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Stable A1-connectivity over Dedekind schemes

Johannes Schmidt and Florian Strunk

We show that A1-localization decreases the stable connectivity by at most one
over a Dedekind scheme with infinite residue fields. For the proof, we establish
a version of Gabber’s geometric presentation lemma over a henselian discrete
valuation ring with infinite residue field.

Introduction

Background. Morel [2005] formulated the following property on a scheme S, called
the stable A1-connectivity property:

The A1-localization of a connected spectrum on the smooth Nisnevich
site over S is still connected.

Here, the notion of connectivity refers to the associated Nisnevich homotopy sheaves
or equivalently to the connectivity of the Nisnevich stalks. Further, he proved this
property for S = Spec(k), where k is a field. This celebrated result is known as
the stable A1-connectivity theorem [Morel 2005, Theorem 6.1.8] and has diverse
implications. Most of the content from Morel’s monograph [2012] is based on
this result, such as the unstable A1-connectivity theorem and its implication, the
Hurewicz theorem in A1-homotopy theory [Morel 2012, Theorem 6.37]. This leads
to a computation of the 0-line of the stable homotopy groups of motivic spheres
as the Milnor–Witt K-theory K MW

∗
(S) of the base S [Morel 2012, Corollary 6.43].

More immediately, the A1-connectivity theorem implies the vanishing of the neg-
ative lines which is analogous to the vanishing of the negative stable homotopy
groups of the sphere in topology.

Morel [2005, Conjecture 2] conjectured that the stable A1-connectivity property
holds over every regular base. However, Ayoub [2006] constructed a counterexam-
ple to this conjecture (see Remark 4.4 below).
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Aim and results. In this paper, we want to replace Morel’s stable A1-connectivity
property by the following weaker property on a base scheme S of Krull-dimension
d which is consistent with Ayoub’s counterexample:

The A1-localization of a d-connected spectrum on the smooth Nisnevich
site over S is still connected.

We refer to this property as the shifted stable A1-connectivity property. In other
words, S has this property if A1-localization lowers the connectivity by at most the
dimension of S. Question 4.12 below asks whether every regular base scheme has
this shifted stable A1-connectivity property. Morel’s stable connectivity theorem is
a positive answer in the case d = 0. In the main theorem of this paper, we give a
positive answer in the one-dimensional case, assuming infinite residue fields (see
also Theorem 4.16):

Theorem A. A Dedekind scheme with only infinite residue fields has the shifted
stable A1-connectivity property: if E is an i-connected spectrum, then its A1-
localization LA1E is (i − 1)-connected.

Examples for such base schemes are algebraic curves over infinite fields in geo-
metric settings, or Spec(Znr

p ) for Znr
p /Zp the maximal unramified extension in more

arithmetic settings.
Morel’s proof of the A1-connectivity theorem needs a strong geometric input

referred to as Gabber’s geometric presentation lemma and written up in [Colliot-
Thélène et al. 1997, Theorem 3.1.1]. These authors show how Gabber’s presenta-
tion result leads to universal exactness of certain Cousin complexes. In particular,
they derive the Bloch–Ogus theorem and the Gersten conjecture for algebraic K-
theory for smooth varieties over a field, as first proved by Quillen [1973, Theorem
5.11]. In Section 2, we prove a version of this presentation result over a henselian
discrete valuation ring with infinite residue fields (compare Theorem 2.1):

Theorem B. Let o be a henselian discrete valuation ring with infinite residue field
and let σ denote the closed point of S = Spec(o). Let X be a smooth S-scheme of
finite type and let Z ↪→ X be a proper closed subscheme. Let z be a point in Z.
If z lies in the special fibre Zσ , suppose that Zσ 6= Xσ . Then, Nisnevich-locally
around z, there exists a smooth o-scheme V of finite type and a cartesian square

X \ Z //

��

X

p
��

A1
V \ p(Z) // A1

V

such that p is étale, the restriction p|Z : Z ↪→ A1
V is a closed subscheme and Z is

finite over V . In particular, this square is a Nisnevich-distinguished square.
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The proof is based on [Colliot-Thélène et al. 1997, Theorem 3.1.1] combined
with a Noether normalization over a Dedekind base; cf. [Kai 2015, Theorem 4.6].

Apart from this geometric input to the proof of Theorem A, we need a second
key ingredient of a more homotopical kind: In Section 3, we examine a vanishing
result for the nonsheafified homotopy classes of the A1-localization of a connected
spectrum. This is a slight generalization of the argument in [Morel 2005, Lemma
4.3.1] to arbitrary noetherian base schemes of finite Krull-dimension. As a byprod-
uct, we obtain that the S1- and the P1-homotopy t-structure over any base scheme
is left complete, i.e., a presheaf of spectra is recovered as the homotopy limit over
its Postnikov truncations (see Corollaries 3.6 and 3.8).

1. Preliminaries

In this paper, our base scheme S is always a noetherian scheme of finite Krull-
dimension. Let SmS be the category of smooth schemes of finite type over S.
The category SmS is essentially small and sometimes we choose a small skeleton
implicitly without mentioning. Let sPre+(S) be the category of pointed simplicial
presheaves on SmS . We mostly ignore S in the notation. For an object U ∈ SmS ,
let U+ denote the presheaf homSmS ( – ,U ) considered as a discrete simplicial set
with an additional disjoint basepoint. Whenever we speak of a category having
all limits and colimits we actually mean that it has all small limits and all small
colimits.

Model structures. In contrast to the foundational address [Morel and Voevodsky
1999] of A1-homotopy theory, we use projective analogues of the unstable model
structures and obtain the (pointed) objectwise, Nisnevich-local and A1-Nisnevich-
local model structure (see [Dundas et al. 2003, Section 2]). Throughout the whole
text, let Lob, Ls and LA1 denote fixed (pointed) objectwise, Nisnevich-local and
A1-Nisnevich-local fibrant replacement functors, respectively. Given a symbol
τ ∈ {ob, s,A1

}, a nonnegative integer n and F ∈ sPre+, define the n-th τ -homotopy
sheaf π τn (F) of F as the Nisnevich sheafification of the n-th τ -homotopy presheaf

[( – )+∧ Sn, Lτ F].

Here, the brackets denote (pointed) objectwise homotopy classes. Notice that
πob

n (F) ∼= π
s
n(F). Whenever the objectwise model structure is considered, we

omit the symbol ob from the notation.
Let SptS1(S) be the category of (nonsymmetric) S1-spectra on the category

sPre+(S) [Hovey 2001, Definition 1.1]. The functor ( – )0 sending an S1-spectrum
to its zeroth level and the S1-suspension spectrum functor 6∞S1 fit into an ad-
junction 6∞S1 : sPre+ � SptS1 : ( – )0. For an integer n ≥ 0, there is also an
adjunction [−n] : SptS1 � SptS1 : [n] of shift functors defined for an integer n
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by E[n]m := En+m whenever n + m ≥ 0 and E[n]m := ∗ otherwise. Follow-
ing the general procedure of [Hovey 2001], we equip the category SptS1(S) with
stable model structures (see Hovey’s Definition 3.3) having homotopy categories
SHob

S1 (S), SHs
S1(S) and SHA1

S1 (S). The two above-mentioned adjunctions turn into
Quillen adjunctions. Each of these stable homotopy categories is a triangulated
category with distinguished triangles given by the homotopy cofibre sequences
[Hovey 1999, Proposition 7.1.6]. In fact, by choosing symmetric spectra as a more
elaborate model, these homotopy categories carry the structure of a closed symmet-
ric monoidal category with a compatible triangulation in the sense of [May 2001,
Definition 4.1]. For details of this construction we refer to [Hovey 2001; Jardine
2000; Ayoub 2007]. There are functors

– ∧6∞S1 ( – ) : SptS1 ×sPre+→ SptS1,

hom(6∞S1 ( – ), – ) : sPreop
+
×SptS1 → SptS1,

defined in the obvious way. For a cofibrant F ∈ sPre+, they fit into a Quillen
adjunction

– ∧6∞S1 F : SptS1 � SptS1 : hom(6∞S1 F, – )

whose derived adjunction models the monoidal structure from before.
Let �S1 denote the functor hom(6∞S1 S1, – ). We mention that a concrete fibrant

replacement functor for the stable τ -model structure on SptS1 is given by

2τS1 E = colim
(
(Lτ E)→�S1(Lτ E)[1] → (�S1)2(Lτ E)[2] → · · ·

)
, (1.1)

where τ ∈ {ob, s,A1
} and where the application of Lτ to a spectrum is levelwise

[Hovey 2001, Theorem 4.12]. We write �∞S1 : SptS1 → sPre+ for the composition
of this fibrant replacement functor with ( – )0.

As for the unstable structures, we define the n-th stable τ -homotopy sheaf π τn (E)
of a spectrum E ∈ SptS1 as the Nisnevich sheafification of the n-th stable τ -
homotopy presheaf

[6∞S1 ( –+ )[n], Lτ E].

Here, the brackets denote the morphism sets of SHob
S1 . Since it will be evident from

the context if the unstable or the stable homotopy sheaf is considered, we do not
introduce an extra decoration.

We use the following explicit model for LA1 in the stable context introduced in
[Morel 2004, Lemma 4.2.4].

Lemma 1.2 (Morel). Let S be an arbitrary base scheme. For each integer k ≥ 0,
we set Lk(E) := hom(F∧k, Ls(E)) with F := 6∞S1 C[−1], where C is a cofibrant
replacement of the cofibre of the morphism

S0 0,1
−−→ A1
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in sPre+. Then the functor L∞ : SptS1 → SptS1 defined by

L∞(E) := hocolim
k→∞

Lk(E)

is a fibrant replacement functor for the stable A1-Nisnevich-local model.

Remark 1.3. Likewise, the spectrum F from the above Lemma 1.2 may be defined
by the distinguished triangle

F −−→6∞S1 S0 0,1
−−→6∞S1 A1.

Let k ≥ 1 be an integer. After rotation and smashing with the spectrum F∧(k−1),
the above triangle becomes 6∞S1 A1

∧ F∧(k−1)
[−1] → F∧k

→ F∧(k−1). Applying
hom( – , Ls(E)) yields the distinguished triangle

Lk−1(E)→ Lk(E)→ hom(6∞S1 A1, Lk−1(E)[1]).

Here Lk−1(E)[1] ' Lk−1(E[1]) holds by definition and homotopy-exactness of Ls.

Base change. We briefly recall the construction of base change functors in A1-
homotopy theory. For details, see the monograph [Ayoub 2007] and [Hu 2001].

Let f : R → S be a morphism between noetherian schemes of finite Krull-
dimension. There is an adjunction

f ∗ : sPre+(S)� sPre+(R) : f∗

where the direct image functor f∗ is defined by ( f∗G)( – ) :=G( – ×S R) and where
the left adjoint inverse image is determined by f ∗(U+) := (U ×S R)+ for U ∈ SmS .
The functor f ∗ is strong symmetric monoidal with respect to the smash product
and there is a natural isomorphism f∗ hom

+
( f ∗F,G)∼= hom

+
(F, f∗G) [Fausk et al.

2003, (3.4)]. If the morphism f : R→ S is smooth and of finite type, the inverse
image functor has a left adjoint

f] : sPre+(R)� sPre+(S) : f ∗

determined by f](V+) = f](V+→ R) := (V t S→ R t S→ S) = f unpointed
] (V )+.

We emphasize that throughout the whole text, the functor f] is considered in this
pointed sense: it does not only postcompose with f but also quotients out the base-
point along f . In the case of a smooth f of finite type, the inverse image is given
by f ∗F = F ∧ R+, and one has a projection formula f](G∧ f ∗F)∼= f]G∧ F (see,
e.g., [Hoyois 2017, Section 5.1]) and a natural isomorphism

f ∗ hom
+
(A, B)∼= hom

+
( f ∗A, f ∗B) (1.4)

by [Fausk et al. 2003, Proposition 4.1]. Note that, since S is noetherian, any open
immersion R ↪→ S is smooth and of finite type.
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The adjunction ( f ∗, f∗) is a Quillen adjunction for the objectwise, the Nisnevich-
local and the A1-Nisnevich-local model structures. If f : R→ S is smooth and of
finite type, then the adjunction ( f], f ∗) is a Quillen adjunction for the objectwise,
the Nisnevich-local and the A1-Nisnevich-local model structures as well and f ∗

preserves all weak equivalences; see [Ayoub 2007, Theorem 4.5.10].

Remark 1.5. For the projective versions of the model structures, it is easy to see
that f ∗ and f] preserve the generating cofibrations and hence all cofibrations. By
the same reason, the objectwise acyclic cofibrations are preserved, so ( f], f ∗) and
( f ∗, f∗) are Quillen adjunctions for the objectwise structures. In order to see that
the right adjoints f∗ and f ∗ preserve fibrations for the Nisnevich-local and the A1-
Nisnevich-local model structure, it suffices to show that they preserve fibrations be-
tween fibrant objects [Dugger 2001, Corollary A.2]. As the right adjoints preserve
objectwise fibrations, it suffices to show that they preserve fibrant objects. The
fibrant objects of a Bousfield localization may be detected by a particular set J ′ of
acyclic cofibrations [Hirschhorn 2003, Lemma 3.3.11]. It remains to be shown that
the left adjoints preserve these acyclic cofibrations in J ′, which is straightforward;
see [Dundas et al. 2003, Definition 2.14].

In particular, Remark 1.5 implies the following lemma.

Lemma 1.6. Suppose f : R→ S is a smooth morphism of finite type. For each
F ∈ sPre+(S), there are canonical (objectwise) weak equivalences

Ls( f ∗F)∼ f ∗(Ls F) and LA1
( f ∗F)∼ f ∗(LA1F)

in sPre+(R).

The spectrum Sh
s := Spec(Oh

S,s) of a henselian local ring of a point s ∈ S is
usually not of finite type over S. Hence, Lemma 1.6 does not apply directly to the
canonical morphism s : Sh

s → S. Instead, we treat Sh
s as a cofiltered limit of the

diagram D given by the affine Nisnevich neighbourhoods of s in S and invoke the
following lemma.

Lemma 1.7. Let d : D→ S be a noetherian S-scheme of finite Krull-dimension.
Suppose d is the limit of a cofiltered diagram D : I→ SmS with affine transition
morphisms, where di : Di → S denotes the structure morphism of each Di := D(i).
Assume that each Di is quasiseparated. Let V → D be an element of SmD. Then
the following statements hold:

(1) There is a cofinal functor IV → I, a cofiltered diagram V : IV → SmS with
affine transition morphisms and a natural transformation V → D|IV inducing
V → D on the limit over IV in SchS .

(2) For V → V as in (1) and for each F ∈ sPre+(S), the morphism of diagrams
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0(V , d∗F)→ 0(V, d∗F) induces a canonical natural isomorphism

0(V, d∗F)∼= colim
i∈IV

0(Vi , d∗i F).

(3) For V → V as in (1) and for each F ∈ sPre+(S), there is a canonical natural
isomorphism of pointed (objectwise) homotopy classes

[V+, d∗F] ∼= colim
i∈IV
[Vi+, d∗i F].

(4) In (1), open embeddings, étale morphisms, smooth morphisms and Nisnevich-
distinguished squares in SmD can be approximated by their sectionwise coun-
terparts in SmS .

(5) For each F ∈ sPre+(S), there are canonical (objectwise) weak equivalences

Ls(d∗F)∼ d∗(Ls F) and LA1
(d∗F)∼ d∗(LA1F)

in sPre+(D).

Proof. (1) This follows from [EGA IV3 1966, Theorem 8.8.2, Proposition 17.7.8].
In fact, we may (and always will) even assume that IV = I ↓ i0 for a suitable object
i0 ∈ I and V = Vi0 ×Di0

D|I↓i0 for a suitable smooth morphism Vi0 → Di0 .

(2) We may assume F to be simplicially discrete, i.e., a presheaf. As we may write
F as the colimit over representable presheaves, and pullback- as well as section-
functors preserve colimits in the category of presheaves, we may assume that F
is representable by a suitable object U → S in SmS . Then d∗F = U ×S D and
d∗i F =U ×S Di , and (2) follows from (1) and [EGA IV3 1966, Theorem 8.8.2].

(3) Let us first observe that d∗ preserves objectwise fibrant objects. Indeed, this
holds for the d∗i by Remark 1.5. Taking sections and applying (2), it suffices to ob-
serve that a filtered colimit of fibrant simplicial sets is again fibrant. The assertion
of (3) now follows by taking homotopies with respect to the functorial standard
cylinder ( – )×11.

(4) Let f : V ′→ V be an open embedding (resp. an étale or smooth morphism)
in SmD . We apply (1) first to the structural map V → D of the target and then to
V ′→ V itself. We get approximations V , V ′ : I f → SmS and a natural transforma-
tion f : V ′→ V inducing f after taking limits. By [EGA IV3 1966, Proposition
8.6.3] (resp. [EGA IV3 1966, Proposition 17.7.8]) we may assume that f is sec-
tionwise an open embedding (resp. an étale or smooth morphism). As in (1), we
may assume f = fi0 ×Di0

D|I↓i0 .
Let f be étale and j : U ↪→ V an open immersion inducing a Nisnevich-

distinguished square. Choose an approximation f = fi0 ×Di0
D|I↓i0 of f as above.

By possibly enlarging i0, we can find an approximation j = ji0 ×Di0
D|I↓i0 of j
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by open immersions. We get a levelwise pullback square

U ×V V ′ //

��

V ′

f
��

U
j

// V

In particular, the sectionwise definition of f ∗(Z)→ Z := V \U (sectionwise with
the reduced structure) gives a well defined approximation of f ∗(Z)→ Z := V \U .
By [EGA IV3 1966, Corollary 8.8.2.4] we may even assume that this approxima-
tion is sectionwise an isomorphism, i.e., the above square of approximations is
sectionwise a Nisnevich-distinguished square.

(5) Note that the first assertion is equivalent to d∗ preserving Nisnevich-local
fibrant objects and that the second assertion is equivalent to d∗ preserving A1-
Nisnevich-local fibrant objects. Let F ∈ sPre+ be Nisnevich-local fibrant. We have
to show that d∗F sends Nisnevich-distinguished squares to homotopy pullback
squares of simplicial sets. Let Q be a Nisnevich-distinguished square in SmD . By
(4), Q may be approximated by a diagram Q of Nisnevich-distinguished squares.
By (2), we have (d∗F)(Q)∼= colim(d∗i F)(Qi ). Again, as the d∗i admit Quillen left
adjoints for the Nisnevich-local model, it suffices to show that a filtered colimit
of homotopy pullback squares of simplicial sets is again a homotopy pullback
square. This, in turn, follows from the fact that those colimits preserve categorical
pullback squares, fibrations and weak equivalences of simplicial sets. This shows
Ls(d∗F)∼ d∗(Ls F).

For the second assertion it suffices to show that d∗ preserves A1-invariant sim-
plicial presheaves. This is the case for the d∗i as they admit left adjoints di,]. The
assertion follows directly from (2). �

We need the following glueing property. Let S be a base scheme of finite Krull
dimension and i : Z ↪→ S a closed subscheme with complementary open immersion
j : U ↪→ S. For a pointed simplicial presheaf F ∈ sPre+(S), there is a homotopy
cofibre sequence

j] j∗F→ F→ i∗LA1i∗F (1.8)

for the pointed A1-Nisnevich-local model structure. This fact follows (e.g., by
[Hoyois 2017, Section 5.1]) from the unpointed analogue due to Morel and Vo-
evodsky [1999, Theorem 3.2.21] (see also [Ayoub 2006, Theorem 4.5.36]).

For a morphism f : R→ S of noetherian schemes of finite Krull dimension,
there is also an adjunction

f ∗ : SptS1(S)� SptS1(R) : f∗
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on the level of spectra where one defines f ∗(E)n := f ∗(En) and f∗(D)n := f∗(Dn)

with obvious structure maps. If the morphism f : R→ S is smooth and of finite
type, there is an adjunction

f] : SptS1(R)� SptS1(S) : f ∗

with f](D)n := f](Dn) and structure maps given by the projection formula. The
adjunction ( f ∗, f∗) is a Quillen adjunction for the stable objectwise, the stable
Nisnevich-local and the stable A1-Nisnevich-local model structures, respectively.
If f : R→ S is smooth and of finite type, then the adjunction ( f], f ∗) is a Quillen
adjunction for these stable model structures as well and f ∗ preserves all stable
weak equivalences; see [Ayoub 2007, Theorem 4.5.23].

We have the following analogue of Lemma 1.6 and Lemma 1.7 in the stable
setting.

Lemma 1.9. Let D and V → D be as in Lemma 1.7. Let f : R → S be either
smooth of finite type or the canonical map lim D → S. Let E ∈ SptS1(S) be a
spectrum. Then the following statements hold:

(1) Lob( f ∗E)∼ f ∗(Lob E), Ls( f ∗E)∼ f ∗(Ls E) and LA1
( f ∗E)∼ f ∗(LA1E).

(2) With the notation of Lemma 1.7(1), there is a canonical natural isomorphism
of pointed (stable objectwise) homotopy classes

[6∞S1 (V+), d∗E] ∼= colim
i∈IV
[6∞S1 (Vi+), d∗i E].

Proof. The assertions follow from (1.4) and the explicit form of a fibrant replace-
ment (1.1) using Lemma 1.6 and Lemma 1.7. �

Corollary 1.10. Let E ∈ SptS1(S) be a spectrum. Then the following statements
are equivalent:

(1) The homotopy sheaf π0(E) is trivial.

(2) For all schemes V ∈ SmS with structure morphism p : V → S and all points
v ∈ V with canonical morphism v : V h

v := Spec(Oh
V,v)→ V , the homotopy

sheaf π0(v
∗ p∗E) is trivial.

(3) For all points s ∈ S with canonical morphism s : Sh
s → S, the homotopy sheaf

π0(s
∗E) is trivial.

Proof. First suppose (2) holds. We want to show (1), i.e., we have to show that the
Nisnevich stalk at (V, v) of the sheaf π0(E) is trivial for all such (V, v). By (2) of
the previous lemma, we get

π0(E)(V,v) = colim
f :(W,w)→(V,v)

[6∞S1 (W+), f ∗ p∗E] ∼= [6∞S1 (V h
v,+), v

∗ p∗E],
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where the colimit runs over the Nisnevich neighbourhoods of (V, v). The iden-
tity id(V h

v ,v)
is cofinal in the Nisnevich neighbourhoods of (V h

v , v), so we obtain
6∞S1 (V h

v,+), v
∗ p∗E] = π0(v

∗ p∗E)(V h
v ,v)

, which is trivial by assumption.
For the implication (1) ⇒ (2), suppose that π0(E) = 0. Let Vi → V be the

diagram given by the affine Nisnevich neighbourhoods of (V, v). In particular,
we have limi Vi ∼= V h

v . By Lemma 1.7(4), every object in SmV h
v

has the form
W h
v :=W ×V V h

v for a suitable W ∈ SmV . Take a point w ∈W h
v and let w0 be its

image in W . Again by Lemma 1.7(4), we find a diagram of étale maps W j →W
such that (W h

v )
h
w
∼= lim j (W j )

h
v
∼= lim j limi W j ×V Vi . Using Lemma 1.9(2), we

compute

π0(v
∗ p∗E)(W h

v ,w)
∼= colim j [6

∞

S1 ((W j )
h
v,+), v

∗ p∗E]

∼= colim j colimi [6
∞

S1 ((W j ×V Vi )+), p∗E].

The pro-object {W j ×V Vi }i, j in SmS induces a Nisnevich point α of Sh(SmS).
Note that this point may not correspond to the henselian scheme Xh

x for some
X ∈ SmS and x ∈ X but to a subextension of the strict henselization W sh

w0
/W h

w0
.

The assumption π0(E)= 0 now implies

colim j colimi [6
∞

S1 ((W j ×V Vi )+), p∗E] ∼= α(π0(E))= 0.

As a special case we get the implication (3)⇒ (2). Finally, the reverse implication
(2)⇒ (3) is trivial. �

P1-spectra. In this subsection, we briefly recall a model for the P1-stable motivic
homotopy category. As an underlying category of this model structure, we use
(Gm, S1)-bispectra, i.e., the category SptGm

(SptS1(S)) of Gm-spectra with entries in
SptS1 ; see [Hovey 2001, Definition 1.1]. Here, by abuse of notation, Gm denotes the
S1-suspension spectrum of a cofibrant replacement of the pointed object (Gm, 1)
of sPre+(S); see [Morel 2004, Remark 5.1.10]. Again, by an abuse of notation, we
abbreviate this category by SptP1(S) and call its objects P1-spectra. Similarly to
the passage from sPre+ to S1-spectra, the zeroth entry of a P1-spectrum and the
Gm-suspension spectrum functor fit into an adjunction

6∞Gm
: SptS1 � SptP1 : ( – )0. (1.11)

For q ≥ 0, there is also an adjunction 〈−q〉 : SptP1 � SptP1 : 〈q〉 of shift functors
defined for an integer q by E〈q〉m := Eq+m whenever q +m ≥ 0 and E〈q〉m :=
∗ otherwise. Again by the general procedure of [Hovey 2001], we equip SptP1

with the stable model structure induced via (1.11) by the stable A1-Nisnevich-local
structure on SptS1 [Hovey 2001, Definition 3.3]. Its homotopy category SH(S) is
the (P1-stable) motivic homotopy category. The two above-mentioned adjunctions
turn into Quillen adjunctions for these structures, respectively.
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The motivic homotopy category SH is a triangulated category with distinguished
triangles again given by the homotopy cofibre sequences. Note that here the trian-
gulated shift is again induced by the simplicial shift [1] and not by the Gm-shift 〈1〉.

Finally, let us mention a concrete fibrant replacement functor for the above
model structure on SptP1 . This is completely analogous to the S1-stabilization
process from sPre+ to SptS1 . Let E ∈ SptP1 . By [Hovey 2001, Theorem 4.12], we
may use the functor

2Gm E = colim(E→�Gm E〈1〉 → (�Gm )
2 E〈2〉 → · · · )

if each level of E is already a fibrant spectrum in SptS1 . Otherwise we can first
apply the stable A1-Nisnevich-local fibrant replacement functor 2A1

S1 levelwise. We
write �∞

Gm
: SptP1 → SptS1 for the composition of this fibrant replacement functor

with ( – )0 from (1.11).

Preliminaries on t-structures. We briefly recall the definition of a homological t-
structure and basic properties. Details can be found in [Gelfand and Manin 2003].

Definition 1.12. A (homological) t-structure on a triangulated category D is a pair
of full subcategories D≤0 and D≥0 which are closed under isomorphisms in D such
that the following axioms hold, where for an integer n, one sets D≥n := D≥0[n]
and D≤n := D≤0[n].

(1) For all X ∈ D≥0 and all Y ∈ D≤−1 we have homD(X, Y )= 0.

(2) D≥0 is closed under [1] (i.e., D≥1 ⊆ D≥0) and dually D≤−1 ⊆ D≤0.

(3) For all Y ∈D there exists a distinguished X→ Y → Z→ X [1] with X ∈D≥0

and Z ∈ D≤−1.

Set D=n := D≥n ∩D≤n and call D=0 the heart of the t-structure. A t-structure is
called nondegenerate if

⋂
n≥0 D≥n = {0} and

⋂
n≤0 D≤n = {0}. A t-structure is

called left complete if for all X ∈ D the canonical morphism

X→ holim
n→∞

X≤n

is an isomorphism. Dually, a t-structure is called right complete if for all X ∈ D
the canonical morphism hocolim

n→−∞
X≥n→ X is an isomorphism.

Remark 1.13. The adjunctions

inclusion :D≥n � D : τ≥n

τ≤n : D� D≤n : inclusion

turn D≥n into a coreflective and D≤n into a reflective subcategory of D. The counit
of the first adjunction is denoted by ( – )≥n :D→D and called the n-skeleton. The
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unit of the second adjunction is denoted by ( – )≤n and called the n-coskeleton. The
skeleton and the coskeleton induce a distinguished triangle

X≥n→ X→ X≤n−1→ (X≥n)[1].

Remark 1.14. Let D be a triangulated category obtained from the homotopy cate-
gory of a stable model category together with a t-structure. If the t-structure is left
complete, then

⋂
n≥0 D≥n ={0}, which can be seen as follows. Take X ∈

⋂
n≥0 D≥n

and suppose that X→ holim X≤n is an isomorphism. The homotopy limit of the
diagram

�� �� ��

X≥n+1

��

∼=
// X // X≤n

��

X≥n
∼=
// X // X≤n−1

of triangles is the triangle holim X≥n→ X→ holim X≤n . Since the homotopy limit
of weak equivalences is a weak equivalence, the first morphism holim X≥n→ X
of this triangle is an isomorphism. This implies holim X≤n ∼= 0 and hence X ∼= 0.
In the same way, right completeness implies

⋂
n≤0 D≤n = {0}.

For the converse, consider [Lurie 2017, Proposition 1.2.1.19]: Suppose that D≥0

is stable under countable homotopy products. Then
⋂

n≥0 D≥n = {0} implies left
completeness. Dually, if D≤0 is stable under countable homotopy coproducts, the
relation

⋂
n≤0 D≤n = {0} implies right completeness.

Proposition 1.15 [Ayoub 2007, Proposition 2.1.70]. Let D be a triangulated cate-
gory with coproducts and let S be a set of compact objects of D. Define

• D≤−1 as the full subcategory of those Y of D with homD(S[n], Y )= 0 for all
n ≥ 0 and all S ∈ S,

• D≥0 as the full subcategory of those X of D with homD(X, Y ) = 0 for all
Y ∈ D≤−1.

The pair D≤0 = D≤−1[1] and D≥0 forms a t-structure. The category D≥0 is the
full subcategory of D generated under extensions, (small) sums and cones from
S and in particular S ⊆ D≥0. Moreover, the truncation functor τ≤−1 is given by
τ≤−1(X) := hocolim

k→∞
8k(X), where 8(X) is defined as the cone∐

Hom(S[n],X)
S∈S,n≥0

S[n] → X→8(X).

Remark 1.16. Let D be a triangulated category obtained from the homotopy cat-
egory of a stable model category and let S be a set of compact objects of D. The
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t-structure obtained from the previous Proposition 1.15 satisfies the property that
D≤0 is stable under countable homotopy coproducts. If D has an underlying cofi-
brantly generated model category and S equals (up to shifts) the set of cofibres of
the generating cofibrations, then

⋂
n≤0 D≤n = {0} by [Hovey 1999, Theorem 7.3.1]

and D is right complete by Remark 1.14. It is however usually a nontrivial issue
to show left completeness of a t-structure obtained from Proposition 1.15.

Canonical t-structures on S1-spectra. In this subsection we recall some basic
properties of canonical t-structures on S1-spectra arising in A1-homotopy theory.

Definition 1.17. Consider the set S := {6∞S1 U+ | U ∈ SmS}. The objectwise
t-structure (resp. Nisnevich-local t-structure, A1-Nisnevich-local t-structure) on
SHob

S1 (resp. SHs
S1 , SHA1

S1) is obtained by applying Proposition 1.15 to the trian-
gulated category SHob

S1 (resp. SHs
S1 , SHA1

S1) and to S.

Remark 1.18. In [Morel 2005] the Nisnevich-local t-structure on SHs
S1 is called

the standard t-structure. In [Morel 2004, Section 4.3] the A1-Nisnevich-local t-
structure on SHA1

S1 is called the homotopy t-structure (on S1-spectra).

Remark 1.19. By definition we have

SHob
S1≤−1 =

{
Y ∈ SHob

S1 |

Y has trivial homotopy presheaves [6∞S1 ( –+ )[i], Y ] for all i ≥ 0
}
.

Applying the classical [Margolis 1983, Proposition 3.6] objectwise, we get

SHob
S1≥0 =

{
X ∈ SHob

S1 |

X has trivial homotopy presheaves [6∞S1 ( –+ )[i], X ] for all i ≤−1
}
.

The objectwise t-structure is clearly nondegenerate as there are no nonzero spectra
without nontrivial homotopy presheaves. The objectwise t-structure is right com-
plete by Remark 1.16 and left complete by Remark 1.14 as SHob

S1≥0 is stable under
countable homotopy products.

Remark 1.20. Again, by definition we have

SHs
S1≤−1 =

{
Y ∈ SHs

S1 |

Y has trivial homotopy presheaves [6∞S1 ( –+ )[i], LsY ] for all i ≥ 0
}

and using on Nisnevich stalks the classical result [Margolis 1983, Proposition 3.6],
we get

SHs
S1≥0 = {X ∈ SH

s
S1 | X has trivial homotopy sheaves π s

i X for all i ≤−1},

SHs
S1≤−1 = {Y ∈ SH

s
S1 | Y has trivial homotopy sheaves π s

i Y for all i ≥ 0}.
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The Nisnevich-local t-structure is clearly nondegenerate as all nonzero spectra have
at least one nontrivial homotopy sheaf. The Nisnevich-local t-structure is right
complete by Remark 1.16 and left complete by, e.g., [Spitzweck 2014, Lemma 4.4].

Remark 1.21. A Nisnevich-local fibrant replacement functor Ls respects only
the truncation from above, i.e., if E is in SHob

S1≤−1, then the spectrum LsE is
in SHs

S1≤−1. The analogous statement is not true for the positive part SHob
S1≥0,

which can be seen as follows: By Hilbert’s Theorem 90, there is an isomorphism
Pic(X) ∼= H 1

Nis(X,Gm). The Eilenberg–Mac Lane spectrum HGm is in the heart
of the objectwise t-structure but

H 1
Nis(X,Gm)= [6

∞

S1 X+, Ls HGm[1]] = [6∞S1 X+[−1], Ls HGm]

and certainly there are schemes X with nontrivial Picard group.

Remark 1.22. By definition and Remark 1.20, one has

SHA1

S1≤−1 =
{
Y ∈ SHA1

S1 | Y has trivial homotopy presheaves

[6∞S1 ( –+ )[i], LA1 Y ] for all i ≥ 0
}

= {Y ∈ SHA1

S1 | Y has trivial homotopy sheaves πA1

i Y for all i ≥ 0}.

The A1-Nisnevich-local t-structure is right complete by Remark 1.16 and we have⋂
n≤0 SH

A1

S1≤n = {0}. It will be shown in Corollary 3.6 that the A1-Nisnevich-local
t-structure is left complete and hence nondegenerate.

Definition 1.23. We define

SHA1,π

S1≥0 := {X ∈ SH
A1

S1 | X has trivial homotopy sheaves πA1

i X for all i ≤−1}.

Remark 1.24. The full subcategory SHA1,π

S1≥0 in SHA1

S1 is closed under homotopy
colimits and extensions. There is an inclusion SHA1,π

S1≥0 ⊆ SHA1

S1≥0 due to [Spitzweck
2014, Lemmas 4.1 and 4.3]. Conversely, the other implication SHA1

S1≥0 ⊆ SHA1,π

S1≥0
holds if and only if LA1

6∞S1 U+∈ SHA1,π

S1≥0 for all U ∈ SmS . Unfortunately, there are
schemes S such that these two equivalent conditions do not hold (see Remark 4.4).
However, they hold true over the spectrum of a field S [Morel 2005, Theorem
6.1.8] and we have SHA1

S1≥0 = SHA1,π

S1≥0 in that case.

Homotopy t-structures on P1-spectra. In this subsection we recall the homotopy
t-structure on the motivic homotopy category SH. We remind the reader that 〈q〉
denotes the Gm-shift operation.

Definition 1.25. The homotopy t-structure on SH is the t-structure obtained by
applying Proposition 1.15 to the triangulated category SH and the set

S = {6∞
P1(U+)〈q〉 |U ∈ SmS and q ∈ Z}.
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Remark 1.26. We use the name “homotopy t-structure” in order to agree with the
terminology of [Morel 2004; 2005].

Remark 1.27. Unravelling the definitions, one identifies

SH≤−1 = {Y ∈ SH |�∞Gm
(Y 〈q〉) ∈ SHA1

S1≤−1 for all q ∈ Z}

= {Y ∈ SH | (colimk �
k
Gm

Yk+q) ∈ SHA1

S1≤−1 for all q ∈ Z}.

In particular,

�∞Gm
(SH≤−1)⊆ SHA1

S1≤−1 and 6∞Gm
(SHA1

S1≥0)⊆ SH≥0,

using [Ayoub 2006, Lemma 2.1.16] for the latter.

Remark 1.28. Over a field, using [Morel 2004, Lemma 4.3.11] and the equality
SHA1

S1≥0 = SHA1,π

S1≥0 from Remark 1.24, we can also identify

SH≥0 = {X ∈ SH |�∞Gm
(X〈q〉) ∈ SHA1

S1≥0 for all q ∈ Z};

cf. [Morel 2004, Section 5.2]. In particular, we have �∞
Gm
(SH≥0)⊆ SHA1

S1≥0 in this
case.

Remark 1.29. The homotopy t-structure on the motivic homotopy category is right
complete by Remark 1.16 and we have

⋂
n≤0 SH≤n = {0}. It will be shown in

Corollary 3.8 that the homotopy t-structure on the motivic homotopy category is
also left complete and hence nondegenerate.

2. Gabber presentations over henselian discrete valuation rings

Throughout this section, fix a henselian discrete valuation ring o with maximal
ideal mE o, local uniformizer π ∈m, residue field F= o/m and field of fractions k.
Assume that F is an infinite field. Let S be the spectrum of o and denote by σ the
closed point of S and by η the generic point of S. We want to prove the following
version of Gabber’s geometric presentation lemma over o.

Theorem 2.1. Let o be a henselian discrete valuation ring with infinite residue
field. Let X/o be a smooth o-scheme of finite type and let Z ↪→ X be a proper
closed subscheme. Let z be a point in Z. If z lies in the special fibre, suppose that
Zσ 6= Xσ . Then, Nisnevich-locally around z, there exists a smooth o-scheme V of
finite type and a cartesian square

X \ Z //

��

X

p
��

A1
V \ p(Z) // A1

V
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such that p is étale, the restriction p|Z : Z ↪→ A1
V is a closed subscheme and Z

is finite over V . In particular, this square is a Nisnevich-distinguished square and
therefore, the induced canonical morphism X/(X \ Z)→ A1

V /(A
1
V \ p(Z)) is an

isomorphism of Nisnevich sheaves.

Remark 2.2. The essential case of Theorem 2.1 is that of an effective Cartier-
divisor Z ↪→ X (see the proof of Theorem 2.4 below). Earlier results for relative ef-
fective Cartier-divisors Z ↪→ X over discrete valuation rings are [Gillet and Levine
1987, Lemma 1] and [Dutta 1995, Theorem 3.4]. These results are even Zariski
local and do not assume infinite residue fields. However, they do not include an
analogue for the crucial finiteness claim of Z/V .

The map p in Theorem 2.1 will be provided by a careful choice of suitable
linear projections. Before we give a short outline of the proof, let us first recall
some basic facts about linear projections.

Linear projections. Denote by Ax1/x0,...,xN /x0,S = Ax/x0,S the affine N -space AN
S

with coordinates x1/x0, . . . , xN/x0 and by Px0:···:xN ,S =Px,S the projective N -space
of PN

S with homogeneous coordinates x0 : · · · : xN . We get the standard open
embedding Ax/x0,S ↪→ Px,S . By abuse of notation, we identify x1/x0, . . . , xN/x0

with x1, . . . , xN and write just Ax,S for Ax/x0,S (and similarly for other coordinates).
Let A∨x1,...,xN ,S = Ax∗1 ,...,x

∗

N ,S be the dual affine space, i.e., for any o-algebra A,
A∨x1,...,xN ,S(A) is the free A-module generated by the coordinate functions x1, . . . , xN

of Ax,S . Dually, we can view Ax,S(A) as the free A-module generated by the dual
coordinate functions x∗1 , . . . , x∗N . To be more precise, take r copies of A∨x,S and de-
note the j -th copy by A

∨,( j)
x,S with coordinate functions x∗i, j := x∗i for 1≤ i ≤ N . Map-

ping t j 7→
∑

i xi ⊗ x∗i, j defines the dual pairing 〈 – , – 〉 : Ax,S ×S A
∨,( j)
x,S → At j ,S .

Via this pairing, each A-point u of A
∨,( j)
x,S induces a linear A-morphism (in abuse

of notation also denoted by) u defined as the composition

Ax,A
id×u

// Ax,A×A A
∨,( j)
x,A

〈 – ,– 〉
// At j ,A via t j

� //
∑

i 〈x
∗

i , u〉xi .

This map is precisely the linear form given by the A-point u seen as the correspond-
ing linear combination of the xi in A

∨,( j)
x,S (A)=

⊕
i Axi . We define

Er := A
∨,(1)
x,S ×S · · · ×S A

∨,(r)
x,S

and look at it as the space of linear projections Ax,S → At1,...,tr ,S . Indeed, each
A-point u of Er induces a linear A-morphism

u : Ax,A // At1,...,tr ,A via t j
� //
∑

i 〈x
∗

i , u j 〉xi .

Mapping t0 7→ x0, this extends to a rational map

u : Px,A // Pt0:···:tr ,A
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with locus of indeterminacy Lu := V+(x0, u1, . . . , ur )⊆ H∞, where u j is the linear
form in the coordinates x1, . . . , xN corresponding to the j-th component of u and
H∞ ⊂ Px,A is the hyperplane at infinity V+(x0).

Assume Y ↪→ Ax,A is a (reduced) closed subscheme with (reduced) projective
closure Y ↪→ Px,A such that Y ∩ Lu =∅. Then u induces regular maps

pu : Y // At1,...,tr ,A and p̄u : Y // Pt0:···:tr ,A

satisfying pu = p̄u ×Pt,A At,A. Observe that [Shafarevich 1994, Theorem I.5.3.7]
remains true in our setting:

Lemma 2.3. For any u ∈ Er (A) and any closed Y ↪→ Ax,S with Y ∩ Lu =∅, the
linear projections pu and p̄u are finite maps.

Proof. It suffices to show that p̄u is finite. As a map between projective schemes
over S, p̄u itself is projective. It remains to show that p̄u is quasifinite. Let σ̄
be a geometric point of S over σ , and likewise η̄ over η. By [Shafarevich 1994,
Theorem I.5.3.7], σ̄ ∗ p̄u and η̄∗ p̄u are finite. It follows that p̄u is finite on the special
fibre σ ∗ p̄u and the geometric fibre η∗ p̄u , hence quasifinite. �

Outline of the proof of Theorem 2.1. The proof of Theorem 2.1 principally fol-
lows the proof of Gabber’s geometric presentation lemma over fields in [Colliot-
Thélène et al. 1997]. The crucial part of Theorem 2.1 turns out to be the finiteness
claim for Z/V . We make the Ansatz p = pu for a closed embedding i : X ↪→

Ax1,...,xN ,S and a linear projection u ∈ En(o), for n the relative dimension of X/S.
Using Lemma 2.3, one can show that the property

the induced map p(u1,...,un−1)|Z : Z→ At1,...,tn−1,S is finite

is open in our space of linear projections En (see the proof of Lemma 2.11, be-
low). If W ↪→ En is the corresponding open locus, we first need to make sure that
the special fibre Wσ is nonempty — because the residue field F is infinite and En

isomorphic to an affine space, W (o) is automatically nonempty in this case. We
will see in the proof of Lemma 2.11 that Wσ is nonempty, as soon as X over S is
fibrewise dense inside its closure in Px0:···:xN ,S . In fact, we just need this closure to
be dense on the special fibre, but this obviously is equivalent to fibrewise density.
Therefore, special care needs to be taken about the choice of our initial closed
embedding i : X ↪→ Ax,S . In Proposition 2.6 we will provide a closed embedding
of this type, but the price to pay is that we need to replace (X, z) by a suitable
Nisnevich neighbourhood.

Let F = Fu denote the set of preimages under p(u1,...,un−1) of p(u1,...,un−1)(z)
in Z . The next goal is to find u in W (o) such that pu is étale around each point
of F and the restriction of pu to F is universally injective. This again corre-
sponds to nonempty open conditions in (the special fibre of) En (see the proof
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of Lemma 2.12). Shrinking W accordingly, we may assume that this is the case
for all u ∈W (o) (see Proposition 2.9).

Making use of the finiteness of p(u1,...,un−1)|Z , we get an open neighbourhood
V = Vu of p(u1,...,un−1)(z) in At1,...,tn−1,S such that pu is étale at all points in the inter-
section Z ∩ p−1

(u1,...,un−1)
(V ) and the restriction of pu induces a closed embedding

Z ∩ p−1
(u1,...,un−1)

(V ) ↪→ A1
V (see Lemma 2.13). Finally, replacing (X, z) by a suit-

able Zariski-neighbourhood, we establish in Lemma 2.14 the remaining properties
claimed in Theorem 2.1.

Summing up, we will in fact show slightly more, proving the following version
of [Colliot-Thélène et al. 1997, Theorem 3.2.2] over o.

Theorem 2.4. Let X = Spec(A)/S be a smooth affine S-scheme of finite type,
fibrewise of pure dimension n and let Z = Spec(B) ↪→ X be a proper closed
subscheme. Let z be a point in Z. If z lies in the special fibre, suppose that Zσ 6= Xσ .
Then, Nisnevich-locally around z, there exists a closed embedding X ↪→ AN

S and a
Zariski-open subset W ⊆ En with W (o) 6=∅ such that the following holds:

For all u ∈W (o) with linear projections

pu = p(u1,...,un−1)×S pun : X→ An
S = An−1

S ×S A1
S,

there are Zariski-open neighbourhoods V ⊆ An−1
S containing p(u1,...,un−1)(z) and

U ⊆ p−1
(u1,...,un−1)

(V ) containing z satisfying.

(1) p(u1,...,un−1)|Z : Z→ An−1
S is finite,

(2) Z ∩U = Z ∩ p−1
(u1,...,un−1)

(V ),

(3) pu|U :U→ An
S is étale and restricts to a closed embedding Z ∩U ↪→ A1

V and

(4) p−1
u (pu(Z ∩U ))∩U = Z ∩U.

The proof of Theorem 2.4 follows the proof in [Colliot-Thélène et al. 1997] and
the outline sketched above.

Proof. Clearly, we may assume that both X and Z are connected. Next, observe
that the case of z lying in the generic fibre Xη of X/S is already covered by [Colliot-
Thélène et al. 1997, Theorem 3.2.2]. Thus, we may assume that z lies in the special
fibre Xσ of X/S. Finally, observe that we may enlarge Z . In particular, picking
any element f in the kernel of A� B with f 6= 0 in the special fibre A⊗o F, we
may assume B = A/ f , i.e., Z = V ( f ).

We follow the outline of the proof sketched above: Up to a refinement by a
suitable Nisnevich neighbourhood (X ′, z′)→ (X, z), Proposition 2.6 provides a
closed embedding i0 : X ′ ↪→Ax1,...,xN ,S such that Z ′= Z×X X ′ is fibrewise dense in
its Zariski-closure Z ′ in Px0:···:xN ,S . Replacing our base-point z by a specialization
to a closed point z0 in the image of X ′ → X , we can assume that z is closed
itself (see Reduction 2.8). Further, we replace (X, z) by (X ′, z′), i.e., we assume
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X ′ = X . Composing the closed embedding i0 : X ↪→ Ax,S with a linear projection
Ax,S→ At1,...,tn,S , corresponding to an o-point u of the space of linear projections
En , we get maps

X
pu
//

p(u1,...,un−1)
$$

At1,...,tn,S

pr
��

At1,...,tn−1,S

Here n is the dimension of X . Proposition 2.9 provides an open W in our space
of linear projections En with W (o) nonempty, and for each linear projection u in
W (o) the restriction p(u1,...,un−1)|Z is finite (i.e., part (1) in Theorem 2.4), pu is
étale around

F = Fu = p−1
(u1,...,un−1)

(p(u1,...,un−1)(z))∩ Z

and pu|F : F→ pu(F) is universally injective.
Fix any such u in W (o). In Lemma 2.13, we will replace At1,...,tn−1,S by a Zariski-

neighbourhood V = Vu of p(u1,...,un−1)(z) such that pu is étale around every point
of Z ∩ p−1

(u1,...,un−1)
(V ) and such that the induced restriction

pu|Z∩p−1
(u1,...,un−1)

(V ) : Z ∩ p−1
(u1,...,un−1)

(V ) ↪→ Atn,V

is a closed embedding. In Lemma 2.14, we will shrink p−1
(u1,...,un−1)

(V ) to a Zariski-
neighbourhood U1 of z satisfying the analogue of (4) in Theorem 2.4, i.e.,

p−1
u (pu(Z ∩U1))∩U1 = Z ∩U1,

without changing Z ∩ p−1
(u1,...,un−1)

(V ) = Z ∩U1. In particular, pu restricts to a
closed embedding Z ∩U1→ Atn,V . Since pu is étale already around every point of
Z ∩U1, we may shrink U1 a bit more (by intersecting it with the open étale locus
of pu) to get the desired Zariski-neighbourhood U = Uu of (X, z) satisfying (2),
(3) and (4) in Theorem 2.4. �

Towards the finiteness part. The key part in the proof of Theorem 2.4 is the
finiteness assertion (1). By Lemma 2.3, we need to find a closed embedding
i0 : X ↪→ Ax,S and an o-point u ∈ En(o) such that the closure Z of Z in Px,S

intersects L(u1,...,un−1) trivially. Unfortunately, it is not enough to require that the
fibrewise closure of Z in Px,S misses L(u1,...,un−1). Indeed, Z might not be the
fibrewise projective closure of Z over S — the special fibre Zσ might be strictly
larger than the projective closure of Zσ , as seen in the next example.

Example 2.5. Let A = o[x1] and B = o[x1]/(πx2
1 + x1 + 1). Then Spec(B) ⊂

Px0:x1,S is fibrewise closed but at least one solution of πx2
1+x1+1 in kalg specializes

to∞ in Px0:x1,F, i.e., Spec(B)⊂ Px0:x1,S is not closed.
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To avoid these difficulties, we need to make a careful choice for the embedding
i0 : X ↪→ Ax,S .

Proposition 2.6. Nisnevich-locally around z, there exists a closed embedding

i0 : X ↪→ Ax,S

with Z fibrewise dense over S inside its closure Z in Px,S .

Proof. We need to adapt [Kai 2015, Theorem 4.6] to our situation. Since z lies in
the special fibre and o is henselian, [loc. cit.] gives us an affine Nisnevich neigh-
bourhood (Z ′, z′)→ (Z , z) and a closed embedding ī0 : Z ′ ↪→ Ax1,...,xm ,S , such
that Z ′ is fibrewise dense over S inside its closure Z ′ in Px0:···:xm ,S . Since both
Z and Z ′ are affine, the underlying étale morphism Z ′→ Z is standard smooth,
i.e., Z ′ = Spec(B ′) with B ′ = B[t1, . . . , ts]/(ḡ1, . . . , ḡs) and invertible Jacobi-
determinant det({∂ḡi/∂t j }i, j ) ∈ B ′×.

We want to extend (Z ′, z′) to a Nisnevich neighbourhood (X ′, z′) of (X, z).
Since the Jacobi-determinant det({∂ ḡi/∂t j }i, j ) is invertible in B ′, it is nontrivial
in B ′⊗ k(z′). Choose a lift gi ∈ A[t] for each ḡi and set A′ := A[t]/(g1, . . . , gs)

and X ′ = Spec(A′). By construction, B ′ = A′ ⊗A B, so z′ induces a point (also
denoted by) z′ in X ′. Since det({∂gi/∂t j }i, j )≡ det({∂ ḡi/∂t j }i, j ) 6= 0 in A′⊗ k(z′),
the Jacobi-determinant det({∂gi/∂t j }i, j ) is invertible around z′ in X ′. By shrinking
X ′ without changing Z ′ (since the Jacobi-determinant is invertible on the latter), we
may assume that (Z ′, z′)→ (Z , z) extends to an affine Nisnevich neighbourhood
(X ′, z′)→ (X, z). Further, lifting the images of xi in B ′ to A′, ī0 extends to a map
i ′0 : X

′
→ Ax1,...,xn,S .

Unfortunately, there is no reason for i ′0 to be a closed embedding. To repair this,
choose a closed embedding X ′ ↪→ Ay1,...,yr ,S over S, i.e., generators a j of A′ as an
o-algebra. Recall that we assumed B = A/ f for f in A nonzero in the special fibre
A⊗o F (see the proof of Theorem 2.4). Writing a j

= a j1
1 · . . . · a

jr
r , any element of

the ideal f · A′ is of the form
∑

j λ j · f a j , where λ j ∈ o and j runs over a finite
subset of Nr. Mapping y( j)

7→ f a j , we get a map X ′→ A{y( j)
| j∈Nr

},S into a copy
of the infinite affine space over S. Together with the map i ′0 : X

′
→ Ax1,...,xn,S , we

get a closed embedding

i∞ : X ′ ↪→ Ax1,...,xm ,S ×S A
{y( j)
| j∈Nr },S

∼= A∞S

into the fibre product. Indeed, i ′0 : o[x1, . . . , xm] → A′ is surjective modulo f
and o[y( j)

| j ∈ Nr
] → A′ has image o[ f · A′] by construction. By Lemma 2.7, i∞

induces i0 : X ′ ↪→ Ax1,...,xm ,S×S Ay(i1),...,y(il ),S , still a closed embedding for suitable
j1, . . . , j l ∈ Nr. Setting xm+s := y( j s) and N :=m+l, we have constructed a closed
embedding i0 : X ′ ↪→ Ax1,...,xN ,S such that i0|Z ′ factors over ī0 : Z ′ ↪→ Ax1,...,xm ,S =

V (xm+1, . . . , xN )⊆ Ax1,...,xN ,S . In particular, the closure of Z ′ in Px0:···:xN ,S is just
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Z ′ inside the linear subspace V+(xm+1, . . . , xN ) ⊆ Px0:···:xN ,S , so Z ′ is fibrewise
dense over S inside this closure. �

Lemma 2.7. Let C be an o-algebra of finite type. Let ι :Spec(C) ↪→At1,t2,...,S=A∞S
be a closed embedding and let pr≤N :At1,t2,...,S→At1,...,tN ,S =AN

S be the canonical
projection. Then pr≤N ◦ ι is a closed embedding for N � 0.

Proof. Suppose that C is generated as an o-algebra by c1, . . . , cr ∈ C . Since
the corresponding map on algebras o[t1, t2, . . . ]� C is surjective, we can find
polynomials fi ∈ o[t1, t2, . . . ] mapping to ci . Pick N � 0 such that all the fi lie
inside o[t1, . . . , tN ]. Then ι restricted to o[t1, . . . , tN ] is still surjective, hence the
claim. �

Choosing linear projections. In the next step, we want to find the Zariski-open
subset W ⊆ En parametrizing the linear projections pu in Theorem 2.4. To do so,
let us first make one further reduction.

Reduction 2.8. By Proposition 2.6, there is a Nisnevich neighbourhood (X ′, z′)→
(X, z) and a closed embedding X ′ ↪→ Ax,S such that Z ′ = Z ×X X ′ is fibrewise
dense in its Zariski-closure Z ′ in Px,S . Let z0 be a specialization of z in the image of
X ′→ X . We can find a point z′0 in Z ′ such that k(z′0)=k(z0), i.e., (X ′, z′0)→ (X, z0)

is a Nisnevich neighbourhood, too. The Nisnevich localization (X ′, z′)→ (X, z)
will be the only non-Zariski-localization in the proof of Theorem 2.4. Thus we
may assume that z is a closed point in the following. Further, from now on we may
identify X ′ = X .

The Zariski-open subset W ⊆ En in Theorem 2.4 will be provided in the follow-
ing proposition.

Proposition 2.9. Let X = Spec(A)/S be a connected smooth affine S-scheme of
finite type, fibrewise of pure dimension n, f an element in A which is nonzero in
A⊗o F and Z = Spec(B = A/ f ) ↪→ X the closed embedding. Let z be a closed
point in the special fibre of Z. Suppose there is a closed embedding i0 : X ↪→ Ax,S

such that Z is fibrewise dense over S inside its closure Z in Px,S .
Then there is a Zariski-open subset W ⊆ En with W (o) 6= ∅, such that for all

u ∈W (o) the following hold:

(1) p(u1,...,un−1)|Z : Z→ At1,...,tn−1,S is finite,

(2) pu is étale at all points of F = p−1
(u1,...,un−1)

(p(u1,...,un−1)(z))∩ Z and

(3) pu|F : F→ pu(F) is radicial.

Let us first fix the following notation.

Remark 2.10. For Y/S a smooth scheme, denote by red : Y (o)→ Y (F)= Yσ (F)
the reduction map we get by precomposing with the closed point σ. Because o is
henselian and Y/S smooth, this reduction map is always surjective.
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Proof of Proposition 2.9. We divide Proposition 2.9 into two parts: Lemma 2.11
will provide an open W1 of En such that W1(o) is nonempty and every u in W1(o)

satisfies claim (1), while Lemma 2.12 will provide an open W2 such that W2(o) is
nonempty and every u in W2(o) satisfies claims (2) and (3) in Proposition 2.9. The
intersection W =W1∩W2 has all the properties claimed by Proposition 2.9. For the
nonemptiness of W (o), recall that the reduction map W (o)�W (F) is surjective
and W1(F)∩W2(F) is nonempty as the special fibre of W1∩W2 is a nonempty open
subscheme of an affine space over the infinite field F. �

Lemma 2.11. Under the assumptions of Proposition 2.9, there is a Zariski-open
subset W1 ⊆ En with W1(o) 6= ∅, such that for all u ∈ W1(o) the restriction
p(u1,...,un−1)|Z : Z→ At1,...,tn−1,S is finite.

Lemma 2.12. Under the assumptions of Proposition 2.9, there is a Zariski-open
subset W2 ⊆ En with W2(o) 6= ∅, such that pu is étale at all points of F and
pu|F : F→ pu(F) is radicial for all u ∈W2(o).

Proof of Lemma 2.11. This is just a version of the arguments leading to [Grayson
1978, Proposition 1.1]. Recall that the j-th factor A

∨,( j)
x,S of En is Ax∗1, j ,...,x

∗

N , j ,S , i.e.,
En = A{x∗i, j |1≤i≤N ,1≤ j≤n},S . Define

L := V+

(
x0,
∑

j

x∗i, j ⊗ x j

∣∣∣ 1≤ i < n
)
⊆ En ×S H∞ and Z∞ := Z ∩ H∞.

Here, H∞ = V+(x0)⊂ Px,S is the hyperplane at infinity. By construction, L→ En

has fibre Lu = L(u1,...,un−1) over u ∈En(o). Since the projection pr :En×S H∞→En

is projective, hence closed,

W1 := En \ pr(L∩ (En ×S Z∞))

is open. Again by construction, for any u ∈ W1(o), L(u1,...,un−1) ∩ Z = ∅, so
p(u1,...,un−1)|Z : Z→ At1,...,tn−1,S is finite by Lemma 2.3.

It remains to show that W1(o) 6= ∅. The reduction map red : W1(o)� W1(F)

is surjective, so we have to show W1(F) = W1,σ (F) 6= ∅. The special fibre W1,σ

equals En,σ \ pr(Lσ ∩ (En,σ ×F Z∞,σ )). Further, Zσ ⊂ Zσ is dense by assumption
so Zσ is the closure Zσ of Zσ inside Px,F. It follows that Z∞,σ = Zσ ∩ H∞,σ , i.e.,
we are in the situation of [Grayson 1978, Proposition 1.1] and W1,σ (F) 6=∅. �

Lemma 2.12 can easily be derived from [Colliot-Thélène et al. 1997, Lemmas
3.4.1 and 3.4.2] applied over the special fibre.

Proof of Lemma 2.12. As a closed embedding of smooth S-schemes, i0 : X ↪→Ax,S

is regular. Let I = ( f1, . . . , fN−n)E o[x] be the ideal of i0 for f1, . . . , fN−n a
regular sequence. Write A=O(X) over o[t] (via pu) as o[t][x]/( fi , u j − t j | i, j).
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Then pu is étale at a point x ∈ X if it is standard smooth around x , i.e., if the
Jacobi-determinant

det
({

∂ fi

∂xs

}
i,s

∣∣∣ {∂(u j − t j )

∂xs

}
j,s

)
= det

({
∂ fi

∂xs

}
i,s

∣∣∣ {∂(u j )

∂xs

}
j,s

)
is invertible in OX,x . We may write the latter determinant as d f1 ∧ · · · ∧ d fN−n ∧

du1 ∧ · · · ∧ dun in �N
o[x]/o ⊗o[x] OX,x . Since X ↪→ Ax,S is a smooth pair, the

conormal sequence

0→ I/I 2
⊗A OX,x →�1

o[x]/o⊗o[x]OX,x →�1
A/o⊗A OX,x → 0

is split exact and

�N
o[x]/o⊗o[x]OX,x =

∧N−n
(I/I 2

⊗A OX,x)⊗OX,x (�
n
A/o⊗A OX,x).

Note that I/I 2 is free over A with basis given by the regular sequence f1, . . . , fN−n .
In particular, f1 ∧ · · · ∧ fn is invertible in

∧N−n
(I/I 2

⊗A OX,x)=OX,x and

d f1 ∧ · · · ∧ d fN−n ∧ du1 ∧ · · · ∧ dun = ( f1 ∧ · · · ∧ fn)⊗ (dū1 ∧ · · · ∧ dūn)

is invertible if and only if dū1∧· · ·∧dūn is invertible in �n
A/o⊗A OX,x =OX,x for

ū j the image of t j under o[t] → A. By Nakayama’s lemma, this is equivalent to
dū1 ∧ · · · ∧ dūn 6= 0 in �n

X/S ⊗OX k(x). Suppose x is contained in F . Since z lies
in the special fibre, so does x and �n

X/S ⊗OX k(x)=�n
Xσ /F⊗OXσ

k(x). Summing
up, pu is étale at x ∈ F if dū1 ∧ · · · ∧ dūn 6= 0 in �n

Xσ /F⊗OXσ
k(x). Thus, we are

in fact in the situation of [Colliot-Thélène et al. 1997, Lemma 3.4.1], i.e., we get
a nonempty open subset W ′2 ⊆ En,σ ⊗F Falg with pu étale around F for all u with
red(u) ∈W ′2(F

alg). Here, Falg/F is an algebraic closure.
For the universal injectivity, observe that pu|F = pred(u)|F . Thus, we are in the

situation of [Colliot-Thélène et al. 1997, Lemma 3.4.2], i.e., we get a nonempty
open subset W ′′2 ⊆ En,σ ⊗F Falg with pu|F⊗FFalg (universally) injective for all u with
red(u) ∈W ′′2(F

alg).
Finally, by a standard descent argument (see the proof of [Colliot-Thélène et al.

1997, Lemma 3.4.3]) for the intersection W ′2∩W ′′2 , we get an open subset W 2⊆En,σ

with W 2(F) 6= ∅, such that pu is étale at all points of F and pu|F is universally
injective for all u with red(u) ∈ W 2(F). Let W2 ⊆ En be any open subset with
special fibre W2,σ = W 2. Then u ∈ W2(o) if and only if red(u) ∈ W 2(F) and
W2(o) 6=∅, since the reduction map is surjective. �

Choosing neighbourhoods. Fix a linear projection pu for an o-point u in the open
subset W ⊆ En provided by Proposition 2.9. In the following, we construct the
open neighbourhoods V and U in Theorem 2.4.

As in [Colliot-Thélène et al. 1997], we first secure V ⊆At1,...,tn−1,S in Lemma 2.13
and an open neighbourhood z ∈U1 ⊆ p−1

(u1,...,un−1)
(V ) covering Theorem 2.4 parts
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(2) and (4) in Lemma 2.14. If we define U as the intersection of U1 with the
étale locus of pu , the pair V and U will finally satisfy claims (2), (3) and (4) of
Theorem 2.4. The proofs can almost literally be transferred from [Colliot-Thélène
et al. 1997].

Lemma 2.13 (cf. [Colliot-Thélène et al. 1997, Lemma 3.5.1]). Under the assump-
tions of Proposition 2.9 and any choice of linear projection u in W (o), there is a
Zariski-open neighbourhood V ⊆ At1,...,tn−1,S of p(u1,...,un−1)(z) such that pu is étale
in a Zariski-open neighbourhood of Z ∩ p−1

(u1,...,un−1)
(V ) and restricts to a closed

embedding Z ∩ p−1
(u1,...,un−1)

(V ) ↪→ A1
V .

Proof. We will get V as V1 ∩ V2, where V1 ⊆ At1,...,tn−1,S is an open neighbour-
hood of p(u1,...,un−1)(z) such that pu is étale at all points of Z ∩ p−1

(u1,...,un−1)
(V1)

and V2 ⊆ At1,...,tn−1,S is an open neighbourhood such that pu restricts to a closed
embedding Z ∩ p−1

(u1,...,un−1)
(V2)→ A1

V2
.

Let U ′ ⊆ X be the étale locus of pu . Since u ∈ W (o), U ′ is an open neigh-
bourhood of F = p−1

(u1,...,un−1)
(p(u1,...,un−1)(z)) ∩ Z in X (Proposition 2.9). As

p(u1,...,un−1)|Z is finite, p(u1,...,un−1)(Z \U ′) is closed and we set

V1 := At1,...,tn−1,S \ p(u1,...,un−1)(Z \U ′).

By construction, V1 is a Zariski-open neighbourhood of the image p(u1,...,un−1)(z) of
z and moreover Z∩ p−1

(u1,...,un−1)
(V1)⊆ Z∩U ′ is contained in the étale locus U ′ of pu .

To get the neighbourhood V2, consider pu|Z : Z → At,S = Atn,At1,...,tn−1,S
as a

family of maps over At1,...,tn−1,S . Since Z/At1,...,tn−1,S is finite, the property “pu|Z is
a closed embedding” is Zariski-open in the base At1,...,tn−1,S by Nakayama’s lemma.
Thus we have to show that the fibre of this family

pu|F : Z ∩ p−1
(u1,...,un−1)

(p(u1,...,un−1)(z))= F→ Atn,p(u1,...,un−1)(z)

over p(u1,...,un−1)(z) is a closed embedding. But pu(F)⊂ Atn,p(u1,...,un−1)(z) is closed
as a finite set of closed points and pu|F : F → pu(F) is a closed embedding as
by Proposition 2.9, it is radicial and pu is étale and hence unramified at each point
of F . �

Lemma 2.14 (cf. [Colliot-Thélène et al. 1997, Lemma 3.6.1]). Under the assump-
tions of Proposition 2.9 and any choice of linear projection u in W (o), let

Z ′ := Z ∩ p−1
(u1,...,un−1)

(V ) and U1 := p−1
(u1,...,un−1)

(V ) \ (p−1
u (pu(Z ′)) \ Z ′).

Then U1 ⊆ p−1
(u1,...,un−1)

(V ) is a Zariski-open neighbourhood of the point z and we
have Z ∩U1 = Z ′ and p−1

u (pu(Z ′))∩U1 = Z ′.

Proof. By definition of U1, z lies inside U1, Z∩U1= Z ′ and p−1
u (pu(Z ′))∩U1 = Z ′.

It remains to show that U1 ⊆ p−1
(u1,...,un−1)

(V ) is open. By Lemma 2.13, pu restricts
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to a closed embedding Z ′ → Atn,V , so p−1
u (pu(Z ′)) ⊂ p−1

(u1,...,un−1)
(V ) is closed.

We need to show that Z ′ ⊆ p−1
u (pu(Z ′)) is open.

To this end, consider the étale locus U ′′ of

pu|p−1
u (pu(Z ′)) : p−1

u (pu(Z ′))→ pu(Z ′).

By Lemma 2.13, pu is étale at all points of Z ′. Thus, the base change pu|p−1
u (pu(Z ′))

is still étale at all points of Z ′, that is, Z ′ is contained inside the open subset
U ′′ ⊆ p−1

u (pu(Z ′)). But Z ′→ pu(Z ′) is an isomorphism by Lemma 2.13, so both
Z ′/pu(Z ′) and U ′′/pu(Z ′) are étale and hence Z ′ ⊆U ′′ is open. �

3. Objectwise stable A1-connectivity

In this section, we derive connectivity results for homotopy presheaves (i.e., “ob-
jectwise” connectivity results). These are used in the proof of our main theorem
in the following section. Moreover, we show the left completeness of the A1-
Nisnevich-local t-structure on S1- and P1-spectra. Throughout this section, let
S be an arbitrary noetherian scheme of finite dimension.

Results for S1-spectra. We start with objectwise connectivity results for S1-spectra.

Proposition 3.1. Let U ∈ SmS be a scheme of dimension e. Then given E in
SHs

S1>i+e(S), one has
[6∞S1 (U+)[i], LA1E] = 0,

where LA1 is a fibrant replacement functor for the stable A1-Nisnevich-local model
structure.

Remark 3.2. Proposition 3.1 gives a connectivity result for a U -section of the
homotopy presheaf [6∞S1 ( –+ )[i], LA1E] with respect to the dimension of U . How-
ever, we are interested in a connectivity result depending only on the dimension
of the base scheme S. The price we have to pay for this is to sheafify the ho-
motopy presheaf, i.e., eventually we are interested in connectivity results for the
Nisnevich stalks of the presheaf [6∞S1 ( –+ )[i], LA1E]. Unfortunately we cannot
apply Proposition 3.1 directly to the stalks as their dimension is unbounded.

Proof of Proposition 3.1. We work with the explicit model L∞ of Lemma 1.2 as
an A1-Nisnevich-local fibrant replacement functor LA1. By homotopy-exactness of
L∞, we have to show that[

6∞S1 (U+), hocolim
k→∞

Lk(E)
]
= 0

for U ∈ SmS of dimension e and E ∈ SHs
S1>e. Since 6∞S1 (U+) is compact, every

homotopy class in question is represented by some 6∞S1 (U+)→ Lk(E). Hence, it



356 JOHANNES SCHMIDT AND FLORIAN STRUNK

suffices to show, that for every k ≥ 0,

[6∞S1 (U+), Lk E] = 0.

We argue by induction on k ≥ 0 for all U ∈ SmS of dimension e and all spectra
E ∈ SHs

S1>e at once.
For k = 0 the statement follows directly from Lemma 3.3 below. Let k ≥ 1. The

distinguished triangle in Remark 1.3 induces the long exact sequence

· · · → [6∞S1 (U+), L(k−1)E)] → [6∞S1 (U+), Lk E]

→ [6∞S1 (U+∧A1), L(k−1)E[1]] → · · · .

The abelian group on the left-hand side vanishes by the induction hypothesis on k.
In order to see the vanishing of the right-hand side, we observe that

U tA1 ∼=U+∨A1
→ (U ×A1)tA1 ∼=U+×A1

→U+∧A1

and therefore U+→(U×A1)+→U+∧A1 is a homotopy cofibre sequence in sPre+(S).
This yields a distinguished triangle after applying the left Quillen functor 6∞S1 .
Consider the long exact sequence obtained by an application of [ – , L(k−1)E[1]]
to this triangle. It suffices to show the vanishing of both of the abelian groups
[6∞S1 (U+)[1], L(k−1)E[1]] and [6∞S1 (U × A1)+, L(k−1)E[1]]. For the first group,
this follows from the inductive hypothesis on k and likewise for the second, since
the dimension of U ×A1 is e+ 1 and E[1] ∈ SHs

S1>e+1. �

Lemma 3.3. Let U ∈ SmS be a scheme of dimension e. Then for D ∈ SHs
S1>i+e(S),

one has
[6∞S1 (U+)[i], LsD] = 0.

Proof. It suffices to show that [6∞S1 (U+), LsD] = 0 for D ∈ SHs
S1>e. Indeed,

[6∞S1 (U+)[i], LsD] ∼= [6∞S1 (U+), Ls(D[−i])] as Ls is homotopy-exact. Recall that
the Nisnevich-cohomological dimension is bounded by the Krull-dimension, i.e.,
for any sheaf G of abelian groups on SmS and n > dim(U ), we have

[6∞S1 (U+), LsH G[n]] = H n
Nis(U,G)= 0;

see, e.g., [Thomason and Trobaugh 1990, Lemma E.6(c)].
By the left completeness of the Nisnevich-local structure, there is a filtration

0' holim
n→∞

LsD≥n // · · · // LsD≥e+2 // LsD≥e+1= LsD

· · · LsHπe+2(D)[e+ 2]
��

LsHπe+1(D)[e+ 1]
��

and a surjection 0= [6∞S1 (U+), holimn LsD≥n]� limn[6
∞

S1 (U+), LsD≥n] by the
Milnor-lim1-sequence. Hence, limn[6

∞

S1 (U+), LsD≥n] = 0. For i ≥ 1, there is a
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long exact sequence

· · · → [6∞S1 (U+), LsD≥e+i+1] → [6
∞

S1 (U+), LsD≥e+i ]

→ [6∞S1 (U+), LsHπe+i (D)[e+ i]] → · · · ,

where the abelian group on the right-hand side is zero by the above-mentioned
result on the Nisnevich-cohomological dimension. For this reason, the projection
lim[6∞S1 (U+), LsD≥n]� [6∞S1 (U+), LsD≥e+1] is surjective and therefore we get
[6∞S1 (U+), LsD≥e+1] = 0 as desired. �

Corollary 3.4. Let U ∈ SmS be an S-pointed scheme of dimension e. Then for
D ∈ SHs

S1>i+e(S), one has

[6∞S1 (U )[i], LsD] = 0.

Proof. The basepoint s : S→U is a splitting of the structure morphism p :U→ S.
In particular, dim(U )≥ dim(S). Consider the distinguished triangle

6∞S1 (S+)→6∞S1 (U+)→6∞S1 (U )→6∞S1 (S+)[1].

If dim(U ) > dim(S) then the assertion follows from the previous Lemma 3.3 ap-
plied to the entries 6∞S1 (U+) and 6∞S1 (S+)[1] of the triangle. Now we consider the
case dim(U )= dim(S). Because of the splitting s : S→U , p is surjective. Since
p is smooth of relative dimension zero, it follows that p is étale. Thus, the section
s itself is étale. As it is also a closed immersion, the image of s is a component
of U, i.e., U ∼= (U ′)+ for some U ′ ∈ SmS with dim(U ′)≤ dim(U ). The result then
follows from the previous Lemma 3.3 applied to 6∞S1 (U ′+). �

We get the following analogue as a corollary to Proposition 3.1.

Corollary 3.5. Let U ∈ SmS be an S-pointed scheme of dimension e. Then for
E ∈ SHs

S1>i+e(S), one has

[6∞S1 (U )[i], LA1E] = 0.

Proof. The proof is literally the same as that of Corollary 3.4 using Proposition 3.1
instead of Lemma 3.3. �

Corollary 3.6. The A1-Nisnevich-local t-structure on SHA1

S1(S) is left complete and
hence nondegenerate. In particular,

LA1 holim
n→∞

(E≤n)∼ holim
n→∞

LA1
(E≤n).

Proof. First note that the truncation functors of the A1-Nisnevich-local t-structure
are (after inclusion to SHs

S1) given by LA1
(( – )≤n) (see Proposition 1.15). Con-

sider a spectrum E ∈ SptS1(S). To see that LA1E → holimn LA1
(E≤n) is an iso-

morphism in SHs
S1 , we may equivalently show holimn LA1

(E≥n) ' 0, which is
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implied by the triviality of the group πi (holimn LA1
(E≥n))(U ) for every integer i

and every U ∈ SmS . Equivalently, we show that πi holimn(LA1
(E≥n)(U )) is trivial.

Proposition 3.1 yields [6∞S1 U+[i], LA1
(E≥n)] = 0 for all integers n > i + dim(U ).

Hence, we obtain limn πi (LA1
(E≥n)(U ))= 0. Using Milnor’s lim1-sequence, it

follows that the group πi holimn(LA1
(E≥n)(U )) is trivial. Indeed, the lim1-term is

trivial as the occurring groups are eventually zero. �

Results for P1-spectra. In this subsection, we show some analogous statements to
those of the preceding section for P1-spectra. The results of this subsection are not
needed for the rest of the paper but are of independent interest.

Proposition 3.7. Let U ∈ SmS be a scheme of dimension e. For E ∈ SH>i+e(S),
one has

[6∞
P1(U+)[i]〈q〉, E]SH = 0

for all q ∈ Z.

Proof. Set F := [6∞
P1(U+)[i]〈q〉, – ]SH for abbreviation. By the construction in

Proposition 1.15, the class SH>i+e is generated under extensions, (small) sums
and cones from S[i + e+ 1]. If E is obtained from an extension E ′→ E → E ′′

and F vanishes on E ′ and E ′′, then it also vanishes on E . If E is a (small)
sum of objects E ′α on which F vanishes, we use the homotopy-compactness of
6∞

P1(U+)[i]〈q〉 to conclude that F(E)= 0. Suppose that E sits in a distinguished
triangle E ′→ E ′′→ E→ E ′[1] and we know the vanishing of F on E ′′ and E ′[1].
Then we know it on E . Summing up, it suffices to show that F(S[n])= 0 for all
n ≥ i + e+ 1, i.e.,

[
6∞

P1(U+)[i]〈q〉, 6∞P1(V+)[n]〈q ′〉
]
SH = 0 for all V ∈ SmS and

q ′ ∈ Z. We compute[
6∞

P1(U+)[i]〈q〉, 6∞P1(V+)[n]〈q ′〉
]
SH

∼=
[
6∞

P1(U+)[i − n], 6∞
P1(V+)〈q ′− q〉

]
SH

∼=
[
6∞S1 (U+)[i − n], �∞Gm

(6∞Gm
6∞S1 (V+)〈q ′− q〉)

]
∼=
[
6∞S1 (U+)[i − n], colimk �

k
Gm

LA1
(6∞S1 (V+)∧G∧(k+q ′−q)

m )
]

∼= colimk
[
6∞S1 (U+)[i − n] ∧G∧k

m , LA1
(6∞S1 (V+)∧G∧(k+q ′−q)

m )
]
,

where the last isomorphism is due to compactness of 6∞S1 (U+). Now we use the
fact that A1-Nisnevich-locally there is an equivalence Gm ∼ P1

[−1]. Hence, it
suffices to show that for all but finitely many k ≥ 0 (and in particular, we may
assume k+ q ′− q ≥ 0), one has[
6∞S1 (U+)[i − n] ∧G∧k

m , LA1
(6∞S1 (V+)∧G∧(k+q ′−q)

m )
]

∼=
[
6∞S1 (U+∧ (P1)∧k)[i − n− k], LA1

6∞S1 (V+∧G∧(k+q ′−q)
m )

]
= 0.
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By the same arguments as in the proof of Proposition 3.1, this is implied by
the vanishing of the group

[
6∞S1 (U ×Pk)+[i − n− k], LA1

6∞S1 (V+∧G
∧(k+q ′−q)
m )

]
.

Since the spectrum 6∞S1 (V+∧G
∧(k+q ′−q)
m ) is in SHs

S1≥0, the result follows from
Proposition 3.1 as the scheme U ×Pk has dimension e+ k. �

Corollary 3.8. Let S be a noetherian scheme of finite Krull-dimension. Then the
homotopy t-structure on the motivic homotopy category SH(S) is left complete and
hence nondegenerate.

Proof. Let E ∈ SH. We have to show that the canonical morphism E→ holim E≤n

is an isomorphism in SH. Equivalently, we may show that holim E≥n ' 0. By
[Hovey 1999, Theorem 7.3.1], this is implied by the vanishing of the homotopy
classes [

6∞
P1(U+)[i]〈q〉, holim

n→∞
E≥n

]
in SH for all U ∈ SmS and all i, q ∈ Z. Using Milnor’s lim1-sequence as in
Corollary 3.6, this, in turn, is implied by the following statement: for all U ∈ SmS

and i, q ∈Z there exists an integer n0 with
[
6∞

P1(U+)[i]〈q〉, E≥n
]
= 0 for all n≥ n0.

Setting n0 := i + dim(U ), this is precisely the preceding Proposition 3.7. �

4. Stalkwise stable A1-connectivity

In this section, we derive our main connectivity result for homotopy sheaves (i.e.,
a “stalkwise” connectivity result). We formulate the shifted stable A1-connectivity
property on the base scheme and show that this property holds for every Dedekind
scheme with infinite residue fields.

Stable A1-connectivity. Let us recall the following property on a base scheme S
introduced by Morel [2005, Definition 1].

Definition 4.1. A noetherian scheme S of dimension d has the stable A1-connectivity
property, if for every integer i and every spectrum E in SHs

S1≥i (S), the A1-localiza-
tion LA1E is contained in SHs

S1≥i (S).

Theorem 4.2 [Morel 2005, Theorem 6.1.8]. If S is the spectrum of a field, then S
has the stable A1-connectivity property.

Corollary 4.3. If S is the spectrum of a field, then SHA1

S1≥0(S)= SHA1,π

S1≥0(S).

Remark 4.4. Ayoub [2006] gave examples of base schemes that do not have the
stable A1-connectivity property: Let S/k be a connected normal surface over k
an algebraically closed field, regular away from one closed singular point s. Let
S′→ S be a resolution with exceptional divisor E and let Ered be the underlying
reduced subscheme. Then by [op. cit., Corollary 3.3], S does not have the stable A1-
connectivity property if PicEred is not A1-invariant. Here, PicEred is the Nisnevich
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sheafification of the presheaf U 7→ Pic(U ×s Ered) on Smk(s). A family of concrete
examples for such a surface S (due to Barbieri-Viale) is given in the example in
[op. cit., Section 3] as hypersurfaces of P3

k . Even worse, it follows from [op. cit.,
Lemma 1.3] that no Pn

k for n ≥ 3 has the stable A1-connectivity property.

Towards stable A1-connectivity. We saw in Remark 4.4 that connectivity may drop
for general base schemes. Thus, it is an interesting question if, for a given base
scheme S, there is at least some uniform bound r for the loss of connectivity, i.e., for
E an i-connected spectrum, the A1-localization LA1E is at least (i − r)-connected.
In this subsection, we want to discuss a general recipe for finding such a bound,
based on Morel’s original work over a field.

Proposition 4.5. Let S be a noetherian scheme of finite Krull-dimension and let
r ≥ 0 be an integer. Let E ∈ SHs

S1
≥i (S) be a spectrum. Suppose for all V ∈ SmS ,

all integers k < i −r and all f ∈ [6∞S1 V+, LA1E[−k]], Nisnevich-locally in V, there
exists a Zariski-open W ↪→ V such that

(1) f |6∞
S1 W+= 0, and

(2) πA1

0 (V/W )= 0.

Then LA1E ∈ SHs
S1≥i−r (S).

Proof. We may assume k = 0. We have to show that the sheaf πA1

0 (E) is trivial.
Take a connected scheme V ∈ SmS with structure morphism p : V → S and a point
v ∈ V . It suffices to show that the Nisnevich stalk of πA1

0 (E) at (V, v) is trivial.
Let f(V,v) be a germ in this stalk. Possibly refining (V, v) Nisnevich-locally, we
may assume that f(V,v) is induced by an element f ∈ [6∞S1 V+, LA1E]. After a
further Nisnevich refinement of (V, v), we find a Zariski-open W ↪→ V satisfying
properties (1) and (2). The homotopy cofibre sequence W+→ V+→ V/W induces
a long exact sequence

· · · → [6∞S1 V/W, LA1E] → [6∞S1 V+, LA1E] → [6∞S1 W+, LA1E] → · · · .

Since the restriction of f to 6∞S1 W+ is trivial by (1), f is the image of an element in
the group [6∞S1 V/W, LA1E], i.e., a morphism g : V/W→ (LA1E)0 in the (unstable)
objectwise (pointed) homotopy category. We want to show the triviality of the germ
f(V,v), so it is enough to show that π0(g) is trivial. As the adjunction (6∞S1 , ( – )0) is
a Quillen-adjunction for the A1-Nisnevich-local model, (LA1E)0 is A1-Nisnevich-
local. Therefore, the morphism g factors through h : LA1

(V/W )→ (LA1E)0 and
it suffices to show that π0(h) is trivial, which follows from assumption (2). �

Now let us discuss how to obtain assumptions (1) and (2) from the previous
proposition. We start with assumption (2).



STABLE A1-CONNECTIVITY OVER DEDEKIND SCHEMES 361

We first recall a well-known construction. The singular functor Sing : sPre(S)→
sPre(S) is given on U -sections by the diagonal of the bisimplicial set Sing(F)(U )=
F•(11•×U ), where 11• denotes the standard cosimplicial object in SmS; see [Morel
and Voevodsky 1999, Section 2.3.2] in the analogous situation for simplicial sheaves.
An infinite alternating composition of a Nisnevich-local fibrant replacement functor
Ls and Sing yields an A1-Nisnevich-local fibrant replacement functor LA1 in the
unstable setting. We refer to [loc. cit.] for details of this construction.

Note that for Lemma 4.6 and its Corollary 4.7, we work in the unstable setting.

Lemma 4.6. Let V ∈ SmS be an irreducible scheme and W ↪→ V a nonempty open
subscheme. Let Z = (V \W )red be the reduced complement. Suppose, moreover,
that each point v of V admits a Nisnevich neighbourhood V ′ (with pullback W ′

and Z ′ to V ′) and an étale map p : V ′→ A1
Y in SmS with Z ′→ Y finite such that

W ′ //

��

V ′

p
��

A1
Y \ p(Z ′) // A1

Y

is a Nisnevich-distinguished square. Then π0(Sing(aNis(V/W ))) is trivial for aNis,
the Nisnevich sheafification.

Proof. We follow the proof of [Morel 2005, Lemma 6.1.4]. Since a simplicial
presheaf F has the same 0-simplices as the simplicial presheaf Sing(F), there is an
epimorphism [( – )+, F]� [( – )+,Sing(F)] of presheaves. As Nisnevich sheafifica-
tion preserves epimorphisms, we get a natural epimorphism π0(F)� π0(Sing(F))
of sheaves. Applying this to the discrete simplicial presheaf F = aNis(V/W ) and
precomposing with the epimorphism V = aNisV � aNis(V/W ) of sheaves, we get
a natural epimorphism of sheaves

V � aNis(V/W )= π0(aNis(V/W ))� π0(Sing(aNis(V/W ))).

Hence, it suffices to show that for each point v ∈ V there exists a Nisnevich neigh-
bourhood V ′ such that V ′→π0(Sing(aNis(V ′/W ′))) is zero where W ′ :=W×V V ′.

Let v ∈ V be a point and choose the Nisnevich neighbourhood V ′ from the
assumption of the proposition. In particular, V ′/W ′→ A1

Y /(A
1
Y \ Z ′) is an isomor-

phism of Nisnevich sheaves, so we may assume V ′ = A1
Y with closed Z ′ ↪→ A1

Y
and Z ′→ Y finite. By finiteness, the morphism Z ′→ A1

Y ↪→ P1
Y is proper and

hence a closed immersion. Therefore, we get a diagram

A1
Y \ Z ′ //

��

A1
Y

q
//

j
��

aNis
(
A1

Y /A1
Y \ Z ′

)
∼=

��

P1
Y \ Z ′ // P1

Y
q ′
// aNis

(
P1

Y /P1
Y \ Z ′

)
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where the right vertical morphism is an isomorphism of Nisnevich sheaves as the
left-hand square is a Zariski- and therefore a Nisnevich-distinguished square.

There exists an elementary A1-homotopy Y ×A1
→ P1

Y from the zero-section
s0 : Y → A1

Y ↪→ P1
Y to the section s∞ : Y → P1

Y at infinity, and the latter factorizes
over P1

Y \ Z ′. As by [Morel and Voevodsky 1999, Lemma 2.3.6] the functor Sing
turns elementary A1-homotopies into objectwise homotopies, the maps Sing(s0)

and Sing(s∞) are identified in the objectwise homotopy category. The morphism
Sing(Y ) ∼−→ Sing(A1

Y ) is an objectwise weak equivalence by [Morel and Voevodsky
1999, Corollary 2.3.5]. Hence, the composition Sing(q ′ ◦ j) is the constant map to
the point in the objectwise homotopy category. It follows that the same is true for
Sing(q), as desired. Note that the cited arguments of [Morel and Voevodsky 1999]
are valid for the objectwise structure on simplicial presheaves. �

Using the epimorphism π0(Sing(aNis(V/W )))� πA1

0 (V/W ) of sheaves [Morel
and Voevodsky 1999, Corollary 2.3.22], we get:

Corollary 4.7. In the situation of Lemma 4.6, we have

πA1

0 (V/W )= 0.

Remark 4.8. As explained in [Morel 2005, Remark 6.1.5], πA1

0 (V/W )= 0 might
fail for arbitrary open subschemes W ↪→ V . For example, let S be the spectrum
of a local ring with closed point i : σ ↪→ S and open complement j : W ↪→ S.
Define V := S and consider the A1-Nisnevich-local homotopy cofibre sequence
j] j∗(V/W ) → V/W → i∗LA1i∗(V/W ) from (1.8). We have j] j∗(S/W ) ' ∗

and therefore LA1
(V/W )' i∗LA1

(i∗(V/W )). On the other hand, i∗(S/W ) '

i∗(S)/ i∗(W )' σ/∅' S0
σ , and hence i∗LA1

(i∗(V/W )) has nontrivial π0.

Now we turn to assumption (1) of Proposition 4.5. For the special case that
S is the spectrum of a field, this is an observation of Morel [2004, Lemma 3.3.6].
Please note that the extra claim s∗(W ) 6=∅ in the next lemma excludes the obvious
obstacle to assumption (2) of Proposition 4.5 in our application (see Remark 4.8).

Lemma 4.9. Let S be a noetherian scheme of finite Krull-dimension together with
a codimension c point s ∈ S. Let E ∈ SHs

S1>c(S) be a spectrum. Then for any
V ∈ SmS with s∗(V ) 6= ∅ and any f ∈ [6∞S1 V+, LA1E] there exists an open sub-
scheme W ↪→ V with f |6∞

S1 W+= 0 and s∗(W ) 6=∅.

Proof. Let ηZ ∈ V be a generic point of an irreducible component Z of s∗(V ). In
particular, the ring OV,ηZ has dimension c. We write

j : U := Spec(OV,ηZ )
∼= lim

ji :Ui ↪→V
Ui → V,

where the limit on the right-hand side is indexed by the diagram constituted by the
open immersions ji :Ui ↪→ V with Ui affine and Ui ∩ Z 6=∅.
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Let p : V → S denote the structural morphism. We have

colim
ji :Ui ↪→V

[6∞S1 (Ui → S)+, LA1E]SptS1 (S)

∼= colim
ji :Ui ↪→V

[6∞S1 p]((Ui → V )+), LA1E]SptS1 (S)

∼= colim
ji :Ui ↪→V

[p]6∞S1 (Ui → V )+, LA1E]SptS1 (S)

∼= colim
ji :Ui ↪→V

[6∞S1 (Ui → V )+, p∗(LA1E)]SptS1 (V )

∼= colim
ji :Ui ↪→V

[6∞S1 (Ui → V )+, LA1
(p∗E)]SptS1 (V ) (by Lemma1.9(1))

∼= colim
ji :Ui ↪→V

[ ji,]6∞S1 (Ui →Ui )+, LA1
(p∗E)]SptS1 (V ) ( ji,]((Ui→Ui )+)=(Ui→V )+)

∼= colim
ji :Ui ↪→V

[6∞S1 (Ui →Ui )+, j∗i LA1
(p∗E)]SptS1 (Ui )

∼= [6
∞

S1 (U→ U)+, j
∗LA1

(p∗E)]SptS1 (U) (by Lemma1.9(2))

∼= [6
∞

S1 (U→ U)+, LA1
(j∗ p∗E)]SptS1 (U) (by Lemma1.9(1)).

Using the Quillen adjoint pair (p], p∗), we see that p∗ preserves connectivity. By
Lemma 1.9, the same is true for j∗, so j∗(p∗E) is contained in SHs

S1>c(U). By
Proposition 3.1, we get [6∞S1U+, j

∗ p∗E] = 0 as the scheme U has dimension c.
The restrictions of f ∈ [6∞S1 V+, LA1E] induce an element of the set

colim ji [6
∞

S1 Ui,+, LA1E] = 0

from the left-hand side of the chain of equations above. This means that there
exists an open subscheme W :=Ui ↪→ V with W ∩ Z 6=∅ and f |6∞

S1 W+= 0. Since
Z ⊆ s∗(V ), we have s∗(W ) 6=∅. �

Finally, let us mention that for connectivity results we may restrict ourselves to
local base schemes.

Lemma 4.10. Let S be a noetherian scheme of finite Krull-dimension and let r ≥ 0
be an integer. Let E ∈ SHs

S1≥i (S) be a spectrum. Suppose that for all points s ∈ S
and s : Sh

s → S, we have that LA1
s∗E ∈ SHs

S1≥i−r (S
h
s ). Then LA1E ∈ SHs

S1≥i−r (S).

Proof. After shifting, we can assume that i = r . We have to show that the sheaf
πA1

0 (E) is trivial. It follows from Corollary 1.10 that π0(LA1E) is trivial if and only
if π0(s

∗LA1E) is trivial for all s ∈ S. Hence the claim follows. �

Shifted stable A1-connectivity. In order to obtain a uniform bound for the loss of
connectivity of a spectrum E , we may restrict ourselves to a local base scheme
S by Lemma 4.10. We want to invoke Proposition 4.5. Given a V -section f of
a homotopy presheaf of E , we have to search for an open subscheme W ↪→ V
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fulfilling assumptions (1) and (2) of Proposition 4.5, i.e., f = 0 when restricted
to W , and V/W is A1-Nisnevich-locally connected. For the former condition, we
want to apply Lemma 4.9. To avoid the obstacle to the latter condition coming from
Remark 4.8, we need to take care that W has nonempty fibre over the closed point
of S. This point has codimension c equal to the dimension d of S. Thus, again by
Lemma 4.9, a natural candidate for a uniform bound on the loss of connectivity of
E is c = d . This motivates the following definition and question.

Definition 4.11. A noetherian scheme S of dimension d has the shifted stable A1-
connectivity property, if for every integer i and every spectrum E in SHs

S1≥i (S),
the A1-localization LA1E is contained in SHs

S1≥i−d(S).

Question 4.12. Let S be a regular noetherian scheme of dimension d . Does S have
the shifted stable A1-connectivity property?

Remark 4.13. Morel’s connectivity theorem (Theorem 4.2 above) provides a pos-
itive answer in the case of S the spectrum of a field. In the case of S a Dedekind
scheme with all residue fields infinite, we get a positive answer by Theorem 4.16
below. Unfortunately, we do not have a positive or negative answer for more gen-
eral base schemes.

Remark 4.14. The example of Ayoub discussed in Remark 4.4 does not provide a
negative answer to Question 4.12. In fact, Ayoub gave an example of a base scheme
S (of dimension ≥ 2) and a spectrum E whose homotopy sheaves πA1

i (E) are not
strictly A1-invariant. The latter property is a consequence of the nonshifted stable
A1-connectivity property, i.e., the property that A1-localization does not lower the
connectivity at all. However, the proof (see [Morel 2005, Theorem 6.2.7]) that the
nonshifted stable A1-connectivity property implies strictly A1-invariant homotopy
sheaves does not carry over from the nonshifted to the shifted stable connectivity
property of the base.

At least, a positive answer to Question 4.12 would follow from A1-invariance
of A1-homotopy sheaves πA1

k (E) as the following proposition shows. Note that the
property of a Nisnevich sheaf to be strictly A1-invariant is a stronger property than
just being A1-invariant (see Remark 4.14).

Proposition 4.15. Let S be a noetherian scheme of dimension d. Let i be an integer
and E ∈ SHs

≥i (S) be such that the sheaf πA1

k (E) is A1-invariant for all integers
k < i − d. Then LA1E ∈ SHs

S1≥i−d(S).

Proof. First note that for any open immersion j : S′ ↪→ S the functor j∗ preserves
A1-invariance of (simplicial) presheaves and j∗π0 ∼= π0 j∗. In particular, our as-
sumptions on the spectrum are stable under restriction to open subschemes of the
base. Let E be a spectrum in SHs

S1>d with A1-invariant homotopy sheaves πA1

k (E)
in degrees k ≤ 0. To prove Proposition 4.15, it is again enough to show that πA1

0 (E)
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is trivial. We argue by induction on the dimension d of the base S. The case d = 0
is Theorem 4.2. Let d > 0. By Corollary 1.10, we may assume that S is local
with closed point i : σ ↪→ S. Take a connected scheme V ∈ SmS with structure
morphism p : V → S and a point v ∈ V . It suffices to show that the Nisnevich stalk
of πA1

0 (E) at (V, v) is trivial. By the induction hypothesis, we may assume that v
lies in the fibre over σ as the open complement S \ σ has Krull-dimension strictly
smaller than d. Moreover, we may assume that i∗(V ) is connected. Let f(V,v) be
a germ in this stalk. We have to show that f(V,v) is trivial. After possibly refining
(V, v) Nisnevich-locally, we may assume that f(V,v) is induced by an element
f ∈ [6∞S1 V+, LA1E]. By Lemma 4.9, there exists an open subscheme W ↪→ V

with f |6∞
S1 W+= 0 and i∗(W ) 6= ∅. Clearly, we may assume that v /∈ W . The

cofibre sequence W+→ V+→ V/W induces an exact sequence

0→ π̃0(LA1E)(V/W )→ π̃0(LA1E)(V )→ π̃0(LA1E)(W )

of homotopy sheaves. Here we write π̃0(LA1E)(V/W ) for Hom(V/W, π̃0(LA1E)).
Since the restriction of f to W is trivial, it suffices to show that π̃0(LA1E)(V/W )

is trivial. The A1-Nisnevich-local homotopy cofibre sequence

j] j∗(V/W )→ V/W → i∗LA1i∗(V/W )

from (1.8) induces a long exact sequence

· · · → [i∗LA1i∗(V/W ), πA1

0 (E)] → [V/W, πA1

0 (E)] → [ j] j∗(V/W ), πA1

0 (E)]

by the A1-Nisnevich-local fibrancy of πA1

0 (E)= π0(LA1E). For the latter, note that
a sheaf considered as a discrete simplicial presheaf is Nisnevich-locally fibrant.
The right-hand side equals [ j∗(V/W ), j∗πA1

0 (E)], and j∗πA1

0 (E)∼= π
A1

0 ( j∗E) is
trivial by induction. The triviality of the set on the left-hand side follows from the
triviality of π0(i∗LA1i∗(V/W )). By [Spitzweck 2014, Proposition 4.2], the latter
is zero if πA1

0 (i
∗(V/W ))= 0. Since i∗(V ) is irreducible and i∗(W ) is nonempty,

we conclude by [Morel 2005, Lemma 6.1.4]. �

The one-dimensional case. Using the Gabber presentation given by Theorem 2.4,
we can give a positive answer to Question 4.12 for a Dedekind scheme S with
infinite residue fields.

Theorem 4.16. Let S be a Dedekind scheme and assume that all of its residue fields
are infinite. Then S has the shifted stable A1-connectivity property: E ∈ SHs

S1≥i (S)
implies LA1E ∈ SHs

S1≥i−1(S).

Proof. By Lemma 4.10, we may assume that S is henselian local of dimension
≤ 1 with infinite residue field and closed point σ . The case of dimension zero
is covered by Theorem 4.2. Hence we may assume that S is the spectrum of a
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henselian discrete valuation ring. We want to apply Proposition 4.5. Consider
an element f ∈ [6∞S1 V+, LA1E] for V ∈ SmS . We may assume that σ ∗(V ) 6= ∅,
since otherwise we argue as Morel in the proof of Theorem 4.2. By Lemma 4.9
applied to the closed point σ of S, we find an open subscheme W ↪→ V such that
f6∞

S1 W+= 0 and σ ∗(W ) 6= ∅. Let i : Z ↪→ V be the reduced closed complement
of W . In particular, Zσ 6= Vσ . By Theorem 2.1, the conditions of Lemma 4.6 are
fulfilled, and we get the second assumption πA1

0 (V/W )= 0 of Proposition 4.5 as
well. �
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