
Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

mathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishers

1

Volume 1

2007
No. 2

Surfaces over a p-adic field with infinite
torsion in the Chow group of 0-cycles

Masanori Asakura and Shuji Saito





ALGEBRA AND NUMBER THEORY 1:2(2007)

Surfaces over a p-adic field with infinite
torsion in the Chow group of 0-cycles

Masanori Asakura and Shuji Saito

We give an example of a projective smooth surface X over a p-adic field K
such that for any prime ` different from p, the `-primary torsion subgroup of
CH0(X), the Chow group of 0-cycles on X , is infinite. A key step in the proof
is disproving a variant of the Bloch–Kato conjecture which characterizes the
image of an `-adic regulator map from a higher Chow group to a continuous
étale cohomology of X by using p-adic Hodge theory. With the aid of the theory
of mixed Hodge modules, we reduce the problem to showing the exactness of
the de Rham complex associated to a variation of Hodge structure, which is
proved by the infinitesimal method in Hodge theory. Another key ingredient is
the injectivity result on the cycle class map for Chow group of 1-cycles on a
proper smooth model of X over the ring of integers in K , due to K. Sato and the
second author.

1. Introduction

Let X be a smooth projective variety over a base field K and let CHm(X) be the
Chow group of algebraic cycles of codimension m on X modulo rational equiv-
alence. In case K is a number field, there is a folklore conjecture that CHm(X)

is finitely generated, which in particular implies that its torsion part CHm(X)tor

is finite. The finiteness question has been intensively studied by many authors,
particularly for the case m = 2 and m = dim(X); see the nice surveys [Otsubo
2001; Colliot-Thélène 1995].

When K is a p-adic field (namely the completion of a number field at a finite
place), Rosenschon and Srinivas [2007] have constructed the first example where
CHm(X)tor is infinite. They prove that there exists a smooth projective fourfold
X over a p-adic field such that the `-torsion subgroup CH1(X)[`] (see Notation
on p. 166) of CH1(X), the Chow group of 1-cycles on X , is infinite for each
` ∈ {5, 7, 11, 13, 17}.

This paper gives an example of a projective smooth surface X over a p-adic
field such that for any prime ` different from p, the `-primary torsion subgroup

MSC2000: primary 14C25; secondary 14G20, 14C30.
Keywords: Chow group, torsion 0-cycles on surface.
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CH0(X){`} (see Notation on p. 166) of CH0(X), the Chow group of 0-cycles on
X , is infinite. Here we note that for X as above, CH0(X){`} is known to always be
of finite cotype over Z`, namely the direct sum of a finite group and a finite number
of copies of Q`/Z`. This fact follows from Bloch’s exact sequence (2-3). Thus
our example presents infinite phenomena of different nature from the example in
[Rosenschon and Srinivas 2007]. Another noteworthy point is that the phenomena
discovered in our example happen rather generically.

To make it more precise, we prepare a notion of “generic surfaces” in P3. Let

M ⊂ P
(
H 0(P3

Q, OP(d)
)
∼= P

(d+3)(d+2)(d+1)/6−1
Q

be the moduli space over Q of the nonsingular surfaces in P3
Q

(the subscript Q

indicates the base field), and let

f : X−→ M

be the universal family over M . For X ⊂ P3
K , a nonsingular surface of degree d

defined over a field K of characteristic zero, there is a morphism t : SpecK → M
such that X ∼= X×M SpecK . We call X generic if t is dominant, that is, t factors
through the generic point of M . In other words, X is generic if it is defined by an
equation

F =
∑

I

aI z I , (aI ∈ K )

satisfying the following condition:

(∗) aI 6= 0 for all I and {aI /aI0}I 6=I0 are algebraically independent over Q where
I0 = (1, 0, 0, 0).

Here [z0 : z1 : z2 : z3] is the homogeneous coordinate of P3, I = (i0, . . . , i3) are
multiindices and z I

= zi0
0 · · · z

i3
3 .

The main theorem is

Theorem 1.1. Let K be a finite extension of Qp and X ⊂P3
K a nonsingular surface

of degree d ≥ 5. Suppose that X is generic and has a projective smooth model
XOK ⊂ P3

OK
over the ring OK of integers in K . Let r be the Picard number (that is

the rank of the Néron–Severi group) of the smooth special fiber of XOK . Then we
have

CH0(X){`} ∼= (Q`/Z`)
⊕r−1
⊕ (finite group)

for ` 6= p.

One can construct a surface with infinite torsion in the Chow group of 0-cycles
in the following way. Let k be the residue field of K . Let Y be a smooth surface
of degree d ≥ 5 in P3

k defined by an equation
∑

I cI z I (cI ∈ k) such that the Picard
number r ≥ 2. There exist such surfaces for each d. (For example if (p, d) = 1,
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one may choose a Fermat type surface defined by zd
0 − zd

1 + zd
2 − zd

3 . Then the
intersection of Y with the hyperplane H ⊂P3

k defined by z0− z1 is not irreducible,
so r ≥ 2.) Take any lifting c̃I ∈ OK and choose aI ∈ OK with ord(aI ) > 0 for
each index I such that {aI }I are algebraically independent over Q(c̃I ), the subfield
of K generated over Q by c̃I for all I . Let X ⊂ P3

K be the surface defined by
the equation

∑
I c̃I z I

+
∑

I aI z I . Then it is clear that X is generic and has a
smooth projective model over OK whose the special fiber is Y . Since Y has the
Picard number r ≥ 2, CH0(X) has an infinite torsion subgroup by Theorem 1.1.
It is proved in [Raskind 1989] that if the special fiber satisfies the Tate conjecture
for divisors, the geometric Picard number is congruent to d modulo 2. Thus if d
is even, CH0(X) has an infinite torsion subgroup after a suitable unramified base
change. Theorem 1.1 may be compared with the finiteness results [Colliot-Thélène
and Raskind 1991] and [Raskind 1989] on CH0(X)tor for a surface X over a p-adic
field under the assumption that H 2(X, OX )= 0 or, more generally, that the rank of
the Néron–Severi group does not change by reduction. For a nonsingular surface
X ⊂P3

K of degree d ≥ 1, the last condition is satisfied if d ≤ 3. Hence Theorem 1.1
leaves us an interesting open question whether there is an example of a nonsingular
surface X ⊂ P3

K of degree 4 for which CH0(X){`} is infinite.
A distinguished role is played in the proof of Theorem 1.1 by the `-adic regulator

map

ρX : CH2(X, 1)⊗Q` −→ H 1
cont

(
Spec(K ), H 2(X K , Q`(2))

)
(X K = X ×K K )

from higher Chow group to continuous étale cohomology [Jannsen 1988], where
K is an algebraic closure of K and ` is a prime different from ch(K ). It is known
that the image of ρX is contained in the subspace

H 1
g (Spec(K ), V )⊂ H 1

cont(Spec(K ), V )
(
V = H 2(X K , Q`(2))

)
introduced by Bloch and Kato [1990]. If ` 6= p this is obvious since H 1

g = H 1 by
definition. For `= p this is a consequence of a fundamental result in p-adic Hodge
theory, which confirms that every representation of G K =Gal(K/K ) arising from
the cohomology of a variety over K is a de Rham representation; see the discussion
after [Bloch and Kato 1990, (3.7.4)].

When K is a number field or a p-adic field, it is proved in [Saito and Sato 2006a]
that in case the image of ρX coincides with H 1

g (Spec(K ), V ), CH2(X){`} is finite.
Bloch and Kato conjecture that it should be always the case if K is a number field.

The first key step in the proof of Theorem 1.1 is to disprove the variant of the
Bloch–Kato conjecture for a generic surface X ⊂ P3

K over a p-adic field K (see
Theorem 3.6). In terms of Galois representations of G K = Gal(K/K ), our result
implies the existence of a 1-extension of Q`-vector spaces with continuous G K -
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action
0→ H 2(X K , Q`(2)

)
→ E→Ql→ 0, (1-1)

such that E is a de Rham representation of G K but that there is no 1-extension of
motives over K ,

0→ h2(X)(2)→ M→ h
(
Spec(K )

)
→ 0,

which gives rise to (1-1) under the realization functor. The rough idea of the proof
of the first key result is to relate the `-adic regulator map to an analytic regulator
map by using the comparison theorem for étale and analytic cohomology and then
to show that the analytic regulator map is the zero map. With the aid of the theory
of mixed Hodge modules [Saito 1990], this is reduced to showing the exactness
of the de Rham complex associated to a variation of Hodge structure, which is
proved by the infinitesimal method in Hodge theory. This is done in Section 3
after in Section 2, we review some basic facts on the cycle class map for higher
Chow groups.

Another key ingredient is the injectivity result on the cycle class map for the
Chow group of 1-cycles on a proper smooth model of X over the ring OK of
integers in K due to Sato and the second author [Saito and Sato 2006b]. It plays
an essential role in deducing the main result, Theorem 1.1 from the first key result,
which is done in Section 4.

Finally, in the Appendix, we will apply our method to produce an example of a
curve C over a p-adic field such that SK1(C)tor is infinite.

Notation. For an abelian group M , we denote by M[n] (respectively M/n) the
kernel (respectively cokernel) of multiplication n. For a prime number ` we put

M{`} :=
⋃

n

M[`n
], Mtor :=

⊕
`

M{`}.

For a nonsingular variety X over a field, CH j (X, i) denotes Bloch’s higher Chow
groups. We write CH j (X) := CH j (X, 0) for the (usual) Chow groups.

2. Review of the cycle class map and `-adic regulator

In this section X denotes a smooth variety over a field K and n denotes a positive
integer prime to ch(K ).

By [Geisser and Levine 2001] we have the cycle class map

ci, j
ét : CHi (X, j, Z/nZ)→ H 2i− j

ét

(
X, Z/nZ(i)

)
,

where the right hand side is the étale cohomology of X with coefficients µ⊗i
n , Tate

twist of the sheaf of n-th roots of unity. The left hand side is Bloch’s higher Chow
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group with finite coefficient which fits into the exact sequence

0→ CHi (X, j)/n→ CHi (X, j, Z/nZ)→ CHi (X, j − 1)[n] → 0. (2-1)

In this paper we are only concerned with the map

cét = c2,1
ét : C H 2(X, 1, Z/nZ)→ H 3

ét
(
X, Z/nZ(2)

)
. (2-2)

By [Bloch and Ogus 1974] it is injective and its image is equal to

N H 3
ét(X, Z/nZ(2)

)
= Ker

(
H 3

ét
(
X, Z/nZ(2)

)
→ H 3

ét(Spec(K (X)
)
, Z/nZ(2)

))
,

where K (X) is the function field of X . In view of (2-1) it implies an exact sequence

0−→ CH2(X, 1)/n
cét
−→ N H 3

ét
(
X, Z/nZ(2)

)
−→ CH2(X)[n] −→ 0. (2-3)

We also need the cycle map to the continuous étale cohomology group

ccont : CH2(X, 1)−→ H 3
cont

(
X, Z`(2)

)
(see [Jannsen 1988]), where ` is a prime different from ch(K ). In case K is a
p-adic field, we have

H 3
cont

(
X, Z`(2)

)
= lim
←−

n
H 3

ét
(
X, Z/`nZ(2)

)
and ccont is induced by cét by passing to the limit. We have the Hochschild–Serre
spectral sequence

E i, j
2 = H i

cont
(
Spec(K ), H j (X K , Z`(2))

)
⇒ H i+ j

cont (X, Z`(2)). (2-4)

If K is finitely generated over the prime subfield and X is proper smooth over K ,
the Weil conjecture proved by Deligne implies that

H 0(Spec(K ), H 3(X K , Q`(2))
)
= 0.

The same conclusion holds if K is a p-adic field and X is proper smooth having
good reduction over K . (If ` 6= p this follows from the proper smooth base change
theorem for étale cohomology. If ` = p one uses comparison theorems between
p-adic étale and crystalline cohomology and the Weil conjecture for crystalline
cohomology) Thus we get under these assumptions the map

ρX : CH2(X, 1)−→ H 1
cont

(
Spec(K ), H 2(X K , Q`(2))

)
(2-5)

as the composite of ccont⊗Q` and an edge homomorphism

H 3
cont(X, Q`(2))→ H 1

cont
(
Spec(K ), H 2(X K , Q`(2))

)
.



168 Masanori Asakura and Shuji Saito

For later use, we need an alternative definition of cycle class maps. For an integer
i ≥ 1, we denote by Ki the sheaf on XZar, the Zariski site on X , associated to the
presheaf U 7→ Ki (U ). By [Landsburg 1991, 2.5], we have canonical isomorphisms

CH2(X, 1)' H 1
Zar(X, K2), CH2(X, 1, Z/nZ)' H 1

Zar(X, K2/n). (2-6)

Let ε ét
: X ét→ XZar be the natural map of sites and put

Hi
ét(Z/nZ(r))= Riε ét

∗
µ⊗r

n .

The universal Chern classes in the cohomology groups of the simplicial classifying
space for GLn (n ≥ 1) give rise to higher Chern class maps on algebraic K -theory;
see [Gillet 1981; Schneider 1988]. It gives rise to a map of sheaves

Ki/n −→Hi
ét(Z/nZ(i)). (2-7)

By [Merkurjev and Suslin 1982] it is an isomorphism for i = 2 and induces an
isomorphism

H 1
Zar(X, K2/n)

∼=
−→ H 1

Zar
(
X, H2

ét(Z/nZ(2))
)
. (2-8)

By the spectral sequence

E pq
2 = H p

Zar

(
X, H

q
ét(Z/nZ(2))

)
H⇒ H p+q

ét (X, Z/nZ(2)),

together with the fact
H p

Zar

(
X, H

q
ét(Z/nZ(2))

)
= 0

for p > q shown by Bloch and Ogus [1974], we get an injective map

H 1
Zar

(
X, H2

ét(Z/nZ(2))
)
−→ H 3

ét(X, Z/nZ(2)).

Again by the Bloch–Ogus theory the image of the above map coincides with the
coniveau filtration N H 3

ét(X, Z/nZ(2)). Combined with (2-6) and (2-8) we thus get
the map

cét : CH2(X, 1, Z/nZ)
∼=
−→ H 1

Zar(X, K2/n)

∼=
−→ N H 3

ét
(
X, Z/nZ(2)

) ⊂
−→ H 3

ét
(
X, Z/nZ(2)

)
.

This agrees with the map (2-2); see [Colliot-Thélène et al. 1983, Proposition 1].

Now we work over the base field K = C. Let Xan be the site on the underlying
analytic space X (C) endowed with the ordinary topology. Let εan

: Xan→ XZar be
the natural map of sites and put

H i
an(Z(r))= Riεan

∗
Z(r)

(
Z(r)=

(
2π
√
−1

)r
Z
)
.
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The higher Chern class map then gives a map of sheaves

Ki −→Hi
an(Z(i)). (2-9)

By the same argument as before, it induces a map

can : CH2(X, 1)
∼=
−→ H 1

Zar(X, K2)−→ H 3
an(X (C), Z(2)).

Lemma 2.1. The image of can is contained in F2 H 3
an(X (C), C), the Hodge filtra-

tion defined in [Deligne 1971]. In particular if X is complete, the image is the
torsion.

Proof. Let Hr
D(Z(i)) be the sheaf on XZar associated to a presheaf

U 7→ H r
D(U, Z(i))

where H•D denotes Deligne–Beilinson cohomology; see [Esnault and Viehweg
1988, 2.9]. Higher Chern class maps to Deligne–Beilinson cohomology give rise
to the map K2→H2

D(Z(2)) and can factors as in the commutative diagram

H 1
Zar(X, K2) −−−→ H 1

Zar

(
X, H2

D(Z(2))
)
−−−→ H 1

Zar

(
X, H2

an(Z(2))
)

a
y y

H 3
D(X, Z(2))

b
−−−→ H 3

an(X (C), Z(2)).

Here the map a is induced from the spectral sequence

E pq
2 = H p

Zar

(
X, H

q
D(Z(2))

)
H⇒ H p+q

D (X, Z(2))

in view of the fact that H p
Zar(X, H1

D(Z(2))) = 0 for all p > 0, since H1
D(Z(2)) ∼=

C/Z(2) (constant sheaf). Since the image of b is contained in F2 H 3
an(X (C), C)

(see [Esnault and Viehweg 1988, 2.10]), so is the image of can. �

Lemma 2.2. We have the diagram

CH2(X, 1)
can
−−−→ H 3

an
(
X (C), Z(2)

)y y
CH2(X, 1, Z/nZ)

cét
−−−→ H 3

ét

(
X, Z/nZ(2)

)
.

Here the right vertical map is the composite

H 3
an

(
X (C), Z(2)

)
→ H 3

an
(
X (C), Z(2)⊗Z/nZ

) ∼=
−→ H 3

ét
(
X, Z/nZ(2)

)
and the isomorphism comes from the comparison isomorphism between étale co-
homology and ordinary cohomology (SGA 41/2 = [Deligne 1977], Arcata, 3.5)
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together with the isomorphism

Z(1)⊗Z/nZ' (εan)∗µn

given by the exponential map.

Proof. This follows from the compatibility of (2-7) and (2-9), namely the commu-
tativity of the diagram

Ki −−−→ Hi
an

(
Z(i)

)y y
Ki/n −−−→ Hi

ét

(
Z/nZ(i)

)
,

and it follows from the compatibility of the universal Chern classes [Gillet 1981;
Schneider 1988]. �

3. Counterexample to the Bloch–Kato conjecture over p-adic field

In this section K denotes a p-adic field and let X be a proper smooth surface over
K . We fix a prime ` (possibly `= p) and consider the map (2-5)

ρX : CH2(X, 1)−→ H 1
cont(Spec(K ), V )

(
V = H 2

ét(X K , Q`(2))
)
. (3-1)

Define the primitive part Ṽ of V by

Ṽ := H 2
ét(X K , Q`(2))/V0, V0 = [HX ]⊗Q`(1), (3-2)

where [HX ] ∈ H 2
cont(X K , Q`(1)) is the cohomology class of a hyperplane section.

With the notation

Ṽ ' Ker
(
H 2

ét(X K , Q`(2))
∪[HX ]
−→ H 4

ét(X K , Q`(3))
)
,

we get a decomposition as G K -modules:

V = Ṽ ⊕ V0. (3-3)

Let ρ̃ : CH2(X, 1)−→ H 1
cont(Spec(K ), Ṽ ) be the induced map.

Theorem 3.1. Let X ⊂P3
K be a generic smooth surface of degree d ≥ 5. Then ρ̃ is

the zero map for arbitrary `.

Remark 3.2. (1) This is an analogue of [Voisin 1995, 1.6], where she worked on
Deligne–Beilinson cohomology.

(2) Bloch and Kato [1990] considers regulator maps such as (3-1) for a smooth
projective variety over a number field and conjectures that its image coincides
with H 1

g . We will see later (see Theorem 3.6) that the variant of the conjecture
over a p-adic field is false in general.
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(3) The construction of a counterexample mentioned in (2) hinges on the assump-
tion that the surface X ⊂P3

K is generic. One may still ask whether the image
of l-adic regulator map coincides H 1

g for a proper smooth variety X over a
p-adic field when X is defined over a number field.

Proof. Let f : X→ M be as in the introduction and let t : Spec(K )→ M be a
dominant morphism such that X ' X×M Spec(K ). For a morphism S → M of
smooth schemes over Q, let fS : X S = X×M S→ S be the base change of f . The
same construction of (2-5) gives rise to the regulator map

ρS : CH2(X S, 1)→ H 1
cont(S, VS),

where VS = R2( fS)∗Ql(2) is a smooth Ql-sheaf on S. Define the primitive part of
VS ,

ṼS = R2( fS)∗Ql(2)/[H ]⊗Ql(1),

where [H ] ∈ H 0(S, R2( fS)∗Ql(1)) is the class of a hyperplane section. Let

ρ̃S : CH2(X S, 1)→ H 1
cont(S, ṼS)

be the induced map. Note that

CH2(X, 1)= lim
−→

S

CH2(X S, 1),

where S→ M ranges over the smooth morphisms which factor t : Spec(K )→ M .
We have for such S the commutative diagram

CH2(X S, 1)
ρ̃S
−−−→ H 1

cont(S, ṼS)y y
CH2(X, 1)

ρ̃
−−−→ H 1

cont(Spec(K ), Ṽ ).

Thus it suffices to show
H 1

cont(S, ṼS)= 0.

Without loss of generality we suppose S is an affine smooth variety over a finite
extension L of Q.

Claim 3.3. Assume d ≥ 4. The natural map

H 1
cont(S, ṼS)−→ H 1

ét(SQ, ṼS) (SQ := S×L Spec(Q))

is injective.

Indeed, by the Hochschild–Serre spectral sequence, it is enough to see

H 0
ét(SQ, ṼS)= 0,

which follows from [Asakura and Saito 2006b, Theorem 6.1(2)].



172 Masanori Asakura and Shuji Saito

By SGA 41/2, Arcata, Cor. (3.3) and (3.5.1), we have

H 1
ét(SQ, ṼS)∼= H 1

ét(SC, ṼS)' H 1
an(S(C), Ṽ an

S )⊗Ql (SC := S×L Spec(C)),

where Ṽ an
S is the primitive part of V an

S = R2( f an
S )∗Q(2) with f an

S : (X SC
)an→ (SC)an,

the natural map of sites. By definition Ṽ an
S is a local system on S(C) whose fiber

over s ∈ S(C) is the primitive part of H 2
an(Xs(C), Q(2)) for Xs , the fiber of X S→ S

over s. Due to Lemma 2.2, it suffices to show the triviality of the image of the map

ρ̃an
S : CH2(X SC

, 1)−→ H 1
an(S(C), Ṽ an

S )

which is induced from

can : CH2(X SC
, 1)−→ H 3

an(X S(C), Q(2))

by using the natural map

H 3
an(X S(C), Q(2))→ H 1

an(S(C), V an
S )

arising from the Leray spectral sequence for f an
S : (X SC

)an→ (SC)an and the van-
ishing R3( f an

S )∗Q(2)= 0.

Claim 3.4. The image of ρ̃an
S is contained in the Hodge filtration

F2 H 1
an(S(C), Ṽ an

S ⊗C)

defined by the theory of Hodge modules [Saito 1990, §4].

This follows from the functoriality of Hodge filtrations and Lemma 2.1.
It is quite complicated to describe the Hodge filtration on H 1

an(S(C), Ṽ an
S ⊗C)

precisely. However, all that we need is the following property:

Claim 3.5. For integers m, p ≥ 0 there is a natural injective map

F p H m
an(S(C), Ṽ an

S ⊗C)→ H m
Zar(SC, G p DR(Ṽ an

S ))

where G p DR(Ṽ an
S ) is the complex of Zariski sheaves on SC

F p H 2
dR(X S/S)prim⊗OSC

→ F p−1 H 2
dR(X S/S)prim⊗�1

SC/C→

· · · → F p−r H 2
dR(X S/S)prim⊗�r

SC/C→ F p−r H 2
dR(X S/S)prim⊗�r+1

SC/C
→ · · · .

Here H•dR(X S/S) denotes the de Rham cohomology of X S/S, and H•dR(X S/S)prim

is its primitive part defined by the same way as before, and the maps are induced
from the Gauss–Manin connection thanks to Griffiths transversality.

This follows from [Asakura 2002, Lemma 4.2]. We note that its proof hinges
on the theory of mixed Hodge modules. The key points are Deligne’s compari-
son theorem [1970, §6] for algebraic and analytic cohomology of a vector bundle
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with integrable connection with regular singularities and the degeneration of Hodge
spectral sequence for cohomology with coefficients; see [Saito 1990, (4.1.3)].

By the above claims we are reduced to showing the exactness at the middle term
of the complex

F2 H 2
dR(X S/S)prim⊗OSC

−→ F1 H 2
dR(X S/S)prim⊗�1

SC/C

−→ H 2
dR(X S/S)prim⊗�2

SC/C. (3-4)

This is proved by the infinitesimal method in Hodge theory. We sketch the proof.
Let f : X S→ S be the natural morphism. The assertion follows from the exactness
at the middle term of the complex

f∗�2
X S/S ⊗OSC

−→ (R1 f∗�1
X S/S)prim⊗�1

SC/C −→ R2 f∗OX S ⊗�2
SC/C (3-5)

and the injectivity of the complex

f∗�2
X S/S ⊗�1

SC/C −→ (R1 f∗�1
X S/S)prim⊗�2

SC/C. (3-6)

These complexes are induced by the complex (3-4) by Griffiths transversality. If

S = M ⊂ P
(
H 0(P3

Q, OP(d))
)
,

these assertions are proved as follows. Let P = C[z0, z1, z2, z3], and Pn
⊂ P

be the subspace of the homogeneous polynomials of degree n. Take a point x ∈
M(C) and choose F ∈ Pd which defines the surface corresponding to x . Let
R = C[z0, z1, z2, z3]/(∂ F/∂z0, · · · , ∂ F/∂z3) be the Jacobian ring and Rn

⊂ R be
the image of Pn in R. Then the fibers over x of (3-5) and (3-6) are identified with
the Koszul complexes

Rd−4
−→ R2d−4

⊗ (Rd)∗ −→ R3d−4
⊗

2
∧(Rd)∗, (3-7)

Rd−4
⊗ (Rd)∗ −→ R2d−4

⊗
2
∧(Rd)∗ (3-8)

where (Rd)∗ denotes the dual space of R and the maps are induced from the mul-
tiplication R⊗ R→ R. Then the Donagi symmetrizer lemma [Green 1994, p. 76]
implies that (3-7) is exact at the middle term if d ≥ 5 and (3-8) is injective if
d ≥ 3, which proves the desired assertion in case S=M . The assertion in case S is
dominant over M is reduced to the case S=M by an easy argument; see [Asakura
and Saito 2006a, §9]. This completes the proof of Theorem 3.1. �

Let OK ⊂ K be the ring of integers and k be the residue field. In order to construct
an example where the image of the regulator map

ρX : CH2(X, 1)
ρX
−→ H 1

cont(Spec(K ), V )
(
V = H 2

ét(X K , Q`(2))
)
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is not equal to H 1
g (Spec(K ), V ), we now take a proper smooth surface X having

good reduction over K so that X has a proper smooth model XOK over Spec(OK ).
We denote the special fiber by Y . By [Langer and Saito 1996, p. 341, diagram
below 5.7], there is a commutative diagram

CH2(X, 1)
ρ̃

−−−→ H 1
g (Spec(K ), V )y∂

y
CH1(Y )

α
−−−→ H 1

cont(Spec(K ), V )/H 1
f (Spec(K ), V )

(3-9)

where H 1
f ⊂ H 1

g ⊂ H 1
cont are the subspaces introduced by Bloch and Kato [1990]

and ∂ is a boundary map in localization sequence for higher Chow groups.

Theorem 3.6. Let X ⊂ P3
K be a generic smooth surface of degree d ≥ 5. Assume

that X has a projective smooth model XOK ⊂ P3
OK

over OK and let Y ⊂ P3
k be its

special fiber.

(1) The image of ∂⊗Q is contained in the subspace of CH1(Y )⊗Q generated by
the class [HY ] of a hyperplane section of Y .

(2) Let r be the Picard number of Y . Then

dimQ`

(
H 1

g (Spec(K ), V )/Image(ρX )
)
≥ r − 1.

Proof. Recall V = Ṽ ⊕ V0, a decomposition as G K -modules; see (3-3). Let W ⊂
C H 2(X, 1) be the image of Z·[HX ]⊗K× under the product map CH1(X)⊗K×→
CH2(X, 1). Then it is easy to see ρX induces an isomorphism

W ⊗Q` ' H 1
g (Spec(K ), V0)= H 1

cont(Spec(K ), V0)

and that ∂(W )=Z·[HY ]⊂CH1(Y ). Hence (1) follows from Theorem 3.1 together
with injectivity of α in (3-9), proved by [Langer and Saito 1996, Lemma 5–7].

As for (2) we first note from [Bloch and Kato 1990, 3.9] that

dimQ`

(
H 1

cont(Spec(K ), V0)/H 1
f (Spec(K ), V0)

)
= 1.

Moreover the same argument (except using the Tate conjecture) in the last part of
[Langer and Saito 1996, §5] shows

dimQ`
(CH1(Y )⊗Q`)≤ dimQ`

(H 1
g (Spec(K ), V )/H 1

f (Spec(K ), V )).

Hence (2) follows from (1). �

Remark 3.7. Let the assumption be as in Theorem 3.6. Then

dimQ`

(
H 1

g (Spec(K ), V )/Image(ρX )
)
≥

{
r−1, ` 6= p,

r−1+(h0,2
+h1,1

−1)[K :Qp], `= p,
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where h p,q
:=dimK Hq(X, �

p
X/K ) denotes the Hodge number. Moreover the equal-

ity holds if and only if the Tate conjecture for divisors on Y holds. This follows
from Theorem 3.1 and the computation of dimQ`

H 1
g (Spec(K ), V ) using [Bloch

and Kato 1990, 3.8 and 3.8.4]. The details are omitted.

4. Proof of Theorem 1.1

Let K be a p-adic field and OK ⊂ K the ring of integers and k the residue field.
Let us consider schemes

X
j

−−−→ XOK ←−−−
i

Yy y y
Spec(K ) −−−→ Spec(OK ) ←−−− Spec(k)

where all vertical arrows are projective and smooth of relative dimension 2 and
the diagrams are Cartesian. We have a boundary map in localization sequence for
higher Chow groups with finite coefficients

∂ : CH2(X, 1, Z/nZ)→ CH1(Y )/n.

For a prime number `, it induces

∂` : CH2(X, 1, Q`/Z`)→ CH1(Y )⊗Q`/Z`,

where CH2(X, 1, Q`/Z`) := lim
−→

n
CH2(X, 1, Z/`nZ).

Theorem 4.1. For ` 6= p := ch(k), ∂` is surjective and has finite kernel. Hence we
have

CH2(X, 1, Q`/Z`)∼= (Q`/Z`)
⊕r
+ (finite group),

where r is the rank of CH1(Y ).

Theorem 1.1 is an immediate consequence of Theorem 3.6(1), Theorem 4.1, and
the exact sequence (2-1)

0→ CH2(X, 1)⊗Q`/Z`→ CH2(X, 1, Q`/Z`)→ CH2(X){`} → 0.

Proof of Theorem 4.1. Write 3=Q`/Z`. We have a commutative diagram

CH2(X, 1, 3)
∂

−−−→CH1(Y )⊗3
i∗
−−−→CH2(XOK )⊗3

j∗
−−−→CH2(X)⊗3yc1

yc2

yc3

yc4

H 3
ét(X, 3(2))

∂ét
−−−→H 2

ét(Y, 3(1))
i∗
−−−→H 4

ét(XOK , 3(2))
j∗ét

−−−→H 4
ét(X, 3(2)).
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Here the upper exact sequence arises from the localization theory for higher Chow
groups with finite coefficient, as in [Levine 2001, Theorem 1.7], and the lower
from the localization theory for étale cohomology together with absolute purity
[Fujiwara 2002]. The vertical maps are étale cycle class maps. By Equation (2-3),
c1 is injective. Since

CH1(Y )= H 1(Y, Gm),

c2 is injective by the Kummer theory. It is shown in [Saito and Sato 2006b] that
c3 is an isomorphism. Hence the diagram reduces the proof of Theorem 4.1 to
showing that Ker(∂ét) and Ker( j∗ét) are finite. This is an easy consequence of the
proper base change theorem for étale cohomology and the Weil conjecture [Deligne
1980]. For the former we also use an exact sequence

H 3
ét(XOK , 3(2))→ H 3

ét(X, 3(2))
∂ét
−→ H 2

ét(Y, 3(1)). �

Appendix. SK1 of curves over p-adic fields

Let C be a proper smooth curve over a field K and consider CH2(C, 1). By [Lands-
burg 1991, 2.5], we have an isomorphism

CH2(C, 1)' H 1
Zar(C, K2)' SK1(C).

By definition

SK1(C)= Coker
(

K2(K (C))
δ
−→

⊕
x∈C0

K (x)×
)
,

where K (C) is the function field of C , C0 is the set of the closed points of C , and
K (x) is the residue field of x ∈C0, and δ is given by the tame symbols. The norm
maps K (x)×→ K× for x ∈ C0 induce

NC/K : SK1(C)→ K×.

We write V (C)= Ker(NC/K ).
When K is a p-adic field, it is known by class field theory for curves over a local

field [Saito 1985] that V (C) is a direct sum of its maximal divisible subgroup and a
finite group. An interesting question is whether the divisible subgroup is uniquely
divisible, or equivalently whether SK1(C)tor is finite. In case the genus g(C)= 1,
confirmative results have been obtained in [Sato 1985; Asakura 2006]. The purpose
of this section is to show that the method in the previous sections gives rise to an
example of a curve C of g(C)≥ 2 such that SK1(C)tor is infinite.

Let C be as in the beginning of this section and let n be a positive integer prime
to ch(K ). We have the cycle class map

cét : CH2(C, 2, Z/nZ)→ H 2
ét(C, Z/nZ(2)).
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The main result of [Merkurjev and Suslin 1982] implies that the above map is an
isomorphism. In view of the exact sequence (compare (2-1))

0→ CH2(C, 2)/n→ CH2(C, 2, Z/nZ)→ SK1(C)[n] → 0,

we get the exact sequence

0→ CH2(C, 2)/n→ H 2
ét(C, Z/nZ(2))→ SK1(C)[n] → 0; (A-2)

see [Suslin 1985, 23.4]. We will also use cycle class map to continuous étale
cohomology

ccont : CH2(C, 2)⊗Q`→ H 2
cont(C, Q`(2))

where ` is any prime number different from ch(K ). When K is a p-adic field, one
easily shows

H 2
cont(C, Q`(2))' H 1

cont
(
Spec(K ), H 1

ét(CK , Q`(2))
)

(A-3)

by using the Hochschild–Serre spectral sequence (2-4). Hence we get the map

ρC : CH2(C, 2)⊗Q`→ H 1
cont

(
Spec(K ), H 1

ét(CK , Q`(2))
)
. (A-4)

Note that ρC is trivial if C has good reduction and ` 6= p, since the group on the
right hand side is trivial. The last fact is a consequence of the proper smooth base
change theorem for étale cohomology and the weight argument.

Let Mg be the moduli space of tricanonically embedded projective nonsingular
curves of genus g ≥ 2 over the base field Q (compare [Deligne and Mumford
1969]), and let f : C→ Mg be the universal family.

Definition A.2. Let C be a proper smooth curve over a field K of characteristic
zero. We say C is generic if there is a dominant morphism Spec(K )→ Mg such
that C ∼= C×Mg Spec(K ).

Theorem A.3. Let K be a p-adic field and let C be a generic curve of genus g ≥ 2
over K . Then ρC is the zero map for all `. We have an isomorphism

SK1(C)tor ∼= H 2
ét(C, Q/Z(2))

(
:= lim
−→

n
H 2

ét(C, Z/nZ(2))
)
.

Remark A.4. Theorem A.3 is comparable with the main result of [Green and
Griffiths 2002] where they worked on Deligne–Beilinson cohomology.

Proof. The second assertion follows easily from the first in view of Equation (A-2).
The first assertion is shown by the same method as the proof of Theorem 3.1, with
the following fact from [Green and Griffiths 2002, §3] noted. Let S→ Mg be a
dominant smooth morphism, and put f : CS := C×Mg S→ S, then the map

f∗�1
CS/S −→ R1 f∗OCS ⊗�1

S/Q
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induced from the Gauss–Manin connection is injective. �

Corollary A.5. Let C be as in Theorem A.3. Assume the Jacobian variety J (C)

has semistable reduction over K . Let J be the Néron model of J with Js , its special
fiber. Let r be the dimension of the maximal split torus in Js . For a prime `, we
have

SK1(C){`} ' (Q`/Z`)
r` ⊕ (finite group),

where r` = r for ` 6= p and rp = r + 2g[K :Qp].

For example, SK1(C){`} is infinite for any ` if C is a Mumford curve (a proper
smooth curve with semistable reduction over K such that the irreducible compo-
nents are isomorphic to P1

k and intersect each other at k-rational points, where k is
the residue field of K ), which is generic in the sense of Definition A.2.

Corollary A.5 follows from Theorem A.3 and the next result:

Lemma A.6. Let C be proper smooth curve over a p-adic field K . Assume J (C)

has semistable reduction over K and let r` be as above. Then

dimQ`
H 2

cont(C, Q`(2))= dimQ`
H 1

cont(Spec(K ), V )= r`.
(
V = H 1

ét(CK , Q`(2))
)
.

Proof. The first equality follows from (A-3). By [Jannsen 1989, p. 354–355, Th. 5
and Cor. 7], we have

H 0
cont(Spec(K ), V )= 0, dimQ`

H 2
cont(Spec(K ), V )= r.

Lemma A.6 now follows from the computation of Euler–Poincaré characteristic
given in [Serre 1965, II 5.7]. �

Remark A.7. Using [Bloch and Kato 1990, 3.8.4] and the Gal(K/K )-module
structure of the Tate module of an abelian variety over K (see [Grothendieck 1972,
exposé IX]), one can show that

H 1
cont(Spec(K ), V )= H 1

g (Spec(K ), V ).

Hence, if C is a generic curve of genus greater than or equal to 2, then the map
ρC in Equation (A-4) does not surject onto H 1

g if r` ≥ 1. This gives another coun-
terexample to a variant of the Bloch–Kato conjecture for p-adic fields.
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