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For every connected manifold with corners there is a homology theory called
conormal homology, defined in terms of faces and orientation of their conormal
bundle and whose cycles correspond geometrically to corner cycles. Its Euler
characteristic (over the rationals, dimension of the total even space minus the
dimension of the total odd space), χcn := χ0−χ1, is given by the alternating sum
of the number of (open) faces of a given codimension.

The main result of the present paper is that for a compact connected manifold
with corners X , given as a finite product of manifolds with corners of codimen-
sion less or equal to three, we have that:

1) If X satisfies the Fredholm perturbation property (every elliptic pseudodif-
ferential b-operator on X can be perturbed by a b-regularizing operator so it
becomes Fredholm) then the even Euler corner character of X vanishes, i.e.,
χ0(X)= 0.

2) If the even periodic conormal homology group vanishes, i.e., H pcn
0 (X) = 0,

then X satisfies the stably homotopic Fredholm perturbation property (i.e., every
elliptic pseudodifferential b-operator on X satisfies the same named property up
to stable homotopy among elliptic operators).

3) If H pcn
0 (X) is torsion free and if the even Euler corner character of X vanishes,

i.e., χ0(X) = 0, then X satisfies the stably homotopic Fredholm perturbation
property. For example, for every finite product of manifolds with corners of
codimension at most two the conormal homology groups are torsion free.

The main theorem behind the above result is the explicit computation in
terms of conormal homology of the K-theory groups of the algebra Kb(X) of
b-compact operators for X as above. Our computation unifies the known cases
of codimension zero (smooth manifolds) and of codimension one (smooth man-
ifolds with boundary).
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1. Introduction

On a smooth compact manifold, ellipticity of (classical) pseudodifferential opera-
tors is equivalent to Fredholmness, and the vanishing of the Fredholm index of an
elliptic pseudodifferential operator is equivalent to its invertibility after perturba-
tion by a regularizing operator. In the case of a smooth manifold with boundary,
not every elliptic operator is Fredholm and it has been known since Atiyah and
Bott that there exist obstructions to the existence of local boundary conditions
in order to upgrade an elliptic operator into a Fredholm boundary value problem.
Nonetheless, if one moves to nonlocal boundary conditions, obstructions disappear:
for instance, not every elliptic pseudodifferential b-operator is Fredholm but it can
be perturbed with a regularizing operator to become Fredholm. This nontrivial
fact, which goes back to Atiyah, Patodi and Singer [Atiyah et al. 1975], can also
be obtained from the vanishing of a boundary analytic index (see [Melrose and
Piazza 1997a; 1997b; Monthubert and Nistor 2012], and below). In fact, in this
case the boundary analytic index takes values in the K0-theory group of the algebra
of regularizing operators and this K-theory group is easily seen to vanish. It is
known that obstructions to the existence of perturbations of elliptic operators into
Fredholm ones reappear in the case of manifolds with corners of arbitrary codimen-
sion [Bunke 2009; Nazaikinskii et al. 2009] (this includes for instance many useful
domains in Euclidean spaces). In this paper we will show that the global topology
and geometry of the corners and the way the corners form cycles contribute in a
fundamental way to a primary obstruction to Fredholm boundary conditions. As
we will see, the answer passes by the computation of some K-theory groups. We
explain now with more detail the problem and the content of this paper.

Using K-theoretical tools for solving index problems was the main asset in the
series of papers by Atiyah and Singer [1968a; 1968b] in which they introduce
and prove several index formulas for smooth compact manifolds. In the case of
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manifolds with boundary, K-theory is still useful to understand the vanishing of
the obstruction to the existence of perturbations of elliptic operators into Fredholm
ones (even if K-theory is not essential in the computation of analytical indices
[Atiyah et al. 1975]), and a fortiori to understand this obstruction in the case of
families of manifolds with boundary [Melrose and Piazza 1997a; 1997b; Melrose
and Rochon 2006]. For manifolds with corners, Bunke [2009] has delivered for
Dirac type operators a complete study of the obstruction, which lives in the ho-
mology of a complex associated with the faces of the manifold. As we shall
see later in the present work, this homology also appears as the E2-term of the
spectral sequence computing the K-group that contains the obstruction we define
for general elliptic b-pseudodifferential operators. Nazaikinskii, Savin and Sternin
[Nazaikinskii et al. 2008b; 2009] also use K-theory to express the obstruction for
their pseudodifferential calculus on manifolds with corners and stratified spaces.

Let us briefly recall the framework in which we are going to work. The algebra
of pseudodifferential operators 9∗b (X) associated to any manifold with corners X
is defined in [Melrose and Piazza 1992]: it generalizes the case of manifolds with
boundary treated in [Melrose 1993] (see also [Hörmander 1985, Section 18.3]).
The elements in this algebra are called b-pseudodifferential operators,1 the sub-
script b identifies these operators as obtained by “microlocalization” of the Lie al-
gebra of C∞ vector fields on X tangent to the boundary. This Lie algebra of vector
fields can be explicitly obtained as sections of the so called b-tangent bundle bT X
(compressed tangent bundle that we will recall below). The b-pseudodifferential
calculus has the classic and expected properties. In particular there is a principal
symbol map

σb :9
m
b (X)→ S[m](bT ∗X).

Ellipticity has the usual meaning, namely invertibility of the principal symbol.
Moreover (see the discussion below and Theorem 2.15 in [Melrose and Piazza
1992]), an operator is elliptic if and only2 if it has a quasiinverse modulo 9−∞b (X).
Now, 9−∞b (X) contains compact operators, but also noncompact ones (as soon as
∂X 6= ∅), and compactness is characterized there by the vanishing of a suitable
indicial map [loc. cit., p. 8]. Elliptic b-pseudodifferential operators, being invert-
ible modulo compact operators (and hence Fredholm),3 are usually said to be fully
elliptic.

1To simplify we discuss only the case of scalar operators, the passage to operators acting on
sections of vector bundles is done in the classic way.

2Notice that this remark implies that to an elliptic b-pseudodifferential operator one can associate
an “index” in the algebraic K-theory group K0(9

−∞

b (X)) (the classic construction of quasiinverses).
3See page 8 in [Melrose and Piazza 1992] for a characterization of Fredholm operators in terms

of an indicial map or [Loya 2005, Theorem 2.3] for the proof that Fredholm⇐⇒ fully elliptic.
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Now, by the properties of the b-calculus, 90
b (X) is included in the algebra of

bounded operators on L2(X), where the L2 structure is provided by some b-metric
in the interior of X . We denote by Kb(X) the norm completion of the subalge-
bra 9−∞b (X). This C∗-algebra fits in a short exact sequence of C∗-algebras of the
form

0 // K(X)
i0
// Kb(X)

r
// Kb(∂X) // 0, (1.1)

where K(X) is the algebra of compact operators in L2(X). In order to study Fred-
holm problems and analytic index problems one has to understand the K-theory of
the above short exact sequence.

To better explain how these K-theory groups enter into the study of Fredholm
perturbation properties and in order to enounce our first main results we need to
settle some definitions.

Analytic and Boundary analytic Index morphism. Given an elliptic b-pseudo-
differential D, the classic construction of parametrices adapts to give a K-theory-
valued index in K0(Kb(X)) that only depends on its principal symbol class [σb(D)]∈
K 0

top(
bT ∗X). In more precise terms, the short exact sequence

0 // Kb(X) // 90
b (X)

σb
// C(bS∗X) // 0 (1.2)

gives rise to a K-theory index morphism K1(C(bS∗X))→ K0(Kb(X)) that factors
in a canonical way by an index morphism

K 0
top(

bT ∗X)
Inda

X
// K0(Kb(X)) (1.3)

called the Analytic Index morphism of X . By composing the Analytic index with
the morphism induced by the restriction to the boundary we have a morphism

K 0
top(

bT ∗X)
Ind∂X
// K0(Kb(∂X)) (1.4)

called the Boundary analytic index morphism of X. In fact

r : K0(Kb(X))→ K0(Kb(∂X))

is an isomorphism if ∂X 6= ∅, Proposition 5.40, and so the two indices above
are essentially the same. In other words we completely understand the six term
short exact sequence in K-theory associated to the sequence (1.1). Notice that in
particular there is no contribution of the Fredholm index in the K0-analytic index.

To state the next theorem we need to define the Fredholm perturbation property
and its stably homotopic version.

Definition 1.5. Let D ∈9m
b (X) be elliptic. We say that D satisfies
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• the Fredholm perturbation property (FP) if there is R ∈9−∞b (X) such that
D+ R is fully elliptic,

• the stably homotopic Fredholm perturbation property (HFP) if there is a fully
elliptic operator D′ with [σb(D′)] = [σb(D)] ∈ K 0

top(
bT ∗X).

We also say that X satisfies the Fredholm perturbation property or the stably
homotopic Fredholm perturbation property if any elliptic b-operator on X satisfies
(FP) or (HFP) respectively.

Property (FP) is of course stronger than property (HFP). Nistor [2003] char-
acterized (FP) in terms of the vanishing of an index in some particular cases.
Nazaikinskii, Savin and Sternin [2008b] characterized (HFP) for arbitrary man-
ifolds with corners using an index map associated with their dual manifold con-
struction. We now rephrase the result of [Nazaikinskii et al. 2008b] and we give a
new proof in terms of deformation groupoids.

Theorem 1.6. Let D be an elliptic b-pseudodifferential operator on a compact
manifold with corners X. Then D satisfies (HFP) if and only if Ind∂X ([σb(D)])= 0.
In particular if D satisfies (FP) then its boundary analytic index vanishes.

The above results fit exactly with the K-theory vs index theory program of
Atiyah and Singer, and in that sense it is not completely unexpected. Now, in order
to give a full characterization of the Fredholm perturbation property one is first led
to compute or understand the K-theory groups for the algebras (1.1) preferably in
terms of the geometry and topology of the manifold with corners. As it happens,
the only previously known cases are

• the K-theory of the compact operators K(X), giving K0(K(X)) = Z and
K1(K(X))= 0, which is of course essential for classic index theory purposes;

• the K-theory of Kb(X) for a smooth manifold with boundary, giving

K0(Kb(X))= 0 and K1(Kb(X))= Z1−p

with p the number of boundary components, which has the nontrivial con-
sequence that any elliptic b-operator on a manifold with boundary can be
endowed with Fredholm boundary conditions.

Computation of the K-theory groups in terms of corner cycles. In this paper we
explicitly compute the above K-theory groups for any finite product of manifolds
with corners of codimension ≤ 3 in terms of corner cycles (explanation below). Our
computations and results are based on a geometric interpretation of the algebras
of b-pseudodifferential operators in terms of Lie groupoids. We explain and recall
the basic facts on groupoids and the b-pseudodifferential calculus in the first two
sections. Besides being extremely useful to compute K-theory groups, the groupoid
approach we propose turns out to be very powerful for computing index morphisms
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and relating several indices. Indeed, the relation between the different indices for
manifolds with corners was only partially understood for some examples. Let us
explain this in detail. Let X be a manifold with corners. Let Fp = Fp(X) be the
set of faces (connected, without boundary) of X of codimension p. To compute
K∗(Kb(X)), we use an increasing filtration of X given by the open subspaces:

X p =
⋃

k≤p, f ∈Fk

f. (1.7)

We have X0 = X
◦

and Xd = X . We extend if necessary the filtration over Z by
setting Xk = ∅ if k < 0 and Xk = X if k > d. The C∗-algebra of Kb(X) inherits
an increasing filtration by C∗-ideals (for full details see Section 5):

K(L2(X
◦

))= A0 ⊂ A1 ⊂ · · · Ad = A = Kb(X). (1.8)

The spectral sequence (E∗
∗,∗(Kb(X)), d∗

∗,∗) associated with this filtration can be
used, in principle, to have a better understanding of these K-theory groups. This
filtration was already considered by Melrose and Nistor [1998] and their main
theorem is the expression of the first differential [loc. cit., Theorem 9]. In trying to
figure out an expression for the differentials of this spectral sequence in all degrees,
we found a differential Z-module (C(X), δpcn) constructed in a very simple way
out of the set of open connected faces of the given manifold with (embedded)
corners X . Roughly speaking, the Z-module C(X) is generated by open connected
faces provided with a coorientation (that is, an orientation of their conormal bun-
dles in X ), while the differential map δpcn associates to a given cooriented face
of codimension p, the sum of cooriented faces of codimension p− 2k− 1, k ≥ 0,
containing it in their closures. This gives a well defined differential module for two
reasons. The first one is that once a labeling of the boundary hyperfaces is chosen,
the coorientation of a given face induces coorientations of the faces containing it
in their closures, proving that the module map δpcn is well defined. The second
one is that the jumps by 2k+ 1, k ≥ 0, in the codimension guarantee the relation
δpcn
◦ δpcn

= 0. We call the homology of (C(X), δpcn) periodic conormal homology,
and denote it by H pcn(X). Note that it is Z2-graded by sorting faces by even and
odd codimension.

Actually, the differential δpcn retracts onto the simpler differential map δ where
one stops at −1 in the codimension, that is, δ maps a given cooriented face of
codimension p to the sum of cooriented faces of codimension p− 1 containing
it in their closures. We call conormal homology and denote it by H cn(X) the ho-
mology of (C(X), δ): this is a Z-graded homology and the resulting Z2-graduation
coincides with the periodic conormal groups. For full details about conormal ho-
mology see Section 4 and the Appendix. It is worthwhile to note that the conormal
complex (C(X), δ) already appears as the complex of (connected) faces in [Bunke
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2009]. The complex considered by Bunke is made of mutually compatible ori-
ented faces and the consistency of these orientations induces orientations of the
conormal spaces of the faces. There is then an obvious isomorphism between both
complexes. Recall that Bunke proved that the obstruction for the existence of a
boundary taming of a Dirac type operator on X is given by an explicit class in this
homology, which also implicitly appears in the work of Melrose and Nistor [1998],
through the quasiisomorphism that we prove here (Corollary 5.35). It is thus all but
a surprise that conormal homology emerges from the computation of K∗(Kb(X))
and we conclude this paragraph by recording that there is a natural isomorphism

H cn
p (X)' E2

p,0(Kb(X)). (1.9)

Our main K-theory computation can now be stated:

Theorem 5.43. Let X = 5i X i be a finite product of manifolds with corners of
codimension less or equal to three. There are natural isomorphisms

H pcn
0 (X)⊗Z Q

φX−→∼=
K0(Kb(X)))⊗Z Q,

H pcn
1 (X)⊗Z Q

φX−→∼=
K1(Kb(X))⊗Z Q.

(1.10)

In the case where X contains a factor of codimension at most two or X is of codi-
mension three, the result holds even without tensoring by Q.

We insist on the fact that (periodic) conormal homology groups are easily com-
putable, because the underlying chain complexes as well as the differential maps
are obtained from elementary and explicit ingredients. To continue let us introduce
the Corner characters.

Definition 1.11 (corner characters). Let X be a manifold with corners. We define
the even conormal character of X as the finite sum

χ0(X)= dimQ H pcn
0 (X)⊗Z Q. (1.12)

Similarly, we define the odd conormal character of X as the finite sum

χ1(X)= dimQ H pcn
1 (X)⊗Z Q. (1.13)

We can consider as well

χ(X)= χ0(X)−χ1(X), (1.14)

then by definition

χ(X)= 1− #F1+ #F2− · · ·+ (−1)d#Fd . (1.15)

We refer to the integer χ(X) as the Euler corner character of X .



530 PAULO CARRILLO ROUSE AND JEAN-MARIE LESCURE

In particular one can rewrite Theorem 5.43 to have, for X as stated,

K0(Kb(X))⊗Z Q∼=Qχ0(X), K1(Kb(X))⊗Z Q∼=Qχ1(X), (1.16)

and in terms of the corner character,

χ(X)= rank(K0(Kb(X))⊗Z Q)− rank(K1(Kb(X))⊗Z Q). (1.17)

Or, in the case where X is a finite product of manifolds with corners of codimension
at most 2, we even have

K0(Kb(X))' Zχ0(X), and K1(Kb(X))' Zχ1(X) (1.18)

and also χcn(X)= rank
(
K0(Kb(X))

)
− rank

(
K1(Kb(X))

)
.

We can finally state the following primary obstruction to the Fredholm pertur-
bation theorem in terms of corner characters and corner cycles:

Theorem 6.9. Let X be a compact manifold with corners of codimension greater
than or equal to one. If X is a finite product of manifolds with corners of codimen-
sion less than or equal to three we have that:

(1) If X satisfies the Fredholm perturbation property then the even Euler corner
character of X vanishes, i.e., χ0(X)= 0.

(2) If the even periodic conormal homology group vanishes, i.e., H pcn
0 (X) = 0,

then X satisfies the stably homotopic Fredholm perturbation property.

(3) If H pcn
0 (X) is torsion free and if the even Euler corner character of X vanishes,

i.e., χ0(X)= 0, then X satisfies the stably homotopic Fredholm perturbation
property.

We believe that the results above hold beyond the case of finite products of
manifolds with corners of codimension ≤ 3. On one side conormal homology can
be defined and computed in all generality and, in all examples we have, the isomor-
phisms above still hold. The problem in general is to compute beyond the third
differential of the naturally associated spectral sequence for the K-theory groups for
manifolds with corners of codimension greater or equal to four. This is technically a
very hard task and explicit interesting examples (not products) become rare. In fact,
for any codimension, the corresponding spectral sequence in periodic conormal ho-
mology collapses at the second page as shown in the Appendix. We believe it does
collapse as well for K-theory because of the results above. Another problem is re-
lated with the possible torsion of the conormal homology groups. Indeed, we prove
in Theorem 4.22 that for a finite product of manifolds with corners of codimension
at most two these groups are torsion free and that the odd group for a three codi-
mensional manifold with corners is torsion free as well. We think that in general
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these groups are torsion free but the combinatorics become very hard and one needs
a good way to deal with all these data. We will discuss all these topics elsewhere.

Partial results in the direction of this paper were obtained by several authors;
we have already mentioned the seminal works of Melrose and Nistor [1998] and
of Nazaikinskii et al. [2008a; 2008b]. In particular Melrose and Nistor start the
computation of the K-groups of the algebra of zero order b-operators and some
particular cases of boundary analytic index morphisms as defined here (together
with some topological formulas for them). Also, Nistor [2003] solves the Fredholm
perturbation problem for manifolds with corners of the form a canonical simplex
times a smooth manifold. Let us mention also the work of Monthubert and Nistor
[2012] in which they construct a classifying space associated to a manifold with
corners whose K-theory can be in principle used to compute the analytic index
above. We were very much inspired by all these works. Bunke [2009] focuses on
the obstruction of Fredholm perturbations for Dirac operators on manifolds with
corners, for which he gives a precise answer in terms of conormal homology, while
we focus on the receptacle for these obstructions: our results are then less precise
for a given operator, but address generic b-pseudodifferential operators.

The theorems above show the importance and interest in computing the bound-
ary analytic and the Fredholm indices associated to a manifold with corners and if
possible, in a unified and in a topological and geometrical way. Using K-theory as
above, for the case of a smooth compact connected manifold, the computation we
are mentioning is none other than the Atiyah and Singer [1968a] index theorem.
As we mentioned already, for manifolds with boundary, Atiyah, Patodi and Singer
gave a formula for the Fredholm index of a Dirac type operator. In fact, with the
groupoid approach to index theory, several authors have contributed to the now
realizable idea that one can actually use these tools to have a nice K-theoretical
framework and to actually compute more general index theorems as in the classic
smooth case. For example, in our common work with Monthubert, [Carrillo Rouse
et al. 2014], we give a topological formula for the Fredholm index morphism for
manifolds with boundary that will allow us in a sequel paper to compare with the
APS formula and obtain geometric information on the eta invariant. In the second
paper of this series we will generalize our results of [Carrillo Rouse et al. 2014] for
general manifolds with corners by giving explicit topological index computations
for the indices appearing above.

2. Melrose b-calculus for manifolds with corners via groupoids

2A. Preliminaries on groupoids, K-theory C∗-algebras and pseudodifferential
calculus. All the material in this section is well known and by now classic for the
people working in groupoid C∗-algebras, K-theory and index theory. For more de-
tails and references see [Debord and Lescure 2010; Nistor et al. 1999; Monthubert
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and Pierrot 1997; Lescure et al. 2017; Hilsum and Skandalis 1983; Renault 1980;
Anantharaman-Delaroche and Renault 2000].

Groupoids. Let us start with the definition.

Definition 2.1. A groupoid consists of the following data: two sets G and G(0), and
maps

(1) s, r : G→ G(0) called the source and range (or target) maps,

(2) m : G(2)→ G called the product map, where

G(2) = {(γ, η) ∈ G×G : s(γ )= r(η)},

such that there exist two maps, u : G(0)→ G (the unit map) and i : G→ G (the
inverse map), which, if we denote m(γ, η) = γ · η, u(x) = x and i(γ ) = γ−1,
satisfy the following properties:

(i) r(γ · η)= r(γ ) and s(γ · η)= s(η).

(ii) γ · (η · δ)= (γ · η) · δ for all γ, η, δ ∈ G when this is possible.

(iii) γ · x = γ and x · η = η for all γ, η ∈ G with s(γ )= x and r(η)= x .

(iv) γ · γ−1
= u(r(γ )) and γ−1

· γ = u(s(γ )) for all γ ∈ G.

Generally, we denote a groupoid by G⇒ G(0). A morphism f from a groupoid
H⇒H(0) to a groupoid G⇒G(0) is given by a map f from G to H which preserves
the groupoid structure, i.e., f commutes with the source, target, unit, and inverse
maps, and respects the groupoid product in the sense that f (h1 ·h2)= f (h1) · f (h2)

for any (h1, h2) ∈H(2).

For A, B subsets of G(0) we use the notation GB
A for the subset

{γ ∈ G : s(γ ) ∈ A, r(γ ) ∈ B}.

We will also need the following definition:

Definition 2.2 (saturated subgroupoids). Let G⇒ M be a groupoid.

(1) A subset A ⊂ M of the units is said to be saturated by G (or only saturated if
the context is clear enough) if it is a union of orbits of G.

(2) A subgroupoid

G1

r
��

s
��

� � ⊂ // G

r
��

s
��

M1
� � ⊂ // M

(2.3)

is a saturated subgroupoid if its set of units M1 ⊂ M is saturated by G.
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A groupoid can be endowed with a structure of topological space, or manifold,
for instance. In the case when G and G(0) are smooth manifolds, and s, r,m, u are
smooth maps (with s and r submersions), then G is called a Lie groupoid. In the
case of manifolds with boundary, or with corners, this notion can be generalized
to that of continuous families groupoids (see [Paterson 1999]) or as Lie groupoids
if one considers the category of smooth manifolds with corners.

C∗-algebras. To any Lie groupoid G⇒ G(0) one has several C∗-algebra comple-
tions for the ∗-convolution algebra C∞c (G). Since in this paper all the groupoids
considered are amenable, we will be denoting by C∗(G) the maximal and hence
reduced C∗-algebra of G. From now on, all groupoids will be assumed amenable.

In the sequel we will use the following two results which hold in the generality
of locally compact groupoids equipped with Haar systems.

(1) Let G1 and G2 be two locally compact groupoids equipped with Haar systems.
Then for the locally compact groupoid G1×G2 we have

C∗(G1×G2)∼= C∗(G1)⊗C∗(G2). (2.4)

(2) Let G⇒G(0) a locally compact groupoid with Haar system µ. Let U ⊂G(0) be
a saturated open subset. Then F := G(0) \U is a closed saturated subset. The
Haar system µ can be restricted to the restriction groupoids GU := GU

U ⇒U
and GF := GF

F ⇒ F , and we have the following short exact sequence of C∗-
algebras:

0 // C∗(GU )
i
// C∗(G) r

// C∗(GF ) // 0, (2.5)

where i : Cc(GU ) → Cc(G) is the extension of functions by zero and r :
Cc(G)→ Cc(GF ) is the restriction of functions.

K-theory. We will be considering the K-theory groups of theC∗-algebra of a groupoid.
For space purposes we will be denoting these groups by

K ∗(G) := K∗(C∗(G)). (2.6)

We will use the classic properties of the K-theory functor, mainly its homotopy
invariance and the six term exact sequence associated to a short exact sequence.
Whenever the groupoid in question is a space X we will use the notation

K ∗top(X) := K∗(C0(X)). (2.7)

to indicate that in this case this group is indeed isomorphic to the topological K-
theory group.
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9DO calculus for groupoids. A pseudodifferential operator on a Lie groupoid (or
more generally a continuous family groupoid) G is a family of pseudodifferential
operators on the fibers of G (which are smooth manifolds without boundary), the
family being equivariant under the natural action of G.

Compactly supported pseudodifferential operators form an algebra, denoted by
9∞(G). The algebra of order-0 pseudodifferential operators can be completed into
a C∗-algebra, 90(G). There exists a symbol map, σ , whose kernel is C∗(G). This
gives rise to the following exact sequence:

0→ C∗(G)→90(G)→ C0(S∗(G))→ 0,

where S∗(G) is the cosphere bundle of the Lie algebroid of G.
In the general context of index theory on groupoids, there is an analytic index

which can be defined in two ways. The first way, which is classical, is to consider
the boundary map of the 6-terms exact sequence in K-theory induced by the short
exact sequence above:

inda : K1(C0(S∗(G)))→ K0(C∗(G)).

Actually, an alternative is to define it through the tangent groupoid of Connes,
which was originally defined for the groupoid of a smooth manifold and later ex-
tended to the case of continuous family groupoids [Monthubert and Pierrot 1997;
Lauter et al. 2000]. The tangent groupoid of a Lie groupoid G⇒G(0) is the groupoid

Gtan
= A(G)

⊔
G× (0, 1]⇒ G(0)×[0, 1],

where A(G) = TG(0)G/T G(0) is the Lie algebroid of G. The groupoid Gtan has a
smooth structure given by the deformation to the normal cone construction, see for
example [Carrillo Rouse 2008] for a survey.

Using the evaluation maps, one has two K-theory morphisms,

e0 : K0(C∗(Gtan))→ K 0(A∗G),

which is an isomorphism (since K∗(C∗(G× (0, 1]))= 0), and

e1 : K∗(C0(Gtan))→ K0(C∗(G)).

The analytic index can be defined as

inda = e1 ◦ e−1
0 : K

0(A∗G)→ K0(C∗(G)),

modulo the surjection K1(C0(S∗(G))→ K 0(A∗G).
See [Monthubert and Pierrot 1997; Nistor et al. 1999; Monthubert 2003; Lauter

et al. 2000; Vassout 2006] for a detailed presentation of pseudodifferential calculus
on groupoids.
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2B. Melrose b-calculus for manifolds with corners via the b-groupoid. We start
by defining the manifolds with corners we will be using in the entire paper.

A manifold with corners is a Hausdorff space covered by compatible coordinate
charts with coordinate functions modeled in the spaces

Rn
k := [0,+∞)

k
×Rn−k

for fixed n and possibly variable k.

Definition 2.8. A manifold with embedded corners X is a Hausdorff topological
space endowed with a subalgebra C∞(X) ∈ C0(X) satisfying the following condi-
tions:

(1) There is a smooth manifold X̃ and a map ι : X→ X̃ such that

ι∗(C∞(X̃))= C∞(X).

(2) There is a finite family of functions ρi ∈ C∞(X̃), called the defining functions
of the hyperfaces, such that

ι(X)=
⋂
i∈I

{ρi ≥ 0}.

(3) For any J ⊂ I ,

dxρi (x) are linearly independent in T ∗x X̃ for all x ∈ FJ :=
⋂

i∈J {ρi = 0}.

Terminology. In this paper we will only be considering manifolds with embedded
corners. We will refer to them simply as manifolds with corners. We will also as-
sume our manifolds to be connected. More general manifold with corners deserve
attention but as we will see in further papers it will be more simple to consider them
as stratified pseudomanifolds and desingularize them as manifolds with embedded
corners with an iterated fibration structure.

Given a compact manifold with corners X , Melrose4 [1993] constructed the
algebra 9∗b (X) of b-pseudodifferential operators. The elements in this algebra
are called b-pseudodifferential operators; the subscript b identifies these operators
as obtained by “microlocalization” of the Lie algebra of C∞ vector fields on X
tangent to the boundary. This Lie algebra of vector fields can be explicitly ob-
tained as sections of the so called b-tangent bundle bT X (the compressed tangent
bundle that will appear below as the Lie algebroid of an explicit Lie groupoid). The
b-pseudodifferential calculus developed by Melrose has the classic and expected
properties. In particular there is a principal symbol map

σb :9
m
b (X)→ S[m](bT ∗X).

4For full details in the case with corners see the paper of Melrose and Piazza [1992].
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Ellipticity has the usual meaning, namely invertibility of the principal symbol.
Moreover (see the discussion below Theorem 2.15 in [Melrose and Piazza 1992]),
an operator is elliptic if and only5 if it has a quasiinverse modulo 9−∞b (X). Now,
the operators in 9−∞b (X) are not all compact (unless the topological boundary
∂X = ∅) but they contain a subalgebra consisting of compact operators (those
for which certain indicial map is zero [loc. cit., p. 8]). Hence, among elliptic b-
pseudodifferential operators one has those for which the quasiinverse is actually
modulo compact operators and hence Fredholm (again, see [loc. cit., p. 8] for
a characterization of Fredholm operators in terms of an indicial map). These b-
elliptic operators are called fully elliptic operators.

Now, as for every 0-order b-pseudodifferential operator [loc. cit., (2.16)], the
operators in 9−∞b (X) extend to bounded operators on L2(X) and hence if we
consider its completion as bounded operators one obtains an algebra denoted in
this paper by Kb(X) that fits in a short exact sequence of C∗-algebras of the form

0 // K(X)
i0
// Kb(X)

r
// Kb(∂X) // 0, (2.9)

where K(X) is the algebra of compact operators in L2(X).
Let X be a compact manifold with embedded corners, so by definition we are

assuming there is a smooth compact manifold (of the same dimension) X̃ with X ⊂
X̃ and ρ1, . . . , ρn defining functions of the faces. Monthubert [2003] constructed
a Lie groupoid (called the puff groupoid) associated to any decoupage (X̃ , (ρi ));
it has the following expression as a Lie subgroupoid of X̃ × X̃ ×Rk :

G(X̃ , (ρi ))=
{
(x, y, λ1, . . . , λn) ∈ X̃ × X̃ ×Rn

: ρi (x)= eλiρi (y)
}
. (2.10)

The puff groupoid is not s-connected; we denote by Gc(X̃ , (ρi )) its s-connected
component.

Definition 2.11 (the b-groupoid). The b-groupoid 0b(X) of X is by definition the
restriction to X of the s-connected puff groupoid (2.10) considered above, that is

0b(X) := Gc(X̃ , (ρi ))|X ⇒ X. (2.12)

The b-groupoid was introduced by B. Monthubert in order to give a groupoid
description for the Melrose’s algebra of b-pseudodifferential operators. We sum-
marize below the main properties we will be using of this groupoid:

Theorem 2.13 [Monthubert 2003]. Let X be a manifold with corners, as above.
We have that:

(1) 0b(X) is a C0,∞-amenable groupoid.

5Notice that this remark implies that to a b-pseudodifferential operator one can associate an “in-
dex” in the algebraic K-theory group K0(9

−∞

b (X)) (the classic construction of quasiinverses).
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(2) X has Lie algebroid A(0b(X))= bT X , the b-tangent bundle of Melrose.

(3) The C∗-algebra of X (reduced or maximal is the same since we have amenabil-
ity) coincides with the algebra of b-compact operators. The canonical isomor-
phism

C∗(0b(X))∼= Kb(X) (2.14)

is given as usual by the Schwartz kernel theorem.

(4) The pseudodifferential calculus of 0b(X) coincides with compactly supported
b-calculus of Melrose.

Remark 2.15. To simplify the exposition, in the present paper we only discuss the
case of scalar operators. The case of operators acting on sections of vector bundles
is treated classically by considering bundles of homomorphisms.

3. Boundary analytic and Fredholm indices for manifolds with corners:
relations and Fredholm perturbation characterization

We will now introduce the several index morphisms we will be using, mainly the
analytic and the Fredholm index. In all this section, X denotes a compact and
connected manifold with embedded corners.

3A. Analytic and boundary analytic index morphisms. Any elliptic b-pseudo-
differential D has an analytical index Indan(D) given by

Indan(D)= I ([σb(D)]1) ∈ K0(Kb(X)),

where I is the connecting homomorphism in K-theory of the exact sequence

0 // Kb(X) // 90
b (X)

σb
// C(bS∗X) // 0, (3.1)

and [σb(D)]1 is the class in K1(C(bS∗X)) of the principal symbol σb(D) of D.
Alternatively, we can express Ind(D) using the adiabatic deformation groupoid

of 0b(X) and the class in K0 of the same symbol, namely

[σb(D)] = δ([σb(D)]1) ∈ K0(C0(
bT ∗X)), (3.2)

where δ is the connecting homomorphism of the exact sequence relating the vector
and sphere bundles:

0 // C0(
bT ∗X) // C0(

bB∗X) // C(bS∗X) // 0. (3.3)

Indeed, consider the exact sequence

0 // C∗(0b(X)× (0, 1]) // C∗(0tan
b (X))

r0
// C∗(bT X)∼= C0(

bT ∗X) // 0, (3.4)
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in which the ideal is K-contractible and set

Inda
X = r1 ◦ r−1

0 : K
0
top(

bT ∗X)→ K0(Kb(X)), (3.5)

where r1 : K0
(
C∗(0tan

b (X))
)
→ K0

(
C∗(0b(X))

)
is induced by the restriction mor-

phism to t = 1. Applying a mapping cone argument to the exact sequence (3.1)
gives a commutative diagram

K1(C(bS∗X))

δ
''

I
// K0(Kb(X))

K 0
top(

bT ∗X)

Inda
X

77

(3.6)

Therefore we get, as announced:

Indan(D)= Inda
X ([σb(D)]). (3.7)

The map Inda
X will be called the analytic index morphism of X . A closely related

homomorphism is the boundary analytic index morphism, in which the restriction
to X ×{1} is replaced by the one to ∂X ×{1}, that is, we set

Ind∂X = r∂ ◦ r−1
0 : K0(C0(

bT ∗X))→ K0(C∗(0b(X)|∂X )), (3.8)

where r∂ is induced by the homomorphism C∗(0tan
b (X))→ C∗(0b(X))|∂X . We

have of course
Ind∂X = r1,∂ ◦ Inda

X (3.9)

if r1,∂ denotes the map induced by the homomorphism C∗(0b(X))→C∗(0b(X)|∂X ).

3B. Fredholm index morphism. In general, elliptic b-operators on X are not Fred-
holm. Indeed, to construct an inverse of a b-operator modulo compact terms, we
have to invert not only the principal symbol, but also all the family of boundary
symbols. One way to summarize this situation is to introduce the algebra of full,
or joint, symbols. Let H be the set of closed boundary hyperfaces of X , and set

AF =

{(
a, (qH )H∈H

)
∈ C∞(bS∗X)×

∏
H∈H

90(0b(X)|H ) :

∀H ∈H, a|H = σb(qH )

}
. (3.10)

The full symbol map:

σF :9
0(0b(X)) 3 P 7→

(
σb(P), (P|H )H∈H

)
∈AF (3.11)

extends to the C∗-closures of the algebras and the assertion about the invertibility
modulo compact operators amounts to the exactness of the sequence [Lauter et al.
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2000]:

0 // K(X) // 90(0b(X))
σF
// AF // 0 (3.12)

Definition 3.13 (full ellipticity). An operator D ∈ 90(0b(X)) is said to be fully
elliptic if σF (D) is invertible.

We then recall the following result of Loya [2005] (the statement also appears in
[Melrose and Piazza 1992]). Remember that b-Sobolev spaces H s

b (X) are defined
using b-metrics and b-operators map H m

b (X) to H s−m
b (X) continuously for every s.

Theorem 3.14 [Loya 2005, Theorem 2.3]. An operator D ∈90
b (X) is fully elliptic

if and only if it is Fredholm on H s
b (X) for some s (and then for any s, with Fredholm

index independent of s).

For a given fully elliptic operator D, we denote by IndFred(D) its Fredholm
index. We are going to express this number in terms of K-theory and clarify the re-
lationship between the analytical index and full ellipticity on X using deformation
groupoids. Let us start with the tangent groupoid

0b(X)tan
:= (Gc(X̃ , (ρi ))

tan)|X×[0,1]=Tb Xt(0b(X)×(0, 1])⇒ X×[0, 1]. (3.15)

Now we introduce the two following saturated subspaces of X ×[0, 1]:

XF := X×[0, 1]\∂X×{1} and X∂ := XF \X
◦

×(0, 1]= X∪∂X×[0, 1). (3.16)

The Fredholm b-groupoid and the noncommutative tangent space of X are defined
by

0b(X)Fred
:= 0b(X)tan

|XF and Tnc X := 0b(X)Fred
|X∂ (3.17)

respectively. They are obviously KK-equivalent, as one sees using the exact se-
quence

0 // C∗(X
◦

× X
◦

× (0, 1]) // C∗(0b(X)Fred)
rF
// C∗(Tnc X) // 0 (3.18)

whose ideal is K-contractible. We then define the Fredholm index morphism by

IndX
F = (r1)∗ ◦ (rF )

−1
∗
: K 0(Tnc X)→ K 0(X

◦

× X
◦

)' Z. (3.19)

Following [Debord et al. 2015, Definition 10.4], we denote by FE(X) the group
of order-0 fully elliptic operators modulo stable homotopy. Then the vocabulary
above is justified by:

Proposition 3.20. There exists a group isomorphism

σnc : FE(X)→ K0(C∗(Tnc X)) (3.21)
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such that
r0([σnc(D)])= [σb(D)] ∈ K0(C0(

bT ∗X)),

IndX
F ([σnc(D)])= IndFred(D),

(3.22)

where r0 comes from the natural restriction map C∗(Tnc X)→ C0(
bT ∗X).

This is proved by the method leading to [Savin 2005, Theorem 4; Debord et al.
2015, Theorem 10.6] in exactly the same way. Also, this homotopy classification
appears in [Nazaikinskii et al. 2008b], in which the K-homology of a suitable dual
manifold is used instead of the K-theory of the noncommutative tangent space.
Previous related results appeared in [Lauter et al. 2000] for differential operators
and using different algebras to classify their symbols.

The construction of the various index maps above is summarized into the com-
mutative diagram:

K 0(0F
b )

iF
//

e1
zz

K 0(0tan
b )

r∂
//

e1

||

K 0(0b|∂)

id
zz

��

K 0(X
◦

× X
◦

)
i0

// K 0(0b)
rb

// K 0(0b|∂)

��

K 1(0b|∂)

OO

K 1(0tan
b )

e1

||

r∂
oo K 1(0F

b )
oo

e1
zz

K 1(0b|∂)

∂1

OO

zz

id

K 1(0b)rb
oo K 1(X

◦

× X
◦

)
i0

oo

3C. Fredholm perturbation property. We are ready to define the Fredholm per-
turbation property [Nistor 2003] and its stably homotopic version.

Definition 3.23. Let D ∈9m
b (X) be elliptic. We say that D satisfies:

• the Fredholm perturbation property (FP) if there is R ∈9−∞b (X) such that
D+ R is fully elliptic.

• the stably homotopic Fredholm perturbation property (HFP) if there is a fully
elliptic operator D′ with [σb(D′)] = [σb(D)] ∈ K0(C∗(bT X)).

We also say that X satisfies the (stably homotopic) Fredholm perturbation prop-
erty if any elliptic b-operator on X satisfies ((H)FP).

Property (FP) is of course stronger than property (HFP). Nistor [2003] char-
acterized (FP) in terms of the vanishing of an index in some particular cases.
Nazaikinskii et al. [2008b] characterized (HFP) for arbitrary manifolds with cor-
ners using an index map associated with their dual manifold construction. We now
rephrase the result of [Nazaikinskii et al. 2008b] in terms of deformation groupoids.
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Theorem 3.24. Let D be an elliptic b-pseudodifferential operator on a compact
manifold with corners X. Then D satisfies (HFP) if and only if Ind∂([σb(D)])= 0.
In particular if D satisfies (FP) then its analytic indicial index vanishes.

Proof. Note that the Fredholm and the tangent groupoids are related by the exact
sequence

0 // C∗(0Fred
b (X))

iF
// C∗(0tan

b (X))
r∂
// C∗(0b(X)∂X ) // 0. (3.25)

Then Proposition 3.20, together with this exact sequence and the commutative
diagram:

K0(C∗(0F
b ))

iF
��

'

rF

// K0(C∗(Tnc X))

r0

��

K0(C∗(0tan
b ))

'

r0
// K0(C∗(bT X))

(3.26)

yields the result. �

Loosely speaking, this theorem tells us that the K-theory of 0b(X)∂X , or equiv-
alently the one of 0b(X) as we shall see later, is the receptacle for the obstruction
to Fredholmness of elliptic symbols in the b-calculus. This is why we now focus
on the understanding of these K-theory groups. If the result is well known in
codimension less or equal to 1, the general case is far from understood. Meanwhile,
we will also clarify the equivalent role played by 0b(X) and 0b(X)∂X .

4. The conormal homology of a manifold with corners

In all this section, X is a manifold with embedded corners of codimension d , whose
connected hyperfaces H1, . . . , HN are provided with defining functions r1, . . . , rN .

4A. Definition of the homology. The one form e j = dr j trivializes the conor-
mal bundle of H j for any 1 ≤ j ≤ N . By convention, p-tuples of integers I =
(i1, . . . , i p) ∈ Np are always labeled so that 1 ≤ i1 < · · · < i p ≤ N . Let I be a
p-tuple, set

HI = r−1
I ({0})= Hi1 ∩ · · · ∩ Hi p , (4.1)

and denote by c(I ) the set of open connected faces of codimension p included
in HI . Also, we denote by eI the exterior product

eI = ei1 · ei2 · · · · · ei p . (4.2)

Let f be a face of codimension p and I the p-tuple such that f ∈ c(I ). The
conormal bundle N( f ) of f has a global basis given by the sections e j , j ∈ I , and
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its orientations are identified with ±eI . For any integer 0≤ p ≤ d, we denote by
C p(X) the free Z-module generated by

{ f ⊗ ε : f ∈ Fp, ε is an orientation of N( f )}. (4.3)

Let f ∈ Fp, ε f an orientation of N( f ) and g ∈ Fp−1 such that f ⊂ ḡ. The face
f is characterized in ḡ by the vanishing of a defining function ri(g, f ) . Then the
contraction ei(g, f ) y ε f is an orientation of N(g). Recall that the contraction y is
defined by

ei y eI =

{
0 if i 6∈ I,
(−1) j−1eI\{i} if i is the j-th coordinate of I.

(4.4)

We then define δp : C p(X)→ C p−1(X) by

δp( f ⊗ ε f )=
∑

g∈Fp−1,
f⊂ḡ

g⊗ ei(g, f ) y ε f . (4.5)

It is not hard to check directly that (C∗(X), δ∗) is a differential complex. Actu-
ally, δ∗ is the component of degree −1 of another natural differential map δpcn

=∑
k≥0 δ

2k+1, which eventually produces a quasiisomorphic differential complex.
Details are provided in the Appendix.

We define the conormal homology of X as the homology of (C∗(X), δ∗), and
we write

H cn
p (X) := Hp(C∗(X), δ∗). (4.6)

This homology was first considered in [Bunke 2009], in a slightly different but
equivalent way. Also, the graduation of the conormal homology into even and odd
degree, called here periodic conormal homology, will be used and we denote

H pcn
0 (X)=⊕p≥0 H cn

2p(X) and H pcn
1 (X)=⊕p≥0 H cn

2p+1(X). (4.7)

4B. Examples. The determination of the groups H cn
∗
(X) is completely elementary

in all concrete cases. In the following examples, it is understood that faces f arise
with the orientation given by eI if f ∈ c(I ).

Example 4.8. • Assume that X has no boundary. Then H pcn
0 (X)= H cn

0 (X)'Z,
H pcn

1 (X)= 0.

• Assume that X has a boundary with n connected components. Then H pcn
0 (X)=

0 and H pcn
1 (X)= H cn

1 (X)'Zn−1. More precisely, if we set F1={ f1, . . . , fn}

then { f1− f2, f2− f3, . . . , fn−1− fn} provides a basis of ker δ1.

• Assume that X has codimension 2 and that ∂X is connected. Then H pcn
0 (X)=

H cn
2 (X)= ker δ2'Zk , where all nonnegative integers k can arise. For instance,

consider the unit closed ball B in R3, cut k+ 1 small disjoint disks out of its
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boundary and glue two copies of such spaces along the pairs of cut out disks.
We get a space X satisfying the statement: the boundaries s0, . . . , sk of the
original disks provide a basis of F2 and the family s0− s j , 1≤ j ≤ k a basis
of ker δ2. Finally, [0,+∞)2 provides an example with k = 0.

• Consider the cube X = [0, 1]3.

(1) We have H pcn
0 (X)= 0 and H pcn

1 (X)= H cn
3 (X)' Z.

(2) Remove a small open cube into the interior of X and call the new space Y .
Then

H pcn
0 (Y )= 0 and H pcn

1 (Y )= H cn
3 (Y )⊕ H cn

1 (Y )' Z2
⊕Z.

(3) Remove a small open ball from the interior of X and call the new space
Z . Then

H pcn
0 (Z)= 0 and H pcn

1 (Y )= H cn
3 (Y )⊕ H cn

1 (Y )' Z⊕Z.

4C. Long exact sequence in conormal homology. We define a filtration of X by
open submanifolds with corners by setting:

Xm =
⋃

f ∈Fk , k≤m

f, 0≤ m ≤ d. (4.9)

This leads to differential complexes (C∗(Xm), δ) for 0≤ m ≤ d . We can also filter
the differential complex (C∗(X), δ) by the codimension of faces:

Fm(C∗(X))=
m⊕

k=0

Ck(X). (4.10)

There is an obvious identification C∗(Xm) ' Fm(C∗(X)) and we thus consider
(C∗(Xm), δ) as a subcomplex of (C∗(X), δ), with quotient complex denoted by
(C∗(X, Xm), δ). The quotient module is also naturally embedded in C∗(X):

C∗(X, Xm)= C∗(X)/C∗(Xm)'

d⊕
k=m+1

Ck(X)⊂ C∗(X). (4.11)

The embedding, denoted by ρ, is a section of the quotient map. The short exact
sequence:

0 // C∗(Xm) // C∗(X) // C∗(X, Xm) // 0 (4.12)

induces a long exact sequence in conormal homology:

· · ·
∂p+1
// H cn

p (Xm) // H cn
p (X) // H cn

p (X, Xm)
∂p
// H cn

p−1(Xm) // · · · (4.13)

and we need to make precise the connecting homomorphism.
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Proposition 4.14. Let [c] ∈ H cn
p (X, Xm). Then

∂p[c] = [δ(ρ(c))]. (4.15)

Proof. Since c is by assumption a cycle in (C∗(X, Xm), δ), the chain ρ(c) has a
boundary made of faces contained in Xm . The result follows. �

Remarks 4.16. • We can replace X by Xl and quotient the exact sequence (4.12)
by C∗(Xq) for any integers l,m, q such that 0≤ q ≤m ≤ l ≤ d . This leads to long
exact sequences:

···
∂
// H cn

p (Xm,Xq) // H cn
p (Xl ,Xq) // H pcn

p (Xl ,Xm)
∂
// H pcn

p−1(Xm,Xq) // ··· (4.17)

whose connecting homomorphisms are again given by (4.15).

• If we split the conormal homology into even and odd periodic groups, then the
long exact sequence (4.13) becomes a six-term exact sequence:

H pcn
0 (Xm) // H pcn

0 (X) // H pcn
0 (X, Xm)

∂0

��

H pcn
1 (X, Xm)

∂1

OO

H pcn
1 (X)oo H pcn

1 (Xm)oo

(4.18)

where ∂0, ∂1 are given by the direct sum in even/odd degrees of the maps ∂∗ of
Proposition 4.14.

• We can replace Xm in the exact sequence (4.12) by an open saturated submanifold
U ⊂ Xm , that is, an open subset of X consisting of a union of faces. This gives in the
same way a subcomplex (C∗(U ), δ) of (C∗(X), δ) and a section ρ : C∗(X,U )→
C∗(X) allowing us to state Proposition 4.14 verbatim. More generally, if U is any
open submanifold of X and Ũ denotes the smallest open saturated submanifold
containing U , then any face f of U is contained in a unique face f̃ of X and
an orientation of N( f ) determines an orientation of N( f̃ ). This gives rise to a
quasiisomorphism C∗(U )→ C∗(Ũ ).

Finally, assume that d ≥ 1. Since X is connected, the map δ1 : C1(X)→ C0(X)
is surjective, which implies by Proposition 4.14 the surjectivity of the connecting
homomorphism ∂1

: H pcn
1 (X, X0)→ H pcn

0 (X0). This fact and H pcn
1 (X0)= 0 gives,

using (4.18), the useful corollary:

Corollary 4.19. For any connected manifold with corners X of codimension d ≥ 1
the canonical morphism H pcn

0 (X)→ H pcn
0 (X, X0) is an isomorphism.

4D. Torsion free in low codimensions. Here we will show that up to codimension
2 the conormal homology groups (and later on the K-theory groups) are free abelian
groups.
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Lemma 4.20. Let X be of arbitrary codimension and assume that ∂X has l con-
nected components. Then H cn

1 (X)' Zl−1.

Proof. For any face f , denote by cc( f ) the connected component of ∂X contain-
ing f . It is obvious that ker δ1 is generated by the differences f −g, where f, g run
through F1. Let f, g ∈ F1 such that cc( f )= cc(g). Then there exist f0, . . . , fl ∈ F1

such that f = f0, g = fl and fi ∩ fi+1 6=∅ for any i . Therefore for any i , there
exists fi,i+1 ∈ F2 such that δ2( fi,i+1)= fi − fi+1, hence f − g = δ2

(∑
fi,i+1

)
is

a boundary in conormal homology.
Now assume that cc( f ) 6= cc(g). By the previous discussion, we also have
[ f −g]= [ f ′−g′] ∈ H cn

1 (X) for any f ′, g′ ∈ F1 such that f ′⊂ cc( f ) and g′⊂ cc(g).
Therefore, pick up one hyperface in each connected component of ∂X , call them
f1, . . . , fl , and set αi = [ f1 − fi ] ∈ H cn

1 (X) for i ∈ {2, . . . , l}. It is obvious that
(αi )2≤i≤l generates H cn

1 (X). So, consider integers x2, . . . , xl such that

l∑
i=2

xiαi = 0.

In other words, there exists x ∈ C2(X) such that( l∑
i=2

xi

)
f1−

l∑
i=2

xi fi = δ2(x). (4.21)

For any p ≥ 1 and 2≤ j ≤ l denote by π j : C p(X)→ C p(X) the map defined by
π j (h) = h if h ⊂ cc( f j ) and π j (h) = 0 otherwise. All the πi commute with δ∗,
hence (4.21) gives

for all 2≤ j ≤ l, x j f j = δ2(π j (x)).

Since δ1( f j )= X
◦

6= 0, we conclude x j = 0 for all j . �

Theorem 4.22. Assume that X is connected and has codimension d ≤ 2. Then
H pcn
∗ (X) is a free abelian group.

Proof. This is essentially a compilation of previous examples and computations.
The first two cases in Section 4B give the result for d = 0 and d = 1. If X is of
codimension 2, then the third case in Section 4B says that H pcn

0 (X) is free. In codi-
mension 2 again, we have H pcn

1 (X)= H cn
1 (X), hence we are done by Lemma 4.20.

�

Remark 4.23. If codim(X) = 3, then H pcn
1 (X) = H cn

1 (X) ⊕ H cn
3 (X). Since

H cn
3 (X)= ker δ3, Lemma 4.20 also gives that H pcn

1 (X) is free. The combinatorics
needed to prove that H cn

2 (X)— and therefore H pcn
0 (X)— is free are much more in-

volved. The torsion of conormal homology for manifolds of arbitrary codimension
will be studied somewhere else.
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4E. Künneth formula for conormal homology. Taking advantage of the previous
paragraph, we consider a product X = X1× X2 of two manifolds with corners, one
of them being of codimension ≤ 2. It is understood that the defining functions
used for X are obtained by pulling back the ones used for X1 and X2. The tensor
product (Ĉ∗, δ̂) of the conormal complexes of X1 and X2 is given by

Ĉ p=
⊕

s+t=p

Cs(X1)⊗Ct(X2) and δ̂(x⊗y)= δ(x)⊗y+(−1)t x⊗δ(y), (4.24)

where x ∈ Ct(X1) in the second formula. We have an isomorphism of differential
complexes:

(Ĉ∗, δ̂)' (C∗(X), δ). (4.25)
It is given by the map

9p : Ĉ p =
⊕

s+t=p

Cs(X1)⊗Ct(X2)→ C p(X) (4.26)

defined by
( f ⊗ ε f )⊗ (g⊗ εg) 7→ ( f × g)⊗ ε f · εg, (4.27)

where we did not distinguish differential forms on X j and their pull-back to X via
the canonical projections and · denotes again the exterior product. Since H cn

∗
(X j )

is torsion free for j = 1 or 2 by assumption, we get by Künneth Theorem:

Hp(Ĉ∗, δ̂)=
⊕

s+t=p

H cn
s (X1)⊗ H cn

t (X2). (4.28)

Therefore:

Proposition 4.29 (Künneth formula). Assume that X = X1× X2 with one factor
at least of codimension ≤ 2. Then we have:

H pcn
0 (X)' H pcn

0 (X1)⊗ H pcn
0 (X2)⊕ H pcn

1 (X1)⊗ H pcn
1 (X2), (4.30)

H pcn
1 (X)' H pcn

0 (X1)⊗ H pcn
1 (X2)⊕ H pcn

1 (X1)⊗ H pcn
0 (X2). (4.31)

The following straightforward corollary will be useful later on:

Corollary 4.32. If X =5i X i is a finite product of manifolds with corners X i with
codim(X i )≤ 2, then the groups H pcn

∗ (X) are torsion free.

The exact same arguments as above work to show that the Künneth formula
holds in full generality for conormal homology with rational coefficients, i.e., for
H pcn
∗ (X)⊗Z Q. We state the proposition as we will use it later:

Proposition 4.33 (Künneth formula with rational coefficients). For X = X1× X2

we have:

H pcn
0 (X)⊗Z Q'

(
H pcn

0 (X1)⊗Z Q
)
⊗
(
H pcn

0 (X2)⊗Z Q
)

⊕
(
H pcn

1 (X1)⊗Z Q
)
⊗
(
H pcn

1 (X2)⊗Z Q
)
, (4.34)
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H pcn
1 (X)⊗Z Q'

(
H pcn

0 (X1)⊗Z Q
)
⊗
(
H pcn

1 (X2)⊗Z Q
)

⊕
(
H pcn

1 (X1)⊗Z Q
)
⊗
(
H pcn

0 (X2)⊗Z Q
)
. (4.35)

5. The computation of K∗(Kb(X))

We keep all the notation and conventions of Section 4. In particular, the defining
functions induce a trivialization of the conormal bundle of any face f ,

N( f )' f × E f , (5.1)

in which the p-dimensional real vector space E f inherits a basis b f = (ei )i∈I ,
where I is characterized by f ∈ c(I ). These data induce an isomorphism

0b(X)| f ' C∗(C( f )× E f ), (5.2)

where C( f ) denotes the pair groupoid over f , as well as a linear isomorphism
ϕ f : R

p
→ E f .

Also, the filtration (4.9) gives rise to the following filtration of the C∗-algebra
Kb(X)= C∗(0b(X)) by ideals:

K(L2(X
◦

))= A0 ⊂ A1 ⊂ · · · ⊂ Ad = A = Kb(X), (5.3)

with Am = C∗(0b(X)|Xm ) for any 0≤ m ≤ d. The isomorphisms (5.2) induce

Am/Am−1 ' C∗(0b(X)|Xm\Xm−1)'
⊕
f ∈Fm

C∗(C( f )× E f ). (5.4)

5A. The first differential of the spectral sequence for K∗(A). The K-theory spec-
tral sequence (Er

∗,∗, dr
∗,∗)r≥1 associated with (5.3) [Schochet 1981; Kono and Tamaki

2006] converges to

E∞p,q = K p+q(Ap)/K p+q(Ap−1). (5.5)

Here we have set Kn(A)= K0(A⊗C0(R
n)) for any C∗-algebra A. By construction,

all the terms Er
p,2q+1 vanish, and by Bott periodicity, Er

p,2q ' Er
p,0. Also, all the

differentials d2r
p,q vanish. By definition

d1
p,q : E

1
p,q = K p+q(Ap/Ap−1)→ E1

p−1,q = K p+q−1(Ap−1/Ap−2) (5.6)

is the connecting homomorphism of the short exact sequence

0→ Ap−1/Ap−2→ Ap/Ap−2→ Ap/Ap−1→ 0. (5.7)

By (5.4), we get isomorphisms:

E1
p,q '

⊕
f ∈Fp

K p+q
(
C∗(C( f )× E f )

)
. (5.8)
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Since the real vector space E f has dimension p, the groups E1
p,q vanish for odd q

and for even q, we have after applying Bott periodicity, E1
p,q ' Z#Fp .

Melrose and Nistor [1998, Theorem 9] already achieved the computation of d1
∗,∗.

In order to relate the terms E2
∗,∗ with the elementary defined conormal homology,

we reproduce their computation in a slightly different way. Our approach is based
on the next two lemmas.

Lemma 5.9. Let R+oR be the groupoid of the action of R onto R+ given by

t.λ= teλ, t ∈ R+, λ ∈ R. (5.10)

The element α ∈ KK1(C∗(R),C∗(R∗
+
)) associated with the exact sequence

0→ C∗(C(R∗
+
))→ C∗(R+oR)→ C∗(R)→ 0 (5.11)

is a KK-equivalence.

Proof. By the Thom–Connes isomorphism, the C∗-algebras C∗(R+ o R) and
C∗(R+×R) are KK-equivalent. The latter being K-contractible, the result follows.

�

Lemma 5.12. Let R+oi Rp be the groupoid given by the action of the i-th coordi-
nate of Rp on R+ by (5.10). Let αi,p ∈KK1(C∗(Rp),C∗(Rp−1)) be the KK-element
induced by the exact sequence

0→ C∗(C(R∗
+
)×Rp−1)→ C∗(R+oi Rp)→ C∗(Rp)→ 0. (5.13)

Then for all 1≤ i ≤ p we have

αi,p = (−1)i−1α1,p and α1,p = σC∗(Rp−1)(α), (5.14)

where σD : K∗(A, B)→ K∗(A⊗D, B⊗D) denotes the Kasparov suspension map.

Proof. Let τ be a permutation of {1, 2, . . . , p} and i ∈ {1, . . . , p}. We denote in
the same way the corresponding automorphisms of Rp and C∗(Rp). We have a
groupoid isomorphism

τ̃ : R+oi Rp '
−→ R+oτ(i) Rp

and if we denote by τi the automorphism of Rp−1 obtained by removing the i-th
factor in the domain of τ and the τ(i)-th factor in the range of τ , we get a commu-
tative diagram of exact sequences:

0 // C∗(C(R∗
+
)×Rp−1))

τi

��

// C∗(R+oi Rp)

τ̃

��

// C∗(Rp) //

τ

��

0

0 // C∗(C(R∗
+
)×Rp−1)) // C∗(R+oτ(i) Rp) // C∗(Rp) // 0

(5.15)
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It follows that

ατ(i),p = [τ
−1
]⊗αi,p⊗[τi ] ∈ KK1

(
C∗(Rp),K⊗C∗(Rp−1)

)
. (5.16)

Taking τ = (1, i), we get τ = τ−1 and τi = id, so that αi,p = [τ ]⊗α1,p. Moreover,
observe that for any j ,

[( j − 1, j)] = 1 j−2⊗[ f ]⊗ 1p− j ∈ KK(C∗(Rp),C∗(Rp)), (5.17)

where [ f ] = −1 ∈ KK(C∗(R2),C∗(R2)) is the class of the flip automorphism and
we have used the identification

C∗(Rp)= C∗(R j−2)⊗C∗(R2)⊗C∗(Rp− j ).

Using
(1, i)= (1, 2).(2, 3). . . . .(i − 1, i)

now gives [τ ] = (−1)i−1. Factorizing C∗(Rp−1) on the right in the sequence (5.13)
for i = 1 gives the assertion α1,p = σC∗(Rp−1)(α). �

Using the canonical isomorphism KK1(C∗(R),C∗(R∗
+
))' KK1(C0(R),C), we

can define a generator β of K1(C0(R)) by

β⊗α =+1. (5.18)

For any f ∈ Fp we then obtain a generator β f of K p(C0(E f )) by

β f = (ϕ f )∗(β
p) ∈ K p(C0(E f )), (5.19)

where β p is the external product:

β p
= β⊗C · · · ⊗C β ∈ K p(C0(R

p)). (5.20)

Picking up rank one projectors p f in C∗(C( f )), we get a basis of the free Z-module
E1

p,0:
(p f ⊗β f ) f ∈Fp . (5.21)

Bases of E1
p,q for all even q are deduced from the previous one by applying Bott

periodicity.
Now consider faces f ∈ Fp and g ∈ Fp−1 such that f ⊂ ∂ ḡ. The p and p− 1

tuples I , J such that f ∈ c(I ) and g ∈ c(J ) differ by exactly one index, say the
j-th, and we define

σ( f, g)= (−1) j−1. (5.22)

Introduce the exact sequence

0→ C∗(C( f ×R∗
+
)× Eg)→ C∗(C( f )× (R+o j E f ))→ C∗(C( f )× E f )→ 0,

(5.23)
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where R+o j E f denotes the transformation groupoid where the j-th coordinate
(only) of E f acts on R+ by (5.10) again. We denote by

∂ f,g : K p(C∗(C( f )× E f ))→ K p−1(C∗(C(g)× Eg))

the connecting homomorphism associated with (5.23), followed by the unique KK-
equivalence

C∗(C( f ×R∗
+
))→ C∗(C(g)) (5.24)

provided by any tubular neighborhood of f into g.

Proposition 5.25. With the notation above, we get

∂ f,g(p f ⊗β f )= σ( f, g).pg ⊗βg. (5.26)

Proof. Identify E f ' Rp and Eg ' Rp−1 using b f , bg and apply Lemmas 5.12
and 5.9. �

We can now achieve the determination of d1
∗,∗.

Theorem 5.27. We have

for all f ∈ Fp, d1
p,0(p f ⊗β f )=

∑
g∈Fp−1
f⊂∂ ḡ

σ( f, g)pg ⊗βg. (5.28)

Proof. For p = 0, we have Fp−1 =∅ and d1
p,0 = 0; the result follows. For p ≥ 1,

we recall that

d1
p,0 :

⊕
f ∈Fp

K p(C∗(C( f )× E f ))→
⊕

g∈Fp−1

K p−1(C∗(C(g)× Eg)). (5.29)

is the connecting homomorphism in K-theory of the exact sequence (5.7). We
obviously have

d1
p,0(p f ⊗β f )=

∑
g∈Fp−1

∂g(p f ⊗β f ), (5.30)

where ∂g is the connecting homomorphism in K-theory of the exact sequence

0→ C∗(0b(X)|g)→ C∗(0b(X)|g∪ f )→ C∗(0b(X)| f )→ 0. (5.31)

If f 6⊂ ∂ ḡ then the sequence splits and ∂g(p f ⊗ β f ) = 0. Let g ∈ Fp−1 be such
that f ⊂ ∂ ḡ. Let U be an open neighborhood of f in X such that there exists a
diffeomorphism

Ug := U ∩ g→ f × (0,+∞), x 7→ (φ(x), rig (x)), (5.32)
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where rig is the defining function of f in ḡ. This yields a commutative diagram

0 // C∗(0b(X)|Ug )� _

ι

��

// C∗(0b(X)|Ug∪ f )� _

��

// C∗(0b(X)| f ) // 0

0 // C∗(0b(X)|g) // C∗(0b(X)|g∪ f ) // C∗(0b(X)| f ) // 0

(5.33)

whose upper sequence coincides with (5.23) using (5.32). This implies

∂g = ∂ f,g. (5.34)

The result follows by Proposition 5.25. �

The map d1
p,q , q even, is deduced from d1

p,0 by Bott periodicity. We are ready
to relate the E2 terms with conormal homology.

Corollary 5.35. For every p ∈ {1, . . . , d} there are isomorphisms

φi
p,1 : H

pcn
i (X p, X p−1)→ Ki (Ap/Ap−1), {0, 1} 3 i ≡ p mod 2, (5.36)

such that the following diagram commutes

H pcn
i (X p, X p−1)

φi
p,1

//

∂

��

K p(Ap/Ap−1)

d1
p,0

��

H pcn
1−i(X p−1, X p−2)

φ1−i
p−1,1
// K p−1(Ap−1/Ap−2)

(5.37)

where ∂ stands for the connecting morphism in conormal homology.

Proof. If i ≡ p mod 2 then

H pcn
i (X p, X p−1)= C p(X) and ∂ = δp : C p(X)→ C p−1(X).

We define (5.36) by φi
p,1( f ⊗ ε f )= p f ⊗β f and Theorem 5.27 gives the commu-

tativity of (5.37). �

In other words, the map f ⊗ ε f 7→ p f ⊗β f induces a isomorphism

H cn
p (X)' E2

p,0. (5.38)

It would be very interesting to compute the higher differentials d2r+1
p,0 .

5B. The final computation for K∗(Kb(X)) in terms of conormal homology. Be-
fore getting to the explicit computations and to the analytic corollaries in term of
these, let us give a simple but interesting result. It is about the full understanding
of the six term exact sequence in K-theory of the fundamental sequence

0 // K(X)
i0
// Kb(X)

r
// Kb(∂X) // 0. (5.39)
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Proposition 5.40. For a connected manifold with corners X of codimension greater
or equal to one the induced morphism by r in K0, r : K0(Kb(X))→ K0(Kb(∂X)),
is an isomorphism. Equivalently:

(1) The morphism iF : K0(K)∼= Z→ K0(Kb(X)) is the zero morphism.

(2) The connecting morphism K1(Kb(∂X))→ K0(K)∼= Z is surjective.

Proof. Let X be a connected manifold with corners of codimension d. With the
notations of the last section, the sequence (5.39) correspond to the canonical se-
quence

0 // A0 // Ad // Ad/A0 // 0.

We will prove that the connecting morphism K1(Ad/A0)→ K0(A0)∼= Z is surjec-
tive. The proof will proceed by induction, the case d = 1 immediately satisfies this
property. So let us assume that the connecting morphism K1(Ad−1/A0)→ K0(A0)

associated to the short exact sequence

0 // A0 // Ad−1 // Ad−1/A0 // 0.

is surjective. Consider now the following commutative diagram of short exact
sequences

0 // 0 // Ad/Ad−1 // Ad/Ad−1 // 0

0 // A0

OO

// Ad

OO

// Ad/A0

OO

// 0

0 // A0

OO

// Ad−1

OO

// Ad−1/A0

OO

// 0

(5.41)

By applying the six-term short exact sequence in K-theory to it we obtain that
the following diagram is commutative, where ∂d and ∂d−1 are the connecting mor-
phisms associated to the middle and to the bottom rows respectively:

K(Ad/A0)

∂d

''

K1(Ad−1/A0)

OO

∂d−1

// K0(A0)

Hence, by the inductive hypothesis, we obtain that ∂d is surjective. �

Remark 5.42. Roughly speaking, the previous proposition tells us that the analyti-
cal index of a fully elliptic element carries no information about its Fredholm index,
this information being completely contained in some element of K1(Kb(∂X)).

We have next our main K-theoretical computation:
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Theorem 5.43. Let X = 5i X i be a finite product of manifolds with corners of
codimension less or equal to three. There are natural isomorphisms

H pcn
0 (X)⊗Z Q

φX−→∼=
K0(Kb(X)))⊗Z Q,

H pcn
1 (X)⊗Z Q

φX−→∼=
K1(Kb(X))⊗Z Q.

(5.44)

In the case where X contains a factor of codimension at most two or X is of codi-
mension three, the result holds even without tensoring by Q.

Proof. 1A. codim(X) = 0: The only face of codimension 0 is X
◦

(we are always
assuming X to be connected). The isomorphism

H cn
0 (X0)

φ0
−→ K0(A0)

is simply given by sending X
◦

to the rank one projector pX
◦ chosen in Section 5A.

1B. codim(X)= 1: Consider the canonical short exact sequence

0 // A0 // A1 // A1/A0 // 0.

That gives, since d1
1,0 is surjective, the following exact sequence in K-theory:

0 // K1(A1) // K1(A1/A0)
d1

1,0
// K0(A0) // 0,

from which K1(A1) ∼= ker d1
1,0 and K0(A1) = 0 (since K0(A1/A0) = 0 by a di-

rect computation for K-theory or for conormal homology). By Theorem 5.27 and
Corollary 5.35, we have the following commutative diagram:

K1(A1/A0)
d1

1,0
// K0(A0)

H pcn
1 (X1 \ X0)

φ1,0 ∼=

OO

δ1

// H pcn
0 (X0)

φ0 ∼=

OO

Then there is a unique natural isomorphism

H pcn
1 (X1)

φ1
−→ K1(A1),

fitting the following commutative diagram:

0 // K1(A1) // K1(A1/A0)
d1

1,0
// K0(A0) // 0

0 // H pcn
1 (X1)

φ1 ∼=

OO

// H pcn
1 (X1 \ X0)

φ1,0 ∼=

OO

∂1,0
// H pcn

0 (X0)

φ0 ∼=

OO

// 0
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1C. codim(X)= 2: We first prove that we have natural isomorphisms

H cn
∗
(Xl, Xm)

φl,m

∼=

// K∗(Al/Am) (5.45)

for every 0 ≤ m ≤ l with l −m = 2 and for every manifold with corners (of any
codimension). Indeed, this case can be treated very similarly to the above one.
Suppose l is even, the odd case is treated in the same way by exchanging K0 by
K1 and H0 by H1. By comparing the long exact sequences in conormal homology
we have that there exist unique natural isomorphisms φ0

l,l−2 and φ1
l,l−2 making the

following diagram commutative:

0 // K0(Al/Al−2) // K0(Al/Al−1)
d1

l,0
// K1(Al−1/Al−2) // K1(Al/Al−2) // 0

0 // H pcn
0 (Xl\Xl−2)

φ0
l,l−2

∼=

OO

// H pcn
0 (Xl\Xl−1)

φl,l−1 ∼=

OO

∂l,0
// H pcn

1 (Xl−1\Xl−2)

φl−1,l−2 ∼=

OO

// H pcn
1 (Xl\Xl−2)

φ1
l,l−2

∼=

OO

// 0

since the diagram in the middle is commutative again by Corollary 5.35.
Let us now pass to the case when codim(X) = 2. Consider the short exact

sequence:

0 // A0 // A2 // A2/A0 // 0. (5.46)

We compare its associated six term short exact sequence in K-theory with the
one in conormal homology to get

Z // K 0(A2) // K0(A2/A0)

��

H0(X0) //

φ0

∼=

>>

H pcn
0 (X2) //

?2

BB

H pcn
0 (X2, X0)

��

>>

φ2,0

∼=

>>

K1(A2/A0)

OO

K1(A2)oo 0oo

H pcn
1 (X2, X0)

OO

φ2,0

∼=

==

H pcn
1 (X2)

?1

BB

oo 0

==

oo

(5.47)

where we need now to define isomorphisms ?1 and ?2. In fact if we can define
morphisms such that the diagrams are commutative then by a simple five lemma
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argument they would be isomorphisms. The first thing to check is that

K1(A2/A0)
d2,0

// K0(A0)∼= Z

H pcn
1 (X2, X0)

φ2,0 ∼=

OO

∂2,0

// H pcn
0 (X0)

φ0∼=

OO

(5.48)

is commutative. Indeed, this can be seen by considering the following commutative
diagram of short exact sequences:

0 // 0 // A2/A1 // A2/A1 // 0

0 // A0

OO

// A2

OO

// A2/A0

OO

// 0

0 // A0

OO

// A1

OO

// A1/A0

OO

// 0

(5.49)

Applying the associated diagram between the short exact sequences that gives that
the connecting morphism for the middle row, K1(A2/A0)

d2,0−→ K0(A0), is given by
a (any) splitting of K1(A1/A0)→ K1(A2/A0) (both modules are free Z-modules
by Theorem 4.22) followed by the connecting morphism associated to the exact
sequence on the bottom of the above diagram. By definition of φ2,0 in (5.45) above
and by Corollary 5.35 we have that these two last morphisms are compatible with
the analogs in the respective conormal homologies. Since the connecting morphism
∂2,0 in conormal homology is obtained in this way as well, we conclude that (5.48)
is commutative. We are ready to define ?1 and ?2. For the first one, ?1, there is a
unique isomorphism φ1

2 fitting the following commutative diagram

0 // K1(A2) // K1(A2/A0)

0 // H pcn
1 (X2)

φ1
2
∼=

OO

// H pcn
1 (X2, X0)

φ1
2,0
∼=

OO

and given by restriction of φ1
2,0 to the image of H pcn

1 (X2)→ H pcn
1 (X2, X0). Now,

for defining ?2 we have by Proposition 5.40 a unique isomorphism φ0
2 fitting the

following diagram

K0(A2)
∼=
// K0(A2/A0)

H pcn
0 (X2)

φ0
2
∼=

OO

∼=

// H pcn
0 (X2, X0)

φ0
2,0
∼=

OO
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1D. codim(X)= 3: Consider the short exact sequence

0 // A2 // A3 // A3/A2 // 0.

We compare its associated six term short exact sequence in K-theory with the one
in conormal homology to get

K0(A2) // K0(A3) // 0

��

H pcn
0 (X2) //

φ2

∼=

99

H pcn
0 (X3) //

?2

<<

0

��

<<<<

K1(A3/A2)

OO

K1(A3)oo K1(A2)oo

H pcn
1 (X3, X2)

OO

φ3,2

∼=

99

H pcn
1 (X3)

?1

==

oo H pcn
1 (X2)

φ2

∼=

==

oo

(5.50)

where we need now to define isomorphisms ?1 and ?2. Again, if we can define
morphisms such that the diagrams are commutative then by a simple five lemma
argument they would be isomorphisms. Let us first check that the diagram

K1(A3/A2)
∂
// K0(A2)

H pcn
1 (X3, X2)

φ3,2 ∼=

OO

∂
// H pcn

0 (X2)

φ2∼=

OO

(5.51)

is commutative. For this consider the following commutative diagram of short
exact sequences:

0 // A1 //

��

A1 //

��

0

��

// 0

0 // A2

��

// A3

��

// A3/A2

��

// 0

0 // A2/A1 // A3/A1 // A3/A2 // 0

(5.52)

It implies that the connecting morphism K1(A3/A2)
∂
−→ K0(A2) followed by

the morphism K0(A2)→ K0(A2/A1) coincides with the connecting morphism
K1(A3/A2)

∂
−→ K0(A2/A1). Now, the two latter morphisms are compatible with

the analogs in conormal homology via the isomorphisms described above, and
the morphism K0(A2)→ K0(A2/A1) is injective (since K0(A1) = 0); hence the
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commutativity of diagram (5.51) above follows. From diagram (5.50), by passage
to the quotient, there is unique isomorphism φ0

3 (the one filling ?2 in the above
diagram) such that

K0(A2) // K0(A3) // 0

H pcn
0 (X2)

φ0
2
∼=

OO

// H pcn
0 (X3)

φ0
3
∼=

OO

// 0

is commutative. Finally, for defining ?1, it is now enough to choose splittings for
the map

0→ H pcn
1 (X2)→ H pcn

1 (X3),

which is possible since H pcn
1 (X3) is free (see Theorem 4.22 and the remark below

it) and for the map
K1(A3)→ im j→ 0,

where j is the canonical morphism j : K1(A3)→ K1(A3/A2) (remember all the
groups K∗(Ap/Ap−1) are torsion free).

1E. If X = 5i X i is a finite product with codim(X i ) ≤ 3 and with at least one
factor of codimension at most 2: In this case the result would follow, by all the
points above, if both periodic conormal homology and K-theory satisfy the Kün-
neth formula. Since the algebras Kb(X) are nuclear because the groupoids 0b(X)
are amenable, we have the Künneth formula in K-theory for these kind of algebras.
Now, for conormal homology we verified the Künneth formula in Proposition 4.29.

1F. If X =5i X i is a finite product with codim(X i )≤ 3, for all i : In this case the
result holds rationally by the same arguments as above by using Proposition 4.33.

�

6. Fredholm perturbation properties and Euler conormal characters

The previous results yield a criterion for property (HFP) in terms of the Euler
characteristic for conormal homology. To fit with the assumptions of Theorem 5.43,
we consider a manifold with corners X of codimension d, which is given by the
cartesian product of manifolds with corners of codimension at most 3.

Definition 6.1 (corner characters). Let X be a manifold with corners. We define
the even conormal character of X as

χ0(X)= dimQ H pcn
0 (X)⊗Z Q. (6.2)

Similarly, we define the odd conormal character of X as

χ1(X)= dimQ H pcn
1 (X)⊗Z Q. (6.3)
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We can consider as well

χ(X)= χ0(X)−χ1(X), (6.4)

then we have (by the rank nullity theorem)

χ(X)= 1− #F1+ #F2− · · ·+ (−1)d#Fd . (6.5)

We refer to the integer χ(X) as the Euler corner character of X . These numbers
are clearly invariant under the natural notion of isomorphism of manifolds with
corners. Their computation is elementary in any concrete situation.

In particular one can rewrite Theorem 5.43 to have, for X as in the theorem
statement,

K0(Kb(X))⊗Z Q∼=Qχ0(X), K1(Kb(X))⊗Z Q∼=Qχ1(X) (6.6)

and, in terms of the corner character,

χ(X)= rank(K0(Kb(X))⊗Z Q)− rank(K1(Kb(X))⊗Z Q). (6.7)

In the case where X is a finite product of manifolds with corners of codimension
at most 2 we even have

K0(Kb(X))' Zχ0(X) and K1(Kb(X))' Zχ1(X) (6.8)

and also χcn(X)= rank(K0(Kb(X)))− rank(K1(Kb(X))).

We end with the characterization of property (HFP) in terms of conormal char-
acteristics.

Theorem 6.9. Let X be a compact connected manifold with corners of codimen-
sion greater than or equal to one. If X is a finite product of manifolds with corners
of codimension less than or equal to three we have that:

(1) If X satisfies the Fredholm perturbation property then the even Euler corner
character of X vanishes, i.e., χ0(X)= 0.

(2) If the even periodic conormal homology group vanishes, i.e., H pcn
0 (X) = 0,

then X satisfies the stably homotopic Fredholm perturbation property.

(3) If H pcn
0 (X) is torsion free and if the even Euler corner character of X vanishes,

i.e., χ0(X)= 0 then X satisfies the stably homotopic Fredholm perturbation
property.

Proof. (1) Suppose χ0(X) 6= 0 then K0(Kb(X))⊗Z Q∼=Qχ0(X) is not the zero group.
By Theorem 3.24 it is enough to prove that the rationalized analytic indicial index
morphism

Inda : K 0
top(

bT ∗X)⊗Z Q→ K0(Kb(X))⊗Z Q
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is not the zero morphism. Monthubert and Nistor [2012, Theorems 12 and 13
and Proposition 7] construct a manifold with corners Y and a closed embedding of
manifolds with embedded corners X i

→ Y to obtain a commutative diagram

K 0
top(

bT ∗X)⊗Z Q

i !
��

Inda
// K0(Kb(X))⊗Z Q

∼= i∗
��

K 0
top(

bT ∗Y )⊗Z Q
Inda

∼=
// K0(Kb(Y ))⊗Z Q

(6.10)

They call such a Y a classifying space of X . For our purposes it would be then
enough to show that the morphism

i ! : K 0
top(

bT ∗X)⊗Z Q→ K 0
top(

bT ∗Y )⊗Z Q

is not the zero morphism. But now we are at the topological K-theory level (with
compact supports) where classic topological arguments apply to get that the mor-
phism above is not the zero morphism. Indeed, to construct i ! one uses a tubular
neighborhood (which exist in this setting, see for example Douady [1961/1962]);
the first step is then a Thom isomorphism followed by a morphism induced by a
classic extension by zero. This is summarized in [Monthubert and Nistor 2012,
Proposition 5]. The conclusion follows.

(2) If H pcn
0 (X)= 0 then H pcn

0 (X)⊗Z Q= 0 and the result follows from Theorems
5.43 and 3.24.

(3) In this case K0(Kb(X))∼= Zχ0(X) by Theorem 5.43 and the arguments applied
in the last two points identically apply to get the result (the results of Monthubert
and Nistor cited above hold over Z). �

Appendix: more on conormal homology

We reproduce the discussion leading to the definition of the conormal differential
in a slightly more general way. We keep the same notations. Let f ∈ Fp, ε f an
orientation of N( f ) and g ∈ Fp−k such that f ⊂ ḡ. The face f is characterized in ḡ
by the vanishing of k defining functions and we denote by (g, f ) the corresponding
k-tuple of their indices. Then the contraction εg := e(g, f ) y ε f is an orientation
of N(g). Recall that

eJ y · = e j1 y (· · · y (e jk y ·) · · · ). (A.1)

For any integers 0≤ k ≤ p, we define δk
p : C p(X)→ C p−k(X) by

δk
p( f ⊗ ε f )=

∑
g∈Fp−k ,

f⊂ḡ

g⊗ e(g, f ) y ε f . (A.2)
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We get a homomorphism δpcn
: C(X) → C(X) of degree 1 with respect to the

Z2-grading by setting

δ
pcn
i =

∑
k≥0,

p≡i mod 2

δ2k+1
p , i = 0, 1. (A.3)

Proposition A.4. The map δpcn is a differential, that is δpcn
◦ δpcn

= 0.

Proof. Let f ∈ Fp(X) and ε be an orientation of N( f ). We have

δpcn(δpcn( f ⊗ ε))=
∑

g,h s.t. h̄⊃ḡ⊃ f
(g, f ),(h,g) are odd

(
h⊗ e(h,g) y (e(g, f ) y ε)

)
. (A.5)

Let g, h be such that they contribute a term in the sum above and denote by I, J, K
the tuples labeling the defining functions of f, g, h respectively. Then set

J ′ = I \ (h, g). (A.6)

By definition of manifolds with (embedded) corners, HJ ′ is not empty and there
exists a unique face g′ ∈ c(J ′) with f ⊂ g′. This face g′ = ι(g, h, f ) satisfies the
following properties:

• f ⊂ g′ ⊂ h̄,

• (g′, f )= (h, g) and (h, g′)= (g, f ) are odd,

• ι(g′, h, f )= g.

Finally, note that #(g, f ) 6=#(h, g), otherwise we would have (h, f )= (h,g)+(g, f )
even. This implies in particular that g 6= g′. These observations allow us to reorga-
nize the sum (A.5) as follows:

δpcn(δpcn( f ⊗ ε))=
∑

g,h s.t. h̄⊃ḡ⊃ f
#(g, f )<#(h,g) odd

(
h⊗ (e(h,g) y (e(g, f ) y ε+ e(h,g′) y (e(g′, f ) y ε)))

)
.

Now

e(h,g)y(e(g, f )yε)+e(h,g′)y(e(g′, f )yε)= e(h,g)y(e(g, f )yε)+e(g, f )y(e(h,g)yε)= 0

since #(g, f ) and #(h, g) are odd. �

Proposition A.4 implies δ1
p−1 ◦ δ

1
p = 0 for any p. Since δ1

∗
= δ∗, this proves the

claim of Section 4A. Moreover:

Proposition A.7. The identity map (C∗(X), δ1)→ (C∗(X), δ) induces an isomor-
phism between the Z2-graded homology groups.

Lemma A.8. The following equality hold for any k ≥ 0:

δ2k+1
= δ2k

◦ δ1
= δ1
◦ δ2k . (A.9)
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Proof of Lemma A.8. Let f be a codimension-p face and ε an orientation of N( f ).
Let I be the p-tuple defining f . Then g is a face such that f ⊂ ḡ if and only if
g is a connected component of HJ for some J ⊂ I . Since the definition of δ( f )
only involves faces g with f ⊂ ḡ, it is no restriction to remove the connected
component of HJ disjoint from f for any J ⊂ I , or equivalently to assume that
such HJ are connected. It follows that the faces appearing in the definition of δ( f )
are in one-to-one correspondence with the tuples J ⊂ I so they can be indexed by
them and eventually omitted in the sum defining δ∗( f ). It follows that, εI denoting
an orientation of N( f ),

δ2k
◦ δ1(εI )=

∑
|J |=2k

∑
1≤i≤N

eJ y ei y εI

=

∑
|J |=2k+1

2k+1∑
l=1

e j1 y · · · ê jl y · · · y e j2k+1 y e jl y εI

=

∑
|J |=2k+1

2k+1∑
l=1

(−1)l−1eJ y εI =
∑

|J |=2k+1

eJ y εI = δ
2k+1(εI ).

The equality δ2k+1
= δ1
◦ δ2k is obtained in the same way. �

Proof of Proposition A.7. Let us set N =
∑

k≥0 δ
2k and h = id+ N . Using the

lemma, we get:
δpcn
= δ1
◦ h = h ◦ δ1. (A.10)

Since N is nilpotent, the map h is invertible with inverse given by the finite sum

h−1
=

∑
j≥0

(−1) j N j.

This proves that δ1(x)= 0 if and only if δpcn(x)= 0 and that x = δ1(y) if and only
if x = δpcn(y′) for some y, y′ as well. The proposition follows. �

The differential δ1 is of course much simpler to handle than δpcn.

Acknowledgements

We would like to thank the referee for his/her careful comments and remarks and, in
particular, for pointing out some important references that helped us to understand
better our own work and its place in the index theory literature.

References

[Anantharaman-Delaroche and Renault 2000] C. Anantharaman-Delaroche and J. Renault, Amenable
groupoids, Monographies de L’Enseignement Mathématique 36, L’Enseignement Mathématique,
Geneva, 2000. MR Zbl

http://msp.org/idx/mr/1799683
http://msp.org/idx/zbl/0960.43003


562 PAULO CARRILLO ROUSE AND JEAN-MARIE LESCURE

[Atiyah and Singer 1968a] M. F. Atiyah and I. M. Singer, “The index of elliptic operators, I”, Ann.
of Math. (2) 87 (1968), 484–530. MR Zbl

[Atiyah and Singer 1968b] M. F. Atiyah and I. M. Singer, “The index of elliptic operators, III”, Ann.
of Math. (2) 87 (1968), 546–604. MR Zbl

[Atiyah et al. 1975] M. F. Atiyah, V. K. Patodi, and I. M. Singer, “Spectral asymmetry and Riemann-
ian geometry, I”, Math. Proc. Cambridge Philos. Soc. 77 (1975), 43–69. MR Zbl

[Bunke 2009] U. Bunke, Index theory, eta forms, and Deligne cohomology, Mem. Amer. Math. Soc.
928, Amer. Math. Soc., Providence, RI, 2009. MR Zbl

[Carrillo Rouse 2008] P. Carrillo Rouse, “A Schwartz type algebra for the tangent groupoid”, pp.
181–199 in K-theory and noncommutative geometry, edited by G. Cortiñas et al., Eur. Math. Soc.,
Zürich, 2008. MR Zbl

[Carrillo Rouse et al. 2014] P. Carrillo Rouse, J. M. Lescure, and B. Monthubert, “A cohomologi-
cal formula for the Atiyah–Patodi–Singer index on manifolds with boundary”, J. Topol. Anal. 6:1
(2014), 27–74. MR Zbl

[Debord and Lescure 2010] C. Debord and J.-M. Lescure, “Index theory and groupoids”, pp. 86–158
in Geometric and topological methods for quantum field theory (Villa de Leyva, Columbia, 2007),
edited by H. Ocampo et al., Cambridge Univ. Press, 2010. MR Zbl

[Debord et al. 2015] C. Debord, J.-M. Lescure, and F. Rochon, “Pseudodifferential operators on
manifolds with fibred corners”, Ann. Inst. Fourier (Grenoble) 65:4 (2015), 1799–1880. MR Zbl

[Douady 1961/1962] A. Douady, “Variétés à bord anguleux et voisinages tubulaires”, exposé 1,
pp. 1–11 in Topologie différentielle, Séminaire Henri Cartan, 1961/1962 14, Secrétariat mathéma-
tique, Paris, 1961/1962. MR Zbl

[Hilsum and Skandalis 1983] M. Hilsum and G. Skandalis, “Stabilité des C∗-algèbres de feuil-
letages”, Ann. Inst. Fourier (Grenoble) 33:3 (1983), 201–208. MR Zbl

[Hörmander 1985] L. Hörmander, The analysis of linear partial differential operators, III: Pseudo-
differential operators, Grundlehren der Math. Wissenschaften 274, Springer, 1985. MR Zbl

[Kono and Tamaki 2006] A. Kono and D. Tamaki, Generalized cohomology, Translations of Mathe-
matical Monographs 230, Amer. Math. Soc., Providence, RI, 2006. MR Zbl

[Lauter et al. 2000] R. Lauter, B. Monthubert, and V. Nistor, “Pseudodifferential analysis on contin-
uous family groupoids”, Doc. Math. 5 (2000), 625–655. MR Zbl

[Lescure et al. 2017] J.-M. Lescure, D. Manchon, and S. Vassout, “About the convolution of distri-
butions on groupoids”, J. Noncommut. Geom. 11:2 (2017), 757–789. MR

[Loya 2005] P. Loya, “The index of b-pseudodifferential operators on manifolds with corners”, Ann.
Global Anal. Geom. 27:2 (2005), 101–133. MR Zbl

[Melrose 1993] R. B. Melrose, The Atiyah–Patodi–Singer index theorem, Research Notes in Mathe-
matics 4, A K Peters, Wellesley, MA, 1993. MR Zbl

[Melrose and Nistor 1998] R. Melrose and V. Nistor, “K-theory of C∗-algebras of b-pseudodifferential
operators”, Geom. Funct. Anal. 8:1 (1998), 88–122. MR Zbl

[Melrose and Piazza 1992] R. B. Melrose and P. Piazza, “Analytic K-theory on manifolds with
corners”, Adv. Math. 92:1 (1992), 1–26. MR Zbl

[Melrose and Piazza 1997a] R. B. Melrose and P. Piazza, “Families of Dirac operators, boundaries
and the b-calculus”, J. Differential Geom. 46:1 (1997), 99–180. MR Zbl

[Melrose and Piazza 1997b] R. B. Melrose and P. Piazza, “An index theorem for families of Dirac
operators on odd-dimensional manifolds with boundary”, J. Differential Geom. 46:2 (1997), 287–
334. MR Zbl

http://dx.doi.org/10.2307/1970715
http://msp.org/idx/mr/0236950
http://msp.org/idx/zbl/0164.24001
http://dx.doi.org/10.2307/1970717
http://msp.org/idx/mr/0236952
http://msp.org/idx/zbl/0164.24301
http://dx.doi.org/10.1017/S0305004100049410
http://dx.doi.org/10.1017/S0305004100049410
http://msp.org/idx/mr/0397797
http://msp.org/idx/zbl/0297.58008
http://dx.doi.org/10.1090/memo/0928
http://msp.org/idx/mr/2191484
http://msp.org/idx/zbl/1181.58017
http://dx.doi.org/10.4171/060-1/7
http://msp.org/idx/mr/2513337
http://msp.org/idx/zbl/1165.58003
http://dx.doi.org/10.1142/S1793525314500046
http://dx.doi.org/10.1142/S1793525314500046
http://msp.org/idx/mr/3190137
http://msp.org/idx/zbl/1346.19007
http://dx.doi.org/10.1017/CBO9780511712135.004
http://msp.org/idx/mr/2648649
http://msp.org/idx/zbl/1213.81209
http://dx.doi.org/10.5802/aif.2974
http://dx.doi.org/10.5802/aif.2974
http://msp.org/idx/mr/3449197
http://msp.org/idx/zbl/1377.58025
http://www.numdam.org/item?id=SHC_1961-1962__14__A1_0
http://msp.org/idx/mr/0160221
http://msp.org/idx/zbl/0116.40304
http://dx.doi.org/10.5802/aif.936
http://dx.doi.org/10.5802/aif.936
http://msp.org/idx/mr/723953
http://msp.org/idx/zbl/0505.46043
http://msp.org/idx/mr/781536
http://msp.org/idx/zbl/0601.35001
http://msp.org/idx/mr/2225848
http://msp.org/idx/zbl/1096.55006
http://msp.org/idx/mr/1800315
http://msp.org/idx/zbl/0961.22005
http://dx.doi.org/10.4171/JNCG/11-2-10
http://dx.doi.org/10.4171/JNCG/11-2-10
http://msp.org/idx/mr/3669118
http://dx.doi.org/10.1007/s10455-005-5216-z
http://msp.org/idx/mr/2131909
http://msp.org/idx/zbl/1089.58016
http://msp.org/idx/mr/1348401
http://msp.org/idx/zbl/0796.58050
http://dx.doi.org/10.1007/s000390050049
http://dx.doi.org/10.1007/s000390050049
http://msp.org/idx/mr/1601850
http://msp.org/idx/zbl/0898.46060
http://dx.doi.org/10.1016/0001-8708(92)90059-T
http://dx.doi.org/10.1016/0001-8708(92)90059-T
http://msp.org/idx/mr/1153932
http://msp.org/idx/zbl/0761.55002
http://dx.doi.org/10.4310/jdg/1214459899
http://dx.doi.org/10.4310/jdg/1214459899
http://msp.org/idx/mr/1472895
http://msp.org/idx/zbl/0955.58020
http://dx.doi.org/10.4310/jdg/1214459934
http://dx.doi.org/10.4310/jdg/1214459934
http://msp.org/idx/mr/1484046
http://msp.org/idx/zbl/0920.58053


GEOMETRIC OBSTRUCTIONS FOR FREDHOLM BOUNDARY CONDITIONS 563

[Melrose and Rochon 2006] R. Melrose and F. Rochon, “Index in K-theory for families of fibred
cusp operators”, K-Theory 37:1-2 (2006), 25–104. MR Zbl

[Monthubert 2003] B. Monthubert, “Groupoids and pseudodifferential calculus on manifolds with
corners”, J. Funct. Anal. 199:1 (2003), 243–286. MR Zbl

[Monthubert and Nistor 2012] B. Monthubert and V. Nistor, “A topological index theorem for mani-
folds with corners”, Compos. Math. 148:2 (2012), 640–668. MR Zbl

[Monthubert and Pierrot 1997] B. Monthubert and F. Pierrot, “Indice analytique et groupoïdes de
Lie”, C. R. Acad. Sci. Paris Sér. I Math. 325:2 (1997), 193–198. MR Zbl

[Nazaikinskii et al. 2008a] V. Nazaikinskii, A. Savin, and B. Sternin, “Elliptic theory on manifolds
with corners, I: Dual manifolds and pseudodifferential operators”, pp. 183–206 in C∗-algebras and
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tic theory, II (Bȩdlewo, Poland, 2006), edited by D. Burghelea et al., Birkhäuser, Basel, 2008. MR
Zbl

[Nazaikinskii et al. 2009] V. E. Nazaikinskii, A. Y. Savin, and B. Y. Sternin, “The Atiyah–Bott
index on stratified manifolds”, Sovrem. Mat. Fundam. Napravl. 34 (2009), 100–108. In Russian;
translated in J. Math. Sci. New York 170:2 (2010), 229–237. MR

[Nistor 2003] V. Nistor, “An index theorem for gauge-invariant families: the case of solvable groups”,
Acta Math. Hungar. 99:1-2 (2003), 155–183. MR Zbl

[Nistor et al. 1999] V. Nistor, A. Weinstein, and P. Xu, “Pseudodifferential operators on differential
groupoids”, Pacific J. Math. 189:1 (1999), 117–152. MR Zbl

[Paterson 1999] A. L. T. Paterson, Groupoids, inverse semigroups, and their operator algebras,
Progress in Mathematics 170, Birkhäuser, Boston, 1999. MR Zbl

[Renault 1980] J. Renault, A groupoid approach to C∗-algebras, Lecture Notes in Mathematics 793,
Springer, 1980. MR Zbl

[Savin 2005] A. Savin, “Elliptic operators on manifolds with singularities and K-homology”, K-
Theory 34:1 (2005), 71–98. MR Zbl

[Schochet 1981] C. Schochet, “Topological methods for C∗-algebras, I: Spectral sequences”, Pacific
J. Math. 96:1 (1981), 193–211. MR Zbl

[Vassout 2006] S. Vassout, “Unbounded pseudodifferential calculus on Lie groupoids”, J. Funct.
Anal. 236:1 (2006), 161–200. MR Zbl

Received 6 Jul 2017. Revised 16 Feb 2018. Accepted 7 Mar 2018.

PAULO CARRILLO ROUSE: paulo.carrillo@math.univ-toulouse.fr
Institut de Mathématiques de Toulouse, 118, route de Narbonne, 31062 Toulouse, France

JEAN-MARIE LESCURE: jm.lescure@uca.fr
Laboratoire de Mathématiques Blaise Pascal, Université Clermont Auvergne, 3, place Vasarely,
63177 Aubière cedex, France

msp

http://dx.doi.org/10.1007/s10977-006-0003-6
http://dx.doi.org/10.1007/s10977-006-0003-6
http://msp.org/idx/mr/2274670
http://msp.org/idx/zbl/1126.58010
http://dx.doi.org/10.1016/S0022-1236(02)00038-1
http://dx.doi.org/10.1016/S0022-1236(02)00038-1
http://msp.org/idx/mr/1966830
http://msp.org/idx/zbl/1025.58009
http://dx.doi.org/10.1112/S0010437X11005458
http://dx.doi.org/10.1112/S0010437X11005458
http://msp.org/idx/mr/2904199
http://msp.org/idx/zbl/1247.58016
http://dx.doi.org/10.1016/S0764-4442(97)84598-3
http://dx.doi.org/10.1016/S0764-4442(97)84598-3
http://msp.org/idx/mr/1467076
http://msp.org/idx/zbl/0955.22004
http://dx.doi.org/10.1007/978-3-7643-8604-7_9
http://dx.doi.org/10.1007/978-3-7643-8604-7_9
http://msp.org/idx/mr/2408142
http://msp.org/idx/zbl/1205.58017
http://dx.doi.org/10.1007/978-3-7643-8604-7_10
http://dx.doi.org/10.1007/978-3-7643-8604-7_10
http://msp.org/idx/mr/2408143
http://msp.org/idx/zbl/1205.58018
http://dx.doi.org/10.1007/s10958-010-0081-0
http://dx.doi.org/10.1007/s10958-010-0081-0
https://doi.org/10.1007/s10958-010-0081-0
http://msp.org/idx/mr/2588088
http://dx.doi.org/10.1023/A:1024517714643
http://msp.org/idx/mr/1973092
http://msp.org/idx/zbl/1026.19007
http://dx.doi.org/10.2140/pjm.1999.189.117
http://dx.doi.org/10.2140/pjm.1999.189.117
http://msp.org/idx/mr/1687747
http://msp.org/idx/zbl/0940.58014
http://dx.doi.org/10.1007/978-1-4612-1774-9
http://msp.org/idx/mr/1724106
http://msp.org/idx/zbl/0913.22001
http://msp.org/idx/mr/584266
http://msp.org/idx/zbl/0433.46049
http://dx.doi.org/10.1007/s10977-005-1515-1
http://msp.org/idx/mr/2162901
http://msp.org/idx/zbl/1087.58013
http://dx.doi.org/10.2140/pjm.1981.96.193
http://msp.org/idx/mr/634772
http://msp.org/idx/zbl/0426.46057
http://dx.doi.org/10.1016/j.jfa.2005.12.027
http://msp.org/idx/mr/2227132
http://msp.org/idx/zbl/1105.58014
mailto:paulo.carrillo@math.univ-toulouse.fr
mailto:jm.lescure@uca.fr
http://msp.org


ANNALS OF K-THEORY
msp.org/akt

EDITORIAL BOARD

Paul Balmer University of California, Los Angeles, USA
balmer@math.ucla.edu

Guillermo Cortiñas Universidad de Buenos Aires and CONICET, Argentina
gcorti@dm.uba.ar

Hélène Esnault Freie Universität Berlin, Germany
liveesnault@math.fu-berlin.de

Eric Friedlander University of Southern California, USA
ericmf@usc.edu

Max Karoubi Institut de Mathématiques de Jussieu – Paris Rive Gauche, France
max.karoubi@imj-prg.fr

Huaxin Lin University of Oregon, USA
livehlin@uoregon.edu

Alexander Merkurjev University of California, Los Angeles, USA
merkurev@math.ucla.edu

Amnon Neeman Australian National University
amnon.neeman@anu.edu.au

Birgit Richter Universität Hamburg, Germany
birgit.richter@uni-hamburg.de

Jonathan Rosenberg (Managing Editor)
University of Maryland, USA
jmr@math.umd.edu

Marco Schlichting University of Warwick, UK
schlichting@warwick.ac.uk

Charles Weibel (Managing Editor)
Rutgers University, USA
weibel@math.rutgers.edu

Guoliang Yu Texas A&M University, USA
guoliangyu@math.tamu.edu

PRODUCTION

Silvio Levy (Scientific Editor)
production@msp.org

Annals of K-Theory is a journal of the K-Theory Foundation (ktheoryfoundation.org). The K-Theory Foundation
acknowledges the precious support of Foundation Compositio Mathematica, whose help has been instrumental in
the launch of the Annals of K-Theory.

See inside back cover or msp.org/akt for submission instructions.

The subscription price for 2018 is US $475/year for the electronic version, and $535/year (+$30, if shipping
outside the US) for print and electronic. Subscriptions, requests for back issues and changes of subscriber address
should be sent to MSP.

Annals of K-Theory (ISSN 2379-1681 electronic, 2379-1683 printed) at Mathematical Sciences Publishers, 798
Evans Hall #3840, c/o University of California, Berkeley, CA 94720-3840 is published continuously online. Peri-
odical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

AKT peer review and production are managed by EditFlow® from MSP.

PUBLISHED BY
mathematical sciences publishers

nonprofit scientific publishing
http://msp.org/

© 2018 Mathematical Sciences Publishers

http://msp.org/akt/
mailto:balmer@math.ucla.edu
mailto:gcorti@dm.uba.ar
mailto:ericmf@usc.edu
mailto:max.karoubi@imj-prg.fr
mailto:merkurev@math.ucla.edu
mailto:amnon.neeman@anu.edu.au
mailto:birgit.richter@uni-hamburg.de
mailto:jmr@math.umd.edu
mailto:schlichting@warwick.ac.uk
mailto:weibel@math.rutgers.edu
mailto:guoliangyu@math.tamu.edu
mailto:production@msp.org
http://www.ktheoryfoundation.org
http://www.ktheoryfoundation.org
http://www.compositio.nl/
http://dx.doi.org/10.2140/akt
http://msp.org/
http://msp.org/


ANNALS OF K-THEORY
2018 vol. 3 no. 3

369Triple linkage
Karim Johannes Becher

379A1-equivalence of zero cycles on surfaces, II
Qizheng Yin and Yi Zhu

395Topological K-theory of affine Hecke algebras
Maarten Solleveld

461On a localization formula of epsilon factors via microlocal geometry
Tomoyuki Abe and Deepam Patel

491Poincaré duality and Langlands duality for extended affine Weyl groups
Graham A. Niblo, Roger Plymen and Nick Wright

523Geometric obstructions for Fredholm boundary conditions for manifolds with corners
Paulo Carrillo Rouse and Jean-Marie Lescure

565Positive scalar curvature and low-degree group homology
Noé Bárcenas and Rudolf Zeidler

A
N
N
A
LS

O
F
K-TH

EO
RY

no.3
vol.3

2018

http://dx.doi.org/10.2140/akt.2018.3.369
http://dx.doi.org/10.2140/akt.2018.3.379
http://dx.doi.org/10.2140/akt.2018.3.395
http://dx.doi.org/10.2140/akt.2018.3.461
http://dx.doi.org/10.2140/akt.2018.3.491
http://dx.doi.org/10.2140/akt.2018.3.523
http://dx.doi.org/10.2140/akt.2018.3.565

	1. Introduction
	2. Melrose b-calculus for manifolds with corners via groupoids
	2A. Preliminaries on groupoids, K-theory C*-algebras and pseudodifferential calculus
	2B. Melrose b-calculus for manifolds with corners via the b-groupoid

	3. Boundary analytic and Fredholm indices for manifolds with corners: relations and Fredholm perturbation characterization
	3A. Analytic and boundary analytic index morphisms
	3B. Fredholm index morphism
	3C. Fredholm perturbation property

	4. The conormal homology of a manifold with corners
	4A. Definition of the homology
	4B. Examples
	4C. Long exact sequence in conormal homology
	4D. Torsion free in low codimensions
	4E. Künneth formula for conormal homology

	5. The computation of K*(Kb(X))
	5A. The first differential of the spectral sequence for K*(A)
	5B. The final computation for K*(Kb(X)) in terms of conormal homology

	6. Fredholm perturbation properties and Euler conormal characters
	Appendix: more on conormal homology
	Acknowledgements
	References
	
	

