unlink (with one component corresponding to each polygonal
curve of shadow arcs) with a braid (with one strand corresponding to each polygonal arc of shadows
arcs). As described in Lemma 2.5, the ambient manifold M is a connected sum of copies of surfaces
cross intervals and copies of S1 �S2.
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Consider the special case that M is the trivial lensed cobordism between @�H1 and @�H2 and K �M
is a v–braid — ie isotopic rel-@ so that it intersects each level surface of the product lensed cobordism
transversely. (Note that the @�Hi are necessarily connected, since † always is.) If †D @CH1 defines a
standard bridge splitting of .M;K/, we refer to it as a b–perturbing of a v–braid.

Let .H1;T1/ and .H2;T2/ be two copies of the model trivial tangle .Hg;p;f ;Tb;v/, and let

h W @C.H1;T1/! @C.H2;T2/

be a diffeomorphism. Let .Y; L/ be the pair obtained as the union of .H1;T1/ and .H2;T2/, where the
boundaries @C.Hi ;Ti / are identified via h and the boundaries @�.Hi ;Ti / are identified via the identity
map of @�.Hg;p;f ;Tb;v/. We call the pair .Y; L/ a bridge double of .Hg;p;f ;Tb;v/ along h. Note that
a component of L can be referred to as flat or vertical depending on whether or not is disjoint from @�Hi .
We say that the bridge double is standard if:

(1) The bridge splitting .H1;T1/[.†;x/ .H2;T2/ is standard.

(2) L has exactly v vertical components. In other words, each component of L hits @�Hi exactly once
or not at all.

(3) L is an unlink.

Note that it follows that the vertical components of L are isotopic to meridians for the curve @†.

Let .Yg;p;f ; Lb;v/ denote the bridge double of a standard bridge splitting with .Hi ;Ti /Š .Hg;p;f ;Tb;v/.
The uniqueness of the standard bridge double .Yg;p;f ; Lb;v/ is given by the following lemma, which
generalizes Lemma 2.6 above.

Lemma 2.12 Let .M;K/D .H1;T1/[.†;x/ .H2;T2/ be a standard bridge splitting with .Hi ;Ti /Š
.Hg;p;f ;Tb;v/. Then there is a unique (up to isotopy rel-@) diffeomorphism

Id.M;K;†/ W @�.H1;T1/! @�.H2;T2/

such that the identification space .M;K/=x�Id.M;K;†/.x/, where x 2 @�.H1;T1/, is diffeomorphic to the
standard bridge double .Yg;p;f ; Lb;v/.

Proof Let .M;K/ be a standard bridge splitting. Suppose .Y; L/ is the bridge double obtained via the
gluing map Id.M;†/ W @�H1! @�H2, which is determined uniquely up to isotopy rel-@ by Lemma 2.6.
The claim that must be justified is that Id.M;†/ is unique up to isotopy rel-@ when considered as a map of
pairs @�.H1;y1/! @�.H2;y2/

Criterion (2) of a standard bridge double above states that K must close up to have v vertical components,
where v is the number of vertical strands in the splitting .M;K/. It follows that Id.M;†/ restricts to the
identity permutation as a map y1! y2 — ie the end of a vertical strand in y1 must get matched with the
end of the same strand in y2.
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Let .M;K/ı denote the pair obtained by deperturbing (in the classical, bridge-splitting-theoretic sense)
the vertical arcs of K so that they have no local extrema, then removing tubular neighborhoods of them.
Note that .M;K/ı is a standard bridge splitting (of the flat components of K) of type .g;p;f 0I b0; 0/.
The restriction Idı.M;†/ to .@�H1/ı is the identity on @.@�H1/ı, so we can apply Lemma 2.6 to conclude
that Idı.M;†/ is unique up to isotopy rel-@. Since Idı.M;†/ extends uniquely to a map Id.M;†;K/ of pairs,
as desired, we are done.

Finally, consider a standard bridge double .Yg;p;f ; Lb;v/, and recall the Heegaard-page structure on
Yg;p;f . This induces a structure on L that we call a bridge-braid structure. In particular,

(1) Ti D L\Hi is a .b; v/–tangle, and

(2) ˇ
j
1 D L\Y

j
1 is a vj –braid.

2.7 Disk-tangles

Let Zk denote the four-dimensional 1–handlebody \k.S1�B3/. Given nonnegative integers p, f , m, and
n such that kD 2pCf �1Cm and ordered partitions p and f of p and f of length n, there is a natural
way to think of Zk as a lensed cobordism from the spread Y1 DHp;f to the .m; n/–standard Heegaard
splitting .†IH1;H2/D .†g;f IHg;f ;Hg;f ). Starting with Y1�Œ0; 1�, attachmCn�1 four-dimensional
1–handles to Y1 � f1g so that the resulting four-manifold is connected. The three-manifold resulting
from this surgery on Y1 � f1g is H1 [†H2, and the induced structure on @Zk is that of the standard
Heegaard-page structure on YgIp;f . With this extra structure in mind, we denote this distinguished copy
by Zk by Zg;kIp;f .

A disk-tangle is a pair .Z;D/ whereZŠZk and D is a collection of neatly embedded disks. A disk-tangle
is called trivial if D can be isotoped rel-@ to lie in @Z.

Proposition 2.13 Let D and D0 be trivial disk-tangles in Z. If @DD @D0, then D and D0 are isotopic
rel-@ in Z.

Proof Then case when Z Š B4 is a special case of a more general result of Livingston [24], and is also
proved in [19]. See [28] for the general case.

A trivial disk-tangle .Z;D/ inherits extra structure along with Zg;kIp;f , since we can identify @D with
an unlink L in standard .b; v/–bridge position in YgIp;f . In this case, a disk D � D is called vertical
(resp. flat) if it corresponds to a vertical (resp. flat) component of L. With this extra structure in mind,
we call a trivial disk-tangle a .c; v/–disk-tangle and denote it by Dc;v, where c denotes the number of
flat components of D and v denotes the partition numbers of vertical components. Note that Dc;v is
a tangle of c C v disks. We call the pair .Zg;kIp;f ;DcIv/ a .g; k; cIp;f ; v/–disk-tangle. Note that
Proposition 2.13 respects this extra structure, since part of the hypothesis was that the two disk systems
have the same boundary. See Figure 3 for a schematic illustration.
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Figure 3: A schematic of the disk-tangle D1;2, which contains one flat component and two vertical
components. Note that the 3–component unlink on the boundary is in .3; 2/–bridge position with
respect to the standard Heegaard double Y0;0;1 for the 3–sphere.

The special structure on Zg;kIp;f described above induces a special Morse function ˆ W Z! R with
mCn� 1 critical points, all of which are index one. The next lemma characterizes trivial disk-tangles
with respect to this standard Morse function.

Lemma 2.14 Let Z DZg;kIp;f , and let D�Z be a collection of neatly embedded disks with @D\Y1

a v–thread. Suppose the restriction ˆD of ˆ to D has c critical points , each of which is index zero. Then
D is a .c; v/–disk-tangle for some ordered partition v of v D jDj � c.

Proof We parametrize ˆ WZ!R so that ˆ.Z/D Œ0; 1:5�, ˆ�1.0/D Y1 n �.P1[P2/,

ˆ�1.1:5/D .H1[†H2/ n �.P1[P2/;

and ˆ.x/D 0:5 for each critical point x 2Z of ˆ.

Let � denote the cores of the 1–handles of Z. By a codimension argument, we can assume, after a small
perturbation of ˆ that doesn’t introduce any new critical points, that D is disjoint from a neighborhood
�.�/[Y1 � Œ0; 1�. Thus, we can assume that ˆD.x/D 1:0 for any critical point x 2 D of ˆD.

First, note that 0� c � jDj; each connected component of D can have at most one minimum, since ˆD

has no higher-index critical points. Let fDigciD1 � D denote the subcollection of disks in D that contain
the index zero critical points of ˆD. We claim that D D

Sc
iD1Di is a .c; 0/–disk-tangle. We will now

proceed to construct the required boundary-parallelism.

Consider the moving picture of the intersection Dftg of D with the cross-section Zftg D ˆ�1.1C t /
for t 2 Œ0; 0:5�. This movie shows the birth of a c–component unlink L from c points at time t D 0,
followed by an ambient isotopy of L as t increases. Immediately after the birth, say t D �, we have that
the subdisks DŒ1;1C�� DD\ˆ�1.Œ1; 1C ��/ of D are clearly boundary-parallel to a spanning collection
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of disks E� for L� DDf1C�g. Now, we simply push this spanning collection of disks E� along through
the isotopy taking L� to @D. Because this isotopy is ambient, the traces of the disks of E� are disjoint,
thus they provide a boundary parallelism for D, as desired.

It remains to see that the collection D00 of disks in D containing no critical points of ˆD are also boundary
parallel. Note however, that they will not be boundary parallel into ˆ�1.1:5/, as before.

Let ˇ D D00 \ Y1; by hypothesis, .Y1; ˇ/ is a .p;f ; v/–spread, ie Y1 is a product lensed bordism (a
spread) Hp;f and ˇ is a vertical v–tangle (a v–thread) therein. Similar to before, we can assume that
D00 is disjoint from a small neighborhood of the cores of the 1–handles.

Since D00 contains no critical points, it is vertical in the sense that we can think of it as the trace of an
ambient isotopy of ˇ in Y1 as t increases from t D 0 to t D 0:5, followed by the trace of an ambient
isotopy of ˇ inH1[†H2 between t D 0:5 and t D 1:5. The change in the ambient space is not a problem,
since D00 is disjoint form the cores � of the 1–handles, hence these isotopies are supported away from
the four-dimensional critical points.

If � is any choice of bridge triangles for ˇ in Y1, then the trace of � under this isotopy gives a boundary-
parallelism of D00, as was argued above. We omit the details in this case.

Note that the assumption that ˇ be a thread was vital in the proof, as it gave the existence of �. If ˇ
contained knotted arcs, the vertical disk sitting over such an arc would not be boundary parallel. Similarly,
if ˇ contained closed components, the vertical trace would be an annulus, not a disk. The converse to the
lemma is immediate, hence it provides a characterization of trivial disk-tangles.

We next show how a standard bridge splitting can be uniquely extended to a disk-tangle. The following
lemma builds on portions of [6, Section 4].

Lemma 2.15 Let .M;K/ D .H1;T1/[.†;x/ .H2;T2/ be a standard .g;p;f I b; v/–bridge splitting.
There is a unique (up to diffeomorphism rel-@) pair .Z;D/, diffeomorphic to .Zg;kIp;f ;Dc;v/, such that
the bridge double structure on @.Z;D/ is the bridge double of .M;K/.

Proof By Lemma 2.12, there is a unique way to close .M;K/ up and obtain its bridge double .Y; L/. By
Laudenbach and Poénaru [23], there is a unique way to cap off Y Š #k.S1�S2/ with a copy of Z of Zk .
By Proposition 2.13, there is a unique way to cap off L with a collection D of trivial disks. Since these
choice are unique (up to diffeomorphism rel-@ and isotopy rel-@, respectively), the pair .Z;D/ inherit the
correct bridge double structure on its boundary, as desired.

2.8 Open-book decompositions and braidings of links

We follow Etnyre’s lecture notes [9] to formulate the definitions of this subsection. Let Y be a closed,
orientable three-manifold. An open-book decomposition of Y is a pair .B; �/, where B is a link in M
(called the binding) and � WY nB!S1 is a fibration such thatP�D��1.�/ is a noncompact surface (called

Algebraic & Geometric Topology, Volume 24 (2024)



Filling braided links with trisected surfaces 819

the page) with @P� DB . Note that it is possible for a given link B to be the binding of nonisotopic (even
nondiffeomorphic) open-book decomposition of Y , so the projection data � is essential in determining
the decomposition.

An abstract open-book is a pair .P; �/, where P is an oriented, compact surface with boundary, and
� W P ! P is a diffeomorphism (called the monodromy) that is the identity on a collar neighborhood
of @P . An abstract open-book .P; �/ gives rise to a closed three-manifold, called the model manifold,
with an open-book decomposition in a straightforward way. Define

Y� D .P �� S
1/[

�G
j@P j

S1 �D2
�
;

where P �� S1 denotes the mapping torus of �, and Y� is formed from this mapping torus by capping
off each torus boundary component with a solid torus such that each p �� S1 gets capped off with a
meridional disk for each p 2 @P . (Note that p�� S1 D p�S1 by the condition on � near the boundary
of P .) Our convention is that P �� S1 D P � Œ0; 1�=.x;1/�.�.x/;0/ for all x 2 P .

If we let B� denote the cores of the solid tori used to form Y� , then we see that Y� nB� fibers over S1, so
we get an open-book decomposition .B� ; ��/ for Y� . Conversely, an open-book decomposition .B; �/ of
a three-manifoldM gives rise to an abstract open-book .P� ; ��/ in the obvious way such that .Y�� ; B�� /
is diffeomorphic to .M;B/.

We now recall an important example which appeared in Lemma 2.7.

Example 2.16 Consider the abstract open-book .P; �/, where P D†p;f is a compact surface of genus p
with f boundary components and � W P ! P is the identity map. The total space Y� of this abstract
open-book is diffeomorphic to #2pCf �1.S1 �S2/. To see this, simply note that the union of half of the
pages gives a handlebody of genus 2pCf �1; since the monodromy is the identity, Y� is the symmetric
double of this handlebody.

Harer described a set of moves that suffice to pass between open-book decompositions on a fixed three-
manifold [14]. These include Hopf stabilization and destabilization, as well as a certain double-twisting
operation, which was known to be necessary in order to change the homotopy class of the associated
plane field. (Harer’s calculus was recently refined in [30].) In fact, Giroux and Goodman proved that two
open-book decompositions on a fixed three-manifold have a common Hopf stabilization if and only if the
associated plane fields are homotopic [12]. For a trisection-theoretic account of this story, see [7].

Having introduced open-book decompositions, we now turn our attention to braided links. Suppose that
L� Y is a link and .B; �/ is an open-book decomposition on Y . We say that L is braided with respect
to .B; �/ if L intersects each page of the open-book transversely. We say that .Y;L/ is equipped with
the structure of an open-book braiding. The index of the braiding is the number of times that L hits a
given page. By the Alexander theorem [1] and the generalization due to Rudolph [31], any link can be
braided with respect to any open-book in any three-manifold.
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Figure 4: Markov stabilization, depicted as the banding of a braid to a meridian of the binding.

An abstract open-book braiding is a triple .P;y; �/, where P is an oriented, compact surface with
boundary, y � P is a collection of points, and � W .P;y/! .P;y/ is a diffeomorphism. As with abstract
open-books, this data gives rise to a manifold pair .Y� ;L�/, called the model open-book braiding of the
abstract open-book braiding, where Y� has an open-book structure with binding B� and projection ��
and L� is braided with respect to .B� ; ��/. More precisely,

.Y� ;L�/D .P;y/�� S
1
D .P;y/� Œ0; 1�=.x;0/�.�.x/;1/

for all x 2 P . Conversely, a braiding of L about .B; �/ gives rise in the obvious way to an abstract
open-book braiding .P� ; ��/ such that .Y�� ;L�� / is diffeomorphic to .Y;L/.

By the Markov theorem [25] or its generalization to closed 3–manifolds [32; 33], any two braidings of L

with respect to a fixed open-book decomposition of Y can be related by an isotopy that preserves the
braided structure, except at finitely many points in time at which the braiding is changed by a Markov
stabilization or destabilization. We think of a Markov stabilization in the following way. Let J be a
meridian for a component of the binding B of the open-book decomposition on Y , and let b be a band
connecting L to J such that the core of b is contained in a page of the open-book decomposition and such
that the link L0 DLb resulting from the resolution of the band is braided about .B; �/. We say that L0 is
obtained from L via a Markov stabilization, and we call the inverse operation Markov destabilization.
(Markov destabilization can be thought of as attaching a vertical band to L0 such that resolving the band
has the effect of splitting off from L0 a meridian for a binding component.) See Figure 4.

Suppose that Y D Y 1 t � � � t Y n is the disjoint union of closed three-manifolds such that each Y j is
equipped with an open-book decomposition .Bj ; �j /. Suppose that LD L1 t � � �Ln is a link such that
Y j � Y j is braided about .Bj ; �j /. We say that L has multiindex vD .v1; : : : ; vn/ if Lj has index vj .
We allow the possibility that Lj D∅ for any given j .

Remark 2.17 If Y is oriented, and we pick orientations on L and on a page P of .B; �/, then we can
associate a sign to each point of L\P . By definition, if L is a knot, then each such point will have
identical sign; more generally, connected components of L have this property. If the orientations of the
points L\P all agree, then we say that the braiding is coherently oriented. If the orientations of these
points disagree across components of L, then we say that the braiding is incoherently oriented.
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Our reason for considering incoherently oriented braidings is that sometimes a bridge trisection of a
surface will induce a braiding of the boundary link that is incoherently oriented once the surface is
oriented. A simple example of this, the annulus bounded by the .2; 2n/–torus link, will be explored in
Examples 7.15 and 7.17. Even though some bridge trisections induce incoherently oriented braidings
on the boundary link, it is always possible to find a bridge trisection of a surface such that the induced
braiding is coherently oriented.

2.9 Formal definitions

Finally, we draw on the conventions laid out above to give formal definitions.

Definition 2.18 Let X be an orientable, connected four-manifold, and let

Y D @X D Y 1 t � � � tY n;

where Y j is a connected component of @X for each j D 1; : : : ; n. Let g, k�, p, and f be nonnegative
integers, and let k, p, and f be ordered partitions of type .k�; 3/, .p; n/, and .b; n/C, respectively.

A .g;kIp;f /–trisection T of X is a decomposition X DZ1[Z2[Z3 such that, for all j D 1; : : : ; n
and all i 2 Z3,

(1) Zi ŠZg;ki Ip;f ,

(2) Zi \ZiC1 ŠHgIp;f ,

(3) Z1\Z2\Z3 Š†g;b , and

(4) Zi \Y
j ŠHp;f .

The four-dimensional pieces Zi are called sectors, the three-dimensional pieces Hi D Zi \Zi�1 are
called arms, and the central surface †D Z1 \Z2 \Z3 is called the core. If k1 D k2 D k3 D k, then
T is described as a .g; kIp;f /–trisection and is called balanced. Otherwise, T is called unbalanced.
Similarly, if either of the ordered partitions p and f are balanced, we replace these parameters with
the integers p=n and/or f=n, respectively. The parameter g is called the genus of T . The surfaces
P
j
i D Hi \ Y

j are called pages, and their union is denoted by Pi . The lensed product cobordisms
Y
j
i DZi \Y

j are called spreads, and their union is denoted by Yi . The links Bj D†\Y j are called
bindings, and their union is B D @†.

If X is oriented, we require that the orientation on Zi induces the oriented decompositions

@Zi DHi [Yi [HiC1; @Hi D†[B Pi ; @Yi D Pi [B PiC1:

See Figure 5 (below) for a schematic illustrating these conventions.

Remarks 2.19 (1) If X is closed, then nD 0, Y D∅, and T is a trisection as originally introduced
by Gay and Kirby [10] and generalized slightly in [26].
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(2) If X has a single boundary component, then nD 1, and T is a relative trisection as first described
in [10] and later developed in [4], where gluing of such objects was studied, and in [6], where
the diagrammatic aspect to the theory was introduced. The general case of multiple boundary
components was recently developed in [5].

(3) Since Y j D Y j1 [ Y
j
2 [ Y

j
3 , with each Y ji Š Hpj ;bj , it follows that Y j admits an open-book

decomposition where P ji is a page for each i 2 Z3 and Bj is the binding. This open-book
decomposition is determined by T , and the monodromy can be explicitly calculated from a relative
trisection diagram [6].

(4) The triple .†; Pi ; PiC1/ defines the standard Heegaard double structure on @Zi Š YgIp;f . It
follows from Lemma 2.7 that ki D 2pCf �nCmi , where .†IHi ;HiC1/ is an .mi ; n/–standard
Heegaard splitting. We call mi the interior complexity of Zi . Notice that g is bounded below by
mi and p, but not by f nor ki .

Definition 2.20 Let T be a trisection of a four-manifold X . Let F be a neatly embedded surface in X .
Let b, c�, and v be nonnegative integers, and let c and v be ordered partitions of type .c�; 3/ and .v; n/,
respectively. The surface F is in .b; cI v/–bridge trisected position with respect to T (or is .b; cI v/–bridge
trisected with respect to T ) if, for all i 2 Z3,

(1) Di DZi \F is a trivial .ci I v/–disk-tangle in Zi , and

(2) Ti DHi \F is a trivial .bI v/–tangle in Hi .

The disk components of the Di are called patches, and the Ti are called seams. Let

LD @FD L1 t � � � tLn;

where Lj DL\Y j is the link representing the boundary components of F that lie in Y j . The pieces
ˇ
j
i D Lj \Zi comprising the Li are called threads.

If F is oriented, we require that the induced orientation of Di induces the oriented decomposition

@Di D Ti [ˇi [TiC1:

See Figure 5 (below) for a schematic illustrating these conventions.

The induced decomposition TF given by

.X;F/D .Z1;D1/[ .Z2;D2/[ .Z3;D3/

is called a .g;k; b; cIp;f ; v/–bridge trisection of F (or of the pair .X;F/). If T is balanced and ci D c
for each i 2 Z3, then TF is described as a .g; k; b; cIp;f ; v/–bridge trisection and is called balanced.
Otherwise, TF is called unbalanced. Similarly, if the partition v is balanced, we replace this parameter
with the integer v=n. The parameter b is called the bridge number of TF.
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Remarks 2.21 (1) If X is a closed four-manifold, then nD 0, LD∅, and F is a closed surface in X .
If g D 0, we recover the notion of bridge trisections originally introduced in [27], while the more
general case of arbitrary g is treated in in [28].

(2) If L\ Y j D ∅ for some j D 1; : : : ; n, then Lj D ∅. Equivalently, vj D 0. If Lj is not empty,
then

Lj D ˇ
j
1 [ˇ

j
2 [ˇ

j
3 :

If follows that Lj is braided with index vj with respect to the open-book decomposition .Bj ; P ji /
on Y j induced by T .

(3) The link Li D @Di is in .b; v/–bridge position with respect to the standard Heegaard double
structure on @Zi .

(4) The surface F has a cellular decomposition consisting of .2bC 4v/ 0–cells, 3v of which lie in the
pages of @X ; .3bC 6v/ 1–cells, 3v of which lie in the spreads of @X ; and .c1C c2C c3C 3v/
2–cells, 3v of which are vertical patches. It follows that the Euler characteristic of F is given as

�.F/D c1C c2C c3C v� b:

(5) Note that ci � b, but that v is independent of b and the ci .

We conclude this section with a key fact about bridge trisections. We refer to the union

.H1;T2/[ .H2;T2/[ .H3;T3/

as the spine of the bridge trisection T . Two bridge trisections T and T 0 for pairs .X;F/ and .X;F0/ are
diffeomorphic if there is a diffeomorphism ‰ W .X;F/! .X 0;F0/ such that  .Zi ;Di /D .Z0i ;D

0
i / for all

i 2 Z3. We consider spines up to diffeomorphism, and we note that such diffeomorphisms may induce
braiding of the Ti near the Pi .

Proposition 2.22 Two bridge trisections are diffeomorphic if and only if their spines are diffeomorphic.

Proof If ‰ is a diffeomorphism of bridge trisections T and T 0, then the restriction of ‰ to the spine of T

is a diffeomorphism onto the spine of T 0. Conversely, suppose ‰ is a diffeomorphism from the spine of T

to the spine of T 0— ie ‰.Hi ;Ti /D .H 0i ;T
0
i / for all i 2 Z3. By Lemma 2.15, ‰ there is an extension

of ‰ across .Zi ;Di / that is uniquely determined up to isotopy fixing .H1;Ti /[.†;x/ .HiC1;TiC1/ for
each i 2 Z3. It follows that ‰ extends to a diffeomorphism bridge trisections, as desired.

In light of this, we find that the four-dimensional data of a bridge trisection is determined by the three-
dimensional data of its spine, a fact that will allow for the diagrammatic development of the theory in
Sections 4 and 5.

Corollary 2.23 A bridge trisection is determined uniquely by its spine.
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3 The four-ball setting

In this section, we restrict our attention to the study of surfaces in the four-ball. Moreover, we work
relative to the standard genus zero trisection. These restrictions allow for a cleaner exposition than the
general framework of Section 2 and give rise to a new diagrammatic theory for surfaces in this important
setting.

3.1 Preliminaries and a precise definition

Here, we revisit the objects and notation introduced in Section 2 with the setting ofB4 in mind, culminating
in a precise definition of a bridge trisection of a surface in B4.

LetH denote the three-ball, and let B denote an equatorial curve on @H , which induces the decomposition

@H D @CH [B @�H

of the boundary sphere into two hemispheres. We think of H as being swept out by disks: smoothly
isotope @CH through H to @�H . (Compare this description of H with the notion of a lensed cobordism
from Section 2.2 and the development for a general compression body in Section 2.3.)

A trivial tangle is a pair .H;T/ such that H is a three-ball and T�H is a neatly embedded 1–manifold
with the property that T can be isotoped until the restriction ˆT of the above Morse function to T has no
minimum and at most one maximum on each component of T. In other words, each component of T is a
neatly embedded arc in H that is either vertical (with respect to the fibering of H by disks) or parallel
into @CH . The latter arcs are called flat. We consider trivial tangles up to isotopy rel-@. If T has v
vertical strands and b flat strands, we call the pair .H;T/ a .b; v/–tangle. This is a special case of the
trivial tangles discussed in Section 2.5.

Let H1 and H2 be three-balls, and consider the union H1 [† H2, where † D @CH1 D @CH2. We
consider this union of as a subset of the three-sphere Y so that B D @† is an unknot and †, @�H1, and
@�H2 are all disjoint disk fibers meeting at B . Let Y1 denote

Y n Int.H1[†H2/;

and notice that Y1 is simply an interval’s worth of disk fibers for B , just like the Hi . We let Y denote
the three-sphere with this extra structure, which we call the standard Heegaard double (see Section 2.4).
Note that B can be thought of as the (unknotted) binding of an open-book decomposition of S3 with disk
page, with the pieces H1, H2, and Y1 intersecting pairwise at pages and representing themselves lensed
product cobordisms between these pages.

An unlink L � Y is in .b; v/–bridge position with respect the standard Heegaard double structure if
L\Hi is a .b; v/–tangle, L is transverse to the disk fibers of Y1, and each component of L intersects
Y1 in at most one arc. The v components of L that intersect Y1 are called vertical, while the other b
components are called flat.
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Figure 5: A schematic illustration of a standard Heegaard double, with orientation conventions
for the constituent pieces of @Z1 indicated.

Let Z denote the four-ball, with @Z D Y regarded as the standard Heegaard double. A trivial disk-tangle
is a pair .Z;D/ such that Z is a four-ball and D is a collection of neatly embedded disks, each of
which is parallel into @Z. Note that the boundary @D is an unlink. If @D is in .b; v/–bridge position in
Y D @Z, then the disk components of D are called vertical and flat in accordance with their boundaries.
A .c; v/–disk-tangle is a trivial disk-tangle with c flat components and v vertical components.

Definition 3.1 Let F be a neatly embedded surface in B4, and let T0 be the standard genus zero trisection
of B4. Let b and v be nonnegative integers, and let c D .c1; c2; c3/ be an ordered triple of nonnegative
integers. The surface F is in .b; cI v/–bridge trisected position with respect to T0 (or is .b; cI v/–bridge
trisected with respect to T0) if, for all i 2 Z3,

(1) Di DZi \F is a trivial .ci ; v/–disk-tangle in the four-ball Zi , and

(2) Ti DHi \F is a trivial .b; v/–tangle in the three-ball Hi .

The disk components of the Di are called patches, and the Ti are called seams. Let LD @F. The braid
pieces ˇi D L\Zi are called threads.

If F is oriented, we require that the induced orientation of Di induces the oriented decomposition

@Di D Ti [ˇi [TiC1:

The induced decomposition TF given by

.X;F/D .Z1;D1/[ .Z2;D2/[ .Z3;D3/

is called a .b; c; v/–bridge trisection of F (or of the pair .X;F/). If TF is balanced and c1D c2D c3D c,
then TF is a .b; c; v/–bridge trisection and is called balanced. Otherwise, TF is called unbalanced.

3.2 Band presentations

Let M be a three-manifold, and let J be a neatly embedded one-manifold in M . Let b be a copy of
I � I embedded in M , and denote by @1b and @2b the portions of @b corresponding to I � f�1; 1g and
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f�1; 1g� I , respectively. We call such a b a band for J if Int.b/�M nJ and @b\J D @1b. The arc of
b corresponding to f0g � I is called the core of b.

Let Jb denote the one-manifold obtained by resolving the band b,

Jb D .J n @1b/[ @2b:

The band b for J gives rise to a dual band b� that is a band for Jb, so @1b�D @2b and @2b�D @1b. Note
that, as embedded squares in M , we have bD b�, though their cores are perpendicular. More generally,
given a collection b of disjoint bands for J , we denote by Jb the resolution of all the bands in b. As
above, the collection b� of dual bands is a collection of bands for Jb.

Definition 3.2 (band presentation) A band presentation is a 2–complex in S3 defined by a triple
.L; U; b/ as follows:

(1) L� S3 is a link;

(2) U is a split unlink in S3 n �.L/; and

(3) b is a collection of bands for LtU such that U 0 D .LtU/b is an unlink.

If U is the empty link, then we write .L; b/ and call the encoded 2–complex in S3 a ribbon presentation.

We consider two band presentations to be equivalent if they are ambient isotopic as 2–complexes in S3.
Given a fixed link L � S3, two band presentations .L; U1; b1/ and .L; U2; b2/ are equivalent rel-L if
they are equivalent via an ambient isotopy that preserves L setwise. (In other words, L is fixed, although
the attaching regions of b are allowed to move along L.)

Band presentations encode smooth, compact, neatly embedded surfaces in B4 in a standard way. Before
explaining this, we first fix some conventions that will be useful later. (Here, we follow standard
conventions, as in [20; 21; 27; 28].)

Let h WB4! Œ0; 4� be a standard Morse function on B4 — ie h has a single critical point, which is definite
of index zero and given by h�1.0/, while h�1.4/ D @B4 D S3. For any compact submanifold X of
B4 and any 0 � t < s � 4, let XŒt;s� denote X \ h�1.Œt; s�/ and let Xftg D X \ h�1.t/. For example,
B4
Œt;s�
D h�1Œt; s�. Similarly, for any compact submanifold Y of B4

ftg
and any 0� r < s � 4, let Y Œr; s�

denote the vertical cylinder obtained by pushing Y along the gradient flow across the height interval Œr; s�,
which we call a gradient product. We extend these notions in the obvious way to open intervals and
singletons in Œ0; 4�.

Now we will show how, given a band presentation .L; U; b/, we can construct the realizing surface
F.L;U;b/: a neatly embedded surface in B4 with boundary L. Start by considering .L; U; b/ as 2–complex
in B4

f2g
Š S3, and consider the surface F with the properties

(1) F.3;4� D L.3; 4�;

(2) Ff3g D Lf3g tD, where D is a collection of spanning disks for the unlink U f3g � B4
f3g
Š S3;
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(3) F.2;3/ D .LtU/.2; 3/;

(4) Ff2g D .LtU/[ b;

(5) F.1;2/ D U
0.1; 2/;

(6) Ff1g DD
0, where D0 is a collection of spanning disks for the unlink U 0 � B4

f1g
Š S3; and

(7) FŒ0;1/ D∅.

Note that t represents the split union, and we assume that D is contained in a three-ball B that is
disjoint from Lf3g. Any two such choices of spanning disks D and D0 are isotopic after perturbation
into B.3; 3C �/ and B4

.1;1��/
, respectively, by Proposition 2.13. Note also that @FD F\B4

f4g
D Lf4g.

Proposition 3.3 Every neatly embedded surface F with @FDL is isotopic rel-@ to a realizing surface
F.L;U;b/ for some band presentation .L; U; b/. If F has a handle-decomposition with respect to the
standard Morse function on B4 consisting of c1 cups , n bands , and c3 caps , then .L; U; b/ can be
assumed to satisfy jU j D c3, jbj D n, and jU 0j D c1.

Proof Given F, we can assume after a minor perturbation that the restriction hF of a standard height
function h W B4 ! Œ0; 4� is Morse. After reparametrizing the codomain of h, we can assume that the
critical points of hF are contained in h�1..1:5; 2:5//. For each index zero critical point x of hF, we
choose a vertical strand ! connecting x to B4

f1g
. (Here, vertical means that !ftg is a point or empty for

each t 2 Œ1; 2:5�.) By a codimension count, ! is disjoint from F, except at x. We can use a small regular
neighborhood of ! to pull x down to B4

f1g
. Repeating, we can assume that the index zero critical points

of hF lie in B4
f1g

. By a similar argument, we achieve that the index two critical points of hF lie in B4
f3g

and that the index one critical points of hF lie in B4
f2g

.

Next, we perform the standard flattening of the critical points: for each critical point x of index i , find a
small disk neighborhood N of x in F, and isotope F so that N lies flat in B4

fiC1g
. Near critical points of

index zero or two, F now resembles a flat-topped or flat-bottomed cylinder; for index one critical points,
N is now a flat square. Let b0 denote the union of the flat, square neighborhoods of the index one critical
points in B4

f2g
.

So far, we have achieved properties (2), (4), (6), and (7) of a realizing surface. Properties (1), (3), and (5)
say that F should be a gradient product on the intervals .3; 4�, .2; 3/, and .1; 2/, respectively. The products
F.3;4� and L.3; 4� (for example) agree at Ff4g DLf4g, but may disagree in B4

ftg
for t 2 .3; 4/. This issue

can be addressed by a “combing-out” process.

For each t 2 Œ1; 4�, we can choose ambient isotopies Gt W Œ0; 1��B4ftg! B4
ftg

such that

(1) G4.s; x/D x for all s 2 Œ0; 1� and x 2 B4
f4g

;

(2) Gt .0; x/D x for all t 2 Œ1; 4� and x 2 B4
ftg

;

(3) Gt .1;Fftg/D Lftg for all t 2 .3; 4�, where we now let LD Ff4g;
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Figure 6: A band presentation for the punctured spun trefoil, considered as a neatly embedded
disk in B4 with unknotted boundary.

(4) Gt .1;Fftg/D .LtU/ftg for all t 2 .2; 3/, where we now let LtU DG3.Ff3g n IntD/;

(5) Gt .1;Fftg/D U
0ftg for all t 2 .1; 2/, where we now let U 0 DG2.@FŒ0;2//; and

(6) Gt is smoothly varying in t .

After applying the family Gt of ambient isotopies to FŒ1;4�, we have properties (1), (3), and (5), as desired.
However, the ambient isotopies Gt have now altered Fftg for t D 1; 2; 3. For example, the disks D and
D0 have been isotoped around in their respective level sets; but, clearly, properties (2), (4), (6), and (7)
are still satisfied. We remark that, if desired, we can choose Gt so that

(a) the disks of D end up contained in small, disjoint 3–balls and either

(b) the disks of D0 have the same property or

(c) the bands b have the same property.

However, we cannot always arrange (a), (b), and (c) if we want F.1;2/ to be a gradient product.

With a slight abuse of notation, we now let LDLf2g, U D U f2g, and bDG2.b
0/. (The only abuse is

which level set of the now-gradient-product portion LŒ2; 4� of F should be denoted by L.) In the end, we
have that F is the realizing surface of the band presentation .L; U; b/.

With regards to the second claim of the proposition, assume that F has c1 cups, n bands, and c3 caps
once it is in Morse position. Each cap gives rise to a component of U , while each cup gives rise to a
component of U 0. The numbers of bands, cups, and caps are constant throughout the proof.

Examples of a band presentations are shown below in Figures 8(a), 10(a), and 13(g). However, each of
these is a ribbon presentation. Throughout the rest of the paper, we will work almost exclusively with
ribbon presentations. To emphasize the generality of Definition 3.2, we give in Figure 6 a nonribbon
band presentation, where the black unknot is L and the orange unknot is U . Note that a nonribbon band
presentation .L; U; b/ for a surface F can always be converted to a ribbon presentation .L0; b/ for a
surface F0 by setting L0 D LtU . The ribbon surface F0 is obtained from the nonribbon surface F by
puncturing at each maxima and dragging the resulting unlink to the boundary.
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3.3 Bridge-braiding band presentations

Recall the standard Heegaard-double decomposition Y D Y0;0;1 of S3 that was introduced in Section 2.4
and revisited in Section 3.1, which is a decomposition of S3 into three trivial lensed cobordisms (three-
balls), H1, H3, and Y3, which meet along disk pages H1\H3 D† and Hi \Y3 D Pi whose boundary
is the unknotted braid axis B in S3. The choice to use H3 instead of H2 will ensure that the labelings of
our pieces agree with our conventions for the labeling of the pieces of a bridge trisection, as in the proof
of Proposition 3.12 below.

Definition 3.4 (bridge-braided) A band presentation .L; U; b/, considered with respect to the standard
Heegaard-page decomposition Y0;0;1 of S3, is called .b; cI v/–bridge-braided if

(1) ˇ3 D L\Y3 is a v–braid;

(2) L\ .H1[†H3/ is a b0–perturbing of a v–braid;

(3) U is in b00–bridge position with respect to †;

(4) b\† is precisely the cores y� of b, which are embedded in †;

(5) there is a bridge system � for the trivial tangle T3 DH3\ .L[U/ whose shadows �� have the
property that ��[y� is a collection of embedded arcs in †; and

(6) U 0 D .L [ U/b is a .c1Cv/–component unlink that is in standard .b; v/–bridge position with
respect to Y0;0;1 (hence, U 0 consists of c1 flat components and v vertical components).

Here, bD b0Cb00, c3D jU j, c2D b�jbj, and c1D jU 0j�v. Let Ǒ denote the index v braiding of L given
by ˇ3[T1[T3. In reference to this added structure, we denote the bridge-braided band presentation by
. Ǒ; U; b/. If U D∅, so .L; b/ is a ribbon presentation, we denote the corresponding bridge-braiding by
. Ǒ; b/.

We say that a band in b is dualized by the bridge disk in � whose shadow is adjacent to the band’s core
in the embedded polygonal arc.

Proposition 3.5 Let F�B4 be a surface with @FDL, and let Ǒ be an index v braiding of L. There is a
bridge-braided band presentation . Ǒ; U; b/ such that FDF. Ǒ;U;b/. If F has a handle-decomposition with
respect to the standard Morse function on B4 consisting of c1 cups , n bands , and c3 caps , then . Ǒ; U; b/
can be assumed to be

�
b; .c1; b�.nCv/; c3/I v

�
–bridge-braided for some b 2N.

Proof Consider F � B4 with @F D L. By Proposition 3.3, we can assume (after an isotopy rel-@)
that F D F.L;U;b/ for some band presentation .L; U; b0/. We assume that jU j D c3, jb0j D n, and
j.LtU/b0 j D c1. By Alexander’s theorem [1], there is an ambient isotopy G4 W I �B4f4g! B4

f4g
taking

@F to Ǒ. As in the proof of Proposition 3.3, there is a family Gt of ambient isotopies extending G4
across B4. This results in the “combing-out” of Alexander’s isotopy G4, with the final effect that F is the
realizing surface of the (not-yet-bridge-braided) band presentation . Ǒ; U; b0/. Henceforth, we consider
the 2–complex corresponding to . Ǒ; U; b0/ to be living in B4

f2g
, as in Proposition 3.3.
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We have already obtained properties (1) and (2) towards a bridge-braided band presentation; although,
presently b0 D 0. (This will change automatically once we begin perturbing the bridge surface † relative
to Ǒ and U .) By an ambient isotopy of B4

f2g
that is the identity in a neighborhood of Ǒ, we can move

U to lie in bridge position with respect to †, realizing property (3). (Again, the bridge index b00 of this
unlink will change during what follows.) Since this ambient isotopy was supported away from Ǒ it can
be combed-out (above and below) via a family of isotopies that are supported away from the gradient
product ǑŒ2; 4�; so F is still the realizing surface.

Next, after an ambient isotopy that fixes Ǒ tU setwise (and pointwise near †), we can arrange that
b0 lies in H1 [†H3. (Think of the necessity of sliding the ends of b0 along ˇ3 to extract it from Y3,
while isotoping freely the unattached portion of b0 to the same end.) This time, we need only comb-out
towards h�1.0/. Using the obvious Morse function associated to .H1 [†H3/ n �.B/, we can flow b0,
in the complement of Ǒ tU , so that the cores of the bands lie as an immersed collection of arcs y in
† n �.x/. At this point, we can perturb the bridge surface † relative to Ǒ tU to arrange that the cores
y be embedded in †. For details as to how this is achieved, we refer the reader to Figure 10 (and the
corresponding discussion starting on page 17) of [27]. Now that the cores y� of b0 are embedded in †,
we can further perturb † relative to Ǒ tU (as in Figure 11 of [27]) to achieve that b0\† is precisely the
cores of b0. Thus, we have that the bands b0 satisfy property (4). A further perturbation of † relative to
Ǒ tU produces, for each band � of b0, a dualizing bridge disk �� , as required by property (5). (See

Figure 12 of [27].)

However, at this point it is possible that the c1–component unlink U 00D . Ǒ tU/b0 is not in standard .b; v/–
bridge position; more precisely, it is possible that components of U 00 intersect Y3 in more than one strand.
On the other hand, we automatically have that U 00\Y3 is a v–braid, since the band resolutions changing
L[U into U 00 were supported away from Y3. Moreover, we know that U 00\Hi is a .b; v/–tangle; this
follows from the proof of [27, Lemma 3.1].

Thus, we must modify U 00 in order to obtain an unlink in standard position. To do so, we will produce a
new collection b00 of bands such that U 0 D U 00b00 is a .c1Cv/–component unlink in .b; v/–bridge position.
We call the bands b00 helper bands. We will then let bD b0 t b00, and the proof will be complete.

Since .Y3; ˇ3/ is a v–braid, there is a collection of bridge triangles � for ˇ3. Let ! D�\ .P1[B P3/.
Let b00 denote the collection of v bands whose core are the arcs ! and that are framed by the two-sphere
P1[B P3. By a minor isotopy that fixes U 00 setwise (and pointwise away from a neighborhood of @!),
we consider b00 as lying in the interior of H1[†H3. Thus, b00 is a collection of bands for T1[x T3. See
Figure 7 for two simple examples.

Let U 0 D U 00b00 . Let J denote the components of U 0 containing the strands of ˇ3. Since the helper bands
b00 were created from the bridge triangles of �, we find that J bounds a collection of v disjoint meridional
disks forB . In particular, J is a v–component unlink in v–braid position with respect toB . LetKDU 0nJ ,
and note that K is isotopic (disregarding the Heegaard double structure) to the unlink U 00. It follows that
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b00
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ˇ3

Figure 7: Adding extra bands to ensure that U 0 is in standard .b; v/–bridge position.

K is a c1–component unlink in bridge position with respect to †. Therefore, U 0 is a .c1Cv/–component
unlink in standard .b; v/–bridge position, as required by property (6) of Definition 3.4.

Now, to wrap up the construction, we let b D b0 [ b00. While we have arranged the bands of b0 are in
the right position with respect to the Heegaard splitting, we must now repeat the process of perturbing
the bridge splitting in order to level the helper bands b00. The end result is that the bands of b satisfy
properties (4) and (5) of Definition 3.4. In the process, we have not changed the fact that properties
(1)–(3) and (6) are satisfied, though we may have further increased the parameters b0 and b00 (and, thus,
b D b0C b00) during this latest bout of perturbing.

We complete the proof by noting that jU j D c3, jU 0j D c1C v, and jbj D nC v.

Remark 3.6 A key technical step in the proof of Proposition 3.5 was the addition of the so-called helper
bands b00 to the original set b0 of bands that were necessary to ensure that U 0 was in standard position. In
the proof, b00 consisted of v bands; in practice, one can make do with a subset of these v bands. This can
be seen in the two simple examples of Figure 7, where the addition of only one band (in each example)
suffices to achieve standard bridge position. In Figure 7, left, the addition of the single band shown
transforms an unknot component of U 00 that is in 2–braid position into a pair of 1–braids (one of which is
perturbed) in the link U 0. In Figure 7, right, an unknot component that is not braided at all is transformed
to the same result. In each of these examples, the addition of a second band corresponding to the second
arc of ! would be superfluous.

From a Morse-theoretic perspective, the helper bands correspond to canceling pairs of minima and
saddles: the minima are the meridional disks bounded by J . Using more bands from b00 than is strictly
necessary results in a surface with more minima (and bands) than are actually required to achieve the
desired bridge-braided band presentation. Below, when we convert the bridge-braided band presentation

Algebraic & Geometric Topology, Volume 24 (2024)



832 Jeffrey Meier

to a bridge trisection, we will see that the superfluous bands and minima have the effect that the bridge
trisection produced is perturbed — see Section 9. Another way of thinking about the helper bands is that
they ensure that the trivial disk-tangle D1 in the resulting bridge trisection has enough vertical patches.

We require that each vertical component of U 0 intersect Y3 in a single thread so that the corresponding
patch will be vertical. If some wound twice around as a braid, it would bound a patch in Z3 that is not
vertical with respect to the relevant Morse function on Z3; see the proof of Proposition 3.12 below.

Before proving that a bridge-braided band presentation can be converted to a bridge trisection, we pause
to give a few examples illustrating the process of converting a band presentation into a bridge-braided
band presentation.

Example 3.7 (figure-8 knot Seifert surface) Figure 8(a) shows a band presentation for the genus one
Seifert surface for the figure-8 knot, together with a gray dot representing an unknotted curve about which
the knot will be braided; this braiding is shown in Figure 8(b). Note that the resolution of the bands at
this point would yield a unknot (denoted U 00 in the proof of Proposition 3.5) that is in 3–braid position.
Thus, at least two helper bands are need. In Figure 8(c) we have attached three helper bands, as described
in the proof of Proposition 3.5. Note that the cores of these bands are simultaneously parallel to the arcs
one would attach to form the braid closure, and the disks exhibiting this parallelism correspond to the
bridge triangles in the proof. In Figure 8(d), all five bands have been leveled so that they are framed by
the bridge sphere, intersecting it only in their cores. In addition, each band is dualized by a bridge disk
for T3. Three of these bridge disks are obvious. The remaining two are only slightly harder to visualize;
one can choose relatively simple disks corresponding to any two of the three remaining flat arcs.

Figure 8(e) shows a tri-plane diagram for the bridge trisection that can be obtained from the bridge-braided
band presentation given in Figure 8(d) according to Proposition 3.12. (See Section 4 for precise details
regarding tri-plane diagrams.) Figure 8(f) shows the pairwise unions of the seams of this bridge trisection.
Relevant to the present discussion is the fact that the second two unions each contain a closed, unknotted
component. The fact that the red-blue union contains such a component is related to the fact that we
chose to use three helper bands, when two would suffice. The fact that the green-blue union contains
such a component is related to the fact that the bridge splitting in Figure 8(d) is excessively perturbed.
We leave it as an exercise to the reader to deperturb the bridge splitting of Figure 8(d) to obtain a simpler
bridge-braided band presentation.

Example 3.8 (figure-8 knot Seifert surface redux) As discussed in Remark 3.6, it is often not necessary
to append v helper bands. The frames of Figure 9 are analogous to those of Figure 8, with the main change
being that only two of the three helper bands are utilized. The two innermost bands from Figure 8(c)
have been chosen, and they have each been slid once over the original bands from Figure 9(b) to make
the subsequent picture slightly simpler.
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(a)
(b)

(c)
(d)

(e)

(f)

Figure 8: Top row: the process of converting a band presentation for the genus one Seifert
surface for the figure-8 knot into a bridge-braided band presentation. Middle row: a tri-plane
diagram corresponding to the bridge-braided band presentation of (d). See Figure 9 for a second
instantiation of this example.

Since fewer bands are included, the bridge splitting required to level and dualize them is simpler. In this
case, the perturbing in Figure 9(d) is minimal. In light of these variations, we see in Figure 9(f) that the
pairwise unions of the seams of the bridge trisection contain no closed components, implying the bridge
trisection is not perturbed — see Section 9.

Example 3.9 (stevedore knot ribbon disk) Figure 10(a) shows a band presentation for a ribbon disk
for the stevedore knot, together with a gray dot representing an unknotted curve about which the knot
is braided in Figure 10(b). Note that the result of resolving the band in Figure 10(b) is a 4–braiding of
the 2–component unlink, with each component given by a 2–braid. Thus, at least two helper bands are
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(a)
(b) (c)

(d)

(e)

(f)

Figure 9: Top row: the process of converting a band presentation for the genus one Seifert
surface for the figure-8 knot into a bridge-braided band presentation. Middle row: a tri-plane
diagram corresponding to the bridge-braided band presentation of (d). See Figure 8 for another
instantiation of this example.

required to achieve bridge-braided band position in this example; Figure 10(c) shows two such bands that
suffice. (See Remark 3.10 below.)

Figure 10(d) gives a bridge-braided band presentation for the ribbon disk, with the caveat that the helper
bands do not appear to be leveled as shown. However, we claim that such a leveling is possible: First, note
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(a)

(b) (c) (d)

(e)

(f)

Figure 10: Top row: the process of converting a band presentation for a ribbon disk for the steve-
dore knot into a bridge-braided band presentation. Middle row: a tri-plane diagram corresponding
to the bridge-braided band presentation of (d). Bottom row: a second tri-plane diagram, obtained
from the first via a sequence of tri-plane moves.

that the left helper band can be isotoped so that its core lies in the bridge sphere without self-intersection.
Depending on how one chooses to do this, the core may intersect the core of the dark blue band (the
original fission band for the ribbon disk). However, since this latter band is dualized by a bridge disk
for T3, there is an isotopy pushing the helper band off the fission band. At this point, the left helper band
and the fission band are both level, disjoint, and dualized by bridge disks. Now, we note that the right
helper band can be isotoped so that its core lies in the bridge sphere without self-intersection. To do
this, however, we must slide the right helper band over the fission band so that their endpoints (attaching
regions) are disjoint. Again, the core may intersect the cores of the other two bands, but since the other
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two bands are each dualized by bridge disks, we may push the core of the right helper band off the cores
of the other two bands. The end result is that all three bands lies in the required position.

Figure 10(e) shows a tri-plane diagram for the bridge trisection corresponding to the bridge-braided band
position from Figure 10(d). It is worth observing that it was not necessary to carry out the leveling of the
bands described in the previous paragraph; it suffices simply to know that it can be done. Had we carried
out the leveling described above, the result would have been a tri-plane diagram that could be related to
the one given by a sequence of interior Reidemeister moves. Figure 10(f) shows a tri-plane diagram that
is related to the tri-plane diagram of Figure 10(e) by tri-plane moves. See Section 4 for details regarding
these moves.

Remark 3.10 There is a subtle aspect to Figure 10(c) that is worth pointing out. Suppose instead that
the left helper band were chosen to cross over the braid in the two places where it crosses under. It turns
out that this new choice is still a helper band but would fail to result in a bridge-braided band position.
To be precise, let T denote the braid in Figure 10(c), which we think of as a 4–stranded tangle, and let b
denote this new choice of bands — ie three bands that are identical to the ones shown in Figure 10(c),
except that the left helper band passes above T in two places, rather than under. The resolution Tb is
a new 4–stranded tangle. Regardless of any concerns about bridge position that could be alleviated by
perturbing T, it is necessary that Tb be a 4–braid. However, this is not the case in this example. In fact,
Tb is not even a trivial tangle! The reader can check that Tb is the split union of two trivial arcs, together
with a 2–stranded tangle T0 that has a closure to the square knot.

So, the “helper bands” of the b presently being considered are not actually helper bands in the sense that
they don’t transform U 00 into an unlink U 0 in standard position, as required. Of course, by the proof of
Proposition 3.5, we know that we can augment b by adding two more helper bands, resulting in a total of
five bands, so that the result can be bridge-braided. On the other hand, Figure 10 shows that it is possible
to achieve a bridge-braided band position with fewer than four helper bands; comparison of Figures 8
and 9 gives another example of this. Precisely when this is possible and precisely how one chooses a
more efficient set of helper bands of this sort is not clear; we pose the following question.

Question 3.11 Does there exist a surface F in B4 such that every .b; v/–bridge braided band presentation
of F requires v helper bands?

Such a surface would have the property that every bridge trisection contains some flat patches. For this
reason, it cannot be ribbon, due to the results of Section 3.4 below.

Having discussed in detail the above examples, we now return our attention to the goal of bridge trisecting
surfaces.

Proposition 3.12 Let F� B4 be the realizing surface for a .b; cI v/–bridge-braided band presentation
. Ǒ; U; b/. Then F admits a .b; cI v/–bridge trisection T

. Ǒ;U;b/
.
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P1

P3 PC3

HC3 nH3

Y �3E

†f2g

H3f2g

H1f2g

Ef2� �g HC3 f2� �g

Figure 11: A schematic illustrating how to obtain a bridge trisection from a bridge-braided band
presentation; codimension two objects are not shown.

Proof As in Proposition 3.3, we imagine that the 2–complex L[U [ b corresponding to the bridge-
braided band presentation . Ǒ; b; U / is lying in the level set B4

f2g
, which inherits the Heegaard double

structure .H1;H3; Y3/. Assume that F is the corresponding realizing surface. We modify this 2–complex
so that the bands b lie in the interior of H3, rather than centered on †.

Let � >0, and assume that the resolution of the bands b for L[U occurs inH3.2��; 2/. So Ff2gDL[U ,
while Ff2� �g D U 0. Let .PC3 ;x

C
3 / denote a slight push-off of .P3;x3/ into .H3;T3/. Let .H�13; ˇ

�
13/

denote the corresponding contraction of .Y3; ˇ3/, and let .HC3 ;T
C
3 / denote the corresponding expansion

of .H3;T3/. In other words, we remove a (lensed) collar of P3 from Y3 and add it to H3.

We will now describe the pieces of a bridge trisection for F. Figure 11 serves as a guide to the understanding
these pieces. Define

(1) .†0;x0/D .†;x/f2g[BŒ2; 4�;

(2) .H 01;T
0
1/D .H1;T1/f2g[ .P1;x1/Œ2; 4�;

(3) .H 02;T
0
2/D .†;x/Œ2� �; 2�[ .H

C
3 ;T

C
3 /f2� �g[ .P

C
3 ;x

C
3 /Œ2� �; 4�;

(4) .H 03;T
0
3/D .H3;T3/f2g[ .P3;x3/Œ2; 4�;

(5) .Z01;D
0
1/D .B

4;F/Œ0;2���[ ..H1;T1/Œ2� �; 2�/[ .Y
�
3 ; ˇ

�
3 /Œ2� �; 2�;

(6) .Z02;D
0
2/D ..B

4;F/Œ2��;2�\H
C
3 Œ2� �; 2�/[

�
.Y3 n Int.Y �3 /; ˇ3 n Int.ˇ�3 //Œ2; 4�

�
; and

(7) .Z03;D
0
3/D .B

4;F/Œ2;4�\ .H1[†H3/Œ2; 4�.
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P1

B

P3

H1

H3

†

Y1

Y2

P2

Figure 12: Two-thirds of a trisection, with induced orientations on the boundary.

It is straightforward to verify that the pairs (1)–(7) have the right topology, except in the case of (3)
and (6), where slightly more care is needed. For (3), the claim is that .H 02;T

0
2/ Š .H2; .T2/b/ is a

trivial .b; v/–tangle. For (6), the claim is that the trace .Z02;D
0
2/ of this band attachment is a trivial

.c2; v/–disk-tangle. Both of these claims follow from the fact that each band of b is dualized by a bridge
disk for T3; this is essentially [27, Lemma 3.1]. Finally, it only remains to verify that the pieces (1)–(7)
intersect in the desired way. This is straightforward to check, as well.

Remark 3.13 Care has been taken to track the orientations throughout this section so that the orientations
of the pieces of the bridge trisection produced in Proposition 3.12 agree with the orientation conventions
given in Section 2.9. For example, the union H1[†H3 appearing in the bridge-braided band presentation
set-up of Definition 3.4 gets identified with a portion of B4f2g in the proof of Proposition 3.12, where it
is oriented as the boundary of B4Œ0; 2�. This agrees with the convention that @Z1 DH3[†H1[Y3, so
@.Z2[Z3/D Y1[H1[†H3[Y2. See Figure 12.

Proposition 3.14 If F admits a .b; cI v/–bridge trisection , then FD F. Ǒ;U;b/ for some .b; cI v/–bridge-
braided band presentation . Ǒ; U; b/.

Proof Suppose F is in bridge position with respect to T0. Consider the link L3 D ˇ3[T3[T1 D @D3.
Let L denote the vertical components of L3 n Int.ˇ3/DT3[x T1, and let U denote the flat components.
Then we have @D3 D L[ ˇ3 [U ; in particular, L is parallel to ˇ3 (as oriented tangles) through the
vertical disks of D3. Let L be the closed one-manifold given by

ˇ1[ˇ2[L:

By the above reasoning, L is boundary parallel to the boundary braid ˇ1 [ˇ2 [ˇ3 D Ǒ D @F via the
vertical disks of D3.

Let Y DY1[H1[H3[Y2 and note that Y has the structure of a standard Heegaard-double decomposition
.H1;H3; Y1[Y2/ on S3 D @.Z1[Z2/ and is oriented as the boundary of Z1[Z2, which induces the
opposite orientations on the 3–balls H1 and H3 as does Z3. See Figure 12. It will be with respect to this
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structure that we produce a bridge-braided band presentation for F. Note that L\ .Y1[Y2/ is already a
v–braid, giving condition (1) of the definition of a bridge-braided band presentation. Similarly, conditions
(2) and (3) have been met given the position of L[U with respect to the Heegaard splitting H1[†H3.

Next, we must produce the bands b. This is done in the same way as in [27, Lemma 3.3]. We consider
the bridge splitting .H2;T2/[.†;x/ .H3;T3/, which is standard — ie the union of a perturbed braid
and a bridge splitting of an unlink. Choose shadows T�2 and T�3 on † for these tangles. Note that we
choose shadows only for the flat strands in each tangle, not for the vertical strands. Because the splitting
is standard, we may assume that T�2 [T�3 is a disjoint union of c2 simple closed curves C1; : : : ; Cc2 ,
together with some embedded arcs, in the interior of †. For each closed component Ci , choose a shadow
N��i � .T

�
2 \Ci /. Let

!� D T�2 n

� c2[
iD1

N��i

�
:

In other words, !� consists of the shadow arcs of T�2 , less one arc for each closed component of T�2[T�3 .
Note that j!�j D b� c2.

The arcs of !� will serve as the cores of the bands b as follows. Let bD !� � I , where the interval is in
the vertical direction with respect to the Heegaard splitting H1[†H3. In other words, b is a collection
of rectangles with vertical edges lying on L[U and a horizontal edge in each of H1 and H3 that is
parallel through b to !�. We see that condition (4) is satisfied.

Note that the arcs !� came from chains of arcs in T�2 [T�3 , so each one is adjacent to a shadow arc
in T�3 . This is obvious in the case of the closed components, since each such component must be an
even length chain of shadows alternating between T�2 and T�3 . Similarly, each nonclosed component
consists of alternating shadows. This follows from the fact that these arcs of shadows correspond to
vertical components of L, each of which must have the same number of bridges on each side of †. These
adjacent shadow arcs in T�3 imply that b is dual to a collection of bridge disks for T3, as required by
condition (5).

Finally, let U 0 DLb, which should be thought of as lying in H1[H2[ˇ1. In fact, U 0 DT1[T2[ˇ1,
so it is the standard link Lc1;w in the standard Heegaard-double structure on @Z1. Thus, (6) is satisfied,
and the proof is complete.

The following example illustrates the proof of Proposition 3.14.

Example 3.15 (square knot disk) Figure 13(a) shows a tri-plane diagram for a surface that we will
presently determine to be the standard ribbon disk for the square knot, as described by the band presentation
in Figure 13(g). The first step to identifying the surface is to identify the boundary braid. In the proof of
Proposition 3.14, this was done by considering the union ˇ1[ˇ2[L. Diagrammatically, this union can
be exhibited by the following three part process:
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(c)

L

ˇ2

ˇ1

(d)

(a)

(b)

(e)

(f) (g)

Figure 13: The process of converting the tri-plane diagram (a) into a bridge-braided band pre-
sentation (e) in order to identify the underlying surface, which in this case can be seen to be the
standard ribbon disk for the square knot (g).

(1) Start with the cyclic union T1 [T3 [T3 [T2 [T2 [T1 of the seams of the bridge trisection;
see Figure 13(c).

(2) Discard any components that are not braided; there are no such components in the present example,
though there would be if this process were repeated with the tri-plane diagram in Figure 8(e) — a
worthwhile exercise.

(3) Straighten out (deperturb) near the intersections T3\T2 and T2\T1; see Figure 13(d).

If we continued straightening out near T1[T3, we would obtain a braid presentation for the boundary
link; see Section 4.1 for a discussion relating to this point. Presently, however, it suffices to consider the
1–manifold ˇ1[ˇ2[L shown in Figure 13(d), which we know to be isotopic (via the deperturbing near
T1\T3) to the boundary braid.
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(a)

(b) (c) (d)

Figure 14: Recovering the boundary braid (d) from a tri-plane diagram (a), with bands tracked.
The surface described is the Möbius band bounded by the right-handed trefoil in S3.

Having identified the boundary braid, we must identify a set of bands that will exhibit a bridge-braided
band presentation corresponding to the original bridge trisection. Following the proof of Proposition 3.14,
these bands will come from a subset of the shadows T�2 . To this end, shadows for the tangles T2 and T3

are shown in Figure 13(b). If there are closed components, one shadow of T�2 is discarded from each
such component. In the present example, this step is not necessary; again, consider repeating this exercise
with the tri-plane diagram from Figure 8(e). So, the set !� of the cores of the bands we are looking
for, is precisely the blue shadows of Figure 13(b). In Figure 13(d) these shadows have been thickened
vertically into bands that are framed by the bridge sphere T1\T3. In Figure 13(e), this picture has been
simplified, and the bands have been perturbed into T3. In Figure 13(f), the bridge splitting structure has
been forgotten, and the boundary braid is clearly visible. At this point, we see that one band (light blue)
is a helper band and can be discarded. At last, Figure 13(g), we recover an efficient band presentation for
the surface originally described by the tri-plane diagram of Figure 13(a).

A large family of ribbon disks for the square knot that are pairwise nonisotopic rel-boundary was introduced
in [29]; it would be interesting to have bridge trisections for these disks.

Example 3.16 (2–stranded torus links) Figure 14(a) shows a tri-plane diagram corresponding to a
bridge trisection of the Möbius band bounded in S3 by the .2; 3/–torus knot; see Figure 14(d) for the
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band presentation. However, this example could be generalized by replacing the four half-twists in the
first diagram P1 with n half-twists for any n 2 Z, in which case the surface described would be the
annulus (respectively, the Möbius band) bounded by the .2; n/–torus link when n is even (respectively,
the .2; n/–torus knot when n is odd).

In any event, Figure 14(b)–(d) gives cross-sections of the bridge trisected surface with concentric shells
of B4, as described in Example 4.5 below. In this example, we also track the information about bands
encoded in the tri-plane diagram; cf Figure 13 and Example 3.15. In slight contrast to the square knot
examples, the shadows of T2 are quite simple, so the bands are easy to include. In Figure 14(c), it
becomes apparent that the right band (light blue) is a helper band and can be disregarded.

A shadow diagrammatic analysis of this example is given in Example 5.10.

Theorem 3.17 Let T0 be the standard trisection of B4, and let F� B4 be a neatly embedded surface
with LD @F. Fix an index v braiding Ǒ of L. Suppose F has a handle decomposition with c1 cups , n
bands , and c3 caps. Then , for some b 2N0, F can be isotoped to be in .b; cI v/–bridge trisected position
with respect to T0, such that @FD Ǒ, where c2 D b�n.

Proof By Proposition 3.5, FD F
. Ǒ;U;b/

for some bridge-braided band presentation . Ǒ; U; b/ of type
.b; cI v/. By Proposition 3.12, F admits a bridge trisection of the same type.

3.4 Bridge-braided ribbon surfaces

By construction, a .b; cI v/–bridge-braided ribbon presentation . Ǒ; b/ will have c3 D 0. The next lemma
shows that this fact can be used to systematically decrease the number c1 of components of the unlink U 0,
at the expense of increasing the index v of the braid Ǒ.

Lemma 3.18 If F is the realizing surface for a .b; .c1; c2; 0/I v/–bridge-braided ribbon presentation
. Ǒ; b/ with c1 > 0, then F is the realizing surface for a .b; .c1�1; c2; 0/I vC1/–bridge-braided ribbon
presentation . ǑC; b/, where ǑC is a Markov perturbation of Ǒ. The Markov perturbation can be assumed
to be positive.

Proof Suppose that . Ǒ; b/ is a bridge-braided ribbon presentation with respect to the standard Heegaard
double structure .H1;H3; Y3/ on S3, as in Definition 3.4. We orient Ǒ so that it winds counterclockwise
about the braid axis B D @†. This induces an orientation on the arcs of LD T1[x T3, which induces
an orientation on the bridge points x: a bridge point x 2 x is positive if an oriented arc of L passes from
H1 to H3 through x. Since c3 D 0, every point of x can be oriented in this way.

Recall from the proof of Proposition 3.12 that we can perturb the bands of b, which originally intersect †
in their core arcs, into the interior of H3 so that they may be thought of as bands for the tangle T3. Let
T2 D .T3/b, and let L0 D T1[x T2.
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Figure 15: Modifying a bridge trisection of a ribbon surface to remove a flat patch at the expense
of Markov-stabilizing the boundary braid.

Utilizing the assumption that c1 > 0, let J be a flat component of U 0. Let x be a positive point of L\†
so that x 2 J . See Figure 15, left. Such a point exists, since J contains a flat arc of T1, and the endpoints
of this arc have differing signs. We perturb † at x to produce a new bridge splitting T01[x0T

0
3, which we

consider as T0i D Ti [ �i , where �i is the new flat strand near x. If �i was a bridge system for Ti , then
�0i D�i [Di is a bridge system for T0i , where Di is a bridge semidisk for �i . See Figure 15, middle,
and note that there may or may not be a band attached to T3 near x.

Now, we have that x0 D �1\ �3 is negative. Let x0i D @�i nx denote the positive points introduced by this
perturbation. Let �D �1[x �3. Note that we can assume there is no band of b incident to either �i . The
bridge splitting T01[x T03 is perturbed at x0. We will swap this perturbation for a Markov perturbation
by dragging the point x0 towards and through the boundary B of †. Let ! be an embedded arc in †
connecting x0 to B such that Int.!/ \ x D ∅. Since ! is dualized by each of the two small bridge
semidisks Di ��0i , we can assume that Int.!/\�0i D∅.

Change . Ǒ; b/ by an ambient isotopy that is supported in a tubular neighborhood of ! and that pushes x0

along ! towards and past B . This is a finger move of � along !. (Note that the surface F is locally a
product of � near x0.) Let �0 denote the end result of this finger move; ie a portion of � has been pushed
out of H1 [† H3 into Y3. Let � 00i D �

0 \Hi . Let � 0013 D �
0 \ Y3. Let D00i denote the bridge triangle

resulting from applying the ambient isotopy to Di . We see immediately that � 00i are vertical, and that
�00i D .�

0
i nDi /[D

00
i is a bridge system for T00i D .T

0
i n �i /[ �

00
i . It’s also clear that � 0013 is a vertical

strand in Y3. We make the following observations, with an eye towards Definition 3.4:

(1) ˇ003 D ˇ3[ �
00
13 is a .vC1/–braid.

(2) L00 D T001 [x00 T
00
3 is a perturbing of a .vC1/–braid.

(3) We still have c1 D 0; the T00i are .b�v�1/–perturbings of .vC1/–braids.

(4) The bands b can still be isotoped to intersect † in their cores.
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(5) The bride disks �003 dualize the bands b.

(6) . Ǒ/b has one fewer flat component.

Thus, we have verified that conditions (1)–(6) of Definition 3.4 are still satisfied, with the only relevant
differences being that each tangle has an additional vertical strand and the flat component J of U 0 is now
vertical. It follows that we have produced a bridge-banded ribbon presentation . ǑC; b/ for F, where ǑC

is a Markov perturbation of Ǒ.

Remark 3.19 The hypothesis that c3 D 0 in the above lemma was necessary to ensure that the process
described in the proof resulted in a Markov perturbation of the boundary. If c3 > 0, then it is possible
that each point x 2 x\ J lies on a (flat) component of U . If the proof were carried out in this case, it
would have the effect of changing the link type from L to the split union of L with an unknot on the
boundary of F. This is reflective of the general fact that a nonribbon F with boundary L can be thought
of as a ribbon surface for the split union of L with an unlink.

Recall that c is an ordered partition of type .c; 3/ for some c 2N0; in particular, c D c1C c2C c3.

Lemma 3.20 If F is the realizing surface for a .b; cI v/–bridge-braided band presentation . Ǒ; U; b/ with
ci D 0 for some i , then F is the realizing surface for a .b; 0I vCc/–bridge-braided ribbon presentation
. ǑCC; b00/, where ǑCC is a Markov perturbation of Ǒ.

Proof Suppose F is the realizing surface for a .b; cI v/–bridge-braided band presentation . Ǒ; U; b/ with
ci D 0 for some i . By Proposition 3.12, F admits a .b; .c1; c2; c3/I v/–bridge trisection filling Ǒ. By
relabeling the pieces, we can assume that c3 D 0. By Proposition 3.14, this gives us a .b; .c1; c2; 0/I v/–
bridge-braided ribbon presentation . Ǒ; b0/. Note that while the braid type Ǒ hasn’t changed, the bands b
may have, and the intersection of Ǒ with the pieces of the standard Heegaard-double decomposition may
have as well. Nonetheless, we can apply Lemma 3.18 iteratively to decrease c1 to zero, at the cost of
Markov-perturbing Ǒ into a .vCc1/–braid ǑC.

Passing back to a .b; .0; c2; 0/I vCc1/–bridge trisection filling ǑC via Proposition 3.12, relabeling, and
applying Proposition 3.14, we extract a .b; .c2; 0; 0/I vCc1/–bridge-braided ribbon presentation . ǑC; b00/.
Again, the bands and the precise bridge splitting may have changed. However, a second application of
Lemma 3.18 allows us to decrease c2 to zero, at the cost of Markov perturbing ǑC into a .vCc1Cc2/–
braid ǑCC. Note that we have Markov perturbed a total of c D c1C c2 times.

Theorem 3.21 Let T0 be the standard trisection of B4, and let F� B4 be a neatly embedded surface
with LD @F. Let Ǒ be an index v braiding of L. Then the following are equivalent :

(1) F is ribbon.

(2) F admits a .b; cI v/–bridge trisection filling Ǒ with ci D 0 for some i .

(3) F admits a .b; 0I vCc/–bridge trisection filling a Markov perturbation ǑC of Ǒ.
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Proof Assume (1). Since F is ribbon, it admits a .b; .c1; c2; 0/I v/–bridge-braided ribbon presentation
. Ǒ; b/, by Proposition 3.5. By Proposition 3.12, this can be turned into a .b; .c1; c2; 0/I v/–bridge trisection
filling Ǒ, which implies (2).

Assume (2). The bridge trisection filling Ǒ with ci D 0 for some i gives a bridge-braided ribbon
presentation . Ǒ; b0/ with ci D 0 for the same i . By Lemma 3.20, there is a .b; 0I vCc/–bridge-braided
ribbon presentation . ǑCC; b00/ for F, where ǑCC is a Markov perturbation of Ǒ. By Proposition 3.12,
this gives a .b; 0I vCc/–bridge trisection of F filling ǑCC. This implies (3), where ǑCC is denoted
by ǑC for simplicity.

Assume (3). The .b; 0I vCc/–bridge trisection filling ǑC gives rise to a bridge-braided ribbon presentation
. ǑC; b00/ of the same type, by Proposition 3.14, such that FDF

. ǑC;b00/
. However, a band presentation of

a surface is precisely a handle-decomposition of the surface with respect to the standard Morse function
on B4. It follows that F can be built without caps; hence, F is ribbon, and (1) is implied.

Note for completeness that (2) can be seen to imply (1) by the argument immediately above, and that (3)
implies (2) trivially.

4 Tri-plane diagrams

A significant feature of the theory of trisections (broadly construed) is that it gives rise to new diagrammatic
representations for four-dimensional objects (manifolds and knotted surfaces therein). In this section, we
describe the diagrammatic theory for bridge trisections of surfaces in the four-ball. Recall the notational
set-up of Section 3.1.

Let .H;T/ be a tangle with H ŠB3. Let E �H be a neatly embedded disk with @T� @E. By choosing
a generic projection of H onto E, we can represent .H;T/ by a tangle diagram. In the case that H ŠB3,
the lensed cobordism structure on .H;T/ discussed in Section 2.3 can be thought of as inducing the
hemispherical decomposition of @H Š S2. So, we refer to @CH and @�H as the southern and northern
boundaries. This induces a decomposition of @E into a northern arc and a southern arc. See Figure 16
for examples of .1; 2/–tangle diagrams.

Definition 4.1 A .b; cI v/–tri-plane diagram is a triple P D .P1;P2;P3/ such that Pi is a .b; v/–tangle
diagram and the union Pi [Pi is a tangle diagram for a split union of a v–braid with a ci–component
unlink. (Note that Pi is the diagram Pi with crossing information reversed.) The southern arcs (and the
2bC v points x that they contain) are assumed to be identified. We denote the v points contained in the
northern arc of Pi by yi ; the three northern arcs are not identified.

A tri-plane diagram describes a bridge trisected surface in the following way. Let .Hi ;Ti / be tangles
corresponding to the tangle diagrams Pi . Then the triple of tangle diagrams can be thought of as describing
the union

.H1;T1/[ .H2;T2/[ .H3;T3/
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of these tangles, where .Hi ;Ti /\ .HiC1;Ti /D .†;x/. This explains the identification of the southern
portions of the tangle diagrams in the definition. Now, by definition, each union .Hi ;Ti /[.HiC1;TiC1/
is the split union of a braid with an unlink of ci components inside a 3–ball. By Lemma 2.15, there is
a unique way to glom on to this 3–ball a .ci ; v/–disk-tangle .Zi ;Di /, where Zi Š B4. Therefore, the
union

.Z1;D1/[ .Z2;D2/[ .Z3;D3/

is a bridge trisected surface in B4. The following is a corollary to Theorem 3.17, which showed that
surface in B4 admit bridge trisections.

Corollary 4.2 Every neatly embedded surface in B4 can be described by a tri-plane diagram.

Proof By Theorem 3.17, every such surface in B4 can be put in bridge position with respect to the
genus zero trisection T0. The corresponding bridge trisection is determined by its spine

.H1;T1/[ .H2;T2/[ .H3;T3/:

This spine can be represented by a tri-plane diagram by choosing a triple of disks Ei � Hi whose
boundaries agree and choosing generic projections Hi�Ei that induce tangle diagrams for the Ti .

The union Ei [E2 [E3 of disks that appeared in the proof above is called a tri-plane for the bridge
trisection. We consider bridge trisections up to ambient isotopy, and an ambient isotopy of a bridge
trisection can change the induced tri-plane diagram. These changes can manifest in following three ways,
which we collectively call tri-plane moves. See Figure 16 for an illustration of each move.

An interior Reidemeister move on P is a Reidemeister move that is applied to the interior of one of the
tangle diagrams Pi . Interior Reidemeister moves correspond to ambient isotopies of the surface that are
supported away from @B4 and away from the core surface †. They also reflect the inherent indeterminacy
of choosing a tangle diagram to represent a given tangle.

A core (braid) transposition is performed as follows: Pick a pair of adjacent bridge points x; x0 2 x,
recalling that x and x0 are (identified) points in the southern arc of each of the three tangles diagram.
Apply a braid transposition to all three tangle diagrams that exchanges x and x0. This introduces a crossing
in each tangle diagram; the introduced crossing should have the same sign in each diagram. Bridge sphere
braiding corresponds to ambient isotopies of the surface that are supported in a neighborhood of the core
surface †. Note that this gives an action of the braid group M.D2;x/ on the set of tri-plane diagrams.

A page (braid) transposition is performed as follows: Pick a pair of adjacent points y; y0 2 yi in the
northern arc of one of the tangle diagrams. Apply a braid transposition to this tangle diagram that exchanges
y and y0. In contrast to a core transposition, the braid transposition is only applied simultaneously to one
diagram. Page transpositions correspond to ambient isotopies of the surface that are supported near @B4.

Interior Reidemeister moves and core transpositions featured in the theory of bridge trisections of closed
surfaces in the four-sphere described in [27]. See, in particular, [27, Lemma 7.4] for more details.
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Figure 16: Top: a tri-plane diagram. Middle: the result of applying to the top a bridge sphere
braid transposition at the third and fourth bridge points. Bottom: the result of applying to the
middle a page braid transposition in the first tangle and a Reidemeister move in the third tangle.

Proposition 4.3 Suppose P and P 0 are tri-plane diagrams corresponding to isotopic bridge trisections.
Then P and P 0 can be related by a finite sequence tri-plane moves.

Proof As in the proof of [27, Lemma 7.4], it suffices to assume that we have a fixed EDE1[E2[E3

within HDH1[H2[H3 and that we have two sets of seams TDT1[T2[T3 and T0DT01[T02[T03
determining a pair of isotopic spines in B4.

Note that the southern endpoints of the Ti and the T0i are both contained in the southern arc @Ei\Int.B4/,
while all the northern endpoints are contained in the northern arc @Ei \ @B4. Without loss of generality,
we assume the northern (resp. southern) endpoints of Ti agree with the northern (resp. southern) endpoints
of T0i for each i .

As in the proof of [27, Lemma 7.4], if ft is an ambient isotopy of H such that f0 is the identity and
f1.T/D T0, then ft induces a loop in the configuration space of the bridge points x D T\†. In this
setting, ft also induces, for each i 2 Z3, a loop in the configuration space of the points y 2 Ti \ @�Hi

in the disk @�Hi .

We write ft as f †t [f
1
t [f

2
t [f

3
t [f

0
t , where f †t agrees with ft in a small neighborhood of † and is

the identity outside of a slightly larger neighborhood of †; f it agrees with ft in a small neighborhood
of @�Hi and is the identity outside a slightly larger neighborhood of @�Hi ; and f 0t is supported away
from the small neighborhoods of † and @�Hi . Since these can be isolated to a single region near @�Hi
for some i , they are independent of each other.
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Since f †t corresponds to a braiding of the bridge points x, there are tri-plane diagrams P and P†

corresponding to T and T† D f †1 .T/ that are related by a sequence of core transpositions. Continuing,
there is a tri-plane diagram P 00 corresponding to T00 D .f 11 [f

2
1 [f

3
1 /.T

†/ that is related to P† by a
sequence of interior Reidemeister moves. Finally, the tri-plane diagram P 0 corresponds to f 01.T

00/ and
is related to P 00 by a sequence of page transpositions. In total, P and P 0 are related by a sequence of
tri-plane moves, as desired.

4.1 Recovering the boundary braid from a tri-plane diagram

We now describe how to recover the boundary braid .S3;L/ D @.B4;F/ from the data of a tri-plane
diagram for .B4;F/. This process is illustrated in the example of the Seifert surface for the figure-8
knot in Figure 17; see Figure 8 for more details regarding this example. See also Figure 13 for another
example.

Let P D .P1;P2;P3/ be a tri-plane diagram for a surface .B4;F/. Let E D .E1; E2; E3/ denote the
underlying tri-plane. Let @�Ei and @CEi denote the northern and southern boundary arcs of these disks,
respectively, and let S0i D @�Ei \ @CEi their 0–sphere intersections. Recall that, diagrammatically, the
arcs @CEi correspond to the core surface † of the trisection, which is a disk, and the 0–spheres S0i
correspond to the unknot B D @†, which we think of as the binding of an open-book decomposition of S3

with three disk pages given by the Pi . Recall that † is isotopic rel-@ to each of the Pi via the arms Hi .

With this in mind, consider the planar link diagram ıyP obtained as follows. First, form the cyclic union

P3[P3[P2[P2[P1[P1;

where PiC1 and Pi are identified along their southern boundaries, and Pi and Pi are identified along
their northern boundaries. Note that the cyclic ordering here is the opposite of what one might expect.
This important subtlety is explained in the proof of Proposition 4.4 below. The corresponding union of
the disks of the tri-plane

E3[E3[E2[E2[E1[E1

is topologically a two-sphere S2. In particular, the 0–spheres S0i have all been identified with a single
0–sphere S0, which we think of as poles of the two-sphere. We represent this two-sphere in the plane by
cutting open along @�E1 and embedding the resulting bigon so that theEi andEi lie in the yz–plane with
E3\E2 on the y–axis. See Figure 17(b). In this way, the diagram ıyP encodes a link in a three-sphere.
The unknotted binding B in S3 can be thought of as the unit circle in the xy–plane. (The positive x–axis
points out of the page.) Each longitudinal arc on S2, including the northern and southern arcs of each Ei ,
corresponds to a distinct page, given six in all. However, the ambient three-sphere in which this link lives
is not S3 D @B4, as the proof of Proposition 4.4 will make clear.

Note that the diagram ıyP will have only two types of connected components:

(1) components that meet each disk Ei and are homotopically essential in S2 n �.S0/, and

(2) components that are null-homotopic and are contained in some pair EiC1[Ei .
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Components of type (1) will correspond to the boundary link .S3;L/, while components of the second
kind will correspond to split unknots. The components of type (1) are not braided in the sense of being
everywhere transverse to the longitudinal arcs of S2 but, as we shall justify below, they become braided
after a sequence of Reidemeister moves and isotopies that are supported away from S0. Define ıP to be
the result of discarding all components of type (2) from ıyP , then straightening out the arcs of type (1)
until they give a braid diagram in the sense that they are everywhere transverse to the longitudinal arcs
connecting the poles S0 � S2.

Proposition 4.4 Suppose P D .P1;P2;P3/ is a tri-plane diagram for .B4;F/. Then the diagram ıP is a
braid diagram for the boundary link .S3;L/D @.B4;F/.

Proof Consider the spine H1 [H2 [H3 of the genus zero trisection T0 of B4. Let N be a small
lensed neighborhood of this spine inside B4. Here, the qualifier “lensed” has the effect that N \ @B4 is
unchanged,

N \ @B4 D P1 tP2 tP3:

We can decompose @N into six pieces,

@N DHC1 [H
�
3 [H

C
3 [H

�
2 [H

C
2 [H

�
1 ;

where the pieces intersect cyclically in the following manner: the HCiC1\H
�
i D†

�
i are the three obvious

push-offs of† into @N , andH�i \H
C
i DPi . BecauseBD@†D@†i D@Pi , it follows that @N is a closed

3–manifold. In fact, there is an obvious “radial” diffeomorphism N ! B4 that pushes HCiC1[H
�
i onto

Yi in an orientation-preserving way. To unpack this last statement, recall that Zi induces an orientation
on its boundary such that

@Zi DHi [†HiC1[Yi :

In @N , we have corresponding pieces HCiC1[†�i H
C
i , but the correspondences

Hi $H�i ; HiC1$HCiC1; †$†�i

all reverse orientation. This is because the outward normal to N points into Zi . Figure 36, left, provides
a potentially helpful schematic.

Bringing the surface F into the picture, we have the identification

@N \FD .H1;T1/[ .H3;T3/[ .H3;T3/[ .H2;T2/[ .H2;T2/[ .H1;T1/:

If E D E1 [E2 [E3 was our original tri-plane, then there are obvious disks E˙i � H
˙
i onto which

@N \F can be projected. As discussed in the text preceding this proposition, the union of the E˙i is a
two-sphere, which can be identified with the plane, as discussed. Adopting this identification, we find
that the induced diagram ıP is a planar diagram for @N \F.

Recall that, by definition, PiC1[Pi is a diagram for (the mirror of) a split union of a braid with an unlink.
Thus, the total union ıP is (currently) a diagram for a split union of a closed braid and three unlinks.
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(a)

(b) (c) (d) (e)

Figure 17: Recovering the boundary braid (e) from a tri-plane diagram (a). Compare with Figure 8.

Note that although the diagram describes a closed (geometric) braid, the diagram may not be braided.
See Figure 17(b).

It remains to observe how this diagram changes as the neighborhood N is enlarged until it fills up all
of B4 and @N coincides with S3 D @B4. Two things happen in the course of this. First, the unlinks will
shrink to points and disappear as the neighborhood N is enlarged to encompass the flat patches of the
trivial disk-tangles that cap them off. Second, the portions of the diagram corresponding to the closed
braid will “straighten out”, meaning they will deperturb until the diagram is an honest braid diagram.
Finally, the neighborhood N will coincide with all of B4, the union of the E˙i will live in S3, and the
diagram ıP will correspond to a braid diagram for LD @F, as desired.

Example 4.5 Figure 17(b) shows the diagram ıyP corresponding to the tri-plane diagram in Figure 17(a).
(This tri-plane diagram corresponds to the Seifert surface for the figure-8 knot; see Figure 8 for more
details.) The two black dots represent the braid axis, and each arc connecting the these dots corresponds
to a disk page of the braid axis.

As described in the proof of Proposition 4.4, the sequence in Figure 17(b)–(e) can be thought of as
describing the cross-section of the bridge trisected surface with concentric shells in B4, starting with the
boundary of a regular neighborhood of the spine of the trisection of B4 and terminating in the boundary
of B4. Moving from (b) to (c) in Figure 17, the cross-section changes only by isotopy, revealing clearly
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the presence of two unknotted, type (2) components. In the transition to Figure 17(d), these components
cap off and disappear. In the transition to Figure 17(e), the flat structure is forgotten as we deperturb. The
end result is the boundary of the surface, described by a braid.

For more examples, see Figures 13 and 14, which were discussed in Examples 3.15 and 3.16, respectively.

5 Shadow diagrams

The previous section developed a diagrammatic representation and calculus for bridge trisections in B4

that made use of the fact that B4 admits a genus zero trisection. In this section, we switch to an analysis
of diagrams for bridge trisection of surfaces in general four-manifolds. Here, the tri-plane-diagrammatic
approach is not possible, so we work instead with objects called shadow diagrams.

Consider a .g; bIp;f ; v/–tangle .H;T/. Let � be a bridge disk system for T. We now fix some
necessary notation.

� Let †D @CH .

� Let ˛ �† be a defining set of curves for H , disjoint from �.

� Let a denote a collection of neatly embedded arcs, disjoint from � and ˛ such that surgering †
along ˛ and a results in a disjoint union of disks. We assume jaj is minimized.

� Let T� denote the shadows of the flat strands of T — ie those coming from the bridge semidisks.

� Let A� denote the shadows for the vertical strands — ie those coming from the bridge triangles.

� Let x D T\†.

The tuple .†; ˛;T�;x/ is called a tangle shadow for the pair .H;T/. The tuple .†; ˛; a;T�;A�;x/ is
called an augmented tangle shadow for the pair .H;T/. We will say that an augmented tangle shadow is
an augmenting of the underlying tangle shadow. Figure 18 shows a pair of augmented tangle shadows: one
is found by considering the red, pink, and orange arcs and curves, while the other is found by considering
the dark blue, light blue, and orange arcs and curves. Note that we consider (augmented) tangle shadows
up to isotopy rel-@.

Lemma 5.1 A tangle shadow determines a tangle .H;T/ up to an isotopy fixing †D @CH.

Note that a tangle shadow cannot detect braiding of .H;T/ supported near .P;y/D@�.H;T/; augmenting
the shadow diagram does not solve this problem.

Proof Given a shadow diagram .†; ˛;T�;x/, let H be the lensed cobordism obtained from the spread
H � Œ0; 1� by attaching 3–dimensional 2–handles along the curves ˛ � f1g. Let T�H be obtained by
perturbing the interiors of the shadows T� � f0g into the interior of H to obtain the flat strands of T and
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Figure 18: A pair of (augmented) tangle shadows that, taken together, give a standard (augmented)
splitting shadow. The relevant parameters for each handlebody are gD 6, nD 2,mD 3, pD .0; 1/,
and f D .2; 1/. The relevant parameters for each tangle are b D 16 and vD .0; 2; 1/. The arcs
and curves of the ˛i and T�i for i D 1; 2 are shown in red and blue, respectively, while the arcs of
the Ai are shown in pink and light blue, respectively, and the arcs of a1 D a2 are shown in orange.

extending the marked points x to vertical arcs x � Œ0; 1� using a product structure of the spread to obtain
the vertical strands of T. Such a product structure is unique up to diffeomorphism of .P;y/D @�.H;T/,
so the resulting tangle is determined up to braiding near .P;y/; any two tangles differing thusly are
isotopic via an isotopy supported away from †.

As a matter of convention, we have assumed without loss of generality that the curves and arcs of
˛[a[T�[A� are all pairwise disjoint; it is not strictly necessary, for example, to assume ˛\T� D∅,
but this can always be achieved. Given a tangle shadow .†; ˛;T�;x/, we recall two standard moves:
Let ˛1 and ˛2 be two curves in ˛, and let ! be a embedded arc in † connecting ˛1 to ˛2 such that
Int.!/ \ .˛ [ T� [ x/ D ∅. Then N D �.˛1 [ ! [ ˛2/ is a pair of pants. Let ˛01 be the boundary
component of N not parallel to ˛1 or ˛2. Then ˛0 D ˛ n f˛1g [ f˛01g is a new defining set of curves
for H . We say that ˛0 is obtained from ˛ by a curve slide of ˛1 over ˛2 along !. Now let ��1 be an
arc of T� and let ˛2 be a curve in ˛ (resp. the boundary of a regular neighborhood of another arc ��2
of T�). Let ! be a embedded arc in † connecting ��1 to ˛2 such that Int.!/\ .˛[T� [x/D∅. Let
.��1 /

0 denote the arc obtained by banding ��1 to ˛2 using the surface-framed neighborhood of !. Then
.T�/0 D T� n ��1 [ .�

�
1 /
0 is a new collection of shadows for the flat strands of T. We say that .T�/0 is

obtained from T� by an arc slide of ��1 over ˛2 (resp. ��2 / along !. Two shadow diagrams for .H;T/ are
called slide-equivalent if they can be related by a sequence of curve slides and arc slides.

Given an augmented tangle shadow .†; ˛; a;T�;A�;x/, we have further moves. Similar to above, we
have arc slide moves that allow one to slide arcs of a or A� over arcs and curves of ˛ and T�. Note that
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we do not allow an arc or curve of any type to slide over an arc of a nor A�. Two (augmented) shadow
diagrams that are related by a sequence of these two types of moves are called slide-equivalent. The
following is a generalization of a foundational result of Johansson [17], and follows from a standard
argument, which we sketch.

Proposition 5.2 Two tangle shadows for a given tangle are slide-equivalent.

Proof Let .†; ˛;T�;x/ and .†; ˇ;S�;x/ be two shadow diagrams that define the same tangle .H;T/.
Assume these diagrams have been isotoped to intersect minimally. We will show that there is a sequence
of isotopies and slides among the arcs and curves of ˛[T� that result in these arcs and curves agreeing
with those of ˇ[S�.

Choose cut disks D.˛/ and D.ˇ/ in H , so @D.˛/D ˛ and @D.ˇ/D ˇ. Choose bridge disks �.T�/ and
�.S�/, so @�.T�/DT�[x T and @�.S�/DS�[x T. Assume that D.˛/\�.T�/DD.ˇ/\�.S�/D¿,
and D.˛/\TD D.ˇ/\TD¿.

We can assume there are no closed curves of intersection between the collections of disks as follows.
Suppose, for example, that D.˛/\�.S�/ contains a closed curve component. Choose one such component
that is innermost in �.S/, bounding a disk D � �.S�/ with Int.D/\ .D.˛/[�.T�// D ¿. Surger
D.˛/ along D, discarding the sphere component to get a new cut system filling ˛. Repeating, we can
arrange via surgery, that there are no curves of intersection among any of the disks.

It follows that every component of .D.˛/[�.T�//\ .D.ˇ/[�.S�// is an arc that is neatly embedded
in each of the two disk coinciding along it. There are three of cases to consider, based on whether this arc
intersects T at (i) both endpoints, (ii) one endpoint, or (iii) no endpoints.

Choose an arc a of intersection of type (i) that is outermost in �.S�/, so it cobounds and embedded disk
(a bigon) D ��.S�/ with an arc b of T. The arc a also cobounds a disk E in �.T�/ with the arc b. A
slight push-off of D[E is an embedded two-sphere in H n�.D.˛/[�.T�//, which is homeomorphic to
P �I , so it bounds a three-ball. (Here, P D @�H .) Note that this three-ball might intersect D.ˇ/[�.S�/,
but this is of no concern. The three-ball guides and isotopy of E rel-boundary until it agrees with D;
then, E can be isotoped rel-T off D, to remove the arc a of intersection. This reduces the number of arcs
of intersection of type (i), and can be repeated until none remain.

Next, choose an arc a of intersection of type (iii) that is outermost in D.ˇ/[�.S�/, so it cobounds an
embedded disk (a bigon) D � .D.ˇ/[�.S�// with an arc b of ˇ[S�. The arc a also cobounds a disk
E in D.˛/[�.T�/ with some arc b0 � ˛[T�. Let †0 denote the surface obtained from † by surgering
along D.˛/, excluding (if applicable) a disk containing a. We think of †0 as an embedded submanifold
of H that agrees with † away from the curves of surgery, so b[ b0 is a curve in †0. Let H 0 denote the
compression body cobounded by †0 and P , and note that H 0 is either P � I or P � I , plus a 1–handle
whose belt-sphere is a curve of ˛ containing a. In either event, b[ b0 bounds the disk D[E in H 0.
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First, if D[E is boundary parallel (into †0), then there is a disk in †0 bounded by b[b0. We can isotope
b0 across this disk to make it agree with b, then we can push it off b. During this isotopy, we might push
b0 over scars of the surgery and over shadow arcs of T�. In this case, there is a sequence of isotopies and
slides that move b0 to b on †, and the arc a of intersection is removed.

Second, if D[E is not boundary-parallel in H 0, then it must be isotopic to a disk of D.˛/ containing a.
In this case, let b00 be the arc of ˛ such that b0[ b00 is the curve of ˛ containing a. It follows that b00 is
isotopic to b in †0, so we can proceed as above to move b00 and remove the arc a of intersection. In this
way, we can assume that, after some slides and isotopy, there are no arcs of intersection of type (iii).

Arcs of intersection of type (ii) can be removed in a similar way, combining aspects of the first two
arguments. The result is that slides (among the curves and arcs of ˛[T�) can be performed to achieve
that ˛[T� is disjoint from ˇ[S�. Surger † along the curves of ˇ to get †0. In †0, the curves of ˛ all
bound disks, so they can be isotoped to agree with the scars of the ˇ curves. These isotopies might move
˛ curves across each other and over arcs of T�, and these occurrences correspond to slides. Similarly,
in †0 the arcs of T� are isotopic rel-boundary to those of S�, with these isotopies potentially involving
slides over each other and over the scars of the curves of ˛. The end result is that ˛[T� D ˇ[S�, as
desired.

A tuple .†; ˛1; ˛2;T�1;T
�
2;x/ is called a splitting shadow if each tuple .†; ˛i ;T�i ;x/ is a tangle shadow.

A splitting shadow gives rise to a bridge splitting of pair .M;K/ in the same way that a tangle shadow
gives rise to a tangle (see Lemma 5.1); in particular, K is determined only up to braiding supported
near @M . Recall the notion of a standard bridge splitting of .M;K/ from Section 2.6. If a splitting
shadow corresponds to a standard bridge splitting, then the tangle shadows .†; ˛i ;T�i ;x/ are (for i D 1; 2,
respectively) slide-equivalent to tangle shadows .†; ˛0i ; .T

�
i /
0;x/ such that .†; ˛01; ˛

0
2/ is a standard

Heegaard diagram (Section 2.4) and .T�1/
0 [ .T�2/

0 is a neatly embedded collection of polygonal arcs
and curves such that the polygonal curves bound disjointly embedded disks. We call such a splitting
shadow .†; ˛1; ˛2;T

�
1;T

�
2;x/ standard. Figure 18 shows a standard splitting shadow (ignore the pink,

light blue, and orange arcs for now). Two splitting shadows are called slide-equivalent if the two pairs of
corresponding tangle shadows are slide-equivalent.

Definition 5.3 A .g;k; f; cIp;f ; v/–shadow diagram is a tuple .†; ˛1; ˛2; ˛3;T�1;T
�
2;T

�
3;x/, such

that the tuple .†; ˛i ; ˛iC1;T�i ;T
�
iC1;x/ is slide-equivalent to a standard splitting shadow for each i 2Z3.

Two shadow diagrams are called slide-equivalent if the three pairs of corresponding tangle shadows are
slide-equivalent.

Figure 19 shows a shadow diagram corresponding to the bridge trisection of the ribbon disk for the
stevedore knot described in Figure 10. Note the orientation convention: the shadow diagram surface † is
oriented positively as the boundary of each arm of the spine. So, we should rotate each tangle represented

Algebraic & Geometric Topology, Volume 24 (2024)



Filling braided links with trisected surfaces 855

Figure 19: A shadow diagram for the bridge trisection given in Figure 10, which corresponds a
ribbon disk for the stevedore knot.

in Figure 10(f) 90ı backwards into the plane of the page, so that we are viewing † from above in order
to arrive at the correct shadow diagram. This subtlety is the source of some confusion in the literature;
see [18, Remark 2.10] for a related discussion.

Proposition 5.4 A .g;k; f; cIp;f ; v/–shadow diagram determines the spine of a .g;k; f; cIp;f ; v/–
bridge trisection uniquely. Any two shadow diagrams for a fixed bridge trisection are slide-equivalent.

Proof First, note that a shadow diagram determines the spine of a bridge trisection. This follows
immediately from the definition of a shadow diagram, Lemma 5.1, and the definition of a spine; see
Proposition 2.22. The first claim follows from the fact that a bridge trisection is determined up to
diffeomorphism by its spine, by Proposition 2.22. The second claim follows from Proposition 5.2.

Since bridge trisections are determined by their spines (Corollary 2.23), we find that any surface .X;F/
can be described by a shadow diagram.

Corollary 5.5 Let X be a smooth , orientable , compact , connected four-manifold , and let F be a neatly
embedded surface in X . Then .X;F/ can be described by a shadow diagram.

5.1 Recovering the boundary braid from a shadow diagram

We now see how to recover the information about the boundary of a bridge trisected pair .X;F/. By
augmenting a shadow diagram for the bridge trisection, we will recover this information in the form of
an abstract open-book braiding, as defined in Section 2.8. What follows is based on the monodromy
algorithm described by Castro, Gay, and Pinzón-Caicedo in [6] and is closely related to the notion of an
arced relative trisection diagram, as described in [11].

To start, we return our attention to pairs of augmented tangle shadows. A tuple

.†; ˛1; ˛2; a1; a2;T
�
1;T

�
2;A

�
1;A

�
2;x/

is called a standard augmented splitting shadow if

� for each i D 1; 2, .†; ˛i ; ai ;T�i ;A
�
i ;x/ is a augmented tangle shadow;

� .†; ˛1; ˛2;T
�
1;T

�
2;x/ is a standard splitting shadow;
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� the components of T�1 [T�2 [A�1 [A�2 intersecting @† bound disjointly embedded polygonal
disks, each of which intersects @† in a single point; and

� a1 D a2.

See Figure 18 for an example of a standard augmented splitting shadow.

Definition 5.6 (augmented shadow diagram) An augmented .g;k; f; cIp;f ; v/–shadow diagram is
a tuple .†; ˛1; ˛2; ˛3; a1;T�1;T

�
2;T

�
3;A

�
1;x/, such that the tuple .†; ˛1; ˛2; ˛3;T�1;T

�
2;T

�
3;x/ is a

shadow diagram, and .†; ˛1; a1;T�1;A
�
1;x/ is an augmented tangle shadow.

A fully augmented .g;k; f; cIp;f ; v/–shadow diagram is a tuple

.†; ˛1; ˛2; ˛3; a1; a2; a3; a4;T
�
1;T

�
2;T

�
3;A

�
1;A

�
2;A

�
3;A

�
4;x/

such that the tuple .†; ˛1; ˛2; ˛3;T�1;T
�
2;T

�
3;x/ is a shadow diagram, the tuples .†; ˛1; a1;T�1;A

�
1;x/

and .†; ˛1; a4;T�1;A
�
4;x/ are augmented tangle shadows for the same tangle, and:

(1) For i D 1; 2, the diagram

.†; ˛i ; ˛iC1; ai ; aiC1;T
�
i ;T

�
iC1;A

�
i ;A

�
iC1;x/

is slide-equivalent to a standard augmented splitting shadow

.†; ˛0i ; ˛
0
iC1; a

0
i ; a
0
iC1; .T

�
i /
0; .T�iC1/

0; .A�i /
0; .A�iC1/

0;x/:

(2) The diagram
.†; ˛3; ˛1; a3; a4;T

�
3;T

�
1;A

�
3;A

�
4;x/

is slide-equivalent to a standard augmented splitting shadow

.†; ˛003 ; ˛
00
1 ; a
00
3; a
00
4; .T

�
3/
00; .T�1/

00; .A�3/
00; .A�4/

00;x/:

We say that an augmented shadow diagram is an augmenting of the underlying shadow diagram and that
a fully augmented shadow diagram is a full-augmenting of the underlying (augmented) shadow diagram.

We now describe how the data of an augmented shadow diagram allows us to recover the boundary
open-book braiding .Y;L/ of the corresponding bridge trisected pair @.X;F/. First, we note the following
crucial connection between augmented shadow diagrams and fully augmented shadow diagrams.

Proposition 5.7 There is an algorithmic way to complete an augmented shadow diagram to a fully
augmented shadow diagram , which is unique up to slide-equivalence.

Proof Start with an augmented shadow diagram .†; ˛1; ˛2; ˛3; a1;T
�
1;T

�
2;T

�
3;A

�
1;x/. Restrict at-

tention to the splitting shadow .†; ˛1; ˛2;T
�
1;T

�
2;x/. By definition, this diagram is slide-equivalent

to a standard splitting shadow .†; ˛01; ˛
0
2; .T

�
1/
0; .T�2/

0;x/. Choose a sequence of arc and curve slides
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Figure 20: Obtaining A�2 from .A�1/
0.

realizing this equivalence. Whenever a slide involving the arcs and curves of ˛1[T�1 is performed along
an arc ! that intersects a1[A�1 , first slide the offending arcs of a1[A�1 out of the way using the same
slide-arc !. Now the splitting shadow has been standardized, but the arcs of a1 [A�1 may intersect
the curves and arcs of ˛02 [ .T

�
2/
0. Intersections of a1 [A�1 with the curves of ˛02 can be removed via

slides over the curves of ˛01 dual to curves of ˛02. Recall that the closed components of .T�1/[ .T
�
2/
0 are

embedded polygonal curves, while the nonclosed components are embedded polygonal arcs. Moreover,
the arcs of A�1 connect one end of each polygonal arc to @†. Intersections of (the interior of) a1[A�1
with the polygonal curves of .T�1/[ .T

�
2/
0 can be removed via slides over the arcs of .T�1/

0 included in
these polygonal curves. Intersections of (the interior of) a1[A�1 with the polygonal arcs of .T�1/[ .T

�
2/
0

can be removed via slides over the arcs of .T�1/
0 included in these polygonal arc, provided one is careful

to slide towards the end of the polygonal arc that is not attached to A�1 .

Once the described slides have all been carried out, the collections a1 and A�1 of arcs will have been
transformed into new collections, which we denote by a01 and .A�1/

0, respectively. The key fact is that a01
and .A�1/

0 are disjoint (in their interiors) from the arcs and curves of ˛02[ .T
�
2/
0. Set a2 D a01, and note

that a2 has the desired property of being (vacuously) slide-equivalent to a02 D a01. To define A�2 , note
that at this point the union of the polygonal arcs of .T�1/

0[ .T�2/
0 with .A�1/

0 is a collection of embedded
“augmented” polygonal arcs each of which intersects @† in a single point. Let A�2 be the collection of
arcs obtained by pushing each augmented polygonal arc off itself slightly, while preserving its endpoint
that lies in the interior of †. See Figure 20. This can be thought of as sliding the endpoint of .A�1/

0 that
lies in the interior of † along the polygonal arc of .T�1/

0[ .T�2/
0 that it intersects until it reaches the end.

Having carried out these steps, we have that .†; ˛01; ˛
0
2; a
0
1; a2; .T

�
1/
0; .T�2/

0; .A�1/
0;A�2;x/ is a standard

augmented splitting shadow, as desired.

Next, we repeat the process outlined in the first two paragraph, starting this time with the splitting shadow
.†; ˛02; ˛3; .T

�
2/
0;T�3;x/: Standardize the splitting shadow, and include the arcs of a2[A�2 in the slides

when necessary. Perform additional slides to obtain the new collection of arcs a02, and .A�2/
0 whose

interiors are disjoint from all other arcs and curves. Let a3 D a02, and obtain A�3 from .A�2/
0 in the

same way as before, so that the new diagram .†; ˛002 ; ˛
0
3; a
0
2; a3; .T

�
2/
00; .T�3/

0; .A�2/
0;A�3;x/ is a standard

augmented splitting shadow, as desired. Note that .†; ˛002 ; .T
�
2/
00;x/ is slide-equivalent to the original

diagram .†; ˛2;T
�
2;x/.
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Finally, repeat the process once more, starting with the splitting shadow .†; ˛03; ˛
0
1; .T

�
3/
0; .T�1/

0;x/

and performing slides until we can obtain new collections a4 and A�4 from the modified collections a03
and .A�3/

0, as before. At this point, there is a minor wrinkle. We are not finished once we set a4 D a03
and obtain A�4 from .A�3/

0 as before. The reason is that these choices for a4 and A4 might not be
compatible with the original tangle shadow .†; ˛1;T

�
1;x/, rather these choices are compatible with the

slide-equivalent tangle shadow .†; ˛001 ; .T
�
1/
00;x/. To remedy this issue, we perform the slides to change

this latter tangle shadow to the former one, and we carry a4 and A�4 with us along the way, sliding them
over arcs and curves when necessary. In abuse of notation, we denote the results of this transformation a4

and A�4 .

In summary, we have produce the collections of arcs a2, a3, a4, A�2 , A�3 , and A�4 required to fully augment
the original augmented shadow diagram.

To establish uniqueness, suppose .a2; a3; a4;A�2;A
�
3;A

�
4/ and .Na2; Na3; Na4;A�2;A

�
3;A

�
4/ are two sets of

full-augmentation arcs for the given augmented shadow diagram. By surgering † along the corresponding
arcs and curves of ˛i [T�i , we can regard the augmentation arcs as lying on Pi . By definition, there is a
vertical isotopy taking ai [A�i on Pi to aiC1 [A�iC1 on PiC1 through Hi [HiC1. The same is true
for NaiC1[A�iC1, so it follows that aiC1[A�iC1 and NaiC1[A�iC1 can be isotoped to agree on P2 via a
vertical isotopy in HiC1. Working sequentially, it follows that the two collections of full-augmenting arcs
are slide-equivalent, as claimed.

Following Castro, Gay, and Pinzón-Caicedo, we refer to the above algorithm as the monodromy algorithm.
What follows a is generalization of the discussion of [11, Section 3]; see also [6, Section 4; 8, Section 2].

Given an augmented shadow diagram DD .†; ˛1; ˛2; ˛3; a1;T
�
1;T

�
2;T

�
3;A

�
1;x/, let .H;T/ denote the

tangle determined by the tangle shadow .†; ˛1;T
�
1;x/. Let .P;y/D D @�.H;T/. We call .P;y/D the

page of the shadow diagram. Fix an identification Id W .P;y/D! .†p;f ;xp;f /. We use the standard
Morse structure on H to consider a1 and A�1 as lying in P . Consider the arcs aD Id.a1/, which cut the
standard surface into a collection of disks, and the arcs A� D Id.A�1/, which connect the marked points
to the boundary in the standard pair.

Let DC D .†; ˛1; ˛2; ˛3; a1; a2; a3; a4;T
�
1;T

�
2;T

�
3;A

�
1;A

�
2;A

�
3;A

�
4;x/ be a full-augmenting of D.

We consider the arcs a4 and A�4 as lying in P , as well. Consider the arcs a0 D Id.a4/ and the arcs
.A�/0 D Id.A�4/. Let �D be the automorphism of .†p;f ;xp;f / satisfying �D.a[A�/ D a0 [ .A�/0,
noting that �D is unique up to isotopy. We call �D the monodromy of the shadow diagram.

Lemma 5.8 The monodromy �D is determined up to conjugation by the shadow diagram D.

Proof Proposition 5.7 shows that the arcs a4[A�4 are uniquely determined (up to slide-equivalence)
by the choice of augmentation arcs a1[A�1 . This means that the arcs a4[A�4 are determined uniquely
up to isotopy when considered relative to a1[A�1 on .P;y/. Now, the choice of a1[A�1 determines a
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parametrization of .P;y/, and this choice is equivalent to a choice of product structure on .H;T/ near
.P;y/. The important thing is that this product structure is fixed by the choice of a1[A�1 , and a4[A�4
is considered relative to this choice. So, if a different choice of a1 [A�1 were made, there would be
a diffeomorphism of .P;y/ between the two choices, and this diffeomorphism would also relate the
corresponding choices for a4[A�4 . Therefore, the monodromy is determined up to conjugation by D.

The relevance of �D is given in the following proposition; we refer the reader to Section 2.8 for relevant
notation and terminology regarding open-book decompositions and braidings. The following is a general-
ization of [6, Theorem 5] and [11, Lemma 3.1]. Note that up to this point, we have neglected the fact that,
as oriented manifolds, @.Hi ;Ti /D .†;x/[ .Pi ;yi /, while @.Yi ; ˇi /D .Pi ;yi /[ .PiC1;yiC1/. This
fact manifests importantly in the next theorem, where we relate the monodromy of a shadow diagram to
the monodromy of the boundary braiding of a trisection; care is taken with orientations here.

Proposition 5.9 Suppose that D is a shadow diagram for a bridge trisection T of a pair .X;F/. Let
�D denote the monodromy of the shadow diagram , and let .Y�D ;L�D/ denote the model open-book
braiding corresponding to the abstract open-book braiding .†p;f ;xp;f ; �D/. Then there is an orientation-
preserving diffeomorphism

 D W @.X;F/! .Y�D ;L�D/:

Proof Let .H1;T1/[ .H2;T2/[ .H3;T3/ denote the spine of the bridge trisection determined by the
diagram D; recalling Propositions 2.22 and 5.4. Fix an identification  W .P1;y1/! .†p;f ;xp;f / and
regard this latter pair as a page .P;y/� f0g in the model open-book braiding .Y�D ;L�D/, which we
think of as .P;y/��D S

1. Note that .Y�D ;L�D/ is well-defined, because �D is determined by D up to
conjugation.

Choose an augmenting of D by picking arcs a1 and A�1 , which we consider as having been isotoped
vertically to lie in .P1;y1/. Let a�f0g and A� �f0g denote the arcs on .P;y/�f0g that are the images
of a1 and A�1 under  . Apply the monodromy algorithm of Proposition 5.9 to obtain a full-augmenting
of D. Consider the arcs a01, .A�1/

0, and .A�2/
0 coming from the standard augmented splitting diagram for

.M1; K1/D .H1;T1/[.†;x/ .H2;T2/;

noting that, regarded as arcs in .P1;y1/, a1 and a01 are isotopic rel-@, as are A�1 and .A�1/
0. These arcs

determine the identity map Id.M1;K1;†/ described in Lemma 2.12. In particular, this gives a unique
extension of  to a diffeomorphism from the spread .Y1; ˇ1/ in @.X;F/ to the spread .P;y/�

�
2
3
; 1
�

in .Y�D ;L�D/. The strange parametrization of the interval is due to the fact that .P1;y1/ is positively
oriented in @.Y1; ˇ1/, so we match it to the positively oriented end .P;y/� f1g.

Repeating the step described above (i D 1) for i D 2 and i D 3— using intervals
�
1
3
; 2
3

�
and

�
0; 1
3

�
—

allows us to extend  1 to a map  D whose domain is the entire boundary

@.X;F/D .Y1; ˇ1/[ .Y2; ˇ2/[ .Y3; ˇ3/
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and whose codomain is .P;y/� Œ0; 1�, equipped with the identification .x; 1/� .�0.x/; 0/, where �0 must
take the arcs a1[A�1 to the arcs a4[A�4 , in order for  D to be continuous. However, this implies that
�0 is isotopic rel-@ to �D, by definition, and we have that  D respects the original identification space
structure on .Y�D ;L�D/, hence is a diffeomorphism, as desired.

Example 5.10 (Möbius band for the trefoil) Figure 21(a) shows a shadow diagram corresponding to
the bridge trisection of the Möbius band bounded by the right-handed trefoil in S3 that was discussed in
Example 3.16; cf Figure 14. Since this is a .2I 0; 2/–bridge trisection, we have that .P;y/D @�.H1;T1/
is a disk with two distinguished points in its interior. This pair is shown in Figure 21(d), together with a
pair of arcs that connect the points y to @P . Using the Morse function on .H1;T1/, these arcs can be
flowed rel-@ to lie in †, as shown in Figure 21(e). Note that H1 induces opposite orientations on P1
and †, hence the indicated reflection between (c) and (d) of Figure 21. In Figure 21(f), the shadows for
.H2;T2/ have been added, making an splitting shadow for .M1; K1/, which is a geometric 2–braid in
D2 � I , one component of which is twice-perturbed, while the other is not perturbed. In Figure 21(g), a
slide of an arc of A�1 has been performed to arrange that all arcs are disjoint in their interiors, and the
arcs of A�2 have been obtained, as described in the proof of Proposition 5.9; this is an augmented splitting
shadow for .M1; K1/. Figure 21(h) shows a splitting shadow for .M2; K2/, with A�2 remembered, and
since all arcs are disjoint in their interiors, the arcs of A�3 have been derived. Figure 21(i) shows a splitting
shadow for .M3; K3/, with the arcs of A�3 remembered, and Figure 21(j) is obtained from this diagram
by arc slides of arcs from T�3 [A�3 , before A�4 is obtained. In Figure 21(k), the arcs of A�1 and A�4 are
shown with the arcs of T�1 in †. Figure 21(l) shows the result of flowing A�1 [A�4 up to the page .P;y/.

Figure 21(l) allows us to see that the braiding induced on the boundary of the bridge trisection is
diffeomorphic to the abstract open-book .P;y; �31 /, where P is a disk, y is two points, and �1 is a
positive braid transposition of the two points of y . This derivation is a shadow diagram version of the
calculation of this braiding given in Example 3.16 and Figure 14.

Example 5.11 (disk for the trefoil in .CP2/ı) Figure 22(a) shows a shadow diagram corresponding
to a bridge trisection of a disk bounded by the right-handed trefoil in .CP2/ı, the result of removing a
neighborhood of a point from CP2. The two circles represent the foot of a handle for the surface † and
are identified via vertical reflection. If one forgets the bridge points x and all shadow arcs, one obtains a
.1; 0I 0; 1/–trisection diagram for this four-manifold. The bridge trisection itself is type .2; .0; 1; 0/I 2/;
the union of the blue and green shadows includes a bigon. As in the previous example, we have that
.P;y/ D @�.H1;T1/ is a disk with two distinguished points in its interior. This pair is shown in
Figure 22(d), together with a pair of arcs that connect the points y to @P . Using the Morse function on
.H1;T2/, these arcs can be flowed rel-@ to lie in†, as shown in Figure 22(e). In Figure 22(f), the shadows
for .H2;T2/ have been added, giving a splitting shadow for .M1; K1/, which is a geometric 2–braid in
D2�I , one component of which is twice-perturbed with respect to the once-stabilized Heegaard splitting
of this spread. In Figure 22(g), a number of arc slides of T�1 [A�1 have been performed to arrange
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 21: A shadow diagram (a), an augmented shadow diagram (b), and a fully augmented
shadow diagram (c) for a bridge trisection for the Möbius band bounded by the right-handed
trefoil in S3. Diagrams (e)–(k) illustrate the process described by the monodromy algorithm of
Proposition 5.9, used to find the full-augmenting (c) of the augmented shadow diagram (b). We
recover the braiding induced on the boundary of the bridge trisection by studying (l), which shows
the arcs a and a0 in the page .P;Y /.

that all arcs and curves are disjoint in their interiors, save the standard curve pair ˛1 [ ˛2. From this
standard splitting shadow, the arcs of A�2 have been obtained, as described in the proof of Proposition 5.9.
Figure 22(h) shows a splitting shadow for .M2; K2/, with A�2 remembered. Figure 22(i) shows the
standard augmented splitting shadow resulting from a number or arc slides, together with the arcs of A�3 .
Figure 22(j) shows a splitting shadow for .M3; K3/, with the arcs of A�2 remembered, and Figure 22(k)
shows a slide-equivalent standard splitting shadow, with A�ı derived. In Figure 22(l), the arcs of A�1 and
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(a) (b) (c)
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(d) (e) (f)

h

h

h
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h

h

(g) (h) (i)

h

h

h

h

h

h

(j) (k) (l)

(m)

Figure 22: A shadow diagram (a), an augmented shadow diagram (b), and a fully augmented
shadow diagram for a bridge trisection for the disk bounded by the right-handed trefoil in .CP2/ı.
Diagrams (d)–(m) illustrate the process described by the monodromy algorithm of Proposition 5.9,
used to find a full-augmenting of a shadow diagram and recover the braiding induced on the
boundary of the bridge trisection.
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Figure 23: A three-dimensional rendering of the shadow diagram in Figure 22(a) corresponding
to the disk bounded by the right-handed trefoil in .CP2/ı.

A�ı are shown with the arcs and curves of the original tangle shadow for .H1;T1/ in †. Figure 22(m)
shows the result of flowing A�1 [A�ı up to the page .P;y/.

Figure 22(m) allows us to see that the braiding induced on the boundary of the bridge trisection is
diffeomorphic to the abstract open-book .P;y; �31 /, where P is a disk, y is two points, and �1 is a
right-handed braid transposition of the two points of y . This proves that this bridge trisection corresponds
to a surface bounded by the right-handed trefoil in .CP2/ı. From the bridge trisection parameters, we
conclude that the surface is a disk, since it has Euler characteristic one and is connected.

A three-dimensional rendering for this example is given in Figure 23. The ambient 3–manifold is
S3 D @.CP2/ı, equipped with the Heegaard-page structure coming from the compression body H1;0;1.
The right-handed trefoil is in 2–braid position, and perturbed twice with respect to the genus one Heegaard
surface †. (Note that † is oriented as @H1.) The closed curve shown in blue is the belt-sphere for the
2–handle that is attached to a 0–cell B4 to build .CP2/ı. The curve lies on † with surface-framing �1.
This reflects the fact that .CP2/ı can be thought of as being built from S3 � Œ�1; 0� by attaching a
.C1/–framed 2–handle along the corresponding curve in the mirror manifold S3 � f�1g, before capping
off with a 0–handle below. A single band is shown for the boundary knot, but this band is a helper-band in
the sense of Remarks 3.6 and 3.10 and Section 3.3 more generally. In fact, relative to the Morse function
on .CP2/ı, the disk bounded by the trefoil can be (and has been) assumed to have no saddle points, just a
single minimum. However, the Morse function on .CP2/ı coming from the bridge trisection will require
the disk to be built from a pair of vertical disks (since we require a 2–braid on the boundary), and the
helper-band joins these disks together. Compare with the Morse-theoretic proof of Theorem 8.1.
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6 Gluing bridge trisected surfaces and shadow diagrams

In this section, we describe how to glue bridge trisected surfaces along portions of their boundary in a way
that respects the bridge trisection structure. The gluing of trisections was first discussed by Castro [5],
with further development given by Castro and Ozbagci [8] and by the author and Gay [11]. We conclude
this section with some examples of simple gluings of bridge trisected pairs with disconnected boundary, as
well as a more complicated example involving the surfaces bounded by the right-handed trefoil discussed
above. We refer the reader to Section 5 for necessary concepts related to shadow diagrams.

The development below is a generalization of previous developments to the setting of bridge trisections for
four-manifold pairs and is complicated by the fact that we allow the four-manifolds being glued to have
multiple boundary components and for the gluings to involve proper submanifolds of these boundaries. To
account for this, we will allow our gluing maps to be partial diffeomorphisms, which means that they may
be defined on proper subsets of their domain. This subset is called the domain of definition of the map;
the image of the domain of definition is called the range, and may be a proper subset of the codomain.
The domain of definition and range of our partial diffeomorphisms will always be closed submanifolds of
the domain and codomain, respectively.

Let T be a bridge trisection of a pair .X;F/, and let D be a shadow diagram for T . Let .P;y/ D
@�.H1;T1/, and let �D W .P;y/! .P;y/ be the monodromy automorphism determined by D according
to Proposition 5.7. Let  D W @.X;F/! .Y�D ;L�D/ be the diffeomorphism given by Proposition 5.9,
where .Y�D ;L�D/ is the model pair of the abstract open-book .P;y; �D/. We note that both �D and
 D depend on the underlying bridge trisection T , and are determined up to postcomposing with an
automorphism of .P;y/. Thus, we might as well denote these maps by �T and  T ; we will adopt either
decoration, depending on whether we wish to emphasize the shadow diagram or the underlying bridge
trisection.

We work in the generality of bridge trisected pairs with disconnected boundary, so we emphasize the
decomposition

.Y;L/D .Y 1;L1/t � � � t .Y n;Ln/

of .Y;L/D @.X;F/ into connected components of Y ; for any connected component Y j of Y , we may
have Lj disconnected — ie a link. Thus, we have corresponding decomposition of the pairs .P;y/,
.P�T ;y�T /, and .Y�T ;L�T /, and of the maps �T and  T .

Our first result is that bridge trisections that induce diffeomorphic braidings on some portion of their
boundaries can be glued along those boundaries to obtain a new bridge trisection. By a diffeomorphism of
open-book braidings we mean a diffeomorphism of three-manifold pairs that restricts to a diffeomorphism
of pages (hence, commutes with the monodromies).

Algebraic & Geometric Topology, Volume 24 (2024)



Filling braided links with trisected surfaces 865

Proposition 6.1 Let T 0 and T 00 be bridge trisections for pairs .X 0;F0/ and .X 00;F00/. Suppose we have
an orientation-reversing partial diffeomorphism of open-book braidings ‰ W @.X 0;F0/! @.X 00;F00/. Then
the pair .X;F/D .X 0;F0/[‰ .X 00;F00/ inherits a canonical bridge trisection T D T 0[‰ T 00.

Proof Let .Y 0;L0/ and .Y 00;L00/ denote the domain of definition and range of ‰, respectively, noting
that these are closed (possibly proper) submanifolds of @.X 0;F0/ and @.X 00;F00/, respectively.

After potentially changing ‰ by an isotopy through diffeomorphisms of open-book braidings, we can
assume that ‰.P 0i ;y

0
i /D .P

00
i ;y

00
i / for each i 2 Z3. We will verify that gluing the various corresponding

pieces of T 0 and T 00 together according to ‰ results in a collection of pieces giving a bridge trisection
of .X;F/.

Consider the restriction of ‰ to the binding B 0 of the open-book decomposition of .Y 0;L0/, recalling
that B 0 D @.†0;x0/ and B 00 D‰.B 0/D @.†00;x00/. Let .†;x/D .†0;x0/[‰ .†00;x00/, which is simply
the union of two surfaces with marked points and boundary along closed subsets of their respective
boundaries, hence a new surface with marked points and (possibly empty) boundary.

Consider the restriction of ‰ to the pages P 0i for each i 2 Z3, recalling that .P 0i ;y
0
i /D @.H

0
i ;T
0
i / and

.P 00i ;y
00
i /D‰.P

0
i ;y
0
i /D @.H

00
i ;T

00
i /. Let .Hi ;Ti /D .H 0i ;T

0
i /[‰.P 0

i
;y0
i
/
.H 00i ;T

00
i /, noting that

@.Hi ;Ti /D .†;x/[B
�
.@�.H

0
i ;T
0
i / n .P

0
i ;y
0//t .@�.H

00
i ;T

00
i / n .P

00
i ;y

00//
�
:

(A word of caution regarding notation: The fact that we are considering gluings along potentially strict
subsets of the boundaries complicates the exposition notationally. For example, earlier in the paper, we
would have written .P 0i ;y

0
i /D @�.H

0
i ;T
0
i /, but here we regard .P 0i ;y

0
i /� @�.H

0
i ;T
0
i / as the portion of

@�.H
0
i ;T
0
i / lying in the domain of definition.)

For each i 2 Z3, let a0i be a neatly embedded collection of arcs in P 0i ny 0i such that surgery along the
arcs reduces P 0i to a collection of disks with the number of connected components as P 0i . Moreover,
we require that a0i and a0iC1 be isotopic rel-@ in Y 0 nL0 via an isotopy that is monotonic with respect to
the open-book structure. Let a00i D ‰.a

0
i /. For each i 2 Z3, let Ai be an embedded collection of arcs

connecting the points of y 0i to @P 0i , and assume, as before, that A0i and A0iC1 are isotopic via an isotopy
that fixes A0i \ @P

0
i and is monotonic with respect to the open-book-braiding structure; the free endpoints

of A0i will move along L0. Let A00i D‰.A
0
i /.

Using the Morse structure on .H 0i ;T
0
i /, flow the arcs of a0i and A0i down to †0, and denote the results

.a�i /
0 and .A�i /

0, respectively. Let E 0i and T 0i denote the traces of the respective isotopies, noting that the
E 0i are compression disks for the H 0i , and that the T 0i are bridge triangles for the vertical strands y 0i � Œ0; 1�.
Do the same for a00i and A00i to obtain .a�i /

00 and .A�i /
00 on †00, with corresponding traces E 00i and T 00i .

Let D0i and D00i be collections of neatly embedded disks in H 0i and H 00i , respectively, such that surgery
alongD0i andD00i reducesH 0i andH 00i , respectively, to spreads @�.H 0i ;T

0
i /�Œ0; 1� and @�.H 00i ;T

00
i /�Œ0; 1�.
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For each connected component of .P 0i ;y
0/, pick a disk of D0i adjacent to that component in the sense that

one of the two scars resulting from surgery along the chosen disk lies in the corresponding component of
.P 0i ;y

0/� Œ0; 1�. (Equivalently, the chosen disk is the cocore of a 1–handle connecting the component of
.P 0i ;y

0/� Œ0; 1� to another component of the spread obtained by surgery.) Let F 0i �D
0
i denote the chosen

disks. Then, we claim that
Di D .D

0
i nF

0
i /t .E

0
i [‰ E

00
i /tD

00
i

is a collection of compression disks in Hi such that surgery along Di reduces Hi to

.@�.H
0
i / nP

0
i /t .@�.H

00
i / nP

00
i /:

To see that this is the case, note that the result of surgering Hi along Di tF 0i is precisely�
.@�.H

0
i / nP

0
i /� Œ0; 1�

�
t

�G
m0

D2 � Œ0; 1�

�
t
�
.@�.H

00
i / nP

00
i /� Œ0; 1�

�
;

where m0 is the number of connected components of Y 0i , P
0
i , and F 0i . The effect of removing the disks

of F 0i from this collection of compression disk is to attach 1–handles, one for each D2 � Œ0; 1� in the
above decomposition, connecting the m0 copies of D2� Œ0; 1� to the rest of the spread. It follows that Hi
is a compression body with @CHi D† and @�.Hi /D .@�.H 0i / nP

0
i /t .@�.H

00
i / nP

00
i /, as desired.

Moreover, let �0i and �00i be bridge disks for the flat strands of T0i and T00i , respectively. Then,

�i D�
0
i t .T

0
i [‰ T

00
i /t�

00
i

is a collection of bridge semidisks and triangles for the strands of T0i [‰ T00i in Hi . The key thing to note
here is that the bridge triangles T 0i for the vertical strands y 0i � Œ0; 1� glue to the corresponding bridge
triangles T 00i for the vertical strands of y 00i � Œ0; 1� along the identified arcs A0i [‰ A00i to give bridge disks
for the new flat strands .y 0i � Œ0; 1�/[‰ .y

00
i � Œ0; 1�/.

Finally, consider the restriction of ‰ to the spreads .Y 0i ; ˇ
0
i / cobounded by .P 0i ;y

0
i / and .P 0iC1;y

0
iC1/

in .Y 0;L/, recalling that .Y 0i ; ˇ
0
i / D .Z

0
i ;D
0
i /\ @.X

0;F0/, and noting that ‰.Y 0i ; ˇ
0
i / D .Y

00
i ; ˇ

00
i /. Let

.Zi ;Di / D .Z
0
i ;D
0
i /[‰ .Z

00
i ;D

00
i / for each i 2 Z3. We claim that the fact that the .Zi ;Di / are trivial

disk-tangles follows easily from the detailed argument just given that the .Hi ;Ti / are trivial tangles. The
reason is that a trivial disk-tangle .Z;D/ can be naturally viewed as the lensed product .H;T/�Œ0; 1� such
that the decomposition of @.H;T/D .S;x/[@S .P;y/ gives rise to a bridge-braid structure on @.Z;D/.
Precisely, the lensed product .Hg;p;f ;Tb;v/� Œ0; 1� is .Zg;kIp;f ;DcIv/, where k D gCpCf �n and
n is the length of the partition p. The structure on the boundary is that of a symmetric Heegaard double.
Moreover, we have that @�.Z;D/D @�.H;T/� Œ0; 1�, so gluing two trivial disk-tangles along a portion
of their negative boundaries is the same as gluing the corresponding trivial tangles (of which the trivial
disk-tangles are lensed products) along the corresponding portions of their negative boundaries, then
taking the product with the interval. Succinctly, the gluings along portions of the negative boundaries
commute with the taking of the products with the interval. Therefore, the .Zi ;Di / are trivial disk-tangles,
as desired.
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It remains only to verify that .Zi ;Di /\ .Zi�1;Di�1/ D .Hi ;Ti / and .Hi ;Ti /\ .HiC1;TiC1/ D †,
but this is immediate.

Remark 6.2 Proposition 6.1 holds in the case that T 0 D T 00 and ‰ is a (partial) self -gluing! See
Example 6.6 below.

Having established how to glue bridge trisections from the vantage point of bridge trisected pairs, we
now turn our attention to understanding gluings diagrammatically. Suppose that T 0 and T 00 are bridge
trisections of pairs .X 0;F0/ and .X 00;F00/ with augmented shadow diagrams D0 and D00, respectively.
Let f W @.†; a01; .A

�
1/
0/! @.†0; a01; .A

�
1/
0/ be an orientation-reversing partial diffeomorphism. We call

D0 and D00 gluing compatible if there is an orientation-reversing partial diffeomorphism

 f .D
0;D00/ W .P 01;y

0
1/! .P 001 ;y

00
1 /

that extends f and commutes with the monodromies of the diagrams — ie  f .D0;D00/ ı�D0 D �D00 —
where this composition is defined. In this case, we call f a compatible (partial) gluing.

The map  f .D0;D00/ determines an orientation-reversing (partial) diffeomorphism

‡f .D
0;D00/ W .Y�D0 ;L�D0 /! .Y�D00 ;L�D00 /

of abstract open-book braidings. So, we can define a (partial) gluing map

‰f .D
0;D00/ W @.X 0;F0/! @.X 00;F00/

of the bridge trisected pairs by

‰f .D
0;D00/D  �1D00 ı‡f .D

0;D00/ ı D0 :

Again, we are interested in partial boundary-gluings, so we reiterate that the above caveats regarding the
domain and codomain apply to ‰f .D0;D00/. Given this set-up, we can now describe how gluing shadow
diagrams corresponds to gluing bridge trisected four-manifold pairs.

Proposition 6.3 Suppose that T 0 and T 00 are bridge trisections of four-manifold pairs .X 0;F0/ and
.X 00;F00/, respectively , and that the corresponding fully augmented shadow diagrams D0 and D00 admit a
compatible gluing f . Let DDD0[f D00, and let .X;F/D .X 0;F0/[‰f .D0;D00/ .X

00;F00/. Then D is a
fully augmented shadow diagram for the bridge trisection on .X;F/ given in Proposition 6.1, once it is
modified in the following ways:

(1) The arcs of .a4/0 t .A�4/
0 and .a4/00 t .A�4/

00 whose endpoints lie in the domain of definition and
range of f should be deleted.

(2) If @X 00 is disconnected , then , for each component Y 00 of the range of ‰f .D0;D00/ there is a
subcollection of curves of ˛00i , for each i 2Z3, that separate the components of @†00 corresponding
to Y 00 from the other components of @†00. Throw out one curve from the subcollection of curves
corresponding to each connected component of the range of ‰f .D0;D00/.

Algebraic & Geometric Topology, Volume 24 (2024)



868 Jeffrey Meier

(3) If @X 00 is connected but @X 0 is disconnected , then , for each component Y 0 of the domain of
definition of ‰f .D0;D00/ there is a subcollection of curves of ˛0i , for each i 2 Z3, that separate
the components of @†0 corresponding to Y 0 from the other components of @†0. Throw out one
curve from the subcollection of curves corresponding to each connected component of the domain
of definition of ‰f .D0;D00/.

Proof The first modifications required above is a minor issue. If this is not done, then the would-be-
deleted arcs give rise to extra shadows and curves that are redundant in the encoding of the trivial tangle
.H1;T1/. The next two modifications are more serious, and are required to ensure that the resulting
diagram is a shadow diagram. The rationale was made clear in the proof of Proposition 6.1, where this
precise discarding was carried out at the level of compression disks. Note that only one of the final two
modification will need to be made in practice.

The rest of the proof follows from the proof of Proposition 6.1, as applied to the gluing ‰f .D0;D00/.

We conclude this section with some examples illustrating gluings of bridge trisected four-manifold pairs.

Example 6.4 First, we recall the bridge trisected surfaces bounded by the right-handed trefoil discussed in
Examples 5.10 and 5.11. Let D0 denote the fully augmented shadow diagram in Figure 24, top left, which
corresponds to a bridge trisection of the pair .X 0;F0/, where F0 is a disk bounded by the right-handed
trefoil in X 0 D .CP2/ı. Let D00 denote the fully augmented shadow diagram in Figure 24, top right,
which corresponds to the pair .X 00;F00/, where F00 is the Möbius band bounded by the left-handed trefoil
in S3, which we imagine as being perturbed so that its interior lies in X 00 D B4. Note that D00 is the
mirror of the diagram shown in Figure 21(c). Orientations for the boundaries of the diagrams are shown.

These bridge trisections induce open-book braidings on the boundaries of their corresponding manifold
pairs that are orientation-reversing diffeomorphic. Both open-book braidings have disk page and boundary
link in 2–braid position: For D0, the monodromy is three positive half-twists about the two braid points.
This was described in Example 5.11 and Figure 22. However, for D00, the half-twists are negative, since
D00 is the mirror of the diagram discussed in Example 5.10 and Figure 21.

Let f W @D0! @D00 be the orientation-reversing diffeomorphism that matches the endpoints of the arcs
.A�1/

0 with those of .A�1/
00. There is an orientation-reversing diffeomorphism

 f .D
0;D00/ W .P 01;y

0
1/! .P 002 ;y

00
2 /

that extends f ; simply pick the obvious diffeomorphism relating the pair in Figure 22(d) to the mirror of
the pair in Figure 21(d). It follows that is a compatible gluing corresponding to an orientation-reversing
diffeomorphism ‰f .D

0;D00/.

Let .X;F/D .X 0;F0/[‰f .D0;D00/ .X
00;F00/. By Proposition 6.3, the DDD0[f D00 shown in Figure 24,

bottom left, is a shadow diagram for .X;F/. Observe how the arcs .A�4/
0 and .A�4/

00 have been discarded
according with the first modification required by Proposition 6.3. (The second and third modification are
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h

h

h

h

h

h

Figure 24: Top left: a shadow diagram for the disk bounded by the right-handed trefoil in .CP2/ı.
Top right: a shadow diagram for the Möbius band bounded by the right-handed trefoil in B4.
Bottom left: the result of gluing these diagrams via the unique compatible gluing — a shadow
diagram for a projective plane in CP2. The bottom right is obtained from the bottom left by
deperturbing along the indicated shadows; see Section 9.2 for relevant definitions.

not necessary in this example, since @X 0 and @X 00 are connected.) A brief examination reveals that this
diagram can be deperturbed three times, using the indicated shadows. (See Section 9 for details about
perturbation.) Doing so produces the diagram of Figure 24, bottom right.

We have thatX ŠCP2 and FŠRP2, but it is not true that .X;F/Š .CP2;RP2/, where the latter pair is
the projectivization of the standard pair .C3;R3/. The standard projective pair .CP2;RP2/ is depicted in
[28, Figure 2]. One way to distinguish these two pairs is to note that F has normal Euler numberC6, while
RP2 has normal Euler number C2. Moreover, �1.X n �.F//Š Z=2Z, while �1.CP2 n �.RP2//Š 1.
These facts are left as exercises to the reader.

Example 6.5 Consider the shadow diagram D0 shown in Figure 25, top left, which corresponds to a
bridge trisection of the cylinder pair .X 0;F0/D .S3�I; S1�I /. The underlying trisection of S3�I can
be thought of as follows. If one “trisects” S3 into three three-balls, which meet pairwise along disk pages
of the open-book decomposition with unknotted boundary — so the triple intersection of the three-balls is
this binding — then the trisection of S3 � I can be thought of as the product of this “trisection” of S3

with the interval, and the core † is simply the product of the binding with the interval. So, the diagram
D0 can be thought of as a bridge trisection for a copy F of †. To carry this out, the copy F of the annular
core must be perturbed relative the original copy † of the core. We leave it as an exercise to the reader to
verify that D0 describes the cylinder pair, as claimed.
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f

Figure 25: Top left: a shadow diagram for S3 � I . Top right: A copy of this diagram and a copy
of its mirror, with compatible gluing f indicated. Bottom left: the result of the gluing, S3 � I .
The bottom right is obtained from the bottom left by deperturbing along the indicated shadows.

Now, let D00 denote a mirror copy of D0 that corresponds to a second copy of cylinder pair,

.X 00;F00/D .S3 � I; S1 � I /:

Each of the two boundary components of both .X 0;F0/ and .X 00;F00/ have induced open-book braidings
with page a disk with one braid point. Let f W @D0! @D00 be the orientation-reversing partial diffeomor-
phism shown in Figure 25, top right — ie f maps the boundary component S1�f1g of D0 to the boundary
component S1 � f0g of D00. Trivially, f extends to an orientation-reversing partial diffeomorphism
 f .D

0;D00/ W .P 01;y
0
1/! .P 002 ;y

00
2 / between the page pairs corresponding to the boundary components

of the chosen boundary components of D0 and D00. Thus, we have an orientation-reversing partial
diffeomorphism ‰f .D

0;D00/ W @.X 0;F0/! @.X 00;F00/.

Let .X;F/ D .X 0;F0/[‰f .D0;D00/ .X
00;F00/. By Proposition 6.3, the diagram D D D0 [f D00 shown

in Figure 25, bottom left, is a shadow diagram for .X;F/. Note that one curve of each color has been
discarded in accordance with modification (2). As before, the diagram obtained from gluing can be
deperturbed. (This is a common phenomenon when gluing shadow diagrams.) The diagram obtained after
deperturbing (and performing slides), shown in Figure 25, bottom right, is diffeomorphic to the original
diagram D0. Of course, .X;F/Š .S3 � I; S1 � I /.

In this example, modification (1) of Proposition 6.3 is implicit; the arcs a04, .A�4/
0, a004, and .A�4/

00 were
never drawn and were never needed. More interestingly, we see how modification (2) is required. The
curves of D00 have been discarded upon gluing. Had this not been done, there would have been parallel
curves in ˛i for each i 2 Z3. This would imply that Pi D @�Hi would have a two-sphere component,
which is not allowed.

Example 6.6 Finally, we consider two more compatible gluings involving D0. First, let D00 denote a
mirror copy of D0, and let f W @D0 ! @D00 be the compatible gluing shown in Figure 26, top middle.
This compatible gluing is similar to the one explored in Example 6.5, but this time f is not a partial
diffeomorphism. The induced gluing ‰f .D0;D00/ matches the two boundary components of .X;F/ with
the corresponding components of .X 00;F00/. As a result, .X;F/D .X 0;F0/[‰f .D0;D00/ .X

00;F00/ is the
closed four-manifold pair .S3 �S1; S1 �S1/, and the diagram DDD0[f D00 for this pair is shown in
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f

f

Figure 26: Top left: a shadow diagram for S3� I . Top middle: a copy of this diagram and a copy
of its mirror, with compatible gluing f indicated. Top right: the result of the gluing, S3 � S1.
Bottom left: a compatible self-gluing of the diagram. Bottom right: the result of the self gluing,
S3 � S1. The bottom right is obtained from the top right by deperturbing along the indicated
shadows.

Figure 26, top right. As in Example 6.5, the redundant arcs have been suppressed, and the curves ˛00i have
been discarded upon gluing. Also, we can again deperturb, arriving at the diagram of Figure 26, bottom
right.

Now, let f denote the compatible self-gluing shown in Figure 26, bottom left. The induced self-map of
.S3�I; S1�I / is ‰f .D0/ W .S3�f0g; S1�f0g/! .S3�f1g; S1�f1g/. The diagram resulting from the
compatible self-gluing f is the diagram of Figure 26, bottom right, which describes .S3 �S1; S1 �S1/,
as noted before.

7 Classification and examples

In this section, we classify .b; cI v/–bridge trisections in the trivial cases where one or more of the
parameters is sufficiently small. Then, we present families of examples representing more interesting
choices of parameters and pose questions about further possible classification results. To get started, we
discuss the connected sum and boundary connected sum operations, then we introduce some notions of
reducibility for bridge trisections.
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7.1 Connected sum of bridge trisections

Given trisections T 0 and T 00 for four-manifolds X 0 and X 00, it is straightforward to see that there is a
trisection T D T 0 # T 00 describing X 0 #X 00. Let " 2 f0;00 g. All that needs to be done is to choose the
points x" 2 X" that determine the connected sum to lie on the respective cores. Having done so, the
pieces of the trisection T can be described by †D†0 #†00, Hi DH 0i \H

00
i , and Zi DZ0i \Z

00
i . Note that

T is independent of the choice of points made above.

Remark 7.1 The connected sum operation, as described, is a very simple example of a gluing of
trisections, as described in detail in Section 6. Each of T " n �.x"/ is automatically a trisection with one
new boundary component diffeomorphic to S3. If D" is a shadow diagram for T ", then D" n �.x"/ is
a diagram for T " n �.x"/ after a simple modification is made in the case that @X ¤ ∅: in this case, a
curve ı must be added to each of the ˛i that is parallel to the curve @�.x"/ where †0 and †00 were glued
together (this is a separating reducing curve in the sense of Definition 7.6, below).

There is a complication in extending this interpretation to connected sum of bridge trisections with
boundary that was not present in discussions of the connected sum of closed bridge trisections elsewhere
in the literature. The naïve idea is to simply choose the connected sum points x" to be bridge points. This
works for closed bridge trisections, because every bridge point is incident to a flat strand in each of the
three trivial tangles. This is not the case for bridge trisections with boundary. To convince oneself of the
problem, try to form the connect sum of two bridge trisections, each of which is a copy of the bridge
trisection described in Figure 31, top left, which corresponds to the standard positive Möbius band. It is
simply not possible: the removal of an open neighborhood around any bridge point has the effect that one
of the trivial tangles will no longer be trivial, since it will have a strand with no endpoints on †.

One might think that perturbing the bridge trisection (see Section 9.2) would fix the problem by creating a
bridge point that is incident to flat strands in each arm; however, the problem persists due to consideration
of the vertical patches. Since vertical patches are only allowed to be incident to one component of @X ,
we cannot puncture our bridge trisection at a bridge point that is incident to a vertical patch.

The next lemma makes precise when puncturing a bridge trisection at a bridge point produces a new
bridge trisection and indicates how to form the connected sum of bridge trisections.

Lemma 7.2 Let T be a bridge trisection for a pair .X;F/, and let x be a bridge point. Then T n �.x/ is
a bridge trisection for the pair .X n �.x/;F n �.x// if and only if x is incident to a flat patch of Di for
each i 2 Z3.

If DD .†; ˛1; ˛2; ˛3;T
�
1;T

�
2;T

�
3;x/ is a shadow diagram for T , then a shadow diagram for T n �.x/

can be obtained as follows: Let ı D @�.x/ in D. For each arc ��i of T�i that is incident to x, choose a
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ı
x

Figure 27: Left: a shadow diagram for a bridge trisection of .B4;D2/. Right: the diagram
obtained by puncturing at the bridge point x.

neighborhood �.��i /� �.x/ and let ıi D @�.��i /. Let †0 D† n �.x/, ˛0i D ˛i [ ıi , .T
�
i /
0 DT�i n �

�
i , and

x0 D x n fxg. Then there are two cases: If @X D∅, then

DD .†0; ˛1; ˛2; ˛3; .T
�
1/
0; .T�2/

0; .T�3/
0;x0/

is a shadow diagram for T n �.x/. If @X ¤∅, then

DD .†0; ˛01; ˛
0
2; ˛
0
3; .T

�
1/
0; .T�2/

0; .T�3/
0;x0/

is a shadow diagram for T n �.x/.

Proof If x is incident to a flat patch of Di for each i 2 Z3, then it is straightforward to verify that the
pieces of T n �.x/ form a bridge trisection. The main substantive changes are that

(1) the number of components of @X , @†, and @�Hi all increase by one; and

(2) for each i 2 Z3, the flat strand of Ti becomes a vertical strand and the flat patch of Di incident to
x becomes a vertical patch.

Conversely, if x is incident to a vertical patch D � Di for some i 2 Z3, then Di n �.x/ is no longer a
trivial disk-tangle, since D n �.x/ is neither vertical nor flat, as it intersects multiple components of @X .

If @X D∅, then the Hi are handlebodies and the H 0i are compression bodies with @�H 0i ŠD
2. In this

case, the curves ˛i still encode H 0i without modification. If @X ¤ ∅, then @�H 0i Š @�Hi tD
2. In

this case, ı must be added to ˛i in order to encode the fact that the new component of @�H 0i is disjoint
from the original ones. As curves in a defining set, ı and ıi serve the same role, since they are isotopic.
The only reason for pushing ı off ��i is to satisfy our convention that the shadow arcs be disjoint from
the defining set of curves for the handlebody. The shadow arcs ��i are deleted regardless of whether
@X is empty, since these shadows correspond to flat strands that become vertical strands upon removal
of �.x/.

Example 7.3 Consider the shadow diagram D shown in Figure 27, left, which corresponds to a bridge
trisection of the trivial disk in the four-ball. Figure 27, right, shows the diagram corresponding to the
bridge trisection T 0DT n�.x/ for .X 0;F0/D .B4n�.x/;D2n�.x//. Note that this diagram is equivalent
to that of Figures 25, top left, and 26, top left.

In light of this lemma, it is clear that we can obtain a bridge trisection for the connected sum of surfaces
by choosing the connected sum points to be bridge points incident only to flat patches. Though such
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bridge points need not always exist (see the Möbius band example reference above), they can be created
via interior perturbation — at most one in each direction. The punctured trisections T " n �.x"/ can be
canonically glued along the novel boundary components (which are three-sphere-unknot pairs), according
to the techniques of Section 6. Note that in the case that at least one of X 0 and X 00 have boundary, then at
least one of the curves ı0i or the curves ı00i should be discarded upon gluing, as dictated by Propositions 6.1
and 6.3. Compare Example 7.3 to Example 6.5.

So far, we have viewed the connected sum of bridge trisections as a special case of gluing bridge trisections,
and it has been noted that, for this approach to work, we must form the connected sum at bridge points
that are incident to flat patches in each disk-tangle. However, it is possible to work in a slightly more
general way so that the punctured objects need not be bridge trisections themselves, but their union will
be a bridge trisection of the connected sum.

Lemma 7.4 Let T 0 and T 00 be bridge trisections for pairs .X 0;F0/ and .X 00;F00/, respectively , and let
x0 and x00 be bridge points such that , for each i 2 Z3, one of x0 or x00 is incident to a flat patch in T ".
Then the result

T D .T 0 n �.x0//[ .T 00 n �.x00//

obtained by removing open neighborhoods of the x" from the T " and gluing along resulting boundaries so
that the corresponding trisection pieces are matched is a bridge trisection for .X;F/D .X 0;F0/#.X 00;F00/.

Proof LetD"i be the patch of D"i containing x" for each i 2Z3 and each "2f0;00 g. LetDiDD0i[@�.x"/D
00
i .

Then
Di D D0i [@�.y"/ D00i D .D

0
i nD

0
i /t .D

00
i nD

00
i /tDi :

For each i 2 Z3, one of the D"i will be flat, so Di will be flat or vertical, according to whether the other
of the D"i is flat or vertical. In any event, each disk of Di has at most one critical point, and we have a
trivial disk-tangle, since the boundary sum of trivial disk-tangles is a trivial disk-tangle.

A similar argument shows that the arms of T are just the boundary sum of the arms of the T " and that
each strand is vertical or flat, as desired. The details are straightforward to check.

Note that while the parameters g and k are additive under connected sum, the parameters b and c are
.�1/–subadditive (eg b D b0 C b00 � 1). In the case that the .X";F"/ have nonempty boundary, the
boundary parameters p, f , v, and n are all additive, since we are discussing connected sum at an interior
point of the pairs. Unlike the case of the connected sum of two four-manifold trisections, here, the
resulting bridge trisection is highly dependent on the choice of bridge points made above.

7.2 Boundary connected sum of bridge trisections

Now consider the operation of boundary connected sum of four-manifolds. We start with the set-up
as above, but now we choose the summation points to be points y" lying in components K" of the
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bindings @†" for each " 2 f0;00 g. In this case, the pieces of the trisection T D T 0 \T 00 can be described
as †D†0 \†00, Hi DH 0i \H

00
i , Zi DZ0i \Z

00
i , B D B 0 #B 00, Pi D P 0i \ P

00
i , and Yi D Y 0i \ Y

00
i . And in

this case, g, k, and p are additive, while f and n are .�1/–subadditive, and T is highly dependent on
the choice of binding component K" made above.

The situation becomes more complicated when we consider the boundary connected sum of bridge
trisected pairs. The issue here is that F"\@†" D∅, so we cannot choose the y" to lie simultaneously on
†" and on F". Our approach is to first perform the boundary connected sum of the ambient four-manifolds,
as just described, then consider the induced bridge trisection of the split union .X;F0 tF00/ of surface
links. We now describe a modification of this bridge trisection that will produce a bridge trisection of
.X;F0 \F00/.

Suppose that we would like to form the boundary connected sum of .X 0;F0/ with .X 00;F00/ at points
y" 2 @F". Without loss of generality, we can assume that y" 2 F" \P "i ; in relation to the open-book
structure on (the chosen component of) @X", we assume that y" lies on the page P "i . Henceforth, our
model is dependent on the choice of i 2 Z3.

Choose arcs !" connecting the points y" to the chosen binding components K" � B". Let z" denote the
points of !"\K". Form the boundary connected sum of the ambient four-manifolds at the points z", as
described above, so that F0tF00 is in bridge position with respect to T . Note that the arcs !" give rise to
an arc ! in the page of Pi connecting the points y".

Use the height function on Hi to flow ! down to the core †. Let Q represent the square traced out by
this isotopy, and let !� DQ\†. Let N be a regular neighborhood of Q in X . We will change F0 tF00

to F0 \F00 in a way that will produce a bridge trisection for the latter from the bridge trisection of the
former, and this change will be supported inside N . See Figure 28, top left, for a (faithful) schematic of
this set-up. The figures depict the case of i D 1.

Proposition 7.5 A bridge trisection for .X;F/ D .X 0 \ X 00;F0 \F00/ can be obtained from the bridge
trisection of .X;F0tF00/ described above by replacing the local neighborhoodN of Q shown in Figure 28,
top left , with the local neighborhood N 0 shown in Figure 28, top right. The replacement can be seen in
a shadow diagram as the local replacement of the portion of the diagram supported near !� shown in
Figure 28, bottom left , with the portion shown in Figure 28, bottom right.

Proof Near !�, the neighborhood N is precisely the .0I 0; 2/–bridge trisection of two copies of the
trivial disk in B4. To recover all of N , we extend upward along Q. Because ! was lowered to † along a
pair of vertical strands of .Hi ;T0i tT00i /, we see that the entirety of N is still just the 2–bridge trisection
of two copies of the trivial disk. In other words, N is isolating, in a bridge-trisected way, a small disk
from each of the F".

Now, to perform the (ambient) boundary connected sum of the F" at the points y", we must attach a
half-twisted band b connecting these points. (It should be half-twisted because @F0 and @F00 are braided
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!

Q

!�

The neighborhood N . The neighborhood N 0.

!�

Local shadow diagram before. . . . . . and after boundary connected sum.

Figure 28: The trisected local neighborhood in the top left is exchanged for the trisected local
neighborhood in the top right to carry out an ambient boundary connected sum of surface-links.
The local change is depicted with shadow diagrams in the change from the bottom left to the
bottom right. Note that, globally, the pink shadow arcs necessarily correspond to vertical strands
of T1, while the light blue and light green shadow arcs may correspond (globally) to either flat or
vertical strands.

about B; the half-twist will ensure that the result @F0 # @F00 is still braided about B .) We also assume
that the core of b lies in Pi . The change affected by attaching the half-twisted band is localized to the
neighborhood N . Therefore, it suffices to understand how N is changed.

Although we are describing an ambient boundary connected sum of surfaces in a four-manifold X that
may be highly nontrivial, the neighborhoodN is a four-ball, so it makes sense to import the bridge-braided
band presentation technology from Section 3. Figure 29, left, shows a bridge-braided ribbon presentation
for N , together with the half-twisted band b. Figure 29, middle, shows the effect of attaching the band,
together with the dual band; this is a ribbon presentation for the boundary connected sum of the two
disks in N . Figure 29, right, shows a bridge-braided ribbon presentation for this object, which we denote
by N 0. Note that the boundaries of N and N 0 are both 2–braids and are identical, except where they
differ by a half-twist. As stated before, we assume this difference is supported near Pi . (Note that in
the schematic of Figure 28, top right, the half-twist is shown in the spread Yi�1, rather than in P i , due
the reduction in dimension. Similarly, in the frames of Figure 29, left and middle, the band b and the
crossing are similarly illustrated away from Pi .)

Algebraic & Geometric Topology, Volume 24 (2024)



Filling braided links with trisected surfaces 877

Figure 29: Left: a ribbon presentation for N , together with the band b realizing the boundary
connected sum. Middle: a ribbon presentation for N 0, the result of the boundary connected sum.
Right: a bridge-braided ribbon presentation for N 0.

The neighborhood N 0 is the .1I 0; 2/–bridge trisection of the spanning disk for the unknot that induces the
braiding of the unknot as a .2; 1/–curve in the complement of the (unknotted) binding. The corresponding
bridge-braided ribbon presentation has one band, which is a helper band in the sense of Remarks 3.6
and 3.10. This helper band is the dual band to b.

Because @N and @N 0 are identical away from a neighborhood of !, we can cut N out and glue in N 0 to
realize the attaching of b; ie to realize the ambient boundary connected sum.

7.3 Notions of reducibility

We now discuss three notions of reducibility for trisections of pairs that we will show correspond with the
connected sum and boundary connected sum operations discussed above. These properties are distinct
from, but related to, the properties of being stabilized or perturbed, which are discussed in Section 9.

Definition 7.6 Let T be a bridge trisection for a pair .X;F/. Let ı �† n �.x/ be an essential simple
closed curve.

(1) The curve ı is called a reducing curve if, for each i 2 Z3, there exists a disk Ei � Hi n �.Ti /
with @Ei D ı.

(2) The curve ı is called a decomposing curve if, for each i 2 Z3, there exists a disk Ei � Hi
with @Ei D ı and with jEi \Ti j D 1. A decomposing curve is called trivial if it bounds a disk in
† containing a single bridge point.

(3) An embedded three-sphere S � X is a trisected reducing sphere if Zi \ S is a three-ball and
Hi \S is a disk for each i 2 Z3, and †\S is a reducing curve.

(4) An embedded three-sphere-unknot pair .S;K/� .X;F/ is a (nontrivial) trisected decomposing
sphere pair if

.Zi \S;Di \S/Š .B
3; I /
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is a trivial 1–strand tangle in a three-ball for each i 2 Z3, and †\S is a (nontrivial) decomposing
curve.

(5) A trisection is reducible (resp. decomposable) if it admits a reducing curve (resp. a nontrivial
decomposing curve).

Let ��† n �.x/ be an essential, neatly embedded arc.

(6) The arc � is called a reducing arc if, for each i 2 Z3, there exists a neatly embedded arc �i � Pi
and a disk Ei �Hi n �.Ti / with @Ei D �[ �i .

(7) A neatly embedded three-ball B �X nF is a trisected boundary-reducing ball if, for all i 2 Z3,
Zi \B is a three-ball and Hi \B is a disk, and †\B is a reducing arc.

(8) A trisection is boundary-reducible if it admits a reducing arc.

Lemma 7.7 If a trisection T is reducible , decomposable , or boundary-reducible , then T admits ,
respectively, a trisected reducing sphere , a nontrivial trisected decomposing sphere pair , or a trisected
boundary-reducing ball.

Proof What follows is closely based on the proof of Proposition 3.5 from [26], where reducing curves
are assumed (implicitly) to be separating, and some clarification is lacking. Here, we give added detail
and address the latter two conditions, which are novel.

Suppose T is either reducible or decomposable, with reducing or decomposing curve ı bounding disks
Ei in the Hi . Let Ri DEi [ı EiC1 be the given two-sphere in Hi [†HiC1 � @Zi . Recall (Section 2.7)
that Zi is built by attaching 4–dimensional 1–handles the lensed product Yi � Œ0; 1� along Yi � f1g. A
priori, the Ri may not be disjoint from the belt spheres of the 1–handles in Zi ; however, by [22], it can be
arranged via handleslides and isotopies of the 1–handles that Ri is disjoint from the belt spheres. Thus,
we can assume that either (1) Ri is parallel to a belt sphere, or (2) Ri is contained in Yi �f1g. These cases
correspond to whether ı is nonseparating or separating, respectively. In case (1), Ri bounds the cocore of
the 1–handle, which is a three-ball in Zi . In case (2), since Yi is irreducible, Ri bounds a three-ball in Yi
whose interior can be perturbed into Zi . In either case, we get a three-ball Bi in Zi whose boundary is
Ei [ı EiC1, and the union Sı D B1[B2[B3 gives a trisected three-sphere.

In the case that ı is reducing, we are done: Sı is a trisected reducing sphere. In the case that ı is a
decomposing curve, it remains to show that Sı \F is unknotted and Bi \F is a trivial arc; the former
is implied by the latter, which we now show. Note that Bi and Di are both neatly embedded in Zi and
that Di is boundary parallel. Using the boundary parallelism of Di , we can arrange that a component
D of Di intersects Bi if and only if D intersects Ri D @Bi . It follows that there is a unique component
D �Di that intersects Bi . If we isotope D to a disk D� � @Zi , then we find that D�\Ri consists of an
arc and some number of simple close curves. By an innermost curve argument, we may surgery D� to
obtain a new disk D0� such that D0� \Ri consists solely of an embedded arc. Since D0� and D� have
the same boundary, they are isotopic rel-@ in Zi by Proposition 2.13. Reversing this ambient isotopy,
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we can arrange that Bi \DD Bi \D consists of a single arc. Moreover, this arc is trivial, since it is
isotopic to the arc Ri \D� in @Zi , and Ri is a decomposing sphere for either the unknot @D or the
unknotted, vertical strand D\Hi [†HiC1. Either way, Ri cuts off an unknotted arc. Thus, .Sı ; K/ can
be constructed to be a decomposing sphere for the trisection, as desired, where K is the three-fold union
of the trivial arcs Bi \F.

Now suppose that T is boundary-reducible, with reducing arc � and arcs �i such that �[�i bounds a disk
Ei �Hi . Consider the neatly embedded 2–disk Ri DEi [� EiC1 in Hi [†HiC1 � @Zi . Let Bi be the
trace of a small isotopy that perturbs the interior of Ri into Zi . Then the union B� D B1[B2[B3 is a
trisected three-ball. If � is a reducing arc, we are done.

Remark 7.8 (regarding nonseparating curves) Reducing curves are almost always separating in the
following sense. Suppose that ı is a nonseparating reducing curve. Then there is a curve ��† that is
dual to ı. Let ı0 D @�.ı[�/. Then ı0 is a separating reducing curve, unless it is inessential (ie parallel to
a boundary component of † or null-homotopic in †). This only occurs if † is the core of the genus one
trisection for S1 �S3 or for its puncture, .S1 �S3/ı. In any event, the neighborhood �.Sı [ �/, where
Sı is the reducing sphere corresponding to ı as in Lemma 7.7, is diffeomorphic to .S1 �S3/ı.

If ı is a nonseparating decomposing curve with corresponding decomposing pair .Sı ; Kı/, then Kı can
be separating or nonseparating as a curve in F. If Kı is nonseparating, then we can surger .X;F/ along
the pair .S;K/ to obtain a new pair .X 0;F0/. That the surgery of F along K can be performed ambiently
uses the fact that K is an unknot in S , hence bounds a disk in X nF. Working backwards, there is an
S0 � F0 �X along which we can surger .X 0;F0/ to obtain .X;F/. It follows that X DX 0 # .S1 �S3/
and F is obtained from F0 by tubing. Diagrammatically, the surgery from .X;F/ to .X 0;F0/ is realized
by surgering † along ı. Note that this tubing is not necessarily trivial in the sense that it may or may not
be true that .X;F/D .X 0;F0/ # .S1 �S3; S1 �S1/.

A bridge trisection satisfying one of the three notions of reducibility decomposes in a natural way. See
Section 7.1 for a detailed discussion of connected sum and boundary connected sum operations. For
example, presently, we let T 0 # T 00 denote the connected sum of trisections, regardless of whether the
connected summing point is a bridge point or not.

Proposition 7.9 Let T be a bridge trisection for a pair .X;F/.

(1) If T admits a separating reducing curve , then there exist pairs .X 0;F0/ and .X 00;F00/ with trisec-
tions T 0 and T 00 such that T D T 0 # T 00 and

.X;F/D .X 0 #X 00;F0 tF00/:

(2) If T admits a nontrivial , separating decomposing curve , then there exist pairs .X 0;F0/ and
.X 00;F00/ with trisections T 0 and T 00 such that T D T 0 # T 00 and

.X;F/D .X 0 #X 00;F0 # F00/:
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(3) If T admits a separating reducing arc , then there exist pairs .X 0;F0/ and .X 00;F00/ with trisections
T 0 and T 00 such that T D T 0 \T 00 and

.X;F/D .X 0 \X 00;F0 tF00/:

Proof If T admits a separating reducing curve ı, then it admits a separating trisected reducing sphere Sı ,
by Lemma 7.7. Cutting open along Sı and capping off the two resulting three-sphere boundary components
with genus zero trisections of B4 results in two new trisections T 0 and T 00 for pairs .X 0;F0/ and .X 00;F00/,
as desired in part (1). For part (2), we proceed as above, except we cap off with two genus zero 0–
bridge trisections of .B4;D2/ to achieve the desired result. (If any of the disks Ei bounded by ı in
the Hi intersect vertical strands �i , then we can perturb to make these intersecting strands flat. If such
perturbations are performed before cutting, they can be undone with deperturbation after gluing. This is
related to the discussion immediately preceding Lemma 7.4.)

If T admits a separating reducing arc �, then it admits a separating trisected reducing ball B�, by
Lemma 7.7. Cutting open along B� results in two new trisections T 0 and T 00 for pairs .X 0;F0/ and
.X 00;F00/, as desired in part (3).

Remark 7.10 (boundary-decomposing arcs) Conspicuously absent from the above notions of reducibil-
ity is a characterization of what might be referred to as boundary-decomposability — in other words, a
characterization of when we have

.X;F/D .X 0 \X 00;F0 \F00/:

The obvious candidate for such a notion would be the existence of a neatly embedded, essential arc ��†,
similar to the one involved in the notion of boundary-reducibility, but where the disks Ei each intersect
the respective Ti in precisely one point. However, a lengthy examination of such arcs reveals that they
rarely correspond to surfaces that are boundary connected sums in the desired way. To the point, many of
the examples given later in this section admit such arc, but are not boundary-connected sums of bridge
trisected surfaces. We have been unable to find a satisfying characterization of when this occurs.

7.4 Classification for small parameters

As a first example, consider the .4; .2; 4; 2/I 3/–bridge trisection shown in Figure 30, which is the boundary
sum of a 1–bridge trisection, a 3–bridge trisection that is perturbed, and three 0–bridge trisections and
corresponds to .B4; S2tS2tD2tD2tD2/. (The perturbation is a finger perturbation; see Definition 9.9.)
It turns out that such a bridge trisection is obtained whenever ci D b for some i 2 Z3. (Recall that @Di
contains a flat b–bridge ci component unlink, so b � ci for all i 2 Z3.)

Proposition 7.11 Let T be a .b; cI v/–bridge trisection for a surface .B4;F/. If b D ci for some i 2Z3,
then ciC1 D ciC2 D c and

.B4;F/D

�
B4;

�G
c

S2
�
t

�G
v

D2
��
;
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Figure 30: A shadow diagram, left, and schematic tri-plane diagram, right, for the unique
.4; .2; 4; 2/I 3/–bridge trisection, which is totally reducible.

and T is the boundary sum of c genus zero bridge trisections of .B4; S2/, each of which is a finger
perturbation of the 1–bridge trisection , and v genus zero 0–bridge trisections of .B4;D2/.

Proof Suppose without loss of generality that c2 D b. By Proposition 3.14, F admits a .b; cI v/–bridge-
braided band presentation. In particular, F can be built with nD b�c2D 0 bands. It follows that c1D c3.
It also follows that the flat disks of .Z2;D2/ are given as products on the b flat strands of .H2;T2/.

We can assume that the union of the red and blue shadow arcs is a collection of c1 embedded polygons
in †, since they determine a b–bridge c1–component unlink in H1[†H2. We can also assume that the
green shadow arcs coincide with the blue shadow arcs, due to the product structure on the flat disks of D2.
See Figure 30, left.

Let ı be a simple closed curve in † n �.x/ that separates the red/blue polygons from the bridge points
that are adjacent to no shadow arc. (Note that, here, every bridge point is adjacent to either 0 or 3 shadow
arcs by the above considerations.) Then ı is a reducing curve for T such that T D T1 # T2, where T1 is
a .b; c/–bridge trisection for a pair .S4;F1/ and T2 is a .0; 0I v/–bridge trisection for a pair .B4;F2/.

Because the blue and green shadow arcs coincide, each polygon is a finger perturbation of the 1–bridge
splitting of .S4; S2/, and F1 D

F
c S

2. Moreover, T1 admits c � 1 reducing curves that completely
separate the polygons. It follows that T1 is connected sum of perturbations of the 1–bridge trisection
of .S4; S2/, as desired. Finally, the bridge trisection T2 admits v� 1 reducing arcs that cut it up into v
copies of the genus zero 0–bridge trisection of .B4;D2/, as desired.

Having dispensed of the case when ci D b for some i 2 Z3, we consider the case when b D 1 and, in
light of the above, ci D 0 for all i 2 Z3. Two simple examples of such bridge trisections are given in
Figure 31.

For a more interesting family of examples, consider the .2; 4/–torus link T2;4, which bounds the union
of the trivial Möbius band M 2 and the trivial disk D2. (Imagine Figure 32, left, with the three parallel
circles replaced with a single circle.) Now, consider the surface Fv obtained by replacing the D2 with
v� 1 parallel, trivial disks; Figure 32, left, shows the case of v D 4. A .1; 0I v/–bridge trisection Tv for
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Figure 31: Top: the .1; 0I 1/–bridge trisection corresponding to the standard (positive) Möbius
band .B4;M 2/. Bottom: the .1; 0I 2/–bridge trisection corresponding to the unknotted disk
.B4;D2/ with (positive) Markov stabilized, unknotted boundary.

.B4;Fv/ is shown in Figure 32, right. Note that when vD 1, Tv corresponds the trivial (positive) Möbius
band with unknotted boundary and was given diagrammatically in Figures 31, top left and bottom left.

One can check using the techniques of Section 4.1 that the bridge trisection Tv induces the v–braiding
of @Fv given in Artin generators by

.�1�2 � � � �v�2�
2
v�1�v�2 � � � �2�1/

2:

In other words, one strand wraps twice around the other v� 1 strands. The link @Fv can be thought of as
taking the .v�1; 0/–cable of one component of T2;4.

Proposition 7.12 The bridge trisection Tv is the unique (up to mirroring) irreducible .1; 0I v/–bridge
trisection.

Proof Suppose that T is an irreducible .1; 0I v/–bridge trisection, and consider a shadow diagram for T .
Since b D 1, there is a unique shadow arc of each of color. Since c D 0, the union of any two of these

Figure 32: Left: a ribbon presentation for a nontrivial linking of a Möbius band with trivial disks
in B4. Such surfaces admit 1–bridge trisections, diagrams for which are shown to the right.

Algebraic & Geometric Topology, Volume 24 (2024)



Filling braided links with trisected surfaces 883

shadow arcs is a connected, embedded, polygonal arc in †, by Proposition 5.2 (no slides are possible,
only isotopies). There are two cases: either the union of the three shadow arcs is a circle, or the union of
the three shadow arcs is a Y–shaped tree.

Suppose the union is a Y–shaped tree. Let � be an arc connecting the tree to @†, and let ! be the arc
boundary of a neighborhood of the union of � and the tree. In other words, ! is a neatly embedded arc in
† n �.x/ that separates the tree from the rest of the diagram. If the rest of the diagram is nonempty, then
ı is a reducing arc for the bridge trisection, and we have T D T1 \T2, where T1 is a .1; 0I 2/–bridge
trisection (with Y–shaped shadow diagram) and T2 is a .0; 0I v/–bridge trisection, with v > 0. This
contradicts the assumption that T was irreducible. If v D 0 (ie the rest of the diagram is empty), then
T D T1 is the Markov perturbation of the genus zero 0–bridge trisection and is shown in Figure 31,
bottom right, so T is reducible, another contradiction.

Now suppose that the union of the three shadow arcs is a circle, and let D �† denote the disk the union
bounds. Suppose there is a bridge point in †nD. Then there is a reducing arc separating the bridge point
from D, so T is boundary reducible, a contradiction. So, the v�1 bridge points that are not adjacent to a
shadow arc are contained in D. Therefore, the shadow diagram is the one given in Figure 32, bottom
right, or, in the case that v D 1, in Figure 31, bottom left.

Having walked through these modest classification results, we now present some families of examples, as
well as some questions and conjectures about further classification results.

Example 7.13 Consider the three .2; 0I 1/–bridge trisections shown in Figure 33, which correspond
to the punctured torus and two different Klein bottles. All three surfaces are isotopic into S3 and are
bounded by the unknot. The two Klein bottles decompose as boundary connected sums of Möbius bands
bounded by the unknot in S3. The Klein bottle depicted in Figure 33, middle, is the boundary connected
sum of two positive Möbius bands; and the Klein bottle depicted in Figure 33, bottom, is the boundary
connected sum of a positive and a negative Möbius bands

These three bridge trisections can be obtained by taking the three unique .3; 1/–bridge trisections [27,
Section 4.5] of closed surfaces in S4 and puncturing at a bridge point.

Conjecture 7.14 There are exactly three (up to mirroring) irreducible .2; 0I 1/–bridge trisections.

Example 7.15 Consider the .2; 0I 2/–bridge trisection shown in Figure 34, left, which corresponds the
annulus S3 bounded by the .2; 4/–torus link. Compare with Example 3.16 and Figure 14(a). Replacing
the three positive half-twists with n half-twists for some n 2 Z gives a surface in S3 bounded by the
.2; n/–torus link that is a Möbius band if n is odd and an annulus if n is even.

One interesting aspect of the case when n is even relates to the orientation of the boundary link. The
boundary link, which is the .2; n/–torus link, inherits an orientation as a 2–braid. It also inherits an
orientation from the spanning annulus that the bridge trisection describes. These orientations don’t agree!
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Figure 33: Three .2; 0I 1/–bridge trisections for surfaces bounded by the unknot and isotopic
in S3. The top row describes a punctured torus; the middle row describes the boundary connected
sum of two positive Möbius bands; and the bottom row describes the boundary connected sum of
a positive and a negative Möbius band.

In other words, the bridge trisections of the spanning annuli for these links induce a braiding of the
links, but this braiding is not coherent with respect to the orientation of the links induced by the annuli.
Compare with Example 7.17 below.

Conjecture 7.16 Every .2; 0I 2/–bridge trisection is diffeomorphic to one described in Example 7.15
and in Figure 34.

Example 7.17 Figure 35, left, gives a .3; 0I 3/–bridge trisection for the annulus in S3 bounded by the
.2; 4/–torus link. In contrast to the bridge trisection for this surface discussed in Example 7.15 and
illustrated in Figure 34, this bridge trisection induces a coherent 3–braiding of the boundary link. This
example could be generalized to give an .nC1; 0InC1/–bridge trisection for the annulus bounded by the
.2; n/–torus link for any even n 2 Z.

Figure 34: Diagrams for a .2; 0I 2/–bridge trisection of the planar surface bounded by the .2; n/–
torus link in S3; shown is nD 4.
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Figure 35: Diagrams for a .3; 0I 3/–bridge trisection of the planar surface bounded by the .2; n/–
torus link in S3; shown is nD 4.

8 Proof of Theorem 8.1

We now make use of the general framework outlined in Section 2 to give a proof of Theorem 8.1, which
we restate for convenience. We adopt the notation and conventions of Definition 2.18.

Theorem 8.1 Let T be a trisection of a four-manifold X with @X D Y , and let .B; �/ denote the
open-book decomposition of Y induced by T . Let F be a neatly embedded surface in X ; let LD @F; and
fix a braiding Ǒ of L about .B; �/. Then F can be isotoped to be in bridge trisected position with respect
to T such that @FD Ǒ. If L already coincides with the braiding ˇ, then this isotopy can be assumed to
restrict to the identity on Y .

Note that if X is closed, then Theorem 8.1 is equivalent to [28, Theorem 1]. For this reason, we assume
henceforth that Y D @X ¤∅. We will prove Theorem 8.1 using a sequence of lemmata. Throughout, we
will disregard orientations. All isotopies are assumed to be smooth and ambient. First, we describe the
existence of a Morse function ˆT on (most of) X that is well-adapted to the trisection T . We will want
to think of X as a lensed cobordism from Y1 to Y2[P3 Y3.

Lemma 8.2 There is a self-indexing Morse function

ˆT WX n �.P1[B P2[B P3/! Œ0; 4�

such that

(1) ˆT has no critical points of index zero or four;

(2) Y1 n �.P1[B P2/Dˆ
�1
T .0/;

(3) .H1[†H2/ n �.P1[B P2/Dˆ
�1
T .1:5/;

(4) ˆT .H3 n �.P3//� Œ1:5; 2:5/;

(5) Y3 n �.P3[B P1/Dˆ
�1
T .4/; and

(6) the index j critical points of ˆT are contained in Int.Zj /.

Note that if ˆT .x/� 2:5, then x 2Z3.

Proof The existence of the Morse function and property (1) are standard consequences of the cobordism
structure. The other properties are easy and commonly discussed within the theory of trisections; see [10],
for example. The set-up is made evident by the schematics of Figure 36.
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†
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P2

P3

Y1

Y2

Y3

Z1

Z2

Z3

H1 n �.P1/ H2 n �.P2/

H3 n �.P3/

Y1 n �.P1[B P2/

Y2 n �.P2[B P3/

Y3 n �.P3[B P1/

† n �.B/

Figure 36: Passing from a trisection to a natural Morse function on X n �.P1[P2[P3/.

Now, Z1 is the result of attaching four-dimensional 1–handles to the lensed product Y1 � I . The core †
can be assumed to satisfyˆT .†n�.B//D 1:5, and, together with P1 and P2, it gives a standard Heegaard
double decomposition of @Z1. The attaching circles of the four-dimensional 2–handles are assumed to be
contained in a (1–complex) spine of the compression body H2, with the result of Dehn surgery thereupon
beingH3. The trace of this 2–handle attachment isZ2, andZ3 is the (lensed cobordism) trace of attaching
four-dimensional 3–handles to H3[†H1, the result of which is Y3. (Note that Z2 is not quite a lensed
cobordism from this perspective, since Y2 is a vertical portion of its boundary @Z2 DH2[Y2[H3.)

For the remainder of the section, we let ˆ D ˆT . Let ˆi D ˆjZi for i D 1; 2; 3. Recall the standard
Morse function on Zi ŠZg;ki ;p;f that was discussed in Section 2.7. By the above discussion, we have
the following consequence of Lemma 8.2:

Corollary 8.3 If i D 1 or i D 3, then ˆi is a standard Morse function on Zi ŠZg;ki ;p;f .

Presently, we will begin to isotope F to lie in bridge trisected position with respect to T .

Lemma 8.4 After an isotopy of F that is supported near @X , we can assume that LD Ǒ.

Proof By the Alexander theorem [1] or the generalization due to Rudolph [31], L can be braided with
respect to the open-book decomposition .B; �/. By the Markov theorem [25] or its generalization to
closed 3–manifolds [32; 33], any two braidings of L with respect to .B; �/ are isotopic. Thus, by an
isotopy of F that is supported near Y , we can assume that L is given by the braiding to Ǒ.

Any modifications made to F henceforth will be isotopies that restrict to the identity on Y . Let ˆF denote
the restriction of ˆ to F. (Note that by choosing a small enough collar �.Y / in X , we can assume that
F\ �.Y /D L� I . By a small isotopy of F rel-@, we can assume that ˆF is Morse.)
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Lemma 8.5 After an isotopy of F rel-@, we can assume that ˆF W F!R is Morse and that

(1) the minima of ˆF occur in Z1,

(2) the saddles of ˆF occur in ˆ�1.1:5/, and

(3) the maxima of ˆF occur in Z3.

Proof That the critical points can be rearranged as desired follows from an analysis of their various
ascending and descending manifolds. A detailed analysis of this facet of (embedded) Morse theory can
be found in [3]. Here, we simply make note of the key points.

The ascending (unstable) membrane of a maximum of ˆF is one-dimensional; think of a vertical arc
emanating from the maximum and terminating in Y3. (Vertical means the intersection with each level set
is either a point or empty.) Generically, such an arc will be disjoint from F and will be disjoint from
the descending spheres of the critical points of ˆ (which have index one, two, or three) in each level
set. Thus, the gradient flow of ˆ can be used to push the maxima up (and the minima down), and we
obtain that the minima lie below ˆ�1.1:5/ (ie in Z1) and that the maxima lie above ˆ�1.2:5/ (ie in Z3).
Having arranged the extrema in this way, we move on to consider the saddles.

The ascending membranes of the saddles of ˆF are two-dimensional, while the descending spheres of the
index one critical points of ˆ are zero-dimensional. Thus, we can flow the saddles up past the index one
critical points of ˆ, until they lie in ˆ�1.1:5/. Symmetrically, we can flow saddles down past the index
three critical points of ˆ to the same result.

Let Di D F\Zi for i D 1; 2; 3. Assume that Ǒ is a braiding of L of multiindex v.

Lemma 8.6 If ˆF has c1 minima and c3 maxima , then D1 is a .c1; v/–disk-tangle , and D3 is a .c3; v/–
disk-tangle.

Proof By Corollary 8.3, ˆ1 is a standard Morse function on Zi . By Lemma 2.14, since .ˆ1/jD1 has c1
minima and no other critical points, and since F\Y1 D Ǒ \Y1 is a v–thread, this implies that D1 is a
.c; v/–disk-tangle. The corresponding result holds for D3, after turning ˆ3 and .Z3;D3/ upside down.

Next, we see that the trisection T can be isotoped to ensure the intersections Ti D F\Hi are trivial
tangles for i D 1; 2; 3.

Lemma 8.7 After an isotopy of T , we can assume that each Ti is a .b; v/–tangle for some b � 0.

Proof The level setˆ�1.1:5/ is simplyM D .H1[†H2/n�.P1[BP2/. The intersection F\ˆ�1.1:5/

is a 2–complex L[ b, where L is a neatly embedded one-manifold L, and b is a collection of bands.
Here, we are employing the standard trick of flattening F near each of the saddle points of ˆF. (See
Section 3.2 for a precise definition of a band.)

We have a Heegaard splitting .†IH1;H2/ that induces a Morse function ‰ W ˆ�1.1:5/! R. In what
follows, we will perturb this splitting (ie homotope this Morse function) to improve the arrangement of
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the 2–complex L[b. First, we perturb † so that it becomes a bridge surface for L. At this point, we have
arranged that T1 and T2 are .b0; v/–tangles, for some value b0 that will likely be increased by what follows.

Next, we can perturb † until the bands b can be isotoped along the gradient flow of ‰ so that their cores
lie in †. We can further perturb † until b\† consists solely of the cores of b, which are embedded in †;
said differently, the bands of b are determined by their cores in †, together with the surface-framing given
by the normal direction to † in ‰�1.1:5/. Finally, we can further perturb † until each band is dualized
by a bridge semidisk for T2. The details behind this approach were given in the proof of Theorem 1.3
(using Figures 10–12) of [27] and discussed in [28].

Finally, we isotope † so that b is contained in H2; in other words, we push the bands slightly into H2
so as to be disjoint from †. Since each band of b is dualized by a bridge semidisk for T2, the result
T3 D .T2/b of resolving T2 using the bands of b is a new trivial tangle. The proof of this claim is
explained in detail in [27, Lemma 3.1 and Figure 8]. (Though it is not necessary, we can even perturb
† so that b is dualized by a bridge disk at both of its endpoints, as in the aforementioned [27, Figure 8].)

Note that all of the perturbations of † were supported away from �.P1 [B P2/, so each of the Ti

contained precisely v vertical strands throughout. In the end, each is a .b; v/–tangle for some b � 0.

Finally, we verify that D2 is a trivial disk-tangle in Z2.

Lemma 8.8 If c2 D b� jbj, then D2 is a .c2; v/–disk-tangle.

Proof As in the preceding lemma, this follows exactly along the lines of [27, Lemma 3.1], with only
slight modification to account for the vertical strands. This is particularly easy to see if one assumes that
b meets dualizing disks at each of its endpoints, as in [27, Figure 8].

Thus, we arrive at a proof of Theorem 8.1.

Proof of Theorem 8.1 After performing the isotopies of F and T outlined in the lemmata above, we have
arranged that, for i D 1; 2; 3, the intersection Di D F\Zi is a .ci ; v/–disk-tangle in Zi (Lemmata 8.6
and 8.8) and the intersection Ti DF\Hi is a .b; v/–tangle (Lemma 8.7). Thus, F is in .b; cI v/–bridge
trisected position with respect to T , where c D .c1; c2; c3/, and the ordered partition v comes from the
multiindex v of the braiding Ǒ of LD @F.

9 Stabilization operations

In this section we describe various stabilization and perturbation operations that can be used to relate two
bridge trisections of a fixed four-manifold pair. We encourage the reader to refer back to the discussion
of connected sums and boundary connected sums of bridge trisections presented in Section 7.

9.1 Stabilization of four-manifold trisections

First, we’ll recall the original stabilization operation of Gay and Kirby [10], as developed in [26].
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!

T

!�

TCHopf

!
!�

TC

Figure 37: The positive Hopf stabilization TC of a trisection T along an arc ! in the core of T .

Definition 9.1 (core stabilization) Let T be a .g;kIp;f /–trisection for a four-manifold X , and let !
be an arc in Int.†/. Fix an i 2 Z3. Perturb the interior of ! into HiC1 DZi \ZiC1, and let †0 denote
the surface obtained by surgering † along !. Then, †0 is the core of a .gC1;k0Ip;f /–trisection T 0

for X , where k0 D k, except that k0i D ki C 1, which is called the core i–stabilization of T .

The importance of this operation rests in the following result of Gay and Kirby.

Theorem 9.2 [10] Suppose that T and T 0 are two trisections of a fixed four-manifold X , and assume
that either @X D∅ or T and T 0 induce isotopic open-book decomposition on each connected component
of @X . Then T and T 0 become isotopic after they are each core stabilized some number of times.

Performing a core i–stabilization is equivalent to forming the (interior) connected sum with a simple
trisection of S4. Let Ti denote the genus one trisection of S4 with ki D 1. See [26] for details.

Proposition 9.3 T 0 is a core i–stabilization of T if and only if T 0 D T # Ti .

Next, we recall the stabilization operation for trisections that corresponds to altering the induced open-
book decomposition on the boundary by the plumbing of a Hopf band. Let TCHopf (resp. T�Hopf) denote the
genus one trisection of B4 that induces the open-book decomposition on S3 with binding the positive
(resp. negative) Hopf link.

Definition 9.4 (Hopf stabilization) Let T be a .g;kIp;f /–trisection for a four-manifold X . Let
! � .† n˛i / be a neatly embedded arc, which we consider in Pi . Let T˙ denote the trisection obtained
by plumbing T to T˙Hopf along the projection of !, as in Figure 37. We call T˙ the positive/negative
Hopf .i; j /–stabilization of T along !.

By a plumbing of trisections, we mean a plumbing of pages along the projection of arcs to the pages.
Diagrammatically, this is represented by plumbing the relative trisection diagrams along the corresponding
arcs in the core surface, as in Figure 37. This induces boundary connected sums at the level of the three-
dimensional and four-dimensional pieces of the trisections and plumbing at the level of the core surfaces
and pages. Hopf stabilization was first studied in the setting of trisections by Castro [4] and Castro, Gay
and Pinzón-Caicedo [6]. We rephrase their main result in the more general setting of the present article.
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Proposition 9.5 [6, Corollary 17] Let T be a .g;kIp;f /–trisection for a four-manifold X inducing
an open-book decomposition .B; �/ on @X . Then a positive (resp. negative) Hopf stabilization T˙ is a
.gC1;kIp0;f 0/–trisection of X inducing a positive (resp. negative) Hopf stabilization of .B; �/, where
f 0 is obtained from f by either increasing or decreasing the value of fj by one , and p0 is obtained from
p by either decreasing or increasing the value of pj by one , according with , in each case , whether or not
! spans distinct boundary components of P ji or not.

The upshot of this proposition is that, to the extent that open-book decompositions of three-manifolds are
related by Hopf stabilization and destabilization, any two trisections of a compact four-manifold can be
related by a sequence of Hopf stabilizations and core stabilizations. Giroux and Goodman proved that
two open-book decompositions on a fixed three-manifold have a common Hopf stabilization if and only
if the associated plane fields are homotopic [12], answering a question of Harer [14]. From this, together
with Theorem 9.2, we can state the following.

Corollary 9.6 Suppose that T and T 0 are two trisections of a fixed four-manifold X . Assume that
@X ¤∅ and that for each component of @X , the open-book decompositions induced by T and T 0 have
associated plane fields that are homotopic. Then T and T 0 become isotopic after they are each core
stabilized and Hopf stabilized some number of times.

Recently, Piergallini and Zuddas showed there is a complete set of moves (including a double-twist
move) that suffice to relate any two open-book decompositions on a given three-manifold [30]. By giving
trisection-theoretic versions of each move, Castro, Islambouli, Miller, and Tomova were able to prove a
strengthening of the original Gay–Kirby uniqueness theorem for trisected manifolds with boundary [7].

9.2 Interior perturbation of bridge trisections

Having overviewed stabilization operations for four-manifold trisections, we now discuss the analogous
operations for bridge trisections. To avoid confusion, we will refer to these analogous operations as
perturbation operations; they will generally correspond to perturbing the bridge trisected surface relative
to the core surface. Throughout, the obvious inverse operation for a perturbation will be referred to as a
deperturbation.

We begin by recalling the perturbation operation for bridge trisections first introduced in [27] and invoked
in [28]. This perturbation operation requires the existence of a flat disk in Di . To distinguish this operation
from the subsequent one, we append the adjective “Whitney”.

Definition 9.7 (Whitney perturbation) Let F be a neatly embedded surface in a four-manifold X such
that F is in .b; cI v/–bridge trisected position with respect to a trisection T of X . Let D �Di be a flat
disk, and let D� � Yi be a disk that has no critical points with respect to the standard Morse function
on Yi and that is isotopic rel-@ to D, via a three-ball B . Let � be a neatly embedded disk in B that
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Figure 38: A local picture corresponding to a finger 1–perturbation.

intersects D� in a vertical strand. Let F0 denote the surface obtained by isotoping F via a Whitney move
across �. Then F0 is in .bC1; c0I v/–bridge trisected position with respect to T , where c0 D c, except
that c0i D ci C 1. This Whitney move is called an Whitney i–perturbation.

See [28, Figures 14 and 23] for a visualization of a Whitney perturbation. The usefulness of Whitney
perturbations is made clear by the following result, which was proved in [27] in the case that T has genus
zero (so X D S4) and in [16] in the general case.

Theorem 9.8 [16; 27] Fix a four-manifold X and a trisection T of X . Let F;F0 � X be isotopic
closed surfaces , and suppose TF and TF0 are bridge trisections of F and F0 induced by T . Then there is
a sequence of interior (Whitney) perturbations and deperturbations relating TF and TF0

Even without the presence of a flat disk, there is still a perturbation operation available. Despite being
called a “finger” perturbation, the following perturbation is not an inverse to the Whitney perturbation.
The adjective “Whitney” and “finger” are simply descriptive of how the surface is isotoped relative to the
core to achieve the perturbation. However, it is true that the inverse to a Whitney perturbation (or a finger
perturbation) is a finger deperturbation.

Definition 9.9 (finger perturbation) Let F be a neatly embedded surface in a four-manifold X such that
F is in .b; cI v/–bridge trisected position with respect to a trisection T of X . Fix a bridge point x 2 x,
and let N be a small neighborhood of x, so N \F is a small disk. Let ! � @N be a trivial arc connecting
Ti to †. Perform a finger-move of F along !, isotoping a small bit of F toward and through †, as in
Figure 38. Let F0 denote the resulting surface. Then, F0 is in .bC1; c0I v/–bridge position with respect
to T , where c0 D c, except that c0i D ci C 1. This finger move is called an finger i–perturbation.

Note that the disk of the disk-tangle Di containing the bridge point x is neither required to be flat
nor vertical in the definition of a finger perturbation. However, if this disk is flat, then the operation
is the simplest form of a Whitney perturbation, corresponding to the case where the vertical strand
in D� is boundary parallel through vertical strands. The simplicity of the finger perturbation operation
is expressed by the following proposition. Let T i

S2
denote the 2–bridge trisection of the unknotted

two-sphere satisfying ci D 2.
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Proposition 9.10 If the bridge trisection T 0F is obtained from the bridge trisection TF via a finger
i–perturbation , then T 0F D TF # T i

S2
.

The proof is an immediate consequence of how bridge trisections behave under connected sum. Note that
a Whitney perturbation corresponds to a connected sum as in the proposition if and only if it is a finger
perturbation; in general, a Whitney perturbation cannot be described as the result of a connected sum of
bridge trisections. For example, the unknotted two-sphere admits a .4; 2/–bridge trisection that is not a
connected sum of (nontrivial) bridge trisections, even though it is (Whitney) perturbed.

9.3 Markov perturbation of bridge trisections

Let TD2 denote the 0–bridge trisection of the unknotted disk D2 in B4.

Definition 9.11 (Markov perturbation) Let T 0 be a .b; cI v/–bridge trisection of a neatly embedded
surface .X 0;F0/, and let T 00 be the 0–bridge trisection of .B4;D2/. Choose points y" 2 T"i \P

"
i for

" 2 f0; 00g. Let .X;F/ D .X 0;F0/ \ .B4;D2/, and let T D T 0 \ T 00. Then T is a .bC1; cI v0/–bridge
trisection of .X;F/D .X 0;F0/, where vD v0, except that vj D .vj /0C 1, where y1 2 Lj . The bridge
trisection T 0 is called the Markov i–perturbation of T .

In justification of this definition: That T 0 is a new bridge trisection follows from Proposition 7.5. That
F0 is isotopic to F follows from the fact that we are forming the boundary connected sum with a trivial
disk. That L0 is obtained from L via a Markov perturbation follows from our understanding of a Markov
perturbation as the trivial connected sum of a braided link with a meridian of a component of the binding —
see Section 2.8. Note that the left-most blue and green arcs of Figure 39 are shown in light blue and
light green to indicate that they might correspond to flat or vertical strands. The pink arcs correspond to
vertical strands.

The importance of this operation is due to the generalized Markov theorem, which states that any two
braidings of a given link with respect to a fixed open-book decomposition can be related by an isotopy
that preserves the braided structure, except at finitely many points in time at which the braiding is changed
by a Markov stabilization or destabilization [25; 32; 33]. See Section 2.8.

Taken together, the stabilization and perturbation moves described in this section should suffice to relate
any two bridge trisections of a fixed four-manifold pair. Compare with the known uniqueness results [7;
10; 16; 27].

Figure 39: Shadow diagrams depicting the local process of Markov 3–perturbation.
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Conjecture 9.12 Let T1 and T2 be bridge trisections of a given surface .X;F/ that are diffeomorphic
as trisections of X . Then there are diffeomorphic bridge trisections T 01 and T 02 such that T 0" is obtained
from T" via a sequence of moves , each of which is of one of the following types:

(1) a core stabilization ,

(2) a Hopf stabilization ,

(3) a relative double twist ,

(4) an interior perturbation/deperturbation ,

(5) a Markov perturbation/deperturbation.

To prove this conjecture, it should suffice to carefully adapt the techniques of [16] from the setting of
isotopy of closed four-manifold pairs equipped with Morse functions to the setting of isotopy rel-@ of
four-manifold pairs with boundary. The following is a diagrammatic analog to this conjecture.

Conjecture 9.13 Suppose that D1 and D2 are shadow diagrams for a fixed surface-link .X;F/. Then
D1 and D2 can be related by a finite sequence of moves , each of which is of one of the following types:

(1) a core stabilization/destabilization ,

(2) a Hopf stabilization/destabilization ,

(3) a relative double twist ,

(4) an interior perturbation/deperturbation ,

(5) a Markov perturbation/deperturbation ,

(6) an arc or curve slide ,

(7) an isotopy rel-@.
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Equivariantly slicing strongly negative amphichiral knots

KEEGAN BOYLE

AHMAD ISSA

We prove obstructions to a strongly negative amphichiral knot bounding an equivariant slice disk in the
4–ball using the determinant, Spinc–structures and Donaldson’s theorem. Of the 16 slice strongly negative
amphichiral knots with 12 or fewer crossings, our obstructions show that 8 are not equivariantly slice, we
exhibit equivariant ribbon diagrams for 5 others, and the remaining 3 are unknown. Finally, we give an
obstruction to a knot being strongly negative amphichiral in terms of Heegaard Floer correction terms.

57K10, 57M60

1 Introduction

A strongly negative amphichiral knot .K; �/ is a smooth knot K � S3 along with a smooth (orientation-
reversing) involution � W S3 ! S3 such that �.K/ D K and � has exactly two fixed points, both of
which lie on K; see Figure 1. A knot K � S3 is slice if it bounds a smooth disk (the slice disk) properly
embedded in B4. Our main goal is to study when there exists an equivariant slice disk for a strongly
negative amphichiral knot .K; �/. Specifically, we are interested in the following property:

Definition 1.1 A strongly negative amphichiral knot .K; �/ is equivariantly slice if there is a smooth
slice disk D and a smooth involution � 0 W B4! B4 with � 0.D/DD which restricts to � on @B4 D S3.

Figure 1 gives an example of a strongly negative amphichiral diagram, that is, a knot diagram with the
strongly negative amphichiral symmetry given by �–rotation around an axis perpendicular to the page
followed by reflection across the plane of the diagram. Furthermore, the knot in Figure 1 is equivariantly
slice. The slice disk is given by performing the pair of equivariant band moves shown in red, then
equivariantly capping off the resulting 3–component unlink in B4. Among nontrivial prime knots with 12
or fewer crossings, there are 16 slice strongly negative amphichiral knots. For five of them, namely 89, 1099,
12a819, 12a1269 and 12n462, we found similar equivariant ribbon diagrams; see the table in Section 7.

Strongly negative amphichiral knots, and in particular the equivariant surfaces they bound in the 4–ball,
have been studied less than their more popular orientation-preserving cousins: strongly invertible knots
(see for example Boyle and Issa [2] and Sakuma [23]) and periodic knots (see for example [2], Cha and
Ko [5], Davis and Naik [6], and Grove and Jabuka [14] among others). Many of the obstructions used

© 2024 The Authors, under license to MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons
Attribution License 4.0 (CC BY). Open Access made possible by subscribing institutions via Subscribe to Open.
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898 Keegan Boyle and Ahmad Issa

Figure 1: A strongly negative amphichiral diagram for 89. The symmetry is given by �–rotation
around an axis perpendicular to the page, followed by a reflection across the plane of the diagram.
An equivariant slice disk can be seen by performing the band moves shown in red.

in the strongly invertible and periodic settings do not adapt to the strongly negative amphichiral case.
In fact, even showing that the (nonequivariant) 4–genus for strongly negative amphichiral knots can be
arbitrarily large was only recently accomplished by Miller [20].

Our first equivariant slice obstruction comes from studying the knot determinant. It was shown by
Goeritz [10] that the determinant of an amphichiral knot is the sum of two squares (see also Friedl, Miller
and Powell [9] for a partial generalization and Stoimenow [24] for the converse). We prove the following
strengthening of this determinant condition in the case that K bounds an equivariant slice disk:

Theorem 1.2 If K is an equivariantly slice strongly negative amphichiral knot , then det.K/ is the square
of a sum of two squares.

Theorem 1.2 shows that the six slice strongly negative amphichiral knots 10123, 12a435, 12a990, 12a1019,
12a1225 and 12n706 are not equivariantly slice.

Our second obstruction, which applies to knots with an alternating strongly negative amphichiral diagram,
comes from applying Donaldson’s theorem [8]. Donaldson’s theorem can often be used to obstruct the
existence of slice disks (see for example Lisca [18]). More recently, it has also been used to obstruct
equivariant slice disks for strongly invertible and periodic knots [2]. A key ingredient in that obstruction
is the existence of an invariant definite spanning surface for the knot. In contrast, strongly negative
amphichiral knots do not bound invariant spanning surfaces in S3. Instead, we use the fact that, if
K bounds an equivariant slice disk D, then the subset S of Spinc–structures on the double branched
cover Y D †.S3;K/ that extend over †.B4;D/ is Q�–invariant, where Q� is a lift of the symmetry �
to Y ; see Proposition 4.1 and the discussion following its proof. Donaldson’s theorem can be used to
obtain restrictions on S . Using the interplay between the pair of checkerboard surfaces exchanged by the
symmetry, we carefully keep track of Spinc–structures, allowing us to compute the Q�–action on Spinc.Y /.
This results in a nice combinatorial description of the Q�–action on Spinc.Y / in terms of the oriented
incidence matrices of the checkerboard graphs for an alternating symmetric diagram. Specifically, we
prove the following theorem:

Algebraic & Geometric Topology, Volume 24 (2024)



Equivariantly slicing strongly negative amphichiral knots 899

Theorem 1.3 Let .K; �/ be a knot with an alternating strongly negative amphichiral diagram and
let Y D †.S3;K/. Let F˙ be the positive and negative definite checkerboard surfaces , let J�

˙
be

compatible oriented incidence matrices with a row removed1 for the checkerboard graphs of F˙, and let
A˙ D J�

˙
.J�
˙
/T 2Mn.Z/ be the Goeritz matrices for F˙. Then there is a lift Q� W Y ! Y for which the

map Q�� W Spinc.Y /! Spinc.Y / is determined by

Q��ŒJ�Cv�D ŒJ
�
�v� for all v 2 Z2n with v � .1; 1; : : : ; 1/T 2 .Z=2Z/2n;

where Spinc.Y /Š Char.Zn;AC/=im.2AC/. Moreover , if K is equivariantly slice , then there is a lattice
embedding A W .Zn;AC/! .Zn; Id/ such that

S D fŒu� 2 Spinc.Y / j uDATv for some v 2 Zn with v � .1; 1; : : : ; 1/T 2 .Z=2Z/ng

is Q��–invariant.

Using Theorem 1.3, we show that 12a1105 and 12a1202 are not equivariantly slice (see Section 5), even
though they satisfy the determinant condition in Theorem 1.2 as det.12a1105/D 172 D .42C 12/2 and
det.12a1202/ D 132 D .32C 22/2. Of the slice strongly negative amphichiral knots with 12 or fewer
crossings, this leaves only 12a458, 12a477 and 12a887 for which equivariant sliceness is unknown. See
Section 7 for a table of equivariant knot diagrams for these knots.

Our analysis of the Q�–action on Spinc.†.S3;K// also leads us to the following obstruction to strongly
negative amphichirality in terms of Heegaard Floer correction terms.

Theorem 1.4 Let .K; �/ be a strongly negative amphichiral knot and let Q� be a lift of � to Y WD†.S3;K/

(see Proposition 2.1). Then the orbits of Spinc.Y / under the action of Q� take the following form:

(1) There is exactly one orbit fs0g of order 1 with d.Y; s0/D 0.

(2) All other orbits fs; Q�.s/; Q�2.s/; Q�3.s/g have order 4 and

d.Y; Q� i.s//D .�1/id.Y; s/ for all i:

For example, the figure eight knot 41 is strongly negative amphichiral and†.S3; 41/DL.5; 2/, which has
correction terms

˚
0; 2

5
;�2

5
; 2

5
;�2

5

	
. We checked that, for all 2–bridge knots with 12 or fewer crossings,

the d–invariants have this structure precisely when the knot is strongly negative amphichiral, leading us
to the following conjecture:

Conjecture 1.5 Let p; q 2N with p odd and .p; q/D 1. The following are equivalent :

(1) The Heegaard Floer correction terms of the lens space L.p; q/ can be partitioned into multisets ,
each of the form fr;�r; r;�rg for some r 2Q, and a single set f0g.

1See Definition 4.6. Here J�
˙

is an n by 2n matrix.

Algebraic & Geometric Topology, Volume 24 (2024)



900 Keegan Boyle and Ahmad Issa

(2) The 2–bridge knot K.p=q/ is amphichiral.

(3) There is an orientation-reversing self-diffeomorphism of L.p; q/.

(4) q2 ��1 .mod p/.

We note that (2), (3) and (4) are known to be equivalent (see for example Bonahon [1, Theorem 3],
Hodgson and Rubinstein [15, Corollary 4.12] and Stoimenow [24, Section 4]). Theorem 1.4 shows
that (2) implies (1), since †.S3;K.p=q//DL.p; q/ and a 2–bridge knot is amphichiral if and only if it
is strongly negative amphichiral. Thus Conjecture 1.5 is equivalent to showing that (1) implies any of the
other conditions.

1.1 Open questions

We conclude the introduction with a list of interesting open questions for further exploration.

Question 1.6 Is there a nonslice strongly negative amphichiral knot with equivariant 4–genus larger than
its 4–genus?

Question 1.7 Is there a strongly negative amphichiral knot which is topologically equivariantly slice but
not smoothly equivariantly slice?

Question 1.8 Is every strongly negative amphichiral knot with Alexander polynomial 1 topologically
equivariantly slice?

Question 1.9 If a strongly negative amphichiral knot is smoothly equivariantly slice, then must the knot
admit an equivariant ribbon diagram, as in Figure 1?

Acknowledgments

We thank Liam Watson for his encouragement, support and interest in this project, and Adam Levine for
pointing out a simple proof of Lemma 3.1. We thank the referee for simplifying the proof of Theorem 1.4.

2 Lifting the action to the double branched cover

In this section we show that the strongly negative amphichiral involution � on S3 lifts to the double
branched cover †.S3;K/. Since we are interested in equivariant slice disks for K, we also show that
this lift Q� can be extended to †.B4;S/ for any equivariant surface S � B4 with @S DK. Specifically,
we have the following proposition, which is similar to [2, Proposition 12]. However, in our situation there
are no fixed points disjoint from the branch set; the amphichiral involution lifts to an order-4 symmetry
on the double branched cover.

Proposition 2.1 Let S � S4 be a closed connected smoothly embedded surface and let � W .S4;S/!

.S4;S/ be a smooth involution with nonempty fixed-point set contained in S . Let p W†.S4;S/! S4 be
the projection map from the double branched cover and let � W†.S4;S/!†.S4;S/ be the nontrivial

Algebraic & Geometric Topology, Volume 24 (2024)



Equivariantly slicing strongly negative amphichiral knots 901

deck transformation map. Then there is a lift Q� W†.S4;S/!†.S4;S/ such that the following diagram
commutes:

†.S4;S/ †.S4;S/

S4 S4

p

Q�

p

�

Furthermore , Q�2 D � , and there are exactly two such lifts , namely Q� and Q�3.

Proof Let N.S/ be an equivariant tubular neighborhood of S and EDS4nN.S/ be the surface exterior.
Denote by zE the double cover of E corresponding to the kernel G of �1.E/!H1.EIZ=2Z/. We also
choose a basepoint s 2E and lifts Qs; Qt 2 zE with p.Qs/D s and p.Qt/D �.s/.

Since G is the unique index-2 subgroup of �1.E; s/, it is a characteristic subgroup. Hence G is also
the image of �1.� ı p/ W �1. zE; Qt/ ! �1.E; s/. Then by the covering space lifting property, since
im.�1.� ıp//� im.�1.p/ W �1. zE; Qs/! �1.E; s//, there is a unique map Q� W . zE; Qt/! . zE; Qs/ such that
pı Q� D � ıp. By the equivariant tubular neighborhood theorem [3, Theorem VI.2.2], @E can be identified
with the unit normal bundle of S , where � preserves S1 fibers. Lifting this bundle structure to @ zE,
p gives a bijection between the set of fibers of @E and the set of fibers of @ zE (p restricts to a two-to-one
covering on each fiber). In particular, Q� preserves the set of S1 fibers on the S1–bundle boundary of zE.
By extending this action over each D2 fiber, we can (smoothly) extend Q� to the tubular neighborhood
p�1.N.S//�†.S4;S/ such that p ı Q� D � ıp.

Finally, p ı Q� D � ıp implies that p ı Q�2 D �2 ıp D p, so that Q�2 is either the identity map, or else the
nontrivial deck transformation � on †.B4;S/. Note that, in either case, Q�4 is the identity map. However,
� acts by �–rotation on an equivariant meridian ˛ of a fixed point of � . Indeed, if � acted by reflection
or identity on ˛, then there would be fixed points disjoint from S . In the branched cover we then have
that Q� acts by �

2
–rotation on p�1.˛/. Thus Q� has order 4 and Q�2 D � , as desired. Finally, we note that

there are exactly two lifts, Q� and � ı Q� D Q�3, one for each choice of Qt .

Corollary 2.2 Let .K; �/ be a strongly negative amphichiral knot with double branched cover†.S3;K/.
Let S � B4 be a smooth properly embedded surface with boundary K which is invariant under an
extension of � to B4 (which we again call � ). Then there is a lift Q� W†.B4;S/!†.B4;S/ such that
Q�2D � (and hence Q�4D Id) and p ı Q� D � ıp. In fact , there are exactly two such lifts , namely Q� and Q�3.

Proof Take the double of†.B4;S/ to obtain a closed connected surface in S4, then apply Proposition 2.1
and restrict to †.B4;S/.

Proposition 2.3 Every strongly negative amphichiral knot .K; �/ bounds a smooth properly embedded
surface S � B4 which is invariant under the cone of � .

Proof First we fix a symmetric diagram for .K; �/, from which we will produce an equivariant unknotting
sequence. Since each equivariant pair of crossing changes produces an equivariant genus-2 cobordism,
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this will imply that .K; �/ is equivariantly cobordant to the unknot. Then we note that the unknot bounds
a smooth disk in B4 (given by the cone of the unknot), which is invariant under the cone of � .

For the equivariant unknotting sequence, separate K at the two fixed points of � into two arcs, ˛ and ˇ.
Now, for each equivariant pair of crossings between ˛ and ˇ, either ˛ is the overstrand in both crossings,
or ˇ is. Hence we can perform equivariant crossing changes so that ˛ is always the overstrand in crossings
between ˛ and ˇ. Then we can pull ˛ and ˇ apart to get a knot of the form J #�J , where the symmetry
exchanges J and�J . Finally, any unknotting sequence for J produces an equivariant unknotting sequence
for J #�J , as desired.

We conclude by lifting � to the double branched cover of K.

Proposition 2.4 Let .K; �/ be a strongly negative amphichiral knot. Then there exist exactly two lifts
of � to †.S3;K/. Moreover , each such lift Q� has Q�2 D � , where � W †.S3;K/! †.S3;K/ is the
nontrivial deck transformation action , and hence Q� has order 4.

Proof The proof is essentially the same as that of Proposition 2.1. It can also be obtained by restricting
the lifts in Corollary 2.2 to the boundary †.S3;K/, using the surface guaranteed by Proposition 2.3.

3 A condition on the determinant

It is implicit in the work of Goeritz [10] that the determinant of an amphichiral knot can be written as the
sum of two squares (see also [24] for the converse and [9] for a partial generalization). In this section we
reprove this theorem for strongly negative amphichiral knots, and show that the same condition must hold
on the square root of the determinant if K is equivariantly slice.

Theorem 1.2 Let .K; �/ be a strongly negative amphichiral knot. Then det.K/ is a sum of two squares.
Furthermore , if .K; �/ is equivariantly slice , then det.K/ is the square of a sum of two squares.

Before we give a proof of the theorem, we need a few lemmas.

Lemma 3.1 Let A be an abelian group , and let †.X;Y / be the double cover of a manifold X (possibly
with boundary), branched over a properly embedded submanifold Y � X with nontrivial deck trans-
formation involution � W †.X;Y /! †.X;Y /. Suppose that Hn.X IA/ D 0. Then ��.x/ D �x for all
x 2Hn.†.X;Y /IA/.

Proof Since Hn.X IA/D 0, the image of the transfer homomorphism T WHn.X IA/!Hn.†.X;Y /IA/

is 0. For any x 2Hn.†.X;Y /IA/, we have that xC ��.x/ is in the image of T and hence is 0. Thus
��.x/D�x.

Letting .X;Y / D .S3;K/ in Lemma 3.1, we observe that �� fixes only the identity element since
H1.†.S

3;K/IA/ has no elements of order 2.

Algebraic & Geometric Topology, Volume 24 (2024)
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Lemma 3.2 [4, Lemma 3] Let K be slice with slice disk D�B4 and A be a torsion-free abelian group.
If the image of H1.†.S

3;K/IA/ in H1.†.B
4;D/IA/ has order m, then jH1.†.S

3;K/IA/j Dm2.

Proof The proof is as in [4, Lemma 3], noting that since A is torsion free the universal coefficient
theorem does not introduce any unwanted Tor terms.

Lemma 3.3 Suppose .K; �/ has an equivariant slice disk D. Then the kernel of the map

i� WH1.†.S
3;K/IA/!H1.†.B

4;D/IA/;

induced by inclusion , is invariant under the induced action of any lift Q� W†.S3;K/!†.S3;K/ of � on
homology.

Proof Let x 2 ker.i�/ so that x is a boundary in †.B4;D/. By Corollary 2.2, there is an extension of
the lift Q� to †.B4;D/. Hence Q��.x/ is also a boundary, and hence contained in ker.i�/.

Proof of Theorem 1.2 By Proposition 2.4, � lifts to an order-4 action Q� on †.S3;K/ with Q�2 D � . In
particular, Lemma 3.1 implies that all orbits of Q�� WH1.†.S

3;K/IA/!H1.†.S
3;K/IA/ have order 4,

except the orbit consisting of the identity element. Taking coefficients A as the p–adic integers Zp for
some prime p, we have

jH1.†.S
3;K/IZp/j � 1 .mod 4/:

For p�3 .mod 4/, this implies that jH1.†.S
3;K/IZp/j is an even power of p. However, by the universal

coefficient theorem, H1.†.S
3;K/IZp/ŠH1.†.S

3;K/IZ/˝Zp and hence the prime decomposition
of jH1.†.S

3;K/IZ/j D det.K/ contains an even power of p. By the sum of two squares theorem, we
then have that det.K/ is the sum of two squares.

Now suppose that .K; �/ has an equivariant slice disk D � B4. By Lemma 3.2 with p–adic coef-
ficients, the kernel of H1.†.S

3;K/IZp/ ! H1.†.B
4;D/IZp/ is a square-root order subgroup of

H1.†.S
3;K/IZp/, and by Lemma 3.3, this subgroup is invariant under the action of Q��. In particular

this subgroup must consist of the identity plus a (finite) collection of order-4 orbits, so thatp
jH1.†.S

3;K/IZp/j � 1 .mod 4/:

As above, we then have that
p

det.K/ can be written as the sum of two squares.

4 An obstruction on Spinc–structures

In this section we prove Theorem 1.3, giving an obstruction to an alternating strongly negative amphichiral
knot bounding an equivariant slice disk D in B4. We do so by considering Spinc–structures on the
double branched cover and applying Donaldson’s theorem. This obstruction is based on the following
observation:
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Proposition 4.1 Let � W Y ! Y be a diffeomorphism of a closed 3–manifold Y . If � extends to a
diffeomorphism �0 WX !X of a 4–manifold X with @X D Y , then

��.Spinc.X /jY /D Spinc.X /jY ;

where �� W Spinc.Y /! Spinc.Y / is the induced map on the Spinc–structures on the boundary.

Proof Since �0 is a diffeomorphism, ��.Spinc.X /jY /D .�
0/�.Spinc.X //jY D Spinc.X /jY .

In order to use this proposition, take Y D†.S3;K/, X D†.B4;D/ and �D Q� W†.B4;D/!†.B4;D/

a lift of the strongly negative amphichiral symmetry from Corollary 2.2. In order to rule out that
Q��.Spinc.X /jY /D Spinc.X /jY , we will need to compute Q�� W Spinc.Y /! Spinc.Y / and also restrict
the possible subsets Spinc.X /jY � Spinc.Y / using Donaldson’s theorem. Propositions 4.5 and 4.7
combined allow us to compute Q�� W Spinc.Y /! Spinc.Y /, and Proposition 4.2 gives restrictions on
Spinc.X /jY � Spinc.Y /. See Section 5 for an example.

We recall the following characterization of Spinc–structures in terms of characteristic covectors which we
will use throughout this section. Let X be a smooth 4–manifold which is either closed with no 2–torsion
in H1.X /, or constructed by attaching 2–handles to the 4–ball with @X a rational homology sphere. Let
Q be the intersection form on X and Spinc.X / be the set of Spinc–structures of X . Then the first Chern
class gives a bijection between the Spinc–structures on X and the characteristic covectors of H2.X /; see
[11, Proposition 2.4.16]. More precisely,

Spinc.X /Š Char.H2.X // WD fu 2H2.X /
�
j u.x/�Q.x;x/ .mod 2/ for all x 2H2.X /g:

In the case that @X ¤∅ this identification induces a bijection

Spinc.@X /Š Char.H2.X //=2i.H2.X //;

where i WH2.X /!H2.X /
� is given by x 7!Q.x;�/ (see for example [21, Section 2.3]).

The following proposition gives restrictions on the set of Spinc–structures on a 3–manifold which extend
over a Z=2Z–homology 4–ball which it bounds. Analogous statements are discussed in [13, Section 2]
and [7, Theorem 5.1].

Proposition 4.2 Let X be a positive-definite smooth 4–manifold obtained by attaching 2–handles to
the 4–ball and with @X a rational homology sphere Y . Suppose that Y also bounds a Z=2Z–homology
4–ball W . The inclusion map X !X [Y �W induces an embedding �� W .H2.X /;Q/! .Zn; Id/, where
Q is the intersection form of X . Choosing a basis for H2.X /, �� is given by an n� n matrix A, and the
Spinc–structures on Y which extend over W are those of the form

AT.v/ .mod 2Q/ 2 Spinc.Y /D Char.H2.X //=im.2Q/;

where v 2Zn is any vector with all odd entries , and where elements of Char.H2.X //�Hom.H2.X /;Z/

are written in the dual basis.
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Proof Let Z D X [Y �W , and note that Z is positive definite (see eg [16, Proposition 7]). Hence,
by Donaldson’s theorem, there is an isomorphism of intersection forms .H2.Z/=Tor;QZ /Š .Z

n; Id/,
where nD b2.X /. We then have a map �� W .H2.X /;Q/! .Zn; Id/ induced by the inclusion � WX ,!Z.
Note that we may identify Char.H2.Z// with Spinc.Z/ (since H1.Z/ has no 2–torsion), and similarly
Char.H2.X // with Spinc.X /; see the discussion preceding Proposition 4.2. Applying Hom.�;Z/ gives
the map �� WH 2.Z/=Tor!H 2.X /, which induces a map �� W Char.H2.Z//! Char.H2.X // on Spinc–
structures. Recall as well that the restriction r W Spinc.X /! Spinc.Y / is given by the quotient map

r W Char.H2.X //! Char.H2.X //=2i.H2.X //;

where i WH2.X /!Hom.H2.X /;Z/ is given by x 7!Q.x;�/. Hence the restriction map from Spinc.Z/

to Spinc.Y / is given by r ı ��. We then claim that the image of r ı �� is precisely the Spinc–structures
on Y which extend over W . Indeed r is surjective, so all Spinc–structures on Y extend over X , and
hence a Spinc–structure on Y extends over W if and only if it extends over all of Z.

Combinatorially, we can compute this restriction as follows. Choose a basis for H2.X /, and the dual
basis for Hom.H2.X /;Z/. Then �� is given by a matrix A, and �� is given by AT. The characteristic
covectors of H2.Z/ are given by vectors v in Zn with all odd entries. Then the image of �� consists of
elements of all vectors of the form

ATv 2 Char.H2.X //D Spinc.X /;

written in the dual basis for Hom.H2.X /;Z/� Char.H2.X //. The image of r ı �� then consists of these
vectors modulo the column space of 2Q.

We now turn to computing Q�� W Spinc.†.S3;K//! Spinc.†.S3;K//. To do so, begin with a strongly
negative amphichiral alternating diagram for K, and let FC and F� be the pair of checkerboard surfaces
with FC and F� positive and negative definite, respectively. Note that FC and F� are exchanged by the
strongly negative amphichiral symmetry.

Definition 4.3 Take S4 as the unit sphere in R5. Define �swap W S
4! S4 as the involution

.x1;x2;x3;x4;x5/ 7! .x1;�x2;�x3;�x4;�x5/:

On the equatorial S3 D f.x1;x2;x3;x4; 0/ j x
2
1
C x2

2
C x2

3
C x2

4
D 1g, �swap restricts to the (unique2)

amphichiral symmetry � with two fixed points .˙1; 0; 0; 0; 0/. Finally, note that �swap is orientation-
preserving and exchanges the two hemispheres of S4.

With respect to this involution �swap, we can push FC and F� equivariantly into distinct hemispheres
of S4. By Proposition 2.1 there are two lifts, Q�swap and Q� 0swap, of �swap to an order-4 symmetry of

2Livesay [19] proved that up to conjugation there is a unique involution on S3 with exactly two fixed points.
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†.S4;FC[F�/. We have that Q�swapD Q�
0
swap ı� , where � is the nontrivial deck transformation involution

� W†.S4;FC[F�/!†.S4;FC[F�/. Using Lemma 3.1, this implies that

�. Q�swap/� D . Q�
0
swap/� WH2.†.S

4;FC[F�//!H2.†.S
4;FC[F�//:

This immediately implies the following proposition:

Proposition 4.4 Let Q�swap and Q� 0swap be the two lifts of �swap to †.S4;FC [F�/. These lifts induce
maps H2.†.B

4;FC//! H2.�†.B
4;F�// which are equal to ˙�� W H1.FC/! H1.F�/ under the

identification of H2.†.B
4;F˙// with H1.F˙/ from [12, Theorem 3].

We now use Q�swap to help us understand the action of Q� on Spinc–structures.

Proposition 4.5 Let .K; �/ be an alternating strongly negative amphichiral knot with checkerboard
surfaces FC and F�, and fix a lift Q� W†.S3;K/!†.S3;K/; see Proposition 2.4. The induced action
Q�� W Spinc.†.S3;K//! Spinc.†.S3;K// can be computed as follows. Let s 2 Spinc.†.S3;K//, let
r , r� and rC be the obvious restriction maps in the noncommutative diagram

Spinc.†.S3;K// Spinc.†.B4;FC// Spinc.†.S4;FC[F�//

Spinc.�†.B4;F�//

r rC

r�.Q� res
swap/
�

and let Ns 2 Spinc.†.S4;FC[F�// be such that r ı rC.Ns/D s. Then Q��.s/D r ı . Q� res
swap/

� ı r�.Ns/, where
Q� res

swap W Spinc.�†.B4;F�//! Spinc.†.B4;FC// is the map obtained by restricting Q�swap, and the lift
Q�swap is chosen to agree with Q� on †.S3;K/.

Proof By construction, . Q�swapj†.S3;K //
� D Q��. Hence the map

. Q�swap/
�
W Spinc.†.S4;FC[F�//! Spinc.†.S4;FC[F�//

restricts to Q�� W Spinc.†.S3;K//! Spinc.†.S3;K//. We then compute

Q��.s/D Q�� ı r ı rC.Ns/D r ı rC ı . Q�swap/
�.Ns/D r ı . Q� res

swap/
�
ı r�.Ns/;

where the final equality holds since Q�swap exchanges †.B4;FC/ and †.B4;F�/ in †.S4;FC[F�/.

We now consider the complementary checkerboard graph Gc.FC/, which has a vertex vi corresponding to
each planar region of the knot diagram complementary to FC and an edge corresponding to each crossing
in the knot diagram. Let i be the simple loop in FC running once counterclockwise around the region
corresponding to vi . Applying the isomorphism H1.FC/ŠH2.†.B

4;FC// from [12, Theorem 3], we
get an element vi 2H2.†.B

4;FC//. We call fvig the vertex generating set of H2.†.B
4;FC//, and we

declare the vertex generating set of H2.�†.B
4;FC// to be f�vig.

Definition 4.6 Fix a strongly negative amphichiral alternating knot diagram, let F˙ be the positive and
negative definite checkerboard surfaces and let Gc.F˙/ be the corresponding complementary checkerboard
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˛0i

Figure 2: An oriented edge of Gc.FC/ in black intersecting an edge of Gc.F�/ in red (left). The
orientation on the red edge is induced by the right-hand rule. On the right is the oriented arc ˛0i
induced from the oriented edge of Gc.FC/ in black.

graphs, embedded as dual planar graphs. The graphs Gc.F˙/ are compatibly oriented if their edges are
oriented so that intersecting dual edges satisfy the right-hand rule, as in the left of Figure 2.

Suppose Gc.F˙/ are compatibly oriented, order the vertices of each of Gc.F˙/ so that the strongly
negative amphichiral symmetry respects the orderings and enumerate the edges of each graph so that
intersecting edges have the same index; see Figure 6 for an example. We call the oriented incidence
matrices J˙ for Gc.F˙/ compatible. We use the notation J�C (resp. J��) to denote the matrix JC (resp. J�)
with the last row removed. Recall that, in an oriented incidence matrix A,

Ai;j D

8<:
1 if the j th edge begins at the i th vertex;
�1 if the j th edge terminates at the i th vertex;

0 otherwise:

The following proposition can be used to combinatorially compute the maps rC and r� from Proposition 4.5
in terms of oriented incidence matrices; see Remark 4.9.

Proposition 4.7 Let D be an alternating knot diagram with positive and negative definite checkerboard
surfaces FC and F�, respectively, and let Gc.F˙/ be compatibly oriented complementary checkerboard
graphs (see Definition 4.6). Then there is an orthonormal basis feig of H2.†.S

4;FC[F�// in bijection
with the crossings of D for which the maps H2.˙†.B

4;F˙//! H2.†.S
4;FC [F�//, induced by

inclusion , are given by the transposes .J˙/T of the oriented incidence matrices of Gc.F˙/ with respect to
the vertex generating sets for H2.˙†.B

4;F˙//.

Remark 4.8 The checkerboard surfaces FC and F� are always nonorientable, because they are homeo-
morphic and at most one checkerboard surface in any diagram can be orientable.

Proof Following [12, proof of Theorem 3], †.B4;FC/ (and similarly †.B4;F�/) can be constructed
as follows. Let D1 denote the manifold obtained by cutting open B4 along the trace of an isotopy which
pushes int.FC/ into int.B4/. The manifold D1 is homeomorphic to B4 and the part exposed by the cut
is given by a tubular neighborhood NC of FC in S3 Š @D1. Let D2 be another copy of D1, and let
� WNC!NC be the involution given by reflecting each fiber. Then

†.B4;FC/D .D1[�D2/=.x 2NC �D1 � �.x/ 2NC �D2/:
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.˛i/C

.˛i/�

˛i

Figure 3: The arcs .˛i/C and .˛i/� are contained in the horizontal and vertical checkerboard
surfaces, respectively. The green arrow indicates an isotopy between them in S3. Lifting this to
†.S3;K/, we see that the self pairing of the sphere ei is 1.

There is an isomorphism � W .H1.FC/;QFC/! .H2.†.B
4;FC//;QC/, where QFC is the Gordon–

Litherland form and QC is the intersection form, which is given as follows. Letting a be a 1–cycle in FC,

�.Œa�/D Œ.cone on a in D1/� .cone on �.a/ in D2/�:

In their interiors, the surfaces FC and F� in S3 intersect in a collection of k arcs ˛1; : : : ; ˛k , one for
each crossing of D. The I–subbundle of NC over ˛i is a disk D2

C.˛i/ � D1 with boundary Q̨ i , the
preimage of ˛i in †.S3;K/. (The disk D2

C.˛i/ is also the trace of ˛i under the isotopy pushing int.FC/
into int.B4/.) Note that D2

C.˛i/ is properly embedded in †.B4;FC/. Similarly, there is a disk D2
�.˛i/

properly embedded in †.B4;F�/, and gluing these disks along Q̨ i gives a sphere ei in †.S4;FC[F�/.

Note that e1; : : : ; ek are in correspondence with the edges of Gc.FC/ (and Gc.F�/). Furthermore, the
orientation on an edge Ei in Gc.FC/ induces an orientation on the corresponding ei as follows. First,
orient the arc ˛i going into the page of the knot diagram (away from the reader). Next, push the interior
of ˛i into the region corresponding to the terminal vertex of Ei and then out of the page of the diagram
(toward the reader) so that it is disjoint from FC [F�. Call the resulting arc ˛0i ; see Figure 2. Recall
that †.B4;FC/ D D1 [�D2 as an oriented manifold. Then the orientation of ˛0i � D1 determines
an orientation on the union of ˛0i � D1 with �˛0i � �D2, which is locally isotopic within †.S3;K/

to Q̨ i . This orientation on Q̨ i then determines an orientation on D2
C.˛i/ as its oriented boundary, and this

orientation on D2
C.˛i/ extends to an orientation on ei DD2

C.˛i/[D2
�.˛i/.

We now show that fe1; : : : ; ekg is an orthonormal basis for H2.†.S
4;FC[F�//. Note that

b2.†.S
4;FC[F�//D b2.†.B

4;FC//C b2.†.B
4;F�//;

since †.S3;K/ is a rational homology sphere. However, b2.†.B
4;F˙// D n˙ � 1, where n˙ is the

number of vertices of Gc.F˙/. From the Euler characteristic of the sphere of the knot diagram, we get 2D

nC�kCn� since Gc.FC/ and Gc.F�/ are dual graphs. Hence b2.†.S
4;FC[F�//Dk. Thus it suffices

to show that e1; : : : ; ek are orthonormal. Observe that ei and ej are disjoint for i¤j , so it is enough to show
that ei �ei D 1. Consider the arcs .˛i/˙ shown in Figure 3, where .˛i/˙ �F˙ and .˛i/C intersects .˛i/�
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vi

ej

vi

ej

Figure 4: If vi 2Gc.FC/ is the starting endpoint of an edge corresponding to ej , then ej �viD 1. The
magenta loop is the boundary of the gray disk ej \NC, and is oriented so that the arc coming out of
the page is isotopic (keeping the endpoints on K) to ˛0j (see Figure 2) in the complement of FC[F�.

at a single point. Observe that the preimages . Q̨ i/˙ �†.B4;F˙/ of .˛i/˙ bound disks D2
˙
.˛i/
0 parallel

to D2
˙
.˛i/ in †.B4;F˙/. There is an isotopy in S3 between .˛i/C and .˛i/� intersecting ˛i in a single

point, which induces an isotopy between . Q̨ i/C and . Q̨ i/�. Gluing D2
C.˛i/

0 to D2
�.˛i/

0 along the (image of
the) isotopy in†.S3;K/ defines a push-off of ei which has a single positive transverse intersection with ei .

Recall that an element vi 2H2.†.B
4;FC// of the vertex generating set is represented by a sphere which

intersects NC � †.B
4;FC/ in a loop i � FC. By construction, ej \†.B

4;FC/ is the disk D2
C. j̨ /

contained in NC � †.B
4;FC/. Hence vi � ej can be computed locally in NC. Diagrammatically (see

Figure 4), we draw @D1 D S3 and think of NC as a neighborhood of FC � S3. Specifically, vi � ej D 0

if the edge corresponding to ej and vi are not incident, vi � ej D 1 if the edge corresponding to ej begins
at vi , and vi � ej D �1 if the edge corresponding to ej terminates at vi . A similar argument applies to
the vertex generating set of H2.�†.B

4;F�//.

Remark 4.9 Proposition 4.7 combinatorially determines the maps

r˙ W Spinc.†.S4;FC[F�//! Spinc.˙†.B4;F˙//

from Proposition 4.5. Specifically, the maps r˙ are given by taking the duals of

H2.˙†.B
4;F˙//!H2.†.S

4;FC[F�//;

then restricting to characteristic vectors.

We conclude the section with a proof of Theorem 1.3 from the introduction:

Proof of Theorem 1.3 Let Y D†.S3;K/ and X˙ D†.B
4;F˙/. We identify each of H2.X˙/ with

the Z–span of Vert.Gc.F˙//nfv˙g, where fvC; v�g is the pair of �–invariant vertices removed when
defining J�

˙
. Note that X˙ can be constructed by attaching 2–handles to the 4–ball (see for example the

proof of Lemma 3.6 in [22]). Hence, using the dual basis for H2.X˙/
�, we may identify

Spinc.X˙/Š Char.Zn;A˙/ and Spinc.Y /Š Char.Zn;AC/=im.2AC/I
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see the discussion before Proposition 4.2. With respect to these choices of dual bases, we may choose
a lift Q� of � to Y so that Q��swap WH2.�X�/

�!H2.XC/
� is the identity matrix by Proposition 4.4; this

determines the map on Spinc–structures. Since Y is a rational homology sphere, b2.†.S
4;FC[F�//D

b2.†.B
4;FC//Cb2.†.B

4;F�//DnCn. Using the orthonormal basis for H2.†.S
4;FC[F�//ŠZ2n

from Proposition 4.7, we may identify

Spinc.†.S4;FC[F�//Š fv 2 Z2n
j v � .1; 1; : : : ; 1/T .mod 2/g:

By Proposition 4.7 (see also Remark 4.9), the maps r˙ in Proposition 4.5 are given by J�
˙

. Proposition 4.5
then shows that the map Q�� W Spinc.Y /! Spinc.Y / is determined by

Q��ŒJ�Cv�D ŒJ
�
�v� for all v 2 Z2n with v � .1; 1; : : : ; 1/T .mod 2/:

Finally, let D be an equivariant slice disk for K. By Proposition 4.2, the set of Spinc–structures of Y

which extend over †.B4;D/ is given by

S D fŒu� 2 Spinc.Y / j uDATv for some v 2 Zn with v � .1; 1; : : : ; 1/T .mod 2/g;

and by Corollary 2.2 there is a lift †.B4;D/!†.B4;D/ which restricts to the lift Q� on Y . Hence, by
Proposition 4.1, S is Q��–invariant.

5 An alternating slice strongly negative amphichiral example

In this section we give an example of a strongly negative amphichiral knot which Theorem 1.3 shows is
not equivariantly slice.

Example 5.1 Consider the slice knot K D 12a1105 along with the strongly negative amphichiral
alternating diagram shown in Figure 5. Theorem 1.3 obstructs K from being equivariantly slice. Note
that Theorem 1.2 does not provide an obstruction since det.K/D 172. Let FC (resp. F�) be the positive
(resp. negative) definite checkerboard surface for the knot diagram in Figure 5. In Figure 6 we draw
corresponding compatibly oriented complementary checkerboard graphs Gc.F˙/. The edges in each

Figure 5: A strongly negative amphichiral symmetry on 12a1105. The symmetry is �–rotation
within the plane of the diagram followed by a reflection across the plane of the diagram.
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u7

u6

u1

u5

u2

u4

u3

v7

v6

v1

v5

v2

v4

v3

e1

e2

e3

e4e5

e6

e7

e8

e9

e10
e11

e12

Figure 6: The pair of complementary checkerboard graphs of the alternating diagram for 12a1105

in Figure 5. They are exchanged by the strongly negative amphichiral symmetry. Gc.FC/ is black
and Gc.F�/ is red. The feig correspond to crossings in the knot diagram.

graph are enumerated by the crossings ei shown in Figure 6. Using u7 and v7 for the last row of the
oriented incidence matrices J˙ (which we remove), we have

J�C D

266666664

1 0 0 0 �1 1 0 0 0 0 0 0

�1 1 0 0 0 0 0 1 0 0 0 0

0 �1 1 0 0 0 0 0 1 0 0 1

0 0 �1 1 0 0 0 0 0 1 0 �1

0 0 0 �1 1 0 0 0 0 0 1 0

0 0 0 0 0 �1 1 0 0 0 0 0

377777775
;

J�� D

266666664

0 0 0 0 0 0 0 0 �1 1 0 1

0 1 0 0 0 0 0 �1 1 0 0 0

1 0 0 0 0 �1 �1 1 0 0 0 0

0 0 0 0 1 1 1 0 0 0 �1 0

0 0 0 1 0 0 0 0 0 �1 1 0

0 0 1 0 0 0 0 0 0 0 0 �1

377777775
:

From these we can compute the Goeritz matrix for FC:

AC D J�C.J
�
C/

T
D

266666664

3 �1 0 0 �1 �1

�1 3 �1 0 0 0

0 �1 4 �2 0 0

0 0 �2 4 �1 0

�1 0 0 �1 3 0

�1 0 0 0 0 2

377777775
:
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We now combinatorially enumerate all possible lattice embeddings A W .Z6;AC/ ! .Z6; Id/, up to
automorphisms of Z6. Using a computer program3 we enumerate integer matrices A satisfying ATADAC,
up to permutations and sign changes of the rows of A. We find two possibilities for A, which we denote
by A1 and A2; their transposes are

AT
1 D

266666664

�1 1 1 0 0 0

0 �1 0 1 1 0

1 0 1 0 �1 �1

�1 �1 0 �1 0 1

0 0 �1 1 �1 0

1 0 0 0 0 1

377777775
and AT

2 D

266666664

�1 1 1 0 0 0

0 �1 0 1 1 0

�1 0 �1 �1 0 1

1 1 0 0 1 �1

0 0 �1 1 �1 0

1 0 0 0 0 1

377777775
:

Neither matrix satisfies the Q��–invariance condition in Theorem 1.3. We will show this for the matrix A1;
the computation for A2 is similar. For A1, we compute that the set

S D fŒu� 2 Spinc.Y / j uDAT
1v for some v 2 Zn with v � .1; 1; : : : ; 1/T .mod 2/g

consists of the 17 classes represented by the following vectors:266666664

1

1

�2

�2

1

�2

377777775
;

266666664

3

�3

2

0

�1

�2

377777775
;

266666664

3

1

0

�2

�1

�2

377777775
;

266666664

�1

1

�4

4

�1

0

377777775
;

266666664

1

�3

4

�2

�1

0

377777775
;

266666664

1

1

�2

4

�3

0

377777775
;

266666664

3

�1

�2

2

�3

0

377777775
;

266666664

�1

�3

6

�4

�1

2

377777775
;

266666664

�1

1

0

2

�3

2

377777775
;

266666664

1

�1

0

�2

3

�2

377777775
;

266666664

1

3

�6

4

1

�2

377777775
;

266666664

�3

1

2

�2

3

0

377777775
;

266666664

�1

�1

2

�4

3

0

377777775
;

266666664

�1

3

�4

2

1

0

377777775
;

266666664

1

�1

4

�4

1

0

377777775
;

266666664

�3

�1

0

2

1

2

377777775
;

266666664

�3

3

�2

0

1

2

377777775
:

We will show that this collection S of Spinc–structures on †.S3;K/ is not Q��–invariant. Specifically, we
will show that the Spinc–structure represented by the second vector sD .3;�3; 2; 0;�1;�2/T is mapped
by Q�� to a Spinc–structure not contained in S .

Consider the vector
QsD .7; 3; 3; 3; 1;�3;�5; 1; 1; 1; 1; 1/T 2 Z12:

Multiplying, we see that J�C.Qs/D s and J��.Qs/D .1; 3; 16;�8; 3; 2/T. A straightforward linear algebra
computation shows that .1; 3; 16;�8; 3; 2/T is not equivalent modulo 2AC to any of the 17 vectors in S .
Hence Q��ŒJ�C.Qs/�D ŒJ

�
�.Qs/� is not in S . Along with a similar computation for A2, this implies that K is

not equivariantly slice, by Theorem 1.3.

3The equation ATADAC implies that each column of A has bounded norm, so there are finitely many possibilities to check
for A.

Algebraic & Geometric Topology, Volume 24 (2024)



Equivariantly slicing strongly negative amphichiral knots 913

6 Heegaard Floer correction terms

In this section we give a necessary condition on the Heegaard Floer correction terms d.†.S3;K/; s/,
also known as d–invariants, for a knot to be strongly negative amphichiral. In the case of periodic knots,
a similar type of condition was proved by Jabuka and Naik in [17]. As in the case of periodic knots, we
first need invariance of the d–invariants.

Lemma 6.1 Let Y be a rational homology 3–sphere with s 2 Spinc.Y / and � W Y ! Y an orientation-
reversing diffeomorphism. Then

d.Y; ��.s//D�d.Y; s/:

Proof This follows directly from the diffeomorphism invariance of Heegaard Floer homology.

Along with the following lemma, this implies our final theorem below.

Lemma 6.2 For any knot K � S3, the deck transformation involution � of the double branched cover
†.S3;K/ acts on the set of Spinc–structures by conjugation.

Proof The first Chern class c1 W Spinc.†.S3;K// ! H 2.†.S3;K/IZ/ is an isomorphism, since
†.S3;K/ is a Z=2Z homology sphere, and by Poincaré duality we also have an isomorphism

H 2.†.S3;K/IZ/ŠH1.†.S
3;K/IZ/:

By Lemma 3.1, � acts as the negative of the identity on H1.†.S
3;K/IZ/, which then induces conjugation

on the set of Spinc–structures under these natural isomorphisms.

Theorem 1.4 Let .K; �/ be a strongly negative amphichiral knot and let Q� be a lift of � to †.S3;K/

(see Proposition 2.1). Then the orbits of the d–invariants of †.S3;K/ under the action of Q� satisfy:

� There is exactly one orbit fs0g of order 1. Moreover , d.†.S3;K/; s0/D 0.

� Other orbits fs; Q�.s/; Q�2.s/; Q�3.s/g have order 4, and d.†.S3;K/; Q� i.s//D .�1/ir for some r 2Q.

Proof Since Q� has order 4, the Q��–orbits of the Spinc–structures will have order 1, 2 or 4. Let � D Q�2

be the deck transformation action on †.S3;K/, and note that �� acts on the set of Spinc–structures by
conjugation by Lemma 6.2. Hence, if a Spinc–structure is not fixed by conjugation, then it will have a
Q��–orbit of length 4. On the other hand, since †.S3;K/ is a Z=2Z–homology sphere, there is a unique
Spinc–structure s0 fixed by conjugation. Furthermore, since jH1.†.S

3;K/j is odd there are an odd
number of Spinc–structures, and hence s0 has a Q��–orbit of length 1.

Example 6.3 The d–invariants of †.S3; 61/, appropriately oriented, are

�
4
9
;�4

9
; 0; 0; 0; 2

9
; 2

9
; 8

9
; 8

9
:

Since these are not of the form required by Theorem 1.4, 61 is not strongly negative amphichiral. We
compare this to the strongly negative amphichiral knot 63, for which †.S3; 63/ has d–invariants

0; 8
13
;� 8

13
; 8

13
;� 8

13
; 6

13
;� 6

13
; 6

13
;� 6

13
; 2

13
;� 2

13
; 2

13
;� 2

13
:
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7 A table of slice strongly negative amphichiral prime knots with 12 or
fewer crossings

We conclude with a table of all slice strongly negative amphichiral prime knots with 12 or fewer crossings.
These are categorized as follows:

(Rib) Knots for which we have found an equivariant ribbon diagram. We indicate this with a pair of
equivariant bands (in red), which reduce the knot to a 3–component unlink.

(Det) Knots for which Theorem 1.2 obstructs an equivariant slice disk.

(Spinc) Knots for which the obstruction from Theorem 1.2 fails, but Theorem 1.3 obstructs an equivariant
slice disk.

(Unk) Knots for which we were unable to find or obstruct an equivariant slice disk.

We also include the knot determinant and whether the knot is equivariantly slice.

name diagram eq. slice category det

89 yes (Rib) 52

1099 yes (Rib) 92

10123 no (Det) 112
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name diagram eq. slice category det

12a435 no (Det) 152

12a458 unknown (Unk) 172

12a819 yes (Rib) 132

12a887 unknown (Unk) 172

12a990 no (Det) 152
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name diagram eq. slice category det

12a477 unknown (Unk) 132

12a1019 no (Det) 192

12a1105 no (Spinc) 172

12a1202 no (Spinc) 132

12a1225 no (Det) 152
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name diagram eq. slice category det

12a1269 yes (Rib) 132

12n462 yes (Rib) 52

12n706 no (Det) 72
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Computing the Morava K–theory of real Grassmannians
using chromatic fixed point theory

NICHOLAS J KUHN

CHRISTOPHER J R LLOYD

We study K.n/�.Grd .Rm//, the 2–local Morava K–theories of the real Grassmannians, about which
very little has been previously computed. We conjecture that the Atiyah–Hirzebruch spectral sequences
computing these all collapse after the first possible nonzero differential d2nC1�1, and give much evidence
that this is the case.

We use a novel method to show that higher differentials can’t occur: we get a lower bound on the size of
K.n/�.Grd .Rm// by constructing a C4–action on our Grassmannians and then applying the chromatic
fixed point theory of the authors’ previous paper. In essence, we bound the size of K.n/�.Grd .Rm// by
computing K.n� 1/�.Grd .Rm/C4/.

Meanwhile, the size of E2nC1 is given by Qn–homology, where Qn is Milnor’s nth primitive mod 2
cohomology operation. Whenever we are able to calculate thisQn–homology, we have found that the size
of E2nC1 agrees with our lower bound for the size of K.n/�.Grd .Rm//. We have two general families
where we prove this: m� 2nC1 and all d , and d D 2 and allm and n. Computer calculations have allowed
us to check many other examples with larger values of d .

55M35, 55N20; 55P91, 57S17

1 Introduction

Let Grd .Rm/ be the real Grassmannian of k–planes in Rm, a much studied compact manifold of dimension
d.m� d/ admitting the structure of a CW complex with

�
m
d

�
“Schubert cells”.

Much is known about the ordinary cohomology of these spaces:

(1) H�.Grd .Rm/IZ=2/ is generated by Stiefel–Whitney classes satisfying standard relations. It has
total dimension

�
m
d

�
.

(2) H�.Grd .Rm/IQ/ is generated by Pontryagin classes, along with, in some cases, an odd-dimensional
class. For fixed d , and � D 0 or 1, the total dimension of H�.Grd .R2��C2l/IQ/ is polynomial of
degree bd=2c as a function of l � 0.

(3) If m is even, then Grd .Rm/ is oriented. Furthermore, the inclusion Grd .Rm�1/ ,! Grd .Rm/
induces an epimorphism in rational cohomology.
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Open Access made possible by subscribing institutions via Subscribe to Open.
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920 Nicholas J Kuhn and Christopher J R Lloyd

(4) Nontrivial torsion in H�.Grd .Rm/IZ/ has order 2. The mod 2 Bockstein spectral sequence (BSS)
collapses after the first differential. Equivalently, the mod 2 Adams spectral sequence (ASS)
converging to H�.Grd .Rm/IZ/ collapses at E2.

Much less is known about other cohomology theories applied to these Grassmannians. In this paper,
we study K.n/�.Grd .Rm// for n � 1. Here K.n/�.X/ denotes the 2–local nth Morava K–theory of a
space X , a graded vector space over the graded field K.n/� D Z=2Œv˙n � with jvnj D 2nC1 � 2. We let
k.n/ denote the connective cover of K.n/: k.n/� D Z=2Œvn�.

Viewing HQ as K.0/ and HZ as k.0/, our discovery is that analogues of statements (2)–(4) above
appear to hold for all n, with the Atiyah–Hirzebruch spectral sequence (AHSS) replacing the Bockstein
spectral sequence in statement (4). Furthermore, the analogue of statement (1) holds through a much
bigger range than one would expect from dimension considerations.

In the next two subsections, we describe our main results.

1.1 Results proved using chromatic fixed point theory

Given a finite complex X and n� 0, we let kn.X/D dimK.n/� K.n/
�.X/.

Theorem 1.1 If m � 2nC1, then kn.Grd .Rm// D
�
m
d

�
. Thus , in this range , the AHSS converging to

K.n/�.Grd .Rm// collapses at E2.

We note that this collapsing range is surprisingly large, as dimension considerations just imply collapsing
if d.m� d/ < 2nC1.

For larger m, we have the following lower bound.

Theorem 1.2 Let mD 2nC1� �C 2l with � D 0 or 1, and l � 0. Then

kn.Grd .R
m//�

bd=2cX
iD0

�2nC1��
d�2i

�� l
i

�
:

Conjecture 1.3 Equality always holds in this last theorem.

The biggest novelty of this paper is our method for proving Theorems 1.1 and 1.2: we make use of
chromatic fixed point theory to prove these nonequivariant results.

The blue shift theorem of Barthel, Hausmann, Naumann, Nikolaus, Noel and Stapleton [2] says that if C
is a finite cyclic p–group and X is a finite C–CW complex, then

zK.n/�.X/D 0 D) zK.n� 1/�.XC /D 0I

see also Balderrama and the first author [1]. In [8], we upgraded this. Specialized to cyclic groups, [8,
Theorem 2.17] says the following.

Algebraic & Geometric Topology, Volume 24 (2024)
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Theorem 1.4 If C is a finite cyclic p–group , and X is a finite C–CW complex , then

kn.X/� kn�1.X
C /:

Note that, in these statements, K.n/� means Morava K–theory at the prime p.

As
�
m
d

�
is an evident upper bound for kn.Grd .Rm//, to prove Theorem 1.1, it suffices to show that

kn.Grd .Rm//�
�
m
d

�
in the stated range. Using Theorem 1.4, we will show this by induction on n using

a C2–action on Grd .Rm/ induced by an m–dimensional real representation of C D C2.

We will similarly prove Theorem 1.2 for n � 1 by using a C4–action on Grd .Rm/ induced by an
m–dimensional real representation of C D C4.

In both cases, it will be quite easy to compute kn�1.Grd .Rm/C /.

Details of this will be in Section 2.

1.2 Results about the Qn–homology of the Grassmannians

Conjecture 1.3 follows from a conjectural calculation that only involves H�.Grd .Rm/IZ=2/, viewed as
a module over the Steenrod algebra.

LetQn for nD0; 1; 2; : : : be the Milnor primitives: the elements in the mod 2 Steenrod algebra recursively
defined by Q0 D Sq1, and Qn D ŒQn�1;Sq2

n

�. These satisfy Q2n D 0, and we let kQn
.X/ denote the

total dimension of the Qn–homology of X ,

H�.X IQn/D
Z�.X IQn/

B�.X IQn/
;

where
Z�.X IQn/D kerfQn WH�.X IZ=2/!H�C2

nC1�1.X IZ=2/g;

B�.X IQn/D imfQn WH��2
nC1C1.X IZ=2/!H�.X IZ=2/g:

As will be reviewed in Section 3.1, the first differential in the AHSS converging to K.n/�.X/ is d2nC1�1,
with formula

d2nC1�1.x/DQn.x/vn

for all x 2E�;02 .X/DH�.X IZ=2/. This makes it not hard to check the next lemma.

Lemma 1.5 If X is a finite complex , kQn
.X/� kn.X/ is always true , and the following are equivalent :

(a) kQn
.X/D kn.X/;

(b) the AHSS , when n� 1, or the BSS , when nD 0, computing K.n/�.X/ collapses at E2nC1 ;

(c) the ASS computing k.n/�.X/ collapses at E2.

We apply this to our situation. First, Theorem 1.1 has the following nontrivial algebraic consequence.

Algebraic & Geometric Topology, Volume 24 (2024)



922 Nicholas J Kuhn and Christopher J R Lloyd

Corollary 1.6 If m� 2nC1, then Qn acts trivially on H�.Grd .Rm/IZ=2/.

For an algebraic proof of this result using the methods of Section 3.5, see the second author’s thesis [10,
page 75].

For m> 2nC1, we believe the following is true.

Conjecture 1.7 Let mD 2nC1� �C 2l with � D 0 or 1, and l � 0. Then

kQn
.Grd .R

m//D

bd=2cX
iD0

�2nC1��
d�2i

�� l
i

�
:

Comparison with Theorem 1.2 shows that when Conjecture 1.7 is true, one can conclude

� kQn
.Grd .Rm//D kn.Grd .Rm//, and Conjecture 1.3 is true;

� the AHSS computing K.n/�.Grd .Rm// collapses at E2nC1 ;

� the ASS computing k.n/�.Grd .Rm// collapses at E2;

� kn.Grd .R2
nC1��C2l// is polynomial of degree bd=2c as a function of l .

Known rational calculations imply that the conjecture is true when nD 0. It is also easy to show that the
conjecture is true when d D 1, and one calculates

kn.Gr1.Rm//D
�
m if 1�m� 2nC1;
2nC1� � if mD 2nC1� �C 2l:

With much more work we prove the following.

Theorem 1.8 Conjecture 1.7 is true when d D 2. Thus the Atiyah–Hirzebruch spectral sequence com-
puting K.n/�.Gr2.Rm// collapses at E2nC1 , the Adams spectral sequence computing k.n/�.Gr2.Rm//
collapses at E2, and we have the calculation

kn.Gr2.Rm//D
��m
2

�
if 2�m� 2nC1;�

2nC1��
2

�
C l if mD 2nC1� �C 2l:

We are firm believers in our conjectures. For more evidence, the second author has made extensive
computer calculations verifying Conjecture 1.7 in hundreds more cases with larger values of d ; see the
tables in the appendix.

For d � 2, computing the size of H�.Grd .Rm/IQn/ seems tricky. We have organized our efforts by
studying how these numbers change as m is increased as follows.

Let Cd .Rm/ denote the cofiber of the inclusion Grd .Rm�1/ ! Grd .Rm/, so there is a cofiber se-
quence Grd .Rm�1/

i
�! Grd .Rm/

p
�! Cd .R

m/. In Section 3.3, Cd .Rm/ is identified as the Thom
space of the canonical normal bundle over Grd�1.Rm�1/, and in Section 3.4 we study the Qn–module
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zH�.Cd .R
m/IZ=2/, viewed as H�.Grd�1.Rm�1/IZ=2/ equipped with an explicit twisted Qn–action.

One has an induced short exact sequence of modules over the Steenrod algebra

0! zH�.Cd .R
m/IZ=2/

p�
�!H�.Grd .R

m/IZ=2/ i
�

�!H�.Grd .R
m�1/IZ=2/! 0;

inducing a long exact sequence on Qn–homology.

When m is even, we see much orderly behavior.

Theorem 1.9 Let m be even.

(a) Hd.m�d/.Grd .Rm/IQn/' Z=2, ie the nonzero top-dimensional cohomology class is not in the
image of Qn for all n.

(b) The chain complex
�
zH�.Cd .R

m/IQn/
�

is dual to the chain complex�
Hd.m�d/��.Grd�1.R

m�1/IQn/
�
:

(c) If Conjecture 1.7 is true for .n; d;m � 1/ and .n; d � 1;m � 1/, then it is true for .n; d;m/.
Furthermore , Grd .Rm/ will then be k.n/–oriented , and the cofiber sequence above will induce
short exact sequences

0! zH�.Cd .R
m/IQn/

p�
�!H�.Grd .R

m/IQn/
i�
�!H�.Grd .R

m�1/IQn/! 0;

0! zK.n/�.Cd .R
m//

p�
�!K.n/�.Grd .R

m// i
�

�!K.n/�.Grd .R
m�1//! 0:

We prove Theorem 1.9 in Section 4. We make use of the additive basis fs�g dual to the classical Schubert
cells. Here � runs through partitions having at most d parts, each no bigger than m� d . In [9], Cristian
Lennart gave a combinatorial formula for Qn.s�/, and we use this to prove (a). Duality statement (b)
follows quite formally from (a), and (c) follows easily from (b).

When m is odd, the analogues of statements (a) and (b) are false, and, for d � 3, the full behavior of the
connecting map in the Qn–homology long exact sequence,

ı WH�.Grd .R
m�1/IQn/! zH�C2

nC1�1.Cd .R
m/IQn/;

is as yet unclear to the authors. In Section 6, we will prove analogues of Theorems 1.1 and 1.2 for
Cd .R

m/, and then speculate on behavior of ı that would be compatible with all of our computations.

However, when d D 2, we have the following result.

Theorem 1.10 Let m> 2nC1 be odd. Then kQn
.C2.Rm//D 2nC1� 2 and the map

zH�.C2.R
m/IQn/

p�
�!H�.Gr2.Rm/IQn/

is zero , so there is a short exact sequence

0!H�.Gr2.Rm/IQn/
i�
�!H�.Gr2.Rm�1/IQn/

ı
�! zH�C2

nC1�1.C2.R
m/IQn/! 0:
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From this, Theorem 1.8 quickly follows and one can deduce that, in this case, there is a short exact
sequence

0!K.n/�.Gr2.Rm//
i�
�!K.n/�.Gr2.Rm�1//

ı
�! zK.n/�C1.C2.R

m//! 0:

We prove Theorem 1.10 in Section 5. The tools we use are very different from those used in proving
Theorem 1.9: we work with the classical presentation ofH�.Grd .Rm/IZ=2/ as a ring of Stiefel–Whitney
classes.

1.3 Comparison with other work

When comparing our work to what has come before, the first thing to say is that the outcome of our calcu-
lations — though not the methods — are in line with the classical calculations first made by C Ehresmann
in 1937 [3]. He determined the additive structure of both H�.Grd .Rm/IZ=2/ and H�.Grd .Rm/IQ/.
He also showed that all the torsion in H�.Grd .Rm/IZ/ was of order 2; in modern terms this is equivalent
to showing that the Bockstein spectral sequence computing H�.Grd .Rm/IZ/ collapses after the first
nonzero differential given by Q0 D Sq1 D ˇ.

Calculating the MoravaK–theories of Grd .R1/DBO.d/was done first by Kono and Yagita [7], and then,
with a simpler proof, by Kitchloo and Wilson [6]. Again, the AHSS computing K.n/�.BO.d// collapses
after the first nonzero differential, but the collapsing is for an elementary reason: H�.BO.d/IQn/ is
concentrated in even degrees. Indeed, one quickly learns that the complexification map BO.d/!BU.d/

induces an epimorphism K.n/�.BU.d//!K.n/�.BO.d//, so K.n/�.BO.d// is generated by Chern
classes c1; : : : ; cd .

An equivalent statement is that H�.BO.d/IQn/ is generated by the classes w21 ; : : : ; w
2
d

. These will still
be permanent classes in the AHSS converging to K.n/�.Grd .Rm//, but now we have odd-dimensional
classes as well, with the number of these seemingly growing as d and m grow.

Finally, we point out that we do not attempt to describe K.n/�.Grd .Rm// as a K.n/�–algebra. Our
results do tell us something about this, however. In the situation of Theorem 1.1, the known algebra
H�.Grd .Rm/IZ=2/˝K.n/� will be an associated graded. Similarly, whenever our conjecture is valid,
H�.Grd .Rm/IQn/˝K.n/� would be an associated graded of the K.n/�–algebra K.n/�.Grd .Rm//.
What is still needed, and might be necessary to prove our conjectural collapsing in general, are sensible
constructions of classes in odd degrees.

Acknowledgements

Kuhn is a PI of RTG NSF grant DMS-1839968, which partially supported the research of Lloyd.

2 The proofs of Theorems 1.1 and 1.2

In this section we prove Theorems 1.1 and 1.2 by using our chromatic fixed point theorem Theorem 1.4.
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2.1 A fixed point formula

Let G be a finite group, and let V be an m–dimensional real representation of G. Then Grd .V /, the
space of d–planes in V , is a model for Grd .Rm/ with an evident G–action. Here we describe Grd .V /G ,
its space of G–fixed points.

To state this, we need some notation. Let V1; : : : ; Vk be the irreducible real representations of G, let
ri D dimR Vi , and let Di D EndRŒG�.Vi ; Vi /. Each of the endomorphism algebras Di will be a finite-
dimensional real division algebra, and thus isomorphic to R, C, or H, and dimR Di will divide ri .

Proposition 2.1 If V D V m1

1 ˚ � � �˚V
mk

k
, then there is a homeomorphism

Grd .V /
G
D

G
j1r1C���CjkrkDd

Grj1
.Dm1

1 /� � � � �Grjk
.Dmk

k
/:

Proof The fixed point space Grd .V /G will be the space of sub–G–modules W <V of real dimension d .
Such aG–moduleW will decompose canonically asW DW1˚� � �˚Wk , withWi <V

mi

i . If diDdimRWi ,
then d1C � � �C dk D d . Thus we have a decomposition

Grd .V /
G
D

G
d1C���CdkDd

Grd1
.V

m1

1 /G �Grd2
.V

m2

2 /G � � � � �Grdk
.V

mk

k
/:

A submodule Wi of V mi

i must be isomorphic to V ji for some j ; thus Grdi
.V

m1

i /G will be empty unless
di D jiri for some ji .

Finally, using that HomRŒG�.V
ji

i ; V
mi

i /D HomD.D
ji ;Dmi /, one deduces that the submodules of V mi

i

isomorphic to V ji

i correspond to the D–subspaces of Dmi of dimension ji over D. Thus there is a
homeomorphism

Grjiri
.V

mi

i /G D Grji
.Dmi

i /:

Corollary 2.2 If V D V m1

1 ˚ � � �˚V
mk

k
, then , for any n,

kn.Grd .V /
G/D

X
j1r1C���CjkrkDd

kn.Grj1
.Dm1

1 // � � � kn.Grjk
.Dmk

k
//:

Proof A consequence of the Künneth theorem for K.n/� is that kn.X �Y /D kn.X/kn.Y /. Thus the
corollary follows from the proposition.

Remark 2.3 If D D C or H, then Grd .Dm/ has a CW structure with
�
m
d

�
cells that are all even-

dimensional, and thus kn.Grd .Dm//D
�
m
d

�
for all n.
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2.2 Proof of Theorem 1.1

Theorem 1.1 says that if m� 2nC1 then kn.Grd .Rm//D
�
m
d

�
. Using Theorem 1.4 and Proposition 2.1,

we prove this by induction on n.

The nD 0 case of the theorem is easy to check, as

Grd .R
0/D

�
� if d D 0;
∅ otherwise;

and Grd .R
1/D

�
� if d D 0; 1;
∅ otherwise:

For the inductive step, assume that if p � 2n then kn�1.Grd .Rp//D
�p
d

�
.

Let m� 2nC1. As it is clear that kn.Grd .Rm//�
�
m
d

�
, our goal is to show that kn.Grd .Rm//�

�
m
d

�
.

Let C2 be the cyclic group of order 2. To get our needed lower bound, our strategy will be to make Rm

into a C2–module, and then apply Theorem 1.4.

The group C2 has two irreducible 1–dimensional real representations; call them L1 and L2. Since
m � 2nC1, we can write m as m D pC q with both p � 2n and q � 2n. Now let V D Lp1 ˚L

q
2, an

m–dimensional real representation of C2.

Applying Proposition 2.1, we see that

Grd .V /
C2 D

G
iCjDd

Gri .Rp/�Grj .Rq/:

Applying Theorem 1.4 to this, we learn that

kn.Grd .R
m//�

X
iCjDd

kn�1.Gri .Rp//kn�1.Grj .Rq//

D

X
iCjDd

�p
i

��q
j

�
(by inductive hypothesis)

D

�m
d

�
:

Remark 2.4 The same inductive proof can be used to prove the classical result that

dimZ=2H
�.Grd .R

m/IZ=2/D
�m
d

�
for all m and d , with our chromatic fixed point theorem Theorem 1.4 replaced by the classical the-
orem of Ed Floyd [4, Theorem 4.4]: if the cyclic group Cp acts on a finite CW complex X , then
dimZ=pH

�.X IZ=p/� dimZ=pH
�.XCp IZ=p/. It would be interesting to know if this argument was

known to Floyd, or others, like Bob Stong, who regularly worked with these sorts of group actions.
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2.3 Proof of Theorem 1.2

The strategy of the proof of Theorem 1.2 is the same as the proof in the last subsection: we get a lower
bound on kn.Grd .Rm// by letting a cyclic 2–group act on Rm and applying Theorem 1.4.

In this case, the representation theory of C2 is not rich enough to give us a big enough lower bound, but a
well chosen real representation of the group C4 of order 4 works better. Curiously, in our calculation of
kn�1 of the resulting fixed point space, we are able to use our already proven Theorem 1.1, so the proof
is not by induction, but more direct.

The group C4 has three irreducible real representations: L1 and L2 of dimension 1, and R of real
dimension 2. Note that EndRŒC4�.R/'C.

Now let mD 2nC1� �C 2l with � D 0 or 1, and l � 0. We define an m–dimensional real representation
V of C4 by V D L2

n

1 ˚L
2n��
2 ˚Rl .

Applying Proposition 2.1, we see that

Grd .V /
C4 D

G
jCkC2iDd

Grj .R2
n

/�Grk.R
2n��/�Gri .Cl/:

Applying Theorem 1.4 to this, we learn that

kn.Grd .R
m//�

X
jCkC2iDd

kn�1.Grj .R2
n

//kn�1.Grk.R
2n��//kn�1.Gri .Cl//

D

X
jCkC2iDd

�2n
j

��2n��
k

�� l
i

�
(using Theorem 1.1)

D

X
i

� X
jCkDd�2i

�2n
j

��2n��
k

��� l
i

�
D

X
i

�2nC1��
d�2i

�� l
i

�
:

3 The Qn homology of Grd.Rm/: background material

3.1 The AHSS and the ASS for Morava K–theory

Let n� 1. We recall the structure of the AHSS converging to K.n/�.X/ (as always, in this paper, with
p D 2). It is a spectral sequence of graded K.n/� D Z=2Œv˙n � algebras with

E
�;?
2 .X/DH�.X IK.n/?/DH�.X IZ=2/Œv˙n �:

Here vn has cohomological degree 2� 2nC1.
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Sparseness of the rows implies that the differential dr will be zero unless r D s.2nC1 � 2/C 1 for
some s. The first possible nonzero differential, d2nC1�1, satisfies the following formula [15]: given
x 2E

�;0
2 .X/DH�.X IZ=2/,

d2nC1�1.x/DQn.x/vn:

It follows that E2nC1.X/ ' H�.X IQn/Œv
˙
n �, and so the dimension of E2nC1.X/ as a K.n/�–vector

space will equal kQn
.X/, the dimension of the Qn–homology of X . One immediately deduces part of

Lemma 1.5: kQn
.X/D kn.X/ if and only if the AHSS converging to K.n/�.X/ collapses at E2nC1.X/.

To continue with the proof of Lemma 1.5, let cE�;?r .X/ denote the terms of the AHSS computing
k.n/�.X/, a 4th quadrant spectral sequence. Note that cE�;?2 DH�.X IZ=2/Œvn� embeds in E�;?2 .X/D

H�.X IZ=2/Œv˙n �, and equals it for ?� 0, and that the latter spectral sequence is obtained from the former
by inverting vn.

It follows that cE�;?
2nC1.X/ D E

�;?

2nC1.X/ for ? < 0, with the map on the 0–line between the spectral
sequences corresponding to the epimorphism Z�.X IQn/�H�.X IQn/. From this, one sees that any
higher differential in the k.n/�.X/ AHSS would be detected in the K.n/�.X/ AHSS. Since this second
spectral sequence is the localization of the first, we can conclude that the K.n/�.X/ AHSS collapses at
E2nC1.X/ if and only if the k.n/�.X/ AHSS collapses at cE2nC1.X/.

Next we note that the AHSS spectral sequence cE�;?r .X/ identifies with the ASS computing k.n/�.X/
with suitable reindexing, with cE�;?

2nC1.X/ corresponding to the Adams E2 term. Firstly, a result of
C R F Maunder [11] implies that the AHSS converging to ŒX; k.n/�� can be constructed by taking the
Postnikov filtration of the spectrum k.n/. But the Postnikov tower for k.n/ is also an Adams tower: as
described in the survey paper [14, Section 5], there is a cofibration sequence

†2
nC1�2k.n/

vn
�! k.n/ �

�!HZ=2
Qn
�!†2

nC1�1k.n/

such that †2
nC1�1� ı NQn DQn and � induces the epimorphism A! A=AQn on mod 2 cohomology.

Finally, we note that, when nD 0, one still has the cofibration sequence as above, now with v0 D 2, so
that the ASS for k.0/DHZ is similarly related to the Bockstein spectral sequence.

3.2 The description of H �.Grd.Rm/IZ=2/ via Stiefel–Whitney classes

We recall classical results that are either explicitly in [12] or can easily be deduced from the material
there.

Let w1; : : : ; wd denote the Stiefel–Whitney classes of the canonical d–dimensional bundle d over
Grd .R1/. One has

H�.Grd .R
1/IZ=2/D Z=2Œw1; : : : ; wd �:
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Dual classes Nw1; Nw2; : : : are defined by the equation

.1Cw1C � � �Cwd /.1C Nw1C Nw2C � � � /D 1;

and this allows one to write the classes Nwk as polynomials in w1; : : : ; wd .

The inclusion Grd .Rm/ ,! Grd .R1/ then induces a surjective ring homomorphism

H�.Grd .R
1/IZ=2/!H�.Grd .R

m/IZ=2/

with kernel J.d;m� d/D . Nwk j k > m� d/. Now Nwk can be interpreted as wk.?d /, where ?
d

is the
.m�d/–dimensional bundle complementary to d .

We record some useful consequences. To state these, it is useful to let

i W Grd .R
m�1/ ,! Grd .R

m/

be the inclusion induced by the inclusion Rm�1 ,!Rm, and to let

j W Grd�1.R
m�1/ ,! Grd .R

m/

be the inclusion sending V �Rm�1 to V ˚R�Rm.

Lemma 3.1 (a) The ideal J.d;m� d/ is generated by the d classes Nwm�dC1; Nwm�dC2; : : : ; Nwm.

(b) In H�.Grd .Rm/IZ=2/, wd Nwm�d D 0.

(c) kerfi�g D . Nwm�d /�H�.Grd .Rm/IZ=2/.

(d) kerfj �g D .wd /�H�.Grd .Rm/IZ=2/.

Proof Statement (a) follows from the recursive relations among the Nwk . Statement (b) follows from the
equation

.1Cw1C � � �Cwd /.1C Nw1C � � �C Nwm�d /D 1;

which holds in H�.Grd .Rm/IZ=2/. Statement (c) follows from the fact that

J.d;m� 1� d/D J.d;m/C . Nwm�d /;

and (d) follows from (c), noting that j can be written as the composite

Grd�1.R
m�1/' Grm�d .R

m�1/ i
�! Grm�d .R

m/' Grd .R
m/;

where the indicated homeomorphisms are given by taking complementary subspaces (and, in cohomology,
these maps swap each wi with a Nwj ).

We end this subsection with a couple more facts about H�.Grd .Rm/IZ=2/.
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An additive basis for H q.Grd .Rm/IZ=2/ is given by the monomials�
w
r1

1 w
r2

2 � � �w
rd

d

ˇ̌̌ dX
iD1

ri �m� d

�
;

so the top-dimensional class is wm�d
d

in degree d.m� d/; see [5].

The Wu formulae [12, page 94] are closed formulae for Sqiwj , and, in theory, formulae for Qn.wj /
follow.

3.3 A description of the cofiber Cd.Rm/ and its cohomology

Recall that Cd .Rm/ is defined as the cofiber of the inclusion Grd .Rm�1/
i
�! Grd .Rm/. This cofiber

can be identified as a Thom space as follows.

Proposition 3.2 Let S.?
d�1

/ and D.?
d�1

/ be the sphere and disk bundles associated to

?d�1! Grd�1.R
m�1/:

There is a pushout
S.?

d�1
/

��

f
// Grd .Rm�1/

��

D.?
d�1

/
f
// Grd .Rm/;

inducing a homeomorphism f W Th.?
d�1

/ ��! Cd .R
m/, such that the composite

Grd�1.R
m�1/ 0–section

�
�����!D.?d�1/

f
�! Grd .R

m/

is the map j of Lemma 3.1.

Proof Recall that

D.?d�1/D f.V; v/ j V 2 Grd�1.R
m�1/; v 2 V ?; jvj � 1g;

S.?d�1/D f.V; v/ j V 2 Grd�1.R
m�1/; v 2 V ?; jvj D 1g:

We define f WD.?
d�1

/! Grd .Rm/ by the formula

f .V; v/D V ChvC
p
1� jvj2emi;

where em is the mth standard basis vector in Rm. We claim this f has the needed properties.

First, note that f .V; 0/D V Chemi D V ˚RD j.V /.

Second, .V; v/ 2 S.?
d�1

/ if and only if f .V; v/ D V C hvi, and so is an element of Grd .Rm�1/.
Furthermore, f W S.?

d�1
/! Grd .Rm�1/ is surjective: given any W 2 Grd .Rm�1/, if we choose any

.d�1/–dimensional subspace V of W , and a unit length vector v 2W in the 1–dimensional orthogonal
complement, then f .V; v/DW .
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Finally, we need to check that f is bijective on
ı

D.?
d�1

/ D D.?
d�1

/� S.?
d�1

/. To check this, let
W 2 Grd .Rm/ be a d–dimensional subspace of Rm not contained in Rm�1, so that

V DW \Rm�1 2 Grd�1.R
m�1/:

Let V ? be the complement of V in of Rm so that W \V ? is one-dimensional, and let v be the unique
unit vector v 2W \V ? such that v has positive mth coordinate. Let � W Rm! Rm�1 be the standard
projection. We claim that f .V; �.v// D W and .V; �.v// is the unique point in

ı

D.?
d�1

/ with this
property: since jvj D 1 the mth component of v is

p
1� j�.v/j2; thus v D �.v/C

p
1� j�.v/j2em and

so f .V; �.v//D V Chvi DW .

Let u?
d�1
2 zHm�d .Th.?

d�1
// be the Thom class of ?

d�1
!Grd�1.Rm�1/. Then zHm�d .Th.?� // is a

free rank 1H�.Grd�1.Rm�1//–module on u?
d�1

. Meanwhile, H�.Grd .Rm// is aH�.Grd�1.Rm�1//–
module via j �, and the ideal . Nwm�d /D zH�.Cd .Rm// is a submodule. The proposition thus implies the
following.

Corollary 3.3 The map f � W zH�.Cd .Rm// ��! zH�.Th.?
d�1

// is an isomorphism of free rank 1
H�.Grd�1.Rm�1//–modules , and f �. Nwm�d /D u?

d�1
.

3.4 The characteristic class associated to Qn and a twisted Qn–module

Let ˛n 2H 2nC1�1.Grd�1.Rm�1// be defined as the element satisfying

Qn. Nwm�d /D ˛n Nwm�d 2 zH
�.Cd .R

m//:

Then define
yQn WH

�.Grd�1.R
m�1//!H�C2

nC1�1.Grd�1.R
m�1//

by the formula
yQn.x/DQn.x/C x˛n:

Proposition 3.4 yQ2n D 0, and the chain complex
�
H�.Grd�1.Rm�1//; yQn

�
is isomorphic to the chain

complex
�
zH�Cm�d .Cd .R

m//;Qn
�
.

Proof Let ‚ WH�.Grd�1.Rm�1//! zH�Cm�d .Cd .R
m// be the isomorphism established in the last

subsection, ‚.x/D x Nwm�d . The proposition follows once we check that ‚. yQn.x//DQn.‚.x//;

‚. yQn.x//D yQn.x/ Nwm�d

D .Qn.x/C x˛n/ Nwm�d

DQn.x/ Nwm�d C x.˛n Nwm�d /

DQn.x/ Nwm�d C xQn. Nwm�d /

DQn.x Nwm�d /

DQn.‚.x//:
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It is useful to put the class ˛n in context. Given any element a in the Steenrod algebra A, one gets
a characteristic class wa.�/ 2 H jaj.BIZ=2/ associated to any real vector bundle � ! B; wa.�/ is
defined as the element satisfying a.u�/ D wa.�/u� 2 zH dim �Cjaj.Th.�/IZ=2/, where u� is the Thom
class of �. So, for example, wSqn.�/D wn.�/, and, relevant for us, our class ˛n equals wQn

.�/ when
� D ?

d�1
! Grd�1.Rm�1/.

We have the following characterization of wQn
.

Proposition 3.5 wQn
is the unique characteristic class satisfying the following two properties:

(a) wQn
.�˚ �/D wQn

.�/CwQn
.�/;

(b) if  ! B is one-dimensional , then wQn
./D w1./

2nC1�1.

Proof Property (a) follows from the fact that Qn is primitive in A (or, equivalently, that Qn acts a
derivation). To see property (b), one first calculates that Qn.t/D t2

nC1 2 Z=2Œt �DH�.RP1IZ=2/,
recalling that Q0 D Sq1, and Qn D Sq2

n

Qn�1CQn�1Sq2
n

. Then property (b) follows, since if  is the
universal line bundle over RP1, then u D t . Uniqueness follows from the splitting principle.

Remark 3.6 Thus wQn
.�/ agrees with the “s–class” s2nC1�1.�/, analogous to the class of the same

name for complex vector bundles as defined in [12, Section 16]. (These sI are not the same as the s� of
the next subsection; these are two conflicting and standard usages.)

Since ?
d�1
˚ d�1 is trivial, property (b) has the following consequence.

Corollary 3.7 ˛n D wQn
.d�1/ 2H

2nC1�1.Grd�1.R
m�1/IZ=2/.

3.5 The description of H �.Grd.Rm/IZ=2/ via Schubert cells, and Lenart’s formula

For the purposes of proving Theorem 1.9, we use an alternative description of H�.Grd .Rm/IZ=2/.

We recall the cell structure of Grd .RdCc/ as described in [12, Section 6]. A Schubert symbol � D
.�1; : : : ; �d / of Grd .Rm/ is a sequence of integers

m� d � �1 � �2 � � � � � �d > 0:

The weight of � is defined to be
P
i �i and is denoted j�j. Such a � is a partition contained inside of a

d � .m� d/ grid when depicted as Young diagrams — diagrams with �i boxes in the i th row.

To each such partition is associated a Schubert cell e.�/ of dimension � in Grd .Rm/ defined by

e.�/D fV 2 Grd .R
m/ j dim.V \RiC�dC1�i /� i for 1� i � dg:

This cell decomposition of the Grassmannian leads to the dual Schubert cell basis forH�.Grd .Rm/IZ=2/
with basis elements s� 2H j�j.Grd .Rm/IZ=2/.
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With this notation, one has that wi D s.1i / and Nwj D s.j /. Although we don’t use this here, it is worth
noting that the cohomology ring structure in this basis is described by the Littlewood–Richardson rule of
symmetric function theory.

To state Lenart’s formula for calculating Qn on a Schubert basis element [9], we need some combinatorial
definitions. Given a Young diagram � that includes into another Young diagram �, one can form the
complement �=�. For example,

�D �D �=�D

The content of a box b of � in row i and column j is defined to be c.b/D j � i . For a box b in the skew
shape �=�, we define its content to be the content of b embedded in �. Here we fill in the contents of the
diagrams from above:

�D
0 1 2

�1
�D

0 1 2 3

�1 0 1

�2

�=�D

3

0 1

�2

A skew-shape is said to be connected when each pair of boxes in the diagram is connected by a sequence
of boxes that each share an edge. A shape � is called a border strip, if it is connected and does not contain
a 2�2 block of boxes. A shape satisfying just the second condition is called a broken border strip, and in
particular, a border strip is an example of a broken border strip with just one connected component. If �
is a broken border strip, then we denote by cc.�/ the number of connected components of �. If � is not a
broken border strip, then we define cc.�/D1. For example, in the next diagram, �1 is a border strip,
�2 is a broken border strip that is not a border strip, and �3 is an example of a shape that is neither:

�1 D �2 D �3 D

A sharp corner of a broken border strip is a box with no north, no west and no northwest neighbors. A
dull corner is a box with both north and west neighbors, but no northwest neighbor. Let C.�=�/ denote
the set of sharp and dull corners of �=�. For example, in the following diagram the sharp corners have
been labeled S and the dull corners have been labeled D:

S

S D

We are now ready to state Lenart’s formula from [9]:

(3-1) Qn.s�/D
X

���Wj�j�j�jD2nC1�1
cc.�=�/�2

d��s�;
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where �=� must be a broken border strip and

(3-2) d�� D

�P
b2C.�=�/ c.b/ if �=� is connected;

1 if �=� is disconnected:

Example 3.8 As an example we compute Q1 on w1 D s in the Schubert basis in Gr2.R6/. There are
three basis elements in degree four,

�1 D ; �2 D ; �3 D :

To compute Qn.s / using (3-1) we must consider each complement. Let �D . For �1,

�1=�D 0 1 2 3
ı

D 1 2 3

The complement is a border strip and there is just one sharp corner (the left most corner) and no dull
corners. The content of the sharp corner is 1 modulo two; hence d��1

D 1, and so s�1
is in the expansion

of Q1.s�/. Next we consider

�2=�D
0 1 2

�1

ı
D

1 2

�1

This is a disconnected broken border strip; hence d��2
D 1, and so s�2

is in the expansion. Finally,

�3=�D
0 1

�1 �2

ı
D

1

�1 �2

There are two sharp corners, one of content �1 and the other of content 1. There is also one dull corner
of content �2. This means d��3

D .�1/C 1C 2� 0, and so s�3
is not in the expansion. Hence,

Q1.s /D s C s :

4 Results about H �.Grd.Rm/IQn/ when m is even

Proof of Theorem 1.9(a) We are going to show that Qn.s�/D 0 for each Schubert basis element s� in
degree d.m� d/� 2nC1C 1. Since s.d .m�d// is the only class in degree d.m� d/,

Qn.s�/D d�.d .m�d//s.d .m�d//;

where d�.d .m�d// is given by (3-2). We must only consider � such that .d .m�d//=� is a broken border
strip. As .d .m�d// is a d � .m� d/ grid the complement .d .m�d//=� is always connected and so if
.d .m�d//=� is a broken border strip it must be, in particular, a border strip. If .d .m�d//=� is a border
strip, then it must be one of three types:
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(1) .d .m�d//=� is the last row of .d .m�d//,

(2) .d .m�d//=� is the last column of .d .m�d//,

(3) .d .m�d//=� is the union of the last row and last column of .d .m�d//.

We will show that d�.d .m�d// D 0 in each of these cases. As m was assumed to be even, the content of
the right most bottom box of .d .m�d// is also even.

(1) For the first case, there is just one sharp corner, namely the left most box, and there are no dull
corners. Since the strip is of odd length, namely, 2nC1� 1, the leftmost box and the rightmost box
have the same content modulo two. Hence, the content of this sharp corner is zero modulo two,
and so d�.d .m�d// D 0.

(2) For the second case, the argument is exactly the same, but with the sharp corner on the top.

(3) For the third case, the content of the sharp corner on the bottom left and the content of the sharp
corner on the top right agree modulo two, because the border strip is of odd length. There is one
dull corner in the bottom right and it is zero modulo two. Thus, the two sharp corners cancel and
the dull corner contributes nothing.

Thus, in all cases Qn.s�/D 0 for s� in degree d.m� d/� 2nC1C 1. This completes the proof that the
top class is not in the image of Qn for even m.

Proof of Theorem 1.9(b) We wish to prove that, whenm is even, the chain complexes
�
zH�.Cd .R

m//IQn
�

and
�
Hd.m�d/��.Grd�1.Rm�1//IQn

�
are dual.

By Proposition 3.4,
�
zH�Cm�d .Cd .R

m//IQn
�

is isomorphic to the chain complex�
H�.Grd�1.R

m�1//I yQn
�
;

where we recall that yQn.y/DQn.y/Cy˛n, and that ˛n Nwm�d DQn. Nwm�d / 2H�.Grd .Rm/IZ=2/.

So we need to check that the chain complexes�
H�.Grd�1.R

m�1//I yQn
�

and
�
H .d�1/.m�d/��.Grd�1.R

m�1//IQn
�

are dual. This means we need to show that, if x; y 2H�.Grd�1.Rm�1/IZ=2/ satisfy

jxjC jyjC jQnj D .d � 1/.m� 1/;

then

Qn.x/y D x yQn.y/:

By Theorem 1.9(a), we know that

Qn.xy Nwm�d /D 0 2H
d.m�d/.Grd .R

m/IZ=2/:
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Thus, in Hd.m�d/.Grd .Rm/IZ=2/,

0DQn.xy Nwm�d /

DQn.x/y Nwm�d C xQn.y/ Nwm�d C xyQn. Nwm�d /

DQn.x/y Nwm�d C xQn.y/ Nwm�d C xy˛n Nwm�d

D .Qn.x/yC xQn.y/C xy˛n/ Nwm�d

D .Qn.x/yC x yQn.y// Nwm�d ;

and we conclude that 0DQn.x/yC x yQn.y/ 2H .d�1/.m�d/.Grd�1.Rm�1/IZ=2/.

Proof of Theorem 1.9(c) Recall that kQn
.X/ denotes the rank of the Qn–homology H�.X IQn/.

Similarly, let NkQn
.X/ denote the rank of zH�.X IQn/.

Let mD 2nC1� �C 2l with � D 0 or 1, and l � 0. Let

kGn .d;m/D

bd=2cX
iD0

�2nC1��
d�2i

�� l
i

�
:

We start with the first part of Theorem 1.9(c). This asserts that, when m is even, if we assume that

kQn
.Grd .R

m�1//D kGn .d;m� 1/ and kQn
.Grd�1.R

m�1//D kGn .d � 1;m� 1/;

then we can conclude that kQn
.Grd .Rm//D kGn .d;m/.

Theorem 1.2 tells us that kQn
.Grd .Rm//� kGn .d;m/.

Since we have a short exact sequence

0! zH�.Cd .R
m//!H�.Grd .R

m//!H�.Grd .R
m�1//! 0;

we see that
kQn

.Grd .R
m�1//C NkQn

.Cd .R
m//� kQn

.Grd .R
m//;

with equality if and only if the associated long exact Qn–homology sequence is still short exact.

Since m is even, Theorem 1.9(b) applies, and tells us that NkQn
.Cd .R

m//D kQn
.Grd�1.Rm�1//.

Putting this all together, under our assumptions,

kGn .d;m� 1/C k
G
n .d � 1;m� 1/� kQn

.Grd .R
m//� kGn .d;m/:

That these would be, in fact, equalities, follows from the next lemma.

Lemma 4.1 If mD 2nC1C 2l with l � 0, then

kGn .d;m� 1/C k
G
n .d � 1;m� 1/D k

G
n .d;m/:
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Proof We compute

kGn .d;m� 1/C k
G
n .d � 1;m� 1/D

X
i

��2nC1�1
d�2i

�
C

� 2nC1�1
d�2i�1

��� l
i

�
D

X
i

� 2nC1
d�2i

�� l
i

�
D kGn .d;m/:

When all of this happens, we then see that the Qn–homology long exact sequence really is still short
exact, and also that the K.n/–AHSS must collapse for these three spaces. Thus there is also a short exact
sequence

0! zK.n/�.Cd .R
m//

p�
�!K.n/�.Grd .R

m// i
�

�!K.n/�.Grd .R
m�1//! 0:

Finally, the top cohomology class in Hd.m�d/.Grd .Rm/IZ=2/ will be a permanent cycle in the AHSS
computing K.n/�.Grd .Rm// and thus also in the AHSS computing k.n/�.Grd .Rm//, and this is equiva-
lent to saying that Grd .Rm/ is k.n/–oriented.

5 Results about H �.Grd.Rm/IQn/ when d D 2

In this section we present our results about theQn–homology of Gr2.Rm/, with the focus on understanding
the case when m has the form 2nC1� 1C 2l .

To begin with, we know that

� H�.Gr2.Rm/IZ=2/D Z=2Œw1; w2�=. Nwm�1; Nwm/;

� in H�.Gr2.Rm/IZ=2/, the ideal zH�.C2.Rm/IZ=2/ has an additive basis fwi1 Nwm�2 j 0� i �m�2g.

Now we collect results that hold in H�.Gr2.R1/IZ=2/.

Lemma 5.1 In H�.Gr2.R1/IZ=2/,

(a) Nw0 D 1, Nw1 D w1, and , recursively, Nwk D w1 Nwk�1Cw2 Nwk�2;

(b) w
j
2 Nwk D

P
i

�
j
i

�
w
j�i
1 NwkCjCi ;

(c) Nwk D
P
j

�
k�j
j

�
w
k�2j
1 w

j
2 ;

(d) Nw2b�1 D w
2b�1
1 for all b � 0;

(e) Nw2b�2 D
Pb�1
cD0w

2b�2cC1

1 w2
c�1
2 for all b � 1.

Proof The homogeneous components of the equation 0 D .1Cw1 Cw2/.1C Nw1 C Nw2 C � � � / give
statement (a).
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Statement (b) is proved by induction on j . The case when j D 0 is trivial, and statement (a) rewrites as
w2 Nwk D w1 NwkC1C NwkC2, which is the case when j D 1. One then computes

w
j
2 Nwk D w2.w

j�1
2 Nwk/

D

X
i

�j�1
i

�
w
j�1�i
1 w2 NwkCj�1Ci

D

X
i

�j�1
i

�
Œw
j�i
1 NwkCjCi Cw

j�1�i
1 NwkCjCiC1�

D

X
i

��j�1
i

�
C

�j�1
i�1

��
w
j�i
1 NwkCjCi

D

X
i

�j
i

�
w
j�i
1 NwkCjCi :

For (c), note that Nwk is the homogeneous component of degree k in

Nw D .1Cw1Cw2/
�1
D

1X
tD0

.w1Cw2/
t :

Statement (d) follows from (c):

Nw2b�1 D

X
j

�2b�1�j
j

�
w
k�2j
1 w

j
2 D w

2b�1
1 ;

using that
�
2b�1�j

j

�
� 1 mod 2 only if j D 0.

Similarly, statement (e) follows from (c):

Nw2b�2 D

X
j

�2b�2�j
j

�
w
k�2j
1 w

j
2 D

b�1X
cD0

w2
b�2cC1

1 w2
c�1
2 ;

using that
�
2b�2�j

j

�
� 1 mod 2 if and only if j D 2c � 1 with 0� j � b� 1.

Now we determine the action of Qn on various classes.

Lemma 5.2 In H�.Gr2.R1/IZ=2/, Qn.w1/D w2
nC1

1 D w1 Nw2nC1�1.

Proof The first equality here was already noted in the proof of Proposition 3.5, and the second follows
from Lemma 5.1(d).

Lemma 5.3 In H�.Gr2.R1/IZ=2/,

Qn.w2/D

nX
cD0

w2
nC1�2cC1C1
1 w2

c

2 D w1w2 Nw2nC1�2:
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Proof The second equality here follows from Lemma 5.1(e), so we just need to check the first. We do
this by induction on n, where the nD 0 case is the easily checked: Q0.w2/D Sq1.w2/D w1w2.

Before proceeding with the inductive step, we make two observations.

The first is that for n� 1,Qn.w2/DSq2
n

Qn�1.w2/ because the other term,Qn�1Sq2
n

.w2/, will be zero.
This is clear if n� 2 as then Sq2

n

.w2/D 0, and when nD 1, we observe thatQ0Sq2.w2/D Sq1.w22/D 0.

The second observation is that Sq.w2/Dw2.1Cw1Cw2/, so Sq.w2
c

2 /Dw
2c

2 .1Cw
2c

1 Cw
2c

2 /, and thus

Sqj .w2
c

2 /D

8̂̂̂<̂
ˆ̂:
w2

c

2 if j D 0;
w2

c

1 w
2c

2 if j D 2c ;
w2

cC1

2 if j D 2cC1;
0 otherwise:

Now we check the inductive step of our proof.

Qn.w2/D Sq2
n

Qn�1.w2/ (by our first observation)

D

n�1X
cD0

Sq2
n

.w2
n�2cC1C1
1 w2

c

2 / (by inductive hypothesis)

D

n�1X
cD0

X
j

Sq2
n�j .w2

n�2cC1C1
1 /Sqj .w2

c

2 /:

By our second observation, the only possible nonzero terms in this double sum are when j D 0; 2c ; 2cC1.
The terms with j D 0 are all zero, as Sq2

n

.w2
n�2cC1C1
1 /D 0 by the unstable condition. Similarly, the only

nonzero term with j D 2c is the term w2
nC1�1
1 w2, when c D 0. Finally, one gets w2

nC1�2cC2C1
1 w2

cC1

2

when j D 2cC1 for all 0� c � n� 1. One is left with

Qn.w2/D

nX
cD0

w2
nC1�2cC1C1
1 w2

c

2 ;

completing our induction.

Remark 5.4 The referee has pointed out that the first equality in the last lemma appears in [13, page 508].1

We now turn our attention to the behavior of Qn on zH�.C2.Rm/IZ=2/.

Lemma 5.5 In zH�.C2.Rm/IZ=2/, Qn. Nwm�2/D w2
nC1�1
1 Nwm�2.

Proof By Corollary 3.7, Qn. Nwm�2/D wQn
.1/ Nwm�2, where 1! Gr1.Rm�1/ is the canonical line

bundle, and Proposition 3.5 tells us that wQn
.1/D w

2nC1�1
1 .

1There is a slight misprint, and a proof is just hinted at.
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Remark 5.6 This lemma also admits a proof using the Schubert cell perspective; see [10, Lemma 4.9.13].

As Qn is a derivation, the lemma, together with the calculation Qn.w1/D w2
nC1

1 , allows one to easily
compute the Qn–homology of C2.Rm/. What results is the following.

Proposition 5.7 (a) In zH�.C2.Rm/IZ=2/,

Qn.w
i
1 Nwm�2/D

�
w2

nC1�1Ci
1 Nwm�2 if i is even;

0 if i is odd:

(b) If m� 2nC1, then Qn acts as zero on zH�.C2.Rm/IZ=2/. Thus QkQn
.C2.Rm//Dm� 1.

(c) If m> 2nC1 and is even , then the classes

fw
2j�1
1 Nwm�2 j 1� j � 2

n
� 1g and fw

m�2j
1 Nwm�2 j 1� j � 2

n
g

represent the Qn–homology classes. Thus QkQn
.C2.Rm//D 2nC1� 1.

(d) If m> 2nC1 and is odd , then the classes

fw
2j�1
1 Nwm�2 j 1� j � 2

n
� 1g and fw

m�1�2j
1 Nwm�2 j 1� j � 2

n
� 1g

represent the Qn–homology classes. Thus QkQn
.C2.Rm//D 2nC1� 2.

Proof of Theorem 1.10 Let mD 2nC1C 1C 2l . We need to prove that the map

zH�.C2.R
m/IQn/

p�
�!H�.Gr2.Rm/IQn/

is zero; ie we need to show that representatives of the Qn–homology classes in zH�.C2.Rm/IZ=2/ are
in the image of Qn when regarded in H�.Gr2.Rm/IZ=2/.

By Proposition 5.7(d), these representatives are in two families,

w
1C2j
1 Nw2nC1�1C2l and w

2lC2C2j
1 Nw2nC1�1C2l ;

both with 0� j � 2n� 2.

If we can find a; b 2H�.Gr2.RmIZ=2/ such that

Qn.a/D w1 Nw2nC1�1C2l and Qn.b/D w
2lC2
1 Nw2nC1�1C2l ;

we will be done, as then

Qn.w
2j
1 a/D w

1C2j
1 Nw2nC1�1C2l and Qn.w

2j
1 b/D w

2lC2C2j
1 Nw2nC1�1C2l :

Thus the next two propositions finish the proof.

Proposition 5.8 In H�.Gr2.R1/IZ=2/,

Qn.w1 Nw2l/D w1 Nw2nC1�1C2l :
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Proposition 5.9 In H�.Gr2.R2
nC1C1C2l/IZ=2/,

Qn.w
2lC1
2 /D w2lC21 Nw2nC1�1C2l :

Before proving these, we first run through how Theorem 1.10 leads to the proof of Theorem 1.8.

Proof of Theorem 1.8 Our goal is to show that if mD 2nC1� �C 2l with � D 0 or 1, and l � 0, then
kQn

.Gr2.Rm//D
�
2nC1��

2

�
C l , the lower bound coming from Theorem 1.2.

We prove this by induction on m, with the two cases when l D 0 already covered by Theorem 1.1. The
case when m is even is covered by Theorem 1.9(c), as we know our calculations are right for .n; 1;m�1/,
and by induction we can assume the theorem for .n; 2;m� 1/.

Suppose m is odd, so � D 1 and m � 1 D 2nC1 C 2.l � 1/. By induction, we can assume that
kQn

.Gr2.Rm�1//D
�
2nC1

2

�
C .l � 1/. Then

kQn
.Gr2.Rm//D kQn

.Gr2.Rm�1//� NkQn
.C2.R

m// (by Theorem 1.10)

D

�2nC1
2

�
C .l � 1/� .2nC1� 2/ (by Proposition 5.7(d))

D

�2nC1�1
2

�
C l:

It remains to prove Propositions 5.8 and 5.9.

Proof of Proposition 5.8 We prove by induction on l that

Qn.w1 Nw2l/D w1 Nw2nC1�1C2l

holds in H�.Gr2.R1/IZ=2/.

We start the induction by checking both the l D 0 and l D 1 cases.

When l D 0, this reads Qn.w1/D w1 Nw2nC1 , which was proved in Lemma 5.2.

We check the l D 1 case using both Lemmas 5.2 and 5.3,

Qn.w1 Nw2/DQn.w1.w2Cw
2
1//

DQn.w1w2Cw
3
1/

DQn.w1/w2Cw1Qn.w2/Cw
2
1Qn.w1/

D w1w2 Nw2nC1�1Cw
2
1w2 Nw2nC1�2Cw

3
1 Nw2nC1�1

D w1Œw2 Nw2nC1�1Cw1.w2 Nw2nC1�2Cw1 Nw2nC1�1/�

D w1Œw2 Nw2nC1�1Cw1 Nw2nC1 �

D w1 Nw2nC1C1:
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For the inductive case, we use the identity Nwk D w22 Nwk�4Cw
2
1 Nwk�2 which holds for all k � 4. Then

Qn.w1 Nw2l/DQn.w1w
2
2 Nw2.l�2/Cw

3
1 Nw2.l�1//

D w22Qn.w1 Nw2.l�2//Cw
2
1Qn.w1 Nw2.l�1//

D w1w
2
2 Nw2nC1C2.l�2/�1Cw

3
1 Nw2nC1C2.l�1/�1

D w1Œw
2
2 Nw2nC1C2.l�2/�1Cw

2
1 Nw2nC1C2.l�1/�1�

D w1 Nw2nC1C2l�1:

Proof of Proposition 5.9 We wish to prove that

Qn.w
2lC1
2 /D w2lC21 Nw2nC1�1C2l

holds in H�.Gr2.R2
nC1C1C2l/IZ=2/.

We begin with a calculation in H�.Gr2.R1/IZ=2/,

Qn.w
2lC1
2 /D w2l2 Qn.w2/

D w1w
2lC1
2 Nw2nC1�2 (using Lemma 5.3)

D

X
i

�2lC1
i

�
w2lC2�i1 Nw2nC1C2l�1Ci (using Lemma 5.1(b)):

When we project this sum onto

H�.Gr2.R2
nC1C1C2l/IZ=2/D Z=2Œw1; w2�=. Nwk j k � 2

nC1
C 2l/;

only the term with i D 0 is not zero. In other words

Qn.w
2lC1
2 /D w2lC21 Nw2nC1�1C2l

holds in H�.Gr2.R2
nC1C1C2l/IZ=2/.

6 Towards the conjectures

As organized in this paper, we are trying to calculate H�.Grd .Rm/IQn/ by induction on m (and d ) with
two steps:

� calculate zH�.Cd .Rm/IQn/, recalling that Cd .Rm/ is the Thom space of a bundle over Grd�1.Rm�1/;

� calculate ı WH�.Grd .Rm�1/IQn/! zH�C2
nC1�1.Cd .R

m/IQn/.

When m is even, Theorem 1.9 says we can carry through with this plan. In this section we speculate
about how things might go when m is odd.

Firstly, we have the analogues of Theorems 1.1 and 1.2 for

Nkn.Cd .R
m//D dimK.n/� zK.n/

�.Cd .R
m//:
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Theorem 6.1 If m� 2nC1, then Nkn.Cd .Rm//D
�
m�1
d�1

�
.

Proof Theorem 1.1 implies that, if m � 2nC1, the inclusion Grd .Rm�1/ ! Grd .Rm/ induces an
inclusion K.n/�.Grd .Rm�1//!K.n/�.Grd .Rm//, as this is true in mod p homology. Thus

Nkn.Cd .R
m//D kn.Grd .R

m//� kn.Grd .R
m�1//D

�m
d

�
�

�m�1
d

�
D

�m�1
d�1

�
:

Theorem 6.2 Let mD 2nC1� �C 2l with � D 0 or 1, and l � 0. Then

kn.Cd .R
m//�

bd=2cX
iD0

�2nC1�1��
d�1�2i

�� l
i

�
:

Proof The proof is similar to the proof of Theorem 1.2, with a little tweak.

If V is a real representation of C4, and W is a subrepresentation, let Cd .V;W / denote the cofiber of the
inclusion Grd .W / ,! Grd .V /; this is a based C4 space.

If dimV Dm and dimW Dm�1, then Cd .Rm/DCd .V;W / and thus Nkn.Cd .Rm//� Nkn.Cd .V;W /C4/,
by our chromatic fixed point theorem, Theorem 1.4. Furthermore, Cd .V;W /C4 will be the cofiber of the
inclusion Grd .W /C4 ,! Grd .V /C4 .

Now we choose V andW . Recall that L1 and L2 were the one-dimensional real representations of C4 and
R was the two-dimensional irreducible. We let V D L2

n

1 ˚L
2n��
2 ˚Rl and W D L2

n�1
1 ˚L2

n��
2 ˚Rl .

Proposition 2.1 tells us that

Grd .V /
C4 D

G
jCkC2iDd

Grj .R2
n

/�Grk.R
2n��/�Gri .Cl/

and
Grd .W /

C4 D

G
jCkC2iDd

Grj .R2
n�1/�Grk.R

2n��/�Gri .Cl/;

so
Cd .V;W /

C4 D

_
jCkC2iDd

Cj .R
2n

/^Grk.R
2n��/C ^Gri .Cl/C:

Thus,
Nkn.Cd .R

m//�
X

jCkC2iDd

Nkn�1.Cj .R
2n

//kn�1.Grk.R
2n��//kn�1.Gri .Cl//

D

X
jCkC2iDd

�2n�1
j�1

��2n��
k

�� l
i

�
(using Theorems 6.1 and 1.1)

D

X
i

� X
jCkDd�2i

�2n�1
j�1

��2n��
k

��� l
i

�
D

X
i

�2nC1�1��
d�1�2i

�� l
i

�
:
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Conjecture 6.3 Equality holds in Theorem 6.2.

As before, this would be implied by a conjectural calculation of the Qn homology of Cd .Rn/.

Conjecture 6.4 Let mD 2nC1� �C 2l with � D 0 or 1, and l � 0. Then

NkQn
.Cd .R

m//D
X
i

�2nC1�1��
d�1�2i

�� l
i

�
:

Our various conjectures imply a conjecture about the behavior of the boundary map

ı WH�.Grd .R
m�1/IQn/! zH�C2

nC1�1.Cd .R
m/IQn/

when mD 2nC1� �C 2l . Let kın.d;m/ denote the dimension of the image of this map.

Conjecture 1.7 says that kQn
.Grd .Rm//D kGn .d;m/, where

kGn .d;m/D
X
i

�2nC1��
d�2i

�� l
i

�
:

Conjecture 6.4 similarly says that NkQn
.Cd .R

m//D NkCn .d;m/, where

NkCn .d;m/D
X
i

�2nC1�1��
d�1�2i

�� l
i

�
:

If these conjectures are true, then the exactness of the Qn–homology long exact sequence would imply
that

kGn .d;m/C 2k
ı
n.d;m/D k

G
n .d;m� 1/C

NkCn .d;m/;

so that
kın.d;m/D

1
2

�
kGn .d;m� 1/C

NkCn .d;m/� k
G
n .d;m/

�
:

As expected, the right hand side here is zero if m is even, ie � D 0.

When m is odd, so �D 1, the right hand side is not zero, but can be rearranged as in the following lemma.

Lemma 6.5 If mD 2nC1� 1C 2l and l > 0, then

1

2

�
kGn .d;m� 1/C

NkCn .d;m/� k
G
n .d;m/

�
D

X
i

� 2nC1�2
d�1�2i

�� l�1
i

�
:

Proof We expand kGn .d;m� 1/:

kGn .d;m� 1/D
X
i

� 2nC1
d�2i

�� l�1
i

�
D

X
i

��2nC1�2
d�2i

�
C 2

� 2nC1�2
d�1�2i

�
C

� 2nC1�2
d�2�2i

��� l�1
i

�
:
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We rewrite kGn .d;m/� Nk
C
n .d;m/:

kGn .d;m/�
NkCn .d;m/D

X
i

��2nC1�1
d�2i

�
�

� 2nC1�2
d�1�2i

��� l
i

�
D

X
i

�2nC1�2
d�2i

�� l
i

�
D

X
i

�2nC1�2
d�2i

��� l�1
i

�
C

� l�1
i�1

��

D

X
i

��2nC1�2
d�2i

�
C

� 2nC1�2
d�2�2i

��� l�1
i

�
:

Subtracting our second expression from the first, and dividing by two, proves the lemma.

Thus we can add the following to our conjectures.

Conjecture 6.6 If mD 2nC1� 1C 2l and l > 0, then

kın.d;m/D
X
i

� 2nC1�2
d�1�2i

�� l�1
i

�
:

Example 6.7 Suppose that nD 0, so mD 2l C 1. Conjecture 6.4 predicts that

dimQH
�.Cd .R

2lC1/IQ/D

�
0 if d is even;�
l
c

�
if d D 2cC 1:

Similarly, Conjecture 6.6 predicts that

kı0.d; 2l C 1/D

�
0 if d is even;�
l�1
c

�
if d D 2cC 1:

Noting that kı0.d; 2l C 1/ can be viewed as the dimension of the cokernel of the map

i� WH�.Grd .R
2lC1/IQ/!H�.Grd .R

2l/IQ/;

one can check that our conjectures do correspond to the known behavior of i�— it takes Pontryagin
classes to Pontryagin classes — together with the computations

dimQH
�.Grd .R

m/IQ/D

��l
c

�
if mD 2l C 1 and d D 2c or 2cC 1;

2
�
l�1
c

�
if mD 2l and d D 2cC 1:

Appendix Tables

We present some tables of calculations made by the second author that support Conjecture 1.7. Calcula-
tional algorithms used are documented in [10, Appendix B]. For larger Grassmannians the authors used the
University of Virginia Rivanna high-performance computing system. The white cells are the conjectured
values which have not been checked due to computational limitations. The tables are necessarily symmetric
in c and d .
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d

c
1 2 3 4 5 6 7 8 9 10 11

1 2 3 4 3 4 3 4 3 4 3 4
2 3 6 4 7 5 8 6 9 7 10 8
3 4 4 8 7 12 10 16 13 20 16 24
4 3 7 7 14 12 22 18 31 25 41 33
5 4 5 12 12 24 22 40 35 60 51 84
6 3 8 10 22 22 44 40 75 65 116 98
7 4 6 16 18 40 40 80 75 140 126 224
8 3 9 13 31 35 75 75 150 140 266 238
9 4 7 20 25 60 65 140 140 280 266 504
10 3 10 16 41 51 116 126 266 266 532 504
11 4 8 24 33 84 98 224 238 504 504 1008
12 3 11 19 52 70 168 196 434 462 966 966
13 4 9 28 42 112 140 336 378 840 882 1848
14 3 12 22 64 92 232 288 666 750 1632 1716
15 4 10 32 52 144 192 480 570 1320 1452 3168
16 3 13 25 77 117 309 405 975 1155 2607 2871
17 4 11 36 63 180 255 660 825 1980 2277 5148
18 3 14 28 91 145 400 550 1375 1705 3982 4576
19 4 12 40 75 220 330 880 1155 2860 3432 8008
20 3 15 31 106 176 506 726 1881 2431 5863 7007
21 4 13 44 88 264 418 1144 1573 4004 5005 12012
22 3 16 34 122 210 628 936 2509 3367 8372 10374
23 4 14 48 102 312 520 1456 2093 5460 7098 17472
24 3 17 37 139 247 767 1183 3276 4550 11648 14924
25 4 15 52 117 364 637 1820 2730 7280 9828 24752
26 3 18 40 157 287 924 1470 4200 6020 15848 20944
27 4 16 56 133 420 770 2240 3500 9520 13328 34272
28 3 19 43 176 330 1100 1800 5300 7820 21148 28764
29 4 17 60 150 480 920 2720 4420 12240 17748 46512
30 3 20 46 196 376 1296 2176 6596 9996 27744 38760
31 4 18 64 168 544 1088 3264 5508 15504 23256 62016
32 3 21 49 217 425 1513 2601 8109 12597 35853 51357
33 4 19 68 187 612 1275 3876 6783 19380 30039 81396
34 3 22 52 239 477 1752 3078 9861 15675 45714 67032
35 4 20 72 207 684 1482 4560 8265 23940 38304 105336
36 3 23 55 262 532 2014 3610 11875 19285 57589 86317
37 4 21 76 228 760 1710 5320 9975 29260 48279 134596
38 3 24 58 286 590 2300 4200 14175 23485 71764 109802
39 4 22 80 250 840 1960 6160 11935 35420 60214 170016
40 3 25 61 311 651 2611 4851 16786 28336 88550 138138
41 4 23 84 273 924 2233 7084 14168 42504 74382 212520
42 3 26 64 337 715 2948 5566 19734 33902 108284 172040
43 4 24 88 297 1012 2530 8096 16698 50600 91080 263120
44 3 27 67 364 782 3312 6348 23046 40250 131330 212290
45 4 25 92 322 1104 2852 9200 19550 59800 110630 322920
46 3 28 70 392 852 3704 7200 26750 47450 158080 259740
47 4 26 96 348 1200 3200 10400 22750 70200 133380 393120
48 3 29 73 421 925 4125 8125 30875 55575 188955 315315
49 4 27 100 375 1300 3575 11700 26325 81900 159705 475020
50 3 30 76 451 1001 4576 9126 35451 64701 224406 380016

cd � 2nC1� 1 projective spaces Theorem 1.8
conjecture verified conjecture

Table 1: k1.Grd .RdCc//.
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d

c
1 2 3 4 5 6 7 8 9 10 11

1 2 3 4 5 6 7 8 7 8 7 8
2 3 6 10 15 21 28 22 29 23 30 24
3 4 10 20 35 56 42 64 49 72 56 80
4 5 15 35 70 56 98 78 127 101 157 125
5 6 21 56 56 112 98 176 147 248 203 328
6 7 28 42 98 98 196 176 323 277 480 402
7 8 22 64 78 176 176 352 323 600 526 928
8 7 29 49 127 147 323 323 646 600 1126 1002
9 8 23 72 101 248 277 600 600 1200 1126 2128

10 7 30 56 157 203 480 526 1126 1126 2252 2128
11 8 24 80 125 328 402 928 1002 2128 2128 4256
12 7 31 63 188 266 668 792 1794 1918 4046 4046
13 8 25 88 150 416 552 1344 1554 3472 3682 7728
14 7 32 70 220 336 888 1128 2682 3046 6728 7092
15 8 26 96 176 512 728 1856 2282 5328 5964 13056
16 7 33 77 253 413 1141 1541 3823 4587 10551 11679
17 8 27 104 203 616 931 2472 3213 7800 9177 20856
18 7 34 84 287 497 1428 2038 5251 6625 15802 18304
19 8 28 112 231 728 1162 3200 4375 11000 13552 31856
20 7 35 91 322 588 1750 2626 7001 9251 22803 27555
21 8 29 120 260 848 1422 4048 5797 15048 19349 46904
22 7 36 98 358 686 2108 3312 9109 12563 31912 40118
23 8 30 128 290 976 1712 5024 7509 20072 26858 66976
24 7 37 105 395 791 2503 4103 11612 16666 43524 56784
25 8 31 136 321 1112 2033 6136 9542 26208 36400 93184
26 7 38 112 433 903 2936 5006 14548 21672 58072 78456
27 8 32 144 353 1256 2386 7392 11928 33600 48328 126784
28 7 39 119 472 1022 3408 6028 17956 27700 76028 106156
29 8 33 152 386 1408 2772 8800 14700 42400 63028 169184
30 7 40 126 512 1148 3920 7176 21876 34876 97904 141032
31 8 34 160 420 1568 3192 10368 17892 52768 80920 221952
32 7 41 133 553 1281 4473 8457 26349 43333 124253 184365
33 8 35 168 455 1736 3647 12104 21539 64872 102459 286824
34 7 42 140 595 1421 5068 9878 31417 53211 155670 237576
35 8 36 176 491 1912 4138 14016 25677 78888 128136 365712
36 7 43 147 638 1568 5706 11446 37123 64657 192793 302233
37 8 37 184 528 2096 4666 16112 30343 95000 158479 460712
38 7 44 154 682 1722 6388 13168 43511 77825 236304 380058
39 8 38 192 566 2288 5232 18400 35575 113400 194054 574112
40 7 45 161 727 1883 7115 15051 50626 92876 286930 472934
41 8 39 200 605 2488 5837 20888 41412 134288 235466 708400
42 7 46 168 773 2051 7888 17102 58514 109978 345444 582912
43 8 40 208 645 2696 6482 23584 47894 157872 283360 866272
44 7 47 175 820 2226 8708 19328 67222 129306 412666 712218
45 8 41 216 686 2912 7168 26496 55062 184368 338422 1050640
46 7 48 182 868 2408 9576 21736 76798 151042 489464 863260
47 8 42 224 728 3136 7896 29632 62958 214000 401380 1264640
48 7 49 189 917 2597 10493 24333 87291 175375 576755 1038635
49 8 43 232 771 3368 8667 33000 71625 247000 473005 1511640
50 7 50 196 967 2793 11460 27126 98751 202501 675506 1241136

cd � 2nC1� 1 projective spaces Theorem 1.8
conjecture verified conjecture Theorem 1.1

Table 2: k2.Grd .RdCc//.
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d

c
1 2 3 4 5 6 7 8 9 10 11

1 2 3 4 5 6 7 8 9 10 11 12
2 3 6 10 15 21 28 36 45 55 66 78
3 4 10 20 35 56 84 120 165 220 286 364
4 5 15 35 70 126 210 330 495 715 1001 1365
5 6 21 56 126 252 462 792 1287 2002 3003 4368
6 7 28 84 210 462 924 1716 3003 5005 8008 6370
7 8 36 120 330 792 1716 3432 6435 11440 9438 15808
8 9 45 165 495 1287 3003 6435 12870 11440 20878 17810
9 10 55 220 715 2002 5005 11440 11440 22880 20878 38688
10 11 66 286 1001 3003 8008 9438 20878 20878 41756 38688
11 12 78 364 1365 4368 6370 15808 17810 38688 38688 77376
12 13 91 455 1820 3458 9828 12896 30706 33774 72462 72462
13 14 105 560 1470 4928 7840 20736 25650 59424 64338 136800
14 15 120 470 1940 3928 11768 16824 42474 50598 114936 123060
15 16 106 576 1576 5504 9416 26240 35066 85664 99404 222464
16 15 121 485 2061 4413 13829 21237 56303 71835 171239 194895
17 16 107 592 1683 6096 11099 32336 46165 118000 145569 340464
18 15 122 500 2183 4913 16012 26150 72315 97985 243554 292880
19 16 108 608 1791 6704 12890 39040 59055 157040 204624 497504
20 15 123 515 2306 5428 18318 31578 90633 129563 334187 422443
21 16 109 624 1900 7328 14790 46368 73845 203408 278469 700912
22 15 124 530 2430 5958 20748 37536 111381 167099 445568 589542
23 16 110 640 2010 7968 16800 54336 90645 257744 369114 958656
24 15 125 545 2555 6503 23303 44039 134684 211138 580252 800680
25 16 111 656 2121 8624 18921 62960 109566 320704 478680 1279360
26 15 126 560 2681 7063 25984 51102 160668 262240 740920 1062920
27 16 112 672 2233 9296 21154 72256 130720 392960 609400 1672320
28 15 127 575 2808 7638 28792 58740 189460 320980 930380 1383900
29 16 113 688 2346 9984 23500 82240 154220 475200 763620 2147520
30 15 128 590 2936 8228 31728 66968 221188 387948 1151568 1771848
31 16 114 704 2460 10688 25960 92928 180180 568128 943800 2715648
32 15 129 605 3065 8833 34793 75801 255981 463749 1407549 2235597
33 16 115 720 2575 11408 28535 104336 208715 672464 1152515 3388112
34 15 130 620 3195 9453 37988 85254 293969 549003 1701518 2784600
35 16 116 736 2691 12144 31226 116480 239941 788944 1392456 4177056
36 15 131 635 3326 10088 41314 95342 335283 644345 2036801 3428945
37 16 117 752 2808 12896 34034 129376 273975 918320 1666431 5095376
38 15 132 650 3458 10738 44772 106080 380055 750425 2416856 4179370
39 16 118 768 2926 13664 36960 143040 310935 1061360 1977366 6156736
40 15 133 665 3591 11403 48363 117483 428418 867908 2845274 5047278
41 16 119 784 3045 14448 40005 157488 350940 1218848 2328306 7375584
42 15 134 680 3725 12083 52088 129566 480506 997474 3325780 6044752
43 16 120 800 3165 15248 43170 172736 394110 1391584 2722416 8767168
44 15 135 695 3860 12778 55948 142344 536454 1139818 3862234 7184570
45 16 121 816 3286 16064 46456 188800 440566 1580384 3162982 10347552
46 15 136 710 3996 13488 59944 155832 596398 1295650 4458632 8480220
47 16 122 832 3408 16896 49864 205696 490430 1786080 3653412 12133632
48 15 137 725 4133 14213 64077 170045 660475 1465695 5119107 9945915
49 16 123 848 3531 17744 53395 223440 543825 2009520 4197237 14143152
50 15 138 740 4271 14953 68348 184998 728823 1650693 5847930 11596608

cd � 2nC1� 1 projective spaces Theorem 1.8
conjecture verified conjecture Theorem 1.1

Table 3: k3.Grd .RdCc//.
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d

c
1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10 11
2 3 6 10 15 21 28 36 45 55 66
3 4 10 20 35 56 84 120 165 220 286
4 5 15 35 70 126 210 330 495 715 1001
5 6 21 56 126 252 462 792 1287 2002 3003
6 7 28 84 210 462 924 1716 3003 5005 8008
7 8 36 120 330 792 1716 3432 6435 11440 19448
8 9 45 165 495 1287 3003 6435 12870 24310 43758
9 10 55 220 715 2002 5005 11440 24310 48620 92378

10 11 66 286 1001 3003 8008 19448 43758 92378 184756
11 12 78 364 1365 4368 12376 31824 75582 167960 352716
12 13 91 455 1820 6188 18564 50388 125970 293930 646646
13 14 105 560 2380 8568 27132 77520 203490 497420 1144066
14 15 120 680 3060 11628 38760 116280 319770 817190 1961256
15 16 136 816 3876 15504 54264 170544 490314 1307504 3268760
16 17 153 969 4845 20349 74613 245157 735471 2042975 5311735
17 18 171 1140 5985 26334 100947 346104 1081575 3124550 8436285
18 19 190 1330 7315 33649 134596 480700 1562275 4686825 13123110
19 20 210 1540 8855 42504 177100 657800 2220075 6906900 20030010
20 21 231 1771 10626 53130 230230 888030 3108105 10015005 30045015
21 22 253 2024 12650 65780 296010 1184040 4292145 14307150 44352165
22 23 276 2300 14950 80730 376740 1560780 5852925 20160075 64512240
23 24 300 2600 17550 98280 475020 2035800 7888725 28048800 52240890
24 25 325 2925 20475 118755 593775 2629575 10518300 22789650 75030540
25 26 351 3276 23751 142506 736281 3365856 8625006 31414656 60865896
26 27 378 3654 27405 169911 906192 2799486 11424492 25589136 86455032
27 28 406 4060 31465 201376 767746 3567232 9392752 34981888 70258648
28 29 435 4495 35960 174406 942152 2973892 12366644 28563028 98821676
29 30 465 4960 31930 206336 799676 3773568 10192428 38755456 80451076
30 31 496 4526 36456 178932 978608 3152824 13345252 31715852 112166928
31 32 466 4992 32396 211328 832072 3984896 11024500 42740352 91475576
32 31 497 4557 36953 183489 1015561 3336313 14360813 35052165 126527741
33 32 467 5024 32863 216352 864935 4201248 11889435 46941600 103365011
34 31 498 4588 37451 188077 1053012 3524390 15413825 38576555 141941566
35 32 468 5056 33331 221408 898266 4422656 12787701 51364256 116152712
36 31 499 4619 37950 192696 1090962 3717086 16504787 42293641 158446353
37 32 469 5088 33800 226496 932066 4649152 13719767 56013408 129872479
38 31 500 4650 38450 197346 1129412 3914432 17634199 46208073 176080552
39 32 470 5120 34270 231616 966336 4880768 14686103 60894176 144558582
40 31 501 4681 38951 202027 1168363 4116459 18802562 50324532 194883114
41 32 471 5152 34741 236768 1001077 5117536 15687180 66011712 160245762
42 31 502 4712 39453 206739 1207816 4323198 20010378 54647730 214893492
43 32 472 5184 35213 241952 1036290 5359488 16723470 71371200 176969232
44 31 503 4743 39956 211482 1247772 4534680 21258150 59182410 236151642
45 32 473 5216 35686 247168 1071976 5606656 17795446 76977856 194764678
46 31 504 4774 40460 216256 1288232 4750936 22546382 63933346 258698024
47 32 474 5248 36160 252416 1108136 5859072 18903582 82836928 213668260
48 31 505 4805 40965 221061 1329197 4971997 23875579 68905343 282573603
49 32 475 5280 36635 257696 1144771 6116768 20048353 88953696 233716613
50 31 506 4836 41471 225897 1370668 5197894 25246247 74103237 307819850

cd � 2nC1� 1 projective spaces Theorem 1.8
conjecture verified conjecture Theorem 1.1

Table 4: k4.Grd .RdCc//.
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Slope gap distributions of Veech surfaces
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The slope gap distribution of a translation surface is a measure of how random the directions of the saddle
connections on the surface are. It is known that Veech surfaces, a highly symmetric type of translation
surface, have gap distributions that are piecewise real analytic. Beyond that, however, very little is
currently known about the general behavior of the slope gap distribution, including the number of points
of nonanalyticity or the tail.

We show that the limiting gap distribution of slopes of saddle connections on a Veech translation surface
is always piecewise real analytic with finitely many points of nonanalyticity. We do so by taking an
explicit parametrization of a Poincaré section to the horocycle flow on SL.2;R/=SL.X; !/ associated to
an arbitrary Veech surface .X; !/, and establishing a key finiteness result for the first return map under
this flow. We use the finiteness result to show that the tail of the slope gap distribution of a Veech surface
always has quadratic decay.

32G15, 37D40; 14H55

1 Introduction

We will study the slope gap distributions of Veech surfaces, a highly symmetric type of translation surface.
Translation surfaces can be defined geometrically as finite collections of polygons with sides identified in
parallel opposite pairs. If we place these polygons in the complex plane C, the surface inherits a Riemann
surface structure from C, and the one-form dz gives rise to a well-defined holomorphic one-form on the
surface. This leads to a second equivalent definition of a translation surfaces as a pair .X; !/ where X is
a Riemann surface and ! is a holomorphic one-form on the surface. Every translation surface locally
has the structure of .C; dz/, except for at finitely many points that have total angle around them 2�k for
some integer k � 2. These points are called cone points and correspond to the zeros of the one-form !. A
zero of order k gives rise to a cone point of angle 2�.kC 1/.

A translation surface inherits a flat metric from C. Saddle connections are then straight-line geodesics
connecting two cone points with no cone points in the interior. The holonomy vector of a saddle connection
 is then the vector describing how far and in what direction the saddle connection travels:

v D

Z


!:

We will be interested in the distribution of directions of these vectors for various translation surfaces.
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�
1 1

0 1

�

Figure 1: A matrix in SL.2;R/ acting on a translation surface.

There is a natural SL.2;R/ action on translation surfaces coming from the linear action of matrices on R2,
as can be seen in Figure 1.

Sometimes this action produces a symmetry of the surface .X; !/. That is, after acting on the surface by
the matrix, it is possible to cut and paste the new surface so that it looks like the original surface again.
The collection of these symmetries is the stabilizer under the SL.2;R/ action and is called the Veech
group of the surface. It will be denoted by SL.X; !/ and is a subgroup of SL.2;R/. When the Veech
group SL.X; !/ of a translation surface has finite covolume in SL.2;R/, the surface .X; !/ is called a
Veech surface. Sometimes such surfaces are also called lattice surfaces since SL.X; !/ is a lattice in
SL.X;R/. Veech surfaces have many nice properties, such as satisfying the Veech dichotomy: in any
direction, every infinite trajectory on the surface is periodic or every infinite trajectory is equidistributed.
For more information about translation and Veech surfaces see Hubert and Schmidt [6] and Zorich [13].

From work of Vorobets [12], it is known that, for almost every translation surface .X; !/ with respect to
the Masur–Veech volume on any strata of translation surfaces (for details about Masur–Veech volume
and strata, please see [13]), the angles of the saddle connections equidistribute in S1. That is, if we let

ƒ.X;!/ WD fholonomy vectors of saddle connections of .X; !/g

and normalize the circle to have total length 1, then for any interval I �S1, as we letR!1, the proportion
of vectors in ƒ.X;!/ of length �R that have direction in the interval I converges to the length of I .

A finer measure of the randomness of the saddle connection directions of a surface is its gap distribution,
which we will now define. The idea of the gap distribution is that it records the limiting distribution of the
spacings between the set of angles (or in our case, slopes) of the saddle connection directions of length up
to a certain length R. We will be working with slope gap distributions rather than angle gap distributions
because the slope gap distribution has deep ties to the horocycle flow on strata of translation surfaces.
Thus, dynamical tools relating to the horocycle flow can be more easily applied to analyze the slope gap
distribution.

Let us restrict our attention to the first quadrant and to slopes of at most 1, and define

S.X; !/ WD fslope.v/ j v 2ƒ.X;!/; 0 < Re.v/ and 0� Im.v/� Re.v/g:

We also allow ourselves to restrict to slopes of saddle connections of at most some length R in the `1
metric, and define

SR.X; !/ WD fslope.v/ j v 2ƒ.X;!/; 0 < Re.v/ and 0� Im.v/� Re.v/�Rg:

Algebraic & Geometric Topology, Volume 24 (2024)
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We let N.R/ denote the number of unique slopes N.R/ WD jSR.X; !/j. By results of Masur [7; 8], the
growth of the number of saddle connections of length at most R in any translation surface is quadratic
in R. We can order the slopes:

SR.X; !/D f0� s
R
0 < s

R
1 < � � �< s

R
N.R/�1g:

Since N.R/ grows quadratically in R, we now define the renormalized slope gaps of .X; !/ to be

GR.X; !/ WD fR
2.sRi � s

R
i�1/ j 1� i �N.R/� 1 and si 2 SR.X; !/g:

If there exists a limiting probability distribution function f W Œ0;1/ ! Œ0;1/ for the renormalized
slope gaps

lim
R!1

jGR.X; !/\ .a; b/j

N.R/
D

Z b

a

f .x/ dx;

then f is called the slope gap distribution of the translation surface .X; !/. If the sequence of slopes of
holonomy vectors of increasing length of a translation surface were independent and identically distributed
uniform Œ0; 1� random variables, then a probability computation shows that the gap distribution would be
a Poisson process of intensity 1. In all computed examples of slope gap distributions, however, this is not
the case.

We give a brief overview of the literature on gap distributions of translation surfaces. In [2], Athreya
and Chaika analyzed the gap distributions for typical surfaces and showed that, for almost every
translation surface (with respect to the Masur–Veech volume), the gap distribution exists. They also
showed that a translation surface is a Veech surface if and only if it has no small gaps, that is, if
lim infR!1.min.GR.X; !// > 0. In a later work [3], Athreya, Chaika and Lelièvre explicitly computed
the gap distribution of the golden L, and in [1] Athreya gives an overview of results and techniques about
gap distributions. Another relevant work is a paper by Taha [10] studying cross sections to the horocycle
and geodesic flows on quotients of SL.2;R/ by Hecke triangle groups. The computation of slope gap
distributions involved understanding the first return map of the horocycle flow to a particular transversal
of a quotient of SL.2;R/.

In [11], Uyanik and Work computed the gap distribution of the octagon, and also showed that the gap
distribution of any Veech surface exists and is piecewise real analytic. In [9], Sanchez went on to study
the gap distributions of doubled slit tori. Up until then, all known slope gap distributions were for Veech
surfaces. The above articles focus on gap distributions of specific translation surfaces and their SL.2;R/
orbits. This work applies to any Veech surface and gives insight to the general behavior of the graph of
the slope gap distribution of Veech surfaces. In fact, outside of [2], where it is shown that there are no
small gaps, there is no other work in this direction with this level of generality.

Uyanik and Work gave an algorithm to compute the gap distribution of any Veech surface and showed that
the gap distribution was piecewise analytic. However, their algorithm does not necessarily terminate in
finite time and can make it seem like the gap distribution can have infinitely many points of nonanalyticity,
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as we will see in Section 2.3. We improve upon their algorithm to guarantee termination in finite time
and show as a result that every Veech translation surface has a gap distribution with finitely many points
of nonanalyticity. Uyanik and Work’s algorithm starts by taking a transversal to the horocycle flow which
a priori may break up into infinitely many components under the return map. Our key observation is that,
by carefully choosing this transversal using the geometry of our surface, it will only break up into finitely
many pieces, which will give the following theorem:

Theorem 1 The slope gap distribution of any Veech surface has finitely many points of nonanalyticity.

In addition, we show that the tail of the gap distribution of any Veech surface has a quadratic decay. Let
f .t/� g.t/ mean that the ratio is bounded above and below by two positive constants as t !1.

Theorem 2 The slope gap distribution of any Veech surface has quadratic tail decay. That is, if f
denotes the density function of the slope gap distribution, thenZ 1

t

f .x/ dx � t�2:

Thus, our results and the “no small gaps” result of [2] give a good understanding of the graph of the slope
gap distribution of Veech surfaces: for some time the graph is identically zero before becoming positive.
Afterward the graph has finitely many pieces where it is real analytic and may fluctuate up and down
before it begins permanently decaying quadratically.

Organization In Section 2.1 we will go over background information on slope gap distributions, including
how to relate the gap distribution to return times to a Poincaré section of the horocycle flow. In Section 2.2,
we will outline the algorithm of Uyanik and Work, and observe some possible modifications. In Section 2.3,
we will see how a couple steps of Uyanik and Work’s algorithm apply to a specific Veech surface. A
priori, the first return map to the Poincaré section breaks the section into infinitely many pieces, but after
making some modifications to the parametrization we will see that there are in fact finitely many pieces. In
Section 3 we will give a proof of Theorem 1. The strategy of the proof is to apply a compactness argument
to show finiteness under our modified parametrization of the Poincaré section. We will show that, on
a compact set that includes the Poincaré section, every point has a neighborhood that can contribute
at most finitely many points of nonanalyticity to the gap distribution. This will give us that the slope
gap distribution has finitely many points of nonanalyticity overall. In Section 4, as an application of
Theorem 1, we prove quadratic decay of the slope gap distribution of Veech surfaces. Finally, in Section 5
we discuss a few further questions regarding slope gap distributions of translation surfaces.
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2 Background

2.1 A Poincaré section for the horocycle flow

In this section, we review a general strategy for computing the gap distribution of a translation surface by
relating slope gap distributions to the horocycle flow. For more background and proofs of the statements
given here, see [4] or [3].

Suppose that we wish to compute the slope gap distribution of a translation surface .X; !/. We let
ƒ.X;!/, sometimes shortened to just ƒ, be the set of holonomy vectors of the surface. We may start by
considering all of the holonomy vectors of .X; !/ in the first quadrant, with `1 norm �R. If we act on
.X; !/ by the matrix

g�2 log.R/ D

�
1=R 0

0 R

�
;

the slopes of the holonomy vectors of g�2 log.R/.X; !/ in Œ0; 1�� Œ0; R2� are the same as R2 times the
slopes of the holonomy vectors of .X; !/ in Œ0; R�� Œ0; R�, as we can see in Figure 2.

Another important observation is that the horocycle flow

hs D

�
1 0

�s 1

�

g�2 log.R/

R

R

1

R2

ƒ.X;!/ ƒ.g�2 log.R/.X; !//

Figure 2: Upon renormalizing a surface .X; !/ by applying g�2 log.R/, the slopes of the saddle
connections of .X; !/ scale by R2.
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changes slopes of holonomy vectors by s. That is,

slope.hs.z//D slope.z/� s

for z 2R2. As a result, slope differences are preserved by the flow hs .

Now we let the Veech group of the surface be SL.X; !/ and we define a Poincaré section or transversal
for horocycle flow on SL.2;R/=SL.X; !/. By transversal we mean a subset such that almost every orbit
under horocycle flow intersects that subset in a nonempty countable discrete set of times. Two key related
notions are given by the return time of a point in the transversal, which records how long it takes to return,
and the return map, which outputs what the point has returned to in the transversal after flowing by the
return time. Each of these are explicit in our situation and will be described below.

We consider the transversal given by the surfaces in the SL.2;R/ orbit of .X; !/ with a short horizontal
saddle connection of length � 1. That is,

�.X;!/D fg SL.X; !/ j gƒ\ ..0; 1�� f0g/¤∅g:

By [1, Lemma 2.1], �.X;!/ indeed is transversal for horocycle flow.

Then the slope gaps of .X; !/ for holonomy vectors of `1 length � R are exactly 1=R2 times the set
of N.R/� 1 first return times to �.X;!/ of the surface g�2 log.R/.X; !/ under the horocycle flow hs

for s 2 Œ0; R2�. Here we are thinking of return times as the amount of time between each two successive
times that the horocycle flow returns to the Poincaré section. In this way, the slope gaps of .X; !/ are
related to the return times of the horocycle flow to the Poincaré section. Summarizing, since GR.X; !/ is
the set of slope gaps renormalized by R2, we have that

GR.X; !/D ffirst N.R/� 1 return times of g�2 log.R/.X; !/ to �.X;!/ under hsg:

For a point z in the Poincaré section �.X;!/, we denote by Rh.z/ the return time of z to �.X;!/ under
the horocycle flow. Then as one lets R!1, this renormalization procedure gives us that

lim
R!1

jGR.X; !/\ .a; b/j

N.R/
D �fz 2�.X;!/ jRh.z/ 2 .a; b/g;

where � is the unique ergodic probability measure on �.X;!/ for which the first return map under hs
is not supported on a periodic orbit. Computing the slope gap distribution then reduces to finding a
convenient parametrization of the Poincaré section for the horocycle flow on SL.2;R/=SL.X; !/, a
suitable measure on this parametrization, and the first return time function to this the Poincaré section.

We note that this last point also makes it clear that every surface in the SL.2;R/ orbit of a Veech surface
has the same slope gap distribution. We also note that scaling the surface by c scales the gap distribution
from f .x/ to .1=c4/f .x=c2/; see [11] for a proof of this latter fact.
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2.2 Computing gap distributions for Veech surfaces

In [11], Uyanik and Work developed a general algorithm for computing the slope gap distribution for
Veech surfaces. In particular, their algorithm finds a parametrization for the Poincaré section of any Veech
surface and calculates the gap distribution by examining the first return time of the horocycle flow to this
Poincaré section. In this section, we’ll go over the basics of this algorithm. For more details about this
algorithm as well as a proof of why it works, please see Uyanik and Work’s original paper.

We start by supposing that .X; !/ is a Veech surface with n <1 cusps. Then we let �1; : : : ; �n be
representatives of the conjugacy classes of maximal parabolic subgroups of SL.X; !/. We are going
to find a piece of the Poincaré section for each parabolic subgroup �i . The idea here is that the set of
shortest holonomy vectors of .X; !/ in each direction breaks up into

Sn
iD1 SL.X; !/vi , where the vi

vectors are in the eigendirections of the generators of each �i .

The Poincaré section is given by those elements g 2 SL.X;R/=SL.X; !/ such that g.X; !/ has a short
(length � 1) horizontal holonomy vector:

�.X;!/D fg SL.X; !/ j gƒ\ ..0; 1�� f0g/¤∅g:

Here ƒ is the set of holonomy vectors of .X; !/. Up to the action of SL.X; !/, these short horizontal
holonomy vectors are then just gvi for a unique vi .

So �.X;!/ then breaks up into a piece for each �i , which we can parametrize as follows, depending on
whether �I 2 SL.X; !/.

Case 1 (�I 2 SL.X; !/) In this case, �i ŠZ˚Z=2Z and we can choose a generator Pi for the infinite
cyclic factor of �i that has eigenvalue 1. Up to possibly replacing Pi with its inverse, there exists a
Ci 2 SL.2;R/ such that

Si D CiPiC
�1
i D

�
1 ˛i
0 1

�
for some ˛i > 0 and that Ci .X; !/ has a shortest horizontal holonomy vector of .1; 0/. The piece of
the Poincaré section associated to �i is then parametrized by all matrices Ma;b that take the saddle
connection of Ci .X; !/ with holonomy vector .1; 0/ to a short horizontal with holonomy vector .jaj; 0/
of Ma;bCi .X; !/ with �1� a < 0 or 0 < a � 1. With some linear algebra, we can see that this is given
by matrices

Ma;b D

�
a b

0 1=a

�
with �1� a < 0 or 0 < a � 1.

Since Si and �I are in the Veech group of Ci .X; !/, this set of Ma;b has some redundancies. Quotienting
out by �I gives us the set of Ma;b with 0 < a � 1 and arbitrary b. If we further quotient out by Si , we
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a

b

1

1

b D 1

b D 1� .˛i /a

a

b

c

1
b DmaC c

b D .m�˛i /aC c

Figure 3: Two possible Poincaré section pieces �i .

see that Ma;b is identified with Ma;bCn.˛i /a for every n 2 Z. The result is that a Poincaré section piece
associated to �i can be parametrized by

�i D f.a; b/ 2R2 j 0 < a � 1 and 1� .˛i /a < b � 1g;

where each .a; b/ 2�i corresponds to g SL.X; !/ for g DMa;bCi .

Remark 3 While �i is defined in this specific way in Uyanik and Work’s paper, there is actually a lot
more freedom in defining �i . We just need to choose a fundamental domain for the Ma;b matrices under
the action of hSi ;�I i. To do this, we again let 0 < a � 1, but for each a we choose a set of b values
of length .˛i /a to account for the quotienting out by Si . For any m; c 2 R, another such fundamental
domain is

�i D f.a; b/ 2R2 j 0 < a � 1 and maC c � .˛i /a < b �maC cg:

That is, instead of choosing �i to be a triangle whose top line is b D 1 for 0 < a � 1, we choose �i to
be a triangle whose top line is b DmaC c for some slope m and b–intercept c. We see the distinction
between these two Poincaré section pieces in Figure 3.

Furthermore, we can make similar modifications to �i in Case 2 below. In this case, there will be another
triangle with a < 0, and we have the freedom to choose the top line of the triangles with a > 0 and a < 0
independently. These modifications will be integral in our finiteness proofs.

Case 2 (�I … SL.X; !/) This case breaks up into two subcases, depending on whether the generator
Pi of �i Š Z has eigenvalue 1 or �1.

If Pi has eigenvalue 1, then we again can find

Si D CiPiC
�1
i D

�
1 ˛i
0 1

�
Algebraic & Geometric Topology, Volume 24 (2024)
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for some ˛i >0 and that Ci .X; !/ has a shortest horizontal holonomy vector of .1; 0/. We again have that
the matrices Ma;b parametrize the Poincaré section piece, but now we only can quotient out by the subgroup
generated by Si . The result is that the Poincaré section piece associated to �i can be parametrized by

�i Df.a; b/2R2 j 0< a� 1 and 1�.˛i /a < b� 1g[f.a; b/2R2 j �1� a < 0 and 1C.˛i /a < b� 1g;

where each .a; b/ 2�i corresponds to g SL.X; !/ for g DMa;bCi .

When Pi has eigenvalue �1, we can only find Ci 2 SL.2;R/ such that

Si D CiPiC
�1
i D

�
�1 ˛i
0 �1

�
;

where ˛i >0 and Ci .X; !/ has a shortest horizontal holonomy vector of .1; 0/. We again quotient out our
set of Ma;b matrices by the subgroup generated by Si . The resulting Poincaré section piece associated
to �i can be parametrized by

�i D f.a; b/ 2R2 j 0 < a � 1 and 1� .2˛i /a < b � 1g;

where each .a; b/ 2�i corresponds to g SL.X; !/ for g DMa;bCi .

Having established what each piece of the Poincaré section associated to each �i looks like, we also need
to find the measure on the whole Poincaré section. The measure on the Poincaré section is the unique
ergodic measure � on �.X;!/, which is a scaled copy of the Lebesgue measure on each of these pieces
�i of R2. The scaling factor is the total area of all the pieces of the transversal.

Upon finding the Poincaré section pieces, the return time function of the horocycle flow at a point
Ma;bCi .X; !/ is the smallest positive slope of a holonomy vector of Ma;bCi .X; !/ which has short
horizontal component. This is because of the way the horocycle flow acts on slopes. More precisely,
if v D .x; y/ is the holonomy vector of Ci .X; !/ such that Ma;b.x; y/ is the holonomy vector on
Ma;b.x; y/ with the smallest positive slope among all holonomy vectors with a horizontal component of
length � 1, then the return time function at that point .a; b/ 2�i in the Poincaré section is given by the
slope of Ma;b.x; y/, which is

y

a.axC by/
:

We call such a vector vD .x; y/ a winner or winning saddle connection. We note that while technically
v is the holonomy vector of a saddle connection, we will often use the terms holonomy vector and saddle
connection interchangeably. Our proof that the slope gap distribution of a Veech surface has finitely many
points of nonanalyticity will rely on us showing that each piece �i of the Poincaré section has finitely
many winners.

Each such v would then be a winner on a convex polygonal piece of �i , an example of which is given in
Figure 6. Furthermore, the cumulative distribution function of the slope gap distribution would then be
given by areas between the hyperbolic return time function level curves (see Figure 16 for an example
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Figure 4: The surface L with cone point in red.

picture) and the sides of these polygons, and would therefore be piecewise real analytic with finitely many
points of nonanalyticity. For more details about this process and a worked example of a computation of a
slope gap distribution, please see [3].

2.3 Examples and difficulties

In this section, we will give an example of difficulties that arise from the choice of parametrization of the
Poincaré section. In particular, it is possible for there to be infinitely many winning saddle connections
under certain parametrizations, but only finitely many different winners under a different parametrization.
For full computations of a gap distribution we refer to [3; 11].

We will take the surface L in Figure 4 and analyze the winning saddle connection on the component �1
of the Poincaré section corresponding to the parabolic subgroup of SL.L / generated by

�
1
0
1
1

�
. L is a

7–square square-tiled surface with a single cone point.

Since
�
1
0
1
1

�
is in the Veech group and L has a length-1 horizontal saddle connection, the corresponding

piece of the Poincaré section �1 can be parametrized by matrices

Ma;b D

�
a b

0 a�1

�
with 0 < a � 1 and 1� a < b � 1. Notice that L has all saddle connections with coordinates .n; 2/ and
.n; 3/ for n 2 Z, and no saddle connection with y–coordinate 1.

Proposition 4 In a neighborhood of the point .0; 1/ on �1, the winning saddle connection always has
y–coordinate 2.

Proof Take a saddle connection vD .n; k/ with k > 0 such that Ma;bv has horizontal component � 1.
We will show that if k > 2 and a < 1

3
, there is a saddle connection w D .m; 2/ such that the slope of

Ma;bw is less than the slope of Ma;bv, and Ma;bw has short horizontal component. Since there are no
saddle connections with k D 1, this implies that the winning saddle connection must have y–coordinate 2.
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a

b

1

1

Am Am�1

1
2

Figure 5: Regions Am where .�m; 2/ is a winner.

The x–coordinate of Ma;bw is maC 2b. Since L has all .m; 2/ saddle connections, we may choose an
m so that 1� a < maC 2b � 1. The condition that slope.Ma;bw/ < slope.Ma;bv/ rearranges to

naC kb < 1
2
k.maC 2b/:

If k > 2, then since L is square-tiled k � 3, and when a < 1
3

we have that maC 2b > 1� a � 2
3

; thus
1
2
k.maC 2b/ > 1. Since Ma;bv has a short horizontal component naC kb � 1, so the above inequality

is always true.

Let Am be the region where the saddle connection .�m; 2/ is the winning saddle connection. By
Proposition 4, in the top left corner of �1, Am is the region where Ma;b.�m; 2/ D .2b �ma; 2a

�1/

has smallest slope among all saddle connections with y–coordinate 2 and short horizontal component.
The slope is 2a�1=.2b �ma/, so minimizing the slope is equivalent to maximizing 2b �ma with the
constraint that 2b�ma � 1, or in other words, �mD b.1� 2b/=ac. But as a! 0 inside the region �1,
b!1, so �m��1=a!�1. This implies that there infinitely many saddle connections that occur as
winners in the top left corner of the Poincaré section.

By Remark 3 in Section 2.2, we can change the parametrization of the Poincaré section. One problem in
our previous parametrization was that there were infinitely many winners in the upper left-hand corner
.0; 1/ of our Poincaré section. To fix this, we will change our parametrization so that the upper left corner
is at

�
0; 1
2

�
and the slope of the top line of our Poincaré section triangle is nicely compatible with the

.1; 2/ holonomy vector. This will ensure that there are finitely many winners in the top left corner, and
will result in finitely many winners across the entire Poincaré section. We will prove that we can always
do this for arbitrary Veech surfaces in Section 3.

We will use the parametrization 0 < a � 1 and 1
2
�
3
2
a < b � 1

2
�
1
2
a. This parametrization is chosen

to ensure that the saddle connection .1; 2/ of L wins in a neighborhood of the top line segment, which
prevents the problem that arises in the previous parametrization.
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a

b

1
2

�1

1

.1; 2/ wins

.2; 3/ wins

.2; 2/ wins

Figure 6: The new Poincaré section breaks up into three pieces, with saddle connection (1,2)
winning in the blue region, (2,3) in the yellow region and (2,2) in the red region.

In this case, the only winners are the .1; 2/, .2; 3/ and .2; 2/ saddle connections on L :

(1) .1; 2/ wins in the region˚
.a; b/ j 0 < a � 1; 1

2
� a < b � 1

2
�
1
2
a and 1

3
�
2
3
a < b

	
:

(2) .2; 3/ wins in the region˚
.a; b/ j 1

2
< a � 1 and 1

2
� a < b � 1

3
�
2
3
a
	
:

(3) .2; 2/ wins in the region˚
.a; b/ j 0 < a � 1 and 1

2
�
3
2
a < b � 1

2
� a

	
:

To see this, notice that the saddle connection .x; y/ is the winner at .a; b/ if Ma;b.x; y/ has smallest
positive slope amongst all saddle connections with short horizontal component. Ma;b.x; y/ has short
horizontal component in the region with 0 < a � 1 and .�x=y/a < b � 1=y � .x=y/a. Minimizing
the slope at .a; b/ is equivalent to maximizing x=y over all saddle connections with a short horizontal
component.

Working out the exact winners then comes down to casework. In this case, Ma;b.m; 2/ never has a short
horizontal component for m> 2 and .a; b/ in the Poincaré section, and simple casework shows where
.1; 2/ and .2; 2/ are the winners. For saddle connections with y–coordinate greater than 2, we need to
understand those with x=y > 1

2
which can potentially win against .1; 2/ or .2; 2/. In the yellow region

.2; 3/ wins, as .2; 2/ does not have a short horizontal component for .a; b/ in that region. All other saddle
connections with y D 3 and x � 3 do not have short horizontal component in the Poincaré section. For
y� 4, a similar analysis shows that none of the saddle connections can appear as winners, giving the result.

Algebraic & Geometric Topology, Volume 24 (2024)



Slope gap distributions of Veech surfaces 963

3 Main theorem

In Section 2.3, we examined the 7–square square-tiled surface L and saw that, in one parametrization, it
looked like the Poincaré section would admit infinitely many winning saddle connections and therefore
give the possibility of infinitely many points of nonanalyticity in the slope gap distribution. However,
when we strategically chose a different parametrization of this piece of the Poincaré section, there were
only finitely many winners. Thus this piece of the Poincaré section could only contribute finitely many
points of nonanalyticity to the slope gap distribution.

It is interesting to note that this implies that many of the potential points of nonanalyticity arising from
the Uyanik–Work parametrization must cancel each other out and not result in points of nonanalyticity in
the slope gap distribution. Choosing a strategic parametrization of the Poincaré section is one of the key
ideas of the main theorem of this paper:

Theorem 1 The slope gap distribution of any Veech surface has finitely many points of nonanalyticity.

This section is devoted to the proof of this theorem. We will begin by giving an outline of the proof, and
then will dive into the details of each step.

3.1 Outline

The idea is that after choosing strategic parametrizations of each piece of the Poincaré section of a
Veech translation surface .X; !/, we will use compactness arguments to show that there are finitely many
winners on each piece.

(1) We begin with a Veech translation surface .X; !/ and focus on a piece of its Poincaré section
corresponding to one maximal parabolic subgroup in SL.X; !/. Up to multiplication by an element of
GL.2;R/, we will assume that the generator of the parabolic subgroup has a horizontal eigenvector and
.X; !/ has a horizontal saddle connection of length 1. Based on properties of the saddle connection set
of .X; !/, we strategically choose a parametrization TX of this Poincaré section piece. TX will be some
triangle in the plane.

(2) For any saddle connection v of .X; !/, we will define a strip S�.v/ that gives a set of points
.a; b/ 2R>0�R where v is a potential winning saddle connection on the surface Ma;b.X; !/ 2 TX . We
will start by showing various properties of these strips that we will make use of later on in the proof.

(3) We will then show that every point .a; b/ 2 TX in the interior of a strip has an open neighborhood
with finitely many winning saddle connections.

(4) We show that every point .a; b/ on the top edge of TX has an open neighborhood with finitely many
winning saddle connections.

(5) We then move on to show that points .a; b/2 TX that are either in the interior of TX or on the bottom
edge not including the right vertex with aD 1 have an open neighborhood with finitely many winning
saddle connections.
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(6) Next we show that on the boundary aD 1 of TX there are finitely many winning saddle connections.

(7) Using the finiteness on the right boundary, we show that any point .a; b/ 2 TX with aD 1 has an
open neighborhood with finitely many winning saddle connections.

(8) By compactness of TX , there is a finite cover of TX with the open neighborhoods of points .a; b/2TX
that we found in our previous steps. Since each of the these open neighborhoods had finitely many
winners, we find that there are finitely many winning saddle connections across all of TX .

(9) Finally, we show that finitely many winners on each piece of the Poincaré section implies finitely
many points of nonanalyticity of the slope gap distribution.

3.2 Proof

Using the method of [11] outlined in Section 2.2, it will suffice to show that every piece of the Poincaré
section can be chosen so that there are only finitely many winning saddle connections. For most of the
arguments in this section we will fix a piece of the Poincaré section and will work exclusively with it.

We recall that there is a piece of the Poincaré section for each conjugacy class of a maximal parabolic
subgroup in SL.X; !/. We will now fix such a maximal parabolic subgroup �i and work with the
corresponding component of the Poincaré section. Without loss of generality we may assume that .X; !/
has a horizontal saddle connection with x–component 1 and that �i is generated by

Pi D

�
1 ˛i
0 1

�
:

Using the notation of Section 2.2, this is essentially replacing .X; !/ with Ci .X; !/.

Since .X; !/ is a Veech surface with a horizontal saddle connection it has a horizontal cylinder decompo-
sition [6], and therefore, for all a 2R, there are only finitely many heights 0� h� a such that .X; !/
has a saddle connection with y–component h. Let y0 > 0 be the shortest vertical component of a saddle
connection on .X; !/, and let x0 > 0 be the shortest horizontal component of a saddle connection at
height y0. Our first step is to use this saddle connection to give a parametrization of the Poincaré section
that is adapted to the geometry of .X; !/.

By Remark 3, we can choose the following parametrization of this piece of the Poincaré section, as
pictured in Figure 7:

TX D

�
.a; b/

ˇ̌̌
0 < a � 1 and

1� x0a

y0
�na � b �

1� x0a

y0

�
:

Here n is either ˛i or 2˛i depending on which one is needed to fully parametrize this piece of the Poincaré
section, as described in Section 2.2. In the case where �I … SL.X; !/ and P1 had eigenvalue 1, the
Poincaré section has an additional triangle with a < 0. In particular, we can choose this triangle so that it
consists of points .�a;�b/ for .a; b/ 2 TX . But if v were the winning saddle connection for Ma;b.X; !/,
then �v would be the winning saddle connection for M�a;�b.X; !/, and hence when proving that there
are only finitely many winners, it suffices to consider only the portion with a > 0.
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a

b

1

y0

1

b D
�x0
y0

aC
1

y0

b D
�
�x0
y0
�n
�
aC

1

y0

Figure 7: A Poincaré section piece for .X; !/ with y0 > 0 the shortest vertical component and
x0 > 0 the shortest corresponding horizontal component of a saddle connection on .X; !/ with
vertical component y0.

Our goal now is to prove that the return time function is piecewise real analytic with finitely many pieces.
We will do so by proving that there are finitely many winning saddle connections v1; : : : ; vn 2ƒ.X;!/

such that each point .a; b/ 2 TX has a winner Ma;bvi for some 1� i � n. We will repeat this for every
TX corresponding to each maximal parabolic subgroup.

To achieve this goal, we will first define an auxiliary set that will help us understand for what points
.a; b/ 2 TX a particular v 2ƒ.X;!/ is a candidate winner. By a candidate winner, we mean that Ma;bv

has a positive x–coordinate at most 1 and a positive y–coordinate. If v D .x; y/, the x–coordinate
condition is the condition that 0 < axC by � 1. We also note that for Ma;b.x; y/ to be a winner, we
need that a�1y > 0. Since a > 0 on TX , this condition reduces to saying that y > 0.

Definition 5 Given a saddle connection vD .x; y/ with y > 0, we define S�.v/ as the strip of points
.a; b/ 2 R>0 �R such that 0 < axC by � 1. This corresponds to the set of surfaces Ma;b.X; !/ for
which Ma;bv is a potential winning saddle connection.

Let us note some properties of these strips S�.v/ that we will use repeatedly in our proofs. We recall
that we are assuming without loss of generality that .X; !/ has a short horizontal saddle connection of
length 1. Considering the particular piece TX of the Poincaré section, we recall that TX is parametrized
by matrices

Ma;b D

�
a b

0 a�1

�
so that Ma;b.X; !/ has a horizontal saddle connection of length � 1.
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a

b

1

y 1

x

Figure 8: A strip S�.v/ for vD .x; y/. Here y > 0. The slope of the upper and lower lines of the
strip is �x=y.

Then, because .X; !/ is a Veech surface, it breaks up into horizontal cylinders, and therefore there exists a
y0 > 0 such that there is a saddle connection with height y0 and furthermore that every saddle connection
with positive height has height � y0.

With these assumptions in place, we note the following useful properties of the strips S�.v/ that are used
implicitly throughout the proof:

(1) The strip S�.v/ for vD .x; y/ is sandwiched between a solid line that intersects the b–axis at 1=y
and a dotted line that intersects the b–axis at 0. Both lines have slope �x=y. We also know that y � y0,
so 1=y � 1=y0.

(2) Fixing any c > 0, there are only finitely many y–coordinates of saddle connections v such that S�.v/
intersects the y–axis at any point � c.

This is because .X; !/ being a Veech surface and having a horizontal saddle connection implies that
the surface breaks up into finitely many horizontal cylinders of heights h1; : : : ; hn and every saddle
connection with positive y–component must have a y–component that is a nonnegative linear combination
of these hi . Since there are finitely many such y values � 1=c, there are finitely many strips that intersect
the y–axis at points � c.

(3) At a particular point .a; b/ 2 TX , the winner is the saddle connection vD .x; y/ 2ƒ.X;!/ such that
Ma;bvD .axCby; a�1y/ has the least slope among those saddle connections satisfying 0< axCby � 1
and a�1y > 0. Since a > 0 for any point in �i and the reciprocal of the slope of Ma;bv is a2x=yC ab,
this corresponds to the saddle connection with the greatest reciprocal slope, which corresponds to having
the greatest x=y with y > 0.

In terms of our strips, we’re fixing the point .a; b/ and looking for the strip S�.v/ that contains .a; b/ and
has the least slope, since each strip has slope �x=y. We further note that, due to our choice of Poincaré
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section, no saddle connection vD .x; y/ with x < 0 can ever be the winner at a point .a; b/ 2 TX , since
either .a; b/ will not be in the strip S�.v/ or the saddle connection .x0; y0/ that defined TX would win
over .x; y/ at .a; b/. Because of this, from now on we will only consider saddle connections with x � 0
(and y > 0) when looking for potential winners.

(4) For any given y > 0, there are only finitely many saddle connection vectors v D .x; y/ of .X; !/
with x � 0 such that S�.v/ intersects TX .

This is because S�.v/ does not intersect TX for x=y larger than some constant C that depends on TX
and y. Specifically, we can let C D x0=y0Cn, the negative of the slope of the bottom line that defines
the triangle TX . Since the saddle connection set is discrete, there are finitely many x � 0 for a given y
such that x=y � C .

With these facts established, let us first prove a lemma that shows that winning saddle connections exist
and that will be useful in proving Lemma 12.

Lemma 6 Let .a; b/ 2 TX be such that .a; 0/ is a short horizontal saddle connection of Ma;b.X; !/.
Then Ma;b.X; !/ either has a saddle connection v D .x; y/ with 0 < x < a and y > 0, or there exist
two saddle connections v1 D .a; y/ and v2 D .0; y/ with y > 0. This implies that every point in TX
has a winning saddle connection , or equivalently that every point in TX is in some strip S�.v/ for some
vD .x; y/ with y > 0.

Proof Let us take a horizontal saddle connection on our surface Ma;b.X; !/ with holonomy vector
.a; 0/, connecting two (possibly identical) cone points p and q. Then we will consider developing a
width-a vertical strip on our surface extending upward with the open horizontal segment from p to q as
its base. Since our surface is of finite area, this vertical strip must eventually hit a cone point r or come
back to overlap our original open segment from p to q. Now we’re going to define our vectors v, or v1

and v2, in each case.

In the former case when the top edge of our vertical strip hits a cone point r in the interior of the edge,
the straight segment from p to r cutting through our vertical strip gives us v.

The latter case when the top edge of our vertical strip comes back to overlap our original open segment
breaks up into two cases. If we have an incomplete overlap, then the top edge contains the cone point

p q

r

v
p

r D q

:::

:::

v

p q

:::

:::

v1

v2

Figure 9: The vectors v or v1 and v2 in the three different cases of vertical strip.
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1
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Figure 10: A choice of 1=h for a particular S .

r D p or r D q, and the saddle connection from p on the bottom edge to r on the top edge gives us v. If
we have a complete overlap, then the saddle connection from p on the bottom edge to q on the top edge
gives us our vector v1 and the saddle connection from p on the bottom edge to p on the top edge gives
us our vector v2.

In any of these cases, letting v0 DM�1
a;b
.v/ or M�1

a;b
.v1/ gives us that S�.v0/ contains our initial point

.a; b/ and v0 is a possible winning saddle connection.

The following lemma will help us show that there are finitely many winning saddle connections on certain
sets in TX :

Lemma 7 Let S be a closed set that is a subset of S�.v/ for v D .x; y/ with y > 0. Then there are
finitely many winning saddle connections on S .

Proof Let S be a closed set contained in S�.v/ for a saddle connection vD .x; y/ of .X; !/ with y > 0.
By definition, v is a potential winning saddle connection on all of S . That is, for any point .a; b/ 2 S ,
Ma;bv has positive y component and positive and short (� 1) x component.

We recall that for a point .a0; b0/ � S to have winner v0 D .x0; y0/ ¤ v D .x; y/, we need that v0 is a
saddle connection of .X; !/, x0=y0 > x=y, and that .a0; b0/� S�.v0/.

This corresponds to the strip S�.v0/ having a smaller slope than S�.v/ and still intersecting S . Given
that S is closed and the bottom boundary of S�.v/ is open, there exists an h > 0 such that the line S is
completely on or above the line b D�.x=y/aC 1=h. Furthermore, since the left boundary of S�.v/ is
open, S is a positive distance away from the y–axis.

Then for S�.v0/ to intersect S and for x0=y0 >x=y, we need that y0 <h, since otherwise the strip S�.v0/
would have y–intercepts 1=y0 � 1=h and 0 and would have smaller slope than that of S�.v/ and would
therefore not intersect S .
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But since .X; !/ is a Veech surface with a horizontal saddle connection, it decomposes into finitely many
horizontal cylinders. Therefore, the set of possible vertical components y0 of saddle connections are a
discrete subset of R, and thus there are finitely many vertical components of saddle connections that
satisfy y0 < h. Since there are finitely many saddle connections in the vertical strip .0; 1�� .0;1/ with
vertical component less than h, there are finitely many possible winning saddle connections on S .

We recall that our goal is to show that every point .a; b/ 2 TX has a neighborhood on which there are
finitely many winners. This will allow us to use a compactness argument to prove that there are finitely
many winners on all of TX . Building off of the previous lemma, we show in the next lemma that certain
points .a; b/ 2 TX have an open neighborhood on which there are finitely many winners:

Lemma 8 Let .a; b/ be in the interior of some strip S�.v/. Then there exists a neighborhood of .a; b/
with finitely many winning saddle connections.

Proof Let .a; b/ be in the interior of the strip S�.v/ for vD .x; y/ with y > 0 and x � 0. Then we can
find an � > 0 such that the closed ball of radius � around .a; b/ remains in the interior of the strip. That
is, we choose an � > 0 such that

B�..a; b//� S�.v/:

We can then use Lemma 7 to conclude that there are finitely many winning saddle connections on
B�..a; b//, and therefore on B�..a; b//.

We now look at points .a; b/ 2 TX that lie on the top edge of TX and show that these points have a
neighborhood with finitely many winners.

Lemma 9 For any .a; b/ that lies on the top edge of TX , including the point .0; 1=y0/, there exists a
neighborhood B�..a; b// such that there are finitely many winning saddle connections on B�..a; b//\TX .

Proof We recall that TX is a triangle bounded by the lines bD .�x0=y0/aC1=y0 on top, the line aD 1
on the right and the line b D .�x0=y0�n/aC 1=y0 on the bottom.

We break up the proof of this lemma into cases, depending on the location of .a; b/ 2 TX [f.0; 1=y0/g:

(1) bD .�x0=y0/aC 1=y0 These points are on the top line of TX . We recall that y0 was chosen to
be the least y > 0 for which X has a saddle connection .x; y0/. Then x0 was the least x > 0 for which
.x; y0/ was a saddle connection of X .

Let .a; b/ be any point on the top line of TX and let v D .x0; y0/. Then .a; b/ is on the top line of
the strip S�..x0; y0//. We can find an � > 0 such that B�..a; b//\ S�..x0; y0// is a closed subset of
S�..x0; y0//. By Lemma 7, there are then finitely many winners on B�..a; b//\S�..x0; y0//.

(2) .a; b/D .0; 1=y0/ This point is not in TX but is the top left corner of the triangle that makes up TX .

We can find a y1 >y0 such that every saddle connection .x; y/ of X with y > y0 must satisfy that y � y1.
Thus, we can choose an � > 0 such that B�..0; 1=y0//\TX � S�..x0; y0// and no strip S�..x; y//, for
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.a; b/

p�

Figure 11: The strip S�.w�/.

a saddle connection with y > y0 and x � 0, intersects B�..0; 1=y0//. This would imply that the only
possible winning saddle connections on B�..0; 1=y0// are of the form .x; y0/ for x � x0.

But if we fix y D y0, since the set of saddle connections .x; y0/ is discrete and TX is bounded below by
the line bD .�x0=y0�n/aC1=y0, there are only finitely many saddle connections vD .x; y0/ of .X; !/
whose strip S�.v/ intersects B�..0; 1=y0//— exactly those x such that x0 � x � x0C ny0. We have
shown then that only finitely many strips S�.v/, for holonomy vectors v that could win over .x0; y0/,
intersect B�..0; 1=y0//, and therefore there are only finitely many winners on this neighborhood.

Having established that points .a; b/ 2 TX on the top edge of TX have neighborhoods with finitely many
winners, we now turn to points .a; b/ 2 TX that lie in the interior of TX or on the bottom edge of TX .

Lemma 10 For any .a; b/ that lies in the interior of TX or on the bottom edge of TX , excluding the
vertex with aD 1, there exists a neighborhood B�..a; b// such that there are finitely many winning saddle
connections on B�..a; b//\TX .

Proof By Lemma 8, it suffices to show that .a; b/ lies on the interior of a strip S�.v/ for some saddle
connection v.

Because .a; b/ is in TX , it must lie in some strip S�.v/. If .a; b/ is in the interior of S�.v/, then we are
done. Otherwise, if .a; b/ is on the boundary of S�.v/, we consider the points p� D ..1C �/a; .1C �/b/,
with winner w� . Since .a; b/ lies in the interior of TX or on the bottom edge of TX , for � > 0 sufficiently
small p� also lies in TX . Moreover, notice that p� and .a; b/ lie on the same line through the origin. This
immediately implies that .a; b/ lies in the interior of S�.w�/, as seen in Figure 11.

Indeed, by the definition of S�.v/ for any holonomy vector v as a half-open strip with the open bottom
boundary passing through the origin, for all points p 2 S�.v/ the points tp for 0< t < 1 lie in the interior,
which gives the desired result.

The combination of our previous lemmas shows that, for all .a; b/ 2 TX away from the right vertical
boundary, there are only finitely many winners in a neighborhood of .a; b/. We also want to show that,
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for each .1; b/ on the right vertical boundary, there are only finitely many winners in a neighborhood.
We will do this in two steps. First we will show that there are finitely many winning saddle connections
along the right boundary of TX . We will then use this result to prove that every point .1; b/ on the right
boundary of TX has a neighborhood with finitely many winning saddle connections.

For our first result, we will need the following definition:

Definition 11 Given .a; b/ 2 R2, define the set Sƒ.a; b/ as the strip of vectors v D .x; y/ 2 R2 such
that 0 < axC by � 1 and y > 0. This corresponds to the set of vectors that are potential winners on the
surface Ma;b.X; !/.

We think of this definition as a sort of dual to Definition 5, where instead of thinking of the surfaces
corresponding to a particular winning saddle connection, we think about the set of possible coordinates
of winning saddle connections for a particular surface.

Lemma 12 There are only finitely many winning saddle connections along the right vertical boundary
aD 1 of TX .

Proof By Lemma 6, we know that every point .1; b/ on the right boundary of TX has a winning saddle
connection. The set of b 2 R such that .1; b/ 2 TX is some interval Œc; d �. We note that since

�
1
0
˛
1

�
is in the Veech group of our surface for some ˛ > 0, it suffices to show that there are finitely many
winners for b 2 ŒcC n˛; d C n˛� for any n 2 Z. This is because .x; y/ is the winner for b0 if and only
if .x � n˛y; y/ is the winner for b0C n˛. For convenience, we will prove that there are finitely many
winners for b 2 ŒM;N �D ŒcCn˛; d Cn˛� for an n such that M;N > 0.

For each such b, we let vb be its corresponding winning saddle connection. We wish to show that the set
of vectors vb is finite. We suppose that fvbg is infinite. Then, since b 2 ŒM;N �, we must be able to find
a convergent subsequence of bi 2R with corresponding winning saddle connections .xi ; yi / such that
bi ! b0 and b0; bi 2 ŒM;N � for all i . In particular, b0 > 0.

We claim now that Sƒ.1; b0/ cannot have a winning saddle connection, which would contradict Lemma 6.
This corresponds to a saddle connection .x; y/ in the strip Sƒ.1; b0/ that maximizes x=y. The strip
Sƒ.1; b

0/ satisfies that y > 0 and 0 < xCb0y � 1, or alternatively that �.1=b0/x < y ��.1=b0/xC1=b0.
We recall that b0 > 0. Figure 12 shows a depiction of this strip.

We suppose that the winning saddle connection .x0; y0/ for b0 lies in the interior of Sƒ.1; b0/. If
x0=y0 > xi=yi and .x0; y0/ 2 Sƒ.1; bi /, then .xi ; yi / could not be the winner for .1; bi / because .x0; y0/
beats it and is still in the strip Sƒ.1; bi /.

We let Cb0 be the cone given by the intersection of y < .y0=x0/x and y > .y0=.x0� 1//x � y0=.x0� 1/.
We notice that if .xi ; yi / 2 Cb0 , then it follows that .x0; y0/ 2 Sƒ.1; bi /. One can see this algebraically
or visually by noting that if .xi ; yi / is in the cone Cb0 as depicted in Figure 13, then Sƒ.1; bi / contains
.xi ; yi / and is bounded by two lines with x–intercepts 0 and 1 and therefore must contain the point
.x0; y0/. Furthermore, the first inequality defining the cone gives us that x=y > x0=y0.
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1

1

b0

Figure 12: The strip Sƒ.1; b0/.

Therefore, if .xi ; yi / is a winning saddle connection for some .1; bi /, it cannot be in the open cone Cb0
as defined above. Since bi ! b0, this implies that for any � > 0 we can find an n large enough that,
for all i � n, the strips Sƒ.1; bi / all lie in a region S� that is the region where .�1=b0 C �/x � y �
.�1=b0 � �/x C .1=b0 C �/ and y > 0. Specifically, we will choose an � such that the slopes of the
two bounding lines of S� are wedged between the slopes of the bounding lines of Cb0 . That is, we will
choose � > 0 such that .�1=b0� �/ > y0=x0 and .�1=b0C �/ < y0=.x0� 1/. We call this latter region S� .
Figure 13 illustrates these regions.

Given these conditions, we notice that S�nCb0 is a compact set. With the possible exception of one point
that equals .x0; y0/, the winning saddle connections .xi ; yi / for i � n must all be in this region. But the
set of holonomy vectors of saddle connections of .X; !/, of which f.xi ; yi /g is a subset, is a discrete
subset of R2 with no accumulation points, and so there are only finitely many .xi ; yi / 2 S�nCb0 . This is a

1

.x0; y0/

S�

Cb0

Sƒ.1; b
0/

Figure 13: The strip Sƒ.1; b0/ with its winner .x0; y0/ and cone Cb0 , along with the region S�
containing the winners .xi ; yi / for i � n.
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1

.x0; y0/

.x00; y00/

S�

C0b0

Sƒ.1; b
0/

Figure 14: The strip Sƒ.1; b0/ with its winner .x0; y0/, the vector .x00; y00/ on its open boundary
and its cone C0

b0
, along with the region S� containing the winners .xi ; yi / for i � n.

contradiction, since the set f.xi ; yi /g is infinite. Hence, if Sƒ..1; b0// contained a point .x0; y0/, it could
not be in the interior of the strip.

We also consider the case when .x0; y0/ is in on the boundary of Sƒ.1; b0/. That is, we suppose that
.x0; y0/ is on the line yD�.1=b0/xC1=b0. If there exists a saddle connection in the interior of Sƒ.1; b0/,
we can appeal to the reasoning in the previous case to find a contradiction. Else, after potentially applying
a shear to our surface, Lemma 6 guarantees that there is also a holonomy vector .x00; y00/ on the open
boundary y D�.1=b0/x of Sƒ.1; b0/.

We now consider the cone C0
b0

given by the intersection of the regions

y <
y0

x0
x and y >

y00

x00� 1
x�

y00

x00� 1
:

Similar to the previous case, we can find n large enough that the strips Sƒ.1; bi / all lie in a region S� that
is defined by .�1=b0C �/x � y � .�1=b0 � �/xC .1=b0C �/ and y > 0. Here we again choose � > 0
such that the slopes of the two bounding lines of S� are wedged between the slopes of the bounding lines
of C0

b0
. That is, we will choose � > 0 such that .�1=b0� �/ > y0=x0 and .�1=b0C �/ < y00=.x00� 1/. We

call this latter region S�. Figure 14 illustrates these regions.

Since the set f.xi ; yi /g has no accumulation points and S�nC0b0 is compact, all but finitely many of the
.xi ; yi / for i � n must lie in the cone C0

b0
and not be equal to .x0; y0/ or .x00; y00/. Let us consider one of

these .xi ; yi /. The corresponding strip Sƒ.1; bi / is the region between two parallel lines that intersect the
x–axis at 1 and 0, including the line through 1 but not including the line through 0. Therefore Sƒ.1; bi /
must either contain .x0; y0/ or .x00; y00/, depending on if bi � b0 or bi > b0, respectively. If it contains
.x0; y0/, then by similar reasoning as in the previous case .x0; y0/ beats .xi ; yi /, and so .xi ; yi / could not
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have been the winner for .1; bi /. If it contains .x00; y00/, then either .x00; y00/ beats .xi ; yi /, which means
that .xi ; yi / was not the winner, or .xi ; yi / was in the interior or Sƒ..1; b0//, which contradicts that the
interior of Sƒ.1; b0/ did not contain any saddle connections. In either case, we have a contradiction.

Since we found a contradiction in both the cases when there was saddle connection in the interior and
on the boundary of Sƒ.1; b0/, we see that there must have been only finitely many winners on the right
vertical boundary of TX .

We can now use the previous lemma to show that points on the right boundary of TX have a neighborhood
with finitely many winners.

Lemma 13 Given any point .a; b/ 2 TX with aD 1, there exists a neighborhood B�..a; b// such that
there are finitely many winning saddle connections on B�..a; b//\TX .

Proof Suppose that we have a point .a; b/ 2 TX with aD 1 and b D b0. Then Lemma 6 guarantees that
.1; b0/ is in some strip S�.v/. If .1; b0/ is in the interior of S�.v/, then Lemma 8 shows that there is a
neighborhood of .1; b0/ in TX with finitely many potential winners.

We now consider the case where .1; b0/ is not in the interior of any strip. This means that .1; b0/ is on
the top boundary of some strip S�.v/. We will first deal with the case where .1; b0/ is not on the top
boundary of TX : Every point .1; b0Cc/ for c > 0 small enough must also be in some winning strip. Since
Lemma 12 tells us that there are finitely many winning saddle connections on the right boundary of TX
where aD 1, this then implies that .1; b0/ is on the bottom boundary of some other strip S�.w/, where
w is the winning saddle connection for all .1; b0C c/ for c > 0 small enough.

Because there are finitely many winning saddle connections on the aD 1 line of TX by Lemma 12, we
can now choose an � > 0 small enough that w is the winning saddle connection for .1; b0C c/ and v is
the winning saddle connection for .1; b0� c/ for any 0 < c � �.

We claim now that there are finitely many winning saddle connections on B�..1; b0//. We recall that for
a point .a; b/ 2 B�..1; b0//\TX to have a winning saddle connection other than v or w, there must be
a strip S�.u/ for a saddle connection u that is steeper (has more negative slope) than S�.v/ or S�.w/
(whichever is the winner at .a; b/) and that contains .a; b/.

Shrinking � if necessary, B�..1; b0// lies above the line bD�.x=y/aC1=h for some h>0 and .x; y/Dv.
Then, as in the proof of Lemma 7, we can show that there are finitely many strips of saddle connections
u of .X; !/ with strips S�.u/ intersecting B�..1; b0// and that are at least as steep as S�.v/.

If S�.u/ is at most as steep as S�.w/, then it cannot win for any point in B�..1; b0//\TX since w or v

would win instead.

If S�.u/ has steepness strictly between that of w and v, then for u to be a winner for some point
.a; b/ 2 B�..1; b

0// \ TX we must have that .a; b/ 2 S�.u/ \ .S�.w/nS�.v//. But then, by slope
considerations, S�.u/ must also intersect the aD 1 boundary of TX in B�..1; b0// above the point .1; b0/.
But this contradicts that w and v were the only winners on the right boundary of TX in B�..1; b0//.
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a

b

1

TX

B�..1; b
0//

S�.v/

S�.w/

Figure 15: The winning strips S�.v/ and S�.w/ near .1; b0/ on the right boundary of TX .

Hence, only the finitely many saddle connections u with strips that intersect B�..1; b0// and have slope
steeper than that of S�.v/ can be winners on B�..1; b0//\TX .

Combining these lemmas shows that for all points in TX there are finitely many winners in a neighborhood,
and hence by compactness there are finitely many winners on TX .

Proof of Theorem 1 We will consider TX D TX [ f.0; 1=y0/g. This is a compact set. We showed in
Lemmas 9, 10 and 13 that, for any point .a; b/ 2 TX , we can find a neighborhood B�..a; b// such that
there are finitely many possible winning saddle connections on B�..a; b//\TX . Since TX is compact, it
is covered by finitely many of these neighborhoods. Since a finite union of finite sets is finite, the set of
possible winners on TX is finite.

Each winning saddle connection vi would then be a winner on a convex (see the remark below) polygonal
piece of TX . The cumulative distribution function of the slope gap distribution would then be given by
the sums of areas between the level curves of the hyperbolic return time functions y=.a.axC by//, as
described in Section 2.2, and the sides of these polygons. Since there are finitely many polygonal pieces,
the cumulative distribution function and therefore also the slope gap distribution would be piecewise real
analytic with finitely many points of nonanalyticity.

Remark 14 While it is not necessary for the proof of Theorem 1, we can see that each v is a winner on a
convex polygonal piece of �i . The convexity arises because the region where v wins is the intersection of
finitely many convex regions: the strip S�.v/, the triangular region TX , and finitely many half-planes that
are the upper piece of the complement of S�.v0/ for other vectors v0 that win on some region of S�.v/\TX .
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4 Quadratic tail decay

As an application of the finiteness result (Theorem 1), we prove:

Theorem 2 The slope gap distribution of any Veech surface has quadratic tail decay. That is, if f
denotes the density function of the slope gap distribution, thenZ 1

t

f .x/ dx � t�2:

Proof We find the decay of the tail on a piece of the Poincaré section given by the triangle TX . Doing
this for all the pieces gives the decay of the tail.

The proof of Theorem 1 shows that there exists a minimal finite set of saddle connections F �ƒ.X;!/
such that, for any point in the triangle TX , there is some v 2 F with Ma;bv being the winning saddle
connection. Let S�.v/� TX denote the strip where Ma;bv could win and W�.v/� S�.v/ denote where
Ma;bv does win.

Fix vD .x; y/ 2F . Then the tail on the piece W�.v/ is proportional to the area of the set of points .a; b/
in W�.v/ with

slope.Ma;bv/D
y

a2xC aby
> t ()

1

at
�
x

y
a > b:

Let mD x=y. By adding the contribution that W�.v/ gives on the tail for each v 2 F , we get the full
contribution to the tail. In what follows we work on one such winning saddle connection v. Hence, it
suffices to understand the portion of W�.v/ below the hyperbola b D 1=.at/�ma. Notice that this
hyperbola approaches the line b D �ma from above. Moreover, notice that the line b D �ma is the
bottom boundary of the strip S�.v/.

We have three situations, depending on how the line b D�ma intersects TX , as shown in Figure 16.

(1) Suppose b D�ma doesn’t intersect TX . This means that the line b D�ma avoids the bottom edge
of TX for a 2 Œ0; 1�. In this case we will only find contribution to the tail when the vertical of v is y0,
since otherwise we can choose large enough t so that the hyperbola misses W�.v/.

Figure 16: An illustration of cases (1)–(3) in the proof of Theorem 2 (from left to right).
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An upper bound for the contribution of W�.v/ is just the part underneath the hyperbola and inside TX .
For t large, the hyperbola b D 1=.at/�ma intersects the triangle twice. First it intersects at the top
through the boundary line b D 1=y0� .x0=y0/a at the point

aCtop D
�1C

p
1C 4y0.my0� x0/=t

2.my0� x0/
;

and then leaves through the bottom boundary line b D 1=y0� .x0=y0Cn/a at the point

aCbot D
�1C

p
1C 4y0.my0� .x0Cny0//=t

2.my0� .x0Cny0//
:

Thus, the contribution is given byZ a
C
top

aD0

Z 1=y0�.x0=y0/a

bD1=y0�.x0=y0Cn/a

1 db daC

Z a
C
bot

aDa
C
top

Z 1=.at/�ma

bD1=y0�.x0=y0Cn/a

1 db da:

The first integral evaluates to 1
2
n.aCtop/

2 and, by using a Taylor series on the square root, can be shown to
decay like t�2.

The second integral evaluates to�
1

t
log.a/C 1

2

�
x0

y0
Cn�m

�
a2�

1

y0
a

�ˇ̌̌̌aCbot

aDa
C
top

:

By performing a Taylor series approximation on aCtop and aCbot, we get that the second integral decays
like t�3.

Thus, the total decay on the integral is like t�2.

(2) Now consider the case when b D �ma intersects TX at the bottom vertex of TX . In this case
mD x0=y0Cn� 1=y0. If the vertical of y is the same as y0, then we get a contribution to the tail at the
top of TX as in case (1). In fact, this is the only way we can get contribution at the top of TX .

Now we find the contribution on the bottom of TX . Thus, we are interested in the intersection of the
hyperbola b D 1=.at/�ma with the bottom boundary line of TX given by 1=y0� .x0=y0Cn/a. This is
the point

a�bot D
�1�

p
1C 4y0.my0� .x0Cny0//=t

2.my0� .x0Cny0//
:

In fact, using that the line b D�ma intersects the bottom of TX , we get that mD x0=y0Cn� 1=y0 and
so we can see

a�bot D
1

2

�
1C

r
1�

4y0

t

�
:

The contribution is then given byZ 1

aDa�bot

Z 1=.at/�ma

bD1=y0�.x0=y0Cn/a

1 db da:
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This integral evaluates to

1

2

�
x0

y0
Cn�m

�
�
1

y0
�
1

t
log.a�bot/�

1

2

�
x0

y0
Cn�m

�
.a�bot/

2
C
a�bot

y0
:

By doing a Taylor series approximation on a�bot we can show that the decay is like t�2.

(3) Now suppose that the line b D �ma does intersect TX and this intersection is above the bottom
vertex of TX , ie above b D 1=y0� .x0=y0Cn/. We have two regions to consider: the top of the triangle
and the region above between the hyperbola b D 1=.at/�ma and b D �ma. The behavior at the top
of the triangle is identical to cases (1) and (2), and only occurs when the vertical y is the same as y0.
Thus we have quadratic decay there. We now focus on the second region and observe that each point on
the bottom edge of S�.v/ must be in some other winning strip S�.v0/. There are finitely many such v0,
and we number them v1; : : : ; vn. Thus W�.v/ �

�
S�.v/�

Sn
iD1 S�.vi /

�
, which is some polygonal

region whose closure is completely above the bottom boundary of S�.v/, b D�ma. Since the hyperbola
b D 1=.at/�ma approaches b D �ma as t !1, for all t large enough the hyperbola is completely
below W�.v/ and therefore W�.v/ has no contribution to the tail.

Adding up the contribution of every v 2 F , we see that there is a constant C > 0 such thatZ 1
t

f .x/ dx �
C

t2
:

Now we compute a lower bound. Let v0 D .x0; y0/ be the saddle connection used to define TX , S�.v0/
denote the associated strip, and b D 1=.at/� .x0=y0/a be the associated hyperbola. We will use this
specific saddle connection to find a lower bound to

R1
t f .x/ dx, essentially by using the argument from

case (1) of the upper bound. That is, by analyzing the behavior at the top of the triangle. Either v0 is
the winning saddle connection for every point on S�.v0/ or there is some other saddle connection v for
which it is the winning saddle connection on S�.v0/\S�.v/. We deal with both cases.

(i) If v0 is the winning saddle connection for every point on S�.v0/, then a lower bound to
R1
t f .x/ dx

comes from the part underneath the hyperbola bD 1=.at/� .x0=y0/a and inside S�.v0/. We can choose
t large enough that the hyperbola intersects S�.v0/ only once, at the point

aCtop D
�1C

p
1C 4y0.my0� x0/=t

2.my0� x0/

with contribution given by Z a
C
top

aD0

Z 1=y0�x0=y0a

bD1=y0�..x0=y0/Cn/a

1 db da:

Earlier we showed this decays like t�2.

(ii) In the case that there is some other saddle connection v that is the winning saddle connection on
S�.v0/\S�.v/ we have two subcases, depending on whether v has the same vertical as v0 or not. In
the latter case we can choose t large enough that the contribution is the same as case (1). We now focus
on when the vertical of v and v0 is the same. Furthermore, since we are looking for any lower bound, it
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suffices to assume that v has the least negative slope among all vectors that win in the intersection of
S�.v0/\S�.v/. The contribution is given byZ a

C
top

aD0

Z 1=y0�.x0=y0/a

bD1=y0�.x=y/a

1 db da:

The integral evaluates to 1
2
.x=y � x0=y0/.a

C
top/

2 and, by using a Taylor series on the square root, can be
shown to decay like t�2.

5 Further questions

We end with a few questions for further exploration:

(1) Are there bounds on the number of points of nonanalyticity of the slope gap distribution of a Veech
surface?

In [5], linear upper and lower bounds in terms of n on the number of points were found for the translation
surface given by gluing opposite sides of the 2n–gon. These surfaces each have two cusps and have
genus that grows linearly in n. This shows that bounds on the number of points of nonanalyticity based
on the number of cusps is impossible. However, we can ask if there are bounds based on the genus of
the surface.

(2) What can be said about the gap distributions of non-Veech surfaces?

In [2] it was shown that the limiting slope gap distribution exists for almost every translation surface, and
in [9] the slope gap distributions for a special family of non-Veech surfaces were shown to be piecewise
real analytic. We can ask if the limiting slope gap distributions are always piecewise real analytic, and if
so, are there always finitely many points of nonanalyticity?

(3) Where do the points of nonanalyticity lie?

Beyond just understanding the number of points of nonanalyticity, we can ask about number-theoretic
properties of the points themselves. In every example known to the authors of a limiting slope gap
distribution, after rescaling, the points of nonanalyticity lie in the trace field of the Veech group. Given
that the gap distribution is computed by integrating areas between hyperbolas in regions related to the
geometry of the surface, it is natural to conjecture that points of nonanalyticity lie in quadratic extensions
of the trace field.
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Embedding calculus for surfaces

MANUEL KRANNICH

ALEXANDER KUPERS

We prove convergence of the Goodwillie–Weiss embedding calculus for spaces of embeddings into a
manifold of dimension at most two, so in particular for diffeomorphisms between surfaces. We also relate
the Johnson filtration of the mapping class group of a surface to a certain filtration arising from embedding
calculus.

58D10; 57K20, 57R40, 57S05

1 Introduction

For smooth manifolds M and N , and an embedding e@ W @M ,! @N , we write Emb@.M;N / for the space
of embeddings that agree with e@ on @M , equipped with the smooth topology. Embedding calculus à la
Goodwillie and Weiss provides a space T1Emb@.M;N / and a map

(1) Emb@.M;N /! T1Emb@.M;N /;

which approximates the space of embeddings through restrictions to subsets diffeomorphic to a finite
collection of open discs and a collar. The space T1Emb@.M;N / arises as a homotopy limit of a tower
of maps whose homotopy fibres have an explicit description in terms of the configuration spaces of M

and N — see Weiss [27] — so its homotopy type is sometimes easier to study than that of Emb@.M;N /.
The main result in this context is due to Goodwillie, Klein and Weiss [11; 12] and says that if the difference
of the dimension of N and the relative handle dimension of the boundary inclusion @M �M is at least
three, then embedding calculus converges in the sense that (1) is a weak homotopy equivalence. If this
assumption is not met, little is known about for which choices of M and N embedding calculus converges
(but see Remark 1.1(ii) and (vi) below).

1.1 Convergence in low dimensions

In the first part of this work, we study (1) when the target N has dimension at most two. Our main result
shows that embedding calculus always converges under this assumption, even though the assumption on
the handle codimension is not satisfied.
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982 Manuel Krannich and Alexander Kupers

Theorem A For compact manifolds M and N with dim.N /� 2, the map

Emb@.M;N /! T1Emb@.M;N /

is a weak homotopy equivalence for any embedding e@ W @M ,! @N .

Perhaps the most interesting (hence eponymous) instance of Theorem A is when M DN is a surface †
and e@ D id@†. In this case Theorem A specialises to the following:

Corollary B For a compact surface †, possibly with boundary and nonorientable , the map

Diff@.†/! T1Emb@.†;†/

is a weak homotopy equivalence.

Remark 1.1 (i) We prove Theorem A as a special case of a more general result that also treats
embedding spaces of triads (see Theorem 3.1).

(ii) Theorem A is special to dimension at most 2: in [18], we show that this results fails for N DD3

and for most high-dimensional compact manifolds N . In the language of that paper, Theorem A
implies that the smooth Disc–structure space SDisc

@
.N / is contractible if dim.N /� 2.

(iii) The proof of Theorem A does not rely on Goodwillie, Klein and Weiss’s convergence results.

(iv) Theorem A is stronger than Corollary B, even if dim.M / D dim.N / D 2. It implies that
T1Emb@.†;†0/D¿ if † and †0 are connected compact surfaces that are not diffeomorphic.

(v) Composition induces an E1–structure on T1Emb@.M;M / with respect to which the map

Emb@.M;M /! T1Emb@.M;M /

is an E1–map. For a compact manifold M , the E1–space Emb@.M;M /DDiff@.M / is grouplike,
but it is not known whether the same holds for T1Emb@.M;M /. Theorem A implies that this is
the case if dim.M /� 2.

(vi) Theorem A provides a class of examples for which the map Emb@.M;N /! T1Emb.M;N / is
a weak equivalence in handle codimension less than three. A few examples of this form were
known before; see Knudsen and Kupers [17, Theorem C, Section 6.2.4]. In contrast, there are some
cases for which it is known that embedding calculus does not converge, such as for M DD1 and
N DD3 by an argument due to Goodwillie.

1.2 Embedding calculus and the Johnson filtration

The Johnson filtration
�0Diff@.†/D J.0/� J.1/� J.2/� � � �

of the mapping class group �0Diff@.†/ of an orientable surface † of genus g with one boundary
component is the filtration by the kernels of the action of �0Diff@.†/ on the quotients of the fundamental
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group �1.†;�/ based at the point in the boundary, by the constituents of its lower central series. By
work of Moriyama [21], this filtration can be recovered from the action of �0Diff@.†/ on the compactly
supported cohomology of the configuration spaces of the punctured surface † n f�g. It is reasonable to
expect a relationship between the Johnson filtration and embedding calculus, as the latter may be viewed
as the study of embeddings via their induced maps between the homotopy types of configuration spaces
of thickened points in source and target.

The second part of this work serves to establish one such a relationship: we introduce a filtration

(2) �0Diff@.†/D T JH Z
@=2 .0/� T JH Z

@=2 .1/� T JH Z
@=2 .2/� � � �

arising from the cardinality filtration of embedding calculus in HZ–modules applied to the space of
self-embeddings fixed on an interval in the boundary (see Section 4 for precise definitions), and we use
[21] to show that this filtration contained in the Johnson filtration

T JH Z
@=2 .k/� J.k/ for k � 0:
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2 Generalities on spaces of embeddings and embedding calculus

We begin by fixing some conventions on spaces of embeddings, followed by recalling various known
properties of embedding calculus and complementing them with some new properties such as a lemma
for lifting embeddings along covering spaces in the context of embedding calculus.

2.1 Spaces of embeddings and maps

All our manifolds will be smooth and may be noncompact, disconnected, or nonorientable. A manifold
triad is a manifold M together with a decomposition of its boundary @M D @0M [ @1M into two
codimension-zero submanifolds that intersect at a set @.@0M /D @.@1M / of corners. Any of these sets
may be empty or disconnected. If this decomposition is not specified, we implicitly take @0M D @M and
@1M D¿.
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984 Manuel Krannich and Alexander Kupers

When studying embeddings between manifolds triads M and N , we always fix a boundary condition, ie
an embedding e@0

W @0M ,! @0N , and only consider embeddings e WM ,!N that restrict to e@0
on @0M

and have near @0M the form e@0
� idŒ0;1/ W @0M � Œ0; 1/ ,! @0N � Œ0; 1/ with respect to collars of @0M

and @0N . We denote the space of such embeddings in the weak C1–topology by Emb@0
.M;N /. We

replace the subscript @0 by @ to indicate that @0M D @M , and drop the subscript if we want to emphasise
that @0M D¿ holds. As a final piece of notation, given manifold triads M and L, we consider M tL

as a manifold triad via @0.M tL/D @0M t @0L.

Similarly, we also consider the space of bundle maps Bun@0
.TM;TN /. By this we mean the space

of fibrewise injective linear maps TM ! TN that restrict to the derivative d.e@0
/ on T @0M , in the

compact-open topology. Taking derivatives induces a map Emb@0
.M;N /! Bun@0

.TM;TN / which we
may postcompose with the forgetful map Bun@0

.TM;TN /!Map@0
.M;N / to the space of continuous

maps extending e@0
, equipped with the compact-open topology.

2.2 Manifold calculus

Given manifold triads M and N and a boundary condition e@0
W @0M ,! @0N as above, Goodwillie

and Weiss’s embedding calculus [12; 27] gives a space T1Emb@0
.M;N / (or rather, a homotopy type)

together with a map

(3) Emb@0
.M;N /! T1Emb@0

.M;N /:

Embedding calculus converges if the map (3) is a weak homotopy equivalence (shortened to weak
equivalence throughout this work). This fits into the more general context of manifold calculus, and we
shall need this generalisation at several places.

2.2.1 Manifold calculus in terms of presheaves Among the various models for the map (3) and
manifold calculus in general, that of Boavida de Brito and Weiss in terms of presheaves [1] is most
convenient for our purposes. We refer to Section 8 of their work for a proof of the equivalence between
this model and the classical model of [27].

To recall their model (in a slightly more general setting; see Remark 2.5), we fix a .d�1/–manifold K

possibly with boundary, thought of as @0M for manifold triads M . We write DiscK for the topologically
enriched category whose objects are smooth d–dimensional manifold triads that are diffeomorphic (as
triads) to K � Œ0; 1/t T �Rd for a finite set T with @0.K � Œ0; 1/t T �Rd / D K � f0g, and whose
morphisms are given by spaces of embeddings of triads as described in Section 2.1. If K is clear from
the context, we abbreviate DiscK by Disc@0

.

We write PSh.Disc@0
/ for the topologically enriched category of space-valued enriched presheaves on

Disc@0
, and we consider it as a category with weak equivalences by declaring a morphism of presheaves to

be a weak equivalence if it is a weak equivalence on all its values. Localising at these weak equivalences
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(for instance as described in [7]) gives rise to a topologically enriched category PSh.Disc@0
/loc together

with an enriched functor

(4) PSh.Disc@0
/! PSh.Disc@0

/loc:

Denoting by Man@0
the topologically enriched category with objects all manifold triads M with an identi-

fication @0M ŠK and morphism spaces the spaces of embeddings of triads, a presheaf F 2 PSh.Disc@0
/

induces a new presheaf T1F 2 PSh.Man@0
/ by setting

T1F.M / WDMapPSh.Disc@0
/loc.Emb@0

.�;M /;F /:

If F is the restriction of a presheaf F 2 PSh.Man@0
/, then we have a composition of maps of presheaves

(5) F.M / Š�!MapPSh.Man@0
/.Emb@0

.�;M /;F /! T1F.M /

on Man@0
where the first map is given by the enriched Yoneda lemma and the second is induced by the

restriction along Disc@0
� Man@0

and the functor (4). Note that this is a weak equivalence whenever
M 2 Disc@0

, that is, manifold calculus converges on manifolds diffeomorphic to the disjoint union of a
collar on @0M and a finite number of open discs.

Example 2.1 (embedding calculus) For triads M and N and a boundary condition e@0
W @0M ,! @0N ,

we have a presheaf Emb@0
.�;N / of embeddings of triads extending e@0

. Choosing K D @0M , the
map (5) gives rise to a model for the embedding calculus map (3),

(6) Emb@0
.M;N /!MapPSh.Disc@0

/loc.Emb@0
.�;M /;Emb@0

.�;N //D T1Emb@0
.M;N /:

Remark 2.2 There are several alternative points of view on the maps (5) and (6), for instance in terms
of modules over variants of the little discs operad; see [1, Section 6] or [26].

2.2.2 A smaller model In some situations, it is convenient to replace Disc@0
by a smaller equivalent

category. There is a chain of enriched functors

(7) Disc�@0
! Discsk

@0
! Disc@0

:

The right arrow is the inclusion of the full subcategory Discsk
@0
�Disc@0

on the objects @0M �Œ0; 1/tn�Rd

for nDf1; : : : ; ng with n� 0. The category Disc�
@0

has the same objects as Discsk
@0

and space of morphisms
pairs .s; e/ of a parameter s 2 .0; 1� and an embedding of triads

e W @0M � Œ0; 1/t n�Rd
! @0M � Œ0; 1/tm�Rd

with ej@0M�Œ0;1/ D id@0M � s � .�/, where s � .�/ W Œ0; 1/! Œ0; 1/ is multiplication by s. Composition
is given by composing embeddings and multiplying parameters, and the functor to Discsk

@0
forgets the

parameters. Both functors in (7) are Dwyer–Kan equivalences, the first by a variant of the proof of
the contractibility of the space of collars and the second by definition, so we may equivalently define
T1F.�/ using any of the three categories (7).
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2.2.3 Two properties of manifold calculus The following two properties of the functor

(8) PSh.Disc@0
/ 3 F 7! T1F 2 PSh.Man@0

/

will be of use:

(a) Homotopy limits The mapping spaces resulting from the localisation (4) can be viewed equivalently
as the derived mapping spaces formed with respect to the projective model structure on PSh.Disc@0

/; see
[1, Section 3.1]. That is, the functor (8) models the homotopy right Kan-extension along the inclusion
Disc@0

�Man@0
[1, Section 4.2]. The functor (8) thus preserves homotopy limits in the projective model

structures, which are computed objectwise.

(b) J1–covers and descent If F is the restriction of a presheaf F 2 PSh.Man@0
/ then T1F can be

seen alternatively as the homotopy J1–sheafification of F : for 1� k �1 (we will only use the cases
k D 1;1), a nonempty open cover U of a triad M is called a Weiss k–cover if every U 2U contains an
open collar on @0M and every finite subset of cardinality � k of int.M / is contained in some element
of U. An enriched presheaf on Man@0

is a homotopy Jk–sheaf if it satisfies descent for Weiss k–covers
in sense of [1, Definition 2.2]. Note that a homotopy J1–sheaf is a homotopy sheaf in the usual sense,
and a homotopy Jk–sheaf is also a homotopy Jk0–sheaf for any k 0 � k. By [1, Theorem 1.2], the functor

PSh.Man@0
/ 3 F 7! T1F 2 PSh.Man@0

/

together with the natural transformation idPSh.Man@0
/)T1 is a model for the homotopy J1–sheafification.

In particular, if F is already a J1–sheaf, then F ! T1F is a weak equivalence, so any map F ! G

in PSh.Man@0
/ with G a homotopy Jk–sheaf for some 1� k �1 factors over F ! T1F up to weak

equivalence.

It is often convenient to use a stronger version of descent, namely with respect to complete Weiss1–
covers U, which are Weiss1–covers that contain a Weiss1–cover of any finite intersection of elements
in U. Regarding U as a poset ordered by inclusion, the map induced by restriction

T1F.M /! holim
U2U

T1F.U /

is a weak equivalence by [17, Lemma 6.7].

Remark 2.3 At several points in the remainder of this work, we will construct maps between spaces of
the form T1Emb@0

.M;N / by using the descent property from Section 2.2.3(b). Strictly speaking, these
will only be weak maps, ie zigzags of maps whose wrong-way maps are weak equivalences. This will be
good enough for all purposes. More formally, a weak map X ! Y gives an actual morphism from X and
Y in the localisation of the category of spaces at the weak equivalences, and all our statements involving
weak maps can be viewed as taking place in this localisation. In particular, when we say that a square
involving weak maps commutes up to canonical homotopy then we mean that the square can be enhanced
in a preferred way to a homotopy commutative square in this localisation.
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2.3 Properties of embedding calculus

We explain various features of embedding calculus which illustrate that T1Emb@0
.M;N / has formally

similar properties to Emb@0
.M;N / even in situations where embedding calculus need not converge.

(a) Postcomposition with embeddings Given triads M , N , and K, with boundary conditions

e@0M W @0M ,! @0N and e@0N W @0N ,! @0K;

there is a map
T1Emb@0

.M;N /�Emb@0
.N;K/! T1Emb@0

.M;K/

that is associative in the evident sense and compatible with the composition maps for embeddings spaces,
both up to higher coherent homotopy.

In the model of Section 2.2.1, these maps are given by applying the map

(9) Emb@0
.N;K/!MapPSh.Disc@0M /loc.Emb@0

.�;N /;Emb@0
.�;K//

induced by postcomposition in the second factor, followed by composition in PSh.Disc@0M /loc. Note that
the codomain of (9) does in general not agree with T1Emb@0

.N;K/.

(b) Naturality and isotopy invariance In the situation of (a), if we assume dim.M /D dim.N /, then
there are composition maps

(10) T1Emb@0
.M;N /�T1Emb@0

.N;K/! T1Emb@0
.M;K/

that are associative in the evident sense and compatible with (9) and the composition for embeddings,
up to higher coherent homotopy. Combining this with (a), we see that like spaces of embeddings,
T1Emb@0

.�;�/ is isotopy-invariant in source and target: if M �M 0 is a subtriad with @0M � @0M 0

such that there is an embedding of triads M 0 ,!M which is inverse to the inclusion up to isotopy of
triads, then the maps

T1Emb@0
.M 0;N /! T1Emb@0

.M;N / and T1Emb@0
.L;M /! T1Emb@0

.L;M 0/

induced by restriction and inclusion are weak equivalences. Here L is any other triad with a boundary
condition e@0

W @0L ,! @0M .

In the model described in Section 2.2.1, the composition map (10) can implemented as follows: the
codimension-0 embedding e@0M W @0M ,! @0N induces enriched functors

.e@0M /� W Disc
�

@0M ! Disc�@0N and .e@0M /� W PSh.Disc�@0N /! PSh.Disc�@0M /:

Writing d WD dim.M /D dim.N /, .e@0M /� sends objects @0M � Œ0; 1/tn�Rd to @0N � Œ0; 1/tn�Rd .
For morphisms, .e@0M /� keeps the parameter s fixed and sends an embedding e to the embedding given
by id@0N � .s � .�// on @0M � Œ0; 1/ and by .e@0M � Œ0; 1/t idn�Rd / ı ejn�Rd on n�Rd . The functor
.e@0M /� is given by precomposition with .e@0M /�. The restriction maps

Emb@0N .@0N � Œ0; 1/t n�Rd ;N /! Emb@0M .@0M � Œ0; 1/t n�Rd ;N /
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are weak equivalences by the contractibility of spaces of collars, and similarly for Emb@0
.�;K/, so we

have weak equivalences in PSh.Disc�
@0M

/,

.e@0M /�Emb@0N .�;N / '�! Emb@0M .�;N /; .e@0M /�Emb@0N .�;K/
'
�! Emb@0M .�;K/:

Using the model

T1Emb@0
.M;N /'MapPSh.Disc�

@0M
/loc.Emb@0

.�;M /;Emb@0
.�;N //;

the composition (10) is given by applying .e@0M /� to the second factor, composition in the category
PSh.Disc�

@0M
/loc, and using the weak equivalences of presheaves above.

(c) Convergence on disjoint unions of discs Embedding calculus converges if the domain M is
diffeomorphic (as a triad) to @0M � Œ0; 1/tT �Rd for a finite set T , where

@0.@0M � Œ0; 1/tT �Rd /D @0M � f0g:

This follows from the corresponding fact for manifold calculus (see Section 2.2.1). By isotopy invariance,
it remains true with T �Rd replaced by T1 �Rd tT2 �Dd for finite sets Ti .

(d) Comparison to bundle maps The derivative map Emb@0
.M;N /! Bun@0

.TM;TN / fits into a
natural commutative diagram (up canonical homotopy) of the form

(11)

Emb@0
.M;N / Bun@0

.TM;TN / Map@0
.M;N /

T1Emb@0
.M;N /

which is compatible with composition maps from (10) up to higher coherent homotopy. This follows from
Section 2.2.3(b) by observing that the target in the natural transformation Emb@0

.�;N /!Bun@0
.�;TN /

is a homotopy J1–sheaf, so the map Bun@0
.�;TN /! T1Bun@0

.�;TN / is a weak equivalence of
presheaves.

(e) Extension by the identity Suppose that we have another triad Q with an identification of @0Q

with a codimension-zero submanifold of @0M . Then we can form, up to smoothing corners, the triad
M[QDM[@0QQ with @0.M[Q/D .@0M nint.@0Q//[@1Q. If M and N are of the same dimension
and we are further given a boundary condition e@0

W @0M ,! @0N , we can form N [Q in the same
manner. Extending embeddings by the identity gives a map Emb@0

.M;N /! Emb@0
.M [Q;N [Q/

(strictly speaking this requires the addition of collars to the definitions to guarantee the glued map is
smooth but we forego the addition of this contractible space of data), which can be shown to fit into a
diagram

(12)

Emb@0
.M;N / Emb@0

.M [Q;N [Q/

T1Emb@0
.M;N / T1Emb@0

.M [Q;N [Q/
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commutative up to preferred homotopy. The existence of the dashed map in (12) is proved by noting that
T1Emb@0

.�[Q;N [Q/ is a homotopy J1–sheaf on Disc@0M ; see Section 2.2.3(b).

(f) Isotopy extension Suppose that the triads M and N are both d–dimensional, and e@0M W@0M ,!@0N

is a boundary condition. Fix a compact d–dimensional submanifold triad P �M (so, in particular,
@0P D @0M \ @P ) and consider the induced boundary condition e@0

W @0M � @0P ,! @0N . Suppose
that embedding calculus converges for triad embeddings of triads of the form P tT �Rd ,!N for finite
sets T in the sense that the map

Emb@0
.P tT �Rd ;N /! T1Emb@0

.P tT �Rd ;N /

is a weak equivalence. Then, fixing a triad embedding e W P ,!N disjoint from @N n e@0M .@0P /, there
is a map of fibration sequences

Emb@0

�
M n int.P /;N n int.e.P //

�
Emb@0

.M;N / Emb@0
.P;N /

T1Emb@0

�
M n int.P /;N n int.e.P //

�
T1Emb@0

.M;N / T1Emb@0
.P;N /

'

whose right square results from (10) and whose left square is an instance of the diagram (12). The
homotopy fibres are taken over the embedding e and its image in T1Emb@0

.P;N /, and

@0.M n int.P // WD @1P [ @0M n int.@0P /

with boundary condition induced by e and e@0M . For the upper row, this is a form of the usual parametrised
isotopy extension theorem. For the lower row, this is a mild generalisation of a result of Knudsen and
Kupers [17, Theorem 6.1 and Remarks 6.4 and 6.5]. Note that every triad embedding P ,!N is disjoint
from @N n e@0

.@0P / up to isotopy of triad embeddings, so if we would like to draw conclusions about all
homotopy fibres of the right horizontal maps, it suffices to restrict to embeddings of this form.

We record the following immediate corollary of properties (c) and (f) which will allow us to restrict to
triads with @0M ¤¿ when proving convergence results.

Lemma 2.4 Let M and N be d–dimensional triads , e@0
W @0M ,! @0N a boundary condition , and

Dd � int.M / an embedded disc. The map

Emb@0
.M;N /! T1Emb@0

.M;N /

is a weak equivalence if and only if for all embeddings e WDd ,! int.N /, the map

Emb@0

�
M n int.Dd /;N n int.e.Dd //

�
! T1Emb@0

�
M n int.Dd /;N n int.e.Dd //

�
is a weak equivalence , where @0.M n int.Dd //D @0M [@Dd and @0

�
N n int.e.Dd //

�
D @0N [@e.Dd /.
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Proof This is an instance of the fact that for a commutative square

E B

E0 B0

'

whose right arrow is a weak equivalence, the map E!E0 is a weak equivalence if and only if the map
hofib.E! B/! hofib.E0! B0/ is a weak equivalence for all choices of basepoints. We apply this to
the commutative square induced by restriction

Emb@0
.M;N / Emb.Dd ;N /

T1Emb@0
.M;N / T1Emb.Dd ;N /

whose right-hand map is a weak equivalence by the convergence on discs (property (c)). By isotopy
extension (property (f)), the map on homotopy fibres over an embedding e WDd ,! int.N / agrees with
the second map in the statement, so the claim follows.

We continue with a pair of remarks about these properties:

Remark 2.5 Boavida de Brito and Weiss [1, Section 9] restrict their attention to the case @0M D @M ,
but this turns out to be no less general: given a manifold triad M , the manifold triad M n @1M with
@0.M n @1M /D int.@0M /D @.M n @1M / is isotopy equivalent to M , so there is a weak equivalence
T1Emb@0

.M;N /' T1Emb@.M n @1M;N n @1N / by item (b) above.

Remark 2.6 As a consequence of property (d) above, to show that the map of Corollary B on path
components �0Diff@.†/! �0T1Emb@.†;†/ is injective, it suffices to prove that

(13) �0Diff@.†/! �0hAut@.†/

is injective, which is true for all compact surfaces and can be seen as follows.

First, one reduces to the case of connected surfaces. For this, it suffices to show that closed connected
surfaces are homotopy equivalent if and only if they are diffeomorphic, which is a consequence of the
fact that closed surfaces are classified by orientability and the Euler characteristic, and both of these
are preserved by homotopy equivalences relative to the boundary. In the connected case, the claimed
injectivity is proved for instance in [3, Theorem 4.6], with the exception of † D S2 and † D RP2.
These two cases can settled using the fibre sequence resulting from restricting to an embedded 2–disc and
the fact that the mapping class groups of a disc and a Möbius strip are trivial; see [24, Theorem B; 8,
Theorem 3.4].

In fact, the forgetful map (13) is often an isomorphism: for closed orientable surfaces of positive genus
this is an instance of the Dehn–Nielsen–Baer theorem [9, Theorem 8.1], but there is also an argument for
most surfaces with boundary [3, Theorem 1.1(1)].
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The proof of Theorem A relies on some additional properties of embedding calculus which we establish
in the ensuing subsections. These properties are not very surprising, but seem to have not appeared in the
literature before.

2.4 Thickened embeddings

The first property concerns the behaviour of embedding calculus upon replacing the domain M by a
thickening, that is, a vector bundle V over M .

Fix manifold triads M and N and a k–dimensional vector bundle p W V !M . We consider V as a triad
via @0V WD p�1.@0M /. Fixing a boundary condition e@0

W @0V ,! @0N , we obtain a boundary condition
e0
@0
W @0M ,! @0N by restriction along the zero-section M � V . From (11), we obtain the solid arrows

in the diagram

(14)

Emb@0
.V;N / Emb@0

.M;N /

T1Emb@0
.V;N / T1Emb@0

.M;N /

Bun@0
.T V;TN / Bun@0

.TM;TN /

Lemma 2.7 There exists a dashed map in (14) such that the diagram commutes up to preferred homotopy
and the two subsquares are homotopy cartesian.

Proof Let O be the poset of open subsets U �M containing a collar on @0M . Taking derivatives as
well as restricting embeddings and bundle maps induces a commutative diagram

Emb@0
.p�1.�/;N / Emb@0

.�;N /

T1Emb@0
.�;N /

Bun@0
.Tp�1.�/;TN / Bun@0

.T�;TN / T1Bun@0
.T�;TN /

'

of space-valued presheaves on O, where the bottom equivalence results from the discussion in Section 2.3(d).
Since homotopy pullbacks of presheaves are computed objectwise, this is a homotopy-cartesian square of
presheaves. We define a new presheaf F.�/ on O as the homotopy pullback

(15)

F.�/ T1Emb@0
.�;N /

Bun@0
.Tp�1.�/;TN / T1Bun@0

.T�;TN /

The result will follow by evaluation at M 2 O once we provide an identification

F.M /' T1Emb@0
.p�1.M /;N /D T1Emb@0

.V;N /
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compatible with the maps to Bun@0
.T V;TN / and from Emb@0

.V;N /. It follows from Section 2.2.3(b)
and (c) that it suffices to verify that

(a) F satisfies descent for the complete J1–cover U� O given by those open subsets U �M equal
to a collar on @0M and a finite collection of open discs, and

(b) the map Emb@0
.p�1.�/;N /! F.�/ is a weak equivalence when evaluated on U 2U.

For (a), we observe that all entries but F.�/ in the homotopy pullback diagram (15) defining F.�/ satisfy
descent with respect to J1–covers, so F.�/ does as well. For (b), we observe that on U 2U, the right
vertical map of (15) is a weak equivalence so it suffices to verify that

Emb@0
.p�1.U /;N /! Bun@0

.Tp�1.U /;TN /

is a weak equivalence. This is indeed the case because p�1.U / is a disjoint union of a collar on @0V and
a finite collection of open discs.

We derive from Lemma 2.7 two lemmas that will allow us to interpolate between convergence questions
for Emb@0

.M;N / and for Emb@0
.V;N /.

Lemma 2.8 Let M and N be manifold triads , p W V !M be a vector bundle considered as a triad by
@0V D p�1.@0M /, and e@0

W @0V ! @0N be a boundary condition. Then the map

Emb@0
.V;N /! T1Emb@0

.V;N /

is a weak equivalence if the map Emb@0
.M;N /!T1Emb@0

.M;N / is a weak equivalence with boundary
condition obtained by restricting e@0

to @0M � @0V .

Proof This follows from the upper homotopy cartesian square in (14) provided by Lemma 2.7.

Lemma 2.9 Let M be a d–dimensional manifold triad , N be a .dCk/–dimensional manifold triad , and
e@0
W @0M ,! @0N be a boundary condition. Then the map

Emb@0
.M;N /! T1Emb@0

.M;N /

is a weak equivalence if the map Emb@0
.V;N /! T1Emb@0

.V;N / is a weak equivalence for all k–
dimensional vector bundles V !M and boundary conditions @0V ,! @N extending e@0

.

Proof We write T1Emb@0
.M;N /ˇ for the path component of an element ˇ 2 T1Emb@.M;N / and

Emb@0
.M;N /ˇ for the union of path components mapping to the component of ˇ. It suffices to prove

that Emb@0
.M;N /ˇ! T1Emb@0

.M;N /ˇ is a weak equivalence for all ˇ.

Writing ˇ0 2 Bun@0
.TM;TN / for the image of ˇ under T1Emb@0

.M;N /! Bun@0
.TM;TN / from

Section 2.3(d), we choose a metric on TN , let V be the vector bundle over M whose fibre over
m 2 M is the orthogonal complement to ˇ0.TmM / in Tˇ0.m/N , and extend the boundary condition
e@0
W @0M ,! @0N to @0V by exponentiation. Writing Emb@0

.V;N /ˇ and T1Emb@0
.V;N /ˇ for the
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unions of the path components mapping to ˇ in (14), Lemma 2.7 yields a homotopy pullback

Emb@0
.V;N /ˇ Emb@0

.M;N /ˇ

T1Emb@0
.V;N /ˇ T1Emb@0

.M;N /ˇ

'

whose left vertical map a weak equivalence by assumption. By construction, ˇ0 lifts to a bundle map
in Bun@0

.T V;TN / under the bottom horizontal map in (14), so it follows from Lemma 2.7 that
T1Emb@0

.V;N /ˇ is nonempty. As T1Emb@0
.M;N /ˇ is path-connected, this implies that the left

vertical map in the homotopy pullback is a weak equivalence.

2.5 Lifting along covering maps

The second property is concerned with the problem of lifting embeddings of triads M ,!N along covering
maps � W zN !N . To state the result, we consider the cover zN as a triad by setting @0

zN WD��1.@0N / and
@1
zN WD ��1.@1N /, and fix a boundary condition e@0

W @0M ,! @0N as well as a lift Qe@0
W @0M ,! @0

zN .
We pick a homotopy class Œ˛� 2 �0Map@0

.M;N / such that there exists a lift Œ Q̨ � 2 �0Map@0
.M; zN /. We

shall assume that @0M !M is 0–connected, so that this lift is unique. We write

Emb@0
.M;N /˛ � Emb@0

.M;N / and T1Emb@0
.M;N /˛ � T1Emb@0

.M;N /

for the unions of the path components that map to Œ˛� 2 �0Map@0
.M;N / via the maps in (11). We

similarly define subspaces Emb@0
.M; zN / Q̨ �Emb@0

.M; zN / and T1Emb@.M; zN / Q̨ �T1Emb@.M; zN /.

Lemma 2.10 In this situation , there exists a dashed map making the diagram

Emb@0
.M;N /˛ Emb@0

.M; zN / Q̨

T1Emb@0
.M;N /˛ T1Emb@0

.M; zN / Q̨

commute up to homotopy. Here the top map is given by sending an embedding ˇ 2 Emb@.M;N /˛ to its
unique lift Q̌ 2 Emb@.M; zN / Q̨ extending Qe@.

Proof Let Emb�@0
.�; zN /� Emb@0

.�; zN / be the presheaf on Disc@0
of those embeddings that remain an

embedding after composition with � . This fits in a pullback diagram

Emb�@0
.�; zN / Emb@0

.�;N /

Map@0
.�; zN / Map@0

.�;N /

�ı�

�ı�

of presheaves on Disc@0M whose vertical maps are given by inclusion. This is homotopy cartesian in the
projective model structure on PSh.Disc@0

/, since .� ı�/ WMap@0
.�; zN /!Map@0

.�;N / is a objectwise
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fibration by the lifting property of covering maps. Evaluating at M and using that T1.�/ preserves
homotopy limits by Section 2.2.3(a), we arrive at a commutative cube

Emb�@0
.M; zN / Emb@0

.M;N /

T1Emb�@0
.M; zN / T1Emb@0

.M;N /

Map@0
.M; zN / Map@0

.M;N /

T1Map@0
.M; zN / T1Map@0

.M;N /

' '

with front and back faces homotopy cartesian, and bottom diagonal maps weak equivalences since
Map@0

.�; zN / and Map@0
.�;N / are homotopy J1–sheaves (see Section 2.2.3(b)). By the uniqueness of

lifts (this uses that @0M !M is 0–connected), the bottom horizontal maps become weak equivalences
when we restrict domain and target to the path components of Œ Q̨ � and Œ˛� respectively. Doing so and using
the homotopy pullback property, the top of the cube provides a commutative square

Emb�@0
.M; zN / Q̨ Emb@0

.M;N /˛

T1Emb�@0
.M; zN / Q̨ T1Emb@0

.M;N /˛

'

'

with horizontal weak equivalences. The top map is even a homeomorphism, by the uniqueness of lifts.
Using the inclusion of presheaves Emb�@0

.�; zN /� Emb@0
.�; zN /, we obtain a commutative diagram

Emb@0
.M;N /˛ Emb�@0

.M; zN / Q̨ Emb@0
.M; zN / Q̨

T1Emb@0
.M;N /˛ T1Emb�@0

.M; zN / Q̨ T1Emb@0
.M; zN / Q̨

Š

'

whose top composition is given by sending an embedding to its unique lift extending Qe@, so we obtain a
map T1Emb@0

.M;N /˛! T1Emb@0
.M; zN / Q̨ , as desired.

Remark 2.11 If ˛ has no lift, then there is no component of Emb@0
.M; zN / mapping to Œ˛� under compo-

sition with � . In this case, the above argument shows that there is also no component of T1Emb@0
.M; zN /

mapping to Œ˛� under the map of Section 2.3(d) and composition with � .

2.6 Adding a collar to the source

The third property concerns the behaviour of embedding calculus when adding a disjoint collar to the
domain.
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We fix triads M and N and a boundary condition e@0
W @0M ,! @0N . Given a compact .dim.M /�1/–

manifold K, we replace M by the triad M tK � Œ0; 1/ with @0.M tK � Œ0; 1//D @0M tK � f0g and
fix an extension e0

@0
W @0.M tK � Œ0; 1// ,! @N of e@0

as boundary condition. By contractibility of the
space of collars, the restriction map

Emb@0MtK�f0g.M tK � Œ0; 1/;N /! Emb@0
.M;N /

is a weak equivalence. Embedding calculus has this property as well:

Lemma 2.12 In this situation , both horizontal maps in the diagram induced by restriction

Emb@0MtK�f0g.M tK � Œ0; 1/;N / Emb@0M .M;N /

T1Emb@0MtK�f0g.M tK � Œ0; 1/;N / T1Emb@0M .M;N /

'

'

are weak equivalences.

Proof Let U be the open cover of M tK � Œ0; 1/ given by subsets of the form U D V tK � Œ0; 1/

where V �M is the union of a open subset diffeomorphic to a collar on @0M and a finite disjoint union
of open discs. This is a complete Weiss1–cover of M tK � Œ0; 1/, and U0 D fU \M j U 2Ug is a
complete Weiss1–cover of M . Restriction thus induces a commutative diagram

Emb@0MtK�f0g.M tK � Œ0; 1/;N / holimU2U Emb@0MtK�f0g.U;N /

T1Emb@0MtK�f0g.M tK � Œ0; 1/;N / holimU2U T1Emb@0MtK�f0g.U;N /

'

'

whose bottom horizontal map is a weak equivalences by Section 2.2.3(b) and whose right vertical map is
a weak equivalence by Section 2.3(c). Similarly, we have a square

Emb@0M .M;N / holimU2U Emb@0M .U \M;N /

T1Emb@0M .M;N / holimU2U T1Emb@0M .U \M;N /

'

'

which receives a map from the former square by restriction, so it suffices to show that the maps

Emb@0MtK�f0g.U;N /! Emb@0M .U \M;N /

are weak equivalence. This follows from the contractibility of spaces of collars.

Combined with Lemma 2.4 this yields the following lemma, which is often useful to justify the hypothesis
needed to apply isotopy extension for embedding calculus (see Section 2.3(f)).
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Lemma 2.13 Let M and N be d–dimensional triads , and e@0
W @0M ,! @0N a boundary condition.

Then the map
Emb@0

.M t .T �Rd /;N /! T1Emb@0
.M t .T �Rd /;N /

is a weak equivalence for any finite set T , if the maps Emb@0
.M;N 0/! T1Emb@0

.M;N 0/ are weak
equivalences for all d–dimensional triads N 0 and all boundary conditions e0

@0
W @0M ,! @0N 0.

Proof By induction over jT j it suffices to prove the case jT j D 1. In that case, it suffices by Lemma 2.4
to prove that for all embeddings e WDd ,! int.N / the map

Emb@
�
M t .Rd

n int.Dd //;N n int.e.Dd //
�
! T1Emb@

�
M t .Rd

n int.Dd //;N n int.e.Dd //
�

is a weak equivalences. By Lemma 2.12 we may then forget the collars .Rd n int.Dd // on @Dd from the
source, so the result follows.

2.7 Taking disjoint unions

The fourth and final general property of embedding calculus we shall discuss concerns taking disjoint
unions in source and target. Its full strength is not needed to prove the main results of this paper — only
Corollary 2.15 is — but we believe it to be of independent interest.

Let M , M 0, N , and N 0 be triads with dim.M /D dim.M 0/ and dim.N /D dim.N 0/. Given boundary
conditions e@0

W @0M ,! @0N and e0
@0
W @0M 0 ,! @0N 0, we consider the boundary condition

e@0
t e0@0

W @0.M tM 0/ ,! @0.N tN 0/:

Disjoint union of embeddings induces

Emb@0
.M;N /�Emb@0

.M 0;N 0/! Emb@0
.M tM 0;N tN 0/

which is a weak equivalence (in fact, a homeomorphism) if both inclusions @0M ,!M and @0M 0 ,!M 0

are 0–connected. Embedding calculus has this property as well:

Lemma 2.14 In this situation , there is a dashed weak equivalence that makes

Emb@0
.M;N /�Emb@0

.M 0;N 0/ Emb@0
.M tM 0;N tN 0/

T1Emb@0
.M;N /�T1Emb@0

.M 0;N 0/ T1Emb@0
.M tM 0;N tN 0/

'

'

commute up to preferred homotopy.

Proof As in the proof of Lemma 2.12, the property of embedding calculus we shall use is descent for
complete Weiss1–covers (see Section 2.2.3(b)).
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We take UM to be the open cover of M given by open subsets U �M that are diffeomorphic to a collar
on @0M and a finite disjoint union of open discs, and similarly for UM 0 . We take UMtM 0 to be the open
cover of M tM 0 given by unions of an element of UM and an element of UM 0 . The covers UM , UM 0 ,
and UMtM 0 are all complete Weiss1–covers.

We consider UMtM 0 as a poset ordered by inclusion and let Embt@0
.�;N tN 0/ be the presheaf on

UMtM 0 that sends U tU 0 with U 2 UM and U 0 2 UM 0 to the subspace Embt@0
.U tU 0;N tN 0/ �

Emb@0
.U tU 0;N tN 0/ which maps U into N and U 0 into N 0. Defining Mapt

@0
.�;N tN 0/ similarly,

we have a homotopy pullback diagram of presheaves on UMtM 0 ,

(16)

Embt@0
.�;N tN 0/ Emb@0

.�;N tN 0/

Mapt
@0
.�;N tN 0/ Map@0

.�;N tN 0/

and this remains a homotopy pullback when taking homotopy limits over UMtM 0 .

To identify the term
holim

UtU 02UMtM 0

Embt@0
.U tU 0;N tN 0/

we note that there are isomorphisms UMtM 0 ŠUM �UM 0 of categories, and

Embt@0
.�;N tN 0/Š Emb@0

.�;N /�Emb@0
.�;N 0/

of presheaves, so the Fubini theorem for homotopy limits implies that this homotopy limit is given by

holim
U2UM

Emb@0
.U;N /� holim

U 02UM

Emb@0
.U 0;N 0/:

Combining descent with the fact that embedding calculus converges on U 2 UM and U 0 2 UM 0 by
Section 2.3(c), we conclude that

holim
UtU 02UMtM 0

Embt@0
.U tU 0;N tN 0/' T1Emb@0

.M;N /�T1Emb@0
.M 0;N 0/:

The same analysis holds for Mapt
@0
.�;M tM 0/ and since this is a homotopy J1–sheaf (see Section

2.2.3(b)), we conclude that

holim
UtU 02UMtM 0

Mapt@0
.U tU 0;N tN 0/'Map@0

.M;N /�Map@0
.M 0;N 0/:

By the same argument (using descent, convergence on U tU 0 2UMtM 0 , and that Map@0
.�;N tN 0/ is

a homotopy J1–sheaf), we have weak equivalences

holim
UtU 02UMtM 0

Emb@0
.U tU 0;N tN 0/' T1Emb@0

.M tM 0;N tN 0/;

holim
UtU 02UMtM 0

Map@0
.U tU 0;N tN 0/'Map@0

.M tM 0;N tN 0/;
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so altogether we obtain a homotopy pullback diagram of the form

T1Emb@0
.M;N /�T1Emb@0

.M 0;N 0/ T1Emb@0
.M tM 0;N tN 0/

Map@0
.M;N /�Map@0

.M 0;N 0/ Map@0
.M tM 0;N tN 0/

The condition that @0M ,!M and @0M 0 ,!M 0 are 0–connected implies that the bottom map is a weak
equivalence, so the top map is a weak equivalence as well. The proof is finished by tracing through the
weak equivalences to see that this makes the square in the statement homotopy commute.

Taking M 0 D¿, which is the only case used in this paper, Lemma 2.14 says:

Corollary 2.15 In this situation , in the diagram induced by the inclusion N ,!N tN 0,

Emb@0
.M;N / Emb@0

.M;N tN 0/

T1Emb@0
.M;N / T1Emb@0

.M;N tN 0/

'

'

both horizontal maps are weak equivalences.

Remark 2.16 Corollary 2.15 admits an alternative proof along the lines of Lemma 2.10: one observes
there is a homotopy pullback diagram of presheaves on Disc@0M given by

Emb@0
.�;N / Emb@0

.�;N tN 0/

Map@0
.�;N / Map@0

.�;N tN 0/

Taking T1 and evaluating at M yields a homotopy pullback diagram of spaces and if @0M !M is
0–connected, the map Map@0

.M;N /!Map@0
.M;N tN 0/ is a weak equivalence and hence so is the

map T1Emb@0
.M;N /! T1Emb@0

.M;N tN 0/.

3 Convergence in low dimensions

In this section we make use of the properties of embedding calculus discussed in the previous section to
prove the following convergence result. Theorem A is included as the special case @0M D @M .

Theorem 3.1 For compact manifolds triads M and N with dim.N /� 2, the map

Emb@0
.M;N /! T1Emb@0

.M;N /

is a weak equivalence for any boundary condition e@0
W @0M ,! @0N .
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Convention 3.2 Throughout this section, we adopt following conventions on triads:

(i) We write I D Œ0; 1� and call the manifold triads I and I�Œ0; 1�with @0I Df0; 1g and @0.I�Œ0; 1�/D

f0; 1g � Œ0; 1� the arc and the strip. We will use the convention and notation from Section 2.1,
so embeddings I � Œ0; 1� into a triad N will always be assumed to extend a boundary condition
e@0
W f0; 1g � Œ0; 1� ,! @0N which will either be specified or is clear from the context. We consider

I as a submanifold of I � Œ0; 1� via the inclusion
˚

1
2

	
� Œ0; 1�� I � Œ0; 1�, so a boundary condition

e@0
as above in particular induces a boundary condition e@ W f0; 1g ,!N for embedding of the form

I ,!N by restriction.

(ii) We consider the cylinder S1 � Œ0; 1� as a manifold triad with @0.S
1 � Œ0; 1�/D¿. We consider the

circle S1 as the submanifold of S1 � Œ0; 1� via the inclusion S1 �
˚

1
2

	
,! S1 � Œ0; 1�.

(iii) We consider the Möbius strip MoD .Œ0; 1�� Œ0; 1�/=�, with � the equivalence relation generated
by .0;y/� .1; 1�y/, as a manifold triad with @0.Mo/D¿. We consider S1 as the submanifold
of Mo via the inclusion S1 �

˚
1
2

	
,!Mo.

(iv) We write†g;n for an orientable compact surface of genus g with n boundary components, considered
as a manifold triad with @0†g;n D @†g;n.

The steps

The proof of Theorem 3.1 is divided into the following steps:

(1) dim.M / > dim.N / or dim.M /D 0;

(2) dim.M /� dim.N /D 2, with substeps

(2.1) M an arc or a strip,

(2.2) M a circle, a cylinder, or a Möbius band,

(2.3) M a line bundle over a 1–dimensional triad M 0 with @0M 0 D @M ,

(2.4) M a general 1–dimensional triad,

(2.5) M DD2 with @0M D @M ,

(2.6) M an orientable genus 0 surface with @0M D @M ,

(2.7) M a connected 2–dimensional triad with @0M D @M ,

(2.8) M a connected 2–dimensional triad with @0M ¤ @M ,

(2.9) M a general 2–dimensional triad;

(3) dim.M /D dim.N /D 1.

To avoid being repetitive, we say that convergence holds for a pair of triads .M;N / if the map

Emb@0
.M;N /! T1Emb@0

.M;N /

is a weak equivalence for all boundary conditions e@0
W @0M ,! @0N .

Step (1): Convergence holds for .M;N / if dim.M / > dim.N / or dim.M /D 0 Convergence for
dim.M /D 0 holds as a result of Section 2.3(c). For M ¤¿ and dim.M / > dim.N /, we consider the
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composition Emb@0
.M;N /!T1Emb@0

.M;N /!Bun@0
.TM;TN / from Section 2.3(d). If dim.M />

dim.N / then the final space in this composition is empty, so the same holds for the first and the second
space. This implies convergence.

Step (2.1): Convergence holds for .M;N / if M is an arc or a strip, and dim.N /D 2 We divide
this step into two substeps: the case where the boundary condition e@0

W @0M ,! @0N hits two distinct
boundary components of N , and the case where the boundary condition hits a single boundary component.
The arguments are inspired by Gramain’s work [13] and Hatcher’s exposition thereof in [14].

Substep: the boundary condition hits two distinct boundary components of N By Lemma 2.9 and
isotopy invariance (see Section 2.3(b)), it suffices to consider the case M D I � Œ0; 1� of a strip. To do
so, we glue a disc D to the boundary component of N hit by f1g, and consider L D .I � Œ0; 1�[D/.
Smoothing corners and an application of isotopy extension justified by the convergence on discs (see
Section 2.3(c) and (f)) yields a map of fibre sequence

Emb@0
.I � Œ0; 1�;N / EmbI�f0g.L;N [D/ Emb.D;N [D/

T1Emb@0
.I � Œ0; 1�;N / T1EmbI�f0g.L;N [D/ T1Emb.D;N [D/

'

with fibres taken over the standard inclusion. Since L is isotopy equivalent to I � Œ0; 1/ relative to I �f0g,
the middle vertical map is a weak equivalence by isotopy invariance and the convergence on collars (see
Section 2.3(b) and (c)), so the left vertical map is a weak equivalence as well.

Substep: the boundary condition hits a single boundary components of N The case of arcs and
strips connecting the same boundary component is harder and its proof is the heart of the overall argument.
It relies on Lemma 2.10 on lifting embeddings, which we spell out again in the special case we shall use.

This lemma involves a covering map zN ! N , a boundary condition e@ W f0; 1g ,! @N , a path ˛ of
Map@.I;N /, and a lift Q̨ W I ! zN of ˛ whose endpoints induce a boundary condition e@ W f0; 1g ,! @ zN .
Recall that Emb@.I;N /˛ � Emb@.I;N / and T1Emb@.I;N /˛ � T1Emb@.I;N / denote the collections
of path components that map to Œ˛� 2 �0Map@.I;N / via the maps in (11). Lemma 2.10 for the triad
M D I with @0I D f0; 1g then gives:

Lemma 3.3 In this situation , there exists a dashed map making the diagram

Emb@.I;N /˛ Emb@.I; zN / Q̨

T1Emb@.I;N /˛ T1Emb@.I; zN / Q̨

commute up to homotopy. Here the top map is given by sending an arc  2 Emb@.I;N /˛ to the unique
lift Q 2 Emb@.I; zN / Q̨ starting at Q̨ .0/ 2 zN .
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˛

ˇ

N

P

Figure 1: The surface P . The original surface N is the region within the dotted circle.

Using this lemma, we now prove convergence for .M;N / if M is an arc or a strip, dim.N /D 2, and the
boundary condition e@0

W @0M ,! @0N hits a single boundary components of N .

By Lemma 2.8 and isotopy invariance (see Section 2.3(b)) it suffices to prove the claim for the arc, and
by Corollary 2.15, we may assume that the target N is connected. We attach a 1–handle I � Œ0; 1� to N

to the boundary component hit by f0; 1g, such that I � f0g and I � f1g are separated on that boundary
component by f0; 1g and are embedded with opposite orientation, resulting in a new surface P with an
additional boundary component; see Figure 1. The composition f0; 1g ,!N � P now hits two distinct
boundary components, so the right vertical map in the homotopy-commutative diagram induced by the
inclusion N � P (see Section 2.3(a))

(17)
Emb@.I;N / Emb@.I;P /

T1Emb@.I;N / T1Emb@.I;P /

'

is a weak equivalence by the previous substep.

We next investigate the set of path components. To do so, we will use that the dashed map in

�0Emb@.I;N /

.�0Map@.I;N //��0Map@.I;P/
.�0Emb@.I;P // �0Emb@.I;P /

�0Map@.I;N / �0Map@.I;P /

is surjective: if an embedding I ,! P is homotopic to a map I !N , then it is isotopic to an embedding
I ,! N within the homotopy class of I ! N . To see this, use the bigon criterion [9, Sections 1.2.4
and 1.2.7] to isotope I ,! P so that its geometric intersection number with the cocore ˇ of the 1–handle
is equal to the algebraic intersection number, which is 0 since it is homotopic to a map I !N . With this
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in mind, a diagram chase in the factorisation

�0Emb@.I;N / �0Emb@.I;P /

�0T1Emb@.I;N / �0T1Emb@.I;P /

�0Map@.I;N / �0Map@.I;P /

1

Š

2

shows that the maps 1 and 2 have the same image.

Let us now fix a class Œ˛�2�0Map@.I;N / in this image. As the map 1 is injective because two embedded
arcs are isotopic relative to the endpoints if and only if they are homotopic relative to the endpoints
(see [10]), there is a unique path component Emb@.I;N /˛ of Emb@.I;N / mapping to Œ˛�. Denoting
by T1Emb@.I;N /˛ � T1Emb@.I;N / the union of all path components that map to Œ˛�, it suffices to
show that the map Emb@.I;N /˛! T1Emb@.I;N /˛ is a weak equivalence for all choices of Œ˛�. Since
Emb@.I;N /˛ is contractible by [13, Théorème 5], the task is to prove that T1Emb@.I;N /˛ is (weakly)
contractible as well.

To do so, we will construct a homotopy-commutative diagram

(18)
Emb@.I;N /˛ Emb@.I;P /˛ Emb@.I;N /˛

T1Emb@.I;N /˛ T1Emb@.I;P /˛ T1Emb@.I;N /˛

.eı�/ılift

'

.eı�/ılift

whose horizontal compositions are homotopic to the identity. This will finish the proof, since it exhibits
T1Emb@.I;N /˛ as a retract of the contractible space T1Emb@.I;P /˛ ' Emb@.I;P /˛.

The left square in (18) is obtained by restricting the path components of the homotopy commutative
square (17). The right square arises as the composition of two squares

Emb@.I;P /˛ Emb@.I; zP / Q̨ Emb@.I;N /˛

T1Emb@.I;P /˛ T1Emb@.I; zP / Q̨ T1Emb@.I;N /˛

lift

'

eı�

lift eı�

which we explain now. The surface zP is an appropriate covering space of P : the construction of P gives a
decomposition �1.P /Š �1.N /�Z and zP is the cover corresponding to the subgroup �1.N /. Explicitly,
the cover zP can be constructed by cutting P along ˇ to obtain a surface R (see Figure 2) and gluing two
copies of the universal cover zR of this surface to the two dashed intervals in the boundary resulting from ˇ.
Note that R contains a preferred lift Q̨ of ˛ and hence so does zP . We denote the endpoints of ˛ and Q̨ in the
various surfaces generically by f0; 1g. The cover zP has the property that the map N!P lifts uniquely to zP
so that f0; 1g is fixed. Moreover, using that the interior of zR is diffeomorphic to R2, there is an embedding
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Q̨

R

Figure 2: The surface R.

e W zP ,!N fixing f0; 1g such that the composition N ! zP!N is isotopic to the identity relative to f0; 1g.
Viewing zP as being glued together by three parts — N , the two half-strips resulting from the cut 1–handle,
and the two copies of QR attached to these two half-strips — this embedding e W zP ,!N is given by the
identity on N � zP apart from a neighbourhood of the two arcs in the boundary to which the half-strips
are attached, and by pushing the half-strips and the copies of QR attached to them into this neighbourhood.

The right square is induced by postcomposition with e, so homotopy commutes in view of Section 2.3(a).
The homotopy commutative left square is obtained by invoking the lifting lemma Lemma 3.3 for the
covering map zP ! P . The top composition in (18) is homotopic to the identity by construction, but
it remains to justify this for the bottom composition. Justifying this requires the details of the proof of
Lemma 2.10, in particular the presheaf Emb�@ .�; zP / defined there. Viewing N as a submanifold of zP as
explained above, the projection � W zP !N is isotopic to the identity when restricted to N , so we have a
dashed inclusion map of presheaves on Disc@I that makes the triangle in the following diagram commute
up to homotopy:

Emb@.�;N / Emb@.�;P /

Emb�@ .�; zP / Emb@.�; zP / Emb@.�;N /

�
�ı�

eı.�/

:

Moreover, since N � zP !N is isotopic to the identity, the composition Emb@.�;N /! Emb@.�;N /

along the bottom is homotopic to the identity. Applying T1, evaluating at I , and restricting to path
components, we obtain a homotopy commutative diagram

T1Emb@.I;N /˛ T1Emb@.I;P / Q̨

T1Emb�@ .I; zP / Q̨ T1Emb@.I; zP / Q̨ T1Emb@.I;N /˛

'

eı.�/

whose composition along the bottom T1Emb@.�;N /˛! T1Emb@.�;N /˛ is homotopic to the identity.
The composition along the top involving a wrong-way weak equivalence agrees by construction with the
bottom composition of (18), so it is homotopic to the identity, as claimed (recall Remark 2.3).
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Mo n int.D2/

I � Œ0; 1�

Figure 3: The complement of an open disc in the Möbius strip. The red copy of I � Œ0; 1� differs
up to isotopy equivalence from Mo n int.D2/ only in the hatched region which is diffeomorphic
to I � Œ0; 1/t I � Œ0; 1/.

Step (2.2): Convergence for .M;N / if M is a circle, cylinder, or Möbius strip, and dim.N /D 2

By Lemma 2.9, it suffices to prove the claim for the cylinder and the Möbius strip. We will do so for the
Möbius strip M DMo; the argument for the cylinder is analogous. We pick a disc D2 � int.Mo/. By
Lemma 2.4, it suffices to prove that

Emb@0

�
Mo n int.D2/;N n int.e.D2//

�
! T1Emb@0

�
Mo n int.D2/;N n int.e.D2//

�
is a weak equivalence for all embeddings e WD2 ,! int.†/. To this end, we pick a subtriad I � Œ0; 1��

Mo n int.D2/ as in Figure 3 and attempt to show that the vertical restriction maps in the diagram

Emb@0

�
Mo n int.D2/;N n int.e.D2//

�
T1Emb@0

�
.Mo n int.D2//;N n int.e.D2//

�
Emb@0

�
I � Œ0; 1�;N n int.e.D2//

�
T1Emb@0

�
I � Œ0; 1�;N n int.e.D2//

�
are weak equivalences. Isotopy extension exhibits the homotopy fibre of the left vertical map up to
smoothing corners and isotopy equivalence as Emb@

�
I � Œ0; 1/ t I � Œ0; 1/;N n int.e.D2//

�
which is

contractible by the contractibility of spaces of collars. To see that the right vertical map is an equivalence,
one combines this observation with descent with respect to a Weiss1–cover of open discs and collars
on @D2 similarly to the proof of Lemma 2.12. As the bottom horizontal map is a weak equivalence by
step (2.1), the top horizontal map is a weak equivalence as well.

Step (2.3): Convergence for .M;N / if M D .T1 � I � Œ0; 1�/t .T2 �S 1 � Œ0; 1�/t .T3 �Mo/ for
(possibly empty) finite sets Ti and dim.N /D 2 The proof is by induction over t D jT1jC jT2jC jT3j.
The initial case t D 1 is provided by steps (2.1) and (2.2). For the induction step, we pick a component
of M , say of the form I � Œ0; 1�; the other cases are analogous. We consider M 0 WDM n I � Œ0; 1�. An
application of isotopy extension (see Section 2.3(f)) to P D I�

�
1
4
; 3

4

�
� I�Œ0; 1�, justified by Lemma 2.13
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and step (2.1), gives fibre sequences

Emb@0

�
M 0;N n int.e.P //

�
Emb@0

.M;N / Emb@0
.P;N /

T1Emb@0

�
M 0;N n int.e.P //

�
T1Emb@0

.M;N / T1Emb@0
.P;N /

'

Here we used Lemma 2.12 and isotopy invariance to replace M 0 t .I � Œ0; 1� n int.P // in the domain
with M 0. The left vertical map is a weak equivalence by the induction hypothesis, so the middle vertical
map is a weak equivalence too.

Step (2.4): Convergence for .M;N / if dim.M / D 1 and dim.N / D 2 Step (2.3) together with
Lemma 2.9 gives the result for those triads of the form M 0 D .T1 � I/t .T2 �S1/ for finite sets Ti and
@0M 0 D T1 � f0; 1g. The general case, which has

M D .T1 � I/t .T2 �S1/t .T3 � Œ0; 1�/t .T4 � Œ0; 1�/

for finite sets Ti and @0M D .T1 � f0; 1g/ t .T3 � f0g/ follows from this by Lemmas 2.12 and 2.13
together with isotopy invariance (see Section 2.3(b)).

Step (2.5): Convergence for .M;N / if M DD2 with @0M D@M and dim.N /D2 By Corollary 2.15
we may assume that N is connected.

We first prove the case where the target N is not diffeomorphic to D2. In this case Emb@.D2;N /D¿,
so we need to show T1Emb@.D2;N /D¿. If this were to fail, then the target of the map

T1Emb@.D
2;N /!Map@.D

2;N /

from Section 2.3(d) must be nonempty, so N would be a connected surface with a boundary component
whose inclusion is null-homotopic. We claim this is impossible unless N ŠD2. First, if N DN1 \ � � �\N1,
then �1.N / splits as a free product �1.N1/�� � ���1.Nn/ and we may choose this decomposition so that the
homotopy class of the boundary inclusion represents the free product of the homotopy classes of boundary
inclusions of those components at which we perform the boundary connected sums. By the classification
of connected compact surfaces, it then suffices to observe that all boundary inclusions are nontrivial in the
fundamental group of the surfaces †0;2, †1;1, and Mo. For †0;2, each inclusion represents a generator
of �1.†0;2/Š Z, for †1;1 the boundary inclusion represents xyx�1y�1 2 �1.†1;1/Š hx;yi, and for
the Möbius strip it represents twice a generator in �1.Mo/Š Z.

It remains to show that Emb@.D2;D2/! T1Emb@.D2;D2/ a weak equivalence for which we follow
the proof of what is sometimes called the Cerf lemma [4, Proposition 5]. We consider the triad H D

D2 \
��
�

1
2
;1

�
�R

�
with @0H D H \ @D2 and @1H D H \

�˚
�

1
2

	
�R

�
containing the strip J D

H \
��
�

1
4
; 1

4

�
�R

�
with @0J D J \ @D2; see Figure 4. Writing H0 D H n

��
�

1
4
; 1

4

�
�R

�
\H and

D2
0
DD2 n

��
�

1
4
; 1

4

�
�R

�
\D2, an application of isotopy extension (see Section 2.3(f)) justified by step

(2.1) in the case M D J Š I � Œ0; 1� and Lemma 2.13 gives a map of fibre sequences with connected
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D2 J H0

Figure 4: The triads J;H0�D2. Here H the union of J and H0, and H 0
0
�H0 is the component

to the right of J .

weakly equivalent bases and homotopy fibres over the standard inclusion J ,!D2:

Emb@0
.H0;D

2
0
/ Emb@0

.H;D2/ Emb@0
.J;D2/

T1Emb@0
.H0;D

2
0
/ T1Emb@0

.H;D2/ T1Emb@0
.J;D2/

'

As H is a closed collar on @0H , the middle vertical map is a weak equivalence by isotopy invariance
and the convergence on collars (see Section 2.3(b) and (c)). By Lemma 2.12 we may discard the collar
H0\ ..�1; 0��R/ from the source of the left vertical map, and obtain that for H 0

0
DH \

��
1
4
;1

�
�R

�
the map Emb@0

.H 0
0
;D2

0
/ ! T1Emb@0

.H 0
0
;D2

0
/ is a weak equivalence. Invoking Corollary 2.15 to

neglect D2
0
nH0 from the target and identifying H 0

0
with a disc upon smoothing corners, we conclude

that Emb@.D2;D2/! T1Emb@.D2;D2/ is a weak equivalence.

Step (2.6): Convergence for .M;N / if M is an orientable surface of genus 0 with n� 1 boundary
components and @0M D @M and dim.N / D 2 Note that by gluing n� 1 discs to M we obtain a
disc D2. We also glue n� 1 discs to the corresponding boundary components of N to obtain a triad N 0

with a canonical embedding e W n� 1�D2 ,!N 0. Then isotopy extension and the convergence on discs
(see Section 2.3(f) and (c)) yields fibre sequences

Emb@.M;N / Emb@.D2;N 0/ Emb.n� 1�D2;N 0/

T1Emb@.M;N / T1Emb.D2;N 0/ T1Emb.n� 1�D2;N 0/

'

The middle vertical map a weak equivalence by step (2.5), so the left map is one as well.

Step (2.7): Convergence for .M;N / if M is connected, @0M D @M , and dim.M /D dim.N /D 2

As a result of Lemma 2.4, we may assume that @M ¤¿, so M is a boundary connected sum

†0;n \ .†1;1/
\T1 \ .RP2/\T2
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Figure 5: Left: M D†0;4 \ .†1;1/
\2 with subtriad P D 2�S1 � Œ0; 1��M whose complement

has genus 0 and 8 boundary components. Right: M D†0;3\†1;1 with @1M dashed, with subtriad
P D 2� I � Œ0; 1�tS1 � Œ0; 1��M ; the component of M n int.P / containing †1;1 is M 0.

for n� 1 and possibly empty finite sets T1 and T2. Thus we may find an embedding

P D .T1 �S1
� Œ0; 1�/t .T2 �Mo/!M

such that M n int.P / Š †0;n0 with n0 D nC 2jT1j C jT2j; see Figure 5, left, for an example. For any
embedding e W M ,! N extending the boundary condition, an application of isotopy extension (see
Section 2.3(f)), justified by step (2.3) and Lemma 2.13, gives a map of fibre sequences

Emb@
�
†0;n0 ;N ne.int.P //

�
Emb@.M;N / Emb.P;N /

T1Emb@
�
†0;n0 ;N ne.int.P //

�
T1Emb.M;N / T1Emb.P;N /

'

whose left vertical map a weak equivalence by step (2.7). Varying the embedding e W M ,! N , we
conclude that the middle vertical map is also a weak equivalence.

Step (2.8): Convergence for .M;N / if M is connected, @0M ¤ @M , and dim.M /D dim.N /D 2

Choose a triad embedding P D .T1 � I � Œ0; 1�/ t .T2 � S1 � Œ0; 1�/ ,! M such that M n int.P / is
the disjoint union of a component M 0 with @M 0 DM \ @0.M n int.P // and collars on components of
@0.M n int.P //; see Figure 5, right, for an example. By step (2.3) and Lemma 2.13, we may apply isotopy
extension as in step (2.3) to the restriction map Emb@0

.M;N /! Emb@0
.P;N / and its T1–version.

From step (2.7) and Lemma 2.12 we see that the map between fibres is a weak equivalence, from which
we conclude the claim.

Step (2.9): Convergence for .M;N / if dim.M /D dim.N /D 2 This is a induction on the number
n of components of M . The initial case nD 1 is the previous one, and for the induction step we write
M DM 0 tM 00 with M 0 connected. The induction hypothesis applied to M 0 together with Lemma 2.13
ensures that we may apply isotopy extension (see Section 2.3(f)) to the restriction

Emb@0
.M;N /! Emb@0

.M 0;N /
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and its T1–version from which the claim follows by noting that the map on fibres is a weak equivalence
by applying the induction hypothesis to M 00.

Step (3): Convergence for .M;N / if dim.M /D dim.N /D 1 This can be proved similarly to step (2)
but is easier. We outline the argument.

First one proves the case M D D1 with @0.D
1/ D f�1; 1g by a strategy analogous to step (2.5): one

first uses Corollary 2.15 to reduce to N DD1 as in the case for surfaces. Then one takes H D
�
�

1
2
; 1
�
,

J D
�
�

1
4
; 1

4

�
, and D1

0
DD1 n int.J / and develops a map of fibre sequences

Emb@0
.H0;D

1
0
/ Emb@0

.H;D1/ Emb@0
.J;D1/

T1Emb@0
.H0;D

1
0
/ T1Emb@0

.H;D1/ T1Emb@0
.J;D1/

' '

similar to step (2.5). Using Lemma 2.12 and Corollary 2.15, the map on fibres agrees with

Emb@.D
1;D1/! T1Emb@.D

1;D1/;

so it is a weak equivalence.

Next one shows the case of a general connected triad M : the case M D S1 follows directly by an
application of isotopy extension (see Section 2.3(f)) together with the case M DD1 above, and the cases
M D Œ0; 1� with @0.M /D f0g or @0.M /D¿ hold by Section 2.3(c).

Finally, the case of a possibly disconnected triad M can be settled as in step (2.8).

3.1 Automorphisms of the E1– and E2–operad

The above arguments do not rely on the fact that Diff@.Dd /D Emb@.Dd ;Dd / is contractible for d � 2

(this is folklore for d D 1 and due to Smale for d D 2 [24]). Using this fact, we may conclude from
Theorem 3.1 that T1Emb@.Dd ;Dd / is contractible for d � 2. Combining Theorems 1.2, 1.4, and 6.4
of [2],

T1Emb@.D
d ;Dd /'�dC1Auth.Ed /=O.d/

where Auth.Ed /=O.d/ is the homotopy fibre of the map BO.d/ ! BAuth.Ed / resulting from the
standard action of O.d/ on the little discs operad by derived operad automorphisms, so we deduce:

Corollary 3.4 �dC1Auth.Ed /=O.d/' � for d � 2.

Remark 3.5 Horel [15, Theorem 8.5] proved that Auth.E2/=O.2/ ' � with different methods. His
proof crucially uses that the spaces of k–arity operations in the operad E2 are K.�; 1/ for all k. This
fact can also be used to give an alternative proof of �2Auth.E2/' � (and thus of Corollary 3.4): the
derived mapping space Maph.O;P / between operads O and P can be computed as a homotopy limit of
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a diagram whose values are products of spaces of operations in O and P ; this follows by (for example)
using the alternative model of operads in terms of dendroidal Segal spaces. Applied to O D P DE2, one
sees that Maph.E2;E2/ is a homotopy limit of K.�; 1/, so it is contractible after looping twice.

4 Embedding calculus and the Johnson filtration

This section serves to introduce the filtration (2) of the mapping class group �0Diff@.†g;1/, and to prove
in Theorem 4.2 that it is contained in the Johnson filtration.

4.1 The cardinality filtration

Returning to the general setting of manifold calculus of Section 2.2.1 with a fixed .d�1/–manifold K,
possibly with boundary, we consider the filtration

(19) Disc@0;�0 � Disc@0;�1 � � � � � Disc@0;�1 WD Disc@0

of the topologically enriched category Disc@0
by its full subcategories Disc@0;�k on triads that are

diffeomorphic to K � Œ0; 1/ t T � Rd for finite sets T of bounded cardinality � k. Localising the
categories PSh.Disc@0;�k/ at the objectwise weak equivalences as we did for k D1 in Section 2.2.1,
given a presheaf F 2 PSh.Disc@0

/ we obtain presheaves on Man@0
by

TkF.M / WDMapPSh.Disc@0;�k/loc.Emb@0
.�;M /;F /

which are related by maps of presheaves

(20) T1F.M /! � � � ! T2F.M /! T1F.M /

induced by restriction along the inclusions (19). If F is the restriction of a presheaf on Man@0
, we can

precompose this tower with the canonical map F.M /! T1F.M / from (5).

4.1.1 Sheaf-theoretic point of view The tower (20) can also be seen from the point of view of Jk–
sheaves as described in Section 2.2.3(b): by [1, Theorem 1.2] the functor

PSh.Man@0
/ 3 F 7! TkF 2 PSh.Man@0

/

together with the natural transformation idPSh.Man@0
/)Tk is a model for the homotopy Jk–sheafification.

From this point of view the maps (20) are induced by the universal property of homotopy sheafification,
using the fact that any JkC1–sheaf is in particular a Jk–sheaf.

In particular, in the case of embedding calculus, ie for presheaves F.�/DEmb@0
.�;N / for triads M and

N and a boundary condition e@0
W @0M ,! @0N (see Example 2.1), this implies that there is a factorisation

of the map from the discussion in Section 2.3(d) of the form

(21) T1Emb@0
.M;N /! � � � ! T1Emb@0

.M;N /! Bun@0
.TM;TN /!Map@0

.M;N /:
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4.2 H Z–embedding calculus

Much of the above goes through for presheaves valued in categories other than spaces. We have use for
one such generalisation, which we discuss now.

It involves the topologically enriched category Sp of spectra and the topologically enriched category
HZmod of module spectra over the Eilenberg–Mac Lane spectrum HZ, both modelled for example
using symmetric spectra in spaces as in [20]. We denote by PShH Z.Disc@0

/ the category of HZ–module
spectrum-valued enriched presheaves on Disc@0

, and its localisation at the objectwise stable equivalences
by PShH Z.Disc@0

/loc. The composition of the left-adjoints †1C W Top! Sp and �^HZ W Sp!HZmod

induces the vertical arrows in the commutative diagram

(22)

PSh.Disc@0
/ PSh.Disc@0

/loc

PShH Z.Disc@0
/ PShH Z.Disc@0

/loc

.�/C^H Z .�/C^H Z

For a presheaf F 2 PSh.Disc@0
/ we define presheaves

T H Z
k F.M / WDMapPShH Z.Disc@0;�k/loc.Emb@0

.�;M /C ^HZ;FC ^HZ/

for 1� k �1, giving rise to an extension of the tower (20) to a map of towers

(23)

T1F.M / � � � T2F.M / T1F.M /

T H Z
1 F.M / � � � T H Z

2
F.M / T H Z

1
F.M /

whose vertical maps are induced by (22) and horizontal maps are induced by restriction along (19). Note
that for F.�/D Emb@0

.�;M /, composition induces an E1–structure on TkF.M /D TkEmb@0
.M;M /

and T H Z
k

F.M /D T H Z
k

Emb@0
.M;M / which upgrades (23) to a diagram of E1–spaces.

Remark 4.1 In [28], Weiss considers manifold calculus applied to the space-valued presheaf

�1.Emb@0
.�;M /C ^HZ/:

This agrees with the above HZ–embedding calculus since the adjunctions †1C a�
1 and �^HZ a U ,

with U WHZmod! Sp the forgetful functor, induce adjunctions on presheaf categories, which in turn
induces for F 2 PSh.Man@0

/ and 1� k �1 an identification

MapPSh.Disc@0M;�k/loc.Emb@0
.�;M /;�1.FC ^HZ//

T H Z
k

F.M /DMapPShH Z.Disc@0M;�k/loc.Emb@0
.�;M /C ^HZ;FC ^HZ/

'

which is compatible with the restrictions maps.
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4.3 An H Z–embedding calculus filtration of �0Diff@.†/

We fix a compact orientable † of genus g with a single boundary component. A naive attempt at a
filtration of the mapping class group �0Diff@.†/ as promised in the introductory Section 1.2 would be
to consider the kernels of the maps �0Diff@.†/D �0Emb@.†;†/! �0TkEmb@.†;†/ for varying k,
but these turn out to be trivial for all k � 1 simply because the composition of the above map with the
map to �0Map@.†;†/ from (21) is injective (see Remark 2.6). To obtain a more interesting filtration,
we perform two modifications.

Firstly, we change the triad structure of †. Instead of @0†D @† we choose @0†� @† to be an embedded
interval. We think of @0† as “half the boundary” and abbreviate @=2 WD @0† Š Œ0; 1�. Note that the
inclusion Diff@.†/�Emb@=2.†;†/ is a homotopy equivalence since its homotopy fibres are equivalent to
Diff@.D2/'�. The maps �0Diff@.†/D�0Emb@=2.†;†/!�0TkEmb@=2.†;†/ still do not give rise to
an interesting filtration, for a similar reason as above since the map �0Map@.†;†/! �0Map@=2.†;†/
is injective. The filtration becomes more interesting after the second modification: we switch from
embedding calculus to embedding calculus in HZ–modules as described above. More precisely, we
consider the filtration

(24) �0Diff@.†/D T JH Z
@=2 .0/� T JH Z

@=2 .1/� T JH Z
@=2 .2/� � � �

defined by
T JH Z

@=2 .k/ WD kerŒ�0Diff@.†/! �0T H Z
k Emb@=2.†;†/�;

where we formally set �0T H Z
k

Emb@=2.†;†/ WD �. Denoting by

(25) �0Diff@.†/D J.0/� J.1/� J.2/� � � �

the usual Johnson filtration

J.k/ WD ker
�
�0Diff@.†/! Aut

�
�1.†;�/

�k.�1.†;�//

��
;

where �i.�/ is the i th stage in the lower central series of a group (so �0.G/DG and �1.G/ is the derived
subgroup of G), the purpose of this section is to relate the filtrations (24) and (25) as follows.

Theorem 4.2 For a compact orientable surface † with a single boundary component , the subgroup

T JH Z
@=2 .k/D kerŒ�0Diff@.†/! �0T H Z

k Emb@=2.†;†/�

is contained in the k th stage J.k/ of the Johnson filtration for k � 0.

Remark 4.3 (i) The group �1.†;�/ is free, so it is residually nilpotent (ie
T

k �k.�1.†;�//D f1g),
which implies that the Johnson filtration is exhaustive, ie

T
k J.k/D fidg. By Theorem 4.2, the

same holds for fT JH Z
@=2

.k/g so in particular the map �0Diff@.†/ ! �0T H Z
1 Emb@=2.†;†/ is

injective.
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(ii) If the genus of † is at least 3, then the inclusion T JH Z
@=2

.1/� J.1/ is strict. Indeed, an element of
the mapping class group lies in T JH Z

@=2
.1/ if and only if induced the identity on the homology of

frame bundle Fr.T†/. By [25, Theorem 2.2 and Corollary 2.7], this is the case if and only if it lies
in the Chillingworth subgroup of the Torelli subgroup J.1/ [5; 6].

Theorem 4.2 and the final part of the previous remark suggest:

Question 4.4 What is the precise relationship between the Johnson filtration J.k/ and the filtration
JH Z
@=2

.k/ arising from the HZ–embedding calculus tower?

We will deduce Theorem 4.2 from Moriyama’s work [21]. The key step for this deduction is not special
to surfaces and applies to a general d–dimensional manifold triad M , so we will formulate it in this
generality. To do so, we fix a presheaf F 2 PSh.Disc@0;�k/, restrict it to Disc@0;�k�1 and homotopy left
Kan extending it back along the inclusion �k W Disc@0;�k�1 � Disc@0;�k to obtain a presheaf hLan�k F

with a natural map hLan�k F ! F . Evaluating it at

@0 tRd
k WD @0M � Œ0; 1/t k �Rd

where k WD f1; : : : ; kg we get a map of †k oO.d/–spaces .hLan�k F /.@0tRd
k
/!F.@0tRd

k
/, and then

taking homotopy quotients by the subgroup O.d/k �†k oO.d/ gives a map

(26) .hLan�k F /.@0 tRd
k /==O.d/k ! F.@0 tRd

k /==O.d/k :

In Proposition 4.5 below, we relate this map for F.�/D Emb@0
.�;M / to a certain “boundary inclusion”

of the ordered configuration spaces Emb.k;M /. For this, recall the Fulton–MacPherson compactification
FMk.M / of Emb.k;M / (eg from [23]) which comes with a natural inclusion Emb.k;M / ,! FMk.M /

that is homotopy equivalence, and a “macroscopic location” map � W FMk.M /!M k that extends the
inclusion Emb.k;M / ,!M k . We write @0 FMk.M / for the preimage ��1.�k [Ak/ of the union of
the subspace Ak �M k where at least one point lies in @0M and the fat diagonal

�k WD f.m1; : : : ;mi/ 2M k
jmi Dmj for some i ¤ j g �M k :

The key step in the proof of Theorem 4.2 is to identify the map (26) for F.�/D Emb@0
.�;M / with the

boundary inclusion @0 FMk.M /� FMk.M / in the following sense:

Proposition 4.5 There is zigzag of compatible weak equivalences

.hLan�k Emb@0
.�;M //.@0 tRd

k
/==O.d/k � � � @0 FMk.M /

Emb.@0 tRd
k
;M /==O.d/k � � � FMk.M /

' '

' '

which , when varying M , defines a zigzag of weak equivalences in the arrow category of Fun.Man@0
; S/.

Before turning to the proof of Proposition 4.5, we explain how it implies Theorem 4.2.
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Proof of Theorem 4.2 An element � 2 Diff@.†/ induces a commutative diagram

(27)
@0 FMk.†/C ^HZ @0 FMk.†/C ^HZ

FMk.†/C ^HZ FMk.†/C ^HZ

��

��

Abbreviating E† WD Emb@0
.�; †/, this agrees by Proposition 4.5 with the square

..hLan�k E†/.@0 tRd
k
/==O.d/k/C ^HZ ..hLan�k E†/.@0 tRd

k
/==O.d/k/C ^HZ

.Emb.@0 tRd
k
; †/==O.d/k/C ^HZ .Emb.@0 tRd

k
; †/==O.d/k/C ^HZ

��

��

up to a zigzag of weak equivalences of maps of squares. As .�/C^HZ commutes with taking homotopy
orbits and left Kan extensions, we conclude that the square (27) depends up to natural weak equivalences
only on the endomorphism �� W Emb@0

.�; †/C ^HZ! Emb@0
.�; †/C ^HZ in PShH Z.Disc�k/ and

moreover, as homotopy orbits and homotopy left Kan extensions preserve weak equivalences, only on its
image in PShH Z.Disc�k/

loc. Taking vertical cofibres in (27) and homotopy groups, we conclude that the
map

(28) �� WH�.FMk.†/; @0 FMk.†/IZ/!H�.FMk.†/; @0 FMk.†/IZ/

depends only on the image of � under the map �0Diff@.†/! �0T H Z
k

Emb@0
.†;†/. In particular, if �

lies in the kernel T JH Z
@=2

.k/ of this map, then (28) is the identity. Using excision as in [19, Section 5.4.1]

one see that the macroscopic location map � W .FMk.M /; @0 FMk.M //! .M k ; �k[Ak/ is a homology
isomorphism, so � induces the identity on H�.M

k ; �k [Ak IZ/. But the subgroup of mapping classes
with this property is exactly J.k/, by [21, Theorem A, Proposition 3.3].

Remark 4.6 It might be interesting to study the various filtrations of the mapping class group obtained
by replacing HZ in the definition of T JH Z

@=2
.k/ with HR for any ring R, such as Q or Fp.

As long as R has characteristic 0, the resulting filtration is contained in the Johnson filtration. This
follows from the proof for Z we gave above, together with the fact from [21, Proposition 3.3] that
H�.†

k ; �k [Ak IZ/ is trivial if � ¤ k and free abelian for � D k.

4.4 The proof of Proposition 4.5

It will be convenient for us to work with an explicit model for the homotopy left Kan extension as a bar
construction, which we recall next.

4.4.1 The enriched bar construction Given enriched space-valued functors F and G on a topologically
enriched category C where F is contravariant and G is covariant, the bar construction B�.G;C;F / is the
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semisimplicial space given by

Œp� 7!
G

c0;:::;cp

�
G.c0/�

pY
iD1

C.ci�1; ci/�F.cp/

�
where the coproduct is taking over ordered collections c0; : : : ; cp of objects in C and face maps are
induced by the composition in C and the functoriality of F and G. We denote the geometric realisation
of this semisimplicial space by omitting the �–subscript. Since geometric realisations of levelwise weak
equivalences of semisimplicial spaces are weak equivalences, the object B.G;C;F / is weakly homotopy
invariant in triples .G;C;F /, in the appropriate sense.

Given an enriched functor � W C!D and d 2D, the space B
�
D.d; �.�//;C;F

�
agrees, naturally in d , with

the homotopy left Kan extension hLan� F.d/ (see eg [22, Example 9.2.11]; the cofibrancy conditions are
not relevant for us as we consider the bar construction as a semisimplicial space and geometric realisations
of semisimplicial spaces preserve weak equivalences). Moreover, if F extends to a functor on D, then
there is a natural augmentation map

(29) B�
�
D.d; �.�//;C;F

�
! F.d/

induced by composition and evaluation, which agrees upon geometric realisations with the canonical map
hLan� F.d/! F.d/ (or rather, it provides a model thereof).

In particular, using the notation introduced above, the left vertical map in the statement of Proposition 4.5
is given by the map induced by (29) and taking homotopy orbits

(30) B
�
Emb@0

.@0 tRd
k ;�/;Disc@0;�k�1;Emb@0

.�;M /
�
==O.d/k �

�! Emb@0
.@0 tRd

k ;M /==O.d/k :

To compare (30) to the boundary inclusion @0 FMk.M /� FMk.M /, we first show the following.

Lemma 4.7 The map induced by the augmentation

B
�
@0 FMk.�/;Disc@0;�k�1;Emb@0

.�;M /
�
! @0 FMk.M /

is a weak equivalence.

Proof sketch The strategy is to show that this map is a Serre microfibration and has weakly contractible
fibres, which implies the statement by a lemma of Weiss [29, Lemma 2.2]. This is a standard argument,
so we will explain the idea somewhat informally and avoid spelling out lengthy but routine technical
details that are similar to eg [16, Section 4].

To verify that the map is a Serre microfibration the task is to show that in a commutative diagram

Di � f0g B.@0 FMk.�/;Disc@0;�k�1;Emb@0
.�;M //

Di � Œ0; "� Di � Œ0; 1� @0 FMk.M /�
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� �

�

�

�

Figure 6: An element of B.@0 FM4.�/;Disc@0;�3;Emb@0
.�;M // for @0M D @M , consisting of

a configuration x 2 @0 FM4.M / where two points are infinitesimally close, so that its macroscopic
image �.x/ consists of three points, and two levels of discs and collars indicated by the orange
and light-orange coloured regions. We suppressed the weights .t0; t1/ 2�1.

whose solid arrows are given, there exists an " > 0 and dashed lift. To see why this holds, it is helpful to
think of the space B.@0 FMk.�/;Disc@0;�k�1;Emb@0

.�;M // as the subspace of

@0 FMk.M /�B.�;Disc@0;�k�1;Emb@0
.�;M //

consisting of pairs .x; ŒEe; Et �/ of element x in @0 FMk.M / and an equivalence class of a collection Ee
of p C 1 levels of nested embedded discs in M with weight Et 2 �p. The pair ŒEe; Et � must have the
property that the image �.x/ of x under the macroscopic location map is contained in the interior of
the deepest level (see Figure 6 for an example) and the equivalence relation is that if a coordinate of
Et 2�p D f.t0; : : : ; tp/ 2 Œ0; 1�

pC1 j t0C � � �C tp D 1g is 0 then we may forget it and the corresponding
level of discs.

In these terms, the right vertical map in the diagram sends .x; ŒEe; Et �/ to x. The map

Di
! B.@0 FMk.�/;Disc@0;�k ;Emb@0

.�;M //

provides for each s 2Di a configuration x.s/ 2 @0 FMk.M / together with nested embedded discs and
weights ŒE�.s/; Et.s/�. The map Di � Œ0; 1�! @0 FMk.M / defines a homotopy xt .s/ with t 2 Œ0; 1� starting
at x.s/. If t is small enough then this remains within the deepest level of the discs for x.s; 0/, and by
compactness of Di we find a single " > 0 such that this is the case for all .s; t/ with t � ". The dashed
lift is then given by sending .s; t/ to .x.s; t/; ŒEe.s/; Et.s/�/.

To see that the fibre over x 2 @0 FMk.M / is weakly contractible, ie any map from S i to the fibre extends
over DiC1, we observe that given an equivalence class ŒEe; Et � represented by a family of nested embedded
discs in M with weights, whose deepest level contains x, we find a smaller collection of � .k � 1/ discs
around points in the macroscopic image �.x/ of x and contained in the deepest level. By compactness
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we can find a single such small collection which works for all images of s 2 S i . Adding this collection
and transferring all weight to this collection provides an extension to DiC1.

Proof of Proposition 4.5 For brevity, we abbreviate

Dk WD Disk@0;�k ; EM WD Emb@0
.�;M /; E

@0tRd
k WD Emb@0

.@0 tRd
k ;�/;

FMk D FMk.�/; @0 FMk D @0 FMk.�/:

We claim that the commutative diagram

B.E
@0tRd

k ;Dk�1;EM /==O.d/k B.FMk ;Dk�1;EM / B.@0 FMk ;Dk�1;EM / @0 FMk.M /

@0 FMk.M / @0 FMk.M /

Emb@0
.@0 tRd

k
;M /==O.d/k FMk.M / FMk.M / FMk.M /

1 3 4

2

provides a zigzag as claimed. Here all vertical arrows are induced by the augmentation (29) or the
inclusion @0 FMk � FMk . Maps 1 and 2 are induced by the composition

(31) Emb@0
.@0 tRd

k ;�/! Emb.Rd
k ;�/! Emb.k;�/! FMk.�/

induced by restriction and inclusion, 3 is induced by inclusion, and 4 is another instance of (29). As the
diagram is natural in M and the leftmost vertical map agrees with the left vertical map in the statement
by the discussion around (30), it remains to show that 1 – 4 are weak equivalences.

The map 1 factors as a composition

B.E
@0tRd

k ;Dk�1;EM /==O.d/k ! B.E
@0tRd

k==O.d/k ;Dk�1;EM /! B.FMk ;Dk�1;EM /

whose first map is a weak equivalence since left Kan extensions commute with homotopy orbits. To
show that the second map in this composition (and also the map 2 ) is a weak equivalence, we argue that
the composition (31) consists of weak equivalences upon applying .�/==O.d/k to the first two spaces.
For the first map this follows by shrinking the collar, for the second map it holds because the derivative
Emb.Rd

k
;N /! k �Fr.N / is a weak equivalence for any manifold N where Fr.N / is the frame bundle,

and for the third map it is clear.

The map 3 is a weak equivalence because @0 FMk.�/� FMk.�/ is a weak equivalence when evaluated
on objects U of D�k�1. Indeed, if U consists of a collar and l � k � 1 discs,

FMk.U /Š
G

n0C���CnlDk

FMn0
.@0M � Œ0; 1//�FMn1

.Rd /� � � � �FMnl
.Rd /

and @0 FMk.U / is the union of such terms where one FMni
is replaced by @0 FMni

. By the pigeonhole
principle we have n0 � 1 or ni � 2 for some 1 � i � l , so it suffices to observe that in these cases
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@0 FMn0
.@M � Œ0; 1// ,!FMn0

.M � Œ0; 1// or @0 FMni
.Rd / ,!FMni

.Rd / are inclusions of deformation
retracts, either by modifying configurations such that one has a macroscopic location in @0M � f0g �

@0M � Œ0; 1/ or such that all have macroscopic location at f0g 2Rd . Finally, 4 is a weak equivalence
by Lemma 4.7.
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Vietoris–Rips persistent homology, injective metric spaces,
and the filling radius
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In the applied algebraic topology community, the persistent homology induced by the Vietoris–Rips
simplicial filtration is a standard method for capturing topological information from metric spaces. We
consider a different, more geometric way of generating persistent homology of metric spaces which
arises by first embedding a given metric space into a larger space and then considering thickenings of the
original space inside this ambient metric space. In the course of doing this, we construct an appropriate
category for studying this notion of persistent homology and show that, in a category-theoretic sense, the
standard persistent homology of the Vietoris–Rips filtration is isomorphic to our geometric persistent
homology provided that the ambient metric space satisfies a property called injectivity.

As an application of this isomorphism result, we are able to precisely characterize the type of intervals
that appear in the persistence barcodes of the Vietoris–Rips filtration of any compact metric space and
also to give succinct proofs of the characterization of the persistent homology of products and metric
gluings of metric spaces. Our results also permit proving several bounds on the length of intervals in the
Vietoris–Rips barcode by other metric invariants, for example the notion of spread introduced by M Katz.

As another application, we connect this geometric persistent homology to the notion of filling radius
of manifolds introduced by Gromov and show some consequences related to the homotopy type of the
Vietoris–Rips complexes of spheres, which follow from work of Katz, and characterization (rigidity)
results for spheres in terms of their Vietoris–Rips persistence barcodes, which follow from work of
F Wilhelm.

Finally, we establish a sharp version of Hausmann’s theorem for spheres which may be of independent
interest.
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1 Introduction

The simplicial complex nowadays referred to as the Vietoris–Rips complex was originally introduced
by Leopold Vietoris in the early 1900s in order to build a homology theory for metric spaces [80].
Later, Eliyahu Rips and Mikhail Gromov [47] both utilized the Vietoris–Rips complex in their study of
hyperbolic groups.

Given a metric space .X; dX / and r >0, the r–Vietoris–Rips complex VRr.X/ hasX as its vertex set, and
simplices are all nonempty finite subsets of X whose diameter is strictly less than r . In [50], Hausmann
showed that the Vietoris–Rips complex can be used to recover the homotopy type of a Riemannian
manifold M . More precisely, he introduced a quantity r.M/ (a certain variant of the injectivity radius),
and proved that VRr.M/ is homotopy equivalent to M for any r 2 .0; r.M//.

Since VRr.X/ � VRs.X/ for all 0 < r � s, this construction then naturally induces the so-called
Vietoris–Rips simplicial filtration of X , denoted by VR�.X/D .VRr.X//r>0. By applying the simplicial
homology functor (with coefficients in a given field) one obtains a persistence module: a directed system
V� D .Vr

vrs
�! Vs/r�s of vector spaces and linear maps (induced by the simplicial inclusions). The

persistent module obtained from VR�.X/ is referred to as the Vietoris–Rips persistent homology of X .

The notion of persistent homology arose from work by Ferri, Frosini, Landi, Verri and Uras, [39; 40;
41; 79], Robins [73], and Delfinado, Edelsbrunner, Letscher and Zomorodian [27; 36]. After that,
considering the persistent homology of the simplicial filtration induced from Vietoris–Rips complexes was
a natural next step. For example, Carlsson and de Silva [76] applied Vietoris–Rips persistent homology to
topological estimation from point cloud data, and Ghrist and de Silva applied it to sensor networks [77].
Its efficient computation has been addressed by Bauer in [11]. A more detailed historical survey and
review of general ideas related to persistent homology can be found in Carlsson [16] and Edelsbrunner
and Harer [34; 35].

The persistent homology of the Vietoris–Rips filtration of a metric space provides a functorial way1 of
assigning a persistence module to a metric space. Persistence modules are usually represented, up to

1Where for metric spaces X and Y morphisms are given by 1–Lipschitz maps � WX ! Y , and for persistence modules V� and
W� morphisms are systems of linear maps �� D .�r W Vr !Wr /r>0 making all squares commute.

Algebraic & Geometric Topology, Volume 24 (2024)
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isomorphism, as barcodes: multisets of intervals each representing the lifetime of a homological feature.
In this paper, the barcodes are associated to Vietoris–Rips filtrations, and these barcodes will be denoted
by barcVR

� . � /. In the areas of topological data analysis (TDA) and computational topology, this type of
persistent homology is a widely used tool for capturing topological properties of a dataset [11; 76; 77].

Despite its widespread use in applications, little is known in terms of relationships between Vietoris–Rips
barcodes and other metric invariants. For instance, whereas it is obvious that the right endpoint of any
interval I in barcVR

� .X/ must be bounded above by the diameter of X , there has been little progress
in relating the length of bars to other invariants such as volume (or Hausdorff measure) or curvature
(whenever defined).

Contributions One main contribution of this paper is establishing a precise relationship (ie a filtered
homotopy equivalence) between the Vietoris–Rips simplicial filtration of a metric space and a more
geometric (or extrinsic) way of assigning a persistence module to a metric space, which consists of
first isometrically embedding it into a larger space and then considering the persistent homology of the
filtration obtained by considering the resulting system of nested neighborhoods of the original space
inside this ambient space. These neighborhoods, being also metric (and thus topological) spaces, permit
giving a short proof of the Künneth formula for Vietoris–Rips persistent homology.

A particularly nice ambient space inside which one can isometrically embed any given compact metric
space .X; dX / is L1.X/; the Banach space consisting of all the bounded real-valued functions on X ,
together with the `1–norm. The embedding is given by X 3 x 7! dX .x; � /: it is indeed immediate that
this embedding is isometric since kdX .x; � /�dX .x0; � /k1 D dX .x; x0/ for all x; x0 2X . This is usually
called the Kuratowski isometric embedding of X .

That the Vietoris–Rips filtration of a finite metric space produces persistence modules isomorphic to the
sublevel set filtration of the distance function

ıX W L
1.X/!R�0; L1.X/ 3 f 7! inf

x2X
kdX .x; � /�f k1;

was already used by Chazal, Cohen-Steiner, Guibas, Mémoli and Oudot [19] in order to establish the
Gromov–Hausdorff stability of Vietoris–Rips persistence of finite metric spaces.

In this paper we significantly generalize this point of view by proving an isomorphism theorem between
the Vietoris–Rips filtration of any compact metric space X and its Kuratowski filtration,�

ı�1X .Œ0; r//
�
r>0

;

a fact which immediately implies that their persistent homologies are isomorphic.

We do so by constructing a filtered homotopy equivalence between the Vietoris–Rips filtration and the
sublevel set filtration induced by ıX . Furthermore, we prove that L1.X/ above can be replaced with
any injective (or equivalently, hyperconvex) metric space — see Dress, Huber, Koolen, Moulton and
Spillner [31] and Lang [60] — admitting an isometric embedding of X :

Algebraic & Geometric Topology, Volume 24 (2024)
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Theorem 4.1 (isomorphism theorem) Let � WMet! PMet be a metric homotopy pairing (for example ,
the Kuratowski functor). Then B� ı � WMet! hTop� is naturally isomorphic to VR2�.

Above, Met is the category of compact metric spaces with 1–Lipschitz maps, PMet is the category of
metric pairs .X;E/ where X ,! E isometrically, E is an injective metric space, a metric homotopy
pairing is any right adjoint to the forgetful functor (eg the Kuratowski embedding), and B� is the functor
sending a pair .X;E/ to the filtration .Br.X;E//r>0; see Sections 3 and 4.

A certain well known construction which involves the isometric embedding X ,! L1.X/ is that of the
filling radius of a Riemannian manifold [46] defined by Gromov in the early 1980s. In that construction,
given an n–dimensional Riemannian manifold M , one studies for each r > 0 the inclusion

�r WM ,! ı�1M .Œ0; r//

and seeks the infimal r > 0 such that the map induced by �r at degree n homology level annihilates the
fundamental class ŒM � of M . This infimal value defines FillRad.M/, the filling radius of M . In this
paper, we will consider a version of the filling radius associated to the fundamental class with coefficients
in a given field F which will be denoted by FillRad.M IF/.

Via our isomorphism theorem we are able prove that there always exists a bar in the barcode of a manifold
whose length is exactly twice its filling radius:

Proposition 9.28 Let M be a closed connected n–dimensional Riemannian manifold. Then

.0; 2FillRad.M IF/� 2 barcVR
n .M IF/;

where F is an arbitrary field if M is orientable , and F D Z2 if M is nonorientable. Moreover , this is
the unique interval in barcVR

n .M IF/ starting at 0, and FillRad.M IF/ � FillRad.M/ whenever M is
orientable.

As a step in his proof of the celebrated systolic inequality, Gromov proved in [46] that the filling radius
satisfies FillRad.M/ � cn.vol.M//1=n for any n–dimensional complete manifold M (where cn is a
universal constant, and Nabutovsky recently proved that cn can be improved to n

2
[69, Theorem 1.2]).

This immediately yields a relationship between barcVR
� .M/ and the volume of M . The fact that the

filling radius has already been connected to a number of other metric invariants also permits importing
these results to the setting of Vietoris–Rips barcodes (see Section 9.3). This in turn permits relating
barcVR

� .M/ with other metric invariants of M , a research thread which has remained mostly unexplored.
See Proposition 9.46 for a certain generalization of Proposition 9.28 to ANR spaces.

In a series of papers [54; 55; 56; 57], M Katz studied both the problem of computing the filling radius
of spheres (endowed with the geodesic distance) and complex projective spaces, and the problem of
understanding the change in homotopy type of ı�1X .Œ0; r// when X 2 fS1;S2g as r increases.

Of central interest in topological data analysis has been the question of providing a complete characteriza-
tion of the Vietoris–Rips persistence barcodes of spheres of different dimensions. Despite the existence

Algebraic & Geometric Topology, Volume 24 (2024)
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of a complete answer to the question for the case of S1 due to Adamaszek and Adams [1], relatively little
is known for higher-dimensional spheres. In [2], Adamaszek, Adams and Frick consider a variant of the
Vietoris–Rips filtration, which they call Vietoris–Rips metric thickening. The authors are able to obtain
information about the successive homotopy types of this filtration on spheres of different dimension —
see [2, Section 5] — for a certain range of values of the scale parameter.

The authors of [2] conjecture that the open Vietoris–Rips filtration (which is the one considered in the
present paper) is filtered homotopy equivalent to their open Vietoris–Rips metric thickening filtration
(as a consequence their persistent homologies are isomorphic). This isomorphism was conjectured in [2,
Conjecture 6.12] which was recently settled in [7, Corollary 5.10].

Our isomorphism theorem (Theorem 4.1) permits applying Katz’s results in order to provide partial
answers to the questions mentioned above and also to elucidate other properties of the standard open
Vietoris–Rips filtration and its associated persistence barcodes barcVR

� . � /. In addition to these results
derived from our isomorphism theorem, in Section A.4, we refine certain key lemmas used in the original
proof of Hausmann’s theorem [50] and establish the homotopy equivalence between VRr.Sn/ and Sn for
any r 2

�
0; arccos .�1=.nC 1//

�
:

Theorem 7.1 For any n 2 Z>0, we have VRr.Sn/' Sn for any r 2
�
0; arccos.�1=.nC 1//

�
.

Note that this is indeed an improvement since, for spheres, Hausmann’s quantity satisfies

r.Sn/D �
2
< arccos

�
�

1

nC1

�
:

This improvement is obtained with the aid of a refined version of Jung’s theorem (see Theorem A.8)
which we also establish. Theorem 7.1 also improves upon [54, Remark, page 508]; see the discussion in
Section 7.1.

In the direction of characterizing the Vietoris–Rips barcodes of spheres, we are able to provide a complete
characterization of the homotopy types of the Vietoris–Rips complexes of round spheres Sn�1 � Rn

endowed with the (restriction of the) `1–metric, which we denote by Sn�11 . Two critical observations
are that

(1) the r–thickening of Sn�11 inside of Rn1 (Rn equipped with the `1–metric) is homotopy equivalent
to the r–thickening of Sn�11 inside of Dn1 (n–dimensional unit ball with `1–metric), and

(2) it is easier to find the precise shape of the latter.

Theorem 7.19 For any n 2 Z>0 and r > 0,

Br.S
n�1
1 ;Rn1/' Br.S

n�1
1 ;Dn1/DDn1nVn;r ;

where
Vn;r WD

\
.p1;:::;pn/2fr;�rgn

�
.x1; : : : ; xn/ 2Rn

ˇ̌̌ nX
iD1

.xi �pi /
2
� 1

�
:
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1:5

1

0:5

0

�0:5

�1

�1:5
�1:5 �1 �0:5 0 0:5 1 1:5

Figure 1: Br .S11;D
2
1/DD2

1nV2;r in the plane R21. The set V2;r is given by the intersection of
the four closed disks shown in the figure. See Theorem 7.19.

In particular , for r > 1=
p
n we have Vn;r D ∅, so Br.Sn�11 ;Dn1/D Dn1. As a result , Br.Sn�11 ;Rn1/

is homotopy equivalent to Sn�1 for r 2 .0; 1=
p
n� and contractible for r > 1=

p
n (see Figure 1 for an

illustration of the case nD 2).

From a different perspective, by appealing to our isomorphism theorem, it is also possible to apply
certain results from quantitative topology to the problem of characterization of metric spaces by their
Vietoris–Rips persistence barcodes. In applied algebraic topology, a general question of interest is:

Question 1 Assume X and Y are compact metric spaces such that barcVR
k
.X IF/D barcVR

k
.Y IF/ for

all k 2 Z�0. Then how similar are X and Y (in a suitable sense)?

It follows from work by Wilhelm [83] and Yokota [84] on rigidity properties of spheres via the filling
radius, and the isomorphism theorem (Theorem 4.1), that any n–dimensional Alexandrov space without
boundary and sectional curvature bounded below by 1 such that its Vietoris–Rips persistence barcode
agrees with that of Sn must be isometric to Sn. This provides some new information about the inverse
problem for persistent homology; see Curry [26] and Gameiro, Hiraoka and Obayashi [43]. More precisely,
and for example, we obtain the corollary below, where for an n–dimensional manifold M , IM

n;F denotes
the persistence interval in barcVR

n .M IF/ induced by the fundamental class of M (see Proposition 9.28):

Corollary 9.51 (barcVR
� rigidity for spheres) For any closed connected n–dimensional Riemannian

manifold M with sectional curvature KM � 1,

(1) IM
n;F � I

Sn
n ;

Algebraic & Geometric Topology, Volume 24 (2024)
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S2

T u1

u2 u3

u4

S2
h

u2 u3

u4

Figure 2: The construction of the one parameter family of surfaces S2
h

with the same filling radius
as S2. The points u1, u2, u3 and u4 are vertices of a regular geodesic tetrahedron, and T is a small
geodesic triangle, which is used to form a cylinder of height h (left figure). See Example 9.54 for
details.

(2) if IM
n;F D I

Sn
n then M is isometric to Sn;

(3) there exists �n > 0 such that if length.ISn
n /� �n < length.IM

n;F /, then M is diffeomorphic to Sn;

(4) if length.IM
n;F / >

�
3

, then M is a twisted n–sphere (and , in particular , homotopy equivalent to the
n–sphere).

The lower bound on sectional curvature is crucial — in Example 9.54 we construct a one parameter family
of deformations of the sphere S2 with constant filling radius (see Figure 2).

See Propositions 9.56 and 9.57 for additional related results, and see Question 3 for a relaxation of
Question 1.

Lastly, let us address a variant of Question 1 concerning the case when barcVR
k
.X IF/ and barcVR

k
.Y IF/

are possibly different. Recall that there is the bottleneck distance dB measuring the dissimilarity between
two barcodes (see Definition 2.12). One of the fundamental results of topological data analysis is the
following stability theorem (see Theorems 2.13 and 2.14): for any field F ,

(1) `VR.X; Y / WD 1
2

sup
k

dB.barcVR
k .X IF/; barcVR

k .Y IF//� dGH.X; Y /:

Therefore, in order to understand how strong the Vietoris–Rips barcode is as a geometric invariant, it is
natural to ask the following question:

Question 2(i) How good is `VR.X; Y / as an estimator of dGH.X; Y /?

Algebraic & Geometric Topology, Volume 24 (2024)
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For example, one might ask whether the inequality (1) is tight or not. What we know is that this is
indeed not tight when X and Y are spheres of different dimension since, in Corollary 9.39, we show that
`VR.Sm;Sn/D 1

4
arccos .�1=.mC 1// for any 0 <m< n. However, in [63, Theorem B] it is proved that

1
2

arccos .�1=.mC 1// (ie twice `VR.Sm;Sn/) lower bounds dGH.Sm;Sn/ for any 0 < m < n and that
this bound is tight.

Now, let us ask the following question:

Question 2(ii) For what type of spaces X and Y does inequality (1) become tight?

Or, one might ask the following question too:

Question 2(iii) For what type of spaces X and Y do we have the reverse stability inequality

dGH.X; Y /� C � `
VR.X; Y /

for some C > 0?

Note that the reverse stability inequality mentioned in Question 2(iii) cannot hold in general. For example,
if we let X D S1 and Y be S1 attached with disjoint trees of arbitrary length (regarded as a geodesic
metric space), then we can prove `VR.X; Y /D 0 whereas dGH.X; Y / can be arbitrarily large (depending
on the length of the attached trees). See Figure 10 and the beginning of Section 9.4 for a more detailed
explanation.

The authors hope that this paper can help bridge between the applied algebraic topology and the quantitative
topology communities.

Organization In Section 2, we provide some necessary definitions and results about Vietoris–Rips
filtration, persistence, and injective metric spaces.

In Section 3, we construct a category of metric pairs. This category will be the natural setting for our
extrinsic persistent homology. Although being functorial is trivial in the case of Vietoris–Rips persistence,
the type of functoriality which one is supposed to expect in the case of metric embeddings is a priori not
obvious. We address this question in Section 3 by introducing a suitable category structure.

In Section 4, we show that the Vietoris–Rips filtration can be (categorically) seen as a special case of
persistent homology obtained through metric embeddings via the isomorphism theorem (Theorem 4.1).
In this section, we also we also establish the stability of the filtration obtained via metric embeddings.

Sections 5–9 provide applications of our isomorphism theorem to different questions.

In Section 5, we prove that any interval in persistence barcode for open Vietoris–Rips filtration must have
open left endpoint and closed right endpoint.

In Section 6, we obtain new proofs of formulas about the Vietoris–Rips persistence of metric products
and metric gluings of metric spaces.

Algebraic & Geometric Topology, Volume 24 (2024)
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In Section 7, we prove a number of results concerning the homotopy types of Vietoris–Rips filtrations of
spheres and complex projective spaces. Also, we fully compute the homotopy types of Vietoris–Rips
filtration of spheres with `1–norm.

In Section 8, we reprove Rips and Gromov’s result about the contractibility of the Vietoris–Rips complex
of hyperbolic geodesic metric spaces, by using our method consisting of isometric embeddings into
injective metric spaces. As a result, we will be able to bound the length of intervals in the Vietoris–Rips
persistence barcode by the hyperbolicity of the underlying space.

In Section 9, we give some applications of our ideas to the filling radius of Riemannian manifolds and
also study consequences related to the characterization of spheres by their persistence barcodes and some
generalizations and novel stability properties of the filling radius.

The appendix contains relegated proofs and some background material.
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2 Background

In this section we cover the background needed for proving our main results. We alert readers that, in
this paper, the same notation can mean either a simplicial complex itself or its geometric realization,
interchangeably. The precise meaning will be made clear in each context.

2.1 Vietoris–Rips filtration and persistence

References for the definitions and results in this subsection are [12; 61].

Definition 2.1 (Vietoris–Rips filtration) Let X be a metric space and r > 0. The (open) Vietoris–Rips
complex VRr.X/ of X is the simplicial complex whose vertices are the points of X and whose simplices
are the finite subsets of X with diameter strictly less then r . Note that if r � s, then VRr.X/ is contained
in VRs.X/. Hence, the family VR�.X/ is a filtration, called the open Vietoris–Rips filtration of X .

The (geometric realization of) a Vietoris–Rips filtration is a special case of the following more general
notion:

Definition 2.2 (persistence family) A persistence family is a collection .Ur ; fr;s/r�s2T , where T is a
nonempty subset of R such that, for each r � s � t 2 T , Ur is a topological space, fr;s W Ur ! Us is a
continuous map, fr;r D idUr and fs;t ıfr;s D fr;t .

Algebraic & Geometric Topology, Volume 24 (2024)
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Given two persistence families .U�; f�;�/ and .V�; g�;�/ indexed by the same T �R, a morphism from
the first one to the second is a collection .�r/r2T such that for each r � s, �r is a homotopy class of
maps Ur ! Vr , and �s ıfr;s is homotopy equivalent to gr;s ı�r .

Definition 2.3 (persistence module) A persistence module V�D .Vr ; vr;s/r�s2T over T �R is a family
of F–vector spaces Vr for some field F with morphisms vr;s W Vr ! Vs for each r � s such that

� vr;r D idVr ,

� vs;t ı vr;s D vr;t for each r � s � t .

In other words, a persistence module is a functor from the poset .T;�/ to the category of vector spaces.
The morphisms v�;� are referred to as the structure maps of V�.

By 0� we will denote the zero persistence module.

For any k � 0, applying the degree k homology functor (with coefficients in a field F) to a persistence
family .Ur ; fr;s/r�s2T produces the persistence module Hk.U�IF/ where the morphisms are those
induced by .fr;s/r�s .

Following the extant literature, we will use the term persistent homology of a persistence family (ie a
filtration) to refer to the persistence module obtained upon applying the homology functor to this family.

In particular, one can apply the homology functor to the Vietoris–Rips filtration of a metric space X . This
induces a persistence module (with T DR>0) where the morphisms are those induced by inclusions. As
a persistence module, it is denoted by PHk.VR�.X/IF/ and referred to as the Vietoris–Rips persistent
homology of X .

Definition 2.4 (interval persistence module [17]) Given an interval I in T � R (ie if r � s � t and
r; t 2 I , then s 2 I ) and a field F , the persistence module F�ŒI � over T is defined as follows: the vector
space at r is F if r is in I and zero otherwise; given r � s, the morphism corresponding to .r; s/ is the
identity if r and s are in I and zero otherwise.

Definition 2.5 (barcode) For a given persistence module V�, if there is a multiset of intervals .I�/�2ƒ
such that V� is isomorphic to

L
�2ƒ F�ŒI��, then that multiset is denoted by barc.V�/ and referred to as

a (persistence) barcode associated to the persistence module V� (see below). Modules for which there
exist such a multiset of intervals are said to be interval decomposable.

By Azumaya’s theorem [10], persistence barcodes, whenever they exist, are unique: any two persistence
barcodes associated to a given V� must agree (up to reordering). The most important existence result for
persistence barcodes is Crawley-Boevey’s theorem [25] which guarantees the existence of a persistence
barcode associated to V� D .Vr ; vr;s/ if V� is pointwise finite-dimensional (ie dim.Vr/ <1 for all r).
However, for many natural persistence modules (eg Vietoris–Rips persistent homology of a nonfinite metric

Algebraic & Geometric Topology, Volume 24 (2024)



Vietoris–Rips persistent homology, injective metric spaces, and the filling radius 1029

space X), it is not straightforward to verify the pointwise finite-dimensionality condition. Nevertheless,
in Theorem 2.9, we are able to establish that, if X is totally bounded, then its Vietoris–Rips persistent
homology has a (unique) persistence barcode. This is achieved without invoking Crawley-Boevey’s
theorem and instead through combining our main (isomorphism) theorem (see Theorem 4.1) with a recent
result by Schmahl [74, Theorem 1.2]. The proof of Theorem 2.9 can be found in the extended (arXiv)
version of this paper [62, Section 5]. The totally boundedness condition is required in the theorem in
order to guarantee the following notion of regularity:

Definition 2.6 (q–tame persistence module) A persistence module V� D .Vr ; vr;s/r�s2T is said to be
q–tame if rank.vr;s/ <1 whenever r < s.

Remark 2.7 The notions of interval decomposability and q–tameness are not equivalent. Indeed:

(1) [22, Remark 2.9] There exist q–tame modules which are not interval decomposable.

(2) [22, Example 3.30] There exist interval decomposable modules which are not q–tame.

Interval decomposability and q–tameness are however related through a certain notion of weak isomor-
phism; see [20].

Remark 2.8 In [23, Proposition 5.1], it is proved that if X is a totally bounded metric space, then
PHk.VR�.X/IF/ is q–tame for any nonnegative integer k � 0 and any field F .

Theorem 2.9 [62, Section 5] If X is a totally bounded metric space , then there is a (unique) persistence
barcode associated to PHk.VR�.X/IF/.

If X is a totally bounded metric space, then we denote the barcode corresponding to PHk.VR�.X/IF/
by barcVR

k
.X IF/.

From now on, unless specified otherwise, we will always assume that T DR. For a given metric space
and integer k � 0, we will occasionally view V� D PHk.VR�.X/IF/ as a persistence module defined
over the whole real line R by trivially extending it to the left of 0 2R; that is, we set Vt D 0 for t � 0.

We now recall a notion of distance between persistence modules.

Definition 2.10 (interleaving distance) Two persistence modules V� andW� are said to be ı–interleaved
for some ı � 0 if there are natural transformations f W V�!W�Cı and g WW�! V�Cı such that f ıg
and g ı f are equal to the structure maps W�!W�C2ı and V�! V�C2ı , respectively. The interleaving
distance between V� and W� is defined as

dI.V�; W�/ WD inffı � 0 j V� and W� are ı–interleavedg:

It is known [12] that dI is an extended pseudometric on the collection of all persistence modules.
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Example 2.11 Consider 0�, the zero persistence module. Then for any finite-dimensional V� one has

dI.V�; 0�/D
1
2

supflength.I / j I 2 barc.V�/g:

Definition 2.12 (bottleneck distance) Let M and M 0 be two possibly empty multisets of intervals. A
subset P �M �M 0 is said to be a partial matching between M and M 0 if it satisfies that

� every interval I 2M is matched with at most one interval of M 0, ie there is at most one interval
I 0 2M 0 such that .I; I 0/ 2 P ;

� every interval I 0 2M 0 is matched with at most one interval of M , ie there is at most one interval
I 2M such that .I; I 0/ 2 P .

The bottleneck distance between M and M 0 is defined as

dB.M;M
0/ WD inf

P partial matching
cost.P /;

where
cost.P / WDmax

˚
sup

.I;I 0/2P

kI � I 0k1; sup
IDha;bi2MtM 0 unmatched

1
2
ja� bj

	
and

kI � I 0k1 WDmaxfja� a0j; jb� b0jg

for I D ha; bi; I 0 D ha0; b0i (here, h � ; � i means either open or closed endpoint).

Theorem 2.13 (isometry theorem [22, Theorem 5.14]) For any two q–tame persistence modules V�
and W�,

dB.barc.V�/; barc.W�//D dI.V�; W�/:

For the proof of the following theorem, see [23, Lemma 4.3] or [13; 19; 65].

Theorem 2.14 Let X and Y be compact metric spaces and F be an arbitrary field. Then , for any
k 2 Z�0,

dI
�
PHk.VR�.X/IF/;PHk.VR�.Y /IF/

�
� 2dGH.X; Y /:

2.2 Injective (hyperconvex) metric spaces

A hyperconvex metric space is one where any collection of balls with nonempty pairwise intersections
forces the nonempty intersection of all balls. These were studied by Aronszajn and Panitchpakdi [8]
who showed that every hyperconvex space is an absolute 1–Lipschitz retract. Isbell [52] proved that
every metric space admits a smallest hyperconvex hull (see the definition of tight span below). Dress
rediscovered this concept in [30] and subsequent work provided much development in the context of
phylogenetics [31; 75]. More recently, Joharinad and Jost [53] considered relaxations of hyperconvexity
and related it to a certain notion of curvature applicable to general metric spaces.

References for this subsection are [30; 31; 60].
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Definition 2.15 (injective metric space) A metric space E is called injective if for each 1–Lipschitz
map f W X ! E and isometric embedding of X into zX , there exists a 1–Lipschitz map Qf W zX ! E

extending f :
X zX

E
f

Qf

Definition 2.16 (hyperconvex space) A metric space X is called hyperconvex if for every family
.xi ; ri /i2I of xi in X and ri � 0 such that dX .xi ; xj /� ri C rj for each i; j 2 I , there exists a point x
such that dX .xi ; x/� ri for each i 2 I .

The following lemma is easy to deduce from the definition of hyperconvex space:

Lemma 2.17 Any nonempty intersection of closed balls in hyperconvex space is hyperconvex.

For a proof of the following proposition, see [8] or [60, Proposition 2.3].

Proposition 2.18 A metric space is injective if and only if it is hyperconvex.

Moreover, every injective metric space is a contractible geodesic metric space, as one can see in
Lemma 2.20 and Corollary 2.21.

Definition 2.19 (geodesic bicombing) By a geodesic bicombing  on a metric space .X; dX /, we mean
a continuous map  WX �X � Œ0; 1�!X such that, for every pair .x; y/ 2X �X , .x; y; � / is a geodesic
from x to y with constant speed. In other words,  satisfies

(1) .x; y; 0/D x and .x; y; 1/D y;

(2) dX ..x; y; s/; .x; y; t//D .t � s/ � dX .x; y/ for any 0� s � t � 1.

Lemma 2.20 [60, Proposition 3.8] Every injective metric space .E; dE / admits a geodesic bicombing
 such that , for any x; y; x0; y0 2E and t 2 Œ0; 1�, it is:

(1) Conical dE ..x; y; t/; .x
0; y0; t //� .1� t /dE .x; x

0/C tdE .y; y
0/.

(2) Reversible .x; y; t/D .y; x; 1� t /.

(3) Equivariant L ı .x; y; � /D .L.x/; L.y/; � / for every isometry L of E.

Corollary 2.21 Every injective metric space E is contractible.

Proof By Lemma 2.20, there is a geodesic bicombing  on E. Fix an arbitrary point x0 2 E. Then
restricting  to E � fx0g � Œ0; 1� gives a deformation retraction of E onto x0; hence E is contractible.

Example 2.22 For any set S , the Banach space L1.S/ consisting of all the bounded real-valued
functions on S with the `1–norm is injective.
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Definition 2.23 For a compact metric space .X; dX /, the map � WX!L1.X/, defined by x 7! dX .x; � /,
is an isometric embedding and it is called the Kuratowski embedding. Hence every compact metric space
can be isometrically embedded into an injective metric space.

Let us introduce some notation which will be used throughout this paper. Suppose that X is a subspace
of a metric space .E; dE /. For any r > 0, let Br.X;E/ WD fz 2E j 9x 2X with dE .z; x/ < rg denote
the open r–neighborhood of X in E. In particular, if X D fxg for some x 2 E, it is just denoted by
Br.x;E/, the usual open r–ball around x in E.

As one more convention, whenever there is an isometric embedding � WX ,!E, we will use the notation
Br.X;E/ instead of Br.�.X/;E/. For instance, in the sequel we will use Br.X;L1.X// rather than
Br.�.X/; L

1.X//.

Definition 2.24 For any metric spaceE, a nonempty subspaceX , and r >0, the Čech complex LCr.X;E/
is defined as the nerve of the open covering Ur WD fBr.x;E/ j x 2Xg. In other words, LCr.X;E/ is the
simplicial complex whose vertices are the points of X , and fx0; : : : ; xng �X is a simplex in LCr.X;E/ if
and only if

Tn
iD0Br.xi ; E/¤∅.

The following observation is simple, yet it plays an important role in our paper:

Proposition 2.25 If .E; dE / is an injective metric space and ∅¤X �E then , for any r > 0,

LCr.X;E/D VR2r.X/:

Remark 2.26 Proposition 2.25 is optimal in the sense that if LCr.X;E/D VR2r.X/ holds true for all
∅¤X �E, then this condition itself resembles hyperconvexity of E (see Definition 2.16).

Also note that Proposition 2.25 is a generalization of both [45, Lemma 4] and [19, Lemma 2.9] in that
those papers only consider the case when X is finite and E D `1.X/.

Proof of Proposition 2.25 Because of the triangle inequality, it is obvious that LCr.X;E/ is a subcomplex
of VR2r.X/. Now, fix an arbitrary simplex fx0; : : : ; xng 2 VR2r.X/. Then dE .xi ; xj / < 2r for any
i; j D 0; : : : ; n. Since E is hyperconvex, by Proposition 2.18, there exists Nx 2E such that dX .xi ; Nx/ < r
for any i D 0; : : : ; n (note that, since fx0; : : : ; xng is finite, one can use < instead of � when invoking
the hyperconvexity property). Therefore, fx0; : : : ; xng 2 LCr.X;E/. Hence VR2r.X/ is a subcomplex of
LCr.X;E/.

In particular, Proposition 2.25 implies the following result:

Proposition 2.27 Let X be a subspace of an injective metric space .E; dE /. Then , for any r > 0, the
Vietoris–Rips complex VR2r.X/ is homotopy equivalent to Br.X;E/.

The proof of Proposition 2.27 will use the following lemma:
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Lemma 2.28 In an injective metric space E, every nonempty intersection of open balls is contractible.

Proof Let  be a geodesic bicombing on E, whose existence is guaranteed by Lemma 2.20. Then, for
each x; y; x0; y0 in E and t in Œ0; 1�,

dE ..x; y; t/; .x
0; y0; t //� .1� t /dE .x; x

0/C tdE .y; y
0/:

In particular, by letting x0 D y0 D z, we obtain

dE ..x; y; t/; z/�maxfdE .x; z/; dE .y; z/g

for any t 2 Œ0; 1�. Hence, if x and y are contained in an open ball with center z, then .x; y; t/ is contained
in the same ball for each t in Œ0; 1�. Therefore, if U is a nonempty intersection of open balls in E, then 
restricts to U �U � Œ0; 1�! U , which implies that U is contractible.

Proof of Proposition 2.27 Let Ur WD fBr.x;E/ j x 2 Xg. By Lemma 2.28, Ur is a good cover of
Br.X;E/. Hence, by the nerve lemma [49, Corollary 4G.3], Br.X;E/ is homotopy equivalent to the nerve
of Ur , which is the same as the Čech complex LCr.X;E/. By Proposition 2.25, LCr.X;E/DVR2r.X/.

3 Persistence via metric pairs

One of the insights leading to the notion of persistent homology associated to metric spaces was considering
neighborhoods of a metric space in a nice (for example Euclidean) embedding [70]. In this section we
formalize this idea in a categorical way.

Definition 3.1 (category of metric pairs) � A metric pair is an ordered pair .X;E/ of metric spaces
such that X is a metric subspace of E.

� Let .X;E/ and .Y; F / be metric pairs. A 1–Lipschitz map from .X;E/ to .Y; F / is a 1–Lipschitz
map from E to F mapping X into Y .

� Let .X;E/ and .Y; F / be metric pairs and f and g be 1–Lipschitz maps from .X;E/ to .Y; F /. We
say that f and g are equivalent if there exists a continuous family .ht /t2Œ0;1� of 1–Lipschitz maps
from E to F and a 1–Lipschitz map � WX! Y such that h0D f , h1D g and ht jX D � for each t .

� We define PMet as the category whose objects are metric pairs and whose morphisms are defined
as follows: given metric pairs .X;E/ and .Y; F /, the morphisms from .X;E/ to .Y; F / are
equivalence classes of 1–Lipschitz maps from .X;E/ to .Y; F /.

Recall the definition of persistence families, Definition 2.2. We let hTop� denote the category of persistence
families with morphisms specified as in Definition 2.2.

Remark 3.2 Let .X;E/ and .Y; F / be persistent pairs and let f be a 1–Lipschitz morphism between
them. Then f maps Br.X;E/ into Br.Y; F / for each r > 0. Furthermore, if g is equivalent to f , then
they reduce to homotopy equivalent maps from Br.X;E/ to Br.Y; F / for each r > 0.
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By the remark above, we obtain the following functor from PMet to hTop�:

Definition 3.3 (persistence functor) Define the persistence functor B� W PMet! hTop� sending .X;E/
to the persistence family obtained by the filtration .Br.X;E//r>0 and sending a morphism between
metric pairs to the homotopy classes of maps it induces between the filtrations.

Remark 3.4 Suppose a metric pair .X;E/ is given. For any k � 0, one can apply the degree k homology
functor (with coefficients in a given field F ) to a persistence family B�.X;E/. This induces a persistence
module where the morphisms are induced by inclusions. As a persistence module, it is denoted by
PHk.B�.X;E/IF/.

Let Met be the category of metric spaces where morphisms are given by 1–Lipschitz maps. There is a
forgetful functor from PMet to Met mapping .X;E/ to X and mapping a morphism defined on .X;E/ to
its restriction to X . Although forgetful functors often have left adjoints, we are going to see that this one
has a right adjoint.

Theorem 3.5 The forgetful functor from PMet to Met has a right adjoint.

First we need to prove a few results. The reader should consult Section 2.2 for background on injective
metric spaces.

Lemma 3.6 Let .X;E/ and .Y; F / be metric pairs such that F is an injective metric space. Let f and g
be 1–Lipschitz maps from .X;E/ to .Y; F /. Then f is equivalent to g if and only if f jX � gjX .

Proof The “only if” part is obvious from Definition 3.1. Now assume that f jX � gjX . By Lemma 2.20,
there exists a geodesic bicombing  W F �F � Œ0; 1�! F such that for each x; y; x0; y0 2 F and t 2 Œ0; 1�,

dF ..x; y; t/; .x
0; y0; t //� .1� t /dF .x; x

0/C tdF .y; y
0/:

For t 2 Œ0; 1�, define h W E � Œ0; 1�! F by ht .x/ D .f .x/; g.x/; t/. Note that h0 D f , h1 D g and
.ht /jX is the same map for all t . The inequality above implies that ht is 1–Lipschitz for all t .

Lemma 3.7 Let .X;E/ and .Y; F / be metric pairs such that F is an injective metric space. Then , for
each 1–Lipschitz map � WX ! Y , there exists a unique (up to equivalence) 1–Lipschitz map from .X;E/

to .Y; F / extending �.

Proof The uniqueness up to equivalence part follows from Lemma 3.6. The existence part follows from
the injectivity of F .

Proof of Theorem 3.5 Let � WMet! PMet be the functor sending X to .X;L1.X// where L1.X/
is the Banach space consisting of all the bounded real-valued functions on X with `1–norm (see
Definition 2.23 in Section 2.2). A 1–Lipschitz map f W X ! Y is sent to the unique morphism (see
Lemma 3.7) extending f . This functor � is said to be the Kuratowski functor.
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There is a natural morphism

Hom
�
.X;E/; .Y; L1.Y //

�
! Hom.X; Y /;

sending a morphism to its restriction to X . By Lemma 3.7, this is a bijection. Hence � is a right adjoint
to the forgetful functor.

Recall that any two right adjoints of a same functor must be isomorphic [9, Proposition 9.9].

Definition 3.8 (metric homotopy pairing) A functor � WMet!PMet is called a metric homotopy pairing
if it is a right adjoint to the forgetful functor.

Example 3.9 Let .X; dX / be a metric space. L1.X/ is an injective space associated toX ; see Section 2.2
for the precise definition. Consider also the following additional spaces associated to X :

�.X/ WD ff 2 L1.X/ j f .x/Cf .x0/� dX .x; x
0/ for all x; x0 2Xg;

E.X/ WD ff 2�.X/ j if g 2�.X/ and g � f then g D f g;

�1.X/ WD�.X/\Lip1.X;R/;

with `1–metrics for all of them; see [60, Section 3]. Then

.X;L1.X//; .X;E.X//; .X;�.X//; .X;�1.X//

are all metric homotopy pairings, since the second element in each pair is an injective metric space [60,
Section 3] into which X isometrically embeds via the map � W x 7! dX .x; � /. Here, E.X/ is said to be
the tight span of X [30; 52] and it is a especially interesting space. E.X/ is the smallest injective metric
space into which X can be embedded and it is unique up to isometry. Furthermore, if X is a tree metric
space (ie a metric space with 0–hyperbolicity; see Definition 8.1), then E.X/ is the smallest metric tree
containing X . This special property has recently been used to the application of phylogenetics [31].

4 Isomorphism and stability

Recall that Met is the category of metric spaces with 1–Lipschitz maps as morphisms. We have the
functor VR� WMet! hTop� induced by the Vietoris–Rips filtration. The main theorem we prove in this
section is the following:

Theorem 4.1 (isomorphism theorem) Let � WMet! PMet be a metric homotopy pairing (for example
the Kuratowski functor). Then B� ı � WMet! hTop� is naturally isomorphic to VR2�.

Recall the precise definitions of Ur and LCr.X;E/ from Definition 2.24. We denote the filtration of Čech
complexes . LCr.X;E//r>0 by LC�.X;E/.

The following theorem is the main tool for the proof of Theorem 4.1. Its proof, being fairly long, is
relegated to Section A.3.
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Theorem 4.2 (generalized functorial nerve lemma) Let X and Y be two paracompact spaces , � WX!Y

be a continuous map , U D fU˛g˛2A and V D fVˇ gˇ2B be good open covers (every nonempty finite
intersection is contractible) of X and Y , respectively, based on arbitrary index sets A and B , and
� W A! B be a map such that

�.U˛/� V�.˛/ for any ˛ 2 A:

Let NU and NV be the nerves of U and V , respectively. Observe that , since U˛0 \� � �\U˛n ¤∅ implies
V�.˛0/\ � � � \V�.˛n/ ¤∅, � induces the canonical simplicial map N� W NU ! NV .

Then there exist homotopy equivalences X ! NU and Y ! NV that commute with � and N� up to
homotopy:

X NU

Y NV

� N�

The next corollary is an important special case of Theorem 4.2.

Corollary 4.3 (functorial nerve lemma) Let X �X 0 be two paracompact spaces. Let U D fU˛g˛2ƒ
and U 0 D fU 0˛g˛2ƒ be good open covers (every nonempty finite intersection is contractible) of X and X 0,
respectively , based on the same index set ƒ, such that U˛ � U 0˛ for all ˛ 2ƒ. Let NU and NU 0 be the
nerves of U and U 0, respectively.

Then there exist homotopy equivalences X ! NU and X 0 ! NU 0 that commute with the canonical
inclusions X ,!X 0 and NU ,! NU 0, up to homotopy:

X NU

X 0 NU 0

Proof Choose the canonical inclusion map X ,! X 0 as �, the identity map on ƒ as � , and apply
Theorem 4.2.

Remark 4.4 A result similar to Corollary 4.3 was already proved in [21, Lemma 3.4] for finite-index
sets, whereas in our version index sets can have arbitrary cardinality. In [24, Theorems 25 and 26], the
authors prove a simplicial complex version of Corollary 4.3 for finite-index sets and invoke a certain
functorial version of Dowker’s theorem.

Finally, recently we became aware of [82, Lemma 5.1], which is similar to Theorem 4.2. The author
considers spaces with numerable covers (ie the spaces admit locally finite partition of unity subordinate
to the covers), whereas in our version that condition is automatically satisfied since we only consider
paracompact spaces. Our proof technique differs from that of [82] in that whereas [82] relies on a result
from [29], our proof follows the traditional proof of the nerve lemma [49].
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Proposition 4.5 For each metric pair .X;E/ 2 PMet, there exist homotopy equivalences

�
.X;E/
� W B�.X;E/! LC�.X;E/

such that , for any 0 < r � s, the diagram

Br.X;E/ LCr.X;E/

Bs.X;E/ LCs.X;E/

�
.X;E/
r

�
.X;E/
s

commutes up to homotopy , where Br.X;E/ ,! Bs.X;E/ and LCr.X;E/ ,! LCs.X;E/ are the canonical
inclusions.

Proof Observe that LCr.X;E/ is the nerve of the open cover Ur for any r > 0, and apply Corollary 4.3.

Proposition 4.6 Let .X;E/ and .Y; F / be metric pairs in PMet, and f W .X;E/ ! .Y; F / be a 1–
Lipschitz map. Let �.X;E/� WB�.X;E/! LC�.X;E/ and �.Y;F /� WB�.Y; F /! LC�.Y; F / be the homotopy
equivalences guaranteed by Proposition 4.5. Then , for any r > 0, the diagram

Br.X;E/ LCr.X;E/

Br.Y; F / LCr.Y; F /

fr

�
.X;E/
r

fr

�
.Y;F/
r

commutes up to homotopy, where f� W Br.X;E/! Br.Y; F / and f� W LCr.X;E/! LCr.Y; F / are the
canonical maps induced from f .

Furthermore , if we substitute f with an equivalent map , then the homotopy types of the vertical maps
remain unchanged.

Proof Since f is 1–Lipschitz, f .Br.x;E//� Br.f .x/; F /. Hence, if we choose f jBr .X;E/ as �, and
f jX as � , the commutativity of the diagram is the direct result of Theorem 4.2.

Furthermore, if f and g are equivalent, then the homotopy .ht / between f and g induces the homotopy
between fr W Br.X;E/! Br.Y; F / and gr W Br.X;E/! Br.Y; F /. Moreover, since f jX D gjX , both
of the induced maps fr W LCr.X;E/! LCr.Y; F / and gr W LCr.X;E/! LCr.Y; F / are exactly the same.

We are now ready to prove the main theorem of this section.

Proof of Theorem 4.1 Since all metric homotopy pairings are naturally isomorphic, without loss
of generality we can assume that � D �, the Kuratowski functor. Note that, by Proposition 2.25,
LCr.X;E/D VR2r.X/ for any X 2Met and r > 0.
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Let’s construct the natural transformation � from B� ı � WMet! hTop� to VR2� in the following way:
Fix an arbitrary metric space X 2Met, and let �X be the homotopy equivalences

�
.X;L1.X//
� W B�.X;L

1.X//! VR2�.X/

guaranteed by Proposition 4.5. Then, when f W X ! Y is 1–Lipschitz, the functoriality between �X
and �Y is the direct result of Proposition 4.6. So � is indeed a natural transformation. Finally, since each
�
.X;L1.X//
r is a homotopy equivalence for any X 2Met and r > 0, � is natural isomorphism.

4.1 Stability of metric homotopy pairings

In this subsection, we consider a distance between metric pairs by invoking the homotopy interleaving
distance introduced by Blumberg and Lesnick [13] and then show that metric homotopy pairings are
1–Lipschitz with respect to this distance and the Gromov–Hausdorff distance.

Let us give a quick review of homotopy interleaving distance between R–spaces. For more details, please
see [13, Section 3.3]. An R–space is a functor from the poset .R;�/ to the category of topological spaces.
Note that given a metric pair .X;E/, the filtration of open neighborhoods B�.X;E/ is an R–space. Two
R–spaces A� and B� are said to be ı–interleaved for some ı > 0 if there are natural transformations
f WA�!B�Cı and g WB�!A�Cı such that f ıg and gıf are equal to the structure maps B�!B�C2ı

and A�! A�C2ı , respectively.

A natural transformation f WR�!A� is called a weak homotopy equivalence if f induces a isomorphism
between homotopy groups at each index. Two R–spaces A� and A0� are said to be weakly homotopy
equivalent if there exists an R–spaceR� and weak homotopy equivalences f WR�!A� and f 0 WR�!A0�.
The homotopy interleaving distance dHI.A�; B�/ is then defined as the infimal ı > 0 such that there exists
ı–interleaved R–spaces A0� and B 0� with the property that A0� and B 0� are weakly homotopy equivalent to
A� and B�, respectively.

We now adapt this construction to metric pairs. Given metric pairs .X;E/ and .Y; F /, we define the
homotopy interleaving distance between them by

dHI..X;E/; .Y; F // WD dHI.B�.X;E/; B�.Y; F //:

The main theorem that we are going to prove in this section is the following. Below, dGH denotes the
Gromov–Hausdorff distance between metric spaces (see [15]) and dI denotes the interleaving distance
between persistence modules (see Section 2.1).

Theorem 4.7 Let � WMet! PMet be a metric homotopy pairing. Then for any compact metric spaces X
and Y ,

dHI.�.X/; �.Y //� dGH.X; Y /:
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Remark 4.8 By combining Theorem 4.7 and the isomorphism theorem (Theorem 4.1), one obtains
another proof of Theorem 2.14: for any compact metric spaces X and Y , a field F , and k 2 Z�0,

dI
�
PHk.VR�.X/IF/;PHk.VR�.Y /IF/

�
� 2dGH.X; Y /:

Lemma 4.9 If .X;E/ and .Y; F / are isomorphic in PMet, then dHI..X;E/; .Y; F //D 0.

Proof Let f W .X;E/! .Y; F / and g W .Y; F /! .X;E/ be 1–Lipschitz maps such that f ıg and g ıf
are equivalent to the respective identities. Then the result follows since f and g induce an isomorphism
between the R–spaces B�.X;E/ and B�.Y; F /.

Lemma 4.10 LetE and F be injective metric spaces containingX . Then .X;E/ is isomorphic to .X; F /
in PMet.

Proof By injectivity of E and F , there are 1–Lipschitz maps f WE! F and g W F !E such that f jX
and gjX are equal to idX . Hence, by Lemma 3.6, f ıg W .X; F /! .X; F / and g ıf W .X;E/! .X; F /

are equivalent to the identity.

Proof of Theorem 4.7 Since all metric homotopy pairings are naturally isomorphic, by Lemma 4.9,
without loss of generality we can assume that �D �, the Kuratowski functor. Let r > dGH.X; Y /. Let us
show that

dHI
�
.X;L1.X//; .Y; L1.Y //

�
� r:

By assumption (see [15]), there exists a metric spaceZ containingX and Y such that the Hausdorff distance
between X and Y as subspaces of Z is less than or equal to r . Hence, the R–spaces B�.X;L1.Z// and
B�.Y; L

1.Z// are r–interleaved as

B�.X;L
1.Z//� BrC�.Y; L

1.Z// and B�.Y; L
1.Z//� BrC�.X;L

1.Z//

for each �. Now, by Lemma 4.10,

dHI
�
.X;L1.X//; .Y; L1.Y //

�
D dHI

�
.X;L1.Z//; .Y; L1.Z//

�
� r:

5 Application: endpoints of intervals in barcVR
k
.X/

It is known that, in some cases, the intervals in the Vietoris–Rips barcode of a metric space are of the
form .u; v� or .u;1/ for 0� u < v <1.

Example 5.1 In the following examples, any I 2 barcVR
k
.X IF/ has a form of .u; v� or .u;1/ for some

0� u < v <1:

(1) when X is a finite metric space, for any k � 0;

(2) when X D S1, for any k � 0 (see [1, Theorem 7.4]);

(3) when X is a compact geodesic metric space, for k D 1 (see [81, Theorem 8.2]).
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As far as we know, the general statement given in Theorem 5.2 below is first proved in this paper. Our
proof crucially exploits the isomorphism theorem (Theorem 4.1).

Theorem 5.2 Suppose a compact metric space .X; dX /, a field F , and a nonnegative integer k are given.
Then , for any I 2 barcVR

k
.X IF/, I must be of the form .u; v� or .u;1/ for some 0� u < v <1.

We first state and prove two lemmas which will be combined in order to furnish the proof of Theorem 5.2.

Lemma 5.3 Let X be a topological space and G be an abelian group. Then , for any k � 0 and any
k–dimensional singular chain c of X with coefficients in G, there exist a compact subset Kc � X and
k–dimensional singular chain c0 of Kc with coefficients in G such that

.�/].c
0/D c;

where � WKc ,!X is the canonical inclusion map.

Proof Recall that one can express c as a sum of finitely many k–dimensional singular simplices with
coefficients in G. In other words,

c D

lX
iD1

˛i�i ;

where ˛i 2G and �i W�k!X is a continuous map for each i D 1; : : : ; l . Next, let Kc WD
Sl
iD1 �i .�k/.

This Kc is the compact subspace that we required.

For the remainder of this section, given any field F and a metric pair .X;E/, for each 0 < r <1 we
will denote by .SC.r/� ; @

.r/
� / the singular chain complex of Br.X;E/ with coefficients in F . For each

0 < r � s <1 we will denote by ir;s the canonical inclusion map Br.X;E/� Bs.X;E/. By .ir;s/] we
will denote the (injective) map induced at the level of singular chain complexes.

Lemma 5.4 Suppose that a compact metric space .X; dX /, a field F , a metric homotopy pairing �, and a
nonnegative integer k are given. Then , for every I 2 barc

�
PHk.B� ı �.X/IF/

�
:

(i) If u 2 Œ0;1/ is the left endpoint of I , then u … I (ie I is left-open).

(ii) If v 2 Œ0;1/ is the right endpoint of I , then v 2 I (ie I is right-closed ).

Proof (i) Let �.X/D .X;E/. The fact that I 2 barc
�
PHk.B� ı �.X/IF/

�
implies that, for each r 2 I ,

there exists a singular k–cycle cr on Br.X;E/ with coefficients in F satisfying

(1) Œcr � 2 Hk.Br.X;E/IF/ is nonzero for any r 2 I ,

(2) .ir;s/�.Œcr �/D Œcs� for any r � s in I .

Now, suppose that u is a closed left endpoint of I (so u 2 I ). In particular, by the above there exists a
singular k–cycle cu on Bu.X;E/ with coefficients in F with the above two properties.
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Then, by Lemma 5.3, we know that there is a compact subset Kcu � Bu.X;E/ and a singular k–cycle
c0u on Kcu with coefficients in F such that .�/].c0u/ D cu where � W Kcu ! Bu.X;E/ is the canonical
inclusion. Moreover, since Kcu is compact, there exists a small " > 0 such that

Kcu � Bu�".X;E/:

Now, define cu�" WD .�0/].c0u/ where �0 WKcu!Bu�".X;E/ is the canonical inclusion. Then, this singular
chain satisfies

.iu�";u/].cu�"/D .iu�";u/] ı .�
0/].c

0
u/D .�/].c

0
u/D cu:

Moreover, cu�" cannot be null-homologous. Otherwise, there would exist a singular .kC1/–chain du�"
on Bu�".X;E/ with coefficients in F such that @.u�"/

kC1
du�" D cu�". However, this would imply

@
.u/

kC1
ı .iu�";u/].du�"/D .iu�";u/] ı @

.u�"/

kC1
.du�"/D .iu�";u/].cu�"/D cu;

by the naturality of the boundary operators @.u�"/
kC1

and @.u/
kC1

. This would in turn contradict the property
Œcu�¤ 0.

So, we must have Œcu�"�¤ 0. But, the existence of such cu�" contradicts the fact that u is the left endpoint
of I . Therefore, one concludes that u cannot be a closed left endpoint, so it must be an open endpoint.

(ii) Now, suppose that v is an open right endpoint of I (so that v … I and therefore cv is not defined by
the above two conditions). Choose a small enough " > 0 that v� " 2 I , and let

cv WD .iv�";v/].cv�"/:

Then cv must be null-homologous.

This means that there is a singular .kC1/–dimensional chain dv on Bv.X;E/ with coefficients in F such
that @.v/

kC1
dvD cv . By Lemma 5.3, we know that there is a compact subsetKdv �Bv.X;E/ and a singular

.kC1/–chain d 0v of Kdv with coefficients in F such that .�/].d 0v/D dv where � WKdv ! Bv.X;E/ is the
canonical inclusion. Moreover, sinceKdv is compact, there exists "0 2 .0; "� such thatKdv �Bv�"0.X;E/.

Let dv�"0 WD .�0/].d 0v/ where �0 W Kdv ,! Bv�"0.X;E/ is the canonical inclusion. Then, again by the
naturality of boundary operators,

.iv�"0;v/] ı @
.v�"0/

kC1
.dv�"0/D @

.v/

kC1
ı .iv�"0;v/].dv�"0/

D @
.v/

kC1
ı .iv�"0;v/] ı .�

0/].d
0
v/D @

.v/

kC1
ı .�/].d

0
v/D @

.v/

kC1
dv D cv:

Since .iv�"0;v/] is injective and .iv�"0;v/] ı .iv�";v�"0/].cv�"/D .iv�";v/].cv�"/D cv , one can conclude
that @.v�"

0/

kC1
.dv�"0/D .iv�";v�"0/].cv�"/. This indicates that

0D Œ.iv�";v�"0/].cv�"/�D .iv�";v�"0/�.Œcv�"�/D Œcv�"0 �;

but it contradicts the fact that Œcv�"0 �¤ 0. Therefore, v must be a closed endpoint.

Finally, the proof of Theorem 5.2 follows from the lemmas above.

Proof of Theorem 5.2 Apply Lemma 5.4 and Theorem 4.1.
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A (false) conjecture Actually, we first expected the following conjecture to be true. Observe that, if
true, the conjecture would imply Theorem 5.2. Also, it is obvious that this conjecture is true when X is a
finite metric space.

Conjecture 5.5 (lower semicontinuity of the homotopy type of Vietoris–Rips complexes) Suppose
X is a compact metric space. Then, for any r 2 R>0, VRr.X/ is homotopy equivalent to VRr�".X/
whenever " > 0 is small enough.

However, the following example shows that this conjecture is false:

Example 5.6 By [1, Theorem 7.4], we know that VRr.S1/ is homotopy equivalent to S2mC1 if
r 2 .2�m=.2mC1/; 2�.mC1/=.2mC3/� formD 0; 1; : : : . Observe that limm!1 2�m=.2mC1/D� .
Therefore, VR�.S1/ cannot be homotopy equivalent to VR��".S1/ for all small enough ", since for r in
the interval Œ� � "; ��, VRr.S1/ attains infinitely many different homotopy types.

Then, one might now wonder whether the conjecture holds when we restrict the range of r to .0; diam.X//.
But, again this new conjecture is false, as the following example shows:

Example 5.7 Let X WDS1_˛ �S1 for some ˛ 2 .0; 1/. Observe that diam.X/D� . Also, by Lemma 6.6,
E_F will be an injective metric space containingX wheneverE is an injective metric space containing S1

(eg E.S1/) and F is an injective metric space containing ˛ �S1 (eg E.˛ �S1/). Hence, by Proposition 2.27,
VR2r.X/ ' Br.X;E _ F / D Br.S1; E/ _ Br.˛ � S1; F / and VR2r.˛ � S1/ ' Br.˛ � S1; F / for any
r > 0. Therefore, VR˛�.X/ cannot be homotopy equivalent to VR˛��".X/ for small enough ", since
VRr.˛ �S1/ attains infinitely many homotopy types for r 2 Œ˛� � "; ˛��.

6 Application: products and metric gluings

The following statement regarding products of filtrations are obtained at the simplicial level (and in
more generality) in [71, Proposition 2.6; 42; 72]. The statement about metric gluings appeared in [3,
Proposition 4; 66, Proposition 4.4]. These proofs operate at the simplicial level.

Here we give alternative proofs through the consideration of neighborhoods in an injective metric space
via Theorem 4.1.

We first recall the notion of metric gluing: given two metric spaces X and Y and points p 2X and q 2 Y ,
the metric gluing X _Y WDX tY=p � q is defined with the metric

dX_Y .z; z
0/ WD

8<:
dX .z; z

0/ if z; z0 2X;
dY .z; z

0/ if z; z0 2 Y;
dX .z; p/C dY .z

0; q/ if z 2X and z0 2 Y:
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Theorem 6.1 (persistent Künneth formula) Let X and Y be metric spaces , and F be a field.

(1) Persistent Künneth formula Let X �Y denote the `1–product of X and Y . Then

PH�.VR�.X �Y /IF/Š PH�.VR�.X/IF/˝PH�.VR�.Y /IF/:

(2) Let p and q be points in X and Y respectively. Let X _ Y denote the metric gluing of metric
spaces X and Y along p and q. Then2

PH�.VR�.X _Y /IF/Š PH�.VR�.X/IF/˚PH�.VR�.Y /IF/:

Remark 6.2 Corollaries 5.2 and 5.8 of [5] establish results analogous to Theorem 6.1 for the products
and metric gluings of Vietoris–Rips metric thickenings.

Remark 6.3 The tensor product of two simple persistence modules corresponding to intervals I and J is
the simple persistence module corresponding to the interval I \J . Therefore, the first part of Theorem 6.1
implies that

barcVR
k .X �Y IF/ WD fI \J j I 2 barcVR

i .X IF/; J 2 barcVR
j .Y IF/; i C j D kg

for any nonnegative integer k.

Example 6.4 (tori) For a given choice of ˛1; : : : ; ˛n > 0, let X be the `1–product
Qn
iD1.˛i � S

1/.
Then, by [1, Theorem 7.4] and Remark 6.3,

barcVR
0 .X IF/D f.0;1/g;

and

barcVR
k .X IF/

D

��
max
1�j�m

2�˛ij lij

2lijC1
; min
1�j�m

2�˛ij .lijC1/

2lijC3

� ˇ̌̌
fij g

m
jD1 � f1; : : : ; ng; lij 2 Z�0;

mX
jD1

.2lijC1/D k

�
for any k 2 Z>0.

Note that above we are defining a multiset; hence if an element appears more than once in the definition,
then it will appear more than once in the multiset. In particular, in the case of X D S1 � S1, for all
integers k � 0,

barcVR
0 .X IF/D f.0;1/g;

barcVR
2kC1.X IF/D

��
2�k

2kC 1
;
2�.kC 1/

2kC 3

�
;

�
2�k

2kC 1
;
2�.kC 1/

2kC 3

��
;

barcVR
4kC2.X IF/D

��
2�k

2kC 1
;
2�.kC 1/

2kC 3

��
;

barcVR
4kC4.X IF/D∅:

See also the remarks on homotopy types of Vietoris–Rips complexes of tori in [1, Proposition 10.2; 18].

2We use the “reduced” homology functor for this metric gluing case.
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To be able to prove Theorem 6.1, we need the following lemmas:

Lemma 6.5 If E and F are injective metric spaces , then so is their `1–product.

Proof Let X be a metric space. Note that .f; g/ WX !E �F is 1–Lipschitz if and only if f and g are
1–Lipschitz. Given such f and g and a metric embedding X into Y , we have 1–Lipschitz extensions
Qf and Qg of f and g from Y to E and F , respectively. Hence, . Qf ; Qg/ W Y ! E � F is a 1–Lipschitz

extension of .f; g/. Therefore E �F is injective.

Lemma 6.6 If E and F are injective metric spaces , then so is their metric gluing along any two points.

Proof Let p and q be points in E and F , respectively, and E _F denote the metric gluing of E and F
along p and q. We are going to show that E _F is hyperconvex, hence injective (see Proposition 2.18).
We denote the metric on E _F by d , the metric on E by dE and the metric on F by dF .

Let .xi ; ri /i and .yj ; sj /j be such that each xi is in E, each yj is in F , ri � 0, sj � 0,

dE .xi ; xi 0/� ri C ri 0 ; dF .yj ; yj 0/� sj C sj 0 ; d.xi ; yj /� ri C sj

for each i , i 0, j and j 0. Define � by

� WDmax
˚
inf
i
.ri � dE .xi ; p//; inf

j
.sj � dF .yj ; q//

	
:

Let us show that � � 0. If the second element inside the maximum is negative, then there exists j0 such
that dF .yj0 ; q/� sj0 > 0. Since d.xi ; yj0/D dE .xi ; p/C dF .q; yj0/ for all i ,

ri � dE .xi ; p/D dF .yj0 ; q/C .ri � d.xi ; yj0//� dF .yj0 ; q/� sj0 > 0:

Therefore the first element inside the maximum is nonnegative. Hence � � 0.

Without loss of generality, let us assume that

� D inf
i
.ri � dE .xi ; p//� 0:

This implies that the nonempty closed ball B�.q; F / is contained in Bri .xi ; E _F / for all i . Now, for
each j ,

�C sj D inf
i
.ri � dE .xi ; p/C sj /� inf

i
.d.xi ; yj /� dE .xi ; p//D dF .yj ; q/:

Therefore,�\
i

Bri .xi ; E _F /

�
\

�\
j

Bsj .yj ; E _F /

�
� B�.q; F /\

�\
j

Bsj .yj ; F /

�
¤∅;

where the right-hand side is nonempty by hyperconvexity of F .

Proof of Theorem 6.1 (1) Let E and F be injective metric spaces containing X and Y respectively.
Let E �F denote the `1–product of E and F . Note that for each r > 0,

Br.X �Y;E �F /D Br.X;E/�Br.Y; F /:
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Hence, by the (standard) Künneth formula [68, Theorem 58.5],

H�.Br.X �Y;E �F /IF/Š H�.Br.X;E/IF/˝H�.Br.Y; F /IF/:

Now, the result follows from Lemma 6.5 and Theorem 4.1.

(2) Let E and F be as above and E _F denote metric gluing of E and F along p and q. Note that

Br.X _Y;E _F /D Br.X;E/_Br.Y; F /:

Hence, by [49, Corollary 2.25],

H�.Br.X _Y;E _F /IF/Š H�.Br.X;E/IF/˚H�.Br.Y; F /IF/:

Now, the result follows from Lemma 6.6 and Theorem 4.1.

7 Application: homotopy types of VRr.X/ for X 2 fS1;S2;CP n
g

In a series of papers [54; 55; 56; 57], Katz studied the filling radius of spheres and complex projective
spaces. In this sequence of papers, Katz developed a notion of Morse theory for the diameter function
diam W pow.X/!R over a given metric space. By characterizing critical points of the diameter function
on each of the spaces S1, S2, and CPn, he was able to prove some results about the different homotopy
types attained by Br.X;L1.X// for X 2 fS1;S2;CPng as r increases. Here, we obtain some corollaries
that follow from combining the work of Katz [55; 56] with Theorem 4.1.

7.1 The case of spheres with geodesic distance

In [50, Theorem 3.5], Hausmann introduced the quantity r.M/ for a Riemannian manifold M , which is
the supremum of those r > 0 satisfying the following three conditions:

(1) For all x; y 2M such that dM .x; y/ < 2r , there is a unique shortest geodesic joining x to y. Its
length is dM .x; y/.

(2) Let x; y; z; w 2M with dM .x; y/; dM .y; z/; dM .z; x/ < r , and w be any point on the shortest
geodesic joining x to y. Then dM .z; w/�maxfdM .y; z/; dM .z; x/g.

(3) If  and  0 are arc-length parametrized geodesics such that .0/D  0.0/, and if 0� s; s0 < r and
0� t � 1, then dM ..ts/;  0.ts0//� dM ..s/; .s0//.

In particular, it can be checked that r.Sn/D �
2

for any n� 1. Hausmann then proved that if r.M/ > 0,
VRr.M/ is homotopy equivalent to M for any r 2 .0; r.M//. This theorem is one of the foundational
results in topological data analysis, since it provides theoretical basis for the use of the Vietoris–Rips
filtration for recovering the homotopy type of the underlying space.

Then, via Proposition 2.27, we obtain that Br.M;L1.M// ' M for r 2
�
0; 1
2
r.M/

�
, and therefore

Br.Sn; L1.Sn//' Sn for all r 2
�
0; �
4

�
. In [54, Remark, page 508], Katz constructs a retraction from

Br.Sn; L1.Sn// to Sn for r in the range
�
0; 1
2

arccos.�1=.nC 1//
�
, which is a larger range than the
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Figure 3: A 2–dimensional sphere with more than one interval in its barcVR
2 .

one guaranteed by Hausmann’s result. This suggests that an improvement of Hausmann’s results might
be possible for the particular case of spheres.

Indeed, in the special case of spheres, by a refinement of Hausmann’s method of proof (critically relying
upon Jung’s theorem) we obtain the following theorem, which also improves the aforementioned claim
by Katz:

Theorem 7.1 For any n 2 Z>0, we have VRr.Sn/' Sn for any r 2
�
0; arccos.�1=.nC 1//

�
.

That this result improves upon Hausmann’s follows from the fact that arccos.�1=.nC 1// � �
2

for all
integers n� 1. The proof follows from the fact that with the aid of Jung’s theorem, one can modify the
lemmas that Hausmann originally used. See Section A.4 for a detailed proof along these lines which we
believe is of independent interest.

Remark 7.2 Proposition 5.3 of [2] establishes a result analogous to Theorem 7.1 for Vietoris–Rips
metric thickenings of Sn.

Remark 7.3 The above theorem implies that for every n, barcVR
n .SnIF/ contains an interval In of

the form .0; dn� where dn � arccos.�1=.nC 1//. This theorem does not, however, guarantee that dn
equals its lower bound, nor that In is the unique interval in barcVR

n .SnIF/. See Figure 3 for an example
of a 2–dimensional sphere (with nonround metric) having more than one interval in its 2–dimensional
persistence barcode, and see Proposition 9.28 for a general result about In.

For the particular cases of S1 and S2, we have additional information regarding the homotopy types of
their Vietoris–Rips r–complexes when r exceeds the range contemplated in the above corollary.

The case of S1 The complete characterization of the different homotopy types of VRr.S1/ as r > 0
grows was obtained by Adamaszek and Adams in [1]. Their proof is combinatorial in nature and takes
place at the simplicial level.

Below, by invoking Theorem 4.1, we show how partial results can be obtained from the work of Katz
who directly analyzed the filtration

�
Br.S1; L1.S1//

�
r>0

via a Morse-theoretic argument.

Algebraic & Geometric Topology, Volume 24 (2024)



Vietoris–Rips persistent homology, injective metric spaces, and the filling radius 1047

For each integer k � 1 let �k WD 2�k=.2k C 1/. Katz proved in [56] that Br.S1; L1.S1// changes
homotopy type only when r D 1

2
�k for some k. In particular, his results imply:

Corollary 7.4 For r 2
�
2�
3
; 4�
5

�
, VRr.S1/' S3.

Proof Br.S1; L1.S1// is homotopy equivalent to S3 for r 2
�
1
2
�
2�
3
; 1
2
�
4�
5

�
by [56, Theorem 1.1].

Hence, the result follows from Theorem 4.1.

The case of S2 Similar arguments hold for the case of S2. Whereas the homotopy types of VRr.S1/ for
any r > 0 are known [1], we are not aware of similar results for S2. Below, E6 is the binary tetrahedral
group.

Corollary 7.5 For r 2
�
arccos

�
�
1
3

�
; arccos.�1=

p
5/
�
, VRr.S2/' S2 �S3=E6.

Proof Br.S2; L1.S2// is homotopy equivalent to the topological join of S2 and S3=E6 for r in the
interval

�
1
2
� arccos

�
�
1
3

�
; 1
2
� arccos.�1=

p
5/
�

by [56, Theorem 7.1]. Hence, applying Theorem 4.1 yields
the result.

Remark 7.6 S3=E6 D SO.3/=A4, where A4 is the tetrahedral group; see [2, Remark 5.6].

Remark 7.7 As already pointed out in Remark 7.3, by virtue of Theorem 7.1, .0; dn� 2 barcVR
n .SnIF/

for some dn � arccos.�1=.nC 1//. Moreover, since for nD 1 and nD 2 we know (by Corollaries 7.4
and 7.5) that the homotopy type changes after arccos.�1=.nC 1//, we conclude that barcVR

n .SnIF/

contains
�
0; arccos.�1=.nC1//

�
for nD 1 and nD 2 and that this is the unique interval in barcVR

n .SnIF/

starting at 0. Surprisingly, it is currently unknown how the homotopy type of VRr.Sn/ changes after
arccos.�1=.nC1// for n�3. But, still, in Section 9 we will be able to show that

�
0; arccos.�1=.nC1//

�
2

barcVR
n .SnIF/ for general n via arguments involving the filling radius; see Proposition 9.28. In particular,

this implies that the homotopy type of VRr.Sn/must change after the critical point rDarccos.�1=.nC1//
since the fundamental class dies after that point, even though we still do not know “how” the homotopy
type changes. Moreover, since VRr.Sn/ is homotopy equivalent to Sn for any r 2

�
0; arccos.�1=.nC1//

�
,

we know that for any interval I 2 barcVR
n .SnIF/ with I ¤

�
0; arccos.�1=.nC 1//

�
, the left endpoint

of I must be greater than or equal to arccos.�1=.nC 1//.

The following subconjecture of [2, Conjecture 5.7] is still open except for the nD 1 and nD 2 cases; see
also [2, Theorem 5.4].

Conjecture 7.8 For any n 2 Z>0, there exists an " > 0 such that

VRr.Sn/' Sn � .SO.nC 1/=AnC2/

for any r 2
�
arccos.�1=.nC1//; arccos.�1=.nC1//C"

�
, where AnC2 is the alternating group of degree

nC 2.
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Remark 7.9 To see that Conjecture 7.8 is a subconjecture of [2, Conjecture 5.7], observe that

Sn � .SO.nC 1/=AnC2/Š†nC1.SO.nC 1/=AnC2/

for any nonnegative integer n. It is a special case of the more general homeomorphism

Sn �X Š†nC1X

for any Hausdorff and locally compact space X . This fact can be proved by induction on n and the
associativity of the topological join (see [38, Lecture 2.4]).

7.2 The case of CP n

Partial information can be provided for the case of CPn as well. First of all, recall that the complex
projective line CP1 with its canonical metric actually coincides with the sphere S2. Hence, one can
apply Theorem 7.1 and Corollary 7.5 to CP1. The following results can be derived for general CPn:

Corollary 7.10 Let CPn be the complex projective space with sectional curvature between 1
4

and 1 with
canonical metric. Then:

(1) There exist ˛n 2
�
0; arccos

�
�
1
3

��
such that VRr.CPn/ is homotopy equivalent to CPn for any

r 2 .0; ˛n�.

(2) Let A be the space of equilateral 4–tuples in projective lines of CPn. Let X be the partial join of
A and CPn where x 2 CPn is joined to a tuple a 2 A by a line segment if x is contained in the
projective line determined by a. There exists a constant ˇn > 0 such that if

arccos
�
�
1
3

�
< r < arccos

�
�
1
3

�
Cˇn

then VRr.CPn/ is homotopy equivalent to X .

Proof By Hausmann’s theorem [50, Theorem 3.5], there exist ˛n > 0 such that VRr.CPn/ is homotopy
equivalent to CPn for any r 2 .0; ˛n�. Also, by [56, Theorem 8.1], ˛n cannot be greater than arccos

�
�
1
3

�
.

The second claim is a direct result of Theorem 4.1 and [56, Theorem 8.1].

7.3 The case of spheres with the `1–metric

The Vietoris–Rips filtration of S1 with the usual geodesic metric is quite challenging to understand [1].
However, it turns out that if we change its underlying metric, the situation becomes very simple. Through-
out this section, all metric spaces of interest are embedded in .Rn; `1/ and are endowed with the
restriction of the ambient space metric. In particular, in this section, for any n 2 Z>0,

(1) Rn1 D .R
n; `1/,

(2) Dn1 WD
�˚
.x1; : : : ; xn/ 2Rn j

Pn
iD1 x

2
i � 1

	
; `1

�
,

(3) Sn�11 WD
�˚
.x1; : : : ; xn/ 2Rn j

Pn
iD1 x

2
i D 1

	
; `1

�
,
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(4) �n1 WD .f.x1; : : : ; xn/ 2Rn j xi 2 Œ�1; 1� for every i D 1; : : : ; ng; `1/,

(5) �n�11 WD .f.x1; : : : ; xn/ 2Rn j .x1; : : : ; xn/ 2�n1 and xi D˙1 for some i D 1; : : : ; ng; `1/.

Note that �n1 is just the unit closed `1–ball around the origin in Rn1 and �n�11 is its boundary.

The following theorem by Kılıç and Koçak is the motivation of this subsection:

Theorem 7.11 [59, Theorem 2] Let X and Y be subspaces of R21. If Y contains X , is closed ,
geodesically convex,3 and minimal (with respect to inclusion) with these properties , then Y is the tight
span of X .

Theorem 7.11 has a number of interesting consequences.

Lemma 7.12 �21 is the tight span of �11. Moreover ,

Br.�11;�
2
1/D

�
Œ�1; 1�2nŒ�.1� r/; .1� r/�2 if r 2 .0; 1�;
Œ�1; 1�2 if r > 1:

Proof By Theorem 7.11, the first claim is straightforward. The second claim, namely the explicit
expression of Br.�11;�21/ is also obvious since we are using the `1–norm.

Corollary 7.13 Br.�11;�21/ is homotopy equivalent to S1 for r 2 .0; 1� and contractible for r > 1.
Hence , for any field F ,

barcVR
k .�11;F/D

8<:
f.0;1/g if k D 0;
f.0; 2�g if k D 1;
∅ if k � 2:

Proof Apply Lemma 7.12 and Theorem 4.1.

Interestingly, one can also prove the following result:

Lemma 7.14 D21 is the tight span of S11. Moreover ,

Br.S
1
1;D

2
1/DD21nVr

for any r > 0, where

Vr WD
\

.p;q/2fr;�rg2

f.x; y/ 2R2 j .x�p/2C .y � q/2 � 1g:

In particular , for r > 1=
p
2 we have Vr D∅, so Br.S11;D

2
1/DD21 (see Figure 1).

Proof By Theorem 7.11, the first claim is straightforward.

Fix an arbitrary .zC t; wC s/ 2Br.S11;D
2
1/, where z2Cw2D 1 and t; s 2 .�r; r/. Suppose z � 0 and

w � 0. Then

.zC t C r/2C .wC sC r/2 D z2Cw2C .t C r/2C .sC r/2C 2z.t C r/C 2w.sC r/ > 1

3That is, for any p; q 2 Y , there exists at least one geodesic in R21 between p and q which is fully contained in Y .
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because of the assumptions on z, w, t , and s. Therefore, .zC t; wC s/ … Vr , so .zC t; wC s/ 2D21nVr .
By symmetry, the same result holds for other possible sign combinations of z and w. Hence, we have
Br.S11;D

2
1/�D21nVr .

Now, fix an arbitrary .x; y/ 2D21nVr . Since .x; y/ … Vr , without loss of generality, one can assume that
.xC r/2C .yC r/2 > 1. Also, x2Cy2 � 1 since .x; y/ 2D21. Then, there must be some t 2 Œ0; r/ such
that .xC t /2C .yC t /2 D 1. It follows that .x; y/ 2 Br.S11;D

2
1/. Since .x; y/ is an arbitrary point in

D21nVr it follows that D21nVr � Br.S
1
1;D

2
1/.

With this we conclude that Br.S11;D
2
1/DD21nVr , as we wanted.

Corollary 7.15 Br.S11;D
2
1/ is homotopy equivalent to S1 for r 2 .0; 1=

p
2� and contractible for

r > 1=
p
2. Hence , for any field F ,

barcVR
k .S11;F/D

8<:
f.0;1/g if k D 0;
f.0;
p
2�g if k D 1;

∅ if k � 2:

Proof Apply Lemma 7.14 and Theorem 4.1.

Moreover, it turns out that, despite the fact that Theorem 7.11 is restricted to subsets of R2, Lemma 7.12
can be generalized to arbitrary dimensions.

Lemma 7.16 For any n 2 Z>0,�n1 is the tight span of �n�11 . Moreover ,

Br.�n�11 ;�n1/D
�
Œ�1; 1�nnŒ�.1� r/; 1� r�n if r 2 .0; 1�;
Œ�1; 1�n if r > 1:

Proof When n � 3 one cannot invoke Theorem 7.11 since it does not hold for general n; see [59,
Example 5]. We will instead directly prove that �n1 is the tight span of �n�11 .

First, observe that�n1DB1.O;Rn1/, whereOD .0; : : : ; 0/ is the origin, is hyperconvex by Lemma 2.17.

Therefore, in order to show that �n1 is indeed the tight span of �n�11 , it is enough to show that there is
no proper hyperconvex subspace of �n1 containing �n�11 . Suppose this is not true. Then there exists
a proper hyperconvex subspace X such that �n�11 � X ¨ �n1. Choose p D .x1; : : : ; xn/ 2 �n1nX .
Without loss of generality, one can assume x1 � � � � � xn. Now, let

p0 WD .x1� .xnC 1/; x2� .xnC 1/; : : : ;�1/;

p1 WD .1; x2C .1� x1/; : : : ; xnC .1� x1//:

See Figure 4. Then it is clear that p0; p1 2�n�11 �X and

kp0�p1k1 D .xnC 1/C .1� x1/D kp0�pk1Ckp�p1k1:
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p0

p p1

Figure 4: The points p, p0 and p1 in the proof of Lemma 7.16.

Therefore, since X is hyperconvex, we know that

Bkp0�pk1.p0; X/\Bkp�p1k1.p1; X/¤∅:

However, note that

Bkp0�pk1.p0; X/\Bkp�p1k1.p1; X/� Bkp0�pk1.p0;R
n
1/\Bkp�p1k1.p1;R

n
1/D fpg:

This means that p 2 X , which is a contradiction; hence no such X exists. Therefore, �n1 is the tight
span of �n�11 , as we required.

The second claim, namely the explicit expression of Br.�n�11 ;�n1/ is obvious since we are using the
`1–norm.

Corollary 7.17 For any n 2 Z>0, Br.�n�11 ;�n1/ is homotopy equivalent to Sn�1 for r 2 .0; 1� and
contractible for r > 1. Hence , for any field F ,

barcVR
k .�n�11 ;F/D

8<:
f.0;1/g if k D 0;
f.0; 2�g if k D n� 1;
∅ otherwise;

for n� 2, and
barcVR

k .�01;F/D
�
f.0;1/; .0; 2�g if k D 0;
∅ if k � 1:

Proof Apply Lemma 7.16 and Theorem 4.1.

Remark 7.18 It seems of interest to study the homotopy types of Vietoris–Rips complexes of ellipsoids
with the `1–metric; see [4].

Here, observant readers would have already noticed that we do not need to use the tight spans of S11 and
�n�11 in order to apply Theorem 4.1 since Rn1 itself is an injective metric space for any n 2 Z>0. In
particular, the persistent homology of �n�11 is simpler to compute if we use Rn1 as an ambient space.
However, we believe that it is worth clarifying what are the tight spans of S11 and �n�11 since the exact
shape of tight spans are largely mysterious in general.

We do not know whether Dn1 is the tight span of Sn�11 for general n. However, if we use Rn1 as an
ambient injective metric space, we are still able to compute its persistent homology.
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Theorem 7.19 For any n 2 Z>0 and r > 0,

Br.S
n�1
1 ;Rn1/' Br.S

n�1
1 ;Dn1/DDn1nVn;r ;

where

Vn;r WD
\

.p1;:::;pn/2fr;�rgn

�
.x1; : : : ; xn/ 2Rn

ˇ̌̌ nX
iD1

.xi �pi /
2
� 1

�
:

In particular , for r > 1=
p
n we have Vn;r D ∅, so Br.Sn�11 ;Dn1/D Dn1. As a result , Br.Sn�11 ;Rn1/

is homotopy equivalent to Sn�1 for r 2 .0; 1=
p
n� and contractible for r > 1=

p
n (see Figure 1 for an

illustration for the case when nD 2).

Proof First, let’s prove that Br.Sn�11 ;Dn1/ is a deformation retract of Br.Sn�11 ;Rn1/. Consider the map
Pn W

˚
.x1; : : : ; xn/2Rn j

Pn
iD1 x

2
i �1

	
!Sn�11 such thatPn.x1; : : : ; xn/ is the unique point of Sn�11 such

that k.x1; : : : ; xn/�Pn.x1; : : : ; xn/k1 D inf.y1;:::;yn/2Sn�11
k.x1; : : : ; xn/� .y1; : : : ; yn/k1. Observe

that it is easy (but very tedious) to prove that Pn is well-defined, continuous, and that PnjSn�11 D idSn�11
.

Now, for any r > 0, consider the homotopy

hn;r W Br.S
n�1
1 ;Rn1/� Œ0; 1�! Br.S

n�1
1 ;Rn1/;

.x1; : : : ; xn; t / 7!

�
.x1; : : : ; xn/ if .x1; : : : ; xn/ 2Dn1;

.1� t /.x1; : : : ; xn/C tPn.x1; : : : ; xn/ if .x1; : : : ; xn/ …Dn1:

The only subtle point is ascertaining whether the image of this map is contained inBr.Sn�11 ;Rn1/. For this,
note that k.x1; : : : ; xn/�Pn.x1; : : : ; xn/k1 < r by the definition of Pn and the fact that .x1; : : : ; xn/ is
in Br.Sn�11 ;Rn1/. Therefore, both .x1; : : : ; xn/ and Pn.x1; : : : ; xn/ belong to Br.Pn.x1; : : : ; xn/;Rn1/,
so the linear interpolation is also contained in Br.Pn.x1; : : : ; xn/;Rn1/� Br.S

n�1
1 ;Rn1/. Hence, one

can conclude that Br.Sn�11 ;Dn1/ is a deformation retract of Br.Sn�11 ;Rn1/.

Next, let’s prove thatBr.Sn�11 ;Dn1/DDn1nVn;r . Fix an arbitrary .z1Ct1; : : : ; znCtn/2Br.Sn�11 ;Dn1/

where
Pn
iD1 z

2
i D 1 and ti 2 .�r; r/ for all i D 1; : : : ; n. Consider the case of zi � 0 for all i D 1; : : : ; n.

Then
nX
iD1

.zi C ti C r/
2
D

nX
iD1

z2i C

nX
iD1

.ti C r/
2
C

nX
iD1

2zi .ti C r/ > 1

by the assumptions on fzigniD1 and ftigniD1. Therefore, .z1C t1; : : : ; znC tn/ … Vn;r , so

.z1C t1; : : : ; znC tn/ 2Dn1nVn;r :

By symmetry, the same result holds for other possible sign combinations of the zi . Hence, we have
Br.Sn�11 ;Dn1/�Dn1nVn;r .

Now, fix arbitrary .x1 : : : ; xn/ 2 Dn1nVn;r . Since .x1; : : : ; xn/ … Vn;r , without loss of generality, one
can assume that

Pn
iD1.xi C r/

2 > 1. Also,
Pn
iD1 x

2
i � 1 since .x1; : : : ; xn/ 2 Dn1. Then, there must
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be some t 2 Œ0; r/ such that
Pn
iD1.xi C t /

2 D 1. It follows that .x1; : : : ; xn/ 2 Br.Sn�11 ;Dn1/. Since
.x1; : : : ; xn/ is an arbitrary point in Dn1nVn;r it follows that Dn1nVn;r � Br.S

n�1
1 ;Dn1/.

With this we conclude that Br.Sn�11 ;Dn1/DDn1nVn;r .

Corollary 7.20 For any n� 2, Br.Sn�11 ;Rn1/ is homotopy equivalent to Sn�1 for r 2 .0; 1=
p
n� and

contractible for r > 1=
p
n. Hence , for any field F ,

barcVR
k .Sn�11 ;F/D

8<:
f.0;1/g if k D 0;
f.0; 2=

p
n�g if k D n� 1;

∅ otherwise:

Proof Apply Theorems 7.19 and 4.1.

8 Application: hyperbolicity and persistence

One can reap benefits from the fact that one can choose any metric homotopy pairing in the statement of
Theorem 4.1, not just the Kuratowski functor.

In this section, we will see one such example which arises from the interplay between the hyperbolicity
of the geodesic metric space X and its tight span E.X/ (see Example 3.9 to recall the definition of tight
span).

We first recall the notion of hyperbolicity.

Definition 8.1 (ı–hyperbolicity) A metric space .X; dX / is called ı–hyperbolic, for some constant
ı � 0, if

dX .w; x/C dX .y; z/�maxfdX .w; y/C dX .x; z/; dX .x; y/C dX .w; z/gC ı

for all quadruples of points w; x; y; z 2X . If a metric space is ı–hyperbolic for some ı � 0, it is said to
be hyperbolic.

The hyperbolicity hyp.X/ of X is defined as the infimal ı � 0 such that X is ı–hyperbolic. A metric
space is said to be hyperbolic if hyp.X/ is finite.

For a more concrete development on the geometry of hyperbolic metric spaces and its applications
(especially to group theory), see [14; 47].

Example 8.2 Here are some examples of hyperbolic spaces:

(1) Metric trees are 0–hyperbolic spaces.

(2) All compact Riemannian manifolds are trivially hyperbolic spaces. More interestingly, among un-
bounded manifolds, Riemannian manifolds with strictly negative sectional curvature are hyperbolic
spaces. Observe that “strictly negative” sectional curvature is a necessary condition (for example,
consider the Euclidean plane R2).
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The following proposition guarantees that the tight spanE.X/ preserves the hyperbolicity of the underlying
space X with controlled distortion:

Proposition 8.3 [60, Proposition 1.3] If X is a ı–hyperbolic geodesic metric space for some ı � 0,
then its tight span E.X/ is also ı–hyperbolic. Moreover ,

Br.X;E.X//DE.X/

for any r > ı.

Remark 8.4 Since X embeds isometrically into E.X/, the above implies that

hyp.E.X//D hyp.X/:

The following corollary was already established by Gromov (who attributes it to Rips) in [47, Lemma 1.7.A].
The proof given by Gromov operates at the simplicial level. By invoking Proposition 8.3 we obtain an
alternative proof, which instead of operating the simplicial level, exploits the isometric embedding of X
into its tight span E.X/ (which is a compact contractible space).

Corollary 8.5 If X is a hyperbolic geodesic metric space , then VR2r.X/ is contractible for any
r > hyp.X/.

Proof Choose an arbitrary r > hyp.X/. Then, there is ı 2 Œhyp.X/; r/ such that X is ı–hyperbolic.

By Proposition 2.27, VR2r.X/ is homotopy equivalent to Br.X;E.X//. But, by Proposition 8.3,
Br.X;E.X//DE.X/. Since E.X/ is contractible by Corollary 2.21, VR2r.X/ is contractible.

As a consequence one can bound the length of intervals in the persistence barcode of hyperbolic spaces.

Corollary 8.6 If X is a hyperbolic geodesic metric space , then for any k�1 and ID.u;v�2barcVR
k
.XIF/,

we have v � 2 hyp.X/. In particular , length.I /� 2 hyp.X/.

Proof Apply Corollary 8.5.

Observe that metric trees are both 0–hyperbolic and hyperconvex. A recent paper by Joharinad and
Jost [53] analyzes the persistent homology of metric spaces satisfying the hyperconvexity condition
(which is equivalent to injectivity) as well as that of spaces satisfying a relaxed version of hyperconvexity.

9 Application: the filling radius, spread, and persistence

In this section, we recall the notions of spread and filling radius, as well as their relationship. In particular,
we prove a number of statements about the filling radius of a closed connected manifold. Moreover, we
consider a generalization of the filling radius and also define a strong notion of filling radius which is
akin to the so-called maximal persistence in the realm of topological data analysis.
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9.1 Spread

We recall a metric concept called spread. The following definition is a variant of the one given in [54,
Lemma 1]:

Definition 9.1 (N–spread) For any integer N 2 Z>0, the N th spread spreadN .X/ of a metric space
.X; dX / is the infimal r > 0 such that there exists a subset A of X with cardinality at most N such that

� diam.A/ < r ,

� supx2X infa2A dX .x; a/ < r .

Finally, the spread of X is defined to be spread.X/ WD infN spreadN .X/, ie the set A is allowed to have
arbitrary (finite) cardinality.

Remark 9.2 Recall that the radius of a compact metric space .X; dX / is

rad.X/ WD inf
p2X

max
x2X

dX .p; x/:

Thus, rad.X/D spread1.X/.

Remark 9.3 (the spread of spheres) Katz proves in [54, Theorem 2] that for all integers n� 1,

spread.Sn/D arccos
�
�1

nC1

�
:

For example, spread.S1/ D 2�
3

. Notice that spread.Sm/ � spread.Sn/ � �
2

for m � n. Katz’s proof
actually yields that

spreadnC2.S
n/D spread.Sn/

for each n.

9.2 Bounding barcode length via spread

Let .X; dX / be a compact metric space. Recall that for each integer k � 0, barcVR
k
.X IF/ denotes

the persistence barcode associated to PHk.VR�.X/IF/, the kth persistent homology induced by the
Vietoris–Rips filtration of X (see Section 2.1).

The following lemma is due to Katz [54, Lemma 1]:

Lemma 9.4 Let .X; dX / be a compact metric space. Then , for any ı > 1
2

spread.X/, there exists a
contractible space U such that X � U � Bı.X;L1.X//.

Remark 9.5 Via the isomorphism theorem, Katz’s lemma implies the fact that whenever I D .0; v� 2
barcVR

� .X/, we have v � spread.X/. The lemma does not permit bounding the length of intervals whose
left endpoint is strictly greater than zero.

It turns out that we can prove a general version of Lemma 9.4 for closed s–thickenings Bs.X;L1.X//
for any s � 0.
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Lemma 9.6 Let .X; dX / be a compact metric space. Then , for any s � 0 and ı > 1
2

spread.X/, there
exists a contractible space Us;ı such that Bs.X;L1.X//� Us;ı � BsCı.X;L1.X//.

Note that Lemma 9.4 can be obtained from the case s D 0 in Lemma 9.6. We provide a detailed
self-contained proof of this general version in Section 9.2.2.

Armed with Lemma 9.6 and Theorem 4.1, one immediately obtains item (1) in the proposition below:

Proposition 9.7 Let .X; dX / be a compact metric space , k� 1, and let I be any interval in barcVR
k
.X IF/.

Then

(1) length.I /� spread.X/, and

(2) if I D .u; v� for some 0 < u < v, then v � spread1.X/.

Remark 9.8 Item (2) of the proposition above implies that the right endpoint of any interval I (often
referred to as the death time of I ) cannot exceed the radius rad.X/ of X ; see Remark 9.2.

Note that by [54, Section 1], when X is a geodesic space (eg a Riemmanian manifold),

spread.X/� 2
3

diam.X/:

This means that we have the following universal bound on the length of intervals in the Vietoris–Rips
persistence barcode of a geodesic space X :

Corollary 9.9 (bound on length of bars of geodesic spaces) Let X be a compact geodesic space. Then ,
for any k � 1 and any I 2 barcVR

k
.X IF/,

length.I /� 2
3

diam.X/:

Remark 9.10 � For k D 1, S1 achieves equality in the corollary above. Indeed, this follows from
[1] since the longest interval in barcVR

k
.S1/ corresponds to k D 1 and is exactly

�
0; 2�

3

�
.

� Since VRr.X/ is contractible for any r > diam.X/, it is clear that length.I /� diam.X/ in general.
The corollary above improves this bound by a factor of 2

3
when X is geodesic.

� In [54], Katz proves that the filling radius of a manifold is bounded above by 1
3

of its diameter.
Our result is somewhat more general than Katz’s in two senses: his claim applies to Riemannian
manifolds M and only provides information about the interval induced by the fundamental class of
the manifold (see Proposition 9.28). In contrast, Corollary 9.9 applies to any compact geodesic
space and in this case it provides the same upper bound for the length any interval in barcVR

k
.X IF/,

for any k.

� Besides the proof via Lemma 9.6 and Theorem 4.1 explained above, we provide an alternative
direct proof of Proposition 9.7 via simplicial arguments. We believe each proof is interesting in its
own right.
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Proof of Proposition 9.7 via simplicial arguments Let ı > spread.X/. It is enough to show that for
each s > 0, the map

Hk.VRs.X/IF/! Hk.VRıCs.X/IF/

induced by the inclusion is zero. By the definition of spread, we know that there is a nonempty finite
subset A�X such that

� diam.A/ < ı,

� supx2X infa2A dX .x; a/ < ı.

Note that then Hk.VRı.A/IF/ D 0 because VRı.A/ is a simplex. Let � W X ! A be a map sending
x to a closest point in A. Then dX .x; �.x// < ı for any x 2 X because of the second property of A
(moreover, �.x/ D x if x 2 A). Observe that, since diam.�.�// < ı for any simplex � 2 VRs.X/ by
the first property of A, this map � induces a simplicial map from VRs.X/ to VRı.A/. Hence, one can
construct a composite map � from VRs.X/ to VRıCs.X/,

VRs.X/
�
�! VRı.A/ ,! VRı.X/ ,! VRıCs.X/;

where the second and third maps are induced by the canonical inclusions. Observe that this composition
of maps induces a map from Hk.VRs.X// to Hk.VRıCs.X//, and this induced map is actually the zero
map since Hk.VRı.A/IF/D 0. So, it is enough to show that the composite map � is contiguous to the
canonical inclusion VRs.X/ ,!VRıCs.X/. Let � Dfx0; : : : ; xng be a subset of X with diameter strictly
less than s. Let ai WD �.xi / for i D 0; 1; : : : ; n. Then

dX .xi ; aj /� dX .xi ; xj /C dX .xj ; aj / < ıC s:

Hence the diameter of the subspace fx1; : : : ; xk; a1; : : : ; akg is strictly less than ıC s. This shows the
desired contiguity and completes the proof. The proof of (2) follows similar (but simpler) steps and thus
we omit it.

Remark 9.11 Whereas the proof of Lemma 1 in [54] takes place at the level of L1.X/, the proof of
Proposition 9.7 given above takes place at the level of simplicial complexes and simplicial maps.

9.2.1 Bounds based on localization of spread One can improve Proposition 9.7 by considering a
localized version of spread. Note that, in [6], Adams and Coskunuzer also built some bounds on the
length of barcodes based on certain notions of size of homology classes.

For an integer k � 0, a given field F , and a metric space X , let

Speck.X;F/ WD
[
r>0

�
Hk.VRr.X/IF/nf0g � frg

�
be the kth Vietoris–Rips homological spectrum of X (with coefficients in F/. Note that we only consider
nonzero elements of Hk.VRr.X/IF/ in the definition Speck.X;F/ to avoid trivial cases (there can be no
positive length bars associated to a zero element).
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Example 9.12 Consider X D f0; 1g equipped with the metric inherited from R. Then, for any field F ,

Spec0.X;F/D
� [
r2.0;1�

SpanF .f�r ; �rg/� frg

�
[

�[
r>1

SpanF .f!rg/� frg

�
;

where �r and �r 2 H0.VRr.X/IF/nf0g are the homology classes homologous to 0 and 1, respectively,
for r 2 .0; 1�, and !r 2H0.VRr.X/IF/nf0g is the homology class homologous to both 0 and 1 for r > 1
(ie !r D .ir 0;r/�.�r 0/D .ir 0;r/�.�r 0/ for any r 0 2 .0; 1� and r > 1).

Definition 9.13 (prelocalized spread of a homology class) For each .!; s/ 2 Speck.X;F/ we define
the prelocalized spread of .!; s/ as

pspread.X I!; s/ WD inf
B2S.!;s/

spread.B/;

where S.!; s/ denotes the collection of all B � X such that ! D ��.Œc�/, c is a simplicial k–cycle on
VRs.B/, and � W B ,!X is the canonical inclusion.

Any B as in the definition above will be said to support the homology class .!; s/ 2 Speck.X;F/.

Lemma 9.14 Suppose .!; s/ 2 Speck.X;F/ and k � 1 are given. Then for any ı > pspread.X I!; s/,

.is;.sCı//�.!/D 0;

where is;.sCı/ W VRs.X/ ,! VRsCı.X/ is the canonical inclusion.

Proof By the definition of pspread.X I!; s/, there exists B � X such that ! D ��.Œc�/ where c is a
simplicial k–cycle on VRs.B/ and spread.B/ < ı. Then, as in the proof of Proposition 9.7, one can
prove that

.js;.sCı//� W Hk.VRs.B/IF/! Hk.VRsCı.B/IF/

is the zero map, where js;.sCı/ W VRs.B/ ,! VRsCı.B/ is the canonical inclusion. Hence,

.js;.sCı//�.Œc�/D 0:

Furthermore, note that the diagram

Hk.VRs.B/IF/ Hk.VRsCı.B/IF/

Hk.VRs.X/IF/ Hk.VRsCı.X/IF/

��

.js;.sCı//�

��

.is;.sCı//�

commutes, where all the arrows are maps induced by canonical inclusions. Hence, one can conclude
.is;.sCı//�.!/D 0 as we required.

Now, fix an arbitrary .!; s/ 2 Speck.X;F/. Then, let

u.!;s/ WD inffr > 0 j r � s and 9 nonzero !r 2 Hk.VRr.X/IF/ such that .ir;s/�.!r/D !g;

v.!;s/ WD supft > 0 j t � s and 9 nonzero !t 2 Hk.VRt .X/IF/ such that .is;t /�.!/D !tg:
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a

b b

1

Figure 5: See Example 9.16. In this example, X is the set of vertices of the above metric graph
(in green and orange) where 1 < a < b < 2. Then, barcVR

1 .X IF/D f.1; 2�; .a; b�g, while one can
choose .!; s/ 2 Spec1.X;F/ such that I.!;s/ D .a; 2� … barcVR

1 .X IF/.

With an argument similar to the one used in Section 5, one can prove that u.!;s/ < s � v.!;s/. Let

I.!;s/ WD

�
.u.!;s/; v.!;s/� if v.!;s/ <1;
.u.!;s/;1/ otherwise:

Intuitively, the interval I.!;s/ is the maximal (left open, right closed) interval containing s inside which
the class ! can be “propagated”.

Remark 9.15 If .!; s/; .!0; s0/ 2 Speck.X;F/, s � s
0, and !0 D .is;s0/�.!/, then v.!;s/ D v.!0;s0/ and

u.!;s/ � u.!0;s0/. Furthermore, if .is;s0/� is injective, then u.!;s/ D u.!0;s0/ so I.!;s/ D I.!0;s0/.

Example 9.16 In general, I.!;s/ is not necessarily one of the intervals in barcVR
k
.X IF/. Here is a brief

sketch of how to construct such an example. Consider the metric graph consisting of 12 vertices and
24 edges as shown in Figure 5. Assume that the length of the edge between adjacent inner (green)
vertices is 1, the length of the edge between adjacent outer (orange) vertices is a, and the length of
the edge between adjacent inner and outer vertices is b where 1 < a < b < 2. Now, let X be the set
of vertices of this graph, and let dX be the shortest path metric between them. Then one can easily
check that barcVR

1 .X IF/ D f.1; 2�; .a; b�g, where .1; 2� is associated to the homology class induced
by the inner cycle and .a; b� is associated to the homology class induced by the outer cycle. Now,
if we choose f.!s; s/gs2.a;b� � Spec1.X;F/ corresponding to the interval .a; b� 2 barcVR

1 .X IF/, then
I.!s ;s/ D .a; 2� … barcVR

1 .X IF/ for s 2 .a; b�.

Despite the above, in the extended (arXiv) version of this paper (see [62, Proposition 9.2]), we prove that,
for all r < s, the multiplicity of the interval .r; s� in the barcode barcVR

k
.X IF/ is equal to the maximal
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nonnegative integer m for which there exist linearly independent vectors !1; : : : ; !m 2 Hk.VRs.X/IF/
such that I.!i ;s/ D .r; s� for all i and any nonzero linear combination of the !i does not belong to
Im..ir;s/�/.

Definition 9.17 (localized spread of a homology class) For each .!; s/ 2 Speck.X;F/, we define the
localized spread of .!; s/ as

spread.X I!; s/ WD supfpspread.X I!0; s0/ j s0 � s and ! D .is0;s/�.!0/g:

Remark 9.18 It is easy to check that both pspread.X I!; s/ and spread.X I!; s/ are always bound above
by spread.X/.

The following Proposition 9.19 is the “localized” version of Proposition 9.7 we promised in the beginning
of this section:

Proposition 9.19 Let .X; dX / be a compact metric space and k � 1. Then for any .!; s/ 2 Speck.X;F/,

length.I.!;s//� spread.X I!; s/:

Proof Fix an arbitrary ı > spread.X I!; s/ and s0 2 .u.!;s/; s�. Then there exists !0 2 Hk.VRs0.X/IF/
such that ! D .is0;s/�.!0/. Hence, by Lemma 9.14, .is0;.s0Cı//�.!0/D 0. This indicates v.!;s/ < s0C ı.
Since the choice of ı and s0 are arbitrary, one can conclude

length.I.!;s//D v.!;s/�u.!;s/ � spread.X I!; s/:

For an arbitrary I 2 barcVR
k
.X IF/, a family of nonzero homology classes f.!s; s/gs2I � Speck.X;F/

such that .is;s0/�.!s/D!s0 for any s� s0 in I where is;s0 WVRs.X/ ,!VRs0.X/ is the canonical inclusion,
will be said to correspond to I if there is an isomorphism

ˆ� W PHk.VR�.X/IF/!
M

I2barcVR
k
.X IF/

IF

such that
SpanF .f!sg/ SpanF .f!s0g/

F F

ˆs

.is;s0 /�

ˆs0

id

Observe that Theorem 2.9 guarantees that at least one such family of nonzero homology classes
f.!s; s/gs2I always exists.

Remark 9.20 Now, given an arbitrary I 2 barcVR
k
.X IF/, there is a family of nonzero homology classes

f.!s; s/gs2I � Speck.X;F/ corresponding to I as described above. Then obviously I � I.!s ;s/ for each
s 2 I . Hence,

length.I /� inf
s2I

length.I.!s ;s//� inf
s2I

spread.X I!s; s/� spread.X/;

so one recovers the result in Proposition 9.7. Below we show some examples that highlight cases in which
the localized spread is more efficient at estimating the length of bars than its global counterpart.
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Example 9.21 Here are some applications of the notion of localized spread.

Let X be a compact metric space. If for a given I 2 barcVR
k
.X IF/ a corresponding family f.!s; s/gs2I �

Speck.X;F/ is supported by a subset B �X , then

(2) length.I /� inf
s2I

length.I.!s ;s//� inf
s2I

spread.X I!s; s/� spread.B/;

where the first inequality holds as in Remark 9.20, the second inequality holds by Proposition 9.19, and
the last inequality follows from Remark 9.18.

Here are three scenarios in which the estimate in inequality (2) is useful:

(1) Suppose a closed Riemannian manifold M and a nonzero homology class ! 2 H1.M IF/ are
given. Also, let B � M be the shortest loop representing !. Recall that there is an interval
I 2 barcVR

1 .M IF/ associated to !; see Proposition 9.46. Then

length.I /� spread.B/D 1
3

length.B/

by inequality (2) and Remark 9.3. Actually, I D
�
0; 1
3

length.B/
�
; see [44; 81, Theorem 8.10].

(2) Let X be the metric gluing of a loop of length l2 and an interval of length l1 (glued to the circle at
one of its endpoints). Then, by Proposition 9.7, I � spread.X/ for any I 2 barcVR

k
.X IF/. However,

observe that one can make spread.X/ arbitrarily large by increasing l1. But, if J 2 barcVR
1 .X IF/

and a family of nonzero homology classes f.!s; s/gs2J � Spec1.X;F/ corresponding to J is
supported by the loop, then

length.J /� spread.B/D 1
3
l2

by inequality (2) and Remark 9.3. Again, as in the first item, J D
�
0; 1
3
l2
�
. Note that the existence

of the interval
�
0; 1
3
l2
�

in barcVR
1 .X IF/ can also be proved via the “crushing” technique introduced

by Hausmann (see [50, Proposition 2.2]) since X can be crushed onto the loop of length l2.

(3) An example similar to the one described in the previous item arises from Figure 3. Consider the
tube connecting the two blobs to be large: in that case the standard spread of the space will be
large yet the lifetime of the individual H2 classes will be much smaller.

9.2.2 The proof of Lemma 9.6 Let us introduce a technical tool for this subsection. It is easy to check
that the usual linear interpolation in L1.X/ gives a geodesic bicombing on L1.X/ satisfying all three
properties mentioned in Lemma 2.20. However, in [54], Katz introduced an alternative way to construct a
geodesic bicombing on L1.X/:

Definition 9.22 (Katz’s geodesic bicombing) Let X be a compact metric space. We define the Katz
geodesic bicombing K on L1.X/ by

K W L
1.X/�L1.X/� Œ0; 1�! L1.X/; .f; g; t/ 7! K.f; g; t/;
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where
K.f; g; t/ WX !R; x 7!

�
maxff .x/� tkf �gk1; g.x/g if f .x/� g.x/;
minff .x/C tkf �gk1; g.x/g if f .x/� g.x/:

In other words, K.f; g; � / moves from f to g with the same speed at every point.

The following proposition establishes that K is indeed a (continuous) geodesic bicombing, amongst
other properties. The proof is relegated to Section A.1.

Proposition 9.23 Let X be a compact metric space. Then , for any f; g; h 2 L1.X/ and 0� s � t � 1,
the Katz geodesic bicombing K on L1.X/ satisfies

(1) K.f; g; 0/D f and K.f; g; 1/D g;

(2) kK.f; g; s/� K.f; g; t/k1 D .t � s/ � kf �gk1;

(3) kK.f; g; t/� K.h; g; t/k1 � 2kf � hk1;

(4) kK.f; g; t/� K.f; h; t/k1 � kg� hk1;

(5) K.�;  ; �/D K.f; g; .1��/sC�t/where �D K.f; g; s/ and  D K.f; g; t/ for any �2 Œ0; 1�
(this property is called consistency);

(6) kK.f; g; r/� hk1 �maxfkK.f; g; s/� hk1; kK.f; g; t/� hk1g for any r 2 Œs; t �.

Properties (2), (3), and (4) of Proposition 9.23 imply the continuity of the Katz geodesic bicombing. In
contrast, this bicombing is neither conical nor reversible; see Section A.2 in the appendix.

Proof of Lemma 9.6 By the definition of spread, we know that there is a nonempty finite subset A�X
and ı0 2 .0; ı/ such that diam.A/ < 2ı0 and supx2X infa2A dX .x; a/ < 2ı0.

Next, we define
f WX !R; x 7! dX .x; A/C ı

0:

The main strategy of the proof is depicted in Figure 6.

Claim 1 For any a 2 A, kdX .a; � /�f k1 D ı0.

Proof To prove this, fix arbitrary x 2X . Note that

dX .a; x/�f .x/D dX .a; x/� dX .x; A/� ı
0:

Since dX .x; A/� dX .a; x/, we have �ı0 � dX .a; x/�dX .x; A/� ı0. Also, because the diameter of A is
smaller than 2ı0, we have dX .a; x/�dX .x; A/�ı0 < ı0. Therefore, jdX .a; x/�f .x/j � ı0. Furthermore,
if we put x D a, we have that kdX .a; � /�f k1 D ı0.

Now, let
Us;ı WD fK.g; f; t/ j g 2 Bs.X;L

1.X//; t 2 Œ0; 1�g:

Then Us;ı obviously contains Bs.X;L1.X// and can be contracted to the point f .
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BsCı.X;L
1.X//

Bs.X;L
1.X//

g

ı0
K.g; f; t0/

sC ı0 �

ı0
f

dX .x; � /

dX .a; � /

X

Figure 6: Strategy of the proof of Lemma 9.6. By construction, the distance between f and
dX .a; � / (represented by the red dot) is ı0 and the distance between K.g; f; t0/ and dX .a; � /
is less than or equal to sC ı0. Hence, by item (6) of Proposition 9.23, we have that the point
represented by a square will be at distance at most sC ı0 from dX .a; � /.

The lemma will follow once we establish the following claim:

Claim 2 Us;ı � BsCı.X;L
1.X//.

Proof To see this, fix an arbitrary g 2 Bs.X;L1.X// and t 2 Œ0; 1�. Note that one can choose x 2X
such that kg� dX .x; � /k1 � s.

� If kg�f k1 � ı0, then

kK.g; f; t/� dX .x; � /k1 � kK.g; f; t/�gk1Ckg� dX .x; � /k1 � sC ı
0 < sC ı

by the triangle inequality and properties (1) and (2) of Proposition 9.23. So, K.g;f; t/2BsCı.X;L1.X//.

� Now, assume kg � f k1 > ı0. Let us denote t0 WD ı0=kg�f k1. Now, for t 2 Œ0; t0�, we have
K.g; f; t/ 2 BsCı.X;L

1.X// since

kK.g; f; t/�dX .x; � /k1 � kK.g; f; t/�gk1Ckg�dX .x; � /k1 � tkg�f k1C s � sCı
0 < sCı:

Next, we want to show K.g; f; t/ 2BsCı.X;L
1.X// for t 2 Œt0; 1�. To do that, choose a 2A such that

dX .x; a/ < 2ı
0. We will prove kK.g; f; t0/� dX .a; � /k1 � sC ı0.

Fix arbitrary x0 2X . If jg.x0/�f .x0/j � ı0, then K.g; f; t0/.x0/D f .x0/. Hence,

jK.g; f; t0/.x
0/� dX .a; x

0/j D jf .x0/� dX .a; x
0/j � ı0

by Claim 1. If jg.x0/�f .x0/j> ı0, then g.x0/ cannot be between dX .a; x0/ and f .x0/ since, by Claim 1,
jdX .a; x

0/�f .x0/j � ı0. This implies that either

jg.x0/� dX .a; x
0/j D jdX .a; x

0/�f .x0/jC jg.x0/�f .x0/j

or
jg.x0/�f .x0/j D jdX .a; x

0/�f .x0/jC jg.x0/� dX .a; x
0/j:
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Either way, it is easy to see that we always have

jK.g; f; t0/.x
0/� dX .a; x

0/j D jjg.x0/� dX .a; x
0/j � ı0j � sC ı0;

where the last inequality is true because jg.x0/� dX .a; x0/j � jg.x0/� dX .x; x0/jC dX .a; x/ < sC 2ı0.
So, one can conclude that

kK.g; f; t0/� dX .a; � /k1 � sC ı
0:

Therefore, combining this inequality with Claim 1 and property (6) of Proposition 9.23, one finally obtains
that

kK.dX .x; � /; f; t/� dX .a; � /k1 � sC ı
0 < sC ı;

so K.g; f; t/ 2 BsCı.X;L1.X// for any t 2 Œt0; 1�.

This concludes the proof of Lemma 9.6.

9.3 The filling radius and Vietoris–Rips persistent homology

Now, we recall the notion of filling radius, an invariant for closed connected manifolds introduced by
Gromov [46, page 8] in the course of proving the systolic inequality (see also [48; 58] for a comprehensive
treatment). It turns out to be that this notion can be a bridge between topological data analysis and
differential geometry/topology.

Definition 9.24 (filling radius) Let M be a closed connected n–dimensional manifold with compatible
metric dM . One defines the filling radius of M as

FillRad.M IG/ WD inffr > 0 j Hn.�r IG/.ŒM�/D 0g;

where �r WM ,! Br.M;L
1.M// is the (corestriction of the) Kuratowski isometric embedding, and ŒM �

is the fundamental class of M , with coefficients in G. We will use the shorthand notation FillRad.M/

when either M is orientable and G D Z or when M is not orientable and G D Z2.

Remark 9.25 (metric manifolds) The definition of the filling radius does not require the metric dM
on M to be Riemannian — it suffices that dM generates the manifold topology. We call any .M; dM /
satisfying this condition a metric manifold. In particular, one can consider the filling radius of

(1) the `1–metric product of .M; dM / and .N; dN / when M and N are Riemannian manifolds and
dM and dN are their corresponding geodesic distances;

(2) .N; dM jN�N / when N is a submanifold of the Riemannian manifold .M; dM /.

Remark 9.26 (relative filling radius and minimality for injective metric spaces) The relative filling
radius can be defined for every metric pair .M;E/ by considering r–neighborhoods of M in E— it is
denoted by FillRad.M;E/. Gromov [46] showed that we obtain the minimal possible relative filling
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Figure 7: A big sphere X with a small handle. In this case, as r > 0 increases, Br .X;L1.X//
changes homotopy type from that of X to that of S2 as soon as r > r0 for some r0 < FillRad.X/.

radius through the Kuratowski embedding (that is when E D L1.M/). This also follows from our
work but in greater generality in the context of embeddings into injective metric spaces. If M can be
isometrically embedded into an injective metric space F , then this embedding can be extended to a
1–Lipschitz map f W E! F , which induces a map of filtrations fr W Br.M;E/! Br.M;F /, for each
r > 0 (see Definition 2.15). Hence, if the fundamental class of M vanishes in Br.M;E/, then it also
vanishes in Br.M;F /. Therefore,

(3) FillRad.M;F /� FillRad.M;E/:

In particular, this implies that FillRad.M;E/ D FillRad.M;F / whenever E and F are both injective
metric spaces admitting isometric embeddings of M .

Remark 9.27 (filling radius and first change in homotopy type) In [54, Theorem 2], Katz proved that
FillRad.Sn/D 1

2
arccos.�1=.nC 1//. Moreover, in a remark right after the proof of Theorem 2 in that

paper he shows that Br.Sn; L1.Sn// is homotopy equivalent to Sn if r 2 .0;FillRad.Sn/�.

One might then ask whether for any closed connected manifold M it holds that FillRad.M/ is the first
value of r where the homotopy type of Br.M;L1.M// changes. In general, however, this is not true as
the following two examples show:

(1) It is known [57, Proposition 0.3] that FillRad.CP3/ > FillRad.CP1/D 1
2

arccos
�
�
1
3

�
. Also, by

[56, Theorem 8.1], Br.CP3; L1.CP3// is not homotopy equivalent to CP3 for r in the interval�
1
2

arccos
�
�
1
3

�
; 1
2

arccos
�
�
1
3

�
C "0

�
, where "0 > 0 is a positive constant. In other words, the

homotopy type of Br.CP3; L1.CP3// already changed before r D FillRad.CP3/.

(2) The following example provides geometric intuition for how the homotopy type of Kuratowski
neighborhoods may change before r reaches the filling radius. Consider a big sphere with a small
handle attached through a long neck (see Figure 7). Since the top-dimensional hole in this space is
big, we expect the filling radius to be big. On the other hand, the degree 1 homology class coming
from the small handle dies in a small Kuratowski neighborhood, hence the homotopy type changes
at that point.
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We now relate the filling radius of a closed connected n–dimensional manifold to its n–dimensional
Vietoris–Rips persistence barcode.

Proposition 9.28 Let M be a closed connected n–dimensional Riemannian manifold. Then

.0; 2FillRad.M IF/� 2 barcVR
n .M IF/;

where F is an arbitrary field if M is orientable , and F D Z2 if M is nonorientable. Moreover , this
is the unique interval in barcVR

n .M IF/ starting at 0 and FillRad.M IF/ � FillRad.M/ whenever M is
orientable.

The unique interval identified by Proposition 9.28 will be henceforth denoted by

IMn;F WD .0; d
M
n;F �:

Proof First, let us consider the case when M is orientable. Observe that the diagram

Hn.M IZ/˝F Hn
�
Br.M;L

1.M//IZ
�
˝F Hn

�
Bs.M;L

1.M//IZ
�
˝F

Hn.M IF/ Hn
�
Br.M;L

1.M//IF
�

Hn
�
Bs.M;L

1.M//IF
�j jr js

commutes for any 0 < r � s, where every horizontal arrow is induced by the obvious inclusions, and the
vertical arrows (j , jr , and js) must be injective by the universal coefficient theorem for homology (see
[68, Theorem 55.1]). Hence, one obtains that

FillRad.M IF/D inffr > 0 j Hn.�r IF/.j.ŒM �//D 0g:

Therefore, with the aid of Theorems 4.1 and 5.2, one concludes that

.0; 2FillRad.M IF/� 2 barcVR
n .M IF/:

Also, by Hausmann’s theorem [50, Theorem 3.5], VRr.M/ is homotopy equivalent to M for r > 0

small enough. Therefore, .0; 2FillRad.M IF/� must be the unique interval in barcVR
n .M IF/ with left

endpoint 0.

The proof of the nonorientable case is similar, so we omit it.

Remark 9.29 FillRad.SnIF/D FillRad.Sn/ for any field F . This can be verified via Proposition 9.28
and Remark 7.3. Alternatively, a more direct proof can be obtained via Jung’s theorem (Theorem A.8)
following an idea similar to the one used in the proofs of [46, Lemmas 1.2.B and 4.5.A; 54, Theorem 2].
Details of this direct proof can be found in the extended (arXiv) version of this paper [62, Remark 9.13].
With this observation, from now on we will drop F from the notation ISn

n;F and dSn
n;F , and respectively use

ISn
n and dSn

n instead.

Remark 9.30 Actually, one can generalize Proposition 9.28 to metric manifolds. See Proposition 9.46
for the full generalization.
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Remark 9.31 Let M and N be closed connected metric manifolds. Let M �N denote the `1–product
of M and N (as metric spaces). By Theorem 6.1, Remark 6.3, and Proposition 9.28,

FillRad.M �N IF/DminfFillRad.M IF/;FillRad.N IF/g:

A similar result is true for the `1–product of more than two metric manifolds.

9.3.1 Bounding the filling radius and consequences for Vietoris–Rips persistent homology Using
Proposition 9.28, we can estimate certain properties of the barcode barcVR

n .M IF/ of an n–dimensional
manifold M .

Injectivity radius and persistence barcodes If IM
n;F D .0; d

M
n;F � is the unique interval in barcVR

n .M IF/

identified by Proposition 9.28, then

(4) dMn;F �
Inj.M/

nC 2
:

This follow from the fact that FillRad.M IF/ � Inj.M/=.2.nC 2// for any field F , where Inj.M/ is
the injectivity radius of M [46, Proof of Lemma 4.5.A]. Since the injectivity radius of the sphere is �

2
,

equation (4) implies that dSn
n � �=.2.nC 2//. Note that Proposition 9.28 indicates that this estimate is

not tight in general since

dSn
n D 2FillRad.Sn/D arccos

�
�1

nC1

�
�
�
2
:

Systole and persistence barcodes The systole sys1.M/ of a Riemannian manifold M is defined to be
the infimal length over noncontractible loops of M . In [46, Lemma 1.2.B], Gromov proved that

sys1.M/� 6FillRad.M/

for any closed essential Riemannian manifold M .4 Note that, by slightly modifying the proof of [46,
Lemma 1.2.B], one can also verify that sys1.M/� 6FillRad.M IF/ whenever M is orientable and F is
an arbitrary field. Moreover, one can also define the homological systole sysh1.M IG/ to be the infimal
length over non null-homologous (with coefficients in a given group G) loops of M . We will use the
shorthand notation sysh1.M/ whenever G D Z. In general, sys1.M/ � sysh1.M/ � sysh1.M IG/ for
any group G since any contractible loop is null-homologous (see [49, 2.A]). See Figure 8 for a space on
which the notions differ. In [81, Theorem 8.10], Ž Virk proved that�

0; 1
3

sysh1.M IF/
�
2 barcVR

1 .M IF/

for any closed Riemannian manifold M . Observe that the n–dimensional torus Tn is an aspherical,
hence essential, manifold. Also, observe that sys1.T

n/ D sysh1.T
n/D sysh1.T

nIF/ for any field of
coefficients F since the fundamental group �1.Tn/ is abelian and the homology group of Tn is free
abelian. Therefore, this permits relating the top-dimensional persistence barcode with the 1–dimensional
barcode of any n–dimensional Riemannian torus. We summarize this via the following:

4See [46] for the definition of essential manifolds. For this paper it suffices to keep in mind that aspherical manifolds are
essential.
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Figure 8: A space X for which sys.X/¤ sysh.X/.

Corollary 9.32 For any Riemannian metric on the n–dimensional torus Tn,

� the interval ITn
1 WD

�
0; 1
3

sys1.Tn/
�

is an element of barcVR
1 .TnIF/,

� the interval ITn
n;F WD .0; 2FillRad.TnIF/� is an element of barcVR

n .TnIF/, and

� ITn
1 � ITn

n;F .

Finally, observe that if the metric on Tn is the `1–product metric, then FillRad.TnIF/D FillRad.Tn/

for any field F by Remark 9.31.

Volume and persistence barcodes An inequality proved by Gromov in [46, Main Theorem 1.2.A]
states that for each n natural there exists a constant cn > 0 such that if M is any n–dimensional complete
Riemannian manifold, then

(5) FillRad.M/� cn.vol.M//1=n:

It then follows that

(6) dMn;F � 2cn.vol.M//1=n:

In particular, this bound improves upon the one given by Corollary 9.9, dM
n;F �

2
3

diam.M/, when M is
“thin” like in the case of a thickened embedded graph [67].

Spread and persistence barcodes The following proposition is proved in [54, Lemma 1]. Here we
provide a different proof, which easily follows from the persistent homology perspective that we have
adopted in this paper.

Proposition 9.33 Let M be a closed connected metric manifold. Then

FillRad.M IF/� 1
2

spread.M/:

Proof This follows from Propositions 9.7 and 9.28.

Remark 9.34 One can also use Lemma 9.4 to prove Proposition 9.33.

Remark 9.35 The inequality in the statement above becomes an equality for spheres [54].
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By Corollary 9.9, Proposition 9.28, and the fact that FillRad.S1/D �
3

, we know that

length.I /� 2�
3
D length.IS1

1 /

for any k � 1, and any I 2 barcVR
k
.S1IF/. This motivates the following conjecture:

Conjecture 9.36 Let M be a closed connected n–dimensional metric manifold. Then

length.I /� length.IMn;F /

for any I 2 barcVR
k
.M IF/ and any k � 1.

However, this conjecture is not true in general, as the following example shows:

Remark 9.37 Consider the `1–product X D S1 �S2. Then, by Remark 9.31,

FillRad.X/Dmin.FillRad.S1/;FillRad.S2//D 1
2

arccos
�
�
1
3

�
:

This implies that length.IX3 /D 2FillRad.X/D arccos
�
�
1
3

�
. Now, we will prove that there is a longer

interval in barcVR
1 .X IF/. First, observe that there is an infinite length interval in barcVR

0 .S2IF/. Also,
IS1
1 D .0; 2FillRad.S1/�D

�
0; 2�

3

�
. Therefore, by the persistent Künneth formula (Theorem 6.1(1)), and

Remark 6.3, the interval I D
�
0; 2�

3

�
exists in barcVR

1 .X IF/.

Therefore, since 2�
3
> arccos

�
�
1
3

�
, Conjecture 9.36 is false.

9.3.2 Application to obtaining lower bounds for the Gromov–Hausdorff distance With the aid of
the stability of barcodes (Theorem 2.14) and the notion of filling radius, one can obtain the following
result:

Proposition 9.38 Let M be a closed connected m–dimensional orientable (resp. nonorientable) Rie-
mannian manifold , and let X be a compact metric space such that

(1) Hm.X IF/D 0 for some arbitrary field F (resp. Hm.X IF/D 0 for F D Z2), and

(2) VRr.X/'X for every r 2 .0;FillRad.M IF/�.

Then
dB.barcVR

m .M IF/; barcVR
m .X IF//� FillRad.M IF/

and , as a consequence ,
dGH.M;X/�

1
2

FillRad.M IF/:

Proof Observe that by Theorems 2.13 and 2.14,

dGH.M;X/�
1
2
dB.barcVR

m .M IF/; barcVR
m .X IF//:

Hence, it is enough to establish that

dB.barcVR
m .M IF/; barcVR

m .X IF//� FillRad.M IF/:

Recall that the special interval IMm;F WD .0; 2FillRad.M IF/� belongs to barcVR
m .M IF/ by Proposition 9.28.

Moreover, if I WD .u; v� 2 barcVR
m .X IF/, then u� FillRad.M IF/ by the two assumptions on X .
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Now, fix an arbitrary partial matching P between barcVR
m .M IF/ and barcVR

m .X IF/. If IMm is unmatched
to any interval in barcVR

m .X IF/, then

cost.P /� 1
2
j0� 2FillRad.M IF/j D FillRad.M IF/:

If .IM
m;F ; I WD .u; v�/ 2 P , then cost.P / � j0�uj D u � FillRad.M IF/. Since P is arbitrary, one can

conclude dB.barcVR
m .M IF/; barcVR

m .X IF//� FillRad.M IF/, as we required.

By combining Proposition 9.38 with Proposition 9.7 we now obtain the exact value of the lower bound
for dGH.Sm;Sn/ given by invoking the stability of Vietoris–Rips barcodes:

Corollary 9.39 For any positive integers 1�m< n,

sup
k

dB
�
barcVR

k .SmIF/; barcVR
k .SnIF/

�
D FillRad.Sm/D 1

2
arccos

�
�1

mC1

�
and , as a consequence ,

dGH.S
m;Sn/� 1

4
arccos

�
�1

mC1

�
�
�
8
:

Proof Notice that Sm is orientable, Hm.SnIF/ D 0 for any field F , VRr.Sn/ ' Sn for any r in the
interval

�
0; arccos.�1=.nC 1//

�
by Theorem 7.1, and

arccos
�
�1

nC1

�
�
�
2
�
1
2

arccos
�
�1

mC1

�
D FillRad.Sm/:

Hence, by Proposition 9.38,

sup
k

dB
�
barcVR

k .SmIF/; barcVR
k .SnIF/

�
� FillRad.Sm/D 1

2
arccos

�
�1

mC1

�
:

The reverse inequality follows from Proposition 9.7 and Remarks 9.3 and 9.27 relating the spread to the
filling radius of spheres. Indeed, by basic properties of the bottleneck distance,5 for every integer k � 0,

dB.barcVR
k .SmIF/; barcVR

k .SnIF//� 1
2

max
�

max
I2barcVR

k
.SmIF/

length.I /; max
J2barcVR

k
.SnIF/

length.J /
�
:

Now, by Proposition 9.7, the right-hand side is bounded above by 1
2

max.spread.Sm/; spread.Sn// which,
by Remark 9.3, is equal to 1

2
arccos.�1=.mC 1// and in turn equal to FillRad.Sm/ by Remark 9.27.

Remark 9.40 The lower bounds provided by Corollary 9.39 are nonoptimal; see [63] for improved
lower bounds via considerations based on a certain version of the Borsuk–Ulam theorem. In fact, there
the factor 1

2
is removed, leading, for example, to the bound dGH.Sm;Sn/ � FillRad.Sminfm;ng/ for all

0 � m < n �1. This bound is therein shown to be tight when .m; n/ 2 f.1; 2/; .1; 3/; .2; 3/g via the
construction of suitable correspondences. Via Example 2.11, Theorem 2.14, and Proposition 9.28, one
can directly see that for any geodesic, compact, and simply connected space Y ,

dGH.S
1; Y /� �

6
:

This, taken together with the comments above leads to the following conjecture:

5The cost of the empty matching upper bounds the bottleneck distance.
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Figure 9: An ANR space contemplated by Proposition 9.46.

Conjecture 9.41 For any geodesic, compact, and simply connected space Y ,

dGH.S
1; Y /� �

3
:

9.3.3 A generalization of the filling radius The goal of this section is to provide some partial results
regarding the structure of barcVR

� . � / for nonsmooth spaces; see Figure 9. In order to do so we consider
a generalization of the notion of filling radius for arbitrary compact ANR metric spaces and arbitrary
homology dimension. See [51] for an introduction to the general theory of ANRs.

Definition 9.42 (absolute neighborhood retract) A metric space .X; dX / is said to be ANR (absolute
neighborhood retract) if, whenever X is a subspace of another metric space Y , there exists an open set
X � U � Y such that X is a retract of U .

It is known that every topological manifold with compatible metric (so, a metric manifold) is an ANR. Not
only that, every locally Euclidean metric space is an ANR (see [51, Theorem III.8.1]). Also, every compact,
(topologically) finite-dimensional, and locally contractible metric space is ANR (see [33, Section 1]).
The following example is one application of this fact:

Example 9.43 Let G be a compact metric graph and M1; : : : ;Mn be closed connected metric manifolds.
Choose points v1; : : : ; vn 2G and pi 2Mi for each i D 1; : : : ; n and consider the geodesic metric space
X WD G _M1 _ � � � _Mn arising from metric gluings via v1 � p1; : : : ; vn � pn. Since X is compact,
(topologically) finite-dimensional, and locally contractible, it is an ANR. See Figure 9.

Finally, we are ready to define a generalized filling radius.

Definition 9.44 (generalized filling radius) Let .X;E/ be a metric pair where X is a compact ANR
metric space. For any integer k � 1, any abelian group G, and any ! 2 Hk.X IG/, we define the
generalized filling radius as

FillRadk..X;E/;G; !/ WD inffr > 0 j Hk.�
E
r IG/.!/D 0g;

where �Er WX ,! Br.X;E/ is the (corestriction of the) isometric embedding. In other words, we have the
map

FillRadk..X;E/;G; � / W Hk.X IG/!R�0:
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Remark 9.45 Following the discussion in Remark 9.26 after equation (3), one can also prove that
the smallest possible value of the generalized filling radius is attained when E is an injective metric
space. Hence, we write FillRadk.X;G; !/ instead of FillRadk..X;E/;G; !/ whenever E is injective,
for simplicity.

LetM be an n–dimensional metric manifold. Then, note that we have FillRadn.M;G; ŒM�/DFillRad.M/

in the following two cases: when M is orientable and G DZ, and when M is nonorientable and G DZ2.

A priori, one can define the generalized filling radius for any metric space X . However, we believe that
the context of ANR metric spaces is the right level of generalization for our purposes because of the
following proposition, analogous to Proposition 9.28:

Proposition 9.46 Let X be a compact ANR metric space. Then , for any k�1 and nonzero ! 2Hk.X IF/,
we have FillRadk.X;F ; !/ > 0, and

.0; 2FillRadk.X;F ; !/� 2 barcVR
k .X IF/;

where F is an arbitrary field.

Proof First, note that one cannot apply Hausmann’s theorem since X is not necessarily a Riemannian
manifold. However, since X is ANR and a closed subset of L1.X/, there exists an open U � L1.X/
such that X � U and U retracts onto X . Let � W U ! X be the retraction. Now, since U is open there
exists an r > 0 such that Br.X;L1.X//� U . Observe that the restriction

�r WD �jBr .X;L1.X// W Br.X;L
1.X//!X

is still a retraction. It means that �r ı �r D idX . Therefore,

Hk.�r IF/ W Hk.X IF/! Hk
�
Br.X;L

1.X//IF
�

is injective. This implies that FillRadk.X;F ; !/ > 0 and that there exists some interval in barcVR
k
.X IF/

corresponding to the nonzero homology class ! 2 Hk.X IF/.

The remaining part of proof is essentially the same as the proof of Proposition 9.28, so we omit it.

Example 9.47 For any nonzero ! 2 H1.M IF/ with an arbitrary field F , because of the result in [81,
Theorem 8.10], one has that 2FillRad1.M;F ; !/ D 1

3
length./, where  is a shortest closed curve

representing the homology class !.

A refinement for the case kD 1 We now prove that when kD 1, the intervals given by Proposition 9.46
are the only bars in barcVR

1 .X IF/.

Lemma 9.48 Let X be a compact geodesic metric space , which is a subspace of an injective metric
space .E; dE /. Then , for any r > 0, the canonical inclusion �r WX ,! Br.X;E/ induces a surjection at
the level of fundamental groups. In particular , this also implies �r induces a surjection at the level of first
degree of homology.
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Proof Let  W Œ0; 1�! Br.X;E/ be an arbitrary continuous path with endpoints x and x0 in X . It is
enough to show that  is homotopy equivalent to a path in X relative to its endpoints. By the Lebesgue
number lemma, one can choose 0 D t0 < t1 < � � � < tn D 1 such that there exists xi 2 X satisfying
.Œti�1; ti �/�Br.xi ; E/ for each i 2 f1; : : : ; ng. Let yi WD .ti / for i 2 f0; : : : ; ng. Since each Br.xi ; E/
is contractible by Lemma 2.28, one can choose continuous paths ˛i and ˇi contained in Br.xi ; E/ such
that ˛i is from yi�1 to xi and ˇi is from xi to yi . As Br.xi ; E/ is contractible,  jŒti�1;ti � is homotopy
equivalent to ˛i �ˇi relative to endpoints. Hence

 ' .˛1 �ˇ1/� � � � � .˛n �ˇn/

relative to endpoints. Note that ˛1 and ˇn can be chosen as geodesics in X as they connect x and x1 in
Br.x1; E/ and xn and x0 in Br.xn; E/, respectively. Hence it is enough to show that

.ˇ1 �˛2/� � � � � .ˇn�1 �˛n/

is homotopy equivalent to a path in X relative to endpoints. Let us show that ˇi � ˛iC1 is homotopy
equivalent to a path in X for each i . Let p be a midpoint of xi and xiC1 in X . Note that p and yi are
contained in Br.xi ; E/\Br.xiC1; E/, which is contractible (again by Lemma 2.28). Let � be a path
in that intersection from yi to p. Let xi ;p be a shortest geodesic in X from xi to p and p;xiC1 be a
shortest geodesic in X from p to xiC1. Note that xi ;p � N� is contained in Br.xi / and has endpoints xi
and yi ; hence it is homotopy equivalent to ˇi relative to endpoints. Similarly � � p;xiC1 is homotopy
equivalent to ˛iC1 relative to endpoints. Hence

ˇi �˛iC1 ' xi ;p �
N� � � � p;xiC1 ' xi ;p � p;xiC1

relative to endpoints. This completes the proof of the first claim.

For the second claim, exploit [49, Theorem 2A.1].

In [81, Theorem 8.10], Virk provided a proof of the corollary below which takes place at the simplicial level.
The proof we give below exploits the hyperconvexity properties of L1.X/ and also our isomorphism
theorem, Theorem 4.1. Given our main results, we can give a more concise proof. See [28, Section 3] for
related results.

Corollary 9.49 Let X be a compact geodesic metric space. Then , for any I 2 barcVR
1 .X IF/, there exists

! 2 H1.X IZ/ such that I D .0; 2FillRad1.X;Z; !/�.

Proof Apply Lemma 9.48 and Theorem 4.1.

A conjecture After seeing the proof of Proposition 9.46, some readers might wonder whether one can
prove a version of Hausmann’s theorem [50, Theorem 3.5] for compact ANR metric spaces. This leads to
formulating the conjecture below:

Conjecture 9.50 Let .X; dX / be a compact ANR metric space. Then, there exists r.X/ > 0 such that
VRr.X/ is homotopy equivalent to X for any r 2 .0; r.X/�.
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9.4 Rigidity of spheres

A problem of interest in the area of persistent homology is that of deciding how much information from a
metric space is captured by its associated persistent homology invariants. One basic (admittedly imprecise)
question that we posed on page 1024 is:

Question 1 Assume X and Y are compact metric spaces such that barcVR
k
.X IF/D barcVR

k
.Y IF/ for

all k 2 Z�0. Then how similar are X and Y (in a suitable sense)?

As proved in [66] via the notion of core of a metric graph or as a consequence of [50, Proposition 2.2], the
unit circle S1 and the join X of S1 with disjoint trees of arbitrary length (regarded as a geodesic metric
space) have the same Vietoris–Rips persistence barcodes (for all dimensions); see Figure 10. However,
by increasing the length of the trees attached these two spaces are at arbitrarily large Gromov–Hausdorff
distance, as shown in Figure 10. This means that, in full generality, Question 1 does not admit a reasonable
answer if “similarity” is measure in a strict metric sense via the Gromov–Hausdorff distance.

A related type of questions one might pose are of the type:

Question 3 Let C be a given class of compact metric spaces. Does there exist �C > 0 such that whenever
dB.barcVR

� .X/; barcVR
� .Y // < �C for some X; Y 2 C, then X and Y are homotopy equivalent?

Answers to questions such as Questions 1 and 3 above (together with Questions 2(i), 2(ii), and 2(iii) on
page 1025) are not currently known in full generality. One might then consider “localized” versions of the
above questions: fix some special compact metric space X0, and then assume Y satisfies the respective
conditions stipulated in the above question statements.

In this regard, from work by Wilhelm [83, Main Theorem 2] and Proposition 9.28 we immediately obtain
the following corollary for the case of Riemannian manifolds:

Corollary 9.51 (barcVR
� rigidity for spheres) For any closed connected n–dimensional Riemannian

manifold M with sectional curvature KM � 1:

(1) IM
n;F � I

Sn
n .

(2) If IM
n;F D I

Sn
n then M is isometric to Sn.

(3) There exists �n > 0 such that if length.ISn
n /� �n < length.IM

n;F /, then M is diffeomorphic to Sn.

(4) If length.IM
n;F / >

�
3

, then M is a twisted n–sphere (and , in particular , homotopy equivalent to the
n–sphere).

Remark 9.52 The case of n D 1 is simpler. Let M be an arbitrary closed connected 1–dimensional
Riemannian manifold. Then, M is isometric to r � S1 for some r > 0 and IM

1;F D
�
0; 2�

3
r
�
. Hence,

IM
1;F D I

S1
1 obviously implies M is isometric to S1.
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Figure 10: Two geodesic spaces with the same Vietoris–Rips persistence barcodes. Notice that
these spaces are at a large Gromov–Hausdorff distance.

Remark 9.53 Wilhelm’s method of proof does not yield an explicit value for the parameter �n given
in item (2) above. Wilhelm’s rigidity result was extended to Alexandrov spaces by Yokota [84], so
Corollary 9.51 can be generalized to that context.

Example 9.54 (a one-parameter family of surfaces with the same filling radius as S2) If we ignore the
sectional curvature condition in Corollary 9.51, then for each " > 0 small enough one can construct a
one-parameter family fS2

h
j h 2 Œ0;FillRad.S2/� "�g of surfaces with the same filling radius as S2 such

that S20 D S2 but S2
h

is not isometric to S2 for any h > 0. This phenomenon is analogous to the one
depicted in Figure 10.

Here is the construction (see Figure 2):

Let u1, u2, u3, and u4 be the vertices of a regular tetrahedron inscribed in S2. Hence, dS2.ui ; uj /D

2FillRad.S2/ for any i ¤ j . Now, let T be a very small spherical triangle contained inside the spherical
triangle determined by the points u1, u2, and u3 as in Figure 2, left. In other words, we choose
" WD diam.T /� 2FillRad.S2/.

Now, for any h� 0, we define S2
h

by

S2h WD .S
2
nInt.T /� f0g/[ .@T � Œ0; h�/[ .T � fhg/¨ S2 � Œ0; h�

with the metric
dS2

h
..x; s/; .y; t// WD dS2.x; y/Cjs� t j:

Then S2
h

is a 2–dimensional metric manifold. See Figure 2, right, for the description of S2
h
. Also, note

that the map
Ph W S

2
h! S2; .x; s/ 7! x;

is 1–Lipschitz.

Claim 1 First , we claim that FillRad.S2
h
/� FillRad.S2/ for any h� 0.

Proof Note that, since Ph is 1–Lipschitz, the diagram

S2
h

Br.S2h; L
1.S2

h
//

S2 Br.S2; L1.S2//

Ph zPh

commutes for any r > 0. Since .Ph/�.ŒS2h�/D ŒS
2�, this implies FillRad.S2

h
/� FillRad.S2/.
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Claim 2 Next , we claim that FillRad.S2
h
/� FillRad.S2/ whenever hC "� 2FillRad.S2/.

Proof For this we will prove that the spread of S2
h

is bounded by twice the filling radius of S2.

Note that the set f.u1; 0/; .u2; 0/; .u3; 0/; .u4; 0/g � S2
h

satisfies

(1) diam
�
f.u1; 0/; .u2; 0/; .u3; 0/; .u4; 0/g

�
D 2FillRad.S2/, and

(2) mini2f1;2;3;4g dS2
h
..x; s/; .ui ; 0//� 2FillRad.S2/ for any .x; s/ 2 S2

h
.

Observe that the second condition holds because if .x; s/ 2 @T � Œ0; h�[T � fhg (the triangular cylinder
with its cap), dS2

h
..x; s/; .u1; 0//D dS2.x; u1/C s � hC "� 2FillRad.S2/.

Hence, by Proposition 9.33, FillRad.S2
h
/� 1

2
spread.S2

h
/� FillRad.S2/.

We then conclude that FillRad.S2/D FillRad.S2
h
/ whenever h 2 Œ0; 2FillRad.S2/� "�.

Remark 9.55 The above construction can be generalized to Sn for n � 3. Also, the small subset T
need not be a spherical triangle in general, though the argument becomes more involved in that case. For
example, one can choose T to be a small geodesic disk on S2.

Rigidity theorems with respect to the bottleneck distance Propositions 9.56 and 9.57 below provide
rigidity results with respect to the bottleneck distance (see Definition 2.12).

For the rest of this subsection we will assume that an arbitrary constant c � 1 is fixed.

Proposition 9.56 Suppose M is a closed connected n–dimensional Riemannian manifold with sectional
curvature KM 2 Œ1; c� and injectivity radius Inj.M/� �=2

p
c, then:

(1) There exists "n > 0 such that , if

dB
�
barcVR

n .M IF/; barcVR
n .SnIF/

�
<min

n
"n;

1

�
p
c
�FillRad.Sn/

o
;

then M is diffeomorphic to Sn.

(2) If dB
�
barcVR

n .M IF/; barcVR
n .SnIF/

�
<min

˚
2FillRad.Sn/� �

3
; .1=�

p
c / �FillRad.Sn/

	
, thenM

is a twisted n–sphere (and , in particular , homotopy equivalent to the n–sphere).

If M is even-dimensional, then we can drop the assumption on the injectivity radius.

Proposition 9.57 Suppose M is a closed connected n–dimensional Riemannian manifold with sectional
curvature KM 2 Œ1; c� for even n, then:

(1) There exists "n > 0 such that , if

dB
�
barcVR

n .M IF/; barcVR
n .SnIF/

�
<min

�
"n;

1

4
p
c
�FillRad.Sn/

�
;

then M is diffeomorphic to Sn.

(2) If dB
�
barcVR

n .M IF/; barcVR
n .SnIF/

�
<minf2FillRad.Sn/� �

3
; .1=4

p
c / �FillRad.Sn/g, then M

is a twisted n–sphere (and , in particular , homotopy equivalent to the n–sphere).
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Lemma 9.58 Let M be a closed connected n–dimensional Riemannian manifold. If

dB
�
barcVR

n .M IF/; barcVR
n .SnIF/

�
< "

for some " 2 .0; 2FillRad.Sn/�, then either

(1) FillRad.M IF/ < ", or

(2) 2jFillRad.M IF/�FillRad.Sn/j< ".

Proof By Proposition 9.28, we know that .0; 2FillRad.M IF/� 2 barcVR
n .M IF/. Suppose

dB
�
barcVR

n .M IF/; barcVR
n .SnIF/

�
< "

for some " 2 .0; 2FillRad.Sn/�. Then there is a partial matching (see Definition 2.12) R" between
barcVR

n .M IF/ and barcVR
n .SnIF/ such that cost.R"/ < ". Consider the following two cases:

(1) Suppose the interval .0; 2FillRad.M IF/� is not matched to any interval in barcVR
n .SnIF/. Then

FillRad.M IF/� cost.R"/ < ":

(2) Suppose .0; 2FillRad.M IF/� is matched to some interval .u; v� 2 barcVR
n .SnIF/ in the partial

matching R". Then we claim that .u; v�D .0; 2FillRad.Sn/�. Suppose not. Since we know that
VRr.Sn/' Sn for any r 2 .0; 2FillRad.Sn/� by Theorem 7.1, any interval in barcVR

n .SnIF/ other
than .0; 2FillRad.M IF/� must be born after 2FillRad.Sn/. In particular, u� 2FillRad.Sn/. This
implies

2FillRad.Sn/� ju� 0j � cost.R"/ < "� 2FillRad.Sn/;

which is a contradiction. Hence, .0; 2FillRad.M IF/� is matched to .0; 2FillRad.Sn/� in the
optimal matching. Therefore,

2jFillRad.M IF/�FillRad.Sn/j � cost.R"/ < ":

The proof strategy for Propositions 9.56 and 9.57 is to invoke Wilhelm’s result [83, Main Theorem 2]
and Lemma 9.58 above. However, if FillRad.M/ were small, one would not be able to apply Wilhelm’s
theorem. To avoid that, we will invoke a result due to Liu [64].

Proof of Proposition 9.56 Since c � 1, .1=�
p
c/ �FillRad.Sn/� 2FillRad.Sn/.

(1) By Corollary 9.51(3), there is an "n > 0 such that 2jFillRad.M IF/� FillRad.Sn/j < "n implies
M is diffeomorphic to Sn.
Suppose dB

�
barcVR

n .M IF/; barcVR
n .SnIF/

�
<minf"n; .1=�

p
c / �FillRad.Sn/g. Then

FillRad.M IF/ <min
n
"n;

1

�
p
c
�FillRad.Sn/

o
or

2jFillRad.M IF/�FillRad.Sn/j<min
n
"n;

1

�
p
c
�FillRad.Sn/

o
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by Lemma 9.58. However, the first case is impossible since FillRad.M IF/� .1=�
p
c/�FillRad.Sn/

by [64, Proofs of Theorem 1.1 and Proposition 1.6]. Therefore,

2jFillRad.M IF/�FillRad.Sn/j<min
n
"n;

1

�
p
c
�FillRad.Sn/

o
� "n;

so M and Sn are diffeomorphic.

(2) By basically the same argument,

dB
�
barcVR

n .M IF/; barcVR
n .SnIF/

�
<min

n
2FillRad.Sn/� �

3
;
1

�
p
c
�FillRad.Sn/

o
implies 2jFillRad.M IF/� FillRad.Sn/j < 2FillRad.Sn/� �

3
. Therefore, length.IM

n;F / >
�
3

, so
M is a twisted n–sphere.

Proof of Proposition 9.57 The proof is basically the same as the proof of Proposition 9.56. The only
difference is we have to use [64, Remark 1.8(3)] instead of [64, Proposition 1.6].

9.5 Stability of the filling radius

In [64], Liu studies the mapping properties of the filling radius. His results can be interpreted as providing
certain guarantees for how the filling radius changes under multiplicative distortion of metrics. Here we
study the effect of additive distortion.

Question 4 Under suitable restrictions, does there exists a constant L > 0 such that for all closed
connected metric manifolds M and N ,

(7) jFillRad.M/�FillRad.N /j � L � dGH.M;N /‹

This question is whether the filling radius could be stable as a map from the collection of all metric
manifolds to the real line. The answer is negative, as the following example proves:

Example 9.59 (counterexample for manifolds with different dimension) Fix � > 0 and let M D S1 and
N� D S1� .� �S1/, a thin torus. Then, it is clear that dGH.M;N�/� � whereas FillRad.S1/D �

3
and, by

Remark 9.31, FillRad.N�/D �
3
�. This means that (7) cannot hold in general.

A subsequent possibility is considering only manifolds with the same dimension. The answer in this case
is also negative:

Example 9.60 (counterexample for manifolds with the same dimension) Let n� 2 be any integer and
�; ı > 0; we assume that ı� � so that a certain tubular neighborhood construction described below works.
Consider M D Sn � RnC1. Endow Sn with the usual round Riemannian metric. Let G� be a (finite)
metric graph embedded in Sn such that dGH.Sn; G�/ < �; such graphs always exist for compact geodesic
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spaces [15, Proposition 7.5.5]. Now, let N�;ı be (a suitably smoothed out version of) the boundary
of the ı–tubular neighborhood of G� in RnC1. Then dGH.M;N�;ı/ � C � .�C ı/, for some constant
C > 0 whose exact value is not relevant. However, FillRad.M/D 1

2
arccos.�1=.nC 1//� �

4
, whereas

FillRad.N�;ı/ � Cn � ı by inequality (5). This means that (7) cannot hold in general, even when the
manifolds M and N have the same dimension.

We are however able to establish the following:

Proposition 9.61 (stability of the filling radius) Let M be a closed connected n–dimensional manifold.
Let d1 and d2 be two metrics on M compatible with the manifold topology. Then

jFillRad.M; d1/�FillRad.M; d2/j � kd1� d2k1:

Actually, one can prove a more general result.

Proposition 9.62 (stability of generalized filling radii) Let M be a closed connected manifold. Let d1
and d2 be two metrics on M compatible with the manifold topology. For any integer k � 0, any abelian
group G, and any nonzero ! 2 Hk.M IG/,

jFillRadk..M; d1/; G; !/�FillRadk..M; d2/; G; !/j � kd1� d2k1:

Remark 9.63 Proposition 9.61 is just a special case of Proposition 9.62 when k D n, ! D ŒM �, and
G D Z or Z2.

Proof of Proposition 9.62 Let i1 W .M; d1/ ! L1.M/ and i2 W .M; d2/ ! L1.M/) be the Kura-
towski embeddings of M into L1.M/ with respect to d1 and d2, respectively. For arbitrary r > 0, let
ir1 W .M; d1/! Br.i1.M/;L1.M// and ir2 W .M; d2/! Br.i2.M/;L1.M// denote the corresponding
isometric embeddings induced from i1 and i2. For arbitrary r > 0, observe that

Br.i1.M/;L1.M//� BrCkd1�d2k1.i2.M/;L1.M//

because, for arbitrary f 2Br.i1.M/;L1.M//, there exist x 2M such that kf �d1.x; � /k1 < r ; hence,

kf � d2.x; � /k1 � kf � d1.x; � /k1Ckd1.x; � /� d2.x; � /k1 < r Ckd1� d2k1:

In a similar way, one can prove that Br.i2.M/;L1.M//� BrCkd1�d2k1.i1.M/;L1.M//.

Now, fix arbitrary r > FillRadk..M; d1/; G; !/ and let

j r W Br.i1.M/;L1.M// ,! BrCkd1�d2k1.i2.M/;L1.M//

be the canonical inclusion map. The maps defined above fit into the following (in general noncommutative)
diagram:

M Br.i1.M/;L1.M//

BrCkd1�d2k1.i2.M/;L1.M//

ir1

i
rCkd1�d2k1

2

j r
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Next, we prove that j r ı ir1 is homotopic to irCkd1�d2k12 via the linear interpolation

H WM � Œ0; 1�! BrCkd1�d2k1.i2.M/;L1.M//; .x; t/ 7! .1� t /d1.x; � /C td2.x; � /:

The only subtle point is whether this linear interpolation is always contained in the thickening

BrCkd1�d2k1.i2.M/;L1.M//

or not. To ascertain this, for arbitrary x 2M and t 2 Œ0; 1�, compute the distance between H.x; t/ and
d2.x; � / as

k.1�t /d1.x; � /Ctd2.x; � /�d2.x; � /k1Dj1�t j�kd1.x; � /�d2.x; � /k1�kd1�d2k1<rCkd1�d2k1:

Hence, H is a well-defined homotopy between j r ı ir1 and irCkd1�d2k12 . Therefore,

.j r/� ı .i
r
1 /� D .i

rCkd1�d2k1
2 /�:

From the assumption on r , we know that .ir1 /�.!/D 0. By the above, this implies that

.i
rCkd1�d2k1
2 /�.!/D 0:

Hence,

FillRadk..M; d2/; G; !/� FillRadk..M; d1/; G; !/Ckd1� d2k1

since r > FillRadk..M; d1/; G; !/ is arbitrary. In a similar way, one can also show

FillRadk..M; d1/; G; !/� FillRadk..M; d2/; G; !/Ckd1� d2k1:

9.5.1 The strong filling radius Examples 9.59 and 9.60 suggest that the setting of Proposition 9.61
might be a suitable one for studying stability of the filling radius.

In this section we consider a certain strong variant of the filling radius satisfying (7) which arises from
the notion of persistent homology.

Definition 9.64 (strong filling radius) Given a closed connected n–dimensional metric manifold M
and a field F , we define the strong filling radius sFillRad.M IF/ as half the length of the largest interval
in the nth Vietoris–Rips persistence barcode of M ,

sFillRad.M IF/ WD 1
2

maxflength.I / j I 2 barcVR
n .M IF/g:

The reader familiar with concepts from applied algebraic topology will have noticed that the definition
of strong filling radius of an n–dimensional metric manifold coincides with (one half of) the maximal
persistence of its associated Vietoris–Rips persistence module. In fact, for each nonnegative integer k
one can define the k–dimensional version of strong filling radius of any compact metric space X .
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Definition 9.65 (generalized strong filling radius) Given a compact metric space X , a field F , and a
nonnegative integer k � 0, we define the generalized strong filling radius sFillRadk.X IF/ as half the
length of the largest interval in the kth Vietoris–Rips persistence barcode of X ,

sFillRadk.X IF/ WD 1
2

maxflength.I / j I 2 barcVR
k .X IF/g:

Remark 9.66 � When X is isometric to a metric manifold M with dimension n, we of course have
sFillRadn.X/D sFillRad.M/.

� In general, sFillRadk and FillRadk are obviously related in the sense that

sFillRadk.X IF/� supfFillRadk.X;F ; !/ j ! 2 Hk.X IF/g

for any nonnegative integer k.

The following remark follows directly from Propositions 9.7 and 9.28:

Remark 9.67 FillRad.M IF/� sFillRad.M IF/� 1
2

spread.M/ for any field F when M is orientable,
and F D Z2 when M is nonorientable.

Definition 9.68 (F–regularly filled manifold) Let .M; dM / be a closed connected metric manifold and
F be a field. We say that M is F–regularly filled if FillRad.M IF/D sFillRad.M IF/.

Remark 9.69 For each n � 1, the n–dimensional unit sphere with the intrinsic metric is F–regularly
filled for any field F . Indeed, by [54, Proof of Theorem 2], FillRad.Sn/ D 1

2
spread.Sn/. Hence, the

result follows from Remark 9.67.

As a consequence of the remark above and Remark 9.3 we have:

Corollary 9.70 For all integers n� 1, FillRad.Sn/D sFillRad.SnIF/D 1
2

arccos.�1=.nC 1//.

There exist, however, nonregularly filled metric manifolds. We present two examples: the first one arises
from our study of the Künneth formula in Section 6, whereas the second one is a direct construction.
Both examples make use of results from [1] about homotopy types of Vietoris–Rips complexes of S1.

Example 9.71 (a nonregularly filled metric manifold) Fix r > 1 and let X be the `1–product
S1 �S1 � .r �S1/. By Remark 9.31, FillRad.X/D FillRad.S1/D 2�

3
. By Example 6.4, barcVR

3 .X IF/

contains the interval
�
2�
3
r; 4�

5
r
�
, which has length 2�

15
r . Hence, if r > 5, X is not F–regularly filled.

Example 9.72 (a nonregularly filled Riemannian manifold) Take any embedding of S1 into R4 and
let � > 0 be small. Consider the boundary C� of the �–tubular neighborhood around S1. This will
be a 3–dimensional submanifold of R4. As a submanifold it inherits the ambient inner product and
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C� can be regarded as a Riemannian manifold in itself. Then, as a metric space, with the geodesic
distance, C� will be �–close to S1 (with geodesic distance) in the Gromov–Hausdorff sense. Because we
know that for r 2

�
2�
3
; 4�
5

�
, VRr.S1/' S3, and because of the Gromov–Hausdorff stability of barcodes

(Theorem 2.14), it must be that barcVR
3 .C�IF/ contains an interval I which itself contains

�
2�
3
C�; 4�

5
��
�
.

This latter interval is nonempty whenever � > 0 is small enough, so sFillRad.C�IF/� 2�
15
�2�. However,

FillRad.C�/� �.

By invoking the relationship between the Vietoris–Rips persistent homology and the strong filling radius,
one can verify that the strong filling radii of two n–dimensional metric manifolds M and N are close if
these two manifolds are similar in the Gromov–Hausdorff distance sense.

Proposition 9.73 Let X and Y be compact metric spaces. Then , for any integer k � 0,

jsFillRadk.X IF/� sFillRadk.Y IF/j � 2dGH.X; Y /:

Proof By Remark 4.8 one has

2dGH.X; Y /� dI.barcVR
k .X IF/; barcVR

k .Y IF//� jdI.barcVR
k .X IF/; 0�/� dI.barcVR

k .Y IF/; 0�/j;

where the last inequality follows from the triangle inequality for the interleaving distance. The conclusion
now follows from Example 2.11.

Remark 9.74 Albeit for the notation sFillRadk , the above stability result should be well known to
readers familiar with applied algebraic topology concepts — we state and prove it here however to provide
some background for those readers who are not.

Appendix

A.1 Proof of Proposition 9.23

Proposition 9.23 Let X be a compact metric space. Then , for any f; g; h 2 L1.X/ and 0� s � t � 1,
the Katz geodesic bicombing K on L1.X/ satisfies

(1) K.f; g; 0/D f and K.f; g; 1/D g;

(2) kK.f; g; s/� K.f; g; t/k1 D .t � s/ � kf �gk1;

(3) kK.f; g; t/� K.h; g; t/k1 � 2kf � hk1;

(4) kK.f; g; t/� K.f; h; t/k1 � kg� hk1;

(5) K.�;  ; �/D K.f; g; .1��/sC�t/where �D K.f; g; s/ and  D K.f; g; t/ for any �2 Œ0; 1�
(this property is called consistency);

(6) kK.f; g; r/� hk1 �maxfkK.f; g; s/� hk1; kK.f; g; t/� hk1g for any r 2 Œs; t �.
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Proof (1) The first claim trivially follows from the definition of K and that of the `1–norm.

(2) For the second claim, observe that it is enough to show

kK.f; g; s/� K.f; g; t/k1 � .t � s/ � kf �gk1

for any f; g 2 L1.X/ and 0� s � t � 1.

Fix an arbitrary x 2X . Without loss of generality, one can assume that f .x/� g.x/. Then

jK.f; g; s/.x/� K.f; g; t/.x/j Dmaxff .x/� skf �gk1; g.x/g�maxff .x/� tkf �gk1; g.x/g:

Observe that, if s 2 Œ0; .f .x/�g.x//=kf �gk1�,

maxff .x/� skf �gk1; g.x/g D f .x/� skf �gk1:
Hence,

jK.f; g; s/.x/� K.f; g; t/.x/j D .f .x/� skf �gk1/�maxff .x/� tkf �gk1; g.x/g

� .f .x/� skf �gk1/� .f .x/� tkf �gk1/

D .t � s/kf �gk1:

Also, if s 2 Œ.f .x/�g.x//=kf �gk1; 1�,

maxff .x/� skf �gk1; g.x/g Dmaxff .x/� tkf �gk1; g.x/g D g.x/

so jK.f; g; s/.x/� K.f; g; t/.x/j D 0� .t � s/kf �gk1.

Since x is arbitrary, we obtain kK.f; g; s/� K.f; g; t/k1 � .t � s/ � kf �gk1.

(3) Fix an arbitrary x 2X . We will prove that

jK.f; g; t/.x/� K.h; g; t/.x/j � 2kf � hk1:

Unfortunately, we have to do tedious case-by-case analysis.

(a) If f .x/� g.x/ and h.x/� g.x/, then, for t 2 Œ0; .f .x/�g.x//=kf �gk1�,

K.f; g; t/.x/D f .x/� tkf �gk1:

Hence,

K.f; g; t/.x/� K.h; g; t/.x/D .f .x/� tkf �gk1/�maxfh.x/� tkh�gk1; g.x/g

� .f .x/� tkf �gk1/� .h.x/� tkh�gk1/

D f .x/� h.x/� t .kf �gk1�kh�gk1/

� jf .x/� h.x/jC t jkf �gk1�kh�gk1j

� 2kf � hk1:

Now, for t 2 Œ.f .x/�g.x//=kf �gk1; 1�, K.f; g; t/.x/D g.x/. Hence,

K.f; g; t/.x/� K.h; g; t/.x/D g.x/�maxfh.x/� tkh�gk1; g.x/g

� g.x/�g.x/D 0� 2kf � hk1:
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In a similar way, one can also obtain

K.h; g; t/.x/� K.f; g; t/.x/� 2kf � hk1

for any t 2 Œ0; 1�. Hence,

jK.f; g; t/.x/� K.h; g; t/.x/j � 2kf � hk1:

(b) If f .x/� g.x/ and h.x/� g.x/, this case is similar to the previous one so we omit it.

(c) If f .x/� g.x/ and h.x/� g.x/, then K.f; g; t/.x/; K.h; g; t/.x/ 2 Œh.x/; f .x/�. Therefore,

jK.f; g; t/.x/� K.h; g; t/.x/j � f .x/� h.x/� kf � hk1 � 2kf � hk1:

(d) For f .x/� g.x/ and h.x/� g.x/, this is similar to the previous case.

Since x is arbitrary, we finally have

kK.f; g; t/� K.h; g; t/k1 � 2kf � hk1:

(4) Fix an arbitrary x 2X . We will prove that

jK.f; g; t/.x/� K.f; h; t/.x/j � kg� hk1:

Let’s do case-by-case analysis.

(a) If f .x/� g.x/ and f .x/� h.x/, then, for t 2 Œ0; .f .x/�g.x//=kf �gk1�,

K.f; g; t/.x/D f .x/� tkf �gk1:

Hence,

K.f; g; t/.x/� K.f; h; t/.x/D .f .x/� tkf �gk1/�maxff .x/� tkf � hk1; h.x/g

� .f .x/� tkf �gk1/� .f .x/� tkf � hk1/

D t .kf � hk1�kf �gk1/

� kg� hk1:

Now, for t 2 Œ.f .x/�g.x//=kf �gk1; 1�, K.f; g; t/.x/D g.x/. Hence,

K.f; g; t/.x/�K.f; h; t/.x/Dg.x/�maxff .x/�tkf �hk1; h.x/g�g.x/�h.x/�kg�hk1:

In a similar way, one can also obtain

K.f; h; t/.x/� K.f; g; t/.x/� kg� hk1

for any t 2 Œ0; 1�. Hence,

jK.f; g; t/.x/� K.f; h; t/.x/j � kg� hk1:

(b) For f .x/� g.x/ and f .x/� h.x/, this is similar to the previous case.
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(c) If f .x/� g.x/ and f .x/� h.x/, then

K.f; g; t/.x/; K.f; h; t/.x/ 2 Œg.x/; h.x/�:

Therefore,

jK.f; g; t/.x/� K.f; h; t/.x/j � h.x/�g.x/� kg� hk1:

(d) For f .x/� g.x/ and f .x/� h.x/, this is similar to the previous case.

Since x is arbitrary, we finally have

kK.f; g; t/� K.f; h; t/k1 � kg� hk1:

(5) Fix arbitrary x 2X . Suppose f .x/� g.x/. Then

�.x/Dmaxff .x/� skf �gk1; g.x/g;  .x/Dmaxff .x/� tkf �gk1; g.x/g:

By property (1) of this proposition, we know k�� k1D .t�s/kf �gk1. Moreover, since �.x/� .x/,

K.�;  ; �/.x/Dmaxf�.x/��k� � k1;  .x/g:

Observe that

�.x/��k� � k1 Dmaxff .x/� skf �gk1; g.x/g��.t � s/kf �gk1

Dmaxff .x/� ..1��/sC�t/kf �gk1; g.x/��.t � s/kf �gk1g:

Since f .x/� ..1��/sC�t/kf �gk1 � f .x/� tkf �gk1 and g.x/� g.x/��.t � s/kf �gk1, we
finally have

K.�;  ; �/.x/Dmaxff .x/� ..1��/sC�t/kf �gk1; g.x/g D K.f; g; .1��/sC�t/.x/:

One can do a similar proof for the case when f .x/� g.x/. Hence,

K.�;  ; �/D K.f; g; .1��/sC�t/:

(6) Consider the special case s D 0 and t D 1. Fix an arbitrary x 2X . Observe that K.f; g; r/.x/ is
between f .x/ and g.x/. Therefore,

jK.f; g; r/.x/� h.x/j �maxfjf .x/� h.x/j; jg.x/� h.x/jg �maxfkf � hk1; kg� hk1g:

Since x is arbitrary,

kK.f; g; r/� hk1 �maxfkf � hk1; kg� hk1g DmaxfkK.f; g; 0/� hk1; kK.f; g; 1/� hk1g:

For general s and t , combine this result with property (5).

A.2 Some properties of K

Example A.1 In this example, we will see that some of the nice properties considered in Lemma 2.20
do not hold for the Katz geodesic bicombing (see Definition 9.22). Consider X to be a two-point space.
Then L1.X/ can be regarded as R2 with the `1–norm.
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(1) Katz’s geodesic bicombing is not conical in general We will find f; f 0; g; g0 2 L1.X/ and
t 2 Œ0; 1� such that

kK.f; g; t/� K.f
0; g0; t /k1 > .1� t /kf �f

0
k1C tkg�g

0
k1:

Let f D f 0 D .0; 0/, g D .c; d/ for some 0 < c < d , and g D .c0; d 0/ for some 0 < c0 < d 0. Then

K.0; g; t/D

�
.td; td/ if t 2 Œ0; c=d �;
.c; td/ if t 2 Œc=d; 1�;

and we have a similar expression for K.0; g0; t /. Hence, for any t 2 Œmaxfc=d; c0=d 0g; 1/,

K.0; g; t/D .c; td/ and K.0; g
0; t /D .c0; td 0/:

Therefore, if we choose jc � c0j> jd � d 0j (for example, .c; d/D .4; 5/ and .c0; d 0/D .1; 5/), then

kK.0; g; t/� K.0; g
0; t /k1 D jc � c

0
j

and
tkg�g0k1 D t jc � c

0
j:

Hence,
kK.0; g; t/� K.0; g

0; t /k1 > tkg�g
0
k1:

So the Katz geodesic bicombing is not conical. In particular, this implies it is not convex.

(2) Katz geodesic bicombing is not reversible in general We will find f; g 2 L1.X/ and t 2 Œ0; 1�
such that

K.f; g; t/¤ K.g; f; 1� t /:

Let f D .0; 0/ and g D .c; d/ for some 0 < c < d as before. Then

K.0; g; t/D

�
.td; td/ if t 2 Œ0; c=d �;
.c; td/ if t 2 Œc=d; 1�;

and

K.g; 0; t/D

�
.c � td; .1� t /d/ if t 2 Œ0; c=d �;
.0; .1� t /d/ if t 2 Œc=d; 1�:

Now, if we choose t 2 .0;minfc=d; 1�c=dg�, we have K.0; g; t/D .td; td/ and K.g; 0; 1�t /D .0; td/.
Hence,

K.0; g; t/¤ K.g; 0; 1� t /:

A.3 Proof of the generalized functorial nerve lemma

Theorem 4.2 (generalized functorial nerve lemma) Let X and Y be two paracompact spaces , � WX!Y

be a continuous map , U D fU˛g˛2A and V D fVˇ gˇ2B be good open covers (every nonempty finite
intersection is contractible) of X and Y , respectively, based on arbitrary index sets A and B , and
� W A! B be a map such that

�.U˛/� V�.˛/ for any ˛ 2 A:
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Let NU and NV be the nerves of U and V , respectively. Observe that , since U˛0 \� � �\U˛n ¤∅ implies
V�.˛0/\ � � � \V�.˛n/ ¤∅, � induces the canonical simplicial map N� W NU ! NV .

Then there exist homotopy equivalences X ! NU and Y ! NV that commute with � and N� up to
homotopy:

X NU

Y NV

� N�

Our proof of Theorem 4.2 invokes many elements of [49, Section 4.G], which provides a proof of the
classical nerve lemma.

Definition A.2 Let X be a topological space and let U D fU˛g˛2ƒ be an open covering of X (ƒ is
an arbitrary index set). For any � D f˛0; : : : ; ˛ng 2 NU , the nonempty intersection U˛0 \ � � � \U˛n is
denoted by U� . Note that, when � Df˛0; : : : ; ˛ng 2NU and � 0 is an n0–face of � , there are the canonical
inclusions

i�� 0 W U� ,! U� 0 and j�� 0 W�n0 ,!�n:

Then, the complex of spaces corresponding to U consists of the set of all U� and the set of all canonical
inclusions i�� 0 over all possible � 0 � � 2 NU .

The realization of this complex of spaces, denoted by �XU , is defined as

�XU WD
G

�Df˛0;:::;˛ng2NU

U� ��n=�;

where .x; p/� .x0; p0/ whenever i�� 0.x/D x0 and j�� 0.p0/D p.

We need the following slight improvements of Propositions 4G.1 and 4G.2 of [49]. These improved
claims are actually implicit in their respective proofs; see [49, pages 458–459].

Proposition A.3 [49, Proposition 4G.1] Let X be a topological space and U D fU˛g˛2ƒ be a good
open cover of X (every nonempty finite intersection is contractible). Then

f W�XU ! NU ; .x; p/ 7! p if .x; p/ 2 U� ��n;

is a homotopy equivalence between �XU and NU .

Proof First of all, since U� is contractible whenever � 2 NU , note that there is a homotopy equivalence
�� W U� ! f�g for any � 2 NU .

The homotopy equivalence between �XU and NU is just a special case of [49, Proposition 4G.1]. The
choice of f is implicit in the fact that both of �XU and NU are deformation retracts of �MXU where
�MXU is the realization of the complex of spaces consisting of the mapping cylinders M�� for any
� 2 NU and the canonical inclusions between them.
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Proposition A.4 [49, Proposition 4G.2] Let X be a paracompact space , U D fU˛g˛2ƒ be an open
cover of X , and f ˛g˛2ƒ be a partition of unity subordinate to the cover U (it must exist since X is
paracompact). Then

g WX !�XU ; x 7!
�
x; . ˛.x//˛2ƒ

�
;

is a homotopy equivalence between X and �XU .

Proof The proof is the same as [49, Proposition 4G.2].

Lemma A.5 Let X and Y be two topological spaces , � WX ! Y be a continuous map , U D fU˛g˛2A
and V D fVˇ gˇ2B be good open covers (every nonempty finite intersection is contractible) of X and Y
respectively, based on arbitrary index sets A and B , and � W A! B be a map such that

�.U˛/� V�.˛/

for any ˛ 2 A.

Let NU and NV be the nerves of U and V , respectively. Observe that � induces the canonical simplicial
map N� W NU ! NV since U˛0 \ � � � \U˛n ¤ ∅ implies V�.˛0/ \ � � � \ V�.˛n/ ¤ ∅, and � induces the
canonical map N� W�XU !�YV mapping .x; p/ to .�.x/; N�.p//.

Then there exist homotopy equivalences f W �XU ! NU and f 0 W �YV ! NV which commute with N�
and N� :

�XU NU

�YV NV

f

N� N�

f 0

Proof By Proposition A.3,

f W�XU ! NU ; .x; p/ 7! p if .x; p/ 2 U� ��n;

is a homotopy equivalence between �XU and NU . Also,

f 0 W�YV ! NV; .y; q/ 7! q if .y; q/ 2 V� ��n;

is a homotopy equivalence between �YV and NV .

To check the commutativity of the diagram, fix an arbitrary .x; p/ 2 U� ��n ��XU . Then,

N� ıf .x; p/D N�.p/D f 0.�.x/; N�.p//D f 0 ı N�.x; p/:

Hence, N� ıf D f 0 ı N�, as we wanted.

Lemma A.6 Let X and Y be two paracompact spaces , � WX ! Y be a continuous map , U D fU˛g˛2A
and V D fVˇ gˇ2B be open covers of X and Y respectively , based on arbitrary index sets A and B , and
� W A! B be a map such that

�.U˛/� V�.˛/

for any ˛ 2 A.
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Let NU and NV be the nerves of U and V , respectively. Observe that � induces the canonical simplicial
map N� W NU ! NV since U˛0 \ � � � \U˛n ¤ ∅ implies V�.˛0/ \ � � � \ V�.˛n/ ¤ ∅, and � induces the
canonical map N� W�XU !�YV mapping .x; p/ to .�.x/; N�.p//.

Then there exist homotopy equivalences g WX !�XU and g0 W Y !�YV which commute with � and N�
up to homotopy:

X �XU

Y �YV

g

� N�

g 0

Proof By Proposition A.4,

g WX !�XU ; x 7!
�
x; . ˛.x//˛2ƒ

�
;

is a homotopy equivalence between X and �XU , where f ˛g˛2A is a partition of unity subordinate to
the cover U . And,

g0 W Y !�YV ; y 7!
�
y; . 0ˇ .y//ˇ2B

�
;

is a homotopy equivalence between Y and �YV where f 0
ˇ
gˇ2B is a partition of unity subordinate to the

cover V .

Finally, we will show that N� ıg ' g0 ı �. Observe that, for arbitrary x 2X ,

N� ıg.x/D N�
�
x; . ˛.x//˛2ƒ

�
D
�
�.x/; N�

�
. ˛.x//˛2A

��
and

g0 ı �.x/D g0.�.x//D
�
�.x/;

�
 0ˇ .�.x//

�
ˇ2B

�
:

Hence, one can just construct a homotopy between N� ıg and g0 ı � by

h WX � Œ0; 1�!�YV ; .x; t/ 7!
�
�.x/; .1� t / N�

�
. ˛.x//˛2A

�
C t

�
 0ˇ .�.x//

�
ˇ2B

�
:

Here, note that the linear interpolation between N�
�
. ˛.x//˛2A

�
and

�
 0
ˇ
.�.x//

�
ˇ2B

is well defined
since, because of the properties of partition of unity and the assumption that �.U˛/� V�.˛/,

�.x/ 2
\

˛W ˛.x/>0

V�.˛/\
\

ˇ W 0
ˇ
.�.x//>0

Vˇ ;

so
f�.˛/ 2 B j  ˛.x/ > 0g[ fˇ 2 B j  

0
ˇ .�.x// > 0g

forms a simplex in NV .

Finally, one can prove the functorial nerve lemma.

Proof of Theorem 4.2 Combine Lemmas A.5 and A.6.

A.4 Proof of VRr.S
n/' Sn for r 2

�
0; arccos.�1=.nC 1//

�
Theorem 7.1 For any n 2 Z>0, we have VRr.Sn/' Sn for any r 2

�
0; arccos.�1=.nC 1//

�
.
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Since the case of S1 is already proved in [1], it is enough to prove the above theorem for Sn with n� 2.
Moreover, unlike the other parts of the paper, in this section we discriminate between the simplicial
complex VRr.Sn/ and its realization jVRr.Sn/j.

To prove Theorem 7.1, we will basically emulate the proof strategy of Hausmann in [50]. However, a
crucial modification will be necessary, which requires the following version of Jung’s theorem:

Definition A.7 Given a nonempty subset A�Sn, its geodesic convex hull convSn.A/ is defined to be the
set consisting of the union of all minimizing geodesics between pairs of points in A. It is clear that when
A is contained in an open hemisphere, convSn.A/D f…Sn.c/ j c 2 conv.A/g where …Sn.p/ WD p=kpk

for p ¤ 0 and …Sn.p/ WD 0 otherwise.

Theorem A.8 (a version of Jung’s theorem for spheres) For any n � 1, if A � Sn satisfies D WD
diam.A/ < arccos.�1=.nC 1//, then there must be u 2 convSn.A/ such that A� B .D/.u;Sn/, where

 W
h
0; arccos

�
�

1

nC1

�i
!R�0; D 7! arccos

�r
1C.nC1/ cosD

nC2

�
:

The version of Jung’s theorem stated above is different from the one considered by Katz [54, Lemma 2]
in the following two senses:

(1) We provide a precise formula for the radius  .D/ of the closed ball covering A, depending on
D D diam.A/. In particular, our version is stronger when D is small.

(2) On the contrary, if D is large (close to arccos.�1=.nC 1//), then the radius  .D/ can be as large
as �

2
. But �

2
is strictly greater number than � �arccos.�1=.nC1// which is the radius guaranteed

by Katz’s version. So, for the case when D is large, Katz’s version is stronger.

The proof of our version is somewhat similar to the classical proof in [37].

Remark A.9 The map  satisfies:

(1)  .D/� �
2

for any D 2 Œ0; arccos.�1=.nC 1//�.

(2)  is an increasing function.

(3) limD!0C  .D/D 0.

Proof of Theorem A.8 Without loss of generality, one can assume A is compact. Recall that one can
view Sn as a subset of RnC1,

Sn D f.x1; : : : ; xnC1/ 2RnC1 j x21 C � � �C x
2
nC1 D 1g:

Also, for any x; y 2 Sn, the Euclidean norm kx�yk and the geodesic distance dSn.x; y/ satisfy

kx�yk D
p
2� 2 cos.dSn.x; y//:
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Now, if we apply [37, Lemma 2.10.40] with P WD A� f1g, there are p 2RnC1 and c � 0 such that

(1) for all a 2 A, ka�pk � c;

(2) p belongs to the convex hull of fa 2 A j ka�pk D cg.

Therefore, there are nonnegative numbers �1; : : : ; �nC2 and a1; : : : ; anC2 2 fa 2 A j ka� xk D cg such
that

(1) p D
PnC2
iD1 �iai ;

(2) 1D
PnC2
iD1 �i .

Hence, one can easily check kpk � 1. Also, since

kai � aj k D
p
2� 2 cos.dSn.x; y//�

p
2� 2 cosD <

r
2C

2

nC1
;

p ¤ 0 by [32, Lemma 1]. Furthermore, for each j 2 f1; : : : ; nC 2g,

2c2 D

nC2X
iD1

�i
�
2c2� 2h.ai �p/; .aj �p/i

�
D

nC2X
iD1

�ik.ai �p/� .aj �p/k
2

D

nC2X
iD1

�ikai � aj k
2

�

X
i¤j

�i .2� 2 cosD/

D .1��j /.2� 2 cosD/:

So, by summation with respect to j , we have 2.nC 2/c2 � .nC 1/.2� 2 cosD/. Therefore,

c �

r
.nC 1/.1� cosD/

nC 2
< 1:

Finally, let u WD p=kpk. Then, u 2 convSn.A/ since p 2 conv.A/. Also, one can check that

ka�uk �

q
2� 2
p

1� c2 �

s
2� 2

r
1C.nC1/ cosD

nC2

for all a 2 A. This implies

dSn.a; u/� arccos
�r

1C.nC1/ cosD
nC2

�
D  .D/

for any a 2 A.
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A.4.1 The proof of Theorem 7.1 Choose a total ordering on the points of Sn. From now on, whenever
we describe a finite subset of Sn by fx0; : : : ; xqg, we suppose that x0 < x1 < � � �< xq . Let r be in the
interval

�
0; arccos.�1=.nC 1//

�
. We shall associate to each q–simplex � WD fx0; : : : ; xqg 2 VRr.Sn/ a

singular q–simplex T� W�q! Sn. Recall that the standard Euclidean q–simplex �q is defined as

�q WD

� qX
iD0

tiei

ˇ̌̌
ti 2 Œ0; 1� and

qX
iD0

ti D 1

�
:

This map T� is defined inductively as follows: Set T .e0/ D x0. Suppose that T� .z/ is defined for
y D

Pp�1
iD0 siei . Let z WD

Pp
iD0 tiei . If tp D 1, we pose T� .z/D xp. Otherwise, let

x WD T�

�
1

1�tp

p�1X
iD0

tiei

�
:

We define T� .z/ as the point on the unique shortest geodesic joining x to xp with

dSn.x; T� .z//D tp � dSn.x; xp/

(the unique shortest geodesic exists since convSn.fx0; : : : ; xqg/ must be contained in some open ball of
radius smaller than �

2
by Theorem A.8). To sum up, T� is defined inductively on �p for p � q as the

geodesic join of T� .�p�1/ with xp.

If � 0 is a face of � of dimension p, we form the euclidean sub–p–simplex �0 of �q formed by the pointsPq
iD0 tiei 2�q with ti D 0 if xi … � 0. One can check by induction on dim � 0 that

(8) T� 0 D T� j�0 :

By (8), the correspondence � 7! T� gives rise to a continuous map

T W jVRr.Sn/j ! Sn:

Here is a quick overview of how we will prove Theorem 7.1. Through Lemmas A.10 (which enables the
application of Hausmann’s “crushings” on sufficiently small subsets of spheres), A.11 and A.12, we will
prove that T induces an isomorphism at homology level. Also, by Lemma A.13, we will prove that T
also induces an isomorphism at the level of fundamental groups. Finally, the proof of Theorem 7.1 will
follow by invoking the homology Whitehead theorem.

Lemma A.10 Let x 2 Sn and y; z 2 B�=2.x;Sn/. Let y W Œ0; 1�! Sn and z W Œ0; 1�! Sn be the
unique shortest geodesics from x to y and x to z. Then

dSn.y.s/; z.s//� dSn.y.t/; z.t//

for any 0� s � t � 1.
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Proof Let dSn.x; y/D a and dSn.x; z/D b. Without loss of generality, one can assume a � b. By the
spherical law of cosine, one can compute

cos
�
dSn.y.t/; z.t//

�
D cos.ta/ cos.tb/C sin.ta/ sin.tb/ cos �

for any t 2 Œ0; 1�, where � is the angle between y and z at x.

Now, consider the map

f W Œ0; 1�!R�0; t 7! cos.ta/ cos.tb/C sin.ta/ sin.tb/ cos �:

To complete the proof, it is enough to show this f is nonincreasing. Observe that

f 0.t/D�a sin.ta/ cos.tb/� b cos.ta/ sin.tb/C a cos.ta/ sin.tb/ cos � C b sin.ta/ cos.tb/ cos �

� �a sin.ta/ cos.tb/� b cos.ta/ sin.tb/C a cos.ta/ sin.tb/C b sin.ta/ cos.tb/

�.a� b/ sin.ta/ cos.tb/C .a� b/ cos.ta/ sin.tb/

D�.a� b/ sin.t.a� b//

� 0:

Hence, f is nonincreasing.

The following lemma is an analogue of [50, Proposition 3.3]:

Lemma A.11 Let 0< r 0 � r � arccos.�1=.nC1//. Then the canonical inclusion VRr 0.Sn/�VRr.Sn/
induces an isomorphism on homology.

Proof Let � D fx0; : : : ; xqg be a simplex of VRr.Sn/ and let I� be the image of T� . If � 0 is a face
of � then I� 0 � I� , and thus VRı.I� 0/ is a subcomplex of VRı.I� / for all ı > 0. On the other hand,
VRı.I� / is acyclic for all ı > 0. Indeed, by Theorem A.8, there exists u2 I� such that I� �B�=2.u;Sn/.
So, one can consider the obvious crushing from I� to fxg via the shortest geodesics. So, VRı.I� /
must be contractible by Lemma A.10 and [50, Corollary 2.3]. These considerations show that for
0 < ı0 � ı � arccos.�1=.nC 1//, the correspondence

� 7! VRı 0.I� /

is an acyclic carrier ˆı;ı 0 from VRı.Sn/ to VRı 0.Sn/ (see [68, Section 13]).

We now use the acyclic carrier theorem [68, Theorem 13.3]. This implies that there exists an augmentation
preserving chain map � W C�.VRr.Sn//! C�.VRr 0.Sn// which is carried by ˆr;r 0 . Let � denote the
canonical inclusion from VRr 0.Sn/ into VRr.Sn/. Then �r 0;r 0 is an acyclic carrier for both � ı�� and
the identity of C�.VRr 0.Sn//. By the acyclic carrier theorem again, these two maps are chain homotopic
and thus � ı�� induces the identity on H�.VRr 0.Sn//. The same argument shows that �� ı � induces
the identity on H�.VRr.Sn// (using the acyclic carrier ˆr;r ).
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We will now compare the simplicial homology of VRr.Sn/ with the singular homology ofM . Formula (8)
shows that the correspondence � 7! T� gives rise to a chain map

T r] W C�.VRr.Sn//! SC�.Sn/;

where SC�.Sn/ denotes the singular chain complex of Sn.

The following lemma is an analogue of [50, Proposition 3.4]:

Lemma A.12 If 0<r � arccos.�1=.nC1// then the chain map T] induces an isomorphism on homology.

Proof We shall need a few accessory chain complexes. For ı > 0, denote by SC�.SnI ı/ the subchain
complexes of SC�.Sn/ based on singular simplexes � such that there exists u 2 Sn with the image
of � contained in the open ball Bı.u;Sn/. Recall that the inclusion SC�.SnI ı/ ,! SC�.Sn/ induces an
isomorphism on homology [50, Theorem 31.5].

We shall also use the ordered chain complex C 0�.VRr.Sn//. the group C 0q.VRr.Sn// is free abelian
group on .qC1/–tuples .x0; : : : ; xq/ such that fx0g[ � � � [ fxqg is a simplex of VRr.Sn/. One can view
that C�.VRr.Sn// as a subchain complex of C 0�.VRr.Sn// by associating a q–simplex fx0; : : : ; xqg of
VRr.Sn/ (with our convention that x0 < x1 < � � � < xq for the well-ordering on Sn) the .qC1/–tuple
.x0; : : : ; xq/. It is also classical that this inclusion is homology isomorphism [50, Theorem 3.6]. Observe
that the construction � 7!T� does not require that the vertices of � are all distinct. One can then define T�
for a basis element of C 0�.VRr.Sn// and thus extend to a chain map T r

]
WC 0�.VRr.Sn//!SC�.SnI .r//.

Now, choose r 0 < r such that  .r 0/� 1
2
r . One then has the commutative diagram

C 0�.VRr 0.Sn// SC�.SnI .r 0//

C 0�.VRr.Sn// SC�.SnI .r//

T r
0

]

T r
]

Let � W�q! Sn be a singular simplex whose image is contained in some open ball of radius  .r 0/. The
.qC1/–tuple .�.e0/; : : : ; �.eq// is element of C 0q.VRr.Sn//. This correspondence gives rise to a chain
map

R W SC�.SnI .r 0//! C 0�.VRr.Sn//:

The compositionRıT r
0

]
is equal to the canonical inclusion C 0�.VRr 0.Sn//�C 0�.VRr.Sn// which induces

a homotopy isomorphism by Lemma A.11. Let us now understand the composition

T r] ıR W SC�.SnI .r 0//! SC�.SnI .r//:

Let � W �q ! Sn be a singular simplex such that �.�q/ � B .r 0/.y;Sn/ for some y 2 Sn. Therefore,
� 0 WD T r

]
ıR.�/ also satisfies � 0.�q/� B .r 0/.y;Sn/ since  .r 0/ < �

2
. Hence, � and � 0 are canonically

homotopic (following, for each s 2�q , the shortest geodesic joining �.s/ to � 0.s/). As in the proof of
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the homotopy axiom for singular homology [50, Section 30], these provide a chain homotopy between
T r
]
ıR and the inclusion SC�.SnI .r 0//� SC�.SnI .r//. As said before, this inclusion is known to

induce a homology isomorphism. Therefore, T r
]
ıR induces an isomorphism on homology.

We have shown that both R ıT r
0

]
and T r

]
ıR induce homology isomorphisms. Therefore, T r

]
induces a

morphism both injective and surjective, hence a homology isomorphism.

Lemma A.13 If 0 < r � arccos.�1=.nC 1//, the map

T W jVRr.Sn/j ! Sn

induces an isomorphism on the fundamental groups.

Proof Let  W Œ0; 1�! Sn represent an element of �1.Sn/. Choose large enough positive integer N
such that 1=N is smaller than the Lebesgue number for the covering f�1.Br=2.x;Sn//gx2Sn . Then
dSn

�
.k=N/; ..kC 1/=N /

�
< r for any k D 0; : : : ; N � 1. Hence the path  jŒ.k=N/;..kC1/=N/� is then

canonically homotopic to a parametrization of the shortest geodesic joining .k=N/ to ..kC 1/=N /.
This shows that  is homotopic to a composition  0 of geodesics in open balls of radius 1

2
r . Such a path  0

represents the image of T of an element of �1.jVRr.Sn/j/, the latter being identified with the edge-path
group of the simplicial complex VRr.Sn/ [78, pages 134–139]. Thus, �1T W �1.jVRr.Sn/j/! �1.Sn/

is surjective.

Now, to prove injectivity, suppose �1T .Œ˛�/ D 0 where ˛ W Œ0; 1� ! jVRr.Sn/j is a continuous map
satisfying ˛.0/D ˛.1/. Moreover, again by [78, pages 134–139], one can assume ˛ is induced by an
edge-path of VRr.Sn/. In other words, there is a positive integer N , and x0; : : : ; xN�1; xN D x0 2 Sn

such that dSn.xi ; xiC1/ < r and ˛.i=N /D xi for i D 0; : : : ; N � 1 (here, we view xi as a 0–simplex).
Next, by the assumption, ŒT ı˛�D �1T .Œ˛�/D 0. This implies that there is a homotopy map

H W Œ0; 1�� Œ0; 1�! Sn

such that H.t; 1/D T ı˛.t/ and H.t; 0/DH.0; s/DH.1; s/D x0 for any t; s 2 Œ0; 1�. Next, choose a
large enough positive integer N 0 such that if we triangulate Œ0; 1�� Œ0; 1� with vertices .k=N 0; l=N 0/ for
k; l D 0; : : : ; N 0, each triangle is contained in one of fH�1.Br=2.x;Sn//gx2Sn . Then

dSn
�
H.k=N 0; l=N 0/;H.k0=N 0; l 0=N 0/

�
< r

whenever
�
.k=N 0; l=N 0/; .k0=N 0; l 0=N 0/

�
is an edge of the triangulation. Because of this observation,

one can prove that the edge path H.0; 1/;H.1=N 0; 1/; : : : ;H..N 0 � 1/=N 0; 1/;H.1; 1/ is equivalent
to x0. Also, it is easy to check that two edge paths H.0; 1/;H.1=N 0; 1/; : : : ;H..N 0�1/=N 0; 1/;H.1; 1/
and x0; x1; : : : ; xN�1; xN are equivalent. This means that Œ˛�D 0. So �1T is injective.

We are now in position to prove Theorem 7.1.
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Proof of Theorem 7.1 As mentioned in the beginning of this section, one can assume n � 2. Hence,
Sn is simply connected. Therefore, by Lemma A.13, jVRr.Sn/j is also simply connected. Also, by
Lemma A.12 and the isomorphism between simplicial and singular homology [68, Section 34], T induces
an isomorphism on homology. Therefore, T is a homotopy equivalence by [49, Corollary 4.33].
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Slopes and concordance of links

ALEX DEGTYAREV

VINCENT FLORENS

ANA G LECUONA

The slope is an isotopy invariant of colored links with a distinguished component, initially introduced
by the authors to describe an extra correction term in the computation of the signature of the splice. It
appeared to be closely related to several classical invariants, such as the Conway potential function or the
Kojima �–function (defined for two-components links). We prove that the slope is invariant under colored
concordance of links. Besides, we present a formula to compute the slope in terms of C–complexes and
generalized Seifert forms.

57K10, 57K14, 57N70

1 Introduction

The slope is an isotopy invariant defined for so-called .1; �/–colored links K [L (with a distinguished
component K given color 0) in rational homology spheres. It is closely related to several classical
invariants (see Degtyarev, Florens and Lecuona [11; 12; 13]), such as the Conway potential and Kojima–
Yamasaki �–function (defined for two-components links; see Cochran [5], Jin [14] and Kojima and
Yamasaki [16]). To certain C�–valued characters of the group �1.S � L/, viz those trivial on ŒK�,
see (2.2), the slope associates a (possibly infinite) complex number. The torus of characters preserving
the coloring is naturally identified with the complex torus .C�/�, and the slope is a function on (a Zariski
open subset of) the variety A.K=L/� .C�/� of admissible characters. This function is rational away
from a certain singular locus determined by the Alexander module of K [L; however, in general, the
values of the slope are not determined by the Alexander module.

Our aim here is to show that the slope is invariant under colored topological concordance of links (see
Theorem 3.2), and to present a method to compute the slope in terms of the Seifert forms of the colored
link L with an extra piece of data; see Theorem 4.3. In the case of algebraically split links of two
components, the invariance of the slope under colored concordance was known for certain values, viz
those where it coincides with the �–function [13, Corollary 3.24]. We show that, outside a certain subset
of .C�/�, the Knotennullstellen — see Conway, Nagel and Toffoli [7] and Nagel and Powell [19] —
(topologically) concordant links have the same slope. More generally, for algebraically split links with an
arbitrary number of components, our result implies that a certain quotient of the Conway functions of

© 2024 MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution License 4.0 (CC BY).
Open Access made possible by subscribing institutions via Subscribe to Open.
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K [L and L is invariant under colored concordance of K [L (see Corollary 3.4), whereas the Conway
functions themselves are not concordance invariants; see Kawauchi [15].

One can compute the slope directly from the definition using the Fox calculus [13, Section 3.2]. While
allowing for easy computer-assisted computations, this approach is not particularly useful when dealing
with families of examples. In certain cases, the slope can also be computed as a ratio of the Conway
polynomials [13, Theorem 3.1], but this formula is inconclusive at the common roots of the numerator and
denominator (l’Hôpital’s rule does not work); in particular, it leaves wide open the most interesting case,
where both polynomials vanish identically. We suggest yet another method of computing the slope, using
C–complexes. These were introduced by Cooper [8] and extended, in very recent years, by different
groups to compute many link invariants (Cimasoni [3], Cimasoni and Florens [4], Conway, Friedl and
Toffoli [6] and Merz [18] among others) and to study their properties (Amundsen, Anderson, Davis and
Guyer [1], Davis, Martin and Otto [9] and Davis and Roth [10] among others).

The computation of the slope using C–complexes is particularly powerful when dealing with families of
examples as in [12, Example 5.5; 13, Example 3.28]. For the moment, our formula only works in the
special case of K algebraically unlinked from each monochrome sublink Li . For an algebraically split
two-component link, the C–complex used in the computation is merely a Seifert surface.

The paper is organized as follows. In Section 2 we recall the construction and the basic properties of the
slope. Section 3 is devoted to the proof of the concordance invariance. In Section 4 the computation of
the slope in terms of (generalized) Seifert forms is given, and the main formula is proved in Section 5.
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Lecuona was partially supported by the EPSRC NIA grant EP/T028408/1.

2 Slopes

A �–colored link is an oriented link L in S3 equipped with a surjective map �0.L/� f1; : : : ; �g, called
a coloring. The union of the components of L given the color i is a monochrome sublink denoted by
Li for all i D 1; : : : ; �. Each link has a canonical maximal coloring, where each component is given a
separate color. In this special case, each Li is a knot.

We denote by X WD S3 X TL the complement of a small open tubular neighborhood of L. The group
H1.X/ is free abelian, generated by the classes mC of the meridians of the components C � L. By
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convention, mC is oriented so that mC ı `C D 1 in @TC , where `C is a longitude and the orientation on
@TC is that induced from X . The coloring induces an epimorphism

' W �1.X/�H WD

�M
iD1

Zti

sending mC to ti whenever C � Li . A multiplicative character ! W �1.X/! C� is determined by its
values on the meridians, and the torus of characters preserving the coloring (those that factor through ')
is naturally identified with the complex torus .C�/�. Through this identification, we set !i WD !.'.ti //
and, with a certain abuse of the language, speak about a character ! D .!1; : : : ; !�/. We define

!�1 WD .!�11 ; : : : ; !�1� /; x! WD .x!1; : : : ; x!�/ and !� WD x!�1:

A character ! is called unitary if !� D !, ie j!i j D 1 for all i D 1; : : : ; �. Unitary characters constitute
a torus .S1/� � .C�/�.

Given a topological space X and a multiplicative character ! W�1.X/!C�, we denote by H�.X IC.!//
the homology of X with coefficients in the local system C.!/ twisted by !; see [13, Section 2] for
more details.

We consider mainly colored links with a distinguished component. They are .1; �/–colored links, defined
as .1C�/–colored links of the form

K [LDK [L1[ � � � [L�;

where the knot K is the only component given the distinguished color 0. The linking vector of a
.1; �/–colored link is `k.K;L/ WD .�1; : : : ; ��/ 2 Z�, where �i WD `k.K;Li /.

Definition 2.1 A character ! W �1.X/! C� on a .1; �/–colored link K [L is called admissible if
!.ŒK�/D 1; it is called nonvanishing if !i ¤ 1 for all i D 1; : : : ; �.

The variety of admissible characters is denoted by A.K=L/, and Aı.K=L/�A.K=L/ is the (Zariski)
open subset of admissible nonvanishing characters. Letting � WD `k.K;L/ we have

.2.2/ A.K=L/D f! 2 .C�/� j !� D 1g and Aı.K=L/DA.K=L/\ .C� X 1/�;

where !� WD
Q
!
�i
i . In particular, if �D 0, then Aı.K=L/D .C� X 1/�.

Let XK D S3 X TK[L be the complement of an open tubular neighborhood of K [L. We abbreviate
m WD mK and ` WD `K , where `K is the preferred longitude, also called Seifert longitude, that is, the
unique longitude with zero linking number with K.

Remark 2.3 Any character ! 2 .C�/� extends to a natural character �1.XK/!C� sending m to 1;
for short, this extension is also denoted by !. In this language, the original character ! is admissible if
and only if !.`/D 1.

Algebraic & Geometric Topology, Volume 24 (2024)
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We denote by @KXK D @TK the intersection of @XK with the closure of TK and consider the inclusion

i W @KXK ,! @XK ,!XK :

If ! 2Aı.K=L/, the homomorphism

.2.4/ i� WH1.@KXK IC.!//
'
�!H1.@XK IC.!//!H1.XK IC.!//

can be regarded as that induced by the inclusion @XK ,!XK of the boundary, andH1.@KXK IC.!//'C2

is generated by the meridian m and Seifert longitude `.

Definition 2.5 [13] If Ker i� in (2.4) has dimension one, it is generated by a single vector amC b` for
some Œa W b� 2 P1.C/, and the slope of K [L at ! 2Aı.K=L/ is defined as the quotient

.K=L/.!/ WD �
a

b
2C[1:

This notion is extended to all characters ! 2A.K=L/ by “patching” the components Li on which !i D 1.
(This operation results in patching with solid tori the corresponding boundary components of the manifold
X WD S3 XTL.)

Proposition 2.6 [13] The slope at a character ! 2 Aı.K=L/ is well defined if and only if the two
inclusion homomorphisms H1.KIC.�//!H1.S

3XLIC.�//, for � D ! or !�, are either both trivial or
both nontrivial. The slope is finite , .K=L/.!/ 2C, if and only if both homomorphisms are trivial.

Note also (see [13, Section 2.4] for details) that the slope is always defined on a unitary character
! 2 .S1/�: in this case, by twisted Poincaré duality, Ker i� is a Lagrangian subspace of

H1.@KXK IC.!//DH1.@XK IC.!//;

see (2.4), with respect to the twisted intersection form and, hence, dim Ker i� D 1.

Recall (see eg [17]) that the characteristic varieties associated with a �–colored link L are the jump loci

Vr.L/ WD f! 2 .C�/� j dimH1.X IC.!//> rg for r > 0:

They are indeed nested algebraic subvarieties:

.2.7/ .C�/� D V0 � V1 � V2 � � � � with V1.L/D f! j�L.!/D 0g:

The first proper characteristic variety, ie the first member Vr of the sequence (2.7) such that Vr ¤ .C�/�,
is denoted by Vmax WD Vmax.L/. This variety depends on L only, and, if � WD `k.K;L/D 0, it is a proper
algebraic subvariety of the torus A.K=L/D .C�/� of admissible characters.

Remark 2.8 If � WD `k.K;L/¤ 0, the situation is slightly more involved. Let �D n�0, where �0 2 Z�

is a primitive vector. In view of (2.2), the variety A.K=L/ of admissible characters (depending on �
only) splits over Q into irreducible components

Ad WD fˆd .!�
0

/D 0g for d jn;

Algebraic & Geometric Topology, Volume 24 (2024)
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where ˆd stands for the cyclotomic polynomial, and we should speak about a separate first proper
characteristic variety V�;dmax .L/¨Ad for each component Ad . In general, V�;dmax .L/¤ Vmax.L/\Ad as
Vmax.L/ may contain Ad . To keep the notation uniform, we occasionally extend it to the case �D 0 via
A0 WDA.K=L/ and V0;0max.L/ WD Vmax.L/.

Theorem 2.9 [13, Theorems 3.19 and 3.21] Let � WD `k.K;L/. For each rational component Ad �
A.K=L/, the slope restricts to a rational function , possibly identical1, on the complement Aı

d
XV�;dmax .L/.

In other words , the slope gives rise to an element of the extended function field Q.Ad /[1.

If V�;dmax .L/D V1.L/\Ad , ie �L does not vanish identically on Ad , one has

.K=L/.!/D�
r 0.1;

p
!/

2rL.
p
!/
2C[1;

where r 0 is the derivative of rK[L.t; � / with respect to t .

3 Concordance of links

Two oriented �–colored links L0 and L1 are concordant if there exists a collection of properly embedded
disjoint locally flat cylinders A WD A1 t � � � tA� in S3 � Œ0; 1� such that

@Ai \ .S
3
� 0/D�L0i and @Ai \ .S

3
� 1/D L1i

for all i D 1; : : : ; �. (In general, each Ai is a union of cylinders.)

3.1 The concordance invariance

In the study of knot and link concordance, there is a subset of the complex numbers of particular
relevance, the so-called Knotennullstellen. This was first introduced in [19] for knots and extended to the
multicomponent link case in [7]. For our purposes, we only need the following definition. Consider the
subset of Laurent polynomials

U WD fp 2 ZŒt˙11 ; : : : ; t˙1� � j p.1; : : : ; 1/D˙1g:

An element ! 2A.K=L/ is called a concordance root if there is a polynomial p 2U such that p.!/D 0.
We denote by Ac.K=L/�A.K=L/ the subset of admissible characters that are not concordance roots,
and abbreviate Aıc.K=L/ WDAc.K=L/\Aı.K=L/. Note that these sets are larger than the set TŠ used
in [7], since we allow for nonunitary characters.

Remark 3.1 If `k.K;L/ D 0, the set Ac.K=L/ is dense in A.K=L/ D .C�/�, as it is a countable
intersection of Zariski open sets. In general, Ac.K=L/ is only dense in the components Ad (see
Remark 2.8) for which d is a prime power (or d D 1 as a special case). Indeed, if d is not a prime power,
then ˆd . � / 2 U and, hence each point of Ad is a concordance root.

Algebraic & Geometric Topology, Volume 24 (2024)



1106 Alex Degtyarev, Vincent Florens and Ana G Lecuona

Theorem 3.2 Let K0 [L0 and K1 [L1 be two concordant .1; �/–colored links. Then Ac.K0=L0/
and Ac.K1=L1/ coincide as subsets of .C�/� and

.K0=L0/.!/D .K1=L1/.!/

for any character ! 2Ac.K0=L0/.

The proof of Theorem 3.2 is postponed till Section 3.2. The next few corollaries are direct consequences
of Theorems 3.2 and 4.3.

Corollary 3.3 Let K0[L0 and K1[L1 be concordant .1; �/–colored links such that `k.Ks; Ls/D 0
for s D 0; 1. Then the slopes K0=L0 and K1=L1 are equal as elements of the extended function field
Q..C�/�/[1. In particular , .K0=L0/.!/D .K1=L1/.!/ for each character ! in the complement of
the (common) first proper characteristic variety Vmax.L

0/D Vmax.L
1/.

Proof If L0 and L1 are concordant, their nullities coincide (see [4, Theorem 7.1]); hence, so do their first
proper characteristic varieties. Therefore, the statement is an immediate consequence of Theorem 3.2, the
rationality of the slope given by Theorem 2.9, and the density of Ac.K=L/ discussed in Remark 3.1.

Corollary 3.4 (of Corollary 3.3 and Theorem 2.9) Let K0 [ L0 and K1 [ L1 be two concordant
.1; �/–colored links such that `k.Ks; Ls/D 0 and �Ls ¥ 0 for s D 0; 1. Then

r 0
K0[L0

.1; Nt /

rL0.Nt /
D
r 0
K1[L1

.1; Nt /

rL1.Nt /
for Nt WD .t1; : : : ; t�/:

Remark 3.5 A priori, the conclusions of Corollaries 3.3 or 3.4 do not need to hold if � WD `k.Ks; Ls/¤0:
it is not even obvious that the first proper varieties V�;dmax .L

s/ or even their indices in (2.7) should coincide
if d is not a prime power. (Note though that we do not know any counterexample, as that would require
going far beyond the known link tables.) The precise statements, based on Remarks 2.8 and 3.1 and
Theorems 3.2 and 2.9, are left to the reader.

Recall that a link is slice if it is concordant to an unlink. It is a boundary link if the components bound a
collection of mutually disjoint Seifert surfaces in S3. For any coloring of the link L, the slope obstruct L
being slice, or concordant to any boundary link. Indeed, the two following corollaries are available for
any coloring:

Corollary 3.6 If K [L is a slice link , then .K=L/.!/D 0 for all ! in Ac.K=L/.

Corollary 3.7 If K [L is concordant to a boundary link , then .K=L/.!/D 0 for all ! in Ac.K=L/.

Corollary 3.7 is in fact a particular case of the following statement (see [4] or Section 4.1 for the definition
of a C–complex):

Corollary 3.8 If K [L is concordant to a .1; �/–colored link K 0[L0 admitting a C–complex F for L
and a Seifert surface S for K disjoint from F , then .K=L/.!/D 0 for all ! 2Ac.K=L/.
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Corollary 3.8 is actually a consequence of both Theorems 3.2 and 4.3; see Example 4.5.

The following example illustrates that the values of the slope at concordance roots, that is outside the set
Ac.K=L/, might not be invariant under concordance. We observe a similar pattern with knot signatures:
Knotennullstelle unitary characters are precisely where they fail to be concordance invariants [2; 19].
See [7] for the case of colored links.

Example 3.9 LetK[L be the .1; 1/–colored two-component slice link L10n36, whereK is the unknotted
component. ThenrK[L.t; t1/D0 andrL.t1/D .t1�1Ct�11 /2, so by [13, Theorem 3.21], .K=L/.!/D0
unless! is one of the two roots ˛˙ ofrL, which agrees with Theorem 3.2 and Corollary 3.4. (By definition,
˛˙ …Ac.K=L/.) A computation using Fox calculus (see [13, Section 3.2]) gives us .K=L/.˛˙/D1.

In the proof of Theorem 3.2 we will need the following lemma. We state it in our more general setting of
arbitrary, not necessarily unitary, characters, but the proof found in [7] extends literally as it relies on
simple homological algebra.

Lemma 3.10 [7, Lemma 2.16] Let k > 0 be an integer. If .X; Y / is a CW–pair over BZ� such that
Hi .X; Y IZ/D 0 for all 0 6 i 6 k, then also Hi .X; Y IC.!//D 0 for all 0 6 i 6 k and any character
! 2 .C�/� that is not a concordance root.

3.2 Proof of Theorem 3.2

To save space, we abbreviate H!
� .�/ WDH�.�IC.!//.

LetD[A�S3� Œ0; 1� be the concordance, @DD�K0tK1, and consider an open tubular neighborhood
TD[A of D [ A with a fixed trivialization extending Seifert framings (in the tubular neighborhoods
TKs[Ls WD TD[A\ .S

3 � s/ for s D 0; 1) of the links. Define

U WD S3 � Œ0; 1�XTA and UK WD S
3
� Œ0; 1�XTD[A;

and let
Xs WD U \ .S3 � s/ and XsK WD UK \ .S

3
� s/

for s D 0; 1. The inclusions XsK ,! UK send the meridians of Ks [Ls to those of D[A. The relative
Mayer–Vietoris exact sequences applied to

.S3 � I; S3 � s/D .UK ; X
s
K/[ .TD[A; TKs[Ls /D .U;X

s/[ .TA; TLs /

(where T� stands for the closure of a tubular neighborhood T�) give us

.3.11/ H�.UK ; X
s
K/DH�.U;X

s/D 0

for s D 0; 1. In particular, the inclusions XsK ,! UK induce isomorphisms

.3.12/ H1.X
0
K/
'
�!H1.UK/

'
 �H1.X

1
K/

preserving the meridians, and thus identify the three character tori. Since the trivialization of TD
homotopes `0 to `1, we have Ac.K0=L0/DAc.K1=L1/; see Remark 2.3.
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From now on, patching, if necessary, a few components of both links (and the concordance), we can
assume the character ! nonvanishing, ie ! 2Aıc.K0=L0/. Referring to Remark 2.3 and using the above
identification of the character tori, we can regard ! as a homomorphism �1.UK/! C�. The twisted
Mayer–Vietoris sequence applied to the pairs

.U;Xs/D .UK ; X
s
K/[ .TD; TKs /

gives us, for all i ,

!H!
i .D �S

1; Ks �S1/!H!
i .UK ; X

s
K/˚H

!
i .TD; TKs /!H!

i .U;X
s/!;

where f � g �S1 are the meridians of Ks and D, on which ! is trivial. Since

H!
� .D �S

1; Ks �S1/D 0 and H!
� .UK ; X

s
K/DH

!
� .U;X

s/D 0;

the latter by Lemma 3.10 and (3.11), we obtain H!
� .UK ; X

s
K/D 0 and the inclusions XsK ,! UK induce

isomorphisms
H!
1 .X

0
K/
'
�!H!

1 .UK/
'
 �H!

1 .X
1
K/

preserving the meridians and, similar to (3.12), taking the class of `0 to that of `1. It follows that
am0C b`0 D 0 2H!

1 .X
0
K/ if and only if am1C b`1 D 0 2H!

1 .X
1
K/.

4 Computation with Seifert forms

For the remainder of the paper, unless specified otherwise, we abbreviate

H�.�/ WDH�.�IC/; H�.�/ WDH�.�IC/ and H!
� .�/DH�.�IC.!//:

For a character ! 2 .C� X 1/�, we also abbreviate z!i WD .1�!�1i / for 16 i 6 �.

4.1 Seifert forms

Let LD L1[ � � � [L� � be an oriented �–colored link in S3. A C–complex F for L [3] is a collection
of Seifert surfaces F1; : : : ; F� for the sublinks L1; : : : ; L� that intersect only along (a finite number of)
clasps. Each class in H1.F IZ/ can be represented by a union of proper loops, ie loops ˛ W S1! F such
that the pullback of each clasp is a single (possibly empty) segment. We routinely identify classes, loops
and their images.

Given a vector " 2 f˙1g�, the push-off ˛" of a proper loop ˛ is the loop in S3 XF obtained by a slight
shift of ˛ off each surface Fi in the direction of "i . (If ˛ runs along a clasp c� Fi \Fj , the shift respects
both directions "i and "j .) Due to [4], this operation gives rise to a well-defined homomorphism

‚" WH1.F IZ/!H1.S
3
XF IZ/DH 1.F IZ/

(we use Alexander duality), which can be computed by means of the Seifert forms

�" WH1.F IZ/˝H1.F IZ/! Z given by ˛˝ˇ 7! `k.˛; ˇ"/:
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Now, given a character ! 2 .C� X 1/�, we define

….!/ WD

�Y
iD1

.1�!i / 2C� and A.!/ WD
X

"2f˙1g�

�Y
iD1

"i!
.1�"i /=2
i ‚" WH1.F /!H 1.F /

and let

.4.1/ E.!/ WD….!�1/�1A.!�1/ WH1.F /!H 1.F /:

Throughout the text we will use the shorthand KerE.!/? to denote the subset of H 1.F / defined as
Ann KerE.!/. It is straightforward that

E�.!/DE.!�1/ and E.!/DE.x!/;

where E� is the adjoint in the sense of linear algebra over an arbitrary field, and for a linear map
L W U ˝C! V ˝C between two complexified real vector spaces, we let L W u 7! L. Nu/. In particular, if
! 2 .S1 X 1/� is unitary, the operator E.!/ is Hermitian, ie E�.!/DE.!/; thus it has a well-defined
signature. Furthermore, if ! is unitary, the operator E.!�1/ differs from H.!/ considered in [4] by the
positive real constant ….!/�1….x!/�1; hence, the two have the same signature and nullity and E can be
used instead of H in the following theorem:

Theorem 4.2 [4] If ! 2 .S1 X 1/� is a nonvanishing unitary character , then �L.!/D signE.!/ and
�L.!/D dim KerE.!/C b0.F /� 1.

In the case of a 1–colored link L, the C–complex reduces to a single Seifert surface F , so that � WD �C

and ‚ WD‚C are the classical Seifert form and operator, respectively. Since, in this case, we obviously
have �� D �� and hence ‚� D‚�, the operator E takes the classical form

E.!�1/D .1�!/�1.‚�!‚�/:

4.2 The statement

Let K [L be a .1; �/–colored link. Assume that �, the linking vector between K and L, vanishes and
fix a C–complex F for L disjoint from K. By Alexander duality H1.S3XF IZ/DH 1.F IZ/, there is a
well-defined cohomology class

� WD ŒK� 2H 1.F IZ/�H 1.F /; � W ˛ 7! `k.˛;K/:

Theorem 4.3 Under the above assumptions , for any character ! 2 Aı.K=L/, consider the operator
E.!/ WH1.F /!H 1.F /; see (4.1). Then

.K=L/.!/D

�
�h˛; �i if � 2 ImE.!/\KerE.!/?;
1 if � … ImE.!/[KerE.!/?I

otherwise , .K=L/.!/ is undefined. In the first case , ˛ 2H1.F / is any class such that E.!/.˛/D �.

Example 4.4 Consider the Whitehead link K [L with the C–complex F depicted in Figure 1, which
is simply a genus-one Seifert surface for the knot L. We want to compute the slope .K=L/.!/ using
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a

K

a0

b

b0

L

F

Figure 1: The Whitehead link K [L with a C–complex F for L (a Seifert surface in this case)
and chosen bases fa; bg and fa0; b0g of H1.F / and H1.S3 XF /DH 1.F /, respectively.

Theorem 4.3, and to this end we fix the basis fa; bg of H1.F / and fa0; b0g of H1.S3 XF / D H 1.F /

which are illustrated in Figure 1. With respect to these bases,

�C D

�
0 0

1 1

�
; A.!/D

�
0 �!

1 1�!

�
and E.!/D

�
0 .1�!/�1

.1�!�1/�1 1

�
:

It is evident from the figure that � is the same class as a0. One can easily compute a class ˛ 2H1.F /
such that E.!/.˛/D �:

E.!/

�
.1�!�1/.! � 1/

1�!

�
D

�
1

0

�
D �:

Finally, we calculate the slope as �h˛; �i, that is,

.K=L/.!/D .1�!/.1�!�1/;

which coincides with previous computations using Fox calculus; see [13].

Example 4.5 (see Corollary 3.8) LetK[L be a .1; �/–colored link admitting aC–complex F forL and
a Seifert surface S forK disjoint from F . Obviously �D 0 and then .K=L/.!/D 0 for all ! 2Aı.K=L/.
This implies that, by Theorem 3.2, for any .1; �/–colored link concordant to a .1; �/–colored link
bounding a disjoint C–complex and Seifert surface, the slope vanishes at any ! 2Ac.K=L/.

5 Proof of Theorem 4.3

5.1 Geometry of C –complexes

The notation and maps introduced in this section are illustrated in Figure 2. Let L be a �–colored link
and F a C–complex for L. Given a pair i ¤ j of indices, let Cij WD Fi \Fj and Cij WD �0.Cij / be the
set of clasps in the intersection of the surfaces Fi and Fj . Also define C WD

S
Cij and C WD

S
Cij .

By convention, each clasp c 2 Cij is oriented from c\Li to c\Lj , if i < j . The sign of c, denoted by
sg c 2 f˙1g, is the local intersection index Li ıFj D Lj ıFi at the corresponding endpoint of c.
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˛CC1

‚�C˛�‚CC˛

L1 L2

F1 F2

˛

b

c

C C

c1 c2

b1 b2

Figure 2: This minimal example shows a two–colored link LD L1[L2 bounding a C–complex
with two positive claps. In this example CD C12 D fc; bg. The lined subset is the open set V with
two connected components Vc and Vb. The relative class ˛CC1 2H1.F

ı
1 ; @LF

ı
1 / and the element

‚�C˛�‚CC˛ D relCC1 ˛ 2H 1.F / are identified through the isomorphism in Lemma 5.1.

Fix a regular open neighborhood V � F of the union of all clasps, denote by V its closure, and let
F ıi WD Fi XV for all i . Then @F ıi D @LF

ı
i [ @CF

ı
i , where

@LF
ı
i WD @F

ı
i \L and @CF

ı
i WD @F

ı
i \V :

Given a clasp c 2 Cij , let Vc be the connected component of V containing c, and let ci 2H1.F ıi ; @LF
ı
i /

be the arc F ıi \Vc, with its boundary orientation induced from V , as well as the class realized by this arc.

The following statement is a formalization of the intuitive fact that any class in H 1.F / can be represented
as the intersection index with a certain surface S � S3 such that @S\F D¿; on the other hand, any such
surface can be made disjoint from C and, when doing so, each clasp can be “circumvented” in two ways.

In the lengthy computation that follows, we follow the common practice and treat canonically isomorphic
objects as equal, thus simplifying the notation.

Lemma 5.1 The intersection pairing establishes an isomorphism

H 1.F /D

�M
iD1

H1.F
ı
i ; @LF

ı
i /=fci C cj D 0 j c 2 Cij for 16 i < j 6 �g:

Proof Since all groups involved are torsion free, the statement follows from the exact sequence of the
pair .F; V /

0!H1.F /!H1.F; V /!H0.V /!H0.F /;
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ci

Fi Fj

relij ˛

˛

C C

ci

Fi Fj

relij ˛

˛

C �

Figure 3: The element ˛ 2H1.F / is depicted with both possible orientations. The orientation of
the element relij ˛ depends on the sign of the clasp, as illustrated. Note that the element relij ˛ is
by definition inH 1.F /: the green curve depicted is a representative of that element via Lemma 5.1.

where H1.F; V / D
L
i H1.F

ı
i ; @CF

ı
i /, and applying Poincaré–Lefschetz duality H 1.F ıi ; @CF

ı
i / D

H1.F
ı
i ; @LF

ı
i /.

Let "2 f˙1g�. Pick a class ˛ 2H1.F /, represent it by a proper loop, and denote by ˛"i 2H1.F
ı
i ; @LF

ı
i /

the class realized by the arc ˛ \ Fi pushed off each clasp c 2 Cij in the direction prescribed by "j .
Passing further to the image in H 1.F /, see Lemma 5.1, we obtain a well-defined homomorphism
rel"i WH1.F /!H 1.F /. It is easily seen that rel"i is independent of "i . In fact,

rel"i ˛ D‚
"Œ�i�˛�‚"ŒCi�˛;

where "Œ˙i � is obtained from " by replacing the i th component by ˙1. Furthermore, for an index j ¤ i ,

.5.2/ rel"ŒCj �i ˛� rel"Œ�j �i ˛ D relij ˛ WD
X
c2Cij

sg c � h˛; ci ici :

For the reader’s convenience a local illustration is presented in Figure 3. (Note that h˛; ci ici Dh˛; cj icj for
each clasp c 2 Cij , and hence relij ˛ D relj i ˛ as elements of H 1.F /.) Let � WD Œ�1; : : : ;�1� 2 f˙1g�.
Then, applying the last two equations inductively, for each " 2 f˙1g� we get

.5.3/ ‚"˛�‚�˛ D�
X
i

"i>0

rel�i ˛�
X
i<j

"iD"j>0

relij ˛:

Remark 5.4 It follows from (5.3) that, as in the classical case of a single Seifert surface, all operators ‚"

are almost determined by any one of them, as the relativization homomorphisms rel"i and relij are intrinsic
to the abstract C–complex F with prescribed signs sg c of the clasps. In the classical case, (5.3) takes the
well-known form

‚��‚D rel WH1.F /!H1.F; @F /DH
1.F /;

which explains the notation rel.

Now, given a character ! 2 .C� X 1/�, observe that

A.!/D….!/‚�C
X

"2f˙1g�

�Y
iD1

"i!
.1�"i /=2
i .‚"�‚�/:
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Hence, using (5.3), rearranging the terms, and using the definition z!i D 1�!�1i , we arrive at

.5.5/ E.!/D‚��R.!/ for R.!/ WD
�X
iD1

z!�1i rel�i C
X

16i<j6�

z!�1i z!
�1
j relij :

5.2 Reference sheets

We briefly recall how twisted homology can be computed via coverings. Consider a connected CW–
complex X , an abelian group G, and an epimorphism ' W �1.X/�H1.X IZ/�G. The kernel of ',
which is a normal subgroup of �1.X/, gives rise to a Galois G–covering zX ! X , where the deck
transformation g 2G sends a point Qx 2 zX to the other endpoint of the arc that begins at Qx and covers a
loop representing an element of '�1.g/. This model induces the structure of a ZŒG�–module on C�. zX/
and, for each multiplicative character ! WG!C�, there is a canonical chain isomorphism of complexes
of C.!/–modules

C�.X IC.!//' C�. zX/˝ZG C.!/:

Occasionally, the homomorphism ' WH1.X IZ/!G might not necessarily be surjective. (Typically, this
situation occurs when we restrict the construction to a subcomplex Y �X .) Then, letting G0 WD Im', the
G–covering zX consists of ŒG WG0� connected components, each isomorphic to the G0–covering zX 0, and

C�. zX/' C�. zX
0/˝ZG0 ZG:

However, this isomorphism is no longer canonical; to make it so, we need to fix a reference component
zX 0 � zX . An important special case is that where the restriction of ! to X is trivial. Then we have an

isomorphism

H�.C�. zX/˝ZG C.!//'H!
� .X/DH�.X/;

which is canonical provided that a reference sheet X in the trivial covering zX !X is fixed.

Returning to the original setup, when dealing with the twisted homology we need to avoid the ramification
locus L. Hence, we fix pairwise disjoint tubular neighborhoods Ti � Li and, denoting by Ti the closure
of Ti and letting T WD

S
i Ti and T WD

S
i Ti , introduce

SL WD S
3
XT; FL WD .F [T /XT � SL; CL WD C XT; VL WD V XT and @LVL WD VL\T I

see Figure 4. Here V � C is the neighborhood introduced in Section 5.1, and we assume the radius of T
is small enough that Fi \Tj � V for each i ¤ j .

Formally, we also need to shrink the surfaces F ıi to F ıi XT , changing the boundary @LF ıi to .F ıi XT /\T ;
however, using the obvious isomorphisms in (co)homology, we keep the notation .F ıi ; @LF

ı
i / for these

new pairs.
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Figure 4: A minimal example of the set FL D .F [T /XT consisting of the gray shaded surface
together with the two depicted tori. The lined subset is VL. To the right we have a copy of a
connected component of VL with the subset @LVL highlighted in red.

We make use of the isomorphisms

H!
� .SL; FL/'H�.SL; FL/DH�.S; F /;.5.6/

H!
� .F

ı
i ; @LF

ı
i /'H�.F

ı
i ; @LF

ı
i /;.5.7/

H!
� .VL; @LVL/DH

!
� .CL; @CL/'H�.CL; @CL/DH�.C; @C /;.5.8/

etc, and, in order to fix the (not quite canonical in the context of a common G–covering) isomorphisms
denoted by ', we need a coherent choice of reference sheets, upon which we change the notation to D.
(The other isomorphisms are standard combinations of excision and homotopy equivalences, and thus are
canonical.) To this end, we consider a “negative” collar (trace of the push-off in the negative direction)
N WD .�ı; 0/� .F XT / for ı� radius.T /, and, letting S 0L WD SL XN , use excision to identify

H�.SL; FL/DH�.S
0
L; @S

0
L/ and H!

� .SL; FL/DH
!
� .S

0
L; @S

0
L/:

Since the covering is obviously trivial over S 0L, we can choose and fix a reference sheet S 0L � zSL and use
it for (5.6). Then it remains to observe that this sheet contains a single copy of each of F ıi and CL, which
are used for (5.7) and (5.8), respectively.

Convention 5.9 We have then thatH!
2 .SL; FL/DH2.SL; FL/ andH1.FL/DH!

1 .FL/. For the twisted
boundary operators like

H2.SL; FL/!H1.FL/;

we assume that @! D
P
i .@
�C!�1i @C/, where @C is the lower boundary (the C superscript is related to

the orientation conventions).
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Convention 5.10 The “reference lift” of a loop is the loop in the covering whose endpoint is in the
reference sheet.

5.3 The homology of F

Throughout this section, we assume that F is connected and that � ¤ 0. (The general case will be treated
later, see Figure 7.) Recall from Lemma 5.1 that H 1.F / is a quotient of

L
H1.F

ı
i ; @LF

ı
i / by relations

of the form ci C cj D 0. We deduce the following description of the twisted homology of F :

Lemma 5.11 The assignment � WH 1.F /!H!
1 .FL; @T /DH

!
1 .FL/ given by

�X
iD1

˛i 7! inclusion�
�M
iD1

z!i˛i for ˛i 2H1.F ıi ; @LF
ı
i /

is a well-defined isomorphism.

Proof The isomorphisms H!
� .FL; @T /DH

!
� .FL/ follow from the assumption !i ¤ 1 for each i , and

hence H!
� .@T /D 0. We compute H!

1 .FL; @T / using the relative Mayer–Vietoris sequence associated to
the decomposition F XT D VL[

�S�
iD1 F

ı
i

�
:

.5.12/ H!
1 .@VL; @LVL/!H!

1 .VL; @LVL/˚

�M
iD1

H!
1 .F

ı
i ; @LF

ı
i /

p
�!H!

1 .FL; @T /! 0:

The last term is H!
0 .@VL; @LVL/ D 0; see (5.8) and Figure 4. By (5.8), H!

1 .@VL; @LVL/ D
L

Cci ,
where the sum runs over all c2Cij and all pairs 16 i ¤ j 6�. The inclusions induce the homomorphisms

.5.13/
ci 7! ci 2H

!
1 .F

ı
i ; @LF

ı
i /DH1.F

ı
i ; @LF

ı
i / (see (5.7));

ci 7! sg.j � i/ � sg c � z!j c 2H!
1 .VL; @LVL/D

M
c2C

Cc:

(To follow the above formulas, the reader might find helpful the schematics of the behavior of the twisted
homology in Figure 5.) Identifying the two images of each generator ci , we conclude that the inclusions
F ıi ,! FL induce an isomorphism

�M
iD1

H1.F
ı
i ; @LF

ı
i /=f z!i ci C z!j cj D 0 j c 2 Cij g DH

!
1 .FL; @T /;

and the isomorphism in the statement follows from Lemma 5.1.

Corollary 5.14 Given a proper loop ˛ � F , consider its push-off ˛� and its “trace” S� � S3, ie a
cylinder contained in a regular neighborhood of ˛ and such that S�\F D ˛ and @S� D ˛�˛�. Then
the twisted boundary @!S�C˛� is equal to �.R.!/.˛// 2H!

1 .FL/; see (5.5) and Lemma 5.11.
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mj !jmj

mi

!imi

!2i mi

c

!�1j c

!i c

!�1i c

!j c

cjci
c

mimj

Fi
Fj

!�1j mj

Figure 5: To the left is a local picture of a positive clasp with i < j . To the right, the schematics
of the behavior of the lifted curves on a covering space. Shown in red are the chosen reference lifts.

Proof Clearly, using Lemma 5.11, @!S�C˛� is homologous to the image under p in (5.12) of the cycle
�X
iD1

rel�i ˛C
X

16i<j6�

X
c2Cij

h˛; ci icI

see Figure 6 for a simple example. Then, by (5.13), for all i < j and c 2 Cij , we have cD sg c � z!�1j ci in
H!
1 .FL/ and, using (5.2), we obtain

�X
iD1

rel�i ˛C
X

16i<j6�

z!�1j

X
c2Cij

sg ch˛; ci ici
(5.2)
D

�X
iD1

rel�i ˛C
X

16i<j6�

z!�1j relij ˛

D

�X
iD1

z!i

�
z!�1i rel�i ˛C

�X
jDiC1

z!�1i z!
�1
j relij ˛„ ƒ‚ …

Ri

�
:

Now, by (5.5), each Ri is the i th component of (a representative of) R.!/.˛/, and the statement follows
from the definition of � in Lemma 5.11.

We proceed with the computation of the twisted homology of SL and SLXK. We have fixed isomorphisms

H!
� .SL; FL/DH�.S; F / and H!

� .SL XK;FL/DH�.S XK;F /I

see (5.6). In particular,
H!
1 .SL; FL/DH

!
1 .SL XK;FL/D 0

(recall that we assume F is connected and � ¤ 0) and, by the respective exact sequences of pairs .S; F /
and .S XK;F /,

H!
2 .SL; FL/DH1.F / and H!

2 .SL XK;FL/D Ker � �H1.F /:

Algebraic & Geometric Topology, Volume 24 (2024)
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rel�1 ˛

L1 L2

F1 F2

˛

h˛; c1ic

C C

c1 c2

b1 b2

rel�2 ˛

˛�

h˛; b1ib

Figure 6: The push-off ˛� is to be thought of as located “behind” the surface F1 [ F2. With
the orientations depicted, together ˛ and �˛� are the obvious boundary of the cylinder S� (not
in the picture). The different elements of the cycle described at the beginning of the proof of
Corollary 5.14, rel�i ˛ and h˛; ci ic, are highlighted.

Now, from the corresponding twisted exact sequences, and with the isomorphism � given by Lemma 5.11
taken into account, we arrive at

.5.15/ H!
1 .SL/DH

1.F /= Im d and H!
1 .SL XK/DH

1.F /=d.Ker �/;

where d is the composed map

.5.16/ d WH1.F /
@�1
��!H2.S; F /DH

!
2 .SL; FL/

@!
��!H!

1 .FL/
��1
��!H 1.F /:

5.4 The twisted homomorphisms

We still assume that F is connected and � ¤ 0. By (5.15), for X WD SL or X WD SLXK, we have natural
epimorphisms

.5.17/ �X WH
1.F /�H!

1 .X/:

Composing the inclusion with Alexander duality, we obtain a homomorphism

D WH!
1 .X XFL/DH1.X XFL/!H1.S

3
XF / '�!H 1.F /:

Algebraic & Geometric Topology, Volume 24 (2024)
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Consider also the “orthogonal projection”

prX WH
!
1 .X XFL/!H!

1 .X XFL/ given by
�
˛ 7! ˛ if X D SL;
˛ 7! ˛� `k.˛;K/m if X D SL XK:

Lemma 5.18 For X D SL or SL XK and any class ˛ 2H!
1 .X XFL/, the image of prX .˛/ under the

inclusion homomorphism H!
1 .X XFL/!H!

1 .X/ is �X .D.˛//.

Proof The statement is a geometric version of Lemma 5.11. The class ˛0 WD prX .˛/ is represented by
a cycle in X XFL, which bounds a Seifert surface G � S3 XK. (This is why we subtract `k.˛;K/m in
the case X D SLXK; we want a Seifert surface disjoint from K.) Set GL WDG\SL. We can choose the
surfaceGL so that it cuts on F a collection of arcs ˛i �F ıi with @˛i �@LF ıi . Then D.˛0/ is represented by

�X
iD1

˛i 2

�M
iD1

H1.F
ı
i ; @LF

ı
i /!H 1.F /

(see Lemma 5.1), whereas the twisted boundary is

.5.19/ @!GL�˛
0
D�

�X
iD1

z!i˛i D��.D.˛//;

(see Lemma 5.11), implying that ˛0D �.D.˛// in H!
1 .FL/DH

1.F /. We complete the proof by passing
to the quotient using �X .

Corollary 5.20 For X D SL or SLXK, let ˛ 2H!
1 .X XFL/ be the class of ŒK� or `, respectively. Then

the image of ˛ in H!
1 .X/ is �X .�/.

Lemma 5.21 The homomorphism d in (5.16) equals �E.!/.

Lemma 5.22 For each ˛ 2H1.F /, one has

�SLXK.E.!/.˛//D�h˛; �im

in H!
1 .SL XK/; see (5.17).

Proof of Lemmas 5.21 and 5.22 Let ˛�F be a proper loop and consider its push-off ˛��S3X.K[F /.
Let S� be the trace cylinder as in Corollary 5.14, and let G be a Seifert surface bounded by ˛�. (For
Lemma 5.22, we replace ˛� with its projection pr.˛�/D ˛� � h˛; �im in order to keep S in S3 XK;
details are left to the reader.)

Defining GL WD G \ SL and letting S WD GL [ S�, we have @S D ˛. On the other hand, the twisted
boundary

@!S D .@!S�C˛�/C .@!GL�˛
�/D �.R.!/.˛//� �.‚�.˛//

is given by Corollary 5.14 and (5.19), and the statements follow from (5.5).
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ˇ
F F 0

Figure 7: To the left is a local picture of a disconnectedC–complexF . To the right, the complexF 0,
obtained by adding a pair of close clasps to F . We have H1.F 0IZ/DH1.F IZ/˚Zˇ.

Corollary 5.23 (of Lemma 5.21 and (5.15)) There are canonical , up to multiplication by integral
powers of !i s , isomorphisms

H!
1 .SL/DH

1.F /= ImE.!/ and H!
1 .SL XK/DH

1.F /=E.!/.Ker �/:

Proof of Theorem 4.3 If � D 0, then K bounds a Seifert surface disjoint from F , and hence K=L� 0,
which agrees with the statement of the theorem.

Therefore, till the rest of the proof we assume that � ¤ 0. Assume also that F is connected, so that
we can use the results of Sections 5.3 and 5.4. Abbreviate E WD E.!/, so that E� D E.!�1/ and
KerE? D ImE�. Then, in view of Corollary 5.23, the last two cases in the statement, as well as the
finiteness of the slope in the first case, are given by Proposition 2.6. To compute this finite slope in the
first case, we compare Corollary 5.20 and Lemma 5.22: if � DE.˛/, then `D�h˛; �im in H!

1 .SLXK/.

Finally, if F is not connected, we can inductively reduce the number of components by introducing pairs
of close clasps as in Figure 7. If F 0 is obtained from F by introducing one such pair connecting two
distinct components, then H1.F 0IZ/DH1.F IZ/˚Zˇ, where ˇ is a small proper loop running through
the two clasps, and, extending the existing pair of dual bases by ˇ 2H1.F / and ˇ� 2H 1.F /, the other
data are

‚0" D‚"˚ Œ0� and �0 D �˚ Œ0�:

Obviously, this modification does not affect the result of the computation.
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Cohomological and geometric invariants of simple complexes of groups

NANSEN PETROSYAN

TOMASZ PRYTUŁA

We investigate cohomological properties of fundamental groups of strictly developable simple complexes
of groups X . We obtain a polyhedral complex equivariantly homotopy equivalent to X of the lowest
possible dimension. As applications, we obtain a simple formula for proper cohomological dimension of
CAT.0/ groups whose actions admit a strict fundamental domain; for any building of type .W; S/ that
admits a chamber transitive action by a discrete group, we give a realisation of the building of the lowest
possible dimension equal to the virtual cohomological dimension of W ; under general assumptions, we
confirm a folklore conjecture on the equality of Bredon geometric and cohomological dimensions in
dimension one; finally, we give a new family of counterexamples to the strong form of Brown’s conjecture
on the equality of virtual cohomological dimension and Bredon cohomological dimension for proper
actions.

05E18, 05E45, 20F65; 20E08, 20J06

1 Introduction

Overview

For a finitely generated Coxeter system .W; S/, the Davis complex †W is a CAT.0/ polyhedral complex
on which the Coxeter group W acts properly, cocompactly and by reflections. The complex †W is
very useful in understanding properties of W , or more generally of buildings of type .W; S/ where it
appears as an apartment. However, the Davis complex †W does not in general produce the realisation of
these buildings of the lowest possible dimension. There is an associated contractible polyhedral complex
B.W; S/ of dimension equal to the virtual cohomological dimension vcdW of the Coxeter group W
(except possibly when vcdW D2) introduced by Bestvina in [4]. The groupW acts by reflections properly
and cocompactly on B.W; S/. The Bestvina complex B.W; S/ is equivariantly homotopy equivalent to
the Davis complex †W ; see the authors’ [26]. Therefore by replacing the apartments with B.W; S/ one
obtains a realisation of the building of type .W; S/ of the lowest possible dimension. In [26], we derived
analogous results in the more general setting of strictly developable thin simple complexes of finite groups.
In doing so we relied on compactly supported cohomology as a convenient tool for computations. This
is certainly the norm, as compactly supported cohomology can be very useful in computations of the
cohomology of a G–CW–complex with group ring coefficients; see Bestvina [4], Brown [6], Davis [9],
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1122 Nansen Petrosyan and Tomasz Prytuła

Degrijse and Martínez-Pérez [12], and Harlander and Meinert [20]. A major drawback of this approach
however is that it restricts one to only complexes that are locally finite.

To resolve this difficulty, in this paper we introduce a new approach that bypasses compactly supported
cohomology and thus allows us to study nonproper actions admitting a strict fundamental domain, or
equivalently, simple complexes of groups whose local groups need not be finite. Given a simple complex
of groups G.Q/, we first extend the definition of the Bestvina complex to G.Q/. Our methods then
directly link Bredon cohomology of the Bestvina complex associated to G.Q/ with certain coefficients,
and the relative integral cohomology of the panel complexes over the poset Q. This enables us to compute
the cohomology of the fundamental group of G.Q/, determine its cohomological dimension, and identify
it with the dimension of the generalisation of Bestvina complex in this context.

Our approach also leads to cohomological computations on more naturally occurring simple complexes
of groups without the thinness assumption. This is a standing assumption in both [12] and [26]. It states
that the cellular structure of a complex is in a sense minimal with respect to the group action, and it is
fairly restrictive. In particular, removing this assumption allows us to investigate group actions on CAT.0/
polyhedral complexes that admit a strict fundamental domain.

Besides aforementioned applications, another important motivation to study the generalised Bestvina
complex comes from the Baum–Connes and Farrell–Jones conjectures (see eg Baum, Connes and
Higson [3], and Lück [23]), where it is always desirable to have models for the classifying space of G
for the family of stabilisers F of minimal dimension and cell structure (see eg Fuentes [17] for a direct
application of the Bestvina complex).

Statement of results

A simple complex of groups G.Q/ over a finite poset Q consists of a collection of groups fPJ gJ2Q and a
collection of monomorphisms fPJ ! PT gJ6T2Q satisfying the obvious compatibility conditions. We
say that G.Q/ is thin if the monomorphism PJ ! PT is an isomorphism if and only if J D T . The
fundamental group G of G.Q/ is defined as the direct limit of the system fPJ gJ2Q. We say that G.Q/ is
strictly developable if for every group PJ the canonical map to the limit G is a monomorphism; in this
case, we identify PJ with its image in G and call it a local subgroup of G.

A family of subgroups of a discrete group G is a collection of subgroups that is closed under conjugation
and taking subgroups. Given a collection of subgroups fPJ gJ2Q of G, the family generated by the
collection fPJ gJ2Q is the smallest family F of subgroups of G that contains all elements of fPJ gJ2Q.

Suppose G.Q/ is strictly developable with fundamental group G. We say that G.Q/ is rigid, if for any
J 2 Q no G–conjugate of PJ is properly contained in PJ . Define a block C � Q as an equivalence
class of elements of Q under the relation � generated by J 0 � J if J 0 6 J and PJ 0 ! PJ is an
isomorphism. For a fixed J 2 Q and g 2 G, let �gJ be the subset of Q that consists of all U 2 Q for

Algebraic & Geometric Topology, Volume 24 (2024)



Cohomological and geometric invariants of simple complexes of groups 1123

which PU D g�1PJg (seen as subgroups of G). We denote by C gJ ��
g
J a block in �gJ . Let IJ be a

complete set of representatives of

fg 2G j g�1PJg D PU for some U 2Qg=PJ ;

where PJ acts by left multiplication.

Let K D jQj denote the geometric realisation of the poset Q. For a subset ��Q such that PU D PU 0
for all U;U 0 2�, define subcomplexes K� and K>� of K as

K� D
ˇ̌
fV 2Q j V > J for some J 2�g

ˇ̌
;

K>� D
ˇ̌
fV 2Q j V > J for some J 2� and PV � PJ g

ˇ̌
:

The complex K D jQj is an example of a panel complex over the poset Q. For a panel complex Y over Q,
the Basic Construction is a G–space D.Y;G.Q// obtained by gluing copies of Y indexed by elements
of G, according to the combinatorial information in Y and G.Q/.

We denote by H�F .X IM/ the Bredon cohomology groups of a G–CW–complex X with respect to the
family of subgroups F of G with coefficients a contravariant functor M from the orbit category OFG

to Z–Mod. In what follows, we will restrict to coefficients AH D ZŒhomG.�; G=H/� for a subgroup
H 2 F , and a certain refinement of AH which we denote by BH . Let cdF G (resp. gdF G) denote the
Bredon cohomological (resp. geometric) dimension of G with respect to the family F and let EFG denote
the universal G–CW–complex with stabilisers in F . If F is the family of all finite subgroups of G, then
the respective notions are denoted by cdG, gdG, and EG.

Theorem 1.1 (Theorem 6.1) Let G.Q/ be a strictly developable simple complex of groups with
fundamental group G, and let F be the family generated by local groups. Let X DD.K;G.Q// be the
associated Basic Construction. For J 2Q,

(1-1) H�F .X IBPJ /Š
M
g2IJ

M
C
g
J��

g
J

H�.KCgJ
; K>CgJ

/:

If G.Q/ is rigid and X is a model for EFG, then

(1-2) cdF G Dmaxfn 2N jHn.KC ; K>C /¤ 0 for some block C �Qg:

The rigidity assumption holds for example when the local groups are co-Hopfian, and hence in particular
when they are finite. We should also remark that the rigidity assumption on local groups in Theorem 1.1
is not superfluous.

Recall that an action of a group on cellular complex is admissible, if the setwise stabiliser of each cell is
also its pointwise stabiliser. If a group G acts admissibly on a simply connected cellular complex with a
strict fundamental domain Y then it is isomorphic to the fundamental group of a simple complex of groups
formed by cells of Y and their stabilisers (see Theorem 3.8). The following corollary of Theorem 1.1 is
straightforward.

Algebraic & Geometric Topology, Volume 24 (2024)
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Corollary 1.2 Suppose a group G acts properly and admissibly on a CAT.0/ polyhedral complex X
with a strict fundamental domain Y . Let Q denote the poset of cells of Y ordered by reverse inclusion
(note that we have jQj DK D Y 0). Then

cdG Dmaxfn 2N jHn.KC ; K>C /¤ 0 for some block C �Qg:

This corollary is a generalisation of [12, Theorem 1.2] to nonthin complexes of groups. We remark that
nonthinness of a complex of groups resulting from the G–action on X is generic, eg in many cases in
order to obtain an admissible action one takes the barycentric subdivision which results in a nonthin
complex.

To obtain formula (1-2) of Theorem 1.1, we prove the following general result.

Theorem 1.3 (Theorem 2.5) Let G be a group and F be a family of subgroups. Suppose that X is a
cocompact model for EFG. Then

cdF G Dmaxfk 2N jHk
F .X;AH /¤ 0 for some cell stabiliser H g:

Moreover , if Hn
F .GIAL/¤ 0 for nD cdF G and L 2 F , then there exists a cell stabiliser H 6 L such

that Hn
F .GIAH /¤ 0.

Note that, under the assumptions of the theorem, there are only finitely many conjugacy classes of
stabilisers. Thus the theorem reduces the computation of the Bredon cohomological dimension of a
given group into a computation of finitely many cohomology groups. Theorem 1.3 together with [12,
Theorem 2.4] give us the following strengthening of [12, Theorem 1.1].

Corollary 1.4 (Corollary 2.7) Let X be a G–CW–complex that is a cocompact model for EG. Then

cdG Dmaxfk 2N jHk
c .X

H ; XHsing/¤ 0 for some cell stabiliser H g;

where XHsing �X
H consists of all points whose stabiliser strictly contains H .

Another application of Theorem 1.1 is the construction of new counterexamples to the strong form of
Brown’s conjecture via the notion of reflection-like actions. Here the removal of the thinness assumption
is the key to obtaining a systematic approach to constructing such examples. Reflection-like actions are
generalisations of groups acting by reflections on Euclidean spaces. The precise definition and examples
can be found in Section 9.

Theorem 1.5 (Theorem 9.8) Let F be a finite group admitting a reflection-like action on a compact ,
connected , flag simplicial complex L of dimension n > 1. Let WL be the right-angled Coxeter group
associated to L and G DWL ÌF be the associated semidirect product. Suppose that Hn.L/D 0. Then

vcdG 6 n and cdG D nC 1:

We refer the reader to Examples 9.14 and 9.16 for a specific construction of complexes L satisfying the
hypothesis of Theorem 1.5 via products of dihedral group actions on 2–dimensional Moore spaces.
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Observe that as long as the complex of groups G.Q/ is thin, Theorem 1.1 implies that the Bredon
cohomological dimension of G depends only on the poset structure of Q. We show that for a strictly
developable thin simple complex of groups, there is a model for EFG of the smallest possible dimension
and a simple cell structure. The model is given as the Basic Construction where one replaces panel
complex K with the so-called Bestvina complex B .

Theorem 1.6 LetG.Q/ be a strictly developable thin complex of groups over a poset Q with fundamental
group G and let F be the family generated by the local groups. Then

(i) the standard development D.K;G.Q// and the Bestvina complex D.B;G.Q// are G–homotopy
equivalent , and

H�F
�
D.K;G.Q//IBPJ

�
Š

M
g2IJ

M
U2�

g
J

zH��1.K>U /I

(ii) if D.K;G.Q// is a model for EFG, then D.B;G.Q// is a cocompact model for EFG satisfying

dim
�
D
�
B;G.Q/

��
D

�
cdF G if cdF G ¤ 2;

2 or 3 if cdF G D 2;
and

(1-3) cdF G Dmaxfn 2N j zHn�1.K>J /¤ 0 for some J 2Qg:

Since buildings are CAT(0) and chamber transitive actions on them are thin (see Lemma 8.2), they are
ideally suited for applying Theorem 1.6.

Corollary 1.7 Let G be a group acting chamber transitively on a building of type .W; S/. Let G.Q/
be the associated simple complex of groups and let F be the family generated by the stabilisers. Then
D.B;G.Q// is a realisation of the building (and thus a cocompact model for EFG) of dimension

dim
�
D.B;G.Q//

�
D

�
vcdW if vcdW ¤ 2;
2 or 3 if vcdW D 2:

Moreover ,
H�F .GIBPJ /Š

M
g2IJ

M
U2�

g
J

zH��1.K>U /

and
cdF G D vcdW Dmaxfn 2N j zHn�1.K>J /¤ 0 for some J 2Qg:

The formula for Bredon cohomological dimension in Corollary 1.7 extends [12, Corollary 1.4] from
finite to arbitrary stabilisers. As a consequence of Corollary 1.7, we obtain one of the main results of
Harlander [19].

Corollary 1.8 (Corollary 8.4) Let G be a virtually torsion-free group acting chamber transitively on a
building of type .W; S/. Then

vcdG 6 vcdW CmaxfvcdP j P is a special parabolic subgroup of Gg:
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We point out that in [19, Theorem 2.8] it is proven that, under the assumptions of Theorem 1.6, the
dimension of Bestvina complex is minimal among G–complexes which admit a strict fundamental domain
with all acyclic panels. Theorem 1.6(ii) is stronger, as it states that the dimension of the Bestvina complex
is minimal among all possible models for EFG (except the case where cdF G D 2).

The next corollary lists equivalent conditions for fundamental groups of strictly developable thin simple
complexes of groups to act on trees with the prescribed family of stabilisers.

Corollary 1.9 (Theorem 7.1) Let G.Q/ be a strictly developable thin simple complex of groups over a
poset Q with the fundamental group G and let F be the family generated by local groups. Suppose that
D.K;G.Q// is a model for EFG. Then the following are equivalent :

(i) D.B;G.Q// is a tree and an equivariant deformation retract of D.K;G.Q//.

(ii) cdF G 6 1.

(iii) Hn.K>J /D 0 for all J 2Q and n> 1.

The following corollary is immediate.

Corollary 1.10 LetG be a group acting chamber transitively on a building of type .W; S/. The geometric
realisation of the building equivariantly deformation retracts onto a tree if and only if vcdW 6 1.

Corollary 1.9 is a generalisation of [9, Proposition 8.8.5] which deals with the case when G DW is a
Coxeter group acting on the Davis complex. It is a special case of the following folklore conjecture.

Conjecture 1.11 Let G be a group and F be a family of subgroups. Then cdF G 6 1 if and only if G
acts on a tree with stabilisers generating F .

This conjecture is wide open in general. When F is the trivial family, it reduces to the classical theorem
of Stallings and Swan. For the family of finite subgroups F , it follows from Dunwoody’s accessibility
result [16]. Recently, in [11], Degrijse verified the conjecture when F is the family of virtually cyclic
subgroups. Note that Corollary 1.9 confirms the conjecture when G admits a model for EFG with a strict
fundamental domain such that the associated complex of groups is thin.

Organisation

Sections 2 and 3 have a preparatory character. In Section 2, we give a background on classifying spaces
for families of subgroups and Bredon cohomology, and we prove Theorem 1.3. In Section 3, we define
simple complexes of groups, the Basic Construction and Bestvina complex. We describe the procedure of
thinning, and we use it to compute upper bounds for the geometric dimension of the fundamental group
of a simple complex of groups.
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The next three sections form the technical core of the paper. In Section 4, we prove Proposition 4.1 which
allows us to compute the Bredon cohomological dimension of a fundamental group of a thin complex of
groups. In Section 5, we prove an analogous Proposition 5.1 for an arbitrary complex of groups. Section 6
contains generalised statements and proofs of Theorems 1.1 and 1.6.

In the remaining sections we discuss applications and consequences of the main theorems. In Section 7,
we briefly discuss the case when cdF G D 1 and we give a proof of Corollary 1.9. In Section 8, we
discuss applications of our theory to chamber transitive automorphism groups of buildings and we prove
Corollary 1.7 as well as other applications and examples. In Section 9, we define reflection-like actions,
establish their basic properties and prove Theorem 1.5. We then give some examples of reflection-like
actions. Finally, in Section 10 we pose and discuss some open questions.
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2 Classifying spaces and Bredon cohomology

2.1 Classifying spaces for families of subgroups

Let G be a countable discrete group. A family F of subgroups of G is a collection of subgroups that is
closed under conjugation and taking subgroups. Given a collection of subgroups P of G, the family of
subgroups generated by P is the smallest family of subgroups F of G containing all subgroups of P .

Definition 2.1 A collection of subgroups P of G is rigid if for every H 2 P no G–conjugate of H is
properly contained in H .

Recall that a polyhedron (or a polyhedral complex) is a CW–complex whose attaching maps are piecewise
linear. We say that the action of a group G on a polyhedral (CW, simplicial) complex X is admissible
if for any cell e � X its pointwise stabiliser is equal to its setwise stabiliser. In such case we call X a
G–polyhedral (G–CW, G–simplicial) complex. A G–CW–complex X is cocompact (or the G–action on
X is cocompact) if X=G is compact, ie it has finitely many cells.

Definition 2.2 (classifying space EFG) Given a group G and a family of its subgroups F , a model for
the classifying space of G for the family F denoted by EFG is a G–CW–complex X such that

� for any cell e �X the stabiliser Ge belongs to the family F ,

� for any H 2 F the fixed point set XH is contractible.
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The classifying space EFG is a terminal object in the homotopy category of G–CW–complexes with
stabilisers in F , ie if X is a G–CW–complex with stabilisers in F then there exists a G–map X ! EFG

which is unique up to G–homotopy. In particular, any two models for EFG are G–homotopy equivalent.
The minimal dimension of a model for EFG is called the Bredon geometric dimension of G for the
family F and it is denoted by gdF G.

Remark 2.3 If F contains only the trivial subgroup, the classifying space EFG is the universal space
for free actions, commonly denoted by EG. If F consists of all finite subgroups of G, the classifying
space EFG is called the classifying space for proper actions and it is denoted by EG.

2.2 Bredon cohomology

The orbit category OFG is a category defined as follows: the objects are the left coset spaces G=H for
all H 2 F and the morphisms are all G–equivariant maps between the objects. Note that every morphism
' WG=H !G=P is completely determined by '.H/, since '.xH/D x'.H/ for all x 2G. Moreover,
there exists a morphism

G=H !G=P WH 7! xP if and only if x�1Hx 6 P:

We denote the morphism ' WG=H !G=P WH 7! xP by G=H x
�!G=P and note that it is determined

by the inclusion x�1Hx 6 P . Given H;P 2 F , we denote by homG.G=H;G=P / the set of morphisms
from G=H to G=P .

An OFG–module is a contravariant functor M W OFG ! Z–Mod. The category of OFG–modules,
denoted by Mod-OFG, is the category whose objects are OFG–modules and whose morphisms are
natural transformations between these objects. The set of morphisms between M;N 2 Mod-OFG is
denoted by HomF .M;N /.

A sequence
0!M 0!M !M 00! 0

in Mod-OFG is called exact if it is exact after evaluating in G=H for each H 2 F . For any P 2 F , the
OFG–module AP DZŒhomG.�; G=P /� is a free object in Mod-OFG. A module F 2Mod-OFG is free
if and only if F Š

L
˛2I AP˛ for some collection I of not necessarily distinct subgroups P˛ 2 F . We

will say that F is based at the elements P˛ 2 F for ˛ 2 I .

The nth Bredon cohomology group of G with coefficients M 2Mod-OFG is by definition

HnF .G;M/D ExtnOFG
.Z;M/;

where Z is the functor that maps all objects to Z and all morphisms to the identity map. The Bredon
cohomological dimension of G is defined to be

cdF G D supfn 2N j HnF .G;M/¤ 0 for some M 2Mod-OFGg:
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Given a G–CW–complex X , an OFG–module

CF
n .X/.�/ WOFG! Z–Mod

is defined as
CF
n .X/.G=H/D Cn.X

H /;

where C�.�/ denotes the cellular chains. Note that, in this way, the augmented cellular chain complex
of any model for EFG yields a free resolution of Z which can then be used to compute H�F .G;�/. It
follows that cdF G 6 gdF G.

We now consider the situation when G admits a cocompact model for EFG. In this case, Bredon
cohomology commutes with arbitrary direct sums of coefficient modules (see eg [25, Proposition 5.2])
and one obtains the following proposition, which is standard (see eg [12, equation 2]).

Proposition 2.4 Suppose that X is a cocompact model for EFG. Then

cdF G D supfk 2N jHk
F .X;AH /¤ 0 for some H 2 Fg:

Below we derive a strengthening of Proposition 2.4, which is a key ingredient in the proof of Theorem 1.1.

Theorem 2.5 Suppose that X is a cocompact model for EFG. Then

cdF G Dmaxfk 2N jHk
F .X;AH /¤ 0 for some cell stabiliser H g:

Moreover , if Hn
F .GIAL/¤ 0 for nD cdF G and L 2 F , then there exists a cell stabiliser H 6 L such

that Hn
F .GIAH /¤ 0.

Proof The chain complex CF
i .X/ forms a resolution of Z of finite length by finitely generated free

OFG–modules. Let P D kerfCF
n�1.X/! CF

n�2.X/g. Then P is projective and

0! P ! CF
n�1.X/! � � � ! CF

0 .X/! Z! 0

is exact. By applying the Bredon analogue of Schanuel’s lemma [7, VIII.4.4] to the above two resolutions,
it follows that there is a finitely generated free OFG–module F based at stabilisers of the action of G
on X such that P ˚F is a finitely generated free OFG–module again based at stabilisers of the action
of G on X . We can define the resolution .DF

� ; @F / of Z by finitely generated free OFG–modules

DF
i D

8̂̂̂<̂
ˆ̂:
CF
i .X/ if i 6 n� 2;
CF
n�1.X/˚F if i D n� 1;
P ˚F if i D n;
0 if i > n:

Since X is cocompact, by Proposition 2.4 there exists L 2 F such that Hn
F .X;AL/ ¤ 0. Then

Hn
F .D

F
� ;AL/¤ 0, which means that the coboundary map

ıLF W HomF .D
F
n�1;AL/! HomF .D

F
n ;AL/
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is not onto. Rewriting this more explicitly using the Yoneda lemma,

ıLF W

kX
iD1

ZŒhomG.G=G�i ; G=L/�!
lX

jD1

ZŒhomG.G=G�j ; G=L/�

is not onto. This implies that there exists a stabiliser G� of some cell � such that the generator
.G=G�

x
�! G=L/ of the nth cochain group is not in the image of ıLF . Let H D x�1G�x 6 L. This

inclusion induces an OFG–module map AH !AL which in turn induces a map of cochain complexes

�� W HomF .D
F
� ;AH /! HomF .D

F
� ;AL/

such that
�n.G=G�

x
�!G=H/D .G=G�

x
�!G=L/:

By the commutativity ıLF ı�n�1D�n ı ı
H
F , we obtain that .G=G�

x
�!G=H/ is not in the image of ıHF .

Therefore,
ıHF W HomF .D

F
n�1;AH /! HomF .D

F
n ;AH /

is not onto, which shows that Hn
F .X;AH /DH

n
F .D

F
� ;AH /¤ 0.

Define a subset isomG.G=L;G=S/� homG.G=L;G=S/ by

isomG.G=L;G=S/D f' WG=L!G=S W L 7! xS j x�1Lx D Sg:

Define an OFG–module BS by

BS .G=L/D
�

ZŒisomG.G=L;G=S/� if LDG S;
0 if L¤G S;

where LDG S means that L and S are conjugate in G. For each

.' WG=L x
�!G=S/ 2 isomG.G=L;G=S/;

we set
BS .� WG=H

y
�!G=L/.'/D

�
.' ı � WG=H

yx
�!G=S/ if y�1Hy D L;

0 if y�1Hy ¤ L;

which is an element in BS .G=H/. It is not difficult to check that BS is well defined.

Corollary 2.6 Suppose that X is a cocompact model for EFG and that the collection of cell stabilisers is
rigid. Then

cdF G Dmaxfk 2N jHk
F .X;BP /¤ 0 for some cell stabiliser P g:

Proof First, note that the cocompactness of X implies that the set of conjugacy classes of cell stabilisers
is finite. By Theorem 2.5, there exists P 2 F that is a stabiliser of a cell in X such that Hn

F .X;AP /¤ 0
where cdF G D n. By the rigidity of stabilisers and iteration of Theorem 2.5, we can assume that P
does not contain a proper subgroup S such that Hn

F .X;AS /¤ 0. Observe that also by the rigidity for
H DG P ,

homG.G=H;G=P /D isomG.G=H;G=P /:
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Again using rigidity, we can define an OFG–submodule CP of AP by

CP .G=H/D
�
0 if H DG P;
ZŒhomG.G=H;G=P /� if H ¤G P:

Considering the long exact sequence of the resulting short exact sequence

0! CP !AP ! BP ! 0;

we either haveHn
F .X; CP /¤0 orHn

F .X;BP /¤0. Considering a module that is a free cover of CP consist-
ing of free modules based at proper subgroups of P shows that if Hn

F .X; CP /¤ 0, then Hn
F .X;AS /¤ 0

for some S Œ P , which violates the minimality assumption on P ; hence Hn
F .X;BP /¤ 0.

The Bredon cohomological and geometric dimensions for proper actions are denoted respectively by cdG
and gdG.

Corollary 2.7 Let X be a G–CW–complex that is a cocompact model for EG. Then

cdG Dmaxfk 2N jHk
c .X

H ; XHsing/¤ 0 for some cell stabiliser H g;

where XHsing �X
H consists of all points whose stabiliser strictly contains H .

Proof The claim follows immediately from combining Corollary 2.6 and [12, Theorem 2.4].

3 Simple complexes of groups

3.1 Simple complexes of groups and the Basic Construction

Throughout, let Q be a finite poset. We denote by jQj the geometric realisation of Q, ie a simplicial
complex whose simplices are chains of elements of Q.

Definition 3.1 (simple complex of groups) A simple complex of groups G.Q/ over Q consists of the
following data:

� for any J 2Q there is a group PJ called a local group at J ,

� for any two elements J 6 T in Q there is a monomorphism

�TJ W PJ ! PT

such that if J 6 T 6 U then
�UT ı�TJ D �UJ :

Definition 3.2 (simple morphism) Let G.Q/ be a simple complex of groups and let G be a group. A
simple morphism  WG.Q/!G is a collection of maps  J W PJ !G satisfying

 T ı�TJ D  J

for all pairs J 6 T in Q. We say that  WG.Q/!G is injective on local groups if for every J 2Q the
map  J W PJ !G is injective.
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Given a simple complex of groups G.Q/, the fundamental group 1G.Q/ of G.Q/ is the direct limit of the
resulting direct system of groups

1G.Q/D lim
��!
J2Q

PJ :

Note that by the universal property of 1G.Q/ there exists a canonical simple morphism � WG.Q/!1G.Q/
such that for every J 2Q the map �J W PJ !G.Q/ is the canonical map to the limit.

Definition 3.3 (strict developability) We say that a simple complex of groups G.Q/ is strictly devel-
opable if the canonical simple morphism � WG.Q/!1G.Q/ is injective on local groups.

Note that the strict developability is equivalent to the existence of a simple morphism  WG.Q/!G that
is injective on local groups, where G is some group.

Convention 3.4 If  WG.Q/!G is a simple morphism that is injective on local groups then for any
J 2Q we identify the group PJ with its image  .PJ /6G.

Definition 3.5 (panel complex) A panel complex .X; fXJ gJ2Q/ over Q is a compact polyhedron X
together with family of subpolyhedra fXJ gJ2Q called panels such that

� X is the union of all the panels,

� XT �XJ if and only if J 6 T ,

� for any two panels their intersection is either a union of panels or empty.

Definition 3.6 (standard panel complex) Define the panel complex K over Q as follows. Let K D jQj
and for J 2 Q let KJ D jQ>J j where Q>J denotes the subposet of Q consisting of all the elements
greater than or equal to J .

Definition 3.7 (Basic Construction) Suppose that

� G.Q/ is a strictly developable complex of groups,

� X is a panel complex over Q,

�  WG.Q/!G is a simple morphism to a group G that is injective on local groups (thus for any
J 2Q we identify PJ with  .PJ /).

For a point x2X let J.x/2Q be such that the panelXJ.x/ is the intersection of all the panels containing x.
Define the Basic Construction D.X;G.Q/;  / as

D.X;G.Q/;  /DG �X=�;

where .g1; x1/� .g2; x2/ if and only if x1 D x2 and g�11 g2 2 PJ.x1/. Let Œg; x� denote the equivalence
class of .g; x/.
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The group G acts on D.X;G.Q/;  / by g � Œg0; x�D Œgg0; x�. It is easy to see that D.X;G.Q/;  / has
the structure of a polyhedral complex and that the G–action preserves that structure. The stabilisers of
this action are the conjugates of local groups PJ and the quotient is homeomorphic to

X Š Œe; X��D.X;G.Q/;  /:

Moreover, X Š Œe; X� is a so-called strict fundamental domain for the G–action in the sense that it is a
closed subset of D.X;G.Q// intersecting every orbit in precisely one point.

In fact, any admissible action with a strict fundamental domain arises in the way described above.

Theorem 3.8 [5, Proposition II.12.20] Suppose a group G acts admissibly on a connected polyhedral
complex X with a strict fundamental domain Y �X .

Then there is a strictly developable simple complex of groups G.Q/, where Q is the poset of cells
of Y (ordered by the reverse inclusion) and where the local group at cell e � Y is its G–stabiliser.
The inclusion of cell stabilisers into G defines a simple morphism  W G.Q/! G such that X is G–
equivariantly homeomorphic to the Basic Construction D.K;G.Q/;  /, where K is the standard panel
complex associated to Q. Moreover , if X is simply connected then G is isomorphic to the fundamental
group of G.Q/.

Convention 3.9 In the case when G is isomorphic to the fundamental group of G.Q/ and the simple
morphism G.Q/!G is the canonical simple morphism �, we will omit the morphism from the notation
and simply writeD.X;G.Q// for the associated Basic Construction (where X is a panel complex over Q).

3.2 Thinning procedure

Definition 3.10 We say that a simple complex of groups G.Q/ is thin if for any pair J 6 T in Q, the
monomorphism �TJ W PJ ! PT is an isomorphism if and only if J D T .

Remark 3.11 In [12; 26], the assumption that a simple complex of groups is thin is a part of its definition.

Below we describe a procedure of thinning, which, given a strictly developable simple complex of
groups G.Q/, results in a thin complex G.R/ together with a morphism of simple complexes of groups
G.Q/!G.R/ inducing an isomorphism of fundamental groups.

Definition 3.12 (block poset) Given a simple complex of groups G.Q/ with the collection of local
groups fPJ gJ2Q, let � be an equivalence relation on Q generated by

J � J 0 if J 6 J 0 and �J 0J W PJ ! PJ 0 is an isomorphism:

An equivalence class C of elements of Q under relation � is called a block. There is a partial order on
the set of blocks given by

C 6 C 0 if and only if there exist J 2 C and J 0 2 C 0 with J 6 J 0:

Denote the associated poset by R and call it the block poset.
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Note that there is a surjection of posets � WQ!R given by J 2 C 7! C .

Definition 3.13 (thinning of a simple complex of groups) Let G.Q/ be a strictly developable simple
complex of groups with the collection of local groups fPJ gJ2Q and the fundamental group G. Let R be
the block poset associated to G.Q/.

Define a simple complex of groups G.R/D .fSC gC2R; f C 0C gC 06C2R/ as follows. For a block C 2R,
let J 2Q be any element in the preimage ��1.C / and set SC D PJ . Observe that SC is well defined,
since for all J 0 2 ��1.C / groups PJ 0 are identified as a single subgroup of G. Now given two blocks
C 6 C 0 define the map

 C 0C W SC ! SC 0

as the inclusion of the corresponding groups PJ 6 PJ 0 seen as subgroups of G. Note that G.R/ is thin
by construction.

One easily verifies that G.R/ is strictly developable with fundamental group isomorphic to G. Moreover,
the surjection � WQ!R induces a morphism of simple complexes of groups G.Q/!G.R/ which in
turn induces an isomorphism on the fundamental groups (see [5, Chapter II.12] for a background on
morphisms of simple complexes of groups). Finally, if G.Q/ is thin, then by definition R is isomorphic
to Q, and the morphism G.Q/!G.R/ is an isomorphism.

3.3 Bestvina complex

Definition 3.14 Let .X; fXJ gJ2Q/ be a panel complex over a poset Q. For an element J 2Q define
the subcomplex X>J of X by

X>J D
[
J<J 0

XJ 0 :

Remark 3.15 In the case where X DK is the standard panel complex over Q,

K>J D
ˇ̌
fJ 0 2Q j J 0 > J g

ˇ̌
:

Observe that Theorem 3.8 may be seen as evidence that the standard panel complex and the associated
Basic Construction occur naturally. However, for computational purposes, a better suited panel complex
is the following.

Definition 3.16 (Bestvina complex) The Bestvina panel complex .B; fBJ gJ2Q/ is defined as follows.
For every maximal element J 2Q, define BJ to be a point. Now given an element J 2Q assume that
for all J 0 with J < J 0 the panel BJ 0 has already been defined. Define BJ to be the compact contractible
polyhedron containing B>J D

S
J<J 0 BJ 0 of the smallest possible dimension.

We define BZ in the same way as B except that we replace “contractible” by “acyclic” polyhedra.
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Q and G.Q/

A A A

B

A A

A AAA

A

A

A A

C

E

D

R and G.R/

AA

C

E

D

B

Bestvina complex for R

A CB

Figure 1: Complex of groups G.Q/ together with its thinning G.R/ and the Bestvina complex
associated to R. Elements of a block ŒA�1 � Q with the local group A are connected by green
lines. The geometric realisation jQ>ŒA�1

j is in yellow.

Remark 3.17 The panel complex B was introduced by Bestvina in [4] for the poset of special subgroups
of a finitely generated Coxeter group. It was extended to graph products of finite groups by Harlander
and Meinert in [20] and more generally to buildings that admit a chamber transitive action of a discrete
group by Harlander in [19].

Example 3.18 Consider finite groups A, B , and C with two inclusions A6B and A6C . Consider two
subgroups E and D of C , both containing the image of A6 C . All inclusions are assumed to be proper.
Figure 1 depicts a complex of groups G.Q/ (where all the structure maps are the respective inclusions),
its thinning G.R/ and the Bestvina complex associated to R. The fundamental group of G.Q/ (and hence
of G.R/) is isomorphic to the amalgamated product B �AC . Observe that poset R has significantly fewer
elements than Q. A further simplification is given by the Bestvina complex, whose dimension is lower
than the dimension of jQj and jRj. The Basic Construction D.B;G.R// is isomorphic to the Bass–Serre
tree of B �A C .

The proof of the following proposition follows directly from [26, Lemmas 2.4 and 2.5].

Proposition 3.19 Let G.Q/ be a strictly developable simple complex of groups and let  WG.Q/!G

be a simple morphism that is injective on local groups. Assume that G.Q/ is thin. Then:
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(1) The standard development D.K;G.Q/;  / and the Bestvina complex D.B;G.Q/;  / are G–
homotopy equivalent.

(2) The Bredon chain complexes CF
�

�
D.K;G.Q/;  /

�
and CF

�

�
D.BZ; G.Q/;  /

�
are chain homo-

topy equivalent.

Definition 3.20 (local cohomological dimension) For a poset Q, define its local cohomological dimen-
sion lcdQ as

lcdQDmaxfn 2N j zHn�1.K>J /¤ 0 for some J 2Qg:

Proposition 3.21 We have the equalities

lcdQDmaxfn 2N jHn.KJ ; K>J /¤ 0 for some J 2Qg

Dmaxfn 2N j zHn�1.K>J /¤ 0 for some J 2Qg

Dmaxfn 2N j zHn�1.B>J /¤ 0 for some J 2Qg

D dim.BZ/

Dmaxfn 2N jHn.BZ
J ; B

Z
>J /¤ 0 for some J 2Qg:

Moreover ,
dim.B/D

�
lcdQ if d ¤ 2;
2 or 3 if d D 2:

Proof The proof is essentially the same as the proof of [26, Proposition 3.4].

Lemma 3.22 Let G.Q/ be a strictly developable simple complex of groups with fundamental group G
and let F be the family generated by local groups. Suppose D.K;G.Q// is a model for EFG. Let R be
the corresponding block poset. Then cdF G 6 lcdR. In particular , if G.Q/ is thin then cdF G 6 lcdQ.

Proof Consider the composition of chain maps

CF
�

�
D.K;G.Q//

�
! CF

�

�
D.T;G.R//

�
! CF

�

�
D.BZ; G.R//

�
;

where K D jQj, T D jRj, and the complex BZ is taken over the poset R.

The first map is induced by the map of Basic Constructions D.K;G.Q// ! D.T;G.R//, which is
in turn induced by a morphism of simple complexes of groups G.Q/! G.R/. The second map is
constructed in [26, Theorem A.1] (it is straightforward to check that both the statement and the proof of
[26, Theorem A.1] carry through for infinite local groups).

Since D.K;G.Q// is a model for EFG, there is also a classifying G–map that gives a chain map

CF
�

�
D.BZ; G.R//

�
! CF

�

�
D.K;G.Q//

�
and the composition of both is chain homotopic to the identity on CF

�

�
D.K;G.Q//

�
. This shows that

cdF G 6 dim
�
D.BZ; G.R//

�
D dim.BZ/ and Proposition 3.21 finishes the proof.
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4 Thin complexes of groups

In this section, we will assume that the simple complex of groups G.Q/ is thin. We will show that the
Bredon cohomological dimension of the fundamental group of G.Q/ is equal to the local cohomological
dimension of the poset Q.

Proposition 4.1 Let G.Q/ be a thin simple complex of groups , let G be a group , and let  WG.Q/!G

be a simple morphism which is injective on local groups. Suppose .Y; fYJ gJ2Q/ is a simplicial panel
complex over Q, and let X DD.Y;G.Q/;  / be the associated Basic Construction. Then for any J 2Q,
there is an epimorphism of cochain complexes

‰ W .C �F .X IAPJ /; ıF /� .C �.YJ ; Y>J /; ıJ /;

where PJ is a local group at J 2Q, seen as a subgroup of G.

Proof Fix a dimension i and identify Y with a subcomplex of X . Let �j � Y , j D 1; : : : ; k be the
i–simplices of Y and denote by G�j 2 F the stabiliser of �j . Then by the Yoneda lemma, we obtain a
natural equivalence

C iF .X IAPJ /D HomF

� kM
jD1

AG�j ;APJ

�
Š

kM
jD1

ZŒhomG.G=G�j ; G=PJ /�:

Given an i–simplex � � Y and a morphism ' WG=G�
x
�!G=PJ WG� 7! xPJ in the summand indexed

by � , we define

‰.'/D

�
c� if � � YJ ; G� D PJ and x 2 PJ ;
0 otherwise;

(type I)
(type II)

where c� 2 C i .YJ ; Y>J / equals to 1 on � and vanishes everywhere else.

We claim that ‰ is surjective. To see this, it is enough to note that if � �YJ is an i–simplex with stabiliser
G� � PJ , then by the definition of Basic Construction � � Y>J .

It is left to check that ‰ commutes with the coboundary map. First, suppose ' is of type II. Then
ıJ .‰.'//D 0. On the other hand, ıF .'/ is a chain based at morphisms which are precomposed with '
and hence of type II. To see this, suppose

� WG=G�
y�1
��!G=G�

x
�!G=PJ

is such a composition and it is of type I where � � Y is an .iC1/–simplex such that y� contains � as a
face. Since Y is a strict fundamental domain, observe that y 2G� .

Since � is of type I, we must have G� D PJ and y�1x 2 PJ , which implies that G� D PJ . Since now
x 2 PJ , this shows that ' is of type I, which is a contradiction. Therefore, ‰.ıF .'//D 0.
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Now, suppose ' is of type I, ie ' D '� WG=PJ
1
�!G=PJ with PJ the stabiliser of � . Then

(4-1) ıJ .‰.'� //D ıJ .c
� /D

lX
tD1

.�1/sgn.�t /c�t ;

where �t � YJ contains � as a face. On the other hand,

(4-2) ‰.ıF .'� //D

rX
sD1

.�1/sgn.ys�s/‰.'ys�s /

where ys 2G, �s � Y , ys�s is an .iC1/–simplex containing � as a face, and 'ys�s WG=G�s
y�1s��!G=PJ .

Since Y is a strict fundamental domain, y�1s � D � and hence ys 2 PJ . Note that if ‰.'ys�s /¤ 0, then
by definition of ‰, we have ys�s � YJ and G�s D PJ . Therefore, �s D ys�s � YJ and 'ys�s D '�s . In
this case, ‰.'�s /D c

�s . The claim now follows from equating (4-1) and (4-2).

Proposition 4.2 If D.K;G.Q/;  / is a model for EFG, then cdF G D lcdQ.

Proof Note that by the assumption D.K;G.Q/;  / is simply connected, and thus by Theorem 3.8, G
is necessarily isomorphic to the fundamental group of G.Q/. Consider the panel complex BZ given in
Definition 3.16. By passing to a barycentric subdivision we can assume that BZ is a simplicial panel
complex. Let X D D.BZ; G.Q/;  /. By Proposition 3.19(2), CF

�

�
D.K;G.Q/;  /

�
and CF

� .X/ are
chain homotopy equivalent and thus the latter can be used to compute HnF .G;�/.

Now Proposition 3.21 implies that there exists J 2Q such that

H lcdQ.BZ
J ; B

Z
>J /¤ 0:

Since C iF .X IAPJ /D 0 for i > lcdQ, by Proposition 4.1, ‰ induces an epimorphism

‰� WH lcdQ
F .X IAPJ /!H lcdQ.BZ

J ; B
Z
>J /:

This shows that H lcdQ
F .X IAPJ /¤ 0 and hence, by Lemma 3.22, we obtain cdF G D lcdQ.

5 Cohomology of simple complexes of groups

Let G.Q/ be a simple complex of groups and let  WG.Q/!G be a simple morphism which is injective
on local groups. Recall that by Convention 3.4, for any J 2Q we identify PJ with  .PJ /6G.

For J 2Q let IJ be a complete set of representatives of the set

fg 2G j g�1PJg D PU for some U 2Qg=PJ ;

where PJ acts by left multiplication.

Suppose ��Q is a subset such that PU D PU 0 for all U;U 0 2�. Define subcomplexes K� and K>�
of K to be

K�D
ˇ̌
fV 2Q jV >U for some U 2�g

ˇ̌
; K>�D

ˇ̌
fV 2Q jV >U for some U 2� and PV �PU g

ˇ̌
:
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For J 2Q and g 2G define
�
g
J D fU 2Q j PU D g

�1PJgg:

Proposition 5.1 Suppose that G.Q/ is a strictly developable simple complex of groups. Let  WG.Q/!G

be a simple morphism which is injective on local groups and let X DD.K;G.Q/;  / be the associated
Basic Construction. Then for any J 2Q, there is an isomorphism of cochain complexes

ˆ W .C �F .X IBPJ /; ıF /!
M
g2IJ

.C �.K�gJ
; K>�gJ

/; ı/:

Proof We define ˆD
L
g2IJ ‰g with each

‰g W C
�
F .X IBPJ /! C �.K�gJ

; K>�gJ
/

constructed analogously to the map ‰ of Proposition 4.1 where one replaces an arbitrary simplicial panel
complex Y with K. Namely, we identify

C iF .X IBPJ /D HomF

� M
��K.i/

AG� ;BPJ

�
Š

M
��K.i/

BPJ .G� /Š
kM

jD1

ZŒisomG.G=G�j ; G=PJ /�;

where the �j are all the i–simplices of K such that G�j DG PJ .

Now, fix g 2 IJ and suppose � is an i–simplex with stabiliser g�1PJg D P
g
J . Given an (iso)morphism

.' WG=G�
x
�!G=PJ WG� 7! xPJ / 2 C

i
F .X IBPJ /;

we define

‰g.'/D

�
c� if G� D P

g
J and x 2 g�1PJ ;

0 otherwise;

where c� 2 C i .K�gJ ; K>�
g
J
/ equals to 1 on � � K�gJ and vanishes everywhere else. The proof that

‰g commutes with the coboundary maps is analogous to the corresponding argument in the proof of
Proposition 4.1 and hence it is omitted. (Alternatively, it also follows from the commutativity of the
coboundary maps with sections �g defined below.)

To show that ˆ is an isomorphism, we first define a section

�g W C
�.K�gJ

; K>�gJ
/! C �F .X IBPJ / W c

�
7! .'� WG=P

g
J

g�1
��!G=PJ /

to each ‰g . We need to show that it commutes with the coboundary maps. We have

(5-1) ıF .�g.c
� //D ıF .'� /D

rX
sD1

.�1/sgn.ys�s/'ys�s

where �s � K contains � as a face and 'ys�s W G=G�s
y�1s
��! G=P

g
J

g�1
��! G=PJ with ysG�sy

�1
s 6 P

g
J

and ys 2 P
g
J . Note that if 0¤ 'ys�s 2 C

�
F .X IBPJ /, then by definition of BPJ , the subgroup G�s must

be conjugate to PJ and G�s D P
g
J . Therefore, �s D ys�s �K and 'ys�s D '�s 2 Im�g .
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On the other hand,

(5-2) �g.ıJ .c
� //D

lX
tD1

.�1/sgn.�t /�g.c
�t /D

lX
tD1

.�1/sgn.�t /'�t

where �t � K�gJ contains � as a face. The claim now follows from equating (5-1) and (5-2). It is
straightforward to check that ˆ and �D

L
g2IJ �g are inverses of each other.

Remark 5.2 Proposition 5.1 can be generalised to hold for an arbitrary simplicial panel complex
.X; fXJ gJ2Q/, where one defines

X� D
[
J2�

XJ ; X>� D
[

fU2QjU�J for some J2� and PU�PJ g

XU ;

though this is not necessary for our purposes.

6 Main theorems

In this section we state and prove slightly more general versions of Theorems 1.1 and 1.6 from the
introduction. The generalisation concerns the computation of Bredon cohomology of the Basic Construc-
tion D.K;G.Q/;  /. In the statements below, we allow  WG.Q/!G to be a simple morphism to an
arbitrary group G, not necessarily the fundamental group of G.Q/.

Theorem 6.1 Let G.Q/ be a strictly developable simple complex of groups and let  WG.Q/!G be a
simple morphism that is injective on local groups. Let F be the family of subgroups of G generated by
local groups. Let X DD.K;G.Q/;  / be the associated Basic Construction. For J 2Q we then have

(6-1) H�F .X IBPJ /Š
M
g2IJ

M
C
g
J��

g
J

H�.KCgJ
; K>CgJ

/;

where C gJ ��
g
J denotes a block in �gJ .

If G.Q/ is rigid and X is a model for EFG, then

(6-2) cdF G Dmaxfn 2N jHn.KC ; K>C /¤ 0 for some block C �Qg:

Proof First we prove (6-1). To do this we show that for every J 2Q, g 2 IJ and for any integer n> 0,

(6-3) Hn.K�gJ
; K>�gJ

/Š
M

C
g
J��

g
J

Hn.KCgJ
; K>CgJ

/:

To show (6-3), we proceed by induction on the number of blocks C � �gJ . If �gJ contains only one
block then (6-3) is clearly satisfied. Assume now that �gJ contains more than one block. Let C ��gJ ,
let RD�gJ XC and write the pair .K�gJ ; K>�

g
J
/ as

.K�gJ
; K>�gJ

/D .KR [KC ; K>R [K>C /:
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Consider the relative Mayer–Vietoris sequence for the above pair,

Hn�1.KC \KR; K>C \K>R/!Hn.K�gJ
; K>�gJ

/!Hn.KC ; K>C /˚H
n.KR; K>R/

!Hn.KC \KR; K>C \K>R/:

Claim KC \KR DK>C \K>R.

To prove the claim consider an element V 2KC \KR (ie we view V 2Q as a vertex of K). Thus U 6 V
and U 0 6 V for some U 2 C and U 0 2R. If V …K>C \K>R, then PV D PU or PV D PU 0 . In either
case we get PV D g�1PJg, which implies that V 2 C and V 2R. This is a contradiction and the claim
follows.

The claim implies that Hn.KC \KR; K>C \K>R/D 0 for every n> 0 and therefore the map

Hn.K�gJ
; K>�gJ

/!Hn.KC ; K>C /˚H
n.KR; K>R/

is an isomorphism. Since by the inductive assumption we have

Hn.KR; K>R/Š
M
C 0�R

Hn.KC 0 ; K>C 0/;

the formula (6-3) is established.

Formula (6-1) follows now easily from Proposition 5.1 and formula (6-3).

We now prove (6-2). Note that here by the assumption X is a cocompact model for EFG and thus G is
isomorphic to the fundamental group of G.Q/ (see Theorem 3.8). By Corollary 2.6,

cdF G Dmaxfn 2N jHn
F .X;BPJ /¤ 0 for some J 2Qg:

By Proposition 5.1,

maxfn 2N jHn
F .X;BPJ /¤ 0 for some J 2Qg

Dmaxfn 2N jHn.K�gJ
; K>�gJ

/¤ 0 for some J 2Q; g 2 IJ g

Dmaxfn 2N jHn.K�1U
; K>�1U

/¤ 0 for some U 2Qg

Dmaxfn 2N jHn.KC ; K>C /¤ 0 for some block C �Qg:

Proof of Theorem 1.6 We first prove part (i). By Proposition 3.19(1), complexes D.K;G.Q// and
D.B;G.Q// are G–homotopy equivalent.

The formula for cohomology of D.K;G.Q// follows from formula (6-1) of Theorem 6.1 in the following
way (note that in (6-1) one does not assume rigidity). Since by assumption the complex G.Q/ is thin, we
have that blocks are equal to elements of Q. Moreover, for a single element U 2Q we have that KU is
contractible, and thus we obtain

H�.KU ; K>U /Š zH
��1.K>U /:
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Now we prove part (ii). Since D.K;G.Q// is a model for EFG, it is in particular simply connected, and
thus by Theorem 3.8 we get that G is isomorphic to the fundamental group of G.Q/. Since D.K;G.Q//
and D.B;G.Q// are G–homotopy equivalent, we conclude that D.B;G.Q// is a model for EFG as
well. Clearly D.B;G.Q// is cocompact.

The formula for the dimension of D.B;G.Q// and formula (1-3) for cdF G follow now easily from
combining Propositions 3.21 and 4.2.

Remark 6.2 Theorem 6.1 holds true if we replace the complex K by any other panel complex over Q
whose all panels are contractible (cf Remark 5.2). In particular, one can use the Bestvina complex B .
Unlike in Theorem 1.6, here the dimension of the resulting Basic Construction D.B;G.Q/;  / may
not be optimal; nonetheless, since Bestvina complex in general has a smaller cell structure than the
complex K, its use may simplify cohomological computations.

7 Deformation retractions and actions on trees

In this section we show that if the Bestvina complex for G.Q/ is a tree then it can be realised as an
equivariant deformation retract of the standard development. This can be seen as a generalisation of results
of Davis [9, Proposition 8.5.5] and the authors [26] to the case of infinite local groups. The key ingredient
in the proof is the cohomological formula of Theorem 1.6. We remark that our approach relies neither on
Dunwoody’s accessibility theory [16] nor on Dicks and Dunwoody’s almost stability theorem [14, III.8.5].

Theorem 7.1 Let G.Q/ be a strictly developable thin simple complex of groups over a poset Q with
fundamental group G and let F be the family generated by local groups. Suppose that D.K;G.Q// is
a model for EFG. Then cdF G 6 1 if and only if D.B;G.Q// is a tree and an equivariant deformation
retract of D.K;G.Q//.

Proof The proof is a verbatim translation of the proof of Theorem 4.8 of [26], which treats the case of
finite local groups. The only place where that proof uses the fact that local groups are finite is the use
of [26, Proposition 3.6], which gives a formula for the cohomological dimension of G for the family
of finite subgroups. In Theorem 1.6 we prove that the same formula holds for a family F generated by
arbitrary local groups,

cdF G Dmaxfn 2N j zHn�1.K>J /¤ 0 for some J 2Qg:

Note that cdF G 6 1 implies that for any J 2Q we have zHn.K>J /D 0 for all n > 0, and thus any K>J
is a disjoint union of contractible spaces. This is the crucial piece of geometric information which is used
in [26, Theorem 4.8] to build the Bestvina complex as an equivariant deformation retract of the standard
development.

In some cases the condition ensuring that cdF G 6 1 can be read from the global structure of the poset Q.
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Example 7.2 Suppose Q is a poset of simplices of a finite flag simplicial complex L. Then lcdQ6 1 if
and only if the one skeleton L.1/ of L is a chordal graph, ie for any cycle in L.1/ of length at least four
there is an edge connecting two nonconsecutive vertices of the cycle (a chord).

8 Applications and examples

8.1 Bredon cohomological dimension for finite subgroups

Proposition 8.1 Let G.Q/ be a strictly developable simple complex of groups with collection of local
groups fPJ gJ2Q and fundamental group G. Let R be the associated block poset. Suppose D.K;G.Q//
is a model for EFG where F is the family generated by local groups and assume that F contains all finite
subgroups of G. Then

cdG 6 lcdRCmaxfcdPJ j J 2Qg:

In particular , if G.Q/ is thin then

cdG 6 lcdQCmaxfcdPJ j J 2Qg:

If G is virtually torsion-free then both inequalities remain true if one replaces “cd” by “vcd”.

Proof For any discrete group G and for any family of subgroups F which contains all finite subgroups
of G we have cdG 6 cdF GCmaxfcdF j F 2 Fg [13, Corollary 4.2]. Since every subgroup in F is
subconjugate to a subgroup in fPJ gJ2Q, we get that maxfcdF j F 2 Fg DmaxfcdPJ j PJ 2Qg. Both
claims now follow from Lemma 3.22.

For the virtually torsion-free case, one first replaces G with a torsion-free finite-index subgroup G0 and
then one performs the same argument as above applied to ordinary cohomological dimension instead of
the proper cohomological dimension.

8.2 Cohomology of buildings and their automorphisms

Groups acting chamber transitively on buildings form a large class of examples of actions on nonpositively
curved complexes with a strict fundamental domain.

We recall some terminology. Let .W; S/ be a Coxeter system with the set S finite. A subset J � S is
called spherical if the elements of S generate a finite subgroup of W (we assume that the empty set
∅ � S generates the trivial subgroup and thus it is spherical). Let Q be the poset of spherical subsets
of S ordered by inclusion.

Now suppose that � is a building of type .W; S/ and that a group G acts chamber transitively on � (see
[8, Section I.3]). Such an action gives rise to a strictly developable simple complex of groups G.Q/ with
fundamental group isomorphic to G. The standard geometric realisation of � is by definition the Basic
Construction D.K;G.Q// (by replacing K with another panel complex over Q one obtains a variety of
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geometric realisations of �). By [8, Theorem 11.1] there is a complete CAT.0/ metric on D.K;G.Q//
such that G acts by isometries. Thus D.K;G.Q// is a cocompact model for EFG, where F is the family
generated by the local groups. Let PJ denote the local group (ie the special parabolic subgroup) at the
element J 2Q.

Lemma 8.2 In the above setting , if J 6T then PJ 6PT is a proper inclusion. In particular , the complex
of groups G.Q/ is thin.

Proof The proof is verbatim the proof of [22, Lemma 5.1], since the assumption that G acts properly
on � was not used there.

We remark that in the case where G DW , the standard geometric realisation D.K;G.Q// of � is by
definition the Davis complex of the system .W; S/ and it is denoted by †W .

We are now ready to prove the main result of this section, which is Corollary 1.7

Proof of Corollary 1.7 By definition D.B;G.Q// is a realisation of �. Since by Lemma 8.2 the
complex G.Q/ is thin, Proposition 3.19(1) implies that D.B;G.Q// and D.K;G.Q// are G–homotopy
equivalent. Thus D.B;G.Q// is a model for EFG, since D.K;G.Q// is a model. Since D.B;G.Q// is
clearly cocompact, this establishes the first claim of the theorem.

The remaining claims follow directly from Theorem 1.6 as the formula for vcdW (see [15, Theorem 2]
or [12, Theorem 5.4]) is identical to formula (1-3) for cdF G.

Remark 8.3 D.B;G.Q// can also be constructed by first constructing D.B;W.Q// for the correspond-
ing Coxeter group W and then realising the building with apartments modelled on D.B;W.Q//.

We obtain the following corollary, first proven in [19, Theorem 4.1(ii)].

Corollary 8.4 Let G be a virtually torsion-free group acting chamber transitively on a building of type
.W; S/. Then

vcdG 6 vcdW CmaxfvcdP j P is a special parabolic subgroup of Gg:

Proof The corollary follows easily from combining Corollary 1.7 with Proposition 8.1, and the facts
that lcdQD vcdW and that local groups of G.Q/ are precisely the special parabolic subgroups of G.

8.3 Graph products of groups

An example of a group acting chamber transitively on a building is a graph product of groups, such as for
example the right-angled Artin group or the right-angled Coxeter group.
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Definition 8.5 Consider a finite flag simplicial complex L on the vertex set S with groups Ps for every
s 2 S . The graph product GL is defined as the quotient of the free product of groups Ps for s 2 S by the
relations

fŒPs; Pt � j Œs; t � is an edge of Lg:

In other words, elements of subgroups Ps and Pt commute if and only if there is an edge Œs; t � in L.

If we set Ps Š Z=2 for every s 2 S , the corresponding graph product is called the right-angled Coxeter
group and it is denoted by WL.

If we set Ps Š Z for every s 2 S , the corresponding graph product is called the right-angled Artin group
and it is denoted by AL.

Theorem 8.6 [8, Theorem 5.1] The group GL acts chamber transitively on a building of type .WL; S/,
where WL is the right-angled Coxeter group corresponding to L.

Thus GL is the fundamental group of a simple complex of groups G.Q/, where Q is the poset of spherical
subsets of S . Note that Q can be identified with the poset of simplices of L ordered by inclusion, together
with the smallest element corresponding to the empty set. Consequently, the geometric realisation of Q is
isomorphic to the cone over the barycentric subdivision of L. Moreover, the local group at simplex �
of L is the direct product

Q
s2� Ps and the local group at ∅ is the trivial group.

Theorem 8.6 implies that Corollaries 1.7, 1.8, 1.9 and 1.10 apply to GL.

8.4 Examples

Example 8.7 (barycentric subdivision and thinning) The first example shows that the thinning procedure
may be intuitively seen as an inverse to the barycentric subdivision.

LetX be aG–simplicial complex with a strict fundamental domain Y , letG.Q/ be the associated complex
of groups and let F be the family generated by the stabiliser subgroups. Thus Q is the poset of simplices
of Y (ordered by the reverse inclusion). Assume that G.Q/ is thin.

Now let X 0 denote the barycentric subdivision of X , and consider the induced action of G on X 0. The
fundamental domain for this action is clearly Y 0. Let G.Q0/ be the associated simple complex of groups,
where Q0 is the poset of simplices of Y 0. Observe that G.Q0/ is not thin.

One easily sees that the fundamental groups of G.Q/ and G.Q0/ are isomorphic, and so are the families
generated by local groups. However,

lcdQ0 D dim.X 0/D dim.X/;

while in general lcdQ is strictly less than dim.X/.
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Proposition 8.8 Let G.Q/ and G.Q0/ be as above. Let R denote the block poset associated to G.Q0/
and let G.R/ be the thinning of G.Q0/. Then Q and R are isomorphic , and simple complexes of groups
G.Q/ and G.R/ are simply isomorphic.

Proof Given a simplex � � Y , all simplices of Y 0 of the form f�0 � �1 � � � � � �g have the same
local group equal to P� , where P� is the local group of G.Q/ at � . Thus blocks of Q0 are of the form
C� D

S
kf�0 � �1 � � � � � �k j �k D �g and one can define a morphism Q! R by � 7! C� . It is

straightforward to check that it is an isomorphism and that so is the induced morphism G.Q/!G.R/.

9 Reflection-like actions

In this section we introduce reflection-like actions, which generalise the actions of reflection groups on
Euclidean spaces. Our main application is the construction of new counterexamples to the strong form of
Brown’s conjecture regarding the equality between vcdG and gdG (see [6, Chapter 2] or [7, VIII.11]):

Brown’s conjecture Let G be a virtually torsion-free group with vcdG <1.

(i) Weak form There is a contractible proper G–CW–complex of dimension vcdG.

(ii) Strong form gdG D vcdG.

Our counterexamples are similar to those of [22], where the desired group G is a semidirect product of
WL and F , where WL is a right-angled Coxeter group associated to a flag complex L and F is a finite
group acting on L. However our method of producing these counterexamples is different. In our case, we
require the action of F on L to be reflection-like and rely on an application of Theorem 6.1.

To the best of our knowledge, the only known example of a reflection-like action that serves as a
counterexample to the strong form of Brown’s conjecture is the action of A5 on the 2–skeleton of the
Poincaré homology sphere (see [22, Example 1]). In Example 9.13 we generalise this example. The
reader may also look at the treatment of this example in [26], where the action is implicitly proven to be
reflection-like.

Definition 9.1 (reflection-like action) Let F be a group acting admissibly on a connected, flag simplicial
complex L of dimension n > 1, and let Y � L be a strict fundamental domain for this action. We say
that such an F –action is reflection-like if

(i) the fundamental domain Y is homeomorphic to the ball Bn;

(ii) every interior point of Y has the same stabiliser, which we denote by F0;

(iii) F0 is a proper subgroup of the stabiliser of any point in @Bn.

Note that, in particular, part (iii) implies that both the group F and its action on L are nontrivial.
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Remark 9.2 In the above definition, the assumptions on the action and on the complex L are not very
restrictive. Indeed, given an action of F on a polyhedral complex L, by taking barycentric subdivision of
L one obtains an admissible action on a flag simplicial complex.

Lemma 9.3 Consider a reflection-like action of F on L with a strict fundamental domain Y � L. Let
Q denote the poset of simplices of Y ordered by reverse inclusion and let F.Q/ be the associated simple
complex of groups (see Theorem 3.8). Then , the poset Q contains a block C with local group F0 such that

(1) KC DK Š Y Š B
n,

(2) K>C Š @.Y /Š S
n�1.

Proof The statement follows directly from the definition of a reflection-like action. Indeed, by
Definition 9.1(ii) the local group at any (open) simplex which does not lie on the boundary of Y ŠBn, is
necessarily equal to F0. On the other hand, by Definition 9.1(iii) the local group at any simplex on the
boundary strictly contains F0.

Definition 9.4 Let F be a finite group with a reflection-like action on a connected, compact, n–
dimensional flag simplicial complex L with a strict fundamental domain Y � L. Let WL be the
right-angled Coxeter group associated to L. Then the F –action of L induces an F –action on WL.
Let G DWL ÌF be the associated semidirect product.

In what follows, unless stated otherwise, let F , L, Y and G be as in Definition 9.4.

Proposition 9.5 The group G acts on Davis complex †WL with strict fundamental domain and this
action is proper and reflection-like.

Proof The group G acts properly on the Davis complex †WL with a strict fundamental domain [22,
Lemma 3.5]. One easily verifies that the fundamental domain is equal to C.Y 0/, the cone over the
barycentric subdivision of Y . Since Y ŠBn, we get that C.Y 0/ŠBnC1 and thus part (i) of Definition 9.1
is satisfied. For parts (ii) and (iii) we need to identify G–stabilisers of the points in C.Y 0/. Recall that

C.Y 0/D Y 0 � Œ0; 1�
ı
.x; 1/� .x0; 1/

and let Œx; t � denote the equivalence class of a point .x; t/ 2 Y 0 � Œ0; 1�.

(1) For the points in the interior of C.Y 0/, ie points Œx; t � where x 2 int.Y 0/ and t 2 .0; 1/, we have
StabG Œx; t �D F0 (where F0 is the stabiliser of points in int.Y / with respect to the F –action on L).
This establishes part (ii) of Definition 9.1.

(2) We have three types of points on the boundary of C.Y 0/:

(a) For the points Œx; 0� where x 2 Y 0, the stabiliser StabG Œx; t � is the Cartesian product of at least
one generator of WL and the stabiliser of x 2 Y with respect to the F –action on L.
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(b) For the points .x; t/ where x 2 @.Y 0/ and t 2 .0; 1/, the stabiliser StabG Œx; t � is equal to the
stabiliser x 2 @.Y / with respect to the F –action on L.

(c) The stabiliser of the point Œx; 1� is equal to the entire F .

Note that in each of the above cases, the stabiliser of Œx; t � strictly contains F0. In case (a) this
follows from the fact that there is at least one generator of WL in the stabiliser, and in cases (b)
and (c) this follows from the definition of a reflection-like action. Thus part (iii) of Definition 9.1
is satisfied, and therefore the G–action on †WL is reflection-like.

Lemma 9.6 Let G.Q/ be a simple complex of groups associated to the G–action on †WL . Then G is
isomorphic to the fundamental group of G.Q/ and

dimD.B;G.Q//D dimD.K;G.Q//D gdG D cdG D nC 1:

Proof Since †WL is simply connected, by Theorem 3.8 we conclude that G is isomorphic to the
fundamental group of G.Q/. The G–action on †WL is proper and cocompact, and since †WL is CAT.0/,
it follows that †WL is a cocompact G–CW–model for EG. Note that G.Q/ is rigid, since all of its local
groups are finite.

Thus the assumptions of Theorem 6.1 are satisfied and we can use it to compute the Bredon dimension
of G. First note that since dim.†WL/D nC 1, we get that cdG 6 nC 1. Thus it suffices to show that
cdG > nC 1. By Proposition 9.5 the G–action on †WL is reflection-like and thus by Lemma 9.3 the
poset Q contains a block C such that

(1) KC Š C.Y
0/Š BnC1,

(2) K>C Š @.C.Y
0//Š Sn.

Since HnC1.BnC1; Sn/Š Z¤ 0, by Theorem 6.1 we have that cdG > nC 1.

Lemma 9.7 If Hn.L/D 0 then vcdG 6 n.

Proof Since G is a finite extension of WL, we have that vcdG D vcdWL. To prove that vcdWL 6 n, by
[15, Theorem 2] it suffices to show that Hn.Lk.�; L//D 0 for every simplex � of L. For any nonempty
simplex � , the link Lk.�; L/ is at most .n�1/–dimensional, and thus Hn.Lk.�; L//D 0. If � is empty,
Lk.�; L/Š L and by the assumption we have Hn.L/D 0.

The following theorem can be used to construct new cocompact counterexamples to the strong form of
Brown’s conjecture.

Theorem 9.8 Let F be a finite group admitting a reflection-like action on a compact , connected , flag
simplicial complex L of dimension n> 1. Let WL be the right-angled Coxeter group associated to L and
G DWL ÌF be the associated semidirect product. Suppose that Hn.L/D 0. Then

vcdG 6 n and cdG D nC 1:

Proof The statement follows immediately from combining Lemmas 9.6 and 9.7.
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9.1 Examples of reflection-like actions

It remains to produce examples of groups satisfying the assumptions of Theorem 9.8. In every example
discussed below, the underlying space admits an invariant polyhedral structure, which we will not specify
(cf Remark 9.2).

We begin with the following two preparatory lemmas.

Lemma 9.9 Suppose we have reflection-like actions of F1 on an m–dimensional complex L1 and of F2
on an n–dimensional complex L2. Then:

(1) The induced action of F1 �F2 on L1 �L2 is reflection-like. The fundamental domain is equal to
the product of the respective fundamental domains and it is homeomorphic to BmCn.

(2) The induced action of F1 �F2 on the join L1 �L2 is reflection-like. The fundamental domain is
equal to the join of the respective fundamental domains and it is homeomorphic to BmCnC1.

The proof is straightforward and follows at once from the definition of a reflection-like action.

Lemma 9.10 Let L1 be an m–dimensional finite complex and L2 be an n–dimensional finite complex.
Assume that either

(1) Hm.L1/D 0, or

(2) Hm.L1/D 0, Hn.L2/D 0 and Tor.Hm�1.L1/;Hn�1.L2//D 0.

Then HmCn.L1 �L2/D 0 and HmCnC1.L1 �L2/D 0.

Note that the assumption Tor.Hm�1.L1/;Hn�1.L2//D0 is equivalent to torsion subgroups ofHm�1.L1/
and Hn�1.L2/ having coprime orders.

Proof The claim follows easily from the Künneth formula, the universal coefficients theorem and the
Mayer–Vietoris sequence for the join and the product.

Note that Lemma 9.9 gives an easy way of producing new examples of reflection-like actions out of old
ones, and Lemma 9.10 can be used to ensure that top-dimensional cohomology of the product/join will
vanish. In order to construct genuinely new examples with vanishing top-dimensional cohomology, we
first construct examples that do have nonzero top-dimensional cohomology, and then combine them into
products or joins and use Lemma 9.10 to ensure that the top-dimensional cohomology vanishes.

The summary of the constructed examples is presented in Table 1.

Example 9.11 (finite reflection group) Let F 6 O.n/ be a finite subgroup generated by orthogonal
reflections across hyperplanes in Rn (see [9, Chapter 6]). Then the induced action of F on the unit sphere
Sn�1 �Rn is reflection-like.
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example F L dim.L/ H dim.L/.L/D 0?

9.11 F 6O.nC 1/, F finite Sn n no

9.12 .Z=2/n RP n n no

9.13 PGL2.q/, q D 2a, a > 2 Lq 2 no, unless q D 4

9.14 Dk Mk 2 no

9.15 .Z=2/n �PGL2.q/, n even RP n �Lq nC 2 yes
RP n �Lq nC 3 yes

9.16 Dk �Dl , k and l coprime Mk �Ml 4 yes
Mk �Ml 5 yes

9.17 .Z=2/n �Dk , n even, k odd RP n �Mk nC 2 yes
RP n �Mk nC 3 yes

Table 1: Examples of reflection-like actions, together with an indication whether they satisfy the
assumptions of Theorem 9.8.

Example 9.12 Consider the action of Z=2 on R given by x 7! �x and consider the product action
of .Z=2/n on Rn. Factoring out the action of the antipodal map � 2 .Z=2/n, we obtain an action of
.Z=2/n=h�i Š .Z=2/n�1 on the real projective space RP n�1. One easily verifies that this action is
reflection-like, with the quotient being an .n�1/–simplex.

The above example is a special case of the so-called small cover of Davis and Januszkiewicz [10], which is
an n–dimensional manifold together with a reflection-like action of .Z=2/n whose quotient is isomorphic
to an n–dimensional simple polytope.

Example 9.13 (Aschbacher–Segev) We outline a construction of a reflection-like action of the group
F D PGL2.q/ for q D 2a with a > 2 on a flag 2–complex LD Lq in order to illustrate the underlying
simple complex of finite groups F.Q/. For more details we refer to [1, Section 9].

For the 1–skeleton L.1/q take the barycentric subdivision of the complete graph on the projective line of
qC 1 points v1; : : : ; vqC1 with the natural action of F . Fix a single conjugacy class C of cycles of order
qC 1 in F . Every cycle of order qC 1 is conjugate to its inverse. Therefore, there are 1

2
q.q� 1/ pairs

of .qC1/–cycles .�i ; ��1i / in C. Define Lq by attaching that many .qC1/–gons using the cycles �i to
describe the attaching maps. Each 2–cell becomes a cone on its subdivided .qC1/–gonal boundary where
�i acts by fixing the cone point. The 2–simplices of Lq are q.q2� 1/ right-angled triangles on which F
acts simply transitively. Each one is a strict fundamental domain. Let Y be such a fundamental domain
that contains a vertex vj whose stabiliser is the Borel subgroup B of upper triangular matrices in F .

Figure 2, left, shows the fundamental domain Y together with local groups at cells. Figure 2, right, shows
the fundamental domain C.Y 0/ for the associated action of WL ÌF on †WL together with local groups
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feg

DqC1 C2 Dq�1

Cq�1

B

C 02

Y Š F=L C.Y 0/Š†WL=WL ÌF

F D PGL2.q/

DqC1 � hs1i C2 � hs1; s2i Dq�1 � hs2i

Cq�1 � hs2; s3i

B � hs3i

hs1; s2; s3i

C 02 � hs1; s3i

Figure 2: Fundamental domains Y , left, and C.Y 0/, right, together with stabilisers of cells and
vertices respectively.

at vertices. Local groups at cells are given by the respective intersections of local groups at vertices. The
generators of WL corresponding to vertices of Y are denoted by s1, s2 and s3.

.�/ For small values of q, the complex Lq is known to be Q–acyclic, with first homology either trivial or
elementary abelian of order rq�1, where r is an odd prime. For q D 4, the complex Lq is homeomorphic
to the Poincaré dodecahedron, and hence it is acyclic.

Example 9.14 (dihedral group acting on a Moore space) For a natural number k > 2, let Mk denote the
Moore space M.Z=k; 1/, ie a space obtained by attaching a disk to a circle along the map of degree k.
Thus we have zH1.Mk/Š Z=k and zHi .Mk/D 0 for all i ¤ 1. We will describe a reflection-like action
of the dihedral group Dk on Mk . Recall that Dk is generated by two reflections s and t and their product
st is a rotation of order k.

Consider the standard action of Dk on a k–gon and the reflection action of Dk=hsti Š Z=2 on a circle,
both shown in Figure 3, left, (note that both actions reverse the orientation of the edges). The attaching map
of the boundary of the k–gon is equivariant with respect to the homomorphism Dk!Dk=hsti Š Z=2,
and thus we get a well-defined action of Dk on Mk . One easily checks that this action has a strict
fundamental domain, which is a triangle. The fundamental domain together with its cell stabilisers is
shown in Figure 3, right. By analysing the stabilisers, we conclude that the action of Dk on Mk is
reflection-like.

We remark that in this setting Mk is homeomorphic to the Basic Construction D.jQj; G.Q/;  /, where
G.Q/ is a simple complex of groups associated to the Dk–action on Mk , and  WG.Q/!Dk is a simple
morphism induced by sending all three vertex groups Dk into Dk via the identity map.

Finally, observe that for kD 2 in the above construction,D2ŠZ=2�Z=2 is an isometry group of a 2–gon
and Mk is equivariantly homeomorphic to the real projective plane RP 2 appearing in Example 9.12.
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feg

Dk hsti Dk

hti

Dk

hsi

ts

Dk Dk=hsti Š Z=2

deg k

Œs�D Œt �

Figure 3: Left: reflection like action ofDk on a Moore spaceMk . Right: the fundamental domain
together with local groups at cells.

We are ready now to construct new counterexamples to the strong form of Brown’s conjecture.

Example 9.15 Let Lq be a complex as in Example 9.13 satisfying .�/. For an even integer n, consider
the induced reflection-like actions of the product .Z=2/n �PGL2.q/ on the product RP n �Lq and on
the join RP n �Lq .

Since Hn.RP n/ D 0, Hn�1.RP n/ D Z=2, H2.Lq/ D 0 and H1.Lq/ is either trivial or elementary
abelian of order being a power of an odd prime, by Lemma 9.10 we conclude that HnC2.RP n�Lq/D 0

and HnC3.RP n �Lq/D 0.

Example 9.16 Consider Mk and Ml such that k and l are coprime. By Lemma 9.10 we get that
H 4.Mk �Ml/D 0 and H 5.Mk �Ml/D 0 (in fact Mk �Ml is contractible).

Example 9.17 For an even integer n and an odd integer k consider the action of .Z=2/n on the
real projective space RP n, and the action of Dk on the Moore space Mk . By Lemma 9.10 we have
HnC2.RP n �Mk/D 0 and HnC3.RP n �Mk/D 0.

Remark 9.18 In contrast to Example 9.13 (and Example 9.15), Examples 9.16 and 9.17 are particularly
simple in terms of algebraic structure of groups and cellular structure of complexes. The smallest group
appearing in these examples is the product D2 �D3 Š .Z=2/2 �S3.

10 Final remarks and open questions

Let X be a G–CW–complex. We say that a G–CW–subcomplex Y is a spine of X if it is an equivariant
deformation retract of X . When X is a model for EFG, then so is Y and dim.Y / > gdF G. Spines of
minimal dimension (so equal to gdF G) have been constructed, for example, for the actions of certain
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arithmetic groups such as SL.n;Z/ on the symmetric space [2], the actions of the outer automorphism
groups of free groups on the outer space [27], and the actions of the mapping class groups of punctured
surfaces on the Teichmüller space [18].

Question 10.1 Suppose a group G acts on a CAT.0/ polyhedral complex X with a strict fundamental
domain. Denote by F the family generated by the stabilisers. Suppose the associated complex of groups
G.Q/ is thin. Can D.B;G.Q// be constructed as a spine of X of the lowest possible dimension equal
to gdF G?

Theorem 7.1 tells us that the answer is yes if cdF G 6 1. Also by Theorem 1.6, we know that
dimD.B;G.Q// D gdF G and D.B;G.Q// is G–homotopy equivalent to X . The question whether
D.B;G.Q// can be constructed as an equivariant deformation retract of X is open in general. In [26],
we isolate a condition on a finite polyhedra which we call subconical. It is open whether every finite
polyhedron is subconical. If this is the case, then a generalisation of [26, Proposition 4.7] to thin simple
complexes of groups gives an affirmative answer to this question.

Question 10.2 Does D.B;G.Q// attain the CAT (0) dimension of the group G?

In many cases of interest, such as Coxeter groups or groups acting on buildings, the associated standard
development D.K;G.Q// supports a G–invariant CAT.0/ metric. Therefore it is natural to ask whether
the Bestvina complex supports such a metric as well, or whether the dimension of Bestvina complex
is equal to the CAT.0/ dimension of the group for the family F . The latter is defined as the minimal
dimension of a model for EFG that supports a G–invariant CAT.0/ metric.

There are simple complexes of groups where the corresponding Bestvina complex does not admit any
G–invariant piecewise linear CAT.0/ metric (this will be shown in a forthcoming work of the second
author). Moreover, we suspect that these examples also have CAT.0/ dimension strictly larger than the
Bredon cohomological dimension. The above examples are the right-angled Coxeter groups (or graph
products) associated to certain 2–dimensional contractible but noncollapsible complexes. Consequently,
the methods used to show the lack of CAT.0/ metric do not carry through to higher dimensions, and to
the best of our knowledge the question is open in all dimensions greater than 2.

The question is especially interesting when F is the family of all finite subgroups. In this case, the metric
structure of EG can be used to study numerous features of G, eg by considering the visual boundary
of EG. Note that the positive answer to that question, combined with Example 9.16 (or 9.17), would
result in a group of CAT.0/ dimension four, whose finite-index overgroup has CAT.0/ dimension equal
to five.

Question 10.3 Are the groups G constructed in Examples 9.16 or 9.17 also counterexamples to the weak
form of Brown’s conjecture?
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The weak form of Brown’s conjecture is open in all dimensions except when vcdG D 2 [22]. A natural
place to look for counterexamples are the groups that disprove the strong form of Brown’s conjecture.
Yet, most such groups G are known to act properly on a contractible complex of dimension vcdG.
Take for example G DWL ÌF . If L is contractible (see [22, Section 5] for examples), then there is a
contractible subcomplex Y of †WL of dimension vcdG on which G acts properly. The subcomplex Y
can be obtained by applying the Basic Construction to L0 instead of CL0. Similarly, the finite extensions
of Bestvina–Brady groups constructed in [21] or [24, 3.6] cannot be counterexamples to the weak form of
the conjecture, because they act properly on the level sets of the Morse function which in these examples
are contractible.
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On the decategorification of some higher actions
in Heegaard Floer homology

ANDREW MANION

We decategorify the higher actions on bordered Heegaard Floer strands algebras from recent work of
Rouquier and the author, and identify the decategorifications with certain actions on exterior powers
of homology groups of surfaces. We also suggest an interpretation for these actions in the language of
open-closed TQFT, and we prove a corresponding gluing formula.

57K16; 18N25, 57K18

1 Introduction

In [15], Raphaël Rouquier and the author define a tensor product operation for higher representations
of the dg monoidal category of Khovanov [11], which we call U, and use it to reformulate aspects of
cornered Heegaard Floer homology; see Douglas, Lipshitz and Manolescu [3; 4]. Part of this work
involves defining 2–actions of U on the dg algebras A.Z/ that bordered Heegaard Floer homology assigns
to combinatorial representations Z of surfaces.

Ignoring gradings and thus working with decategorifications over F2, one can view U as a categorifi-
cation of the algebra F2ŒE�=.E

2/ (an F2 analogue of U.gl.1j1/C/), while if Z is a representation of
a surface F , then A.Z/ categorifies the vector space ^�H1.F;SCIF2/ where SC is a distinguished
subset of the boundary of F . Thus, the 2–actions from [15] should categorify actions of F2ŒE�=.E

2/ on
^�H1.F;SCIF2/; the goal of this paper is to identify these actions explicitly using certain topological
operations and to give an interpretation of these actions in the setting of open-closed TQFT.

To make things more precise, we recall that following Zarev [23] (but generalizing his definition slightly),
a sutured surface is .F;SC;S�; ƒ/ where F is a compact oriented surface and ƒ is a finite set of points
in @F dividing @F into alternating subsets SC and S�. We impose no topological restrictions, but note
that the sutured surfaces representable by arc diagrams Z are those such that in each connected component
of F (not of @F ), both SC and S� are nonempty (unlike Zarev [23], we allow arc diagrams to have circle
components as well as interval components, and we do not impose nondegeneracy). In particular, no
closed surface can be represented by an arc diagram.
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For an arc diagram Z representing a sutured surface .F;SC;S�; ƒ/, and each interval component I

of SC, the constructions of [15] define a 2–action of U on A.Z/. On the other hand, there is a map
�I from H1.F;SCIF2/ to F2 taking an element of H1.F;SCIF2/ to its boundary in H0.SCIF2/ and
then pairing with the cohomology class of I . By summing �I over tensor factors, for k � 1 we get a
map from T kH1.F;SCIF2/ to T k�1H1.F;SCIF2/ which induces a map ˆI from ^kH1.F;SCIF2/

to ^k�1H1.F;SCIF2/.

Theorem 1.1 The 2–action of U on A.Z/ corresponding to I categorifies the action of F2ŒE�=.E
2/ on

^�H1.F;SCIF2/ in which E acts by ˆI .

See Theorem 3.5 below for a more detailed statement of Theorem 1.1.

A TQFT interpretation

It is natural to ask whether the actions of F2ŒE�=.E
2/ on ^�H1.F;SCIF2/ fit into a TQFT framework,

with associated gluing results. Indeed, [15] reformulates and strengthens Douglas–Manolescu’s gluing
theorem for the algebras A.Z/, which applies for certain decompositions of surfaces along 1–manifolds
(given by certain decompositions of the arc diagram Z). One could hope that such gluing theorems exist in
even greater generality for the decategorified surface invariants ^�H1.F;SCIF2/, yielding a TQFT-like
construction for 1– and 2–manifolds.

Remark 1.2 Heegaard Floer homology is, in some nonaxiomatic sense, a 4–dimensional TQFT (space-
times are 4–dimensional); accordingly, its decategorification should be a type of 3–dimensional TQFT
involving the vector spaces ^�H1.F;SCIF2/ (and, for example, the Alexander polynomials of knots).
The constructions under consideration for 1– and 2–manifolds should be part of a (loosely defined)
extended-TQFT structure for decategorified Heegaard Floer homology.

A first observation is that a sutured surface .F;SC;S�; ƒ/ is nearly the same data as a morphism in the
2–dimensional open-closed cobordism category. As described by Lauda and Pfeiffer in [12], the objects
of this category are finite disjoint unions of oriented intervals and circles. For two such objects X and Y ,
a morphism from X to Y is a compact oriented surface with its boundary decomposed into black regions
(identified with X tY ) and colored regions. If .F;SC;S�; ƒ/ is a sutured surface and we label each
component of SC as “incoming” or “outgoing”, we get a morphism from S in

C to Sout
C in this cobordism

category. The black part of the boundary is SC and the colored part is S�.

The actions of F2ŒE�=.E
2/ on ^�H1.F;SCIF2/ suggest that one could try to assign the category of finite-

dimensional F2ŒE�=.E
2/–modules to an interval. A sutured surface, with its SC boundary components

labeled as incoming or outgoing, would be assigned a bimodule over tensor powers of F2ŒE�=.E
2/. For

simplicity, we will restrict our attention here to sutured surfaces with no circular SC boundary components
(all components of SC are intervals).

Algebraic & Geometric Topology, Volume 24 (2024)
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Figure 1: The open pair of pants; the SC boundary is shown in orange and the S� boundary is
shown in black (loosely following the visual conventions of [23]). Specifically, the input SC
boundary is on the right while the output SC boundary is on the left.

For a surface F1 with m intervals in its outgoing boundary and another surface F2 with m intervals in its
incoming boundary, let F D F2 [Œ0;1�m F1. We would want the bimodule of F to be a tensor product
over .F2ŒE�=.E

2//˝m of the bimodules assigned to F1 and F2. The next theorem says this is true up to
isomorphism; let AlgF2

denote the category whose objects are F2–algebras and whose morphisms are
isomorphism classes of bimodules, with composition given by tensor product.

Theorem 1.3 For F1, F2, and F as above , suppose that F1 has min intervals in its incoming boundary
and F2 has mout intervals in its outgoing boundary. We have a noncanonical isomorphism

^�H1.F;SCIF2/Š^�H1.F2;SCIF2/˝.F2ŒE�=.E2//˝m ^�H1.F1;SCIF2/

as bimodules over ..F2ŒE�=.E
2//˝mout ; .F2ŒE�=.E

2//˝min/. Thus , the exterior algebra vector spaces
^�H1.F;SCIF2/ give a functor from the “open sector” of the open-closed cobordism category into AlgF2

.

In fact, a slightly more general version of Theorem 1.3 holds in which F1 and F2 can have SC circles in
their boundaries as long as we are not gluing along them; see Theorem 4.2 below.

The tensor product case

As a special case of Theorem 1.3, we can glue interval SC components of two surfaces F 0 and F 00 to
the two input intervals of the “open pair of pants” cobordism shown in Figure 1. Let P D F1 be the
open pair of pants, let F2 D F 0 tF 00, and let F be the glued surface. We can identify ^�H1.P;SCIF2/

with .F2ŒE�=.E
2//˝2, with right action of .F2ŒE�=.E

2//˝2 given by multiplication and left action of
F2ŒE�=.E

2/ given by the coproduct

�.E/DE˝ 1C 1˝E

(in fact, F2ŒE�=.E
2/ is a Hopf algebra with this coproduct together with counit ".E/D 0 and antipode

S.E/DE).

Algebraic & Geometric Topology, Volume 24 (2024)
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Corollary 1.4 We have

^�H1.F;SCIF2/Š^�H1.F
0;SCIF2/˝^�H1.F

00;SCIF2/;

where the tensor product˝ is taken in the tensor category of finite-dimensional modules over the Hopf
algebra F2ŒE�=.E

2/.

We can view Corollary 1.4 as a decategorification of the gluing result from [15] based on the higher tensor
product operation ˝ . Thus, Theorem 1.3 suggests (at least at the decategorified level) a more general
TQFT framework for the ˝–based gluing results of [15].

Relationship to other work

Probably the closest analogue to the structures considered here can be found in Honda, Kazez and Matić’s
paper [7]. The data of a sutured surface .F;SC;S�; ƒ/ as discussed here is equivalent to the data .†;F /
considered in [7, Section 7.1] (our F is the † of Honda, Kazez and Matić and our ƒ is their F ). The
vector space ^�H1.F;SCIF2/ is isomorphic to an F2 version of Honda, Kazez and Matić’s V .†;F /

which was subsequently studied by Mathews [16; 17; 18; 19] and Mathews and Schoenfeld [20]. In our
notation, Honda, Kazez and Matić view this vector space as the sutured Floer homology of F �S1 with
sutures given by ƒ�S1, rather than as a Grothendieck group associated to A.Z/. In other words, their
surface invariants come from “trace decategorification” of 3–dimensional Heegaard Floer invariants rather
than from Grothendieck-group-based decategorification of 2–dimensional Heegaard Floer invariants;
these notions often agree, as they do here. See Cooper [1] for related work in the contact setting that
discusses vector spaces similar to ^�H1.F;SCIF2/ in relation to Grothendieck groups of formal contact
categories.

We can think of the gluings in Theorem 1.3 as successive self-gluings of two SC intervals in a sutured
surface. These gluings can be interpreted as special cases of Honda, Kazez and Matić’s gluings, where
their gluing subsets  and  0 cover our gluing SC intervals and extend a small bit past them on both
sides. However, Honda, Kazez and Matić only assert the existence of a gluing map from the vector space
of the original surface to the vector space of the glued surface (satisfying certain properties). Theorem 1.3
goes farther for the special gluings under consideration in that it shows how the vector space of the larger
surface is recovered up to isomorphism as a tensor product.

Integral versions of the vector spaces ^�.F;SCIF2/, especially for closed F , or F with one boundary
component (and implicitly jƒj D 2), have also been studied in the context of TQFT invariants for 3–
manifolds starting with Frohman and Nicas in [5]; see also Donaldson [2] and Kerler [10]. Building on
work of Petkova [21], Hom, Lidman and Watson show in [6] that bordered Heegaard Floer homology (in
the original formulation of Lipshitz, Ozsváth and Thurston [14] where F is closed) can be viewed as
categorifying the 2C1 TQFT described in [2] in which a surface F is assigned ^�H1.F /. Our perspective
here differs in that we follow Zarev [23] rather than [14] and in that instead of 2C 1 TQFT structure we
are (loosely) looking at the lower two levels of a 1C 1C 1 TQFT.

Algebraic & Geometric Topology, Volume 24 (2024)
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Finally, the fact that the topological gluing considered in [15] can be viewed as the above open-pair-
of-pants gluing was already noted in [15, Section 7.2.5], which also contains speculations about the
connection to open-closed TQFT and extended TQFT.

Future directions

It would be desirable to treat 1–, 2–, and 3–manifolds at the same time, integrating the gluing results
for surfaces here with the 3–manifold invariants mentioned above in something like a 1C 1C 1 TQFT.
One obstacle to doing this appears to be that while the isomorphism in the statement of Theorem 1.3
seems like something that could conceivably be proved using Mayer–Vietoris sequences, we were not
able to find such a proof; the isomorphism we construct is not canonical and depends on suitable choices
of bases. Geometrically, the issue seems to be that given arbitrary elements of ^�H1.F1;SCIF2/ and
^�H1.F2;SCIF2/, it is not clear how to pair them to get an element of ^�H1.F;SCIF2/ in a canonical
way (the endpoints of arcs don’t necessarily match up in any nice way at the gluing interface).

It would also be desirable to categorify Theorem 1.3, such that the ˝–based gluing results of [15] are
recovered by gluing with an open pair of pants as in Corollary 1.4. Just as the proof of Theorem 1.3
depends on a choice of basis, it seems likely that a categorification of this theorem will depend on the
arc diagrams Z chosen to represent the surfaces. For general arc diagrams Z1 and Z2 representing the
surfaces F1 and F2 of Theorem 1.3, it is not even clear how one should glue these diagrams to get an arc
diagram for the glued surface F (speculatively, something like [8, Figure 5(b)] followed by an “unzip”
operation may be relevant).

Finally, preliminary computations indicate that close relatives of ^�H1.F;SCIF2/ should arise in a
TQFT with better structural properties than the “open” TQFT considered here, specifically one that is
extended down to points and defined at least for all 0–, 1–, and 2–manifolds, with appropriate gluing
theorems (including for gluing along circles). In work in progress, we study this extended TQFT as well
as its relationship to the constructions of this paper.

Organization

In Sections 2.1 through 2.3 we review U, the algebras A.Z/, and the higher actions from [15]. Section 2.4
discusses decategorification for U and A.Z/, showing that in the sense considered here, A.Z/ categorifies
^�H1.F;SCIF2/. Section 3 decategorifies the 2–actions of U on A.Z/ from [15] and proves Theorem 1.1.
Section 4 proves a generalized version of Theorem 1.3, and Section 5 discusses Corollary 1.4 in more
generality.
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2 Decategorifying higher actions on strands algebras

2.1 The dg monoidal category U

The following definition originated in [11] and was partly inspired by the strands dg algebras A.Z/ in
Heegaard Floer homology (we review these in Section 2.2). While Khovanov works over Z, we work
over F2 in order to interact properly with the F2–algebras A.Z/.

Definition 2.1 Let U denote the strict F2–linear dg monoidal category freely generated (under ˝ and
composition) by an object e and an endomorphism � of e˝ e modulo the relations �2 D 0 and

.ide˝�/ ı .� ˝ ide/ ı .ide˝�/D .� ˝ ide/ ı .ide˝�/ ı .� ˝ ide/:

We set d.�/D 1, and we let � have degree �1 (we use the convention that differentials increase degree
by 1).

The endomorphism algebra of e˝n 2U is the dg algebra referred to as H�n in [11] (tensored with F2); in
the language used in [15] it is a nil-Hecke algebra with a differential, and in the language used in [4] it
is a nil-Coxeter algebra. We will use NCn to denote the F2 version of this algebra. It has a graphical
interpretation: F2–basis elements of NCn are pictures like Figure 2, with n strands going from bottom to
top (these pictures are in bijection with permutations on n letters). Multiplication is defined by vertical
concatenation, with ab obtained by drawing a below b, except that if two strands cross and then uncross
in the stacked picture (ie if the stacked picture has a double crossing) then the product is defined to be
zero. The differential is defined by summing over all ways to resolve a crossing (see Figure 3), except
that if a crossing resolution produces a double crossing between two strands then it contributes zero to
the differential (see Figure 4). The endomorphism � of e˝ e is represented by a single crossing between
two strands.

Figure 2: A basis element of NCn for nD 5.

7!

Figure 3: Resolving a crossing.
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7!

Figure 4: A resolution that produces a double crossing and thus does not contribute to the
differential on NCn.

2.2 Strands algebras

Let Z be an arc diagram as in [23, Definition 2.1.1], except that we allow (oriented) circles as well as
intervals in Z , and we do not impose any nondegeneracy condition. Thus, Z consists of:

� a finite collection Z D fZ1; : : : ;Zlg of oriented intervals and circles;

� a finite set of points a (with jaj even) in the interiors of the Zi for 1� i � l ;

� a two-to-one matching M of the points in a.

An example is shown in Figure 5.

The definition of the dg strands algebra A.Z/ over F2, from [23, Definition 2.2.2], generalizes in a
straightforward way to this setting and is a special case of the general strands algebras treated in detail
in [15]. One can view A.Z/ as being defined by specifying an F2 basis consisting of certain pictures,
along with rules for multiplying and differentiating basis elements.

Definition 2.2 A strands picture is a collection of strands drawn in Œ0; 1��Z , each with its left endpoint
in f0g � a and its right endpoint in f1g � a. The strands can be either solid or dotted and are considered
only up to homotopy relative to the endpoints; by convention, strands are drawn “taut”, sometimes with a
bit of curvature for visual effect (see Figure 6). They must satisfy the following rules:

� Strands cannot move against the orientation of Z when moving from left to right (from 0 to 1

in Œ0; 1�).

� No solid strands are horizontal, while all dotted strands are horizontal.

� If a solid strand has its left endpoint at a 2 a, and a is matched to a0 2 a under M , then no strand
can have its left endpoint at a0, and similarly for right endpoints.

Figure 5: An arc diagram ZD .Z ; a;M /; Z consists of two intervals and a circle, a is the set of
endpoints of the dotted (red) arcs, and M matches the two endpoints of each dotted arc.
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Figure 6: A strands picture (basis element for A.Z/).

� If a dotted strand has its left (and thus right) endpoint at a 2 a, and a is matched to a0 2 a under M ,
then there must be another dotted strand with its left (and thus right) endpoint at a0 (we say this
dotted strand is matched with the first one).

Definition 2.3 As an F2–vector space, A.Z/ is defined to be the formal span of such strands pictures, so
that strands pictures form an F2 basis for A.Z/. The product of two basis elements of A.Z/ is defined by
concatenation (see Figure 7), with the following subtleties:

� If some solid strand has no strand to concatenate with, or if in some matched pair of dotted strands
fs; s0g, neither s nor s0 has a strand to concatenate with, the product is zero.

� When concatenating a solid strand with a dotted strand, one erases the dotted strand matched to the
one involved in the concatenation, and makes the concatenated strand solid.

� If a double crossing is formed upon concatenation, the product of the basis elements is defined to
be zero.

The differential of a basis element of A.Z/ is the sum of all strands pictures formed by resolving a
crossing in the original strands picture (in the sense of Figure 3 above), with the following subtleties:

� When resolving a crossing between a solid strand and a dotted strand, one erases the dotted strand
matched to the one involved in the crossing resolution, and makes both the resolved strands solid.

D

Figure 7: Example of a product in A.Z/.
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� If a double crossing is formed upon resolving a crossing (as in Figure 4 above), then this crossing
resolution does not contribute a term to the differential.

Remark 2.4 Recall that a dg category over a field k is a category enriched in the symmetric monoidal
category of chain complexes over k, ie graded kŒ@�=.@2/–modules where @ has degree�1 orC1 depending
on conventions, with the tensor product given as usual. Similarly, a differential category over k is a
category enriched in the symmetric monoidal category of (ungraded) kŒ@�=.@2/–modules (the symmetric
monoidal structure is analogous to the graded case1).

While U is a dg category and not just a differential category, the grading on A.Z/ is much more
complicated: it is a grading by a nonabelian group G.Z/ rather than by Z, and it depends on a choice
of “grading refinement data”. To avoid these complications, gradings were not fully treated in [15];
correspondingly, when decategorifying in this paper, we will work with Grothendieck groups defined
over F2 rather than over Z, and we will view A.Z/ as a differential algebra.

Definition 2.5 We let A.Z; k/ be the F2–subspace of A.Z/ spanned by strands pictures such that the
number of solid strands plus half the number of dotted strands is k. In fact, A.Z; k/ is a dg subalgebra
of A.Z/ (ignoring unit), and if jaj D 2n, we have A.Z/DLn

kD0 A.Z; k/.

The basis elements of A.Z/ with only dotted (horizontal) strands are idempotents of A.Z/. Furthermore,
for a general basis element a of A.Z/, there is exactly one such idempotent (call it �.a/) such that
�.a/a D a, and for all other such idempotents �0, we have �0a D 0. We will refer to �.a/ as the left
idempotent of a; we can define a right idempotent �.a/ similarly.

Below we will identify A.Z/ with the differential category whose objects are in bijection with the
all-horizontal basis elements of A.Z/, and whose morphism space from e to e0 is e0A.Z/e. Because each
basis element of A.Z/ has a unique left and right idempotent, we can view these elements as giving a
basis for the morphism spaces of A.Z/ as a category.

2.3 Higher actions on strands algebras

Let ZD .Z ; a;M / be an arc diagram. As in [15, Section 7.2.4], we can view Z as a singular curve Z in
the language of that paper, and A.Z/ is the endomorphism algebra of a collection of objects in the strands
category S.Z/; see [15, Section 7.4.11]. For an interval I in Z (equivalently, a noncircular component
of Z as in [15, Section 7.2.2]), the constructions of [15, Section 8.1.1] give us a differential bimodule E

over A.Z/.

Notation 2.6 We will call this bimodule E rather than E for notational clarity.

Closely related constructions appear in [4], although in that paper the relevant pictures were not explicitly
organized into a bimodule over A.Z/.

1And can be summarized by �.@/D @˝ 1C 1˝ @, at least in characteristic 2, but our view is that in this paper “E” and “@” are
playing very different roles.
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�
1
2
;P
�

Figure 8: A strands picture for E (the distinguished interval I is the top interval).

As with the strands algebras, the bimodule E is defined by specifying an F2–basis of strands pictures,
together with a differential and left and right actions of A.Z/ in terms of basis elements. These strands
pictures are almost the same as those described in Definition 2.2. To describe the difference, let P be the
endpoint of the interval I such that in the orientation on Z , I points from P to its other endpoint. Then,
in a strands picture for E, there should be one solid strand with its left endpoint at

�
1
2
;P
� 2 Œ0; 1��Z

and with its right endpoint in f1g � a. See Figure 8; all other rules in Definition 2.2 are unchanged.

Definition 2.7 As an F2–vector space, E is defined to be the formal span of the strands pictures described
above, which form an F2–basis for E. The left and right actions of A.Z/ on E, and the differential
on E, are defined by concatenation and resolution of crossings as in Definition 2.3. We let E.k/ be
the F2–subspace of E spanned by strands pictures such that the number of solid strands plus half the
number of dotted strands is k; then E.k/ is a differential subbimodule of E, and if jaj D 2n, we have
EDLn

kD1 E.k/. Furthermore, E.k/ is a bimodule over .A.Z; k�1/;A.Z; k// with all other summands
of A.Z/ acting as zero on E.k/.

As with the basis elements of A.Z/, to each basis element x of E we can associate a left idempotent
�.x/ and a right idempotent �.x/. We have x D �.x/x�.x/, while for any other purely horizontal basis
elements �0 ¤ �.x/ and �0 ¤ �.x/ of A.Z/, we have �0x D 0 and x�0 D 0.

By [15, Lemma 8.1.2], the bimodule E˝A.Z/ E˝A.Z/ � � � ˝A.Z/ E (with m factors) is isomorphic to the
bimodule defined analogously to E, but having solid strands with left endpoints atn�

1

mC1
;P
�
;
�

2

mC1
;P
�
; : : : ;

�
m

mC1
;P
�o
:

This bimodule (which we will call E˝m) also appears in [4], and as in that paper it admits a left action of
NCm defined diagrammatically by sticking strands pictures for NCm on the bottom of strands pictures
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7!

Figure 9: The action of an element of NC3 on E˝3.

for E˝m (see Figure 9). These actions form a 2–action of U on A.Z/ via differential bimodules and
bimodule maps, which was defined in [15, Proposition 8.1.3]. In other words, they give a differential
monoidal functor from U to the differential monoidal category of differential bimodules over A.Z/ and
chain complexes of bimodule maps between them.

2.4 Decategorification

2.4.1 Decategorifying U

Definition 2.8 For a differential category A, we let A denote the smallest full differential subcategory
of A–Mod (left differential modules over A) containing Hom.e;�/ for all objects e of A and closed
under mapping cones and isomorphisms. If A is a dg category, we let A–Mod be the category of left dg
modules instead, and require that A be closed under degree shifts. We let H.A/ denote the homotopy
category of A, and we let Ai denote the idempotent completion of A.

Remark 2.9 In the language of bordered Heegaard Floer homology [13; 14], A is essentially the same
as the differential category of finitely generated bounded type D structures over A (in this setting it is
typical to view A as a differential algebra with a distinguished set of idempotents rather than as a dg
category).

It is a well-known result (see [9, Corollary 3.7]) that if A is a dg category, then H.A/i is equivalent to the
full subcategory of the derived category D.A/ (of left dg A–modules) on compact objects, ie the compact
derived category of A.

We can view dg algebras such as NCn as dg categories with one object. Khovanov shows in [11] that the
Grothendieck group of the compact derived category of NCn is zero for n � 2. For nD 0 and nD 1,
NCn is F2, so the Grothendieck group of its compact derived category is Z (Khovanov gets ZŒq; q�1�

instead because he introduces an extra q–grading on NCn which is identically zero, but we will not use
this grading).
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Corollary 2.10 The Grothendieck group K0.H.NC n// is also Z for n 2 f0; 1g and is zero for n � 2,
where H.NC n/ is the homotopy category of NC n.

Proof The inclusion of the triangulated category H.NC n/ into its idempotent completion is a monomor-
phism by [22, Corollary 2.3]. In fact, by [22, Theorem 2.1], H.NC n/ is already idempotent complete.

Since we will primarily work with Grothendieck groups over F2 here, we introduce the following
definition.

Definition 2.11 Let C be a category equipped with a collection of distinguished triangles X!Y !Z 
as in a triangulated category (but we do not require C to be triangulated or even to have a shift functor;
we place no requirements on the collection of distinguished triangles). We let K

F2

0
.C/ be the F2–vector

space with basis given by isomorphism classes of objects of C modulo relations ŒX �C ŒY �C ŒZ� D 0

whenever there exists a distinguished triangle X ! Y !Z .

For a triangulated category C, the above definition agrees with K0.C/˝F2. We see that K
F2

0
.H.NC n/

is isomorphic to F2 for n 2 f0; 1g and is zero otherwise.

Now, since U is a direct sum of NCn (as a one-object dg category) over all n� 0, K
F2

0
.H.U//ŠF2˚F2.

For notational convenience, we let

K
F2

0
.U/ WDK

F2

0
.H.U//:

Taking the monoidal structure on U into account, we see that as an F2–algebra,

K
F2

0
.U/Š F2ŒE�=.E

2/

(this is Khovanov’s identification K0.H
�/Š ZŒq; q�1;E1�=.E

2
1
/ from [11], adapted to our setting).

2.4.2 Decategorifying the strands algebras As mentioned above, we will view the strands algebras
A.Z/ as differential categories with multiple (but finitely many) objects in bijection with the set of purely
horizontal strands pictures for Z. The homotopy category H.A.Z// has a collection of distinguished
triangles, namely those isomorphic to the image in the homotopy category of X

f�! Y ! Cone.f / 
for some closed morphism f WX ! Y in A.Z/.

Recall that the construction of a sutured surface .F;SC;S�; ƒ/ from an arc diagram ZD .Z ; a; ƒ/ starts
by taking Z � Œ0; 1�, a collection of rectangles and annuli, and gluing on some 2–dimensional 1–handles.
For each pair of points fp; qg of a matched by M , one glues on a 1–handle with attaching zero-sphere
f.p; 1/; .q; 1/g compatibly with the orientation on Z . The result is F ; one sets SC WD Z � f0g and
ƒ WD .@Z /� f0g, with the rest of the boundary of F placed in S�.

Proposition 2.12 [21] For ZD .Z ; a;M / with Z a single interval , K0.H.A.Z/// is isomorphic to
^�H1.F IZ/ where F is the surface represented by Z. Specifically , for each k, K0.H.A.Z; k/// is
isomorphic to ^kH1.F IZ/.
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It follows that K
F2

0
.H.A.Z/// is isomorphic to ^�H1.F IF2/, and in the F2 setting we do not need to

consider Petkova’s absolute Z=2Z homological grading on A.Z/.

Remark 2.13 Petkova views the surface F associated to a one-interval arc diagram Z as being closed,
while we view it as having S1 boundary with one SC interval and one S� interval. Letting F denote the
closed surface and F denote the surface with boundary, we have natural identifications

H1.F /ŠH1.F /ŠH1.F;SC/

(with either Z or F2 coefficients).

Petkova’s arguments readily generalize to show that for general Z as defined above, K
F2

0
.H.A.Z/// has

an F2–basis given by the set of objects of A.Z/ as a dg category, ie by the purely horizontal strands
pictures for Z.

Proposition 2.14 If .F;SC;S�; ƒ/ is the sutured surface represented by a general arc diagram Z, then
the vector space ^�H1.F;SCIF2/ has a basis in bijection with purely horizontal strands pictures for Z.

Proof It follows from the construction of .F;SC;S�; ƒ/ that F=SC is homotopy equivalent to a wedge
product of circles, one for each pair of points of a, and these circles form a basis for H1.F;SCIF2/. A
basis for ^�H1.F;SCIF2/ is then given by all subsets of the set of these circles. For each such subset X ,
there is a corresponding purely horizontal strands picture for Z; if a circle (corresponding to fp; qg
matched by M ) is in X , one draws a pair of dotted horizontal strands at p and q in the strands picture.
This correspondence is a bijection, proving the proposition.

Let K
F2

0
.A.Z// WDK

F2

0
.H.A.Z/// and K

F2

0
.A.Z; k// WDK

F2

0
.H.A.Z; k///.

Corollary 2.15 We have natural identifications

K
F2

0
.A.Z//Š^�H1.F;SCIF2/ and K

F2

0
.A.Z; k//Š^kH1.F;SCIF2/:

3 Actions on exterior powers of homology

Let Z D .Z ; a;M / be an arc diagram representing a sutured surface .F;SC;S�; ƒ/ as in Figure 10,
and let I be an interval component of SC (equivalently, let I be an interval component of Z ). The
endomorphism ˆI of ^�H1.F;SCIF2/ defined in the introduction squares to zero and thus gives us
an action of F2ŒE�=.E

2/ on ^�H1.F;SCIF2/ in which E acts by ˆI . In this section we identify this
action with the action of K

F2

0
.U/ on K

F2

0
.A.Z// coming from the 2–action of U on A.Z/ described in

Section 2.3.
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7!

Figure 10: An arc diagram and the sutured surface it represents. The SC portion of the surface
boundary is drawn in orange and the S� portion is drawn in black.

Remark 3.1 For an element ! of ^�H1.F;SCIF2/ that is a pure wedge product of arcs in F with
boundary on SC and/or circles in F , we can depict ! by drawing all the arcs and circles of ! in a picture
of F . See Figure 11 for an example. The element E of F2ŒE�=.E

2/ acts on this depiction of ! by
summing over all ways of removing one arc incident with the component I of SC; see Figure 12. An arc
with both endpoints on I is “removed twice” which, in the sum with F2 coefficients, amounts to not being
removed at all; indeed, such an arc represents the same homology class as a circle with no endpoints.

We first review an important structural property of the bimodule E from Section 2.3; the proposition
below follows from [15, Section 8.1.4], but to keep this paper self-contained we include an independent
proof.

Proposition 3.2 As a left differential module over the differential category A.Z/, E is an object of A.Z/.

Figure 11: Depiction of a pure wedge-product element of ^�H1.F;SCIF2/.
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I

7! C C D

Figure 12: Action of E 2 F2ŒE�=.E
2/ on ! 2 ^�H1.F;SCIF2/ given a distinguished interval I

of SC.

Proof We first show that as a left module (disregarding the differential), E is isomorphic to a direct
sum of modules of the form Hom.e;�/ for objects e of A.Z/. Indeed, consider the subset S of strands
pictures for E (ie F2–basis elements of E) such that the only moving strand is the one with left endpoint
at
�

1
2
;P
�

in the language of Section 2.3. See Figure 13 for an example of an element of S . An arbitrary
basis element x of E can be written as ay for unique basis elements a 2A.Z/ and y 2 S ; indeed, after a
homotopy relative to the endpoints, we can draw x such that all strands of x except the one with endpoint
at
�

1
2
;P
�

only move on Z � Œ0; "� for some " < 1
2

, and are horizontal on Z � Œ"; 1� (see Figure 14).

Cutting the diagram for x at Z � f"g, we see a strands picture for a basis element a 2A.Z/ on the left.
On the right side of the cut, let y be the element of S obtained by making all the horizontal strands dotted
and adding in their matching horizontal strands (according to the matching M ). See Figure 15 for an
example. We have ay D x; furthermore, for any y 2 S with left idempotent �.y/, and any basis element

Figure 13: An element of the set S of special basis elements of E.
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D

Figure 14: Stretching the basis element x of Figure 8 so that all “ordinary” moving strands only
move on Z � Œ0; "�; the green dashed lines on the right indicate where we will cut to factor x as
ay with a 2A.Z/ and y 2 S .

a of HomA.Z/.�.y/;�/, we have that ay is a basis element for E and that a and y are recovered when
splitting ay as above.

We have defined a bijection between our basis for E and the set of pairs .a;y/ where y is an element of S

with left idempotent �.y/ and a is a basis element of HomA.Z/.�.y/;�/. Thus, we have an identification
of E with

L
y2S HomA.Z/.�.y/;�/ as vector spaces. This identification respects left multiplication

by A.Z/, so

EŠ
M
y2S

HomA.Z/.�.y/;�/

as left modules over A.Z/ (ignoring the differential).

Figure 15: Factorizing the basis element x of Figure 8 as a 2A.Z/ (left) times y 2 S (right).
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Now, we can define a grading on the elements of S : say y 2 S has degree d if the moving strand � of y

with left endpoint
�

1
2
;P
�

encounters d points of a while traveling along a minimal path in Z from P to
its right endpoint. Order the elements of S by increasing degree (choose any ordering of the elements
of S in each given degree). Because the differential on E, applied to y 2 S , will only resolve crossings
between the special strand � of y and horizontal strands strictly below � , the only nonzero terms of this
differential will be of the form ay0 for y0 of degree strictly less than that of y (and thus y0 that appear
before y in the ordering on S). It follows that E is isomorphic to an iterated mapping cone built from
HomA.Z/.�.y/;�/ for y 2 S , so we have E 2A.Z/.

Remark 3.3 In the language of bordered Heegaard Floer homology, Proposition 3.2 says that E is the
differential bimodule associated to a finitely generated left bounded type DA bimodule over A.Z/ with
ı1

i zero for i > 2.

Proposition 3.2 gives us the following corollary.

Corollary 3.4 We have a differential functor E˝A.Z/� from A.Z/ to itself , and thus a functor E˝A.Z/�
from H.A.Z// to itself.

Proof Let EŠ˚˛ A.Z/ � e˛ (as a left module) and suppose we have X Š˚ˇ A.Z/ �xˇ 2A.Z/, where
e˛ and xˇ are distinguished idempotents of A.Z/, the sums over ˛ and ˇ are finite, for all .˛; ˇ/ we have
e˛ �0 xˇ 2 fe˛; 0g where �0 denotes the right action of A.Z/ on E (the proof of Proposition 3.2 implies this
is possible), and there exist orderings of the ˛ and ˇ such that the differentials on E and X are strictly
decreasing with respect to the order. Then

E˝A.Z/X Š
M
ˇ

E˝A.Z/ .A.Z/ �xˇ/Š
M
ˇ

E �0 xˇ Š
M
˛;ˇ

A.Z/ � .e˛ �0 xˇ/:

If we order the pairs .˛; ˇ/ lexicographically such that the ˇ coordinate dominates, then the differential
on E˝A.Z/X is strictly decreasing with respect to the order. It follows that E˝A.Z/X 2A.Z/; it is then
a standard fact that E˝A.Z/� gives a differential endofunctor of A.Z/.

The differential functor E˝A.Z/� sends mapping cones to mapping cones, so the corresponding functor
on homotopy categories sends distinguished triangles to distinguished triangles and thus induces an
endomorphism ŒE˝A.Z/�� of K

F2

0
.A.Z//.

Theorem 3.5 Let ZD .Z ; a;M / be an arc diagram and let .F;SC;S�; ƒ/ be the sutured surface repre-
sented by Z. Let I be an interval component of SC, or equivalently an interval component of Z . Under
the identification K

F2

0
.A.Z//Š^�H1.F;SCIF2/ from Corollary 2.15, the endomorphism ŒE˝A.Z/��

of K
F2

0
.A.Z// agrees with the endomorphism ˆI of ^�H1.F;SCIF2/ from the introduction. More

specifically, the map ŒE.k/˝A.Z;k/ �� from K
F2

0
.A.Z/; k/ to K

F2

0
.A.Z/; k � 1/ agrees with ˆI as a

map from ^kH1.F;SCIF2/ to ^k�1H1.F;SCIF2/.
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Proof Let e be an object of A.Z/ (viewed as a differential category); we have a corresponding basis
element ŒHom.e;�/� of K

F2

0
.A.Z//. Applying ŒE˝A.Z/�� to ŒHom.e;�/�, we getX

y2S; �.y/De

ŒHom.�.y/;�/�:

Viewing e as a purely horizontal strands picture and defining S as in the proof of Proposition 3.2, there is
one element ys 2 S with �.ys/D e for each strand s of e with endpoints in the interval I , and these are
all the elements y 2 S with �.y/D e. For each such strand s (say with endpoints at Q 2 I ), the element
ys has a moving strand between

�
1
2
;P
�

and .1;Q/, and has the same horizontal strands as e except for s

and its partner s0 under the matching. Thus, �.ys/ is e with the strands s and s0 removed.

It follows that ŒE˝A.Z/ ��. ŒHom.e;�/�/ is the sum of ŒHom.e0;�/� over all e0 obtained from e by
choosing one strand s in Œ0; 1�� I and removing both s and its partner s0. In particular, for strands s in
Œ0; 1�� I such that s0 is also in Œ0; 1�� I , the pair of strands .s; s0/ is removed from e twice, and since we
are working over F2, removals of these strands contribute zero to ŒE˝A.Z/��. ŒHom.e;�/�/.
Now let ! be the element of ^�H1.F;SCIF2/ corresponding to ŒHom.e;�/� under the isomorphism
of Corollary 2.15. Concretely, each pair of matched strands fs; s0g of e gives a basis element of
H1.F;SCIF2/, and ! is the wedge product of these elements over all such pairs fs; s0g. When we
apply ˆI to !, we sum over all ways to remove a factor from this wedge product if the factor maps to
1 2 F2 under the map �I from the introduction. Such factors are those corresponding to pairs of strands
fs; s0g of e in which one of fs; s0g, but not both, is in Œ0; 1�� I . It follows that ˆI .!/ corresponds to
ŒE˝A.Z/��. ŒHom.e;�/�/, as desired.

4 Gluing and TQFT

In this section, we prove (a slightly more general version of) Theorem 1.3 from the introduction. Let
.F;SC;S�; ƒ/ be a sutured surface and suppose that I1 ¤ I2 are interval components of SC. Up to
homeomorphism, there is a unique way to glue I1 to I2 and get an oriented surface F . There are naturally
defined subsets SC and S� of the boundary of F , intersecting in a set of points ƒ (which is ƒ with the
endpoints of I1 and I2 removed).

Lemma 4.1 We have an isomorphism

^�H1.F ;SCIF2/Š .^�H1.F;SCIF2//˝.F2ŒE�=.E2//˝2

F2ŒE�

.E2/
;

where the action of .F2ŒE�=.E
2//˝2 on ^�H1.F;SCIF2/ comes from the F2ŒE�=.E

2/ actions associ-
ated to I1 and I2, and the action of .F2ŒE�=.E

2//˝2 on F2ŒE�=.E
2/ comes from multiplication. We can

choose the isomorphism so that it intertwines the remaining actions of F2ŒE�=.E
2/ from SC intervals

other than I1 or I2.
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Figure 16: A standard model for a sutured surface, given by a sphere with some number of tori
connect-summed on, as well as some number of disks removed and some even number of sutures
on each boundary component. The SC boundary is drawn in orange and the S� boundary is
drawn in black. The set of blue arcs and circles gives a basis for H1.F;SCIF2/.

Proof Pick a homeomorphism between F and a finite disjoint union of standard sutured surfaces as
shown in Figure 16 (spheres with some number of open disks removed and some even number of sutures
on each boundary component, connect-summed with some number of tori). Figure 16 also indicates, with
blue arcs and circles, a way to choose bases for H1.F;SCIF2/. One chooses

� for each torus that was connect-summed on, two circles giving a basis for the first homology of the
torus;

� for all but one of the boundary components intersecting S� nontrivially, a circle around the boundary
component;

� a continuous map from a connected acyclic graph �F to the surface F (an embedding on each edge
of �F ) with one vertex on each component of SC— we will identify �F with its image in F .

These circles, together with the edges of �F , give a basis for H1.F;SCIF2/, so subsets of this set of
arcs and circles give a basis for ^�H1.F;SCIF2/ consisting of wedge products of basis elements of
H1.F;SCIF2/.

Now suppose I1 and I2 are intervals of SC; we consider various cases.

Case 1 First, assume I1 and I2 live on distinct connected components of F . Choose �F such that the
vertices on I1 and I2 (say p1 and p2) are leaves of �F , ie they have degree 1. When gluing F to get F ,
we can ensure that p1 and p2 are glued to each other. If we let e1 and e2 denote the edges incident with
p1 and p2, and modify �F by removing p1, p2, e1 and e2 while adding the edge e1[e2 as an embedded
arc in F , we get an acyclic graph �F embedded in F with one vertex on each component of SC. See
Figure 17.
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e1 e2
I1 I2 ! e1[ e2

Figure 17: Left: arcs e1 and e2 in the surface F before gluing. Right: the arc e1[ e2 after gluing
I1 to I2.

For an element ! of ^�H1.F;SCIF2/, obtained as a wedge product of basis elements of H1.F;SCIF2/,
the I1–action of E 2 F2ŒE�=.E

2/ on ! is zero if e1 is not a wedge factor of !. Otherwise, write
! D e1 ^!0; we have E �! D !0.
The I2–action of E 2 F2ŒE�=.E

2/ on ^�H1.F;SCIF2/ is similar; informally, E acts by “removing e2”.
It follows that ^�H1.F;SCIF2/ is a free module over .F2ŒE�=.E

2//˝2 with an .F2ŒE�=.E
2//˝2–basis

given by elements e1 ^ e2 ^!0 for all wedge products !0 in the other basis elements (not e1 or e2) of
H1.F;SCIF2/. Thus, a basis for

.^�H1.F;SCIF2//˝.F2ŒE�=.E2//˝2

F2ŒE�

.E2/

is given by the set of elements e1 ^ e2 ^!0, together with the elements e1 ^!0 D e2 ^!0 (in each case
!0 is a wedge product of basis elements of H1.F;SCIF2/ that are not e1 or e2). Meanwhile, a basis for
^�H1.F ;SCIF2/ is given by the set of elements .e1[ e2/^!0 and !0 for the same set of !0. We have
a bijection between basis elements given by e1^ e2^!0$ .e1[ e2/^!0 and .e1^!0 D e2^!0/$ !0;
this bijection is illustrated in Figure 18. Thus, we have an isomorphism of vector spaces as claimed in the
statement of the theorem.

To see that this isomorphism intertwines the remaining actions of F2ŒE�=.E
2/ for SC intervals that are

not I1 or I2, it suffices to consider the actions for the other two intervals (say I 0
1

and I 0
2
) that intersect

e1 and e2 respectively. We will consider the action for I 0
1
; the case of I 0

2
is similar. In the terminology

used above, there are four types of basis elements of ^�H1.F;SCIF2/: those of the forms e1 ^ e2 ^!0,

e1 e2

I1 I2 $
e1 [ e2

e1

I1 I2 D I1 I2

e2
$

Figure 18: The bijection on basis elements in the first case of Lemma 4.1.
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I1

I2

e1

e2

!
�

Figure 19: Left: local model near C for the arcs e1 and e2. Right: the circle � after gluing
I1 to I2. In both cases the curved arrow indicates the orientation on F ; the induced boundary
orientation on C is clockwise in this figure.

e1 ^!0, e2 ^!0, and !0. The I 0
1
–action of E 2 F2ŒE�=.E

2/ sums over all ways to remove one wedge
factor corresponding to an arc with exactly one endpoint on I 0

1
; besides terms that modify !0, there is

a “remove e1” term that sends e1 ^ e2 ^!0 to e2 ^!0 and sends e1 ^!0 to !0. When we tensor over
.F2ŒE�=.E

2//˝2 with the identity map on F2ŒE�=.E
2/, the “remove e1” term of the action of E sends

e1 ^ e2 ^ !0 to e2 ^ !0 D e1 ^ !0 and sends e1 ^ !0 D e2 ^ !0 to zero. On the other hand, as above
there are two types of basis elements of ^�H1.F ;SCIF2/: those of the form .e1[ e2/^!0 and those
of the form !0. The I 0

1
–action of E has terms modifying !0 in the same way as above, and it also has

“remove e1[ e2” terms sending .e1[ e2/^!0 to !0 and sending !0 to zero. It follows that our choice of
isomorphism intertwines the I 0

1
action of F2ŒE�=.E

2/.

Case 2 Next, assume I1 and I2 live on the same connected component F 0 of F ; without loss of generality
we can assume F is connected so that F 0 D F . We consider two further cases: either I1 and I2 live on
the same connected component of @F , or they live on different connected components of @F .

Case 2-1 First assume I1 and I2 live on the same component C of @F , so that gluing I1 to I2 increases
the number of boundary components of F by one while keeping the genus the same. When choosing a
basis for H1.F;SCIF2/ as above, we can choose C for the unique not-fully SC boundary component of
F that does not get a circle around it. We can also ensure that in the acyclic graph �F , the vertices p1 on
I1 and p2 on I2 are leaves of �F .

Case 2-1a If there are any intervals of SC other than I1 and I2, or any fully SC circles, then p1 and p2

are incident with distinct edges e1 ¤ e2 of �F ; we can furthermore choose �F so that e1 and e2 share an
endpoint q, and such that as embedded submanifolds of F , they look like the left side of Figure 19 in a
small neighborhood of C and are identical outside this neighborhood (the picture should be appropriately
modified if q lives on the circle C ). As above, ^�H1.F;SCIF2/ is free over .F2ŒE�=.E

2//˝2 and has
four types of basis elements, namely e1 ^ e2 ^!0, e1 ^!0, e2 ^!0, and !0. A basis for

.^�H1.F;SCIF2//˝.F2ŒE�=.E2//˝2

F2ŒE�

.E2/

is given by the elements e1^ e2^!0 along with the elements e1^!0 D e2^!0. Meanwhile, we can take
�F to be �F with the edges e1 and e2 removed, and when choosing circles around boundary components

Algebraic & Geometric Topology, Volume 24 (2024)
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I1

I2

e !
�

Figure 20: Left: local model near C for the arc e. Right: the circle � after gluing I1 to I2.

to assemble a basis for H1.F ;SCIF2/, we can put a circle � around the component of @F containing
the segment of @F that goes from I1 to I2 when traversing the boundary in the oriented direction (see the
right side of Figure 19). Then ^�H1.F ;SC;F2/ has basis elements of type � ^!0 and !0; we identify
these with elements of type e1 ^ e2 ^ !0 and e1 ^ !0 D e2 ^ !0 respectively. This bijection on basis
elements gives us an isomorphism of vector spaces as in the statement of the theorem.

To see that this isomorphism intertwines the remaining actions of F2ŒE�=.E
2/ from SC intervals other

than I1 or I2, it suffices to consider the interval I that contains the common endpoint q of e1 and e2.
The I–action of E 2 F2ŒE�=.E

2/ on ^�H1.F;SCIF2/ has terms that modify !0 as well as “remove e1”
terms sending (for example) e1 ^ e2 ^ !0 to e2 ^ !0 and “remove e2” terms sending (for example)
e1 ^ e2 ^!0 to e1 ^!0. When we tensor over .F2ŒE�=.E

2//˝2 with the identity map on F2ŒE�=.E
2/,

both the “remove e1” and the “remove e2” terms send e1 ^ e2 ^!0 to e1 ^!0 D e2 ^!0, and they send
e1 ^ !0 D e2 ^ !0 to zero. Since the “remove e1” and “remove e2” terms act in the same way, their
contribution to the overall action of E is zero, and only the “modify !0” terms remain. On the other hand,
the I–action of E on ^�H1.F;SCIF2/ only modifies !0 in terms of type � ^!0 or !0, since � is closed.
It follows that our choice of isomorphism intertwines the I–action of F2ŒE�=.E

2/.

Case 2-1b Now assume that I1 and I2 are the only intervals of SC (but they still live on the same
component C of @F ) and that there are no fully SC circles; it follows that �F has a unique edge e and it
connects p1 to p2. We can assume e lives in a small neighborhood of C , and that in this neighborhood it
looks like the left side of Figure 20. The I1–action and I2–action of E2F2ŒE�=.E

2/ on^�H1.F;SCIF2/

agree; they both send e^!0 to !0 and send !0 to zero. Thus

.^�H1.F;SCIF2//˝.F2ŒE�=.E2//˝2

F2ŒE�

.E2/

is canonically isomorphic to ^�H1.F;SCIF2/ where no tensor operation is performed. Meanwhile, we
can take �F to be empty, but in assembling a basis for H1.F ;SCIF2/, we again put a circle � around the
component of @F containing the segment of @F that goes from I1 to I2 when traversing the boundary
in the oriented direction (see the right side of Figure 20). The correspondences e ^!0$ � ^!0 and
!0$!0 give an isomorphism of vector spaces as in the statement of the theorem. There are no remaining
SC intervals, so we do not need to check that this isomorphism intertwines any actions.
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e1
e2

I1 I2
� ! �

�

Figure 21: Left: F before gluing intervals I1 and I2 on the same component of F but different
components of @F . Right: the glued surface F .

Case 2-2 Next, assume that I1 and I2 live on different components C1 and C2 of @F ; for visual simplicity,
assume that in the model for F shown in Figure 16, C1 and C2 are next to each other. Gluing I1 to I2

decreases the number of boundary components of F by one and increases the genus of F by one.

Case 2-2a Also assume that there is either at least one SC interval that is not I1 or I2, or that there is at
least one fully SC circle. As above, p1 and p2 are incident with distinct edges e1 ¤ e2 of �F , and we
can choose �F so that e1 and e2 share a vertex q and only diverge near C1 and C2. We also assume that
C1 is the unique not-fully SC boundary circle of F that does not get a circle around it as a basis element
of H1.F;SCIF2/. Let � be the circle around C2; see the left side of Figure 21.

Basis elements for ^�H1.F;SCIF2/ can be of the form e1 ^ e2 ^!0, e1 ^!0, e2 ^!0, or !0; when we
tensor with F2ŒE�=.E

2/ over .F2ŒE�=.E
2//˝2, we have a basis whose elements are of type e1 ^ e2 ^!0

or e1 ^!0 D e2 ^!0. Meanwhile, we choose a basis for H1.F ;SC;F2/ by choosing a homeomorphism
with the standard surface shown on the right side of Figure 21. The graph �F can be understood as
�F with e1 and e2 removed; we also have basis elements � and � of H1.F;SCIF2/ where � � F

comes from � � F and � comes from e1 and e2. Basis elements of ^�H1.F ;SCIF2/ are of the form
� ^ !0 or !0, where !0 is a wedge product of basis elements for H1.F ;SCIF2/ that are not � . The
correspondence e1 ^ e2 ^!0$ � ^!0 and .e1 ^!0 D e2 ^!0/$ !0 gives an isomorphism of vector
spaces as in the statement of the theorem. The proof that this isomorphism intertwines the remaining
actions of F2ŒE�=.E

2/ proceeds as above.

Case 2-2b Finally, assume that I1 and I2 are the only SC intervals and that there are no fully SC circles
(while I1 and I2 still live on different components of @F ). Letting e be the arc of �F connecting p1 2 I1

to p2 2 I2, basis elements for ^�H1.F;SCIF2/ are of the form e^!0 or !0. Meanwhile, defining � as
in Figure 21, basis elements for ^�H1.F ;SCIF2/ are of the form � ^!0 or !0. The correspondence
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e^!0$ � ^!0 and !0 ^!0 gives an isomorphism of vector spaces as in the statement of the theorem,
and there are no remaining actions for this isomorphism to intertwine.

Lemma 4.1 implies the following theorem.

Theorem 4.2 Let .F;SC;S�; ƒ/ and .F 0;S 0C;S
0
�; ƒ

0/ be two sutured surfaces. For some m � 0,
choose distinct intervals I1; : : : ; Im of SC and distinct intervals I 0

1
; : : : ; I 0m of S 0C. Use I1; : : : ; Im to

define an action of .F2ŒE�=.E
2//˝m on ^�H1.F;SCIF2/, and similarly for F 0. Let .F ;SC;S�; ƒ/ be

the sutured surface obtained by gluing Ij to I 0j for 1� j �m (in such a way that the result is oriented ).
Then we have an isomorphism

^�H1.F ;SCIF2/Š^�H1.F;SCIF2/˝.F2ŒE�=.E2//˝m ^�H1.F
0;S 0CIF2/

that intertwines the remaining actions of F2ŒE�=.E
2/ for intervals of SC and S 0C that are not included in

fI1; : : : ; Img or fI 0
1
; : : : ; I 0mg.

Proof We can write ^�H1.F;SCIF2/˝.F2ŒE�=.E2//˝m ^�H1.F
0;S 0CIF2/ as�

.^�H1.F tF 0;SC tS 0CIF2//˝.F2ŒE�=.E2//˝2 F2ŒE�=.E
2/
� � � � ˝.F2ŒE�=.E2//˝2 F2ŒE�=.E

2/;

where there are m successive tensor products by F2ŒE�=.E
2/ over .F2ŒE�=.E

2//˝2 (one for each pair
.Ij ; I

0
j /). The result now follows from Lemma 4.1.

Corollary 4.3 There is a functor from the full subcategory of the .1C1/–dimensional oriented open-
closed cobordism category on objects with no closed circles (the “open sector” of the open-closed
cobordism category) to AlgF2

sending an object with m intervals to the algebra .F2ŒE�=.E
2//˝m and

sending a morphism (viewed as a sutured surface .F;SC;S�; ƒ/) to ^�H1.F;SCIF2/ (viewed as a
bimodule over tensor products of F2ŒE�=.E

2/ for the input and output intervals of the morphism).

5 The tensor product case

Figure 22 shows the open pair of pants surface P with a sutured structure .P;SC;S�; ƒ/. Let e1 and
e2 be the arcs shown in the figure and let I1, I2 and I3 be the SC intervals shown in the figure. Since
fe1; e2g is a basis for H1.P;SCIF2/, we have a basis f1; e1; e2; e1 ^ e2g for ^�H1.P;SCIF2/. The
three actions of F2ŒE�=.E

2/ on ^�H1.P;SCIF2/ can be described as follows:

� For the I1–action, E sends 1 7! 0, e1 7! 1, e2 7! 0, and e1 ^ e2 7! e2.

� For the I2–action, E sends 1 7! 0, e1 7! 0, e2 7! 1, and e1 ^ e2 7! e1.

� For the I3–action, E sends 1 7! 0, e1 7! 1, e2 7! 1, and e1 ^ e2 7! e1C e2.

Using the I1 and I2 actions to define an action of .F2ŒE�=.E
2//˝2 on ^�H1.P;SCIF2/, we see that

^�H1.P;SCIF2/ is a free module of rank 1 over .F2ŒE�=.E
2//˝2 with an .F2ŒE�=.E

2//˝2–basis given
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e1

e2

I1

I2

I3

Figure 22: The open pair-of-pants surface P with sutured structure and basis fe1; e2g for H1.P;SCIF2/.

by fe1^e2g. The I3–action of F2ŒE�=.E
2/ is then given by applying the coproduct�.E/DE˝1C1˝E,

followed by multiplication in .F2ŒE�=.E
2//˝2.

Now, if we have sutured surfaces .F 0;S 0C;S
0
�; ƒ

0/ and .F 00;S 00C;S
00
�; ƒ

00/ with chosen intervals I 0 and
I 00 in S 0C and S 00C respectively, we can glue F 0 tF 00 to P by gluing I 0 to I1 and I 00 to I2. Applying
Theorem 4.2 with F1 WD F 0 tF 00 and F2 WD P , and letting .F ;SC;S�; ƒ/ denote the glued surface,

^�H1.F ;SCIF2/Š .F2ŒE�=.E
2//˝2˝.F2ŒE�=.E2//˝2 ^�H1.F

0 tF 00;S 0C tS 00CIF2/

Š^�H1.F
0 tF 00;S 0C tS 00CIF2/

Š^�H1.F
0;S 0CIF2/˝^�H1.F

00;S 00CIF2/

with I3–action of E given by taking �.E/ D E ˝ 1C 1˝E and then acting on the tensor product
^�H1.F

0;S 0CIF2/˝^�H1.F
00;S 00CIF2/. Corollary 1.4 follows from this computation.
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A simplicial version of the 2–dimensional Fulton–MacPherson operad

NATHANIEL BOTTMAN

We define an operad in Top, called FMW
2 . The spaces in FMW

2 come with CW decompositions such that
the operad compositions are cellular. In fact, each space in FMW

2 is the realization of a simplicial set.
We expect, but do not prove here, that FMW

2 is isomorphic to the 2–dimensional Fulton–MacPherson
operad FM2. Our construction is connected to the author’s work on the symplectic .A1; 2/–category, and
suggests a strategy toward equipping the symplectic cochain complex with the structure of a homotopy
Batalin–Vilkovisky algebra.

18M75, 55P48; 53D37

1 Introduction

Getzler and Jones [1994] introduced the Fulton–MacPherson operad

(1) FM2 D .FM2.k//k�1;

where FM2.k/ is the compactification à la Fulton and MacPherson [1994] of the configuration space of
k distinct labeled points in R2, modulo translations and dilations. Getzler and Jones proposed in the
same paper a collection of cellular decompositions of the spaces in FM2, such that these decompositions
are compatible with the operad maps ıi W FM2.k/� FM2.l/! FM2.kC l � 1/. These decompositions
formed the basis for a significant amount of work related to the Deligne conjecture, including a proof in
[Getzler and Jones 1994] of that conjecture.

Unfortunately, Tamarkin found an error in Getzler and Jones’ decomposition. In particular, in the 9–
dimensional space FM2.6/, there are two disjoint open 6–cells C1 and C2 with the property that C1\C2 is
nonempty, as described in [Voronov 2000, Section 1.2.2]. Salvatore [2022] used meromorphic differentials
to construct cellular decompositions of the spaces in FM. His approach is completely different from
Getzler and Jones’.

We construct an operad of CW complexes, which we conjecture to be isomorphic in Top to FM2.
Under this expected isomorphism, our decompositions are refinements of Getzler and Jones’ attempted
decompositions. The context for the current paper is the author’s program (as developed in [Bottman
2015; 2019a; 2019b; 2020; Bottman and Carmeli 2021; Bottman and Oblomkov 2019; Bottman and
Wehrheim 2018]) to construct Symp, the symplectic .A1; 2/–category. Specifically, the author plans to
use the decompositions of FM that we construct here to understand the axioms for identity 1–morphisms

© 2024 The Author, under license to MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons
Attribution License 4.0 (CC BY). Open Access made possible by subscribing institutions via Subscribe to Open.
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in an .A1; 2/–category. In the context of Symp, this suggests a strategy toward endowing symplectic
cohomology with a chain-level homotopy Gerstenhaber (and eventually, homotopy BV) algebra structure
that is finite in each arity, thus answering Conjecture 2.6.1 of [Abouzaid 2015]. We note that our approach
is compatible with the operations in Symp, unlike Salvatore’s; in addition, we expect our approach to
generalize to the Fulton–MacPherson operad of any dimension.

1.1 Getzler and Jones’ attempted decomposition

Getzer and Jones’ attempted decomposition is an adaptation to the case of FM2 of Fox and Neuwirth’s
decomposition [1962] of the one-point compactification of the configuration space .R2/k n� of k points
in R2, where � is the fat diagonal. A Fox–Neuwirth cell corresponds to a choice of which subsets of the
points p1; : : : ;pk should be vertically aligned, the left-to-right order in which these subsets of points
should appear, and the top-to-bottom order in which each subset of the points should appear. For instance,
Figure 1 is a real-codimension-3 cell in ..R2/6 n�/�. Getzler and Jones observed that the Fox–Neuwirth
cells are invariant under translations and dilations, and moreover that one can define a similar type of
cell for the boundary locus. The elements in the boundary of FM2.k/ are trees of “screens”, and these
“boundary cells” are defined by partitioning and ordering the points on each of the screen in the same way
as with Fox–Neuwirth cells.

1.2 Tamarkin’s counterexample

As described in [Voronov 2000], Tamarkin observed a way in which Getzler and Jones’ supposed
decomposition fails. Consider FM2.6/, the open locus of which parametrizes configurations of six distinct
points in R2, up to translations and dilations. Next, we consider the two 6–cells C1 and C2 in Figure 2 (we
omit the numberings). The j th bubble in C2 (for j D 1; 2) carries a modulus �j defined in the following
way: by translating and dilating, we can move the left and right lines to x D 0 and x D 1, respectively;
we then denote by �j the position of the middle line. The intersection C1\C2 is the codimension-1 locus
in C2 in which �1 D �2. What Getzler and Jones proposed is therefore not a cellular decomposition,
because the intersection of the closures of two distinct n cells should be contained in the .n�1/–skeleton.
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Figure 2

In our construction, C1, C2, and C1\C2 will each be a union of cells.

1.3 An overview of our construction

We construct a collection of CW complexes FMW
2 .k/ and maps

(2) ıi W FMW
2 .k/�FMW

2 .l/! FMW
2 .kC l � 1/ for 1� i � k:

Here is our main result:

Main Theorem The spaces .FMW
2 .k//k�1 together with the composition operations ıi form a non-†

operad , and the composition maps

(3) ıi W FMW
2 .k/�FMW

2 .l/! FMW
2 .kC l � 1/

are cellular.

We will now give a brief overview of the definition of FMW
2 .k/.

(i) First, we define a “W –version” W W
n of the 2–associahedra by the analogy

(4) Kr WW .Ass/ :: Wn WW
W

n :

Here Kr is the .r�2/–dimensional associahedron, and W .Ass/ is the Boardman–Vogt W –construction
applied to the associative operad, which is defined in terms of metric stable trees and yields an operad of
CW complexes that is isomorphic to the associahedral operad K in Top. Wn is an .jnjCr�3/–dimensional
2–associahedron, and W W

n is a CW complex that we define in Section 2 in terms of metric stable tree-pairs
and which we expect to be homeomorphic to Wn. We then refine the CW structure on W W

n to a simplicial
decomposition.

(ii) Toward our construction of FMW
2 .k/, we decompose FM2.k/ into Getzler–Jones cells, then identify

each open Getzler–Jones cell with a product of open 2–associahedra. We then replace each such product
by the corresponding product of interiors of the spaces W W

n described in the previous step. This product
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comes with a decomposition into products of simplices, and we refine this to a simplicial structure.
Finally, we attach these decomposed Getzler–Jones cells together to produce FMW

2 .k/. This part of the
construction appears in Section 3.

The essential property of FMW
2 .k/ that we must verify is that our CW decomposition is valid. It is clear

that our putative open cells disjointly decompose our space, and that they are homeomorphic to open balls.
The only nontrivial check we need to make is that the n–cells are attached to the .n�1/–skeleton. This is
where Getzler and Jones’ attempted decomposition fails: the 6–cell C1 that we described in Section 1.2
is not attached to the 5–skeleton. Our decomposition satisfies this property by construction: we attach a
given n–cell by taking a closed n–simplex, then attaching it to the existing skeleton via quotient maps
from the boundary .n�1/–simplices to the .n�1/–skeleton. In fact, the boundary of an n–cell is a union
of cells of dimension at most n� 1.

1.4 The relationship between our construction and Symp

The genesis of the construction of FMW
2 was a connection between the symplectic .A1; 2/–category

Symp and E2 suggested by Jacob Lurie in 2016. (The construction of Symp is a long-term project of
the author, building on work of Ma’u, Wehrheim, and Woodward; see [Bottman 2015; 2019a; 2019b;
2020; Bottman and Carmeli 2021; Bottman and Wehrheim 2018; Ma’u et al. 2018].) We can express this
connection concretely, via a collection of maps

(5) f W
� WW

W
n ! FMW

2 .jnj/;

where � is a 2–permutation, as defined in Section 3.2. The idea of this map is very simple. The map f�
forgets the data of the lines, then labels the points according to the 2–permutation � . Then f� extends
continuously to the boundary of Wn; it is an embedding on the interior of its domain, but contracts some
boundary cells.

Example 1.1 In Figure 3, we depict W111 and its image under an appropriate map f� . More precisely,
we depict their nets — to “assemble” both CW complexes, one would cut them out, then glue together
like-numbered edges. As is evident, most of the 2–cells of W111 are contracted by f� .

While it would take us too far afield to explain the relationship between FM2 and Symp (and their
W –counterparts) in detail, let us indicate the basic idea. Symp, being an .A1; 2/–category, assigns to a
chain in a 2–associahedron Wn an operation on 2–morphisms. (For instance, the objects of Symp are
symplectic manifolds, and given two objects M0 and M1, the 1–morphism category is Fuk.M�

0
�M1/;

2–associahedra Wn, where n is a single positive integer, act on this Fukaya category by the usual A1–
operations.) The current definition of an .A1; 2/–category, appearing in [Bottman and Carmeli 2021],
does not equip identity 1–morphisms with all the possible structure. Indeed, when defining operations
on 2–morphisms in the situation where some of the 1–morphisms are identities, those 1–morphisms
should be allowed to be “moved past” the other 1–morphisms. To make this precise, one exactly needs to
understand the maps f� , and to equip their targets with a CW structure so that f� is cellular. One way to
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proceed toward this goal is to first decompose FMW
2 so that f W

� is cellular, and next construct coherent
homeomorphisms Wn ŠW W

n and FM2.k/Š FMW
2 .k/.

The following result therefore shows the way toward a connection between the symplectic .A1; 2/–
category and FMW

2 . It is an immediate consequence of our construction of W W
n and FMW

2 .k/, and it
forms the content of Remark 3.14.

Proposition Fix r � 1, n 2 Zr
�0
n f0g, and a 2–permutation � of type n. Then the associated map

(6) f W
� WW

W
n ! FMW

2 .jnj/

is cellular.

1.5 Future directions

The author plans to develop several aspects of the current paper. In particular:

� With several collaborators, the author plans to extend this work to produce cellular decompositions
of FMW

k
for all k � 1, and to show that FMW

k
is isomorphic to FMk in Top.

� This paper can be construed as a way of incorporating identity 1–morphisms into the symplectic
.A1; 2/–category. The author plans to formalize this in future work on the algebra of .A1; 2/–
categories.
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� We plan to upgrade this work to give a cellular model for the framed analogue of the Fulton–
MacPherson operad. This suggests a way of endowing symplectic cohomology with a chain-level
BV algebra structure, which is the subject of Conjecture 2.6.1 of [Abouzaid 2015].
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2 A “W –version” of the 2–associahedra

In this section, we construct a “W –version” of the 2–associahedra. (The 2–associahedra were originally
defined in [Bottman 2019a].) This is an essential ingredient in our definition of FMW

2 .k/, which will
appear in Section 3.

2.1 A warm-up: K W , ie W.Ass/, ie a W –version of the associahedra

In this subsection, we recall a certain operad, which we will denote by KW D .KW
r /r�1. This is simply

the Boardman–Vogt W –construction applied to the associative operad Ass. We construct only KW rather
than recalling the general definition of the W –construction, because this one-off construction will be
a useful warm-up to our construction of W W later in this section. As noted in [Barber 2013], KW is
isomorphic in Top to the associahedral operad K.

The following proposition summarizes what we will prove about KW :

Proposition 2.1 The spaces .KW
r /r�1 form a non-† operad of CW complexes , and the composition maps

(7) ıi WK
W
r �KW

s !KW
rCs�1

defined in Definition 2.11 are cellular.

We will prove Proposition 2.1 at the end of the current subsection.

Algebraic & Geometric Topology, Volume 24 (2024)



A simplicial version of the 2–dimensional Fulton–MacPherson operad 1189

We begin with a definition of rooted ribbon trees. Stable rooted ribbon trees with r leaves index the strata
of the associahedron Kr , and they will be an integral part of the definition of KW

r .

Definition 2.2 [Bottman 2019a, Definition 2.2] A rooted ribbon tree (RRT) is a tree T with a choice of
a root ˛root 2 T and a cyclic ordering of the edges incident to each vertex; we orient such a tree toward
the root. We say that a vertex ˛ of an RRT T is interior if the set in.˛/ of its incoming neighbors is
nonempty, and we denote the set of interior vertices of T by Tint. An RRT T is stable if every interior
vertex has at least two incoming edges. We define Ktree

r to be the set of all isomorphism classes of stable
rooted ribbon trees with r leaves.

We denote the i th leaf of an RRT T by �T
i . For any ˛; ˇ 2 T , T˛ˇ denotes those vertices  such that the

path Œ˛;  � from ˛ to  passes through ˇ. We define T˛ WD T˛root˛.

Remark 2.3 Ribbon trees (resp. rooted ribbon trees) are often referred to as planar trees (resp. planted
trees).

Next, we define a version of RRTs with internal edge lengths:

Definition 2.4 A metric RRT .T; .`e// is the data of

� an RRT T , and

� for every edge e of T not incident to a leaf (but possibly incident to the root), a length `e 2 Œ0; 1�.

We call this a metric RRT of type T .

Now we will define a “dimension” function d on stable RRTs:

Definition 2.5 [Bottman 2019a, Definition 2.4] For T a stable RRT in Ktree
r , we define its dimension

d.T / 2 Œ0; r � 2� like so:

(8) d.T / WD r � #Tint� 1:

Definition 2.6 Given a stable tree T , the cell associated to T is denoted by CT and is defined to consist
of all metric RRTs of type T .

Note that we can canonically identify CT with the closed cube of dimension equal to the number of
internal edges of T . That is:

(9) CT Š Œ0; 1�
#Tint�1

D Œ0; 1�r�2�d.T /:

As we will see, KW
r is .r�2/–dimensional; it follows that d.T / is the codimension of CT in KW

r . (The
unfortunate clash of terminology between “dimension” and “codimension” is due to the fact that, in Kr ,
the cell indexed by T has dimension d.T /.)

We now define KW
r by taking the union of the cells CT for T any stable RRT with r leaves, then

collapsing edges of length 0.
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Definition 2.7 Given r � 1, we define KW
r to be the following quotient:

(10) KW
r WD

� G
T2K tree

r

CT

�.
�:

Here � identifies .T; .`e// and .T 0; .`0e// if, after collapsing all edges e of T with `e D 0 and all edges e

of T 0 with `0e D 0, both metric RRTs reduce to the same metric RRT .T 00; .`00e//.

Example 2.8 In Figure 4, we depict the CW complex KW
4

. Note that this is a refinement of K4, which
(as a CW complex) is a pentagon. We have labeled the open top cells by the metric stable RRTs that
they parametrize, where each a and b is allowed to vary in Œ0; 1�. The closed top cells are glued together
along the cells where some of the edge lengths are 0 — for instance, we have indicated how the top and
top-right cubes are joined along the internal edge of the pentagon where the edge length b in both cells
becomes 0. The boundary of KW

r is the union of cells where at least one edge length is 1.

Finally, we define a simplicial refinement of the CW structure on KW
r . To approach this, we note that if

P is the poset f0; 1gk , where �1 < �2 if �2 can be gotten by changing some of the 0s of �1 to 1s, then
the nerve of P is a simplicial decomposition of the cube Œ0; 1�k . More concretely, the top simplices are
the sets of the form

(11) f.x1; : : : ;xk/ 2 Œ0; 1�
k
j 0< x�.1/ < � � �< x�.k/ < 1g;

where � is a permutation on k letters. The remaining simplices are the result of replacing some of these
inequalities by equalities.

Definition 2.9 We refine the CW structure on KW
r by decomposing each cell CT in KW

r like so: we
make the identification CT Š Œ0; 1�

r�2�d.T /, then perform the simplicial decomposition described in the
previous paragraph. This refinement equips KW

r with a simplicial decomposition.
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Example 2.10 In Figure 5, we depict the simplicial complex KW
4

. This is the refinement of our initial
cubical CW decomposition of KW

r gotten by subdividing each of the five squares into two triangles. We
indicate the new edges by coloring them blue.

Now that we have constructed the spaces KW
r , we can prove Proposition 2.1, which states that .KW

r / is
a non-† operad and that the operad maps are cellular.

Definition 2.11 Fix r , s, and i 2 Œ1; r �. We wish to define the composition map

(12) ıi WK
W
r �KW

s !KW
rCs�1:

We do so cell by cell. That is, fix cells CT �KW
r and CT 0 �KW

s . Define T 00 to be the result of grafting
T 0 to the i th leaf of T . Then we define ıi on CT �CT 0 like so: given collections of edge lengths on
T and T 0, combine them to produce a collection of edge lengths on T 00, where we assign to the single
newly formed interior edge the length 1.

Proof of Proposition 2.1 Fix r , s, and i 2 Œ1; r �, and consider the composition map

(13) ıi WK
W
r �KW

s !KW
rCs�1:

To show that ıi is cellular, let’s consider the restriction of ıi to a product CT �CT 0 of closed cubes, for
T 2Kr and T 0 2Ks . Denote by T 00 the tree obtained by grafting the root of T 0 to the i th leaf of T . Then
ıi includes CT �CT 0 into CT 00 as the face gotten by requiring the outgoing edge of the root of T 0 to have
length 1. The CW structure of this face of CT 00 is finer than that of CT �CT 00 , so ıi is indeed cellular.
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2.2 Metric tree-pairs and the definition of W W
n

Just as we defined KW
r to be the parameter space of metric stable RRTs, we will define W W

n to parametrize
metric stable tree-pairs. The definition of metric stable tree-pairs is somewhat involved, so we devote the
current subsection to this definition.

Before defining metric stable tree-pairs, we recall the definition of stable tree-pairs:

Definition 2.12 [Bottman 2019a, Definition 3.1] A stable tree-pair of type n is a datum 2T D Tb
f
�! Ts ,

with Tb , Ts , and f described below:

� The bubble tree Tb is an RRT whose edges are either solid or dashed, which must satisfy these
properties:

– The vertices of Tb are partitioned as V .Tb/D Vcomp tVseam tVmark, where

� every ˛ 2 Vcomp has at least 1 solid incoming edge, no dashed incoming edges, and either a
dashed or no outgoing edge;

� every ˛ 2 Vseam has zero or more dashed incoming edges, no solid incoming edges, and a solid
outgoing edge; and

� every ˛ 2 Vmark has no incoming edges and either a dashed or no outgoing edge.

We partition Vcomp DW V
1

comp tV �2
comp according to the number of incoming edges of a given vertex.

– Stability If ˛ is a vertex in V 1
comp and ˇ is its incoming neighbor, then #in.ˇ/� 2; if ˛ is a vertex

in V �2
comp and ˇ1; : : : ; ˇl are its incoming neighbors, then there exists j with #in. ǰ /� 1.

� The seam tree Ts is an element of Ktree
r .

� The coherence map is a map f W Tb! Ts of sets having these properties:

– f sends root to root, and if ˇ 2 in.˛/ in Tb , then either f .ˇ/ 2 in.f .˛// or f .˛/D f .ˇ/.

– f contracts all dashed edges, and every solid edge whose terminal vertex is in V 1
comp.

– For any ˛ 2 V �2
comp, f maps the incoming edges of ˛ bijectively onto the incoming edges of f .˛/,

compatibly with <˛ and <f .˛/.

– f sends every element of Vmark to a leaf of Ts , and if �Ts

i is the i th leaf of Ts , then f �1f�
Ts

i g

contains ni elements of Vmark, which we denote by �Tb

i1
; : : : ; �

Tb

ini
.

We denote by W tree
n the set of isomorphism classes of stable tree-pairs of type n. Here an isomorphism

from Tb
f
�! Ts to T 0

b

f 0
�! T 0s is a pair of maps 'b W Tb! T 0

b
and 's W Ts! T 0s that fit into a commutative

square in the obvious way and that respect all the structure of the bubble trees and seam trees.

Next, we define metric stable tree-pairs. This notion is more subtle than that of metric stable RRTs,
because we must impose conditions on the edge-lengths. (This should be compared to Bottman and
Oblomkov’s similar constraints [2019, Section 3], imposed in order to define local charts on a complexified
version of Wn.)
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Definition 2.13 A metric stable tree-pair .2T; .Le/; .`e// is the following data:

� 2T is a stable tree-pair.

� We have, for every interior dashed edge e of Tb , a length Le 2 Œ0; 1�, and, for every interior edge e of Ts ,
a length `e 2 Œ0; 1�, subject to the following coherence conditions (where for convenience we set L˛ WDLe

for ˛ 2 Vcomp.Tb/ n f˛rootg and e the outgoing edge of ˛, and similarly for the edge-lengths in Ts):

– For every ˛1; ˛2 2 V �2
comp.Tb/ and ˇ 2 V 1

comp.Tb/ with f .˛1/D f .˛2/D f .ˇ/, we require

(14) max
2Œ˛1;ˇ/

L D max
2Œ˛2;ˇ/

L :

– For every � 2 Vint.Ts/ n f�rootg and ˛ 2 V �2
comp.Tb/ with f .˛/D �, we require

(15) `� D max
2Œ˛;ˇ˛/

L ;

where we define ˇ˛ to be the first element of V �2
comp.Tb/ that the path from ˛ to ˛root passes through.

Finally, we recall the dimension of a stable tree-pair. Similarly to the dimension of a stable RRT, this will
be the codimension in W W

n of the cell corresponding to the stable tree-pair in question.

Definition 2.14 [Bottman 2019a, Definition 3.3] For 2T a stable tree-pair, we define the dimension
d.2T / 2 Œ0; jnjC r � 3� like so:

(16) d.2T / WD jnjC r � #V 1
comp.Tb/� #.Ts/int� 2:

We are now prepared to define W W
n , the “W –version” of the 2–associahedron. We will define W W

n by
attaching together the cells C2T , which consist of metric stable tree-pairs.

Definition 2.15 Given a stable tree-pair 2T , the cell associated to 2T is the collection of all metric
stable tree-pairs of type 2T . We denote this cell by C2T .

Note that we can identify C2T with the subset of the cube Œ0; 1�k defined by the equalities (14) and (15),
where k is the number of interior dashed edges of Tb plus the number of interior edges of Ts .

Definition 2.16 Fix r � 1 and n 2 Zr
�0
n f0g. We define W W

n similarly to how we defined KW
r in

Definition 2.7:
W W

n WD

� G
2T2W tree

n

C2T

�.
�:

The quotient here is somewhat subtler than the quotient that appeared in Definition 2.7, specifically
when it comes to Tb . In Ts , we simply contract any edges of length 0. We indicate in Figure 6 how to
perform the necessary contractions in Tb when some edge-lengths are 0. The reader should think of
the left contraction as undoing a type-1 move (as in [Bottman 2019a, Section 3.1]), whereas the right
contraction undoes either a type-2 or a type-3 move. Note that we are using the coherences enforced in
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Definition 2.13 — for instance, these mean that we do not have to consider a situation as in the right-hand
side of the above figure, but where only some of the edge-lengths in this portion of Tb are 0.

Example 2.17 In Figure 7, we depict the CW complex W W
21

. Each of the parameters a and b lie in Œ0; 1�;
they do not have the same meaning across different cells. The eight interior edges (resp. sixteen boundary
edges) correspond to the loci in the top cells where a parameter goes to 0 (resp. to 1).

Finally, we refine the CW structure on W W
n to a simplicial decomposition.

Lemma 2.18 Fix a stable tree-pair 2T . For every simplex S in the standard simplicial decomposition of
Œ0; 1�k � C2T , S is either contained in C2T or disjoint from it. The collection of such simplices that are
contained in C2T form a simplicial decomposition of C2T .

Proof Fix a simplex S . S is defined by a collection of equalities and inequalities of the form

(17) 0�x�.1/ � � � � �x�.k/ � 1;

where each “�” is either a “<” or an “D” and where � is a permutation on k letters. After imposing
these (in)equalities, the left- and right-hand sides of the equalities (14) and (15) become single variables.
This collection of equalities will either be always satisfied or never satisfied, depending on the constraints
in (17). Depending on which of these is the case, S is either contained in C2T or disjoint from it.

It follows immediately that the collection of simplices that are contained in C2T form a simplicial
decomposition of C2T .
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Example 2.19 In Figure 8, we illustrate the closed cell in W W
40

associated to the underlying tree-pair of
the (top-dimensional) metric tree-pair shown on the right. The restriction on the lengths a; b; c; d 2 Œ0; 1�

is that they must satisfy max.a; b/Dmax.c; d/; as a result, this cell has the CW type of a square pyramid.

We indicate the simplicial refinement of this cell: the square pyramid is subdivided into eight 3–simplices,
which are defined by imposing inequalities and equalities as shown in this figure.

a< c < b D d

c < a< b D d

c < b < aD d

b < c < aD d b < d < aD c

d < b < aD c

d < a< b D c

a< d < b D c

d db b

a c

Figure 8
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3 The construction of FMW
2

In this final section, we will construct a collection of CW complexes .FMW
2 .k//k�1 and a collection of

operations

(18) ıi W FMW
2 .k/�FMW

2 .l/! FMW
2 .kC l � 1/

such that these data form an operad.

We will now give an overview of our construction of FMW
2 .k/. This is an expansion of step (ii) in the

overview we gave in Section 1.3, and we label the parts accordingly:

(iia) Each open Getzler–Jones cell in FM2.k/ can be identified with a product of open 2–associahedra,
ie a product of the form VWm1 � � � � � VWma (where “ VX ” is our notation for the interior of a space X ).
For each such open cell, we replace these 2–associahedra by their W –construction equivalents thusly:
VW W

m1 � � � � �
VW W

ma . This product comes with the product CW structure, and we refine this in a way that
endows VW W

m1 � � � � �
VW W

ma with the structure of a simplicial complex.

(iib) While an open Getzler–Jones cell can be identified with a product VWm1�� � �� VWma of 2–associahedra,
their compactifications (in FM2.k/ and Wm1�� � ��Wma , respectively) are different: the compactification
of the former is smaller than the compactification of the latter. This is reflected in how we glue our products
VW W

m1�� � ��
VW W

ma together. Specifically, we perform this gluing by applying a quotient map to each simplex
in the boundary of W W

m1�� � ��W W
ma . This quotient map is closely related to the maps f� WWn! FM2.k/

that we described in Section 1.4: they reflect the fact that the compactification used to define Wn allows
lines with no marked points, whereas the compactification of a Getzler–Jones cell does not allow this.

The following is the main result of this section, which we stated in the introduction and record again here:

Main Theorem The spaces .FMW
2 .k//k�1 together with the composition operations ıi defined in

Definition 3.11 form a non-† operad , and the composition maps

(19) ıi W FMW
2 .k/�FMW

2 .l/! FMW
2 .kC l � 1/

are cellular.

Proof Combine Lemmata 3.12 and 3.13 below.

3.1 Quotient maps on 2–associahedra

Before we can define the quotient involved in (24), we will define for every cell F in @W W
n a map qF

from F to a certain product of 2–associahedra, where this target will vary for difference choices of F .
We begin with two preliminary definitions:

Definition 3.1 Fix r � 1 and n 2 Zr
�0
n f0g, and fix i 2 Œ1; r � such that ni D 0. Define Qn WD

.n1; : : : ; ni�1; niC1; : : : ; nr /. We then define a map of posets � tree
i W W

tree
n ! W tree

Qn
by applying the

following procedure to 2T D Tb
f
�! Ts 2W tree

n :

Algebraic & Geometric Topology, Volume 24 (2024)



A simplicial version of the 2–dimensional Fulton–MacPherson operad 1197

(i) Denote by e0 the edge in Ts incident to the i th leaf �Ts

i . If e is a solid edge in Tb that is mapped
identically under f to e0, then we delete e. Next, we delete e0. We modify f in the obvious way.

(ii) After performing these deletions, our tree-pair may no longer be stable. We rectify this in Tb

(resp. Ts) by performing the contractions indicated on the left (resp. right):

Specifically, we perform these contractions as many times as necessary for the tree-pair to be stable.

Denoting the end result of this procedure by f2T , we define � tree
i .2T / WD f2T .

Next, we define another map of posets. Fix r � 1 and n 2 Zr
�0
n f0g. Denote by Qn the result of deleting

all the zeroes from n, and set Qr to be the length of Qn. We define � tree WW tree
n !W tree

Qn
by applying the

map � tree
i once for each i with ni D 0.

It is not hard to check that the choices implicit in this definition do not matter, and that the resulting maps
are indeed maps of posets.

Definition 3.2 Fix r � 1 and n 2 Zr
�0
n f0g. We define a map �W WW W

n !W W
Qn

in the same fashion
as � tree, with the provision that when we contract adjacent edges of lengths `1 and `2 (whether in Tb

or Ts) we equip the resulting edge with length max.`1; `2/.

Next, we recall a W –version analogue of two properties of the 2–associahedra:

W –version analogue of the forgetful property of [Bottman 2019a, Theorem 4.1] Fix r � 1 and n 2

Zr
�0
nf0g. There is a surjection W W

n !KW
r which sends a metric stable tree-pair .Tb

f
�! Ts; .Le/; .`e//

to the metric stable RRT .Ts; .`e//.

W –version analogue of the recursive property of [Bottman 2019a, Theorem 4.1] Fix a stable tree-pair
2T D Tb

f
�! Ts 2W tree

n . There is an inclusion of CW complexes

(20) �2T W

Y
˛2V 1

comp.Tb/

in.˛/D.ˇ/

W W
#in.ˇ/ �

Y
�2Vint.Ts/

K W
#in.�/Y

˛2V�2
comp.Tb/\f

�1f�g

in.˛/D.ˇ1;:::;ˇ#in.�//

W W
#in.ˇ1/;:::;#in.ˇ#in.˛//

,!W W
n ;

where the superscript on one of the product symbols indicates that it is a fiber product with respect to the
maps in the description of the forgetful property above.

The map �2T defined in [Bottman 2019a], which is defined for the posets W tree
n , is defined by attaching

stable tree-pairs together in a way specified by the stable tree-pair 2T . This map is similar, but we are
attaching together metric stable tree-pairs. We assign the length 1 to the edges along which we attach the
trees. (The image of �2T is a union of cells in @W W

n .)
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We can now define the quotient maps qF on W W
n :

Definition 3.3 Fix r � 1, n 2 Zr
�0
n f0g, a stable type-n tree-pair f2T , and a face F of the associated

cell Ce2T
in W W

n with the property that F lies in @W W
n . (Equivalently, the metric tree-pairs in F have at

least one length that is identically equal to 1.) The quotient map associated to F is a map qF from F to a
product of 2–associahedra. Given a metric stable tree-pair .2T; .Le/; .`e//, we define its image under �
in the following fashion:

(i) Break up Tb and Ts along the edges that are identically 1 in F . Equivalently, choose 2T of minimal
dimension with the property that F lies in the image of �2T , then identify F as a top cell in a product of
fiber products of the following form:

(21)
Y

˛2V 1
comp.Tb/

in.˛/D.ˇ/

W W
#in.ˇ/ �

Y
�2Vint.Ts/

K W
#in.�/Y

˛2V�2
comp.Tb/\f

�1f�g

in.˛/D.ˇ1;:::;ˇ#in.�//

W W
#in.ˇ1/;:::;#in.ˇ#in.˛//

:

As a result, we obtain a list of metric stable tree-pairs, which we can regard as lying inside a product
W W

m1 � � � � �W W
ma .

(ii) We then apply the map �W to each of the factors in the product just recorded, hence producing an
element of W W

zm1 � � � � �W W
zma . (As in Definitions 3.1 and 3.2, zmi denotes the result of removing the 0s

from mi .)

Note that for two cells F1 and F2 in the boundary of W W
n , the targets of qF1

and qF2
are typically different.

Example 3.4 In Figure 9, we illustrate several things about W W
21

. Initially, W W
21

is an octagon, decom-
posed into eight squares; this is indicated by the black lines. The simplicial refinement divides each
square into two 2–simplices. We have indicated the metric tree-pairs that correspond to each of the eight
squares, as well as those corresponding to the sixteen 1–simplices that comprise @W W

21
. (Some dashed

edges are not labeled; these should be interpreted as having length max.a; b/.)

Finally, we have indicated the behavior of the quotient maps on W W
21

. These maps are the identity on every
edge except for those indicated in red. Each pair of red edges is contracted to a point. One reflection of
this is that in Example 1.1, the octagons in W111 are taken to the (cellular) hexagons in the Getzler–Jones
cell indicted on the right.

3.2 The construction of FMW
2

.k/

In this subsection, we tackle the construction of FMW
2 .k/. First, we will describe our version of the

Getzler–Jones cells. Next, we will explain how to glue these spaces together.

To define the Getzler–Jones cells, we must introduce 2–permutations, which will allow us to enforce the
alignment and ordering of special points on screens as in Figure 1.
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Definition 3.5 Fix a finite set A. A 2–permutation � on A is the data

� an ordered decomposition

(22) ADA1 t � � � tAr ;

where Ar is allowed to be empty, and

� for each i , a linear order on Ai .

We define the type of � to be the vector n WD .jA1j; : : : ; jAr j/. If � is a 2–permutation whose type n has
no zero entries, then we say that � has no empty part.
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Remark 3.6 A type-.

r‚ …„ ƒ
1; : : : ; 1/ 2–permutation is exactly the data of a permutation on r letters. The same

is true of a type-.n/ 2–permutation.

Next, we define a Getzler–Jones datum, the set of which indexes the Getzler–Jones cells in FMW
2 .k/.

Definition 3.7 Fix k � 2. A Getzler–Jones datum consists of

� a stable rooted tree T with k leaves, together with a numbering of its leaves from 1 through k, and

� for every interior vertex v 2 Tint, a 2–permutation � on its incoming vertices Vin.T / such that �
has no empty part.

We denote the type of the 2–permutation associated to v by n.v/. We will abuse notation and denote the
entire Getzler–Jones datum by T .

Finally, we can define the Getzler–Jones cells of type k:

Definition 3.8 Fix k � 2 and a Getzler–Jones datum T . Then we define

(23) GJT WD

Y
v2Tint

VW W
n.v/ and �GJT WD

Y
v2Tint

W W
n.v/:

We call GJT the Getzler–Jones cell GJT associated to T , and refer to GJT as a type-k Getzler–Jones cell.

In Lemma 2.18 we equipped W W
n with the structure of a simplicial complex, which induces a CW

structure on GJT and �GJT . We refine these to equip GJT and �GJT with simplicial decompositions, in the
fashion of Lemma 2.18.

Remark 3.9 The reason why we do not refer to �GJT as a “closed Getzler–Jones cell” is because it is not
the closure in FMW

2 .k/ of GJT . In fact, it is larger than this closure. Our reason for making this second
definition is that �GJT will be an integral part of our definition of FMW

2 .k/.

We will define FMW
2 .k/ as a quotient of the following form, where T varies over type-k Getzler–Jones

data:

(24) FMW
2 .k/ WD

�a
T

�GJT

�.
�:

The remaining ingredient is the collection of maps that we will use to attach these spaces. As a consequence
of the definition of these maps, FMW

2 .k/will decompose as a set into the union of all type-k Getzler–Jones
cells.

Finally, we come to the definition of FMW
2 .k/:

Definition 3.10 Fix k � 2. We construct FMW
2 .k/ like so:

(i) Begin with the following disjoint union, where T varies over type-k Getzler–Jones data:

(25)
a
T

�GJT :
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(ii) Fix a type-k Getzler–Jones datum T , and fix a cell F in the boundary of �GJT D
Q
v2Tint

W W
n.v/

.
F lies inside a product of cells in the 2–associahedra that comprise �GJT — that is, we may write
F �

Q
v2Tint

Fv �
Q
v2Tint

W W
n.v/

, where Fv is a cell in W W
n.v/

. For every v, we have a map qv from
W W

n.v/
to a product of 2–associahedra; by combining these, we obtain a map from F to a product of

2–associahedra. In fact, we can regard the target of this map as a Getzler–Jones cell.

(iii) We take the quotient of the disjoint union in (25) by attaching the constituent spaces together via
the maps we defined in the last step.

We define FMW
2 .1/ to be a point.

It is a consequence of the simplicial structure of the �GJT that each FMW
2 .k/ has the structure of a

CW complex. As noted above, a result of our definition is that FMW
2 .k/ decomposes as a union of

Getzler–Jones cells, over all Getzler–Jones data of type k.

3.3 The operad structure on FMW
2

Definition 3.11 Fix k, l , and i 2 Œ1; k�. We wish to define the map

(26) ıi W FMW
2 .k/�FMW

2 .l/! FMW
2 .kC l � 1/:

To do so, fix Getzler–Jones data T and T 0 of types k and l , respectively, and fix cells F � GJT and
F 0 � GJT 0 . We will define ıi on

(27) GJT �GJT 0 D

Y
v2TinttT 0int

W W
n.v/:

Define T 00 to be the result of grafting T 0 to the i th leaf of T , and completing it to a Getzler–Jones datum
in the obvious way. We define ıi on GJT �GJT 0 to be the identification of GJT �GJT 0 with GJT 00 .

Lemma 3.12 Taken together , the spaces .FMW
2 .k//k�1 together with the composition operations ıi

form a non-† operad.

Proof This is immediate from the definition.

Lemma 3.13 The composition maps

(28) ıi W FMW
2 .k/�FMW

2 .l/! FMW
2 .kC l � 1/

are cellular.

Proof This is similar to the proof of Proposition 2.1.

Remark 3.14 Fix r �1, n2Zr
�0
nf0g, and a 2–permutation � of type n. Then the associated forgetful map

(29) f W
� WW

W
n ! FMW

2 .jnj/
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is cellular. This map is defined in the obvious way: we first identify W W
n with the corresponding �GJT ,

where T is a Getzler–Jones datum whose associated tree T is a corolla with jnj leaves. Then, we include�GJT into the disjoint union
F

T
�GJT , and finally take the quotient to land in FMW

2 .jnj/.
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Intrinsically knotted graphs with linklessly embeddable simple minors

THOMAS W MATTMAN

RAMIN NAIMI

ANDREI PAVELESCU

ELENA PAVELESCU

It has been an open question whether the deletion or contraction of an edge in an intrinsically knotted
graph always yields an intrinsically linked graph. We present a new intrinsically knotted graph that shows
the answer to both questions is no.

05C10; 57M15, 57K10

1 Introduction

A graph is intrinsically knotted (resp. intrinsically linked) if every embedding of it in S3 contains a
nontrivial knot (resp. 2–component link). We abbreviate intrinsically knotted (resp. linked) as IK (resp. IL),
and not intrinsically knotted (resp. linked) as nIK (resp. nIL). Robertson, Seymour, and Thomas [12]
showed that every IK graph is IL. It is also known that coning one vertex over an IL graph yields an IK
graph. (This is shown by combining [12] and the work of Foisy [4] and Sachs [13].) However, it has
been difficult to make the relationship between IK and IL graphs stronger. For example, Adams [1] asked
if deleting a vertex from an IK graph always yields an IL graph, but Foisy [5] provided a counterexample.
Deleting a vertex from a graph also deletes all edges incident to that vertex, so it might seem more likely
that deleting, or contracting, a single edge of an IK graph should leave it IL. Naimi, Pavelescu, and
Schwartz [10] tried to show that this is the case when the edge belongs to a 3–cycle, but their proof
contained an error (which we will describe in Section 6). They also asked if deleting or contracting an
edge in an IK graph always yields an IL graph. We verify (using a computer program) that the answer to
this question is yes for graphs of order at most 9, but we show that in general the answer is no. We present
an IK graph G11;35 of order 11 and size 35 with edges e and f such that neither G11;35�e (edge deletion)
nor G11;35=f (edge contraction) is IL. We argue that G11;35 is a minimal-order example of an IK graph
that yields a nIL graph by deleting one edge, and that ten is the smallest order for an IK graph that yields a
nIL graph by contracting one edge. The graph G11;35 is also a counterexample to the main result of [10].

Graphs that are IK but yield a nIL graph by deleting one vertex or edge or by contracting one edge are
intriguing from the perspective of Colin de Verdière’s graph invariant �. This is an integer-valued graph

© 2024 The Authors, under license to MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons
Attribution License 4.0 (CC BY). Open Access made possible by subscribing institutions via Subscribe to Open.
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rY move
Yr move

Figure 1: rY and Yr moves.

invariant that is difficult to compute in general; its value is known only for certain classes of graphs with
“nice” topological properties. For example, for any graph G, �.G/ � 3 if and only if G is planar (see
Colin de Verdière [2]), and �.G/� 4 if and only if G is nIL; see van der Holst, Lovász, and Schrijver [7].

An important open question is how to characterize graphs G with �.G/� 5. Even though many known
minor-minimal IK (MMIK) graphs have �–invariant 6, intrinsic knottedness is not the answer. A minor
of a graph G is a graph obtained by contracting zero or more edges in a subgraph of G. We’ll say an edge
deletion minor (resp. edge contraction minor) of G is a graph obtained by deleting (resp. contracting)
exactly one edge of G. Both are called simple minors of G. As we explain in Section 5, if an IK graph G

has a nIL simple minor then �.G/D 5. Thus, our graph G11;35, together with other IK graphs obtained
from it (as described in Section 5), join Foisy’s graph as new examples of IK graphs with �–invariant 5.
These examples show that �.G/� 5 is not equivalent to G being nIK.

In the next section we describe the graph G11;35 and we show it is IK and minor-minimal for that property
in Sections 3 and 4, respectively. In Section 5 we make some observations about the Colin de Verdière
invariant and prove that 10 is the least order for an IK graph with an edge-contraction minor that is IL.
Section 6 goes over the error in [10], and we conclude with an appendix that provides edge lists for three
graphs we discuss.

To complete this introduction, we provide several definitions. A graph G is n–apex if one can delete n

vertices from G to obtain a planar graph; G is apex if it is 1–apex, and 0–apex is a synonym for planar. A
graph G is minor minimal with respect to a property if G has that property but no minor of it has that
property. The complete graph on n vertices is denoted by Kn. V .G/ and E.G/ denote the vertex set
and the edge set of G, respectively. A graph G is the clique sum of two subgraphs G1 and G2 over Kn

if V .G/ D V .G1/[ V .G2/, E.G/ D E.G1/[E.G2/, and the subgraphs induced in G1 and G2 by
V .G1/\V .G2/ are both isomorphic to Kn. We use the notation G DG1˚Kn

G2. The rY –move and
Yr–move are defined as shown in Figure 1. The family of a graph G is the set of all graphs obtained
from G by doing zero or more rY and Yr moves. The Petersen family of graphs is the family of the
Petersen graph (which is also the family of K6).

2 The graph G11;35

We describe a sequence of graphs and graph operations used to construct G11;35. Let H denote the graph
in Figure 2, left. Deleting the vertex labeled 4, one obtains the maximal planar graph H 0, depicted in
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Figure 2: Left: H is apex. Right: H 0 is maximal planar.

Figure 2, right. This implies that H is an apex graph; thus it is nIL by [13]. Similarly, the graph K shown
in Figure 3, left, is nIL since deleting vertex 5 from K yields a maximal planar graph, as in Figure 3, right.

Notice that deleting the vertices 3, 4, 5, and 6 from both H and K produces connected subgraphs. So,
by [9, Lemma 14], the clique sum of H and K over the K4 induced by f3; 4; 5; 6g is a nIL graph, denoted
by M and depicted in Figure 4.

The graph G11;35 is obtained by adding the edge .2; 11/ to the nIL graph M (see Figure 5). We prove in
Section 3 that G11;35 is IK. We have thus obtained an IK graph that has a nIL edge deletion minor. Further,
since the edge .2; 11/ is in a 3–cycle in G11;35, this also gives a counterexample to the main result of [10].
Notice that contracting the edge .2; 3/ in G11;35 yields a graph that is a minor of M , and therefore nIL.
Hence, G11;35 also has a nIL edge contraction minor. The edge list of G11;35 is given in the appendix.

Remark The edge .2; 3/ in G11;35 is triangular (ie it belongs to one or more triangles), so contracting it
results in the deletion of parallel edges. One can ask whether contracting a nontriangular edge in an IK

3

7

6

410 10

11

3

6

711

4

5

Figure 3: Left: K is apex. Right: K0 is maximal planar.
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1

Figure 4: M 'H ˚K4
K.

graph can result in a nIL graph. The answer is yes: In G11;35, if we do a rY move on the triangle with
vertices 2; 3, and 11, we obtain a new IK graph G0 with a new vertex, denoted by x. Contracting the edge
.x; 3/— which is nontriangular — in G0 yields a graph isomorphic to G11;35� .2; 11/, which is nIL.

Remark The graph G11;35 is a minimal-order IK graph with a nIL edge deletion minor. To verify this, we
took every maxnIL graph of order 10 (there are 107 of them [11]), and checked (with computer assistance)
that adding one edge to it never yields an IK graph. However, 11 is not the smallest order of an IK
graph that has a nIL edge contraction minor. The graph G10;30, depicted in Figure 6, is a minor-minimal
IK graph of order 10. Contracting the edge .2; 6/ gives the nIL minor in Figure 7, left. This graph is

8

9

2

4

5

3

11

10

7 6

1

Figure 5: The graph G11;35.
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Figure 6: The graph G10;30.
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Figure 7: Left: the contraction minor of G10;30. Right: H ˚K4
K5.

nIL since adding the edge .8; 9/ produces a graph isomorphic to the clique sum, over the K4 subgraph
induced by f2; 3; 8; 9g, of K5 and a subgraph isomorphic to H , introduced in Figure 2. By the following
proposition, G10;30 is a minimal-order IK graph with a nIL edge contraction minor. In Section 5, we show
that G10;30 has �–invariant 5. Furthermore, according to our computer program, this graph is MMIK.

Proposition 2.1 Ten is the smallest order for an IK graph which admits a nIL edge contraction minor.

We defer the proof to Section 5.

3 G11;35 is IK

We prove G11;35 is IK by showing that the graph G10;26 in Figure 8 is an IK minor of G11;35. (In fact,
G10;26 is MMIK; we show this in the next section.)
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Figure 8: G10;26.

The graph G10;26 is obtained from G11;35 by contracting the edge (2,11) and deleting the edges .2; 3/,
.2; 5/, .2; 6/, .3; 5/, .3; 6/, .4; 10/, and .5; 6/.

To prove G10;26 is IK, we use the technique developed by Foisy in [4], which we explain below. The D4

graph is the (multi)graph shown in Figure 9. A double-linked D4 is a D4 graph embedded in S3 so that
each pair of opposite 2–cycles (C1[C3 and C2[C4) has odd linking number. The following lemma was
proved by Foisy [4]; a more general version was proved independently by Taniyama and Yasuhara [14].

Lemma 3.1 Every double-linked D4 contains a nontrivial knot.

We will also use the following (well known and easy to prove) lemma.

Lemma 3.2 Suppose ˛, ˇ1, and ˇ2 are simple closed curves in S3 such that ˇ1\ˇ2 is an arc and ˛ has
odd linking number with .ˇ1[ˇ2/ n interior.ˇ1\ˇ2/. Then ˛ has odd linking number with ˇ1 or ˇ2.

Theorem 3.3 The graph G10;26 in Figure 8 is IK.

C1

C2

C3

C4

Figure 9: The D4 graph.
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Figure 10: Selected subgraphs of G10;26.

Proof We shall prove that every embedding of G10;26 has a double-linked D4 minor. It then follows
from Lemma 3.1 that G10;26 is IK. For the remainder of this proof, we will say two disjoint simple closed
curves ˛ and ˇ in S3 are linked, or ˛ links ˇ, if ˛[ˇ has odd linking number.

In G10;26 we select the subgraphs A, B, C , D, E, and F shown in Figure 10 (these are not induced
subgraphs). All these subgraphs are either in the Petersen family of graphs or have minors in this family,
and are therefore intrinsically linked: A contains a K3;3;1 minor obtained by contracting the edge (4,6); B

is isomorphic to K�
4;4

; C and F contain K�
4;4

minors obtained by contracting the edges .8; 9/ and .1; 9/,
respectively; D and E contain G7 minors obtained by contracting the edges .6; 7/ and .5; 7/, respectively.

We organize the proof into several cases and subcases, according to which two cycles of each subgraph
are linked. We start with the subgraph A. The vertices of G10;26 can be partitioned into six equivalence
classes up to symmetry: f1; 8g, f2; 3g, f4g, f5; 6g, f7; 10g, and f9g. All of these except vertex 9 are in A.
This gives, up to symmetry, four different pairs of cycles in A:

.A1/ .4; 1; 5/[ .2; 7; 3; 10/; .A3/ .4; 6; 7; 5/[ .2; 1; 3; 10/;

.A2/ .4; 1; 2/[ .3; 7; 5; 10/; .A4/ .4; 6; 7; 2/[ .3; 1; 5; 10/:
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Figure 11: Diagrams for the subcase (A1)-(B1).

Since A is intrinsically linked, given any embedding of G10;26, we can relabel (if necessary) the vertices
of G10;26 within each equivalence class so that at least one of these four pairs of cycles is linked. We
subdivide each of the four cases (A1)–(A4): (A1) is split into subcases according to which two cycles of
B are linked, (A2) according to C , (A3) according to D, and (A4) according to B. For each subcase a
diagram is drawn with the nontrivial link in A drawn in red. The two cycles in each of the subgraphs B

through F are drawn in blue. Each diagram contains some marked edges; contracting these marked edges
in G10;26 gives a double-linked D4 minor.

Case (A1) Assume .4; 1; 5/[.2; 7; 3; 10/ is a nontrivial link of A. We identify a nontrivial link in B and
show the existence of a double-linked D4 in every subcase. Based on the symmetries of G10;26, B has
four different types of pairs of cycles. We match the link in (A1) with each of the four types of links in B:

.B1/ .8; 2; 4; 3/[ .7; 5; 10; 6/; .B3/ .8; 2; 7; 6/[ .4; 5; 10; 3/;

.B2/ .8; 2; 7; 3/[ .4; 5; 10; 6/; .B4/ .8; 2; 4; 6/[ .7; 5; 10; 3/:

Subcase (A1)-(B1) From this point forward, we abbreviate “the cycles X and Y are linked” as just
“X [Y ”. Assume .8; 2; 4; 3/[ .7; 5; 10; 6/. Since .4; 1; 5/[ .2; 7; 3; 10/, by Lemma 3.2 we have either
(i) .4; 1; 5/[ .2; 7; 6; 10/ or (ii) .4; 1; 5/[ .3; 7; 6; 10/. See Figure 11.

Subcase (A1)-(B2) Assume .8; 2; 7; 3/[ .4; 5; 10; 6/. See Figure 12, left.
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6

Figure 12: Diagrams for subcases. Left: (A1)-(B2). Center: (A1)-(B3). Right: (A1)-(B4).
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Figure 13: Diagrams for the subcase (A2)-(C1).

Subcase (A1)-(B3) Assume .8; 2; 7; 6/[ .4; 5; 10; 3/. See Figure 12, center.

Subcase (A1)-(B4) Assume .8; 2; 4; 6/[ .7; 5; 10; 3/. See Figure 12, right.

Case (A2) Assume .4; 1; 2/[ .3; 7; 5; 10/ is a nontrivial link of A. We identify a nontrivial link in C

and show the existence of a double-linked D4. We note that vertices 8 and 9 and the edge between them
act as one vertex of the K�

4;4
. Based on the symmetries of G, C has four different types of pairs of cycles.

Since in the (A2) link of A vertices 2 and 3 are distinguished, they need also be distinguished within the
linked cycles of C . We match the link in (A2) with each link of C :

.C1/ .6; 7; 2; 10/[ .1; 5; 9; 8; 3/; .C4/ .6; 7; 2; 8; 9/[ .1; 3; 10; 5/;

.C2/ .6; 7; 3; 10/[ .1; 5; 9; 8; 2/; .C5/ .6; 7; 3; 8; 9/[ .1; 2; 10; 5/;

.C3/ .6; 7; 5; 10/[ .1; 2; 8; 3/; .C6/ .6; 7; 5; 9/[ .1; 2; 10; 3/:

Subcase (A2)-(C1) Assume .6; 7; 2; 10/[ .1; 5; 9; 8; 3/. Since .4; 1; 2/[ .3; 7; 5; 10/, by Lemma 3.2
we have either (i) .4; 1; 2/[ .3; 7; 6; 10/ or (ii) .4; 1; 2/[ .5; 7; 6; 10/. See Figure 13.

Subcase (A2)-(C2) Assume .6; 7; 3; 10/[ .1; 5; 9; 8; 2/. See Figure 14, left.

Subcase (A2)-(C3) Assume .6; 7; 5; 10/[ .1; 2; 8; 3/. See Figure 14, center.

Subcase (A2)-(C4) Assume .6; 7; 2; 8; 9/[ .1; 3; 10; 5/. See Figure 14, right.
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Figure 14: Diagrams for subcases. Left: (A2)-(C2). Center: (A2)-(C3). Right: (A2)-(C4).
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Figure 15: Diagrams for subcases. Left: (A2)-(C5). Right: (A2)-(C6).

Subcase (A2)-(C5) Assume .6; 7; 3; 8; 9/[ .1; 2; 10; 5/. See Figure 15, left.

Subcase (A2)-(C6) Assume .6; 7; 3; 8; 9/[ .1; 2; 10; 5/. See Figure 15, right.

Case (A3) Assume .4; 6; 7; 5/[ .2; 1; 3; 10/ is a nontrivial link of A. We identify a nontrivial link in D

and show the existence of a double-linked D4 for all cases except one. We then identify a nontrivial link
in F and show the existence of a double-linked D4 for all cases except one. If both exceptional cases
occur at the same time, the existence of a double-linked D4 is shown.

We note that if the edge .6; 7/ is contracted in the graph D, a G7 graph is obtained. Based on the
symmetries of G, D has four different types of pairs of cycles. Since the (A3) link of A contains vertex 1
but does not contain vertex 8, vertices 1 and 8 need also be distinguished within the linked cycles of D.
We match the link in (A3) with each link type of D:

.D1/ .7; 2; 4; 3/[ .1; 8; 9/; .D4/ .7; 2; 1; 9; 6/[ .4; 3; 8/;

.D2/ .7; 2; 1; 3/[ .4; 8; 9/; .D5/ .7; 2; 8; 9; 6/[ .4; 3; 1/;

.D3/ .7; 2; 8; 3/[ .4; 1; 9/; .D6/� .7; 2; 4; 9; 6/[ .1; 3; 8/:

Subcase (A3)-(D1) Assume .7; 2; 4; 3/[ .1; 8; 9/. Then (i) .7; 6; 4; 2/[ .1; 8; 9/ or (ii) .7; 6; 4; 3/[
.1; 8; 9/. See Figure 16.
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Figure 16: Diagrams for the subcase (A3)-(D1).
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Figure 17: Diagrams for the subcase (A3)-(D2).
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Figure 18: Diagrams for the subcase (A3)-(D3).

Subcase (A3)-(D2) Assume .7; 2; 1; 3/[ .4; 8; 9/. Then (i) .7; 2; 1; 5/[ .4; 8; 9/ or (ii) .7; 3; 1; 5/[
.4; 8; 9/. See Figure 17.

Subcase (A3)-(D3) Assume .7; 2; 8; 3/[ .4; 1; 9/. Then (i) .7; 2; 10; 3/[ .4; 1; 9/ or (ii) .8; 2; 10; 3/[

.4; 1; 9/. See Figure 18.

Subcase (A3)-(D4) Assume .7; 2; 1; 9; 6/[ .4; 3; 8/. See Figure 19, left.

Subcase (A3)-(D5) Assume .7; 2; 8; 9; 6/[ .4; 3; 1/. See Figure 19, right.

If none of the five D-subcases above occurs, then there exists a nontrivial link (D6) .7; 2; 4; 9; 6/[.1; 3; 8/.
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Figure 19: Diagrams for subcases. Left: (A3)-(D4). Right: (A3)-(D5).
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Figure 20: Diagrams for subcases. Left: (A3)-(F1). Center: (A3)-(F2). Right: (A3)-(F3).

We now match the link in (A3) with each link type of F :

.F1/ .5; 7; 2; 10/[ .3; 1; 9; 6; 8/; .F4/ .5; 7; 6; 10/[ .2; 1; 3; 8/;

.F2/ .5; 7; 2; 1/[ .3; 10; 6; 8/; .F5/ .5; 7; 6; 9; 1/[ .2; 10; 3; 8/;

.F3/ .5; 10; 2; 19/[ .3; 7; 6; 8/; .F6/� .5; 10; 6; 9; 1/[ .2; 7; 3; 8/:

Subcase (A3)-(F1) Assume .5; 7; 2; 10/[ .3; 1; 9; 6; 8/. See Figure 20, left.

Subcase (A3)-(F2) Assume .5; 7; 2; 1/[ .3; 10; 6; 8/. See Figure 20, center.

Subcase (A3)-(F3) Assume .5; 10; 2; 19/[ .3; 7; 6; 8/. See Figure 20, right.

Subcase (A3)-(F4) Assume .5; 7; 6; 10/[ .2; 1; 3; 8/. See Figure 21, left.

Subcase (A3)-(F5) Assume .5; 7; 6; 9; 1/[ .2; 10; 3; 8/. See Figure 21, center.

If none of the five F-subcases solved above occurs, then we have (F6) .5; 10; 6; 9; 1/[ .2; 7; 3; 8/. This
coupled with the remaining (D6) subcase gives:

Subcase (D6)-(F6) Assume .7; 2; 4; 9; 6/[.1; 3; 8/ and .5; 10; 6; 9; 1/[.2; 7; 3; 8/. See Figure 21, right.

Case (A4) Assume .4; 6; 7; 2/[ .3; 1; 5; 10/ is a nontrivial link. We look at possible nontrivial links in
the graph B. Based on the symmetries of G10;26, B has four different types of pairs of cycles. Since
vertices 2 and 3 and vertices 7 and 10, respectively, are distinguished in the link A4, they need to be
distinguished within the cycles of B. We match the link in (A4) with each link in B. There is one
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Figure 21: Diagrams for subcases. Left: (A3)-(F4). Center: (A3)-(F5). Right: (D6)-(F6).

Algebraic & Geometric Topology, Volume 24 (2024)



Intrinsically knotted graphs with linklessly embeddable simple minors 1215

6

7 2

3 10

8 67

2 1

310

8

4 54

5

6

4

10

2

7 5 1

38

1

Figure 22: Diagrams for subcases. Left: (A4)-(B1). Center: (A4)-(B2). Right: (A4)-(B3).

exceptional case which cannot be solved this way. Then we look at possible nontrivial links in the graph
E and we match the link in (A4) with each link in E. There are two exceptional cases which cannot be
solved this way. We match the two pairs of exceptional cases to complete the proof.

.B1/ .8; 2; 4; 3/[ .7; 5; 10; 6/; .B6/ .8; 3; 10; 6/[ .4; 5; 7; 2/;

.B2/ .8; 2; 7; 3/[ .4; 5; 10; 6/; .B7/� .8; 2; 10; 6/[ .4; 5; 7; 3/;

.B3/ .8; 2; 10; 3/[ .4; 5; 7; 6/; .B8/ .8; 2; 4; 6/[ .7; 5; 10; 3/;

.B4/ .8; 2; 7; 6/[ .4; 5; 10; 3/; .B9/ .8; 3; 4; 6/[ .7; 5; 10; 2/;

.B5/ .8; 3; 7; 6/[ .4; 5; 10; 2/:

Subcase (A4)-(B1) Assume .8; 2; 4; 3/[ .7; 5; 10; 6/. See Figure 22, left.

Subcase (A4)-(B2) Assume .8; 2; 7; 3/[ .4; 5; 10; 6/. See Figure 22, center.

Subcase (A4)-(B3) Assume .8; 2; 10; 3/[ .4; 5; 7; 6/. See Figure 22, right.

Subcase (A4)-(B4) Assume .8; 2; 7; 6/[ .4; 5; 10; 3/. See Figure 23, left.

Subcase (A4)-(B5) Assume .8; 3; 7; 6/[ .4; 5; 10; 2/. See Figure 23, center.

Subcase (A4)-(B6) Assume .8; 3; 10; 6/[ .4; 5; 7; 2/. See Figure 23, right.

Subcase (A4)-(B8) Assume .8; 2; 4; 6/[ .7; 5; 10; 3/. See Figure 24, left.

Subcase (A4)-(B9) Assume .8; 3; 4; 6/[ .7; 5; 10; 2/. See Figure 24, center.
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Figure 23: Diagrams for subcases. Left: (A4)-(B4). Center: (A4)-(B5). Right: (A4)-(B6).
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Figure 24: Diagrams for subcases. Left: (A4)-(B8). Center: (A4)-(B9). Right: (A4)-(E1).

We look at possible nontrivial links in the graph E and we match the link in (A4) with each link in E:

.E1/ .7; 2; 4; 3/[ .1; 9; 8/; .E6/ .7; 2; 1; 9; 5/[ .4; 3; 8/;

.E2/ .7; 2; 1; 3/[ .4; 9; 8/; .E7/ .7; 2; 8; 9; 5/[ .4; 3; 1/;

.E3/ .7; 2; 8; 3/[ .4; 9; 1/; .E8/� .7; 3; 8; 9; 5/[ .4; 2; 1/;

.E4/ .7; 2; 4; 9; 5/[ .3; 1; 8/; .E9/� .7; 3; 1; 9; 5/[ .4; 2; 8/;

.E5/ .7; 3; 4; 9; 5/[ .2; 1; 8/:

Subcase (A4)-(E1) Assume .7; 2; 4; 3/[ .1; 9; 8/. See Figure 24, right.

Subcase (A4)-(E2) Assume .7; 2; 1; 3/[ .4; 9; 8/. See Figure 25, left.

Subcase (A4)-(E3) Assume .7; 2; 8; 3/[ .4; 9; 1/. See Figure 25, center.

Subcase (A4)-(E4) Assume .7; 2; 4; 9; 5/[ .3; 1; 8/. See Figure 25, right.

Subcase (A4)-(E5) Assume .7; 3; 4; 9; 5/[.2; 1; 8/. Then (i) .7; 5; 10; 3/[.2; 1; 8/ or (ii) .5; 10; 3; 4; 9/[

.2; 1; 8/. See Figure 26.

Subcase (A4)-(E6) Assume .7; 2; 1; 9; 5/[ .4; 3; 8/. Then (i) .5; 7; 6; 9/[ .4; 3; 8/ or (ii) .7; 6; 9; 1; 2/[
.4; 3; 8/. See Figure 27.

Subcase (A4)-(E7) Assume .7; 2; 8; 9; 5/[ .4; 3; 1/. See Figure 28, left.

Subcase (B7)-(E8) Assume .8; 2; 10; 6/[ .4; 5; 7; 3/ and .7; 3; 8; 9; 5/[ .4; 2; 1/. See Figure 28, center.

Subcase (B7)-(E9) Assume .8; 2; 10; 6/[.4; 5; 7; 3/ and .7; 3; 1; 9; 5/[.4; 2; 8/. See Figure 28, right.
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Figure 25: Diagrams for subcases. Left: (A4)-(E2). Center: (A4)-(E3). Right: (A4)-(E4).
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Figure 26: Diagrams for the subcase (A4)-(E5).
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Figure 27: Diagrams for the subcase (A4)-(E6).
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Figure 28: Diagrams for subcases. Left: (A4)-(E7). Center: (B7)-(E8). Right: (B7)-(E9).

4 G10;26 is MMIK

In this section we prove G10;26 is MMIK by showing that each of its simple minors is nIK. The graph
G10;26 has ten vertices, labeled 1; 2; : : : ; 10. Due to the symmetries of the graph, the vertices can be
partitioned into six equivalence classes: f1; 8g, f2; 3g, f4g, f5; 6g, f7; 10g, and f9g. Up to symmetry,
G10;26 has eleven types of edges. Representatives for each possible type of edge are listed in the first
column of Table 1. For each such edge type, we constructed two graphs, one by deleting the edge and
one by contracting the edge. The graph obtained by deleting the edge is 2–apex, since the removal of the
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edge deletion contraction

.1; 2/ 4; 7 1; 3

.1; 4/ 2; 6 1; 7

.1; 5/ 2; 3 1; 2

.1; 8/ 2; 3 1; 4

.1; 9/ 2; 5 2; 3

.2; 4/ 5; 6 2; 3

.2; 7/ 3; 4 2; 4

.4; 5/ � 2; 4

.4; 9/ 2; 3 4; 7

.5; 7/ 2; 4 2; 4

.5; 9/ 2; 6 2; 5

Table 1: The graph obtained by deleting the edge in the first column becomes planar when deleting
the two vertices in the second column. The graph obtained by contracting the edge in the first
column becomes planar when deleting the two vertices in the second column.

two vertices listed in the second column gives a planar graph. There is one exception: the graph obtained
by deleting the edge .4; 5/ is not 2–apex. This graph is shown to be nIK in the next paragraph. The graph
obtained by contracting the edge listed in the first column is 2–apex, since the removal of the two vertices
listed in the third column gives a planar graph. When contracting an edge e, the new vertex inherits the
smaller label among the endpoints of e, and all vertices not incident to e maintain their labels.

The graph G0 obtained from G10;26 by deleting the edge .4; 5/ is not 2–apex. We show it is nIK. Denote
by G00 the graph obtained from G0 through a rY –move on the triangle .1; 5; 9/. Call the new vertex 11;

23
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3

6 5
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Figure 29: Left: the graph G00 obtained from G10;26 by removing the edge .4; 5/ followed by a
rY –move on the triangle .1; 5; 9/. Center: the graph G000 obtained from G00 by deleting vertices
2 and 11. Right: the planar embedding of G000.
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see Figure 29. Delete vertices 2 and 11 of G00 to obtain a planar graph. This proves G00 is 2–apex, and
thus nIK. Sachs [13] showed that the rY –move preserves intrinsic linking. Essentially the same argument
shows that the rY –move also preserves intrinsic knotting. So the graph G0 is nIK.

5 �D 5 IK graphs

In this section we describe what is known about graphs G with Colin de Verdière invariant 5. We begin
with some basic observations. Let K1 �G denote the graph obtained by coning a vertex over G, ie we
add a vertex a to G along with edge av for every v 2 V .G/.

Lemma 5.1 [7] Let G be a graph.

(1) If G has at least one edge , then �.K1 �G/D �.G/C 1.

(2) If G0 is a minor of G, then �.G0/� �.G/.

Lemma 5.2 [2; 7] (1) �.G/� 3 if and only if G is planar.

(2) �.G/� 4 if and only if G is nIL.

Lemma 5.3 [7] If �.G/� 4 and a rY move on G produces G0, then �.G/D �.G0/.

For v 2 V .G/, let G � v denote the graph that results after deleting v and all its edges.

Lemma 5.4 If G is n–apex for n� 0, then �.G/� nC 3.

Proof We use induction on n. If nD 0, the result follows from Lemma 5.2. Suppose G is .nC1/–apex
and v 2 V is such that G � v is n–apex. Then G is a subgraph of K1 � .G � v/, and, by Lemma 5.1,
�.G/� �.G � v/C 1� .nC 1/C 3.

Lemma 5.5 If G is IK and there is a vertex v such that G � v is nIL , then �.G/D 5.

Proof Robertson, Seymour, and Thomas [12] established that G being IK implies G is IL. By Lemma 5.2,
�.G/� 5 and �.G � v/� 4. Since G is a subgraph of K1 � .G � v/, using Lemma 5.1, �.G/� 5.

For e 2E.G/, let G � e denote the edge deletion minor and G=e the edge contraction minor of G.

Lemma 5.6 If G is IK and has a nIL simple minor , then �.G/D 5.

Proof The proof is similar to that of the previous lemma. In particular �.G/� 5. By definition, there is
an edge e such that G � e or G=e is nIL. Suppose first that G � e is nIL. By Lemma 5.2, �.G � e/� 4.
We can form a graph G0 homeomorphic to G by adding a degree-two vertex between a and b, the vertices
of e. Then G0 is a subgraph of K1 � .G � e/, and, using Lemma 5.1, �.G0/ � 5. Since G is a minor
of G0, by Lemma 5.1, �.G/� 5.

Next, suppose G=e is nIL, so that �.G=e/� 4. We can again recognize G as a subgraph of K1 � .G=e/,
which implies �.G/� 5.
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Figure 30: Left: the graph G9;28. Right: the complement of a 7–cycle.

We remark that many of the known MMIK graphs have �D 6. In [3], the authors provide a listing of
264 MMIK graphs, of which 105 are in the families of K7, K3;3;1;1, and E9C e. We will now verify
that each of these three graphs has �D 6. By Lemma 5.3, all 105 graphs have �–invariant 6. As shown
in [2], �.Kn/D n� 1 when n > 1, so �.K7/D 6. The graph K3;3;1;1 is K1 �K3;3;1. Since K3;3;1 is
an obstruction for intrinsic linking [12], by Lemma 5.2, �.K3;3;1;1/D �.K3;3;1/C 1� 6. On the other
hand, K3;3;1;1 is 3–apex, which, by Lemma 5.4, shows �.K3;3;1;1/� 6. Since E9 is in the K7 family, by
Lemma 5.3, �.E9/D �.K7/D 6. By Lemma 5.1, �.E9C e/� �.E9/D 6. On the other hand, E9C e

is 3–apex, so, by Lemma 5.4, �.E9C e/� 6. By Lemma 5.3, all 110 graphs in the E9C e family have
�D 6 (not just the 33 that are MMIK). Note that these 110 graphs are all IK [6].

In contrast, here we have introduced several new examples of IK graphs with � D 5. Such examples
were known previously. For example, Foisy [5] provided an example of an MMIK graph F that becomes
nIL on deletion of a vertex. By Lemma 5.5, �.F /D 5. By Lemma 5.6, �.G11;35/D 5 as it is IK with
both a nIL edge deletion minor as well a nIL edge contraction minor. Similarly, �.G10;30/D 5 since it is
IK with a nIL edge contraction minor. Finally, we argue that �.G10;26/D 5. Since G10;26 is a minor of
G11;35, we have �.G10;26/ � �.G11;35/D 5. On the other hand, as we proved in Section 3, G10;26 is
IK, hence IL [12], and �.G10;26/� 5 by Lemma 5.2. By Lemma 5.3, graphs in the families of G10;26,
G10;30, and G11;35 also have �D 5. Using computers, the G10;26 family alone provides more than 600

new examples of IK graphs with Colin de Verdière invariant 5.

Proof of Proposition 2.1 Assume there exists an IK graph G of order less than 10 which admits a nIL
edge contraction minor. As such, by Lemma 5.6, �.G/D 5. Since � is minor monotone (Lemma 5.1),
any MMIK minor of G must have �D 5. By work of Goldberg, Mattman, and Naimi [6], and Mattman,
Morris, and Ryker [8], the MMIK graphs of order at most 9 are known. With the exception of G9;28,
depicted in Figure 30, left, all the others are either in the K7 family, the K3;3;1;1 family, or the E9+e
family, and thus have �D 6. It follows that G must have order 9 and that G9;28 is a subgraph of G. If
contracting an edge e of G produces a nIL minor, then deleting either endpoint of e must also produce
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a nIL minor (subgraph). Since G9;28 is a subgraph of G, deleting the same vertex must produce a nIL
subgraph of G9;28. The graph G9;28 is highly symmetric, having a rich automorphism group, and it is
structured as two nonadjacent cones over the complement of a 7–cycle (the graph depicted in Figure 30,
right). Up to isomorphism, there are only two induced subgraphs of order 8 inside G9;28: the graph
obtained by deleting the vertex labeled 9, and the graph obtained by deleting the vertex labeled 7. Neither
of these are nIL, since they both have a K6 minor. For the first graph, contracting the edges .4; 7/ and
.2; 6/ produces a complete minor on the 6 vertices. For the second graph, contracting the edges .4; 9/
and .2; 6/ also produces a complete minor on the 6 vertices.

6 Erratum

In this section we discuss an error in the proof of [10, Proposition 2]. The proposition asserts that if a
graph G has a paneled embedding, and an edge is added to G between two vertices a and b that have a
common adjacent vertex v, then GC ab has a knotless embedding.

In the proof of Proposition 2, it is first shown that one can assume there is a path Pab � G from a to
b disjoint from v. Next, the proof claims that, in any paneled embedding � of G, if D is a panel for
the cycle Pab [ av[ vb in � , then embedding the new edge ab in D yields a knotless embedding � 0 of
GC ab. Figure 31 shows a counterexample to this claim, and will be used to explain where the error in
the proof of Proposition 2 lies.

It is not difficult to see that in Figure 31, left, every cycle in � is paneled. In particular, the cycle acdbva

bounds a panel D such that vc and vd lie below and above D, respectively, in the figure. If we embed
the edge ab in D as in Figure 31, right, we see that the cycle abcvda is a trefoil, and hence � 0 isn’t a
knotless embedding as claimed.

The error is specifically in the last few sentences of the penultimate paragraph in the proof, where it
mentions a type 1 Reidemeister move on P1 [ feg. The proof overlooks the possibility that Pbv may
prevent this Reidemeister move, as is the case in Figure 31, right (for reference, the paths acdb, adv, and
bcv in Figure 31 represent the paths Pab , Pav, and Pbv, respectively, in the proof of Proposition 2).

a bv

c d

a bv

c d� � 0

Figure 31: Left: every cycle in � is paneled. Right: � 0 contains a trefoil.
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Appendix

We give edge lists for the graphs G11;35, G10;30, and G10;26:

E.G11;35/

D f.1; 2/; .1; 3/; .1; 4/; .1; 5/; .1; 8/; .1; 9/; .2; 3/; .2; 4/; .2; 8/; .3; 4/; .3; 5/; .3; 6/;

.3; 7/; .3; 8/; .3; 10/; .3; 11/; .4; 5/; .4; 6/; .4; 8/; .4; 9/; .4; 10/; .5; 6/; .5; 7/; .5; 9/;

.5; 10/; .5; 11/; .6; 7/; .6; 8/; .6; 9/; .6; 10/; .6; 11/; .7; 11/; .8; 9/; .10; 11/; .2; 11/g

E.G10;30/

D f.1; 5/; .1; 7/; .1; 8/; .1; 9/; .1; 10/; .2; 3/; .2; 4/; .2; 5/; .2; 6/; .2; 7/; .2; 10/; .3; 4/; .3; 6/; .3; 8/; .3; 9/;

.3; 10/; .4; 6/; .4; 8/; .4; 9/; .5; 6/; .5; 7/; .5; 8/; .5; 10/; .6; 7/; .6; 8/; .6; 9/; .7; 9/; .7; 10/; .8; 10/; .9; 10/g

E.G10;26/

D f.1; 2/; .1; 3/; .1; 4/; .1; 5/; .1; 8/; .1; 9/; .2; 4/; .2; 7/; .2; 8/; .2; 10/; .3; 4/; .3; 7/; .3; 8/;

.3; 10/; .4; 5/; .4; 6/; .4; 8/; .4; 9/; .5; 7/; .5; 9/; .5; 10/; .6; 7/; .6; 8/; .6; 9/; .6; 10/; .8; 9/g
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