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Swan conductors for p-adic differential
modules, I: A local construction

Kiran S. Kedlaya

We define a numerical invariant, the differential Swan conductor, for certain
differential modules on a rigid analytic annulus over a p-adic field. This gives
a definition of a conductor for p-adic Galois representations with finite local
monodromy over an equal characteristic discretely valued field, which agrees
with the usual Swan conductor when the residue field is perfect. We also es-
tablish analogues of some key properties of the usual Swan conductor, such as
integrality (the Hasse–Arf theorem), and the fact that the graded pieces of the
associated ramification filtration on Galois groups are abelian and killed by p.

Introduction

In this paper, we define a numerical invariant, which we call the differential Swan
conductor, for certain differential modules on a rigid analytic annulus over a com-
plete nonarchimedean field of mixed characteristics. We then use this definition to
define a differential Swan conductor for p-adic Galois representations with finite
local monodromy over an equal characteristic discretely valued field, whose residue
field need not be perfect. The latter will coincide with the usual Swan conductor
in the case of a perfect residue field.

The construction of the differential Swan conductor proceeds by measuring the
failure of convergence of the Taylor isomorphism, or equivalently, the failure of
local horizontal sections for the connection to converge on as large a disc as pos-
sible. This phenomenon distinguishes the study of differential equations over p-
adic fields from its classical analogue, and the relationship with Swan conductors
explains the discrepancy in terms of wild ramification in characteristic p. (The
analogy between irregularity of connections and wild ramification has been known

MSC2000: primary 11S15; secondary 14F30.
Keywords: p-adic differential modules, Swan conductors, wild ramification, Hasse–Arf theorem,

imperfect residue fields.
This material was first presented at the Hodge Theory conference at Venice International University
in June 2006; that presentation was sponsored by the Clay Mathematics Institute. The author was
additionally supported by NSF grant DMS-0400727, NSF CAREER grant DMS-0545904, and a
Sloan Research Fellowship.
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for a while, but recent developments have pushed it further, e.g., construction of a
de Rham analogue of local ε-factors [Beilinson et al. 2002].)

In the case of Galois representations over an equal characteristic discretely
valued field with perfect residue field, the differential interpretation of the Swan
conductor is known from the work of several authors, including André, Christol
and Mebkhout, Crew, Matsuda, Tsuzuki, and others; see [Kedlaya 2005a, Section
5] for an overview. The question of extending this interpretation to the case of
imperfect residue field was first raised by Matsuda [2004], who proposed giving a
differential interpretation of the logarithmic conductor of [Abbes and Saito 2002;
Abbes and Saito 2003]. Our point of view is a bit different: we first construct
a numerical invariant from differential considerations, and check that it has good
properties. These include the Hasse–Arf property, i.e., integrality of conductors
(Theorem 2.8.2), and the fact that the associated ramification filtration on Galois
groups has graded pieces which are elementary abelian (Theorem 3.5.13). Only
then do we pose questions about reconciling the definition with other constructions;
we do not answer any of these.

In a subsequent paper, we will apply this construction to overconvergent F-
isocrystals on varieties over perfect fields of positive characteristic; in particular,
the construction applies to discrete representations of the étale fundamental groups
of open varieties. We will pay particular attention to how the differential Swan
conductor of a fixed isocrystal changes as we vary the choice of a boundary divisor
along which to compute the conductor.

Acknowledgments. The author thanks Liang Xiao for comments on an early draft.

1. Differential fields

We start with a summary of some relevant facts about differential fields and mod-
ules. We defer to [Kedlaya 2006b, Section 3] (and other explicitly cited references)
for more details.

1.1. Differential modules and twisted polynomials.

Hypothesis 1.1.1. Throughout this subsection, let F be a differential field of or-
der 1 and characteristic zero, i.e., a field of characteristic zero equipped with a
derivation ∂ .

Definition 1.1.2. Let F{T } denote the (noncommutative) ring of twisted polynomi-
als over F [Ore 1933]; its elements are finite formal sums

∑
i≥0 ai T i with ai ∈ F ,

multiplied according to the rule T a = aT + ∂(a) for a ∈ F .

Remark 1.1.3. The opposite ring of F{T } is the ring of twisted polynomials for
the differential field given by equipping F with the derivation −∂ instead of ∂ .
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Definition 1.1.4. A differential module over F is a finite dimensional F-vector
space V equipped with an action of ∂ (subject to the Leibniz rule); any such module
inherits a left action of F{T } where T acts via ∂ . For V a differential module
over F , a cyclic vector in V is a vector v ∈ V such that v, ∂(v), . . . , ∂dim(V )−1(v)
form a basis of V . A cyclic vector defines an isomorphism V ∼= F{T }/F{T }P of
differential modules for some twisted polynomial P ∈ F{T }, where the ∂-action
on F{T }/F{T }P is left multiplication by T .

Lemma 1.1.5. Every differential module over F contains a cyclic vector.

Proof. See, e.g., [Dwork et al. 1994, Theorem III.4.2]. �

Hypothesis 1.1.6. For the remainder of this subsection, assume that the differential
field F is equipped with a nonarchimedean norm | · |, and let V denote a nonzero
differential module over F . Write v(x)= −log |x | for the valuation corresponding
to | · |.

Definition 1.1.7. Let |∂|F denote the operator norm of ∂ on F . Let |∂|V,sp de-
note the spectral norm of ∂ on V , i.e., the limit lims→∞ |∂s

|
1/s
V for any fixed F-

compatible norm | · |V on V . Any two such norms on V are equivalent [Schneider
2002, Proposition 4.13], so the spectral norm does not depend on the choice. More
explicitly, if one chooses a basis of V and lets Ds denote the matrix via which ∂s

acts on this basis, then

max{|∂|F,sp, |∂|V,sp} = max{|∂|F,sp, lim sup
s→∞

|Ds |
1/s

}, (1.1.7.1)

where the norm applied to Ds is the supremum over entries [Christol and Dwork
1994, Proposition 1.3].

Definition 1.1.8. For P(T ) =
∑

i ai T i
∈ F{T } a nonzero twisted polynomial,

define the Newton polygon of P as the lower convex hull of the set {(−i, v(ai ))} ⊂

R2. This Newton polygon obeys the usual additivity rules only for slopes less than
−log |∂|F [Kedlaya 2006b, Lemma 3.1.5 and Corollary 3.1.6; Robba 1980, Section
1].

Proposition 1.1.9 (Christol–Dwork). Suppose V ∼= F{T }/F{T }P and P has least
slope r . Then

max{|∂|F , |∂|V,sp} = max{|∂|F , e−r
}.

Proof. See [Christol and Dwork 1994, Théorème 1.5] or [Kedlaya 2006b, Propo-
sition 3.3.7]. �
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Proposition 1.1.10 (Robba). Suppose that F is complete for its norm. Then any
monic twisted polynomial P ∈ F{T } admits a unique factorization

P = P+ Pm · · · P1

such that for some r1 < · · · < rm < −log |∂|F , each Pi is monic with all slopes
equal to ri , and P+ is monic with all slopes at least −log |∂|F .

Proof. This follows by repeated application of Hensel’s lemma for twisted poly-
nomials [Robba 1980]; see also [Kedlaya 2006b, Corollary 3.2.4]. �

1.2. Differential fields of higher order.

Hypothesis 1.2.1. Throughout this subsection, let F denote a differential field of
order n, i.e., a field F equipped with n commuting derivations ∂1, . . . , ∂n . Assume
also that F has characteristic zero and is complete for a nonarchimedean norm | · |

with corresponding valuation v. Let V denote a nonzero differential module over
F , i.e., a nonzero finite dimensional F-vector space equipped with commuting
actions of ∂1, . . . , ∂n . We apply the results of the previous subsection by singling
out one of ∂1, . . . , ∂n .

Definition 1.2.2. Define the scale of V as

max
{

max
{

1,
|∂i |V,sp

|∂i |F,sp

}
: i ∈ {1, . . . , n}

}
;

note that this quantity is at least 1 by definition, with equality at least when V = F .
For i = 1, . . . , n, we say ∂i is dominant for V if max{1, |∂i |V,sp/|∂i |F,sp} equals the
scale of V .

Definition 1.2.3. Let V1, . . . , Vm be the Jordan–Hölder factors of V (listed with
multiplicity). Define the scale multiset of V as the multiset of cardinality dimF V ,
consisting of the scale of V j included with multiplicity dimF V j , for j = 1, . . . ,m.
Note that the largest element of the scale multiset equals the scale of V .

Remark 1.2.4. If n = 1 and V ∼= F{T }/F{T }P for P a twisted polynomial, then
Proposition 1.1.10 implies that the multiplicity of any r <−log |∂|F as a slope of
the Newton polygon of P coincides with the multiplicity of e−r/|∂|F,sp in the scale
multiset of V .

Proposition 1.2.5. Suppose that |∂i |F/|∂i |F,sp = s0 for i = 1, . . . , n. Then there is
a unique decomposition

V = V− ⊕

⊕
s>s0

Vs

of differential modules, such that each Jordan–Hölder factor of Vs has scale s, and
each Jordan–Hölder factor of V− has scale at most s0.
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Proof. This may be deduced from Proposition 1.1.10, as in [Kedlaya 2006b, Propo-
sition 3.4.3]. �

Definition 1.2.6. We refer to the decomposition given in Proposition 1.2.5 as the
scale decomposition of V .

2. Conductors for ∇-modules

In this section, we construct the differential Swan conductor for certain differential
modules over p-adic fields. We will perform all of the calculations under the bifur-
cated Hypothesis 2.1.3; one of the two options therein allows for nonarchimedean
fields which are not discretely valued, but restricts their residue fields, while the
other is less restrictive on residue fields, but requires the nonarchimedean norms
to be discretely valued.

Notation 2.0.1. For S a set or multiset, write S p
= {s p

: s ∈ S}. If A, B are two
multisets of the same cardinality d, then write A ≥ B to mean that for i = 1, . . . , d ,
the i-th largest element of A is greater than or equal to the i-th largest element of
B (counting multiplicity).

2.1. Setup.

Definition 2.1.1. Given a field K equipped with a (possibly trivial) nonarchimedean
norm, for ρ1, . . . , ρn ∈ (0,+∞), the (ρ1, . . . , ρn)-Gauss norm on K [u1, . . . , un]

is the norm | · |ρ given by∣∣∣∣ ∑
I

cI ui1
1 · · · uin

n

∣∣∣∣ = max
I

{|cI |ρ
i1
1 · · · ρin

n };

this norm extends uniquely to K (u1, . . . , un).

Definition 2.1.2. For `/k an extension of fields of characteristic p > 0, a p-basis
of ` over k is a set B ⊂ ` with the property that the products

∏
b∈B beb , where

eb ∈ {0, . . . , p − 1} for all b ∈ B and eb = 0 for all but finitely many b, are all
distinct and form a basis for ` as a vector space over the compositum k`p. By a
p-basis of `, we mean a p-basis of ` over `p.

Hypothesis 2.1.3. For the rest of this section, assume one of the following two
sets of hypotheses.

(a) Let K be a field of characteristic zero, complete for a (not necessarily discrete)
nonarchimedean norm | · |, with residue field k of characteristic p > 0. Equip
K (u1, . . . , un) with the (1, . . . , 1)-Gauss norm. Let ` be a finite separable
extension of k(u1, . . . , un), and let L be the unramified extension with residue
field ` of the completion of K (u1, . . . , un).
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(b) Let K be a field of characteristic zero, complete for a nonarchimedean norm
| · |, with discrete value group and residue field k of characteristic p > 0. Let
L be an extension of K , complete for an extension of | · | with the same value
group, whose residue field ` admits a finite p-basis B = {u1, . . . , un} over k.
For i = 1, . . . , n, let ui be a lift of ui to the valuation ring oL of L .

Definition 2.1.4. Under either option in Hypothesis 2.1.3, the module of continu-
ous differentials�1

L/K is generated by du1, . . . , dun; let ∂1, . . . , ∂n denote the dual
basis of derivations (that is, ∂i =

∂
∂ui

).

Remark 2.1.5. Note that |∂i |L/|∂i |L ,sp = |p|
−1/(p−1) for i = 1, . . . , n, so Proposi-

tion 1.2.5 applies.

2.2. Taylor isomorphisms. The scale of a differential module over L can be inter-
preted as a normalized radius of convergence for the Taylor series, as follows.

Convention 2.2.1. Let N0 denote the monoid of nonnegative integers. For I ∈ Nn
0

and ∗ any symbol, we will write ∗
I as shorthand for ∗

i1
1 · · · ∗

in
n . We also write I !

as shorthand for i1! · · · in!.

Definition 2.2.2. Let V be a differential module over L . Define the formal Taylor
isomorphism on V to be the map T : V 7→ V ⊗L LJx1, . . . , xnK given by

T (v)=

∑
I∈Nn

0

x I

I !
∂ I (v).

We can then interpret the scale of V as the minimum λ such that T takes values in
V ⊗L R, for R the subring of LJx1, . . . , xnK consisting of series convergent on the
open polydisc

|xi |< λ
−1 (i = 1, . . . , n).

In particular, if L ′ is a complete extension of L , and x1, . . . , xn ∈ L ′ satisfy |xi |<

λ−1 for λ the scale of V , we obtain by substitution a concrete Taylor isomorphism

T (v; x1, . . . , xn) : V → V ⊗L L ′.

Remark 2.2.3. If x1, . . . , xn ∈ L satisfy |xi | < 1, then the concrete Taylor iso-
morphism T ( · ; x1, . . . , xn) is defined on L , and is a K -algebra homomorphism
carrying ui to ui + xi . If V is a differential module of scale λ, and |xi | < λ−1

for i = 1, . . . , n, then the concrete Taylor isomorphism T ( · ; x1, . . . , xn) on V is
semilinear over the concrete Taylor isomorphism on L .

Remark 2.2.4. Note that |∂ I /I !|F ≤ 1 for any I ∈ Nn
0 . Hence if x1, . . . , xn ∈ L

satisfy |xi |< 1, then for any f ∈ L ,

|T ( f ; x1, . . . , xn)− f | ≤ max
i

{|xi |} · | f |.
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In particular, suppose u′

1, . . . , u′
n ∈ L satisfy |u′

i | = 1, and the images of u′

1, . . . , u′
n

in ` form a p-basis of ` over k. Then T (·; x1, . . . , xn) can also be interpreted as the
concrete Taylor isomorphism defined with respect to the dual basis of du′

1, . . . , du′
n

and evaluated at y1, . . . , yn , for yi = T (u′

i ; x1, . . . , xn) − u′

i . This implies that
the scale of a differential module computed with respect to (the dual basis to)
du1, . . . , dun is no greater than with respect to du′

1, . . . , du′
n; by the same calcu-

lation in reverse, it follows that the two scales are equal. (Francesco Baldassarri
has suggested a coordinate-free definition of the scale that explains this remark;
we will follow up on this suggestion elsewhere.)

2.3. Frobenius descent. As discovered originally in [Christol and Dwork 1994],
in the situations of Hypothesis 2.1.3, one can overcome the limitation on scales
imposed by Proposition 1.1.9 by using descent along the substitution ui 7→ u p

i .

Definition 2.3.1. Let V be a differential module over L with scale less than
|p|

−1/(p−1). If K contains a primitive p-th root of unity ζ , we may define an
action of the group (Z/pZ)n on V using concrete Taylor isomorphisms:

vJ
= T (v; (ζ j1 − 1)u1, . . . , (ζ

jn − 1)un) (J ∈ (Z/pZ)n).

Let V1 be the fixed space under this group action; in particular, taking V = L , we
obtain a subfield L1 of L , which we may view as a differential field of order n
for the derivations ∂i,1 = ∂/∂(u p

i ). In general, V1 may be viewed as a differential
module over L1, the natural map V1 ⊗L1 L → V is an isomorphism of L-vector
spaces (by Hilbert 90), and the actions of ∂i and ∂i,1 on V are related by the formula

∂i,1 =
1

pu p−1
i

∂i . (2.3.1.1)

We call V1 the Frobenius antecedent of V . If K does not contain a primitive p-th
root of unity, we may still define the Frobenius antecedent using Galois descent.

Proposition 2.3.2. Let V be a differential module over L with scale s< |p|
−1/(p−1)

and scale multiset S. Then the scale multiset of the Frobenius antecedent of V is
S p.

Proof. Since any direct sum decomposition commutes with the formation of the
Frobenius antecedent V1, it suffices to check that the scale of V1 is s p. Let T (v) be
the formal Taylor isomorphism for V , and let T ′(v) be the formal Taylor isomor-
phism for V1 but with variables x ′

1, . . . , x ′
n .

By [Kedlaya 2005a, Lemma 5.12], for t, t1 in any nonarchimedean field,

|t − t1|< λ−1
|t | H⇒ |t p

− t p
1 |< λ−p

|t |p (1< λ < |p|
−1/(p−1)). (2.3.2.1)

(We repeat from [Kedlaya 2006b, Lemma 4.4.2] the description of a misprint in
the last line of the statement of [Kedlaya 2005a, Lemma 5.12]: one must read
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r1/pρ1/p, rρ for rρ1/p, r pρ, respectively.). Hence the convergence of the isomor-
phism T ′(v; x ′

1, . . . , x ′
n) for |x ′

i | < λ−p implies convergence of T (v; x1, . . . , xn)

for |xi | < λ
−1, so the scale of V1 is at least s p. On the other hand, we can obtain

T ′ by averaging T over the action of (Z/pZ)n , so the scale of V1 is at most s p.
(Compare [Kedlaya 2005a, Theorem 6.15].) �

Remark 2.3.3. It should also be possible to prove Proposition 2.3.2 by raising both
sides of (2.3.1.1) to a large power and comparing the results, but this would appear
to be somewhat messy.

Definition 2.3.4. If V is a differential module over F of scale less than

|p|
−1/(pm−1(p−1)),

by Proposition 2.3.2, we can iterate the construction of a Frobenius antecedent m
times; we call the result the m-fold Frobenius antecedent of V .

Remark 2.3.5. Note that it is also possible to construct antecedents one variable at
a time; the point is that since the operators ∂i , ∂ j commute for i 6= j , ∂i continues
to act on the antecedent with respect to ∂ j . This will be used in the proof of
Proposition 2.5.4.

2.4. ∇-Modules.

Notation 2.4.1. Let 0∗ denote the divisible closure of |K ∗
|. We say a subinterval

of (0,+∞) is aligned if each endpoint at which it is closed belongs to 0∗.

Remark 2.4.2. One can drop the word “aligned”, and all references to 0∗, ev-
erywhere hereafter if one works with Berkovich analytic spaces [Berkovich 1990]
instead of rigid analytic spaces. We omit further details.

Notation 2.4.3. For I an aligned interval and t a dummy variable, let AL(I ) be
the rigid analytic (over L) subspace of the affine t-line over L consisting of points
with |t | ∈ I ; this space is affinoid if I is closed. (We omit the parentheses if I is
described explicitly, e.g., if I = [α, β), we write AL [α, β) for AL(I ).) For ρ ∈ I ,
we write | · |ρ for the ρ-Gauss norm∣∣∣∣ ∑

i∈Z

ci t i
∣∣∣∣
ρ

= sup
i

{|ci |ρ
i
};

for ρ ∈ 0∗, we may interpret | · |ρ as the supremum norm on the affinoid space
AL [ρ, ρ].

Lemma 2.4.4. Let I be an aligned interval. For ρ, σ ∈ I and c ∈ [0, 1], put
τ = ρcσ 1−c. Then for any f ∈ 0(AL(I ),O),

| f |τ ≤ | f |
c
ρ | f |

1−c
σ .
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Proof. See [Kedlaya 2007, Lemma 3.1.6], [Amice 1975, Corollaire 4.2.8], or
[Robba and Christol 1994, Corollaire 5.4.9]. �

Definition 2.4.5. For I an aligned interval, a ∇-module on AL(I ) (relative to
K ) is a coherent locally free sheaf E on AL(I ) equipped with an integrable K -
linear connection ∇ : E → E ⊗ �1

AL (I )/K . (Here �1
AL (I )/K denotes the sheaf of

continuous differentials; it is freely generated over OAL (I ) by du1, . . . , dun, dt .)
The connection equips E with actions of the derivations ∂i =

∂
∂ui

for i =1, . . . , n and
∂n+1 =

∂
∂t ; integrability of the connection is equivalent to commutativity between

these actions.

Definition 2.4.6. For I an aligned interval and ρ ∈ I , let Fρ be the completion of
L(t) for the ρ-Gauss norm, viewed as a differential field of order n + 1. For E a
nonzero ∇-module on AL(I ), let J be a closed aligned neighborhood of ρ in I ,
and put

Eρ = 0(AL(J ),E)⊗0(AL (J ),O) Fρ,

viewed as a differential module over Fρ ; this construction does not depend on J .
Define the radius multiset of Eρ , denoted S(E, ρ), as the multiset of reciprocals of
the scale multiset of Eρ . Define the (toric) generic radius of convergence of Eρ ,
denoted T (E, ρ), as the smallest element of S(E, ρ), i.e., the reciprocal of the scale
of Eρ .

Remark 2.4.7. As in [Kedlaya 2006b], the toric generic radius of convergence is
normalized differently from the generic radius of convergence of [Christol and
Dwork 1994], which would be multiplied by an extra factor of ρ. Our chief
justification for this normalization is “because it works”, in the sense of giving
the expected answer for Example 3.5.10. We look forward to ongoing work of
Baldassarri (compare Remark 2.2.4) for a more intrinsic justification.

Remark 2.4.8. To our knowledge, the consideration of ∇-modules over a rigid
analytic annulus, but taking into account derivations of the base field over a sub-
field, is novel to this paper. It may prove an interesting exercise to transcribe the
arguments of [Kedlaya 2005a], such as local duality, as much as possible to this
setting.

2.5. The highest ramification break.

Definition 2.5.1. Let E be a ∇-module on AL(ε, 1) for some ε ∈ (0, 1). We say E

is solvable at 1 if
lim
ρ→1−

T (E, ρ)= 1.

Hypothesis 2.5.2. For the rest of this subsection, let E be a ∇-module on AL(ε, 1)
for some ε ∈ (0, 1), which is solvable at 1.
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Lemma 2.5.3. For each i ∈ {1, . . . , n + 1}, for r ∈ (0,−log ε), put ρ = e−r and
let fi (r) be the negative logarithm of the scale of ∂i on Eρ . Then fi is a concave
function of r ; in particular,

log T (E, e−r )= min
i

{ fi (r)}

is a concave function of r . (This does not require solvability at 1.)

Proof. It suffices to check concavity on −log(J ) for J an arbitrary closed aligned
subinterval of (ε, 1). Since J is closed aligned, AL(J ) is affinoid; by Kiehl’s theo-
rem (see for instance [Fresnel and van der Put 2004, Theorem 4.5.2]), 0(AL(J ),E)

is a finitely generated module over the ring 0(AL(J ),O). Since that ring is a prin-
cipal ideal domain [Lazard 1962, Proposition 4, Corollaire], 0(AL(J ),E) is freely
generated by some subset e1, . . . , em . Let Di,l be the matrix over 0(AL(J ),O) via
which ∂ l

i acts on e1, . . . , em . For ρ, σ ∈ J and c ∈ [0, 1], put τ = ρcσ 1−c. By
Lemma 2.4.4, we have

|Di,l |τ ≤ |Di,l |
c
ρ |Di,l |

1−c
σ ;

taking l-th roots of both sides and taking limits yields

lim sup
l→∞

|Di,l |
1/ l
τ ≤

(
lim sup

l→∞

|Di,l |
1/ l
ρ

)c(
lim sup

l→∞

|Di,l |
1/ l
σ

)1−c
.

By (1.1.7.1), this yields the desired result. (Compare [Kedlaya 2006b, Proposi-
tion 4.2.6].) �

Proposition 2.5.4. The function f (r) = log T (E, e−r ) on (0,−log ε) is piecewise
linear, with slopes in (1/(rank E)!)Z. Moreover, f is linear in a neighborhood of
0.

Proof. Since f is concave by Lemma 2.5.3, takes nonpositive values, and tends to
0 as r → 0+, it is everywhere nonincreasing. Hence for sufficiently large integers
h, we can choose ρh ∈ (ε, 1) with T (E, ρh)= |p|

1/(ph−1(p−1)) and ρh < ρh+1. Put
rh = −log ρh .

We now check piecewise linearity and the slope restriction on (rh+1, rh); it
suffices to check on −log(J ) for J an arbitrary closed aligned subinterval of
(ρh, ρh+1). Assume without loss of generality that K contains a primitive p-th
root of unity. Put L0 = L . For l = 1, . . . , h, let L l be the subfield of L l−1 fixed
under the action of (Z/pZ)n given in Definition 2.3.1, but with

u pl−1

1 , . . . , u pl−1

n

playing the roles of u1, . . . , un . Since T (E, ρ) > |p|
1/(ph−1(p−1)) for ρ ∈ J , using

Definition 2.3.1 (in the u1, . . . , un-directions) and [Kedlaya 2005a, Theorem 6.15]
(in the t-direction), we can construct an h-fold Frobenius antecedent Eh for E,
which is defined on ALh (J

ph
).
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Apply Lemma 1.1.5 to construct a cyclic vector for Eh over Frac0(ALh (J
ph
),O);

by writing down the corresponding twisted polynomial P(T ) and applying Propo-
sition 1.1.9, we see that for σ ∈ J ph

, T (Eh, σ ) is piecewise of the form |g|
1/j
σ for

some g ∈Frac0(ALh (J
ph
),O) and j ∈{1, . . . , rank(E)}. In particular, for σ =ρ ph

,
this expression is piecewise of the form (|a|ρi ph

)1/j for some a ∈ K ∗, i ∈ Z, and
j ∈ {1, . . . , rank(E)}. This proves that on (rh+1, rh), f is piecewise linear with
slopes in (1/(rank E)!)Z.

To check piecewise linearity in a neighborhood of rh , note that as we approach
rh from the right, the successive slopes of f that we encounter are increasing but
bounded above, and lie in a discrete subset of R. Hence they stabilize, so f is
linear in a one-sided neighborhood of rh . An analogous argument applies again
when approaching rh+1 from the left, so f is piecewise linear on [rh+1, rh]; taking
the union of these intervals, we deduce that f is piecewise linear on (0, rh] for some
h. An analogous argument applies yet again when approaching 0 from the right,
yielding the desired result. (Compare [Christol and Mebkhout 2000, Théorème 4.2-
1].) �

Corollary 2.5.5. There exists b ∈ Q≥0 such that T (E, ρ)= ρb for all ρ ∈ (ε, 1).

Definition 2.5.6. We will refer to the number b in Corollary 2.5.5 as the (differen-
tial) highest ramification break of E, denoted b(E).

2.6. Invariance.

Definition 2.6.1. Define the Robba ring over L as

RL =

⋃
ε∈(0,1)

0(AL(ε, 1),O).

The elements of RL can be represented as formal Laurent series
∑

i∈Z ci t i with
ci ∈ L; let Rint

L be the subring of series with |ci | ≤ 1 for all i ∈ Z. The ring Rint
L

is local, with maximal ideal consisting of series with |ci | < 1 for all i ∈ Z, with
residue field `((t)).

We first examine invariance under certain endomorphisms of L , following Def-
inition 2.2.2.

Definition 2.6.2. Choose u′

1, . . . , u′
n, t ′

∈Rint
L such that under the projection Rint

L →

`((t)), u′

1 − u1, . . . , u′
n − un map into t`JtK and t ′

− t maps into t2`JtK. Then for
some ε ∈ (0, 1), the Taylor series∑

I∈Nn+1
0

(u′

1 − u1)
i1 · · · (u′

n − un)
in (t ′

− t)in+1

I !
∂ I ( f )
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converges for f ∈0(AL(I ),O) for any closed aligned subinterval I of (ε, 1), so we
can use it to define a map g : 0(AL(I ),O)→ 0(AL(I ),O) such that g∗(ui ) = u′

i ,
g∗(t)= t ′.

Proposition 2.6.3. Let g be a map as in Definition 2.6.2. For any ∇-module E on
AL(ε, 1) which is solvable at 1, we have T (E, ρ) = T (g∗E, ρ) for all ρ ∈ (ε, 1)
sufficiently close to 1. In particular, g∗E is also solvable at 1, and E and g∗E have
the same highest break.

Proof. By the choice of u′

1, . . . , u′
n, t ′, for ρ ∈ (0, 1) sufficiently close to 1,

|u′

i − ui |ρ < 1 (i = 1, . . . , n), |t ′
− t |ρ < ρ.

We will prove the claim for such ρ.
By continuity of T (E, ρ) (implied by Lemma 2.5.3), it suffices to check for

ρ ∈0∗. There is no loss of generality in enlarging K , so we may in fact assume that
there exists λ ∈ K with |λ| = ρ. In this case, we may put ourselves in the situation
of Remark 2.2.4 by considering Eρ to be a differential module over the comple-
tion of L(t/ρ) for the 1-Gauss norm, comparing the p-bases u1, . . . , un, t/λ and
u′

1, . . . , u′
n, t ′/λ. This yields the claim. �

Proposition 2.6.4. Let g : AL(I ) → AL(I ) be the map fixing L and pulling t
back to t pN

for some positive integer N. Then for any ∇-module E on AL(ε, 1),
we have S(E, ρ) ≤ S(g∗E, ρ1/pN

) for all ρ ∈ (ε, 1); moreover, if n = 0, then
S(E, ρ)≤ S(g∗E, ρ1/pN

)pN
.

Proof. If we compare the scale multisets of ∂i on Eρ and on (g∗E)
ρ1/pN , then we get

identical results for i = 1, . . . , n. For i = n +1, the scale multiset on Eρ is at least
the pN -th power of the scale multiset on (g∗E)

ρ1/pN , as in the proof of Proposition
2.3.2. This yields the claim. �

Proposition 2.6.5. Let g : AL(I )→ AL(I ) be the map fixing L and pulling t back
to t N for some positive integer N coprime to p. Then for any ∇-module E on
AL(ε, 1), we have S(E, ρ)= S(g∗E, ρ1/N ) for all ρ ∈ (ε, 1).

Proof. If we compare the scale multisets of ∂i on Eρ and on (g∗E)ρ1/N , then we get
identical results for i = 1, . . . , n. For i = n + 1, we again get identical results by
virtue of [Kedlaya 2005a, Lemma 5.11]. �

We next examine what happens when we change the p-basis.

Proposition 2.6.6. Choose u′

1, . . . , u′
n ∈ Rint

L such that under the projection Rint
L →

`((t)), u′

1, . . . , u′
n map to elements of `JtK lifting a p-basis of ` over k. Let

∂ ′

1, . . . , ∂
′
n be the derivations dual to the basis du′

1, . . . , du′
n of �1

L/K . Let E be
a ∇-module on AL(ε, 1) for some ε ∈ (0, 1), which is solvable at 1. Then for
ρ ∈ (0, 1) sufficiently close to 1, the scale of Eρ for ∂1, . . . , ∂n, ∂n+1 is the same as
for ∂ ′

1, . . . , ∂
′
n, ∂n+1; in particular, the highest break is the same in both cases.
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Proof. If u′

1, . . . , u′
n ∈ L , then we can invoke Remark 2.2.4 to obtain the claim. In

general, we may first make a transformation as in the previous sentence, to match
up the reductions modulo t`JtK, then invoke Proposition 2.6.3. �

2.7. The break decomposition. Retain Hypothesis 2.5.2 throughout this subsec-
tion.

Definition 2.7.1. We say that E has a uniform break if for all ρ ∈ (0, 1) sufficiently
close to 1, S(E, ρ) consists of a single element with multiplicity rank(E). We write
“E has uniform break b” as shorthand for “E has a uniform break and its highest
ramification break is b”.

Theorem 2.7.2. For some η ∈ (0, 1), there exists a decomposition of ∇-modules
(necessarily unique) E = ⊕b∈Q≥0Eb over AL(η, 1) such that each Eb has uniform
break b.

We will prove Theorem 2.7.2 later in this subsection. To begin with, we recall
that the case L = K is essentially a theorem of Christol–Mebkhout [2001, Corol-
laire 2.4-1], from which we will bootstrap to the general case.

Lemma 2.7.3. Theorem 2.7.2 holds in case L = K .

Proof. This is the conclusion of [Christol and Mebkhout 2001, Corollaire 2.4-1],
at least in case K is spherically complete. However, it extends to the general case
as follows.

By a straightforward application of Zorn’s lemma, we may embed K into a
spherically complete field K ′. Apply [Christol and Mebkhout 2001, Corollaire 2.4-
1] to obtain a break decomposition over AK ′(η, 1) for some η ∈ (0, 1); let v ∈

0(AK ′(η, 1),E∨
⊗ E) be the projector onto the highest break component.

Now set notation as in the proof of Proposition 2.5.4. The set of ρ ∈ (ρh, ρh+1)

for which at least one coefficient P(T ) fails to be a unit in ALh [ρ
ph
, ρ ph

] is discrete,
so we may choose ρ ∈ (ρh, ρh+1) not of that form. Then Proposition 1.1.10 gives
a factorization of P(T ) over ALh [ρ

ph
, ρ ph

] (and likewise in the opposite ring);
we thus obtain an element v′ of 0(AK [ρ, ρ],E∨

⊗ E) which agrees with v over
AK ′[ρ, ρ].

For any closed aligned subinterval J of (η, 1) containing ρ, we have

0(AK [ρ, ρ],O)∩0(AK ′(J ),O)= 0(AK (J ),O)

inside 0(AK ′[ρ, ρ],O). Since E∨
⊗E is free over AK (J ) (as in the proof of Lemma

2.5.3), this implies that

0(AK [ρ, ρ],E∨
⊗ E)∩0(AK ′(J ),E∨

⊗ E)= 0(AK (J ),E∨
⊗ E),
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and so v ∈ 0(AK (J ),E∨
⊗ E). Running this argument over all possible J , we

obtain v ∈0(AK (η, 1),E∨
⊗E), so E admits a break decomposition over AK (η, 1)

as desired. �

We exploit Lemma 2.7.3 via the following construction.

Definition 2.7.4. Define the relativization F of E as the ∇-module E itself, but
viewed relative to L instead of K . That is, retain only the action of ∂n+1. (The
term “generic fibre” was used in an earlier version of this paper, but we decided to
reserve that name for a different concept to appear in a subsequent paper.)

However, we are forced to make a crucial distinction.

Lemma 2.7.5. For i ∈ {1, . . . , n + 1}, there exists η ∈ (0, 1) such that one of the
following two statements is true.

• For all ρ ∈ (η, 1), ∂i is dominant for Eρ .

• For all ρ ∈ (η, 1), ∂i is not dominant for Eρ .

Proof. Let b denote the highest break of E. Choose η∈ (0, 1) such that T (E, ρ)=ρb

for all ρ ∈ (η, 1). Put

fi (ρ)=
|∂i |Fρ ,sp

|∂i |Eρ ,sp
;

then Lemma 2.5.3 shows that fi is log-concave. Consequently, if fi (ρ)= T (E, ρ)
for two different values of ρ, then the same is true for all intermediate values. This
proves the claim: if the second statement does not hold, then there exist ρ ∈ (0, 1)
arbitrarily close to 1 such that fi (ρ) = T (E, ρ), in which case the first statement
holds with η equal to any such ρ. �

Definition 2.7.6. For i ∈ {1, . . . , n + 1}, we say that ∂i is eventually dominant for
E if the first alternative in Lemma 2.7.5 holds, i.e., if there exists η ∈ (0, 1) such
that for all ρ ∈ (η, 1), ∂i is dominant for Eρ .

Remark 2.7.7. Note that if ∂n+1 is eventually dominant for E, then the highest
break term in the decomposition of F (which is respected by ∂1, . . . , ∂n because it
is unique) already has a uniform break. Our strategy in case ∂n+1 is not eventually
dominant for E is to perform an operation which one might call rotation to recover
that more favorable situation: namely, we use a concrete Taylor isomorphism to
change the embedding of K into L .

In order to perform the rotation suggested in Remark 2.7.7, we need two partic-
ular instances of Definition 2.6.2.

Lemma 2.7.8. For N a nonnegative integer, let fN : AL(0, 1)→ AL(0, 1) be the
map fixing L and pulling back t to t pN

. Then for ρ ∈ (ε, 1), we have the inequality
S( f ∗

N E, ρ1/pN
) ≥ S(E, ρ). Moreover, if ∂i is dominant for Eρ for some i 6= n + 1,

then T ( f ∗

N E, ρ1/pN
)= T (E, ρ).
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Proof. The first assertion follows from Proposition 2.6.4. The second follows
because if ∂i is dominant for Eρ and i 6= n + 1, then T ( f ∗

N E, ρ1/pN
) and T (E, ρ)

can be computed using the same formula. �

Lemma 2.7.9. Suppose i ∈ {1, . . . , n} is such that ∂i is eventually dominant for E.
Let gi be the map given by Definition 2.6.2 with

u′

i = ui + t, u′

j = u j ( j 6= i), t ′
= t.

Put E′
= g∗

i E, and let F′ be the relativization of E′. Let b, brel be the highest breaks
of E,F. If b > brel + 1, then:

• the highest break of F′ is b − 1;

• for ρ ∈ (0, 1) sufficiently close to 1, the multiplicity of ρb−1 in S(F′, ρ) is the
same as that of ρb in S(E, ρ).

Proof. The action of ∂n+1 on g∗

i E is the pullback of the action of ∂n+1 + ∂i on E,
so the highest break of F′ is the value of b′ satisfying

|∂n+1 + ∂i |Eρ ,sp = ρ−b′
−1

for ρ ∈ (0, 1) sufficiently close to 1. For such ρ, the spectral norms of ∂i , ∂n+1 on
Eρ are ρ−b, ρ−brel−1, respectively. From this the claims are evident. �

Lemma 2.7.10. Pick i ∈ {1, . . . , n + 1} such that ∂i is eventually dominant for E.
Then at least one of the following statements is true.

• For ρ ∈ (0, 1) sufficiently close to 1, the scale multiset of ∂i on Eρ consists of
a single element.

• There exists η ∈ (0, 1) such that E is decomposable on AL(η, 1).

Proof. If i = n + 1, then the claim follows by Remark 2.7.7, so we assume i ≤ n.
Let b and brel be the highest breaks of E and F, respectively. Assume that the first
alternative does not hold; this forces b > 0.

Suppose to begin with that b > brel + 1. Put E′
= g∗

i E as in Lemma 2.7.9, and
let F′ be the relativization of E′. Then F′ does not have a uniform break, so by
Lemma 2.7.3, it splits off a component of uniform break b − 1. We conclude that
E′ is decomposable on some AL(η, 1), as then is E, as desired.

In the general case, we can always pick N such that bpN > brel +1. By Lemma
2.7.8, f ∗

N E has highest break bpN , and the first alternative of this lemma also
does not hold for f ∗

N E. Moreover, by Proposition 2.3.2, the relativization of f ∗

N E

has highest break brel. We may thus apply the previous paragraph to split off
a component of f ∗

N E of highest break; since the splitting is unique, it descends
down the Galois group of the cover fN (after adjoining pN -th roots of unity), so
E is itself decomposable on some AL(η, 1), as desired. �
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Proof of Theorem 2.7.2. It suffices to show that if E is indecomposable over
AL(η, 1) for any η ∈ (0, 1) sufficiently close to 1, then E has a uniform break.
This follows from Remark 2.7.7 if ∂n+1 is eventually dominant for E, and from
Lemma 2.7.10 otherwise. �

It will be useful later to have a more uniform version of the rotation construc-
tion used in Section 2.7, which comes at the expense of enlarging the field L .
(This generic rotation is inspired by the operation of generic residual perfection in
[Borger 2004].) The resulting construction will be used to study the graded pieces
of the ramification filtration.

Proposition 2.7.11. Let b be the highest break of E, and suppose b > 1. Let L ′

be the completion of L(v1, . . . , vn) for the (1, . . . , 1)-Gauss norm, viewed as a
differential field of order 2n over K . Let E′ be the pullback of E along the map
f : AL ′[0, 1)→ AL [0, 1) given by

f ∗(ui )= u p
i + vi t p−1 (i = 1, . . . , n), f ∗(t)=

t p

1 − t p−1 .

Then E′ has highest break pb − p + 1. In addition, among the differentials

∂

∂u1
, . . . ,

∂

∂un
,
∂

∂v1
, . . . ,

∂

∂vn
,
∂

∂t
,

∂
∂t (at least) is eventually dominant for E′.

Proof. We first treat the case n = 0. In this case, g∗(t−1)= t−p
− t−1, so this is an

instance of [Kedlaya 2005a, Lemma 5.13].
In the general case, writing ∂ ′

1, . . . , ∂
′

n+1 for the actions of ∂1, . . . , ∂n+1 before
the pullback, we have

∂

∂ui
= pu p−1

i ∂ ′

i ,

∂

∂vi
= t p−1∂ ′

i ,

∂

∂t
=

d
dt

(
t p

1 − t p−1

)
∂ ′

n+1 +

n∑
i=1

(p − 1)vi t p−2∂ ′

i .

We compute the scale of ∂/∂t by inspecting each term separately: the contribution
from ∂ ′

n+1 can be treated as above, and the contribution from ∂ ′

i can be treated
directly after invoking Proposition 2.6.5. This implies that the highest break of E′

is at least pb − p + 1, with equality if and only if ∂/∂t is eventually dominant.
We compute the scale of ∂/∂ui as if ui had pulled back to u p

i and t to t p (i.e., as
for a Frobenius antecedent). In particular, if ∂/∂ui were eventually dominant for
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E′, then the highest break of E′ would be at most b < pb − p + 1, contradiction.
Hence ∂/∂ui is not eventually dominant.

We read off the scale of ∂/∂vi directly: it is eventually dominant if and only if
∂ ′

i is, and in any case it cannot mask ∂/∂t . This proves the desired results. �

Remark 2.7.12. The calculations in this subsection may become more transparent
when checked against the examples produced by Artin–Schreier covers in posi-
tive characteristic, as in Example 3.5.10. Indeed, many of these calculations were
conceived with those examples firmly in mind.

2.8. The differential Swan conductor. Throughout this subsection, retain Hypoth-
esis 2.5.2.

Definition 2.8.1. By Theorem 2.7.2, there exists a multiset {b1, . . . , bd} such that
for all ρ ∈ (0, 1) sufficiently close to 1, S(E, ρ) = {ρb1, . . . , ρbd }. We call this
multiset the break multiset of E, denoted b(E). Define the (differential) Swan
conductor of E, denoted Swan(E), as b1 + · · · + bd .

Theorem 2.8.2. The differential Swan conductor of E is a nonnegative integer.

Proof. It suffices to check this in case E is indecomposable over AL(η, 1) for any
η∈ (0, 1) sufficiently close to 1. Choose i ∈{1, . . . , n+1} such that ∂i is eventually
dominant for E. By Lemma 2.7.10, for ρ ∈ (ε, 1) sufficiently close to 1, the scale
multiset of Eρ with respect to ∂i consists of a single element. That means in the
calculation of the Newton polygon in Proposition 2.5.4, the Newton polygon must
have only one slope, and so the integer j can be taken to be rank(E). Consequently,
the slopes of the function f (r)= log T (E, e−r ) are always multiples of 1/ rank(E),
as then is the highest break of E. This proves the desired result. �

Remark 2.8.3. Proposition 2.6.5 implies that pulling E along the map t 7→ t N ,
for N a positive integer coprime to p, has the effect of multiplying Swan(E) by
N . For Galois representations, this will imply that the Swan conductor commutes
appropriately with tamely ramified base changes (Theorem 3.5.9).

Remark 2.8.4. In case L = K , one can interpret the integrality of Swan(E) by
equating it to a certain local index [Christol and Mebkhout 2001, Théorème 2.3-
1]. It would be interesting to give a cohomological interpretation of our more
general construction, perhaps by relating it to an appropriate Euler characteristic.

Remark 2.8.5. Liang Xiao points out that one can also prove Theorem 2.8.2 by
reduction to the case of perfect residue field, for which one may invoke Remark
2.8.4. The argument is as follows. By Lemma 2.7.10, we may assume that E and its
relativization have respective uniform breaks b, brel. The perfect residue field case
implies that brel rank(E) is an integer. If b 6= brel, we can choose positive integers
m1,m2 coprime to each other and to p such that mi (b−brel)> 1 for i = 1, 2. If we



286 Kiran S. Kedlaya

pull back along t 7→ tmi and then apply the rotation in Lemma 2.7.9, the highest
break of the relativization becomes mi b −1, so (mi b −1) rank(E) is an integer for
i = 1, 2. This implies that b rank(E) ∈ Z.

3. Differential conductors for Galois representations

In this section, we explain how to define differential Swan conductors for certain
p-adic Galois representations of complete discretely valued fields of equal charac-
teristic p> 0 (including the discrete representations). This uses a setup for turning
representations into differential modules due to [Tsuzuki 1998]. For comments on
the mixed characteristic case, see Section 3.7.

3.1. Preliminaries: Cohen rings.

Definition 3.1.1. Let k be a field of characteristic p > 0. A Cohen ring for k is a
complete discrete valuation ring Ck with maximal ideal generated by p, equipped
with an isomorphism of its residue field with k.

It can be shown that Cohen rings exist and are unique up to noncanonical iso-
morphism; see [Bourbaki 1983]. One can do better by carrying some extra data.

Definition 3.1.2. Define a based field of characteristic p>0 to be a field k equipped
with a distinguished p-basis Bk . We view based fields as forming a category whose
morphisms from (k, Bk) to (k ′, B ′

k) are morphisms k → k ′ of fields carrying Bk

into B ′

k .

Definition 3.1.3. For (k, Bk) a based field, a based Cohen ring for (k, Bk) is a pair
(C, B), where C is a Cohen ring for k and B is a subset of C which lifts Bk .

Proposition 3.1.4. There is a functor from based fields to based Cohen rings which
is a quasi-inverse of the residue field functor. In particular, any map between based
fields lifts uniquely to given based Cohen rings.

Proof. This is implicit in Cohen’s original paper [Cohen 1946]; an explicit proof
is given in [Whitney 2002, Theorem 2.1]. Here is a sketch of another proof. Let
Wn be the ring of p-typical Witt vectors of length n over k, let W be the inverse
limit of the Wn , let F be the Frobenius on W , and let [·] denote the Teichmüller
map. Put B = {[b] : b ∈ Bk}. Let Cn be the image of Fn(W )[B] in Wn . Then
the projection Wn+1 → Wn induces a surjection Cn+1 → Cn . Let C be the inverse
limit of the Cn; one then verifies that (C, B) is a based Cohen ring for (k, Bk), and
functoriality of the construction follows from functoriality of the Witt ring. �

Remark 3.1.5. In fact, [Whitney 2002, Theorem 2.1] asserts something slightly
stronger: if (C, B) is a based Cohen ring of (k, Bk), R is any complete local ring
with residue field k, and BR is a lift of Bk to R, then there is a unique ring homo-
morphism C → R inducing the identity on k and carrying B to BR .
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3.2. Galois representations and (φ, ∇)-modules.

Hypothesis 3.2.1. For the remainder of this section, let R be a complete discrete
valuation ring of equal characteristic p > 0, with fraction field E and residue field
k. Let k0 =

⋂
n≥0 k pn

be the maximal perfect subfield of k; note that k0 embeds
canonically into R (whereas if k 6= k0, then k embeds but not canonically).

Convention 3.2.2. Put G E = Gal(E sep/E). Let O be the integral closure of Zp in
a finite extension of Qp, whose residue field Fq is contained in k. Throughout this
section, a “representation” will be a continuous representation ρ : G E → GL(V ),
where V = V (ρ) is a finite free O-module. (One can also consider representations
on finite dimensional Frac(O)-vector spaces, by choosing lattices; for brevity, we
stick to statements for integral representations, except for Remark 3.5.11.)

Definition 3.2.3. Fix a based Cohen ring (CE , B) with residue field E ; note that
CE is canonically a W (Fq)-algebra. Put

0 = CE ⊗W (Fq ) O.

Let �1
0/O be the completed (for the p-adic topology) direct sum of 0 db over all

b ∈ B, i.e., the inverse limit over n of ⊕b∈B(0/pn0) db; then there is a canonical
derivation d : 0 → �1

0/O. Note that all of this data stays canonically independent
of the choice of B as long as CE remains fixed.

Definition 3.2.4. A ∇-module over 0 is a finite free 0-module M equipped with
an integrable connection ∇ : M → M ⊗0 �

1
0/O; integrability means that the com-

position of ∇ with the map M ⊗�1
0/O → M ⊗ ∧

2
0�

1
0/O induced by ∇ is the zero

map.

Definition 3.2.5. A Frobenius lift on 0 is an endomorphism φ : 0 → 0 fixing O

and lifting the q-power Frobenius map on E . For instance, there is a unique such φ
carrying b to bq for each b ∈ B (induced by the Frobenius action on the construction
given in Proposition 3.1.4); we call this φ the standard Frobenius lift with respect
to B. A φ-module (resp. (φ,∇)-module) over 0 is a finite free module (resp. ∇-
module) M over 0 equipped with an isomorphism F :φ∗M ∼= M of modules (resp.
of ∇-modules); we interpret F as a semilinear action of φ on M .

Definition 3.2.6. For any representation ρ, put

D(ρ)= (V (ρ)⊗O 0̂unr)G E .

By Hilbert’s Theorem 90, the natural map

D(ρ)⊗0 0̂unr → V (ρ)⊗O 0̂unr
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is a bijection; in particular, D(ρ) is a free 0-module and rank0(D(ρ))= rankO(V ).
If we equip 0unr and its completion with actions of the derivation d and any Frobe-
nius lift φ (acting trivially on V (ρ)), we obtain by restriction a Frobenius action
and connection on D(ρ), turning it into a (φ,∇)-module.

Proposition 3.2.7. For any Frobenius lift φ on 0, the functor D from representa-
tions to φ-modules over 0 is an equivalence of categories.

Proof. Given a φ-module M over 0, put

V (M)= (M ⊗0 0̂unr)φ=1.

As in [Fontaine 1990, A1.2.6] or [Tsuzuki 1998, Theorem 4.1.3], one checks that
V is a quasi-inverse to D. �

Proposition 3.2.8. For any Frobenius lift φ on 0, any φ-module over 0 admits a
unique structure of (φ,∇)-module. Consequently, the functor D from representa-
tions to (φ,∇)-modules over 0 is an equivalence of categories.

Proof. Existence of such a structure follows from Proposition 3.2.7, so we focus
on uniqueness. Let M be a (φ,∇)-module over 0. Let ∂/∂b be the derivations
dual to the db for b ∈ B. Let e1, . . . , em be a basis of M , and let 8 and Nb be the
matrices via which φ and ∂/∂b act on this basis. Then the fact that the φ-action on
M respects the ∇-module structure implies that

N8+
∂8

∂b
=
∂φ(b)
∂b

8N . (3.2.8.1)

Let π be a uniformizer of O; note that ∂φ(b)/φb ≡ 0 (mod π) because φ(b)≡ bq

(mod π). Consequently, for fixed 8, if Nb is uniquely determined modulo πm ,
then the right side of (3.2.8.1) is determined modulo πm+1, as then is Nb8. Since
8 is invertible, Nb is also determined modulo πm+1. By induction, Nb is uniquely
determined by 8 for each b, as desired. �

3.3. Representations with finite local monodromy. We now distinguish the class
of representations for which we define differential Swan conductors.

Definition 3.3.1. Let IE = Gal(E sep/Eunr) be the inertia subgroup of G E . We say
a representation ρ has finite local monodromy if the image of IE under ρ is finite.

For representations with finite local monodromy, we can refine the construction
of the (φ,∇)-module associated to ρ.

Hypothesis 3.3.2. For the remainder of this subsection, assume that k admits a
finite p-basis. Assume also that the based Cohen ring (CE , B) has been chosen
with B = B0 ∪ {t}, where t lifts a uniformizer of E , and B0 lifts elements of R
which in turn lift a p-basis of k.



Swan conductors for p-adic differential modules, I: A local construction 289

Definition 3.3.3. By the proof of the Cohen structure theorem, or by Remark 3.1.5,
there is a unique embedding of k into R whose image contains the image of B0

under reduction to E . Applying Proposition 3.1.4 to the map k → R, we obtain an
embedding of a Cohen ring Ck for k into CE , the image of which contains B0. Put

Ok = Ck ⊗W (Fq ) O.

Then each x ∈ 0 can be written formally as a sum
∑

i∈Z xi t i with xi ∈ Ok , such
that for each n, the indices i for which vOk (xi ) ≤ n are bounded below. For n a
nonnegative integer, we define the partial valuation function vn : 0→ Z∪{∞} by

vn(x)= min{i ∈ Z : vOk (xi )≤ n}.

For r > 0, put
0r

= {x ∈ 0 : lim
n→∞

vn(x)+ rn = ∞};

this is a subring of 0. Put 0†
=

⋃
r>0 0

r ; we may speak of ∇-modules over 0†

using the same definition as for 0, using for the module of differentials

�1
0†/Ok

=

⊕
b∈B

0† db.

(Here we are using the finiteness of the p-basis to avoid having to worry about a
completion.) If φ is a Frobenius lift carrying 0† into itself, we may also define
φ-modules and (φ,∇)-modules over 0† as before.

Definition 3.3.4. Since Ok ⊂ 0†, we can identify a copy of Ounr
k inside (0†)unr.

Using this identification, put

0̃†
= Ôunr

k ⊗Ounr
k
(0†)unr

⊂ 0̂unr.

For ρ a representation, put

D†(ρ)= D(ρ)∩ (V (ρ)⊗O 0̃
†)= (V (ρ)⊗O 0̃

†)G E .

Again, D†(ρ) inherits a connection, and an action of any Frobenius lift φ acting
on 0†. Note that the natural map

(D†(ρ)⊗0† 0̃†)→ (V (ρ)⊗O 0̃
†)

is always injective, and it is surjective if and only if ρ has finite local monodromy.

The following is essentially [Tsuzuki 1998, Theorem 3.1.6].

Proposition 3.3.5. Let φ be a Frobenius lift on 0 acting on 0†. The base change
functor from (φ,∇)-modules over 0† to (φ,∇)-modules over 0 is fully faithful.
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Proof. Using internal Homs, we may rephrase this as follows: if M is a (φ,∇)-
module over 0†, then

(M ⊗0)φ=1,∇=0
⊂ M.

In particular, it is sufficient to check this using only the dt component of the con-
nection. In this case, we may replace 0 by the completion of 0[φ−n(b) :b ∈ B0, n ∈

Z≥0], to get into the case where R has perfect residue field. We may then conclude
by applying [Tsuzuki 1996, 4.1.3]. �

The following is essentially [Tsuzuki 1998, Theorem 4.2.6].

Theorem 3.3.6. Let φ be a Frobenius lift on 0 acting on 0†. Then D† and restric-
tion induce equivalences between the following categories:

(a) representations with finite local monodromy;

(b) (φ,∇)-modules over 0†;

(c) ∇-modules over 0† equipped with φ-actions over 0.

In particular, if a ∇-module over 0† admits a φ-action over 0, that action is de-
fined already over 0†.

Proof. The functor from (a) to (b) is D†, while the functor from (b) to (c) is
restriction. The functor from (c) back to (a) will be induced by V ; once it is shown
to be well-defined, it will be clear that the three functors compose to the identity
starting from any point.

To obtain the functor from (c) to (a), we must prove that if M is a ∇-module
over 0† such that M ⊗ 0 admits a compatible φ-action, then the corresponding
representation V (M) has finite local monodromy. It suffices to check this after
replacing E by a finite extension, which can be chosen to ensure the existence of
an isomorphism (M/2pM)⊗0 ∼= (0/2p0)m of φ-modules. In this case we claim
that V (M) is actually unramified; as in the proof of Proposition 3.3.5, it suffices
to check this using only the dt component of ∇, and hence to reduce to the case of
R having perfect residue field. This case is treated by the proof of [Tsuzuki 1998,
Proposition 5.2.1], but not by its statement (which requires a φ-action over 0†);
for a literal citation, see [Kedlaya 2006a, Proposition 4.5.1]. �

3.4. (φ, ∇)-Modules over R. Throughout this subsection, retain Hypothesis 3.3.2,
and write L for Frac(Ok) and R for RL . The choices made so far determine an
embedding 0† ↪→ RL , and any Frobenius φ acting on 0† extends continuously to
RL (as in [Kedlaya 2004, Section 2]). We may thus define φ-modules, ∇-modules,
and (φ,∇)-modules over R using the same definitions as over 0.

Remark 3.4.1. From a ∇-module over R, we may construct a ∇-module on
AL(ε, 1) for some ε ∈ (0, 1). The construction is unique in the following sense:
any two such ∇-modules become isomorphic on AL(η, 1) for some η ∈ (0, 1).
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Conversely, since any locally free sheaf on AL(η, 1) is freely generated by global
sections (because L is spherically complete; see for instance [Kedlaya 2005a, The-
orem 3.14]), any ∇-module on AL(η, 1) gives rise to a ∇-module over R.

Remark 3.4.1 is sufficient for the construction of the differential Swan conductor
associated to a representation of finite local monodromy. However, for complete-
ness, we record some related facts, including the analogue of the p-adic local
monodromy theorem.

Lemma 3.4.2. Let M be a φ-module over 0† such that M ⊗R admits the structure
of a (φ,∇)-module. Then this structure is induced by a (φ,∇)-module structure on
M itself , and so M corresponds to a representation with finite local monodromy.

Proof. By [Kedlaya 2005b, Proposition 7.1.7], the action of ∂/∂t on M ⊗ R acts
on M itself. Also, for any b ∈ B0, we may change the p-basis by replacing b by
b + t , and then the same argument shows that the action of ∂

∂t +
∂
∂b on M ⊗R acts

on M itself. (This is another instance of rotation in the sense of Remark 2.7.7.) We
conclude that ∇ itself acts on M , so we may apply Theorem 3.3.6 to conclude. �

Definition 3.4.3. A φ-module (resp. (φ,∇)-module) M over R is unit-root if it
has the form M0 ⊗ R for some φ-module (resp. (φ,∇)-module) M0 over 0†. By
Lemma 3.4.2, a (φ,∇)-module over R is unit-root if and only if its underlying
φ-module is unit-root.

Proposition 3.4.4. The base extension functor from the isogeny category of unit-
root φ-modules over 0† (i.e., φ-modules over 0†

[
1
p ] obtained by base extension

from 0†) to the category of unit-root φ-modules over R is an equivalence of cate-
gories.

Proof. This is [Kedlaya 2005b, Theorem 6.2.3]. �

Definition 3.4.5. Let s = c/d be a rational number written in lowest terms. A φ-
module (resp. (φ,∇)-module) M over R is pure (or isoclinic) of slope s if there ex-
ists a scalar λ∈ K ∗ of valuation c such that the φd -module (resp. (φd ,∇)-module)
obtained from M by twisting the φd -action by λ−1 is unit-root. In particular, by
Theorem 3.3.6, the ∇-module structure on M corresponds to a representation with
finite local monodromy after replacing O by a finite extension.

Theorem 3.4.6. Let M be a φ-module (resp. (φ,∇)-module) M over R. Then
there exists a unique filtration 0 = M0 ⊂ M1 ⊂ · · · ⊂ Ml = M of M by saturated
φ-submodules (resp. (φ,∇)-submodules) such that each quotient Mi/Mi−1 is pure
of some slope si as a φ-module, and s1 < · · ·< sl .

Proof. In the φ-module case, this is [Kedlaya 2004, Theorem 6.10] or [Kedlaya
2005b, Theorem 6.4.1]. In the (φ,∇)-module case, it suffices to check that the
filtration of the underlying φ-module is respected by ∇. For this, we proceed as
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in [Kedlaya 2005b, Theorem 7.1.6]: for each derivation ∂/∂b, we get a morphism
of φ-modules M1 → (M/M1)⊗ R db. The former is pure of slope s1, whereas
the latter admits a slope filtration in which each slope is strictly greater than s1

(the slope of R db being positive). By [Kedlaya 2005b, Proposition 4.6.4], that
morphism is zero, proving that M1 is respected by each derivation. Hence M1 is a
(φ,∇)-submodule, and repeating the argument on M/M1 yields the claim. �

Remark 3.4.7. One may apply Theorem 3.3.6 to each individual quotient of the
filtration produced by Theorem 3.4.6. (Alternatively, one may project ∇ onto the dt
component and directly invoke the p-adic local monodromy theorem; this allows
the invocation of [André 2002] or [Mebkhout 2002] in place of [Kedlaya 2004].)
It is an interesting question, which we have not considered, whether one can show
that the category of (φ,∇)-module M over RL is equivalent to a category of rep-
resentations of G E times an algebraic group over Frac(O), as in [Kedlaya 2005a,
Theorem 4.45].

3.5. Defining the differential Swan conductor. In order to use Theorem 3.3.6 to
define the differential Swan conductor of a representation ρ : G E → GL(V ) with
finite local monodromy, we must check that the answer does not depend on the
auxiliary choices we made along the way. (Note that the choice of φ does not
matter: it is only used to define the Frobenius action on D†(ρ), whereas only the
connection is used to compute the conductor.)

Proposition 3.5.1. Suppose that k admits a finite p-basis. For ρ a representation
with finite local monodromy, the isomorphism type of the ∇-module D†(ρ) does
not depend on the choice of the Cohen ring CE or the lifted p-basis B.

Proof. By Proposition 3.1.4, the construction of CE is functorial in pairs (E, B),
where B is a p-basis of E . It thus suffices to check that if for i = 1, 2, Bi is a
p-basis of E consisting of a uniformizer ti of R and a lift Bi,0 to R of a p-basis
of k over k0, then the modules D†(ρ) constructed using lifts of B1 and B2 are
isomorphic, compatibly with some isomorphism of the underlying rings 0†.

Let (CE , B1) be a based Cohen ring lifting (E, B1); write Ck,1, t1 instead of
Ck, t . Define B2,0 by choosing, for each b ∈ B2,0, a lift b of b in Ck,1Jt1K. Then
choose t2 to be a lift of t2 belonging to t1Ck,1Jt1K. We can then view (CE , B2) as
a based Cohen ring lifting (E, B2), containing a Cohen ring Ck,2 for k.

Since we used the same ring CE for both lifts, we may identify the two rings
0. Although Ck,1 6= Ck,2 in general, we did ensure by construction that Ck,1Jt1K =

Ck,2Jt2K. Consequently, the two rings 0† constructed inside 0 coincide, and we
may identify the two copies of 0̃†. This gives an identification of the two modules
D†(ρ), as desired. �
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Definition 3.5.2. Suppose to start that k is finite over k p, i.e., any p-basis of k or
of E is finite. For ρ : G E → GL(V ) a representation with finite local monodromy,
with V a finite dimensional O-module, we may now define the differential highest
break, differential break multiset, and differential Swan conductor by constructing
the (φ,∇)-module D†(ρ), for some Cohen ring CE and some lifted p-basis B, and
computing the corresponding quantities associated to the underlying ∇-module of
D†(ρ) tensored with the Robba ring RFrac(Ok) (as in Remark 3.4.1). By Proposition
2.6.6 (to change the p-basis of k) and Proposition 3.5.1, this definition depends
only on ρ and not on any auxiliary choices. For general k, we may choose a finite
subset B1 of B containing a lift t of a uniformizer of R, project onto the span of
the db for b ∈ B1, and compute a conductor that way; this has the same effect as
passing from E to E1 = Ê0, where

E0 = E(b1/pn
: b ∈ B \ B1, n ∈ N0).

We define the differential Swan conductor of ρ in this case to be the supremum
over all choices of B and B1; it will turn out to be finite (Corollary 3.5.7) and hence
integral by Theorem 2.8.2.

Definition 3.5.3. Let E ′/E be a finite separable extension, let B be a p-basis of E
containing a uniformizer t of E , and put B0 = B \ {t}. We say a subset B2 of B0 is
a rectifying set for E ′/E if, putting E2 = Ê0 for

E0 = E(b1/pn
: b ∈ B2, n ∈ N0),

the extension (E ′
⊗E E2)/E2 has separable residue field extension. Beware that it

is not enough for the residue field of E2 to contain the perfect closure of k in the
residue field of E ′. For instance, if p > 2, b1, b2 ∈ B, and

E ′
= E[z]/(z p

− z − b1t−2p
− b2t−p),

then E ′ has residue field k(b1
1/p), but B2 = {b1} is not a rectifying set because the

residue field of E ′
⊗E E2 contains b2

1/p.

Lemma 3.5.4. With notation as in Definition 3.5.3, B contains a finite rectifying
set for E ′/E.

Proof. Use B to embed k into E . By induction on the degree of E ′/E , we may
reduce to the case of an Artin–Schreier extension

E ′
= E[z]/(z p

− z − ant−n
− · · · − a1t−1

− a0)

with ai ∈ k. In this case, pick any N ∈ N0 with pN > n, and write each ai as
a k pN

-linear combination of products of powers of elements of B0. Only finitely
many elements of B0 get used; those form a rectifying set. �
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Proposition 3.5.5. Suppose that there exists a finite separable extension E ′ of E
whose residue field is separable over k, such that ρ is unramified on G E ′ . Then
the differential break multiset and Swan conductor of a representation ρ with finite
local monodromy can be computed with respect to {t}, and it agrees with the usual
break multiset and Swan conductor.

Proof. It suffices to consider ρ irreducible and check equality for the highest breaks.
Note that the usual highest break is insensitive to further residue field extension,
because it can be computed using Herbrand’s formalism as in [Serre 1979, Chap-
ter IV]. It thus agrees with the differential highest break computed with respect
to {t}: namely, this claim reduces to the case where k is perfect, for which see
[Kedlaya 2005a, Theorem 5.23] and references thereafter.

It remains to show that for any B1, ∂/∂t must be eventually dominant. Suppose
the contrary, and pick b ∈ B1 \ {t} such that ∂/∂b is eventually dominant. By a
tame base change (invoking Proposition 2.6.5), we can force the gap between the
differential highest breaks computed with respect to B1 and with respect to {t} to
be greater than 1; then a rotation as in Lemma 2.7.10 sending b to b + t raises the
differential highest break computed with respect to {t}. But that contradicts the
previous paragraph: both before and after rotation, the differential highest break
computed with respect to {t} must coincide with the usual highest break.

We deduce that ∂/∂t is eventually dominant, proving the claim. �

Corollary 3.5.6. In the notation of Definition 3.5.2, suppose that there exists a
finite separable extension E ′ of E such that ρ is unramified on G E ′ , and that the
image of B1 \ {t} in E is a rectifying set for E ′/E. Then the differential Swan
conductor of ρ computed using (B \ B1)∪ {t} is equal to that computed using t.

Corollary 3.5.7. In the notation of Definition 3.5.2, suppose that there exists a
finite separable extension E ′ of E such that ρ is unramified on G E ′ , and that the
image of B1 \ {t} in E is a rectifying set for E ′/E. Then the differential Swan
conductor of ρ is equal to that computed using B1.

For completeness, we record the following observations.

Theorem 3.5.8. The differential Swan conductor of any representation with finite
local monodromy is a nonnegative integer.

Proof. By Lemma 3.5.4 and Corollary 3.5.7, the conductor can be computed using
a finite set B1; we may thus apply Theorem 2.8.2. �

Theorem 3.5.9. Let E ′ be a tamely ramified extension of E of ramification degree
m. Let ρ be a representation of G E with finite local monodromy, and let ρ ′ be the
restriction of ρ to G E ′ . Then Swan(ρ ′)= m Swan(ρ).

Proof. Apply Proposition 2.6.5. �
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Example 3.5.10. As an example, consider a nontrivial character of the Artin–
Schreier extension E[z]/(z p

− z − x). The corresponding differential module will
be a Dwork isocrystal, i.e., a rank one ∇-module with generator v such that

∇(v)= πv ⊗ dx,

for x some lift of x and π a (p−1)-st root of −p. One computes that the differential
Swan conductor for this character is equal to the least integer m ≥ 0 such that
vE(x − y p

+ y)≥ −m for all y ∈ E . This agrees with the definition given by [Kato
1989] of the Swan conductor of a character; note that the conductor is allowed to
be divisible by p if and only if k is imperfect.

Remark 3.5.11. Given a representation ρ : G E → GL(V ), where V is a finite
dimensional Frac(O)-vector space, we may define a differential Swan conductor
for it by picking a ρ-stable O-lattice of V and proceeding as in Definition 3.5.2.
Changing the lattice will not change the resulting ∇-module over RFrac(Ok), so we
get a well-defined numerical invariant of ρ also.

Defining conductors for Galois representations is tantamount to filtering the Ga-
lois group; let us now make this explicit.

Definition 3.5.12. Put G0
E = IE . For r > 0, let Rr be the set of representations ρ

with highest break less than r , and put

Gr
E =

⋂
ρ∈Rr

(IE ∩ ker(ρ)).

Note that ρ ∈ Rr if and only if Gr
E ⊆ IE ∩ ker(ρ); this reduces to the fact that

Rr is stable under tensor product and formation of subquotients. We call Gr
E

the differential upper numbering filtration on G E . Write Gr+

E for the closure of⋃
s>r Gs

E ; note that Gr
E = Gr+

E for r irrational, because differential highest breaks
are always rational numbers.

As in the perfect residue field case, the graded pieces of the upper numbering
filtration are particularly simple.

Theorem 3.5.13. For r > 0 rational, Gr
E/Gr+

E is abelian and killed by p.

Proof. Let E ′ be a finite Galois extension of E with Gal(E ′/E) = G; then we
obtain an induced filtration on G by taking Gr to be the image of Gr

E under the
surjection G E → G. It suffices to check that Gr/Gr+ is abelian and killed by p;
moreover, we may quotient further to reduce to the case where Gr+ is the trivial
group but Gr is not. Let ρ be the regular representation of G; then ρ has highest
break r . Let S be the set of irreducible constituents of ρ of highest break strictly
less than r ; we are then trying to show that the intersection of ker(ψ)⊆ G over all
ψ ∈ S is an elementary abelian p-group.
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By Corollary 3.5.7, we may reduce to the case where the lifted p-basis B of
Hypothesis 3.3.2 is finite; put B0 = {b1, . . . , bn}. By making a tame base change,
we can force all nonzero ramification breaks to be greater than 1. By another
base change (passing from Frac CE to the completion of CE(v1, . . . , vn) for the
(1, . . . , 1)-Gauss norm), we can add extra elements v1, . . . , vn to B, then perform
the operation described in Proposition 2.7.11. Each nonzero ramification break
m before the operation corresponds to the break pm − p + 1 afterwards, so the
desired result may be checked afterwards. But now ∂/∂t is dominant on every
irreducible component of ρ, so we may reduce to the case of perfect residue field
and (by Proposition 3.5.5) the usual upper numbering filtration. In this case, the
claim is standard: it follows from the fact that the upper numbering filtration can
be constructed by renumbering the lower numbering filtration [Serre 1979, Section
IV.3], for which the claim is easy to check [Serre 1979, Section IV.2, Corollary 3
of Proposition 7]. �

Remark 3.5.14. Note that the definition of the differential Swan conductor of a
representation is invariant under enlarging O, because the differential Swan con-
ductor of a ∇-module is invariant under enlarging the constant field K .

3.6. Reconciliation questions. By introducing a numerical invariant of represen-
tations and calling it a conductor, one begs various reconciliation questions with
other definitions. To begin with, it is known (and was a motivation of our construc-
tion) that in the traditional case of a perfect residue field, one computes the right
numbers; see Proposition 3.5.5.

In the general case, there is a definition of the “logarithmic conductor” due to
[Abbes and Saito 2002; Abbes and Saito 2003]. Following [Matsuda 2004], one is
led to ask the following.

Question 3.6.1. For ρ a representation with finite local monodromy, does the
differential Swan conductor agree with the Abbes–Saito logarithmic conductor in
equal characteristic?

It is easy to check the affirmative answer for Artin–Schreier characters. An affir-
mative answer in the general case would have the beneficial consequence of verify-
ing the Hasse–Arf theorem for the Abbes–Saito conductor in equal characteristic.
Some progress on this question has been made recently by Bruno Chiarellotto and
Andrea Pulita, and independently by Liang Xiao.

One might also try to reconcile our definition with conductors for Galois repre-
sentations over a two-dimensional local field, as in [Zhukov 2000; Zhukov 2003].
In order to formulate a precise question, it may be easiest to pass to the context
of considering a representation of the étale fundamental group of a surface and
computing its conductor along different boundary divisors. Indeed, this will be the
point of view of the sequel to this paper.
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There is also a construction of Artin conductors in the imperfect residue field
case due to [Borger 2004], by passing from E to a certain extension which is
universal for the property of having perfect residue field. Borger’s construction
does not behave well with respect to tame base extension, but one should get a
better invariant by forcing such good behavior (i.e., constructing a logarithmic
analogue of Borger’s conductor). Indeed, we expect the following.

Conjecture 3.6.2. For ρ a representation with finite local monodromy, for m a
positive integer, let Em be an extension of E which is tamely ramified of tame
degree m. Let b′(Em) be Borger’s Artin conductor of the restriction of ρ to G Em .
Then the limsup of m−1b′(Em) as m → ∞ equals the differential Swan conductor
of ρ.

Since the Abbes–Saito construction also works in mixed characteristic, one may
also be interested in reconciling it there with a differential construction. For more
on this possibility, see the next subsection.

3.7. Comments on mixed characteristic. It would be interesting to extend the
constructions in this paper to the case where R has mixed characteristics. The
analogue of the passage from Galois representations to ∇-modules is given by p-
adic Hodge theory, specifically via the theory of (φ, 0)-modules over the Robba
ring, as in the work of Fontaine, Cherbonnier–Colmez, Berger, et al.

In that context, when R has perfect residue field, Colmez [2003] has given a
recipe for reading off the Swan conductor of de Rham representations from the
associated (φ, 0)-module . One would like to reformulate this recipe via Berger’s
construction of the Weil–Deligne representation, which converts the (φ, 0)-module
into a (φ,∇)-module over R [Berger 2002]; however, it is not immediately clear
how to do this. The fact that this might even be possible is suggested by work of
Marmora [2004], who gives a direct comparison with differential Swan conductors,
but only for the Swan conductor of a representation over the maximal p-cyclotomic
extension of a given p-adic field.

If one can indeed give a differential definition of the usual Swan conductor
of a de Rham representation in the perfect residue field, then it seems likely one
can make a differential definition in the imperfect residue field case. Indeed, the
construction of (8, 0)-modules has already been generalized to this setting by
Morita [2005]. If one can do all this, then one will again encounter the question of
reconciliation with the Abbes–Saito constructions; however, it is not clear whether
in this case the Hasse–Arf theorem would be any easier on the differential side
than on the Abbes–Saito side.
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