

K

vol. 3 no. 32018

Geometric obstructions
 for Fredholm boundary conditions for manifolds with corners

Paulo Carrillo Rouse and Jean-Marie Lescure

Geometric obstructions for Fredholm boundary conditions for manifolds with corners

Paulo Carrillo Rouse and Jean-Marie Lescure

For every connected manifold with corners there is a homology theory called conormal homology, defined in terms of faces and orientation of their conormal bundle and whose cycles correspond geometrically to corner cycles. Its Euler characteristic (over the rationals, dimension of the total even space minus the dimension of the total odd space), $\chi_{\mathrm{cn}}:=\chi_{0}-\chi_{1}$, is given by the alternating sum of the number of (open) faces of a given codimension.

The main result of the present paper is that for a compact connected manifold with corners X, given as a finite product of manifolds with corners of codimension less or equal to three, we have that:

1) If X satisfies the Fredholm perturbation property (every elliptic pseudodifferential b-operator on X can be perturbed by a b-regularizing operator so it becomes Fredholm) then the even Euler corner character of X vanishes, i.e., $\chi_{0}(X)=0$.
2) If the even periodic conormal homology group vanishes, i.e., $H_{0}^{\mathrm{pcn}}(X)=0$, then X satisfies the stably homotopic Fredholm perturbation property (i.e., every elliptic pseudodifferential b-operator on X satisfies the same named property up to stable homotopy among elliptic operators).
3) If $H_{0}^{\mathrm{pcn}}(X)$ is torsion free and if the even Euler corner character of X vanishes, i.e., $\chi_{0}(X)=0$, then X satisfies the stably homotopic Fredholm perturbation property. For example, for every finite product of manifolds with corners of codimension at most two the conormal homology groups are torsion free.

The main theorem behind the above result is the explicit computation in terms of conormal homology of the K-theory groups of the algebra $\mathcal{K}_{\mathrm{b}}(X)$ of b-compact operators for X as above. Our computation unifies the known cases of codimension zero (smooth manifolds) and of codimension one (smooth manifolds with boundary).
Both authors were partially supported by ANR-14-CE25-0012-01. An important part of this work started during a stay of the first author at the Max Planck Institut for Mathematics at Bonn. This author wishes to express his gratitude to this institution for the excellent working conditions.
MSC2010: 19K56, 58H05.
Keywords: Index theory, K-theory, Manifolds with corners, Lie groupoids.

1. Introduction 524
2. Melrose b-calculus for manifolds with corners via groupoids 531
3. Boundary analytic and Fredholm indices for manifolds with corners: relations and Fredholm perturbation characterization 537
4. The conormal homology of a manifold with corners 541
5. The computation of $K_{*}\left(\mathcal{K}_{\mathrm{b}}(X)\right)$ 547
6. Fredholm perturbation properties and Euler conormal characters 5 557
Appendix: more on conormal homology 559
Acknowledgements 561
References 561

1. Introduction

On a smooth compact manifold, ellipticity of (classical) pseudodifferential operators is equivalent to Fredholmness, and the vanishing of the Fredholm index of an elliptic pseudodifferential operator is equivalent to its invertibility after perturbation by a regularizing operator. In the case of a smooth manifold with boundary, not every elliptic operator is Fredholm and it has been known since Atiyah and Bott that there exist obstructions to the existence of local boundary conditions in order to upgrade an elliptic operator into a Fredholm boundary value problem. Nonetheless, if one moves to nonlocal boundary conditions, obstructions disappear: for instance, not every elliptic pseudodifferential b-operator is Fredholm but it can be perturbed with a regularizing operator to become Fredholm. This nontrivial fact, which goes back to Atiyah, Patodi and Singer [Atiyah et al. 1975], can also be obtained from the vanishing of a boundary analytic index (see [Melrose and Piazza 1997a; 1997b; Monthubert and Nistor 2012], and below). In fact, in this case the boundary analytic index takes values in the K_{0}-theory group of the algebra of regularizing operators and this K-theory group is easily seen to vanish. It is known that obstructions to the existence of perturbations of elliptic operators into Fredholm ones reappear in the case of manifolds with corners of arbitrary codimension [Bunke 2009; Nazaikinskii et al. 2009] (this includes for instance many useful domains in Euclidean spaces). In this paper we will show that the global topology and geometry of the corners and the way the corners form cycles contribute in a fundamental way to a primary obstruction to Fredholm boundary conditions. As we will see, the answer passes by the computation of some K-theory groups. We explain now with more detail the problem and the content of this paper.

Using K-theoretical tools for solving index problems was the main asset in the series of papers by Atiyah and Singer [1968a; 1968b] in which they introduce and prove several index formulas for smooth compact manifolds. In the case of
manifolds with boundary, K-theory is still useful to understand the vanishing of the obstruction to the existence of perturbations of elliptic operators into Fredholm ones (even if K-theory is not essential in the computation of analytical indices [Atiyah et al. 1975]), and a fortiori to understand this obstruction in the case of families of manifolds with boundary [Melrose and Piazza 1997a; 1997b; Melrose and Rochon 2006]. For manifolds with corners, Bunke [2009] has delivered for Dirac type operators a complete study of the obstruction, which lives in the homology of a complex associated with the faces of the manifold. As we shall see later in the present work, this homology also appears as the E^{2}-term of the spectral sequence computing the K-group that contains the obstruction we define for general elliptic b-pseudodifferential operators. Nazaikinskii, Savin and Sternin [Nazaikinskii et al. 2008b; 2009] also use K-theory to express the obstruction for their pseudodifferential calculus on manifolds with corners and stratified spaces.

Let us briefly recall the framework in which we are going to work. The algebra of pseudodifferential operators $\Psi_{\mathrm{b}}^{*}(X)$ associated to any manifold with corners X is defined in [Melrose and Piazza 1992]: it generalizes the case of manifolds with boundary treated in [Melrose 1993] (see also [Hörmander 1985, Section 18.3]). The elements in this algebra are called b-pseudodifferential operators, ${ }^{1}$ the subscript b identifies these operators as obtained by "microlocalization" of the Lie algebra of C^{∞} vector fields on X tangent to the boundary. This Lie algebra of vector fields can be explicitly obtained as sections of the so called b-tangent bundle ${ }^{\mathrm{b}} T X$ (compressed tangent bundle that we will recall below). The b-pseudodifferential calculus has the classic and expected properties. In particular there is a principal symbol map

$$
\sigma_{\mathrm{b}}: \Psi_{\mathrm{b}}^{m}(X) \rightarrow S^{[m]}\left({ }^{\mathrm{b}} T^{*} X\right) .
$$

Ellipticity has the usual meaning, namely invertibility of the principal symbol. Moreover (see the discussion below and Theorem 2.15 in [Melrose and Piazza 1992]), an operator is elliptic if and only ${ }^{2}$ if it has a quasiinverse modulo $\Psi_{\mathrm{b}}^{-\infty}(X)$. Now, $\Psi_{\mathrm{b}}^{-\infty}(X)$ contains compact operators, but also noncompact ones (as soon as $\partial X \neq \varnothing$), and compactness is characterized there by the vanishing of a suitable indicial map [loc. cit., p. 8]. Elliptic b-pseudodifferential operators, being invertible modulo compact operators (and hence Fredholm), ${ }^{3}$ are usually said to be fully elliptic.

[^0]Now, by the properties of the b-calculus, $\Psi_{\mathrm{b}}^{0}(X)$ is included in the algebra of bounded operators on $L^{2}(X)$, where the L^{2} structure is provided by some b-metric in the interior of X. We denote by $\mathcal{K}_{\mathrm{b}}(X)$ the norm completion of the subalgebra $\Psi_{\mathrm{b}}^{-\infty}(X)$. This C^{*}-algebra fits in a short exact sequence of C^{*}-algebras of the form

$$
\begin{equation*}
0 \longrightarrow \mathcal{K}(X) \xrightarrow{i_{0}} \mathcal{K}_{\mathbf{b}}(X) \xrightarrow{r} \mathcal{K}_{\mathbf{b}}(\partial X) \longrightarrow 0, \tag{1.1}
\end{equation*}
$$

where $\mathcal{K}(X)$ is the algebra of compact operators in $L^{2}(X)$. In order to study Fredholm problems and analytic index problems one has to understand the K-theory of the above short exact sequence.

To better explain how these K-theory groups enter into the study of Fredholm perturbation properties and in order to enounce our first main results we need to settle some definitions.

Analytic and Boundary analytic Index morphism. Given an elliptic b-pseudodifferential D, the classic construction of parametrices adapts to give a K-theoryvalued index in $K_{0}\left(\mathcal{K}_{\mathrm{b}}(X)\right)$ that only depends on its principal symbol class $\left[\sigma_{\mathrm{b}}(D)\right] \in$ $K_{\text {top }}^{0}\left({ }^{\text {b }} T^{*} X\right)$. In more precise terms, the short exact sequence

$$
\begin{equation*}
0 \longrightarrow \mathcal{K}_{\mathrm{b}}(X) \longrightarrow \overline{\Psi_{\mathrm{b}}^{0}(X)} \xrightarrow{\sigma_{\mathrm{b}}} C\left({ }^{\mathrm{b}} S^{*} X\right) \longrightarrow 0 \tag{1.2}
\end{equation*}
$$

gives rise to a K-theory index morphism $K_{1}\left(C\left({ }^{\mathrm{b}} S^{*} X\right)\right) \rightarrow K_{0}\left(\mathcal{K}_{\mathrm{b}}(X)\right)$ that factors in a canonical way by an index morphism

$$
\begin{equation*}
K_{\text {top }}^{0}\left({ }^{\mathrm{b}} T^{*} X\right) \xrightarrow{\operatorname{Ind}_{X}^{a}} K_{0}\left(\mathcal{K}_{\mathrm{b}}(X)\right) \tag{1.3}
\end{equation*}
$$

called the Analytic Index morphism of X. By composing the Analytic index with the morphism induced by the restriction to the boundary we have a morphism

$$
\begin{equation*}
K_{\text {top }}^{0}\left({ }^{\mathrm{b}} T^{*} X\right) \xrightarrow{\operatorname{Ind}_{X}^{\partial}} K_{0}\left(\mathcal{K}_{\mathrm{b}}(\partial X)\right) \tag{1.4}
\end{equation*}
$$

called the Boundary analytic index morphism of X. In fact

$$
r: K_{0}\left(\mathcal{K}_{\mathrm{b}}(X)\right) \rightarrow K_{0}\left(\mathcal{K}_{\mathrm{b}}(\partial X)\right)
$$

is an isomorphism if $\partial X \neq \varnothing$, Proposition 5.40, and so the two indices above are essentially the same. In other words we completely understand the six term short exact sequence in K-theory associated to the sequence (1.1). Notice that in particular there is no contribution of the Fredholm index in the K_{0}-analytic index.

To state the next theorem we need to define the Fredholm perturbation property and its stably homotopic version.
Definition 1.5. Let $D \in \Psi_{\mathrm{b}}^{m}(X)$ be elliptic. We say that D satisfies

- the Fredholm perturbation property $(\mathcal{F P})$ if there is $R \in \Psi_{\mathrm{b}}^{-\infty}(X)$ such that $D+R$ is fully elliptic,
- the stably homotopic Fredholm perturbation property $(\mathcal{H F P})$ if there is a fully elliptic operator D^{\prime} with $\left[\sigma_{\mathrm{b}}\left(D^{\prime}\right)\right]=\left[\sigma_{\mathrm{b}}(D)\right] \in K_{\text {top }}^{0}\left({ }^{\mathrm{b}} T^{*} X\right)$.
We also say that X satisfies the Fredholm perturbation property or the stably homotopic Fredholm perturbation property if any elliptic b-operator on X satisfies $(\mathcal{F P})$ or $(\mathcal{H F P})$ respectively.

Property $(\mathcal{F P})$ is of course stronger than property $(\mathcal{H F P})$. Nistor [2003] characterized $(\mathcal{F} \mathcal{P})$ in terms of the vanishing of an index in some particular cases. Nazaikinskii, Savin and Sternin [2008b] characterized ($\mathcal{H F P}$) for arbitrary manifolds with corners using an index map associated with their dual manifold construction. We now rephrase the result of [Nazaikinskii et al. 2008b] and we give a new proof in terms of deformation groupoids.
Theorem 1.6. Let D be an elliptic b-pseudodifferential operator on a compact manifold with corners X. Then D satisfies $(\mathcal{H F P})$ if and only if $\operatorname{Ind}_{X}^{\partial}\left(\left[\sigma_{\mathrm{b}}(D)\right]\right)=0$. In particular if D satisfies $(\mathcal{F P})$ then its boundary analytic index vanishes.

The above results fit exactly with the K-theory vs index theory program of Atiyah and Singer, and in that sense it is not completely unexpected. Now, in order to give a full characterization of the Fredholm perturbation property one is first led to compute or understand the K-theory groups for the algebras (1.1) preferably in terms of the geometry and topology of the manifold with corners. As it happens, the only previously known cases are

- the K -theory of the compact operators $\mathcal{K}(X)$, giving $K_{0}(\mathcal{K}(X))=\mathbb{Z}$ and $K_{1}(\mathcal{K}(X))=0$, which is of course essential for classic index theory purposes;
- the K-theory of $\mathcal{K}_{\mathrm{b}}(X)$ for a smooth manifold with boundary, giving

$$
K_{0}\left(\mathcal{K}_{\mathrm{b}}(X)\right)=0 \quad \text { and } \quad K_{1}\left(\mathcal{K}_{\mathrm{b}}(X)\right)=\mathbb{Z}^{1-p}
$$

with p the number of boundary components, which has the nontrivial consequence that any elliptic b-operator on a manifold with boundary can be endowed with Fredholm boundary conditions.

Computation of the K-theory groups in terms of corner cycles. In this paper we explicitly compute the above K-theory groups for any finite product of manifolds with corners of codimension ≤ 3 in terms of corner cycles (explanation below). Our computations and results are based on a geometric interpretation of the algebras of b-pseudodifferential operators in terms of Lie groupoids. We explain and recall the basic facts on groupoids and the b-pseudodifferential calculus in the first two sections. Besides being extremely useful to compute K-theory groups, the groupoid approach we propose turns out to be very powerful for computing index morphisms
and relating several indices. Indeed, the relation between the different indices for manifolds with corners was only partially understood for some examples. Let us explain this in detail. Let X be a manifold with corners. Let $F_{p}=F_{p}(X)$ be the set of faces (connected, without boundary) of X of codimension p. To compute $K_{*}\left(\mathcal{K}_{\mathrm{b}}(X)\right)$, we use an increasing filtration of X given by the open subspaces:

$$
\begin{equation*}
X_{p}=\bigcup_{k \leq p, f \in F_{k}} f \tag{1.7}
\end{equation*}
$$

We have $X_{0}=\stackrel{\circ}{X}$ and $X_{d}=X$. We extend if necessary the filtration over \mathbb{Z} by setting $X_{k}=\varnothing$ if $k<0$ and $X_{k}=X$ if $k>d$. The C^{*}-algebra of $\mathcal{K}_{\mathrm{b}}(X)$ inherits an increasing filtration by C^{*}-ideals (for full details see Section 5):

$$
\begin{equation*}
\mathcal{K}\left(L^{2}(X)\right)=A_{0} \subset A_{1} \subset \cdots A_{d}=A=\mathcal{K}_{\mathrm{b}}(X) . \tag{1.8}
\end{equation*}
$$

The spectral sequence $\left(E_{*, *}^{*}\left(\mathcal{K}_{\mathbf{b}}(X)\right), d_{*, *}^{*}\right)$ associated with this filtration can be used, in principle, to have a better understanding of these K-theory groups. This filtration was already considered by Melrose and Nistor [1998] and their main theorem is the expression of the first differential [loc. cit., Theorem 9]. In trying to figure out an expression for the differentials of this spectral sequence in all degrees, we found a differential \mathbb{Z}-module $\left(\mathcal{C}(X), \delta^{\mathrm{pcn}}\right)$ constructed in a very simple way out of the set of open connected faces of the given manifold with (embedded) corners X. Roughly speaking, the \mathbb{Z}-module $\mathcal{C}(X)$ is generated by open connected faces provided with a coorientation (that is, an orientation of their conormal bundles in X), while the differential map $\delta^{\text {pcn }}$ associates to a given cooriented face of codimension p, the sum of cooriented faces of codimension $p-2 k-1, k \geq 0$, containing it in their closures. This gives a well defined differential module for two reasons. The first one is that once a labeling of the boundary hyperfaces is chosen, the coorientation of a given face induces coorientations of the faces containing it in their closures, proving that the module map δ^{pcn} is well defined. The second one is that the jumps by $2 k+1, k \geq 0$, in the codimension guarantee the relation $\delta^{\mathrm{pcn}} \circ \delta^{\mathrm{pcn}}=0$. We call the homology of $\left(\mathcal{C}(X), \delta^{\mathrm{pcn}}\right)$ periodic conormal homology, and denote it by $H^{\mathrm{pcn}}(X)$. Note that it is \mathbb{Z}_{2}-graded by sorting faces by even and odd codimension.

Actually, the differential δ^{pcn} retracts onto the simpler differential map δ where one stops at -1 in the codimension, that is, δ maps a given cooriented face of codimension p to the sum of cooriented faces of codimension $p-1$ containing it in their closures. We call conormal homology and denote it by $H^{\mathrm{cn}}(X)$ the homology of $(\mathcal{C}(X), \delta)$: this is a \mathbb{Z}-graded homology and the resulting \mathbb{Z}_{2}-graduation coincides with the periodic conormal groups. For full details about conormal homology see Section 4 and the Appendix. It is worthwhile to note that the conormal complex $(\mathcal{C}(X), \delta)$ already appears as the complex of (connected) faces in [Bunke

2009]. The complex considered by Bunke is made of mutually compatible oriented faces and the consistency of these orientations induces orientations of the conormal spaces of the faces. There is then an obvious isomorphism between both complexes. Recall that Bunke proved that the obstruction for the existence of a boundary taming of a Dirac type operator on X is given by an explicit class in this homology, which also implicitly appears in the work of Melrose and Nistor [1998], through the quasiisomorphism that we prove here (Corollary 5.35). It is thus all but a surprise that conormal homology emerges from the computation of $K_{*}\left(\mathcal{K}_{\mathrm{b}}(X)\right)$ and we conclude this paragraph by recording that there is a natural isomorphism

$$
\begin{equation*}
H_{p}^{\mathrm{cn}}(X) \simeq E_{p, 0}^{2}\left(\mathcal{K}_{\mathrm{b}}(X)\right) \tag{1.9}
\end{equation*}
$$

Our main K-theory computation can now be stated:
Theorem 5.43. Let $X=\Pi_{i} X_{i}$ be a finite product of manifolds with corners of codimension less or equal to three. There are natural isomorphisms

$$
\begin{align*}
& \left.H_{0}^{\mathrm{pcn}}(X) \otimes_{\mathbb{Z}} \mathbb{Q} \xrightarrow{\phi_{X}} \underset{\cong}{\cong} K_{0}\left(\mathcal{K}_{\mathrm{b}}(X)\right)\right) \otimes_{\mathbb{Z}} \mathbb{Q}, \\
& H_{1}^{\mathrm{pcn}}(X) \otimes_{\mathbb{Z}} \mathbb{Q} \xrightarrow[\phi_{X}]{\cong} K_{1}\left(\mathcal{K}_{\mathrm{b}}(X)\right) \otimes_{\mathbb{Z}} \mathbb{Q} . \tag{1.10}
\end{align*}
$$

In the case where X contains a factor of codimension at most two or X is of codimension three, the result holds even without tensoring by \mathbb{Q}.

We insist on the fact that (periodic) conormal homology groups are easily computable, because the underlying chain complexes as well as the differential maps are obtained from elementary and explicit ingredients. To continue let us introduce the Corner characters.

Definition 1.11 (corner characters). Let X be a manifold with corners. We define the even conormal character of X as the finite sum

$$
\begin{equation*}
\chi_{0}(X)=\operatorname{dim}_{\mathbb{Q}} H_{0}^{\mathrm{pcn}}(X) \otimes_{\mathbb{Z}} \mathbb{Q} \tag{1.12}
\end{equation*}
$$

Similarly, we define the odd conormal character of X as the finite sum

$$
\begin{equation*}
\chi_{1}(X)=\operatorname{dim}_{\mathbb{Q}} H_{1}^{\mathrm{pcn}}(X) \otimes_{\mathbb{Z}} \mathbb{Q} \tag{1.13}
\end{equation*}
$$

We can consider as well

$$
\begin{equation*}
\chi(X)=\chi_{0}(X)-\chi_{1}(X) \tag{1.14}
\end{equation*}
$$

then by definition

$$
\begin{equation*}
\chi(X)=1-\# F_{1}+\# F_{2}-\cdots+(-1)^{d} \# F_{d} . \tag{1.15}
\end{equation*}
$$

We refer to the integer $\chi(X)$ as the Euler corner character of X.

In particular one can rewrite Theorem 5.43 to have, for X as stated,

$$
\begin{equation*}
K_{0}\left(\mathcal{K}_{\mathrm{b}}(X)\right) \otimes_{\mathbb{Z}} \mathbb{Q} \cong \mathbb{Q}^{\chi_{0}(X)}, \quad K_{1}\left(\mathcal{K}_{\mathrm{b}}(X)\right) \otimes_{\mathbb{Z}} \mathbb{Q} \cong \mathbb{Q}^{\chi_{1}(X)}, \tag{1.16}
\end{equation*}
$$

and in terms of the corner character,

$$
\begin{equation*}
\chi(X)=\operatorname{rank}\left(K_{0}\left(\mathcal{K}_{\mathbf{b}}(X)\right) \otimes_{\mathbb{Z}} \mathbb{Q}\right)-\operatorname{rank}\left(K_{1}\left(\mathcal{K}_{\mathbf{b}}(X)\right) \otimes_{\mathbb{Z}} \mathbb{Q}\right) \tag{1.17}
\end{equation*}
$$

Or, in the case where X is a finite product of manifolds with corners of codimension at most 2, we even have

$$
\begin{equation*}
K_{0}\left(\mathcal{K}_{\mathrm{b}}(X)\right) \simeq \mathbb{Z}^{\chi_{0}(X)}, \quad \text { and } \quad K_{1}\left(\mathcal{K}_{\mathrm{b}}(X)\right) \simeq \mathbb{Z}^{\chi_{1}(X)} \tag{1.18}
\end{equation*}
$$

and also $\chi_{\mathrm{cn}}(X)=\operatorname{rank}\left(K_{0}\left(\mathcal{K}_{\mathrm{b}}(X)\right)\right)-\operatorname{rank}\left(K_{1}\left(\mathcal{K}_{\mathrm{b}}(X)\right)\right)$.
We can finally state the following primary obstruction to the Fredholm perturbation theorem in terms of corner characters and corner cycles:

Theorem 6.9. Let X be a compact manifold with corners of codimension greater than or equal to one. If X is a finite product of manifolds with corners of codimension less than or equal to three we have that:
(1) If X satisfies the Fredholm perturbation property then the even Euler corner character of X vanishes, i.e., $\chi_{0}(X)=0$.
(2) If the even periodic conormal homology group vanishes, i.e., $H_{0}^{\mathrm{pcn}}(X)=0$, then X satisfies the stably homotopic Fredholm perturbation property.
(3) If $H_{0}^{\mathrm{pcn}}(X)$ is torsion free and if the even Euler corner character of X vanishes, i.e., $\chi_{0}(X)=0$, then X satisfies the stably homotopic Fredholm perturbation property.

We believe that the results above hold beyond the case of finite products of manifolds with corners of codimension ≤ 3. On one side conormal homology can be defined and computed in all generality and, in all examples we have, the isomorphisms above still hold. The problem in general is to compute beyond the third differential of the naturally associated spectral sequence for the K-theory groups for manifolds with corners of codimension greater or equal to four. This is technically a very hard task and explicit interesting examples (not products) become rare. In fact, for any codimension, the corresponding spectral sequence in periodic conormal homology collapses at the second page as shown in the Appendix. We believe it does collapse as well for K-theory because of the results above. Another problem is related with the possible torsion of the conormal homology groups. Indeed, we prove in Theorem 4.22 that for a finite product of manifolds with corners of codimension at most two these groups are torsion free and that the odd group for a three codimensional manifold with corners is torsion free as well. We think that in general
these groups are torsion free but the combinatorics become very hard and one needs a good way to deal with all these data. We will discuss all these topics elsewhere.

Partial results in the direction of this paper were obtained by several authors; we have already mentioned the seminal works of Melrose and Nistor [1998] and of Nazaikinskii et al. [2008a; 2008b]. In particular Melrose and Nistor start the computation of the K-groups of the algebra of zero order b-operators and some particular cases of boundary analytic index morphisms as defined here (together with some topological formulas for them). Also, Nistor [2003] solves the Fredholm perturbation problem for manifolds with corners of the form a canonical simplex times a smooth manifold. Let us mention also the work of Monthubert and Nistor [2012] in which they construct a classifying space associated to a manifold with corners whose K-theory can be in principle used to compute the analytic index above. We were very much inspired by all these works. Bunke [2009] focuses on the obstruction of Fredholm perturbations for Dirac operators on manifolds with corners, for which he gives a precise answer in terms of conormal homology, while we focus on the receptacle for these obstructions: our results are then less precise for a given operator, but address generic b-pseudodifferential operators.

The theorems above show the importance and interest in computing the boundary analytic and the Fredholm indices associated to a manifold with corners and if possible, in a unified and in a topological and geometrical way. Using K-theory as above, for the case of a smooth compact connected manifold, the computation we are mentioning is none other than the Atiyah and Singer [1968a] index theorem. As we mentioned already, for manifolds with boundary, Atiyah, Patodi and Singer gave a formula for the Fredholm index of a Dirac type operator. In fact, with the groupoid approach to index theory, several authors have contributed to the now realizable idea that one can actually use these tools to have a nice K-theoretical framework and to actually compute more general index theorems as in the classic smooth case. For example, in our common work with Monthubert, [Carrillo Rouse et al. 2014], we give a topological formula for the Fredholm index morphism for manifolds with boundary that will allow us in a sequel paper to compare with the APS formula and obtain geometric information on the eta invariant. In the second paper of this series we will generalize our results of [Carrillo Rouse et al. 2014] for general manifolds with corners by giving explicit topological index computations for the indices appearing above.

2. Melrose b-calculus for manifolds with corners via groupoids

2A. Preliminaries on groupoids, K-theory C^{*}-algebras and pseudodifferential

 calculus. All the material in this section is well known and by now classic for the people working in groupoid C^{*}-algebras, K-theory and index theory. For more details and references see [Debord and Lescure 2010; Nistor et al. 1999; Monthubertand Pierrot 1997; Lescure et al. 2017; Hilsum and Skandalis 1983; Renault 1980; Anantharaman-Delaroche and Renault 2000].

Groupoids. Let us start with the definition.
Definition 2.1. A groupoid consists of the following data: two sets φ and $\varphi^{(0)}$, and maps
(1) $s, r: \mathscr{G} \rightarrow \mathcal{G}^{(0)}$ called the source and range (or target) maps,
(2) $m: \mathscr{G}^{(2)} \rightarrow \mathscr{\varphi}$ called the product map, where

$$
\varphi^{(2)}=\{(\gamma, \eta) \in \mathscr{\varphi} \times \mathscr{\varphi}: s(\gamma)=r(\eta)\},
$$

such that there exist two maps, $u: \mathscr{G}^{(0)} \rightarrow \mathscr{G}$ (the unit map) and $i: \mathscr{\varphi} \rightarrow \mathscr{\varphi}$ (the inverse map), which, if we denote $m(\gamma, \eta)=\gamma \cdot \eta, u(x)=x$ and $i(\gamma)=\gamma^{-1}$, satisfy the following properties:
(i) $r(\gamma \cdot \eta)=r(\gamma)$ and $s(\gamma \cdot \eta)=s(\eta)$.
(ii) $\gamma \cdot(\eta \cdot \delta)=(\gamma \cdot \eta) \cdot \delta$ for all $\gamma, \eta, \delta \in \mathscr{G}$ when this is possible.
(iii) $\gamma \cdot x=\gamma$ and $x \cdot \eta=\eta$ for all $\gamma, \eta \in \mathscr{G}$ with $s(\gamma)=x$ and $r(\eta)=x$.
(iv) $\gamma \cdot \gamma^{-1}=u(r(\gamma))$ and $\gamma^{-1} \cdot \gamma=u(s(\gamma))$ for all $\gamma \in \mathscr{G}$.

Generally, we denote a groupoid by $\mathscr{G} \rightrightarrows \mathscr{G}^{(0)}$. A morphism f from a groupoid $\mathscr{H} \rightrightarrows \mathscr{H}^{(0)}$ to a groupoid $\varphi \rightrightarrows \mathscr{G}^{(0)}$ is given by a map f from φ to \mathscr{H} which preserves the groupoid structure, i.e., f commutes with the source, target, unit, and inverse maps, and respects the groupoid product in the sense that $f\left(h_{1} \cdot h_{2}\right)=f\left(h_{1}\right) \cdot f\left(h_{2}\right)$ for any $\left(h_{1}, h_{2}\right) \in \mathscr{H}^{(2)}$.

For A, B subsets of $\varphi^{(0)}$ we use the notation φ_{A}^{B} for the subset

$$
\{\gamma \in \mathscr{G}: s(\gamma) \in A, r(\gamma) \in B\} .
$$

We will also need the following definition:
Definition 2.2 (saturated subgroupoids). Let $\mathscr{G} \rightrightarrows M$ be a groupoid.
(1) A subset $A \subset M$ of the units is said to be saturated by \mathscr{G} (or only saturated if the context is clear enough) if it is a union of orbits of \mathscr{G}.
(2) A subgroupoid

is a saturated subgroupoid if its set of units $M_{1} \subset M$ is saturated by \mathscr{G}.

A groupoid can be endowed with a structure of topological space, or manifold, for instance. In the case when \mathscr{G} and $\mathscr{G}^{(0)}$ are smooth manifolds, and s, r, m, u are smooth maps (with s and r submersions), then \mathscr{G} is called a Lie groupoid. In the case of manifolds with boundary, or with corners, this notion can be generalized to that of continuous families groupoids (see [Paterson 1999]) or as Lie groupoids if one considers the category of smooth manifolds with corners.
C^{*}-algebras. To any Lie groupoid $\mathscr{G} \rightrightarrows \mathscr{G}^{(0)}$ one has several C^{*}-algebra completions for the *-convolution algebra $C_{c}^{\infty}(\mathscr{\varphi})$. Since in this paper all the groupoids considered are amenable, we will be denoting by $C^{*}(\mathscr{G})$ the maximal and hence reduced C^{*}-algebra of \mathscr{C}. From now on, all groupoids will be assumed amenable.

In the sequel we will use the following two results which hold in the generality of locally compact groupoids equipped with Haar systems.
(1) Let $\mathscr{\varphi}_{1}$ and $\mathscr{\varphi}_{2}$ be two locally compact groupoids equipped with Haar systems. Then for the locally compact groupoid $\mathscr{G}_{1} \times \mathscr{G}_{2}$ we have

$$
\begin{equation*}
C^{*}\left(\mathscr{\varphi}_{1} \times \mathscr{\varphi}_{2}\right) \cong C^{*}\left(\mathscr{\varphi}_{1}\right) \otimes C^{*}\left(\mathscr{\varphi}_{2}\right) . \tag{2.4}
\end{equation*}
$$

(2) Let $\mathscr{G} \rightrightarrows \mathscr{G}^{(0)}$ a locally compact groupoid with Haar system μ. Let $U \subset \mathscr{G}^{(0)}$ be a saturated open subset. Then $F:=\varphi^{(0)} \backslash U$ is a closed saturated subset. The Haar system μ can be restricted to the restriction groupoids $\mathscr{\varphi}_{U}:=\mathscr{\varphi}_{U}^{U} \rightrightarrows U$ and $\mathscr{\varphi}_{F}:=\mathscr{G}_{F}^{F} \rightrightarrows F$, and we have the following short exact sequence of C^{*} algebras:

$$
\begin{equation*}
0 \longrightarrow C^{*}\left(\varphi_{U}\right) \xrightarrow{i} C^{*}\left(\varphi_{)} \xrightarrow{r} C^{*}\left(\varphi_{F}\right) \longrightarrow 0,\right. \tag{2.5}
\end{equation*}
$$

where $i: C_{c}\left(\mathscr{G}_{U}\right) \rightarrow C_{c}\left(\mathscr{G}_{)}\right)$is the extension of functions by zero and r : $C_{c}(\mathscr{G}) \rightarrow C_{c}\left(\mathscr{G}_{F}\right)$ is the restriction of functions.
K-theory. We will be considering the K-theory groups of the C^{*}-algebra of a groupoid. For space purposes we will be denoting these groups by

$$
\begin{equation*}
K^{*}(\mathscr{G}):=K_{*}\left(C^{*}(\mathscr{G})\right) . \tag{2.6}
\end{equation*}
$$

We will use the classic properties of the K-theory functor, mainly its homotopy invariance and the six term exact sequence associated to a short exact sequence. Whenever the groupoid in question is a space X we will use the notation

$$
\begin{equation*}
K_{\text {top }}^{*}(X):=K_{*}\left(C_{0}(X)\right) . \tag{2.7}
\end{equation*}
$$

to indicate that in this case this group is indeed isomorphic to the topological Ktheory group.
$\Psi D O$ calculus for groupoids. A pseudodifferential operator on a Lie groupoid (or more generally a continuous family groupoid) \mathscr{G} is a family of pseudodifferential operators on the fibers of \mathscr{G} (which are smooth manifolds without boundary), the family being equivariant under the natural action of \mathscr{G}.

Compactly supported pseudodifferential operators form an algebra, denoted by $\Psi^{\infty}(\mathscr{G})$. The algebra of order-0 pseudodifferential operators can be completed into a C^{*}-algebra, $\overline{\Psi^{0}}(\mathscr{G})$. There exists a symbol map, σ, whose kernel is $C^{*}(\mathscr{G})$. This gives rise to the following exact sequence:

$$
0 \rightarrow C^{*}(\mathscr{G}) \rightarrow \overline{\Psi^{0}}(\mathscr{G}) \rightarrow C_{0}\left(S^{*}(\mathscr{G})\right) \rightarrow 0
$$

where $S^{*}(\mathscr{G})$ is the cosphere bundle of the Lie algebroid of \mathscr{G}.
In the general context of index theory on groupoids, there is an analytic index which can be defined in two ways. The first way, which is classical, is to consider the boundary map of the 6-terms exact sequence in K-theory induced by the short exact sequence above:

$$
\operatorname{ind}_{a}: K_{1}\left(C_{0}\left(S^{*}(\mathscr{G})\right)\right) \rightarrow K_{0}\left(C^{*}(\mathscr{G})\right)
$$

Actually, an alternative is to define it through the tangent groupoid of Connes, which was originally defined for the groupoid of a smooth manifold and later extended to the case of continuous family groupoids [Monthubert and Pierrot 1997; Lauter et al. 2000]. The tangent groupoid of a Lie groupoid $\mathscr{G} \rightrightarrows \mathscr{G}^{(0)}$ is the groupoid

$$
\mathscr{G}^{\tan }=A(\mathscr{G}) \bigsqcup \mathscr{G} \times(0,1] \rightrightarrows \mathscr{G}^{(0)} \times[0,1]
$$

where $A(\mathscr{G})=T_{\mathscr{G}(0)} \mathscr{G} / T_{\mathscr{G}}{ }^{(0)}$ is the Lie algebroid of \mathscr{G}. The groupoid $\mathscr{G}^{\tan }$ has a smooth structure given by the deformation to the normal cone construction, see for example [Carrillo Rouse 2008] for a survey.

Using the evaluation maps, one has two K-theory morphisms,

$$
e_{0}: K_{0}\left(C^{*}\left(\mathscr{G}^{\tan }\right)\right) \rightarrow K^{0}\left(A^{*} \mathscr{G}\right)
$$

which is an isomorphism (since $\left.K_{*}\left(C^{*}(\mathscr{G} \times(0,1])\right)=0\right)$, and

$$
e_{1}: K_{*}\left(C^{0}\left(\mathscr{G}^{\tan }\right)\right) \rightarrow K_{0}\left(C^{*}(\mathscr{G})\right)
$$

The analytic index can be defined as

$$
\operatorname{ind}_{a}=e_{1} \circ e_{0}^{-1}: K^{0}\left(A^{*} \mathscr{G}\right) \rightarrow K_{0}\left(C^{*}(\mathscr{G})\right)
$$

modulo the surjection $K_{1}\left(C_{0}\left(S^{*}(\mathscr{G})\right) \rightarrow K^{0}\left(A^{*} \mathscr{G}^{(}\right)\right.$.
See [Monthubert and Pierrot 1997; Nistor et al. 1999; Monthubert 2003; Lauter et al. 2000; Vassout 2006] for a detailed presentation of pseudodifferential calculus on groupoids.

2B. Melrose \boldsymbol{b}-calculus for manifolds with corners via the b-groupoid. We start by defining the manifolds with corners we will be using in the entire paper.

A manifold with corners is a Hausdorff space covered by compatible coordinate charts with coordinate functions modeled in the spaces

$$
\mathbb{R}_{k}^{n}:=[0,+\infty)^{k} \times \mathbb{R}^{n-k}
$$

for fixed n and possibly variable k.
Definition 2.8. A manifold with embedded corners X is a Hausdorff topological space endowed with a subalgebra $C^{\infty}(X) \in C^{0}(X)$ satisfying the following conditions:
(1) There is a smooth manifold \tilde{X} and a map $\iota: X \rightarrow \tilde{X}$ such that

$$
\iota^{*}\left(C^{\infty}(\tilde{X})\right)=C^{\infty}(X)
$$

(2) There is a finite family of functions $\rho_{i} \in C^{\infty}(\tilde{X})$, called the defining functions of the hyperfaces, such that

$$
\iota(X)=\bigcap_{i \in I}\left\{\rho_{i} \geq 0\right\} .
$$

(3) For any $J \subset I$,

$$
d_{x} \rho_{i}(x) \text { are linearly independent in } T_{x}^{*} \tilde{X} \text { for all } x \in F_{J}:=\bigcap_{i \in J}\left\{\rho_{i}=0\right\}
$$

Terminology. In this paper we will only be considering manifolds with embedded corners. We will refer to them simply as manifolds with corners. We will also assume our manifolds to be connected. More general manifold with corners deserve attention but as we will see in further papers it will be more simple to consider them as stratified pseudomanifolds and desingularize them as manifolds with embedded corners with an iterated fibration structure.

Given a compact manifold with corners X, Melrose ${ }^{4}$ [1993] constructed the algebra $\Psi_{\mathrm{b}}^{*}(X)$ of b-pseudodifferential operators. The elements in this algebra are called b-pseudodifferential operators; the subscript b identifies these operators as obtained by "microlocalization" of the Lie algebra of C^{∞} vector fields on X tangent to the boundary. This Lie algebra of vector fields can be explicitly obtained as sections of the so called b-tangent bundle ${ }^{\mathrm{b}} T X$ (the compressed tangent bundle that will appear below as the Lie algebroid of an explicit Lie groupoid). The b-pseudodifferential calculus developed by Melrose has the classic and expected properties. In particular there is a principal symbol map

$$
\sigma_{\mathrm{b}}: \Psi_{\mathrm{b}}^{m}(X) \rightarrow S^{[m]}\left({ }^{\mathrm{b}} T^{*} X\right) .
$$

[^1]Ellipticity has the usual meaning, namely invertibility of the principal symbol. Moreover (see the discussion below Theorem 2.15 in [Melrose and Piazza 1992]), an operator is elliptic if and only ${ }^{5}$ if it has a quasiinverse modulo $\Psi_{\mathrm{b}}^{-\infty}(X)$. Now, the operators in $\Psi_{\mathrm{b}}^{-\infty}(X)$ are not all compact (unless the topological boundary $\partial X=\varnothing$) but they contain a subalgebra consisting of compact operators (those for which certain indicial map is zero [loc. cit., p. 8]). Hence, among elliptic bpseudodifferential operators one has those for which the quasiinverse is actually modulo compact operators and hence Fredholm (again, see [loc. cit., p. 8] for a characterization of Fredholm operators in terms of an indicial map). These belliptic operators are called fully elliptic operators.

Now, as for every 0 -order b-pseudodifferential operator [loc. cit., (2.16)], the operators in $\Psi_{\mathrm{b}}^{-\infty}(X)$ extend to bounded operators on $L^{2}(X)$ and hence if we consider its completion as bounded operators one obtains an algebra denoted in this paper by $\mathcal{K}_{\mathrm{b}}(X)$ that fits in a short exact sequence of C^{*}-algebras of the form

$$
\begin{equation*}
0 \longrightarrow \mathcal{K}(X) \xrightarrow{i_{0}} \mathcal{K}_{\mathrm{b}}(X) \xrightarrow{r} \mathcal{K}_{\mathrm{b}}(\partial X) \longrightarrow 0, \tag{2.9}
\end{equation*}
$$

where $\mathcal{K}(X)$ is the algebra of compact operators in $L^{2}(X)$.
Let X be a compact manifold with embedded corners, so by definition we are assuming there is a smooth compact manifold (of the same dimension) \tilde{X} with $X \subset$ \tilde{X} and $\rho_{1}, \ldots, \rho_{n}$ defining functions of the faces. Monthubert [2003] constructed a Lie groupoid (called the puff groupoid) associated to any decoupage ($\tilde{X},\left(\rho_{i}\right)$); it has the following expression as a Lie subgroupoid of $\tilde{X} \times \tilde{X} \times \mathbb{R}^{k}$:

$$
\begin{equation*}
G\left(\tilde{X},\left(\rho_{i}\right)\right)=\left\{\left(x, y, \lambda_{1}, \ldots, \lambda_{n}\right) \in \tilde{X} \times \tilde{X} \times \mathbb{R}^{n}: \rho_{i}(x)=e^{\lambda_{i}} \rho_{i}(y)\right\} . \tag{2.10}
\end{equation*}
$$

The puff groupoid is not s-connected; we denote by $G_{c}\left(\tilde{X},\left(\rho_{i}\right)\right)$ its s-connected component.
Definition 2.11 (the b-groupoid). The b-groupoid $\Gamma_{\mathrm{b}}(X)$ of X is by definition the restriction to X of the s-connected puff groupoid (2.10) considered above, that is

$$
\begin{equation*}
\Gamma_{\mathrm{b}}(X):=\left.G_{c}\left(\tilde{X},\left(\rho_{i}\right)\right)\right|_{X} \rightrightarrows X \tag{2.12}
\end{equation*}
$$

The b-groupoid was introduced by B. Monthubert in order to give a groupoid description for the Melrose's algebra of b-pseudodifferential operators. We summarize below the main properties we will be using of this groupoid:
Theorem 2.13 [Monthubert 2003]. Let X be a manifold with corners, as above. We have that:
(1) $\Gamma_{\mathrm{b}}(X)$ is a $C^{0, \infty}$-amenable groupoid.

[^2](2) X has Lie algebroid $A\left(\Gamma_{\mathrm{b}}(X)\right)={ }^{\mathrm{b}} T X$, the b-tangent bundle of Melrose.
(3) The C^{*}-algebra of X (reduced or maximal is the same since we have amenability) coincides with the algebra of b-compact operators. The canonical isomorphism
\[

$$
\begin{equation*}
C^{*}\left(\Gamma_{\mathrm{b}}(X)\right) \cong \mathcal{K}_{\mathrm{b}}(X) \tag{2.14}
\end{equation*}
$$

\]

is given as usual by the Schwartz kernel theorem.
(4) The pseudodifferential calculus of $\Gamma_{\mathrm{b}}(X)$ coincides with compactly supported b-calculus of Melrose.
Remark 2.15. To simplify the exposition, in the present paper we only discuss the case of scalar operators. The case of operators acting on sections of vector bundles is treated classically by considering bundles of homomorphisms.

3. Boundary analytic and Fredholm indices for manifolds with corners: relations and Fredholm perturbation characterization

We will now introduce the several index morphisms we will be using, mainly the analytic and the Fredholm index. In all this section, X denotes a compact and connected manifold with embedded corners.

3A. Analytic and boundary analytic index morphisms. Any elliptic b-pseudodifferential D has an analytical index $\operatorname{Ind}_{\mathrm{an}}(D)$ given by

$$
\operatorname{Ind}_{\mathrm{an}}(D)=I\left(\left[\sigma_{\mathrm{b}}(D)\right]_{1}\right) \in K_{0}\left(\mathcal{K}_{\mathrm{b}}(X)\right),
$$

where I is the connecting homomorphism in K-theory of the exact sequence

$$
\begin{equation*}
0 \longrightarrow \mathcal{K}_{\mathrm{b}}(X) \longrightarrow \overline{\Psi_{\mathrm{b}}^{0}(X)} \xrightarrow{\sigma_{\mathrm{b}}} C\left({ }^{\mathrm{b}} S^{*} X\right) \longrightarrow 0, \tag{3.1}
\end{equation*}
$$

and $\left[\sigma_{\mathrm{b}}(D)\right]_{1}$ is the class in $K_{1}\left(C\left({ }^{\mathrm{b}} S^{*} X\right)\right)$ of the principal symbol $\sigma_{\mathrm{b}}(D)$ of D.
Alternatively, we can express $\operatorname{Ind}(D)$ using the adiabatic deformation groupoid of $\Gamma_{\mathrm{b}}(X)$ and the class in K_{0} of the same symbol, namely

$$
\begin{equation*}
\left[\sigma_{\mathrm{b}}(D)\right]=\delta\left(\left[\sigma_{\mathrm{b}}(D)\right]_{1}\right) \in K_{0}\left(C_{0}\left({ }^{\mathrm{b}} T^{*} X\right)\right), \tag{3.2}
\end{equation*}
$$

where δ is the connecting homomorphism of the exact sequence relating the vector and sphere bundles:

$$
\begin{equation*}
0 \longrightarrow C_{0}\left({ }^{\mathrm{b}} T^{*} X\right) \longrightarrow C_{0}\left({ }^{\mathrm{b}} B^{*} X\right) \longrightarrow C\left({ }^{\mathrm{b}} S^{*} X\right) \longrightarrow 0 . \tag{3.3}
\end{equation*}
$$

Indeed, consider the exact sequence

$$
\begin{equation*}
0 \longrightarrow C^{*}\left(\Gamma_{\mathrm{b}}(X) \times(0,1]\right) \longrightarrow C^{*}\left(\Gamma_{\mathrm{b}}^{\tan }(X)\right) \xrightarrow{r_{0}} C^{*}\left({ }^{\mathrm{b}} T X\right) \cong C_{0}\left({ }^{\mathrm{b}} T^{*} X\right) \longrightarrow 0, \tag{3.4}
\end{equation*}
$$

in which the ideal is K -contractible and set

$$
\begin{equation*}
\operatorname{Ind}_{X}^{a}=r_{1} \circ r_{0}^{-1}: K_{\mathrm{top}}^{0}\left({ }^{\mathrm{b}} T^{*} X\right) \rightarrow K_{0}\left(\mathcal{K}_{\mathrm{b}}(X)\right), \tag{3.5}
\end{equation*}
$$

where $r_{1}: K_{0}\left(C^{*}\left(\Gamma_{\mathrm{b}}^{\mathrm{tan}}(X)\right)\right) \rightarrow K_{0}\left(C^{*}\left(\Gamma_{\mathrm{b}}(X)\right)\right)$ is induced by the restriction morphism to $t=1$. Applying a mapping cone argument to the exact sequence (3.1) gives a commutative diagram

Therefore we get, as announced:

$$
\begin{equation*}
\operatorname{Ind}_{\mathrm{an}}(D)=\operatorname{Ind}_{X}^{a}\left(\left[\sigma_{\mathrm{b}}(D)\right]\right) \tag{3.7}
\end{equation*}
$$

The map $\operatorname{Ind}_{X}^{a}$ will be called the analytic index morphism of X. A closely related homomorphism is the boundary analytic index morphism, in which the restriction to $X \times\{1\}$ is replaced by the one to $\partial X \times\{1\}$, that is, we set

$$
\begin{equation*}
\operatorname{Ind}_{X}^{\partial}=r_{\partial} \circ r_{0}^{-1}: K_{0}\left(C_{0}\left({ }^{\mathrm{b}} T^{*} X\right)\right) \rightarrow K_{0}\left(C^{*}\left(\left.\Gamma_{\mathrm{b}}(X)\right|_{\partial X}\right)\right), \tag{3.8}
\end{equation*}
$$

where r_{∂} is induced by the homomorphism $\left.C^{*}\left(\Gamma_{\mathrm{b}}^{\tan }(X)\right) \rightarrow C^{*}\left(\Gamma_{\mathrm{b}}(X)\right)\right|_{\partial X}$. We have of course

$$
\begin{equation*}
\operatorname{Ind}_{X}^{\partial}=r_{1, \partial} \circ \operatorname{Ind}_{X}^{a} \tag{3.9}
\end{equation*}
$$

if $r_{1, \partial}$ denotes the map induced by the homomorphism $C^{*}\left(\Gamma_{\mathrm{b}}(X)\right) \rightarrow C^{*}\left(\left.\Gamma_{\mathrm{b}}(X)\right|_{\partial X}\right)$.
3B. Fredholm index morphism. In general, elliptic b-operators on X are not Fredholm. Indeed, to construct an inverse of a b-operator modulo compact terms, we have to invert not only the principal symbol, but also all the family of boundary symbols. One way to summarize this situation is to introduce the algebra of full, or joint, symbols. Let \mathcal{H} be the set of closed boundary hyperfaces of X, and set

$$
\begin{align*}
& \mathcal{A}_{\mathcal{F}}=\left\{\left(a,\left(q_{H}\right)_{H \in \mathcal{H}}\right) \in C^{\infty}\left({ }^{\mathrm{b}} S^{*} X\right) \times \prod_{H \in \mathcal{H}} \Psi^{0}\left(\left.\Gamma_{\mathrm{b}}(X)\right|_{H}\right):\right. \\
& \left.\quad \forall H \in \mathcal{H},\left.a\right|_{H}=\sigma_{\mathrm{b}}\left(q_{H}\right)\right\} . \tag{3.10}
\end{align*}
$$

The full symbol map:

$$
\begin{equation*}
\sigma_{F}: \Psi^{0}\left(\Gamma_{\mathrm{b}}(X)\right) \ni P \mapsto\left(\sigma_{\mathrm{b}}(P),\left(\left.P\right|_{H}\right)_{H \in \mathcal{H}}\right) \in \mathcal{A}_{\mathcal{F}} \tag{3.11}
\end{equation*}
$$

extends to the C^{*}-closures of the algebras and the assertion about the invertibility modulo compact operators amounts to the exactness of the sequence [Lauter et al.

2000]:

$$
\begin{equation*}
0 \longrightarrow \mathcal{K}(X) \longrightarrow \overline{\Psi^{0}\left(\Gamma_{\mathrm{b}}(X)\right)} \stackrel{\sigma_{F}}{\longrightarrow} \overline{\mathcal{A}_{\mathcal{F}}} \longrightarrow 0 \tag{3.12}
\end{equation*}
$$

Definition 3.13 (full ellipticity). An operator $D \in \Psi^{0}\left(\Gamma_{\mathrm{b}}(X)\right)$ is said to be fully elliptic if $\sigma_{F}(D)$ is invertible.

We then recall the following result of Loya [2005] (the statement also appears in [Melrose and Piazza 1992]). Remember that b-Sobolev spaces $H_{\mathrm{b}}^{s}(X)$ are defined using b-metrics and b-operators map $H_{\mathrm{b}}^{m}(X)$ to $H_{\mathrm{b}}^{s-m}(X)$ continuously for every s.
Theorem 3.14 [Loya 2005, Theorem 2.3]. An operator $D \in \Psi_{\mathrm{b}}^{0}(X)$ is fully elliptic if and only if it is Fredholm on $H_{\mathrm{b}}^{s}(X)$ for some s (and then for any s, with Fredholm index independent of s).

For a given fully elliptic operator D, we denote by $\operatorname{Ind}_{\text {Fred }}(D)$ its Fredholm index. We are going to express this number in terms of K-theory and clarify the relationship between the analytical index and full ellipticity on X using deformation groupoids. Let us start with the tangent groupoid

$$
\begin{equation*}
\Gamma_{\mathrm{b}}(X)^{\tan }:=\left.\left(G_{c}\left(\tilde{X},\left(\rho_{i}\right)\right)^{\tan }\right)\right|_{X \times[0,1]}=T_{\mathrm{b}} X \sqcup\left(\Gamma_{\mathrm{b}}(X) \times(0,1]\right) \rightrightarrows X \times[0,1] \tag{3.15}
\end{equation*}
$$

Now we introduce the two following saturated subspaces of $X \times[0,1]$:

$$
\begin{equation*}
X_{\mathcal{F}}:=X \times[0,1] \backslash \partial X \times\{1\} \quad \text { and } \quad X_{\partial}:=X_{\mathcal{F}} \backslash \stackrel{\circ}{X} \times(0,1]=X \cup \partial X \times[0,1) \tag{3.16}
\end{equation*}
$$

The Fredholm b-groupoid and the noncommutative tangent space of X are defined by

$$
\begin{equation*}
\Gamma_{\mathrm{b}}(X)^{\mathrm{Fred}}:=\left.\Gamma_{\mathrm{b}}(X)^{\mathrm{tan}}\right|_{X_{\mathcal{F}}} \quad \text { and } \quad T_{\mathrm{nc}} X:=\left.\Gamma_{\mathrm{b}}(X)^{\mathrm{Fred}}\right|_{X_{\partial}} \tag{3.17}
\end{equation*}
$$

respectively. They are obviously KK-equivalent, as one sees using the exact sequence

$$
\begin{equation*}
0 \longrightarrow C^{*}(\stackrel{\circ}{X} \times \stackrel{\circ}{X} \times(0,1]) \longrightarrow C^{*}\left(\Gamma_{\mathrm{b}}(X)^{\mathrm{Fred}}\right) \xrightarrow{r_{F}} C^{*}\left(T_{\mathrm{nc}} X\right) \longrightarrow 0 \tag{3.18}
\end{equation*}
$$

whose ideal is K-contractible. We then define the Fredholm index morphism by

$$
\begin{equation*}
\operatorname{Ind}_{F}^{X}=\left(r_{1}\right)_{*} \circ\left(r_{F}\right)_{*}^{-1}: K^{0}\left(T_{\mathrm{nc}} X\right) \rightarrow K^{0}(\stackrel{\circ}{X} \times \stackrel{\circ}{X}) \simeq \mathbb{Z} \tag{3.19}
\end{equation*}
$$

Following [Debord et al. 2015, Definition 10.4], we denote by $\mathrm{FE}(X)$ the group of order-0 fully elliptic operators modulo stable homotopy. Then the vocabulary above is justified by:

Proposition 3.20. There exists a group isomorphism

$$
\begin{equation*}
\sigma_{\mathrm{nc}}: \mathrm{FE}(X) \rightarrow K_{0}\left(C^{*}\left(\mathcal{T}_{\mathrm{nc}} X\right)\right) \tag{3.21}
\end{equation*}
$$

such that

$$
\begin{align*}
r_{0}\left(\left[\sigma_{\mathrm{nc}}(D)\right]\right) & =\left[\sigma_{\mathrm{b}}(D)\right] \in K_{0}\left(C_{0}\left({ }^{\mathrm{b}} T^{*} X\right)\right) \\
\operatorname{Ind}_{F}^{X}\left(\left[\sigma_{\mathrm{nc}}(D)\right]\right) & =\operatorname{Ind}_{\mathrm{Fred}}(D) \tag{3.22}
\end{align*}
$$

where r_{0} comes from the natural restriction map $C^{*}\left(\mathcal{T}_{\mathrm{nc}} X\right) \rightarrow C_{0}\left({ }^{\mathrm{b}} T^{*} X\right)$.
This is proved by the method leading to [Savin 2005, Theorem 4; Debord et al. 2015, Theorem 10.6] in exactly the same way. Also, this homotopy classification appears in [Nazaikinskii et al. 2008b], in which the K-homology of a suitable dual manifold is used instead of the K-theory of the noncommutative tangent space. Previous related results appeared in [Lauter et al. 2000] for differential operators and using different algebras to classify their symbols.

The construction of the various index maps above is summarized into the commutative diagram:

3C. Fredholm perturbation property. We are ready to define the Fredholm perturbation property [Nistor 2003] and its stably homotopic version.
Definition 3.23. Let $D \in \Psi_{\mathrm{b}}^{m}(X)$ be elliptic. We say that D satisfies:

- the Fredholm perturbation property $(\mathcal{F P})$ if there is $R \in \Psi_{\mathrm{b}}^{-\infty}(X)$ such that $D+R$ is fully elliptic.
- the stably homotopic Fredholm perturbation property $(\mathcal{H F P})$ if there is a fully elliptic operator D^{\prime} with $\left[\sigma_{\mathrm{b}}\left(D^{\prime}\right)\right]=\left[\sigma_{\mathrm{b}}(D)\right] \in K_{0}\left(C^{*}\left({ }^{\mathrm{b}} T X\right)\right)$.
We also say that X satisfies the (stably homotopic) Fredholm perturbation property if any elliptic b-operator on X satisfies $((\mathcal{H}) \mathcal{F P})$.

Property $(\mathcal{F P})$ is of course stronger than property $(\mathcal{H F P})$. Nistor [2003] characterized $(\mathcal{F P})$ in terms of the vanishing of an index in some particular cases. Nazaikinskii et al. [2008b] characterized ($\mathcal{H F P}$) for arbitrary manifolds with corners using an index map associated with their dual manifold construction. We now rephrase the result of [Nazaikinskii et al. 2008b] in terms of deformation groupoids.

Theorem 3.24. Let D be an elliptic b-pseudodifferential operator on a compact manifold with corners X. Then D satisfies $(\mathcal{H F P})$ if and only if $\operatorname{Ind}_{\partial}\left(\left[\sigma_{b}(D)\right]\right)=0$. In particular if D satisfies $(\mathcal{F P})$ then its analytic indicial index vanishes.

Proof. Note that the Fredholm and the tangent groupoids are related by the exact sequence

$$
\begin{equation*}
0 \longrightarrow C^{*}\left(\Gamma_{\mathrm{b}}^{\mathrm{Fred}}(X)\right) \xrightarrow{i_{F}} C^{*}\left(\Gamma_{\mathrm{b}}^{\mathrm{tan}}(X)\right) \xrightarrow{r_{\partial}} C^{*}\left(\Gamma_{\mathrm{b}}(X)_{\partial X}\right) \longrightarrow 0 . \tag{3.25}
\end{equation*}
$$

Then Proposition 3.20, together with this exact sequence and the commutative diagram:

yields the result.
Loosely speaking, this theorem tells us that the K-theory of $\Gamma_{\mathrm{b}}(X)_{\partial X}$, or equivalently the one of $\Gamma_{\mathrm{b}}(X)$ as we shall see later, is the receptacle for the obstruction to Fredholmness of elliptic symbols in the b-calculus. This is why we now focus on the understanding of these K-theory groups. If the result is well known in codimension less or equal to 1 , the general case is far from understood. Meanwhile, we will also clarify the equivalent role played by $\Gamma_{\mathrm{b}}(X)$ and $\Gamma_{\mathrm{b}}(X)_{\partial X}$.

4. The conormal homology of a manifold with corners

In all this section, X is a manifold with embedded corners of codimension d, whose connected hyperfaces H_{1}, \ldots, H_{N} are provided with defining functions r_{1}, \ldots, r_{N}.

4A. Definition of the homology. The one form $e_{j}=d r_{j}$ trivializes the conormal bundle of H_{j} for any $1 \leq j \leq N$. By convention, p-tuples of integers $I=$ $\left(i_{1}, \ldots, i_{p}\right) \in \mathbb{N}^{p}$ are always labeled so that $1 \leq i_{1}<\cdots<i_{p} \leq N$. Let I be a p-tuple, set

$$
\begin{equation*}
H_{I}=r_{I}^{-1}(\{0\})=H_{i_{1}} \cap \cdots \cap H_{i_{p}} \tag{4.1}
\end{equation*}
$$

and denote by $c(I)$ the set of open connected faces of codimension p included in H_{I}. Also, we denote by e_{I} the exterior product

$$
\begin{equation*}
e_{I}=e_{i_{1}} \cdot e_{i_{2}} \cdots e_{i_{p}} \tag{4.2}
\end{equation*}
$$

Let f be a face of codimension p and I the p-tuple such that $f \in c(I)$. The conormal bundle $N(f)$ of f has a global basis given by the sections $e_{j}, j \in I$, and
its orientations are identified with $\pm e_{I}$. For any integer $0 \leq p \leq d$, we denote by $C_{p}(X)$ the free \mathbb{Z}-module generated by

$$
\begin{equation*}
\left\{f \otimes \varepsilon: f \in F_{p}, \varepsilon \text { is an orientation of } N(f)\right\} . \tag{4.3}
\end{equation*}
$$

Let $f \in F_{p}, \varepsilon_{f}$ an orientation of $N(f)$ and $g \in F_{p-1}$ such that $f \subset \bar{g}$. The face f is characterized in \bar{g} by the vanishing of a defining function $r_{i_{(g, f)}}$. Then the contraction $\left.e_{i_{(g, f)}}\right\lrcorner \varepsilon_{f}$ is an orientation of $N(g)$. Recall that the contraction \lrcorner is defined by

$$
\left.e_{i}\right\lrcorner e_{I}= \begin{cases}0 & \text { if } i \notin I, \tag{4.4}\\ (-1)^{j-1} e_{I \backslash\{i\}} & \text { if } i \text { is the } j \text {-th coordinate of } I .\end{cases}
$$

We then define $\delta_{p}: C_{p}(X) \rightarrow C_{p-1}(X)$ by

$$
\begin{equation*}
\left.\delta_{p}\left(f \otimes \varepsilon_{f}\right)=\sum_{\substack{g \in F_{p-1}, f \subset \bar{g}}} g \otimes e_{i_{(g, f)}}\right\lrcorner \varepsilon_{f} . \tag{4.5}
\end{equation*}
$$

It is not hard to check directly that $\left(C_{*}(X), \delta_{*}\right)$ is a differential complex. Actually, δ_{*} is the component of degree -1 of another natural differential map $\delta^{\mathrm{pcn}}=$ $\sum_{k \geq 0} \delta^{2 k+1}$, which eventually produces a quasiisomorphic differential complex. Details are provided in the Appendix.

We define the conormal homology of X as the homology of $\left(C_{*}(X), \delta_{*}\right)$, and we write

$$
\begin{equation*}
H_{p}^{\mathrm{cn}}(X):=H_{p}\left(C_{*}(X), \delta_{*}\right) \tag{4.6}
\end{equation*}
$$

This homology was first considered in [Bunke 2009], in a slightly different but equivalent way. Also, the graduation of the conormal homology into even and odd degree, called here periodic conormal homology, will be used and we denote

$$
\begin{equation*}
H_{0}^{\mathrm{pcn}}(X)=\oplus_{p \geq 0} H_{2 p}^{\mathrm{cn}}(X) \quad \text { and } \quad H_{1}^{\mathrm{pcn}}(X)=\oplus_{p \geq 0} H_{2 p+1}^{\mathrm{cn}}(X) . \tag{4.7}
\end{equation*}
$$

4B. Examples. The determination of the groups $H_{*}^{\mathrm{cn}}(X)$ is completely elementary in all concrete cases. In the following examples, it is understood that faces f arise with the orientation given by e_{I} if $f \in c(I)$.

Example 4.8. - Assume that X has no boundary. Then $H_{0}^{\mathrm{pcn}}(X)=H_{0}^{\mathrm{cn}}(X) \simeq \mathbb{Z}$, $H_{1}^{\mathrm{pcn}}(X)=0$.

- Assume that X has a boundary with n connected components. Then $H_{0}^{\mathrm{pcn}}(X)=$ 0 and $H_{1}^{\text {pcn }}(X)=H_{1}^{\text {cn }}(X) \simeq \mathbb{Z}^{n-1}$. More precisely, if we set $F_{1}=\left\{f_{1}, \ldots, f_{n}\right\}$ then $\left\{f_{1}-f_{2}, f_{2}-f_{3}, \ldots, f_{n-1}-f_{n}\right\}$ provides a basis of $\operatorname{ker} \delta_{1}$.
- Assume that X has codimension 2 and that ∂X is connected. Then $H_{0}^{\mathrm{pcn}}(X)=$ $H_{2}^{\mathrm{cn}}(X)=\operatorname{ker} \delta_{2} \simeq \mathbb{Z}^{k}$, where all nonnegative integers k can arise. For instance, consider the unit closed ball B in \mathbb{R}^{3}, cut $k+1$ small disjoint disks out of its
boundary and glue two copies of such spaces along the pairs of cut out disks. We get a space X satisfying the statement: the boundaries s_{0}, \ldots, s_{k} of the original disks provide a basis of F_{2} and the family $s_{0}-s_{j}, 1 \leq j \leq k$ a basis of ker δ_{2}. Finally, $[0,+\infty)^{2}$ provides an example with $k=0$.
- Consider the cube $X=[0,1]^{3}$.
(1) We have $H_{0}^{\mathrm{pcn}}(X)=0$ and $H_{1}^{\mathrm{pcn}}(X)=H_{3}^{\mathrm{cn}}(X) \simeq \mathbb{Z}$.
(2) Remove a small open cube into the interior of X and call the new space Y. Then

$$
H_{0}^{\mathrm{pcn}}(Y)=0 \quad \text { and } \quad H_{1}^{\mathrm{pcn}}(Y)=H_{3}^{\mathrm{cn}}(Y) \oplus H_{1}^{\mathrm{cn}}(Y) \simeq \mathbb{Z}^{2} \oplus \mathbb{Z}
$$

(3) Remove a small open ball from the interior of X and call the new space Z. Then

$$
H_{0}^{\mathrm{pcn}}(Z)=0 \quad \text { and } \quad H_{1}^{\mathrm{pcn}}(Y)=H_{3}^{\mathrm{cn}}(Y) \oplus H_{1}^{\mathrm{cn}}(Y) \simeq \mathbb{Z} \oplus \mathbb{Z}
$$

4C. Long exact sequence in conormal homology. We define a filtration of X by open submanifolds with corners by setting:

$$
\begin{equation*}
X_{m}=\bigcup_{f \in F_{k}, k \leq m} f, \quad 0 \leq m \leq d . \tag{4.9}
\end{equation*}
$$

This leads to differential complexes $\left(C_{*}\left(X_{m}\right), \delta\right)$ for $0 \leq m \leq d$. We can also filter the differential complex $\left(C_{*}(X), \delta\right)$ by the codimension of faces:

$$
\begin{equation*}
F_{m}\left(C_{*}(X)\right)=\bigoplus_{k=0}^{m} C_{k}(X) \tag{4.10}
\end{equation*}
$$

There is an obvious identification $C_{*}\left(X_{m}\right) \simeq F_{m}\left(C_{*}(X)\right)$ and we thus consider $\left(C_{*}\left(X_{m}\right), \delta\right)$ as a subcomplex of $\left(C_{*}(X), \delta\right)$, with quotient complex denoted by $\left(C_{*}\left(X, X_{m}\right), \delta\right)$. The quotient module is also naturally embedded in $C_{*}(X)$:

$$
\begin{equation*}
C_{*}\left(X, X_{m}\right)=C_{*}(X) / C_{*}\left(X_{m}\right) \simeq \bigoplus_{k=m+1}^{d} C_{k}(X) \subset C_{*}(X) . \tag{4.11}
\end{equation*}
$$

The embedding, denoted by ρ, is a section of the quotient map. The short exact sequence:

$$
\begin{equation*}
0 \longrightarrow C_{*}\left(X_{m}\right) \longrightarrow C_{*}(X) \longrightarrow C_{*}\left(X, X_{m}\right) \longrightarrow 0 \tag{4.12}
\end{equation*}
$$

induces a long exact sequence in conormal homology:

$$
\begin{equation*}
\cdots \xrightarrow{\partial_{p+1}} H_{p}^{\mathrm{cn}}\left(X_{m}\right) \longrightarrow H_{p}^{\mathrm{cn}}(X) \longrightarrow H_{p}^{\mathrm{cn}}\left(X, X_{m}\right) \xrightarrow{\partial_{p}} H_{p-1}^{\mathrm{cn}}\left(X_{m}\right) \longrightarrow \cdots \tag{4.13}
\end{equation*}
$$

and we need to make precise the connecting homomorphism.

Proposition 4.14. Let $[c] \in H_{p}^{\mathrm{cn}}\left(X, X_{m}\right)$. Then

$$
\begin{equation*}
\partial_{p}[c]=[\delta(\rho(c))] . \tag{4.15}
\end{equation*}
$$

Proof. Since c is by assumption a cycle in $\left(C_{*}\left(X, X_{m}\right), \delta\right)$, the chain $\rho(c)$ has a boundary made of faces contained in X_{m}. The result follows.
Remarks 4.16. - We can replace X by X_{l} and quotient the exact sequence (4.12) by $C_{*}\left(X_{q}\right)$ for any integers l, m, q such that $0 \leq q \leq m \leq l \leq d$. This leads to long exact sequences:

$$
\begin{equation*}
\cdots \xrightarrow{\partial} H_{p}^{\mathrm{cn}}\left(X_{m}, X_{q}\right) \longrightarrow H_{p}^{\mathrm{cn}}\left(X_{l}, X_{q}\right) \longrightarrow H_{p}^{\mathrm{pcn}}\left(X_{l}, X_{m}\right) \xrightarrow{\partial} H_{p-1}^{\mathrm{pcn}}\left(X_{m}, X_{q}\right) \longrightarrow \cdots \tag{4.17}
\end{equation*}
$$

whose connecting homomorphisms are again given by (4.15).

- If we split the conormal homology into even and odd periodic groups, then the long exact sequence (4.13) becomes a six-term exact sequence:

where $\partial^{0}, \partial^{1}$ are given by the direct sum in even/odd degrees of the maps ∂_{*} of Proposition 4.14.
- We can replace X_{m} in the exact sequence (4.12) by an open saturated submanifold $U \subset X_{m}$, that is, an open subset of X consisting of a union of faces. This gives in the same way a subcomplex $\left(C_{*}(U), \delta\right)$ of $\left(C_{*}(X), \delta\right)$ and a section $\rho: C_{*}(X, U) \rightarrow$ $C_{*}(X)$ allowing us to state Proposition 4.14 verbatim. More generally, if U is any open submanifold of X and \widetilde{U} denotes the smallest open saturated submanifold containing U, then any face f of U is contained in a unique face \tilde{f} of X and an orientation of $N(f)$ determines an orientation of $N(\tilde{f})$. This gives rise to a quasiisomorphism $C_{*}(U) \rightarrow C_{*}(\widetilde{U})$.

Finally, assume that $d \geq 1$. Since X is connected, the map $\delta_{1}: C_{1}(X) \rightarrow C_{0}(X)$ is surjective, which implies by Proposition 4.14 the surjectivity of the connecting homomorphism $\partial^{1}: H_{1}^{\mathrm{pcn}}\left(X, X_{0}\right) \rightarrow H_{0}^{\mathrm{pcn}}\left(X_{0}\right)$. This fact and $H_{1}^{\mathrm{pcn}}\left(X_{0}\right)=0$ gives, using (4.18), the useful corollary:
Corollary 4.19. For any connected manifold with corners X of codimension $d \geq 1$ the canonical morphism $H_{0}^{\mathrm{pcn}}(X) \rightarrow H_{0}^{\mathrm{pcn}}\left(X, X_{0}\right)$ is an isomorphism.
4D. Torsion free in low codimensions. Here we will show that up to codimension 2 the conormal homology groups (and later on the K-theory groups) are free abelian groups.

Lemma 4.20. Let X be of arbitrary codimension and assume that ∂X has l connected components. Then $H_{1}^{\mathrm{cn}}(X) \simeq \mathbb{Z}^{l-1}$.

Proof. For any face f, denote by $c c(f)$ the connected component of ∂X containing f. It is obvious that $\operatorname{ker} \delta_{1}$ is generated by the differences $f-g$, where f, g run through F_{1}. Let $f, g \in F_{1}$ such that $c c(f)=c c(g)$. Then there exist $f_{0}, \ldots, f_{l} \in F_{1}$ such that $f=f_{0}, g=f_{l}$ and $\bar{f}_{i} \cap \overline{f_{i+1}} \neq \varnothing$ for any i. Therefore for any i, there exists $f_{i, i+1} \in F_{2}$ such that $\delta_{2}\left(f_{i, i+1}\right)=f_{i}-f_{i+1}$, hence $f-g=\delta_{2}\left(\sum f_{i, i+1}\right)$ is a boundary in conormal homology.

Now assume that $c c(f) \neq c c(g)$. By the previous discussion, we also have $[f-g]=\left[f^{\prime}-g^{\prime}\right] \in H_{1}^{\mathrm{cn}}(X)$ for any $f^{\prime}, g^{\prime} \in F_{1}$ such that $f^{\prime} \subset c c(f)$ and $g^{\prime} \subset c c(g)$. Therefore, pick up one hyperface in each connected component of ∂X, call them f_{1}, \ldots, f_{l}, and set $\alpha_{i}=\left[f_{1}-f_{i}\right] \in H_{1}^{\mathrm{cn}}(X)$ for $i \in\{2, \ldots, l\}$. It is obvious that $\left(\alpha_{i}\right)_{2 \leq i \leq l}$ generates $H_{1}^{\mathrm{cn}}(X)$. So, consider integers x_{2}, \ldots, x_{l} such that

$$
\sum_{i=2}^{l} x_{i} \alpha_{i}=0
$$

In other words, there exists $x \in C_{2}(X)$ such that

$$
\begin{equation*}
\left(\sum_{i=2}^{l} x_{i}\right) f_{1}-\sum_{i=2}^{l} x_{i} f_{i}=\delta_{2}(x) \tag{4.21}
\end{equation*}
$$

For any $p \geq 1$ and $2 \leq j \leq l$ denote by $\pi_{j}: C_{p}(X) \rightarrow C_{p}(X)$ the map defined by $\pi_{j}(h)=h$ if $h \subset c c\left(f_{j}\right)$ and $\pi_{j}(h)=0$ otherwise. All the π_{i} commute with δ_{*}, hence (4.21) gives

$$
\text { for all } 2 \leq j \leq l, \quad x_{j} f_{j}=\delta_{2}\left(\pi_{j}(x)\right) .
$$

Since $\delta_{1}\left(f_{j}\right)=\stackrel{\circ}{X} \neq 0$, we conclude $x_{j}=0$ for all j.
Theorem 4.22. Assume that X is connected and has codimension $d \leq 2$. Then $H_{*}^{\text {pcn }}(X)$ is a free abelian group.
Proof. This is essentially a compilation of previous examples and computations. The first two cases in Section 4B give the result for $d=0$ and $d=1$. If X is of codimension 2, then the third case in Section 4B says that $H_{0}^{\mathrm{pcn}}(X)$ is free. In codimension 2 again, we have $H_{1}^{\text {pcn }}(X)=H_{1}^{\mathrm{cn}}(X)$, hence we are done by Lemma 4.20.

Remark 4.23. If $\operatorname{codim}(X)=3$, then $H_{1}^{\mathrm{pcn}}(X)=H_{1}^{\mathrm{cn}}(X) \oplus H_{3}^{\mathrm{cn}}(X)$. Since $H_{3}^{\mathrm{cn}}(X)=\operatorname{ker} \delta_{3}$, Lemma 4.20 also gives that $H_{1}^{\mathrm{pcn}}(X)$ is free. The combinatorics needed to prove that $H_{2}^{\mathrm{cn}}(X)$ - and therefore $H_{0}^{\mathrm{pcn}}(X)$ - is free are much more involved. The torsion of conormal homology for manifolds of arbitrary codimension will be studied somewhere else.

4E. Künneth formula for conormal homology. Taking advantage of the previous paragraph, we consider a product $X=X_{1} \times X_{2}$ of two manifolds with corners, one of them being of codimension ≤ 2. It is understood that the defining functions used for X are obtained by pulling back the ones used for X_{1} and X_{2}. The tensor product ($\widehat{C}_{*}, \hat{\delta}$) of the conormal complexes of X_{1} and X_{2} is given by

$$
\begin{equation*}
\widehat{C}_{p}=\bigoplus_{s+t=p} C_{s}\left(X_{1}\right) \otimes C_{t}\left(X_{2}\right) \quad \text { and } \quad \hat{\delta}(x \otimes y)=\delta(x) \otimes y+(-1)^{t} x \otimes \delta(y), \tag{4.24}
\end{equation*}
$$

where $x \in C_{t}\left(X_{1}\right)$ in the second formula. We have an isomorphism of differential complexes:

$$
\begin{equation*}
\left(\widehat{C}_{*}, \hat{\delta}\right) \simeq\left(C_{*}(X), \delta\right) . \tag{4.25}
\end{equation*}
$$

It is given by the map

$$
\begin{equation*}
\Psi_{p}: \widehat{C}_{p}=\bigoplus_{s+t=p} C_{s}\left(X_{1}\right) \otimes C_{t}\left(X_{2}\right) \rightarrow C_{p}(X) \tag{4.26}
\end{equation*}
$$

defined by

$$
\begin{equation*}
\left(f \otimes \varepsilon_{f}\right) \otimes\left(g \otimes \varepsilon_{g}\right) \mapsto(f \times g) \otimes \varepsilon_{f} \cdot \varepsilon_{g} \tag{4.27}
\end{equation*}
$$

where we did not distinguish differential forms on X_{j} and their pull-back to X via the canonical projections and \cdot denotes again the exterior product. Since $H_{*}^{\text {cn }}\left(X_{j}\right)$ is torsion free for $j=1$ or 2 by assumption, we get by Künneth Theorem:

$$
\begin{equation*}
H_{p}\left(\widehat{C}_{*}, \hat{\delta}\right)=\bigoplus_{s+t=p} H_{s}^{\mathrm{cn}}\left(X_{1}\right) \otimes H_{t}^{\mathrm{cn}}\left(X_{2}\right) \tag{4.28}
\end{equation*}
$$

Therefore:
Proposition 4.29 (Künneth formula). Assume that $X=X_{1} \times X_{2}$ with one factor at least of codimension ≤ 2. Then we have:

$$
\begin{align*}
& H_{0}^{\mathrm{pcn}}(X) \simeq H_{0}^{\mathrm{pcn}}\left(X_{1}\right) \otimes H_{0}^{\mathrm{pcn}}\left(X_{2}\right) \oplus H_{1}^{\mathrm{pcn}}\left(X_{1}\right) \otimes H_{1}^{\mathrm{pcn}}\left(X_{2}\right), \tag{4.30}\\
& H_{1}^{\mathrm{pcn}}(X) \simeq H_{0}^{\mathrm{pcn}}\left(X_{1}\right) \otimes H_{1}^{\mathrm{pcn}}\left(X_{2}\right) \oplus H_{1}^{\mathrm{pcn}}\left(X_{1}\right) \otimes H_{0}^{\mathrm{pcn}}\left(X_{2}\right) . \tag{4.31}
\end{align*}
$$

The following straightforward corollary will be useful later on:
Corollary 4.32. If $X=\Pi_{i} X_{i}$ is a finite product of manifolds with corners X_{i} with $\operatorname{codim}\left(X_{i}\right) \leq 2$, then the groups $H_{*}^{\mathrm{pcn}}(X)$ are torsion free.

The exact same arguments as above work to show that the Künneth formula holds in full generality for conormal homology with rational coefficients, i.e., for $H_{*}^{\text {pcn }}(X) \otimes_{\mathbb{Z}} \mathbb{Q}$. We state the proposition as we will use it later:
Proposition 4.33 (Künneth formula with rational coefficients). For $X=X_{1} \times X_{2}$ we have:

$$
\begin{align*}
H_{0}^{\mathrm{pcn}}(X) \otimes_{\mathbb{Z}} \mathbb{Q} \simeq\left(H_{0}^{\mathrm{pcn}}\left(X_{1}\right) \otimes_{\mathbb{Z}} \mathbb{Q}\right) & \otimes\left(H_{0}^{\mathrm{pcn}}\left(X_{2}\right) \otimes_{\mathbb{Z}} \mathbb{Q}\right) \\
& \oplus\left(H_{1}^{\mathrm{pcn}}\left(X_{1}\right) \otimes_{\mathbb{Z}} \mathbb{Q}\right) \otimes\left(H_{1}^{\mathrm{pcn}}\left(X_{2}\right) \otimes_{\mathbb{Z}} \mathbb{Q}\right), \tag{4.34}
\end{align*}
$$

$$
\begin{align*}
& H_{1}^{\mathrm{pcn}}(X) \otimes_{\mathbb{Z}} \mathbb{Q} \simeq\left(H_{0}^{\mathrm{pcn}}\left(X_{1}\right) \otimes_{\mathbb{Z}} \mathbb{Q}\right) \otimes\left(H_{1}^{\mathrm{pcn}}\left(X_{2}\right) \otimes_{\mathbb{Z}} \mathbb{Q}\right) \\
& \oplus\left(H_{1}^{\mathrm{pcn}}\left(X_{1}\right) \otimes_{\mathbb{Z}} \mathbb{Q}\right) \otimes\left(H_{0}^{\mathrm{pcn}}\left(X_{2}\right) \otimes_{\mathbb{Z}} \mathbb{Q}\right) . \tag{4.35}
\end{align*}
$$

5. The computation of $K_{*}\left(\mathcal{K}_{\mathbf{b}}(X)\right)$

We keep all the notation and conventions of Section 4. In particular, the defining functions induce a trivialization of the conormal bundle of any face f,

$$
\begin{equation*}
N(f) \simeq f \times E_{f}, \tag{5.1}
\end{equation*}
$$

in which the p-dimensional real vector space E_{f} inherits a basis $b_{f}=\left(e_{i}\right)_{i \in I}$, where I is characterized by $f \in c(I)$. These data induce an isomorphism

$$
\begin{equation*}
\left.\Gamma_{\mathrm{b}}(X)\right|_{f} \simeq C^{*}\left(\mathcal{C}(f) \times E_{f}\right), \tag{5.2}
\end{equation*}
$$

where $\mathcal{C}(f)$ denotes the pair groupoid over f, as well as a linear isomorphism $\varphi_{f}: \mathbb{R}^{p} \rightarrow E_{f}$.

Also, the filtration (4.9) gives rise to the following filtration of the C^{*}-algebra $\mathcal{K}_{\mathrm{b}}(X)=C^{*}\left(\Gamma_{\mathrm{b}}(X)\right)$ by ideals:

$$
\begin{equation*}
\mathcal{K}\left(L^{2}(X)\right)=A_{0} \subset A_{1} \subset \cdots \subset A_{d}=A=\mathcal{K}_{\mathrm{b}}(X), \tag{5.3}
\end{equation*}
$$

with $A_{m}=C^{*}\left(\left.\Gamma_{\mathrm{b}}(X)\right|_{X_{m}}\right)$ for any $0 \leq m \leq d$. The isomorphisms (5.2) induce

$$
\begin{equation*}
A_{m} / A_{m-1} \simeq C^{*}\left(\left.\Gamma_{\mathrm{b}}(X)\right|_{X_{m} \backslash X_{m-1}}\right) \simeq \bigoplus_{f \in F_{m}} C^{*}\left(\mathcal{C}(f) \times E_{f}\right) \tag{5.4}
\end{equation*}
$$

5A. The first differential of the spectral sequence for $K_{*}(A)$. The K-theory spectral sequence $\left(E_{*, *}^{r}, d_{*, *}^{r}\right)_{r \geq 1}$ associated with (5.3) [Schochet 1981; Kono and Tamaki 2006] converges to

$$
\begin{equation*}
E_{p, q}^{\infty}=K_{p+q}\left(A_{p}\right) / K_{p+q}\left(A_{p-1}\right) . \tag{5.5}
\end{equation*}
$$

Here we have set $K_{n}(A)=K_{0}\left(A \otimes C_{0}\left(\mathbb{R}^{n}\right)\right)$ for any C^{*}-algebra A. By construction, all the terms $E_{p, 2 q+1}^{r}$ vanish, and by Bott periodicity, $E_{p, 2 q}^{r} \simeq E_{p, 0}^{r}$. Also, all the differentials $d_{p, q}^{2 r}$ vanish. By definition

$$
\begin{equation*}
d_{p, q}^{1}: E_{p, q}^{1}=K_{p+q}\left(A_{p} / A_{p-1}\right) \rightarrow E_{p-1, q}^{1}=K_{p+q-1}\left(A_{p-1} / A_{p-2}\right) \tag{5.6}
\end{equation*}
$$

is the connecting homomorphism of the short exact sequence

$$
\begin{equation*}
0 \rightarrow A_{p-1} / A_{p-2} \rightarrow A_{p} / A_{p-2} \rightarrow A_{p} / A_{p-1} \rightarrow 0 \tag{5.7}
\end{equation*}
$$

By (5.4), we get isomorphisms:

$$
\begin{equation*}
E_{p, q}^{1} \simeq \bigoplus_{f \in F_{p}} K_{p+q}\left(C^{*}\left(\mathcal{C}(f) \times E_{f}\right)\right) \tag{5.8}
\end{equation*}
$$

Since the real vector space E_{f} has dimension p, the groups $E_{p, q}^{1}$ vanish for odd q and for even q, we have after applying Bott periodicity, $E_{p, q}^{1} \simeq \mathbb{Z}^{\# F_{p}}$.

Melrose and Nistor [1998, Theorem 9] already achieved the computation of $d_{*, *}^{1}$. In order to relate the terms $E_{*, *}^{2}$ with the elementary defined conormal homology, we reproduce their computation in a slightly different way. Our approach is based on the next two lemmas.

Lemma 5.9. Let $\mathbb{R}_{+} \rtimes \mathbb{R}$ be the groupoid of the action of \mathbb{R} onto \mathbb{R}_{+}given by

$$
\begin{equation*}
t . \lambda=t e^{\lambda}, \quad t \in \mathbb{R}_{+}, \lambda \in \mathbb{R} \tag{5.10}
\end{equation*}
$$

The element $\alpha \in \mathrm{KK}_{1}\left(C^{*}(\mathbb{R}), C^{*}\left(\mathbb{R}_{+}^{*}\right)\right)$ associated with the exact sequence

$$
\begin{equation*}
0 \rightarrow C^{*}\left(\mathcal{C}\left(\mathbb{R}_{+}^{*}\right)\right) \rightarrow C^{*}\left(\mathbb{R}_{+} \rtimes \mathbb{R}\right) \rightarrow C^{*}(\mathbb{R}) \rightarrow 0 \tag{5.11}
\end{equation*}
$$

is a KK-equivalence.
Proof. By the Thom-Connes isomorphism, the C^{*}-algebras $C^{*}\left(\mathbb{R}_{+} \rtimes \mathbb{R}\right)$ and $C^{*}\left(\mathbb{R}_{+} \times \mathbb{R}\right)$ are KK-equivalent. The latter being K-contractible, the result follows.

Lemma 5.12. Let $\mathbb{R}_{+} \rtimes_{i} \mathbb{R}^{p}$ be the groupoid given by the action of the i-th coordinate of \mathbb{R}^{p} on \mathbb{R}_{+}by (5.10). Let $\alpha_{i, p} \in \operatorname{KK}_{1}\left(C^{*}\left(\mathbb{R}^{p}\right), C^{*}\left(\mathbb{R}^{p-1}\right)\right)$ be the KK-element induced by the exact sequence

$$
\begin{equation*}
0 \rightarrow C^{*}\left(\mathcal{C}\left(\mathbb{R}_{+}^{*}\right) \times \mathbb{R}^{p-1}\right) \rightarrow C^{*}\left(\mathbb{R}_{+} \rtimes_{i} \mathbb{R}^{p}\right) \rightarrow C^{*}\left(\mathbb{R}^{p}\right) \rightarrow 0 \tag{5.13}
\end{equation*}
$$

Then for all $1 \leq i \leq p$ we have

$$
\begin{equation*}
\alpha_{i, p}=(-1)^{i-1} \alpha_{1, p} \quad \text { and } \quad \alpha_{1, p}=\sigma_{C^{*}\left(\mathbb{R}^{p-1}\right)}(\alpha) \tag{5.14}
\end{equation*}
$$

where $\sigma_{D}: K_{*}(A, B) \rightarrow K_{*}(A \otimes D, B \otimes D)$ denotes the Kasparov suspension map. Proof. Let τ be a permutation of $\{1,2, \ldots, p\}$ and $i \in\{1, \ldots, p\}$. We denote in the same way the corresponding automorphisms of \mathbb{R}^{p} and $C^{*}\left(\mathbb{R}^{p}\right)$. We have a groupoid isomorphism

$$
\tilde{\tau}: \mathbb{R}_{+} \rtimes_{i} \mathbb{R}^{p} \xrightarrow{\simeq} \mathbb{R}_{+} \rtimes_{\tau(i)} \mathbb{R}^{p}
$$

and if we denote by τ_{i} the automorphism of \mathbb{R}^{p-1} obtained by removing the i-th factor in the domain of τ and the $\tau(i)$-th factor in the range of τ, we get a commutative diagram of exact sequences:

It follows that

$$
\begin{equation*}
\alpha_{\tau(i), p}=\left[\tau^{-1}\right] \otimes \alpha_{i, p} \otimes\left[\tau_{i}\right] \in \operatorname{KK}_{1}\left(C^{*}\left(\mathbb{R}^{p}\right), \mathcal{K} \otimes C^{*}\left(\mathbb{R}^{p-1}\right)\right) . \tag{5.16}
\end{equation*}
$$

Taking $\tau=(1, i)$, we get $\tau=\tau^{-1}$ and $\tau_{i}=\mathrm{id}$, so that $\alpha_{i, p}=[\tau] \otimes \alpha_{1, p}$. Moreover, observe that for any j,

$$
\begin{equation*}
[(j-1, j)]=1_{j-2} \otimes[f] \otimes 1_{p-j} \in \operatorname{KK}\left(C^{*}\left(\mathbb{R}^{p}\right), C^{*}\left(\mathbb{R}^{p}\right)\right), \tag{5.17}
\end{equation*}
$$

where $[f]=-1 \in \operatorname{KK}\left(C^{*}\left(\mathbb{R}^{2}\right), C^{*}\left(\mathbb{R}^{2}\right)\right)$ is the class of the flip automorphism and we have used the identification

$$
C^{*}\left(\mathbb{R}^{p}\right)=C^{*}\left(\mathbb{R}^{j-2}\right) \otimes C^{*}\left(\mathbb{R}^{2}\right) \otimes C^{*}\left(\mathbb{R}^{p-j}\right) .
$$

Using

$$
(1, i)=(1,2) \cdot(2,3) \ldots \ldots(i-1, i)
$$

now gives $[\tau]=(-1)^{i-1}$. Factorizing $C^{*}\left(\mathbb{R}^{p-1}\right)$ on the right in the sequence (5.13) for $i=1$ gives the assertion $\alpha_{1, p}=\sigma_{C^{*}\left(\mathbb{R}^{p-1}\right)}(\alpha)$.

Using the canonical isomorphism $\mathrm{KK}_{1}\left(C^{*}(\mathbb{R}), C^{*}\left(\mathbb{R}_{+}^{*}\right)\right) \simeq \mathrm{KK}_{1}\left(C_{0}(\mathbb{R}), \mathbb{C}\right)$, we can define a generator β of $K_{1}\left(C_{0}(\mathbb{R})\right)$ by

$$
\begin{equation*}
\beta \otimes \alpha=+1 \tag{5.18}
\end{equation*}
$$

For any $f \in F_{p}$ we then obtain a generator β_{f} of $K_{p}\left(C_{0}\left(E_{f}\right)\right)$ by

$$
\begin{equation*}
\beta_{f}=\left(\varphi_{f}\right)_{*}\left(\beta^{p}\right) \in K_{p}\left(C_{0}\left(E_{f}\right)\right), \tag{5.19}
\end{equation*}
$$

where β^{p} is the external product:

$$
\begin{equation*}
\beta^{p}=\beta \otimes_{\mathbb{C}} \cdots \otimes_{\mathbb{C}} \beta \in K_{p}\left(C_{0}\left(\mathbb{R}^{p}\right)\right) \tag{5.20}
\end{equation*}
$$

Picking up rank one projectors p_{f} in $C^{*}(\mathcal{C}(f))$, we get a basis of the free \mathbb{Z}-module $E_{p, 0}^{1}$:

$$
\begin{equation*}
\left(p_{f} \otimes \beta_{f}\right)_{f \in F_{p}} \tag{5.21}
\end{equation*}
$$

Bases of $E_{p, q}^{1}$ for all even q are deduced from the previous one by applying Bott periodicity.

Now consider faces $f \in F_{p}$ and $g \in F_{p-1}$ such that $f \subset \partial \bar{g}$. The p and $p-1$ tuples I, J such that $f \in c(I)$ and $g \in c(J)$ differ by exactly one index, say the j-th, and we define

$$
\begin{equation*}
\sigma(f, g)=(-1)^{j-1} \tag{5.22}
\end{equation*}
$$

Introduce the exact sequence

$$
\begin{equation*}
0 \rightarrow C^{*}\left(\mathcal{C}\left(f \times \mathbb{R}_{+}^{*}\right) \times E_{g}\right) \rightarrow C^{*}\left(\mathcal{C}(f) \times\left(\mathbb{R}_{+} \rtimes_{j} E_{f}\right)\right) \rightarrow C^{*}\left(\mathcal{C}(f) \times E_{f}\right) \rightarrow 0 \tag{5.23}
\end{equation*}
$$

where $\mathbb{R}_{+} \rtimes_{j} E_{f}$ denotes the transformation groupoid where the j-th coordinate (only) of E_{f} acts on \mathbb{R}_{+}by (5.10) again. We denote by

$$
\partial_{f, g}: K_{p}\left(C^{*}\left(\mathcal{C}(f) \times E_{f}\right)\right) \rightarrow K_{p-1}\left(C^{*}\left(\mathcal{C}(g) \times E_{g}\right)\right)
$$

the connecting homomorphism associated with (5.23), followed by the unique KKequivalence

$$
\begin{equation*}
C^{*}\left(\mathcal{C}\left(f \times \mathbb{R}_{+}^{*}\right)\right) \rightarrow C^{*}(\mathcal{C}(g)) \tag{5.24}
\end{equation*}
$$

provided by any tubular neighborhood of f into g.
Proposition 5.25. With the notation above, we get

$$
\begin{equation*}
\partial_{f, g}\left(p_{f} \otimes \beta_{f}\right)=\sigma(f, g) \cdot p_{g} \otimes \beta_{g} . \tag{5.26}
\end{equation*}
$$

Proof. Identify $E_{f} \simeq \mathbb{R}^{p}$ and $E_{g} \simeq \mathbb{R}^{p-1}$ using b_{f}, b_{g} and apply Lemmas 5.12 and 5.9.

We can now achieve the determination of $d_{*, *}^{1}$.
Theorem 5.27. We have

$$
\begin{equation*}
\text { for all } f \in F_{p}, \quad d_{p, 0}^{1}\left(p_{f} \otimes \beta_{f}\right)=\sum_{\substack{g \in F_{p-1} \\ f \subset \partial \bar{g}}} \sigma(f, g) p_{g} \otimes \beta_{g} \tag{5.28}
\end{equation*}
$$

Proof. For $p=0$, we have $F_{p-1}=\varnothing$ and $d_{p, 0}^{1}=0$; the result follows. For $p \geq 1$, we recall that

$$
\begin{equation*}
d_{p, 0}^{1}: \bigoplus_{f \in F_{p}} K_{p}\left(C^{*}\left(\mathcal{C}(f) \times E_{f}\right)\right) \rightarrow \bigoplus_{g \in F_{p-1}} K_{p-1}\left(C^{*}\left(\mathcal{C}(g) \times E_{g}\right)\right) . \tag{5.29}
\end{equation*}
$$

is the connecting homomorphism in K-theory of the exact sequence (5.7). We obviously have

$$
\begin{equation*}
d_{p, 0}^{1}\left(p_{f} \otimes \beta_{f}\right)=\sum_{g \in F_{p-1}} \partial_{g}\left(p_{f} \otimes \beta_{f}\right), \tag{5.30}
\end{equation*}
$$

where ∂_{g} is the connecting homomorphism in K-theory of the exact sequence

$$
\begin{equation*}
0 \rightarrow C^{*}\left(\left.\Gamma_{\mathrm{b}}(X)\right|_{g}\right) \rightarrow C^{*}\left(\left.\Gamma_{\mathrm{b}}(X)\right|_{g \cup f}\right) \rightarrow C^{*}\left(\left.\Gamma_{\mathrm{b}}(X)\right|_{f}\right) \rightarrow 0 . \tag{5.31}
\end{equation*}
$$

If $f \not \subset \partial \bar{g}$ then the sequence splits and $\partial_{g}\left(p_{f} \otimes \beta_{f}\right)=0$. Let $g \in F_{p-1}$ be such that $f \subset \partial \bar{g}$. Let \mathcal{U} be an open neighborhood of f in X such that there exists a diffeomorphism

$$
\begin{equation*}
\mathcal{U}_{g}:=\mathcal{U} \cap g \rightarrow f \times(0,+\infty), \quad x \mapsto\left(\phi(x), r_{i_{g}}(x)\right), \tag{5.32}
\end{equation*}
$$

where $r_{i_{g}}$ is the defining function of f in \bar{g}. This yields a commutative diagram

whose upper sequence coincides with (5.23) using (5.32). This implies

$$
\begin{equation*}
\partial_{g}=\partial_{f, g} . \tag{5.34}
\end{equation*}
$$

The result follows by Proposition 5.25.
The map $d_{p, q}^{1}, q$ even, is deduced from $d_{p, 0}^{1}$ by Bott periodicity. We are ready to relate the E^{2} terms with conormal homology.
Corollary 5.35. For every $p \in\{1, \ldots, d\}$ there are isomorphisms

$$
\begin{equation*}
\phi_{p, 1}^{i}: H_{\mathrm{i}}^{\mathrm{pcn}}\left(X_{p}, X_{p-1}\right) \rightarrow K_{i}\left(A_{p} / A_{p-1}\right), \quad\{0,1\} \ni i \equiv p \bmod 2, \tag{5.36}
\end{equation*}
$$

such that the following diagram commutes

$$
\begin{align*}
& H_{\mathrm{i}}^{\mathrm{pcn}}\left(X_{p}, X_{p-1}\right) \xrightarrow{\phi_{p, 1}^{i}} K_{p}\left(A_{p} / A_{p-1}\right) \tag{5.3}\\
& H_{1-\mathrm{i}}^{\mathrm{pen}}\left(X_{p-1}{ }^{\partial}, X_{p-2}\right) \xrightarrow{\phi_{p-1,1}^{1-1}} K_{p-1}\left(A_{p-1} / A_{p-2}\right)
\end{align*}
$$

where ∂ stands for the connecting morphism in conormal homology.
Proof. If $i \equiv p \bmod 2$ then

$$
H_{\mathrm{i}}^{\mathrm{pcn}}\left(X_{p}, X_{p-1}\right)=C_{p}(X) \quad \text { and } \quad \partial=\delta_{p}: C_{p}(X) \rightarrow C_{p-1}(X) .
$$

We define (5.36) by $\phi_{p, 1}^{i}\left(f \otimes \varepsilon_{f}\right)=p_{f} \otimes \beta_{f}$ and Theorem 5.27 gives the commutativity of (5.37).

In other words, the map $f \otimes \varepsilon_{f} \mapsto p_{f} \otimes \beta_{f}$ induces a isomorphism

$$
\begin{equation*}
H_{p}^{\mathrm{cn}}(X) \simeq E_{p, 0}^{2} . \tag{5.38}
\end{equation*}
$$

It would be very interesting to compute the higher differentials $d_{p, 0}^{2 r+1}$.
5B. The final computation for $K_{*}\left(\mathcal{K}_{\mathrm{b}}(X)\right)$ in terms of conormal homology. Before getting to the explicit computations and to the analytic corollaries in term of these, let us give a simple but interesting result. It is about the full understanding of the six term exact sequence in K-theory of the fundamental sequence

$$
\begin{equation*}
0 \longrightarrow \mathcal{K}(X) \xrightarrow{i_{0}} \mathcal{K}_{\mathrm{b}}(X) \xrightarrow{r} \mathcal{K}_{\mathrm{b}}(\partial X) \longrightarrow 0 . \tag{5.39}
\end{equation*}
$$

Proposition 5.40. For a connected manifold with corners X of codimension greater or equal to one the induced morphism by r in $K_{0}, r: K_{0}\left(\mathcal{K}_{\mathbf{b}}(X)\right) \rightarrow K_{0}\left(\mathcal{K}_{\mathrm{b}}(\partial X)\right)$, is an isomorphism. Equivalently:
(1) The morphism $i_{F}: K_{0}(\mathcal{K}) \cong \mathbb{Z} \rightarrow K_{0}\left(\mathcal{K}_{\mathfrak{b}}(X)\right)$ is the zero morphism.
(2) The connecting morphism $K_{1}\left(\mathcal{K}_{\mathrm{b}}(\partial X)\right) \rightarrow K_{0}(\mathcal{K}) \cong \mathbb{Z}$ is surjective.

Proof. Let X be a connected manifold with corners of codimension d. With the notations of the last section, the sequence (5.39) correspond to the canonical sequence

$$
0 \longrightarrow A_{0} \longrightarrow A_{d} \longrightarrow A_{d} / A_{0} \longrightarrow 0 .
$$

We will prove that the connecting morphism $K_{1}\left(A_{d} / A_{0}\right) \rightarrow K_{0}\left(A_{0}\right) \cong \mathbb{Z}$ is surjective. The proof will proceed by induction, the case $d=1$ immediately satisfies this property. So let us assume that the connecting morphism $K_{1}\left(A_{d-1} / A_{0}\right) \rightarrow K_{0}\left(A_{0}\right)$ associated to the short exact sequence

$$
0 \longrightarrow A_{0} \longrightarrow A_{d-1} \longrightarrow A_{d-1} / A_{0} \longrightarrow 0 .
$$

is surjective. Consider now the following commutative diagram of short exact sequences

By applying the six-term short exact sequence in K-theory to it we obtain that the following diagram is commutative, where ∂_{d} and ∂_{d-1} are the connecting morphisms associated to the middle and to the bottom rows respectively:

Hence, by the inductive hypothesis, we obtain that ∂_{d} is surjective.
Remark 5.42. Roughly speaking, the previous proposition tells us that the analytical index of a fully elliptic element carries no information about its Fredholm index, this information being completely contained in some element of $K_{1}\left(\mathcal{K}_{\mathrm{b}}(\partial X)\right)$.

We have next our main K-theoretical computation:

Theorem 5.43. Let $X=\Pi_{i} X_{i}$ be a finite product of manifolds with corners of codimension less or equal to three. There are natural isomorphisms

$$
\begin{align*}
& \left.H_{0}^{\mathrm{pcn}}(X) \otimes_{\mathbb{Z}} \mathbb{Q} \xrightarrow{\phi_{X}} \underset{\cong}{\cong} K_{0}\left(\mathcal{K}_{\mathrm{b}}(X)\right)\right) \otimes_{\mathbb{Z}} \mathbb{Q} \\
& H_{1}^{\mathrm{pcn}}(X) \otimes_{\mathbb{Z}} \mathbb{Q} \xrightarrow{\phi_{X}} \cong K_{1}\left(\mathcal{K}_{\mathrm{b}}(X)\right) \otimes_{\mathbb{Z}} \mathbb{Q} \tag{5.44}
\end{align*}
$$

In the case where X contains a factor of codimension at most two or X is of codimension three, the result holds even without tensoring by \mathbb{Q}.
Proof. 1A. $\operatorname{codim}(X)=0$: The only face of codimension 0 is $\stackrel{\circ}{X}$ (we are always assuming X to be connected). The isomorphism

$$
H_{0}^{\mathrm{cn}}\left(X_{0}\right) \xrightarrow{\phi_{0}} K_{0}\left(A_{0}\right)
$$

is simply given by sending $\stackrel{\circ}{X}$ to the rank one projector $p_{\dot{\circ}}$ chosen in Section 5A. $1 B$. $\operatorname{codim}(X)=1$: Consider the canonical short exact sequence

$$
0 \longrightarrow A_{0} \longrightarrow A_{1} \longrightarrow A_{1} / A_{0} \longrightarrow 0 .
$$

That gives, since $d_{1,0}^{1}$ is surjective, the following exact sequence in K-theory:

$$
0 \longrightarrow K_{1}\left(A_{1}\right) \longrightarrow K_{1}\left(A_{1} / A_{0}\right) \xrightarrow{d_{1,0}^{1}} K_{0}\left(A_{0}\right) \longrightarrow 0,
$$

from which $K_{1}\left(A_{1}\right) \cong \operatorname{ker} d_{1,0}^{1}$ and $K_{0}\left(A_{1}\right)=0\left(\right.$ since $K_{0}\left(A_{1} / A_{0}\right)=0$ by a direct computation for K-theory or for conormal homology). By Theorem 5.27 and Corollary 5.35, we have the following commutative diagram:

$$
\begin{array}{cc}
K_{1}\left(A_{1} / A_{0}\right) & \xrightarrow[d_{1,0}^{1}]{l_{0}^{1}} K_{0}\left(A_{0}\right) \\
\phi_{1,0} \uparrow \cong & \phi_{0} \uparrow \cong \\
H_{1}^{\mathrm{pcn}}\left(X_{1} \backslash X_{0}\right) \xrightarrow[\delta_{1}]{\longrightarrow} & H_{0}^{\mathrm{pcn}}\left(X_{0}\right)
\end{array}
$$

Then there is a unique natural isomorphism

$$
H_{1}^{\mathrm{pcn}}\left(X_{1}\right) \xrightarrow{\phi_{1}} K_{1}\left(A_{1}\right),
$$

fitting the following commutative diagram:

1C. $\operatorname{codim}(X)=2$: We first prove that we have natural isomorphisms

$$
\begin{equation*}
H_{*}^{\mathrm{cn}}\left(X_{l}, X_{m}\right) \xrightarrow{\phi_{l, m}} \cong K_{*}\left(A_{l} / A_{m}\right) \tag{5.45}
\end{equation*}
$$

for every $0 \leq m \leq l$ with $l-m=2$ and for every manifold with corners (of any codimension). Indeed, this case can be treated very similarly to the above one. Suppose l is even, the odd case is treated in the same way by exchanging K_{0} by K_{1} and H_{0} by H_{1}. By comparing the long exact sequences in conormal homology we have that there exist unique natural isomorphisms $\phi_{l, l-2}^{0}$ and $\phi_{l, l-2}^{1}$ making the following diagram commutative:

since the diagram in the middle is commutative again by Corollary 5.35 .
Let us now pass to the case when $\operatorname{codim}(X)=2$. Consider the short exact sequence:

$$
\begin{equation*}
0 \longrightarrow A_{0} \longrightarrow A_{2} \longrightarrow A_{2} / A_{0} \longrightarrow 0 . \tag{5.46}
\end{equation*}
$$

We compare its associated six term short exact sequence in K-theory with the one in conormal homology to get

where we need now to define isomorphisms $?_{1}$ and $?_{2}$. In fact if we can define morphisms such that the diagrams are commutative then by a simple five lemma
argument they would be isomorphisms. The first thing to check is that

$$
\begin{gather*}
K_{1}\left(A_{2} / A_{0}\right) \xrightarrow{d_{2,0}} K_{0}\left(A_{0}\right) \cong \mathbb{Z} \\
{ } \uparrow \cong } \tag{5.48}\\
H_{1}^{\mathrm{pcn}}\left(X_{2}, X_{0}\right) \xrightarrow[\partial_{2,0}]{\cong} H_{0}^{\mathrm{pcn}}\left(X_{0}\right)
\end{gather*}
$$

is commutative. Indeed, this can be seen by considering the following commutative diagram of short exact sequences:

Applying the associated diagram between the short exact sequences that gives that the connecting morphism for the middle row, $K_{1}\left(A_{2} / A_{0}\right) \xrightarrow{d_{2.0}} K_{0}\left(A_{0}\right)$, is given by a (any) splitting of $K_{1}\left(A_{1} / A_{0}\right) \rightarrow K_{1}\left(A_{2} / A_{0}\right)$ (both modules are free \mathbb{Z}-modules by Theorem 4.22) followed by the connecting morphism associated to the exact sequence on the bottom of the above diagram. By definition of $\phi_{2,0}$ in (5.45) above and by Corollary 5.35 we have that these two last morphisms are compatible with the analogs in the respective conormal homologies. Since the connecting morphism $\partial_{2,0}$ in conormal homology is obtained in this way as well, we conclude that (5.48) is commutative. We are ready to define $?_{1}$ and $?_{2}$. For the first one, $?_{1}$, there is a unique isomorphism ϕ_{2}^{1} fitting the following commutative diagram

$$
\begin{array}{cc}
0 & \longrightarrow K_{1}\left(A_{2}\right) \\
\phi_{2}^{1} \uparrow \cong K_{1}\left(A_{2} / A_{0}\right) \\
0 & \phi_{2,0}^{1} \uparrow \cong \\
H_{1}^{\mathrm{pcn}}\left(X_{2}\right) \longrightarrow H_{1}^{\mathrm{pcn}}\left(X_{2}, X_{0}\right)
\end{array}
$$

and given by restriction of $\phi_{2,0}^{1}$ to the image of $H_{1}^{\mathrm{pcn}}\left(X_{2}\right) \rightarrow H_{1}^{\mathrm{pcn}}\left(X_{2}, X_{0}\right)$. Now, for defining $?_{2}$ we have by Proposition 5.40 a unique isomorphism ϕ_{2}^{0} fitting the following diagram

$$
\begin{array}{ccc}
K_{0}\left(A_{2}\right) & \cong K_{0}\left(A_{2} / A_{0}\right) \\
\phi_{2}^{\dagger} \uparrow \cong & \phi_{2,0}^{0} \uparrow \cong \\
H_{0}^{\mathrm{pcn}}\left(X_{2}\right) & \cong H_{0}^{\mathrm{pcn}}\left(X_{2}, X_{0}\right)
\end{array}
$$

1D. $\operatorname{codim}(X)=3$: Consider the short exact sequence

$$
0 \longrightarrow A_{2} \longrightarrow A_{3} \longrightarrow A_{3} / A_{2} \longrightarrow 0 .
$$

We compare its associated six term short exact sequence in K-theory with the one in conormal homology to get

where we need now to define isomorphisms $?_{1}$ and $?_{2}$. Again, if we can define morphisms such that the diagrams are commutative then by a simple five lemma argument they would be isomorphisms. Let us first check that the diagram

$$
\begin{array}{cc}
K_{1}\left(A_{3} / A_{2}\right) \xrightarrow{\partial} & K_{0}\left(A_{2}\right) \\
\phi_{3,2} \uparrow \cong & \cong \phi_{2} \tag{5.51}\\
H_{1}^{\mathrm{pcn}}\left(X_{3}, X_{2}\right) \xrightarrow{\longrightarrow} & H_{0}^{\mathrm{pcn}}\left(X_{2}\right)
\end{array}
$$

is commutative. For this consider the following commutative diagram of short exact sequences:

It implies that the connecting morphism $K_{1}\left(A_{3} / A_{2}\right) \xrightarrow{\partial} K_{0}\left(A_{2}\right)$ followed by the morphism $K_{0}\left(A_{2}\right) \rightarrow K_{0}\left(A_{2} / A_{1}\right)$ coincides with the connecting morphism $K_{1}\left(A_{3} / A_{2}\right) \xrightarrow{\partial} K_{0}\left(A_{2} / A_{1}\right)$. Now, the two latter morphisms are compatible with the analogs in conormal homology via the isomorphisms described above, and the morphism $K_{0}\left(A_{2}\right) \rightarrow K_{0}\left(A_{2} / A_{1}\right)$ is injective (since $K_{0}\left(A_{1}\right)=0$); hence the
commutativity of diagram (5.51) above follows. From diagram (5.50), by passage to the quotient, there is unique isomorphism ϕ_{3}^{0} (the one filling ? $?_{2}$ in the above diagram) such that

is commutative. Finally, for defining ? ${ }_{1}$, it is now enough to choose splittings for the map

$$
0 \rightarrow H_{1}^{\mathrm{pcn}}\left(X_{2}\right) \rightarrow H_{1}^{\mathrm{pcn}}\left(X_{3}\right),
$$

which is possible since $H_{1}^{\mathrm{pcn}}\left(X_{3}\right)$ is free (see Theorem 4.22 and the remark below it) and for the map

$$
K_{1}\left(A_{3}\right) \rightarrow \operatorname{im} j \rightarrow 0,
$$

where j is the canonical morphism $j: K_{1}\left(A_{3}\right) \rightarrow K_{1}\left(A_{3} / A_{2}\right)$ (remember all the groups $K_{*}\left(A_{p} / A_{p-1}\right)$ are torsion free).
1E. If $X=\Pi_{i} X_{i}$ is a finite product with $\operatorname{codim}\left(X_{i}\right) \leq 3$ and with at least one factor of codimension at most 2: In this case the result would follow, by all the points above, if both periodic conormal homology and K-theory satisfy the Künneth formula. Since the algebras $\mathcal{K}_{\mathrm{b}}(X)$ are nuclear because the groupoids $\Gamma_{\mathrm{b}}(X)$ are amenable, we have the Künneth formula in K-theory for these kind of algebras. Now, for conormal homology we verified the Künneth formula in Proposition 4.29. 1F. If $X=\Pi_{i} X_{i}$ is a finite product with $\operatorname{codim}\left(X_{i}\right) \leq 3$, for all i : In this case the result holds rationally by the same arguments as above by using Proposition 4.33.

6. Fredholm perturbation properties and Euler conormal characters

The previous results yield a criterion for property $(\mathcal{H F P})$ in terms of the Euler characteristic for conormal homology. To fit with the assumptions of Theorem 5.43, we consider a manifold with corners X of codimension d, which is given by the cartesian product of manifolds with corners of codimension at most 3 .

Definition 6.1 (corner characters). Let X be a manifold with corners. We define the even conormal character of X as

$$
\begin{equation*}
\chi_{0}(X)=\operatorname{dim}_{\mathbb{Q}} H_{0}^{\mathrm{pcn}}(X) \otimes_{\mathbb{Z}} \mathbb{Q} \tag{6.2}
\end{equation*}
$$

Similarly, we define the odd conormal character of X as

$$
\begin{equation*}
\chi_{1}(X)=\operatorname{dim}_{\mathbb{Q}} H_{1}^{\mathrm{pcn}}(X) \otimes_{\mathbb{Z}} \mathbb{Q} . \tag{6.3}
\end{equation*}
$$

We can consider as well

$$
\begin{equation*}
\chi(X)=\chi_{0}(X)-\chi_{1}(X) \tag{6.4}
\end{equation*}
$$

then we have (by the rank nullity theorem)

$$
\begin{equation*}
\chi(X)=1-\# F_{1}+\# F_{2}-\cdots+(-1)^{d} \# F_{d} \tag{6.5}
\end{equation*}
$$

We refer to the integer $\chi(X)$ as the Euler corner character of X. These numbers are clearly invariant under the natural notion of isomorphism of manifolds with corners. Their computation is elementary in any concrete situation.

In particular one can rewrite Theorem 5.43 to have, for X as in the theorem statement,

$$
\begin{equation*}
K_{0}\left(\mathcal{K}_{\mathrm{b}}(X)\right) \otimes_{\mathbb{Z}} \mathbb{Q} \cong \mathbb{Q}^{\chi_{0}(X)}, \quad K_{1}\left(\mathcal{K}_{\mathrm{b}}(X)\right) \otimes_{\mathbb{Z}} \mathbb{Q} \cong \mathbb{Q}^{\chi_{1}(X)} \tag{6.6}
\end{equation*}
$$

and, in terms of the corner character,

$$
\begin{equation*}
\chi(X)=\operatorname{rank}\left(K_{0}\left(\mathcal{K}_{\mathrm{b}}(X)\right) \otimes_{\mathbb{Z}} \mathbb{Q}\right)-\operatorname{rank}\left(K_{1}\left(\mathcal{K}_{\mathrm{b}}(X)\right) \otimes_{\mathbb{Z}} \mathbb{Q}\right) \tag{6.7}
\end{equation*}
$$

In the case where X is a finite product of manifolds with corners of codimension at most 2 we even have

$$
\begin{equation*}
K_{0}\left(\mathcal{K}_{\mathrm{b}}(X)\right) \simeq \mathbb{Z}^{\chi_{0}(X)} \quad \text { and } \quad K_{1}\left(\mathcal{K}_{\mathrm{b}}(X)\right) \simeq \mathbb{Z}^{\chi_{1}(X)} \tag{6.8}
\end{equation*}
$$

and also $\chi_{\mathrm{cn}}(X)=\operatorname{rank}\left(K_{0}\left(\mathcal{K}_{\mathrm{b}}(X)\right)\right)-\operatorname{rank}\left(K_{1}\left(\mathcal{K}_{\mathrm{b}}(X)\right)\right)$.
We end with the characterization of property $(\mathcal{H F P})$ in terms of conormal characteristics.

Theorem 6.9. Let X be a compact connected manifold with corners of codimension greater than or equal to one. If X is a finite product of manifolds with corners of codimension less than or equal to three we have that:
(1) If X satisfies the Fredholm perturbation property then the even Euler corner character of X vanishes, i.e., $\chi_{0}(X)=0$.
(2) If the even periodic conormal homology group vanishes, i.e., $H_{0}^{\mathrm{pcn}}(X)=0$, then X satisfies the stably homotopic Fredholm perturbation property.
(3) If $H_{0}^{\mathrm{pcn}}(X)$ is torsion free and if the even Euler corner character of X vanishes, i.e., $\chi_{0}(X)=0$ then X satisfies the stably homotopic Fredholm perturbation property.
Proof. (1) Suppose $\chi_{0}(X) \neq 0$ then $K_{0}\left(\mathcal{K}_{\mathrm{b}}(X)\right) \otimes_{\mathbb{Z}} \mathbb{Q} \cong \mathbb{Q}^{\chi_{0}(X)}$ is not the zero group. By Theorem 3.24 it is enough to prove that the rationalized analytic indicial index morphism

$$
\operatorname{Ind}_{a}: K_{\mathrm{top}}^{0}\left({ }^{\mathrm{b}} T^{*} X\right) \otimes_{\mathbb{Z}} \mathbb{Q} \rightarrow K_{0}\left(\mathcal{K}_{\mathrm{b}}(X)\right) \otimes_{\mathbb{Z}} \mathbb{Q}
$$

is not the zero morphism. Monthubert and Nistor [2012, Theorems 12 and 13 and Proposition 7] construct a manifold with corners Y and a closed embedding of manifolds with embedded corners $X \xrightarrow{i} Y$ to obtain a commutative diagram

$$
\begin{align*}
& K_{\text {top }}^{0}\left({ }^{\mathrm{b}} T^{*} X\right) \otimes_{\mathbb{Z}} \mathbb{Q} \xrightarrow{\operatorname{Ind}_{a}} K_{0}\left(\mathcal{K}_{\mathrm{b}}(X)\right) \otimes_{\mathbb{Z}} \mathbb{Q} \\
& \stackrel{i!\downarrow}{\stackrel{\downarrow}{\downarrow}} \underset{K_{\text {top }}^{0}\left({ }^{\mathrm{b}} T^{*} Y\right)}{\cong} \underset{\mathbb{Z}}{ } \mathbb{Q} \xrightarrow[i_{*}]{\cong} \underset{\operatorname{Ind}_{a}}{\cong} K_{0}\left(\mathcal{K}_{\mathrm{b}}(Y)\right) \otimes_{\mathbb{Z}} \mathbb{Q} \tag{6.10}
\end{align*}
$$

They call such a Y a classifying space of X. For our purposes it would be then enough to show that the morphism

$$
i!: K_{\mathrm{top}}^{0}\left({ }^{\mathrm{b}} T^{*} X\right) \otimes_{\mathbb{Z}} \mathbb{Q} \rightarrow K_{\mathrm{top}}^{0}\left({ }^{\mathrm{b}} T^{*} Y\right) \otimes_{\mathbb{Z}} \mathbb{Q}
$$

is not the zero morphism. But now we are at the topological K-theory level (with compact supports) where classic topological arguments apply to get that the morphism above is not the zero morphism. Indeed, to construct i ! one uses a tubular neighborhood (which exist in this setting, see for example Douady [1961/1962]); the first step is then a Thom isomorphism followed by a morphism induced by a classic extension by zero. This is summarized in [Monthubert and Nistor 2012, Proposition 5]. The conclusion follows.
(2) If $H_{0}^{\mathrm{pcn}}(X)=0$ then $H_{0}^{\mathrm{pcn}}(X) \otimes \mathbb{Z} \mathbb{Q}=0$ and the result follows from Theorems 5.43 and 3.24.
(3) In this case $K_{0}\left(\mathcal{K}_{\mathbf{b}}(X)\right) \cong \mathbb{Z}^{x_{0}(X)}$ by Theorem 5.43 and the arguments applied in the last two points identically apply to get the result (the results of Monthubert and Nistor cited above hold over \mathbb{Z}).

Appendix: more on conormal homology

We reproduce the discussion leading to the definition of the conormal differential in a slightly more general way. We keep the same notations. Let $f \in F_{p}, \varepsilon_{f}$ an orientation of $N(f)$ and $g \in F_{p-k}$ such that $f \subset \bar{g}$. The face f is characterized in \bar{g} by the vanishing of k defining functions and we denote by (g, f) the corresponding k-tuple of their indices. Then the contraction $\left.\varepsilon_{g}:=e_{(g, f)}\right\lrcorner \varepsilon_{f}$ is an orientation of $N(g)$. Recall that

$$
\begin{equation*}
\left.\left.\left.\left.e_{J}\right\lrcorner \cdot=e_{j_{1}}\right\lrcorner(\cdots\lrcorner\left(e_{j_{k}}\right\lrcorner \cdot\right) \cdots\right) . \tag{A.1}
\end{equation*}
$$

For any integers $0 \leq k \leq p$, we define $\delta_{p}^{k}: C_{p}(X) \rightarrow C_{p-k}(X)$ by

$$
\begin{equation*}
\left.\delta_{p}^{k}\left(f \otimes \varepsilon_{f}\right)=\sum_{\substack{g \in F_{p-k}, f \subset \bar{\delta}}} g \otimes e_{(g, f)}\right\lrcorner \varepsilon_{f} . \tag{A.2}
\end{equation*}
$$

We get a homomorphism $\delta^{\mathrm{pcn}}: \mathcal{C}(X) \rightarrow \mathcal{C}(X)$ of degree 1 with respect to the \mathbb{Z}_{2}-grading by setting

$$
\begin{equation*}
\delta_{i}^{\mathrm{pcn}}=\sum_{\substack{k \geq 0, p \equiv i \bmod 2}} \delta_{p}^{2 k+1}, \quad i=0,1 \tag{A.3}
\end{equation*}
$$

Proposition A.4. The map δ^{pcn} is a differential, that is $\delta^{\mathrm{pcn}} \circ \delta^{\mathrm{pcn}}=0$.
Proof. Let $f \in F_{p}(X)$ and ε be an orientation of $N(f)$. We have

$$
\begin{equation*}
\left.\left.\delta^{\mathrm{pcn}}\left(\delta^{\mathrm{pcn}}(f \otimes \varepsilon)\right)=\sum_{\substack{g, h \text { s.t. } \bar{h} \supset \bar{g} \supset f \\(g, f),(h, g) \text { are odd }}}\left(h \otimes e_{(h, g)}\right\lrcorner\left(e_{(g, f)}\right\lrcorner \varepsilon\right)\right) . \tag{A.5}
\end{equation*}
$$

Let g, h be such that they contribute a term in the sum above and denote by I, J, K the tuples labeling the defining functions of f, g, h respectively. Then set

$$
\begin{equation*}
J^{\prime}=I \backslash(h, g) . \tag{A.6}
\end{equation*}
$$

By definition of manifolds with (embedded) corners, $H_{J^{\prime}}$ is not empty and there exists a unique face $g^{\prime} \in c\left(J^{\prime}\right)$ with $f \subset \overline{g^{\prime}}$. This face $g^{\prime}=\iota(g, h, f)$ satisfies the following properties:

- $f \subset \overline{g^{\prime}} \subset \bar{h}$,
- $\left(g^{\prime}, f\right)=(h, g)$ and $\left(h, g^{\prime}\right)=(g, f)$ are odd,
- $\iota\left(g^{\prime}, h, f\right)=g$.

Finally, note that $\#(g, f) \neq \#(h, g)$, otherwise we would have $(h, f)=(h, g)+(g, f)$ even. This implies in particular that $g \neq g^{\prime}$. These observations allow us to reorganize the sum (A.5) as follows:

$$
\left.\left.\left.\left.\delta^{\mathrm{pcn}}\left(\delta^{\mathrm{pcn}}(f \otimes \varepsilon)\right)=\sum_{\substack{g, h \text { s.t. } \bar{h} \supset \bar{g} \supset f \\ \#(g, f)<\#(h, g) \text { odd }}}\left(h \otimes\left(e_{(h, g)}\right\lrcorner\left(e_{(g, f)}\right\lrcorner \varepsilon+e_{\left(h, g^{\prime}\right)}\right\lrcorner\left(e_{\left(g^{\prime}, f\right)}\right\lrcorner \varepsilon\right)\right)\right)\right) .
$$

Now
$\left.\left.\left.\left.\left.\left.\left.\left.e_{(h, g)}\right\lrcorner\left(e_{(g, f)}\right\lrcorner \varepsilon\right)+e_{\left(h, g^{\prime}\right)}\right\lrcorner\left(e_{\left(g^{\prime}, f\right)}\right\lrcorner \varepsilon\right)=e_{(h, g)}\right\lrcorner\left(e_{(g, f)}\right\lrcorner \varepsilon\right)+e_{(g, f)}\right\lrcorner\left(e_{(h, g)}\right\lrcorner \varepsilon\right)=0$ since \# (g, f) and \# (h, g) are odd.

Proposition A. 4 implies $\delta_{p-1}^{1} \circ \delta_{p}^{1}=0$ for any p. Since $\delta_{*}^{1}=\delta_{*}$, this proves the claim of Section 4A. Moreover:
Proposition A.7. The identity map $\left(\mathcal{C}_{*}(X), \delta^{1}\right) \rightarrow\left(\mathcal{C}_{*}(X), \delta\right)$ induces an isomorphism between the \mathbb{Z}_{2}-graded homology groups.
Lemma A.8. The following equality hold for any $k \geq 0$:

$$
\begin{equation*}
\delta^{2 k+1}=\delta^{2 k} \circ \delta^{1}=\delta^{1} \circ \delta^{2 k} \tag{A.9}
\end{equation*}
$$

Proof of Lemma A.8. Let f be a codimension- p face and ε an orientation of $N(f)$. Let I be the p-tuple defining f. Then g is a face such that $f \subset \bar{g}$ if and only if g is a connected component of H_{J} for some $J \subset I$. Since the definition of $\delta(f)$ only involves faces g with $f \subset \bar{g}$, it is no restriction to remove the connected component of H_{J} disjoint from f for any $J \subset I$, or equivalently to assume that such H_{J} are connected. It follows that the faces appearing in the definition of $\delta(f)$ are in one-to-one correspondence with the tuples $J \subset I$ so they can be indexed by them and eventually omitted in the sum defining $\delta^{*}(f)$. It follows that, ε_{I} denoting an orientation of $N(f)$,

$$
\begin{aligned}
\delta^{2 k} \circ \delta^{1}\left(\varepsilon_{I}\right) & \left.\left.=\sum_{|J|=2 k} \sum_{1 \leq i \leq N} e_{J}\right\lrcorner e_{i}\right\lrcorner \varepsilon_{I} \\
& \left.\left.\left.\left.\left.=\sum_{|J|=2 k+1} \sum_{l=1}^{2 k+1} e_{j_{1}}\right\lrcorner \cdots \widehat{e_{j_{l}}}\right\lrcorner \cdots\right\lrcorner e_{j_{2 k+1}}\right\lrcorner e_{j_{l}}\right\lrcorner \varepsilon_{I} \\
& \left.\left.=\sum_{|J|=2 k+1} \sum_{l=1}^{2 k+1}(-1)^{l-1} e_{J}\right\lrcorner \varepsilon_{I}=\sum_{|J|=2 k+1} e_{J}\right\lrcorner \varepsilon_{I}=\delta^{2 k+1}\left(\varepsilon_{I}\right)
\end{aligned}
$$

The equality $\delta^{2 k+1}=\delta^{1} \circ \delta^{2 k}$ is obtained in the same way.
Proof of Proposition A.7. Let us set $N=\sum_{k \geq 0} \delta^{2 k}$ and $h=\mathrm{id}+N$. Using the lemma, we get:

$$
\begin{equation*}
\delta^{\mathrm{pcn}}=\delta^{1} \circ h=h \circ \delta^{1} . \tag{A.10}
\end{equation*}
$$

Since N is nilpotent, the map h is invertible with inverse given by the finite sum

$$
h^{-1}=\sum_{j \geq 0}(-1)^{j} N^{j}
$$

This proves that $\delta^{1}(x)=0$ if and only if $\delta^{\mathrm{pcn}}(x)=0$ and that $x=\delta^{1}(y)$ if and only if $x=\delta^{\mathrm{pcn}}\left(y^{\prime}\right)$ for some y, y^{\prime} as well. The proposition follows.

The differential δ^{1} is of course much simpler to handle than δ^{pcn}.

Acknowledgements

We would like to thank the referee for his/her careful comments and remarks and, in particular, for pointing out some important references that helped us to understand better our own work and its place in the index theory literature.

References

[Anantharaman-Delaroche and Renault 2000] C. Anantharaman-Delaroche and J. Renault, Amenable groupoids, Monographies de L'Enseignement Mathématique 36, L'Enseignement Mathématique, Geneva, 2000. MR Zbl
[Atiyah and Singer 1968a] M. F. Atiyah and I. M. Singer, "The index of elliptic operators, I", Ann. of Math. (2) 87 (1968), 484-530. MR Zbl
[Atiyah and Singer 1968b] M. F. Atiyah and I. M. Singer, "The index of elliptic operators, III", Ann. of Math. (2) 87 (1968), 546-604. MR Zbl
[Atiyah et al. 1975] M. F. Atiyah, V. K. Patodi, and I. M. Singer, "Spectral asymmetry and Riemannian geometry, I", Math. Proc. Cambridge Philos. Soc. 77 (1975), 43-69. MR Zbl
[Bunke 2009] U. Bunke, Index theory, eta forms, and Deligne cohomology, Mem. Amer. Math. Soc. 928, Amer. Math. Soc., Providence, RI, 2009. MR Zbl
[Carrillo Rouse 2008] P. Carrillo Rouse, "A Schwartz type algebra for the tangent groupoid", pp. 181-199 in K-theory and noncommutative geometry, edited by G. Cortiñas et al., Eur. Math. Soc., Zürich, 2008. MR Zbl
[Carrillo Rouse et al. 2014] P. Carrillo Rouse, J. M. Lescure, and B. Monthubert, "A cohomological formula for the Atiyah-Patodi-Singer index on manifolds with boundary", J. Topol. Anal. 6:1 (2014), 27-74. MR Zbl
[Debord and Lescure 2010] C. Debord and J.-M. Lescure, "Index theory and groupoids", pp. 86-158 in Geometric and topological methods for quantum field theory (Villa de Leyva, Columbia, 2007), edited by H. Ocampo et al., Cambridge Univ. Press, 2010. MR Zbl
[Debord et al. 2015] C. Debord, J.-M. Lescure, and F. Rochon, "Pseudodifferential operators on manifolds with fibred corners", Ann. Inst. Fourier (Grenoble) 65:4 (2015), 1799-1880. MR Zbl
[Douady 1961/1962] A. Douady, "Variétés à bord anguleux et voisinages tubulaires", exposé 1, pp. 1-11 in Topologie différentielle, Séminaire Henri Cartan, 1961/1962 14, Secrétariat mathématique, Paris, 1961/1962. MR Zbl
[Hilsum and Skandalis 1983] M. Hilsum and G. Skandalis, "Stabilité des C^{*}-algèbres de feuilletages", Ann. Inst. Fourier (Grenoble) 33:3 (1983), 201-208. MR Zbl
[Hörmander 1985] L. Hörmander, The analysis of linear partial differential operators, III: Pseudodifferential operators, Grundlehren der Math. Wissenschaften 274, Springer, 1985. MR Zbl
[Kono and Tamaki 2006] A. Kono and D. Tamaki, Generalized cohomology, Translations of Mathematical Monographs 230, Amer. Math. Soc., Providence, RI, 2006. MR Zbl
[Lauter et al. 2000] R. Lauter, B. Monthubert, and V. Nistor, "Pseudodifferential analysis on continuous family groupoids", Doc. Math. 5 (2000), 625-655. MR Zbl
[Lescure et al. 2017] J.-M. Lescure, D. Manchon, and S. Vassout, "About the convolution of distributions on groupoids", J. Noncommut. Geom. 11:2 (2017), 757-789. MR
[Loya 2005] P. Loya, "The index of b-pseudodifferential operators on manifolds with corners", Ann. Global Anal. Geom. 27:2 (2005), 101-133. MR Zbl
[Melrose 1993] R. B. Melrose, The Atiyah-Patodi-Singer index theorem, Research Notes in Mathematics 4, A K Peters, Wellesley, MA, 1993. MR Zbl
[Melrose and Nistor 1998] R. Melrose and V. Nistor, "K-theory of C^{*}-algebras of b-pseudodifferential operators", Geom. Funct. Anal. 8:1 (1998), 88-122. MR Zbl
[Melrose and Piazza 1992] R. B. Melrose and P. Piazza, "Analytic K-theory on manifolds with corners", Adv. Math. 92:1 (1992), 1-26. MR Zbl
[Melrose and Piazza 1997a] R. B. Melrose and P. Piazza, "Families of Dirac operators, boundaries and the b-calculus", J. Differential Geom. 46:1 (1997), 99-180. MR Zbl
[Melrose and Piazza 1997b] R. B. Melrose and P. Piazza, "An index theorem for families of Dirac operators on odd-dimensional manifolds with boundary", J. Differential Geom. 46:2 (1997), 287334. MR Zbl
[Melrose and Rochon 2006] R. Melrose and F. Rochon, "Index in K-theory for families of fibred cusp operators", K-Theory 37:1-2 (2006), 25-104. MR Zbl
[Monthubert 2003] B. Monthubert, "Groupoids and pseudodifferential calculus on manifolds with corners", J. Funct. Anal. 199:1 (2003), 243-286. MR Zbl
[Monthubert and Nistor 2012] B. Monthubert and V. Nistor, "A topological index theorem for manifolds with corners", Compos. Math. 148:2 (2012), 640-668. MR Zbl
[Monthubert and Pierrot 1997] B. Monthubert and F. Pierrot, "Indice analytique et groupoïdes de Lie", C. R. Acad. Sci. Paris Sér. I Math. 325:2 (1997), 193-198. MR Zbl
[Nazaikinskii et al. 2008a] V. Nazaikinskii, A. Savin, and B. Sternin, "Elliptic theory on manifolds with corners, I: Dual manifolds and pseudodifferential operators", pp. 183-206 in C^{*}-algebras and elliptic theory, II (Bȩdlewo, Poland, 2006), edited by D. Burghelea et al., Birkhäuser, Basel, 2008. MR Zbl
[Nazaikinskii et al. 2008b] V. Nazaikinskii, A. Savin, and B. Sternin, "Elliptic theory on manifolds with corners, II: Homotopy classification and K-homology", pp. 207-226 in C^{*}-algebras and elliptic theory, II (Będlewo, Poland, 2006), edited by D. Burghelea et al., Birkhäuser, Basel, 2008. MR Zbl
[Nazaikinskii et al. 2009] V. E. Nazaikinskii, A. Y. Savin, and B. Y. Sternin, "The Atiyah-Bott index on stratified manifolds", Sovrem. Mat. Fundam. Napravl. 34 (2009), 100-108. In Russian; translated in J. Math. Sci. New York 170:2 (2010), 229-237. MR
[Nistor 2003] V. Nistor, "An index theorem for gauge-invariant families: the case of solvable groups", Acta Math. Hungar. 99:1-2 (2003), 155-183. MR Zbl
[Nistor et al. 1999] V. Nistor, A. Weinstein, and P. Xu, "Pseudodifferential operators on differential groupoids", Pacific J. Math. 189:1 (1999), 117-152. MR Zbl
[Paterson 1999] A. L. T. Paterson, Groupoids, inverse semigroups, and their operator algebras, Progress in Mathematics 170, Birkhäuser, Boston, 1999. MR Zbl
[Renault 1980] J. Renault, A groupoid approach to C^{*}-algebras, Lecture Notes in Mathematics 793, Springer, 1980. MR Zbl
[Savin 2005] A. Savin, "Elliptic operators on manifolds with singularities and K-homology", K Theory 34:1 (2005), 71-98. MR Zbl
[Schochet 1981] C. Schochet, "Topological methods for C^{*}-algebras, I: Spectral sequences", Pacific J. Math. 96:1 (1981), 193-211. MR Zbl
[Vassout 2006] S. Vassout, "Unbounded pseudodifferential calculus on Lie groupoids", J. Funct. Anal. 236:1 (2006), 161-200. MR Zbl

Received 6 Jul 2017. Revised 16 Feb 2018. Accepted 7 Mar 2018.
Paulo Carrillo Rouse: paulo.carrillo@math.univ-toulouse.fr
Institut de Mathématiques de Toulouse, 118, route de Narbonne, 31062 Toulouse, France
JEAN-MARIE LESCURE: jm.lescure@uca.fr
Laboratoire de Mathématiques Blaise Pascal, Université Clermont Auvergne, 3, place Vasarely, 63177 Aubière cedex, France

ANNALS OF K-THEORY

msp.org/akt

Annals of K-Theory is a journal of the K-Theory Foundation (ktheoryfoundation.org). The K-Theory Foundation acknowledges the precious support of Foundation Compositio Mathematica, whose help has been instrumental in the launch of the Annals of K-Theory.

See inside back cover or msp.org/akt for submission instructions.
The subscription price for 2018 is US $\$ 475 /$ year for the electronic version, and $\$ 535 /$ year $(+\$ 30$, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues and changes of subscriber address should be sent to MSP.
Annals of K-Theory (ISSN 2379-1681 electronic, 2379-1683 printed) at Mathematical Sciences Publishers, 798 Evans Hall \#3840, c/o University of California, Berkeley, CA 94720-3840 is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

AKT peer review and production are managed by EditFlow ${ }^{\circledR}$ from MSP.
PUBLISHED BY
mathematical sciences publishers
nonprofit scientific publishing
http://msp.org/
© 2018 Mathematical Sciences Publishers
ANNALS OF K- THEORY
2018vol. 3no. 3
Triple linkage 369
Karim Johannes Becher
A^{1}-equivalence of zero cycles on surfaces, II 379
Qizheng Yin and Yi Zhu
Topological K-theory of affine Hecke algebras 395
Maarten Solleveld
On a localization formula of epsilon factors via microlocal geometry 461
Tomoyuki Abe and Deepam Patel
Poincaré duality and Langlands duality for extended affine Weyl groups 491
Graham A. Niblo, Roger Plymen and Nick Wright
Geometric obstructions for Fredholm boundary conditions for manifolds with corners 523
Paulo Carrillo Rouse and Jean-Marie Lescure
Positive scalar curvature and low-degree group homology 565
Noé Bárcenas and Rudolf Zeidler

[^0]: ${ }^{1}$ To simplify we discuss only the case of scalar operators, the passage to operators acting on sections of vector bundles is done in the classic way.
 ${ }^{2}$ Notice that this remark implies that to an elliptic b-pseudodifferential operator one can associate an "index" in the algebraic K-theory group $K_{0}\left(\Psi_{\mathrm{b}}^{-\infty}(X)\right)$ (the classic construction of quasiinverses).
 ${ }^{3}$ See page 8 in [Melrose and Piazza 1992] for a characterization of Fredholm operators in terms of an indicial map or [Loya 2005, Theorem 2.3] for the proof that Fredholm \Longleftrightarrow fully elliptic.

[^1]: ${ }^{4}$ For full details in the case with corners see the paper of Melrose and Piazza [1992].

[^2]: ${ }^{5}$ Notice that this remark implies that to a b-pseudodifferential operator one can associate an "index" in the algebraic K-theory group $K_{0}\left(\Psi_{\mathrm{b}}^{-\infty}(X)\right)$ (the classic construction of quasiinverses).

