
Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

mathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishers

1

Volume 1

2007
No. 2

Singular homology of arithmetic schemes
Alexander Schmidt



ALGEBRA AND NUMBER THEORY 1:2(2007)

Singular homology of arithmetic schemes
Alexander Schmidt

We construct a singular homology theory on the category of schemes of finite
type over a Dedekind domain and verify several basic properties. For arithmetic
schemes we construct a reciprocity isomorphism between the integral singular
homology in degree zero and the abelianized modified tame fundamental group.

1. Introduction

The objective of this paper is to construct a reasonable singular homology theory
on the category of schemes of finite type over a Dedekind domain. Our main
criterion for “reasonable” was to find a theory which satisfies the usual properties of
a singular homology theory and which has the additional property that, for schemes
of finite type over Spec(Z), the group h0 serves as the source of a reciprocity map
for tame class field theory. In the case of schemes of finite type over finite fields
this role was taken over by Suslin’s singular homology; see [Schmidt and Spieß
2000]. In this article we motivate and give the definition of the singular homology
groups of schemes of finite type over a Dedekind domain and we verify basic
properties, e.g. homotopy invariance. Then we present an application to tame class
field theory.

The (integral) singular homology groups h∗(X) of a scheme of finite type over
a field k were defined by A. Suslin as the homology of the complex C∗(X) whose
n-th term is given by

Cn(X)= group of finite correspondences 1n
k −→ X,

where 1n
k = Spec(k[t0, . . . , tn]/

∑
ti = 1) is the n-dimensional standard simplex

over k and a finite correspondence is a finite linear combination
∑

ni Zi where
each Zi is an integral subscheme of X ×1n

k such that the projection Zi → 1n
k

is finite and surjective. The differential d : Cn(X) → Cn−1(X) is defined as the
alternating sum of the homomorphisms which are induced by the cycle theoretic
intersection with the 1-codimensional faces X ×1n−1

k in X ×1n
k . This definition

(see [Suslin and Voevodsky 1996]) was motivated by the theorem of Dold–Thom

MSC2000: primary 19E15; secondary 11R37.
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in algebraic topology. If X is an integral scheme of finite type over the field C

of complex numbers, then Suslin and Voevodsky show that there exists a natural
isomorphism

h∗(X,Z/nZ)∼= H sing
∗ (X (C),Z/nZ)

between the algebraic singular homology of X with finite coefficients and the topo-
logical singular homology of the space X (C). If X is proper and of dimension d,
singular homology is related to the higher Chow groups of [Bloch 1986] by the
formula hi (X) = CHd(X, i) [Voevodsky 2000]. A sheafified version of the pre-
ceding definition leads to the “triangulated category of motivic complexes” (ibid.),
which, mainly due to the work of Voevodsky, Suslin and Friedlander, has become
a powerful categorical framework for motivic (co)homology theories.

If the field k is finite and if X is an open subscheme of a projective smooth
variety over k, then we have the following relation to class field theory: there
exists a natural reciprocity homomorphism

rec : h0(X)−→ π t
1(X)

ab

from the 0-th singular homology group to the abelianized tame fundamental group
of X . The homomorphism rec is injective and has a uniquely divisible cokernel (see
[Schmidt and Spieß 2000] or Theorem 8.7 below for a more precise statement).

This connection to class field theory was the main motivation of the author to
study singular homology of schemes of finite type over Dedekind domains. Let
S = Spec(A) be the spectrum of a Dedekind domain and let X be a scheme of
finite type over S. The naive definition of singular homology as the homology of
the complex whose n-th term is the group of finite correspondences 1n

S → X is
certainly not the correct one. For example, according to this definition, we would
have h∗(U ) = 0 for any open subscheme U $ S. Philosophically, a “standard
n-simplex” should have dimension n but 1n

S is a scheme of dimension (n + 1).
If the Dedekind domain A is finitely generated over a field, then one can define

the homology of X as its homology regarded as a scheme over this field.
The striking analogy between number fields and function fields in one variable

over finite fields, as it is known from number theory, led to the philosophy that it
should be possible to consider any Dedekind domain A, i.e. also if it is of mixed
characteristic, as a curve over a mysterious “ground field” F(A). In the case A = Z

this “field” is sometimes called the “field with one element” F1. A more pre-
cise formulation of this idea making the philosophy into real mathematics and, in
particular, a reasonable intersection theory on “Spec(Z ⊗F1 Z)” would be of high
arithmetic interest. With respect to singular homology, this philosophy predicts
that, for a scheme X of finite type over Spec(A), the groups h∗(X) should be the
homology groups of a complex whose n-th term is given as the group of finite
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correspondences 1n
F(A) → X . Unfortunately, we do not have a good definition of

the category of schemes over F(A). To overcome this, let us take a closer look on
the situation of schemes of finite type over a field.

Let k be a field, C a smooth proper curve over k and let X be any scheme of
finite type over k together with a morphism p : X → C . Consider the complex
C∗(X; C) whose n-th term is given as

Cn(X; C)= free abelian group over closed integral subschemes Z ⊂ X ×1n
k =

X ×C 1
n
C such that the restriction of the projection X ×C 1

n
C →1n

C
to Z induces a finite morphism Z → T ⊂1n

C onto a closed integral
subscheme T of codimension 1 in1n

C intersecting all faces1m
C ⊂1n

C
properly.

Then we have a natural inclusion

C∗(X) ↪−→ C∗(X; C)

and the definition of C∗(X; C) only involves the morphism p : X → C but not the
knowledge of k. Moreover, if X is affine, then both complexes coincide.

So, in the general case, having no theory of schemes over “F(A)” at hand, we use
the above complex in order to define singular homology. With the case S =Spec(Z)
as the main application in mind, we define the singular homology of a scheme of
finite type over the spectrum S of a Dedekind domain as the homology h∗(X; S)
of the complex C∗(X; S) whose n-th term is given by

Cn(X; S)= free abelian group over closed integral subschemes Z ⊂ X×S1
n
S such

that the restriction of the projection X ×S 1
n
S →1n

S to Z induces a
finite morphism Z → T ⊂ 1n

S onto a closed integral subscheme T
of codimension 1 in 1n

S intersecting all faces 1m
S ⊂1n

S properly.

In this paper we collect evidence that the so-defined groups h∗(X; S) establish a
reasonable homology theory on the category of schemes of finite type over S.

The groups h∗(X; S) are covariantly functorial with respect to scheme mor-
phisms and, on the category of smooth schemes over S, they are functorial with
respect to finite correspondences. If the structural morphism p : X → S factors
through a closed point P of S, then our singular homology coincides with Suslin’s
singular homology of X considered as a scheme over the field k(P).

In Section 3, we calculate the singular homology h∗(X; S) if X is regular and of
(absolute) dimension 1. The result is similar to that for smooth curves over fields.
Let X be a regular compactification of X over S and Y = X − X . Then

hi (X; S)∼= H 1−i
Zar (X ,GX ,Y ),

where GX ,Y = ker(Gm,X → i∗Gm,Y ).
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In Section 4, we investigate homotopy invariance. We show that the natural
projection X ×S A1

S → X induces an isomorphism on singular homology. We also
show that the bivariant singular homology groups h∗(X, Y ; S) (see Section 2 for
their definition) are homotopy invariant with respect to the second variable.

In Section 5, we give an alternative characterization of the group h0, which
implies, when X is proper over S, a natural isomorphism h0(X; S) ∼= CH0(X),
where CH0(X) is the group of zero-cycles on X modulo rational equivalence.
Furthermore, we can verify the exactness of at least a small part of the expected
Mayer–Vietoris sequence associated to a Zariski-open cover of a scheme X .

For a proper, smooth (regular?) scheme X of absolute dimension d over the
spectrum S of a Dedekind domain, singular homology should be related to motivic
cohomology, defined for example by [Voevodsky 1998], by the formula

hi (X; S)∼= H 2d−i
Mot (X,Z(d)).

For schemes over a field k, this formula has been proven by Voevodsky under the
assumption that k admits resolution of singularities. In the situation of schemes
over the spectrum of a Dedekind domain it is true if X is of dimension 1 (Section 3).
For a general X it should follow from the fact that each among the following
complex homomorphisms is a quasi-isomorphism. The occurring complexes are
in each degree the free group over a certain set of cycles and we only write down
this set of cycles and also omit the necessary intersection conditions with faces.

C∗(X; S)y(1)
(Z ⊂ X × Ad

×1n projects finitely onto a codimension 1 subscheme in Ad
×1n)x(2)

(Z ⊂ X × Ad
×1n projects finitely onto a codimension 1 subscheme T ⊂ Ad

×1n

such that the projection T →1n is equidimensional of relative dimension (d − 1))y(3)
(Z ⊂ X × Ad

×1n equidimensional of relative dimension (d − 1) over 1n)x(4)
(Z ⊂ X × Ad

×1n projects quasifinite and dominant to X ×1n)y(5)
HMot(X,Z(d)[2d])
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It follows from the homotopy invariance of the bivariant singular homology groups
in the second variable, proven in Section 4, that (1) is a quasi-isomorphism. The
statement that the other occurring homomorphisms are also quasi-isomorphisms is
completely hypothetical at the moment. However, it is, at least partly, suggested
by the proof of the corresponding formula over fields; see [Voevodsky 2000, The-
orem 4.3.7; Friedlander and Voevodsky 2000, Theorems 7.1 and 7.4].

We give the following application of singular homology to higher dimensional
class field theory. Let X be a regular connected scheme, flat and of finite type
over Spec(Z). Sending a closed point of x of X to its Frobenius automorphism
Frobx ∈ π et

1 (X)
ab, we obtain a homomorphism

r : Z0(X)−→ π et
1 (X)

ab

from the group Z0(X) of zero-cycles on X to the abelianized étale fundamental
group π et

1 (X)
ab. The homomorphism r is known to have dense image. Assume for

simplicity that the set X (R) of real-valued points of X is empty. If X is proper,
then r factors through rational equivalence, defining a reciprocity homomorphism
rec : CH0(X)−→ π et

1 (X)
ab. The main result of the so-called unramified class field

theory for arithmetic schemes of Bloch and Kato–Saito [Kato and Saito 1983; Saito
1985] states that rec is an isomorphism of finite abelian groups.

If X is not proper, r no longer factors through rational equivalence. However,
consider the composite map

r ′
: Z0(X)

r
−→ π et

1 (X)
ab

−→−→ π t
1(X)

ab,

where π t
1(X)

ab is the quotient of π et
1 (X)

ab which classifies finite étale coverings of
X with at most tame ramification “along the boundary of a compactification” (see
Section 6). We show that r ′ factors through h0(X)= h0(X; Spec(Z)), defining an
isomorphisms

rec : h0(X)−→
∼ π t

1(X)
ab

of finite abelian groups. Hence the singular homology group h0(X) takes over the
role of CH0(X) if the scheme X is not proper.

This article was motivated by the work of A. Suslin, V. Voevodsky and E.M.
Friedlander on algebraic cycle theories for varieties over fields. The principal ideas
underlying this paper originate from discussions with Michael Spieß during the
preparation of our article [Schmidt and Spieß 2000]. The analogy between number
fields and function fields in one variable over finite fields predicted that there should
be a connection between the, yet to be defined, singular homology groups of a
scheme of finite type over Spec(Z) and its tame fundamental group, similar to that
we had proven for varieties over finite fields. The author wants to thank M. Spieß
for fruitful discussions and for his remarks on a preliminary version of this paper.
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The bulk of this article was part of the author’s Habilitationschrift at Heidelberg
University, seven years ago. However, I could not decide on publishing the material
before the envisaged application to class field theory was established. This is the
case now.

2. Preliminaries

Throughout this article we consider the category Sch(S) of separated schemes of
finite type over a regular connected and Noetherian base scheme S. Quite early,
we will restrict to the case that S is the spectrum of a Dedekind domain, which is
the main case of our arithmetic application. We write X ×Y = X ×S Y for the fibre
product of schemes X, Y ∈ Sch(S). Unless otherwise specified, all schemes will
be assumed equidimensional.

Slightly modifying the approach of [Fulton 1998, Section 20.1], we define the
(absolute) dimension of an integral scheme X ∈ Sch(S) in the following way. Let
d be the Krull dimension of S, K (X) the field of functions of X and T the closure
of the image of X in S. Then we put

dim X = trdeg(K (X)|K (T ))− codimS(T )+ d.

Examples 2.1. (1) Let S = Spec(Zp) and consider X = Spec(Zp[T ]/pT − 1)∼=

Spec(Qp), a divisor on A1
S = Spec(Zp[T ]). Then dim X = 1 in our terminol-

ogy, while dimKrull X = 0.

(2) The above notion of dimension coincides with the usual Krull dimension if
• S is the spectrum of a field,
• S is the spectrum of a Dedekind domain with infinitely many different

prime ideals (e.g. the ring of integers in a number field).

Note that this change in the definition of dimension does not affect the notion
of codimension. For a proof of the following lemma we refer to [Fulton 1998,
Lemma 20.1].

Lemma 2.2. (i) Let U ⊂ X be a nonempty open subscheme. Then

dim X = dim U.

(ii) Let Y be a closed integral subscheme of the integral scheme X over S. Then

dim X = dim Y + codimX (Y ).

(iii) If f : X → X ′ is a dominant morphism of integral schemes over S, then

dim X = dim X ′
+ trdeg(K (X)|K (X ′)).

In particular, dim X ′
≤ dim X with equality if and only if K (X) is a finite

extension of K (X ′).
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Recall that a closed immersion i : Y −→ X is called a regular imbedding of
codimension d if every point y of Y has an affine neighbourhood U in X such that
the ideal in OU defining Y ∩U is generated by a regular sequence of length d. We
say that two closed subschemes A and B of a scheme X intersect properly if

dim W = dim A + dim B − dim X

(or, equivalently, codimX W = codimX A + codimX B) for every irreducible com-
ponent W of A ∩ B. In particular, an empty intersection is proper. Suppose that
the immersion A → X is a regular imbedding. Then an inductive application
of Krull’s principal ideal theorem shows that every irreducible component of the
intersection A ∩ B has dimension greater or equal to dim A + dim B − dim X . In
this case improper intersection means that one of the irreducible components of the
intersection has a too large dimension. If B is a cycle of codimension 1, then the
intersection is proper if and only if B does not contain an irreducible component
of A.

The group of cycles Z r (X) (resp. Zr (X)) of a scheme X is the free abelian group
generated by closed integral subschemes of X of codimension r (resp. of dimension
r ). For a closed immersion i : Y → X , we have obvious maps i∗ : Zr (Y )→ Zr (X)
for all r . If i is a regular imbedding, we have a pullback map

i∗
: Z r (X)′ −→ Z r (Y ),

where Z r (X)′ ⊂ Z r (X) is the subgroup generated by closed integral subschemes
of X meeting Y properly. The map i∗ is given by

i∗(V )=

∑
i

ni Wi ,

where the Wi are the irreducible components of i−1(V ) = V ∩ Y and the ni are
the intersection multiplicities. For the definition of these multiplicities we refer to
[Fulton 1998, Section 6] (or, alternatively, one can use Serre’s Tor-formula [Serre
1965]).

The standard n-simplex1n
=1n

S over S is the closed subscheme in An+1
S defined

by the equation t0 +· · ·+ tn = 1. We call the sections vi : S →1n
S corresponding to

ti = 1 and t j = 0 for j 6= i the vertices of 1n
S . Each nondecreasing map ρ : [m] =

{0, 1, . . . ,m} −→ [n] = {0, 1, . . . , n} induces a scheme morphism

ρ :1m
−→1n

defined by ti 7→
∑

ρ( j)=i t j . If ρ is injective, we say that ρ(1m
S )⊂1n

S is a face. If
ρ is surjective, ρ is a degeneracy. In this way 1•

S becomes a cosimplicial scheme.
Further note that all faces are regular imbeddings.

The following definition was motivated in the introduction.
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Definition 2.3. For X in Sch(S) and n ≥ 0, the group Cn(X; S) is the free abelian
group generated by closed integral subschemes Z of X×1n such that the restriction
of the canonical projection

X ×1n
→1n

to Z induces a finite morphism p : Z → T ⊂1n onto a closed integral subscheme T
of codimension d = dim S in 1n which intersects all faces properly. In particular,
such a Z is equidimensional of dimension n.

Remarks 2.4. (1) If the structural morphism X → S factors through a finite
morphism S′

→ S with S′ regular, then Cn(X; S)= Cn(X; S′). In particular,
if S′

= {P} is a closed point of S, i.e. if X is a scheme of finite type over
Spec(k(P)), then Cn(X; S) = Cn(X; k(P)) is the n-th term of the singular
complex of X defined by Suslin.

(2) If S is of dimension 1 (and regular and connected), then a closed integral
subscheme T of codimension d = 1 in 1n

S intersects all faces properly if and
only if it does not contain any face. If the image of X in S omits at least one
closed point of S, then this condition is automatically satisfied.

Let Z be a closed integral subscheme of X ×1n which projects finitely and
surjectively onto a closed integral subscheme T of codimension d in 1n . Assume
that T has proper intersection with all faces, i.e. Z defines an element of Cn(X; S).
Let 1m ↪→1n be a face. Since the projection

Z ×1n
X
1m

X −→ T ×1n 1m

is finite, each irreducible component of Z ∩ X ×1m has dimension at most m. On
the other hand, a face is a regular imbedding and therefore all irreducible compo-
nents of Z ∩ X ×1m have exact dimension m and project finitely and surjectively
onto an irreducible component of T ∩1m . Thus the cycle theoretic inverse image
i∗(Z) is well defined and is in Cm(X; S). Furthermore, degeneracy maps are flat,
and thus we obtain a simplicial abelian group C•(X; S). We use the same notation
for the associated chain complex which (in the usual way) is constructed as follows.

Consider the 1-codimensional face operators

d i
:1n−1

−→1n, i = 0, . . . , n,

defined by setting ti = 0, and define the complex (concentrated in positive homo-
logical degrees)

C•(X; S), dn =

n∑
i=0

(−1)i (d i )∗ : Cn(X; S)→ Cn−1(X; S).
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Definition 2.5. We call C•(X; S) the singular complex of X . Its homology groups
(or likewise the homotopy groups of C•(X; S) considered as a simplicial abelian
group)

hi (X; S)= Hi (C•(X; S))
(
= πi (C•(X; S))

)
are called the (integral) singular homology groups of X .

From Remark 2.4(1) above, we obtain:

Lemma 2.6. Assume that the structural morphism X → S factors through a finite
morphism S′

→ S with S′ regular. Then for all i ,

hi (X; S)= hi (X; S′).

Examples 2.7. (1) If k is a field and S = Spec(k), then the above definition of
hi (X) coincides with that of the singular homology of X defined by Suslin.

(2) C•(X; S) is a subcomplex of Bloch’s complex zr (X, •), where r = dim X ,
and C•(S; S) coincides with the Bloch complex zd(S, •). In particular,

hi (S; S)= CHd(S, i),

where the group on the right is the higher Chow group defined by Bloch.
Note that in [Bloch 1986], Bloch defined his higher Chow groups only for
equidimensional schemes over a field, but there is no problem with extending
his construction at hand.

The push-forward of cycles makes C•(X; S) and thus also hi (X; S) covari-
antly functorial on Sch(S). Furthermore, it is contravariant under finite flat mor-
phisms. Given a finite flat morphism f : X ′

→ X , we thus have induced maps
f∗ : h•(X ′

; S) → h•(X; S) and f ∗
: h•(X; S) → h•(X ′

; S), which are connected
by the formula

f∗ ◦ f ∗
= deg( f ) · idh•(X;S).

In addition, we introduce bivariant homology groups. Let Y be equidimensional,
of finite type and flat over S. If X × Y is empty, we let C•(X, Y ; S) be the triv-
ial complex. Otherwise, X × Y it is a scheme of dimension dim X + dim Y − d
(as before, d = dim S) and we consider the group Cn(X, Y ; S) which is the free
abelian group generated by closed integral subschemes in X × Y ×1n such that
the restriction of the canonical projection

X × Y ×1n
→ Y ×1n

to Z induces a finite morphism p : Z → T ⊂ Y ×1n onto a closed integral sub-
scheme T of codimension d in Y ×1n which intersects all faces Y ×1m properly.
In particular, such a Z is equidimensional of dimension dim Y +n−d . Further, for
a closed subscheme Y ′

⊂ Y , consider the subgroup CY ′

n (X, Y ; S) ⊂ Cn(X, Y ; S),



192 Alexander Schmidt

which is the free abelian group generated by closed integral subschemes of X ×

Y ×1n such that the restriction of the canonical projection

X × Y ×1n
→ Y ×1n

to Z induces a finite morphism p : Z → T ⊂ Y × 1n onto a closed integral
subscheme T of codimension d in Y ×1n which intersects all faces Y ×1m and
all faces Y ′

×1m properly.
In the same way as before, we obtain the complex C•(X, Y ; S), which contains

the subcomplex CY ′

•
(X, Y ; S).

Definition 2.8. We call C•(X, Y ; S) the bivariant singular complex and its homol-
ogy groups

hi (X, Y ; S)= Hi (C•(X, Y ; S))

the bivariant singular homology groups.

Note that C•(X, S; S)= C•(X; S) and hi (X, S; S)= hi (X; S). By pulling back
cycles, a flat morphism Y ′

→ Y induces a homomorphism of complexes

C•(X, Y ; S)−→ C•(X, Y ′
; S).

If Y ′ ↪→ Y is a regular imbedding, we get a natural homomorphism

CY ′

•
(X, Y ; S)−→ C•(X, Y ′

; S).

Consider the complex of presheaves C•(X; S) which is given on open subschemes
U ⊂ S by

U 7−→ C•(X,U ; S).

This is already a complex of Zariski-sheaves on S.

Definition 2.9. By hi (X; S) we denote the cohomology sheaves of the complex
C•(X; S). Equivalently, hi (X; S) is the Zariski sheaf on S associated to

U 7−→ hi (X,U ; S).

(The sheaves hi play a similar role as Bloch’s higher Chow sheaves [Bloch 1986].)

Now assume that X and Y are smooth over S. By c(X, Y ) we denote the free
abelian group generated by integral closed subschemes W ⊂ X × Y which are
finite over X and surjective over a connected component of X . An element in
c(X, Y ) is called a finite correspondence from X to Y . If X1, X2, X3 is a triple
of smooth schemes over S, then, by [Voevodsky 2000, Section 2], there exists a
natural composition c(X1, X2)×c(X2, X3)→ c(X1, X3). Therefore one can define
a category SmCor(S) whose objects are smooth schemes of finite type over S and
morphisms are finite correspondences. The category Sm(S) of smooth schemes of
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finite type over S admits a natural functor to SmCor(S) by sending a morphism to
its graph.

Let X and Y be smooth over S, let φ ∈ c(X, Y ) be a finite correspondence and
let ψ ∈ Cn(X, S). Consider the product X × Y × 1n and let p1, p2, p3 be the
corresponding projections. Then the cycles (p1 × p3)

∗(ψ) and (p1 × p2)
∗(φ) are

in general position. Let ψ∗φ be their intersection. Since φ is finite over X and ψ is
finite over1n , we can define the cycle φ ◦ψ as (p2 × p3)∗(φ∗ψ). The cycle φ ◦ψ

is in Cn(Y ; S), and so we obtain a natural pairing c(X, Y )×C•(X; S)→ C•(Y ; S).
We obtain the following:

Proposition 2.10. For schemes X , Y that are smooth over S, there exist natural
pairings for all i

c(X, Y )⊗ hi (X; S)−→ hi (Y ; S)

making singular homology into a covariant functor on the category SmCor(S).

3. Singular homology of curves

We start this section by recalling some notions and lemmas from [Suslin and Vo-
evodsky 1996]. Let X be a scheme and let Y be a closed subscheme of X . Set
U = X − Y and denote by i : Y −→ X , j : U −→ X the corresponding closed and
open embeddings.

We denote by Pic(X, Y ) (the relative Picard group) the group whose elements
are isomorphism classes of pairs of the form (L , φ), where L is a line bundle on
X and φ : L|Y ∼= OY is a trivialization of L over Y , and the operation is given by
the tensor product. There is an evident exact sequence

0(X,O×

X )−→ 0(Y,O×

Y )−→ Pic(X, Y )−→ Pic(X)−→ Pic(Y ). (1)

We also use the notation GX (or Gm) for the sheaf of invertible functions on X and
we write GX,Y for the sheaf on X which is defined by the exact sequence

0 −→ GX,Y −→ GX −→ i∗(GY )−→ 0.

By [Suslin and Voevodsky 1996, Lemma 2.1], there are natural isomorphisms

Pic(X, Y )= H 1
Zar(X,GX,Y )= H 1

et(X,GX,Y ).

Assume that X is integral and denote by K the field of rational functions on X .
A relative Cartier divisor on X is a Cartier divisor D such that supp(D)∩ Y = ∅.
If D is a relative divisor and Z = supp(D), then OX (D)|X−Z = OX−Z . Thus D
defines an element in Pic(X, Y ). Denoting the group of relative Cartier divisors by
Div(X, Y ), we get a natural homomorphism Div(X, Y )→ Pic(X, Y ). The image
of this homomorphism consists of pairs (L , φ) such that φ admits an extension to
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a trivialization of L over an open neighbourhood of Y . In particular, this map is
surjective provided that Y has an affine open neighbourhood. Furthermore, we put

G = { f ∈ K ×
: f ∈ ker(O×

X,y −→ O×

Y,y) for any y ∈ Y }

= { f ∈ K ×
: f is defined and equal to 1 at each point of Y },

The following lemmas are straightforward; see [Suslin and Voevodsky 1996, 2.3,
2.4, 2.5].

Lemma 3.1. Assume that Y has an affine open neighbourhood in X. Then the
following sequence is exact:

0 −→ 0(X,GX,Y )−→ G −→ Div(X, Y )−→ Pic(X, Y )−→ 0.

Lemma 3.2. Assume that U is normal and every closed integral subscheme of
U of codimension one which is closed in X is a Cartier divisor (this happens for
example when U is factorial). Then Div(X, Y ) is the free abelian group generated
by closed integral subschemes T ⊂ U of codimension one which are closed in X.

Lemma 3.3. Let X be a scheme. Consider the natural homomorphism

p∗
: Pic(X)−→ Pic(A1

X )

which is induced by the projection p :A1
X → X. If X is reduced, then p∗ is injective.

If X is normal, it is an isomorphism.

Proof. Since X is reduced, we have p∗GA1
X
= GX . Therefore the spectral sequence

E i j
2 = H i (X, R j p∗GA1

X
)H⇒ H i+ j (A1

X ,GA1
X
)

induces a short exact sequence

0 −→ Pic(X)−→ Pic(A1
X )→ H 0(X, R1 p∗(GA1

X
)).

This shows the first statement. The stalk of R1 p∗(GA1
X
) at a point x ∈ X is the

Picard group of the affine scheme Spec(OX,x [T ]). If X is normal, then this group
is trivial by [Bass and Murthy 1967, Proposition 5.5]. This concludes the proof. �

Corollary 3.4. Assume that X is normal and Y is reduced. Then

Pic(X, Y )∼= Pic(A1
X ,A1

Y ).

Proof. Using the five-lemma, this follows from Lemma 3.3 together with the exact
sequence (1). �

In the case that S = Spec(k) is the spectrum of a field k, our singular homol-
ogy coincides with that defined by Suslin. For a proof of the next theorem, see
[Lichtenbaum 1993].
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Theorem 3.5. Let X be a smooth, geometrically connected curve over k, let X be
a smooth compactification of X and let Y = X − X. Then hi (X; k)= 0 for i 6= 0, 1
and

h0(X; k) = Pic(X , Y ),

h1(X; k) =

{
0 if X is affine,
k× if X is proper.

Corollary 3.6. Let X be a smooth curve over a field k, X a smooth compactification
of X over k and Y = X − X. Then for all i ,

hi (X; k)∼= H 1−i
Zar (X ,GX ,Y )

∼= H−i
Zar

(
X , cone

(
GX −→ iY∗(GY )

))
,

where HZar denotes Zariski hypercohomology.

This corollary is a special case of a general duality theorem proven in [Voevod-
sky 2000, Theorem 4.3.7] over fields that admit resolution of singularities.

We now consider the case that S is the spectrum of a Dedekind domain, which
is the case of main interest for us. The proof of the following theorem is parallel
to the proof of Theorem 3.1 of [Suslin and Voevodsky 1996], where the relative
singular homology of relative curves was calculated.

Theorem 3.7. Assume that S is the spectrum of a Dedekind domain and let U
be an open subscheme of S. Let Y ∈ Sch(S) be regular and flat over S. Setting
YU = Y × U , suppose that Y − YU has an affine open neighbourhood in Y . Then
hi (U, Y ; S)= 0 for i 6= 0, 1 and

h0(U, Y ; S) = Pic(Y, Y − YU ),

h1(U, Y ; S) = 0(Y,GY,Y−YU ).

Proof. We may assume that Y is connected. If YU = Y , then C•(U, Y ; S) coincides
with the Bloch complex z1(Y, •). By [Bloch 1986, Theorem 6.1] (whose proof
applies without change to arbitrary regular schemes), we have hi (U, Y ; S)= 0 for
i 6= 0, 1 and

h0(U, Y ; S) = Pic(Y ),
h1(U, Y ; S) = 0(Y,GY ).

Suppose that YU $ Y . Then an integral subscheme Z ⊂ YU ×1n is in Cn(U, Y ; S)
if and only if it is closed and of codimension 1 in Y ×1n . Since Y is regular,
such a Z is a Cartier divisor and it automatically has proper intersection with all
faces (see Remark 2.4(2)). Thus Cn(U, Y ; S) = Div(Y, T ) (see Lemma 3.2). Let
T = Y − YU . If V is an open affine neighbourhood of T in Y , then V ×1n is an
open affine neighbourhood of T ×1n in Y ×1n . According to Lemma 3.1, we
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have an exact sequence of simplicial abelian groups:

0 → A• → G• → C•(U, Y ; S)→ Pic(1•

Y ,1
•

T )→ 0, (2)

where

Gn = { f ∈ k(1n
Y )

×
: f is defined and equal to 1 at each point of 1n

T },

An = 0(1n
Y ,G1n

Y ,1
n
T
).

For each n, we have An = A0 = 0(Y,GY,T ) and by Corollary 3.4, we have
Pic(1n

Y ,1
n
T ) = Pic(Y, T ). Let us show that the simplicial abelian group G• is

acyclic, i.e. π∗(G•)= 0. It suffices to check that for any f ∈ Gn such that δi ( f )= 1
for i = 0, . . . , n, there exists a g ∈ Gn+1 such that δi (g) = 1 for i = 0, . . . , n and
δn+1(g)= f . Define functions gi ∈ Gn+1 for i = 1, . . . , n by means of the formula

gi = (ti+1 + · · · + tn+1)+ (t0 + · · · + ti )si ( f ).

These functions satisfy the following equations:

δ j (gi )=


1 if j 6= i, i + 1,
(ti + · · · + tn)+ (t0 + · · · + ti−1) f if j = i,
(ti+1 + · · · + tn)+ (t0 + · · · ti ) f if j = i + 1.

In particular, δ0(g0)= 1, δn+1(gn)= f . Finally, we set

g = gng−1
n−1gn−2 · · · g(−1)n

0 .

This function satisfies the conditions we need. Evaluating the 4-term exact se-
quence (2) above, we obtain the statement of the theorem. �

Corollary 3.8. Assume that S is the spectrum of a Dedekind domain. Let X be
regular and quasifinite over S, X a regular compactification of X over S and
Y = X − X. Then for all i ,

hi (X; k)∼= H 1−i
Zar (X ,GX ,Y )

∼= H−i
Zar

(
X , cone

(
GX −→ iY∗(GY )

))
,

where HZar denotes Zariski hypercohomology.

Proof. We may assume that X is connected. By Zariski’s main theorem, X is an
open subscheme of the normalization S′ of S in the function field of X . As is well
known, S′

= X is again the spectrum of a Dedekind domain and the projection
S′

→ S is a finite morphism. Therefore the result follows from Lemma 2.6 and
from Theorem 3.7 applied to the case Y = S. �
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Corollary 3.9. Let S be the spectrum of a Dedekind domain. Assume that X is
regular and that the structural morphism p : X → S is quasifinite. Let p : X → S
be a regular compactification of X over S and Y = X − X. Then there is a natural
isomorphism

C•(X; S)∼= p∗ GX ,Y [ 1 ]

in the derived category of complexes of Zariski-sheaves on S.

Proof. We may assume that X is connected and we apply the result of Theorem 3.7
to open subschemes Y ⊂ S. Note that X is the normalization of S in the function
field of X . The stalk of h1(X; S) at a point s ∈ S is the relative Picard group of the
semilocal scheme X ×S Ss with respect to the finite set of closed points not lying
on X . A semilocal Dedekind domain is a principal ideal domain, and the exact
sequence (1) from the beginning of this section shows that also the corresponding
relative Picard group is trivial. Therefore, the complex of sheaves C•(X; S) has
exactly one nontrivial homology sheaf, which is placed in homological degree 1
and is isomorphic to p∗ GX ,Y . �

Let us formulate a few results which easily follow from Theorem 3.7. We hope
that these results are (mutatis mutandis) true for regular schemes X of arbitrary
dimension. We omit S from the notation, writing h∗(X) for h∗(X; S) and h∗(X, Y )
for h∗(X, Y ; S)

Theorem 3.10. Let S be the spectrum of a Dedekind domain. Assume that X is
regular and quasifinite over S (in particular, dim X = 1). Then the following holds.

(i) hi (X)= H−i
Zar(S,C•(X; S)) for all i .

(ii) (Local to global spectral sequence) There exists a spectral sequence

E i j
2 = H−i

Zar(S, h j (X))⇒ hi+ j (X).

(iii) (Mayer–Vietoris sequence) Let X1, X2 ⊂ X be open with X = X1 ∪ X2. Then
there is an exact sequence

0 → h1(X1 ∩ X2)→ h1(X1)⊕ h1(X2)→ h1(X)

→ h0(X1 ∩ X2)→ h0(X1)⊕ h0(X2)→ h0(X)→ 0.

(iv) (Mayer–Vietoris sequence with respect to the second variable)
Let U, V ⊂ S be open. Then there is an exact sequence

0 → h1(X,U ∪ V )→ h1(X,U )⊕ h1(X, V )→ h1(X,U ∩ V )

→ h0(X,U ∪ V )→ h0(X,U )⊕ h0(X, V )→ h0(X,U ∩ V )→ 0.

Proof. We may assume that X is connected. Let S′ be the normalization of S in
the function field of X , and we denote by jX : X → S′ the corresponding open
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immersion (compare the proof of Corollary 3.8). Let, for an open subscheme U ⊂

S, U ′ be its preimage in S′. Then

hi (X,U ; S)= hi (X,U ′
; S′),

and therefore we may assume that S′
= S in the proof of (iii) and (iv). Then, by

Corollary 3.8, hi (X) = H 1−i
Zar (S,GS,S−X ). Assertion (iii) follows by applying the

functor R0(S,−) to the exact sequence of Zariski sheaves

0 −→ GS,S−X1∩X2 −→ GS,S−X1 ⊕ GS,S−X2 −→ GS,S−X −→ 0.

For an open subscheme jU : U −→ S, we denote the sheaf jU,! j∗

U (Z) by ZU . Then,
for a sheaf F on S, we have a canonical isomorphism

H i
Zar(U, j∗

U F)∼= ExtiS(ZU , F).

Applying the functor RHomS(−,GS,S−X ) to the exact sequence of Zariski sheaves

0 −→ ZU∩V −→ ZU ⊕ ZV −→ ZU∪V −→ 0,

Theorem 3.7 implies assertion (iv). From (iv) it follows that the complex C•(X)
is pseudo-flasque in the sense of [Brown and Gersten 1973], which shows asser-
tion (i). Finally, (ii) follows from the corresponding hypercohomology spectral
sequence converging to H−i

Zar(S,C•(X; S)) and from (i). �

Finally, we deduce an exact Gysin sequence for one-dimensional schemes. In
order to formulate it, we need the notion of twists. Let Gm denote the multiplicative
group scheme A1

S − {0} and let X be any scheme of finite type over S. For i =

1, · · · , n, let Di
•
(X × G

×(n−1)
m ; S) be the direct summand in C•(X ×G×n

m ; S)which
is given by the homomorphism

G×(n−1)
m −→ G×n

m , (x1, . . . , xn−1) 7→ (x1, . . . , 1i , . . . , xn−1)

We consider the complex C•(X × G∧n
m ; S) which is defined as the direct sum-

mand of the complex C•(X × G×n
m ; S) complementary to the direct summand∑n

i=1 Di
•
(X × G

×(n−1)
m ; S); see [Suslin and Voevodsky 2000, Section 3].

Definition 3.11. For n ≥ 0, we put

hi (X (n); S)= Hi+n(C•(X × G∧n
m ; S)).

In particular, we have hi (X (0); S) = hi (X; S) for all i and hi (X (n); S) = 0 for
i <−n. If X = {P} is a closed point on S, then (see [Suslin and Voevodsky 2000,
Lemma 3.2])

hi ({P}(1); S)=

{
k(P)× for i = −1,
0 otherwise.

The next corollary follows from this and from Theorem 3.7.
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Corollary 3.12. Assume that X is regular and quasifinite over S and that U is an
open, dense subscheme in X. Then we have a natural exact sequence

0 → h1(U )→ h1(X)→ h−1((X − U )(1))→ h0(U )→ h0(X)→ 0.

4. Homotopy invariance

Throughout this section we fix our base scheme S, which is the spectrum of a
Dedekind domain, and we omit it from the notation, writing h∗(X) for h∗(X; S)
and h∗(X, Y ) for h∗(X, Y ; S). Our aim is to prove that the relative singular ho-
mology groups h∗(X, Y ) are homotopy invariant with respect to both variables.

Theorem 4.1. Let X and Y be of finite type over S. Then the projection X×A1
→ X

induces isomorphisms

hi (X × A1, Y )−→
∼ hi (X, Y )

for all i .

Let i0, i1 : Y −→ Y × A1 be the embeddings defined by the points (i.e. sections
over S) 0 and 1 of A1

= A1
S .

Recall that1n has coordinates (t0, . . . , tn) with
∑

ti = 1. Vertices are the points
(i.e. sections over S) pi = (0, . . . , 0, 1, 0, . . . , 0) with 1 in the i-th place. Consider
the linear isomorphisms

θi :1n+1
−→1n

× A1, i = 0, . . . , n

which are defined by taking p j to (p j , 0) for j ≤ i and to (p j−1, 1) if j > i . Then
consider for each n the formal linear combination

Tn =

n∑
i=0

(−1)iθi .

Let us call a subscheme F ⊂ 1n
× A1 a face if it corresponds to a face in 1n+1

under one of the linear isomorphisms θi . Using this terminology, Tn defines a
homomorphism from a subgroup of Cn(X, Y ×A1) to Cn+1(X, Y ). This subgroup
is generated by cycles having good intersection not only with all faces Y ×A1

×1m

but also with all faces of the form Y × F , where F is a face in A1
×1n .

We will deduce Theorem 4.1 from the following proposition.

Proposition 4.2. The two chain maps

i0∗, i1∗ : C•(X, Y )−→ C•(X × A1, Y )

are homotopic. In particular, i0∗ and i1∗ induce the same map on homology.
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Proof. Let D ⊂ A1
× A1 be the diagonal. Consider the map

Vn : Cn(X, Y )−→ Cn(X × A1, Y × A1)

which is defined by sending a cycle Z ⊂ X × Y × 1n to the cycle Z × D ⊂

X × Y ×1n
× A1

× A1. If Z projects finitely and surjectively onto T ⊂ Y ×1n ,
then Z ×D projects finitely and surjectively onto T ×A1

⊂ Y ×1n
×A1. Therefore

Vn is well defined. Fortunately, T ×A1 has proper intersection with all faces Y ×F ,
where F is a face in 1n

× A1. Therefore the composition

Tn∗ ◦ Vn : Cn(X, Y )−→ Cn(X × A1, Y × A1)−→ Cn+1(X × A1, Y )

is well defined for every n. These maps give the required homotopy. �

Proof of Theorem 4.1. Let τ : A1
×A1

−→ A1 be the multiplication map. Consider
the diagram

C•(X × A1, Y )
p∗

−→ C•(X, Y )yi0∗,i1∗

yi0∗,i1∗

C•(X × A1
× A1, Y )

τ∗
−→ C•(X × A1, Y ).

We have the following equalities of maps on homology:

i0∗ ◦ p∗ = τ∗ ◦ i0∗ = τ∗ ◦ i1∗ = idh•(X,Y ).

Therefore, p∗ is injective on homology. But on the other hand, p ◦ i0 = idX , which
shows that p∗ is surjective. This concludes the proof. �

Now, exploiting a moving technique of [Bloch 1986], we prove that the bivariant
singular homology groups h∗(X, Y ) are homotopy invariant with respect to the
second variable.

Theorem 4.3. Assume that S is the spectrum of a Dedekind domain and let X and
Y be of finite type over S. Then the projection p :Y ×A1

→Y induces isomorphisms
for all i ,

hi (X, Y )−→
∼ hi (X, Y × A1).

A typical intermediate step in proving a theorem like Theorem 4.3 would be to
show that the induced chain maps i∗

0 , i∗

1 : C•(X, Y × A1)−→ C•(X, Y ) are homo-
topic. However, i∗

0 , i∗

1 are only defined as homomorphisms on the subcomplex

i∗

0 , i∗

1 : CY×{0,1}

•
(X, Y × A1)−→ C•(X, Y ).

(The maps T ∗
n : Cn(X, Y ×A1)−→ Cn+1(X, Y ) would define a homotopy i∗

0 ∼ i∗

1 :

Cn(X, Y × A1)−→ Cn(X, Y ), if all these maps would be defined.)
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The proof of Theorem 4.3 will consist of several steps. First, we show that the
inclusion

CY×{0,1}

•
(X, Y × A1)−→ C•(X, Y × A1)

is a quasi-isomorphism. Then we show that the homomorphisms

i∗

0 , i∗

1 : CY×{0,1}

•
(X, Y × A1)−→ C•(X, Y )

induce the same map on homology. Finally, we deduce Theorem 4.3 from these
results.

In the proof we will apply a moving technique of [Bloch 1986] which was used
there to show the homotopy invariance of the higher Chow groups. As long as
we have to deal with cycles of codimension 1, this technique also works in our
more general situation (this is the reason for the restriction to the case that S is the
spectrum of a Dedekind domain).

We would like to construct a homotopy between the identity of the complex
C•(X, Y × A1) and another map which takes its image in the subcomplex

CY×{0,1}

•
(X, Y × A1).

What we can do is the following:
For a suitable scheme S′ over S we construct a homotopy between the pullback

map C•(X, Y × A1) −→ C•(X, Y × A1
× S′) and another map whose image is

contained in the subcomplex

CY×{0,1}×S′

•
(X, Y × A1

× S′).

(Eventually, we will use S′
= A1

S but perhaps this would be too many A1’s in the
notation.)

Let (for the moment) π : S′
→ S be any integral scheme of finite type over S

and let t be an element in 0(S′,OS′). Consider the action

A1
S′ ×S′ (Y × A1)S′ −→ (Y × A1)S′

of the smooth group scheme A1
S′ on (Y × A1)S′ given by additive translation

a · (y, b))= (y, a + b)

and consider the morphism ψ : A1
S′ → A1

S′ given by multiplication by t : a 7→ ta.
The points 0, 1 of A1

S′ give rise to isomorphisms

ψ(0), ψ(1) : (Y × A1)S′ −→ (Y × A1)S′

(ψ(0) is the identity and ψ(1) sends (y, b) to (y, t + b)). Furthermore, setting
φ(y, a, b)= (y, ψ(b) · a, b), we obtain an isomorphism

φ : (Y × A1
× A1)S′ −→ (Y × A1

× A1)S′ .
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We would like to compose the maps

Cn(X, Y × A1)
π∗

−→ Cn(X, Y × A1
× S′)

pr∗
−→ Cn(X, (Y × A1)× A1

× S′)

φ∗

−→ Cn(X, (Y × A1)× A1
× S′)

T ∗
n

−→ Cn+1(X, Y × A1
× S′),

but we are confronted with the problem that the map T ∗
n is not defined on the whole

group Cn(X, (Y ×A1)×A1
×S′). The next proposition tells us that the composition

is well defined if S′
= A1

S = Spec S[t].

Proposition 4.4. Suppose that S′
= A1

S = Spec S[t]. Then the composition

Hn = T ∗

n ◦φ∗
◦ pr∗ ◦π∗

: Cn(X, Y × A1)−→ Cn+1(X, Y × A1
× S′)

is well defined for every n. The family {Hn}n≥0 defines a homotopy

π∗
= ψ(0) ◦π∗

∼ ψ(1) ◦π∗
: Cn(X, Y × A1)−→ Cn(X, Y × A1

× S′).

Furthermore, the image of the map ψ(1) ◦π∗ is contained in the subcomplex

CY×{0,1}×S′

•
(X, Y × A1

× S′).

Proof. Recall that all groups C• are relative to the base scheme S which we have
omitted from the notation. At the moment, the map Hn is only defined as a map
to the group of cycles in X × Y × A1

×1n+1
× S′. If Z ⊂ X × Y × A1

×1n

projects finitely and surjectively onto an irreducible subscheme T ⊂ Y × A1
×1n

of codimension one, then φ∗
◦pr∗ ◦π∗(Z) projects finitely and surjectively onto the

irreducible subscheme of codimension one T ′
=φ∗

◦pr∗ ◦π∗(T )⊂ (Y ×A1)×1n
×

A1
×S′. Therefore, in order to show that Hn(Z) is in Cn+1(X, Y ×A1

×S′), we have
to check that θ−1

i (T ′) has proper intersection with all faces for i = 0, . . . , n. Thus
we have to show that T ′ has proper intersection with all faces (Y × A1)× F × S′,
where F is a face in 1n

× A1 (as defined above). Since T ′ has codimension one,
this comes down to show that it does not contain any irreducible component of any
face (we did not assume Y to be irreducible, but we can silently assume that it is
reduced). Consider the projection

Y × A1
×1n

× A1
× S′

−→ S′.

We can check our condition by considering the fibre over the generic point of S′.
More precisely, let k be the function field of S and let K = k(t) be the function
field of S′. Let (Y1)k, . . . , (Yr )k be the irreducible components of Yk . Then an
irreducible subscheme T ′

⊂ Y × A1
×1n

× A1
× S′ of codimension one meets all

faces Y × A1
× F × S′ (F a face of 1n

× A1) properly if and only if TK does not
contain (Yi × A1)K ×K FK for i = 1, . . . , r .
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Now we arrived exactly at the situation considered in [Bloch 1986, Section 2].
The result follows from [Bloch 1986, Lemma 2.2] by taking (Y × A1)k for the
scheme X of that lemma, taking A1

k as the algebraic group G acting on X by
additive translation on the second factor and choosing the map ψ : A1

K → G K of
that lemma as the morphism which sends a to ta. The fact that the Hn define the
homotopy is a straightforward computation.

It remains to show that the image of the map ψ(1) ◦ π∗ is contained in the
subcomplex

CY×{0,1}×S′

•
(X, Y × A1

× S′).

But this is a again a condition which says that a subscheme of codimension one
does not contain certain subschemes. In the same way as above, this can be verified
over the generic fibre of S′, and the result follows from the corresponding statement
of [Bloch 1986, Lemma 2.2]. �

Corollary 4.5. The natural inclusion

CY×{0,1}

•
(X, Y × A1)−→ C•(X, Y × A1)

is a quasi-isomorphism.

Proof. Let S′
= A1

S . Then the homomorphism

π∗
: C•(X, Y × A1)/CY×{0,1}

•
(X, Y × A1)

−→ C•(X, Y × A1
× S′)/CY×{0,1}×S′

•
(X, Y × A1

× S′)

is nullhomotopic (the Hn of Proposition 4.4 give the homotopy). In order to con-
clude the proof, it suffices to show that the nullhomotopic homomorphism π∗ is in-
jective on homology. Suppose that for a cycle z in degree n we have π∗(z)=dn(w).
Then we find an a ∈0(S,OS) such that the specialization (i.e. t 7→ a) w(a) is well
defined. But then z = dn(w(a)). �

Proposition 4.6. Suppose that S′
= A1

S = Spec S[t]. Then the composition

CY×{0,1}

n (X, Y×A1)
ψ(1)◦π∗

−→ CY×{0,1}×S′

n (X, Y×A1
×S′)

T ∗
n

−→ Cn+1(X, Y×S′)

is well defined, giving a homotopy

i∗

0 ◦ψ(1) ◦π∗
∼ i∗

1 ◦ψ(1) ◦π∗
: CY×{0,1}

•
(X, Y × A1)−→ C•(X, Y × S′).

Proof. Let again k be the function field of S and let K = k(t) be that of S′. We use
the following fact, which is explained in the proof of [Bloch 1986, Corollary 2.6]:

If zk is a cycle on Y ×A1
×1n which intersects all faces (Y ×A1

×1m)k properly,
then ψ(1) ◦ π∗(zk) ⊂ (Y × A1

×1n)K intersects all faces (Y × F)K (where F is
any face in A1

×1n) properly.
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We deduce the statement of Proposition 4.6 from this in the same manner as we
deduced Proposition 4.4 from [Bloch 1986, Lemma 2.2]. The fact that the maps
T ∗

n ◦ψ(1) ◦π∗ define the homotopy is a straightforward computation. �

Corollary 4.7. The two maps

i∗

0 , i∗

1 : CY×{0,1}

•
(X, Y × A1)−→ C•(X, Y )

induce the same map on homology.

Proof. Consider the commutative diagram

CY×{0,1}
• (X, Y × A1)

π∗

−→ CY×{0,1}×S′

• (X, Y × A1
× S′)yi∗

0 ,i
∗

1

yi∗

0 ,i
∗

1

C•(X, Y )
π∗

−→ C•(X, Y × S′).

The same specialization argument as in the proof of Corollary 4.5 shows that π∗

is injective on homology. Therefore it suffices to show that i∗

0 ◦ π∗
= i∗

1 ◦ π∗ on
homology. By Proposition 4.4, we have a homotopy π∗

∼ψ(1)◦π∗, and hence it
suffices to show that the maps i∗

0 ◦ψ(1) ◦ π∗ and i∗

1 ◦ψ(1) ◦ π∗ induce the same
map on homology. But this follows from Proposition 4.6. �

Now we conclude the proof of Theorem 4.3. First of all, note that

p∗(C•(X, Y ))⊂ CY×{0,1}

•
(X, Y × A1)

and that i∗

0 ◦ p∗
= id, such that p∗ is injective on homology. Consider the multipli-

cation map
τ : A1

× A1
−→ A1.

It is flat and therefore τ ∗ exists. Consider the diagram

C•(X, Y × A1)
τ ∗

−→ C•(X, Y × A1
× A1)xq.iso.

xq.iso.

CY×{0,1}
• (X, Y × A1)

τ ∗

· · ·> CY×A1
×{0,1}

• (X, Y × A1
× A1)yi∗

0 ,i
∗

1

yi∗

0 ,i
∗

1

C•(X, Y )
p∗

−→ C•(X, Y × A1).

One easily observes that τ ∗ sends a cycle z ∈ CY×{0,1}
n (X, Y × A1) to a cycle in

CY×A1
×{0,1}

n (X, Y × A1
× A1) and that for such a z the following equalities hold:

i∗

0 ◦ τ ∗(z)= p∗
◦ i∗

0 (z), (3)

i∗

1 ◦ τ ∗(z)= z. (4)
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By Corollary 4.5, any class in hn(X, Y × A1) can be represented by an element in
CY×{0,1}

n (X, Y × A1). Therefore (3) shows that in order to prove that p∗ is surjec-
tive on homology, it suffices to show that i∗

0 ◦ τ ∗ is. But by Corollary 4.7, i∗

0 ◦ τ ∗

induces the same map on homology as i∗

1 ◦ τ ∗, which is the identity, by (4).
�

A naive definition of homotopy between scheme morphisms is the following:
Two scheme morphisms φ,ψ : X −→ X ′ are homotopic if there exists a morphism

H : X × A1
−→ X ′

with φ = H ◦ i0 and ψ = H ◦ i1. (This is not an equivalence relation!) The next
corollary is an immediate consequence of Proposition 4.2.

Corollary 4.8. If two morphisms

φ,ψ : X −→ X ′

are homotopic, then they induce the same map on singular homology, i.e. for every
scheme Y flat and of finite type over S, the homomorphisms

φ∗, ψ∗ : hi (X, Y )−→ hi (X ′, Y )

coincide for all i .

Now we recall the definition of relative singular homology from [Suslin and
Voevodsky 1996]. Suppose that Y is an integral scheme and that X is any scheme
over Y .

For n ≥ 0, let Cn(X/Y ) be the free abelian group generated by closed integral
subschemes of X ×Y 1

n
Y such that the restriction of the canonical projection

X ×Y 1
n
Y −→1n

Y

to Z induces a finite surjective morphism p : Z → 1n
Y . Let i : 1m

Y ↪→ 1n
Y be a

face. Then all irreducible components of Z ∩ X ×Y 1
m
Y have the “right” dimension

and thus the cycle theoretic inverse image i∗(Z) is well defined and in Cm(X/Y ).
Furthermore, degeneracy maps are flat, and thus we obtain a simplicial abelian
group C•(X/Y ). As above, we use the same notation for the complex of abelian
groups obtained by taking the alternating sum of face operators. The groups

hi (X/Y )= Hi (C•(X/Y ))

are called the relative singular homology groups of X over Y .
We have seen in Section 2 that singular homology is covariantly functorial on

the category SmCor(X) of smooth schemes over S with finite correspondences
as morphisms. For X, Y ∈ Sm(S) the group of finite correspondences c(X, Y )
coincides with C0(X × Y/Y ) and we call two finite correspondences homotopic
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if they have the same image in h0(X × Y/Y ). The next proposition shows that
homotopic finite correspondences induce the same map on singular homology.

Proposition 4.9. For smooth schemes X, Y ∈ Sm(S), the natural pairing

c(X, Y )⊗ hi (X; S)→ hi (Y ; S)

factors through h0(X × Y/Y ), defining pairings

h0(X × Y/Y )⊗ hi (X; S)−→ hi (Y ; S) for all i .

Proof. Let W ⊂ X × Y ×11
= X × Y × A1 define an element in C1(X × Y/Y ).

Let W j
= i∗

j (W ), for j = 0, 1, so that d1(W ) = W 0
− W 1

∈ C0(X × Y/Y ). Let
ψ ∈ Cn(X; S). We have to show that (W 0, ψ) = (W 1, ψ). Considering W as an
element in C0(X×Y ×A1/Y ×A1), the composite (W, ψ) is in C {0,1}

n (Y,A1
; S) and

(W j , ψ)= i∗

j ((W, ψ)) for j = 0, 1. Thus the result follows from Corollary 4.7. �

5. Alternative characterization of h0

For a noetherian scheme X we have the identification

CHd(X, 0)= CHd(X)

between the higher Chow group CHd(X, 0) and the group CHd(X) of d-codimen-
sional cycles on X modulo rational equivalence (see [Nart 1989, Proposition 3.1]).
Fixing the notation and assumptions of the previous sections, we now give an
analogous description for the group h0(X; S).

Let C be an integral scheme over S of absolute dimension 1. Then to every
rational function f 6= 0 on C , we can attach the zero-cycle div( f ) ∈ C0(C; S)
(see [Fulton 1998, Chapter I,1.2]). Let C̃ be the normalization of C in its field
of functions. Denoting the normalization morphism by φ : C̃ → C , we have
φ∗(div( f )) = div( f ). If C is regular and connected, then we denote by P(C)
the regular compactification of C over S, i.e. the uniquely determined regular and
connected scheme of dimension 1 which is proper over S and which contains C as
an open subscheme.

With this terminology, for an integral scheme C of absolute dimension 1, ele-
ments in the function field k(C) are in 1-1 correspondence to morphisms P(C̃)→
P1

S , which are not ≡ ∞.

Theorem 5.1. The group h0(X; S) is the quotient of the group of zero-cycles on X
modulo the subgroup generated by elements of the form div( f ), where

• C is a closed integral curve on X ,

• f is a rational function on C which, considered as a rational function on
P(C̃), is defined and ≡ 1 at every point of P(C̃)− C̃.
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Proof. We may suppose that X is reduced. Let Z ⊂ X ×11 be an integral curve
such that the projection Z → 11 induces a finite and surjective morphism of Z
onto a closed integral subscheme T of codimension 1 in11. Embed11 linearly to
P1

= P1
S by sending (0, 1) to 0 = (0 : 1) and (1, 0) to ∞ = (1 : 0). Since Z →11

is finite, the projection Z → P1 corresponds to a rational function g on Z which is
defined and ≡ 1 at every point of P(Z̃)− Z . Let Z be the closure of Z in X ×P1,
and let C be the image of Z under the (proper) projection X ×P1

→ X , considered
as a reduced (hence integral) subscheme of X .

We have to consider two cases:

(1) If C = P is a closed point on X , then Z = {P} ×11 and d1(Z)= 0.

(2) If C is an integral curve, then the image C of Z under X ×P1
→ X is an open

subscheme of C . Consider the extension of function fields

k(Z)|k(C)

and let f ∈ k(C) be the norm of g with respect to this extension. Then f is
defined and ≡ 1 at every point of P(C̃)− C and

div( f )= δ0(Z)− δ1(Z)= d(Z).

If X is of dimension 1, the last equality follows from [Nart 1989, Proposition 1.3].
The general case can be reduced to this by replacing X by C . Considering f as a
rational function on C , it satisfies the assumption of the theorem.

It remains to show the other direction. Let C and f be as in the theorem. We
have to show that div( f ) ∈ C0(X; S) is a boundary. To see this, interpret f as
a nonconstant morphism U → P1 defined on an open subscheme U ⊂ C and let
Z be the closure of the graph of this morphism in X × P1. The scheme Z is
integral, of dimension 1 and projects birationally and properly onto C . Consider
again the open linear embedding 11

⊂ P1 which is defined by sending (0, 1) to
0 and (1, 0) to ∞ and let Z = Z ∩ X ×11. The properties of f imply that the
induced projection Z → 11 is finite and surjective onto a closed subscheme of
codimension 1 in 11, thus defining an element of C1(X; S). Finally note that
d(Z)= δ0(Z)− δ1(Z)= div( f ). �

This immediately implies:

Corollary 5.2. If X is proper over S, then

h0(X; S)= CH0(X).

Corollary 5.3. The natural homomorphism
⊕

iC
d(C1(C; S))

iC ∗

−→ d(C1(X; S)) is
surjective, where iC : C → X runs through all S-morphisms from a regular scheme
C over S of dimension 1 to X.
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Proof. By Theorem 5.1, d(C1(X; S) is generated by elements of the form div( f ),
where f is a rational function on an integral curve on X satisfying an additional
property. The normalization C̃ of C is a regular scheme of dimension 1 and let
i : C̃ → X the associated morphism. Considering f as a rational function on C̃ ,
we have the equality

i∗(div( f ))= div( f ).

By the additional property of f , the associated line bundle L(div( f )) over the
compactification P(C̃) together with its canonical trivialization over P(C̃) − C̃
defines the trivial element in Pic(P(C̃), P(C̃)− C̃). Therefore, the calculation of
singular homology of regular schemes of dimension 1 (see Theorems 3.5 and 3.7),
shows that div( f ) is in d(C1(C; S)). This finishes the proof. �

Now we can prove the exactness of a part of the Mayer–Vietoris sequence for
X of arbitrary dimension.

Proposition 5.4. Let S = U ∪ V be a covering by Zariski-open subschemes U and
V . Then the natural sequence

h0(X; S)−→ h0(X; U )⊕ h0(X; V )−→ h0(X; U ∩ V )−→ 0

is exact.

Proof. First of all, the homomorphism

C0(X; U )⊕ C0(X; V )−→ C0(X; U ∩ V )

is surjective, and therefore so is h0(X; U )⊕ h0(X; V )−→ h0(X; U ∩ V ).
Consider the commutative diagram

0 0 0y y y
d(C1(X; S)) −→ d(C1(X; U ))⊕ d(C1(X; V )) −→ d(C1(X; U ∩ V ))y y y

C0(X; S) ↪−→ C0(X; U )⊕ C0(X; V ) −→ C0(X; U ∩ V ) −→ 0y y y
h0(X; S) −→ h0(X; U )⊕ h0(X; V ) −→ h0(X; U ∩ V ) −→ 0y y y

0 0 0
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The middle row and the middle and right columns are exact. Therefore the snake
lemma shows that the lower line is exact if and only if the homomorphism

d(C1(X; U ))⊕ d(C1(X; V ))−→ d(C1(X; U ∩ V )) (5)

is surjective. By Theorem 3.10 (iv), we observe that (5) is surjective if X is regular
and of dimension 1. For a general X , put

X ′
= X ×S (U ∩ V ).

Then the commutative diagram

C1(X ′
; U )⊕ C1(X ′

; V ) −→ C1(X ′
; U ∩ V )y ∥∥∥

C1(X; U )⊕ C1(X; V ) −→ C1(X; U ∩ V )

shows that, in order to show the surjectivity of (5), we may suppose that X = X ′.
Now the statement follows from Corollary 5.3, using the commutative diagram⊕

iC

d(C1(C; U ))⊕ d(C1(C; V ))
iC ∗

−→ d(C1(X; U ))⊕ d(C1(X; V ))yy y⊕
iC

d(C1(C; U ∩ V ))
iC ∗

−→−→ d(C1(X; U ∩ V )).

This concludes the proof. �

A similar argument shows:

Proposition 5.5. Let X = X1 ∪ X2 be a covering by Zariski open subschemes X1

and X2. Then the natural sequence

h0(X1 ∩ X2; S)−→ h0(X1; S)⊕ h0(X2; S)−→ h0(X; S)−→ 0

is exact.

Proof. We omit the base scheme S from our notation. The homomorphism

C0(X1)⊕ C0(X2)−→ C0(X)

is surjective, and therefore so is

h0(X1)⊕ h0(X2)−→ h0(X).
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Consider the commutative diagram

0 0 0y y y
d(C1(X1 ∩ X2)) −→ d(C1(X1))⊕ d(C1(X2)) −→ d(C1(X))y y y

C0(X1 ∩ X2) ↪−→ C0(X1)⊕ C0(X2) −→ C0(X) −→ 0y y y
h0(X1 ∩ X2) −→ h0(X1)⊕ h0(X2) −→ h0(X −→ 0y y y

0 0 0

The middle row and the middle and right columns are exact. Therefore the snake
lemma shows that the lower line is exact if and only if the homomorphism

d(C1(X1))⊕ d(C1(X2))−→ d(C1(X)) (6)

is surjective. By Theorem 3.10 (iii), we observe that (6) is surjective if X is regular
and of dimension 1.

For a morphism i : C → X we use the notation C1 = i−1(X1) and C2 = i−1(X2),
thus C = C1 ∪ C2 is a Zariski open covering.

Now the required statement for arbitrary X follows from Corollary 5.3, using
the commutative diagram⊕

iC

d(C1(C1))⊕ d(C1(C2))
iC ∗

−→ d(C1(X1))⊕ d(C1(X2))yy y⊕
iC

d(C1(C))
iC ∗

−→−→ d(C1(X)).

This concludes the proof. �

We conclude this section with a surjectivity result.

Proposition 5.6. Let X be regular and let U be a dense open subscheme in X.
Then the natural homomorphism

h0(U ; S)−→ h0(X; S)

is surjective.
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Proof. Let P be a 0-dimensional point on X which is not contained in U . We have
to show that the image of P in h0(X; S) is equal to the image of a finite linear
combination

∑
ni Pi with Pi ∈ U for all i . Choose a one-dimensional subscheme

C on X such that P is a regular point on C and such that C is not contained in
X −U . We find such a curve, since X is regular: Indeed, OX,P is a d-dimensional
regular local ring, with d = dim X . Let m be the maximal ideal and a the ideal
defining the closed subset (X − U )∩ Spec(OX,P). Choose elements x1, . . . , xd−1

in m/m2 which span a (d − 1)-dimensional subspace which does not contain a +

m/m. Lifting x1, . . . , xd−1 to a regular sequence x1, . . . , xd−1 ∈ OX,P , the ideal
(x1, . . . , xd−1) is a prime ideal of height (d −1) which does not contain a. Finally,
extend x1, . . . , xd−1 to an affine open neighbourhood of P in X and choose C as
the closure of their zero-locus.

Consider the normalization C̃ of C and let P(C̃) be a regular compactification
over S. Let P(C̃)− C̃ = {P1, . . . , Pr } and let Pr+1, . . . , Ps be the finitely many
closed points on C̃ mapping to C ∩ (X − U ). Let P̃ be the unique point on C̃
projecting to P ∈ C . Let D = {P1, . . . , Ps, P̃} and consider the ring A = OP(C̃),D ,
which is a semilocal principal ideal domain. We find an element f ∈ A which has
exact valuation 1 at P̃ and which is ≡ 1 at each Pi , i = 1, . . . , n. Then (div f )⊂ X
is of the form P +

∑
Qi with Qi ∈ U . �

6. Review of tame coverings

The concept of tame ramification stems from number theory: A finite extension of
number fields L|K is called tamely ramified at a prime P of L if the associated
extension of completions LP|KP is a tamely ramified extension of local fields.
The latter means that the ramification index is prime to the characteristic of the
residue field. It is a classical result that composites and towers of tamely ramified
extensions are again tamely ramified. This concept generalizes to separable exten-
sions of arbitrary discrete valuation fields by requiring that the associated residue
field extensions are separable.

Let from now on S be the spectrum of an excellent Dedekind domain and let
X ∈ Sch(S). Our aim is to say when a finite étale covering Y → X is tame. Here
“tame” means tamely ramified along the boundary of a compactification X of X
over S. If X is regular and D = X − X is a normal crossing divisor, then one can
use the approach of [Grothendieck 1971; Grothendieck and Murre 1971]:

Definition 6.1 [Grothendieck and Murre 1971, 2.2.2]. A finite étale covering Y →

X is called tame (along D) if the extension of function fields k(Y )|k(X) is tamely
ramified at the discrete valuations associated to the irreducible components of D.

Even if one restricts attention to regular schemes, one is confronted with the
following problems:
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• If X is regular, we do not know whether there exists a regular compactification
with an NCD as its boundary,

• The notion of tameness might depend on the choice of the compactification
X of X .

• Even if the first two questions can be answered in a positive way, there is
no obvious functoriality for the tame fundamental group (already for an open
immersion).

All these problems are void in the case of a regular curve C , where a canoni-
cal compactification C exists. Starting from the therefore obvious notion of tame
coverings of regular curves, G. Wiesend [2006] proposed the following definition.

Definition 6.2. Let X be a separated integral scheme of finite type over S. A
finite étale covering Y → X is called tame if for every integral curve C ⊂ X with
normalization C̃ → C the base change

Y ×X C̃ −→ C̃

is a tame covering of the regular curve C̃ .

This definition has the advantage of making no use of a compactification of X .
Furthermore, it is obviously stable under base change. However, it is difficult to
decide whether a given étale covering is actually tame. For coverings of normal
schemes, several authors [Abbes 2000; Chinburg and Erez 1992; Schmidt 2002]
have made suggestions for a definition of tameness which all come down to the
following notion, which we want to call numerically tameness here.

Definition 6.3. Let X ∈ Sch(S) be normal connected and proper, and let X ⊂ X
be an open subscheme. Let Y → X be a finite étale Galois covering and let Y be
the normalization of X in the function field k(Y ) of Y . We say that Y → X is
numerically tame (along D = X − X ) if the order of the inertia group Tx(Y |X)⊂

Gal(Y |X) = Gal(Y |X) of each closed point x ∈ D (see [Bourbaki 1964, Chapter
5, Section 2.2] for the definition of inertia groups) is prime to the residue charac-
teristic of x . A finite étale covering Y → X is called numerically tame if it can be
dominated by a numerically tame Galois covering.

Proposition 6.4. Let X ∈ Sch(S) be normal connected and proper, and let X ⊂ X
be an open subscheme. If the finite étale covering Y → X is numerically tame
(along X − X ), then it is tame.

Proof. For regular curves the notions of tameness and of numerically tameness
obviously coincide. Therefore the statement of the proposition follows from the
fact that numerically tame coverings are stable under base change; see [Schmidt
2002]. �
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Theorem 6.5 [Wiesend 2006, Theorem 2]. Assume that X is regular and that
D = X−X is an NCD. Then, for a finite étale covering Y → X , there is equivalence
between:

(i) Y → X is tame according to Definition 6.1.

(ii) Y → X is tame (according to Definition 6.2).

(iii) Y → X is numerically tame.

Remark 6.6. The equivalence of (i) and (iii) had already been shown in [Schmidt
2002].

Theorem 6.7 [Wiesend 2006, Theorem 2]. Assume that X is regular (but make
no assumption on D = X − X ). If a numerically tame covering Y → X can be
dominated by a Galois covering with nilpotent Galois group, then it is tame.

In particular, for nilpotent coverings of a regular scheme X the notion of nu-
merically tameness does not depend on the choice of a regular compactification X
(if it exists). This had already been shown in [Schmidt 2002]. A counterexample
with non-nilpotent Galois group can be found in [Wiesend 2006, Remark 3].

7. Finiteness results for tame fundamental groups

The tame coverings of a connected integral scheme X ∈ Sch(S) satisfy the axioms
of a Galois category [Wiesend 2006, Proposition 1]. After choosing a geometric
point x of X we have the fibre functor (Y → X) 7→ MorX (x, Y ) from the category
of tame coverings of X to the category of sets, whose automorphisms group is
called the tame fundamental group π t

1(X, x). It classifies finite connected tame
coverings of X . We have an obvious surjection

π et
1 (X, x)� π t

1(X, x),

which is an isomorphism if X is proper. Assume that X is normal, connected and
let X be a normal compactification. Then, replacing tame coverings by numerically
tame coverings, we obtain in an analogous way the numerically tame fundamen-
tal group πnt

1 (X , X − X, x), which classifies finite connected numerically tame
coverings of X (along X − X ). By Proposition 6.4 we have a surjection

ϕ : π t
1(X, x)� πnt

1 (X , X − X, x),

which, by Theorem 6.7, induces an isomorphism on the maximal pro-nilpotent
factor groups if X is regular. If, in addition, X − X is a normal crossing divisor
then ϕ is an isomorphism by Theorem 6.5. The fundamental groups of a connected
scheme X with respect to different base points are isomorphic, and the isomor-
phism is canonical up to inner automorphisms. Therefore, when working with the
maximal abelian quotient of the étale fundamental group (tame fundamental group,
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n.t. fundamental group) of a connected scheme, we are allowed to omit the base
point from notation.

Now we specialize to the case S = Spec(Z), i.e. to arithmetic schemes. In
[Schmidt 2002] we proved the finiteness of the abelianized numerically tame fun-
damental group πnt

1 (X , X − X)ab of a connected normal scheme, flat and of finite
type over Spec(Z) with respect to a normal compactification X . The proof given
there can be adapted to apply also to the larger group π t

1(X)
ab.

Theorem 7.1. Let X be a connected normal scheme, flat and of finite type over
Spec(Z). Then the abelianized tame fundamental group π t

1(X)
ab is finite.

For the proof we need the following two lemmas. The first one extends [Schmidt
2002, Corollary 2.6] from numerical tameness to tameness.

Lemma 7.2. Let X ∈ Sch(S) be normal and connected, p a prime number and
Y → X a finite étale Galois covering whose Galois group is a finite p-group. Let
X be a normal compactification of X and assume there exists a prime divisor D
on X which is ramified in k(Y )|k(X) and which contains a closed point of residue
characteristic p. Then Y → X is not tame.

Proof. The statement of the lemma is part of the proof of [Wiesend 2006, Theo-
rem 2]. �

Lemma 7.3. Let A be a strictly henselian discrete valuation ring with perfect
(hence algebraically closed) residue field and with quotient field k. Let k∞|k be
a Zp-extension. Let K |k be a regular field extension and let B ⊂ K be a discrete
valuation ring dominating A. Then B is ramified in K k∞|K .

Proof. See [Schmidt 2002, Lemma 3.2]. �

Proof of Theorem 7.1. The proof is a modification of the proof of [Schmidt 2002,
Theorem 3.1]. Let X be a normal compactification of X over Spec(Z). Let k be
the normalization of Q in the function field of X and put S = Spec(Ok). Then the
natural projection X → Spec(Z) factors through S.

Since X is normal, for any open subscheme V of X the natural homomorphism
π et

1 (V )→ π et
1 (X) is surjective. Therefore also the homomorphism

π t
1(V )

ab
−→ π t

1(X)
ab

is surjective and so we may replace X by a suitable open subscheme and assume
that X is smooth over S. Let T ⊂ S be the image of X . Consider the commutative
diagram

0 −→ Ker(X/T ) −→ π et
1 (X)

ab
−→ π et

1 (T )
aby yy yy

0 −→ Kert(X/T ) −→ π t
1(X)

ab
−→ π t

1(T )
ab
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where the groups Ker(X/T ) and Kert(X/T ) are defined by the exactness of the
corresponding rows, and the two right vertical homomorphisms are surjective. By
[Katz and Lang 1981, Theorem 1], the group Ker(X/T ) is finite. By classical one-
dimensional class field theory, the group π t

1(T )
ab is finite (it is the Galois group of

the ray class field of k with modulus
∏

p/∈T p). The kernel of π et
1 (T )

ab
→ π t

1(T )
ab

is generated by the ramification groups of the primes of S which are not in T .
Denoting the product of the residue characteristics of these primes by N , we see
that π et

1 (T )
ab is the product of a finite group and a topologically finitely generated

pro-N group. Therefore the same is also true for π et
1 (X)

ab and for π t
1(X)

ab. Hence
it suffices to show that the cokernel C of the induced map Ker(X/T )→Kert(X/T )
is a torsion group.

Let K be the function field of X and let k1 be the maximal abelian extension of
k such that the normalization X K k1 of X in the composite K k1 is ind-tame over X .
By [Katz and Lang 1981, Lemma 2, (2)], the normalization of T in k1 is ind-étale
over T . Let k2|k be the maximal subextension of k1|k such that the normalization
Tk2 of T in k2 is tame over T . Then G(k2|k)= π t

1(T )
ab and C ∼= G(k1|k2).

In order to show that C is a torsion group, we therefore have to show that k1|k2

does not contain a Zp-extension of k2 for any prime number p. Since k2|k is a finite
extension and k1|k is abelian, this is equivalent to the assertion that k1|k contains
no Zp-extension of k for any prime number p.

Let p be a prime number and suppose that k∞|k is a Zp-extension such that
the normalization X K k∞

is ind-tame over X . A Zp-extension of a number field
is unramified outside p and there exists at least one ramified prime dividing p;
see e.g. [Neukirch et al. 2000, (10.3.20)(ii)]. Let k ′ be the maximal unramified
subextension of k∞|k and let S′ be the normalization of S in k ′. Then the base
change X ′

= X ×S S′
→ X is étale. Hence X ′ is normal and the preimage X ′ of X

is smooth and geometrically connected over k ′. So, after replacing k by k ′, we may
suppose that k∞|k is totally ramified at a prime p|p, p∈ S−T . Considering the base
change to the strict henselization of S at p and applying Lemma 7.3, we see that
each vertical divisor of X in the fibre over p ramifies in K k∞. Replacing X by its
normalization in a suitable finite subextension of K k∞, we obtain a contradiction
using Lemma 7.2. �

Next we consider the case S = Spec(F), i.e. varieties over a finite field F. In this
case we have the degree map

deg : π t
1(X)

ab
−→ π t

1(S)
ab ∼= Gal(F | F)∼= Ẑ,

and we denote the kernel of this degree map by (π t
1(X)

ab)0. The image of deg is an
open subgroup of Ẑ and is therefore isomorphic to Ẑ. As Ẑ is a projective profinite
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group, we have a (noncanonical) isomorphism

π t
1(X)

ab ∼= (π t
1(X)

ab)0 × Ẑ.

Let p be the characteristic of the finite field F. If X is an open subscheme of a
smooth proper variety X , then we have a decomposition

(π t
1(X)

ab)0 ∼= (π et
1 (X)

ab)0(prime-to-p-part)⊕ (π et
1 (X)

ab)0(p-part),

and both summands are known to be finite. The finiteness statement for (π t
1(X)

ab)0

can be generalized to normal schemes.

Theorem 7.4. Let X be a normal connected variety over a finite field. Then the
group (π t

1(X)
ab)0 is finite.

Proof (sketch). We may replace X by a suitable open subscheme and therefore
assume that there exists a smooth morphism X −→ C to a smooth projective curve.
Then we proceed in an analogous way as in the proof of Theorem 7.1 using the fact
that a global field of positive characteristic has exactly one unramified Ẑ-extension,
which is obtained by base change from the constant field. �

8. Tame class field theory

In this section we construct a reciprocity homomorphism from the singular ho-
mology group h0(X) to the abelianized tame fundamental group of an arithmetic
scheme X . A sketch of the results of this section is contained in [Schmidt 2007].

Let for the whole section S = Spec(Z) and let X ∈ Sch(Z) be connected and
regular. If X has R-valued points, we have to modify the tame fundamental group
in the following way.

We consider the full subcategory of the category of tame coverings of X which
consists of that coverings in which every R-valued point of X splits completely.
After choosing a geometric point x of X we have the fibre functor (Y → X) 7→

MorX (x, Y ), and its automorphism group π̃ t
1(X, x) is called the modified tame

fundamental group of X . It classifies connected tame coverings of X in which
every R-valued point of X splits completely. We have an obvious surjection

π t
1(X, x)� π̃ t

1(X, x)

which is an isomorphism if X (R)= ∅.
For x ∈ X (R) let σx ∈ π t

1(X)
ab be the image of the complex conjugation σ ∈

Gal(C|R) under the natural map x∗ :Gal(C|R)→π t
1(X)

ab. By [Saito 1985, Lemma
4.9 (iii)], the map

X (R)−→ π t
1(X)

ab, x 7−→ σx ,
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is locally constant for the norm topology on X (R). Therefore the kernel of the
homomorphism

π t
1(X)

ab � π̃ t
1(X)

ab

is an F2-vector space of dimension less or equal the number of connected compo-
nents of X (R).

Let x ∈ X be a closed point. We have a natural isomorphism

π et
1 ({x})∼= Gal(k(x)|k(x))∼= Ẑ,

and we denote the image of the (arithmetic) Frobenius automorphism Frob ∈

G(k(x)|k(x)) under the natural homomorphism π et
1 ({x})ab

−→π et
1 (X)

ab by Frobx .
In the following we omit the base scheme Spec(Z) from notation, writing C•(X)

for C•(X; Spec(Z)) and similar for homology. Recall that C0(X) = Z0(X) is the
group of zero-cycles on X . Sending x to Frobx , we obtain a homomorphism

r : C0(X)−→ π1(X)ab,

which is known to have dense image [Lang 1956; Raskind 1995, Lemma 1.7]. Our
next goal is to show:

Theorem 8.1. The composite map

C0(X)
r

−→ π et
1 (X)

ab
−→ π̃ t

1(X)
ab

factors through h0(X), thus defining a reciprocity homomorphism

rec : h0(X)−→ π̃ t
1(X)

ab,

which has a dense image.

In order to prove Theorem 8.1, let us apply Theorem 3.7 to the case of rings of
integers of algebraic number fields. Let k be a finite extension of Q and let 6 be a
finite set of nonarchimedean primes of k. Let Ok,6 be the ring of 6-integers of k
and let E1,6

k be the subgroup of elements in the group of global units Ek which are
≡ 1 at every prime p ∈6. Let r1 and r2 be the number of real and complex places
of k. If m is a product of primes of k, then we denote by Cm(k) the ray class group
of k with modulus m.

Proposition 8.2. For X = Spec(Ok,6), we have hi (X)= 0 for i 6= 0, 1,

(i) h0(X)= Cm(k) with m =
∏

p∈6 p, and

(ii) h1(X)= E1,6
k

∼= (finite group) ⊕ Zr1+r2−1.

In particular, h0(X) is finite and h1(X) is finitely generated. If 6 contains at
least two primes with different residue characteristics, the finite summand in (ii)
vanishes.
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Proof. The vanishing of hi (X) for i 6= 0, 1 follows from Theorem 3.7. A straight-
forward computation shows that for m =

∏
p∈6 p

Cm(k)∼= Pic(Spec(Ok),6),

and the finiteness of Cm(k) is well-known. The group E1,6
k is of finite index in

the full unit group Ek . Therefore the remaining statement in (ii) follows from
Dirichlet’s unit theorem. Furthermore, a root of unity congruent to 1 modulo two
primes of different residue characteristics equals 1. �

By Theorem 3.5, we have an analogous statement for smooth curves over finite
fields.

Proposition 8.3. Let X be a smooth, geometrically connected curve over a finite
field F and let X be the uniquely defined smooth compactification of X. Let 6 =

X − X and let k be the function field of X. Then we have hi (X)= 0 for i 6= 0, 1,

(i) h0(X)= Cm(k) with m =
∏

p∈6 p, and

(ii) h1(X)=

{
0 if 6 6= ∅,

F× if 6 = ∅.

In particular, hi (X) is finite for all i .

Proof of Theorem 8.1. Using Propositions 8.2 and 8.3, classical (one-dimensional)
class field theory for global fields shows the statement in the case dim X = 1. In
order to show the general statement, it suffices by Corollary 5.3 to show that for
any morphism f : C → X from a regular curve C to X and for any x ∈ d(C1(C)),
we have r( f∗(x))= 0. This follows from the corresponding result in dimension 1
and from the commutative diagram

d(C1(C)) −→ C0(C)
rC

−→ π̃ t
1(C)

aby y y
d(C1(X)) −→ C0(X)

rX
−→ π̃ t

1(X)
ab. �

In order to investigate the reciprocity map, we use Wiesend’s version of higher
dimensional class field theory [Wiesend 2007]. We start with the arithmetic case,
i.e. when X is flat over Spec(Z). In this case π̃ t

1(X)
ab is finite by Theorem 7.1.

Theorem 8.4. Let X be a regular, connected scheme, flat and of finite type over
Spec(Z). Then the reciprocity homomorphism

recX : h0(X)−→ π̃ t
1(X)

ab

is an isomorphism of finite abelian groups.
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Remark 8.5. If X is proper, then h0(X)∼= CH0(X) and π̃ t
1(X)

ab ∼= π̃ et
1 (X)

ab, and
we recover the unramified class field theory for arithmetic schemes of Bloch and
Kato–Saito [Kato and Saito 1983; Saito 1985].

Proof of Theorem 8.4. Recall the definition of Wiesend’s idèle group IX . It is
defined by

IX := Z0(X)⊕
⊕
C⊂X

⊕
v∈C∞

k(C)×v .

Here C runs through all closed integral subschemes of X of dimension 1, C∞ is
the finite set of places (including the archimedean ones if C is horizontal) of the
global field k(C) with center outside C and k(C)v is the completion of k(C) with
respect to v. IX becomes a topological group by endowing the group Z0(X) of
zero cycles on X with the discrete topology, the groups k(C)×v with their natural
locally compact topology and the direct sum with the direct sum topology.1

The idèle class group CX is defined as the cokernel of the natural map⊕
C⊂X

k(C)× −→ IX .

which is given for a fixed C ⊂ X by the divisor map k(C)× → Z0(C)→ Z0(X) and
the diagonal map k(C)× →

⊕
v∈C∞

k(C)×v . CX is endowed the quotient topology
of IX .

We consider the quotient Ct
X of CX obtained by cutting out the 1-unit groups

at all places outside X . More precisely, let for v ∈ C∞, U 1(k(C)v) be the group
of principal units in the local field k(C)v. We make the notational convention
U 1(K )= K × for the archimedean local fields K = R,C. Then

Ut
X :=

⊕
C⊂X

⊕
v∈C∞

U 1(k(C)v)

is an open subgroup of the idèle group IX and we put

Ct
X := coker(

⊕
C⊂X

k(C)× −→ IX/U
t
X ).

Consider the map
R : IX −→ π et

1 (X)
ab

which is given by the map r : Z0(X)→ π1(X)ab defined above and the reciprocity
maps of local class field theory

ρv : k(C)×v −→ π et
1 (Spec(k(C)v))ab

1The topology of a finite direct sum is just the product topology, and the topology of an infinite
direct sum is the direct limit topology of the finite partial sums.
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followed by the natural maps π et
1 (Spec(k(C)v))ab

→ π et
1 (X)

ab for all C ⊂ X ,
v ∈ C∞. By [Wiesend 2007, Theorem 1 (a)], the homomorphism R induces an
isomorphism

ρ : Ct
X −→

∼ π̃ t
1(X)

ab.

Now we consider the obvious map

φ : Z0(X)−→ Ct
X .

The kernel of φ is the subgroup in Z0(X) generated by elements of the form div( f )
where C ⊂ X is a closed curve and f is an invertible rational function on C which
is in U 1(k(C)v) for all v ∈ C∞. By Theorem 5.1 we obtain ker(φ) = d1(C1(X)).
Therefore φ induces an injective homomorphism

i : h0(X) ↪→ Ct
X

with ρ ◦ i = rec. As ρ is injective, rec is injective, and hence an isomorphism. �

Finally, assume that X is regular, flat and proper over Spec(Z), let D ⊂ X be a
divisor and X = X − D. In [Schmidt 2005] we introduced the relative Chow group
of zero cycles CH0(X , D) and constructed, under a mild technical assumption, a
reciprocity isomorphism rec′

:CH0(X , D)
∼
→ π̃ t

1(X)
ab. By [Schmidt 2005, Proposi-

tion 2.4], there exists natural projection π :h0(X)�CH0(X , D)with rec= rec′
◦π .

We obtain the

Theorem 8.6. Let X be a regular, connected scheme, flat and proper over Spec(Z),
such that its generic fibre X ⊗Z Q is projective over Q. Let D be a divisor on X
whose vertical irreducible components are normal schemes. Put X = X − D. Then
the natural homomorphism

h0(X)−→ CH0(X , D)

is an isomorphism of finite abelian groups.

Finally, we deal with the geometric case. The next theorem was proved in 1999
by M. Spieß and the author under the assumption that X has a smooth projective
compactification; see [Schmidt and Spieß 2000]. Now we get rid of this assump-
tion.

Theorem 8.7. Let X be a smooth, connected variety over a finite field F. Then the
reciprocity homomorphism

recX : h0(X)−→ π t
1(X)

ab

is injective. The image of recX consists of all elements whose degree in Gal(F|F)

is an integral power of the Frobenius automorphism. In particular, the cokernel
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coker(recX )∼= Ẑ/Z is uniquely divisible. The induced map on the degree-zero parts
rec0

X : h0(X)0
∼
→ (π t

1(X)
ab)0 is an isomorphism of finite abelian groups.

Proof. The proof is strictly parallel to the proof of Theorem 8.4, using Theorem 5.1
and the tame version of Wiesend’s class field theory for smooth varieties over finite
fields [Wiesend 2007, Theorem 1 (b)]. �

References

[Abbes 2000] A. Abbes, “The Grothendieck–Ogg–Shafarevich formula for arithmetic surfaces”, J.
Algebraic Geom. 9:3 (2000), 529–576. MR 2001b:14039 Zbl 0986.14015

[Bass and Murthy 1967] H. Bass and M. P. Murthy, “Grothendieck groups and Picard groups of
abelian group rings”, Ann. of Math. (2) 86 (1967), 16–73. MR 36 #2671 Zbl 0157.08202

[Bloch 1986] S. Bloch, “Algebraic cycles and higher K -theory”, Adv. in Math. 61:3 (1986), 267–
304. MR 88f:18010 Zbl 0608.14004

[Bourbaki 1964] N. Bourbaki, Algèbre commutative (Chapitre 5: Entiers; Chapitre 6: Valuations),
Éléments de mathématique XXX, Hermann, Paris, 1964. MR 33 #2660 Zbl 0205.34302

[Brown and Gersten 1973] K. S. Brown and S. M. Gersten, “Algebraic K -theory as generalized
sheaf cohomology”, pp. 266–292 in Algebraic K-theory, I: Higher K-theories (Wash., 1972), edited
by H. Bass, Lecture Notes in Math. 341, Springer, Berlin, 1973. MR 50 #442 Zbl 0291.18017

[Chinburg and Erez 1992] T. Chinburg and B. Erez, “Equivariant Euler–Poincaré characteristics and
tameness”, pp. 179–194 in Journées arithmétiques (Geneva, 1991), Astérisque 209, Soc. Math. de
France, Montrouge, 1992. MR 94c:14015 Zbl 0796.11051

[Friedlander and Voevodsky 2000] E. M. Friedlander and V. Voevodsky, “Bivariant cycle cohomol-
ogy”, pp. 138–187 in Cycles, transfers, and motivic homology theories, Ann. of Math. Stud. 143,
Princeton Univ. Press, Princeton, NJ, 2000. MR 1764201 Zbl 1019.14011

[Fulton 1998] W. Fulton, Intersection theory, vol. 2, Second ed., Ergebnisse der Mathematik und
ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics
and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], Springer, Berlin, 1998.
MR 99d:14003 Zbl 0885.14002

[Grothendieck 1971] A. Grothendieck, Revêtements étales et groupe fondamental (SGA 1), Lecture
Notes in Math. 224, Springer, Berlin, 1971. MR 50 #7129 Zbl 0234.14002

[Grothendieck and Murre 1971] A. Grothendieck and J. P. Murre, The tame fundamental group of
a formal neighbourhood of a divisor with normal crossings on a scheme, Lecture Notes in Mathe-
matics 208, Springer, Berlin, 1971. MR 47 #5000 Zbl 0216.33001

[Kato and Saito 1983] K. Kato and S. Saito, “Unramified class field theory of arithmetical surfaces”,
Ann. of Math. (2) 118:2 (1983), 241–275. MR 86c:14006 Zbl 0562.14011

[Katz and Lang 1981] N. M. Katz and S. Lang, “Finiteness theorems in geometric classfield theory”,
Enseign. Math. (2) 27:3-4 (1981), 285–319 (1982). MR 83k:14012 Zbl 0495.14011

[Lang 1956] S. Lang, “Sur les séries L d’une variété algébrique”, Bull. Soc. Math. France 84 (1956),
385–407. MR 19,578c Zbl 0089.26301

[Lichtenbaum 1993] S. Lichtenbaum, “Suslin homology and Deligne 1-motives”, pp. 189–196 in
Algebraic K -theory and algebraic topology (Lake Louise, Canada, 1991), edited by P. G. Goerss
and J. F. Jardine, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 407, Kluwer Acad. Publ., Dordrecht,
1993. MR 96m:14026 Zbl 0902.14004

http://www.ams.org/mathscinet-getitem?mr=2001b:14039
http://www.emis.de/cgi-bin/MATH-item?0986.14015
http://dx.doi.org/10.2307/1970360
http://dx.doi.org/10.2307/1970360
http://www.ams.org/mathscinet-getitem?mr=36:2671
http://www.emis.de/cgi-bin/MATH-item?0157.08202
http://www.ams.org/mathscinet-getitem?mr=88f:18010
http://www.emis.de/cgi-bin/MATH-item?0608.14004
http://www.ams.org/mathscinet-getitem?mr=33:2660
http://www.emis.de/cgi-bin/MATH-item?0205.34302
http://www.ams.org/mathscinet-getitem?mr=50:442
http://www.emis.de/cgi-bin/MATH-item?0291.18017
http://www.ams.org/mathscinet-getitem?mr=94c:14015
http://www.emis.de/cgi-bin/MATH-item?0796.11051
http://www.ams.org/mathscinet-getitem?mr=1764201
http://www.emis.de/cgi-bin/MATH-item?1019.14011
http://www.ams.org/mathscinet-getitem?mr=99d:14003
http://www.emis.de/cgi-bin/MATH-item?0885.14002
http://www.ams.org/mathscinet-getitem?mr=50:7129
http://www.emis.de/cgi-bin/MATH-item?0234.14002
http://www.ams.org/mathscinet-getitem?mr=47:5000
http://www.emis.de/cgi-bin/MATH-item?0216.33001
http://dx.doi.org/10.2307/2007029
http://www.ams.org/mathscinet-getitem?mr=86c:14006
http://www.emis.de/cgi-bin/MATH-item?0562.14011
http://www.ams.org/mathscinet-getitem?mr=83k:14012
http://www.emis.de/cgi-bin/MATH-item?0495.14011
http://www.numdam.org/item?id=BSMF_1956__84__385_0
http://www.ams.org/mathscinet-getitem?mr=19,578c
http://www.emis.de/cgi-bin/MATH-item?0089.26301
http://www.ams.org/mathscinet-getitem?mr=96m:14026
http://www.emis.de/cgi-bin/MATH-item?0902.14004


222 Alexander Schmidt

[Nart 1989] E. Nart, “The Bloch complex in codimension one and arithmetic duality”, J. Number
Theory 32:3 (1989), 321–331. MR 90j:11057 Zbl 0728.14002

[Neukirch et al. 2000] J. Neukirch, A. Schmidt, and K. Wingberg, Cohomology of number fields, vol.
323, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical
Sciences], Springer, Berlin, 2000. MR 2000j:11168 Zbl 0948.11001

[Raskind 1995] W. Raskind, “Abelian class field theory of arithmetic schemes”, pp. 85–187 in K -
theory and algebraic geometry: connections with quadratic forms and division algebras, edited
by W. Jacob and A. Rosenberg, Proc. Sympos. Pure Math. 58, Amer. Math. Soc., Providence, RI,
1995. MR 96b:11089 Zbl 0832.19004

[Saito 1985] S. Saito, “Unramified class field theory of arithmetical schemes”, Ann. of Math. (2)
121:2 (1985), 251–281. MR 87i:14018

[Schmidt 2002] A. Schmidt, “Tame coverings of arithmetic schemes”, Math. Ann. 322:1 (2002),
1–18. MR 2003a:14019 Zbl 1113.14022

[Schmidt 2005] A. Schmidt, “Tame class field theory for arithmetic schemes”, Invent. Math. 160:3
(2005), 527–565. MR 2006i:11070 Zbl 1097.11034

[Schmidt 2007] A. Schmidt, “Some consequences of Wiesend’s higher dimensional class field the-
ory. Appendix to: “Class field theory for arithmetic schemes” [Math. Z. 256 (2007), no. 4, 717–729;
MR2308885] by G. Wiesend”, Math. Z. 256:4 (2007), 731–736. MR 2308886 Zbl 1115.14015

[Schmidt and Spieß 2000] A. Schmidt and M. Spieß, “Singular homology and class field theory
of varieties over finite fields”, J. Reine Angew. Math. 527 (2000), 13–36. MR 2001m:11108 Zbl
0961.14013

[Serre 1965] J.-P. Serre, Algèbre locale. Multiplicités, vol. 11, Cours au Collège de France, 1957–
1958, rédigé par Pierre Gabriel. Seconde édition, 1965. Lecture Notes in Mathematics, Springer,
Berlin, 1965. MR 34 #1352 Zbl 0142.28603

[Suslin and Voevodsky 1996] A. Suslin and V. Voevodsky, “Singular homology of abstract algebraic
varieties”, Invent. Math. 123:1 (1996), 61–94. MR 97e:14030 Zbl 0896.55002

[Suslin and Voevodsky 2000] A. Suslin and V. Voevodsky, “Bloch–Kato conjecture and motivic
cohomology with finite coefficients”, pp. 117–189 in The arithmetic and geometry of algebraic
cycles (Banff, Canada, 1998), edited by B. B. Gordon et al., NATO Sci. Ser. C Math. Phys. Sci.
548, Kluwer Acad. Publ., Dordrecht, 2000. MR 2001g:14031 Zbl 1005.19001

[Voevodsky 1998] V. Voevodsky, “A1-homotopy theory”, pp. 579–604 in Proceedings of the Inter-
national Congress of Mathematicians (Berlin, 1998), vol. I, 1998. MR 99j:14018 Zbl 0907.19002

[Voevodsky 2000] V. Voevodsky, “Triangulated categories of motives over a field”, pp. 188–238 in
Cycles, transfers, and motivic homology theories, Ann. of Math. Stud. 143, Princeton Univ. Press,
Princeton, NJ, 2000. MR 1764202 Zbl 1019.14009

[Wiesend 2006] G. Wiesend, “Tamely ramified covers of varieties and arithmetic schemes”, preprint,
2006. To appear in Forum Mathematicum.

[Wiesend 2007] G. Wiesend, “Class field theory for arithmetic schemes”, Math. Z. 256:4 (2007),
717–729. MR 2308885

Communicated by Jean-Louis Colliot-Thélène
Received 2007-02-27 Revised 2007-06-21 Accepted 2007-07-27

alexander.schmidt@mathematik.uni-regensburg.de
Universität Regensburg, NWF I-Mathematik,
D-93040 Regensburg, Germany
www.mathematik.uni-regensburg.de/Schmidt

http://dx.doi.org/10.1016/0022-314X(89)90088-7
http://www.ams.org/mathscinet-getitem?mr=90j:11057
http://www.emis.de/cgi-bin/MATH-item?0728.14002
http://www.ams.org/mathscinet-getitem?mr=2000j:11168
http://www.emis.de/cgi-bin/MATH-item?0948.11001
http://www.ams.org/mathscinet-getitem?mr=96b:11089
http://www.emis.de/cgi-bin/MATH-item?0832.19004
http://dx.doi.org/10.2307/1971173
http://www.ams.org/mathscinet-getitem?mr=87i:14018
http://dx.doi.org/10.1007/s002080100262
http://www.ams.org/mathscinet-getitem?mr=2003a:14019
http://www.emis.de/cgi-bin/MATH-item?1113.14022
http://dx.doi.org/10.1007/s00222-004-0415-y
http://www.ams.org/mathscinet-getitem?mr=2006i:11070
http://www.emis.de/cgi-bin/MATH-item?1097.11034
http://dx.doi.org/10.1007/s00209-006-0094-z
http://dx.doi.org/10.1007/s00209-006-0094-z
http://dx.doi.org/10.1007/s00209-006-0094-z
http://www.ams.org/mathscinet-getitem?mr=2308886
http://www.emis.de/cgi-bin/MATH-item?1115.14015
http://dx.doi.org/10.1515/crll.2000.079
http://dx.doi.org/10.1515/crll.2000.079
http://www.ams.org/mathscinet-getitem?mr=2001m:11108
http://www.emis.de/cgi-bin/MATH-item?0961.14013
http://www.emis.de/cgi-bin/MATH-item?0961.14013
http://www.ams.org/mathscinet-getitem?mr=34:1352
http://www.emis.de/cgi-bin/MATH-item?0142.28603
http://dx.doi.org/10.1007/BF01232367
http://dx.doi.org/10.1007/BF01232367
http://www.ams.org/mathscinet-getitem?mr=97e:14030
http://www.emis.de/cgi-bin/MATH-item?0896.55002
http://www.ams.org/mathscinet-getitem?mr=2001g:14031
http://www.emis.de/cgi-bin/MATH-item?1005.19001
http://www.ams.org/mathscinet-getitem?mr=99j:14018
http://www.emis.de/cgi-bin/MATH-item?0907.19002
http://www.ams.org/mathscinet-getitem?mr=1764202
http://www.emis.de/cgi-bin/MATH-item?1019.14009
http://dx.doi.org/10.1007/s00209-006-0095-y
http://www.ams.org/mathscinet-getitem?mr=2308885
mailto:alexander.schmidt@mathematik.uni-regensburg.de

	1. Introduction
	2. Preliminaries
	3. Singular homology of curves
	4. Homotopy invariance
	5. Alternative characterization of h0
	6. Review of tame coverings
	7. Finiteness results for tame fundamental groups
	8. Tame class field theory
	References

