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Positive scalar curvature and low-degree group homology

Noé Bárcenas and Rudolf Zeidler

Let 0 be a discrete group. Assuming rational injectivity of the Baum–Connes
assembly map, we provide new lower bounds on the rank of the positive scalar
curvature bordism group and the relative group in Stolz’ positive scalar curvature
sequence for B0. The lower bounds are formulated in terms of the part of degree
up to 2 in the group homology of 0 with coefficients in the C0-module generated
by finite order elements. Our results use and extend work of Botvinnik and
Gilkey which treated the case of finite groups. Further crucial ingredients are
a real counterpart to the delocalized equivariant Chern character and Matthey’s
work on explicitly inverting this Chern character in low homological degrees.

1. Introduction

There exists a natural comparison mapping between the positive scalar curvature
(psc) sequence of Stolz (top row) to the analytic surgery sequence of Higson and
Roe (bottom row):

�
spin
n (B0) Rspin

n (B0) Pspin
n−1(B0) �

spin
n−1(B0) Rspin

n−1(B0)

KOn(B0) KOn(C∗r0) SR
n−1(0) KOn−1(B0) KOn−1(C∗r0)

β

∂

α ρ β α

ν ∂ ν

(1.1)

This diagram was first established by Piazza and Schick [2014, Theorem 1.28]
for complex K-theory and n even. It was extended by Xie and Yu [2014, The-
orem B] and by the second-named author [2016b, Theorem 3.1.13] to cover all
dimensions and the real case. See also Zenobi [2017, Remark 6.2].

We briefly explain the constituents in the diagram above. Start with Stolz’ psc
sequence. The group �spin

n (B0) is the singular spin bordism group of the clas-
sifying space B0. That is, it consists of bordism classes of pairs (M, φ), where
M is a closed spin manifold of dimension n and φ : M→ B0 a continuous map.
The psc spin bordism group Pspin

n (B0) consists of bordism classes of (M, φ, g),
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where (M, φ) is as before and g ∈ R+(M) is a metric of psc. Here we require
bordisms to have metrics of positive scalar curvature with product structure near
the boundary. Stolz’ relative group Rspin

n+1(B0) consists of bordism classes of triples
(W, φ, g), where W is a compact spin manifold of dimension (n+1), φ :W→B0 a
continuous map, and g ∈R+(∂W ) a metric of psc on the boundary. The horizontal
arrows in Stolz’ sequence are the evident forgetful maps.

The (real version of the) analytic surgery sequence of Higson and Roe consists
of the real K-homology of B0, the topological K-theory of the reduced group C∗-
algebra of 0, and the analytic structure group of 0. We denote the latter by SR

∗
(0).

It is defined in such a way that it fits into a long exact sequence together with the
real Novikov assembly map ν :KO∗(B0)→KO∗(C∗r0). We also use their complex
counterparts, which we denote by K∗(B0), K∗(C∗r0), and SC

∗
(0).

The groups Pspin
n−1(B0) and Rspin

n (B0) classify psc metrics up to bordism and
concordance, respectively, on spin manifolds with fundamental group 0. For the
latter see [Rosenberg and Stolz 2001, Theorem 5.1]. Alas, at present there are no
tools known that allow a computation of these groups (not even in simple special
cases). However, the comparison (1.1) allows us to obtain lower bounds on these
groups using the index-theoretic information contained in the sequence of Higson
and Roe. To that end, it is important to know something about the size of the image
of the relative index map α : Rspin

n (B0)→ KOn(C∗r0) and the higher ρ-invariant
ρ : Pspin

n−1(B0)→ SR
n−1(0).

The first case where something can be said is the class of finite groups. Indeed,
let H be a finite group. Let R(H) denote its complex representation ring. Let
Rq

0(H) be the subgroup generated by those representations ρ of virtual dimension
0 such that its character χρ satisfies χρ(γ−1)= (−1)qχρ(γ ) for all γ ∈ H . Botvin-
nik and Gilkey [1995, Theorem 2.1] showed that the rank of the positive scalar
curvature bordism group Pspin

2q+4k−1(BH) is bounded below by the rank of Rq
0(H),

where k ≥ 1, q ∈ {0, 1} with 4k+ 2q ≥ 6. They used relative η-invariants. These
are numerical invariants that are related to the higher ρ-invariant via certain trace
maps; see for instance [Higson and Roe 2010]. In fact, Botvinnik and Gilkey’s
result [1995] implies that both

ρ : Pspin
n−1(BH)→ SR

n−1(H) and α : Rspin
n (BH)→ KOn(C∗r H)

are rationally surjective for n ≥ 6 (we explain this in Section 4). Moreover, recently
Weinberger and Yu [2015] and Xie and Yu [2017] gave lower bounds for a large
class of infinite groups based on the number of torsion elements with pairwise
different orders. We also refer to [Piazza and Schick 2007] for lower bounds on
the positive scalar bordism group based on the L2-ρ-invariant.

The results mentioned above only yield information for n even. Using product
formulas one can obtain further ad hoc examples of nontrivial relative indices and
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ρ-invariants by taking certain products; see [Zeidler 2016a, Corollary 6.10; Zenobi
2017, Corollary 5.24]. For instance, taking products with the circle allows one to
also produce examples for n odd.

In the main results of this paper, we give new systematic lower bounds for all
n ≥ 7 on the image of the relative index and the ρ-invariant based on the part of
degree up to 2 of a certain group homology. The result of Botvinnik and Gilkey
[1995] yields the 0-dimensional part. Then the idea is that degrees 1 and 2 can be
obtained from this by taking products with circles and oriented surfaces. We use
the Baum–Connes assembly map µ : K0

∗
(E0)→ K∗(C∗r0), the delocalized Chern

character of Baum and Connes [1988], and — most centrally — its explicit partial
inverse in degrees up to 2 due to Matthey [2004].

To state our results, we start with some preparations. Let 0 be a discrete group
and denote by 0fin the set of elements of finite order of 0. Let F0 be the set of
all finitely supported functions 0fin → C. Letting 0 act by conjugation on 0fin

turns F0 into a C0-module. The delocalized equivariant Chern character yields an
isomorphism

ch0 : K
0
p(E0)⊗C

∼=
−→

⊕
k∈Z

Hp+2k(0;F0). (1.2)

It was first introduced by Baum and Connes [1988] but we will instead work with
the “handicrafted Chern character” of Matthey [2004]. Matthey [2004] also con-
structed maps

β(t)p : Hp(0;F0)→ K0
p(E0)⊗C

for p ∈ {0, 1, 2} which are right-inverse to the delocalized Chern character. More-
over, he defined explicit maps

β(a)p : Hp(0;F0)→ Kp(C∗r0)

which satisfy β(a)p = (µ⊗ C) ◦ β
(t)
p for p ∈ {0, 1, 2}. They thereby describe the

Baum–Connes assembly map explicitly in low homological degrees.
To use these maps for our purposes, we need to adapt the above to real K-

homology. To that end, for q ∈ {0, 1}, let

Fq0 = { f ∈ F0 | f (γ )= (−1)q f (γ−1) ∀γ ∈ 0fin}.

Then F0 = F00⊕F10 as C0-modules. We can now state our main result and its
corollaries.

Theorem 1.3. For each p ∈ {0, 1, 2}, q ∈ {0, 1} and k ≥ 1 with 4k+ 2q ≥ 6, there
exists a linear map

β
(psc)
p,q,k : Hp(0;Fq0)→ Rspin

p+2q+4k(B0)⊗C
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such that the following diagram commutes:

Hp(0;Fq0) Hp(0;F0)

Rspin
p+2q+4k(B0)⊗C

KOp+2q(C∗r0)⊗C Kp(C∗r0)⊗C

β
(psc)
p,q,k

β
(a)
p

α⊗C

c⊗C

Here c : KO∗(C∗r0)→ K∗(C∗r0) is the complexification map from real to com-
plex K-theory. We implicitly use that complex K-theory is 2-periodic and real
K-theory is rationally 4-periodic.

Remark 1.4. We do not claim that our maps β(psc)
p,q,k are canonical (unlike the orig-

inal maps of Matthey). Indeed, their construction depends on choosing preimages
under the surjective map α⊗Q : Rspin

∗ (BH)⊗Q→KO∗(C∗r H)⊗Q for each finite
cyclic group H . However, after fixing these choices it is in principle possible to
trace through the construction to obtain explicit formulas for β(psc)

p,q,k similarly as in
Matthey’s work.

In any case, the existence of β(psc)
p,q,k implies lower bounds and surjectivity results:

Corollary 1.5. Let n ≥ 7. If the rational Baum–Connes assembly map µ⊗Q is
injective, then the rank of Rspin

n (B0) is at least the dimension of
H0(0;F00)⊕H2(0;F10), n ≡ 0 mod 4,
H1(0;F00), n ≡ 1 mod 4,
H0(0;F10)⊕H2(0;F00), n ≡ 2 mod 4,
H1(0;F10), n ≡ 3 mod 4.

Corollary 1.6. Let n ≥ 7. If the rational Baum–Connes assembly map µ⊗Q is
injective, then the rank of Pspin

n−1(B0) is at least the dimension of
H0(0;F0

00)⊕H2(0;F10), n ≡ 0 mod 4,
H1(0;F0

00), n ≡ 1 mod 4,
H0(0;F10)⊕H2(0;F0

00), n ≡ 2 mod 4,
H1(0;F10), n ≡ 3 mod 4,

where F0
0 = { f ∈ F0

| f (1)= 0}.

In comparison, Botvinnik and Gilkey [1995, Theorem 0.1] imply that for a finite
group H and n ≥ 6 even, the rank of Pspin

n−1(BH) is bounded below by the dimension
of H0(H ;F0

0 H) if n ≡ 0 mod 4 or H0(H ;F1 H) if n ≡ 2 mod 4.
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Example 1.7. We describe an explicit example illustrating the nontrivial content of
Corollaries 1.5 and 1.6. Let 6g denote the oriented surface of genus g≥ 1. Let n be
a positive integer. Consider the group 0=π1(6g)×Z/nZ. Then the Baum–Connes
assembly map for 0 is an isomorphism.1 So our results are applicable. Next
we explicitly compute the homology groups that appear in the corollaries for this
example. Start with the group homology of 0 with trivial coefficients C. The group
homology of Z/nZ is torsion in all positive degrees. Hence the Künneth theorem
implies that H∗(0;C) ∼= H∗(6g;C). Thus the homology of 0 is Hp(0;C) ∼= C

for p ∈ {0, 2}, H1(0;C) ∼= C2g, and zero in degrees greater than 2. To proceed,
observe that any finite order element of 0 is of the form (1, tk), where 1 denotes the
neutral element of π1(6g) and t the generator of Z/nZ. The action by conjugation
is trivial on these elements. We deduce that F0 is isomorphic to the trivial C0-
module Cn . By counting dimensions, we see that F00 ∼= Cbn/2c+1, F0

00
∼= Cbn/2c,

F10∼=Cdn/2e−1 as trivial C0-modules. Together with the computation of H∗(0;C),
we deduce

H0(0;F00)∼= Cbn/2c+1, H0(0;F0
00)
∼= Cbn/2c, H0(0;F10)∼= Cdn/2e−1,

H1(0;F00)∼= C2g(bn/2c+1), H1(0;F0
00)
∼= C2gbn/2c, H1(0;F10)∼= C2g(dn/2e−1),

H2(0;F00)∼= Cbn/2c+1, H2(0;F0
00)
∼= Cbn/2c, H2(0;F10)∼= Cdn/2e−1.

This shows that for n ≥ 3 all homology groups which appear in the conclusion of
Corollaries 1.5 and 1.6 are nontrivial.

Corollary 1.8. Let n ≥ 7. Let the rational homological dimension of 0 be at
most 2. Then, if the rational Baum–Connes assembly map µ⊗Q is surjective, the
rational relative index map

α⊗Q : Rspin
n (B0)⊗Q � KOn(C∗r0)⊗Q

is surjective.
If µ⊗Q is an isomorphism, then the rational higher ρ-invariant

ρ⊗Q : Pspin
n−1(B0)⊗Q � SR

n−1(0)⊗Q

is also surjective.

2. The delocalized equivariant Pontryagin character

In this section, we exhibit the delocalized equivariant Pontryagin character, which
is the real counterpart to the delocalized equivariant Chern character. It is obtained
from the delocalized Chern character by precomposing it with complexification.

1This follows readily from [Higson and Kasparov 2001] because π1(6g)×Z/nZ is a-T-menable.
However, we should note that the case of surface groups goes back to the original article of Baum
and Connes [2000].
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Start with some preparations. The rationalized equivariant real K-homology
KO•
∗
⊗Q is 4-periodic. Indeed, it is a module over

KO∗(pt)⊗Q∼=Q[α, β, β−1
]/〈α2

− 4β〉

with α ∈ KO4(pt), β ∈ KO8(pt), and module multiplication with α/2 implements
the 4-periodicity. We will implicitly use this 4-periodicity whenever convenient.

The complexification c : KO∗(pt)→ K∗(pt) ∼= Z[ξ, ξ−1
] satisfies c(α) = 2ξ 2

and c(β)= ξ 4, where ξ ∈ K2(pt).
Complex K-homology rationally decomposes into two copies of real K-homology:

Proposition 2.1. Complexification yields an isomorphism of proper equivariant
homology theories:

c := c+ξ−1 c : (KO•
∗
⊕KO•

∗+2)⊗Q
∼=
−→ K•

∗
⊗Q. (2.2)

The decomposition (2.2) can be used to decompose the equivariant delocalized
Chern character and thereby obtain the delocalized Pontryagin character:

Proposition 2.3. The equivariant delocalized Chern character composed with com-
plexification yields an isomorphism

ph0 := ch0 ◦ c : KO0
p(E0)⊗C

∼=
−→

⊕
k∈Z

Hp+4k(0;F00)⊕Hp+2+4k(0;F10).

Because Matthey’s maps are right-inverse to the delocalized Chern character,
Proposition 2.3 immediately implies that they decompose as follows:

Corollary 2.4. Using the identification (2.2), Matthey’s inverse maps [2004]

β(t)p : Hp(0;F0)→ K0
p(E0)⊗C, p ∈ {0, 1, 2},

restrict to maps

β(t)p,q : Hp(0;Fq0)→ KO0
p+2q(E0)⊗C, p ∈ {0, 1, 2}, q ∈ {0, 1}.

Analogously to the complex case we write β(a)p,q := µ⊗C ◦ β
(t)
p,q . By abuse of

notation µ : KO0
p+2q(E0)→ KOp+2q(C∗r0) denotes the real version of the Baum–

Connes assembly map here.
The proofs of Propositions 2.1 and 2.3 can essentially be reduced to the case of

finite groups. Thus we need some facts about equivariant K-homology of a finite
group and to fix some notation. For more details on the following we refer for
example to [Bruner and Greenlees 2010, Chapter 2].

Let R(H) denote the complex representation ring and RO(H) its real counter-
part. Let c : RO(H)→ R(H) be complexification and r : R(H)→ RO(H) be
realification. Let τ : R(H)→ R(H) be the map induced by complex conjugation.
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Then c ◦ r= 1+ τ and r ◦ c= 2. Let R(H)/(1+ τ) be a shorthand for the quotient
group R(H)/(1+ τ)(R(H)). Then the equivariant K-homology of a point satisfies

KOH
i (pt)⊗Q∼=


RO(H)⊗Q, i ≡ 0 mod 4,
R(H)/(1+ τ)⊗Q, i ≡ 2 mod 4,
0, otherwise,

(2.5)

KH
i (pt)⊗Q∼=

{
R(H)⊗Q, i ≡ 0 mod 2,
0, otherwise.

(2.6)

Complexification c : KOH
i (pt)→ KH

i (pt) is given by complexification of represen-
tations for i ≡ 0 mod 4, and by the map 1− τ : R(H)/(1+ τ)→ R(H) for i ≡ 2
mod 4.

We are now ready to prove the propositions of this section.

Proof of Proposition 2.1. To show that c is an isomorphism of proper equivariant
homology theories, it suffices to show that

c= c+ξ−1 c : (KOH
i (pt)⊕KOH

i+2(pt))⊗Q→ KH
i (pt)⊗Q (2.7)

is an isomorphism for every finite group H and every i ∈ Z. The map

(KO•i ⊕KO•i+2)⊗Q→ (KO•i+2⊕KO•i+4)⊗Q, x ⊕ y 7→ y⊕ (α/2) · x

defines a 2-periodicity on the left-hand side which corresponds to Bott periodicity
after applying c = c+ξ−1 c. Hence it suffices to check (2.7) for i ∈ {0, 1}. For
i = 1, both sides of (2.7) are zero by (2.5) and (2.6). It remains to check i = 0. In
this case c corresponds to the map

(RO(H)⊕R(H)/(1+ τ))⊗Q→ R(H)⊗Q, x ⊕[y] 7→ c(x)+ y− τ(y).

This is an isomorphism because the map

R(H)⊗Q→ (RO(H)⊕R(H)/(1+ τ))⊗Q, z 7→ 1
2(r(z)⊕[z])

is an explicit inverse. �

Proof of Proposition 2.3. Start with the (nonequivariant) Pontryagin character iso-
morphism

ph= ch ◦ c : KOp(X)⊗Q
∼=
−→

⊕
k∈Z

Hp+4k(X;Q). (2.8)

It is, by definition, the Chern character applied after complexification. In particular,
the proposition holds if 0 is torsion-free.

Next we deal with the case where 0 = H = Z/nZ is a finite cyclic group. Then
the Chern character yields an isomorphism chH : R(H)= KH

0 (pt)→ H0(H ;FH)
as all the other homology groups vanish. We have H0(H ;FH) = FH = CH and
chH associates to a representation [ρ] ∈ R(H) its character χρ . As the character of
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any real representation is symmetric and the character of an element in the image
of (1− τ) : R(H)→ R(H) is antisymmetric, we conclude that

ch0
(
c(KOH

2q(pt))
)
= H0(H ;Fq H). (2.9)

Next, let G be some group and consider 0 :=G×Z/nZ and y×z ∈KO0
p+2q(E0)

with y ∈ KOp(BG)∼= KOG
p (EG) and z ∈ KOZ/nZ

2q (pt). There is a natural isomor-
phism

KG×Z/nZ
p (EG)∼= KG

p (EG)⊗R(Z/nZ)∼= KG
p (EG)⊗KZ/nZ

0 (pt)

and a commutative diagram

Kp(BG)⊗KZ/nZ

0 (pt)⊗C KG×Z/nZ
p (EG)⊗C

⊕
k∈Z Hp+2k(G;C)⊗H0(Z/nZ;FZ/nZ)

⊕
k∈Z Hp+2k(0;F0)

×

ch⊗chZ/nZ ch0

×

In view of (2.2), (2.8), and (2.9) this diagram restricts to

KOp(BG)⊗KOZ/nZ

2q (pt)⊗C KOG×Z/nZ

p+2q (EG)⊗C

⊕
k∈Z Hp+4k(G;C)⊗H0(Z/nZ;FqZ/nZ)

⊕
k∈Z Hp+4k(0;Fq0)

×

ph⊗chZ/nZ◦c ch0◦c

×

We conclude
ch0(c(y× z)) ∈

⊕
k∈Z

Hp+4k(0;Fq0). (2.10)

Now let 0 be general. The equivariant K-homology K0
p(E0) is generated by ele-

ments of the form ϕ∗(y×z)with G⊆0 some subgroup, y ∈Kp(BG), z ∈ KZ/nZ

0 (pt)
and ϕ : G×Z/nZ→ 0 some group homomorphism. This follows from [Matthey
2004, Theorem 1.3 and Section 7]. Using (2.2), this implies that KO0

i (E0) is
generated by elements of the form ϕ∗(y× z) with y ∈ KOp(BG), z ∈ KOZ/nZ

2q (pt)
such that i = p+ 2q . Thus (2.10) implies

(ch0 ◦ c)(KO0
p(E0))⊆

⊕
k∈Z

Hp+4k(0;F00)⊕Hp+2+4k(0;F10). (2.11)

Now the proposition follows by combining (2.2) and (2.11) and using the fact that
ch0 is an isomorphism. �

3. Matthey’s maps

In this section, we exhibit the real versions of Matthey’s maps from Corollary 2.4
more explicitly. We start with a brief summary of the material in [Matthey 2004]
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that leads to his definition of

β(t)p : Hp(0;F(0))→ K0
p(E0)⊗C, p ∈ {0, 1, 2}.

Let G(0)
:= 1, G(1)

:= Z and G(2),g
:= 0g := π1(6g), where 6g is the oriented

surface of genus g ≥ 1. To simplify the notation, we let G(2) stand for G(2),g for
some g. Moreover, let G(p)

n := G(p)
×Z/nZ.

There is an isomorphism Hp(0;F0)∼=
⊕

C Hp(BZC ;C). Here the direct sum
runs over all conjugacy classes of finite order elements and ZC denotes the central-
izer of some element in the conjugacy class C . An element x ∈Hp(0; F0) is called
homogeneous if it is contained in one of the direct summands. For each p ∈ {0, 1, 2}
and n ≥ 0, there is a certain fundamental class [G(p)

n ] ∈ Hp(G
(p)
n ;FG(p)

n ). These
have the property that for p ∈ {0, 1, 2} any homogeneous element x ∈ Hp(0;F0)
can be written as x = φ∗[G

(p)
n ] for some G(p)

n and some group homomorphism
φ : G(p)

n → 0.
Moreover, there is a certain K-homological fundamental class

[G(p)
n ]K ∈ KG(p)

n
p (EG(p)

n )⊗C.

Setting φ∗[G
(p)
n ] 7→ φ∗[G

(p)
n ]K defines a map Hp(0; F(0))→ K0

p(E0)⊗C that is
right-inverse to the equivariant Chern character. This is Matthey’s definition of β(t)p .

To describe how this map decomposes in the real case, we need to recall the
definition of the K-homological fundamental class [G(p)

n ]K. We start with the fun-
damental classes [G(p)

]K ∈ Kp(EG(p)), which are defined as

[G(0)
]K := 1 ∈ K0(EG(0))= K0(pt),

[G(1)
]K := [S1

]K ∈ K1(S1)∼= KZ
1 (EZ),

[G(2)
]K := [6g]K ∈ K2(6g)∼= K0g

2 (E0g).

That is, [G(p)
]K is the K-homological fundamental class of the point, the circle or

an oriented surface of positive genus. Observe that we may take EG(p)
n = EG(p)

by letting Z/nZ act trivially. Then we set

[G(p)
n ]K :=

n−1∑
l=0

(
[G(p)

]K×[ω
l
n]
)
⊗ω−l

n ∈ KG(p)
n

p (EG(p)
n )⊗C,

whereωn :=e2π i/n is the primitive n-th root of unity and [ωl
n]∈R(Z/nZ)=KZ/nZ

0 (pt)
the corresponding representation.

To obtain the real counterparts to this, we first observe how [ωl
n] ∈ KZ/nZ

0 (pt)
decomposes under the isomorphism from Proposition 2.1, (2.5) and (2.6). Indeed,
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KZ/nZ

0 (pt)⊗Q∼=
(
KOZ/nZ

0 (pt)⊕KOZ/nZ

2 (pt)
)
⊗Q

∼= (RO(Z/nZ)⊕R(Z/nZ)/(1+ τ))⊗Q.

Given an element x ∈ R(Z/nZ)⊗Q, we write <x := r(x)/2 ∈RO(Z/nZ)⊗Q and
=x ∈ R(Z/nZ)/(1+ τ)= KOZ/nZ

2 (pt) for the class represented by x/2. Then we
have x = c(<x +=x). We define

[G(p)
n ]

0
KO :=

n−1∑
l=0

([G(p)
]KO×<[ω

l
n])⊗ω

−l
n ∈ KOG(p)

n
p (EG(p)

n )⊗C,

[G(p)
n ]

1
KO :=

n−1∑
l=0

([G(p)
]KO×=[ω

l
n])⊗ω

−l
n ∈ KOG(p)

n
p+2(EG(p)

n )⊗C.

(3.1)

Here [G(p)
]KO denotes the KO-fundamental class of the point, the circle or a sur-

face, respectively. We find that [G(p)
n ]K = [G

(p)
n ]

0
KO⊕[G

(p)
n ]

1
KO under the isomor-

phism from Proposition 2.1. The homological fundamental class also decomposes
as [G(p)

n ] = [G
(p)
n ]

0
⊕[G(p)

n ]
1 according to

Hp(G(p)
n ;FG(p)

n )= Hp(G(p)
n ;F

0G(p)
n )⊕Hp(G(p)

n ;F
1G(p)

n ).

From this discussion we deduce:

Proposition 3.2. The real versions of Matthey’s maps from Corollary 2.4 are given
by

β(t)p,q : Hp(0;Fq(0))→ KO0
p+2q(E0)⊗C, φ∗[G(p)

n ]
q
7→ φ∗[G(p)

n ]
q
KO.

Remark 3.3. The element [G(p)
n ]

0
KO can be rewritten as

[G(p)
n ]

0
KO =

bn/2c∑
l=0

([G(p)
]KO×<[ω

l
n])⊗ 2 cos(2πl/n).

A similar equation involving the sine function holds for [G(p)
n ]

1
KO. Thus it would be

possible to restrict to real coefficients. However, we shall not use this any further,
and continue to keep complex coefficients everywhere.

4. Secondary index classes of psc metrics for finite groups

The proposition below is essentially due to Botvinnik and Gilkey [1995], albeit
formulated in a slightly different way. In the proof, we briefly explain for the
convenience of the reader how its statement can be deduced from the result in the
literature:

Proposition 4.1. Suppose that H is a finite group and n ≥ 6. Then the ρ-invariant
ρ : Pspin

n−1(BH)→ SR
n−1(H) is rationally surjective.
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Proof. We only need to consider n to be even because the analytic structure group
of a finite group rationally vanishes in odd degrees. Let n = 4k + 2q with k ≥ 1
and q ∈ {0, 1}. Each (virtual) unitary representation π of H induces a trace func-
tional trπ : K0(CH) → Z. If π is of virtual dimension 0, then trπ extends to
a functional ηπ : SC

1 (H)→ R on the complex version of the analytic structure
group; see [Higson and Roe 2010]. By the construction of ηπ , the composition
ηπ ◦ ρ : P

spin
4k+2q−1(BH)→ R recovers the relative η-invariant used in [Botvinnik

and Gilkey 1995].
Since finite groups satisfy the Baum–Connes conjecture, the Higson–Roe se-

quence rationally becomes a short exact sequence:

0→Q→ K0(CH)⊗Q→ SC
1 (H)⊗Q→ 0. (4.2)

Let R0(H) denote the space of virtual unitary representations of dimension 0. The
pairing R(H)⊗Q×K0(CH)⊗Q→ Q, (π, x) 7→ trπ (x) is nondegenerate. We
conclude from this and (4.2) that the pairing

R0(H)⊗R×SC
1 (H)⊗R→ R, (π, x) 7→ ηπ (x) (4.3)

is also nondegenerate. The complex analytic structure group admits a decomposi-
tion SC

1 (H)⊗Q∼= (SR
1 (H)⊕ SR

3 (H))⊗Q analogous to Proposition 2.1. Applying
this to (4.3) yields a nondegenerate pairing

Rq
0(H)⊗R×SR

2q−1(H)⊗R→ R, (π, x) 7→ ηπ (x) (4.4)

for each q ∈ {0, 1}.
Finally, let 4k+2q ≥ 6. Then [Botvinnik and Gilkey 1995, Theorem 2.1] implies

that the composition

Pspin
4k+2q−1(BH)⊗R

ρ⊗R
−−−→ SR

2q−1(H)⊗R

⊕
i ηπi
−−−−→ Rdim Rq

0 (H)

is surjective, where (πi )i is a basis of Rq
0(H)⊗R. Since the pairing (4.4) is nonde-

generate, the latter map in this composition is an isomorphism. Thus ρ⊗R must
be surjective as well. �

Corollary 4.5. Suppose that H is a finite group and n ≥ 6. Then the relative index
map α : Rspin

n (BH)→ KOn(C∗r H) is rationally surjective.

Proof. Again we only need to consider n to be even and let n = 4k + 2q ≥ 6.
For a finite group H , the groups �spin

l (BH) and KOl(BH) are torsion for l 6≡ 0
mod 4. Moreover, β⊗Q :�

spin
4k (BH)⊗Q→ KO0(BH)⊗Q is surjective because

KO0(BH)⊗Q∼=KO0(pt)⊗Q is generated by the class represented by any product
of Kummer surfaces. By Proposition 4.1, the ρ-invariant

ρ⊗Q : Pspin
4k+2q−1(BH)⊗Q→ SR

2q−1(H)⊗Q
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is also surjective. Thus we have a diagram of exact sequences

�
spin
4k+2q(BH)⊗Q Rspin

4k+2q(BH)⊗Q Pspin
4k+2q−1(BH)⊗Q 0

KO2q(BH)⊗Q KO2q(RH)⊗Q SR
2q−1(H)⊗Q 0

β⊗Q α⊗Q ρ⊗Q

The four lemma implies that α⊗Q must be surjective as well. �

5. Proof of main results

Our main result, Theorem 1.3, follows immediately from Proposition 3.2 and the
following lemma.

Lemma 5.1. For each n ∈ N, p ∈ {0, 1, 2}, q ∈ {0, 1} and k ≥ 1 with 4k+ 2q ≥ 6,
there exists [G(p)

n ]
q
psc ∈ Rspin

p+2q+4k(BG(p)
n )⊗C with

α([G(p)
n ]

q
psc)= µ([G

(p)
n ]

q
KO) ∈ KO2q(C∗r G(p)

n )⊗C.

Proof. Let

xq
n,l :=

{
<[ωl

n], q = 0
=[ωl

n], q = 1
∈ KOZ/nZ

2q (pt).

By Corollary 4.5, we can choose an element yq,k
n,l ∈ Rspin

2q+4k(BZ/nZ)⊗Q such that
α(yq,k

n,l )= µ(x
q
n,l) ∈ KO2q(C∗r (Z/nZ))⊗Q. Now let [G(0)

]� := [pt] ∈�spin
0 (pt),

[G(1)]� := [S1] ∈ �
spin
1 (BZ) and [G(2),g

]� := [6g] ∈ �
spin
2 (B0g) ⊗ Q. Note

that for the latter we need to choose one from the 22g different spin structures on
the oriented surface. However, rationally the element [6g] is independent of this
choice. Taking direct products yields a map �spin

l (X)⊗Rspin
m (Y )

×
−→ Rspin

l+m(X × Y ).
Using this, we let

[G(p)
n ]

q
psc :=

n−1∑
l=0

([G(p)
]�× yq,k

n,l )⊗ω
−l
n ∈ Rspin

p+2q+4k(BG(p)
n )⊗C. �

Proof of Theorem 1.3. We have the diagram

Hp(0;Fq0) Hp(0;F0)

Rspin
p+2q+4k(B0)⊗C

KO0
p+2q(E0)⊗C KOp+2q(C∗r0)⊗C Kp(C∗r0)⊗C

β
(psc)
p,q,k

β
(t)
p,q

β
(a)
p

α⊗C

µ⊗C c⊗C
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where by construction of β(t)p,q the outer paths commute. To prove the existence of
β
(psc)
p,q,k , it suffices to show that the image of µ⊗C ◦β

(t)
p,q is contained in the image

of α⊗C. Proposition 3.2 implies that the image of β(t)p,q is generated by elements
of the form φ∗[G

(p)
n ]

q
KO, where [G(p)

n ]
q
KO is defined in (3.1) and φ : G(p)

n → 0 is a
group homomorphism. Thus it suffices to show that the elements µ(φ∗[G

(p)
n ]

q
KO)

are contained in the image of α⊗C. Indeed, Lemma 5.1 states that µ([G(p)
n ]

q
KO)

admits a lift to Rspin
p+2q+4k(BG(p)

n ). Therefore, by functoriality, we conclude that
µ(φ∗[G

(p)
n ]

q
KO) admits a lift to Rspin

p+2q+4k(B0). �

Proof of Corollary 1.5. Ifµ⊗Q is injective, then β(a)p =µ⊗C◦β
(t)
p maps Hp(0; F0)

injectively into Kp(C∗r0)⊗C. Thus the diagram in Theorem 1.3 implies that for
fixed n the following map must be injective:∑

p+2q+4k=n

β
(psc)
p,q,k :

⊕
p+2q∈n+4Z

Hp(0;Fq0)→ Rspin
n (B0)⊗C. (5.2)

Here p, q , k range over {0, 1, 2}, {0, 1}, Z, respectively. Unpacking this yields the
table in the statement of Corollary 1.5. �

Proof of Corollary 1.6. The image in K0
p(E0)⊗C of the restriction of β(t)p to

Hp(0; F0
00⊕F10) intersects trivially with the image of Kp(B0)⊗C ↪→K0

p(E0)⊗C.
This follows from the decomposition of the handicrafted Chern character based on
the Shapiro isomorphism; see [Matthey 2004, Theorem 1.4]. Thus the injectivity
of (5.2) together with a diagram chase involving (1.1) implies that the following
map must be injective as well:∑

p+2q+4k=n

∂ ◦β
(psc)
p,q,k :

⊕
p+2q∈n+4Z

Hp(0;F
q
00)→ Pspin

n−1(B0)⊗C.

Here we use the convention F1
00 := F10. �

Proof of Corollary 1.8. If the rational homological dimension of 0 is at most 2,
then the map ∑

p+2q∈n+4Z

β(t)p,q :
⊕

p+2q∈n+4Z

Hp(0;F0q)→ KO0
n (E0)⊗C

is the inverse to the Chern character. In particular, it is surjective. If the rational
Baum–Connes assembly map µ⊗Q is also surjective, then this implies that the
following is surjective too:∑
p+2q∈n+4Z

β(a)p,q =µ⊗C ◦
∑

p+2q∈n+4Z

β(t)p,q :
⊕

p+2q∈n+4Z

Hp(0;F0q)→KOn(C∗r0)⊗C.

Theorem 1.3 implies that for n ≥ 7, the image of β(a)p,q is contained in the image
of α⊗C, which proves surjectivity of α⊗C and thus of α⊗Q.
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If µ⊗Q is injective, then ν ⊗Q is injective and by exactness the boundary
map ∂ ⊗Q : KOn(C∗r0)⊗Q→ SR

n−1(0)⊗Q is surjective. Hence the surjectivity
statement for ρ⊗Q if µ⊗Q is an isomorphism follows from surjectivity of α⊗Q

and commutativity of the diagram (1.1). �
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