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Piecewise polynomials, Minkowski weights,
and localization on toric varieties

Eric Katz and Sam Payne

We use localization to describe the restriction map from equivariant Chow coho-
mology to ordinary Chow cohomology for complete toric varieties in terms of
piecewise polynomial functions and Minkowski weights. We compute examples
showing that this map is not surjective in general, and that its kernel is not always
generated in degree one. We prove a localization formula for mixed volumes of
lattice polytopes and, more generally, a Bott residue formula for toric vector
bundles.

1. Introduction

Let 1 be a complete fan in NR, where N is a lattice of rank n, and let X = X (1)

be the corresponding complete n-dimensional toric variety. See [Fulton 1993]
for standard notation and general background on toric varieties. The equivariant
operational Chow cohomology ring with integer coefficients A∗

T (X) is naturally
isomorphic to the ring of integral piecewise polynomial functions on 1 [Payne
2006a], and there is a canonical map to ordinary Chow cohomology with integer
coefficients

ι∗ : A∗

T (X) → A∗(X)

induced by inclusions of X in the finite dimensional approximations of the Borel
mixed space [Edidin and Graham 1998a]. Now A∗(X) is naturally isomorphic
to the ring of Minkowski weights on 1 [Fulton and Sturmfels 1997], and ι∗ has
a natural interpretation in terms of localization and equivariant multiplicities, as
follows.

Let M = Hom(N , Z), which is naturally identified with the character lattice
of T , and let Sym±(M) be the Z-graded ring obtained by inverting all of the
homogeneous elements in the ring Sym∗(M) of polynomials with integer coef-
ficients. We refer to elements of Sym±(M) as rational functions, and elements of

MSC2000: primary 14M25; secondary 14C17, 52B20.
Keywords: toric variety, localization, tropical geometry, piecewise polynomial, Minkowski weight.
Payne was supported by the Clay Mathematics Institute. Part of this research was done during his
visit to the Institut Mittag-Leffler (Djursholm, Sweden).
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the subring Sym∗(M) as polynomials. Each maximal cone σ ∈ 1 corresponds to
a nondegenerate torus fixed point xσ ∈ X , which has an “equivariant multiplicity”
exσ

[X ]∈Sym±(M), which is a homogeneous rational function of degree −n. Since
every rational polyhedral cone admits a unimodular subdivision, these equivariant
multiplicities are determined by the following two properties.

(1) If σ1, . . . , σr are the maximal cones of a rational polyhedral subdivision of a
cone σ , then

exσ
[X ] = exσ1

[X ] + · · · + exσr
[X ].

(2) If σ is a unimodular cone, spanned by a basis e1, . . . , en for N , then

exσ
[X ] =

1
e∗

1 · · · e∗
n

.

The fact that the sum of rational functions determined by (1) and (2) is independent
of the choice of unimodular subdivision is not obvious from elementary considera-
tions, though it follows directly from the theory of localization at torus fixed points
in algebraic geometry [Edidin and Graham 1998b] and the theory of equivariant
multiplicities developed by Rossmann [1989] and Brion [1997, Theorem 4.2 and
Proposition 4.3, in particular]. Here we give a combinatorial proof of this indepen-
dence; the techniques of this proof may be of independent interest. We view the
multigraded Hilbert function Hilb(σ ) of the affine toric variety Uσ , given by

Hilb(σ ) =

∑
u∈(σ ∗∩M)

xu ,

as a rational function on the dense torus T ⊂ X . We define eσ to be (−1)n times
the quotient of the leading forms when Hilb(σ ) is written as a quotient of two
polynomials in local coordinates at the identity 1T . We then show that eσ satisfies
properties analogous to (1) and (2) and therefore is equal to exσ

[X ]. See Section 2
for details. Our approach is inspired by the presentation of multidegrees of multi-
graded modules over polynomial rings in [Knutson and Miller 2005, Sections 1.2
and 1.7] and [Miller and Sturmfels 2005, Chapter 8].

Recall that the ring of integral piecewise polynomial functions PP∗(1) is the
ring of continuous functions f : |1| → R such that the restriction fσ of f to each
maximal cone σ ∈ 1 is a polynomial in Sym∗(M).

Proposition 1.1. Let 1 be a complete n-dimensional fan, and let f ∈ PPk(1) be
a piecewise polynomial function. Then∑

σ

eσ fσ

is a homogeneous polynomial in Sym∗(M) of degree k − n.
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In particular, if the degree of f is less than n then
∑

eσ fσ vanishes. If deg f = n,
then

∑
eσ fσ = d is an integer, which may be identified with the codimension n

Minkowski weight c(0) = d on 1.
Minkowski weights of codimension less than n may be constructed similarly

from piecewise polynomials using equivariant multiplicities, as follows. For any
cone τ ∈1, let 1τ be the fan in (N/(N ∩span τ))R whose cones are the projections
of the cones in 1 that contain τ . If σ is a maximal such cone, we define eσ,τ to be
eσ , where σ is the image of σ in 1τ . So eσ,τ is a homogeneous rational function
of degree (dim τ − n) in the graded subring Sym±(τ⊥

∩ M) of Sym±(M).

Proposition 1.2. Let 1 be a complete fan, and let f ∈ PPk(1) be a piecewise
polynomial function. Then, for any τ ∈ 1,

c(τ ) =

∑
σ�τ

eσ,τ fσ

is a homogeneous polynomial in Sym∗(M) of degree k + dim τ − n.

If k ≤ n then c(τ ) is an integer for every codimension k cone in 1, and these
integers are a Minkowski weight of codimension k. Propositions 1.1 and 1.2 are
proved in Section 3 using elementary properties of generating functions for lattice
points in polyhedral cones.

Remark 1.3. Proposition 1.1 is the special case of Proposition 1.2 where τ = 0.
The essential content of Propositions 1.1 and 1.2 is that the denominator of the
sum must divide the numerator. In some special cases, this divisibility may be
seen as a consequence of Brion’s Formula, and its generalizations, in the theory of
generating functions for lattice points in polyhedra. See Section 5 below. Other
special cases of these cancellations appeared earlier in [Brion 1996]; in particular,
Brion showed that

∑
eσ,τ fσ is in Sym∗(MQ) when 1 is simplicial.

Theorem 1.4. The natural map ι∗ : Ak
T (X) → Ak(X) takes the equivariant Chow

cohomology class corresponding to a piecewise polynomial function f to the or-
dinary Chow cohomology class corresponding to the Minkowski weight c given
by

c(τ ) =

∑
σ�τ

eσ,τ fσ ,

for all codimension k cones τ ∈ 1.

We prove Theorem 1.4 in Section 3 by interpreting Propositions 1.1 and 1.2 in
terms of general localization formulas in equivariant Chow cohomology [Edidin
and Graham 1998b].
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We apply Theorem 1.4 to study the map ι∗ : A∗

T (X) → A∗(X). Recall that if X
is smooth then capping with the fundamental class of X gives isomorphisms

A∗(X) ∼= An−∗(X) and A∗

T (X) ∼= AT
n−∗

(X).

Furthermore, the globally linear functions u ∈ M , identified with the equivariant
first Chern classes of the toric line bundles O(div χu), act on AT

∗
(X) as homoge-

neous operators of degree −1, and there is a natural isomorphism to ordinary Chow
homology [Brion 1997, Section 2.3],

AT
∗
(X)/M AT

∗
(X) ∼= A∗(X).

It follows that if X is a smooth toric variety then ι∗ is surjective and its kernel is
generated by M in degree one. Similar arguments show that if X is simplicial,
then ι∗ becomes surjective after tensoring with Q, with kernel generated by MQ in
degree one.

Theorem 1.5. There exist projective toric surfaces X such that ι∗ : A2
T (X) →

A2(X) is not surjective.

In particular, even when the natural map PP∗(1)/(M) → A∗(X) becomes an
isomorphism after tensoring with Q, it need not be an isomorphism over Z.

Theorem 1.6. There exist projective toric threefolds X such that ι∗ : A∗

T (X)Q →

A∗(X)Q is not surjective and its kernel is not generated in degree one.

It follows that the natural map from piecewise polynomials modulo linear func-
tions to Minkowski weights is neither injective nor surjective in general. We prove
Theorems 1.5 and 1.6 in Section 4 by computing the maps A∗

T (X) → A∗(X) for
several examples of singular toric varieties using Theorem 1.4.

Remark 1.7. Minkowski weights on 1, and classes in A∗(X), correspond to trop-
ical varieties supported on the cones of 1, and are of significant interest in tropical
geometry [Katz 2007, Section 9; Mikhalkin 2006, p. 10]. The desire to use piece-
wise polynomials to produce interesting examples of Minkowski weights was one
of the main motivations for this research. We hope and expect that the combinato-
rial localization techniques developed here will be useful in tropical geometry.

2. Combinatorics of equivariant multiplicities

Let N be a lattice of rank n, and let M =Hom(N , Z) be its dual lattice. Let Poly(N )

denote the rational polytope algebra on NR, the subring of real-valued functions on
NR generated by the characteristic functions of closed rational polyhedra. We write
[Q] ∈ Poly(N ) for the characteristic function of a closed polyhedron Q. Recall
that Q has a polar dual Q∗, which is a closed polyhedron in MR, defined by

Q∗
= { u ∈ MR | 〈u, v〉 ≥ −1 for all v ∈ Q },
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and there is a linear map from Poly(N ) to Poly(M) given by [Q] 7→[Q∗
] [Lawrence

1988]. Furthermore, there is a linear map

ν : Poly(M) → Q(M),

to the quotient field Q(M) of the multivariate Laurent polynomial ring Z[M],
that takes the class of a closed, pointed polyhedron P to the generating function∑

u∈(P∩M) xu , expressed as a rational function, and takes the class of a polyhedron
containing a line to 0 [Barvinok 2002, Theorem VIII.3.3]. In particular, for any
closed polyhedral cone σ in NR, ν(σ ∗) = Hilb(σ ), where

Hilb(σ ) =

∑
u∈(σ ∗∩M)

xu

is the multigraded Hilbert series of the affine toric variety Uσ . Composing polar
duality with the valuation ν then gives a linear map

ν∗
: Poly(N ) → Q(M)

that takes [σ ] to Hilb(σ ).

Lemma 2.1. If σ1, . . . , σr are the maximal cones in a rational polyhedral subdivi-
sion of an n-dimensional cone σ , then

Hilb(σ ) = Hilb(σ1) + · · · + Hilb(σr ).

Proof. In the polytope algebra Poly(N ),

[σ ] = [σ1] + · · · + [σr ] ± classes of lower dimensional cones.

Since the duals of lower dimensional cones contain lines, these terms are all in
the kernel of ν∗. Therefore, ν∗([σ ]) = ν∗([σ1]) + · · · + ν∗([σr ]), and the lemma
follows. �

The generating function Hilb(σ ), being an element of Q(M), is naturally inter-
preted as a rational function on the torus T = Spec Q[M]. Therefore, Hilb(σ ) may
be expanded as a quotient of two power series in local parameters at the identity
1T . The principal part of this expansion, the quotient of the leading forms, which
we denote by

Hilb(σ )◦ ∈ Sym±(MQ),

is a rational function on the tangent space of T at 1T , which cuts out the tangent
cone of zeros of Hilb(σ ) minus the tangent cone of its poles. See the Appendix
for details on principal parts of rational functions.

Definition 2.2. If σ is an n-dimensional rational polyhedral cone in NR then

eσ = (−1)n
· Hilb(σ )◦.
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Lemma 2.3. If σ is an n-dimensional rational polyhedral cone in NR, then eσ is
homogeneous of degree −n.

Proof. The lemma follows directly from closed formulas for polyhedral generat-
ing functions, such as those given in [Payne 2007], as follows. Suppose 6 is a
unimodular subdivision of σ ∗, and u1, . . . , us are the primitive generators of the
rays of 6. Then every lattice point in σ ∗ lies in the relative interior of a unique
cone τ ∈ 6, and the generating function for those in the relative interior of τ is∏

ui ∈τ xui /(1 − xui ). Therefore,

(1 − xu1) · · · (1 − xus ) · Hilb(σ ) =

∑
τ∈6

(∏
ui ∈τ

xui
∏
u j 6∈τ

(1 − xu j )
)
.

If τ1, . . . , τr are the maximal cones of 6, then taking leading forms at 1T on both
sides gives

u1 · · · us · (−1)n
· Hilb(σ )◦ =

r∑
i=1

∏
u j 6∈τi

u j ,

provided that the right hand side is nonvanishing. Since all of the u j lie in σ ∗, the
right hand side is strictly positive on the interior of σ . In particular, it does not
vanish, so the degree of Hilb(σ )◦ is −n. �

Lemma 2.3 can also be seen as a special case of more general results on multigraded
Hilbert series of modules. See [Miller and Sturmfels 2005, Definition 8.45 and
Claim 8.54].

Lemma 2.4. Let σ be a unimodular cone, spanned by a basis e1, . . . , en for N.
Then the principal part of Hilb(σ ) at 1T is

Hilb(σ )◦ =
(−1)n

e∗

1 · · · e∗
n
,

where e∗

1, . . . , e∗
n is the dual basis for M.

Proof. The generating function Hilb(σ ) is given by

Hilb(σ ) =
1

(1 − xe∗

1 ) · · · (1 − xe∗
n )

.

Now, (1−xe∗

i ) is a local parameter at 1T , with principal part (1−xe∗

i )◦ =−e∗

i . Since
principal parts are multiplicative, it follows that the principal part of 1/(1− xe∗

i ) is
−1/e∗

i , and the lemma follows. �

Proposition 2.5. Let σ be an n-dimensional rational polyhedral cone in NR.

(1) If σ1, . . . , σr are the maximal cones in a rational polyhedral subdivision of σ ,
then

eσ = eσ1 + · · · + eσr .
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(2) If σ is unimodular, spanned by a basis e1, . . . , en for N , then

eσ =
1

e∗

1 · · · e∗
n

.

In particular, the sum determined by (1) and (2) is independent of the choice of
unimodular subdivision.

Proof. Part (1) follows from the additivity of Hilb(σi ) (Lemma 2.1) and the fact
that Hilb(σ ) and the Hilb(σi ) all have principal parts in degree −n (Lemma 2.3).
See Proposition A.1, in the Appendix. Part (2) is an immediate consequence of
Lemma 2.4. �

Recall that for any cone τ ∈ 1, 1τ is the fan in (N/(N ∩ span τ))R whose
cones are the projections of the cones in 1 that contain τ . If σ is a maximal cone
containing τ , we define eσ,τ to be eσ , where σ is the image of σ in 1τ . So eσ,τ

is a homogeneous rational function of degree (dim τ − n) in the graded subring
Sym±(τ⊥

∩ M) of Sym±(M). We write V (τ ) for the T-invariant subvariety of X
corresponding to τ .

Corollary 2.6. If σ is an n-dimensional rational polyhedral cone in NR and τ is a
face of σ , then

eσ = exσ
[X ] and eσ,τ = exσ

[V (τ )].

Lemma 2.7. If σ is a unimodular cone spanned by a basis e1, . . . , en for N and
τ � σ then

eσ,τ =

∏
ei 6∈τ

1
e∗

i
.

Proof. Apply part (2) of Proposition 2.5 to the fan 1τ . �

3. Localization and Minkowski weights

Here we use equivariant multiplicities to describe the natural map from piecewise
polynomials on a complete fan to Minkowski weights. We then use localization to
show that this map agrees with ι∗ : A∗

T (X) → A∗(X).

Lemma 3.1. Let 1 be a complete n-dimensional fan. Then the sum of the rational
functions eσ for all maximal cones σ ∈ 1 is given by

∑
σ

eσ =

{
0 for n ≥ 1,

1 for n = 0.
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Proof. If n = 0, then 1 contains only one cone 0, and e0 = 1. Suppose n ≥ 1. In
the polytope algebra ,∑

σ

[σ ] = [NR] ± classes of smaller dimensional cones.

Applying the linear transformation ν∗ gives∑
σ

Hilb(σ ) = 1.

Since each of the principal parts Hilb(σ )◦ = (−1)n
· eσ is homogeneous of degree

−n, it follows that the sum of these principal parts must vanish by Proposition A.1
in the Appendix, and the lemma follows. �

Lemma 3.2. Let τ be a cone in a complete n-dimensional fan 1. Then∑
σ�τ

eσ,τ =

{
0 for dim τ < n,

1 for dim τ = n.

Proof. Apply Lemma 3.1 to the fan 1τ . �

Piecewise polynomials are especially well-behaved on unimodular fans, that is,
fans in which each maximal cone is spanned by a basis for the lattice. Suppose
1 is a unimodular fan, and ρ1, . . . , ρs are the rays of 1. Let vi be the primitive
generator of ρi . Then there is a unique piecewise linear function 9i ∈ PP1(1)

whose values at the primitive generators of the rays are given by the Kronecker
delta function

9i (v j ) = δi j ,

and whose values elsewhere are given by extending linearly on each cone.
Then, for any k-dimensional cone τ ∈ 1, we have a piecewise polynomial 9τ ∈

PPk(1) that vanishes away from Star(τ ), the union of the cones in 1 that contain
τ , defined by

9τ =

∏
vi ∈τ

9i ,

and PP∗(1) is generated by {9τ }τ∈1 as a Sym∗(M)-module.

Proof of Proposition 1.1. Since equivariant multiplicities are additive with respect
to subdivisions, we may assume that 1 is unimodular. Say ρ1, . . . , ρs are the
rays of 1 and vi is the primitive generator of ρi . Since PP∗(1) is generated as a
Sym∗(M)-module by the piecewise polynomials 9τ , it suffices to prove that∑

eσ · (9τ )σ
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is in Sym∗(M) for all τ . Now, if σ is spanned by a basis e1, . . . , en for N and
τ � σ , then (9τ )σ =

∏
vi ∈τ e∗

i . It then follows from Lemma 2.7 that

eσ · (9τ )σ =

{
eσ,τ for σ � τ,

0 otherwise.

Therefore, by Lemma 3.2,
∑

eσ · (9τ )σ vanishes unless τ is a maximal cone, in
which case the sum is equal to one. In particular,

∑
eσ · (9τ )σ is in Sym∗(M), as

required. �

Proof of Proposition 1.2. The sum in Proposition 1.2 is over the maximal cones in
Star(τ ). Then the proof of Proposition 1.2 is similar to the proof of Proposition
1.1, since PP∗(Star(τ )) is generated as a Sym∗(M)-module by the restrictions of
the piecewise polynomial functions 9γ , for γ ∈ Star(τ ). �

It remains to show that if f is a homogeneous piecewise polynomial of degree
k, then the integer-valued function c on codimension k cones of 1 given by

c(τ ) =

∑
σ�τ

eσ,τ fσ

is a Minkowski weight of codimension k, and that f 7→ c agrees with the natural
map ι∗ : A∗

T (X) → A∗(X). Although the entire statement can be proved using the
general machinery of localization, the fact that the integers c(τ ) give a Minkowski
weight is purely combinatorial, and we include an elementary proof.

We recall the definition of Minkowski weights from [Fulton and Sturmfels 1997].
If γ is a codimension k + 1 cone in 1 contained in a codimension k cone τ , we
write vτ/γ ∈ N/(N ∩ span γ ) for the primitive generator of the image of τ in 1γ .

Definition 3.3. An integer valued function c on codimension k cones τ ∈ 1 is a
Minkowski weight if, for every codimension k + 1 cone γ ∈ 1,∑

τ�γ

c(τ ) · vτ/γ = 0.

We will use the following basic property of equivariant multiplicities to show
that the integer-valued function c coming from a piecewise polynomial function is
a Minkowski weight. Let vρ denote the primitive generator of a ray ρ.

Proposition 3.4. If σ is an n-dimensional rational polyhedral cone in NR and u is
in M then ∑

ρ�σ

〈u, vρ〉 · eσ,ρ = u · eσ .

We will prove the proposition by subdividing σ and reducing to the case where σ

is unimodular.
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Lemma 3.5. If σ is an n-dimensional unimodular cone in NR and u is in M then∑
ρ�σ

〈u, vρ〉 · eσ,ρ = u · eσ .

Proof. Say σ is spanned by a basis e1, . . . , en for N , and u = u1e∗

1 +· · · une∗
n . Then

∑
〈u, vρ〉 · eσ,ρ =

n∑
i=1

ui

e∗

1 · · · ê∗

i · · · e∗
n

,

which is equal to u · eσ . �

Lemma 3.6. If σ1, . . . , σs are the maximal cones in a subdivision of σ , and if ρ is
a ray in this subdivision then∑

σi �ρ

eσi ,ρ =

{
eσ,ρ if ρ � σ,

0 otherwise.

Proof. Suppose ρ lies in the relative interior of a k-dimensional face τ � σ . Con-
sider the fan 1ρ , whose maximal cones are the images of the σi � ρ. The support
|1ρ | is a closed polyhedral cone in an (n − 1)-dimensional vector space whose
minimal face is (k −1)-dimensional, so the polar dual |1ρ |

∗ has dimension n − k.
It follows that the principal part of ν∗(|1ρ |) has degree k − n. Since each eσ,ρ

has degree 1 − n, and
∑

eσi ,ρ is the principal part of ±ν∗(|1ρ |) unless this sum
vanishes (Appendix, Proposition A.1), the lemma follows. �

Proof of Proposition 3.4. Let σ1, . . . , σr be the maximal cones of a unimodular
subdivision of σ . Then u · eσ = u · eσ1 + · · · + u · eσr . Since σi is unimodular,

u · eσi =

∑
ρ�σi

〈u, vρ〉eσi ,ρ .

Therefore, by rearranging terms in the summation, we have

u · eσ =

∑
ρ

(∑
σi �ρ

〈u, vρ〉 · eσi ,ρ

)
.

By Lemma 3.6, the right hand side is equal to
∑

ρ�σ eσ,ρ , as required. �

Proposition 3.7. Let f ∈ PPk(1) be a homogeneous piecewise polynomial of
degree k. Then the integers

c(τ ) =

∑
σ�τ

eσ,τ fσ

are a Minkowski weight of codimension k on 1.
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Proof. Let γ be a codimension k + 1 cone in 1. It will suffice to show that∑
〈u, vτ/γ 〉c(τ ) = 0 for any u ∈ (M ∩γ ⊥), where the sum is over all codimension

k cones τ containing γ . To prove this, we will show that
∑

〈u, vτ/γ 〉c(τ ), which
is an integer by Proposition 1.2, is divisible by the linear function u in Sym∗(M).
Now, ∑

τ

〈u, vτ/γ 〉 c(τ ) =

∑
τ

(∑
σ�τ

〈u, vτ/γ 〉 eσ,τ fσ
)
,

and the sum on the right hand side may be rearranged as∑
σ

(
fσ ·

∑
τ�σ

〈u, vτ/γ 〉 eσ,τ

)
.

Applying Proposition 3.4 to 1γ then gives∑
τ�σ

〈u, vτ/γ 〉 eσ,τ = u · eσ,γ .

It follows that the integer
∑

〈u, vτ/γ 〉c(τ ) is divisible by u in Sym∗(M), as claimed,
and hence must vanish. �

Proof of Theorem 1.4. To show that f 7→ c agrees with the natural map ι∗ :

A∗

T (X) → A∗(X), we must prove that∫
V (τ )

ι∗c f = c(τ ),

where c f denotes the equivariant Chow cohomology class whose restriction to a
torus fixed point is fσ ∈ Sym∗(M) ∼= A∗

T (xσ ). By Corollary 2.6, eσ,τ is equal
to the equivariant multiplicity exσ

[V (τ )] of the nondegenerate T-fixed point xσ in
V (τ ). Therefore, by localization [Edidin and Graham 1998b], in equivariant Chow
homology tensored with Sym±(M), we have∫

V (τ )

c f =

∑
σ

eσ fσ .

Since
∑

σ eσ fσ is an integer, projecting to A∗(X) gives
∫

V (τ )
ι∗c f = c(τ ). �

4. Applications to Chow cohomology of toric varieties

Here we use combinatorial computations with piecewise polynomials to study the
map ι∗ : A∗

T (X) → A∗(X) for some specific complete toric varieties X . As dis-
cussed in the introduction, this map is known to be surjective with kernel generated
by M in degree one if X is smooth, and similar statements hold over Q if X is
simplicial. We give the first examples showing that ι∗ is not surjective in general,
and that its kernel is not always generated in degree one.
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Example 4.1 (Mirror dual of P1
×P1). Let N = Z2, and let 1 be the complete fan

in R2 whose rays are generated by

v1 = (1, 1), v2 = (1, −1), v3 = (−1, −1), v4 = (−1, 1),

and whose maximal cones are

σ1 = 〈v1, v2〉, σ2 = 〈v2, v3〉, σ3 = 〈v3, v4〉, σ4 = 〈v1, v4〉.

Then X = X (1) is isomorphic to (P1
× P1)/Z2, which is the Fano surface that is

“mirror dual” to P1
× P1.

We claim that the image of PP2(X) under the map f 7→
∑4

i=1 eσi fσi is exactly
2Z. We compute e(σ1) using the unimodular subdivision of σ1 along v = (1, 0),

σ1 = 〈v1, v〉 ∪ 〈v, v2〉.

Then, writing a = e∗

1 and b = e∗

2 , the dual cones of 〈v1, v〉 and 〈v, v2〉 are 〈b, a−b〉

and 〈b, a + b〉, respectively, so

e(x1) =
1

b(a − b)
−

1
b(a + b)

=
2

a2 − b2 .

Similarly, we compute e(σ3) = 2/(a2
− b2) and

e(σ2) = e(σ4) =
−2

a2 − b2 .

Therefore, since two divides every term in
∑4

i=1 eσi fσi , the sum must be divisi-
ble by two. Also, the piecewise polynomial function f that vanishes on σ2∪σ3∪σ4

and whose restriction to σ1 is a2
−b2 maps to two. So the image of PP2(1) is 2Z,

as required.

Proof of Theorem 1.5. Applying Theorem 1.4 to Example 4.1 shows that the image
of ι∗ : A2

T (X) → A2(X) is 2A2(X), which is a proper subgroup of A2(X) ∼= Z. �

In the following examples, we consider fans in R3 with respect to the lattice
N = Z3.

Example 4.2 (Mirror dual of P1
×P1

×P1). Consider the toric variety X = X (1),
where 1 is the fan whose nonzero cones are the cones over the faces of the cube
with vertices (±1, ±1, ±1). Then X is the Fano toric threefold that is “mirror
dual” to P1

×P1
×P1. Recall that, since X is complete, the rank of Ai (X) is equal

to the rank of Ai (X) [Fulton and Sturmfels 1997, Proposition 2.4], so rk A0(X) =

rk A3(X) = 1. Furthermore, since A2(X) is the Weil divisor class group of X , we
also have rk A2(X) = 5. The remainder of the following table can be filled in by
straightforward linear algebra computations with piecewise polynomial functions.
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From these computations, it is clear that A2
T (X) does not surject onto A2(X), since

its image has rank at most two.

rk Ai
T (X) rk M · Ai−1

T (X) rk Ai (X)

i = 0 1 0 1
i = 1 4 3 1
i = 2 11 9 5
i = 3 23 22 1

Example 4.3 (Fulton’s threefold). Consider the toric variety X ′
= X (1′), where

1′ is the fan combinatorially equivalent to the fan over the cube as in the preceding
example, but with the ray through (1, 1, 1) replaced by the ray through (1, 2, 3).
Then X ′ is complete and, as in the previous example, rk A0(X ′) = rk A3(X ′) = 1,
and rk A2(X ′)=5, but Fulton showed that X ′ has no nontrivial line bundles [Fulton
1993, pp. 25–26], so A1(X ′) = 0. The remainder of the following table is filled in
by linear algebra computations with piecewise polynomial functions.

rk Ai
T (X ′) rk M · Ai−1

T (X ′) rk Ai (X ′)

i = 0 1 0 1
i = 1 3 3 0
i = 2 8 6 5
i = 3 20 16 1

Here, again, we see that ι∗ : A2
T (X ′) → A2(X ′) is not surjective, since its image

has rank at most two. Furthermore, the kernel of ι∗ is not generated in degree one,
since the degree one part of the kernel is M , and A3

T (X ′)/M · A2
T (X ′) has rank four,

and hence cannot map injectively into A3(X ′). However, X ′ is not projective, so to
prove Theorem 1.6, it remains to give a projective example with similar properties.

Example 4.4. Consider the toric variety X ′′
= X (1′′), where 1′′ is the fan com-

binatorially equivalent to the fan over the cube as in Example 4.2, but with the
ray through (1, 1, 1) replaced by the ray through (1, 1, 2) and with the ray through
(1, −1, 1) replaced by the ray through (1, −1, 2). It is straightforward to check
that −3K X ′′ is Cartier and ample, so X ′′ is Q-Fano and projective. We compute
the following table as in the preceding examples.

rk Ai
T (X ′′) rk M · Ai−1

T (X ′′) rk Ai (X ′′)

i = 0 1 0 1
i = 1 4 3 1
i = 2 10 9 5
i = 3 22 19 1
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Proof of Theorem 1.6. From the computations in Example 4.4, we conclude that
ι∗ : A∗

T (X)Q → A∗(X)Q is not surjective in degree two, and its kernel in degree
three is not in the ideal generated by its kernel in degree one. �

To balance these negative results, we conclude by proving a positive statement:
ι∗ : A∗

T (X) → A∗(X) is always surjective in degree one.

Theorem 4.5. For any toric variety X = X (1), ι∗ : A1
T (X) → A1(X) is surjective,

giving a natural isomorphism A1(X) ∼= PP1(1)/M.

Proof. If X is smooth, then the statement is clear. Suppose X is singular, and let

Xr → · · · → X1
π
−→ X0 = X

be a resolution of singularities, where each X i = X (1i ) is a toric variety and
X i+1 → X i is the blowup along a smooth T-invariant center. Say X1 is the blowup
of X along V (τ ) and V (ρ) ⊂ X1 is the exceptional divisor. By induction on
r , we may assume A1(X1) ∼= PP1(11)/M . Also, we may assume A1(V (ρ)) =

PP1(Star(ρ))/M and A1(V (τ )) = PP1(Star(τ ))/M , by induction on dimension.
Then π∗

: A1(X)→ A1(X1) is injective, and c ∈ A1(X1) is in the image of π∗ if and
only if c|V (ρ) is in the image of A1(V (τ )) [Kimura 1992, Theorem 3.1]. The theo-
rem then follows, since Star(ρ) is a subdivision of Star(τ ), 11 and 1 coincide ev-
erywhere else, and the class of a piecewise linear function [9] ∈ PP1(Star(ρ))/M
is pulled back from Star(τ ) if and only if 9 is given by a single linear function on
each cone of Star(τ ). �

Corollary 4.6. For any toric variety X , the canonical map Pic(X) → A1(X) is an
isomorphism.

Proof. The corollary follows from the canonical identification of PP1(X)/M with
Pic(X) [Fulton 1993, pp. 65–66]. �

Corollary 4.6 was known previously in the case where X is complete [Brion 1989].
See also [Fulton and Sturmfels 1997, Corollary 3.4].

Remark 4.7. One can use Kimura’s inductive method, as in the proof of Corollary
4.6 and [Payne 2006a, Theorem 1], to compute the Chow cohomology of an arbi-
trary toric variety in all degrees. However, the resulting induction is more subtle,
as Theorems 1.5 and 1.6 suggest.

5. Localization formula for mixed volumes of lattice polytopes

Let P1, . . . , Pn be lattice polytopes in MR. For nonnegative real numbers ai , the
euclidean volume of a1 P1 + · · · + an Pn is a homogeneous polynomial function of
(a1, . . . , an). The mixed volume V (P1, . . . , Pn) is defined to be the coefficient of
a1 · · · an in this polynomial. Let 1 be the inner normal fan to P1 +· · ·+ Pn , and let
ui (σ ) ∈ M be the vertex of Pi that is minimal on σ , for each maximal cone σ ∈ 1.
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Theorem 5.1. The mixed volume of the polytopes Pi is given by

n! · V (P1, . . . , Pn) = (−1)n
∑
σ∈1

eσ · u1(σ ) · · · un(σ ).

Theorem 5.1 follows from Theorem 1.4 and the fact that V (P1, . . . , Pn) is the
degree of D1 · · · Dn , where Di is the T-Cartier divisor on X (1) corresponding
to Pi [Fulton 1993, p. 116]. However, the statement of the theorem is purely
combinatorial, and we give a combinatorial proof based on Brion’s formula for
generating functions for lattice points in polyhedra. The methods used in this proof
may be of independent interest.

Let P be a lattice polytope in MR. Let 1 be the normal fan to P , and let
u(σ ) ∈ M be the vertex of P that is minimal on σ , for each maximal cone σ ∈ 1.

Brion’s Formula. The generating function for lattice points in P is∑
u∈(P∩M)

xu
=

∑
σ

xu(σ )
· Hilb(σ ).

In addition to Brion’s Formula, we will use the following formula for mixed vol-
umes, which is a lattice point counting analogue of the alternating sum of volumes
in formula (3) of [Fulton 1993, p. 116 ].

Proposition 5.2. Let P1, . . . , Pn be lattice polytopes in MR. Then

n! · V (P1, . . . , Pn) =

∑
1≤i1<···<ik≤n

(−1)n−k #((Pi1 + · · · + Pik ) ∩ M).

Proof. The number of lattice points in a1 P1+· · ·+an Pn is a polynomial in the ai of
degree at most n, and the degree n part of this polynomial is n! times the volume of
a1 P1 +· · ·+an Pn [McMullen 1978/79, Theorem 7]. Therefore, n! ·V (P1, . . . , Pn)

is the coefficient of a1 · · · an in this polynomial, and the proposition is an immediate
consequence of the following lemma. �

Lemma 5.3. Let f ∈ R [t1, . . . , tn] be a polynomial function on Rn of degree at
most n. The coefficient of t1 · · · tn in f is∑

1≤i1<···<ik≤n

(−1)n−k f (ei1 + · · · + eik )

where {e1, . . . , en} is the standard basis for Rn .

Proof. The function taking a polynomial g to
∑

(−1)n−k g(ei1 +· · ·+eik ) vanishes
on any monomial that does not contain all n variables, and its value on t1 · · · tn is
1. �
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Proof of Theorem 5.1. For each σ , (−1)n
· eσ ·u1(σ ) · · · un(σ ) is the principal part

of
(xu1(σ )

− 1) · · · (xun(σ )
− 1) · Hilb(σ ).

Expanding the product of the binomials, taking the sum over all σ , and applying
Brion’s Formula then gives∑

1≤i1<···<ik≤n

(−1)n−k
·

∑
u∈(Pi1+···+Pik ∩M)

xu .

The theorem then follows from Proposition 5.2 by taking principal parts, since the
leading form of xu at 1T is equal to one. �

6. Bott residue formula for toric vector bundles

The mixed volume V (P1, . . . , Pn) is the degree of the top Chern class of the toric
vector bundle O(D1)⊕· · ·⊕O(Dn), where Di is the T-Cartier divisor corresponding
to Pi . Therefore, mixed volumes are a special case of Chern numbers of toric vector
bundles, and Theorem 5.1 may be generalized as follows. Given a multiset of linear
functions u ⊂ M let εi (u) ∈ Sym i (M) be the i-th elementary symmetric function
in the elements of u. For instance, if u = {u1, . . . , ur }, then ε1(u) = u1 + · · ·+ ur

and εr (u) = u1 · · · ur . For a partition λ = (λ1, . . . , λs) of n, let ελ(u) ∈ Symn(M)

be the product
ελ(u) = ελ1(u) · · · ελs (u).

Recall that, for any toric vector bundle E on an arbitrary toric variety X = X (1)

and any maximal cone σ ∈ 1, there is a unique multiset u(σ ) ⊂ M such that the
restriction of E to Uσ splits equivariantly as

E|Uσ
∼=

⊕
u∈u(σ )

O (div χu).

See [Klyachko 1989] or [Payne 2006b, Section 2] for this and other basic facts
about toric vector bundles.

Theorem 6.1. Let E be a toric vector bundle on a complete toric variety X , and
let λ be a partition of n. Then the Chern number cλ(E) is given by

cλ(E) =

∑
σ

eσ · ελ(u(σ )).

Proof. The Chern number cλ(E) is equal to the integral over [X ] of the equivariant
Chow cohomology class corresponding to the piecewise polynomial whose restric-
tion to σ is ελ(u(σ )). Therefore, the theorem follows from Theorem 1.4. �

Theorem 6.1 has a straightforward generalization to top degree polynomials in
the Chern classes of several toric vector bundles (we omit the details), and may be
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seen as a Bott residue formula for vector bundles on toric varieties with arbitrary
singularities. This solves the toric case of the problem of proving residue formulas
on singular varieties posed in [Edidin and Graham 1998b, Section 5]. Edidin and
Graham handled the case of toric subvarieties of smooth toric varieties, but the
extension to arbitrary toric varieties is nontrivial; there are singular toric varieties,
such as Fulton’s threefold (Example 4.3) that have no nontrivial line bundles, and
hence admit no nonconstant morphisms to smooth varieties.

Example 6.2. We apply Theorem 6.1 to compute the Chern numbers of a specific
nonsplit rank two toric vector bundle on the singular toric variety X = X (1) mirror
dual to P1

×P1
×P1 (see Example 4.2). For this example, we assume that the base

field has at least three elements. The primitive generators of the rays of 1 are

v1 = (1, 1, 1), v2 = (1, 1, −1), v3 = (1, −1, 1), v4 = (1, −1, −1),

v5 = (−1, 1, 1), v6 = (−1, 1, −1), v7 = (−1, −1, 1), v8 = (−1, −1, −1),

and the maximal cones of 1 are

σ1 = 〈v1, v2, v3, v4〉, σ2 = 〈v1, v2, v5, v6〉, σ3 = 〈v1, v3, v5, v7〉,

σ4 = 〈v2, v4, v7, v8〉, σ5 = 〈v3, v4, v7, v8〉, σ6 = 〈v5, v6, v7, v8〉.

Let ρi be the ray of 1 spanned by vi , let E = k2, fix four distinct lines L1, L2,
L3, and L4 in E , and let E be the toric vector bundle determined by the filtrations

Eρ1(i) =


E for i ≤ −1,

L1 for 0 ≤ i ≤ 3,

0 for i > 3,

Eρ4(i) =


E for i ≤ −1,

L2 for 0 ≤ i ≤ 3,

0 for i > 3,

Eρ6(i) =


E for i ≤ −1,

L3 for 0 ≤ i ≤ 3,

0 for i > 3,

Eρ7(i) =


E for i ≤ −1,

L4 for 0 ≤ i ≤ 3,

0 for i > 3,

and

Eρ j (i) =

{
E for i ≤ 1,

0 for i > 1,

for j ∈ {2, 3, 5, 8}. Since the lines L i are distinct, the vector bundle E does not
split as a sum of line bundles. It is straightforward to check that the multisets of
linear functions u(σi ) determined by E are as follows. For simplicity, we write a,
b, and c, for e∗

1 , e∗

2 and e∗

3 , respectively.

u(σ1) = {(a + b + c), (a − b − c)}, u(σ2) = {(a + b + c), (−a + b − c)},
u(σ3) = {(a + b + c), (−a − b + c)}, u(σ4) = {(a − b − c), (−a + b − c)},
u(σ5) = {(a − b − c), (−a − b + c)}, u(σ6) = {(−a + b − c), (−a − b + c)}.
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To compute the Chern numbers of E, we now need only to compute the equi-
variant multiplicities eσi . First, σ ∗

1 is spanned by u1 = (1, 1, 0), u2 = (1, 0, 1),
u3 = (1, 0, −1), and u4 = (1, −1, 0). Let u = (1, 0, 0). We compute, as in [Payne
2007, Example 1.8],

Hilb(σ1) =
(1 + xu)(1 − x2u)

(1 − xu1)(1 − xu2)(1 − xu3)(1 − xu4)
.

Since the principal parts of 1 + xu , 1 − x2u and 1 − xui at 1T are 2, −2u, and −ui

respectively, it is then straightforward to compute eσ1 = − Hilb(σ )◦. Then

eσ1 =
4a

(b2 − a2)(c2 − a2)
.

By symmetry, eσ6 = −eσ1 , and similarly

eσ2 =
4b

(a2 − b2)(c2 − b2)
= −eσ5,

and

eσ3 =
4c

(a2 − c2)(b2 − c2)
= −eσ4 .

Then, using Theorem 6.1 and combining the summands coming from σi and σ7−i ,
we obtain

c111(E) =
2 · (2a)3

· 4a

(b2 − a2)(c2 − a2)
+

2 · (2b)3
· 4b

(a2 − b2)(c2 − b2)
+

2 · (2c)3
· 4c

(a2 − c2)(b2 − c2)
,

which simplifies to c111(E) = 64. Similarly,

c21(E) =
16a2(a2

− b2
− c2)

(b2 − a2)(c2 − a2)
+

16b2(−a2
+ b2

− c2)

(a2 − b2)(c2 − b2)
+

16c2(−a2
− b2

+ c2)

(a2 − c2)(b2 − c2)
,

which simplifies to c21(E) = 32.

Appendix: Principal parts of rational functions

Associated graded rings and leading forms have been standard tools for about as
long as commutative algebra has been applied to local algebraic geometry [Samuel
1953; 1955]. The generalization from leading forms of regular functions to prin-
cipal parts of rational functions is straightforward but, since we have been unable
to locate a reference, we include a brief account.

Let X be an algebraic variety over a field k, and let x ∈ X (k) be a smooth point.
Let m be the maximal ideal in the local ring OX,x . Since x is smooth,

(md/md+1) ∼= Symd(m/m2),
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for all nonnegative integers d [Atiyah and Macdonald 1969, Theorem 11.22]. Sup-
pose g ∈ OX,x is a regular function whose order of vanishing at x is d . Then the
leading form of g is its image

g◦ ∈ Symd(m/m2).

In other words, if x1, . . . , xn is a local system of parameters, then g can be expanded
uniquely as a power series in k[[x1, . . . , xn]], and the sum of the lowest degree
terms in this power series is the homogeneous degree d polynomial in x1, . . . , xn

that maps to g◦ under the canonical isomorphism

k[x1, . . . , xn]d ∼= Symd(m/m2).

Now m/m2 is the cotangent space of X at x , so g◦ is naturally a regular function
on the tangent space TX,x , and the zero locus of g◦ is the tangent cone of the
divisor of zeros of g at x [Harris 1992, Lecture 20]. Note that leading forms are
multiplicative; if g, h ∈ OX,x , then (gh)◦ = g◦h◦ in Sym∗(m/m2). For convenience,
we define the leading form of zero to be 0 ∈ Sym∗(m/m2).

Suppose f is a rational function on X . Then f can be written as a fraction
f = g/h, with g, h ∈ OX,x . We define the principal part of f to be

f◦ = g◦/h◦,

which is a homogeneous element of Sym±(m/m2), the Z-graded ring obtained by
inverting all homogeneous elements in Sym∗(m/m2). Note that f◦ is well-defined;
if g/h = g′/h′, then gh′

= g′h (since OX,x is a domain), and therefore

g◦h′

◦
= g′

◦
h◦,

since leading forms are multiplicative, so g◦/h◦ = g′
◦
/h′

◦
. Also, f◦ is naturally a

rational function on TX,x , and its divisors of zeros and poles are the tangent cones
of the zeros and poles of f , respectively.

Proposition A.1. Suppose f1, . . . , fs are rational functions on X with principal
parts in degree d , and let f = f1 + · · · + fs . Then either

f◦ = ( f1)◦ + · · · + ( fs)◦,

or ( f1)◦ + · · · + ( fs)◦ = 0 and the principal part of f is in degree strictly greater
than d.

Proof. If f = 0 then the proposition is clear. Suppose f is nonzero, and express
each fi as a fraction fi = gi/hi , with gi , hi ∈ OX,x . Then we can write f as a
fraction over a common denominator

f =

s∑
i=1

gi · h1 · · · ĥi · · · hs

h1 · · · hs
.
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Say hi vanishes to order di at x . Then each summand in the numerator above
vanishes to order exactly d1+· · ·+ds +d. Therefore, either the numerator vanishes
to order exactly d1 + · · · + ds + d and f◦ = ( f1)◦ + · · · + ( fs)◦, or the numerator
vanishes to some larger order and f◦ has degree greater than d. �

Corollary A.2. Suppose f1, . . . , fs are rational functions on X with principal
parts in degree d , and suppose f = f1 +· · ·+ fs is regular at x. Then ( f1)◦+· · ·+

( fs)◦ ∈ Sym∗(m/m2) is regular on TX,x .

Proof. By Proposition A.1, if ( f1)◦ + · · · + ( fs)◦ does not vanish then it is equal
to f◦, which is the principal part of a regular function. �
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