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We prove that the natural map T(F)/R — Ao(X), where T is an algebraic
torus over a field F' of dimension at most 3, X a smooth proper geometrically
irreducible variety over F containing 7 as an open subset and Ay (X) is the group
of classes of zero-dimensional cycles on X of degree zero, is an isomorphism.
In particular, the group Ao (X) is finite if F is finitely generated over the prime
subfield, over the complex field, or over a p-adic field.

Let T be an algebraic torus over a field F' and X a smooth proper geometrically
irreducible variety over F containing 7 as an open subset. Let Ag(X) be the
subgroup of the Chow group CHy(X) of classes of zero-dimensional cycles on X
consisting of classes of degree zero. The map T (F) — Ap(X) taking a rational
point ¢ in T (F) to [¢t]—[1] factors through the R-equivalence on 7 (F') (see Section
20):

¢: T(F)/R— Ap(X).

One can ask the following questions:

1. Is ¢ a homomorphism?

2. Is ¢ an isomorphism?

Note that ¢ is a homomorphism if and only if [¢s] — [¢] = [s] — [1] for any two
rational points s, ¢t € T(F). If the translation action of T on itself extends to an
action on X, the latter means that the natural action of 7 (F) on Ag(X) is trivial.

In the present paper we prove that ¢ is an isomorphism for all algebraic tori
of dimension at most 3 (Theorem 4.4). All tori of dimension 1 and 2 are ratio-
nal [Voskresenskii 1998, § 4.9], therefore, ¢ is an isomorphism of trivial groups.
Birational classification of 3-dimensional tori was given in [Kunyavskii 1987].

We use the following notation in the paper:

The word “variety” will mean a separated scheme of finite type over a field.
F is a field.

Fep s a separable closure of F'.
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I" is the Galois group of Fsp/F.

X1 := X x g Spec L for a scheme X over F and a field extension L/F.
Xsep 18 X X Spec Fiep.

T* is the character group of an algebraic torus T over Fyep with I"-action.
T, = Hom(T*, Z) is the cocharacter group of a torus 7.

T° is the dual torus, (T°)* = T.

K. (X) is Quillen’s K-group of a scheme X.

H*(X, K,) is the K-cohomology group.

CH! (X) is the Chow groups of cycles of codimension i on X.

CH; (X) is the Chow groups of cycles of dimension i on X.

Fields/ F is the category of field extensions of F'.

Ab is the category of abelian groups.

Sets is the category of sets.

Gm =G, F.

1. Preliminaries

1A. R-equivalence. Let F be a field. For a field extension L/F, we write Hy
for the semilocal ring of all rational functions f(¢)/g(¢) € L(t) such that g(0) and
g(1) are nonzero. Let A be a functor from the category of semisimple commutative
F-algebras to the category Sets. If i = 0 or 1, we have a map A(H.) — A(L),
a — a(i), induced by the L-algebra homomorphism H; — L taking a function A
to h(i).

Two points ag, a; € A(L) are called strictly R-equivalent if thereisana € A(Hy)
with a(0) = ag and a(1) = a;. The strict R-equivalence generates an equivalence
relation R on A(L), called the R-equivalence relation. The set of R-equivalence
classes is denoted by A(L)/R.

Example 1.1. A scheme X over F defines the functor
X (A) :=Morp(Spec A, X).

The notion of R-equivalence in X (L) is classical and was introduced in [Manin
1986, Ch. 2, § 4]. If G is an algebraic group over F,then G(L)/R=G(L)/RG(L),
where RG(L) is the subgroup of G(L) consisting of all elements that are R-
equivalent to the identity.

Example 1.2. Let G be an algebraic group over F. We can define the functor
taking a commutative F-algebra A to the set of isomorphism classes Hélt(A, G) of
G-torsors over Spec A.

Example 1.3. Let 1 - S — P — T — 1 be an exact sequence of algebraic tori
over F with P a quasitrivial torus, thatis, P >~ Rk ,r (G, k) for an étale F-algebra
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K. As H\(A, P) = H.(A®r K,G,,) = 0 for any semilocal commutative F-
algebra A by Shapiro-Faddeev Lemma and Grothendieck’s Hilbert Theorem 90,
the sequence

P(A) — T(A) — HL(A, S) = 0

is exact. Since P is an open subset in the affine space of K, we have P(L)/R =1
for any field extension L/F. Hence the image of P(L) — T (L) consists of R-
trivial elements in 7 (L) and therefore,

T(L)/R~H'(L,S)/R.

If in addition S is a flasque torus (see [ Voskresenskii 1998, § 4.6]) then by [Colliot-
Thélene and Sansuc 1977, Th. 2],

T(L)/R~H'(L,S).

1B. Category of Chow motives. Let CM(F) be the category of Chow motives
over F (see [Manin 1968]). Recall that CM(F) is an additive category with objects
formal finite direct sums | [, (Xk, i) (called Chow motives) where X are smooth
proper varieties over F and iy € Z. For a smooth proper variety X we write M (X) (i)
for the object (X, i) of CM(F') and shortly M (X) for M (X)(0). If M(X) and M (Y)
are objects in CM(F) and X is irreducible of dimension d then

Morcm(r) (M (X) (@), M(Y)(j)) = CHgyi—j(X x Y).

We have the functor from the category SP(F) of smooth proper varieties over
F to CM(F) taking a variety X to M (X) and a morphism f : X — Y to the cycle
of the graph of f.

We write Z(i) for M (Spec F)(i). A motive is called split if it is isomorphic to
a motive of the form [ ['_, Z(d;).

The functor taking an X to the K-cohomology groups H*(X, K,) (see [Quillen
1973]) from the category SP(F) to the category of (bigraded) abelian groups fac-
tors through the category CM(F) as follows. Let @ € CH(X x Y) be a morphism
M(X)(i) > M(Y)(j) in CM(F). Then the functor takes « to the homomorphism
H*(X, Ky) — H*(Y, K,) defined by B+ (p2)«(a- pj(B)) where p} and (p;), are
the pull-back and the push-forward homomorphisms for the first and the second
projections p;: X x Y — X and py : X x Y — Y respectively.

Recall that H” (X, K ,) = CH?(X) for a smooth X and every p > 0 by [Quillen
1973, § 7, Prop. 5.14].

Lemma 1.4. Let M be a split motive. Then the product map
CH?(M)® Ky(F) = HP (M, K p4q)

is an isomorphism.
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Proof. The statement is obviously true for the motive M = Z(i). U

Let X be a smooth proper irreducible variety over F. The push-forward homo-
morphism
deg: CHy(X) — CHy(Spec F) =7

with respect to the the structure morphism X — Spec F is called the degree homo-
morphism. For every i > 0, we have the intersection pairing

CH?(X)®CH,(X) > Z, oa® B> deg(ap). 1)

Proposition 1.5. Let X be a smooth proper irreducible variety over F. Then the
Chow motive of X is split if and only if

(i) the Chow group CH(X) is free abelian of finite rank and the map
CH(X) — CH(X)

is an isomorphism for every field extension L/ F and
(1) the pairing (1) is a perfect duality for every p.

Proof. Suppose that the motive of X is split. Mutually inverse isomorphisms
between M (X) and a split motive | ['_, Z(d;) are given by two r-tuples of elements
u; € CHgy (X) and v; € CH% (X) such that the tuple u (and also v) form a Z-basis
of CH(X) and deg(u;v;) = §;; over any field extension of F.

Conversely, suppose that (i) and (ii) hold. Choose dual bases u; and v; of
CH(X). They define morphisms « and g from a split motive N to M (X) and
back respectively so that 8 o « is the identity of N. By Yoneda Lemma, it suffices
to prove that for every variety Y over F' the morphism

u®ly: CH(N®M(Y)) - CH(X x Y)

is an isomorphism. The injectivity follows from the fact that 8 o « = id. The
surjectivity follows by induction on the dimension of Y using the localization and
the fact that the map u ® 1y is an isomorphism if Y is the spectrum of a field
extension of F. O

1C. K-theory, K-cohomology and the Brown—Gersten—Quillen spectral sequence.
Let X be a smooth variety over F. Let K,.(X)® denote the i-th term of the topo-
logical filtration on K, (X). Consider the Brown—Gersten—Quillen (BGQ) spectral
sequence (see [Quillen 1973, § 7, Th. 5.4])

EyT=HP(X,K_y) = K_,_4(X) ()

converging to the K-groups of X with the topological filtration. The K-cohomology
groups H*(X, K,) can be computed via Gersten complexes [Quillen 1973, § 7.5].
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We have Eg’q =0if p<Qorp+¢g >0,o0r p>dimX and Eé”_p = CH?(X).
The E>-term is as follows.

CH’(X) 0
H(X, K)) CH!(X) 0
HY(X, K») CH?(X) 0

H%*(X, K3) CH?(X)

If in addition X is geometrically irreducible proper, we have H(X, K|) = F*.
The composition of the pull-back homomorphism F* = K (F) — K (X) for the
structure morphism of X with the edge homomorphism K{(X) — H 0(X, K)) is
the identity. Hence all the differentials starting at E®~! are trivial. If in addition
dim X = 3, the spectral sequence yields an exact sequence

KXY = H' (X, Ky) —» CH (X) & Ko(X), (3)

where g is the edge homomorphism.

2. Zero cycles on toric models

2A. K-theory of toric models. Let T be an algebraic torus over a field F. Let
X be a geometrically irreducible variety containing 7 as an open subset. We say
that X is a toric model of T if the translation action of T on itself extends to an
action on X. Every torus admits a smooth proper toric model [Brylinski 1979;
Colliot-Thélene et al. 2005].

Let X be a smooth proper toric model of 7. It follows from [Klyachko 1982,
Prop. 3, Cor. 2] that X, satisfies the conditions (i) and (ii) of Proposition 1.5.
Thus by Proposition 1.5, we have:

Proposition 2.1. Let X be a smooth proper toric model of T. Then the Chow
motive of Xgep is split.

The proposition and Lemma 1.4 yield:

Corollary 2.2. Let X be a smooth proper toric model of an algebraic torus T.
Then the product map

CHp(Xsep) ® Kq(Fsep) - Hp(Xsepv Kp+q)
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is an isomorphism.

The absolute Galois group I' acts naturally on Ko(Xsep) leaving each term
Ko(Xsep)® invariant.
The following theorem was proven in [Merkurjev and Panin 1997].

Theorem 2.3. Let X be a smooth proper toric model of an algebraic torus of di-
mension d over F. Then

(1) Ko(Xsep) is a direct summand of a permutation I'-module;

(2) the subgroup Ko(X Sep)(d) is infinite cyclic generated by the class of a rational
point of X;

(3) the natural map K;(X) — K; (Xsep)F is an isomorphism fori < 1;
(4) the product map Ko(Xsep) @ F;e(p — K1 (Xsep) is an isomorphism.

Corollary 2.4. Let X be a smooth proper toric model of a torus of dimension d
over F. We have the following natural isomorphisms:

1) Ki(X)D S (K (Xep)D)' fori < 1.
(2) KO(Xsep)(l) ® F><

sep

:) K (Xsep)(l)-
Proof. (1): The group K; (X)W is the kernel of the restriction to the generic point
K;(X) — K;F(X). The image of this map is equal to H*(X, K;) = K;(F) for
i =0, 1. Statement (1) follows from Theorem 2.3(3) applied to the exact sequence
0— (Ki(Xsep)(l))r - Ki(Xsep)r - Ki(Fsep)F
fori =0, 1.
(2): Tensoring with Fg, the split exact sequence
0— Ko(Xsep) = Ko(Xsep) > Z— 0
we get (2) by Theorem 2.3(4). O

Corollary 2.5. Let X be a smooth proper toric model of a torus of dimension d
over F. Then

(1) KO(Xsep)(l) is a direct summand of a permutation I'"-module.

2) Ko (Xsep)(d) is a direct summand of the I'-module K (Xsep).

Proof. (1): We have the canonical decomposition of I'-modules via the structure

sheaf Oy:
KO(Xsep) = KO(Xsep)(l) ®Z-1.

Hence Ky(X sep)(l) is a direct summand of a permutation I'-module by Theorem
2.3(1).
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(2): For a rational point x € X(F), the composition of the push-forward ho-
momorphism Ko(Fsep) = Ko(Fsep(x)) — Ko(Xsep) with the push-forward map
Px : Ko(Xsep) = Ko(Fsep) induced by the structure morphism p of X is the
identity. It follows from Theorem 2.3(2) that the inclusion

KO(Xsep)(d) - KO(Xsep)
is split by p, as a homomorphism of I"'-modules. (I

We shall need the following property of K -cohomology groups of smooth proper
toric models.

Proposition 2.6. Let X be a smooth proper toric model of a torus of dimension d
over F. Then the natural morphism HY(X, K;) — Hl(Xsep, K>)' is an isomor-
phism.

Proof. As X is geometrically rational and has a rational point, the statement follows
from [Colliot-Théleéne and Raskind 1985, Prop. 4.3] (if char(F) = 0) and [Kahn
1996, Th. 1(a)] or [Garibaldi et al. 2003, Th. 8.9] (in general). O

2B. The group Ay(X) of 3-dimensional toric models. Let T be an algebraic torus
and X a smooth proper geometrically irreducible variety over F containing T as an
open subset. Let P and S be algebraic tori over F such that P* is the permutation
I"-module with Z-basis the set of irreducible components of (X \ T)sp and S* =
CH'(X sep). We have natural I'-homomorphisms 7* — P* taking a character x
to div(x) (we consider x as a rational function on Xp) and P* — S* taking a
component of (X \ T')sep to its class in the Chow group. The sequence

0-T"—- P*"—> S* =0 4)

is a flasque resolution of 7* (see [Colliot-Théléene and Sansuc 1977, Prop. 6],
[Voskresenskii 1998, § 4.6]). Thus we have an exact sequence of algebraic tori

158> P—>T-1, )

a flasque resolution of 7T'.
By [Colliot-Théléne and Sansuc 1977, Th. 2] (see Example 1.3),

T(L)/R~H'(L,S) (6)

for any field extension L/ F.
The spectral sequence (2) for X, yields isomorphisms of I'-modules

Ko(Xsep)"? = CH' (Xgep) = S*

and
Ko(Xsep)'?? = CH? (Xep)-



76 Alexander Merkurjev

Let T be a 3-dimensional torus and X a smooth proper toric model of 7. By
[Klyachko 1982, Prop. 3, Cor. 2], the pairing

CHI(Xsep) X CHZ(Xsep) — Z, d® ,B = deg(aﬂ)

is a perfect duality of I'-lattices. It follows that CHZ(Xsep) ~ §,. Thus, the exact
sequence

0— K()(Xsep)(Z) N KO(Xsep)(l) — KO(Xsep)(l/Z) 0
yields an exact sequence of algebraic tori
1585081 (7)

with S, = Ko(Xsep)(z) and Q, = Ko(Xsep)(l) a direct summand of a permutation
["-module by Corollary 2.5(1). By Theorem 2.3(2) and Corollary 2.5(2), we have
isomorphisms of I"'-modules

S, = Ko(Xsep)'? = Ko(Xsep) ¥ ©Z ~ CH*(X5ep) ®Z = S, D Z.

Hence S’ >~ § x G, is a flasque torus. Let @ be a torus such that Q x é is a
quasi-split torus. Then the exact sequence

, ~ txl5 ~ o
1> x0—0x0—> S5 —>1

is a flasque resolution of §°. By [Colliot-Théleéne and Sansuc 1977, Th. 2] (see
Example 1.3) and (6), we have

S°(LY/R~H'(L,S xQ)~H"(L,SY~H'(L,S)~T(L)/R (8)
for any field extension L/ F, and hence it follows from (7) that
Coker(Q(F) — S°(F)) = S°(F)/R. ©)]

As Ko(X) injects into Ko(Xsep) and KO(Xsep)(3) is infinite cyclic group gener-
ated by the class of a rational point by Theorem 2.3, the kernel of the homomor-
phism g in (3) coincides with the kernel of the composition

CH3(X) - CH3(Xsep) - KO(Xsep)(3) ~/7,

which is the degree map. Recall that we write Ag(X) for the kernel of deg :
CHy(X) — Z. We then have

Ker(g) = Ao(X). (10)

The group Ap(X) is 2-torsion, by [Merkurjev and Panin 1997, Cor. 5.11(4)].
By Corollary 2.4, we have isomorphisms

K10 2 (K1 (Xeep) )" 2 (Ko(Xaep) VO F) = (0@ F) T = 0(F). (11)
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It follows from Corollary 2.2 and Proposition 2.6 that

H'(X, K2) ~ H' (Xep, K2)" =~ (CH' (Xoep) ® FS

sep

) = (S @ F)T = S°(F).
(12)

Remark 2.7. The referee has pointed out that using results from [Colliot-Thélene
and Raskind 1985] one can deduce that CHI(X) ® F* >~ H'(X, K») for a smooth
projective rational variety X over an algebraically closed field F of characteristic
Zero.

Under the identifications (11) and (12), and the fact that the BGQ spectral
sequence is compatible with products [Gillet 1981, § 7], the map K (X)) —
H'(X, K») in (3) coincides with the homomorphism Q(F) — S°(F) given by (7).
It follows from (3), (9) and (10) that

S°(F)/R = Coker(Q(F) — S°(F))
~ Coker(K (X)) — H'(X, K»)) ~Ker(g) = Ao(F). (13)
By (8), there are natural isomorphisms
T(F)/R>=S°(F)/R >~ Ay(X). (14)

Similarly, over any field extension L/F we have an isomorphism

pr: T(L)/R = Ao(XL). (15)

We shall view p as an isomorphism of functors L — T (L)/R and L — Ao(Xp)
from Fields/F to Ab.
The following remark was suggested by J.-L. Colliot-Thélene.

Remark 2.8. The isomorphism (14) yields finiteness of Ay(X) in all cases when
T (F)/R is known to be finite, that is, F’ a finitely generated over the prime subfield,
over the complex field, over a p-adic field (see [Colliot-Théleéne and Sansuc 1977,
Th. 1 and Prop. 14] and [Colliot-Thélene et al. 2004, Th. 3.4]).

2C. The map ¢ : T(L)/R — A¢(X1). Let T be an algebraic torus over F, X
a smooth proper geometrically irreducible variety over F' containing 7" as an open
subset, and L/ F afield extension. By [Colliot-Thélene and Sansuc 1977, Prop. 12,
Cor.], the map

oL T(L)/R — Ao(XL) (16)

taking the R-equivalence class of an L-point ¢ € T'(L) to the class of the zero cycle
[r] —[1], is well defined. We view ¢ as a morphism of functors from Fields/F to
Sets.
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Proposition 2.9. The map ¢ does not depend (up to canonical isomorphism) on
the choice of X.

Proof. We may assume that L = F. Let X and X’ be two smooth proper geo-
metrically irreducible varieties containing 7" as an open subset. The closure of the
graph of a birational isomorphism between X and X’ that is identical on T yields
morphisms between the motives M (X) and M(X’) in CM(F). These morphisms
induce mutually inverse isomorphisms between Ag(X) and Ag(X’) [Fulton 1984,
16.1.11]. O

Let X be a smooth proper toric model of 7. Consider the flasque resolution (5).
The S-torsor Py over Ty can be extended to an S-torsor g : U — X (see [Colliot-
Théléne and Sansuc 1977, Prop. 9] or [Merkurjev and Panin 1997, Prop. 5.4]). For
any point x € X, the fiber U, of g over x is an S-torsor over Spec L(x). Denote
by [U,] its class in H!(L(x), §). By [Colliot-Théleéne and Sansuc 1977, Prop. 12],
the map

¥ : CHo(X.) — H' (L, S)=T(L)/R, a7

taking the class [x] of a closed point x € X to N, ([Ux]) extends to a well
defined group homomorphism. The composition ¥|4,x,) o ¢ is the identity. It
follows that the map ¢y, is injective.

3. Functors from Fields/F to Sets

We consider functors from the category Fields/F to the category Sets.
All functors we are considering take values in Ab, but some of the morphisms
between such functors (namely, ¢) may not be given by group homomorphisms.
In this section, we study compatibility properties for morphisms between func-
tors with respect to norm and specialization maps.

3A. Functors with norm maps. Let A : Fields/F — Sets be a functor. We say
that A is a functor with norms if for any finite field extension E/F, there is given
anormmap Ng/p: A(E) — A(F).

Example 3.1. Let 7" be an algebraic torus over F and E/F a finite field extension.
There is an obvious norm map

Ngp: T(E)=H%E, T,®EX)— HYF, T,® FX ) =T(F).

sep sep

Thus the functor L +— T (L) is equipped with norms. Similarly, the functors L
T(L)/R, L— HY(L,T),and L — Ay(X) also have norms.
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A morphism « : A — B of functors with norms from Fields/F to Sets commutes
with norms if for any field extension E/F, the diagram

A(E) -5 B(E)

NE/Fl lNE/F

A(F) -2 B(F)
1S commutative.

Example 3.2. Let 7 be a torus of dimension 3. The sequence (5) yields an iso-
morphism of functors 7(L)/R S H! (L, S) that commutes with norms. It follows
that the isomorphism 7 (L)/R ~ S°(L)/R in (8) commutes with norms.

Example 3.3. Let T be an arbitrary torus and 1 - § — P — T — 1 a flasque
resolution. Let Endr(S) = Homr(S*, $*) be the endomorphism ring of S. For
a field extension L/F, the group T(L)/R = H'(L, S) has a natural structure of
an Endp(S)-module. For any « € Endp(S), the endomorphism of the functor
L+~ T(L)/R taking a ¢ to a(¢t) commutes with norms.

Proposition 3.4. Let T be an algebraic torus over F and X a smooth proper ge-
ometrically irreducible variety over F containing T as an open subset. Then the
morphism  in (17) commutes with norms.

Proof. Let E/F be a finite field extension, x € X a closed point and x’ the image
of x under the natural morphism X p — X. We have Ng,r([x]) = m[x']in CHo(X),
where m = [E(x) : F(x")]. The torsor U, in the definition of v is the restriction
of Uy to E(x). By [Fulton 1984, Example 1.7.4], we have

NE(x)/F(x’)([Ux’]E(x)) =m[Uy].
Hence

Nesr(Ve(xD) = Newy (LU D) =Nray pNEG Py (U 1EG)
=mNpuyr(lUv]) = ¥r(Ngp((x]). O

Proposition 3.5. Let T be an algebraic torus over F and X a smooth proper ge-
ometrically irreducible variety over F containing T as an open subset. Then the
map ¢F : T(F)/R — Ao(X) in (16) is an isomorphism of groups if and only if the
morphism ¢ commutes with norms.

Proof. Suppose that ¢ commutes with norms. We show that ¢ is surjective. Every
closed point in X is rationally equivalent to a zero-divisor with support in 7. Let
x € T be a closed point of degree n. It is sufficient to prove that [x] —n[1] belongs
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to the image of . Let E = F(x) and x’ € Tg the canonical rational point over x.
We have ¢g(x’) = [x'] —[1] and as ¢ commutes with norms,

[x]—n[11= Ng/r((x'1—[11) = Ng/r o e (x") = r (N (x)).

Thus, ¢ is a bijection. The inverse map given by (17) is a group homomorphism.
Hence ¢ is a group isomorphism.

Conversely, if ¢ is an isomorphism, then ¢ commutes with norms as ¥ does by
Proposition 3.4. U

Proposition 3.6. Let T be an algebraic torus of dimension 3 over F and X a
smooth proper toric model of T. Then the morphism of functors p in (15) com-
mutes with norms.

Proof. By Example 3.2, it suffices to prove that the morphism S°(L)/R — Ao(X1)
given by (13) commutes with norms. Let E/F be a finite field extension. The
statement follows from the commutativity of the diagram

S°(E)/JR —— H'(Xg, K;) —— CH*(Xg)

lNE/F lNE/F lNE/F

S°(F)/R —— H'(X,K,) —— CH(X).

The exact direct image functor f; takes the category M” (X g) of coherent sheaves
on Xg supported in codimension at least p to M?(X). Therefore, f, yields a
map of the BGQ spectral sequences for Xg and X. Hence the right square of the
diagram is commutative.

As the map H!(X, K,) — Hl(Xsep, K») is injective by Proposition 2.6, it suf-
fices to prove commutativity of the left square in the split case. The left square

coincides with
S*QEX —— HYXg, K»)

l1®NE/F J/NE/F

S*® F* —— H(X, K»),
where the horizontal maps are product maps after the identification of S* with
CH!(X). The commutativity follows from the projection formula in K-cohomology
[Rost 1996, § 14.5]. O

3B. Functors with specializations. Let A : Fields/F — Sets be a functor. We
say that A is a functor with specializations if for any DVR (discrete valuation
ring) over F of geometric type (a localization of an F-algebra of finite type) with
quotient field L and residue field K there is given a map s4 : A(L) — A(F) called
a specialization map.

Example 3.7. Let O be a DVR over F with quotient field L and residue field K
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and X a variety over F. The specialization homomorphism
s : CHo(Xp) > CHy(Xk)

is defined as follows. Let ¢ € CHo(X). As the restriction map CH;(Xp) —
CHo(X ) is surjective, we can choose o’ € CH{(X ) such that o; = «. Then set
s(a) = i*(a'), the image of o’ under the Gysin homomorphism i* : CH;(Xp) —
CHyp(Xk), where i : Xy — X is the regular closed embedding of codimension
one [Fulton 1984, § 2.6]. The map s is well defined as i* o i, = O for the principal
divisor Xk in X by [Fulton 1984, Prop. 2.6(c)].

Example 3.8. (see [Gille 2004, Prop. 2.2]) Let T be a torus over F' and O a DVR
over F' with quotient field L and residue field K. Let1 - S — P - T — 1 be a
flasque resolution of 7. The homomorphism

HL(0,8) — HY(L, )
is an isomorphism by [Colliot-Thélene and Sansuc 1987, Cor. 4.2]. The composi-
tion
s: T(L))R~H'(L,S)~H}(0,S) — H'(K,S)~T(K)/R
is called the specialization homomorphism with respect to O. One can easily see
that the specialization homomorphism does not depend on the choice of a flasque

resolution of 7. It follows from the triviality of Hélt(O, P) that the composition
T(O)— T(L) — T(L)/R is surjective.

T(L)/R ~~——T(L) T(0)

T(K) — T(K)/R

A\

H\(L,S) « - H.L(0,5) - HY(K, S)

Let pe T(L)/R and g € T(O) be alift of p. Then it readily follows from the
definition that s(p) is the image of ¢ under the composition 7(0) — T(K) —
T(K)/R.

Lemma 3.9. Let T be an algebraic torus over F. Let t,t' € T be two points
such that t belongs to the closure of t' and the local ring Oy ; is a DVR. Let s :
T(F(')/R — T(F(t))/R be the specialization homomorphism with respect to
Oy . Then s(t') =t.

Proof. In the ring A := F[T] let P and P’ be the prime ideals of y and y’ re-
spectively. Then O is the ring Ap/P'Ap. Let f € T(O) = Mor(Spec O, T) be
the point given by the natural homomorphism of A — O. Then the images of 7
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under the maps T(0) — T (F(t)) and T(O) — T (F(t')) coincide with y and y’
respectively. The statement follows now from Example 3.8. ([

Let 6 : A — B be a morphism of functors from Fields/F to Sets with special-
izations (for example, the functors L — T(L)/R or L — CHy(X)). We say that
6 commutes with specializations if for every DVR as above, the diagram

AL -2 B

SAJ' l&g
AK) 25 B(K)
1s commutative.

Proposition 3.10. Let T be an algebraic torus over F and X a smooth proper
geometrically irreducible variety over F containing T as an open subset. Then the
morphism ¢ in (16) commutes with specializations.

Proof. Let O be a DVR over F with quotient field L and residue field K. For an
O-point p of T let [p] denote the class of its graph in CH;(X ). Consider the
diagram

T(K)y <«— TO) —— T(L)

‘/)Kl </Jol ‘ﬂLJ{

CHo(Xg) «<—— CHi(Xo) —— CHo(Xy)
where o (p) = [p] —[1] and the bottom maps are the pull-back homomorphisms.
The statement follows from the commutativity property of the diagram. To prove
commutativity let E be either K or L and f : Spec E — Spec O, g: Xg — X the
natural morphisms. Let p € T(O) be a point and g € T (E) its image. We view p
and g as morphisms p : Spec O — X and ¢ : Spec E — Xg. By [Fulton 1984,
Th. 6.2(a)], the diagram

CH, (Spec 0) —— CHy(Spec E)

r| Iz

CH|(Xo) —— CHo(Xg)
is commutative. It follows that [¢] = ¢+ (1£) = ¢+ f*(10) = g*p+(10) = g*([p])
and the result follows. |

Proposition 3.11. Let T be an algebraic torus over F and 0,0’ : T(?)/R — B two
morphisms of functors commuting with specializations. Suppose that Oty and
0;,(“ coincide at the generic point of T. Then 0 =0,
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Proof. Let p : Spec L — T be a point of T over a field extension L over F. We
need to prove that 6, (p) =0, (p). Let t € T be the point in the image of p. We
view t as a point of T over the residue field F(¢). As F(t) C L and p is the image
of ¢ under the map T (F(t)) — T (L), it suffices to show that Op)(¢) = Qg(t)(t).

We prove this by induction on codim(¢). By assumption, the statement holds
if ¢ is the generic point. Otherwise let #' € T be a point such that 7 is a direct
specialization of #. Then the local ring O, is a DVR with quotient field F(¢')
and residue field F (7). As 6 and 8’ commute with specializations, it follows from
Lemma 3.9 that

Ora) (1) = Orny (s(t) = sg(OF ) (1))
=58(0p() (1) =05 (s(t) = Op ;) (0). 0

Proposition 3.12. Let T be an algebraic torus of dimension 3 over F and X a
smooth proper toric model of T. Then the morphism of functors p in (15) commutes
with specializations.

Proof. Let O be a DVR over F of geometric type with quotient field L and residue
field K. The diagram

H'(Xk, Ky) «——— H'(Xo,K2) —— H' (X1, K>)

l | !

CH(Xgx) <«— CH*(Xyp) —— CHX))

where the middle vertical map is the differential in the E,-term of the BGQ spectral
sequence (2) for X . The right square is commutative since the morphism X; —
X is flat [Quillen 1973, § 7, Th. 5.4].

The pull-back homomorphism f* for the morphism f : X — X in K-theory
is defined as follows (see [Quillen 1973, § 7.2.5]). Let w € O be a prime element
and M (X, f) the full subcategory of the category M (X ) of coherent sheaves
on X consisting of sheaves G with m a nonzero-divisor in G. Then f* is the
composition of the inverse of the isomorphism induced by the inclusion functor

a: M(Xo, f) > M(Xo)
on K-groups and the map induced by the restriction
B:M(Xo, f) > M(Xk)

of the unverse image functor M(Xp) — M(Xg). Note that functors o and S
take sheaves supported in codimension p into M? (X ) and M? (X k) respectively.
Hence f induces a pull-back map of the BGQ spectral sequences for X and Xg.
It follows that the left square of the diagram is commutative too.
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As the map H'(X, K2) = H'(Xsep, K2) is injective by Proposition 2.6, we may
consider the split situation. In the diagram

S°(K) — S°(0) — S°(L)

! ! l

HI(XK7K2) D HI(XOsKZ) — HI(XLvKZ)

the vertical maps are the product maps. The commutativity follows from the pro-
jection formula in K-cohomology [Rost 1996, § 14.5].

Finally, it follows from the definition that the isomorphism 7'(L)/R = S°(L) /R
of functors in (15) commutes with specializations. U

4. Main theorem

Let T be a torus over F and 1 - § — P — T — 1 a flasque resolution.

4A. The group T (F(T))/R. Tensoring the exact sequence

0— Fr,® T — Fyp(T)* — Div(Tyep) — 0

sep

with S, and applying Galois cohomology yields a surjective homomorphism
H'(F,S)® H'(F, S, @T*) - H'(F(T), S)

since H! (F, Sy ® DiV(Tsep)) =0 as § is flasque.
Tensoring (4) with S, yields a surjective homomorphism

Endp(S) = H)(F, S, ® S*) > H'(F, S, @ T*)

as H'(F, S, ® P*) = 0. Combining these two surjections we get another surjective
homomorphism

(T(F)/R) ®Endr(S) - T(F(T))/R.

Note that the group T(L)/R = HY(L, S) is a left module over the ring End g (S)
for any field extension L/ F. The image of an element @ € Endr(S) in T (F(T))/R
is equal to «(§) (up to sign), where & is the generic point of 7.

We have proven:

Proposition 4.1. Every element of the group T (F(T))/R is of the form t - a(§)
wheret € T(F)/R and o« € Endp(S).

Now assume that dim 7 = 3 and X is a smooth proper toric model of T'.

1

Corollary 4.2. There is an o € Endp(S) such that the composition p~' o ¢ takes

everyt € T(L)/R over a field extension L/ F to a(t).
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Proof. By Propositions 3.10, 3.11 and 3.12, it is sufficient to prove the statement
in the case when 7 is the generic point & of 7. By Proposition 4.1, (p~! 0 @)(£) =
t-a(&) for some o € Endp(S) and t € T(F)/R. As (p~ ' op)(1) = 1, specializing
atl, wegett=1. ]

Example 3.3 then yields:

1

Corollary 4.3. The composition p~—" o ¢ commutes with norms.

4B. Main theorem.

Theorem 4.4. Let T be an algebraic torus of dimension 3 and X a smooth proper
geometrically irreducible variety over F containing T as an open subset. Then the
map ¢ : T(F)/R — Ao(X) is an isomorphism.

Proof. In view of Proposition 2.9, we may assume that X is a smooth proper toric
model of 7. By Proposition 3.6 and Corollary 4.3, ¢ commutes with norms. It
follows from Proposition 3.5 that ¢ is an isomorphism. O

Remark 4.5. The following is an alternative proof of Theorem 4.4. It avoids
the machinery of Section 3, but it is based on deep, albeit classical, arithmetic-
geometric result. We may assume that the field F is finitely generated over the
prime subfield. By [Colliot-Théléne and Sansuc 1977, Th. 1], the group T(F)/R
is finite. It follows from (15) that Ay(X) is also finite of the same order. As ¢ is
injective, it is a bijection. Therefore, ¢ is an isomorphism of groups as we have a
homomorphism of groups ¢ with ¢ o ¢ = id.

The statement of the following theorem (but not the proof) does not involve a
toric model.

Theorem 4.6. Let T be an algebraic torus of dimension 3. Then there is a natural
isomorphism T (F)/R ~ H'(F, T°)/R.

Proof. The sequence dual to (5)
1-7T°—- P°—> S°—1

and [Colliot-Thélene and Sansuc 1977, Th. 2] (see Example 1.3) yield an isomor-
phism
S°(F)/R~HY(F, T°)/R.

On the other hand, by (8), S°(F)/R~ H'(F, S) ~T(F)/R. O
In the following examples we give two applications of Theorem 4.6.

Example 4.7. Let L/F be a degree 4 separable field extension and 7' the norm 1
torus for L/F, that is,

N,
T =Ker(Rp/r(Gm.1) —> G).
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Then T° = RL/F(Gm,L)/Gm and
HY(F,T°) =Br(L/F),

the relative Brauer group of the extension L/F. Thus by Theorem 4.6, we have a
canonical isomorphism

Br(L/F)/R~T(F)/R.
The case of a biquadratic extension L/F was considered in [Tignol 1981, p. 427].

Example 4.8. Let L and K be finite separable field extensions of a field F' and set
M := K ®F L. Let T be the kernel of the norm homomorphism

Ny : Ruyr(Gum)/Ri/r(Gux) = R p(Gp, 1) /G

We have
T(F)={xeM* suchthat Ny,.(x)e F*}/K*.

The dual torus 7°° is the kernel of the norm homomorphism
Nyk : Ruyr(Gum)/RLr(Gm,L) = Ri/r (G, k)/Gm.
We have an exact sequence
K* — H'(F,T°) — Br(M/L) — Br(K/F).

Now suppose that [K : F] =2 and [L : F] = 4. Then T is a 3-dimensional torus
and the last homomorphism in the exact sequence is isomorphic to the norm map

Npjp: L™ /Nyy(M™) — F*/Ng;p(K™).

Let U be the subtorus of R;/r(Gy,1) X Rx/r(Gy k) consisting of all pairs (, k)
with Ny, r(l) = Nk, r(k). It follows that

T(F)/R~H'(F,T°)/R~U(F)/R.
This isomorphism was known when L/F is a biquadratic extension (see [Shapiro
et al. 1982, Cor. 1.13] and [Gille 1997, Prop. 3]).
5. Chow group of a 3-dimensional torus

Let T be an algebraic torus over a field F and X a smooth proper geometrically
irreducible variety containing 7" as an open subset. Set Z = X \ 7.

Lemma 5.1. (see [Colliot-Thélene and Sansuc 1977, Lemme 12], [Voskresenskii
1998, Prop. 17.3] and [Gille 2004, Prop. 1.1]) The torus T is isotropic if and only

if Z(F) # @.
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Proof. Suppose T is isotropic. Then T contains a subgroup isomorphic to G,,,. The
embedding of G,, into T extends to a regular morphism f : P! — X. Then f(0)
or f(00) is a rational point of Z.

Conversely, suppose Z has a rational point z. Since z is regular on X, there is a
geometric valuation v of F'(X) dominating z with residue field F' = F(z). Suppose
that T is anisotropic. Then there is a proper geometrically irreducible variety X’
containing 7' as an open subset such that X"\ T has no rational points (see [Colliot-
Théleéne and Sansuc 1977, Lemme 12], [Voskresenskii 1998, Prop. 17.3]). But v
dominates a rational point on X'\ T, a contradiction. (I

Write i (respectively nz) for the greatest common divisor of the integers [L : F]
for all finite field extensions L/F such that T is isotropic over L (respectively

Z(L) # 2).

Corollary 5.2. The number it coincides with ny. In particular, the integer ny
does not depend on the smooth proper geometrically irreducible variety X con-
taining T as an open subset.

Proposition 5.3. The order of the class [1] in CHo(T) is equal to i7.

Proof. If T is isotropic, there is a subgroup H of T isomorphic to G,,. As
CHy(G,,) = 0, we have [1] = 0 in CHy(H) and therefore in CHo(7T). In the
general case, let L be a finite field extension such that 7}, is isotropic. By the first
part of the proof, [1] is trivial in CHy(77,); hence applying the norm map for the
extension L/F yields [L : F]-[1] =0 in CHy(T). Therefore, iy - [1] = 0.

Now let m - [1] = 0 in CHy(7') for some integer m. Hence the cycle m - [1]
in CHp(X) belongs to the image of the push-forward map CHy(Z) — CHp(X)
[Fulton 1984, Prop. 1.8]. In particular, there is a zero-cycle on Z of degree m,
hence i = nz divides m. (|

Consider the map
ar: T(F)/R®Z/irZ — CHy(T)
taking a pair (¢, k) to the cycle [¢]+ (k — 1) - [1].

Theorem 5.4. Let T be a torus of dimension at most 3. Then the map or :
T(F)/R®Z/irZ — CHy(T) is an isomorphism.

Proof. The Chow group CHy(7) is the factor group of CHop(X) = Ag(X) @ Z - [1]
by the image of CHo(Z). Let z € Z be a closed point. By Lemma 5.1, the torus
TF(y) 1s isotropic and hence is stably birational to a 2-dimensional torus. Therefore,
TF () is rational, Ag(X r(;)) = 0 and the image of the class of z in Ap(X) B Z - [1]
is equal to 0 @ deg(z) - [1]. Hence CHy(T) is isomorphic to Ag(X)® Z/irZ . The
result follows from Theorem 4.4. ]
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