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Dual graded graphs for Kac–Moody
algebras

Thomas F. Lam and Mark Shimozono

Motivated by affine Schubert calculus, we construct a family of dual graded
graphs (0s, 0w) for an arbitrary Kac–Moody algebra g. The graded graphs have
the Weyl group W of geh as vertex set and are labeled versions of the strong
and weak orders of W respectively. Using a construction of Lusztig for quivers
with an admissible automorphism, we define folded insertion for a Kac–Moody
algebra and obtain Sagan–Worley shifted insertion from Robinson–Schensted
insertion as a special case. Drawing on work of Proctor and Stembridge, we
analyze the induced subgraphs of (0s, 0w) which are distributive posets.

1. Introduction

The Robinson–Schensted correspondence is perhaps the most important algorithm
in algebraic combinatorics. It exhibits a bijection between permutations and pairs
of standard Young tableaux of the same shape. Stanley [1988] investigated the
class of differential posets (also studied in [Fomin 1986]). Fomin [1994] studied
the more general notion of a dual graded graph to formalize local conditions which
guarantee the existence of a Robinson–Schensted style algorithm.

In this article, we construct a family of dual graded graphs (0s, 0w) associated
to each Kac–Moody algebra g. These graded graphs have as vertex set the Weyl
group W of g. The pair (0s, 0w) = (0s(3), 0w(K )) depends on a pair (3, K )
where 3 is a dominant integral weight and K is a “positive integral” element of
the center Z(g). In every case 0w is obtained by labeling the left weak order of W
and 0s is obtained by labeling the strong Bruhat order of W .

These labelings are motivated by the Schubert calculus for homogeneous spaces
associated to the Kac–Moody group G with Lie algebra g. For w ∈ W , let ξw ∈
H∗(G/B) denote the cohomology Schubert classes of the flag manifold of G. If
3=3i is the i-th fundamental weight, then an edge vlw in 0s(3) is labeled with

MSC2000: primary 05E10; secondary 57T15, 17B67.
Keywords: dual graded graphs, Schensted insertion, affine insertion.
Lam was partially supported by NSF DMS–0600677. Shimozono was partially supported by NSF
DMS–0401012.

451



452 Thomas F. Lam and Mark Shimozono

the coefficient of ξw in the product ξ si ξ v, also called a Chevalley coefficient. When
g is of affine type and K = Kcan is the canonical central element, the analogous
statement holds (Proposition 2.17) for 0w(K ) with the homology Schubert classes
ξw ∈ H∗(Gr) of the affine Grassmannian corresponding to g replacing the coho-
mology classes. Thus the combinatorics of these graphs encode computations in
Schubert calculus, and the duality of the graded graphs (0s, 0w) is a combinatorial
skeleton of the duality between cohomology and homology of homogeneous spaces
of G.

In the case of the affine Grassmannian, the dual graded graph structure arises
from the pair of dual graded Hopf algebras given by H∗(Gr) and H∗(Gr): one may
define the down operator by the action of the homology class ξs0 on the Schubert
basis of H∗(Gr) and the up operator by multiplication by ξ si for any fixed simple
reflection si . It is a general phenomenon that pairs of dual graded combinatorial
Hopf algebras yield dual graded graphs; we shall pursue this in a separate publi-
cation [Lam and Shimozono ≥ 2007].

Chains in the graded graphs (0s, 0w), which we call strong and weak tableaux,
are natural generalizations of standard Young tableaux. To go one speculative step
further, we believe that the generating functions of an appropriate semistandard
notion of strong and weak tableaux would give polynomials which represent cer-
tain homology and cohomology Schubert classes, in particular for homogeneous
spaces corresponding to maximal parabolics, generalizing Schur functions, Schur
Q-functions and the like. While this statement is vague in general, it can be made
much more precise when g is of affine type, and has already been achieved in one
case.

In the case that g is of the affine type A(1)n−1 our construction recovers the dual
graded graphs that were implicitly studied in our joint work with Lapointe and
Morse [2006]. The weak and strong tableaux in [Lam et al. 2006] are semistan-
dard generalizations of the corresponding objects here; in the same work, an affine
insertion algorithm was explicitly constructed for semistandard weak and strong
tableaux, and from [Lam 2006; Lam et al. 2006] we know that the corresponding
generating functions do indeed represent Schubert classes of the affine Grassman-
nian of type A. In the limit n→∞ of the A(1)n−1 case, our construction reproduces
Young’s lattice, which is the self-dual graded graph that gives rise to the Robinson–
Schensted algorithm.

Having constructed the Kac–Moody dual graded graphs we study two further
aspects of these graphs in detail.

The first aspect is motivated by the relation between the Robinson–Schensted
insertion and Sagan–Worley shifted insertion. Using Lusztig’s construction [1993]
which associates to each symmetrizable generalized Cartan matrix A, a symmetric
generalized Cartan matrix B equipped with an admissible automorphism π , we
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show that any dual graded graph of the form (0A
s , 0

A
w) for g(A) can be realized in

terms of one of the form (0B
s , 0

B
w) for g(B). In particular, for any affine algebra,

any of the dual graded graphs (0s, 0w) can be realized using a dual graded graph
for a simply-laced affine algebra. In particular we obtain a Schensted bijection for
type C (1)

n , using the insertion algorithm of [Lam et al. 2006] for type A(1)2n−1. As n
goes to infinity, the type C (1)

n insertion converges to Sagan–Worley insertion [Sagan
1987; Worley 1984]. As a related result, we define a notion of mixed insertion
for dual graded graphs equipped with a pair of automorphisms. This generalizes
Haiman’s variants of Schensted insertion known as left-right, mixed, and doubly
dual insertion [Haiman 1989].

The second aspect we investigate are the induced subgraphs of the pair (0s, 0w)

which are distributive lattices when considered as posets. These are precisely the
conditions under which one may describe our strong and weak tableaux by “fill-
ing cells with numbers” as in a usual standard Young tableau. Here we draw on
[Proctor 1984; 1999; Stembridge 1996], which classify the parabolic quotients
of Weyl groups of simple Lie algebras whose left weak orders (or equivalently
Bruhat orders) are distributive lattices. We sharpen these results slightly to show
that in these cases, the distributivity is compatible with the edge labels of the graphs
(0s, 0w); see Section 6B. These distributive parabolic quotients have also appeared
recently in the geometric work [Thomas and Yong 2006]. They show that in these
cases one may use the jeu-de-taquin to calculate Schubert structure constants of
the cohomology of (co)minuscule flag varieties. We do not recover this result, but
we note that their notion of standard tableau, fits into our framework as strong
(or weak) tableaux for the distributive parabolic quotients, with the edge labels
forgotten.

2. Dual graded graphs for Kac–Moody algebras

2A. Dual graded graphs. We recall Fomin’s notion of dual graded graphs [Fomin
1994]. A graded graph is a directed graph

0 = (V, E, h,m)

with vertex set V and set of directed edges E⊂V 2, together with a grading function
h :V→Z≥0, such that every directed edge (v,w)∈ E satisfies h(w)= h(v)+1 and
has a multiplicity m(v,w)∈Z≥0. Forgetting the edge labels m, 0 may be regarded
as the Hasse diagram of a graded poset. We shall interpret m(v,w) as making 0
into a directed multigraph in which there are m(v,w) distinct edges from v to w.
0 is locally finite if, for every v ∈ V , there are finitely many w ∈ V such that

(v,w) ∈ E and finitely many u ∈ V such that (u, v) ∈ E ; we shall assume this
condition without further mention. For a graded graph 0= (V, E, h,m) define the
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Z-linear down and up operators D,U : ZV → ZV on the free abelian group ZV
of formal Z-linear combinations of vertices, by

U0(v)=
∑

(v,w)∈E

m(v,w)w and D0(w)=
∑

(v,w)∈E

m(v,w)v.

A pair of graded graphs (0, 0′) is dual if 0 and 0′ have the same vertex sets and
grading function but possibly different edge sets and edge multiplicities, such that

D0′U0 −U0D0′ = r Id (1)

as Z-linear operators on ZV , for some fixed r ∈ Z>0. We call r the differential
coefficient. When 0 = 0′ and all the edges have multiplicity one, we obtain the
r -differential posets of [Stanley 1988].

Remark 2.1. The duality property implies that V is infinite.

Example 2.2. Let 0 = Y be Young’s lattice, with (λ, µ) ∈ E if the diagram of the
partition µ is obtained from that of λ by adding a single cell (in which case we
say that the cell is λ-addable and µ-removable), all edge multiplicities are 1, and
h(λ)= |λ| is the number of cells in the diagram of λ. Then (Y,Y) is a pair of dual
graded graphs with differential coefficient 1.

2B. The labeled Kac–Moody weak and strong orders. In this section a new fam-
ily of dual graded graphs is introduced.

Let I be a set of Dynkin nodes and A= (ai j )i, j∈I be a generalized Cartan matrix
(GCM), that is, one with integer entries which satisfies ai i = 2 for all i ∈ I , and for
all i 6= j , ai j ≤ 0 and ai j < 0 if and only if a j i < 0. Let g= g(A) denote the Kac–
Moody algebra over C associated to A [Kac 1990], h ⊂ g the Cartan subalgebra,
and h∗ the dual. Let {αi | i ∈ I } ⊂ h∗ be the simple roots, {α∨i | i ∈ I } ⊂ h the
simple coroots, and {3i | i ∈ I } ⊂ h∗ the fundamental weights, with ai j = 〈α

∨

i , α j 〉

where 〈· , ·〉 : h× h∗→ C is the natural pairing. We assume that the simple roots
are linearly independent and the dimension of h is chosen to be minimal. Let W
be the Weyl group of g: it has generators si for i ∈ I and relations s2

i = 1 for i ∈ I
and (si s j )

mi j = 1 for i, j ∈ I with i 6= j , where mi j is 2, 3, 4, 6 or ∞ according
as ai j a j i is 0, 1, 2, 3 or > 3. Let ` : W → Z≥0 be the length function on W . Let
1re = W · {αi | i ∈ I } be the set of real roots and 1+re = 1re ∩

⊕
i∈I Z≥0 αi the

positive real roots. The associated coroot α∨ of α ∈ 1+re is defined by α∨ = uα∨i ,
where u ∈W and i ∈ I are such that α=uαi . For α∈1re let sα=usi u−1 denote the
reflection associated to α. The strong order (or Bruhat order) ≤ on W is defined
by the cover relations wlwsα whenever `(wsα)= `(w)+1 for some α ∈1+re and
w ∈ W . The left weak order (W,�) is the subposet of (W,≤) generated by the
cover relations w ≺ siw whenever `(siw) = `(w)+ 1 for some i ∈ I and w ∈ W .
The left descent set of v is defined by Des(v)= {i ∈ I | siv ≺ v}.
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Given 3 in the set P+ of dominant integral weights, let 0s(3) be the graded
graph with vertex set W and edges (v,w) ∈W 2 such that vlw, with multiplicity
m3(v,w)= 〈α

∨ ,3〉, where α ∈1+re is such that w= vsα. Let i ∈ I and u ∈W be
such that α = uαi . Then

m3(v,w)= 〈uα∨i ,3〉 = 〈α
∨

i , u−13〉. (2)

Let Z+ = Z+(g(A))= Z(g(A))∩
⊕

i∈I Z≥0α
∨

i , where Z(g(A)) is the center of
g(A). If K ∈ Z+, writing K =

∑
i∈I kiα

∨

i , the vector (ki )i∈I defines a linear
dependence amongst the rows of A.

Given K ∈ Z+, let 0w(K ) be the graded graph with vertex set W and edges
(v,w) ∈W 2 such that v ≺ w = siv, with multiplicity

nK (v,w)= ki = 〈K ,3i 〉. (3)

Both 0s(3) and 0w(K ) are graded by the length function.

Theorem 2.3. Let (3, K ) ∈ P+ × Z+. Then (0s(3), 0w(K )) is a pair of dual
graded graphs with differential coefficient r = 〈K ,3〉.

Proof. Let U =U0s(3) and D= D0w(K ). The coefficient of u 6= v in (DU−U D)v
is given by ∑

(i,α)∈I×1+re
vlvsα

u=sivsα≺vsα

ki 〈α
∨ ,3〉−

∑
(i,α)∈I×1+re

siv≺v
sivlsivsα=u

ki 〈α
∨ ,3〉.

This quantity is zero because the indexing sets of both sums coincide, by two
versions of [Humphreys 1990, Lemma 5.11].

For every i ∈ I and v ∈ W , either v ≺ siv or siv ≺ v is a covering relation. It
follows that the coefficient of v in (DU −U D)v is∑
i∈I\Des(v)

ki 〈v
−1α∨i ,3〉−

∑
i∈Des(v)

ki 〈(siv)
−1α∨i ,3〉

=

∑
i∈I

ki 〈v
−1α∨i ,3〉 =

∑
i∈I

ki 〈α
∨

i , v3〉

= 〈K , v3〉 = 〈v−1K ,3〉 = 〈K ,3〉.

We have used the W -invariance of 〈 · , · 〉 and K . �

Remark 2.4. For i ∈ I and v ∈W , the multiplicity of the edge (v, vsα) in 0s(3i ),
is the Chevalley multiplicity, given by the coefficient of ξ vsα in the product ξ si ξ v,
where ξ v ∈ H∗(G/B) is the Schubert cohomology class for the flag manifold G/B
associated with the Kac–Moody algebra g [Kostant and Kumar 1986].

In Proposition 2.17 we will relate the multiplicities of the weak graph 0w(K )
with the homology multiplication of the affine Grassmannian, in the case that g(A)
is of untwisted affine type.
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2C. Tableaux and enumeration. Let 0 = (V, E, h,m) be a graded graph and
v,w ∈ V . A 0-tableau T of shape v/w is a directed path

T = (w = v0
m1
−→ v1

m2
−→ · · ·

mk
−→ vk = v)

from w to v in 0, where mi is an element taken from a set of m(vi−1, vi ) possible
markings of the edge (vi−1, vi ). In the multigraph interpretation, mi indicates
which of the m(vi−1, vi ) edges going from vi−1 to vi , is traversed by the path.

Let v= out(T ) and w= in(T ) the outer and inner shapes of T respectively, and
denote by T(0) the set of 0-tableaux, and T(0, v/w) the subset of those of shape
v/w.

Example 2.5. For Y as in Example 2.2, Y-tableaux are standard Young tableaux.

If 0 has a unique minimum element 0̂, we say T has shape v if in(T )= 0̂.

Theorem 2.6 [Fomin 1994]. Let (0, 0′) be a pair of dual graded graphs with
differential coefficient r . Then

rn n! =
∑
v∈V

h(v)=n

f v0 f v0′ (4)

where f v0 = |T(0, v)| and f v0′ = |T(0
′, v)|.

Example 2.7. Let 0 = 0′ =Y. Then by Examples 2.2 and 2.5, Equation (4) is the
well known identity n! =

∑
λ f 2

λ , where λ ranges over the partitions of n and fλ is
the number of standard Young tableaux of shape λ.

The graphs 0w(K ) and 0s(3) both have minimum element id ∈ W . We call
0w(K )-tableaux (standard) K -weak tableaux and 0s(3)-tableaux (standard) 3-
strong tableaux.

Corollary 2.8. Let g be a Kac–Moody algebra and (3, K ) ∈ P+× Z+. Then for
each n ∈ Z≥0 we have

rn n! =
∑
w∈W
`(w)=n

f wweak f wstrong (5)

where r = 〈K ,3〉, f wweak is the number of K -weak tableaux of shape w and f wstrong
is the number of 3-strong tableaux of shape w.

In Section 3 standard Young tableaux are realized as special cases of both K -
weak and 3-strong tableaux using affine algebras of type A(1).
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2D. From dual graded graphs to Schensted bijections. A differential bijection
for the pair of dual graded graphs (0, 0′) is one that exhibits the equality (1); we
give a precise definition below. By [Fomin 1995], a differential bijection induces
a Schensted bijection (see (8)) which describes the enumerative identity (4).

We recall Fomin’s theory in more detail. Given r ∈ Z≥0, let S(r) be a set
of cardinality r . Sometimes we may write S(r) for a particular set of cardinal-
ity r . Let (0, 0′) be a pair of dual graded graphs with 0 = (V, E, h,m) and
0′ = (V, E ′, h,m′) and differential coefficient r . Given x, y ∈ V , define UDxy =

{(z,m,m′)∈ V ×Z2
>0 | (z, y)∈ E, (z, x)∈ E ′,m ≤m(z, y),m′ ≤m′(z, x)} and let

DUxy = {(w,M,M ′) ∈ V × Z2
>0 | (x, w) ∈ E, (y, w) ∈ E ′,M ≤ m(x, w),M ′ ≤

m′(y, w)}. UDxy represents the set of marked paths going down one step in 0′

from x to some z ∈ V and then up one step in 0 from z to y. Similarly, DUxy

represents the set of marked paths going up one step in 0 from x to some w ∈ V ,
and then down one step in 0′ from w to y. To cancel the off-diagonal terms in (1),
for every (x, y) ∈ V 2 with x 6= y, there must be a bijection

8xy :UDxy→ DUxy, (6)

and to obtain agreement of diagonal terms in (1), for each x ∈ V there must be a
bijection

8x : S(r)tUDx → DUx (7)

where DUx = DUxx and UDx = UDxx . By definition, a differential bijection for
(0, 0′), is a collection 8= (8xy;8x) of such bijections 8xy and 8x .

Example 2.9. Let 0=Y with dual graded graph structure on (Y,Y) as in Example
2.2. For λ ∈ Y, since all edges have multiplicity 1, DUλ is in bijection with λ-
addable corner cells and UDλ is in bijection with λ-removable corner cells. The λ-
addable and λ-removable corner cells of λ are interleaved. Let 8λ send the unique
element of the set S(1), to the λ-addable corner cell in the first row of λ, and send
a λ-removable corner to the nearest λ-addable corner with higher row index. For
λ 6= µ the sets DUλµ and UDλµ have the same cardinality, which is either 0 or 1,
so there is no choice for the definition of 8λµ. This defines a differential bijection
8 for (Y,Y).

Let Pn(r) be the set of r -colored permutations of n elements. We realize σ ∈
Pn(r) as an n×n monomial matrix (one with exactly one nonzero element in each
row and in each column, whose nonzero entries must be taken from a set S(r) of
cardinality r such that 0 /∈ S(r)).

We assume that 0 and 0′ have a common minimum element 0̂ such that h(0̂)=0.
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A Schensted bijection I for (0, 0′) is a family of bijections (for all n ∈ Z≥0)

Pn(r)→
⊔
v∈V

h(v)=n

T(0, v)×T(0′, v)

σ 7→ (P, Q).

(8)

We fix a differential bijection 8 for (0, 0′) and define the induced Schensted bi-
jection I8.

Given σ ∈ Pn(r), we shall define a directed graph G with vertices Gi j ∈ V
for 0 ≤ i, j ≤ n, which is depicted matrix-style. It shall have the property that
(1) adjacent vertices Gi, j−1,Gi j in a row, are either equal, or they form an edge
(Gi, j−1,Gi j ) ∈ E with marking m ∈ S(m(Gi, j−1,Gi j )), and (2) adjacent vertices
Gi−1, j ,Gi j in a column, are either equal, or they form an edge (Gi−1, j ,Gi j ) ∈

E ′ with marking m′ ∈ S(m′(Gi−1, j ,Gi j )). Moreover, (3) Gi−1, j 6= Gi j (resp.
Gi, j−1 6= Gi j ) if and only if the unique p such that σpj 6= 0 (resp. q such that
σiq 6= 0) satisfies p ≤ i (resp. q ≤ j). In particular (ignoring the equalities), for
each i , the i-th row Gi• is a 0-tableau and for each j , the j-th column G• j is a
0′-tableau. For the sake of uniform language we shall always imagine that there
is a marked edge Gi, j−1→ Gi j and Gi−1, j→ Gi j , but when the vertices coincide
the marked edge degenerates.

G is defined inductively as follows. The north and west edges G0• and G•0 of
G are initialized to the empty tableau: Gi0=G0 j = 0̂ for all 0≤ i, j ≤ n. To define
the rest of G, it suffices to give a local rule, which, given the marked edges

Gi−1, j−1
m
→ Gi−1, j and Gi−1, j−1

m′
→ Gi, j−1,

and the value σi j , determines Gi j ∈ V with markings M ∈ S(m(Gi, j−1,Gi j )) and
M ′ ∈ S(m′(Gi−1, j ,Gi j )).

This is depicted below. Use z, y, x, w to denote Gi−1, j−1,Gi−1, j ,Gi, j−1,Gi j

for convenience and write c = σi j . In later examples we shall indicate σi j = 1 by
the symbol ⊗ and σi j = 0 by a blank.

Gi−1, j−1
m //

m′

��

Gi−1, j

M ′

���
�
�

σi j

Gi, j−1
M

//_____ Gi j

z m //

m′

��

y

M ′

���
�
�

c

x
M

//___ w

(9)

The local rule is defined using 8.

(1) If z = x = y:
(a) If c = 0, set w = z.
(b) If c 6= 0, let 8x(c)= (w,M,M ′).
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(2) If z 6= x = y then let 8x(z,m,m′)= (w,M,M ′).

(3) If z = y and z 6= x then let w = x and M ′ = m′.

(4) If z = x and z 6= y then let w = y and M = m.

(5) If z, x, y are all distinct, then let (w,M,M ′)=8xy(z,m,m′).

This uniquely determines G [Fomin 1995]. Its south edge Gn• is a 0-tableau P
and its east edge G•n is a 0′-tableau Q, both of a common shape v = Gnn ∈ V
with h(v)= n. This well-defines a map I8 as in (8).

For the inverse of I8, let v ∈V be such that h(v)= n, and let (P, Q)∈T(0, v)×

T(0′, v). To recover σ ∈ Pn(r), we initialize the south and east edges of G to P
and Q respectively. Then for each i, j and two by two subgraph as above, we apply
the inverse of the above local rule. Given labeled edges

x
M
→ w and y

M ′
→ w,

it determines z ∈ V and marked edges

z
m
→ y and z

m′
→ x

and a value c ∈ {0} t S(r), such that c 6= 0 if and only if z = x = y 6= w and
8−1

z (w,M,M ′)= c. The inverse local rule is defined as follows.

(1) If x = y:

(a) If w = x , let z = x .
(b) If w 6= x :

(i) If c :=8−1
x (w,M,M ′) ∈ S(r): let z = x .

(ii) Otherwise 8−1
x (w,M,M ′)= (z,m,m′).

(2) If w = x 6= y, let z = y and m′ = M ′.

(3) If w = y 6= x , let z = x and m = M .

(4) If x, y, w are all distinct, let (z,m,m′)=8−1
xy (w,M,M ′).

In all cases but (1)(b)(i) let c = 0. Using the inverse local rule the rest of G is
defined [Fomin 1995] and one obtains a well-defined element σ ∈ Pn(r).

Theorem 2.10 [Fomin 1995]. Let (0, 0′) be a dual graded graph with differential
coefficient r . Then for any differential bijection 8 for (0, 0′), the above construc-
tion defines a Schensted bijection I8 of the form (8).

We call I8 is the Schensted bijection induced by the differential bijection 8.

Example 2.11. The differential bijection 8 of Example 2.9 induces Schensted’s
row insertion bijection [1961].
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Remark 2.12. For the Kac–Moody dual graded graphs (0w(K ), 0s(3)) there is a
natural choice for the off-diagonal part of the differential bijection. If v 6= w with
v,w ∈W then 8vw is essentially obtained from [Humphreys 1990, Lemma 5.11],
just as in the proof of Theorem 2.3. For i ∈Des(v), the marked down-then-up path

v
m′
−→ siv

m
−→ sivsα = w

maps to the marked up-then-down path

v
m
−→ vsα

m′
−→ sivsα = w.

Here m and m′ denote edge markings, which in either case are selected from sets
of size m3(siv, sivsα)= 〈α∨ ,3〉 = m3(v, vsα) and nK (3i ) respectively.

Currently we are not aware of a general rule for8v which exhibits the coefficient
of v in (DU −U D)v as 〈K ,3〉. In Section 3 we shall give a special case where
the bijection 8v has been constructed explicitly.

2E. Automorphisms and mixed insertion. This section is a natural synthesis of
the ideas of [Fomin 1994] and [Haiman 1989] which does not seem to have been
written down before. We believe this construction is particularly interesting for
Kac–Moody dual graded graphs (see also Section 4).

Let (0, 0′) be a pair of dual graded graphs with 0 = (V, E,m, h) and 0 =
(V, E ′,m′, h). Say that a permutation τ : V → V is an automorphism of (0, 0′)
if (1) h ◦ τ = h, (2) (x, y) ∈ E if and only if (τ (x), τ (y)) ∈ E , and in this case,
m(x, y)=m(τ (x), τ (y)), and (3) (x, y) ∈ E ′ if and only if (τ (x), τ (y)) ∈ E ′, and
in this case, m′(x, y)= m′(τ (x), τ (y)).

Given a differential bijection 8 for (0, 0′), we define its twist 8τ by τ as fol-
lows. For every x, y ∈ V there are natural bijections τ :UDxy→UDτ(x)τ (y) given
by (z,m,m′) 7→ (τ (z),m,m′) and τ :DUxy→DUτ(x)τ (y) given by (w,M,M ′) 7→
(τ (w),M,M ′). Let τ : S(r) → S(r) be the identity permutation. Then define
8τxy = τ

−1
◦8τ(x)τ (y) ◦τ . It is easy to verify that 8τ is also a differential bijection

for (0, 0′).

Example 2.13. Let 0 = 0′ = Y and tr : Y→ Y the automorphism of (0, 0) that
transposes partition diagrams. Let 8 be the differential bijection in Example 2.9.
Then I8tr is Schensted’s column insertion bijection [Schensted 1961].

For the sequel we assume that τ has finite order κ . A 0-tableau whose edges
have an auxiliary marking parameter p ∈ S(κ) = {0, 1, . . . , κ − 1} is called a τ -
mixed 0-tableau. Let Tτ (0) be the set of τ -mixed 0-tableaux. Suppose τ ′ is an
automorphism of (0, 0′) of order κ ′. Let (0, 0′; τ, τ ′) denote the pair of dual
graded graphs given by 0 and 0′ except that 0-edges (resp. 0′-edges) are labeled
by (m, p) with p ∈ S(κ) (resp. (m′, p′) with p′ ∈ S(κ ′)) and m (resp. m′) is a usual
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edge label for 0 (resp. 0′). This multiplies the number of markings for each edge
of 0 (resp. 0′) by κ (resp. κ ′). The differential coefficient of (0, 0′; τ, τ ′) is rκκ ′

where r is the differential coefficient of (0, 0′).
Let8 be a differential bijection for (0, 0′). Then there is an obvious differential

bijection (also denoted 8) for (0, 0′; τ, τ ′), defined by a trivial scaling by κ in 0
and by κ ′ in 0′.

We define another bijection

Pn(κκ
′r)→

⊔
x∈V

h(x)=n

Tτ (0, x)×Tτ ′(0
′, x), (10)

called (τ, τ ′)-mixed insertion by modifying the process in which we construct the
matrix Gi j from the colored permutation σ . Instead of using the same differential
bijection8 to compute each Gi j , we use twists of8 by automorphisms that depend
on (i, j).

Let σ ∈ Pn(κκ
′r). Regard σ as a monomial matrix in which each nonzero entry

has three labels (c, p, p′) ∈ S(r)× S(κ)× S(κ ′), where S(κ) = {0, 1, . . . , κ − 1}
and S(κ ′)= {0, 1, . . . , κ ′−1}. Each horizontal (resp. vertical) edge is marked by a
pair (m, p) (resp. (m′, p′)) where m (resp. m′) is the usual marking and p ∈ S(κ)
(resp. p′ ∈ S(κ ′)). Let (z, y, x, w)= (Gi−1, j−1,Gi−1, j ,Gi, j−1,Gi j ) and suppose
that

z
(m,p)
−−−→ y and z

(m′,p′)
−−−−→ x

are given, where it is understood that if z = y (resp z = x) then (m, p) (resp.
(m′, p′)) need not be specified. Then Gi j is determined as before, except that
instead of using 8xy we use the twist

8τ
k(τ ′)k

′

xy ,

where k and k ′ are as follows. Let (c, p, p′) be the nonzero entry of σ in the i-th
row, say, σil . We set k ′ = p′. Separately, let (c, p, p′) be the nonzero entry of σ in
the j-th column, say, σq j . We set k = p. Note that in the case q > i (resp. l > j)
the bijection 8xy is not used in the local rule so the value of k (resp. k ′) does not
affect the algorithm.

In other words, if σi j = (c, p, p′) is a nonzero entry, then (τ ′)p′ acts everywhere
to the right in the i-th row and all vertical edges to the right (those of the form
Gi−1,l → Gil for l ≥ j) are given the auxiliary marking p′, and τ p acts every-
where below in the j-th column, and all horizontal edges below (those of the form
Gl, j−1→ Gl j for l ≥ i) are given the auxiliary marking p. The output is the pair
(P, Q) ∈ Tτ (0, v)×Tτ ′(0

′, v) where v = Gnn and P and Q are obtained from
the south and east edges of G respectively.

Proposition 2.14. (τ, τ ′)-mixed insertion gives a well-defined bijection (10).
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Example 2.15. In the context of Example 2.13, (τ, τ ′)-mixed insertion specializes
to the following kinds of insertion algorithms, the first from [Schensted 1961] and
the other three from [Haiman 1989].

(1) (τ, τ ′)= (id, id): Schensted row insertion

(2) (τ, τ ′)= (id, tr): left-right insertion

(3) (τ, τ ′)= (tr, id): mixed insertion

(4) (τ, τ ′)= (tr, tr): doubly mixed insertion

2F. Restriction to parabolics. Let J ⊂ I . We say that a weight 3 is supported on
J if 3 =

∑
j∈J a j3 j . The Kac–Moody dual graded graphs (0s(3), 0w(K )) are

compatible with restriction to parabolics. Let WJ ⊂ W be the parabolic subgroup
generated by {s j | j ∈ J } and let W J be the set of minimal length coset repre-
sentatives in W/WJ . Note that W J inherits weak and strong orders from W by
restriction.

Proposition 2.16. Fix J ⊂ I . If 3 is supported on I\J then the restriction of
(0s(3), 0w(K )) to W J is a pair of dual graded graphs with differential coefficient
〈K ,3〉.

Proof. Suppose v ≺w is a weak cover. If w ∈W J then v ∈W J since W J
⊂W is

a lower order ideal for �.
Suppose w l v and w ∈ W J and v /∈ W J . Since v has a reduced expression

ending in s j for some j ∈ J and w is obtained from this reduced expression by
omitting a simple generator, we conclude that v = ws j . But 3 is supported on
I\J , so 〈α∨j ,3〉 = 0.

Combining these two facts we see that the proof of Theorem 2.3 restricts to
W J . �

We shall use the following notation for maximal parabolic subgroups of W . For
i ∈ I we shall write W i for W J where J = I \{i}. We denote by (0s(3), 0w(K ))i =
(0i

s(3), 0
i
w(K )), the dual graded graph given by restricting (0s(3), 0w(K )) to W i .

2G. The affine case. If the GCM A is of finite type, then Z+ = {0} and all of the
edges of 0w(K ) are labeled 0.

In this section let A be of untwisted affine type. Let 0 ∈ I be the distinguished
Kac 0 node and J = I \ {0}. Then W is the affine Weyl group, WJ = Wfin is the
finite Weyl group, and we write W 0

= W J . By Proposition 2.16 the restriction
of the Kac–Moody dual graded graph to W 0, is a dual graded graph. In this case
the weak graph 0w(K ) has an interpretation involving the Schubert calculus of the
homology of the affine Grassmannian, and the duality is a combinatorial expression
of the pairing between the homology and cohomology of the affine Grassmannian.
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For affine algebras, Z+ = Z≥0K where K = Kcan =
∑

i∈I kiα
∨

i is the canonical
central element; the vector (ki )i∈I is the unique linear dependence of the rows of A
given by positive relatively prime integers [Kac 1990]. In this case, since the labels
of 0w(K ) are linear in K , without loss of generality we shall only work with Kcan

and define 0w := 0w(Kcan). The edge labels of 0w are related to the homology
multiplication in affine Grassmannians, as follows.

Let g = g(A) be an untwisted affine algebra. Let Gr = GrG denote the affine
Grassmannian of the simple Lie group G whose Lie algebra gfin is the canonical
simple Lie subalgebra of the affine algebra g. For w ∈ W 0 we let ξw ∈ H∗(Gr)
denote the corresponding homology Schubert class. Recall the constants n(w, v)
from (3).

Proposition 2.17. Let ξ0 = ξs0 be the Schubert class indexed by the unique simple
generator s0 /∈Wfin. Then for every w ∈W 0, we have in H∗(Gr) the identity

ξ0 ξw =
∑
v

n(w, v) ξv

where v ∈W 0 runs over the weak covers w ≺ v of w.

Proof. We rely on the results of [Lam 2006] which in turn are based on unpublished
work of Peterson. Let S=Sym((h∗Z)fin)=H Tfin(pt) denote the symmetric algebra in
the weights of the gfin and φ0 : S→Z denote the evaluation at 0. Let A0 denote the
affine nilCoxeter algebra corresponding to W . As a free Z-module A0 is spanned
by elements {Aw | w ∈W } with multiplication given by

Aw Av =

{
Awv if `(w)+ `(v)= `(wv)

0 otherwise.

The affine nilHecke algebra A is the Z-algebra generated by A0 and S with the
additional relation [Lam 2006, Lemma 3.1]

Aw λ= (w · λ)Aw +
∑

w rαlw
〈λ , α∨〉Aw rα , (11)

where α is always taken to be a positive root of W .
Now let

B= {a ∈ A0 | φ0(as)= φ0(s)a for any s ∈ S} ⊂ A0

denote the affine Fomin–Stanley subalgebra, where φ0 : A → A0 is given by
φ0(
∑

w aw Aw) =
∑

w φ0(aw)Aw. Let j0 : H∗(GrG) → B denote the ring iso-
morphism [Lam 2006, Theorem 5.5] from the homology of GrG to the affine
Fomin–Stanley algebra B. We first show that j0(ξ0) =

∑
i∈I ki Ai , where Ai are

the generators of the nilCoxeter algebra and Kcan =
∑

i kiα
∨

i .
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By [Lam 2006, Proposition 5.4], the element j0(ξ0) is characterized by having
unique Grassmannian term A0, and the property that it lies in B. Since k0 = 1, the
unique Grassmannian term property is immediate. Using (11), we calculate that

φ0(aα j )=
∑
i∈I

ki 〈α
∨

i , α j 〉 = 〈Kcan , α j 〉 = 0.

Since the α j span (h∗Z)fin over Q, we deduce that φ0(as) = φ0(s)a for any s ∈ S,
and thus j0(ξ0)=

∑
i∈I ki Ai . (This was first pointed out to us by Alex Postnikov.)

By [Lam 2006, Lemma 4.3, Theorem 5.5], we thus have

ξ0 ξw = j (ξ0) · ξw =
(∑

i∈I

ki Ai

)
· ξw =

∑
w≺si w

ki ξsi w.

where we have used the action of A0 on H∗(GrG) given by

Ai · ξw =

{
ξsi w if siw >w,

0 otherwise;

see [Lam 2006, (3.2)]. Recalling the definition n(w, siw) = ki of the weak graph
0w from (3) this completes the proof. �

3. Affine type A and LLMS insertion

For this section let g(A) be the affine algebra of type A(1)n−1. In this case the com-
binatorics of the pair of dual graded graphs (0s(3i ), 0w) was studied extensively
in [Lam et al. 2006] and was one of the main motivations of the current work.
The affine insertion algorithm of [Lam et al. 2006] (which we shall call LLMS
insertion) furnishes an explicit differential bijection for (0s(3i ), 0w). LLMS in-
sertion involves nontrivial extensions of the notion of tableaux to semistandard
weak and strong tableaux, and proves Pieri rules (formulae for certain Schubert
structure constants) in the homology H∗(Gr) and cohomology H∗(Gr) of the affine
Grassmannian of SL(n,C) [Lam et al. 2006].

For type A(1)n−1 the coefficients of the canonical central element K are all 1.
Therefore the weak graph 0w has all edge multiplicities equal to 1. Using the
rotational symmetry of the Dynkin diagram A(1)n−1, we may assume that 3 = 30

and for brevity we write 0s for 0s(30).
Let I ={0, 1, . . . , n−1} and let the Cartan matrix be defined by ai,i+1=ai+1,i =

−1 for all i , with indices taken modulo n, ai i =2 for all i ∈ I , and ai j =0 otherwise.
As in Section 2B the Weyl group is defined by mi,i+1=3 and mi j =2 for |i− j |≥2.

3A. Affine permutations. We use the following explicit realization of the affine
symmetric group W = S̃n . A bijection w : Z→ Z is an affine permutation with
period n ifw(i+n)=w(i) for each i ∈Z and

∑n
i=1(w(i)−i)= 0. The set of affine
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permutations with period n form a group isomorphic to S̃n , with multiplication
given by function composition. The reflections ti j in S̃n are indexed by a pair
of integers (i, j) satisfying i < j and i 6= j mod n. Suppose v l vti j = w is
a cover in S̃n . Then the edge (v,w) in 0s has multiplicity equal to #{k ∈ Z |

v(i)≤ k < v( j) and k = 0 mod n} [Lam et al. 2006].

3B. Action of S̃n on partitions. Given a partition λ, one may associate a bi-infinite
binary word p(λ) = p = · · · p−1 p0 p1 · · · called its edge sequence. The edge
sequence p(λ) traces the border of the (French) diagram of λ, going from northwest
to southeast, such that every letter 0 (resp. 1) represents a south (resp. east) step,
and some cell in the i-th diagonal is touched by the steps pi−1 and pi . Here the
cell (i, j) lies in row i (where row indices increase from south to north), column
j (where column indices increase from west to east), and diagonal j − i .

The affine symmetric group S̃n acts on partitions, since elements of S̃n are certain
permutations Z→ Z and partitions can be identified with their edge sequences,
which are certain functions Z→ {0, 1}. Then for i ∈ Z/nZ, siλ is obtained by
removing from λ every λ-removable cell of residue i , and adding to λ every λ-
addable cell of residue i . Here the residue of a box (i, j) is the diagonal index
j − i taken modulo n.

3C. Cores and affine Grassmannian permutations. Using the language of cores,
we shall describe the combinatorics of the dual graded graph (0s, 0w)

0 afforded
by Proposition 2.16.

An n-ribbon is a skew partition diagram λ/µ (the difference of the diagrams of
the partitions λ and µ) consisting of n rookwise connected cells, all with distinct
residues. We say that this ribbon is λ-removable and µ-addable. An n-core is a
partition that admits no removable n-ribbon. Since the removal of an n-ribbon is
the same thing as exchanging bits pi = 0 and pi+n = 1 in the edge sequence for
some i , it follows that λ is a core if and only if for every i , the sequence p(i)(λ) :=
· · · pi−2n pi−n pi pi+n pi+2n · · · consisting of the subsequence of bits indexed by i
mod n, has the form · · · 1111100000 · · · . We denote the set of n-cores by Cn .

Proposition 3.1 [Lam et al. 2006; Misra and Miwa 1990]. The map w 7→ w ·∅
is a bijection c : S̃0

n → Cn . Moreover, for v,w ∈ S̃0
n , we have v ≤ w if and only if

c(v)⊆ c(w), and if vlw then c(w)/c(v) is a disjoint union of translates of some
ribbon R, and the number of components of c(w)/c(v) is equal to the multiplicity
m(v,w) in 0s .

We say that µ ∈ Cn covers λ ∈ Cn if c−1(µ)m c−1(λ). Thus a standard strong
tableau in 0s is a sequence λ = λ0

⊂ λ1
⊂ · · · ⊂ λl

= µ such that λi covers λi−1

and one of the components of λi/λi−1 has been marked.
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It is easy to show that a core cannot have both an addable and a removable cell
of the same residue. Thus, in the special case that vlsiv=w for some i ∈ I , c(w)
is obtained from c(v) by adding all c(v)-addable cells of residue i , and the ribbon
R of Proposition 3.1 must be a single box. In this case we say that c(v)⊂ c(w) is
a weak cover.

3D. LLMS insertion. In [Lam et al. 2006], for the affine symmetric group S̃n ,
semistandard analogues of weak and strong tableaux were defined (for all of S̃n ,
not just S̃0

n ), and an RSK correspondence was given between a certain set of bi-
words or matrix words, and pairs of tableaux, one semistandard weak and the other
semistandard strong. Let us consider the following restriction of this bijection. We
first restrict to “standard” tableau pairs, that is, the case in which the tableaux are
weak and strong tableaux as defined in Section 2C. Next we take the parabolic
restriction from S̃n to S̃0

n . Let us denote the restricted bijection by ILLMS.
Let 8 be the differential bijection for (0s, 0w)

0 such that I8 = ILLMS. We
describe it explicitly.

For u, v ∈ S̃0
n with u 6= v, the off-diagonal part 8uv of 8 coincides with the

natural definition given in Remark 2.12. The diagonal part8v for v∈ S̃0
n is specified

as follows. Let λ= c(v) be the n-core corresponding to v. If λ⊂µ is a weak cover
then µ/λ consists of all the λ-addable cells of λ which have a fixed residue. As µ
varies over all the weak covers of λ we obtain all the λ-addable cells in this way.
Thus there is a natural identification of the set DUv with the set of λ-addable cells.
Similarly UDv may be identified with the set of λ-removable cells. This given, we
may use the differential bijection denoted 8λ in Example 2.9 for Young’s lattice.
This defines a differential bijection 8 for (0s, 0w)

0.

Example 3.2. Figure 1 shows the calculation of ILLMS of the permutation σ =
412635 (written here in one-line notation; it corresponds to the permutation matrix
with ones located positions (i, σ (i)) for 1≤ i ≤ 6) for S̃3. The symbols⊗ encode σ
as described above Equation (9). Each arrow indicates a marked strong cover; the
subscript 2 indicates that the marked component is the second from the southeast,
and no subscript means the marked component is the southeastmost. Stars in the
P tableau indicate the marked components.

Remark 3.3. As n goes to infinity, (0s, 0w)
0 converges to the dual graded graph

(Y,Y) of Example 2.2 and LLMS insertion converges to Schensted row insertion
[Lam et al. 2006] because the respective differential bijections coincide in the limit.

4. Folding

An automorphism of the GCM B = (bi j | i, j ∈ J ) is a permutation π of J such
that bπ(i)π( j) = bi j for all i, j ∈ J . The automorphism π is admissible if bi j = 0
for all i and j in the same π -orbit.
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. . . . . . .

⊗

. . . . //

⊗

. // //

⊗

. // // //

⊗

. // // // //

⊗

. // // // //
2

//

⊗

. // // // // // //

P =

6
5
4∗ 6∗

3 5
1∗ 2∗ 3∗ 5∗

Q =

6
5
3 6
2 5
1 3 4 5

Figure 1. Growth diagram for LLMS insertion of 412635 for S̃3.

A GCM A = (ai j | i, j ∈ I ) is symmetric if it is a symmetric matrix. It is
symmetrizable if there are positive integers oi for i ∈ I , such that D A is symmetric,
where D is the diagonal matrix with diagonal entries oi .

Lusztig [1993] showed that every symmetrizable GCM A can be constructed
from a symmetric GCM B that is equipped with an admissible automorphism π .
We call this construction folding.

For A and B related in this manner, we show that the structure of every dual
graded graph of the form (0A

s (3i ′), 0
A
s (K )) for g(A), is encoded by some dual

graded graph for g(B). Thus the combinatorics for g(A) is reduced to that of g(B).
In particular, for any affine algebra g(A) there is a simply-laced affine algebra g(B)
related by folding, so that all affine Schensted bijections can be realized using only
the simply-laced affine algebras.
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4A. Folding data. Let B = (bi j | i, j ∈ J ) be a GCM and π an admissible auto-
morphism of B. Let I be a set which indexes the π -orbits of J ; we write Oi ⊂ J
for the π -orbit indexed by i ∈ I . Let oi = |Oi |. It is easy to show that the matrix
A = (ai ′i | i ′, i ∈ I ) defined by

ai ′i =
oi ′

oi

∑
j∈Oi

b j ′ j for any j ′ ∈ Oi ′, (12)

is a well-defined GCM. We say that A is obtained from (B, π) by folding.

Proposition 4.1 [Lusztig 1993, Proposition 14.1.2]. Given any symmetrizable
GCM A, there is a symmetric GCM B with admissible automorphism π , such that
A is obtained from (B, π) by folding. In particular, if A is of affine type then B
can be taken to be of simply-laced affine type.

For the Kac–Moody algebras g(A) and g(B), we denote their weight lattices
by PA and PB , their coweight lattices by P∨A and P∨B and their coroot lattices by
Q∨A and Q∨B . For simplicity, we let 3i , αi , α

∨

i be the fundamental weights, simple
roots, and simple coroots for g(A) and write ωi , βi , β

∨

i for the corresponding data
for g(B).

Let P ′A = PA/(
⊕

i∈I Zα∨i )
0 be the weight lattice of A modulo the annihilator of

the coroots {α∨i }. Similarly define P ′B . Note that

αi =
∑
i ′∈I

ai ′i 3i ′ and β j =
∑
j ′∈J

b j ′ j ω j ′, (13)

where αi ,3i and β j , ω j also denote their respective images inside P ′A and P ′B . Set
κ = lcmi∈I (oi ), and define ψ : P ′A→ P ′B by

ψ(3i )=
κ

oi
ω̃i , (14)

where ω̃i =
∑

j∈Oi
ω j and β̃i =

∑
j∈Oi

β j for i ∈ I . We have

ψ(αi )=
∑

i ′
ai ′iψ(3i ′)=

∑
i ′

ai ′i
κ

oi ′

∑
j ′∈Oi ′

ω j ′

=
κ

oi

∑
i ′

∑
j∈Oi

∑
j ′∈Oi ′

b j ′ jω j ′ =
κ

oi
β̃i , (15)

by (13) and (12). Define ϕ : Q∨A→ Q∨B by

ϕ(α∨i )= β̃
∨

i =
∑
j∈Oi

β j . (16)
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4B. Weyl groups. For i ∈ I define

f (s A
i )=

∏
j∈Oi

s B
j ∈WB . (17)

Since π is admissible the reflections {s B
j | j ∈ Oi } commute with each other so that

the product in (17) is independent of the order of its factors.
Steinberg [1968] showed that there is an embedding of Weyl groups WA→WB .

By [Nanba 2005] it respects the Bruhat order.

Theorem 4.2.

(1) [Steinberg 1968] There is an injective group homomorphism f : WA → WB

defined by (17), whose image is the subgroup Wπ
B of π -fixed elements in WB ,

where π acts on WB by π(si )= sπ(i).

(2) [Nanba 2005, Proposition 3.3 and Theorem 1.2] v ≤ w in WA if and only if
f (v) ≤ f (w) in WB . Moreover, if w = si1 · · · siN is a reduced decomposition
in WA then f (w) = f (si1) f (si2) · · · f (siN ) is a length-additive factorization
in WB .

Corollary 4.3.

(1) π acts on 1+re(g(B)).

(2) Suppose v lw = vsα in WA for α ∈ 1+re(g(A)). Then there is a unique π -
orbit O ⊂1+re(g(B)) such that the reflections {sγ | γ ∈ O} commute, f (sα)=∏
γ∈O sγ , and there is an isomorphism of the boolean lattice of subsets O ′ of

O with the interval [ f (v), f (w)] in (WB,≤) given by O ′ 7→ f (v)
∏
γ∈O ′ sγ .

We call O the orbit associated with the cover vlw.

(3) Let w ∈ WA and γ ∈ 1+re(g(B)) be such that f (w)sγ l f (w) in WB , and let
O ⊂ 1+re(g(B)) be the π -orbit of γ . Then there is a covering relation vlw

of w in WA of which O is the associated orbit.

(4) Let v ∈ WA, γ ∈1+re(g(B)) be such that f (v)l f (v)sγ , and O ⊂1+re(g(B))
the π -orbit of γ . Then there is a covering relation vlw in WA of which O is
the associated cover.

Proof. For (1), let γ ∈1+re(g(B)), with γ = ũβ j for some ũ ∈WB and j ∈ J . Then
π(γ )= π(ũ)βπ( j) ∈1re(g(B)) and π clearly preserves the set of positive roots, so
that π acts on 1+re(g(B)).

For (2), there is a unique length-additive factorization w = u1si u2 in WA such
that v = u1u2. We have α = uαi and sα = usi u−1 where u = u−1

2 . Define O =
{ f (u)β j | j ∈Oi }; since f (u) is π -invariant, we have π( f (u)β j )=π( f (u))βπ( j)=

f (u)βπ( j) ∈ O(α), so that O is a π -orbit. For j ∈ Oi we have the relation
s f (u)β j = f (u)s j f (u)−1, so the reflections {sγ | γ ∈ O} commute, being conjugate
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to commuting reflections {s j | j ∈ Oi }. Since f is a homomorphism we have
f (sα)= f (u)

(∏
j∈Oi

s j
)

f (u)−1
=
∏

j∈Oi
f (u)s j f (u)−1

=
∏
γ∈O(α) sγ .

By Theorem 4.2 f (w) = f (u1)(
∏

j∈Oi
s j ) f (u2) and f (v) = f (u1) f (u2) are

length-additive factorizations. It follows that there is an isomorphism of the boolean
lattice of subsets S ⊂ Oi with [ f (v), f (w)] where S 7→ f (u1)

(∏
j∈S s j

)
f (u2).

The desired isomorphism is given by sending S→O ′ where O ′={ f (u)β j | j ∈ S}.
For (3), let w = si1 · · · sik be a reduced decomposition. Then the image f (w)=

f (si1) · · · f (sik ) is length-additive by Theorem 4.2. Therefore the cover f (w)sγ l
f (w) is obtained by removing some unique reflection in f (sir ) for some unique r .
Let u1= si1 · · · sir−1 , i= ir , and u−1

=u2= sir+1 · · · sik . Letting α=uαi ∈1
+
re(g(A))

we find that the π -orbit O of γ is the orbit associated with the cover vlw where
v = u1u2.

The proof of (4) is similar. �

The following result is proved similarly.

Corollary 4.4. Let v ≺ siv in WA for some i ∈ I . Then there is a poset isomor-
phism from the boolean lattice of subsets O ′ of Oi , to the interval [ f (v), f (siv)]

of (WB,�) given by O ′ 7→
(∏

j∈O ′ s j
)

f (v).

4C. Pairings. The action of WB on PB descends to P ′B , and similarly for WA.

Theorem 4.5.

(1) For all α∨ ∈ Q∨A and λ ∈ P ′A we have

〈ϕ(α∨) , ψ(λ)〉 = κ 〈α∨ , λ〉. (18)

(2) For all 3 ∈ P ′A and w ∈WA we have

ψ(w3)= f (w)ψ(3). (19)

(3) Let w ∈WA, 3 ∈ P ′A and i ∈ I . Then

〈ϕ(α∨) , f (w)ψ(3)〉 = κ〈α∨ , w3〉 (20)

and in particular we have

〈β̃∨i , f (w)ψ(3)〉 = κ〈α∨i , w3〉. (21)

(4) The map ϕ sends Q∨A ∩ Z(g(A)) into Z(g(B)).

Proof. By linearity it suffices to check (18) for α∨ = α∨i and λ = 3k for i, k ∈ I .
We have

〈ϕ(α∨i ) , ψ(3k)〉 =
κ

ok
〈β̃∨i , ω̃k〉 =

κ

ok
oiδik = κδik = κ〈α

∨

i ,3k〉.

This implies (18).
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It suffices to prove (19) for w = s A
i ′ and 3=3i . For i = i ′ we have

ψ(si3i )= ψ(3i −αi )=
κ

oi
(ω̃i − β̃i )

by (14) and (15). Since π is admissible,
(∏

j∈Oi
s B

j

)
ω̃i = ω̃i − β̃i , giving the

required result. The case that i 6= i ′ is even easier.
Equation (20) follows immediately from (19) and (18) with λ= w3. Equation

(21) is implied by (20) with α = αi and (16).
Let K ∈ Q∨A. For any i ∈ I and j ∈ Oi , by (18), (15), and the π -invariance of

ϕ(K ), we have

κ〈ϕ(K ) , β j 〉 =
κ

oi
〈ϕ(K ) , β̃i 〉 = κ〈K , αi 〉. (22)

It follows that ϕ sends Z(g(A)) into Z(g(B)). �

Remark 4.6. Let A be a GCM of affine type, obtained as in [Lusztig 1993] by
folding (B, π). Then the canonical central elements and null roots are related by
ϕ(K A) = K B and ψ(δA) = r∨δB where r∨ is the “twist” of the dual affine root
system X (r∨)

N to that of A in the nomenclature of [Kac 1990].

4D. Folding and insertion. Let A= (ai j | i, j ∈ I ) be a GCM with associated Kac–
Moody algebra g(A), i ′ ∈ I , and K ∈ Z+(g(A)). Suppose A is obtained by folding
the GCM B = (bi j | i, j ∈ J ) with admissible automorphism π . Choose j ′ ∈ Oi ′ .
We shall construct the dual graded graph (0A

s (3i ′), 0
A
w(K )) from the dual graded

graph (0B
s (ω j ′), 0

B
w(ϕ(K ))). The construction only requires the subset Wπ

B ⊂WB

of π -invariant vertices, and the edges incident to them, grouped according to their
π -orbits.

Remark 4.7. The choice of j ′ ∈ Oi ′ is immaterial; if one chooses another element
of Oi ′ then the resulting type B structures are transported to each other by a power
of the automorphism π .

Proposition 4.8. Let vlw in WA with α ∈ 1+re(g(A)) such that w = vsα and let
O ⊂ 1+re(g(B)) be the associated orbit of the cover v l w, defined in Corollary
4.3. Then the following sets have the same cardinality.

(1) Marked edges v
m
→ w in 0A

s (3i ′).

(2) The disjoint union over γ ∈ O of the sets { f (w)sγ
M
→ f (w)} of marked edges

going into f (w) in the interval [ f (v), f (w)] in 0B
s (ω j ′).

(3) The disjoint union over γ ∈ O of the sets { f (v)
M
→ f (v)sγ } of marked edges

coming out of f (v) in the interval [ f (v), f (w)] in 0B
s (ω j ′).
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Proof. By Corollary 4.3 the last two sets are in bijection. Let u ∈ WA and i ∈ I
be such that α = uαi . Then O = { f (u)β j | j ∈ Oi }. Using Theorem 4.5 and the
π -invariance of

∑
γ∈O γ

∨, we have∑
γ∈O

m B
ω j ′
( f (w)sγ , f (w))=

∑
γ∈O

〈γ ∨ , ω j ′〉 =
1

oi ′

∑
γ∈O

〈γ ∨ , ω̃i ′〉

=
1
κ

∑
γ∈O

〈γ ∨ , ψ(3i ′)〉 =
1
κ

∑
j∈Oi

〈 f (u)β∨j , ψ(3i ′)〉

=
1
κ
〈β̃∨i , f (u)−1ψ(3i ′)〉

= 〈α∨i , u−13i ′〉 = 〈α
∨ ,3i ′〉 = m A

3i ′
(wsα, w). �

(23)

By definition the graded graph 0B
s (ω j ′)

π has vertex set f (WA) = Wπ
B ⊂ WB ,

grading function h( f (v))= `(v) for v ∈WA, and for every cover vlw in WA, an
edge from f (v) to f (w) whose multiplicity is the common number in Proposition
4.8. It is completely specified by the π -invariant elements of 0B

s (ω j ′) and their
incident edges.

Corollary 4.9. The graded graphs 0A
s (3i ′) and 0B

s (ω j ′)
π are isomorphic.

Proof. By Theorem 4.2 the map f : WA → Wπ
B is a grade- and edge-preserving

bijection. The edge multiplicities agree by Proposition 4.8. �

We call0B
s (ω j ′)

τ the folded strong graph and its tableaux folded strong tableaux.

Proposition 4.10. Let v ∈ WA and i ∈ I \Des(v) so that v ≺ w = siv. Fix any
j ∈ Oi . Then the following sets have the same cardinality.

(1) The marked edges v
m′
→ w in 0A

w(K ).

(2) The marked edges f (v)
M ′
→ s j f (v) in 0B

w(ϕ(K )).

(3) The marked edges s j f (w)
M ′
→ f (w) in 0B

w(ϕ(K )).

Proof. By a proof similar to the one for (22) and recalling the definition (3) we
have

n A
K (v, siv)= 〈K ,3i 〉 = 〈ϕ(K ) , ω j 〉 = nB

ϕ(K )( f (v), s j f (v)). (24)

This proves the proposition. �

By definition the graded graph 0B
w(ϕ(K ))

π has vertex set f (WA)=Wπ
B , grading

function h( f (w)) = `(w), and for each v ∈ WA and i ∈ I \Des(v), an edge from
f (v) to f (siv) whose multiplicity is the common multiplicity in Proposition 4.10.

Corollary 4.11. The graded graphs 0A
w(K ) and 0B

w(ϕ(K ))
π are isomorphic.
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We call 0B
w(ϕ(K ))

π the folded weak graph. Its tableaux are called folded weak
tableaux.

Corollary 4.12. (0B
s (ω j ′)

π , 0B
w(ϕ(K ))

π ) and (0A
s (3i ′), 0

A
w(K )) are isomorphic

dual graded graphs.

Proof. This follows immediately from Corollaries 4.9 and 4.11. �

Using a differential bijection 8B for (0B
s (ω j ′), 0

B
w(ϕ(K ))), we construct a dif-

ferential bijection for the folded dual graded graph (0B
s (ω j ′)

π,0B
w(ϕ(K ))

π ), which,
by the identifications given in Propositions 4.8 and 4.10, yields a differential bi-
jection 8A for (0A

s (3i ′), 0
A
w(K )).

By Remark 2.12 the off-diagonal part 8A
vw for v 6= w in WA, has already been

specified.
For the diagonal terms, since Des( f (v)) =

⊔
i∈Des(v)Oi , by (23) in the special

case of a cover of the form siv = vsα m v with α = v−1αi ∈1
+
re and (24) we have∑

i∈I\Des(v)

m A
3i ′
(v, siv) n A

K (v, siv)

=

∑
j∈J\Des( f (v))

m B
ω j ′
( f (v), s j f (v)) nB

ϕ(K )( f (v), s j f (v)). (25)

For i ∈ Des(v) and j ∈ Oi , we have vsα = siv ≺ v where α = v−1αi ∈ −1
+
re, and

an analogous computation yields∑
i∈Des(v)

m A
3i ′
(siv, v)n A

K (siv, v)

=

∑
j∈Des( f (v))

m B
ω j ′
(s j f (v), f (v)) nB

ϕ(K )(s j f (v), f (v)). (26)

Using the bijections of Propositions 4.8 and 4.10, we obtain bijections DUA
v →

DUB
f (v) and UDA

v → UDB
f (v). Under these identifications we obtain a differential

bijection 8A for (0A
s (3i ′), 0

A
w(K )).

Proposition 4.13. Let the GCM A = (ai j | i, j ∈ I ) be obtained by folding from
the GCM B = (bi j | i, j ∈ J ) with admissible automorphism π . Then for any
i ′ ∈ I and j ′ ∈ Oi ′ , a differential bijection 8B for (0B

s (ω j ′), 0
B
w(ϕ(K )) restricts to

a differential bijection 8A for the pair of dual graded graphs (0A
s (3i ′), 0

A
w(K )).

We shall give an extensive example in Section 5.

Remark 4.14. It is possible to axiomatize conditions for an arbitrary pair of dual
graded graphs (0, 0′) and an automorphism π of (0, 0′) to give rise to a folded
insertion in the manner we have described for Kac–Moody graded graphs. The
key properties needed are abstract graph-theoretic formulations of Theorem 4.2
and Corollary 4.3. Since we have no interesting examples that do not come from
Kac–Moody dual graded graphs, we will not make this precise.
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5. Affine type C combinatorics

In this section we consider folded insertion for the affine root system C (1)
n . Folding

works for the entire Weyl group. However here we shall restrict our discussion to
the explicit description of folded insertion for the maximal parabolic quotient of
the affine Weyl group given by the dual graded graphs (0s(3i ′), 0w(K ))i

′

using
2n-cores, where i ′ ∈ I is any Dynkin node. In the limit n→∞ one obtains a new
Schensted bijection for every integer i , which for i = 0 coincides with “standard”
Sagan–Worley insertion into shifted tableaux.

Let I ={0, 1, . . . , n} be the Dynkin node set and (ai j ) the GCM, with ai i = 2 for
i ∈ I , ai,i+1= ai+1,i =−1 for 1≤ i ≤ n−2, a01= an,n−1=−1, a10= an−1,n =−2,
and other entries zero. Using the recipe in Section 2B, the Weyl group Wn has
generators si for i ∈ I satisfying s2

i = 1 for i ∈ I and (si s j )
mi j = 1 for i, j ∈ I with

i 6= j , where m01 = mn−1,n = 4, mi,i+1 = 3 for 1 ≤ i ≤ n − 2, and mi j = 0 for
|i − j | ≥ 2.

5A. Folding for C(1)
n . Let A = C (1)

n and B = A(1)2n−1 denote the two GCMs. We
use the notation of Section 4.

Let π be the admissible automorphism of B given by j 7→ 2n− j where indices
are taken modulo 2n. We index the π -orbits by O0 = {0}, On = {n}, and Oi =

{i, 2n− i} for i ∈ I \ {0, n}. It is easy to check that A is obtained from (B, π) by
folding.

Let K be the canonical central element for C (1)
n . Let i ′ ∈ I and j ′ ∈ Oi ′ . We

define folded insertion for the dual graded graph (0A
s (3i ′), 0

A
w(K ))

i ′ , realized by
LLMS insertion for (0B

s (ω j ′), 0
B
w(ϕ(K ))). We call this induced folded insertion

the “LLMS insertion for W i ′
n ” (even though it also depends on j ′).

5B. 2n-cores. As before, fix i ′ ∈ I and j ′ ∈ Oi ′ . The elements of the parabolic
quotient W i ′

n may be realized by 2n-cores as follows.
By Proposition 3.1 there is a bijection c : S̃0

2n → C2n . Using a rotational auto-
morphism of the Dynkin diagram of type A(1)2n−1, for any k ∈ J one may define the
k-action of S̃2n on C2n , denoted w ·k λ, which is the same as before except that the
diagonal of the cell (i, j) is j − i + k. Since the stabilizer of ∅ under the k-action
of S̃2n on C2n is (S̃2n)J\{k}, there is a bijection ck : S̃k

2n → S̃2n/(S̃2n)J\{k}→ C2n

defined by ck(w)= w ·k ∅.
Define the map sci ′ :Wn→C2n by w 7→ f (w) · j ′∅, where f :Wn→ S̃2n is the

Weyl group homomorphism of Section 4. Note that f (W i ′
n )⊂ S̃ J\Oi ′

2n .
Denote by C

j ′

2n the image of sci ′ .
The following result is the C (1)

n -analogue of (part of) Proposition 3.1.

Proposition 5.1. The map sci ′ restricts to a bijection W i ′
n → C

j ′

2n . For v,w ∈ W i ′
n

we have v ≤ w if and only if sci ′(v)⊂ sci ′(w).
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Proof. The stabilizer of W = Wn acting on ∅ is equal to WI−{i ′}, so the first
statement is immediate. Let v,w ∈ W i ′

n . The following are equivalent: (1) v ≤
w; (2) f (v) ≤ f (w); (3) f (v)(S̃2n)J\{ j} ≤ f (w)(S̃2n)J\{ j} for all j ∈ Oi ′ ; (4)
f (v)(S̃2n)J\{ j ′} ≤ f (w)(S̃2n)J\{ j ′}; (5) sci ′(v)⊂ sci ′(w). (1) and (2) are equivalent
by Theorem 4.2. (2) and (3) are equivalent by Proposition 5.2 below applied to the
data f (v), f (w), and J \Oi ′ in S̃2n . Since f (v) and f (w) are π -invariant, (3) and
(4) are equivalent, because j ′ ∈ Oi ′ and the condition for j is invariant as j runs
over a π -orbit. (4) and (5) are equivalent by Proposition 3.1. �

For a Coxeter group W and a parabolic subgroup WJ , the strong (Bruhat) order
denoted ≤ on the quotient W/WJ is the partial order naturally induced from the
strong order on W J . The following result is due to [Deodhar 1977].

Proposition 5.2. Let W be a Coxeter group with simple generators indexed by P
and let Q ⊂ P. Suppose x, y ∈ W Q . Then x ≤ y if and only if xWQ′ ≤ yWQ′ for
every maximal parabolic subgroup WQ′ ⊃WQ .

We describe C0
2n explicitly in Section 5D, together with an explicit description

of LLMS insertion for W 0
n . It would be interesting to obtain an explicit description

of C
j ′

2n for arbitrary j ′. The explicit description of the Chevalley coefficients in a
manner similar to Proposition 3.1, and of LLMS insertion for W i ′

n appears to be
rather subtle.

5C. Large rank limit of folded LLMS insertion. We now consider the limit of
LLMS insertion for W i ′

n as n goes to ∞, in such a way that the nodes near 0 in
A(1)2n−1 are stable; for this purpose we label these nodes . . . ,−2,−1, 0, 1, 2, . . . .

Let A±∞ be the Kac–Moody algebra1 whose Dynkin diagram has vertex set
J∞ = Z, with Cartan matrix (bi j ) such that bi i = 2 and bi,i+1 = bi+1,i = −1, and
bi j = 0 otherwise. Let S±∞ be its Weyl group: it has generators s j for j ∈ J∞,
with relations s2

j = 1, (s j s j+1)
3
= 1, and (si s j )

2
= 1 for |i − j | ≥ 2. Then S±∞

acts on partitions: s j ·λ is obtained from λ by adding the unique λ-addable cell in
diagonal j if it exists, and removing the unique λ-removable cell in diagonal j if
it exists (remembering the shift in diagonal index by j ′). Then S±∞∅ = Y is the
set of all partitions and there is a bijection c j ′ : S

j ′
±∞
∼= Y.

Let C∞ be the Kac–Moody algebra with Dynkin node set I∞ =Z≥0 and Cartan
matrix ai j with ai i = 2 for i ∈ I∞, ai,i+1 = ai+1,i =−1 for i ∈ I∞ \ {0}, a01 =−1
and a10=−2. Then its Weyl group W∞ has generators si for i ∈ I∞ with relations
s2

i = 1, (s0s1)
4
= 1, (si si+1)

3
= 1 for i ∈ I∞\{0}, and (si s j )

2
= 1 for |i− j | ≥ 2. As

before, there is an injective homomorphism f : W∞→ S±∞ given by f (s0) = s0

and f (si )= si s−i for i > 0.

1We allow infinite Dynkin diagrams in a formal manner.
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Then W∞ acts on partitions via f . Define Yi ′
=W∞ ·∅. The limit of Proposition

5.1 gives a bijection sci ′ : W i ′
∞
∼= Yi ′ . The strong and weak orders on C2n ∼= S̃ j ′

2n
both converge to Young’s lattice Y. The weak order on C

j ′

2n
∼=W i ′

n converges to the
weak order on Yi ′ ∼=W i ′

∞
, in which a cover λ ⊂ siλ adds cells in diagonals i and

−i if i > 0 or just the cell in diagonal 0 if i = 0.

Proposition 5.3. Suppose λ ⊂ µ is a strong cover in Yi ′ ∼= W i ′
∞

with sc−1
i ′ (λ) =

wlwsα= sc−1
i ′ (µ). If sα is conjugate to s0 then the Chevalley coefficient 〈α∨ ,3i ′〉

is equal to 1 and µ/λ has a single connected component which is necessarily a
ribbon. Otherwise suppose f (sα)= sβsβ ′ . Then the Chevalley coefficient 〈α∨ ,3i ′〉

is equal 1 or 2 depending on whether one or both of sc(wsβ) and sc(wsβ ′) strictly
contain λ. Furthermore, each strict containment has a single connected component
which is a ribbon.

Proof. That the skew partitions in question contain a single connected component
which equals a ribbon follows from the fact that they are obtained by the action
of a reflection on a partition, which always changes the shape by a ribbon. This
follows from the edge sequence discussion in Section 3.

Suppose sα is conjugate to s0 and f (sα) = sβ . Every strong cover in Y has
Chevalley coefficient equal to 1 or 0 (since a single box is added). Now write
f (w) = xy so that f (wsα) = xs0 y in S±∞. The Chevalley coefficient 〈α∨ ,3i ′〉

is equal to the Chevalley coefficient 〈β∨ , ω j ′〉 which is equal to the Chevalley
coefficient of the cover y ls0 y in S±∞ (with respect to ω j ′). Since µ 6= λ, we must
have y ·∅ ( (s0 y) ·∅. Thus the required Chevalley coefficient must be nonzero,
and hence equal to 1. We have used the calculation 〈y−1β∨0 , ω j ′〉 = 〈β

∨

0 , yω j ′〉 =

〈β∨0 , y′ω j ′〉, where y′ = c−1
j ′ (y ·∅) is the parabolic component” of y.

The proof for f (sα) = sβsβ ′ follows in a similar manner. The only delicate
issue is to show that if 〈β∨ , ω j ′〉 = 1 then λ ⊂ sc(wsβ) is a strict inclusion. But
〈β∨ , ω j ′〉 = 1 implies that (sβ ·∅) 6=∅ so that (wsβ ·∅) 6= (w ·∅). �

Figure 3 shows the case of a domino appearing in the strong tableau P , corre-
sponding to the strong cover s2s0s1 l s2s1s0s1 in W 1

∞
.

In the case the Chevalley coefficient described in Proposition 5.3 is equal to 2,
the difference µ/λ is a union of two ribbons, since sβ and sβ ′ commute. We have
not shown that these ribbons do not touch, so the difference µ/λ can potentially
be written as the union of the two ribbons in two ways, corresponding to the left
action of s f (w)βs f (w)β ′ and s f (w)β ′s f (w)β . To obtain a strong tableau in Yi ′ , we
must mark a ribbon for each strong cover which consists of two ribbons.

For the differential bijection, we note that for λ ∈ Yi ′ , once again, UDλ is in
natural bijection with the set of λ-addable corners and DUλ is in natural bijection
with the set of λ-removable corners; in this context the corners are grouped by diag-
onals of the form ±i for various i . Using the differential bijection in Example 2.9,
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⊗
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⊗
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−
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P =
4′

2 4
1 3

Q =
4
3 4
1 2

Figure 2. Folded insertion of σ = 2431 for i ′ = j ′ = 1.

we obtain a folded insertion for the limit Yi ′ of C
j ′

2n . It defines a bijection from
permutations Pn(1) to pairs (P, Q) where P and Q are n-step strong and weak
tableaux with respect to Yi ′ .

For example, we let i ′ = j ′ = 1 and compute the folded insertion of σ = 2431;
see the graph G in Figure 2. For the meaning of ⊗ see (9) and Example 3.2. The
arrows represent strong covers, and an arrow is labeled with − if the strong cover
adds two nonadjacent cells and the marked cell is in a more negative diagonal. The
unique arrow labeled with −, corresponds to the entry 4′ in P . Strictly speaking
we should mark one ribbon for each number used, but when there is no choice we
have omitted the marking.

Again, with i ′ = j ′ = 1 we compute the folded insertion of 4213; see the graph
G in Figure 3. Note that there is a unique strong cover that is not a weak cover,
corresponding to the domino in P containing 4s.

5D. Sagan–Worley insertion. We now consider the important case that i ′=0. We
must have j ′ = 0. The following result is straightforward.

Lemma 5.4. The set C0
2n is the subset of C2n of elements fixed by the transpose tr.

Using the fact that f (W 0
n ) ⊂ S̃0

2n , the next result is an easy consequence of
Propositions 4.13 and 3.1. A similar statement holds for i ′ = n.

Proposition 5.5. Suppose λ ⊂ µ is a strong cover in C0
2n
∼= W 0

n with sc−1
0 (µ) =

sc−1
0 (λ)sα. Then the Chevalley coefficient 〈α∨ ,30〉 is equal to the total number of
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⊗
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⊗
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Figure 3. Folded insertion of σ = 4213 for i ′ = j ′ = 1.

components of ν/λ for a strong cover λ⊂ ν in C2n ∼= S̃0
2n satisfying λ⊂ ν ⊂ µ. In

particular, if λ ⊂ µ is also a left weak cover in C0
2n
∼= W 0

n with µ = siλ for i ∈ I ,
then 〈α∨ ,30〉 is equal to the number of λ-addable corner cells of residue i or −i
modulo 2n.

Thus for i ′= 0, a folded strong tableau of shape λ∈C0
2n is a sequence of strong

covers in C0
2n
∼= W 0

n from ∅ to λ, such that every cover has a marked component.
A folded weak tableau of shape λ∈C0

2n is a sequence of weak covers in C0
2n
∼=W 0

n
going from ∅ to λ; no marking is necessary. With these explicit descriptions we
have the following:

Corollary 5.6. LLMS insertion induces a bijection from the set of permutations
Pn(1) to pairs (P, Q) of tableaux of the same shape λ∈C0

2n , where `(sc−1
0 (λ))=n,

P is a folded strong tableau and Q a folded weak tableau.

Again we now consider the n →∞ limit. In this case the limit of C0
2n is the

set Y0 of partitions fixed under the transpose. The strong and weak orders both
converge to the same order on Y0. Since added cells are in transpose-symmetric
positions, when marking a strong cover of the form λl siλ, one must mark either
the added cell in diagonal i or −i if i > 0.

Folded weak tableaux Q are in obvious bijection with standard shifted tableaux
Q∗, given by taking only the part on one side of the diagonal. A similarly obvious
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bijection exists from folded strong tableaux to standard shifted tableaux in which
off-diagonal entries may or may not have a mark; we choose the bijection so that
a mark in a shifted tableau P∗ indicates that the corresponding cell with negative
diagonal index is marked in the folded strong tableau P .

Thus we have the correct kinds of tableaux to compare with Sagan–Worley in-
sertion.

Example 5.7. Let n = 7 and σ = 2673541. See Example 3.2 for the way to
interpret σ and the symbols ⊗. We draw the graph Gi j for the folded insertion of
σ . We draw arrows to represent strong covers and place an asterisk on an edge
if the marked cell is on a negative diagonal. P and Q are the folded strong and
weak tableaux respectively. P∗ and Q∗ are the shifted tableaux corresponding to
P and Q.

By reformulating Sagan–Worley insertion using Fomin’s setup, we obtain the
following theorem. Note the exchange of P∗ and Q∗.

Theorem 5.8. Let σ map to (P, Q) under folded insertion. Then the pair (Q∗, P∗)
of shifted tableaux, is the image of σ−1 under Sagan–Worley insertion.

Remark 5.9. In [1989, Proposition 6.2], Haiman relates Sagan–Worley shifted
insertion with left-right insertion. It is natural to ask whether one can connect
Sections 2E and 4D in a similar manner. Unfortunately, a straightforward general-
ization of Haiman’s result does not appear to be possible. For example when π has
order 2, one would need to relate the left-right (or mixed) insertion of a colored
permutation on 2r letters with folded insertion of a permutation on r letters. Length
considerations show that this can be done only if each orbit of π on J has order 2,
which nearly never happens in our setup.

6. Distributive parabolic quotients

6A. Proctor’s classification. Let W be a finite irreducible Weyl group with simple
generators {si | i ∈ I } and set of reflections T . Recall the notations WJ and W J

from before Proposition 2.16. We have

W J
= {w ∈W | w <wsi for any i ∈ J }.

Proctor [1984] classified the cases when W J is a distributive lattice under the weak
order. In all such cases, Stembridge [1996] showed that the weak and strong orders
agree on W J and that WJ is a maximal parabolic subgroup of W , that is, J = I \{i}
for some i ∈ I . We call such W J

:=W i distributive parabolic quotients.

Theorem 6.1 [Proctor 1984]. The distributive parabolic quotients are:

(1) W ' An; J = I \ {i} for any i ∈ I .
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. . . . . . . .

⊗

. . //

⊗

. . // //

⊗

. . // // //

⊗

. . // // // //

⊗

. . // // // // //

⊗

. . // // // //
∗

// //

⊗

. //
∗

// // //
∗

//
∗

// //

P =

6′

4 5′ 7
2′ 3 5
1 2 4′ 6

Q =

7
3 5 6
2 4 5
1 2 3 7

P∗ =
7

3 5′
1 2′ 4 6′

Q∗ =
6

4 5
1 2 3 7

Figure 4. Growth diagram illustrating Theorem 5.8.

(2) W ' Bn; WJ ' Bn−1 or WJ ' An−1.

(3) W ' Dn; WJ ' Dn−1 or WJ ' An−1.

(4) W ' G2; J = I \ {i} for any i ∈ I .

In [Stembridge 1996], it is shown that these cases are also exactly the parabolic
quotients W J of Weyl groups such that every elementw∈W J is fully commutative,
that is, every two reduced decompositions of w can be obtained from each other
using just the relations of the form si s j = s j si for i, j ∈ I .
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6B. Distributive labeled posets. We need a slightly more precise form of the re-
sults of Proctor and Stembridge. If Q is a finite poset we let J (Q) denote the
poset of (lower) order ideals of Q. The poset J (Q) is a distributive lattice and
the fundamental theorem of finite distributive posets [Stanley 1999] says that the
correspondence Q 7→ J (Q) is a bijection between finite posets and finite distribu-
tive lattices. Suppose P is a finite poset and ω : {x l y} → A is a labeling of the
edges of the Hasse diagram of P with elements of some set A. We call (P, ω) an
edge-labeled poset. We say that (P, ω) is a distributively labeled lattice if

(1) P = J (Q) is a distributive lattice; and

(2) there is a vertex (element) labeling π : Q→ A such that

ω(I \ {q}l I )= π(q)

for any I ∈ J (Q) and q maximal in I .

If W is a Weyl group, we may label the edges of the Hasse diagram of the weak
order (W,≺) with simple reflections: the cover w ≺ siw is labeled with si . We
denote the resulting edge-labeled poset by Wweak. Similarly define Wstrong to be the
strong order where wlwt is labeled with t ∈ T . These labeled posets restrict to
give labeled posets W i

weak and W i
strong. Note that each cover relation in W i under

either order is itself a cover relation in W . Thus W i
weak and W i

strong are induced
subgraphs of Wweak and Wstrong.

Theorem 6.2. Suppose W i is a distributive parabolic quotient. Then the strong
and weak orders on W i coincide. In particular W i

weak and W i
strong are distributively

labeled lattices.

Stembridge [1996, Theorem 2.2] proved that W i
weak is a distributively labeled lat-

tice. For the sake of completeness we give a self-contained proof of Theorem 6.2.

6C. Cominuscule parabolic quotients. Let 8 be an irreducible finite root system
and W be its Weyl group. Let8=8+t8− denote the decomposition of the roots
into the disjoint subsets of positive and negative roots. Let θ =

∑
i∈I aiαi denote

the highest root of 8. We say that i ∈ I is cominuscule if ai = 1.
It can be checked case-by-case using Theorem 6.1 that the distributive parabolic

quotients W i correspond to cominuscule nodes i ∈ I except in the cases W =
G2, W i

= Bn/An−1 or W i
= Cn/Cn−1. In the latter two cases, one may use

the isomorphic quotients given by their duals Cn/An−1 and Bn/Bn−1, which are
cominuscule.

For now we suppose that a cominuscule node i ∈ I has been fixed. If α and β
are two roots, we say α ≥ β if α−β is a sum of positive roots. Recall that θ is the
unique maximal root under this order. Let 8(i) denote the poset of positive roots
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which lie above αi . Clearly θ ∈8(i). The inversion set of w ∈W is defined by

Inv(w)= {α ∈8+ | wα < 0}.

Lemma 6.3. Suppose α, β ∈8(i). Write sαβ = β+kα where k =−〈α∨ , β〉. Then
k ∈ {0,−1,−2} and the following facts hold:

(1) If α and β are incomparable then sαβ = β.

(2) If α > β then sαβ is equal to one of the following: (i) β; (ii) −γ where
γ ∈8+ \8(i); or (iii) −γ where γ > α.

Proof. To obtain the bounds on k we observe that for all roots γ ∈8, −θ ≤ γ ≤ θ ,
so that the coefficient of αi in γ , lies between the corresponding coefficients in −θ
and θ , which are −1 and 1 by the assumption that i is cominuscule.

Suppose that α and β are incomparable. Then β − α is neither positive nor
negative and hence not a root. Since the roots in 8 occur in strings, we must have
k = 0.

If α > β, the three cases correspond to k = 0, k =−1, and k =−2. �

For our results on distributive parabolic quotients, we require the following re-
sult, which is a slight strengthening of [Thomas and Yong 2006, Proposition 2.1,
Lemma 2.2]. We include a self-contained proof, part of which is the same as the
proof of [Thomas and Yong 2006, Proposition 2.1]. In particular we prove directly
that the edge labeled poset W i

strong defined in Section 6B is a distributively labeled
lattice.

Proposition 6.4. The map w 7−→ Inv(w) defines an isomorphism of posets Inv|W i :

(W i ,≤)→ J (8(i)). Moreover, if u lw for u, w ∈ W i , then writing w = usα for
α ∈8+, we have α ∈8(i) and Inv(w)= Inv(u)t {α}.

Proof. Let w ∈ W i . First we show that Inv(w)⊂8(i). Suppose that γ ∈ Inv(w) \
8(i). If γ = αk where k 6= i this means wsk <w which contradicts the assumption
that w ∈ W i . Otherwise γ = δ + ρ where δ, ρ ∈ 8+ \8(i). Since wγ < 0 we
have wδ < 0 or wρ < 0 so the same argument applies. Repeating we obtain a
contradiction.

Now we show that Inv(w) ∈ J (8(i)). Suppose α ∈ Inv(w) and β < α. Then
γ = α−β ∈8+\8(i) since the coefficient of αi in γ is zero. Since Inv(w)⊂8(i),
we have γ 6∈ Inv(w), that is, wα−wβ = wγ > 0. Since wα < 0 this shows that
wβ < 0 as desired. Thus Inv|W i is well-defined.

Next we show that Inv|W i sends covers to covers. Let u lw with u, w ∈ W i

and α ∈ 8+ such that w = usα. Then 0 > wα = −uα so α ∈ Inv(w) \ Inv(u).
For all β ∈ Inv(u), since Inv(u) ∈ J (8(i)), α > β or α > β. Either way we
have wβ = usαβ < 0, since by Lemma 6.3, sαβ is either equal to β or −γ for
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γ ∈8+ \ Inv(u). That is, Inv(u)⊂ Inv(w). Since |Inv(w)| = |Inv(u)|+1 it follows
that Inv(w)= Inv(u)t{α}, so that Inv(u)⊂ Inv(w) is a covering relation in J (8(i)).

Next we show that every covering relation in J (8(i)) is the image of a covering
relation in W i , and in particular, that Inv|W i is onto. An arbitrary covering relation
in J (8(i)) is given by S \ {α} ⊂ S where S ∈ J (8(i)) and α is maximal in S.

By induction there is a u ∈ W i such that Inv(u) = S \ {α}. Let w = usα. It
suffices to show that

Inv(w)= S and w ∈W i .

The second claim follows from the first since none of the αk for k 6= i lie in Inv(w).
For the first claim, since α ∈ 8(i) \ Inv(u), we may argue as before to show that
S = Inv(u)t {α} ⊂ Inv(w).

For the opposite inclusion, suppose β ∈ 8+ \ S. We must show that wβ > 0.
Write sαβ = β + kα for k ∈ Z. If k = 0 then we are done as before. If k > 0 then
sαβ > α, so that sαβ ∈8+ \ S since S is an order ideal. But then sαβ /∈ Inv(u) so
wβ > 0. So we may assume that k < 0.

Suppose first that β ∈ 8(i). We may assume that α and β are comparable by
Lemma 6.3. Since S is an order ideal we have β >α. If k=−1 then sαβ=β−α ∈
8+\8(i) since the coefficient of αi is 1 in both α and β. In particular sαβ 6∈ Inv(u)
so wβ > 0. Otherwise k =−2. Then sαβ = β − 2α < 0. We have 0< β − α < α
and −sαβ = 2α− β = α− (β − α) < α. Since S is an order ideal it follows that
−sαβ ∈ Inv(u) and wβ = usαβ > 0 as desired.

Otherwise β ∈ 8+ \8(i). Since i is cominuscule we have k ∈ {−1, 0, 1}. We
assume k =−1 as the other cases were already done. Then sαβ = β−α < 0 since
its coefficient of αi is −1. Moreover α− β ∈ 8(i). Since α > α− β and S is an
order ideal, it follows that α−β ∈ Inv(u). Therefore wβ = usαβ > 0 as desired.

We have shown that every cover in J (8(i)) is the image under Inv|W i of a cover
in (W i ,≤).

The bijectivity of Inv|W i follows by induction and the explicit description of the
image of a cover under Inv|W i . �

Proof of Theorem 6.2. For the case W =G2, both labeled posets W i
weak and W i

strong

are chains, so the result follows immediately. Thus we may assume that W i is a
cominuscule parabolic quotient.

For W i
strong the result follows from Proposition 6.4. We label the vertices of8(i)

by reflections, defining π :8(i)→ T by π(α)= sα. Each cover wlwsα in W i
strong

corresponds to adding α ∈8(i) to Inv(w). Thus the edge label of wlwsα agrees
with the vertex label π(α)= sα.

For the weak order W i
weak let us consider two coverswlwsα=sβw and vlvsα=

sβ ′v which have the same label sα in W i
strong. We claim that sβ = sβ ′ = sk for some

k ∈ I . The elements w and v differ by right multiplication by some sγ ’s where
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γ ∈8(i) is incomparable with α; this is accomplished by passing between w or v
to the element u ∈ W i such that Inv(u) = Inv(w)∩ Inv(v). By Lemma 6.3 these
sγ ’s commute with sα, and sowα= vα. This gives us a map f :8(i)→8+ defined
by f (α)= β = wα, which does not depend on w ∈W i as long as wlwsα.

To show that f (α) is simple for each α ∈8(i), consider a reduced word wsα =
sk1sk2 · · · skl . We know that w(r) = skr · · · skl ∈ W i and that Inv(w(r)) differs from
Inv(w(r+1)) by some root in 8(i) since w(r+1) l w(r). For some value r = r∗,
this root is α and by the well-definedness just proved f (α) = αkr∗ , since w(r

∗)
=

w(r
∗
+1)sα. This shows that the strong order and weak order on W i coincide, and

that W i
weak is isomorphic to the poset of order ideals of 8(i) where 8(i) is labeled

with π(α)= f (α). �

7. Distributive subgraphs of Kac–Moody graded graphs

In this section we apply Theorem 6.2 to the dual graded graphs constructed in
Section 2.

Let g = g(A) be the Kac–Moody algebra associated to the generalized Cartan
matrix A and let W be its Weyl group. Let Wfin⊂W be a finite parabolic subgroup
corresponding to some index set I ′ ⊂ I . Now suppose that Wfin has a distributive
parabolic quotient as in Theorem 6.1 corresponding to J = I ′ \ {i} ⊂ I ′. We let
W J
⊂Wfin denote the distributive parabolic quotient (we use W J instead of W i in

this section since W J is not a maximal parabolic quotient of W , but of Wfin).
Now let (3, K ) ∈ P+ × Z+ and (0s(3), 0w(K )) be the pair of dual graded

graphs constructed in Section 2. By restricting to the set of vertices W J
⊂ Wfin ⊂

W we obtain the induced pair of graded graphs (0s(3), 0w(K ))J . These graded
graphs are not dual (see Remark 2.1) but they still have rich combinatorics.

The distributive lattice (W J ,≤) has two edge labelings. Recall that in W J
strong,

the edge vlw= vsα is labeled either by the reflection sα, while in the strong Kac–
Moody subgraph 0 J

s (3), the edge vlw = vsα is labeled by the integer 〈α∨ ,3〉.
Similarly the distributive lattice (W J ,�) has two edge labelings; in W J

weak, the
edge v ≺ s jv is labeled by the simple reflection s j , while in the weak Kac–Moody
subgraph0 J

w(K ), the edge v≺ s jv is labeled by the integer 〈K ,3 j 〉. The following
result is an immediate consequence of Theorem 6.2.

Theorem 7.1. The induced graded subgraphs 0 J
s (3) and 0 J

w(K ) are distributively
labeled lattices.

Thus 0 J
s (3) (resp. 0 J

w(K )) can be thought of as the poset of order ideals in
some integer labeled poset P J (resp. Q J ). The 3-strong and K -weak tableaux
can be thought of as linear extensions of P J and Q J with additional markings.

In the rest of the paper, we give examples of the posets P J and Q J and relate
them to classically understood tableaux. In each case we let g be of untwisted affine
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Root system Dynkin Diagram

An
◦ ◦ ◦ ◦ ◦ ◦•

1 2 · · · i · · · n

Cn, n ≥ 3
◦ ◦ ◦ ◦ ◦ ◦<•
1 2 · · · · · · n

Dn, n ≥ 4 ◦ ◦ ◦ ◦ ◦HH
��◦

◦1 2 · · · · · · n−1

n◦
•

E6 ◦ ◦ ◦ ◦ ◦• ◦

◦

1 3 4 5

2

6

E7 ◦ ◦ ◦ ◦ ◦ •◦

◦

1 3 4 5

2

6 7

Figure 5. Some cominuscule parabolic quotients.

type, Ifin = I \ {0} and J = I \ {i} for a fixed node i ∈ Ifin to be specified. We use
the canonical central element Kcan =

∑
i∈I a∨i α

∨

i for K and 3i for the dominant
weight. In this case P J and Q J are both labelings of the poset 8(i) ⊂ 8+ for
the simple Lie algebra gfin whose Dynkin diagram is the subdiagram of that of g

given by removing the 0 node. These examples, with the exception of G2, can
be viewed as providing some additional data for the posets 8(i), whose unlabeled
versions were given explicitly in [Thomas and Yong 2006]. As in that reference,
we rotate the labeled Hasse diagrams clockwise by 45 degrees so that the minimal
element is in the southwest corner. In the following, we let V J

weak, V J
strong denote

the vertex-labeled posets such that W J
weak = J (V J

weak) and W J
strong = J (V J

strong).

7A. Type A(1)
n . Let i ∈ Ifin be arbitrary. The poset8(i) consists of elements αp,q =

αp + · · · + αq for 1 ≤ p ≤ i ≤ q ≤ n. The weak labeling of 8(i) is given by
αp,q 7→ sp+q−i . For example, for n= 7 and i = 3 and abbreviating αp,q by pq and
s j by j , the labelings of 8(i) by positive roots and simple reflections are given by

V J
strong =

13 14 15 16 17
23 24 25 26 27
33 34 35 36 37

V J
weak =

1 2 3 4 5
2 3 4 5 6
3 4 5 6 7

All labelings in P J and Q J are given by the constant 1. The resulting strong and
weak tableaux are usual standard tableaux.

7B. Type C(1)
n . Let i = n. Let αi = ei−ei+1 for 1≤ i ≤ n−1 and αn = 2en where

ei is the i-th standard basis element of the weight lattice Zn . Then 8(n) consists of
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the roots αi, j = ei + e j for 1≤ i ≤ j ≤ n. We have a∨i = 1 for all i . For n = 4 we
have

V J
strong =

14 13 12 11
24 23 22
34 33
44

V J
weak =

1 2 3 4
2 3 4
3 4
4

P J
=

2 2 2 1
2 2 1
2 1
1

Q J
=

1 1 1 1
1 1 1
1 1
1

The strong tableaux are shifted standard tableaux with two kinds of markings on
off-diagonal entries; these are the standard recording tableaux for shifted insertion
[Sagan 1987]. The weak tableaux are standard shifted tableaux.

7C. Type D(1)
n . Let i=n. Letting αi =ei−ei+1 for 1≤ i≤n−1 and αn=en−1+en ,

the roots of 8(n) are given by αp,q = ep + eq for 1≤ p < q ≤ n. We have a∨j = 1
for j ∈ {0, 1, n− 1, n} and a∨j = 2 otherwise. For n = 5 we give the labelings of
8(n) below. Note the 1 in the upper left corner of Q J .

V J
strong =

15 14 13 12
25 24 23
35 34
45

V J
weak =

1 2 3 4
2 3 5
3 4
5

P J
=

1 1 1 1
1 1 1
1 1
1

Q J
=

1 2 2 1
2 2 1
2 1
1

7D. Type E. The computations in this section were made using Stembridge’s Cox-
eter/Weyl package [Stembridge 2004]. In both of the following cases, P J has all
labels 1.

For E (1)6 and i = 1 with the Dynkin labeling in Figure 5, we have

V J
weak =

1 3 4 5 6
3 4 2

2 4 5
1 3 4 5 6

Q J
=

1 2 3 2 1
2 3 2

2 3 2
1 2 3 2 1

For E (1)7 and i = 7 with the Dynkin labeling in Figure 5, we have

V J
weak =

7
6
5

2 4
7 6 5 4 3
6 5 4 3 1
5 4 2

2 4 3
7 6 5 4 3 1

Q J
=

1
2
3

2 4
1 2 3 4 3
2 3 4 3 2
3 4 2

2 4 3
1 2 3 4 3 2

7E. Type G(1)
2 . This case does not correspond to a cominiscule root. Pick i = 1

and let α1, α2 be the two simple roots, so that the highest root is 3α1+ 2α2. Then



Dual graded graphs for Kac–Moody algebras 487

a∨1 = 1 and a∨2 = 2. Abbreviating the reflection spα1+qα2 by pq , we have:

V J
strong = 1 31 21 32 11 P J

= 1 3 2 3 1

V J
weak = 1 2 1 2 1 Q J

= 1 2 1 2 1
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