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A plethora of inertial products

Dan Edidin, Tyler J. Jarvis and Takashi Kimura

For a smooth Deligne–Mumford stack X , we describe a large number of inertial
products on K (IX ) and A∗(IX ) and inertial Chern characters. We do this by
developing a theory of inertial pairs. Each inertial pair determines an inertial
product on K (IX ) and an inertial product on A∗(IX ) and Chern character
ring homomorphisms between them. We show that there are many inertial pairs;
indeed, every vector bundle V on X defines two new inertial pairs. We recover,
as special cases, the orbifold products considered by Chen and Ruan (2004),
Abramovich, Graber and Vistoli (2002), Fantechi and Göttsche (2003), Jarvis,
Kaufmann and Kimura (2007) and by the authors (2010), and the virtual product
of González, Lupercio, Segovia, Uribe and Xicoténcatl (2007).

We also introduce an entirely new product we call the localized orbifold prod-
uct, which is defined on K (IX )⊗C.

The inertial products developed in this paper are used in a subsequent paper
to describe a theory of inertial Chern classes and power operations in inertial
K-theory. These constructions provide new manifestations of mirror symmetry,
in the spirit of the hyper-Kähler resolution conjecture.

1. Introduction

The purpose of this note is to describe a large number of inertial products and
Chern characters by developing a formalism of inertial pairs. An inertial pair for
a Deligne–Mumford stack X is a pair (R,S ), where R is a vector bundle on
the double inertia stack I2X and S is a nonnegative, rational K-theory class on
the inertia stack IX satisfying certain compatibility conditions. For stacks with
finite stabilizer, an inertial pair determines inertial products on cohomology, Chow
groups, and K-theory of IX . In the Chow group and cohomology, this product
respects an orbifold grading equal to the ordinary grading corrected by the virtual
rank of S (or age). An inertial pair also allows us to define an inertial Chern
character, which is a ring homomorphism for the new inertial products.
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The motivating example of an inertial pair is the orbifold pair (R,S ), where R

is the obstruction bundle coming from orbifold Gromov–Witten theory, and S is
the class defined in [JKK 2007]. The corresponding product is the Chen–Ruan
orbifold product, and the Chern character is the one defined in [loc. cit.]. One of
the results of this paper is that every vector bundle V on a Deligne–Mumford stack
determines two inertial pairs (R+V,S +V ) and (R−V,S −V ). The + product
corresponds to the orbifold product on the total space of the bundle V , but the
− product is twisted by an isomorphism and does not directly correspond to an
orbifold product on a bundle. However, we prove (Theorem 4.2.2) that there is an
automorphism of the total Chow group A∗(IX )⊗C which induces a ring isomor-
phism between the − product for V and the + product for V ∗. A similar result
also holds for cohomology.

When V = T is the tangent bundle of X , we show that the virtual product
considered in [González et al. 2007] is the product associated to the inertial pair
(R−T,S −T). It follows, after tensoring with C, that the virtual orbifold Chow
ring is isomorphic (but not equal) to the Chen–Ruan orbifold Chow ring of the
cotangent bundle T∗. Our result also implies that there is a corresponding Chern
character ring homomorphism for the virtual product.

In the final section we show that in certain cases, even if V is not a vector bundle
but just an element of K-theory, we can still determine a product in localized K-
theory. This allows us to define a new product on K (IX )⊗C, which we call the
localized product.

In a subsequent paper [Edidin et al. 2015] we will show that for Gorenstein
inertial pairs (such as the one determining the virtual product) there is a theory of
Chern classes and compatible power operations on inertial K-theory. This will be
used to give further manifestations of mirror symmetry on hyper-Kähler Deligne–
Mumford stacks.

Review of previous related work. Because there has been much work in this area
by many authors from different areas of mathematics, we give a brief overview
here of previous work to help put the current paper in context.

In 2000, inspired by physicists [Dixon et al. 1985; 1986], Chen and Ruan [2002]
developed a new product on the cohomology of the inertia IX of an almost com-
plex orbifold X . In 2001, Fantechi and Göttsche [2003] showed that when the
orbifold X was a global quotient [X/G] by a finite group, the Chen–Ruan orb-
ifold cohomology ring HCR(X ) was the G-invariant subring of HFG(X,G), the
cohomology of the inertia manifold I X endowed with a certain noncommutative
product. It followed that if X is the symmetric product of a surface with trivial
canonical class, then the orbifold cohomology of X is isomorphic to the coho-
mology ring of the Hilbert scheme, as predicted by the hyper-Kähler resolution
conjecture [Ruan 2006].
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At about the same time, Kaufmann [2002; 2003] presented an axiomatic ap-
proach to orbifolding Frobenius algebras, and described how the Fantechi–Göttsche
construction fit into this framework (Kaufmann, personal communication, 2002).

Adem and Ruan [2003] then studied the K-theory K (X ) of a global quotient
orbifold X = [X/G], where G is a Lie group, and they also studied the twisted K-
theory of [X/G]. They did not construct a new “orbifold” product on K (X ), but
they did show that there is a Chern character that gives a vector space isomorphism
from K (X ) to HCR(X ). This Chern character is not a ring homomorphism. Tu
and Xu [2006] later extended this result to more general twistings and orbifolds.

Abramovich, Graber and Vistoli [Abramovich et al. 2002] constructed an alge-
braic version AAGV(X ) of the Chen–Ruan cohomology, producing the correspond-
ing product on the Chow group AAGV(X )= A∗(IX ) of the inertial stack IX of
a (smooth) Deligne–Mumford stack with projective coarse moduli space.

In all of these constructions the basic idea is to use an analogue of the moduli
space M 0,3(X , 0) of genus-zero, three-pointed, orbifold (or G-equivariant) stable
maps into X . This space has three evaluation maps ei : M 0,3(X , 0) → IX ,
and the structure constants 〈α1, α2, α3〉 for the new product on IX are given by
computing ∫

M 0,3(X ,0)

3∏
i=1

e∗i (αi ) · eu(R),

where eu(R) is the top Chern class of an obstruction bundle on M 0,3(X , 0). The
main difficulty in computing the new product was computing the obstruction bun-
dle R and its top Chern class.

In 2004, Chen and Hu [2006] produced a formula for the obstruction class in
the case of abelian orbifolds and used it to describe a de Rham model for the
Chen–Ruan product. In 2005, Jarvis, Kaufmann and Kimura [JKK 2007] proved a
simple, intrinsic formula for the obstruction bundle R for general (not just abelian)
orbifolds, requiring no mention of stable curves or moduli spaces of maps. In
the abelian case this formula reduces to Chen and Hu’s result. In [loc. cit.], that
formula is used to do several things:

(1) Create Chow- (respectively, K-) theoretic analogues of the Fantechi–Göttsche
ring HFG(X,G) whose rings of invariants is the AGV ring AAGV(X ) (respec-
tively, a ring whose underlying vector space is K (X ) of Adem and Ruan).
Corresponding products twisted by discrete torsion were also introduced.

(2) Define a new (orbifold) product on the K-theory Korb(X ) of the inertia IX ,
for any smooth Deligne–Mumford stack X .

(3) Define an orbifold Chern character ring homomorphism from the new orbifold
K-theory rings to the corresponding Chow or cohomology rings. This new
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Chern character is a deformation of the ordinary Chern character, as the latter
fails to preserve the orbifold multiplications.

(4) Outline how the same formula and formalism may be used to give analogous
results in other categories, e.g., equivariant structures on almost complex man-
ifolds with a Lie group action.

At about the same time, Adem, Ruan and Zhang [Adem et al. 2008] independently
defined an orbifold product on twisted Korb(X ), and in the case of a global quo-
tient by a finite group, Kaufmann and Pham [2009] connected this to the twisted
Drinfel’d double of the group ring.

Becerra and Uribe [2009] extended these results to the equivariant setting for
global quotients by infinite abelian groups, and in [EJK 2010], we extended these
results to an equivariant setting for global quotients by general (nonabelian) infinite
groups by introducing a variant of the formula for the obstruction bundle in [JKK
2007].

A recent paper [Hu and Wang 2013] repeats the description of the orbifold prod-
uct of [JKK 2007; Adem et al. 2008], the formula of [JKK 2007; EJK 2010] for
the obstruction class, and the Chern character ring homomorphism of those two
papers in the almost-complex setting, as originally described in Section 10 of [JKK
2007].

In [Behrend et al. 2007; 2012; González et al. 2007; Lupercio et al. 2008], a
different product in inertial Chow and inertial cohomology theory, analogous to
the Chas–Sullivan product [1999] on loop spaces, was introduced. This so-called
virtual (orbifold) product is a special case of the constructions of this paper; see
Section 4.3. Surprisingly, it is not equal to the orbifold product for the cotangent
bundle. We note, however, that after tensoring with C, both the orbifold Chow
and orbifold cohomology (but not orbifold K-theory) of the cotangent bundle are
isomorphic to their virtual counterparts.

Kaufmann [2002; 2003; 2010] was the first to study the possibility of many
stringy products on Frobenius algebras in settings involving functors other than just
K-theory, cohomology, and Chow theory. He treated this primarily as an algebraic
question and reformulated the problem of constructing a stringy product in terms
of certain cocycles. It is not a priori clear that there should always exist a stringy
product, but Kaufmann [2010] shows how to extend the ideas of [JKK 2007] to
prove existence of at least one stringy product for his more general setting. In some
cases he can also show uniqueness of the product [Kaufmann 2004].

Finally, we note that Pflaum, Postuma, Tang and Tseng [Pflaum et al. 2011]
have shown that the Hochschild cohomology of a certain algebra attached to a
groupoid presentation of a symplectic orbifold is isomorphic to the cohomology
of the inertia orbifold as a vector space. The product in Hochschild cohomology
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induces a product on the cohomology of the inertia orbifold. It would be interesting
to understand the relation of that product to the products described in this paper.

2. Background material from [EJK 2010]

To make this paper self-contained, we recall some background material from the
paper [EJK 2010].

2.1. Background notation. We work entirely in the complex algebraic category.
We will work exclusively with smooth Deligne–Mumford stacks X which have
finite stabilizer, by which we mean the inertia map IX → X is finite. We will
also assume that every stack X has the resolution property. This means that every
coherent sheaf is the quotient of a locally free sheaf. This assumption has two
consequences. The first is that the natural map K (X )→ G(X ) is an isomor-
phism, where K (X ) is the Grothendieck ring of vector bundles and G(X ) is the
Grothendieck group of coherent sheaves. The second consequence is that X is a
quotient stack [Edidin et al. 2001]. This means that X = [X/G], where G is a
linear algebraic group acting on a scheme or algebraic space X .

If X is a smooth Deligne–Mumford stack, then we will implicitly choose a
presentation X = [X/G]. This allows us to identify the Grothendieck ring K (X )

with the equivariant Grothendieck ring KG(X), and the Chow ring A∗(X ) with
the equivariant Chow ring A∗G(X). We will use the notation K (X ) and KG(X)
(resp. A∗(X ) and A∗G(X)) interchangeably.

Definition 2.1.1. Let G be an algebraic group acting on a scheme or algebraic
space X . We define the inertia space

IG X := {(g, x) | gx = x} ⊂ G× X.

There is an induced action of G on IG X given by g · (m, x)= (gmg−1, gx). The
quotient stack IX := [IG X/G] is the inertia stack of the quotient stack X :=

[X/G].
More generally, define the higher inertia spaces to be the k-fold fiber products

Ik
G X = IG X×X · · ·×X IG X ={(m1, . . . ,mk, x) |mi x = x ∀i = 1, . . . , k}⊂Gk

×X.

The quotient stack IkX := [Ik
G X/G] is the corresponding higher inertia stack.

The assumption that X has finite stabilizer means that the projection IG X→ X
is a finite morphism. The composition µ : G × G → G induces a composition
µ : IG X ×X IG X → IG X . This composition makes IG X into an X -group with
identity section X→ IG X given by x 7→ (1, x).

Definition 2.1.2. Let G` be a G-space with the diagonal conjugation action. A
diagonal conjugacy class is a G-orbit 8⊂ G`.
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Definition 2.1.3. For all m in G, let Xm
= {(m, x) ∈ IG X}. For all (m1, . . . ,m`)

in G`, let Xm1,...,m` = {(m1, . . . ,m`, x) ∈ I`G X}. For all conjugacy classes 9 ⊂ G,
let I (9) = {(m, x) ∈ IG X | m ∈ 9}. More generally, for all diagonal conjugacy
classes 8⊂ G`, let I`(8)= {(m1, . . .m`, x) ∈ I`G X | (m1, . . . ,m`) ∈8}.

By definition, I (9) and I`(8) are G-invariant subsets of IG X and I`G X , re-
spectively. If G acts with finite stabilizer on X , then I (9) is empty unless 9
consists of elements of finite order. Likewise, I`(8) is empty unless every `-tuple
(m1, . . . ,m`) ∈8 generates a finite group. Since conjugacy classes of elements of
finite order are closed, I (9) and I`(8) are closed.

Proposition 2.1.4 [EJK 2010, Propositions 2.11 and 2.17]. If G acts properly on X ,
then I (9) = ∅ for all but finitely many conjugacy classes 9 and the I (9) are
unions of connected components of IG X. Likewise, Il(8) is empty for all but finitely
many diagonal conjugacy classes 8⊂ G` and each Il(8) is a union of connected
components of Il

G X.

We frequently work with a group G acting on a space X where the quotient stack
[X/G] is not connected. As a consequence, some care is required in the definition
of the rank and Euler class of a vector bundle. Note that, for any X , the group
A0

G(X) satisfies A0
G(X)= Z`, where ` is the number of connected components of

the quotient stack X = [X/G].

Definition 2.1.5. If E is an equivariant vector bundle on X , then we define the
rank of E to be rk(E) := Ch0(E) ∈ Z` = A0

G(X). Note that the rank of E lies
in the semigroup N`, where N = {0, 1, 2, . . . }. If E1, . . . , En are vector bundles,
then the virtual rank (or augmentation) of the element

∑n
i=1 ni [Ei ] ∈ KG(X) is

the weighted sum
∑

i ni rk(Ei ) ∈ Z`.

If E is a G-equivariant vector bundle on X , then the rank of E on the connected
components of X = [X/G] is bounded (since we assume that X has finite type).

Definition 2.1.6. If E is a G-equivariant vector bundle on X , we call the element
λ−1(E∗) =

∑
∞

i=0(−1)i [3i E∗] ∈ KG(X) the K-theoretic Euler class of E . (Note
that this sum is finite.)

Likewise, we define the element ctop(E) ∈ A∗G(X), corresponding to the sum of
the top Chern classes of E on each connected component of [X/G], to be the Chow-
theoretic Euler class of E . These definitions can be extended to any nonnegative
element by multiplicativity. It will be convenient to use the symbol eu(F ) to denote
both of these Euler classes for a nonnegative element F ∈ KG(X).

2.2. The logarithmic restriction and twisted pullback. We recall a construction
from [EJK 2010] that will be used several times throughout the paper. However,
to improve clarity, we use slightly different notation than in that paper.
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Definition 2.2.1 [EJK 2010]. Let X be an algebraic space with an action of an
algebraic group Z . Let E be a rank-n vector bundle on X and let g be a unitary
automorphism of the fibers of E→ X . If we assume that the action of g commutes
with the action of Z on E , the eigenbundles for the action of g are all Z -subbundles.
Let exp(2π

√
−1α1), . . . , exp(2π

√
−1αr ) be the distinct eigenvalues of g acting

on E , with 0≤αk < 1 for all k ∈ {1 . . . , r}, and let E1, . . . , Er be the corresponding
eigenbundles.

We define the logarithmic trace of E by the formula

L(g)(E)=
r∑

k=1

αk Ek ∈ K Z (X)⊗R (2.2.2)

on each connected component of X .

The next key fact about the logarithmic trace was proved in our previous paper.

Proposition 2.2.3 [EJK 2010, Proposition 4.6]. Let g = (g1, . . . , g`) be an `-tuple
of elements of a compact subgroup of a reductive group H , satisfying

∏`
i=1 gi = 1.

Let X be an algebraic space with an action of an algebraic group Z , and let V be
a (Z × H)-equivariant bundle on X , where H is assumed to act trivially on X. The
element ∑̀

i=1

L(gi )(V )− V + V g

in K Z (X) is represented by a Z-equivariant vector bundle.

Using Proposition 2.2.3 we make the following definition.

Definition 2.2.4. Let G be an algebraic group acting quasifreely on an algebraic
space, and let V be a G-equivariant vector bundle on X . Given g= (g1, . . . g`)∈G`,
if the gi all lie in a common compact subgroup and satisfy

∏`
i=1 gi = 1, then set

V (g)=
∑̀
i=1

L(gi )(V |X g )− V |X g + V g
|X g .

We wish to extend this definition to give a map from KG(X) to KG(IG X), but
we must first understand the decompositions of KG(IG X) and A∗G(IG X) into con-
jugacy classes.

As a consequence of Proposition 2.1.4, we see that KG(IG X) and A∗G(IG X)
are direct sums of the KG(I (9)) and A∗G(I (9)), respectively, as 9 runs over
conjugacy classes of elements of finite order in G. A similar statement holds for
the equivariant K-theory and Chow groups of the higher inertia spaces as well.
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Using Morita equivalence, we can give a more precise description of KG(I (9)).
If m ∈9 is any element and Z = ZG(m) is the centralizer of m in G, then

KG(I (9))= K Z (Xm) and A∗G(I (9))= A∗Z (X
m).

Similarly, if 8 ⊂ G` is a diagonal conjugacy class and (m1, . . . ,m`) ∈ 8 and
Z =

⋂`
i=1 ZG(mi ), then

KG(I
l(8))= K Z (Xm1,...,m`) and A∗G(I

l(8))= A∗Z (X
m1,...,m`).

Definition 2.2.5. Define a map L : KG(X) → KG(IG X) ⊗ Q, as follows. For
each conjugacy class 9 ⊂ G and each V ∈ KG(X), let L(9)(V ) be the class in
K Z (I (9)) which is Morita equivalent to L(g)(V |X g ) ∈ K Z (X g)Q. Here g is any
element of 9, and Z = ZG(g) is the centralizer of g ∈ G. The class L(V ) is the
class whose restriction to I (9) is L(9)(V ).

The proof of [EJK 2010, Lemma 5.4] shows that L(9)(V ) (and thus L(V )) is
independent of the choice of g ∈9.

Definition 2.2.6. If the diagonal conjugacy class 8 ⊂ G` is represented by an
`-tuple (g1, . . . , g`) such that

∏`
i=1 gi = 1, then we define V (8) to be the class

in KG(I
l
G X) which is Morita equivalent to V (g), where g = (g1, . . . , g`) is any

element of 8. Again, V (8) is independent of the choice of representative g ∈8.

Definition 2.2.7. Identify I`G X with the closed and open subset of I`+1
G X consisting

of tuples {(g1, . . . , g`+1, x) | g1g2 . . . g`+1 = 1}. If V ∈ KG(X), let LR(V ) ∈
KG(I

`
G X) be the class whose restriction to Il+1(8) is V (8), where the diago-

nal conjugacy class 8 ∈ G`+1 is represented by a tuple (g1, . . . , g`+1) satisfying
g1 · · · g`+1 = 1.

2.3. Orbifold products and the orbifold Chern character. Here we briefly review
the construction and properties of orbifold products and orbifold Chern characters
because they serve as a model for what we will do later.

Definition 2.3.1. For i ∈ {1, 2, 3}, let ei : I
2
G X→ IG X be the evaluation morphism

taking (m1,m2,m3, x) to (mi , x) and let µ : I2
G X→ IG X be the morphism taking

(m1,m2,m3, x) to (m1m2, x)= (m−1
3 , x).

Definition 2.3.2. Let T be the equivariant bundle on X corresponding to the tan-
gent bundle of X , which satisfies T= T X−g in KG(X), where g is the Lie algebra
of G.

Definition 2.3.3 [EJK 2010; JKK 2007; Kaufmann 2010]. The orbifold product
on KG(IG X) and A∗G(IG X) is defined as

x ? y := µ∗(e∗1x · e∗2 y · eu(LR(T))), (2.3.4)

both for x, y ∈ KG(IG X) and for x, y ∈ A∗G(IG X).
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Definition 2.3.5. We define the element S := L(T) in KG(IG X)Q to be the loga-
rithmic trace of T, that is, for each m in G, we define Sm in K ZG(m)(X

m)Q by

Sm := L(m)(T).

The rank of S is a Q-valued, locally constant function on IX = [IG X/G] called
the age.

Remark 2.3.6. If the age of a connected component [U/G] of IX is zero, then
[U/G] must be a connected component of X ⊂ IX .

Remark 2.3.7. In [Kaufmann 2010] the classes S , manifestations of what physi-
cists call twist fields, were interpreted in terms of cocycles which were then used
to define stringy products. Our construction may be regarded as a realization of
this procedure.

Definition 2.3.8. Given an element x in A∗G(IG X) with ordinary Chow grading
deg x , the orbifold degree (or grading) of x is, like the ordinary Chow grading,
constant on each component U of IG X corresponding to a connected component
of [U/G] of [IG X/G]. On such a component U we define it to be the nonnegative
rational number

degorb x |U = deg x |U + age[U/G]. (2.3.9)

The induced grading on the group A∗G(IG X) consists of summands A{q}G (IG X) of
all elements with orbifold degree q.

Theorem 2.3.10 [JKK 2007; EJK 2010]. The equivariant Chow group (A∗G(IG X),
? , degorb) is a QC -graded, commutative ring with unity 1, where 1 is the identity
element in A∗G(X)= A∗G(X

1)⊆ A∗G(IG X) and C is the number of connected com-
ponents of [IG X/G].

Equivariant K-theory (KG(IG X), ? ) is a commutative ring with unity 1, where
1 := OX is the structure sheaf of X = X1

⊂ IG X.

Definition 2.3.11. The orbifold Chern character Ch : KG(IG X)→ A∗G(IG X)Q is
defined by the equation

Ch(F ) := Ch(F ) ·Td(−S )

for all F ∈ KG(IG X), where Td is the usual Todd class. Moreover, for all α ∈Q

we define Chα(F ) by the equation

Ch(F )=
∑
α∈Q

Chα(F ),

where each Chα(F ) belongs to A{α}G (IG X).
The orbifold virtual rank (or orbifold augmentation) is Ch0

: KG(IG X) →
A{0}G (IG X)Q.
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Theorem 2.3.12 [EJK 2010; JKK 2007]. The orbifold Chern character

Ch : (KG(IG X), ? )→ (A∗G(IG X)Q, ? )

is a ring homomorphism.
In particular, if [U/G] is a connected component of [IG X/G], then the virtual

rank homomorphism restricted to the component [U/G] gives a homomorphism
Ch0
: KG(U )→ A0

G(U )Q =Q, satisfying

Ch0(F )=

{
0 if age[U/G]> 0,
Ch0(F ) if age[U/G] = 0

for any F ∈ KG(U ).

3. Inertial products, Chern characters, and inertial pairs

In this section we generalize the ideas of orbifold cohomology, obstruction bundles,
orbifold grading and the orbifold Chern character by defining inertial products on
KG(IG X) and A∗G(IG X) using inertial bundles on I2

G X . We further define a rational
grading and a Chern character ring homomorphism via Chern-compatible classes
of KG(IG X)Q.

The original example of an associative bundle is the obstruction bundle R =

LR(T) of orbifold cohomology, and the original example of a Chern-compatible
class is the logarithmic trace S of T, as described in Definition 2.3.5.

We show below that there are many inertial pairs of associative inertial bundles
on I2

G X with Chern-compatible elements on IG X , and hence there are many as-
sociative inertial products on KG(IG X) and A∗G(IG X) with rational gradings and
Chern character ring homomorphisms.

3.1. Associative bundles and inertial products. We recall the following definition
(and notation) from [EJK 2010]. It should be noted that a similar formalism also
appeared in the paper [Kaufmann 2010].

Definition 3.1.1. Given a class c ∈ A∗G(I
2
G X) (resp. KG(I

2
G X)), we define the iner-

tial product with respect to c to be

x ?c y := µ∗(e∗1x · e∗2 y · c), (3.1.2)

where x, y ∈ A∗G(IG X) (resp. KG(IG X)).

Given a vector bundle R on I2
G X we define inertial products on A∗G(IG X) and

KG(IG X) via formula (3.1.2), where c = eu(R) is the Euler class of the bundle R.

Definition 3.1.3. We say that R is an associative bundle on I2
G X if the ?eu(R)

products on both A∗G(IG X) and KG(IG X) are commutative and associative with
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identity 1, where 1 is the identity class in A∗G(X) (resp. KG(X)), viewed as a
summand in A∗G(IG X) (resp. KG(IG X)).

Proposition 3.1.4. A sufficient condition for ?eu(R) to be commutative with iden-
tity 1 is that the following conditions be satisfied:

(1) For every conjugacy class 8⊂ G×G with e1(8)= 1 or e2(8)= 1, we have

R|I (8) = O. (3.1.5)

(2) If i : I2
G X→ I2

G X denotes the isomorphism i(m1,m2, x)= (m1m2m−1
1 ,m1, x),

we have
i∗R =R. (3.1.6)

Proof. This is almost just a restatement of Propositions 3.7–3.9 in [EJK 2010].
However, we note that in Proposition 3.9 there is a slight error — that proposi-
tion incorrectly stated that the map i : I2

G X → I2
G X was the map induced by the

naive involution (m1,m2) 7→ (m2,m1), rather than the correct “braiding map”
(m1,m2, x) 7→ (m1m2m−1

1 ,m1, x). �

A sufficient condition for associativity is also given in [EJK 2010]. In order to
state the condition we require some notation, which we recall from that paper. Let
(m1,m2,m3) ∈ G3 such that m1m2m3 = 1, and let 81,2,3 ⊂ G3 be its diagonal
conjugacy class. Let 812,3 be the conjugacy class of (m1m2,m3) and 81,23 the
conjugacy class of (m1,m2m3). Let8i, j be the conjugacy class of the pair (mi ,m j )

with i < j . Finally let 9123 be the conjugacy class of m1m2m3; let 9i j be the
conjugacy class of mi m j ; and let 9i be the conjugacy class of mi . There are
evaluation maps

e1 : I2(8a,b)→ I (9a), e2 : I2(8a,b)→ I (9b), ei, j : I3(81,2,3)→ I2(9i, j ),

and composition maps

µ12,3 : I3(81,2,3)→ I2(812,3), µ1,23 : I3(81,2,3)→ I2(81,23).

The various maps we have defined are related by the following Cartesian diagrams
of l.c.i. (local complete intersection) morphisms:

I3(81,2,3)
e1,2- I2(81,2)

I2(812,3)

µ12,3

?
e1- I (912)

µ

?

I3(81,2,3)
e2,3- I2(82,3)

I2(81,23)

µ1,23

?
e2- I (923)

µ

?

(3.1.7)

Let E1,2 and E2,3 be the respective excess normal bundles of the two diagrams (3.1.7).
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Proposition 3.1.8. Let R be a vector bundle on I2
G X satisfying (3.1.5) and (3.1.6).

A sufficient condition for R to be an associative bundle is if

e∗1,2R+µ
∗

12,3R+ E1,2 = e∗2,3R+µ
∗

1,23R+ E2,3 (3.1.9)

in KG(I
3 X).

Proof. This follows from the proof of Proposition 3.12 of [EJK 2010], since the
Euler class takes a sum of bundles to a product of Euler classes. �

In practice, the only way we have to show that a bundle R is associative is to
show that it satisfies the identity (3.1.9). This leads to our next definition.

Definition 3.1.10. A bundle R is strongly associative if it satisfies the identities
(3.1.5), (3.1.6) and (3.1.9).

3.2. Chern characters, age, and inertial pairs. In many cases one can define a
Chern character KG(IG X)Q→ A∗G(IG X)Q which is a ring homomorphism with
respect to the inertial product. To do this, however, we need to define a Chern
compatible class S ∈ KG(IG X). As an added bonus, such a class will also allow
us to define a new grading on A∗G(IG X) compatible with the inertial product and
analogous to the orbifold grading of orbifold cohomology.

Definition 3.2.1. Let R be an associative bundle on I2
G X . A nonnegative class

S ∈ KG(IG X)Q is called R-Chern compatible if the map

C̃h : KG(IG X)Q→ A∗G(IG X)Q

defined by
C̃h(V )= Ch(V ) ·Td(−S )

is a ring homomorphism with respect to the R-inertial products on KG(IG X) and
A∗G(IG X).

Remark 3.2.2. Again, the original example of a Chern compatible class is the
class S defined in [JKK 2007], but we will we see other examples below.

Proposition 3.2.3. If R is an associative vector bundle on I2
G X , then a nonnegative

class S ∈ KG(IG X)Q is R-Chern compatible if the following identity holds in
KG(I

2
G X):

R = e∗1S + e∗2S −µ∗S + Tµ. (3.2.4)

Proof. This follows from the same formal argument used in the proof of [EJK 2010,
Theorem 7.3]. �

Definition 3.2.5. A class S ∈ KG(IG X)Q is strongly R-Chern compatible if it
satisfies (3.2.4).

A pair (R,S ) is an inertial pair if R is a strongly associative bundle and S is
R-strongly Chern compatible.
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Definition 3.2.6. We define the S -age on a connected component [U/G] of IX
to be the rational rank of S on the component [U/G]:

ageS [U/G] = rk(S )[U/G].

We define the S -degree of an element x ∈ A∗G(IG X) on such a component U of
IG X to be

degS x |U = deg x |U + ageS [U/G],

where deg x is the degree with respect to the usual grading by codimension on
A∗G(IG X). Similarly, if F in KG(IG X) is an element supported on U , then its
S -degree is

degS F = ageS U mod Z.

This yields a Q/Z-grading of the group KG(IG X).

Proposition 3.2.7. If R is an associative vector bundle on I2
G X and S ∈KG(IG X)Q

is strongly R-Chern compatible, then the R-inertial products on A∗G(IG X) and
KG(IG X) respect the S -degrees. Furthermore, the inertial Chern character ho-
momorphism C̃h : KG(IG X)→ A∗G(IG X)Q preserves the S -degree modulo Z.

Proof. If x, y ∈ A∗G(IG X), then the formula

x ?eu(R) y = µ∗(e∗1x · e∗2 y · eu(R))

implies that deg(x ?eu(R) y)= deg x + deg y+ rkR+ rkTµ. Since S is strongly R-
Chern compatible, we know that R = e∗1S + e∗2S −µ∗S + Tµ. Comparing ranks
shows that the S -degree of x ?eu(R) y is the sum of the S -degrees of x and y. The
proof for KG(IG X) follows from the fact that rkR and rkTµ are integers. Finally,
C̃h preserves the S -degree mod Z since if F in KG(IG X) is supported on U ,
where [U/G] is a connected component of [IG X/G], then so is its inertial Chern
character. �

Definition 3.2.8. Let A{q}G (IG X) be the subspace in A∗G(IG X) of elements with an
S -degree of q .

Definition 3.2.9. Given a class S ∈ KG(IG X)Q, the restricted homomorphism
C̃h0
: KG(IG X)→ A{0}G (IG X) is called the inertial virtual rank (or inertial aug-

mentation) for S .

Definition 3.2.10. An inertial pair (R,S ) is called Gorenstein if S has integral
virtual rank and strongly Gorenstein if S is represented by a vector bundle.

The Deligne–Mumford stack X = [X/G] is strongly Gorenstein if the inertial
pair (R = LR(T),S ) associated to the orbifold product (as in Definitions 2.3.3
and 2.3.5) is strongly Gorenstein.
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4. Inertial pairs associated to vector bundles

In this section we show how, for each choice of G-equivariant bundle V on X , we
can use the methods of [EJK 2010] to define two new inertial pairs (R+V,S +V )
and (R−V,S −V ). We thus obtain corresponding inertial products and Chern
characters. We denote the corresponding products associated to a vector bundle V
as the ?V+ and ?V− products. The ?V+ product can be interpreted as an orbifold
product on the total space of V , while the ?V− product on the Chow ring is a
sign twist of the ?(V ∗)+ product. Moreover, the two products induce isomorphic
ring structures on A∗(IX )⊗C. We prove that if V = T is the tangent bundle to
X = [X/G], then the ?V− product agrees with the virtual orbifold product defined
by [González et al. 2007].

To define the inertial pairs associated to a vector bundle, we introduce a variant
of the logarithmic restriction introduced in [EJK 2010]. We begin with a simple
proposition.

Proposition 4.0.1. Let G be an algebraic group acting on a variety X and sup-
pose that g1, g2 lie in a common compact subgroup. Let Z = ZG(g1, g2) be the
centralizer of g1 and g2 in G.

The virtual bundles

V+(g1, g2)= L(g1)(V |X g1,g2 )+ L(g2)(V |X g1,g2 )− L(g1g2)(V |X g1,g2 ) (4.0.2)

and

V−(g1, g2)= L(g−1
1 )(V |X g1,g2 )+L(g−1

2 )(V |X g1,g2 )−L(g−1
2 g−1

1 )(V |X g1,g2 ) (4.0.3)

are represented by nonnegative integral elements in K Z (X g1,g2).

Proof. Since X g
= X g−1

and V−(g1, g2)= V+(g−1
2 , g−1

1 ), it suffices to show that
V+(g1, g2) is represented by a nonnegative integral element of K Z (X g1,g2). Let
g3 = (g1g2)

−1. The identity L(g)(V )+ L(g−1)(V )= V − V g implies that we can
rewrite (4.0.2) as

V+(g1, g2)= L(g1)(V |X g1,g2 )+ L(g2)(V |X g1,g2 )

+ L(g3)(V |X g1,g2 )− V + V g1,g2 + V g1g2 − V g1,g2 .

Since g1g2g3 = 1, by Proposition 2.2.3 the sum

L(g1, g2, g3)(V )= L(g1)(V |X g1,g2 )+L(g2)(V |X g1,g2 )+L(g3)(V |X g1,g2 )−V+V g1,g2

is represented by a nonnegative integral element of K Z (Xg1,g2). Hence

V+(g1, g2)= L(g1, g2, g3)(V )+ V g1g2 − V g1,g2

is represented by a nonnegative integral element of K Z (X g1,g2). �
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Let8⊂G×G be a diagonal conjugacy class. As in [EJK 2010] we may identify
KG(I

2(8))with K ZG(g1,g2)(X
g1,g2) for any (g1, g2)∈8. Thanks to Proposition 4.0.1

we can define nonnegative classes V+(8) and V−(8) in KG(I
2(8)). The argument

used in the proof of [EJK 2010, Lemma 5.4] shows that the definitions of V+(8)
and V−(8) are independent of the choice of (g1, g2) ∈ G2. Thus we can make the
following definition.

Definition 4.0.4. Define classes R+V and R−V in KG(I
2
G X) by setting the compo-

nents of R+V and R−V in KG(I
2(8)) to be V+(8) and V−(8), respectively. Sim-

ilarly, we define classes S±V ∈ KG(IG X)Q by setting the restriction of S±V to a
summand KG(I (9)) of KG(IG X) to be the class Morita equivalent to L(g±1)(V )∈
K ZG(g)(X

g), where g ∈9 is any element.

Theorem 4.0.5. For any G-equivariant vector bundle V on X , the pairs

(R+V,S +V )= (LR(T)+ R+V ,S T+ S+V ),

(R−V,S −V )= (LR(T)+ R−V ,S T+ S−V )

are inertial pairs. Hence they define associative inertial products with a Chern
character homomorphism.

Proof. Since

LR(T)= e∗1S T+e∗2S T−µ∗S T+Tµ and R+V = e∗1 S+V+e∗2 S+V−µ∗S+V,

it follows that S +V is strongly R+V -Chern compatible.
To complete the proof we must show that LR(T)+ R+V is a strongly associative

bundle. From their definitions we know that LR(T) and R+V satisfy the identities
(3.1.5) and (3.1.6). We also know that LR(T) satisfies (3.1.9). Thus, to prove that
LR(T)+ R+V , it suffices to show that R+V satisfies the “cocycle” condition

e∗1,2 R+V +µ∗12,3 R+V = e∗2,3 R+V +µ∗1,23 R+V . (4.0.6)

Now (4.0.6) follows from the following identity of bundles restricted to Xm1,m2,m3 :

V+(m1,m2)+ V+(m1m2,m3)= V+(m2,m3)+ V+(m1,m2m3). (4.0.7)

Equation (4.0.7) is a formal consequence of the definition of the bundles V+. The
result with R+V and S+V replaced by R−V and S−V , respectively, is proved
analogously. �

4.1. Geometric interpretation of the ?V+ product. The ?V+ has a relatively direct
interpretation in terms of an orbifold product on the total space of the vector bundle
V → X .
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Lemma 4.1.1. Given a G-equivariant vector bundle π : V → X , the inertia
space IG V is a vector bundle (of nonconstant rank) on IG X with structure map
Iπ : IG V → IG X.

Proof. Let 9 ⊂ G be a conjugacy class. Denote by IX (9)⊂ IG X the component
of IG X defined by {(g, x) | gx = x, g ∈9}. For any morphism V → X and any
conjugacy class 9 ∈ G, if IX (9)=∅, then IV (9) is also empty. Thus it suffices
to show that IV (9) is a vector bundle over IX (9) for every conjugacy class 9 ⊂G
with IX (9) 6= ∅. Given g ∈ 9, the identification IX (9) = G ×ZG(g) X g reduces
the problem to showing that for g ∈ G the fixed locus V g is a ZG(g)-equivariant
vector bundle over X g. Since the map V → X is G-equivariant, the map V g

→ X
has image X g. The fiber over a point x ∈ X g is just (Vx)

g, where Vx is the fiber of
V → X at x . �

Since IG V → IG X is a vector bundle, the pullback maps

(Iπ)∗ : KG(IG V )→ KG(IG X) and (Iπ)∗ : A∗G(IG V )→ A∗G(IG X)

are isomorphisms. Both isomorphisms are compatible with the ordinary products
on K-theory and equivariant Chow groups.

Theorem 4.1.2. For x, y ∈ A∗G(IG X) or x, y ∈ KG(X), we have

x ?V+ y = (I s)∗((Iπ)∗x ? (Iπ)∗y), (4.1.3)

where ? is the usual orbifold product on the total space of the G-equivariant vector
bundle V → X and I s∗ is the Gysin map which is inverse to Iπ∗.

Proof. We give the proof only in equivariant Chow theory — the proof in equi-
variant K-theory is essentially identical. We compare the two sides of (4.1.3). If
91, 92, 93⊂G are conjugacy classes and x ∈ A∗G(IX (91)), y ∈ A∗G(IX (92)), then
the contribution of x ?V+ y to A∗G(IX (93)) is∑

81,2

µ∗
(
e∗1x · e∗2 y · eu(LR(T)+ R+V )

)
, (4.1.4)

where the sum is over all conjugacy classes 81,2 ⊂ G×G satisfying

e1(81,2)=91, e2(81,2)=92, µ(81,2)=93.

Since the class of tangent bundle of V equals T X + V , the tangent bundle to the
stack [V/G] is T X +V −g= T+V . Thus, the contribution of the right-hand side
of (4.1.3) is the sum∑

81,2

I s∗
(
µV∗(Iπ)∗(e∗1x · e∗2 y · eu(LR(T)+LR(V )))

)
, (4.1.5)
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where the map µV in (4.1.5) is understood to be the multiplication map I2
G V→ IG V .

If 8 is a conjugacy class in G ×G with µ(8) = 9, then the multiplication map
µV : IV (8)→ IV (9) factors through the inclusion

IV (8) ↪→ µ∗ IV (9)
Iπ∗µ
−−−→ IV (9), (4.1.6)

and we have the following diagram, with a Cartesian square on the right:

IV (8) ⊂ - µ∗ IV (9)
Iπ∗µ- IV (9)

I (8)
?

µ -

Iπ

-

I (9)

Iπ

?

The normal bundle to the inclusion IV (8) ↪→ µ∗(IV (9)) is the pullback of the
bundle V9/V8 on I2

X (8), where V8 ⊂ V |IX (9) is the subbundle whose fiber over
a point (g, x) is the subspace V g, and the fiber of V8 over a point (g1, g2, x) is
the subspace V g1,g2 ⊂ V . Using this information about the normal bundle we can
rewrite (4.1.5) as

µ∗
(
e∗1x · e∗2 y · eu(LR(T+ V )+ V9 − V8)

)
. (4.1.7)

Finally, (4.1.7) can be identified with (4.1.4) by observing that if g1, g2 ∈ G then

L(g1)(V )+ L(g2)(V )+ L((g1g2)
−1)(V )+ V − V g1,g2 + V g1,g2 − V g1g2

= L(g1)(V )+ L(g2)(V )− L(g1g2)(V ). �

4.2. Geometric interpretation of the ?V− product. The ?V− product does not gen-
erally correspond to an orbifold product on a bundle. However, we will show
that, after tensoring with C, the inertial Chow (or cohomology) ring with the ?V−

product is isomorphic to the inertial Chow (or cohomology) ring coming from the
total space of the dual bundle. The latter is isomorphic to the orbifold Chow (or
cohomology) ring of the total space of the dual bundle.

Definition 4.2.1. Given a vector bundle V on a quotient stack X = [X/G], we
define an automorphism 2V of A∗(IX )⊗ C as follows. If x9 is supported on
a component I (9) of IX corresponding to a conjugacy class 9 ⊂ G then we
set 2V (x9) = eiπa9 x9 , where a9 is the virtual rank of the logarithmic trace
L(g−1)(V ) for any representative element g ∈ 9. The same formula defines an
automorphism of H∗(IX ,C).

Theorem 4.2.2. For x, y ∈ A∗G(IG X) we have

x ?V− y =±(I s)∗((Iπ)∗x ? (Iπ)∗y)

=±x ?V ∗+ y, (4.2.3)
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where ? is the usual orbifold product on the total space of the G-equivariant vector
bundle V ∗→ X , and I s∗ is the Gysin map which is inverse to Iπ∗, and the sign ±
is (−1)a91+a92−a912 where a91 + a92 − a912 is a nonnegative integer. Moreover, if
we tensor with C, then we have the identity

2V (x ?V− y)=2V (x) ?V ∗+ 2V (y). (4.2.4)

Remark 4.2.5. The ± sign appearing in the previous theorem is an example of
discrete torsion. Similar signs appear in the work of [Fantechi and Göttsche 2003].

Proof. Observe that if g ∈G acts on a representation V of Z = ZG(g) with weights
eiθ1, . . . , eiθr then g naturally acts on V ∗ with weights e−iθ1, . . . , e−iθr , and the
eiθk -eigenspace of V is dual to the e−iθk -eigenspace of V ∗. Hence L(g−1)(V ) =
L(g)(V ∗)∗ as elements of K (X g)⊗Q. Thus, given a pair g1, g2 ∈ G, we see that

V−(g1, g2)= ((V ∗)+(g1, g2))
∗

as ZG(g1, g2)-equivariant bundles on X g1,g2 = X g−1
1 ,g−1

2 . Hence, eu(R−V ) =
(−1)rk R−V eu(R+V ∗), so (4.2.3) holds. If x is supported in the component I (91)

and y is supported in the component I (92), then x ?V− y is supported at components
I (912), where 912 is a conjugacy class of g1g2 for some g1 ∈91 and g2 ∈92.

Now we have

2V (x ?V− y)=
∑
912

eiπa912 (−1)rk V−(g1,g2)x ?V ∗+ y,

while
2V (x) ?V ∗+ 2V (y)=

∑
912

eiπ(a91+a92 )x ?V ∗+ y.

Thus, (4.2.4) follows from the fact that rkV−(g1, g2)= a91 + a92 − a912 . �

4.3. The virtual orbifold product is the ?T X− product. The virtual orbifold prod-
uct was introduced in [González et al. 2007]. In our context it (or more precisely
its algebraic analogue) can be defined as follows:

Definition 4.3.1. Let Tvirt be the class in KG(I
2
G X) defined by the formula

T|I2
G X +TI2

G X − e∗1TIG X − e∗2TIG X , (4.3.2)

where T|I2
G X refers to the pullback of the class T to I2

G X via any of the three
natural maps I2

G X → X , where TIG X denotes the tangent bundle to the stack
IX = [IG X/G], and where TI2

G X denotes the tangent bundle to the stack I 2X .

Proposition 4.3.3. The identity Tvirt
= LR(T)+ R−T holds in KG(I

2
G X). In par-

ticular, Tvirt is represented by a nonnegative element of KG(I
2
G X) and the ?eu Tvirt-

product is commutative and associative. Moreover, S T+ S−T = N , where N is
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the normal bundle of the canonical morphism IG X→ X , so (Tvirt, N) is a strongly
Gorenstein inertial pair.

Proof. The proof follows from the identity

L(g)(T)+ L(g−1)(T)= T|X g −TX g = N|X g . �

Definition 4.3.4. Following [González et al. 2007], we define the virtual orbifold
product to be the ?eu(Tvirt)-product.

Corollary 4.3.5. The virtual product ?virt on A∗G(IG X) agrees up to sign with
the ?T∗+ inertial product on A∗G(IG X) induced by the cotangent bundle T∗ of
X = [X/G], and there is an isomorphism of rings

(A∗G(IG X)C, ?virt)∼= (A∗G(IG X)C, ?T∗+).

Remark 4.3.6. While in Chow theory these products differ by a simple discrete
torsion (see Remark 4.2.5), in K-theory the virtual product is not so easily identified
with the product ?T∗+ , as can be seen from the fact that the gradings do not match
(discrete torsion does not change the grading). If there is a connection in K-theory,
it will have to be via something much more general, like a K-theoretic version of
the matrix discrete torsion of [Kaufmann 2010].

4.4. An example with P(1, 3, 3). We illustrate the various inertial products in K-
theory and Chow theory with the example of the weighted projective space X =

P(1, 3, 3) = [(A3 r {0})/C∗] where C∗ acts with weights (1, 3, 3). The inertia
IX has three sectors — the identity sector X 1

=X and two twisted sectors X ω

and X ω−1
, where ω = e2π i/3. Both twisted sectors are isomorphic to a Bµ3-gerbe

over P1. The K-theory of each sector is a quotient of the representation ring R(C∗).
Precisely, we have

K (X 1)=Z[χ ]/〈(χ−1)(χ3
−1)2〉 and K (X ω)=K (X ω−1

)=Z[χ ]/〈(χ3
−1)2〉,

where χ is the defining character of C∗. The projection formula in equivariant
K-theory implies that any inertial product is determined by the products 1g1 ? 1g2 ∈

K (X g1g2), where 1g is the K-theoretic fundamental class on the sector X g.
The usual orbifold product is represented by the symmetric matrix

X 1 X ω X ω−1

X 1 1 1 1
X ω 1 eu(χ)
X ω−1

eu(χ)
The virtual and orbifold cotangent products are represented by the following

matrices:
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X 1 X ω X ω−1

X 1 1 1 1
X ω eu(χ) eu(χ)2

X ω−1
eu(χ)

and

X 1 X ω X ω−1

X 1 1 1 1
X ω eu(χ−1) eu(χ) eu(χ−1)

X ω−1
eu(χ)

If we define t = c1(X ) ∈ A∗(BC∗), then the inertial products on Chow and
cohomology groups can also be represented by matrices, as above. After tensoring
with C, the Chow groups of the sectors are

A∗(X 1)C = C[t]/〈t3
〉 and A∗(X ω)C = A∗(X ω−1

)C = C[t]/〈t2
〉.

The corresponding matrices for the virtual and cotangent orbifold products are

X 1 X ω X ω−1

X 1 1 1 1
X ω t t2

X ω−1
t

and

X 1 X ω X ω−1

X 1 1 1 1
X ω

−t −t2

X ω−1
t

The automorphism of A∗(IX )C which is the identity on A(X 1)C and which
acts by multiplication by e2π i/3 on A∗(X ω)C and eπ i/3 on A∗(X ω−1

)C defines a
ring isomorphism between these products.

5. The localized orbifold product on K (IX )⊗C

If an algebraic group G acts with finite stabilizer on smooth variety Y , then there is
a decomposition of KG(Y )⊗C as a sum of localizations

⊕
9 KG(Y )m9 . Here the

sum is over conjugacy classes 9 ⊂ G such that I (9) 6=∅, and m9 ∈ Spec R(G)
is the maximal ideal of class functions vanishing on the conjugacy class 9.

Given a conjugacy class 9 ⊂ G and a choice of h ∈ 9, denote the centralizer
of h in G by Z = ZG(h). The conjugacy class of h in Z is just h alone, and there
is a corresponding maximal ideal mh ∈ Spec R(Z). As described in [Edidin and
Graham 2005, §4.3], the localization KG(I (9))mh is a summand of the localization
KG(I (9))m9 , and this summand is independent of the choice of h. This is called
the central summand of 9 and is denoted by KG(I (9))c(9).

Since G acts with finite stabilizer, the projection f9 : I (9)→ Y is a finite
l.c.i. morphism. The nonabelian localization theorem of [Edidin and Graham 2005]
states that the pullback f ∗9 : KG(Y )⊗C→ KG(I (9))⊗C induces an isomorphism
between the localization of KG(Y ) at m9 and the central summand KG(I (9))c(9)⊂
KG(I (9))m9 . The inverse to f ∗9 is the map α 7→ f9∗(α · eu(N f9 )

−1). If we let f
be the global stabilizer map IGY → Y , then, after summing over all conjugacy
classes 9 in the support of KG(Y )⊗C, we obtain an isomorphism

f ∗ : KG(Y )⊗C→ KG(IGY )c,
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where KG(IGY )c =
⊕

KG(I (9))c(9). The inverse is f∗/eu(N f ).
Applying this construction with Y = IG X allows us to define a product we call

the localized orbifold product.

Definition 5.0.1. The localized orbifold product on KG(IG X)⊗C is defined by
the formula

α ?LO β = I f∗
(
(I f ∗α ? I f ∗β)⊗ eu(NI f )

−1),
where ? is the usual orbifold product on KG(IG(IG X))c, and I f : IG(IG X)→ IG X
is the projection.

Remark 5.0.2. It should be noted that IG(IG X) is not the same as I2
G X . The inertia

IG(IG X)= {(h, g, x) | hx = gx = x, hg = gh} is a closed subspace of I2
G X .

The localized product can be interpreted in the context of the ?V+ product, where
the vector bundle V is replaced by the virtual bundle −N f . Observe that the pull-
back of T to IG X splits as T = TIG X + N f , where N f is the normal bundle to the
finite l.c.i. map IG X→ X . Although N f is not a bundle on X , we can still compute
N+f (g1, g2) on I2

G X .
The same formal argument used in the proof of Theorem 4.1.2 yields the fol-

lowing result.

Proposition 5.0.3. The class eu(LR(T)+ R+(−N f )) is well-defined in localized
K-theory, and

α ?LO β = α ?(−N f )+ β.

Remark 5.0.4. The inertial pair corresponding to the localized product is the for-
mal pair (LR(T)+ R+(−N f ),S T+ S+(−N f )). However, the Chern character
corresponding to this inertial pair is the usual orbifold Chern character and the
corresponding product on A∗(IX ) is the usual orbifold product. The reason is
that the orbifold Chern character isomorphism factors through KG(IG X)(1), the
localization of KG(IG X) at the augmentation ideal of R(G). This localization
corresponds to the untwisted sector of IG X where f restricts to the identity map.

Remark 5.0.5. Identifying KG(IG X)C with the localization of KG(IG(IG X))C
allows us to invert the class eu(N f ). In [Kaufmann 2010, §3.4] the author gives a
framework for defining similar products after formally inverting the Euler classes
of normal bundles.

5.1. An example with P(1, 2). We consider the weighted projective line X =

P(1, 2) = [(A2 r {0})/C∗], where C∗ acts with weights (1, 2). The inertia stack
IX has two sectors, X 1

=X and X −1
=Bµ2. We have

K (X 1)⊗C= C[χ ]/〈(χ − 1)(χ2
− 1)〉 and K (X −1)⊗C= C[χ ]/〈χ2

− 1〉.
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In particular, K (IX )⊗C is supported at±1∈C∗. As was the case in Section 4.4, in-
ertial ring structures are determined by the products 1g1 ?1g2 ∈ K (X g1g2). In terms
of the localization decomposition, K (IX )⊗C = K (IX )(1) ⊕ K (IX )(−1). The
localized product is determined by computing the corresponding orbifold product
on each localized piece using the decomposition of the element 1g into its localized
pieces and the product 1g1 ?LO 1g2 decomposes as

(1g1)(1) ?LO (1g2)(1)+ (1g1)(−1) ?LO (1g2)(−1).

The multiplication matrix for K (IX )(1) is the usual orbifold matrix, which in
this case is

X 1 X −1

X 1 1 1
X −1 1 eu(χ)

The multiplication matrix for the localized product on K (IX )(−1) is the same
as the multiplication matrix for the orbifold product on Bµ2, which is

X 1 X −1

X 1 1 1
X −1 1 1

Thus we see that the only nontrivial product is 1(−1) ?LO 1(−1). To obtain a single
multiplication matrix we use the decomposition

1(−1) =
1
2(1+χ)+

1
2(1−χ) ∈ K (X −1)⊗C,

where 1
2(1+χ) is supported at 1 and 1

2(1−χ) is supported at −1. The final result
is the matrix

X 1 X −1

X 1 1 1

X −1 1
(1+χ)2 eu(χ)+(1−χ)2

4

Because the twisted sector X −1 has dimension 0, both the orbifold and usual Chern
characters on this sector compute the virtual rank. The untwisted sector P(1, 2)
has Chow ring C[t]/〈t2

〉, where t = c1(χ). Thus ch(eu(χ))= t ∈ A∗(P(1, 2))⊗C.
Observe that

ch
(
(1+χ)2 eu(χ)+ (1−χ)2

4

)
=
(2+ t)2(t)+ (−t)2

4
= t

in C[t]/〈t2
〉 as well.
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