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Renzo Cavalieri

We construct a two-level weighted topological quantum field theory whose struc-
ture coefficients are equivariant intersection numbers on moduli spaces of ad-
missible covers. Such a structure is parallel (and strictly related) to the local
Gromov–Witten theory of curves of Bryan and Pandharipande. We compute
explicitly the theory using techniques of localization on moduli spaces of ad-
missible covers of a parametrized P1. The Frobenius algebras we obtain are
one-parameter deformations of the class algebra of the symmetric group Sd . In
certain special cases we are able to produce explicit closed formulas for such
deformations in terms of the representation theory of Sd .

Introduction

We study a large class of (equivariant) intersection numbers on moduli spaces of
admissible covers. For a smooth algebraic curve X , ramified covers of X of a given
degree by smooth curves of a given genus are parametrized by moduli spaces called
Hurwitz schemes. A smooth compactification of a Hurwitz scheme can be obtained
by allowing suitable degenerations, called admissible covers.

Moduli spaces of admissible covers were introduced in [Harris and Mumford
1982]. Intersection theory on these spaces was for a long time hard and mysterious,
mostly because they are in general not normal, even if the normalization is always
smooth. It was only recently that Abramovich, Corti and Vistoli [Abramovich et al.
2003] exhibited this normalization as the stack of balanced stable maps of degree 0
from twisted curves to the classifying stack BSd . This way they attained both the
smoothness of the stack and a nice moduli-theoretic interpretation of it. We abuse
terminology and refer to Abramovich–Corti–Vistoli spaces as admissible covers.

At about the same time, Ionel [2002] developed a parallel theory in the symplec-
tic category and used push-pull techniques on admissible covers to produce new
relations in the tautological ring of Mg,n . (See also [Ionel 2005].)

MSC2000: 14N35.
Keywords: TQFT, topological quantum field theory, admissible covers, Gromov–Witten Invariants.
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In [Graber and Vakil 2003b], admissible cover loci within the boundary of mod-
uli spaces of stable maps play a key role in establishing the result that the degree
3g − 3 part of the tautological ring of Mg has dimension 1, providing further
evidence for a conjecture by Faber, stating that R(Mg) is a Gorenstein algebra
with socle in degree 3g − 3.

Bryan, Graber and Pandharipande have shown in [Bryan et al. 2005] that the
orbifold Gromov–Witten potential of a Gorenstein orbifold can be computed in
terms of intersection theory on moduli spaces of admissible covers. With a subtle
use of WDVV techniques, they are able to explicitly compute the Gromov–Witten
potential for the orbifold [C2/Z3]. Such a computation provides evidence for the
crepant resolution conjecture [Bryan and Graber ≥ 2008].

We give a few basic definitions and a working description of moduli spaces of
admissible covers in Section 1.

For all choices of:

• an r -pointed curve (X, p1, . . . , pn);

• a rank two vector bundle N = L1 ⊕ L2 on X , endowed with a natural C∗
×C∗

action (page 46);

• a vector of partitions η = (η1, . . . , ηn) of a fixed integer d ,

we describe the invariants

Ah
d(N ) :=

∫
Adm(h

d
→X,(η1 p1,...,ηr pr ))

eeq(−R•π∗ f ∗(L1 ⊕ L2)).

The motivation for studying these invariants is twofold. They are natural and
interesting intersection numbers on their own, giving rise to a beautiful structure.
Secondly, in the context of Gromov–Witten theory, invariants of this form are
known as “local” invariants: roughly speaking, they represent the contribution to
the Gromov–Witten invariants of a threefold given by rigid curves.

Theorem 3.1. (See page 48.) The invariants Ah
d(N ) can be organized to be the

structure coefficients of a 2−level, semisimple, weighted topological quantum field
theory (TQFT).

Section 2 is dedicated to presenting these structures to the unfamiliar reader,
while in Section 3 the specific TQFT U is constructed.

The generators for the TQFT are explicitly computed in Section 4. The tech-
niques involved are basic dimension counting, reduction to classical intersection
theory on moduli spaces of curves, and Atiyah–Bott localization on moduli spaces
of admissible covers of a parametrized P1.

An interesting feature of this theory is that the degree 0 part is constructed from
Hurwitz numbers. The embedded (see page 44) Frobenius algebras induced on
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the Hilbert space by U are one-parameter deformations of the class algebra of the
symmetric group, whose TQFT-theoretic description in terms of Hurwitz numbers
was studied in the 1990s in [Dijkgraaf and Witten 1990] and [Freed and Quinn
1993]. An explicit description of such deformations is in general quite complicated.
By specializing to the antidiagonal action of C∗ inside C∗

× C∗, it is possible to
diagonalize the theory: closed formulas for our invariants and for the deformation
are described in Section 5 in terms of the representation theory of the symmetric
group Sd (Theorem 5.2).

This work is closely connected to and follows recent work of Jim Bryan and
Rahul Pandharipande [2004; 2005], describing the local Gromov–Witten theory of
curves.

There, analogous intersection numbers on moduli spaces of (relative) stable
maps are organized in a TQFT that we denote by BP. Theorem 4.1 shows that the
two theories coincide in level (0, 0). In all other levels, U is a normalization of
BP via appropriate powers of a universal generating function factor, which should
be understood as the contribution of maps containing contracting components to
the Gromov–Witten invariants.

This result, the most technical in this paper, is established by computing the
genus 0, one-pointed invariants via localization, together with the use of some
beautiful Hodge integral computations from [Faber and Pandharipande 2000; Eke-
dahl et al. 2001; Graber and Vakil 2003a]. The explicit statement is this:

Theorem 4.3 (See page 56.). The coefficients for the one-pointed invariants of U

in level (0,−1) are given by the generating functions

Ad(0|0,−1)η = (−1)d−`(η)

(
2 sin u

2

)d

s`(η)1 z(η)
∏

2 sin ηi u
2

,

Notation. Here and throughout the paper `(η) denotes the length r of a partition
η = (η1, . . . , ηr ).

A direct check in the one-pointed case, together with the semisimplicity of both
theories, yields:

Corollary 0.1. The coefficients of the theories U and BP are related by

Ad(g | k1, k2)η = (d !)k1+k2sdk2
1 sdk1

2 BPd(g, | k1, k2)ηBPd(0 | 0,−1)k1+k2
(1,...,1).

This close proximity to Gromov–Witten theory reinforces our interest in moduli
spaces of admissible covers, as it anticipates the possibility of a fertile exchange
of information between the two contexts. In particular, embedded in the theory
U◦ (the circle superscript indicates we are restricting our attention to connected
covers) we rediscover the classical result:
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Aspinwall–Morrison formula.∫
[M0,0(P1,d)]

R1π∗ f ∗(O(−1)⊕ O(−1))=

(
A◦,0

d (0 | −1,−1)
u2d−2

)
|u=0

=
1
d3

The technique of Atiyah–Bott localization suits very well the spaces of admis-
sible covers of a parametrized P1; the fact that these spaces are smooth (as DM
stacks) requires no need for a virtual fundamental class in order to do intersection
theory on them. The modularity of the boundary-fixed loci naturally produces
topological recursions that live completely within the realm of admissible covers.

1. Admissible covers

Moduli spaces of admissible covers are a “natural” compactification of the Hur-
witz schemes, parametrizing ramified covers of smooth Riemann Surfaces. The
fundamental idea is that, in order to understand limit covers, we allow the base
curve to degenerate together with the cover. Branch points are not allowed to
come together; as two or more branch points tend to collide, a new component of
the base curve sprouts from the point of collision, and the points transfer onto it.
Similarly, upstairs the cover splits into a nodal cover.

More formally: let (X, p1, . . . , pr ) be an r -pointed nodal curve of genus g.

Definition 1.1. An admissible cover π : E → X of degree d is a finite morphism
satisfying the following:

(1) E is a nodal curve.

(2) Every node of E maps to a node of X .

(3) The restriction of π : E → X to X \(p1, . . . , pr ) is étale of constant degree d.

(4) Nodes can be smoothed. This means that given an admissible cover π : E → X ,
and a node of E , we can find a family of admissible covers π ′

: E ′
→ X ′ such

that π : E → X is the central fiber of the family, and there are local analytic
coordinates and a positive integer n ≤ d such that X ′, E ′ and π ′ are described
by

E : e1e2 = a, X : x1x2 = an, π : x1 = en
1, x2 = en

2 .

We recall here the notation we use in this paper, and refer the reader to [Cavalieri
2005] for a more extensive discussion.

Let (X, p1, . . . , pr ) be as before, and let η1, . . . , ηr be partitions of the fixed
integer d . We denote by

Adm(h
d

→ X, (µ1 p1, . . . , µr pr ))

the stack of possibly disconnected, degree d admissible covers of the curve X by
curves of genus h, such that
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• the ramification profile over the base point pi is described by the partition ηi ;

• all other ramification is simple (and is not marked).

The following variations are also used:

Connected admissible covers: We add the superscript ◦ to restrict our attention to
admissible covers by connected curves. Admissible covers of a genus g curve: We
denote by

Adm(h
d

→ g)

the stack of admissible covers of a curve of genus g. This means that also the base
curve is allowed to vary in families.

Admissible covers of a parametrized P1: When we intend to fix a parametrization
on the base P1, we write

Adm(h
d

→ P1).

Moduli spaces of admissible covers admit forgetful maps to (quotients of) con-
figuration spaces of points on the base curve (or to Mg,n in the case of admissible
covers of a genus g curve), recording the information about branch points that are
free to move. Tautological ψ classes on admissible covers are defined by pulling
back the ψ classes downstairs via these maps.

There is also a natural map from a moduli space of admissible covers of genus h
to the corresponding moduli space of curves Mh , obtained by forgetting the cover
map and only remembering the source curve. Tautological λ classes on admissible
covers are defined by pulling back λ classes (the Chern classes of the Hodge bundle
on the moduli space of stable curves) via these maps.

Admissible covers of a nodal curve. Admissible covers of a nodal curve can be
described combinatorially in terms of admissible covers of the irreducible compo-
nents of the curve. This is extremely useful because it opens the way to the use
of degeneration techniques and induction. Crucial to this work are the following
identities [Li 2002] taking place in the Chow ring with rational coefficients.

Reducible nodal curve: Let

X = X1
⋃

x1=x2

X2

be a nodal curve of genus g, obtained by attaching at a point two irreducible curves
of genus g1 and g2. Then

[Adm(h
d

→ X)]=
∑
η,h1,h2

z(η)[Adm(h1
d

→ X1, (η))]×[Adm(h2
d

→ X2, (η))], (1-1)
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where η = ((η1)m1, . . . , (ηk)mk ) runs over all partitions of d, the numbers h1 and
h2 satisfy h1 + h2 + `(η)− 1 = h, and we have defined the combinatorial factor

z(η) :=

∏
mi !(η

i )mi . (1-2)

In particular, z(η) is the order of the centralizer in Sd of any group element in the
conjugacy class of η.

Note. If we are dealing with admissible cover spaces with also a prescribed vector
of ramification conditionsµ, analogous formulas hold; theµi need to be distributed
on the two twigs X1 and X2 in all possible ways.

Irreducible nodal curve: Let

X = X ′/{x1 = x2}

be a nodal curve of genus g, obtained by gluing two distinct points of an irreducible
curve X ′ of genus g−1. As an element in the Chow ring with rational coefficients,
we can then express

[Adm(h
d

→ X)] =

∑
η

z(η)[Adm(h′ d
→ X ′, (η, η))], (1-3)

where the sum is over all partitions η of d, and h′ is determined by

h′
+ `(η)= h.

2. Topological quantum field theories

As an excellent and elementary reference for two-dimensional topological quantum
field theories in mathematics we mention [Kock 2004].

Definition 2.1. A (1+1)-dimensional topological quantum field theory is a functor
of tensor categories:

T : 2Cob −→ Free Rmod.

On the right-hand side is the category of free modules over a commutative ring R,
and on the left is the category 2Cob described thus:

– The objects are one-dimensional oriented closed manifolds (finite disjoint
unions of oriented circles).

– The morphisms are (equivalence classes of) oriented cobordisms between two
objects. We can think of them as oriented topological surfaces with oriented
boundary components.

– We compose two morphisms by concatenation; equivalently, we glue neg-
atively oriented boundary components of one surface to positively oriented
boundary components of the other.



A TQFT of intersection numbers on moduli spaces of admissible covers 41

– The tensor operation is the disjoint union.

The free module H := T(S1) is called the Hilbert space of the TQFT.
All topological surfaces can be decomposed into discs, annuli, and pairs of pants.

Therefore, the structure of a TQFT is completely determined if it is described on
these basic building blocks.

Tensor notation. It is convenient, for explicit computations, to use tensor notation
for TQFTs. We choose a basis e1, . . . , er for the Hilbert space H , and denote the
dual basis by e1, . . . , er . Let W n

m(g) be a genus-g cobordism from m to n circles.
The map

T(W n
m(g)) : H⊗m

→ H⊗n

can be thought of as a vector in (H∗)⊗m
⊗ H⊗n . We denote by

0(W n
m(g))

j1,..., jn
i1,...,im

the coefficient of T(W n
m(g)) in the direction of the basis element ei1 ⊗· · ·⊗ eim ⊗

e j1 ⊗ · · · ⊗ e jn (see Figure 1):

T(W n
m(g))=

∑
0(W n

m(g))
j1,..., jn
i1,...,im

ei1 ⊗ · · · ⊗ eim ⊗ e j1 ⊗ · · · ⊗ e jn .

Frobenius algebras. A TQFT gives the Hilbert space H the structure of a com-
mutative Frobenius algebra. This means it defines an associative and commutative
multiplication · and an inner product (also called the metric of the TQFT) 〈 , 〉 on
H such that

〈h1 · h2, h3〉 = 〈h1, h2 · h3〉 (2-1)

for all h1, h2, h3 in the Hilbert space H . It is easy to see how the structure is
induced: multiplication is the map associated to the (−,−,+) pair of pants, the
inner product is the scalar map associated to the (−,−) annulus. As a consequence,
we see immediately that the cap with positively oriented boundary corresponds

-

-

-
+

+

X

(X)               
                     
       

Γ ijk
lm

+

+
-

Z = X  g  Y
Y

(Y)  Γ n
op

(Z)      =Γ ijk
lop (X)               

                     
       

Γ ijk
lm (Y)  Γ m

op

sum over the repeated index

-

-
+ +

+-

Figure 1. Gluing in tensor notation.
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to the unit vector for the multiplication map just defined, whereas the (−) cap
corresponds to the counit operator in the Frobenius algebra.

Definition 2.2. A TQFT T is semisimple if the Frobenius algebra induced on
the Hilbert space H is semisimple; equivalently, if there is an orthonormal basis
e1, . . . er for H such that

ei · e j = δi j ei .

Yet another equivalent condition is that T be a direct sum

T = T1 ⊕ · · · ⊕ Tr ,

where all Ti are TQFTs with Hilbert space equal to the ground ring.
Let e1, . . . , er be a semisimple basis for H . We can think of each ei as the iden-

tity vector for the space Hi . Let e1, . . . , er be the dual basis. Then semisimplicity
is equivalent to asking all nondiagonal coefficients to vanish:

0
j1,..., jm
i1,...,in

(W n
m(g))= 0,

unless i1 = i2 = · · · = in = j1 = · · · = jm .
There are now r universal constants λ1, . . . , λr that govern the structure of the

TQFT. They can be defined in many equivalent ways. Here are two equivalent
descriptions that we will be using later on:

(1) 1/λi is the image of the basis vector ei via the counit operator.

(2) λi is the i-th eigenvalue of the genus adding operator (this is the linear map
associated to the torus with a negative and a positive puncture, represented in
Figure 3).

Structure Theorem 2.3. Let T be a semisimple TQFT , and all notation as above.
Denote by W n

m(g) a genus g surface with m input and n output holes. Then

T(W n
m(g))=

r∑
i=1

λ
g+n−1
i ei

⊗ · · · ⊗ ei︸ ︷︷ ︸
m times

⊗ ei ⊗ · · · ⊗ ei︸ ︷︷ ︸
n times

.

In particular,

T(W 0
0 (g))=

r∑
i=1

λ
g−1
i . (2-2)

The TQFT of Hurwitz numbers. Dijkgraaf and Witten [1990] used the TQFT ap-
proach to give a beautiful and elegant solution to a classical mathematical problem:
counting ramified and unramified covers of a topological surface, as follows.

Let (X, p1, . . . , pr , q1, . . . , qs) be an (r+s)-marked smooth topological sur-
face. Let η = (η1, . . . , ηr ) be a vector of partitions of the integer d . We define the
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Hurwitz number
H h,X

d (η)

as the weighted number of degree d covers C
π

−→ X such that

• C is a surface of genus h;

• π is unramified over X \ {p1, . . . , pr , q1, . . . , qs};

• π ramifies with profile ηi over pi ;

• π has simple ramification over qi .

The weight is the number of automorphisms of such covers.
For a Hurwitz number to be nonzero, s, h and η must satisfy the Riemann–

Hurwitz formula. This is why we omit s from the notation. In particular, if we
require s = 0, then (at most one value of) h is determined by η. We denote by
H X

d (η) the corresponding Hurwitz number.

We define the TQFT D as follows:

(1) the ground field is C;

(2) the Hilbert space is H =
⊕

η`d Ceη, where η ` d means that η is a partition
of d;

(3) morphisms are assigned according to the prescription

n 
ho

le
s

...

X

D
7−→ D(X) :

H⊗n
→ C

eη1 ⊗ · · · ⊗ eηn 7→ H X
d (η).

A

D
7−→ D(A) =

∑
z(η)eη ⊗ eη.

Fact 2.4 (Dijkgraaf, Witten/Freed, Quinn). The assignment above defines a semi-
simple TQFT D. Let η be a partition of d , representing a conjugacy class of
the symmetric group, and let h be an element in this conjugacy class. Via the
identification

eη =
1
d !

∑
g∈Sd

g−1hg,

the Hilbert space is isomorphic, as a Frobenius algebra, to the class algebra of the
symmetric group in d letters, Z(C[Sd ]).
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A semisimple basis is indexed by irreducible representations ρ of Sd . If ρ is such
a representation and Xρ its character function, then

eρ = (dim ρ)
∑
η`d

Xρ(η)eη. (2-3)

This allows one to recover the classical Burnside formula expressing the number
of unramified covers of a genus g curve:

H gd−d+1,g
d (φ)=

∑
ρ

(
d !

dim ρ

)2g−2

. (2-4)

Weighted TQFTs. A weighted TQFT contains some extra structure with respect to
an ordinary TQFT. Every cobordism comes equipped with a sequence of weights,
or levels. When you concatenate two cobordisms, you add the levels component-
wise. We are in particular interested in the theory with 2 levels.

Define the category 2Cobk1,k2 as follows:

(1) Objects and tensor structure are the same as in 2Cob.

(2) Morphisms are given by triples (W, k1, k2), where W is an oriented cobordism
as in 2Cob and k1, k2 are two integers called levels.

(3) Composition of morphisms consists in concatenating cobordisms and adding
levels componentwise.

Definition 2.5. A weighted TQFT is a functor of tensor categories

WT : 2Cobk1,k2 −→ FRMod.

Clearly, if we restrict our attention to cobordisms with weight (0, 0), we obtain
an ordinary TQFT. More generally, there exists a Z × Z worth of ordinary TQFTs
embedded in a weighted TQFT. Denote by X the Euler characteristic of a cobor-
dism W . For any (a, b)∈ Z×Z, restricting the weighted TQFT to cobordisms with
level

(aX, bX)

yields an ordinary TQFT.

Generation results. There are several possible ways to generate a weighted TQFT.
A natural one consists in generating the level (0, 0) TQFT, and then giving natural
operators that allow one to shift the levels. These elements can be chosen to be, for
example, the cylinders with weight (±1, 0) and (0,±1). These operators change
the levels of the cobordisms without altering its topology. An equivalent, and
equally natural choice, is given by the caps, as illustrated in Figure 2.
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+

-- +-- +

+ + +

-- + -- +

(1, 0) (−1, 0) (0, 1) (0,−1)

A B C D

Figure 2. Level-changing objects.

In particular, A is the inverse of B and C is the inverse of D in the level (0, 0)
Frobenius algebra. Hence the following generation result.

Fact 2.6 [Bryan and Pandharipande 2004, 4.1]. A weighted TQFT WT is uniquely
determined by a commutative Frobenius algebra over k for the level (0, 0) theory
and by two distinguished invertible elements in the Frobenius algebra:

WT

 +

(−1, 0)

 and WT

 +

(0,−1)

 .

Semisimple weighted TQFTs. A weighted TQFT of rank r is semisimple if there is
a basis for the Hilbert space such that all the nonzero tensors in the theory are diago-
nal. This is equivalent to requiring all embedded ordinary TQFTs to be semisimple
(possibly with rescaled semisimple bases). Let λ1, . . . , λr be the eigenvalues of the
level (0, 0) genus adding operator. Let µ1, . . . , µr be the eigenvalues of the level
(−1, 0) annulus, and µ1, . . . , µr be the eigenvalues for the level (0,−1) annulus,
as illustrated in Figure 3.

Fact 2.7 [Bryan and Pandharipande 2004, 5.2]. Let WT be a semisimple TQFT.
Denote by W n

m(g|k1, k2) a cobordism of genus g between m input and n output

+--

(0, 0)

+--

(−1, 0)

+--

(0,−1)
↓ ↓ ↓

λi µi µi

Figure 3. The genus-adding and level-changing operators.
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holes, of level (k1, k2). Then

T(W n
m(g|k1, k2))=

r∑
i=1

λ
g+n−1
i µ

−k1
i µ

−k2
i ei

⊗ · · · ⊗ ei︸ ︷︷ ︸
m times

⊗ ei ⊗ · · · ⊗ ei︸ ︷︷ ︸
n times

.

In particular,

T(W 0
0 (g|k1, k2))=

r∑
i=1

λ
g−1
i µ

−k1
i µ

−k2
i .

Note. Equivalent definitions can be given for the quantities λi , µi and µi . Denote
by e1, . . . , er the vectors of a semisimple basis for the weighted TQFT WT:

• λ−1
i is the value of the level (0, 0) counit on ei :

WT

 --

(0, 0)

 (ei )= λ−1
i .

• µi is the coefficient of ei in the level (−1, 0) +disc vector:

WT

 +

(−1, 0)

 =

∑
µi ei .

• µi is the coefficient of ei in the level (0,−1) +disc vector:

WT

 +

(0,−1)

 =

∑
µi ei .

3. Construction of the theory

The admissible covers invariants. Let (X, p1, . . . , pr ) be a smooth, irreducible,
projective curve of genus g with r distinct marked points, and let N = L1 ⊕ L2 be
a rank-2 vector bundle on X . The torus T = C∗

× C∗ acts naturally on N : the first
coordinate scales (with weight one) the fiber of L1, the second coordinate scales
the fiber of L2.

The T-equivariant cohomology of a point is a polynomial ring in two indetermi-
nates, which we denote by

H∗

T (pt)= C[s1, s2].

We are interested in the following class of intersection numbers:

Ah
d(N ) :=

∫
Adm(h

d
→X,(η1 p1,...,ηr pr ))

eeq(−R•π∗ f ∗(L1 ⊕ L2)),
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where

• Adm(h
d

→ X (η1 p1, . . . , ηr pr )) is as defined on page 38;

• eeq is the equivariant Euler class of the virtual bundle in question;

• π is the universal family over the space of admissible covers;

• f is the universal cover map followed by the canonical contraction map to X .

By [Bryan and Pandharipande 2001], this integral only depends on the genus g
of the curve X and on the degrees k1 and k2 of the line bundles L1 and L2. In the
TQFT formulation about to be given it will be useful to emphasize this fact, so we
choose to denote these invariants by

Ah
d(N )η = Ah

d(g|k1, k2)η.

We consider these invariants for all genera h, and organize them in generating
function form:

Ad(g|k1, k2)η :=

∑
h∈Z

u?(h)Ah
d(g|k1, k2)η, (3-1)

where the exponent for the generating function is defined by

?(h)= dim(Adm(h
d

→ X, (η1 p1, . . . , ηr pr )))= 2h−2+d(2−2g−r)+
r∑

i=1

`(ηi ).

By expanding the equivariant Euler class in terms of ordinary Chern classes and
equivariant parameters, we can express these invariants in terms of nonequivariant
integrals. Let h ∈ Z ∪φ be a function of b1, b2 determined by the equation

b1+b2 =dim(Adm(h
d

→ X, (η1x1, . . . , ηr xr )))=2h−2+d(2−2g−r)+
r∑

i=1

`(ηi ).

Define

Ab1,b2
d (g|k1, k2)η :=

∫
Adm(h

d
→X,(η1x1,...,ηr xr ))

cb1(−R•π∗ f ∗(L1))cb2(−R•π∗ f ∗(L2)).

Then the relative invariants are

Ad(g|k1, k2)η :=

∞∑
b1+b2=0

ub1+b2 isr1−b1
1 sr2−b2

2 Ab1,b2
d (g|k1, k2)η. (3-2)

This shows that the partition function for our invariants is a Taylor series in u,
whose coefficients are rational functions in s1 and s2. The degree of these rational
functions is independent of h. It is equal to

r1 + r2 − b1 − b2 = d(2g − 2 − r)−
r∑

i=1

`(ηi ).
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The weighted TQFT U. We construct a weighted TQFT U, whose structure co-
efficients encode the invariants just presented.

The ground ring is defined to be R = C[[u]](s1, s2).
The Hilbert space of the theory is a free R-module of rank equal to the number

of partitions of the integer d . A privileged basis is indexed by such partitions η:

H =

⊕
η`d

Reη.

We denote the dual space by H∗, and the dual basis vectors by eη.
To construct our TQFT we reason topologically. We think of the marked points

on a curve (X, x1, . . . , xr+s) as of punctures that we can enlarge into loops. We
can assign positive or negative orientation to such loops, and arrange the negatively
oriented loops x1, . . . , xr to the left, the positively oriented ones to the right (after
relabelling xr+i = yi ). We now have an oriented cobordism.

To completely determine the structure of the theory we define the scalar maps
associated to arbitrary cobordisms into the empty set, and the coproduct, which
allows us to move boundary components from left to right:

...r 
ho

le
s

X

(k1, k2)

x1

x2

xr

U
7−→ U(X) :

H⊗r
→ C[[u]](s1, s2)

eη1 ⊗ · · · ⊗ eηr 7→ Ad(g|k1, k2)η.

A x1

x20, 0

U
7−→ U(A) =

∑
η`d

z(η)(s1s2)
`(η)eη ⊗ eη.

The combinatorial factor z(η) is defined in (1-2).

Theorem 3.1. The structure U defined in the previous paragraph is a two-level,
weighted semisimple TQFT.

In practical terms, it is convenient to adopt the conventional tensor notation
of riemannian geometry. If X = (X, x1, . . . , xr , y1, . . . , ys |k1, k2) represents a
cobordism of genus g and level k1, k2 from r circles to s circles, then U(X) is
an element of (H∗)⊗r

⊗ H⊗s . We denote by

Ad(g|k1, k2)
µ1,...,µs
η1,...,ηr

the coordinate of U(X) in the direction of the basis element

eη1 ⊗ · · · ⊗ eηr ⊗ eµ1 ⊗ · · · ⊗ eµs .
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With this notation, the coproduct gives the following formula for raising and
lowering indices:

Ad(g|k1, k2)
µ1,...,µs
η1,...,ηr

=

( s∏
i=1

z(µi )(s1s2)
`(µi )

)
Ad(g|k1, k2)η1,...,ηr ,µ1,...,µs . (3-3)

Proof of Theorem 3.1. Proving that U is indeed a weighted TQFT amounts to
verifying three statements:

(Identity) The tensor associated to the level (0, 0) trivial cobordism from the circle
to the circle is the identity morphism of the Hilbert space H.

(Gluing two curves) For any two vectors η, µ of partitions of d , and integers
satisfying g = g′

+ g′′, k1 = k ′

1 + k ′′

1 , k2 = k ′

2 + k ′′

2 ,

Ad(g|k1, k2)
µ1,...,µs
η1,...,ηr

=

∑
ν`d

Ad(g′
|k ′

1, k ′

2)
ν
η1,...,ηr

Ad(g′′
|k ′′

1 , k ′′

2 )
µ1,...,µs
ν . (3-4)

(Self-gluing) For any vector of partitions η and integers g, k1, k2,

Ad(g + 1|k1, k2)η1,...,ηr =

∑
ν`d

Ad(g|k1, k2)
ν
η1,...,ηr ,ν

. (3-5)

Identity. This fact is easily proven. One very clever way to do it, pursued in [Bryan
and Pandharipande 2005], is to notice that the degree-0 coefficients in our TQFT
agree with the classical TQFT of Hurwitz numbers constructed in [Dijkgraaf and
Witten 1990] and recalled on page 43. The vanishing of all higher-degree terms
can be obtained as a straightforward consequence of the gluing laws, or simply by
showing that the dimensions of the moduli spaces in question exceed the maximum
degree of a nonequivariant class in the integrand.

Gluing two curves. To minimize bookkeeping, we prove the result when r = s = 0
(that is, when the resulting glued curve is not marked). In the general case, the
proof follows exactly the same steps, and all the extra indices are simply carried
along for the ride.

Consider a one-parameter family of genus g curves W , and the corresponding
map to the moduli space,

W

ϕ : A1
?

- Mg,

such that all fibers are smooth curves of genus g, apart from the central fiber

W0 = X1
⋃

b1=b2

X2,
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which is a nodal curve obtained by attaching at a point two smooth curves of genus
g′ and g′′ (with g′

+ g′′
= g).

Consider the moduli space Adm(h
d

→ g) of admissible covers of a genus g curve
by a genus h curve, all ramification simple. By [Abramovich et al. 2003], there is
a flat morphism

Adm(h
d

→ g)→ Mg,

We can construct the cartesian diagram

As = Adm(h
d

→ Ws) ⊂ - A - Adm(h
d

→ g)

{s}
?

⊂ - A1
?

- Mg

?
(3-6)

The stack A must be thought of as the stack of relative admissible covers of the
family W . For s 6= 0, we obtain admissible covers of a smooth genus g curve; for
s = 0, we recover admissible covers of the nodal curve W0.

It is possible to construct two line bundles L1 and L2 on W with the following
properties:

(1) Li restricted to any fiber Ws is a line bundle L i,s of degree ki .

(2) Over the central fiber W0, Li restricts to a line bundle L ′

i,s of degree k ′

i on X1,
and restricts to a line bundle L ′′

i,s of degree k ′′

i on X2.

(3) C∗ acts naturally on Li by scaling the fibers (with weight one).

Consider the diagram

UA
f- W - W

A

π
?�

where UA is the universal family of the moduli space A, W is the universal target
and f the universal admissible cover map.

The pull-push
I = −R•π∗ f ∗(L1 ⊕ L2)

is a virtual bundle of virtual rank r = 2g − 2 − d(k1 + k2).
By the flatness of the family A over A1, the integral of the top Chern class cr (I)

restricted to a fiber As is independent of the fiber. For s 6= 0, we obtain∫
Adm(h

d
→Ws)

cr (I |s)= Ah
d(g|k1, k2).

We want to evaluate the same expression restricted to s = 0, and show it equals
the right-hand side of (3-4). We choose to show the equality at the generic genus
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h degree of the generating function, to emphasize the geometric nature of the
construction. We hence need to establish the following claim, which consists of
expanding the genus h term in Equation (3-4), and lowering indices as in (3-3).

Claim 3.2.∫
Adm(h

d
→W0)

cr (I |0)=

∑
ν`d

z(ν)(s1s2)
`(ν)

∑
h1,h2

Ah1
d (g

′
|k ′

1, k ′

2)ν Ah2
d (g

′′
|k ′′

1 , k ′′

2 )ν,

where the second sum is over pairs of indices such that h1 + h2 + `(ν)− 1 = h.

Proof. Recall that, by (1-1),

[Adm(h
d

→W0)]=
∑
ν`d

z(ν)
∑
h1,h2

[Adm(h1
d

→ X1, (νb1))]×[Adm(h2
d

→ X2, (νb2))],

where h1 + h2 + `(ν)− 1 = h and

dim(Adm(h1
d

→ X1, (νb1)))+dim(Adm(h2
d

→ X2, (νb2)))=dim(Adm(h
d

→ W0)).

Consider the pullback of the normalization sequence associated to the restriction
of Li to W0:

0 → f ∗(L i,0)→ f ∗(L ′

i,0)⊕ f ∗(L ′′

i,0)→ f ∗(L i,0) |X1∩X2→ 0.

This sequence yields a long exact sequence of higher direct image sheaves

0 → R0π∗ f ∗(L i,0)→ R0π∗ f ∗(L ′

i,0)⊕ R0π∗ f ∗(L ′′

i,0)→ R0π∗ f ∗(L i,0) |X1∩X2

→ R1π∗ f ∗(L i,0)→ R1π∗ f ∗(L ′

i,0)⊕ R1π∗ f ∗(L ′′

i,0)→ 0.

Notice that (L i,0) |X1∩X2 is a skyscraper sheaf Cb, on which C∗ acts with weight 1.
We now restrict our attention to a connected component of A0 on which the

covers split as two smooth covers of genus h1 and h2, with ramification profile ν
over the shadows of the node. Here, f ∗(L i,0) |X1∩X2 is a trivial vector bundle of
rank `(ν), endowed with a natural C∗ action. The preceding exact sequence then
leads to

cri (−R•π∗ f ∗(L i,0))= s`(ν)i cr ′

i
(−R•π∗ f ∗(L ′

i,0))cr ′′

i
(−R•π∗ f ∗(L ′′

i,0)),

and finally

cr (I |0)= (s1s2)
`(ν)cr ′(I |

′

0)cr ′′(I |
′′

0).
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Putting everything together yields the claim:∫
Adm(h

d
→W0)

cr (I |0)

=

∑
ν

z(ν)
∑
h1,h2

∫
Adm(h1

d
→X1,(νb1))×Adm(h2

d
→X2,(νb2))

cr (I|0)

=

∑
ν

z(ν)(s1s2)
`(ν)

∑
h1,h2

∫
Adm(h1

d
→X1,(νb1))

cr ′(I|
′

0)

∫
Adm(h2

d
→X2,(νb2))

cr ′′(I|
′′

0)

=

∑
ν

z(ν)(s1s2)
`(ν)

∑
h1,h2

Ah1
d (g

′
|k ′

1, k ′

2)ν Ah2
d (g

′′
|k ′′

1 , k ′′

2 )ν . �

Self-gluing. The structure of the proof is very similar to the previous case. Again,
we simplify the notation by assuming r = 0. Consider a one-parameter family of
genus g curves W , and the corresponding map into the moduli space,

W

ϕ :A1
?

- Mg,

such that all fibers are smooth curves of genus g, apart from the central fiber

W0 = X/{b1 = b2},

which is a nodal curve obtained by identifying two distinct points on an irreducible
smooth curve X of genus g − 1.

As before, we construct a cartesian diagram of the form (3-6) and two line
bundles L1 and L2 on W with properties (1) and (3) from page 50, plus

(2) Over the central fiber W0, Li pulls back to a line bundle L ′

i,s of degree ki on
the normalization X .

We now consider the equivariant top Chern class of the pull-push

I = −R•π∗ f ∗(L1 ⊕ L2).

For s 6= 0, ∫
Adm(h

d
→Ws)

cr (I |s)= Ah
d(g|k1, k2).

Again, we can show that the corresponding integral over the central fiber yields
exactly the genus h expansion of the right-hand side of Equation (3-5).

Claim 3.3.
∫

Adm(h
d

→W0,)

cr (I |0) =

∑
ν

z(ν)(s1s2)
`(ν)Ah′

d (g − 1|k1, k2)ν,ν , where

h′
+ `(ν)= h.
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Proof. By (1-3), we have [Adm(h
d

→ W0)] =
∑
ν`d

z(ν)[Adm(h′ d
→ X, (νb1, νb2))],

with h′
+ `(ν)= h.

As in the previous claim, after chasing the normalization sequence for the curve
W0 we obtain, over a connected component of A0 characterized by covers with
ramification profile ν over the shadows of the node, the following decomposition:

cr (I |0)= (s1s2)
`(ν)cr ′(I |

′

0). (3-7)

With this in hand, it is easy to obtain the claim and so conclude the proof of
Theorem 3.1:∫

Adm(h
d

→W0)

cr (I |0)=

∑
ν

z(ν)

∫
Adm(h′

d
→X,(νb1,νb2))

cr (I |0)

=

∑
ν

z(ν)(s1s2)
`(ν)

∫
Adm(h′

d
→X,(νb1,νb2))

cr ′(I |
′

0)

=

∑
ν

z(ν)(s1s2)
`(ν)Ah′

d (g − 1|k ′

1, k ′

2)ν,ν . �

4. Computing the theory

In order to determine the whole weighted TQFT it is sufficient to compute a small
number of invariants, as seen in Fact 2.6. Among the many possible choices for a
set of generators, we choose as the generators for the level (0, 0) TQFT

(1) the coefficients Ad(0|0, 0)η of the open (−) disc,

(2) the coefficients Ad(0|0, 0)η,µ of the (+,+) annulus, and

(3) the coefficients Ad(0|0, 0)η,µ,ν associated to the (−,−,−) pair of pants,

and as the generators for level shifting

(4) the coefficients of the Calabi–Yau caps Ad(0| − 1, 0)η and Ad(0|0,−1)η.

Theorem 4.1. The level (0, 0) TQFT coincides with the level (0, 0) theory of
[Bryan and Pandharipande 2004].

The significant difference in the theories lies in the Calabi–Yau caps, which
we will compute (starting on page 55) by localization on the moduli spaces of
admissible covers.

Proof of Theorem 4.1. It is simple to compute independently the coefficients for
the cap. Dimension counts show they are degenerate, in the sense that only the
constant term of the series is nonzero. The coefficients for the (+,+) cylinder
agree by definition. We will conclude the proof by showing that the coefficients
for the pair of pants are the same.
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The level (0, 0) pair of pants. The invariants A◦

d(0|0, 0)η,ν,µ of the level (0, 0)
pair of pants are computed by the integrals:∫

Adm
◦
(h

d
→P1,(η0,µ1,ν∞))

ceq
2h−2(−R•π∗ f ∗(OP1 ⊕ OP1)).

The dimension of the moduli space in question is

2h − d − 2 + `(η)+ `(µ)+ `(ν).

Hence, if `(η) + `(µ) + `(ν) > d + 2, the relative connected integrals vanish.
The disconnected integrals are then obtained inductively from invariants of lower
degree d .

All other invariants have contributions from connected components, and hence
need to be computed directly.

In [Bryan and Pandharipande 2004, Appendix] it is shown that all invariants can
be recursively determined from Ad(0|0, 0)(d),(d),(2), the invariant corresponding to
full ramification over two points, and a simple transposition over the third point.
Their proof uses only TQFT formalism; hence it suffices to prove the following
statement.

Lemma 4.2. For d≥ 2,

Ad(0|0, 0)(d),(d),(2) =
s1 + s2

2s1s2

(
d cot

du
2

− cot
u
2

)
.

(This result differs from the analogous one in [Bryan and Pandharipande 2004]
by a factor of −i , reflecting a normalization in their generating function conven-
tions that we have not adopted.)

Proof. The full ramification conditions force our covers to be connected. Hence
the connected and disconnected invariants coincide.

According to (3-2), we have

Ad(0|0, 0)(d),(d),(2)

=

∞∑
b1+b2=0

ub1+b2sh−1−b1
1 sh−1−b2

2

∫
Adm(h

d
→P1,((d)0,(d)1,(2)∞))

cb1(E
∗)cb2(E

∗),

with b1 + b2 equal to the dimension of the moduli space, which is

dim(Adm(h
d

→ P1, ((d)0, (d)1, (2)∞)))= 2h − 1.

For a given value of h, the only nonvanishing terms in the expression above are
those where (b1, b2)= (h, h−1) or (b1, b2)= (h−1, h). Adding the two, we obtain

Ah
d(0|0, 0)(d),(d),(2) =

s1 + s2

s1s2

∫
Adm(h

d
→P1,((d)0,(d)1,(2)∞))

−λhλh−1
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and consequently, the generating function

Ad(0|0, 0)(d),(d),(2) =
s1 + s2

s1s2

∞∑
h=0

u2h−1
∫

Adm(h
d

→P1,((d)0,(d)1,(2)∞))

−λhλh−1,

where λk denotes the k-th Chern class of the (pullback of the) Hodge bundle E.
Recall that we defined the λ classes on moduli spaces of admissible covers

simply by pulling them back from the appropriate moduli spaces of stable curves.
In particular we have the diagram

Adm(h
d

→ P1, ((d)0, (d)1, (2)∞))
ρ- Mh,2

Mh

π
?

-

The map ρ is defined by marking on the admissible covers the unique preimages of
the branch points 0 and 1. The Hodge bundle on Mh pulls back to the Hodge bundle
on Mh,2, hence we can think of the λ classes on the moduli space of admissible
covers as pulled back from Mh,2.

Denote by Hd ⊂ Mh,2 the locus of curves admitting a degree d map to P1 which
is totally ramified at the marked points. Let

H d ⊂ Mh,2

be the closure of Hd , consisting of possibly nodal curves admitting a degree d map
to a tree of rational curves, fully ramified over the two marked points. The image
of the map

ρ : Adm(h
d

→ P1, ((d)0, (d)1, (2)∞))−→ Mh,2

is precisely H d , and ρ is a degree 2h map onto its image.
From this we conclude that∫

Adm(h
d

→P1,((d)0,(d)1,(2)∞))

−λhλh−1 = 2h
∫

[Hd ]

−λhλh−1.

This is the integral computed in [Bryan and Pandharipande 2004, pages 28–29];
hence the result follows. This proves Lemma 4.2 and therefore Theorem 4.1. �

The Calabi–Yau cap. We can obtain Ad(0|−1, 0)η from Ad(0|0,−1)η by simply
interchanging the roles of s1 and s2. Further:
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Theorem 4.3. Let d be a positive integer, and η = (η1, . . . , η`(η)) a partition of d.
The degree-d Calabi–Yau invariants are

Ad(0|0,−1)η = (−1)d−`(η)

(
2 sin u

2

)d

(s1)`(η)z(η)
∏

2 sin ηi u
2

.

In [Cavalieri 2004], this formula is computed via localization on moduli spaces
of (connected) admissible covers in degree 1, 2, 3. The result is obtained by finding
relations between the Calabi–Yau cap invariants and generating functions for sim-
ple Hurwitz numbers. Two types of obstructions arise in degrees beyond 3. First,
fixed loci inside moduli spaces of connected admissible covers are in principle
easily described as finite products and quotients of moduli spaces of connected ad-
missible covers, but the combinatorial complexity grows fast. Second, generating
functions for simple Hurwitz numbers are not readily available beyond degree 3.

To circumvent the first problem we interpret the fixed loci in the localization
as simpler products of disconnected admissible cover spaces. Then all possible
Calabi–Yau invariants, not only the fully ramified ones, appear in the recursions.
There is one subtlety to be aware of: Calabi–Yau cap invariants are defined as
intersection numbers on moduli spaces of admissible covers of a parametrized
P1, whereas the fixed loci are in terms of admissible covers of unparametrized
projective lines. Another localization computation, with an appropriate choice of
linearizations for the bundles, gives an expression for the invariants in terms of the
unparametrized P1 admissible covers.

To deal with the lack of explicit generating functions for general simple Hurwitz
numbers, we notice that the recursive relation that we need to prove is in fact
determined by a virtual localization computation on moduli spaces of stable maps.
This is yet more evidence of how intimately related this theory and Gromov–Witten
theory are.

Proof of Theorem 4.3. We prove the following formula for the connected Calabi–
Yau cap invariants:

A◦

d(0|0,−1)η =


(−1)d−1

s1

1
d

(
2 sin u

2

)d

2 sin du
2

for η = (d),

0 otherwise.

Theorem 4.3 follows from this via exponentiation.
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The vanishing of the connected invariants for all partitions but (d) is a dimension
count. By (3-1) and (3-2), the genus-h contribution to the connected Calabi–Yau
invariants is

A◦h
d(0|0,−1)η =

∫
Adm

◦
(h

d
→P1,(η∞))

ceq
2h+d−1(−R•π∗ f ∗(OP1 ⊕ OP1(−1)))

=

∑
b1,b2

sr1−b1
1 sr2−b2

2

∫
Adm

◦
(h

d
→P1,(η∞))

cb1(E
∗)cb2(R

1π∗ f ∗(OP1(−1))),

where

• b1 + b2 = dim(Adm(h
d

→ P1, (η∞)))= 2h + d + `(η)− 2;

• r1 = h − 1 is the virtual rank of the virtual bundle −R•π∗ f ∗(OP1);

• r2 = h + d − 1 is the virtual rank of the virtual bundle −R•π∗ f ∗(OP1(−1)).

Since −R•π∗ f ∗(OP1(−1)) = R1π∗ f ∗(OP1(−1)) is in fact a vector bundle of
rank h + d − 1, we also have the constraint

b1 + b2 ≤ 2h + d − 1.

The only possibly nonvanishing integrals occur when `(η)= 1, i.e. when η= (d).
The indices b1 and b2 are forced to be, respectively, h and h + d − 1.

Note. The full ramification condition forces all covers to be connected; the fully
ramified connected and disconnected invariants coincide, thus allowing us to drop
the superscript ◦ .

Finally, our task is to prove:

1
s1

∞∑
h=0

u2h+d−1
∫

Adm(h
d

→P1,((d)∞))

ch(E
∗)ch+d−1(R1π∗ f ∗(OP1(−1)))

=
(−1)d−1

s1

1
d

(
2 sin u

2

)d

2 sin du
2

.

Calabi–Yau cap invariants: parametrized to unparametrized. We evaluate via lo-
calization the Calabi–Yau cap invariant Ah

d(0|0,−1)η, for a general partition η.
We linearize the (C∗ action on the) two bundles by assigning to OP1 weight 0

over both 0 and ∞, and assigning OP1(−1) weight 0 over 0 and weight 1 over ∞:

weight over 0 over ∞

OP1(−1) 0 1
OP1 0 0

There are a priori many fixed loci in the localization computation. However
it is possible to rule out a vast majority of them using either dimension counts
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or linearization considerations (see [Cavalieri 2004] or [Bryan and Pandharipande
2005] for a discussion of these standard localization tricks).

Ultimately, the only possibly contributing fixed loci are those whose general
element consists of `(η) spheres Si , mapping to the main P1 with degree ηi , all
fully ramified over 0 and ∞. A genus 0 twig sprouts from the point ∞ on the main
P1, covered by `(η) curves Ci of genus hi . The curve Ci is attached to Si at a fully
ramified point. The hi are such that

h1 + . . .+ h`(η) = h + `(η)− 1.

Finally, if we denote by Fη,h the disjoint union of all such fixed loci as the hi vary,
and by N the normal bundle to such fixed loci, we obtain from localization:

Ah
d(0|0,−1)η =

∫
Fη,h

eeq(−R•π∗ f ∗(OP1 ⊕ OP1(−1))) |Fh,η

eeq(N )
.

Recursion via localization on admissible covers. We now suppose d > 1 and con-
sider the auxiliary integral

I h
=

∫
Adm

◦
(h

d
→P1)

eeq(−R•π∗ f ∗(OP1 ⊕ OP1(−1))), (4-1)

computed on the space of connected admissible covers. It vanishes for dimen-
sion reasons: we are integrating a class whose highest nonequivariant factor has
codimension (2h + d − 1) on a space of dimension 2h + 2d − 2.

On the other hand, if we evaluate the integral via localization we get a relation
among Calabi–Yau cap invariants. We let a one-dimensional torus act naturally on
the moduli space and denote the equivariant parameter by s. We choose to linearize
the two bundles with the following weights:

weight over 0 over ∞

OP1(−1) −1 0
OP1 1 1

The possibly contributing fixed loci Eη,h0,h∞
are represented by connected lo-

calization graphs such that any vertex over ∞ has valence 1; see [Cavalieri 2004].
They can be indexed by triples (η, h0, h∞), where

• η = (d1, . . . , d`(η)) is a partition of d representing the configuration of the
spheres over the main P1;

• h0 is the genus of the curve lying over 0;

• h∞ is the genus of the curve lying over ∞ (considered as a disconnected
curve);

• h0 + h∞ = h − `(η)+ 1.
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We recognize that a general element in the fixed locus Eη,h0,h∞
is obtained by

gluing together an element in the fixed locus Fη,h∞
with a connected admissible

covers of a genus 0 curve, with a special point of ramification η. Keeping in account
the stacky contribution from the gluing, our integral I on Eη,h0,h∞

reduces to

I h
η,h0,h∞

= z(η)

∫
Adm

◦
(h0

d
→P1,η)×Fη,h∞

eeq(−R•π∗ f ∗(OP1 ⊕ OP1(−1))) |
Adm

◦
(h

d
→P1,η)×Fη,h∞

eeq(N )

= z(η)s2`(η)Ah∞

d (0|0,−1)η

∫
Adm

◦
(h0

d
→P1,η)

ch0(E
∗
⊗ C1)ch0(E

∗
⊗ C−1)

s(s −ψη)
,

where Ca is a trivial line bundle where the torus acts on the fibers with weight a.
After expanding and using Mumford’s relation [1983] saying that c(E)c(E∗)

equals 1, we obtain

I h
η,h0,h∞

= z(η)s`(η)+2−d Ah∞

d (0|0,−1)η

∫
Adm

◦
(h0

d
→P1,η)

(−1)h0ψ2h0+d+`(η)−4
η

= z(η)s`(η)+2−d Ah∞

d (0|0,−1)η
(−1)h0 H h0

d (η)

(2h0 + d + `(η)− 2)!
.

The quantity H h0
d (η) is a simple Hurwitz number, as defined on page 43.

The integral I is evaluated by adding up the contributions from all fixed loci
Eη,h0,h∞

:
0 = I h

=

∑
η`d

∑
h0+h∞=h−`(η)+1

I h
η,h0,h∞

. (4-2)

This holds for all genera h, and can be expressed in a very compact form in the
language of generating functions. Define

Hd,η(u) :=
∑ (−1)h H h

d (η)

(2h + d + `(η)− 2)!
u(2h+d+`(η)−2).

Then formulas (4-2), for all genera h, are encoded in the relation

0 =

∑
η`d

z(η)s`(η)+2−d Ad(0|0,−1)η(u)Hd,η(u). (4-3)

This relation determines Ad(0|0,−1)(d) in terms of generating functions for
simple Hurwitz numbers and of the invariants Ad(0|0,−1)η, for `(η) ≥ 2, which
can be inductively determined via exponentiation if we assume the theory up to
degree d −1. The theory has been explicitly computed up to degree 3 in [Cavalieri
2004]; hence the induction can start.

To prove Theorem 4.3 it therefore suffices to show that (4-3) holds for the con-
jectured values of the Calabi–Yau invariants. After substituting and simplifying,
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this amounts to proving that

0 =

∑
η`d

(−1)`(η)
Hd,η(u)∏

ηi ∈η

2 sin
ηi u
2

. (4-4)

Virtual localization on stable maps. Relation (4-4) is the result of explicitly eval-
uating via virtual localization the auxiliary integrals

J h
=

∫
Mh(P1,d)

eeq(−R•π∗ f ∗(OP1 ⊕ OP1(−1))).

Again dimension reasons grant us the vanishing of this integral. We proceed to
linearize the bundles by assigning weights as follows:

weight over 0 over ∞

OP1(−1) −1 0
OP1 1 1

The analysis of the possibly contributing fixed loci is parallel to the previous
section. The contribution by the fixed locus Eη,h0,h∞

is∑
h1+...+h`(η)=h∞+`(η)−1

Jη,h0,h1,...,h`(η),

with

Jη,h0,h1,...,h`(η) =
1

z(η)

∫
Mh0,`(η)

ch0(E
∗
⊗ C1)ch0(E

∗
⊗ C1)ch0(E

∗
⊗ C−1)∏ (

ηi
−1 −ψi

)
×

`(η)∏
i=1

η
ηi
i

ηi !

∫
Mhi ,1

chi (E
∗
⊗ C1)chi (E

∗
⊗ C1)chi (E

∗)

−ηi
−1 −ψ1

.

(See [Hori et al. 2003, Chapter 27] for a clear and detailed explanation of how to
compute these terms, or [Bryan and Pandharipande 2004, proof of Theorem 5.1]
for a very similar computation.)

After simplifying via Mumford’s relation and rearranging things, the preceding
formula becomes

(−1)h0

Aut(η)

`(η)∏
i=1

η
ηi
i

ηi !

∫
Mh0,`(η)

1 − λ1 + . . .± λh0∏
(1 − ηiψi )

`(η)∏
i=1

−η
2hi −1
i

∫
Mhi ,1

λhiψ
2hi −2
1 . (4-5)

We recognize in formula (4-5) two famous results in the field. The first is the
ELSV formula, establishes the connection between Hurwitz numbers and Hodge
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integrals [Ekedahl et al. 2001; Graber and Vakil 2003a]:

H h
d (η)=

(2h + d + `(η)− 2)!
Aut(η)

`(η)∏
i=1

η
ηi
i

ηi !

∫
Mh,`(η)

1 − λ1 + . . .± λh∏
(1 − ηiψi )

.

The second is Faber and Pandharipande’s formula [2000], expressing in generating
function form the following class of integrals:

L(u) :=

∑
u2h−1

∫
Mh,1

λhψ
2h−2
1 =

1

2 sin u
2

.

Now it is a matter of careful bookkeeping to translate all this information in the
language of generating functions. Doing so concludes the proof of Theorem 4.3
by establishing that

0 =

∑
h∈Z

J hu2h+2d−2
=

∑
η`d

(−1)`(η)Hd,η(u)
∏
ηi ∈η

L(ηi u)

=

∑
η`d

(−1)`(η)
Hd,η(u)∏

ηi ∈η
2 sin ηi u

2

. �

5. A specialization of the theory

We now discuss a specialization of the theory, obtained by embedding a one-
dimensional torus inside the two-dimensional torus T , and considering the theory
as depending from one equivariant parameter instead of two.

We specialize to the antidiagonal action, and notice that the coefficients for the
product simplify dramatically. It is possible to obtain nice closed formulas for
our theory, and to view our TQFT as a one-parameter deformation of the classi-
cal TQFT of Hurwitz numbers studied in [Dijkgraaf and Witten 1990; Freed and
Quinn 1993]. Our formulas show connections to the representation theory of the
symmetric group Sd .

The antidiagonal action. Embed C∗ in the two-dimensional torus T via the map

α 7→

(
α,

1
α

)
.

C∗ acts on N by composing this embedding with the natural action of T constructed
in page 46. If we set

H∗

C∗(pt)= C[s],

the one-parameter theory obtained with this action corresponds to setting

s = s1 = −s2.
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The Q-dimension of an irreducible representation. Let ρ be an irreducible repre-
sentation of the symmetric group on d letters Sd . Classically, a partition of d , and
hence a Young diagram, can be canonically associated to ρ; see [Fulton and Harris
1991, Chapter 4], for example. Recall that the hook length h(�) of a cell � in a
Young diagram is the number of cells in the L-shaped strip, or “hook”, having the
given cell as its northwest corner (see figure on the next page). We now define the
Q-dimension of the representation ρ by setting

dimQ ρ

d !
:=

∏
�∈ρ

1 − Q
1 − Qh(�) =

∏
�∈ρ

1
1 + Q + · · · + Qh(�)−1 (5-1)

The classical hook-length formula says that

h( )= 6
dim ρ = d !

/ ∏
�∈ρ

h(�).

Thus formula (5-1) specializes to the ordinary dimension of ρ when Q = 1.

The level (0, 0) TQFT. The main result is that the level (0, 0) TQFT completely
collapses to the Dijkgraaf TQFT D. In particular, we have explicit formulas for
the semisimple basis of the Frobenius algebra. The basis vectors are indexed by
irreducible representations of the symmetric group Sd .

Lemma 5.1. For the antidiagonal action, the level (0, 0) series have no nonzero
terms of positive degree in u.

Proof. (Essentially by Bryan and Pandharipande.) Endow C with the C∗ action

α · z = αnz.

This corresponds to considering C as an equivariant line bundle over a point, whose
first equivariant Chern class is ns. We denote such an equivariant line bundle by
Cns .

The level (0, 0) partition functions are, up to some pure weight factor, con-
structed from integrals of the form∫

Adm(h
d

−→X,(η1x1,...,ηr xr ))

eeq(E∗
⊗ Cs)eeq(E∗

⊗ C−s)∫
Adm(h

d
−→X,(η1x1,...,ηr xr ))

(−1)heeq((E∗
⊕ E)⊗ Cs).

Equivariant Chern classes of a bundle also are products of ordinary Chern classes
times the appropriate factor of s. But by Mumford’s relation c(E)c(E∗) = 1, all
Chern classes (but the 0-th) of the bundle E∗

⊕ E vanish. Hence the only possibly
nonvanishing integrals occur when the dimension of the moduli space is 0, which
then constitutes the degree 0 term in our generating functions. �
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Thus we have already found a semisimple basis for the corresponding Frobenius
algebra in (2-3). All we need to do is adjust for the equivariant parameter. Let ρ be
an irreducible representation of the symmetric group Sd , with character function
χρ ; a semisimple basis for the level (0, 0) TQFT is given by the vectors

eρ =
dim ρ

d !

∑
η`d

(s)`(η)−dχρ(η)eη.

Notation. If η = (η1, . . . , ηr ) is a partition, we define

n(η) := 0η1 + 1η2 + · · · + (r−1)ηr .

Theorem 5.2. The partition functions corresponding to surfaces without boundary
in the weighted TQFT are given in closed form by

Ad(g|k1, k2)= (−1)asb
∑
ρ

(
d !

dim ρ

)2g−2( dim ρ

dimQ ρ

)k1+k2

Qn(ρ)k1+n(ρ′)k2,

where a := d(g−1−k2), b := d(2g−2−k1−k2), Q := eiu , and ρ is an irreducible
representation of the symmetric group Sd , with dual representation ρ ′.

Note. By setting Q = 1, which corresponds to u = 0, we recover the classical
formula (2-4) counting unramified covers of a genus g topological surface. Thus
any TQFT naturally embedded in our weighted TQFT constitutes a one-parameter
deformation of the Dijkgraaf TQFT.

Proof of Theorem 5.2. By Fact 2.7, to completely describe the structure of a semi-
simple weighted TQFT it suffices to evaluate the following quantities:

– the eρ-eigenvalue λρ of the genus-adding operator, or, equivalently, the inverse
of the counit evaluated on eρ ;

– the eρ-eigenvalue µρ of the left level-subtracting operator, or, equivalently,
the coefficient of eρ in the (0,−1) Calabi–Yau cap;

– the eρ-eigenvalue µρ of the right level-subtracting operator, or, equivalently,
the coefficient of eρ in the (−1, 0) Calabi–Yau cap.

The computation of λρ coincides exactly with the one in [Bryan and Pandhari-
pande 2004]. We therefore omit it.

To compute µρ and µρ we first observe that the tensors associated to the Calabi–
Yau caps in our theory are scalar multiples of the tensors in Bryan and Pandhari-
pande’s theory:

U(CY cap)= 2d
(

sin
u
2

)d
BP(CY cap)=

(1 − Q)d

Q(d/2)(−i)d
BP(CY cap).
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This, together with the formulas in [Bryan and Pandharipande 2004, page 36],
implies that

µρ = sd d !

dim ρ
(1 − Q)dsρ(Q), µρ = (−s)d

d !

dim ρ
(1 − Q)dsρ′(Q),

where sρ denotes the Schur function of the representation ρ, and is defined to be
(see [Macdonald 1995])

sρ(Q) := Qn(ρ)
∏
�∈ρ

1
1 − Qh(�) .

Plugging this in, we obtain

µρ = sd
(

d !

dim ρ

)
(1 − Q)d Qn(ρ)

∏
�∈ρ

1
1 − Qh(�)

= sd
(

d !

dim ρ

)
Qn(ρ)

∏
�∈ρ

1 − Q
1 − Qh(�) = sd

(
dimQ ρ

dim ρ

)
Qn(ρ),

µρ = (−s)d
(

d !

dim ρ

)
(1 − Q)d Qn(ρ′)

∏
�∈ρ′

1
1 − Qh(�)

= sd
(

d !

dim ρ

)
Qn(ρ′)

∏
�∈ρ′

1 − Q
1 − Qh(�) = sd

(
dimQ ρ

dim ρ

)
Qn(ρ′).

The theorem is then obtained by using these coefficients in the formula given by
Fact 2.7. �
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